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Notation and Acronyms

• For given positive integers n,m, we adopt the notations Rn,Rn×m for the set of the
n-dimensional real space and the set of n ×m real matrices, respectively. Also, R+ :=

[0,+∞).

• For a given w in Rn, |w| denotes its usual Euclidean norm. For a given matrix A ∈ Rn×n,
|A| := sup {|Aw| , |w| = 1} is its induced norm.

• For a given matrix A in Rn×n, A> denotes its transpose, and Sym(A) = A+A>

2 stands
for its symmetric part. By eig(A) (or λmin(A) in Chapter 4) we denote the minimum
eigenvalue of a symmetric matrix A. By In we denote the identity matrix of dimension
n. By diag(a1, . . . , an) we denote the n×n diagonal matrix with elements a1, . . . , an on
its diagonal.

• For given constants l, L, with l < L, function u : [0,+∞)× [l, L]→ Rn and time t ≥ 0,
we use the notation u(t)(x) := u(t, x), for all x in [l, L] to refer to the profile at certain
time.

• Given constants l, L, with l < L, and mapping [0,+∞)× [l, L] 3 (t, x) 7→ u(t, x) ∈ Rn,
ut (or ∂tu) and ux (or ∂xu) stand for the partial derivative of u with respect to t and
x, respectively. Also, uxx, uxxx, and ∂qxu stand for the second, third and q-th partial
derivative with respect to x, respectively. When mapping u is only time-dependent, u̇
or d

dtu denotes its first time-derivative. When u is scalar and depends only on x, then
u′, u′′, u′′, and dq

dxq u, stand for the first, second, third, and q-th derivative, respectively.

• By Duf (or simply Df) we denote the Jacobian of a differentiable mapping Rn 3 u 7→
f(u) ∈ Rn. For a differentiable in its second argument mapping f , by 〈Duf (·,F [u]) , h〉
we denote its Fréchet derivative w.r.t. u acting on h, where F is any Fréchet differ-
entiable operator acting on functions u. Note that by the chain rule, Duf (·,F [u]) =

Dw f(·, w)|w=F [u]DuF [u], where DuF [u] denotes the Fréchet derivative of F .

• Given constants T, l, L, with T > 0, L > l, we denote by Cq (D;Rn) the space of q-
times continuously differentiable functions on D, taking values in Rn, with D := [0, T ]×
[l, L], or [0,+∞) × [l, L], or [0,+∞), or [l, L]. For q = 0, this space corresponds to the
space of continuous functions on D. For a continuous (C0) mapping [l, L] 3 x 7→ u(x) ∈
Rn (or [0, L] 3 x 7→ A(x) ∈ Rn×n) we adopt the notation ‖u‖∞ := max{|u(x)| , x ∈
[l, L]} (‖A‖∞ := max{|A(x)| , x ∈ [0, L]} respectively) for the sup-norm, with ‖u‖0 :=

‖u‖∞. If this mapping is q - times continuously differentiable (Cq), we adopt the notation
‖u‖q :=

∑q
i=0 ‖

di
dxiu‖∞ for the q-norm.

• For given constants l, L, with l < L, and p a positive integer, Lp ((l, L);Rn) (or Lp(l, L)n)
denotes the space of equivalence classes of measurable functions u : [l, L] → Rn, for

which ‖u‖Lp((l,L);Rn) :=
(∫ L

l |u(x)|pdx
)1/p

< +∞. For given T > 0, L∞(0, T ) denotes

7



8 Notation and Acronyms

the space of essentially bounded measurable functions on (0, T ). By L∞loc(0,+∞) we
denote the space of L∞ functions on every compact subset of (0,+∞).

• By H2((l, L);Rn) we denote the Sobolev space of functions in L2 ((l, L);Rn) with
all their weak derivatives up to order 2 in L2 ((l, L);Rn), equipped with the norm

‖u‖H2((l,L);Rn) :=
(∫ L

l

(
|u(x)|2 + |ux(x)|2 + |uxx(x)|2

)
dx
)1/2

. The fractional Sobolev
space Hs(0, L), for s ∈ (0, 1), is simply mentioned in Chapter 4, referring to Hs(0, L) :={
u ∈ L2(0, L) : |u(x)−u(y)|

|x−y|s+
1
2
∈ L2((0, L)× (0, L))

}
.

• In Chapter 2, for a mapping f(·, ·) we use the difference operator ∆ξ̂ [f (·,F)] (ξ)(x) :=

f
(
x,F [ξ̂](x)

)
−f (x,F [ξ](x)), parametrized by ξ̂, where F denotes any chosen operator

acting on ξ. In Chapter 3, for a mapping f(·, ·), we use the difference operator given by
∆ξ̂2

[f(ξ1, ξ2)] := f(ξ1, ξ̂2)− f(ξ1, ξ2), parametrized by ξ̂2.

• In Chapter 2, we define Bδ :=
{
ξ ∈ C1([0, L];Rn) : ‖ξ‖1 ≤ δ

}
. In Chapter 3, we define

B(δ) :=
{
ξ ∈ H2

(
(0, 1);R2

)
: ‖ξ‖H2((0,1);R2) ≤ δ

}
.

• By sgn(x) we denote the sign function sgn(x) := d
dx |x|, x 6= 0.

• By L(X,Y ) we denote the space of bounded linear operators from X to Y , where X,Y
are Banach spaces.

• By Π̄ and ∂Π we denote the closure and the boundary of a set Π, respectively.

H-GODP High-Gain Observer Design Problem
ISS Input-to-State Stability
KdV Korteweg-de Vries
ODE Ordinary Differential Equation
PDE Partial Differential Equation
PIDE Partial Integro-Differential Equation
SIR Susceptible, Infectious, Recovered

inf, sup infimum, supremum
min, max minimum, maximum



Résumé de la thèse

Au cours des dernières décennies, de nombreuses études ont été consacrées au problème de la
synthèse d’observateurs grand gain pour des systèmes nonlinéaires de dimension finie (voir
par exemple [Khalil (2017)] et ses références). Cette thèse s’intéresse principalement à
l’extension de cette conception générale à certaines classes de systèmes de dimension infinie,
à savoir, des systèmes d’équations aux dérivées partielles (EDP) couplées à structure triangu-
laire, et considérant la mesure d’une partie de l’état sur tout le domaine. Elle propose ainsi des
solutions à un problème de synthèse d’observateur grand gain (H-GODP), qui se révèle être
étendu à dimension infinie de manière non triviale. La thèse considère, enfin, une application
de l’approche de synthèse d’observateur proposée à un problème de commande de retour de
sortie. Les problèmes principaux abordés par cette thèse peuvent être résumés comme suit.

Problème 1. Construire un observateur pour un système d’EDP triangulaire, lorsque
moins d’observations internes que le nombre d’états sont disponibles.

Un problème qui montre une certaine dualité, ceci de contrôlabilité pour les sys-
tèmes d’EDP en cascade avec un nombre de contrôles internes réduit, a déjà été envisagé
[Alabau-Boussouira et al (2017)]. Dans [Lissy et Zuazua (2019)], l’observabilité des
systèmes linéaires d’EDP couplés, avec un nombre d’observations réduit est étudiée. Un prob-
lème de stabilisation frontière est résolu en plaçant un contrôle sur un bord de l’un des deux
états d’un système hyperbolique dans [Coron et al (2013)]. Cette approche nécessite des
conditions spécifiques aux limites, qui permettent une transformation dite backstepping en
un système stable. Ce n’est pas le cas ici, car nous considérons des conditions aux limites
plus générales. En général, le problème de commande/observateur avec un nombre de con-
trôles/observations réduit, inférieur au nombre d’états, est un problème difficile. À notre
connaissance, la synthèse d’observateurs pour des systèmes qui ont un nombre d’observations
réduit n’a pas encore apparu dans la littérature. Les approches proposées ici comptent sur une
structure triangulaire nonlinéaire appropriée pour la dynamique du système comme dans les
systèmes de dimension finie, afin de proposer une solution au Problème 1. Cependant, le type
d’opérateur différentiel, associé à chaque système d’EDP, augmente la difficulté et ça rend le
problème non trivial.

Problème 2. Construire un observateur grand gain pour toute classe de systèmes d’EDP,
qui satisfont une structure triangulaire comme dans le cas de dimension finie.

Ce problème n’a pas été pris en compte dans la littérature au meilleur de nos connaissances.
Les observateurs grand gain pour des systèmes non linéaires de dimension finie présentent un
taux de convergence arbitraire, qui peut être réglé via un seul paramètre dans la dynamique
de l’observateur. Pour certaines classes de systèmes d’EDP, en particulier hyperboliques, une
convergence arbitraire serait souhaitable, car les observateurs de frontière proposés dans la
littérature, éprouvent une limitation en ce qui concerne la vitesse de convergence. Pour trouver
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2 Introduction

une solution, le système doit satisfaire une structure triangulaire spécifique comme dans la
dimension finie. En dimension infinie, plusieurs difficultés se posent, la plus importante d’entre
elles provenant des propriétés de l’opérateur différentiel associé au système, qui peut avoir des
coefficients non triviaux. Ces propriétés ajoutent des difficultés à l’analyse, ce qui peut ne pas
permettre des synthèses d’ observateurs pour un grand nombre d’états. De plus, la présence
de termes non locaux dans la dynamique, la généralité des conditions aux limites pour les
systèmes hyperboliques et les types de non-linéarités dans les termes sources augmentent la
complexité de celle synthèse. Par conséquent, pour résoudre partiellement le Problème 2,
nous considérons des classes spécifiques de systèmes triangulaires, tandis que la mesure d’une
partie de l’état (uniquement le premier) dans la sortie est considérée être distribuée dans
tout le domaine. Tout au long de la thèse, il est montré que, de manière contre-intuitive, une
extension naturelle de la conception d’observateurs grand gain des systèmes de dimension finie
à des systèmes de dimension infinie s’avère être non triviale. Nous notons que les solutions aux
problèmes 1 et 2 sont données simultanément dans cette thèse, car la solvabilité du problème
H-GODP considéré (Problème 2) implique la solvabilité du Problème 1.

Problème 3. Fournir des lois de retour de sortie pour des systèmes d’EDP en cascade,
en mesurant une partie de l’état et en plaçant le contrôle sur une autre partie de l’état.

Une solution à ce problème pour un système d’équations de Korteweg-de Vries (KdV) en
cascade est présentée ici, en utilisant l’observateur grand gain proposé.

La résumé des chapitres précise suit.

Outline

• Le Chapitre 1 présente la classe de systèmes considérée, la définition du problème H-
GODP et deux approches de ses solutions: une synthèse d’observateur directe et une
indirecte dépendant d’une propriété de l’opérateur différentiel associé au système con-
sidéré. Les difficultés de ces approches sont analytiquement décrites.

• Le Chapitre ref chap:H-GODP1 est dédié à une solution au problème H-GODP pour une
classe de systèmes d’équations integrodifféréntielles hyperboliques quasilinéaires avec n
états et une seule vitesse, écrite sous forme triangulaire et considérant la mesure interne
du premier état. La preuve de stabilité de l’observateur repose sur une fonctionnelle de
Lyapunov introduite. La conception est ensuite appliquée à un modèle d’épidémie SIR
(il semble être d’un intérêt particulier pour la pandémie COVID-19, qui s’est produite
au moment de la rédaction de cette thèse).

• Le Chapitre 3 aborde le problème de la synthèse d’observateurs grand gain pour des sys-
tèmes hyperboliques avec des vitesses distinctes et des systèmes paraboliques avec des
diffusivités distinctes en suivant une approche indirecte. Les systèmes considérés sont
d’abord mappés dans ceux qui conviennent à la synthèse d’observateurs via une transfor-
mation d’état à dimension infinie. Des conditions suffisantes appropriées conduisent à la
solvabilité du problème H-GODP pour des systèmes hyperboliques quasi-linéaires à deux



Introduction 3

états, des systèmes paraboliques semilinéaires à deux ou trois états, et enfin des systèmes
hyperboliques hétérodirectionnels linéaires avec un nombre quelconque d’états. La dy-
namique de l’observateur contient des dérivées spatiales (d’ordre élevé) de la mesure
distribuée. La convergence de l’observateur est prouvée par l’utilisation des fonction-
nelles de Lyapunov alors qu’un phénomène de perte de dérivées apparaît. Enfin, la
synthèse d’observateur proposée est appliquée aux réacteurs chimiques à flux continu et
aux systèmes diffusionnels de type Lotka-Volterra.

• Le Chapitre 4 traite de la stabilisation d’un système d’n équations de Korteweg-de Vries
linéarisées en cascade dans un intervalle borné. Il considère un contrôle de rétrour de
sortie placée sur le bord gauche de la dernière équation, tandis que la sortie n’implique
que la solution de la première équation. Les problèmes de contrôle frontière étudiés
comprennent deux cas: le contrôle classique sur la condition aux limites de Dirichlet et
un contrôle moins courant sur sa deuxième dérivée. La loi de contrôle de retour utilise
les solutions estimées par un système d’observateur grand gain et le contrôle de retour
de sortie nous amene à la stabilisation pour tout n pour le premier cas de conditions
aux limites et à la stabilisation quand n = 2 pour le second cas.

Contributions

Les contributions de la thèse peuvent être résumées comme suit

• extension des synthèses d’observateurs grand gain des systèmes à dimension finie à cer-
taines classes de systèmes à dimension infinie;

• des solutions aux problèmes de synthèses d’ observateurs pour les systèmes en cas-
cade/triangulaires, où seule une partie de l’état est disponible comme mesure;

• introduction de certaines transformations d’état à dimension infinie, qui conduisent à
des systèmes cibles d’EDP, qui sont appropriés pour la synthèse d’observateurs;

• introduction de fonctionnelles de Lyapunov appropriées conduisant à une analyse de
stabilité des équations d’erreur d’observateur dans certains espaces fonctionnels;

• des solutions au problème H-GODP pour des systèmes en cascade/triangulaires, lorsque
l’opérateur différentiel du système a des coefficients triangulaires inférieurs ou diagonaux
avec des éléments distincts;

• des solutions au problème H-GODP pour les systèmes en cascade/triangulaires en
présence de termes non linéaires non locaux dans la dynamique, de nonlinéarités
générales (localement Lipschitz) et de quasilinéarités dans l’opérateur différentiel du
système;

• des lois de retour de sortie pour les systèmes en cascade de KdV avec un nombre de
contrôles et d’observations réduit;
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• application de la méthodologie théorique introduite aux systèmes de la physique et de
la biologie, y compris les modèles épidémiques, les réacteurs chimiques et la dynamique
des populations.
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Introduction

In the last decades, many studies have been dedicated to the problem of the so-called high-gain
observer design for nonlinear finite-dimensional systems (see for instance [Khalil (2017)] and
references therein). The present thesis is mainly concerned with the extension of this general
design to some classes of infinite-dimensional systems, namely, systems of coupled Partial
Differential Equations (PDEs) with triangular structure, and considering measurement of part
of the state, distributed throughout the whole domain. It, thereby, proposes some solutions
to a High-Gain Observer Design Problem (H-GODP), which turns out to be non-trivially
extended to infinite dimensions. The thesis considers, finally, an application of the proposed
observer design approach to some problem of output feedback control. The main problems
this thesis addresses can be summarized as follows.

Problem 1. Design an observer for a triangular system of PDEs, when fewer internal
observations than the number of states are available.

Somehow dual problems of controllability for cascade systems of PDEs with reduced num-
ber of internal controls have already been considered [Alabau-Boussouira et al (2017)].
In [Lissy and Zuazua (2019)], observability for coupled systems of linear PDEs with re-
duced number of observations is studied. In [Coron et al (2013)] a stabilization problem is
solved by placing a boundary control at one endpoint of one of the two states of an hyper-
bolic system. This approach requires specific boundary conditions, which allow a so-called
backstepping transformation into a stable system. This is not the case here, since we consider
more general boundary conditions. In general, the problem of control/observer design with
reduced number of controls/observations, less than the number of the states, is a difficult
problem. To the best of our knowledge, observer design for systems with reduced number of
observations has not been considered in the literature. The proposed approaches here rely on
the consideration of an appropriate nonlinear triangular structure for the system dynamics
as in the finite-dimensional systems, in order to propose a solution to Problem 1. The type
of differential operator, associated to each system of PDEs, however, adds to the difficulty
rendering the problem nontrivial.

Problem 2. Design a high-gain observer for any class of systems of PDEs, which satisfy
a triangular structure as in the finite-dimensional case.

This problem has not been considered in the literature to the best of our knowledge.
High-gain observers for nonlinear finite-dimensional systems exhibit a property of arbitrary
convergence rate, which can be tuned via a single parameter in the observer dynamics. For
some classes of systems of PDEs, particularly hyperbolic ones, arbitrary convergence would be
desirable, since the boundary observers proposed in the literature, for instance, experience a
limitation with respect to convergence speed. To find a solution, system must satisfy a specific
triangular structure as in the finite dimensions. In infinite dimensions, several difficulties

5
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arise, with the most important of them coming from the properties of the differential operator
associated to the system, which might have nontrivial coefficients. These properties add
difficulties to the analysis, which might not allow designs for any large number of states. Also,
the presence of nonlocal terms in the dynamics, the generality of the boundary conditions for
hyperbolic systems, and types of nonlinearities in the source terms increase the complexity of
the design. Therefore, to partially solve Problem 2 we consider specific classes of triangular
systems, while the measurement of a part of the state (only the first one) in the output is
considered distributed within the whole domain. Along the thesis, it is shown that, counter-
intuitively, a natural extension of high-gain observer design from finite-dimensional systems
to infinite-dimensional ones turns out to be nontrivial. We note here that solutions to both
Problems 1 and 2 are given simultaneously in this thesis, since the solvability of the considered
H-GODP (Problem 2) implies solvability of Problem 1.

Problem 3. Provide output feedback laws for cascade systems of PDEs, by measuring
a part of the state and placing the control on another part of the state.

A solution to this problem for a cascade system of Korteweg-de Vries (KdV) equations is
presented here, by use of the proposed high-gain observer.

The precise outline of the manuscript follows.

Outline

• Chapter 1 presents the considered class of systems, the definition of the H-GODP, and
two approaches towards its solutions: a direct and an indirect observer design depending
on some property of the differential operator associated to the considered system. The
difficulties of these approaches are also mentioned.

• Chapter 2 is dedicated to a solution to the H-GODP for a class of quasilinear hyperbolic
systems of partial integro-differential equations with n states and a single velocity written
in triangular form and considering internal measurement of the first state. The observer
stability proof relies on an introduced Lyapunov functional. The design is then applied to
an SIR epidemic model (it appears to be of special interest for the COVID-19 pandemic,
which occured at the time this thesis was written).

• Chapter 3 tackles the problem of high-gain observer design for hyperbolic systems with
distinct velocities and parabolic systems with distinct diffusivities by following an indi-
rect approach. The considered systems are first mapped into ones suitable for observer
design via an infinite-dimensional state transformation. Appropriate sufficient condi-
tions lead to the solvability of the H-GODP for quasilinear hyperbolic systems with two
states, semilinear parabolic systems with two or three states, and finally linear heterodi-
rectional hyperbolic systems with any number of states. The observer dynamics contain
(high-order) spatial derivatives of the distributed measurement. The observer conver-
gence is proven by use of Lyapunov functionals while a loss of derivatives phenomenon
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appears. Finally, the proposed observer design is applied to plug and flow chemical
reactors and diffusional Lotka-Volterra systems.

• Chapter 4 is about the stabilization of a cascade system of n linearized Korteweg-de
Vries equations in a bounded interval. It considers an output feedback control placed
at the left endpoint of the last equation, while the output involves only the solution
to the first equation. The boundary control problems investigated include two cases:
the classical control on the Dirichlet boundary condition and a less common one on
its second-order derivative. The feedback control law uses the estimated solutions of a
high-gain observer system and the output feedback control leads to stabilization for any
n for the first boundary conditions case and for n = 2 for the second one.

Contributions

The main contributions of the thesis can be summarized as follows

• extension of high-gain observer designs from finite-dimensional systems to some classes
of infinite-dimensional ones;

• solutions to observer design problems for cascade/triangular systems, where only a part
of the state is available as measurement;

• introduction of some infinite-dimensional state transformations, which lead to target
systems of PDEs, suitable for observer design;

• introduction of appropriate Lyapunov functionals leading to stability analysis of the
observer error equations in some function spaces;

• solutions to the H-GODP for cascade/triangular systems, when system’s differential
operator has coefficients being lower triangular and diagonal with distinct elements;

• solutions to the H-GODP for cascade/triangular systems in the presence of nonlinear
nonlocal terms in the dynamics, general (locally Lipschitz) nonlinearities, and quasilin-
earities in system’s differential operator;

• output feedback laws for cascade systems of KdVs with reduced number of controls and
observations;

• application of the introduced theoretical methodology to physical and biological systems,
including epidemic models, chemical reactors, and population dynamics.

List of publications

Journals
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Chapter 1

The High-Gain Observer Design
Problem (H-GODP)

Contents
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This chapter is devoted to the introduction of the main topics, this thesis deals with, whose
extensive analysis follows in the next chapters. A brief overview of observer designs for infinite-
dimensional systems is first presented. Then, the general class of the considered cascade
systems (which satisfy a particular triangular form) is introduced, with emphasis to some
application examples including epidemiology and chemical reactions. The main problem of
high-gain observer design this thesis deals with is next described underlining also the difficulties
that are encountered, whence a description of proposed solutions follows.

1.1 A short overview of observer designs for infinite-
dimensional systems

The problem of state estimation is important and is mainly used in model-based feedback
control when the full state of the system is not available. To solve this problem, several
observer design techniques have appeared in the literature for finite-dimensional systems gov-
erned by linear and nonlinear ordinary differential equations (ODEs). In the area of nonlinear
systems, many of these designs lean heavily on a triangular structure (see [Bernard (2019)])
of a given nonlinear system and the most famous include the Luenberger-type observer de-
sign (see [Besancon (2007)]). As part of the latter, the high-gain observer design has
gained significant consideration during the last decades, see [Khalil (2017)]. This trian-
gular structure has been shown to be suitable for state estimation, while weakening of the
conditions has been a goal of several approaches, see for instance [Theodosis et al (2016)],

9
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[Tsinias and Kitsos (2019)]. This thesis is concerned with the introduction of a similar
triangular structure to the case of infinite-dimensional systems governed by partial differential
equations (PDEs), which allows a high-gain observer design to be feasible for some classes of
these systems under suitable sufficient conditions.

Characterizations and conditions for observability for infinite-dimensional systems have
arisen in the literature during the last decades. In [Tucsnak and Weiss (2000)], observ-
ability is studied for linear systems via semigroups and operator-theoretic techniques. Observ-
ability for coupled systems of hyperbolic equations has been introduced in [Lions (1988a)],
[Lions (1988b)], where three notions are considered: complete, partial and simultaneous
observability. In [Li (2008)], exact boundary observability for n × n quasilinear hyper-
bolic systems via observation on the boundaries of the whole state vector is studied. In
[Alabau-Boussouira (2003)], the problem of boundary observability for linear weakly cou-
pled hyperbolic systems via observation of only one of the two components of the state is
investigated. In [Lissy and Zuazua (2019)], internal observability for a coupled system of
linear PDEs with reduced number of observations is studied.

Following the fundamental results on observability, observer design for infinite-dimensional
systems has been developed with fewer results than for finite-dimensional systems so far, see
[Wouwer and Zeitz (2001)] for a survey. In fact, two main techniques have been con-
sidered: early-lumping and late-lumping ones. Early-lumping approach relies on suitable
finite-dimensional approximations and reduces the systems of PDEs into a system of ODEs,
see for instance [Besancon et al (2006)]. This, however, experiences the problem of loss of
the PDE properties, including the physical system information and additionally the state es-
timation of the true state might not be ensured, see [Balas (1998)]. In the late-lumping
techniques, approaches are based on semigroup and spectral theory [Curtain (1982)],
[Curtain and Zwart (1995)], [Demetriou (2004)], Lyapunov-based analysis, backstep-
ping [Di Meglio et al (2013)], [Hasan et al (2016)], [Anfinsen et al (2016)], and
[Vazquez and Krstic (2010)], or optimization methods [Nguyen et al (2016)]. The case
of state estimation for nonlinear infinite-dimensional systems, which is significantly more
complicated, has been addressed in [Xu et al (1995)], [Bounit and Hammouri (1998)],
[Christophides and Daoutidis (1996)], [Meurer (2013)], [Besancon et al (2013)],
[Schaum et al (2015)], [Karafyllis et al (2019)], [Castillo et al (2013)] amongst oth-
ers, but considering the full state vector on the boundaries as measurement.

Unlike all the above approaches, the present thesis considers observer problems where a
part of the state is fully unknown (including at the boundaries). The known part is however
distributed and the explored observers strongly rely on high gain, extending techniques and
performances of finite-dimensional cases.

1.2 The class of systems

In this section, let us introduce the considered class of systems and present some examples
which satisfy this form.
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In short, the systems can be written as

u̇ = A(u)u+A(u1)u+ F(u) (1.1)

in some Banach space of functions on an interval with values in Rn, with an output given by

y =Cu;

C =
(
1 0 · · · 0

)
.

(1.2)

To complete the definition of the class of systems, let us consider some initial conditions (in
general unknown) u0.

We assume that A(u) is, for each fixed argument, the infinitesimal generator of a C0-
semigroup and is written in the form

A(u)u =

k∑
l=1

Πl(u)∂lxu, (1.3)

being a differential operator, acting on vector-valued functions u, with its domain dom(A(·))
containing appropriate functions satisfying suitable boundary conditions for each class of sys-
tem of PDEs (with u0 ∈ dom(A(·))). The mappings Πl(·) belong to appropriate function
spaces, depending on the considered problem, take values in the space of lower triangular
matrices and their elements satisfy the following triangularity

(Πl)ij(u) := (Πl)ij(u1, . . . , uj), i = 1, . . . , n, j = 1, . . . , i, l = 1, . . . , k. (1.4)

Also, A(·) is a mapping belonging to appropriate function spaces and taking values in Rn×n
for each fixed argument. The nonlinear source term F(·) acts on vector-valued functions u,
which might be seen as a general nonlinear operator. Mappings A(u1) and F(u) in general
satisfy the following forms

A(u1) =


0 a2(u1) 0 · · · 0

. . . . . .
...

... an(u1)

0 · · · 0

, (1.5)

F(u) =


F1(u1)

F2(u1, u2)
...

Fn(u1, . . . , un)

 .

Note that more about function spaces and system’s regularity will be said in each chapter
depending on the considered class of systems. The above form corresponds to a cascade
system of partial differential equations (PDEs) looking like a natural extension of the triangular
forms that are appropriate for high-gain observer design in finite dimensions [Khalil (2017)],
[Gauthier and Bornard (1981)], [Gauthier et al (1992)].
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Remark 1.1. Although in this chapter we introduce a system written in a very general triangu-
lar form which encompasses all classes of systems considered in the following chapters, observer
design is performed for some subclasses only of this form. Contrary to the results we would
expect to obtain coming from a natural extension of triangular forms for finite-dimensional
systems to infinite-dimensional ones, observer design is not achieved for all classes of (1.1)-
(1.2). For instance, throughout the thesis mappings Πl are mostly considered diagonal and only
u1-dependent, except for Chapter 3.1 concerning 2 × 2 hyperbolic systems, where these map-
pings exhibit some triangularity. Also, mapping A(u1) is mostly considered constant, except
for Chapter 3.2 concerning a class of 2×2 diffusional Lotka-Volterra system. Observer design
for systems written in the here-considered triangular form, in its full generality, remains open.

Cascade systems of hyperbolic or parabolic type have been widely considered in the liter-
ature. For instance, internal controllability with reduced numbers of controls for first order
hyperbolic systems in cascade form has been studied in [Alabau-Boussouira et al (2017)]
(see also [Alabau-Boussouira (2013)] for observability of second order hyperbolic sys-
tems with reduced observations). In [Coron et al (2010)] the null controllability is
studied for a parabolic system in a cascade form with a nonlinear coupling term. In
[Alabau-Boussouira (2003)] boundary observability is studied for systems in cascade form
with possibly different differential operators on the diagonal, i.e., couplings of different types
of PDEs, for instance coupled wave-Petrowsky equations.

In what follows, we present some models that can be written in the triangular form (1.1)
with output (1.2), for which, high-gain observers will be designed in the following chapters.

• SIR epidemic models: In the field of epidemiology, mathematical models are
used to explain epidemic phenomena and to assess vaccination strategies through
control mechanisms, as for instance in the recent COVID-19 pandemic. For infec-
tious diseases, a fundamental model was formulated by Kermack and McKendrick
[Kermack and McKendrick (1927)] (see [Bastin and Coron (2016)], Chapter 1
and also [Ianeli (1995)], Chapter III for detailed presentation of such systems). This
model classifies population into three groups: (i) the individuals who are uninfected and
susceptible (S) of catching the disease, (ii) the individuals who are infected (I) by the
concerned pathogen, (iii) the recovered (R) individuals who have acquired a permanent
immunity to the disease. In the case when the age of patients is taken into account,
S(t, x), I(t, x), R(t, x) represent the age distribution of the population of each group at
time t. As a result, the integral from x1 to x2 of S, I and R is the number of individuals
of each group with ages between x1 and x2.

The dynamics of the disease propagation in the population are then described by the
following set of hyperbolic partial integro-differential equations on [0,+∞)× [0, L]

∂tS(t, x) + ∂xS(t, x) + µ(x)S(t, x) + G[S(t), I(t)](x) = 0,

∂tI(t, x) + ∂xI(t, x) + (γ(x) + µ(x)) I(t, x)− G[S(t), I(t)](x) = 0,

∂tR(t, x) + ∂xR(t, x) + µ(x)R(t, x)− γ(x)I(t, x) = 0,

(1.6)

where G[S(t), I(t)](x) := β(x)S(t, x)
∫ L

0 I(t, s)ds represents the disease transmission
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rate by contact between susceptible and infected individuals, which is assumed to be
proportional to the sizes of both groups, with β(x) > 0 being the age-dependent
transmission coefficient between all infected individuals and susceptibles having age x.
The maximal life duration in the considered population is denoted by L and, thus,
S(t, L) = I(t, L) = R(t, L) = 0. Parameter µ(x) > 0 denotes the natural age-dependent
per capita death rate in the population and γ(x) > 0 is the age-dependent rate at which
infected individuals recover from the disease.

The boundary conditions are written in the form

S(t, 0) = B(t), I(t, 0) = 0, R(t, 0) = 0,

where B(t) stands for the inflow of newborn individuals in the susceptible part of the
population at time t. Assume that we are able to measure the number of people in the
group R of recovered patients between ages 0 and x, for every age x ∈ [0, L] and time
t ≥ 0, i.e., system’s output is given by

y(t, x) =

∫ x

0
R(t, s)ds.

The above system is written in the form (1.1)-(1.2) by applying a nonlocal trans-
formation, as it is shown in Chapter 2.2. Note that the proposed measurement
of the infected patients upon recovery is following the remarks in the recent paper
[Park and Bolker (2020)] about the COVID-19 pandemic. An alternative formula-
tion would be plausible, where measurement of just the number of infected patients∫ x

0 I(t, s)ds is considered.

• Tubular chemical reactors

Control and observer designs for chemical reactors in the sense of distributed parameter
systems have been widely investigated, see for instance [Boscovic and Krstic (2002)]
and [Christophides and Daoutidis (1996)]. We present here a model of a plug flow
chemical reactor (see [Bastin and Coron (2016)], Chap. 1.7). A plug flow chemical
reactor is a tubular reactor where a liquid reaction mixture circulates. The reaction
proceeds as the reactants travel through the reactor. Here, we consider the case of a
horizontal reactor, where a simple mono-molecular reaction takes place between A and
B, where A is the reactant species and B is the desired product. The reaction is supposed
to be exothermic and a jacket is used to cool the reactor. The cooling fluid flows around
the wall of the tubular reactor. The dynamics are described by the following hyperbolic
equations on [0,+∞)× [0, L]

∂Tc − Vc∂xTc − k0(Tc− Tr) = 0,

∂tTr + Vr∂xTr + k0(Tc − Tr)− k1r(Tr, CA, CB) = 0,

∂tCA + Vr∂xCA + r(Tr, CA, CB) = 0,

∂tCB + Vr∂xCB − r(Tr, CA, CB) = 0,

(1.7)

where Vc is the coolant velocity in the jacket, Vr is the reactive fluid velocity in the
reactor, k0 and k1 are some positive constants, Tc(t, x) is the coolant temperature,
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Tr(t, x) is the reactor temperature, CA(t, x) and CB(t, x) denote the concentrations
of the chemicals in the reaction medium. The function r(Tr, CA, CB) represents the
reaction rate and is given by

r(Tr, CA, CB) = (aCA − bCB) exp

(
− E

RTr

)
,

where a, b are rate constants, E is the activation energy and R is the Boltzmann constant.
We consider boundary conditions as follows

Tr(t, 0) = T in
r , Tc(t, 0) = T in

c , CA(t, 0) = C in
A , CB(t, 0) = 0.

Noting that the sum of concentrations CA+CB is simply described by a delay equation,
we can assume constant sum CA(t, x)+CB(t, x) = C in

A and thus the last hyperbolic equa-
tion may be ignored. Assuming that the measured quantity is the coolant temperature
Tc, i.e.,

y(t, x) = Tc(t, x),

we can transform system into a form as (1.1)-(1.2) by applying the invertible transfor-
mation

u1 = Tc, u2 = Tr, u3 =
(
(a+ b)CA − bC in

A

)
exp

(
− E

RTr

)
.

• Hyperbolic Lotka-Volterra systems We consider a class of hyperbolic cooperative
Lotka-Volterra model, see for instance [Zhang et al (2018)],

∂twi + λi∂xwi = wi

ci +
i+1∑
j=1

mijwj

 , in [0,+∞)× [0, L], i = 1, . . . , n− 1,

∂twn + λn∂xwn = cnwn + wn

n∑
j=1

mnjwj , in [0,+∞)× [0, L],

where wi(t, x) is the population size of the i-th species, ci depicts the intrinsic growth
rate of each species, mij is interspecific (mij ≥ 0, as i 6= j) or intraspecific (mij ≤ 0, as
i = j) interaction, and λi are the transport speeds of each species. For observer design
purposes, we assume mi−1,i 6= 0, ∀i = 2, . . . , n. Assuming that λi < 0, i = 1, . . . ,m and
λi > 0, i = m+ 1, . . . , n, boundary conditions can be written as(

w−(L, t)

w+(0, t)

)
= K

(
w−(0, t)

w+(L, t)

)
,∀t ≥ 0,

where w =
(
w− w+

)T
;w− ∈ Rm, w+ ∈ Rn−m and K ∈ Rn×n. We assume also that

initial conditions are positive and, by standard results, there exist unique global classical
positive solutions for this class of systems. Then, linearizing the above class of systems
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around their steady state, the following hyperbolic dynamics are satisfied

∂tw̄i + λi∂xw̄i =
i+1∑
j=1

m̄ij(x)w̄j , i = 1, . . . , n− 1,

∂tw̄n + λn∂xw̄n =

n∑
j=1

m̄nj(x)w̄j ,

(1.8)

with m̄i−1,i(x) > 0, ∀x ∈ [0, L], i = 2, . . . , n and boundary conditions as in the nonlinear
model, but perturbed by a function of x. We make the hypothesis that the population
of the first species is measured within the domain, i.e.,

y(t, x) = w̄1(t, x).

Hence, this linearized system takes the form of (1.1)-(1.2) (in its linear version). Such
class of hyperbolic systems will be considered in Section 3.3 and their diffusional version
in Section 3.2 of Chapter 3.

1.3 Description of the H-GODP

In this section, we present the main problem this thesis deals with along with some directions
towards the proposed solutions, on which the next chapters elaborate. It concerns the high-
gain observer design problem for infinite-dimensional systems. This thesis is devoted to the ex-
tension of the high-gain observer design for finite-dimensional systems to infinite-dimensional
ones, which turns out to be a nontrivial problem. The classical high-gain observer design for
finite-dimensional nonlinear systems has been extensively studied in the literature and remains
widely considered, see [Khalil (2017)] and references therein. In short, it relies on a single
tuning coefficient, to be chosen large enough so as to ensure exponential - and possibly arbi-
trarily fast - convergence. High-gain observers apply to a large class of cases corresponding to
uniformly observable systems [Gauthier and Bornard (1981)], [Gauthier et al (1992)].

1.3.1 Problem statement

In this subsection, we present a general form of the proposed high-gain observer. More ex-
plicit forms of such observers will be specified in the forthcoming chapters, depending on the
considered classes of systems. For each of the cases, the considered differential operator A(·)
of system (1.1), its domain, along with the type of nonlinearities will lead to different observer
designs and specifications. The main design difficulty encountered in the thesis comes from
the presence of distinct velocities in the hyperbolic operators or distinct diffusivities in the
parabolic ones. Additionally, the type of nonlinearities, which are either locally or globally
Lipschitz, possible existence of nonlocal terms, and quasilinearity/semilinarity of system of
PDEs require various adjustments and treatments. Also, particularly hyperbolic systems ex-
perience some difficulties with respect to observer design, coming from the relationship on
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the boundaries coupling the incoming information with the outgoing one (they might be gen-
eral and nonlinear), which exhibits the same behavior and imposes the same obstacles as the
nonlinearities in the source terms of the hyperbolic dynamics. Note here, that although we
consider (1.1) as the general form, some slight modifications on the dynamics will be made in
some cases of the following chapters.

Let us first consider a symmetric positive definite n × n matrix P satisfying a Lyapunov
inequality of the following form

Sym (PA(y))− C>C ≤ −η
2
In, (1.9)

for some constant η > 0. Such an inequality is always feasible for A(y) and C satisfying
algebraic forms as the ones we already assumed in (1.2), (1.5) (borrowed from the observ-
ability canonical forms for finite-dimensional systems, see for instance [Khalil (2017)]) and,
furthermore, if A(·) is uniformly bounded and infu∈dom(A(·)) ai(Cu) > 0, i = 2, . . . , n. The
existence of such a P can be easily proven, refer for instance to [Hammouri et al (2002)].
Define also a constant matrix Θ by

Θ := diag
(
θ, θ2, . . . , θn

)
, (1.10)

where θ > 0 is a large enough constant and is called the high gain constant of the observer.

Consider now an observer system for (1.1)-(1.2) described by the following equation

˙̂u = Â(y)û+A(y)û+ ΘP−1C>(y − Cû) + F̂(y, û), (1.11)

where Â(y) is the infinitesimal generator of a C0-semigroup for fixed y. The domain of Â(y)

contains functions satisfying same type of boundary conditions as A, but possibly perturbed
by nonlocal mappings of the output y and Â might perform higher-order differentiations than
the ones of A. Also, F̂(y, û) is an appropriately defined mapping for each of the considered
design problems, which might include higher-order differentiations of y in its domain and has
the following dependency on û

F̂(y, û) =


F̂1(y, û1)

F̂2(y, û1, û2)
...

F̂n(y, û1, . . . , ûn)

 .

Remark 1.2. In this thesis, most of the times we assume mapping A(·) constant and con-
taining 1s on its sup-diagonal. In that case, we can substitute the term ΘP−1C>(y − Cû) by
−ΘKC(y − Cû) in (1.11), where K is a vector, which renders A + KC Hurwitz. The latter
is always possible due to the observability of the pair (A,C).

The problem this thesis deals with is described by the following definition.

Definition 1.1. (H-GODP) The High-Gain Observer Design Problem is solvable for a system
given by (1.1) with output (1.2), while output’s spatial derivatives of order at most n−1 might
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also be available, if there exists a well-posed observer system, which estimates the state of
(1.1) with a convergence speed that can be arbitrarily tuned via a single parameter (high-gain
constant) θ. More precisely, for every κ > 0, there exists θ0 > 1, such that for every θ ≥ θ0,
solutions to (1.1), (1.11), with initial conditions u0, û0 satisfy

‖û− u‖X1 ≤ `e−κt‖û0 − u0‖X2 (1.12)

for some ` > 0 polynomial in θ, where by ‖ · ‖X1 , ‖ · ‖X2 we denote norms of appropriately
chosen function spaces X1,X2 for each of the considered problems.

The proposed observer designs rely on a measurement of part of the state. The main
feature of this described high-gain observer design is the arbitrarily fast convergence rate,
similarly as in the finite dimensions and to achieve this property, distributed measurement on
the whole domain is assumed. Furthermore, as indicated in the H-GODP definition, stronger
regularity of the solutions to the initial systems is required for some classes of systems, since
the observer dynamics may include higher-order spatial derivatives of the output (in the weak
or classical sense). This requirement of stronger regularity reveals some links to previous
studies on internal controllabity for cascade systems with reduced number of controls, see
for instance the work of [Alabau-Boussouira et al (2017)]. We note here that, although
boundary observers with the full-state measurement are preferred for practical reasons, see
for instance [Castillo et al (2013)], in the present formulation distributed measurement of
part of the state might be available in many cases of distributed parameter systems. For in-
stance, some setups include thermal cameras for chemical reactors or alternative methods, see
for instance [Zogg et al (2004)], [Pradere et al (2009)], providing the desired distributed
measurements. Also, approximations with distributed measurements within the domain would
provide an approximated measurement on the whole domain. In Lotka-Volterra systems, mea-
surements of one of the n species might be possible through monitoring it in time. Additionally,
the required higher-order spatial derivatives of the output can be available in real-time, since
these constitute causal measurements, contrary to the time-derivatives of the output, which
are strictly not included in observer designs, as the knowledge of them is noncausal. Although
this requirement of the availability of space derivatives of the output might seem restrictive,
approximations via kernel convolutions might be an alternative realization. In the following
remark, we discuss the problem of the solvability of the H-GODP for hyperbolic systems, if
instead of the distributed measurement (1.2), we had a boundary one.

Remark 1.3. If we consider hyperbolic systems of the form (1.1), we see that the prob-
lem of minimum-time control of such systems arises (see [Coron and Nguyen(2019)] and
[Auriol and di Meglio (2016)]), suggesting that a faster observer than a boundary one
would be desirable. Solvability of the H-GODP suggests that a high-gain observer would be
arbitrarily fast, without any limitation in the convergence speed. H-GODP is not solvable in
case of boundary measurement, instead of internal measurement as in (1.2).

First, arbitrary convergence condition would not be fulfilled, since a boundary observer
for hyperbolic systems would experience a limitation with respect to convergence speed. The
rate of convergence is limited by a minimal observation time which depends on the size of the
domain and the characteristic velocities in that case (see [Li (2008)] for minimum time of
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observability due to transport phenomena, and [Deutschmann et al (2016)] for comments
on the convergence of boundary observers).

Second, following a boundary observer design methodology as in [Castillo et al (2013)],
in the presence of a general form of boundary conditions, where a general (nonlinear) law
couples the incoming with the outgoing information on the boundaries, boundary measurement
of the whole state vector would be required, instead for just the first state, for the boundary
observer to be feasible. In [Coron et al (2013)], control design is achieved for a 2 × 2 hy-
perbolic system with some particular boundary conditions, via boundary control on one end of
only one state. Here, however, where we consider the dual problem of observer design with one
observation, such an approach would not be feasible, because of the generality of the boundary
conditions that we might consider. For general boundary conditions, by just one observation
we cannot achieve a dissipativity of the boundary conditions as in this work, which would lead
to stability of the observation error system (see [Coron and Bastin (2015)] about linking
dissipativity of boundary conditions with stability).

1.3.2 Solutions to the H-GODP

In this subsection, we introduce the main approaches, which lead to solutions to the H-GODP
for some classes of systems of PDEs. These are more explicitly developed in the next chapters.
We distinguish two approaches, the direct observer design and the indirect observer design,
depending on a specific property of the differential operator associated to the system.

Definition 1.2 (Property (S)). We say that system (1.1) satisfies Property (S) for its asso-
ciated differential operator A(·), given by (1.3), if mappings Πl(·) satisfy

Πl(u) = πl(Cu)In,∀u ∈ Rn, l = 1, . . . , k, (1.13)

for some scalar functions πl(·).

Remark 1.4. When Property (S) in the above definition is satisfied, we deduce a commutative
property between Πl(·) and P , where P is a Lyapunov matrix satisfying (1.9) for some η > 0.
This Lyapunov matrix is used in the Lyapunov stability analysis of the observer error equations
and such a Property (S) implying the aforementioned commutativity, is needed to perform
integrations by parts. In this thesis, we are mostly concerned with systems associated with
diagonal differential operators A, although a system (1.1) might be suitable for observer design
if it has a more general form, with its differential operator being lower triangular, i.e., matrices
Πl(·) are lower triangular. It would be plausible, thereby, to state a "generalized" version of
Property (S) corresponding to these cases, where again integrations by parts would be feasible.
“We say that system (1.1) satisfies Property (S) for its differential operator A, if there exists
a constant matrix P symmetric and positive definite satisfying (1.9) for some constant η > 0,
with

PΠl(u) symmetric, for all u ∈ dom(A(·)), l = 1, . . . , k.”

Observer design has been achieved for a class of hyperbolic systems with Πl=1(·) only u1-
dependent, which, under a finite-dimensional state transformation, can be written in a system,
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whose hyperbolic operator satisfies the above-mentioned "generalized" version of Property (S),
see [Kitsos et al (2019b]. However, this work is not included in the present manuscript, as
some specifications of the high-gain observer designs were not met via this approach.

Following the above definition, we distinguish two cases for high-gain observer design. The
first corresponds to solvability of the H-GODP when Property (S) holds and the second to
solvability when Property (S) does not hold.

A. Direct observer design (Property (S) holds)

Direct observer design is feasible when Property (S) holds and this is shown in Chapter 2 for
a class of n×n quasilinear diagonal hyperbolic systems of partial integro-differential equations
with one characteristic velocity, satisfying stucture (1.1). Property (S) allows the design of a
high-gain observer of the form (1.11) with Ã(·) the same as A(·) (while the argument u1 of
the first operator Ã(·) is substituded by y in the second operator A(·)) and all the mappings
of this equation not containing any spatial derivatives of the output. Thus, for this observer
design, in the definition of H-GODP, spatial derivatives of the output need not be available. In
the recent work of [Alabau-Boussouira et al (2017)] and previous works of these authors,
it is shown that for a case of diagonal hyperbolic systems with a single characteristic velocity
(diagonal hyperbolic operator with one velocity, obviously, satisfies Property (S) defined here),
written in a cascade form, the controllability problem is less complicated compared to the case
of distinct velocities. This problem, for instance, does not encounter the phenomenon of loss
of derivatives, which arises in the presence of distinct characteristic velocities. In this case,
no stronger regularity of system’s solutions is required. In the context of the present thesis,
observer design with reduced number of observation and under Property (S), it is simpler
compared to the case where Property (S) does not hold and then direct observer design is
the solution to the former case. In Chapter 2, it will be shown that, under Property (S)
integration by parts is possible, needed in the Lyapunov stability analysis of the observer
error. Although Property (S) seems restrictive for the class of hyperbolic systems, since it
implies the presence of a single velocity, there are examples as the previously mentioned SIR
epidemic models, which indeed satisfy this property, see Section 1.2. Property (S) also holds
for cascade systems of linearized Korteweg-de Vries equations, considered in Chapter 4.

B. Indirect observer design (Property (S) does not hold)

In this thesis, we consider some systems, where Property (S) does not hold. Chemical
reactors and hyperbolic Lotka-Volterra systems, considered in Section 1.2, do not in general
satisfy Property (S). Without property (S) holding, a different strategy than in the case A
is employed, where indirect observer design is applied. This indirect method, first, requires
system’s differential operator A to be decomposed into a sum of a) a new differential operator,
satisfying this fundamental Property (S), b) a differential operator (and possibly nonlinear)
including only the first measured state in its domain, and c) a bilinear mapping between a
function of the unmeasured state and a differential operator, including only the first state in
its domain. To achieve this, we apply an invertible infinite-dimensional state transformation,
where, simultaneously, the systems of PDEs preserve their triangular structure. In this way,
the differential operator, associated to the new system, satisfies Property (S). This proposed
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decomposition of the differential operator leads us to inject the spatial derivatives of the
output of higher orders in the observer dynamics. Existence of such infinite-dimensional
transformations is shown in Chapter 3, where quasilinear 2×2 hyperbolic systems with different
characteristic velocities, 2×2 and 3×3 semilinear parabolic systems with distinct diffusivities,
and finally n× n linear heterodirectional hyperbolic systems are considered.

The proposed solutions to the H-GODP via this indirect design is connected to the prob-
lem of controllability/observability and exhibits similar difficulties that arise in these prob-
lems. Although these links are not investigated in this thesis, since its main goal is to pro-
vide a solution to the H-GODP, we refer to some significant works on controllability, which
might present some duality with the considered problem here of observer design with re-
duced number of observations, and could be part of a future research. The difficulties aris-
ing in the controllability of hyperbolic systems with internal control and reduced number
of controls and in the presence of distinct characteristic velocities is described in the no-
table work [Alabau-Boussouira et al (2017)], as well as in previous works of Coron and
Alabau-Boussouira, see for instance [Coron and Lissy (2014)] for controllability of Navier-
Stokes systems. The difficulties with respect to the presence of distinct velocities come from
the algebraic solvability, a notion which appears in the fixed point theorem of M. Gromov
[Gromov (1986)] for partial differential operators and its use of the framework of control
theory was introduced in [Coron (2007)]. In these works, it is shown that the complexity to
prove controllability augments with the number of equations and the strength of the nonlin-
earities. The same difficulties reasonably arise in the problem of H-GODP, solved in Chapter
3, where the larger the number of states of the systems, the number of distinct velocities or
diffusivities and the number of the nonlinearities are, the solvability analysis is more com-
plicated. In this context, the proposed indirect observer design is only applicable to some
subclasses of the general system (1.1).

Stronger regularity is required for the controllability problem in
[Alabau-Boussouira et al (2017)], see also [Alabau-Boussouira (2013)] (Hypoth-
esis H1 in Section 4). In these works, the phenomenon of loss of derivatives arises, as the
regularity of the dynamics is stronger than the regularity of the control laws, whenever the ve-
locities are distinct (see Theorem 3.1 in [Alabau-Boussouira et al (2017)]). In the present
framework of the solutions to the H-GODP, the regularity of system’s dynamics needs to be
stronger than the regularity of the space in the norm of which the asymptotic convergence
of the observer is exhibited (refer to the norm ‖ · ‖X1 in Definition 1.1). Furthermore, when
dealing with n× n hyperbolic systems with n ≥ 4 velocities, a condition of space periodicity
for the boundary conditions is required for the solutions of the initial system, in order to solve
the H-GODP in Chapter 3.3 here. A similar condition of space periodicity for the boundary
conditions appears in controllability problems in [Alabau-Boussouira et al (2017)].
Hence, revealing the nature of these mentioned works, it is plausible to understand that this
indirect observer design, which is proposed in this thesis, requires some stronger sufficient
conditions than the ones in the case of direct observer design.
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1.4 Conclusion

After a short review of existing literature on observer design for infinite-dimensional systems,
the new problem that is considered in the present manuscript has been introduced (and called
H-GODP). It extends in short high gain techniques already available for finite-dimensional
systems to some infinite-dimensional ones, highlighting some specific issues in such cases and
giving rise to two types of solutions to be presented in next chapters: direct or indirect design,
depending on some property of the associated differential operator.
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This chapter is devoted to presenting a solution to the H-GODP for a class of of quasi-linear
hyperbolic systems, possibly including nonlocal source terms, making them systems of Partial
Integro-Differential Equations (PIDEs). The results of the present chapter are presented in
[Kitsos et al (2018)] and [Kitsos et al (2020d)].

The systems considered here are written in a triangular form, as in the general form
(1.1) introduced in Chapter 1, while the output is a distributed measurement of part of the
state, see (1.2). This class of systems can be found in various cases, like chemical reactors
[Boscovic and Krstic (2002)], where by measuring the temperature of the reactor we would
expect to estimate the concentrations of masses of chemicals, or some age-dependent epidemic
models, where the objective would be to estimate the remaining population groups arbitrarily
fast with the only measurement of the population that has recovered from a disease. Stabil-
ity and controllability of age-structured population models have been already studied (see
[Bastin and Coron (2016)][Chapter 1] and references therein, [Schmidt et al (2018)]
and in general PIDEs or PDEs with nonlocal terms have been considered for instance in
[Coron et al (2016)], [Karafyllis and Krstic (2017)], [Deutschmann et al (2016)].

Concerning the quasilinear hyperbolic operator domain, here it is considered quite general
with respect to boundary conditions, while it is diagonal with only one characteristic velocity,
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in order to satisfy Property (S), introduced in Definition 1.2 of Chapter 1. We recall from
Subsection 1.3.2 that Property (S) leads to direct observer design (see A in Subsection 1.3.2),
since in that case, a Lyapunov matrix commutes with the matrix of the characteristic velocities.
Then, under Property (S), integration by parts, needed in the Lyapunov stability analysis
of the observer error equations, can directly be used. Note that constraints on the source
term can be found in some studies of stability problems as in [Bastin and Coron (2016)],
[Coron and Bastin (2015)] and in [Prieur et al (2014)] (Proposition 2.1), which allow a
similar commutativity as the previously described one, while this is not the case here.

The main contribution of this chapter is a solution to the H-GODP for the considered class
of systems: a high-gain observer is designed, while system’s solutions remain bounded in an
appropriate space, an assumption which is made in order to deal with the quasilinearity of the
hyperbolic operator. The nonlocal source terms in the dynamics are considered locally Lips-
chitz. The high-gain observer then is a copy of the system up to some output injection terms,
while the nonlinearities are substituted by their composition with sufficiently smooth satura-
tion functions. The exponential stability of the observer error is proven for the C1-norm, fol-
lowing analysis inspired by [Bastin and Coron (2016)] and [Coron and Bastin (2015)]
for instance; and finally, the applicability of this approach is illustrated to an epidemic model.

The chapter is organized as follows. The solution to the H-GODP, sufficient conditions and
detailed proofs are provided in Section 2.1, where Theorem 2.1 constitutes our main result.
In Section 2.2 an application to an age-dependent SIR-type epidemic model is proposed.
Conclusions and perspectives are discussed in Section 2.3.

2.1 Main observer result

In this section, we present the considered class of systems, the proposed high-gain observer,
and its convergence proof.

2.1.1 Problem statement and requirements

We are concerned with one-dimensional, first-order quasi-linear hyperbolic systems of balance
laws, described by the following equations on a strip Π := [0,+∞)× [0, L];L > 0

ξt(t, x) + λ(ξ1(t, x))ξx(t, x) = Aξ(t, x) + f (x,F [ξ(t)] (x)) , (2.1a)

where ξ =
(
ξ1 · · · ξn

)>.
Consider also a distributed measurement, available in the output, of the form

y(t, x) = Cξ(t, x), (2.1b)

where y : [0,+∞)× [0, L]→ R.
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We assume that the involved constant matrices satisfy the following particular structures

A =


0 1 0 · · · 0

. . . . . .
...

... 1

0 · · · 0

, C =
(
1 0 · · · 0

)
,

and the nonlinear balance terms are of the form

f (·,F [ξ]) =


f1 (·,F1 [ξ1])

f2 (·,F2 [ξ1, ξ2])
...

fn (·,Fn [ξ1, . . . , ξn])

 .

From the previous equations, we observe that the system satisfies some triangular struc-
ture, which presents an analogy to the finite-dimensional case (see [Khalil (2017)]), as the
one introduced in Section 1.2 of Chapter 1.

In the sequel, for mapping f we use the definition of the following difference operator

∆ξ̂ [f (·,F)] (ξ)(x) := f
(
x,F [ξ̂](x)

)
− f (x,F [ξ](x)) ,

parametrized by ξ̂.

We assume the following regularity for the dynamics:

• the characteristic velocity λ is continuously differentiable, i.e., λ in C1 (R;R) and, with-
out loss of generality, λ(ξ1) > 0, for all ξ1 in R (hyperbolicity condition).

• the nonlinear balance term f is continuously differentiable, i.e., f in C1 ([0, L]× Rn;Rn).
As a result, for every R > 0, there exists LR > 0, such that for every w, ŵ in
Rn, with |w|, |ŵ| ≤ R, maxx∈[0,L] |f (x,w) − f (x, ŵ) | ≤ LR|w − ŵ|. In addition,
suppose that for every R > 0, there exists L′R > 0, such that for every w, ŵ in
Rn, with |w|, |ŵ| ≤ R, maxx∈[0,L] |Dwf (x,w) − Dŵf (x, ŵ) | ≤ L′R|w − ŵ|. Further-
more, F : C0 ([0, L];Rn) → C1 ([0, L];Rn) is a Fréchet differentiable mapping that
can include terms g1(ξ), where g1 in C1 (Rn;Rn) and also nonlocal terms (nonlinear
Volterra integrals) of the form

∫ x
0 g2(ξ(s))ds, where g2 in C0 (Rn;Rn). More explic-

itly, suppose that for every R > 0, there exist L1,R, L2,R, L3,R, L
′
1,R, L

′
2,R, L

′
3,R > 0,

such that for every ξ, ξ̂ in C0 ([0, L];Rn), with ‖ξ‖∞, ‖ξ̂‖∞ ≤ R, |∆ξ̂[F ](ξ)(x)| ≤
L1,R|ξ(x)− ξ̂(x)|+ L2,R|ξ(L)− ξ̂(L)|+ L3,R

∫ L
0 |ξ(s)− ξ̂(s)|ds, and |∆ξ̂Dξ[F ](ξ)(x)| ≤

L′1,R|ξ(x)− ξ̂(x)|+ L′2,R|ξ(L)− ξ̂(L)|+ L′3,R
∫ L

0 |ξ(s)− ξ̂(s)|ds, for all x in [0, L].

We consider initial and boundary conditions of the following general form

ξ(0, x) =ξ0(x), x ∈ [0, L], (2.2a)

ξ(t, 0) =H (ξ(t, L)) , t ∈ [0,+∞), (2.2b)

where we assume the following regularity:
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• Initial condition ξ0 is continuously differentiable and satisfies zero-order and one-order
compatibility conditions (see [Bastin and Coron (2016)][App. B] for precise defini-
tion of compatibility conditions). The mapping H is continuously differentiable, i.e., H
in C1 (Rn;Rn). More explicitly, suppose that for every R > 0, there exist L4,R, L

′
4,R > 0,

such that for every ξ, ξ̂ in Rn, with |ξ|, |ξ̂| ≤ R, |∆ξ̂ [H] (ξ)(L)| ≤ L4,R|ξ(L)− ξ̂(L)|, and
|∆ξ̂ [DξH] (ξ)(L)| ≤ L′4,R|ξ(L)− ξ̂(L)|.

Remark 2.1. The specific type of boundary conditions input/output relation (2.2b) stands as
a sufficient condition for the well- posedness of the observer. This will be shown in the sequel.
Also, the main result of the present section would remain unchanged if we considered the case
where boundary conditions satisfy the relation ξ(t, 0) = h (t, ξ(t, L)), with h(·, ·) a C1 map.
This case would only require slight modifications.

The assumption that follows is essential to assert the well-posedness of our system, along
with an observer design requirement of forward completeness. Furthermore, it imposes global
boundedness of classical solutions in the C1-norm, which is essential in the design of our
nonlinear observer. The latter assumption arises from the quasi-linearity of the system (the
dependence of λ on ξ1) and can be dropped for the case of semilinear systems, but then
a stronger assumption on the nonlinear source terms would be imposed in its place. For
more detailed presentation of the nature of the following assumption, the reader can refer to
[Bastin and Coron (2016)], [Li (1985)] and references therein, where sufficient conditions
for the well-posedness and existence of classical solutions for quasi-linear hyperbolic systems of
balance laws are given. If we had nonlocal conservation laws, i.e., if velocity was of the form
λ[ξ1(t)](x) := λ(

∫ L
0 ξ1(t, s)ds), this assumption would be met more easily, see for instance

[Coron et al (2020)], [Keimer et al (2018)].

Assumption 2.1. Consider a set M ⊂ C1 ([0, L];R) nonempty and bounded, consisting of
functions satisfying zero-order and one-order compatibility conditions for problem (2.1a)-(2.2).
Then for any initial condition ξ0 in M, problem (2.1a)-(2.2) admits a unique classical solu-
tion in C1 ([0,+∞)× [0, L];Rn). Moreover, there exists δ > 0, such that for all ξ0 in M,
‖ξ(t, ·)‖1 ≤ δ, for all t in [0,+∞).

Along the chapter, in order to refer to solutions satisfying Assumption 2.1, we use the
definition of the following set

Bδ :=
{
ξ ∈ C1([0, L];Rn) : ‖ξ‖1 ≤ δ

}
,

in which they belong.

Define now a C1 vector-valued function Rn 3 ζ 7→ sδ(ζ) =
(
s1
δ(ζ1), · · · , snδ (ζn)

)
,

parametrized by δ, and satisfying the following properties.

For every δ > 0 and v, w in Rn, such that |w| ≤ δ, there exists ωδ > 0, such that the
following inequality is satisfied

|sδ(v)− w| ≤ ωδ|v − w|. (2.3a)



2.1. Main observer result 27

Moreover, there exists mδ > 0, such that for every v in Rn,

|sδ(v)|, |Dvsδ(v)| ≤ mδ. (2.3b)

Note that function

siδ(ζi) =

{
ζi, |ζi| ≤ δ
sgn(ζi)

(
(|ζi| − δ) e−|ζi|+δ + δ

)
, |ζi| > δ

(2.4)

satisfies (2.3) with ωδ =
√
n,mδ =

√
n
(
e−1 + δ

)
.

We are now in a position to introduce our candidate observer dynamics and its boundary
conditions for system (2.1a), (2.1b), (2.2). Define, first, a diagonal matrix Θ by

Θ := diag
(
θ, θ2, . . . , θn

)
, (2.5)

where θ > 1 is the candidate high-gain constant of the observer, which will be selected precisely
later. Let also K in Rn, chosen in a way that A+KC is Hurwitz. Note that for such a K, one
can find a symmetric and positive definite n × n matrix P satisfying a quadratic Lyapunov
equation of the following form

2Sym (P (A+KC)) = −In. (2.6)

The previous equation is always feasible, due to the observability of the pair (A,C). Let us
remark that P satisfying (2.6) cannot be diagonal, since matrix A fails by its definition to be
a diagonally stabilizable matrix.

High-Gain Observer

With the previous assumptions, the observer that will solve the H-GODP can be given by
the following equations on Π

ξ̂t(t, x) + λ (y(t, x)) ξ̂x(t, x) =Aξ̂(t, x)−ΘK
(
y(t, x)− Cξ̂(t, x)

)
+ f

(
x,F

[
sδ

(
ξ̂(t)

)]
(x)
)
,

(2.7a)

ξ̂(t, 0) =H
(
sδ

(
ξ̂(t, L)

))
. (2.7b)

We can easily deduce some difference inequalities for the dynamics, to be invoked later, as
a direct consequence of the regularity assumptions and properties (2.3) of sδ(·). Precisely,
for any δ > 0, there exist constants L1,δ, L2,δ, L3,δ, L4,δ, L

′
1,δ, L

′
2,δ, L

′
3,δ, L

′
4,δ > 0 depending on

constants ωδ and mδ, such that for every ξ, ξ̂ in C0 ([0, L];Rn), with ‖ξ‖∞ ≤ δ, the following
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inequalities are satisfied for all x in [0, L]

|∆sδ(ξ̂)
[f (·,F)] (ξ)(x)| ≤ L1,δ|ξ̂(x)− ξ(x)|+ L2,δ|ξ̂(L)− ξ(L)|+ L3,δ

∫ L

0
|ξ̂(s)− ξ(s)|ds,

(2.8a)

|∆sδ(ξ̂)
[H] (ξ)(L)| ≤ L4,δ|ξ̂(L)− ξ(L)|, (2.8b)

|∆sδ(ξ̂)
[Dξf (·,F)] (ξ)(x)| ≤ L′1,δ|ξ̂(x)− ξ(x)|+ L′2,δ|ξ̂(L)− ξ(L)|+ L′3,δ

∫ L

0
|ξ̂(s)− ξ(s)|ds,

(2.8c)

|∆sδ(ξ̂)
[DξH] (ξ)(L)| ≤ L′4,δ|ξ̂(L)− ξ(L)|. (2.8d)

Remark 2.2. Assumption 2.1 guarantees the existence of a preassigned ball in C1 in which
system’s solutions take values. This, in conjunction with the regularity assumptions, would
allow us to avoid assuming that the nonlinear dynamics of the system are globaly Lipschitz,
which in general constitutes a natural assumption in classical high-gain observer designs for
finite dimensions. To avoid such a restricting assumption, we plug function sδ in observer dy-
namics (2.7). Exploiting this function guarantees that observer system’s dynamics are globally
Lipschitz. We note also that, although it is not described explicitly by the observer’s equations,
we avoid injecting sδ in potential linear terms included in f and H. In that case, we set
sδ

(
ξ̂
)

= ξ̂, since linear terms are globally Lipschitz.

The following lemma guarantees the existence of unique global classical solutions for the
candidate observer. The proof of the lemma follows from classical arguments and the fact
that observer’s nonlinearities are globally Lipschitz.

Lemma 2.1. (Existence/uniqueness of global classical solutions to the observer system) Under
the regularity assumptions for the dynamics and for any y in C1 ([0,+∞)× [0, L];R), the
problem described by (2.7) on domain Π with initial condition ξ̂0(x) := ξ̂(0, x), for all x in
[0, L], satisfying zero-order and one-order compatibility conditions, admits a unique classical
solution in Π, i.e., there exists a unique solution ξ̂ to (2.7) in C1 ([0,+∞)× [0, L];Rn).

Proof. See Appendix 2.4 at the end of the chapter for a detailed proof.

We are now in a position to present our main result on the solvability of the H-GODP.

Theorem 2.1. (Observer convergence) Consider system (2.1a), (2.2), defined on Π with out-
put (2.1b) and suppose that Assumption 2.1 holds for initial condition ξ0 ∈ M. Let also
K in Rn, chosen in such a way that A + KC is Hurwitz. Then, the H-GODP for system
(2.1a) - (2.2) is solvable by system (2.7) for θ > 1 as a high gain and initial condition ξ̂0

in C1 ([0, L];Rn), with ξ̂0(x) = ξ̂(0, x), satisfying zero-order and one-order compatibility con-
ditions. This is a high-gain observer for ξ, in the sense that for θ large enough it admits a
unique classical solution in Π on the one hand, providing an estimate for the state of system
(2.1a) - (2.2) on the other hand. More precisely, for every κ > 0, there exists θ0 ≥ 1, such
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that for every θ > θ0, the following inequality holds

‖ξ̂(t, ·)− ξ(t, ·)‖1 ≤ `e−κt‖ξ̂0(·)− ξ0(·)‖1,∀t ≥ 0, (2.9)

for some ` > 0, polynomial in θ.

This theorem states that for system (2.1a) - (2.2) with output (2.1b) we have a high-gain
observer design providing an estimate of its full state, with a convergence rate adjustable via
θ. The well-posedness results from Lemma 2.1. The convergence result is established in next
subsection.

2.1.2 Observer convergence proof

This subsection is dedicated to the proof of Theorem 2.1.

Consider the observer error e := ξ̂ − ξ which satisfies

et(t, x) + λ(y(t, x))ex(t, x) = (A+ ΘKC) e(t, x) + ∆sδ(ξ̂(t)) [f (·,F)] (ξ(t)) (x), (2.10)

e(t, 0) =∆sδ(ξ̂(t)) [H] (ξ(t))(L). (2.11)

We now define the linearly transformed error by ε := Θ−1e and we derive the following
hyperbolic equations for ε on Π

εt(t, x) + λ (y(t, x)) εx(t, x) =θ (A+KC) ε(t, x) + Θ−1∆sδ(ξ̂(t)) [f (·,F)] (ξ(t))(x), (2.12)

ε(t, 0) =Θ−1∆sδ(ξ̂(t)) [H] (ξ(t))(L). (2.13)

At this point, let us introduce an operator K : C1 ([0, L];Rn) → C0 ([0, L];Rn×n) defined
by

K[ξ] := λ′(Cξ) (λ(Cξ))−1 InC

(
−λ(Cξ)

∂

∂x
ξ +Aξ + f (·,F [ξ])

)
. (2.14)

Define also Kξ̂1 : C1 ([0, L];Rn) → C0 ([0, L];Rn), parametrized by ξ̂ ∈ C0 ([0, L];Rn), and
given by

Kξ̂1[ξ] := −K[ξ]Θ−1∆sδ(ξ̂) [f (·,F)] (ξ) + Θ−1
〈

∆sδ(ξ̂) [Dξf (·,F)] (ξ), ξt

〉
. (2.15)

Next, by temporarily assuming that ε is of class C2, we derive the following hyperbolic equa-
tions for εt

εtt(t, x) + λ (y(t, x)) εtx(t, x)

= K[ξ(t)](x)εt(t, x)Θ−1

〈
Duf (·,F [u])|

u=sδ

(
ˆξ(t)

) , Dξ̂sδ

(
ξ̂(t)

)
Θεt(t)

〉
(x)

+ θ(A+KC)εt(t, x)− θK[ξ(t)](x)(A+KC)ε(t, x) +Kξ̂(t)1 [ξ(t)](x), (2.16)

εt(t, 0) = Θ−1
(

∆sδ(ξ̂(t)) [DξH] (ξ(t))(L)ξt(t, L)

+DuH (u)|
u=sδ

(
ˆξ(t)

) (L)Dξ̂sδ

(
ξ̂(t, L)

)
Θεt(t, L)

)
. (2.17)
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Remark 2.3. Due to cumbersome notation in the previous relations, we provide an example
to make the calculations of the Fréchet derivative more clear. Let, for instance,

f (x,F [u](x)) = g(x)g1 (u(x)) + g2 (u(L)) +

∫ x

0
g3 (u(s)) ds.

Then,

〈Duf (·,F [u]) , ut〉 (x) = g(x)Dug1 (u) (x)ut(x)

+Dug2 (u) (L)ut(L) +

∫ x

0
Dug3 (u) (s)ut(s)ds.

Now, notice that whenever ξ in Bδ, due to continuity of λ(·), the fact that λ(ξ1) > 0,
for all ξ1 in R and the fact that ‖ξ‖∞ ≤ δ, the quantities supξ∈Bδ(λ(Cξ)), infξ∈Bδ(λ(Cξ))

are positive and finite. In addition, whenever ξ in Bδ and invoking the hyperbolic dynamics
(2.1a), we can easily calculate constant δ1 > 0, dependent on δ, such that

‖ξt‖∞ = ‖ − λ(ξ1)ξx +Aξ + f (·,F [ξ]) ‖∞ ≤ δ1. (2.18)

By combining the above arguments, the fact that θ > 1, (2.18), continuity of the involved
mappings and inequalities (2.8), we can easily calculate positive constants γi,δ, i = 1, . . . , 6,
such that whenever ξ in Bδ, ξ̂ in C0 ([0, L];Rn), the following inequalities are satisfied for all
x in [0, L]:

|Θ−1
〈
Duf (·,F [u])|u=sδ(ξ̂) , Dξ̂sδ

(
ξ̂
)

Θεt

〉
(x)|

≤ γ1,δ

(
|εt(x)|+ |εt(L)|+

∫ L

0
|εt(s)|ds

)
, (2.19a)

|Θ−1∆sδ(ξ̂) [f (·,F)] (ξ) (x)| ≤ γ2,δ

(
|ε(x)|+ |ε(L)|+

∫ L

0
|ε(s)|ds

)
, (2.19b)

|Θ−1∆sδ(ξ̂) [H] (ξ) (L)| ≤ γ3,δθ
n−1|ε(L)|, (2.19c)

|Θ−1∆sδ(ξ̂) [Dξf (·,F)] (ξ) (x)| ≤ γ4,δ

(
|ε(x)|+ |ε(L)|+

∫ L

0
|ε(s)|ds

)
, (2.19d)

|Θ−1 DuH [u]|u=sδ(ξ̂) (L)Dξ̂sδ

(
ξ̂(L)

)
Θ| ≤ γ5,δθ

n−1, (2.19e)

|Θ−1∆sδ(ξ̂) [DξH] (ξ)(L)| ≤ γ6,δθ
n−1|ε(L)|. (2.19f)

Define also constants

γ7,δ := sup
ξ∈Bδ
|λ′(Cξ)|, γ8,δ := inf

ξ∈Bδ
λ(Cξ), γ9,δ := sup

ξ∈Bδ
λ(Cξ), (2.20a)

and derive the following bounds for all x in [0, L]:

|K[ξ](x)| ≤ γ10,δ :=
δ1γ7,δ

γ8,δ
, (2.20b)

|Kξ̂1[ξ](x)| ≤ γ11,δ

(
|ε(x)|+ |ε(L)|+

∫ L

0
|ε(s)|ds

)
; (2.20c)

γ11,δ := γ10,δγ2,δ + δ1γ4,δ.
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Remark 2.4. Note here that all the above constants γ1,δ, . . . , γ11,δ are calculated by taking
bounds of the involved mappings on Bδ and depend on the global bound δ of the system’s tra-
jectories (and subsequently on δ1 in (2.18)), constants in (2.8), the order of the system n,
and are independent of the observer gain θ. More explicitly, γ1,δ, γ2,δ, γ4,δ, and γ11,δ being
independent of θ is a direct consequence of the assumed triangularity of the involved map-
pings, similarly as in the classical high-gain observer designs [Gauthier et al (1992)]. This
property turns out to be sufficient for the solvability of the H-GODP. More precisely, in the
sequel, while bounding the Lyapunov derivative from above, the independence of these param-
eters on θ shall not add positive terms with linear (or higher-order) dependency on θ. On
the other hand, negative terms will appear depending linearly on θ as a direct consequence of
the assumed observability of the pair (A,C). This will render the negativity of the Lyapunov
derivative feasible, as this will be more clear in the forthcoming Lyapunov analysis.

To prove exponential stability of the error system at the origin, we first need to define a
Lyapunov functional Wp : C1([0, L];Rn)→ R by

Wp[ε] :=

(∫ L

0
π(x)exp (pµθ,δx)Gp[ε](x)dx

)1/p

, (2.21a)

where Gp : C1([0, L];Rn)→ R is given by

Gp[ε] :=
(
ε>Pε+ ρ0ε

>
t Pεt

)p
(2.21b)

and ρ0 in (0, 1) is a constant (to be chosen appropriately), p in N, P in Rn×n is a symmetric
positive definite matrix satisfying (2.6), π : [0, L]→ R is given by

π(x) := (π̄ − 1)
x

L
+ 1; π̄ :=

supξ∈Bδ(λ(Cξ))

infξ∈Bδ(λ(Cξ))
(2.22)

and µθ,δ is given by

µθ,δ :=
1

L
ln(µδθ

2n−2), (2.23a)

where
µδ :=

|P |
eig(P )

max
(
γ2

3,δ, γ
2
5,δ, γ

2
6,δδ

2
1 , γ5,δγ3,δδ1

)
. (2.23b)

Note here that, by its definition, π is bounded as follows

1 ≤ π(x) ≤ π̄,∀x ∈ [0, L]. (2.24)

Let us also define functional V : C1([0, L];Rn)→ R by

V[ε] := ‖ exp (µθ,δ·) ε>Pε‖∞ + ‖ρ0 exp (µθ,δ·) ε>t Pεt‖∞. (2.25)

The idea is to let p→∞ in the end, to approximate V by Wp. This convergence property is
presented in details in Appendix 2.4.2. By invoking Lemma 2.1 and Assumption 2.1, which
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establish global unique classical solutions for both observer system (2.7) and system (2.1a)-
(2.2) respectively, we are now in a position to define Gp,Wp, V : [0,+∞)→ R by

Gp(t) := Gp[ε](t),Wp(t) :=Wp[ε](t), V (t) := V[ε](t), t ≥ 0, ∀t ≥ 0. (2.26)

Calculating the time-derivative Ẇp along the classical solutions to (2.12) - (2.13), (2.16) -
(2.17), we get

Ẇp =
1

p
W 1−p
p

∫ L

0
pπ(x) exp (pµθ,δx)Gp−1(x)

×
(
εt(x)>Pε(x) + ε>(x)Pεt(x) + ρ0ε

>
tt(x)Pεt(x) + ρ0εt(x)>Pεtt(x)

)
dx. (2.27)

After substituting the dynamical equations (2.12) and (2.16) into the above equation and
performing integration by parts (which is possible, since error system satisfies Property (S)
for its hyperbolic operator, see Definition 1.2 of Chapter 1), Ẇp can be written in the following
form

Ẇp = W 1−p
p

(
1

p
T1,p +

1

p
T2,p + T3,p + T4,p + T5,p

)
, (2.28)

where

T1,p :=− π(L)λ(y(L)) exp (pµθ,δL)Gp(L) + π(0)λ(y(0))Gp(0), (2.29a)

T2,p :=

∫ L

0
dx [π(x) exp (pµθ,δx)λ (y(x))]Gp(x)dx, (2.29b)

T3,p :=2

∫ L

0
π(x) exp (pµθ,δx)Gp−1(x)

[
ε>(x)PΘ−1∆sδ(ξ̂)

[f (·,F)] (ξ)(x) + ρ0ε
>
t (x)PKξ̂1[ξ](x)

+ρ0ε
>
t Sym(PK[ξ])εt

]
dx, (2.29c)

T4,p :=2

∫ L

0
π(x) exp (pµθ,δx)Gp−1(x)ρ0εt(x)>PΘ−1

×
〈
Duf (·,F [u])|u=sδ(ξ̂) , Dξ̂sδ

(
ξ̂
)

Θεt

〉
(x)dx, (2.29d)

T5,p :=θ

∫ L

0
π(x) exp (pµθ,δx)Gp−1(x)

[
2ε>Sym(P (A+KC))ε+ 2ρ0ε

>
t Sym(P (A+KC))εt

−ρ0ε
>
t PK[ξ](A+KC)ε− ρ0ε

>(A+KC)>K>[ξ]Pεt

]
dx. (2.29e)

After substituting boundary equations (2.13) and (2.17) in T1,p and by virtue of (2.8) and
(2.22), using the previously calculated bounds and trivial inequalities, we can easily obtain
the following inequality

T1,p ≤ sup
ξ∈Bδ

(λ(Cξ))Gp(L)
(
− exp (pµθ,δL) +

(
θ2n−2µδ

)p) (2.30)

and, subsequently, by (2.23a)
T1,p ≤ 0. (2.31)

By the fact that π(x) ≥ 1, for all x ∈ [0, L], we can derive the following bound for T2,p

T2,p ≤ (ω1,δ + p|µθ,δ|ω2,δ)W
p
p , (2.32)
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where
ω1,δ :=

|P |δγ7,δ

eig(P )
, ω2,δ :=

|P |γ9,δ

eig(P )
.

By exploiting (2.19), (2.20), T3,p can be bounded as follows

T3,p ≤2

∫ L

0
π(x) exp (pµθ,δx)Gp−1(x)|P |

[
γ2,δ|ε(x)|

(
|ε(x)|+ |ε(L)|+

∫ x

0
|ε(s)|ds

)
+ρ0γ11,δ|εt(x)|

(
|ε(x)|+ |ε(L)|+

∫ x

0
|ε(s)|ds

)
+ ρ0γ10,δ|εt(x)|2

]
dx

≤
∫ L

0
π(x) exp (pµθ,δx)Gp−1(x)

|P |
eig(P )

max {4γ2,δ + ρ0γ11,δ, 3γ11,δ + γ10,δ}G1(x)dx

+

∫ L

0
π(x) exp (pµθ,δx)Gp−1(x)

|P |
eig(P )

(γ2,δ + ρ0γ11,δ)

(
G1(L) +

∫ x

0
G1(s)ds

)
dx

(2.33)

≤ω3,δW
p
p + ω4,δ‖ exp (pµθ,δ·)G1(·)‖∞W p−1

p−1

≤ω3,δW
p
p + ω4,δVW

p−1
p−1 , (2.34)

where

ω3,δ :=
|P |

eig(P )
max {4γ2,δ + ρ0γ11,δ, 3γ11,δ + γ10,δ} , ω4,δ :=

|P |
eig(P )

(γ2,δ + ρ0γ11,δ)(1 + L).

Similarly, we can bound T4,p as follows

T4,p ≤ ω5,δW
p
p + ω6,δVW

p−1
p−1 , (2.35)

where
ω5,δ := 2

|P |
eig(P )

γ1,δ, ω6,δ := 2
|P |

eig(P )
γ1,δ(1 + L).

The term T5,p of Ẇp can be rewritten in the following way

T5,p := −θ
∫ L

0
π(x) exp (pµθ,δx)Gp−1(x)

(
ε>(x) ε>t (x)

)
S[ξ](x)

(
ε(x)

εt(x)

)
dx, (2.36)

where, after utilizing (2.6), S : Bδ → C0
(
[0, L];R2n×2n

)
is given by

S[ξ] :=

(
In×n −ρ0(A+KC)>K>[ξ]P

−ρ0PK[ξ](A+KC) ρ0In×n

)
. (2.37)

Now, we can easily verify (Schur complement) that for all w ∈ R2n\0, we have
infξ∈Bδ

w>S[ξ]w
|w|2 ∈ (0,+∞), if

0 < ρ0 < min

(
1

|P |2|A+KC|2γ2
10,δ

, 1

)
. (2.38)
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It turns out that for every choice of matrices P and K satisfying (2.6), there always exists a
ρ0, such that (2.38) is satisfied and this fact renders S positive. Consequently, for appropriate
choice of ρ0, there exists σδ > 0, such that

T5,p ≤ −θ
σδ
|P |

W p
p . (2.39)

Combining (2.31), (2.32), (2.34), (2.35) and (2.39) with (2.28), we obtain

Ẇp ≤ (−θω7,δ + ω8,δ ln(θ) + ω9,δ)Wp + (ω4,δ + ω6,δ)W
1−p
p W p−1

p−1 V, (2.40)

where
ω7,δ :=

σδ
|P |

, ω8,δ :=
ω2,δ(2n− 2)

L
, ω9,δ := ω1,δ + ω3,δ +

ω2,δ

L
| lnµδ|.

Now, using Hölder’s inequality, one can obtain

W p−1
p−1 ≤W

p−1
p ‖π(·)‖1/p∞ .

Utilizing the above inequality, (2.40) gives

Ẇp ≤ (−θω7,δ + ω8,δ ln(θ) + ω9,δ)Wp + (ω4,δ + ω6,δ) π̄
1/pV. (2.41)

We obtained the estimate (2.41) of Ẇp for ε of class C2, but, by invoking density arguments,
the results remain valid with ε only of class C1 (see [Coron and Bastin (2015)] for further
details).

From (2.41), taking the limit as p → +∞ and using the fact that limp→+∞ π̄
1/p = 1, we

get in the distribution sense in (0,+∞),

V̇ (t) ≤ (−θω7,δ + ω8,δ ln(θ) + ω10,δ)V (t) (2.42)

where
ω10,δ := ω4,δ + ω6,δ + ω9,δ.

For more details on how to obtain the above estimate, see Properties 1 and 2 in Appendix
2.4.2.

Now, one can select the high gain θ, such that

θ > θ0, (2.43)

where θ0 > 1 is such that

−θω7,δ + ω8,δ ln(θ) + ω10,δ ≤ −2κδ, ∀θ > θ0 (2.44)

for some κδ > 0. One can easily check that for any κδ > 0, there always exists a θ0 > 1,
dependent on the involved constants, such that the previous inequality is satisfied.

Subsequently, (2.42) yields to the following differential inequality in the distribution sense
in (0,+∞)

V̇ (t) ≤ −2κδV (t) (2.45)
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and by the comparison lemma, we get

V (t) ≤ e−2κδtV (0),∀t ≥ 0. (2.46)

Now, by the dynamics (2.12), in conjunction with (2.19), (2.20), we can obtain the following
inequalities

‖εt‖∞ ≥ γ8,δ‖εx‖∞ − sδ,θ‖ε‖∞,
‖εt‖∞ ≤ γ9,δ‖εx‖∞ + sδ,θ‖ε‖∞,

where sδ,θ := θ|A+KC|+γ2,δ(2+L). Invoking these inequalites, (2.23a), estimate (2.46) and
the following inequality,

ρ0

2
e
µθ,δ−|µθ,δ |

2
Leig(P ) (‖ε‖∞ + ‖εt‖∞)2 ≤ V ≤ e

µθ,δ+|µθ,δ |
2

L|P | (‖ε‖∞ + ‖εt‖∞)2

we obtain
‖ε‖1 ≤ lδ,θe−κδt‖ε0‖1, ∀t ≥ 0, (2.47)

where ε0(x) := ε(0, x) and

`δ,θ :=

√
|P |

ρ0eig(P )
(µδ)

1
2L θ

n−1
L max

(
sδ,θ + 1,

1

γ8,δ

)
max (1 + 2sδ,θ, 2γ9,δ) .

By (2.47), we derive the following estimate, which holds for every t ≥ 0

‖ξ̂(t, ·)− ξ(t, ·)‖1 ≤ ¯̀
δ,θe
−κδt‖ξ̂0 − ξ0‖1, (2.48)

where ¯̀
δ,θ := θn−1`δ,θ.

Concluding, we solved the H-GODP for (2.1a), (2.1b), (2.2) by designing an exponential in
the C1-norm high-gain observer of adjustable convergence rate κδ, dependent on the selection
of θ. The proof of Theorem 2.1 is complete. �

Remark 2.5. It is worthwile to remark here that `δ,θ depends polynomially (and not exponen-
tially) on θ, which is also a known property for high-gain observer designs in finite dimensions.
The particular type of asymptotic convergence (2.48) of the error equation indicates that the
convergence of the observer can be arbitrarily fast.

2.2 Application to SIR epidemic models

As an illustrative example, let us consider the case of an epidemic model as in (1.2) of Chap-
ter 1. Let us recall its form here (see [Bastin and Coron (2016)], Chapter 1 and also
[Ianeli (1995)], Chapter III for detailed presentation of such systems)

∂tS(t, x) + ∂xS(t, x) + µ(x)S(t, x) + G[S(t), I(t)](x) = 0,

∂tI(t, x) + ∂xI(t, x) + (γ(x) + µ(x)) I(t, x)− G[S(t), I(t)](x) = 0,

∂tR(t, x) + ∂xR(t, x) + µ(x)R(t, x)− γ(x)I(t, x) = 0,

(2.49)



36
Chapter 2. Solving H-GODP for a system of quasilinear hyperbolic PIDEs with

a single velocity

where S(t, x), I(t, x), R(t, x) represent the age distribution of Susceptible, Infected and Re-
covered populations at time t and with age x, G[S(t), I(t)](x) := β(x)S(t, x)

∫ L
0 I(t, s)ds rep-

resents the disease transmission rate by contact between susceptible and infected individuals
and β(x), γ(x), and µ(x) are positive coefficients of class C2. In addition, if L is the maximal
life duration in the considered population, we have S(t, L) = I(t, L) = R(t, L) = 0, with the
following boundary conditions

S(t, 0) = B(t), I(t, 0) = 0, R(t, 0) = 0. (2.50)

Here, B(t) stands for the inflow of newborn individuals in the susceptible part of the population
at time t. Let us assume that the number of people in the group R of recovered patients
between ages 0 and x, for every age x ∈ [0, L] and time t ≥ 0, is the system’s output

y(t, x) =

∫ x

0
R(t, s)ds. (2.51)

Remember that this is consistent with the remarks in the recent paper
[Park and Bolker (2020)] about the COVID-19 pandemic and an alternative measurement
can be the number of infected patients

∫ x
0 I(t, s)ds.

We perform the following coordinates invertible transformation, in order to write (2.49) in
the appropriate form for observer design

ξ1(t, x) =

∫ x

0
R(t, s)ds, (2.52a)

ξ2(t, x) =

∫ x

0
γ(s)I(t, s)ds, (2.52b)

ξ3(t, x) =

∫ x

0
β(s)γ(s)S(t, s)ds

∫ L

0
I(t, s)ds. (2.52c)

Using these coordinates, (2.49) is written as follows

∂tξ1(t, x) + ∂xξ1(t, x) = ξ2(t, x) +

∫ x

0
µ′(s)ξ1(t, s)ds− µ(x)ξ1(t, x), (2.53a)

∂tξ2(t, x) + ∂xξ2(t, x) = ξ3(t, x) +

∫ x

0

(
κ′1(s)− κ′2(s)

)
ξ2(t, s)ds+ (κ2(x)− κ1(x)) ξ2(t, x),

(2.53b)

∂tξ3(t, x) + ∂xξ3(t, x) = ξ3(t, x)g1[ξ2(t), ξ3(t)](x)

−
∫ x

0

(
k′3(s)− µ′(s)− g2[ξ2(t)](L)β′(s)

)
ξ3(t, s)ds+ g2[ξ2(t)](L)B(t)β(0)γ(0), (2.53c)

y(t, x) = Cξ(t, x), (2.53d)

ξ(t, 0) = 0, (2.53e)
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where

κ1(x) := µ(x) + γ(x), κ2(x) :=
γ′(x)

γ(x)
, κ3(x) :=

(β(x)γ(x))′

β(x)γ(x)
,

g1[ξ2(t), ξ3(t)](x) := κ3(x)− µ(x)− β(x)g2[ξ2(t)](L)

+
1

g2[ξ2(t)](L)

(∫ L

0

(
κ1(s)

γ(s)

)′
ξ2(t, s)ds

−κ1(L)

γ(L)
ξ2(t, L) +

∫ L

0

γ′(s)

γ2(s)
ξ3(t, s)ds+

ξ3(t, L)

γ(L)

)
,

g2[ξ2(t)](L) :=
ξ2(t, L)

γ(L)
+

∫ L

0

γ′(s)

γ2(s)
ξ2(t, s)ds,

C =
(
1 0 0

)
.

Notice that hyperbolic dynamics (2.53) of the transformed system satisfy a simpler version of
structure (2.1a) (semilinear, with λ = 1), with H = 0 in (2.2b). Note also, that g2[ξ2(t)](L),
which is equal to

∫ L
0 I(t, b)db, is positive, because of the positiveness of system (2.53) for

positive initial conditions and, therefore, mapping g1 is well defined.

Choose now some initial conditions, such that Assumption 2.1 of previous section is sat-
isfied for system (2.53) with δ = 20 so we meet sufficient conditions for the solvability of the
H-GODP for this particular choice of initial conditions (existence and uniqueness of classical
solutions for (2.49) is established in [Inaba (2006)]).

The high-gain observer dynamics, as in (2.7), are given by

∂tξ̂1(t, x) + ∂xξ̂1(t, x) = ξ̂2(t, x) +

∫ x

0
µ′(s)ξ̂1(t, s)ds− µ(x)ξ̂1(t, x)− θk1(y(t, x)− ξ̂1(t, x)),

(2.54a)

∂tξ̂2(t, x) + ∂xξ̂2(t, x) = ξ̂3(t, x)

+

∫ x

0

(
κ′1(s)− κ′2(s)

)
ξ̂2(t, s)ds+ (κ2(x)− κ1(x)) ξ̂2(t, x)− θ2k2(y(t, x)− ξ̂1(t, x)), (2.54b)

∂tξ̂3(t, x) + ∂xξ̂3(t, x) = s3
δ(ξ̂3(t, x))g1

[
s2
δ

(
ξ̂2(t)

)
, s3
δ

(
ξ̂3(t)

)]
(x)

−
∫ x

0

(
k′3(s)− µ′(s)− g2

[
s2
δ

(
ξ̂2(t)

)]
(L)β′(s)

)
s3
δ

(
ξ̂3(t, s)

)
ds+ g2

[
ξ̂2(t)

]
(L)B(t)β(0)γ(0)

− θ3k3(y(t, x)− ξ̂1(t, x)), (2.54c)

ξ̂(t, 0) = 0, (2.54d)

where siδ
(
ξ̂i

)
, i = 2, 3 are given by (2.4).

We assume for the sake of simplicity that the inflow of the newborns B(t) is not time-
varying, but zero. This time invariance simplification is made in order to meet system’s (2.1a)
time invariance. The case where B is time-varying is not included in this framework, but it is
not hard to adjust the present analysis to this case.
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In Figure 2.1 we represent the considered functions µ, γ, and β (academic choices) and we
choose L = 100.

We now apply Theorem 2.1, with θ = 20 and K =
(
k1 k2 k3

)>
=
(
−2 −1 −1

)>,
which establishes the solvability of the H-GODP for system (2.53) with observer (2.54). After
inversing the coordinates transformation, the convergence of the observation errors between
states S, I,R and Ŝ, Î, R̂ (the observer states in the original coordinates) is guaranteed by
Theorem 2.1.

In Figure 2.2 we represent the output ξ1. In Figures 2.3 - 2.5 we see the observation errors
for each of the original states S, I and R, after choosing arbitrary observer’s initial conditions
satisfying compatibility conditions.

Figure 2.1: Transmission, recovery, and death rates as functions of age

Remark 2.6. In Theorem 2.1 we proved a type of stability in the C1-norm. It turns out that
this is essential for the particular case of systems that we study in the current section and it
is due to the nonlocal transformation we performed in (2.52). More precisely, the exponential
stability of the spatial derivative of the error between (2.53) and (2.54) induces the exponential
stability in the sup-norm for the estimation error of the initial system (2.49).
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Figure 2.2: Time and age evolution of simulated system’s output

Figure 2.3: Time and age evolution of the first estimation error



40
Chapter 2. Solving H-GODP for a system of quasilinear hyperbolic PIDEs with

a single velocity

Figure 2.4: Time and age evolution of the second estimation error

Figure 2.5: Time and age evolution of the third estimation error
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2.3 Conclusion

In this chapter, we designed a high-gain observer for a class of cascade systems of hyperbolic
PIDEs with distributed measurement, which also satisfy Property (S) (Definition 1.2 in Sub-
section 1.3.2) for their hyperbolic operator. We proved the exponential decay of the observer
error in the C1- norm step by step by first choosing an appropriate Lyapunov functional and
we illustrated our methodology with its application to an SIR epidemic model.

As it was shown in the present chapter, the requirement of Property (S) to be satisfied
is crucial in the Lyapunov stability analysis. Also, the proposed triangular structure allows
the choice of a sufficiently large high-gain constant, which compensates for both system’s
nonlinear source terms (as in the finite-dimensional case) and also for appearing terms, due to
the boundary conditions. Although intuition suggests that high-gain observer design would
be directly extended from finite-dimensional systems to infinite-dimensional ones, if the latter
satisfies some triangular structure, the properties of system’s differential operator do not allow
this extension to be direct. These facts indicate that the solution to the H-GODP is nontrivial
and the main difficulty comes from the expression and the domain of system’s differential
operator. This ignites the idea of different manipulations that we need to apply with respect
to system’s differential operator, when system does not satisfy Property (S). These ideas are
explored in the next chapter.

Finally, some extensions of the present analysis might include the consideration of observer
design for more general epidemic models, as in [Inaba (2006)] for vertical transmission, or
epidemic models which capture the characteristics of the recent COVID-19 pandemic.

2.4 Appendix of Chapter 2

2.4.1 Proof of Lemma 2.1

To prove the existence and uniquenes of global classical solutions to the observer system, which
is a semilinar system of hyperbolic PIDEs, we follow a fixed-point methodology inspired by
[Kmit (2008)] (Theorem 2.1), where a similar result is proven for a system of semilinear
hyperbolic PDEs.

We first represent (2.7) in its integral form, as follows

ξ̂(t, x) = G[ξ̂](t, x); (2.55)

G[ξ̂](t, x) := Φ (t, t0(t, x))R[ξ̂](t, x) +

∫ T

t0(t,x)
Φ(t, s)

(
f
(
ω(s; t, x),F

[
sδ

(
ξ̂(s)

)]
(ω(s; t, x))

)
−ΘKy(s, ω(s; t, x))) ds;

R[ξ̂](t, x) =

{
ξ̂0(ω(0; t, x)), when t0(t, x) = 0

H(sδ

(
ξ̂(t0(t, x), L))

)
, when t0(t, x) 6= 0
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where ω(s; t, x) denotes the characteristic (for characteristic velocity λ ◦ y) passing through
(t, x) ∈ Π, t0(t, x) is the smallest value of s at which x0 = ω(s; t, x) reaches ∂Π and by Φ(t, t0)

we denote the fundamental matrix of A+ΘKC. More precisely, ω(s; t, x) is the unique solution
of {

∂sω (s; t, x) = (λ ◦ y) (s, ω (s; t, x))

ω(t; t, x) = x
(2.56)

It is sufficient to prove this lemma in Π> := (0, T )× (0, L) for some fixed T > 0.

In conjunction with our regularity assumptions, it is easy to see that for every δ > 0, there
exist Lf , LH ≥ 0, such that

sup
z∈C0(Π;Rn)

{
‖ Duf (·,F [u])|u=sδ(z)

‖op|Dzsδ (z)|
}
≤Lf ,

sup
z∈C0(Π;Rn)

|DuH(u)|u=sδ(z)
Dzsδ (z)| ≤LH,

where ‖ · ‖op := ‖ · ‖L(C0(Π;Rn);C0(Π;Rn)).

First, we prove that there exists a unique continuous solution in Πτ0 , for some τ0 > 0, such
that

ω(t; τ, 0) < L; τ > 0, t ∈ [τ, τ + τ0]. (2.57)

From the integral representation (2.55) we obtain the following equation for t in [0, τ0]:

ξ̂(t, L) =Φ (t, 0) ξ̂0 (ω (0; t, L)) +

∫ T

0
Φ(t, s)

(
f
(
ω(s; t, L),F

[
sδ

(
ξ̂(s)

)]
(ω(s; t, L))

)
−ΘKy(s, ω(s; t, L))) ds. (2.58)

Now, choosing ξ̂1, ξ̂2 in C0
(
Πτ0 ;Rn

)
with identical initial conditions, from the mean value

theorem, we obtain the following

sup
(t,x)∈Πτ0

|f
(
x,F

[
sδ

(
ξ̂1(t)

)]
(x)
)
− f

(
x,F

[
sδ

(
ξ̂2(t)

)]
(x)
)
|

≤ sup
s∈[0,1]

{
‖Duf (·,F [sδ (u)]|u=ξ̂1+s(ξ̂2−ξ̂1)

)
‖op

×| Dusδ (u)|u=ξ̂1+s(ξ̂2−ξ̂1) |
}

sup
(t,x)∈Πτ0

|ξ̂1(t, x)− ξ̂2(t, x)|

≤ Lf sup
(t,x)∈Πτ0

|ξ̂1(t, x)− ξ̂2(t, x)|.

This, in conjunction with (2.55), directly leads to the following

sup
(t,x)∈Πτ0

|G
[
ξ̂1
]
− G

[
ξ̂2
]
| ≤τ0q0 sup

(t,x)∈Πτ0

|ξ̂1 − ξ̂2|;

q0 := max
(t,x)∈Πτ0

|Φ(t, t0(t, x))|Lf (1 + LH).
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Now, choosing τ0 = (2q0)−1 and applying the Banach fixed-point theorem, we prove the
existence and uniqueness of a C0

(
Πτ0 ;Rn

)
solution ξ̂. In order to prove the existence and

uniqueness of a continuous solution in Π>, for arbitrary T , we follow the previous procedure in
dT/τ0e steps, iterating the local existence-uniqueness result in domains (Πjτ0 ∩Π>)\Π(j−1)τ0 ,
where j ≤ dT/τ0e.

Next, we follow the same procedure to prove the existence-uniqueness of C1 solutions in
Π>, by considering the problem for ξ̂x.

By (2.55), we obtain

ξ̂x(t, x) =
d

dx
Φ (t, t0(t, x))R[ξ̂](t, x) + Φ (t, t0(t, x))R1[ξ̂](t, x)

+

∫ T

t0(t,x)
Φ(t, s)

[(〈
Duf (z,F [u])|u=sδ(ξ̂(s))(z) , Dξ̂sδ

(
ξ̂(s)

)
(z)ξ̂z(s, z)

〉
−∂z(λ ◦ y)(s, z)ξ̂z(s, z)−ΘKyz(s, z)

)]∣∣∣
z=ω(s;t,x)

ds,

R1[ξ̂](t, x) =
d

du
ξ̂0(u)

∣∣∣
u=ω(0;t,x)

,when t0(t, x) = 0

and R1[ξ̂](t, x) = (λ ◦ y)−1(τ, 0)
(
f
(

0,F
[
sδ

(
ξ̂(τ)

)]
(0)
)
−Du H(u)|u=sδ(ξ̂) (τ, L)

×Dξ̂sδ

(
ξ̂(τ)

)
(L)ξ̂τ (τ, L)

)∣∣∣
τ=t0(t,x)

,when t0(t, x) 6= 0. (2.59)

We prove the existence-uniqueness of continuous solutions ξ̂x in Πτ1 , for some τ1 satisfying
condition (2.57) with τ0 replaced by τ1. Combining observer system’s dynamics (2.7a) and
(2.59), we get the following expression for the right boundary

ξ̂t(t, L) = −(λ ◦ y)(t, L)ξ̂x(t, L) +Aξ̂(t, L)

−ΘK
(
y(t, L)− Cξ̂(t, L)

)
+ f

(
L,F

[
sδ

(
ξ̂(t)

)]
(L)
)

= −(λ ◦ y)(t, L)

(
Φ (t, 0)

d

du
ξ̂0(u)

∣∣∣
u=ω(0;t,L)

+

∫ T

0
Φ(t, s)

[(〈
Duf (z,F [u])|u=sδ(ξ̂(s))(z) , Dξ̂sδ

(
ξ̂(s)

)
(z)ξ̂z(s, z)

〉
− ∂z(λ ◦ y)(s, z)ξ̂z(s, z)

−ΘKyz(s, z))]|z=ω(s;t,L) ds
)

+ (A+ ΘKC)ξ̂(t, L)−ΘKy(t, L) + f
(
L,F

[
sδ

(
ξ̂(t)

)]
(L)
)
.

(2.60)

Taking into account that ξ̂ is a known continuous function, we apply the operator defined by
the right hand side of (2.59) to continuous functions ∂xξ̂1 and ∂xξ̂2, starting from the same
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initial conditions. We can, therefore, obtain the estimate

sup
(t,x)∈Πτ1

|∂xξ̂1 − ∂xξ̂2| ≤ τ1q1 sup
(t,x)∈Πτ1

|∂xξ̂1 − ∂xξ̂2|;

q1 := max
(t,x)∈Πτ1

|Φ(t, t0(t, x))|

(
Lf + max

(t,x)∈Πτ1
∂x|(λ ◦ y)(t, x)|

)(
1 + LH max

(t,x)∈Πτ1
((λ ◦ y)(t, x))

× max
(t,x)∈Πτ1

((λ ◦ y)(t, x))−1

)
.

Choosing τ1, such that q1τ1 < 1 and in conjuction with the fact that ξ̂ is C1 function in both
arguments (as a result of (2.7a)), we obtain the existence-uniqueness of classical solutions in
Πτ1 . Iterating the previous local existence-uniqueness result in domains (Πjτ1 ∩Π>)\Π(j−1)τ1 ,
where j ≤ dT/τ1e, we obtain classical solutions in Π> and since T is arbitrary, we obtain
unique classical solutions in Π. The proof is complete. �

2.4.2 Properties of the Lyapunov Functional

We prove here two properties, which we have invoked in the stability proof of Theorem 2.1.

Property 1: For every continuous functions (or more generally, L∞ functions, where
‖ · ‖∞ denotes the ess.sup-norm) ε, εt : [0, L] → Rn;L > 0, matrix P , π : [0, L] → R as in
(3.93), ρ0 > 0, and µ in R, we have

lim
p→+∞

Wp = ‖eµ·
(
ε>Pε+ ρ0ε

>
t Pεt

)
‖∞ (2.61)

where Wp, as in (3.92a), is given by

Wp :=

(∫ L

0
π(x)epµxGp(x)dx

)1/p

; (2.62a)

Gp :=
(
ε>Pε+ ρ0ε

>
t Pεt

)p
. (2.62b)

To prove this, define, first for ε̄ > 0 arbitratily small, the set

Bε̄ :=
{
x ∈ [0, L] : |eµx

(
ε>(x)Pε(x) + ρ0ε

>
t (x)Pεt(x)

)
|

≥ ‖eµ·
(
ε>Pε+ ρ0ε

>
t Pεt

)
‖∞ − ε̄;

ε̄ < ‖eµ· (εtPε+ εtPεt) ‖∞} . (2.63)

Then, for all p in [1,+∞),

Wp ≥
(∫

Bε̄

(
‖eµ·

(
ε>Pε+ ρ0ε

>
t Pεt

)
‖∞ − ε̄

)p
dx

)1/p

=
(
‖eµ·

(
ε>Pε+ ρ0ε

>
t Pεt

)
‖∞ − ε̄

)
µ(Bε̄)

1/p (2.64)
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where µ(Bε̄) denotes the Lebesgue measure of Bε̄.

The above gives

lim inf
p→+∞

Wp ≥ ‖eµ·
(
ε>Pε+ ρ0ε

>
t Pεt

)
‖∞. (2.65)

Furthermore,

Wp ≤ ‖eµ·
(
ε>Pε+ ρ0ε

>
t Pεt

)
‖∞ (Lπ̄)1/p . (2.66)

This implies

lim sup
p→+∞

Wp ≤ ‖eµ·
(
ε>Pε+ ρ0ε

>
t Pεt

)
‖∞ (2.67)

since Lπ̄ is finite.

By virtue of (2.65) and (2.67), we obtain (2.61).

Property 2:

Ẇp
∗
⇀

d

dt

(
‖eµ·ε>Pε‖∞ + ‖ρ0e

µ·ε>t Pεt‖∞
)

in the weak∗ topology σ
(
L∞(0,+∞), L1(0,+∞)

)
,

as p→ +∞ (2.68)

where by σ(X,X∗) we denote the weak∗ topology on X, with X∗ the topological dual of X.
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This chapter is devoted to introducing a main approach leading to solvability of the H-
GODP, when Property (S) (see Definition 1.2 in Section 1.3.2) does not hold. We recall that
Property (S) is satisfied, when system’s differential operator (see A(·) in (1.1) in Chapter 1)
has scalar coefficients. Property (S) allows direct observer design, as it was shown for classes
of systems considered in Chapter 2 (in particular, since it allows the integration needed in the
Lyapunov stability analysis of the observer error). Without this property holding, a different
strategy should be employed, leading to indirect observer design. As it was introduced in
Subsection 1.3.2, this indirect method first requires system’s differential operator A(·) to be
decomposed into a sum of a) a new differential operator, satisfying this fundamental Property
(S), b) a differential operator (and possibly nonlinear) including only the first measured state
in its domain, and c) a bilinear mapping between a function of the unmeasured state and
a differential operator, including only the first state in its domain. This is done via an
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infinite-dimensional state transformation, which preserves the initial triangular structure. As a
consequence, the new differential operator satisfies Property (S). This proposed decomposition
of the differential operator oblige us to inject the spatial derivatives of the output of higher
orders in the observer dynamics, provided that these spatial derivatives are available, since
the measurement is distributed.

To deal with this operator decomposition problem in its full generality, we consider both
nonlinear and linear systems, the former of which experience limitations with respect to the
maximum number of states that they can have, while for the latter ones, a solution is given
for arbitrary number of states. The proposed approaches are first applied to a 2 × 2 quasi-
linear hyperbolic system, where k = 1 and Π1(·) in (1.3) is a lower triangular map, making
the differential operator A(·) a quasilinear hyperbolic one. Then, the approach is applied to
2× 2 and 3× 3 Lotka-Volterra-like parabolic systems, with k = 2, Π1(·) = 0 and Π2(·) a con-
stant diagonal linear map, while choosing appropriate domain of the corresponding parabolic
operator A(·) in (1.3). However, for nonlinear systems with more than three states, accompa-
nied with more than three different elements on the diagonal differential operator A(·), such
a decomposition is hard to be implemented, even if the candidate state transformation was
nonlinear. To overcome this limitation with respect to the distinct elements on the differ-
ential operator, we pick general n × n nonuniform inhomogeneous linear hyperbolic systems,
instead of nonlinear ones, with any number of distinct characteristic velocities of any sign,
in order to show that for these systems such decomposition is feasible. The complexity of
the methodology augments with the number of distinct velocities, and, thus, even for linear
systems, the required infinite-dimensional state transformation requires tedious calculations.
The present approach is possible under appropriate sufficient conditions, including strong reg-
ularity of system solutions and a space periodicity on the boundaries for hyperbolic systems
with more than three states. As it was commented in Subsection 1.3.2 (see case B. Indirect
observer design, therein), these conditions are linked to the conditions for internal controlla-
bility for cascade hyperbolic systems with reduced numbers of controls, which are assumed in
the notable work of [Alabau-Boussouira et al (2017)]. Similarly to that work, the present
analysis experiences the loss of derivatives phenomenon, since we require stronger regularity
for system’s solutions, in order to obtain an observer exponential convergence in a norm of a
space of lower regularity.

In the first section, we consider a 2 × 2 quasilinear hyperbolic system of balance laws,
written in an appropriate triangular form, and considering a non-diagonal hyperbolic operator,
whose diagonalization would equip system with distinct and positive characteristic velocities.
The high-gain observer is designed, utilizing the first spatial derivative of the output, apart
from the classical output injection terms, and its convergence is proven for the C1-spatial
norm. Section 3.2 is devoted to a class of 2×2 and 3×3 semilinear reaction-diffusion systems
with distinct diffusivities. First, a Lotka-Volterra system of two species is considered, where a
similar technique to the one for the hyperbolic systems is adopted, dealing in addition with the
particular type of nonlinearities of those systems. Then, the methodology is extended to 3×3

semilinear parabolic systems, where an infinite-dimensional state transformation leads to a new
system of PDEs, for which the observer utilizes output’s spatial derivatives of order depending
on the number of different diffusivities in the parabolic operator. Additionally, to tackle the
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fact that nonlinearities are not globally Lipschitz, appropriate saturation functions are injected
in the observer’s nonlinearities. Finally, seeing that extension of the aforementioned approach
to nonlinear systems with more than three states is difficult, the third section goes back to
hyperbolic systems with linear dynamics this time, but in the general n × n case, with up
to n distinct velocities of any sign (positive or negative), showing how the transformation-
based approach is applied. We present, in this way, the applicability of this method in its
maximal generality, which turns out to be achieved only for linear systems. The calculation
of such a state transformation is performed via an introduced algorithm. We also underline
that the features of high-gain approach are instrumental for these linear cases, contrary to
the linear finite-dimensional case, where simpler Luenberger designs are sufficient. In each
of the sections, the convergence of the observer is proven in appropriate spatial norms. The
stability proof relies on the choice of appropriate Lyapunov functionals, and, finally, suitable
simulations illustrate those theoretical results.

3.1 A class of 2× 2 quasilinear hyperbolic systems

The results of this section have been presented in [Kitsos et al (2019a)]. They constitute a
first extension of the results presented in Chapter 2 to systems which do not satisfy Property
(S) (Definition 1.2) for the hyperbolic operator, meaning, in that case, that the considered
system might have distinct characteristic velocities. We consider, here, a triangular form of the
hyperbolic operator A(·), as it was introduced in (1.3), with matrix Π1(·) full-state dependent
and lower triangular. In the present approach, the differential operator is decomposed into
a diagonal hyperbolic one with only one characteristic velocity, plus a first-order nonlinear
spatial differentiator acting on the measured first state. The high-gain observer dynamics,
then, includes the latter spatial differential operator in its dynamics, acting on the known
output, and, as a consequence, the observer error hyperbolic operator satisfies the desired
Property (S). The observer convergence, then, is proven for the C1-norm, noting also a loss of
derivatives, since system’s solutions are assumed to be of class H2. This methodology is a pre-
liminary step towards the generalization of this approach to systems with more than 2 states.
As an alternative approach to this, in [Kitsos et al (2019b)], another transformation-based
approach, which is finite-dimensional this time, and avoiding the use of spatial differentiators,
was introduced for 2 × 2 systems, succeeding to satisfy Property (S) for the new system’s
differential operator. However, this approach imposes limitations on the considered system
and on the performance of the observer and, thus, we omit to present it in this manuscript.

The first subsection is devoted to the class of system which is considered and the proposed
observer, along with the main result on the solvability of the H-GODP, described in Theorem
3.1. The second subsection deals with the proof of Theorem 3.1, while in the last subsection
we illustrate this methodology via an academic example.
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3.1.1 Class of systems and solvability of the H-GODP

Let us consider the 2× 2 first-order quasilinear hyperbolic system satisfying the general form
introduced in Section 1.2 of Chapter 1. described by the following equations on the strip
Π := [0,+∞)× [0, 1]

∂tξ1(t, x) + λ11(ξ1(t, x))∂xξ1(t, x) = ξ2(t, x) + f1(ξ1(t, x)),

∂tξ2(t, x) + λ21(ξ(t, x))∂xξ1(t, x) + λ22(ξ1(t, x))∂xξ2(t, x) = f2(ξ(t, x)),
(3.1a)

y(t, x) = ξ1(t, x), (3.1b)

where ξ :=
(
ξ1 ξ2

)> is the state and y : [0,+∞) × [0, 1] → R is the distributed output
(measurement).

As we noted in the introduction of the present chapter, we seek to solve here the H-GODP
for more general systems than the ones considered in the previous chapter with respect to their
hyperbolic operator. In fact, the present 2 × 2 system has a hyperbolic operator with lower
triangular coefficient. Furthermore, its elements on the diagonal are distinct. In Chapter 2,
this coefficient was diagonal with a single element on the diagonal (one characteristic velocity).
It will be shown in the sequel that the consideration of such systems is far more complex.

Assume that in addition to ξ1, space derivative (in the classical sense) ∂xξ1 is also available
as a measurement, which is not very restrictive since ξ1 is available on the full x-domain. This
assumption on the derivative is an extra assumption, compared to the ones of the previous
chapter and it comes from the requirements of the indirect observer design, as explained in
Subsection 1.3.2. Assume also that λ11(ξ1), λ22(ξ1) > 0, ∀ξ1 ∈ R.

We consider initial and boundary conditions as follows

ξ(0, x) =:ξ0(x), x ∈ [0, 1], (3.2a)

ξ(t, 0) =H (ξ(t, 1)) , t ∈ [0,+∞), (3.2b)

where H =
(
H1 H2

)>.
We make the following regularity assumption.

Assumption 3.1. Functions λ11(·), λ22(·), λ21(·), fi(·), Hi(·), i = 1, 2 are of class C1 in their
arguments.

Prior to the rest of the assumptions, we provide the definition of compatibility conditions:

Definition 3.1 (Compatibility conditions). We say that the initial condition ξ0 of system
(3.1a) satisfies zero-order and one-order compatibility conditions (or C1 conditions), if ξ0
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satisfies the following two equations

ξ0(0) = H
(
ξ0(1)

)
, (3.3a)(

−λ11(ξ0
1(0))∂xξ

0
1(0) + ξ0

2(0) + f1(ξ0
1(0))

−λ21(ξ0(0))∂xξ
0
1(0)− λ22(ξ0

1(0))∂xξ
0
2(0) + f2(ξ0(0))

)
=
∂H

∂ξ

(
ξ0(1)

)
×
(

−λ11(ξ0
1(1))∂xξ

0
1(1) + ξ0

2(1) + f1(ξ0
1(1))

−λ21(ξ0(1))∂xξ
0
1(1)− λ22(ξ0

1(1))∂xξ
0
2(1) + f2(ξ0(1))

)
(3.3b)

The following assumption is essential for the well-posedness of our system, along with a
minimal observer design requirement of "forward completeness" and, furthermore, it imposes
uniform boundedeness of the solutions in the H2-norm, which is essential in the design of the
nonlinear observer, when dealing with quasilinear system operator. For further details, the
reader can refer to [Bastin and Coron (2016)], [Li (1985)] and references therein, where
sufficient conditions for the well-posedness of quasilinear hyperbolic systems of balance laws
are presented. Similar assumption for the space C1 was made in the previous Chapter and it
turned out to be fundamental in the proofs.

Assumption 3.2. Consider a set M ⊂ H2
(
(0, 1);R2

)
nonempty and bounded, consisting

of functions satisfying zero-order and one-order compatibility conditions for problem (3.1a)-
(3.2). Then for any initial condition ξ0 in M, problem (3.1a)-(3.2) admits a unique solu-
tion C0

(
[0,+∞);H2

(
(0, 1);R2

))
. Moreover, there exists δ > 0, such that for any ξ0 in M,

‖ξ(t, ·)‖H2((0,1);R2) ≤ δ, ∀t ∈ [0,+∞).

In this section, we use the definition of the set

B(δ) :=
{
ξ ∈ H2

(
(0, 1);R2

)
: ‖ξ‖H2((0,1);R2) ≤ δ

}
,

corresponding the subspace, where solutions satisfying Assumption 3.2 belong.

Note, that by simple inclusion arguments, Assumption 3.2 implies that solutions ξ belong
to C1

(
[0,+∞)× [0, 1];R2

)
(classical solutions).

In the sequel, for a mapping g(·, ·) we use the definition of the following difference operator

∆ξ̂2
[g(ξ1, ξ2)] := g(ξ1, ξ̂2)− g(ξ1, ξ2),

parametrized by ξ̂2.

In this section, for simplification reasons, the considered balance terms f1, f2 are assumed
simpler than the balance terms of Chapter 2, as they do not anymore include nonlocal terms.
Also, they are not considered anymore locally Lipschitz (as in Chapter 2) but they have
stronger properties. These simplifications on the balance terms are made as there is no need
to repeat tedious calculations of the previous chapter, since the objective of this section is not
to generalize the type of the balance terms of Chapter 2 but only the type of the hyperbolic
operator. We make, therefore, the following assumption which will be needed in the stability
analysis of the observer error equation.
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Assumption 3.3. There exist continuous functions Lf2 , Lλ21 , LH , Lf ′2 , Lλ′21
, LH′ : R → R+,

such that for all ξ ∈ R2, ξ̂2 ∈ R, we have |∂f2

∂ξ2
| ≤ Lf2(ξ1), |∂λ21

∂ξ2
| ≤ Lλ21(ξ1), | ∂H∂ξ2 | ≤

LH(ξ1), |∆ξ̂2
[Df2(ξ)] | ≤ Lf ′2(ξ1)|ξ̂2− ξ2|, |∆ξ̂2

[Dλ21(ξ)] | ≤ Lλ′21
(ξ1)|ξ̂2− ξ2|, |∆ξ̂2

[DH(ξ)] | ≤
LH′(ξ1)|ξ̂2 − ξ2|.

Prior to our main result, we must emphasize the fact that according to a well-known
Sobolev inequality (coming from compact injections, see for instance [Brezis (1983)]), for all
ξ in H2

(
(0, 1);R2

)
, there exists c0 > 0, such that

‖ξ‖∞ + ‖ξx‖∞ ≤ c0‖ξ‖H2((0,1);R2). (3.4)

At this point, let us introduce some operators, parametrized by ξ̂2

η0, η
ξ̂2
1 , η

ξ̂2
2 : H2

(
(0, 1);R2

)
→ C0

(
[0, 1];R2

)
,

ηξ̂23 : H2
(
(0, 1);R2

)
→ L2

(
(0, 1);R2

)
,

Λ1,Λ
ξ̂2
2 : H2

(
(0, 1);R2

)
→ C0

(
[0, 1];R2×2

)
acting on ξ and defined by

η0[ξ] :=λ′22(ξ1)λ−1
22 (ξ1)∂tξ1, (3.5a)

ηξ̂21 [ξ] :=
∂f2(ξ1, ξ̂2)

∂ξ̂2

− ∂xξ1
∂λ21(ξ1, ξ̂2)

∂ξ̂2

+ η0[ξ], (3.5b)

ηξ̂22 [ξ] :=∆ξ̂2
[f2(ξ1, ξ2)]− ∂xξ1∆ξ̂2

[λ21(ξ1, ξ2)] , (3.5c)

ηξ̂23 [ξ] :=∆ξ̂2
[Df2(ξ1, ξ2)] ∂tξ −∆ξ̂2

[λ21(ξ1, ξ2)] ∂xtξ1

− ∂xξ1∆ξ̂2
[Dλ21(ξ1, ξ2)] ξt − η0[ξ]ηξ̂22 [ξ], (3.5d)

Λ1(ξ) :=

(
λ11(ξ1) 0

λ21(ξ) λ22(ξ1)

)
, (3.5e)

Λξ̂22 [ξ] :=diag
(
η0[ξ], ηξ̂21 [ξ]

)
, (3.5f)

noting also time-derivatives can be substituted by space-derivatives, by use of the hyperbolic
dynamics. Now, notice that whenever ξ ∈ B(δ), due to continuity and positiveness of λii, i =

1, 2 and further the fact that ‖ξ(t, ·)‖∞ ≤ coδ, ∀t ≥ 0, as a result of (3.4), the quantities
maxξ∈B(δ))(λii(ξ1)), minξ∈B(δ))(λii(ξ1)) are well-defined and positive. In addition, note that
whenever ξ ∈ B(δ), as a result of (3.4) and the use of hyperbolic dynamics (3.1a), we easily
calculate constants δ1, δ2 > 0, such that

‖ξt(t, ·)‖∞ ≤ δ1, ‖ytx(t, ·)‖L2((0,1);R2) ≤ δ2,∀t ≥ 0. (3.6)

Note that to obtain δ2, we use the fact that

‖ytx(t, ·)‖L2((0,1);R2)

= ‖ − λ′11(y(t, ·))y2
x(t, ·)− λ11(y(t, ·))yxx(t, ·) + ∂xξ2(t, ·) + f ′1(y(t, ·))yx(t, ·)‖L2((0,1);R2),

(3.7)
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and we subsequently apply trivial inequalities. By virtue of (3.4), (3.6), continuity and As-
sumption 3.3 concerning the nonlinearities of the involved mappings, we can easily calculate
positive constants γi, i = 1, . . . , 5, such that for ξ ∈ B(δ), the following inequalities are satisfied
for all t ≥ 0, x ∈ [0, 1]:

|ηξ̂2(t,x)
1 [ξ](t, x)| ≤ γ1, |Λ2[ξ](t, x)| ≤ γ2, |η0[ξ](t, x)| ≤ γ3,

|ηξ̂2(t,x)
2 [ξ](t, x)| ≤ γ4|ξ̂2(t, x)− ξ2(t, x)|,

|ηξ̂2(t,x)
3 [ξ](t, x)| ≤ γ5|ξ̂2(t, x)− ξ2(t, x)|, ∀ξ̂2(t, x) ∈ R. (3.8)

Let us now introduce our candidate observer dynamics on Π.

High-Gain Observer

∂tξ̂1(t, x) + λ22(y(t, x))∂xξ̂1(t, x) =ξ̂2(t, x) + (λ22(y(t, x))− λ11(y(t, x)))yx(t, x) + f1(y(t, x))

+ θk1(ξ̂1(t, x)− y(t, x)), (3.9a)

∂tξ̂2(t, x) + λ22(y(t, x))∂xξ̂2(t, x) =f2(y(t, x), ξ̂2(t, x))− λ21(y(t, x), ξ̂2(t, x))yx(t, x)

+ θ2k2(ξ̂1(t, x)− y(t, x)), (3.9b)

with high-gain constant θ > 1, and boundary conditions satisfying

ξ̂(t, 0) = H
(
y(t, 1), ξ̂2(t, 1)

)
. (3.10)

The following lemma guarantees the existence of a unique global classical solution to the
candidate observer (3.9), (3.10) for any initial condition of class C1. We invoke paper
[Kmit (2008)], where an analogous result is proven under Lipschitz properties of the dy-
namics. It is easy to check that our candidate observer satisfies semilinear hyperbolic laws
and is written in a well-posed characteristic form. Assumptions 3.1 - 3.3, in conjunction with
the previously mentioned comments (details are left to the reader) are compatible with the
sufficient conditions of Theorem 2.1 in [Kmit (2008)] and, thereby similar global existence
result is established for our observer system. This yields to the following result.

Lemma 3.1 (Existence/uniqueness for the observer). Under Assumptions 3.1 - 3.3, for any
initial conditions ξ̂0(x) := ξ̂(0, x),∀x ∈ [0, 1] satisfying zero-order and one-order compatibility
conditions, and for any y ∈ C1 ([0,+∞)× [0, 1]), the problem described by equations (3.9),
(3.10) in Π admits a unique classical solution in Π, namely, there exists a unique solution
ξ̂ ∈ C1

(
[0,+∞)× [0, 1];R2

)
.

We now present our main result on the observer design.

Theorem 3.1 (Solvability of the H-GODP). Consider system (3.1a)-(3.2), defined on Π with
output (3.1b) and suppose that initial condition ξ0 ∈M and Assumptions 3.1 - 3.3 hold. Let
also P ∈ R2×2 be a symmetric and positive definite matrix satisfying1

2Sym(P (A+KC)) = −qI2, (3.11)
1This is always possible since (A,C) is observable.
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where

A :=

(
0 1

0 0

)
, C =

(
1 0

)
,R2 3 K =

(
k1 k2

)>
, q > 0 (3.12)

Then, for θ > 1, system (3.9), (3.10), with initial condition ξ̂0 ∈ C1([0, 1];R2); ξ̂(0, x) =: ξ̂0(x)

satisfying zero-order and one-order compatibility conditions, is a well-posed high-gain observer
in the sense that it admits a unique classical solution in Π on the one hand, providing an
estimate for the state of the system for θ large enough on the other hand. More precisely, for
every κ > 0, there exists a constant θ0 ≥ 1, such that for every θ > θ0, the following inequality
holds for the solutions to (3.1a)- (3.2) and (3.9)-(3.10)

‖ξ(t, ·)− ξ̂(t, ·)‖1 ≤ `e−κt‖ξ0(·)− ξ̂0(·)‖1, t ≥ 0,

with ` a polynomial in θ.

This theorem states that the H-GODP is solvable for system (3.1a)-(3.2), with output
(3.1b) via observer system (3.9), (3.10), utilizing also the first spatial derivative of the output.
The proof of the observer convergence in the C1 spatial norm follows the Lyapunov-based
methodology employed in Chapter 2, noting also that a loss of derivatives appears, since
system’s solutions are of class H2, while the stability can be proven for a less regular space,
namely, at most C1.

3.1.2 Observer convergence proof

In this subsection, we prove Theorem 3.1 by following Lyapunov-based techniques.

We first define the linearly transformed observer error ε = (ε1, ε2)> by

ε1 = θ−1(ξ̂1 − ξ1); ε2 = θ−2(ξ̂2 − ξ2). (3.13)

By use of (3.1a) and (3.9), the error components ε1, ε2 satisfy the following equations in Π:

∂tε1 + λ22(y)∂xε1 =θ(k1ε1 + ε2), (3.14a)

∂tε2 + λ22(y)∂xε2 =θk2ε1 + θ−2ηξ̂22 [ξ]. (3.14b)

Furthermore, the following equation is satisfied on the boundaries for t ≥ 0, as a consequence
of (3.2b) and (3.10):

εi(t, 0) = θ−i∆ξ̂2
[Hi(y, ξ2)] (t, 1), i = 1, 2. (3.15)

Next, by temporarily assuming that ε is of class C2, we perform time differentiation of equa-
tions (3.14), (3.15) and we can easily obtain the following hyperbolic equations for εt in Π:

∂ttε1 + λ22(y)∂txε1 =θ(k1∂tε1 + ∂tε2) + η0[ξ]∂tε1 − θη0[ξ](k1ε1 + ε2), (3.16a)

∂ttε2 + λ22(y)∂txε2 =θk2∂tε1 + ηξ̂21 [ξ]∂tε2 − θη0[ξ]k2ε1 + θ−2ηξ̂23 [ξ], (3.16b)
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and boundary conditions for t ≥ 0 given by

∂tεi(t, 0) = θ−i∆ξ̂2

[
∂Hi(y, ξ2)

∂(y, ξ2)

]
(t, 1)ξt(t, 1) + θ2−i∂Hi(y, ξ̂2)

∂ξ̂2

(t, 1)∂tε2(t, 1), i = 1, 2. (3.17)

To proceed to the stability analysis, we first define functionals Gp and Wp : C1([0, 1];R2)→ R
by

Gp[ε] :=
(
ε>Pε+ ρ0ε

>
t Pεt

)p
, (3.18a)

Wp[ε] :=

(∫ 1

0
π(x)epµxGp[ε]dx

)1/p

, (3.18b)

where ρ0 ∈ (0, 1] is a constant (to be chosen appropriately), p ∈ N, P ∈ R2×2 is a symmetric
positive definite matrix satisfying (3.11), π : [0, 1]→ R is given by

π(x) :=

(
maxξ∈B(δ)(λ22(ξ1))

minξ∈B(δ)(λ22(ξ1))
− 1

)
x+ 1, x ∈ [0, 1], (3.19)

and µ ∈ R is given by

µ :=ln(µ0θ
2); (3.20a)

µ0 :=
|P |

eig(P )
max

(
(LH′ + LHδ1)2 , LH (LH + LH′δ1)

)
, (3.20b)

where the above-used constants are defined in (3.6) and Assumption 3.3. Notice that

π(x) ∈
[
1,

maxξ∈B(δ)(λ22(ξ1))

minξ∈B(δ)(λ22(ξ1))

]
,∀x ∈ [0, 1]. (3.21)

By invoking Lemma 3.1 and Assumption 3.2, which establish global unique classical solutions
for observer system (3.9), (3.10) and system (3.1a), (3.2) respectively, we are now in a position
to define Gp,Wp : [0,+∞)→ R by

Gp(t) := Gp[ε](t),Wp(t) :=Wp[ε](t), t ≥ 0. (3.22)

(we use the notation ε(t)(x) := ε(t, x)).

These chosen p-functionals have similarities with the ones appeared in Chapter 2 and the
main idea is to let p→∞, in order to establish the asymptotic convergence in the sup-norms.
The calculations done for the time-derivative of Ẇp follow the steps of the previous chapter,
with some technical differences appearing, as for instance the existence of the second derivative
of the output.

Calculating the time-derivative Ẇp along the classical solutions ε, εt of (3.14) - (3.15),
(3.16) - (3.17), we get

Ẇp =
1

p
W 1−p
p

∫ 1

0
pπ(x)epµxGp−1

(
ε>t Pε+ ε>Pεt + ρ0ε

>
ttPεt + ρ0ε

>
t Pεtt

)
dx. (3.23)
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After substituting the dynamical equations (3.14) and (3.16) into the above equation and
applying integration by parts (which is possible, since observer error satisfies Property (S) for
its hyperbolic operator), Ẇp can be written in the following form

Ẇp = W 1−p
p

(
1

p
T1,p +

1

p
T2,p + T3,p + T4,p

)
, (3.24)

where

T1,p :=− π(1)λ22(y(1))epµGp(1) + π(0)λ22(y(0))Gp(0), (3.25a)

T2,p :=

∫ 1

0
dx (π(x)epµxλ22(y))Gpdx, (3.25b)

T3,p :=2

∫ 1

0
π(x)epµxGp−1

(
ε>Pθ−2

(
0

ηξ̂22 [ξ]

)

+ρ0ε
>
t Pθ

−2

(
0

ηξ̂23 [ξ]

)
+ ρ0ε

>
t Sym(PΛξ̂22 [ξ])εt

)
dx, (3.25c)

T4,p :=θ

∫ 1

0
π(x)epµxGp−1

(
2ε>Sym(P (A+KC))ε+ 2ρ0ε

>
t Sym(P (A+KC))εt

−ρ0η0[ξ]ε>t P (A+KC)ε− ρ0η0[ξ]ε>(A+KC)>Pεt

)
dx. (3.25d)

After substituting boundary equations (3.15) and (3.17) in T1,p and by virtue of Lipschitz
properties (Assumption 3.3), equations (3.6), (3.19) and trivial inequalities, we can easily
obtain the following bound

T1,p ≤ max
ξ∈B(δ)

(λ22(ξ1))Gp(1)
(
−epµ +

(
θ2µ0

)p)
. (3.26)

As a result of (3.20), we get
T1,p ≤ 0. (3.27)

Next, observe that term T2,p is written as follows

T2,p =

∫ 1

0

(
(π(1)− 1)λ22(y) + pµπ(x)λ22(y) + π(x)λ′22(y)yx

)
epµxGpdx. (3.28)

By the fact that π(x) ≥ 1, ∀x ∈ [0, 1], we obtain the following inequality

T2,p ≤
(
α+ p|µ | max

ξ∈B(δ)
(λ22(ξ1))

)
W p
p , (3.29)

where α := (π(1)− 1) maxξ∈B(δ)(λ22(ξ1)) + c0δmaxξ∈B(δ)(λ
′
22(ξ1)).

By exploiting bounds given in (3.8), T3,p can be bounded as follows

T3,p ≤
∫ 1

0
π(x)epµxGp−1

(
2|P |

(
γ4|ε|2 + ρ0γ5|ε||εt|+ ρ0γ2|εt|2

))
dx

≤
∫ 1

0
π(x)epµxGp−1

|P |
eig(P )

(
2γ4ε

>Pε+ 2ρ0γ2ε
>
t Pεt + γ5w1

)
dx

≤ (γ5 + 2 max(γ2, γ4))
|P |

eig(P )
W p
p . (3.30)
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Term T4,p can be written in the following form

T4,p := −θ
∫ 1

0
π(x)epµxGp−1

((
ε> ε>t

)
Σ[ξ]

(
ε

εt

))
dx, (3.31)

where, after utilizing (3.11), mapping Σ : B(δ)→ C0
(
[0, 1];R4×4

)
is given by

Σ[ξ] :=

(
qI2 −ρ0η0[ξ](A+KC)>P

−ρ0η0[ξ]P (A+KC) ρ0qI2

)
. (3.32)

Now, we can easily verify that, by Schur complement, we get 0 < infξ∈B(δ)
w>Σ[ξ]w
|w|2 <

+∞,∀w ∈ R4\0, if we choose

0 < ρ < min

(
q2

γ2
3 |P |2|A+KC|2

, 1

)
, (3.33)

where γ3 is defined in (3.8). It turns out that for every choice of matrices P and K and
constant q satisfying equation (3.11), there always exists a ρ0 (sufficiently small), such that
(3.33) is satisfied and this fact renders Σ positive definite. Consequently, for appropriate
choice of ρ0, there exists σ > 0, such that

T4,p ≤ −σθ
∫ 1

0
π(x)epµxGp−1

(
|ε|2 + |εt|2

)
dx

≤ −σθ
∫ 1

0
π(x)epµxGp−1

(
|ε|2 + ρ0|εt|2

)
dx ≤ −θ σ

|P |
W p
p . (3.34)

Combining equations (3.27), (3.29), (3.30), (3.34) with (3.24) and taking into account that
p ≥ 1, we obtain

Ẇp ≤ (−θω1 + ω2 ln θ + ω3)Wp, (3.35)

where ω1 := σ
|P | , ω2 := 2 maxξ∈B(δ)(λ22(ξ1)), ω3 := a + maxξ∈B(δ)(λ22(ξ1)) lnµ0 +

(γ5 + 2 max(γ2, γ4)) |P |
eig(P ) .

We obtained the estimate (3.35) of Ẇp for ε of class C2, but the proof so far implies that
the result does not depend on the C2-norms. Therefore, as in the proof of Theorem [0thm]
of the previous chapter, by invoking density arguments, the results remain valid with ε only
of class C1 (see [Coron and Bastin (2015)] for further details).

Applying the comparison lemma to (3.35), we obtain an estimate for Wp of the following
form:

Wp(t) ≤ e−(ω1θ−ω2 ln θ−ω3)tWp(0),∀t ≥ 0. (3.36)

Now, one can select the high gain θ, such that

θ > θ0, (3.37)

where θ0 > 1 is such that

−ω1θ + ω2 ln θ + ω3 ≤ −2κ,∀θ > θ0,
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for κ > 0. It can be checked that for any κ > 0, there exists θ0 > 1, such that the previous
inequality is satisfied for any θ > θ0.

Next, by taking into account (3.21) we obtain the following property

lim
p→∞

Wp = lim
p→∞

‖π(·)
1
p eµx(ε>Pε+ ρ0ε

>
t Pεt)‖Lp((0,1);R2) = ‖eµxε>Pε‖0 + ‖ρ0e

µxε>t Pεt‖0,

(3.38)

which holds for continuous ε and εt. We are now in a position to define functional V :

C1([0, 1];R2)→ R by
V[ε] := ‖eµ·ε>Pε‖0 + ‖eµ·ε>x Pεx‖0, (3.39)

and as in (3.22),
V (t) := V[ε](t), t ≥ 0. (3.40)

In conjunction with property (3.38), (3.36), we obtain the following

V (t) ≤ cρ−1
0 e−2κtV (0), ∀t ≥ 0, (3.41)

where 0 < c ∼ θ2 (c is obtained after exploiting (3.14) and bounds derived from the Assump-
tions and (3.8), in order to calculate the bound in the sup-norm for εx with respect to the
bounds of εt and ε. Details are left to the reader). By use of the inequality

e−
µ+|µ|

2 eig(P )‖ε(t, ·)‖21 ≤ V (t) ≤ e−
µ−|µ|

2 |P |‖ε(t, ·)‖21,

we easily obtain

‖ε(t, ·)‖1 ≤ c1/2ρ
−1/2
0 e|µ|/2

√
|P |eig−1(P )e−κt‖ε0‖1, t ≥ 0, (3.42)

where ε0(x) := ε(0, x). By virtue of (3.13), we derive the following estimate, which holds for
every t ≥ 0

‖ξ(t, ·)− ξ̂(t, ·)‖1 ≤ `e−κt‖ξ0 − ξ̂0‖1, (3.43)

where ` := θc1/2ρ
−1/2
0 e|µ|/2

√
|P |eig−1(P ). Concluding, we designed an exponential in the

C1-norm high-gain observer of adjustable convergence rate κ, dependent on the selection of
θ, namely, for every θ > θ0, there exist `, κ > 0, such that (3.43) is satisfied. The higher the
values θ attains, the faster the observation error converges to zero. This concludes the proof
of Theorem 3.1.

3.1.3 Simulation

In this subsection, the obtained theoretical results of the previous subsection are illustrated
via an example.
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Example 3.1. Consider the following coupled hyperbolic equations on Π

∂tξ1 + 0.1(2 + cos(ξ1))∂xξ1 =ξ2 + sin(ξ1),

∂tξ2 − 0.1ξ1 sin(ξ1ξ2)∂xξ1 + 0.1(2 + sin(ξ1))∂xξ2 = sin(ξ2 − ξ1),

y =ξ1

and boundary conditions satisfying

ξ1(t, 0) =− 3

7
ξ1(t, 1)− ξ2(t, 1),

ξ2(t, 0) =− 2

7
ξ1(t, 1).

Consider the initial condition ξ0
1(x) = π(1 − x), ξ0

2(x) = −πx. All Assumptions 3.1 - 3.3 are
satisfied for the above system and, thus, we can design the high-gain observer (3.9) on Π for
a choice of high gain θ = 5 and k1 = −1, k2 = −2

∂tξ̂1 + 0.1(2 + sin(y))∂xξ̂1 =ξ̂2 + 0.1(sin(y)− cos(y))yx + sin(y) + θk1(ξ̂1 − y),

∂tξ̂2 + 0.1(2 + sin(y))∂xξ̂2 = sin(ξ̂2 − y) + 0.1y sin(yξ̂2)yx + θ2k2(ξ̂1 − y),

ξ̂1(t, 0) =− 3

7
y(t, 1)− ξ̂2(t, 1), ξ̂2(t, 0) = −2

7
y(t, 1).

We choose observer initial conditions in accordance with the compatibility conditions. Figure
3.1 shows the measured state, while figures 3.2, 3.3 illustrate the estimation error functions for
system’s states, which exhibit exponential convergence to zero, as predicted by Theorem 3.1.

Figure 3.1: Time and space evolution of measured state ξ1
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Figure 3.2: Time and space evolution of the observer error of the first state

Figure 3.3: Time and space evolution of the observer error of the second state
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3.2 A class of 2× 2 and 3× 3 semilinear parabolic systems

In this section, the results of [Kitsos et al (2020b)] are presented concerning a solution to
the H-GODP for some Lotka-Volterra-like semilinear parabolic cascade systems of order n = 2

and n = 3 and considering measurement of the first state. The class of systems that we study
might describe biological predator-prey models and other population and social dynamics
phenomena [Britton (1986)], [Berryman (1992)]. Such systems have gained significant
interest with respect to controllability and one can refer to [Sakthivel et al (2010)] (see
also [Crepeau and Prieur (2008)]). For Lyapunov techniques on parabolic systems, one
can refer to [Mazenc and Prieur (2011)]. Moreover, observer design for finite-dimensional
Lotka-Volterra systems has been addressed in [Bourat and Saif (2013)].

The problem is technically notrivial, as the distinct diffusivities of the parabolic operator
do not allow the observer design to be directly feasible (Property (S) would not be fulfilled
for the parabolic operator, see Definition 1.2 in Chapter 1) . Following the philosophy of
the present chapter, an indirect transformation-based approach is thus adopted. The main
contribution here is a solution to this H-GODP, in the presence of distinct diffusivities of
the parabolic operator and considering also semilinear dynamics. An appropriate infinite-
dimensional and lower triangular state transformation is first performed, in order to map the
considered systems into new sets of PDEs, where the parabolic operator is decomposed into a
new one with only one diffusivity and a mapping including spatial derivations of the measured
state in its domain. As a consequence, this methodology results in requiring, additionally
to the output correction terms, the injection of ouput’s spatial derivatives in the high-gain
observer dynamics, up to an order depending on the number of distinct diffusivities. The
convergence of the observer is then proven for the sup spatial norm, noting a loss of derivatives,
since we require system’s dynamics to have stronger regularity. Moreover, in the presence of
the nonlinearities, we inject sufficiently smooth saturation functions in the observer dynamics,
to tackle the absence of globally Lipschitz continuity of the considered class of systems (the
nonlinearities are just locally Lipschitz). The present approach extends on the one hand the
approach of the previous section to 2 × 2 systems with different type of nonlinearity and on
the other hand the one for 2× 2 nonlinear systems to up to 3× 3 systems. Notice, however,
that the application of the present methodology to systems with more than 3 states is not
solved, due to the nonlinearities, which impose extra difficulties.

The sufficient conditions and a solution to the H-GODP are presented in Subsection 3.2.1,
where Theorem 3.2 constitutes the main result. The infinite-dimensional transformation that
we use to obtain a target system for observer design, along with the proof of Theorem 3.2, are
presented in Section 3.2.2. In Section 3.2.3 we apply our methodology to a 2×2 Lotka-Volterra
system.

3.2.1 Problem statement and solvability of the H-GODP

Motivated by applications to information diffusion by multiple sources in social media
[Wang et al (2013)], we consider a system of two or three one-dimensional semilinear
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parabolic equations with Neumann boundary conditions, written in the following form

ut =Duxx +A(u1)u+ f(u) in (0,+∞)× (l, L), (3.46a)

u(0, x) =u0(x), x ∈ (l, L), (3.46b)

ux(t, l) =0, ux(t, L) = 0, t ∈ (0,+∞). (3.46c)

where L > l ≥ 0 define the space domain, and u =
(
u1 · · · un

)> is the 2 or 3-dimensional
state vector (namely n = 2 or n = 3),

D = diag (d1, . . . , dn) ; di > 0, i = 1, . . . , n

is the constant diffusion matrix, and

A(u1) :=



(
0 a12u1

0 0

)
, if n = 2,0 a12 0

0 0 a23

0 0 0

 (=: A), if n = 3

f(u) :=



 r1u1

(
1− u1

K1

)
r2u2

(
1− u2

K2

)
+ a21u2u1

 , if n = 2,
r1u1

(
1− u1

K1

)
r2u2

(
1− u2

K2

)
+ a21u2u1

r3u3

(
1− u3

K3

)
+ a31u3u1 + a32u3u2

 , if n = 3

for some constants a21, a31, a32 and positive constants a12, a23, ri,Ki. The above system sat-
isfies the general form introduced in Section 1.2 of Chapter 1. Note here that these two types
of systems are henceforth parametrized by n, thus, whenever we say n = 2 or n = 3, we refer
to the above 2 × 2 or 3 × 3 system, respectively. Assume, also, that initial conditions u0(·),
with u0(·) ≥ 0, belong to the Banach space X , where

X :=Cq0([l, L];R)× C2
(
[l, L];Rn−1

)
; (3.47)

q0 := max(2, 2q − 2);

q := min {i : di = dj , ∀j = i, i+ 1, . . . , n} ,

and X is equipped with the norm

‖u‖X := ‖u1‖q0 + ‖(u2, u3)‖2,when n = 3.

From the above definition of q, note that q ∈ {1, 2, 3} (thus q0 ∈ {2, 4}) and when diffusivities
di are distinct, we get q = n, while q = 1, when all diffusivities are equal.

We consider a distributed measurement of the first state, written as follows

y(t, x) = Cu(t, x), (3.48)

where C =
(
1 0

)
, if n = 2, or C =

(
1 0 0

)
, if n = 3.
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Remark 3.1. Compatibility conditions for the space X might be understood in the following
sense. Consider the more general case for n = q = 3. Then, for initial condition u0, the
following conditions are satisfied

u0
x(b) =0,

d1∂
3
xu

0
1(b) + r1∂xu

0
1(b)− 2

r1

K1
u0

1(b)∂xu
0
1(b) + a12u2(b) =0, for b = l and b = L.

For the case n = q = 2, only the first of the above equations should be satisfied.

Remark 3.2. The above-considered system (3.46) for n = 2 is a diffusional Lotka-Volterra
system. We underline that for the 3 × 3 system, we consider some simpler dynamics with
respect to A(·) constant in this case, and, thus, not satisfying the exact form of classical 3× 3

Lotka-Volterra systems in cascade form. An extension of the method we adopt here to general
diffusional Lotka-Volterra cascade systems of n species is difficult due to the nonlinearities, and
the difficulty augments with the number of distinct diffusivities. Notice that similar difficul-
ties, which increase with the number of characteristic velocities and the types of nonlinearities,
appear in the study of controllability for cascade hyperbolic systems with reduced number of con-
trols [Alabau-Boussouira et al (2017)] and come from the notion of algebraic solvability.
For such problems, stronger regularity of the solutions is imposed; in a similar way stronger
regularity conditions are assumed here as well, in order to solve the problem of observer design
with reduced number of observations.

In [Pierre (2010)] it is shown that systems of the form (3.46), with the present regularity
conditions, admit unique local solutions in the classical sense defined therein (see Lemma 1.1)
and their regularity can be understood in the usual sense, since the nonlinear source term
A(u1)u + f(u) is regular enough. Particularly, there exist T > 0 and a unique solution u

to (3.46) on [0, T ), with u ∈ C1 ([0, T )× [l, L];Rn) and u(t, ·) ∈ C2 ([l, L];Rn) ,∀t ∈ [0, T ).
Furthermore, "quasipositivity" (see [Pierre (2010)]) of the nonlinearities implies that these
local solutions are non-negative for non-negative initial conditions u0. Here, for observer design
issues, we introduce an assumption on global existence of nonegative solutions which are also
uniformly bounded, assuming additionally some extra regularity. In addition, we assume that,
for the case n = 2, there exists a lower positive bound for system’s first state, so for this case
n = 2 only, we assume that the solutions are not just nonnegative, but strictly positive with
u1 lower bounded, contrary to the case n = 3. The latter presents an analogy to the observer
design conditions for finite-dimensional systems, see [Hammouri et al (2002)].

Assumption 3.4. System (3.46) with initial condition u0 satisfying compatibility con-
ditions for the space X , admits a unique and uniformly bounded solution u in
Cmax(1,q0−2) ([0,+∞)× [l, L];R) × C1

(
[0,+∞)× [l, L];Rn−1

)
, with u(t, ·) ∈ X , for all t ∈

[0,+∞). For n = 3, considering non-negative initial condition u0, this solution remains non-
negative. In the case where n = 2, we have u0(·) > 0 and its corresponding solution u1

satisfies
inf

(t,x)∈[0,+∞)×[l,L]
u1(t, x) > 0.

Remark 3.3. It is not unusual to consider global solutions for such systems, by showing that
solutions might not blow up on some maximal time interval of existence (see assertions in
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[Pierre (2010)]). Following Theorem 3.5 in [Pierre (2010)] we can deduce that a sufficient
condition for global existence when n = 3 is a21, a31, a32 ≤ 0. The stronger regularity that we
impose on the solutions can be seen as a consequence of the regularity of the initial conditions
and the nonlinear source. The method to prove this by finding a priori estimates is standard,
see for instance Chap. V [Ladyzenskaja et al (1968)] and Chap. 8.3.2 [Evans (1998)].

We are in a position to propose an indirect observer design, as explained below, which deals
with the problem of the presence of distinct diffusivities. Let us first consider a symmetric
and positive definite matrix P , satisfying a Lyapunov equation of the following form for
(t, x) ∈ [0,+∞)× [l, L]

Sym (PA(y(t, x)))− C>C ≤ −η
2
In, (3.49)

for some constant η > 0. Such an inequality is always feasible for A(y) and C satisfying partic-
ular structures as the ones we already assumed, forming an observability canonical form as in
the finite dimensions. More explicitly, for systems with two states (n = 2), feasibility of such
an inequality requires additionally to the algebraic structure, y = u1 to satisfy Assumption
3.4 (having upper and lower bounds). To prove the existence of such a P , one can refer to
[Hammouri et al (2002)] for the case of A(·) satisfying similar conditions as in the present
case. When n = 3 such an inequality is feasible, because of the observability of the pair A,C.
Furthermore, let us note that such a P is never diagonal. In a possible direct observer design,
observer asymptotic convergence would be proven by choosing P as a Lyapunov matrix, simul-
taneously commuting with the diffusion matrix D. This commutative property would allow
the integration by parts in the Lyapunov analysis and can be only satisfied when D is a scalar
matrix as in Property (S), see Chapter 1, which is not the general case here. For this reason,
we propose a transformation into a new system where the parabolic operator is decomposed
into a sum of a) a new differential operator, satisfying the previously mentioned commutativ-
ity, b) a differential operator (and possibly nonlinear) including only the first measured state
in its domain and c) a bilinear mapping between a function of the unmeasured state and a dif-
ferential operator, including only the first state in its domain. Moreover, this transformation
is assumed to preserve the triangular structure of A and f . That kind of transformation is,
therefore, infinite-dimensional and lower triangular. More precisely, we show the existence of
a linear bounded injective transformation T : (X , ‖ · ‖X ) → (X , ‖ · ‖X ), with bounded inverse,
which maps initial system into a target system v, as follows:

v =T u; (3.50)

v1 =u1.

Such an infinite-dimensional ltransformation always exists for the considered systems with
n = 2 or 3, as shown in the sequel, although existence of a transformation (possibly nonlinear)
for more general n × n Lotka-Volterra systems with distinct diffusivities remains open (see
Remark 3.2). The nature of this transformation indicates the need for stronger regularity
of system’s solutions as in Assumption 3.4 and this requirement is linked to the sufficient
conditions for controllability problems for cascade systems with reduced number of controls
[Alabau-Boussouira et al (2017)] (see also Remark 3.2).
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The target system (T) of PDEs, which is suitable for observer design, satisfies the following
equations in (0,+∞)× (l, L):

(T)


vt(t, x) = dnvxx(t, x) +A(v1(t, x))v(t, x)

+f(v(t, x)) +M1[v1(t)](x) +M2[v1(t)](x)v(t, x)

vx(l) = Kv1(l), vx(L) = Kv1(L),

yv(t, x) = y(t, x) = Cv(t, x),

with initial condition v(0, x) = v0(x) = T u0(x), where M1 : Cq0([l, L];R) →
C0 ([l, L];Rn) ,M2 : Cq0([l, L];R) → Cmax(0,2q−4)([l, L];Rn×n),K : Cq0([l, L];R) → Rn are
nonlinear differential operators acting on v1, to be determined in the sequel, depending on the
choice of T , and yv is target system’s output, which remains equal to original system’s output
y. The existence of such a transformation T is shown in the following subsection.

We are now in a position to propose a high-gain observer for target system (T).

High-Gain Observer

The observer is given by the following equations in (0,+∞)× (l, L)

v̂t(t, x) =dnv̂xx(t, x) +A(y(t, x))v̂(t, x) + ΘP−1C> (y(t, x)− Cv̂(t, x)) + (f ◦ sδ) (v̂(t, x))

+M1[y(t)](x) +M2[y(t)](x)v̂(t, x), (3.52a)

v̂x(l) =Ky(l), v̂x(L) = Ky(L), (3.52b)

with initial condition v̂(0, x) = v̂0(x) (for some function v̂0 in X , satisfying compatibility
conditions for this space). Also,

Θ := diag
(
θ, θ2, . . . , θn

)
, (3.53)

where θ > 1 is the candidate high–gain constant of the observer, to be selected sufficiently large
and precisely determined in the sequel, and P is symmetric and positive definite, satisfying
(3.49) for some η > 0. We also injected in the nonlinear dynamics a function Rn 3 v̂ 7→
sδ(v̂) = (sδ,1(v̂1), . . . , sδ,n(v̂n)) , parametrized by δ > 0, which is a global bound of the solution
v, i.e.,

δ ∈ {δ0 > 0 : ‖v(t, ·)‖X ≤ δ0, ∀t ≥ 0} .

The previous set, in which δ belongs, is nonempty by Assumption 3.4, in conjunction with
(3.50) and boundedness of T . There is no need, however, to inject this function in the
appearing linear terms, since they are already globally Lipschitz, although this is not explicitly
written here. Alternatively, one can avoid injecting sδ,1(v̂1) in observer’s nonlinear dynamics,
but use y instead and we adopt this simplification in the example of the last subsection. We
assume that sδ is of class C2 and satisfies the following properties:

1) For every δ > 0 and w, ŵ in R, such that |w| ≤ δ, there exists ωδ > 0, such that the
following inequality is satisfied:

|sδ,i(ŵ)− w| ≤ ωδ|ŵ − w|, i = 1, . . . , n. (3.54a)
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2) There exists mδ > 0, such that for every ŵ in R,

| d
j

dŵj
sδ,i(ŵ)| ≤ mδ, j = 0, 1, 2, i = 1, . . . , n. (3.54b)

We are now in a position to present our main result on the convergence of the proposed
high-gain observer.

Theorem 3.2 (Solvability of the H-GODP). Consider system (3.46) with output (3.48) and
suppose that Assumption 3.4 holds. Then, there exists a linear bounded injective operator T
with bounded inverse, transforming system into system (T). Let also P be a symmetric and
positive definite matrix, satisfying (3.49) for some η > 0. Then, for θ large enough, T −1v̂

provides an estimate for the solution u to (3.46), where v̂ is the unique solution to observer
system (3.52). More precisely, for every κ > 0, there exists θ0 ≥ 1, such that for every θ ≥ θ0,
the following holds for all t ≥ 0:

‖T −1v̂(t, ·)− u(t, ·)‖∞ ≤ ce−κt‖T −1v̂0(·)− u0(·)‖X , (3.55)

for some c > 0 polynomial in θ.

3.2.2 Observer Convergence Proof

In this subsection, we prove Theorem 3.2.

First, we show the existence of T of the form (3.50) mapping (3.46)-(3.48) into target
system (T) of the previous subsection. Let us choose

T :=


I2, n = 2, 1 0 0

b∂2
x 1 0

0 0 1

 , n = 3
;

where b :=
d3 − d2

a12
,

with T obviously bounded, invertible with bounded inverse from X to X .

Observe in the above mapping that differentiation is only required when d2 6= d3. This
implies that indicator q is equal to 3. As we mentioned in the introduction of the present
chapter, the order of the essential regularity depends on the indicator q. For instance, for
n = q = 3, we would need a regularity of order 4 for u1 and of order 2 for u2 and u3.
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Then, applying this transformation to the initial system, we obtain system (T) with

M1[v1] :=



(
(d1 − d3)∂2

xv1

0

)
, n = 2,

(d1 − d3 − a12b)∂
2
xv1

[
b(d1 − d3)∂4

x + b(r1 − r2)∂2
x

]
v1−

−b
(
a21 + 2 r1

K1

)
u1∂

2
xv1−

−2b r1K1
(∂xv1)2 − b2 r2

K2
(∂2
xv1)2


0

 , n = 3,

M2[v1] :=


0, n = 2,0 0 0

0 2b r2K2
∂2
xv1 0

0 0 −ba32∂
2
xv1

 , n = 3,

K =0, if n = 2,

K =

 0

b∂2
x

0

 , if n = 3.

We note here some properties, that will be invoked in the well-posedness of the observer
and its convergence proof. First, notice that by virtue of Assumption 3.4 on boundedness of
the system’s solutions in ‖·‖X , boundedness of mapping T , and the dynamics of target system
(T), vt, vxx, and vtxx are uniformly bounded in the sup-norm. Now, due to continuity of the
nonlinear operatorsM1,M2, we get

sup
‖y‖q0≤δ

|M1[y]| <+∞,

σδ := sup
‖y‖q0≤δ

|M2[y]|, σ′δ := sup
‖v‖X≤δ

|M2[Cvt]| < +∞. (3.56)

Furthermore, in view of boundedness of solutions (Assumption 3.4), dynamics of v, and prop-
erties (3.54), for any δ > 0, there exist constants Lδ, L′δ > 0, such that for every v, v̂ in X ,
with ‖v‖X ≤ δ, the following inequalities are satisfied for all x in [l, L]

|(f ◦ sδ)(v̂(x))− f(v(x))| ≤ Lδ|v̂(x)− v(x)|, (3.57a)

|D(f ◦ sδ)(v̂(x)) · v̂t(x)−Df(v(x)) · vt(x)| ≤L′δ (|v̂(x)− v(x)|+ |v̂t(x)− vt(x)|) . (3.57b)

Now, to show well-posedness of the observer system, we recall general existence results for
systems written in the form ż(t) = Az(t)+F (y(t), z(t)), see for instance [Brezis (1983)] (see
also Example 3.6, p. 75, [Henry (1981)]). Here A is the parabolic operator with domain
D(A) =

{
z ∈ C2([l, L];Rn), z′(l) = Ky(l), z′(L) = Ky(L)

}
and F (y(t), z(t)) := A(y(t))z(t) +

M2[y(t)]z(t) + (f ◦ sδ) (z(t)) + ΘP−1C> (y(t)− Cz(t)) + M1[y(t)] is the nonlinear source
term of the observer, which is uniformly Lipshitz continuous with respect to z when sys-
tem’s output y satisfies Assumption 3.4. Then, the existence of a unique local solution
z in C1 ([0, T1)× [l, L];Rn) with z(t) ∈ C2([l, L];Rn),∀t ∈ [0, T1) for some T1 > 0 is
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guaranteed. Following the continuous differentiability of the nonlinear source, existence in
space X for n = q = 3 can be deduced by considering the initial value problem for ż1,
which can be written as d

dt ż1(t) = A1ż1(t) + G(t, y(t), ẏ(t), z(t), ż(t)); A1w := dnw
′′, with

D(A1) =
{
ż1 ∈ C2((l, L);R), ż′1(l) = CKẏ(l), ż′1(L)

= CKẏ(L)} and initial conditions ż1(0) satisfy compatibility conditions of order 1. G is
uniformly Lipschitz with respect to ż, when y satisfies Assumption 3.4 and, thus, system
admits a unique solution ż1 on [0, T2) for some T2 > 0, belonging to C1 ([0, T2)× [l, L];R)

with ż1(t) ∈ C2([l, L];R), ∀t ∈ [0, T2). Concluding, observer system admits a unique so-
lution on [0, T ∗), with T ∗ := min(T1, T2), belonging to Cmax(1,q0−2) ([0, T ∗)× [l, L];R) ×
C1
(
[0, T ∗)× [l, L];Rn−1

)
, with û(t, ·) ∈ X , for all t ∈ [0, T ∗).

Let us now proceed to the stability proof.

We define a scaled observer error by

ε := Θ−1 (v̂ − v) ,

for which we derive the following parabolic equations in (0,+∞)× (l, L):

εt(t, x) =dnεxx(t, x) + θ
(
A(y(t, x))− P−1C>C

)
ε(t, x) +M2[y(t)](x)ε(t, x)

+ Θ−1 ((f ◦ sδ)(v̂(x))− f(v(x))) , (3.58a)

εx(l) =εx(L) = 0. (3.58b)

Furthermore, for systems with n = q = 3, by temporarily assuming some extra regularity
for v2, v̂2, v3, v̂3, which will be dropped by density arguments, we get the following parabolic
equations for εt:

εtt(t, x) =dnεtxx(t, x) + θ
(
A− P−1C>C

)
εt(t, x) +M2[yt(t)](x)ε(t, x) +M2[y(t)](x)εt(t, x)

+ Θ−1 (D(f ◦ sδ)(v̂(x)) · v̂t(x)−Df(v(x)) · vt(x)) , (3.59a)

εtx(l) =εtx(L) = 0. (3.59b)

To prove the error’s exponential stability with respect to its origin, we adopt a Lyapunov–based
approach. Let us define a Lyapunov functional Wp : X → R by

Wp[ε] :=

(∫ L

l
Gp[ε](x)dx

)1/p

;

Gp[ε](x) :=

(
q̄∑
i=0

∂itε
>(x)P∂itε(x)

)p
, (3.60)

with p in N and q̄ := (q−1)(q−2)
2 . Denoting Wp(t) := Wp[ε(t)], Gp(t) := Gp[ε(t)], t ∈ [0, T ∗],

we calculate the time-derivative Ẇp along the solutions ε, εt to the error equations (3.91) as
follows:

Ẇp =
1

p
W 1−p
p

∫ L

l
pGp−1(x)

(
εt(x)>Pε(x) + ε(x)>Pεt(x)

+q̄εtt(x)>Pεt(x) + q̄εt(x)>Pεtt(x)
)

dx.
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After substituting (3.58), (3.59) and performing an integration by parts (which can be possible,
since the observer error in the target coordinates satisfies Property (S) of Chapter 1), Ẇp can
be written as follows:

Ẇp = W 1−p
p

(
1

p
T1,p + T2,p + T3,p

)
, (3.61)

where

T1,p := dpn [∂xGp]
L
l ,

T2,p :=

∫ L

l
Gp−1

[
2ε>PΘ−1 ((f ◦ sδ)(v̂)− f(u)) + 2q̄ε>t PΘ−1 (D(f ◦ sδ)(v̂)v̂t −Df(v)vt)

+ε> (PM2[y] +M2[y]P ) ε+ q̄ε>t (PM2[y] +M2[y]P ) εt

+
q̄

2
ε>t PM2[yt]ε+

q̄

2
ε>M2[yt]Pεt − 2ε>x Pεx − 2q̄ε>txPεtx

]
dx,

T3,p := 2θ

∫ L

l
Gp−1

(
ε>
[
Sym (PA(y))− C>C

]
ε+ q̄ε>t

[
Sym (PA)− C>C

]
εt

)
dx.

By use of boundary conditions (3.59b) and also (3.49), (3.56), and (3.57a), we get

T1,p =0,

T2,p ≤σW p
p ,

T3,p ≤− θ
η

|P |
W p
p ,

with
σ := 2

|P |
eig(P )

(√
n
(
Lδ + q̄L′δ

)
+ σδ(q̄ + 1) + q̄σ′δ

)
.

Now, selecting high-gain θ > max
(

1, |P |η σ
)
, we get by (3.101) that there exists a κ > 0, such

that

Ẇp(t) ≤ −2κWp(t), t ∈ [0, T ∗]. (3.63)

By comparison lemma, we get the following estimate

Wp(t) ≤ e−2κtWp(0), t ∈ [0, T ∗].

By this estimate, we deduce that solutions in X to the observer equations (3.58) exist globally
in time and, therefore, the previous inequality holds for all t ≥ 0. We invoke, next, the
following property:

lim
p→∞

Wp =

q̄∑
i=0

‖∂itε>(·)P∂itε(·)‖∞,

holding for continuous ε, εt and also the following inequality which is derived by error equations
(3.58):

a1 (‖εxx‖∞ − ‖ε‖∞) ≤ ‖εt‖∞ ≤ a2(‖εxx‖∞ + ‖ε‖∞),
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for some positive constants a1 and a2 that we can easily calculate. Following the above
arguments, we can calculate a positive c̄ (polynomial in θ), for which the following inequality
holds:

q̄∑
i=0

‖∂2i
x v̂(t, ·)− ∂2i

x v(t, ·)‖∞ ≤ c̄e−κt
q̄∑
i=0

‖∂2i
x v̂

0(·)− ∂2i
x v

0(·)‖∞, t ≥ 0.

Now, from continuous embedding of X in C2([l, L];Rn) and boundedness of T , from the con-
tinuous embedding of C2([l, L];Rn) in C0([l, L];Rn) and from boundedness of the continuous
extension of T −1 on C0([l, L];Rn), we deduce stability inequality (3.55).

The proof of Theorem 3.2 is complete.

3.2.3 Simulation for a Lotka-Volterra system

In this subsection, we apply the proposed high–gain observer design to a 2× 2 Lotka–Volterra
system (3.46) as an illustration, with l = 0, L = 10, diffusivities d1 = 2, d2 = 1 and a12 =

0.2, a21 = −0.2,K1 = 15,K2 = 0.1, r1 = 0.5, r2 = 0.01. We choose initial conditions u0
1(x) =

cos(πx/10)+6, u0
1(x) = −3 cos(πx/10)+9, such that Assumption 3.4 is satisfied with a global

bound for the solution, which can be known a priori, to be δ = 20. The corresponding output
is represented in Figure 3.4. System’s unknown second state is represented in Figure 3.5.

The proposed high–gain observer has the form (3.70). Exploiting the a priori known

bounds of system’s output, we choose η = 0.5, P =

(
13.4 0.667

0.667 0.14

)
, for which (4.25) holds.

We next apply Theorem 3.3, with observer given by (3.70) and θ = 4. As expected, the
convergence of observer state to the unknown state u is guaranteed.

In figures 3.6, 3.7 we see the observation errors for each of the states u1, u2, after choosing
arbitrary observer’s initial conditions, satisfying also observer’s boundary conditions.
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Figure 3.4: Time and space evolution of measured state u1

Figure 3.5: Time and space evolution of system’s second state
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Figure 3.6: Time and space evolution of the observer error of the first state

Figure 3.7: Time and space evolution of the observer error of the second state
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3.3 A class of n×n linear heterodirectional hyperbolic systems

This final section suggests a solution to the H-GODP for a case of a nonuniform inhomoge-
neous linear hyperbolic system, which does not satisfy Property (S) for its hyperbolic operator
(see Definition 1.2 in Chapter 1), following some of the results in [Kitsos et al (2020a)]. In
view of the previous sections, one would expect that the proposed transformation-based ap-
proach would solve the problem for general systems of any number of states and for any
number of distinct characteristic velocities or diffusivities, depending on the type of PDEs.
It turns out that the complexity of the solvability of the H-GODP increases with the num-
ber of distinct velocities/diffusivities for hyperbolic/parabolic systems. Furthermore, possible
nonlinearities, both in the coefficients of the differential operators and the source terms do
not allow the direct extension of this approach to systems with large number of characteristic
velocities/diffusivities. In this context, n × n hyperbolic systems, with the largest possible
number of distinct velocities are considered (equal to n) nonuniform inhomogeneous, but also
linear, in view of the fact that nonlinear systems with more than 3 states seem to not achieve
to be directly handled by this transformation-based approach.

The class of heterodirectional hyperbolic systems that we study, written in an appro-
priate canonical form, can be found in various situations, like plug flow chemical reactors,
where, by measuring the jacket temperature, we would expect to estimate the concentra-
tions of masses of chemicals, see Chapter 1.2. Stability and controllability for linear hy-
perbolic systems have been widely studied, see for instance [Bastin and Coron (2016)],
[Prieur and Winkin (2018)], [Espitia et al (2017)] employing Lyapunov and operator
theoretic strategies.

The main contribution here is the proof of solvability of the H-GODP for the considered
class of systems. Following the philosophy of this chapter, an important idea of this section
is to perform an appropriate infinite - dimensional and lower triangular transformation to
overcome the absence of Property (S) yet needed in the Lyapunov stability analysis and due
to distinct velocities. The original hyperbolic system is mapped into a target system of PDEs.
This infinite-dimensional transformation solves a generalized Sylvester operator equation and
its computation is provided via a proposed algorithm. The proposed methodology results
in requiring, additionally to the output correction terms, the injection of ouput’s spatial
derivatives up to order q − 1 in the high-gain observer dynamics, where q is an indicator
of the number of different velocities. Sufficient conditions, both on strong regularity of the
dynamics and space periodicity on the boundary conditions, allow the extension to system with
any number of states. These conditions are related to [Alabau-Boussouira et al (2017)],
which studies internal controllability of hyperbolic systems with reduced number of controls.
Similarly to this work, the analysis experiences the loss of derivatives phenomenon, since we
require stronger regularity for system’s solutions, in order to obtain an asymtpotic observer
convergence in a norm of a space with lower regularity. Last but not least, it can be noticed
that, even though the system is linear, the use of high gain is instrumental, as a result of
the considered domain of the hyperbolic operator, namely the generality of the boundary
conditions. The convergence of the observer is then proven for an appropriate spatial norm.
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The Section is organized as follows. The sufficient conditions for solvability and a solution
to the H-GODP are presented in Subsection 3.3.1, where Theorem 3.3 constitutes the main
result. The infinite-dimensional transformation and the derivation of the target system, for
which we design the observer, are presented in Subsection 3.3.2. In Subsection 3.3.3 Theorem
3.3 is proven and, finally, in Subsection 3.3.4, we illustrate the methodology via a 3×3 system,
with application to plug flow chemical reactors.

3.3.1 Problem statement and main result

We are concerned with one-dimensional, first-order linear hyperbolic systems of balance laws,
described by the following equations on a strip Σ := [0,+∞)× [0, L]

ξt(t, x) + Λ(x)ξx(t, x) = M(x)ξ(t, x), (3.64a)

where ξ =
(
ξ1 · · · ξn

)> is the state.

Consider also a distributed measurement of the form

y(t, x) = Cξ(t, x), (3.64b)

where y is a mapping from Σ to R and

Λ(x) = diag (λ1(x), . . . , λn(x))

contains m characteristic velocities λi(x), which are positive and n −m negative for all x in
[0, L]. We have the following algebraic structures for the involved matrices

M(x) =


m1,1(x) m1,2(x) 0 · · · 0

. . . . . .
...

... mn−1,n(x)

mn,1(x) · · · mn,n(x)

,
C =

(
1 0 · · · 0

)
.

Note that the above system satisfies the general form introduced in Section 1.2 of Chapter 1.

To give appropriate boundary conditions, let us first define a permutation matrix denoted
by Iπ, which re-orders components of ξ according to the signs of the related characteristic
velocities, namely, putting the m elements corresponding to positive velocities in ξ+ and the
n−m to negative velocities in ξ−. In addition, if λ1(·) > 0, ξ+ is put ahead, and if λ1(·) < 0,
ξ− is put in the first place, keeping in both cases ξ1 in the upper first place. More explicitly,

Iπξ :=

(
ξ+

ξ−

)
; ξ+

1 = ξ1, when λ1(·) > 0,

Iπξ :=

(
ξ−

ξ+

)
; ξ−1 = ξ1, when λ1(·) < 0,
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where ξ+ ∈ Rm, ξ− ∈ Rn−m.

We consider initial conditions

ξ(0, x) =: ξ0(x), x ∈ [0, L] (3.65a)

and boundary conditions (distinguishing cases λ1(·) > 0 and λ1(·) < 0), written in the form(
B1,m

0 Bm+1,n
L

)
Iπξ = K

(
B1,m
L Bm+1,n

0

)
Iπξ,when λ1(·) > 0, (3.65b)(

B1,n−m
L Bn−m+1,n

0

)
Iπξ = K

(
B1,n−m

0 Bn−m+1,n
L

)
Iπξ,when λ1(·) < 0, (3.65c)

where Bi,jl , for l = 0 or l = L, performs the following trace operation

Bi,jl
(
ξi, · · · , ξj

)>
:=
(
ξi(l), · · · , ξj(l)

)>
, 1 ≤ i ≤ j,

and K is a matrix of the form

K =
1 + sgn(λ1(x))

2

(
K00 K01

K10 K11

)
+

1− sgn(λ1(x))

2

(
K11 K10

K01 K00

)
; (3.66)

K00 ∈ Rm×m,K01 ∈ Rm×(n−m),K10 ∈ R(n−m)×m,K11 ∈ R(n−m)×(n−m).

At this point, let us define a, roughly speaking, “measure of ordered strict hyperbolicity" as
follows:

q := min {i : λi ≡ λj ,∀j = i, i+ 1, . . . , n} ,

where we used the equivalence relation λi ≡ λj ⇔ λi(x) = λj(x),∀x ∈ [0, L]. By this
definition, we have q ∈ [1, n], and in case of a strictly hyperbolic system, we have q = n.
The case where q = 1 (one identical characteristic velocity) as a particular case of the general
formulation here, has been already addressed in Chapter 2. We define also

qi := max (1, 2q − 3− i) , i = 1, . . . , n− 1, qn := qn−1.

We are now in position to present the main assumptions.

Assumption 3.5. Functions λi and mi,j are in Cq1 [0, L]. Initial conditions ξ0 in
Cq1 ([0, L];Rn) satisfy compatibility conditions of order q1 (see [Bastin and Coron (2016)],
Chapter 4.5.2 for definition of compatibility conditions of order k).

The previous assumption leads to higher-order regularity of system’s solutions and,
thus, of system’s output y. The following fact results from classical arguments bor-
rowed from the theory of linear hyperbolic systems (method of characteristics) and fixed-
point theory, combined with the manipulation of the extra regularity that is required (see
[Bastin and Coron (2016)], App. A, Chap. 4.5 and references therein).

Fact 3.1. Under Assumption 3.5, there exists a unique global solution to (3.64a), (3.65) in
Cq1 ([0,+∞)× [0, L];Rn).
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The nature of the following assumption is revealed in [Kitsos et al (2018)], where a
triangular form is introduced for the case of quasi-linear hyperbolic systems and an adaptation
to the present case suggests that this assumption meets the requirements of the aforementioned
work. This assumption allows us to obtain a target system, that we introduce later, and is
also a sufficient condition for the observer design.

Assumption 3.6. The following condition is satisfied for all x in [0, L]

m1,2(x),m2,3(x), . . . ,mn−1,n(x) 6= 0.

Given the previous assumption, system (3.64a), (3.64b) satisfies some triangular structure,
which presents an analogy to the finite-dimensional case (see [Khalil (2017)]).

Last, we make an assumption having two alternative versions, which in general do not need
to be satisfied simultaneously. Both of them are sufficient conditions to lead to an appropriate
target system. The first version (A) imposes a space L-periodicity to system (3.64a), (3.65)
with n > 3. The second version (B) of this assumption imposes limitations on its characteristic
velocities.

Assumption 3.7. One of the two following versions is true for systems larger than 3× 3.
(A) Whenever n > 3, the following space L-periodicity holds

ξ(t, 0) = ξ(t, L),∀t ∈ [0,+∞) (in other words,K = In in (3.65b))

and ∂jxλi(0) = ∂jxλi(L), ∂jxM(0) = ∂jxM(L), i = 1, . . . , n, j = 0, . . . , q1.

(B) The characteristic velocities satisfy the following relations on the boundaries for n > 3

λ3(0) = . . . = λn(0), λ3(L) = . . . = λn(L),

λ′4(0) = . . . = λ′n(0), λ′4(L) = . . . = λ′n(L).

Also, K11 is invertible when λn(·) > 0 and K00 is invertible, when λn(·) < 0, where K00,K11

are defined in (3.66).

In case Assumption 3.7 (A) is fulfilled, we simultaneously derive the following periodicity
property for all spatial derivatives up to the maximal order of regularity, as a consequence of
system (3.64a) hyperbolic dynamics

∂jxξ(t, 0) = ∂jxξ(t, L), ∀t ∈ [0,+∞), j = 0, . . . , q1. (3.67)

When this Assumption 3.7 (A) holds, then the unique solution of the initial system lies in the
Banach space of x L-periodic functions, denoted by Cq1L ([0,+∞)× [0, L];Rn).

Remark 3.4. It should be emphasized that version (A) of Assumption 3.7 is natural in many
contexts and a similar assumption can be also found in [Alabau-Boussouira et al (2017)],
which deals with a dual problem of controllability. A case where it is automatically satisfied
is when K = In and Λ(x) constant. Version (B) restricts system’s characteristic velocities.
Assuming that λi’s are uniform, this version would hold if system possessed at most three
distinct velocities in the first three places, with all the subsequent ones identical to λ3 (q = 3

in that case).
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The methodology we need to follow hereafter, in order to solve the H-GODP, relies on
indirect observer design, as it was introduced in Chapter 1.3.2. Solvability of H-GODP by use
of a distributed observer has been shown for specific classes of quasi-linear hyperbolic systems
in the first section of the present chapter, with only one velocity. Although system (3.64a),
(3.64b), (3.65) is written in a triangular form, as it was introduced in [Kitsos et al (2018)], it
seems that with Property (S) not holding, direct observer design is not applicable. To address
this problem, we perform a transformation including spatial differentiations of the state up to
order q−2, in order to write the system in an appropriate form for which the desired observer
design is possible. Then, for the obtained target system, we design the high-gain observer
and, finally, returning to the initial coordinates, solvability of H-GODP is guaranteed. We
present these appropriate transformations in the next subsections, starting from examples of
2× 2 and 3× 3 systems.

Define a Banach space X by

X := Cq1 [0, L]× Cq2 [0, L]× · · · × Cqn [0, L],

equipped with a norm

‖(ξ1, . . . , ξn)‖X := ‖ξ1‖q1 + ‖ξ2‖q2 + . . .+ ‖ξn‖qn .

Assume that there exists a bounded injective linear transformation T : (X , ‖ · ‖X )→ (X , ‖ · ‖X ),
with bounded inverse, which maps system (3.64a), (3.65) into a target system ζ, as follows

ζ = T ξ; (3.68)

with ζ1 = ξ1.

The target system of PDEs that we consider in this chapter satisfies the following equations
on Σ, distinguishing two boundary cases, depending on the sign of λ1(·)

(T)



ζt(t, x) + λn(x)ζx(t, x) = M̄(x)ζ(t, x) +Mζ1(t)(x),(
B1,m

0 Bm+1,n
L

)
Iπζ = K

(
B1,m
L Bm+1,n

0

)
Iπζ

+K1ζ1(0) +K2ζ1(L), when λ1(·) > 0,(
B1,n−m
L Bn−m+1,n

0

)
Iπζ = K

(
B1,n−k

0 Bn−m+1,n
L

)
Iπζ

+K1ζ1(0) +K2ζ1(L), when λ1(·) < 0,

yζ(t, x) = y(t, x) = Cζ(t, x),

(3.69)

with initial condition ζ(0, x) := ζ0(x) = T ξ0(x), where M : Cq−1[0, L] →
C0([0, L];Rn),K1,K2 : Cq−1([0, L];R) → Rn are linear differential operators acting on ζ1,
to be determined in the sequel, depending on the choice of T , M̄(x) is matrix to be precised,
having the same algebraic structure as M(x), and yζ is target system’s output, which remains
equal to original system’s output y. The existence of such transformation T is shown in the
following subsection.

High-Gain Observer
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The proposed high-gain observer for (3.69) satisfies the following equations on Σ

ζ̂t(t, x) + λn(x)ζ̂x(t, x) =M̄(x)ζ̂(t, x)

−ΘL(x)
(
y(t, x)− Cζ̂(t, x)

)
+My(t)(x), (3.70a)(

B1,m
0 Bm+1,n

L

)
Iπ ζ̂ =K

(
B1,m
L Bm+1,n

0

)
Iπ ζ̂

+K1y(0) +K2y(L), when λ1(·) > 0, (3.70b)(
B1,n−m
L Bn−m+1,n

0

)
Iπ ζ̂ =K

(
B1,n−m

0 Bn−m+1,n
L

)
Iπ ζ̂

+K1y(0) +K2y(L), when λ1(·) < 0, (3.70c)

with initial condition ζ̂0(x) := ζ̂(0, x) (for a function ζ̂0 in X ), where

Θ := diag
(
θ, θ2, . . . , θn

)
, (3.71)

with θ > 1 the candidate high-gain constant of the observer, to be selected precisely later. In
the above equations, we considered also a vector gain L(·) in Cq1 ([0, L];Rn), selected in a way
such that for P (·) in Cq1 ([0, L];Rn×n) symmetric and positive definite, a Lyapunov equation
of the following form is satisfied

2Sym (P (x) (M1(x) + L(x)C)) = −Q(x) (3.72)

for some positive definite symmetric Q(x) of class Cq1 , where M1(x) is derived by M(x)

keeping only its sup-diagonal, namely,

M1(x) =


0 m1,2(x) 0 · · · 0

. . . . . .
...

... mn−1,n(x)

0 · · · 0

.

The Lyapunov equation (4.25) is solvable by a positive definite P (x) for choice of L(x),
such that M1(x) + L(x)C is Hurwitz for all x in [0, L]. The latter is feasible due to the
observability of the pair (M1(x), C) (Assumption 3.6). In addition, we note that the solution
P (·) of (4.25) is never diagonal, meaning that it would not commute in general with Λ(·) for
distinct characteristic velocities. This is a problem for Lyapunov-based convergence analysis,
which motivates for a proposed indirect observer design relying on an infinite-dimensional
transformation, in order to obtain a target system, where such a commutativity holds.

We are now in a position to present our main result on the solvability of the H-GODP.

Theorem 3.3. (Observer convergence) Consider system (3.64a), (3.65), defined on Σ with
output (3.64b) and suppose that Assumptions 3.5 - 3.7 hold. Let also P in Cq1 ([0, L];Rn×n) be
symmetric and positive definite and let L in Cq1 ([0, L];Rn), both satisfying (4.25) for some Q
in Cq1 ([0, L];Rn×n). Then, the H-GODP is solvable by T −1ζ̂ (where ζ̂ is the unique solution to
(3.70)), for θ > 1 as a high gain and initial condition T −1ζ̂0(x), with ζ̂0 satisfying compatibility
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conditions of order qn. More precisely, for every κ > 0, there exists θ0 ≥ 1, such that for every
θ > θ0, the following holds for all t ≥ 0

‖T −1ζ̂(t, ·)− ξ(t, ·)‖∞ ≤ `e−κt‖T −1ζ̂0(·)− ξ0(·)‖X , (3.73)

with ` > 0 a polynomial in θ.

This observer convergence result is based on the existence of a transformation T , as in-
troduced in (3.68). In the next subsection, we prove that this transformation always exists
and we give an algorithm to determine it, in order to design the observer (3.70) considered in
Theorem 3.3.

3.3.2 A target system for observer design

In this subection we present a constructive methodology to obtain target system (3.69) via a
lower triangular transformation (3.68). We start from the case of a 2 × 2 and 3 × 3 system
and, then, we proceed to the n× n case, which is more tedious and needs more requirements,
see Assumption 3.7.

Let us consider the cases n = 2 and n = 3, and, for simplification, assume that m = 2 and
m = 3 for each of the two cases respectively, namely, systems have only positive characteristic
velocities. In this case, permutation matrix Iπ is the identity, i.e., Iπ = I3. All other cases,
for possible existence of negative characteristic velocities, can be considered following similar
procedure and are omitted here, since the calculations would easily follow from different choices
of the permutation matrix Iπ.

We aim at obtaining target system (3.69), but with boundary conditions reducing to the
following, for these particular cases of positive velocities

ζ(0) = K00ζ(L) +K1ζ1(0) +K2ζ1(L), (3.74)

To achieve this, we need to show the existence of an invertible infinite-dimensional coordinates
transformation. Let us, therefore, perform a lower-triangular transformation of the following
type

ζ = T ξ;

T :=


I2, if n = 2, 1 0 0

τ(x)∂x 1 0

0 0 1

 , if n = 3,
(3.75)

with τ(·) given by

τ(x) :=
λ2(x)− λ3(x)

m1,2(x)
.

Obviously, this transformation is bounded, invertible with bounded inverse from X to X ,
independently of boundary conditions. Applying this transformation to system (3.64a), (3.65),
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we obtain the following equations for each of the cases n = 2 (we just rewrite the hyperbolic
equations in a different way, since the transformation T is the identity)

∂tζ1 + λ2∂xζ1 =m1,1ζ1 +m1,2ζ2 + (λ2 − λ1)∂xζ1, (3.76a)

∂tζ2 + λ2∂xζ2 =m2,1ζ1 +m2,2ζ2, (3.76b)

ζ(0) =K00ζ(L), (3.76c)

and for n = 3

∂tζ1 + λ3∂xζ1 =m1,1ζ1 +m1,2ζ2 + a1∂xζ1, (3.77a)

∂tζ2 + λ3∂xζ2 =(m2,1 + τm′1,1)ζ1 + (m2,2 + τm′1,2)ζ2 +m2,3ζ3 + a2∂xζ1 + a3∂
2
xζ1, (3.77b)

∂tζ3 + λ3∂xζ3 =
3∑
i=1

m3,iζi + a4∂xζ1, (3.77c)

ζ(0) =K00ζ(L) +

0

1

0

 τ(0)∂xζ1(0)−K00

0

1

0

 τ(L)∂xζ1(L), (3.77d)

where

a1(x) :=λ3(x)− λ1(x)−m1,2(x)τ(x),

a2(x) :=τ(x)m1,1(x)− τ(x)λ′1(x)− τ(x)(m1,2(x)τ(x))′ − τ(x)m2,2(x) + τ ′(x)λ2(x),

a3(x) := (λ2(x)− λ1(x)− τ(x)m1,2(x)) τ(x),

a4(x) :=− τ(x)m3,2(x).

Thus, we have obtained the hyperbolic dynamics of target system (3.69) with boundary con-
ditions (3.74), with

M̄(x) :=


M(x), if n = 2

M(x) + τ(x)

0 0 0

0 m′1,2(x) 0

0 0 0

 , if n = 3
, (3.78)

M :=



(
(λ2(x)− λ1(x))∂x

0

)
, if n = 2 a1(x)∂x

τ(x)m′1,1(x) + a2(x)∂x + a3(x)∂2
x

a4(x)∂x

 , if n = 3

,

K1 =K2 = 0, if n = 2,

K1 :=

 0

τ(0)∂x
0

 ,K2 := −K00

 0

τ(L)∂x
0

 , if n = 3.

Observe that the right-hand side of the target hyperbolic dynamics (3.76) contains a spatial
derivative of the measured first state ζ1 of order 1, whereas, parabolic dynamics (3.77) contain
spatial derivatives of the first state up to order 2.
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Next, we aim at generalizing this method to systems with more than three states.

Consider system (3.64a), (3.64b), (3.65), assuming n > 3. We show here the existence of a
lower triangular infinite-dimensional transformation, which maps system into a target system
(T).

Let us consider a transformation (3.68), with

T := In + T̃ , (3.79)

where T̃ : X → X is a matrix operator given by

T̃ :=



0 0 0 · · · 0 0 0

τ1
2,1(x)∂x 0 0 · · · 0 0 0∑2

i=1 τ
i
3,1(x)∂ix τ1

3,2(x)∂x 0 · · · 0 0 0
...

...∑n−2
i=1 τ

i
n−1,1(x)∂ix

∑n−3
i=1 τ

i
n−1,2(x)∂ix

∑n−4
i=1 τ

i
n−1,3(x)∂ix · · · τ1

n−1,n−2(x)∂x 0 0∑n−3
i=1 τ

i
n,1∂

i
x

∑n−4
i=1 τ

i
n,2∂

i
x

∑n−5
i=1 τ

i
n,3∂

i
x · · · 0 0 0


(3.80)

and τki,j ∈ Cqj [0, L] are appropriate functions to be chosen, obeying, in addition, to

τki,j ≡ 0, ∀k = q − 1, . . . , n− 2 (3.81)

(observe that the last row of T̃ , counter-intuitively, recurs to the form of two rows before it,
i.e., row n − 2). One can verify that differential operator (3.79) is bounded, invertible with
bounded inverse from X to X for any choice of τki,j and its inverse is given by

T −1 = In +
n−1∑
i=1

(−1)iT̃ i. (3.82)

Next, let us represent mapping IπT̃ I>π in a block form as

IπT̃ I>π =
1 + sgn(λ1(x))

2

(
T̃00 T̃01

T̃10 T̃11

)
+

1− sgn(λ1(x))

2

(
T̃11 T̃10

T̃01 T̃00

)
, (3.83)

with each block T̃00, T̃01, T̃10, T̃11 having the same algebraic dimensions as the blocks of (3.66).

We aim at obtaining target system (3.69) via T .

To obtain target system (3.69), we use transformation (3.68), (3.79), (3.80), and by using
(3.64a), (3.65b) we derive the following equations

ζt(t, x) + λn(x)ζx(t, x) = M(x)ζ(t, x)

+
[
(λn(x)In∂x −M(x)) T̃ + T̃ ((λn(x)In − Λ(x))∂x +M(x)) + (λn(x)In − Λ(x))∂x

]
ξ(t)(x),
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(
B1,m

0 Bm+1,n
L

)
Iπζ =K

(
B1,m
L Bm+1,n

0

)
Iπζ

+

(
T̃00(0) T̃01(L)

T̃10(0) T̃11(L)

)(
B1,m

0 Bm+1,n
L

)
Iπξ

−K
(
T̃00(L) T̃01(0)

T̃10(L) T̃11(0)

)(
B1,k
L Bm+1,n

0

)
Iπξ,when λ1(·) > 0,(

B1,n−m
L Bn−m+1,n

0

)
Iπζ =K

(
B1,n−m

0 Bn−m+1,n
L

)
Iπζ

+

(
T̃11(0) T̃10(L)

T̃01(0) T̃00(L)

)(
B1,n−k
L Bn−m+1,n

0

)
Iπξ

−K
(
T̃11(L) T̃10(0)

T̃01(L) T̃00(0)

)(
B1,n−k

0 Bn−k+1,n
L

)
Iπξ,when λ1(·) < 0.

Comparing the previous equations with target system (T), the following equations must be
satisfied for all ξ ∈ X[

(λn(x)In∂x −M(x)) T̃ + T̃ ((λn(x)In − Λ(x))∂x +M(x))

+(λn(x)In − Λ(x))∂x] ξ(x) =MCξ(x) + (M̄(x)−M(x))ξ(x), (3.85a)(
T̃00(0) T̃01(L)

T̃10(0) T̃11(L)

)(
B1,m

0 Bm+1,n
L

)
Iπξ

−K
(
T̃00(L) T̃01(0)

T̃10(L) T̃11(0)

)(
B1,m
L Bm+1,n

0

)
Iπξ

= K1Cξ(0) +K2Cξ(L),when λ1(·) > 0, (3.85b)

(
T̃11(0) T̃10(L)

T̃01(0) T̃00(L)

)(
B1,n−m
L Bn−m+1,n

0

)
Iπξ

−K
(
T̃11(L) T̃10(0)

T̃01(L) T̃00(0)

)(
B1,n−m

0 Bn−m+1,n
L

)
Iπξ

= K1Cξ(0) +K2Cξ(L),when λ1(·) < 0. (3.85c)

Now, we choose the involved operators M̄(x),M,K1, and K2 to be as follows

M̄(x) := M(x)

+



0 0 0 0 0 · · · 0 0 0

0 T̃2,∗M∗,2(x) 0 0 0 · · · 0 0 0

0 T̃3,∗M∗,2(x) T̃3,∗M∗,3 T̃3,∗M∗,4(x) 0 · · · 0 0 0
...

...
...

0 T̃n−1,∗M∗,2(x) T̃n−1,∗M∗,3(x) T̃n−1,∗M∗,4(x) T̃n−1,∗M∗,5(x) · · · T̃n−1,∗M∗,n−2(x) T̃n−1,∗M∗,n−1(x) 0

0 T̃n,∗M∗,2(x) T̃n,∗M∗,3(x) T̃n,∗M∗,4(x) T̃n,∗M∗,5(x) · · · T̃n,∗M∗,n−2(x) 0 0


,

(3.86)

where by T̃i,∗,M∗,j(x), i, j = 1, . . . , n − 1 we denote the i-th row of T̃ and j-th column of
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M(x), respectively. Also, we choose

M :=
[
(λn(x)In∂x −M(x)) T̃ + T̃ ((λn(x)In − Λ(x)) ∂x +M(x))

+ (λn(x)− λ1(x)) In∂x]C>, (3.87)

K1 :=
1 + sgn(λ1(x))

2
IπT̃ C> −

1− sgn(λ1(x))

2
KIπT̃ C>,

K2 :=− 1 + sgn(λ1(x))

2
KIπT̃ C> +

1− sgn(λ1(x))

2
IπT̃ C>.

The next step is to determine T̃ . Let us, first, examine equation (3.85a), which should be
satisfied. This, by utilizing (3.87), can be alternatively written as the following generalized
Sylvester operator equation, with unknown T̃

R :=
[
(λnIn∂x −M) T̃ + T̃ ((λnIn − Λ)∂x +M)

] (
In − C>C

)
+(λnIn − Λ)∂x + (λ1 − λn)C>C∂x +M − M̄ = 0. (3.88)

We do not focus here on the proof of solvability of the previous generalized Sylvester op-
erator equation (see for instance [Bhatia and Rosenthal (1997)] for operator equations of
such a type), we provide, however, its solution T̃ , which turns out to be computed algorith-
mically. Finding the solution reduces to an exhaustive calculation of functions τki,j(·). The
unique existence of such a solution T̃ is a consequence of the particular algebraic structure
of the operators and matrices, in conjunction with Assumption 3.6. To calculate τki,j and,
therefore, find T̃ , we follow the steps of the algorithm presented below, by which we obtain
each new τki,j as a linear function of the previously calculated τki,j and their derivatives and
also system’s dynamics, in a cascade manner resulting from the structure of the involved map-
pings. This cascade manner of calculation can be inductively proven to provide the solution
T , for every system dimension n. Let us first consider all n equations resulting from equation
Rξ = 0, attributing to each of them an equation index i. The steps of the calculations are
described by the following algorithm.

Algorithm 1 Computation of transformation T
1: procedure Compute τki,j , i ∈ [2, . . . , n], j, k ∈ [1, . . . , n− 2].

2: i = n− 1.
3: while not all τki,j are computed, do
4: while i ≥ 2 do
5: In equation i, find j ∈ [2, n − 1] as the largest subscript of ∂xξ and set to zero

all the coefficients of ∂k̄xξj , . . . , ∂2
xξj , ∂xξj sequentially, with k̄ the maximal order of spatial

derivative of ξj existing in the current equation i. For each elimination, calculate function
τki,j−1, k = 1 . . . , k̄, where each of the latter corresponds to elimination of the coefficient of
∂kxξj in current equation i.

6: i← i− 1.
7: Pick i ∈ [2, n] as the largest equation index for which there exists a k-spatial

derivative of ξj in equation i, for some k ∈ [1, n− 2] and j ∈ [1, n− 2].
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After acquiring the above-mentioned solutions τki,j and for the chosen K1,K2, we need to
validate that, additionally, (3.85b) or (3.85c) are satisfied on the boundaries. To proceed, we
invoke Assumption 3.7. Under the case of version (A) of Assumption 3.7, it holds

T̃ ξ(0) = T̃ ξ(L),

thus (3.85b), (3.85c) are satisfied. Then, target system boundary conditions reduce to

ζ(0) = ζ(L), (3.89)

since K = In in that case. Under the case of version (B) of Assumption 3.7, (3.85b) or (3.85c)
is automatically satisfied. In fact, for (3.85b) or (3.85c) to be true, we need τki,j(·) to vanish
at x = 0 and x = L, for all j > 1. Indeed, following the steps of the algorithm, any new
calculated τki,j(·), j > 1 is a linear combination of all calculated τki,j(·), j > 1 in preceding steps
and, also, of differences λi(·) − λj(·) and λ′i′(·) − λ′j′(·), for i, j ≥ 3, i′, j′ ≥ 4. Since all the
latter differences vanish at x = 0 and x = L (by this version (B) of Assumption 3.7) and
all τki,j(·), j > 1 calculated in preceding steps, starting from the first calculation τ1

n−1,n−2(·),
successively vanish at 0 and L, the desired properties are satisfied.

As an example of this algorithmic calculation, we provide the solution T for 5×5 systems.
It is computationally tedious, however, to provide general formulas for n× n systems.

Example 3.2. Considering a 5 × 5 system, we calculate each of the functions τki,j(·), i =

2, . . . , 5, j = 1, 2, 3, k = 1, 2, 3, and we present them in the cascade order that the above-
mentioned algorithm suggests (recall that all are functions of x, but we omit their arguments
below).

While loop 1

τ1
4,3 =

λ4 − λ5

m3,4
, τ1

3,2 =
λ3 − λ5 +m3,4τ

1
4,3

m2,3
, τ1

2,1 =
λ2 − λ5 +m2,3τ

1
3,2

m1,2
.

While loop 2

τ1
5,2 =

m5,4τ
1
4,3

m2,3
, τ2

4,2 =
(λ3 − 2λ5) τ1

4,3

m2,3
,

τ1
4,2 =

−λ5
dτ1

4,3

dx + (m4,4 −m3,3 + (λ3 − λ5)′) τ1
4,3

m2,3
,

τ2
3,1 =

(λ2 − 2λ5)τ1
3,2 +m3,4τ

2
4,2

m1,2
,

τ1
3,1 =

1

m1,2

(
−λ5

dτ1
3,2

dx
+
(
m3,3 −m2,2 + (λ2 − λ5)′

)
τ1

3,2 +m3,4τ
1
4,2 − 2m′1,2τ

2
3,1

)
.
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While loop 3

τ2
5,1 =

(λ2 − 2λ5)τ1
5,2 +m5,4τ

2
4,2

m1,2
,

τ1
5,1 =

1

m1,2

(
−λ5

dτ1
5,2

dx
+
(
m5,5 −m2,2 + (λ2 − λ5)′

)
τ1

5,2 +m5,4τ
1
4,2 +m5,3τ

1
3,2 − 2m′1,2τ

2
5,1

)
,

τ3
4,1 =

(λ2 − 2λ5)τ2
4,2

m1,2
,

τ2
4,1 =

1

m1,2

(
(λ2 − 2λ5)τ1

4,2 − λ5

dτ2
4,2

dx
+ (m4,4 −m2,2 + 2(λ2 − λ5)′)τ2

4,2 − 3m′1,2τ
3
4,1

)
,

τ1
4,1 =

1

m1,2

(
−λ5

dτ1
4,2

dx
+ (m4,4 −m2,2 + (λ2 − λ5)′)τ1

4,2 +m4,3τ
1
3,2 +m4,5τ

1
5,2

−m3,2τ
1
4,3 − 2m′1,2τ

2
4,1 − 3m′′1,2τ

3
4,1 +

(
(λ2 − λ5)′′ − 2m′2,3 − 2m′2,2

)
τ2

4,2

)
.

3.3.3 Observer convergence proof

In this subsection, we prove that the proposed observer is a high-gain observer for the target
system, which is mapped from the original system via T . Observer’s exponential convergence
is proven for appropriate spatial norm. Injectivity of T and boundedness of its inverse, then,
guarantees that T −1ζ̂ approaches exponentially the state ξ of the original system and, thus,
solves the H-GODP.

We start from a prerequisite lemma for the well-posedness of the observer, which is a
direct consequence of Assumption 3.5 and linearity of the system. The proof relies on the
method of characteristics and a combination of classical arguments from proofs found in
[Bastin and Coron (2016)], Chap. 4.5, App. A, therefore, it is omitted here.

Lemma 3.2. (Existence/uniqueness of global solutions for the observer system) Under the
regularity assumptions for the dynamics and for any y in Cq1 ([0,+∞)× [0, L];R), the problem
described by (3.70) on domain Σ with initial condition ζ̂0(x) satisfying compatibility conditions
of order qn admits a unique solution ζ̂ in Cqn ([0,+∞)× [0, L];Rn)

Consider, now, observer (3.70) for target system (T), with M̄(x) given by (3.78), when
n = 2, 3 and M̄(x) = M (constant), for n > 3. We define a scaled observer error by

ε := Θ−1
(
ζ̂ − ζ

)
, (3.90)

for which we derive the following hyperbolic equations on Σ

εt(t, x) + λn(x)εx(t, x) = θ (M1(x) + L(x)C) ε(t, x) + Θ−1(M̄(x)−M1(x))Θε(t, x), (3.91a)

ε(t, 0) = Θ−1K̄Θε(t, L),when λn(·) > 0, (3.91b)

ε(t, L) = Θ−1 ¯̄KΘε(t, 0),when λn(·) < 0, (3.91c)
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where
K̄ := K00, when n = 2, 3

and in case n > 3, for each of versions (A) or (B) of Assumption 3.7, K̄ and ¯̄K (with ¯̄K−1 = K̄)
are given by

K̄ :=

{
In, for case (A)
I>π

˜̄KIπ, for case (B)

¯̄K :=

{
In, for case (A)

I>π
˜̄̄
KIπ, for case (B)

,

where

˜̄K :=
1 + sgn(λ1(x))

2

(
K00 −K01K

−1
11 K10 K01K

−1
11

−K−1
11 K10 K−1

11

)
+

1− sgn(λ1(x))

2

(
K−1

11 −K−1
11 K10

K01K
−1
11 K00 −K01K

−1
11 K10

)
,

˜̄̄
K :=

1 + sgn(λ1(x))

2

(
K−1

00 −K−1
00 K01

K10K
−1
00 K11 −K10K

−1
00 K01

)
+

1− sgn(λ1(x))

2

(
K11 −K10K

−1
00 K01 K10K

−1
00

−K−1
00 K01 K−1

00

)
.

To prove the error’s exponential stability with respect to its origin, we adopt a Lyapunov-based
approach inspired by methodologies presented in [Bastin and Coron (2016)]. Similar p-
functionals have appeared in [Kitsos et al (2018)], [Kitsos et al (2020d)]. The stability
is proven for the qn–norm. We define a Lyapunov functional Wp : Cqn([0, L];Rn)→ R by

Wp[ε] :=

(∫ L

0
π(x)epµθxGp[ε](x)dx

)1/p

, (3.92a)

where Gp : Cqn([0, L];Rn)→ R is given by

Gp[ε](x) :=

(
qn∑
i=0

∂itε
>(x)P (x)∂itε(x)

)p
(3.92b)

and p in N, P (·) is of class Cq1 , symmetric and positive definite, satisfying (4.25), π : [0, L]→ R
is a function given by

π(x) := (π̄ − 1)
x

L
+ 1; π̄ :=

maxx∈[0,L] (λn(x))

minx∈[0,L] (λn(x))
(3.93)

and µθ in R is given by

µθ :=
1 + sgn(λn(x))

2L
ln

(
|K̄|2‖P (·)‖∞

minx∈[0,L] eig(P (x))
θ2n−2

)
+

1− sgn(λn(x))

2L
ln

(
minx∈[0,L] eig(P (x))

| ¯̄K|2‖P (·)‖∞θ2n−2

)
. (3.94)
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Note here that, by its definition, π is bounded as follows

1 ≤ π(x) ≤ π̄,∀x ∈ [0, L]. (3.95)

By invoking Lemma 3.2 and Fact 3.1, we are in a position to define Gp,Wp : [0,+∞)→ R by

Gp(t) := Gp[ε](t),Wp(t) :=Wp[ε](t), t ≥ 0. (3.96)

By temporarily assuming that ε has some extra regularity, i.e., it is Cqn+1, we obtain the
following equations for each i = 1, . . . , qn

∂i+1
t ε(t, x) + λn(x)∂it∂xε(t, x)

= θ (M1(x) + L(x)C) ∂itε(t, x) + Θ−1(M̄(x)−M1(x))Θ∂itε(t, x), (3.97a)

∂itε(t, 0) = Θ−1K̄Θ∂itε(t, L), λn(·) > 0, (3.97b)

∂itε(t, L) = Θ−1 ¯̄KΘ∂itε(t, 0), λn(·) < 0. (3.97c)

We calculate the time-derivative Ẇp along the solutions of (3.97) as follows

Ẇp =
1

p
W 1−p
p

∫ L

0
pπ(x)epµθxGp−1(x)

×
qn∑
i=0

(
∂i+1
t ε>(x)P (x)∂itε(x) + ∂itε

>(x)P (x)∂i+1
t ε(x)

)
dx

=W 1−p
p

(
1

p
T1,p + T2,p

)
, (3.98)

where

T1,p :=−
∫ L

0
λn(x)π(x)epµθx

[
∂xGp(x)− pGp−1(x)

qn∑
i=0

∂itε
>(x)Px(x)∂itε(x)

]
dx,

T2,p :=

∫ L

0

(
2θπ(x)epµθxGp−1(x)

qn∑
i=0

∂itε
>(x)Sym ((P (x)(M1(x) + L(x)C) ∂itε(x)

+2π(x)epµθxGp−1(x)

qn∑
i=0

∂itε
>(x)Sym

(
P (x)Θ−1(M̄(x)−M1(x))Θ

)
∂itε(x)

)
dx.

Using an integration by parts in term T1,p (possible, since observer error in the new coordinates
satisfies Property (S) introduced in Definition 1.2 of Chapter 1) and utilizing (3.95) and other
trivial bounds, we get

T1,p ≤− λn(L)π(L)epµθLGp(L) + λn(0)π(0)Gp(0)

+ (ω1 + pω2 + p|µθ|‖λn(·)‖∞)W p
p ,

where

ω1 :=
π̄ − 1

L
‖λn(·)‖∞ + ‖λ′n(·)‖∞, ω2 :=

‖λn(·)‖∞‖Px(·)‖∞
minx∈[0,L] eig(P (x))

.
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Substituting (3.97b), for each of the cases λn(·) > 0 and λn(·) < 0, the above yields

T1,p ≤
[
− min
x∈[0,L]

λn(x)π(L)

(
min
x∈[0,L]

eig(P (x))

)p
epµθL

+π(0)‖λn(·)‖∞
(
θn−1|K̄|

)2p ‖P (·)‖p∞
]( qn∑

i=0

|∂itε(L)|2
)p

+

(
ω1 + pω2 + p|µθ| max

x∈[0,L]
λn(x)

)
W p
p ,when λn(x) > 0,

T1,p ≤
[
− min
x∈[0,L]

λn(x)π(L)‖P (·)‖p∞
(
θn−1| ¯̄K|

)2p
epµθL

+π(0)‖λn(·)‖∞
(

min
x∈[0,L]

eig(P (x))

)p]( qn∑
i=0

|∂itε(0)|2
)p

+ (ω1 + pω2 + p|µθ|‖λn(·)‖∞)W p
p , when λn(x) < 0,

which, by virtue of (3.93), (3.94), is bounded as follows

T1,p ≤ (ω1 + pω2 + p|µθ|‖λn(·)‖∞)W p
p . (3.99)

Next, for θ > 1 and invoking (4.25), we obtain for T2,p

T2,p ≤ (−θω3 + ω4)W p
p , (3.100)

where

ω3 :=
minx∈[0,L] eig(P (x)) minx∈[0,L] eig(Q(x))

‖P (·)‖∞
,

ω4 := 2
‖P (·)‖∞‖M̄(·)−M1(·)‖∞

minx∈[0,L] eig(P (x))
.

By (3.98), in conjunction with (3.99), (3.100) we get

Ẇp ≤ (−θω3 + |µθ|‖λn(·)‖∞ + ω1 + ω2 + ω4)Wp. (3.101)

We obtained the above estimate of Ẇp for ε of class Cqn+1. Similarly as in the proof of
Theorem 2.1 of Chapter 2 we invoke density arguments, so the results remain valid with ε

only of class Cqn (see also [Coron and Bastin (2015)]). Now, one can select the high gain
θ, such that

θ > θ0, (3.102)

where θ0 > 1 is such that

−θω3 + |µθ|‖λn(·)‖∞ + ω1 + ω2 + ω4 ≤ −2κθ, ∀θ > θ0,

for some κθ > 0. One can easily check that for any κθ > 0, there always exists a θ0 > 1, depen-
dent on the involved constants, such that the previous inequality is satisfied. Subsequently,
(3.101) yields

Wp(t) ≤ e−2κθtWp(0). (3.103)
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Taking also into account (3.95), we get the following property holding for continuous ε, εt

lim
p→∞

Wp = lim
p→∞

‖eµθ·π(·)
1
pG1/p

p (·)‖Lp(0,L) =

qn∑
i=0

‖eµθ·∂itε>(·)P (·)∂itε(·)‖∞. (3.104)

By (3.103), in conjunction with (3.104), we derive

qn∑
i=0

‖eµθ·∂itε>(·)P (·)∂itε(·)‖∞ ≤ e−2κθt
qn∑
i=0

‖eµθ·∂itε>0 (·)P (·)∂itε0(·)‖∞, (3.105)

where ε0(x) := ε(0, x). Now, from error dynamics (3.97) in conjunction with continuous
differentiability of the dynamics, we can perform simple differentiations, so as to calculate
constants ρθ,i, σθ,i, depending polynomially on θ, such that

qn∑
i=0

ρθ,i‖∂ixε(·)‖∞ ≤
qn∑
i=0

‖∂itε(·)‖∞ ≤
qn∑
i=0

σθ,i‖∂ixε(·)‖∞.

Combining the above estimates with the following inequality

e
µθ−|µθ |

2
L min
x∈[0,L]

eig(P (x))

(
qn∑
i=0

‖∂itε(·)‖∞

)2

≤
qn∑
i=0

‖eµθ·∂itε>(·)P (·)∂itε(·)‖∞

≤ e
µθ+|µθ |

2
L‖P (·)‖∞

(
qn∑
i=0

‖∂itε(·)‖∞

)2

,

and also (3.90), we obtain the desired stability result of the following type

‖ζ̂(t, ·)− ζ(t, ·)‖qn ≤ ¯̀
θe
−κθt‖ζ̂0 − ζ0‖qn , (3.106)

where ¯̀
θ is a polynomial in θ (as in high-gain observers in finite dimensions). Finally, we have

that T is bounded, X is continuously embedded in Cqn([0, L];Rn), and also the extension of
T −1 on C0[0, L];Rn) is bounded in C0[0, L];Rn) and Cqn([0, L];Rn) is continuously embedded
in C0([0, L];Rn). Thereby, by (3.106), we can calculate constant `θ, polynomial again in θ

and depending on the values of the functions τki,j , such that

‖T −1ζ̂(t, ·)− ξ(t, ·)‖∞ ≤ `θe−κθt‖T −1ζ̂0 − ξ0‖X .

The proof of Theorem 3.3 is complete.

Remark 3.5. Notice that although the system here is linear, the high-gain technique is of spe-
cial interest to dominate "extra terms" in the Lyapunov derivative, similarly to the nonlinear
terms in finite-dimensional high-gain observers. In the present case, indeed, there appears a
term µθ in the Lyapunov derivative (see (3.99)), coming from the boundary conditions, and
having an effect similar to nonlinearities in finite-dimensional systems. In a more abstract
sense, passing from the finite dimensions to the infinite dimensions, the domain of the hyper-
bolic (differential) operator imposes extra difficulties, even for linear source terms.
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3.3.4 Simulation for a chemical reactor

In this subsection, we apply the high-gain observer design to a 3 × 3 system of an
exothermic plug flow chemical reactor. Control and observer designs for chemical reac-
tors have been widely investigated (see for instance [Boskovic and Krstic (2002)] and
[Christophides and Daoutidis (1996)]).

Here we consider a linearized model, where system’s states ξ1, ξ2, ξ3 represent the deviation
with respect to their steady values, i.e., ξ1 = Tc − T ∗c , ξ2 = Tr − T ∗r , ξ3 = CA − C∗A, where Tc
is the coolant temperature, Tr is the reactor temperature and CA is the concentration of the
chemical components (see [Bastin and Coron (2016)], Section 5.1.1 for more details). The
hyperbolic dynamics satisfy (3.64a) with

Λ =

Vc 0 0

0 Vr 0

0 0 Vr + ε

 ,

M(x) =

 k0 −k0 0

−k0 k0 + k1φ1(x) k1φ0(x)

0 −φ1(x) −φ0(x)


for positive Vc, Vr, ε, k0, k1, and boundary conditions

ξ1(t, 0) = 2ξ(t, L), ξ2(t, 0) = ξ2(t, L), ξ3(t, 0) = ξ3(t, L),

(being fictitious in order to get unstable trajectories for the sake of illustration), while

φ0(x) =(a+ b)exp

(
− E

RT ∗r (x)

)
,

φ1(x) =

(
C∗A(x)− b

a+ b
C in
A

)
E

R(T ∗r (x))2
φ0(x),

for constants a, b, E,R,C in
A . The steady states satisfy the following differential equations over

[0, L]

Vr
d

dx
T ∗r = −k0(T ∗c − T ∗r ) + k1r(T

∗
r , C

∗
A),

Vr
d

dx
C∗A = −r(T ∗r , C∗A),

Vc
d

dx
T ∗c = k0(T ∗c − T ∗r ),

with r(Tr, CA) =
(
(a+ b)CA − bC in

A

)
exp

(
− E
RTr

)
the reaction rate and boundary conditions

T ∗r (0) = T in
r , C

∗
A(0) = C in

A , T
∗
c (0) = T in

c

For simulation, numerical values are as follows: T in
r = 340K, C in

A = 0.02mol · L−1, T in
c =

293K. The length of the reactor is L = 1m, the reactive fluid velocity in the reactor is
Vr = 0.025m · s−1, the coolant velocity in the jacket is Vc = 1.13m · s−1, the activation energy
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is E = 11250cal ·mol−1, a = 0.56s−1 and b = 0.12s−1 are rate constants, and R = 1.986cal ·
mol−1 ·K−1 is the Boltzmann constant. We also add an artificial constant ε = 0.005m · s−1 in
the third characteristic velocity to make system strictly hyperbolic and deal with the problem
in its full generality (with ε 6= 0, we have q = 3 instead of q = 2, for ε = 0). Assume that
measured output is the cooling temperature, i.e.,

y(t, x) = ξ1(t, x).

We now follow the steps of the H-GODP described in the previous subsections. In particular,
we apply the transformation (3.75) for 3 × 3 systems, introduced in Subsection 3.3.2, with
τ = ε/k0. Choose some initial conditions, such that Assumption 3.5 is satisfied, and now
system meets all sufficient conditions for solvability of the H-GODP. We apply Theorem
3.3, with θ = 4 and L(x) =

(
−1 5 10

)>. As expected, the convergence of the inversely
transformed observer state to the unknown state ξ is guaranteed by Theorem 3.3.

In Figure 3.8 we represent the output ξ1. In Figures 3.9-3.11 we see the observation errors
for each of the original states ξ1, ξ2 and ξ3, after choosing arbitrary observer’s initial conditions
satisfying compatibility conditions of order 2. As expected, the convergence of the inversely
transformed observer state to the unknown state ξ is guaranteed by Theorem 3.3.

Figure 3.8: Time and space evolution of system’s output
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Figure 3.9: Time and space evolution of the first estimation error

Figure 3.10: Time and space evolution of the second estimation error



3.3. A class of n× n linear heterodirectional hyperbolic systems 93

Figure 3.11: Time and space evolution of the third estimation error
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3.4 Conclusion

In this chapter, an approach to solve the H-GODP for some systems of PDEs was intro-
duced, when fundamental for observer design Property (S) defined in Definition 1.2, is not
fulfilled. This problem seems unsolvable by performing direct observer design in the sense
of the analysis in Chapter 2 and therefore an indirect approach was adopted, which requires
the transformation of the system into target systems of PDEs. These new systems of PDEs
retain the triangularity of the initial systems but their differential operators are decomposed
in a part which satisfies Property (S) and a part containing the measured state in its domain.
This last part of the differential operators can be handled suitably by simply injecting it in
the observer dynamics, while they are acting on the measured function.

This general transformation-based methodology, that we introduced, was proven to be
applicable to classes of triangular 2×2 nondiagonal quasilinear systems with distinct velocities,
to 2× 2 and 3× 3 Lotka-Volterra-like parabolic systems with distinct diffusivities, and finally
to n × n linear hyperbolic systems with n distinct velocities of any sign. The complexity of
the methodologies was related to the number of distinct velocities/diffusivities. The method
was proven to apply to nonlinear systems of PDEs with up to three states, but it could not
be applied for systems with more than three states. However, a solution was given for a class
of heterodirectional linear hyperbolic systems of arbitrary number of states and any number
of velocities, where the high-gain features turn to be essential to deal with the domain of the
hyperbolic operator. Technical difficulties included the types of nonlinearities, which were
handled appropriately for the considered systems, the algorithmic calculation of the infinite-
dimensional state transformations, and finally the observer convergence proof in appropriate
norms, related to the required regularity of the output, which in turns depends on the number
of distinct velocities/diffusivities. Also, the theoretical methodology was accompanied with
simulations.

Although for finite-dimensional systems a specific observability structure (the so-called
triangular structure) leads to solvability of the H-GODP, for the infinite-dimensional spaces,
the aforementioned limitations, coming from system’s differential operator, do not allow the H-
GODP to be solvable for any type of systems, even in the case when their source terms satisfy
a triangular structure. Concerning this matter, future developments might include solutions
to this H-GODP for more general infinite-dimensional systems and possibly avoiding design
limitations, such as compatibility conditions of higher order or the use of spatial derivatives
of the output. Also, robustness and Input-to-State Stability (ISS) properties of the observers
proposed herein, would be of special interest for future research.
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In this chapter, we present an application of the high-gain observer design to the stabiliza-
tion of a cascade system of so-called Korteweg-de Vries (KdV for short) equations via output
feedback control. The results of this chapter are found in [Kitsos et al (2020c)]. It will be
shown that this high-gain design is needed in achieving system stabilization. The considered
system includes n KdV equations in a bounded interval (0, L) via an output feedback law act-
ing on the left endpoint of the last equation, while the measurement involves only the solution
to the first equation. Two boundary control problems are investigated: the classical control
on the Dirichlet boundary condition and a less common one on its second-order derivative.
The feedback control law utilizes the estimated state provided by a high-gain observer system
and the output feedback control leads to two stabilization results: 1) for any n in the case of
Dirichlet boundary conditions and 2) for n = 2 for the second case of boundary conditions.

The nonlinear version of a single KdV equation can describe propagation of waters with
small amplitude in closed channels. It was introduced in 1895 and since then its properties
have gained much consideration, see for instance [Cerpa et al (2013)]. Surveys on recent
progresses and open problems on control and stabilization of such models can be found in
[Rosier and Zhang (2009)] and [Cerpa (2014)].

More precisely, some results are as follows. In [Cerpa and Coron (2013)], backstep-
ping method is used for feedback controls placed at the left boundary. Output feedback
laws for single linearized and nonlinear KdV equations have been already established via
boundary observers in [Marx and Cerpa (2014)] and [Marx and Cerpa (2018)] (see also
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[Tang and Krstic (2013)]), by means of backstepping and Lyapunov techniques. In these
two works, the measurement injected in the observer involves the right endpoint of the domain,
more precisely, the second derivative of the boundary or the Dirichlet condition, depending
on the boundary conditions. Output feedback control laws for systems written in the cascade
form considered here have not yet appeared in the literature, while controllability of coupled
KdV equations but with couplings different from the ones here studied have been investigated
for instance in [Cerpa and Pazoto (2011)]. Furthermore, placing the control on the sec-
ond derivative of the left boundary, as in the second boundary control problem is even more
original and its investigation exhibits some technical difficulties.

Here, we aim at observing the full state of a system of KdV equations written in a cascade
form and finally controlling it, by considering a one only observation. The cascade form
considered here allows a high-gain observer design, which relies on a choice of a sufficiently
large parameter in its equations, while appropriate choice of the latter leads simultaneously to
the closed-loop output feedback stabilization. This high-gain observer design is instrumental
in the technical analysis, while a simpler Luenberger observer design, which is used for linear
systems, would not be sufficient. In summary, the contribution of the present chapter first lies
in stabilizing the trajectory of the last equation by means of a high-gain observer relying on
the measurement of the first state. The control placed at the left boundary, combined with
the observer gain brings this trajectory asymptotically to zero in an arbitrarily fast manner.
Subsequently, it is proven that 1) the whole cascade system becomes asymptotically stable
for any L > 0, when the first boundary conditions are considered, and 2) this result holds
for the second boundary conditions, only when n = 2 (number of equations), noting that for
n > 2 stabilization is achieved for quite small L. The methodology relies on backstepping
techniques and appropriate Lyapunov analysis, which are more challenging for the second
boundary problem. Exponential stabilization for the second boundary problem is proven here
to be linked to the solvability of an ordinary differential equations problem, similar to the
differential equation satisfied by the eigenvectors of the associated operator to these KdV
equations and subject to some constraints.

In Section 4.1, we prove a preliminary result on the stability of a single damped KdV
equation and then we prove the full state stabilization of the cascade system for both boundary
condition problems. In Section 4.2, we first present the high-gain observer design for the
coupled system and finally the main output feedback stabilization result.

4.1 Full State Feedback Stabilization

In this chapter, we study the following cascade system of n linear KdV equations posed in a
bounded interval of length L:

vt + vx + vxxx = (An −B)v, in (0,+∞)× (0, L), (4.1)
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where v =
(
v1 · · · vn

)> is the state and

An =


0 1 0 · · · 0

. . . . . .
...

... 1

0 · · · 0

, B = diag (1, 1, . . . , 1,−1) .

Note that this system is written in the general form introduced in Section 1.2 of Chapter 1
and used throughout the thesis.

Let us consider two different types of boundary conditions, where the input control u in
both of them is placed at the left side (x = 0) and only acts on the n-th coordinate of the
state (vn).

Boundary conditions A (BC-A):

vi(t, 0) = 0, i = 1, . . . , n− 1, for all t > 0,

vn(t, 0) = u(t), for all t > 0,

v(t, L) = 0, vx(t, L) = 0, for all t > 0.

(4.2a)

Boundary conditions B (BC-B):

vi,xx(t, 0) =0, i = 1, . . . , n− 1, for all t > 0,

vn,xx(t, 0) =u(t), for all t > 0,

v(t, L) =0, vx(t, L) = 0, for all t > 0.

(4.2b)

In order to complete our control system we add an initial condition given by

v(0, x) = v0(x), x ∈ (0, L) (4.3)

and a distributed measurement given by the following output

y(t, x) =Cv(t, x); (4.4)

C =
(
1 0 · · · 0

)
.

This system is unstable due to the instability of the trajectory corresponding to its last
equation, as it can be seen by following classical energy arguments.

4.1.1 Stability of a single KdV equation

Prior to the stabilization of the cascade system, we present a preliminary result about the
stability of a single damped linear KdV equation, which will be invoked in the sequel. Consider
a single damped KdV equation in the domain (0, L),

wt + wx + wxxx + λw = 0, in (0,+∞)× (0, L), (4.5)
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satisfying one of the following distinct cases of boundary conditions

w(t, 0) =w(t, L) = wx(t, L) = 0, t ≥ 0, (4.6a)

wxx(t, 0) =w(t, L) = wx(t, L) = 0, t ≥ 0, (4.6b)

and initial condition of the form

w(0, x) = w0(x), x ∈ (0, L). (4.7)

The stability result for solutions w to the above problem is presented in the following proposi-
tions. Although asymptotic stability for boundary conditions (4.6a) is ensured for every λ > 0,
for (4.6b) there is a minimal λ0 for which asymptotic stability is guaranteed only when λ ≥ λ0.
These results are stated precisely in the next two propositions and will be used throughout
this work.

Proposition 4.1. Consider system (4.5) with boundary conditions (4.6a) and initial condition
w0 ∈ L2(0, L). Then for all λ > 0, we have

‖w(t, ·)‖L2(0,L) ≤ e−λt‖w0(·)‖L2(0,L), t ≥ 0, (4.8)

for every L > 0.

Proposition 4.1 concerning boundary conditions (4.6a) is a standard result and can be
derived from energy estimates. Let us note here, that asymptotic stability for this case can
be proven even when the damping is not constant in the domain but localized to a part of
it, see for instance [Perla Menzala et al (2002)], and even when the damping is saturated,
see [Marx et al (2017)].

To proceed to the stability result for boundary conditions (4.6b), we utilize the following
lemma.

Lemma 4.1. There exists λ0 > 0, such that the following assertions hold true.

Assertion 1: For every λ ≥ λ0, there exist π(·) in C3(0,+∞) and b > 0, such that the
following holds for all x ≥ 0

π′′′(x) + π′(x)− 2λπ(x) = −2bπ(x),

π′′(0)π(0) + (π′(0))2 + π2(0) ≤ 0,

π(x) > 0,

π′(x) ≥ 0.

(4.9)

Assertion 2: For every λ ∈ (0, λ0), there exist L̄, b > 0 and π(·) in C3(0,+∞) satisfying
(4.9) for all x ∈ [0, L̄].

Proof of Lemma 4.1. To prove Assertions 1 and 2, it is more convenient to write the charac-
teristic equation of the differential equation in (4.9) as

r3 + r − s3 − s = 0 (4.10)
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(as in [Rosier (2004)]), where

s3 + s = 2λ− 2b (4.11)

and considering s as the unique real root of the latter equation. Then, solutions to (4.10) are
given by

r1 = s, r2 = −s
2

+ i

√
3s2 + 4

2
, r3 = −s

2
− i
√

3s2 + 4

2

and, therefore, a complete parametrization of solutions to the differential equation in (4.9) is
given by

π(x) = αesx + βe−
s
2
x cos

√
3s2 + 4

2
x+ γe−

s
2
x sin

√
3s2 + 4

2
x (4.12)

with α, β, γ ∈ R chosen such that restriction on initial conditions in (4.9) is satisfied. We
can check numerically that there exists a number ε > 0 near zero, such that for s ≥ 1 − ε,
π(·) given by (4.12) with initial conditions π(0) = 4, π′(0) = 2, π′′(0) = −5 (corresponding
to α = 56/25, β = 44/25, γ = 8/25) is positive and increasing and, therefore, satisfies (4.9).
Defining a small constant δ > 0 by

δ :=
ε3

5
− 3ε2

5
+

7ε

5
, (4.13)

we see from (4.11) that for s ≥ 1 − ε we have λ ≥ λ0 := 1 − δ for choice b = 11
16λ. Thus,

for all λ ≥ λ0, there exists b > 0, such that conditions (4.9) are satisfied. Hence, Assertion 1
is proven to hold for λ0 = 1 − δ, where δ is defined above. Now, notice that for s < 1 − ε,
corresponding to λ < λ0, and for any initial condition of π, satisfying second equation of
(4.9), there is a L̄ > 0, such that for x > L̄, π becomes decreasing and, thus, fails to satisfy
all conditions (4.9). This implies that for 0 < λ < λ0, Assertion 2 is satisfied for some small
L̄ > 0. Letting s → 0+, and choosing initial conditions π(0) = 4, π′(0) = 2, π′′(0) = −5 as
before, π approaches the trajectory of π(x) = −1 + 5 cos(x) + 2 sin(x), for which π′(x) < 0 for
L > arctan(2/5). By this, for λ→ 0+, b→ 0+, Assertion 2 is satisfied with L̄ = arctan(2/5).

In Figure 4.1 we see the evolution of π(x) for choice of initial condition π(0) = 4, π′(0) =

2, π′′(0) = −5 and various values of s, corresponding to various values of λ. For small values
of s, corresponding to small values λ, π(·) is increasing until some point x = L̄ quite small,
but for x > L̄, it is decreasing and, thus, fails to satisfy fourth equation of (4.9) after this
point, in accordance with Assertion 2. We also see that for all s ≥ 1 − ε, for ε > 0 small as
before, π(·) is everywhere increasing, verifying Assertion 1. The proof is complete.

The following proposition concerns the second case of boundary conditions.

Proposition 4.2. Consider system (4.5) with boundary conditions (4.6b) and initial condition
w0 ∈ L2(0, L). Then, there exists λ0 > 0, such that:

1) For all λ ≥ λ0, there exist a, b > 0, such that the solution to (4.5)-(4.7)-(4.6b) satisfies
the following:

‖w(t, ·)‖L2(0,L) ≤ ae−bt‖w0(·)‖L2(0,L), t ≥ 0, (4.14)
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Figure 4.1: Solutions to (4.9) for different s

for every L > 0.

2) For all λ ∈ (0, λ0), there exist L̄, a, b > 0 such that (4.14) is satisfied for all L ∈ (0, L̄].

Proof of Proposition 4.2. In this context, we are interested by unique solutions in L2(0, L).
Well-posedness of the initial boundary value problem (4.5)-(4.7)-(4.6b) can be easily proven
by invoking classical arguments, although these boundary conditions are less common in the
literature. We consider solutions w ∈ C

(
[0, T ];L2(0, L)

)
. The reader can refer for instance

to [Caicedo and Zhang (2017)] for details about the well-posedness in spaces Hs(0, L), s ∈
[0, 3], by noticing hidden regularities and in conjunction with the Kato smoothing property.

Let us consider the following weighted L2-norm

E(t) :=

∫ L

0
π(x)w2(x)dx

along the L2 solutions to (4.5)-(4.7)-(4.6b), for some choice of positive π(·) ∈ C3[0, L]. Calcu-
lating its time-derivative along the solutions to (4.5) and applying integrations by parts, we
obtain

Ė(t) =

∫ L

0

(
π′′′(x) + π′(x)− 2λ

)
w2(x)dx− 3

∫ L

0
π′(x)w2

x(x)dx

+
[(
−π′′(x)− π(x)

)
w2(x)− 2π(x)wxx(x)w(x) + π(x)w2

x(x)

+2π′(x)wx(x)w(x)
]L
0
.

Substituting boundary conditions (4.6b) we get

Ė(t) =

∫ L

0

(
π′′′(x) + π′(x)− 2λ

)
w2(x)dx− 3

∫ L

0
π′(x)w2

x(x)dx

−
(
wx(0) w(0)

)( π(0) −π′(0)

−π′(0) −π(0)− π′′(0)

)(
wx(0)

w(0)

)
.



4.1. Full State Feedback Stabilization 101

To ensure the exponential decay of E(t), we invoke assertions of Lemma 4.1 for π(·). By
Assertions 1 and 2, second and third term of the above equation become nonpositive and we
obtain the existence of a constant b > 0, such that

Ė(t) ≤ −2bE(t)

and, therefore, (4.14) holds with a =
√

π(L)
π(0) . This completes the proof of Proposition 4.2.

4.1.2 Full state stabilization

Following the previous results, we are in a position to study the closed-loop stabilization.
Here, the considered state feedback controls, which are placed in the last equation, will be
proven to be of the following form for each of the problems (BC-A) and (BC-B)

(BC-A): u(t) =

∫ L

0
p(0, y)vn(t, y)dy, (4.15a)

(BC-B): u(t) = −ω + 1

3
Lvn(t, 0) +

∫ L

0
pxx(0, y)vn(t, y)dy, (4.15b)

with ω > 0 to be chosen appropriately and kernel function p : Π→ R depending on ω, where
Π := {(x, y);x ∈ [0, L], y ∈ [x, L]}.

We now present the exponential decay result of the solution v to the cascade system
(4.1) via the control (4.15), which utilizes the full state. The proof uses backstepping tools
appearing in [Cerpa and Coron (2013)], [Cerpa (2014)] for single KdV equations.

Theorem 4.1. Consider system (4.1) with boundary conditions (BC-A) or (BC-B), feedback
control laws of the form (4.15) and initial condition v0 ∈ L2(0, L)n.

a) If (BC-A) holds and n ≥ 2, then for every L > 0, there exist constants c, d > 0, such
that the solution v to (4.1) satisfies the following

‖v‖L2(0,L)n ≤ ce−dt‖v0‖L2(0,L)n , ∀t ≥ 0. (4.16)

b) If (BC-B) holds and n = 2, then for every L > 0, there exist constants c, d > 0, such
that solution v to (4.1) satisfies (4.16).

c) If (BC-B) holds and n > 2, then there exists L̄ > 0, such that (4.16) is guaranteed for
all L ∈ (0, L̄].

Proof of Theorem 4.1. We first prove a preliminary result concerning the exponential stability
of vn. We apply the following Volterra transformation

z(x) = T [vn](x) := vn(x)−
∫ L

x
p(x, y)vn(y)dy (4.17)
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to the solution to the last equation of the cascade system, with p defined on Π. Under appro-
priate choice of p(·, ·), we prove that this transformation maps solution vn to the trajectory z
satisfying the following target equation in [0,+∞)× [0, L]

zt + zx + zxxx + ωz = 0, (4.18)

(BC-A, z) : z(t, 0) = z(t, L) = zx(t, L) = 0,

(BC-B, z) : zxx(t, 0) = z(t, L) = zx(t, L) = 0.

with control given by (4.15). Indeed, performing standard differentiations and integrations by
parts (for more intuition the reader can refer to [Cerpa and Coron (2013)]), we derive the
following equations

zt(t, x) + zx(t, x) + zxxx(t, x) + ωz(t, x) =

−
∫ L

x
(pxxx(x, y) + pyyy(x, y) + py(x, y) + (ω + 1)p(x, y)) vn(t, y)dy

+ p(x, L)vn,xx(t, L) + p(x, L)vn(t, L) + pyy(x, L)vn(t, L)− py(x, L)vn,x(t, L)

+

(
ω + 1 +

d2

dx2
p(x, x) +

d

dx
px(x, x) + pxx(x, x)− pyy(x, x)

)
vn(t, x)

+

(
px(x, x) + py(x, x) + 2

d

dx
p(x, x)

)
vn,x(t, x).

By choosing p(·, ·) satisfying the following equations
pxxx + pyyy + px + py + (ω + 1)p = 0, (x, y) ∈ Π

p(x, x) = p(x, L) = 0, x ∈ [0, L]

px(x, x) = ω+1
3 (L− x), x ∈ [0, L]

(4.19)

we achieve to obtain target system (4.18) for both boundary problems (BC-A, z) and (BC
-B, z). Solutions to (4.19) are proven to be unique in C3(Π) in [Cerpa and Coron (2013)],
by following successive approximation methods. The feedback control u is easily checked to
satisfy (4.15), if we use (4.17) and also calculate the value of the second derivative

zxx(x) =vn,xx(x) +
d

dx
p(x, x)vn(x) + p(x, x)vn,x(x) + px(x, x)vn(x)

−
∫ L

0
pxx(x, y)vn(y)dy

for x = 0.

Now, as we saw in the proof of Proposition 4.1 and Proposition 4.2 of the previous subsec-
tion, solution z to target system (4.18) is asymptotically stable for every L > 0, if ω > 0 when
(BC A, z) holds and if ω ≥ 1 when (BC B, z) holds. This implies the asymptotic stability of
vn, solution to (4.1), with control given by (4.15) for each of the boundary problems (BC-A)
and (BC-B). The latter follows from the fact that, as proven in [Cerpa and Coron (2013)],
transformation (4.17), mapping solution vn to z, is bounded and invertible with bounded
inverse. So, for every d̄ > 0, there exist ω0, c̄ > 0, such that for all ω ≥ ω0,

‖vn‖L2(0,L) ≤ c̄e−d̄t‖v0
n‖L2(0,L),∀t ≥ 0. (4.20)
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To prove the asymptotic stability of the full state, consider vector v[n−1] :=(
v1 · · · vn−1

)>. Then, v[n−1] satisfies the following equations
v[n−1],t + v[n−1],x + v[n−1],xxx = (An−1 − In−1)v[n−1] + `vn,

(BC-A, v[n−1]) : v[n−1](t, 0) = v[n−1](t, L) = v[n−1],x(t, L) = 0,

(BC-B, v[n−1]) : v[n−1],xx(t, 0) = v[n−1](t, L) = v[n−1],x(t, L) = 0,

where
` :=

(
0 · · · 0 1

)>
.

To prove stability of this system, consider a Lyapunov functional of the following form

W (t) =

∫ L

0
π(x)|v[n−1](x)|2dx

along the L2(0, L)n−1 solutions v[n−1] to the last equations, where π(·) is a positive increasing
C3 function to be chosen. After substistuting the above equations satisfied by v[n−1] and
applying integrations by parts, we obtain for the time-derivative of W

Ẇ (t) =

∫ L

0
(π′′′(x) + π′(x))|v[n−1](x)|2dx− 3

∫ L

0
π′(x)|v[n−1],x(x)|2dx

−
∫ L

0
π(x)v>[n−1](x)

(
2In−1 −A>n−1 −An−1

)
v[n−1](x)dx

+ 2

∫ L

0
π(x)vn−1(x)vn(x)dx+W0,

with

W0 :=
[
−(π′′(x) + π(x))|v[n−1](x)|2 + π(x)

(
|v[n−1],x(x)|2 − 2v>[n−1],xx(x)v[n−1](x)

)
+2π′(x)v>[n−1],x(x)v[n−1](x)

]L
0
. (4.21)

Matrix 2In−1 −A>n−1 −An−1 is positive definite and its eigenvalues are

ρ := 2− 2 cos
πj

n
, j = 1, . . . , n− 1.

Hence, its minimal eigenvalue is given by

ρn := λmin(2In−1 −A>n−1 −An−1) = 2− 2 cos
π

n
,N 3 n ≥ 2. (4.22)

Since π′(x) ≥ 0, by use of Young’s inequality we obtain

Ẇ (t) ≤
∫ L

0
(π′′′(x) + π′(x)− ρnπ(x))|v[n−1](x)|2dx

+ 2δ

∫ L

0
π(x)|v[n−1](x)|2dx+

1

2δ

∫ L

0
π(x)v2

ndx+W0,

and δ > 0 is chosen sufficiently small as in (4.13) in the proof of Lemma 4.1 of the previous
subsection.
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Now, we choose π(·) for each of the two boundary problems as follows.

For (BC-A, v[n−1]) we choose
π(·) = 1.

From this, taking also into account the exponential stability of vn (4.20), we get for the
case (BC-A, v[n−1]) the following estimate

Ẇ (t) ≤ −2dW (t) +
1

2δ
π(L)c̄2e−2d̄t‖v0

n‖2L2(0,L) (4.23)

with d = ρn/2− δ.

For (BC-B, v[n−1]) we choose a positive and increasing π(·) satisfying (4.9) (see Assertion
1 in Lemma 4.1) with λ = ρn

2 − δ and b > 0. It turns out by Assertion 1 that there is π(·)
and b > 0 satisfying this equation for any L > 0, when λ = 1 − δ, corresponding to ρ2 = 2

for n = 2. Then, the exponential decay of the Lyapunov functional is ensured similarly as in
Proposition 4.2. More precisely, there exists d > 0, such that for all L > 0, (4.23) is satisfied
for (BC B, v[n−1]) as well. Also, as shown in Proposition 4.2, for n > 2, which renders ρn < 2,
(4.23) is satisfied for some π(·), b > 0, only when 0 < L ≤ L̄, with L̄ depending on n.

Combining the above results, from (4.23), which holds for both (BC-A, v[n−1]) and (BC-B,
v[n−1]), we derive by Gronwall’s inequality

W (t) ≤ e−2dtW (0) +
π(L)c̄2

4δ(d− d̄)

(
e−2d̄t − e−2dt

)
‖v0
n‖2L2(0,L), (4.24)

recalling also, that d̄ depending on the parameter ω of the control laws, can be chosen, such
that d̄ > d. Combining (4.24) and (4.20), we get

‖v‖L2(0,L)n ≤‖v[n−1]‖L2(0,L)n−1 + ‖vn‖L2(0,L) ≤

√
π(L)

π(0)
e−dt‖v[n−1](0, ·)‖L2(0,L)n−1

+
c̄
√
π(L)

2
√
π(0)δ(d̄− d)

√
e−2dt − e−2d̄t‖v0

n‖L2(0,L) + c̄e−d̄t‖v0
n‖L2(0,L).

The last inequality leads to (4.16) for a suitable choice of c.

This concludes the proof and shows, also, that although the exponential convergence to
zero of vn can become arbitrarily fast by the choice of parameter ω inside the controls, solution
v to the whole cascade system has a fixed convergence rate.

4.2 Observer Design and Output Feedback Stabilization

In this section, we first present the proposed observer, along with its convergence proof for each
of the boundary control problems (BC-A) and (BC-B). Then, we study the output feeedback
stabilization of system (4.1) with controls placed at the left boundaries as described in each
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of problems (BC-A) and (BC-B). We note here that, even though the considered system is
linear, the use of the high-gain observer design is instrumental in the output feedback control
in the two following manners. 1) For (BC-B), the choice of the high-gain parameter is needed
to establish convergence of the observer, contrary to a simpler Luenberger observer design,
which would be sufficient for (BC-A); 2) The high-gain parameter is used in the stabilization
of the closed-loop system for both boundary control problems (BC-A) and (BC-B).

In the following subsection we present the observer for the cascade system, whose expo-
nential stability relies on the result presented in Proposition 4.2 of Section 4.1.

4.2.1 Observer

Define, first, diagonal matrix Θn by

Θn := diag
(
θ, θ2, . . . , θn

)
,

where θ > 1 represents a gain, which will be selected later. Consider a vector gain Kn =(
k1 · · · kn

)> and let P ∈ Rn×n be a symmetric and positive definite matrix satisfying a
quadratic Lyapunov equation of the form

2Sym (P (An +KnC)) = −In. (4.25)

The previous equation is always feasible, due to the observability of the pair (An, C).

Then, our observer is defined to satisfy the following equations in (0,+∞)× (0, L)

v̂t(t, x) + v̂x(t, x) + v̂xxx(t, x) = (An −B)v̂(t, x)−ΘnKn (y(t, x)− Cv̂(t, x)) (4.26)

with boundary conditions for each of (BC-A) and (BC-B) as follows

(BC-A):
v̂i(t, 0) = 0, i = 1, . . . , n− 1, for all t > 0,

v̂n(t, 0) = u(t), for all t > 0,

v̂(t, L) = v̂x(t, L) = 0, for all t > 0,

(4.27a)

(BC-B):
v̂i,xx(t, 0) = 0, i = 1, . . . , n− 1, for all t > 0,

v̂n,xx(t, 0) = u(t), for all t > 0,

v̂(t, L) = v̂x(t, L) = 0, for all t > 0.

(4.27b)

and initial condition
v̂(0, x) = v̂0(x), x ∈ (0, L).

The main observer result is stated in the following theorem.

Theorem 4.2. Consider system (4.1) with output (4.4) and boundary conditions satisfying
(4.2) ((BC-A) or (BC-B)) and v0 ∈ L2(0, L)n, u ∈ L2

loc(0,+∞). Consider, also, P and Kn

satisfying a Lyapunov equation as in (4.25). Then, (4.26), with boundary conditions (4.27)
and initial condition v̂0 ∈ L2(0, L)n is an observer for solution of (4.1), in the sense that for



106
Chapter 4. Output feedback control of a cascade system of Korteweg-de Vries

equations

θ large it estimates the state v arbitrarily fast. More precisely, for every κ > 0, there exist
θ0, ν > 0, such that for every θ > θ0, the following holds for all v0, v̂0 ∈ L2(0, L)n, t ≥ 0:

‖v̂(t, ·)− v(t, ·)‖L2(0,L)n ≤ νe−κt‖v̂0(·)− v0(·)‖L2(0,L)n , (4.28)

with ν increasing with θ, n and L.

Proof. Let us define a scaled observer error ε by

ε = Θ−1
n (v̂ − v). (4.29)

Then, ε satisfies the following equations

εt + εx + εxxx = θ(An +KnC)ε−Bε (4.30)

and boundary conditions for each of the cases (BC-A) and (BC-B) as follows

ε(t, 0) =ε(t, L) = εx(t, L) = 0, (4.31a)

εxx(t, 0) =ε(t, L) = εx(t, L) = 0. (4.31b)

We expect that solutions to the previous coupled equations can approach zero exponentially
fast, since An + KnC being Hurwitz will exhibit a damping effect (as in the single KdV
equation), with its magnitude being controlled by θ. Indeed, to prove exponential stability,
we choose the following Lyapunov functional defined on the L2(0, L)n solutions to the observer
error equations

V (t) :=

∫ L

0
µ(x)ε>(x)Pε(x)dx, (4.32)

with positive µ(·) ∈ C3[0, L] to be chosen suitably for each of the boundary conditions cases.
Taking its time-derivative and substituting (4.30) and Lyapunov equation (4.25), yields

V̇ (t) =

∫ L

0
µ(x)

[
−∂3

x

(
ε>(x)Pε(x)

)
− ∂x(ε>(x)Pε(x)) + 3∂x(ε>x (x)Pεx(x))

−θε>(x)ε(x)− 2ε>(x)PBε(x)
]
dx.

Performing successive integrations by parts, we obtain

V̇ (t) ≤
∫ L

0

(
µ′′′(x) + µ′(x) +

(
−θ 1

|P |
+ 2

|P |
λmin(P )

)
µ(x)

)
ε>(x)Pε(x)dx

− 3

∫ L

0
µ′(x)ε>x (x)Pεx(x)dx+ V0,

where

V0 :=
[(
−µ′′(x)− µ(x)

)
ε>(x)Pε(x)− µ(x)

(
ε>xx(x)Pε(x) + ε>(x)Pεxx(x)

)
+µ(x)ε>x (x)Pεx(x) + µ′(x)(ε>x (x)Pε(x) + ε>(x)Pεx(x))

]L
0

(4.33)
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and λmin(P ) is the minimal eigenvalue of P .

Let us now choose for boundary conditions case (4.31a)

µ(·) := 1, (4.34)

for which we obtain

V0 = −ε>x (0)Pεx(0) ≤ 0.

Note that given (4.34) for the boundary conditions case (4.31a), for every θ > θ0,A, with

θ0,A := 2
|P |2

λmin(P )
,

we get

V̇ (t) ≤ −2κAV (t), t ≥ 0, (4.35)

for some κA > 0.

Considering boundary conditions of case (4.31b), (4.33) is written as

V0 := −
(
ε>x (0) ε>(0)

)(Pµ(0) Pµ′(0)

Pµ′(0) −P (µ′′(0) + µ(0))

)(
εx(0)

ε(0)

)

For this case (4.31b), we see here that for all

θ ≥ θ0,B := 2
|P |2

λmin(P )
+ 2|P |,

Assertion 1 ((4.9) in Lemma 4.1) is satisfied with µ(·) in the place of π(·), λ = θ 1
2|P | −

|P |
λmin(P ) ,

λ0 = 1 and b = κB for some κB > 0. For all θ ≥ θ0, we choose, therefore, π(·) = µ(·) satisfying
(4.9) and we derive again (4.35) satisfied for every θ ≥ θ0,B, with κA substituted by κB.

Combining the previous estimates, we directly obtain (4.28) with

ν := θn−1

√
µ(L)

µ(0)

√
|P |

λmin(P )

and this concludes the proof of Theorem 4.2.

4.2.2 Output feedback stabilization

Next, it is proven that plugging the observer’s state considered in Theorem 4.2 in the feedback
laws (4.15) of the previous section, the closed-loop system is stabilized. This is done in two
steps. First, it is proven that the considered output feedback law stabilizes arbitrarily fast the
solution of the last KdV equation and second, the stabilization of the whole cascade system of
KdV equations follows. However, for system with boundary conditions (BC-B), stabilization
for any L is only achieved when n = 2, corresponding to a cascade system of two equations,
while for n > 2, stabilization is achieved for small L, following the result of Proposition 4.2 of
the previous section. These statements are presented in the following theorem.
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Theorem 4.3. Consider the closed-loop system (4.1)-(4.26), output (4.4) and boundary con-
ditions being of the form (BC-A) or (BC-B). Then, for any d̄ > 0, there exist an output
feedback law u(t) of the form (4.15), where v is substituted by the observer state v̂, and
constants θ0, ω0, c̄ > 0, such that for any design parameters θ > θ0, ω > ω0 (with θ in-
volved in the observer and ω involved in the control laws), the closed-loop system solution with
v0, v̂0 ∈ L2(0, L)n satisfies the following stability inequality (on the estimation error and last
observer state)

‖v̂ − v‖L2(0,L)n + ‖v̂n‖L2(0,L) ≤ c̄e−d̄t
(
‖v̂0 − v0‖L2(0,L)n + ‖v̂0

n‖L2(0,L)

)
, ∀t ≥ 0. (4.36)

Moreover, whenever the previous assertion holds, we get the following (full state convergence)

a) When boundary conditions (BC-A) hold with n ≥ 2, for every L > 0, there exist
constants c, d > 0, such that solutions v, v̂ satisfy the following

‖v̂ − v‖L2(0,L)n + ‖v̂‖L2(0,L)n ≤ ce−dt
(
‖v̂0 − v0‖L2(0,L)n + ‖v̂0‖L2(0,L)n

)
, ∀t ≥ 0, (4.37)

with d depending on n.

b) When boundary conditions (BC-B) hold with n = 2, for every L > 0, there exist
constants c, d > 0, such that solutions v, v̂ satisfy (4.37).

c) When (BC-B) holds, with n > 2 there exists L̄ > 0 small, such that asymptotic stability
(4.37) is guaranteed for all L ∈ (0, L̄].

Proof. To address the closed-loop control problem, let us rewrite observer error and observer
equations coupling (see (4.30), (4.26)):{

εt + εx + εxxx = θ(An +KnC)ε−Bε,
v̂t + v̂x + v̂xxx = (An −B)v̂ + θΘnKnε1,

(4.38a)

with boundary conditions (4.31), (4.27).

Let us perform a Volterra transformation to the solution of the n-th equation of the
observer, which by (4.26) is written as

v̂n,t + v̂n,x + v̂n,xxx = v̂n + knθ
n+1ε1. (4.39)

The Volterra transformation

q(x) = T [v̂n](x) := (knθ
n+1)−1v̂n(x)− (knθ

n+1)−1

∫ L

x
p(x, y)v̂n(y)dy, (4.40)

under appropriate choice of p(·, ·) maps (4.39) into target system

qt + qx + qxxx = −ωq + ε1 −
∫ L

x
p(x, y)ε1(t, y)dy, (4.41)
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with ω a constant involved in the controller, and boundary conditions for each of the two
considered cases as follows

q(t, 0) = q(t, L) = qx(t, L) = 0, (4.42a)

qxx(t, 0) = q(t, L) = qx(t, L) = 0. (4.42b)

Then, the kernel functions p(·, ·) satisfy (4.19) for both problems (4.42a), (4.42b). It is easy
to check this if we apply successive differentiations of (4.40) as in Theorem 4.1, we obtain the
above target system, by choosing p(·, ·) satisfying (4.19). Subsequently, the output feedback
control u(·) for (BC-A) is given by

u(t) =

∫ L

0
p(0, y)v̂n(t, y)dy, (4.43a)

and for (BC-B),

u(t) = −ω + 1

3
Lv̂n(t, 0) +

∫ L

0
pxx(0, y)v̂n(t, y)dy. (4.43b)

As noticed in proof of Theorem 4.1, it has been proven that the kernel equations (4.19) are
solvable in Π and the corresponding Volterra transformation is bounded and injective with
bounded inverse.

Consider now the Lyapunov function

U1(t) =U1,1(t) + U1,2(t);

U1,1(t) :=

∫ L

0
µ(x)ε>(x)Pε(x)dx, U1,2(t) :=

∫ L

0
σ(x)q2(x)dx,

along the solutions to (4.30)-(4.31) and (4.41)-(4.42), where U1,1 is the same as (4.32) of
Theorem 4.2 and σ(·) is a positive C3 increasing function in [0, L] to be chosen later.

Taking the time-derivative of U1,2 and substituting (4.41), we infer

U̇1,2(t) =

∫ L

0

(
σ′′′(x) + σ′(x)− 2ω

)
q2(x)dx− 3

∫ L

0
σ′(x)q2

x(x)dx

+ 2

∫ L

0
σ(x)q(x)ε1(x)dx− 2

∫ L

0
σ(x)q(x)

∫ L

x
p(x, y)ε1(y)dydx

+
[(
−σ′′(x)− σ(x)

)
q2(x)− 2σ(x)qxx(x)q(x) + σ(x)q2

x(x)

+2σ′(x)qx(x)q(x)
]L
0
.

By using

2

∫ L

0
σ(x)q(x)

∫ L

x
p(x, y)ε1(y)dydx ≤ U1,2(t) + σ(L)

∫ L

0

(∫ L

x
p(x, y)ε1(y)dy

)2

dx

≤ U1,2(t) + L2σ(L) max
x,y∈[0,L]

p2(x, y)

∫ L

0
ε2

1(y)dy

≤ U1,2(t) + L2 σ(L)

µ(0)λmin(P )
max

x,y∈[0,L]
p2(x, y)U1,1(t),
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we get

U̇1,2(t) ≤
∫ L

0

(
σ′′′(x) + σ′(x)− 2(ω − 1)

)
q2(x)dx− 3

∫ L

0
σ′(x)q2

x(x)dx+ hU1,1(t)

+
[(
−σ′′(x)− σ(x)

)
q2(x)− 2σ(x)qxx(x)q(x) + σ(x)q2

x(x)

+2σ′(x)qx(x)q(x)
]L
0
, (4.44)

where h :=
(
L2 maxx,y∈[0,L] p

2(x, y) + 1
) σ(L)
µ(0)λmin(P ) .

We can prove that for each of the two cases of boundary conditions we get

U̇1(t) ≤ −2d̄U1(t). (4.45)

Case (BC-A):

We choose µ(·) = σ(·) = 1 and we obtain:

U̇1,2(t) ≤ −2(ω − 1)U1,2(t) + hU1,1(t).

As seen in Theorem 4.2, for µ(·) = 1, we have:

U̇1,1(t) ≤
(
−θ 1

|P |
+ 2

|P |
λmin(P )

)
U1,1(t).

Combining the last two equations, if we choose θ, ω as follows:

θ > h|P |+ 2
|P |2

λmin(P )
, ω > 1,

we get a d̄ > 0, such that (4.45) holds.

Case (BC-B):

We see here that for all

θ ≥ θ0 := 2
|P |2

λmin(P )
+ h|P |+ 2|P |,

Assertion 1 ((4.9) in Lemma 4.1) is satisfied with µ(·) in the place of π(·), λ = θ 1
2|P |−

|P |
λmin(P )−

h
2 , λ0 = 1. For all θ ≥ θ0, we choose, therefore, µ(·) satisfying (4.9) and we get that the first
term of the right hand side of

U̇1(t) ≤
∫ L

0

(
µ′′′(x) + µ′(x)− 2

(
θ

1

2|P |
− |P |
λmin(P )

− h

2

)
µ(x)

)
ε>(x)Pε(x)dx

+ U̇1,2(t), t ≥ 0.

becomes negative.

Similarly, for every
ω ≥ 2,
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we can find σ(·) = π(·) satisfying (4.9), with λ = ω−1 and λ0 = 1 and by virtue of Proposition
4.2, right hand side of (4.44) becomes negative. Hence, going back to U̇1 and choosing θ ≥ θ0

and ω ≥ 2, we can always find µ(·), σ(·) as in Assertion 1 of Lemma 4.1, in a such way that
we always get a d̄ > 0, satisfying again (4.45).

Consequently, for each of the two problems (BC-A) and (BC-B), for each d̄ > 0 we can
find θ, ω, chosen as before in a way that there exists constant γ > 0 depending polynomially
on θ, such that

‖v̂ − v‖L2(0,L)n + ‖q‖L2(0,L) ≤ γe−d̄t
(
‖v̂0 − v0‖L2(0,L)n + ‖q(0, ·)‖L2(0,L)

)
,∀t ≥ 0.

Transformation T is bounded with bounded inverse (see the comments in Theorem 4.1) and,
therefore, we obtain an inequality as (4.36).

We are now in a position to prove the closed-loop stability for the whole system following
the methodology of Theorem 4.1. Let v̂[n−1] :=

(
v̂1 · · · v̂n−1

)>. Then, v̂[n−1] satisfies the
following equations

v̂[n−1],t + v̂[n−1],x + v̂[n−1],xxx = (An−1 − In−1)v̂[n−1] + `v̂n + Θn−1Kn−1(v̂1 − v1),

(BC-A, v̂[n−1]) : v̂[n−1](t, 0) = v̂[n−1](t, L) = v̂[n−1],x(t, L) = 0

(BC-B, v̂[n−1]) : v̂[n−1],xx(t, 0) = v̂[n−1](t, L) = v̂[n−1],x(t, L) = 0

where ` :=
[
0 · · · 0 1

]> and Θn−1,Kn−1 are involved in observer (4.26).

By choosing

U2(t) =

∫ L

0
π(x)|v̂[n−1](x)|2dx

as a Lyapunov functional along the L2(0, L)n−1 solutions to the last equations, with π(·) a
positive increasing C3 function, we obtain

U̇2(t) =

∫ L

0

(
π′′′(x) + π′(x)

)
|v̂[n−1](x)|2dx− 3

∫ L

0
π′(x)|v̂[n−1],x(x)|2dx

− 2

∫ L

0
π(x)v̂>[n−1](x)Sym (In−1 −An−1) v̂[n−1](x)dx

+ 2

∫ L

0
π(x)v̂n−1(x)v̂n(x)dx+ 2

∫ L

0
π(x)v̂>[n−1]Θn−1Kn−1(v̂1 − v1)dx+ U2,0,

where U2,0 is as W0 in (4.21) (see the proof of Theorem 4.1), while v[n−1] is substituded by
v̂[n−1]. Applying Young’s inequality, we get

U̇2(t) ≤
∫ L

0

(
π′′′(x) + π′(x)− (ρn − 2δ)π(x)

)
|v̂[n−1](x)|2dx

+
1

δ

∫ L

0
π(x)v̂2

n(x)dx+
1

δ
θ2n−2|Kn−1|2

∫ L

0
π(x)|v̂1(x)− v1(x)|2dx+ U2,0, (4.46)

with δ > 0 chosen sufficiently small, as in (4.13), determined in the proof of Lemma 4.1 of
previous section, and ρn defined in (4.22).
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Now, to ensure negativity of the Lyapunov derivative, we choose π(·) for each of the two
boundary problems as follows.

Case (BC A, v̂[n−1]):

π(·) = 1.

Then, in conjunction with the previously proven equation (4.36), we get from equation (4.46)

U̇2(t) ≤ −2dU2(t) +me−2d̄t
(
‖v̂0 − v0‖L2(0,L)n + ‖v̂0

n‖L2(0,L)

)2 (4.47)

where d := ρn − 2δ > 0 and

m :=
1

δ
π(L)c̄2 max

(
1, θ2n−2|Kn−1|2

)
. (4.48)

Case (BC B, v̂[n−1]):

For boundary conditions (BC B,v̂[n−1]), to obtain an asymptotic stability result, we first
check that for n = 2, we have ρn = 2. For this ρ2, proof of Lemma (4.1) suggests that there
exists π(·) satisfying (4.9) for some b > 0, with π(·) = π(·), λ = ρ2

2 − δ. Then, a similar
inequality as (4.47) is satisfied for all L > 0, d = b and m as in (4.48). Additionally, following
Assertion 2 in the proof of Lemma 4.1, we see that for any n > 2, implying ρn < 2, there exist
again π(·), d = b > 0, such that (4.9) holds for L ∈ (0, L̄], with L̄ depending on n.

Now, we see that for both boundary problems (BC-A) and (BC-B), (4.47) gives

U2(t) ≤ e−2dtW (0) +
m

2d− 2d̄
(e−2d̄t − e−2dt)

(
‖v̂0 − v0‖L2(0,L)n + ‖v̂0

n‖L2(0,L)

)2
.

The latter implies

U2(t) ≤
(
e−2dt +

m

2d− 2d̄
(e−2d̄t − e−2dt)

)(
‖v̂0 − v0‖L2(0,L)n + ‖v̂0‖L2(0,L)n

)2
. (4.49)

Recalling that d̄ depends on the observer adjustable parameter θ, we suppose, without loss of
generality, that can be chosen such that d̄ > d, so that the previous inequality has meaning.

Now, using trivial inequalities and by virtue of (4.49) and (4.36), we easily get

‖v̂ − v‖L2(0,L)n + ‖v̂‖L2(0,L)n ≤‖v̂ − v‖L2(0,L)n + ‖v̂n‖L2(0,L) + ‖v̂[n−1]‖L2(0,L)n−1

≤

[
c̄e−d̄t +

1√
π(0)

√
e−2dt +

m

2d− 2d̄
(e−2d̄t − e−2dt)

]
×
(
‖v̂0 − v0‖L2(0,L)n + ‖v̂0‖L2(0,L)n

)
.

The latter completes the proof of Theorem 4.3, suggesting also that the asymptotic rate
of the whole closed-loop cascade system is no larger than d, which is decreasing with n,
contrary to the asymptotic rate for the last state vn, which is adjusted by the observer and
control parameters.
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4.3 Conclusion

The purpose of this chapter was to show a way the high-gain observers, considered in this
thesis, can be applied to the output feedback stabilization of cascade systems of linearized
KdV equations. The considered system is written in the cascade forms that we consider
throughout the whole thesis. The distributed measurement involves the first state, while the
control is placed at the left boundary of the last state. Two types of boundary conditions were
considered, the second of which required special treatment, in order to prove the stability
result. Via the proposed observer, the output feedback control law stabilizes the solution to
the last equation of the cascade system, making the convergence to zero arbitrarily fast. At
the same time, the cascade system is stabilized for both boundary control problems, while for
the second one, stabilization experiences a limitation with respect to the number of equations.

Future developments of the present framework might consider the inclusion of nonlineari-
ties, as in the original KdV equation.





Conclusion and perspectives

This thesis proposed solutions to a high-gain observer design problem for some classes of
infinite-dimensional systems written as systems of n PDEs and having a triangular form. The
output of the system was assumed to be given by a distributed measurement of a part of
the state on the whole domain, namely, its first component only. Solutions were proposed
for systems including nonlinearities and nonlocal components in their source terms and also
associated with differential operators of various forms. Finally, these designs were applied to
the output feedback control of a cascade system of linearized KdV equations. More explicitly,
some solutions have been proposed for each of Problems 1, 2, and 3, listed in the Introduction
of the thesis.

For Problem 1, it was shown that under sufficient conditions for the nonlinearities and
system solutions, observers can be designed for some systems including quasilinear systems
of PIDEs in triangular form with one velocity and considering a reduced number of observa-
tions. Also, under sufficient conditions, including strong regularity of system solutions and,
additionally, space periodicity of the boundary conditions for large systems, observers with
reduced number of observations can be designed for hyperbolic systems. However, limitations
appeared with respect to the generality of the considered hyperbolic operators, the nonlin-
earities, and the number of the states. Furthermore, observer design with reduced number of
observations was achieved for semilinear coupled systems of reaction-diffusion systems with
distinct diffusivities, assuming stronger regularity, and also cascade systems of linearized KdV
equations. These solutions were provided by using tools from Lyapunov theory, namely, the
choice of appropriate Lyapunov functionals, leading to stability in norms of appropriate spaces
(with strong regularity). Also, a fundamental tool used in this analysis, was the investigation
of existence of infinite-dimensional state transformations, which solve generalized Sylvester
operator equations.

Solutions to Problem 2 were achieved, since the proposed observers along this thesis
achieve to exhibit performances similar to the ones of the high-gain observers in finite dimen-
sions. More explicitly, besides the limitations cited in the previous paragraph, the triangular
structure of the dynamics allowed the design of a high-gain observer. It relies on a choice of
a sufficiently large high-gain constant, which compensates for both nonlinearities and terms
coming from the boundary conditions. In this way, arbitrary convergence of the observer
was achieved, noting also that for the class of hyperbolic systems it overcomes the mini-
mum time of convergence that characterizes boundary observers. The tools used to solve this
problem included extended methods inspired by finite-dimensional high-gain observer designs
and appropriate treatment of the nonlinearities in the observer dynamics (by use of smooth
saturations) and also of the terms coming from boundary conditions.

Problem 3 was shown to have a solution for a class of linearized KdV equations. A high-
gain observer, relying on an internal measurement of the first stated, provided an estimation
of the full state, which was used in the output feedback controls placed in the last equation
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on the left boundary. Two boundary control problems were considered: a rather common
Dirichlet condition and a special one on the second derivative. The high-gain constant, along
with the boundary controls achieved to stabilize the coupled system, although this was possible
when system consists of only two equations for the second boundary control problem. This
framework introduced new tools of stability analysis and choice of Lyapunov functionals.

The main contributions of the thesis were summarized in the Introduction. The gen-
eral tools used along the thesis included techniques inspired by finite-dimensional high-gain
observer design, nonlinear partial differential equation theory, Lyapunov stability theory for
infinite-dimensional systems, stabilization theory, operator equations, and backstepping (in
Chapter 4), amongst others.

Perspectives

Some challenges, related to this work, might be:

• investigation of observability properties for cascade/triangular forms as the ones pro-
posed here, see for instance [Alabau-Boussouira et al (2017)]. Many problems re-
main open;

• links between observability and observer design for coupled infinite-dimensional systems,
similarly as in the finite dimensions;

• observer design for cascade/triangular systems of PDEs with diffferent (more general)
coupling operators. Also, systems with differential operators of different types on the
diagonal, namely coupled PDEs of different type. In [Alabau-Boussouira (2003)],
such open problems with respect to controllability, having various types of couplings,
are presented. The observation might be internal, as in the present thesis, but localized
in a part of the domain;

• solutions to problems of observer design for nonlinear triangular infinite-dimensional
systems, with associated diagonal differential operators of nontrivial coefficients and
any number of states. This problem has been partially answered in Chapter 3 here;

• introduction of new observer design techniques for the class of nonlinear triangular
infinite-dimensional systems, as the one considered here, and extension of approaches
for finite dimensions in the case of infinite-dimensional observer design, inspired by
[Tsinias and Kitsos (2019)]. These observer designs would lead, for instance, to
finite-time state estimation;

• ISS properties in appropriate norms of the proposed observers for triangular infinite-
dimensional systems, with respect to boundary or internal disturbances, related to the
considered ones here, see [Bastin et al (2020)];

• ISS properties of finite-dimensional approximated observer systems versus the real PDE
observers, as the ones proposed here;
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• approximation methods for the use of the here-proposed output spatial derivatives (of
high order) in the high-gain observer designs as in Chapter 3, via kernel convolutions
for instance, and analysis of the performance;

• various performance improvements to these high-gain observer designs for infinite-
dimensional systems, similarly to the ones adopted for finite-dimensional ones, see for
instance [Astolfi et al (2017)]. Some extensions to the infinite dimensions are not
straightforward;

• investigation of the application and realization of the proposed theoretical designs to
wider classes of real systems of PDEs;

• extension of the proposed output feedback controls for cascade systems of linearized KdV
equations in Chapter 4 to the case of nonlinear systems of KdV equations. Consideration,
also, of different couplings between KdV equations.
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Résumé — Cette thèse introduit quelques extensions non-triviales de la synthèse classique
des observateurs grand gain pour des systèmes nonlinéaires de dimension finie à quelques
classes de systèmes de dimension infinie, ayant la forme de systèmes triangulaires décrites par
des équations différentielles aux dérivées partielles (EDP) couplées, où une seule coordonnée
de l’ état dans tout le domaine spatial est considérée comme la sortie du système. Pour
aborder ce problème, des synthèses directes et indirectes d’observateurs sont proposées, en
fonction d’une propriété de l’opérateur différentiel, associé à chaque système d’EDP. D’abord,
en suivant la synthèse directe, la solvabilité de ce problème de synthèse des observateurs grand
gain est prouvée pour une classe de systèmes d’équations integrodifféréntielles hyperboliques
quasilinéaires avec termes sources et une seule vitesse de propagation. Ensuite, pour le cas
de vitesses distinctes, une synthèse indirecte est proposée pour une classe de systèmes quasil-
inéaires hyperboliques 2 × 2 et une classe de systèmes linéaires inhomogènes hyperboliques
n × n. Ce type de synthèse est aussi appliqué à une classe de systèmes semilinéaires de
reaction-diffusion de 2 ou de 3 équations. La synthèse indirecte introduit des transformations
d’état de dimension infinie des systèmes considérés vers des systèmes cibles d’ EDP, qui
permettent l’injection de dérivées spatiales de la sortie dans la dynamique de l’observateur.
La convergence des observateurs proposés dans des normes d’espaces de regularité appropriés
est basée sur des outils de type Lyapunov. La thèse contient aussi des applications des
résultats théoriques obtenus à des exemples de modèles épidémiques, de réacteurs chimiques
et de systèmes Lotka-Volterra avec diffusion. Enfin, les synthèses d’ observateurs proposées
sont appliquées à la stabilisation par retour de sortie d’un système d’équations linéaires
de Korteweg-de Vries en cascade, où deux problèmes différents de contrôle frontière sont
considérés.

Mots clés : observateur grand gain, systèmes nonlinéaires, systèmes hyperboliques,
systèmes paraboliques, équation Korteweg-de Vries, commande de systèmes de dimension
infinie.

Abstract — This thesis introduces some non-trivial extensions of the classical high-gain
observer design for finite-dimensional nonlinear systems to some classes of infinite-dimensional
systems, written as triangular systems of coupled partial differential equations (PDEs), where
an observation of one coordinate of the state along the spatial domain is considered as system’s
output. To deal with this problem, depending on a property of the differential operator
associated to each system of PDEs, direct and indirect observer design is proposed. First, via
direct observer design, solvability of this high-gain observer design problem is proven for a
class of systems of quasilinear hyperbolic partial integro-differential equations of balance laws
with a single characteristic velocity. Then, for the case of distinct velocities, indirect observer



128 Bibliography

design is proposed for a class of 2 × 2 quasilinear and a class of n × n linear inhomogeneous
hyperbolic systems. This design is also applied to semilinear reaction-diffusion systems of 2

and 3 equations. The indirect design introduces infinite-dimensional state transformations of
the considered systems to target systems of PDEs and this leads to the injection of spatial
derivatives of the output in the observer dynamics. The convergence of the proposed observers
in norms of appropriate regularity spaces is based upon various introduced Lyapunov tools.
The thesis also addresses the application of the proposed theoretical results to epidemic models,
chemical reactors, and diffusional Lotka-Volterra systems. Finally, the proposed observer
designs are applied to the output feedback stabilization of a cascade system of linear Korteweg-
de Vries equations, where two different boundary control problems are considered.

Keywords: high-gain observer, nonlinear systems, hyperbolic systems, parabolic sys-
tems, Korteweg-de Vries equation, control of infinite-dimensional systems.
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