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Introduction

Astrophysicists reveal the biggest 3D map of the Universe. On this day of July 20, 2020,
numerous newspapers have devoted an article to the press release of the eBOSS collaboration,
accompanying the submission of its last papers. This marks the end of 20 years of spectroscopic
observations by the Sloan Digital Sky Survey (SDSS). This is also a turning point in the size of
spectroscopic galaxy surveys: in a few months, the Dark Energy Spectroscopic Instrument will
start regular operations, gathering ten times more galaxy redshifts than ever assembled.

Building such a gigantic map of the Universe requires a tremendous instrumental and ob-
servational effort. First, the sky is pictured, and target galaxies are identified in the resulting
images with colour selections. Then, optical fibres are assigned to each of these target to guide
the light from the focal plane of the telescope down to the spectrographs, which decompose
galaxy light into spectra. From these spectra, redshifts are measured, which, in combination
with galaxy angular positions, are turned in 3-dimensional coordinates.

However inspiring this 3D map is, putting the fragility of our blue marble in perspective to
the immensity of space, it also contains a wealth of cosmological information. Indeed, studying
the statistical properties of the distribution of galaxies provides insights into one of the greatest
mystery of the Universe: the acceleration of its expansion, which was evidenced by the distance
measurement of a few dozens of distant supernovae in 1998. The so-called clustering analyses
of galaxy redshift surveys rely on two physical effects: baryon acoustic oscillations and redshift-
space distortions.

As a result of the conjoint action of gravity and radiation pressure in the primordial Uni-
verse, acoustic waves propagate into the plasma of baryons and photons. With the Universe
cooling down, photons are released, weaving their path trough the structure of the Universe
before reaching our instruments. They form a picture of the Universe, called the cosmic mi-
crowave background, where the pattern of these acoustic waves can be clearly seen. Freezing
when photons decouple, these so-called baryon acoustic oscillations are imprinted in the large
scale galaxy distribution. This standard ruler, measured at different redshifts by the SDSS, al-
lows constraints to be put on the expansion rate of the Universe, and hence on the dark energy
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equation of state.

In addition, under the action of gravity, galaxies tend to fall in overdensities, such that their
motion is coherent on large scales — and appear incoherent on small scales, where galaxies live
in gravitationally bound systems. As galaxy velocities change their measured redshift, they
impact the observed spatial distribution of galaxies. These so-called redshift space distortions
grant access to the growth rate of structure — namely how fast structures grow in the Universe.
Such a measurement provides constraints on the dark energy equation of state or helps test
general relativity on large scales.

In particular, in this manuscript, we perform the clustering analysis of the eBOSS sample of
emission line galaxies (ELGs), located at a redshift between 0.6 and 1.1, when the Universe was
half younger than today. These ELGs are dense at these redshifts and exhibit strong emission
features in their spectra, making them ideal for clustering studies. This new sample in SDSS
benefited from various updates to best pave the way for DESI. The cosmological measurement
was hindered by significant observational systematics, which we aimed at correcting for. We
also dedicated significant work to the development and improvement of the analysis pipeline,
modelling analysis systematic effects which were unaccounted for so far.

This manuscript is divided into six chapters, as follows. In Chapter 1, we expose the con-
cordance model of cosmology, which we assume throughout the rest of the manuscript, with an
emphasis on baryon acoustic oscillations. Structure formation is described in Chapter 2, where
we specify the theoretical model to be confronted to observations. We then take a short break to
describe the construction of a galaxy spectroscopic survey in Chapter 3, which eventually results
in a catalogue of galaxy angular position and redshifts. In Chapter 4 we explain how to compress
and exploit this amount of data in a summary statistics, called the galaxy power spectrum, and
how the survey geometry impacts its measurement. Also discussed is the impact of inferring
this survey geometry from the observed data itself. Given these propaedeutic studies, we per-
form the clustering analysis of the eBOSS ELG sample in Chapter 5, and review cosmological
implications of the SDSS galaxy surveys. Chapter 6 exposes two side-projects complementing
the ELG analysis, and briefly discusses DESI prospects.
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A study of the large scale distribution of galaxies — the purpose of this manuscript — surely
requires a propaedeutic on the structure of the Universe. We will first describe how to measure
cosmological distances and how there are related to the energy content of the Universe. Next,
we will explain how tiny, quantum fluctuations grew and propagated in the early Universe to
imprint on the large scale matter distribution.

We do not aim at giving a complete description of modern cosmology — many dedicated
textbooks are available — but to include the minimal notions to make this manuscript somewhat
self-consistent.

1.1 The homogeneous Universe

A cornerstone of the concordance model of cosmology ΛCDM is general relativity, which
we will very briefly present hereafter. The large scale, global geometry of the Universe will be
determined by invoking the cosmological principle. This will allow us to define cosmological
distances and explain how they are related to the energy content of the Universe, which we
will also review. This section is mainly based on Dodelson (2003) and Peter and Uzan (2012)
textbooks and Bernardeau (1998) course.

1.1.1 General relativity

Any metric theory of gravitation relies on Einstein’s equivalence principle, which consists in:
1. the weak equivalence principle: the trajectory of any test particle is independent of its

internal structure or composition;
2. local position invariance: the result of any non-gravitational experiment is independent of

its space-time position;
3. local Lorentz invariance: the result of any non-gravitational experiment is independent of

the laboratory’s motion if in free fall.
Under these assumptions, gravitation stems from a curved space-time, whose geometry is de-
scribed by a metric g. The length element between two space-time events separated by dxµ

is:
ds2 = gµνdx

µdxν , (1.1)

where we sum over repeated indices, and Greek indices run from 0 to 3. On the contrary,
Latin indices will run from 1 to 3. gµν is a symmetric tensor, of inverse gµν and determinant g.
Particles only submitted to gravitation follow the geodesics of this 4-dimensional manifold, i.e.
their trajectory xµ(τ) (with τ a scalar parameter) maximises the action:

S =
∫
gµν

dxµ

dτ

dxν

dτ
dτ. (1.2)

Maximising S, using the Euler-Lagrange equation, gives the geodesic equation:

d2xα

dτ2 + Γαµν
dxµ

dτ

dxν

dτ
= 0, (1.3)

with the Christoffel symbols:

Γαµν = 1
2g

λα (∂µgλν + ∂νgµλ − ∂λgµν) (1.4)
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where we noted the partial derivative ∂µ = ∂/∂xµ. The geodesic equation can be recast in the
form:

uµuα;µ with uµ = dxµ

dτ
. (1.5)

Here ; ν is the covariant derivative, which takes into account the variation in the coordinate
system. The covariant derivative is defined for a vector Tα as:

Tα;µ = ∂µT
α + ΓαµνT ν , (1.6)

and is extended to any tensor Tµ1···µp
ν1···νq following:

T
µ1···µp
ν1···νq ;α = ∂αT

µ1···µp
ν1···νq + Γµ1

αλ1
T
λ1···µp
ν1···νq + · · ·+ ΓµpαλpT

µ1···µp−1λp
ν1···νq

− Γλ1
αν1T

µ1···µp
λ1···νq − · · · − ΓλqανqT

µ1···µp
ν1···νq−1λq

. (1.7)

An observer four-velocity is defined as uµ = dxµ/dτ , with the proper time dτ =
√
−gµνdxµdxν .

Note that we set c = } = 1 in all this manuscript. Therefore, uµuµ = −1. Photons follow
light geodesics, ds2 = −dτ2 = 0. The Riemann tensor measures the non-commutativity of the
covariant derivative due to space-time curvature:

Tµ;α;β − T
µ
;β;α = RµναβT

ν . (1.8)

In terms of Christoffel symbols:

Rµναβ = ∂αΓµνβ − ∂βΓµνα + ΓµσαΓσνβ − ΓµσβΓσνα. (1.9)

The only contraction leading to a tensor is the Ricci tensor:

Rµν = Rαµαν (1.10)

whose trace R = gµνRµν is dubbed curvature or Ricci scalar.
The equations governing the evolution of gµν can be derived following the principle of least

action. Einstein and Hilbert proposed the scalar curvature R as Lagrangian:

SEH = c4

16πGN

∫
d4x
√
−gR (1.11)

but there are many other possibilities — leading to modified gravity theories. We further
introduce the cosmological constant Λ and add the Lagrangian of matter Lm, such that the
total action reads:

S = c4

16πGN

∫
d4x
√
−g (R− 2Λ) +

∫
d4x
√
−gLm (1.12)

where GN is the Newton constant. Varying the action (δS = 0), one obtains the Einstein field
equation:

Gµν + Λgµν = 8πGN
c4 Tµν (1.13)

with:

Gµν = Rµν −
1
2gµνR, (1.14)

Tµν = − 2√
−g

δ
√
−gLm
δgµν

= −2δLm
δgµν

+ gµνLm. (1.15)
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Figure 1.1 – The distribution of galaxies probed by the SDSS/BOSS survey. The SDSS Main Galaxy
Sample is shown in yellow, the BOSS LOWZ and CMASS samples are displayed in red and white,
respectively. Credits: SDSS.

are the Einstein tensor and momentum-energy tensor, respectively. In addition, since gµν;α = 0
and Gµν;ν = 0, Eq. (1.13) ensures the conservation of the total energy-momentum tensor:

Tµν;ν = 0 (1.16)

In ΛCDM general relativity is applied to cosmological scales, which requires some assumptions
on the large scale geometry of the Universe.

1.1.2 Cosmological principle

Cosmology consists in the study of the past and the future of the Universe. Though we can
only observe an infinitely small portion (our past light-cone, defined as ds2 = 0) of one single
universe, we claim to have a theory that describes its evolution. This cannot go without some
assumptions on its nature.

On scales below 100 Mpc, the Universe is anisotropic: we observe large structures probed
by large galaxy surveys, such as the SDSS (see Figure 1.1). However, on scales larger than
200 Mpc, the Universe appears relatively isotropic. One also notes the remarkable isotropy of
the temperature of the cosmic microwave background (CMB), a picture of the sky at redshift
z? ' 1090: subtracting the dipole due to the proper motion of our galaxy (inducing relative
temperature fluctuations of 10−3), remaining relative temperature fluctuations are only of the
order of 10−5. Hence, we observe the Universe to be isotropic on large scales.

In addition, the Copernican principle states that we do not occupy a special place in the
Universe. Further assuming that the Universe is isotropic (even beyond the scales probed by
observations) implies the cosmological principle: the Universe is spatially isotropic and homo-
geneous.

As such, and within general relativity, the cosmological principle enables us to derive equa-
tions governing the dynamics of the smooth, background Universe. Observed inhomogeneities
are described as perturbations over this background.
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1.1.3 Cosmological distances

The Friedmann-Lemaître-Robertson-Walker (FLRW) metric is the generic metric that sat-
isfies the cosmological principle:

ds2 = −dt2 + a2(t)
(

dx2

1−Kx2 + x2dΩ2
)

(1.17)

where t is the cosmic time, a(t) is the scale factor, x is a radial coordinate and dΩ2 = dθ2 +
sin2 θdφ2 is the infinitesimal solid angle (φ ∈ [0, 2π] and θ ∈ [−π, π]). K is the curvature term.
If K = 0, the spatial part of the metric is flat; if K > 0, it is said to be closed, and if K < 0, to
be open.

In the limit of small separations, the physical distance between two objects is given by r = ax.
Therefore, its derivative gives the relative velocity of the two bodies:

v = ȧx + aẋ = Hr + aẋ, (1.18)

where we used the Hubble parameter H = ȧ/a. ˙denotes a derivative with respect to the cosmic
time t. aẋ is due to the galaxy proper velocities; it is zero in average. Thus: 〈v〉 = Hr. Actually,
the simple observation that 〈∇ · v〉 is a constant in space (following from the cosmological
principle) leads to the same conclusion. This demonstrates Hubble-Lemaître law (Hubble, 1929):
the velocity between two objects (far enough that space can be considered homogeneous, but
close enough that H can be considered constant) is proportional to their distance.

In practice, we do not measure velocities, but redshifts z. Indeed, the absorption or emission
lines of astrophysical objects are shifted to larger — redder — wavelength, as the Universe
expands. Let us consider a galaxy, located at xe, emitting a photon at te that the observer
receives at t0 (in x0 = 0). The photon follows the geodesic ds2 = 0; therefore:∫ t0

te

dt

a(t) =
∫ xe

x0

dx√
1−Kx2

. (1.19)

If a second photon is emitted at te + δte, with δte � 1/H(te) it will be received at t0 + δt0 such
that: ∫ t0

te

dt

a(t) =
∫ t0+δt0

te+δte

dt

a(t) . (1.20)

Then:
δte
a(te)

= δt0
a(t0) . (1.21)

Therefore, the wavelength λe ∝ δte of a photon emitted at te will be stretched by the factor:

1 + z(te) = λ0
λe

= a(t0)
a(te)

(1.22)

thus defining the redshift z(te) of the galaxy at te. In the following, we naturally set a(t0) = 1.
Let us now define the different cosmological distances which will be used to locate objects

in space-time. First, let us recast the metric (1.17) into the more convenient form:

ds2 = −dt2 + a2(t)γijdxidxj = a2(η)
(
−dη2 + γijdx

idxj
)

(1.23)
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where η (dη = dt/a) is called the conformal time and:

γijdx
idxj = dχ2 + f2

K(χ)dΩ2 (1.24)

with:

fK(χ) =


K−1/2 sin

(√
Kχ

)
K > 0

χ K = 0
(−K)1/2 sinh

(√
−Kχ

)
K < 0.

(1.25)

The radial comoving distance χ of an object emitting at time te and observed at t0 in
χ(t0) = 0 is obtained by integration along a radial light geodesic:

χ(te) =
∫ t0

te

dt

a(t) . (1.26)

Noting that dt = da/(aH) = −dz/ ((1 + z)H(z)), the radial comoving distance can be recast as:

χ(ze) =
∫ ze

0

dz

H(z) (1.27)

The comoving angular distance DM relates the transverse comoving size of an object (co-
moving surface area dSe) to the corresponding solid angle dΩ0 seen by an observer, namely:

dSe = D2
MdΩ2

0. (1.28)

The solution is read directly on Eq. (1.24):

DM(z) = fK(χ(z)) (1.29)

The angular diameter distance DA relates the transverse physical of size of an object to the
corresponding solid angle seen by an observer. Since the physical surface area is dSp = a(te)2dSe,
we have:

DA(z) = DM(z)
1 + z

(1.30)

The luminosity distance DL relates the luminosity Le of a source located at the radial co-
moving distance χ to the flux φ0 measured by the observer:

φ0 = Le
4πD2

L
. (1.31)

The luminosity (∝ dE/dt) decreases as a2, as the time interval dt (∝ adη) scales as a and the
photon energy dE (∝ λ−1

e ) as a−1. Therefore:

φ0 = Le (1 + z)−2

4πf2
K(χ) (1.32)

and:
DL(z) = (1 + z) fK(χ(z)) (1.33)

So far, all distances are expressed as a function of H and K — which will be related to the
energy content of the Universe in the following. However, we will first discuss the measurement
of the Hubble constant H0 = H(z = 0), the value of H at the present epoch, as it does not
require any further assumption.
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Figure 1.2 – The distance - redshift relation of nearby galaxies measured by Edwin Hubble in 1929. The
continuous line represents the fit from galaxies taken separately (black disks) and the dashed lines from
galaxies combined into groups (white circles). Taken from Hubble (1929).

1.1.4 The Universe expansion

At first order in z � 1, the luminosity distance (1.33) is:

DL = cz

H0
= v

H0
. (1.34)

Therefore, H0 can be determined by measuring redshifts and luminosity distances independently.
This method — the so-called Hubble diagram — is hence the most direct evidence for the expan-
sion of the Universe. In his seminal paper of 1929, Hubble measured H0 = 500 km s−1 Mpc−1,
7 times higher than the most recent measurements (see Figure 1.2). One should however target
galaxies far enough that typical galaxy velocities ∼ 300 km s−1 are negligible compared to the
Hubble expansion. A fractional contribution of galaxy proper velocities of 3% to the observed
redshifts requires a Hubble flow of v ∼ 1× 104 km s−1, thus one has to observe galaxies at
z ∼ 0.03.

The most direct measurement relies on parallaxes (e.g. Luri et al., 2018), but can only be
used for stars close to the Milky Way (up to a few kpc). Otherwise, one can focus on different
classes of astrophysical objects of known or standardisable luminosity. These are called standard
candles:

1. Cepheids: variable stars with a period of 2 to 100 days. This period has been found
to correlate with luminosity with a scatter of 20% in luminosity. This relation can be
calibrated with parallax measurements (e.g. Riess et al., 2018). Given their luminosity,
Cepheids can only be targeted up to 20 Mpc. However, these Cepheids can be used to
calibrate the magnitude of other astrophysical objects found in the same galaxy.

2. supernovae (SN) Ia: they consist in the stellar explosion of a white dwarf in a binary
system. Their maximal intrinsic luminosity, comparable to that of an entire galaxy, is
correlated with the characteristic time of their light-curve, with a scatter of 12%. Their
absolute magnitude can be calibrated with Cepheids (e.g. Dhawan et al., 2018).

3. tip of the red giant branch (TGRB): the luminosity of brightest stars in the red giant
branch has been shown to be somewhat insensitive to their composition or their mass (e.g.
Freedman et al., 2019).
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Figure 1.3 – Comparison of the early and late type measurements of H0. Taken from Riess et al. (2019).

4. galaxies: their luminosity is correlated to their rotation velocities (Tully-Fisher relation),
their velocity dispersion, or the surface brightness fluctuations (e.g. Ajhar et al., 2001).

Other methods, which do not rely on distance ladder, include:
1. SN II photosphere: after their explosion, the photosphere of SN II propagates at v/c ∼

0.01. One can obtain their angular diameter distance by measuring the angular diameter
θ of this photoshere at a given time after the explosion (e.g. Schmidt, 1993).

2. time delays due to gravitational lensing: H0 can be measured by comparing the time
difference between two images of a quasar lensed by a foreground galaxy, if the mass
distribution of that galaxy is known (e.g. Birrer et al., 2019).

3. Sunyaev-Zel’dovich effect: the CMB black body spectrum is distorted by the inverse
Compton diffusion by the ionised gas along the line of sight. Measuring this distortion, and
the temperature and density map of the X emission of the gas, one can infer its distance
(e.g. Bonamente et al., 2006).

Today, as can be seen on Figure 1.3, there is a strong tension between the local (late) meas-
urements of H0 and those relying on the physics in the early Universe — CMB or Big Bang
nucleosynthesis (BBN) with baryon acoustic oscillations (BAO). The latest results lead to a 5.3σ
discrepancy (Wong et al., 2019).

1.1.5 Friedmann equations

The time dependence of the scale factor a is related to the energy-momentum tensor Tµν
by the Einstein equation (1.13). The most general form of Tµν in a homogeneous and isotropic
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Universe is:
Tµν = ρuµuν + P γ̂µν , (1.35)

with the four-velocity uµ = δµ0 . γ̂µν = gµν + uµuν is the projector onto the spatial part of the
metric. For a comoving observer of four-velocity uµ, ρ = Tµνu

µuν is the fluid energy density
and P = Tµν γ̂

µν/3 its pressure, which only depend on time. This corresponds to a perfect fluid
(no shear).

Then, the Einstein equation (1.13) reduces to the Friedmann equations:

H2 = 8πGN
3 ρ− K

a2 + Λ
3

ä

a
= −8πGN

6 (ρ+ 3P ) + Λ
3

(1.36)

(1.37)

where we recall ˙ denotes a derivative with respect to the cosmic time t. Combining the two
equations above (deriving Eq. (1.36), noting that Ḣ = ä/a −H2, to be replaced by Eq. (1.36)
and Eq. (1.37)), or, equivalently, using the conservation equation (1.16) gives:

ρ̇+ 3H (ρ+ P ) = 0. (1.38)

We obtain two independent equations and three unknowns: a, ρ and P . To close the system,
another equation is required, namely the fluid equation of state, which takes the form:

P = wρ (1.39)

Injecting this formula into Eq. (1.38) implies that, for w constant (which we will use throughout
this manuscript):

ρ ∝ a−3(1+w). (1.40)

Already, one can note from Eq. (1.36) that the cosmological constant is equivalent to a fluid of
equation of state w = −1 and the curvature term K to w = −1/3. For pressureless matter,
w = 0 and for relativistic species, w = 1/3. Injecting Eq. (1.40) into Eq. (1.36), we find:

type equation of state w energy density ρ scale factor a conformal time η
cosmological constant −1 ∝ a0 ∝ eHt η ∝ e−Ht

curvature −1/3 ∝ a−2 ∝ t ∝ ln t
pressureless matter 0 ∝ a−3 ∝ t2/3 ∝ t1/3

relativistic species 1/3 ∝ a−4 ∝ t1/2 ∝ t1/2

Table 1.1 – Dynamics of the Universe as a function of the energy content.

We usually define the critical density as:

ρc = 3H2

8πGN
. (1.41)

Then, we define the density parameter of fluid X with energy density ρX by ΩX = ρX/ρc. In
particular:

ρΛ = Λ
8πGN

ρK = − 3K
8πGNa2 . (1.42)



16 CHAPTER 1. The concordance model of cosmology

The first Friedmann equation can be rewritten:∑
X

ΩX + ΩΛ + ΩK = 1. (1.43)

Let us note ΩX,0 = ΩX(z = 0), and write the equation of state of fluid fluid X wX . Assuming
these fluids to couple only through gravitation (such that Eq. (1.40) is verified independently
for each of them):

ΩX = ΩX,0(1 + z)3(1+wX)
[
H0
H(z)

]2
, (1.44)

such that:

H2(z) = H2
0

[∑
X

ΩX,0(1 + z)3(1+wX) + ΩK,0(1 + z)2 + ΩΛ,0

]
(1.45)

We can therefore compute distances (1.27), (1.29) if we specify ΩX,0, ΩK,0, ΩΛ,0 and H0. We
adopt the usual convention H0 = 100 h km s−1 Mpc−1, and will often use the reduced (or phys-
ical) density parameters ωX,0 = ΩX,0h

2, which are proportional to the physical energy density
today (since ρX = ΩXρc with ρc given by Eq. (1.41)).

1.2 Energy content

In the ΛCDM model, the following energy content of the Universe is assumed: dark energy
(through the cosmological constant), radiation (photons and neutrinos), baryons and cold dark
matter. In general, best constraints on energy densities come from the CMB, whose phenomeno-
logy will be presented in Section 1.3. We thus provide parameter densities today in Table 1.2, as
measured by Planck Collaboration et al. (2018), combining CMB (TT, TE, EE, lowE, lensing)
and BAO measurements and assuming a flat ΛCDM model with two massless and one neutrino
of mass mν = 0.06 eV. Table 1.2 also contains other parameters discussed in this chapter. In the
following, we review the different components mentioned hereabove, emphasising some alternate
methods to measure the corresponding density parameters.

Letting curvature free, Planck Collaboration et al. (2018) measured its density parameter to
be ΩK,0 = 0.0007± 0.0019, combining CMB (TT, TE, EE, lowE, lensing) and BAO measure-
ments. Such a low (absolute) value of curvature density will be explained in the last part of this
section, while we will assume a flat ΛCDM model elsewhere. Within this model, the evolution
of density parameters is shown as a function of redshift in Figure 1.4.

1.2.1 Dark energy

The scale factor a can be Taylor expanded following:

a(t) = 1 +H0 (t− t0)− 1
2q0H

2
0 (t− t0)2 + . . . (1.46)

with:
q0 = − ä(t0)

H2
0
. (1.47)
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reduced Hubble constant h 0.6766± 0.0042
baryon density ωb,0 0.022 42± 0.000 14

cold dark matter density ωc,0 0.119 33± 0.000 91
photon density ωγ,0 (2.4729± 0.0022)× 10−5

dark energy density ΩΛ,0 0.6889± 0.0056
optical depth at reionisation τrei 0.0561± 0.0071

redshift of reionisation zrei 7.82± 0.71
index of the primordial power spectrum ns 0.9665± 0.0038

amplitude of the primordial power spectrum 109As 2.105± 0.030
normalisation of the matter power spectrum σ8,0 0.8102± 0.0060

redshift of matter-radiation equality zeq 3387± 21
last scattering redshift z? 1089.80± 0.21

drag redshift zdrag 1060.01± 0.29
sound horizon at the drag epoch rdrag 147.21± 0.23 Mpc

Table 1.2 – Cosmological parameters as measured by Planck Collaboration et al. (2018) (TT, TE, EE,
lowE, lensing, BAO) within the flat ΛCDM 6 parameter model, i.e. varying ωb,0, ωc,0, θMC (equivalent
of h), τ , ln

(
1010As

)
and ns. As is provided at the pivot scale k0 = 0.05 Mpc−1. ΩΛ,0 is imposed

by Eq. (1.43) assuming flatness, but we quote it for convenience. The photon density is measured by
COBE/FIRAS (Fixsen, 2009). The sum of neutrino masses is fixed to 0.06 eV, yielding ων,0 = 6.4× 10−4.

Figure 1.4 – The density parameters as a function of redshift, with the values provided in Table 1.2:
Ωm(z) = Ωc(z) + Ωb(z) and Ωr(z) = Ωγ(z) + Ων(z) (neutrinos are considered massless for simplicity).

The sign of q0 stems from the original expectation that the Universe is filled with matter and
radiation only and hence its expansion should decelerate. Expanding H = ȧ/a at first order we
find:

H(z) = H0 [1 + (q0 + 1) z] +O(z2), (1.48)

and for the luminosity distance:

DL(z) = H−1
0

[
1− 1

2 (q0 − 1) z
]
z +O(z3). (1.49)

Therefore, when z � 1, the Hubble diagram is only sensitive to H0, then it depends on q0 for
z . 0.5, and finally on all density parameters as z & 1. In 1998, two different collaborations,
the High-Z Supernova Search Team (HZT Riess et al., 1998) and the Supernova Cosmology
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Project (SCP Perlmutter et al., 1999) measured q0 < 0 based on the Hubble diagram of 50 and
60 SN Ia, respectively, thus providing evidence for the acceleration of the Universe expansion.
The energy component that creates this acceleration is generically called dark energy.

Using the second Friedmann equation (1.37) and the equation of state (1.39),

q0 = 1
2
∑
X

(1 + 3wX) ΩX,0. (1.50)

Therefore, for q0 to be negative, there should exist at least one component with wX < −1/3. In
a ΛCDM Universe and neglecting radiation today (we will see this is legitimate in Section 1.2.3):

q0 = 1
2Ωm,0 − ΩΛ,0, (1.51)

q0 < 0 if and only if ΩΛ,0 > Ωm,0/2. Note that this result is independent of the curvature ΩK,0.
In 1998 ΩΛ,0 was found to be strictly positive at 99% confidence level. Today’s best constraint

from SN Ia alone is:
ΩΛ,0 = 0.702± 0.022 (1.52)

within the flat ΛCDM model, using the Pantheon sample (Scolnic et al., 2018).
As stated above, the cosmological constant can be interpreted as a perfect fluid of density

ρΛ = Λ/ (8πGN) and equation of state wΛ = −1. Though such a fluid cannot be found in classical
physical systems, it is expected in quantum physics. Applying the cosmological principle, the
energy-momentum tensor for vacuum energy is indeed:

Tµν = −ρvgµν , (1.53)

which is similar to that of Λ. However, predictions for the vacuum energy based on quantum
field theory exceed the observed energy density associated to the cosmological constant by 60
to 120 orders of magnitude. This is known as the cosmological constant problem.

Hence, giving up on dark energy to match vacuum energy, on can explore deviations to a
pure cosmological constant w = −1. Letting w free, using CMB TT, TE, EE, lowE + lensing,
BAO and SN Ia data within a flat CDM model Planck Collaboration et al. (2018) measure
w = −1.028 ± 0.032, compatible with a cosmological constant (w = −1). Further allowing for
a time variation of w, the Chevallier-Polarski-Linder (CPL) parametrisation (Chevallier and
Polarski, 2001; Linder, 2003) reads:

w(a) = w0 + (1− a)wa. (1.54)

With the same data set and model, Planck Collaboration et al. (2018) find w0 = −0.961± 0.077
and wa = −0.28+0.31

−0.27, again fully compatible with a cosmological constant (w0 = −1 and wa = 0).
Note however that Eq. (1.54) does not provide a physical explanation for dark energy. The

most natural one is a quintessence field φ evolving in a potential V (φ), such that Eq. (1.12)
becomes:

S = 1
16πGN

∫
d4x
√
−gR− 1

16πGN

∫
d4x [∂µφ∂µφ+ 2V (φ)] +

∫
d4x
√
−gLm. (1.55)

In this case, the equation of state of the homogeneous scalar field is given by:

wφ = φ̇2 − 2V (φ)
φ̇2 + 2V (φ)

. (1.56)



1.2. Energy content 19

Calan/Tololo

(Hamuy et al, 

A.J. 1996)

Supernova

Cosmology

Project
ef

fe
ct

iv
e 

 m
B

m
ag

 r
es

id
u

al
st

an
d
ar

d
 d

ev
ia

ti
o
n

(a)

(b)

(c)

(0.5,0.5)    (0, 0)

( 1,    0 )    (1, 0)
(1.5,–0.5)  (2, 0)


(ΩΜ,ΩΛ) = ( 0,   1 )

F
la

t

(0.28,   0.72)  

(0.75,   0.25 ) 
(1,        0)

(0.5,     0.5 ) 
(0,        0) 

(0,        1 )

(ΩΜ , ΩΛ) =

Λ
 =

 0



redshift  z

14

16

18

20

22

24

 

 

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0.0 0.2 0.4 0.6 0.8 1.0

-6

-4

-2

0

2

4

6

Figure 1.5 – Hubble diagram of 42 high redshift SN Ia from the Supernova Cosmology Project, and 18
low redshift supernovae from the Cálan/Tololo Supernova Survey. ΛCDM predictions are plotted with
different (Ωm,0,ΩΛ,0) values. Taken from Perlmutter et al. (1999).

To obtain wφ ' −1, as favoured by current observations, the field potential energy V (φ)
must dominate over the kinetic term.

However, neither a cosmological constant nor a more general scalar field explain why dark
energy just starts to dominate (see Figure 1.4). This question is even more striking if we
note that, assuming a cosmological constant, the expansion of the Universe will eventually be
exponential:

a(t) ∝ eHt with H =

√
Λ
3 . (1.57)

One would note that the advent of dark energy is somewhat concomitant to the emergence
of non-linear structure formation, as will be presented in Chapter 2. In addition, it is not
clear whether Friedmann equations are a correct description of the average dynamics of the
structured Universe. Therefore, some tried to explain the recent acceleration of the expansion
by the feedback due to non-linear structure formation. Though the idea appears extremely
appealing, simulations have shown this backreaction to be too small to explain the observed
acceleration of the expansion of the Universe (Schwarz, 2010).
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The alternative to a dark energy fluid is a modification of gravity itself, just as Λ can be
thought of as a natural addition to the Einstein-Hilbert action (1.11). Many modified gravity
models have been proposed, including:

1. scalar theories: a scalar field interacts with the metric. As an example, f(R) theories
replace the Ricci tensor R of the Einstein-Hilbert action (1.11) by a function of it, f(R).
f is conveniently chosen such that the effect of modified gravity is suppressed in the large
or rapidly changing curvature limit, through the so-called chameleon mechanism.

2. extra-dimension theories: extra dimensions are introduced, such that the acceleration
of the expansion is driven by the extra dimensions, and standard general relativity is
recovered at small scales, through the so-called Vainshtein mechanism.

3. massive gravity: the graviton is given a mass. Again, the Vainshtein mechanism ensures
general relativity is recovered on small scales. However, these theories are prone to in-
stabilities.

4. Horndeski theories: most general theories of gravity involving a scalar field and a metric
tensor in 4 dimensions, such that equations of motion are second order.

Many modified gravity models were ruled out by the constraint that the speed of gravitational
waves should (almost) equate the speed of light, as imposed by the recent observation of a
gravitational wave with electromagnetic counterpart (LIGO Scientific Collaboration and Virgo
Collaboration, 2017).

Therefore, the cosmological constant Λ appears as the simplest parametrisation satisfying
current observations. We will thus consider the ΛCDM model in the rest of this manuscript
(except otherwise stated).

1.2.2 Baryonic matter

Baryonic matter is a synonym for regular matter. Today, baryonic matter resides in gravit-
ationally bound systems such as galaxies, stars, and in the circumgalactic medium.

In earlier times, when T � 1 MeV, the Universe is filled with relativistic particles at equi-
librium: electrons, positrons, neutrinos and photons, and non-relativistic neutrons and protons.
The ratio of neutron to proton densities is:(

n

p

)
eq
' exp

[
−Q
T

]
, (1.58)

with Q = mn −mp ' 1.293 MeV the mass difference between neutrons and protons.
Around T ' 0.8 MeV, the weak interaction cannot maintain equilibrium anymore; neutrinos

decouple and the neutron to proton ratio is of order (n/p)f ' exp (−1.293/0.8) ' 0.2. Then,
neutrons decay into protons:

n→ p+ e+ ν̄e (1.59)

with a lifetime τn ' 880 s.
Nuclei can almost only be formed through two-body reactions due to the low density of

neutrons and protons preventing higher order interactions. Then, deuterium must be formed
first to allow the production of heavier elements. Because of its low binding energy, deuterium is
easily photodissociated and its production starts only around Tnuc ' 0.066 MeV. At that time,
namely tnuc ' 300 s, (n/p)nuc = (n/p)f exp (−tnuc/τn) ' 0.14. Then, deuterium combine rapidly
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in helium-4, which is much favoured due to its higher binding energy. Since helium-4 nuclei
contain virtually all neutrons, their mass abundance is:

Yp '
( 2n
n+ p

)
nuc

= 2 (n/p)nuc
1 + (n/p)nuc

' 0.25. (1.60)

The decrease of temperature and density, the absence of stable nuclei with masses A = 5 and
A = 8 and the increased Coulomb repulsion stop the primordial nucleosynthesis after lithium-7.
At the end of Big Bang nucleosynthesis, T ' 0.03 MeV (t ' 1000 s), apart from helium-4, traces
of deuterium (mass abundance of ∼ 10−4), helium-3 (mass abundance of ∼ 10−4, including
tritium (vanishing through beta decay), and lithium-7 (∼ 10−9, including beryllium-7) remain.
Unlike helium-4, the relative abundances of these primordial nuclei depend heavily on the ratio
of baryon-to-photon densities ηbγ = nb/nγ .

Therefore, a measurement of the energy density of baryons can be obtained by probing the
concentration of the different light nuclei produced by the Big Bang nucleosynthesis. At 95%
confidence level ωb,0 is found to be (Tanabashi et al., 2018):

0.021 < ωb,0 < 0.024. (1.61)

Heavier nuclei are then produced in the first stars through stellar nucleosynthesis.

1.2.3 Radiation

Radiation comprises all relativistic species at a given redshift z. The only relativistic species
today are the photons from the cosmic microwave background, relativistic neutrinos and any
other possible light thermal relic.

1.2.3.1 Photons

In the early Universe (T ∼ 100 eV), the interaction rate Γ between photons and electrons of:

p+ e←→ H + γ (1.62)

is much larger than the expansion rate H. Therefore, protons, electrons, hydrogen and photons
are in thermodynamic equilibrium and treated as Fermi-Dirac and Bose-Einstein gases. Their
chemical potentials obey:

µp + µe = µH + µγ (1.63)

with µγ = 0. At that time, all baryons are non-relativistic. In this limit, their Fermi-Dirac
distribution can be integrated over their momentum to yield their density:

nX = gX

(
mXT

2π

)3/2
e(µX−mX)/T X ∈ {e, p,H} , (1.64)

where gX is the degeneracy. Let us define the ionisation fraction Xe = ne/ (np + nH) = ne/nb.
We also have np = ne, following from electric neutrality. Then, taking mH = mp in the prefactor
of Eq. (1.64), Eq. (1.63) can be recast into the Saha equation:

X2
e

1−Xe
=
(
meT

2π

)3/2 e−EI/T

nb
, (1.65)

where EI = me + mp −mH = 13.6 eV is the hydrogen ionisation energy. The number density
of baryons is related to that of photons through the baryon-to-photon ratio ηbγ = nb/nγ . The
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Figure 1.6 – Measurement of the microwave radiation spectrum by the instrument FIRAS of the COBE
satellite, and the black body spectrum best fit. Error bars are hidden in the thickness of the line. Taken
from Fixsen et al. (1996).

photon density nγ follows from integrating the Bose-Einstein distribution function (2ζ(3)/π2 '
0.2436):

nγ = 2ζ(3)
π2 T 3. (1.66)

The baryon-to-photon ratio has been measured to be ηbγ ' 5× 10−10 from the relative fraction
of nuclei produced during the Big Bang nucleosynthesis (see Section 1.2.2). Therefore, defining
the recombination by Xe = 1/2, we find Trec ' 3500 K. So far we have assumed all gases to
be in thermodynamic equilibrium; actually the Boltzmann equation should be solved to take
into account the dynamic process of recombination of both helium and hydrogen atoms. At
the end of recombination, the electron density falls rapidly; and so does the photon-electron
scattering rate, until photons decouple from the baryon plasma — around the last scattering
redshift z? = 1089.80± 0.21 as measured by Planck Collaboration et al. (2018) (see Table 1.2).

Photons then free-stream, forming the cosmic microwave background, with a spectral energy
distribution following a black body spectrum. The current CMB temperature was measured to
a very high precision by COBE/FIRAS (see Figure 1.6): 2.7255± 0.0006 K (Fixsen, 2009).

From the photon energy density:

ργ = 2π
2

30T
4 (1.67)

and Eq. (1.41), we find:
ωγ,0 = (2.4729± 0.0022)× 10−5. (1.68)

Apart from foregrounds (galaxy emission, dust emission), small deviations to the black body
spectrum (µ, y distortions) could be expected, but have not yet been detected. However, some
angular anisotropies have been found; first, a dipole (δT/T ∼ 10−3), compatible with our
motion with respect to the CMB rest-frame, and smaller fluctuations, δT/T ∼ 10−5, which will
be described in the next section.
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1.2.3.2 Neutrinos

Very similarly to the cosmic microwave background, neutrinos decouple from electrons when
the rate of weak interactions becomes smaller than the expansion rate (when T ∼ 1 MeV).
Because of entropy conservation, photons get reheated after neutrino decoupling. Their temper-
ature Tγ increases by the cubic root of the ratios of the effective number of relativistic degrees
of freedom before and after decoupling, (11/4)1/3. Assuming neutrino temperature was not
changed by decoupling, their temperature today is thus Tν = (4/11)1/3Tγ . Hence, the energy
density per family of massless neutrinos (particles and antiparticles) is:

ρν = 7
8

( 4
11

)4/3
ργ , (1.69)

the factor 7/8 arising due to the fermionic nature of neutrinos. Therefore, the parameter density
of massless (mν . 10−4 eV) neutrinos is:

ων,0 = (5.6161± 0.0049)× 10−6 ×Nν (1.70)

with Nν the number of neutrino families; 3, in the standard model. However, neutrino decoup-
ling is not instantaneous, which is accounted for by taking the effective number of neutrinos
to be Neff = 3.046 (Mangano et al., 2002; de Salas and Pastor, 2016). This number would
increase if there existed other thermal relics. The effective number of degrees of freedom in non-
photon radiation density was measured to be Neff = 2.99± 0.17, including CMB and BAO data,
by Planck Collaboration et al. (2018), consistent with the 3.046 value. In this manuscript we
thus do not consider any other thermal relics. Then, Eq. (1.69) would hold as long as neutrinos
are relativistic. From the neutrino oscillations detected by the Super-Kamiokande and Sudbury
Neutrino Observatory experiments (Kajita, 1999; Ahmad et al., 2001), we know that at least one
of the neutrino mass eigenstates is non-zero. Therefore, the neutrino parameter density today
is (if neutrino masses are almost degenerate, Mangano et al. 2005):

ων,0 =
∑
νmν

93.14 eV . (1.71)

Constraints on neutrinos masses can be inferred from large scale structure analyses. Based on
the Lyman-α absorption in quasar spectra Palanque-Delabrouille et al. (2019) find ∑νmν <

0.71 eV at the 68% confidence level. Combining with CMB, lensing and BAO data, they find∑
νmν < 0.113 eV at the 68% confidence level.
The best limit on the sum of neutrino masses from particle physics experiments is ∑mν <

1.1 eV at 90% confidence level, as recently determined by Katrin (Aker et al., 2019) from tritium
beta decay.

In the rest of this manuscript, we fix ∑νmν to its lower limit of 0.06 eV — except otherwise
stated, and consider one massive and two massless neutrinos, as in Planck Collaboration et al.
(2018).

1.2.4 Dark matter

Dark matter was introduced as an answer to the hereafter described observations.
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Figure 1.7 – Rotation curve of galaxy M33 (points with error bars) inferred from observations of the
21 cm line emission of HI. The best fit model is shown in continuous line. The stellar, gas and dark
matter contribution are shown in short dashed, long dashed and dashed dotted lines, respectively. Taken
from Corbelli and Salucci (2000).

1.2.4.1 Galaxies

Rotation curves represent the orbital velocity of all galaxy components (stars, gas...) as a
function of the distance to the centre of a galaxy.

Following Newtonian dynamics (legitimate in the weak field and non-relativistic limit), the
Keplerian velocity is related to the mass inside the circular orbit following:

v2(r)
r

= GNM(< r)
r2 . (1.72)

The luminosity of spiral galaxies exponentially decreases with the distance to the centre,
with a typical scale Rd. If galaxy luminosity traced all the matter contained in the galaxy,
M(< r) should be constant further away than a few times the radius of the optical disk Rd.
Therefore,

v(r) ∝ 1√
r

r > Rd, (1.73)

which is not what is observed: rotation curves of spiral galaxies tend to flatten to a velocity v∞,
as exemplified in Figure 1.7. The missing mass is attributed to dark matter. Typical density
profiles of dark matter halos follow ρDM ∝ r−2 at large radius, though this trend varies from
one galaxy to another (e.g., for Corbelli and Salucci (2000), ρDM ∝ r−1.3).

Apart from rotation curves, the total mass in galaxies can also be probed by strong gravit-
ational lensing. Of course, galaxy baryonic mass is not only located in stars but also in diffuse
gas, which can be detected through e.g. X emission. Gas and stars are found to represent
' 15% of total galaxy masses (e.g. Tortora et al., 2019).

Hence, if Newtonian gravity holds on galaxy scales, most of the mass in galaxies is under
the form of dark matter.

1.2.4.2 Galaxy clusters

Zwicky (1937) found that the velocity dispersion of the Coma cluster suggested a much larger
mass than was present in its luminous component.
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Clusters are gravitationally bound and thus can be considered in steady state. The virial
theorem (see Section 2.2.2.1) allows the gravitational mass to be related to the galaxy velocity
dispersion

〈
v2〉 and Rh, the radius containing half of the mass:

Mvir =
〈
v2〉Rh
αGN

, (1.74)

with α a coefficient depending on the density profile, typically 0.4 for galaxy clusters. Another
method to measure the total mass involves strong gravitational lensing in the centre region of the
cluster (10 kpc . r . 200 kpc) and weak gravitational lensing in the outer regions (r . 1 Mpc).
Measuring the density profile and temperature of hot gas, captured in the gravitational potential,
through X emission also allows constraints to be put on the total mass. Typically, stellar and
gas masses are found to represent 5% and 12% of the cluster total (virial) mass, and thus the
ratio ωb,0/ωc,0 is expected to be ≥ 17% (Bahcall, 1996). Hence, given the ωb value measured by
Big Bang nucleosynthesis (1.61) we find that Ωm,0 ' 0.25.

We will see in the next section that baryon acoustic oscillations can be used to put a strong
constraint on the ratio ωb,0/ωm,0. Altogether, observations of the CMB, measurements of the
acceleration of the expansion through SN Ia, gravitational weak lensing, and galaxy clustering
analyses provide cosmological constraints on the density of total matter, which is of order 30%.

1.2.4.3 Cold dark matter

Dark matter is said to be cold or hot depending on whether it was relativistic when it
decoupled from the primordial plasma.

Cold dark matter (CDM) particles are massive particles weakly interacting with themselves
and baryons, radiation and dark energy and are generically called WIMP (Weakly Interacting
Massive Particle). We have already noticed that the temperature and thus baryon density
fluctuations were of order 10−5 at the decoupling (at a ' 1× 10−3); we will see in the next
section that these fluctuations grow as a in the matter dominated epoch, thus making it hard to
form a density contrast of 1 as is typical today. Cold dark matter alleviates this issue as it forms
potential wells earlier than baryonic matter since it is not coupled to radiation. In addition, the
standard model of particle physics provides numerous candidates for cold dark matter particles,
whose cross-section is found to be typical of the weak interaction.

Within the cold dark matter paradigm structure form hierarchically: small structures form
before larger ones. The density profile ρ(r) of dark matter halos has been extensively studied
with N-body simulations. These helped determined analytic forms for ρ(r), the most common
being the Navarro-Frenk-White profile (Navarro et al., 1996). Note however that the shape of
the profile in the smallest scales (r ∼ 0.1 kpc) is still not very well constrained by simulations.
There are also a number of unresolved issues, among them:

1. the number of satellite galaxies in our local group is expected to be of the order of 1000,
based on numerical simulations. However, we only observe 36 galaxies within 0.5 Mpc.

2. density profiles are more peaked at r → 0 than what observations suggest (de Blok, 2010).
These two issues may be solved by baryonic feedback (involving the dynamics of the gas).

To tackle the apparent issues of CDM, many other dark matter models have been proposed: hot
dark matter, warm dark matter, fuzzy dark matter, decaying dark matter, black holes, etc.

Neutrinos would have been a good candidate for dark matter, since they interact very weakly
with other particles. However, as in any other hot dark matter model, structure formation is
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suppressed below the free-streaming scale of neutrinos, thus provoking a cut-off in the power
spectrum of density fluctuations. Given current cosmological constraints on their masses (see
Section 1.2.3), neutrinos cannot represent the total dark matter 1.

In the rest of this manuscript we will only consider weakly interacting cold dark matter.

1.2.5 Inflation

We have already noted that curvature density today is found to be small, |ΩK,0| . 0.002 at
1σ, combining CMB and BAO measurements (Planck Collaboration et al., 2018). However, its
value must have been even lower in the past. Indeed, using Eq. (1.44) and Eq. (1.45):

ΩK = ΩK,0

[∑
X

ΩX,0(1 + z)1+3wX + ΩK,0 + ΩΛ,0(1 + z)−2
]−1

. (1.75)

For a ΛCDM Universe and neglecting ΩΛ since we work at high redshift:

ΩK = ΩK,0
[
Ωm,0 (1 + z) + Ωr,0 (1 + z)2 + ΩK,0

]−1
. (1.76)

Therefore, the curvature density becomes increasingly small as z → ∞. At the redshift of
equality zeq ' 3400 (see Table 1.2) when the radiation energy density equates that of matter:

Ωm,0 (1 + zeq)3 = Ωr,0 (1 + zeq)4 , (1.77)

we find |ΩK(zeq)| < 5× 10−6. At Planck scale zPl ' 5× 1031, below which a quantum descrip-
tion of gravity is required, we find |ΩK | < 2× 10−62. Such constraints are considered as fine
tuning and thus call for a mechanism — dubbed inflation — to make the early value of |ΩK |
more natural. Based on Eq. (1.75), a simple answer is that the energy content of the early
Universe is dominated by a fluid with w < −1/3. Let us write ti, tf the cosmic time at the
beginning and end of inflation. We define the number of e-folds as:

N = ln
[
a(tf )
a(ti)

]
. (1.78)

Using Friedmann equations (1.36 - 1.37), during inflation (neglecting curvature and excluding
w < −1):

Ḣ = ä

a
−H2 ' −4πGN (ρ+ P ) . 0. (1.79)

Hence H(tf ) . H(ti); using Eq. (1.44) and the number of e-folds (1.78):∣∣∣∣ΩK(tf )
ΩK(ti)

∣∣∣∣ =
[
a(tf )
a(ti)

H(tf )
H(ti)

]−2
&
[
a(tf )
a(ti)

]−2
= e−2N . (1.80)

If we ask for |ΩK(tf )| < 10−60 at the end of the inflation, while allowing a natural |ΩK(ti)| =
O(1), then we need N & 70.

Another apparent issue is the remarkable homogeneity of the CMB. The last scattering
surface is measured to be at z? = 1089.80± 0.21 (see Table 1.2). The particle horizon, which
delineates the regions of the Universe which have been in causal contact, is, at this redshift:

η(z?) =
∫ ∞
z?

dz

H(z) . (1.81)

1. For an (old) review of the debates on dark matter, listen to http://www.astronomy.ohio-state.edu/~dhw/
Rap/index.html.

http://www.astronomy.ohio-state.edu/~dhw/Rap/index.html
http://www.astronomy.ohio-state.edu/~dhw/Rap/index.html
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Assuming only matter and radiation we find η(z?) ' 3× 102 Mpc. Dividing by DM(z?) leads to
an angular scale of ∼ 1◦ on the sky. That the CMB temperature appears so homogeneous on
much larger scales is puzzling. The same issue applies to temperature perturbations, measured
in the CMB to be correlated on scales much larger than 1◦ and, equally, to density perturbations,
which we see today below the particle horizon in the large scale structure, but were above horizon
in the past. Therefore, a mechanism is required to causally connect these regions, which can be
achieved through an early phase of accelerated expansion.

1.2.5.1 Scalar field

We have already seen in Section 1.2.1 that such an accelerated expansion can be achieved
with a scalar field φ — dubbed the inflaton. Let us determine the shape of its potential V (φ).
Varying the metric and φ in the action (1.55) (neglecting the matter Lagrangian) yields the
Friedmann and Klein-Gordon equations (Peter and Uzan, 2012):

H2 = 8πGN
3

(1
2 φ̇

2 + V (φ)
)
− K

a2 (1.82)

ä

a
= 8πGN

3
(
V (φ)− φ̇2

)
(1.83)

0 = φ̈+ 3Hφ̇+ V,φ(φ) (1.84)

with V,φ the derivative of V with respect to φ. Neglecting curvature since it will eventually be
negligible, Friedman equations (1.82) and (1.83) give:

Ḣ = ä

a
−H2 = −4πGNφ̇

2. (1.85)

Requiring an accelerated expansion, i.e. ä/a to be large, the field φ should not vary much during
inflation (see Eq. (1.83)):

φ̇2 � V (φ) φ̈� 3Hφ̇. (1.86)

This phase is dubbed as slow-roll. Then Eq. (1.82) and Eq. (1.84) yield:

H2 = 8πGN
3 V 3Hφ̇ = −V,φ. (1.87)

Thus, from the first equation and Eq. (1.85):∣∣∣Ḣ∣∣∣� H2 (1.88)

and using both equations (1.87):

φ̈ = − d

dt

(
V,φ
3H

)
' −V,φ,φφ̇3H = 1

24πGN

V,φV,φ,φ
V

, (1.89)

such that conditions (1.86) translate into:(
V,φ
V

)2
� 24πGN

|V,φ,φ|
V

� 24πGN. (1.90)

The potential must be very flat. Hence, the potential can be Taylor expanded to study the early
dynamics of inflation.
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1.2.5.2 Initial conditions

For the inflation to be predictive, the sensitivity of the Universe expansion with respect to
initial conditions should be small. As long as its evolution is monotonous, φ can be used as time
variable such that Eq. (1.85) is re-expressed as:

H,φ = −4πGNφ̇, (1.91)

and Eq. (1.82) becomes:

H,φ(φ)2 − 12πGNH
2(φ) = −32π2G2

NV (φ). (1.92)

Perturbing H(φ) = Hsr(φ) + δH(φ), with Hsr(φ) the reference slow-roll solution of Eq. (1.92),
δH(φ) satisfies the linearised Eq. (1.92):

Hsr,φ(φ)δH,φ(φ) = 12πGNHsr(φ)δH(φ) (1.93)

whose solution is given by:

δH(φ) = δH(φi) exp
[
12πGN

∫ φ

φi

dφ
Hsr(φ)
Hsr,φ(φ)

]
. (1.94)

with φi the initial value of the field. The number of e-folds can be written as:

N =
∫ t

ti

dtH(t) =
∫ φ

φi

dφ
H(φ)
φ̇

= −4πGN

∫ φ

φi

dφ
H(φ)
H,φ(φ) . (1.95)

Therefore, the initial perturbation δH(φi) is exponentially suppressed with the number of e-folds:

δH(φ) = δH(φi)e−3N(φ). (1.96)

The final value of H is thus insensitive to that at the beginning of inflation.

1.2.5.3 Perturbations

At first order, the initial quantum perturbations δφ around the homogenous solution φ (see
Eq. (1.84)) fluctuate following the Klein-Gordon equation; in Fourier space:

δ̈φ+ 3H ˙δφ+ k2

a2 δφ+ V,φ,φ(δφ) = 0 (1.97)

with k the wavenumber, corresponding to the inverse of the perturbation wavelength. This
wavelength is usually compared to the comoving Hubble radius 1/ (aH) = 1/H (with H = aH)
to identify two regimes: super-Hubble (k � H) and sub-Hubble (k � H). In the sub-Hubble
regime, k−1 the oscillation time of a mode k is small compared to the Hubble rate, which can
typically be neglected in the equations. Conversely, in the super-Hubble regime, Hubble friction
terms dominate the field dynamics.

This is the case during inflation for the super-Hubble modes, which freeze out in classical
perturbations due to the (dominant) friction term 3H ˙δφ of Eq. (1.97). These perturbations
are adiabatic, (almost) Gaussian distributed with a nearly scale invariant spectrum (see next
Section 1.3.1 for the definition). Namely, the dimensionless power spectrum of the spatial
curvature perturbations R (gravitational potential on hypersurfaces δφ = 0) is parametrised as:

k3

2π2PR(k) = As

(
k

k0

)ns−1+ 1
2αs ln(k/k0)

(1.98)
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with As the amplitude of the power spectrum (at pivot scale k0) and ns the spectral index.
As (at k0 = 0.05 Mpc−1) and ns were precisely measured in the CMB by Planck Collaboration
et al. (2018), see Table 1.2. In particular, they find ns = 0.9665± 0.0036, showing a neat
deviation to scale invariance (ns = 1). Precisely measuring ns is of great importance, as for
power law potentials V ∼ φp, ns is related to the number of e-folds of inflation N through
1−ns = (p+ 2) / (2N). In addition, αs can be non-zero: this is called the running of the spectral
index. In standard single-field slow-roll models of inflation, αs is of the order of (ns − 1)2 ∼ 10−3

(given ns ' 0.96); any deviation would exclude these simplest models. Current constraints
from Planck Collaboration et al. (2018) — αs = −0.0041± 0.0067 using CMB and BAO data
— do not show any departure from a power-law power spectrum; we therefore take αs = 0 in
the following.

No vector mode is produced, but inflation generates primordial gravitational waves. The
tensor-to-scalar ratio r is constrained by CMB observations through the additional Sachs-Wolfe
effect induced by tensor modes (see next Section 1.3.4). Figure 1.8 shows the current best con-
straints on ns and r0.002 (r given at the pivot scale k = 0.002 Mpc−1) from Planck Collaboration
et al. (2018). They find a small tensor-to-scalar ratio r0.002 < 0.058 at the 95% confidence level,
using Planck (Plick likelihood), BICEP2/Keck (BICEP2 Collaboration et al., 2016) and BAO
data. The detection of primordial gravitational waves would be a major discovery in cosmology
and physics in general.

In the single-field slow-roll scenario discussed so far, some non-Gaussianities can be produced
at the second order in the perturbations and are thus expected to be small. However, many
inflationary models (multifield, topological defects, curvaton...) predict levels of non-Gaussianity
which could be detectable. Detection (or non-detection) of deviations to Gaussianity on large
scales would thus be a signature of the dynamics and the field content during inflation. Non-
Gaussianities are usually parametrised through a quadratic term in the Bardeen potential Ψ
(see next Section 1.3.2 for the definition):

Ψ(k) = Ψlin(k) +
∫
d3k1d

3k2

(2π)3 fΨ
NL(k1,k2,k)Ψlin(k1)Ψlin(k2)δ(3)

D (k− k1 − k2). (1.99)

Therefore, non-Gaussianities are most naturally probed by the bispectrum, given (at tree level),
by:

〈Ψ(k1)Ψ(k2)Ψ(k3)〉 = (2π)3 δ
(3)
D (k1 + k2 + k3)

[
2fΨ

NL(k1,k2,k3)P lin
Ψ (k1)P lin

Ψ (k2) (1.100)

+ (1→ 2→ 3) + (1→ 3→ 2)] . (1.101)

The most simple form for fΨ
NL(k1,k2,k3) is a constant, f local

NL ; but other shapes exist (equi-
lateral, orthogonal, enfolded...) to probe different signatures of inflation. Latest measure-
ments by Planck Collaboration et al. (2019) provide the most stringent constraints on non-
Gaussianities, with f local

NL = −0.9 ± 5.1 at 68% confidence level. The best constraints on f local
NL

from large-scale structure data are of the order of 35 at 95% confidence level (Slosar et al., 2008;
Ross et al., 2013; Castorina et al., 2019). CMB measurements are intrinsically limited by cosmic
variance to σ(f local

NL ) ∼ 5, a precision that future large scale structure surveys may outperform.

1.3 Linear perturbations and baryon acoustic oscillations

This section is devoted to the linear growth of perturbations left by inflation in the prim-
ordial Universe. We first emphasise that density fluctuations are described by stochastic fields
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Figure 1.8 – Constraints in the plane ns−r0.002 from the Planck mission alone (red and green) and adding
BICEP2/Keck (BICEP2 Collaboration et al., 2016) and BAO constraints in blue. Dashed lines are the
contours obtained using CamSpec instead of Plick for the high-` (small scales) Planck likelihood. The
solid lines show the ns− r relation for V linear (separating concave and convex potentials) and quadratic
in φ, to first order in slow-roll. The dotted lines correspond to N = 50 and N = 60 e-folds, assuming
single-field inflation with a power law potential V ∼ φp. Taken from Planck Collaboration et al. (2018).

(Section 1.3.1), then review the evolution of perturbations in the radiation and matter domin-
ated era, depending on their wavelength (Section 1.3.2), and explain how the coupling between
radiation and baryons led to baryon acoustic oscillations (Section 1.3.3), visible in the cosmic
microwave background (Section 1.3.4) and in the matter power spectrum (Section 1.3.5). This
section is mainly based on Peter and Uzan (2012) textbook and Hu and Sugiyama (1996).

1.3.1 Stochastic fields

Owing to their quantum origin, fluctuations left by inflation cannot be predicted — nor
measured. Therefore, fluctuations will be studied in a statistical sense, such that the evolution
of their distribution can indeed be predicted — which is the aim of the next sections.

Let us for example consider the density contrast:

δ = ρ− ρ̄
ρ̄

(1.102)

of the fluid of background density ρ̄. In all the following, we will apply the ergodic principle,
which states that volume-averaged quantities are equal to their expectation value, denoted by
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〈〉. Then, 〈δ〉 is 0. This relates to the cosmological principle, if we suppose the large scale
homogeneity is a result of statistical homogeneity and ergodicity.

One can also study the second moment of δ, i.e. its 2-point correlation function:

ξ(s) = 〈δ(x)δ(x + s)〉 (1.103)

ξ is correctly defined (i.e. does not depend on x) as we assume the Universe to be statistically
homogeneous. If we further assume statistical isotropy, ξ depends only on s the norm of s.

Let us define the Fourier transform of δ(x):

δ(k) =
∫
d3xδ(x)e−ik·x (1.104)

which is the convention we will use throughout this manuscript. Its conjugate is δ(k)? = δ(−k)
since δ(x) is a real field. We have:〈

δ(k)δ(k′)
〉

=
∫
d3x

∫
d3s 〈δ(x)δ(x + s)〉 e−i(k+k′)·x−ik′·s. (1.105)

Following from statistical homogeneity:

〈
δ(k)δ(k′)

〉
= (2π)3 δ

(3)
D (k + k′)P (k) (1.106)

where δ(3)
D is the Dirac distribution and the power spectrum P (k) is related to the correlation

function by:
P (k) =

∫
d3sξ(s)e−ik·s. (1.107)

Again, assuming isotropy, P (k) depends only on k the norm of k. If δ follows a Gaussian
distribution (as is almost the case in the simplest models of inflation — single-field slow-roll —
see Section 1.2.5), all information is contained in its power spectrum. In the following, we will
tell the story of a small perturbation δ of cold dark matter and baryons, from the end of inflation
to after the CMB emission. This will enable us to infer the evolution of its power spectrum.

1.3.2 Linear growth of perturbations

The purpose of the following section is to understand the overall shape of the matter power
spectrum, which (as we will see in the following) can be achieved by considering two fluids,
matter and radiation, interacting only through gravitation. The description of baryon acoustic
oscillations (with a focus on the CMB), is deferred to Section 1.3.3.

As will be seen in the following, sub-Hubble fluid perturbations can be well described by
Newtonian gravity. However, large scale perturbations must be described within general relativ-
ity, which requires perturbing the FLRW metric (1.23). In practice, up to the CMB emission,
just like fluid perturbations, metric fluctuations are very small (O(10−5)). Hence, the FLRW
metric (1.23) is linearly perturbed following (Peter and Uzan, 2012):

ds2 = a2(η)
[
− (1 + 2A) dη2 + 2Bidxidη + (γij + hij) dxidxj

]
, (1.108)

where we recall that η (dη = dt/a) is the conformal time and γij is the spatial part of the FLRW
metric (see Eq. (1.24)). Since the metric is a 4×4 symmetric tensor, there are 4× (4+1)/2 = 10
degrees of freedom:



32 CHAPTER 1. The concordance model of cosmology

— 1 for the scalar A;
— 3 for the vector Bi;
— 6 for the 3× 3 symmetric tensor hij .

However, 4 of these degrees of freedom are identical to a choice of coordinates; this is known
as gauge freedom. Here we choose the Newtonian gauge, where the scalar part of the metric is
diagonal. We focus on scalar modes only; they evolve independently from vector modes (which
can be shown to decay as a−2 in absence of stress vector modes) and tensor modes. Then, the
perturbed metric can be written as:

ds2 = a2(η)
[
− (1 + 2Φ) dη2 + (1− 2Ψ) γijdxidxj

]
. (1.109)

where Φ and Ψ are the so-called Bardeen potentials in the Newtonian gauge. The scalar per-
turbations of the energy-momentum tensor of a fluid of background density ρ̄ and pressure P̄
(see Eq. (1.35)) can be written in the Newtonian gauge as:

δT00 = ρ̄a2 (δ + 2Φ) (1.110)
δT0i = −ρ̄a2 (1 + w)DiV (1.111)

δTij = P̄ a2
(
δP

P̄
γij − 2Ψγij + ∆ij π̄

)
, (1.112)

where Di is the covariant derivative associated to γij , ∆ij = DiDj − 1/3γij∆ and ∆ = DiD
i. δ

and δP/P̄ are the relative perturbations of ρ = ρ̄+ δρ̄ and P = P̄ + δP , respectively. DiV and
∆ij π̄ are the scalar parts of the fluid four-velocity and the anisotropic stress tensor, respectively.
We also define the sound speed cs and the entropy perturbation Γ as: δP = c2

sδρ+ P̄Γ. Then,
Einstein equations (1.13) give:

(∆ + 3K) Ψ = 4πGNa
2ρ̄ [δ − 3H (1 + w)V ] (1.113)

Ψ− Φ = 8πGNa
2P̄ π̄ (1.114)

Ψ′ +HΦ = −4πGNa
2ρ̄ (1 + w)V (1.115)

Ψ′′ + 3H
(
1 + c2

s

)
Ψ′ +

[
2H′ +

(
H2 −K

) (
1 + 3c2

s

)]
Ψ− c2

s∆Ψ (1.116)

= −
(
H2 + 2H′ +K

) [Γ
2 +

(
3H2 + 2H′

)
π̄ +Hπ̄′ + 1

3∆π̄
]
− 9c2

sH2
(
H2 +K

)
π̄,

where all derivatives ′ are with respect to the conformal time and we use H = a′/a = aH.
We also define the density contrast in the comoving gauge δC = δ − 3H (1 + w)V , for which
Eq. (1.113) looks like the Poisson equation.

Then, the conservation of the energy momentum tensor δTµν;µ = 0 (see Eq. (1.16)) yields the
following conservation equations:

δ′ + 3H
(
c2
s − w

)
δ = − (1 + w)

(
∆V − 3Ψ′

)
− 3HwΓ (1.117)

V ′ +H
(
1− 3c2

s

)
V = −Φ− c2

s

1 + w
δ − w

1 + w

[
Γ + 2

3 (∆ + 3K) π̄
]
. (1.118)

In the following we restrict to a flat Universe: the curvature term K is 0.
On would note that in principle, all species (photons, neutrinos, baryons, cold dark matter)

should be considered to conclude on e.g. the dark matter perturbations. However, it has been
shown by Weinberg (2002); Voruz et al. (2014) that up to the CMB fluid perturbations are
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effectively the sum of a slow (of the order of the Hubble time 1/H) and a fast (of the order of
1/(kcs)) solution. The slow solution of dark matter perturbations dominates over the fast mode.
On the contrary, the fast solutions of baryons, photons, and neutrinos dominate over the slow
modes. We are primarily interested in the matter power spectrum. Since most of matter is in
the form of dark matter, we first neglect baryons. Hence, we consider two fluids, radiation and
(dark) matter, in the slow mode. The fast mode, involving baryons and photons (neglecting
neutrinos) will be discussed in Section 1.3.3.

Let us introduce the scale factor normalised at equality (see Eq. (1.77)):

y = a

aeq
where Ωm,0a

−3
eq = Ωr,0a

−4
eq . (1.119)

Using this new variable, the first Friedmann equation (1.45) describing the background evolution
is recast into:

H2 = H2
eq

1 + y

2y4 with Heq = H(aeq) = H0

√
2Ωm,0a

−3
eq (1.120)

H2 = H2
eq

1 + y

2y2 with Heq = keq = H(aeq) = H0

√
2Ωm,0a

−1
eq , (1.121)

where we introduced keq the wavenumber corresponding to the Hubble radius at equality. The
matter and radiation density parameters are thus given by (see Eq. (1.44)):

Ωm = y

1 + y
Ωr = 1

1 + y
. (1.122)

We assume radiation and matter interact only through gravity; therefore, the conservation
equations are satisfied for each fluid. In addition, matter (subscript m) and radiation (subscript
r) are assumed to be perfect fluids; Γa = 0, π̄a = 0, a ∈ {m, r}. Hence, the sound speed is
c2
a = δPa/δρ and using Eq. (1.114), Ψ = Φ. At the time of interest, matter is non-relativistic,
so wm = c2

m = 0. The equation of state of radiation is constant wr = c2
r = 1/3. Therefore, the

conservation equations (1.117) and (1.118) give, in Fourier space and for each fluid:

δ′m = k2Vm + 3Φ′ (1.123)

δ′r = 4
3k

2Vr + 4Φ′ (1.124)

V ′m = −HVm − Φ (1.125)

V ′r = −Φ− 1
4δr. (1.126)

To close the system above, we need an additional equation for Φ, obtained from Einstein equa-
tions. Those apply to the mass weighted average of the two fluids: the total density con-
trast is Ωδ = Ωmδm + Ωrδr and total four velocity is Ω (1 + w)V = Ωm (1 + wm) ΩmVm +
Ωr (1 + wr) ΩrVr (with Ω = Ωm + Ωr = 1 and Ωw = Ωmwm + Ωrwr). In the following, we will
use Eq. (1.113) or (1.115), which give (using Eq. (1.36) to replace the background density ρ̄):

−k2Φ = 3
2H

2
[
Ωmδm + Ωrδr − 3H

(
ΩmVm + 4

3ΩrVr

)]
= 3

2H
2δC (1.127)

Φ′ +HΦ = −3
2H

2
(

ΩmVm + 4
3ΩrVr

)
= −3

2H
2
(

1 + 1
3Ωr

)
V. (1.128)

One can note that there is no mode coupling in the system (1.123) - (1.128): each Fourier
mode k will evolve independently. Note also that all fields are a function of the wavevector k,
which we drop for conciseness in the following.
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1.3.2.1 Initial conditions

To solve the above system of equations, one has to specify a set of initial conditions, which
are a combination of:

— adiabatic initial conditions: the entropy perturbation Γ = 1/ (Ωw)∑a∈{m,r}
(
c2
s − c2

a

)
Ωaδa

(with Ωc2
s = ∑

a (1 + wa) / (1 + w) Ωac
2
a) is set to zero. Hence, the relative density contrast

S = δm/ (1 + wm)− δr/ (1 + wr) is zero,

— isocurvature initial conditions: the gravitational potential Ψ = Φ is set to zero, and from
the Poisson equation δC = ∑

a∈{m,r}Ωaδ
C
a = 0.

Because of the system linearity, any solution will be the combination of solutions obtained with
either pure adiabatic or pure isocurvature initial conditions. Here we choose pure adiabatic initial
conditions (as produced by the simplest models of inflation — single-field slow-roll). Then, we
impose:

Φ = Φi Φ′ = 0 S = 0 S′ = 0 (1.129)

deep in the radiation era (y = a/aeq � 1), such that modes are super-Hubble (k/H � 1). From
Eq. (1.123) and Eq. (1.124) we have:

S′ = k2 (Vm − Vr) = 0. (1.130)

Using Eq. (1.128) one obtains:

Vi = − Φi

2Hi
Vm,i = Vr,i = Vi. (1.131)

With the Poisson equation (1.127) and since Ωm = y/ (1 + y)� 1 and Ωr = 1/ (1 + y) ' 1:

δCi = −2
3
k2

H2
i

Φi δCr,i = δCi δCm,i = 3
4δ

C
i , (1.132)

δi = −2Φi δr,i = δi δm,i = 3
4δi. (1.133)

In addition, the spatial curvature perturbations R introduced in Section 1.2.5.3 read R =
Ψ− δρ/ [3(ρ+ P )] in the Newtonian gauge. Hence, still in the radiation era, the initial R is:

Ri = Φi −
1
4δr,i = 3

2Φi. (1.134)

Hence, given Eq. (1.98) and within pure adiabatic initial conditions, the power spectrum of δi
is proportional to kns−4 and the power spectrum of δCi (or δm,i, δr,i) is proportional to kns .

In the following, we follow the evolution of a perturbation of wavenumber k in this system
of two fluids in purely gravitational interaction in an expanding Universe. This evolution will
depend on whether k is super-Hubble k � H (Hubble friction term dominates) or sub-Hubble
k � H (Hubble expansion can be neglected). As H increases with time, an initially super-
Hubble mode will eventually become sub-Hubble. As we will see in the following, the evolution
of sub-Hubble modes will depend on whether radiation or matter dominates the energy content
of the Universe. Hence, the evolution of a mode k depends on the time it becomes sub-Hubble,
i.e. on its size. We will first study the evolution of super-Hubble modes, then sub-Hubble modes
in the radiation and matter dominated era.
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1.3.2.2 Super-Hubble modes

Super-Hubble modes in the radiation era correspond to the initial conditions described above.
Here we detail the evolution of modes remaining super-Hubble in the matter dominated era. In
practice, we neglect k2 terms compared to (conformal) time derivatives. Therefore Eq. (1.130)
ensures that S remains constant, equal to its initial value S = 0. Hence:

δm = 3
4δr. (1.135)

Integrating Eq. (1.123) and Eq. (1.124) while neglecting the k2 terms compared to the conformal
time derivative yields:

δm = 3Φ− 9
2Φi δr = 4Φ− 6Φi, (1.136)

where initial conditions are set in the radiation dominated era by Eq. (1.133). Based on
Eq. (1.116) and Eq. (1.121), one can show that, for k � keq, the gravitational potential
reads (Peter and Uzan, 2012):

Φ = Φi

10y3

[
16
√

1 + y + 9y3 + 2y2 − 8y − 16
]
. (1.137)

Hence, in the matter era (y � 1):

Φ = 9
10Φi δr = −12

5 Φi δm = −9
5Φi. (1.138)

1.3.2.3 Sub-Hubble modes in the radiation-dominated era

For sub-Hubble modes in the radiation-dominated era the potential Φ is determined by the
fluctuations δr, which can be considered as an external driving force. Inserting Eq. (1.123) and
its derivative into Eq. (1.125), we find:

δ′′m +Hδ′m = 3Φ′′ + 3HΦ′ − k2Φ. (1.139)

Since in the radiation-dominated era η = H−1 ∝ a (see Table 1.1), the homogeneous equation
has two base solutions, δm ∝ 1 and δm ∝ ln a. Using Green’s method, the full solution reads:

δm = A+B ln a+
∫ η

0
du [ln a(u)− ln a(η)]H−1(u)

(
k2Φ− 3Φ′′ − 3HΦ′

)
. (1.140)

In the regime y � 1, we have determined that δm = −3Φi/2 (see Eq. (1.133)), such that
A = 3Φi/2, B = 0. Using numerical integration, the full solution reads (Hu and Sugiyama,
1996):

δm(k, a) = I1Φi(k) ln
(
I2

a

aH(k)

)
aH(k)� a� aeq, (1.141)

with I1 ' 9 and I2 ' 0.6. aH(k) = yH(k)aeq is the scale factor at which mode k crosses the
Hubble radius, that is: k = H = keq

√
(1 + yH) /2/yH (see Eq. (1.121)), i.e.:

yH = aH
aeq

=
1 +

√
1 + 8 (k/keq)2

4 (k/keq)2 . (1.142)

In conclusion, for a sub-Hubble mode in the radiation era:

δm ∝

ln a kη � 1
1 kη � 1.

(1.143)
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1.3.2.4 Transition to the matter-dominated era

In this section we describe the transition of a sub-Hubble mode in the radiation-dominated
era to the matter-dominated era. We have just seen that in the radiation-dominated era radiation
perturbations remain roughly constant while small scale matter perturbations grew logarithmic-
ally as ln y (see Eq. (1.143)). In addition Ωm/Ωr = y so the contribution of matter density
fluctuations to the total density contrast δ = Ωmδm + Ωrδr eventually dominates, which is the
regime we now consider. The total density contrast is then given by:

δ ' Ωmδm = y

1 + y
δm. (1.144)

We are interested in sub-Hubble modes y � yH i.e. k/H � 1 and thus neglect velocity con-
tributions in the Poisson equation (1.127), and more generally time derivatives with respect to
spatial derivatives. In this regime, injecting the Poisson equation into Eq. (1.139):

δ′′m +Hδ′m −
3
2H

2Ωmδm = 0. (1.145)

Next, we note that H2Ωm = k2
eq/ (2y) (see Eq. (1.121) and Eq. (1.122)) and we trade deriv-

atives with respect to η for derivatives with respect to y: δ′m = y′dδm/dy. Using H = y′/y

and y′′ = (yH)′ = yH2 + yy′dH/dy = {y − (2 + y) / [2 (1 + y) y]}H2 we find the Meszaros
equation (Meszaros, 1974):

d2δm
d2y

+ 2 + 3y
2y (y + 1)

dδm
dy
− 3

2y (y + 1)δm = 0. (1.146)

The growing and decaying solutions to this equation are:

D1(y) = y + 2
3 D2(y) = 15

8 (2 + 3y) ln
(√

1 + y + 1√
1 + y − 1

)
− 45

4
√

1 + y, (1.147)

such that the full solution reads:

δm(k, y) = A1(k)D1(y) +A2(k)D2(y) y � yH , (1.148)

with A1, A2 constant in time. These constants can be determined by joining the solution above
to that obtained deep in the radiation dominated era, Eq. (1.141), in the limit y � 1 (but still
with y � yH):

δm(k, y � 1) = I1Φi(k) ln
(
I2
aeq
aH

)
+ I1Φi(k) ln y (1.149)

= 2
3A1(k) +

(15
4 ln 4− 45

4

)
A2(k)− 15

4 A2(k) ln y. (1.150)

Thus, by identification of A1 and A2, Eq. (1.148) reads:

δm(k, y) = I1Φi(k)
[3

2 ln
(

4I2e
−3aeq
aH

)
D1(y)− 4

15D2(y)
]
. (1.151)

In the matter-dominated era (y � 1) solutions (1.147) behave as:

D1(a) ∝ a D2(a) ∝ a−3/2. (1.152)

Hence, the logarithmic growth of sub-Hubble matter perturbations in the radiation-dominated
era becomes linear in the matter domination.
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1.3.2.5 Sub-Hubble modes in the late Universe

In this manuscript, we will focus on sub-Hubble modes in the matter or dark energy domin-
ated era, where density fluctuations are described by Eq. (1.145). Usually, one trades derivatives
with respect to η for derivatives in a, such that:

d2δm
da2 +

( 1
H

dH

da
+ 3
a

)
dδm
da
− 3

2
Ωm,0
a5

(
H0
H

)2
δm = 0 (1.153)

where we used Ωm = Ωm,0a
−3 (H0/H)2 (see Eq. (1.44)). The full solution is a linear combination

of the growing and decaying modes:

δm(k, a) = A+(k)D+(a) +A−(k)D−(a) (1.154)

with:

D+(a) = 5
2
H(a)
H4

0
Ωm,0

∫ a

0

du

(uH(u))3 D−(a) = H(a). (1.155)

Matter density perturbations grow, eventually becoming non-linear (δm 6� 1). This late time
evolution of matter density perturbations will be described in Chapter 2.

1.3.2.6 Transfer function

The imprint of the physics in the early Universe on the density perturbations δ (of any species
— cold dark matter, radiation, baryons...) can be encoded in the transfer function, defined as:

T (k) = δC(k, a = 1)δCi (0)
δCi (k)δC(0, a = 1)

(1.156)

where δCi are initial conditions, given in Section 1.3.2.1. Just as evolution equations above, T (k)
only depends on the wavenumber k. By construction, T (k → 0) = 1. Other definitions of the
transfer function exist; in the Boltzmann code CLASS (Blas et al., 2011), initial conditions are
not δCi but the spatial curvature perturbations Ri.

The global shape of the matter transfer function, displayed on Figure 1.9 can be inferred
from the above study:

— for a mode k � keq = Heq, as discussed in Section 1.3.2.2 when k is super-Hubble Φ
is constant (except the 9/10 step in the radiation to matter transition, see Eq. (1.138)),
hence using the Poisson equation (1.127), δCm ∝ H−2. After k enters the Hubble radius in
the matter-dominated era, as shown in Section 1.3.2.4 and Section 1.3.2.5 it also grows as
a ∝ H−2 (using Table 1.1);

— for a mode k � keq = Heq, as seen previously δCm ∝ H−2 while the mode remains super-
Hubble. After k enters the Hubble radius (when H ≡ Hk = k) in the radiation-dominated
era, δC remains constant (or logarithmically growing), till matter-radiation equality (when
H = Heq), after which it grows again as H−2, as seen previously. During the time k is
sub-Hubble in the radiation-dominated era, δCm of super-Hubble modes grows by a factor
(Hk/Heq)2 = (k/keq)2. The missing growth factor for modes k � keq is thus (k/keq)2.
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Figure 1.9 – Transfer function computed with the cosmological parameters of Planck Collaboration et al.
(2018) (TT, TE, EE, lowE, lensing, BAO) using the Boltzmann code CLASS of Blas et al. (2011) (con-
tinuous line). The no-wiggle transfer function (dotted line) is based on the analytic formula of Eisenstein
and Hu (1998).

Therefore, the overall shape of the matter transfer function is given by:

Tm(k) ∼

1 k � keq

(keq/k)2 k � keq
(1.157)

The power spectrum of initial curvature perturbations Ri is set by inflation to be ∝ kns−4 (see
Eq. (1.98)). As seen in Section 1.3.2.1, within adiabatic initial conditions, the power spectrum
of δCm,i goes as kns . Therefore, the shape of the linear matter power spectrum at a� aeq reads:

P lin
m (k) ∝

kns k � keq

kns−4 k � keq
(1.158)

Usually in large scale structure analyses, instead of As, to fix the normalisation of the power
spectrum we define the root mean square of density fluctuations in a sphere of 8 Mpc h−1, i.e.:

σ8(z) =
√

1
2π2

∫
k2dkP lin

m (k, z)W 2(rk) r = 8 Mpc h−1 (1.159)

with W (x) = 3 (sin x− x cosx) /x3 the Fourier transform of the unit top-hat window. We note
σ8,0 = σ8(z = 0); see Table 1.2 for its value measured by Planck Collaboration et al. 2018.

In the following we will explain the small wiggles seen in Figure 1.9 around the smooth
transfer function of Eisenstein and Hu (1998).

1.3.3 Propagation of baryon acoustic waves in the early Universe

The system (1.123) - (1.126) and (1.127) - (1.128) is correct for a dark matter fluid, but is an
approximation for baryons and photons. First, Thomson diffusion couples baryons and photons.
Second, the sound speed of baryons is non-zero and varies with temperature (and slightly with
time). In the following we still assume baryons have zero sound speed.
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To account for Thomson diffusion, let us introduce the interaction interaction term τ ′/R (Vγ − Vb)
in Eq. (1.123) and Eq. (1.125):

δ′b = k2Vb + 3Φ′ (1.160)

V ′b = −HVb − Φ + τ ′

R
(Vγ − Vb) (1.161)

where we introduced τ ′ = aneσT the inverse of the photon mean free path (ne the free electron
density, σT the Thomson cross-section) and R(η) = 3Ωb(η)/ (4Ωγ(η)) is the baryon-to-photon en-
ergy density ratio. A correct modelling of radiation requires a kinetic approach, using a so-called
Boltzmann hierarchy: the phase-space distribution function is perturbed and its dependence on
the cosine angle between the wavenumber k and the fluid momentum is expanded onto the basis
of Legendre polynomials. Here, however, we keep the same formalism and introduce the baryon
coupling term τ ′ (Vb − Vγ):

δ′γ = 4
3k

2Vγ + 4Φ′ (1.162)

V ′γ = −Φ− 1
4δγ + τ ′ (Vb − Vγ) . (1.163)

This approach is equivalent to the first two multipoles of the Boltzmann hierarchy (θ0 = δγ/4,
θ1 = kVγ).

Let us consider scales smaller than the Hubble radius k � H, but larger than the mean
free path, k � τ ′. In this so-called tight coupling regime, Vb and Vγ are (almost) similar. At
zeroth order, Vb − Vγ = 0. Injecting this estimate into the baryon Euler equation (1.161) we
find τ ′ (Vγ − Vb) =

(
V ′γ +HVγ + Φ

)
R at first order. Using this expression for Eq. (1.163), and

noting that R′ = HR (since R ∝ a3/a4 = a−1, see Table 1.1), we have:

(1 +R)V ′γ +R′Vγ = −1
4δγ − (1 +R) Φ. (1.164)

Replacing Vγ and V ′γ using Eq. (1.162) one finds:

δ′′γ + R′

1 +R
δ′γ + k2c2

sδγ = 4
[
Φ′′ + R′

1 +R
Φ′ − 1

3k
2Φ
]
, (1.165)

where we used the sound speed of the baryon and photon fluid cs = 1/
√

3 (1 +R). Let us
introduce the proper Sachs-Wolfe term θSW = δγ/4 + Φ, a main ingredient of the temperature
fluctuations of the CMB which will be explained in the following. In the limit where R and Φ
are constant in time, one obtains:

(1 +R) θ′′SW + k2

3 θSW = −k
2

3 RΦ, (1.166)

whose solution reads:
θSW = CA cos (kcsη) + CI sin (kcsη)−RΦ. (1.167)

This can be seen as an oscillator with effective mass meff = 1 + R. The zero shift −RΦ is due
to photons being dragged into potential wells created by baryons.

Note however that the variations of the effective mass meff = 1+R or the potential Φ cannot
be ignored over several periods of oscillations. Exploiting the fact that variations on one period
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are small (H = R′/R � k), one can show that the above solution becomes (Peter and Uzan,
2012):

θSW = CA
cos (krs)

(1 +R)1/4 + CI
sin (krs)

(1 +R)1/4 −RΦ (1.168)

with the sound horizon:

rs(η) =
∫ η

0
cs(u)du = 2

3keq

√
6
Req

ln

√1 +R(η) +
√
R(η) +Req

1 +
√
Req

 , (1.169)

Req = R(ηeq) being the value of R at equality.
Therefore, acoustic waves propagate in the fluid of baryons and photons at the variable sound

speed cs. These are called baryon acoustic oscillations (BAO).
In addition, the tight coupling described above is not perfect, leading to the so-called Silk

damping, which tends to smooth out the density fluctuations on scales k > kD, such that:

θSW = e−k
2/k2

D

[
CA

cos (krs)
(1 +R)1/4 + CI

sin (krs)
(1 +R)1/4

]
−RΦ (1.170)

with:
k−2
D = 1

6

∫ η

0

du

τ ′

[
1

1 +R

(
4
5 + R2

1 +R

)]
' 1

6
η

τ ′
, (1.171)

where the last approximation is legitimate since the term in brackets remains very close to 1
(4/5 for R = 0 and 1 for R → ∞). Taking into account the anisotropic stress tensor of
radiation which we neglected so far, the 4/5 term in Eq. (1.171) must be replaced by 16/15.
1/kD(η) may be estimated by the length of the typical photon random walk of N ∼ ητ ′ steps,
1/kD(η) ∼

√
N/τ ′ ∼

√
η/τ ′. Diffusion damping leaves the term −RΦ unaffected.

Let us now specify CA and CI . Imposing adiabatic initial conditions, δγ,i = −2Φi (see
Eq. (1.133)). Neglecting Vγ in Eq. (1.162), δ′γ = 4Φ′, thus δγ = 4Φ − 6Φi. Here we focus on
small scales, that enter the Hubble radius well in the radiation dominated era; for those, when
k enters the sound horizon, Φ ' 0 and then δγ = −6Φi, δ′γ ' 0. Therefore:

CA = −3
2Φi CI = 0 (1.172)

so:

θSW = −3
2Φie

−k2/k2
D cos (krs(η)) (1.173)

Had we chosen isocurvature initial conditions instead, the sine term would have been excited.
For super-Hubble modes in the matter-dominated era, using Eq. (1.138), we have θSW =

1/4(−12/5)Φi + 9/10Φi = 3/10Φi. In terms of Φ = 9/10Φi the potential at the last scattering
surface, we find:

θSW = 1
3Φ (1.174)

i.e. θSW shows a plateau on large scales. For isocurvature initial conditions, we have instead
θSW = 2Φ.

As mentioned in Section 1.2.3.1, after recombination, the free electron density and thus the
Thomson scattering rate τ ′ drop rapidly. Once decoupled from the primordial plasma, photons
free stream and form the cosmic microwave background. The above results will be used to
qualitatively describe the shape of the temperature fluctuations of the CMB in the next section.
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1.3.4 The cosmic microwave background

In this section we comment on the CMB temperature power spectrum measured by Planck
Collaboration et al. (2018) and shown in Figure 1.11. We start by introducing the angular power
spectrum. Then, we explain how density, velocity and potential perturbations are related to the
observed temperature fluctuations and qualitatively discuss the shape of their power spectrum.

1.3.4.1 The angular power spectrum

Today’s photon temperature fluctuations θ are analysed through their correlation function:

C(ϑ) = 〈θ(e1)θ(e2)〉 (1.175)

where we recall the brackets denote an ensemble average. From isotropy, the correlation function
only depends on the cosine angle cos(ϑ) between the two lines of sight e1 and e2, and thus can
be expanded onto the basis of Legendre polynomials L`:

C(ϑ) = 〈θ(e1)θ(e2)〉 =
∑
`

2`+ 1
4π C`L`(e1 · e2). (1.176)

This defines the angular power spectrum C`. θ can be developed onto the basis of spherical
harmonics Y`m(e):

θ(e) =
∑
`m

a`mY`m(e) (1.177)

which is inverted into:
a`m =

∫
deθ(e)Y ?

`m(e). (1.178)

The temperature fluctuations are zero in average:

〈a`m〉 = 0. (1.179)

Inserting the expansion:

2`+ 1
4π L`(e1 · e2) =

∑̀
m=−`

Y`m(e1)Y ?
`m(e2) (1.180)

into Eq. (1.176), and using twice the orthonormality of spherical harmonics yields:∫
de1

∫
de2 〈θ(e1)θ(e2)〉Y ?

`m(e1)Y`′m′(e2) = 〈a`ma?`′m′〉 = C`δ``′δmm′ . (1.181)

A natural estimator for C` is thus:

Ĉ` = 1
2`+ 1

∑̀
m=−`

|a`m|2 . (1.182)

In the simplest models of inflation (single-field slow-roll, see Section 1.2.5), primordial potentials
follow (almost) Gaussian statistics and so do the perturbations in the linear regime. Therefore,
a`m are Gaussian distributed with variance C`, which thus fully describes the statistics of the
temperature fluctuations. Then, if Eq. (1.182) is taken as estimator for C`, (2`+ 1) Ĉ`/C` follows
a χ2 distribution with 2` + 1 degrees of freedom. In the high ` limit, by virtue of the central
limit theorem, Ĉ` is Gaussian distributed. Its variance is:〈(

Ĉ` −
〈
Ĉ`
〉)2

〉
= 2

2`+ 1C
2
` , (1.183)

as there are only 2`+ 1 independent modes. This lower bound on the variance (independent of
any experiment) is called cosmic variance, and limits the measurement precision on large scales.
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1.3.4.2 The Sachs-Wolfe formula

Temperature fluctuations θ can be related to those at the decoupling epoch by the Sachs-
Wolfe formula:

θ(x0, η0, ηe) = θSW(xe, ηe) + θDoppler(xe, ηe) + θISW(xe, ηe, η0) (1.184)

θSW(xe, ηe) =
(1

4δγ + Φ
)

(xe, ηe) (1.185)

θDoppler(xe, ηe) = −ei
(
DiVb + V̄bi + Ēi

)
(xe, ηe) (1.186)

θISW(xe, ηe, η0) =
∫ η0

ηe

[(
Φ′ + Ψ′

)
− eiĒ′i − eiejĒ′ij

]
(1.187)

where ηe is the (average) conformal time at decoupling and xe = x0 + e (η0 − ηe) with x0 and
η0 the observer’s position and conformal time, e the line of sight. V̄bi are vector perturbations
to the baryon four-velocity, while Ēi and Ēij are vector and tensor perturbations in hij (see
Eq. (1.108)).

Let us discuss the different pieces of this formula.

Proper Sachs-Wolfe effect The θSW term is called proper Sachs-Wolfe effect, and was de-
rived (approximately) in Section 1.3.3 for modes H � k � τ ′. The density term (coming from
Stefan-Boltzmann law) means that denser regions are hotter. The potential term Φ accounts
for the Einstein effect: a photon in a potential well is redshifted. For adiabatic initial conditions
θSW is maximum for (see Eq. (1.173)):

k(p) = p
π

rs(z?)
, p ∈ N? (1.188)

where rs is given by Eq. (1.169) and we recall z? is the redshift of the last scattering surface (see
Section 1.2.3.1). This corresponds to an angular scale:

γ(p) '
π

k(p)DM(z?)
= rs(z?)
pDM(z?)

, (1.189)

therefore, to a multipole:

`(p) ' k(p)DM(z?) = pπ
DM(z?)
rs(z?)

(1.190)

For p = 1, we find γ ' 0.01 rad, ` ' 300 in the flat ΛCDM model with parameters of Table 1.2.
With isocurvature initial conditions, one should replace p by p− 1/2 in the formula above. The
zero shift −RΦ in Eq. (1.167) is responsible for the even BAO peaks being higher than the odd
ones.

On large scales, based on Eq. (1.174) one can show that `(`+ 1)C` ∼ `ns−1.

Doppler Sachs-Wolfe effect The θDoppler term corresponds to the Doppler effect, due to the
emitter’s (last scattering) velocity with respect to the observer. This term tends to counterbal-
ance the BAO induced by the proper Sachs-Wolfe effect. Indeed, from Eq. (1.162), in the limit
Φ is constant:

Vγ = 3
k2 θ

′
SW. (1.191)
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Hence, Vb, which is tied to Vγ in the strong coupling limit, is in quadrature with θSW, and thus
tends to smooth the density fluctuations. This effect is smaller at high baryon density (large
R), since Vγ ∝ cs ∝ (1 +R)−1/2.

Integrated Sachs-Wolfe effect The integrated Sachs-Wolfe effect θISW has two contribu-
tions, the early and late Sachs-Wolfe effects. The early Sachs-Wolfe effect is due to the change
in Bardeen potentials at the radiation to matter era transition. It tends to increase the amp-
litude of the power spectrum around the first acoustic peak. The late Sachs-Wolfe effect is
caused by curvature and early dark energy. Both tend to increase the Sachs-Wolfe plateau, at
scales larger than the first peak (` . 30).

1.3.4.3 Width of the last scattering surface

Decoupling is not instantaneous. Let us define the visibility function, g(η) = τ ′ exp (−τ(η)),
where τ(η) =

∫ η0
η τ ′(u)du (with η0 the present conformal time) is the optical depth. g(η)dη

is the probability for a photon to last scatter between η and η + dη. The redshift of the last
scattering surface z? is defined as the redshift at which the photon optical depth equals unity,
i.e. τ(z?) = 1 (see Table 1.2 for its value measured by Planck Collaboration et al. 2018). The
full width at half maximum of the visibility function is of order ∆z ∼ 200.

Therefore, the temperature fluctuations are convolved with the visibility function, which
can be roughly modelled as a Gaussian centred on the last scattering surface. Adding the
Silk damping leads to the acoustic visibility function ĝ = ge−k

2/k2
D , which best describes how

oscillations are frozen into the CMB. The Silk damping actually shifts the effective visibility
function to slightly higher redshift, such that most of the temperature fluctuations in the CMB
come from an epoch where the tight coupling regime is legitimate (Hu and Sugiyama, 1996).

1.3.4.4 Reionisation

First stars emit UV photons which ionise the neutral atoms formed by recombination at a
redshift zrei ' 7 − 8 (see Table 1.2). Therefore, a fraction 1 − e−τrei (with τrei = τ(ηrei)) of
CMB photons scatter on the free electrons, which averages the temperature fluctuations along
different lines of sight. The main effect is a damping of scales that are sub-Hubble at the time
of reionisation (` & 10), by a factor e−2τrei .

1.3.4.5 Sunyaev-Zel’dovich effect

Clusters contain hot gas at temperature ∼ 107 − 108 K. The highly energetic electrons can
increase the CMB photon energy through inverse Compton scattering. The thermal Sunyaev-
Zel’dovich effect therefore redistributes the spectral energy distribution from the large to the
small wavelengths, which makes it a powerful tool to detect clusters. If the gas moves with
respect to the CMB, the induced Doppler effect is dubbed kinetic Sunyaev-Zel’dovich.

1.3.4.6 Sensitivity to cosmological parameters

Variations of cosmological parameters impact the position and the relative amplitude of the
BAO peaks of the CMB temperature power spectrum. When the baryon density ωb,0 = Ωb,0h

2

increases, the amplitude of the oscillations increases, and cs decreases, such that the peak
positions are shifted to higher multipoles. When the matter density ωm,0 increases (at fixed
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Figure 1.10 – Impact on density parameters (top left: 1 − ΩK,0, top right: ΩΛ,0, bottom left: ωb,0,
bottom right: ωm,0) on the (square root) of power spectrum of CMB temperature anisotropies ∆T =
T
√
` (`+ 1)C`/ (2π). Taken from Hu and Dodelson (2002).

baryon density), the overall amplitude of the peaks decreases, due to reduced radiation driving,
while the relative heights of the even and odd peaks increases. The curvature and cosmological
constant both increase the Sachs-Wolfe plateau (` . 30) and change the position of the acoustic
peaks due to the distance - redshift relation DM(z) = fK(χ(z)) (see Eq. (1.190) and Eq. (1.29)).

The parameters of the primordial fluctuations also impact the shape of the CMB power
spectrum, as can be seen in Figure 1.10. A higher scalar index ns increases the small scales
relative to the large scales, and so does the tensor index nT . Gravitational waves (if large
enough) increase the Sachs-Wolfe plateau compared to the (purely scalar) oscillations. Finally,
the initial conditions (adiabatic or isocurvature) impact both the position of the acoustic peaks
and the normalisation of the power spectrum.

The CMB temperature power spectrum, measured by Planck Collaboration et al. (2018)
is shown in Figure 1.11. In addition to the temperature fluctuations, Planck Collaboration
et al. (2018) measured the CMB polarisation projected on the E and B modes. In the CMB,
E modes are produced by scalar and tensor modes, while B modes are only caused by tensor
modes, i.e. gravitational waves. Primordial B modes, if detected, would give major insights into
inflation. Then, three power spectra are formed, TT, TE, EE. In addition, structures lens the
CMB backlight, an effect which was detected at 40σ by Planck Collaboration et al. (2018). The
CMB lensing power spectrum is sensitive to the background evolution in the more recent z < 2
epoch, which makes it a powerful probe for dark energy.
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1.3.5 Baryon acoustic oscillations in the matter power spectrum

Let us now describe how baryon acoustic oscillations impact the power spectrum of baryons
and dark matter. Contrary to the case of the CMB where BAO manifest as fluctuations in the
photon temperature, BAO are imprinted in the matter distribution by potential wells formed
by baryons, which we will first discuss. Then, we will describe dark matter fluctuations and
connect them to baryons to model the total matter transfer function.

1.3.5.1 Decoupling of baryons

In the tight coupling limit discussed so far, baryons oscillate with photons. Compton scat-
tering leads to an equilibrium between photon and baryon velocities through an exchange of
momentum. However, the baryon momentum is ρbVb, while the photon momentum is 4/3ργVγ .
Thus, by virtue of momentum conservation, the rate of change in baryon velocity due to Compton
drag is scaled by R−1 = 4/3ργ/ρb compared to the photon case. Hence, baryons see the inverse
mean free path τ ′d = τ ′/R. This can be shown more formally by integrating the Euler equa-
tion (1.161):

Vb = 1
a

∫ η

0
du
(
τ ′dVγ − Φ

)
a(u)e−τd(u), (1.192)

with τd(u) =
∫ η
u dvτ

′
d(v), and τ ′d = τ ′/R as found previously. The 1/a front factor just accounts

for the natural Vb scaling as a−1 in the absence of source terms.
This expression is very similar to the previously discussed convolution of the photon temper-

ature with the visibility function due the width of the last scattering surface (see Section 1.3.4.3).
Here, the baryon drag visibility function is gb ∝ aτ ′de−τd (normalised such that its integral is 1).
Similarly to the redshift of the last scattering surface z? (see Section 1.3.4.3), the drag red-
shift zdrag is defined as the redshift at which the baryon drag optical depth equals unity, i.e.
τd(zdrag) = 1. We note rdrag = rs(zdrag) the value of the sound horizon at the drag epoch and
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report the reader to Table 1.2 for the values of zdrag and rdrag measured by Planck Collaboration
et al. (2018).

In the tight coupling limit, Φ is neglected compared to τ ′dVγ , Vγ is given by Eq. (1.191), and
δb = 3/4δγ . Then, at the drag epoch, we have approximately:

Vb(k, ηd) = Vγ(k, ηd)Db(k) (1.193)

δb(k, ηd) = 3
4δγ(k, ηd)Db(k) (1.194)

with:
Db(k) =

∫ η0

0
dηgb(η)e−(k/kD(η))2

' e−(k/kSilk)mSilk (1.195)

where kSilk is the Silk damping length and mSilk the Silk damping steepness. As we will see
in the following, at the drag epoch the baryon velocity Vb(k, ηd) dominates over the acoustic
density δb(k, ηd); therefore, baryons move and form new perturbations, roughly 1/2 out of phase
with respect to the CMB (see Eq. (1.188)) in the small scale (krdrag � 1) regime. For adiabatic
initial conditions (Hu and Sugiyama, 1996):

k(p) =
(
p− 1

2

)
π

rdrag
, p ∈ N? (1.196)

This so-called velocity overshoot effect is in fact less prominent on large scales krdrag . 10, thus
inducing a phase shift with respect to the above solution (Eisenstein and Hu, 1998).

1.3.5.2 Dark matter fluctuations

In the absence of baryons, dark matter fluctuations are described by Eq. (1.148). Introducing
baryons as an additional matter component (uncoupled to dark matter):

d2δc
d2y

+ 2 + 3y
2y (y + 1)

dδc
dy
− 3

2y (y + 1)
Ωc

Ωm
δc = 0 (1.197)

where indices c and m refer to cold dark matter and total matter, respectively.
The two solutions to this equation (i ∈ {1, 2}) are expressed with Gauss hypergeometric

function F through:

Ui = (1 + y)−αi F
(
αi, αi + 1

2 , 2αi + 1
2 ,

1
1 + y

)
αi = 1 + (−1)i

√
1 + 24Ωc/Ωm

4 . (1.198)

In the limit y � 1, Ui(y � 1) = y−αi . Therefore, baryons tend to slow the growth of dark
matter perturbations. One can equally match the obtained general solution

δc(k, η) = I1Φi(k) [A1(k)U1(η) +A2(k)U2(η)] (1.199)

to that obtained in the radiation dominated era, Eq. (1.141) in the limit y � 1, thereby determ-
ining A1 and A2:

A1(k) = Γ(α1)Γ(α1 + 1/2)
Γ(2α1 + 1/2) [dΓ(α1 + 1/2) + dΓ(α1)− dΓ(α2 + 1/2)− dΓ(α2)]

×
[
ln
(
I2

aeq
aH(k)

)
+ 2dΓ(1)− dΓ(α2)− dΓ(α2 + 1/2)

]
.

(1.200)

and similarly (1 ↔ 2) for A2. Here, Γ(x) and dΓ(x) = Γ′(x)/Γ(x) are gamma and digamma
functions, respectively.
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1.3.5.3 Total matter transfer function

Now that we have a full description of both baryon and dark matter fluctuations up to
the drag epoch, we can describe their evolution through the present, in the linear regime, on
sub-Hubble modes.

The combined fluid:

δm = Ωb,0
Ωm,0

δb +
(

1− Ωb,0
Ωm,0

)
δc

Vm = Ωb,0
Ωm,0

Vb +
(

1− Ωb,0
Ωm,0

)
Vc

(1.201)

follows the solution (1.148), and, in the matter or dark energy dominated era Eq. (1.154), i.e.:

δm(k, η) = C1(k)D1(η) + C2(k)D2(η). (1.202)

C1 and C2 can be determined by matching δm and δ′m = C1D
′
1 + C2D

′
2 to their values at the

drag epoch (δ′m(k, ηd) ' k2Vm(k, ηd)). We find, for the growing mode:

C1(k) = Gδ(ηd)δm(k, ηd) +GV (ηd)k2Vm(k, ηd), (1.203)

with:
Gδ = D′2

D1D′2 −D′1D2
GV = − D2

D1D′2 −D′1D2
(1.204)

and similarly for the decaying mode (1 ↔ 2). If ad � aeq we can take y ∝ η2 (see Table 1.1)
and the limit y � 1, such that the above Eq. (1.203) gives:

δm(k, η) = a

ad

[3
5δm(k, ηd) + 1

5ηdk
2Vm(k, ηd)

]
. (1.205)

Hence, for scales much below the horizon at the drag epoch (kηd � 1), the velocity term
kVm(k, ηd), if of the same order as δm(k, ηd), dominates the growing mode: this is the velocity
overshoot effect that we previously mentioned.

As in Eq. (1.201), the matter transfer function is split up between baryons (Tb) and cold
dark matter (Tc):

T (k) = Ωb,0
Ωm,0

Tb(k) +
(

1− Ωb,0
Ωm,0

)
Tc(k). (1.206)

Based on previous results (using Eq. (1.157), (1.168), (1.172), (1.191), (1.193), (1.194), (1.203),
(1.204)), we can determine:

Tb(k) ∝
(
keq
k

)2
Db(k) (1 +R(ηd))−1/4

[
cos (krdrag)− D2(ηd)

D′2(ηd)
kcs(ηd) sin (krdrag)

]
Gδ(ηd)

(1.207)
and (using Eq. (1.157), (1.199), (1.200), (1.203), (1.204)):

Tc(k) ∝
(
keq
k

)2 {
Gδ [A1U1 +A2U2]−GV

[
A1U

′
1 +A2U

′
2
]}
. (1.208)

The baryon and cold dark matter transfer functions computed using Eisenstein and Hu (1998)
analytic formula are shown in Figure 1.12. In practice, the transfer function is computed using
Boltzmann codes such as CAMB (Lewis et al., 2000; Lewis and Challinor, 2011) or CLASS (Blas
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Figure 1.12 – Matter transfer function computed with the analytic formula of Eisenstein and Hu (1998)
using the cosmological parameters of Planck Collaboration et al. (2018) (TT, TE, EE, lowE, lensing,
BAO). The baryon and cold dark matter contributions are shown in dashed and dotted lines, respectively.

et al., 2011) — which also give predictions for the CMB power spectra, solving the full Boltzmann
hierarchy.

After the drag epoch, baryons and cold dark matter both satisfy the following equation
(Eq. (1.139) in the sub-Hubble regime and in the matter domination era, H = 2/η):

δ′′a + 2
η
δ′a = −k2Φ, a ∈ {b, c} . (1.209)

Φ ∝ H2δ ∝ η−2δ (using the Poisson equation (1.127) in the sub-Hubble regime) is constant in the
matter-dominated era since the growing mode is δ = Ωcδc + Ωbδb ∝ a ∝ η2 (using Eq. (1.209)).
Hence, at late times, baryon and cold dark matter density contrasts converge to the same value
δb = δc = −k2η2Φ/6: gravitational evolution drives baryons and cold dark matter together.

We will see in Chapter 2 that galaxies trace the matter distribution. Therefore, the baryon
acoustic oscillations imprinted in the matter distribution can be seen in the galaxy distribution.
BAO were first detected in the galaxy correlation function (Eisenstein et al., 2005) of the SDSS
and power spectrum (Cole et al., 2005) of the 2dF galaxy survey in 2005. A recent measure
of BAO in the SDSS/BOSS galaxy sample is shown in Figure 1.13, which corresponds to a 7σ
detection. Comparing the measured rdrag in the distribution of galaxies to its expected value
helps constrain cosmological distances at the effective redshift of the galaxy sample, through the
Alcock-Paczynski test which will be described in Section 4.2.1. However, in this manuscript we
aim at going beyond this simple (but robust) measurement and describe the full shape of the
galaxy power spectrum — which is the purpose of the next chapter.
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Figure 1.13 – BAO wiggles in the galaxy power spectrum and correlation function of SDSS/BOSS data,
in three redshift bins: 0.2 < z < 0.5, 0.4 < z < 0.6 and 0.5 < z < 0.75. Left: data points represent
the measured power spectrum, divided by a smooth model without wiggles, and shifted by ±0.15 for the
lower and higher redshift bins. Right: data points represent the measured correlation function difference
to a smooth model without the BAO peak, shifted by ±0.004 for the lower and higher redshift bins.
Taken from Alam et al. (2017).
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So far we have considered perturbations in the linear regime only. While we could restrict
analyses of the large scale structure to linear scales (typically k . 0.1 h Mpc−1 at z = 1), the
amount of information (for a Gaussian field) scales as k3 — that is, increasing the maximum
wavenumber used in the analysis by a factor of 2 corresponds to a spectroscopic survey roughly
8 times bigger — hence a precision increased by

√
8. Apart from the theoretical motivation,

there is therefore much practical interest in describing the evolution of density perturbations
in the quasi-linear regime — though it comes at the cost of introducing new parameters to
encompass our limited knowledge of the small scale physics (thereby reducing the effective gain
in precision).

Theoretical literature on large scale structure is quite substantial. Instead of trying to give a
general overview of its wonderful developments, we rather focus on those used in the clustering
analysis we performed — while briefly commenting on alternate approaches.

2.1 Perturbation theory

After the baryon drag epoch, baryons and dark matter are driven through the effect of
gravitation towards a single fluid of matter (see Section 1.3.5.3). As we focus on sub-Hubble
scales, relativistic terms in Einstein equations can be dropped (see Section 1.3.2.5), and the
dynamics be described with Newtonian gravity (in an expanding Universe). This is the approach
followed in this section, which relies on the review Bernardeau et al. (2002) and on papers Crocce
and Scoccimarro (2006a,b); Bernardeau et al. (2012); Taruya et al. (2012).

2.1.1 Vlasov-Poisson equations

We describe matter as a collisionless fluid that evolves only through gravitation, in an ex-
panding Universe. Phase-space conservation of the matter distribution function f(x,p, η) implies
(Liouville theorem):

df

dη
= ∂f

∂η
+ dx
dη
· ∂f
∂x + dp

dη
· ∂f
∂p = 0. (2.1)

We recall η is the conformal time, related to the cosmic time t by dt = adη. x and p are the
fluid comoving position and momentum. All spatial derivatives will be taken with respect to
comoving coordinates. We describe deviations to the smooth background expanding Universe.
Hence, the momentum is related to the (physical) peculiar velocity u = adx/dt = dx/dη as:

p = amu (2.2)

with m the particle mass. The equation of motion reads:

dp

dη
= −am∇Φ. (2.3)

Hence, Eq. (2.1) becomes the Vlasov equation:

∂f

∂η
+ p
ma
· ∂f
∂x − am∇Φ · ∂f

∂p = 0 (2.4)

and we consider the Poisson equation:

∆Φ = a24πGNρ̄δ = 3
2H

2Ωmδ (2.5)
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where we used ∆ = ∂i∂i and replaced the background matter density ρ̄ using the critical dens-
ity (1.41). We recall that δ = ρ/ρ̄− 1 is the fluid density contrast. Eq. (2.5) corresponds to its
counterpart in general relativity (1.113), if, in the latter:

— we neglect curvature (K = 0), which is legitimate at the scales of interest and since the
Universe is nearly flat;

— we neglect velocity (V ), which is legitimate in the non-relativistic limit;
— we take Φ = Ψ, i.e. P̄ π̄ in Eq. (1.114) is negligible, which is legitimate in the non-relativistic

limit (P̄ = 0).
The first three moments of the phase-space distribution function are, by definition:∫

d3pf(x,p, η) = ρ(x, η) (2.6)∫
d3p

p
am

f(x,p, η) = ρ(x, η)u(x, η) (2.7)∫
d3p

pipj
a2m2 f(x,p, η) = ρ(x, η) [ui(x, η)uj(x, η) + σij(x, η)] (2.8)

with σij the stress tensor. Taking the zeroth moment of Eq. (2.4), one finds the continuity
equation:

δ′ + ∂i [(1 + δ)ui] = 0 (2.9)

and taking the first moment, subtracting the above continuity equation gives the Euler equation:

u′i +Hui + uj∂jui = −∂iΦ−
1
ρ
∂j (ρσij) (2.10)

We recall ′ denotes a derivative with respect to the conformal time η. The single stream evolution
is the regime where the fluid evolves in a single coherent flow; at any position x (and time η)
the fluid has a unique velocity u(x, η), f(x,p, η) = ρ(x, η)δ(3)

D (p− amu). The stress tensor σij
represents deviations to this regime. In the mildly non-linear regime, before structures collapse
and virialise, σij = 0 to a good approximation (e.g. Bernardeau et al., 2002), which we adopt in
the following.

2.1.2 Linear regime

Let us start with the linear regime: δ, ui � 1, i.e. the density contrast and velocities (as
well as their gradients) are small. We define θ = ∇ · u the divergence of the velocity field and
w = ∇× u its vorticity. From Eq. (2.9) and taking the divergence and vorticity of Eq. (2.10),
we obtain:

δ′ + θ = 0 (2.11)
θ′ +Hθ = −∆Φ (2.12)

w′ +Hw = 0. (2.13)

The last equation ensures that w ∝ a−1, i.e. vorticity is diluted in expansion. We will thus
neglect it in the following. Deriving the first equation, injecting the second and using Eq. (2.5)
to replace the potential, one finds:

δ′′ +Hδ′ − 3
2H

2Ωmδ = 0 (2.14)
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which we already found and solved in Section 1.3.2.5 (see Eq. (1.153)). The general solution is
given in Eq. (1.154). We simply recall that in an Einstein de Sitter Universe (i.e. flat Universe
with Ωm = 1), the growing and decaying solutions read:

D+(a) ∝ a D−(a) ∝ a−3/2. (2.15)

The logarithmic growth rate of linear perturbations is defined as the logarithmic derivative of
the linear growth factor D+:

f = d lnD+
d ln a (2.16)

Then, for the growing mode δ ∝ D+:

δ′ = D′+
D+

δ = fHδ (2.17)

and from Eq. (2.11) we get, in the linear regime:

θ = −fHδ (2.18)

f can be very well parametrised by Ωγ
m. As an example, Linder (2005) find:

f ' Ω0.55+0.05[1+w(z=1)]
m w = −1

3
d ln

[
Ωm(a)−1 − 1

]
d ln a (2.19)

is accurate to a fraction of a percent for typical CDM cosmologies with additional dark energy
fluid. In particular, f ' Ω0.55

m to better than 0.05% if Ωm ∈ [0.22, 1] in a flat ΛCDM Universe.
Turning the linear system of Eq. (2.5) and Eq. (2.11) - (2.12) in Fourier space (∆→ −k2) we

see that k modes are independent of each other. Any coupling between different wavenumbers
in the equations below stems from non-linearity.

We finally derive a useful expression for the linear order velocity in Fourier space. Taking
u to be curl-free (w = 0), as argued is legitimate at the beginning of the section, we have
u = −iθk/k2, and using Eq. (2.18) we find:

u(k) = ifH k
k2 δ(k) (2.20)

2.1.3 Beyond the linear regime

As we mentioned previously, to both improve cosmological constraints and understand early
structure formation we wish to extend the description of the power spectrum beyond the linear
regime. In this section, we will assume that vorticity remains zero. Therefore, the velocity field
is fully described by its divergence θ. In the following, we will work in Fourier space. In this
space, Eq. (2.9) becomes:

δ′(k, η) + θ(k, η) = −
∫

d3k1

(2π)3
k · k1
k2

1
θ(k1, η)δ(k− k1, η). (2.21)

Defining the kernel:
α(k1,k2) = k12 · k1

k2
1

k12 = k1 + k2, (2.22)
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the continuity equation can be rewritten:

δ′(k, η) + θ(k, η) = −
∫
d3k1d

3k2

(2π)3 δ
(3)
D (k− k12)α(k1,k2)θ(k1, η)δ(k2, η) (2.23)

Similarly, taking the divergence of Eq. (2.10) and replacing the potential with Eq. (2.5) gives:

θ′(k, η) +Hθ(k, η) + 3
2ΩmH2δ(k, η) = −

∫
d3k1d

3k2

(2π)3 δ
(3)
D (k− k12)β(k1,k2)θ(k1, η)θ(k2, η)

(2.24)

with:
β(k1,k2) = (k12 · k2) (k1 · k2)

k2
1k

2
2

= k2
12k1 · k2
2k2

1k
2
2

(2.25)

where the least equality is obtained by symmetrisation 1↔ 2.
Let us define the vector:

Ψ =
(

δ

− θ
fH

)
(2.26)

and rewrite the time derivatives with respect to:

u = lnD+, (2.27)

the number of e-folds of expansion. The continuity and Euler equations give:

∂Ψ1(k, u)
∂u

−Ψ2(k, u) =
∫
d3k1d

3k2

(2π)3 δ
(3)
D (k− k12)α(k1,k2)Ψ2(k1, u)Ψ1(k2, u) (2.28)

∂Ψ2(k, u)
∂u

+
(3Ωm

2f2 − 1
)

Ψ2(k, u)−3Ωm

2f2 Ψ1(k, u) =
∫
d3k1d

3k2

(2π)3 δ
(3)
D (k−k12)β(k1,k2)Ψ2(k1, u)Ψ2(k2, u)

(2.29)
which can be rewritten in matrix form:[

δab
∂

∂u
+ Ωab

]
Ψb(k, u) =

∫
d3k1d

3k2

(2π)3 δ
(3)
D (k− k12)γabc(k1,k2)Ψb(k1, u)Ψc(k2, u) (2.30)

where δab is the Kronecker delta (δab = 1 if a = b, else 0) and:

Ωab =
(

0 −1
− 3

2f2 Ωm
3

2f2 Ωm − 1

)
γabc(k1,k2) =



1
2α(k1,k2) (a, b, c) = (1, 2, 1)
1
2α(k2,k1) (a, b, c) = (1, 1, 2)
β(k1,k2) (a, b, c) = (2, 2, 2)
0 otherwise

(2.31)

where we symmetrised (a, b, c) = (1, 2, 1) and (a, b, c) = (1, 1, 2). One would note that the time
evolution can be fully decoupled from the spatial evolution if f(a) = Ωm(a)0.5, which is a very
good approximation, as described in the previous section (see Eq. (2.19)), especially since most
of the structure growth takes place when Ωm(a) ' 1 (e.g. Bernardeau et al., 2002). Therefore,
perturbation theory (PT) results will be very well approximated by considering f(a) = Ωm(a)0.5

— which is assumed in the following, except otherwise stated — or, equivalently, performing the
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calculation in an Einstein de Sitter Universe (D+(a) = a) and replace a by the growth factor of
the desired ΛCDM cosmology.

Let us search for solutions Ψ using the perturbative expansion:

Ψa(k, u) =
+∞∑
n=1

enuψ(n)
a (k) (2.32)

where we keep the fastest growing mode ∝ enu = Dn
+ for the term of order n. Note that

ψ
(1)
1 = ψ

(1)
2 = δ0 from linear theory (see Eq. (2.18)). The recursion relation reads:

σ−1
ab (n)ψ(n)

b (k) =
∫
d3k1d

3k2

(2π)3 δ
(3)
D (k− k12)γabc(k1,k2)

n−1∑
m=1

ψ
(m)
b (k1)ψ(n−m)

c (k2). (2.33)

The inverse of σ−1
ab (n) = nδab + Ωab is computed as:

σab(n) = 1
(2n+ 3) (n− 1)

(
2n+ 1 2

3 2n

)
. (2.34)

ψ
(n)
a (k) is an expression of order n in δ0, hence injecting

ψ(n)
a (k) =

∫
d3q1 · · · d3qn

(2π)3(n−1) δ
(3)
D (k− q1 − · · · − qn)F (n)

a (q1, · · ·qn)δ0(q1) · · · δ0(qn) (2.35)

into Eq. (2.33), which must be verified for any initial field δ0 leads to the recursion relation for
the perturbation theory kernels:

F (n)
a (q1, · · ·qn) = σab(n)

n−1∑
m=1

γbcd(q1+· · ·+qm,qm+1+· · ·+qn)F (m)
c (q1, · · ·qm)F (n−m)

d (qm+1, · · ·qn)

(2.36)
and F

(1)
1 = F

(1)
2 = 1. We will note F (n)

a,s the symmetrised version of these kernels, i.e. their
average over all permutations of the wavevectors qi. In particular, the symmetrised second order
kernels read:

F
(2)
1,s (q1,q2) = 5

7 + 1
2

q1 · q2
q1q2

(
q1
q2

+ q2
q1

)
+ 2

7

(q1 · q2
q1q2

)2
(2.37)

F
(2)
2,s (q1,q2) = 3

7 + 1
2

q1 · q2
q1q2

(
q1
q2

+ q2
q1

)
+ 4

7

(q1 · q2
q1q2

)2
. (2.38)

So far, we have only considered the fastest growing modes ∝ enu = Dn
+. Note however that ini-

tially growing modes can couple to decaying modes. Let us reintroduce the full time dependence
of the PT solutions. Taking the Laplace transform L (with respect to u) of Eq. (2.30):

σ−1
ab (ω)Ψb(k, ω) = φa(k)+

∫
d3k1d

3k2

(2π)3 δ
(3)
D (k−k12)γabc(k1,k2)L (Ψb(k1, u)Ψc(k2, u)) (ω) (2.39)

where φa(k) = Ψa(k, u = 0) is the initial condition. Multiplying both sides by σab(ω) and taking
the inverse Laplace transform gives:

Ψa(k, u) = gab(u)φb(k) +
∫ u

0
dvgab(u− v)

∫
d3k1d

3k2

(2π)3 δ
(3)
D (k− k12)γbcd(k1,k2)Ψc(k1, v)Ψd(k2, v)

(2.40)
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(η−η )φa
(k) :

a

k
1k

k2

1 + k2k = k

a

b

c

k
’η

              

ba
:γabc(k,k k2)1,

(s)

ab
:g ’

η

Figure 2.1 – The diagrammatic representation of Eq. (2.40) building blocks: the initial field (left), the
propagator (middle) and the vertex (right). Here and in all diagrams in this section, time u is denoted
η. Taken from Crocce and Scoccimarro (2006b).

where gab(u), the Laplace transform of σab(ω) is called linear propagator. Causality ensures
that gab(u) is non-zero for u > 0 only. The expression above holds in any cosmology (assuming
Newtonian dynamics), provided the correct Ωab is used. If f = Ω0.5

m , we have:

gab(u) = eu

5

(
3 2
3 2

)
− e−3u/2

5

(
−2 2
3 −3

)
. (2.41)

The first term of Eq. (2.40) simply represents the linear evolution of the initial conditions through
time encoded in the linear propagator. Conversely, the second part represents mode coupling:
the two fields Ψc(k1, v) and Ψd(k2, v) interact at time v ≤ u through the vertex γbcd(k1,k2),
with the conservation of wavenumber (outgoing k = k1 + k2) due to statistical homogeneity
ensured by δ(3)

D (k − k12). The result of this interaction is then linearly evolved up to u with
gab(u− v). Again, we seek a solution to Eq. (2.40) with the series:

Ψa(k, u) =
+∞∑
n=1

Ψ(n)
a (k, u) (2.42)

with Ψ(n)
a written as:

Ψ(n)
a (k, u) =

∫
d3q1 · · · d3qn

(2π)3(n−1) δ
(3)
D (k− q1 − · · ·qn)F (n)

a (q1, · · ·qn, u)δ0(q1) · · · δ0(qn). (2.43)

F (n)
a kernels are obtained via a recursion relation, similar to Eq. (2.36):

F (n)
a (q1, · · ·qn, u) =

∫ u

0
dvgab(u− v)

n−1∑
m=1

γbcd(q1 + · · ·qm,qm+1 + · · ·qn)

F (m)
c (q1, · · ·qm, v)F (n−m)

d (qm+1, · · ·qn, v). (2.44)

We will note F (n)
a,s their symmetrised version.

Eq. (2.40) can be represented in terms of diagrams. There are three ingredients, represented
in Figure 2.1: the initial field φa, the linear propagator gab and the vertex γabc.

The n-th order term Ψ(n)
a of the expansion 2.42 can also be obtained with a diagrammatic

representation (see Figure 2.2). The n-th order diagram, with n−1 vertices connecting n initial
fields (represented with circles) is obtained with the following procedure. Starting from a leaf at
time u, going back in time leads to either an initial field (for Ψ(1)

a (k)) or a vertex at intermediate
time s, opening up two branches, themselves leading to an initial field (for Ψ(2)

a (k)) or another
vertex. Then, each vertex is attributed a factor of 2 if asymmetric. The result of the procedure
for terms n = 1 to n = 4 can be seen in Figure 2.2. It is straightforward to build up the
n-th order solution from these diagrams. Oriented lines (in increasing time) represent the linear
propagator gab. Any pair of fields entering a vertex are multiplied (with their weight) to obtain
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Figure 2.2 – The diagrammatic representation of the n-th order term Ψ(n)
a (k, u), from n = 1 to n = 4.

Taken from Crocce and Scoccimarro (2006b).

a new field with a wavevector equal to the sum of the incoming ones at a time v such that
0 ≤ v ≤ u. All intermediate wavevectors and time are integrated over.

For example, the n = 2 and n = 3 terms are given by:

Ψ(2)
a (k, u) =

∫ u

0
dvgab(u− v)

∫
d3k1d

3k2

(2π)3 δ
(3)
D (k− k1 − k2)γbcd(k1,k2)gce(v)φe(k1)gdf (v)φf (k2)

(2.45)

Ψ(3)
a (k, u) = 2

∫ u

0
dvgab(u− v)

∫
d3k1d

3k2

(2π)3 δ
(3)
D (k− k1 − k2)γbcd(k1,k2)gce(v)φe(k1)Ψ(2)

d (k2, v).

(2.46)

Initial conditions will be taken proportional to the same field δ0:

φa(k) = εaδ0(k). (2.47)

In the purely growing mode ε1 = ε2 = 1. In this case, using Eq. (2.41), in Eq. (2.40) we have
gab(u)φb(k) = euδ0(k), i.e. F (1)

a,s = euF
(1)
a,s . Then, from Eq. (2.44), setting initial conditions

infinitely far away in the past, i.e. the integration lower bound to −∞, such that negative
exponentials in Eq. (2.41) vanish, recursively we recover standard PT kernels, i.e. F (n)

a,s =
enuF

(n)
a,s .

2.1.4 Lagrangian approach

Before we utilise the previous results to compute the PT prediction for the power spectrum,
for completeness let us briefly introduce another approach to the Eulerian description adopted
so far.

In the Eulerian picture, we described the fluid through its phase-space distribution (or its
momenta, density and velocity) at a given position x and conformal time η. The Lagrangian
approach instead follows the particle positions. Namely, the position at any time η is:

x(η) = q + Ψ(q, η) (2.48)

where q is the particle initial position and Ψ(q, η) the displacement field. Mass conservation
ensures that (1 + δ(x)) d3x = d3q. Hence, the density can be related to the displacement field:

1 + δ(x, η) = 1
|M(x, η)| = 1

J(x, η) with Mij = δij + ∂Ψi

∂qj
. (2.49)

Note that the above relation breaks down when J(x, η) vanishes. This happens when particles
at different initial positions q end up at the same position x, which is called shell-crossing. The
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equation of motion reads:
d2x
dη2 +Hdx

dη
= −∇Φ. (2.50)

Taking its divergence and replacing the potential with Eq. (2.5) yields:

J(x, η)M−1
ij

∂

∂qj

(
d2Ψi

dη2 +HdΨi

dη

)
= 3

2ΩmH2 [J(q, η)− 1] . (2.51)

This non-linear equation can be solved perturbatively for Ψ.
A useful approximation was introduced by Zel’dovich (Zel’dovich, 1970). The particle dis-

placement is taken to be the (irrotational) solution in linear theory:

Ψ(q, η) = iD+(η)
∫

d3k

(2π)3
k
k2 δ0(k)eik·q (2.52)

which is simply u/ (fH) with u the linear order velocity as given by Eq. (2.20). The density
field is deduced from mass conservation ((1 + δ(x)) d3x = d3q):

1 + δ(x, η) = 1
[1− λ1D+(η)] [1− λ2D+(η)] [1− λ3D+(η)] (2.53)

where λi, i ∈ [1, 3] are the eigenvalues of the tensor ∂Ψi/∂qj . Gravitational collapse happens
when (at least) one λiD+(η) → 1. As D+ increases, depending on the eigenvalues, different
structures will form:
— if λ1 � λ2, λ3 and λ1 > 0 (or similar permutation): a pancake;
— if λ1 ∼ λ2 � λ3 and λ1, λ2 > 0 (or similar permutation): a filament;
— if λ1 ∼ λ2 ∼ λ3 > 0: a peak;
— if λ1, λ2, λ3 < 0: an underdense region (void).

Let us come back to the Eulerian description and derive the PT prediction for the power spec-
trum.

2.1.5 The power spectrum

So far we have described the non-linear evolution of the density contrast. To have access
to its statistical properties, e.g. its variance given by the power spectrum, we will use the
well-known Wick theorem. Given a Gaussian field δ of mean 0, for any integer n:

〈δ(k1) · · · δ(k2n+1)〉 = 0
〈δ(k1) · · · δ(k2n)〉 =

∑
combinations

∏
(i,j)
〈δ(ki)δ(kj)〉 (2.54)

In the second case, the sum has (2n − 1)!! (double factorial) terms, corresponding to all the
possibilities of pairing 2n fields. In all the following, we will assume that initial fields φa follow
Gaussian statistics, as is (almost) the case by the end of single-field slow-roll inflation (see
Section 1.2.5). Any n-point correlation of initial fields can therefore be expressed as a sum of
products of 2-point correlations. Assuming Eq. (2.47), these are related to the power spectrum
P0(k) of the initial field δ0 by:〈

φa(k)φb(k′)
〉

= (2π)3 δ
(3)
D (k + k′)εaεbP0(k). (2.55)
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Figure 2.3 – The diagrammatic representation of the power spectrum at tree order (top left), the 3 1-loop
diagrams (top right) and 7 out of the 29 2-loop diagrams (bottom). Dashed lines symbolise the connection
between the diagrams of Ψ(n)

a (k, u) (see Figure 2.2). Taken from Crocce and Scoccimarro (2006b).

The power spectrum of the evolved (density or velocity divergence) fields:〈
Ψa(k, u)Ψb(k′, u)

〉
= (2π)3 δ

(3)
D (k + k′)Pab(k, u) (2.56)

is obtained by replacing Ψa(k, u) by their series expansion (2.42). One obtains:

Pab(k, u) =
+∞∑
l=0

P
(l)
ab (k, u) (2.57)

where the l-loop term is given by:

(2π)3 δ
(3)
D (k + k′)P (l)

ab (k, u) =
2l+1∑
m=1

〈
Ψ(m)
a (k, u)Ψ(2l+2−m)

b (k′, u)
〉
. (2.58)

The l-loop contribution to the power spectrum correlates 2l + 2 initial fields — correlations of
odd n initial fields vanishing following the above Wick theorem.

A diagrammatic representation of this equation is given in Figure 2.3. For eachm ∈ [1, 2l+1],
trees of Ψ(m)

a (k, u) and Ψ(2l+2−m)
b (k′, u) are positioned opposite to each other, with their initial

fields face-to-face. Then, the initial fields (φc(k), φd(k′)) are paired and replaced by their power
spectrum (2π)3 δ

(3)
D (k+k′)εcεdP0(k), symbolised by a cross in Figure 2.3. Diagrams are weighted

by the factor coming from the different tree combinations of Figure 2.2, and by the number of
pair combinations.

The first diagram of Figure 2.3 gives the power spectrum at tree level:

P
(0)
ab (k) = gac(u)gbd(u)εcεdP0(k). (2.59)

The second diagram is a 1-loop term:

P
(1)
ab (k) 3

∫
d3qdv1dv2gac(u− v1)γcde(k,q,k− q)gdf (v1)εfgeg(v1)εgP0(q)P0(|k− q|)

× gbh(u− v2)γhij(−k,−q,q − k)gik(v2)εkgjl(v2)εl. (2.60)

In fact, loop corrections of standard perturbation theory (SPT) which we used so far are
ill-behaved on small scales: when approaching non-linear scales, high loop contributions are
of the same order of magnitude with alternative signs. To remedy this lack of convergence,
resummation schemes have been proposed.
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2.1.6 Gamma expansion

Gamma expansion is an alternative to the SPT treatment described above, which allows
loop corrections to be resummed. We recall that the linear propagator gab links the linearly
time-evolved field to its initial condition. Let us introduce its generalisation to the non-linear
case, the 2-point propagator Gab, defined as (Crocce and Scoccimarro, 2006a):〈

δΨa(k, uf )
δφb(k′)

〉
= δ

(3)
D (k− k′)Gab(k, uf , ui), (2.61)

which relates the non-linear evolved field Ψa(k, uf ) to the initial conditions φb(k1) at ui. The
condition δ

(3)
D (k − k′) stems from statistical homogeneity. Gab(k, uf , ui) can be expanded in

series of loop contributions:

Gab(k, uf , ui) = gab(uf − ui) +
+∞∑
l=1

G
(l)
ab (k, uf , ui), (2.62)

which can be calculated within SPT. It is expected that on large scales Gab(k → 0, uf , ui) =
δabgab(uf−ui) while on small scales the evolved density field Ψa(k, uf ) decorrelates from the ini-
tial field and then Gab(k→ +∞, uf , ui) = 0. In fact, by summing the dominant diagrams (with
loops connected to a principal path) of each loop l, Gab(k, u) can be shown to be exponentially
suppressed (Crocce and Scoccimarro, 2006a):

Gab(k, u) −−−−→
k→+∞

gab(uf − ui) exp
(
−1

2k
2σ2
d(uf , ui)

)
(2.63)

with σ2
d(uf , ui) the variance of the velocity u/ (fH) along one direction, integrated from time

ui to uf ; in linear theory:

σ2
d(uf , ui) = (euf − eui)2 σ2

d = 1
3 (euf − eui)2

∫
d3q

(2π)3
P0(q)
q2 . (2.64)

In the following, we attempt to give a flavour of the Renormalised Perturbation Theory
(RPT) presented in Crocce and Scoccimarro (2006b,a) and Regularised Perturbation Theory
of Bernardeau et al. (2012); Taruya et al. (2012), without providing formal demonstration.

Let us consider an Einstein de Sitter Universe, u = ln a, and focus on (a, b) ∈ {(1, 1), (1, 2)},
i.e. on the response of the evolved density field Ψ1 to the initial conditions φ1 and φ2 (following
arguments are similar for (a, b) ∈ {(2, 1), (2, 2)}). We recall Eq. (2.41):

g11(a) = 3
5a+ 2

5a
−3/2

g12(a) = 2
5a−

2
5a
−3/2.

(2.65)

The 1-loop contribution to Gab was calculated in Crocce and Scoccimarro (2006a):

G
(1)
11 (k, a) = 3

5 [α(a)f(k)− β(a)i(k)] + 2
5 [δ(a)g(k)− γ(a)h(k)]

G
(1)
12 (k, a) = 2

5 [α(a)f(k)− β(a)h(k)]− 2
5 [δ(a)f(k)− γ(a)h(k)]

(2.66)

where:

α(a) = a3 − 7
5a

2 + 2
5a
−1/2 β(a) = 3

5a
2 − a+ 2

5a
−1/2

γ(a) = 2
5a

2 − a1/2 + 3
5a
−1/2 δ(a) = 3

5a
2 − 7

5a
−1/2 + a−3/2.

(2.67)
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The four functions of k (f(k), g(k), h(k), i(k)) in Eq. (2.66) are given in Crocce and Scoccimarro
(2006a). They all behave as −k2σ2

d/2 when k is large, and then:

G
(1)
ab (k, uf , ui) −−−−→

k→+∞
−1

2k
2σ2
d(uf , ui)gab(uf − ui). (2.68)

Similarly, higher order loop corrections are expected to behave as → (−1)l/
(
2ll!
)
k2lσ2l

d (uf , ui)
at large k, in agreement with Eq. (2.63).

Crocce and Scoccimarro (2006a) noticed that the expression of Gab up to 1-loop (sum of
Eq. (2.65) and Eq. (2.66)) can be regarded as a first order expansion of:

GRPT
11 (k, a) = 3

5ae
αg(a)f(k)−βg(a)i(k) + 2

5a
−3/2eδd(a)g(k)−γd(a)h(k)

GRPT
12 (k, a) = 2

5ae
αg(a)f(k)−βg(a)h(k) − 2

5a
−3/2eδd(a)f(k)−γd(a)h(k)

(2.69)

where contributions are split between the leading growing mode ∝ a (indices g) and the leading
decaying one ∝ a−3/2 (indices d) and with:

αg(a) = α(a)a−1 βg(a) = β(a)a−1

δd(a) = δ(a)a3/2 γd(a) = γ(a)a3/2.
(2.70)

These are the expressions of Gab(k, a) in the RPT formalism. Note that there are no free
parameters. The result in any ΛCDM scenario is obtained by replacing a by D+ = eu. The
2-point propagator can be computed in simulations by cross-correlating final with initial density
fields. The resummation presented above was shown to be in very good agreement with such
estimates from simulations.

The (p + 1)-point propagator Γac1···cp , introduced in Bernardeau et al. (2008), is a natural
extension of the 2-point propagator:

1
p!

〈
δpΨa(k, uf )

δφc1(k1) · · · δφcp(kp)

〉
= δ

(3)
D (k− k1 − · · ·kp)

(2π)3(p−1) Γac1···cp(k1 · · ·kp, uf , ui) (2.71)

It was shown in Bernardeau et al. (2008) that these propagators can be used to express the
non-linear power spectrum:

Pab(k, uf ) =
+∞∑
p=1

p!
∫
d3q1 · · · d3qp

(2π)3(p−1) δ
(3)
D (k− q1 − · · ·qp)Γa,(p)(q1 · · ·qp, uf , ui)

Γb,(p)(q1 · · ·qp, uf , ui)P0(q1) · · ·P0(qp) (2.72)

where we introduced the short-hand notation: Γa,(p) = Γac1···cpεc1 · · · εcp . The expression above
remains valid under any initial conditions, providing P0(qi) is replaced by the power spectrum
of the initial fields φai and φbi at qi. The diagrammatic representation of the power spectrum
up to 2-loop order is depicted in Figure 2.4.

Just as for the 2-point propagator, the general multi-point propagator is expanded following:

Γab1···bp(k1, · · ·kp, uf , ui) =
+∞∑
l=1

Γ(l)
ab1···bp(k1, · · ·kp, uf , ui). (2.73)
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Figure 2.4 – The diagrammatic representation of the power spectrum up to 2-loop using the gamma
expansion. Non-linear multipoint propagators, whose resummation is symbolised by the black dots, are
linked together at the crosses where the initial power spectrum P0 is injected. Taken from Taruya et al.
(2012).

s1
s2

s1 s2s2s1

s1 s2

1s s2

16

(3)

η

P (q)o

s1 s2

(1)

(8)

η

16

16
η

η

(11)

η 16
η

16
16

(4) (5)

(6) (7)

8

(9)

16

(10)

16

(2)

k − q kk

− qq

4
η

Figure 2.5 – The diagrammatic representation of the 2-point propagator up to 1-loop. Taken from Crocce
and Scoccimarro (2006a).

Again, by summing the dominant diagrams (with loops connected to a principal tree) of each
loop l, the general multi-point propagator is shown to be exponentially suppressed at high
k (Bernardeau et al., 2008):

Γab1···bp(k1, · · ·kp, uf , ui) −−−−→
k→+∞

exp
(
−1

2k
2σ2
d(uf , ui)

)
Γ(0)
ab1···bp(k1, · · ·kp, uf , ui) (2.74)

where k = |k1 + · · ·kp|.
In general, Γab1···bp is expected to be well-described at low k by a truncation of Eq. (2.73),

using PT to compute Γ(l)
ab1···bp , and at high k by Eq. (2.74). The RegPT scheme aims at inter-

polating between the two. Let us consider as an example the late time behaviour of the two
point propagator Gab, in an Einstein de Sitter Universe (u = ln a) and with εa = εb = 1. The
response of the evolved density field to the initial one δ0 is, up to 1-loop:

G1(k, a) = G11(k, a) +G12(k, a) = g11(a) + g12(a) +G
(1)
11 (k, a) +G

(1)
12 (k, a) −−−−→

a→+∞
a+ a3f(k),

(2.75)

which, within RPT, is resummed following (see Eq. (2.69)):

GRPT
1 (k, a) = a exp

[
a2f(k)

]
. (2.76)

Rather, in the RegPT scheme:

GRegPT
1 (k, a) = a

(
1 + a2f(k) + 1

2k
2σ2
da

2
)
e−

1
2k

2σ2
da

2
. (2.77)

This amounts to subtracting the high k limit −k2σ2
da

2/2 from the exponent in (2.76), which is
then re-expanded at first order. In other words, the RegPT scheme interpolates between the
low k behaviour where standard loop corrections are expected to be accurate and the high k

exponential damping.
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This scheme is straightforwardly extended to any multipoint propagator and to any order in
loop corrections, e.g., up to 2-loop:

ΓRegPT
ac1···cp(uf , ui) =

{[
1 + 1

2k
2σ2
d(uf , ui) + 1

2

(1
2k

2σ2
d(uf , ui)

)2
]

Γ(0)
ac1···cp(uf , ui)+[

1 + 1
2k

2σ2
d(uf , ui)

]
Γ(1)
ac1···cp(uf , ui) + Γ(2)

ac1···cp(uf , ui)
}

exp
[
−1

2k
2σ2
d(uf , ui)

]
(2.78)

where we dropped the k1 · · ·kp variables for conciseness.
The difference between the RPT and RegPT schemes for Gab only matters when k &

1 h Mpc−1, where the exponential damping is very strong (Bernardeau et al., 2012). Hence,
both RPT and RegPT schemes reproduce well Gab computed in numerical simulations.

The RegPT predictions for the 3-point propagator Γ111 are shown in Figure 2.6, for different
values of wavenumbers k1, k2, k3, with k3 the outgoing momentum, k3 = k1 + k2. Measure-
ments from numerical simulations are in very good agreement with the 1-loop predictions (when
including binning effects in the measurements of Γ111).

2.1.7 The RegPT prescription for the power spectrum

From now on we set initial conditions in the growing mode εa = εb = 1 in the limit ui →
−∞. Hence, only the fastest growing mode dominates. In this case, the tree-order propagator
reads (Taruya et al., 2012):

Γ(0)
a,(p)(k1, · · ·kp, u) = epuF (p)

a,s (k1, · · ·kp) (2.79)

and at l-loop order:

Γ(l)
a,(p)(k1, · · ·kl, u) = e(2l+p)uc(p),(l)

∫
d3q1 · · · d3qp

(2π)3l F (2l+p)
a,s (q1,−q1, · · ·ql,−ql,k1, · · ·kp)P0(q1) · · ·P0(ql)

(2.80)
with c(p),(l) =

(2l+p
p

)
(2l − 1)!! and F (p)

a,s the symmetrised standard PT kernels. The regularised
propagator ΓRegPT

a,(p) is then given by Eq. (2.78) at 2-loop, and by similar formulae at l-loop. In
the latter formula, since the fastest growing mode dominates, σ2

d(u) = e2uσ2
d (see Eq. (2.64)).

We recall that σd emerges from the resummation of the high k end. Hence, following Bernardeau
et al. (2012), Taruya et al. (2012) argue that the integration upper bound kΛ(k) in:

σ2
d(k) =

∫ kΛ(k)

0

dq

6π2P0(q) (2.81)

should depend on k. Taruya et al. (2012) found that kΛ(k) = k/2 reproduces well the power
spectrum measurements from numerical simulations.

Obtaining the 2-loop power spectrum is now straightforward using Eq. (2.72):

Pab(k, u) = ΓRegPT
a,(1) (k, u)ΓRegPT

b,(1) (k, u)P0(k) (2.82)

+ 2
∫

d3q

(2π)3 ΓRegPT
a,(2) (q,k− q, u)ΓRegPT

b,(2) (q,k− q, u)P0(q)P0(|k− q|) (2.83)

+ 6
∫
d3pd3q

(2π)6 ΓRegPT
a,(3) (p,q,k− p− q, u)ΓRegPT

b,(3) (p,q,k− p− q, u)P0(p)P0(q)P0(|k− p− q|),

(2.84)
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Figure 2.6 – Comparison of the 1-loop 3-point propagator (continuous black lines) against numerical
simulations (points with error bars) in four configurations (upper left: squeezed k1 = k/4; k2 = k3 = k,
upper right: elongated k1 = k/2; k2 = k3 = k, bottom left: equilateral k1 = k2 = k3 = k, bottom
right: colinear k1 = k2 = k/2; k3 = k). The dashed blue line is the prediction which takes no account
of the binning effect in the measurement of Γ111. The dotted line is the prediction at tree order. Taken
from Bernardeau et al. (2012).

where ΓRegPT
a,(1) , ΓRegPT

a,(2) and ΓRegPT
a,(3) are computed at 2-loop, 1-loop and tree order, respectively.

Their respective contributions and their sum are displayed in Figure 2.7. One would note that
higher order contributions are consistently shifted to higher k.

Numerically speaking, Γ(1)
a,(1), Γ(0)

a,(2), Γ(1)
a,(2) Γ(0)

a,(3), entering ΓRegPT
a,(1) , ΓRegPT

a,(2) and ΓRegPT
a,(3) are

calculated without approximation and a fitting function is used for Γ(2)
a,(1). The low dimensional

(≤ 3) integrals are computed using the Gauss-Legendre method. Γ(3)
a,(1) is numerically evaluated

with a Monte Carlo technique, using the library CUBA (Hahn, 2005). Though a Fortran code
was available 1, we recoded the RegPT prescription in C, wrapped in Python, allowing for par-
allelisation and tuning of kΛ(k), integration ranges and precision in package called pyregpt 2.
In practice, given our measurement precision, we kept the same integration ranges and kΛ(k) as
proposed in Taruya et al. (2012). We also utilised this framework to implement bias and RSD
terms (as described in next sections).

1. at http://www2.yukawa.kyoto-u.ac.jp/~atsushi.taruya/regpt_code.html
2. at https://github.com/adematti/pyregpt

http://www2.yukawa.kyoto-u.ac.jp/~atsushi.taruya/regpt_code.html
https://github.com/adematti/pyregpt
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2

6

Figure 2.7 – Left: contributions of the first three terms of the gamma expansion (Eq. (2.82) in pink,
Eq. (2.83) in green and Eq. (2.84) in blue) to the total power spectrum (continuous line) at 2-loop, at
z = 1. For reference, the linear power spectrum e2uP0(k) is shown in dashed lines. Right: relative
difference between the power spectrum measured from N-body simulations to the RegPT prediction.
The blue and green arrows show the 1% validity range achieved at 2-loop order for the Lagrangian
resummation theory (LRT) and closure theory, respectively. At z = 3, the validity range of closure
theory is larger than the maximum wavenumber of the figure (k = 0.4 h Mpc−1). Taken from Taruya
et al. (2012).

Comparison of the RegPT prediction to numerical simulations is shown in Figure 2.7 (right
panel). The RegPT prediction is in general good agreement with simulations, with a percent
accuracy achieved up to k ' 0.15, 0.23, 0.33 h Mpc−1 at z = 0.35, 1, 2 respectively. For
comparison, pure linear PT breaks down at k ' 0.1 h Mpc−1 at z = 1. One would note however
that the RegPT power spectrum is slightly underestimated for the lower redshift z = 0.35,
attributed to a poor convergence of ΓRegPT

(1) . At high redshift (z = 3), the power spectrum
seems overestimated around k ' 0.3 h Mpc−1 but Taruya et al. (2012) attribute this effect to
the simulation. The agreement between the prediction for the correlation function, given by the
Hankel transform:

ξ(r) =
∫
dkk2

2π2 P (k)sin (kr)
kr

(2.85)

and numerical simulations was found to be even better in Taruya et al. (2012). RegPT only
breaks down around s = 25 Mpc h−1 at z = 0.35 and s = 20 Mpc h−1 at z = 1.

Also indicated in Figure 2.7 (right panel) is the validity range (for 1% precision) of two other
resummation schemes, Lagrangian resummation theory (LRT, Matsubara, 2008; Okamura et al.,
2011) and closure theory (Taruya and Hiramatsu, 2008; Taruya et al., 2009) at 2-loop order.
Overall, RegPT performs at least as well as the two other schemes. An alternative prescription
for the power spectrum relying on gamma expansion is called MPTbreeze (Crocce et al., 2012). It
extrapolates the result obtained at 1-loop in Eq. (2.76) to the multipoint case. The calculation in
this scheme is faster, and less sensitive to the UV cutoff kΛ(k), but less accurate on intermediate
scales.
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Note that a faster RegPT scheme, RegPT-fast, was developed. In this scheme, the evolved
power spectrum is Taylor expanded as a function of the initial one (using the explicit dependence
in Eq. (2.72)), around a set of fiducial cosmologies. Then, predictions for any cosmology close
enough to the fiducial one can be obtained within seconds with 1-dimensional integrals. Since
we kept the fiducial cosmology fixed, we only used the standard RegPT scheme.

Finally, let us recall that we have neglected the anisotropic stress tensor σij in the Euler
equation (2.10) to perform standard PT and further RegPT. Another approach called effective
field theory of large scales structures (EFTofLSS, Carrasco et al. 2012), does not make this as-
sumption. Perturbations are split into large and small wavelength modes, the latter contributing
to σij . These small scale fluctuations source counterterms used to regularise the perturbation
theory calculations which involve integrals of the power spectrum up to non-linear scales. Note
however that such a procedure requires measuring parameters encapsulating small scale physics,
from e.g. numerical simulations.

2.2 Numerical simulations

Theoretical calculations are key to understand the non-linear formation of structure. Their
reliability and validity range is tested against numerical simulations, which provide an accurate
picture of non-linear structure formation.

We will first review N-body simulations, evolving collisionless dark matter through gravity
only. The connection between the outcome of these simulations and galaxy distribution will then
be discussed. This section is partly inspired from Codis-Decara (2015); Wechsler and Tinker
(2018).

2.2.1 N-body simulations

In practice, cosmological N-body simulations do not account for collisions between particles.
This in contrast to collisional N-body codes, which allow momentum exchange between particles,
and are required to described small systems, such as stellar clusters and galaxy centres. The
Vlasov-Poisson equations (2.4) and (2.5) describe the evolution of the phase-space distribution
function f(x,u, t), which operates in a 6-dimensional space (plus time). Solving it directly
using a 6-dimensional grid would be computationally very costly and inefficient, as f gets more
and more localised with non-linear structure formation. Therefore, in N-body simulations,
the distribution function f(x,u, t) is sampled by a great number (typically 1010−12 today) of
particles.

2.2.1.1 Initial conditions

N-body simulations evolve particles through gravity, starting from initial conditions that are
specified at a redshift z ∼ 100. Various schemes exist to generate the initial distribution of
particles. The first is random uniform sampling, but it would generate undesirable structure
formation from sampling noise even when no other perturbations are imposed. The second
solution is a regular grid of particles, but it leads to preferred directions and scales (the initial
particle separations). To overcome these issues, White (1994) suggested the glass-like distribu-
tion. Starting from random uniform sampling, particles are evolved through the gravity solver
(described hereafter), taking the opposite of the gravitational force, such that particles tend
to repulse each other. This reverse evolution typically takes 150 integration steps and spans
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an expansion factor of 106. It yields a particle distribution that does not show any preferred
direction nor scale and does not lead to structure formation if subsequently evolved through
gravity for expansion factors as large as 30. The second step consists in imprinting the desired
initial fluctuations in this particle distribution.

A density contrast field δ is generated following a Gaussian distribution, with variance the lin-
ear power spectrum at the initial redshift, as provided by Boltzmann codes such as CAMB (Lewis
et al., 2000; Lewis and Challinor, 2011) or CLASS (Blas et al., 2011). Based on the generated
density field, particle positions are shifted and are assigned velocities. This step is typically
performed using the Zel’dovich approximation or second order Lagrangian perturbation theory,
which allows starting the simulation at lower redshift. Then, multiple techniques exist to evolve
the particles through gravitational interaction.

2.2.1.2 The particle-particle method

After the pioneering work of Holmberg (1941) modelling nebulae with light bulbs, the
particle-particle (PP) method was used as soon as the early sixties, with up to 100 particles
(e.g. Aarseth, 1963). In this method, the peculiar velocity of each particle i is calculated using:

du(i)

dt
+Hu(i) = 1

m(i)

∑
j 6=i

F(i)
j (2.86)

where the gravitational force of particle j on i is given by:

F(i)
j = GNm

(i)m(j) r(j) − r(i)[∣∣r(j) − r(i)
∣∣2 + ε2

]3/2 . (2.87)

ε is a small, softening parameter. Here we have considered the standard Plummer softening (Aar-
seth, 1963), but other kernels exist (Dehnen, 2001), which can be dynamically adapted. Since
particles are considered as a (necessarily incomplete) Monte-Carlo sampling of the distribution
function, softening corresponds to the assumption that the mass density is smooth on small
scales, i.e. it reduces shot noise. In practice, softening avoids divergence at null separation
and thus eases numerical integration, allowing for an increase in the number of particles by a
few orders of magnitude (Dehnen, 2001). Of course, ε introduces a bias with respect to pure
Newtonian dynamics. An optimum can be found between shot noise and bias.

The accuracy of the PP method depends on the (adaptive) time step. Note also that this
method scales as O

(
N2), with N the number of particles. Hence, faster techniques have been

developed.

2.2.1.3 Particle-mesh methods

In the particle-mesh (PM) method, the particle density is evaluated on a grid using an in-
terpolation kernel, typically cloud-in-cell or triangular shaped cloud (Eastwood and Hockney
(1974), see Section 4.1.7). The gravitational potential is computed with the Poisson equa-
tion (2.5), typically in Fourier space, using Fast Fourier Transforms (FFT). The potential is
thus softened at the typical grid cell size. Particle motions are computed from this gravita-
tional potential, using the same interpolation kernel. This method scales as FFT algorithms,
O (Nm logNm) with Nm the total mesh size, plus the interpolation with scales as O (N) (with N
the number of particles). Hence, this method is fast, but inaccurate below distances of several
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cell sizes. To increase the small scale precision, one can resort to adaptive mesh refinement
(AMR) methods, which dynamically increase the grid resolution in regions of high density (or
regions where the coarser grid leads to too large errors). Another solution is to enhance PM
with PP at small scales (i.e. of the order of a few cell sizes), leading to hybrid P3M codes.
However, these codes are limited by the integration in regions of very dense clustering, which
can be solved by using AMR — leading to AP3M codes (Couchman, 1991).

2.2.1.4 Tree codes

In tree codes (PPTree) particles are grouped together into smaller and smaller (in size) cells,
following a tree structure — which does not need to be recomputed at each time step. Then,
the gravitational potential of groups of particles is expanded into multipoles around the group
centre of mass. This multipole expansion is used to compute the force applied to another group
of particles. Smaller and smaller cells are considered until the opening angle (size over distance)
is less than a threshold parameter. The complexity of such an algorithm is O (N logN). These
codes (an example of which is Dehnen 2000) can be coupled to PM codes. Such hybrid Tree-PM
codes are the most efficient algorithms for cosmological purposes (e.g. GADGET-2, Springel,
2005).

Note however that numerical simulations solving the Vlasov-Poisson equations in phase
space, hence without resorting to particle sampling, have been recently developed (Hahn and
Angulo, 2016; Sousbie and Colombi, 2016). These techniques eliminate the sampling noise and
force softening of the N-body simulations described previously.

2.2.1.5 N-body simulations used in the analysis of the eBOSS ELG sample

In this manuscript, we make use of two N-body simulations. We first consider the MultiD-
ark simulation MDPL2 (Klypin et al., 2016), of volume 1 Gpc3 h−3, using 3, 8403 dark matter
particles of mass 1.51× 109 M� h−1. The GADGET-2 code was run with the flat ΛCDM cos-
mology 3:

h = 0.6777, Ωm,0 = 0.307115, Ωb,0 = 0.048206,
σ8,0 = 0.8228, ns = 0.9611.

(2.88)

The simulation was started at z = 100 from Gaussian initial conditions and with velocities
assigned through the Zel’dovich approximation.

As the MDPL2 simulation lacked of cosmological volume, we then focused on the OuterRim
simulation (Heitmann et al., 2019) of volume 27 Gpc3 h−3 and 10 2403 dark matter particles of
mass 1.85× 109 M� h−1. The simulation was run with the HACC (Hardware/Hybrid Acceler-
ated Cosmology Code), described in Habib et al. (2016). This code includes an architecture-
independent PM method for large scales (covering 4 orders of magnitude in scale) and an
architecture-tunable part for the more time-consuming resolution of small scales (2 orders of
magnitude), based on the PP or PPTree method. The simulation was run with the following
flat ΛCDM cosmology:

h = 0.71, ωc,0 = 0.1109, ωb,0 = 0.02258,
σ8,0 = 0.8, ns = 0.963.

(2.89)

3. https://www.cosmosim.org/cms/simulations/mdpl2/

https://www.cosmosim.org/cms/simulations/mdpl2/
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The simulation was started at z = 200 from Gaussian initial conditions and with velocities
assigned through the Zel’dovich approximation. The z = 0 snapshot of this simulation is shown
in Figure 2.8.

Figure 2.8 – Snapshot of the OuterRim simulation at z = 0. Halos above 1.8× 1015 M� are shown as
spheres (red means more massive), while halos down to ∼ 5× 1010 M� are represented as blue splats.
Taken from Heitmann et al. (2019).

2.2.2 Connection to tracer density

The outcome of a N-body simulation is a collection of dark matter particle positions and
velocities, from the initial redshift to the final one. White and Rees (1978) argued that galaxy
formation can be described as a two-step process. First, dark matter forms halos, defined as
overdense gravitationally bound systems. This process can be understood within the spherical
collapse model which we briefly review hereafter. Then, baryons aggregate into denser units
due to gas dynamical dissipative processes and form galaxies. Hence, halos appear as the first
building block connecting the dark matter density field to galaxies. At small scales, baryonic
matter cannot be considered a collisionless fluid, hence requiring hydrodynamical codes to en-
hance N-body simulations with baryonic processes. However, hydrodynamical simulations are
computationally costly. Complementary approaches include semi-analytical models or prescrip-
tions (abundance matching or halo occupation distribution — HOD) to populate dark matter
halos with galaxies. We review these different techniques in the following.

2.2.2.1 Spherical collapse model

The spherical collapse model describes the evolution of an initially spherical overdensity
through gravitation. Applying Birkhoff theorem to this initial perturbation, in an Einstein de
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Sitter Universe:
R̈ = −GNM

R2 M = 4π
3 R3ρ (2.90)

where ρ is the density, and ˙ denotes a derivative with respect to the cosmic time. This equation
can be integrated into E = Ṙ2/2−GM/R. The system is bound when the energy E is negative,
in which case the solution can be parametrised as follows:

R = Rm
2 (1− cos ζ)

t = tm
π

(ζ − sin ζ) ,
(2.91)

with Rm = −GNM/E and tm = πGNM (−E)−3/2 /
√

8. The radius grows until R = Rm at
t = tm (ζ = π) and then shrinks until R = 0 at t = 2tm (ζ = 2π). The density contrast reads:

δsc = ρ

ρ̄
− 1 = 9MGNt

2

2R3 − 1 (2.92)

where we used the mean Universe density ρ̄ = 1/
(
6πGNt

2) (see Eq. (1.36) and Table 1.1). The
above solution (2.91) can be expanded at linear order (ζ � 1) to yield:

Rlin(t) = Rm
4

(6πt
tm

)2/3
[
1− 1

20

(6πt
tm

)2/3
+ o

[(
t

tm

)2/3
]]
. (2.93)

The spherical overdensity evolves in three phases:
— growing R: initially (t � tm), δsc ∝ t2/3, as expected (from Eq. (2.15) and Table 1.1,

D+ ∝ a ∝ t2/3). When t = tm, R reaches its maximum Rm; at that time δsc(tm) =
9π2/16 − 1 ' 4.55. Using the expansion at linear order, δlin

sc (tm) = 3/20 (6π)2/3 ' 1.06.
Since Ṙ(tm) = 0 the energy is fully potential E = U(Rm) = −GM/Rm.

— collapse: the overdensity decouples from the expansion of the Universe and collapses at
t = 2tm, when the spherical model predicts an infinite density. Using the expansion at
linear order, δc = δlin

sc (2tm) = 3/20 (12π)2/3 ' 1.686, which is called the critical density
contrast. Variations of δc with cosmology are rather modest (Bernardeau et al., 2002).

— virialisation: in practice the overdensity does not reach an infinite density but rather
achieves an equilibrium, when the total energy E = K + U = 1/2Ṙ2 − GM/R is half
the potential energy, E = U(Rvir)/2. Since E = U(Rm), the radius at virialisation is
Rvir = Rm/2 and the corresponding overdensity (at t = 2tm) is δvir = (6π)2 /2− 1 ' 177.
In a ΛCDM Universe, the expansion rate is increased, therefore the background density is
smaller at virialisation, so δvir is larger.

We note that the spherical collapse model has interesting cosmological applications. It can
for example be used to predict the density distribution within spheres, using large deviation
theory (Uhlemann et al., 2016).

2.2.2.2 Dark matter halos

Dark matter forms halos, defined as overdense gravitationally bound systems. One would
note however that halos can themselves host other, smaller, gravitationally bound structures
evolving in the host halo potential — those are called subhalos. The most physical definition of
halo boundaries remains under debate. The virial radius Rvir of halos is defined as the radius
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of the spherical volume within which the mean halo density is ∆vir times the matter density
at that redshift. The virial mass is then Mvir = 4π/3R3

vir∆virρ̄ with ρ̄ the matter density
(other definitions rely on the critical density). Different values are taken for ∆vir; in the matter
dominated area (Einstein de Sitter Universe), for the spherical collapse, we have just seen that
∆vir = 1+δvir ' 178. Note that with this definition, Rvir will naturally increase with time (even
though the halo size remains static in physical units) due to the decrease of ρ̄ (the so-called
pseudoevolution, see Diemer et al. 2013). Hence, More et al. (2015) introduced the splashback
radius, defined as the apocentre of the first orbit of particles after collapse into the halo; in
spherical symmetry, this radius separates infalling from orbiting material.

Halos can be found in dark matter simulations using different techniques. Historically, the
first two halo finders were the spherical overdensity (SO) method of Press and Schechter (1974)
and the Friends-of-Friends (FOF) algorithm of Davis et al. (1985). The SO method locates dens-
ity peaks and grows spherical shells until the overdensity drops below a threshold value, typically
given by the spherical collapse model. Conversely, the FOF algorithm identifies particles which
are closer than a specific linking length. This FOF approach can be extended to using the ve-
locity information. The halo centres are determined afterwards, and can e.g. be defined as the
halo centre of mass. The so-called halo merger trees store halo merging history, i.e. they provide
all the progenitors of a given halo backwards in time. Overall, halo properties (bulk velocity,
virial mass, peak of the rotation curve) are found to agree well between different halo finders.
Some differences are found in the identification of subhalos and their properties. In particular,
phase-space finders are more effective in finding low-mass subhalos. However, the definition of
the mass of a subhalo is somewhat ambiguous, and the peak of the rotation curve vmax is often
used as a proxy for the original infall mass (Knebe et al., 2011).

The halo finder applied on the OuterRim simulation presented in Section 2.2.1.5 is a simple
FOF algorithm, with linking length 0.168 times the mean inter-particle separation. The halo
centre is given at the minimum of the gravitational potential. Halos in the OuterRim simulation
are shown in Figure 2.8. The Rockstar (robust overdensity calculation using k-space topologically
adaptive refinement, Behroozi et al. 2013) algorithm uses the particle positions and velocities
(and time component) to identify halos, halo substructures and halo merger trees. This algorithm
was applied on the MultiDark simulation presented in Section 2.2.1.5.

2.2.2.3 Hydrodynamical simulations

Galaxy formation is the result of baryonic processes. One can describe baryons as a fluid
following continuity and Euler equations, with a pressure P and energy U linked through the
first law of thermodynamics. Two types of codes exist: smooth particle hydrodynamical (SPH)
codes, that sample the fluid with particles (e.g. GADGET-2, Springel, 2005) or Euler codes that
solve the fluid equation on a grid (e.g. RAMSES, Teyssier, 2002). In addition to this simple
gas dynamics, other baryonic processes are considered: radiative gas cooling or photoheating,
star formation, stellar feedback (including supernovae explosions), active galactic nuclei (AGN)
feedback, magnetic fields, etc. Note that a number of these processes takes place at very small
scale — below the simulation resolution — and hence requires effective models, tuned directly
on observations or through semi-analytical models, as described below. Galaxies can then be
identified based on the density of stellar particles (of typical mass ∼ 106 M�, e.g. Aubert et al.
2004; Dubois et al. 2016). Though hydrodynamical simulations are a major step towards under-
standing the complex process of galaxy formation and its relation to the environment, results
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differ significantly depending on the feedback implementation (Scannapieco et al., 2012). In
addition, hydrodynamical simulations are numerically very expensive and limited to a few Mpc
in size and are thus improper for direct large scale clustering predictions (typically ∼ 100 Mpc
scales). However, they can be used to specifically simulate galaxy formation over a large dy-
namical range of scales starting from patches of a large initial N-body simulation (e.g. Crain
et al., 2009) and infer prescriptions for HOD models, as discussed below.

2.2.2.4 Semi-analytical models

The star formation efficiency and hence galaxy formation depends on the ability of the gas
to cool down. In turn, gas is reheated by feedback processes. The stellar-to-halo mass function
peaks around 1012 M�; above this pivot mass, AGN feedback heats the gas of the surrounding
interstellar medium (ISM) (Silk and Rees, 1998). At lower halo mass, massive stars (& 5−8M�)
end their life into type II supernovae, ejecting energy and momentum in the ISM or even outside
of the halo. A semi-analytical model of galaxy formation puts into equation the flows between
stars, hot gas and cold gas reservoirs, and predicts galaxy star formation history and metallicity
enrichment (Baugh, 2013). Prescriptions of semi-analytical models are based on simplifying as-
sumptions that must be tested against high-resolution hydrodynamical simulations or observed
data. They typically rely on 10 to 30 parameters which can be measured observationally, by
studying the relations between galaxy colours, magnitude, gas fraction, at different redshifts (e.g.
Henriques et al., 2015). When applied on merger trees of N-body simulations, semi-analytical
models can predict the number of galaxies per halo and hence provide groundings for HOD pre-
scriptions. Contreras et al. (2013) compared the results obtained from different semi-analytical
galaxy formation models run on the Millenium simulation (Springel et al., 2005) and found
very good agreement between semi-analytical models for samples selected by stellar mass, as
shown in Figure 2.9. However, they differ significantly (though their overall shape agree) for
samples selected by cold gas mass or star formation rate — owing to the different prescriptions
for gas-reheating and gas-stripping processes.

We have mentioned theoretical uncertainties in the way galaxies populate halos. These are to
be constrained with observed data, such as galaxy clustering. The two following, simple, schemes
make a direct connection between halos and galaxies such that their (possible) parameters can
be easily tuned on observed clustering measurements.

Figure 2.9 – HOD measured on the outputs of two different semi-analytical models (GALFORM and
LGALAXIES) run on the Millennium simulation. Galaxy samples are selected by stellar mass (left), cold
gas mass (middle) and star formation rate (right). HOD (introduced in Section 2.2.2.6) fits are shown in
dashed lines. Taken from Contreras et al. (2013).



78 CHAPTER 2. Large scale structure

2.2.2.5 Abundance matching

The simplest way to associate galaxies with halos is to assume a monotonic relation between
a galaxy property (e.g. stellar mass, luminosity for a volume-limited galaxy sample) and the
property of its host halo (e.g. its mass). Both halos and galaxies are ranked (following the given
property) and associated one-to-one in descending order.

Thanks to the increased resolution of numerical simulations, it has become possible to identify
subhalos in halos. Subhalo abundance matching (SHAM) associates galaxies to these halos and
subhalos. Of course, in such a model, one has to specify which galaxy and halo properties to
associate, and possibly allow for some scatter in this relation. For example, subhalos are rapidly
stripped off their outer material after accretion (by 30% to 70% depending on the location in the
host halo, Nagai and Kravtsov 2005), while tidal stripping starts much later for galaxies (selected
by stellar mass). Hence, galaxy properties are often matched to properties (e.g. mass) of the
subhalo at the time it accreted into its host halo, or quantities more robust to stripping, such
as the peak of their rotation curve vmax. SHAM was found to be quite successful at describing
observational samples (e.g Moster et al., 2010). However, the environment property is still
expected to have some impact on the galaxy properties; for example, Simha et al. (2012) found
that SHAM does not account for the stellar mass loss of satellites found in hydrodynamical SPH
simulations.

2.2.2.6 Halo occupation distribution

The HOD specifies the probability distribution P (N |M) of the number of galaxies (selected
according to some criterion, e.g. stellar mass or star formation rate) conditioned on the halo
mass M . Contributions to P (N |M) are typically split between central galaxies in the halo and
satellite galaxies orbiting within the halo. In essence, the HOD is a description of the way
galaxies populate halos, so it is not predictive. Its parameters can be fitted to semi-analytical
models. An example is given in Figure 2.9, where 5 parameters are required to model 〈N(M)〉
in the case of the stellar mass selected sample and 9 in the case of the selections based on the
cold gas mass or on the star formation rate. HODs can also be constrained by galaxy clustering;
below 1 Mpc h−1 (the 1-halo term) the 2-point correlation function is sensitive to the fraction of
satellite galaxies as the number of galaxy pairs scales as the square of the number of satellites.
On larger scales, galaxy clustering is more sensitive to the halo mass or the scatter between
halo mass and the property used to select galaxies (Wechsler and Tinker, 2018). Note that one
has also to specify the full probability law (Poisson, Bernouilli, negative binomial...) where to
place central and satellite galaxies within the halo (e.g. Jiménez et al., 2019). In the standard
HOD approach, the galaxy content of a halo of a given mass is statistically independent of its
larger scale environment. However, it has been shown that clustering of halos depends on other,
secondary, properties than their mass, e.g. formation time, concentration (that we will define
in Section 2.3.1) or spin often correlated with the assembly history of the dark matter halo —
a phenomenon called halo assembly bias (Wechsler et al., 2002; Gao et al., 2005). Similarly, the
galaxy properties or number of galaxies per halo can depend on these secondary halo properties
— which is called galaxy assembly bias. In the HOD framework, the mean number of galaxies
per halo can be changed following some secondary property, e.g. concentration for Hearin et al.
(2016) decorated HODs, which do not require the full halo merger tree (that is computationally
demanding to generate for large simulations).
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Figure 2.10 – Simulated ELGs (blue filled circles) and dark matter halos above 1011.8 M� h−1 (open red
circles) on top of the dark matter distribution (grey) at z = 1. Taken from Gonzalez-Perez et al. (2018).

2.2.3 The case of eBOSS ELGs

In the following we specifically review the small scale clustering properties of the eBOSS
emission line galaxy (ELG) sample which we will use in our clustering analysis. As we will see
in the next chapter, eBOSS ELGs are selected through their [OII] flux, which is highly correlated
to the star formation rate. Note however that [OII] flux is reduced due to dust attenuation in
massive galaxies, as pointed out by Gonzalez-Perez et al. (2018).

For galaxy samples selected by luminosity or stellar mass, such as luminous red galaxies
(LRGs), the average number of central galaxies 〈Ncent(M)〉 can be described by a step function,
eventually reaching 1 at high mass halos (see Figure 2.9); this is however not the case for galaxies
selected through their [OII] flux as are eBOSS ELGs. This can be seen in Figure 2.12 (top panel,
continuous lines), which displays the central and satellite HODs. The central HOD resembles
a Gaussian plus a step function — or power law. Gonzalez-Perez et al. (2018) found that the
HOD of central disks looks like a Gaussian, while the distribution of central spheroids, which
have higher stellar masses, is closer to a step function. On the other hand, the predicted mean
number of satellite galaxies 〈Nsat(M)〉 follows a usual power law, with a satellite fraction of
' 2%.

Running a semi-analytical model of galaxy formation (GALFORM) on the merger history
of N-body simulations (Millenium suite, Springel et al., 2005; Boylan-Kolchin et al., 2009) Guo
et al. (2013) and Gonzalez-Perez et al. (2018) found that ELGs reside rather in filaments than
in the density peaks (as would be the case of LRGs), as can be seen in Figure 2.10.

Again based on a semi-analytical model (LGALAXIES) run on a N-body simulation (MXXL,
Angulo et al., 2012), Orsi and Angulo (2018) claimed that the quenching of star formation rate
induced by gas-stripping processes lowers the fraction of satellite ELGs in the inner part of
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Figure 2.11 – Intra-halo radial (left panels) and tangential (right panels) velocity distributions, for LRG
(top) and ELG (bottom) satellites, as predicted by GALFORM, in halos of 1013±0.125M� h−1. Infall
radial velocities are positive. The black continuous line (left) is a double Gaussian fit, while the red and
blue solid lines (right) are single Gaussian fits. The dotted green regions (left) show the contribution
from galaxies recently accreted, within the last 680 Myr. Taken from Orsi and Angulo (2018).

halos, hence favouring recently accreting galaxies, located in the halo outskirts, with net infall
velocities. On the contrary, LRGs are distributed more evenly in the halos, with a much less
pronounced infall velocity. This can be observed in Figure 2.11, displaying the tangential and
radial velocities of LRGs and ELGs, specifically emphasising the contribution from recently
infalling galaxies (tinfall < 680 Myr): the infall contribution from these recently accreted galaxies
is much higher in the case of ELGs.

Guo et al. (2019) used the eBOSS ELG sample to simultaneously constrain, in 4 redshift bins
(0.7 < z < 0.8, 0.8 < z < 0.9, 0.9 < z < 1.0, 1.0 < z < 1.2), the stellar-to-halo mass relation, the
survey completeness (in terms of stellar mass) and the quenched galaxy fraction, which can be
combined to provide HOD predictions. For this, they used galaxy stellar masses inferred from
eBOSS ELG photometric measurements in g, r and z bands (see Section 3.2), and the small scale
2-point correlation function of the eBOSS ELG sample, which is modelled using the MultiDark
simulation. In the low mass end, their HOD predictions match those of Gonzalez-Perez et al.
(2018); Griffin et al. (2019) very well, as seen in Figure 2.12 (top panel). However, in massive
halos, their central HOD is higher which they claim may be due to the treatment of dust (and
thus line extinction) by GALFORM. They find a peak halo mass of ' 1012 M� for centrals and
' 1012.6 M� for satellites. This is in line with previous measurements by Favole et al. (2016),
which rely on photometric, spectroscopic and lensing data, mapped onto N-body simulations
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Figure 2.12 – Top: HOD model of eBOSS ELG central (red) and satellite (blue) galaxies, in 4 redshift
bins. GALFORM predictions (as described in Gonzalez-Perez et al. (2018); Griffin et al. (2019), run on
the MultiDark simulation) are shown in continuous lines. The second line of plots shows the probability
distribution of host halo masses, for centrals (red) and satellites (blue). Middle: satellite fraction as a
function of stellar mass; dotted lines are the mean and GALFORM predictions are shown with triangles.
Bottom: galaxy bias and its mean (dotted lines) as a function of stellar mass. Taken from Guo et al.
(2019).

using SHAM to account for survey incompleteness. Guo et al. (2019) also find a higher satellite
fraction, ' 15% versus ' 5% (Figure 2.12, middle panel), indicating that the star formation of
satellites may be too suppressed by gas-stripping processes in GALFORM. This is consistent
with the value of 22% found by Favole et al. (2016). Finally, the bias measurement ranges from
1.1 at z = 0.7 to 1.4 at z = 1.2 (Figure 2.12, bottom panel). This is higher than Gonzalez-Perez
et al. (2018), which can be explained by the higher halo mass and satellite fraction.
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Finally, within HOD modelling tuned to reproduce predictions from a version of LGALAX-
IES, Jiménez et al. (2019) found that the scatter of the HOD for satellite galaxies has a signific-
ant impact on the small scale clustering (one halo term) of galaxies selected through their star
formation rate, favouring a negative binomial distribution rather than a Poisson distribution as
usually assumed in HOD prescriptions.

These findings will be used in Section 5.2 to design the HOD prescriptions for the mock
challenge organised in eBOSS to test the reliability of our theoretical model.

2.3 Tracer bias

With Section 2.1 we are able to describe the evolved, mildly non-linear, matter power spec-
trum. However, we do not observe all matter, but objects emitting or absorbing light: galaxies,
quasars, gas, etc. A key hypothesis in clustering analyses is that the large scale density fluc-
tuations δg(x) of these objects can be related to the properties of the total matter field δ(x),
namely:

δg(x) = F(δ(x)). (2.94)

Such objects are called tracers of the large scale mass density field. One may consider two
approaches to model this relation. One can relate the density of galaxies to the local mass
density field and describe how the latter connects to the large scales. For example, the galaxy -
halo connection discussed in the previous section can be associated to a model of the clustering
of halos to obtain the relation between the galaxy and matter power spectrum. This is the
approach we briefly recap in the first section. The other way consists in expanding the relation
between δg and the mass density field, with coefficients that are free parameters of the model
— which is the option considered in the second section and in our clustering analysis.

2.3.1 Halo models

A complementary approach to perturbation theory is the so-called halo model. Within
this formalism, we first derive the non-linear dark matter power spectrum. The calculation is
straightforwardly extended to the power spectrum of galaxies, given a HOD prescription. This
section follows Seljak (2000).

2.3.1.1 Dark matter power spectrum

All matter is assumed to reside in halos with a mass M and density profile ρ(r), typically of
the (spherical averaged) form:

ρ(r) = ρs

(r/Rs)γ [1 + (r/Rs)α](β−γ)/α . (2.95)

The profile goes as (r/Rs)−γ in the halo inner part and as (r/Rs)γ−β in the outer part. For the
Navarro-Frenk-White profile (Navarro et al., 1996), for example, (α, β, γ) = (1, 3, 1), and for the
Hernquist profile (Hernquist, 1990), (α, β, γ) = (1, 4, 1). This model is assumed to be universal
in units of the scale radius Rs. One can define the concentration:

c = Rvir
Rs

(2.96)

with Rvir the virial radius; higher concentration means the halo is denser in its centre. The halo
massM is simply the integral of Eq. (2.95), such that the parametrisation (ρs, Rs) can be recast
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into (M, c). The halo mass function dn/dM describes the number density of halos as a function
of mass. It can be expressed as:

dn

dM
dM = ρ̄

M
f(ν)dν (2.97)

where the function f(ν) depends only on (the square of) the peak height ν = (δc/σ(M))2. δc is
the critical density contrast in the spherical collapse model (see Section 2.2.2.1). σ2(M) is the
variance of the linear density fluctuations in a sphere of radius R(M), with M = 4π/3R3ρ̄ (see
e.g. Eq. (1.159) for a radius of 8 Mpc h−1):

σ2(M) = 1
2π2

∫
k2dkP lin

m (k)W 2(kR) (2.98)

withW (x) = 3 (sin x− x cosx) /x3 the Fourier transform of the unit top-hat window and P lin
m (k)

the linear matter power spectrum at the redshift of interest (P lin
m (k) = D2

+P0(k)). Press
and Schechter (1974) (PS) were the first to propose an analytic prediction for f : νf(ν) =√
ν/ (2π)e−ν/2, based on the postulate that the mass fraction contained in halos of mass > M

is equal to twice 4 the probability that the average density contrast in a sphere of radius R(M)
is above δc. However, the PS mass function was shown to overpredict the density of halos at
low masses (M < M?, with M? the non-linear mass scale defined by σ(M?) = 1), triggering
both theoretical (e.g. Bond et al., 1991) and phenomenological developments. The obtained
prescriptions can be generically written as:

νf(ν) ∝
(
1 + (aν)−p

)
(aν)1/2e−aν/2. (2.99)

For example, based on N-body simulations Sheth and Tormen (1999) proposed (a, p) = (0.707, 0.3)
(while (a, p) = (1, 0) for the PS mass function). The scaling factor is given by mass conservation:∫

dνf(ν) = 1, (2.100)

since we assume all matter is contained in halos. The final ingredient to predict the non-linear
matter power spectrum is the halo bias b(ν), which Sheth and Tormen (1999) proposed to be:

b(ν) = 1 + aν − 1
δc

+ 2p
δc [1 + (aν)p] . (2.101)

The non-linear dark matter power spectrum Pdm(k) is split in a one halo term P1h(k), accounting
for intra-halo correlation (since halos are not point-like) and a two halo term P2h(k), describing
the correlation between two halos:

Pdm(k) = P1h(k) + P2h(k). (2.102)

The halo - halo correlation function is obtained by convolving the density profiles of halos. It is
thus more convenient to work in Fourier space, in which the halo density profile (normalised to
the halo mass) reads:

y(k,M) = 4π
M

∫
drr2ρ(r,M)sin(kr)

kr
(2.103)

where by definition y(0,M) = 1. The two halo power spectrum is simply obtained by integration
over the mass function, weighted by the bias and halo density profile (Seljak, 2000):

P2h(k) = P lin
m (k)

[∫
dνf(ν)b(ν)y(k,M(ν))

]2
. (2.104)

4. The fudge factor 2 was introduced in Press and Schechter (1974) to ensure mass conservation (see
Eq. (2.100)). A demonstration based on the theory of excursion sets was provided in Bond et al. (1991).
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Hence the two halo term is simply the linear matter power spectrum P lin
m (k) times a k-dependent

function.
The one halo term is the convolution of the density profile, integrated over the mass function:

P1h(k) =
∫
dνf(ν)M(ν)

ρ̄
[y(k,M(ν))]2 . (2.105)

The term M(ν) makes the relative contribution of high mass halos to the one halo power
spectrum larger than to the two halo term. In the limit k → 0 and y → 1 the one halo term
reduces to Poisson shot noise. Finally, Seljak (2000) specify the halo mass dependence of ρ(r,M)
(and thus y(k,M)) assuming the concentration c follows a (negative) power law in mass. They
find their dark matter power spectrum prediction to be in very good agreement with a fitting
formula tuned on numerical simulations (Peacock and Dodds, 1996).

As can be seen in Figure 2.13, on large scales, the one halo term of the power spectrum is
dominated by massive halos (M ' 1014 M�), contrary to very small scales (k & 100 h Mpc−1),
where y(k,M) significantly departs from 1, faster for most massive halos as they are typically
less concentrated. In fact, Seljak (2000) argue that the non-linear dark matter power spectrum
is mostly sensitive to the typical scale where y(k,M) significantly departs from 1 (rather than
to the complete inner halo profile) and to the halo mass function — which we recall depends
on the linear matter power spectrum through σ(M). Hence, valuable cosmological information
may still be present on highly non-linear scales.

2.3.1.2 Galaxy power spectrum

To extend the previous formalism to the galaxy power spectrum, one requires the probability
of N galaxies to reside in a halo of mass M , i.e. a HOD prescription. The mean density n̄ of
galaxies in the sample verifies: ∫ 〈N〉

M
f(ν)dν = n̄

ρ̄
. (2.106)

Let us further assume that galaxies follow the dark matter profile — a condition that can be
relaxed by changing y(k,M(ν)) below. Then, the two halo term gives:

Pg,2h(k) = P lin
m (k)

[
ρ̄

n̄

∫
dνf(ν)b(ν)〈N〉

M
y(k,M(ν))

]2
. (2.107)

Note that this last formula is not correct for central galaxies, as by definition they do not
contribute a y(k,M(ν)) term. In practice, this only matters on small scales where the two halo
term is anyway subdominant compared to the one halo term.

On large scales, the two halo galaxy power spectrum behaves as:

Pg,2h(k) = 〈b〉2 P lin
m (k) (2.108)

where the average galaxy bias is obtained by integration over the mass function, weighted by
the mean number of galaxies:

〈b〉 = ρ̄

n̄

∫
dνf(ν)b(ν)〈N〉

M
. (2.109)

The one halo term is given by (Seljak, 2000):

Pg,1h(k) = ρ̄2

n̄2

∫
dνf(ν)M(ν)

ρ̄

〈N(N − 1)〉
M(ν)2 [y(k,M(ν))]p . (2.110)
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Figure 2.13 – Contributions to the one halo matter power spectrum from different halo mass intervals.
Dashed lines, from left to right: M > 1014 M� h−1, 1014 M� h−1 > M > 1013 M� h−1, 1013 M� h−1 >

M > 1012 M� h−1, 1012 M� h−1 > M > 1011 M� h−1. The total non-linear dark matter power spectrum
is shown in solid lines, the two halo term in dotted lines. Top and bottom panels show different choices
in terms of halo mass function and concentration models.

where p is taken to be 2 when 〈N(N − 1)〉 > 1 and 1 when 〈N(N − 1)〉 < 1. Indeed, in the former
case, the one halo term is dominated by satellite galaxies. In the latter case, there are virtually
only satellite-central pairs, where centrals contribute a y(k,M(ν)) term. The expressions (2.107)
and (2.110) for the galaxy power spectrum reduce to the dark matter power spectrum (2.104)
and (2.105) when both 〈N〉 (M) and 〈N(N − 1)〉 (M) are independent of M , that is, galaxies
follow the same distribution as dark matter halos. Seljak (2000) found that this model repro-
duces well the results obtained with semi-analytical models run on N-body simulations and with
observations, as can be seen in Figure 2.14. In particular, as seen on this figure, the model
accounts for the small-scale power-law scaling of the galaxy clustering, as opposed to the dark
matter halo clustering. The one halo term of the galaxy power spectrum is indeed dominant
at smaller scales than that of the dark matter power spectrum, as 〈N(N − 1)〉 (M) < 〈N〉 (M)
for halos of mass . 1014 M� h−1. Note that a possible environment dependence of 〈N(N − 1)〉
would not affect the one halo term if the average is taken over all the environments covered
by the galaxy sample — however, such a dependence would impact the two halo term. Here
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we took the galaxy density profile within halos to be the same as dark matter, but considering
another one is straightforward.

  

Figure 2.14 – Comparison of the dark matter and galaxy halo models to the observed galaxy power
spectrum of APM and IRAS surveys (concatenated in Peacock and Dodds, 1994), displayed as points
with error bars. The dark matter one halo term is shown as dashed blue lines, the two halo term with
green dotted lines, the total non-linear dark matter power spectrum in black continuous lines. The galaxy
one halo term is shown in dashed red, the two halo term in light blue and the total galaxy power spectrum
in magenta. Taken from Seljak (2000).

This approach is very interesting, as it provides insights in the different contributions to the
highly non-linear power spectrum as a function of scale and halo mass. However, predicting
the galaxy power spectrum requires a HOD prescription, which we have seen depends on many
parameters to be marginalised over. Also, we will see in Section 2.4 that another, non-linear
effect called redshift space distortions must be accounted for, which is a theoretical bottleneck
to probing very small scales with 3-dimensional clustering.

We note however the work of Hand et al. (2017), extending the analysis of the galaxy
power spectrum up to k = 0.4 h Mpc−1 in the halo model approach, with 9 free parameters in
addition to the cosmological parameters. The improvement in cosmological constraints compared
to the perturbative approach described below appeared marginal (5 to 10% reduction in the
uncertainty).

2.3.2 Perturbative approach

Let us extend the perturbative approach for the matter power spectrum of Section 2.1 with
a bias development. We follow the calculation of McDonald and Roy (2009).

First, we need to specify the quantities the galaxy density field δg can depend on. Of course,
δg is related to the matter density contrast δ and velocity divergence θ. We further consider
the velocity u and the potential Φ, to introduce some dependence on the path followed by the



2.3. Tracer bias 87

fluid to reach its density contrast δ and velocity divergence θ at the redshift of interest. Neither
a global change in the potential Φ nor its first derivative (the gravitational field) should be
observable. Hence, the relevant variable to account for the δg dependence in Φ is:

sij(x) = ∂i∂jΦ(x)− 1
3δijδ(x) = γijδ(x), (2.111)

where we implicitly rescaled Φ by a24πGNρ̄ and introduced, following the Poisson equation (2.5):

γij = ∂i∂j∆−1 − 1
3δij . (2.112)

The trace of ∂i∂jΦ(x) is removed to avoid redundancy with δ. Similarly, a global change in the
velocity field is not observable, hence we work with ∂iuj = ∂i∂j∆−1θ. We implicitly rescaled
both the peculiar velocity u and its divergence θ by −fH such that δ = θ at linear order (see
Eq. (2.18)). Hence, it is more convenient to work with (not to be confused with the conformal
time):

η = θ − δ, (2.113)

which is non-zero only above linear order. Then, we build the quantity:

tij = ∂iuj −
1
3δijθ − sij = γijη. (2.114)

Therefore, the galaxy density will be a function of δ, η, sij , tij . However, because of isotropy
and homogeneity, the galaxy density can only depend upon scalar variables. Up to third order
in the initial density field, we can build the products (remembering that tij is already second
order):

s2 = sijsij st = sijtij s3 = sijsjkskl. (2.115)

Let us define the Fourier-space kernel S related to the operator γij :

γij(k1)γij(k2) = S(k1,k2) =
(k1 · k2
k1k2

)2
− 1

3 . (2.116)

Using Eq. (2.35), at second order in the initial field δ0:

η(k) = D2
+

∫
d3q

(2π)3 δ0(q)δ0(k− q)
[
F

(2)
2,s (q,k− q)− F (2)

1,s (q,k− q)
]

(2.117)

= D2
+

∫
d3q

(2π)3 δ0(q)δ0(k− q)D(2)(k1,k2) (2.118)

where we recall F (2)
a,s are the symmetrised PT kernels, given by Eq. (2.37) and Eq. (2.38), and

D+ is the linear growth factor. In the second line we introduced:

D(2)(k1,k2) = F
(2)
2,s (k1,k2)− F (2)

1,s (k1,k2) = 2
7

[
S(k1,k2)− 2

3

]
. (2.119)

Hence, in real space, at second order, η = 2/7s2 − 4/21δ2. Therefore, in the following, we work
with the variable:

ν = η − 2
7s

2 + 4
21δ

2 (2.120)

which is non-zero at third order only. Altogether we come up with the following set of variables:
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first order δ

second order δ2, s2

third order δ3, δs2, s3, st, ν

We recover the well-known result that at linear (first) order the galaxy density is proportional
to the matter density, with a coefficient called linear bias — up to some shot noise. Follow-
ing McDonald and Roy (2009), we include a mean-zero Gaussian variable ε, of same magnitude
as δ to account for the stochasticity of the galaxy - matter density relation. A Taylor expansion
then provides the galaxy density up to third order:

ρg = p0 (2.121)
+ pδδ + pεε (2.122)

+ 1
2pδ2δ2 + 1

2ps2s
2 + 1

2pε2ε
2 + pδεδε (2.123)

+ 1
6pδ3δ3 + 1

2pδs2δs
2 + 1

6ps3s
3 + pstst+ pνν + 1

6pε3ε
3 + 1

2pδ2εδ
2ε+ 1

2pδε2δε
2 + 1

2ps2εs
2ε.

(2.124)

With this expansion, the expected value of ρg is (odd order terms vanish due to the Gaussianity
of δ0):

〈ρg〉 = p0 + 1
2pδ2σ2 + 1

3ps2σ
2 + 1

2pε2σ
2
ε (2.125)

with
〈
δ2〉 = σ2,

〈
s2〉 = S(q,−q)σ2 = 2/3σ2 and

〈
ε2
〉

= σ2
ε . Then, the galaxy density contrast

δg = ρg/ 〈ρg〉 − 1 reads at third order:

δg = cδδ + cεε (2.126)

+ 1
2cδ2

(
δ2 − σ2

)
+ 1

2cs2
(
s2 − 2

3σ
2
)

+ 1
2cε2

(
ε2 − σ2

ε

)
+ cδεδε (2.127)

+ 1
6cδ3δ3 + 1

2cδs2δs
2 + 1

6cs3s
3 + cstst+ cνν + 1

6cε3ε
3 + 1

2cδ2εδ
2ε+ 1

2cδε2δε
2 + 1

2cs2εs
2ε

(2.128)

where c’s are functions of the p’s, σ and σε. The galaxy - matter cross power spectrum is
calculated at 1-loop by cross-correlating δg above with δ = δ(1) + δ(2) + δ(3) (where δ(i) are given
by Eq. (2.35) times Di

+), remembering that odd order terms in δ0 vanish (e.g. terms (2.127)
must be correlated with δ(2) only), and using Wick theorem (2.54) to break 4-tuples of δ0 into
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two power spectra P0. We find:

Pmg(k) = cδPδδ(k) (2.129)

+ cδ2

∫
d3q

(2π)3P
lin
m (q)P lin

m (|k− q|)F (2)
1,s (q,k− q) + 34

21cδ2σ2P lin
m (k) (2.130)

+ cs2

∫
d3q

(2π)3P
lin
m (q)P lin

m (|k− q|)F (2)
1,s (q,k− q)S(q,k− q) (2.131)

+ 2cs2P lin
m (k)

∫
d3q

(2π)3P
lin
m (q)F (2)

1,s (−q,k)S(q,k− q) (2.132)

+ 1
2cδ3σ2P lin

m (k) + 1
3cδs2σ

2P lin
m (k) (2.133)

+ 2cνP lin
m (k)

∫
d3q

(2π)3P
lin
m (q)

[3
2D

(3)(q,−q,−k)− 2F (2)
1,s (−q,k)D(2)(q,k− q)

]
(2.134)

+ 2cstP lin
m (k)

∫
d3q

(2π)3P
lin
m (q)D(2)(−q,k)S(q,k− q) (2.135)

+ 1
2cδε2σ

2
εP

lin
m (k), (2.136)

where D(3)(k1,k2,k3) = F
(3)
2,s (k1,k2,k3)−F (3)

1,s (k1,k2,k3), P lin
m (k) = D2

+P0(k) and Pδδ(k) is the
1-loop matter density - density power spectrum. Let us reorder these terms. Terms ∝ σ2P lin

m (k)
(cδ2 , cδ3 , cδs2) and the shot noise contribution cδε2 (∝ σ2

εP
lin
m (k)) are included in a redefinition

of the linear bias cδ dubbed b1. Also, the cst term gives, for k → 0:∫
d3q

(2π)3P
lin
m (q)D(2)(−q,k)S(q,k− q) −−−→

k→0
− 8

63σ
2 (2.137)

Hence, the kernel of the cst term is redefined as:

D(2)(−q,k)S(q,k− q)→ D(2)(−q,k)S(q,k− q) + 8
63 (2.138)

and the counter term, −16/63cstP lin
m (k)σ2 is absorbed into b1. Similarly, the kernel of the cs2

term is redefined as:

F
(2)
1,s (−q,k)S(q,k− q)→ F

(2)
1,s (−q,k)S(q,k− q)− 68

63 (2.139)

and the counter term, 68/63cs2P lin
m (k)σ2 is absorbed into the linear bias b1. With the above

renormalisation, b1 is eventually expressed as:

b1 = cδ +
(34

21cδ2 + 68
63cs2 + 1

2cδ3 + 1
3cδs2 −

16
63cst

)
σ2 + 1

2cδε2σ
2
ε . (2.140)

Finally, after angle integration, cs2 , cν and cst terms are found to be ∝ σ2
3(k)P lin

m (k), with:

σ2
3(k) = 105

16

∫
d3q

(2π)3P
lin
m (q)

[
D(2)(−q,k)S(q,k− q)− 8

63

]
. (2.141)

The 1-loop galaxy - matter cross power spectrum eventually comprises 4 terms only:

Pgm(k) = b1Pδδ(k) + b2Pb2,δ + bs2Pbs2,δ + b3nlσ
2
3(k)P lin

m (k) (2.142)



90 CHAPTER 2. Large scale structure

with:

Pb2,δ(k) =
∫

d3q

(2π)3P
lin
m (q)P lin

m (|k− q|)F (2)
1,s (q,k− q) (2.143)

Pbs2,δ(k) =
∫

d3q

(2π)3P
lin
m (q)P lin

m (|k− q|)F (2)
1,s (q,k− q)S(q,k− q). (2.144)

Let us move to the galaxy auto power spectrum:

Pgg(k) = b21Pδδ(k) + 2b1b2Pb2,δ + 2b1bs2Pbs2,δ + 2b1b3nlσ
2
3(k)P lin

m (k) (2.145)

+ 1
2

∫
d3q

(2π)3P
lin
m (q)P lin

m (|k− q|)
[
c2
δ2 + 2cδ2cs2S(q,k− q) + c2

s2S
2(q,k− q)

]
+Nε.

(2.146)

The first line corresponds to the first - second order bias cross terms. The second line contains
the auto-correlation of second order terms, and all the shot noise like terms generated by ε.
Again, the c2

δ2 , cδ2cs2 and c2
s2 terms have the low k limit:∫

d3q

(2π)3P
lin
m (q)P lin

m (|k− q|) −−−→
k→0

∫
d3q

(2π)3P
lin
m (q)2 (2.147)∫

d3q

(2π)3P
lin
m (q)P lin

m (|k− q|)S(q,k− q) −−−→
k→0

2
3

∫
d3q

(2π)3P
lin
m (q)2 (2.148)∫

d3q

(2π)3P
lin
m (q)P lin

m (|k− q|)S2(q,k− q) −−−→
k→0

4
9

∫
d3q

(2π)3P
lin
m (q)2 (2.149)

which are removed from these terms and absorbed in the shot noise like term. Note that this
latter term does not necessarily correspond to a pure Poisson shot noise and should be treated as
a free stochastic bias parameter. Hence, after renormalisation, the galaxy auto power spectrum
reads:

Pgg(k) = b21Pδδ(k) + 2b1b2Pb2,δ + 2b1bs2Pbs2,δ + 2b1b3nlσ
2
3(k)P lin

m (k)
+ b22Pb22(k) + 2b2bs2Pb2s2(k) + b2s2Pbs22(k) +Ng (2.150)

where:

Pb22(k) = 1
2

∫
d3q

(2π)3P
lin
m (q)

[
P lin
m (|k− q|)− P lin

m (q)
]

(2.151)

Pb2s2(k) = 1
2

∫
d3q

(2π)3P
lin
m (q)

[
P lin
m (|k− q|)S(q,k− q)− 2

3P
lin
m (q)

]
(2.152)

Pbs22(k) = 1
2

∫
d3q

(2π)3P
lin
m (q)

[
P lin
m (|k− q|)S2(q,k− q)− 4

9P
lin
m (q)

]
. (2.153)

The bias prescription for the galaxy - velocity cross power spectrum, assuming no velocity bias
(i.e. galaxy velocities are the same as the matter fluid velocity), is similar to the galaxy - matter
cross power spectrum (2.142), except that the density kernel F (2)

1,s in Eq. (2.143) and Eq. (2.144)
should be replaced by that for the velocity divergence F (2)

2,s . Namely:

Pgθ(k) = b1Pδθ(k) + b2Pb2,θ + bs2Pbs2,θ + b3nlσ
2
3(k)P lin

m (k) (2.154)
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with Pδθ the matter density - velocity cross power spectrum and:

Pb2,θ(k) =
∫

d3q

(2π)3P
lin
m (q)P lin

m (|k− q|)F (2)
2,s (q,k− q) (2.155)

Pbs2,θ(k) =
∫

d3q

(2π)3P
lin
m (q)P lin

m (|k− q|)F (2)
2,s (q,k− q)S(q,k− q). (2.156)

The bias terms of the galaxy - galaxy and galaxy - velocity power spectra are shown in Fig-
ure 2.15. We see that bias terms have different scale dependence, e.g. σ2

3(k)P lin
m (k) is higher

at large scales (0.05 h Mpc−1 < k < 0.1 h Mpc−1) than at smaller scales, relative to the other
terms.

Figure 2.15 – Bias terms of the galaxy - galaxy and galaxy - velocity power spectra up to 1-loop.

The bias expansion described above results in 4 bias coefficients (b1, b2, bs2, b3nl), plus the
shot noise term Ng to be marginalised over.

Note that halos (or galaxies) can also be depicted as a fluid gravitationally coupled to dark
matter. In this so-called coevolution picture, assuming no velocity bias, and an initial local bias
in Lagrangian space, Chan et al. (2012); Baldauf et al. (2012); Saito et al. (2014) found the
following identification of the bs2 and b3nl bias coefficients:

bs2 = −4
7 (b1 − 1) , (2.157)

b3nl = 32
315 (b1 − 1) . (2.158)

These relations were found to be in relatively good (but not perfect) agreement with dark matter
halo bias measurements in N-body simulations by Saito et al. (2014). By default, as in Gil-Marín
et al. (2015); Beutler et al. (2017) clustering analyses, we adopt the above prescription, which
we will show in Section 5.2.2 does not impact our cosmological measurements.

All bias terms are computed within our package pyregpt 5.

5. at https://github.com/adematti/pyregpt

https://github.com/adematti/pyregpt
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2.4 Redshift space distortions

We have seen how to describe galaxy clustering in real space, i.e. as we knew their true
space-time position. However, the redshift of a galaxy is due to both the Hubble flow and
its peculiar velocity (and gravitational redshift, which we neglect here). When transforming
a galaxy redshift into a distance (with Eq. (1.27)), distortions appear in the so-called redshift
space. The derivations of this section follow Taruya et al. (2010). For conciseness bias terms are
dropped, but will be reintroduced in Section 2.4.3.

2.4.1 Linear theory

The redshift space position s is related to the real space position r through:

s = r− fvzẑ (2.159)

with vz = −u · ẑ/ (fH), where we recall u is the physical peculiar velocity and f the growth rate
of structure given by Eq. (2.16). ẑ is the line of sight. Let δs be the matter density contrast in
redshift space. Mass conservation implies that [1 + δs(s)] d3s = [1 + δ(r)] d3r, hence:

δs(s) =
∣∣∣∣∂s
∂r

∣∣∣∣−1
[1 + δ(r)]− 1. (2.160)

Its Fourier transform reads:

δs(k) =
∫
d3r

{
1 + δ(r)−

∣∣∣∣∂s
∂r

∣∣∣∣} e−ik·s. (2.161)

With Eq. (2.159), noting that
∣∣∣∂s
∂r

∣∣∣ = 1− f∂zvz (|f∂zvz| < 1 at the scales of interest), we find:

δs(k) =
∫
d3r {δ(r) + f∂zvz} ei(fkµvz−k·r) (2.162)

where µ denotes the cosine angle µ = k̂ · ẑ. When |fkvz| � 1, and using that, at linear order,
ikzvz = µ2δ (see Eq. (2.20)), we find the Kaiser formula (Kaiser, 1987):

δs(k) =
(
1 + fµ2

)
δ(k) (2.163)

Hence, the redshift space linear power spectrum reads:

Ps(k, µ) =
(
1 + fµ2

)2
P lin
m (k) (2.164)

with P lin
m (k) the linear matter power spectrum at the considered redshift. The power spectrum

in redshift space is enhanced with respect to real space, due to coherent motions on large scales.
This enhancement increases with f ' Ωγ

m (see Eq. (2.19)). Hence, redshift space distortions are
a powerful tool to probe the energy content of the Universe (through Ωm) or modified gravity
(through γ).
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2.4.2 Beyond the linear regime

In all generality, the power spectrum in redshift space reads (using Eq. (2.162)):

Ps(k) =
∫
d3xe−ik·x

〈
e−ifkµ∆vz [δ(r) + f∂zvz(r)] [δ(r + x) + f∂zvz(r + x)]

〉
(2.165)

with ∆vz = vz(r)− vz(r + x). This is an exact expression, which reveals two competing effects:
1. the Kaiser effect: at linear order, the term in braces correlates Eq. (2.163), and thus

enhances the power spectrum on large scales with respect to real space, as discussed
previously.

2. the Finger-of-God effect (Jackson, 1972): at small scales, as perturbations become non-
linear, velocities become out of phase and the oscillations of the exponential term e−ifkµ∆vz

(in the brackets) damp the redshift space power spectrum. This typically happens when
k & 1/σv, with (see Eq. (2.64)):

σ2
v = f2

〈
v2
z(0)

〉
= f2σ2

d = f2

3

∫
d3q

(2π)3
P lin
m (q)
q2 . (2.166)

Most contributions to the Finger-of-God term come from satellites within the same halo —
though central galaxies may still not be at rest with respect to the halo centre and hence
contribute to the Finger-of-God effect.

A simple, phenomenological model consists in splitting the Finger-of-God correction from
the Kaiser term:

Ps(k, µ) = DFoG(k, µ, σv)
[
Pδδ(k) + 2fµ2Pδθ(k) + f2µ4Pθθ(k)

]
, (2.167)

where we recall Pδδ(k), Pδθ(k) and Pθθ(k) are the density - density, density - velocity and velocity
- velocity power spectra (θ = ∂ivi). Eq. (2.167) can be compared with Eq. (2.164), valid at large
scales. However, this model ignores the coupling between the Finger-of-God and the Kaiser
terms at intermediate scales. Let us rewrite Eq. (2.165) in the more compact form:

Ps(k) =
∫
d3xe−ik·x

〈
ej1A1A2A3

〉
(2.168)

where:

j1 = −ikµf (2.169)
A1 = ∆vz = vz(r)− vz(r + x) (2.170)
A2 = δ(r) + f∂zvz(r) (2.171)
A2 = δ(r + x) + f∂zvz(r + x). (2.172)

Let us introduce the vectors A = (A1, A2, A3) and j = (j1, 0, 0). By definition of the cumulant
generating function

〈
ej·A

〉
c
: 〈

ej·A
〉

= exp
〈
ej·A

〉
c
. (2.173)

Deriving both terms of the equality with respect to j2 and j3 and taking j2 = j3 = 0 yields:〈
ej1A1A2A3

〉
= exp

〈
ej1A1

〉
c

[〈
ej1A1A2A3

〉
c

+
〈
ej1A1A2

〉
c

〈
ej1A1A3

〉
c

]
. (2.174)

The first exponential term is essentially due to virialised motions inside halos and is hence
difficult to treat perturbatively. Therefore, it is modelled as a damping term DFoG(k, µ, σv),
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ignoring the spatial correlation of velocities in A1. Next, we expand the term in brackets up to
second order in j1 (recalling that 〈A2〉 = 〈A3〉 = 0):〈

ej1A1A2A3
〉
c

+
〈
ej1A1A2

〉
c

〈
ej1A1A3

〉
c
' 〈A2A3〉c + j1 〈A1A2A3〉c + j2

1 (2.175)[1
2
〈
A2

1A2A3
〉
c

+ 〈A1A2〉c 〈A1A3〉c
]
. (2.176)

The term
〈
A2

1A2A3
〉
c involves the trispectrum, which at tree-order is O(P 3

0 ). We ignore it in
the following. The term 〈A2A3〉c simply develops into the Kaiser term. Hence, we are left with:

Ps(k, µ) = DFoG(k, µ, σv)
[
Pδδ(k) + 2fµ2Pδθ(k) + f2µ4Pθθ(k) +A(k, µ, f) +B(k, µ, f)

]
.

(2.177)
The A term reads:

A(k) = j1

∫
d3xe−ik·x 〈A1A2A3〉c (2.178)

= −ikµf
∫
d3xe−ik·x 〈[vz(r)− vz(r + x)] [δ(r) + f∂zvz(r)] [δ(r + x) + f∂zvz(r + x)]〉c .

(2.179)

We have (using homogeneity, and taking velocity to be curl-free):

〈vz(r) [δ(r) + f∂zvz(r)] [δ(r + x) + f∂zvz(r + x)]〉c (2.180)

=
∫

d3p

(2π)3
d3k

(2π)3
d3q

(2π)3 〈vz(p) [δ(k) + ifkzvz(k)] [δ(q) + ifqzvz(q)]〉 eik·x (2.181)

= −i
∫

d3p

(2π)3
d3k

(2π)3
d3q

(2π)3
pz
p2

〈
θ(p)

[
δ(k) + f

k2
z

k2 θ(k)
] [
δ(q) + f

q2
z

q2 θ(q)
]〉

eik·x (2.182)

= −i
∫

d3k

(2π)3
d3p

(2π)3
pz
p2Bσ(p,k,−k− p)eik·x (2.183)

where:

(2π)3 δ
(3)
D (k1 + k2 + k3)Bσ(k1,k2,k3) =

〈
θ(k1)

[
δ(k2) + f

k2z
k2

2
θ(k2)

] [
δ(k3) + f

k3z
k2

3
θ(k3)

]〉
.

(2.184)
Similarly:

〈vz(r + x) [δ(r) + f∂zvz(r)] [δ(r + x) + f∂zvz(r + x)]〉c = −i
∫

d3k

(2π)3
d3p

(2π)3
pz
p2Bσ(p,k− p,−k)eik·x.

(2.185)

Hence:
A(k) = kµf

∫
d3p

(2π)3
pz
p2 [Bσ(p,k− p,−k)−Bσ(p,k,−k− p)] . (2.186)

The B term reads:

B(k) = j2
1

∫
d3xe−ik·x 〈A1A2〉c 〈A1A3〉c (2.187)

= − (kµf)2
∫
d3xe−ik·x 〈[vz(r)− vz(r + x)] [δ(r) + f∂zvz(r)]〉c (2.188)

× 〈[vz(r)− vz(r + x)] [δ(r + x) + f∂zvz(r + x)]〉c (2.189)
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We have:

〈vz(r + x) [δ(r) + f∂zvz(r)]〉 =
∫

d3k

(2π)3
d3p

(2π)3 〈vz(k) [δ(p) + ifpzvz(p)]〉 eik·x (2.190)

=
∫

d3k

(2π)3F (k)eik·x (2.191)

with:
F (k) = kz

k2

[
Pδθ(k) + f

k2
z

k2Pθθ(k)
]
. (2.192)

In addition:

〈vz(r) [δ(r) + f∂zvz(r)]〉 =
∫

d3k

(2π)3F (k) (2.193)

= 0 (2.194)

since F (k) is odd. The product 〈A1A2〉c 〈A1A3〉c eventually yields a convolution in Fourier
space:

B(k) = (kµf)2
∫

d3p

(2π)3F (p)F (k− p). (2.195)

A and B terms are calculated at 2-loop order using the RegPT scheme, based on the 1-loop
bispectrum for A and the 1-loop power spectrum for B.

We usually project the µ dependence onto the basis of Legendre polynomials:

P`(k) = 2`+ 1
2

∫ 1

−1
dµP (k, µ)L`(µ). (2.196)

The A and B term multipoles (monopole ` = 0 and quadrupole ` = 2) calculated at 1- and
2-loop order using the RegPT scheme are shown in Figure 2.16. One can see that the magnitude
of the 2-loop prediction for A is larger than that of the 1-loop results, and baryon acoustic
oscillations are significantly damped in the 2-loop compared to the 1-loop case.

Figure 2.17 compares the redshift space power spectrum model of Eq. (2.177) to N-body
simulations. We see that linear theory breaks early (k . 0.05 h Mpc−1), even at z = 1. The
1-loop monopole prediction already provides percent accurate results up to k ' 0.14 h Mpc−1

at z = 1, a limit pushed to k ' 0.23 h Mpc−1 at 2-loop. Two Finger-of-God damping terms are
considered:

DFoG(k, µ, σv) =


e−k

2µ2σ2
v Gaussian (2.197a)[

1 + (kµσv)2

2

]−2

Lorentzian . (2.197b)

Both give similar results at high redshift; at z = 1, the Lorentzian form (Cole et al., 1995) (thick
lines) seems slightly better. This form, which was shown to better reflect the pairwise velocity
distribution seen in the simulations than the standard Gaussian, is the one we adopt in the rest
of this manuscript.

Note that at 2-loop, we should not ignore the
〈
A2

1A2A3
〉
c term in Eq. (2.176). Actu-

ally, Taruya et al. (2013) showed that the contribution of this term is subdominant and can
safely be neglected — which we do in the rest of this manuscript.

As in Section 2.1.7, though a Fortran code was available 6, we recoded the A and B calcu-
lations in C, wrapped in Python as part of our pyregpt 7 package.

6. at http://www2.yukawa.kyoto-u.ac.jp/~atsushi.taruya/regpt_code.html
7. at https://github.com/adematti/pyregpt

http://www2.yukawa.kyoto-u.ac.jp/~atsushi.taruya/regpt_code.html
https://github.com/adematti/pyregpt
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Figure 2.16 – Left: ratio of the A term multipoles (blue: monopole, orange: quadrupole) computed
following the RegPT scheme to the no-wiggle power spectrum multipoles using the formula of Eisenstein
and Hu (1998). Right: same, for the B term.

2.4.3 Final theoretical model

Let us recap the theoretical model for the redshift space galaxy power spectrum. In the previ-
ous subsection we did not consider galaxy bias. Writing that at linear order δ = δg/b1 and assum-
ing no velocity bias, b1 can be factored out by replacing f by β = f/b1. Hence the contributions of
the non-linear RSD terms to the galaxy power spectrum are written: b31A(k, µ, β)+ b41B(k, µ, β).
The final power spectrum model is obtained by collecting the RSD terms and the bias terms:

Pg(k, µ) = DFoG(k, µ, σv)
[
Pg,δδ(k) + 2fµ2Pg,δθ(k) + f2µ4Pθθ(k) + b31A(k, µ, β) + b41B(k, µ, β)

]
(2.198)

Galaxy - galaxy and galaxy - velocity power spectra Pg,δδ and Pg,δθ are given by Eq. (2.150)
and Eq. (2.154), respectively. In these formulae, Pδδ, Pδθ and Pθθ (in Eq. (2.198)) are calculated
at 2-loop order with the RegPT scheme (they correspond to P11, P12 and P22 in the notations
of Section 2.1.7), as is also the case of A and B terms in Eq. (2.198).

We adopt a Lorentzian form for the Finger-of-God effect (2.197b):

DFoG(k, µ, σv) =
[
1 + (kµσv)2

2

]−2

, (2.199)

with σv the velocity dispersion, which is left as a free parameter.
By default, as discussed at the end of Section 2.3.2, we fix:

bs2 = −4
7 (b1 − 1) , (2.200)

b3nl = 32
315 (b1 − 1) . (2.201)

The other bias coefficients, b1, b2 and Ng are left free in the fits. Note that at linear order
b1 multiplies the matter power spectrum, and hence is fully degenerate with its normalisation
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Figure 2.17 – Ratio of the redshift space power spectrum multipoles (left: monopole, right: quadrupole,
bottom: hexadecapole) from model (2.177) to the Kaiser formula (2.164) based on the no-wiggle power
spectrum of Eisenstein and Hu (1998), for 4 different redshifts (bottom to top: z = 0.35, z = 1, z = 2,
z = 3). The Kaiser linear power spectrum (2.164) is shown as black dotted lines, 1-loop and 2-loop
RegPT-based power spectra (2.177) in dashed blue and continuous magenta lines, respectively. Thin
lines use a Gaussian form for the Finger-of-God term while thick lines rely on a Lorentzian function.
Points with error bars are measurements from 60 independent N-body simulations of 2048 Mpc h−1 box
side. Blue (magenta) points in the quadrupole and hexadecapole panels represent the 1(2)-loop model
predictions, taking into account the finite grid size used to estimate the power spectrum. Arrows denote
the maximum wavenumber where the monopoles of model predictions and N-body measurements are
within 1%. The green shaded areas correspond to the expected error bars of a galaxy survey with a
volume of 5 Gpc3 h−3, a density of 5× 10−4 h3 Mpc−3 and linear bias of 1 (approximately 1/3 of the
statistical uncertainty expected with the eBOSS ELG sample). Taken from Taruya et al. (2013).

σ8 (see Eq. (1.159)). The same remark applies to f (see Eq. (2.164)) and, to a lesser extent, to
b2. Hence, in the rest of this manuscript, we will quote the combinations fσ8, b1σ8 and b2σ8.

Let us finally recall that all perturbation theory calculations (2-loop power spectra and A and
B terms, and 1-loop bias terms) are consistently performed with our package pyregpt 8. The
input linear matter power spectrum P lin

m (k) is computed with the Boltzmann code CLASS (Blas
et al., 2011).

8. at https://github.com/adematti/pyregpt

https://github.com/adematti/pyregpt
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The above theory model power spectrum is still not quite ready to be compared to the
observed data power spectrum — apart from the estimation of the power spectrum itself, other
effects, due to the survey geometry, have to be considered as will be discussed in Section 4.2.
However, let us first detail in the following chapter what we mean by survey geometry, i.e. how
we select and observe galaxies in a spectroscopic redshift survey.
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Galaxy redshift surveys of the SDSS proceed in two steps: first, targets are selected from
a photometric survey; then spectra of these targets are observed as part of a spectroscopic
survey. Both photometric and spectroscopic surveys are conducted using the SDSS telescope,
equipped with either cameras (with different filters) for the photometric part or spectrographs
for the spectroscopic operations. We first describe the SDSS telescope, camera and eBOSS
spectrographs in Section 3.1. Contrary to other eBOSS spectroscopic samples, the ELG sample
considered in this manuscript is based on a specific photometric survey, DECaLS, which we
review, as well as the target selection, in Section 3.2. Finally, the spectroscopic operations,
using the SDSS telescope equipped with the eBOSS spectrographs, are described in Section 3.3.

3.1 The SDSS instrument

The Sloan Digital Sky Survey (SDSS, York et al., 2000) was designed in the mid 1980’s, as a
wide-area multi-band imaging and spectroscopic survey, with the primary purpose to understand
the large scale structure of the Universe. This project had been made possible by the recent
developments in CCD image sensors, computational processing and instrument control. Covering
a fourth of the celestial sphere (10 000 deg2), the SDSS was planned to outperform existing
spectroscopic surveys by one magnitude, allowing redshifts of 106 galaxies and 105 quasars to
be measured. The SDSS commissioning phase started in 1998, and survey operations began in
May 2000.

Let us first briefly recap in Section 3.1.1 the SDSS telescope and setup for both photometric
and spectroscopic observations, as it serves as a basis for the spectroscopic operations of the
eBOSS program as described in Section 3.1.2.

This section mainly relies on York et al. (2000), Gunn et al. (2006) and Smee et al. (2013).

3.1.1 The SDSS setup

A dedicated Ritchey-Chrétien, 2.5 m telescope (Gunn et al., 2006) was built by the SDSS
collaboration to perform both the imaging and spectroscopic surveys. Located at Apache Point
Observatory (APO), Sunspot, New Mexico, its peculiar design, with its rolling enclosure and
baffle system, is displayed in Figure 3.1 (left). Its large field of view (3◦ diameter) was chosen
to cover the entire survey in a reasonable amount of time. The imaging camera is mounted at
the Cassegrain focus, and can be easily replaced by a fibre plug plate linked to two fibre-fed
spectrographs for spectroscopic observations. The best observing conditions are reserved for the
imaging survey, while less ideal (moonless) conditions are dedicated to the spectroscopic survey.
Besides the main telescope, a 0.5 m Photometric Telescope (PT) is used to calibrate the imaging
survey, while a seeing monitor and cloud scanner record observing conditions.

3.1.1.1 Photometric setup

The imaging camera (shown in Figure 3.1, right) uses an array of CCDs of 2048 × 2048
24 µm-wide pixels. The CCDs are organised in 5 rows and 6 columns. Each row is assigned a
different filter: r, i, u, z, g, of effective central wavelengths 3590Å, 4810Å, 6230Å, 7640Å and
9060Å. The imaging survey was conducted following a drift-scan strategy: the imaging camera
sweeps the sky in the direction parallel to the CCD columns, such that one point on the sky is
observed successively through the 5 filters of the 5 CCD rows. The effective integration time for
the 5 CCD rows, scanning a stripe of 2.33◦ × 0.22◦ on the sky, is 5.7 minutes. A second scan,
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Figure 3.1 – Left: SDSS telescope, at Apache Point Observatory, New Mexico. The rolling enclosure
is on the left; the wind baffle system is mounted onto the telescope on the right. Right: sketch of
the SDSS camera: the 6 columns and 5 rows (with filters r, i, u, z, g) of 2048 × 2048 imaging CDDs.
Narrow astrometric 128× 2048 CCDs (in red) are located above and below photometric CCDs. Credits:
http://skyserver.sdss.org.

shifted by 0.21◦ in the row direction, fills the unobserved stripes left by the 5.8′ gaps between
CCD columns. Narrow r-filtered 128 × 2048 CCDs located around the photometric CCDs are
used to perform astrometric calibration, covering the dynamic range (r ' 8.5 − 16.8) between
stars of the fundamental astrometric catalogues (Hipparcos and Tycho, ESA, 1997) and the
brightest unsaturated stars of the photometric survey. The PT provides photometric calibration
patches, themselves calibrated with respect to 157 primary standards of the United States Naval
Observatory 1 m telescope.

3.1.1.2 Spectroscopic setup

SDSS spectroscopic observations were conducted using two multi-object fibre-fed twin spec-
trographs measuring spectra from the near ultraviolet to the near infrared (Smee et al., 2013).
Light was guided from the focal plane to the two spectrographs by 640 fibre optic strands, 180 µm
in diameter (3′′ on the sky). The fibre diameter was chosen to maximise the signal-to-noise ratio
for galaxies at the typical redshift z = 0.1 probed by the SDSS. The number of fibres, and thus
the number of spectra measured during a single exposure, was determined based on the target
density (120 deg−2) and the covered field-of-view (5 deg2), keeping spare fibres for calibration
purposes or ancillary programs. The number of fibres was limited by the number of pixels of
the spectrograph CCDs (2048 × 2048), ensuring that each spectrum can cover 3 pixels, with
additional 3 pixel gaps to avoid crosstalk between different spectra. The silica fibres are plugged
into an aluminium plate, 3.2 mm thick and 800 mm in diameter, to be positioned at the focal
plane of the telescope. Bending momenta are applied at the edges of the plate and through its
centre post to make it match the slightly curved (by up to 2.12◦) best-focus surface. The plate is

http://skyserver.sdss.org
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thick enough to ensure fibres stay orthogonal to the plug plate, and thus aligned with incoming
light rays. Fibres are grouped by harnesses of 20 fibres, terminated by a v-groove block. The
16 v-groove blocks (holding the 16 × 20 = 320 fibres for each spectrograph) are glued together
to an aluminium slitplate with a 640 mm radius of curvature which enters the spectrograph.

The two spectrographs are directly mounted on the rear of the telescope — instead of being
installed on a separate, fixed bench— to keep fibres short for maximising throughput, minimising
its variations due to repeated stress and fibre motions and keeping the focal ratio degradation
low. The plug plates, fibre harnesses and slitheads are mounted on an aluminium cartridge, that
can be installed and removed by a single operator in a few minutes (see Figure 3.2, left). Eight
cartridges were fabricated by the SDSS; they are prepared during the day for each pointing of
the following night of observing. Such a preparation includes plugging fibres by hand in holes
of the aluminium plates within predefined area. A fibre mapper then illuminates sequentially
the different fibres at the slithead end and record their positions on the focal plane through a
narrow-band camera. This operation, which takes about 5 minutes, is also useful to identify
broken or unplugged fibres.

3.1.1.3 The spectrograph design

The spectroscopic resolving power R is defined as the wavelength of interest divided by the
full width at half maximum (FWHM) of the fibre image on the CCD (in wavelength units). The
minimum resolving power was set such that the redshift accuracy is limited by the typical galaxy
velocity dispersion ' 100 to 200 km s−1, corresponding do R ' 1500 − 3000. In parallel, the
spectrograph wavelength range was set to 3900Å− 9100Å to encompass observations of the H
and K absorption lines of CaII down to z = 0 and that of the [OII] doublet from z > 0.05 and to
allow the Hα emission line to be observed to a redshift of z > 0.2 and quasars up to z ∼ 5. The
extension of the wavelength range deeper in the NIR allowed to push up the limit for redshift
measurements of LRGs using the 4000Å break, serendipitously allowing the first observation
of the baryon acoustic oscillation feature by the SDSS (Eisenstein et al., 2005). Given the
spectrograph 2048 × 2048 CCDs (with 24 µm-wide pixels), it appeared necessary to use two
channels, blue (λ < 6000Å) and red (λ > 6000Å) for each spectrograph. As shown in Figure 3.2
(right), light enters each spectrograph through the fibres glued on the slitplate concentric to a
mirror which reflects the light in a collimated beam. A dichroic beam splitter reflects the blue
part (λ < 6000Å) of the collimated beam (with efficiency 98%) and transmits the red light (with
efficiency 94%). The two beams are dispersed through a grism with ruling densities of 640 and
440 lines mm−1 for the blue and red channels, respectively, before entering the two cameras.
The cameras are cooled down by a dewar system, including 0.6 L reservoirs mounted on the
telescope, refilled every hour by 10 L intermediate reservoirs, themselves connected during the
day to a 180 L dewar installed on the telescope platform.

3.1.1.4 Performance of the spectroscopic system

The simulated resolving power is shown in Figure 3.3. A circular source (with diameter equal
to that of the optical fibres) was placed in the slitplate and the resolution was measured as the
FWHM of the image captured by the CCD, assuming perfect optics. Note however that raw
spectra are ' 3 pixel wide in the spatial direction, and are thus collapsed in one-dimensional
spectra for further analysis (see Section 3.3.3.1). The true resolving power, with unperfect optics
but based on collapsed spectra, is thus expected to be slightly higher. In order to ensure reliable
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Figure 3.2 – Left: sketch of the SDSS telescope, with the two 320 kg spectrographs mounted at the
back of the telescope rotator. The fibre cartridge, here shown dismounted, is placed between the two
spectrographs in operation. Right: optical layout of the twin SDSS spectrographs. The light beam,
guided by optical fibres, enters through the slithead (A), is reflected by the collimator (B), split between
the red and blue channels by the dichroic (C), and dispersed by the red (D) or blue (E) grism before
entering the cameras (F and G). Taken from Smee et al. (2013).

2500

2000

W
H

M
)

1500

R
 (

/F
W

10001000
300 500 700 900 1100

Wavelength (nm)

0.4

0.6

0.8

1.0

Atmosph.
Telescope
Collimator
Dichroic R
Dichroic T
Blue grism
Red grism

0.0

0.2

300 500 700 900 1100
Wavelength (nm)

Blue cam.
Red cam.
CCD
System

Figure 3.3 – Left: simulated resolving power R of the blue and red channels of the SDSS spectrographs.
R is expected to be slightly underestimated. Right: predicted throughput of the full SDSS installation,
including sky extinction. Taken from Smee et al. (2013).

redshift measurements even for galaxy spectra lacking strong absorption and emission lines, the
required signal-to-noise was set to 15Å−1/2 over the whole wavelength range. This translates
into a lower bound for the total throughput from 10% to 17% depending on the wavelength.
Figure 3.3 (left) displays the predicted throughput, from the atmospheric extinction to the
CCD. The (measured) transmission of the blue and red grisms is the main driver to the total
throughput, which meets the requirements.

The SDSS (phase I), and its 3-year extension SDSS-II, ended in 2008. The Astrophysical
Research Consortium, owning and operating APO, called for projects and awarded the Baryon
Oscillation Spectroscopic Survey (BOSS, Dawson et al., 2013) five years of dark observing time,
starting in 2009.



110 CHAPTER 3. The survey design

3.1.2 The BOSS/eBOSS spectrographs

BOSS primary purpose was to provide percent level measurement of the BAO signal by
probing 1.5 million luminous galaxies at redshift z < 0.7. In addition, BOSS pioneered a new
technique to map large scale structure by probing neutral hydrogen absorption in quasar spectra
— the so-called Lyman-α forest. To this end, BOSS measured more than 150 000 quasar spectra
in the redshift range 2.15 < z < 3.5.

3.1.2.1 Technical requirements

To meet these scientific requirements in a 5-year program, the BOSS spectrograph had to
measure 35% more spectra, per unit time, of objects that are 1 magnitude fainter than in SDSS-I
and II. Therefore, both the number of fibres and the total throughput had to be increased. The
number of fibres was increased to 1000 (500 per spectrograph), and their diameter reduced to
120 µm, corresponding to the typical size of a z ' 0.7 galaxy image on the focal plane (2′′). The
minimum wavelength was decreased to 3560Å to measure half of the Lyman-α forest between
the Lyman-α and Lyman-β transitions (1216Å and 1026Å) at z & 2.2. The redder wavelength
was increased to 10 400Å to include the CaII K and H absorption lines, which mainly drive the
redshift determination of luminous red galaxies, up to redshift z ' 0.8. The resolving power was
set to 1400 in the range 3800Å < λ < 4900Å to ensure reliable classification of calibration stars
through the Balmer series. In the other part of the wavelength range, the required resolving
power was set to 1000, corresponding to redshift errors of 300 km s−1.

3.1.2.2 Instrument upgrades

The increase of the number of fibres and wavelength range was made possible by the upgrade
of the SDSS spectrograph CCDs to 4096× 4096 CCD arrays of 15 µm pixels. The beamsplitter
was changed to cover the extended passband. Based on previous SDSS experience, a signal-to-
noise ratio of 3− 4 per angstrom was required for the faintest targets. To meet this requirement
with one hour exposure, the peak throughput had to be doubled with respect to SDSS. This
was enabled by the higher quantum CCD efficiency and by upgrading the grism, responsible
for most of the throughput loss in SDSS-I and SDSS-II (see Figure 3.3, right) to volume-phase
holographic (VPH) gratings (with ruling densities of 520 and 400 lines mm−1 for the blue and
red channels, respectively).

3.1.2.3 Performance of the spectroscopic system

Figure 3.4 shows the measured variations in the resolving power as a function of wavelength.
The trough around ' 6000Å reveals the region where the dichroic separates the blue and red
channels. In this region, the resolving power is taken as the mean of the blue and red cameras,
weighted by their respective throughput. The resolving power is given for central fibres (in the
slitplate and corresponding location on the CCDs) in green, and fibres located on the edges in
grey. The measured resolving power meets the requirements (shown in dashed lines) in the case
of central fibres, but for edge fibres the resolving power significantly decreases in the blue end,
especially for spectrograph 1. These variations are understood as the consequence of differences
in the optical alignment, which are enhanced at blue wavelengths and large field angles between
the two spectrographs.
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Figure 3.4 – Left: measured resolving power in BOSS spectrograph 1 for central fibres (green, repres-
entative of 80% of the fibres) and edge fibres (grey). Right: BOSS spectrograph 2. Requirement is in
dashed lines. Taken from Smee et al. (2013).

Figure 3.5 – The pixel dispersion (RMS) of the line spread function as a function of the position on the
CDD (top: blue channels, bottom: red channels, left: spectrograph 1, right: spectrograph 2). Higher
wavelength are at the top of the CCDs. Taken from Smee et al. (2013).

Corresponding trends are visible in Figure 3.5, which displays the measured variations of
the dispersion σp of the line spread function in terms of pixels as a function of the position on
the CCDs. The resolution degrades noticeably on the edges of the blue CCDs; indeed, these
regions receive light from fibres which are mostly plugged on the edges of the focal plane, where
deviation to flatness is the most important. In addition, the redder wavelengths in the red CCDs
suffer from the increased path length in the optical fibres.
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Figure 3.6 – Throughput of spectrograph 1 (left) and 2 (right) for SDSS (black) and BOSS (red). Taken
from Smee et al. (2013).
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Figure 3.7 – Image shifts due to varying gravity-induced flexure as a function of the rotator angle, in the
red (left) and blue (right) channels of spectrograph 1, for a fixed zenith angle of 72◦. A similar behaviour
is seen for spectrograph 2. Taken from Smee et al. (2013).

The throughput of the BOSS instrument is much higher than that of SDSS, as shown in
Figure 3.6; the improvement is a factor of two at peak throughput. One can notice, again, the
trough around the dichroic at ' 6000Å. Spectrograph 2 shows a slightly higher throughput than
spectrograph 1, especially in the dichroic region (15%), while the difference in peak throughput
is ' 5%. Not shown here are variations of the per-fibre throughput: consistently with previous
remarks on the resolving power, fibres near the edges of the spectrographs receive slightly less
throughput due to the lower optical quality at large field angle.

The gravity-induced deformation of the instrument changes with the orientation of the tele-
scope during pointing (due to rotating Earth). This leads to shifts in the image on CCDs in
both the spatial and spectral directions. Motions in the spatial direction increase cross-talk
between different spectra; in the spectral direction, they degrade the resolution. As shown in
Figure 3.7, the variations in the spatial direction are much smaller, as a consequence of the
rectangular shape of the collimator (taller than wide) and its installation. The rotation of the
telescope in an one-hour exposure is 15◦, leading to maximum flexures of 6.2 µm and 6.6 µm
along the spectral direction for spectrograph 1 and 2, respectively; given the pixel size (15 µm),
these correspond to 0.41 and 0.44 pixels, respectively, lower than the requirement of 0.5 pixels.

BOSS spectrographs were reused by eBOSS (Dawson et al., 2016), the 5-year extension of
BOSS. eBOSS was designed to allow clustering measurements at higher redshifts, with 280 000
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new LRGs in the redshift range 0.6 < z < 1.0, 170 000 ELG redshifts in 0.6 < z < 1.1 and
330 000 quasars (QSOs) in 0.8 < z < 2.2. The number of high redshift z > 2.1 Lyman-α quasars
was also increased by 60 000. The final data release (DR) of eBOSS, which the ELG sample
discussed in this manuscript is part of, is DR16.

3.2 Photometric survey

The BOSS/eBOSS spectrographs, installed on the SDSS telescope were used to conduct the
spectroscopic observations of the eBOSS ELG sample. However, ELG targets for spectroscopic
follow-up were not selected on images taken by the SDSS camera but came from the DECaLS
survey, based on images taken by DECam, which we describe below. Note that apart from
selecting targets for spectroscopic follow-up, deep imaging surveys can be used in multiple science
cases, e.g. study of clusters, of galaxy properties (luminosity, colour, stellar mass, star formation
rate...) and their impact on transient events such as supernovae, study of the Milky Way and
its halo. Before heading to the details of the DECaLS survey in Section 3.2.2 and the target
selection in Section 3.2.3, let us first give a few definitions of photometric observables.

This section borrows a lot from Dey et al. (2019).

3.2.1 A few definitions

The magnitude is the unitless measure of the object luminosity in a given passband. The
difference of magnitude between two objects of brightness I1 and I2 is:

m2 −m1 = −2.5 log10

(
I2
I1

)
. (3.1)

AB magnitudes are an absolute reference magnitude system. Denoting fν the spectral flux
density at frequency ν, the corresponding monochromatic AB magnitude is defined as:

mAB = −2.5 log10

(
fν

1 erg s−1 Hz−1 cm−2

)
− 48.60 ' −2.5 log10

(
fν

3631 Jy

)
, (3.2)

where 1 erg = 10−7 W s and 1 Jy = 10−26 W Hz−1 m−2. In a frequency range, the bandpass AB
magnitude is defined as:

mAB = −2.5 log10

( ∫
fν (hν)−1 e(ν)dν∫

(hν)−1 e(ν)dν × erg s−1 Hz−1 cm−2

)
− 48.60, (3.3)

where h is the Planck constant, e(ν) is the equal energy filter response function.
The galactic extinction modifies the apparent magnitude of an extragalactic object depending

on its angular position on the sky. Therefore, magnitudes are often corrected by the galactic
extinction — as is the case in this manuscript. The correction is based on the galactic E(B-V)
extinction map of Schlegel et al. (1998), which is propagated through the DECam filters by the
coefficients of Schlafly and Finkbeiner (2011).

We express the imaging depth as the AB magnitude of a point source object detected at 5σ.
In practice, it is derived from the errors measured by the source detection pipeline called The
Tractor. As in this manuscript, it is often corrected for the Galactic extinction.

The seeing is the FWHM of the point spread function (PSF) of a point source object, e.g. a
distant star.
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3.2.2 DECaLS

Contrary to other BOSS and eBOSS surveys making use of the SDSS-I-II-III optical imaging
data (and near-infrared data from the Wide-field Infrared Survey Explorer (WISE), Wright
et al. 2010), eBOSS ELG targets were selected from data releases 3 and 5 of the Dark Energy
Camera Legacy Survey (DECaLS, Dey et al., 2019). This choice was motivated by the DECaLS
photometry being at least one magnitude deeper than the SDSS imaging in all g, r, z bands,
which allowed selecting fainter targets. The final DECaLS release covers 9000 deg2 in the North
(NGC) and South (SGC) galactic caps, based on images captured by the Dark Energy Camera
(DECam) mounted on the Blanco telescope at the Cerro Tololo Inter-American Observatory
(CTIO), Chile. DECam is also used for the DES imaging survey (The Dark Energy Survey
Collaboration, 2005), covering 5000 deg2 in the SGC. Most of the DECaLS footprint is covered
by images taken as part of the "The DECam Legacy Survey of the SDSS Equatorial Sky" program
(PI: D. Schlegel and A. Dey) including 64 observing nights over 3 years, later extended to 157
scheduled nights. In addition, a 1130 deg2 part of the SGC DECaLS footprint (including the
eBOSS ELG SGC footprint) uses DES raw images.

3.2.2.1 Technical requirements

DECaLS is part of the Legacy Surveys which are used to select targets for the next generation
survey built on the Dark Energy Spectroscopic Instrument (DESI, DESI Collaboration et al.,
2016). Other Legacy Surveys are BASS (Zou et al., 2017) in the g and r bands and MzLS in
the z band, using images respectively taken by the Bok 90-inch and the Mayall 4 m telescope
at Kitt Peak, Arizona, in the North galactic sky (5000 deg2, Dec. > 32◦). These surveys are
completed by WISE imaging in the near-infrared 3.4 µm (W1) and 4.6 µm (W2) filters, critical
to the LRG and QSO DESI target selections. The imaging depth requirements are 5σ detections
of a fiducial g = 24.0, r = 23.4 and z = 22.5 AB mag galaxy with an exponential light profile of
half-light radius rhalf = 0.45′′. The seeing must be better than 1.5′′ FWHM in the z band. The
systematic errors in astrometric calibration must be less than 30 milliarcseconds and the random
errors less than 95 milliarcseconds, so as to ensure a good positioning of spectroscopic fibres
of the DESI instrument. Astrometric calibration is controlled with Gaia (Gaia Collaboration
et al., 2016). Coverage requirements include a fill factor (ratio of the full depth coverage to the
total footprint) of 90% and non-photometric observations (i.e. when the root mean square of
magnitude measurements is larger than 1% in the g and r bands and 2% in the z band) cover
regions smaller than 3◦ in diameter each.

3.2.2.2 DECam

DECam was built by the Dark Energy Survey collaboration (Flaugher et al., 2015) and
mounted at CTIO in 2011 and 2012, with first light in September 2012. DECam uses a 5 fused
silica lens optical system, to ensure a good imaging quality over the wide 3.18 deg2 field-of-view
and high throughput over the wavelength range 400−1000 nm. DECam includes 8 filters (see
Figure 3.8, left), with very high transmission and tight uniformity over their 620 mm diameter.
The detector consists in 62 imaging CCDs (59 operational) of 2048 × 4096 pixels arranged in
a roughly hexagonal shape, and 12 2048 × 2048 CCDs for guiding and focus (see Figure 3.8,
right). CCDs are back-illuminated, with 250 µm thick pixels of size 15 µm (0.262′′ on the sky),
resulting in a high quantum efficiency of 70%, 90%, 90% and 75% in the g, r, i and z bands.
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Figure 3.8 – Left: the DECam filters. Right: sketch of the DECam CCD arrangement. The 2k × 2k
CCDs dedicated to guiding and focus are labelled G (green) and F (pink), respectively. The CCD colours
indicate their respective readout electronics. Taken from Flaugher et al. (2015).

Figure 3.9 – Image taken ' 1.5◦ away from the bright star Canopus, before (left) and after (right)
application of anti-reflective paint. Taken from Flaugher et al. (2015).

The CCDs are read out and cleared in 20 s with 6−9 electrons readout noise. They are cooled
down to −100 ◦C by a liquid nitrogen dewar. A two blade shutter ensures an exposure time
uniformity of 10 ms: at the start of the exposure, the masking blade is moved in the direction
away from the stored blade; at the end of the exposure, the stored blade masks the aperture
(in a 1.1 s move). Some stray light was noticed when a very bright star was ' 1.5◦ off-axis,
due to reflections on the edges of the filter changer and shutter (see Figure 3.9, left). This was
solved by mounting additional baffles and applying an anti-reflective paint in mid-March 2014
(see Figure 3.9, right).

3.2.2.3 Observing strategy

Contrary to the SDSS imaging survey drift-scan strategy, DECam points a patch of the sky
using one filter for each pass. In addition to increasing the signal-to-noise, several observations of
the same patch of sky allow to remove detector artefacts or particle events. The second and third
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passes are respectively shifted by (∆R.A.,∆Dec.) = (0.2917◦, 0.0833◦) and (∆R.A.,∆Dec.) =
(0.5861◦, 0.1333◦) in order to fill in the gaps left between the CCDs. The pointings were chosen
following Hardin, Sloane and Smith 1 approach to cover a sphere with a fixed number of points.
This ensures a coverage of 98.88% for one exposure and 98.01% for two exposures.

Observations in the g and r bands are performed when the moon is under the horizon; z band
is imaged during the morning and evening twilight and when the moon is in the sky. Observing
conditions are defined photometric if two criteria are met: (i) a clear, 90 % transparent sky and
(ii) seeing better than 1.3′′ FWHM. Pass 1 is performed when both (i) and (ii) are satisfied;
pass 2 when only one of the two is fulfilled and pass 3 when none of the above criteria are met.
In any case, pointings with airmass (the light path length through the atmosphere compared to
the vertical) greater than 2.4 or directed to less than 40 to 50◦ from the Moon are excluded, and
pointings less than 1.2◦ from bright planets (Mars, Neptune) are avoided. The exposure time
is adapted on-the-fly to the observing conditions in order to ensure a roughly uniform imaging
depth, while avoiding overheads due to reobserving too shallow exposures. DECaLS and MzLS
are the first surveys to use dynamic observing time (Burleigh et al., 2020); DESI will also apply
this technique to spectroscopic observations.

The central 1000× 1000 pixels of a DECam CCD (N4) are analysed on-the-fly and a Python
software measures the seeing, sky brightness, atmosphere transparency and telescope pointing
error. The raw image is first corrected by the bias and gain of the amplifier. The sky brightness
is estimated by sigma clipping (removing outliers, due to e.g. bright sources). The root mean
square of sky counts in a pixel is calculated as σsky. The image is then convolved with a Gaussian
of FWHM 5 pixels, and pixels with a signal ≥ 20σsky are selected as potential source candidates.
The source magnitude is determined by comparing the total number of electrons collected in a
disk of aperture diameter 7′′ to the mode of the number of electrons in pixels located within
an annulus of 14−20′′ times the aperture area. Sources too close to CCD edges, bad pixels
and other sources are discarded. The seeing is obtained as the median of the FWHM of the
circular 2D Gaussian fitted to sources with 20 < S/N < 100. The photometric zero point is
estimated on-the-fly by comparing the aperture magnitudes previously estimated to a catalogue
of the Panoramic Survey Telescope and Rapid Response System 1 (Pan-STARRS or PS1) Data
Release 1 (Chambers et al., 2016) matched to Gaia DR1, which is used to measure astrometric
offsets. The relative atmospheric transparency is then calculated from the photometric zero
point and the airmass. The 5σ AB magnitude depth is computed based on the photometric
zero point, galactic extinction and σsky. These estimates are used to update the exposure time
for the next observation (clipped between [56, 200] s, [40, 175] s and [80, 250] s for g, r and z

respectively), and suggest the new pass number to the observer. This image processing takes
10 s. However, given the time to read and write images on disk, the exposure time can only be
updated after two pointings. Estimated exposure time based on the conditions ' 3 min prior to
the observations is found to be a general improvement over a fixed exposure time, especially in
poor observing conditions (passes 2 and 3) (Burleigh et al., 2020). The telescope pointing offset
must be corrected manually by the observers. The median seeing is 1.3, 1.2 and 1.1′′ in the g, r
and z bands respectively.

1. http://neilsloane.com/icosahedral.codes/
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3.2.2.4 Data reduction

These imaging data are processed through the NOAO (National Optical Astronomy Obser-
vatory) Community Pipelines (CPs) — one for each instrument. CPs perform instrumental cal-
ibration: CCD corrections, such as bias and flat fielding subtraction, identification and removal
of artifacts such as pixel cross-talks or cosmic rays, astrometric and photometric calibration. The
CP provides a function mapping each pixel to celestial coordinates, known as a world coordin-
ate system (WCS). Astrometric calibration is performed by least square fitting a continuous,
smooth function (TPV: tangent plane projection with polynomial distortions) to the centroid
of known, detected sources. The 2CMASS catalogue (Skrutskie et al., 2006) was utilised as a
reference for early DECam data (from 2013 to 2014), before using Gaia DR1 (Gaia Collabora-
tion et al., 2016). This calibration takes into account the mean atmospheric distortions in each
filter as it is performed on individual exposures. The TPV however does not account for small
scale pixel distortions, nor star proper motions. The CP removes spatial variations of the CCD
(i.e. flattens the CCD), provides the conversion from analog digital units to photoelectrons,
data quality masks and weight maps. DECaLS (as well as other Legacy Surveys) is meant to
be intra-calibrated by comparing different photometric exposures of the same stars to infer the
system throughput and transparency of the atmosphere. This calibration is further propagated
to non-photometric observations. However, the photometric calibration was tied to PS1 DR1
up to Legacy Surveys DR6, due to their limited coverage. The CP processing is imperfect (bad
background subtraction around large, bright objects, moving objects not removed). The CP
outputs (calibrated individual images, data quality masks and weight maps) and WISE data
are transferred to the National Energy Research Scientific Computing Center (NERSC), where
further processing is done: improved astrometric and photometric calibrations, source extraction
and catalogue creation.

3.2.2.5 The legacypipe

The source catalogues are produced by a pipeline called legacypipe, wrapping The Tractor,
a forward modelling approach to extract and fit sources in pixel-level data. The footprint is
divided into 0.25◦ × 0.25◦ bricks. The first step of The Tractor is source detection. For this,
the sky background is computed in a two-step process: the median pixel signal is measured in
sliding windows over each CCD, fitted with a dimensional spline; then pixels which are more
than 3σ away from the spline prediction are masked and the background is again fitted by a 2D
spline. The PSF is estimated on the background-subtracted CCD images (using PSFex, Bertin,
2011), which are then convolved with their own PSF to facilitate source detection. Five stacks
are created from the obtained images, one in each of the g, r and z bands, one "flat" weighted
combination of all three bands such that the AB colour mag is 0, and another "red" combination
such that g − r = 1 and r − z = 1. Sources are detected with a 6σsky threshold (σsky the sky
noise level) in each of the five stacks.

The second step of The Tractor is source fitting. For each detected source, a model is fitted
simultaneously to all the CP pixel data containing the source. Four models are considered: a
delta function (for point source), a de Vaucouleurs profile ∝ r−1/4 , an exponential or a composite
— de Vaucouleurs and exponential — profile. The same model (convolved with the PSF of each
exposure) is fitted in all three g, r and z bands, resulting in measurements of the source position,
shape parameters and photometry (magnitude). The source model of WISE pixel data is forced
to be the same as that for the grz bands, but convolved with the WISE PSF. This allows to



118 CHAPTER 3. The survey design

Figure 3.10 – From left to right: a legacypipe 0.25◦ × 0.25◦ grz brick image (2212p085), model from
The Tractor, and residuals. Taken from Dey et al. (2019).

use WISE data for sources which are otherwise undetected or blended in the WISE catalogues.
An example of The Tractor source fitting is shown for a brick in Figure 3.10. Astrometric
calibration is performed with PS1 DR1 stars, their position being taken from Gaia DR1 after
the Legacy Surveys DR3 and from Gaia DR2 (Gaia Collaboration et al., 2018) after the Legacy
Surveys DR7. This results in a scatter in astrometric calibration of ' 20 milliarcsecond.

DECaLS source catalogues produced by the legacypipe contain different types of objects;
stars, galaxies, quasars, etc. The ELG target selection described below aims at selecting an
homogeneous subsample of these targets, in the desired redshift range, for spectroscopic follow-
up.

3.2.3 eBOSS ELG target selection

eBOSS ELG targets were selected in the imaging catalogues with the following require-
ments (Dawson et al., 2016; Raichoor et al., 2017): a minimum surface density of 170 deg−2, a
relative variation of target density below 15% with respect to imaging depth, galactic extinction,
stellar density and uncertainties in the imaging zeropoint. Preliminary ELG target selections
relied on the well-understood, homogeneous SDSS imaging (Raichoor et al., 2016; Delubac et al.,
2017). However, with the first DECaLS releases (DR3 and DR5) which were already deeper than
SDSS, it became possible to push the target selection to higher redshift. This is the reason why
the eBOSS collaboration moved to DECaLS imaging (Raichoor et al., 2017).

The ELG footprint is divided into its NGC and SGC components (see Figure 3.11). The
ELG NGC footprint covers ' 554 deg2, between 126◦ < RA < 169◦ and 14◦ < Dec < 29◦.
The SGC covers ' 616 deg2 with two adjacent regions; one between 317◦ < RA < 360◦ and
−2◦ < Dec < 2◦ and another between 0◦ < RA < 45◦ and −5◦ < Dec < 5◦. The SGC raw
images come from the DES collaboration. As can been noted in Figure 3.11, the SGC benefits
from a much higher number of observations. This is confirmed by Figure 3.12, showing a higher
depth (by ' 0.5 mag) in the SGC. This figure also shows that DECaLS photometry, even in the
early data releases is 1 to 2 magnitudes deeper than the SDSS one. Note however that SDSS
depth is less scattered than that in DECaLS, as a result from the SDSS drift-scan strategy, and
DECaLS observations being not completed. The photometric properties of the eBOSS ELG
target sample are described in Table 3.1. As the DECaLS/DR3 release was not public before
the eBOSS target catalogues were required for the spectroscopic follow-up, raw images were
processed through the DECaLS/DR3 pipeline by the eBOSS ELG team. The target selection
was performed later on a part of the NGC footprint (chunk eboss25) for which a modified
version of the DECaLS/DR5 pipeline (still using PS1-based astrometric calibration) was used.
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Figure 3.11 – eBOSS ELG targets, as characterised by their number of observations in g-band (top: NGC,
bottom: SGC). The number of observations is higher than 8 (maximum displayed here) for 4% of ELG
targets.

Figure 3.12 – Depth of SDSS and DECaLS imaging surveys, in the NGC and SGC. Taken from Raichoor
et al. (2017).

The eBOSS ELG targets were selected according to the following rationale: [OII] emitters
are selected through a cut in g magnitude and galaxies are selected in the desired redshift range
(0.6 < z < 1.1) through a box cut in the g − r, r − z colour - colour diagram. It was indeed
shown by Comparat et al. (2015) that the g-band magnitude correlates best with [OII] flux in
the redshift range 0.7 < z < 1.1 (see Figure 3.13, left), because in this redshift range the g
band corresponds to the rest-frame UV, and thus traces the amount of ionising photons that
can eventually lead to the nebulous emission lines (see Section 3.3.2).
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region area [deg2] observations filter number of exposures seeing [arcsecond] depth [mag]
g 2 1.6 23.8

NGC 554 DECaLS r 2 1.5 22.5
z 2 1.3 22.5
g 4 1.6 24.5

SGC 616 DES r 3 1.2 22.9
z 3 1.1 22.9

Table 3.1 – Median photometric properties of the eBOSS ELG target sample.

Figure 3.13 – Left: correlation between g-band magnitude and [OII] flux, obtained from various data
sets, including GAMA (Driver et al., 2011), VVDS (Le Fèvre et al., 2013), zCOSMOS (Scoville et al.,
2007) and the SEQUELS (Alam et al., 2015) programs. Taken from Comparat et al. (2015). Right: ELG
rest-frame spectrum, and the position of DECam filters for a galaxy at redshift z = 1. Taken from DESI
Collaboration et al. (2016).

The colour cuts can be understood looking at Figure 3.13 (right), showing a rest-frame ELG
spectrum, and the position of DECam filters for a galaxy at redshift z = 1. Going to lower
redshift, the filters shift to the right and r− z increases (bluer); going to higher redshifts, g − r
and r − z increase.

Figure 3.14 shows the colour selections on a test sample to assess the final target selection.
Plotted objects come from the CFHTLS/W4 (Gwyn, 2012) region (' 20 deg2 at RA = 333◦
and Dec = 2◦) covered by the DES deep fields, with photometric redshifts of Coupon et al.
(2009). The grz magnitudes are taken from DECaLS/DR3. In order to test the effect of the
target selection on the eBOSS footprint, the latter magnitudes are slightly scattered to account
for photometric scatter due to the lower depth in the eBOSS ELG NGC/SGC regions (Raichoor
et al., 2017). Note that 0.7 < z < 1.1 objects are more scattered in the NGC (left panel) than
in the SGC (right panel), due to the shallower NGC photometry. Photometric scatter lets low
redshift objects enter in the blue end of the selection box. Since the density of such objects is
higher than redder ones, we expect the density of low redshifts to be higher in regions of shallower
imaging after target selection. For this reason, the NGC selection box was reduced to redder
colours, in order to avoid too many low redshift objects to scatter in the target selection box.
We will see in Section 5.3.1.6 that this effect is however present in the data redshift distribution
as a function of the imaging depth. The colour cuts are summarised in Table 3.2 and provide a
list of 269 718 targets.

In addition to the above cuts, several masks were applied to ensure a clean photometry (Raichoor
et al., 2020). They are displayed in Figure 3.15 and the area and number of ELG targets they
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Figure 3.14 – DECaLS/DR3 objects matched to CFHTLS/W4, with the NGC (pink) and SGC (blue)
target selection box. Redshifts are photometric, from CFHTLS (Coupon et al., 2009). See text for details.
Taken from Raichoor et al. (2017).

region [OII] emitters redshift range

NGC 21.825 < g < 22.9 −0.68× (r − z) + 0.457 < g − r < 0.112× (r − z) + 0.773
0.637× (g − r) + 0.399 < r − z < −0.555× (g − r) + 1.901

SGC 21.825 < g < 22.825 −0.68× (r − z) + 0.457 < g − r < 0.112× (r − z) + 0.773
0.218× (g − r) + 0.571 < r − z < −0.555× (g − r) + 1.901

Table 3.2 – eBOSS ELG target selection: magnitude and colour cuts.

remove are presented in Table 3.3. Bits 1 to 5 described below were applied to the initial target
catalogues; the few targets removed by these bits which are mentioned in Table 3.3 are due to
a slight change in the implementation. Other masks were applied a posteriori. All masks are
defined at the brick level (0.25◦ × 0.25◦ with 3600× 3600 pixels), except for bits 8 and 11.
not g + r + z (bit 1) excludes regions without imaging in either the g, r and z bands. This

mask is obtained from the legacypipe depth images.
xy bug (bit 2) a coding error was present in the target selection scripts, applying the not

grz mask in reverted coordinates. To reproduce this effect, an additional mask, that is
recovered from the legacypipe depth images is introduced.

decam_anymask (bit 3) this mask rejects sources if their centre lies in a defective pixel in any
of DECam images, and is often activated near CCD edges. DECaLS DR3 legacypipe
version stored the mask value for each detected object. However, this mask must be
known at any location of the eBOSS footprint (as part of the survey selection function,
see Section 4.2.2). This has been achieved by running the DECaLS DR7 pipeline (which
stores this information at the brick level) on the eBOSS ELG images.

imprecise bit 3 (bit 8) due to differences in pipeline versions, the recovered decam_anymask
(bit 3) does not fully match the one of DECaLS/DR3; therefore, the footprint was divided
into small Healpix (Górski et al., 2005) pixels of 11 arcmin2 (nside = 1024), and those (37)
for which more that 10% of DECaLS/DR3 objects have a decam_anymask flag different
than recovered from DECaLS/DR7 were flagged.

tycho2inblob (bit 4) removes sources whose profile overlaps Tycho-2 stars (Høg et al., 2000),
as stored by the legacypipe pipeline.
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Figure 3.15 – Photometric masks on a legacypipe 0.25◦×0.25◦ brick. Taken from Raichoor et al. (2020).

bright objects (bit 5) removes SDSS bright objects 2 and sources within a larger radius around
Tycho-2 stars (103.5−0.15V arcsecond, with V the Tycho-2 star MAG_VT quantity)

Gaia stars (bit 6) removes sources within a radius 102.32−0.07G arcsecond around a Gaia DR2
(Gaia Collaboration et al., 2018) star of magnitude 0 < G < 16, which complete the
Tycho-2 star sample used in tycho2inblob.

Mira star (bit 7) removes sources close to the Mira star located at (R.A.,Dec.) = (34.84◦,−2.98◦).
Since this star is variable, its magnitude in the Tycho-2 catalogue is not representative of
that at the time of DECam observations. A circular mask of radius 2◦ is applied around
the star location.

bad photometric calibration (bit 11) DECaLS/DR3 data included images from numerous
surveys. DECaLS DR8 restricts to images from DES and DECaLS, and shows an improved
photometric calibration. Regions where the source magnitude estimation in the DECaLS
DR3 and DR5 catalogues used for the eBOSS ELG target selection differ by more than
' 10 mmag from DECaLS/DR8 were masked, using the mangle software (Hamilton and
Tegmark, 2004).

As we will see in Chapter 5, variations in the imaging quality imprints fluctuations in the
density of targets, leading to photometric systematics, which we will have to mitigate.

3.3 Spectroscopic operations

Spectroscopic observations are carried out onto the catalogue of photometric targets de-
scribed in the previous section. As explained in Section 3.1, photometric targets must be as-
signed spectroscopic fibres to measure their spectrum. This fibre assignment will be discussed
in Section 3.3.1. Then, each spectrum will be used to produce a redshift measurement, fol-
lowing a method presented in Section 3.3.3, after a brief description of eBOSS ELG spectra in
Section 3.3.2.

2. https://data.sdss.org/sas/dr10/boss/lss/reject_mask/

https://data.sdss.org/sas/dr10/boss/lss/reject_mask/
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bit mask removed area [deg2] removed targets
1 not grz 67.2 27
2 xy bug 49.7 0
3 recovered decam_anymask 210.1 142
4 tycho2inblob 4.7 0
5 bright objects 57.6 7
6 Gaia stars 54.0 17456
7 Mira star 12.5 3555
8 imprecise bit 3 0.1 15
11 bad photometric calibration 72.7 16325

Table 3.3 – Angular photometric veto masks applied to the eBOSS ELG catalogues. Masks 1 to 5
were applied prior to the fibre assignment described below, while all other masks were applied after
spectroscopic observations. Extracted from Raichoor et al. (2020).

3.3.1 Fibre assignment

Fibre assignment consists in assigning spectroscopic fibres to targets (Blanton et al., 2003),
so as to maximise the fraction of targets that receive a fibre, the so-called tiling success rate. This
implies to optimally assign targets to a tile (corresponding to a plug plate of Section 3.1.1) and
place the tiles on the sky. The footprint is divided into a set of rectangles in celestial coordinates
(the so-called tiling chunks) where fibre assignment is performed independently. Fibres of a same
tile cannot be placed closer than 62′′, due to the physical size of the housing of the optical fibre.
Note that tile overlaps allow the intersecting region to be observed several times, such that two
targets closer than 62′′ may be assigned a fibre in these locations.

The first problem consists in optimally allocating targets to each tile (placed at a given
location). This is performed in two steps: fibres are first assigned to the decollided set of
targets, and then to collided targets.

3.3.1.1 Decollided set of targets

First, the set of decollided targets, i.e. the largest set containing targets more than 62′′
apart is found. For this, a Friends-of-Friends algorithm is run with a linking length of 62′′ to
obtain the collision groups, i.e. groups of (at least one) targets within the linking length. Then,
the multiplicity (i.e. the number of targets) of collision groups being usually small enough, all
possible fibre-to-target assignments are explored to find the solution maximising the number of
decollided targets. If two solutions are equivalent (e.g. a collision group of 2 targets), one is
chosen randomly. An example of this procedure is shown in Figure 3.16 (top left): decollided
targets are displayed with continuous circles, collided ones with dashed circles. Note however
that targets may have different priorities. In this case, the algorithm maximises the number of
fibres allocated to higher priority targets. The obtain decollided set of targets is then assigned
to tiles using a network flow formalism (see Figure 3.16, bottom left). Fibres flow from the
sources to the sink; they can either go through the overflow arc, at an arbitrarily high cost (in
the figure 1000), or be allocated to the 11 decollided targets (filled circles), and get assigned to
one of the two tiles, each with a capacity of 592 fibres (the number of science fibres per plate
in SDSS-I and-II), with zero cost. This kind of problem is very generic; its best solution (i.e.
the one that minimises the total cost) can be found in polynomial time (Goldberg, 1997). This
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whole procedure maximises the number of targets which are assigned a fibre in regions where
tiles do not overlap.

3.3.1.2 Collided set of targets

The second step consists in allocating remaining fibres to collided targets in tile overlaps.
Groups covered by one tile only are not considered since the best fibre assignment has already
been achieved for them in the first step. Hence, for this second step only targets within groups
which contain at least one target in a tile overlap are considered. These are allowed to be
allocated to another tile, with the constraint that all targets which were assigned a fibre in
the first step still receive one at the end of the second step. This step can also be recast as a
network flow problem for collision groups with multiplicity ≤ 3 (see Figure 3.16, upper right).
The minimum capacity (in parentheses) for arcs connecting sources to collision groups (in filled
circles) is set to the number of targets which were already allocated fibres in the first step. The
maximum capacity is set to the maximum number of targets which can be assigned a fibre (best
scenario), given the number of overlapping tiles (regardless of the number of free fibres in the
tiles). Arcs flowing from the collision groups to the tiles are given as maximum capacity the
maximum number of targets of the group which would go to the given tile in the best scenario.
The minimum capacity is set to the minimum number of targets that can be assigned to the tile
(here, 1 in all cases). Finally, arcs flowing from the tiles to the sink are given the number of fibres
still available after targets within groups covered by one tile only have been allocated fibres (in
the first step). This network flow solution is optimal in nearly all cases; very rare complications
arise when tile boundaries cross collision groups. Targets of collision groups with multiplicity
> 3 are assigned to tiles according to the best of all possible target-to-tile assignments of their
specific collision group. Again, target priorities are accounted for in this second step.

The two-step process described above (assignment of decollided and collided targets to tiles)
is nearly optimal given fixed tile positions. However, with uniform plate coverage, in regions of
high target density the fraction of targets which are assigned a fibre will decrease significantly.
For example, the left panel of Figure 3.17 shows a simulated angular distribution of targets,
which are assigned fibres following the steps mentioned above. In the middle panel, squares
symbolise decollided targets which could not be assigned a fibre; these are concentrated in high
density regions, where the fraction of decollided targets which are allocated a fibre can be as
low as 10%. Therefore, tile centres are moved to assign a maximum number of fibres to the
decollided set of targets, following the heuristic described hereafter.

3.3.1.3 Tiling

The tile initial positions are determined either based on the sphere coverage by Hardin,
Sloane and Smith 3 (for large chunks) or by simply aligning tiles in rows (for small chunks).
Then, the decollided set of targets is assigned to tiles (step 1 above). To introduce a preference
in the tile positions, fibres are allowed to be allocated to tiles up to 2.5Rtile away from their
initial tile center, with a cost:

c =

0 if r < Rtile

cmax
(r/Rtile)α−1

2.5α−1 if r ≥ Rtile
. (3.4)

3. http://neilsloane.com/icosahedral.codes/
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Figure 3.16 – Upper left: an example of set of targets (decollided: continuous circles, collided: dashed
circles), to be assigned to two tiles. Bottom left: the assignment of the decollided set of targets to tiles
is described as a network flow problem. Top right: collided and decollided targets of collision groups
(of multiplicity ≤ 3) in tile overlaps are allocated to tiles using the network flow formalism (unmarked
arcs have a capacity of 1). Taken from Blanton et al. (2003). Bottom right: the cost function of the
target-to-tile assignment used when tile positions are perturbed.

cmax is the maximum cost, corresponding to not assigning the fibre (1000 in Figure 3.16), and α
is a tuning parameter, typically ranging between 0.5 and 2. Then, tiles are moved to minimise
the total cost, and the procedure is iterated until a (local) minimum is found. The α parameter
is used to tune the tile motions. Higher α values decrease the cost when r/Rtile ≤ 2.5 (see
Figure 3.16, bottom right panel) and thus favor more change in tile positions, which is preferred
in large chunks. Finally, the number of tiles is found to match SDSS requirements (that > 99%
of decollided targets are assigned fibres) following a binary search, rerunning the tile positioning
and the decollided target-to-tile assignments described above for each number of tiles.

Following the procedure described above, the final tile positions are shown for the simulated
set of targets in Figure 3.17 (right): the distribution of decollided targets which are assigned a
fibre is much more isotropic; only chunk edges are badly covered, but they may be provided fibres
by another overlapping chunks. Note however, that inefficiencies may arise when the number
of tiles is too low to ensure complete coverage in all parts of the chunk. One would also note
that plate positions vary depending on the target density, and thus may introduce large scale
correlations between the set of targets that are assigned a fibre and the underlying clustering;
these correlations are expected to be small when almost targets are assigned a fibre — which is
the case of the eBOSS ELG sample.
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Figure 3.17 – Left: simulated set of targets. Middle: fibre assignment with fixed tile positions; black
squares display decollided targets which are not assigned a fibre. Right: same, optimising the tile
positions.

bit mask removed area [deg2] removed targets
9 centerpost 0.6 166
10 TDSS_FES targets 1.3 308

Table 3.4 – Angular tiling veto masks applied to the eBOSS ELG catalogues. Extracted from Raichoor
et al. (2020).

3.3.1.4 eBOSS ELG tiling

The eBOSS ELG programme has been allocated 305 plates with ' 850 fibres dedicated to
the ELG spectra. The eBOSS ELG footprint is split in four tiling chunks: two in the NGC
(eboss23 and eboss25) and two in the SGC (eboss21 and eboss22). Some targets of the Time
Domain Spectroscopic Survey (TDSS, Ruan et al., 2016) (' 50 per tile) were tiled at the same
time as ELGs. A subset of them, TDSS "FES" targets (206, 451, 469, 280 in chunks eboss21,
eboss22, eboss23 and eboss25, respectively) had the same priority (0) as eBOSS ELGs, while
other "RQS" targets were targeted with lower priorities (1, 2 and 3). To account for possible
knockouts of eBOSS ELG targets by TDSS FES targets, we applied a mask of radius 62′′ around
each of them (bit 10). Also, fibres of a given plate cannot be placed within 92′′ of the plate
centerpost (see Section 3.1.1). Since the ELG tile density is high, the centerpost of a given plate
can be covered by another one. For simplicity we apply a veto mask (bit 9) to all centerpost,
which does not remove any fiber-assigned target. The effect of these two mangle masks — TDSS
FES targets and centerposts — is given in Table 3.4.

Once targets are assigned fibres, their spectrum can be measured with the spectroscopic
setup described in Section 3.1.2. Let us first present eBOSS ELG spectra.

3.3.2 eBOSS ELG spectra

As their name suggests, emission line galaxies show emission lines in their spectra. Most of
these lines, called nebular lines, are emitted by the gas distributed throughout the galaxy, which
is photo-excited by ultraviolet light produced by hot stars with short lifetimes. Therefore, these
emission lines are a probe of the galaxy star formation rate, used for example to constrain the
stellar mass function (SMF), and study the stellar-to-halo mass relations (SHMRs) (Guo et al.,
2019). Note that emission lines can also be produced by excited gas around a central black hole.
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Figure 3.18 – Stacked rest-frame spectrum of the 12 000 ELGs from SEQUELS and eBOSS pilot observa-
tions. Emission lines are labelled in green, stellar absorption lines in red and interstellar/circumgalactic
medium absorption lines in black. Taken from Zhu et al. (2015).

Quasars, which were targeted by the eBOSS programme, constitute a subclass of these active
galaxy nuclei (AGN).

A stacked spectrum of SEQUELS (Sloan Extended Quasar, ELG and LRG Survey, Alam
et al., 2015) and eBOSS ELG pilot observations is shown in Figure 3.18. One of the ELG most
prominent nebular line is the [OII](λλ3727, 3730) doublet: II denotes that it is a transition of
singly-ionised oxygen, and the brackets stand for a forbidden transition — a transition that is
not allowed by usual quantum selection rules, but still happens at higher order approximation, at
a very low rate. λ3727 and λ3730 are the rest-frame wavelengths in angstrom. Other forbidden
lines include metals like the doubly-ionised oxygen [OIII](λ5008), neutral oxygen [OI](λ6300),
singly-ionised nitrogen [NII](λ6584).

Forbidden emission lines correspond to deexcitations from meta-stable states, which almost
always yield a photon in nebulae. Indeed, contrary to laboratory experiments, the nebular gas is
of very low density, such that the probability of collisional deexcitation is tiny. In contrast, per-
mitted nebular emission lines, such as HeI, Hα(λ6563), are emitted through radiative transitions
from a photo-excited state.

The strong continuum at ∼ 2000Å is compatible with emission from hot massive (O/B)
stars in the UV. Blueward of 2900Å are strong absorption lines, similar to those found in
quasar absorption line systems, due to gas in the interstellar or circumgalactic medium. One
can also notice the Balmer discontinuity at 3646Å, caused by electrons being ejected from the
second energy level of hydrogen atoms. Galaxies with high stellar formation have a decreased
Balmer discontinuity due to high ultraviolet light emitted by young hot stars.

Other features, usually most prominent in early-type, red galaxies are still visible in the
stacked ELG spectrum in Figure 3.18. First, from the break at 3646Å to 6563Å we find the
Balmer series (η, ζ, ε, δ, γ, β, Hα). Second, the atmosphere of cool red giant stars is responsible
for e.g. the MgI b(λ5175), NaI D(λ5892), CaII K(λ3933) and CaII H(λ3968) absorption lines
— though less pronounced than in red galaxies.

Star-forming ELGs are an interesting tracer for clustering analyses. Indeed, their distribution
follows the star formation rate, which increases up to z ' 2, where red galaxies are rarer. Also,
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the strong emission lines ease the redshift measurement — thus allowing reduced observing
time. In particular, the [OII] doublet can be resolved with a spectrograph resolving power of
4000 (as is the case of DESI), thus making the redshift measurement extremely robust. Both the
high density and fast redshift measurement make ELGs an ideal tracer for clustering analysis
at redshift 1 . z . 2.

Let us now review how eBOSS ELG redshifts are measured.

3.3.3 Redshift determination pipeline

The eBOSS ELG spectroscopic observations were conducted between September 2016 and
February 2018. Each plate was observed with 15 min exposures until the median squared signal-
to-noise ratio in the red channel rSN2 reached 22; this threshold was reached with 4.7 exposures
in average. First observations, covering half of the chunk eboss21 footprint, used a threshold
of 40. When the signal-to-noise ratio could not be reached before a plate was unplugged, the
plate was reobserved later, with different (physical) fibre-to-target assignments. These repeat
observations are used to tune the quality criteria of the redshift pipeline and assess the reliability
of the redshift measurement (see Section 3.3.3.3). Other repeat observations come from the
allocation of remaining, free fibres to eBOSS ELG targets in tile overlaps.

3.3.3.1 Spectroscopic data reduction

The first step of the redshift measurement, performed by the IDLSPEC2D software, is the
reduction of raw 2D (spatial, spectral) images obtained at different exposures into single 1D
spectra. As discussed in Section 3.1.2, the fibres entering the slithead are grouped by bundles
of 20 fibres. The gap between fibres is 260 µm, while the separation between bundles is 624 µm,
thus avoiding contamination between bundles, which are therefore treated separately. We recall
that spectra are aligned (though slightly curved) along the CCD columns, with a typical width
(along the CCD rows) of 3 pixels. Pixel signals are first debiased, converted to electron counts,
and flat fielded. Scattered light is estimated in the space between fibre bundles and interpolated
over the spectral traces. Let us call Di the post-processed pixel values. Then, the following cost
function is minimised for each row of pixels (i.e. for each wavelength) to extract the number of
collected electrons N̂f from each fibre f of the bundle:

χ2
row =

∑
pixel i

wi

Di −
∑

fibref
N̂f P̂f,i

2

. (3.5)

The sum ∑
pixel i runs over the spatial extension (along the fibre spread) of a fibre bundle. P̂f,i

is a Gaussian modelling the fibre dispersion in the spatial direction (typically one pixel wide)
and wi are weights. To minimise the variance of N̂f , wi should be inverse-variance weights,
wi = var(Di)−1. In the BOSS DR12 pipeline, var(Di) was directly taken to be var(readout) +
max(Di, 0), with var(readout) the readout noise and Di assumed to be Poisson. However,
estimating the inverse-variance weights from the data itself leads to biased estimates of the
signal, with a signal-dependent bias. Therefore, since DR13, wi is taken to be var(readout)−1

(which varies because of the flat field correction), at the cost of a slightly increased (up to 10%
in the bright end) variance of N̂f (Bautista et al., 2017). To summarise, the above procedure
collapses the 2D images in 1D information as it yields, for each fibre, a single electron count N̂f

for each pixel wavelength.
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Subsequent steps involve correcting for the fibre flat field, subtracting the sky background
model and performing the photometric calibration. These operations require averaging over
several spectra, with inverse variance weights determined by fitting a spline to the spectra to
avoid biases due to flux - pixel variance weight correlations. The fibre flat field (fiberflat) is
performed by comparing the flux of different fibres equally illuminated by a flat lamp spectrum.
The sky model (skymodel) is obtained from the flat fielded sky fibres. The flux is calibrated
(calib) with respect to standard star spectra, whose synthetic templates used in eBOSS DR16
were developed for DESI (Ahumada et al., 2020). In addition, flux correction vectors (fluxcorr)
are estimated for each fibre through a low order polynomial fit to correct for miscalibrations
between different exposures, and flux distortion vectors (fluxdistort) model the throughput vari-
ations depending on the position in the focal plane. After flat fielding and sky subtraction, the
flux is:

Fe = N̂/fiberflat− skymodel. (3.6)

where we drop the fibre dependence for simplicity, and the calibrated flux is:

F = Fe/calib · fluxcorr · fluxdistort. (3.7)

3.3.3.2 Redshift measurement

The redshift measurement and classification pipeline used in BOSS, IDLSPEC1D (Bolton et al.,
2012), found the best redshift estimate based on a χ2 minimisation approach. The measured
1D spectrum (output by IDLSPEC2D) is compared to a linear combination of a set of spectral
templates and a low-order polynomial to marginalise over galactic and intrinsic extinction as
well as remaining calibration errors. The spectral templates are constructed for three different
classes, STAR, QSO or GALAXY, using a rest-frame principal component analysis (PCA) applied to a
training sample based on observed spectra from stars, quasars, and galaxies, respectively. Quasar
and galaxy spectra are extracted from SDSS early data while star spectra are constructed from
external data sets. Then, each observed spectrum is fitted by the different template classes 4;
the best measurement (redshift, redshift error and target class) is taken to be that with the
minimum (reduced) χ2 among the three classes. The χ2 difference between the first and the
second best fit solutions is used to derive the confidence of the redshift measurement (ZWARNING
flag).

Note that in practice, some spectra are unusable, due to hardware issues, e.g. unplugged
fibre, too small wavelength coverage, spectrograph issues, as flagged by ZWARNING 5.

IDLSPEC1D provided good redshift measurements for 99% of the BOSS CMASS and LOWZ
samples of bright galaxies. eBOSS, however, targeted fainter LRGs and ELGs for which IDLSPEC1D
performed poorly (finding ' 70% of good spectra), while eBOSS requirements aimed at 90%
good redshifts and classification (Dawson et al., 2016). In addition, the redshift accuracy should
remain below 300 km s−1 for z < 1.5, with fewer than 1% catastrophic redshifts, i.e. red-
shifts classified as good by the pipeline but which actually differ from the truth by more than
1000 km s−1 for ELGs and LRGs, and 3000 km s−1 for QSOs.

Therefore, a new redshift pipeline, REDROCK, was used. This pipeline, originally developed
for DESI, is based on a combination of the IDLSPEC1D PCA approach and the archetype method
of Hutchinson et al. (2016).

4. For BOSS LOWZ and CMASS galaxy samples, QSO templates were discarded.
5. https://www.sdss.org/dr16/algorithms/bitmasks/#ZWARNING

https://www.sdss.org/dr16/algorithms/bitmasks/#ZWARNING
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The first step of REDROCK is similar to the IDLSPEC1D pipeline: spectra are fitted with a linear
combination of PCA spectral templates of stars, galaxies and quasars — without the polynomial
marginalisation over extinction and calibration. Here, however, new templates were produced
for galaxies and stars at a higher resolution than that of the BOSS spectrograph (Ross et al.,
2020). Instead of the BOSS empirical templates, 10 new galaxy PCA eigenspectra templates
were obtained from 20 000 physically-motivated theoretical galaxy spectra spanning stellar age,
metallicity, and star formation rate. Similarly, new stellar templates, based on 30 000 theoretical
spectra of stars of different masses and evolutionary stages were produced. The higher resolution
templates were then convolved by the instrument resolution as a function of wavelength and
position in the focal plane.

Then, in a second step, a fraction of the templates described above was used to fit the
spectra, similar to Hutchinson et al. (2016). Their method consists in fitting observed spectra
with single spectrum templates (in possible combination with lower order polynomial nuisance
terms), in this case called archetypes, instead of a linear combination of several templates, as
in the first step. The purpose of this additional step is to remove solutions involving a non-
physical combination of PCA templates. In practice, this fitting procedure is performed in the
vicinity of at most 3 best fit solutions obtained from the first step in each class, using 110 galaxy,
64 quasar and 40 star archetypes in combination with the first three Legendre polynomials to
marginalise over the broadband spectrum. Then, similarly to IDLSPEC1D, the measurement
(redshift, redshift error and target class) with the lowest χ2 is retained, and the χ2 difference
(hereafter called ∆χ2) to the second best fit is used as a reliability criterion.

3.3.3.3 Performance of the redshift pipeline

Reliability criteria were determined for the redshift pipeline to maximise the fraction of good
redshift measurements while keeping the rate of catastrophic redshifts low. A first tuning was
performed with repeat observations of LRG spectra. Spectra of unplugged or sky fibres, with
insufficient wavelength coverage, or with a best χ2 at the limit of the redshift fitting range were
discarded. The threshold ∆χ2 ≥ 9 was chosen such that 93% of the 11 556 pairs were classified
with good redshifts, 0.5% of these being catastrophic redshifts (Ross et al., 2020). Applying
only the ∆χ2 ≥ 9 criterion, 10% of sky spectra were considered to have good redshifts — while
only a very small fraction of them is expected to correspond, by chance, to real astrophysical
objects. Adding the constraint that the model coefficient for the best fit archetype is positive
(for physicality), the fraction of sky spectra with good redshifts dropped to 4.4%. In practice,
only 0.04% of LRG redshift measurements satisfying the ∆χ2 = 9 criterion failed to satisfy the
positiveness requirement. The quality cuts mentioned so far (spectrum measurement, ∆χ2 and
positiveness of the archetype coefficient) are encompassed in the cut:

ZWARNING = 0 (3.8)

To fulfill eBOSS ELG requirements, the following additional quality cuts were applied to
REDROCK redshift estimates:

SN_MEDIAN[i] > 0.5 or SN_MEDIAN[z] > 0.5 (3.9)
zQ ≥ 1 or zCont ≥ 2.5. (3.10)

The first criterion imposes a minimum median signal-to-noise of the good pixels in the red (i
and z-band) part of the spectrum (in units of erg s−1 cm−2 Å−1), where the [OII] line of z ' 1
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galaxies is expected to be observed. Note that the [OII] doublet cannot be clearly resolved by
the eBOSS spectrographs given their resolving power (see Figure 3.4). The second criterion
utilises the a posteriori flags zQ and zCont developed by Comparat et al. (2016). The zQ flag
(where Q stands for quality) quantifies the strength of the emission lines; zQ ≥ 1 means there
is at least one line at signal-to-noise above 3. The zCont flag quantifies the strength of the
continuum; zCont ≥ 2.5 means that one of the u, g, i or z magnitudes is below 19.5. The
redshift measurements satisfying the quality cuts (3.8), (3.9), (3.10) are qualified as reliable.

While IDLSPEC1D (augmented by a zQ, zCont criterion, Eq. (1) of Raichoor et al. 2017)
provided a reliable redshift between 0.6 and 1.1 for 74.0% of objects (not classified as stars),
REDROCK, with the same criteria, increased this fraction to 80.7% (Raichoor et al., 2020), as
reported in Table 3.5. The catastrophic failure rate, i.e. the fraction of reliable redshifts differing
by more than 1000 km s−1, was estimated from the ' 13 000 repeat observations passing the
quality cuts above. This rate dropped from 0.5% with IDLSPEC1D to 0.3% with REDROCK, well
below the eBOSS requirement.

In addition, visual inspections were carried out on one plate of the eBOSS ELG survey and
two plates of the ELG pilot program (Comparat et al., 2016). Table 3.6 reports the results on
the ∼ 1900 reliable redshift measurements between 0.6 and 1.1, sorted in 4 confidence levels:

0. no information, useless spectrum;
1. information in the spectrum, but the redshift is a guess;
2. features are visible and the redshift is likely to be correct;
3. definitely correct.

The pipeline and visual inspections are in very good agreement for a confidence above 2. Con-
servatively assuming the pipeline is wrong when the confidence is 0 (1.6% of the sample), the
pipeline provides a redshift precision better than 300 km s−1 for 98.1% of the reliable redshifts
in 0.6 < z < 1.1, with a fraction of catastrophic redshifts of ' 1.8%.

Lastly, eBOSS ELG redshift measurements were compared to external data sets: DEEP2 (New-
man et al., 2013) using the DEIMOS spectrograph (of resolving power R ∼ 5900) on the Keck II
10 m telescope, and WiggleZ (Drinkwater et al., 2010) using the AAOmega spectrograph (of
resolving power R ∼ 1300) on the AAT 3.9 m telescope. Restricting to reliable eBOSS ELG
redshifts within 0.6 < z < 1.1, the 146 matches with DEEP2 were found to have a mean velocity
difference with respect to eBOSS of 16± 39 km s−1 and only 1 redshift was found to differ by
more than 1000 km s−1. The 216 matches with WigleZ were found to have a mean velocity dif-
ference with respect to eBOSS of −2± 47 km s−1 with 2 redshifts found to differ by more than
1000 km s−1 (Raichoor et al., 2020).

Based on the analysis of repeat observations and visual inspection, confirmed by comparison
to external data sets, ' 99% of reliable REDROCK redshifts have a precision better than 300 km s−1,
with a ' 1% catastrophic failure rate, which fulfills eBOSS requirements.

The obtained catalogue of photometric targets and redshifts cannot be readily used for
clustering analyses. One has to first specify the survey selection function, i.e. the probability to
measure a galaxy redshift in any location of the sky. This will be done in Chapter 5, but first,
let us discuss the estimation of the observed galaxy power spectrum and understand the impact
of the aforementioned selection function on 2-point correlation function measurements.
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redshift criterion reliable reliable catastrophic catastrophic
fitter z 0.6 < z < 1.1 z 0.6 < z < 1.1
IDLSPEC1D Eq. (1) of Raichoor et al. (2017) 83.1% 74.0% 0.5% 0.5%
REDROCK Eq. (3.8) 93.0% 82.0% 0.7% 0.6%
REDROCK Eq. (3.8) & Eq. (3.9) 91.8% 81.3% 0.6% 0.6%
REDROCK Eq. (3.8) & Eq. (3.9) & Eq. (3.10) 90.6% 80.7% 0.3% 0.3%

Table 3.5 – Redshift statistics for various criteria. The last line criterion is used in eBOSS. Estimates of
catastrophic rates are computed from repeat observations. Taken from Raichoor et al. (2020).

conf. flag fraction |∆v| < 300 km s−1 |∆v| < 1000 km s−1

3 71.5% 99.9% 99.9%
2 24.0% 99.3% 99.6%
1 2.9% 94.5% 96.3%
0 1.6% 6.5% 6.5%
all 100% 98.1% 98.2%

Table 3.6 – Assessment of the REDROCK redshift measurement from visual inspection of three plates,
containing ∼ 1900 ELGs with reliable redshifts in 0.6 < z < 1.1. See text for details. Taken from Raichoor
et al. (2020).
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A galaxy redshift survey results in a catalogue of galaxy angular positions and redshifts (and
possibly weights to correct for systematic effects, as we will see in Chapter 5). In Section 4.1 we
detail the estimation of the galaxy power spectrum from these data catalogues and discuss the
optimality of such a compression. However, the expectation value of the derived estimator does
not perfectly match the pure theoretical model presented in Section 2.4.3 due to geometry effects
discussed in Section 4.2. Some of them stem from the survey selection function (the expected
galaxy density in the absence of clustering) which modulates the measured galaxy density. In
practice, this survey selection function is partly inferred from the observed data, leading to
integral constraints which we discuss in Section 4.3.

4.1 Estimation of the galaxy power spectrum

We could have followed the seminal paper Feldman et al. (1994) or Yamamoto et al. (2006)
which derive the optimal weighting scheme (the so-called FKP weights, see below) from a vari-
ational principle, but we rather take a more general approach of optimal quadratic estimator.
The beginning of this section is inspired from Tegmark et al. (1998) and simplifies the calculation
of Abramo et al. (2016) to the single tracer case we are interested in.

4.1.1 Data compression

From the set of positions X = (xi)i∈[1,Ng ] (and weights) provided by galaxy redshift surveys
we wish to measure cosmological parameters p with the best accuracy possible. A usual approach
to parameter estimation is based on the likelihood function L(X|p), the probability to observe
the data vector X if the true value of the parameters is p. p are often estimated through the
maximisation of L. In a Bayesian approach, taking the product of L(X|p) with some prior on the
parameters π(p) gives (up to some normalisation) the posterior, i.e. the probability distribution
of the cosmological parameters.

Note that L(X|p) is a joint probability function of the Ng galaxy positions xi. These galaxies
are clustered — which is precisely what we want to probe — and hence L(X|p) cannot be split
into a product of one dimensional probabilities as would be possible if the galaxy positions were
not correlated.

Hence, we want to compress the data vector X in a vector d of smaller size in such a way
that (i) the likelihood L(d|p) is easy to compute (both theoretically and numerically) and (ii)
is lossless. Let us define the Fisher matrix (Fisher, 1935):

Fµν =
〈
∂ lnL
∂pµ

∂ lnL
∂pν

〉
(4.1)

The Cramér-Rao bound ensures that no unbiased method can measure parameters p with a
covariance Cp less than 1 F−1. If Fµν remains the same when X is compressed into d then the
compression is lossless.

Let us first examine the statistical properties of the galaxy density field n(x), which can be
built from the galaxy positions xi following n(x) = ∑

i∈[1,Ng ] δ
(3)
D (x− xi).

1. i.e. Cp − F−1 is positive semidefinite.
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4.1.2 The galaxy density field

In the following we assume that galaxy positions are a random Poisson point-process real-
isation of an underlying Gaussian field 1+ δ(x) modulated by the survey selection function n̄(x)
providing the expected density of galaxies at position x in the absence of clustering.

Let us show that the galaxy density field n obeys (Feldman et al., 1994):

〈
n(x)n(x′)

〉
= n̄(x)n̄(x′)

[
1 + ξ(x,x′)

]
+ n̄(x)δ(3)

D (x− x′) (4.2)

with ξ(x,x′) = 〈δ(x)δ(x′)〉 the 2-point correlation function of the density contrast δ(x).
Let g(x,x′) be an arbitrary continuous function. We have:〈∫

d3x
∫
d3x′g(x,x′)n(x)n(x′)

〉
=
∫
d3x

∫
d3x′g(x,x′)

〈
n(x)n(x′)

〉
. (4.3)

Let us define a regular grid of cells with volume δV such that each cell i has an occupation
number ni ∈ {0, 1}. Let us denote the cell coordinates xi. We can write:∫

d3x
∫
d3x′g(x,x′)

〈
n(x)n(x′)

〉
=
∑
i

∑
j

g(xi,xj) 〈ninj〉 . (4.4)

By definition:
〈ni〉 = n̄(xi)δV. (4.5)

Given i 6= j, then 〈ninj〉 = n̄(xi)n̄(xj)δV 2 〈[1 + δ(xi)] [1 + δ(xj)]〉. Since 〈δ(x)〉 = 0, we have:

〈ninj〉 = n̄(xi)n̄(xj)δV 2 [1 + ξ(xi,xj)] . (4.6)

If i = j, since ni ∈ {0, 1},
〈
n2
i

〉
= 〈ni〉, therefore:〈

n2
i

〉
= n̄(xi)δV. (4.7)

Hence:∫
d3x

∫
d3x′g(x,x′)

〈
n(x)n(x′)

〉
=
∑
i

∑
j 6=i

g(xi,xj)n̄(xi)n̄(xj) [1 + ξ(xi,xj)] δV 2 +
∑
i

g(xi,xi)n̄(xi)δV

=
∫
d3x

∫
d3x′g(x,x′)n̄(x)n̄(x′)

[
1 + ξ(x,x′)

]
+
∫
d3xg(x,x)n̄(x)

=
∫
d3x

∫
d3x′g(x,x′)

{
n̄(x)n̄(x′)

[
1 + ξ(x,x′)

]
+ n̄(x)δ(3)

D (x− x′)
}
.

(4.8)

Eq. (4.8) holds for any function g, which proves Eq. (4.3). n̄(x)δ(3)
D (x − x′) is the Poisson shot

noise term. We are actually interested in the correlation ξ, so we define the fluctuation field as:

F(x) = n(x)− n̄(x) (4.9)

which is a Poisson realisation of n̄(x)δ(x) and for which we have:
〈
F(x)F(x′)

〉
= n̄(x)n̄(x′)ξ(x,x′) + n̄(x)δ(3)

D (x− x′). (4.10)
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4.1.3 Optimal quadratic estimator

The fluctuation field F(x) of Eq. (4.9) contains cosmological information that we want to
extract, e.g. cosmological parameters p. Let us call F = (Fi)i∈[1,N ] a spatially discretised
version of F(x).

Let us assume that F follows Gaussian statistics. By construction its mean is 0, and we
dub its covariance C, which depends upon cosmological parameters p. Then, the likelihood of
F given p reads:

L(F|p) = 1
(2π)N/2 |C|1/2

e−
1
2F

TC−1F . (4.11)

Let us compute the Fisher information matrix (4.1). Calling Z = FFT and Aµ = C−1 ∂C
∂pµ

:

∂ lnL
∂pµ

= −1
2
∂ ln |C|
∂pµ

− 1
2 Tr

(
∂C−1

∂pµ
Z
)

(4.12)

= −1
2 Tr (Aµ) + 1

2 Tr
(
AµC−1Z

)
. (4.13)

Since 〈Z〉 = C, Tr
〈
AµC−1Z

〉
= Tr (Aµ) and we have:

Fµν =
〈
∂ lnL
∂pµ

∂ lnL
∂pν

〉
(4.14)

= 1
4
[〈
FTAµC−1FFTAνC−1F

〉
− Tr (Aµ) Tr (Aν)

]
. (4.15)

The first term yields factors of the kind 〈FiFjFkFl〉 = CijCkl +CikCjl +CilCjk as given by the
Wick theorem (2.54). The term involving CijCkl cancels Tr (Aµ) Tr (Aν) while CikCjl +CilCjk
provides:

Fµν = 1
2 Tr

[
C−1 ∂C

∂pµ
C−1 ∂C

∂pν

]
. (4.16)

Another derivation can be found in Appendix A of Vogeley and Szalay (1996).
If we define the quadratic form:

q̂µ = 1
2C
−1
ik

∂Ckl
∂pµ

C−1
lj FiFj −∆µ (4.17)

where ∆µ is some offset which we will fix in the following, we find (using again Wick theorem)
that Cov(q̂µ, q̂ν) = Fµν . We want our estimator to have variance F−1

µν so we naturally define it
as 2:

p̂µ = F−1
µν q̂ν (4.18)

and the offset ∆µ is given by:

∆µ = 1
2C
−1
ik

∂Ckl
∂pµ

− Fij 〈pj〉 . (4.19)

Up to now we have called p cosmological parameters, but the above formalism holds for
any quantity to be estimated from the measurements F , such as the bandpower galaxy power
spectrum. Namely, pµ are P (kµ), the average power spectrum in a k-volume Vkµ :

P (kµ) = 1
Vkµ

∫
Vkµ

d3kP (k). (4.20)

We derive the optimal quadratic estimator for P (kµ) in the following section.

2. In the followingˆdenotes an estimator.
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4.1.4 The power spectrum estimator

Let us start by computing the Fisher information of the power spectrum. We adopt the
continuum limit of the density field, such that Eq. (4.16) becomes:

Fµν = 1
2

∫
d3x1d

3x2d
3x3d

3x4C
−1(x1,x2)∂C(x2,x3)

∂P (kµ) C−1(x3,x4)∂C(x4,x1)
∂P (kν) . (4.21)

Using Eq. (4.10), we have:

C(x1,x2) = n̄(x1)n̄(x2)ξ(x1,x2) + n̄(x1)δ(3)
D (x2 − x1) (4.22)

=
∫

d3k

(2π)3 e
ik·(x2−x1) [n̄(x1)n̄(x2)P (k) + n̄(x1)] . (4.23)

However, this expression is too complex to be inverted. Let us assume that the power spectrum
is roughly constant on the range of interest, P (k) ' P (kµ). Then

∫
d3keik·(x2−x1)/ (2π)3 can be

traded for a Dirac distribution δ(3)
D (x2 − x1). By definition, the inverse matrix C−1 verifies:∫

d3x2C
−1(x1,x2)C(x2,x3) =

∫
d3x2C(x1,x2)C−1(x2,x3) = δ

(3)
D (x3 − x1) (4.24)

Noting that
∫
d3x2δ

(3)
D (x2−x1)δ(3)

D (x3−x2) = δ
(3)
D (x3−x1) it is clear than one has just to take

the inverse of the term in brackets, i.e.:

C−1(x1,x2) '
[
n̄(x1)2P (kµ) + n̄(x1)

]−1
δ

(3)
D (x2 − x1) = wFKP(x1,kµ)

n̄(x1) δ
(3)
D (x2 − x1) (4.25)

where we used the FKP weight (Feldman et al., 1994):

wFKP(x,k) = 1
1 + n̄(x)P (k) . (4.26)

Let us move to the functional derivative. We have:

∂P (k)
∂P (kµ) =

1 k ∈ Vkµ

0 else,
(4.27)

thus:
∂C(x1,x2)
∂P (kµ) =

∫
Vkµ

d3k

(2π)3 e
ik·(x2−x1)n̄(x1)n̄(x2). (4.28)

The Fisher information then reads:

Fµν = 1
2

∫
d3x1d

3x3

∫
Vkµ

d3k1

(2π)3

∫
Vkν

d3k3

(2π)3 e
i(k1−k3)·(x3−x1)n̄(x1)n̄(x3)wFKP(x1,kµ)wFKP(x3,kν)

(4.29)
Inverting the spatial and Fourier space integrals, we make appear Fourier transforms of the
survey selection function:

W (x,kµ) = n̄(x)wFKP(x,kµ), (4.30)

which characterises the survey footprint. Hence:

Fµν = 1
2

∫
Vkµ

d3k1

(2π)3

∫
Vkν

d3k3

(2π)3W (k3 − k1,kµ)W (k1 − k3,kν) (4.31)

'
δµνVkµ

2 (2π)3

∫
d3xn̄(x)2wFKP(x,kµ)2. (4.32)
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The second line follows from the assumption that the scales probed are much smaller that the
survey typical size, i.e.:

W (k3−k1,kµ)W (k1−k3,kν)→ (2π)3
∫
d3xn̄(x)2wFKP(x,kµ)wFKP(x,kν)δ(3)

D (k3−k1). (4.33)

Let us define the effective volume:

Veff =
∫
d3xn̄(x)2wFKP(x,kµ)2P (kµ)2. (4.34)

The relative uncertainty in the bandpowers of the power spectrum is hence:

σ2
P̂ (kµ)

P (kµ)2 =
F−1
µµ

P (kµ)2 = 2 (2π)3

VkµVeff
. (4.35)

Of course, the fractional uncertainty reduces as the k-space voxel increases. Also, in the case
n̄P (kµ)� 1, Veff → V the survey volume, and:

σ2
P̂ (kµ)

P (kµ)2 →
2 (2π)3

VkµV
, (4.36)

a limit known as cosmic variance.
Let us now compute the quadratic form Eq. (4.17):

q̂µ = 1
2

∫
d3x1d

3x2d
3x3d

3x4C(x1,x2)−1∂C(x2,x3)
∂P (kµ) C(x3,x4)−1F(x1)F(x4)−∆µ. (4.37)

Using Eq. (4.25) and Eq. (4.28), we have:

q̂µ = 1
2

∫
d3x1d

3x3

∫
Vkµ

d3k

(2π)3 e
ik·(x3−x1)wFKP(x1,kµ)wFKP(x3,kµ)F(x1)F(x3)−∆µ. (4.38)

Using Eq. (4.32) and Eq. (4.18) gives (in the diagonal limit):

P̂ (kµ) = 1
AVkµ

∫
Vkµ

d3k

∫
d3x1d

3x3e
ik·(x3−x1)wFKP(x1,kµ)wFKP(x3,kµ)F(x1)F(x3)− ∆µ

Fµµ
(4.39)

where A =
∫
d3xn̄(x)2wFKP(x,kµ)2.

Let us estimate ∆µ as given in Eq. (4.19):

∆µ = 1
2

∫
d3x1d

3x2C(x1,x2)−1∂C(x2,x1)
∂P (kµ) − FµνP (kν) (4.40)

which reduces to (using Eq. (4.25), Eq. (4.28) and Eq. (4.32)):

∆µ = 1
2

∫
Vkµ

d3k

(2π)3

∫
d3xn̄(x)wFKP(x,kµ)− FµνP (kν) (4.41)

= 1
2

∫
Vkµ

d3k

(2π)3

∫
d3x

[
n̄(x)wFKP(x,kµ)− n̄(x)2wFKP(x,kµ)2P (kµ)

]
(4.42)

=
Vkµ

2 (2π)3

∫
d3xn̄(x)wFKP(x,kµ)2. (4.43)
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Therefore, Eq. (4.39) gives the FKP estimator (Feldman et al., 1994):

P̂ (kµ) = 1
AVkµ

∫
Vkµ

d3k

[∫
d3x1d

3x3e
ik·(x3−x1)wFKP(x1,kµ)wFKP(x3,kµ)F(x1)F(x3)

−
∫
d3xn̄(x)wFKP(x,kµ)2

]

(4.44)

The second term subtracts the shot noise. Sources of suboptimality in this estimator are
(i) C(x1,x2)−1 is not diagonal and (ii) in practice, the galaxy power spectrum evolves over
the footprint. Moreover, this estimator is biased since we took the window function |W (k)|2

to be localised in k to state that Fµν is diagonal in Eq. (4.39). In fact, Eq. (4.44) estimates
the convolution (P ∗ |W |)(k) — of which the multiplication by the matrix F−1

µν (see Eq. (4.18))
would have been a discrete matrix deconvolution. This window function effect will be discussed
in Section 4.2.2.

We are actually interested in the anisotropy of the power spectrum with respect to the line
of sight η̂, which can be probed with the multipoles of the power spectrum:

P`(k) = 2`+ 1
2

∫ 1

−1
d(k̂ · η̂)P (k, k̂ · η̂)L`(k̂ · η̂) (4.45)

for which Yamamoto et al. (2006) proposed the following estimator:

P̂`(kµ) = 2`+ 1
AVkµ

∫
Vkµ

d3k

∫
d3x1d

3x2e
ik·(x2−x1)wFKP(x1, kµ)wFKP(x2, kµ)F(x1)F(x2)L`(k̂ · x̂m)

−P noise
` (kµ)

(4.46)

where we take the so-called midpoint line of sight xm = (x1 + x2) /2. Note that the definition of
the line of sight of the pair of galaxies at position x1 and x2 is only clear in the limit where the
galaxies are very far from the observer, |x2 − x1| / |xm| � 1: the so-called local plane-parallel
approximation. In Eq. (4.46) Vkµ is a spherical shell of radius kµ, and for simplicity we neglected
the variation of wFKP(x,k) with the direction of k (though we would expect some due to redshift
space distortions).

The shot noise term reads:

P noise
` (kµ) = 2`+ 1

AVkµ

∫
Vkµ

d3k

∫
d3xn̄(x)wFKP(x, kµ)2L`(k̂ · x̂) (4.47)

= δ`0
A

∫
d3xn̄(x)wFKP(x, kµ)2. (4.48)

Note that the integration in Eq. (4.48) is not fully correct if performed on a finite k-space
grid, but a fair approximation if the sampling is high enough, which we will make sure is the
case in the following.
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4.1.5 An optimal estimator for the growth rate

A careful reader may point out that we have not answered the fundamental question of
Section 4.1.1: is the power spectrum compression lossless for the parameter we aim at measuring,
e.g. the growth rate of structure f?

For this, let us build the optimal quadratic estimator for the growth rate of structure f .
We follow the same reasoning as Castorina et al. (2019) did for the amplitude of primordial
non-Gaussianity f local

NL . Using the Kaiser formula (2.164), the power spectrum of the density
contrasts at redshift z1 et z2 reads (in redshift space):

P (k, µ, z1, z2) =
(
b(z1) + fµ2

)
D(z1)

(
b(z2) + fµ2

)
D(z2)P lin

m (k) (4.49)

where b is the linear bias, D the linear growth rate (normalised such that D(0) = 1) and P lin
m (k)

is the linear power spectrum taken at z = 0. We take µ = k̂ · x̂m, but the choice of line of sight
will not impact our conclusions. For simplicity we assumed f to be constant over the redshift
range. Then:

∂P (k, µ, z1, z2)
∂f

=
(
b(z1) + fµ2

)
D(z1)µ2D(z2)P lin

m (k) + 1↔ 2 (4.50)

Hence:
∂C(x1,x2)

∂f
=
∫

d3k

(2π)3 e
ik·(x2−x1)n̄(x1)n̄(x2)

[(
b(z1)µ2 + fµ4

)
D(z1)D(z2)P lin

m (k) + 1↔ 2
]

(4.51)
Assuming again that C(x1,x2)−1 is diagonal, we have:

q̂f = 1
2

∫
d3k

(2π)3P
lin
m (k)

∫
d3x1d

3x3wFKP(x1,k)wFKP(x3,k)F(x1)F(x3)[(
b(z1)µ2 + fµ4

)
D(z1)D(z3) + 1↔ 3

]
eik·(x3−x1) −∆f . (4.52)

Then, noticing that:

µ2 = 1
3L0(µ) + 2

3L2(µ) (4.53)

µ4 = 1
5L0(µ) + 4

7L2(µ) + 8
35L4(µ) (4.54)

we find:

q̂f = 1
2

∫
d3k

(2π)3P
lin
m (k)

∑
`∈{0,2,4}

∫
d3x1d

3x2e
ik·(x2−x1)wFKP(x1,k)wFKP(x2,k)F(x1)F(x2)

[w(z1)w`(z2) + 1↔ 2]L`(k̂ · x̂m)−∆f . (4.55)

with:

w(z) = D(z) (4.56)

w0(z) =
[1

3b(z) + 1
5f
]
D(z) (4.57)

w2(z) =
[2

3b(z) + 4
7f
]
D(z) (4.58)

w4(z) = 8
35fD(z) (4.59)
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If we had taken f to be z-dependent, we would have wanted to measure its average value over
a redshift bin, leading to the additional constraint that spatial integrals should be performed
within that redshift bin — just as with the constraint (4.27). Up to a normalisation factor
(given by the Fisher information) and the constant bias ∆f , Eq. (4.55) is the quadratic optimal
estimator for f . If we neglect the variations of b, D over the redshift range, we see that the
building block is just the Yamamoto estimator (4.46). Hence, the compression brought by the
latter is lossless for f . Let us recall the key assumptions that guarantee this optimality:

1. the galaxy density field follows Gaussian statistics
2. the covariance of the galaxy density field is taken to be diagonal in redshift space to

compute FKP weights
3. the local plane-parallel approximation i.e. |x2 − x1| / |xm| � 1, holds
4. there is no redshift evolution of the redshift space galaxy power spectrum
For an approach taking into account the redshift evolution of the power spectrum over

the survey footprint to optimally measure redshift space distortions, we refer the reader to
e.g. Ruggeri et al. (2019).

4.1.6 Practical computation

In practice, we take FKP weights to be scale independent:

wFKP(x) ≡ 1
1 + n̄(x)P0

(4.60)

where P0 is the typical value of the power spectrum at the scales of interest.
Building the fluctuation field (4.9) requires the survey selection function i.e. the expected

(weighted) number density of galaxies in the absence of clustering, n̄(x) = 〈n(x)〉. In practice, it
is Poisson-sampled by a synthetic catalogue 3. Let us introduce galaxy weights wg and random
weights ws which include FKP weights and possibly other weights to e.g. correct for observa-
tional systematics. Let us denote the random weighted density ns, rename the galaxy weighted
density ng, and dub its expected value the survey selection function W (x) = 〈ng(x)〉. We call:

α =
∫
d3xW (x)∫
d3xns(x) (4.61)

the ratio of the (ensemble- and volume-averaged) density of galaxies to random objects. The
fluctuation field (4.9) is thus recast into the FKP field (Feldman et al., 1994):

F (x) = ng(x)− αns(x) (4.62)

Eq. (4.2) ignores galaxy weights. In fact, each weighted galaxy contributes a total w2
g(x) to the

tiny cell it belongs to, yielding a shot noise contribution W (x)wg(x)δ(3)
D (x− x′) in Eq. (4.2):

〈
ng(x)ng(x′)

〉
= W (x)W (x′)

[
1 + ξ(x,x′)

]
+W (x)wg(x)δ(3)

D (x− x′). (4.63)

3. We assume throughout this manuscript that the density of this synthetic catalogue is sufficiently high to
avoid systematic bias from undersampling the survey selection function.
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Applying the same equation to ns (in which case ξ = 0):

α2 〈ns(x)ns(x′)
〉

= W (x)W (x′) + αW (x)ws(x)δ(3)
D (x− x′). (4.64)

Finally, the galaxy - random correlation is shot noise free, α 〈ng(x)ns(x′)〉 = W (x)W (x′). Hence:〈
F (x)F (x′)

〉
= W (x)W (x′)

[
1 + ξ(x,x′)

]
+W (x) [wg(x) + αws(x)] δ(3)

D (x− x′), (4.65)

which is similar to Eq. (4.10) except for the shot noise term. Thus, the total shot noise
term (4.48) reads:

P noise
` (kµ) = δ`0

A

∫
d3xW (x) [wg(x) + αws(x)] (4.66)

= δ`0
A

∫
d3x

[
W (x)wg(x) + α2ns(x)ws(x)

]
. (4.67)

In order to keep the Poisson shot noise as low as possible, we will typically have ns ∼ 20−50ng.
The normalisation factor A is given by:

A = α2
∫
d3rn2

s(r). (4.68)

In practice, volume integrals are replaced by discrete sums following:

∫
d3xng(x) · · · →

Ng∑
i=1

wg,i · · ·
∫
d3xns(x) · · · →

Ns∑
i=1

ws,i · · · (4.69)

where Ng and Ns denote the number of galaxies and randoms, respectively. In this case,

P noise
` (kµ) = δ`0

A

Ng∑
i=1

w2
g,i + α2

Ns∑
i=1

w2
s,i

 A = α2
Ns∑
i=1

ws,ins,i, (4.70)

where we took
∫
d3xW (x) '

∫
d3xng(x) in the first shot noise term.

Note that Eq. (4.46) involves a double sum, which is non-separable due to the choice of line
of sight x̂m. Therefore, the complexity scales as O(Nk×N2

s ) where Nk is the number of Fourier
modes to be evaluated in bin k. Complexity is dominated by the random objects as Ns � Ng.
Hence, as suggested in Yamamoto et al. (2006) we rather choose one of the galaxies of each pair
as line of sight, such that the double sum can be split into:

P̂`(kµ) = 2`+ 1
AVkµ

∫
Vkµ

d3kF0(k)F`(−k)− P noise
` (kµ) (4.71)

where we used the quantities:

F`(k) =
∫
d3xeik·xF (x)L`(k̂ · x̂). (4.72)

With this scheme, complexity drops to O(Nk × Ns). In practice, however, correctly sampling
the k-space requires Nk to be quite large (typically & 103) and Ns is typically of order 106, so
that we still want to speed up our algorithm.

One would note that F0(k) is a simple Fourier transform, and therefore can be computed
with a Fast Fourier Transform (FFT) if F0 is interpolated on a regular Cartesian mesh. Several
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techniques exist to recast Eq. (4.72) in a simple Fourier transform form. Bianchi et al. (2015);
Scoccimarro (2015) first noticed that the scalar product is separable into a configuration space
and Fourier space components:

x̂ · k̂ = xi
x

ki
k

(4.73)

and so can be the polynomial in k̂ · x̂ L`(k̂ · x̂). For example, for ` = 2, L2(x) = 5/2
[
3x2 − 1

]
i.e.:

F2(k) = 5
2 [3A2(k)− F0(k)] (4.74)

with:
A2(k) =

∑
i,j∈[1,3]2

kikj
k2 Bij(k) (4.75)

where:
Bij(k) =

∫
d3xeik·xF (x)xixj

x2 (4.76)

is a simple Fourier transform. The complexity of FFTs is O(Nm logNm) where Nm is the total
mesh size. Many libraries exist to calculate FFTs, an example of which is FFTW (Frigo and
Johnson, 2005). However, with the above implementation, the number of FFTs required to
estimate the power spectrum multipole of order ` is (`+ 1) (`+ 2) /2. Though we implemented
our own power spectrum estimator following the prescription of Bianchi et al. (2015); Scoccim-
arro (2015) we eventually used the nbodykit implementation of Hand et al. (2018). It relies on
the observation that (Hand et al., 2017):

L`(x̂ · k̂) = 4π
2`+ 1

m=`∑
m=−`

Y`m(x̂)Y ?
`m(k̂) (4.77)

where Y`m are the spherical harmonics, such that:

F`(k) = 4π
2`+ 1

m=`∑
m=−`

Y ?
`m(k̂)

∫
d3xe−ik·xF (x)Y`m(x̂) (4.78)

In this case, the calculation of any multipole only requires 2`+ 1 FFTs.
As mentioned previously, the FKP field F must be interpolated on a mesh, introducing

aliasing effects to be accounted for.

4.1.7 Aliasing and interlacing

Let us write the FKP field F :

F (x) =
N∑
i=1

Fiδ
(3)
D (x− xi) (4.79)

where N = Ng +Ns is the total number of galaxies (observed and random), Fi is the weight of
galaxies or randoms. In practice, Fi can also include spherical harmonics at x̂i to compute F`(k)
as mentioned previously. The interpolation of F on the mesh corresponds to the evaluation on
the mesh of the continuous function:

F̃ (x) =
∫
d3x′F (x′)W (x− x′), (4.80)
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whereW is a window function that describes the scheme to assign the weights Fi to the mesh. For
ease of computation this assignment scheme is usually based on a separable piecewise polynomial,
i.e.:

W (r) = W (p)
(
rx
H

)
W (p)

(
ry
H

)
W (p)

(
rz
H

)
, (4.81)

where H is the cell size, which we take to be the same in each of the x, y and z axes (without
loss of generality). p, the order of W , corresponds to the number of mesh nodes (along each
axis) where a weight Fi is allocated.

We can for example take W (p) to be the (p− 1)-th order convolution of the top hat function
W (1) = 1[− 1

2 ,
1
2 ] (see NGP below) with itself. Here are the expressions up to fourth order, given

as a function of s, the distance between galaxy i and the mesh node divided by the cell size H:
Order 1: nearest grid point (NGP)

W (1)(s) =

1 if |s| < 1
2

0 otherwise.
(4.82)

Order 2: cloud-in-cell (CIC)

W (2)(s) =

1− |s| if |s| < 1
0 otherwise.

(4.83)

Order 3: triangular shaped cloud (TSC)

W (3)(s) =


3
4 − |s|

2 if |s| < 1
2

1
2

(
3
2 − |s|

2
)2

if 1
2 6 |s| < 3

2

0 otherwise.

(4.84)

Ordre 4 : piecewise cubic spline (PCS)

W (4)(s) =


1
6
(
4− 6|s|2 + 3|s|3

)
if |s| < 1

1
6 (2− |s|)3 if 1 6 |s| < 2
0 otherwise.

(4.85)

The field F̃ is evaluated at the mesh nodes rm = mH with m an integer vector:

F̃M (r) =

F̃ (rm) if r = rm
0 otherwise.

(4.86)

FFTs in fact compute the discrete Fourier transform F̃M (k) of F̃M (r). Let us specify how
F̃M (k) relates to F̃ (k) and then F (k). For this we define the sampling function X as the sum
over the integer vector m:

X(r) =
∑

m∈Z3

δ
(3)
D (r−mH). (4.87)

Therefore, by definition of F̃M (k):

F̃M (k) =
∑

m∈Z3

F̃M (rm)e−irm·k (4.88)

=
∑

m∈Z3

F̃ (rm)e−irm·k (4.89)

=
∫
d3rX(r)F̃ (r)e−ir·k. (4.90)
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From this equality, the convolution theorem gives:

F̃M (k) = 1
(2π)3

∫
d3k′X(k′)F̃ (k− k′). (4.91)

The Fourier transform of a Dirac comb is a Dirac comb:

X(k) = (2π)3

H3

∑
n∈Z3

δD(k− 2kNn), (4.92)

were the sum runs on n integer and kN = π/H is the Nyquist wavenumber. Therefore:

F̃M (k) = 1
H3

∑
n∈Z3

F̃ (k− 2kNn). (4.93)

We have thus expressed F̃M (k) as a function of the field interpolated on the mesh, F̃ (k).
Recalling Eq. (4.80) and using the convolution theorem once again:

F̃M (k) = 1
H3

∑
n∈Z3

W (k− 2kNn)F (k− 2kNn). (4.94)

Hence, every wavenumber k−2kNn of the quantity F —which we want to evaluate — contributes
to the quantity F̃M (k) which we compute in practice: this effect is called aliasing. However, the
sum is weighted by the function W (k). If W is localised in k-space, then only the first term,
n = 0, will remain, and dividing F̃M (k) by W (k) will yield the correct result F (k). However,
for W to decrease rapidly in k-space we need W (r) to decrease slowly, i.e. each weight Fi must
be assigned to a large number of nodes — which can become prohibitively expansive, more
than the FFTs themselves. Let us review the performance of the functions W (p)(s) described
previously: ∫

drW (1)(r/H)e−irk = H

∫
duW (1)(u)e−iHuk (4.95)

= H

∫ 1
2

− 1
2

due
−iπuk

kN (4.96)

= H sinc
(
πk

2kN

)
, (4.97)

where sinc is the cardinal sinus. As W (p)(s) is the (p− 1) convolution of W (1)(s):∫
drW (p)(r/H)e−irk = H sincp

(
πk

2kN

)
. (4.98)

Finally, as W is separable (see Eq. (4.81)):

W (k) = H3 sincp
(
πkx
2kN

)
sincp

(
πky
2kN

)
sincp

(
πkz
2kN

)
. (4.99)

These different windows are shown in real and Fourier space in Figure 4.1. We see that as p in-
creases, W (k) gets more peaked, such that the contributions from the undesirable wavenumbers
become less important in the sum (4.94). In practice, in this manuscript, we consider the TSC
assignment scheme (order p = 3).

Even with this quite high order scheme, F (k) is not well recovered close to the Nyquist
frequency. Jing (2005) proposed an iterative scheme to reconstruct the true field F , which we
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Figure 4.1 – Left: window function of the first four order assignment schemes. Right: same, in Fourier
space. Taken from Sefusatti et al. (2016).

considered first before choosing the method of interlacing (Sefusatti et al., 2016) that we describe
hereafter.

Let us first recall that:
F̃M (k) = 1

H3

∑
n∈Z3

F̃ (k− 2kNn). (4.100)

If we shift the mesh by H/2 along each axis, the Fourier transform of F̃ (r) becomes (with H
the vector of components H):

F̃m,1/2(k) =
∫
d3rX(r + H/2)F̃ (r)e−ir·k. (4.101)

A translation of X(r) is a phase shift in Fourier space, so using the convolution theorem:

F̃m,1/2(k) = 1
(2π)3

∫
d3k′X(k′)F̃ (k− k′)e−ik′·H/2 (4.102)

= 1
H3

∑
n∈Z3

F̃ (k− 2kNn)e−iπ(nx+ny+nz) (4.103)

= 1
H3

∑
n∈Z3

(−1)nx+ny+nzW (k− 2kNn)F (k− 2kNn). (4.104)

Computing the average of F̃M (k) and F̃m,1/2(k):

F̃M (k) + F̃m,1/2(k)
2 = 1

H3

∑
n∈Z3

[
1 + (−1)nx+ny+nz

]
W (k− 2kNn)F (k− 2kNn). (4.105)

The fundamental mode (nx+ny+nz = 0) is preserved while every odd nx+ny+nz combination
(including the major contribution |nx + ny + nz| = 1) is cancelled, therefore reducing the effect
of aliasing by a factor of ' 2. One could go further and average the FFTs computed on meshes
shifted by s/aH (s ∈ [0, a− 1]), such that aliasing is reduced by a factor a. However, taking a = 2
yields results satisfactory enough for our purpose. Of course, the obtained Fourier transform
must sill be divided by W (k). The efficiency of the interlacing method is shown in Figure 4.2, in
comparison to the direct summation method, where Fourier transforms are computed exactly.
The typical improvement brought by interlacing is of ' 102 and increases with the order of the
interpolation kernel. Using the TSC scheme in combination of aliasing ensures relative errors of
' 10−4 all the way up to the Nyquist frequency.
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result. Measurements are performed using the N-body simulation of Colombi et al. (2009). Taken
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4.2 Geometry effects

In the previous section we built an estimator for the power spectrum of the spatial dis-
tribution of galaxies; however, one has only access to galaxy angular positions and redshifts.
These coordinates are in fact converted into comoving coordinates assuming a fiducial cosmo-
logy, whose impact on the power spectrum measurement is discussed in Section 4.2.1. Also, we
noticed in the previous section that the estimated power spectrum results from a convolution
with the survey window function, which we detail in Section 4.2.2. Finally, the impact of the line
of sight definition is discussed in Section 4.2.3 and the sampling of the mesh used to compute
the FFTs in Section 4.2.4.

4.2.1 Alcock-Paczynski effect

The galaxy power spectrum is calculated in Cartesian space, while spectroscopic redshift
surveys provide a catalogue of angular positions and redshifts. Angular positions and redshifts
are therefore converted into comoving distances, assuming a fiducial cosmology. This fiducial
cosmology does not necessarily match the true cosmology of the observed data, yielding dis-
tortions known as the Alcock-Paczynski effect (Alcock and Paczynski, 1979). By definition of
the radial and angular comoving distances (see Eq. (1.27) and Eq. (1.29)), the comoving length
element between two galaxies (at redshift ' zeff) separated by a redshift dz and an angle dθ
reads:

dl‖ = dχ

dz

∣∣∣∣
z=zeff

dz = dz

H(zeff) = DH(zeff)dz (4.106)

dl⊥ = DM(zeff)dθ, (4.107)
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where we defined DH(z) = 1/H(z). Denoting by the subscript fid values in the fiducial cosmo-
logy, we define the scaling parameters q‖, q⊥:

q‖ =
dl‖

dlfid
‖

= DH(zeff)
Dfid

H (zeff)
(4.108)

q⊥ = dl⊥
dlfid
⊥

= DM(zeff)
Dfid

M (zeff)
. (4.109)

Then, the true wavenumbers parallel and perpendicular to the line of sight must be multiplied
by q‖ and q⊥, respectively, to obtain their values in the fiducial cosmology. Conversely, the true
wavenumbers are related to the fiducial ones through k⊥ = kfid

⊥ /q⊥ and k‖ = kfid
‖ /q‖. With

k =
√
k2
‖ + k2

⊥, µ = k‖/k, in the (k, µ) space (Ballinger et al., 1996):

k = kfid

q⊥

[
1 +

(
µfid

)2
(
q2
⊥
q2
‖
− 1

)]1/2

µ = µfidq⊥
q‖

[
1 +

(
µfid

)2
(
q2
⊥
q2
‖
− 1

)]−1/2

(4.110)

(4.111)

such that the power spectrum multipoles P fid
` (kfid) in the fiducial space are related to the power

spectrum in the true space P (k, µ) through:

P fid
` (kfid) = 2`+ 1

2q‖q2
⊥

∫ 1

−1
dµfidP (k(kfid, µfid), µ(µfid))L`(µfid). (4.112)

Eq. (4.112) is the transform to be applied to the model prediction P (k, µ) to convert it in fiducial
coordinates. The resulting P fid

` (kfid) can be compared to the power spectrum measurements for
which the fiducial cosmology fid is used to convert angular positions and redshifts into distances;
see e.g. d’Amico et al. (2020); Ivanov et al. (2020).

In this thesis and as in other BOSS and eBOSS analyses (e.g. Beutler et al., 2017), to save
computing time the model prediction P (k, µ) is calculated assuming a fixed template cosmology,
often chosen to match the fiducial cosmology. In return, q‖ and q⊥ are left free in the cosmological
fits. These parameters are mostly constrained through the BAO feature 4 in the power spectrum
or 2-point correlation function. The BAO scale is provided by rdrag, the comoving sound horizon
at the redshift at which the baryon-drag optical depth equals unity (see Section 1.3.5). Hence,
q‖ and q⊥ are effectively sensitive to α‖ and α⊥, respectively:

α‖ =
DH(zeff)rfid

drag
Dfid

H (zeff)rdrag

α⊥ =
DM(zeff)rfid

drag
Dfid

M (zeff)rdrag

(4.113)

Therefore, varying the scaling parameters as part of the cosmological inference allows con-
straints to be put on the Hubble parameter and comoving angular distance, divided by rdrag, at
the effective redshift zeff of the spectroscopic sample.

4. While this is fully true for BAO analyses, it is a bit less clear for RSD ones due to the possible influence of
the broadband.
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4.2.2 Survey geometry

As stated in the previous section, the observed galaxy power spectrum is modulated by
the window function. This effect is usually included in the theoretical model prediction. First
BOSS clustering analyses performed the convolution of the power spectrum model with the
window function in Fourier space (e.g. Beutler et al., 2014), which was quite time-consuming.
Instead, Wilson et al. (2017) suggested to Fourier transform the model power spectrum and
simply multiply the correlation function with the window function in configuration space —
which is indeed much faster. This is the method we develop in the following, but we do not
follow the derivation of Wilson et al. (2017). We rather start directly from the expression of
the power spectrum estimator, as it makes the derivation more natural and accurate: though
this is a quite general statement that the observed power spectrum is convolved with the survey
window function, details (such as the normalisation or choice of line of sight) depend on the
specific estimator used.

4.2.2.1 Derivation of the window function effect

Let us recall the Yamamoto estimator (4.71) (where we take the limit of an infinitely thin
k-shell Ωk):

P̂`(k) = 2`+ 1
A

∫
dΩk

4π

∫
d3x1d

3x2e
ik·(x2−x1)F (x1)F (x2)L`(k̂ · x̂2)− P noise

` (k) (4.114)

with F the FKP field (4.62). Using Eq. (4.65), we find:〈
P̂`(k)

〉
= 2`+ 1

A

∫
dΩk

4π

∫
d3x1d

3x2e
ik·(x2−x1)W (x1)W (x2)ξ(x1,x2)L`(k̂ · x̂2) (4.115)

Let us define s = x1 − x2, and (in the local plane-parallel approximation limit s� x1, x2):

ξ(x1,x2) =
∑
p

ξp(s)Lp(x̂1 · ŝ). (4.116)

Substituting into Eq. (4.115):〈
P̂`(k)

〉
= 2`+ 1

A

∑
p

∫
dΩk

4π

∫
d3x

∫
d3se−ik·sW (x)W (x− s)ξp(s)Lp(x̂ · ŝ)L`(k̂ · x̂) (4.117)

Using the Rayleigh plane wave expansion:

e−ik·s =
+∞∑
q=0

(−i)q(2q + 1)jq(ks)Lq(k̂ · ŝ) (4.118)

and ∫
dΩk

4π L`(k̂ · x̂)Lq(k̂ · ŝ) = δ`q
2`+ 1L`(x̂ · ŝ), (4.119)

we find:〈
P̂`(k)

〉
= (−i)` 2`+ 1

A

∑
p

∫
d3sj`(ks)ξp(s)

∫
d3xW (x)W (x− s)Lp(x̂ · ŝ)L`(x̂ · ŝ). (4.120)

Let us define the coefficient Aq`p by:

L`(µ)Lp(µ) =
`+p∑
q=0

Aq`pLq(µ) (4.121)
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the window function multipoles:

Wδ,δ
` (s) = 2`+ 1

4πA

∫
dΩs

∫
d3xW (x)W (x− s)L`(x̂ · ŝ) (4.122)

and the window-convolved correlation function (this appellation is not strictly correct as the
following formula is a product and not a convolution as in Fourier space):

ξc
` (s) =

∑
p,q

Aq`p
2`+ 1
2q + 1ξp(s)W

δ,δ
q (s). (4.123)

We eventually find that the expected value of the power spectrum estimator reads:

〈
P̂`(k)

〉
= 4π (−i)`

∫
s2dsj`(ks)ξc`(s) (4.124)

which is the formula we use to account for the window function effect in the model. The
correlation function multipoles entering Eq. (4.123) can be obtained by a simple inverse Hankel
transform of the theory power spectrum P`(k):

ξ`(s) = i`

2π2

∫
k2dkj`(ks)P`(k). (4.125)

4.2.2.2 Practical calculation

Hankel transforms Eq. (4.124) and Eq. (4.125) can be performed with a O(N logN) com-
plexity, with N the number of bins in the integral, using algorithms such as FFTLog (Hamilton,
2000) which we employ in this manuscript. This is opposed to the previous technique performing
a convolution in Fourier space, of complexity O(N2).

In practice, the infinite sum of Eq. (4.123) should be truncated. As in Beutler et al. (2017)
we only consider correlation function multipoles up to ` = 4, thereby limiting window function
multipoles to ` = 8. In this case:

ξc
0(s) = ξ0(s)Wδ,δ

0 (s) + 1
5ξ2(s)Wδ,δ

2 (s) + 1
9ξ4(s)Wδ,δ

4 (s) (4.126)

ξc
2(s) = ξ0(s)Wδ,δ

2 (s) + ξ2(s)
[
Wδ,δ

0 (s) + 2
7W

δ,δ
2 (s) + 2

7W
δ,δ
4 (s)

]
+ ξ4(s)

[2
7W

δ,δ
2 (s) + 100

693W
δ,δ
4 (s) + 25

143W
δ,δ
6 (s)

]
(4.127)

ξc
4(s) = ξ0(s)Wδ,δ

4 (s) + ξ2(s)
[18

35W
δ,δ
2 (s) + 20

77W
δ,δ
4 (s) + 45

143W
δ,δ
6 (s)

]
+ ξ4(s)

[
Wδ,δ

0 (s) + 20
77W

δ,δ
2 (s) + 162

1001W
δ,δ
4 (s) + 20

143W
δ,δ
6 (s) + 490

2431W
δ,δ
8 (s)

]
. (4.128)

We checked that adding ξ6(s) has a completely negligible impact on the model prediction in
practice.

Usually the survey selection function is not analytic and is instead sampled with a synthetic
catalogue, as mentioned in Section 4.1.6. Hence, the 2-point window function Wδ,δ

` is generally
estimated by computing the correlation function of this synthetic catalogue, as will be detailed
in Section 4.3.5.3.
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4.2.2.3 Normalisation

In the above derivation we have made clear that window functions Wδ,δ
` (s) (see Eq. (4.122))

should be normalised by A, the quantity that scales the power spectrum estimation. Instead,
previous BOSS and eBOSS analyses followed the suggestion of Wilson et al. (2017) who pro-
posed to normalise the 2-point window function in the limit s → 0, so as to recover the true
(unconvolved) power spectrum at small scales.However, the low s limit of Wδ,δ

` (s) may be ill-
defined in practice. Indeed, usually the survey selection function is described by a synthetic
catalogue, which should be very finely sampled to correctly estimate the window function at
small separation. In addition, with a synthetic catalogue of density ns, following the notations
in Section 4.1.6, the A term reads:

A = α2
∫
d3rn2

s(r) = α2
Ns∑
i=1

ws,ins,i. (4.129)

The estimation of the density ns(r) in Eq. (4.129) is in practice non-trivial when accounting for
various survey selection effects. For example, ns(r) is commonly taken to be the redshift density
n(z), computed by binning (weighted) data in redshift slices (as we will see in Section 5.3.1.7),
while it can also be a function of the angular position on the sky.

For these reasons, normalising Wδ,δ
` (s) to be 1 in the s → 0 limit, independently of the

normalisation A used in the power spectrum estimate would have led to errors of a few percent
in the cosmological parameter inference in eBOSS. In contrast, using term (4.129) in the norm-
alisation of window functions Wδ,δ

` (s) and W i,j
`p (s,∆), A terms divide both the power spectrum

measurements and model and compensate. Therefore, the estimation of A does not impact the
estimation of cosmological parameters.

4.2.3 Wide-angle effects

In Eq. (4.116) we have used the plane-parallel approximation s� x1, x2. This approximation
breaks down for wide-angle spectroscopic surveys, for which the maximum separation between
a pair of galaxies can be of the order of their distance to the observer, yielding distortions in
the power spectrum at large scales (with respect to the local plane-parallel limit).

Since we search for distortions on large scales, we can assume linear perturbation theory.
Then, the galaxy density contrast in redshift space δs(r) is related to that in real space δ(r)
through (Szalay et al., 1998; Castorina and White, 2018):

δs(r) = b

(
δ(r) + β

∂vr(r)
∂r

)
+ fα(r)vr(r) (4.130)

where vr = −u · r̂/ (fH) and β = f/b. Note that there is an additional term with respect to
Eq. (2.163): fα(r)vr(r), where α(r) = (2 + ∂ lnW (r)/∂ ln r) /r, with W the survey selection
function. This term arises because mass conservation is to be applied to the density W (1 + δ),
while in Eq. (2.160) we applied mass conservation to 1 + δ, assuming W to be constant. In this
manuscript we drop this term, though its impact should be remembered for future studies of
galaxy clustering on very large scales, e.g. focusing on primordial non-Gaussianity.

The following calculation requires to specify the triangle formed by a pair of galaxies and
the observer. This triangle is fully described by 3 scalar quantities, which can be the separation
s of the pair of galaxies, and two angles, θ and γ, as depicted in Figure 4.3.
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Figure 4.3 – Configuration of the triangle formed by the observer and a pair of galaxies, which we specify
with the separation (s = r) of the two galaxies, and the two angles, θ and γ. Taken from Szalay et al.
(1998).

In their pioneering work, Szalay et al. (1998) showed that the correlation function of δs reads:

ξ(s, θ, γ) = c0(θ, γ)Ξ0(s) + c2(θ, γ)Ξ2(s) + c4(θ, γ)Ξ4(s) (4.131)

where:
Ξ`(s) = b2i`

2π2

∫
k2dkj`(ks)P lin

m (k) (4.132)

with P lin
m (k) the linear matter power spectrum and:

c0(θ, γ) = 1 + 2
3β + 1

5β
2 − 4

15β
2 cos2 θ sin2 θ (4.133)

c2(θ, γ) =
(4

3β + 4
7β

2
)

cos 2θL2(cos γ) + 2
3

(
β − 1

7β
2 + 4

7β
2 sin2 θ

)
sin2 θ (4.134)

c4(θ, γ) = 8
35β

2L4(cos γ)− 4
21β

2 sin2 θL2(cos γ)− 1
5β

2
( 4

21 −
3
7 sin2 θ

)
sin2 θ. (4.135)

However, expressing ξ in redshift space as a function of three variables (separation and
two angles) instead of two (separation and one angle) as in Eq. (4.116) significantly slows down
practical computation. Hence, Reimberg et al. (2016) and Castorina and White (2018) proposed
to develop the θ dependence (which is expected to be small in practical applications) in powers
of the ratio of the pair separation to the distance. Namely, for a separation s = x1 − x2 and a
generic line of sight d:

ξ(x1,x2) =
∑
p,n

(
s

d

)n
ξ(n)
p (s)Lp(d̂ · ŝ) (4.136)
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of which Eq. (4.116) is the limit as s/d→ 0. In this framework, Eq. (4.123) simply rewrites:

ξc
` (s) =

∑
p,q,n

Aq`p
2`+ 1
2q + 1s

nξ(n)
p (s)Wδ,δ,(n)

q (s) (4.137)

where:

Wδ,δ,(n)
` (s) = 2`+ 1

4πA

∫
dΩs

∫
d3xd−nW (x)W (x− s)L`(d̂ · ŝ) (4.138)

In the case of the bisector line of sight, as shown with a dashed line in Figure 4.3, one can show
that (Castorina and White, 2018):

cos θ = 1−
(
1− µ2

b

)
ε2b

8 + o(ε2b) (4.139)

where εb = s/d and µb = cos γ. Substituting this expression into Eq. (4.131) which we project
onto the Legendre multipoles yields:

ξ0(s, d) =
(

1 + 2
3β + 1

5β
2
)

Ξ0(s) +
(
s

d

)2 [
− 4

45β
2Ξ0(s) +

(1
5β + 1

45β
2
)

Ξ2(s)
]

(4.140)

ξ2(s, d) =
(4

3β + 4
7β

2
)

Ξ2(s) +
(
s

d

)2 [ 4
45β

2Ξ0(s) +
(
−3

7β −
53
441β

2
)

Ξ2(s)− 4
245β

2Ξ4(s)
]

(4.141)

ξ4(s, d) = 8
35β

2Ξ4(s) +
(
s

d

)2 [( 8
35β + 24

245β
2
)

Ξ2(s) + 4
245β

2Ξ4(s)
]
, (4.142)

all other multipoles being zero. Of course, the zeroth order terms correspond to the linear
perturbation theory prediction for the multipoles of the correlation function in the local plane-
parallel approximation. The identification of ξ(n)

p (s) of Eq. (4.136) in the above formulae is
straightforward. Note that first corrections to the local plane-parallel approximation are second
order and no odd multipoles are generated (as expected by symmetry of the line of sight definition
with respect to the pair of galaxies). We could do the same exercise with the midpoint line of
sight where d = xm = (r1 + r2) /2 in Figure 4.3. In this case, εm and µm are related to those of
the bisector line of sight through (Castorina and White, 2018):

εb = εm

[
1 + µ2

mε
2
m

4 + · · ·
]

(4.143)

µb = µm

[
1 + ε2m

4
(
1− µ2

m

)
+ · · ·

]
(4.144)

In this case again, first corrections to the local plane-parallel approximation are second order and
no odd multipoles are generated. In the case of the endpoint line of sight (d = r1 in Figure 4.3):

εb = εe

[
1 + µeεe

2 + · · ·
]

(4.145)

µb = µe −
r1
2
(
1− µ2

e

)
+ · · · (4.146)
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which yields odd multipoles:

ξ0(s, d) = ξ
(0)
0 (s) +

(
s

d

)2 [ 4
15β + 4

35β
2
]

Ξ2(s) (4.147)

ξ1(s, d) =
(
s

d

)[
−4

5β −
12
35β

2
]

Ξ2(s) (4.148)

ξ2(s, d) = ξ
(0)
2 (s) +

(
s

d

)2 [(
− 8

21β −
8
49β

2
)

Ξ2(s) + 8
49β

2Ξ4(s)
]

(4.149)

ξ3(s, d) =
(
s

d

)[(4
5β + 12

35β
2
)

Ξ2(s)− 16
63β

2Ξ4(s)
]

(4.150)

ξ4(s, d) = ξ
(0)
4 (s) +

(
s

d

)2 [( 4
35β + 12

245β
2
)

Ξ2(s) + 144
539β

2Ξ4(s)
]

(4.151)

Corrections to odd multipoles are first order in s/d while corrections to even multipoles remain
at second order in s/d.

As demonstrated in Beutler et al. (2019), the above odd multipoles of the correlation function
couple to the odd multipoles of the window function, leading to first order corrections to the
even multipoles of the window-convolved correlation function (4.137).

4.2.4 Irregular µ sampling

As mentioned in Section 4.1.6, power spectrum multipoles are calculated on a discrete k-
space mesh, making the angular modes distribution irregular at large scales (low k). We account
for this effect in the model using the technique employed in Beutler et al. (2017) which weights
each (k, µ) mode according to its sampling rate N(k, µ) in the k-space mesh M:

PM (k, µ) = 2N(k, µ)∫ 1
−1 dµN(k, µ)

P (k, µ) (4.152)

with the piecewise function:

N(k, µ) = |{ki(k) ≤ m < ki+1(k) &µi(µ) ≤ m̂ · η̂ < µi+1(µ)|m ∈M}| , (4.153)

where ki(k) and ki+1(k) are the lower and upper bounds of a k-bin containing k (similarly for
µ), m is a vector from the mesh M and η̂ is the considered line of sight. In the case of a varying
line of sight as in Eq. (4.71), we average N(k, µ) over the lines of sight of all the objects in the
synthetic catalogue sampling the survey selection function. Though this correction should be
applied after the convolution by the window function, as in Beutler et al. (2017), for the sake
of computing time we include it when integrating the galaxy power spectrum over the Legendre
polynomials in Eq. (4.112).

4.2.5 Complete model for the measured power spectrum

Let us recap the full theoretical model, including all geometry corrections.
As detailed in Section 2.4.3, the redshift space power spectrum is given by Eq. (2.198).

However, the galaxy power spectrum is measured assuming a fiducial cosmology which does not
necessarily match the true one, as explained in Section 4.2.1. The power spectrum prediction
in the fiducial space is hence given by the AP transform (4.112), where we include the effect
of the irregular µ sampling as described in Section 4.2.4. Since the power spectra in the model
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prediction are calculated once, within the fiducial cosmology, we leave the scaling parameters
q‖ and q⊥ free. These parameters are sensitive to α‖ and α⊥, as given by Eq. (4.113). Finally,
the measured power spectrum is modulated by the survey selection function, which we take into
account in the model using Eq. (4.124). In this equation, ξ`(s) is the Hankel transform of the
theoretical power spectrum, after AP transform and inclusion of the irregular µ sampling. We
also implemented wide-angle effects, though we did not take them into account in practice, as
we found their impact to be negligible for our analyses.

Fitted cosmological parameters are the logarithmic growth rate of structure f and the scaling
parameters α‖ and α⊥. As explained in Section 2.4.3, we consider 4 nuisance parameters: the
linear and second order biases b1 and b2, the velocity dispersion σv and Ag = Ng/P

noise
0 , with Ng

the constant galaxy stochastic term (see Eq. (2.150)) and P noise
0 the measured Poisson shot noise

(see Eq. (4.67)). We quote the combinations fσ8, b1σ8 and b2σ8, as mentioned in Section 2.4.3.
We implemented this complete model in a Python package pyspectrum 5.
The model is compared to the data using a Gaussian likelihood (except otherwise stated).

Minimisations are performed using the algorithm Minuit (James and Roos, 1975; iminuit team,
iminuit team), taking large variation intervals for all parameters. We systematically check that
the fitted parameters do not reach the input boundaries. In Chapter 5 we also run Monte Carlo
Markov Chains (MCMC) to sample the posterior distribution with the package emcee (Foreman-
Mackey et al., 2013). We implemented these options in a coherent framework, montelss 6.
pyspectrum and montelss were used in eBOSS ELG (de Mattia et al., 2020) and QSO (Neveux
et al., 2020) Fourier space analyses.

4.3 Integral constraints

As detailed in the previous section, spectroscopic surveys are not exhaustive and are char-
acterised by a selection function W (r), giving the expected density of observed galaxies at any
redshift space position r in the absence of clustering. In case one has a full knowledge of this
selection function, density fluctuations can be fairly estimated by the difference of the observed
density of galaxies to W (r). In particular, density fluctuations averaged on the whole survey
footprint can be non-zero, due to large scale clustering modes.

However, the true survey selection function is difficult to determine in practice. Its norm,
i.e. the expected mean density of galaxies, may be unknown. It is commonly taken to be the
actually observed mean data density. Thus, the integral of the inferred density fluctuations over
the whole survey footprint is set to zero, leading to a so-called integral constraint (IC) (Peacock
and Nicholson, 1991; Wilson et al., 2017), referred to as global IC in the following. Similarly,
the radial survey selection function may be estimated from the data itself, as in the clustering
analyses of the BOSS (e.g. Gil-Marín et al., 2016; Beutler et al., 2017; Alam et al., 2017) and
eBOSS (e.g. Ata et al., 2018; Zarrouk et al., 2018) surveys. We propose to treat this effect as
another integral constraint, dubbed radial IC, to be included in the model power spectrum.

This section relies on our original work de Mattia and Ruhlmann-Kleider (2019).

5. at https://github.com/adematti/montelss/tree/master/pyspectrum
6. at https://github.com/adematti/montelss

https://github.com/adematti/montelss/tree/master/pyspectrum
https://github.com/adematti/montelss
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4.3.1 Impact of the global integral constraint on the observed density fluc-
tuations

The power spectrum estimator is based on the FKP field (4.62):

F (r) = ng(r)− αns(r) (4.154)

where we recall that ng(r) and ns(r) denote respectively the density of observed and ran-
dom galaxies, including weighting, e.g. corrections for systematics effects (see Chapter 5) or
a redshift weighting scheme, such as FKP weights. The observed galaxy density is ng(r) =
W (r) {1 + δ(r)}, with W (r) the survey selection function and δ(r) the density contrast. We
recall that W (r) describes the expected density of observed, possibly weighted, galaxies in the
absence of clustering. We assume the shape of the survey selection function is known, and
sampled by the (weighted) synthetic catalogue: ns(r) ∝W (r).

In Section 4.1.6 we defined α as the expected value (see Eq. (4.61)):

α =
〈∫
d3xng(x)

〉∫
d3xns(x) . (4.155)

However, the total number of galaxies
〈∫
d3xng(x)

〉
is very difficult to predict as it depends

on the luminosity function, the target selection and the full instrumental setup. Therefore, in
practice, the scaling α is taken to be the volume average:

α =
∫
d3xng(x)∫
d3xns(x) =

∑Ng
i=1wg,i∑Ns
i=1ws,i

. (4.156)

with Ng, Ns and wg,i, ws,i the number and weights of observed and random galaxies, respect-
ively. Then, the observed window-convolved, integral-constraint-corrected (subscript cic) density
fluctuations are (Peacock and Nicholson, 1991; Beutler et al., 2014):

δcic(r) = ng(r)− αns(r)

= W (r) {1 + δ(r)} −W (r)
∫
d3xW (x) {1 + δ(x)}∫

d3xW (x)

= W (r)
{
δ(r)−

∫
d3xWglo(x)δ(x)

}
,

(4.157)

with Wglo(r) = W (r)∫
d3xW (x) .

We find two terms, δc(r) = W (r)δ(r) corresponding to the density contrast weighted by
the selection function, and the integral constraint term

∫
d3rWglo(r)δ(r). The normalisation of

Wglo(r) ensures that
∫
d3rδcic(r) = 0 over the entire footprint: modes larger than the survey size

are suppressed.

4.3.2 Extension to the radial integral constraint

The true radial selection function of a spectroscopic survey is often a complex function
of the luminosity function, sky lines, spectrograph efficiency and redshift determination al-
gorithm (Blake et al., 2010). As an example, in BOSS, the radial distribution of the synthetic
catalogue is directly inferred from the data. Various techniques exist: random redshifts can be
picked from the whole data redshift distribution (the so-called shuffled scheme, see Samushia
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et al. 2012; Ross et al. 2012; Reid et al. 2016), or, assuming the true radial selection func-
tion should be somewhat smooth, it can be fitted by a spline from which random redshifts are
drawn (Samushia et al., 2012; Ross et al., 2012). A third possibility (binned scheme) is to weight
an arbitrary initial random redshift distribution by α(r) (with r = |r|) to match the data radial
density in redshift or comoving distance bins of size δr, below which variations of W (r) are
neglected. Here, α(r) is given by:

α(r) =
∫
d3xng(x)εrad(r, x)∫
d3xns(x)εrad(r, x) , (4.158)

where εrad(r, x) is 1 if r and x belong to the same radial bin, 0 otherwise. In the limit δr → 0
could take εrad(r, x) = δ

(1)
D (r−x). By construction, the radially-normalised random density and

true selection function match:

ns(r)∫
d3xns(x)εrad(r, x) = W (r)∫

d3xW (x)εrad(r, x) . (4.159)

Then, the following density fluctuations are observed:

δcic(r) = ng(r)− α(r)ns(r)

= W (r) {1 + δ(r)} −W (r)
∫
d3xW (x) {1 + δ(x)} εrad(r, x)∫

d3xW (x)εrad(r, x)

= W (r)
{
δ(r)−

∫
d3xWrad(x)δ(x)εrad(r, x)

}
,

(4.160)

with Wrad(r) = W (r)∫
d3xW (x)εrad(r,x) . Note that the global integral constraint is also automatically

imposed.
Eq. (4.157) for the global IC and Eq. (4.160) for the radial IC can be recast in the following

form:

δcic(r) = W (r)
{
δ(r)−

∫
d3xWic(x)δ(x)εic(r,x)

}
, (4.161)

with εic(r,x) some generic window function (εglo(r,x) = 1 for the global integral constraint,
εrad(r, x) for the radial one), and:

Wic(r) = W (r)∫
d3xW (x)εic(r,x) . (4.162)

The general expression for the observed density fluctuations (4.161) will be used in the following
section to calculate the effect of integral constraints on 2-point statistics.

4.3.3 Impact on the 2-point statistics

As a warm-up let us first compute the correlation function ξcic(s) of the observed density
fluctuations (4.161). As W (r) is uncorrelated with δ(r), ξcic(s) can be expressed as (dropping
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the normalisation factor A (4.68)):

ξcic(s) =
∫
d3xW (x)W (x− s)ξ(s) (4.163)

−
∫
d3∆ξ(∆)

∫
d3xW (x)W (x− s)Wic(x−∆)εic(x− s,x−∆) (4.164)

−
∫
d3∆ξ(∆)

∫
d3xW (x)W (x + s)Wic(x−∆)εic(x + s,x−∆) (4.165)

+
∫
d3∆ξ(∆)

∫
d3xW (x)W (x− s)∫

d3yWic(y)Wic(y−∆)εic(x,y)εic(x− s,y−∆). (4.166)

Term (4.163) is the true correlation function ξ(s) multiplied by the window function, which we
described in Section 4.2.2, specifically Eq. (4.123). Cross-terms (4.164) and (4.165) account for
the correlation between the density field and the integral constraint term of Eq. (4.161). Finally,
term (4.166) accounts for the auto-correlation of the integral term in Eq. (4.161).

To go further one has to specify the line of sight definition. Therefore, let us directly work
with the power spectrum estimator. As shown in the previous section, the first term (4.163)
yields Eq. (4.124) with the window-convolved correlation function as given by Eq. (4.137) when
using the endpoint line of sight. The first cross-term Eq. (4.164) reads (in Fourier space and
with the endpoint line of sight r̂1):

ICδ,ic` (k) = 2`+ 1
4πA

∫
dΩk

∫
d3r1

∫
d3r2

∫
d3r3e

−ik·(r1−r2) 〈δ(r1)δ(r3)〉

W (r1)W (r2)Wic(r3)L`(k̂ · r̂1)εic(r2, r3) (4.167)

where the normalisation factor A is reintroduced. Defining ∆ = r1− r3 and s = r1− r2, we can
write (see Eq. (4.136)):

〈δ(r1)δ(r3)〉 =
∑
n,p

(∆
r1

)n
ξep,(n)
p (∆)Lp(r̂1 · ∆̂) (4.168)

where we recall the sum over n corresponds to wide-angle corrections. Using the Rayleigh plane
wave expansion Eq. (4.118) and Eq. (4.119) we find:

ICδ,ic` (k) = 2`+ 1
A

(−i)`
∫
d3sj`(ks)

∑
p,n

∫
d3∆∆nξep,(n)

p (∆)∫
d3r1r

−n
1 W (r1)W (r1 − s)Wic(r1 −∆)L`(r̂1 · ŝ)Lp(r̂1 · ∆̂)εic(r1 − s, r1 −∆). (4.169)

ICδ,ic` (k) is simply equal to the Hankel transform:

ICi,j` (k) = 4π(−i)`
∫
s2dsj`(ks)

∫
∆2d∆

∑
p,n

4π
2p+ 1∆nξep,(n)

p (∆)W i,j,(n)
`p (s,∆) (4.170)

with (i, j) = (δ, ic), where we used:

Wδ,ic,(n)
`p (s,∆) = (2`+ 1)(2p+ 1)

(4π)2A

∫
dΩs

∫
dΩ∆∫

d3xx−nW (x)W (x− s)Wic(x−∆)L`(x̂ · ŝ)Lp(x̂ · ∆̂)εic(x− s,x−∆). (4.171)
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By symmetry, the even multipoles of the second cross-term (ic, δ) would be equal to those of the
first one in the case of the midpoint line of sight. This is not the case with the endpoint line of
sight. Indeed:

IC ic,δ
` (k) = 2`+ 1

4πA

∫
dΩk

∫
d3r1

∫
d3r2

∫
d3r3e

−ik·(r1−r2) 〈δ(r2)δ(r3)〉

W (r1)W (r2)Wic(r3)L`(k̂ · r̂1)εic(r1, r3) (4.172)

gives:

IC ic,δ
` (k) = 2`+ 1

A
(−i)`

∫
d3sj`(ks)

∑
p,n

∫
d3∆∆nξep,(n)

p (∆)∫
d3r2r

−n
2 W (r2 + s)W (r2)Wic(r2 −∆)L`(r̂1 · ŝ)Lp(r̂2 · ∆̂)εic(r2 + s, r2 −∆) (4.173)

with s = r1 − r2, ∆ = r2 − r3. Taking the opposite s→ −s and defining:

W ic,δ,(n)
`p (s,∆) = (2`+ 1)(2p+ 1)

(4π)2A

∫
dΩs

∫
dΩ∆∫

d3xx−nW (x)W (x− s)Wic(x−∆)L`(x̂− s · (−ŝ))Lp(x̂ · ∆̂)εic(x− s,x−∆) (4.174)

we obtain the integral constraint correction (4.170), with (i, j) = (ic, δ). Let us move to the last
term (4.166):

IC ic,ic
` (k) = 2`+ 1

4πA

∫
dΩk

∫
d3r1

∫
d3r2

∫
d3r3

∫
d3r4e

−ik·(r1−r2) 〈δ(r3)δ(r4)〉

W (r1)W (r2)Wic(r3)Wic(r4)L`(k̂ · r̂1)εic(r1, r3)εic(r2, r4) (4.175)

gives:

IC ic,ic
` (k) = 2`+ 1

4πA (−i)`
∫
d3sj`(ks)

∑
p,n

∫
d3∆∆nξep,(n)

p (∆)
∫
d3r1W (r1)W (r1 − s)∫

d3r3r
−n
3 Wic(r3)Wic(r3 −∆)L`(r̂1 · ŝ)Lp(r̂3 · ∆̂)εic(r1, r3)εic(r1 − s, r3 −∆) (4.176)

with s = r1 − r2, ∆ = r3 − r4. This is Eq. (4.170) with (i, j) = (ic, ic) if we define:

W ic,ic,(n)
`p (s,∆) = (2`+ 1)(2p+ 1)

(4π)2A

∫
dΩs

∫
dΩ∆

∫
d3yW (y)W (y− s)∫

d3xx−nWic(x)Wic(x−∆)L`(ŷ · ŝ)Lp(x̂ · ∆̂)εic(y,x)εic(y− s,x−∆). (4.177)

To summarise, the window-convolved, integral-constraint corrected power spectrum reads:

P cic
` (k) = 4π(−i)`

∫
s2dsj`(ks)ξcic

` (s) (4.178)

with ξcic
` given by:

ξcic
` (s) = ξc

` (s)− IC
δ,ic
` (s)− IC ic,δ

` (s) + IC ic,ic
` (s) (4.179)
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In this equation, we recall that (see Eq. (4.137)):

ξc
` (s) =

∑
p,q,n

Aq`p
2`+ 1
2q + 1s

nξ(n)
p (s)Wδ,δ,(n)

q (s), (4.180)

and:
ICi,j` (s) =

∫
∆2d∆

∑
p,n

4π
2p+ 1∆nξep,(n)

p (∆)W i,j,(n)
`p (s,∆). (4.181)

To speed up practical calculations, since ICi,j` (s) are linear in ξ
ep,(n)
p , W i,j,(n)

`p can be directly
summed over (i, j) ∈ {(δ, ic), (ic, δ), (ic, ic)} to yield a single IC`(s) term. In the specific case of
the global integral constraint (εic(r,x) = 1), the window function (4.177) is separable and:

ICglo,glo
` (k) =

∫
∆2d∆ξc

0(∆)∫
∆2d∆Wδ,δ,(0)

0 (∆)
Wδ,δ,(0)
` (k). (4.182)

withWδ,δ,(0)
` (k) the Hankel transform ofWδ,δ,(0)

` (s) introduced in Eq. (4.138). As noted by Beut-
ler et al. (2019), this is correct at any order n included in the calculation of ξc

0(∆).
The line of sight definition in Wδ,δ,(n)

` (s) of Eq. (4.138), and the first line of sight in
W i,j,(n)
`p (s,∆) of Eq. (4.171), (4.177) and (4.177), used to define the cosine angle with the separ-

ation vector s, should be the same as in the power spectrum (or correlation function) estimator.
Conversely, the line of sight connecting ξep,(n)

p (∆) to W i,j,(n)
`p (s,∆), defining the cosine angle

with the separation vector ∆, is a purely practical choice. Our calculations use the endpoint
line of sight, but the derivation with any line of sight d is straightforward by replacing x−n
in Eq. (4.171), (4.174) and (4.177) by d−n, changing the arguments of Legendre polynomials
accordingly and taking the corresponding ξd,(n)

p (∆) in Eq. (4.170). In particular, taking the mid-
point line of sight makes first order (n = 1) wide-angle corrections vanish and makes Eq. (4.171)
and Eq. (4.174) equal.

We have used the endpoint line of sight as second line of sight in W i,j,(n)
`p (s,∆). With this

choice, by definition, the integral constraint corrections completely cancel with the convolved
power spectrum monopole P c

0 (k) on large scales. This would only be asymptotically true (as
the wide-angle correction order n → +∞) if a different line of sight definition was used in
Wδ,δ,(n)
` (s) and W i,j,(n)

`p (s,∆). As mentioned in Section 4.2.5, we restrict ourselves to the zeroth
order (n = 0) wide-angle expansion as we will show it to be a fair approximation for a typical
BOSS-like survey. Let us see how the above results compare to previous ones in the next section.

4.3.4 Discussion

The global integral constraint was first discussed in Peacock and Nicholson (1991); Beutler
et al. (2014); Wilson et al. (2017), who expressed the observed window-convolved, integral-
constraint-corrected power spectrum as:

P cic(k) = P c(k)− P c(0) |W (k)|2 (4.183)

with P c(k) the window-convolved power spectrum. W (k) is the (Fourier transform of) the
survey selection function, rescaled by imposing |W (k)|2 = 1 when k → 0, so that P cic(k) → 0
as k → 0. Only one correction term is assumed, P c(0)|W (k)|2, while our complete derivation
yields 3 terms, see Eq. (4.179) with ic = glo.

The multipoles of the integral constraint correction P c(0)|W (k)|2 of Eq. (4.183) are actually
exactly equal to our last correction term, ICglo,glo

` (k) (4.182). However, Eq. (4.183) introduces a
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minus sign in front of P c(0)|W (k)|2 to obtain a damping of the power spectrum at large scales.
Instead, in our Eq. (4.179), ICglo,glo

` (s), which accounts for the auto-correlation of the density
contrast integral over the footprint, leads to an increase of power at large scales. Damping of
power comes from the two other terms −ICδ,glo

` (s) − ICglo,δ
` (s) which correspond to the cross-

correlations between the density contrast and its integral over the footprint, respectively. Finally,
note that our full derivation of the integral constraint effect makes it clear that the correction
P c(0)|W (k)|2, with W describing the full survey footprint, is no longer valid if this footprint is
composed of different chunks with separate normalisation factors (4.156). Indeed, in this case,
εglo(r,x) is 1 if r and x belong to the same chunk and integrals of term (4.177) cannot be split
as in Eq. (4.182); the resulting global IC effect is then larger.

We detail the different terms contributing to the global integral constraint on Figure 4.4
(left). As will be described in Section 4.3.6, in this figure, global and radial integral constraints
are modelled for a BOSS CMASS-like survey footprint divided in 6 chunks (which is encoded in
εic(r,x)). We also include the shot noise correction as will be explained in Section 4.3.5.2. As
expected, on large scales, the window-convolved, integral-constraint-corrected monopole reaches
0. The effect of the complete global integral constraint is negligible at the scales involved in a
RSD analysis (k & 0.01 h Mpc−1), but is significant at large scales. As also shown in this figure,
taking only −ICglo,glo

` , as in Eq. (4.183), for the global integral constraint correction (4.179)
appears to be a very legitimate approximation in the illustrated survey case 7.

Figure 4.4 – Left: power spectrum multipoles (blue: monopole, orange: quadrupole, green: hexadecapole)
including the different contributions to the global integral constraint (see text). The complete result
(−ICδ,glo

` − ICglo,δ
` , dot-dashed curve) cannot be distinguished from the partial correction (−ICglo,δ

` ,
dashed). Right: same, with the radial integral constraint. See Section 4.3.6 for more details about the
survey configuration assumed in this figure.

Figure 4.4 (right) displays the different contributions to the radial integral constraint. Com-
pared to the global IC, the radial IC has a larger effect on a broader range of wavenumbers,
especially in the quadrupole and hexadecapole. We may thus expect a non-negligible impact of
the radial integral constraint on clustering measurements in the illustrated case.

7. We checked that this remains a good approximation for the radial integral constraint, as can be inferred
from Figure 4.4 (right, dot-dashed and dashed curves). However, we observed that this approximation fails to
account for the angular integral constraint described in Section 4.3.7.
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4.3.5 Computing window functions

This section is devoted to the practical computation of window functions Wδ,δ,(n)
` (s) and

W i,j,(n)
`p (s,∆) ((i, j) ∈ {(δ, ic), (ic, δ), (ic, ic)}) required in Section 4.3.3. We first argue that a

reasonable approximation for the true survey selection function can be inferred from data. We
then detail the contribution from Poisson shot noise. Finally, we present algorithms required
to compute these window functions from a synthetic catalogue sampling the survey selection
function.

4.3.5.1 Approaching the true survey selection function

Our derivation of integral constraint corrections makes use of the true, underlying, survey
selection function W (r). However, as we mentioned previously, one has often only access to a
synthetic catalogue whose density ns(r) is tuned to match the actual data in certain regions
(chunks, or radial bins for the radial IC). Thus, clustering modes inprinted in the data distri-
bution are propagated to this synthetic catalogue. Using ns(r) for W (r) does not change the
value of Wic(r) as it is normalised in regions where the integral constraint is imposed, i.e. where
the expected mean of ns(r) is unknown. However, if that tuned ns(r) is taken for W (r), the
calculated window effect and integral constraint corrections statistically differ from the truth.

We can provide some estimate for this bias in the dominant term (4.123). The density ns(r)
tuned on the actual data can be expressed as (see Eq. (4.157) and (4.160)):

ns(r) = W (r)
{

1 +
∫
d3xWic(x)δ(x)εic(r,x)

}
, (4.184)

whereWic(r) can be described by ns,ic(r) = ns(r)∫
d3xns(x)εic(r,x) . Then, the multipoles of the 2-point

window function estimated from ns(r) can be written:

Sδ,δ,(0)
` (s) =Wδ,δ,(0)

` (s) + IC ic,ic
` (s). (4.185)

Taking ns(r) for W (r) in IC ic,ic
` (s), Eq. (4.185) provides an estimate forWδ,δ,(0)

` (s) at first order
in the integral constraint corrections. A relation similar to Eq. (4.185) holds for any wide-angle
correction order m, Sδ,δ,(m)

` (s) = Wδ,δ,(m)
` (s) + IC ic,ic

` (s), provided W ic,ic,(n)
`p (see Eq. (4.177))

entering IC ic,ic
` (s) (see Eq. (4.176)) is replaced by:

W ic,ic,(m),(n)
`p (s,∆) = (2`+ 1)(2p+ 1)

(4π)2A

∫
dΩs

∫
dΩ∆

∫
d3yy−mW (y)W (y− s)∫

d3xx−nWic(x)Wic(x−∆)L`(ŷ · ŝ)Lp(x̂ · ∆̂)εic(y,x)εic(y− s,x−∆) (4.186)

(and similarly for other line of sight definitions).
Note that such a dependence of the estimation of window effects and integral constraint

corrections in the observed clustering also yields a change in the variance of cosmological meas-
urements, whose study is beyond the scope of this manuscript.

4.3.5.2 Shot noise

In principle, formulae given in Section 4.3.3 (and Eq. (4.185)) fully describe integral con-
straint corrections. However, they are derived in real space, where accounting for a Poisson shot
noise term (a spike at s = 0) is numerically challenging.
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The shot noise contribution to the correlation function weighted by the window function
only shows up in the monopole (see Eq. (4.65)):

ξc
0(s) 3

∫
d3xW (x)w(x)δ(3)

D (s) (4.187)

where w(x) is the total (data and random 8) weight at position x. In Fourier space, this translates
in a simple offset in the monopole. However, the shot noise contribution to the integral constraint
correction leaks on all scales of all multipoles:

ICi,j` (s) 3 SN i,j
` (s) (i, j) ∈ {(δ, ic), (ic, δ), (ic, ic)}, (4.188)

with:

SN ic,δ
` (s) = 2`+ 1

4π

∫
dΩs

∫
d3xW (x)wic(x)W (x + s)L`(x̂ · ŝ)εic(x,x + s) (4.189)

and

SN ic,ic
` (s) = 2`+ 1

4π

∫
dΩs

∫
d3xW (x)W (x + s)∫

d3yWic(y)wic(y)L`(x̂ · ŝ)εic(x,y)εic(x + s,y), (4.190)

where we used wic(r) = w(r)∫
d3xW (x)εic(r,x) and considered the endpoint line of sight x̂.

Integrals over s of shot noise contributions to ξc
0(s) and ICi,j` (s) are equal, such that total

shot noise contributions vanish as k → 0, as expected. In practice, we choose to normalise
terms (4.187) and (4.188) by their integral over s 9, and multiply them by the shot noise measured
by the Yamamoto estimator (4.67).

The impact of the global and radial integral constraints on shot noise is shown in Figure 4.5.
By definition, the total shot noise reaches 0 as k → 0 in the monopole. The impact of the RIC
on the quadrupole and hexadecapole shot noise should not be ignored.

Note that a common practice of Fourier space clustering analyses is to remove the shot noise
contribution from the power spectrum monopole measurement (see Eq. (4.67)). However, as
shown above, the shot noise term is not a simple constant anymore once integral constraints are
accounted for. Therefore, in this manuscript, we compare the power spectrum measurements
with their shot noise and add up in the model the shot noise as described above.

4.3.5.3 Calculation of window functions from a synthetic catalogue

The survey selection function entering window functionsWδ,δ,(n)
` (s) andW i,j,(n)

`p (s,∆) ((i, j) ∈
{(δ, ic), (ic, δ), (ic, ic)}) required in Section 4.3.3 can be randomly sampled by a synthetic cata-
logue. We implement a classic pair-count algorithm to compute the anisotropic 2-point correl-
ation and the algorithm from Slepian and Eisenstein (2018) to compute the anisotropic 3-point
correlation of the synthetic catalogue. Lines of sight are defined according to the Yamamoto
power spectrum estimator which we use for clustering measurements.

8. The total shot noise estimate (Eq. (4.187) and (4.188)) is valid in the limit of infinite random density, but
appears to be a legitimate approximation if the random density is high enough, as shown by our cosmological fits
in Section 4.3.6.3, 4.3.7.2, and 4.3.7.3.

9. In the case W is sampled by a synthetic catalogue, the normalisation for SN ic,δ
` (s) and SN ic,ic

` (s) is the
(weighted) number of correlated pairs.
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Figure 4.5 – Shot noise with the global (dashed lines) and radial (dotted lines) integral constraints (blue:
monopole, orange: quadrupole, green: hexadecapole), relative to the standard Poisson shot noise P noise

0
of Eq. (4.67), which we normalised to 1. As expected, the standard, constant, shot noise term is cancelled
by the integral constraint contribution at large scales. The same survey case as in Figure 4.4 is assumed.

Pairs (or triplets) of random objects are binned in comoving distance bins of typical size
1 Mpc h−1 (forWδ,δ,(n)

` (s)) to 4 Mpc h−1 (forW i,j,(n)
`p (s,∆)); the result is divided by the comoving

volume of each distance bin to recover density, renormalised to data counts (by multiplying by
α2), and divided by the normalisation factor A.

Window function calculations W i,j,(n)
`p (s,∆) involving εic(r,x) are performed by correlating

random objects at position r with random objects at position x satisfying εic(r,x) 6= 0, i.e.
residing in the same spatial bin.

Figure 4.6 – Left: the window function multipoles Wδ,δ,(0)
` (s) convolving (in Fourier space) the power

spectrum. Right: the window function multipoles Wrad,rad,(0)
`p (s,∆) entering the integral constraints.

We show examples of Wδ,δ,(0)
` (s) and Wrad,rad,(0)

`p (s,∆) in Figure 4.6. All window functions
(for the global and radial integral constraints) could be accurately computed in ' 1500 CPU
hours.

We can also take advantage of the usual feature of survey selection functions W (x), namely
that they are separable into an angular and a radial parts. Then, we can compute the angular
2 or 3-point correlation function of the survey selection function and perform the integration
over the footprint depth. This (less noisy) method yields similar results as the one described
above and can be faster in the case of the wide-angle expansion, where the window functions
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Wδ,δ,(n)
` (s) and W i,j,(n)

`p (s,∆) of different orders n can be calculated from the same angular
correlation functions.

We implemented all the algorithms required to compute the 2- and 3-point correlation func-
tions of the survey selection function in a coherent C code, wrapped into Python, dubbed
pycute 10.

4.3.6 Radial integral constraint in RSD analyses

In this section we discuss the impact of the radial integral constraint on Fourier-space RSD
measurements, and show that Eq. (4.179), along with practical details developed in Section 4.3.5,
helps us recover an unbiased estimation of cosmological parameters. We consider three sets of
mock catalogues: the baseline mocks for measurements including only the global IC, and the
binned and shuffled mocks for the radial one. These mocks are described in Section 4.3.6.1, while
details about power spectrum measurements and the RSD modelling are given in Section 4.3.6.2.
Cosmological fits are performed in Section 4.3.6.3. We discuss the potential impact of the radial
integral constraint on other clustering analyses in Section 4.3.6.4.

4.3.6.1 Mock catalogues

We work on a set of 84 high fidelity N-series mocks used for the LRG clustering mock
challenge (Tinker, 2016) of the BOSS Data Release 12 (DR12) (Alam et al., 2017). These mocks
were built from the 3 projections of 7 independent, periodic box realisations of side 2600 Mpc h−1

at redshift z = 0.5. The simulated cosmology is a flat ΛCDM model with:

h = 0.7, Ωm,0 = 0.286, ωb,0 = 0.02303,
σ8,0 = 0.82, ns = 0.96.

(4.191)

Simulations were run with the GADGET2 code (Springel, 2005), and a HOD modelling was
used to populate dark matter halos with galaxies, mimicking the observed clustering in data.

The covariance matrix required for cosmological fits is built from 2048 Multidark Patchy
mocks provided by the BOSS collaboration. These approximate mocks were calibrated on Big-
MultiDark simulations (Klypin et al., 2016); halo abundance matching was applied to reproduce
the 2- and 3-point clustering measurements and mocks at different redshifts were combined into
light cones (Kitaura et al., 2016). We use V6C catalogues, which were adjusted to reproduce the
data clustering measurements. These mocks are also used to compute the standard deviation
(blue shaded area) shown in Figure 4.8, 4.13 and the error bars plotted in Figure 4.11.

Both N-series and Multidark Patchy mocks were trimmed following the DR12 CMASS NGC
(hereafter abbreviated by CMASS) selection function using the make_survey software (White
et al., 2014). We impose integral constraints consistently on N-series and Multidark Patchy
mocks in each series of cosmological fits. Baseline mocks are obtained by using a random
catalogue sampling the true survey selection function, normalised according to Eq. (4.156), so
that those mocks are impacted by the global integral constraint only. The binned or shuffled
schemes are used to impose the radial integral constraint. In the shuffled scheme, random
redshifts are drawn from each mock data realisation. In the binned scheme, random galaxies
are weighted to reproduce the mock data radial distribution in comoving distance bins of size
δr = 2 Mpc h−1.

10. at https://github.com/adematti/pycute

https://github.com/adematti/pycute
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To enhance the radial integral constraint effect coming from the binned or shuffled schemes,
we divide the CMASS footprint (' 7420 deg2) in 6 smaller chunks of size ranging from '
980 deg2 to ' 1570 deg2 (see Figure 4.7), areas representative of the 4 chunks of the eBOSS
ELG survey (Raichoor et al., 2017). The binned or shuffled schemes are applied to the 6
chunks separately, before these are recombined in a single catalogue used for the power spectrum
measurement. This procedure, though not representative of the real BOSS DR12 analysis, allows
us to test our modelling of the radial integral constraint in stringent conditions.

One can appreciate the difference between the true survey selection function (continuous
black curve in Figure 4.7) and those measured from one mock realisation (dashed black curve
for full CMASS and colored dashed curves for each chunk). Future spectroscopic surveys like
DESI will be very wide. Their angular selection function may hence vary on the sky, depending
on e.g. the photometric depth achieved. Modelling these variations may indeed require to
combine small patches with locally constant radial selection functions.

Figure 4.7 – Left: the CMASS footprint, divided in 6 different chunks. Right: different estimates of the
redshift density n(z), using bins ∆z = 0.005: the redshift density of the true survey selection function
(continuous black curve), and, for one mock data realisation, n(z) measured in the whole CMASS footprint
(dashed black curve) and in the 6 chunks individually. The scatter between the n(z) estimates is due to
noise and clustering.

We apply FKP weights wFKP(z) = 1/ (1 + n(z)P0) to both mock data and randoms using
P0 = 20 000 Mpc3 h−3. The redshift density n(z), which also enters the normalisation of power
spectrum measurements (see Eq. (4.68), with ns,i = n(zi)), is calculated in bins of ∆z = 0.005.

The redshift density is computed according to the type of mocks. When the radial IC is
imposed (binned or shuffled mocks), the redshift density n(z) is computed for each CMASS
mock data realisation, as is done in an actual data analysis (see Section 5.3.1.7). As we divide
the CMASS footprint into 6 chunks, one may want to measure n(z) in the 6 chunks separately
(see Figure 4.7, right). However, we will show in Section 4.3.8 that doing so significantly biases
clustering measurements as FKP weights, using local n(z), smooth out clustering. We therefore
choose to measure n(z) from the whole CMASS sample, making the bias due to FKP weights
negligible.

Similarly, when the global IC (baseline mocks) is imposed, we compute n(z) on the random
catalogue accounting for the true survey selection function (see the continuous black curve
on Figure 4.7, right) but rescale it according to the weighted number of data for each mock
realisation.
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4.3.6.2 Analysis methods

As mentioned in Section 4.1.6, we use the implementation of the Yamamoto estimator in
the Python toolkit nbodykit (Hand et al., 2018) to compute (mock) data power spectra. We
take a large box size of 4000 Mpc3 h−3 to reduce sampling effects in low k-bins. The FKP
field is interpolated on a 5123 mesh following the triangular shaped cloud scheme (see Sec-
tion 4.1.7). The Nyquist frequency is thus k ' 0.4 h Mpc−1, more than twice larger than the
maximum wavenumber used in our analysis. We employ the interlacing technique discussed in
Section 4.1.7 to mitigate aliasing effects. Power spectrum multipoles are measured in bins of
∆k = 0.01 h Mpc−1, starting from k = 0 h Mpc−1. The discrete k-space mesh makes the angular
mode distribution irregular at large scales, an effect which we account for in the model following
Section 4.2.4 (with a varying line of sight).

We use the model described in Section 4.2.5. Power spectrum monopole, quadrupole and
hexadecapole are fitted from 0.01 h Mpc−1 to 0.15 h Mpc−1.

We use the fiducial BOSS DR12 cosmology in our analysis:

h = 0.676, Ωm,0 = 0.31, ΩΛ,0 = 0.69, ωb,0 = 0.022,
σ8,0 = 0.80, ns = 0.97,

∑
mν = 0.06 eV.

(4.192)

In all figures showing the power spectrum model alone (4.4, 4.9), we use f = 0.75, b1 = 2, b2 = 1,
σv = 4 Mpc h−1.

The radial integral constraint correction is consistently calculated using in εrad(r,x) the same
comoving distance bins of size δr = 2 Mpc h−1 as used in the binned scheme. We account for
the chunk-splitting of the CMASS footprint by adding the condition that r and x should belong
to the same chunk for εrad(r,x) to be non-zero. The infinite sum over p in Eq. (4.181) should
be truncated; as in Section 4.2.2.2 we use a maximum correlation function multipole ` = 4.

Window function calculations are based on different estimates of the survey selection func-
tion, according to the type of mocks.

In the radial IC case (binned or shuffled mocks), to mimic an actual data analysis, the
radial part of W (r) should in principle be estimated on each realisation of the mocks, for which
specific window function and integral constraint corrections should be derived. However, this
would require a large computation time. Thus, in this work, window function estimations
for the radial IC case are based on the selection function ns(r) calculated with a synthetic
catalogue tuned to match the radial distribution (using the binned scheme) in each chunk of
one realisation of mock data. All illustrations of window functions (Figure 4.6) and integral
constraint corrections (Figure 4.4, 4.5, 4.9, 4.14) are provided for this estimation of the survey
selection function.

Similarly, in the global IC case (baseline mocks),W (r) entering window function calculations
is taken to be the true selection function, which should be normalised using Eq. (4.156) for each
realisation of the mocks, as done in a real data analysis. However, as for the radial IC case, we
normalise the selection function on one realisation of the mocks only (the same realisation as in
the radial IC case).

We checked that using in the model the estimate provided by Eq. (4.185) (with ic = glo in
the baseline case, ic = rad in the binned or shuffled cases) for Wδ,δ,(0)

` (s) has a negligible impact
on the measurement of cosmological parameters in our analysis. Hence, we do not include this
correction in our cosmological fits.
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4.3.6.3 Cosmological fits with the radial integral constraint

Figure 4.8 illustrates the effect of tuning the radial selection function on data. Both the
binned scheme (using comoving distance bins of size δr = 2 Mpc h−1) and the shuffled scheme
result in a loss of power parallel to the line of sight, thus mostly affecting the power spectrum
quadrupole and hexadecapole, compared to the baseline relying on the true survey selection
function. The effect of the radial integral constraint is significantly increased when it is imposed
to the 6 chunks separately (orange and red curves), which is the case considered in the following
cosmological fits. We thus expect that neglecting the radial integral constraint would lead to a
significant bias in the fitted cosmological parameters. Figure 4.8 also shows that power spectrum
measurements obtained with the binned and shuffled scheme are very similar. It is thus fair to
account for e.g. the shuffled scheme with the binned scheme, for which we computed window
functions in Section 4.3.5.3. We also checked that differences between these two schemes in the
measurement of cosmological parameters are negligible (i.e. small compared to the uncertainty
on the mean of the mocks).

Figure 4.8 – Top panels: power spectrum multipoles (upper left: monopole, upper right: quadrupole,
bottom: hexadecapole) measured from the 84 N-series mocks (see Section 4.3.6.1), using three different
ways to model the redshift distribution in the random catalogues. The true selection function is used in
the baseline (blue). The random redshift distribution of the binned (orange) and shuffled (green) schemes
is inferred in 6 separate chunks of each mock data realisation, as described in the text. For comparison,
the red curve shows the effect of the binned scheme applied to the full CMASS footprint. The blue shaded
area represents the standard deviation of the mocks. Bottom panels: difference of the shuffled and binned
schemes to the baseline, with the standard deviation of the difference given by the error bars, normalised
by the standard deviation of the mocks.
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Figure 4.9 displays the model for the global and radial integral constraint corrections cor-
responding to the CMASS footprint divided in 6 chunks. By construction, the power spectrum
monopoles converge to zero at large scales when the global or radial IC is applied. We stress
again that window functions are normalised according to Section 4.2.2.3, without using any low
k nor low s limit. In the specific, illustrated case, the effect of the radial integral constraint is
found to be large (comparable to the window function effect alone) in both Fourier and config-
uration space correlation functions. Note however that the latter prediction cannot be directly
compared to configuration space measurements using e.g. the Landy-Szalay estimator (Landy
and Szalay, 1993) from which the window function effect is already removed. We will come back
to this point in Section 4.3.9.

Figure 4.9 – Left: power spectrum multipoles (blue: monopole, orange: quadrupole, green: hexadecapole)
without (continuous line) and with the window function effect only (dashed lines, first term in Eq. (4.179)),
with the global integral constraint (dotted lines) and with the radial integral constraint (dash-dotted
lines). Integral constraints ensure that the power spectrum monopoles reach zero on large scales. Right:
same, in configuration space. The correlation function multipoles are multiplied by the window function
Wδ,δ,(0)
` (s), i.e. we plot Eq. (4.179).

We show wide-angle contributions to the convolved power spectrum multipoles and the radial
integral constraint in Figure 4.10. They are significant for k . 1× 10−2 h Mpc−1. However,
they remain small compared to the radial integral constraint correction. Then, for simplicity,
we did not include these wide-angle corrections (n ≥ 1) in our analysis. However, wide-angle
contributions may dominate over radial integral constraint corrections for a large survey with a
constant radial selection function.

As a preview, Figure 4.11 illustrates the agreement between the mean of the 84 N-series
mocks and the appropriate model in the baseline (left) and the binned scheme (right). In the
baseline case, we fit the RSD model including the global integral constraint. The model performs
well enough, given the high measurement precision (reduced χ2 = 77.4/(42 − 7) = 2.21). Note
that same cosmological and nuisance parameters are kept for the model in the right-hand plot,
where the binned scheme is applied to the mocks, and the radial integral constraint is included in
the model. Here again, the agreement between the model and the mean of the mocks is correct
(reduced χ2 = 82.2/(42 − 7) = 2.35). We thus anticipate that our radial integral constraint
correction will very well account for the binned and shuffled schemes in the cosmological fits.

Figure 4.12 and Table 4.1 present the cosmological fit results obtained in three different
cases.
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Figure 4.10 – Ratio of wide-angle corrections to the convolved power spectrum multipoles P c
` (k) (upper

left: monopole, upper right: quadrupole, bottom: hexadecapole) at zeroth order. In blue are shown wide-
angle contributions to the convolved power spectrum monopole up to order n = 1, 2 (dashed and dotted
lines respectively). Corrections for the radial integral constraint up to order n = 0, 1, 2 (continuous,
dashed and dotted lines respectively) are plotted in orange.

The baseline cosmological fits (column 1 in Table 4.1) are obtained with the power spectrum
measurements on the baseline mocks and with the global integral constraint applied in the model.
The expected parameter values (column 4 in Table 4.1), predicted from the N-series and fiducial
cosmologies (Eq. (4.191) and Eq. (4.192)), are recovered to the statistical uncertainty on the
mean of the mocks.

Applying the binned scheme to the mocks (see the orange curve in Figure 4.8) while mod-
elling the global integral constraint only results in a bias (compared to the baseline case) on
all cosmological parameters of roughly 30% of the statistical error on one realisation (column 2
in Table 4.1). The goodness-of-fit (probed by the χ2 distribution, Figure 4.12) is significantly
degraded (∆χ2 ' 5).

The modelling of the radial integral constraint successfully removes the bias to better than
the statistical uncertainty on the mean of the mocks (column 3 in Table 4.1), and the goodness-
of-fit is well recovered. No increase on cosmological parameter errors could be detected. Similar
results (not reported here) were obtained with the shuffled scheme.

4.3.6.4 Discussion

We showed that the tuning of the radial selection function on data may significantly bias
RSD measurements. We recall that the radial IC effect has been purposely enhanced to test the
robustness of our predictions by applying the binned scheme separately in 6 small chunks cut
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Figure 4.11 – Top panels: mean of the power spectrum multipoles (blue: monopole, orange: quadrupole,
green: hexadecapole) measured from the 84 N-series mocks (data points, including error bars) and the
corresponding model predictions (continuous lines). Error bars give the uncertainty on the mean of the
84 mocks (standard deviation of the MultiDark Patchy mocks divided by

√
84) but are below the marker

size. Bottom panels: residuals (difference of the measurements to the model divided by error bars).
Left: the model is fitted to the mean of the baseline mocks (see Figure 4.8), including the global integral
constraint only. Right: the binned scheme is applied to the mocks, and the radial integral constraint is
included in the model (without refitting).

Figure 4.12 – Left: distributions of the cosmological parameters fσ8, α‖, α⊥ measured on the 84 N-
series mocks. The baseline (blue) uses the true selection function of the whole CMASS footprint. In
orange, the binned scheme is applied to the mocks. In green, the radial integral constraint is added to
the model. Continuous lines give the mean of the 84 best fits; the size of the cross in the 2D plots is
the standard deviation of the best fits divided by

√
84. Dashed lines show the expected values from the

mock cosmology. Right: the corresponding χ2 distributions. The vertical dashed line shows the number
of degrees of freedom (42− 7 = 35).

into the CMASS footprint. After modelling of the induced radial integral constraint, the bias
on fσ8 and on scaling parameters is well below the uncertainty on the mean of the mocks. More
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Baseline
global IC

Binned
global IC

Binned
radial IC Expected

α‖ 0.988± 0.031 0.979± 0.032 0.987± 0.031 0.989
α⊥ 0.980± 0.018 0.986± 0.019 0.980± 0.018 0.979
fσ8 0.472± 0.037 0.459± 0.037 0.472± 0.037 0.470
χ2 36.6± 9.7 42± 11 36.4± 9.6 ndof = 35

Table 4.1 – Mean and standard deviation of the cosmological parameters fitted on the 84 N-series mocks,
corresponding to Figure 4.12. Error bars should be divided by

√
84 ∼ 10 to obtain errors on the mean of

the mocks.

statistics would be required to test our modelling further, but we note that the obtained bias
is already below the expected ' 1% statistical uncertainty on fσ8 expected from future galaxy
surveys like DESI and Euclid (Laureijs, 2009).

The red curve in Figure 4.8 shows that the shuffled (or binned) scheme applied to the CMASS
NGC footprint as a whole (i.e. without the division in 6 chunks) has a small effect on clustering
measurements, as already noted on SDSS DR7 and DR9 by Samushia et al. (2012); Ross et al.
(2012). We checked that not accounting for the radial IC in the model results in a negligible
shift of cosmological parameters (compared to the statistical uncertainty) ∆α‖ = −0.003, ∆α⊥ =
0.001 and ∆fσ8 = −0.001. Note that, contrary to our test case, the BOSS DR12 analysis used
the NGC and SGC CMASS and LOWZ samples. These were divided in three overlapping redshift
slices (Alam et al., 2017), thus probably decreasing the radial integral constraint correction with
respect to the pure window function effect. We thus infer that conclusions of the BOSS DR12
analysis are likely unaffected by the radial integral constraint effect.

Nonetheless, we will see in Chapter 5 that the radial integral constraint has a large effect on
the eBOSS ELG clustering measurements, as its angular footprint is divided into small chunks
to account for the angular variations of the selection function. In general, we expect the radial
integral constraint to be non-negligible for deep arrow or pencil-like surveys. Also, analyses
focusing on large scales, aiming at e.g. setting constraints on primordial non-Gaussianity (Ross
et al., 2013; Castorina et al., 2019) may benefit from accounting for the radial IC.

4.3.7 Angular integral constraint to mitigate angular systematics

In this section we show that potential unknown angular systematics can be mitigated using
an angular integral constraint which can be combined with the radial one. Though we note that
only the additive part of systematics is removed in this way, we emphasise that the technique
described hereafter may be used as a consistency check in clustering analyses.

4.3.7.1 Problem statement

As the radial selection function, the angular selection function of a spectroscopic survey
can be difficult to evaluate because of residual photometric calibration errors or other potential
photometric systematics. We consider these systematics to be completely unknown; that is,
they are not and cannot be corrected by any photometric template in the analysis.
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As a case study, we inject photometric systematics into our mocks as a function of right
ascension (R.A.) and declination (Dec.), using a weight:

wsys(R.A.,Dec.) = 1 + 0.2 sin
( 2π

10(deg)R.A.(deg)
)

sin
( 2π

5(deg)Dec.(deg)
)
. (4.193)

The amplitude of the systematics (±20%) is very large compared to the typical requirements
of a target selection (e.g. ±7.5% in Prakash et al. 2016). wsys has a drastic impact on power
spectrum measurements as can be seen on Figure 4.13 (left column, orange and blue curves).
A standard RSD analysis, using scales 0.01 h Mpc−1 . k . 0.15 h Mpc−1 would be impossible.
We will see that these systematics can be strongly reduced using a similar procedure as in
Section 4.3.6.

4.3.7.2 Angular integral constraint

We suggest to remove the contaminated modes by weighting randoms from the synthetic
catalogue by ∑i∈pixelwg,i/

∑
i∈pixelws,i in pixels, thus nulling the density fluctuations in each

pixel. We dub such a technique the pixelated scheme. We use a HEALPix 11 (Górski et al., 2005)
map with nside = 64 (pixel area of' 0.84 deg2), for which the contaminated and uncontaminated
mocks look similar, as shown by the red and green curves in Figure 4.13 (left column). The
pixelated scheme completely mitigates angular systematics in the quadrupole and hexadecapole.
However, a difference close to a scale factor and statistically significant at small scales remains
in the monopole.

We model the pixelated scheme by an angular integral constraint. A similar idea is developed
in Burden et al. (2017) to mitigate the impact of the DESI fibre assignment.

Formulae are directly deduced from Section 4.3.3 by replacing εic(x,y) by εang(x,y), being
non-zero if x and y lie within the same pixel. Contrary to the radial IC case (binned or shuffled
schemes), for the angular IC (pixelated scheme) one has access to an estimate of the survey
selection function accounting for known systematics (weighted synthetic catalogue), independent
of the observed data. Thus, in the following, window function calculations are based on the true
survey selection function (without accounting for angular variations of Eq. (4.193)), as in the
baseline case. The angular IC correction is calculated from the same window functions for both
uncontaminated and contaminated pixelated mocks, though in the latter case the normalisation
of the survey selection function would be inferred from contaminated data in a practical analysis.
However, as introduced systematics are purely angular and independent of the actual clustering,
the normalisations estimated with Eq. (4.68) (ns,i = n(zi), as explained in Section 4.3.6.1) are
statistically equivalent.

The angular integral constraint has a very large impact on the quadrupole and hexadecapole
shot noise, as can be seen in Figure 4.14.

In all this section, we use the same model and fitting k-range as in Section 4.3.6. Applying
the pixelated scheme to uncontaminated mocks, cosmological parameters are well recovered when
modelling the angular integral constraint: as shown in Figure 4.15 and Table 4.2, differences
with the baseline case (same as in Section 4.3.6) are within the uncertainty on the mean of the
mocks (column 2 in Table 4.2). The error bar on fσ8 increases by 22%.

The magnitude of angular systematics makes it impossible to perform any relevant standard
cosmological fit: we measure biases of ∆α‖ = 0.043, ∆α⊥ = −0.037 and ∆fσ8 = −0.17. On the

11. http://healpix.jpl.nasa.gov/

http://healpix.jpl.nasa.gov/
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Figure 4.13 – Left column, top panels: power spectrum multipoles (top: monopole, middle: quadrupole,
bottom: hexadecapole) measured from the 84 N-series mocks: baseline measurements (blue), with angular
systematics (orange, Eq. (4.193)), using the pixelated scheme applied to uncontaminated (green) and
contaminated (red) mocks (see text for details). Left column, bottom panels: difference of the pixelated
scheme with and without angular systematics, with the standard deviation of the difference given by
the error bars, normalised by the standard deviation of the mocks. Right column, top panels: baseline
(blue), pixelated scheme (orange, same as green in the left column), binned and pixelated schemes applied
to uncontaminated (green) and contaminated (red) mocks. Right column, bottom panels: normalised
difference of the binned and pixelated scheme with and without angular systematics. In both columns,
the blue shaded area represents the standard deviation of the mocks.

contrary, the cosmological analysis remains possible when applying the pixelated scheme to the
contaminated mocks and the angular integral constraint in the model (column 3 in Table 4.2).
Scaling parameters are recovered within the statistical uncertainty on the mean of the mocks,
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Figure 4.14 – Normalised shot noise with the radial, angular, and combined (radial x angular) integral
constraints (blue: monopole, orange: quadrupole, green: hexadecapole).

and a bias of ' 20% of the error on a single realisation can be seen on fσ8, which will be further
discussed in Section 4.3.7.4. Note that a lower bias on the growth rate would be expected with
smaller, more realistic angular systematics.

Figure 4.15 – Left: distributions of the cosmological parameters fσ8, α‖, α⊥ measured on the 84 N-series
mocks. The baseline (blue) uses the true selection function of the whole CMASS footprint. In orange,
the pixelated scheme is applied on the mocks and the angular integral constraint is used in the model.
In green, angular systematics (see Eq. (4.193)) are added onto the mocks. Right: the corresponding χ2

distributions.

4.3.7.3 Combining radial and angular integral constraints

One would probably like to combine the radial and angular integral constraints, to account
for both unknown radial and angular selection functions. A prerequisite to applying the radial
integral constraint is that the redshift distribution does not depend on the angular position on
the sky in each chunk of the survey. Thus, both radial and angular integral constraints can be
imposed at the same time since radial and angular selection functions are independent.

Figure 4.13 (right column) shows the effects of the combined binned and pixelated schemes
on N-series mocks. They add up in the hexadecapole, and partially cancel in the quadrupole.
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Baseline
global IC

Pixelated
angular IC

Systematics, pixelated
angular IC Expected

α‖ 0.988± 0.031 0.991± 0.032 0.992± 0.032 0.989
α⊥ 0.980± 0.018 0.979± 0.020 0.979± 0.020 0.979
fσ8 0.472± 0.037 0.471± 0.045 0.463± 0.044 0.470
χ2 36.6± 9.7 36.9± 9.3 37.5± 9.7 ndof = 35

Table 4.2 – Mean and standard deviation of the cosmological parameters fitted on the 84 N-series mocks,
corresponding to Figure 4.15. Error bars should be divided by

√
84 ∼ 10 to obtain errors on the mean of

the mocks.

This is expected as L2 is negative around µ = 0 (where the angular integral constraint removes
signal) and positive around µ = 1 (where the radial integral constraint plays up). As with
the pixelated scheme alone (Figure 4.13, left column), angular systematics are mitigated in the
quadrupole and hexadecapole, but a multiplicative effect remains in the monopole.

Let us model the radial and angular integral constraints in a row:

δcic(r) = W (r)
{
δ(r)−

∫
d3xWrad(x)εrad(r,x)δ(x)−

∫
d3xWang(x)εang(r,x)δ(x)

+
∫
d3xWang(x)εang(r,x)

∫
d3yWrad(y)εrad(x,y)δ(y)

}
.

(4.194)

Since the radial and angular parts of W (r) are independent, the last term is just the integral of
the density contrast over the whole (chunk) footprint, i.e. the global integral constraint. Thus,
the two integral constraints commute. Then, building up the correlation function multipoles of
the observed density fluctuations (4.194), we find 16 terms:

ξcic
` (s) = ξc

` (s)− IC
δ,rad
` (s)− ICrad,δ

` (s) + ICrad,rad
` (s) (4.195)

− ICδ,ang
` (s)− ICang,δ

` (s) + ICang,ang
` (s) (4.196)

+ ICδ,glo
` (s) + ICglo,δ

` (s) + ICglo,glo
` (s) (4.197)

− ICglo,rad
` (s)− ICrad,glo

` (s)− ICglo,ang
` (s)− ICang,glo

` (s)
+ ICrad,ang

` (s) + ICang,rad
` (s). (4.198)

Terms (4.195), (4.196) and (4.197) correspond to the radial, angular and global integral con-
straints, while terms (4.198) are the cross-integral constraints, given by a formula similar to
Eq. (4.207), with:

W i,j,(n)
`p (s,∆) = (2`+ 1)(2p+ 1)

(4π)2A

∫
dΩs

∫
dΩ∆

∫
d3yW (y)W (y− s)∫

d3xx−nWic(x)Wic(x−∆)L`(ŷ · ŝ)Lp(x̂ · ∆̂)εi(y,x)εj(y− s,x−∆). (4.199)

We recall that to speed up practical calculations, since ICi,j` (s) are linear in ξ
ep,(n)
p , all

W i,j,(n)
`p can be directly summed over to yield a single IC`(s) term.
As in Section 4.3.6.2, window function calculations are based on the survey selection function

radially-tuned on one realisation of mock data using the binned scheme. As in Section 4.3.7.2, the
same window functions are used to calculate the angular IC correction for both uncontaminated
and contaminated pixelated mocks.
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Baseline
global IC

Binned, pixelated
radial x angular IC

Systematics, binned, pixelated
radial x angular IC Expected

α‖ 0.988± 0.031 0.988± 0.032 0.990± 0.032 0.989
α⊥ 0.980± 0.018 0.981± 0.020 0.980± 0.020 0.979
fσ8 0.472± 0.037 0.475± 0.044 0.467± 0.043 0.470
χ2 36.6± 9.7 36.5± 9.3 37.0± 9.6 ndof = 35

Table 4.3 – Mean and standard deviation of the cosmological parameters fitted on the 84 N-series mocks,
corresponding to Figure 4.16. Error bars should be divided by

√
84 ∼ 10 to obtain errors on the mean of

the mocks.

As shown in Figure 4.16 and Table 4.3, the combined (radial x angular) integral constraint
accounts well for the binned and pixelated schemes in the mocks: cosmological parameters are
recovered within the uncertainty on the mean of the mocks (column 2 in Table 4.3). Cosmological
fits of contaminated mocks are not further degraded by adding the radial integral constraint on
top of the angular one. As in Section 4.3.7.2, a bias of 12% to 20% of the error on a single
realisation can be seen on fσ8 (comparing column 3 to columns 2 and 1).

Figure 4.16 – Same as Figure 4.15, with the radial and angular integral constraints combined.

4.3.7.4 Caveat: multiplicative systematics

We emphasise that the angular (pixel) integral constraint can only mitigate the additive part
of angular systematics. Let us call c(r) the contamination signal, assumed constant over a pixel.
First, let us suppose c to be purely additive. Applying the pixelated scheme, we would measure
the power spectrum of the density fluctuations:

δcic(r) = W (r) {1 + δ(r) + c(r)} −W (r)
∫
d3xW (x) {1 + δ(x) + c(x)} εang(r,x)∫

d3xW (x)εang(r,x) . (4.200)

Then, as c(r) is constant over a pixel, c(x)εang(r,x) = c(r)εang(r,x) and:

δcic(r) = W (r)
{
δ(r)−

∫
d3xWang(x)δ(x)εang(r,x)

}
. (4.201)

As expected, c(r) disappears from the analysis.
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Now, let us consider c(r) to be multiplicative (as implemented in our contamination model (4.193)):

δcic(r) = W (r)c(r) {1 + δ(r)} −W (r)
∫
d3xW (x)c(x) {1 + δ(x)} εang(r,x)∫

d3xW (x)εang(r,x) (4.202)

= W (r)c(r)
{
δ(r)−

∫
d3xWang(x)δ(x)εang(r,x)

}
, (4.203)

i.e. c(r) multiplies the selection function W (r). However, by definition, c(r) is unknow and
therefore cannot be taken into account in W (r). The resulting multiplicative systematics can
explain the observed bias on fσ8 (compensating for a higher b1σ8). A possible way to alleviate
this effect may consist in estimating the angular survey selection function (including c(r̂)) with
the pixelated scheme. This would induce a bias which can be estimated using the method
presented in Section 4.3.5.1. We report the reader to (e.g. Shafer and Huterer, 2015) for a
fully coherent treatment of unknown multiplicative systematics in the case of the angular power
spectrum.

We showed that one could mitigate potential, unknown, systematics at the price of a small
increase of statistical errors by applying an angular integral constraint in the data. Such a
technique may be helpful to reduce the impact of poorly understood angular target density
variations with photometric conditions, or can be considered as a regular consistency test to
check for remaining angular systematics.

4.3.8 FKP weights: a potential source of systematics

In Section 4.3.6.1 we mentioned a potential bias due to FKP weights, which we apply to
both data and randoms. These weights are given by:

wFKP = 1
1 + n(z)P0

, (4.204)

using P0 = 20 000 Mpc3 h−3. FKP weights hence require an estimation of the true redshift
density n(z) in absence of clustering. If n(z) is computed from the data itself, using narrow
bins in z, FKP weights may bias clustering measurements since they overweight (downweight)
underdensities (overdensities).

As mentioned in Section 4.3.6.1, the redshift density n(z) is computed in bins ∆z = 0.005.
Figure 4.17 shows power spectrum measurements obtained with the binned scheme, with different
n(z) estimations. Measuring n(z) from the full CMASS sample induces a negligible bias with
respect to taking the true n(z). However, measuring n(z) separately in each of the 6 chunks
dividing the CMASS footprint, as would be natural to do, leads to an additional bias on all
scales of all multipoles. Though the density n(z) also enters the power spectrum normalisation
(see Eq. (4.68)), the main effect comes from the smoothing of the clustering along the line of
sight, as can be seen from the loss of power in the quadrupole and hexadecapole. This effect is
multiplicative and would be difficult to take into account.

A simple way to prevent FKP weights from biasing clustering measurements would be to
fit a simple spline to the redshift distribution in wide redshift bins to reduce the correlation
between wFKP and the density field. As stated in Section 4.3.6.1, we choose for simplicity to
estimate n(z) from each data realisation, using the full CMASS sample (instead of the 6 different
chunks), making the bias from wFKP almost invisible.
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Figure 4.17 – Top panels: power spectrum multipoles (upper left: monopole, upper right: quadrupole,
bottom: hexadecapole) obtained using the binned scheme and different n(z) estimations. In orange, we
use the true density n(z) from the radial selection function (rescaled for each realisation of the mocks,
as explained at the end of Section 4.3.6.1). In green, n(z) is estimated from each full CMASS mock
realisation. In red, n(z) is measured from each mock realisation, in the 6 chunks separately. We recall
the baseline in blue, obtained with the true selection function. The blue shaded area represents the
standard deviation of the mocks. Bottom panels: difference of the binned scheme with the different
(true, full CMASS, chunk) n(z) estimations to the baseline, with the standard deviation of the difference
given by the error bars, normalised by the standard deviation of the mocks.

4.3.9 Integral constraint for the Landy-Szalay estimator

In Section 4.3.3 we derived the integral constraint effect on the Yamamoto power spec-
trum estimator. However, integral constraints also impact configuration space measurements:
Eq. (4.179) expresses the impact of integral constraints on the window-convolved correlation
function.

A commonly used estimator to compute the 2-point correlation function is the Landy-Szalay
estimator (Landy and Szalay, 1993):

ξ̂(s, µ) = DD(s, µ)−DR(s, µ)−RD(s, µ) +RR(s, µ)
RR(s, µ) (4.205)

where DD(s, µ), DR(s, µ) and RR(s, µ) are the data - data, data - random and random -
random pairs counts. We take them to be normalised by the weighted number of pairs, i.e.
(∑wg,i)2 −

∑
w2
g,i, (∑wg,i) (∑ws,j) and (∑ws,i)2 −

∑
w2
s,i, respectively.

In fact, the multipoles of the expectation value of the numerator of Eq. (4.205) are simply
given by Eq. (4.179). The denominator of Eq. (4.205) aims at removing the window function ef-
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fect from the numerator, i.e. its multipoles simply correspond to the window function multipoles
Wδ,δ,(0)
` (s) (4.138) (up to some normalisation). Therefore:

ξ̂ic
` (s) = ξ`(s)− ICδ,ic`,now(s)− IC ic,δ

`,now(s) + IC ic,ic
`,now(s) (4.206)

with:
ICi,j`,now(s) =

∫
∆2d∆

∑
p,n

4π
2p+ 1∆nξd,(n)

p (∆)W i,j,(n)
`p,now(s,∆) (4.207)

and where:

W i,j,(n)
`p,now(s,∆) = 2`+ 1

2

∫ 1

−1
dµ

∑
qW

i,j,(n)
qp (s,∆)Lq(µ)∑

qW
δ,δ,(0)
q (s)Lq(µ)

L`(µ). (4.208)

Note that the same line of sight as in the Landy-Szalay estimator (usually the midpoint line of
sight) should be used for the cosine angle with respect to the separation s in W i,j,(n)

qp (s,∆). The
same line of sight definition is a natural choice for the cosine angle with respect to the separation
∆ and hence for ξd,(n)

p (∆) as explained in the end of Section 4.3.3. Similarly, we obtain the shot
noise contribution from Eq. (4.188) following:

SN i,j
`,now(s) = 2`+ 1

2

∫ 1

−1
dµ

∑
q SN

i,j
q (s)Lq(µ)∑

qW
δ,δ,(0)
q (s)Lq(µ)

L`(µ). (4.209)

The integral constraint correction specified above was successfully used for the clustering analysis
of the eBOSS ELG sample in configuration space (Tamone et al., 2020; Hou et al., 2020).

4.3.10 Conclusions

We revisited the notion of integral constraints which we showed to be useful in clustering
analyses to account for biases related to calibrating the survey selection function partly on data.

We presented a general formalism to account for integral constraints that completes the
existing models for the global integral constraint (Peacock and Nicholson, 1991; Beutler et al.,
2014; Wilson et al., 2017). We discussed the window function normalisation and the shot noise
contribution to the integral constraints and included wide-angle effects following (Beutler et al.,
2019). Our formalism was used to model the radial integral constraint effect induced by inferring
the radial selection function from actual data.

We indeed noticed that the common practice of drawing random redshifts based on data
may significantly bias large scale clustering measurements. This effect can be particularly large
compared to the window function effect if the survey is composed of several patches whose radial
selection functions must be treated separately. In particular, its impact is likely to be significant
in analyses focusing on large scales, e.g. dedicated to primordial non-Gaussianity (Ross et al.,
2013; Castorina et al., 2019).

Applying our modelling of the radial integral constraint to a RSD analysis, the bias induced
on cosmological parameters was shown to be successfully reduced. Though more statistics would
be required to push our validation further, the potentially remaining bias is already below the
expected statistical uncertainty of future galaxy surveys.

As a further application, we showed that we could similarly apply an angular integral con-
straint to help mitigating unknown angular systematics. This angular integral constraint can
be combined to the radial one, as required if the radial selection function is also estimated from
the data. Though ony additive systematics can be fully accounted for, our scheme performs well
enough with multiplicative systematics on a BOSS CMASS-like survey.
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We noted that a potential bias can emerge when the selection function used in the window
function calculations for integral constraint corrections is estimated from the data itself. We
suggested a way to estimate this bias, which remained very subdominant in our analysis. A
workaround for future analyses may consist in predicting the radial selection function from
first principles (e.g. from the luminosity function), without relying on the observed data, while
marginalising on possible unknowns in the cosmological fits. Another idea would be to directly
project out radial modes from the estimation of the power spectrum by assigning them infinite
variance (e.g. Elsner et al., 2016).

Our modelling of the radial integral constraint was successfully utilised in ELG (de Mattia
et al., 2020; Tamone et al., 2020) and QSO (Neveux et al., 2020; Hou et al., 2020) Fourier and
configuration space clustering analyses. The next chapter is devoted to the clustering analysis
of the eBOSS ELG sample.
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The first four chapters of this manuscript told the story of density fluctuations, in the
primordial Universe until the drag epoch (Chapter 1), how they grew and became non-linear
(Chapter 2) and how to measure them (Chapter 4) in galaxy surveys (Chapter 3). In this
chapter we propose to apply the previous developments to the clustering analysis of the eBOSS
ELG sample, which we publish in de Mattia et al. (2020).

Specifically, we perform a RSD analysis of this spectroscopic sample, using the model built
in Chapter 2, describing the dark matter density field, redshift space distortions and galaxy
bias, up to quasi non-linear scales. However, a clear signature can be robustly measured in
the galaxy power spectrum without resorting to such a complex machinery: baryon acoustic
oscillations, explained in Chapter 1. Indeed, their typical scale of 150 Mpc makes them quite
robust to non-linear evolution of the density field, and their typical pattern to observational
systematics. We thus also perform a BAO analysis, which we finally combine with the RSD
analysis, to measure f(zeff)σ8(zeff), and ratios DH(zeff)/rdrag and DM(zeff)/rdrag, at the effective
redshift of the sample zeff = 0.85.

We start by presenting the analysis methodology in Section 5.1, then assess our RSD and
BAO theoretical models in Section 5.2. The generation of the eBOSS DR16 ELG sample data
clustering catalogues, including correction schemes for known systematic effects is described in
Section 5.3, as well as approximate mocks used to test the robustness of our analysis pipeline
with respect to observational systematics, as discussed in Section 5.4. Cosmological fits and their
implications are presented in Section 5.5. These measurements are combined with configuration
space results of Tamone et al. (2020) in Section 5.5.3. We conclude in Section 5.5.4.

5.1 Analysis methodology

We provide the practical details of the estimation of power spectrum multipoles in Sec-
tion 5.1.1. The geometric corrections described in Section 4.2 and Section 4.3 entering the
power spectrum RSD model are recapped in Section 5.1.2. We describe the BAO template used
to model these oscillations in Section 5.1.3, and briefly review the technique of reconstruction
to enhance the BAO feature in clustering measurements in Section 5.1.4. We detail the model
parameters in Section 5.1.5, and how the model is compared to power spectrum measurements
in Section 5.1.6. We finally detail the choice of effective redshift in Section 5.1.7.

5.1.1 Power spectrum estimation

In this section we detail our measurements of the power spectrum multipoles of the galaxy
density field in a periodic box (used in Section 5.2) and within a real, sky-cut geometry (used
in Section 5.3 and beyond).

5.1.1.1 Periodic box

We first calculate the density contrast:

δg(r) = ng(r)
n̄g
− 1 (5.1)

where ng(r) is the galaxy density at comoving position r, and n̄g its average over the whole box
of volume V . Taking the Fourier transform δg(k) of this field, power spectrum multipoles are
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calculated as:
P`(kµ) = 2`+ 1

V Vkµ

∫
Vkµ

d3kδg(k)δg(−k)L`(k̂ · η̂)− P noise
` (k) (5.2)

L` being the Legendre polynomial of order ` and η̂ the global line of sight, which we choose to
be one axis of the box. The shot noise term is non-zero for the monopole only:

P noise
0 = 1

n̄g
. (5.3)

We use the implementation of the periodic box power spectrum estimator in the Python
toolkit nbodykit (Hand et al., 2018). The density contrast field δg(r) in Eq. (5.1) is interpolated
on a 5123 mesh following the triangular shaped cloud scheme (TSC, see Section 4.1.7). In the
following (see Section 5.2), the box size is 3000 Mpc h−1 and thus the Nyquist frequency is
kN ' 0.5 h Mpc−1, more than twice larger than the maximum wavenumber used in the RSD
analysis (k = 0.2 h Mpc−1). We checked that using a 7003 mesh (kN ' 0.7 h Mpc−1) does not
change our measurement in a detectable way. Then, the term δg(k) in Eq. (5.2) is calculated
with a FFT of the interpolated density contrast and the interlacing technique described in
Section 4.1.7 is used to mitigate aliasing effects.

The integral
∫
Vkµ

d3k in Eq. (5.2) is performed in spherical shells of ∆k = 0.01 h Mpc−1,
starting from k = 0 h Mpc−1. The discrete k-space mesh makes the angular mode distribution
irregular at large scales, an effect which we account for in the model following Section 4.2.4
(with a fixed line of sight η̂).

5.1.1.2 Real survey geometry

As mentioned in Section 4.1.6, we use the implementation of the Yamamoto estimator in the
Python toolkit nbodykit (Hand et al., 2018) to measure power spectra for real survey geometries.
The density field is interpolated on a 5123 mesh with the TSC scheme. The interlacing technique
is again employed to mitigate aliasing effects. Here we use a box size of 4000 Mpc h−1, so
the Nyquist frequency is kN ' 0.4 h Mpc−1. We also checked that using a 7003 mesh (kN '
0.55 h Mpc−1) does not change our measurement significantly.

The integral
∫
Vkµ

d3k in Eq. (4.71) is also performed in spherical shells of ∆k = 0.01 h Mpc−1,
starting from k = 0 h Mpc−1, unless otherwise stated. We include the impact of the irregular
mode distribution on large scales in the model following Section 4.2.4 (with a varying line of
sight).

5.1.1.3 Fiducial cosmology

To obtain the FKP field as a function of comoving position r we turn galaxy redshifts
into distances assuming a fiducial cosmology. This fiducial cosmology will be also used (unless
otherwise stated) to compute the linear matter power spectrum for the RSD and BAO analyses
in Section 5.1.2 and Section 5.1.3. For both purposes, we utilised the same fiducial cosmology
as in Section 4.3.6.2 1:

h = 0.676, Ωm,0 = 0.31, ΩΛ,0 = 0.69, ωb,0 = 0.022,
σ8,0 = 0.80, ns = 0.97,

∑
mν = 0.06 eV.

(5.4)

1. Note that only Ωm,0 (and ΩΛ,0) matter for the redshift to comoving distance (in Mpc h−1) conversion.
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Figure 5.1 – Window function multipoles (left: NGC, right: SGC) of the EZ mocks (reproducing the
eBOSS ELG sample), before (dashed lines) and after (continuous lines) application of the veto masks.
The height difference between the window function monopoles is explained by the area covered by the
veto masks (see text for details).

Within this fiducial cosmology, that will be used throughout this chapter (unless otherwise
stated), the comoving sound horizon at the redshift at which the baryon-drag optical depth
equals unity (see Section 1.3.5) is rfid

drag = 147.77 Mpc h−1.

5.1.2 RSD model

We use the RSD TNS model as detailed in Section 4.2.5. Let us simply recall that the
linear matter power spectrum P lin

m (k) for perturbation theory calculation is kept fixed in the
cosmological fits, as usual in BOSS and eBOSS clustering analyses (e.g. Beutler et al., 2017;
Gil-Marín et al., 2016, 2020). In the following we detail the geometry effects related to the
eBOSS ELG sample.

5.1.2.1 Survey geometry

As detailed in Section 4.2.2, the observed galaxy density is modulated by the survey selec-
tion function. Figure 5.1 shows the window function multipoles of the EZ mocks (reproducing
the eBOSS ELG sample, see Section 5.3.3): the monopole has a non-zero slope even below
. 5 Mpc h−1 due to the fine-grained veto masks. We recall that contrary to previous clustering
analyses imposing window functions to converge to 1 on small scales, we properly normalise
these window functions by the same term as the power spectrum estimation. For comparison
purposes, we also plot the window function without veto masks applied; in this case, the mono-
pole stabilises faster on small scales. The area entering the estimation of A (through the density
ns in Eq. (4.68)) used to normalise the unmasked window function (see Eq. (4.138)) has been
kept fixed to that in the masked case; since veto masks remove more area in the SGC than
in NGC (see Section 5.3.1.1), the unmasked SGC window function is relatively lower than the
masked case compared to NGC. In Section 5.4 we further check that veto masks do not bias
cosmological measurements with our treatment of the window function.
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Figure 5.2 – Power spectrum multipoles (left: NGC, right: SGC; blue: monopole, red: quadrupole, green:
hexadecapole) of the RSD model. The window function effect only is taken into account in continous
lines, and the additional impact of the global and radial integral constraints (IC) are shown in dashed
and dotted lines, respectively. For this figure we choose f = 0.8, b1 = 1.4, b2 = 1, σv = 4 Mpc h−1.

5.1.2.2 Integral constraints

As explained in Section 4.3.1, in the Yamamoto estimator the normalisation of the random
catalogue is tuned on the data, leading to a global integral constraint (GIC), which we model fol-
lowing Section 4.3.3. Moreover, as discussed in Section 5.3.1.6 redshifts of the random catalogue
sampling the selection function are randomly drawn from the data (shuffled scheme), leading
to a radial integral constraint (RIC), as explained in Section 4.3.6. We therefore model this
effect following Section 4.3.3. The impact of the global and radial integral constraints on the
power spectrum multipoles is shown in Figure 5.2. Note that the integral constraint formalism
will also be used to account for our mitigating angular observational systematics, as suggested
in Section 4.3.7.2 and detailed in Section 5.4.

5.1.3 BAO template

BAO analyses rely exclusively on the acoustic scale in the power spectrum or correlation
function to measure the Alcock-Paczynski effect (see Section 4.2.1) due to the difference between
the fiducial cosmology used in the analysis and the true, observed cosmology. One can measure
the scaling parameters parallel (α‖) and transverse (α⊥) to the line of sight, using a model for
the anisotropic power spectrum (see e.g. Beutler et al., 2017; Gil-Marín et al., 2016). Since
the eBOSS ELG sample has a rather low signal-to-noise, we rather focus on an isotropic BAO
fit (e.g. Ata et al., 2018).

We checked that the amplitude of the power spectrum measured at k ' 0.1 h Mpc−1 on post-
reconstruction mock catalogues (see Section 5.3.3) is roughly constant over µ, suggesting that the
BAO information is isotropically distributed. Thus, the monopole is optimal for single-parameter
BAO-scale measurement, which can be used to constrain the following combination (Eisenstein
et al., 2005; Ross et al., 2015):

α = α
1/3
‖ α

2/3
⊥ . (5.5)
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α can be translated into a measurement of the volume-averaged distanceDV(z) =
(
D2

M(z)DH(z)z
)1/3

at the effective redshift of the sample zeff through a relation similar to Eq. (4.113):

α =
DV(zeff)rfid

drag
Dfid

V (zeff)rdrag
. (5.6)

To fit the isotropic BAO feature, we use the same power spectrum template (dubbed wiggle
template) as in previous analyses of BOSS and eBOSS (Beutler et al., 2017; Gil-Marín et al.,
2016; Ata et al., 2018):

P (k, α) = Psm(k)Odamp(k/α) (5.7)
where:

Odamp(k) = 1 + [O(k)− 1] e−
1
2 Σ2

nlk
2
. (5.8)

O(k) is obtained by taking the ratio of the linear matter power spectrum P lin
m (k) to the no-wiggle

power spectrum of Eisenstein and Hu (1998), augmented by a five order polynomial term, fitted
such that O(k) oscillates around 1. We take:

Psm(k) = B2
nwPnw(k) +

i=2∑
i=−2

Aik
i, (5.9)

where Pnw(k) = P lin
m (k)/O(k). Again, the linear matter power spectrum P lin

m (k) is computed
with the fiducial cosmology (5.4) (except otherwise stated) and kept fixed in the cosmological
fits. The number of broadband parameters Ai is found such that the BAO template Eq. (5.7)
can reproduce the mean of the EZ mocks (see Section 5.3.3) within 10% of the uncertainty on
the data power spectrum measurement. To specify the BAO detection and for plotting purposes
in Section 5.5.1, we will use the no-wiggle template obtained by removing the oscillation pattern
in Eq. (5.7) (i.e. keeping only the Psm(k) factor).

The effect of the survey window function is accounted for according to Section 4.2.2 through
the (dominant) monopole term only, since the power spectrum template is isotropic. This
is legitimate since broadband terms typically absorb these smooth distortions of the power
spectrum. We checked that totally ignoring the window function effect leads to a negligible
change of ' 10−3 in the α measurement with the eBOSS ELG data. We also neglect the
integral constraints, as their impact will be shown to be negligible in Section 5.4. Finally, we
cannot include a correction for the irregular µ sampling as the power spectrum template in
Eq. (5.7) is isotropic; this is not an issue since the correction seen in the case of the RSD model
(a relative change of ' 10−3 in the cosmological parameters) is very small.

5.1.4 Reconstruction

Non-linear evolution of the density field and redshift space distortions tend to smooth out ba-
ryon acoustic oscillations (see Section 2.4, Figure 2.17). Hence, a method, called reconstruction,
was developed to enhance the BAO feature in the galaxy 2-point correlation function by (par-
tially) undoing the aforementioned non-linear features. Reconstruction proceeds by displacing
galaxies (and randoms, accounting for the selection function) by the reverse motion due to grav-
ity evolution. This displacement is usually computed assuming the Zel’dovich approximation
(see Section 2.1.4).

Assuming linear perturbation theory, the linear displacement field Ψ can be obtained by
solving in real space (index i runs over the three spatial coordinates):

∂iΨi = −δm (5.10)
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with δm the matter density contrast. As a function of the galaxy density contrast in redshift
space, δg, one must solve the following equation at any position r:

∂iΨi + f∂i (Ψ · r̂) r̂i = −δg
b

(5.11)

with b the Eulerian linear bias. The shift Ψ can be easily computed using FFTs, in the flat sky
approximation (constant line of sight) (Burden et al., 2015). This is however not possible with
the varying line of sight of spectroscopic surveys due to (the curl of) the (Ψ · r̂) r̂ term. Hence,
an iterative procedure to solve for Ψ with FFTs was developed in Burden et al. (2015); Bautista
et al. (2018). Next, RSDs can be removed with:

ΨRSD = −f (Ψ · r̂) r̂. (5.12)

In practice, we perform three reconstruction iterations, assuming the growth rate parameter
f = 0.82 and the linear bias b = 1.4, as expected within the ΛCDM model for ELGs at the
effective redshift of the sample. The density contrast field is smoothed by a Gaussian kernel
of width 15 Mpc h−1 to estimate Ψ. The choice of these reconstruction conditions and the
assumed fiducial cosmology were shown to have very small impact on the BAO measurements
in Vargas-Magaña et al. (2018) and Carter et al. (2020).

In this paper, isotropic BAO fits are performed on both pre- and post-reconstruction mono-
pole power spectra, while the RSD analysis makes use of the monopole, quadrupole and hexa-
decapole of the pre-reconstruction power spectrum. As we will see in Section 5.5, the posterior
of the RSD only measurement is significantly non-Gaussian, making it hard to combine with the
isotropic BAO posteriors. We thus also use jointly the pre-reconstruction multipoles with the
post-reconstruction monopole (taking into account their cross-covariance) to perform a combined
RSD and isotropic BAO fit.

5.1.5 Parameter estimation

In the RSD analysis, fitted cosmological parameters are the growth rate of structure f and
the scaling parameters α‖ and α⊥. We recall that α‖ and α⊥ can be translated into DH/rdrag and
DM/rdrag at the effective redshift of the sample zeff using Eq. (4.113). Since f is very degenerate
with the power spectrum normalisation σ8, we quote the combination fσ8. As discussed in
Gil-Marín et al. (2020); Bautista et al. (2020), we take σ8 as the normalisation of the power
spectrum at 8 × αMpc h−1 (instead of 8 Mpc h−1), with α = α

1/3
‖ α

2/3
⊥ as measured from the

fit. We emphasise that the quoted fσ8 measurement can be straightforwardly compared to any
fσ8 prediction, as usual. The sensitivity of our RSD measurements on the assumed fiducial
cosmology is discussed in Section 5.2.4. We consider 4 nuisance parameters for the RSD fit: the
linear and second order biases b1 and b2, the velocity dispersion σv and Ag = Ng/P

noise
0 , with

Ng the constant galaxy stochastic term (see Eq. (2.150)) and P noise
0 the measured Poisson shot

noise (see Eq. (4.67)). Again, b1 and b2 are almost completely degenerate with σ8, so we quote
b1σ8 and b2σ8.

For the isotropic BAO fit, the fitted cosmological parameter is α, which can be translated
into DV/rdrag at zeff using Eq. (5.6). Nuisance parameters are Bnw and the broadband terms
(Ai)i∈[−2,2] in Eq. (5.9). These last terms are fixed by solving the least square problem for
each value of α, Bnw. The non-linear damping scale Σnl is fixed using N-body simulations in
Section 5.2.5.
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For the combined RSD and post-reconstruction isotropic BAO fit, we use parameters from
both analyses. We rely on Eq. (5.5) to relate α from the isotropic BAO fit to the α‖ and α⊥
scaling parameters of the RSD fit. We fix Bnw to b1, as this choice introduced no detectable bias
in the fits of the EZ mocks (see Section 5.4). The varied parameters are reported in Table 5.1.

The fitted k-range of the RSD measurement is 0.03 − 0.2 h Mpc−1 for the monopole and
quadrupole and 0.03−0.15 h Mpc−1 for the hexadecapole. We choose such a minimum k to avoid
large scale systematics and non-Gaussianity. For the isotropic BAO fit we use the monopole
between 0.03 and 0.3 h Mpc−1.

5.1.6 Likelihood

As is in some other eBOSS analyses (e.g. Raichoor et al., 2020; Neveux et al., 2020; Bautista
et al., 2020), we use a frequentist approach to estimate the scaling parameter α for the isotropic
BAO analysis. Bayesian inference is used to obtain posteriors for the eBOSS ELG RSD (and
RSD + BAO) measurements. For the sake of computing time, we use a frequentist estimate
of the cosmological parameters from the N-body based and approximate mocks and to perform
data robustness tests.

In the frequentist approach, we perform a χ2 minimisation using the Minuit (James and
Roos, 1975) algorithm, as explained in Section 4.2.5. Errors are determined by likelihood profil-
ing: the error on parameter pi is obtained by scanning the pi → minpj 6=i χ2(p) profile until the
χ2 difference to the best fit reaches ∆χ2 = 1 (while minimising over other parameters pj).

In the case of N-body mocks with periodic boundary conditions (see Section 5.2.2), we com-
pute an analytical covariance matrix following Grieb et al. (2016). In the case of data (see
Section 5.3.1) or sky-cut mocks (from N-body simulations in Section 5.2 or approximate mocks
in Section 5.3.3 and 5.3.4), the power spectrum covariance matrix is estimated from approx-
imate mocks (lognormal, EZ or GLAM-QPM mocks). We thus apply the Hartlap correction
factor (Hartlap et al., 2007) to the inverse of the covariance matrix C measured from the mocks:

Ψ = (1−D) C−1, D = nb + 1
nm − 1 (5.13)

with nb the number of bins and nm the number of mocks. In addition, in order to propagate
the uncertainty on the estimation of the covariance matrix we rescale the parameter covari-
ance (Dodelson and Schneider, 2013; Percival et al., 2014) by:

m1 = 1 +B (nb − np)
1 +A+B (np + 1) , (5.14)

with np the number of varied parameters and:

A = 2
(nm − nb − 1) (nm − nb − 4) , (5.15)

B = nm − nb − 2
(nm − nb − 1) (nm − nb − 4) . (5.16)

When cosmological fits are performed on the same mocks used to estimate the covariance matrix,
the covariance of the obtained best fits is rescaled by:

m2 = (1−D)−1m1 (5.17)

to be compared with the covariance derived from the likelihood, including corrections (5.13)
and (5.14). We discuss further corrections to a mock-based covariance matrix in Section 6.2. In
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RSD BAO RSD + BAO
varied parameters f , α‖, α⊥, b1, b2, σv, Ag α, Bnw, (Ai)i f , α‖, α⊥, b1, b2, σv, Ag, (Ai)i
NGC/SGC specific b1, b2, σv, Ag Bnw, (Ai)i b1, b2, σv, Ag, (Ai)i
priors (MCMC) f ≥ 0, b1 ≥ 0, σv ≥ 0 - f ≥ 0, b1 ≥ 0, σv ≥ 0

Table 5.1 – Varied parameters, and their priors in the case of Bayesian inference (MCMC). Priors are all
flat, with infinite bounds, except for those mentioned in the bottom row. No MCMC is run for the BAO
only analysis. In all cases (including MCMC), parameters (Ai)i∈[−2,2] are solved analytically (see text).

particular, we propose a new version of this formula, accounting for a combined measurement
of several likelihoods, which we use when fitting both the NGC and SGC (though we will refer
to the formulae above in this chapter). The magnitude of the rescaling (5.14) is of order 5.5%
at most (for the combined RSD + BAO measurements).

In the Bayesian approach, which we use to produce the posterior of the eBOSS ELG RSD
and combined RSD + BAO measurements, the uncertainty on the covariance matrix estimation
is marginalised over following Sellentin and Heavens (2016):

L(xd|p) = cb |C|−
1
2{

1 + 1
nm−1 [xd − xt(p)]T C−1 [xd − xt(p)]

}nm
2
, cb =

Γ
(nm

2
)

[π (nm − 1)]
nb
2 Γ

(
nm−nb

2

) ,
(5.18)

where we note the power spectrum measurements (data) xd and the model (theory) xt as a
function of parameters p. In the limit nm → +∞ one recovers a standard Gaussian likelihood.
Eq. (5.18) will be further discussed in Section 6.2.3. The combined NGC and SGC likelihood is
trivially the product of NGC and SGC likelihoods. Our posterior is the product of Eq. (5.18)
with flat priors on all parameters, infinite for all of them, except for f , b1 and σv, which are
lower-bounded by 0 (see Table 5.1).

As mentioned in Section 4.2.5, to sample the posterior distribution we run Monte Carlo
Markov Chains (MCMC) with the package emcee (Foreman-Mackey et al., 2013). We run
8 chains in parallel and check their convergence using the Gelman-Rubin criterion R − 1 <

0.02 (Gelman and Rubin, 1992).

5.1.7 Effective redshift

In order to match the definition used for other eBOSS tracers and analyses, the effective
redshift zeff of the ELG sample between 0.6 < z < 1.1 is calculated as the average over pairs of
galaxies:

zeff =
∑
i,j wtot,iwtot,j(zg,i + zg,j)/2∑

i,j wtot,iwtot,j
, (5.19)

where wtot,i is the total galaxy weight (completeness weight and FKP weight, see Section 5.3.1)
and the sum is performed over all galaxy pairs between 25 Mpc h−1 and 120 Mpc h−1. We
measure zeff = 0.845 for the combined NGC and SGC (NGC alone: 0.849, SGC alone: 0.841).
We checked that this result varies by less than 0.4% when including pairs between 0 Mpc h−1 and
200 Mpc h−1. We also compute the effective redshift corresponding to the cuts 0.7 < z < 1.1,
which will be used in Section 5.5: zeff = 0.857 for the combined NGC and SGC (NGC alone:
0.860, SGC alone: 0.853). The typical variation (using Eq. (5.4)) corresponding to the ' 0.8%
difference between the effective redshift of NGC and SGC is 0.2% on fσ8, 0.4% on DH/rdrag
and 0.6% on DM/rdrag, small compared to the statistical uncertainty (see Section 5.5).
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Definition (5.19) is not very satisfactory as (i) the separation range is not well specified
and (ii) we expect the effective redshift to actually depend on the full compression of galaxy
position into cosmological parameters, hence on the power spectrum estimator and the scale of
ranges used in the fit. Let us derive another definition of the effective redshift, more specific
to the Fourier-space analysis. With the Yamamoto estimator (4.46), in the local plane parallel
approximation, assuming the (perfectly known) survey selection function varies slowly compared
to the correlation function, and with infinitely thin Vkµ sampling we measure (in average):

〈
P̂`(k)

〉
=
∫
d3rn̄2(r)P`(k, z(r))∫

d3rn̄2(r) (5.20)

where n̄(r) is the expected mean density of weighted galaxies in the absence of clustering and
P`(k, z) is the true galaxy power spectrum at redshift z. Taylor expanding the power spectrum
about the effective redshift zeff :

P`(k, z) = P`(k, zeff) + P ′`(k, zeff)(z − zeff) + · · · (5.21)

and substituting this expression into Eq. (5.20), we find that the expected value of the Yamamoto
estimator can be approximated at first order by the quantity that we actually model:

P̃`(k) =
∫
d3rn̄2(r)P`(k, zeff)∫

d3rn̄2(r) (5.22)

if we use the effective redshift:

zeff =
∫
d3rn̄2(r)z(r)∫
d3rn̄2(r) '

∑Ng
i=1wtot,ing,izg,i∑Ng
i=1wtot,ing,i

(5.23)

where ng,i = n(zi) the estimated radial density and wFKP,i the FKP weights (see Section 5.3.1).
We checked that the value obtained with this definition of the effective redshift agrees with
Eq. (5.19) to the 0.5% level.

5.2 Mock challenge

In this section we validate our implementation of the RSD TNS model and isotropic BAO
template (presented in Section 5.1.2 and 5.1.3) against mocks based on N-body simulations,
which are expected to more faithfully reproduce the small scale, non-linear galaxy clustering.

Though some work explored the relation between star-forming ELGs and halos (see Sec-
tion 2.2.3), using either semi-analytical models of galaxy formation (e.g. Gonzalez-Perez et al.,
2018) or observational data (e.g. Favole et al., 2016; Guo et al., 2019), there is still significant
uncertainty on the way star-forming ELGs populate halos, from the mean HOD shape to the
position and velocities of ELGs. Therefore, we aim at testing the robustness of the RSD model
measurements over a wide range of galaxy to halo relations in Section 5.2.1 and Section 5.2.2.
We refer the interested reader to Alam et al. (2020) and Avila et al. (2020) for a complete de-
scription of this mock challenge. In addition, we assess the impact of assuming a fixed template
cosmology for the calculation of the theoretical model in Section 5.2.4, and perform similar tests
for the BAO analysis in Section 5.2.4.
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5.2.1 MultiDark mocks

A first set of mocks is based on the MultiDark simulation (see Section 2.2.1.5).
Dark matter halos were populated with galaxies following two HOD models: a standard

HOD (SHOD) and a HOD quenched at high mass. The standard HOD is composed of a smooth
step function for central galaxies and is given by (for lisibility we change some conventions with
respect to Alam et al. (2020) to match those of Avila et al. (2020)):

SHOD
〈Ncen(M)〉 = 1

2Ac
[
1 + erf

( logM − µ
σ

)]
(5.24)

µ sets the typical minimum mass scale for a halo to host a central galaxy, and hence is tightly
related to the galaxy bias (more massive halos are more biased).

The second mean central HOD considered is called high mass quenched (HMQ, Alam et al.,
2020), to account for the decrease of the number of central galaxies in high mass halos noted in
Section 2.2.3:

HMQ

〈Ncen(M)〉 = 2Aφ(M)Φ(γM) + 1
2Q

[
1 + erf

( logM − logMc

0.01

)]
, (5.25)

φ(x) = 1√
2πσM

e
− (x−logMc)2

2σ2
M (5.26)

Φ(x) =
∫ x

−∞
φ(t)dt = 1

2

[
1 + erf

(
x− logMc√

2σM

)]
(5.27)

A = pmax − 1/Q
max(2φ(x)Φ(γx)) . (5.28)

max(2φ(x)Φ(γx)) is the maximum of 2φ(x)Φ(γx). The role of Mc is similar to that of µ in
Eq. (5.24) i.e. it is the typical minimum halo mass. pmax increases the height of the low-mass
Gaussian part relative to the high-mass plateau, whose level is tuned by Q.

In both SHOD and HMQ cases, for satellite galaxies, 〈Nsat(M)〉 is a power-law above a
certain halo mass M0:

〈Nsat(M)〉 =

0 M ≤M0

As
(
M−M0
M1

)α
M > M0

(5.29)

which is kept for all the HOD models considered in this mock challenge. The number of central
galaxies is sampled from Bernouilli’s probability law (of mean 〈Ncen(M)〉 ≤ 1). Those are placed
at the halo centre, with the velocity of their host halo. A Poisson law (of parameter 〈Nsat(M)〉)
is used to sample the number of satellites in each halo. Satellite galaxy positions are sampled
from a Navarro et al. (1996) profile (see Eq. (2.95)) and their velocities from a Gaussian of width
the dispersion of particle velocities within their halo. Then, different deviations around these
baseline cases were considered, as summarised in Table 5.2. For type 0.1R200 central galaxies are
displaced following a Gaussian of zero mean and width 0.1R200, where R200 is the radius within
which the mean density is 200 the matter density at the simulation redshift (see Section 2.2.2.2).
Then, velocities of satellite galaxies are decreased (type αv = 0.5) or increased (type αv = 1.5)
by 50%. The concentration (for satellite galaxies) was varied by −50% (type K = 0.5) and
+50% (type K = 1.5). As discussed in Section 2.2.2.6, the way galaxies populate dark matter
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short form description simulations

baseline SHOD (5.24) and HMQ (5.25), positions from NFW and velocities
from DM particles

MD, OR

0.1R200 central galaxies are off-centred with a Gaussian distribution of
width 0.1R200

MD, OR

αv = 0.5 satellite galaxies have 50% lower velocity dispersion than DM
particles

MD, OR

αv = 1.5 satellite galaxies have 50% higher velocity dispersion than DM
particles

MD, OR

K = 0.5 satellite galaxies have 50% lower concentration than dark matter MD
K = 1.5 satellite galaxies have 50% higher concentration than dark matter MD
(Acen, Asat) = (0.3, 0.0) assembly bias; central galaxies occupation is correlated with halo

concentration (Acen = 0.3)
MD

(Acen, Asat) = (0.0, 0.3) assembly bias; satellite galaxies occupation is correlated with halo
concentration (Asat = 0.3)

MD

(Acen, Asat) = (0.3, 0.3) assembly bias; central and Satellite galaxies occupation is correl-
ated with halo concentration (Acen = Asat = 0.3)

MD

v × 0.8 peculiar velocities of galaxies are scaled lower by 20% MD, OR
v × 1.2 peculiar velocities of galaxies are scaled higher by 20% MD, OR

Table 5.2 – Some of HOD variations around SHOD (5.24) and HMQ (5.25) mean HODs considered for
the mock challenge, applied to MultiDark (MD) or OuterRim (OR) simulations. Adapted from Alam
et al. (2020).

halos can depend on halo secondary properties; the so-called assembly bias. Hence, Alam et al.
(2020) introduce assembly bias using the decorated (Hearin et al., 2016) HOD of Zentner et al.
(2019). The central (X = cen) and satellite (X = sat) mean decorated HOD are given by:

〈
Ndec
X (M, c)

〉
= 〈NX(M)〉+

δNX(M) c > cmed

−δNX(M) c ≤ cmed
(5.30)

where cmed is the median concentration, and:

δNcen(M) = Acen min [〈Ncen(M)〉 , 1− 〈Ncen(M)〉] (5.31)
δNsat(M) = Asat 〈Nsat(M)〉 (5.32)

Eq. (5.30) varies the number of galaxies depending on their concentration. The strength of
assembly bias is controlled by Acen ∈ [−1, 1] and Asat ∈ [−1, 1]. Alam et al. (2020) tested
different combinations: (Acen, Asat) = (0.3, 0), (Acen, Asat) = (0, 0.3), (Acen, Asat) = (0.3, 0.3).
Finally, all galaxy peculiar velocities were upscaled (downscaled) by 20% for type v×0.8 (v×1.2).
In these cases, the measured growth of structure f is expected to equally vary by 20% (−20%).
All these cases are recapped in Table 5.2, and the corresponding power spectrum measurements
are shown in Figure 5.3 (top). A high velocity dispersion (αv = 1.5) is analogous to an increased
Finger-of-God effect and thus significantly damps the quadrupole (while conserving the same
large scale bias).

The galaxy density reaches 3× 10−3 h3 Mpc−3, about 10 times the mean eBOSS ELG density,
such that the shot noise is very low.
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We derived a covariance matrix from a set of 500 lognormal mocks produced with nbodykit,
in the MDPL2 cosmology of Eq. (2.88), assuming a bias of 1.4 and with the same density of
3× 10−3 h3 Mpc−3. We checked that the agreement between N-body based and lognormal mocks
was satisfactory on the whole k-range of the cosmological fit.

Both N-body based and lognormal mocks were analysed with the fiducial cosmology of
Eq. (5.4), as for the eBOSS ELG data. We thus accounted for the appropriate window function
and global IC effect in the model, and we included the correction for the irregular µ distribution
at large scales, as presented in Section 5.1.2. As shown in Figure 5.3 (bottom), the fitted
cosmological parameters are found to be within 1σ of the expected values, even for mocks with
rescaled galaxy velocities, where the offset in the fitted fσ8 values corresponds to the 20% offset
in velocity. However, the obtained uncertainties were only half of those expected with the eBOSS
ELG sample, which was not sufficient to derive an accurate modelling systematic budget. We
thus focused on larger mocks.

5.2.2 OuterRim mocks

Two other sets of mocks were based on the zsnap = 0.865 snapshot of the OuterRim (Heit-
mann et al., 2019) simulation (see Section 2.2.1.5). We analysed these mocks with the OuterRim
cosmology of Eq. (2.89), imposing periodic boundary conditions. Therefore, there is no window
effect and we only included the correction for the irregular µ distribution (see Section 4.2.4) at
large scales. A Gaussian covariance matrix was calculated following Grieb et al. (2016) for each
of these mocks, taking their measured power spectrum as input.

A first set of mocks using the SHOD and HMQ HODs was produced, with 8 types, corres-
ponding to types baseline, 0.1R200, αv = 0.5, αv = 1.5, K = 0.5, K = 1.5, v × 0.8, v × 1.2
of the MultiDark-based mocks above (see Table 5.2). Indeed, contrary to the MultiDark case,
the concentration of each halo was not provided as part of the OuterRim halo catalogues, such
that no test relying on the concentration could be implemented. The galaxy density ranges
between 3× 10−3 h3 Mpc−3 (SHOD) and 4× 10−3 h3 Mpc−3 (HMQ). Power spectrum measure-
ments are shown in Figure 5.4 (left) and are similar (with less noise) to Figure 5.3. Also in
Figure 5.4 (right) are shown best fit cosmological parameters, which are in good agreement with
the expected values.

As mentioned at the end of Section 2.3.2, following the assumption of initial bias being local
in Lagrangian space, as a baseline bias coefficients bs2 and b3nl are fixed according to:

bs2 = −4
7 (b1 − 1) , (5.33)

b3nl = 32
315 (b1 − 1) . (5.34)

The impact of such an assumption is shown in Figure 5.5; no bias can be seen on cosmological
parameters compared to the case were bs2 and b3nl are left free.

A second set of OuterRim mocks was produced based on results from models of galaxy
formation and evolution (Avila et al., 2020).

Three mean HODmodels were explored. The first (HOD-1 ) is the same as SHOD (Eq. (5.24))
which rises from 0 to 1 with a typical transition scale at log(M) = µ. The shape of the mean HOD
typically corresponds to galaxies selected by their magnitude or stellar mass. The completeness
Ac is the ratio of observed to the total number of galaxies. The HOD for satellite galaxies is
always given by Eq. (5.29).
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Figure 5.3 – Top: power spectrum multipoles measured on the MultiDark-based mocks as described in
Table 5.2. The mean HOD HMQ is considered by default (for 0.1R200, αv = 0.5 and αv = 1.5 curves).
Bottom: best fit cosmological parameters. The gray shaded area represents an error of 3% on fσ8 and
1% on the scaling parameters on both sides of the reference values in the OuterRim cosmology.

Since the population of star-forming ELGs tends to be quenched at high halo mass, the step
function of Eq. (5.24) is replaced by a Gaussian for the second HOD model:

HOD-2

〈Ncen(M)〉 = Ac√
2πσ

e−
(logM−µ)2

2σ2 (5.35)

The third mean HOD model includes an asymmetry of the mean central HOD at logM > µ,
modelled as a decaying power-law:



5.2. Mock challenge 207

Figure 5.4 – Left: power spectrum multipoles (averaged on x, y and z lines of sight) measured on the
first series of OuterRim-based mocks as described in Table 5.2. The mean HOD HMQ is considered by
default (for 0.1R200, αv = 0.5 and αv = 1.5 curves). Right: ratio of the parameter best fits to their
expected values (for the x line of sight).

Figure 5.5 – Left: ratio of the best fit parameters to their expected values obtained for the first series of
OuterRim-based mocks as described in Table 5.2 (for the x line of sight). In blue (baseline) we fix the
bias parameters bs2 and b3nl with Eq. (5.34) and we leave them free in orange.

HOD-3 (baseline)

〈Ncen(M)〉 =


Ac√
2πσe

− (logM−µ)2

2σ2 logM ≤ µ
Ac√
2πσ

(
M
10µ
)γ

logM > µ
(5.36)

which is the model taken as a baseline. The parameters σ, α, γ as well as logM0−µ, logM1−µ
are determined by a fit to the HOD form found by Gonzalez-Perez et al. (2018), such that only



208 CHAPTER 5. Clustering analysis of the eBOSS ELG sample

µ, Ac and As are left free. Ac and As are related to the density n̄:

n̄ =
∫
dM

dn

dM
(Mh) [〈Ncen(M)〉+ 〈Nsat(M)〉] (5.37)

and the satellite fraction fsat is:

fsat = 1
n̄

∫
dM

dn

dM
(Mh) 〈Nsat(M)〉 (5.38)

while µ determines the galaxy bias bg:

bg = 1
n̄

∫
dMb(M) dn

dM
(Mh) [〈Ncen(M)〉+ 〈Nsat(M)〉] (5.39)

where dn
dM (Mh) is the halo mass function and b(M) is the bias to halo mass relation measured

on the OuterRim simulation. Then, to compare these different HODs, Avila et al. (2020) fix
n̄ and bg to the value measured onto the small scale eBOSS ELG clustering. Hence, only fsat
is varied. Actually, Avila et al. (2020) found that fsat had a larger impact on the small scale
clustering than the HOD type itself. This is confirmed by Figure 5.6, showing (left) the power
spectrum measurements and (right) the best fit cosmological parameters, varying the HOD type
and satellite fraction. Note that there is some scatter depending on the axis of the box used a
line of sight; an effect which we study further in Section 6.1.

Figure 5.6 – Left: power spectrum multipoles (averaged on x, y and z lines of sight) measured on the
second series of OuterRim-based mocks (see text). HOD-3 (5.36) is considered by default. Right: ratio
of the best fit parameters to their expected values for the three different lines of sight.

As in Section 5.2.1, central galaxies are placed at the halo centre, with the velocity of their
host halo. As a baseline, a Poisson law (of parameter λ = 〈Nsat(M)〉) is used to sample the
number of satellites in each halo. The scatter in the number of satellites is thus

√
λ. However, as

mentioned in Section 2.2.3, Jiménez et al. (2019) found that the HOD scatter has a significant
impact on the one halo term, and that a negative binomial distribution (neg. bin.) should be
preferred for star-forming galaxies (based on semi-analytical models of galaxy formation):

P (N |r, p) = Γ(N + r)
Γ(r)Γ(N + 1)p

r(1− p)N p = 1
(1 + β)2 , r = λ

β(2 + β) (5.40)
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This distribution, which has mean λ and an increased scatter of (1 + β)
√
λ (β > 0) is considered

in addition to the standard Poisson distribution. Finally, Avila et al. (2020) consider a next
integer (next int.) distribution:

P (N |λ) =


1− (λ− int(λ)) N = int(λ)
λ− int(λ) N = int(λ) + 1
0 else

(5.41)

which has mean λ and a reduced scatter of
√

[1− (λ− int(λ))] [λ− int(λ)], with int(λ) the whole
part of λ. Avila et al. (2020) find that the HOD scatter mostly increases the projected correlation
function as small scales. In practice, the type of distribution has a small impact on the large
scale clustering measurements, as displayed in Figure 5.7.

Figure 5.7 – Left: power spectrum multipoles (averaged on x, y and z lines of sight) measured on the
second series of OuterRim-based mocks (see text). HOD-3 (5.36) is assumed. Right: ratio of the best fit
parameters to their expected values (for the three lines of sight).

As a baseline, satellite positions are sampled from a NFW profile (NFW ). The concentration
(see Eq. (2.96)) is by default set to the prescription of Klypin et al. (2016). As mentioned in
Section 2.2.3, star-forming galaxies are preferentially found in the outskirts of halos (Orsi and
Angulo, 2018). A parameter K, scaling the concentration, is thus introduced. Velocities are
assigned from the virial theorem (Bryan and Norman, 1998; Avila et al., 2018), i.e. following a
Gaussian with mean the halo velocity and standard deviation:

σv = 476× 0.9
[
∆virE

2(z)
]1/6 ( M

1015M�h−1

)1/3
km s−1, E(z) = H(z)

H0
. (5.42)

Another explored possibility is to randomly select (with its velocity) a dark matter particle of
the halo as a galaxy (part.). We note that Avila et al. (2020) (and references therein) find that
the halo profile obtained in such a way is quite different from NFW, as (i) approximately half
of dark matter halos are not relaxed at the redshift of interest (when NFW profile could only
apply to relaxed halos) and (ii) the profile of (relaxed) dark matter halos appears to be better
described by an Einasto (Einasto, 1965) profile (Child et al., 2018). To take into account the
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halo concentration, distances of galaxies to the halo centre are rescaled by 1/K. The change
in concentration is found to have a small impact on clustering measurements, as confirmed by
Figure 5.8.

Figure 5.8 – Left: power spectrum multipoles (averaged on x, y and z lines of sight) measured on the
second series of OuterRim-based mocks (see text). HOD-3 (5.36) is assumed. Right: ratio of the best fit
parameters to their expected values (for the three lines of sight).

It is not obvious that galaxy velocities should follow those of dark matter inside halos. Hence,
Avila et al. (2020) further introduce a velocity bias αv. In the case of the part. scheme, αv rescales
the satellite galaxy relative velocity to the halo velocity. When the NFW scheme is considered,
αv scales the velocity dispersion σv as given by Eq. (5.42). Furthermore, as mentioned in
Section 2.2.3, Orsi and Angulo (2018) found that star-forming galaxies tend to have a high
radial velocity dispersion and a net infalling velocity; therefore Avila et al. (2020) try giving an
infall component following a Gaussian of mean vt = 500 km s−1 and dispersion 200 km s−1. Main
differences due to both velocity bias and infall velocities are found in the quadrupole. Both act
indeed as a Finger-of-God term and decrease the amplitude of the quadrupole, as can be seen
in Figure 5.9.

Finally, Avila et al. (2020) fit the small-scale eBOSS ELG data power spectrum monopole,
quadrupole and hexadecapole. Overall, they find a preference for low concentration (K < 1),
and velocity bias (αv > 1) — though αv gets more compatible with 1 once K is left free, and
a mild preference for the part. scheme. Different probability laws for sampling satellites are
preferred depending on the parameters which are let free in the fit.

The number density of the 24 mocks we analysed ranges between the approximate mean
eBOSS ELG density 2× 10−4 h3 Mpc−3 (part. and some NFW mocks) and 2× 10−3 h3 Mpc−3

(NFW mocks).
No evidence for an overall systematic bias of the model was found when analysing these

mocks, as reported in Alam et al. (2020).

5.2.3 Blind OuterRim mocks

We participated in a blind mock challenge dedicated to the ELG sample (see Alam et al.
(2020), Section 8). For simplicity, as for v × 0.8 and v × 1.2 cases of Table 5.2, only galaxy
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Figure 5.9 – Left: power spectrum multipoles (averaged on x, y and z lines of sight) measured on the
second series of OuterRim-based mocks (see text). HOD-3 (5.36) is assumed. Right: ratio of the best fit
parameters to their expected values (for the three lines of sight).

peculiar velocities were scaled, by an initially unknown value −50% (type 1), −25% (type 2)
and 0% (type 3), thus changing the expected value of the growth rate by the same amounts.
The background cosmology was kept fixed, hence the scaling parameters were expected to agree
with 1. 30 to 40 realisations for each type of mocks (3 for SHOD and HMQ) were produced
with a density of the order of the eBOSS ELG mean density (' 2× 10−4 h3 Mpc−3). The
OuterRim boxes were analysed the same way as in Section 5.2.2, and the velocity rescaling was
then disclosed. Though velocities were scaled by as much as 50%, no significant systematic shift
in fσ8 can be seen in Figure 5.10, confirming the robustness of our RSD model.

Figure 5.10 – Ratio of the best fit parameters to their expected values for the blind OuterRim-based
mocks (for the x line of sight). The red data points and error bars are the measurements obtained on
concatenated mocks.
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Since no obvious systematic shift was noticed with previous unblind mocks (Section 5.2.1
and Section 5.2.2), the systematic uncertainties were derived from this blind mock challenge in
Alam et al. (2020) (Section 9): 1.6% on fσ8, 0.8% on α‖ and 0.7% on α⊥ 2. This also reflects
the typical scatter due to the varying HOD prescriptions in Section 5.2.2. We do not scale these
errors by a factor of 2 as in Alam et al. (2020), since we further take into account the effect of
the fiducial cosmology in Section 5.2.4 in a conservative way.

5.2.4 Fiducial cosmology

As stated in Section 5.1.2, we keep the so-called template cosmology used to compute the
linear power spectrum for the RSD model (P lin

m (k) in Section 5.1.2) fixed, thereby implicitly
assuming that the scaling parameters and the growth rate are an unbiased compression of the
cosmological dependence of the galaxy power spectrum.

Hence, as Hou et al. (2020); Neveux et al. (2020); Gil-Marín et al. (2020); Bautista et al.
(2020) we test the dependence of the measurement of cosmological parameters with respect to the
template cosmology. To this end, we reanalyse the first set of OuterRim mocks of Table 5.2 using
different template cosmologies. We consider first the fiducial cosmology of the data analysis (5.4)
and also scale each of the cosmological parameters (h, ωc,0, ωb,0 and ns) of Eq. (2.89) by ±10%
to ±20% (typically 30σ variations of Planck Collaboration et al. (2018) CMB (TT, TE, EE,
lowE, lensing) and BAO constraints).

Note that for simplicity we do not change the fiducial cosmology (2.89) used in the analysis
(power spectrum estimation and Gaussian covariance matrix) and thus rescale the fitted α‖ and
α⊥ accordingly to determine σ8 as in Section 5.1.5.

Results are shown in Figure 5.11. Scaling parameters are well recovered. The best fit fσ8
value is primarily sensitive to the template h and ns values. Taking the root mean square of
the difference (averaged over all types, HODs, and lines of sight) to the expected values gives
the following systematic uncertainties: 2.6% on fσ8 and 0.4% on scaling parameters. Note that
without the σ8 rescaling described in Section 5.1.5 the systematic uncertainties related to the
choice of template cosmology would have been twice larger for fσ8.

We add the above uncertainties in quadrature to those derived in Section 5.2.3 to obtain the
final RSD modelling systematics: 3.0% on fσ8, 0.9% on α‖ and 0.8% on α⊥.

5.2.5 Isotropic BAO

We also test the robustness of the isotropic BAO analysis with respect to variations in the
HOD and template cosmology. Again, we consider the first set of OuterRim mocks (types 1,
4, 5, 6, with SHOD and HMQ HODs) presented in Section 5.2.2, apply reconstruction (with
the parameters set in Section 5.1.4), and measure their power spectrum using the OuterRim
cosmology (2.89) as fiducial cosmology.

Using the isotropic BAO model described in Section 5.1.3, we first find (with the OuterRim
cosmology as template cosmology) a damping parameter Σnl value of 8 Mpc h−1 (4 Mpc h−1) to
fit the pre-reconstruction (post-reconstruction) power spectrum. We use these values in the rest
of the chapter, unless stated otherwise.

We then perform the post-reconstruction isotropic BAO fits with the different template
cosmologies introduced in Section 5.2.4. Results are shown in Figure 5.12. The measured α

2. This systematic uncertainty budget was consistently updated using our prescription for σ8 discussed in
Section 5.1.5 — leading to a minor relative decrease of 4% on the systematic error for fσ8.
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Figure 5.11 – Ratio of the best fit parameters to their expected values for the OuterRim-based mocks of
Table 5.2, using x, y, z lines of sight and different template cosmologies. The gray shaded area represents
an error of 3% on fσ8 and 1% on the scaling parameters on both sides of the reference values in the
OuterRim cosmology.

Figure 5.12 – Ratio of the isotropic BAO best fit parameters to their expected values for the OuterRim-
based mocks of Table 5.2, using x, y, z lines of sight and different template cosmologies. The gray shaded
area represents an error of 0.5% on α on either side of the reference value in the OuterRim cosmology.

value shows very small dependence with the template cosmology, as also found in e.g. Carter
et al. (2020). The same is true for the HOD model. Taking the root mean square of differences
between best fit and expected values gives a systematic uncertainty of 0.2% on α, which we take
as BAO modelling systematics.

In addition, to quantify how typical the data BAO measurements are (see Section 5.5.1), we
generate accurate mocks designed to reproduce the ELG sample. An OuterRim box (satellite
fraction of 0.14, no velocity bias) is trimmed to the eBOSS ELG footprint, including veto masks
and radial selection function, in order to take into account their impact on reconstruction. We
then cut 6 nearly independent mocks for NGC and SGC with 3 different orientations. The
original box was replicated by 20% to enclose the total SGC footprint. As the ELG density in
the OuterRim box is much larger than the observed ELG density, we draw 4 disjoint random
subsamples for each sky-cut mock. The number of galaxies in the mock samples match that of
the data to better than 1%. Next, in order to have sufficient statistics to characterise the data
BAO detection, we randomly generate 1000 fake mock power spectra following a multivariate
Gaussian. The Gaussian mean is taken from the pre- and post-reconstruction power spectrum
measurements obtained from the above sky-cut OuterRim mocks, and its covariance matrix is
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given by the baseline EZ mocks. These fake post-reconstruction power spectra will be used in
Section 5.5.1 to quantify the probability of the BAO measurements in the data.

We have thus demonstrated the validity of our RSD and BAO theoretical models and derived
a related (small) systematic budget. Another part of the systematic budget will stem from
observational effects. To this end, we explain the generation of data clustering catalogues in the
next section.

5.3 Data and mock catalogues

We first detail in Section 5.3.1 the generation of eBOSS ELG clustering catalogues. We
review observational systematics and how they were corrected for at the catalogue level. Based
on these results, we detail how we implemented systematics into raw mock catalogues, in order
to test the correction schemes and the analysis pipeline as a whole. Such tests will be discussed
in the next section.

5.3.1 Generation of eBOSS ELG clustering catalogues

As explained in Section 4.1.6, clustering analyses rely on density fluctuations: the observed
data density is compared to the survey selection function, which is sampled with a random syn-
thetic catalogue (as in any BOSS and eBOSS analysis). To do so, we have to produce both data
and random clustering catalogues, such that the expected data density is given by the density of
the random catalogue. Therefore, observational systematics, i.e. non-cosmological fluctuations
in the galaxy density, can be either corrected for in the data or the random catalogues.

5.3.1.1 Veto masks

Ignoring any masks or systematics, one would expect the galaxy density to be isotropic in
average. Therefore, the random catalogue is first generated with a uniform random sampling
of the sphere, with a density of 1× 104 deg−2 (Raichoor et al., 2020). Then, the veto masks
introduced in Section 3.2.3 and Section 3.3.1.4, which we recap in Table 5.3 for completeness, are
applied to both the data and random catalogues. We recall that bits 1 to 5 were applied to the
catalogue of targets before fibre assignment (a few targets are removed due to a slight change in
the implementation). Bits 1 to 7 are implemented at the brick level using the brickmask code 3,
bit 8 with a HEALPix (Górski et al., 2005) map and bit 9 to 11 with a mangle (Hamilton and
Tegmark, 2004) mask.

In addition, we remove two tiles in eboss22, where the spectroscopic quality is anomalously
low.

These masks are applied prior to any other operation on data and random catalogues.

5.3.1.2 Fibre assignment

As discussed in Section 3.3.1, all targets may not receive a fibre in regions of high density,
due to the finite number of fibres per plate. In addition, two targets closer than a fibre collision
radius (62′′ on the sky) cannot not be both allocated fibres from a single plate. Hence, some
targets will miss from the final clustering sample, in a way depending on the target density and
plate overlaps — which must be accounted for.

3. https://github.com/cheng-zhao/brickmask/releases/tag/v1.0

https://github.com/cheng-zhao/brickmask/releases/tag/v1.0
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bit mask removed area [deg2] removed targets
1 not grz 67.2 27
2 xy bug 49.7 0
3 recovered decam_anymask 210.1 142
4 tycho2inblob 4.7 0
5 bright objects 57.6 7
6 Gaia stars 54.0 17456
7 Mira star 12.5 3555
8 imprecise bit 3 0.1 15
9 centerpost 0.6 166
10 TDSS_FES targets 1.3 308
11 bad photometric calibration 72.7 16325
- eboss22 low-quality plates 13.9 3123
- total 436.5 41124

Table 5.3 – Angular veto masks applied to the eBOSS ELG catalogues. Masks 1 to 5 were applied prior
to the fibre assignment, when all other masks were applied after spectroscopic observations. Extracted
from Raichoor et al. (2020).

The fibre assignment procedure outputs collision groups, i.e. groups of targets which are
collided with one another. Due to these collisions, some fraction of these targets could not be
assigned a fibre. We thus weight each fibre-assigned ELG by the collision pair weight wcp,i given
by the number of targets over the number of valid fibres within each collision group. Invalid
fibres are those flagged by ZWARNING, as described in Section 3.3.3.2; i.e. they suffered from
hardware issues.

Collided targets or targets with invalid fibres are declared resolved when they lie in the same
collision group as a target with a valid fibre. We then define the tiling completeness as the ratio
of the number of resolved targets to the number of targets in each sector, where a sector consists
in the area covered by intersecting tiles. As shown in Figure 5.13, the tiling completeness may
not reach 1 (i.e. some collision groups do not contain valid fibres) due to invalid fibres or an
insufficient density of fibres compared to ELG targets. Hence, the tiling completeness is included
in the random systematic weight wsys,i. By default, targets with collided or invalid fibres are
assigned wcp,i = 0.

5.3.1.3 Redshift failures

The redshift determination pipeline detailed in Section 3.3.3 does not provide a reliable
redshift (as defined in Section 3.3.3.3) for all spectra. We will see that the probability of redshift
failures (i.e. redshifts which are not reliable) depends on the target angular position, resulting
in spurious angular contamination signal which has to be removed.

The spectroscopic success rate (SSR) is defined as the ratio of the number of valid redshifts
over the total number of spectra but those of spectroscopically-confirmed stars (whose distri-
bution contains no cosmological signal). From now on, we therefore consider all objects, but
spectroscopically-confirmed stars, with a valid fibre.

The SSR varies with observing conditions; we therefore express it as a function of the median
of the median signal-to-noise ratio across each spectrum measured at each pointing pSN, in each
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Figure 5.13 – The eBOSS ELG tiling footprint, weighted by the tiling completeness. The light grey disk
in the corner at (R.A.,Dec.) = (34.84◦,−2.98◦) corresponds to the Mira star mask (bit 7 in Table 5.3).
The dark grey disks mask DECam pointings with bad photometric calibration (bit 11 in Table 5.3), while
black disks correspond to the two plates in eboss22 of low spectroscopic quality. Taken from Raichoor
et al. (2020).

chunk (eboss21, eboss22, eboss23, eboss25) and half-spectrograph (1 ≤ FIBERID ≤ 250,
251 ≤ FIBERID ≤ 500, 501 ≤ FIBERID ≤ 750, 751 ≤ FIBERID ≤ 1000). Indeed, based on
Section 3.1.2.3 (especially Figure 3.6), spectrograph 2 (501 ≤ FIBERID ≤ 1000) has a slightly
higher throughput than spectrograph 1 (1 ≤ FIBERID ≤ 500). In addition, half spectrographs
are found to have different response: the median signal-to-noise is 0.91 and 0.87 in the first and
second halves of spectrograph 1 and 0.94 and 0.88 in the first and second halves of spectrograph 2,
respectively. This effect is not well understood. We fit, through a χ2 minimisation, the following
function:

fpSN
noz (pSN) = c0 − c1 |pSN− c2|c3 (5.43)

to the measured SSR in each subsample.
Variations of the SSR are shown as a function of the median signal-to-noise ratio in Fig-

ure 5.14 (grey points). Trends are corrected once galaxies are weighted by the inverse of the
fitted Eq. (5.43) relation (in each chunk and half-spectrograph).

Also, we noticed in Section 3.1.2.3 the variation of the resolving power and throughput as a
function of the fibre position in the spectrographs. Since fibres are grouped by bundles, which are
in average allocated to the same region of the plate, this translates into variations of the SSR as
a function of the position in the focal plane, encoded in the variables XFOCAL, YFOCAL. We
describe the SSR variations, for each chunk and half-spectrograph, with the following function:

fXYFOCAL
noz (x, y) = c0 − c1 |x− c2|c3 − c4 |y − c5|c6 (5.44)

where x and y are the centre coordinates of each of the (non-empty) 20 × 20 XYFOCAL bins.
The ci coefficients are measured separately in each chunk and half-spectrograph. To avoid double
counting redshift failures, we weight each galaxy by the inverse of the fitted Eq. (5.43) relation
to perform the fit of Eq. (5.44). As shown in Figure 5.15, the SSR decreases neatly near the
boundaries of the focal plane, a trend which is well modelled by Eq. (5.44).
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Figure 5.14 – Variations of the SSR as a function of the median signal-to-noise ratio in each chunk
(row 1: eboss21, row 2: eboss22, row 3: eboss23, row 4: eboss25) and half-spectrograph (column 1:
spectrograph 1, first half, column 2: spectrograph 1, second half, column 3: spectrograph 2, first half,
column 4: spectrograph 2, second half). Grey points are before correction, black points after weighting
by the inverse of the fitted relation of Eq. (5.43).

The final redshift failure weight, applied on the data, is given for each object by:

wnoz,i = 1
fpSN

noz (pSNi)fXYFOCAL
noz (XFOCALi,YFOCALi)

, (5.45)

where pSNi is the median signal-to-noise in the chunk and half-spectrograph, and XFOCALi,YFOCALi
the object position in the focal plane. fXYFOCAL

noz (XFOCALi,YFOCALi) is clipped between
[0.5, 1.5] to avoid outliers (in practice, this clipping does not impact data weights). Objects that
have an unreliable redshift or stars are assigned wnoz,i = 0.

To obtain the final clustering sample (i.e. the sample to be used for clustering analyses), we
apply the following quality cuts:

spectroscopic success rate ≥ 0 (5.46)
tiling completeness ≥ 0.5 (5.47)

0.6 < z < 1.1 (5.48)
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Figure 5.15 – Variations of the SSR (black lines) as a function of the position on the focal plane (top
left: eboss21, top right: eboss22, bottom left: eboss23, bottom right: eboss25). The fitted model of
Eq. (5.44) is shown in red lines.

The two first criteria are applied at the sector level. The first cut requires that each sector
contains at least one galaxy with a reliable redshift (which effectively removes one galaxy with
a bad redshift in the whole ELG sample). The second cut has no practical effect on the eBOSS
ELG data, since all sectors have a tiling completeness greater than 0.5. The same cuts are
applied to the random catalogue.

5.3.1.4 Angular photometric systematics

After correcting for fibre incompleteness and redshift failures, remaining non-cosmological
variations of the angular density of galaxies in the final clustering sample are caused by fluctu-
ations in the target density due to varying photometric conditions.

We bin photometric parameters in a HEALPix map with nside = 256 (pixel area of '
188 arcmin2). We consider galactic extinction and dust temperature (Schlegel et al., 1998),
HI column density (Lenz et al., 2017), Gaia stellar density (stars from DR2 (Gaia Collaboration
et al., 2018) with magnitude 12 < g < 17), DECaLS 4 5σ depth (galdepth_g,r,z) and seeing
(psfsize_g,r,z) in the g, r, z bands.

Random objects and galaxies from the final clustering sample (see Eq. (5.48)), including
weights (tiling completeness for the randoms, wcp,i and wnoz,i for the data) are binned in this
HEALPix map; we call ndat and nran the resulting per-pixel quantities. nran is normalised so
that its sum matches the sum of ndat in each chunk (eboss21, eboss22, eboss23, eboss25)

4. http://legacysurvey.org/dr3/description/

http://legacysurvey.org/dr3/description/
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and represents the expected density of targets in the absence of photometric systematics (and
clustering). Then, the density ndat is modelled as the multilinear model:

fsys(ipix) = nran,ipix

(
ε+

∑
t∈T

cttipix

)
(5.49)

which is fitted in each chunk to the per-pixel ndat through a χ2 minimisation. We consider a
diagonal covariance matrix with Poisson errors σipix = √nran,ipix . We checked that minimising
a log Poisson likelihood instead does not change our results, and verified with mocks that a
Gaussian likelihood with diagonal covariance matrix is overall a good approximation. The set
of photometric templates T is: galactic extinction and logarithm of the dust temperature, log of
HI column density, stellar density, seeing and depth flux. The photometric weight is then given
by:

wsys,i = fsys(ipix) (5.50)

calculated on the HEALPix map. As an example, Figure 5.16 shows the variations of the ELG
NGC angular density with respect to the stellar density and seeing in g-band, with and without
applying the angular weight (5.50). As stellar density increases, the probability for a galaxy
to be blended with a star increases. Hence the ELG density diminishes with stellar density, as
shown in Figure 5.16 (left). When photometric conditions are poorer, we also expect the ELG
density to decrease, explaining the trends with the seeing on Figure 5.16 (right). We see that
the weight wsys,i correctly removes these trends.

The mean of photometric weights wsys,i over all ELG targets is then normalised to 1 in each
chunk.

Figure 5.16 – Variations of the (weighted) ELG NGC angular density, calculated as the number of weighted
data over weighted randoms (in the final clustering sample, see Eq. (5.48)) in bins of the template p,
with p the stellar density (left) and the seeing in g-band (right). Variations are shown before (blue) and
after (orange) the additional weights (5.50) are applied. Error bars are given by the dispersion, scaled by
the square root of the sum of FKP weights in each bin to take into account cosmic variance, as pointed
out by Ross et al. (2017). Bottom panels display the distribution of ELG as a function of stellar density
(left) and seeing in g-band (right).

Note that by definition such multilinear regression nulls the correlation between (weighted)
ELG density and the considered set of photometric templates. In other words, this method im-
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poses angular integral constraints, in a very similar manner as discussed in Section 4.3, and hence
biases clustering measurements on large scales. This effect has been checked to be subdominant
for the eBOSS ELG RSD and BAO analyses.

Let us mention two other attempts to model photometric systematics. Rezaie et al. (2020)
aimed at modelling photometric systematics using neural nets. They constructed their target
catalogue applying the eBOSS ELG NGC target selection to a later data release of DECaLS
(DR7). Their method is more powerful in that it can account for complex, non-linear relations
between the angular galaxy density field and photometric templates. Also, overfitting (leading
to the angular integral constraints discussed above) is mitigated by performing cross-validation
(neural nets are trained and assessed on different data sets) and elimination of useless templates.
Their method yields quite similar results to the simple multilinear regression discussed above
for the specific case of the eBOSS ELG footprint, using specific DECaLS DR3 and DR5 data.
Another approach, called Obiwan and detailed in Kong et al. (2020) consists in injecting fake
galaxies into DECam images and process them through legacypipe (see Section 3.2.2.5) and
the eBOSS ELG target selection, in order to assess the response of the whole imaging pipeline,
including the software implementation. This method is free of the angular constraints discussed
above. Also, it is very useful in general to check for possible biases in the imaging pipeline.
Obiwan was run on the eBOSS ELG eboss23 footprint and provided similar results as the
multilinear regression presented above.

5.3.1.5 Completeness weights

The data completeness weights, including corrections for photometric systematics (wsys,i),
fibre collisions (wcp,i) and redshift failures (wnoz,i) are given by:

wcomp,i = wsys,iwcp,iwnoz,i (5.51)

while random weights are simply wcomp,i = wsys,i (wcp,i and wnoz,i being set to 1) with wsys,i
of the random catalogue accounting for the tiling completeness (see Section 5.3.1.2) — unlike
those of the data catalogue. By convention, data completeness weights are normalised such that
their sum reflects the number of redshifts one would have obtained without inefficiencies due to
fibre collisions and redshift failures (tiling incompleteness being accounted for in the randoms).
Hence, wnoz,i is rescaled such that the mean of the data completeness weights wcomp,i of ELGs
with a reliable redshift or stars (for them and for this calculation we take wnoz,i = 1) is equal to
the mean of wsys,i over all resolved targets. This normalisation convention is useful to specify
the initial redshift density required in mocks such that the final number of mock objects is not
lower than the number of data galaxies after the aforementioned inefficiencies are implemented.

5.3.1.6 Depth-dependent redshift density

The random angular density is designed to reproduce the expected angular ELG density
after corrections for fibre collisions, redshift failures and photometric systematics are included.
However, the random catalogue still misses a redshift information. As already discussed in
Section 4.3.2, the radial selection function is hard to model. Hence, as in any SDSS clustering
analysis, the redshift distribution is directly transferred from the data to the random catalogue,
using the shuffled scheme (Samushia et al., 2012; Ross et al., 2012; Reid et al., 2016): randoms
redshifts are randomly picked from the data redshift distribution. If the radial selection function
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was expected to be isotropic, the latter operation could be performed on the whole footprint.
However, as we discuss in the following, the eBOSS ELG radial selection function varies on the
sky.

The eBOSS ELG programme targeted quite faint targets, even for DECaLS imaging, which
results in a significant uncertainty in the magnitude estimation. Hence, targets are expected to
scatter in and out of the selection box. Especially, as described in Section 3.2.3, we can expect
some targets from low redshifts to scatter in the selection box, such that the density at low
redshift will be higher in regions of shallower imaging. We can also anticipate this effect to be
larger in the NGC where the depth is 0.5 mag lower, despite the more conservative, redder, cut
of the selection box presented in Section 3.2.3.

Hence, the ELG redshift distribution is expected to change with imaging depth. This is
shown in Figure 5.17, displaying the redshift density of eboss23 binned into different intervals
in depth. Since imaging depth is not constant on the sky (as could be expected from the
variations of number of photometric observations presented in Figure 3.11), the radial selection
function varies with the angular position. This effect was first noticed in the eBOSS ELG
sample, since other SDSS programmes targeted brighter targets, with a more isotropic imaging,
as permitted by the drift-scan strategy of the SDSS imaging survey (see Section 3.1.1.1).

Figure 5.17 – Redshift density of eboss23, binned in three intervals of depth in r-band. Data are shown
in thick lines, randoms in thin lines. Taken from Raichoor et al. (2020).

We describe the depth variations with a single variable fgrz, which is a linear combination
of the depth flux fb in the g, r and z bands:

fgrz = ε+
∑

b∈{g,r,z}
cbfb. (5.52)

The coefficients ε and cb of this linear combination are fitted in each chunk (eboss21, eboss22,
eboss23, eboss25) through a χ2 minimisation (taking into account data completeness weights)
comparing each ELG redshift to fgrz at its angular position. We note that the redshift density
was found have smaller dependence with respect to other photometric templates, the largest
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one being the seeing in g and r bands in eboss23, which is already accounted for by the fgrz
dependence.

Random objects of each chunk are split into 3 quantiles of fgrz. The same intervals are used
to bin ELG data. Then, data redshifts in the final clustering sample are randomly assigned to
random objects in each of these intervals (dubbed chunk_z), with a probability proportional
to their completeness weight wcomp,i, following the shuffled scheme. Note that such a chunk-
splitting increases the radial integral constraint discussed in Section 4.3.6, since the redshift
distribution of the random catalogue is tuned to match that of the data in smaller chunks.

Finally, random weights wsys,i are normalised to ensure that the sum of weighted data over
the sum of weighted randoms is the same in each chunk_z.

5.3.1.7 Calculation of redshift density and FKP weights

Data redshift density is calculated in each chunk, by binning weighted data from the final
clustering sample (without redshift cut) into redshift slices of size ∆z = 0.005, starting at z = 0.
The comoving volume within the shell delimited by redshifts z1 < z2:

V (z1, z2) = A3
[
χ(z2)DM(z2)2 − χ(z1)DM(z1)2

]
(5.53)

is calculated assuming the fiducial cosmology (5.4).
The effective area A used for the calculation is given by the number of randoms in the final

clustering sample, weighted by the tiling completeness. As mentioned in Section 5.3.1.4, such
a definition ensures that the redshift density n(z) matches the one we would have obtained
without spectroscopic (fibre assignment and redshift determination) incompleteness, which is
convenient for the mock generation process described below. However, it does not necessarily
provide a correct normalisation for the Yamamoto estimator, which must be accounted for in
the model, as discussed in Section 4.2.2.3.

The redshift density n(z) is evaluated at each data and random redshift z by linear interpol-
ation between the mean (or centre, if the bin is empty) of each redshift bin. FKP weights (see
Eq. (4.39)):

wFKP,i = 1
1 + n(zi)P0

(5.54)

are assigned to both data and randoms, using P0 = 4000 Mpc3 h−3, close to the measured power
spectrum monopole at k ' 0.1 h Mpc−1. As mentioned in Section 4.3.8, these FKP weights may
bias clustering measurements since they overweight (downweight) underdensities (overdensities),
but this systematic bias has been checked to be small enough for our analysis.

The total weights, to be applied on both data and random objects are given by:

wtot,i = wFKP,iwcomp,i (5.55)

with wcomp,i as given by Eq. (5.51).
We shall next check the robustness of the correction schemes detailed above and the analysis

pipeline as a whole to the aforementioned systematics, using mock catalogues, which are also
used to estimate the power spectrum covariance matrix.
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5.3.2 Approximate mocks

Performing a data analysis requires estimating the likelihood of the observed data (com-
pressed statistics). In particular, the likelihood of the observed power spectrum or correlation
function is generally assumed to be Gaussian, such that it is fully specified by its mean (the
theoretical model) and a covariance matrix.

A first solution to compute these covariance matrices is to rely on analytic methods. Simplest
covariance matrices assume Gaussian statistics (e.g. Grieb et al., 2016), some include perturb-
ation theory calculation (e.g. Wadekar and Scoccimarro, 2019) or partial tuning on jacknife
estimates (e.g. Philcox et al., 2020). Though these methods are promising in providing reliable
covariance matrices, it appears more difficult to include observational systematic uncertainties.
In general, mocks remain useful to test for potential bias due to observational systematics.

Since N-body mocks are computationally costly to produce (see Section 2.2.1), one has to
resort to faster methods (see Chuang et al. (2015) for a comparison of different methods). They
include Effective Zel’dovich approximation mocks (EZ, Chuang et al., 2015), Fast Particle Mesh
(FastPM, Feng et al., 2016), GaLAxy Mocks (GLAM, Klypin and Prada, 2018), PerturbAtion
Theory Catalog generator of Halo and galaxY distributions (PATCHY, Kitaura et al., 2014), and
Quick Particle Mesh (QPM, White et al., 2014a). FastPM, GLAM, and QPM are fast particle
mesh solvers. Instead, EZ and PATCHY evolve density fields generated by perturbation theories
and tracers are sampled using an effective bias model.

In this analysis, we consider two sets of approximate mocks, EZ and GLAM-QPM. The
generation of raw catalogues, i.e. without observational systematics, is described in the following.

5.3.2.1 EZ mocks

Details about the generation of the 1000 systematic-free EZ mocks can be found in Zhao
et al. (2020). We briefly recap the generation steps hereafter for completeness. The matter
density field of EZ mocks is evolved through the Zel’dovich approximation (see Section 2.1.4),
which is easily solved in Fourier space using FFTs. This field is then populated with tracers
based on a parameterised bias model. This effective bias prescription includes linear, non-linear,
deterministic, and stochastic effects, which can be calibrated with the 2- and 3-point clustering
statistics from observations or N-body simulations. Chuang et al. (2015) showed that the redshift
space power spectra of EZ mocks are accurate to the 5% level for k . 0.3 h Mpc−1, for a low
computational cost.

For the eBOSS analyses, Zhao et al. (2020) generated boxes of side length 5 Gpc h−1 and
grid size 10243, with the same number of dark matter particles. These particles are evolved
through the Zel’dovich approximation; we note the resulting dark matter density field ρm. The
fiducial cosmology of these mocks is that of the MultiDark simulation 5 (except for σ8), i.e. flat
ΛCDM with 6:

h = 0.6777, Ωm,0 = 0.307115,Ωb,0 = 0.048206,
σ8,0 = 0.8225, ns = 0.9611.

(5.56)

5. https://www.cosmosim.org/cms/simulations/mdpl2/
6. Note that ns is rounded to 0.96 on the MultiDark webpage; private email from Cheng Zhao on April 2,

2019.

https://www.cosmosim.org/cms/simulations/mdpl2/
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The final ELG number density is 6.4× 10−4 h3 Mpc−3. The galaxy density field follows the
relation:

ρg = θ(ρm − ρc)ρsat [1− exp (−ρm/ρexp)]Bs. (5.57)

θ is a step function, with θ(x ≥ 0) = 1 and θ(x < 0) = 0, such that halos (galaxies) only form
above some critical density ρc (see Section 2.3.1). The exponential term ensures saturation of
the galaxy density with the dark matter density ρm. Bs is a stochastic bias, following a Gaussian
distribution above 1 and a lognormal distribution below, of mean 0 and standard deviation 10.
Due to its degeneracy with Bs, ρsat is fixed to an arbitrary value.

The probability for each grid cell to contain ng galaxies is set to a power law∝ bng (b < 0 < 1).
Given the target total number of galaxy one obtains the number of cells ncell(ng) to be populated
with ng galaxies. Then, the maximum number of galaxies in one cell ng,max is assigned to the
ncell(ng,max) cells where ρg of Eq. (5.57) is highest. The process is repeated for decreasing ng
values. Galaxies are placed at the location of dark matter particles if there are any, else are
given uniform random locations inside the cell. Galaxies are assigned velocities as predicted by
linear theory, with an additional isotropic Gaussian random variable of mean 0 and standard
deviation v.

NGC and SGC are spatially far away and are thus generated from independent initial con-
ditions. Cubic boxes are remapped (an operation which preserves the periodicity of the galaxy
density field, see Carlson and White 2010) into a parallelepipoid of sides 5/

√
2Gpc h−1 and

5
√

2Gpc h−1, such that all eBOSS tracers are contained inside it (for cross-correlation studies).
Approximate light cones are built by concatenating different snapshots with redshift ranges
[0.6, 0.7], [0.7, 0.75], [0.75, 0.8], [0.8, 0.85], [0.85, 0.9], [0.9, 1.0], and [1.0, 1.1].

The make_survey software (White et al., 2014b) is used to rotate and trim the cubic boxes
to the ELG footprint. The observed redshift, including redshift space distortions is given by:

zconf = zreal + (1 + zreal)
v

c
, (5.58)

with v the peculiar (proper) galaxy velocity along the line-of-sight, c the speed of light, zreal the
real redshift (corresponding to the real space comoving distance).

The mocks are first trimmed following the ELG tiling geometry 7 using the mangle software.
Bias parameters (ρc, ρexp, b, v) of these light-cone mocks are calibrated on the observed data

2- and 3-point statistics in 4 overlapping redshift bins and their value is extrapolated to any
effective redshift using a second order Taylor expansion in redshift.

5.3.2.2 GLAM-QPM mocks

The generation of the 2003 raw (systematic-free) GLAM-QPM mocks is discussed in Lin
et al. (2020); we briefly recap the main steps of the mock creation in the following. The matter
density field is generated with GaLAxy Mock (GLAM) simulations and is sampled by halos using
the Quick Particle-Mesh (QPM) method. Halos are then populated with galaxies following a
HOD approach.

GLAM simulations evolve 15003 particles in a box of side length 3 Gpc h−1, hence with a
mass resolution of 6.8× 1011 M� h−1, starting at z = 100, with 94 time steps, increasing with

7. https://data.sdss.org/sas//ebosswork/eboss/ebosstilelist/trunk/outputs/eboss21/
geometry-eboss21.ply

https://data.sdss.org/sas//ebosswork/eboss/ebosstilelist/trunk/outputs/eboss21/geometry-eboss21.ply
https://data.sdss.org/sas//ebosswork/eboss/ebosstilelist/trunk/outputs/eboss21/geometry-eboss21.ply
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redshift. The following cosmology is assumed:

h = 0.678, Ωm = 0.307, ωb = 0.022,
σ8,0 = 0.828, ns = 0.96.

(5.59)

Then, dark matter particles are binned into 8 equally spaced bins of µ = ln (1 + δ), and the
bias is measured in each bin. Bias b is related to halo mass Mh following Tinker et al. (2008),
allowing a mapping between µ and halo mass Mh to be determined. Then, particles with a
local density of µ0 are turned into halos of mass Mh, with a Gaussian PDF of mean µ(Mh) and
standard deviation 0.1, with the constraint that the target halo mass function of Tinker et al.
(2010) should be reproduced.

Then, these halos are populated with galaxies following a HOD. The radial distribution
of satellites is assumed to follow a NFW profile, with concentration-mass relation as given
in Macciò et al. (2007). The mean HOD shape is the same as Eq. (5.35) for centrals and
Eq. (5.29) for satellites. Parameters were fitted to the data using a coarse grid search (fixing
the completeness and mass scale σ). The satellite fraction is found to be ' 17.4%, in agreement
with e.g. Favole et al. (2016). The obtained galaxy number density of 6.7× 10−4 h3 Mpc−3.
The best fit HOD is shown in Figure 5.18 (top left) and is compared to other HODs found
in the literature (Gonzalez-Perez et al., 2018; Guo et al., 2019) (see Section 2.2.3). The same
figure shows the projected correlation function (top right), convenient to ignore RSD effects
(see Davis and Peebles, 1983), and the correlation function monopole and quadrupole (bottom).
Compared to ELG measurements, GLAM-QPM mocks lack clustering around s ' 1 Mpc h−1,
at the transition between the one halo and two halo terms.

Mocks are trimmed to the tiling geometry; then, veto masks and the radial selection function
measured in chunks are applied.

5.3.3 Generation of EZ mock catalogues

We first implement observational systematics in the raw EZ mock catalogues described above.

5.3.3.1 Depth-dependent redshift density

Raw mocks have a constant density. We thus have to imprint the radial selection function
of the observed data, which, as seen in Section 5.3.1.6, depends on imaging depth.

First, the reference chunk_z is assigned to any object in both mock data and randoms by
taking the chunk_z value of the nearest object in the same chunk of the eBOSS ELG random
catalogue. Both mock data and randoms are downsampled to match the redshift density of the
final eBOSS ELG clustering sample (rescaled to the mock fiducial cosmology) in each chunk_z.
As can be seen in Figure 5.19, the data redshift distribution is well reproduced in each chunk_z,
except the density peak in eboss22 (top right) which is truncated. This is due to the mock
density being slightly too low to incorporate all observational systematics, a major contribution
coming from angular photometric systematics.

However, despite this slight mismatch in redshift distribution we still want to keep the same
average final number of objects in the mocks as in the data clustering catalogues. Hence, the
redshift density is slightly rescaled so that the resulting average (over the 1000 mocks) number of
mock galaxies matches the weighted number of objects in the eBOSS clustering sample in each
chunk — plus missed targets contributing to the tiling incompleteness. Table 5.4 and Table 5.5
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Figure 5.18 – Top left: HOD model for the GLAM-QPM mocks compared to other models in the redshift
range 0.8 < z < 0.9 (Gonzalez-Perez et al., 2018; Guo et al., 2019). Top right: projected correlation
function of 100 GLAM-QPM mocks (green) and data (red, averaged over NGC and SGC). Bottom:
correlation function monopole (left) and quadrupole (right). Data error bars are jacknife estimates, while
the width of the green regions is given by the standard deviation of the mocks.

report the number of objects in the data and mock catalogues. They match very well, at the
sub-percent level.

After this first downsampling to reproduce the data redshift density in each chunk_z, all
objects are kept in mock catalogues, making it possible to compare clustering measurements
with and without a specific observational systematics using the same files. For convenience, a
veto flag includes all photometric veto masks and cuts to obtain the clustering sample and we
adopt the convention that a weight of 0 means that the mock galaxy should not be considered
if the corresponding systematics is applied.

5.3.3.2 Veto masks

Photometric veto masks are applied on mock data and randoms the same way as to eBOSS
data (see Section 5.3.1.1). To match the correct target density for the fibre assignment (see
Section 5.3.3.4), objects from the true ELG data are injected into the mocks. For this we first
include all spectroscopically-confirmed stars. This is not sufficient to reach the required target
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Figure 5.19 – Redshift histograms for each chunk_z of the different chunks (top left: eboss21, top right:
eboss22, bottom left: eboss23, bottom right: eboss25): eBOSS data (continous lines) and mean of
EZ mocks (dashed lines), with their dispersion (shaded area). The EZ mocks redshift density is slightly
truncated (e.g. the peak in the top right panel) and rescaled to obtain the correct final number of objects.

density, since in the data a number of low or high redshift objects (outside the redshift range
[0.6, 1.1]) also contribute to the ELG target density.

Hence, a random subsample (changing from mock to mock) of non-star fibre-assigned ELG
objects, not rejected by bits 1, 2, 3, 4 and 5 of the veto mask 5.3 — since those were applied
before the fibre assignment — is added to the mock sample. Redshifts of the latter objects
are randomly reassigned using the sample of non-star eBOSS ELGs with a redshift outside
[0.6, 1.1]. Note that we do not use directly objects outside the redshift range [0.6, 1.1], as their
SSR is biased towards lower values and would thus alter the implementation of redshift failures
described in Section 5.3.3.5.

Note that all these objects from the ELG target sample will be discarded by cuts on redshift
quality (for stars) or reshift value (for the other eBOSS objects) and hence will not be part of
the final mock clustering sample. An additional flag is added to keep track of these real eBOSS
objects.

5.3.3.3 Photometric systematics

As noted in Section 5.3.1.4, the eBOSS ELG sample suffers from angular photometric sys-
tematics, which we consider as partly unknown. We thus follow the most agnostic approach to
implement these systematics.

Mock data objects are downsampled following an HEALPix map (nside = 256) built upon
the observed angular target density, smoothed with a Gaussian beam of radius 1◦. This map
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is displayed on Figure 5.20. All real eBOSS objects are kept unmasked, since they were by
definition selected as part of the ELG targets.

Figure 5.20 – Map of angular photometric systematics used to downsample the mocks (top: NGC, bottom:
SGC). This map is obtained by smoothing the data target density with a Gaussian beam of size 1◦ in
each chunk.

5.3.3.4 Fibre collisions

The positions of ELG tiles are transferred from observed to mock data using the tiling files 8.
We do not intend to reproduce the variations of the tile positions with target density resulting
from the optimisation described in Section 3.3.1. We indeed expect the potential coupling
between data density (and hence clustering) and tiling completeness to be very low for the
eBOSS ELG sample, as the tiling density was high.

The implementation of fibre collisions in the mocks is essentially based on the algorithm
of Guo et al. (2012) implemented into nbodykit (Hand et al., 2018) 9. In essence, this algorithm
forms collision groups with a Friends-of-Friends algorithm of linking length the fibre collision
radius, 62′′. Then, targets are split between a decollided set (the largest set of targets which are
not in collision with one another) and a collided set (targets which are in collision with one of
the decollided set). To this end, for each collision group:

— If the multiplicity is 2, one of the two targets is randomly added to the collided set

— Else (if the multiplicity is greater than 2) targets to be added to the collided set are
preferentially those with:

1. collisions with the highest number of other targets;

2. collisions with targets that have the lowest number of collisions with other targets;

8. https://data.sdss.org/sas/ebosswork/eboss/ebosstilelist/trunk/outputs/eboss21/
9. https://nbodykit.readthedocs.io/en/latest/api/_autosummary/nbodykit.algorithms.

fibrecollisions.html#nbodykit.algorithms.fibrecollisions.fibreCollisions

https://data.sdss.org/sas/ebosswork/eboss/ebosstilelist/trunk/outputs/eboss21/
https://nbodykit.readthedocs.io/en/latest/api/_autosummary/nbodykit.algorithms.fibrecollisions.html#nbodykit.algorithms.fibrecollisions.fibreCollisions
https://nbodykit.readthedocs.io/en/latest/api/_autosummary/nbodykit.algorithms.fibrecollisions.html#nbodykit.algorithms.fibrecollisions.fibreCollisions
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If several targets are in the exact same conditions, one of them is randomly added to the
collided set. Then, the above selections are repeated until all collisions are removed.

We modify this algorithm to deal with different priority targets; namely, targets of lower priority
are always added to the collided set first. We call the resulting algorithm FCP (fibre collisions
with priority).

Just as for the fibre assignment to real ELG targets, we process each chunk separately. We
consider all mock objects, except those flagged by bits 1, 2, 3, 4 and 5 of Table 5.3 — as those
were applied to the data target catalogues prior to fibre assignement. As noted in Section 3.3.1.4,
some targets of the Time Domain Spectroscopic Survey (TDSS, Ruan et al., 2016) (' 50 per
tile) were tiled at the same time as eBOSS ELGs. A subset of them, TDSS FES targets (206,
451, 469, 280 in chunks eboss21, eboss22, eboss23 and eboss25, respectively) had the same
priority (0) as ELGs, while other RQS targets were targeted with lower priorities (1, 2 and 3).
Actually, the tiling was run in 3 successive runs, with the condition that the fibres assigned in
previous runs are left untouched. eBOSS ELGs (priority 0) were allocated fibres in the first
run, with only TDSS FES (0) and RQS1 (1) targets. Since later runs did not impact the fibre
assignment of this first run, we only have to consider the latter for implementation in the mocks.

Hence TDSS FES (RQS1) targets are added to the ELG targets, with their priority 0 (1), to
obtain the total sample for fibre assignment. We further take into account the tiling geometry of
the eBOSS ELG sample: some fibre collisions can indeed be resolved in regions where multiple
tiles overlap (sectors). For this we loop over the minimal number of overlapping tiles, Ntiles. We
start at Ntiles = 1, with all targets in the collided set (and none in the decollided one). Then,
the FCP algorithm described above is run on the set of collided targets for which the number of
overlapping tiles is ≥ Ntiles. If there are none, the algorithm terminates. Else, FCP outputs a set
of decollided targets, which is merged with the existing one, and a set of collided targets, which
we take as the new one. Collision group identifiers, used to compute wcp,i weights, are set in the
first run.

Then, the added TDSS (FES and RQS1) targets are removed from the mock sample (since
they are not part of the eBOSS ELG sample). As noted in Section 5.3.1.2, some fibres could
not be used to measure spectra due to hardware issues. We thus match each mock ELG with
its nearest neighbour in the eBOSS targets (rejecting only bits 1, 2, 3, 4 and 5 of Table 5.3); if
the latter received an invalid fibre, it is propagated to the mock object.

Just as for the eBOSS ELG data, by the end of this procedure we obtain mock targets which
have been allocated a fibre, some targets that were collided with these and others that received
an invalid fibre. In addition, collision groups were determined.

5.3.3.5 Redshift failures

The final source of incompleteness is redshift failures.
We adopt an agnostic scheme to implement redshift failures into the baseline mocks. Each

mock ELG (with a valid fibre) receives the spectroscopic properties (redshift reliability, median
signal-to-noise ratio, plate and observation date and XFOCAL,YFOCAL) of the nearest ELG
in the eBOSS data sample of targets with valid fibres and not spectroscopically classified as
stars — as those were already added to the mock sample in Section 5.3.3.2.

To test the impact of such a procedure (which statistically overestimates the impact of
redshift failures), we produced a second set of mocks. In this case, mock objects are declared
as redshift failures according to the probability fpSN

noz × fXYFOCAL
noz (see Eq. (5.43) and (5.44))
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of their nearest neighbour in eBOSS data. This procedure is thus stochastic, as opposed to the
previous one, which is deterministic (once fibre angular positions are provided).

The clustering measurements on these sets of mocks (statistically differing only through their
implementation of redshift failures) will be compared in Section 5.4.

5.3.3.6 Systematic weights and corrections

Once observational systematics have been implemented to the mocks, we can apply to them
the correction schemes detailed in Section 5.3.1. For this we use the exact same code as for the
eBOSS ELG sample, ensuring a perfectly similar treatment between data and mocks.

Veto masks The same veto flags as in the eBOSS data (see Section 5.3.1.1) are applied before
calculation of any correction scheme.

Fibre collisions The FCP algorithm outputs collision group identifiers, which are used to
compute wcp,i the same way as in Section 5.3.1.2. The tiling completeness is also calculated and
applied to the randoms. Figure 5.21 shows the tiling success rate (TSR), defined as the number
of valid fibres over the total number of fibres in each sector, for eBOSS data and one realisation
of the EZ mocks. Similarly, Figure 5.22 displays the tiling completeness, which we recall is the
ratio of the number of resolved targets to the number of targets in each sector. On both figures,
mocks reproduce very well the patterns seen in the data, especially as a function of the number
of tile overlaps.

Figure 5.21 – TSR in the eBOSS data (left) and in one realisation of the EZ mocks (right), in NGC (top)
and SGC (bottom). The TSR is fully predicted by the FCP algorithm.

Figure 5.22 – BOSS tiling completeness in the eBOSS data (left) and one realisation of the EZ mocks
(right), in NGC (top) and SGC (bottom).
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Redshift failures The correction scheme described in Section 5.3.1.3 is applied to mock data
using the assigned redshift reliability, median signal-to-noise ratio, plate and observation date
and XFOCAL,YFOCAL. The equivalent of Figure 5.14 and Figure 5.15, obtained with the
observed data, are Figure 5.23 and Figure 5.24, obtained with one realisation of the EZ mocks.
Data and mock variations of the spectroscopic success rate with median signal-to-noise and
position on the focal plane look very much alike (as could be expected by construction). In
addition, Figure 5.25 displays the variation of the spectroscopic success rate with the fibre
identifier — which is correlated to the position on the focal plane. Again, both data and mocks
show similar trends, such as a drop in SSR close to 1, 500 and 1000, corresponding to the
spectrograph boundaries. Those trends are mostly removed when the weight wnoz,i is applied.

Figure 5.23 – Same as Figure 5.14, for one realisation of the EZ mocks.

Angular photometric systematic The data photometric map is used to bin weighted mock
data and randoms. The same correction scheme as in Section 5.3.1.4 is applied to the mocks.
Figure 5.26 displays the map of systematic weights for data and one realisation of the EZ mocks.
Both data and the mock show similar trends, as a consequence of the data-based systematic
map injected into the mocks shown in Figure 5.20. Indeed, regions of low (high) density in
Figure 5.20 are attributed high (low) wsys,i.
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Figure 5.24 – Same as Figure 5.15, for one realisation of the EZ mocks.

Figure 5.25 – Variations of SSR as a function of fibre ID (shaded: before redshift failures correction,
plain: after wnoz,i correction) in the eBOSS data (left) and in one realisation of the EZ mocks (right).
We use bins of 5 fibres.

Quality cuts Eq. (5.48) are applied to mock catalogues and weights are normalised the same
way as in Section 5.3.1.5.

Depth-dependent redshift density By construction (see Section 5.3.3.1), the radial selec-
tion function of mock catalogues varies with imaging depth. Mock randoms and data are first
assigned the depth value of their nearest neighbour in the eBOSS randoms. The same correction
scheme as in Section 5.3.1.6 is then applied to the mocks. Thus, due to variations in the mock
object angular positions and redshifts, the calculated chunk_z is not exactly the same as the
reference input from the eBOSS ELG sample.
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Figure 5.26 – Photometric systematic weights in the eBOSS data (left) and in one realisation of the EZ
mocks (right), in NGC (top) and SGC (bottom).

eboss21 eboss22 eboss23 eboss25 NGC SGC ALL
Ntarg 36, 314 79, 880 70, 935 42, 565 113, 500 116, 194 229, 694
Nobs 34, 217 76, 097 66, 221 40, 456 106, 677 110, 314 216, 991
Nmissed 408 675 660 358 1, 018 1, 083 2, 101
Ncp 1, 689 3, 108 4, 054 1, 751 5, 805 4, 797 10, 602
Ngal 31, 200 69, 071 58, 648 36, 166 94, 814 100, 271 195, 085
Nstar 333 512 544 315 859 845 1, 704
Nfail 2, 684 6, 514 7, 029 3, 975 11, 004 9, 198 20, 202
Nused 28, 029 61, 938 51, 432 32, 337 83, 769 89, 967 173, 736
Mean TSR 0.9412 0.9521 0.9332 0.9496 0.9390 0.9485 0.9437
Mean comp. 0.9887 0.9915 0.9906 0.9915 0.9909 0.9906 0.9908
Mean SSR 0.9207 0.9135 0.8932 0.9016 0.8962 0.9159 0.9059

Table 5.4 – Number statistics of the eBOSS ELG sample. Ntarg is the number of targets (after all masks 5.3
are applied), Nobs the number of targets with valid fibres, Nmissed the number of targets which were not
resolved, Ncp the number of collided targets, Ngal the number of reliable redshifts, Nstar the number of
spectroscopically-confirmed stars, Nfail the number of redshift failures, Nused the size of the clustering
sample (after quality cuts Eq. (5.48)). Mean TSR is the mean tiling success rate (as computed in the
random catalogue), mean comp. the mean tiling completeness and mean SSR the mean spectroscopic
success rate.

Calculation of redshift density and FKP weights Redshift density n(z) is calculated the
same way as in Section 5.3.1.7, except that the effective area is taken to be constant, equal to that
of the eBOSS ELG sample. Indeed, this area is a purely arbitrary choice (it is fully compensated
for with an equivalent normalisation of the window functions in the model, see Section 4.2.2.3)
and thus should not enter the estimation of the clustering measurement covariance.

Number statistics Various number statistics are provided for the observed ELG data in
Table 5.4. We provide the similar quantities for EZ mocks in Table 5.5. Agreement between
data and EZ mock number statistics is of the order of 0.5%, thereby confirming observational
systematics have been correctly implemented.

Figure 5.27 shows the different systematics and corrections applied successively to the EZ
mocks. One can already see that angular photometric systematics (photo) are the dominant
ones. Another important effect is due to the shuffled scheme used to assign redshifts to randoms
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eboss21 eboss22 eboss23 eboss25 NGC SGC ALL
Ntarg 36, 308 79, 883 70, 913 42, 556 113, 469 116, 191 229, 660
Nobs 34, 437 76, 399 66, 666 40, 621 107, 287 110, 836 218, 123
Nmissed 342 649 599 340 939 991 1, 930
Ncp 1, 529 2, 835 3, 648 1, 595 5, 243 4, 365 9, 608
Ngal 31, 432 69, 279 59, 035 36, 267 95, 302 100, 711 196, 013
Nstar 322 499 523 306 828 820 1, 649
Nfail 2, 683 6, 621 7, 109 4, 048 11, 157 9, 304 20, 461
Nused 28, 170 61, 992 51, 612 32, 347 83, 960 90, 161 174, 121
Mean TSR 0.9485 0.9564 0.9401 0.9545 0.9455 0.9539 0.9498
Mean comp. 0.9906 0.9919 0.9916 0.9920 0.9917 0.9915 0.9916
Mean SSR 0.9221 0.9133 0.8934 0.9003 0.8960 0.9161 0.9062

Table 5.5 – Mean number statistics of the 1000 EZ mocks. See Table 5.4 for the definition of the various
quantities and a comparison to the statistics of the observed data.

Figure 5.27 – Power spectrum measurements (left: monopole, middle: quadrupole, right: hexadecapole,
top: NGC, bottom: SGC) of the EZ mocks, with different systematics and corrections applied successively.
The blue shaded region represents the standard deviation of the mocks with veto masks only. Bottom
panels: difference of the various schemes to the reference (with veto flag only), normalised by the standard
deviation of the mocks. Note that redshift failures, as implemented in the EZ mocks, partially cancel the
effect of fibre collisions.
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Figure 5.28 – Power spectrum measurements (left: monopole, middle: quadrupole, right: hexadecapole,
top: NGC, bottom: SGC) of the eBOSS data (blue) and the mean and standard deviation (shaded
region) of the EZ mocks without (orange) and with (red) all systematics. EZ mocks with the shuffled
scheme only (green) do not include observational systematics.

from the mock data redshift distribution, which leads to the aforementioned radial integral
constraint, clearly visible in the quadrupole and hexadecapole at large scale.

Figure 5.28 displays the power spectrum measurement of the eBOSS ELG sample (blue
curve), together with the mean of the EZ mocks with veto masks only applied (baseline, orange).
Accounting for the shuffled scheme in the mocks (green) resolves part of the difference between
data and mocks in the quadrupole and hexadecapole on large scales. Including all systematics
and corrections (red), the agreement with observed data is improved in the quadrupole.

5.3.4 Generation of GLAM-QPM mock catalogues

We also added observational effects to GLAM-QPMmocks. Contrary to EZ mocks, we do not
implement variations of the redshift distribution with imaging depth, nor imaging systematics.
However, all other systematics (fibre collisions and redshift failures) are treated the same way
as for EZ mocks. Again, all systematic corrections are applied the exact same way to the mocks
as to the eBOSS ELG catalogues.

The number statistics of GLAM-QPM mocks are provided in Table 5.6. Those are also in
very good agreement with data (see Table 5.4).

Figure 5.29 displays the power spectrum measurement of the eBOSS ELG sample (blue
curve). The mean of the GLAM-QPM mocks with veto masks only applied (baseline) is shown
in orange. Including all implemented systematics and corrections (green), the agreement with
observed data is improved.

We have been in charge of the implementation of observational systematics in mock cata-
logues, and their correction in both data and mocks, for the eBOSS collaboration. Main im-
provements compared to previous analyses consist in (i) implementing realistic observational
systematics (e.g. fibre collisions) and (ii) applying the exact same corrections (including prac-
tical implementation) to both data and mocks in order to be best reproduce the statistical
properties of the eBOSS ELG sample.
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eboss21 eboss22 eboss23 eboss25 NGC SGC ALL
Ntarg 36, 308 79, 907 70, 941 42, 556 113, 497 116, 215 229, 711
Nobs 34, 329 76, 202 66, 511 40, 532 107, 043 110, 531 217, 574
Nmissed 339 651 602 340 943 990 1, 932
Ncp 1, 640 3, 055 3, 827 1, 684 5, 511 4, 695 10, 206
Ngal 31, 340 69, 098 58, 877 36, 189 95, 066 100, 437 195, 504
Nstar 322 499 523 306 828 821 1, 649
Nfail 2, 668 6, 605 7, 111 4, 037 11, 148 9, 273 20, 420
Nused 28, 078 61, 814 51, 453 32, 273 83, 726 89, 892 173, 618
Mean TSR 0.9455 0.9536 0.9376 0.9524 0.9431 0.9511 0.9472
Mean comp. 0.9907 0.9919 0.9915 0.9920 0.9917 0.9915 0.9916
Mean SSR 0.9223 0.9133 0.8931 0.9004 0.8959 0.9161 0.9061

Table 5.6 – Mean statistics of the 2003 GLAM-QPM mocks. See Table 5.4 for the definition of the various
quantities and a comparison to the statistics of the observed data.

Figure 5.29 – Power spectrum measurements (left: monopole, middle: quadrupole, right: hexadecapole,
top: NGC, bottom: SGC) of the eBOSS data (blue) and the mean of the GLAM-QPM mocks without
(orange) and with (green) all systematics.

The mock catalogues we have just built, including observational systematics, will be used to
test the analysis pipeline as described in the next section.

5.4 Testing the analysis pipeline using mock catalogues

In this section we first check our analysis pipeline and review how the observational systemat-
ics introduced in the approximate mocks impact BAO and RSD measurements. Although some
systematic effects are difficult to model accurately in mocks, these can still be used to derive
reliable estimates for part of the systematic uncertainties.The other systematic uncertainties will
be estimated from the data itself in Section 5.5.

In all tests, to fit each type of mocks, we use the covariance matrix built from the same
mocks, unless otherwise stated.
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fσ8 DH/rdrag DM/rdrag

EZ boxes at zsnap = 0.876 0.43088+0.00017
−0.00017 18.2186+0.0034

−0.0034 20.7175+0.0027
−0.0027

EZ boxes at zeff = 0.845 0.43391+0.00017
−0.00017 18.5590+0.0034

−0.0034 20.1526+0.0026
−0.0026

Mean of EZ mocks no veto (zeff = 0.845) 0.4346+0.0017
−0.0017 18.477+0.033

−0.033 20.103+0.028
−0.028

Mean of EZ mocks baseline (zeff = 0.845) 0.4341+0.0017
−0.0017 18.472+0.033

−0.034 20.127+0.031
−0.030

Table 5.7 – Comparison of the RSD measurements on EZ boxes at redshift zsnap = 0.876 and extrapolated
at zeff = 0.845 (given their cosmology), with those from the sky-cut EZ mocks, with and without veto
masks. For the EZ boxes we quote the mean and standard deviation of the best fit measurements, divided
by the square root of the number of realisations (300). For the sky-cut mocks, error bars are given by
the ∆χ2 = 1 level on the mean of the mocks.

For reasons that will be justified in Section 5.5, we will use NGC and SGC (NGC + SGC)
or SGC only power spectrum measurements and vary the redshift range. The baseline result
will use NGC + SGC, and the redshift ranges 0.7 < z < 1.1 and 0.6 < z < 1.1 for the RSD and
BAO fits, respectively.

5.4.1 Survey geometry effects

The RSD model presented in Section 5.1.2 neglects the evolution of the cosmological back-
ground within the redshift range of the eBOSS ELG sample. To test the impact of this assump-
tion on clustering measurements, we first fit 300 EZ periodic boxes at redshift zsnap = 0.876
(see Section 5.3.2.1), using a Gaussian covariance matrix, as in Section 5.2.2. We compare these
measurements to those obtained on the mean of the no veto EZ mocks, that is including the
(approximate) light-cone and global (tiling) footprint. In this case, we apply the corresponding
window function treatment (Section 5.1.2.1) and the global integral constraint (Section 5.1.2.2)
in the model. To ease the comparison, which we present in Table 5.7, we extrapolate the best fits
to the EZ boxes at redshift zsnap = 0.876 to the effective redshift zeff = 0.845 of the EZ mocks,
using their input cosmology of Eq. (5.56). The difference between the extrapolated mean of the
best fits to the EZ boxes and the best fit to the mean of the EZ mocks is 0.2% on fσ8, 0.4%
on DH(z)/rdrag and 0.2% on DM(z)/rdrag, fully negligible compared to the dispersion of the
mocks (12%, 6% and 5% respectively, see Table 5.9), validating our modelling approximation
of the eBOSS ELG survey as a single snapshot at redshift zeff = 0.845. We finally apply veto
masks to EZ mocks and in the window function calculation. In this case, again, the change in
best fit parameters is ' 0.1%, compatible with the error bars (baseline versus no veto). We
also checked that increasing the sampling of the window function in the small separation s→ 0
limit has virtually no impact (0.01%) on the cosmological measurement. These tests validate
our treatment of the window function with the fine-grained eBOSS ELG veto masks.

The total shifts between the baseline sky-cut mocks and the EZ boxes are 0.1%, 0.5% and
0.1% for fσ8, α‖ and α⊥. We take them as systematic shifts (under the generic denomination
survey geometry).

5.4.2 Fibre collisions

Fibre collisions are shown to be the dominant observational systematics in the eBOSS QSO
sample (Neveux et al., 2020; Hou et al., 2020). The impact of fibre collisions can be seen on
EZ mocks by comparing the green to the orange curves in Figure 5.27. Here we test their
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NGC SGC
tile overlap 0.44 0.35
collision fraction 0.47 0.39
simulated collision fraction 0.46 0.38
EZ simulated collision fraction 0.46± 0.005 0.38± 0.004
GLAM-QPM simulated collision fraction 0.46± 0.005 0.39± 0.005

Table 5.8 – Different estimates of the fibre collisions fraction fs. See text for details.

effect on cosmological fits to GLAM-QPM mocks, as these mocks are not further impacted by
photometric systematics.

We report in Table 5.9 the best fits to 2003 GLAM-QPM baseline mocks with only geometry
and veto masks applied (baseline) and to the mocks where fibre collisions are simulated (fibre
collisions). We find a systematic shift of 2.5% on fσ8 (22% of the dispersion of the mocks),
0.6% on α‖ (9%) and 0.5% on α⊥ (10%).

The impact of fibre collisions can be mitigated following Hahn et al. (2017), if the fraction of
collided pairs fs and the fibre collision angular scale Dfc are known. In the Hahn et al. (2017)
correction, fs = 1 corresponds to all galaxy pairs closer than the fibre collision angular scale
being unobserved. Because of tile overlaps, this fraction is reduced. The fraction of collided
pairs fs can then be estimated in several ways:

— tile overlap: the fraction of the survey area without tile overlap, estimated using the syn-
thetic catalogue. This assumes all collisions are resolved in tile overlaps;

— collision fraction: the number of targets which were collided with another one (including
the relevant TDSS targets), divided by the number of targets that would be assigned a
fibre without tile overlap. This number is simulated with the same algorithm as that used
for the EZ and GLAM-QPM mocks to implement fibre collisions, except the effect of tile
overlaps (see Section 5.3.3 and 5.3.4);

— simulated collision fraction: same as collision fraction, but also simulating the number of
data targets which were collided with another one (including the relevant TDSS targets),
taking into account tile overlaps;

— EZ simulated collision fraction: same as simulated collision fraction, in the EZ mocks;

— GLAM-QPM simulated collision fraction: same as simulated collision fraction, in the
GLAM-QPM mocks.

All these estimates are calculated with veto masks applied and are reported in Table 5.8,
using 50 mocks (for EZ andGLAM-QPM simulated collision fraction). They all agree within 2%.
The modelling of fibre collisions in Hahn et al. (2017) is actually based on their impact on
the projected correlation function. Figure 5.30 displays the ratio of the projected correlation
function of the GLAM-QPM mocks with fibre collisions corrected by wcp,i to the true one
(without fibre collisions): fs, given by the height of the step function (see Hahn et al. 2017), is
in very good agreement with the above estimates provided in Table 5.8. We therefore choose
the corresponding values fs = 0.46 for NGC and fs = 0.38 for SGC.

For the fibre collision angular scale Dfc, we take the comoving distance corresponding to the
fibre collision radius 62′′ at the effective redshift of the eBOSS ELG sample zeff = 0.845. The
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Figure 5.30 – Ratio of the wcp,i-corrected projected correlation function to the true projected correlation
function, presented in the form 1− (1 + ξcp)/(1 + ξtrue), as obtained in 379 GLAM-QPM mocks and in
the model of Hahn et al. (2017) (left: NGC, right: SGC). See text for details, and Figure 8 of Hahn et al.
(2017) for comparison.

obtained value, 0.61 Mpc h−1, provides good modelling of the effect as can be seen in Figure 5.30.
For the redshift cut 0.7 < z < 1.1, a similar calculation provides Dfc = 0.62 Mpc h−1.

The parameters fs and Dfc being determined, the Hahn et al. (2017) correction can be
included in the RSD model. Best fits to the GLAM-QPM mocks with fibre collisions are in very
good agreement with the baseline mocks once the correction is included: the potential remaining
systematic bias is 0.3% on fσ8, 0.1% on α‖ and 0.0% on α‖ — 3%, 2% and 0% of the dispersion
of the mocks, respectively (fibre collisions + Hahn et al. versus baseline in Table 5.9). We
therefore include this correction as a baseline in the following.

Note that Bianchi and Percival (2017); Percival and Bianchi (2017) developed a method to
correct for such missing observations in the n-point (configuration space) correlation function
using n-tuple upweighting; for an application to the eBOSS samples (including ELG), we refer
the reader to Mohammad et al. (2020). This method has been very recently extended to the
Fourier space analysis by Bianchi and Verde (2019). We do not apply this technique to the
eBOSS ELG sample, since most of this analysis was completed before this publication and
because the effect of fibre collisions appears subdominant, especially after the Hahn et al. (2017)
correction.

5.4.3 Radial integral constraint

As mentioned in Section 5.3.3, the shuffled scheme, used to assign data redshifts to randoms
is responsible for a major shift of the power spectrum multipoles (purple versus red curves in
Figure 5.27) due to the radial integral constraint (see Section 5.1.2.2). We report in Table 5.9
the cosmological measurements from RSD fits without (baseline, GIC) and with the shuffled
scheme (shuffled, GIC), while keeping the global integral constraint (GIC) in the model: the
induced systematic shift is 0.4% on fσ8 (4% of the dispersion of the mocks), 4.4% on α‖ (66%)
and 3.9% on α⊥ (78%). Modelling the radial integral constraint (RIC) removes most of this
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bias: the remaining shift is 0.2% on fσ8 (2% of the dispersion of the mocks), 0.2% on α‖ (3%)
and 0.3% on α⊥ (5%).

5.4.4 Remaining angular systematics

In Section 5.3.3.3 we mentioned the large angular photometric systematics of the eBOSS
ELG sample, which we attempted to introduce in the EZ mocks (orange versus blue curves in
Figure 5.27). These systematics bias cosmological measurements from RSD fits, as can be seen
in Table 5.9: comparing the fits on contaminated mocks, including the fibre collision correction
of Section 5.4.2 (all syst., fc) to uncontaminated mocks (baseline, GIC), one notices a bias of
8.8% on fσ8, 2.4% on α‖ and 1.6% on α⊥, corresponding to a significant shift of respectively
75%, 35% and 32% of the dispersion of the best fits to the mocks.

We propose to mitigate these residual systematics by applying the pixelated scheme as de-
scribed in Section 4.3.7.2. In Table 5.9 we report the RSD measurements without (baseline,
GIC) and with the full angular and radial integral constraints (ARIC) modelled, applying the
shuffled and pixelated schemes to the uncontaminated mock data, for two pixel sizes: nside = 64
(' 0.84 deg2) and nside = 128 (' 0.21 deg2). The combined radial and angular integral con-
straint is correctly modelled, generating only a small potential bias of 1.1% on fσ8, 0.5% and
0.4% on scaling parameters (which amounts to 10%, 8% and 7% of the dispersion of the mocks,
respectively) for nside = 64. A similar shift is seen with nside = 128. The pixelated scheme
increases statistical uncertainties by a reasonable fraction of ' 10%.

Finally, Figure 5.31 shows the best fits to the baseline (blue) and contaminated (red) EZ
mocks. Measurements obtained when applying the pixelated scheme (nside = 64) to the con-
taminated mocks and modelling the ARIC are shown in blue. The systematic bias quoted at
the beginning of the section is clearly reduced and becomes 2.5% on fσ8 (21% of the dispersion
of the mocks), 0.4% on α‖ (6%) and 0.5% on α⊥ (12%) with nside = 64, slightly less with
nside = 128 (see Table 5.9, all syst & pix64, fc with respect to baseline, GIC ).

5.4.5 Likelihood Gaussianity

In Section 5.1.6 we assumed that we could use a Gaussian likelihood to compare data and
model. While this may be accurate enough by virtue of the central limit theorem when the
number of modes is high enough, it may break down on large scales where statistics is lower
and mode coupling due to the survey geometry, and, in our specific case, the radial and angular
integral constraints, occurs (see e.g. Hahn et al. 2019).

Comparing the median of the fits to each individual baseline EZ mocks to the fit to the
mean of the mocks (see first two rows of second series of results in Table 5.9, baseline, GIC
versus mean of mocks baseline, GIC ), we observe shifts of 2.2% on fσ8 (19% of the dispersion
of the mocks), 1.3% on α‖ (21%) and 0.9% on α⊥ (18%). This bias could be due to either
non-Gaussianity of the power spectrum likelihood or model non-linearity.

To test a potential bias coming from the breakdown of such a Gaussian assumption, we
produce 1000 fake power spectra following a Gaussian distribution around the mean of the EZ
mocks, with the covariance of the mocks, and fit them with our model (using the same covariance
matrix). Results are reported in Table 5.9 (fake all syst. & pix64, fc). Shifts with respect to
the true mocks (all syst. & pix64, fc) are 0.2% on fσ8, 0.1% on α‖ and 0.2% on α⊥.
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Figure 5.31 – Best fits to the baseline (black) and fully contaminated (red) EZ mocks. In blue, the
pixelated scheme is applied on contaminated mocks to mitigate angular systematics. Dotted vertical lines
in the histograms and crosses in the scatter plots point to the median of the best fit values, while the
size of the crosses is given by the 16% and 84% percentiles.

We therefore conclude that one can safely use the Gaussian likelihood to compare data and
model power spectra. We also attribute the shifts between the fit to the mean of the EZ mocks
and the median of the fits to each mock to model non-linearity.

5.4.6 Isotropic BAO measurements

In Table 5.10 and hereafter, as in Ata et al. (2018); Raichoor et al. (2020), we qualify BAO
detections as α measurements for which the best fit value and its error bar (determined by
the ∆χ2 = 1 level) are within the range [0.8αexp, 1.2αexp] (αexp being the expected α value,
given the fiducial and mock cosmologies). Statistics are provided for the Ndet mocks with BAO
detections. As we include covariance matrix corrections (Hartlap factor, see Eq. (5.13)) and
correction to the parameter covariance matrix (m1 factor, see Eq. (5.14)) in the α measurement
on each mock, we follow Percival et al. (2014) and provide the standard deviation S of the α
measurement corrected by √m2, with m2 given by Eq. (5.17).

As stated in Section 5.2.5, we fix Σnl to 8 Mpc h−1 (resp. 4 Mpc h−1) when fitting pre-
reconstruction (resp. post-reconstruction) power spectra. Pre-reconstruction α measurements
on both EZ and GLAM-QPM mocks are biased slightly high, as can be seen from Table 5.10
(baseline pre-reconstruction versus baseline). This is in line with the expected shift of the BAO
peak caused by the non-linearity of structure formation (Padmanabhan et al., 2009; Ding et al.,
2018). On the contrary, post-reconstruction α measurements do not show any bias, at the
0.43/

√
1000 ' 0.1% level.

The radial integral constraint effect was noticed to have a significant impact on RSD cosmolo-
gical measurements (Section 5.4.3). We find its impact to be negligible on the post-reconstruction
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fσ8 α‖ α⊥

RSD only GLAM-QPM mocks
baseline 0.442+0.050

−0.050 0.997+0.064
−0.066 0.990+0.048

−0.054
fibre collisions 0.453+0.050

−0.049 0.990+0.063
−0.066 0.995+0.048

−0.054
fibre collisions + Hahn et al. 0.443+0.049

−0.050 0.998+0.063
−0.066 0.990+0.048

−0.055
RSD only EZ mocks tests of IC
mean of mocks baseline, GIC 0.4341+0.0017

−0.0017 0.9997+0.0018
−0.0019 0.9926+0.0015

−0.0015
baseline, GIC 0.444+0.050

−0.052 0.987+0.061
−0.066 0.984+0.050

−0.053
shuffled, GIC 0.446+0.049

−0.054 0.943+0.060
−0.069 1.022+0.053

−0.052
shuffled, RIC 0.443+0.051

−0.054 0.985+0.061
−0.064 0.986+0.049

−0.052
shuffled & pix64, ARIC 0.449+0.053

−0.057 0.982+0.063
−0.064 0.987+0.055

−0.053
shuffled & pix128, ARIC 0.450+0.054

−0.061 0.983+0.064
−0.066 0.987+0.055

−0.053
RSD only EZ mocks mitigation
all syst. fc 0.405+0.049

−0.054 0.964+0.065
−0.069 0.999+0.055

−0.054
all syst. & pix64 fc 0.433+0.054

−0.056 0.990+0.069
−0.067 0.978+0.052

−0.059
all syst. & pix128 fc 0.438+0.056

−0.057 0.987+0.070
−0.068 0.979+0.054

−0.058
fake all syst. & pix64 fc 0.434+0.054

−0.059 0.991+0.060
−0.058 0.979+0.053

−0.055
RSD + BAO EZ mocks
mean of mocks baseline, GIC 0.4384+0.0016

−0.0017 1.0031+0.0017
−0.0019 0.9979+0.0012

−0.0016
baseline, GIC 0.445+0.048

−0.048 0.994+0.057
−0.051 0.994+0.037

−0.040
shuffled & pix64, ARIC 0.449+0.050

−0.051 0.987+0.057
−0.055 0.995+0.041

−0.044
all syst., fc 0.404+0.049

−0.049 0.973+0.055
−0.054 1.010+0.043

−0.048
all syst. & pix64, fc 0.434+0.053

−0.051 1.000+0.058
−0.056 0.989+0.046

−0.048
all syst. & pix64, fc, Bnw free 0.434+0.053

−0.052 1.002+0.057
−0.056 0.989+0.045

−0.048
all syst. & pix128, fc 0.439+0.054

−0.051 0.998+0.059
−0.057 0.990+0.046

−0.047
RSD + BAO EZ mocks 0.7 < z < 1.1
all syst. & pix64, fc 0.436+0.054

−0.058 0.998+0.061
−0.055 0.991+0.045

−0.051
photo syst. & pix64 0.451+0.055

−0.054 0.987+0.061
−0.057 0.996+0.043

−0.046
photo + cp syst. & pix64, no fc 0.457+0.051

−0.055 0.986+0.056
−0.064 1.001+0.042

−0.047
photo + cp syst. & pix64, fc 0.446+0.051

−0.055 0.993+0.059
−0.063 0.996+0.042

−0.046
all syst. & pix64, fc, no wnoz,i 0.435+0.056

−0.057 1.002+0.063
−0.056 0.992+0.043

−0.050
all syst. randnoz & pix64, fc 0.446+0.054

−0.051 0.989+0.058
−0.061 0.994+0.046

−0.051
all syst. randnoz & pix64, fc, no wnoz,i 0.445+0.056

−0.056 0.992+0.059
−0.060 0.995+0.045

−0.050
all syst. & pix64, fc, GLAM-QPM cov 0.435+0.058

−0.061 1.000+0.065
−0.061 0.988+0.045

−0.053
all syst. & pix64, fc, no syst. cov 0.435+0.056

−0.059 1.002+0.061
−0.058 0.992+0.044

−0.050
all syst. & pix64, Σnl = 6 Mpc h−1 0.435+0.056

−0.060 0.997+0.062
−0.058 0.987+0.046

−0.049
all syst. & pix64, fc +1/2 k-bin 0.439+0.055

−0.058 0.996+0.064
−0.053 0.993+0.046

−0.052
fake all syst. & pix64, fc 0.437+0.058

−0.066 0.999+0.061
−0.062 0.992+0.048

−0.059

Table 5.9 – Impact of systematics on RSD and RSD + BAO measurements on the GLAM-QPM and EZ
mocks. We quote the median and the 16% and 84% percentiles as a metric of the centre and dispersion
of the measurements.
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〈α〉 〈σ〉 S (uncorrected) Ndet/Ntot
〈
χ2〉 /dof

EZ mocks 1.0003
baseline pre-reconstruction 1.004 0.047 0.051 (0.049) 942/1000 40.7/(54− 13) = 0.992
mean of mocks baseline 1.0017 0.0011 − − 671/(54− 13) = 16.4
baseline 1.000 0.033 0.043 (0.042) 981/1000 41.4/(54− 13) = 1.01
shuffled 1.000 0.033 0.043 (0.042) 979/1000 41.4/(54− 13) = 1.01
all syst. 1.002 0.033 0.042 (0.042) 979/1000 41.5/(54− 13) = 1.01
photo syst. 1.000 0.034 0.043 (0.042) 978/1000 41.4/(54− 13) = 1.01
photo + cp syst. 1.001 0.034 0.043 (0.042) 983/1000 41.6/(54− 13) = 1.01
all syst., no wnoz,i 1.001 0.034 0.043 (0.042) 985/1000 42.3/(54− 13) = 1.03
all syst. rand noz 0.999 0.034 0.043 (0.042) 982/1000 41.5/(54− 13) = 1.01
all syst. rand noz, no wnoz,i 1.000 0.034 0.044 (0.043) 986/1000 42.1/(54− 13) = 1.03
all syst., GLAM-QPM cov 1.000 0.036 0.044 (0.043) 981/1000 39.8/(54− 13) = 0.970
all syst., no syst. cov 1.000 0.034 0.043 (0.042) 986/1000 42.0/(54− 13) = 1.03
all syst. + 1/2 k-bin 1.002 0.034 0.044 (0.043) 977/1000 41.4/(54− 13) = 1.01
all syst. Σnl = 6 Mpc h−1 1.002 0.038 0.042 (0.041) 974/1000 41.5/(54− 13) = 1.01
fake all syst. 1.001 0.034 0.044 (0.043) 982/1000 41.8/(54− 13) = 1.02
all syst. SGC 1.003 0.045 0.057 (0.056) 926/1000 19.9/(27− 7) = 0.995
GLAM-QPM mocks 0.9992
baseline pre-reconstruction 1.002 0.046 0.047 (0.047) 1907/2003 41.2/(54− 13) = 1.01
baseline 0.998 0.031 0.040 (0.040) 1969/2003 42.5/(54− 13) = 1.04
all syst. 0.997 0.032 0.043 (0.042) 1973/2003 42.4/(54− 13) = 1.03

Table 5.10 – Isotropic BAO measurements on EZ and GLAM-QPM OuterRim mocks in different condi-
tions. We quote statistics for the Ndet mocks with BAO detection, i.e. mocks for which α−σlow > 0.8αexp

and α + σup < 1.2αexp. 〈α〉 is the mean α, 〈σ〉 the mean σ (= (σlow + σup) /2). S is the standard devi-
ation of α, rescaled by √m2, with m2 given by Eq. (5.17) (the uncorrected value is provided in brackets).
Expected values αexp are given at the top of each sub-table (in the 〈α〉 column).

isotropic BAO measurements (shuffled versus baseline). We thus do not model any RIC correc-
tion for the isotropic BAO fits, as it would have required an increased computation time.

Adding all observational systematics and their correction scheme (all syst.), the isotropic
BAO fits to EZ mocks shift by a negligible 0.1%, while no change is seen with GLAM-QPM
mocks (which do not include angular photometric systematics).

To support data robustness tests presented in Section 5.5, we apply systematics successively
to the EZ mocks. Fibre collisions lead to a negligible α shift of 0.1% (photo + cp syst. versus
photo syst.).

Redshift failures do not impact the α measurement (all syst. versus photo + cp syst.).
Ignoring the correction weight wnoz,i and removing redshift failures from the mocks used to
build the covariance matrix is equally harmless (all syst. no wnoz,i versus all syst.). A negligible
shift is seen as well when the correction weight wnoz,i is not used, and redshift failures are
removed from the mocks used to build the covariance matrix (all syst. rand noz & pix64, fc, no
wnoz,i). In the above, redshift failures are implemented in the EZ mocks following a deterministic
process: a mock object is declared a redshift failure if the redshift of its nearest neighbour in
the data could not be reliably measured, which in average overestimates the angular impact of
redshift failures. As explained in Section 5.3.3.5, we therefore consider a second set of mocks,
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where redshift failures are applied to the EZ mocks with a probability following the model fitted
on the data catalogue. In this case (rand noz), shifts in the measured α due to redshift failures
are equally small.

The recovered α does not change when k-bin centres are shifted by half a bin (0.005 h Mpc−1,
all syst. + 1/2 k-bin). Fitting the EZ mocks with the covariance matrix estimated from GLAM-
QPM mocks results in a small 0.1% shift of α measurements. The same behaviour is seen when
using the covariance matrix from EZ mocks without systematics (with the shuffled scheme only,
no syst. cov).

As in Section 5.4.5 we again generate and fit (fake all syst.) 1000 fake power spectra following
a Gaussian distribution with mean and covariance matrix inferred from the contaminated EZ
mocks. A negligible shift of 0.1% of α is seen with respect to the true mocks (all syst.), showing
that one can safely use a Gaussian likelihood to compare data and model power spectra.

A small shift of 0.1% is seen between the fit to the mean of the mocks and the mean of the
fits to each individual mock, which we label as model non-linearity in the following.

Based on the previous tests, we determine two systematic effects to be included in the final
systematic budget: the model non-linearity, since it can only be measured on mocks, and fibre
collisions, as we believe our modelling of the effect in the EZ mocks (see Section 5.3.3) to be
quite representative of the actual data fibre collisions. We directly take the shift in α attributed
to model non-linearity as a systematic bias. The 0.1% α shift attributed to fibre collisions is
below twice the mock-to-mock dispersion divided by the square root of the number of mocks,
i.e. 2 × 3.8%/

√
962 = 0.2%, a value which we take as a systematic uncertainty, following the

same procedure as in Neveux et al. (2020); Gil-Marín et al. (2020).
One would notice that the mean error on α measurements on EZ and GLAM-QPM mocks

(defined by the ∆χ2 = 1 level, see Section 5.1.6) is systematically and significantly lower than
the dispersion of the best fit values. The value of the damping parameter Σnl = 4 Mpc h−1

is chosen to match the BAO amplitude seen in the reconstructed OuterRim mocks (see Sec-
tion 5.2.5). However, the BAO amplitude is significantly less pronounced in the EZ mocks (see
e.g. Raichoor et al. 2020), hence favouring a larger Σnl = 6 Mpc h−1. When this value is used,
the distribution of the residuals (α− 〈α〉)/σ of mocks with BAO detection is consistent with a
standard normal distribution, as shown by the Kolmogorov-Smirnov test 10 of Figure 5.32. Using
a lower Σnl artificially decreases the error on the BAO fits to EZ or GLAM-QPM mocks. Since
we determined Σnl on the more accurate OuterRim-based mocks, we conclude that statistical
errors quoted on the data measurement are fairly estimated.

5.4.7 Combined RSD and BAO measurements

As already mentioned in Section 5.1.5, we combine the RSD and BAO likelihoods, taking
into account the cross-covariance between pre- and post-reconstruction power spectrum meas-
urements.

In Table 5.9, one can notice a small shift between the RSD and the RSD + BAO fit to the
mean of the baseline EZ mocks: 1.0% on fσ8, 0.3% on α‖ and 0.5% on α⊥, which we quote
as systematic error related to the technique of combining RSD and BAO likelihoods. These
shifts may come from residual systematic differences between BAO template and mocks which
contaminate the RSD part of the likelihood through its cross-covariance with the BAO part.

10. Non-parametric statistical test to determine the consistency between a sample and a probability law or
another sample, based on the supremum of the difference of their cumulative distribution function.
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We do not investigate this effect further since these biases remain small (< 10%) compared to
the dispersion of the mocks (and thus to the data measurement errors).

Again, RSD + BAO measurements on contaminated (all syst, fc) mocks are strongly biased:
9.2% on fσ8 (86% of the dispersion of the mocks), 2.1% on α‖ (41%) and 1.6% on α⊥ (42%).
When applying the pixelated scheme (nside = 64), one recovers reasonable systematic shifts
with respect to (baseline, GIC ) of 2.5% on fσ8, 0.6% on α‖ and 0.5% on α⊥. These shifts
reduce further when using nside = 128, but we choose the pixelated scheme with nside = 64
as it induces a bias which we estimate small enough for our analysis since it represents 24%
of the dispersion of the mocks on fσ8, 11% on α‖ and 13% on α⊥. In addition, the pixelated
scheme (which involves integrating over all scales of the model correlation function) has only
been tested up to nside = 64 with N-body based mocks in Section 4.3.6.3. Moreover, the data
clustering measurement is also plagued by the complex dependence of n(z) with imaging quality,
which we only partly removed through the chunk_z splitting of the radial selection function in
Section 5.3.1.6. This will require estimating the potential residual systematics from the data
itself (see Section 5.5.2), which will prove to be large so that the previously mentioned shifts
become subdominant.

We note the potential systematic bias induced by applying the radial and angular integral
constraints (shuffled & pix64, ARIC versus baseline, GIC ): 0.8% on fσ8, 0.6% on α‖ and 0.1%
on α⊥. These shifts are more than twice the mock-to-mock dispersion, divided by the square
root of the number of mocks (0.4% on fσ8, 0.1% on α‖ and α⊥). We therefore account for the
ARIC modelling in our systematic budget by taking an error of 0.8% on fσ8, 0.6% on α‖ and
0.1% on α⊥.

The isotropic BAO template of Eq. (5.7) contains a bias term Bnw, which we so far forced
to be equal to the linear bias b1 of the RSD model. We try to let it free (Bnw free) and see no
shift on cosmological parameters. We thus keep Bnw = b1 in the following.

As in Section 5.4.5 we generate and fit (fake all syst.) 1000 fake power spectra following
a Gaussian distribution with mean and covariance matrix inferred from the contaminated EZ
mocks. Negligible shifts of 0.3% on fσ8, 0.1% on α‖ and 0.1% on α⊥ are seen with respect to
the true mocks (all syst. & pix64, fc), showing that using a Gaussian likelihood to compare
data and model power spectra is accurate enough. However, we find small systematic shifts of
1.6% on fσ8 (15% of the dispersion of the mocks), 1.0% on α‖ (17%) and 0.4% on α⊥ (11%)
between the median of the best fits to each individual mock and the fit to the mean of the mocks
(baseline, GIC versus mean of mocks baseline, GIC ). As in Section 5.4.5, we attribute this bias
to the model non-linearity, which one would note is slightly reduced compared to the RSD only
analysis.

We check that the error bars measured on each individual mock (defined by the ∆χ2 = 1
level, see Section 5.1.6) are correctly estimated by performing a similar test as done on the
post-reconstruction isotropic BAO fits in Section 5.4.6. For this Kolmogorov-Smirnov test, we
use Σnl = 6 Mpc h−1, and keep only mocks for which the best fit α‖ and α⊥ and their error bars
(divided by the α‖ and α⊥ expected values) are within the range [0.8, 1.2]. The residuals are
in correct agreement with a standard normal distribution, as expected. We checked that the
fσ8 residuals remain very compatible with a standard normal distribution when considering all
mocks (i.e. without cut on α‖ and α⊥ best fits and error bars).
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Figure 5.32 – Kolmogorov-Smirnov test on the residuals of EZ mocks, with Σnl = 6 Mpc h−1, for the BAO
fits.

5.4.8 Further tests

In Section 5.5, we will justify our choice to fit the data with the redshift cut 0.7 < z < 1.1.
The expected shift on fσ8 due to the change in effective redshift is 0.3%. As can be seen in
Table 5.9 (all syst. pix64, fc), the effect of this redshift cut on the EZ mocks is negligible.

As in Section 5.4.6, to support the data robustness tests presented in Section 5.5, we apply
systematics successively to the EZ mocks. Fibre collisions shift fσ8, α‖ and α⊥ by 1.1%, 0.6%
and 0.0%, respectively (photo + cp syst. & pix64, fc versus photo syst. & pix64 ). The α⊥
shift lies below twice the mock-to-mock dispersion divided by the square root of the number of
mocks, 0.2%, which we therefore take as a systematic uncertainty for this parameter. This is
not the case for fσ8 (0.5%) and α‖ (0.2%), for which we take the measured shifts 1.1%, 0.6%
as systematic uncertainty, following the same procedure as in e.g. Neveux et al. (2020). In
Section 5.4.2 our several estimates of the fs parameter required for the Hahn et al. (2017) fibre
collision correction differed by 2% at most. To assess the impact of this additional uncertainty,
we compare best fits with and without the Hahn et al. (2017) fibre collision correction: we find
shifts on fσ8, α‖ and α⊥ of 1.3%, 0.1% and 0.5%, respectively. Multiplying these variations by
the uncertainty of 2% leads to a very small additional uncertainty, which we thus neglect.

Despite the weights wnoz,i and the pixelated scheme, redshift failures (red versus green curves
in Figure 5.27) produce shifts of 2.3%, 0.5% and 0.5% on fσ8, α‖ and α⊥ (all syst. & pix64,
fc versus photo + cp syst. & pix64, fc). These shifts become 2.6%, 0.9% and 0.4% on fσ8, α‖
and α⊥ when the correction weight wnoz,i is not used, and redshift failures are removed from the
mocks used to build the covariance matrix (all syst. & pix64, fc, no wnoz,i). A much smaller
systematic shift is seen with respect to angular photometric systematics and fibre collisions only
(photo + cp syst. & pix64, fc) for EZ mocks with the stochastic implementation of redshift
failures (all syst. rand noz & pix64, fc): 0.1% on fσ8, 0.4% on α‖ and 0.1% on α⊥.

We finally test the robustness of our analysis when using a covariance matrix measured from
the GLAM-QPM mocks (without angular photometric systematics), from EZ mocks without
systematics (no syst. cov), and when shifting the k-bin centres by half a bin (0.005 h Mpc−1, all
syst. + 1/2 k-bin). In all these cases, best fits to the EZ mocks remain stable.

We therefore conclude that our analysis pipeline is robust enough to perform the BAO
and RSD + BAO measurements on the eBOSS ELG data. Based on the previous tests, four
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Figure 5.33 – Kolmogorov-Smirnov test on the residuals of EZ mocks, with Σnl = 6 Mpc h−1, for the
RSD + BAO fits.

Figure 5.34 – Isotropic BAO fit (left: NGC, right: SGC), in the baseline case: NGC + SGC, 0.6 < z < 1.1,
Σnl = 4 Mpc h−1. Both data (points with error bars from EZ mocks) and model (continuous line) are
divided by the no-wiggle power spectrum.

systematic effects estimated on mocks (survey geometry, model non-linearity, ARIC modelling,
fibre collisions) will be included in the final systematic budgets presented in the next section.

5.5 Results

In this section we present isotropic BAO, RSD, and combined RSD + BAO measurements
on the eBOSS DR16 ELG data, discuss robustness tests of those results and provide the fi-
nal error budgets, including statistical and systematic contributions. In particular, systematic
uncertainties are estimated from data itself where we consider mocks cannot give a reliable
estimate.

5.5.1 Isotropic BAO measurements

As decided in Section 5.2.5, we take Σnl = 4 Mpc h−1 as fiducial value for the BAO damping
and BAO templates are computed within the fiducial cosmology (5.4), except otherwise stated.
Figure 5.34 shows the BAO oscillation pattern fitted to the observed ELG NGC + SGC data.
One would note that NGC does not show a clear BAO feature, contrary to SGC. The best fit
α and its 1σ error are provided for both SGC and NGC + SGC fits in Table 5.11. For both
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α χ2/dof

SGC only z cuts
0.6 < z < 1.1 0.997+0.032

−0.035 12.4/(27− 7) = 0.619
0.65 < z < 1.1 0.989+0.034

−0.034 13.1/(27− 7) = 0.655
0.7 < z < 1.1 0.995+0.039

−0.038 13.1/(27− 7) = 0.654
0.75 < z < 1.1 0.993+0.040

−0.038 20.1/(27− 7) = 1.01
SGC only 0.6 < z < 1.1
no chunk_z 0.991+0.035

−0.036 13.8/(27− 7) = 0.692
no chunk_z G-Q cov 0.988+0.034

−0.036 15.2/(27− 7) = 0.762
Σnl = 6 Mpc h−1 0.993+0.040

−0.040 13.1/(27− 7) = 0.653
no wnoz,i 0.997+0.032

−0.033 11.7/(27− 7) = 0.584
GLAM-QPM cov 0.997+0.034

−0.036 12.3/(27− 7) = 0.613
no syst. cov 0.997+0.033

−0.033 13.1/(27− 7) = 0.654
500 mocks in cov 1.000+0.032

−0.033 12.6/(27− 7) = 0.632
+ 1/2 k-bin 1.003+0.030

−0.031 16.2/(27− 7) = 0.810
OR cosmo (rescaled) 0.999+0.025

−0.026 13.3/(27− 7) = 0.664
NGC + SGC z cuts
0.6 < z < 1.1 (baseline) 0.986+0.025

−0.028 42.8/(54− 13) = 1.04
0.65 < z < 1.1 0.984+0.026

−0.027 42.5/(54− 13) = 1.04
0.7 < z < 1.1 0.982+0.028

−0.032 44.8/(54− 13) = 1.09
0.75 < z < 1.1 0.961+0.035

−0.041 49.0/(54− 13) = 1.19
NGC + SGC 0.6 < z < 1.1
no chunk_z 0.973+0.031

−0.036 42.1/(54− 13) = 1.03
no chunk_z G-Q cov 0.970+0.029

−0.031 40.2/(54− 13) = 0.980
Σnl = 6 Mpc h−1 0.979+0.033

−0.038 43.4/(54− 13) = 1.06
no wnoz,i 0.984+0.025

−0.026 46.1/(54− 13) = 1.12
GLAM-QPM cov 0.988+0.026

−0.027 38.8/(54− 13) = 0.946
no syst. cov 0.984+0.026

−0.026 40.3/(54− 13) = 0.984
500 mocks in cov 0.991+0.025

−0.027 38.8/(54− 13) = 0.946
+ 1/2 k-bin 0.991+0.025

−0.027 52.1/(54− 13) = 1.27
OR cosmo (rescaled) 0.992+0.022

−0.023 40.2/(54− 13) = 0.980
OR cosmo (rescaled), 0.988+0.026

−0.029 40.4/(54− 13) = 0.986
Σnl = 6 Mpc h−1

Table 5.11 – Isotropic BAO best fits on the eBOSS DR16 ELG sample. Error bars are defined by the
∆χ2 = 1 level.
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fits, α± σ lies well in [0.8, 1.2] 11, the criterion used in Section 5.4.6 to qualify detections in the
mocks. However, in the NGC alone, the best fit α value is 0.79, such that the aforementioned
criterion is not met. The same test, using the same BAO template in fiducial cosmology (5.4),
is applied to EZ mocks (with Σnl = 6 Mpc h−1, to match their BAO signal amplitude) and to
sky-cut OuterRim mocks of Section 5.2.5 (with Σnl = 2.4 Mpc h−1, to match their BAO signal
amplitude), as reported in Table 5.12 (α±σ /∈ [0.8, 1.2] line). Sky-cut OuterRim mocks (hereafter
OR mocks), based on N-body simulations, provide the expected BAO detections in the absence
of non-Gaussian contributions due to systematics 12. In contrast, EZ mocks include known data
systematics, but their BAO amplitude is lower than expected given their cosmology. Altogether,
we expect the correct BAO detection rate to lie between values derived from EZ mocks and OR
mocks. One notices that 9% of the EZ mocks and 2.5% of the OR mocks fail to meet the
α±σ ∈ [0.8, 1.2] criterion in both the NGC and SGC. Therefore, the probability that α does not
lie in [0.8, 1.2] within errors, for either the NGC or the SGC, ranges from 5% (OR mocks) to 17%
(EZ mocks), such that, with this criterion, the behaviour of the data is not very unexpected.
This is in line with conclusions drawn in the configuration space BAO analysis (Raichoor et al.,
2020).

To further quantify the BAO signal we compute the χ2 difference between the best fits
obtained with the wiggle and no-wiggle power spectrum templates (see Section 5.1.3). The χ2

profiles using the wiggle and no-wiggle power spectrum templates are shown in Figure 5.35.
Combining NGC and SGC we find ∆χ2 = −1.95 (1.4σ) at a best fit value denoted αNSGC in
the following. Note however that the best fit α value may not be relevant to compute the ∆χ2

criterion when too far from the true one if the data (or mock) vector is too noisy. Therefore,
for data or mock fits performed on each cap (NGC and SGC) separately, we quote in Table 5.12
the ∆χ2 value evaluated at the corresponding NGC + SGC best fit value rather than at the
respective NGC or SGC best fits, which are more subject to noise. We also provide the ∆χ2

taken at the expected α value, given our fiducial cosmology, αexp (αexp = 1 for data). We find
that for NGC + SGC, the mean ∆χ2(α = αNSGC) is lower in the mocks, meaning a better
BAO detection. However, 18% EZ mocks and 7% OR mocks have larger ∆χ2 values, i.e. worse
BAO detection, than the data (see N

(
> ∆χ2(α = αNSGC)

)
line in Table 5.12). So according

to this criterion, the behaviour of the data is not very unexpected. A similar conclusion holds
when taking ∆χ2 at α = αexp (see N

(
> ∆χ2(α = αexp)

)
in Table 5.12). Focusing on the SGC,

∆χ2(α = αNSGC) is smaller (better BAO detection) in data than in 85% of the EZ mocks and
60% of the OR mocks. However, only 1.8% of EZ mocks and 0.6% of OR mocks show a larger
∆χ2(α = αNSGC) (worse BAO detection) than the NGC data. Therefore, the probability for
such a poor BAO detection to happen in either NGC or SGC is approximately twice higher,
of the order of a few percents. Again similar conclusions hold when taking ∆χ2 at α = αexp.
We emphasise however that the above figures are tied to the statistics used to qualify the BAO
detection.

We have seen that contrary to SGC the poor BAO detection in the NGC is statistically
unlikely (even given the known observational systematics implemented in the EZ mocks). Let us
now discuss whether one can combine the two caps. We note that NGC photometry is shallower
than SGC and thus more prone to (potentially unknown) photometric systematics (Raichoor

11. Here we assume that fiducial cosmology (5.4) agrees with the true one such that the BAO peak positions
differ by much less than 20%.
12. We note however that in the OuterRim cosmology (2.89) the BAO amplitude (and hence signal-to-noise of

BAO fits) is slightly larger than the Planck Collaboration et al. (2018) best fit model.
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Figure 5.35 – χ2 profiles of the isotropic BAO fits for different lower redshift cuts, fitting NGC + SGC,
relative to the minimum value obtained with the wiggle power spectrum template. Continuous (resp.
dashed) lines show the χ2 profile using the wiggle (resp. no-wiggle) power spectrum template. Systematic
uncertainties of Table 5.13 are not included.

NGC SGC NGC + SGC
data
∆χ2(α = αNSGC) 3.58 −5.53 −1.95
∆χ2(α = αexp) 3.97 −5.61 −1.63
all syst. EZ mocks
N (α± σ /∈ [0.8, 1.2]) 91 90 26
∆χ2(α = αNSGC) −3.22 −2.43 −5.65
N
(
> ∆χ2(α = αNSGC)

)
18 846 184

∆χ2(α = αexp) −2.62 −1.92 −4.54
N
(
> ∆χ2(α = αexp)

)
21 881 269

sky-cut OuterRim mocks
N(α± σ /∈ [0.8, 1.2]) 25 23 6
∆χ2(α = αNSGC) −5.38 −4.48 −9.85
N
(
> ∆χ2(α = αNSGC)

)
6 601 68

∆χ2(α = αexp) −4.72 −4.07 −8.79
N
(
> ∆χ2(α = αexp)

)
17 654 102

Table 5.12 – Data versus mock BAO detection, according to different criteria. The BAO signal is notice-
able in eBOSS SGC post-reconstruction data, not in NGC data, where α and its error bar are not within
[0.8, 1.2] (α ± σ /∈ [0.8, 1.2]). N (α± σ /∈ [0.8, 1.2]) is the number of mocks not satisfying this criterion,
for EZ mocks (using Σnl = 6 Mpc h−1) with all systematics implemented and for OuterRim mocks (using
Σnl = 2.4 Mpc h−1). The χ2 difference ∆χ2 between the wiggle and no-wiggle template best fits for data
and mocks is provided at the α value measured in the NGC + SGC combination (∆χ2(α = αNSGC))
and at the fiducial α value (∆χ2(α = αexp)). N

(
> ∆χ2(α = αNSGC)

)
and N

(
> ∆χ2(α = αexp)

)
are

the number of mocks which show a larger ∆χ2 than the data (and hence weaker BAO detection) at
α = αNSGC and α = αexp, respectively.
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et al., 2020). SGC only and combined NGC + SGC fits are similar, to the 1.1% level (0.6 < z <

1.1 in Table 5.11), which is statistically expected, as seen in 755/1000 EZ mocks (considering
both tails). Hence, there is no hint of a strong, unexpected systematic shift in the combined fit,
due the addition of potentially contaminated NGC data. We also note that this 1.1% shift is
smaller than 1.3%, the uncertainty related to photometric systematics included in our systematic
budget (see Table 5.13), and hence is already accounted for if the NGC was the major source
of photometric systematics. As a conclusion, we do not see any reason to reject NGC data in
the fit. Moreover, combining NGC + SGC turns out to be more optimal than considering SGC
alone, even given the poor BAO detection in NGC. To check this, we select EZ mocks with
∆χ2(α = αNSGC) > 0 in the NGC but ∆χ2(α = αNSGC) < 0 in the SGC among mocks for
which the NGC + SGC combination fulfills α±σ ∈ [0.8, 1.2]. The dispersion of α measurements
in the obtained sample of 130 mocks is 0.048 for NGC + SGC, less than 0.058 for SGC alone.
In addition, a Kolmogorov-Smirnov test (similar to that of Figure 5.32) does not show any
misestimation of error bars (p-value of 0.533 for the residuals to be consistent with a standard
normal distribution). A similar reduction of error bars is seen in data in Table 5.11 (+0.025

−0.028 versus
+0.032
−0.035). Hence, we find it legitimate to combine NGC and SGC measurements.

To further check that error bars are still correctly estimated in the low signal-to-noise regime,
we select NGC + SGC EZ mocks for which ∆χ2(α = αNSGC) is larger than that observed in
the data (while still restricting to α ± σ ∈ [0.8, 1.2]). Again, in this sample of 165 EZ mocks,
a Kolmogorov-Smirnov test shows no hint for a misestimation of error bars (the p-value for
the residuals to be consistent with a standard normal distribution is 0.459). Therefore, the
method to estimate statistical uncertainties in data appears to be correct. We note however
that data statistical error bars (+0.025

−0.028, see Table 5.11) are smaller than those seen in mocks
on average (σ ' 0.033, see Table 5.10); 246/1000 EZ mocks have smaller statistical error bars
than data (using Σnl = 4 Mpc h−1 for both data and mocks). In a sample of EZ mocks for
which ∆χ2(α = αNSGC) is within ±1 of the data ∆χ2(α = αNSGC), which may be considered
as representative of the data affinity for BAO, we find 6/157 mocks to have smaller statistical
error bars than the data 13. Due to the low average BAO amplitude in the EZ mocks and the
additional residual systematics in the data, this fraction slightly underestimates the probability
to obtain smaller error bars than in data. Altogether, though small, data statistical error bars
are not too unlikely.

We now turn to stability tests performed on data. Beforehand, we emphasise that despite the
low significance of the BAO signal, a robust measurement of the BAO position is possible because
the relative amplitude of oscillations is imposed as a prior in the BAO model (Section 5.1.3). In
other words, though a model without BAO is not disfavoured by the data, a model with BAO
far from the maximum of the likelihood is a significantly worse fit to the data.

In Raichoor et al. (2020) (Figure 10), variations of the redshift density with photometric
depth were noted to be relatively higher in the low redshift end, 0.6 < z . 0.7. We therefore
test the robustness of our measurement with the lower z-limit. Best fits do not move significantly
with the lower z cut (given the change in the sample statistics), as can also be seen in Figure 5.35.
For example, between 0.6 < z < 1.1 and 0.7 < z < 1.1 the best fit α moves by 0.4%. This is not
significant as a larger shifts happen in 378/1000 (considering both tails: 741/1000) EZ mocks.
We thus use the full redshift range 0.6 < z < 1.1 for our isotropic BAO measurement.

13. This fraction increases to 39/157 when comparing data total error bars (including systematics, see
Table 5.13) to mock statistical error bars.
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The α measurement remains very stable with the assumed Σnl value in SGC only. For
NGC + SGC, some 0.8% shift (27% of the statistical uncertainty) is obtained between Σnl =
4 Mpc h−1 and Σnl = 6 Mpc h−1. A larger shift happens for 97/1000 (considering both tails:
214/1000) EZ mocks. To account for the uncertainty in the expected amplitude of the BAO
signal, we include this shift as an additional uncertainty.

We estimate the potential residual systematics due to the imperfect modelling of the vari-
ations of the survey selection function with imaging quality (see Section 5.3.1.4 and Section 5.3.1.6)
by comparing the measurement obtained with the baseline correction to that without any mit-
igation. Namely, random redshifts are taken separately in each chunk (instead of chunk_z) to
measure the data power spectrum. The covariance matrix is built from mocks where we do
not introduce photometric systematics nor variations of the redshift density with chunk_z. We
take care to change the model window functions (see Section 5.1.2.1) accordingly. A shift in α
of 1.3%, which we take as systematic uncertainty, is noticed between these two configurations.
One would notice that this shift is mainly driven by the NGC, since a variation of 0.6% only is
seen in the SGC, as can be expected since photometry is deeper in the SGC than in the NGC.

The residual systematics remaining after the redshift failure correction (see Section 5.3.1.3)
are similarly estimated by comparing the measurement obtained with the baseline correction
to that without any mitigation (no wnoz,i). Namely, no wnoz,i are applied to measure the data
power spectrum, while we do not introduce redshift failures in the mocks to construct the
covariance matrix. This leads to a shift in α of 0.2%; a larger variation is seen in 438/1000
(considering both tails: 851/1000) EZ mocks, making it quite likely. Note however that data
and EZ mock shifts are expected to match since a mock object is deterministically declared a
redshift failure if the redshift of its nearest neighbour in the data could not be reliably measured.
As mentioned in Section 5.4.8, a second set of mocks was produced with redshift failures being
randomly drawn from the model fitted to the data; in this case, we find a larger variation in
378/1000 (considering both tails: 826/1000) EZ mocks. Hence, the shift seen in the data is well
explained by the mocks. We conservatively include it in the systematic budget to account for
the uncertainty in the redshift failure correction.

Changing the covariance matrix for that based on GLAM-QPM mocks, which does not
include angular nor radial photometric systematics leads to a small α shift of 0.4% in the no
chunk_z case (no chunk_z G-Q cov versus no chunk_z ). Similarly, in the baseline case, using a
covariance matrix built from GLAM-QPM or EZ mocks without systematics (only the shuffled
scheme) induces small shifts of 0.2% (GLAM-QPM cov versus baseline). A larger shift is observed
in the former case for 283/1000 (considering both tails: 732/1000) EZ mocks, in the latter case
for 377/1000 (considering both tails: 713/1000) EZ mocks. The parameter covariance matrix
correction (see Eq. (5.14)) already leads to an increase of 0.7% of the statistical error, which
is higher than obtained by summing the shifts above in quadrature (0.3%). We therefore do
not include any systematic uncertainty related to the choice of the covariance matrix. Dividing
the number of mocks used to build the covariance matrix by 2, we find a shift in α of 0.5%
(500 mocks in cov versus baseline). This would lead to a 1.9% increase of the error if added
in quadrature, while the increase of error bars required to account for the change in covariance
matrix between these two configurations is 1.5%. Hence, the shift seen in the fit is compatible
with a statistical fluctuation and we conclude that the estimation of the covariance matrix is
robust enough for this measurement.

Moving the centre of the k-bin by half a bin (0.005 h Mpc−1, + 1/2 k-bin) leads to a α

shift of 0.5%, which is compatible with a statistical fluctuation since a larger shift is observed
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source α

linear
model non-linearity (from EZ mocks) 0.1%
quadrature
modelling systematics (from mock challenge) 0.2%
damping term Σnl 0.8%
photometric systematics 1.3%
fibre collisions (from EZ mocks) 0.2%
redshift failures 0.3%
statistics +0.025

−0.028
systematics +0.006

−0.005
total +0.031

−0.033

Table 5.13 – Error budget for post-reconstruction isotropic BAO measurements on the eBOSS DR16 ELG
sample. Percentages are provided with respect to the α value. The last three lines (statistics, systematics
and total) recap the absolute statistical error bar, the systematic contribution (total minus statistical),
and the total error bar, respectively.

for 307/1000 (considering both tails: 595/1000) EZ mocks. We therefore do not include any
additional uncertainty related to the choice of k-bins in our systematic budget.

Finally, we change the fiducial cosmology (5.4) for the OuterRim cosmology (2.89), and for
comparison purposes we report the α value rescaled to our fiducial cosmology. Some shift can
be seen (OR cosmo versus baseline), which we relate to the change of damping term. Indeed, we
checked that analysing a power spectrum in our fiducial cosmology with an OuterRim template
leads to a preferred Σnl ' 5.4 Mpc h−1. The measurement obtained with Σnl = 6 Mpc h−1

and OuterRim cosmology (OR cosmo Σnl = 6 Mpc h−1) is indeed close (within 0.2%) to the
measurement using Σnl = 4 Mpc h−1 and our fiducial cosmology (0.6 < z < 1.1 (fiducial)). This
shift can be seen in 428/1000 (considering both tails: 840/1000) EZ mocks and is within the
0.2% modelling uncertainty derived in Section 5.2.5. We therefore do not include any additional
uncertainty due to the assumed fiducial cosmology.

Overall, despite the mild preference for BAO in the eBOSS ELG sample, the BAO measure-
ment appears relatively robust.

The final error budget is reported in Table 5.13. Since the 0.2% α shift attributed to model
non-linearity is closer to a bias than a systematic uncertainty, we decided to be conservative and
to add it linearly to the statistical uncertainty. All other contributions to the systematic budget
are uncertainties due to the model accuracy (modelling systematics) or our limited knowledge of
the survey selection function (photometric systematics, fibre collisions, redshift failures) or are
analysis choices (damping term). We thus add them in quadrature to the statistical uncertainty.

Our final post-reconstruction isotropic BAO measurement is α = 0.986+0.031
−0.033, including stat-

istical and systematic uncertainties. In terms of the volume-averaged distance DV(z), we find:

DV(zeff = 0.845)/rdrag = 18.33+0.57
−0.62 (5.60)

independently of the assumed fiducial cosmology.
In order to generate the BAO likelihood profile for further cosmological inference, we first

rescale ∆χ2(α) = χ2(α) − χ2(α0) (with α0 the best fit value) by the inverse of the parameter
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covariance rescaling (5.14). To include the systematic error budget we further rescale ∆χ2(α)
by the ratio (σα,stat/σα,tot)2, with σα,tot and σα,stat the total and statistical upper (lower) error
bars when α > α0 (α < α0). We finally provide the BAO likelihood e−∆χ2(DV/rdrag)/2, with
DV = αDfid

V .

5.5.2 Combined RSD and BAO measurements

RSD and combined RSD + BAOmeasurements are reported under different fitting conditions
in Table 5.14. As in Section 5.5.1, we take Σnl = 4 Mpc h−1 as fiducial value for the BAO damping
and RSD and BAO templates are computed within the fiducial cosmology (5.4), except otherwise
stated. Again, we quote results for the combined caps NGC + SGC and SGC alone.

As already noted in Section 5.5.1, variations of the redshift density with photometric depth
were observed to be relatively higher in the low redshift end. We therefore test the robustness
of our measurement with respect to the lower redshift cut. For the RSD + BAO measurement,
shifts of 6.4%, 4.1% and 0.4% are seen for fσ8, α‖ and α⊥, respectively, when changing the
redshift range 0.6 < z < 1.1 to 0.7 < z < 1.1 for the pre-reconstruction power spectrum (RSD
part of the likelihood). Larger shifts are observed for 159/1000 (considering both tails: 296/1000)
EZ mocks for fσ8, 19/1000 (32/1000) for α‖ and 374/1000 (732/1000) for α⊥. The somewhat
low probability of the change in α‖ may point towards some unaccounted systematics in the
lower redshift end. These potential systematics were without effect on the BAO measurement,
as noted in Section 5.5.1.

For our final measurement we therefore conservatively choose the redshift range 0.7 < z < 1.1
for the RSD part of the likelihood, and keep 0.6 < z < 1.1 for the BAO part, as decided in
Section 5.5.1. Following Eq. (5.19), the effective redshift for the redshift range 0.6 < z < 1.1
is 0.845 while it is 0.857 for 0.7 < z < 1.1. We choose the effective redshift as 0.85 for the
combined RSD + BAO measurement, and check that the expected variations of fσ8, DH/rdrag
and DM/rdrag over the redshift range 0.845−0.857 within our fiducial cosmology are small (0.3%,
0.7% and 1.1%, respectively) compared to the statistical uncertainty on data (24%, 9% and 4%,
respectively).

Best fit models of ELG power spectra in the NGC and SGC are compared with data in
Figure 5.37, while Figure 5.36 shows the posteriors of the RSD and RSD + BAO measurements.
One would note that the RSD + BAO combination helps reducing the posterior tails while not
changing the central values. In particular, the combination of RSD with BAO removes secondary
local minima in the contours. An illustration of this ill-shaped RSD only posteriors is the large
change for the RSD only best fit to the NGC + SGC data in the redshift range 0.7 < z < 1.1
with respect to 0.6 < z < 1.1, as reported in Table 5.14. In particular, the bump seen on the
left side of the peak in the α‖ marginal RSD only posterior in Figure 5.36 corresponds to the
position of the best fit value α‖ = 0.871+0.109

−0.061. We checked that the overall shift in the RSD
only posterior contours when changing the redshift range is much smaller than that of the RSD
only best fits and consistent with that of the RSD + BAO case. Note that in the following the
systematic budget will be derived for the RSD + BAO combination, for which the shape of the
posterior is more Gaussian.

As in Section 5.5.1, we test the robustness of our result with respect to the choice of the Σnl
value: we find a 1.9% shift on fσ8, 0.1% on α‖ and 0.8% on α⊥ between Σnl = 4 Mpc h−1 and
Σnl = 6 Mpc h−1, which we add to our uncertainty budget. Larger shifts are seen for 104/1000
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fσ8 α‖ α⊥ χ2/dof

RSD only SGC only z cuts
0.6 < z < 1.1 0.348+0.078

−0.079 0.974+0.100
−0.084 0.952+0.071

−0.062 31.7/(46− 7) = 0.812
0.65 < z < 1.1 0.367+0.086

−0.085 0.982+0.097
−0.093 0.968+0.090

−0.073 29.2/(46− 7) = 0.749
0.7 < z < 1.1 0.38+0.10

−0.11 1.013+0.087
−0.098 1.04+0.13

−0.13 29.8/(46− 7) = 0.763
0.75 < z < 1.1 0.33+0.23

−0.10 0.98+0.11
−0.16 0.936+0.328

−0.082 31.3/(46− 7) = 0.802
RSD only SGC only 0.7 < z < 1.1
GLAM-QPM cov 0.429+0.081

−0.082 1.022+0.082
−0.079 1.120+0.098

−0.100 28.6/(46− 7) = 0.733
no syst. cov 0.409+0.077

−0.082 1.027+0.076
−0.074 1.110+0.087

−0.098 29.3/(46− 7) = 0.752
+ 1/2 k-bin 0.374+0.093

−0.099 1.023+0.083
−0.079 1.052+0.104

−0.098 25.0/(46− 7) = 0.640
OR cosmo (rescaled) 0.371+0.090

−0.106 1.029+0.075
−0.082 1.07+0.10

−0.12 24.9/(46− 7) = 0.638
RSD + BAO SGC only z cuts
0.6 < z < 1.1 0.327+0.084

−0.105 1.017+0.133
−0.087 0.967+0.059

−0.061 51.0/(73− 12) = 0.837
0.65 < z < 1.1 0.348+0.090

−0.107 1.013+0.120
−0.087 0.976+0.064

−0.066 46.1/(73− 12) = 0.756
0.7 < z < 1.1 0.335+0.099

−0.124 1.004+0.122
−0.097 0.986+0.071

−0.083 50.0/(73− 12) = 0.819
0.75 < z < 1.1 0.33+0.12

−0.16 1.01+0.16
−0.12 0.964+0.087

−0.096 52.4/(73− 12) = 0.859
RSD + BA0 SGC only 0.7 < z < 1.1
GLAM-QPM cov 0.425+0.088

−0.092 0.950+0.095
−0.103 1.033+0.058

−0.066 53.5/(73− 12) = 0.877
no syst. cov 0.386+0.079

−0.085 0.979+0.079
−0.073 1.028+0.057

−0.062 47.6/(73− 12) = 0.780
+ 1/2 k-bin 0.31+0.11

−0.12 1.04+0.12
−0.10 0.973+0.074

−0.078 47.6/(73− 12) = 0.780
OR cosmo (rescaled) 0.31+0.10

−0.11 1.01+0.11
−0.11 0.983+0.069

−0.070 45.4/(73− 12) = 0.743
RSD only NGC + SGC z cuts
0.6 < z < 1.1 0.250+0.124

−0.067 1.15+0.11
−0.28 0.919+0.038

−0.039 87.6/(92− 11) = 1.08
0.65 < z < 1.1 0.259+0.116

−0.068 1.15+0.10
−0.27 0.922+0.040

−0.041 83.9/(92− 11) = 1.04
0.7 < z < 1.1 0.382+0.053

−0.056 0.871+0.109
−0.061 0.901+0.043

−0.050 81.3/(92− 11) = 1.00
0.75 < z < 1.1 0.365+0.062

−0.073 0.905+0.146
−0.080 0.887+0.045

−0.053 66.6/(92− 11) = 0.822
RSD only NGC + SGC 0.7 < z < 1.1
GLAM-QPM cov 0.308+0.104

−0.074 1.08+0.11
−0.27 0.942+0.047

−0.083 80.3/(92− 11) = 0.991
no syst. cov 0.388+0.052

−0.054 0.865+0.106
−0.061 0.910+0.046

−0.052 83.2/(92− 11) = 1.03
+ 1/2 k-bin 0.376+0.055

−0.134 0.887+0.272
−0.071 0.910+0.047

−0.048 68.5/(92− 11) = 0.846
OR cosmo (rescaled) 0.289+0.128

−0.075 1.08+0.11
−0.27 0.933+0.043

−0.075 73.4/(92− 11) = 0.906
RSD + BAO NGC + SGC z cuts
0.6 < z < 1.1 0.271+0.059

−0.057 1.129+0.078
−0.090 0.938+0.030

−0.030 140./(146− 21) = 1.12
0.65 < z < 1.1 0.281+0.059

−0.057 1.122+0.076
−0.085 0.938+0.031

−0.031 137/(146− 21) = 1.10
0.7 < z < 1.1 (baseline) 0.289+0.068

−0.066 1.085+0.087
−0.107 0.941+0.035

−0.034 141/(146− 21) = 1.13
0.75 < z < 1.1 0.319+0.068

−0.069 1.062+0.088
−0.092 0.937+0.037

−0.037 123/(146− 21) = 0.984
RSD + BAO NGC + SGC 0.7 < z < 1.1
no chunk_z 0.261+0.059

−0.058 1.109+0.070
−0.074 0.928+0.036

−0.036 153/(146− 21) = 1.23
no chunk_z GLAM-QPM cov 0.262+0.061

−0.061 1.137+0.077
−0.078 0.926+0.035

−0.034 136/(146− 21) = 1.09
Σnl = 6 Mpc h−1 0.283+0.101

−0.069 1.086+0.096
−0.284 0.934+0.036

−0.036 141/(146− 21) = 1.13
no wnoz,i 0.306+0.071

−0.068 1.088+0.089
−0.112 0.939+0.034

−0.034 144/(146− 21) = 1.15
GLAM-QPM cov 0.305+0.066

−0.065 1.101+0.078
−0.081 0.956+0.037

−0.035 132/(146− 21) = 1.06
no syst. cov 0.326+0.072

−0.078 1.03+0.10
−0.11 0.952+0.037

−0.038 125/(146− 21) = 1.00
500 mocks in cov 0.301+0.071

−0.070 1.084+0.082
−0.092 0.941+0.037

−0.036 127/(146− 21) = 1.02
+ 1/2 k-bin 0.287+0.067

−0.064 1.082+0.081
−0.087 0.943+0.035

−0.033 140./(146− 21) = 1.12
OR cosmo (rescaled) 0.271+0.066

−0.063 1.098+0.075
−0.086 0.938+0.034

−0.032 129/(146− 21) = 1.03

Bayesian 0.289+0.060
−0.075 1.085+0.104

−0.090 0.941+0.036
−0.037 141/(146− 21) = 1.13

Table 5.14 – RSD and RSD + BAO best fits to the eBOSS DR16 ELG sample. Error bars are defined by
the ∆χ2 = 1 level, except in the Bayesian case, where we consider the minimum interval which contains
68% of the MCMC samples.
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Figure 5.36 – Posteriors of the RSD and RSD + BAO measurements. Contours contain 68% and 95% of
the probability. Systematic uncertainties of Table 5.15 are not included.

(both tails: 142/1000), 402/1000 (861/1000) and 211/1000 (345/1000) EZ mocks for fσ8, α‖
and α⊥.

The uncertainty in the modelling of the selection function variations with photometry is
estimated similarly to Section 5.5.1: we compare the baseline correction, using the pixelated
scheme, to the best fit measurement (no chunk_z ) obtained without any angular mitigation
scheme nor modelling of the variations of the radial selection function with chunk_z. The cov-
ariance matrix is also built from EZ mocks without angular nor radial photometric systematics.
We measure shifts of 9.4% on fσ8, 2.2% on α‖ and 1.4% on α⊥, which we take as additional
systematic uncertainty.

Similarly, the impact of redshift failures is estimated by comparing the baseline measurement
with the best fit obtained on the data without including the wnoz,i correction weight (no wnoz,i).
We measure shifts of 6.1% on fσ8, 0.3% on α‖ and 0.3% on α⊥, which we take as systematic
uncertainty. Larger variations happen for 176/1000 (considering both tails: 368/1000), 479/1000
(856/1000) and 409/1000 (882/1000) EZ mocks, respectively. If we rather consider EZ mocks
where redshift failures are stochastic, based on the model fitted to the observed data, we find
larger shifts for 146/1000 (considering both tails: 318/1000), 499/1000 (880/1000) and 403/1000
(862/1000) EZ mocks for fσ8, α‖ and α⊥, respectively.

Dividing the number of mocks used to build the covariance matrix by 2, we find a shift of
4.3% on fσ8, 0.1% on α‖ and 0.0% on α⊥ (500 mocks in cov versus baseline). This would lead to
a 1.7%, 0.0% and 0.0% increase of the error if added in quadrature, less than 5.8%, the typical
increase of error bars required to account for the change in covariance matrix between these two
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configurations. We thus conclude that the RSD + BAO covariance matrix is stable with respect
to the number of mocks.

Changing the covariance matrix built from contaminated EZ mocks for the one obtained
from GLAM-QPM mocks, we find a 5.6% shift on fσ8, 1.5% on α‖ and 1.6% on α⊥. Larger
variations happen for 171/1000, 218/1000, 107/1000 EZ mocks, respectively (considering both
tails: 363/1000, 402/1000 and 290/1000). Even larger shifts are seen when using a covariance
matrix based on EZ mocks without systematics (only the shuffled scheme, no syst. cov): 12.9%
shift on fσ8, 4.7% on α‖ and 1.2% on α⊥. These changes happen for 12/1000, 18/1000, 252/1000
EZ mocks, respectively (considering both tails: 27/1000, 50/1000 and 428/1000).

One would also notice a large change (26.7% on fσ8, 5.4% on α‖ and 4.7% on α⊥) for the SGC
only measurements with the GLAM-QPM covariance matrix (GLAM-QPM cov). A larger shift
in fσ8 happens for 4/1000 EZ mocks (considering both tails: 18/1000). One may be concerned
by some possible coupling between the data and the covariance matrix from contaminated EZ
mocks, as the map of angular systematics injected in these mocks was inferred directly from the
observed data, after smoothing (see Section 5.3.3.3). To check the importance of this potential
effect, we generate a new systematic map based on the angular target density measured on one
contaminated EZ reference mock, and contaminate the other 999 EZ mocks with this new map.
Best fits to the reference mock using the original covariance matrix and using the new one are
compared. Performing RSD fits to the SGC, we find small shifts of 3.5% for fσ8, 0.2% for α‖
and 0.3% for α⊥, which are not significant since larger shift are seen in 116/999, 471/999 and
440/999 EZ mocks (considering both tails: 219/999, 901/999 and 783/999).

The variations in the best fit parameters with the covariance matrix being very untypical, for
conservativeness we include in our systematic budget the largest shifts seen in the NGC + SGC
fit, namely those obtained with a covariance matrix based on EZ mocks without systematics
(only the shuffled scheme, no syst. cov), i.e. 12.9% on fσ8, 4.7% on α‖ and 1.2% on α⊥.

Moving the centre of the k-bin by half a bin (0.005 h Mpc−1) leads to a shift of 0.6% for
fσ8 and 0.2% for α‖ and α⊥. A larger fσ8 shift is observed for 393/1000 (considering both
tails: 931/1000) EZ mocks, 463/1000 (884/1000) for α‖ and 539/1000 (922/1000) for α⊥. As
in Section 5.5.1, since these shifts are compatible with mocks, we do not include them in the
systematic budget.

Changing the fiducial cosmology of Eq. (5.4) for the OuterRim cosmology of Eq. (2.89),
we find moderate shifts of 6.0% on fσ8 and 1.2% on α‖ and 0.3% on α⊥ (which are rescaled
to the fiducial cosmology Eq. (5.4) for comparison purposes). Larger shifts are observed for
263/1000 (considering both tails: 349/1000) EZ mocks for fσ8, 283/1000 (474/1000) for α‖ and
312/1000 (831/1000) for α⊥ and hence are fully compatible with a statistical fluctuation. Since
we accounted for the change of fiducial cosmology in the systematic modelling budget, we do
not quote any other related systematic uncertainty.

The final error budget is reported in Table 5.15. The systematic bias related to the analysis
methodology, namely the survey geometry, the RSD and BAO combination, the model non-
linearity and the modelling of the angular and radial integral constraints (ARIC) are summed
together in quadrature and added linearly to the statistical error bars. Other contributions are
uncertainties due to our limited understanding of the ELG small scale clustering (modelling
systematics) or the survey selection function (photometric systematics, fibre collisions, redshift
failures) or consist in analysis choices (damping term, covariance matrix, fiducial cosmology).
These other terms are added in quadrature to the statistical error bars.
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source fσ8 α‖ α⊥

linear
survey geometry (from EZ mocks) 0.1% 0.5% 0.1%
RSD + BAO combination (from EZ mocks) 1.0% 0.3% 0.5%
model non-linearity (from EZ mocks) 1.6% 1.0% 0.4%
ARIC modelling (from EZ mocks) 0.8% 0.6% 0.1%
quadrature
modelling systematics (from mock challenge) 3.0% 0.9% 0.8%
damping term Σnl 1.9% 0.1% 0.8%
photometric systematics 9.4% 2.2% 1.4%
fibre collisions (from EZ mocks) 1.1% 0.6% 0.2%
redshift failures 6.1% 0.3% 0.3%
covariance matrix 12.9% 4.7% 1.2%
statistics +0.060

−0.075
+0.104
−0.090

+0.036
−0.037

systematics +0.024
−0.021

+0.029
−0.031

+0.012
−0.011

total +0.085
−0.096

+0.13
−0.12

+0.048
−0.049

Table 5.15 – Error budget for RSD + BAO measurements on the eBOSS DR16 ELG sample. Percentages
are provided with respect to the parameter value. The last three lines (statistics, systematics and total)
recap the absolute statistical error bar, the systematic contribution (total minus statistical), and the total
error bar, respectively.

Including both statistical and systematic uncertainties, our final combined RSD + BAO
measurement is (in the Bayesian case): fσ8 = 0.289+0.085

−0.096, α‖ = 1.08+0.13
−0.12 and α⊥ = 0.941 ±

0.049.
In terms of angular and Hubble distances, we find:

fσ8(zeff = 0.85) = 0.289+0.085
−0.096

DH(zeff = 0.85)/rdrag = 20.0+2.4
−2.2

DM(zeff = 0.85)/rdrag = 19.17± 0.99
(5.61)

As can be seen in Figure 5.36, the linear bias combination b1σ8 is correlated with fσ8. Fixing
σ8 to the fiducial cosmology in Eq. (5.4) we find bNGC

1 = 1.49 ± 0.10 and bSGC
1 = 1.52+0.10

−0.11, in
agreement with previous studies (e.g. Comparat et al., 2013). Best fit values and errors for
all parameters are given in Table 5.16. No discrepancy can be seen between NGC and SGC
nuisance parameters (b1σ8, b2σ8, σv and Ag). ANGC

g and ASGC
g are compatible with zero, as

expected with nearly Poisson shot noise.
To include the systematic error budget in the above RSD + BAO posteriors, we rescale

the distance of each MCMC sample (fσ8, α‖, α⊥) to the median values by the ratio of total to
statistical only errors. For example, the new fσ8 position is:

σfσ8,tot
σfσ8,stat

[fσ8 −median(fσ8)] + median(fσ8). (5.62)

σfσ8,tot and σfσ8,stat are the upper (lower) total and statistical error bars with respect to the
median when fσ8 > median(fσ8) (fσ8 < median(fσ8)). We proceed similarly for α‖ and α⊥.
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Figure 5.37 – Combined RSD + BAO fit (left: NGC, right: SGC): data points with error bars from the
EZ mocks and best fit model as continuous line for the power spectrum multipoles (top), normalised
residuals for every power spectrum multipole (middle) and the BAO oscillation pattern (bottom).

best fit mean median ∆χ2 = 1 68% interval std deviation [16%, 84%]
fσ8 0.289 0.282 0.281 +0.068

−0.066 0.289+0.060
−0.075 0.067 0.289+0.061

−0.074
α‖ 1.085 1.082 1.089 +0.087

−0.107 1.085+0.104
−0.090 0.103 1.085+0.094

−0.102
α⊥ 0.941 0.942 0.940 +0.035

−0.034 0.941+0.036
−0.037 0.061 0.941+0.035

−0.039
bNGC
1 σ8 0.779 0.770 0.774 +0.048

−0.066 0.779+0.042
−0.044 0.046 0.779+0.035

−0.053
bSGC
1 σ8 0.795 0.782 0.787 +0.046

−0.079 0.795+0.038
−0.046 0.045 0.795+0.029

−0.057
bNGC
2 σ8 −0.23 −0.14 −0.18 +0.97

−0.75 −0.23+0.77
−0.76 0.72 −0.23+0.87

−0.66
bSGC
2 σ8 −0.1 −0.01 −0.02 +1.2

−1.0 −0.06+0.89
−0.85 0.79 −0.06+0.93

−0.81
ANGC
g 0.02 0.04 0.01 +0.24

−0.15 0.02+0.12
−0.17 0.17 0.02+0.20

−0.13
ASGC
g −0.04 0.02 −0.04 +0.35

−0.15 −0.04+0.14
−0.16 0.20 −0.04+0.26

−0.11
σNGC
v 2.53 2.14 2.23 +0.73

−0.93 2.53+0.72
−1.18 0.94 2.53+0.54

−1.42
σSGC
v 3.05 2.73 2.81 +0.73

−0.82 3.05+0.66
−0.98 0.88 3.05+0.51

−1.16

Table 5.16 – Parameters for the eBOSS ELG combined RSD + BAO likelihood. We provide the best fit,
as well as the mean and the median of the MCMC samples. Error bars are given around the best fit.
The ∆χ2 = 1 errors in parameter x are given by the x values for which χ2 is increased by 1 compared
to the best fit, when minimising with respect to all other parameters. The 68% interval for parameter
x corresponds to the smallest interval of x which contains 68% of the MCMC samples. We also quote
the standard deviation of the MCMC samples. The [16%, 84%] interval is given by the 16% and 84%
percentiles of the MCMC samples. Systematic uncertainties of Table 5.15 are not included.
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Figure 5.38 – Post-reconstruction isotropic BAO measurements on the EZ mocks including all systematics,
in Fourier and configuration space (left: best fits, right: errors, taken to be the mean of the upper and
lower error bars). The red cross shows the eBOSS ELG data.

5.5.3 Consensus

BAO and RSD analyses of the eBOSS ELG sample are also performed in configuration space,
as detailed in Raichoor et al. (2020); Tamone et al. (2020).

Post-reconstruction isotropic BAO measurements in Fourier and configuration space are
compared for each mock in Figure 5.38. Both measurements are well correlated (ρ = 0.8).
Raichoor et al. (2020) measurement, DV(zeff = 0.845)/rdrag = 18.23+0.58

−0.58 (statistical only) is <
0.2σ away from our Fourier space measurement, DV(zeff = 0.845)/rdrag = 18.33+0.46

−0.52 (statistical
only). A larger difference in the best fits occurs for 223/956 EZ mocks including all systematics
(considering both tails: 684/1000), while we find 387/956 EZ mocks (considering both tails:
473/1000) with a larger difference in the mean of the lower and upper error bars. The good
agreement between configuration and Fourier space measurements is shown by the data cross in
Figure 5.38, lying close to the diagonal. We choose the Fourier space measurement as consensus
as it has a lower statistical uncertainty.

This measurement, DV(zeff = 0.845)/rdrag = 18.33+0.57
−0.62, is 0.6σ below the Planck Collabor-

ation et al. (2018) CMB-based (TT, TE, EE, lowE, lensing) prediction.
Combining RSD and BAO measurements in configuration space and including systematic

uncertainties, Tamone et al. (2020) find:

fσ8(zeff = 0.85) = 0.35± 0.10
DH(zeff = 0.85)/rdrag = 19.1+1.9

−2.0

DM(zeff = 0.85)/rdrag = 19.9± 1.0
(5.63)

These values are 0.7σ, 0.5σ and 0.7σ away from our Fourier space median fσ8, DH/rdrag and
DM/rdrag values, respectively. Comparing the best fits instead, differences are 0.4σ, 0.4σ and
0.7σ, respectively. Again comparing best fits, larger differences occur in 386/1000 (consider-
ing both tails: 543/1000), 193/1000 (358/1000) and 246/1000 (311/1000) EZ mocks including



5.5. Results 261

Figure 5.39 – Fourier and configuration space, and combined posteriors of the final eBOSS ELG
RSD + BAO measurements (including systematic uncertainties). Contours contain 68% and 95% of
the probability.

all systematics. Considering posterior medians instead, larger differences occur in 158/1000
(considering both tails: 185/1000), 119/1000 (234/1000) and 256/1000 (324/1000) best fits to
EZ mocks including all systematics. To combine these two measurements, since posteriors are
not Gaussian but show comparable error bars, we translate them such that their two medians
are located at the mean median and take the mean of the two posteriors as consensus. This
method leads to an unbiased measurement if both measurements are unbiased, and is conservat-
ive about the final error bars. We show the two posteriors and their combination in Figure 5.39.
The consensus RSD + BAO eBOSS ELG measurement is thus:

fσ8(zeff = 0.85) = 0.315± 0.095
DH(zeff = 0.85)/rdrag = 19.6+2.2

−2.1

DM(zeff = 0.85)/rdrag = 19.5± 1.0
(5.64)

These measurements are 1.4σ, 0.5σ and 0.9σ from the Planck Collaboration et al. (2018)
CMB-based (TT, TE, EE, lowE, lensing) predictions for fσ8, DH/rdrag and DM/rdrag, respect-
ively.

We interpolate the consensus MCMC posterior (including systematic error bars) on a grid of
fσ8, DH/rdrag and DM/rdrag which is used, together with the BAO likelihood profile (including
systematic error bars), for the combined eBOSS cosmological constraints presented in eBOSS
Collaboration et al. (2020).
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5.5.4 Conclusions

The eBOSS ELG sample is the largest and highest redshift emission line galaxy spectroscopic
sample ever assembled, the third one to used for cosmology (Blake et al., 2011; Contreras et al.,
2013; Okumura et al., 2016) and the first one targeted in SDSS. Together with the configuration
space analysis of Tamone et al. (2020), we provided measurements of the growth rate of structure
and cosmological distances at a redshift of 0.85. This analysis was complicated by various
observational and analysis artefacts, which fostered reconsideration of previous practices in
clustering analyses, as we detailed in the previous chapter. First, the fine-grained veto masks
applied to the eBOSS ELG data led us to revise the way window functions are normalised in
the model, as detailed in Section 4.2.2.3. We also noticed that measuring the expected redshift
distribution from observed data itself (using the shuffled scheme) led to a significant bias of
cosmological parameters, which we corrected by modelling the induced radial integral constraint
as explained in Section 4.3.2. Finally, residual angular systematics due to the inhomogeneous
photometry, which could not be treated following the standard technique of template regression,
were mitigated using the pixelated scheme as discussed in Section 4.3.7.

Some observational systematics may remain, due to our incomplete understanding of the
relation between the ELG target density and the imaging properties in the early DECaLS
release used in the eBOSS ELG target selection.

Let us note however that this work helped improve other eBOSS clustering analyses (using
QSOs and LRGs as tracers of the matter density field), in particular through the modelling of
radial integral constraints and the implementation of realistic systematics into the mocks. The
present analysis should also prove helpful for the next generation of spectroscopic surveys, DESI
and Euclid (Laureijs et al., 2011), which will both measure 20 million ELG spectra.

5.6 SDSS cosmological results

eBOSS is the last survey of the SDSS designed for cosmological clustering analyses. SDSS
redshift surveys belong to Stage-III experiments, as defined by the Dark Energy Task Force (DEFT,
Albrecht et al., 2006). The DEFT Figure-of-Merit (FoM) is taken as the inverse square root of
the determinant of the measured w0, wa covariance matrix in the CPL parametrisation (1.54) of
the dark energy equation of state, letting curvature density ΩK,0 free. This FoM was 11 for the
Stage-II experiments presented in Sullivan et al. (2011). Stage-III experiments increase this FoM
by a typical factor of 3, and Stage-IV experiments by a factor of 10. DESI (DESI Collaboration
et al., 2016) will be the first Stage-IV experiment as it will reach a FoM of 704, including Planck
data, in the best scenario (see Section 6.3.2). Its first cosmological constraints are expected in
2023.

Hence, cosmology with galaxy redshift surveys has reached a turning point in terms of
constraining power, calling for a timely review of the role of large scale structure in cosmological
measurements, as presented in eBOSS Collaboration et al. (2020).

5.6.1 Data sets

For this review, highlighting SDSS results, 8 SDSS samples are considered. For all galaxy and
quasar clustering samples, BAO and large scale RSD measurements are used, yielding constraints
on fσ8, DM/rdrag and DH/rdrag (or their combination DV/rdrag). For Lyman-α samples, only
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BAO measurements (DH/rdrag, DM/rdrag) are considered. These measurements are shown in
Figure 5.40 and briefly recapped hereafter:

1. the Main Galaxy Sample (MGS, 0.07 < z < 0.2), collected in SDSS-I and -II, contains
63 163 galaxy redshifts. BAO (DV/rdrag) and RSD measurements are provided in Ross
et al. (2015); Howlett et al. (2015).

2. BOSS DR12 galaxies (0.2 < z < 0.6), 1.2 M redshifts collected by BOSS during SDSS-III.
Originally, three overlapping redshift bins were considered: 0.2 < z < 0.5, 0.4 < z < 0.6
and 0.5 < z < 0.75. The high redshift objects z > 0.6 are combined with the following
eBOSS LRG sample, so that the last redshift bin from BOSS 0.5 < z < 0.75 is dropped.
Bins 0.2 < z < 0.5 and 0.4 < z < 0.6 contain 604 001 and 686 370 galaxies, respectively.
BAO (DH/rdrag, DM/rdrag) and RSD measurements are provided in Alam et al. (2017).

3. eBOSS LRGs (0.6 < z < 1.0), targeted by eBOSS, which obtained 174 816 redshifts. These
are supplemented by the high redshift z > 0.6 BOSS galaxies, increasing the sample size
to 377 458 galaxies. BAO (DH/rdrag, DM/rdrag) and RSD measurements are provided
in Gil-Marín et al. (2020); Bautista et al. (2020).

4. eBOSS ELGs (0.6 < z < 1.1), fully targeted by eBOSS, consisting of 173 736 galaxies.
BAO (DV/rdrag) and RSD (DH/rdrag, DM/rdrag, fσ8) measurements are provided in de
Mattia et al. (2020); Tamone et al. (2020).

5. eBOSS QSOs (0.8 < z < 2.2), mainly targeted by eBOSS, but containing 18% of objects
from SDSS-I, -II and -III, leading to a sample size of 343 708 quasars. BAO (DH/rdrag,
DM/rdrag) and RSD measurements are provided in Neveux et al. (2020); Hou et al. (2020).

6. Lyman-α forests (1.8 < z < 3.5) found in quasar spectra, probing variations of the absorp-
tion due to neutral hydrogen. The BOSS sample of 157 845 spectra (2 < z < 3.5) without
broad absorption lines has been complemented and partly reobserved by eBOSS, yielding
a total sample of 210 005 spectra (2.1 < z < 3.5). Both an auto-correlation and a cross-
correlation with 341 468 quasars (z > 1.77) were performed. BAO (DH/rdrag, DM/rdrag)
measurements are provided in du Mas des Bourboux et al. (2020).

External data sets are CMB measurements (TT, TE, EE, lowE and lensing) (Planck Col-
laboration et al., 2019a, 2018b), Pantheon supernovae (SN) Ia (Scolnic et al., 2018) and DES
Year 1 3×2pt (cosmic shear, galaxy clustering and galaxy - galaxy lensing) correlation function
measurements (Abbott et al., 2018).

We will see in the next sections that the probes above are complementary: BAO and SN
data are powerful to constrain respectively curvature and the dark energy equation of state.
Growth rate measurements can be used to test deviations to general relativity. We will thus
highlight extensions to the baseline flat ΛCDM model. Specifically, will be considered hereafter
an open ΛCDM model (oΛCDM), i.e. with free curvature, a CDM model with free dark energy
(DE) equation of state (EoS) (wCDM), an open CDM model with free DE EoS (owCDM), a
CDM model with DE EoS given by the CPL parametrisation (w0waCDM) and an open CDM
model with DE EoS given by the CPL parametrisation (ow0waCDM).

For all figures in this section, σ8 and all density parameters are taken at z = 0.
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Figure 5.40 – SDSS growth rate and BAO measurements used in the final cosmological inference. For
the MGS sample (zeff = 0.15) the DV/rdrag measurement is plotted as a DM/rdrag one. Continuous
lines are ΛCDM predictions with Planck Collaboration et al. (2018) CMB (TT, TE, EE, lowE, lensing)
parameters.

5.6.2 BAO constraints

In this section, we restrict CMB data to temperature and polarisation (CMB T&P, i.e. TT,
TE, EE, lowE of Planck Collaboration et al. 2018), dropping lensing measurements, which probe
the growth of structure.

Within the oΛCDM, BAO measurements alone lead to ΩΛ,0 = 0.637+0.084
−0.074, a 8σ confidence

detection of dark energy. Such a constraint is achieved through the combination of measurements
at different redshifts, hence breaking degeneracies between Ωm,0 and ΩK,0. The corresponding
contours are shown in Figure 5.41 (top left). SN data alone are not as powerful and provide
ΩΛ,0 = 0.73 ± 0.11. Both BAO and SN data are compatible with a flat Universe. Combining
these data sets with Planck CMB T&P (which favours a closed Universe) pulls ΩK,0 towards
0, as shown in Figure 5.41 (top right). Especially, CMB T&P and BAO alone yield ΩK,0 =
−0.0001± 0.0018.

Allowing for a free DE EoS (wCDM model), BAO and SN data favour w = −1, i.e a
cosmological constant, as can be seen in Figure 5.41 (bottom panel). In particular, BAO data
alone yield w = 0.69± 0.15, compatible with a cosmological constant (w = −1). Also, the SN
Ωm,0 − w0 contours are orthogonal to that of the CMB T&P (which favours w < −1), yielding
a 3.3% constraint on w, compatible with −1.

In addition, BAO and SN data can be used to set constraints on H0 through the inverse
distance ladder. Specifically, given a value of rdrag, BAO provide a measurement of cosmological
distances than can be used to calibrate SN luminosity distances and yield a present-day valueH0,
in a given cosmological model. Under the assumptions of standard pre-recombination physics
and a well-measured mean temperature of the CMB, rdrag only depends on ωc,0 and ωb,0. Taking
for these two parameters priors from CMB T&P, BAO and SN data yield percent constraints
on H0. As can be seen in Figure 5.42 (left), H0 measurements are stable with respect to the
model expansion history: ΛCDM, owCDM or ow0waCDM, in the latter case providing a precise
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Figure 5.41 – Top left: Ωm,0 − ΩΛ,0 68% and 95% contours, in the oΛCDM model. Top right: same, in
the Ωm,0 − ΩK,0 plane. Bottom: Ωm,0 − w 68% and 95% contours, within the wCDM model. Dashed
lines indicate the parameters values within the ΛCDM model. Taken from eBOSS Collaboration et al.
(2020).

measurement of H0 = 67.87± 0.86 km s−1 Mpc−1, which would not be possible with CMB data
alone.

To make sure the measured value of H0 is insensitive to potential systematics in CMB
anisotropies, ωb,0 entering rdrag can be constrained with BBN measurements. The radiation
density is set by COBE/FIRAS (Fixsen, 2009), and ωc,0 is constrained by BAO alone. Figure 5.42
(right) shows that the constraining power of BAO is due to high redshift measurements (QSO
and Lyman-α) having a different degeneracy in the Ωm,0 − H0 plane than low redshift ones.
Using the BBN prior and in the ΛCDM model, the Hubble parameter is found to be H0 =
67.35± 0.97 km s−1 Mpc−1, in excellent agreement with the value quoted above.

This value of H0 is in tension with late-time measurements, making no assumption on the
physics in the early Universe. Using measurements from SH0ES (Riess et al., 2018) (calibrating
SN luminosity distance with Cepheids) and H0LiCOW measurements (based on time delays
of lensed quasars), Wong et al. (2019) find H0 = 73.8± 1.1 km s−1 Mpc−1 (as mentioned in
Section 1.1.4), in ' 5σ tension with the above measurements.

5.6.3 RSD constraints

RSD measurements are particularly powerful to constrain the dark energy equation of state.
Indeed, in a wCDM model, a low value of w increasingly reduces fσ8 towards lower redshifts.
Hence, RSD measurements reduce uncertainty on w by more than a factor of two over CMB
data, as can be seen in Figure 5.43, yielding w = −1.09± 0.11.
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However, the current RSD measurements do not help constrain the oCDM model, since the
effect of curvature on the growth of structure is mainly visible at low z (covered by the MGS
sample), where fσ8 error bars are large. DES data instead help reduce the uncertainty on ΩK,0
by a factor of 3.4.

RSD and weak lensing measurements alone provide constraints in the σ8,0 − Ωm,0 plane,
as shown in Figure 5.44 (left). The late time structure growth (probed by RSD and galaxy
and CMB lensing) is consistent (albeit with large contours) with that inferred from the early
Universe (CMB T&P) assuming a ΛCDM model, providing a strong consistency test of this
cosmological model.

Finally, growth measurements can be used to put constraints on modification to general
relativity (GR). Let us introduce the parameters Σ(a), µ(a), modifying the Poisson equation (2.5)
through (Abbott et al., 2019):

k2Φ = −4πGNa
2 (1 + µ) ρ̄δ (5.65)

k2 (Φ + Ψ) = −8πGNa
2 (1 + Σ) ρ̄δ (5.66)
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where we recall Φ and Ψ are the Bardeen potentials related to the time and spatial part of the
metric (see Eq. (1.109)). Following Abbott et al. (2019), the time dependence of µ(a) and Σ(a)
is parametrised through:

µ(a) = µ0
ΩΛ(a)
ΩΛ,0

Σ(a) = Σ0
ΩΛ(a)
ΩΛ,0

. (5.67)

In GR, Ψ = Φ and hence µ0 = Σ0 = 0. RSD (in the non-relativistic limit) is only sensitive to
Φ and thus can only probe µ0. Weak lensing measurements are also sensitive to the propagation
of light dictated by Φ + Ψ and hence to Σ0. As can be see from Figure 5.44 (right), combining
RSD and weak lensing measurements (DES and Planck lensing) yields µ0 = −0.04 ± 0.25 and
Σ0 = −0.024± 0.054, consistent with the GR prediction of µ0 = Σ0 = 0.

5.6.4 Full fits

Combining all probes with SDSS BAO and RSD measurements, a fit is performed assuming
a (flat) ΛCDM model. All SDSS data are found to be consistent with the best fit model. The
overall compatibility of SDSS, DES, SN and Planck data can be checked in Figure 5.45. For
both SDSS and DES contours, priors on ωb,0 and ns are those of Planck Collaboration et al.
(2018b), namely ns = 0.96 ± 0.02 and ωb,0 = 0.0222 ± 0.0005, motivated by BBN. This latter
prior has little effect on DES contours but helps constrain rdrag for SDSS results. DES data
prefer lower Ωm,0 values than Planck Collaboration et al. (2018), translating in some differences
in σ8,0 and H0. Abbott et al. (2018) argue there is no evidence for tension with CMB data.
SDSS and SN data are in good agreement with either DES or Planck measurements.

Results are provided in Table 5.17 for the various cosmological models considered. In the
ΛCDM case, ΩΛ,0 is measured at the 0.7% level, with a gain of 1.78 over CMB data (excluding
lensing) alone, mainly driven by BAO and SN.

Cosmological parameters remain stable, consistent with the ΛCDM case, whatever model
is assumed. Error bars on dark energy density and the Hubble parameter only increase by a
factor of 1.5 and 2.3, respectively, when allowing the most flexible model for expansion history
ow0waCDM. This is made possible by the complementarity of different probes, as shown in
Figure 5.46. CMB + SN and CMB + BAO + RSD ΩK,0 −w0 contours are orthogonal; as seen
in Section 5.6.2, while SN are powerful to constrain the DE EoS, BAO data provide stringent
constraints on curvature. In the w0 − wa plane, CMB + SN achieve slightly better constraints
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model ΩDE,0 H0 σ8,0 ΩK,0 w0 wa
ΛCDM 0.6959(47) 68.19(36) 0.8073(56) − − −
oΛCDM 0.6958(48) 68.21(55) 0.8076(65) 0.0001(17) − −
wCDM 0.6992(66) 68.64(73) 0.8128(92) − −1.020(27) −
owCDM 0.6997(69) 68.59(73) 0.8127(91) 0.0004(19) −1.023(30) −
w0waCDM 0.6971(69) 68.47(74) 0.8139(93) − −0.939(73) −0.31+0.28

−0.24
ow0waCDM 0.6988(72) 68.20(81) 0.8140(93) −0.0023(22) −0.912(81) −0.48+0.36

−0.30

Table 5.17 – Marginalised values and in parentheses the 68% confidence limits for cosmological models
using Planck, Pantheon SN, SDSS, and DES data. ΩDE,0 is the dark energy density today and corresponds
to ΩΛ,0 in the case of ΛCDM-based models. Extracted from eBOSS Collaboration et al. (2020).

than CMB + BAO + RSD, but precision on w0 and wa increases by roughly a factor of 2 when
all data sets are combined, yielding measurements consistent with a flat ΛCDM model: w0, wa
and ΩK,0 are 1.1σ, 1.3σ and 1.0σ from −1, 0 and 0, respectively.

Shifting the pivot scale factor a = 1 of the CPL parametrisation (1.54) to ap, we can write
w(a) = wp + wa(ap − a). Given the full data set, in the w0waCDM extension, the wp − wa
covariance matrix can be made diagonal at the pivot redshift zp = 1/ap − 1 = 0.34, yielding
wp = −1.018 ± 0.028 and wa = 0.31+0.28

−0.24. Errors on wp are only 4% larger than on w in the
wCDM model: the cost of allowing another degree of freedom in the DE EoS is minimal.

Combining Planck and SDSS data, the DEFT FoM in the w0 − wa plane, assuming no
curvature, is 38.4. Adding DES data and the Pantheon sample increases the FoM by another
factor of 3.5, yielding a final FoM of 134. This value only degrades to 92 in the ow0waCDM
model.

Cosmological data sets can also be used to measure neutrino masses. The sum of neut-
rino masses (previously fixed to ∑mν = 0.06 eV) is left free on top of the flat ΛCDM model
(νΛCDM) or wCDMmodel (mνwCDM). Constraints on the sum of neutrino masses are provided
in Table 5.18. In all cases, one massive and two massless neutrinos are assumed— a good approx-
imation for masses of interest — and a prior on the sum of neutrino masses∑mν ≥ 0 is imposed,
thus ignoring the non-zero mass bounds evidenced by neutrino oscillations (see Section 1.2.3.2).
Combining all data sets, at the 95% confidence level, ∑mν < 0.111 eV in the νΛCDM model,
which degrades to ∑mν < 0.161 eV when allowing for a free DE EoS (mνwCDM model). As
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can be seen in Figure 5.47, the preferred value of ∑mν is negative. Hence, Gaussian fits are
performed to provide insight into the constraining power of the different probes, independently
of the preferred ∑mν value. Improvement on top of Planck constraints is mainly driven by
BAO data, through the impact of neutrino masses onto the expansion rate: a factor 2 gain
is achieved. RSD yield another 20% reduction in uncertainty, through the damping effect of
neutrino free-streaming on the growth of structure. The constraining power of RSD is expected
to overcome that of BAO with Stage-IV experiments, such as DESI. Adding DES data slightly
degrades the constraint on ∑mν from 0.099 eV to 0.111 eV (in the νΛCDM model), due to the
preferred lower Ωm,0 value. Also provided in Table 5.18 is the probability Punphy that the sum
neutrino masses lies in the unphysical region 0 <

∑
mν < 0.0588 eV, where 0.0588 eV is the

minimum total neutrino mass (in the normal hierarchy) according to the observation of neut-
rino oscillations. The obtained Punphy values show no strong evidence for an unphysical sum of
neutrino masses. Also reported is the ratio Pinv/Pnorm, with:

Pnorm =
∫ ∞

0.0588 eV
p(mν)dmν (5.68)

Pinv =
∫ ∞

0.0995 eV
p(mν)dmν , (5.69)

0.0995 eV being the minimum sum of neutrino masses in the inverted hierarchy. A high ratio
Pinv/Pnorm would indicate a strong preference for the inverted over the normal hierarchy, which
is not the case with current data sets.
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model 95% upper Pinv/Pnorm Punphy Gaussian fit
limit [eV] to posterior [eV]

Planck 0.252 0.64 0.43
Planck + BAO 0.129 0.36 0.64 −0.026± 0.074
Planck + BAO + RSD 0.102 0.24 0.76 −0.026± 0.060
Planck + SN 0.170 0.49 0.56 −0.076± 0.106
Planck + BAO + RSD + SN 0.099 0.22 0.78 −0.024± 0.057
Planck + BAO + RSD + SN + DES 0.111 0.27 0.71 −0.014± 0.061
Planck + BAO + RSD + SN (mνwCDM) 0.139 0.40 0.61 −0.033± 0.082
Planck + BAO + RSD + SN + DES (mνwCDM) 0.161 0.48 0.56 −0.048± 0.097

Table 5.18 – Constraints on neutrino masses and relative probabilities of neutrino models. The νΛCDM
model is assumed as a baseline. Extracted from eBOSS Collaboration et al. (2020).

5.6.5 Conclusions

Of interest is to compare the currently obtained Stage-III cosmological constraints to those
prior to the BOSS results, called Stage-II, as illustrated in Figure 5.48 with an open mνwCDM
model (mνowCDM). For Stage-II, the CMB data set consists in WMAP (Hinshaw et al., 2013;
Bennett et al., 2013), SN come from the JLA sample (Betoule et al., 2014) and BAO meas-
urements from SDSS DR7 (Percival et al., 2010) and the 2-degree Field Galaxy Redshift Sur-
vey (Colless et al., 2001). For Stage-II + SDSS, the aforementioned BAO measurements are
replaced by the final SDSS BAO + RSD data. Conversely, the Stage-III without SDSS case is
obtained by replacing final SDSS BAO + RSD data by the previous BAO measurements.

Overall, Stage-III measurements are fully compatible with Stage-II results, the largest de-
viation being for σ8,0. Stage-III measurements confirm consistency with a flat ΛCDM model,
as can be seen with ΩK,0 and w0 moving towards 0 and −1, respectively. Also, bounds on the
sum of neutrino masses have become significantly tighter, without sign for a non-minimal sum
of neutrino masses.
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The precision on all shown parameters has increased by at least a factor of 2.5, from Stage-
II to Stage-III. The largest reduction in uncertainties are for ΩK,0 (by 4.5), σ8,0 (7.0), and∑
mν (7.1). The FoM 14 in the w, ΩK,0,

∑
mν , H0, and σ8,0 space has increased from 11

to 44 between Stage-II and Stage-III. Adding only final SDSS to Stage-II leads already to a
remarkable improvement by a factor of 2.1, demonstrating the significant role of BAO and RSD
measurements in constraining the cosmological model, especially its parameters ΩK,0, H0, and∑
mν .
The role played by cosmological measurements with large scale structure will become in-

creasingly important with next generation, Stage-IV galaxy surveys, such as DESI.

14. defined as the determinant of the covariance matrix of the N = 5 parameters to the power −1/ (2N)
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In this chapter we develop on projects complementing the large scale structure analysis
presented in the previous chapter. We first investigate in Section 6.1 the large variations of
fσ8 seen when fitting mock power spectra measured with different lines of sight, as noted in
Section 5.2.2, and notice that the error can be significantly reduced when averaging over multiple
lines of sight. In Chapter 5, the power spectrum covariance matrix for cosmological inference
was derived from a finite set of simulations. We study the consequence of the uncertainty in
the covariance matrix on posterior measurements in Section 6.2. Finally, as a further opening
to DESI, its forecast cosmological constraints are presented in Section 6.3. We emphasise that
estimating and marginalising over observational systematics is key to guaranteeing accurate
cosmological measurements with the forecast precision. We thus briefly present an alternative to
the n-point correlation function analyses, known as forward modelling of the galaxy density field,
which allows to properly marginalise, and even estimate, observational systematics, together
with the cosmological inference.

6.1 Anisotropic measurements from mocks with different lines
of sight

In Section 5.2.2, e.g. Figure 5.6, we noted some ' 1σ scatter in the best fit cosmological
parameters to the OuterRim-based mocks when using different lines of sight (see also Smith et al.,
2020), as a consequence of the scatter in the power spectrummeasurements. We first compute the
expected cross-correlation between power spectrum multipoles measured using different lines of
sight (Section 6.1.1), and emphasise that a significant reduction in uncertainties can be achieved
by averaging power spectrum measurements over multiple lines of sight (Section 6.1.2). Finally,
as a result, we show that fσ8 measurements with two orthogonal lines of sight are significantly
anti-correlated, explaining the variations seen in Section 5.2.2, and that averaging over three
orthogonal lines of sight thus yields a relative reduction of uncertainty of better than 1/

√
3

(Section 6.1.3).
These results are presented in Smith et al. (2020).

6.1.1 Cross-correlation of power spectrum measurements

Let us first consider power spectrum multipoles P̂ u` and P̂ v` , measured with different (global)
lines of sight û and v̂. Their cross-covariance matrix can be written as:

Cuv``′ij =
〈[
P̂ u` (ki)−

〈
P̂ u` (ki)

〉] [
P̂ v`′(kj)−

〈
P̂ v`′(kj)

〉]〉
(6.1)

= C``′ijρ
uv
``′ij , (6.2)

where C``′ij is the covariance matrix of power spectrum measurements with the same line of
sight, and ρuv``′ij is the cross-correlation, which we aim to calculate. By rearranging Eq. (6.2), we
can write ρuv``′ij as:

ρuv``′ij =

〈[
P̂ u` (ki)−

〈
P̂ u` (ki)

〉] [
P̂ v`′(kj)−

〈
P̂ v`′(kj)

〉]〉
C``′ij

(6.3)

=

〈
P̂ u` (ki)P̂ v`′(kj)

〉
−
〈
P̂ u` (ki)

〉〈
P̂ v`′(kj)

〉
〈
P̂ u` (ki)P̂ u`′(kj)

〉
−
〈
P̂ u` (ki)

〉〈
P̂ u`′(kj)

〉 , (6.4)



6.1. Anisotropic measurements from mocks with different lines of sight 285

where we arbitrarily took û as line of sight in the denominator. The first term in the numerator
of Eq. (6.4) yields (see Eq. (5.2)):〈

P̂ u` (k)P̂ v`′(k′)
〉
∝
∫
dΩudΩv

〈
δug (k)δug (−k)δvg (k′)δvg (−k′)

〉
L`(cos θu)L`′(cos θv), (6.5)

where the prefactors can be dropped, since they are the same in both the numerator and de-
nominator of Eq. (6.4), and will cancel out. Assuming Gaussianity of δg, Wick theorem (2.54)
gives: 〈

δug (k)δug (−k)δvg (k′)δvg (−k′)
〉

=
〈
δug (k)δug (−k)

〉〈
δvg (k′)δvg (−k′)

〉
+
〈
δug (k)δvg (k′)

〉〈
δug (−k)δvg (−k′)

〉
+
〈
δug (−k)δvg (k′)

〉〈
δug (k)δvg (−k′)

〉
. (6.6)

The first of these terms is
〈
P̂ u` (ki)

〉〈
P̂ v`′(kj)

〉
, which can be dropped, since it is being subtracted

out in the numerator of Eq. (6.4).
Let us now compute the cross-correlation

〈
δug (k)δvg (k′)

〉
. Let us write ψu (ψz = −fvz in

Eq. (2.159)) the RSD displacement field along line of sight û, such that the redshift space
position su is related to the real space position r through su = r + ψuû. Eq. (2.165) can be
straightforwardly extended to the cross power spectrum of the redshift space density contrast
seen with two lines of sight û and v̂:

P uvs (k) =
∫
d3xe−ik·x

〈
ei(kuψu(x)−kvψv(r+x))

[
δrg(r) + ∂uψu(r)

] [
δrg(r + x) + ∂vψv(r + x)

]〉
,

(6.7)
where we noted the real space galaxy density field δrg . We also used ku = k · û = k cos θu (and
a similar expression for kv), with cos θu the cosine of the angle between the wave vector k and
line of sight û (and similarly for cos θv). As in Section 2.4.1, in the limit |kψu| , |kψv| � 1 one
can derive the equivalent of the Kaiser formula (2.163):

P uvs (k) = b2
(
1 + β cos2 θu

) (
1 + β cos2 θv

)
P lin
m (k) (6.8)

Here we assumed a linear galaxy bias b (δrg = bδm with δm the real space matter density contrast),
used β = f/b and P lin

m (k) the linear matter power spectrum.
Let us now specify the cosine angle cos θv. Taking the line of sight û as reference, we can

write the unit wavevector as:

k̂ = (cos θu, sin θu cosφu, sin θu sinφu) (6.9)

where cos θu = k̂ · û, and φu is the azimuthal angle around û. In the same coordinate system
we can also write the second line of sight as:

v̂ = (cos θuv, sin θuv cosφuv, sin θuv sinφuv) , (6.10)

where θuv is the angle between v̂ and û, and φuv is the azimuthal angle of v̂ around û. Hence:

cos θv = k̂ · v̂ = cos θu cos θuv + sin θu cosφu sin θuv cosφuv + sin θu cosφu sin θuv sinφuv
= cos θu cos θuv + sin θu sin θuv cosφv, (6.11)

where, in the last equality, we used φv = φuv − φu.
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We eventually have:〈
δug (k)δvg (k′)

〉
= (2π)3 δ

(3)
D (k + k′)

[
P uvs (k) + P noise(k)

]
, (6.12)

where we introduced the shot noise term P noise(k), which comes from the discrete nature of
the galaxy density field. As in Section 4.1.2 one can define a regular grid of cells with galaxy
occupation number ni ∈ {0, 1}, positions ri and volume δV . Hence, we have:〈

ei(kuψu(ri)−kvψv(ri))n2
i

〉
=
〈
ei(kuψu(ri)−kvψv(ri))ni

〉
(6.13)

=
〈
ei(kuψu(ri)−kvψv(ri))

(
1 + δrg(r)

)〉
n̄δV (6.14)

where n̄ is the mean density. The shot noise contribution to
〈
ei(kuψu(r)−kvψv(r+x))δrg(r)δrg(r + x)

〉
of Eq. (6.7) thus reads

〈
ei(kuψu(r)−kvψv(r+x))

(
1 + δrg(r)

)〉
δ

(3)
D (x)/n̄. After integration over x in

Eq. (6.7):
P noise(k) =

〈 1
n̄
ei(kuψu−kvψv)

(
1 + δrg

)〉
(6.15)

where δrg , ψu and ψv are taken at the same real position. Expanding ei(kuψu−kvψv) into series
and applying Wick theorem, the above formula yields products involving

〈
ψuδ

r
g

〉
(and

〈
ψvδ

r
g

〉
),

which, as we will see in the following, vanishes at linear order. Hence,
〈
ei(kuψu−kvψv)δrg

〉
= 0

i.e. the δrg term can be dropped in Eq. (6.15). Next, the phase shift term
〈
ei(kuψu−kvψv)

〉
is the

characteristic function of the Gaussian random variable, kuψu−kvψv, which has a mean of zero,
and variance σ2

ψ,uv. Hence the shot noise contribution reads:

P noise(k) = e−
1
2σ

2
ψ,uv(k)

n̄
(6.16)

where σ2
ψ,uv(k) is given by:

σ2
ψ,uv(k) =

〈
(kuψu − kvψv)2

〉
(6.17)

= k2
u

〈
ψ2
u

〉
+ k2

v

〈
ψ2
v

〉
− 2kukv 〈ψuψv〉 . (6.18)

In linear perturbation theory, the displacement ψu due to RSD is given in Fourier space by
(assuming no vorticity, see Eq. (2.52) and Eq. (2.159)):

ψu(k) = if
ku
k2 δm(k). (6.19)

Therefore, taking the Fourier transform, we find:

〈ψuψv〉 = f2
∫

d3k

(2π)3
kukv
k4 P lin

m (k)

= f2

(2π)3

∫
dkP lin

m (k)
∫ 2π

0
dφv

∫ π

0
sin θudθu cos θu (cos θu cos θuv + sin θu sin θuv cosφv)

= f2σ2
d cos θuv (6.20)

with the one-dimensional dispersion of the displacement field (see Eq. (2.166)):

σ2
d = 1

6π2

∫
dkP lin

m (k). (6.21)
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Of course, we have
〈
ψ2
u

〉
=
〈
ψ2
v

〉
= f2σ2

d since cos θuu = cos θvv = 1. That the cross-covariance
〈ψuψv〉 /

〈
ψ2
u

〉
of the RSD displacement fields differs from ±1 for two lines of sight û 6= ±v̂ is

precisely the reason why P̂ u` and P̂ v` do not correlate perfectly, as we will see in the following.
Especially, if the two lines of sight are orthogonal (cos θuv = 0), ψu and ψv do not correlate.
Note also that

〈
ψuδ

r
g

〉
yields an integral over dθu cos θu equal to zero, which justifies dropping

δrg in Eq. (6.15) as discussed previously. Eventually:

P noise(k) = e−
1
2(k2

u+k2
v−2kukv cos θuv)f2σ2

d

n̄
. (6.22)

The shot noise contribution is largest (1/n̄) when f = 0, as expected, and vanishes as f → +∞.
Finally, putting everything together, and using dΩu = dφvdθu sin θu, the cross-correlation

ρuv``′ij can be written as

ρuv``′ij = δij
κuv``′(ki)
κ``′(ki)

, (6.23)

with:

κuv``′(k) =
∫ 2π

0
dφv

∫ π

0
dθu sin θu

[
b2
(
1 + β cos2 θu

) (
1 + β cos2 θv

)
P lin
m (k)

+ 1
n̄
e−

1
2k

2(cos2 θu+cos2 θv−2 cos θu cos θv cos θuv)f2σ2
d

]2
L`(cos θu)L`′(cos θv), (6.24)

κ``′(k) = 2π
∫ π

0
dθu sin θu

[
b2
(
1 + β cos2 θu

)2
P lin
m (k) + 1

n̄

]2
L`(cos θu)L`′(cos θu). (6.25)

Note that the above formula is valid at first order in 1/(P lin
m (k)n̄). Shot noise yields other

terms, even at tree order in perturbation theory, see e.g. Meiksin and White (1999); Howlett
and Percival (2017). Neglecting shot noise, the k and b dependence disappear; then, for two
orthogonal lines of sight x and y, the limits for the different multipoles as β → 0 and β → +∞
are:

lim
β→0

ρxy00ii(β) = 1 lim
β→+∞

ρxy00ii(β) = 3
35

lim
β→0

ρxy22ii(β) = −1
2 lim

β→+∞
ρxy22ii(β) = − 33

5810

lim
β→0

ρxy44ii(β) = 3
8 lim

β→+∞
ρxy44ii(β) = 5239

199080 .

Figure 6.1 displays the β dependence of the cross-correlation coefficients for two orthogonal
lines of sight and neglecting shot noise. The power spectrum quadrupoles are always anti-
correlated. Note also that the correlation of the off-diagonal terms (monopole - quadrupole,
monople - hexadecapole and quadrupole - hexadecapole) between two orthogonal lines of sight
is small, suggesting that there is no much redundant information in the two measurements using
orthogonal lines of sight. In the next section, we take advantage of these findings to reduce the
uncertainty of the measured power spectrum multipoles.

6.1.2 Reduction in power spectrum measurement uncertainties

Let us define a new estimator of the power spectrum multipoles, averaging over three ortho-
gonal lines of sight:

P̂ 3−los
` (k) = P̂ x` (k) + P̂ y` (k) + P̂ z` (k)

3 . (6.26)
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Figure 6.1 – Cross-correlation between power spectrum multipoles using two orthogonal lines of sight, in
the zero shot noise limit. Taken from Smith et al. (2020).

The reduction in variance, when averaging over three orthogonal lines of sight, is (using Eq. (6.4)):

ρ3−los
``′ij =

1 + 2ρxy``′ij
3 , (6.27)

where we arbitrarily took x̂ and ŷ as lines of sight. For the case of no shot noise, the limits are:

lim
β→0

ρ3−los
00ii (β) = 1 lim

β→+∞
ρ3−los

00ii (β) = 41
105

lim
β→0

ρ3−los
22ii (β) = 0 lim

β→+∞
ρ3−los

22ii (β) = 2872
8715

lim
β→0

ρ3−los
44ii (β) = 7

12 lim
β→+∞

ρ3−los
44ii (β) = 104779

298620 . (6.28)

Noticeably, in the β → 0 limit, the variance of the quadrupole is reduced to zero. The predicted
reduction of errors is shown with continuous lines in Figure 6.2. The error reduction in the
quadrupole is much lower than 1/

√
3, the expected value in absence of correlation. To check our

theoretical prediction, we generated 100 Gaussian random fields, applied the Kaiser formula for
different values of β, and computed the reduction in error bars when averaging the measured
power spectrum multipoles over 3 orthogonal lines of sight. The results are shown with the data
points, in perfect agreement with the theoretical predictions.

One can go further and average over all possible lines of sight ω of the solid angle Ω,

P̂ all−los
` (k) = 1

4π

∫
dΩP̂ω` (k). (6.29)

Hence: 〈
P̂ all−los
` (k)P̂ all−los

`′ (k′)
〉

= 1
(4π)2

∫
dΩ
∫
dΩ′

〈
P̂ω` (k)P̂ω′`′ (k′)

〉
. (6.30)

Following from statistical isotropy, a reference line of sight can be chosen, e.g. û, such that〈
P̂ all−los
` (k)P̂ all−los

`′ (k′)
〉

= 1
4π

∫
dΩ
〈
P̂ω` (k)P̂ u`′(k′)

〉
(6.31)
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Figure 6.2 – Reduction in uncertainties when averaging power spectrum measurements over 3 orthogonal
lines of sight. The prediction (6.27) is shown in continuous lines, and data points are measurements from
Gaussian random fields implementing the Kaiser formula, hence without shot noise. Coloured dotted
lines show the error reduction, averaging over all lines of sight, predicted by (6.32). The horizontal black
dotted line indicates a reduction of errors by 1/

√
3. Taken from Smith et al. (2020).

and therefore, the variance reduction is:

ρall−los
``′ij = 1

2

∫ π

0
sin θuvρuv``′ij . (6.32)

In the case of no shot noise, when averaging over all lines of sight, the limits are:

lim
β→0

ρall−los
00ii (β) = 1 lim

β→+∞
ρall−los

00ii (β) = 9
25

lim
β→0

ρall−los
22ii (β) = 0 lim

β→+∞
ρall−los

22ii (β) = 20592
101675

lim
β→0

ρall−los
44ii (β) = 0 lim

β→+∞
ρall−los

44ii (β) = 155584
7838775 . (6.33)

Already, with 3 orthogonal lines of sight, the relative variance of the quadrupole is pinned down
to 0 in the limit β → 0. Averaging over all lines of sight also sets the relative variance of
the hexadecapole to 0 as β → 0, while there is also a reduction in the limits as β → +∞ for
all multipoles. The full β dependence can be seen in Figure 6.2 (dotted lines). Note however
that such an averaging saturates the ` 6= `′ cross-terms of the covariance matrix of P̂ all−los

` (k),
ρall−los
``′ij C``′ij , which is hence singular and cannot be used for cosmological parameter inference.

We also tested our formula Eq. (6.23) further, including the shot noise term, using the same
300 EZ mock boxes as used in the eBOSS ELG analysis in Section 5.4. Results are shown in
Figure 6.3. To compute the theoretical prediction from Eq. (6.23), fσd is taken as the standard
deviation of the RSD displacements in the EZ mocks. β and b are the mean values obtained
by fitting the measured power spectrum monopoles, quadrupoles and hexadecapoles with a
linear Kaiser model damped by a Lorentzian Finger-of-God term over the k-range 0.03 < k <

0.12 h Mpc−1 (see Section 6.1.3 below). Both theoretical predictions and measurements are in
good agreement, up to scales 0.15 h Mpc−1. Some divergence arises above that scale in the
quadrupole, which we attribute to either non-linearity or the approximate nature of EZ mocks.
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Figure 6.3 – Ratio of the error on the power spectrum multipoles measured on 300 EZ mocks and averaged
over 3 orthogonal lines of sight to the average of the error for each line of sight. Shaded area represent
the uncertainties estimated by splitting the 300 mocks into 6 sets of 50 mocks. The prediction (6.27),
including shot noise, is shown in coloured dotted lines. The middle horizontal black dotted line indicates
a reduction of errors by 1/

√
3. Taken from Smith et al. (2020).

6.1.3 Reduction in RSD measurement uncertainties

In this section, we propagate the cross-covariance between power spectrum measurements
determined previously up to the measurements of the cosmological parameters. We proceed
with a Fisher forecast.

Cosmological parameters are estimated through a χ2 minimisation,

χ2(p) =
(
xdi − xti(p)

)
Ψij

(
xdj − xtj(p)

)
, (6.34)

where xd is the measured power spectrum, Ψ is the inverse covariance matrix and xt(p) is the
model, which depends upon the parameters, p. Taking the derivative of χ2(p) with respect to
pα yields

0 = ∂xti
∂pα

Ψij

(
xdj − xtj

)
. (6.35)

At first order around the true parameter value pt we have xti(p) = xti(pt) + ∂xti
∂pα

(
pα − ptα

)
, with

all derivatives with respect to pα taken at ptα. Without loss of generality, we set ptα = 0 and
xti(pt) = 0. Eq. (6.35) can therefore be rearranged to give:

∂xti
∂pα

Ψij

∂xtj
∂pβ

p̂β = ∂xti
∂pα

Ψijx
d
j . (6.36)

Writing the Fisher matrix as:

Fαβ = ∂xti
∂pα

Ψij

∂xtj
∂pβ

(6.37)

we obtain:
p̂α = F−1

αβ

∂xti
∂pβ

Ψijx
d
j . (6.38)
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The covariance of the measured parameters, when the power spectra measurements are calcu-
lated with respect to the same line of sight, is simply:

〈p̂αp̂β〉 = F−1
αα′

∂xti
∂pα′

Ψij

〈
xdjx

d
j′

〉
Ψj′i′

∂xti′

∂pβ′
F−1
β′β (6.39)

= F−1
αβ . (6.40)

For two different lines of sight û and v̂, the covariance is:〈
p̂uαp̂

v
β

〉
= F−1

αα′
∂xti
∂pα′

Ψij

〈
xd,uj xd,vj′

〉
Ψj′i′

∂xti′

∂pβ′
F−1
β′β (6.41)

= F−1
αα′

∂xti
∂pα′

ΨijC
uv
jj′Ψj′i′

∂xti′

∂pβ′
F−1
β′β (6.42)

where Cuv is the cross-covariance between measurements of the power spectrum from the two
different lines of sight û and v̂, which is estimated in Section 6.1.1. The same calculations
derived in Section 6.1.2 can be used to calculate the reduction on uncertainties of cosmological
parameters, when averaging over multiple lines of sight.

Let us compare the obtained prediction to RSD fits performed on the 300 EZ mocks. We
consider two fitting ranges: (i) 0.03 h Mpc−1 < k < 0.12 h Mpc−1 and (ii) 0.03 h Mpc−1 < k <

0.20 h Mpc−1, using the monopole, quadrupole and hexadecapole. In case (i), we use the Kaiser
model (2.164) damped by a Lorentzian Finger-of-God term (2.197b). In case (ii), we consider
the TNS model as described in Section 2.4.3. We fit mock power spectra measured with 3
orthogonal lines separately, i.e. we do not perform the power spectrum averaging (6.27).

Fisher forecasts are computed following Eq. (6.42). For C we take the covariance matrix
used in the fits. Cuv is determined from Eq. (6.23), using the mean f , β values obtained in the
fits and fσd as previously measured in the mocks.

Results are reported in Table 6.1. fσ8 measurements with two orthogonal lines of sight are
found to be anti-correlated. Since fσ8 is related to the quadrupole-to-monopole ratio, this is in
line with the anti-correlation of the power spectrum quadrupoles noted in Section 6.1.1. This
also explains why the measured fσ8 can vary significantly with the line of sight as noted in
Section 5.2.2. Hence, averaging the measured fσ8 over the three lines of sight yields a reduction
in uncertainties larger than 1/

√
3. For the wide fitting range (ii), including quasi non-linear

scales, the reduction of uncertainties in the fσ8 measurement is somewhat lower, but still better
than 1/

√
3. There is also a non-negligible error reduction in the measurement of α‖, especially

for the narrow fitting range (i). For both the narrow (i) and wide (ii) fitting ranges, theoretical
predictions are in relatively good agreement with the measurements from the mocks.

In conclusion, averaging anisotropic power spectrum measurements from simulations with
different lines of sight is an easy way to increase the precision of such mock challenges, for
(almost) no computational cost. This may prove useful for future mock challenges, as organised
by DESI. Before moving on to DESI prospects, let us first present the impact of estimating
covariance matrices from simulations onto parameter inference.

6.2 Mock-based covariance matrices

In this section we recap and develop ideas about the estimation of the covariance matrix of
a Gaussian likelihood measured from simulations (mocks). We first review the state-of-the-art
frequentist correction (Section 6.2.1) and extend it to the case of the combination of likelihoods
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(i) 0.03− 0.12 h Mpc−1 fσ8 α‖ α⊥
ρxy −0.244± 0.016 0.420± 0.037 0.723± 0.024

prediction −0.274 0.405 0.726√
ρ3−los 0.414± 0.013 0.783± 0.016 0.903± 0.009

prediction 0.388 0.777 0.904
(ii) 0.03− 0.2 h Mpc−1 fσ8 α‖ α⊥

ρxy −0.076± 0.041 0.480± 0.038 0.756± 0.022
prediction −0.035 0.507 0.754√

ρ3−los 0.532± 0.025 0.808± 0.017 0.915± 0.008
prediction 0.557 0.819 0.914

Table 6.1 – Measured values of the cross-correlation, ρxy, and the reduction of uncertainties,
√
ρ3−los,

for the parameters fσ8, α‖, and α⊥ fitted on the EZ mocks. Error bars are estimated by splitting the
300 mocks into 6 sets of 50 mocks. We also report the prediction from the Fisher analysis.

which are known to be independent (Section 6.2.2). The obtained formulae were utilised in the
eBOSS ELG analysis (see Section 5.1.6). We then present a Bayesian approach (Section 6.2.3),
which we show to fail in the case of a high-dimensional data vector.

6.2.1 Frequentist correction

Let us first recap the correction of (Hartlap et al., 2007; Dodelson and Schneider, 2013;
Percival et al., 2014). We consider a number nm of independent Gaussian observations mi (the
mocks) of size nb, with true mean mt and covariance matrix Ct. Then, M = ∑nm

i=1 (mi −m) (mi −m)T

with m = ∑nm
i=1 mi follows a Wishart distribution (Wishart, 1928; Anderson, 1958):

W(M|Ct) = 1

2
(nm−1)nb

2 |Ct|
nm−1

2 Γnb
(
nm−1

2

) |M|nm−nb−2
2 e

− 1
2 Tr

(
Ct−1M

)
, (6.43)

which is the joint probability of the nb (nb − 1) /2 free elements of M.
M−1 follows an inverse Wishart distribution:

W−1(M−1|Ct) =
∣∣Ct

∣∣nm−1
2

2
(nm−1)nb

2 Γnb
(
nm−1

2

) |M|−nm+nb
2 e−

1
2 Tr (CtM−1). (6.44)

Integrating M−1W−1(M−1|Ct) over the ensemble of positive-definite matrices yields:〈
M−1

〉
= 1
nm − nb − 2Ct−1

. (6.45)

Hence, an unbiased estimate of Ψt = Ct−1 is given by (see Eq. (5.13), Hartlap et al. 2007):

Ψ = nm − nb − 2
nm − 1

( M
nm − 1

)−1
(6.46)

= (1−D) C−1 with C = M
nm − 1 , D = nb + 1

nm − 1 . (6.47)

Note however that the estimated precision matrix Ψ = Ψt+∆Ψ has an intrinsic scatter (Dodel-
son and Schneider, 2013):〈

∆Ψij∆Ψi′j′
〉

= AΨt
ijΨt

i′j′ +B
(
Ψt
ii′Ψt

jj′ + Ψt
ij′Ψt

ji′

)
(6.48)
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with (Taylor et al., 2013):

A = 2
(nm − nb − 1) (nm − nb − 4) , (6.49)

B = nm − nb − 2
(nm − nb − 1) (nm − nb − 4) . (6.50)

Let us consider a Gaussian likelihood for the measurements xd:

L(xd|Ψ) ∝ e−
1
2(xd−xt)TΨ(xd−xt). (6.51)

At first order the measured parameters (assuming their true value to be zero, without loss of
generality) are given by Eq. (6.38):

p̂α = [F + ∆F ]−1
αα′

∂xti
∂pα′

Ψij

(
xdj − xtj

)
(6.52)

where (see Eq. (6.37)):

Fαβ = ∂xti
∂pα

Ψt
ij

∂xtj
∂pβ

(6.53)

∆Fαβ = ∂xti
∂pα

∆Ψij

∂xtj
∂pβ

. (6.54)

As can be seen from Eq. (6.52), the p̂α measurement can be biased if (i) the covariance matrix
depends on the model (which we have ignored so far) and (ii) if the estimated covariance matrix
correlates with the data,

〈
Ψijx

d
j

〉
6= 0. We will ignore these possibilities in the following, though

e.g. (ii) should be kept in my mind when covariance matrices are estimated from the data itself,
e.g. with jacknife methods.

At first order, [F + ∆F ]−1
αβ = F−1

αβ +
[
F−1∆FF−1]

αβ. Then, the leading order parameter
covariance is 〈p̂αp̂β〉 3 F−1

αβ and the next-to-leading (second order) contribution is (Dodelson
and Schneider, 2013):

〈p̂αp̂β〉 3 F−1
αα′

[
∂xti
∂pα′

∂xti′

∂pβ′
Ctjj′(∆Ψ)ij(∆Ψ)i′j′

]
F−1
ββ′ (6.55)

−
[
F−1∆FF−1∆FF−1

]
αβ

(6.56)

where we recall that Ctij =
〈(
xdi − xti

) (
xdj − xtj

)〉
. The A term from Eq. (6.48) gives AFαβ

for Eq. (6.55) and −AFαβ for Eq. (6.56). The B term from Eq. (6.48) gives B (nb + 1)Fαβ for
Eq. (6.55) and −B (np + 1)Fαβ for Eq. (6.56), with np the number of parameters (dimension of
the Fisher matrix F ). Hence, the total, up to second order parameter covariance reads (Dodelson
and Schneider, 2013):

Vαβ = 〈p̂αp̂β〉 = [1 +B (nb − np)]Fαβ. (6.57)

Note however that we do not have access to Fαβ (6.54), since we do not know the true inverse
covariance Ψt. Instead, in the Gaussian case, the parameter covariance matrix derived from the
likelihood (given by the inverse of its second log-derivative or likelihood profiling) is (Percival
et al., 2014):

σ2
αβ = [F + ∆F ]−1

αβ . (6.58)
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The first order average contributions of ∆F are zero, but the second order ones read:

σ2
αβ 3

[
F−1∆FF−1∆FF−1

]
αβ

(6.59)

i.e. Eq. (6.56). Following from the previous calculation we have, at second order:

σ2
αβ = [1 +A+B (np + 1)]Fαβ. (6.60)

Therefore, on top of the Hartlap factor (6.47), the full correction to be applied to the data
parameter covariance estimated from the likelihood is:

m1 = Vαβ
σ2
αβ

= 1 +B (nb − np)
1 +A+B (np + 1) . (6.61)

Let us consider the case where we fit the mocks used to estimate the inverse covariance matrix
Ψ. The covariance of the mocks is

〈(
xdi − xti

) (
xdj − xtj

)〉
= Cij = (1−D)

[
Ψt + ∆Ψ

]−1
ij , hence

with Eq. (6.52) the covariance of the best fit parameters obtained on the mocks is (Percival
et al., 2014):

〈p̂αp̂β〉 = (1−D)−1 [F + ∆F ]−1
αβ . (6.62)

Hence, to be compared with the parameter covariance derived from the likelihood in which both
the Harlap factor of Eq. (6.47) and m1 of Eq. (6.61) are included, the covariance of best fit
parameter values obtained from the mocks should be rescaled by (Percival et al., 2014):

m2 = Vαβ
〈p̂αp̂β〉

= Vαβ
σ2
αβ

σ2
αβ

〈p̂αp̂β〉
(6.63)

= m1 (1−D)−1 . (6.64)

6.2.2 Combination of independent likelihoods

As outlined in Section 5.1.6, the prescription detailed above to rescale the parameter cov-
ariance matrix is formally not correct when combining two (e.g. NGC and SGC) likelihoods
with mock-based covariance matrices which are further assumed to be independent (i.e. their
cross-covariance is zero).

Indeed, an intuitive use of Eq. (6.61) would take nb as the number of bins in either NGC or
SGC and np the total number of parameters. Then, however, the constraint np ≤ nb inherent to
this formula appears artificial. Indeed, there is no issue with having np > nb as long as np is less
than the total number of bins. Another approach would be to take nb as the total number of bins
in NGC and SGC; though this would be correct if we estimated the combined NGC and SGC
covariance from mocks, this does not apply to our case where we impose the cross-covariance
between NGC and SGC to be zero. Therefore, we have to revise Eq. (6.61) in the context of a
block diagonal covariance matrix.

As in the previous section, the Hartlap correction is applied to the inverse NGC covariance
matrix to obtain the precision matrix (see Eq. (6.47)):

ΨNGC =
(
1−DNGC

) (
CNGC

)−1
, DNGC = nNGC

b + 1
nNGC
m − 1 (6.65)

with nNGC
b the number of bins and nNGC

m the number of mocks in NGC; similarly for SGC. The
full precision matrix Ψ is a block-diagonal matrix built from ΨNGC and ΨSGC. The corrections
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to the parameter covariance are a bit less trivial, as the errors on each inverse covariance matrix
must be propagated through the Fisher information.

The covariance of the precision matrix fluctuations of Eq. (6.48) becomes:〈
∆Ψij∆Ψi′j′

〉
=
(
ANGC
iji′j′ +ASGC

iji′j′

)
Ψt
ijΨt

i′j′ +
(
BNGC
iji′j′ +BSGC

iji′j′

) (
Ψt
ii′Ψt

jj′ + Ψt
ij′Ψt

ji′

)
(6.66)

where ANGC
iji′j′ is constant (equal to ANGC) if indices iji′j′ all lie in the same block NGC, zero

elsewhere (i.e. cross-covariance terms between NGC and SGC are zero), and similarly for SGC
and B terms. Let us consider the contribution from the A terms first. From Eq. (6.55) one gets
the contribution:

〈p̂αp̂β〉 3 F−1
αα′

[
ANGCFNGC

α′β′ +ASGCF SGC
α′β′

]
F−1
ββ′ (6.67)

where we split the total Fisher information F = FNGC + FSGC (since NGC and SGC are inde-
pendent). Eq. (6.56) gives:

〈p̂αp̂β〉 3 −F−1
αα′F

−1
β′α′′F

−1
β′′β

(
ANGCFNGC

α′β′ F
NGC
α′′β′′ +ASGCF SGC

α′β′ F
SGC
α′′β′′

)
. (6.68)

Let us move to the B terms. From Eq. (6.55) one gets the contribution:

〈p̂αp̂β〉 3 F−1
αα′

[
BNGC

(
nNGC
b + 1

)
FNGC
α′β′ +BSGC

(
nSGC
b + 1

)
F SGC
α′β′

]
F−1
ββ′ , (6.69)

and from Eq. (6.56):

〈p̂αp̂β〉 3 −F−1
αα′F

−1
β′α′′F

−1
β′′β

(
BNGCFNGC

α′α′′ F
NGC
β′β′′

+BSGCF SGC
α′α′′F

SGC
β′β′′ +BNGCFNGC

α′β′′ F
NGC
β′α′′ +BSGCF SGC

α′β′′F
SGC
β′α′′

)
. (6.70)

Formulae above could be evaluated numerically, but we will consider a simpler case in the
following. We assume that FNGC

αβ and F SGC
αβ are block-diagonal, with specific parameters for

NGC and SGC which are uncorrelated, and a set of common parameters αβ for which the
Fisher information content can be written FNGC

αβ = fNGCFαβ (resp. F SGC
αβ = fSGCFαβ), with

fNGC + fSGC = 1. We also assume the common parameters to be uncorrelated to the NGC and
SGC specific parameters 1. Then, the contribution from the A and B terms to the covariance of
the common parameters is simply the sum of terms C1 (from Eq. (6.55)) and C2 (from Eq. (6.56)):

〈p̂αp̂β〉 3
[
CNGC

1 + CSGC
1 − CNGC

2 − CSGC
2

]
F−1
αβ (6.71)

where:
CNGC

1 = ANGCfNGC +BNGCfNGC
(
nNGC
b + 1

)
(6.72)

and
CNGC

2 = ANGC
(
fNGC

)2
+BNGCfNGC

(
nNGC

eff + fNGC
)

(6.73)

where we use the effective number of parameters nNGC
eff = nNGC

sp + fNGCnco, with nNGC
sp the

number of parameters specific to NGC (similarly for SGC) and nco the number of parameters
in common.

The contribution from the A and B terms to the covariance of e.g. the NGC specific para-
meters is obtained by forcing fNGC = 1 (then fSGC = 0) in Eq. (6.72) and Eq. (6.73) — while

1. This is of course not the case in practice.
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keeping nNGC
eff fixed. In this case, only errors from the NGC precision matrix contribute to the

parameter covariance. In the simplified case where nco = 0, we recover Eq. (6.57):

〈p̂αp̂β〉 3 BNGC
[
nNGC
b − nNGC

sp

]
F−1
αβ . (6.74)

Adding up A and B contributions, the parameter covariance is:

Vαβ =
[
1 + CNGC

1 + CSGC
1 − CNGC

2 − CSGC
2

]
F−1
αβ . (6.75)

Again, the parameter covariance estimated from the likelihood has for second order contribution
Eq. (6.59), i.e. Eq. (6.56), which has just been calculated. Then:

σ2
αβ =

[
1 + CNGC

2 + CSGC
2

]
F−1
αβ . (6.76)

Therefore, the full correction to apply to the parameter covariance estimated from the likelihood
is:

m1 = Vαβ
σ2
αβ

= 1 + CNGC
1 + CSGC

1 − CNGC
2 − CSGC

2
1 + CNGC

2 + CSGC
2

. (6.77)

In case we fit the mocks used to produce the covariance matrix, the covariance of the meas-
urements xi is just Cij :〈(

xdi − xti
) (
xdj − xtj

)〉
= Cij (6.78)

=
(
1−DNGC

ij

)
Ψ−1
ij +

(
1−DSGC

ij

)
Ψ−1
ij (6.79)

where DNGC
ij = DNGC if ij lie in the NGC block, zero otherwise. Then:

〈p̂αp̂β〉 = [F + ∆F ]−1
αα′ [F + ∆F ]−1

ββ′
∂xti
∂pα′

∂xti′

∂pβ′
Ψii′Ψjj′

〈(
xdi − xti

) (
xdj − xtj

)〉
(6.80)

= [F + ∆F ]−1
αα′ [F + ∆F ]−1

ββ′

{(
1−DNGC

)
[F + ∆F ]NGC

α′β′ +
(
1−DSGC

)
[F + ∆F ]SGC

α′β′

}
(6.81)

= [F + ∆F ]−1
αβ

[(
1−DNGC

)
fNGC +

(
1−DSGC

)
fSGC

]
. (6.82)

To be compared with the parameter covariance derived from the likelihood in which both the
Harlap factor of Eq. (6.65) and m1 of Eq. (6.77) are included, the covariance of the distribution
of best fit parameter values obtained from the mocks should be rescaled by:

m2 = Vαβ
〈p̂αp̂β〉

= Vαβ
σ2
αβ

σ2
αβ

〈p̂αp̂β〉
(6.83)

= m1
[(

1−DNGC
)
fNGC +

(
1−DSGC

)
fSGC

]−1
. (6.84)

The extension to a higher number of combined independent likelihoods is straightforward.
The m1 factor described above yields a correction of 5% only on the parameter covariance

matrix of the eBOSS ELG analysis. Hence, above calculations may appear as an academic
exercise. However, to extract most information from future data sets, there is a growing interest
in using data representation of higher dimensionality, such as the bispectrum, or the power
spectrum in small wavebands. Typically, to keep the same correction (6.47), the increase of
the number of mocks nm should be roughly proportional to the increase of the number of bins
nb. As the computational cost of mocks is still relatively high, uncertainties in the mock-based
covariance matrix may be significant for these future analyses. There is thus interest for a more
accurate approach to the propagation of such uncertainties in the cosmological inference, beyond
the Gaussian approximation made so far.
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6.2.3 A Bayesian approach

The prescription described in the previous sections is fundamentally frequentist. A Bayesian
approach was developed in Sellentin and Heavens (2016). The Wishart distribution Eq. (6.43)
is the probability distribution of the mock-based covariance matrix C = M/ (nm − 1), given the
true covariance matrix Ct. To obtain the PDF of the true covariance matrix given C, Sellentin
and Heavens (2016) consider a Jeffreys prior:

π(Ct) =
∣∣∣Ct

∣∣∣−α with α = nb + 1
2 . (6.85)

We introduce the parameter α as it will prove useful in the following. The PDF of the true
covariance matrix is (up to some normalisation) the product of Eq. (6.43) with the prior π(Ct):

p(Ct|M) ∝ W(M|Ct)π(Ct) (6.86)

∝
∣∣∣Ct

∣∣∣−nm−1
2 −α

e
− 1

2 Tr
(

Ct−1M
)

(6.87)

= |M|
nm−nb−2+2α

2

2
(nm−nb−2+2α)nb

2 Γnb
(
nm−nb−2+2α

2

) ∣∣∣Ct
∣∣∣−nm−1

2 −α
e
− 1

2 Tr
(

Ct−1M
)
. (6.88)

Normalisation factors were reintroduced in the last equality, noticing that the first line is simply
an unormalised inverse Wishart distribution of nm − nb − 2 + 2α degrees of freedom. Writing
δ = xd − xt, the data likelihood, given M can be obtained by marginalising over Ct:

L(xd|M) ∝
∫
dCt

∣∣∣Ct
∣∣∣− 1

2 e−
1
2 δ
TCt−1

δp(Ct|M) (6.89)

∝
∫
dCt

∣∣∣Ct
∣∣∣− 1

2 e−
1
2 δ
TCt−1

δ
∣∣∣Ct

∣∣∣−nm−1
2 −α

e
− 1

2 Tr
(

Ct−1M
)

(6.90)

∝
∫
dCt

∣∣∣Ct
∣∣∣−nm2 −α e− 1

2 Tr
(

Ct−1(M+δδT )
)

(6.91)

∝
∣∣∣M + δδT

∣∣∣−nm−nb−1+2α
2 (6.92)

where the last line follows from noticing the previous line boils down to integrating an inverse
Wishart distribution of nm − nb − 1 + 2α degrees of freedom. Applying the matrix determinant
lemma,

∣∣∣M + δδT
∣∣∣ = |M|

(
1 + δTM−1δ

)
, we finally obtain a t-student distribution of nm−2nb−

1 + 2α degrees of freedom:

L(xd|M) = cb |M|−
1
2

(1 + δTM−1δ)
nm−nb−1+2α

2

, cb =
Γ
(
nm−nb−1+2α

2

)
π
nb
2 Γ

(
nm−2nb−1+2α

2

) (6.93)

where we reintroduced normalisation factors. This Bayesian formulation is appealing because
it does not require correcting the posterior with the numerical factor m1 of Eq. (6.61), inferred
using a Gaussian approximation of the true posterior. Also, the combination of independent
likelihoods is straightforward, through a simple product, without the need to specify where the
Fisher information comes from, as in Section 6.2.2.

We have found this approach to work correctly (according to the criterion described below)
for nb = 1, which is the test case of Sellentin and Heavens (2016). In higher dimensions nb > 2,
their approach appear to fail, as can be seen in Figure 6.4. For this figure, we repeat 5000
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times the experiment which consists in (i) generating nm = 200 mocks following a multivariate
Gaussian of dimension nb = 128, (ii) calculating the corresponding mock covariance matrix
C, (iii) fitting a one-parameter linear model to another Gaussian mock, using the previous
covariance matrix, (iv) calculating the posterior cumulative distribution function F (t), i.e. the
integral of the posterior from −∞ to the true value of the model parameter t = 0. Then,
in Figure 6.4, we report, for each value cdf ∈ [0, 1], the difference with respect to cdf of the
rate of F (t) < cdf , with F (t) determined for each of the 5000 realisations. Our criterion (the
so-called frequentist matching) for the posterior (and hence the measurement error bar) to be
well predicted is that the obtained curve should be flat, equal to zero. By definition, taking the
true covariance matrix Ct (instead of C estimated from the 200 mocks) for the fits yields well
predicted posteriors (black). Taking C instead (red), F (t) is underpredicted (compared to the
rate of F (t) < cdf) when cdf < 0.5, i.e. error bars are underestimated. Applying the Hartlap
factor Eq. (6.47) yields better results (orange), but still not quite correct. The Percival et al.
(2014) correction (green) provides very good posteriors. Instead, the Sellentin and Heavens
(2016) correction (deep blue) fails, at the level of the Harlap correction alone (orange).
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Figure 6.4 – For each value cdf ∈ [0, 1], difference with respect to cdf of the rate of F (t) < cdf , with
F (t) the value of the posterior cumulative distribution function at the truth t (= 0 in our test case)
for each of the 5000 realisations of the experiment (see text), with nb = 128 and nm = 200. We show
the resulting curve when considering the exact covariance matrix Ct, known from theory (black), using
directly the covariance matrix C estimated from mocks (red), applying the Hartlap factor (Eq. (6.47),
orange), the Percival et al. (2014) correction m1 (Eq. (6.61), green), the Sellentin and Heavens (2016)
prescription (Eq. (6.93) with α = (nb + 1) /2, deep blue), and Eq. (6.93) with α = 1 (light blue).

We attribute the failure of the Sellentin and Heavens (2016) prescription to the somewhat
unmotivated Jeffreys prior of Eq. (6.85). We therefore tried keeping α = 1 as is the case when
nb = 1. In this case, the posteriors are very well predicted, as can be seen in Figure 6.4 (light
blue).

Note that Eq. (6.88) is normalisable only if the number of degrees of freedom is nm − nb −
2 + 2α > nb − 1 i.e. α > (2nb − nm + 1) /2. This is necessarily the case if α = (nb + 1) /2 as
in Sellentin and Heavens (2016). However, setting α = 1 yields the constraint nm > 2nb − 1.
Actually, Eq. (6.88) can be considered as an improper prior for Eq. (6.91), and hence does not
really have to be normalisable, if Eq. (6.91) indeed converges. Here, the condition is slightly
relaxed: nm − nb − 1 + 2α > nb − 1; for α = 1, nm > 2nb − 2. In the case of a linear model
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samples redshift range targets [deg−2] good redshifts
LRG 0.4− 1.0 350 4.0 M
ELG 0.6− 1.6 2400 17.1 M
QSO (tracers) < 2.1 170 1.7 M
QSO (Lyman-α) > 2.1 90 0.7 M
total in dark/grey time 3010 23.6 M
bright galaxies 0.05− 0.4 700 9.8 M

Table 6.2 – Summary statistics of the DESI samples. Extracted from DESI Collaboration et al. (2016).

xt(p), Eq. (6.93), together with flat priors on the model parameters p, would give a t-student
distribution in the model parameters, of nm − nb − np − 1 + 2α degrees of freedom, i.e. the
condition becomes, for α = 1, nm > nb + np − 2. It is still not clear whether these conditions
are meaningful. Another route to choose a prior for Ct that ensures frequentist matching is
right Haar priors (Berger et al., 2015), but they do not allow analytical integration over the
covariance matrix as in Eq. (6.91).

Of course, to mitigate the impact of the limited number of mocks on the final error bars
(and their accurate prediction), a simple idea is to decrease nb, i.e. compress the data vector
into a shorter form. This is however not lossless if the model has a non-linear dependence in the
parameters. To avoid this drawback, another idea is to keep the data vector the same size, but to
reduce the scatter in the covariance matrix, e.g. by resorting to a parametrised model covariance,
to be constrained with mocks. We have started to explore further that possibility (McDonald
et al., 2020), which is beyond the scope of this manuscript.

6.3 DESI prospects

The 20-year history of SDSS spectroscopic galaxy surveys has just terminated with the
eBOSS final data release, in this day of July 20, 2020. DESI will start spectroscopic operations in
a few months. After presenting this new survey (Section 6.3.1), which will be 10 times larger than
previously gathered SDSS samples, we emphasise on its constraining power (Section 6.3.2) and
the subsequent progress to be made on controlling both theoretical and observational systematics
(Section 6.3.3). To tackle the latter challenge we finally present a method which consists in
forward modelling the galaxy density field (Section 6.3.4).

6.3.1 Presentation

DESI (DESI Collaboration et al., 2016) will measure spectra during approximately five years,
using the 4 m Mayall telescope located at Kitt Peak, Arizona, with an instrumented field of view
of 7.5 deg2. The footprint area is 14 000 deg2, split between NGC and SGC. Given DESI field of
view, the footprint can be covered with 2000 tiles, which we call a layer.

DESI will target four classes of objects: bright galaxies, LRGs, ELGs and QSOs. QSO spec-
tra will be used as tracers of the matter density field or of the neutral hydrogen density through
the Lyman-α forest. The summary statistics for the four samples is provided in Table 6.2.

LRGs, ELGs and QSOs will be observed in dark (and grey) time. Five tiling layers will be
achieved during DESI operations (1940 h per year), with an average exposure time of 1800 s (DESI
Collaboration et al., 2016). The moon will be below the horizon during 80% of spectroscopic
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data FoM ap σ(wp) σ(ΩK,0)
galaxy BAO 133 0.69 0.023 0.0013
galaxy and Lyman-α forest BAO 169 0.71 0.022 0.0011
BAO + gal. broadband to k < 0.1 h Mpc−1 332 0.74 0.015 0.0009
BAO + gal. broadband to k < 0.2 h Mpc−1 704 0.73 0.011 0.0007

Table 6.3 – DESI forecasts for the DEFT (Albrecht et al., 2006) Figure-of-Merit (FoM), the error σ(wp)
on wp = w(ap) at the pivot scale factor ap and the error σ(ΩK,0) on the curvature energy density ΩK,0
(fiducial values: w0 = −1, wa = 0 and ΩK,0 = 0), at the 68% confidence level. All lines contain BGS,
BOSS in 0.45 < z < 0.6, DESI LRGs, ELGs and QSOs and Planck Collaboration et al. (2014) data. In
the two last lines, BAO constraints include Lyman-α forest. Extracted from DESI Collaboration et al.
(2016).

observations. In this dark time, LRG and QSO targets will be targeted in priority. Conversely,
grey time will be mainly dedicated to measuring ELG spectra, which are less sensitive to vari-
ations in the sky subtraction due to the strong emission lines. The DESI LRG sample will
contain 4 M galaxy redshifts, 3 times more than the combined BOSS and eBOSS LRG samples,
of total size 1.4 M redshifts (see Section 5.6.1). The DESI QSO tracer sample will contain 1.7 M
redshifts, 5 times more than the SDSS equivalent sample, and 0.7 M Lyman-α QSOs, 3 times
more than SDSS. However, the largest DESI sample is by far ELGs, with 17.1 M redshifts: this
is 100 times the size of the eBOSS ELG sample.

Sky will be too bright during 250 h per year to observe ELGs. This observing time will be
dedicated in priority to the Bright Galaxy Survey (BGS). Remaining fibres will be allocated to
old stars in our galaxies, as part of the Milky Way Survey (MWS). Three layers of the dark time
tiling will be dedicated to these two surveys. As a result, BGS will provide redshifts for 10 M
galaxies, in the range 0.05 < z < 0.4. This sample will be 10 times larger than the SDSS Main
Galaxy Sample (see Section 5.6.1).

6.3.2 Forecasts

In Figure 6.5 we add DESI Fisher forecast error bars, provided in DESI Collaboration et al.
(2016), on top of the SDSS RSD and BAO clustering measurements shown in Figure 5.40. In the
optimistic scenario, using a maximum wavenumber kmax = 0.2 h Mpc−1 in the fits, the forecast
relative uncertainty in fσ8, DH/rdrag and DM/rdrag is ' 2% in 18 ∆z = 0.1 redshift slices
in the redshift range 0.05 < z < 1.85. Low redshift measurements are provided by the BGS
sample, measurements above z > 0.6 by the LRGs, ELGs and QSOs, and high redshift BAO
measurements by Lyman-α forests (auto- and cross-correlation with QSO tracers).

DESI cosmological forecasts are extensively presented in DESI Collaboration et al. (2016).
In Table 6.3 we report the expected Figure-of-Merit of the DEFT (Albrecht et al., 2006). The
error on the dark energy equation of state is quoted at the pivot scale factor ap where the w0−wa
covariance matrix is diagonal (see Section 5.6.4). Even with BAO measurements alone, the FoM
is 133, more than the 110 threshold value adopted to define a Stage-IV experiment. Noticeably,
using the full shape (broadband) of the power spectrum yields a great improvement in the FoM,
up to 704 if the analysis is pushed to scales up to 0.2 h Mpc−1.

Apart from constraints on the dark energy EoS, DESI will also help probe the inflation.
First, in combination with Planck, DESI will exquisitely measure ns and the running αs with a
precision of 0.19% (marginalising over the sum of neutrino masses), an improvement of 1.7 and
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Figure 6.5 – SDSS growth rate and BAO measurements of Figure 5.40, with DESI forecast error bars,
provided in DESI Collaboration et al. (2016) (with a survey area of 14 000 deg2 and kmax = 0.2 h Mpc−1).

2.7 over Planck Collaboration et al. (2014) alone. Constraints come both from the broadband
power spectrum up to k = 0.2 h Mpc−1 and Lyman-α forests. Good constraints on ns help
shrink contours in the ns − r plane, as displayed in Figure 1.8, thereby providing constraints
for the amount of gravitational waves generated by inflation. As explained in Section 1.2.5, ns
is also related to the number of e-folds of expansion, and measuring a large value (> 10−3) of
αs would exclude the standard single-field slow-roll models of inflation. Also, DESI alone will
put 1σ errors on f local

NL of σ(f local
NL ) = 5, similar to Planck Collaboration et al. (2014) alone (see

Section 1.2.5), which will be divided by 2 when combining both data sets. Finally, DESI will
help put constraints on the sum of neutrino masses, as summarised in Table 6.4. Including
Planck and DESI data sets, the uncertainty on the sum of neutrino masses may reach 0.020 eV.
In the case neutrino masses are minimal in the normal hierarchy, the inverted hierarchy could
be excluded at the 3σ level. Noticeably, most constraints are expected to come from the galaxy
broadband power spectrum.

6.3.3 Challenges

As seen in the previous forecasts, the galaxy broadband power spectrum will play a key
role in all DESI cosmological constraints. Namely, the measurement of the spectral index and
its running, or the study of neutrino masses requires a fine understanding of the shape of the
power spectrum at k ≥ 0.1 h Mpc−1, hence a well-controlled galaxy bias model or galaxy -
dark matter halo connection (see Section 2.3), including galaxy velocities. The state-of-the-
art eBOSS modelling systematic budget, for example, is already at the order of 2% for fσ8
(see Section 5.2, and Smith et al. 2020; Gil-Marín et al. 2020; Bautista et al. 2020), which is
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data σ(∑mν) [eV]
Planck 0.56
Planck + BAO 0.087
Planck + BAO + gal. broadband to k < 0.1 h Mpc−1 0.030
Planck + BAO + gal. broadband to k < 0.2 h Mpc−1 0.021
Planck + BAO + Lyman-α forest 0.041
Planck + BAO + gal. broadband to k < 0.2 h Mpc−1 + Lyman-α forest 0.020

Table 6.4 – DESI forecast 68% uncertainty for the sum of neutrino masses (fiducial value:
∑
mν =

0.06 eV). BAO measurements include DESI galaxies, quasars and Lyman-α forests. CMB constraints are
from Planck Collaboration et al. (2014). Extracted from DESI Collaboration et al. (2016).

equal to the typical DESI expected statistical accuracy for each redshift slice of Figure 6.5.
Note that these modelling errors could be relatively easily divided by roughly a factor 2 by
varying the template cosmology as part of the cosmological inference (e.g. Chudaykin et al.,
2020). Conversely, studies of primordial non-Gaussianity require an accurate modelling of scales
k ≤ 0.1 h Mpc−1, which includes wide-angle and integral constraint corrections (see Section 4.2.3
and Section 4.3), as well as relativistic effects (e.g. Wang et al., 2020).

Of course, the impact of observational systematics should be well understood too. On small
scales, fibre collisions will play an important role. On large scales, the clustering signal will be im-
pacted by variations in the redshift efficiency or quality of the imaging (see Section 5.3.1). Purely
angular systematics can be mitigated (see e.g. Section 4.3.7, Tamone et al. 2020 and Shafer and
Huterer 2015), but three-dimensional variations of the survey selection function, as seen in
Section 5.3.1.6, are much more complex to account for. Again, eBOSS typical systematic un-
certainties were of the order of 2% (see Neveux et al., 2020; Hou et al., 2020; Gil-Marín et al.,
2020; Bautista et al., 2020) to 9% (see Section 5.5.2 and Tamone et al. 2020), which is too large
for the DESI expected accuracy.

One would have also noted in Chapter 5 that the propagation of modelling and observational
systematics down to cosmological parameters is a bit cumbersome, requiring many tests with
mock catalogues, and inaccurate, neglecting cross-correlations between the different systematic
and statistical errors. In the next section we present an analysis method that allows proper
marginalisation over these observational systematics.

6.3.4 Forward modelling

The forward modelling approach consists in reconstructing the observed galaxy density from
the matter density field initial conditions, as depicted in Figure 6.6. Namely, an initial random
matter density field is generated in a cubic box. This field is then evolved forward in time through
a gravity solver. The galaxy density field is inferred from the matter density field through a
bias model, taking into account redshift space distortions, and is then submitted to the survey
selection function. The likelihood of the observed galaxy density field given the simulated one
is computed, and its value is used to iterate over, or to sample, initial conditions of the matter
field.

In the following we more specifically describe the approach of Lavaux et al. (2019), called
BORG (Bayesian Origin Reconstruction from Galaxies), which was applied to the SDSS BOSS
galaxy sample.
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Figure 6.6 – Illustration of the forward modelling approach for reconstructing the galaxy density field
(obtained with simulated data).

In Lavaux et al. (2019), the density field is evolved through Lagrangian perturbation theory,
as given by Eq. (2.48). The time evolution of structure formation is accounted for by taking
the linear growth factor D+ at the scale factor corresponding to the comoving distance q. This
is claimed to be accurate enough at the scales of interest (16 Mpc h−1). However, Jasche and
Lavaux (2019) also implemented second order Lagrangian perturbation theory and a particle-
mesh solver (see Section 2.2.1.3). In Lavaux et al. (2019), to account for galaxy bias, the model
number of galaxies in cell i is taken to be the quadratic form:

N (i)
g = ∆T

i Q∆i (6.94)

with Q a positive definite matrix, sampled as part of the Bayesian inference, and ∆i the vector
containing the density contrast averaged over multiple grid cells (up to 33) centred around i at
different powers (up to 2). This formula is in effect an expansion over the pure linear bias, taking
into account short range non-locality of galaxy bias. Note that more complex bias models have
been designed, e.g. using neural networks (Charnock et al., 2020). Then, Lavaux et al. (2019)
write the model density of galaxies, including survey selection effects, as:

N
(i)
g,sel = Wi

∏
t∈T

(1 + ctt)N (i)
g (6.95)

whereWi is the value of the model survey selection function at cell i, and T is a set of photometric
templates (E(B-V), sky flux, airmass, seeing, stellar density). Coefficients ct are sampled as part
of the Bayesian inference. The set of templates T may however not be complete, hence Lavaux
et al. (2019) further marginalise over the value Ap scaling the survey selection function W in
HEALPix pixels (nside = 256), with a Jeffreys prior π(Ap) ∝ 1/Ap, as proposed by Porqueres
et al. (2019). Bias, template and pixel Ap parameters are specific to the 4 comoving distance
bins used in the Bayesian inference for each of the CMASS and LOWZ NGC and SGC samples.

Initial conditions of the matter field, as well as bias, photometric template and pixel para-
meters are left free. Their posterior is sampled with the Hamiltonian Markov Chain Monte Carlo
algorithm, which requires computation of the adjoint likelihood gradient, as detailed in Jasche
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and Lavaux (2019). The result of the Bayesian reconstruction process is thus a sampling of the
matter density field and velocities at any point in our past light-cone.

The posterior reconstructed final density field obtained by Lavaux et al. (2019) is shown in
Figure 6.7 (left). One can clearly see the separation between the LOWZ and CMASS samples at
distance of around 900 Mpc h−1. Outside the BOSS footprint, the mean density field is zero in
average, as expected. The filamentary nature of the large scale structure is clearly visible. Also
in Figure 6.7 (right) is shown the standard deviation of the galaxy density field. Variance is
high in regions of low or zero observed galaxy density, since there is no information to constrain
the reconstruction of the density field.
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Figure 6.7 – Mean (left) and standard deviation (right) of the reconstructed final matter density field.
Taken from Lavaux et al. (2019).

Lavaux et al. (2019) note that BOSS data favours a non-zero contribution from the density
field averaged over multiple cells in the bias model, and hence evidence for non-local bias.
Concerning observational systematics, they find residual, redshift dependent, variations of the
observed galaxy density with seeing (r-band) and skyflux (u-band), as shown in Figure 6.8 (left).
In addition to the dependence of galaxy density with these photometric templates, Lavaux et al.
(2019) observe roughly iso-Dec. stripe patterns in the pixel maps of posterior Ap coefficients,
with relative variations reaching up to 30%, as shown in Figure 6.8 (right).

Figure 6.8 – Left: mean and error bar of the coefficient scaling the template of sky flux in u band, in
4 redshift bins for LOWZ and CMASS samples (red: NGC, black: SGC). Right: mean pixel systematic
map Ap in the CMASS redshift bin z = 0.58. Extracted from Lavaux et al. (2019).

The origin of these systematics remains unclear. In any case, this study shows the large
potential of the Bayesian forward modelling approach to unveiling observational systematics in
galaxy surveys — with the ultimate purpose of deriving robust cosmological constraints. For
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example, Ramanah et al. (2019) ran an Alcock-Paczynski test on simulated data, and found
significantly tighter constraints than standard BAO techniques (see Section 5.1.3). The long-
term goal is to further extend this framework for complete inference of cosmological parameters.

In addition to the analysis of galaxy redshift surveys, this forward modelling approach may
have other interesting cosmological applications. Jasche and Lavaux (2019) showed that they
could recover masses of galaxy clusters, in agreement with weak lensing, X-ray or velocity
measurements (see Section 1.2.4.2). Lavaux et al. (2019) computed the convergence map of CMB
backlight passing through the reconstructed gravitational potential, and found clear correlation
with the CMB-infered convergence maps (Planck Collaboration et al., 2018), providing evidence
for the potential of galaxy clustering and CMB lensing cross-correlation with the Bayesian
forward modelling framework. Similar cross-correlations may be performed with galaxy weak
lensing. We also note that the forward modelling approach was applied to the density field
reconstruction with (simulated) Lyman-α forests by Porqueres et al. (2019). To summarise, this
framework appears extremely powerful to analyse and combine different probes of the large scale
structure in the Universe.
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Conclusion

On this day of July 20, 2020, the SDSS releases its final clustering measurements. Though
the primary focus of this manuscript was on eBOSS ELGs, other samples were analysed following
a similar methodology. The theoretical prediction (correlation function or power spectrum) was
tested against N-body simulations and an associated systematic budget was derived. Data clus-
tering catalogues were constructed, after selection of reliable data, including weighting schemes
to correct for observational systematics. These were implemented in fast approximate simu-
lations, called mocks, to estimate their residual impact on the whole analysis pipeline after
correction procedures. These mocks were also used to estimate the covariance matrix of the
measured statistics (correlation function or power spectrum) in order to perform the final cos-
mological inference with the observed data.

We emphasised however that the analysis of the eBOSS ELG sample was rendered peculiarly
difficult due to the complex photometric systematics and the relatively low signal over noise.
Noting that the radial selection function varied significantly with imaging depth, we had no other
choice but estimating these variations from the data itself. We observed that such a procedure
significantly biases clustering measurements on large scales, which we interpreted as a radial in-
tegral constraint that is common to any SDSS clustering analysis. The modelling and numerical
implementation of this effect is an original work of this thesis. Within the same framework, we
developed a pixelation scheme to mitigate purely angular photometric systematics, which we
also applied to the eBOSS ELG sample. As the posterior of the pure RSD measurement was
significantly non-Gaussian, we combined RSD and BAO analyses at the likelihood level. After
comparison with mocks, most observational systematics were estimated on the data itself for
conservativeness.

During this work, we actively took part to the eBOSS collaboration. In particular, we ex-
tensively contributed to the creation of ELG data clustering catalogues. Our implementation of
the theoretical RSD model was used for the analysis of other eBOSS samples. We also clarified
some details of Fourier space studies. The effect of the radial integral constraint was tested in
all analyses, and we provided the tools for practical implementation for the quasar sample. In
addition, we significantly improved the implementation of observational systematics in mocks
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with procedures which were extended to other samples. This work was presented in numerous
conferences.

Together with the analyses themselves, the eBOSS collaboration released the cosmological
implications of the SDSS clustering samples. Cosmological distances and growth rate measure-
ments were provided in seven redshift bins, spanning the range between 0.15 and 2.33, which
allowed constraints to be put on curvature, the dark energy equation of state and the sum of
neutrino masses. In addition, measurements of growth rate are best combined with those of weak
lensing to constrain deviations to general relativity. Altogether, SDSS has been a major step
forward in understanding the large scale structure and testing the consistency of the standard
cosmological model.

Future spectroscopic surveys, such as DESI or the satellite Euclid, will allow the precision
of clustering measurements to be increased by an order of magnitude. Apart from the dark en-
ergy equation of state, tight constraints are expected for the sum of neutrino masses, the power
spectrum scalar index, and primordial non-Gaussianity. These exciting tests of the cosmological
model poses stimulating challenges. Focusing on small scale clustering, theoretical predictions
will have to be tested and possibly improved further. Impacting all scales, observational system-
atics will have to be well controlled and thoroughly propagated to the final measurements. Fi-
nally, a huge effort has to be put to set up a robust, user-friendly, collaborative analysis pipeline.

As galaxy surveys enter their golden era, many analysis techniques are being developed.
Forward modelling the galaxy density field appears as a promising approach to consistently
include and constrain observational systematics as part of the cosmological inference. Huge
potential is also foreseen in the cross-correlation of galaxy clustering with other probes of the
matter density field, such as galaxy or CMB weak lensing. Large scale structure studies have
definitely a bright future ahead.
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Au cours de cette thèse nous avons effectué l’analyse en spectre de puissance de l’échantillon des
galaxies à raie d’émission (ELG) du programme eBOSS de la collaboration SDSS. Plus spécifiquement,
dans la distribution spatiale de ces galaxies situées à un décalage spectral entre 0.6 et 1.1, nous avons
mesuré la taille des oscillations acoustiques de baryons et le taux de croissance des structures. Une
telle étude, se consacrant aux grandes structures de l’univers, s’appelle une analyse de clustering. Nous
commençons par des éléments de cosmologie dans la Section 4. La modélisation de la variation de densité
des galaxies, et plus particulièrement sa statistique à deux points, le spectre de puissance, est discutée
dans la Section 5. Nous présentons le relevé photométrique et spectroscopique dans la Section 6. A
l’issue de ce relevé, les positions angulaires et les décalages spectraux des galaxies sont compressés sous
la forme du spectre de puissance, comme expliqué dans la Section 7. Dans cette section, nous insistons
en particulier sur un biais appelé contrainte intégrale, qui a donné lieu à une publication premier auteur.
Forts de ces enseignements, nous présentons l’analyse de l’échantillon des ELG d’eBOSS, publiée dans un
second article premier auteur, ainsi que les implications cosmologiques de SDSS dans la Section 8. Nous
terminons par une présentation du nouveau relevé DESI, et une ouverture sur une nouvelle technique
d’analyse dans la Section 9.

4 Le modèle standard de la cosmologie

Dans cette section nous passons rapidement en revue les éléments clés de la cosmologie moderne,
qui se révéleront utiles dans l’analyse de l’échantillon des ELG d’eBOSS : les mesures de distance et
la dynamique de l’univers à grande échelle (Section 4.1) et les perturbations dans l’univers primordial
(Section 4.2).

4.1 L’univers homogène

Puisque l’on s’intéresse à la distribution spatiale des galaxies, il convient de spécifier comment déter-
miner leur distance. La géométrie de l’espace-temps est décrite par une métrique. Dans un univers
homogène et isotrope, comme le postule le principe cosmologique, une longueur infinitésimale ds s’écrit :

ds2 = −dt2 + a2(t)γijdxidxj = a2(η)
(
−dη2 + γijdx

idxj
)

(96)

où
γijdx

idxj = dχ2 + f2
K(χ)dΩ2. (97)

Cette métrique est appelée métrique de Friedmann-Lemaître-Robertson-Walker. Dans ces formules, a
est le facteur d’échelle de l’univers, t et η les temps cosmiques et conformes, xi∈[1,3] sont les coordonnées
comobiles d’espace, et γij la partie spatiale de la métrique. fK est une fonction de χ et de la courbure
K. Dans un univers plat, K = 0 et fK(χ) = χ, ce que l’on suppose dorénavant. En effet, comme on le
verra dans la Section 8.5 les observations actuelles du fond diffus cosmologique (incluant son lentillage
par les grandes structures), des distances de supernovae Ia lointaines et des oscillations acoustiques de
baryons favorisent un courbure extrêmement faible.

Les spectres des galaxies que l’on observe sont décalés vers le rouge. La longueur d’onde λe d’un
photon émis à un temps te et reçu à un temps t0 est dilatée par un facteur :

1 + z(te) = λ0

λe
= a(t0)
a(te)

(98)

où ze est appelé décalage spectral. Dans toute la suite, on pose a(t0) = 1. Mesurer le décalage spectral
d’une galaxie donne donc accès au facteur d’échelle a(te) à l’instant où sa lumière a été émise. Si l’on
veut spécifier la distance de la galaxie, il faut s’appuyer sur la métrique (96).
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Figure 7.1 – Les paramètres de densité en fonction du décalage spectral: Ωm(z) = Ωc(z) + Ωb(z) et
Ωr(z) = Ωγ(z) + Ων(z) (les neutrinos sont ici considérés sans masse).

La distance radiale comobile d’un objet émettant à un décalage spectral ze est l’intégrale selon une
géodésique de genre lumière (ds2 = 0) :

χ(ze) =
∫ ze

0

dz

H(z) (99)

où H = ȧ/a est le paramètre de Hubble, ˙ symbolise une dérivée par rapport au temps cosmique t. On
définit aussi la distance angulaire comobile DM (ze) comme la grandeur qui relie la surface comobile d’un
objet dSe à un décalage spectral ze à l’angle solide dΩ0 vu par l’observateur, dSe = DM (ze)2dΩ0. Partant
de l’Eq. (96), il est clair que :

DM(z) = fK(χ(z)) (100)

Pour calculer ces distances, il convient de spécifier H(z). Pour cela, dans le cadre de la relativité
générale, les équations d’Einstein s’expriment, en supposant la métrique ci-dessus, sous la forme des
équations de Friedmann-Lemaître. La première donne :

H2(z) = H2
0
∑
X

ΩX,0(1 + z)3(1+wX) (101)

Dans cette équation, ΩX,0 est le rapport de densité d’énergie du composant X sur l’énergie critique, et
wX son équation d’état (P = wρ avec P la pression et ρ la densité). H0 = H(z = 0) est la constante de
Hubble ; on notera aussi H0 = 100 h km s−1 Mpc−1.

Dans le modèle ΛCDM, le modèle plus simple qui rende compte de la majorité des observations
cosmologiques actuelles et que nous utiliserons dans la suite, les composants de l’univers aujourd’hui
sont la matière noire froide (CDM, Ωc,0 ' 26% et wc = 0), la matière baryonique ou matière ordinaire
(Ωb,0 ' 5% et wb ' 0), la radiation (photons et neutrinos si relativistes, Ωr ' 0.007% et wr = 1/3) et
l’énergie noire (ΩΛ,0 ' 69% et wΛ = −1). Par ailleurs, on négligera la courbure (ΩK,0 = 0 et wK = −1/3).
Dans ce modèle, l’évolution des paramètres de densité est montrée en fonction du décalage spectral sur
la Figure 7.1.

4.2 Perturbations primordiales
Pour le moment, nous avons décrit un univers homogène et isotrope, ce qui semble une bonne descrip-

tion à des échelles & 200 Mpc, mais n’est évidemment pas vrai à plus petite échelle, puisque l’on observe
des grandes structures, e.g. des murs cosmiques, des filaments, des galaxies, des étoiles, et nous-mêmes.
On définit le contraste de densité :

δ = ρ− ρ̄
ρ̄

(102)



316 CHAPTER 7. Résumé substantiel

avec ρ le champ de density et ρ̄ sa valeur moyenne dans l’univers. Dans la suite on suppose le principe
ergodique, ce qui nous permet d’identifier ρ̄ avec 〈ρ〉, la moyenne d’ensemble du champ ρ. Par définition,
le moment d’ordre 1 du champ (sa moyenne) est nulle, on s’intéressera donc aux statistiques d’ordre
supérieur.

Les fluctuations du champ de densité ont été générées dans l’univers primordial, probablement au
cours d’une phase d’expansion accélérée appelée inflation, laquelle fournit par ailleurs une explication
à la platitude observée de l’univers. A l’issue de cette phase, les fluctuations suivent une statistique
quasiment gaussienne. Elles sont donc entièrement caractérisées par leur moment d’ordre 2, la fonction
de corrélation à deux points ξ(s) :

ξ(s) = 〈δ(x)δ(x + s)〉 (103)

ou le spectre de puissance P (k) :

〈δ(k)δ(k′)〉 = (2π)3
δ

(3)
D (k + k′)P (k) (104)

où k est le vecteur d’onde. A l’issue de l’inflation, les fluctuations de densité ont un spectre de puissance
∝ kns , avec ns = 0.9665± 0.0038 l’indice spectral. Se succèdent ensuite des périodes où l’univers est
dominé par la radiation, jusqu’à zeq ' 3400, puis par la matière (jusqu’à z ' 0.3) (voir Figure 7.1).
Les fluctuations de densité de la matière croissent comme le facteur d’échelle a ∝ H−2 pour des échelles
super-Hubble (k � H = aH) ou lorsque l’univers est dominé par la matière, mais restent (quasiment)
constantes pour des modes sub-Hubble (k � H) dans l’ère de radiation. En conséquence, les modes
k � keq = H(zeq), qui sont restés sub-Hubble tout du long de l’ère de la radiation, sont amortis d’un
facteur (keq/k)2. Il en découle que le spectre de puissance de la matière présente la forme générale
suivante :

P lin
m (k) ∝

{
kns k � keq

kns−4 k � keq
(105)

Pour l’instant nous avons ignoré le couplage de la matière et de la radiation par la diffusion Thomson. En
prenant ce terme en compte, on montre qu’à des échelles sub-Hubble mais plus grandes que le parcours
moyen des photons, le contraste de densité des photons obéit à une équation d’oscillateur harmonique. Les
oscillations produites sont appelées oscillations acoustiques de baryons (BAO). Lorsque la température de
l’univers chute, les électrons se recombinent avec les noyaux pour former (essentiellement) de l’hydrogène
neutre. La densité électronique et donc le taux de diffusion Thomson chutent rapidement. Les photons
sont libérés autour d’un décalage spectral z?, où la profondeur optique est unité. Ils forment le fond diffus
cosmologique (CMB), dont les fluctuations relatives de température sont de l’ordre de 10−5 et portent la
marque des BAO. Le décalage spectral où se découplent les baryons est appelé zdrag. Les distributions
de baryons et matière noire se rejoignent sous l’effet de la gravité. Les BAO sont alors visibles dans le
spectre de puissance des galaxies, qui tracent le champ de matière, comme on le verra dans la Section 5.2.
L’échelle BAO correspond à l’horizon sonique au découplage des baryons, rdrag. Comparer cette échelle
standard dans la distribution observée de galaxies à sa valeur attendue permet de contraindre les distances
parallèles et transverses à la ligne de visée, comme on le décrira dans la Section 7.2.

5 Le modèle du spectre de puissance
Jusqu’après le découplage, les perturbations de densité sont bien décrites dans un régime linéaire.

Néanmoins, celles-ci s’amplifient sous l’effet de la gravité ; il conviendra donc de décrire les perturbations
dans un régime (semi) non-linéaire (Section 5.1), en tenant compte du biais des galaxies (Section 5.2) et
des distortions dans l’espace des décalages spectraux (Section 5.3).
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5.1 Théorie des perturbations

Nous décrirons la matière noire froide et les baryons comme un seul fluide de matière de contraste de
densité ρ et de vitesse particulière u, sans collision, en évolution dans un potentiel gravitationnel Φ, dans
un univers en expansion. Les deux premiers moments de l’équation de Vlasov donnent les équations de
continuité et d’Euler, auxquelles s’ajoute l’équation de Poisson pour la gravité pour former le système
suivant :

δ′ + ∂i [(1 + δ)ui] = 0

u′i +Hui + uj∂jui = −∂iΦ−
1
ρ
∂j (ρσij)

∆Φ = 3
2H

2Ωmδ

(106)

(107)

(108)

Dans ces équations, ′ symbolise une dérivée par rapport au temps conforme η (dη = dt/a), H = aH, et δ
est le contraste de densité de l’Eq. (102). σij est le tenseur anisotrope, que l’on peut supposer nul dans
le régime semi non-linéaire, avant que les structures ne s’effondrent et virialisent.

En linéarisant les équations précédentes (δ, ui � 1), on obtient :

δ′′ +Hδ′ − 3
2H

2Ωmδ = 0, (109)

dont les solutions s’écrivent comme la somme d’un mode croissant D+(a) et d’un mode décroissant
D−(a): δ(k, a) = C+(k)D+(a) + C−(k)D−(a). Notons que dans le cas spécifique d’un univers dominé
par la matière D+(a) ∝ a et D−(a) ∝ a−3/2. Le taux de croissance des structures est alors défini comme
la dérivée logarithmique :

f = d lnD+

d ln a (110)

Dans le régime linéaire, la vorticité du champ de vitesses est diluée dans l’expansion ; on la suppose
donc nulle dans la suite, de sorte que u est entièrement décrit par sa divergence θ. Toujours dans le
régime linéaire, θ est directement relié à δ :

θ = ∇ · u = −fHδ (111)

La description précédente est satisfaisante lorsque δ, ui � 1, mais beaucoup d’information se trouve
dans des échelles semi non-linéaires, que nous allons explorer à présent.

Pour cela, nous définissons le vecteur Ψ =
(
δ,− θ

fH

)
. Le système d’équations (108) se réécrit :

Ψa(k, u) = gab(u)φb(k) +
∫ u

0
dvgab(u− v)

∫
d3k1d

3k2

(2π)3 δ
(3)
D (k− k12)γbcd(k1,k2)Ψc(k1, v)Ψd(k2, v)

(112)

avec u = lnD+. gab(u) est un propagateur linéaire, faisant évoluer linéairement le champ initial φb(k)
dans le temps. γbcd(k1,k2) est le vertex de l’interaction entre les champs Ψc(k1, v) et Ψd(k2, v), pour
laquelle δ

(3)
D (k − k12) (avec k12 = k1 + k2) assure la conservation du vecteur d’onde (imposée par

l’homogénéité statistique). gab(u− v) fait évoluer le champ obtenu dans le temps, depuis son interaction
à v ≤ u jusqu’au temps présent u. La solution est construite avec un développement perturbatif :

Ψa(k, u) =
+∞∑
n=1

Ψ(n)
a (k, u). (113)
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A partir de ces solutions, qui peuvent être dérivées à l’aide de diagrammes, le spectre de puissance
s’exprime selon :

Pab(k, u) =
+∞∑
l=0

P
(l)
ab (k, u) (114)

où le terme à l boucles P (l)
ab (k, u) est donné par :

(2π)3
δ

(3)
D (k + k′)P (l)

ab (k, u) =
2l+1∑
m=1

〈
Ψ(m)
a (k, u)Ψ(2l+2−m)

b (k′, u)
〉
. (115)

Celui-ci corrèle 2l + 2 champs initiaux — les corrélations d’un nombre impair de champs initiaux étant
nulles comme ces derniers sont supposés suivre une statistique gaussienne.

Cependant, cette théorie des perturbations standard n’a pas de bonnes propriétés de convergence : les
contributions d’ordre croissant se compensent partiellement et décroissent lentement. Des techniques de
resommation on été développées. Elles s’appuient sur une généralisation du propagateur linéaire gab au
cas non-linéaire (Crocce and Scoccimarro, 2006) Le propagateur non-linéaire à plusieurs points Γac1···cp
est défini par Bernardeau et al. (2008):

1
p!

〈
δpΨa(k, uf )

δφc1(k1) · · · δφcp(kp)

〉
= δ

(3)
D (k− k1 − · · ·kp)

(2π)3(p−1) Γac1···cp(k1 · · ·kp, uf , ui). (116)

Γac1···cp(k1 · · ·kp, uf , ui) relie le champ non-linéaire Ψa(k, uf ) aux conditions initiales φc1(k1) · · ·φcp(kp)
à ui. La condition δ

(3)
D (k − k1 − · · ·kp) découle de l’homogénéité statistique. Le spectre de puissance

non-linéaire s’exprime alors simplement :

Pab(k, uf ) =
+∞∑
p=1

p!
∫
d3q1 · · · d3qp

(2π)3(p−1) δ
(3)
D (k− q1 − · · ·qp)Γa,(p)(q1 · · ·qp, uf , ui)

Γb,(p)(q1 · · ·qp, uf , ui)P0(q1) · · ·P0(qp) (117)

P0(qp) est le spectre de puissance des conditions initiales des champs, 〈φa(k)φb(k′)〉 = (2π)3
δ

(3)
D (k +

k′)εaεbP0(k), et Γa,(p) = Γac1···cpεc1 · · · εcp . Les propagateurs non-linéaires sont calculés à bas k (grandes
échelles) par un développement perturbatif. A grand k (petites échelles), les diagrammes dominants à
chaque ordre peuvent être resommés de manière exacte, de sorte que le propagateur est exponentiellement
amorti (Crocce and Scoccimarro, 2006; Bernardeau et al., 2008). La théorie des perturbations régularisées
(RegPT, Taruya et al. 2012) est une technique d’interpolation entre ces deux limites. Elle permet de
prédire le spectre de puissance de la matière avec une précision de 1% jusqu’à k = 0.23 h Mpc−1 à z = 1,
alors que pour la même précision le régime linéaire s’arrête à k = 0.1 h Mpc−1.

Bien qu’un programme en Fortran fût disponible 1, nous avons recodé la prescription RegPT en C,
enrobé de Python, permettant la parallélisation des calculs et un ajustement des limites d’intégration,
dans un module appelé pyregpt 2. Nous avons implémenté dans le même module le calcul des termes de
bias et de RSD, que nous allons décrire à présent.

5.2 Biais des galaxies
Notons que l’on n’observe pas directement la matière, mais des objets émettant ou absorbant de la

lumière : galaxies, quasars, gaz, etc. Nous faisons l’hypothèse clé que le contraste de densité δg de ces
objets peut être relié à celui de la matière δ. Nous adoptons une approche perturbative : la relation entre
δg et δ est reliée par des coefficients de biais. Pour cela, nous suivons le développement de McDonald and
Roy (2009). δg peut bien sûr dépendre de δ et θ. En sus, une dépendance dans le chemin parcouru par la

1. http://www2.yukawa.kyoto-u.ac.jp/~atsushi.taruya/regpt_code.html
2. https://github.com/adematti/pyregpt

http://www2.yukawa.kyoto-u.ac.jp/~atsushi.taruya/regpt_code.html
https://github.com/adematti/pyregpt
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matière est introduite avec u et Φ. Un changement global de la vitesse, du potentiel gravitationnel et de
sa dérivée (le champ) ne devant pas être observable, on introduit donc une dépendance de δg avec ∂iuj
et ∂i∂jΦ. δg est alors développé à l’ordre 3 en δ en fonction des variables ci-dessus, et en incluant un
terme stochastique ε. Les termes du spectre de puissance de δg qui montrent une dépendance similaire
en k sont regroupés. A l’issue de cette procédure, le spectre de puissance des galaxies s’exprime selon :

Pgg(k) = b21Pδδ(k) + 2b1b2Pb2,δ + 2b1bs2Pbs2,δ + 2b1b3nlσ
2
3(k)P lin

m (k)
+ b22Pb22(k) + 2b2bs2Pb2s2(k) + b2s2Pbs22(k) +Ng (118)

où Pδδ(k) est le spectre de puissance de la matière, Pb2,δ, Pbs2,δ, σ2
3(k)P lin

m (k), Pb22(k), Pb2s2(k), Pbs22(k)
sont des termes de biais dépendant du spectre linéaire P lin

m (k). b1, b2, bs2, b3nl et Ng sont des coefficients
de biais. De la même manière, en supposant que les galaxies n’ont pas de biais de vitesse par rapport à
la matière, on obtient le spectre de puissance croisé entre les galaxies et θ :

Pgθ(k) = b1Pδθ(k) + b2Pb2,θ + bs2Pbs2,θ + b3nlσ
2
3(k)P lin

m (k) (119)

où Pδθ(k) est le spectre de puissance croisé de la matière et θ, Pb2,θ, Pbs2,θ et σ2
3(k)P lin

m (k) sont des termes
de biais dépendant du spectre linéaire P lin

m (k). En pratique, et c’est ce que nous faisons dans cette thèse,
les coefficients bs2 et b3nl peuvent être fixés avec b1 en supposant que les galaxies sont un fluide couplé à
la matière par la gravité, et que le biais est initialement local dans l’espace lagrangien (Chan et al., 2012;
Baldauf et al., 2012; Saito et al., 2014).

5.3 Distorsions dans l’espace des décalages spectraux
Nous avons à présent une description du spectre de puissance des galaxies dans l’espace réel, c’est-

à-dire de leur position réelle dans l’espace. En réalité, le décalage spectral mesuré des galaxies a (prin-
cipalement) deux composantes : l’expansion de l’univers, et leur vitesse particulière. En transformant
le décalage spectral des galaxies directement en distance (avec l’Eq. (99)), leur distribution des galaxies
apparaît déformée dans l’espace dit des décalages spectraux (RSD).

La position dans l’espace des décalages spectraux est reliée à celle dans l’espace réel par :

s = r− fvz ẑ (120)

avec vz = −u · ẑ/ (fH), où u est la vitesse particulière, f le taux de croissance des structures donné par
l’Eq. (110) et ẑ est la ligne de visée. Soit δs le contraste de densité dans l’espace des décalages spectraux,
la conservation de la matière implique que [1 + δs(s)] d3s = [1 + δ(r)] d3r. Ainsi, le spectre de puissance
dans l’espace des décalages spectraux s’exprime selon :

Ps(k) =
∫
d3xe−ik·x

〈
e−ifkµ∆vz [δ(r) + f∂zvz(r)] [δ(r + x) + f∂zvz(r + x)]

〉
(121)

avec ∆vz = vz(r)− vz(r + x). Cette expression révèle deux effets opposés :
1. l’effet Kaiser (Kaiser, 1987) : à l’ordre linéaire, où les vitesses sont cohérentes, le terme entre

crochets corrèle
(
1 + µ2f

)
δ ; ainsi, à grande échelle le spectre de puissance est plus grand que celui

dans l’espace réel. Cet accroissement dépend de f ' Ωγ'0.55
m (Linder, 2005), de sorte que les RSD

permettent de sonder le contenu énergétique de l’univers (avec Ωm) ou tester la relativité générale
(avec γ).

2. l’effet Finger-of-God (Jackson, 1972): à petite échelle, due à la virialisation, les vitesses se décor-
rèlent du champ de densité ; le terme entre accolades e−ifkµ∆vz amortit le spectre de puissance.
Cela se passe typiquement lorsque k & 1/σv, avec σ2

v = f2

3
∫

d3q
(2π)3

P lin
m (q)
q2 .
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Le modèle de RSD est finalement donné par la formule :

Ps(k, µ) = DFoG(k, µ, σv)
[
Pδδ(k) + 2fµ2Pδθ(k) + f2µ4Pθθ(k) +A(k, µ, f) +B(k, µ, f)

]
, (122)

où le terme d’amortissementDFoG(k, µ, σv) vient de l’effet Finger-of-God, Pδδ(k)+2fµ2Pδθ(k)+f2µ4Pθθ(k)
correspond à l’effet Kaiser, et les terms A(k, µ, f) et B(k, µ, f) proviennent du couplage entre ces deux
effets. Le biais des galaxies est enfin pris en compte en remplaçant Pδδ(k) et Pδθ(k) dans l’Eq. (122) par
l’Eq. (118) et l’Eq. (119), respectivement, et en le factorisant des termes A et B en remplaçant f par
β = f/b1.

En résumé, les spectres de puissance Pδδ et Pδθ dans l’Eq. (118) et l’Eq. (119) sont calculés à 2 boucles
avec la prescription RegPT, ainsi que les termes de RSD A et B. Nous adoptons une forme lorentzienne
pour le terme de Finger-of-God (Cole et al., 1995), DFoG(k, µ, σv) =

[
1 + (kµσv)2/2

]−2. La dispersion de
vitesse σv ainsi que les coefficients de biais b1, b2 et Ng sont laissés libres lors de l’ajustement du modèle
aux données. Notons qu’à l’ordre linéaire b1 multiplie le spectre de puissance, et est donc complètement
dégénéré avec sa normalisation σ8. La même remarque s’applique à f , et, dans une moindre mesure, à
b2. En conséquence, nous renseignerons les combinaisons fσ8, b1σ8 et b2σ8.

Rappelons enfin que les calculs de théorie des perturbations (spectre de puissance et termes A et B à
2 boucles, termes de biais à 1 boucle) sont réalisés avec notre module pyregpt 3. Le spectre de puissance
linéaire nécessaire à ces calculs est obtenu avec le code de Boltzmann CLASS (Blas et al., 2011).

Ce modèle théorique du spectre de puissance ne peut être comparé directement au spectre observé.
Des effets de géométrie seront à prendre en compte, comme nous le verrons en Section 7.2. Cherchons
auparavant à comprendre en quoi consiste un relevé spectroscopique de galaxies.

6 Relevé de galaxies

Les relevés de galaxies du Sloan Digital Sky Survey (SDSS, York et al., 2000), dont fait partie eBOSS,
procèdent en deux étapes : un relevé photométrique (Section 6.2), où des images du ciel sont prises afin
de sélectionner des galaxies cibles, pour en mesurer ensuite le spectre au cours du relevé spectroscopique
(Section 6.3). Commençons par présenter le dispositif spectroscopique du SDSS.

6.1 L’instrument SDSS et BOSS
Le SDSS a été conçu au milieu des années 1980 comme un relevé photométrique multi-bande et un

relevé spectroscopiques, dans le but de comprendre les grandes structures de l’univers en mesurant les
décalages spectraux de 106 galaxies et 105 quasars sur un quart de la sphère céleste (10 000 deg2). La
mise en service commença en 1998, et le relevé proprement dit débuta en mai 2000. Les deux étapes
de photométrie et de spectroscopie sont réalisées avec le télescope de 2.5 m du SDSS situé au Nouveau
Mexique (voir Figure 7.2), doté d’un champ de vue de 3◦. Pour le relevé spectroscopique, la caméra
du relevé photométrique est remplacée dans le plan focal du télescope par une plaque d’aluminium
(800 mm de diamètre) où sont emmanchées les 640 fibres optiques. Celles-ci guident la lumière des cibles
photométriques jusqu’à deux spectrographes, montés à l’arrière du télescope. Ces derniers comportent
une voie bleue et une voie rouge, séparées par un dichroïque à 6000Å (voir Figure 7.2). Les spectres sont
projetés sur des CCD 2048 × 2048 (avec des pixels de 24 µm), en gardant un espace de 3 pixels entre
chaque spectre (de largeur ' 3 pixels). Huit dispositifs supportant les fibres optiques ont été fabriqués ;
ils sont préparés pendant la journée (les fibres sont montées sur la plaque d’aluminium) et peuvent être
changés en quelques minutes par un opérateur pour chaque exposition.

Le système spectroscopique a été mis à jour pour le relevé BOSS (Dawson et al., 2013) qui commença
en 2008 dans le but de mesurer la position des BAO à une précision du pourcent grâce à la mesure
de décalages spectraux de 1.5 millions de galaxies à z < 0.7 et de spectre de quasars entre 2.15 <

z < 2.35 contenant des forêts Lyman-α 4. Le nombre de fibres optiques a été augmenté à 1000 et leur

3. https://github.com/adematti/pyregpt
4. Les forêts Lyman-α sont constituées par l’absorption due à l’hydrogène neutre le long de la ligne de visée.

https://github.com/adematti/pyregpt
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Figure 7.2 – Gauche : téléscope du SDSS, à l’Apache Point Oservatory, au Nouveau Mexique. L’enceinte
du téléscope est visible à gauche de l’image, et le dispositif coupe-vent est monté sur le téléscope à droite.
Droite : schéma optique des deux spectrographes du SDSS. Les fibres optiques sont fixées en A (slithead).
Le faisceau est réfléchi par le collimateur (B), scindé entre les voies rouge et bleue par le dichroïque (C),
et dispersé par les grismes rouge (D) ou bleu (E) avant d’entrer dans les caméras (F et G). Source : Smee
et al. (2013).

diamètre réduit, pour cibler plus de galaxies, plus lointaines. Le grisme a été changé pour une meilleure
transmission, et les CCD des spectrographes ont été remplacés par des CCD 4096× 4096, avec des pixels
de 15 µm. La résolution (rapport de la longueur d’onde sur la largeur à mi-hauteur de l’image d’une
fibre sur le CCD) augmente de ' 1400 à l’extrême bleu (3560Å) à ' 2000 à l’extrême rouge (10 400Å).
Cependant, la résolution et la transmission optiques diminuent sur les bords du plan focal, où la qualité
optique est moindre.

Les spectrographes de BOSS ont été réutilisés pour eBOSS (Dawson et al., 2016), l’extension de cinq
ans de BOSS. eBOSS a été conçu pour des mesures de clustering à plus haut décalage spectral, en ciblant
280 000 LRG (galaxies lumineuses rouges, avec 0.6 < z < 1.0), 170 000 ELG (0.6 < z < 1.1), 330 000
QSO (quasars, avec 0.8 < z < 2.2) comme traceurs et 60 000 QSO pour les forêts Lyman-α. La dernière
publication de données (DR) d’eBOSS, dont l’échantillon d’ELG étudié dans cette thèse fait partie, se
nomme DR16.

6.2 La photométrie

Contrairement aux autres relevés d’eBOSS utilisant les données photométriques optiques de SDSS-
I-II-III (et proche infrarouge de WISE, Wright et al. 2010), l’échantillon d’ELG a été sélectionné avec
le nouveau relevé photométrique DECaLS (Dey et al., 2019), qui est utilisé pour le futur relevé de
galaxies DESI (Dark Energy Spectroscopic Instrument DESI Collaboration et al. 2016). Un tel choix
tient à la profondeur de DECaLS, au moins une magnitude plus élevée que SDSS dans les trois bandes
photométriques utilisées, g, r, z. Les images sont prises avec la caméra DECam (Flaugher et al., 2015),
montée sur le télescope Blanco du Cerro Tololo Inter-American Observatory au Chili. Opérationnelle
depuis 2012, 62 CCD (59 fonctionnels) pour la photométrie sont installés dans son champ de vue de
3.18 deg2. Le code legacypipe assure le traitement final des données : calibration photométrique et
astrométrique, extraction des sources (réalisée par The Tractor, une approche dite de forward modelling)
et génération des catalogues.

Les cibles ELG ont été sélectionnées dans le Nord (NGC, 554 deg2) et le Sud galactiques (SGC,
616 deg2) dans les relevés DECaLS DR3 et DR5 (pour la région eboss25 dans le NGC). Comme le
montre la Figure 7.3, le SGC bénéficie d’un nombre d’observations bien plus élevé. La profondeur
photométrique y est une demi magnitude plus grande que dans le NGC. Comme les relevés DR3 et
DR5 n’étaient pas publics pour le début du programme spectroscopique, les images ont été analysées de
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Figure 7.3 – Nombre d’observations dans la bande g pour les cibles ELG d’eBOSS (haut: NGC, bas:
SGC). Le nombre d’observations dépasse 8 (le maximum affiché ici) pour 4% des cibles.

manière indépendante par l’équipe d’eBOSS. Une coupure en magnitude g, corrélée avec le flux [OII],
et une coupure en couleur g − r, −r − z pour l’intervalle en 0.6 < z < 1.1 ont fourni une liste de
269 718 cibles. En sus, des masques ont été appliqués pour rejeter les régions de photométrie incorrecte :
zones sans données, avec des pixels défectueux, proches des étoiles ou avec une calibration photométrique
douteuse (Raichoor et al., 2020).

6.3 La spectroscopie

Comme nous l’avons décrit précédemment, les observations spectroscopiques se divisent en un certain
nombre de pointés, chacun avec une disposition de 1000 fibres associée à une plaque d’aluminium disposée
dans le plan focal. Les fibres ont un diamètre physique, 62′′ sur le ciel, qui les empêchent d’être trop
proches les unes des autres. L’objectif est de maximiser le taux d’allocation des fibres aux cibles (TSR
pour tiling success rate), pour un nombre de pointés donné. La première étape consiste à allouer les fibres
de manière optimale à chaque plaque. Tout d’abord, un algorithme dit de Friends-of-Friends permet de
déterminer le plus grand ensemble de cibles (en tenant compte de possibles priorités) qui ne sont en
collision avec une autre. Ces cibles sont ensuite affectées à des plaques par un algorithme dit de network
flow (Blanton et al., 2003). Un deuxième algorithme de ce type permet de répartir les fibres aux cibles
plus proches que 62′′, en mettant à profit le recouvrement des plaques sur le ciel. Enfin, la position des
plaques est ajustée dans des zones indépendantes appelées chunk, de manière récursive pour bénéficier
des recouvrements dans les zones de grande densité de cibles (avec une pénalité pour les écarts à la
distribution uniforme).

Les ELG d’eBOSS se sont vu attribuer 305 plaques de ' 850 fibres. Le relevé est séparé en 4 chunks :
eboss23 et eboss25 dans le NGC, eboss21 et eboss22 dans le SGC. Certaines cibles (TDSS, Ruan
et al., 2016) (' 50 par plaque) ont été observées avec les mêmes plaques que les ELG d’eBOSS, une
partie (FES) avec la même priorité, les autres ayant des priorités moins élevées. Pour tenir compte des
possibles éliminations de fibres ELG au profit des cibles TDSS FES, un masque de rayon 62′′ est appliqué
autour de ces dernières. Par ailleurs, les fibres d’une plaque donnée ne peuvent être placées dans un rayon
de 92′′ autour du centre de la plaque, par lequel elle est maintenue dans le plan focal du télescope. Un
masque supplémentaire en tient compte.

Une fois les fibres allouées aux cibles photométriques, le spectre de ces dernières peut être mesuré
par les spectrographes décrits dans la Section 6.1. Un spectre obtenu par concaténation des données
de SEQUELS (Sloan Extended Quasar, ELG and LRG Survey, Alam et al., 2015) et des observations
pilotes des ELG d’eBOSS est montré sur la Figure 7.4. Comme leur nom le suggère, les spectres des ELG



6. Relevé de galaxies 323

2000 3000 4000 5000 6000 7000
λ [Å]

0.0

0.5

1.0

1.5

2.0

〈F
(λ

)〉 
[a
rb
itr

ar
y 
un

it]

FeII* FeII*

[OII]

[NeIII]
[OIII]

[OIII]

[OIII]

[OI]
[NII]

[NII]

[SII]

[SII]

[ArIII]

CII]

[NI] [OI]

[SII]

[OII]HeI
HeI

HeI
HeI HeI

[OII]

FeII

FeII FeII
MgII

MgI Hαβγδεζǫ

CaII KH
MgI b NaI D2,1

G band
CIII

Composite Spectrum of Emission-line Galaxies (ELGs) from eBOSS Pilot Observations

Figure 7.4 – Spectre concaténé de 12 000 ELG des observations SEQUELS et eBOSS. Les raies d’émission
sont notées en vert, les raies d’absorption stellaire en rouge et les raies d’absorption du millieu interstellaire
/ circumgalactique en noir. Source : Zhu et al. (2015).

possèdent des raies d’émission, dont la plupart sont des raies nébulaires : le doublet [OII](λλ3727, 3730),
les raies [OIII](λ5008), [OI](λ6300), [NII](λ6584). Celles-ci sont émises par le gaz distribué dans la
galaxie, photoexcité par la lumière ultraviolette produite par des étoiles chaudes à courte durée de vie,
responsables du continuum à ∼ 2000Å. Ce dernier atténue la discontinuité de Balmer à 3646Å qui se
prolonge jusqu’à 6563Å par la série de Balmer (η, ζ, ε, δ, γ, β, Hα). Les ELG à formation d’étoiles
constituent un traceur intéressant pour les analyses de clustering. En effet, leur distribution suit le taux
de formation d’étoiles, qui s’accroît jusqu’à z ' 2, où les galaxies rouges se font plus rares. De plus, les
fortes raies d’émission facilitent la mesure du décalage spectral. En particulier, le doublet [OII] peut être
résolu par un spectrographe possédant une résolution supérieure à 4000 — ce qui est le cas de DESI,
rendant la mesure du décalage spectral extrêmement robuste. Voyons justement comment les décalages
spectraux sont mesurés.

Comme mentionné dans la Section 6.1, les spectres s’étalent sur 3 colonnes de pixels. Le signal
obtenu est débiaisé, converti en nombre d’électrons, et aplani, la lumière diffusée soustraite. Il est
ensuite compressé en spectres unidimensionnels, en réalisant un ajustement pour chaque ligne de CCD.
Le signal obtenu est enfin corrigé par le champ plat de chaque fibre, le modèle de ciel, les distorsions
entre plusieurs observations et au sein du CCD, et calibré avec des spectres d’étoiles standard. Un nouvel
algorithme de détermination du décalage spectral, REDROCK, a été utilisé pour eBOSS, afin de répondre
aux objectifs d’eBOSS (Dawson et al., 2016) : 90% de mesures correctes du décalage spectral, avec moins
de 1% de mesures catastrophiques, c’est-à-dire qui sont fausses de plus de 1000 km s−1 pour les ELG.
Dans une première étape, les spectres mesurés sont ajustés par des patrons issus d’une décomposition
PCA de spectres d’étoiles, galaxies et quasars. Les ajustements non physiques sont supprimés dans une
deuxième étape, au cours de laquelle des modèles de spectres (appelés archétypes, 110 galaxies, 64 quasars
et 40 étoiles) sont ajustés avec des polynômes de Legendre au spectre mesuré, dans le voisinage des 3
meilleurs ajustements obtenus à l’issue de la première étape. La mesure (décalage spectral, erreur, et
classe d’objets) avec le meilleur χ2 est retenue, et le différence de χ2 (appelée ∆χ2 dans la suite) au
second meilleur ajustement est retenu comme critère de fiabilité de la mesure.

Le seuil ∆χ2 ≥ 9 est déterminé avec les galaxies rouges d’eBOSS (Ross et al., 2020), auquel s’ajoute
la positivité du coefficient de l’archétype pour obtenir la sélection ZWARNING = 0. Pour les ELG, des
coupures supplémentaires sont appliquées ; elles imposent un signal sur bruit médian minimum dans les
bandes i et z du spectre, où se situe le doublet [OII] des galaxies à z ' 1, et des critères de détection de
raies et du continuum (Comparat et al., 2016; Raichoor et al., 2020). Les mesures de décalages spectraux
satisfaisant ces critères sont qualifiés de fiables. Tandis que l’algorithme de BOSS permettait d’obtenir
des décalages spectraux fiables pour 74.0% des objets, REDROCK a augmenté cette efficacité (appelée SSR
pour spectroscopic success rate) à 80.7%. La fraction de mesures catastrophiques a été estimée à 0.3%
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avec ∼ 13 000 observations répétées. En sus, des inspections visuelles ont été réalisées sur un pointé du
relevé eBOSS ELG, et 2 pointés du programme pilote (Comparat et al., 2016). Elles ont confirmé que
les mesures fiables étaient correctes dans 99% des cas, avec une fraction de mesures catastrophiques de
1%, répondant ainsi aux exigences d’eBOSS. Des comparaisons avec des relevés externes ont permis de
confirmer ces résultats (Raichoor et al., 2020).

7 Mesure du spectre de puissance des galaxies
Nous avons vu qu’un relevé spectroscopique de galaxies permet d’obtenir un catalogue de positions

angulaires et décalages spectraux de galaxies. Dans cette section nous décrivons comment compresser ces
données sous la forme d’un spectre de puissance (Section 7.1), ce qui induit différents effets géométriques
qu’il convient alors de modéliser (Section 7.2). Certains de ces effets sont appelés contraintes intégrales
(Section 7.3), lesquelles ont fait l’objet d’une publication premier auteur.

7.1 L’estimateur du spectre de puissance

Construisons le champ FKP F (x) donné par (Feldman et al., 1994):

F (x) = ng(x)− αns(x), (123)

où ng(x) est la densité de galaxies (incluant de possibles poids) et ns(x) la densité d’un catalogue dit
synthétique qui représente la fonction de sélection du relevé W (r) = 〈ng(r)〉, la moyenne d’ensemble de
la densité pondérée de galaxies. α est un facteur de normalisation, en théorie fixé à :

α =
∫
d3xW (x)∫
d3xns(x) . (124)

A partir de ce champ, on construit l’estimateur de Yamamoto (Yamamoto et al., 2006) :

P̂`(kµ) = 2`+ 1
AVkµ

∫
Vkµ

d3kF0(k)F`(−k)− P noise
` (kµ) (125)

où l’intégrale se fait sur une coquille en kµ et :

F`(k) =
∫
d3xeik·xF (x)L`(k̂ · x̂), (126)

où l’on a noté L` le polynôme de Legendre d’ordre `. La normalisation A est donnée par :

A = α2
∫
d3rn2

s(r). (127)

Pour minimiser la variance de l’estimateur (125), les galaxies sont pondérées par le poids FKP (Feldman
et al., 1994) :

wFKP(x) = 1
1 + n̄(x)P0

(128)

où P0 est la valeur typique du spectre de puissance aux échelles d’intérêt. Le bruit de Poisson dans
l’Eq. (125) s’écrit :

P noise
` (kµ) = δ`0

A

∫
d3x

[
W (x)wg(x) + α2ns(x)ws(x)

]
. (129)

Pour minimiser le bruit de Poisson dû au catalogue synthétique, on aura typiquement ns/ng ∝ α−1 ∼
20− 50.
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L’estimateur de Yamamoto (125) peut être obtenu avec le formalisme des estimateurs optimaux
quadratiques, après un certain nombre d’approximations, dont la covariance du champ de fluctuations
diagonale, l’approximation de ciel localement plat, la non correction de l’effet de fonction fenêtre — sujet
sur lequel on reviendra dans la prochaine section. En pratique, l’Eq. (126) peut être mise sous la forme de
transformées de Fourier, par exemple en développant le polynôme de Legendre L`(k̂ · x̂) en harmoniques
sphériques (Hand et al., 2017). Nous utilisons l’implémentation de l’estimateur de Yamamoto fournie
dans le module nbodykit (Hand et al., 2018), qui interpole le champ F (x) sur une grille et calcule
l’Eq. (126) avec des transformées de Fourier rapides, en atténuant les effets de repliement spectral avec
la technique dite d’interlacing (Sefusatti et al., 2016).

7.2 Effets de géométrie

Les relevés spectroscopiques de galaxies permettent d’obtenir un catalogue de positions angulaires
R.A.,Dec. et de décalages spectraux z. Ceux-ci sont convertis en positions cartésiennes en supposant une
cosmologie dite fiducielle fid, laquelle ne correspond pas nécessairement à la vraie cosmologie qui sous-tend
les données. Ainsi, des distorsions sont introduites, connues sous le nom d’effet Alcock-Paczynski (Alcock
and Paczynski, 1979). Les vecteurs d’onde parallèles et transverses à la ligne de visée dans la vraie
cosmologie doivent être multipliés par :

q‖ = DH(zeff)
Dfid

H (zeff)
et q⊥ = DM(zeff)

Dfid
M (zeff)

(130)

pour obtenir leur valeur dans la cosmologie fiducielle. Par ailleurs, pour des raisons de temps de calcul,
le spectre initial de la matière est fixé à la cosmologie fiducielle dans le modèle du spectre de puissance.
En contrepartie, q‖ et q⊥ sont laissés libres dans les ajustements cosmologiques. De manière effective,
ceux-ci sont principalement fixés par l’échelle BAO rdrag, et sont donc sensibles aux combinaisons :

α‖ =
DH(zeff)rfid

drag

Dfid
H (zeff)rdrag

α⊥ =
DM(zeff)rfid

drag

Dfid
M (zeff)rdrag

(131)

Par ailleurs, l’estimateur (125) mesure en fait le spectre de puissance des galaxies convolué par la
fonction fenêtre du relevé. Cet effet est pris en compte dans le modèle du spectre de puissance. Pour
cela, on travaille en espace de configuration. Les multipoles de la fonction de corrélation théorique sont
obtenus à partir des multipoles du spectre de puissance par une transformée de Hankel (inverse). Ensuite,
la fonction de corrélation ξp(s) est multipliée par la fonction fenêtre Wδ,δ

q (s):

ξc
` (s) =

∑
p,q

Aq`p
2`+ 1
2q + 1ξp(s)W

δ,δ
q (s), (132)

avec Aq`p tel que L`(µ)Lp(µ) =
∑`+p
q=0A

q
`pLq(µ). Les multipôles de la fonction fenêtre sont donnés par :

Wδ,δ
` (s) = 2`+ 1

4πA

∫
dΩs

∫
d3xW (x)W (x− s)L`(x̂ · ŝ) (133)

où A est la normalisation (124). En pratique, cette fonction fenêtre est calculée par simple comptage de
paires du catalogue synthétique. Jusqu’à présent, une seule ligne de visée a été considérée pour chaque
paire de galaxies. Cette approximation de ciel localement plat ne tient plus lorsque la séparation s entre
les galaxies est non négligeable par rapport à leur distance d à l’observateur. Ces effets de grand angle
sont modélisés avec un développement de la fonction de corrélation en s/d (Szalay et al., 1998; Castorina
and White, 2018). Des multipoles d’ordre impairs sont générés, lesquels se couplent au multipoles d’ordre
impair de la fonction fenêtre (Beutler et al., 2019) et génèrent des corrections en s/d aux multipoles pairs
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de la fonction de corrélation (132). Néanmoins, ces effets sont localisés à grande échelle et restent donc
négligeables pour les analyses de clustering actuelles consacrées aux RSD et BAO.

Notons enfin que le spectre de puissance étant estimé sur une grille en k (Section 7.1), celui-ci est
peu échantillonné au petit k, ce que l’on corrige dans le modèle du spectre de puissance (Beutler et al.,
2017).

7.3 Contraintes intégrales
Jusqu’à présent, nous avons supposé la fonction de sélection W (r) = 〈ng(r)〉 entièrement connue. Ce

n’est pas le cas en pratique. Par exemple, le nombre de galaxies attendues dans le relevé,
∫
d3xW (x), est

très compliqué à prédire. En conséquence, on le remplacera par le nombre de galaxies réellement observées∫
d3xng(x) dans l’Eq. (124), ce qui revient à imposer pour les fluctuations de densité δcic = ng − αns :∫
d3rδcic(r) = 0. Cet effet, dite de contrainte intégrale globale, était déjà connu. Néanmoins, la fonction

de sélection radiale du relevé, c’est-à-dire sa densité en décalge spectral, est aussi difficile à prévoir. En
conséquence, dans les analyses de SDSS, celle-ci est directement mesurée à partir des données observées,
par exemple avec la technique dite shuffled (Samushia et al., 2012; Ross et al., 2012; Reid et al., 2016) :
les décalages spectraux du catalogue synthétique sont pris aléatoirement dans la distribution des données.
Ainsi, l’intégrale de δcic(r) est nulle dans toute tranche en distance radiale : il s’agit de l’effet de contrainte
intégrale radiale. Nous avons formalisé l’effet des contraintes intégrales par la formule :

δcic(r) = W (r)
{
δ(r)−

∫
d3xWic(x)δ(x)εic(r,x)

}
Wic(r) = W (r)∫

d3xW (x)εic(r,x) (134)

avec εic(r,x) une fonction caractérisant la contrainte intégrale : εglo(r,x) = 1 pour la contrainte intégrale
globale (GIC), εrad(r, x) pour la contrainte intégrale radiale (RIC). De là, la fonction de corrélation à
deux points de δcic(r) s’écrit :

ξcic
` (s) = ξc

` (s)− IC
δ,ic
` (s)− IC ic,δ

` (s) + IC ic,ic
` (s) (135)

avec ξc
` (s) donnée par l’Eq. (132) et :

ICi,j` (s) =
∫

∆2d∆
∑
p

4π
2p+ 1ξp(∆)Wi,j

`p (s,∆) (i, j) ∈ {(δ, ic), (ic, δ), (ic, ic)} (136)

Dans cette formule, Wδ,ic
`p (s,∆), W ic,δ

`p (s,∆) sont des fonctions de corrélation à 3 points de la fonction de
sélection W , p. ex. :

Wδ,ic
`p (s,∆) = (2`+ 1)(2p+ 1)

(4π)2A

∫
dΩs

∫
dΩ∆∫

d3xW (x)W (x− s)Wic(x−∆)L`(x̂ · ŝ)Lp(x̂ · ∆̂)εic(x− s,x−∆).
(137)

Ces fonctions de corrélation à 3 points sont calculées à partir du catalogue synthétique, après avoir
implémenté (et adapté) l’algorithme de Slepian and Eisenstein (2018). W ic,ic

`p (s,∆) est une fonction de
corrélation à 4 points de W :

W ic,ic
`p (s,∆) = (2`+ 1)(2p+ 1)

(4π)2A

∫
dΩs

∫
dΩ∆

∫
d3yW (y)W (y− s)∫

d3xWic(x)Wic(x−∆)L`(ŷ · ŝ)Lp(x̂ · ∆̂)εic(y,x)εic(y− s,x−∆) (138)

qui est séparée en un produit de fonctions de corrélation à 2 points x,y dans chaque ensemble où εic(x,y)
est constant (et non nul). Notons que les contraintes intégrales ont une contribution venant du bruit de
Poisson, que nous avons calculée. L’effet de la technique shuffled a été évalué sur des simulations. Sans
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correction, un biais 5 était visible dans les paramètres fσ8, α‖ et α⊥ ajustés aux simulations. Une fois
la correction de contrainte intégrale radiale incluse dans le modèle avec les équations précédentes, aucun
biais n’a pu @ être détecté.

Par ailleurs, nous avons proposé de supprimer les fluctuations de densité dans des pixels du ciel, afin
d’atténuer des systématiques angulaires (une technique appelée pixélisation). Ce faisant, l’on introduit
une contrainte intégrale angulaire qui peut être traitée de façon similaire. Nous avons par ailleurs montré
que cette contrainte intégrale angulaire peut être combinée avec la contrainte intégrale radiale, dans le
cas où cette dernière doit être modélisée. Enfin, les corrections de grand angle évoquées précédemment
ont été incorporées dans le formalisme des contraintes intégrales. Ces résultats ont été présentés dans de
Mattia and Ruhlmann-Kleider (2019).

En résumé, le modèle théorique du spectre de puissance est construit à partir de la théorie des
perturbations (Section 5), en incluant l’effet d’Alcock-Paczynski et (si besoin) la convolution par la
fonction fenêtre du relevé (Section 7.2) et les contraintes intégrales (Section 7.3).

8 Analyse
Nous avons vu comment mesurer le spectre de puissance d’un relevé de galaxies, et le modéliser.

Dans cette section, nous appliquons ces développements à l’analyse de clustering de l’échantillon des
ELG d’eBOSS, qui a fait l’objet de la publication de Mattia et al. (2020). Nous commençons par tester
notre modèle théorique avec des simulations (Section 8.1) puis expliquons la construction des catalogues
de données (Section 8.2) et de leurs simulations (Section 8.3) avant de présenter les résultats finaux de
l’analyse (Section 8.4) et de la collaboration SDSS (Section 8.5).

8.1 Mock challenge

Dans un premier temps, il convient d’évaluer la précision du modèle théorique du spectre de puissance.
Pour cela, nous prendrons comme référence des simulations dites à N corps. Celles-ci résolvent l’équation
de Vlasov (dont les deux premiers moments sont l’équation de continuité et d’Euler) et l’équation de
Poisson, en échantillonnant la fonction de distribution de la matière noire avec des particules (sans col-
lisions), typiquement au nombre de 1010−12 dans les simulations cosmologiques actuelles. Nous avons
principalement utilisé la simulation OuterRim (Heitmann et al., 2019), faisant évoluer 10 2403 particules
de matière noire de masse 1.85× 109 M� h−1 dans un volume de 27 Gpc3 h−3. Sous l’action de la grav-
ité, les particules forment des structures gravitationellement liées appelées halos de matière noire. Un
algorithme de Friends-of-Friends permet de les identifier dans les simulations. Ensuite, une prescription
appelée HOD (pour halo occupation distribution) donne la probabilité P (N |M) de trouver N galaxies
dans un halo de masse M . P (N |M) est souvent séparé pour les galaxies centrales (situées au centre du
halo) et les galaxies satellites. Cette prescription est généralement ajustée sur les prédictions de modèles
semi-analytiques de formation des galaxies contraints par des observations. Pour des galaxies sélection-
nées par masse stellaire, le nombre moyen de galaxies centrales 〈Ncent(M)〉 est bien décrit par une fonction
créneau, atteignant 1 à haute masse de halo M . En revanche, pour des galaxies sélectionnées par taux de
formation d’étoiles (SFR pour star formation rate), le nombre de galaxies centrales diminue au-delà de
∼ 1012 M� h−1. Dans les deux cas, le nombre moyen de satellites 〈Nsat(M)〉 est une fonction croissante
de la masse. Néanmoins, les prescriptions trouvées dans la littérature pour les galaxies sélectionnées
par SFR diffèrent significativement, selon les différents mécanismes de suppression du taux de formation
d’étoiles considérés (Contreras et al., 2013).

L’objectif du mock challenge est de vérifier la robustesse du modèle de spectre de puissance des
galaxies selon la relation entre galaxies et halos, en variant ses paramètres. Différentes formes de HOD
(incluant une fonction créneau et une gaussienne en logM pour 〈Ncent(M)〉) ont été testées (Alam et al.,
2020). Les galaxies centrales ont été déplacées d’une fraction (1/10) du rayon du halo. Par ailleurs,
le nombre de galaxies satellites a été modifié et leur dispersion de vitesse variée, de ±50%. Orsi and

5. qui dépend de la configuration du relevé, dans notre cas 2.8%, 0.9% et 0.6% sur fσ8, α‖ et α⊥
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Angulo (2018) suggèrent que les ELG se trouvent en majorité en périphérie des halos, avec une vitesse
radiale centripète. Ainsi, les positions des galaxies satellites ont été modifiées (via la concentration du
halo), et une vitesse radiale moyenne de 500 km s−1 ajoutée. Enfin, Jiménez et al. (2019) montre que la
loi de probabilité a un impact significatif sur la corrélation intra-halo, et qu’une loi binomiale négative
correspond le mieux aux galaxies à haut SFR — ce qui a été également testé (Avila et al., 2020). Enfin,
la connexion entre halos et galaxies peut, en plus de la masse, dépendre de propriétés secondaires du
halos — un effet appelé assembly bias, exploré en introduisant une dépendance dans la concentration
selon Hearin et al. (2016). En sus, une analyse en aveugle a été effectuée : les vitesses des galaxies ont été
multipliées par un facteur qui ne fut rélevé qu’après avoir fourni la mesure des paramètres cosmologiques
— laquelle s’est révélée en accord avec leur valeur attendue. Cette batterie de tests a permis d’établir un
budget d’incertitude systématique du modèle de 1.6% pour fσ8, 0.8% et 0.7% pour α‖ et α⊥.

Comme mentionné en Section 7, le spectre de puissance initial utilisé dans les calculs de théorie des
perturbations est gardé fixe dans la cosmologie fiducielle. L’impact de cette simplification a été quantifié
avec les simulations OuterRim en modifiant les paramètres de la cosmologie utilisée pour calculer ce
spectre de puissance dans un intervalle de largeur 30 fois les incertitudes de Planck Collaboration et al.
(2018) (CMB et BAO). Au total, le budget d’incertitude systématique du modèle s’élève à 3.0% pour
fσ8, 0.9% pour α‖ et 0.8% pour α⊥.

Par ailleurs, nous avons réalisé une mesure du signal BAO isotropique dans les ELG d’eBOSS. La
technique dite de reconstruction a été employée afin d’enlever (partiellement) l’évolution non-linéaire du
champ de galaxies due à la gravité et aux RSD, afin de renforcer les BAO dans le spectre de puissance
des données. Un modèle très simple, constitué des oscillations BAO multipliées par un patron doté
d’une polynôme dont les coefficients sont laissés libres a été ajusté à ce spectre de puissance reconstruit.
Toujours avec la simulation OuterRim, et en testant l’impact de la cosmologie utilisée pour le patron
du modèle, le budget d’incertitude systématique pour l’analyse BAO seule a pu être fixé à 0.2% pour le
paramètre de dilatation α = α

1/3
‖ α

2/3
⊥ .

Cette étape dite de mock challenge nous a permis de noter que les mesures des paramètres cos-
mologiques, notamment fσ8, varient fortement (typiquement 1σ) selon la ligne de visée utilisée pour
l’implémentation des RSD dans les simulations. Nous avons montré dans Smith et al. (2020) que les
quadrupoles du spectre de puissance selon deux lignes de visée orthogonales sont fortement anticorrélés,
ce qui se traduit par une anticorrélation des valeurs mesurées de fσ8. Nous avons alors proposé de
moyenner les mesures selon plusieurs lignes de visées, afin d’accroître la précision statistique du mock
challenge pour un coût marginal quasiment nul (estimation et ajustement de spectres de puissance).

8.2 Données

Nous avons activement participé à la création des catalogues de données, incluant des pondérations
pour corriger d’effets systématiques liés à la photométrie et à la spectroscopie, ainsi que de catalogues
simulés, appelés mocks. Comme nous l’avons expliqué dans la Section 7.1, la fonction de sélection est
échantillonnée par un catalogue synthétique, que nous devons construire de telle sorte que la moyenne
d’ensemble de la densité de données soit égale à celle du catalogue synthétique. Les masques liés à la
photométrie et à l’attribution des fibres aux cibles présentés en Section 6 sont appliqués au catalogue
de données et au catalogue synthétique. Des observations avec un faible signal sur bruit dans eboss22
sont aussi masquées (3123 cibles). Pour tenir compte des collisions de fibres, les cibles ayant reçu une
fibre sont pondérées par le rapport du nombre de cibles sur le nombre de fibres dans chaque groupe de
collisions. La perte d’efficacité due aux fibres non fonctionnelles, ou à une insuffisante densité de fibres
est prise en compte par pondération du catalogue synthétique.

L’algorithme de détermination du décalage spectral ne fournit pas une mesure fiable (selon les critères
définis en Section 6.3) pour tous les spectres mesurés. La fraction de mesures fiables, le SSR, dépend
des conditions d’observation. Une relation entre SSR et le signal sur bruit pour chaque pointé et dans
chaque chunk et demi-spectrographe est ajustée, et les objets pondérés par l’inverse de cette relation.
Par ailleurs, comme mentionné dans la Section 6, la transmission diminue sur les bords du plan focal.
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Ainsi, la relation entre SSR et la position dans le plan focal est ajustée (après correction précédente) et
les objets pondérés par l’inverse de cette relation.

Après les corrections liées à l’attribution des fibres aux cibles et la mesure du décalage spectral, la
dernière source de variation angulaire de la densité de cibles provient de la photométrie. La densité de
galaxies (pondérée par les corrections précédentes) est calculée dans des pixels HEALPix (Górski et al.,
2005) avec nside = 256 (surface de pixels de ' 188 arcmin2). Un modèle linéaire dans des variables
photométriques (densité d’étoiles, extinction galactique, température de poussières, densité colonne de
HI, profondeur photométrique et qualité d’image dans les bandes g, r, z) est ajustée à cette densité de
galaxies, lesquelles sont aussi pondérées par l’inverse de la prédiction.

Enfin, des décalages spectraux sont sélectionnés aléatoirement dans les données et assignés au cata-
logue synthétique avec la technique shuffled (voir Section 7), dans l’intervalle 0.6 < z < 1.1. Cependant,
il a été noté que la fonction de sélection radiale varie en fonction de la profondeur de l’imagerie, donc de la
position angulaire. Cette effet, dû à la faible luminosité des cibles par rapport à la profondeur du relevé,
a été noté pour la première fois dans l’échantillon des ELG d’eBOSS, car les autres échantillons du SDSS
sont composés de cibles plus lumineuses et disposant d’une profondeur d’imagerie plus isotrope. Pour
tenir compte de ces variations angulaires de la fonction de sélection radiale, cette dernière a été mesurée
dans des sous-échantillons du relevé ayant approximativement la même profondeur photométrique. Pour
cela, une relation entre décalage spectral et une combinaison de la profondeur dans les bandes g, r, z a
été ajustée sur les données. Cette nouvelle variable a permis de définir trois intervalles par chunk où les
décalages spectraux des galaxies ont été assignés au catalogue synthétique. Cette technique augmente
l’impact de la contrainte intégrale radiale, ce que nous avons pu modéliser selon la Section 7.3.

Enfin, la densité de galaxies est mesurée, et le poids FKP (voir l’Eq. (128), avec P0 = 4000 Mpc3 h−3)
est assigné aux données et au catalogue synthétique.

8.3 Mocks

Afin de tester ces procédures de correction des données, des catalogues simulés appelés mocks ont été
réalisés : 1000 mocks EZ et 2003 mocks GLAM-QPM. Ces mocks sont issus de simulations rapides du
champ de densité des galaxies, soit avec la théorie des perturbations et un modèle de biais (mocks EZ),
soit en résolvant le système de Vlasov-Poisson sur grille et en utilisant un HOD (mocks GLAM-QPM).
Les masques angulaires des données ont été appliqués aux mocks. Des variations de la densité angulaire
de cibles ont été introduites dans les EZ mocks à partir d’une carte de densité des données filtrée avec
une gaussienne d’écart-type 1◦. Ensuite, la fonction de sélection radiale a été appliquée dans les sous-
échantillons de profondeur homogène décrits ci-dessus. Les collisions de fibres ont été implémentées avec
une heuristique similaire à l’algorithme d’attribution des fibres présenté en Section 6 : les groupes de
collisions sont trouvés avec un algorithme Friends-of-Friends, les fibres assignées aux cibles de manière à
maximiser le TSR dans chaque groupe de collisions, en tenant des comptes des priorités avec les (vraies)
cibles TDSS, et des recouvrements de plaques. Enfin, un décalage spectral dans un mock est déclaré
fiable si c’est le cas de son plus proche voisin dans les données, ou (dans un second jeu de mocks) avec
une probabilité prédite par le modèle ajusté aux données. Enfin, un catalogue synthétique est généré
pour chaque mock, où toutes les pondérations et le tirage des décalages spectraux décrits précédemment
pour les données sont appliquées (avec le même code). Une méthodologie similaire est utilisée pour les
mocks GLAM-QPM, à la différence près qu’aucune systématique photométrique ni variation de la fonction
de sélection radiale avec la profondeur photométrique n’est implémentée. L’accord entre les différentes
efficacités (e.g. TSR, SSR) des données et des mocks est excellent, de l’ordre de 0.5%.

La chaine d’analyse a pu être testée avec ces mocks, notamment : l’effet de la géométrie du relevé
et des masques angulaires, de la contrainte intégrale radiale, des collisions de fibres (lesquelles ont été
modélisées avec la technique de Hahn et al. (2017)) et des systématiques angulaires résiduelles. Par
ailleurs, les postérieurs des données pour les mesures RSD et BAO étant significativement non gaussiens,
nous avons combiné les multipoles du spectre de puissance pré et post reconstruction, de manière à
effectuer l’ajustement conjoint des modèles de RSD et de BAO reconstruit. Cette méthodologie a pu
être vérifiée grâce aux mocks. Enfin, les mocks nous ont permis de remarquer que le quadrupole des
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source α

linéaire
non-linéarité du modèle (mocks EZ) 0.1%
quadrature
systématiques du modèle (mock challenge) 0.2%
terme d’amortissement Σnl 0.8%
systématiques photométriques 1.3%
collisions de fibres (mocks EZ) 0.2%
échecs de mesure des décalage spectraux 0.3%
statistique +0.025

−0.028
systématique +0.006

−0.005
total +0.031

−0.033

Table 7.1 – Budget d’erreur pour la mesure du BAO isotropique post-reconstruction. Les pourcentages
sont relatifs à la valeur de α. Les trois dernières lignes (statistique, systématique et total) donnent la
barre d’erreur statistique, la barre d’erreur systématique (totale moins statistique), et la barre d’erreur
totale, respectivement.

données était significativement plus bas qu’attendu à grande échelle, ce que nous avons pu reproduire en
partie avec l’injection de systématiques angulaires dans les mocks, comme mentionné précédemment. En
appliquant la technique de pixélisation introduite en Section 7 (avec une surface de pixel de ' 0.84 deg2),
les biais sur fσ8, α‖ et α⊥ dus à ces systématiques ont pu être réduits de ' 70%. La pixélisation a donc
été appliquée aux données pour atténuer de potentielles systématiques angulaires résiduelles.

Ces mocks nous ont aussi permis de calculer les matrices de covariance des fonctions de vraisemblance
pour les ajustements cosmologiques. Dû au nombre limité de mocks, le bruit dans l’estimation de la
matrice de covariance doit être propagé à la mesure finale. Nous avons utilisé la fonction de vraisemblance
proposée par Sellentin and Heavens (2016) pour l’analyse bayésienne (mesure RSD finale). Pour l’analyse
fréquentiste, nous avons utilisé la méthode de Dodelson and Schneider (2013); Percival et al. (2014) qui
consiste à corriger les erreurs de la mesure cosmologique par un facteur numérique et que nous avons
étendue à la combinaison de deux fonctions de vraisemblance indépendantes (NGC et SGC).

8.4 Résultats

Même après reconstruction, le spectre de puissance montre une faible détection des BAO (1.4σ), car le
signal BAO est inexistant dans le NGC. Néanmoins, nous avons montré qu’une mesure robuste de la pos-
ition du signal BAO reste possible, dès lors que son amplitude est fixée a priori. Le budget d’erreurs sys-
tématiques pour l’analyse BAO est présenté dans la Table 7.1. Une partie des incertitudes systématiques
provient du mock challenge, et des mocks (non-linéarité du modèle, collisions de fibres). Compte-tenu des
possibles systématiques résiduelles dans l’échantillon ELG, le reste des incertitudes systématiques est es-
timé à partir des données elles-mêmes : systématiques photométriques et échecs de mesure des décalages
spectraux. Pour cela, on prend la différence de l’ajustement cosmologique de référence avec celui obtenu
sans les corrections idoines dans le catalogue de données (variations de la fonction de sélection radiale en
fonction de la profondeur et pixélisation pour les systématiques photométriques, poids pour les échecs de
mesure des décalages spectraux) et sans les effets systématiques idoines dans la matrice de covariance. Il
est à noter qu’aucun signal BAO n’était détectable dans la moitié Nord (NGC) du relevé. Néanmoins,
la position du BAO a pu être mesurée de manière relativement robuste en imposant l’amplitude des
oscillations BAO dans le modèle du spectre de puissance (terme d’amortissement Σnl fixé à 4 Mpc h−1).
Nous incluons une incertitude supplémentaire liée à ce choix dans le budget d’incertitude systématique.
La mesure finale, en terme de distance comobile volumique DV(z) =

(
D2

M(z)DH(z)z
)1/3 et en incluant

les incertitudes systématiques est :

DV(zeff = 0.845)/rdrag = 18.33+0.57
−0.62 (139)
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Figure 7.5 – Ajustement combiné RSD + BAO (gauche : NGC, droite : SGC) : points de mesure avec
erreur venant des mocks EZ et meilleur ajustement du modèle (lignes continues) pour les multipoles
(haut) et les oscillations BAO (bas).

source fσ8 α‖ α⊥

linéaire
géométrie du relevé (EZ mocks) 0.1% 0.5% 0.1%
combinaison RSD + BAO (EZ mocks) 1.0% 0.3% 0.5%
non-linéarité du modèle (EZ mocks) 1.6% 1.0% 0.4%
modélisation des contraintes intégrales (EZ mocks) 0.8% 0.6% 0.1%
quadrature
systématiques du modèle (mock challenge) 3.0% 0.9% 0.8%
terme d’amortissement Σnl 1.9% 0.1% 0.8%
systématiques photométriques 9.4% 2.2% 1.4%
collisions de fibres (EZ mocks) 1.1% 0.6% 0.2%
échecs de mesure de décalages spectraux 6.1% 0.3% 0.3%
matrice de covariance 12.9% 4.7% 1.2%
statistique +0.060

−0.075
+0.104
−0.090

+0.036
−0.037

systématique +0.024
−0.021

+0.029
−0.031

+0.012
−0.011

total +0.085
−0.096

+0.13
−0.12

+0.048
−0.049

Table 7.2 – Budget d’erreur pour la mesure combinée RSD + BAO, similaire à la Table 7.1.

L’ajustement combiné RSD + BAO (avec pixelisation) est présenté sur la Figure 7.5. Le budget
d’erreurs systématiques pour l’analyse combinée RSD + BAO est présenté dans la Table 7.2. Là encore,
certaines incertitudes systématiques sont évaluées à partir du mock challenge et des mocks (géométrie
du relevé, combinaison RSD + BAO, non-linéarité du modèle, modélisation des contraintes intégrales
radiales et angulaires, collisions de fibres). Les autres sont estimées à partir des données. On notera
des contributions significatives des systématiques photométriques et des échecs de mesure des décalages
spectraux, estimées de la même façon que pour l’analyse BAO. Par ailleurs, l’ajustement cosmologique
s’est révélé relativement instable selon la matrice de covariance utilisée, ce qui a été inclus dans le budget
d’erreur systématique. La mesure finale, en terme de distances DH et DM et en incluant les incertitudes
systématiques est fσ8(zeff) = 0.289+0.085

−0.096, DH(zeff)/rdrag = 20.0+2.4
−2.2 et DM(zeff)/rdrag = 19.17 ± 0.99 à

zeff = 0.85.

Cette mesure a été combinée avec celle réalisée en espace de configuration (en utilisant la fonction
de corrélation), comme le montre la Figure 7.6 (gauche) : les deux postérieurs ont été déplacés jusqu’à
la moyenne de leur médiane, et moyennés. En incluant les incertitudes systématiques, la mesure finale
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Figure 7.6 – Gauche : postérieurs des analyses en espace de Fourier et de configuration, et leur com-
binaison, pour l’analyse RSD + BAO (en incluant les incertitudes systématiques) des ELG d’eBOSS. Les
contours contiennent 68% et 95% de la probabilité. Droite : mesures de taux de croissance des structures
et du BAO par SDSS, utilisées dans l’analyse finale. Pour l’échantillon MGS (zeff = 0.15), la mesure
DV/rdrag est montrée comme celles de DM/rdrag. Les lignes continues sont les prédictions du modèle
ΛCDM avec les paramètres de Planck Collaboration et al. (2018) issus du CMB (TT, TE, EE, lowE,
lensing).

après combinaison est :

fσ8(zeff = 0.85) = 0.315± 0.095
DH(zeff = 0.85)/rdrag = 19.6+2.2

−2.1

DM(zeff = 0.85)/rdrag = 19.5± 1.0
(140)

Comme la mesure du BAO isotropique seul est en excellent accord (< 0.2σ) entre espace de Fourier et
espace de configuration, et que la mesure en espace de Fourier a une barre d’erreur statistique légèrement
plus faible, cette dernière a été choisie comme mesure de consensus pour l’échantillon des ELG d’eBOSS.

8.5 Résultats cosmologiques de SDSS
Les mesures des analyses BAO et RSD + BAO ont été utilisées dans l’analyse finale de SDSS,

présentée dans eBOSS Collaboration et al. (2020). Cette dernière utilise les points de données montrés
sur la Figure 7.6 (droite) : MGS (Ross et al., 2015; Howlett et al., 2015), BOSS low-z, BOSS mid-z (Alam
et al., 2017), eBOSS LRG (Gil-Marín et al., 2020; Bautista et al., 2020), eBOSS ELG (de Mattia et al.,
2020; Tamone et al., 2020), eBOSS QSO (Neveux et al., 2020; Hou et al., 2020), auto-corrélation eBOSS
Lyman-α et cross-corrélation Lyman-α et QSO (du Mas des Bourboux et al., 2020).

Dans un modèle ΛCDM avec courbure libre, les mesures BAO à différents décalages spectraux per-
mettent de briser la dégénérescence entre Ωm,0 et ΩK,0 et ainsi de mettre en évidence une constante
cosmologique non nulle à 8σ. Par ailleurs, une fois combinées avec les données du CMB T&P (températ-
ure et polarisation 6 de Planck Collaboration et al. 2018), les mesures BAO permettent de diviser par 10
l’incertitude sur la densité de courbure ΩK,0, laquelle est compatible avec 0 à une précision de 1.8× 10−3.
Par ailleurs, dans un univers plat, les mesures BAO seules permettent de contraindre l’équation d’état
de l’énergie noire w à −0.69± 0.15, compatible avec une constante cosmologique (w = −1). Enfin, des
contraintes peuvent être posées sur H0 en combinant BAO et supernovae Ia (SN, Scolnic et al. 2018)
grâce à l’échelle de distance inverse : étant donnée une valeur de rdrag

7, les BAO fournissent une mesure
des distances cosmologiques qui peut être utilisée pour calibrer la distance de luminosité des SN et con-
traindre H0, en supposant un modèle cosmologique. Grâce aux points de données à différents décalages

6. c’est-à-dire TT, TE, EE et lowE
7. qui dépend de Ωc,0h2 and Ωb,0h2, contraints avec CMB T&P ou la nucléosynthèse primordiale
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spectraux, les mesures de H0 obtenues avec cette technique restent relativement peu sensibles au modèle
de l’expansion de l’univers ; dans un modèle flexible avec courbure libre et équation d’état de l’énergie
noire à deux paramètres 8, H0 = 67.87± 0.86 km s−1 Mpc−1. Cette mesure est à ' 5σ des mesures loc-
ales (e.g. H0 = 73.8± 1.1 km s−1 Mpc−1, Wong et al. 2019), ne faisant pas d’hypothèses sur la physique
baryonique dans l’univers primordial.

Les mesures RSD, combinées avec CMB T&P, permettent de diviser par deux l’incertitude sur
l’équation d’état de l’énergie noire, w = −1.09± 0.11. Les RSD seules posent des contraintes dans le plan
σ8,0 − Ωm,0, au même titre que le lentillage du CMB (Planck Collaboration et al., 2018) ou le lentillage
faible des galaxies (DES, Abbott et al. 2018). Ces trois dernières sondes permettent de contraindre des
déviations à la relativité générale, par exemple avec deux paramètres permettant des variations autour
de l’équation de Poisson Abbott et al. (2019) : µ0 = −0.04 ± 0.25 et Σ0 = −0.024 ± 0.054, compatibles
avec la prédiction de la relativité générale (µ0 = Σ0 = 0).

Pour conclure, il est intéressant d’analyser la réduction des incertitudes sur les paramètres cosmolo-
giques permise par les récentes observations. Dans un modèle avec courbure, masse des neutrinos

∑
mν

et équation d’état de l’énergie noire libres, les contraintes expérimentales datant d’une dizaine d’années 9

fournissent une figure de mérite 10 dans l’espace w, ΩK,0,
∑
mν , H0, et σ8,0 égale à 11. En ajoutant les

données du SDSS, la figure de mérite passe à 23 et en ajoutant DES et Planck, à 44. Ceci montre l’apport
capital joué par les grands relevés de galaxies du SDSS dans les contraintes cosmologiques actuelles. Cette
tendance ne pourra que se confirmer avec les relevés futurs, comme DESI.

9 Perspectives
L’instrument DESI, monté sur le télescope Mayall de 4 m situé à Kitt Peak, en Arizona, mesurera

les décalages spectraux de 10 fois plus de galaxies et quasars que l’ensemble de SDSS, sur une surface de
14 000 deg2. En particulier, les analyses RSD permettront de mesurer fσ8, DH/rdrag and DM/rdrag à une
précision relative de ' 2% dans 18 intervalles en décalage spectral entre 0.05 < z < 1.85. Les mesures
à bas z sont effectuées avec l’échantillon de galaxies brillantes (BGS), au-delà de z > 0.6 par les LRG,
ELG et QSO, et les mesures du BAO à haut z par les forêts Lyman-α (auto- et cross-corrélation avec
les QSO). DESI permettra de contraindre significativement l’équation d’état de l’énergie noire, l’indice
spectral (relié à l’inflation), la masse des neutrinos et le paramètre f local

NL des non-gaussianités primordiales.
Pour chacun de ces paramètres, il s’agira d’ajuster précisément la forme du spectre de puissance. Pour
cela, il est nécessaire comprendre les systématiques liées à l’observation et à l’analyse à toutes les échelles.

En particulier, il sera capital d’élucider les variations tridimensionnelles de la fonction de sélection
du relevé, à l’instar de celles constatées dans le relevé des ELG d’eBOSS (Section 8.2). Afin de propager
correctement les incertitudes sur cette fonction de sélection lors de l’inférence cosmologique, une approche
nouvellement développée, appelée forward modelling, apparaît prometteuse. Elle consiste à faire évoluer
un champ de densité initial tridimensionnel sous l’effet de la gravité, et de comparer le champ de galaxies
ainsi simulé à celui réellement observé avec une fonction de vraisemblance, laquelle est utilisée pour itérer
ou échantillonner les conditions du champ de densité initial. Cette technique a été mise en oeuvre sur
le relevé BOSS par Lavaux et al. (2019), qui ont mis en évidence des systématiques photométriques qui
n’avaient pas été trouvées avec les analyses de BOSS. Cette technique permet en outre de produire des
champs de densité et de vitesse, avec leur dispersion et de combiner différentes sondes (telles le lentillage
gravitationnel). En conclusion, les relevés spectroscopiques de galaxies s’imposent peu à peu comme une
sonde incontournable de la cosmologie observationnelle et leur analyse met en jeu des techniques de plus
en plus sophistiquées.

8. w = w0 + (1 − a)wa (Chevallier and Polarski, 2001; Linder, 2003)
9. WMAP (Hinshaw et al., 2013; Bennett et al., 2013) pour le CMB, JLA (Betoule et al., 2014) pour les

supernovae Ia et SDSS DR7 (Percival et al., 2010) et 2dFGRS (Colless et al., 2001) pour les mesures BAO
10. définie comme le déterminant de la matrice de covariance des N = 5 paramètres à la puissance −1/ (2N)
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Titre: Des relevés spectroscopiques de galaxies à raies d’émission aux contraintes cosmologiques : d’eBOSS à DESI

Mots clés: cosmologie, relevé spectroscopique de galaxies, croissance des structures, distorsions dans l’espace des décalages
spectraux, oscillations acoustiques de baryons, collaboration eBOSS

Résumé: Les relevés spectroscopiques de galaxies sont
riches d’information cosmologique. Les ondes acoustiques qui
se sont propagées dans l’Univers primordial ont laissé une
signature dans la distribution de matière, appelée oscillations
acoustiques de baryons (BAO), à une échelle caractéristique
de 150 mégaparsecs. Mesurer cette échelle dans la distribu-
tion des galaxies permet de sonder le taux d’expansion de
l’Univers au cours de son histoire. Par ailleurs, les mesures des
décalages spectraux des galaxies sont sensibles à leur vitesse
particulière (RSD), permettant par là même de mesurer le
taux de croissance des structures et de tester la relativité
générale à grande échelle. Cette thèse est consacrée à la
mesure par spectre de puissance des BAO et des RSD dans
l’échantillon de 173 736 galaxies à raies d’émission (ELG)
de la collaboration eBOSS, à un décalage spectral effectif de
0.85. Un soin particulier a été apporté à la validation de
l’implémentation du modèle théorique du spectre de puissance
des galaxies, et à l’estimation et correction des systématiques
observationnelles, grâce à des simulations réalistes. Les prin-
cipales systématiques observationnelles de ce relevé provi-
ennent des fluctuations de la densité de cibles avec la qualité
de l’échantillon photométrique utilisé pour eBOSS, dont une

version plus récente est exploitée pour le relevé spectrosco-
pique de nouvelle génération DESI. En particulier, en plus
de notables fluctuations dans la densité angulaire de cibles,
de fortes variations de densité en décalage spectral ont été
notées en fonction de la profondeur de l’imagerie, un effet
mineur dans les autres relevés d’eBOSS. Les variations résidu-
elles de densité angulaire ont été atténuées en supprimant le
contraste de densité au-delà d’une certaine échelle, tandis que
les fluctuations dans la fonction de sélection radiale ont été
prises en compte en divisant le relevé en sous-ensembles de
profondeur photométrique équivalente. Ce faisant, le spectre
de puissance mesuré est amorti à grande échelle, ce qui néces-
site de corriger la prédiction théorique par des termes dits de
contrainte intégrale, un projet original de cette thèse, qui a
aussi permis d’améliorer certains procédés des analyses réal-
isées jusqu’alors. Les mesures RSD et BAO obtenues avec les
ELG d’eBOSS sont combinées avec celles des autres relevés
de grandes structures de la collaboration SDSS, et les implic-
ations cosmologiques sont exposées. Cette thèse se termine
par un bilan des différentes systématiques observationnelles
et d’analyse entachant la mesure cosmologique, et de pistes
pour contrôler le budget systématique des futurs relevés spec-
troscopiques, comme DESI.

Title: From emission line galaxy spectroscopic surveys to cosmological constraints: from eBOSS to DESI

Keywords: cosmology, spectroscopic galaxy survey, growth of structure, redshift space distortions, baryon acoustic oscil-
lations, eBOSS collaboration

Abstract: Spectroscopic galaxy surveys contain a wealth
of cosmological information. Acoustic waves that propag-
ated in the primordial Universe left a signature on the matter
distribution, called baryon acoustic oscillations (BAO), at a
characteristic scale of 150 megaparsecs. Measuring this stand-
ard ruler in the distribution of galaxies provides access to the
expansion history of the Universe. In addition, redshift meas-
urements of galaxies are sensitive to their peculiar velocities
(RSD), allowing to probe the growth rate of structure and test
general relativity on large scales. This thesis is dedicated to
the power spectrum analysis of BAO and RSD in the sample
of 173,736 emission line galaxies (ELGs) of the eBOSS col-
laboration, at an effective redshift of 0.85. Special care was
devoted to validate the implementation of the galaxy power
spectrum theoretical model, and to estimate and correct ob-
servational systematics, with the help of realistic simulations.
The main observational systematics of this sample stem from
fluctuations of the galaxy target density with the quality of
the photometric sample used for eBOSS, which is an early
version of that utilised in the next generation spectroscopic

survey DESI. In particular, besides the noticeable fluctuations
of the angular density of targets, strong variations in the red-
shift density with imaging depth were noted - an effect which
is usually assumed to be minor. Residual variations of the an-
gular target density were mitigated by suppressing the density
contrast above a certain scale, while fluctuations in the radial
survey selection function were accounted for by dividing the
data set in subsamples of equivalent photometric depth. Do-
ing so, the measured galaxy power spectrum is damped at
large scale, which requires to correct the theoretical predic-
tion for the so-called integral constraints, an original work
of this thesis that also allowed to improve some techniques
of clustering analyses. The RSD and BAO measurements
obtained with eBOSS ELGs are combined with the results
from the other clustering samples of the SDSS collaboration,
and cosmological implications are presented. This manuscript
ends with a recap of different observational and analysis sys-
tematics hindering the cosmological measurements, and gives
ideas to control the systematic budget of future spectroscopic
surveys, like DESI.
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