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Introduction

This chapter presents the general context of this work and an extended outline of the manuscript.

Context and motivations

Framework

Physics-based simulations are generally less expensive and relatively faster than prototyping and testing processes. Moreover, it is sometimes impractical to perform real world experiments (e.g. climate science, earthquakes, airfoil design). Therefore, computer simulations are very popular in applied research and industry. Competition and high standards of specifications fuels the need for more efficient, more robust and ultimately more optimized designs. Therefore, computer simulations are not only used to validate a model. But, they are also used to explore the design space looking for new designs with optimal performances. Both exploration and optimization require in general many evaluations of the simulator. However, high fidelity simulations of complex models remain computationally expensive despite the evolution of high performance computing.

To overcome such cost, surrogate models, also called meta-models or response surfaces, are used to speed-up the exploration of the design space. These functions aim at emulating the true function, here the computationally-intensive simulator, while being computationally cheaper. Surrogate models are commonly used in engineering design [START_REF] Kleijnen | Design and analysis of simulation experiments[END_REF][START_REF] Santner | The design and analysis of computer experiments[END_REF] and there are many construction methods of such approximations Surrogate models are based on a given training set of n observations Z n = (z 1 , . . . , z n ), where z j = (x j , y j ) for 1 ≤ j ≤ n and y j = f (x j ), called also design points. The main purpose of surrogate modeling is to replace the expensive-to-evaluate function f by a simple response surface f Zn and then to speed-up the estimation of a feature of f using f Zn . The accuracy of the surrogate model relies, among others, on the relevance of the training set. Of course one is looking for the best trade-off between a good accuracy of the feature estimation and the number of calls of f . Consequently, the design of experiments (DOE), that is the sampling of (x j ) 1≤j≤n , is a crucial step and an active research field. In Figure 1.1, a schema illustrating surrogate modeling is displayed.

The usages of surrogate modeling

Prediction Let us consider a design space Ω. Generally speaking, the main goal is to predict accurately f on Ω. The accuracy of a surrogate model f Zn can be measured by a loss function that measures the errors between predictions and true values. A typical choice is the square error ℓ 2 (x, y) = (xy) 2 . The integral form of the mean square errors (MSE) is the ℓ 2 -risk overall the parametric space.

R ℓ 2 ( f Zn ) = ∫ Ω ℓ 2 ( f Zn (x), f (x) ) dx (1.1) = ∫ Ω ( f Zn (x) -f (x) ) 2 dx (1.2)
The first challenge of the use of surrogate models for design space exploration is to minimize the risk with the minimum number of design points. Thus, one of the research interests is how to sample Z n to have the smallest risk on Ω. This objective is a partial step in a larger study or the main deliverable. For instance, some health-care applications aim at delivering a fast predictor of physiological properties following an intervention [START_REF] Pruett | The creation of surrogate models for fast estimation of complex model outcomes[END_REF].

Feature estimation Surrogate models are also used to speed up the engineering process looking for a particular feature of the unknown function f . For instance, surrogate model-based techniques have been used for optimization [JSW98, ABDJ + 00, FJ08]. In this context, we look for a good approximation of a global minimum of f using a limited number of evaluations. That is, we aim at finding x ⋆ ∈ Ω such that:

x ⋆ ∈ arg min x∈Ω f (x) (1.3)
In other design problems, the goal can be the estimation of a level set of f [RBM08, BES + 08]. That is, a threshold of a given value that can be used to estimate for instance a probability of failure. In Figure 1.2, an illustration of a surrogate-based technique for the estimation of a threshold is displayed. Notice that most of the added points by this technique have values around the threshold T = 150. Surrogate models have also been used for other features estimation such as a Pareto front for multi-objective optimization [EDK11, SQMC10, BGR15a], a reliable optimum [START_REF] Nakagawa | Surrogate constraints algorithm for reliability optimization problems with two constraints[END_REF][START_REF] Dubourg | Reliability-based design optimization using kriging surrogates and subset simulation[END_REF], a robust optimum [START_REF] Ong | Max-min surrogate-assisted evolutionary algorithm for robust design[END_REF][START_REF] Troian | Methodology for the design of the geometry of a cavity and its absorption coefficients as random design variables under vibroacoustic criteria[END_REF].

Outline of the dissertation

The remainder of the manuscript is presented in 5 chapters. In Chapter 2, we present an extended review and the necessary background to set our contributions. Chapter 3, 4 and 5 present three different contributions that can be read separately. Each chapter corresponds to a journal article either published, in revision or submitted. Concluding remarks and perspectives are given in Chapter 6.

A summary of Chapters 2, 3, 4 and 5 is given below.

• Chapter 2 gives the necessary background to set our contributions. We briefly present several classical surrogate modeling techniques and model accuracy assess-characteristics are implicitly expected within the meta-modeling framework. We show that PPS enables the construction of relevant aggregations of surrogate models called also ensembles. PPS-optimal ensembles are easily computed and avoid over-fitting. We present also two surrogate model selection schemes based on the PPS. The first one computes the PPS-optimal ensemble rather than selecting one surrogate model. The second one is based on a evolutionary framework that enables the exploration of the space of surrogate models.

• Chapter 4 gives a new tool to associate a prediction distribution to any surrogate model and as a result, to extend GP-based sequential design methods to any surrogate model. Recall that the main advantage of GP-based approach is that it provides everywhere a measure of uncertainty associated with the surrogate model prediction. This uncertainty is an efficient tool to construct strategies for various problems such as prediction enhancement, optimization or inversion.

In this chapter, we propose a universal method to define a measure of uncertainty suitable for any surrogate model. It relies on Cross-Validation (CV) sub-models predictions and leads to a local empirical measure quantifying locally the uncertainty of the surrogate model. This empirical distribution may be computed in much more general frames than the Gaussian one. So that, it is called the Universal Prediction distribution (UP distribution). It allows the definition of many sampling criteria.

We give and study adaptive sampling techniques to improve prediction accuracy and an extension of the so-called Efficient Global Optimization (EGO) algorithm.

We also discuss the use of the UP distribution for inversion problems. The performances of these new algorithms are investigated both on toys models and on an engineering design problem.

• Nowadays, many design problems are complex and may involve a high number of variables. Performing design exploration in high dimension is a difficult task.

There are several real-life problems where some variables are almost not influential. Chapter 5 presents an algorithm for joint feature estimation learning and dimension reduction. The method is based on Gaussian Process regression. Our method is called the split-and-doubt algorithm. The "split" step (model reduction) is based on a property of stationary Automatic Relevance Determination kernels of Gaussian process regression. We prove that large correlation lengths correspond to inactive variables. We also show that classical estimators such maximum likelihood and cross-validation assign large correlation lengths to inactive variables.

The "doubt" step question the "split" step and helps correcting an initial erroneous estimation of the correlation lengths. It is possible to use this strategy for different feature learning purposes such as refinement, optimization or inversion. 

Chapter 2

Background and literature review

Surrogate-modeling

The term surrogate model encompasses different techniques that have been developed in various fields: regression analysis, response surface methodology, statistical learning, statistical inference, geostatistics. This broad definition includes, inter alia, the least squares method introduced by Legendre [Leg05] and Gauss [START_REF] Gauss | Theoria motus corporum coelestium in sectionibus conicis solem ambientium auctore Carolo Friderico Gauss[END_REF], the so-called response surface methodology, introduced by [BW92, BD87], polynomial chaos expansion [START_REF] Ghanem | Stochastic finite elements: a spectral approach[END_REF] and artificial neural networks [START_REF] Poggio | A theory of networks for approximation and learning[END_REF]. In order to highlight the model selection issue, we present in this section a collection of surrogates modeling techniques and we discuss how to assess their quality.

Notations

To begin with, let f denote a real-valued function defined on Ω, a nonempty subset of the Euclidean space R d , (d ∈ N ⋆ ). In order to estimate f , we have at hand a sample of size

n (n ≥ 2): X n = ( x 1 , . . . , x n ) ⊤ with x j ∈ Ω, j ∈ 1; n and y n = ( y 1 , . . . , y n ) ⊤
where y j = f (x j ) for j ∈ 1; n . We note y n = f (X n ). Let Z n denote the observations:

Z n := {(x j , y j ), j ∈ 1; n }. Using Z n , we build a surrogate model f Zn to approximate f .
Statistical modeling of computer experiments embraces the set of methodologies for generating a surrogate model [START_REF] Viana | Making the most out of surrogate models: Tricks of the trade[END_REF]. Here, in order to avoid the possible confusion between a surrogate model and its construction technique, we introduce the so-called surrogate model builder to denote a method that generates surrogate models based on a given set of data.

Definition 1. m is a metamodel builder if: ∀n ∈ N ⋆ , m is an application from Ω n × R n to Ω R . m : Ω n × R n -→ Ω R Z n = (X n , y n ) -→ m(Z n ) = m |Zn
where the surrogate model m Zn is a an application from Ω to R.

Example 1. Let P (1) :

Z n = (X n , y n ) -→ P (1)
|Zn ∈ Ω R denotes a linear polynomial regression such that:

∀x = (x 1 , . . . , x p ) ∈ Ω, P (1) |Zn (x) = β 0 + d ∑ 1 β i x i ,
where the vector β = ( β 0 , . . . , β d ) ⊤ is the least squares estimate (using

X n = ( 1 n , X n ) ,
here 1 n denotes a vector of size n whose all components equal to 1, assuming further that

n ≥ d and X n ⊤ X n is invertible.) β = ( X n ⊤ X n ) -1 X n ⊤ y n .

Overview of some surrogate modeling techniques

There is a wide range of surrogate model building techniques. We give here a brief overview of linear regression models, support vector regression, neural networks and ensembles of surrogates. Gaussian Process regression is presented with more details in Section II.2.

Linear regression:

Statistical regression aims at representing the relationships between the set of variables and a set of observed function outputs. It can be traced back to the least squares method [START_REF] Legendre | Nouvelles méthodes pour la détermination des orbites des comètes[END_REF][START_REF] Gauss | Theoria motus corporum coelestium in sectionibus conicis solem ambientium auctore Carolo Friderico Gauss[END_REF]. In the polynomial regression context, f is assumed to be a polynomial function. The observations are noisy and assumed to be drawn "around" a trend f . More precisely, we have:

y i = ϵ i + p ∑ i=1 β i f i (x i ),
transformation [START_REF] Tukey | Exploratory data analysis[END_REF]. Therefore, there is a wide range of possible combinations of different settings: the basis functions, the input transformation, the output transformation, the parameters of the transformations and the estimation method.

Support vector regression: Support vector regression is a particular use of support vector machine (SVM). In [START_REF] Vapnik | The nature of statistical learning theory[END_REF]Chapter 5], the so-called ϵ-SVR regression aims at finding f (x) that has ϵ as an upper bound for the errors on design points while being as smooth as possible. The approximations function is estimated as follows:

f (x) = m ∑ i=1 (α i -α ⋆ i )K(x i , x) + b,
where k(., .) is a kernel function. The parameters α i , α ⋆ i are estimated to minimize the following dual problem:

min α,α ⋆ -1 2 (α -α ⋆ ) ⊤ Q(α -α ⋆ ) -ϵ1 ⊤ (α + α ⋆ ) + Y (α -α ⋆ ) subject to : 1 ⊤ (α -α ⋆ ) = 1, α, α ⋆ ∈ [0, C],
where:

Q ij = K(x i , x j ).
(2.1)

The parameter b is computed such that the Karush-Kuhn-Tucker (KKT) conditions are satisfied.

Note that there are formulations other than the ϵ-SVR. For instance, the so-called µ-SVR [SSWB00] controls the number of support vector rather than the errors. There are several possible settings to train a support vector regression model. We can cite for instance the kernel function, the parameter value ϵ.

Artificial neural network: Artificial neural network (ANN) [PG89, Lip87, MP69] is a learning method inspired by the biological neural networks modeling [START_REF] Mcculloch | A logical calculus of the ideas immanent in nervous activity[END_REF]. They have been used for clustering, classification or regression. It is modeled as a collection of connected nodes (neurons). Each connection is weighted and each node represents a transfer function.

The weights are generally optimized during the learning process by algorithms such as back-propagation algorithm [START_REF] Werbos | Beyond regression: New tools for prediction and analysis in the behavioral sciences[END_REF]. The aim of the optimization being to minimize a predefined loss function. A schema representing a neural network is displayed in Figure 2 It is important to note that several settings are possible for the artificial neural networks. We can cite as examples, the transfer function, the loss function, the optimization algorithm, the number of layers and the number of cells for each layer.

Aggregation of surrogates:

Ensemble of surrogates, also called aggregations or mixtures, have been considered. There are two types of ensembles: local and global. Locally weighted ensemble consider the ensemble prediction as the local weighted prediction of the component surrogates f 1 , . . . , f m (Equation (2.2)). For instance, in [START_REF] Zerpa | An optimization methodology of alkaline-surfactant-polymer flooding processes using field scale numerical simulation and multiple surrogates[END_REF] the weights are based on the local expected variances.

f ens (x) = m ∑ i=1 w i (x) f i (x).
(2.2)

However, most weighting methods uses constant weights w i (x) = w i , ∀x ∈ Ω. For instance, Gorissen et al. [START_REF] Gorissen | Evolutionary model type selection for global surrogate modeling[END_REF] used a simple average ensemble (all the weights are equal). Muller et al. [START_REF] Müller | Mixture surrogate models based on dempster-shafer theory for global optimization problems[END_REF] proposed to weight the aggregation using the Dempster-Shafer theory where the error estimates are used as basic probability assignments. Viana et al. [START_REF] Viana | Multiple surrogates: how crossvalidation errors can help us to obtain the best predictor[END_REF] proposed to use an ensemble of surrogate models that minimize the crossvalidation errors. Several heuristics to weight ensembles have been proposed in [START_REF] Goel | Ensemble of surrogates[END_REF][START_REF] Goel | Performance estimate and simultaneous application of multiple surrogates[END_REF].

Model accuracy assessment

General statistical framework for quality assessment

In statistical inference, the main objective is to estimate a given feature of an unknown distribution based on a given set of data. In regression framework, the feature to estimate is the unknown function f ∈ Ω R , and the distribution is

P ∼ ( X, Y = f (X)
) . So, the performance of a surrogate model is related to its prediction capabilities. The assessment of this performance is extremely important in practice. A quantitative assessment is generally based on a loss function that measures the errors between the predictions and the observation of a given set. The risk defined by a loss function l is called l-risk (definition 2).

Definition 2. Let Σ = Ω × R d .
Let l be a measurable loss function, P be a probability measure on Σ, then for a measurable function m : Ω → R R l,P ( m) = ∫ Σ l( m(x), y)dP (x, y) is called the l-risk of m. A popular loss function is the quadratic loss function l 2 (ŷ, y) = (yŷ) 2 where ŷ is the prediction and y is the observation. The distribution P is generally unknown. In statistics, it is common to use an approximation of P . For instance, one can use the empirical distribution associated to a set of m observations Z n , P n = 1 n n ∑ i=1 δ z i where δ z i is the Dirac measure at z i = (x i , y i ). The empirical l-risk of a function m is then:

R l,Pn = 1 n n ∑ i=1 l( m(x i ), y i ) (2.3)
If we assume that Z n are generated (independently) by P and m satisfies R l,P ( m) < ∞ then R l,Pn ( m) → R l,P ( m) when n → ∞ by the law of large numbers.

Notice that the surrogate model depends on a set of observations generated by P . Therefore, it is not convenient to use the same data to build the surrogate model and to

Resampling techniques

Overfitting is a classical risk of an irrelevant use of statistical inference. Training an algorithm and evaluating its statistical performances on the same data leads to an optimistic result. Resampling techniques allow estimating the risk of a predictor without generating an extra set of observation. For instance, cross-validation [START_REF] Stone | Cross-validatory choice and assessment of statistical predictions[END_REF] or bootstrap [START_REF] Efron | An Introduction to the Bootstrap[END_REF] use a re-sampled sets of the available data Z n .

Cross-validation:

The idea behind CV is to estimate the risk of an algorithm splitting the data once or several times. One part of the data (the training sample) is used for training and the remaining one (the validation sample) is used for estimating the risk of the algorithm. It is generally used to perform model selection or to estimate the accuracy of a meta-model.

Formally, for

i ∈ 1, . . . , k, let Z (i) be a subset of Z n such that ∪ k i=1 Z (i) = Z n .
The kF-CV estimates of the l 2 errors (Equation (2.4)) by computing the loss of a point in the i th fold Z (i) compared to the prediction of the surrogate model built on the remaining folds (Z n \ Z (i) ).

R k-CV (m) = 1 n k ∑ i=1 ∑ (x ′ ,y ′ )∈Z (i) l 2 ( m |Zn\Z (i) (x ′ ), y ′ ), (2.4) 
where

z ∈ Z n \ Z (i) if and only if z ∈ Z n and z / ∈ Z (i) .
Several cross-validation procedures are possible. The one described previously is the so-called k-Fold-Cross-Validation (KFCV). Note that when p = n, it is called Leave-One-Out Cross-Validation (LOO-CV). Queipo et al [QHS + 05] pointed out that the main advantage of CV is that it provides a nearly unbiased estimate. Further, Cross-Validation and Bootstrap performances on a large dataset are studied in studied in [START_REF] Kohavi | A study of cross-validation and bootstrap for accuracy estimation and model selection[END_REF]. Therein, the authors recommend using stratified 10-fold-cross-validation.

Error functions

Besides the limited number of available data. Another problem faces the assessment of surrogate quality. Let us assume that we have at hands a set of validation data of p ∈ N observations Z

(v) p = (z (v) 1 = (x (v) 1 , y (v) 1 ), . . . , z (v) p = (x (v) p , y (v) p )))
. The best surrogate model could vary according to the used error measures. For instance, let us consider the root relative mean square error (equation (2.5)) the mean absolute error (equation (2.6)), the relative mean square error (equation (2.7)) and the maximum absolute error (equation The results show that for each error measure, we have a different optimal surrogate model. This means that the user should be careful when dealing with such measures. In fact, sometime the selection of the measure depends on the field. For instance, if we want to minimize the effect of outliers we would use some conservative measures for instance Huber loss function [START_REF] Huber | Robust estimation of a location parameter[END_REF].

(2.8)). rmse(m(Z n )) = 1 p p ∑ i=0 ( m Zn (x (v) i ) -y i ) 2 (2.5) mae(m(Z n )) = 1 p p ∑ i=0 | m Zn (x (v) i ) -y i | (2.6) rmae(m(Z n )) = 1 p p ∑ i=0 | m Zn (x (v) i ) -y i | y i (2.7) Mae(m(Z n )) = max{| m Zn (x (v) i ) -y i |, i ∈ 1, . . . p} ( 

Discussion

We presented a non-exhaustive list of surrogate modeling techniques. Generally, there are several settings for each type. However, no method is universally optimal and we showed that it is rather difficult to assess the quality of a surrogate model. We will tackle the problem of model selection in Chapter 3. This relies on a relevant definition of some assessment criterion and on the selection of the best surrogates or aggregation accordingly.

i y i m 1 (x i ) m 2 (x i ) m 3 (x i ) (x i ) 1 

Focus on Gaussian Process Regression

Gaussian Process

Definition 3 (Gaussian distribution). A random variable follows a normal distribution with mean µ and variance σ 2 if its probability density function is:

ϕ(x) = 1 σ √ 2π exp ( - (x -µ) 2 2σ 2 ) for x ∈ R. Observe that if X ∼ N (µ, σ 2 ) then X = µ + σN with N ∼ N (0, 1).
Multivariate random variables or random vectors are a generalization of random variables. 

Definition 4 (Gaussian vector

Y = Aε + µ, where µ is a 1 × d vector, A a d × k matrix and ε = (ε 1 , . . . , ε d ) is a Gaussian white noise i.e ε 1 , . . . , ε d ) i.i.d N (0, 1).
Indeed, let Y = (Y 1 , . . . , Y d ) be a multivariate Gaussian vector, µ its expected value (vector) µ = E[Y ] and Σ = AA ⊤ the so-called covariance matrix of Y . The probability density function of Y is given in Equation (2.9):

ϕ Y (x) = 1 |2πΣ| 1/2 exp ( - 1 2 (x -µ) ⊤ Σ -1 (x -µ)
) .

(2.9)

Conditional expectation of a random vector: Let Y = (Y 1 , Y 2 ) be the random vector where Y 1 , Y 2 are random vectors such as:

Y ∼ N (( µ 1 µ 2 ) , ( Σ 1,1 Σ 1,2 Σ 2,1 Σ 2,2
))

.

Let us assume that Σ 2,2 is invertible. The conditional distribution of Y 1 knowing Y 2 is a Gaussian vector where:

E[Y 1 |Y 2 ] = µ 1 + Σ 1,2 Σ -1 2,2 (Y 2 -µ 2 ), (2.10) 
Cov(Y 1 |Y 2 ) = Σ 1,1 -Σ 1,2 Σ -1 2,2 Σ 2,1 .
(2.11)

Gaussian Process: Stochastic processes or random processes can be seen as a generalization of multivariate random variables. There are several different types of random processes.

Definition 5 (Gaussian process). A random process

Y over Ω ⊂ R d is Gaussian if ∀n ∈ N, for i = 1, . . . , n, x i ∈ Ω, ( Y (x 1 ), . . . , Y (x n )
) is a Gaussian vector.

We define the mean function µ

(x) = E[Y x ] and the covariance function k(x, y) = E [ ( Y x -µ(x) )( Y y -µ(y) ) ]
. This implicitly requires the process to be integrable at order 2. A Gaussian process Y x is determined by its mean function and its covariance function [START_REF] Adler | Random fields and geometry[END_REF]Chapter2]. Hence, we use the notation Y ∼ GP (µ(.), k(., .)).

Definition 6 (Weak-sense stationarity). A random process Y is said to be second order stationary or weak-sense stationary if its mean and its covariance are invariant by translation. That is:

∀(x, y) ∈ Ω 2 , µ(x) = µ(y) and Cov(Y (x), Y (y)) = κ(x -y),
where κ is a function R d → R.

Since a Gaussian process is fully determined by its mean and its covariance function then second order stationarity is equivalent to the strong-sens stationarity (i.e the distribution of the process is invariant by any translation) for the Gaussian Process.

Covariance function

The covariance matrix of a Gaussian vector is positive semidefinite. This notion is extended to covariance functions. A symmetric function k(., .)

over Ω × Ω is positive semi-definite if it satisfies ∀n ∈ N, ∀(x 1 , . . . , x n ) ∈ Ω n , ∀α ∈ R n , n ∑ i=1 n ∑ j=1 α i α j k(x i , x j ) ≥ 0.
Any covariance function is positive semi-definite. Conversely, any symmetric positive semi-definite functions is a covariance function of some random process. A review of covariance functions is given in [START_REF] Abrahamsen | A review of Gaussian random fields and correlation functions[END_REF].

Kriging or Gaussian Process regression

Posterior distribution

Kriging or Gaussian process regression (GPR) is widely popular especially in spatial statistics. It is based on the early works of Krige [START_REF] Krige | A Statistical Approach to Some Basic Mine Valuation Problems on the Witwatersrand[END_REF]. The mathematical framework can be found in [START_REF] Matheron | Principles of geostatistics[END_REF][START_REF] Stein | Interpolation of Spatial Data: Some Theory for Kriging[END_REF][START_REF] Rasmussen | Gaussian processes for machine learning[END_REF]. Kriging models predict the outputs of a function

f : Ω = [0, 1] d → R,
based on a set of n observations. Within the GP framework, the posterior distribution is given by the conditional distribution of Y given the observations

y n = (y 1 , . . . , y n ) ⊤ where y i = f (x (i) ) for 1 ≤ i ≤ n.
An illustration of a collection of random paths of a GP and their conditional counterpart is displayed in Figure 2.3.

The GPR framework uses a centered real-valued Gaussian Process (GP) Y over Ω as a prior distribution for f . We denote by k

θ : Ω × Ω → R the covariance function (or kernel) of Y : k θ (x, x ′ ) = Cov[Y (x), Y (x ′ )] ((x, x ′ ) ∈ Ω 2 ), by X n ⊤ = ( x (1) , . . . , x (n) ) ∈ Ω n
given by:

m Zn (x) = k(x, X n ) ⊤ K -1 θ y n , (2.13) 
σ 2 Zn (x) = k(x, x) -k(x, X n ) ⊤ K -1 θ k(x, X n ). (2.14) Here, k(x, X n ) is the vector (k(x, x (1) ), . . . , k(x, x (n) )) ⊤ and K θ = k(X, X) is the invertible matrix with entries ( k(X n , X n ) ) ij = k(x (i) , x (j) ), for 1 ≤ i, j ≤ n.
Universal Kriging: Let (h i ) 1≤i≤p be the basis functions of the trend function used in the universal kriging. Let us call h(x) the vector (h 1 (x), .., h p (x)) ⊤ and H the matrix defined as follows:

H = ( h i,j = h j (x i ) ) 1≤i≤n,1≤j≤p
. The conditional mean and the conditional variance of the Gaussian process are given below [START_REF] Cressie | Statistics for spatial data[END_REF][START_REF] Ripley | Spatial statistics[END_REF]. .

m Zn (x) = h(x) ⊤ β + k(x, X n ) ⊤ K -1 (Y -H ⊤ β) (2.15) σ 2 Zn (x) = k(x, x) -k(x, X n ) ⊤ K -1 k(x, X n ) + ( h(x) ⊤ + k(x, X n ) ⊤ K -1 H ) ⊤ ( H ⊤ K -1 H ) -1 ( h(x) ⊤ + k(x, X n ) ⊤ K -1 H ) (2.
16) where:

β = (H ⊤ K -1 H) -1 H ⊤ K -1 Y.
(2.17)

These equations can be derived from 2.10 and 2.11 by considering a Bayesian Framework with specific priors on β and σ [START_REF] Helbert | Assessment of uncertainty in computer experiments from universal to Bayesian kriging[END_REF]. Finally notice that kriging predictions depend on several settings: the trend function, the prior distribution including the kernels parameters, the possible noise and the estimation method.

Link with Reproducing Kernel Hilbert Space

Reproducing kernel Hilbert space: A reproducing kernel Hilbert space (RKHS) H is a Hilbert Space of real-valued functions defined on Ω where evaluation functionals

T x : f → f (x), ∀f ∈ H are continuous.
Definition 7 (Reproducing Kernel Hilbert Space). Let H be a Hilbert Space of real-valued functions defined on Ω. H is a RKHS if ∀x ∈ Ω, T x is a bounded operator1 on H i.e there exists some M > 0 such that

|T x (f )| = |f (x)| ≤ M ||f || H , ∀f ∈ H.
Theorem 1 (Fréchet-Riesz representation theorem). Let T be a continuous linear form on H then,

If H is an RKHS ∃τ ∈ H, T (f ) =< τ, f > H , ∀f ∈ H.
Every T x is linear and continuous on (H, < ., . > H ). Thus, it can be represented by an element of H using < ., . > H (Fréchet-Riesz Theorem):

∃k x ∈ H, T x (f ) =< k x , f > H . Proposition 1. Let k be the function defined on Ω × Ω → R defined by k(x, y) = k x (k y ). Then, k is positive semi-defined. Proof. • k(x, y) = k x (k y ) =< k x , k y > H =< k y , k x > H = k y (k x ) = k(y, x). • ∀n ∈ N, ∀α 1 , . . . , α n ∈ R, ∀x 1 , . . . , x n ∈ Ω, n ∑ i=1,j=1 α i α j k(x i , x j ) =< n ∑ i=1 α i k x i , n ∑ j=1 α j k x j > H = n ∑ i=1 α i k x i 2 H ≥ 0. k(x, y) =< k x , k y > H is
called a reproducing kernel. Moore-Aronszajn theorem states that if a function k is a symmetric, positive definite kernel on a Ω then there is a unique Hilbert space of functions on Ω for which k is a reproducing kernel, given by

H k = Span{k(x, .), x ∈ Ω}.
For more insight, on may refer to [START_REF] Aronszajn | Theory of reproducing kernels[END_REF][START_REF] Berlinet | Reproducing kernel Hilbert spaces in probability and statistics[END_REF].

Gaussian Process and RKHS

• A covariance function k of a centred Gaussian Process is also the reproducing kernel of the RKHS H k2 .

• The simple kriging posterior mean is also the function in H with minimal norm that interpolates the data [START_REF] Micchelli | Lectures on optimal recovery[END_REF].

• Note that Gaussian Processes random paths are not generally in the corresponding RKHS [START_REF] Driscoll | The reproducing kernel hilbert space structure of the sample paths of a Gaussian process[END_REF][START_REF] Berlinet | Reproducing kernel Hilbert spaces in probability and statistics[END_REF].

Kernel functions

A common approach consists in assuming that the covariance function belongs to a parametric family. A review of classical covariance functions is given in [START_REF] Abrahamsen | A review of Gaussian random fields and correlation functions[END_REF]. We are interested in the family of auto relevance determination (ARD) kernels of the form of Equation 2.18. The ARD kernels include most popular kernels such as the exponential kernel, the Matérn 5/2 kernel and the squared exponential (SE) kernel given in Table 2.2.

k θ (x, y) = σ 2 d ∏ p=1 k ( d(x p , y p ) θ p )
, for x, y ∈ Ω.

(2.18)

Here, d(, ) is a distance on Ω × Ω and k : R → R is a fixed stationary covariance function. The hyper-parameters σ and θ 1 , . . . , θ d have to be estimated. To do so, we use the Maximum Likelihood (ML) estimator or Cross Validation (CV). Both methods have interesting asymptotic properties [START_REF] Bachoc | Cross validation and maximum likelihood estimations of hyperparameters of Gaussian processes with model misspecification[END_REF][START_REF] Bachoc | Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes[END_REF][START_REF] Bachoc | Cross-validation estimation of covariance parameters under fixed-domain asymptotics[END_REF]. Nevertheless, when the number of observations is relatively low, the estimation can be misleading. These methods are also computationally demanding when the number of observations is large.

Hyper-parameters estimation: maximum likelihood estimation

Without loss of generality, we consider the Gaussian process regression framework and we assume µ = 0. The centred process depends only on its kernel that depends in turn on its hyper-parameters. The likelihood in this case is given in Equation 2.19:

Name Expression exponential k(x, y) = σ 2 exp ( - |x -y| θ ) squared exponential k(x, y) = σ 2 exp ( - (x -y) 2 2θ 2 ) Matern 5/2 k(x, y) = σ 2 ( 1 + √ 5|x -y| θ + 5|x -y| 2 3θ 2 ) exp ( - √ 5|x -y| θ ) Matern 3/2 k(x, y) = σ 2 ( 1 + √ 3|x -y| θ ) exp ( - √ 3|x -y| θ ) Table 2.2: Examples of common kernels. L(σ 2 , θ) = 1 |2πk(X, X)| 1/2 exp ( - 1 2 y n ⊤ K -1 y n ) , (2.19) 
where k(., .) depends on σ 2 and θ. To overcome numerical problems, it is common to consider the log-likelihood :

log(L(σ 2 , θ)) = - n 2 2π - 1 2 log(|k(X, X)|) - 1 2 y n ⊤ y n .
(2.20)

Hyper-parameters estimation: Cross Validation

Without loss of generality, we consider the Leave-One-Out Cross-Validation (LOO-CV). LOO-CV consists in dividing the n point into n subsets of one point each. Then, each subset plays the role of test set while the remaining points are used together as the training set. Using Dubrule's formula [START_REF] Dubrule | Cross validation of kriging in a unique neighborhood[END_REF], the LOO-CV estimator is given in (2.21).

θ ⋆ CV ∈ arg min θ 1 n y n ⊤ K -1 diag(K -1 ) -1 K -1 y n (2.21)
For more insight on these estimators, one can refer to [START_REF] Bachoc | Estimation paramétrique de la fonction de covariance dans le modèle de Krigeage par processus Gaussiens: application à la quantification des incertitues en simulation numérique[END_REF].

Discussion

In Chapter 5, we will use some properties of the GPR. In fact, we will exploit some properties of the correlation lengths of ARD kernels to propose the so-called split-anddoubt algorithm. It consists in filtering some input variables while performing sequential design.

Design of experiments (DOE)

In surrogate modeling framework, the sampling of design points is a crucial step. Generally speaking, there are two ways to sample: either drawing the training points at once (one-shot design) or generating it sequentially (adaptive design). In this section, we give a brief overview of some design techniques.

Non-adaptive designs

The one-shot designs are methods that sample all the experiments independently of the values of the function output(s). These methods are also used in surrogate-based sequential designs to generate the initial DOE. Thus, it is a crucial issue in meta-modeling.

Design of experiments techniques can be roughly divided into three types: deterministic, random and quasi-random. Among the deterministic methods, we can cite the factorial designs, central composite designs, Box-Behnken designs [START_REF] Box | Some new three level designs for the study of quantitative variables[END_REF] and orthogonal arrays [START_REF] Owen | Orthogonal arrays for computer experiments, integration and visualization[END_REF][START_REF] Owen | Lattice sampling revisited: Monte carlo variance of means over randomized orthogonal arrays[END_REF]. Full factorial designs are basically d-dimensional grids of k levels in each dimension. Its main drawback is that the total number of design points n = k d grows exponentially with the dimension.

Lindely [START_REF] Lindley | On a measure of the information provided by an experiment[END_REF] introduced a maximum entropy design technique. It is based on the amount of information provided by an experiment. Another type of deterministic model is when the model is specified. Among these particular designs, we may cite A-optimal design [START_REF] Chernoff | Locally optimal designs for estimating parameters[END_REF][START_REF] Fedorov | Theory of optimal experiments[END_REF], D-optimal design [Fed72, PW85, WP90] and so-called Bayesian designs. Shewry and Wynn [START_REF] Shewry | Maximum entropy sampling[END_REF] showed that if the design space is discrete then minimizing the expected posterior entropy is equivalent to maximize the prior entropy.

Geometric designs [START_REF] Johnson | Minimax and maximin distance designs[END_REF] aim at optimizing a distance-based design criterion such as minimax or maximin criteria.

min x∈Ω max x i ∈X ||x -x i ||, max X=(x 1 ,...,xn) min i̸ =j ||x i -x j ||.
As shown in [START_REF] Pronzato | Design of computer experiments: space filling and beyond[END_REF], the minimax criterion is equivalent to find the smallest balls centered in design points that cover the design space and maximin criterion seeks to maximize the radius of non-intersecting balls centered on design points. Among the random designs, one of the most popular is the Latin Hypercube Sampling (LHS) developed by [START_REF] Mckay | Comparison of three methods for selecting values of input variables in the analysis of output from a computer code[END_REF]. It is proposed as an enhancement of Monte-Carlo Sampling. A square grid containing sample positions is a Latin square if (and only if) there is only one sample in each row and each column. A LHS is the generalization of this concept to an arbitrary number of dimensions. Among the designs displayed in Figure 2.4, three of them are LHS. Let us consider the singular case (Figure 2.4d). This example is of course one of the worst possible cases and its occurrence is not very likely. However, this highlights the limitation of LHS. Thus, there are many improvement to pure LHS: the so-called optimal Latin hypercube sampling (O-LHS3 ). The main idea is to keep the projection property of LHS and use another criterion such as maximin [START_REF] Morris | Exploratory designs for computational experiments[END_REF].

Adaptive design

A design is adaptive if the information from the experiments (inputs and responses) and/or information from the metamodel is used in selecting the next sample. "Adaptive approaches are typically superior to non-adaptive approaches" [ASA + 13]. Generally, an adaptive approach begins with an initial design either deterministic, random or quasirandom. A metamodel is constructed using the initial experiments and then new samples are chosen by systematically evaluating the response and/or the metamodel the current design point. Such definition includes feature-oriented designs such as optimization algorithms and inversion algorithms. An example is the stepwise uncertainty reduction (SUR) strategy that has been applied for excursion set identification [CBG + 14], constrained optimization [START_REF] Picheny | A stepwise uncertainty reduction approach to constrained global optimization[END_REF] and multi-objective optimization [START_REF] Picheny | Multiobjective optimization using Gaussian process emulators via stepwise uncertainty reduction[END_REF].

An efficient tool to construct such adaptive methods is the prediction distribution of a surrogate model. Hence, many methods are based on kriging. In the next section, we present a brief overview of two popular kriging-based strategies: Efficient Global Optimization (EGO) and stepwise uncertainty reduction (SUR). We also discuss other methods.

GPR-based adaptive design algorithms

Gaussian Process Regression provides a prediction distribution. Many surrogate-based sequential design methods take advantage of this tool. Sequential-based design for different features have been studied. For example, the inversion is considered in [BES + 08] and the context of optimization is studied in [START_REF] Forrester | Global optimization of deceptive functions with sparse sampling[END_REF][START_REF] Sasena | Optimization of computer simulations via smoothing splines and kriging metamodels[END_REF]. We take here a closer look on two strategies: EGO and SUR.

Efficient Global Optimization: Bayesian global optimization (BO) techniques have been successfully used in various problems [START_REF] Močkus | On Bayesian Methods for Seeking the Extremum[END_REF][START_REF] Močkus | The Bayesian approach to global optimization[END_REF][START_REF] Jones | Efficient global optimization of expensive black-box functions[END_REF]. One of the most popular algorithms is the so-called Efficient Global Optimization (EGO) algorithm of [START_REF] Jones | Efficient global optimization of expensive black-box functions[END_REF]. It consists in sampling the point that maximizes the so-called expected improvement (EI).

Let (y(x)) x∈X be a Gaussian process. Let further m GP and σ 2 GP denote respectively the mean and the variance of the conditional process y(x) | Z. Last, let y ⋆ be the minimum value of the response on the sample Z = (z 1 , . . . , z n ) where z i = (x i , y i ), that is

y ⋆ = min i=1.
.n y i . The EGO algorithm [START_REF] Jones | Efficient global optimization of expensive black-box functions[END_REF] uses the expected improvement EI (Equation (2.22)) as sampling criterion:

EI(x) = E [ max(y ⋆ -y(x), 0) | Z ] (2.22)
Using some Gaussian computations, EI(x) can be explicitly computed:

EI n (x) =              (y ⋆ -m GP (x))Φ ( y ⋆ n -m Gn (x) σ GP (x) ) + σ GP (x)ϕ ( y ⋆ n -m Gn (x) σ GP (x) ) if σ GP (x) ̸ = 0, 0 otherwise (2.23)
The EGO algorithm adds to the sample the point that maximizes EI. An illustration of 5 iterations of EGO on a toy example is displayed in Figure 2.5.

pling techniques or ensembles.

For example, [LMA + 04] use Multivariate Adaptive Regression Splines and kriging models with Sequential Exploratory Experimental Design method. It consists in building a surrogate model to predict errors based on the errors on a test set. Goel et al. [START_REF] Goel | Ensemble of surrogates[END_REF] use a set of surrogate models to identify regions of high uncertainty by computing the empirical standard deviation of the predictions of the ensemble members.

In the literature, several cross-validation-based techniques have been discussed. Li and Azarm [START_REF] Li | Maximum accumulative error sampling strategy for approximation of deterministic engineering simulations[END_REF] propose to add the design point that maximizes the Accumulative Error (AE). The AE on x ∈ X is computed as the sum of the LOO-CV errors on the design points weighted by influence factors. This method could lead to clustered samples. To avoid this effect, the authors [START_REF] Li | Approximation of multiresponse deterministic engineering simulations: a dependent metamodeling approach[END_REF] propose to add a threshold constraint in the maximization problem. Busby, Farmer, and Iske [START_REF] Busby | Hierarchical nonlinear approximation for experimental design and statistical data fitting[END_REF] propose a method based on a grid and CV. It affects the CV prediction errors at a design point to its containing cell in the grid. Then, an entropy approach is performed to add a new design point. More recently, Xu et al. [START_REF] Xu | A robust error-pursuing sequential sampling approach for global metamodeling based on voronoi diagram and cross validation[END_REF] suggest the use of a method based on Voronoi cells and CV. Kleijnen and Van Beers [KvB04] propose a method based on the Jackknife's pseudo values predictions variance. Jin, Chen, and Sudjianto [JCS02] present a strategy that maximizes the product between the deviation of CV sub-models predictions with respect to the master model prediction and the distance to the design points. Aute et al. [ASA + 13] introduce the Space-Filling Cross-Validation Trade-off (SFCVT) approach. It consists in building a new surrogate model over LOO-CV errors and then add a point that maximizes the new surrogate model prediction under some space-filling constraints. In general, cross-validation-based approaches tend to allocate points close to each other resulting in clustering [ASA + 13]. This is not desirable for deterministic simulations.

Discussion

In this section, we introduced several design of experiments techniques. The main takehome messages of this section are:

• It is natural to assume that adaptive designs strategies may give better results than non-adaptive designs. Indeed, these methods uses the response to sample the future points.

• Most of the popular surrogate-based design strategies are based on GPR. This is due to the fact that prediction distribution is given analytically. We know yet that several surrogate models techniques are available and useful (Section 2.1).

In Chapter 4, we will introduce the so-called universal prediction distribution that defines a prediction distribution for all surrogates.

Part II

Surrogate modeling

Chapter 3

Surrogate model selection

Abstract In design engineering problems, the use of surrogate models (also called metamodels) instead of expensive simulations have become very popular. Surrogate models include individual models (regression, kriging, neural network...) or a combination of individual models often called aggregation or ensemble. Since different surrogate types with various tunings are available, users often struggle to choose the most suitable one for a given problem. Thus, there is a great interest in automatic selection algorithms. In this paper, we introduce a universal criterion that can be applied to any type of surrogate models. It is composed of three complementary components measuring the quality of general surrogate models: internal accuracy (on design points), predictive performance (cross-validation) and a roughness penalty.

Based on this criterion, we propose two automatic selection algorithms. The first selection scheme finds the optimal ensemble of a set of given surrogate models. The second selection scheme further explores the space of surrogate models by using an evolutionary algorithm where each individual is a surrogate model. Finally, the performances of the algorithms are illustrated on 15 classical test functions and compared to different individual surrogate models. The results show the efficiency of our approach. In particular, we observe that the three components of the proposed criterion act all together to improve accuracy and limit over-fitting.

Introduction

Computer simulations are an efficient tool to study complex physical behaviors. However, high-fidelity simulations are generally computationally expensive. Therefore, surrogate models, also known as metamodels or response surfaces, are usually instead used. They provide an approximation of a response of interest based on a limited number of expensive simulations. There are several methods of construction of such approximations. Among the popular surrogate model types, we can cite for example Kriging [START_REF] Matheron | Principles of geostatistics[END_REF], support vector machines (SVM) [START_REF] Smola | A tutorial on support vector regression[END_REF], Moving least squares [START_REF] Lancaster | Surfaces generated by moving least squares methods[END_REF] and Multivariate Adaptive Regressive Splines (MARS) [START_REF] Friedman | Multivariate adaptive regression splines[END_REF]. Generally, a metamodel family comes with several possible tunings. In the same time, there is no universal optimal surrogate for all the problems. Some users face some difficulties in selecting the most suitable surrogate for their problem. Thus, there is a great interest in automatic model selection algorithms. The main purpose is to choose the surrogate that provides the best prediction performances on the whole parametric space.

In the literature, this problem is generally studied along three different approaches.

1) The first approach consists in using algorithms to optimize the settings of a particular surrogate model type. For instance, [CWL04, LSC06] work on SVM, [START_REF] Zhang | Particle swarm optimisation for evolving artificial neural network[END_REF] on neural networks, and [START_REF] Tomioka | Nonlinear least square regression by adaptive domain method with multiple genetic algorithms[END_REF] deal with least squares regression.

2) A second approach consists in considering multiple surrogates or ensembles. The automatic surrogate selection is so a model selection method. Often, the selected model is a weighted sum of different surrogate models. For example, [VHS09, ZML11, ARR09, GHSQ07] discuss different ways to build such aggregations.

3) The last approach consists in selecting a good member among different types of surrogate models with different settings. We refer for instance to the works of [GDT09, SYZ12, ZJ16].

The main objective of our paper is to propose a new relevant surrogate model selection algorithm that can handle different type of surrogates. To achieve such a goal, we define a universal criterion. This criterion may evaluate the accuracy of any surrogate model.

The paper is organized as follows. We introduce and discuss in Section 3.2 our criterion called the Penalized Predictive Score (P P S). We show in Section 3.3 that P P S is suitable to optimize weights of surrogate models ensembles. In Section 3.4, we present an evolutionary selection algorithm that explores the space of surrogate models. The algorithm is called P P S Genetic Aggregations (P P S-GA). Finally, the performances of the algorithm on 15 test cases are displayed in Section 3.5. The results show the efficiency of the P P S, the complementary role of its three components and the relevance of the proposed selection algorithms.

Penalized Predictive Score (PPS)

Definition

Assessing the quality of a surrogate is very challenging. It is desirable to use an independent set to assess the predictive capabilities of a given method. But, this is computationally expensive in practice. One can also estimate the errors by computing the errors on design points. Unfortunately, a small MSE does not imply good predictive capabilities. Therefore, resampling techniques such as Cross-Validation (CV) [START_REF] Stone | Cross-validatory choice and assessment of statistical predictions[END_REF] or bootstrap [START_REF] Efron | An Introduction to the Bootstrap[END_REF] are generally used. Such techniques reduce the bias of the estimation. Nevertheless, they does not prevent overparameterized models. We will introduce a criterion that will do this job. This criterion is called the Penalized Predictive Score (P P S Equation 

P P S(m, Z n ) = α R l 2 ,Zn (m) a + βR 10-CV (m) b + γE n (m) c (3.1)
Here, as it will be described below, R l 2 ,Zn (m) denotes the MSE criterion, R 10-CV (m) the 10-Fold cross-validation estimate of the errors and E n (m) a roughness penalty. Further, α, β, γ are weights in R + . In all our implementations, we use α = 2β and β = 2γ.

Internal accuracy

Let Ω = [0, 1] d be the parametric space of dimension d.

X n = (x 1 , . . . , x n ) ⊤ ∈ Ω n and Y n = (y 1 , . . . , y n ) ⊤ ∈ R n form the set of design points Z n = (X n , Y n ) where y i = f (x i ) for i = 1, . . . , n and f ∈ R Ω is an expensive-to-evaluate function. A surrogate model m |Zn ∈ Ω R
is used to replace f based on the design Z n . We call the construction method a "surrogate model builder". For instance, if m is a surrogate model builder, then we build the surrogate model m |Zn ∈ Ω R based on the design Z n .

The assessment of the performance of a surrogate model is extremely important in practice [START_REF] Hastie | The elements of statistical learning[END_REF]. It relies on the evaluation on the set of design points of the prediction capabilities of the surrogate model. It is generally based on a contrast function (or loss function) that measures the errors between the predicted and the true models. A typical choice is the square error l 2 (x, y) = (x-y) 2 . The integral form of the MSE is the l 2 -risk overall the parametric space.

R l 2 ,Zn (m) = ∫ Ω l 2 ( m |Zn (x), f (x) ) dx (3.2) 
Since f is unknown, we can only use an approximation to estimate this risk. Ideally, the performance of the surrogate model would be evaluated on an extra set of points. However, generating such set is sometimes computationally expensive. Therefore, one use an empirical distribution associated to the set of design points. Computing the mean square errors (MSE) (Equation (3.3)) on the set of design points for the surrogate model

m |Zn is an empirical approximation of R l 2 ,Zn (m) defined in Equation (3.2). R l 2 ,Zn (m) = 1 n n ∑ i=1 l 2 ( m |Zn (x i ), y i ) = 1 n n ∑ i=1 ( m |Zn (x i ) -y i ) 2 (3.3)
Note that computing the MSE on the set of design points is a biased estimate of the error in the whole space. In fact, for any interpolating surrogate model m, R l 2 ,Zn (m) = 0. This does not necessarily mean that the surrogate model fits the real function in the whole space.

Predictive capabilities

On one hand, the use of design points to estimate the errors yields an optimistic result [START_REF] Arlot | A survey of cross-validation procedures for model selection[END_REF]. On the other hand, using a validation set can be expensive. Therefore, it is convenient to use re-sampling techniques such as Cross-Validation (CV) [START_REF] Stone | Cross-validatory choice and assessment of statistical predictions[END_REF] and bootstrap [START_REF] Efron | An Introduction to the Bootstrap[END_REF] to estimate the predicted errors. Resampling techniques estimate the errors by using subsets of the design points to build several sub-surrogate models. For instance, computing the Leave-One-Out Cross-Validation (LOO-CV) errors of a surrogate model m |Zn consists in computing the errors of an observation (x i , y i ) based on the surrogate model m |Z n,-i built on the subset of all the design points except the i th design point (Z n,-i = (x j , y j ) j̸ =i ). In the same way, k-fold cross-validation (kF-CV) consists in dividing the data into k subsets. Each subset plays the role of validation set while the remaining k -1 subsets are used together as the training set. If k is the number of folds,

for i ∈ 1, . . . , k let Z (i) ∈ P(Z n ) be a subset of Z n such that ∪ k i=1 Z (i) = Z n .
The kF-CV estimates of the l 2 errors (Equation (3.4)) by computing the loss of a point in the i th fold Z (i) compared to the prediction of the surrogate model built on the remaining folds

(Z n \ Z (i) ). R k-CV (m) = 1 n k ∑ i=1 ∑ (x ′ ,y ′ )∈Z (i) l 2 ( m |Zn\Z (i) (x ′ ), y ′ ), (3.4) 
where

z ∈ Z n \ Z (i) if and only if z ∈ Z n andz / ∈ Z (i) .
Queipo et al. [QHS + 05] pointed out that the main advantage of CV is that it provides a nearly unbiased estimate. Further, Kohavi et al. [START_REF] Kohavi | A study of cross-validation and bootstrap for accuracy estimation and model selection[END_REF] studied Cross-Validation and Bootstrap performances on a large dataset and recommended using stratified 10-foldcross-validation. [START_REF] James | An introduction to statistical learning[END_REF] stated that kF-CV with k = 5 or k = 10 yield test error estimates that suffer neither from excessively high bias nor from very high variance.

Penalization

Penalties are used in several model selection frameworks in order to prevent over-fitting. Selection criteria such as the Bayesian Information Criterion (BIC) [START_REF] Schwarz | Estimating the dimension of a model[END_REF] or Akaike Information Criterion (AIC) [START_REF] Akaike | A new look at the statistical model identification[END_REF] penalize the models by their degrees of freedom. Most penalties are designed for a particular family of surrogates. Here, we are interested in universal methods. So that, we prefer to deal with the smoothness of the surrogate model rather than with its structural complexity. For instance, [NCK + 11] introduce a criterion called Linear Reference Model (LRM). It scores a surrogate model by computing the deviation between its predictions and a local linear model l rm . The LRM is computed over a set of N points x (k) for k = 1, . . . , N (see Equation (3.5)).

R LRM (m) = 1 N N ∑ k=1 l 2 ( m |Zn (x (k) ), l rm (x (k) )) (3.5)
Computationally, this last criteria needs the construction of a Delaunay tessellation [START_REF] Watson | Computing the n-dimensional delaunay tessellation with application to voronoi polytopes[END_REF] to compute l rm . The computational cost of such construction in high dimension is too expensive. We suggest to use a criterion that penalize the roughness of surrogate models: the thin plate spline (TPS) [START_REF] Duchon | Splines minimizing rotation-invariant semi-norms in sobolev spaces[END_REF] Bending Energy Functional (BEF). It is a second order partial derivatives-based penalty. For a dimension d, the roughness penalty E n is the integral of the squared term of the Hessian (Equation (3.6)).

E n ( f ) = ∫ Ω d ∑ i=1 d ∑ j=1 ( ∂ 2 f ∂x i ∂x j ) 2 dx (3.6) 
LRM can be used in place of the BEF in the selection criterion P P S. It penalizes the deviation from a linear model regardless of its roughness. It still gives good predictive capabilities also. Nevertheless, some rough surrogates may be selected.

Surrogate model ensemble: PPS-OS

Overview

Surrogate model selection consists in selecting a surrogate model among a collection of them. This means that we evaluate the performances of several surrogate models and then choose one of them. Acar et al. [START_REF] Acar | Ensemble of metamodels with optimized weight factors[END_REF] stated that this practice has some shortcomings as it does not take full advantage of the resources devoted to constructing different metamodels. In fact, it is possible to consider a weighted combination of surrogates without any significant extra computational cost. These combinations are called: ensembles, aggregations and multiple surrogates.

Forrester and Keane [START_REF] Forrester | Recent advances in surrogate-based optimization[END_REF] show that these aggregation methods drastically improve the performances of the surrogate models. In general, ensembles require small computational resources compared to the cost of the simulations [QHS + 05]. The general form of an aggregation of p surrogate models m (i) |Zn , for i = 1, . . . , p is given in Equation (3.7):

A |Zn (x) = p ∑ i=0 w i (x) m (i) |Zn (x) (3.7)
For instance, Zerpa et al. [START_REF] Zerpa | An optimization methodology of alkaline-surfactant-polymer flooding processes using field scale numerical simulation and multiple surrogates[END_REF] considered a local combination called weighted average model where the weights are based on the local expected variances of the surrogate models. Goel et al. [START_REF] Goel | Ensemble of surrogates[END_REF] extended the use of ensembles to the identification of region with high error. They presented also several heuristics to weight ensembles. However, Gorissen et al. [START_REF] Gorissen | Evolutionary model type selection for global surrogate modeling[END_REF] used a simple average ensemble (all the weights are equal). Muller et al. [START_REF] Müller | Mixture surrogate models based on dempster-shafer theory for global optimization problems[END_REF] proposed to weight the aggregation using the Dempster-Shafer theory where the error estimates are used as basic probability assignments. Viana et al. [START_REF] Viana | Multiple surrogates: how crossvalidation errors can help us to obtain the best predictor[END_REF] proposed to use an ensemble of surrogate models that minimize the CV errors. In fact, if for k = 1, . . . , n, v k is the vector of CV errors of the surrogate model m (i) |Zn , the CV errors of the aggregation is then W ⊤ CW . The weights are selected to minimize the CV errors of the aggregation under the constraint p ∑ i=1 w i = 1. The optimal weighted surrogate OW S is obtained using the weights of Equation (3.8).

W = C -1 1 1 ⊤ C -1 1 (3.8)
where the elements of the matrix C, c ij =< v i , v j >. Viana et al. [START_REF] Viana | Multiple surrogates: how crossvalidation errors can help us to obtain the best predictor[END_REF] noticed that the solution may include negative values. They stated that this additional freedom to the weights estimation amplify errors. In fact, the matrix C is an approximation of the covariance of the errors of the surrogate models. To overcome the problem, the authors suggested to use only the diagonal elements of C. Then, the weights are

w i = c -1 ii n ∑ k=1 c -1 kk .
This formulation is close to the weights of the PRESS weighted surrogate (P W S) given in [START_REF] Goel | Ensemble of surrogates[END_REF] (equation (3.9)), with α = 0, β = -2.

w i = ( √ c ii + α n n ∑ j=1 √ c jj ) β n ∑ k=1 ( √ c kk + α n n ∑ j=1 √ c jj ) β
(3.9)

P P S-optimal ensemble

Let us consider ( m (1) |Zn , . . . , m (n) |Zn ) a set of p surrogate models. Let A be an aggregation of these surrogate models weighted by the vector W = (w 1 , .., w n ) (Equation (3.10)).

A(x) = p ∑ k=1 w k m (k) |Zn (x) (3.10)
In our formulation, we compute the weights of the aggregations by optimizing the P P S of the aggregation under the constraint p ∑ i=1 w i = 1. The P P S-Optimal aggregation is then the aggregation in which the weights are the solution of the optimization Problem (3.11). min

W P P S(A, Z n ) u.c. p ∑ i=1 w i = 1 (3.11)
For each k in 1, . . . , p, let:

• e k be the vector of errors on design points.

• v k the vector of cross-validation error of the surrogate model m (k) ) |Zn .

Notice then that the MSE of the aggregation is a quadratic form of the weights

R l 2 , Pn (A) = p ∑ i=1 w i e i 2 = W T EW, (3.12) 
where the elements of E, E ij =< e i , e j >. Similarly, the cross validation errors of the aggregation is also a quadratic form of the weights (Equation (3.13)) where C is the same defined in the previous section.

R CV (A) = W T CW (3.13)
Last, the energy functional is also a quadratic form of the weights (Equation 3.14).

E n ( A) = ∫ Ω d ∑ i=1 d ∑ j=1 ( p ∑ k=1 w k ∂ 2 m (k) |Zn (x) ∂x i ∂x j ) 2 dx = W T KW, (3.14) 
where:

K = [ k kl = d ∑ i=1 d ∑ j=1 ∫ Ω ( ∂ 2 m (k) |Zn (x) ∂x i ∂x j )( ∂ 2 m (l) |Zn (x) ∂x i ∂x j ) dx
] .

Let R = αE + βC + γK. The P P S of the aggregation is then a quadratic form of the weights W: P P S( A) = W T RW. The P P S-Optimal aggregation is then the aggregation that minimizes the P P S under the constraint n ∑ i=1 w i = 1. The solution is defined in Equation (3.15):

W ⋆ = R -1 1 1 ⊤ R -1 1 (3.15)
Similarly to Equation (3.8), the solution of Equation (3.15) may include negative weights as well as weights greater than one. Unlike, in [START_REF] Viana | Multiple surrogates: how crossvalidation errors can help us to obtain the best predictor[END_REF] in which the writers suggested to use only the diagonal terms in the matrix to ensure the positivity, here we tolerate such weights since this freedom is controlled by the BEF penalization. As a matter of fact, the BEF penalization prevents to artificial oscillations on the aggregated surrogate.

Illustrative example

We consider the example in Figure 3.1. The ensemble is the optimal trade-off defined by the P P S parameters. The ensemble is relatively smoother than the interpolating ones of the initial collection. Further, its CV error is lesser than the best prediction of this collection.

One shot metamodel selection: PPS-OS

We suppose that we have at hands p possible surrogate model builders where p is relatively small (typically p ≤ 35). One select the model that has the best P P S. In order to improve the result, we select the P P S-Optimal ensemble. We consider this procedure (described in Algorithm 1) as a model selection algorithm. Notice that the aggregation does not

P P S-based Genetic Aggregation for model selection : (P P S-GA)

As discussed in the previous section, the use of P P S to perform model selection is straightforward if the number of the available surrogate model is moderate. In that case, one can consider a weighted P P S-Optimal aggregation of all the possible surrogate models. However, there are many types of surrogate models and each type has several possible settings. For instance, to tune a universal kriging surrogate model, there are various possible choices for covariance function and trend function. Consequently, one cannot evaluate the P P S for all the possible combinations. Even with a good selection criterion, one need to explore the space of available surrogate models to select the best one.

Gorissen et al. [START_REF] Gorissen | Evolutionary model type selection for global surrogate modeling[END_REF] proposed an evolutionary algorithm to perform surrogate model selection and to explore the space of surrogate models. The surrogate models are considered as the individuals of the population. The settings of the surrogate models are considered as the genetic information of the individuals. The mutation and cross-over operators between two surrogate models of the same type are performed by modifying or exchanging the surrogate models settings. Further, they generate an equally weighted surrogate model ensemble when the cross-over is between two surrogate models of different types. Their algorithm uses the island model of evolutionary algorithms.

We now introduce our selection algorithm based on the genetic aggregation called P P S-GA. Similarly to [START_REF] Gorissen | Evolutionary model type selection for global surrogate modeling[END_REF]'s heuristic, the mutation and cross-over operators are performed over surrogate model builders' settings. In our algorithm, all the aggregation weights are now optimized according to the P P S. Moreover, we add new aggregations at each iteration. The members of these aggregations are generated randomly. Further, we do not adopt the island model. We consider that the heterogeneous set of surrogate model builders "lives" together in the same space. The selection method is designed to conserve the diversity.

In our implementation, we consider several surrogate types with various settings: Kriging, moving least squares, polynomial regression and support vector machines regression. P P S-GA has another interesting property. It is easy to enrich the set of surrogate model builders. In fact, the algorithm does not require any particular assumption. It is in part due to the universality of P P S. 

Benchmark problems

In order to check the efficiency of P P S-OS and P P S-GA, we tested their performances on a benchmark of 15 functions (see Table 3.1 and formula given in Appendix. 3.8).

For each function, we generated 10 different optimized maximin Latin hypercube sampling (LHS) [START_REF] Mckay | Comparison of three methods for selecting values of input variables in the analysis of output from a computer code[END_REF] of size N . We generated an extra test set of size n t = 1000 × N by a fast optimized LHS algorithm [START_REF] Viana | An algorithm for fast optimal latin hypercube design of experiments[END_REF]. We use the RM SE criterion (Equation (3.16)) to evaluate the performances on the set of verification points.

RM SE = 1 n t nt ∑ i=1 (y i -y i ) 2 (3.16)
For each function, we compare the performance of the selection algorithms (P P S-OS and P P S-GA) to the performances of 4 witness surrogate models: a) A kriging surrogate model using an an-isotropic Matérn 5/2 kernel and a linear trend function.

b) A support vector regression using a Gaussian kernel and ϵ-regression paradigm. 

Results

We display the results of the benchmark in Table 3 The results show the efficiency of the selection algorithms: the models selected by P P S-OS and P P S-GA outperform each individual surrogate models in the predictive capabilities for at least one function. Generally, the RMSE of the selected surrogates is generally either the best or close to the best one.

P P S-based ensembles

We also use the same test bench to compare the P P S-optimal ensemble, the OW S ensemble and the P W S ensemble with α = 0.05 and β = -1. Here, we have at hands 10 surrogate models and we compute the weights by these three different techniques. The results are given in Figure 3.17. In order to display all the results in the same figure, we have rescaled the values of all the bench functions in [0,1]. For these functions, we can notice how the different components of the P P S act together to select a convenient surrogate model in different scenarios. In fact, the results highlight the effect of each component. Obviously, neither a single criterion nor any combination of two criteria is better than P P S in all the cases. This is due to:
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• Any interpolating surrogate model is MSE-optimal. It is a misleading criterion to the overall errors.

• CV is a convenient estimate of the predictive capabilities. But, it is a pessimistic one.

We also study the choice of the values of the parameters of the P P S on the benchmark. We used ten surrogate models and we computed the sum of RMSE for each value of β and γ, α being fixed to 1. Let (β ⋆ , γ ⋆ ) denotes the global minimum. We display the contour plot of the sum of mean square errors (MSE) in Figure 3.22. Notice that the proposed values of Section 3.2 (1, 0.5, 0.25), are close to the optimum. Further, they give 

• • • • • • • • • • 1 2 3 4

Conclusion

In this paper, we propose a new selection criterion called the penalized predictive score.

P P S can be computed for all the types of surrogate models. By construction, P P S is especially suitable for functions that have specific characteristics such as regularity and smoothness. Generally these characteristics are implicitly expected with the metamodeling framework. We showed also that it enables the construction of relevant ensembles. The P P S-optimal ensemble are easily computed and avoid over-fitting.

We study also two surrogate model selection schemes based on the P P S. The first one compute the P P S-optimal ensemble rather than selecting one surrogate model. The second one is based on a evolutionary framework that enables the exploration of the space of surrogate models. Tests shows that the proposed algorithms give very good results. It remains important to notice that this algorithm does not necessarily give an accurate approximation in all the cases. For instance, the algorithm will fail if we use a small amount of observations for a highly nonlinear behavior. It aims at selecting the best surrogate among the possible choices. Assessing the level of confidence of a prediction is left for future research. 

For x = (r w , r, T u , H u , T l , H l , L, K w ) f 2 (x) = 2πT u (H u -H l ) ln( r rw ) ( 1 + 2LTu ln( r rw )r 2 w Kw + Tu T l ) (3.18) 3/ Dette & Pepelyshev (2010a): Parameters: for all i = 1, . . . , 8 , x i ∈ [0, 1] f 3 (x) = 4(x 1 -2 + 8x 2 -8x 2 2 ) 2 + (3 -4x 2 ) 2 + 16 √ x 3 + 1(2x 3 -1) 2 + 8 ∑ i=4 i ln(1 + i ∑ j=3 x j ) (3.19)
4/ Piston simulation function:

Parameters: M ∈ [30, 60], S ∈ [0.005, 0.020], V 0 ∈ [0.002, 0.010], k ∈ [1, 5] × 10 3 , P 0 ∈ [9, 11] × 10 4 , T a ∈ [290, 296], T 0 ∈ [340, 360] f 4 (x) = 2π √ M k + S 2 P 0 V 0 T 0 Ta V 2 (3.20)
where:

V = S 2k 
( √ A 2 + 4k P 0 V 0 T 0 T a -A
) and 

A = P 0 S + 19.62M - kV 0 S .

5/ OTL circuit function: Parameters

: R b1 ∈ [50, 150], R b2 ∈ [25, 70], R f ∈ [0.5, 3], R c1 ∈ [1.2, 2.5], R c1 ∈ [0.25, 1.2], β ∈ [50, 300] f 5 (R, β) = ( 12R b2 R b1 +R b2 + 0.74)β(R c2 + 9) β(R c2 + 9) + R f + 11.35R f β(R c2 + 9) + R f + 0.75R f β(R c2 + 9) (β(R c2 + 9) + R f )R c1
f 9 (x) = 4(x 1 -2 + 8x 2 -8x 2 2 ) 2 + (3 -4x 2 ) 2 + 16 √ x 3 + 1(2x 3 -1) 2 (3.22)
10/ Lim non-polynomial function: Parameters:

x 1 , x 2 ∈ [0, 1] f 10 (x) = 1 6 [(30 + 5x 1 sin(5x 1 ))(4 + exp(-5x 2 )) -100]
11/ Currin exponential function: Parameters:

x 1 , x 2 ∈ [0, 1] f 11 (x) = [1 -exp(- 1 2x 2 )] × 2300x 3 1 + 1900x 2 1 + 2092x 1 + 60 100x 3 1 + 500x 2 1 + 4x 1 + 20 (3.23)
12/ Franke function: Parameters:

x 1 , x 2 ∈ [0, 1] f 12 (x) = 0.75 exp(- (9x 1 -2) 2 + (9x 2 -2) 2 4 ) + 0.75 exp(- (9x 1 + 2) 2 49 - 9x 2 + 1 10 ) + 0.5 exp(- (9x 1 -7) 2 4 - (9x 2 -3) 2 4 ) + 0.2 exp(-(9x 1 -4) 2 -(9x 2 -7) 2 ) (3.24)
13/ Gramacy & Lee (2008) function: Parameters: 

x 1 , x 2 ∈ [-2, 6] f 13 (x) = x 1 exp(-x 2 1 -x 2 2 ) 14/ Sasena function: Parameters: x 1 , x 2 ∈ [0.0, 5] f 14 (x) = 2 + 0.01(x 2 -x 2 1 ) 2 + (1 -x 1 ) 2 + 2(2 -x 2 ) 2 + 7 sin(0.5x 1 ) sin(0.7x 1 x 2 ) ( 3 
f 15 (x) = sin(10πx) 2x + (x -1) 4 .

Introduction

Surrogate modeling techniques are widely used and studied in engineering and research. Their main purpose is to replace an expensive-to-evaluate function s by a simple response surface ŝ also called surrogate model or meta-model. Notice that s can be a computationintensive simulation code. These surrogate models are based on a given training set of n observations z j = (x j , y j ) where 1 ≤ j ≤ n and y j = s(x j ). The accuracy of the surrogate model relies, inter alia, on the relevance of the training set. The aim of surrogate modeling is generally to estimate some features of the function s using ŝ. Of course one is looking for the best trade-off between a good accuracy of the feature estimation and the number of calls of s. Consequently, the design of experiments (DOE), that is the sampling of (x j ) 1≤j≤n , is a crucial step and an active research field.

There are two ways to sample: either drawing the training set (x j ) 1≤j≤n at once or building it sequentially. Among the sequential techniques, some are based on surrogate models. They rely on the feature of s that one wishes to estimate. Popular examples are the EGO [START_REF] Jones | Efficient global optimization of expensive black-box functions[END_REF] and the Stepwise Uncertainty Reduction (SUR) [BGL + 12]. These two methods use Gaussian process regression also called kriging model. It is a widely used surrogate modeling technique. Its popularity is mainly due to its statistical nature and properties. Indeed, it is a Bayesian inference technique for functions. In this stochastic frame, it provides an estimate of the prediction error distribution. This distribution is the main tool in Gaussian surrogate sequential designs. For instance, it allows the introduction and the computation of different sampling criteria such as the Expected Improvement (EI) [START_REF] Jones | Efficient global optimization of expensive black-box functions[END_REF] or the Expected Feasibility (EF) [BES + 08].

Away from the Gaussian case, many surrogate models are also available and useful. Notice that none of them including the Gaussian process surrogate model are the best in all circumstances [START_REF] Gorissen | Evolutionary model type selection for global surrogate modeling[END_REF]. Classical surrogate models are for instance support vector machine [START_REF] Smola | A tutorial on support vector regression[END_REF], linear regression [START_REF] Hunter | Statistics for experimenters: an introduction to design, data analysis, and model building[END_REF], moving least squares [START_REF] Lancaster | Surfaces generated by moving least squares methods[END_REF]. More recently a mixture of surrogates has been considered in [START_REF] Viana | Multiple surrogates: how crossvalidation errors can help us to obtain the best predictor[END_REF][START_REF] Goel | Ensemble of surrogates[END_REF]. Nevertheless, these methods are generally not naturally embeddable in some stochastic frame. Hence, they do not provide any prediction error distribution. To overcome this drawback, several empirical design techniques have been discussed in the literature. These techniques are generally based on resampling methods such as bootstrap, jackknife, or cross-validation. For instance, Gazut et al. [START_REF] Gazut | Towards the optimal design of numerical experiments[END_REF] and Jin et al. [START_REF] Jin | On sequential sampling for global metamodeling in engineering design[END_REF] consider a population of surrogate models constructed by resampling the available data using bootstrap or cross-validation.

Then, they compute the empirical variance of the predictions of these surrogate models. Finally, they sample iteratively the point that maximizes the empirical variance in order to improve the accuracy of the prediction. To perform optimization, Kleijnen et al. [START_REF] Kleijnen | Expected improvement in efficient global optimization through bootstrapped kriging[END_REF] use a bootstrapped kriging variance instead of the kriging variance to compute the expected improvement. Their algorithm consists in maximizing the expected improvement computed through bootstrapped kriging variance. However, most of these resampling method-based design techniques lead to clustered designs [ASA + 13, JCS02].

In this paper, we give a general way to build an empirical prediction distribution allowing sequential design strategies in a very broad frame. Its support is the set of all the predictions obtained by the cross-validation surrogate models. The novelty of our approach is that it provides a prediction uncertainty distribution. This allows a large set of sampling criteria.

The paper is organized as follows. We start by presenting in Section 4.2 the background and notations. In Section 4.3 we introduce the Universal Prediction (UP) empirical distribution. In Sections 4.4 and 4.5, we use and study features estimation and the corresponding sampling schemes built on the UP empirical distribution. Section 4.4 is devoted to the enhancement of the overall model accuracy. Section 4.5 concerns optimization. In Section 4.6, we study a real life industrial case implementing the methodology developed in Section 4.4. Section 4.7 deals with the inversion problem. In Section 4.8, we conclude and discuss the possible extensions of our work. All proofs are postponed to Section 4.9.

Background and notations

General notation

To begin with, let s denote a real-valued function defined on X, a nonempty compact subset of the Euclidean space R p (p ∈ N ⋆ ). In order to estimate s, we have at hand a sample of size n (n ≥ 2):

X n = ( x 1 , . . . , x n ) ⊤ with x j ∈ X, j ∈ 1; n and Y n = ( y 1 , . . . , y n ) ⊤ where y j = s(x j ) for j ∈ 1; n . We note Y n = s(X n ).
Let Z n denote the observations: Z n := {(x j , y j ), j ∈ 1; n }. Using Z n , we build a surrogate model ŝn that mimics the behaviour of s. For example, ŝn can be a second order polynomial regression model. For i ∈ {1 . . . n}, we set Z n,-i := {(x j , y j ), j = 1, . . . , n, j ̸ = i} and so ŝn,-i is the surrogate model obtained by using only the dataset Z n,-i . We will call ŝn the master surrogate model and (ŝ n,-i ) i=1...n its sub-models.

Further, let d(., .) denote a given distance on R p (typically the Euclidean one). For

x ∈ X and A ⊂ X, we set:

d A (x) = inf{d(x, x ′ ) : x ′ ∈ A} and if A = {x ′ 1 , . . . , x ′ m } is finite (m ∈ N ⋆ ), for i ∈ 1, . . . , m let A -i denote {x ′ j , j = 1 . . . m, j ̸ = i}. Finally, we set d(A) = max{d A -i (x ′ i ) : i = 1, .
. . , m}, the largest distance of an element of A to its nearest neighbor.

Cross-validation

Training an algorithm and evaluating its statistical performances on the same data yields an optimistic result [START_REF] Arlot | A survey of cross-validation procedures for model selection[END_REF]. It is well known that it is easy to over-fit the data by including too many degrees of freedom and so inflate the fit statistics. The idea behind Cross-validation (CV) is to estimate the risk of an algorithm splitting the dataset once or several times. One part of the data (the training set) is used for training and the remaining one (the validation set) is used for estimating the risk of the algorithm. Simple validation or hold-out [START_REF] Devroye | Distribution-free performance bounds for potential function rules[END_REF] is hence a cross-validation technique. It relies on one splitting of the data. Then one set is used as training set and the second one is used as validation set. Some other CV techniques consist in a repetitive generation of hold-out estimator with different data splitting [START_REF] Geisser | The predictive sample reuse method with applications[END_REF]. One can cite, for instance, the Leave-One-Out Cross-Validation (LOO-CV) and the K-Fold Cross-Validation (KFCV). KFCV consists in dividing the data into k subsets. Each subset plays the role of validation set while the remaining k -1 subsets are used together as the training set. LOO-CV method is a particular case of KFCV with k = n.

For i = 1, . . . , n, the LOO error is ε i = ŝn,-i (x i )y i where the sub-models ŝn,-i are introduced in paragraph 4.2.1. In our study, we are interested in the distribution of the local predictor for all x ∈ X (x is not necessarily a design point). As explained in the next section, the CV paradigm provides sub-models allowing the definition of a local uncertainty measure for the master surrogate model ŝn . This distribution is estimated by using LOO-CV predictions. This is one of the easiest ways to build an uncertainty measure based on resampling.

Universal Prediction distribution 4.3.1 Overview

As discussed in the previous section, cross-validation is used as a method for estimating the prediction error of a given model. In our case, we introduce a novel use of crossvalidation in order to estimate the local uncertainty of a surrogate model prediction. Hence, for a given surrogate model ŝ and for any x ∈ X, ŝn,-1 (x), . . . , ŝn,-n (x) define an empirical distribution of ŝ(x) at x. In the case of an interpolating surrogate model and a deterministic simulation code s, it is natural to enforce a zero variance at design points. Consequently, when predicting on a design point x i we have to neglect the prediction ŝn,-i . This can be achieved by introducing weights on the empirical distribution. These weights avoid the pessimistic sub-model predictions that might occur in a region while the global surrogate model fits the data well in that region.

Let

F (0) n,x = n ∑ i=1
w 0 i,n (x)δ ŝn,-i (x) (dy) be the weighted empirical distribution based on the n different predictions of the LOO-CV sub-models {ŝ n,-i (x)} 1≤i≤n and weighted by w 0 i,n (x) defined in Equation (4.1):

w 0 i,n (x) =    1 n -1 if x i ̸ = arg min{d(x, x j ), j = 1, . . . , n} 0 otherwise (4.1) 
For i = 1, . . . , n, let R i be the Voronoi cell of the point x i . The weights can be written as

w 0 i,n (x) = 1-1 R i (x) n ∑ j=1 (1-1 R j (x))
where 1 R i is the indicator function on R i . Such binary weights lead to unsmooth design criteria. In order to avoid this drawback, we smooth the weights. Direct smoothing based on convolution would lead to the computations of Voronoi cells. We prefer to use a simpler technique. Indeed, w 0 i,n (x) can be seen as a Nadaraya-Watson weight with the kernel 1 -1 R j (x) = 1 R i (x i ) -1 R j (x). Instead of the unsmooth indicator function 1 R i , we use the Gaussian kernel but other smooth kernels could also be used. This leads to the following weights:

w i,n (x) = 1 -e - d(x,x i ) 2 ρ 2 n ∑ j=1 ( 1 -e - d(x,x j ) 2 ρ 2 ) (4.2)
Notice that w i,n (x) increases with the distance between the i th design point x i and

x. In fact, the least weighted predictions is ŝn,-pnn(x) where p nn (x) is the index of the nearest design point to x. In general, the prediction ŝn,-i is locally less reliable in a neighborhood of x i . The proposed weights determine the local relative confidence level of a given sub-model predictions. The term "relative" means that the confidence level of one sub-model prediction is relative to the remaining sub-models predictions due to the normalization factor in Equation (4.2). The smoothing parameter ρ tunes the amount of uncertainty of ŝn,-i in a neighborhood of x i . Several options are possible to choose ρ. It can be either related to the distance of a point to its nearest neighbor or common for all the points. We suggest to use ρ ⋆ = d(X n ). Indeed, this is a well suited choice for practical cases.

Definition 8. The Universal Prediction distribution (UP distribution) is the weighted empirical distribution:

µ (n,x) (dy) = n ∑ i=1 w i,n (x)δ ŝn,-i (x) (dy). (4.3)
This probability measure is nothing more than the empirical distribution of all the predictions provided by cross-validation sub-models weighted by local smoothed masses. Definition 9. For x ∈ X we call σ2 n (x) (Equation (4.5)) the local UP variance and mn (x) (Equation (4.4)) the UP expected value.

mn (x) = ∫ yµ (n,x) (dy) = n ∑ i=1 w i,n (x)ŝ n,-i (x) (4.4) σ2 n (x) = ∫ (y -mn (x)) 2 µ (n,x) (dy) = n ∑ i=1 w i,n (x)(ŝ n,-i (x) -mn (x)) 2 (4.5)

Illustrative example

Let us consider the Viana function defined over [-3, 3] and Matérn 5/2 covariance function ŝ and a SVM regression [START_REF] Smola | A tutorial on support vector regression[END_REF]. We display in Figure 4.1 the design points, the cross-validation sub-models predictions ŝn,-i , i = 1, . . . , 7 and the master model prediction ŝn of each surrogate model.

f (x) = 10 cos(2x) + 15 -5x + x 2 50 (4.6) Let Z n = (X n , Y n ) be the design of experiments such that X n = (x 1 = -2.4, x 2 , = -1.2, x 3 = 0, x 4 = 1.2, x 5 = 1.4, x 6 = 2.
Notice that in the interval [1, 3] (where we have 4 design points) the discrepancy between the master model and the CV sub-models predictions is smaller than in the remaining space. Moreover, we displayed horizontally the UP distribution at x a = -1.8 and x b = 0.2 to illustrate the weighting effect. One can notice that:

• At x a the least weighted predictions are ŝn,-1 (x a ) and ŝn,-2 (x a ). These predictions do not use the two closest design points to x a : (x 1 , respectively x 2 ).

• At x b , ŝn,-3 (x b ) is the least weighted prediction.

Furthermore, we display in Figure 4.2 the master model prediction and the region delimited by ŝn (x) + 3σ n (x) and ŝn (x) -3σ n (x). Contrary to the Gaussian case, this region cannot be interpreted as the 99.7% traditional prediction interval. Nevertheless, it can be interpreted as a prediction interval with level greater or equal than 88,8%. Indeed, Chebyshev's inequality states that for any squared integrable random variable X and k > 0, Pr(|X -µ| ≥ kσ) ≤ 1 k 2 . In particular, Pr(|X -µ| < 3σ) ≥ 1 -1 3 2 ≈ 88.8% Notice that here the UP standard deviation is null at design points for the interpolating surrogate model. In addition, its local maxima in the interval [1, 3] (where we have more design points density) are smaller than its maxima in the remaining space region.

UP distribution in action

Case of the kriging surrogate model Without loss of generality, let us consider the simple kriging framework. Recall that the conditional mean and variance are given by:

m(x) = k(x) ⊤ K -1 n Y n σ2 GP (x) = k(x, x) -k n (x) ⊤ K -1 n k n (x) (4.7) 
where k(x, x ′ ) is a covariance function, k n (x) is the vector (k(x, x 1 ), . . . , k(x, x n )) ⊤ and K n is the invertible matrix with entries k i,j = k(x i , x j ), for 1 ≤ i, j ≤ n.

Notice that for an interpolating kriging, both kriging variance and UP-variance vanish at design points. Further, kriging variance does not depend on the output values once the kernel parameters are fixed. However, UP-variance does. It is not everywhere smaller or larger than kriging variance. For instance, consider the toy example in Figure 4.3.

On one hand UP-variance is maximum in the interval [0.4, 1.3]. Indeed, if we remove one point in that region we significantly increase the variability of the sub-models predictions. Similarly, UP-variance is minimum in the nearly linear region [0, 0.4] ∪ [1. [START_REF]2 Mean and Standard deviation of RMSE[END_REF][START_REF]2 Examples of common kernels[END_REF].

Computational aspects When the number of design points is large, the computational cost can be a drawback. In fact, the construction time of the sub-models is O(nT ) where n is number of the data and T is the construction time of one sub-model. Nevertheless, for some surrogate models, closed form formula are available for the LOO-submodels predictions. For instance, Chevalier, Ginsbourger, and Emery [CGE14] presented a formula for kriging. Another way to reduce the computational cost is to use parallel computing where each sub-models is computed on a separate thread. Finally, we can replace the use of LOO-CV by the k-fold CV.

Sequential Refinement

In this section, we use the UP distribution to define an adaptive refinement technique called the Universal Prediction-based Surrogate Modeling Adaptive Refinement Technique UP-SMART.

Introduction

The main goal of sequential design is to minimize the number of calls of a computationally expensive function. Gaussian surrogate models [START_REF] Kleijnen | Kriging metamodeling in simulation: A review[END_REF] are widely used in adaptive design strategies. Indeed, Gaussian modeling gives a Bayesian framework for sequential design. In some cases, other surrogate models might be more accurate although they do not provide a theoretical framework for uncertainty assessment. We propose here a new universal strategy for adaptive sequential design of experiments. The technique is based on the UP distribution. So, it can be applied to any type of surrogate model.

In the literature, many strategies have been proposed to design the experiments (for an overview, the interested reader is referred to [GWE03,WS07,SK08]). Some strategies, such as Latin Hypercube Sampling (LHS) [START_REF] Mckay | Comparison of three methods for selecting values of input variables in the analysis of output from a computer code[END_REF], maximum entropy design [START_REF] Shewry | Maximum entropy sampling[END_REF], and maximin distance designs [START_REF] Johnson | Minimax and maximin distance designs[END_REF] are called one-shot sampling methods. These methods depend neither on the output values nor on the surrogate model. However, one would naturally expect to design more points in the regions with high nonlinear behavior. This intuition leads to adaptive strategies. A DOE approach is said to be adaptive when information from the experiments (inputs and responses) as well as information from surrogate models are used to select the location of the next point. [START_REF] Goel | Ensemble of surrogates[END_REF] use a set of surrogate models to identify regions of high uncertainty by computing the empirical standard deviation of the predictions of the ensemble members. Our method is based on the predictions of the CV sub-models. In the literature, several cross-validation-based techniques have been discussed. Li and Azarm [START_REF] Li | Maximum accumulative error sampling strategy for approximation of deterministic engineering simulations[END_REF] propose to add the design point that maximizes the Accumulative Error (AE). The AE on x ∈ X is computed as the sum of the LOO-CV errors on the design points weighted by influence factors. This method could lead to clustered samples. To avoid this effect, the authors [START_REF] Li | Approximation of multiresponse deterministic engineering simulations: a dependent metamodeling approach[END_REF] propose to add a threshold constraint in the maximization problem. Busby, Farmer, and Iske [START_REF] Busby | Hierarchical nonlinear approximation for experimental design and statistical data fitting[END_REF] propose a method based on a grid and CV. It affects the CV prediction errors at a design point to its containing cell in the grid. Then, an entropy approach is performed to add a new design point. More recently, Xu et al. [START_REF] Xu | A robust error-pursuing sequential sampling approach for global metamodeling based on voronoi diagram and cross validation[END_REF] suggest the use of a method based on Voronoi cells and CV. Kleijnen and Van Beers [START_REF] Kleijnen | Application-driven sequential designs for simulation experiments: Kriging metamodelling[END_REF] propose a method based on the Jackknife's pseudo values predictions variance. Jin, Chen, and Sudjianto [START_REF] Jin | On sequential sampling for global metamodeling in engineering design[END_REF] present a strategy that maximizes the product between the deviation of CV sub-models predictions with respect to the master model prediction and the distance to the design points. Aute et al. [ASA + 13] introduce the Space-Filling Cross-Validation Trade-off (SFCVT) approach. It consists in building a new surrogate model over LOO-CV errors and then add a point that maximizes the new surrogate model prediction under some space-filling constraints. In general cross-validation-based approaches tend to allocate points close to each other resulting in clustering [ASA + 13]. This is not desirable for deterministic simulations.

UP-SMART

The idea behind UP-SMART is to sample points where the UP distribution variance (Equation (4.5)) is maximal. Most of the CV-based sampling criteria use CV errors. Here, we use the local predictions of the CV sub-models. Moreover, notice that the UP variance is null on design points for interpolating surrogate models. Hence, UP-SMART does not naturally promote clustering.

However, σ2

n (x) can vanish even if x is not a design points. To overcome this drawback, we add a distance penalization. This leads to the UP-SMART sampling criterion γ n (Equation (4.8)).

γ n (x) = σ2 n (x) + δd Xn (x) (4.8)
where δ > 0 is called exploration parameter. One can set δ as a small percentage of the global variation of the output. UP-SMART is the adaptive refinement algorithm consisting in adding at step n a point x n+1 ∈ arg max x∈X (γ n (x)).

Performances on a set of test functions

In this subsection, we present the performance of the UP-SMART. We present first the used surrogate-models.

Used surrogate models

Kriging Kriging [START_REF] Matheron | Principles of geostatistics[END_REF] or Gaussian process regression is an interpolation method. Universal Kriging fits the data using a deterministic trend and governed by prior covariances. Let k(x, x ′ ), be a covariance function on X × X, and let (h i ) 1≤i≤p be the basis functions of the trend. Let us denote h(x) the vector (h 1 (x), .., h p (x)) ⊤ and let H be the matrix with entries h ij = h j (x i ), 1 ≤ i, j ≤ n. Furthermore, let k n (x) be the vector (k(x, x 1 ), .., k(x, x n )) ⊤ and K n the matrix with entries k i,j = k(x i , x j ), for 1 ≤ i, j ≤ n.

Then, the conditional mean of the Gaussian process with covariance k(x, x ′ ) and its variance are given in Equations ((4.9),(4.10))

m Gn (x) = h(x) ⊤ β + k n (x) ⊤ K -1 n (Y -H ⊤ β) (4.9) σ 2 GPn (x) = k(x, x) -k n (x) ⊤ K -1 n k n (x) ⊤ + V(x) ⊤ (H ⊤ K -1 n H) -1 V(x) (4.10) β = (H ⊤ K -1 n H) -1 H ⊤ K -1 n Y and V(x) = h(x) ⊤ + k n (x) ⊤ K -1 n H (4.11)
Note that the conditional mean is the prediction of the Gaussian process regression. Further, we used two kriging instances with different sampling schemes in our test bench. Both use constant trend function and a Matérn 5/2 covariance function. The first design is obtained by maximizing the UP distribution variance (Equation (4.5)). And the second one is obtained by maximizing the kriging variance σ 2 GPn (x).

Genetic aggregation

The genetic aggregation response surface is a method that aims at selecting the best response surface for a given design of experiments. It uses several surrogate models. In our examples, we use several kriging and SVM with different settings (kernels, trend functions…) and select the best weighted aggregation

Âm (x) = m ∑ l=1 ω l ŝ(l) (x).
(4.12) ŝ(l) are the surrogate models and the weights ω l are computed in order to minimize a criterion combining CV errors, surrogate model errors and a smoothness penalty. The use of such response surface, in this test bench, aims at checking the universality of the UP distribution: the fact that it can be applied for all types of surrogate models.

Test bench

In order to test the performances of the method we launched different refinement processes for the following set of test functions:

• Branin: f b (x 1 , x 2 ) = (x 2 -( 5.1 4π 2 )x 2 1 + ( 5 π )x 1 -6) 2 + 10(1 -( 1 8π 
)) cos(x 1 ) + 10.

• Six-hump camel:

f c (x 1 , x 2 ) = ( 4 -2.1x 2 1 + x 4 1 3 ) x 2 1 + x 1 x 2 + x 2 2 (4x 2 2 -4). • Hartmann6: f h (X = (x 1 , . . . , x 6 )) = - 4 ∑ i=1 α i exp ( - 6 ∑ j=0 A ij (x j -P ij ) 2
) . A,P and α can be found in [START_REF] Dixon | Towards global optimisation 2[END_REF].

• Viana: (Equation (4.6))

For each function we generated by optimal Latin hyper sampling design the number of initial design points n 0 , the number of refinement points N max . We also generated a set of N t test points and their response Z (t) = (X (t) , Y (t) ). The used values are available in Table 4.1.

We fixed n 0 in order to get non-accurate surrogate models at the first step. Usually, one follows the rule-of-thumb n 0 = 10 × d proposed in [START_REF] Loeppky | Choosing the sample size of a computer experiment: A practical guide[END_REF]. However, for Branin and Viana functions, this rule leads to a very good initial fit. Therefore, we choose lower values.

• Kriging variance-based refinement process (Equation (4.10)) as refinement criterion. • Kriging using the UP-SMART: UP-variance as refinement criterion (Equation (4.8)).

• Genetic aggregation using the UP-SMART: UP-variance as refinement criterion (Equation (4.8)).

Results

For each function, we compute at each iteration the Q squared (Q 2 ) of the predictions of the test set For these tests, the three techniques have comparable performances. The Q 2 converges for all of them. It appears that the UP variance criterion refinement process gives as good a result as the kriging variance criterion. In higher dimensions, we perform for each dimension (from 6 to 10) 10 tests with different initial design of experiments. The sequential algorithm based on kriging variance generates more points on the boundaries. This may be a good strategy when there is significant variability on the boundaries. On one hand consider the extended Rosenbrock function 4.7a. As the function varies significantly on the boundaries, UP-SMART and kriging variance strategies have comparable performances. On the other hand, when the function does not vary much on the boundaries such as Hartman 4.7b, UP-SMART outperforms the kriging variance strategy.

Z (t) where Q 2 (ŝ, Z (t) ) = 1 - N t ∑ i=1 (y (t) i -ŝ(x i (t) )) 2 N t ∑ i=1 (y ( 
The results show that: • UP-SMART gives for some problems better global response surface accuracy than the maximization of the kriging variance. This shows the usefulness of the method.

• UP-SMART is a universal method. Here, it has been applied with success to an aggregation of response surfaces. Such usage highlights the universality of the strategy.

Empirical Efficient Global optimization

In this section, we introduce UP distribution-based Efficient Global Optimization (UP-EGO) algorithm. This algorithm is an adaptation of the well known EGO algorithm.

Overview

Surrogate model-based optimization refers to the idea of speeding optimization processes using surrogate models. In this section, we present an adaptation of the well-known efficient global optimization (EGO) algorithm [START_REF] Jones | Efficient global optimization of expensive black-box functions[END_REF]. Our method is based on the weighted empirical distribution UP distribution. We show that asymptotically, the points generated by the algorithm are dense around the optimum. For EGO, such result was proved by Vazquez et al. [START_REF] Vazquez | Convergence properties of the expected improvement algorithm with fixed mean and covariance functions[END_REF].

The basic unconstrained surrogate model-based optimization scheme can be summarized as follows [QHS + 05]:

• Construct a surrogate model from a set of known data points.

• Define a sampling criterion that reflects a possible improvement.

• Optimize the criterion over the design space.

• Evaluate the true function at the criterion optimum/optima.

• Update the surrogate model using new data points.

• Iterate until convergence.

Several sampling criteria have been proposed to perform optimization. The Expected Improvement (EI) is one of the most popular criteria for surrogate model-based optimization. Sasena, Papalambros, and Goovaerts [SPG00] discussed some sampling criteria such as the threshold-bounded extreme, the regional extreme, the generalized expected improvement and the minimum surprises criterion. Almost all of the criteria are computed in practice within the frame of Gaussian processes. Consequently, among all possible response surfaces, Gaussian surrogate models are widely used in surrogate model-based optimization. Recently, Viana, Haftka, and Watson [START_REF] Viana | Efficient global optimization algorithm assisted by multiple surrogate techniques[END_REF] performed multiple surrogate-based optimization by importing Gaussian uncertainty estimate.

UP-EGO Algorithm

Here, we use the UP distribution to compute an empirical expected improvement. Then, we present an optimization algorithm similar to the original EGO algorithm that can be applied with any type of surrogate models. Without loss of generality, we consider the minimization problem: minimize

x∈X s(x)
Let (y(x)) x∈X be a Gaussian process model. m Gn and σ 2 GPn denote respectively the mean and the variance of the conditional process y(x) | Z n . Further, let y ⋆ n be the minimum value at step n when using observations

Z n = (z 1 , . . . , z n ) where z i = (x i , y i ). (y ⋆ n = min i=1..n y i ).
The EGO algorithm [START_REF] Jones | Efficient global optimization of expensive black-box functions[END_REF] uses the expected improvement EI n (Equation (4.13)) as sampling criterion:

EI n (x) = E[max(y ⋆ n -y(x), 0) | Z n ] (4.13) 
The EGO algorithm adds the point that maximizes EI n . Using some Gaussian computations, Equation (4.13) is equivalent to Equation (4.14).

EI n (x) =              (y ⋆ n -m Gn (x))Φ ( y ⋆ n -m Gn (x) σ GPn (x) ) + σ GPn (x)ϕ ( y ⋆ n -m Gn (x) σ GPn (x) ) if σ GPn (x) ̸ = 0, 0 otherwise (4.14)
We introduce a similar criterion based on the UP distribution. With the notations of Sections 4.2 and 4.3, EEI n (Equation (4.15)) is called the empirical expected improvement.

EEI n (x) = ∫ max(y ⋆ n -y, 0)µ (n,x) (dy) = ∑ i=1 w i,n (x) max(y ⋆ n -ŝn,-i (x), 0) (4.15)
We can remark that EEI n (x) can vanish even if x is not a design point. This is one of the limitations of the empirical UP distribution. To overcome this drawback, we suggest the use of the Universal Prediction Expected Improvement (UP-EI) κ n (Equation (4.16))

κ n (x) = EEI n (x) + ξ n (x) (4.16)
where ξ n (x) is a distance penalization. We use ξ n (x) = δd Xn (x) where δ > 0 is called the exploration parameter. One can set δ as a small percentage of the global variation of the output for less exploration. Greater value of δ means more exploration. δ fixes the wished trade-off between exploration and local search.

Furthermore, notice that κ n has the desirable property also verified by the usual EI:

Proposition 2. ∀n > 1, ∀Z n = (X n = (x 1 , . . . , x n ) ⊤ , Y n = s(X n )), if the used model interpolates the data then κ n (x i ) = 0, for i = 1, . . . , n
The UP distribution-based Efficient Global Optimization (UP-EGO) (Algorithm 3) consists in sampling at each iteration the point that maximize κ n . The point is then added to the set of observations and the surrogate model is updated. 

UP-EGO convergence

We first recall the context. X is a nonempty compact subset of the Euclidean space R p where p ∈ N ⋆ . s is an expensive-to-evaluate function. The weights of the UP distribution are computed as in Equation (4.2) with ρ > 0 a fixed real parameter. Moreover, we consider the asymptotic behaviour of the algorithm so that, here, the number of iterations goes to infinity. Let x ⋆ ∈ arg min{s(x), x ∈ X} and ŝ be a continuous interpolating surrogate model bounded on X. Let Z n 0 = (X n 0 = (x 1 , . . . , x n 0 ) ⊤ , Y n 0 ) be the initial data. For all k > n 0 , x k denotes the point generated by the UP-EGO algorithm at step kn 0 . Let S m denote the set {x i , i ≤ m} and S = {x i , i > 0}. Finally, ∀m > n 0 we note κ m the UP-EI of ŝZm . We are going to prove that x ⋆ is adherent to the sequence S generated by the UP-EGO(ŝ) algorithm.

Lemma 1. ∃θ > 0, ∀m ≥ n 0 , ∀x ∈ X, ∀i ∈ 1, . . . , m, ∀n > m, w i,n (x) ≤ θd(x, x i ) 2 .

Definition 10. A surrogate model ŝ is called an interpolating surrogate model if for all

n ∈ N ⋆ and for all Z n = (X n , Y n ) ∈ X n × R n , ŝZn (x) = s(x) if x ∈ X n .
Definition 11. A surrogate model ŝ is called bounded on X if for all s a continuous function on X, ∃L, U , such that for all n > 1 and for all

Z n = (X n , Y n = s(X n )) ∈ X n × R n , ∀x ∈ X, L ≤ ŝZn (x) ≤ U Definition 12. A surrogate model ŝ is called continuous if ∀n 0 > 1 ∀x ∈ X ∀ε > 0, ∃δ > 0, ∀n ≥ n 0 , ∀Z n = (X n , Y n ) ∈ X n × R n , ∀x ′ ∈ X, d(x, x ′ ) < δ =⇒ |ŝ Zn (x) -ŝZn (x ′ )| < ε
Theorem 2. Let s be a real function defined on X and let x ⋆ ∈ arg min{s(x), x ∈ X}. If ŝ is an interpolating continuous surrogate model bounded on X, then x ⋆ is adherent to the sequence of points S generated by UP-EGO(ŝ).

The proofs (Section 4.9) show that the exploration parameter is important for this theoretical result. In our implementation, we scale the input spaces to be the hypercube [ -1, 1] and we set δ to 0.005% of the output variation. Hence, the exploratory effect only slightly impacts the UP-EI criterion in practical cases.

Numerical examples

Let us consider the set of test functions (Table 4.2). We launched the optimization process for these functions with three different optimization algorithms:

• EGO [START_REF] Jones | Efficient global optimization of expensive black-box functions[END_REF]: Implementation of the R package DiceOptim [RGD12] using the default parameters.

• UP-EGO algorithm applied to a universal kriging surrogate model ŝk that uses Matérn 5/2 covariance function and a constant trend function. We denote this algorithm UP-EGO( ŝk )

• UP-EGO algorithm applied to the genetic aggregation ŝa . It is then denoted UP-EGO( ŝa ).

For each function f (i) , we launched each optimization process for N (i) max iterations starting with N seed = 20 different initial design of experiments of size n (i) 0 generated by an optimal space-filling sampling. The results are given using boxplots in Appendix 4.11. We also display the mean best value evolution in Figure 4.8.

The results shows that the UP-EGO algorithms give better results than the EGO algorithm for Branin and Camel functions. These cases illustrate the efficiency of the method. Moreover, for Ackley and Harmtann6 functions the best results are given by UP-EGO using the genetic aggregation. Even if this is related to the nature of the surrogate model, it underlines the efficient contribution of the universality of UP-EGO. Further, let us focus on the boxplots of the last iterations of Figures 4.11 The simulations are computed within ANSYS Workbench environment and we used DesignXplorer to perform surrogate-modeling. We started the study using 9 design points generated by a central composite design. We produced also a set of N t = 80 test points

Z t = (X t = (x (t) 1 ), . . . , x (t) Nt ), Y t = (y (t) 1 ), . . . , y (t) 
Nt )). We launched UP-SMART applied to the genetic aggregation response surface (GARS) in order to generate 10 suitable design points and a kriging-based refinement strategy. The genetic aggregation response surface (GARS) developed by DesignXplorer creates a mixture of surrogate models including support vector machine regression, Gaussian process regression, moving Least Squares and polynomial regression. We computed the root mean square error (Equation (4.17)), the relative root mean square error (Equation (4.18)) and the relative average absolute error (Equation (4.19)) before and after launching the refinement processes. We give in Table 4.3 the obtained quality measures for the temperature spread output.

RM SE

Z (t) (ŝ) = 1 N t Nt ∑ i=1 (y (t) i -ŝ(x i (t) )) 2 (4.17) RRM SE Z (t) (ŝ) = 1 N t Nt ∑ i=1 ( y (t) i -ŝ(x i (t) ) y (t) i ) 2 (4.18) RAAE Z (t) (ŝ) = 1 N t Nt ∑ i=1 | y (t) i -ŝ(x i (t) ) | σ Y (4.19)
In fact, the pressure loss is nearly linear and every method gives a good approximation.

The results show that UP-SMART gives a better approximation. Here, it is used with a genetic aggregation of several response surface. Even if the good quality may be due to the response surface itself, it highlights the fact that UP-SMART made the use of such surrogate model-based refinement strategy possible.

Empirical Inversion

Empirical inversion criteria adaptation

Inversion approaches consist in the estimation of contour lines, excursion sets or probability of failure. These techniques are specially used in constrained optimization and reliability analysis.

Several iterative sampling strategies have been proposed to handle these problems. The empirical distribution µ n,x can be used for inversion problems. In fact, we can compute most of the well-known criteria such as the Bichon's criterion [BES + 08] or the Ranjan's criterion [START_REF] Ranjan | Sequential experiment design for contour estimation from complex computer codes[END_REF] using the UP distribution. In this section, we discuss some of these criteria: the targeted mean square error T M SE [PGR + 10], Bichon [BES + 08] and the Ranjan criteria [START_REF] Ranjan | Sequential experiment design for contour estimation from complex computer codes[END_REF]. The reader can refer to Chevalier, Picheny, and Ginsbourger [START_REF] Chevalier | Kriginv: An efficient and user-friendly implementation of batch-sequential inversion strategies based on kriging[END_REF] for an overview.

Let us consider the contour line estimation problem : let T be a fixed threshold. We are interested in enhancing the surrogate model accuracy in {x ∈ X, s(x) = T } and in its neighborhood.

Targeted MSE (TMSE)

The Targeted Mean Square Error (TMSE) [PGR + 10] aims at decreasing the mean square error where the kriging prediction is close to T.

It is the probability that the response lies inside the interval [ Tε, T + ε ] where the parameter ε > 0 tunes the size of the window around the threshold T . High values make the criterion more exploratory while low values concentrate the evaluation around the contour line.

We can compute an estimation of the value of this criterion using the UP distribution (Equation (4.20)).

T M SE T,n (x) = σ2 n (x) n ∑ i=1 w i,n (x)1 [ T -ε,T +ε ] ( ŝn,-i (x) ) = σ2 n (x) n ∑ i=1 w i,n (x)1 [ -ε,ε ] ( ŝn,-i (x) -T ) (4.20)
Notice that the last criterion takes into account neither the variability of the predictions at x nor the magnitude of the distance between the predictions and T .

Bichon criterion

The expected feasibility defined in [BES + 08] aims at indicating how well the true value of the response is expected to be close to the threshold T .

The bounds are defined by ε x which is proportional to the kriging standard deviation σ(x). Bichon proposes using

ε x = 2σ(x) [BES + 08].
This criterion can be extended to the case of the UP distribution. We define in Equation (4.21) EF n the empirical Bichon's criterion where ε x is proportional to the empirical standard deviation σ2 n (x) (Equation (4.5)).

EF n (x) = n ∑ i=1 w i,n (x)(ε x -|T -ŝn,-i (x)|)1 [ -εx,εx ] (ŝ n,-i (x) -T ) (4.21) 
Ranjan criterion Ranjan et al. [START_REF] Ranjan | Sequential experiment design for contour estimation from complex computer codes[END_REF] proposed a criterion that quantifies the improvement I Ranjan (x) defined in Equation (4.22)

I Ranjan (x) = ( ε 2 x -(y(x) -T ) 2 ) 1 [-εx,εx] (y(x) -T ) (4.22)
where ε x = ασ(x), and α > 0. ε x defines the size of the neighborhood around the contour

T .
It is possible to compute the UP distribution-based Ranjan's criterion (Equation (4.23)). Note that we set ε x = ασ 2 n (x).

E [ I Ranjan (x) ] = n ∑ i=1 w i,n (x) ( ε 2 x -(ŝ n,-i (x) -T ) 2 ) 1 [-εx,εx] (ŝ n,-i (x) -T ) (4.23)

Discussion

The use of the pointwise criteria (Equations (4.20), (4.21), (4.23)) might face problems when the region of interest is relatively small to the prediction jumps. In fact, as the cumulative distribution function of the UP distribution is a step function, the probability of the prediction being inside an interval can vanish even if it is around the mean value.

For instance

µ n,x ( y(x) ∈ [T -ε, T + ε]
) can be zero. This is one of the drawbacks of the empirical distribution. Some regularization techniques are possible to overcome this problem. For instance, the technique that consists in defining the region of interest by a Gaussian density N (0, σ 2 ε ) [PGR + 10]. Let g ε be this Gaussian probability distribution function.

The new T M SE denoted T M SE

(2) T,n (x) criterion is then as in Equation (4.24).

T M SE

(2)

T,n (x) = n ∑ i=1 w i,n (x)g ε ( ŝn,-i (x) -T ) (4.24)
The use of the Gaussian density to define the targeted region seems more relevant when using the UP local variance. Similarly, we can apply the same method to the Ranjan's and Bichon's criteria.

Conclusion

To perform surrogate model-based sequential sampling, several relevant techniques require to quantify the prediction uncertainty associated to the model. Gaussian process regression provides directly this uncertainty quantification. This is the reason why Gaussian modeling is quite popular in sequential sampling. In this work, we defined a universal approach for uncertainty quantification that could be applied for any surrogate model. It is based on a weighted empirical probability measure supported by cross-validation sub-models predictions.

Hence, one could use this distribution to compute most of the classical sequential sampling criteria. As examples, we discussed sampling strategies for refinement, optimization and inversion. Further, we showed that, under some assumptions, the optimum is adherent to the sequence of points generated by the optimization algorithm UP-EGO. Moreover, the optimization and the refinement algorithms were successfully implemented and tested both on single and multiple surrogate models. We also discussed the adaptation of some inversion criteria. The main drawback of UP distribution is that it is supported by a finite number of points. To avoid this, we propose to regularize this probability measure. In a future work, we will study and implement such regularization scheme and extend its applications to other application such as: multi-objective constrained optimization and reliability based design optimization.

Proofs

We present in this section the proofs of Proposition 2, Lemma 1 and Theorem 2. Here, we use the notations of Section 4.5.3.

Proof of Proposition 2. Let

n > 1, Z n = (X n = (x 1 , . . . , x n ) ⊤ , Y n = s(X n ))
, and ŝ a model that interpolates the data i.e ∀i ∈ 1, . . . , n, ŝZn (x i ) = s(x i ) = y i .

First, we have ξ n (x i ) = δd Xn (x i ). Since x i ∈ X n then ξ n (x i ) = 0 . Further,

EEI n (x i ) = w i,n (x i ) max(y ⋆ n -ŝn,-i (x i ), 0) + n ∑ j=1 j̸ =i w j,n (x i ) max(y ⋆ n -y i , 0). Notice that • w i,n (x i ) = 0 • max(y ⋆ n -y i , 0) = 0 Then EEI n (x i ) = 0. Finally, κ n (x i ) = EEI n (x i ) + ξ n (x i ) = 0.
Proof of Lemma 1. Let us note :

• ϕ ρ (x, x ′ ) = 1 -e - d((x,x ′ )) 2 ρ 2 . • w i,n (x) = ϕρ(x,x i ) n ∑ k=1 ϕρ(x,x k ) . Convex inequality gives ∀a ∈ R, 1 -e -a < a then ϕ ρ (x, x k ) ≤ d((x,x k )) 2 ρ 2 . Further, let x k 1 , x k 2 be two different design points of X n 0 , ∀x ∈ X, max i∈{1,2} {d(x, x k i )} ≥ d(x k 1 ,x k 2 ) 2
otherwise the triangular inequality would be violated. Consequently,

∀n > n 0 , n ∑ k=1 ϕ ρ (x, x k ) ≥ ϕ ρ (x, x k 1 ) + ϕ ρ (x, x k 2 ) ≥ ϕ 2ρ (x k 1 , x k 2 ) > 0 ∀n > n 0 , ∀x ∈ X : w i,n (x) = ϕ i,n (x) n ∑ k=1 ϕ k,n (x) ≤ ϕ i,n (x) ϕ 2ρ (x k 1 , x k 2 ) ≤ d((x, x i )) 2 ρ 2 ϕ 2ρ (x k 1 , x k 2 ) Considering θ = 1 ρ 2 ϕ 2ρ (x k 1 ,x k 2 ) ends the proof.
Proof of Theorem 2. X is compact so S has a convergent sub-sequence in X N (Bolzano-Weierstrass theorem). Let (x ψ(n) ) denote that sub-sequence and x ∞ ∈ X its limit. We can assume by considering a sub-sequence of ψ and using the continuity of the surrogate model ŝ that:

• d(x ∞ , x ψ(n) ) ≤ 1 n for all n > 0 • ∃ν n ≥ d(x ∞ , x ψ(n) ) such that ∀x ′ ∈ X, d(x ′ , x ∞ ) ≤ ν n =⇒ |ŝ m,-i (x ∞ ) -ŝm,-i (x ′ )| ≤ 1 n , ∀i ∈ 1, . . . , m
, where m > n 0 . For all k > 1, we note v k = ψ(k + 1) -1, the step at which UP-EGO algorithm selects the point x ψ(k+1) . So,

κ v k (x ψ(k+1) ) = max x∈X {κ v k (x)}. Notice first that for all n > 0, x ψ(n) , x ψ(n+1) ∈ B(x ∞ , 1 n ) where B(x ∞ , 1 n )
is the closed ball of center x ∞ and radius 1 n . So:

ξ vn (x ψ(n+1) ) = δd Xv n (x ψ(n+1) ) ≤ δd(x ψ(n) , x ψ(n+1) ) ≤ 2δ n (i) According to Lemma 1, w ψ(n),vn ≤ θ ( d(x ψ(n+1) , x ψ(n) ) ) 2 so w ψ(n),vn ≤ 4θ n 2 . Consequently: w ψ(n),vn (x ψ(n+1) ) max(y ⋆ vn -ŝvn,-ψ(n) (x ψ(n+1) ), 0) ≤ 4θ(U -L) n 2 (ii) Further, ∀i ∈ 1, . . . , v n , i ̸ = ψ(n), ŝvn,-i (x ψ(n) ) = y ψ(n) since the surrogate model is an interpolating one. hence ŝvn,-i (x ψ(n) ) ≥ y ⋆ vn and so max(y ⋆ vn -ŝ vn,-i , 0) ≤ max(ŝ vn,-i (x ψ(n) )- ŝvn,-i (x ψ(n+1) ), 0) ≤ ŝvn,-i (x ψ(n) ) -ŝvn,-i (x ψ(n+1)
) . Triangular inequality gives: max(y ⋆ vnŝvn,-i , 0) ≤ ŝvn,-i (x ψ(n) )ŝvn,-i (x ∞ ) + ŝvn,-i (x ∞ )ŝvn,-i (x ψ(n+1) ) and finally:

max(y ⋆ vn -ŝvn,-i , 0) ≤ 2 n (iii)
We have:

κ vn (x ψ(n+1) ) = ξ vn (x ψ(n+1) ) + vn ∑ i=1 w i,vn (x ψ(n+1) ) max(y ⋆ vn -ŝvn,-i (x ψ(n+1) ), 0) = ξ vn (x ψ(n+1) ) + w ψ(n),vn (x ψ(n+1) ) max(y ⋆ vn -ŝvn,-ψ(n) (x ψ(n+1) ), 0) + vn ∑ i=1 i̸ =ψ(n) w i,vn (x ψ(n+1) ) max(y ⋆ vn -ŝvn,-i (x ψ(n+1) ), 0) ≤ 2δ n + 4θ(U -L) n 2 + 2 n
Considering (i),(ii) and (iii) :

κ vn (x ψ(n+1) ) ≤ 2δ n + 4θ(U -L) n 2 + 2 n
Notice that:

κ vn (x ψ(n+1) ) = max x∈X {κ vn (x)} and δd Sv n (x ⋆ ) = ξ vn (x ⋆ ) ≤ κ vn (x ⋆ ) ≤ κ vn (x ψ(n) ). Since lim n→∞ κ vn (x ψ(n+1) ) = 0 so lim n→∞ d Sv n (x ⋆ ) → 0.
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Appendix A: Optimization test results

In this section, we use boxplots to display the evolution of the best value of the optimization test bench. For each iteration, we display: left: EGO in light green, middle UP-EGO using kriging in light blue, right: UP-EGO using genetic aggregation in dark blue. 

Introduction

In design problems, the goal may be the estimation of a feature of an expensive blackbox function (optimum, probability of failure, level set, ...). Several methods have been proposed to achieve this goal. Nevertheless, they generally suffer from the curse of dimensionality. Thus, their usage is limited to functions depending on a moderate number of variables. Meanwhile, most of real life problems are complex and may involve a large number of variables.

Let us focus first on high-dimensional optimization problems. In this context, we look for a good approximation of a global minimum of an expensive-to-evaluate black-box function f : Ω = [0, 1] D → R using a limited number of evaluations of f . That is, we aim at approximating x ⋆ ∈ Ω such that:

x ⋆ ∈ arg min x∈Ω f (x) (5.1)
Bayesian optimization (BO) techniques have been successfully used in various problems [Moč82,JSW98,Jon01,Sas02,SV99]. These methods give interesting results when the number of evaluations of the function f is relatively low [START_REF] Hutter | Sequential model-based optimization for general algorithm configuration[END_REF]. They are generally limited to problems of moderate dimension, typically up to about 10 [WHZ + 16]. Here, we are particularly interested in the case where the dimension D is large and the number of influential variables d, also called effective dimension, is much smaller: d << D. In this case, there are different approaches to tackle the dimensionality problem.

A direct approach consists in first performing global sensitivity analysis. Then, the most influential variables are selected and used in the parametric study. Chen et al. [START_REF] Chen | Joint optimization and variable selection of high-dimensional Gaussian processes[END_REF] stated that "Variables selection and optimization have both been extensively studied separately from each other". Most of these methods are two-stage: First, the influential variables are selected and then optimization is performed on these influential variables. These strategies are generally computationally expensive. Furthermore, the set of selected variables does not take into account the new data. However, this new information may modify the results of the sensitivity analysis study. For an overview of global sensitivity analysis methods, one may refer to [START_REF] Iooss | A review on global sensitivity analysis methods[END_REF]. Some Bayesian optimization techniques are designed to handle the dimensionality problem. For instance, the method called Random EMbedding Bayesian Optimization (REMBO) selects randomly the subspace of influential variables [WHZ + 16, BGR15b]. The main strengths of REMBO are that the selected variables are linear combinations of the input variables and that it works for huge values of D. However, the effective dimension d must be specified.

In this paper, we propose a versatile sequential dimension reduction method. At each iteration, the effective dimension d is estimated and so should not be specified. Moreover, the design is sequentially generated in order to achieve jointly two goals. The first goal is the learning of the influential variables. The second one is the estimation of the optimum (in the optimization case). The algorithm selects the set of influential variable based on the values of the correlation lengths of Automatic Relevance Determination (ARD) covariance. We show theoretical results that support the intuition that large correlation lengths correspond to inactive variables.

The paper is organized as follows. Section 5.2 presents the background and the notations. Section 5.3 introduces the so-called Split-and-Doubt. The algorithm is based on theoretical results stated in Section 5.4. Finally, Section 5.5 illustrates the performance of the algorithm on various test functions. For readability, proofs are postponed to Section 5.6.

General notations and background

Gaussian Process Regression (GPR)

Kriging or Gaussian process regression (GPR) models predict the outputs of a function f : Ω = [0, 1] D → R, based on a set of n observations [START_REF] Stein | Interpolation of Spatial Data: Some Theory for Kriging[END_REF][START_REF] Rasmussen | Gaussian processes for machine learning[END_REF]. It is a widely used surrogate modeling technique. Its popularity is mainly due to its statistical nature and properties. Indeed, it is a Bayesian inference technique that provides an estimate of the prediction error distribution. This uncertainty is an efficient tool to construct strategies for various problems such as prediction refinement, optimization or inversion.

The GPR framework uses a centered real-valued Gaussian Process (GP) Y over Ω as a prior distribution for f . The predictions are given by the conditional distribution of Y given the observations y = (y 1 , . . . , y n ) ⊤ where y i = f (x (i) ) for 1 ≤ i ≤ n. We denote by

k θ : Ω × Ω → R the covariance function (or kernel) of Y : k θ (x, x ′ ) = Cov[Y (x), Y (x ′ )] ((x, x ′ ) ∈ Ω 2 ), by X = ( x (1) , . . . , x (n) ) ⊤
∈ Ω n the matrix of observation locations and by Z = ( X y ) the matrix of observation locations and values where x (i) = (x

(i) 1 , . . . , x (i) 

D

) for 1 ≤ i ≤ n. Without loss of generality, we consider the simple kriging framework. The a posteriori conditional mean m θ,Z and the a posteriori conditional variance σ 2 θ,Z are given by:

m θ,Z (x) = k θ (x, X) ⊤ K -1 θ y (5.2) σ 2 θ,Z (x) = k θ (x, x) -k θ (x, X) ⊤ K -1 θ k θ (x, X) (5.3) 
Here, k θ (x, X) is the vector (k θ (x, x (1) ), . . . , k θ (x, x (n) )) ⊤ and where K θ = k θ (X, X) is the invertible matrix with entries ( k θ (X, X)

) ij = k θ (x (i) , x (j) )
, for 1 ≤ i, j ≤ n. Several methods are used to select the covariance function. A common approach consists in assuming that the covariance function belongs to a parametric family. In this paper, we consider the Automatic Relevance Determination (ARD) kernels defined in (5.4). A review of covariance functions is given in [START_REF] Abrahamsen | A review of Gaussian random fields and correlation functions[END_REF].

k θ (x, y) = σ 2 D ∏ p=1 k ( d(x p , y p ) θ p )
, for x, y ∈ Ω.

(

Here, d(, ) is a distance on Ω × Ω and k : R → R is a fixed stationary covariance function. The hyper-parameters σ and θ 1 , . . . , θ D for i ∈ 1, . . . , n have to be estimated. The ARD kernels include most popular kernels such as the exponential kernel, the Matérn 5/2 kernel and the double exponential kernel.

The hyper-parameters of these parametric families can be estimated by maximum Likelihood (ML) or cross validation (CV). Both methods have interesting asymptotic properties [START_REF] Bachoc | Cross validation and maximum likelihood estimations of hyperparameters of Gaussian processes with model misspecification[END_REF][START_REF] Bachoc | Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes[END_REF][START_REF] Bachoc | Cross-validation estimation of covariance parameters under fixed-domain asymptotics[END_REF]. Nevertheless, when the number of observations is relatively low, the estimation can be misleading. These methods are also computationally demanding when the number of observations is large.

On one hand, estimating the correlation lengths by the maximum likelihood estimator gives the estimator θ ⋆ M LE ∈ arg max θ l Z (θ) where the likelihood l Z (θ) is given in (5.5).

l Z (θ) = 1 (2π) n/2 1 √ |k θ (X, X)| exp ( -y ⊤ k θ (X, X) -1 y ) . (5.5) 
On the other hand, the idea behind Cross-validation (CV) is to estimate the prediction errors by splitting the observations once or several times. One part is used as a test set while the remaining parts are used to construct the model. The Leave-One-Out Cross-Validation (LOO-CV) consists in dividing the n point into n subset of one point each. Then, each subset plays the role of test set while the remaining points are used together as the training set. Using Dubrule's formula [START_REF] Dubrule | Cross validation of kriging in a unique neighborhood[END_REF], the LOO-CV estimator is given in (5.6).

θ ⋆ CV ∈ arg min θ 1 n y ⊤ K -1 θ diag(K -1 θ ) -1 K -1 θ y (5.6)
For more insight on these estimators, one can refer to [START_REF] Bachoc | Estimation paramétrique de la fonction de covariance dans le modèle de Krigeage par processus Gaussiens: application à la quantification des incertitues en simulation numérique[END_REF].

Derivative based global sensitivity measures: DGSM

Sobol' and Kucherenko [START_REF] Sobol | On an alternative global sensitivity estimator[END_REF][START_REF] Sobol | Derivative based global sensitivity measures and their link with global sensitivity indices[END_REF] proposed the so-called Derivative-based Global Sensitivity Measures (DGSM) to estimate the influence of an input variable of a function

f : Ω = [0, 1] D → R.
For each variable χ i , the index ϑ i is the global energy of the corresponding partial derivatives.

ϑ i (f ) = ∫ Ω ( ∂f (x) ∂χ i
) 2 dx, i = 1, . . . , D.

(5.7)

DGSM provides a quantification of the influence of a single input on f . Indeed, assuming that f is of class C 1 , then χ i is not influential iff ∂f ∂χ i (x) = 0, ∀ x ∈ Ω iff ϑ i = 0. DGSM has recently shown its efficiency for the identification of non-influential inputs [START_REF] Roustant | Crossed-derivative based sensitivity measures for interaction screening[END_REF]. We further define the normalized DGSM ϑ in (5.8). ϑ i measures the influence of χ i with regard to the total energy.

ϑ i (f ) = ϑ i (f ) D ∑ p=1 ϑ p (f )
, i = 1, . . . , D.

(5.8)

The Split-and-Doubt Algorithm

Definitions

Variable splitting Let us consider the framework of a GPR using a stationary ARD kernel. Intuitively, large correlation lengths values correspond to inactive variables in the function. We prove this intuition in Proposition 3. The influential variables are selected in our algorithm according to the estimated value of their corresponding correlation lengths. We show also that the ML (and CV) estimator is able to assign asymptotically large correlation length value to the inactive variables (Propositions 5 and 6).

Let θ ⋆ = ( θ ⋆ 1 , .., θ ⋆ D ) be the ML estimation of the correlation lengths:

θ ⋆ ∈ arg max θ l Z (θ).
The influential variables are then selected according to the estimated value of their corresponding correlation lengths. We split the indices into a set of influential variables I M and a set of minor variables I m as follows:

• I M = {i; θ ⋆ i < T } • I m = {i; θ ⋆ i ≥ T }
where T ∈ R is a suitable threshold. Let d M (resp. d m ) be the size of I M (resp. I m ). We further call Ω m := [0, 1] dm the minor subspace, that is the space of minor variables and Ω M := [0, 1] d M the major subspace, that is the subspace of major variables. We will use the set notation: for a set I of {1, . . . , D}, x I will denote the vector extracted from

x with coordinates x i , i ∈ I. Hence, x I M (resp. x Im ) denotes the sub-vector of x whose coordinates are in the major (resp. minor) subspace. For simplicity, we will also write x = (x I M , x Im ), without specifying the re-ordering used to obtain x by gathering x I M and x Im .

Doubt

The doubt measures the influence of the variables from the minor subspace Ω m . It is a decreasing function of the correlation lengths. We will use it to question the variable splitting.

Definition 13 (Doubt). Let δ be a function associated with a variable splitting (I m , I M ) such that for all vector θ = (θ 1 , . . . , θ D ) ∈ R D :

δ(θ) = ∑ i∈Im max(θ -1 i -T -1 , 0).
Contrast Given two different correlation lengths θ (1) and θ (2) and a location x, the contrast measures the discrepancy between the corresponding predictions at x. It will be used to build a sequential design in the minor subspace.

Definition 14 (Prediction contrast). For a point x and two correlation lengths θ (1) and θ (2) , the prediction contrast P C(x, θ (1) , θ (2) ) is

P C(x, θ (1) , θ (2) ) = m θ (1) ,Z (x) -m θ (2)
,Z (x) .

The algorithm

The Split-and-Doubt algorithm performs a new variable selection at each iteration. It samples a point in two steps: a goal-oriented sampling in the major subspace and a sampling of the minor variables to question the variable selection done at the previous step.

The Split-and-Doubt corresponding to the optimization goal, with the expected improvement (EI) criterion [START_REF] Jones | Efficient global optimization of expensive black-box functions[END_REF] is described below:

Here, the algorithm is applied for optimization (Step 3). We used the Expected Improvement criterion (5.9).

EI Z (x) = E [ max(min i y i -Y (x), 0)|Z ] (5.9)
It is important to recall that it is here possible to use any other optimization criterion to sample x ⋆ M . We can use other criteria for other purposes such as contour estimation [PGR + 10,RBM08,BES + 08], probability of failure estimation [BGL + 12] or surrogate model refinement [START_REF] Busby | Hierarchical nonlinear approximation for experimental design and statistical data fitting[END_REF].

The settings of the algorithm are mainly the kernel k, the limit ℓ and the threshold T . Another hidden setting is the search space for the ML estimator. We use a Matérn 5/2 kernel and we set ℓ = erf( 1 ( θ ⋆ i ).

Remarks on the steps of the Split-and-Doubt algorithm

Remark on the doubt When the observations do not carry enough information, it is hard to estimate accurately the correlation lengths. The use of such values can lead to unsatisfactory results [START_REF] Forrester | Global optimization of deceptive functions with sparse sampling[END_REF][START_REF] Benassi | Robust Gaussian process-based global optimization using a fully Bayesian expected improvement criterion[END_REF]. In our algorithm, the estimated correlation lengths are used to select the major variables. So, it is important to always question the estimation. If this is done once and for all, poor estimation can lead to considering a major variable 

X ⊤ ← ( X ⊤ x (n+1)
) , y ⊤ ← (y ⊤ , y n+1 ) until this end condition; Result: Z = (X, y)

inactive. Therefore, we look for a "challenger kernel" at each iteration. Specifically, we are looking for correlation lengths that maximize the doubt and that are accepted by a likelihood ratio test. Indeed, this is why we limit the search space by a likelihood ratio deviation from the estimated correlation lengths θ ⋆ : Θ l = {θ; 2 ln (

l Z (θ) l Z ( θ ⋆ )
) < l}. Note that we used l = χ 2 (ℓ, d m ). Following [START_REF] Forrester | Global optimization of deceptive functions with sparse sampling[END_REF][START_REF] Chen | Joint optimization and variable selection of high-dimensional Gaussian processes[END_REF], the likelihood ratio test is compared to the χ 2 distribution to decide whether the correlation lengths are allowable or not.

Remark on the contrast Sampling the coordinates in the non-influential variables subspace x ⋆ M + Ω m aims at revealing the contrast between the maximum likelihood correlation lengths θ ⋆ and the challenger correlation lengths θ ′ . The main idea is to sample the point that helps either correcting the first estimation or reducing the allowable doubt space Θ in order to strengthen the belief in the estimated kernel.

We could have used an alternative direct approach. It consists in maximizing the likelihood ratio between two estimations of the correlation lengths in the future iterations.

Definition 15 (likelihood contrast). For a point x and two correlation lengths θ (1) and θ (2) , the likelihood contrast LC is: LC(x, θ (1) , θ (2) 

) = E [ ln ( L(θ (1) , Z ∪ (x, Y (x)))
L(θ (2) , Z ∪ (x, Y (x))

)

) ]
where

Y (x) ∼ N ( m θ 2 ,Z (x), ( σ θ 2 ,Z (x)) 2
) .

However, this approach is computationally more expensive. Therefore, we prefer to use the prediction contrast (Definition 14).

Example: Illustration of the contrast effect

We illustrate here how the Doubt/ Contrast strategy can help correcting an inaccurate variable splitting. To do so, let us consider the following example. Let f (x 1 , x 2 ) = cos(2πx 2 ). We assume that we have at hands four design points x (1) = (0, 2 3 ), x (2) = ( 1 3 , 0), x (3) = ( 23 , 1) and x (4) = (1, 1 3 ) and their corresponding responses

y 1 = y 4 = f (x (1) ) = f (x (4) ) = -0.5 and y 2 = y 3 = f (x (2) ) = f (x (3) ) = 1.
Here, the search space for the correlation lengths is [0.5, 10] 2 .

x i , tends to its maximum value 1 (resp. its minimum value 0). Then, we show that an infinite correlation length θ i can provide an infinite likelihood or a zero LOO mean square error, for the GP model, when the function f does not depend on x i .

We use the additional following notations throughout the section. For D, p, q ∈ N ⋆ , for a covariance function g on R D , for two p × D and q × D matrices X and Z, we denote by g(X, Z) be the p × q matrix defined [g(X, Z)] i,j = g(X i , Z j ) where M l is the line l of a matrix M . When d = 1, p = 1 or q = 1, we identify the corresponding matrices with vectors. We assume that for any p, d ∈ N, for any θ ∈ (0, ∞) D , for any p × d matrix X with two-by-two distinct lines, the matrix k θ (X, X) is invertible. Further, for any vector u, u -1 is obtained from u by removing the i th component of u.

Correlation lengths and derivative-based global sensitivity measures

Consider the function f to be observed at the locations x (1) , ..., x (n) ∈ Ω, with n ∈ N and for a bounded domain Ω ⊂ R D . Let X be the n × D matrix with lines given by x (1) , ..., x (n) , y be the vector of responses y = (f (x (1) ), ..., f (x (n) )) ⊤ and Z the (n + 1)

× D matrix Z = ( X y )
Recall that the prediction of f at any line vector x ∈ Ω, from the GP model, is given by m θ,Z (x) = r θ (x) ⊤ K -1 θ y, with r θ (x) = k(x, X), K θ = k θ (X, X). Then, we use the notation ϑ i (θ) for the DGSM index of the variable χ i on the predictor function m θ,Z (x):

ϑ i (θ) = ϑ i ( m θ,Z ) = ∫ Ω ( ∂ m θ,Z (x) ∂χ i ) 2 dx.
We also use the following notation for the normalized DGSM index the variable χ i :

ϑ i (θ) = ϑ i ( m θ,Z ) = ϑ i (θ) D ∑ r=1 ϑ r (θ) . The normalized DGSM indices ϑ i (θ) satisfies 0 ≤ ϑ i (θ) ≤ 1.
The larger this indice is, the more important the variable χ i is for m θ,Z (x). In the two next propositions, we show that, under relatively minimal conditions, we have ϑ i (θ) → 1 as θ i → 0 and ϑ i (θ) → 0 as θ i → ∞. Hence, we give a theoretical support to the intuition that small correlation lengths correspond to important input variables. Proposition 3. Assume that the components of y are not all equal. Assume that k is continuously differentiable on R. Let i ∈ {1, ..., D} be fixed. For j = 1, ..., n let v (j) = x (j) -i . Assume that v (1) , ..., v (n) are two by two distinct. Then, for fixed θ

-i ∈ (0, ∞) D ϑ i (θ) -→ θ i →∞ 0.
Proposition 4. Assume that the components of y are not all equal. Consider the same notation as in Proposition 3. Assume that k is continuously differentiable on R, that k(t) → 0 as |t| → ∞ and that Ω is an open set. Assume also that x (1) , ..., x (n) are two-by-two distinct. Let i ∈ {1, ..., d} be fixed. Then for fixed θ

-i ∈ (0, ∞) d-1 ϑ i (θ) -→ θ i →0 1.
In Propositions 3 and 4, the regularity conditions on k are mild, and the conditions on x (1) , ..., x (n) hold in many cases, for instance when x (1) , ..., x (n) are selected randomly and independently or from a latin hypercube procedure (see e.g. [START_REF] Santner | The design and analysis of computer experiments[END_REF]).

Estimated correlation lengths and inactive variables

We first recall the likelihood function:

l Z (θ) = 1 (2π) n/2 1 √ |k θ (X, X)| exp ( -y ⊤ k θ (X, X) -1 y
) .

In the next proposition, we show that, if the function f does not depend on the variable χ i , then the likelihood l Z (θ) goes to infinity when θ i goes to infinity. This is a theoretical confirmation that maximum likelihood can detect inactive input variables and assign them large correlation lengths.

Proposition 5. Assume that k is continuous. Assume that for any θ ∈ (0, ∞) D , the reproducing kernel Hilbert space (RKHS) of the covariance function k θ contains all infinitely differentiable functions with compact supports on R D . Let i ∈ {1, ..., D} be fixed. For j = 1, ..., n let v

(j) = x (j) -i . Assume that i) x (1) , ..., x (n) are two-by-two distinct; ii) y r = y s if v (r) = v (s) ; iii) there exist a, b ∈ {1, ..., n} with a ̸ = b so that v a = v b . Then, for fixed θ -i ∈ (0, ∞) D l Z (θ) -→ θ i →∞ ∞
with y θ,j = k θ (x (j) , X -j )k θ (X -j , X -j ) -1 y -j , where X -j and y -j are obtained, respectively, by striking off the line j of X and the component j of y. We show that, similarly as for the likelihood, inactive variables can be detected by this LOO criterion, since we can have CV Z (θ) → 0 as θ i → ∞ if the function f does not depend on χ i For j = 1, ..., n let v (j) = x (j) -i . Proposition 6. Let k satisfy the same conditions as in Lemma 5. Let i ∈ {1, ..., d} be fixed.

For j = 1, ..., n let v

(j) = x (j) -i . Assume that i) x (1) , ..., x (n) are two-by-two distinct; ii) y r = y s if v (r) = v (s) ;
iii) for all r ∈ {1, ..., n} there exists s ∈ {1, ..., n}, r ̸ = s, so that v (r) = v (s) . Let θ -i be obtained from θ by removing its component i. Then, for any fixed θ

-i ∈ (0, ∞) d-1 , we have CV Z (θ) -→ θ i →∞ 0.
In Proposition 6, the conditions i) and ii) are interpreted similarly as for Proposition 5. The condition iii) however provides more restrictions than for the likelihood in Proposition 5. This condition states that for any observation point in the data set, there exists another observation point for which only the inactive input i is changed. This condition is arguably necessary to have CV Z (θ) → 0.

Numerical examples

Tests set

We illustrate the Split-and-Doubt on five benchmark optimization problems. The first four are classical synthetic functions, the two-dimensional Branin function, the general Ackley function in six dimension, the six-dimensional Hartmann function and the general Rosenbrock function in five dimensions. The fifth one is the Borehole function [START_REF] Morris | Bayesian design and analysis of computer experiments: use of derivatives in surface prediction[END_REF]. It models the water-flow in a borehole. For each function, we added inactive input variables in order to embed them in a higher dimensional D (i) . The settings are summarized in (Table 5.1). We launched the optimization process for these functions with three different optimization algorithms:

• EGO [JSW98]: Implementation of the R package DiceOptim [RGD12] using the default parameters.

• Split-and-Doubt algorithm with Matérn 5/2 covariance function.

• Split-Without-Doubt algorithm: It uses the same variable splitting as Split-and-Doubt and generates the minor variables by uniform random sampling.

For each function f (i) , we launched each optimization process for N (i) max iterations starting with N seed = 20 different initial design of experiments of size n (i) 0 generated by an maximin space-filling sampling.

Results

The results are represented by box plots in Appendix 5.8. We also display the mean best value evolution in Figure 5. 4.

We can see that Split-and-Doubt gives better results than EGO for Rosenbrock, Ackley and Borehole function. EGO does not converge for the first two functions and used more iterations for the last one. These cases illustrate the efficiency of the dimension reduction for limited budget optimization. For Branin function the convergence is relatively fast for all the three algorithms. This is due to the fact that the effective dimension is 2 and that the first design of experiments covers well these dimensions. which goes to 0 as θ 1 → ∞, uniformly over x ∈ Ω, by uniform continuity. The second norm in (5.10) is bounded as discussed above. The third norm in (5.10) does not depend on θ 1 and is thus bounded uniformly over x ∈ Ω as θ 1 → ∞. The fourth norm in (5.10) goes to 0 as θ 1 → ∞ as discussed above.

Hence, uniformly over x ∈ Ω,

∂ m θ,Z (x) ∂χ m - ∂ g θ -1 (x) ∂χ m -→ θ 1 →∞ 0.
Furthermore, the function g θ -1 is continuously differentiable and non-constant on Ω because g θ -1 (x (r) ) = y r for r = 1, ..., n and because the components of y are not all equal. This implies that lim inf

θ 1 →∞ D ∑ m=2 ϑ m (θ) > 0,
which concludes the proof.

Proof of Proposition 4 . As before, we consider i = 1 in the proof. We have for m = 2, ..., D and r = 1, ..., n ( ∂r θ (x)

∂χ m ) r = k([x 1 -x (r) 1 ]/θ 1 ) 1 θ m k ′ ([x m -x (r) m ]/θ m ) ∏ j=2,...,D j̸ =m k([x j -x (r) j ]/θ j ).
Hence, ||∂r θ (x)/∂χ m || is bounded as θ 1 → 0 + uniformly in x ∈ Ω from the assumptions on k.

For j = 1, . . . , n, let u j be the first component of x (j) and let v

(j) = x (j) -1 . As θ 1 → 0 + , the matrix K θ converges to the n × n matrix N θ -1 = [ 1 up=uq (L θ -1 ) pq ]
p,q=1,...,n with the notation of the proof of Proposition 3. The matrix N θ -1 is invertible because its submatrices are invertible. This is so because for any p = 1, ..., n the subset {v (q) ; q = 1, ..., n, u q = u p } is composed of two-by-two distinct elements since x (1) , ..., x (n) are twoby-two distinct.

Hence, ||K -1 θ y|| is bounded as θ 1 → 0 + and so ∑ D m=2 ϑ m (θ) is bounded as θ 1 → 0 + . Let now j ∈ {1, ..., n} for which y j ̸ = 0. Let δ > 0, not depending on θ 1 , be small enough so that

∏ D r=1 [x (j) r -δ, x (j) r + δ] ∈ Ω. Then we have sup s∈[-δ,δ] D ;|s 1 |= √ θ 1 m θ,Z (x (j) + s) -→ θ 1 →0 + 0.
(5.11) Indeed, we have

(r θ (x j + s)) p = k ( u p -u j -s 1 θ 1 ) D ∏ r=2 k ( (x p ) r -x (j) r -s r θ r ) .
The product above is bounded uniformly over s ∈ [-δ, δ] D by uniform continuity of k. Also, whether u pu j = 0 or u pu j ̸ = 0, we have

sup |s 1 |= √ θ 1 k ( u p -u j -s 1 θ 1 ) -→ θ 1 →0 + 0.
Finally, ||K -1 θ y|| is bounded as θ 1 → 0 + as discussed above. Hence (5.11) is proved. Also

, let E = {u j } × ∏ D r=2 [x (j) r -δ, x (j) 
r + δ]. Then as θ 1 → 0 + , uniformly over x ∈ E, for p = 1, ..., n, we have

(r θ (x)) p -→ θ 1 →0 + 1 {up=u j } D ∏ r=2 k ( x r -(x p ) r θ r ) . Also K -1 θ y -→ θ 1 →0 +
N θ -1 y as discussed above. Hence, as θ 1 → 0 + , m θ,Z (x) converges uniformly over x ∈ E to a function value g θ -1 (x), with g θ -1 (x) continuous with respect to x ∈ E. Since m θ,Z (x j ) = y j , we can choose the δ > 0 (still independently of θ 1 ) so that it also satisfies lim inf

θ 1 →0 + inf x∈E | m θ,Z (x)| ≥ |y j | 2 .
(5.12)

We have ∫

Ω ( ∂ m θ,Z (x) ∂χ 1 ) 2 dx ≥ ∫ ∏ D r=1 [x (j) r -δ,x (j) 
r +δ]

( ∂ m θ,Z (x) ∂χ 1 ) 2 dx = ∫ ∏ D r=2 [x (j) r -δ,x (j) 
r +δ]

dx -1 ∫ x (j) 1 +δ x (j) 1 -δ dx 1 ( ∂ m θ,Z (x) ∂χ 1 ) 2 ≥ ∫ ∏ D r=2 [x (j) r -δ,x (j) r +δ] dx -1 ∫ x (j) 1 x (j) 1 - √ θ 1 dx 1 ( ∂ m θ,Z (x) ∂χ 1 ) 2 (Jensen:) ≥ ∫ ∏ D r=2 [x (j) r -δ,x (j) 
r +δ]

dx -1 √ θ 1 ( 1 √ θ 1 ∫ x (j) 1 x (j) 1 - √ θ 1 dx 1 ∂ m θ,Z (x) ∂χ 1 ) 2 ≥ (2δ) d-1 1 √ θ 1 ( inf x∈E | m θ,Z (x)| - sup s∈[-δ,δ] D ;|s 1 |= √ θ 1 m θ,Z (x (j) + s) ) 2 -→ θ 1 →0 + ∞,
from (5.11) and (5.12). This concludes the proof.

Proof of Proposition 5. Without loss of generality, we consider i = 1 in the proof. Let us consider the 2 × 2 submatrix of k θ (X, X) obtained by extracting the lines and columns a, b, with a, b as in the condition iii) of the lemma. Then as θ 1 → ∞ this submatrix converges to the singular matrix ((1, 1) ⊤ , (1, 1) ⊤ ). Hence, we have, as θ 1 → ∞, |k θ (X, X)| → 0 (since k θ (X, X) has components bounded in absolute value by 1). Hence, it is sufficient to show that y ⊤ k θ (X, X) -1 y is bounded in order to conclude the proof.

Let X θ 1 be obtained from X by dividing its first column by θ 1 and by leaving the other columns unchanged. Let x θ 1 ,j be the transpose of the line j of X θ 1 , for j = 1, ..., n. Let θ = (1, θ -1 ). Then, y t k θ (X, X) -1 y = y t kθ(X θ 1 , X θ 1 ) -1 y.

We now use tools from the theory of RKHSs and refer to, e.g., [START_REF] Wendland | Scattered data approximation[END_REF] for the definitions and properties of RKHSs used in the rest of the proof. Let H be the RKHS of kθ. Let

α θ 1 = kθ(X θ 1 , X θ 1 ) -1 y. Then, f θ 1 : R D → R defined by f θ 1 (x) = ∑ n j=1 [α θ 1 ] j kθ(x -x θ 1 ,j ) is the function of H with minimal RKHS norm ||.|| H satisfying f θ1 (x θ 1 ,j ) = y j for j = 1, ..., n.
As θ 1 → ∞, the points x θ 1 ,1 , ..., x θ 1 ,n converge to the points w 1 , ..., w n with w i = (0, v ⊤ i ) ⊤ . We observe that, by assumption, y r = y s for w r = w s . Hence, there exists ϵ > 0 small enough and p column vectors c 1 , ..., c p in R D with the following properties: (i) each Euclidean ball with center c m , m = 1, ..., p, and radius 2ϵ does not contain two w r , w s with y r ̸ = y s , r, s ∈ {1, ..., n}; (ii) each w j , j = 1, ..., n, is contained in a ball with center c m with m ∈ {1, ..., p} and radius ϵ; (iii) the p balls with centers c 1 , ..., c p and radii 2ϵ are two-by-two non-intersecting. We can also assume that each ball with center c m , m = 1, ..., p and radius ϵ contains at least one w j(m) with j(m) ∈ {1, ..., n} and we write z m = y j(m) .

Then, from Lemma 3, there exists an infinitely differentiable function g with compact support on R d so that for m = 1, ..., p, g(x) = z m for ||xc m || ≤ 2ϵ. Hence, for θ 1 large enough, the function g satisfies g(x θ 1 ,j ) = y j for j = 1, ..., n.

Hence, ||f θ 1 || H ≤ ||g|| H for θ 1 large enough, where ||g|| H does not depend on θ 1 . Finally, a simple manipulation of ||.|| H (see again [START_REF] Wendland | Scattered data approximation[END_REF] for the definitions), provides

||f θ 1 || H = n ∑ r,s=1 α θ 1 ,r α θ 1 ,s kθ(x θ 1 ,r -x θ 1 ,s ) = y ⊤ k θ (X, X) -1 k θ (X, X)k θ (X, X) -1 y = y ⊤ k θ (X, X) -1 y.
This concludes the proof.

Proof of Proposition 6. Without loss of generality, we consider i = 1 in the proof. Also, up to renumbering the lines of X and components of y, it is sufficient to show that, for fixed θ -1 ∈ (0, ∞) D , as θ 1 → ∞, y θ,n → y n . We use the same notation θ, H and x θ 1 ,j as in the proof of Proposition 5. Then, we have y

θ,n = f θ 1 (x θ 1 ,n ), where f θ 1 ∈ H is the function with minimal norm ||.|| H satisfying f θ 1 (x θ 1 ,j ) = y j for j = 1, ..., n -1.
Furthermore, from the proof of Proposition 5, there exists a function g ∈ H, not depending on θ 1 satisfying, for θ 1 large enough, g(x θ 1 ,j ) = y j for j = 1, .., n. This shows that ||f θ 1 || H is bounded as θ 1 → ∞. Let m ∈ {1, ..., n -1} be so that v m = v (n) (the existence is assumed in the condition iii)). Let also, for x ∈ R D , kθ ,x ∈ H be the function kθ(x -.). Then we have (see again [START_REF] Wendland | Scattered data approximation[END_REF]), with (., .) H the inner product in

H | y n -y n | = |f θ 1 (x θ 1 ,n ) -f θ 1 (x θ 1 ,m )| = (f θ 1 |kθ ,x θ 1 ,n ) H -(f θ 1 |kθ ,x θ 1 ,m ) H ≤ ||f θ 1 || H ||kθ ,x θ 1 ,n -kθ ,x θ 1 ,m || H = ||f θ 1 || H √ kθ(x θ 1 ,n -x θ 1 ,n ) + kθ(x θ 1 ,m -x θ 1 ,m ) -2kθ(x θ 1 ,n -x θ 1 ,m ).
In the above display, the square root goes to zero as θ 1 → ∞ because x θ 1 ,nx θ 1 ,m goes to zero and kθ is continuous. This concludes the proof.

Lemma 2. For any 0 < ϵ 1 < ϵ 2 < ∞, there exists an infinitely differentiable function g : R → R satisfying g(u) = 1 for |u| ≤ ϵ 1 and g(u) = 0 for |u| ≥ ϵ 2 .

Proof. Let h : R → R be defined by h(t) = exp(-1/(1t 2 ))1{t ∈ [-1, 1]}. Then h is infinitely differentiable. Hence, g can be chosen of the form

g(t) =    A ∫ t -∞ h ( B [ u + ϵ 1 +ϵ 2 2 ]) du if t ≤ 0 A ∫ ∞ t h ( B [ u -ϵ 1 +ϵ 2 2 ]) du if t ≥ 0 , with 2 
/(ϵ 2 -ϵ 1 ) < B < ∞ and A = B/( ∫ ∞ -∞ h(u)du). It can be checked that g is infinitely differentiable and satisfies the conditions of the lemma. Lemma 3. Let d, p ∈ N. Let x (1) , ..., x (p) be two-by-two distinct points in R D and ϵ > 0 be so that the p closed Euclidean balls with centers x i and radii ϵ are disjoint. Let y 1 , ..., y p ∈ R be arbitrary. Then there exists an infinitely differentiable function r : R D → R, with compact support, satisfying for i = 1, ..., p, g(u) = y i when ||u-x i || ≤ ϵ.

Proof. Let l = min i̸ =j ||x (i)x (j) || and observe that ϵ < 2l. Let g satisfies Lemma 2 with ϵ 1 = ϵ 2 and ϵ 2 = l 2 /4. Then the function r defined by r(u) = ∑ p i=1 y i g(||ux i || 2 ) satisfies the conditions of the lemma.

Conclusion

Performing Bayesian optimization in high dimension is a difficult task. In several reallife problems, some variables are not influential. Therefore, we propose the so-called Splitand-Doubt algorithm that performs sequentially both dimension reduction and feature oriented sampling. The "split" step (model reduction) is based on a property of stationary ARD kernel of Gaussian process regression. We proved that large correlation lengths correspond to inactive variables. We also showed that classical estimators such ML and CV assign large correlation lengths to inactive variables.

The "doubt" step question the "split" step and helps correcting the estimation of the correlation lengths. It is possible to use this strategy for different feature learning purposes such as refinement, optimization and inversion. The optimization Split-and-Doubt algorithm has been evaluated on classical benchmark functions embedded in larger dimensional spaces by adding useless input variables. The results show that Split-and-Doubt is faster than classical EGO in the whole design space and outperforms it for most of the discussed tests.

Chapter 6

Conclusion and future works 6.1 Conclusion

The need to efficiently explore the space of simulation-based designs has motivated our thesis work. Essentially, we deal with surrogate models based strategies. With regards to current limitations and motivated by industrial needs, we tackled three aspects of surrogate-modeling. A summary of the main contributions and some ideas for enhancement and future research are given below.

• Automatic selection: In this work, we proposed and studied the so called penalized predictive score (PPS). It favours the selection of surrogates with regularity and smoothness properties. Further, it is suitable for the construction of ensemble of surrogates. Exploiting these properties, we presented two surrogate model selection algorithms. The first one constructs the optimal ensemble with regard to the PPS. The second one further explores the set of surrogate modeling techniques using a genetic algorithm. These algorithms were evaluated on a benchmark of 15 test functions. The results highlight the efficiency of both approaches.

To improve this framework, we may first look for a flexible weighting method (instead of using constant weights) of the components of the PPS by incorporating expert-based physical characteristics of a given function. Second, the use of local weights in ensemble remains both challenging and promising. In this context, adding this additional degree of freedom may help enhancing prediction accuracy but would require a relevant regularization in order to avoid over-fitting.

• Universal Prediction distribution: The popularity of Gaussian process regression is mainly due to the provided prediction distribution. Meanwhile, there is a multitude of surrogate modeling techniques and they do not all provide an uncertainty quantification tool. In this work, we gave a universal method for uncertainty quantification that could be applied for any surrogate model.

It is based on a weighted empirical probability measure supported by cross-validation sub-models predictions. Consequently, one may use this distribution to compute most of the classical sequential sampling criteria. We also discussed sequential design strategies for prediction refinement, optimization and inversion. Further, we showed that, under some assumptions, the optimum is adherent to the sequence of points generated by the optimization algorithm UP-EGO. Moreover, the optimization and the refinement algorithms were successfully implemented and experienced both on single and multiple surrogate models. Software development containing UP tools have been implemented and an R package is available.

As a perspective, the UP-distribution can be extended to compute empirical spatial covariances between two locations. More generally, the UP distribution might be enhanced by studying the links with empirical Bayesian methods: Can the UP distribution be seen as an a posteriori distribution of some process? It is also interesting to study the asymptotic properties of the UP distribution for specific surrogate models, when the number of observations tends to infinity.

• Sequential design in high dimensions: In this work, we proposed the so-called Split-and-Doubt algorithm that performs sequentially both dimension reduction and feature oriented sampling. The "split" step (model reduction) is based on a property of stationary ARD kernel of Gaussian process regression. Indeed, we proved that large correlation lengths correspond to inactive variables. We also showed that classical estimators such as ML and CV assign large correlation lengths to inactive variables.

In the "doubt" step, we question the "split" step in order to help correcting the estimation of the correlation lengths. The two-step approach aims at performing both feature learning and dimension reduction. Note that we can use this strategy for different features such as prediction refinement, optimization and inversion. An optimization version of Split-and-Doubt algorithm has been evaluated on classical benchmark functions embedded in larger dimensional spaces. The results show that Split-and-Doubt is faster than classical EGO in the whole design space and outperforms it for most of the discussed tests.

A relevant generalization of the Split-and-Doubt for multi-objective or constrained optimization remains challenging. Eventually, it would be better to assess the influence of each variable on each output function separately. That is, one variable can be influential for a given constraint and inactive for a given output and vice versa. The main challenge is to adapt the sampling criteria to this context.

de sous-modèles de validation croisée (CV) et conduit à une mesure empirique locale quantifiant localement l'incertitude de la prédiction. Cette distribution, appelée, la distribution de prédiction universelle (UP distribution), permet la définition de nombreux critères d'échantillonnage. Nous donnons et étudions des techniques d'échantillonnage adaptatif pour améliorer la précision de la prédiction et une extension de l'algorithme EGO (Efficient Global Optimization). Nous discutons aussi de l'utilisation de UP distribution pour les problèmes d'inversion.

A.5 Réduction de dimension et estimation de caractéristiques

De nos jours, de nombreux problèmes de conception sont complexes et peuvent impliquer un grand nombre de variables. L'exploration de l'espace de conception en grande dimension est une tâche difficile. Dans plusieurs cas industriels, certaines variables ne sont presque pas influentes. Le chapitre 5 présente un algorithme pour l'apprentissage d'une caractéristique de la fonction étudiée et la réduction de dimension. La méthode est basée sur la régression du processus gaussien. Notre méthode est appelée l'algorithme split-and-doubt. L'étape «split» (réduction du modèle) est basée sur une propriété des noyaux de détermination automatique de la pertinence stationnaire de la régression du processus gaussien. Nous montrons que les grandes longueurs de corrélation correspondent à des variables inactives. Nous montrons également que les estimateurs classiques tels que le maximum de vraisemblance et la validation croisée assignent des longueurs de corrélation importantes aux variables inactives. L'étape «doute» remet en question l'étape «split» et aide à corriger une estimation erronée des longueurs de corrélation. Il est possible d'utiliser cette stratégie pour différents objectifs d'apprentissage, tels que le raffinement, l'optimisation ou l'inversion. L'algorithme d'optimisation Split-and-Doubt a été évalué sur des fonctions classiques plongées dans des espaces de plus grande dimension en ajoutant des variables d'entrée inutiles. Les résultats montrent que Split-and-Doubt est plus rapide que l'EGO classique dans l'ensemble de l'espace de conception et le surpasse pour la plupart des cas de test considérés.

A.6 Conclusion

Notre travail a été motivé par la nécessité d'une exploration plus efficace de l'espace de conception. Essentiellement, nous traitons des stratégies fondées sur des modèles de substitution. En considérant les limitations actuelles et motivés par les besoins industriels, nous avons abordé trois aspects de la méta-modélisation. Un résumé des principales contributions et quelques idées pour l'amélioration et la recherche future sont donnés ci-dessous.

• Dans ce travail, nous avons proposé et étudié ce qu'on appelle le score prédictif pénalisé (PPS). Il favorise la sélection de méta-modèles qui ont des propriétés de régularité et de douceur. En outre, il convient à la construction d'une agrégation de méta-modèles. En se basant sur ces propriétés, nous avons présenté deux algorithmes de sélection de modèles de substitution. Le premier construit l'ensemble PPS-optimal pour un ensemble fini (et modéré) de méta-modèles. Le second explore, d'avantage, l'ensemble des techniques de modélisation par substitution utilisant un algorithme génétique. Ces algorithmes ont été évalués sur un benchmark de 15 fonctions de test. Les résultats mettent en évidence l'efficacité des deux approches.

Pour améliorer ce cadre, nous pouvons d'abord chercher une méthode de pondération flexible des composantes du PPS en incorporant des caractéristiques physiques expertes d'une fonction donnée. Deuxièmement, l'utilisation des poids locaux dans l'ensemble reste à la fois difficile et prometteuse. Dans ce contexte, l'ajout de ce degré de liberté supplémentaire peut aider à améliorer la précision de la prévision, nécessiterait une régularisation appropriée afin d'éviter un sur-ajustement excessif.

• La popularité de la régression du processus gaussien est principalement due à la distribution de prédiction qu'elle fournit. Au même temps, plusieurs techniques de méta-modélisation ne fournissent pas toutes un outil de quantification de l'incertitude. Dans ce travail, nous avons donné une méthode universelle de quantification de l'incertitude qui pourrait être appliquée à tout modèle de substitution. Elle est basée sur une mesure de probabilité empirique pondérée, où le support est les prédictions de sous-modèles de validation croisée. On peut adapter la plupart des critères d'échantillonnage séquentiels classiques. Nous avons également discuté des stratégies de conception séquentielle pour le raffinement de la prédiction, l'optimisation et l'inversion. De plus, nous avons montré que, sous certaines hypothèses, l'optimum est adhèrent à la séquence de points générés par l'algorithme d'optimisation UP-EGO. De plus, les algorithmes d'optimisation et de raffinement ont été implémentés et testés avec succès. Un package R contenant des outils UP est disponible.

En perspective, la distribution UP peut être étendue pour calculer des covariances spatiales empiriques entre deux localisations : La distribution UP peut-elle être vue comme une distribution a posteriori d'un processus ? Il est également intéressant d'étudier les propriétés asymptotiques de la distribution UP pour des modèles de substitution spécifiques, lorsque le nombre d'observations tend vers l'infini.

• Dans ce travail, nous avons proposé l'algorithme appelé Split-and-Doubt qui effectue conjointement la réduction de dimension et l'apprentissage d'une caractéristique de la fonction étudiée. L'étape "split" (réduction du modèle) est basée sur une propriété des noyau stationnaire ARD de la régression par processus gaussien. En effet, nous avons démontré que les grandes longueurs de corrélation correspondent à des variables inactives. Nous avons également montré que les estimateurs classiques tels que ML et CV assignent des grandes longueurs de corrélation aux variables inactives. Dans l'étape "doute'', nous remettons en cause l'étape "split'' afin de corriger une estimation éventuellement erronée des longueurs de corrélation. L'approche en deux étapes vise à effectuer à la fois l'apprentissage de la caractéristique et la réduction de dimension. On peut utiliser cette stratégie pour différents objectifs telles que le raffinement, l'optimisation et l'inversion. Une version d'optimisation de l'algorithme Split-and-Doubt a été évaluée sur des fonctions classiques plongées dans des espaces de plus grande dimension. Les résultats montrent que Split-and-Doubt est plus rapide que l'EGO classique dans l'ensemble de l'espace de conception et le surpasse pour la plupart des tests décrits.

Une généralisation pertinente du Split-and-Doubt pour l'optimisation multi-objectif ou contrainte reste difficile. Il serait préférable d'évaluer l'influence de chaque variable sur chaque fonction de sortie séparément. C'est-à-dire qu'une variable peut
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 11 Figure 1.1: Illustration of surrogate-modeling

  (3.1)). It combines three components: a) The internal accuracy (or fit): we use the mean squared errors (MSE) on design points. b) The predictive capability: we propose to use the 10F-CV PRESS errors. c) A roughness penalty: we propose to use the Bending Energy Functional (BEF) ( [Duc77]).
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 235 P P S Genetic Aggregation (P P S-GA) model selection algorithm Inputs: Design Points Z n , l = 10. Generate the list of first surrogate models builders L = (m 1 , m 2 , . . . , m k ). for Generation = 1 to MaxGeneration do m agg = Compute the optimal aggregation of the l best surrogate models according to P P S L new = Perform mutation and cross-over operations L = L ∪ L new ∪ m agg L = Select the best k surrogate models according to P P S. end m ⋆ |Zn = Select the best surrogate model of L. Outputs: m ⋆ |Zn Numerical examples
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 333333 Figure 3.7: G & L 2009 function
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 3 Figure 3.21: Several selection criteria: D&P 8-dim function

2 /

 2 Borehole function: Parameters: r w ∈ [0.05, 0.15], r ∈ [100, 50000], T u ∈ [63070, 115600], H u ∈ [990, 1110], T l ∈ [63.1, 116], H l ∈ [700, 820], L ∈ [1120, 1680], K w ∈ [9855, 12045]

2 + 3 ) 9 /

 239 & Lee (2009) function: Parameters: for all i = 1, . . . , 6 , x i ∈ [0, 1] f 6 (x) = exp[sin((0.9(x 1 + 0.48)) 10 )] + x 2 x 3 + x 4 7/ Friedman function: Parameters: for all i = 1, . . . , 5 , x i ∈ [0, 1] f 7 (x) = 10 sin(πx 1 x 2 ) + 20(x 3 -0.5) 2 + 10x 4 + 5x 5 8/ Dette & Pepelyshev exponential function: Parameters: for all i = 1, . . . , 3 , x i ∈ [0, 1] f 8 (x) = 100(e -2/x 1.75 1 + e -2/x 1.5 e -2/x 1.25 Dette & Pepelyshev curved function: Parameters: for all i = 1, . . . , 3 , x i ∈ [0, 1]

  .25) 15/ Gramacy & Lee (2012) function: Parameters: x ∈ [0.5, 2.5]

4 , x 7 = 3 )Figure 4 . 1 :

 4341 Figure 4.1: Illustration of the UP distribution for an SVM surrogate (left) and a kriging surrogate (right). Dashed lines: CV sub-models predictions, solid red line: master model prediction, horizontal bars: local UP distribution at x a = -1.8 and x b = 0.2, black squares: design points.
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 42 Figure 4.2: Uncertainty quantification based on the UP distribution for an SVM surrogate (left) and a kriging surrogate (right). Blue solid line: master model prediction ŝn (x), light blue area: region delimited by ŝn (x) ± 3σ n (x).

  performances of the three different techniques described above for Viana (Figure 4.6a), Branin (Figure 4.6b) and Camel (Figure 4.6c) functions measured by Q 2 criterion.
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 46 Figure 4.6: Performance of three refinement strategies on three test functions measured by the Q 2 criterion on a test set. x axis: number of added refinement points.
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 47 Figure 4.7: Performance of refinement strategies for different dimension on two test functions measured by the Q 2 on a test set UP-SMART with kriging in blue and kriging variance-based technique in violet.
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 324245 UP-based Efficient Global Optimization UP-EGO(ŝ)Inputs:Z n 0 = (X n 0 , Y n 0 ), n 0 ∈ N \ {0,1} and a deterministic function s (1) m := n 0 , S m := X n 0 , Y m := Y n 0 (Compute the surrogate model ŝZm (3) Stop_conditions := False (4)While Stop_conditions are not satisfied (4.1) Select x m+1 ∈ arg max X (κ m (x)) Evaluate y m+1 := s(x m+1 ) (4.3) S m+1 := S m ∪ {x m+1 }, Y m+1 := Y m ∪ {y m+1 } (4.4) Z m+1 := (S m+1 , Y m+1 ),m := m + 1 (Update the surrogate model (4.6) Check Stop_conditions end loop Outputs: Z m := (S m , Y m ), surrogate model ŝZm

  and 4.14 (Appendix 4.11). It is important to notice that UP-EGO results for Branin function depend slightly on the
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 48 Figure 4.8: Comparison of 3 surrogate-based optimization strategies. Mean over N seed of the best value as a function of the number of iterations.
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 4 Figure 4.10: Mixing tank
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 4 Figure 4.12: Six-hump camel: Box plots convergence
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 4 Figure 4.13: Ackley: Box plots convergence
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 4 Figure 4.14: Hartmann6: Box plots convergence
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 2 and an adaptive threshold T = 20 min i∈[1,D]
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 425 Split-and-Doubt-EGO (f) algorithm Data: Design Points Z = (X, y) Algorithm parameters: ℓ, kernel k, threshold T ; repeat 1. Estimate the correlation lengths: θ ⋆ ∈ arg max θ∈(R ⋆ + ) D l Z (θ) (Eq. (5.5)); Split the variables: Define the major set I M = {i; θ ⋆ i < T } and the minor setI m = {i; θ ⋆ i ≥ T }, d m = |I m |; 3.Design in the major subspace: Compute x ⋆ M according to the objective function in the major subspace (by EI for instance): We compute a new GPR considering only the major variables to compute the EI. Let Z M = (X I M , y)x ⋆ M ∈ arg max x M ∈Ω M EI Z M (x M )4. Doubt the variable splitting: Compute a challenger θ ′ for correlation lengths.θ ′ ∈ arg max θ∈(R ⋆ + ) D δ(θ) subject to 2 ln ( l Z (θ) l Z ( θ ⋆ ) ) < χ 2 (ℓ, d m )Design in the minor subspace: Compute x ⋆ m by maximum contrast with the challenger θ ′ x ⋆ m ∈ arg max xm∈Ωm PC ( x = (x ⋆ M , x m ), θ ⋆ , θ ′ ) 6. Update: Evaluate the new point output y n+1 = f (x (n+1) ) with x (n+1) Im = x ⋆ M and x (n+1) Im = x ⋆ m and add the new point to the design:

  The optimization Split-and-Doubt algorithm has been evaluated on classical benchmark functions embedded in larger dimensional spaces by adding useless input variables. The results show that Split-and-Doubt is faster than classical EGO in the whole design space and outperforms it for most of the considered test case.

Chapters 3, 4 and 5 reproduce the following papers: • M. Ben Salem and L. Tomaso. Automatic selection for general surrogate models. Structural and Multidisciplinary Optimization, Feb 2018 (Chapter 3). • M. Ben Salem, O. Roustant, F. Gamboa, and L. Tomaso. Universal prediction distribution for surrogate models. SIAM/ASA Journal on Uncertainty Quantification, 5(1):1086-1109, 2017 (Chapter 4). • M. Ben Salem, F. Bachoc, O. Roustant, F. Gamboa, and L. Tomaso. Sequential dimension reduction for learning features of expensive black-box functions. Preprint available at hal-01688329, 2017 (Chapter 5).
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Table 2 .

 2 1: Toy example of accuracy estimates of surrogate models

  ). A random vector Y = (Y 1 , . . . , Y d ) is a said to be multivariate Gaussian if and only if:

  These surrogates are selected among the 32 surrogates of P P S -OS as follows: We consider the 150 functions (15 ×10 repetitions). For each surrogate m, we compute N best ( m): the number of times where m is the best individual surrogate. Each witness surrogate models is the one with highest N best among its type. The surrogate with the highest N best is the kriging using an an-isotropic Matérn 5/2 kernel and a linear trend function. It is the best individual surrogate in 25 test (16%).

	c) A moving least squares surrogate model using a Gaussian weighting function and
	second order polynomial regression.		
	d) Full second order polynomial regression, we use least-norm when the equation sys-
	tem is undetermined.			
	Name	Dimension d Number of de-	Number	of
			sign points N	test points n t
	1. Wing weight	10	45	45000
	2. Borehole	8	40	40000
	3. Dette & Pepelyshev (8-Dim)	8	75	75000
	4. Piston simulation	7	60	60000
	5. OTL circuit	6	35	35000
	6. Gramacy & Lee (2009)	6	85	85000
	7. Friedman	5	35	35000
	8. Dette & Pepelyshev exponential	3	16	16000
	9. Dette & Pepelyshev curved	3	18	18000
	10. Lim non-polynomial	2	12	12000
	11. Currin exponential	2	20	20000
	12. Franke's	2	10	10000
	13. Gramacy & Lee (2008)	2	45	45000
	14. Sasena	2	10	10000
	15. Gramacy & Lee (2012)	1	15	15000
	Table 3.1: Test functions		

  .2 and in Figures 3.2-3.16: • In Table 3.2, the median and the standard deviation of the RMSE of each surrogate model are given. The best median value is in bold.

• In Figures 3.2-3.16, the box-plots illustrate the variability with respect to the design set.

Table 3 .

 3 Generally, P P S-optimal ensemble give the best result except for the Dette & Pepelyshev Exp function where the P W S is better and for the Dette & Pepelyshev 8-Dim

		MLS	SVM	Poly		Kriging	P P S-OS	P P S-GA
		mean	sd	mean	sd	mean	sd	mean	sd	mean	sd	mean	sd
	Wing Weight Borehole Dette & Pepelyshev 8-Dim Piston Simulation OTL Circuit Gramacy & Lee 2009 Friedman Dette & Pepelyshev Exp Dette & Pepelyshev Curved Lim Non Polynomial Currin Exp Franke Gramacy & Lee 2008 Sasena Gramacy & Lee 2012	6.646 12.08 14.57 0.037 0.287 1.421 4.215 0.955 1.765 0.395 0.970 0.093 0.058 2.942 0.426	0.500 1.933 11.52 0.002 0.141 0.498 1.607 0.038 0.129 0.044 0.142 0.007 0.002 0.056 0.067	12.89 13.27 5.236 0.040 0.312 0.669 1.522 2.860 3.330 0.374 1.049 0.062 0.069 3.512 0.527	0.225 0.442 0.134 0.001 0.004 0.012 0.107 0.147 0.146 0.048 0.098 0.004 0.001 0.119 0.097	15.890 4.332 1341 2050 10.82 9.006 0.087 0.083 0.303 0.172 1.223 0.667 4.218 1.714 0.998 0.032 2.034 0.048 0.433 0.037 1.331 0.050 0.132 0.002 0.074 0.001 4.423 0.358 0.508 0.034	5.800 9.014 1.771 0.016 0.112 0.410 1.251 3.280 2.466 0.251 0.692 0.060 0.040 2.434 0.456	1.076 2.128 0.780 0.006 0.037 0.092 0.244 0.175 0.796 0.033 0.324 0.016 0.006 0.399 0.071	3.873 3.197 1.995 0.011 0.036 0.243 0.634 1.139 1.414 0.441 0.554 0.052 0.035 2.341 0.458	0.708 0.418 0.902 0.001 0.011 0.139 0.284 0.362 0.409 0.187 0.268 0.010 0.008 0.608 0.073	3.701 3.627 3.609 0.014 0.055 0.380 0.854 1.293 1.821 0.460 0.438 0.062 0.035 2.138 0.471	0.560 0.467 0.162 0.003 0.013 0.179 0.195 0.665 0.592 0.095 0.199 0.013 0.006 0.504 0.127

2: Mean and Standard deviation of RMSE

Table 3 . 3
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	Figure 3.23: Number of members in the best ensemble		
	are negligible compared to the computing time of one complex simulation.		
	MLS NPR Poly Kriging P P S-OS P P S-GA		
	0% 0.000 0.000 0.000		0.000		0.012		0.386		
	25% 0.000 0.001 0.000		0.001		0.065		0.933		
	50% 0.000 0.001 0.000		0.014		0.336		1.769		
	75% 0.000 0.003 0.003		0.068		0.886		2.865		
	100% 0.001 0.027 0.022		0.136		1.884		5.055		
	Sum 0.007 0.394 0.406		5.398		79.758		297.509		

: Elapsed time in seconds to construct each surrogate model

  By adopting this definition, adaptive DOE methods include for instance surrogate model-based optimization algorithms, probability of failure estimation techniques and sequential refinement techniques. Sequential refinement techniques aim at creating a more accurate surrogate model. For example, Lin et al. [LMA + 04] use Multivariate Adaptive Regression Splines (MARS) and kriging models with Sequential Exploratory Experimental Design (SEED) method. It consists in building a surrogate model to predict errors based on the errors on a test set. Goel et al.

Table 4 .

 4 

		1: Used test functions		
	Function	dimension d	n 0	N max	N t
	Viana	1	5	7	500
	Branin	2	10	10	1600
	Camel	2	20	10	1600
	Extended Rosenbrock	6→10	60	100	10000
	Hartmann6	6→10	100	100	10000

Table 4 .

 4 

		2: Optimization test functions
	function f (i)	Dimension d (i)	Number of ini-	Number of
			tial points n	(i) 0	iterations N (i) max
	Branin	2	5		40
	Ackley	2	10		30
	Six-hump Camel	2	10		30
	Hartmann6	6	20		40

Table 4 .

 4 3: Quality measures of different response surfaces of static mixer simulations

	Surrogate model	RRMSE	RMSE	RAAE
	GARS Initial	0.16	0.10	0.50
	GARS Final	0.10	0.07	0.31
	Kriging Initial	0.16	0.11	0.48
	Kriging Final	0.16	0.11	0.50

  Part of this research was presented at the Chair in Applied Mathematics OQUAIDO, gathering partners in technological research (BRGM, CEA, IFPEN, IRSN, Safran, Storengy) and academia (CNRS, Ecole Centrale de Lyon, Mines Saint-Etienne, University of Grenoble, University of Nice, University of Toulouse) around advanced methods for Computer Experiments. We thank the participants for their feedback.
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Table 5 .

 5 1: Optimization test functions.

	f (i)	d (i)	D (i)	Number of de-	Number of itera-
	Hartmann 6-	6	15	sign points n 30	(i) 0	tions N 30	(i) max
	dim						
	Rosnebrock	5	20	40		60	
	Ackley	6	20	45		40	
	Borhole	6	25	30		25	
	Branin	2	25	30		50	

This is equivalent to Tx is continuous at any f ∈ H

Henceforth, we use sometimes the term kernel to designate the covariance function of a Gaussian Process

The O-LHS in Figure2.4 was realized with the package DiceDesign[START_REF] Dupuy | DiceDesign and DiceEval: Two R packages for design and analysis of computer experiments[END_REF] 
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Appendix A: Comparison between the proposed PPS parameters and optimal parameters

In Figure 3.24, we use the same test functions to compare the proposed PPS parameters and the optimal parameters.

Appendix B: Test functions

The equations and the input parameter space of the functions of Table 3.1 are defined below:

1 For x = (S w , W f w A, γ, q, λ, t c , N z , W dg , W p )

) 0.6 q 0.006 λ 0.04 ( 100t c cos(γ)

Chapter 4

Universal Prediction distribution for surrogate models

This chapter is a reproduction of the article Universal Prediction distribution for surrogate models published in SIAM/ASA journal of uncertainty quantification [START_REF] Salem | Universal prediction distribution for surrogate models[END_REF].

Abstract The use of surrogate models instead of computationally expensive simulation codes is very convenient in engineering. Roughly speaking, there are two kinds of surrogate models: the deterministic and the probabilistic ones. These last are generally based on Gaussian assumptions. The main advantage of probabilistic approach is that it provides a measure of uncertainty associated with the surrogate model in the whole space. This uncertainty is an efficient tool to construct strategies for various problems such as prediction enhancement, optimization or inversion.

In this paper, we propose a universal method to define a measure of uncertainty suitable for any surrogate model either deterministic or probabilistic. It relies on Cross-Validation (CV) sub-models predictions. This empirical distribution may be computed in much more general frames than the Gaussian one. So that it is called the Universal Prediction distribution (UP distribution). It allows the definition of many sampling criteria. We give and study adaptive sampling techniques for global refinement and an extension of the so-called Efficient Global Optimization (EGO) algorithm. We also discuss the use of the UP distribution for inversion problems. The performances of these new algorithms are studied both on toys models and on an engineering design problem.

Part III

Adaptive feature learning with dimension reduction

Chapter 5

Sequential dimension reduction for learning features of expensive black-box functions

Abstract Learning a feature of an expensive black-box function (optimum, contour line,...) is a difficult task when the dimension increases. A classical approach is two-stage. First, sensitivity analysis is performed to reduce the dimension of the input variables. Second, the feature is estimated by considering only the selected influential variables. This approach can be computationally expensive and may lack flexibility since dimension reduction is done once and for all.

In this paper, we propose a so-called Split-and-Doubt algorithm that performs sequentially both dimension reduction and feature oriented sampling. The 'split' step identifies influential variables. This selection relies on new theoretical results on Gaussian process regression. We prove that large correlation lengths of covariance functions correspond to inactive variables. Then, in the 'doubt' step, a doubt function is used to update the subset of influential variables. Numerical tests show the efficiency of the Split-and-Doubt algorithm.

In Proposition 5, the conditions i), ii) and iii) are quite minimal. The condition i) ensures that the likelihood is well-defined, as the covariance matrix is invertible for all θ ∈ (0, ∞) D . The condition ii) holds when f (x) does not depend on x i . The condition iii) is necessary to have l(θ) going to infinity, since if v (1) , ..., v (n) are two by two distinct, the determinant of k θ (X, X) remains bounded from below as θ i → ∞ (see also the proof of Proposition 3). Note that the conditions ii) and iii) together imply that there is a pair of input points x a , x b for which only the value of the i-th component changes and the value of f does not change, which means that the data set presents an indication that the input variable χ i is inactive.

We refer to, e.g., [START_REF] Wendland | Scattered data approximation[END_REF] for a reference to the RKHS notions that are used in this section. There are many examples of stationary covariance functions k satisfying the RKHS condition in Proposition 5. In particular, let k θ be the Fourier transform of k θ defined by

then the RKHS condition of Proposition 5 holds. [This follows from Theorem 10.12 in [START_REF] Wendland | Scattered data approximation[END_REF] and from the fact that an infinitely differentiable function with compact support ϕ has a Fourier transform ϕ satisfying ϕ(w)||w|| γ → 0 as ||w|| → ∞ for any γ < ∞.

Hence, Lemma 5 holds in particular when k is the exponential covariance function with k(t) = e -|t| . Lemma 5 also holds when k is the Matérn covariance function with

where 0 < ν < ∞ is the smoothness parameter (see e.g. [START_REF] Stein | Interpolation of Spatial Data: Some Theory for Kriging[END_REF]). It should however be noted that the double exponential covariance function k (defined by k(t) = exp(-t 2 ) with t ∈ R) does not satisfy the condition of Lemma 5. [Notice that [START_REF] Xu | Maximum likelihood estimation for a smooth Gaussian random field model[END_REF] study specifically the asymptotic behavior of the maximum likelihood estimation of a variance parameter for the Gaussian covariance function, when the number of observations of a smooth function goes to infinity.]

In the next proposition, we study the LOO mean square prediction error

Conclusion and future works

Appendix A

Résumés des chapitres en français A.1 Introduction

En recherche comme en ingénierie de conception, les simulations numériques sont devenues populaires. En effet, elles offrent plusieurs avantages en les comparant à la réalisation d'une expérience notamment en termes de rapidité et de coût. Dans certaines études, il est impossible de réaliser une expérience (étude du climat, tremblement de terre, conception d'un profile -aéronautique-) d'où l'indispensabilité du recours au simulations numériques.

La concurrence et les normes de plus en plus pointues stimulent le besoin des nouveaux modèles plus efficaces, plus robustes et plus optimisées. Par conséquent, les simulations ne sont plus seulement utilisées pour valider une conception. Mais, elles sont également utilisées pour explorer l'espace de conception à la recherche de nouveaux modèles avec des performances optimales. L'exploration et l'optimisation nécessitent en général de nombreuses évaluations du simulateur. Cependant, les simulations haute-fidélités de modèles complexes restent coûteuses en termes de calcul malgré l'évolution du calcul haute performance.

Pour surmonter ce coût, des modèles de substitution, également appelés méta-modèles ou surfaces de réponse, sont utilisés pour accélérer l'exploration de l'espace de conception. Ces fonctions visent à émuler la véritable fonction, ici le simulateur à calcul intensif, tout en étant moins coûteux en calcul. Les modèles de substitution sont couramment utilisés Les méta-modèles sont basés sur n observations Z n = (z 1 , . . . , z n ), où z j = (x j , y j ) pour 1 ≤ j ≤ n et y j = f (x j ), aussi appelé plan d'expérience. L'objectif principal de la méta-modélisation est de remplacer une fonction coûteuse f par une surface de réponse f Zn . Parfois, cette approximation f Zn est utilisée pour accélérer l'estimation d'une caractéristique de la fonction f . La précision des modèles de remplacement s'appuie, entre autres, sur la pertinence du plan d'expérience. Par conséquent, l'échantillonnage des (x j ) 1≤j≤n est crucial. On présente dans la figure A.1, un schéma illustrant la métamodélisation.

Les contributions de cette thèse traitent principalement trois aspects de la métamodélisation : la sélection du méta-modèle, l'échantillonnage séquentiel pour un métamodèle quelconque et l'échantillonnage séquentiel en grande dimension. Pour présenter ces contributions le document est présenté comme suit :

• Dans la Partie I, on introduit le contexte générale de ce travail dans (Chapitre 1). Le chapitre 2, quant à lui, présente brièvement les notions et l'état de l'art nécessaires pour bien situer nos contributions.

• Nos mettons deux articles sur le thème de la méta-modélisation dans La Partie II. Le premier présente deux algorithmes de sélection de méta-modèles (Chapitre 3).

Le deuxième présente une méthode universelle qui permet d'associer une incertitude à la prédiction de tout méta-modèle.

• La Partie III contient une contribution sur l'échantillonnage séquentielle qui permet de faire conjointement l'estimation d'une caractéristique d'une fonction et la réduction de dimension.

Les Chapitres 3, 4, 5 sont une reproduction des articles suivant:

• M. Ben Salem and L. Tomaso. Automatic selection for general surrogate models.

Structural and Multidisciplinary Optimization, Feb 2018 (Chapitre 3).

• M. Ben Salem, O. Roustant, F. Gamboa, and L. Tomaso. Universal prediction distribution for surrogate models. SIAM/ASA Journal on Uncertainty Quantification, 5

• M. Ben Salem, F. Bachoc, O. Roustant, F. Gamboa, and L. Tomaso. Sequential dimension reduction for learning features of expensive black-box functions. Preprint available at hal-01688329, 2017 (Chapitre 5).

A.2 État de l'art

Le chapitre 2 donne le contexte nécessaire pour définir nos contributions. Nous présentons brièvement plusieurs techniques classiques de méta-modélisation ainsi que différentes techniques d'évaluation de la qualité de ces méta-modèles.

Une attention particulière est dédiée à la régression par processus gaussien (GP): Nous discutons de l'estimation des paramètres des noyaux et comment l'incertitude de prédiction permet de définir des critères pertinents d'échantillonnage séquentielle. La dernière partie du chapitre est consacrée aux techniques d'échantillonnage des plans d'expérience. On intègre dans cette définition les techniques adaptatifs de la planification séquentielle, y inclut, celle qui vise à l'estimation d'une fonctionnalité, telle que les schémas d'optimisation.

A.3 Sélection de modèles de remplacement

Dans le chapitre 3, nous traitons le problème de sélection de surface de réponse. En effet, il existe de nombreux types de méta-modèle et pour chaque type, il existe différents réglages possibles. D'abord, il n'existe pas un méta-modèle optimal pour tous les problèmes. Ensuite, il est difficile de choisir les modèles de substitution les plus appropriés pour un plan d'expériences donné. De surcroît, il est difficile d'évaluer la qualité d'un méta-modèle sans des données supplémentaires de vérification.

Nous proposons un critère de sélection qui évalue la qualité des modèles de substitution. Nous l'appelons le score prédictif pénalisé (PPS). On peut calculer le PPS pour tous les méta-modèles. Par construction, le PPS convient particulièrement aux fonctions de réponse qui ont des caractéristiques de régularité et de douceur. En général, ces caractéristiques sont implicitement attendues dans le cadre de la méta-modélisation. Nous montrons que PPS permet la construction d'une agrégation pertinente de méta-modèles. Les poids PPS-optimaux de ces agrégations permettent d'éviter le sur-ajustement. Ils sont, par ailleurs, faciles à optimiser, parce qu'on présente une formule directe pour le calcul de ces poids optimaux. Nous présentons également deux schémas de sélection de méta-modèle basés sur le score. Le premier calcule l'ensemble PPS-optimal plutôt que de sélectionner un modèle de substitution. Le second est basé sur un cadre évolutif qui permet l'exploration de l'espace des modèles de substitution.

A.4 Prédiction universelle de l'erreur

Le chapitre 4 donne un nouvel outil pour associer une distribution de prédiction à n'importe quel modèle de substitution et, par conséquent, pour étendre les méthodes de conception séquentielle basées sur les processus gaussiens (PG) à n'importe quel modèle de substitution. Rappelons que le principal avantage de l'approche basée sur les PG est qu'elle fournit partout une mesure de l'incertitude associée à la prédiction du modèle de substitution. Cette incertitude est un outil efficace pour construire des stratégies pour divers problèmes tels que l'amélioration de la prédiction, l'optimisation ou l'inversion.

Dans ce chapitre, nous proposons une méthode universelle pour définir une mesure d'incertitude adaptée à tout modèle de substitution. Elle s'appuie sur des prédictions être influente pour une contrainte donnée et inactive pour une sortie donnée et vice versa. Le principal défi consiste à adapter les critères d'échantillonnage à ce contexte.
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