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Chapter 1

Introduction

This chapter presents the general context of this work and an extended outline of the
manuscript.

1.1 Context and motivations

1.1.1 Framework

Physics-based simulations are generally less expensive and relatively faster than pro-
totyping and testing processes. Moreover, it is sometimes impractical to perform real
world experiments (e.g. climate science, earthquakes, airfoil design). Therefore, com-
puter simulations are very popular in applied research and industry. Competition and
high standards of specifications fuels the need for more efficient, more robust and ulti-
mately more optimized designs. Therefore, computer simulations are not only used to
validate a model. But, they are also used to explore the design space looking for new
designs with optimal performances. Both exploration and optimization require in general
many evaluations of the simulator. However, high fidelity simulations of complex models
remain computationally expensive despite the evolution of high performance computing.

To overcome such cost, surrogate models, also called meta-models or response sur-
faces, are used to speed-up the exploration of the design space. These functions aim
at emulating the true function, here the computationally-intensive simulator, while be-
ing computationally cheaper. Surrogate models are commonly used in engineering de-
sign [Kle08, SWN13] and there are many construction methods of such approximations
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CHAPTER 1. INTRODUCTION

expensive
simulator/experienceinput: x output: y = f(x)

Surrogate modeling
method

DP: (Xn,yn) f̂

Feature estimation

new point x⋆

Figure 1.1: Illustration of surrogate-modeling

[Mat69,LS81,SS04,PG89].

Surrogate models are based on a given training set of n observations Zn = (z1, . . . , zn),
where zj = (xj , yj) for 1 ≤ j ≤ n and yj = f(xj), called also design points. The main
purpose of surrogate modeling is to replace the expensive-to-evaluate function f by a
simple response surface f̂Zn and then to speed-up the estimation of a feature of f using
f̂Zn . The accuracy of the surrogate model relies, among others, on the relevance of the
training set. Of course one is looking for the best trade-off between a good accuracy of the
feature estimation and the number of calls of f . Consequently, the design of experiments
(DOE), that is the sampling of (xj)1≤j≤n, is a crucial step and an active research field.
In Figure 1.1, a schema illustrating surrogate modeling is displayed.

1.1.2 The usages of surrogate modeling

Prediction Let us consider a design space Ω. Generally speaking, the main goal is to
predict accurately f on Ω. The accuracy of a surrogate model f̂Zn can be measured by
a loss function that measures the errors between predictions and true values. A typical
choice is the square error ℓ2(x, y) = (x−y)2. The integral form of the mean square errors
(MSE) is the ℓ2-risk overall the parametric space.

Rℓ2(f̂Zn) =

∫

Ω
ℓ2
(
f̂Zn(x), f(x)

)
dx (1.1)

=

∫

Ω

(
f̂Zn(x)− f(x)

)2
dx (1.2)
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The first challenge of the use of surrogate models for design space exploration is to
minimize the risk with the minimum number of design points. Thus, one of the research
interests is how to sample Zn to have the smallest risk on Ω. This objective is a partial step
in a larger study or the main deliverable. For instance, some health-care applications aim
at delivering a fast predictor of physiological properties following an intervention [PH16].

Feature estimation Surrogate models are also used to speed up the engineering pro-
cess looking for a particular feature of the unknown function f . For instance, surrogate
model-based techniques have been used for optimization [JSW98, ABDJ+00, FJ08]. In
this context, we look for a good approximation of a global minimum of f using a limited
number of evaluations. That is, we aim at finding x⋆ ∈ Ω such that:

x⋆ ∈ argmin
x∈Ω

f(x) (1.3)

In other design problems, the goal can be the estimation of a level set of f [RBM08,
BES+08]. That is, a threshold of a given value that can be used to estimate for instance
a probability of failure. In Figure 1.2, an illustration of a surrogate-based technique for
the estimation of a threshold is displayed. Notice that most of the added points by this
technique have values around the threshold T = 150.

Surrogate models have also been used for other features estimation such as a Pareto
front for multi-objective optimization [EDK11, SQMC10, BGR15a], a reliable optimum
[NM81,DSB11], a robust optimum [ONL06,TSGB16].

1.2 Outline of the dissertation

The remainder of the manuscript is presented in 5 chapters. In Chapter 2, we present
an extended review and the necessary background to set our contributions. Chapter 3,
4 and 5 present three different contributions that can be read separately. Each chapter
corresponds to a journal article either published, in revision or submitted. Concluding
remarks and perspectives are given in Chapter 6.

A summary of Chapters 2, 3, 4 and 5 is given below.

• Chapter 2 gives the necessary background to set our contributions. We briefly
present several classical surrogate modeling techniques and model accuracy assess-
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characteristics are implicitly expected within the meta-modeling framework. We
show that PPS enables the construction of relevant aggregations of surrogate mod-
els called also ensembles. PPS-optimal ensembles are easily computed and avoid
over-fitting. We present also two surrogate model selection schemes based on the
PPS. The first one computes the PPS-optimal ensemble rather than selecting one
surrogate model. The second one is based on a evolutionary framework that enables
the exploration of the space of surrogate models.

• Chapter 4 gives a new tool to associate a prediction distribution to any surrogate
model and as a result, to extend GP-based sequential design methods to any sur-
rogate model. Recall that the main advantage of GP-based approach is that it
provides everywhere a measure of uncertainty associated with the surrogate model
prediction. This uncertainty is an efficient tool to construct strategies for various
problems such as prediction enhancement, optimization or inversion.

In this chapter, we propose a universal method to define a measure of uncertainty
suitable for any surrogate model. It relies on Cross-Validation (CV) sub-models pre-
dictions and leads to a local empirical measure quantifying locally the uncertainty
of the surrogate model. This empirical distribution may be computed in much more
general frames than the Gaussian one. So that, it is called the Universal Prediction
distribution (UP distribution). It allows the definition of many sampling criteria.
We give and study adaptive sampling techniques to improve prediction accuracy
and an extension of the so-called Efficient Global Optimization (EGO) algorithm.
We also discuss the use of the UP distribution for inversion problems. The perfor-
mances of these new algorithms are investigated both on toys models and on an
engineering design problem.

• Nowadays, many design problems are complex and may involve a high number
of variables. Performing design exploration in high dimension is a difficult task.
There are several real-life problems where some variables are almost not influential.
Chapter 5 presents an algorithm for joint feature estimation learning and dimension
reduction. The method is based on Gaussian Process regression. Our method is
called the split-and-doubt algorithm. The “split” step (model reduction) is based on
a property of stationary Automatic Relevance Determination kernels of Gaussian
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process regression. We prove that large correlation lengths correspond to inactive
variables. We also show that classical estimators such maximum likelihood and
cross-validation assign large correlation lengths to inactive variables.

The “doubt” step question the “split” step and helps correcting an initial erroneous
estimation of the correlation lengths. It is possible to use this strategy for differ-
ent feature learning purposes such as refinement, optimization or inversion. The
optimization Split-and-Doubt algorithm has been evaluated on classical benchmark
functions embedded in larger dimensional spaces by adding useless input variables.
The results show that Split-and-Doubt is faster than classical EGO in the whole
design space and outperforms it for most of the considered test case.

Chapters 3, 4 and 5 reproduce the following papers:

• M. Ben Salem and L. Tomaso. Automatic selection for general surrogate models.
Structural and Multidisciplinary Optimization, Feb 2018 (Chapter 3).

• M. Ben Salem, O. Roustant, F. Gamboa, and L. Tomaso. Universal prediction dis-
tribution for surrogate models. SIAM/ASA Journal on Uncertainty Quantification,
5(1):1086–1109, 2017 (Chapter 4).

• M. Ben Salem, F. Bachoc, O. Roustant, F. Gamboa, and L. Tomaso. Sequential
dimension reduction for learning features of expensive black-box functions. Preprint
available at hal-01688329, 2017 (Chapter 5).
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Chapter 2

Background and literature review

2.1 Surrogate-modeling

The term surrogate model encompasses different techniques that have been developed
in various fields: regression analysis, response surface methodology, statistical learning,
statistical inference, geostatistics. This broad definition includes, inter alia, the least
squares method introduced by Legendre [Leg05] and Gauss [Gau09], the so-called response
surface methodology, introduced by [BW92, BD87], polynomial chaos expansion [GS03]
and artificial neural networks [PG89]. In order to highlight the model selection issue, we
present in this section a collection of surrogates modeling techniques and we discuss how
to assess their quality.

2.1.1 Notations

To begin with, let f denote a real-valued function defined on Ω, a nonempty subset of
the Euclidean space Rd, (d ∈ N⋆). In order to estimate f , we have at hand a sample of size
n (n ≥ 2): Xn =

(
x1, . . . , xn

)⊤
with xj ∈ Ω, j ∈ J1;nK and yn =

(
y1, . . . , yn

)⊤

where yj = f(xj) for j ∈ J1;nK. We note yn = f(Xn). Let Zn denote the observations:
Zn := {(xj, yj), j ∈ J1;nK}. Using Zn, we build a surrogate model f̂Zn

to approximate f .

Statistical modeling of computer experiments embraces the set of methodologies for
generating a surrogate model [VGH10]. Here, in order to avoid the possible confusion
between a surrogate model and its construction technique, we introduce the so-called
surrogate model builder to denote a method that generates surrogate models based on a

8
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given set of data.

Definition 1. m is a metamodel builder if: ∀n ∈ N⋆, m̂ is an application from Ωn ×Rn

to ΩR.

m : Ωn × Rn −→ ΩR

Zn = (Xn,yn) 7−→ m(Zn) = m̂|Zn

where the surrogate model m̂Zn
is a an application from Ω to R.

Example 1. Let P(1) : Zn = (Xn,yn) 7−→ P(1)
|Zn
∈ ΩR denotes a linear polynomial

regression such that:

∀x = (x1, . . . , xp) ∈ Ω, P(1)
|Zn

(x) = β0 +
d∑

1

βixi,

where the vector β̂ = (β̂0, . . . , β̂d)
⊤ is the least squares estimate (using X̃n =

(
1n,Xn

)
,

here 1n denotes a vector of size n whose all components equal to 1, assuming further that
n ≥ d and X̃n

⊤
X̃n is invertible.)

β̂ =
(
X̃n

⊤
X̃n

)−1
X̃n

⊤
yn.

2.1.2 Overview of some surrogate modeling techniques

There is a wide range of surrogate model building techniques. We give here a brief
overview of linear regression models, support vector regression, neural networks and en-
sembles of surrogates. Gaussian Process regression is presented with more details in
Section II.2.

Linear regression: Statistical regression aims at representing the relationships be-
tween the set of variables and a set of observed function outputs. It can be traced back
to the least squares method [Leg05, Gau09]. In the polynomial regression context, f is
assumed to be a polynomial function. The observations are noisy and assumed to be
drawn “around” a trend f . More precisely, we have:

yi = ϵi +

p∑

i=1

βifi(xi),

9
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transformation [Tuk77]. Therefore, there is a wide range of possible combinations of dif-
ferent settings: the basis functions, the input transformation, the output transformation,
the parameters of the transformations and the estimation method.

Support vector regression: Support vector regression is a particular use of support
vector machine (SVM). In [Vap13, Chapter 5], the so-called ϵ-SVR regression aims at
finding f(x) that has ϵ as an upper bound for the errors on design points while being as
smooth as possible. The approximations function is estimated as follows:

f̂(x) =
m∑

i=1

(αi − α⋆i )K(xi, x) + b,

where k(., .) is a kernel function. The parameters αi, α⋆i are estimated to minimize the
following dual problem:

min
α,α⋆

−1
2(α− α⋆)⊤Q(α− α⋆)− ϵ1⊤(α+ α⋆) + Y (α− α⋆)

subject to : 1⊤(α− α⋆) = 1,

α, α⋆ ∈ [0, C],

where: Qij = K(xi, xj).

(2.1)

The parameter b is computed such that the Karush-Kuhn-Tucker (KKT) conditions
are satisfied.

Note that there are formulations other than the ϵ-SVR. For instance, the so-called
µ-SVR [SSWB00] controls the number of support vector rather than the errors. There
are several possible settings to train a support vector regression model. We can cite for
instance the kernel function, the parameter value ϵ.

Artificial neural network: Artificial neural network (ANN) [PG89, Lip87, MP69] is
a learning method inspired by the biological neural networks modeling [MP43]. They
have been used for clustering, classification or regression. It is modeled as a collection
of connected nodes (neurons). Each connection is weighted and each node represents a
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transfer function.

The weights are generally optimized during the learning process by algorithms such
as back-propagation algorithm [Wer74]. The aim of the optimization being to minimize
a predefined loss function. A schema representing a neural network is displayed in Figure
2.2.

Variable 1

Variable 2

Variable 3

Variable 4

Output

Hidden
layer

Input
layer

Output
layer

Figure 2.2: Neural network schema

It is important to note that several settings are possible for the artificial neural net-
works. We can cite as examples, the transfer function, the loss function, the optimization
algorithm, the number of layers and the number of cells for each layer.

Aggregation of surrogates: Ensemble of surrogates, also called aggregations or mix-
tures, have been considered. There are two types of ensembles: local and global. Locally
weighted ensemble consider the ensemble prediction as the local weighted prediction of
the component surrogates f1, . . . , fm (Equation (2.2)). For instance, in [ZQPS05] the
weights are based on the local expected variances.

f̂ens(x) =
m∑

i=1

wi(x)f̂i(x). (2.2)

However, most weighting methods uses constant weights wi(x) = wi, ∀x ∈ Ω. For
instance, Gorissen et al. [GDT09] used a simple average ensemble (all the weights are
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equal). Muller et al. [MP11] proposed to weight the aggregation using the Dempster-
Shafer theory where the error estimates are used as basic probability assignments. Viana
et al. [VHS09] proposed to use an ensemble of surrogate models that minimize the cross-
validation errors. Several heuristics to weight ensembles have been proposed in [GHSQ07,
GHQS06].

2.1.3 Model accuracy assessment

2.1.3.1 General statistical framework for quality assessment

In statistical inference, the main objective is to estimate a given feature of an unknown
distribution based on a given set of data. In regression framework, the feature to estimate
is the unknown function f ∈ ΩR, and the distribution is P ∼

(
X,Y = f(X)

)
. So, the

performance of a surrogate model is related to its prediction capabilities. The assessment
of this performance is extremely important in practice. A quantitative assessment is
generally based on a loss function that measures the errors between the predictions and
the observation of a given set. The risk defined by a loss function l is called l-risk
(definition 2).

Definition 2. Let Σ = Ω × Rd. Let l be a measurable loss function, P be a probability
measure on Σ, then for a measurable function m̂ : Ω→ R

Rl,P (m̂) =
∫
Σ l(m̂(x), y)dP (x, y) is called the l-risk of m̂.

A popular loss function is the quadratic loss function l2(ŷ, y) = (y − ŷ)2 where ŷ is
the prediction and y is the observation. The distribution P is generally unknown. In
statistics, it is common to use an approximation of P . For instance, one can use the
empirical distribution associated to a set of m observations Zn, Pn = 1

n

n∑
i=1

δzi where δzi
is the Dirac measure at zi = (xi, yi). The empirical l-risk of a function m̂ is then:

Rl,Pn
=

1

n

n∑

i=1

l(m̂(xi), yi) (2.3)

If we assume that Zn are generated (independently) by P and m̂ satisfiesRl,P (m̂) <∞
then Rl,Pn

(m̂)→Rl,P (m̂) when n→∞ by the law of large numbers.

Notice that the surrogate model depends on a set of observations generated by P .
Therefore, it is not convenient to use the same data to build the surrogate model and to
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assess its accuracy. The use of an independent set of observation is more relevant.

2.1.3.2 Resampling techniques

Overfitting is a classical risk of an irrelevant use of statistical inference. Training
an algorithm and evaluating its statistical performances on the same data leads to an
optimistic result. Resampling techniques allow estimating the risk of a predictor without
generating an extra set of observation. For instance, cross-validation [Sto74] or bootstrap
[ET93] use a re-sampled sets of the available data Zn.

Cross-validation: The idea behind CV is to estimate the risk of an algorithm splitting
the data once or several times. One part of the data (the training sample) is used for
training and the remaining one (the validation sample) is used for estimating the risk of
the algorithm. It is generally used to perform model selection or to estimate the accuracy
of a meta-model.

Formally, for i ∈ 1, . . . , k, let Z(i) be a subset of Zn such that ∪ki=1Z
(i) = Zn. The

kF-CV estimates of the l2 errors (Equation (2.4)) by computing the loss of a point in the
ith fold Z(i) compared to the prediction of the surrogate model built on the remaining
folds (Zn \ Z(i)).

Rk−CV (m) =
1

n

k∑

i=1

∑

(x′,y′)∈Z(i)

l2( ̂m|Zn\Z(i)(x′), y′), (2.4)

where

z ∈ Zn \ Z(i) if and only if z ∈ Zn and z /∈ Z(i).

Several cross-validation procedures are possible. The one described previously is the
so-called k-Fold-Cross-Validation (KFCV). Note that when p = n, it is called Leave-
One-Out Cross-Validation (LOO-CV). Queipo et al [QHS+05] pointed out that the main
advantage of CV is that it provides a nearly unbiased estimate. Further, Cross-Validation
and Bootstrap performances on a large dataset are studied in studied in [Koh95]. Therein,
the authors recommend using stratified 10-fold-cross-validation.

14



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

2.1.3.3 Error functions

Besides the limited number of available data. Another problem faces the assessment of
surrogate quality. Let us assume that we have at hands a set of validation data of p ∈ N

observations Z(v)
p = (z

(v)
1 = (x

(v)
1 , y

(v)
1 ), . . . , z

(v)
p = (x

(v)
p , y

(v)
p ))). The best surrogate model

could vary according to the used error measures. For instance, let us consider the root
relative mean square error (equation (2.5)) the mean absolute error (equation (2.6)), the
relative mean square error (equation (2.7)) and the maximum absolute error (equation
(2.8)).

rmse(m(Zn)) =

√√√√1

p

p∑

i=0

(m̂Zn
(x

(v)
i )− yi)2 (2.5)

mae(m(Zn)) =
1

p

p∑

i=0

|m̂Zn
(x

(v)
i )− yi| (2.6)

rmae(m(Zn)) =
1

p

p∑

i=0

|m̂Zn
(x

(v)
i )− yi|
yi

(2.7)

Mae(m(Zn)) = max{|m̂Zn
(x

(v)
i )− yi|, i ∈ 1, . . . p} (2.8)

Example 2 (Toy example). We have at hands a set of p = 4 observations and 4 surrogate
model builders m1,m2,m3 and m4. Table 2.1 shows the true values of the observation yi

and the predicted values by the surrogate models. The second part of the table 2.1 shows
the error measures values for each surrogate model. The best value for each criterion is
written in bold.

The results show that for each error measure, we have a different optimal surrogate
model. This means that the user should be careful when dealing with such measures. In
fact, sometime the selection of the measure depends on the field. For instance, if we want
to minimize the effect of outliers we would use some conservative measures for instance
Huber loss function [Hub64].

2.1.4 Discussion

We presented a non-exhaustive list of surrogate modeling techniques. Generally, there
are several settings for each type. However, no method is universally optimal and we
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Table 2.1: Toy example of accuracy estimates of surrogate models

i yi m1(xi) m2(xi) m3(xi) (xi)

1 0.1 0.4 0.5 -0.5 0.2
2 2.4 3.0 2.8 2.1 1.2
3 5.5 5.9 5.9 5.2 6.1
4 12 12 12.4 11.7 11.1

mae 0.35 0.4 0.375 0.7
Mae 0.6 0.4 0.7 1.2
rmse 0.41 0.4 0.39 0.8
rmae 0.83 1.06 1.55 0.42

showed that it is rather difficult to assess the quality of a surrogate model. We will
tackle the problem of model selection in Chapter 3. This relies on a relevant definition
of some assessment criterion and on the selection of the best surrogates or aggregation
accordingly.

2.2 Focus on Gaussian Process Regression

2.2.1 Gaussian Process

Definition 3 (Gaussian distribution). A random variable follows a normal distribution
with mean µ and variance σ2 if its probability density function is:

ϕ(x) =
1

σ
√
2π

exp

(
−(x− µ)2

2σ2

)
for x ∈ R.

Observe that if X ∼ N (µ, σ2) then X = µ+ σN with N ∼ N (0, 1).
Multivariate random variables or random vectors are a generalization of random vari-

ables.

Definition 4 (Gaussian vector). A random vector Y = (Y1, . . . , Yd) is a said to be
multivariate Gaussian if and only if:

Y = Aε+ µ,
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where µ is a 1× d vector, A a d× k matrix and ε = (ε1, . . . , εd) is a Gaussian white
noise i.e ε1, . . . , εd) i.i.d N (0, 1).

Indeed, let Y = (Y1, . . . , Yd) be a multivariate Gaussian vector, µ its expected value
(vector) µ = E[Y ] and Σ = AA⊤ the so-called covariance matrix of Y . The probability
density function of Y is given in Equation (2.9):

ϕY (x) =
1

|2πΣ|1/2
exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
. (2.9)

Conditional expectation of a random vector: Let Y = (Y1, Y2) be the random
vector where Y1, Y2 are random vectors such as:

Y ∼ N
((

µ1

µ2

)
,

(
Σ1,1 Σ1,2

Σ2,1 Σ2,2

))
.

Let us assume that Σ2,2 is invertible. The conditional distribution of Y1 knowing Y2
is a Gaussian vector where:

E[Y1|Y2] = µ1 +Σ1,2Σ
−1
2,2(Y2 − µ2), (2.10)

Cov(Y1|Y2) = Σ1,1 − Σ1,2Σ
−1
2,2Σ2,1. (2.11)

Gaussian Process: Stochastic processes or random processes can be seen as a gener-
alization of multivariate random variables. There are several different types of random
processes.

Definition 5 (Gaussian process). A random process Y over Ω ⊂ Rd is Gaussian if

∀n ∈ N, for i = 1, . . . , n, xi ∈ Ω,
(
Y (x1), . . . , Y (xn)

)
is a Gaussian vector.

We define the mean function µ(x) = E[Yx] and the covariance function k(x, y) =

E

[(
Yx − µ(x)

)(
Yy − µ(y)

)]
. This implicitly requires the process to be integrable at

order 2. A Gaussian process Yx is determined by its mean function and its covariance
function [AT09, Chapter2]. Hence, we use the notation Y ∼ GP (µ(.), k(., .)).
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Definition 6 (Weak-sense stationarity). A random process Y is said to be second or-
der stationary or weak-sense stationary if its mean and its covariance are invariant by
translation. That is:

∀(x, y) ∈ Ω2, µ(x) = µ(y) and Cov(Y (x), Y (y)) = κ(x− y),

where κ is a function Rd → R.

Since a Gaussian process is fully determined by its mean and its covariance func-
tion then second order stationarity is equivalent to the strong-sens stationarity (i.e the
distribution of the process is invariant by any translation) for the Gaussian Process.

Covariance function The covariance matrix of a Gaussian vector is positive semi-
definite. This notion is extended to covariance functions. A symmetric function k(., .)

over Ω× Ω is positive semi-definite if it satisfies

∀n ∈ N, ∀(x1, . . . , xn) ∈ Ωn, ∀α ∈ Rn,

n∑

i=1

n∑

j=1

αiαjk(xi, xj) ≥ 0.

Any covariance function is positive semi-definite. Conversely, any symmetric positive
semi-definite functions is a covariance function of some random process. A review of
covariance functions is given in [Abr97].

2.2.2 Kriging or Gaussian Process regression

2.2.2.1 Posterior distribution

Kriging or Gaussian process regression (GPR) is widely popular especially in spatial
statistics. It is based on the early works of Krige [Kri51]. The mathematical framework
can be found in [Mat63,Ste12,RW06]. Kriging models predict the outputs of a function
f : Ω = [0, 1]d → R, based on a set of n observations. Within the GP framework, the
posterior distribution is given by the conditional distribution of Y given the observations
yn = (y1, . . . , yn)

⊤ where yi = f(x(i)) for 1 ≤ i ≤ n. An illustration of a collection of
random paths of a GP and their conditional counterpart is displayed in Figure 2.3.

The GPR framework uses a centered real-valued Gaussian Process (GP) Y over Ω as a
prior distribution for f . We denote by kθ : Ω×Ω→ R the covariance function (or kernel)
of Y : kθ(x,x′) = Cov[Y (x), Y (x′)] ((x,x′) ∈ Ω2), by Xn

⊤ =
(
x(1), . . . , x(n)

)
∈ Ωn
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given by:

m̂Zn
(x) = k(x,Xn)

⊤K−1
θ yn, (2.13)

σ̂2Zn
(x) = k(x,x)− k(x,Xn)

⊤K−1
θ k(x,Xn). (2.14)

Here, k(x,Xn) is the vector (k(x,x(1)), . . . , k(x,x(n)))⊤ and Kθ = k(X,X) is the
invertible matrix with entries

(
k(Xn,Xn)

)
ij
= k(x(i),x(j)), for 1 ≤ i, j ≤ n.

Universal Kriging: Let (hi)1≤i≤p be the basis functions of the trend function used
in the universal kriging. Let us call h(x) the vector (h1(x), .., hp(x))

⊤ and H the ma-
trix defined as follows: H =

(
hi,j = hj(xi)

)
1≤i≤n,1≤j≤p

. The conditional mean and the
conditional variance of the Gaussian process are given below [Cre93,Rip05]. .

m̂Zn
(x) = h(x)⊤β̂ + k(x,Xn)

⊤K−1(Y −H⊤β̂) (2.15)

σ̂2Zn
(x) = k(x,x)− k(x,Xn)

⊤K−1k(x,Xn)

+
(
h(x)⊤ + k(x,Xn)

⊤K−1H
)⊤(

H⊤K−1H
)−1(

h(x)⊤ + k(x,Xn)
⊤K−1H

)

(2.16)
where:

β̂ = (H⊤K−1H)−1H⊤K−1Y. (2.17)

These equations can be derived from 2.10 and 2.11 by considering a Bayesian Frame-
work with specific priors on β and σ [HDC09]. Finally notice that kriging predictions
depend on several settings: the trend function, the prior distribution including the kernels
parameters, the possible noise and the estimation method.

2.2.3 Link with Reproducing Kernel Hilbert Space

Reproducing kernel Hilbert space: A reproducing kernel Hilbert space (RKHS) H
is a Hilbert Space of real-valued functions defined on Ω where evaluation functionals

Tx : f 7→ f(x), ∀f ∈ H

are continuous.
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Definition 7 (Reproducing Kernel Hilbert Space). Let H be a Hilbert Space of real-valued
functions defined on Ω. H is a RKHS if ∀x ∈ Ω, Tx is a bounded operator1 on H i.e
there exists some M > 0 such that

|Tx(f)| = |f(x)| ≤M ||f ||H, ∀f ∈ H.

Theorem 1 (Fréchet-Riesz representation theorem). Let T be a continuous linear form
on H then,

If H is an RKHS ∃τ ∈ H, T (f) =< τ, f >H, ∀f ∈ H.

Every Tx is linear and continuous on (H, < ., . >H). Thus, it can be represented by
an element of H using < ., . >H (Fréchet-Riesz Theorem):

∃kx ∈ H, Tx(f) =< kx, f >H .

Proposition 1. Let k be the function defined on Ω×Ω→ R defined by k(x, y) = kx(ky).
Then, k is positive semi-defined.

Proof.

• k(x, y) = kx(ky) =< kx, ky >H=< ky, kx >H= ky(kx) = k(y, x).

• ∀n ∈ N, ∀α1, . . . , αn ∈ R, ∀x1, . . . , xn ∈ Ω,

n∑

i=1,j=1

αiαjk(xi, xj) =<
n∑

i=1

αikxi ,
n∑

j=1

αjkxj >H=
∣∣∣
∣∣∣
n∑

i=1

αikxi

∣∣∣
∣∣∣
2

H
≥ 0.

k(x, y) =< kx, ky >H is called a reproducing kernel. Moore–Aronszajn theorem states
that if a function k is a symmetric, positive definite kernel on a Ω then there is a unique
Hilbert space of functions on Ω for which k is a reproducing kernel, given by

Hk = Span{k(x, .), x ∈ Ω}.

For more insight, on may refer to [Aro50,BTA11].
1 This is equivalent to Tx is continuous at any f ∈ H

21



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Gaussian Process and RKHS

• A covariance function k of a centred Gaussian Process is also the reproducing kernel
of the RKHS Hk 2.

• The simple kriging posterior mean is also the function in H with minimal norm
that interpolates the data [MR85].

• Note that Gaussian Processes random paths are not generally in the corresponding
RKHS [Dri73,BTA11].

2.2.4 Kernel functions

A common approach consists in assuming that the covariance function belongs to a
parametric family. A review of classical covariance functions is given in [Abr97]. We are
interested in the family of auto relevance determination (ARD) kernels of the form of
Equation 2.18. The ARD kernels include most popular kernels such as the exponential
kernel, the Matérn 5/2 kernel and the squared exponential (SE) kernel given in Table 2.2.

kθ(x,y) = σ2
d∏

p=1

k
(d(xp, yp)

θp

)
, for x,y ∈ Ω. (2.18)

Here, d(, ) is a distance on Ω × Ω and k : R → R is a fixed stationary covariance
function. The hyper-parameters σ and θ1, . . . , θd have to be estimated. To do so, we
use the Maximum Likelihood (ML) estimator or Cross Validation (CV). Both methods
have interesting asymptotic properties [Bac13a, Bac14, BLN17]. Nevertheless, when the
number of observations is relatively low, the estimation can be misleading. These methods
are also computationally demanding when the number of observations is large.

2.2.4.1 Hyper-parameters estimation: maximum likelihood estimation

Without loss of generality, we consider the Gaussian process regression framework and
we assume µ = 0. The centred process depends only on its kernel that depends in turn
on its hyper-parameters. The likelihood in this case is given in Equation 2.19:

2Henceforth, we use sometimes the term kernel to designate the covariance function of a Gaussian
Process

22



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Name Expression

exponential k(x, y) = σ2 exp

(
−|x− y|

θ

)

squared exponential k(x, y) = σ2 exp

(
−(x− y)2

2θ2

)

Matern 5/2 k(x, y) = σ2

(
1 +

√
5|x− y|
θ

+
5|x− y|2

3θ2

)
exp

(
−
√
5|x− y|
θ

)

Matern 3/2 k(x, y) = σ2

(
1 +

√
3|x− y|
θ

)
exp

(
−
√
3|x− y|
θ

)

Table 2.2: Examples of common kernels.

L(σ2, θ) =
1

|2πk(X,X)|1/2
exp

(
−1

2
yn

⊤K−1yn

)
, (2.19)

where k(., .) depends on σ2 and θ. To overcome numerical problems, it is common to
consider the log-likelihood :

log(L(σ2, θ)) = −n
2
2π − 1

2
log(|k(X,X)|)− 1

2
yn

⊤yn. (2.20)

2.2.4.2 Hyper-parameters estimation: Cross Validation

Without loss of generality, we consider the Leave-One-Out Cross-Validation (LOO-
CV). LOO-CV consists in dividing the n point into n subsets of one point each. Then,
each subset plays the role of test set while the remaining points are used together as the
training set. Using Dubrule’s formula [Dub83], the LOO-CV estimator is given in (2.21).

θ̂⋆CV ∈ argmin
θ

1

n
yn

⊤K−1 diag(K−1)−1K−1yn (2.21)

For more insight on these estimators, one can refer to [Bac13b].
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2.2.5 Discussion

In Chapter 5, we will use some properties of the GPR. In fact, we will exploit some
properties of the correlation lengths of ARD kernels to propose the so-called split-and-
doubt algorithm. It consists in filtering some input variables while performing sequential
design.

2.3 Design of experiments (DOE)

In surrogate modeling framework, the sampling of design points is a crucial step. Gen-
erally speaking, there are two ways to sample: either drawing the training points at once
(one-shot design) or generating it sequentially (adaptive design). In this section, we give
a brief overview of some design techniques.

2.3.1 Non-adaptive designs

The one-shot designs are methods that sample all the experiments independently of
the values of the function output(s). These methods are also used in surrogate-based se-
quential designs to generate the initial DOE. Thus, it is a crucial issue in meta-modeling.

Design of experiments techniques can be roughly divided into three types: deter-
ministic, random and quasi-random. Among the deterministic methods, we can cite the
factorial designs, central composite designs, Box–Behnken designs [BB60] and orthogonal
arrays [Owe92,Owe94]. Full factorial designs are basically d-dimensional grids of k levels
in each dimension. Its main drawback is that the total number of design points n = kd

grows exponentially with the dimension.

Lindely [Lin56] introduced a maximum entropy design technique. It is based on the
amount of information provided by an experiment. Another type of deterministic model
is when the model is specified. Among these particular designs, we may cite A-optimal
design [Che53, Fed72], D-optimal design [Fed72, PW85, WP90] and so-called Bayesian
designs. Shewry and Wynn [SW87] showed that if the design space is discrete then min-
imizing the expected posterior entropy is equivalent to maximize the prior entropy.
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Geometric designs [JMY90] aim at optimizing a distance-based design criterion such
as minimax or maximin criteria.

min
x∈Ω

max
xi∈X

||x− xi||,

max
X=(x1,...,xn)

min
i ̸=j
||xi − xj ||.

As shown in [PM12], the minimax criterion is equivalent to find the smallest balls
centered in design points that cover the design space and maximin criterion seeks to
maximize the radius of non-intersecting balls centered on design points.

Among the random designs, one of the most popular is the Latin Hypercube Sam-
pling (LHS) developed by [MBC79]. It is proposed as an enhancement of Monte-Carlo
Sampling. A square grid containing sample positions is a Latin square if (and only if)
there is only one sample in each row and each column. A LHS is the generalization of this
concept to an arbitrary number of dimensions. Among the designs displayed in Figure
2.4, three of them are LHS. Let us consider the singular case (Figure 2.4d). This example
is of course one of the worst possible cases and its occurrence is not very likely. However,
this highlights the limitation of LHS. Thus, there are many improvement to pure LHS:
the so-called optimal Latin hypercube sampling (O-LHS3). The main idea is to keep the
projection property of LHS and use another criterion such as maximin [MM95].

2.3.2 Adaptive design

A design is adaptive if the information from the experiments (inputs and responses)
and/or information from the metamodel is used in selecting the next sample. “Adaptive
approaches are typically superior to non-adaptive approaches” [ASA+13]. Generally, an
adaptive approach begins with an initial design either deterministic, random or quasi-
random. A metamodel is constructed using the initial experiments and then new samples
are chosen by systematically evaluating the response and/or the metamodel the current
design point. Such definition includes feature-oriented designs such as optimization al-
gorithms and inversion algorithms. An example is the stepwise uncertainty reduction
(SUR) strategy that has been applied for excursion set identification [CBG+14], con-
strained optimization [Pic14] and multi-objective optimization [Pic15].

3The O-LHS in Figure 2.4 was realized with the package DiceDesign [DHF15]
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An efficient tool to construct such adaptive methods is the prediction distribution of
a surrogate model. Hence, many methods are based on kriging. In the next section,
we present a brief overview of two popular kriging-based strategies: Efficient Global
Optimization (EGO) and stepwise uncertainty reduction (SUR). We also discuss other
methods.

2.3.2.1 GPR-based adaptive design algorithms

Gaussian Process Regression provides a prediction distribution. Many surrogate-based
sequential design methods take advantage of this tool. Sequential-based design for dif-
ferent features have been studied. For example, the inversion is considered in [BES+08]
and the context of optimization is studied in [FJ08,Sas98]. We take here a closer look on
two strategies: EGO and SUR.

Efficient Global Optimization: Bayesian global optimization (BO) techniques have
been successfully used in various problems [Moč75,Moč82,JSW98]. One of the most popu-
lar algorithms is the so-called Efficient Global Optimization (EGO) algorithm of [JSW98].
It consists in sampling the point that maximizes the so-called expected improvement (EI).

Let (y(x))x∈X be a Gaussian process. Let further mGP and σ2GP denote respectively
the mean and the variance of the conditional process y(x) | Z. Last, let y⋆ be the
minimum value of the response on the sample Z = (z1, . . . , zn) where zi = (xi, yi), that is
y⋆ = min

i=1..n
yi. The EGO algorithm [JSW98] uses the expected improvement EI (Equation

(2.22)) as sampling criterion:

EI(x) = E

[
max(y⋆ − y(x), 0) | Z

]
(2.22)

Using some Gaussian computations, EI(x) can be explicitly computed:

EIn(x) =





(y⋆ −mGP (x))Φ

(
y⋆n −mGn(x)

σGP (x)

)

+ σGP (x)ϕ

(
y⋆n −mGn(x)

σGP (x)

)
if σGP (x) ̸= 0,

0 otherwise

(2.23)

The EGO algorithm adds to the sample the point that maximizes EI. An illustration
of 5 iterations of EGO on a toy example is displayed in Figure 2.5.
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pling techniques or ensembles.

For example, [LMA+04] use Multivariate Adaptive Regression Splines and kriging mod-
els with Sequential Exploratory Experimental Design method. It consists in building a
surrogate model to predict errors based on the errors on a test set. Goel et al. [GHSQ07]
use a set of surrogate models to identify regions of high uncertainty by computing the
empirical standard deviation of the predictions of the ensemble members.

In the literature, several cross-validation-based techniques have been discussed. Li and
Azarm [LA06] propose to add the design point that maximizes the Accumulative Error
(AE). The AE on x ∈ X is computed as the sum of the LOO-CV errors on the design
points weighted by influence factors. This method could lead to clustered samples. To
avoid this effect, the authors [LAFMD06] propose to add a threshold constraint in the
maximization problem. Busby, Farmer, and Iske [BFI07] propose a method based on
a grid and CV. It affects the CV prediction errors at a design point to its containing
cell in the grid. Then, an entropy approach is performed to add a new design point.
More recently, Xu et al. [XLWJ14] suggest the use of a method based on Voronoi cells
and CV. Kleijnen and Van Beers [KvB04] propose a method based on the Jackknife’s
pseudo values predictions variance. Jin, Chen, and Sudjianto [JCS02] present a strategy
that maximizes the product between the deviation of CV sub-models predictions with
respect to the master model prediction and the distance to the design points. Aute et
al. [ASA+13] introduce the Space-Filling Cross-Validation Trade-off (SFCVT) approach.
It consists in building a new surrogate model over LOO-CV errors and then add a point
that maximizes the new surrogate model prediction under some space-filling constraints.
In general, cross-validation-based approaches tend to allocate points close to each other
resulting in clustering [ASA+13]. This is not desirable for deterministic simulations.

2.3.3 Discussion

In this section, we introduced several design of experiments techniques. The main take-
home messages of this section are:

• It is natural to assume that adaptive designs strategies may give better results than
non-adaptive designs. Indeed, these methods uses the response to sample the future
points.
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• Most of the popular surrogate-based design strategies are based on GPR. This is
due to the fact that prediction distribution is given analytically. We know yet that
several surrogate models techniques are available and useful (Section 2.1).

In Chapter 4, we will introduce the so-called universal prediction distribution that
defines a prediction distribution for all surrogates.
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Surrogate modeling
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Chapter 3

Surrogate model selection

Abstract In design engineering problems, the use of surrogate models (also called meta-
models) instead of expensive simulations have become very popular. Surrogate models
include individual models (regression, kriging, neural network...) or a combination of
individual models often called aggregation or ensemble. Since different surrogate types
with various tunings are available, users often struggle to choose the most suitable one for
a given problem. Thus, there is a great interest in automatic selection algorithms. In this
paper, we introduce a universal criterion that can be applied to any type of surrogate
models. It is composed of three complementary components measuring the quality of
general surrogate models: internal accuracy (on design points), predictive performance
(cross-validation) and a roughness penalty.

Based on this criterion, we propose two automatic selection algorithms. The first se-
lection scheme finds the optimal ensemble of a set of given surrogate models. The second
selection scheme further explores the space of surrogate models by using an evolutionary
algorithm where each individual is a surrogate model. Finally, the performances of the
algorithms are illustrated on 15 classical test functions and compared to different individ-
ual surrogate models. The results show the efficiency of our approach. In particular, we
observe that the three components of the proposed criterion act all together to improve
accuracy and limit over-fitting.
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3.1 Introduction

Computer simulations are an efficient tool to study complex physical behaviors. However,
high-fidelity simulations are generally computationally expensive. Therefore, surrogate
models, also known as metamodels or response surfaces, are usually instead used. They
provide an approximation of a response of interest based on a limited number of expensive
simulations. There are several methods of construction of such approximations. Among
the popular surrogate model types, we can cite for example Kriging [Mat63], support
vector machines (SVM) [SS04], Moving least squares [LS81] and Multivariate Adaptive
Regressive Splines (MARS) [Fri91]. Generally, a metamodel family comes with several
possible tunings. In the same time, there is no universal optimal surrogate for all the
problems. Some users face some difficulties in selecting the most suitable surrogate for
their problem. Thus, there is a great interest in automatic model selection algorithms.
The main purpose is to choose the surrogate that provides the best prediction perfor-
mances on the whole parametric space.

In the literature, this problem is generally studied along three different approaches.

1) The first approach consists in using algorithms to optimize the settings of a partic-
ular surrogate model type. For instance, [CWL04, LSC06] work on SVM, [ZSL00]
on neural networks, and [TNE07] deal with least squares regression.

2) A second approach consists in considering multiple surrogates or ensembles. The
automatic surrogate selection is so a model selection method. Often, the selected
model is a weighted sum of different surrogate models. For example, [VHS09,
ZML11,ARR09,GHSQ07] discuss different ways to build such aggregations.

3) The last approach consists in selecting a good member among different types of
surrogate models with different settings. We refer for instance to the works of
[GDT09,SYZ12,ZJ16].

The main objective of our paper is to propose a new relevant surrogate model selection
algorithm that can handle different type of surrogates. To achieve such a goal, we define
a universal criterion. This criterion may evaluate the accuracy of any surrogate model.

The paper is organized as follows. We introduce and discuss in Section 3.2 our criterion
called the Penalized Predictive Score (PPS). We show in Section 3.3 that PPS is
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suitable to optimize weights of surrogate models ensembles. In Section 3.4, we present
an evolutionary selection algorithm that explores the space of surrogate models. The
algorithm is called PPS Genetic Aggregations (PPS-GA). Finally, the performances of
the algorithm on 15 test cases are displayed in Section 3.5. The results show the efficiency
of the PPS, the complementary role of its three components and the relevance of the
proposed selection algorithms.

3.2 Penalized Predictive Score (PPS)

3.2.1 Definition

Assessing the quality of a surrogate is very challenging. It is desirable to use an inde-
pendent set to assess the predictive capabilities of a given method. But, this is com-
putationally expensive in practice. One can also estimate the errors by computing the
errors on design points. Unfortunately, a small MSE does not imply good predictive
capabilities. Therefore, resampling techniques such as Cross-Validation (CV) [Sto74] or
bootstrap [ET93] are generally used. Such techniques reduce the bias of the estimation.
Nevertheless, they does not prevent overparameterized models. We will introduce a cri-
terion that will do this job. This criterion is called the Penalized Predictive Score (PPS
Equation (3.1)). It combines three components:

a) The internal accuracy (or fit): we use the mean squared errors (MSE) on design
points.

b) The predictive capability: we propose to use the 10F-CV PRESS errors.

c) A roughness penalty: we propose to use the Bending Energy Functional (BEF)
( [Duc77]).

PPS(m,Zn) = αR̂l2,Zn
(m)︸ ︷︷ ︸

a

+βR10−CV (m)︸ ︷︷ ︸
b

+ γEn(m)︸ ︷︷ ︸
c

(3.1)

Here, as it will be described below, R̂l2,Zn
(m) denotes the MSE criterion, R10−CV (m)

the 10-Fold cross-validation estimate of the errors and En(m) a roughness penalty. Fur-
ther, α, β, γ are weights in R+. In all our implementations, we use α = 2β and β = 2γ.
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3.2.2 Internal accuracy

Let Ω = [0, 1]d be the parametric space of dimension d. Xn = (x1, . . . ,xn)
⊤ ∈ Ωn and

Yn = (y1, . . . , yn)
⊤ ∈ Rn form the set of design points Zn = (Xn,Yn) where yi = f(xi)

for i = 1, . . . , n and f ∈ RΩ is an expensive-to-evaluate function. A surrogate model
m̂|Zn

∈ ΩR is used to replace f based on the design Zn. We call the construction method
a “surrogate model builder”. For instance, if m is a surrogate model builder, then we
build the surrogate model m̂|Zn

∈ ΩR based on the design Zn.

The assessment of the performance of a surrogate model is extremely important in
practice [HTF09]. It relies on the evaluation on the set of design points of the prediction
capabilities of the surrogate model. It is generally based on a contrast function (or loss
function) that measures the errors between the predicted and the true models. A typical
choice is the square error l2(x, y) = (x−y)2. The integral form of the MSE is the l2−risk
overall the parametric space.

Rl2,Zn
(m) =

∫

Ω
l2
(
m̂|Zn

(x), f(x)
)
dx (3.2)

Since f is unknown, we can only use an approximation to estimate this risk. Ideally,
the performance of the surrogate model would be evaluated on an extra set of points.
However, generating such set is sometimes computationally expensive. Therefore, one
use an empirical distribution associated to the set of design points. Computing the mean
square errors (MSE) (Equation (3.3)) on the set of design points for the surrogate model
m̂|Zn

is an empirical approximation of Rl2,Zn
(m) defined in Equation (3.2).

R̂l2,Zn
(m) =

1

n

n∑

i=1

l2(m̂|Zn
(xi), yi)

=
1

n

n∑

i=1

(m̂|Zn
(xi)− yi)2

(3.3)

Note that computing the MSE on the set of design points is a biased estimate of the
error in the whole space. In fact, for any interpolating surrogate model m, R̂l2,Zn

(m) = 0.
This does not necessarily mean that the surrogate model fits the real function in the whole
space.
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3.2.3 Predictive capabilities

On one hand, the use of design points to estimate the errors yields an optimistic result
[AC10]. On the other hand, using a validation set can be expensive. Therefore, it
is convenient to use re-sampling techniques such as Cross-Validation (CV) [Sto74] and
bootstrap [ET93] to estimate the predicted errors. Resampling techniques estimate the
errors by using subsets of the design points to build several sub-surrogate models. For
instance, computing the Leave-One-Out Cross-Validation (LOO-CV) errors of a surrogate
model m̂|Zn

consists in computing the errors of an observation (xi, yi) based on the
surrogate model m̂|Zn,−i

built on the subset of all the design points except the ith design
point (Zn,−i = (xj,yj)j ̸=i). In the same way, k-fold cross-validation (kF-CV) consists in
dividing the data into k subsets. Each subset plays the role of validation set while the
remaining k− 1 subsets are used together as the training set. If k is the number of folds,
for i ∈ 1, . . . , k let Z(i) ∈ P(Zn) be a subset of Zn such that ∪ki=1Z

(i) = Zn. The kF-CV
estimates of the l2 errors (Equation (3.4)) by computing the loss of a point in the ith

fold Z(i) compared to the prediction of the surrogate model built on the remaining folds
(Zn \ Z(i)).

Rk−CV (m) =
1

n

k∑

i=1

∑

(x′,y′)∈Z(i)

l2( ̂m|Zn\Z(i)(x′), y′), (3.4)

where
z ∈ Zn \ Z(i) if and only if z ∈ Znandz /∈ Z(i).

Queipo et al. [QHS+05] pointed out that the main advantage of CV is that it provides
a nearly unbiased estimate. Further, Kohavi et al. [Koh95] studied Cross-Validation and
Bootstrap performances on a large dataset and recommended using stratified 10-fold-
cross-validation. [JWHT13] stated that kF-CV with k = 5 or k = 10 yield test error
estimates that suffer neither from excessively high bias nor from very high variance.

3.2.4 Penalization

Penalties are used in several model selection frameworks in order to prevent over-fitting.
Selection criteria such as the Bayesian Information Criterion (BIC) [Sch78] or Akaike
Information Criterion (AIC) [Aka74] penalize the models by their degrees of freedom.
Most penalties are designed for a particular family of surrogates. Here, we are interested
in universal methods. So that, we prefer to deal with the smoothness of the surrogate
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model rather than with its structural complexity. For instance, [NCK+11] introduce a
criterion called Linear Reference Model (LRM). It scores a surrogate model by computing
the deviation between its predictions and a local linear model l̂rm. The LRM is computed
over a set of N points x(k) for k = 1, . . . , N (see Equation (3.5)).

RLRM (m) =
1

N

N∑

k=1

l2(m̂|Zn
(x(k)), l̂rm(x

(k))) (3.5)

Computationally, this last criteria needs the construction of a Delaunay tessella-
tion [Wat81] to compute l̂rm. The computational cost of such construction in high di-
mension is too expensive. We suggest to use a criterion that penalize the roughness of
surrogate models: the thin plate spline (TPS) [Duc77] Bending Energy Functional (BEF).
It is a second order partial derivatives-based penalty. For a dimension d, the roughness
penalty En is the integral of the squared term of the Hessian (Equation (3.6)).

En(f̂) =

∫

Ω

d∑

i=1

d∑

j=1

( ∂2f̂

∂xi∂xj

)2
dx (3.6)

LRM can be used in place of the BEF in the selection criterion PPS. It penalizes the
deviation from a linear model regardless of its roughness. It still gives good predictive
capabilities also. Nevertheless, some rough surrogates may be selected.

3.3 Surrogate model ensemble: PPS-OS

3.3.1 Overview

Surrogate model selection consists in selecting a surrogate model among a collection of
them. This means that we evaluate the performances of several surrogate models and
then choose one of them. Acar et al. [ARR09] stated that this practice has some short-
comings as it does not take full advantage of the resources devoted to constructing different
metamodels. In fact, it is possible to consider a weighted combination of surrogates with-
out any significant extra computational cost. These combinations are called: ensembles,
aggregations and multiple surrogates.
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Forrester and Keane [FK09] show that these aggregation methods drastically improve
the performances of the surrogate models. In general, ensembles require small computa-
tional resources compared to the cost of the simulations [QHS+05]. The general form of
an aggregation of p surrogate models m̂(i)|Zn

, for i = 1, . . . , p is given in Equation (3.7):

Â|Zn
(x) =

p∑

i=0

wi(x)m̂(i)|Zn
(x) (3.7)

For instance, Zerpa et al. [ZQPS05] considered a local combination called weighted
average model where the weights are based on the local expected variances of the surro-
gate models. Goel et al. [GHSQ07] extended the use of ensembles to the identification of
region with high error. They presented also several heuristics to weight ensembles.

However, Gorissen et al. [GDT09] used a simple average ensemble (all the weights
are equal). Muller et al. [MP11] proposed to weight the aggregation using the Dempster-
Shafer theory where the error estimates are used as basic probability assignments. Viana
et al. [VHS09] proposed to use an ensemble of surrogate models that minimize the CV
errors. In fact, if for k = 1, . . . , n, vk is the vector of CV errors of the surrogate model
m̂(i)|Zn

, the CV errors of the aggregation is then W⊤CW . The weights are selected to

minimize the CV errors of the aggregation under the constraint
p∑
i=1

wi = 1. The optimal

weighted surrogate OWS is obtained using the weights of Equation (3.8).

W =
C−11

1⊤C−11
(3.8)

where the elements of the matrix C, cij =< vi,vj >. Viana et al. [VHS09] noticed that
the solution may include negative values. They stated that this additional freedom to
the weights estimation amplify errors. In fact, the matrix C is an approximation of the
covariance of the errors of the surrogate models. To overcome the problem, the authors
suggested to use only the diagonal elements of C. Then, the weights are wi = c−1

ii
n∑

k=1
c−1
kk

.

This formulation is close to the weights of the PRESS weighted surrogate (PWS) given
in [GHSQ07] (equation (3.9)), with α = 0, β = −2.
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wi =

(
√
cii +

α
n

n∑
j=1

√
cjj)

β

n∑
k=1

(
√
ckk +

α
n

n∑
j=1

√
cjj)β

(3.9)

3.3.2 PPS-optimal ensemble

Let us consider (m̂(1)|Zn
, . . . , m̂(n)|Zn

) a set of p surrogate models. Let A be an aggregation
of these surrogate models weighted by the vector W = (w1, .., wn) (Equation (3.10)).

Â(x) =

p∑

k=1

wkm̂(k)|Zn
(x) (3.10)

In our formulation, we compute the weights of the aggregations by optimizing the
PPS of the aggregation under the constraint

p∑
i=1

wi = 1. The PPS-Optimal aggregation

is then the aggregation in which the weights are the solution of the optimization Problem
(3.11).

min
W

PPS(A,Zn)

u.c.
p∑

i=1

wi = 1
(3.11)

For each k in 1, . . . , p, let:

• ek be the vector of errors on design points.

• vk the vector of cross-validation error of the surrogate model m̂(k))|Zn
.

Notice then that the MSE of the aggregation is a quadratic form of the weights

R
l2,P̂n

(A) =

∥∥∥∥∥

p∑

i=1

wiei

∥∥∥∥∥

2

= WTEW, (3.12)

where the elements of E, Eij =< ei, ej >. Similarly, the cross validation errors of the
aggregation is also a quadratic form of the weights (Equation (3.13)) where C is the same
defined in the previous section.

RCV (A) = WTCW (3.13)
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Last, the energy functional is also a quadratic form of the weights (Equation 3.14).

En(Â) =

∫

Ω

d∑

i=1

d∑

j=1

(
p∑

k=1

wk∂
2m̂(k)|Zn

(x)

∂xi∂xj

)2
dx

= WTKW,

(3.14)

where:

K =
[
kkl =

d∑

i=1

d∑

j=1

∫

Ω

(∂2m̂(k)|Zn
(x)

∂xi∂xj

)(∂2m̂(l)|Zn
(x)

∂xi∂xj

)
dx
]
.

Let R = αE + βC + γK. The PPS of the aggregation is then a quadratic form
of the weights W: PPS(Â) = WTRW. The PPS-Optimal aggregation is then the
aggregation that minimizes the PPS under the constraint

n∑
i=1

wi = 1. The solution is

defined in Equation (3.15):

W⋆ =
R−11

1⊤R−11
(3.15)

Similarly to Equation (3.8), the solution of Equation (3.15) may include negative
weights as well as weights greater than one. Unlike, in [VHS09] in which the writers
suggested to use only the diagonal terms in the matrix to ensure the positivity, here we
tolerate such weights since this freedom is controlled by the BEF penalization. As a
matter of fact, the BEF penalization prevents to artificial oscillations on the aggregated
surrogate.

3.3.3 Illustrative example

We consider the example in Figure 3.1. The ensemble is the optimal trade-off defined by
the PPS parameters. The ensemble is relatively smoother than the interpolating ones
of the initial collection. Further, its CV error is lesser than the best prediction of this
collection.

3.3.4 One shot metamodel selection: PPS-OS

We suppose that we have at hands p possible surrogate model builders where p is relatively
small (typically p ≤ 35). One select the model that has the best PPS. In order to improve
the result, we select the PPS-Optimal ensemble. We consider this procedure (described
in Algorithm 1) as a model selection algorithm. Notice that the aggregation does not
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3.4 PPS-based Genetic Aggregation for model selection :
(PPS-GA)

As discussed in the previous section, the use of PPS to perform model selection is
straightforward if the number of the available surrogate model is moderate. In that
case, one can consider a weighted PPS-Optimal aggregation of all the possible surrogate
models. However, there are many types of surrogate models and each type has several
possible settings. For instance, to tune a universal kriging surrogate model, there are
various possible choices for covariance function and trend function. Consequently, one
cannot evaluate the PPS for all the possible combinations. Even with a good selection
criterion, one need to explore the space of available surrogate models to select the best
one.

Gorissen et al. [GDT09] proposed an evolutionary algorithm to perform surrogate
model selection and to explore the space of surrogate models. The surrogate models are
considered as the individuals of the population. The settings of the surrogate models are
considered as the genetic information of the individuals. The mutation and cross-over
operators between two surrogate models of the same type are performed by modifying
or exchanging the surrogate models settings. Further, they generate an equally weighted
surrogate model ensemble when the cross-over is between two surrogate models of different
types. Their algorithm uses the island model of evolutionary algorithms.

We now introduce our selection algorithm based on the genetic aggregation called
PPS-GA. Similarly to [GDT09]’s heuristic, the mutation and cross-over operators are
performed over surrogate model builders’ settings. In our algorithm, all the aggregation
weights are now optimized according to the PPS. Moreover, we add new aggregations
at each iteration. The members of these aggregations are generated randomly. Further,
we do not adopt the island model. We consider that the heterogeneous set of surrogate
model builders “lives” together in the same space. The selection method is designed to
conserve the diversity.

In our implementation, we consider several surrogate types with various settings:
Kriging, moving least squares, polynomial regression and support vector machines regres-
sion. PPS-GA has another interesting property. It is easy to enrich the set of surrogate
model builders. In fact, the algorithm does not require any particular assumption. It is
in part due to the universality of PPS.
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Algorithm 2: PPS Genetic Aggregation (PPS-GA) model selection algorithm
Inputs: Design Points Zn, l = 10.
Generate the list of first surrogate models builders L = (m1,m2, . . . ,mk).
for Generation = 1 to MaxGeneration do

magg = Compute the optimal aggregation of the l best surrogate models
according to PPS
Lnew = Perform mutation and cross-over operations
L = L ∪ Lnew ∪magg

L = Select the best k surrogate models according to PPS.
end

m⋆
|Zn

= Select the best surrogate model of L.
Outputs: m⋆

|Zn

3.5 Numerical examples

3.5.1 Benchmark problems

In order to check the efficiency of PPS-OS and PPS-GA, we tested their performances
on a benchmark of 15 functions (see Table 3.1 and formula given in Appendix. 3.8).

For each function, we generated 10 different optimized maximin Latin hypercube
sampling (LHS) [MBC79] of size N . We generated an extra test set of size nt = 1000×N
by a fast optimized LHS algorithm [VVB10]. We use the RMSE criterion (Equation
(3.16)) to evaluate the performances on the set of verification points.

RMSE =

√√√√ 1

nt

nt∑

i=1

(yi − ŷi)2 (3.16)

For each function, we compare the performance of the selection algorithms (PPS-OS
and PPS-GA) to the performances of 4 witness surrogate models:

a) A kriging surrogate model using an an-isotropic Matérn 5/2 kernel and a linear
trend function.

b) A support vector regression using a Gaussian kernel and ϵ-regression paradigm.
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Name Dimension d Number of de-
sign points N

Number of
test points nt

1. Wing weight 10 45 45000
2. Borehole 8 40 40000
3. Dette & Pepelyshev (8-Dim) 8 75 75000
4. Piston simulation 7 60 60000
5. OTL circuit 6 35 35000
6. Gramacy & Lee (2009) 6 85 85000
7. Friedman 5 35 35000
8. Dette & Pepelyshev exponential 3 16 16000
9. Dette & Pepelyshev curved 3 18 18000
10. Lim non-polynomial 2 12 12000
11. Currin exponential 2 20 20000
12. Franke’s 2 10 10000
13. Gramacy & Lee (2008) 2 45 45000
14. Sasena 2 10 10000
15. Gramacy & Lee (2012) 1 15 15000

Table 3.1: Test functions
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c) A moving least squares surrogate model using a Gaussian weighting function and
second order polynomial regression.

d) Full second order polynomial regression, we use least-norm when the equation sys-
tem is undetermined.

These surrogates are selected among the 32 surrogates of PPS − OS as follows: We
consider the 150 functions (15 ×10 repetitions). For each surrogate m̂, we compute
Nbest(m̂): the number of times where m̂ is the best individual surrogate. Each witness
surrogate models is the one with highest Nbest among its type. The surrogate with the
highest Nbest is the kriging using an an-isotropic Matérn 5/2 kernel and a linear trend
function. It is the best individual surrogate in 25 test (16%).

3.5.2 Results

We display the results of the benchmark in Table 3.2 and in Figures 3.2-3.16:

• In Table 3.2, the median and the standard deviation of the RMSE of each surrogate
model are given. The best median value is in bold.

• In Figures 3.2-3.16, the box-plots illustrate the variability with respect to the design
set.

The results show the efficiency of the selection algorithms: the models selected by
PPS-OS and PPS-GA outperform each individual surrogate models in the predictive
capabilities for at least one function. Generally, the RMSE of the selected surrogates is
generally either the best or close to the best one.

3.5.3 PPS-based ensembles

We also use the same test bench to compare the PPS-optimal ensemble, the OWS

ensemble and the PWS ensemble with α = 0.05 and β = −1. Here, we have at hands 10
surrogate models and we compute the weights by these three different techniques. The
results are given in Figure 3.17. In order to display all the results in the same figure, we
have rescaled the values of all the bench functions in [0,1].

Generally, PPS-optimal ensemble give the best result except for the Dette & Pe-
pelyshev Exp function where the PWS is better and for the Dette & Pepelyshev 8-Dim
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MLS SVM Poly Kriging PPS-OS PPS-GA
mean sd mean sd mean sd mean sd mean sd mean sd

Wing Weight 6.646 0.500 12.89 0.225 15.890 4.332 5.800 1.076 3.873 0.708 3.701 0.560
Borehole 12.08 1.933 13.27 0.442 1341 2050 9.014 2.128 3.197 0.418 3.627 0.467
Dette & Pepelyshev 8-Dim 14.57 11.52 5.236 0.134 10.82 9.006 1.771 0.780 1.995 0.902 3.609 0.162
Piston Simulation 0.037 0.002 0.040 0.001 0.087 0.083 0.016 0.006 0.011 0.001 0.014 0.003
OTL Circuit 0.287 0.141 0.312 0.004 0.303 0.172 0.112 0.037 0.036 0.011 0.055 0.013
Gramacy & Lee 2009 1.421 0.498 0.669 0.012 1.223 0.667 0.410 0.092 0.243 0.139 0.380 0.179
Friedman 4.215 1.607 1.522 0.107 4.218 1.714 1.251 0.244 0.634 0.284 0.854 0.195
Dette & Pepelyshev Exp 0.955 0.038 2.860 0.147 0.998 0.032 3.280 0.175 1.139 0.362 1.293 0.665
Dette & Pepelyshev Curved 1.765 0.129 3.330 0.146 2.034 0.048 2.466 0.796 1.414 0.409 1.821 0.592
Lim Non Polynomial 0.395 0.044 0.374 0.048 0.433 0.037 0.251 0.033 0.441 0.187 0.460 0.095
Currin Exp 0.970 0.142 1.049 0.098 1.331 0.050 0.692 0.324 0.554 0.268 0.438 0.199
Franke 0.093 0.007 0.062 0.004 0.132 0.002 0.060 0.016 0.052 0.010 0.062 0.013
Gramacy & Lee 2008 0.058 0.002 0.069 0.001 0.074 0.001 0.040 0.006 0.035 0.008 0.035 0.006
Sasena 2.942 0.056 3.512 0.119 4.423 0.358 2.434 0.399 2.341 0.608 2.138 0.504
Gramacy & Lee 2012 0.426 0.067 0.527 0.097 0.508 0.034 0.456 0.071 0.458 0.073 0.471 0.127

Table
3.2:

M
ean

and
Standard

deviation
ofR

M
SE
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Figure 3.2: Wing weight function
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Figure 3.3: Borehole function
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Figure 3.4: D & P (8-Dim) function
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Figure 3.5: Piston simulation function
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Figure 3.6: OTL circuit function
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Figure 3.7: G & L 2009 function
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Figure 3.8: Friedman function
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Figure 3.9: D & P exponential function
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Figure 3.10: D & P curved function
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Figure 3.11: Lim non-polynomial function
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Figure 3.12: Currin exponential function
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Figure 3.13: Franke function
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Figure 3.14: G & L (2008) function
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Figure 3.15: Sasena function
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Figure 3.16: G & L 2012 function
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Figure 3.19: Several selection criteria: Sasena function
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Figure 3.20: Several selection criteria: D&P curved function

54



CHAPTER 3. SURROGATE MODEL SELECTION

●●

●

●

●

●

●

       

0
5

1
0

1
5

2
0

2
5

GA                                                           OS

MSE

CV

P

●

●

●

MSE

CV

P

●

●

●

● MSE

CV

P

●

●

●

●

MSE

CV

P

●

●

●●

MSE

CV

P

●

●

●

●

●

MSE

CV

P

●

●

●

●

●

MSE

CV

P

●

●

●

●

●

MSE

CV

P

●

●

●

MSE

CV

P

●

●

●

● MSE

CV

P

●

●

●

●

MSE

CV

P

●

●

●●

MSE

CV

P

●

●

●

●

●

MSE

CV

P

●

●

●

●

●

MSE

CV

P

●

●

●

●

●

Figure 3.21: Several selection criteria: D&P 8-dim function

that favors monomials and constant functions regardless of the output value. We display
in Figures 3.18, 3.19, 3.20 and 3.21 the results of the comparison between the different
algorithms for some functions of Table 3.1: Currin function, Sasena function, Dette &
Pepelyshev curved function and Dette & Pepelyshev 8-dim function. For each function,
10 different maximin LHS design are generated of size N = 10d where d is the space
dimension.

For these functions, we can notice how the different components of the PPS act
together to select a convenient surrogate model in different scenarios. In fact, the results
highlight the effect of each component. Obviously, neither a single criterion nor any
combination of two criteria is better than PPS in all the cases. This is due to:

• Any interpolating surrogate model is MSE-optimal. It is a misleading criterion to
the overall errors.

• CV is a convenient estimate of the predictive capabilities. But, it is a pessimistic
one.

We also study the choice of the values of the parameters of the PPS on the benchmark.
We used ten surrogate models and we computed the sum of RMSE for each value of β
and γ, α being fixed to 1. Let (β⋆, γ⋆) denotes the global minimum. We display the
contour plot of the sum of mean square errors (MSE) in Figure 3.22. Notice that the
proposed values of Section 3.2 (1, 0.5, 0.25), are close to the optimum. Further, they give
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Figure 3.23: Number of members in the best ensemble

are negligible compared to the computing time of one complex simulation.

MLS NPR Poly Kriging PPS-OS PPS-GA
0% 0.000 0.000 0.000 0.000 0.012 0.386

25% 0.000 0.001 0.000 0.001 0.065 0.933
50% 0.000 0.001 0.000 0.014 0.336 1.769
75% 0.000 0.003 0.003 0.068 0.886 2.865

100% 0.001 0.027 0.022 0.136 1.884 5.055
Sum 0.007 0.394 0.406 5.398 79.758 297.509

Table 3.3: Elapsed time in seconds to construct each surrogate model

3.6 Conclusion

In this paper, we propose a new selection criterion called the penalized predictive score.
PPS can be computed for all the types of surrogate models. By construction, PPS
is especially suitable for functions that have specific characteristics such as regularity
and smoothness. Generally these characteristics are implicitly expected with the meta-
modeling framework. We showed also that it enables the construction of relevant ensem-
bles. The PPS-optimal ensemble are easily computed and avoid over-fitting.

We study also two surrogate model selection schemes based on the PPS. The first
one compute the PPS-optimal ensemble rather than selecting one surrogate model. The
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second one is based on a evolutionary framework that enables the exploration of the space
of surrogate models. Tests shows that the proposed algorithms give very good results.
It remains important to notice that this algorithm does not necessarily give an accurate
approximation in all the cases. For instance, the algorithm will fail if we use a small
amount of observations for a highly nonlinear behavior. It aims at selecting the best
surrogate among the possible choices. Assessing the level of confidence of a prediction is
left for future research.
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3.7 Appendix A: Comparison between the proposed PPS
parameters and optimal parameters

In Figure 3.24, we use the same test functions to compare the proposed PPS parameters
and the optimal parameters.

3.8 Appendix B: Test functions

The equations and the input parameter space of the functions of Table 3.1 are defined
below:

1/ Wing weight function:
Parameters: Sw ∈ [150, 200], Wfw ∈ [220, 300], A ∈ [6, 10], γ ∈ [−10, 10],
q ∈ [16, 45], λ ∈ [0.5, 1], tc ∈ [0.08, 0.18], Nz ∈ [2.5, 6],
Wdg ∈ [1700, 2500], Wp ∈ [0.025, 0.08]

For x = (Sw,WfwA, γ, q, λ, tc, Nz,Wdg,Wp)

f1(x) = 0.036S0.758
w W 0.758

fw

( A

cos2(γ)

)0.6
q0.006λ0.04

( 100tc
cos(γ)

)−0.3
(NzWdg)

0.49

+ SwWp

(3.17)
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2/ Borehole function:
Parameters: rw ∈ [0.05, 0.15], r ∈ [100, 50000], Tu ∈ [63070, 115600], Hu ∈ [990, 1110],
Tl ∈ [63.1, 116], Hl ∈ [700, 820], L ∈ [1120, 1680], Kw ∈ [9855, 12045]

For x = (rw, r, Tu, Hu, Tl, Hl, L,Kw)

f2(x) =
2πTu(Hu −Hl)

ln( r
rw

)
(
1 + 2LTu

ln( r
rw

)r2wKw
+ Tu

Tl

) (3.18)

3/ Dette & Pepelyshev (2010a):
Parameters: for all i = 1, . . . , 8 , xi ∈ [0, 1]

f3(x) = 4(x1 − 2 + 8x2 − 8x22)
2 + (3− 4x2)

2

+ 16
√
x3 + 1(2x3 − 1)2 +

8∑

i=4

i ln(1 +

i∑

j=3

xj)
(3.19)

4/ Piston simulation function:
Parameters: M ∈ [30, 60], S ∈ [0.005, 0.020], V0 ∈ [0.002, 0.010], k ∈ [1, 5] × 103, P0 ∈
[9, 11]× 104, Ta ∈ [290, 296], T0 ∈ [340, 360]

f4(x) = 2π

√
M

k + S2 P0V0
T0

Ta
V 2

(3.20)

where:
V =

S

2k

(√
A2 + 4k

P0V0
T0

Ta −A
)

and
A = P0S + 19.62M − kV0

S
.

5/ OTL circuit function:
Parameters: Rb1 ∈ [50, 150], Rb2 ∈ [25, 70], Rf ∈ [0.5, 3], Rc1 ∈ [1.2, 2.5], Rc1 ∈ [0.25, 1.2],
β ∈ [50, 300]

f5(R, β) =
( 12Rb2
Rb1+Rb2

+ 0.74)β(Rc2 + 9)

β(Rc2 + 9) +Rf

+
11.35Rf

β(Rc2 + 9) +Rf
+

0.75Rfβ(Rc2 + 9)

(β(Rc2 + 9) +Rf )Rc1

(3.21)

6/ Gramacy & Lee (2009) function:
Parameters: for all i = 1, . . . , 6 , xi ∈ [0, 1]

f6(x) = exp[sin((0.9(x1 + 0.48))10)] + x2x3 + x4
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7/ Friedman function:
Parameters: for all i = 1, . . . , 5 , xi ∈ [0, 1]

f7(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5

8/ Dette & Pepelyshev exponential function:
Parameters: for all i = 1, . . . , 3 , xi ∈ [0, 1]

f8(x) = 100(e−2/x1.751 + e−2/x1.52 + e−2/x1.253 )

9/ Dette & Pepelyshev curved function:
Parameters: for all i = 1, . . . , 3 , xi ∈ [0, 1]

f9(x) = 4(x1 − 2 + 8x2 − 8x22)
2 + (3− 4x2)

2 + 16
√
x3 + 1(2x3 − 1)2 (3.22)

10/ Lim non-polynomial function:
Parameters: x1, x2 ∈ [0, 1]

f10(x) =
1

6
[(30 + 5x1 sin(5x1))(4 + exp(−5x2))− 100]

11/ Currin exponential function:
Parameters: x1, x2 ∈ [0, 1]

f11(x) = [1− exp(− 1

2x2
)]× 2300x31 + 1900x21 + 2092x1 + 60

100x31 + 500x21 + 4x1 + 20
(3.23)

12/ Franke function:
Parameters: x1, x2 ∈ [0, 1]

f12(x) = 0.75 exp(−(9x1 − 2)2 + (9x2 − 2)2

4
) + 0.75 exp(−(9x1 + 2)2

49
− 9x2 + 1

10
)

+ 0.5 exp(−(9x1 − 7)2

4
− (9x2 − 3)2

4
) + 0.2 exp(−(9x1 − 4)2 − (9x2 − 7)2)

(3.24)

13/ Gramacy & Lee (2008) function:
Parameters: x1, x2 ∈ [−2, 6]

f13(x) = x1 exp(−x21 − x22)

14/ Sasena function:
Parameters: x1, x2 ∈ [0.0, 5]

f14(x) = 2 + 0.01(x2 − x21)2 + (1− x1)2 + 2(2− x2)2 + 7 sin(0.5x1) sin(0.7x1x2)

(3.25)
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15/ Gramacy & Lee (2012) function:
Parameters: x ∈ [0.5, 2.5]

f15(x) =
sin(10πx)

2x
+ (x− 1)4.
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Chapter 4

Universal Prediction distribution
for surrogate models

This chapter is a reproduction of the article Universal Prediction distribution for surrogate
models published in SIAM/ASA journal of uncertainty quantification [BSRGT17].

Abstract The use of surrogate models instead of computationally expensive simula-
tion codes is very convenient in engineering. Roughly speaking, there are two kinds of
surrogate models: the deterministic and the probabilistic ones. These last are generally
based on Gaussian assumptions. The main advantage of probabilistic approach is that
it provides a measure of uncertainty associated with the surrogate model in the whole
space. This uncertainty is an efficient tool to construct strategies for various problems
such as prediction enhancement, optimization or inversion.

In this paper, we propose a universal method to define a measure of uncertainty
suitable for any surrogate model either deterministic or probabilistic. It relies on Cross-
Validation (CV) sub-models predictions. This empirical distribution may be computed
in much more general frames than the Gaussian one. So that it is called the Universal
Prediction distribution (UP distribution). It allows the definition of many sampling
criteria. We give and study adaptive sampling techniques for global refinement and
an extension of the so-called Efficient Global Optimization (EGO) algorithm. We also
discuss the use of the UP distribution for inversion problems. The performances of these
new algorithms are studied both on toys models and on an engineering design problem.
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4.1 Introduction

Surrogate modeling techniques are widely used and studied in engineering and research.
Their main purpose is to replace an expensive-to-evaluate function s by a simple response
surface ŝ also called surrogate model or meta-model. Notice that s can be a computation-
intensive simulation code. These surrogate models are based on a given training set of n
observations zj = (xj , yj) where 1 ≤ j ≤ n and yj = s(xj). The accuracy of the surrogate
model relies, inter alia, on the relevance of the training set. The aim of surrogate modeling
is generally to estimate some features of the function s using ŝ. Of course one is looking
for the best trade-off between a good accuracy of the feature estimation and the number
of calls of s. Consequently, the design of experiments (DOE), that is the sampling of
(xj)1≤j≤n, is a crucial step and an active research field.

There are two ways to sample: either drawing the training set (xj)1≤j≤n at once or
building it sequentially. Among the sequential techniques, some are based on surrogate
models. They rely on the feature of s that one wishes to estimate. Popular examples are
the EGO [JSW98] and the Stepwise Uncertainty Reduction (SUR) [BGL+12]. These two
methods use Gaussian process regression also called kriging model. It is a widely used
surrogate modeling technique. Its popularity is mainly due to its statistical nature and
properties. Indeed, it is a Bayesian inference technique for functions. In this stochastic
frame, it provides an estimate of the prediction error distribution. This distribution
is the main tool in Gaussian surrogate sequential designs. For instance, it allows the
introduction and the computation of different sampling criteria such as the Expected
Improvement (EI) [JSW98] or the Expected Feasibility (EF) [BES+08].

Away from the Gaussian case, many surrogate models are also available and useful.
Notice that none of them including the Gaussian process surrogate model are the best
in all circumstances [GDT09]. Classical surrogate models are for instance support vector
machine [SS04], linear regression [HHB78], moving least squares [LS81]. More recently
a mixture of surrogates has been considered in [VHS09, GHSQ07]. Nevertheless, these
methods are generally not naturally embeddable in some stochastic frame. Hence, they do
not provide any prediction error distribution. To overcome this drawback, several empiri-
cal design techniques have been discussed in the literature. These techniques are generally
based on resampling methods such as bootstrap, jackknife, or cross-validation. For in-
stance, Gazut et al. [GMDO08] and Jin et al. [JCS02] consider a population of surrogate
models constructed by resampling the available data using bootstrap or cross-validation.
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Then, they compute the empirical variance of the predictions of these surrogate mod-
els. Finally, they sample iteratively the point that maximizes the empirical variance in
order to improve the accuracy of the prediction. To perform optimization, Kleijnen et
al. [KvBvN12] use a bootstrapped kriging variance instead of the kriging variance to com-
pute the expected improvement. Their algorithm consists in maximizing the expected
improvement computed through bootstrapped kriging variance. However, most of these
resampling method-based design techniques lead to clustered designs [ASA+13,JCS02].

In this paper, we give a general way to build an empirical prediction distribution
allowing sequential design strategies in a very broad frame. Its support is the set of all
the predictions obtained by the cross-validation surrogate models. The novelty of our
approach is that it provides a prediction uncertainty distribution. This allows a large set
of sampling criteria.

The paper is organized as follows. We start by presenting in Section 4.2 the back-
ground and notations. In Section 4.3 we introduce the Universal Prediction (UP) empir-
ical distribution. In Sections 4.4 and 4.5, we use and study features estimation and the
corresponding sampling schemes built on the UP empirical distribution. Section 4.4 is
devoted to the enhancement of the overall model accuracy. Section 4.5 concerns optimiza-
tion. In Section 4.6, we study a real life industrial case implementing the methodology
developed in Section 4.4. Section 4.7 deals with the inversion problem. In Section 4.8,
we conclude and discuss the possible extensions of our work. All proofs are postponed to
Section 4.9.

4.2 Background and notations

4.2.1 General notation

To begin with, let s denote a real-valued function defined on X, a nonempty compact
subset of the Euclidean space Rp (p ∈ N⋆). In order to estimate s, we have at hand
a sample of size n (n ≥ 2): Xn =

(
x1, . . . , xn

)⊤
with xj ∈ X, j ∈ J1;nK and

Yn =
(
y1, . . . , yn

)⊤
where yj = s(xj) for j ∈ J1;nK. We note Yn = s(Xn).

Let Zn denote the observations: Zn := {(xj, yj), j ∈ J1;nK}. Using Zn, we build a
surrogate model ŝn that mimics the behaviour of s. For example, ŝn can be a second order
polynomial regression model. For i ∈ {1 . . . n}, we set Zn,−i := {(xj, yj), j = 1, . . . , n, j ̸=
i} and so ŝn,−i is the surrogate model obtained by using only the dataset Zn,−i. We will
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call ŝn the master surrogate model and (ŝn,−i)i=1...n its sub-models.

Further, let d(., .) denote a given distance on Rp (typically the Euclidean one). For
x ∈ X and A ⊂ X, we set: dA(x) = inf{d(x,x′) : x′ ∈ A} and if A = {x′

1, . . . ,x
′
m}

is finite (m ∈ N⋆), for i ∈ 1, . . . ,m let A−i denote {x′
j, j = 1 . . .m, j ̸= i}. Finally, we

set d̄(A) = max{dA−i
(x′

i) : i = 1, . . . ,m}, the largest distance of an element of A to its
nearest neighbor.

4.2.2 Cross-validation

Training an algorithm and evaluating its statistical performances on the same data yields
an optimistic result [AC10]. It is well known that it is easy to over-fit the data by
including too many degrees of freedom and so inflate the fit statistics. The idea behind
Cross-validation (CV) is to estimate the risk of an algorithm splitting the dataset once or
several times. One part of the data (the training set) is used for training and the remaining
one (the validation set) is used for estimating the risk of the algorithm. Simple validation
or hold-out [DW79] is hence a cross-validation technique. It relies on one splitting of
the data. Then one set is used as training set and the second one is used as validation
set. Some other CV techniques consist in a repetitive generation of hold-out estimator
with different data splitting [Gei75]. One can cite, for instance, the Leave-One-Out
Cross-Validation (LOO-CV) and the K-Fold Cross-Validation (KFCV). KFCV consists
in dividing the data into k subsets. Each subset plays the role of validation set while
the remaining k − 1 subsets are used together as the training set. LOO-CV method is a
particular case of KFCV with k = n.

For i = 1, . . . , n, the LOO error is εi = ŝn,−i(xi) − yi where the sub-models ŝn,−i
are introduced in paragraph 4.2.1. In our study, we are interested in the distribution of
the local predictor for all x ∈ X (x is not necessarily a design point). As explained in
the next section, the CV paradigm provides sub-models allowing the definition of a local
uncertainty measure for the master surrogate model ŝn. This distribution is estimated
by using LOO-CV predictions. This is one of the easiest ways to build an uncertainty
measure based on resampling.
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4.3 Universal Prediction distribution

4.3.1 Overview

As discussed in the previous section, cross-validation is used as a method for estimating
the prediction error of a given model. In our case, we introduce a novel use of cross-
validation in order to estimate the local uncertainty of a surrogate model prediction.
Hence, for a given surrogate model ŝ and for any x ∈ X, ŝn,−1(x), . . . , ŝn,−n(x) define an
empirical distribution of ŝ(x) at x. In the case of an interpolating surrogate model and a
deterministic simulation code s, it is natural to enforce a zero variance at design points.
Consequently, when predicting on a design point xi we have to neglect the prediction
ŝn,−i. This can be achieved by introducing weights on the empirical distribution. These
weights avoid the pessimistic sub-model predictions that might occur in a region while
the global surrogate model fits the data well in that region.

Let F̂ (0)
n,x =

n∑
i=1

w0
i,n(x)δŝn,−i(x)(dy) be the weighted empirical distribution based on

the n different predictions of the LOO-CV sub-models {ŝn,−i(x)}1≤i≤n and weighted by
w0
i,n(x) defined in Equation (4.1):

w0
i,n(x) =





1

n− 1
if xi ̸= argmin{d(x,xj), j = 1, . . . , n}

0 otherwise
(4.1)

For i = 1, . . . , n, let Ri be the Voronoi cell of the point xi. The weights can be written
as w0

i,n(x) =
1−1Ri

(x)
n∑

j=1
(1−1Rj

(x))
where 1Ri

is the indicator function on Ri. Such binary weights

lead to unsmooth design criteria. In order to avoid this drawback, we smooth the weights.
Direct smoothing based on convolution would lead to the computations of Voronoi cells.
We prefer to use a simpler technique. Indeed, w0

i,n(x) can be seen as a Nadaraya-Watson
weight with the kernel 1−1Rj

(x) = 1Ri
(xi)−1Rj

(x). Instead of the unsmooth indicator
function 1Ri

, we use the Gaussian kernel but other smooth kernels could also be used.
This leads to the following weights:

wi,n(x) =
1− e−

d(x,xi)
2

ρ2

n∑
j=1

(
1− e−

d(x,xj)
2

ρ2

) (4.2)

Notice that wi,n(x) increases with the distance between the ith design point xi and
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x. In fact, the least weighted predictions is ŝn,−pnn(x) where pnn(x) is the index of the
nearest design point to x. In general, the prediction ŝn,−i is locally less reliable in a
neighborhood of xi. The proposed weights determine the local relative confidence level
of a given sub-model predictions. The term “relative” means that the confidence level of
one sub-model prediction is relative to the remaining sub-models predictions due to the
normalization factor in Equation (4.2). The smoothing parameter ρ tunes the amount
of uncertainty of ŝn,−i in a neighborhood of xi. Several options are possible to choose
ρ. It can be either related to the distance of a point to its nearest neighbor or common
for all the points. We suggest to use ρ⋆ = d̄(Xn). Indeed, this is a well suited choice for
practical cases.

Definition 8. The Universal Prediction distribution (UP distribution) is the weighted
empirical distribution:

µ(n,x)(dy) =

n∑

i=1

wi,n(x)δŝn,−i(x)(dy). (4.3)

This probability measure is nothing more than the empirical distribution of all the
predictions provided by cross-validation sub-models weighted by local smoothed masses.

Definition 9. For x ∈ X we call σ̂2n(x) (Equation (4.5)) the local UP variance and m̂n(x)

(Equation (4.4)) the UP expected value.

m̂n(x) =

∫
yµ(n,x)(dy) =

n∑

i=1

wi,n(x)ŝn,−i(x) (4.4)

σ̂2n(x) =

∫
(y − m̂n(x))

2 µ(n,x)(dy) =

n∑

i=1

wi,n(x)(ŝn,−i(x)− m̂n(x))
2 (4.5)

4.3.2 Illustrative example

Let us consider the Viana function defined over [−3, 3]

f(x) =
10 cos(2x) + 15− 5x+ x2

50
(4.6)

Let Zn = (Xn,Yn) be the design of experiments such that Xn = (x1 = −2.4,x2,=

−1.2, x3 = 0, x4 = 1.2, x5 = 1.4, x6 = 2.4, x7 = 3) and Yn = (y1, . . . , y7) their image by f .
We used a Gaussian process regression [Mat63,Kri51,Kle09] with constant trend function
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Figure 4.1: Illustration of the UP distribution for an SVM surrogate (left) and a kriging
surrogate (right). Dashed lines: CV sub-models predictions, solid red line: master model
prediction, horizontal bars: local UP distribution at xa = −1.8 and xb = 0.2, black
squares: design points.

and Matérn 5/2 covariance function ŝ and a SVM regression [SS04]. We display in Figure
4.1 the design points, the cross-validation sub-models predictions ŝn,−i, i = 1, . . . , 7 and
the master model prediction ŝn of each surrogate model.

Notice that in the interval [1, 3] (where we have 4 design points) the discrepancy
between the master model and the CV sub-models predictions is smaller than in the
remaining space. Moreover, we displayed horizontally the UP distribution at xa = −1.8
and xb = 0.2 to illustrate the weighting effect. One can notice that:

• At xa the least weighted predictions are ŝn,−1(xa) and ŝn,−2(xa). These predictions
do not use the two closest design points to xa: (x1, respectively x2).

• At xb, ŝn,−3(xb) is the least weighted prediction.

Furthermore, we display in Figure 4.2 the master model prediction and the region
delimited by ŝn(x) + 3σ̂n(x) and ŝn(x) − 3σ̂n(x). Contrary to the Gaussian case, this
region cannot be interpreted as the 99.7% traditional prediction interval. Nevertheless,
it can be interpreted as a prediction interval with level greater or equal than 88,8%.
Indeed, Chebyshev’s inequality states that for any squared integrable random variable X
and k > 0, Pr(|X − µ| ≥ kσ) ≤ 1

k2
. In particular, Pr(|X − µ| < 3σ) ≥ 1− 1

32
≈ 88.8%
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Figure 4.2: Uncertainty quantification based on the UP distribution for an SVM surrogate
(left) and a kriging surrogate (right). Blue solid line: master model prediction ŝn(x), light
blue area: region delimited by ŝn(x)± 3σ̂n(x).

Notice that here the UP standard deviation is null at design points for the interpolat-
ing surrogate model. In addition, its local maxima in the interval [1, 3] (where we have
more design points density) are smaller than its maxima in the remaining space region.

4.3.3 UP distribution in action

Case of the kriging surrogate model Without loss of generality, let us consider the
simple kriging framework. Recall that the conditional mean and variance are given by:

m(x) = k(x)⊤K−1
n Yn

σ̂2GP (x) = k(x,x)− kn(x)
⊤K−1

n kn(x)
(4.7)

where k(x,x′) is a covariance function, kn(x) is the vector (k(x,x1), . . . , k(x,xn))
⊤ and

Kn is the invertible matrix with entries ki,j = k(xi,xj), for 1 ≤ i, j ≤ n.
Notice that for an interpolating kriging, both kriging variance and UP-variance vanish

at design points. Further, kriging variance does not depend on the output values once
the kernel parameters are fixed. However, UP-variance does. It is not everywhere smaller
or larger than kriging variance. For instance, consider the toy example in Figure 4.3.

On one hand UP-variance is maximum in the interval [0.4, 1.3]. Indeed, if we remove
one point in that region we significantly increase the variability of the sub-models pre-
dictions. Similarly, UP-variance is minimum in the nearly linear region [0, 0.4] ∪ [1.3, 2].

71







CHAPTER 4. UP DISTRIBUTION

Computational aspects When the number of design points is large, the computa-
tional cost can be a drawback. In fact, the construction time of the sub-models is O(nT )

where n is number of the data and T is the construction time of one sub-model. Never-
theless, for some surrogate models, closed form formula are available for the LOO-sub-
models predictions. For instance, Chevalier, Ginsbourger, and Emery [CGE14] presented
a formula for kriging. Another way to reduce the computational cost is to use parallel
computing where each sub-models is computed on a separate thread. Finally, we can
replace the use of LOO-CV by the k-fold CV.

4.4 Sequential Refinement

In this section, we use the UP distribution to define an adaptive refinement technique
called the Universal Prediction-based Surrogate Modeling Adaptive Refinement Tech-
nique UP-SMART.

4.4.1 Introduction

The main goal of sequential design is to minimize the number of calls of a computationally
expensive function. Gaussian surrogate models [Kle09] are widely used in adaptive design
strategies. Indeed, Gaussian modeling gives a Bayesian framework for sequential design.
In some cases, other surrogate models might be more accurate although they do not
provide a theoretical framework for uncertainty assessment. We propose here a new
universal strategy for adaptive sequential design of experiments. The technique is based
on the UP distribution. So, it can be applied to any type of surrogate model.

In the literature, many strategies have been proposed to design the experiments (for
an overview, the interested reader is referred to [GWE03,WS07,SK08]). Some strategies,
such as Latin Hypercube Sampling (LHS) [MBC79], maximum entropy design [SW87],
and maximin distance designs [JMY90] are called one-shot sampling methods. These
methods depend neither on the output values nor on the surrogate model. However, one
would naturally expect to design more points in the regions with high nonlinear behavior.
This intuition leads to adaptive strategies. A DOE approach is said to be adaptive when
information from the experiments (inputs and responses) as well as information from
surrogate models are used to select the location of the next point.
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By adopting this definition, adaptive DOE methods include for instance surrogate
model-based optimization algorithms, probability of failure estimation techniques and
sequential refinement techniques. Sequential refinement techniques aim at creating a
more accurate surrogate model. For example, Lin et al. [LMA+04] use Multivariate
Adaptive Regression Splines (MARS) and kriging models with Sequential Exploratory
Experimental Design (SEED) method. It consists in building a surrogate model to predict
errors based on the errors on a test set. Goel et al. [GHSQ07] use a set of surrogate models
to identify regions of high uncertainty by computing the empirical standard deviation of
the predictions of the ensemble members. Our method is based on the predictions of the
CV sub-models. In the literature, several cross-validation-based techniques have been
discussed. Li and Azarm [LA06] propose to add the design point that maximizes the
Accumulative Error (AE). The AE on x ∈ X is computed as the sum of the LOO-
CV errors on the design points weighted by influence factors. This method could lead
to clustered samples. To avoid this effect, the authors [LAFMD06] propose to add a
threshold constraint in the maximization problem. Busby, Farmer, and Iske [BFI07]
propose a method based on a grid and CV. It affects the CV prediction errors at a
design point to its containing cell in the grid. Then, an entropy approach is performed
to add a new design point. More recently, Xu et al. [XLWJ14] suggest the use of a
method based on Voronoi cells and CV. Kleijnen and Van Beers [KvB04] propose a
method based on the Jackknife’s pseudo values predictions variance. Jin, Chen, and
Sudjianto [JCS02] present a strategy that maximizes the product between the deviation of
CV sub-models predictions with respect to the master model prediction and the distance
to the design points. Aute et al. [ASA+13] introduce the Space-Filling Cross-Validation
Trade-off (SFCVT) approach. It consists in building a new surrogate model over LOO-
CV errors and then add a point that maximizes the new surrogate model prediction
under some space-filling constraints. In general cross-validation-based approaches tend to
allocate points close to each other resulting in clustering [ASA+13]. This is not desirable
for deterministic simulations.

4.4.2 UP-SMART

The idea behind UP-SMART is to sample points where the UP distribution variance
(Equation (4.5)) is maximal. Most of the CV-based sampling criteria use CV errors.
Here, we use the local predictions of the CV sub-models. Moreover, notice that the UP
variance is null on design points for interpolating surrogate models. Hence, UP-SMART
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does not naturally promote clustering.
However, σ̂2n(x) can vanish even if x is not a design points. To overcome this drawback,

we add a distance penalization. This leads to the UP-SMART sampling criterion γn

(Equation (4.8)).
γn(x) = σ̂2n(x) + δdXn

(x) (4.8)

where δ > 0 is called exploration parameter. One can set δ as a small percentage of
the global variation of the output. UP-SMART is the adaptive refinement algorithm
consisting in adding at step n a point xn+1 ∈ argmax

x∈X
(γn(x)).

4.4.3 Performances on a set of test functions

In this subsection, we present the performance of the UP-SMART. We present first the
used surrogate-models.

4.4.3.1 Used surrogate models

Kriging Kriging [Mat63] or Gaussian process regression is an interpolation method.
Universal Kriging fits the data using a deterministic trend and governed by prior covari-
ances. Let k(x,x′), be a covariance function on X × X, and let (hi)1≤i≤p be the basis
functions of the trend. Let us denote h(x) the vector (h1(x), .., hp(x))

⊤ and let H be
the matrix with entries hij = hj(xi), 1 ≤ i, j ≤ n. Furthermore, let kn(x) be the vector
(k(x,x1), .., k(x,xn))

⊤ and Kn the matrix with entries ki,j = k(xi,xj), for 1 ≤ i, j ≤ n.
Then, the conditional mean of the Gaussian process with covariance k(x,x′) and its

variance are given in Equations ((4.9),(4.10))

mGn(x) = h(x)⊤β̂ + kn(x)
⊤K−1

n (Y −H⊤β̂) (4.9)
σ2GPn

(x) = k(x,x)− kn(x)
⊤K−1

n kn(x)
⊤ +V(x)⊤(H⊤K−1

n H)−1V(x) (4.10)
β̂ = (H⊤K−1

n H)−1H⊤K−1
n Y and V(x) = h(x)⊤ + kn(x)

⊤K−1
n H (4.11)

Note that the conditional mean is the prediction of the Gaussian process regression.
Further, we used two kriging instances with different sampling schemes in our test bench.
Both use constant trend function and a Matérn 5/2 covariance function. The first design
is obtained by maximizing the UP distribution variance (Equation (4.5)). And the second
one is obtained by maximizing the kriging variance σ2GPn

(x).
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Genetic aggregation The genetic aggregation response surface is a method that aims
at selecting the best response surface for a given design of experiments. It uses several
surrogate models. In our examples, we use several kriging and SVM with different settings
(kernels, trend functions…) and select the best weighted aggregation

Âm(x) =
m∑

l=1

ωlŝ
(l)(x). (4.12)

ŝ(l) are the surrogate models and the weights ωl are computed in order to minimize
a criterion combining CV errors, surrogate model errors and a smoothness penalty. The
use of such response surface, in this test bench, aims at checking the universality of the
UP distribution: the fact that it can be applied for all types of surrogate models.

4.4.3.2 Test bench

In order to test the performances of the method we launched different refinement processes
for the following set of test functions:

• Branin: fb(x1, x2) = (x2 − ( 5.1
4π2 )x

2
1 + ( 5π )x1 − 6)2 + 10(1− ( 1

8π )) cos(x1) + 10.

• Six-hump camel: fc(x1, x2) =
(
4− 2.1x21 +

x41
3

)
x21 + x1x2 + x22(4x

2
2 − 4).

• Hartmann6: fh(X = (x1, . . . , x6)) = −
4∑
i=1

αi exp
(
−

6∑
j=0

Aij(xj − Pij)2
)

. A,P and

α can be found in [DS78].

• Viana: (Equation (4.6))

For each function we generated by optimal Latin hyper sampling design the number
of initial design points n0, the number of refinement points Nmax. We also generated a
set of Nt test points and their response Z(t) = (X(t), Y (t)). The used values are available
in Table 4.1.

We fixed n0 in order to get non-accurate surrogate models at the first step. Usually,
one follows the rule-of-thumb n0 = 10 × d proposed in [LSW09]. However, for Branin
and Viana functions, this rule leads to a very good initial fit. Therefore, we choose lower
values.

• Kriging variance-based refinement process (Equation (4.10)) as refinement criterion.
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Table 4.1: Used test functions

Function dimension d n0 Nmax Nt

Viana 1 5 7 500
Branin 2 10 10 1600
Camel 2 20 10 1600
Extended Rosenbrock 6→10 60 100 10000
Hartmann6 6→10 100 100 10000

• Kriging using the UP-SMART: UP-variance as refinement criterion (Equation (4.8)).

• Genetic aggregation using the UP-SMART: UP-variance as refinement criterion
(Equation (4.8)).

4.4.3.3 Results

For each function, we compute at each iteration the Q squared (Q2) of the predictions of

the test set Z(t) where Q2(ŝ, Z(t)) = 1−
Nt∑
i=1

(y
(t)
i −ŝ(xi

(t)))2

Nt∑
i=1

(y
(t)
i −ȳ)2

and ȳ = 1
Nt

Nt∑
i=1

y
(t)
i . We display

in Figure 4.6 the performances of the three different techniques described above for Viana
(Figure 4.6a), Branin (Figure 4.6b) and Camel (Figure 4.6c) functions measured by Q2

criterion.

For these tests, the three techniques have comparable performances. The Q2 converges
for all of them. It appears that the UP variance criterion refinement process gives as
good a result as the kriging variance criterion. In higher dimensions, we perform for each
dimension (from 6 to 10) 10 tests with different initial design of experiments. The sequen-
tial algorithm based on kriging variance generates more points on the boundaries. This
may be a good strategy when there is significant variability on the boundaries. On one
hand consider the extended Rosenbrock function 4.7a. As the function varies significantly
on the boundaries, UP-SMART and kriging variance strategies have comparable perfor-
mances. On the other hand, when the function does not vary much on the boundaries
such as Hartman 4.7b, UP-SMART outperforms the kriging variance strategy.

The results show that:
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Figure 4.6: Performance of three refinement strategies on three test functions measured
by the Q2 criterion on a test set. x axis: number of added refinement points.
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Figure 4.7: Performance of refinement strategies for different dimension on two test
functions measured by the Q2 on a test set UP-SMART with kriging in blue and kriging
variance-based technique in violet.
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• UP-SMART gives for some problems better global response surface accuracy than
the maximization of the kriging variance. This shows the usefulness of the method.

• UP-SMART is a universal method. Here, it has been applied with success to an
aggregation of response surfaces. Such usage highlights the universality of the
strategy.

4.5 Empirical Efficient Global optimization

In this section, we introduce UP distribution-based Efficient Global Optimization (UP-
EGO) algorithm. This algorithm is an adaptation of the well known EGO algorithm.

4.5.1 Overview

Surrogate model-based optimization refers to the idea of speeding optimization processes
using surrogate models. In this section, we present an adaptation of the well-known
efficient global optimization (EGO) algorithm [JSW98]. Our method is based on the
weighted empirical distribution UP distribution. We show that asymptotically, the points
generated by the algorithm are dense around the optimum. For EGO, such result was
proved by Vazquez et al. [VB10].

The basic unconstrained surrogate model-based optimization scheme can be summa-
rized as follows [QHS+05]:

• Construct a surrogate model from a set of known data points.

• Define a sampling criterion that reflects a possible improvement.

• Optimize the criterion over the design space.

• Evaluate the true function at the criterion optimum/optima.

• Update the surrogate model using new data points.

• Iterate until convergence.

Several sampling criteria have been proposed to perform optimization. The Expected
Improvement (EI) is one of the most popular criteria for surrogate model-based opti-
mization. Sasena, Papalambros, and Goovaerts [SPG00] discussed some sampling cri-
teria such as the threshold-bounded extreme, the regional extreme, the generalized ex-
pected improvement and the minimum surprises criterion. Almost all of the criteria
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are computed in practice within the frame of Gaussian processes. Consequently, among
all possible response surfaces, Gaussian surrogate models are widely used in surrogate
model-based optimization. Recently, Viana, Haftka, and Watson [VHW13] performed
multiple surrogate-based optimization by importing Gaussian uncertainty estimate.

4.5.2 UP-EGO Algorithm

Here, we use the UP distribution to compute an empirical expected improvement. Then,
we present an optimization algorithm similar to the original EGO algorithm that can be
applied with any type of surrogate models. Without loss of generality, we consider the
minimization problem:

minimize
x∈X

s(x)

Let (y(x))x∈X be a Gaussian process model. mGn and σ2GPn
denote respectively

the mean and the variance of the conditional process y(x) | Zn. Further, let y⋆n be
the minimum value at step n when using observations Zn = (z1, . . . , zn) where zi =

(xi, yi). (y⋆n = min
i=1..n

yi). The EGO algorithm [JSW98] uses the expected improvement
EIn (Equation (4.13)) as sampling criterion:

EIn(x) = E[max(y⋆n − y(x), 0) | Zn] (4.13)

The EGO algorithm adds the point that maximizes EIn. Using some Gaussian compu-
tations, Equation (4.13) is equivalent to Equation (4.14).

EIn(x) =





(y⋆n −mGn(x))Φ

(
y⋆n −mGn(x)

σGPn(x)

)

+ σGPn(x)ϕ

(
y⋆n −mGn(x)

σGPn(x)

)
if σGPn(x) ̸= 0,

0 otherwise

(4.14)

We introduce a similar criterion based on the UP distribution. With the notations of
Sections 4.2 and 4.3, EEIn (Equation (4.15)) is called the empirical expected improve-
ment.

EEIn(x) =

∫
max(y⋆n − y, 0)µ(n,x)(dy)

=
∑

i=1

wi,n(x)max(y⋆n − ŝn,−i(x), 0)
(4.15)

81



CHAPTER 4. UP DISTRIBUTION

We can remark that EEIn(x) can vanish even if x is not a design point. This is one of
the limitations of the empirical UP distribution. To overcome this drawback, we suggest
the use of the Universal Prediction Expected Improvement (UP-EI) κn (Equation (4.16))

κn(x) = EEIn(x) + ξn(x) (4.16)

where ξn(x) is a distance penalization. We use ξn(x) = δdXn
(x) where δ > 0 is called

the exploration parameter. One can set δ as a small percentage of the global variation of
the output for less exploration. Greater value of δ means more exploration. δ fixes the
wished trade-off between exploration and local search.

Furthermore, notice that κn has the desirable property also verified by the usual EI:

Proposition 2. ∀n > 1, ∀Zn = (Xn = (x1, . . . ,xn)
⊤,Yn = s(Xn)), if the used model

interpolates the data then κn(xi) = 0, for i = 1, . . . , n

The UP distribution-based Efficient Global Optimization (UP-EGO) (Algorithm 3)
consists in sampling at each iteration the point that maximize κn. The point is then
added to the set of observations and the surrogate model is updated.

Algorithm 3: UP-based Efficient Global Optimization
UP-EGO(ŝ)

Inputs: Zn0 = (Xn0 , Yn0), n0 ∈ N \ {0, 1} and a deterministic function s

(1) m := n0, Sm := Xn0 , Ym := Yn0

(2) Compute the surrogate model ŝZm

(3) Stop_conditions := False
(4)While Stop_conditions are not satisfied

(4.1) Select xm+1 ∈ argmax
X

(κm(x))

(4.2) Evaluate ym+1 := s(xm+1)

(4.3) Sm+1 := Sm ∪ {xm+1}, Ym+1 := Ym ∪ {ym+1}
(4.4) Zm+1 := (Sm+1, Ym+1),m := m+ 1

(4.5) Update the surrogate model
(4.6) Check Stop_conditions

end loop
Outputs: Zm := (Sm, Ym), surrogate model ŝZm
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4.5.3 UP-EGO convergence

We first recall the context. X is a nonempty compact subset of the Euclidean space Rp

where p ∈ N⋆. s is an expensive-to-evaluate function. The weights of the UP distribution
are computed as in Equation (4.2) with ρ > 0 a fixed real parameter. Moreover, we
consider the asymptotic behaviour of the algorithm so that, here, the number of iterations
goes to infinity. Let x⋆ ∈ argmin{s(x),x ∈ X} and ŝ be a continuous interpolating
surrogate model bounded on X. Let Zn0 = (Xn0 = (x1, . . . ,xn0

)⊤, Yn0) be the initial
data. For all k > n0, xk denotes the point generated by the UP-EGO algorithm at step
k − n0. Let Sm denote the set {xi, i ≤ m} and S = {xi, i > 0}. Finally, ∀m > n0 we
note κm the UP-EI of ŝZm . We are going to prove that x⋆ is adherent to the sequence S
generated by the UP-EGO(ŝ) algorithm.

Lemma 1. ∃θ > 0, ∀m ≥ n0, ∀x ∈ X, ∀i ∈ 1, . . . ,m, ∀n > m, wi,n(x) ≤ θd(x,xi)
2.

Definition 10. A surrogate model ŝ is called an interpolating surrogate model if for all
n ∈ N⋆ and for all Zn = (Xn,Yn) ∈ Xn × Rn, ŝZn

(x) = s(x) if x ∈ Xn.

Definition 11. A surrogate model ŝ is called bounded on X if for all s a continuous
function on X, ∃L,U , such that for all n > 1 and for all Zn = (Xn,Yn = s(Xn)) ∈
Xn × Rn, ∀x ∈ X, L ≤ ŝZn

(x) ≤ U

Definition 12. A surrogate model ŝ is called continuous if ∀n0 > 1 ∀x ∈ X ∀ε > 0, ∃δ >
0, ∀n ≥ n0, ∀Zn = (Xn,Yn) ∈ Xn×Rn, ∀x′ ∈ X, d(x,x′) < δ =⇒ |ŝZn

(x)− ŝZn
(x′)| <

ε

Theorem 2. Let s be a real function defined on X and let x⋆ ∈ argmin{s(x),x ∈ X}.
If ŝ is an interpolating continuous surrogate model bounded on X, then x⋆ is adherent to
the sequence of points S generated by UP-EGO(ŝ).

The proofs (Section 4.9) show that the exploration parameter is important for this
theoretical result. In our implementation, we scale the input spaces to be the hypercube[
− 1, 1] and we set δ to 0.005% of the output variation. Hence, the exploratory effect

only slightly impacts the UP-EI criterion in practical cases.

4.5.4 Numerical examples

Let us consider the set of test functions (Table 4.2).
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Table 4.2: Optimization test functions

function f (i) Dimension d(i) Number of ini-
tial points n(i)0

Number of
iterations
N

(i)
max

Branin 2 5 40
Ackley 2 10 30
Six-hump Camel 2 10 30
Hartmann6 6 20 40

We launched the optimization process for these functions with three different opti-
mization algorithms:

• EGO [JSW98]: Implementation of the R package DiceOptim [RGD12] using the
default parameters.

• UP-EGO algorithm applied to a universal kriging surrogate model ŝk that uses
Matérn 5/2 covariance function and a constant trend function. We denote this
algorithm UP-EGO(ŝk)

• UP-EGO algorithm applied to the genetic aggregation ŝa. It is then denoted UP-
EGO(ŝa).

For each function f (i), we launched each optimization process for N (i)
max iterations

starting with Nseed = 20 different initial design of experiments of size n(i)0 generated by
an optimal space-filling sampling. The results are given using boxplots in Appendix 4.11.
We also display the mean best value evolution in Figure 4.8.

The results shows that the UP-EGO algorithms give better results than the EGO
algorithm for Branin and Camel functions. These cases illustrate the efficiency of the
method. Moreover, for Ackley and Harmtann6 functions the best results are given by UP-
EGO using the genetic aggregation. Even if this is related to the nature of the surrogate
model, it underlines the efficient contribution of the universality of UP-EGO. Further, let
us focus on the boxplots of the last iterations of Figures 4.11 and 4.14 (Appendix 4.11).
It is important to notice that UP-EGO results for Branin function depend slightly on the

84



CHAPTER 4. UP DISTRIBUTION

0 5 10 15 20

1
2

3
4

5
6

 Iteration

M
ea

n 
be

st
 v

al
ue

(a) Branin

0 5 10 15 20 25 30

−1
.0

−0
.8

−0
.6

−0
.4

−0
.2

0.
0

 Iteration

M
ea

n 
be

st
 v

al
ue

(b) Camel

0 5 10 15 20 25 30

0
5

10
15

 Iteration

M
ea

n 
be

st
 v

al
ue

(c) Ackley

0 10 20 30 40

−3
.0

−2
.5

−2
.0

 Iteration

M
ea

n 
be

st
 v

al
ue

(d) Hartmann6

EGO Kriging UP−EGO Kriging UP−EGO GA

Figure 4.8: Comparison of 3 surrogate-based optimization strategies. Mean over Nseed of
the best value as a function of the number of iterations.
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Figure 4.10: Mixing tank

using an accurate cheap-to-evaluate surrogate model.

The simulations are computed within ANSYS Workbench environment and we used
DesignXplorer to perform surrogate-modeling. We started the study using 9 design points
generated by a central composite design. We produced also a set of Nt = 80 test points
Zt = (Xt = (x

(t)
1 ), . . . ,x

(t)
Nt
), Yt = (y

(t)
1 ), . . . , y

(t)
Nt
)). We launched UP-SMART applied to

the genetic aggregation response surface (GARS) in order to generate 10 suitable design
points and a kriging-based refinement strategy. The genetic aggregation response surface
(GARS) developed by DesignXplorer creates a mixture of surrogate models including
support vector machine regression, Gaussian process regression, moving Least Squares
and polynomial regression. We computed the root mean square error (Equation (4.17)),
the relative root mean square error (Equation (4.18)) and the relative average absolute
error (Equation (4.19)) before and after launching the refinement processes.

RMSEZ(t)(ŝ) =
1

N t

Nt∑

i=1

(y
(t)
i − ŝ(xi

(t)))2 (4.17)

RRMSEZ(t)(ŝ) =
1

N t

Nt∑

i=1

(
y
(t)
i − ŝ(xi

(t))

y
(t)
i

)2

(4.18)

RAAEZ(t)(ŝ) =
1

N t

Nt∑

i=1

| y(t)i − ŝ(xi
(t)) |

σY
(4.19)
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Table 4.3: Quality measures of different response surfaces of static mixer simulations

Surrogate model RRMSE RMSE RAAE
GARS Initial 0.16 0.10 0.50
GARS Final 0.10 0.07 0.31
Kriging Initial 0.16 0.11 0.48
Kriging Final 0.16 0.11 0.50

We give in Table 4.3 the obtained quality measures for the temperature spread output.
In fact, the pressure loss is nearly linear and every method gives a good approximation.

The results show that UP-SMART gives a better approximation. Here, it is used with
a genetic aggregation of several response surface. Even if the good quality may be due to
the response surface itself, it highlights the fact that UP-SMART made the use of such
surrogate model-based refinement strategy possible.

4.7 Empirical Inversion

4.7.1 Empirical inversion criteria adaptation

Inversion approaches consist in the estimation of contour lines, excursion sets or prob-
ability of failure. These techniques are specially used in constrained optimization and
reliability analysis.

Several iterative sampling strategies have been proposed to handle these problems.
The empirical distribution µn,x can be used for inversion problems. In fact, we can
compute most of the well-known criteria such as the Bichon’s criterion [BES+08] or the
Ranjan’s criterion [RBM08] using the UP distribution. In this section, we discuss some of
these criteria: the targeted mean square error TMSE [PGR+10], Bichon [BES+08] and
the Ranjan criteria [RBM08]. The reader can refer to Chevalier, Picheny, and Ginsbourger
[CPG14] for an overview.

Let us consider the contour line estimation problem : let T be a fixed threshold. We
are interested in enhancing the surrogate model accuracy in {x ∈ X, s(x) = T} and in its
neighborhood.
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Targeted MSE (TMSE) The Targeted Mean Square Error (TMSE) [PGR+10] aims
at decreasing the mean square error where the kriging prediction is close to T.

It is the probability that the response lies inside the interval
[
T − ε, T + ε

]
where the

parameter ε > 0 tunes the size of the window around the threshold T . High values make
the criterion more exploratory while low values concentrate the evaluation around the
contour line.

We can compute an estimation of the value of this criterion using the UP distribution
(Equation (4.20)).

TMSET,n(x) = σ̂2n(x)
n∑

i=1

wi,n(x)1[T−ε,T+ε
](ŝn,−i(x)

)

= σ̂2n(x)
n∑

i=1

wi,n(x)1[−ε,ε
](ŝn,−i(x)− T

)
(4.20)

Notice that the last criterion takes into account neither the variability of the predic-
tions at x nor the magnitude of the distance between the predictions and T .

Bichon criterion The expected feasibility defined in [BES+08] aims at indicating how
well the true value of the response is expected to be close to the threshold T .

The bounds are defined by εx which is proportional to the kriging standard deviation
σ̂(x). Bichon proposes using εx = 2σ̂(x) [BES+08].

This criterion can be extended to the case of the UP distribution. We define in
Equation (4.21) EFn the empirical Bichon’s criterion where εx is proportional to the
empirical standard deviation σ̂2n(x) (Equation (4.5)).

EFn(x) =

n∑

i=1

wi,n(x)(εx − |T − ŝn,−i(x)|)1[−εx,εx
](ŝn,−i(x)− T ) (4.21)

Ranjan criterion Ranjan et al. [RBM08] proposed a criterion that quantifies the im-
provement IRanjan(x) defined in Equation (4.22)

IRanjan(x) =
(
ε2x − (y(x)− T )2

)
1[−εx,εx](y(x)− T ) (4.22)

where εx = ασ̂(x), and α > 0. εx defines the size of the neighborhood around the contour
T .

89



CHAPTER 4. UP DISTRIBUTION

It is possible to compute the UP distribution-based Ranjan’s criterion (Equation
(4.23)). Note that we set εx = ασ̂2n(x).

E

[
IRanjan(x)

]
=

n∑

i=1

wi,n(x)
(
ε2x − (ŝn,−i(x)− T )2

)
1[−εx,εx](ŝn,−i(x)− T ) (4.23)

4.7.2 Discussion

The use of the pointwise criteria (Equations (4.20), (4.21), (4.23)) might face problems
when the region of interest is relatively small to the prediction jumps. In fact, as the
cumulative distribution function of the UP distribution is a step function, the probability
of the prediction being inside an interval can vanish even if it is around the mean value.
For instance µn,x

(
y(x) ∈ [T − ε, T + ε]

)
can be zero. This is one of the drawbacks of

the empirical distribution. Some regularization techniques are possible to overcome this
problem. For instance, the technique that consists in defining the region of interest by
a Gaussian density N (0, σ2ε) [PGR+10]. Let gε be this Gaussian probability distribution
function.

The new TMSE denoted TMSE
(2)
T,n(x) criterion is then as in Equation (4.24).

TMSE
(2)
T,n(x) =

n∑

i=1

wi,n(x)gε
(
ŝn,−i(x)− T

)
(4.24)

The use of the Gaussian density to define the targeted region seems more relevant
when using the UP local variance. Similarly, we can apply the same method to the
Ranjan’s and Bichon’s criteria.

4.8 Conclusion

To perform surrogate model-based sequential sampling, several relevant techniques re-
quire to quantify the prediction uncertainty associated to the model. Gaussian process
regression provides directly this uncertainty quantification. This is the reason why Gaus-
sian modeling is quite popular in sequential sampling. In this work, we defined a universal
approach for uncertainty quantification that could be applied for any surrogate model.
It is based on a weighted empirical probability measure supported by cross-validation
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sub-models predictions.

Hence, one could use this distribution to compute most of the classical sequential
sampling criteria. As examples, we discussed sampling strategies for refinement, opti-
mization and inversion. Further, we showed that, under some assumptions, the optimum
is adherent to the sequence of points generated by the optimization algorithm UP-EGO.
Moreover, the optimization and the refinement algorithms were successfully implemented
and tested both on single and multiple surrogate models. We also discussed the adap-
tation of some inversion criteria. The main drawback of UP distribution is that it is
supported by a finite number of points. To avoid this, we propose to regularize this
probability measure. In a future work, we will study and implement such regulariza-
tion scheme and extend its applications to other application such as: multi-objective
constrained optimization and reliability based design optimization.

4.9 Proofs

We present in this section the proofs of Proposition 2, Lemma 1 and Theorem 2. Here,
we use the notations of Section 4.5.3.

Proof of Proposition 2. Let n > 1, Zn = (Xn = (x1, . . . ,xn)
⊤,Yn = s(Xn)), and ŝ a

model that interpolates the data i.e ∀i ∈ 1, . . . , n, ŝZn
(xi) = s(xi) = yi.

First, we have ξn(xi) = δdXn
(xi). Since xi ∈ Xn then ξn(xi) = 0 . Further,

EEIn(xi) = wi,n(xi)max(y⋆n − ŝn,−i(xi), 0) +
n∑
j=1
j ̸=i

wj,n(xi)max(y⋆n − yi, 0). Notice that

• wi,n(xi) = 0

• max(y⋆n − yi, 0) = 0

Then EEIn(xi) = 0. Finally, κn(xi) = EEIn(xi) + ξn(xi) = 0.

Proof of Lemma 1. Let us note :

• ϕρ(x,x
′) = 1− e−

d((x,x′))2

ρ2 .

• wi,n(x) =
ϕρ(x,xi)

n∑
k=1

ϕρ(x,xk)
.
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Convex inequality gives ∀a ∈ R, 1 − e−a < a then ϕρ(x,xk) ≤ d((x,xk))
2

ρ2
. Further,

let xk1
,xk2

be two different design points of Xn0 , ∀x ∈ X, max
i∈{1,2}

{d(x,xki
)} ≥ d(xk1

,xk2
)

2

otherwise the triangular inequality would be violated. Consequently,

∀n > n0,
n∑

k=1

ϕρ(x,xk) ≥ ϕρ(x,xk1
) + ϕρ(x,xk2

) ≥ ϕ2ρ(xk1
,xk2

) > 0

∀n > n0, ∀x ∈ X : wi,n(x) =
ϕi,n(x)
n∑
k=1

ϕk,n(x)

≤ ϕi,n(x)

ϕ2ρ(xk1
,xk2

)
≤ d((x,xi))

2

ρ2ϕ2ρ(xk1
,xk2

)

Considering θ = 1
ρ2ϕ2ρ(xk1

,xk2
)

ends the proof.

Proof of Theorem 2. X is compact so S has a convergent sub-sequence in XN (Bolzano-
Weierstrass theorem). Let (xψ(n)) denote that sub-sequence and x∞ ∈ X its limit. We
can assume by considering a sub-sequence of ψ and using the continuity of the surrogate
model ŝ that:

• d(x∞,xψ(n)) ≤ 1
n for all n > 0

• ∃νn ≥ d(x∞,xψ(n)) such that ∀x′ ∈ X, d(x′,x∞) ≤ νn =⇒ |ŝm,−i(x∞)− ŝm,−i(x′)| ≤
1
n , ∀i ∈ 1, . . . ,m, where m > n0.

For all k > 1, we note vk = ψ(k+1)−1, the step at which UP-EGO algorithm selects
the point xψ(k+1). So, κvk(xψ(k+1)) = max

x∈X
{κvk(x)}.

Notice first that for all n > 0, xψ(n),xψ(n+1) ∈ B(x∞, 1n) where B(x∞, 1n) is the closed
ball of center x∞ and radius 1

n . So:

ξvn(xψ(n+1)) = δdXvn
(xψ(n+1)) ≤ δd(xψ(n),xψ(n+1)) ≤

2δ

n
(i)

According to Lemma 1, wψ(n),vn ≤ θ
(
d(xψ(n+1),xψ(n))

)2 so wψ(n),vn ≤ 4θ
n2 . Consequently:

wψ(n),vn(xψ(n+1))max(y⋆vn − ŝvn,−ψ(n)(xψ(n+1)), 0) ≤
4θ(U − L)

n2
(ii)

Further, ∀i ∈ 1, . . . , vn, i ̸= ψ(n), ŝvn,−i(xψ(n)) = yψ(n) since the surrogate model is an
interpolating one. hence ŝvn,−i(xψ(n)) ≥ y⋆vn and so max(y⋆vn−ŝvn,−i, 0) ≤ max(ŝvn,−i(xψ(n))−
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ŝvn,−i(xψ(n+1)), 0) ≤
∣∣ŝvn,−i(xψ(n))− ŝvn,−i(xψ(n+1))

∣∣. Triangular inequality gives: max(y⋆vn−
ŝvn,−i, 0) ≤

∣∣ŝvn,−i(xψ(n))− ŝvn,−i(x∞)
∣∣+
∣∣ŝvn,−i(x∞)− ŝvn,−i(xψ(n+1))

∣∣ and finally:

max(y⋆vn − ŝvn,−i, 0) ≤
2

n
(iii)

We have:

∣∣κvn(xψ(n+1))
∣∣ = ξvn(xψ(n+1)) +

vn∑

i=1

wi,vn(xψ(n+1))max(y⋆vn − ŝvn,−i(xψ(n+1)), 0)

= ξvn(xψ(n+1)) + wψ(n),vn(xψ(n+1))max(y⋆vn − ŝvn,−ψ(n)(xψ(n+1)), 0)

+

vn∑

i=1
i ̸=ψ(n)

wi,vn(xψ(n+1))max(y⋆vn − ŝvn,−i(xψ(n+1)), 0)

≤ 2δ

n
+

4θ(U − L)
n2

+
2

n

Considering (i),(ii) and (iii) :

∣∣κvn(xψ(n+1))
∣∣ ≤ 2δ

n
+

4θ(U − L)
n2

+
2

n

Notice that:
κvn(xψ(n+1)) = max

x∈X
{κvn(x)} and δdSvn

(x⋆) = ξvn(x
⋆) ≤ κvn(x

⋆) ≤ κvn(xψ(n)). Since
lim
n→∞

∣∣κvn(xψ(n+1))
∣∣ = 0 so lim

n→∞
dSvn

(x⋆)→ 0.
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Figure 4.11: Branin: Box plots convergence
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Figure 4.12: Six-hump camel: Box plots convergence

4.11 Appendix A: Optimization test results

In this section, we use boxplots to display the evolution of the best value of the optimiza-
tion test bench. For each iteration, we display: left: EGO in light green, middle UP-EGO
using kriging in light blue, right: UP-EGO using genetic aggregation in dark blue.
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Figure 4.13: Ackley: Box plots convergence
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Figure 4.14: Hartmann6: Box plots convergence
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Adaptive feature learning with
dimension reduction
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Chapter 5

Sequential dimension reduction
for learning features of expensive
black-box functions

Abstract Learning a feature of an expensive black-box function (optimum, contour
line,...) is a difficult task when the dimension increases. A classical approach is two-stage.
First, sensitivity analysis is performed to reduce the dimension of the input variables.
Second, the feature is estimated by considering only the selected influential variables.
This approach can be computationally expensive and may lack flexibility since dimension
reduction is done once and for all.

In this paper, we propose a so-called Split-and-Doubt algorithm that performs sequen-
tially both dimension reduction and feature oriented sampling. The ‘split’ step identifies
influential variables. This selection relies on new theoretical results on Gaussian process
regression. We prove that large correlation lengths of covariance functions correspond
to inactive variables. Then, in the ‘doubt’ step, a doubt function is used to update the
subset of influential variables. Numerical tests show the efficiency of the Split-and-Doubt
algorithm.
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5.1 Introduction

In design problems, the goal may be the estimation of a feature of an expensive black-
box function (optimum, probability of failure, level set, ...). Several methods have been
proposed to achieve this goal. Nevertheless, they generally suffer from the curse of di-
mensionality. Thus, their usage is limited to functions depending on a moderate number
of variables. Meanwhile, most of real life problems are complex and may involve a large
number of variables.

Let us focus first on high-dimensional optimization problems. In this context, we look
for a good approximation of a global minimum of an expensive-to-evaluate black-box
function f : Ω = [0, 1]D → R using a limited number of evaluations of f . That is, we aim
at approximating x⋆ ∈ Ω such that:

x⋆ ∈ argmin
x∈Ω

f(x) (5.1)

Bayesian optimization (BO) techniques have been successfully used in various prob-
lems [Moč82,JSW98,Jon01,Sas02,SV99]. These methods give interesting results when the
number of evaluations of the function f is relatively low [HHLB11]. They are generally
limited to problems of moderate dimension, typically up to about 10 [WHZ+16]. Here,
we are particularly interested in the case where the dimension D is large and the number
of influential variables d, also called effective dimension, is much smaller: d << D. In
this case, there are different approaches to tackle the dimensionality problem.

A direct approach consists in first performing global sensitivity analysis. Then, the
most influential variables are selected and used in the parametric study. Chen et al.
[CKC12] stated that “Variables selection and optimization have both been extensively
studied separately from each other”. Most of these methods are two-stage: First, the
influential variables are selected and then optimization is performed on these influential
variables. These strategies are generally computationally expensive. Furthermore, the
set of selected variables does not take into account the new data. However, this new
information may modify the results of the sensitivity analysis study. For an overview of
global sensitivity analysis methods, one may refer to [IL15].

Some Bayesian optimization techniques are designed to handle the dimensionality
problem. For instance, the method called Random EMbedding Bayesian Optimization
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(REMBO) selects randomly the subspace of influential variables [WHZ+16, BGR15b].
The main strengths of REMBO are that the selected variables are linear combinations
of the input variables and that it works for huge values of D. However, the effective
dimension d must be specified.

In this paper, we propose a versatile sequential dimension reduction method. At each
iteration, the effective dimension d is estimated and so should not be specified. Moreover,
the design is sequentially generated in order to achieve jointly two goals. The first goal is
the learning of the influential variables. The second one is the estimation of the optimum
(in the optimization case). The algorithm selects the set of influential variable based
on the values of the correlation lengths of Automatic Relevance Determination (ARD)
covariance. We show theoretical results that support the intuition that large correlation
lengths correspond to inactive variables.

The paper is organized as follows. Section 5.2 presents the background and the nota-
tions. Section 5.3 introduces the so-called Split-and-Doubt. The algorithm is based on
theoretical results stated in Section 5.4. Finally, Section 5.5 illustrates the performance of
the algorithm on various test functions. For readability, proofs are postponed to Section
5.6.

5.2 General notations and background

5.2.1 Gaussian Process Regression (GPR)

Kriging or Gaussian process regression (GPR) models predict the outputs of a function
f : Ω = [0, 1]D → R, based on a set of n observations [Ste12, RW06]. It is a widely used
surrogate modeling technique. Its popularity is mainly due to its statistical nature and
properties. Indeed, it is a Bayesian inference technique that provides an estimate of the
prediction error distribution. This uncertainty is an efficient tool to construct strategies
for various problems such as prediction refinement, optimization or inversion.

The GPR framework uses a centered real-valued Gaussian Process (GP) Y over Ω as
a prior distribution for f . The predictions are given by the conditional distribution of Y
given the observations y = (y1, . . . , yn)

⊤ where yi = f(x(i)) for 1 ≤ i ≤ n. We denote by
kθ : Ω × Ω → R the covariance function (or kernel) of Y : kθ(x, x′) = Cov[Y (x), Y (x′)]
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((x, x′) ∈ Ω2), by X =
(
x(1), . . . , x(n)

)⊤
∈ Ωn the matrix of observation locations and

by Z =
(
X y

)
the matrix of observation locations and values where x(i) = (x

(i)
1 , . . . , x

(i)
D )

for 1 ≤ i ≤ n. Without loss of generality, we consider the simple kriging framework. The
a posteriori conditional mean m̂θ,Z and the a posteriori conditional variance σ̂2θ,Z are
given by:

m̂θ,Z(x) = kθ(x,X)⊤K−1
θ y (5.2)

σ̂2θ,Z(x) = kθ(x, x)− kθ(x,X)⊤K−1
θ kθ(x,X) (5.3)

Here, kθ(x,X) is the vector (kθ(x, x
(1)), . . . , kθ(x, x

(n)))⊤ and where Kθ = kθ(X,X)

is the invertible matrix with entries
(
kθ(X,X)

)
ij
= kθ(x

(i), x(j)), for 1 ≤ i, j ≤ n.
Several methods are used to select the covariance function. A common approach

consists in assuming that the covariance function belongs to a parametric family. In this
paper, we consider the Automatic Relevance Determination (ARD) kernels defined in
(5.4). A review of covariance functions is given in [Abr97].

kθ(x, y) = σ2
D∏

p=1

k
(d(xp, yp)

θp

)
, for x, y ∈ Ω. (5.4)

Here, d(, ) is a distance on Ω × Ω and k : R → R is a fixed stationary covariance
function. The hyper-parameters σ and θ1, . . . , θD for i ∈ 1, . . . , n have to be estimated.
The ARD kernels include most popular kernels such as the exponential kernel, the Matérn
5/2 kernel and the double exponential kernel.

The hyper-parameters of these parametric families can be estimated by maximum
Likelihood (ML) or cross validation (CV). Both methods have interesting asymptotic
properties [Bac13a, Bac14, BLN17]. Nevertheless, when the number of observations is
relatively low, the estimation can be misleading. These methods are also computationally
demanding when the number of observations is large.

On one hand, estimating the correlation lengths by the maximum likelihood estimator
gives the estimator θ̂⋆MLE ∈ argmax

θ
lZ(θ) where the likelihood lZ(θ) is given in (5.5).

lZ(θ) =
1

(2π)n/2
1√

|kθ(X,X)|
exp

(
−y⊤kθ(X,X)−1y

)
. (5.5)
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On the other hand, the idea behind Cross-validation (CV) is to estimate the prediction
errors by splitting the observations once or several times. One part is used as a test set
while the remaining parts are used to construct the model. The Leave-One-Out Cross-
Validation (LOO-CV) consists in dividing the n point into n subset of one point each.
Then, each subset plays the role of test set while the remaining points are used together
as the training set. Using Dubrule’s formula [Dub83], the LOO-CV estimator is given in
(5.6).

θ̂⋆CV ∈ argmin
θ

1

n
y⊤K−1

θ diag(K−1
θ )−1K−1

θ y (5.6)

For more insight on these estimators, one can refer to [Bac13b].

5.2.2 Derivative based global sensitivity measures: DGSM

Sobol’ and Kucherenko [SG95,SK09] proposed the so-called Derivative-based Global Sen-
sitivity Measures (DGSM) to estimate the influence of an input variable of a function
f : Ω = [0, 1]D → R. For each variable χi, the index ϑi is the global energy of the
corresponding partial derivatives.

ϑi(f) =

∫

Ω

(∂f(x)
∂χi

)2
dx, i = 1, . . . , D. (5.7)

DGSM provides a quantification of the influence of a single input on f . Indeed,
assuming that f is of class C1, then χi is not influential iff ∂f

∂χi
(x) = 0, ∀ x ∈ Ω iff ϑi = 0.

DGSM has recently shown its efficiency for the identification of non-influential inputs
[RFIK14]. We further define the normalized DGSM ϑ̂ in (5.8). ϑ̂i measures the influence
of χi with regard to the total energy.

ϑ̂i(f) =
ϑi(f)
D∑
p=1

ϑp(f)

, i = 1, . . . , D. (5.8)

5.3 The Split-and-Doubt Algorithm

5.3.1 Definitions

Variable splitting Let us consider the framework of a GPR using a stationary ARD
kernel. Intuitively, large correlation lengths values correspond to inactive variables in the
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function. We prove this intuition in Proposition 3. The influential variables are selected
in our algorithm according to the estimated value of their corresponding correlation
lengths. We show also that the ML (and CV) estimator is able to assign asymptotically
large correlation length value to the inactive variables (Propositions 5 and 6).

Let θ̂⋆ = (θ̂⋆1, .., θ̂⋆D) be the ML estimation of the correlation lengths:

θ̂⋆ ∈ argmax
θ

lZ(θ).

The influential variables are then selected according to the estimated value of their
corresponding correlation lengths. We split the indices into a set of influential variables
IM and a set of minor variables Im as follows:

• IM = {i; θ̂⋆i < T}

• Im = {i; θ̂⋆i ≥ T}

where T ∈ R is a suitable threshold. Let dM (resp. dm) be the size of IM (resp. Im).
We further call Ωm := [0, 1]dm the minor subspace, that is the space of minor variables
and ΩM := [0, 1]dM the major subspace, that is the subspace of major variables. We will
use the set notation: for a set I of {1, . . . , D}, xI will denote the vector extracted from
x with coordinates xi, i ∈ I. Hence, xIM (resp. xIm) denotes the sub-vector of x whose
coordinates are in the major (resp. minor) subspace. For simplicity, we will also write
x = (xIM , xIm), without specifying the re-ordering used to obtain x by gathering xIM and
xIm .

Doubt The doubt measures the influence of the variables from the minor subspace
Ωm. It is a decreasing function of the correlation lengths. We will use it to question the
variable splitting.

Definition 13 (Doubt). Let δ be a function associated with a variable splitting (Im, IM )

such that for all vector θ = (θ1, . . . , θD) ∈ RD:

δ(θ) =
∑

i∈Im
max(θ−1

i − T−1, 0).
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Contrast Given two different correlation lengths θ(1) and θ(2) and a location x, the
contrast measures the discrepancy between the corresponding predictions at x. It will be
used to build a sequential design in the minor subspace.

Definition 14 (Prediction contrast). For a point x and two correlation lengths θ(1) and
θ(2), the prediction contrast PC(x, θ(1), θ(2)) is

PC(x, θ(1), θ(2)) =
∣∣∣m̂θ(1),Z(x)− m̂θ(2),Z(x)

∣∣∣.

5.3.2 The algorithm

The Split-and-Doubt algorithm performs a new variable selection at each iteration. It
samples a point in two steps: a goal-oriented sampling in the major subspace and a sam-
pling of the minor variables to question the variable selection done at the previous step.
The Split-and-Doubt corresponding to the optimization goal, with the expected improve-
ment (EI) criterion [JSW98] is described below:

Here, the algorithm is applied for optimization (Step 3). We used the Expected
Improvement criterion (5.9).

EIZ(x) = E

[
max(min

i
yi − Y (x), 0)|Z

]
(5.9)

It is important to recall that it is here possible to use any other optimization criterion
to sample x⋆M . We can use other criteria for other purposes such as contour estima-
tion [PGR+10,RBM08,BES+08], probability of failure estimation [BGL+12] or surrogate
model refinement [BFI07].

The settings of the algorithm are mainly the kernel k, the limit ℓ and the threshold
T . Another hidden setting is the search space for the ML estimator. We use a Matérn
5/2 kernel and we set ℓ = erf( 1√

2
) and an adaptive threshold T = 20 min

i∈[1,D]
(θ̂⋆i).

5.3.3 Remarks on the steps of the Split-and-Doubt algorithm

Remark on the doubt When the observations do not carry enough information, it is
hard to estimate accurately the correlation lengths. The use of such values can lead to un-
satisfactory results [FJ08,BBV11]. In our algorithm, the estimated correlation lengths are
used to select the major variables. So, it is important to always question the estimation.
If this is done once and for all, poor estimation can lead to considering a major variable
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Algorithm 4: Split-and-Doubt-EGO (f) algorithm
Data: Design Points Z = (X, y)

Algorithm parameters: ℓ, kernel k, threshold T ;
repeat

1. Estimate the correlation lengths: θ̂⋆ ∈ argmax
θ∈(R⋆

+)D
lZ(θ) (Eq. (5.5));

2. Split the variables: Define the major set IM = {i; θ̂⋆i < T} and the minor set
Im = {i; θ̂⋆i ≥ T}, dm = |Im|;

3. Design in the major subspace: Compute x⋆M according to the objective
function in the major subspace (by EI for instance): We compute a new GPR
considering only the major variables to compute the EI. Let ZM = (XIM , y)

x⋆M ∈ argmax
xM∈ΩM

EIZM
(xM )

4. Doubt the variable splitting: Compute a challenger θ′ for correlation
lengths.

θ′ ∈ argmax
θ∈(R⋆

+)D
δ(θ) subject to 2

∣∣∣ ln
( lZ(θ)
lZ(θ̂⋆)

)∣∣∣ < χ2(ℓ, dm)

5. Design in the minor subspace: Compute x⋆m by maximum contrast with the
challenger θ′

x⋆m ∈ argmax
xm∈Ωm

PC
(
x = (x⋆M , xm), θ̂

⋆, θ′
)

6. Update: Evaluate the new point output yn+1 = f(x(n+1)) with
x
(n+1)
Im

= x⋆M and x
(n+1)
Im

= x⋆m and add the new point to the design:

X⊤ ←
(
X⊤ x(n+1)

)
, y⊤ ← (y⊤, yn+1)

until this end condition;
Result: Z = (X, y)
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inactive. Therefore, we look for a “challenger kernel” at each iteration. Specifically, we
are looking for correlation lengths that maximize the doubt and that are accepted by a
likelihood ratio test. Indeed, this is why we limit the search space by a likelihood ratio
deviation from the estimated correlation lengths θ̂⋆: Θl = {θ; 2

∣∣∣ ln
(
lZ(θ)

lZ(θ̂⋆)

)∣∣∣ < l}. Note
that we used l = χ2(ℓ, dm). Following [FJ08, CKC12], the likelihood ratio test is com-
pared to the χ2 distribution to decide whether the correlation lengths are allowable or
not.

Remark on the contrast Sampling the coordinates in the non-influential variables
subspace x⋆M + Ωm aims at revealing the contrast between the maximum likelihood cor-
relation lengths θ̂⋆ and the challenger correlation lengths θ′. The main idea is to sample
the point that helps either correcting the first estimation or reducing the allowable doubt
space Θ in order to strengthen the belief in the estimated kernel.

We could have used an alternative direct approach. It consists in maximizing the
likelihood ratio between two estimations of the correlation lengths in the future iterations.

Definition 15 (likelihood contrast). For a point x and two correlation lengths θ(1) and
θ(2), the likelihood contrast LC is:

LC(x, θ(1), θ(2)) = E

[∣∣∣ ln
(L(θ(1), Z ∪ (x, Ŷ (x)))

L(θ(2), Z ∪ (x, Ŷ (x)))

)∣∣∣
]

where Ŷ (x) ∼ N
(
m̂θ2,Z(x), (σ̂θ2,Z(x))

2
)

.

However, this approach is computationally more expensive. Therefore, we prefer to
use the prediction contrast (Definition 14).

5.3.4 Example: Illustration of the contrast effect

We illustrate here how the Doubt/ Contrast strategy can help correcting an inaccurate
variable splitting. To do so, let us consider the following example. Let f(x1, x2) =

cos(2πx2). We assume that we have at hands four design points x(1) = (0, 23), x(2) = (13 , 0),
x(3) = (23 , 1) and x(4) = (1, 13) and their corresponding responses y1 = y4 = f(x(1)) =

f(x(4)) = −0.5 and y2 = y3 = f(x(2)) = f(x(3)) = 1. Here, the search space for the
correlation lengths is [0.5, 10]2.
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xi, tends to its maximum value 1 (resp. its minimum value 0). Then, we show that an
infinite correlation length θi can provide an infinite likelihood or a zero LOO mean square
error, for the GP model, when the function f does not depend on xi.

We use the additional following notations throughout the section. For D, p, q ∈ N⋆, for
a covariance function g on RD, for two p ×D and q ×D matrices X and Z, we denote
by g(X,Z) be the p× q matrix defined [g(X,Z)]i,j = g(Xi, Zj) where Ml is the line l of
a matrix M . When d = 1, p = 1 or q = 1, we identify the corresponding matrices with
vectors. We assume that for any p, d ∈ N, for any θ ∈ (0,∞)D, for any p × d matrix X

with two-by-two distinct lines, the matrix kθ(X,X) is invertible. Further, for any vector
u, u−1 is obtained from u by removing the ith component of u.

5.4.1 Correlation lengths and derivative-based global sensitivity mea-
sures

Consider the function f to be observed at the locations x(1), ..., x(n) ∈ Ω, with n ∈ N

and for a bounded domain Ω ⊂ RD. Let X be the n × D matrix with lines given by
x(1), ..., x(n), y be the vector of responses y = (f(x(1)), ..., f(x(n)))⊤ and Z the (n+1)×D
matrix Z =

(
X y

)

Recall that the prediction of f at any line vector x ∈ Ω, from the GP model, is given
by m̂θ,Z(x) = rθ(x)

⊤K−1
θ y, with rθ(x) = k(x,X), Kθ = kθ(X,X). Then, we use the

notation ϑi(θ) for the DGSM index of the variable χi on the predictor function m̂θ,Z(x):

ϑi(θ) = ϑi(m̂θ,Z) =

∫

Ω

(
∂m̂θ,Z(x)

∂χi

)2

dx.

We also use the following notation for the normalized DGSM index the variable χi:

ϑ̂i(θ) = ϑ̂i(m̂θ,Z) =
ϑi(θ)
D∑
r=1

ϑr(θ)

.

The normalized DGSM indices ϑ̂i(θ) satisfies 0 ≤ ϑ̂i(θ) ≤ 1. The larger this indice is,
the more important the variable χi is for m̂θ,Z(x). In the two next propositions, we show
that, under relatively minimal conditions, we have ϑ̂i(θ) → 1 as θi → 0 and ϑ̂i(θ) → 0

as θi → ∞. Hence, we give a theoretical support to the intuition that small correlation
lengths correspond to important input variables.
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Proposition 3. Assume that the components of y are not all equal. Assume that k is
continuously differentiable on R. Let i ∈ {1, ..., D} be fixed. For j = 1, ..., n let v(j) = x

(j)
−i .

Assume that v(1), ..., v(n) are two by two distinct. Then, for fixed θ−i ∈ (0,∞)D

ϑ̂i(θ) −→
θi→∞

0.

Proposition 4. Assume that the components of y are not all equal. Consider the same
notation as in Proposition 3. Assume that k is continuously differentiable on R, that
k(t) → 0 as |t| → ∞ and that Ω is an open set. Assume also that x(1), ..., x(n) are
two-by-two distinct. Let i ∈ {1, ..., d} be fixed. Then for fixed θ−i ∈ (0,∞)d−1

ϑ̂i(θ) −→
θi→0

1.

In Propositions 3 and 4, the regularity conditions on k are mild, and the conditions
on x(1), ..., x(n) hold in many cases, for instance when x(1), ..., x(n) are selected randomly
and independently or from a latin hypercube procedure (see e.g. [SWN13]).

5.4.2 Estimated correlation lengths and inactive variables

We first recall the likelihood function:

lZ(θ) =
1

(2π)n/2
1√

|kθ(X,X)|
exp

(
−y⊤kθ(X,X)−1y

)
.

In the next proposition, we show that, if the function f does not depend on the variable
χi, then the likelihood lZ(θ) goes to infinity when θi goes to infinity. This is a theoretical
confirmation that maximum likelihood can detect inactive input variables and assign
them large correlation lengths.

Proposition 5. Assume that k is continuous. Assume that for any θ ∈ (0,∞)D, the re-
producing kernel Hilbert space (RKHS) of the covariance function kθ contains all infinitely
differentiable functions with compact supports on RD.

Let i ∈ {1, ..., D} be fixed. For j = 1, ..., n let v(j) = x
(j)
−i . Assume that

i) x(1), ..., x(n) are two-by-two distinct;

ii) yr = ys if v(r) = v(s);

iii) there exist a, b ∈ {1, ..., n} with a ̸= b so that va = vb.

Then, for fixed θ−i ∈ (0,∞)D

lZ(θ) −→
θi→∞

∞
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In Proposition 5, the conditions i), ii) and iii) are quite minimal. The condition i)
ensures that the likelihood is well-defined, as the covariance matrix is invertible for all
θ ∈ (0,∞)D. The condition ii) holds when f(x) does not depend on xi. The condition
iii) is necessary to have l(θ) going to infinity, since if v(1), ..., v(n) are two by two distinct,
the determinant of kθ(X,X) remains bounded from below as θi →∞ (see also the proof
of Proposition 3). Note that the conditions ii) and iii) together imply that there is a pair
of input points xa, xb for which only the value of the i-th component changes and the
value of f does not change, which means that the data set presents an indication that
the input variable χi is inactive.

We refer to, e.g., [Wen04] for a reference to the RKHS notions that are used in this
section. There are many examples of stationary covariance functions k satisfying the
RKHS condition in Proposition 5. In particular, let k̂θ be the Fourier transform of kθ
defined by k̂θ(w) =

∫
RD kθ(x)e

−iw⊤xdx with i2 = −1. Then, if there exists τ <∞ so that
k̂θ(w)||w||τ → ∞ as ||w|| → ∞, then the RKHS condition of Proposition 5 holds. [This
follows from Theorem 10.12 in [Wen04] and from the fact that an infinitely differentiable
function with compact support ϕ has a Fourier transform ϕ̂ satisfying ϕ̂(w)||w||γ → 0 as
||w|| → ∞ for any γ <∞.

Hence, Lemma 5 holds in particular when k is the exponential covariance function with
k(t) = e−|t|. Lemma 5 also holds when k is the Matérn covariance function with

k (t) =
1

Γ (ν) 2ν−1

(
2
√
ν|t|
)ν
Kν

(
2
√
ν|t|
)
,

where 0 < ν < ∞ is the smoothness parameter (see e.g. [Ste12]). It should however be
noted that the double exponential covariance function k (defined by k(t) = exp(−t2) with
t ∈ R) does not satisfy the condition of Lemma 5. [Notice that [XS17] study specifically
the asymptotic behavior of the maximum likelihood estimation of a variance parameter for
the Gaussian covariance function, when the number of observations of a smooth function
goes to infinity.]

In the next proposition, we study the LOO mean square prediction error

CVZ(θ) =
n∑

j=1

(yj − ŷθ,j)2,
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with ŷθ,j = kθ(x
(j), X−j)kθ(X−j , X−j)−1y−j , where X−j and y−j are obtained, respec-

tively, by striking off the line j of X and the component j of y. We show that, similarly
as for the likelihood, inactive variables can be detected by this LOO criterion, since we
can have CVZ(θ)→ 0 as θi →∞ if the function f does not depend on χi

For j = 1, ..., n let v(j) = x
(j)
−i .

Proposition 6. Let k satisfy the same conditions as in Lemma 5. Let i ∈ {1, ..., d} be
fixed.

For j = 1, ..., n let v(j) = x
(j)
−i . Assume that

i) x(1), ..., x(n) are two-by-two distinct;

ii) yr = ys if v(r) = v(s);

iii) for all r ∈ {1, ..., n} there exists s ∈ {1, ..., n}, r ̸= s, so that v(r) = v(s).

Let θ−i be obtained from θ by removing its component i. Then, for any fixed θ−i ∈
(0,∞)d−1, we have

CVZ(θ) −→
θi→∞

0.

In Proposition 6, the conditions i) and ii) are interpreted similarly as for Proposition 5.
The condition iii) however provides more restrictions than for the likelihood in Proposition
5. This condition states that for any observation point in the data set, there exists
another observation point for which only the inactive input i is changed. This condition
is arguably necessary to have CVZ(θ)→ 0.

5.5 Numerical examples

5.5.1 Tests set

We illustrate the Split-and-Doubt on five benchmark optimization problems. The first
four are classical synthetic functions, the two-dimensional Branin function, the general
Ackley function in six dimension, the six-dimensional Hartmann function and the general
Rosenbrock function in five dimensions. The fifth one is the Borehole function [MMY93].
It models the water-flow in a borehole. For each function, we added inactive input vari-
ables in order to embed them in a higher dimensional D(i). The settings are summarized
in (Table 5.1).
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Table 5.1: Optimization test functions.

f (i) d(i) D(i) Number of de-
sign points n(i)0

Number of itera-
tions N (i)

max

Hartmann 6-
dim

6 15 30 30

Rosnebrock 5 20 40 60
Ackley 6 20 45 40
Borhole 6 25 30 25
Branin 2 25 30 50

We launched the optimization process for these functions with three different optimiza-
tion algorithms:

• EGO [JSW98]: Implementation of the R package DiceOptim [RGD12] using the
default parameters.

• Split-and-Doubt algorithm with Matérn 5/2 covariance function.

• Split-Without-Doubt algorithm: It uses the same variable splitting as Split-and-
Doubt and generates the minor variables by uniform random sampling.

For each function f (i), we launched each optimization process for N (i)
max iterations

starting with Nseed = 20 different initial design of experiments of size n(i)0 generated by
an maximin space-filling sampling.

5.5.2 Results

The results are represented by box plots in Appendix 5.8. We also display the mean best
value evolution in Figure 5.4.

We can see that Split-and-Doubt gives better results than EGO for Rosenbrock, Ackley
and Borehole function. EGO does not converge for the first two functions and used more
iterations for the last one. These cases illustrate the efficiency of the dimension reduction
for limited budget optimization. For Branin function the convergence is relatively fast
for all the three algorithms. This is due to the fact that the effective dimension is 2 and
that the first design of experiments covers well these dimensions.
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which goes to 0 as θ1 → ∞, uniformly over x ∈ Ω, by uniform continuity. The second
norm in (5.10) is bounded as discussed above. The third norm in (5.10) does not depend
on θ1 and is thus bounded uniformly over x ∈ Ω as θ1 →∞. The fourth norm in (5.10)
goes to 0 as θ1 →∞ as discussed above.

Hence, uniformly over x ∈ Ω,
∣∣∣∣
∂m̂θ,Z(x)

∂χm
− ∂ĝθ−1(x)

∂χm

∣∣∣∣ −→θ1→∞
0.

Furthermore, the function ĝθ−1 is continuously differentiable and non-constant on Ω

because ĝθ−1(x
(r)) = yr for r = 1, ..., n and because the components of y are not all equal.

This implies that

lim inf
θ1→∞

D∑

m=2

ϑm(θ) > 0,

which concludes the proof.

Proof of Proposition 4 . As before, we consider i = 1 in the proof. We have for
m = 2, ..., D and r = 1, ..., n

(
∂rθ(x)

∂χm

)

r

= k([x1 − x(r)1 ]/θ1)
1

θm
k′([xm − x(r)m ]/θm)

∏

j=2,...,D
j ̸=m

k([xj − x(r)j ]/θj).

Hence, ||∂rθ(x)/∂χm|| is bounded as θ1 → 0+ uniformly in x ∈ Ω from the assump-
tions on k.

For j = 1, . . . , n, let uj be the first component of x(j) and let v(j) = x
(j)
−1. As θ1 → 0+,

the matrix Kθ converges to the n × n matrix Nθ−1 =
[
1up=uq(Lθ−1)pq

]
p,q=1,...,n

with
the notation of the proof of Proposition 3. The matrix Nθ−1 is invertible because its
submatrices are invertible. This is so because for any p = 1, ..., n the subset {v(q); q =

1, ..., n, uq = up} is composed of two-by-two distinct elements since x(1), ..., x(n) are two-
by-two distinct.

Hence, ||K−1
θ y|| is bounded as θ1 → 0+ and so

∑D
m=2 ϑm(θ) is bounded as θ1 → 0+.

Let now j ∈ {1, ..., n} for which yj ̸= 0. Let δ > 0, not depending on θ1, be small
enough so that

∏D
r=1[x

(j)
r − δ, x(j)r + δ] ∈ Ω. Then we have

sup
s∈[−δ,δ]D;|s1|=

√
θ1

∣∣∣m̂θ,Z(x
(j) + s)

∣∣∣ −→
θ1→0+

0. (5.11)

119



CHAPTER 5. SPLIT-AND-DOUBT

Indeed, we have

(rθ(xj + s))p = k

(
up − uj − s1

θ1

) D∏

r=2

k

(
(xp)r − x(j)r − sr

θr

)
.

The product above is bounded uniformly over s ∈ [−δ, δ]D by uniform continuity of k.
Also, whether up − uj = 0 or up − uj ̸= 0, we have

sup
|s1|=

√
θ1

k

(
up − uj − s1

θ1

)
−→
θ1→0+

0.

Finally, ||K−1
θ y|| is bounded as θ1 → 0+ as discussed above. Hence (5.11) is proved.

Also, let E = {uj}×
∏D
r=2[x

(j)
r − δ, x(j)r + δ]. Then as θ1 → 0+, uniformly over x ∈ E, for

p = 1, ..., n, we have

(rθ(x))p −→
θ1→0+

1{up=uj}

D∏

r=2

k

(
xr − (xp)r

θr

)
.

Also K−1
θ y −→

θ1→0+
Nθ−1y as discussed above. Hence, as θ1 → 0+, m̂θ,Z(x) converges

uniformly over x ∈ E to a function value ĝθ−1(x), with ĝθ−1(x) continuous with respect
to x ∈ E. Since m̂θ,Z(xj) = yj , we can choose the δ > 0 (still independently of θ1) so
that it also satisfies

lim inf
θ1→0+

inf
x∈E
|m̂θ,Z(x)| ≥

|yj |
2
. (5.12)

We have
∫

Ω

(
∂m̂θ,Z(x)

∂χ1

)2

dx ≥
∫
∏D

r=1[x
(j)
r −δ,x(j)r +δ]

(
∂m̂θ,Z(x)

∂χ1

)2

dx

=

∫
∏D

r=2[x
(j)
r −δ,x(j)r +δ]

dx−1

∫ x
(j)
1 +δ

x
(j)
1 −δ

dx1

(
∂m̂θ,Z(x)

∂χ1

)2

≥
∫
∏D

r=2[x
(j)
r −δ,x(j)r +δ]

dx−1

∫ x
(j)
1

x
(j)
1 −

√
θ1

dx1

(
∂m̂θ,Z(x)

∂χ1

)2

(Jensen:) ≥
∫
∏D

r=2[x
(j)
r −δ,x(j)r +δ]

dx−1

√
θ1

(
1√
θ1

∫ x
(j)
1

x
(j)
1 −

√
θ1

dx1
∂m̂θ,Z(x)

∂χ1

)2

≥ (2δ)d−1 1√
θ1

(
inf
x∈E
|m̂θ,Z(x)| − sup

s∈[−δ,δ]D;|s1|=
√
θ1

∣∣∣m̂θ,Z(x
(j) + s)

∣∣∣
)2

−→
θ1→0+

∞,
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from (5.11) and (5.12). This concludes the proof.

Proof of Proposition 5. Without loss of generality, we consider i = 1 in the proof.
Let us consider the 2 × 2 submatrix of kθ(X,X) obtained by extracting the lines and
columns a, b, with a, b as in the condition iii) of the lemma. Then as θ1 → ∞ this
submatrix converges to the singular matrix ((1, 1)⊤, (1, 1)⊤). Hence, we have, as θ1 →∞,
|kθ(X,X)| → 0 (since kθ(X,X) has components bounded in absolute value by 1). Hence,
it is sufficient to show that y⊤kθ(X,X)−1y is bounded in order to conclude the proof.

Let Xθ1 be obtained from X by dividing its first column by θ1 and by leaving the
other columns unchanged. Let xθ1,j be the transpose of the line j of Xθ1 , for j = 1, ..., n.
Let θ̄ = (1, θ−1). Then, ytkθ(X,X)−1y = ytkθ̄(Xθ1 , Xθ1)

−1y.

We now use tools from the theory of RKHSs and refer to, e.g., [Wen04] for the defini-
tions and properties of RKHSs used in the rest of the proof. LetH be the RKHS of kθ̄. Let
αθ1 = kθ̄(Xθ1 , Xθ1)

−1y. Then, fθ1 : RD → R defined by fθ1(x) =
∑n

j=1[αθ1 ]jkθ̄(x− xθ1,j)
is the function of H with minimal RKHS norm ||.||H satisfying fθ̄1(xθ1,j) = yj for
j = 1, ..., n.

As θ1 → ∞, the points xθ1,1, ..., xθ1,n converge to the points w1, ..., wn with wi =

(0, v⊤i )
⊤. We observe that, by assumption, yr = ys for wr = ws. Hence, there exists

ϵ > 0 small enough and p column vectors c1, ..., cp in RD with the following properties:
(i) each Euclidean ball with center cm, m = 1, ..., p, and radius 2ϵ does not contain two
wr, ws with yr ̸= ys, r, s ∈ {1, ..., n}; (ii) each wj , j = 1, ..., n, is contained in a ball with
center cm with m ∈ {1, ..., p} and radius ϵ; (iii) the p balls with centers c1, ..., cp and radii
2ϵ are two-by-two non-intersecting. We can also assume that each ball with center cm,
m = 1, ..., p and radius ϵ contains at least one wj(m) with j(m) ∈ {1, ..., n} and we write
zm = yj(m).

Then, from Lemma 3, there exists an infinitely differentiable function g with compact
support on Rd so that for m = 1, ..., p, g(x) = zm for ||x− cm|| ≤ 2ϵ. Hence, for θ1 large
enough, the function g satisfies g(xθ1,j) = yj for j = 1, ..., n.
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Hence, ||fθ1 ||H ≤ ||g||H for θ1 large enough, where ||g||H does not depend on θ1. Finally,
a simple manipulation of ||.||H (see again [Wen04] for the definitions), provides

||fθ1 ||H =
n∑

r,s=1

αθ1,rαθ1,skθ̄(xθ1,r − xθ1,s)

= y⊤kθ(X,X)−1kθ(X,X)kθ(X,X)−1y

= y⊤kθ(X,X)−1y.

This concludes the proof.

Proof of Proposition 6. Without loss of generality, we consider i = 1 in the proof.
Also, up to renumbering the lines of X and components of y, it is sufficient to show that,
for fixed θ−1 ∈ (0,∞)D, as θ1 →∞, ŷθ,n → yn. We use the same notation θ̄, H and xθ1,j
as in the proof of Proposition 5. Then, we have ŷθ,n = fθ1(xθ1,n), where fθ1 ∈ H is the
function with minimal norm ||.||H satisfying fθ1(xθ1,j) = yj for j = 1, ..., n− 1.

Furthermore, from the proof of Proposition 5, there exists a function g ∈ H, not
depending on θ1 satisfying, for θ1 large enough, g(xθ1,j) = yj for j = 1, .., n. This shows
that ||fθ1 ||H is bounded as θ1 → ∞. Let m ∈ {1, ..., n − 1} be so that vm = v(n) (the
existence is assumed in the condition iii)). Let also, for x ∈ RD, kθ̄,x ∈ H be the function
kθ̄(x− .). Then we have (see again [Wen04]), with (., .)H the inner product in H

|ŷn − yn| = |fθ1(xθ1,n)− fθ1(xθ1,m)|

=
∣∣∣(fθ1 |kθ̄,xθ1,n)H − (fθ1 |kθ̄,xθ1,m)H

∣∣∣

≤ ||fθ1 ||H||kθ̄,xθ1,n − kθ̄,xθ1,m ||H

= ||fθ1 ||H
√
kθ̄(xθ1,n − xθ1,n) + kθ̄(xθ1,m − xθ1,m)− 2kθ̄(xθ1,n − xθ1,m).

In the above display, the square root goes to zero as θ1 →∞ because xθ1,n − xθ1,m goes
to zero and kθ̄ is continuous. This concludes the proof.

Lemma 2. For any 0 < ϵ1 < ϵ2 < ∞, there exists an infinitely differentiable function
g : R→ R satisfying g(u) = 1 for |u| ≤ ϵ1 and g(u) = 0 for |u| ≥ ϵ2.

Proof. Let h : R → R be defined by h(t) = exp(−1/(1 − t2))1{t ∈ [−1, 1]}. Then h is
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infinitely differentiable. Hence, g can be chosen of the form

g(t) =




A
∫ t
−∞ h

(
B
[
u+ ϵ1+ϵ2

2

])
du if t ≤ 0

A
∫∞
t h

(
B
[
u− ϵ1+ϵ2

2

])
du if t ≥ 0

,

with 2/(ϵ2−ϵ1) < B <∞ and A = B/(
∫∞
−∞ h(u)du). It can be checked that g is infinitely

differentiable and satisfies the conditions of the lemma.

Lemma 3. Let d, p ∈ N. Let x(1), ..., x(p) be two-by-two distinct points in RD and
ϵ > 0 be so that the p closed Euclidean balls with centers xi and radii ϵ are disjoint.
Let y1, ..., yp ∈ R be arbitrary. Then there exists an infinitely differentiable function
r : RD → R, with compact support, satisfying for i = 1, ..., p, g(u) = yi when ||u−xi|| ≤ ϵ.

Proof. Let l = mini ̸=j ||x(i) − x(j)|| and observe that ϵ < 2l. Let g satisfies Lemma 2
with ϵ1 = ϵ2 and ϵ2 = l2/4. Then the function r defined by r(u) =

∑p
i=1 yig(||u − xi||2)

satisfies the conditions of the lemma.

5.7 Conclusion

Performing Bayesian optimization in high dimension is a difficult task. In several real-
life problems, some variables are not influential. Therefore, we propose the so-called Split-
and-Doubt algorithm that performs sequentially both dimension reduction and feature
oriented sampling. The “split” step (model reduction) is based on a property of stationary
ARD kernel of Gaussian process regression. We proved that large correlation lengths
correspond to inactive variables. We also showed that classical estimators such ML and
CV assign large correlation lengths to inactive variables.

The “doubt” step question the “split” step and helps correcting the estimation of
the correlation lengths. It is possible to use this strategy for different feature learning
purposes such as refinement, optimization and inversion. The optimization Split-and-
Doubt algorithm has been evaluated on classical benchmark functions embedded in larger
dimensional spaces by adding useless input variables. The results show that Split-and-
Doubt is faster than classical EGO in the whole design space and outperforms it for most
of the discussed tests.
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Conclusion and future works

6.1 Conclusion

The need to efficiently explore the space of simulation-based designs has motivated our
thesis work. Essentially, we deal with surrogate models based strategies. With regards
to current limitations and motivated by industrial needs, we tackled three aspects of
surrogate-modeling. A summary of the main contributions and some ideas for enhance-
ment and future research are given below.

• Automatic selection: In this work, we proposed and studied the so called penal-
ized predictive score (PPS). It favours the selection of surrogates with regularity
and smoothness properties. Further, it is suitable for the construction of ensem-
ble of surrogates. Exploiting these properties, we presented two surrogate model
selection algorithms. The first one constructs the optimal ensemble with regard to
the PPS. The second one further explores the set of surrogate modeling techniques
using a genetic algorithm. These algorithms were evaluated on a benchmark of 15
test functions. The results highlight the efficiency of both approaches.

To improve this framework, we may first look for a flexible weighting method (in-
stead of using constant weights) of the components of the PPS by incorporating
expert-based physical characteristics of a given function. Second, the use of lo-
cal weights in ensemble remains both challenging and promising. In this context,
adding this additional degree of freedom may help enhancing prediction accuracy
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but would require a relevant regularization in order to avoid over-fitting.

• Universal Prediction distribution: The popularity of Gaussian process regres-
sion is mainly due to the provided prediction distribution. Meanwhile, there is a
multitude of surrogate modeling techniques and they do not all provide an uncer-
tainty quantification tool. In this work, we gave a universal method for uncertainty
quantification that could be applied for any surrogate model.

It is based on a weighted empirical probability measure supported by cross-validation
sub-models predictions. Consequently, one may use this distribution to compute
most of the classical sequential sampling criteria. We also discussed sequential de-
sign strategies for prediction refinement, optimization and inversion. Further, we
showed that, under some assumptions, the optimum is adherent to the sequence of
points generated by the optimization algorithm UP-EGO. Moreover, the optimiza-
tion and the refinement algorithms were successfully implemented and experienced
both on single and multiple surrogate models. Software development containing
UP tools have been implemented and an R package is available.

As a perspective, the UP-distribution can be extended to compute empirical spa-
tial covariances between two locations. More generally, the UP distribution might
be enhanced by studying the links with empirical Bayesian methods: Can the UP
distribution be seen as an a posteriori distribution of some process? It is also
interesting to study the asymptotic properties of the UP distribution for specific
surrogate models, when the number of observations tends to infinity.

• Sequential design in high dimensions: In this work, we proposed the so-called
Split-and-Doubt algorithm that performs sequentially both dimension reduction and
feature oriented sampling. The “split” step (model reduction) is based on a property
of stationary ARD kernel of Gaussian process regression. Indeed, we proved that
large correlation lengths correspond to inactive variables. We also showed that
classical estimators such as ML and CV assign large correlation lengths to inactive
variables.

In the “doubt” step, we question the “split” step in order to help correcting the
estimation of the correlation lengths. The two-step approach aims at performing
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both feature learning and dimension reduction. Note that we can use this strategy
for different features such as prediction refinement, optimization and inversion. An
optimization version of Split-and-Doubt algorithm has been evaluated on classical
benchmark functions embedded in larger dimensional spaces. The results show
that Split-and-Doubt is faster than classical EGO in the whole design space and
outperforms it for most of the discussed tests.

A relevant generalization of the Split-and-Doubt for multi-objective or constrained
optimization remains challenging. Eventually, it would be better to assess the
influence of each variable on each output function separately. That is, one variable
can be influential for a given constraint and inactive for a given output and vice
versa. The main challenge is to adapt the sampling criteria to this context.
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Résumés des chapitres en français

A.1 Introduction

En recherche comme en ingénierie de conception, les simulations numériques sont de-
venues populaires. En effet, elles offrent plusieurs avantages en les comparant à la réal-
isation d’une expérience notamment en termes de rapidité et de coût. Dans certaines
études, il est impossible de réaliser une expérience (étude du climat, tremblement de
terre, conception d’un profile -aéronautique-) d’où l’indispensabilité du recours au simu-
lations numériques.

La concurrence et les normes de plus en plus pointues stimulent le besoin des nouveaux
modèles plus efficaces, plus robustes et plus optimisées. Par conséquent, les simulations
ne sont plus seulement utilisées pour valider une conception. Mais, elles sont également
utilisées pour explorer l’espace de conception à la recherche de nouveaux modèles avec des
performances optimales. L’exploration et l’optimisation nécessitent en général de nom-
breuses évaluations du simulateur. Cependant, les simulations haute-fidélités de modèles
complexes restent coûteuses en termes de calcul malgré l’évolution du calcul haute per-
formance.

Pour surmonter ce coût, des modèles de substitution, également appelés méta-modèles
ou surfaces de réponse, sont utilisés pour accélérer l’exploration de l’espace de conception.
Ces fonctions visent à émuler la véritable fonction, ici le simulateur à calcul intensif, tout
en étant moins coûteux en calcul. Les modèles de substitution sont couramment utilisés
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Fonction
coûteuse/expérienceentrée: x sortie: y = f(x)

Méthode de
méta-modèlisation

DP: (Xn,yn) f̂

Estimation d’une
caractéristique

Nouveau point x⋆

Figure A.1: Illustration de la méta-modélisation

dans la conception technique [Kle08, SWN13] et il existe de nombreuses méthodes de
construction de telles approximations [Mat69,LS81,SS04,PG89].

Les méta-modèles sont basés sur n observations Zn = (z1, . . . , zn), où zj = (xj , yj)

pour 1 ≤ j ≤ n et yj = f(xj), aussi appelé plan d’expérience. L’objectif principal
de la méta-modélisation est de remplacer une fonction coûteuse f par une surface de
réponse f̂Zn . Parfois, cette approximation f̂Zn est utilisée pour accélérer l’estimation
d’une caractéristique de la fonction f . La précision des modèles de remplacement s’appuie,
entre autres, sur la pertinence du plan d’expérience. Par conséquent, l’échantillonnage
des (xj)1≤j≤n est crucial. On présente dans la figure A.1, un schéma illustrant la méta-
modélisation.

Les contributions de cette thèse traitent principalement trois aspects de la méta-
modélisation : la sélection du méta-modèle, l’échantillonnage séquentiel pour un méta-
modèle quelconque et l’échantillonnage séquentiel en grande dimension. Pour présenter
ces contributions le document est présenté comme suit :

• Dans la Partie I, on introduit le contexte générale de ce travail dans (Chapitre
1). Le chapitre 2, quant à lui, présente brièvement les notions et l’état de l’art
nécessaires pour bien situer nos contributions.

• Nos mettons deux articles sur le thème de la méta-modélisation dans La Partie II.
Le premier présente deux algorithmes de sélection de méta-modèles (Chapitre 3).
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Le deuxième présente une méthode universelle qui permet d’associer une incertitude
à la prédiction de tout méta-modèle.

• La Partie III contient une contribution sur l’échantillonnage séquentielle qui per-
met de faire conjointement l’estimation d’une caractéristique d’une fonction et la
réduction de dimension.

Les Chapitres 3, 4, 5 sont une reproduction des articles suivant:

• M. Ben Salem and L. Tomaso. Automatic selection for general surrogate models.
Structural and Multidisciplinary Optimization, Feb 2018 (Chapitre 3).

• M. Ben Salem, O. Roustant, F. Gamboa, and L. Tomaso. Universal prediction dis-
tribution for surrogate models. SIAM/ASA Journal on Uncertainty Quantification,
5(1):1086–1109, 2017 (Chapitre 4).

• M. Ben Salem, F. Bachoc, O. Roustant, F. Gamboa, and L. Tomaso. Sequential
dimension reduction for learning features of expensive black-box functions. Preprint
available at hal-01688329, 2017 (Chapitre 5).

A.2 État de l’art

Le chapitre 2 donne le contexte nécessaire pour définir nos contributions. Nous présen-
tons brièvement plusieurs techniques classiques de méta-modélisation ainsi que différentes
techniques d’évaluation de la qualité de ces méta-modèles.

Une attention particulière est dédiée à la régression par processus gaussien (GP):
Nous discutons de l’estimation des paramètres des noyaux et comment l’incertitude de
prédiction permet de définir des critères pertinents d’échantillonnage séquentielle. La
dernière partie du chapitre est consacrée aux techniques d’échantillonnage des plans
d’expérience. On intègre dans cette définition les techniques adaptatifs de la planifi-
cation séquentielle, y inclut, celle qui vise à l’estimation d’une fonctionnalité, telle que
les schémas d’optimisation.
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A.3 Sélection de modèles de remplacement

Dans le chapitre 3, nous traitons le problème de sélection de surface de réponse. En
effet, il existe de nombreux types de méta-modèle et pour chaque type, il existe différents
réglages possibles. D’abord, il n’existe pas un méta-modèle optimal pour tous les prob-
lèmes. Ensuite, il est difficile de choisir les modèles de substitution les plus appropriés
pour un plan d’expériences donné. De surcroît, il est difficile d’évaluer la qualité d’un
méta-modèle sans des données supplémentaires de vérification.

Nous proposons un critère de sélection qui évalue la qualité des modèles de substi-
tution. Nous l’appelons le score prédictif pénalisé (PPS). On peut calculer le PPS pour
tous les méta-modèles. Par construction, le PPS convient particulièrement aux fonctions
de réponse qui ont des caractéristiques de régularité et de douceur. En général, ces car-
actéristiques sont implicitement attendues dans le cadre de la méta-modélisation. Nous
montrons que PPS permet la construction d’une agrégation pertinente de méta-modèles.
Les poids PPS-optimaux de ces agrégations permettent d’éviter le sur-ajustement. Ils
sont, par ailleurs, faciles à optimiser, parce qu’on présente une formule directe pour le
calcul de ces poids optimaux. Nous présentons également deux schémas de sélection de
méta-modèle basés sur le score. Le premier calcule l’ensemble PPS-optimal plutôt que
de sélectionner un modèle de substitution. Le second est basé sur un cadre évolutif qui
permet l’exploration de l’espace des modèles de substitution.

A.4 Prédiction universelle de l’erreur

Le chapitre 4 donne un nouvel outil pour associer une distribution de prédiction à
n’importe quel modèle de substitution et, par conséquent, pour étendre les méthodes de
conception séquentielle basées sur les processus gaussiens (PG) à n’importe quel modèle
de substitution. Rappelons que le principal avantage de l’approche basée sur les PG est
qu’elle fournit partout une mesure de l’incertitude associée à la prédiction du modèle de
substitution. Cette incertitude est un outil efficace pour construire des stratégies pour
divers problèmes tels que l’amélioration de la prédiction, l’optimisation ou l’inversion.

Dans ce chapitre, nous proposons une méthode universelle pour définir une mesure
d’incertitude adaptée à tout modèle de substitution. Elle s’appuie sur des prédictions
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de sous-modèles de validation croisée (CV) et conduit à une mesure empirique locale
quantifiant localement l’incertitude de la prédiction. Cette distribution, appelée, la dis-
tribution de prédiction universelle (UP distribution), permet la définition de nombreux
critères d’échantillonnage. Nous donnons et étudions des techniques d’échantillonnage
adaptatif pour améliorer la précision de la prédiction et une extension de l’algorithme
EGO (Efficient Global Optimization). Nous discutons aussi de l’utilisation de UP distri-
bution pour les problèmes d’inversion.

A.5 Réduction de dimension et estimation de caractéris-
tiques

De nos jours, de nombreux problèmes de conception sont complexes et peuvent impli-
quer un grand nombre de variables. L’exploration de l’espace de conception en grande
dimension est une tâche difficile. Dans plusieurs cas industriels, certaines variables ne
sont presque pas influentes. Le chapitre 5 présente un algorithme pour l’apprentissage
d’une caractéristique de la fonction étudiée et la réduction de dimension. La méthode
est basée sur la régression du processus gaussien. Notre méthode est appelée l’algorithme
split-and-doubt. L’étape «split» (réduction du modèle) est basée sur une propriété des
noyaux de détermination automatique de la pertinence stationnaire de la régression du
processus gaussien. Nous montrons que les grandes longueurs de corrélation correspon-
dent à des variables inactives. Nous montrons également que les estimateurs classiques
tels que le maximum de vraisemblance et la validation croisée assignent des longueurs de
corrélation importantes aux variables inactives.

L’étape «doute» remet en question l’étape «split» et aide à corriger une estimation
erronée des longueurs de corrélation. Il est possible d’utiliser cette stratégie pour dif-
férents objectifs d’apprentissage, tels que le raffinement, l’optimisation ou l’inversion.
L’algorithme d’optimisation Split-and-Doubt a été évalué sur des fonctions classiques
plongées dans des espaces de plus grande dimension en ajoutant des variables d’entrée
inutiles. Les résultats montrent que Split-and-Doubt est plus rapide que l’EGO classique
dans l’ensemble de l’espace de conception et le surpasse pour la plupart des cas de test
considérés.
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A.6 Conclusion

Notre travail a été motivé par la nécessité d’une exploration plus efficace de l’espace de
conception. Essentiellement, nous traitons des stratégies fondées sur des modèles de sub-
stitution. En considérant les limitations actuelles et motivés par les besoins industriels,
nous avons abordé trois aspects de la méta-modélisation. Un résumé des principales
contributions et quelques idées pour l’amélioration et la recherche future sont donnés
ci-dessous.

• Dans ce travail, nous avons proposé et étudié ce qu’on appelle le score prédictif
pénalisé (PPS). Il favorise la sélection de méta-modèles qui ont des propriétés de
régularité et de douceur. En outre, il convient à la construction d’une agrégation
de méta-modèles. En se basant sur ces propriétés, nous avons présenté deux algo-
rithmes de sélection de modèles de substitution. Le premier construit l’ensemble
PPS-optimal pour un ensemble fini (et modéré) de méta-modèles. Le second ex-
plore, d’avantage, l’ensemble des techniques de modélisation par substitution util-
isant un algorithme génétique. Ces algorithmes ont été évalués sur un benchmark
de 15 fonctions de test. Les résultats mettent en évidence l’efficacité des deux ap-
proches.

Pour améliorer ce cadre, nous pouvons d’abord chercher une méthode de pondéra-
tion flexible des composantes du PPS en incorporant des caractéristiques physiques
expertes d’une fonction donnée. Deuxièmement, l’utilisation des poids locaux dans
l’ensemble reste à la fois difficile et prometteuse. Dans ce contexte, l’ajout de ce
degré de liberté supplémentaire peut aider à améliorer la précision de la prévision,
nécessiterait une régularisation appropriée afin d’éviter un sur-ajustement excessif.

• La popularité de la régression du processus gaussien est principalement due à
la distribution de prédiction qu’elle fournit. Au même temps, plusieurs tech-
niques de méta-modélisation ne fournissent pas toutes un outil de quantification
de l’incertitude. Dans ce travail, nous avons donné une méthode universelle de
quantification de l’incertitude qui pourrait être appliquée à tout modèle de sub-
stitution. Elle est basée sur une mesure de probabilité empirique pondérée, où le
support est les prédictions de sous-modèles de validation croisée. On peut adapter la
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plupart des critères d’échantillonnage séquentiels classiques. Nous avons également
discuté des stratégies de conception séquentielle pour le raffinement de la prédic-
tion, l’optimisation et l’inversion. De plus, nous avons montré que, sous certaines
hypothèses, l’optimum est adhèrent à la séquence de points générés par l’algorithme
d’optimisation UP-EGO. De plus, les algorithmes d’optimisation et de raffinement
ont été implémentés et testés avec succès. Un package R contenant des outils UP
est disponible.

En perspective, la distribution UP peut être étendue pour calculer des covariances
spatiales empiriques entre deux localisations : La distribution UP peut-elle être vue
comme une distribution a posteriori d’un processus ? Il est également intéressant
d’étudier les propriétés asymptotiques de la distribution UP pour des modèles de
substitution spécifiques, lorsque le nombre d’observations tend vers l’infini.

• Dans ce travail, nous avons proposé l’algorithme appelé Split-and-Doubt qui effectue
conjointement la réduction de dimension et l’apprentissage d’une caractéristique de
la fonction étudiée. L’étape “split” (réduction du modèle) est basée sur une pro-
priété des noyau stationnaire ARD de la régression par processus gaussien. En effet,
nous avons démontré que les grandes longueurs de corrélation correspondent à des
variables inactives. Nous avons également montré que les estimateurs classiques tels
que ML et CV assignent des grandes longueurs de corrélation aux variables inac-
tives. Dans l’étape “doute’’, nous remettons en cause l’étape “split’‘ afin de corriger
une estimation éventuellement erronée des longueurs de corrélation. L’approche en
deux étapes vise à effectuer à la fois l’apprentissage de la caractéristique et la
réduction de dimension. On peut utiliser cette stratégie pour différents objectifs
telles que le raffinement, l’optimisation et l’inversion. Une version d’optimisation
de l’algorithme Split-and-Doubt a été évaluée sur des fonctions classiques plongées
dans des espaces de plus grande dimension. Les résultats montrent que Split-and-
Doubt est plus rapide que l’EGO classique dans l’ensemble de l’espace de conception
et le surpasse pour la plupart des tests décrits.

Une généralisation pertinente du Split-and-Doubt pour l’optimisation multi-objectif
ou contrainte reste difficile. Il serait préférable d’évaluer l’influence de chaque vari-
able sur chaque fonction de sortie séparément. C’est-à-dire qu’une variable peut
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être influente pour une contrainte donnée et inactive pour une sortie donnée et
vice versa. Le principal défi consiste à adapter les critères d’échantillonnage à ce
contexte.
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