Mme Jessica Dubois 
  
M Josselin Houenou 
  
Mme Lauren O'donnell 
  
  
  
  
  
Keywords: 

To Jean-Franc ¸ois, first for believing in me and proposing me to embark on this adventure. Thank you for your incredible support and guidance, for your optimism and understanding, and for giving me confidence when I needed it. Also because more than a thesis

Introduction

"We are all very ignorant. What happens is that not all ignore the same things" . . .

Albert Einstein

Context

The human brain is one of the most complex organs in our body. How our mind works has been an intriguing mystery since ancient times. In order to have some insights of how any object works the parts that compose it must be identified, as well as how they relate between each other. Knowing how the brain different parts connect allows a better understanding of its functioning and how different pathologies affect it. Consequently, to get to know our brain a little better, we must start by deciphering its anatomy. Rough and basic descriptions of the brain have been made since classical times. For instance by the first century A.D Rufus of Ephesus, an Alexandrian anatomist, provided a general physical description of the brain. Nevertheless, it was not until the 17th century that different studies started to significantly change what we know about the brain anatomy, thanks to the contribution of physicians like Thomas Willis (Anatomy of the Brain in 1664) and anatomists like Nicolaus Steno (Lecture on the Anatomy of the Brain in 1669) who made few noteworthy advances in the understating of the brain functions [START_REF] Hempfling | The Brain Is a Wonderful Thing[END_REF][START_REF] O'connor | Thomas willis and the background to cerebri anatome[END_REF].

The brain's most general classification is the division between gray and white matter [START_REF] Gray | Anatomy of the human body[END_REF].

Grey matter (GM) consists of brain cells nucleus that, similarly to a computer's processor, is where all the computation is done. White matter (WM) represents the wiring of the brain consisting of axons, that transfer information between or towards different parts. These wires, often called brain fibers can connect either close-by or remote parts of the brain, or even transfer information from the brain to the rest of the body.

Throughout history, brain analysis has been mostly made by anatomists by means of postmortem dissections. The appearance of the Magnetic Resonance Imaging (MRI) in the 1970s, opened a door for the study of the human body in-vivo and in a non invasive way, through images reconstructed from the information given by the atoms distribution. This technique has been used for the study of the brain since the early 1980s, when the first works were published [START_REF] Edelman | The history of mr imaging as seen through the pages of radiology[END_REF]. Moreover, the emergence of diffusion MRI (dMRI) in the early 1990s allowed the characterization of water molecules diffusion, by measuring its perturbations induced by the cellular micro structures and their anisotropies [START_REF] Baliyan | Diffusion weighted imaging: technique and applications[END_REF][START_REF] O'donnell | An introduction to diffusion tensor image analysis[END_REF]. From these measurements a local orientation of the fibers can be obtained, which can be then used by tractography algorithms in order to compute a step by step reconstruction of their putative 3D trajectory into streamlines [START_REF] O'donnell | An introduction to diffusion tensor image analysis[END_REF]. Tractography has enabled the study of the brain WM tracts, specially the major ones, allowing the creation of brain connections maps or atlases. Nevertheless, these atlases are far from being complete as not all brain structures are easy to identify. This is the case of superficial white matter (SWM), due to its small size and high variability among the population. These fibers are the ones right next to the cortical substance, separating it from its adjoining white matter, and present different sizes, as they do not only connect adjacent gyri but also can skip one, two or more series of convolutions [START_REF] Meynert | Psychiatry: A Clinical Treatise on Diseases of the Fore-brain: The Anatomy[END_REF]. The shortest ones are the nearest to the cortex and present a characteristic U-shape, due to their closeness to the walls of convolution depression.

It was in 1996 that one of the first modern works reported the SWM appearance in diffusion images, describing them as structures of high hypersensitivity [START_REF] Pierpaoli | Diffusion tensor mr imaging of the human brain[END_REF]. Later on, in [START_REF] Conturo | Tracking neuronal fiber pathways in the living human brain[END_REF] it was exposed the feasibility of tracking these complex structures. Since then, the interest of researchers has been increasing little by little, expanding the studies regarding the SWM.

One of the first studies describing these kind of bundles (i.e. group of fibers with similar shape, size and position) was carried out by Catani et al., that identified a chain of U-shaped fibers running laterally to the inferior longitudinal fasciculus, that connect adjacent gyri of the lateral occipito-temporal region [START_REF] Catani | Occipito-temporal connections in the human brain[END_REF]. For years only a handful of studies of SWM were conducted since dMRI techniques did not allow a good reconstruction of superficial fibers, due to low acquisition quality and poor methodology to deal with fiber crossing. Nowadays, for both postmortem or dMRI-based virtual dissections new techniques are available, which allow a better description of these complex short fasciculi. However, because of numerous ambiguities, using the water diffusion signal as a proxy to fiber orientation is not prone to error, which leads to spurious trajectories at the stage of tractography. To overcome this difficulty, a wide variety of tractography algorithms have been designed, each yielding different results, which can impact qualitatively the reconstructed representations of the white matter geometry [START_REF] Sarwar | Mapping connectomes with diffusion mri: deterministic or probabilistic tractography?[END_REF]. The risk of this kind of false positives renders difficult the identification of bundles. To address this goal, the implementation of new analysis methods are a must in neuroimaging. On the other hand, dMRI techniques are a very valuable tool for the study of neuropathologies, as many brain diseases and disorders present changes in water diffusion that can be simply established by dMRI-based indices.

Superficial white matter is closely related with brain sulci. Therefore it is fair to think that their organizations are influenced by each other. Some neuroanatomists believe that the brain cortex folding pattern is strongly related to brain connectivity [START_REF] Van Essen | A tension-based theory of morphogenesis and compact wiring in the central nervous system[END_REF]], although it is unknown which one is the cause and which the consequence. As each folding variation implies a specific rearrangement of the different underlying white matter bundles, it also impacts the position of functional regions.

It is known that the brain cortical folding pattern morphology is specific to each human being. This raises an issue for precise brain spatial normalization, as nobody knows how to align brains with different folding patterns. The most common approaches use a single subject or an average as templates, which cannot differentiate the folding variability [START_REF] Aljabar | Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy[END_REF]. As one possible solution for brain mapping, it was recently proposed to restrict statistical analysis to a group of subjects with compatible folding pattern [START_REF] Mangin | Spatial normalization of brain images and beyond[END_REF]. In order to do this, multiple templates need to be identified, so when a new subject needs to be analyzed the most similar one can be found in a pool of different configurations. Experiments based on the idea of restricting the analysis to similar subject groups have been performed, specifically to evaluate the impact of the central sulcus morphology on fMRI based activation maps [START_REF] Sun | Linking morphological and functional variability in hand movement and silent reading[END_REF]. This sulcus can be identified without ambiguity and changes in its morphology can be easily identified. Different cortical folding has been proved to be associated with differences in the localization of functional areas. However the relationship of the brain sulci with the underlying fiber bundle organization is still a mystery. Most of the available fiber bundle atlases have been constructed either based on a single subject, which contains characteristics that might exist only in the subject, or group average, that blurs the differences between subjects.

Other kind of proposed atlases are the multi-subject ones. They group similar fibers from different subjects into bundles that represent the variability of the bundle in a population. This allows a better projection of the atlas to new subjects, because their fibers can be matched to the most similar ones to be labeled. Nonetheless, the changes in the fiber organization associated to the sulci morphology can be subtle, inducing a wrong labeling of them. Therefore it is imperative to elucidate the existence of different configurations of connections and their relationship to the sulci, in order to create different models that reflect these differences.

Challenges

The work developed in the context of this thesis is oriented to the analysis of the relationship between the brain folding morphology and the underlying fiber bundles, namely the superficial white matter. In order to achieve this goal, the main challenge addressed during this thesis was the development of a pipeline that enables the automatic bundle identification and classification according to different configurations. This pipeline includes the classification of the subjects into groups with similar patterns, the identification of stable fiber bundles for each group, the correspondence of these bundles across groups and the recognition of the bundles that drive or are affected by the cortical morphology changes. Due to its closeness to the brain sulci, it is possible that the shortest bundles are the ones exhibiting more changes, however longer bundles can also be responsible/affected by the cortical morphology. The main difficulty to be overcome is finding the way of grouping similar patterns present in the white matter morphology. A first attempt was performed based on sulcus shape ISOMAP calculations and sulcus interruptions, as it has been already proposed in the literature.

However results are not optimal possibly due to characteristics of the white matter that are extrinsic to cortical folding. The second challenge is being able to recognize the fiber bundles present in each group. Due to the nature of the input tractography data, obtained from a probabilistic method, there is a higher number of false positive fibers with respect to a deterministic method. The third challenge is to find a way to automatically identify the bundles that present a morphology change across the population. Achieving this is particularly important as these bundles will be the ones to give special importance when segmenting a new subject, allowing to use the data from the best fitting group, i.e.

the group selected according to the subject's morphology.

Organization of this thesis

This thesis is organized in two parts. The first one presents the anatomical and technical background (brain anatomy focusing on white matter and brain cortex and notions of MRI and dMRI), as well as the methodological bases for the creation of the analysis pipeline (clustering and manifold learning methods), providing the necessary insights for the development of this thesis. This section also presents the state of the art for the brain connectivity studies (i.e. SWM segmentation methods).

The second part presents the developed method for the identification of changes in the white matter organization related to the cortical morphology.

Part I -Background and State of the Art

In this section the general background knowledge for the development of this thesis is presented. It exposes basic insights going from the brain anatomy and the ways used nowadays to study it, to the technical aspects of the algorithms used.

Chapter 2: Human Brain

This chapter presents the basic insights of human brain anatomy, from a general point of view to more specific aspects regarding the cortical folding and the white matter.

Chapter 3: MRI, diffusion MRI and Tractography

This chapter presents the technical information regarding the technologies used for the study of the human brain. The resulting data from these imaging techniques constitute the input data used for the analysis in this thesis.

Chapter 4: Superficial white matter segmentation methods

This chapter presents the state of the art of the superficial white matter segmentation. It describes the different methods and their advantages and disadvantages.

Chapter 5: Cortical folding morphology studies

This chapter presents the state of the art on the brain cortical morphology studies. This is the identification of different brain folding patterns, based on the cortical sulci.

Chapter 6: Clustering and manifold learning methods

This chapter presents the methodological insights regarding the techniques used for the data analysis.

It covers the data classification algorithms for the identification of fiber bundles, and the dimensionality reduction methods used to uncover the white matter morphology differences in a population.

Part II -Characterization of superficial white matter morphology

This part of the thesis describes the work realized in this context. It includes all the different approaches that were tested in order to define the better pipeline for the SWM bundle morphology characterization.

Chapter 7: Resources

This chapter presents the databases used for the study and their corresponding preprocessing.

Chapter 8: Identification of Superficial White matter bundles in the whole brain

This chapter presents the development of a pipeline for the identification of short white matter bundles in an automatic way. It takes into account the fibers' connectivity by means of gyrus based regions of interest, and the fibers shape by means of a clustering algorithm. The resulting method can be applied to the whole brain in order to obtain a general atlas of the short association bundles.

Although the atlas presents only general connections, they are the most reproducible ones, of which a large part were also found in other studies using different methods and different data. Moreover, the pipeline set a base to proceed further in the study of cortical connections, as these are in close relationship with the sulcal foldings. Also, as result of this thesis, a pipeline for the disentangling of the short white matter connections into more specific bundles is also delivered. This method allows a more granular study of the bundles, analyzing how their morphology changes within a population, and how these changes are related to the cortical foldings. This proves that specific connections are in fact different among subjects, and these differences are blurred out when performing group studies without considering morphology or geometry aspects of the data. This is of special interest when precise delineation of the bundles is required in segmentation tasks.

Furthermore, all the work recently described has directly allowed the publication of several articles in conferences and journals, as well as collaboration for other journal papers. These articles are listed in Appendix C.

Part I

Background

Chapter 2

Human brain

"The brain, the masterpiece of creation, is almost unknown to us" . . .

Nicolaus Steno

The brain is the most mysterious of the organs in the human body. The Danish anatomist Nicolaus Steno claimed in 1669: "the brain, the masterpiece of creation, is almost unknown to us". This intriguing organ defines who we are, but little we know about it. Deciphering its mystery has always attracted physicians and anatomists since ancient times. From rough postmortem to non invasive in vivo studies the knowledge of this organ has increased through the centuries.

This chapter presents the human anatomical and physiological background to better understand our brain functioning. In order to achieve that, we need to have the basic knowledge regarding its components and how they interact with each other. The focus of this thesis is to investigate the organization of the white matter, more specifically the superficial bundles and their close relationship with the cortical different folding morphology patterns. Keeping that in mind, this chapter will focus mainly on these two aspects of the human brain anatomy, i.e. cortical grey matter and white matter, and most notably on the latter. The information contained in this chapter will try to answer the questions like what is the brain composed of? What are the roles of these components? Why do the brain cortex folds forming gyri and sulci? How is this folding related to the brain wiring and function? Why is it important to study these aspects of the brain?

Human Brain General Anatomy and Functions

The brain is one of the most important and complex organs of the human body. It is part of the central nervous system (along with the spinal cord). Broadly speaking it is composed of different elements as: blood, cerebrospinal fluid and the nervous tissue, which in turn comprises the neurons and the glial cells. Neurons can be divided into axons which are the wires connecting different parts of the brain, forming the white matter (WM); and the cellular body, called "soma", which together with glial cells form the grey matter (GM).

The brain anatomy has been a subject of study since centuries, consequently there is extensive information about it. In the most general point of view the brain can be divided into three main parts: (i) telencephalon or cerebrum, (ii) diencephalon and (iii) brainstem (see Figure 2.1). The telencephalon consists in the larger part of the brain containing the cerebral cortex as well as several subcortical structures. It can also be further divided into two hemispheres. This structure presents the main focus of this thesis. The diencephalon is composed of a group of structures localized in the depths of the brain. As for the brainstem, it is composed of the midbrain, the pons and medulla oblongata [START_REF] Gray | Anatomy of the human body[END_REF]. Image adapted from [START_REF] Blaus | Medical gallery of blausen medical[END_REF].

As mentioned before, the telencephalon is the structure in which this thesis is focused. It can be subdivided into two hemispheres (left and right) separated by the longitudinal cerebral fissure, but interconnected across their middle line portion by a great central white commissure, the corpus callosum [START_REF] Gray | Anatomy of the human body[END_REF]. It is in the telencephalon that we can find the brain cortex which groups most of the nervous system grey matter. The cortical surface folds forming irregular humps named gyri or convolutions, which are separated by creases called sulci or fissures. This evolutionary condition of the brain cortex allows a great increase of the GM without requiring a big amount of space. The fissures start appearing in the fetal brain, from the sixth month of development [START_REF] Meynert | Psychiatry: A Clinical Treatise on Diseases of the Fore-brain: The Anatomy[END_REF].

Broadly speaking, the general morphology of the gyri and sulci are similar among subjects, as they maintain roughly the same configuration. However, in detail, their shapes vary across subjects. It is known that each subject folding pattern is unique, analogously to a fingerprint. Due to this variability there is no perfect consensus on the nomenclature for the different sulci, with exception of those that are less variable. The sulci and gyri that are, in general, more stable among subjects serve as landmarks to delimit brain regions or functional areas. For instance most stable sulci can be used to further divide each hemisphere into lobes: frontal, parietal, occipital, temporal, insula and the limbic (Fig. 2.2); or the most stable major gyri that can serve to parcellate the brain based on them. Among the most stable sulci we can find the Lateral Cerebral Fissure or fissure of Sylvius (Fig. 2.3a), which is a well-marked cleft that extends between the anterior part of the temporal lobe and the orbital surface of the frontal lobe, and reaches the lateral surface of the hemisphere. The The Central Sulcus or fissure of Rolando (Fig. 2.3b) runs vertically in the middle of the lateral surface of the hemisphere (it forms an angle opening forward of about 70°with the median plane). This sulcus marks the separation between the motor and somatosensory areas, which have been widely studied. This sulcus also presents an easily recognizable landmark that facilitates its study, which corresponds to two curves: one superior with its concavity directed forward, and an inferior with its concavity directed backward. This landmark also corresponds to the hand motor region in the homunculus, commonly referred as the hand knob [START_REF] Sun | Linking morphological and functional variability in hand movement and silent reading[END_REF]. The Parieto-occipital sulcus (Fig. 2.3c) is located mostly in the medial surface of the hemisphere, and only a small part of it can be seen on the lateral surface.

It is located in front of the occipital pole of the hemisphere and runs downward and forward and joins the calcarine fissure below and behind the posterior end of the corpus callosum. The Calcarine Fissure (Fig. 2.3d) is on the medial surface of the hemisphere. It begins near the occipital pole and runs forward a little below the splenium of the corpus callosum, where it is joined to the parietooccipital fissure. The Cingulate Sulcus (Fig. 2.3e) is on the medial surface of the hemisphere, it begins below the anterior end of the corpus callosum and runs upward and forward nearly parallel to the rostrum part and, curving in front of the genu, is continued backward above the corpus callosum.

It finally ascends to the superior-medial border of the hemisphere, a short distance behind the upper end of the central sulcus. It separates the superior frontal from the cingulate gyrus. The Collateral Fissure (Fig. 2.3f) is on the lower medial surface of the hemisphere and runs from near the occipital pole to within a short distance of the temporal pole. Behind, it lies below and lateral to the calcarine fissure, from which it is separated by the lingual gyrus. The Sulcus Circularis (Fig. 2.3g) surrounds the insula and separates it from the frontal, parietal, and temporal lobes [START_REF] Gray | Anatomy of the human body[END_REF].

Chapter 3

MRI, diffusion and tractography

"Nothing in life is to be feared, it is only to be understood. Now is the time to understand more, so that we may fear less" . . .

Marie Curie

For centuries the brain remained a mystery, an unknown organ due to the technical difficulties for its study. The fact that it is located inside the skull posed a challenge for the anatomist to better comprehend its components and functioning, since its study was only possible by postmortem means.

Nowadays the advances in medical imaging facilitate the in vivo obtaining of better insights of the human body for all the organs and their tissues, including the brain. Specifically for the brain, one particular imaging technique has been of great help for describing its structure and function. This technique is the Magnetic Resonance Imaging, which allows us to have a look at the brain in an in vivo and non-invasive way. This tool is of great help for physicians in the diagnosis of brain pathologies, but also for neuroscientists in the better understanding of it. As this thesis is focused on this second goal, it is important to know the basics of the magnetic resonance and how the data is acquired and processed, specially the kind of data used to analyze the white matter.

In this chapter a brief description of the principles of magnetic resonance is given, in order to have a general idea of how the images are generated. Also, more specific information is provided regarding the particularities for the study of the white matter, i.e diffusion magnetic resonance and tractography.

Magnetic resonance imaging basics

The magnetic resonance imaging (MRI) utilizes the principles of the nuclear magnetic resonance (NMR) to generate human body images in vivo in a non-invasive way. It meant a big impact in the medical history, especially because it not only allows us to see the anatomy of the body, but also the metabolism and function. This phenomenon was discovered in 1946 by Bloch and Purcell, describing that certain atomic nuclei, when placed in a static magnetic field, will assume one of two states: one of a higher energy level and the other with a lower level [START_REF] Jin | Electromagnetic analysis and design in magnetic resonance imaging[END_REF]. This energy delta is proportional to the strength of the magnetic field. A nucleus in a high energy state can fall into the lower level by emitting a photon with the energy difference between the two levels. Inversely, a nucleus in the lower level can jump into the higher level by absorbing a photon. When the nuclei in a magnetic field are irradiated by photons, which are in fact electromagnetic fields of a determined frequency generated by a radiofrequency (rf ) probe, some of the nuclei in the lower state will absorb them jumping into the higher level. This disrupts the normal thermal equilibrium state of the quantity of nuclei in each state. Therefore, to recover this equilibrium the nuclei in a higher state will return to their lower level by emitting photons which are detected by another RF probe. This electromagnetic signals are determined by the energy delta between the two states, which is in turn determined by the strength of the field (see Fig. 3.1).

FIGURE 3.1: Schematic of energy splitting in protons under a static magnetic field. Image adapted from [START_REF] Jin | Electromagnetic analysis and design in magnetic resonance imaging[END_REF].

The first experiments using the NMR phenomenon for imaging purposes were conducted in the 1970s by Lauterbur and by Damadian [START_REF] Vlaardingerbroek | Magnetic resonance imaging: theory and practice[END_REF]. This could be achieved thanks to the fact that the human body is considered to be 60-80% water. Its properties can be reflected by conventional images of magnetic resonance by measuring signals from their hydrogen (H) nuclei (the proton). These atoms possess an intrinsic angular momentum, called spin. In a magnetic field the spins align along the field and precesse around it [START_REF] Brown | Magnetic resonance imaging: physical principles and sequence design[END_REF]. Therefore these protons can have one of two equilibrium states: either aligned in the same direction than the external field in a parallel state, or in the opposed direction referred as anti-parallel state (Fig. 3.

2).

This physical phenomenon can be described by the fundamental equation in magnetic resonance, the Larmor theorem (Equation 3.1), which states that the precessional frequency of the spins (Larmor frequence) in a magnetic field is linearly proportional to the field magnitude B.

ω = γB (3.1)
Where ω is the Larmor frequency, and γ the gyromagnetic ratio, a constant specific to the nucleus under study. As it was already mentioned, the MRI uses the hydrogen atoms from the water molecules, with γ H = 42.58MHz/Tesla [START_REF] Brown | Magnetic resonance imaging: physical principles and sequence design[END_REF]. FIGURE 3.2: Schematic of a proton under a static magnetic field. In the presence of a static magnetic field the proton can have one of two equilibrium states: either aligned in the same direction than the external field in a parallel state, or in the opposed direction referred as anti-parallel state. Image adapted from [START_REF] Jin | Electromagnetic analysis and design in magnetic resonance imaging[END_REF].

This physical phenomenon is the one used by the magnetic resonators, which generate a strong static magnetic field called B 0 . This field is used to align the spin of the protons. Then the RF pulse is applied at the Larmor frequency of the spins to disrupt their state of equilibrium, rotating their net magnetization in the longitudinal axis, parallel to B 0 (longitudinal magnetization), generating a transversal component called transversal magnetization. This RF excitation establishes a phase coherence for the spins. In the absence of the external energy applied by the RF the transversal magnetization decays exponentially to zero, in a constant time T2, and the component of the net magnetization along B 0 decreases exponentially with a constant time T1 [START_REF] Jin | Electromagnetic analysis and design in magnetic resonance imaging[END_REF].

In Addition to the constant magnetic field B 0 and the RF pulses, there is also a third set of magnetic fields used by the magnetic resonators, called slice-selection gradients (G SS ). These gradients in the X, Y and Z axis are added to the static field B 0 making the magnetic field linearly variable over a volume of interest. The direction of the gradient determines the slice orientation, while the gradient amplitude together with the RF characteristics determine both the slice thickness and position [START_REF] Brown | MRI: basic principles and applications[END_REF]. By applying a gradient simultaneously to the RF pulse a slice selection can be made. This is possible because each given frequency corresponds to a perpendicular plane to the gradient direction. When a pulse is broadcasted in presence of a G SS only a restricted region of the tissue fulfills the resonance condition and absorbs the RF energy. The different slice positions are excited by changing the RF frequency, and its thickness is determined by the G SS amplitude (see Figure 3.3). In the presence of a gradient magnetic field G ss the total magnetic field that a proton experiences and its resonance frequency depend on its position.

In consequence every position has an unique resonance frequency. Image adapted from [START_REF] Brown | MRI: basic principles and applications[END_REF].

The signal measured in MRI represents the Fourier Transform of the spin vector. These spatial frequencies are represented in a space called K-space. In other words, the k-space is the Fourier transform of the MR image. To obtain the proper image and visualize it, the k-space has to be filled and then the Inverse Fourier Transform (IFT) has to be applied to it [START_REF] Gu | Advanced analysis of diffusion MRI data[END_REF]. If a Cartesian sampling pattern is used the image can be reconstructed as shown by the Equation 3.2.

I(x, y) = IFT (s(x, y)) (3.2)
The image intensity I(x, y) is a function of many parameters such as: the relaxation times (T 1 and T 2 ), spin density, diffusion, etc. The different MR modalities (for instance T 1 -weighted or T 2weighted images) result from the emphasis made over one of the contrast mechanisms over the other, manipulated by the pulse sequence design [START_REF] Gu | Advanced analysis of diffusion MRI data[END_REF].

Diffusion and dMRI

As any liquid, water molecules present constant motion due to their inherent thermal energy. The presence of many molecules makes them undergo many collisions with each other, which change the direction of their movement. This thermal agitation is called Brownian motion [START_REF] Van Hecke | Diffusion tensor imaging: a practical handbook[END_REF]. The direction of the molecule's trajectory resulting from these collisions is, from a practical perspective, random. This is why this phenomenon is often called random walk. In an environment with no physical restrictions, apart from the other molecules, the molecules are free to move in any direction. This process is called free diffusion or isotropic diffusion. If diffusing water molecules encounter physical obstacles or boundaries (as cell membranes) the movement gets restrained to certain directions. For instance, the neuron axon presents a cylindrical boundary, therefore the diffusion is restricted in the direction perpendicular to its axis (see Figure 3.4). Water diffusion occurs more easily along the set of packed cylinders than perpendicular to it. This directionally dependent diffusion is called anisotropic diffusion and is specially important in diffusion MRI (dMRI) for studying the neural tissue. In the dMRI images, the average motion of the water molecules inside each tridimentional object (voxel) is measured. This motion process is described by the diffusion propagator P(r 0 |r 1 , τ), which defines the probability for a proton to move from point r 0 to another point r 1 in a diffusion time τ [START_REF] Jones | Diffusion mri[END_REF]. In the images, this motion signal is measured from a great number of molecules present in each voxel.

The measurement of the diffusion propagator is not straightforward, since the molecules need to be labeled in order to distinguish them from each other, and track them from one point to another. MRI allows this kind of measure by the addition of magnetic field gradients, called diffusion-weighted gradients [START_REF] Johansen-Berg | Diffusion MRI: from quantitative measurement to in vivo neuroanatomy[END_REF][START_REF] Jones | Diffusion mri[END_REF]. If spins are allowed to precess during a given period of time they will acquire a given phase, due to the magnetic field inhomogeneities. If the spins remain stationary during the precession, the net phase will be constant disregarding their position in the gradient, and therefore of their precessional frequency [START_REF] Johansen-Berg | Diffusion MRI: from quantitative measurement to in vivo neuroanatomy[END_REF]. Nevertheless, as mentioned before, the water molecules are always in motion (doing their random walk), and therefore the strength of the magnetic field experienced by a particular spin changes over time. As it was previously stated, the protons are marked with a given RF according to their position (r 0 ), and as diffusion occurs the protons will be in another place when they have to release the energy (r 1 ). This net displacement produces a change in the net phase, leading to a loss of the signal amplitude that represents the diffusion in the sense of the gradient [START_REF] Johansen-Berg | Diffusion MRI: from quantitative measurement to in vivo neuroanatomy[END_REF]. The greater the displacement, the greater the phase dispersion and thus the loss of signal.

Consequently, in the GM (i.e. the cell bodies) the signal loss occurs in all gradient directions, due to an isotropic diffusion (see Figure 3.5). This is because there are not big barriers that limit the water movement in the neuron body. On the other hand, in the WM the area is a lot more restricted by the axon membranes, which favors the diffusion along the axons (anisotropic diffusion). The diffusion model presents a scheme of the water molecules diffusion orientation, given certain restrictions in the environment. In the soma random barriers can be found, therefore the diffusion is still isotropic (as in free water). On the other hand, in the axon the water molecules diffuse along them (anisotropic diffusion). The diffusion tensor model is the simplest historic model to characterize the water diffusion in 3D. The elements in the diagonal of the matrix represent the diffusivity in the 3 orthogonal axes, while the elements outside the diagonal correspond to the correlation between the displacements along them. A graphic representation of the model is made by ellipsoids. Image adapted from [START_REF] Mukherjee | Diffusion tensor mr imaging and fiber tractography: theoretic underpinnings[END_REF].

Analogously to the MRI k-space, where the encoding (coordinates) is defined by the readout gradient, in dMRI the encoding is defined by the diffusion gradient, called q-space [START_REF] Callaghan | Principles of nuclear magnetic resonance microscopy[END_REF].

Diffusion models

Diffusion tensor imaging

Using the directional information given by the dMRI, with acquisitions in at least 6 directions, several local diffusion models can be applied. These models range from the simplest historical one that allows only the representation of the main diffusion direction in each voxel; to highly sophisticated ones allowing a better representation of complex geometries, like fiber crossing or kissing. The simplest and most frequently used in clinics is the Diffusion Tensor model (DTI), a 3x3 symmetric matrix model that characterizes the displacements in 3D (see Figure 3.5) [START_REF] Johansen-Berg | Diffusion MRI: from quantitative measurement to in vivo neuroanatomy[END_REF]. The diagonal elements of the matrix correspond to the diffusivities along the three orthogonal axes, while the off-diagonal elements represent the correlation (covariance) between molecular displacements in orthogonal directions. A practical way to see the DTI model is by representing it through an ellipsoid. If the diffusion is isotropic then the representation of the water displacement can be represented by a sphere, since it is equal in all directions. However, in presence of an anisotropic medium the displacement occurs mostly along the principal axis of the anisotropic medium, instead of in the perpendicular directions. This kind of displacement can no longer be described by a sphere, but by an ellipsoid instead, whose long axis is parallel to the long axis of the anisotropic medium [START_REF] Johansen-Berg | Diffusion MRI: from quantitative measurement to in vivo neuroanatomy[END_REF]. The principal axes of the ellipsoid are given by the eigenvectors (ε 1 , ε 2 and ε 3 ) and the lengths are given by the diffusion distance in a given time t, which is propor- tional to the square root of the diffusivity. Therefore the ellipsoid axes are scaled according to the square root of the eigenvalues (λ 1 , λ 2 and λ 3 ).

DTI is the most used model in clinic, where some scalars as the mean diffusivity (MD), fractional anisotropy (FA), axial diffusivity (AD) and radial diffusivity (RD) can be used to construct maps, in order to perform statistical analyses between patients and controls.

MD = λ 1 + λ 2 + λ 3 3 (3.3) FA = (λ 1 -λ 2 ) 2 + (λ 2 -λ 3 ) 2 + (λ 3 -λ 1 ) 2 2(λ 2 1 + λ 2 2 + λ 2 3 ) (3.4) AD = λ 1 (3.5) RD = λ 1 + λ 2 2 (3.6)
MD (Equation 3.3) is the average of all eigenvalues and provides information about the amount of obstruction to water molecules diffusion. The FA (Equation 3.4) represents the variance of the eigenvalues in a given voxel, with values from 0 (isotropic diffusion) to 1 (anisotropic diffusion). For instance, FA = 0 can be interpreted as if no neuronal tracts are present or these are randomly oriented.

On the other hand, a value of FA = 1 means that the tracts are coherently oriented [START_REF] Gu | Advanced analysis of diffusion MRI data[END_REF].

Although, as mentioned before, the DTI model is simple and widely used in clinical analyses, it is not capable of resolving multiple fiber orientations within a voxel, due to the fact that it can only represent one principal orientation (principal eigenvector). This representation is collinear with the dominant fiber orientation within the voxel. It is important to note also that ε 2 and ε 3 are constrained to lie in the plane orthogonal to ε 1 , therefore these two vectors are unable to give information about the orientation of multiple fiber populations within a single voxel, where fiber crossing, kissing or branching can occur [START_REF] Johansen-Berg | Diffusion MRI: from quantitative measurement to in vivo neuroanatomy[END_REF]. In order to overcome this issue, more sophisticated models have been proposed. To get around the limitations of the single-tensor model, a logical extension of it was proposed, the multi-tensor model. This kind of model allows the characterization of diffusivity within a voxel containing fibers with different directions [START_REF] Gu | Advanced analysis of diffusion MRI data[END_REF]. One of the most popular models in this category is the ball-and-stick model, which aims to resolve fiber crossing and estimate their relative volume fractions. The fiber populations are represented by sticks, which have a unique tensor representation with the radial diffusivity removed. The free water diffusion is represented by a ball, which is an isotropic tensor.

High angular resolution diffusion-weighted imaging

As previously mentioned, DTI cannot resolve fiber complexities within a voxel and to overcome this limitation Q-ball (QBI) and diffusion spectrum imaging (DSI) models have been proposed. These models utilize High Angular Resolution Diffusion-weighted Imaging (HARDI) data for doing the reconstruction. HARDI is not in itself a model for estimating fiber orientations, but an acquisition strategy that allows the use of sophisticated diffusion models, as well as simplest ones like DTI [START_REF] Li | Functional magnetic resonance imaging processing[END_REF][START_REF] Van Hecke | Diffusion tensor imaging: a practical handbook[END_REF]. The HARDI acquisition is based on a spherical sampling of the diffusion gradients, using a fixed diffusion-weighted value (b). HARDI samples q-space (the space of DW gradient amplitude vectors) along as many directions as possible in order to reconstruct estimates of the true diffusion probability density function (PDF) of water molecules. The PDF describes the probability of a spin to move from a position x 0 to another position x in a given time. Due to the linearity between the HARDI signal and the water diffusion direction, a spherical harmonic function that characterizes the relative likelihood of water diffusion along any given angular direction can be constructed. This function is called diffusion orientation distribution function (dODF) [START_REF] Li | Functional magnetic resonance imaging processing[END_REF].

An ODF may be considered a deformed sphere whose radius in a given direction is proportional to the sum of values of the diffusion PDF in that direction. This allows one to recover the diffusion of the molecules in any underlying fiber configuration within a voxel. HARDI data quality depends on the number of measurements N and the gradient strength (b-value), which will affect the acquisition time and signal to noise ratio (SNR). There are mainly two strategies for the acquisition of HARDI data: (i) sampling of the whole q-space 3D Cartesian grid or (ii) spherical sampling of the q-space for a single or multiple b-value(s), called single-shell and multi-shell respectively [START_REF] Paragios | Handbook of Biomedical Imaging[END_REF]. For the first case, a large number of q-space points are taken over the discrete grid and the IFT of the measured DW signal is taken to obtain an estimate of the diffusion PDF (Figure 3.6a).

This is the strategy used by q-space imaging (QSI) and DSI. This method requires long acquisition times (15-60 minutes) and strong gradients (500 ≤ b ≤ 20000 s/mm 2 ). For the second method, a uniform sampling of a single sphere is done for a certain radius in q-space (given by the b-value) (Figure 3.6b). The acquisition time is usually around 10 and 20 minutes for 60 ≤ N ≤ 200 and b ≥ 1000 s/mm 2 , overcoming the sampling burden [START_REF] Paragios | Handbook of Biomedical Imaging[END_REF]. For this second strategy one of the most used diffusion models is the QBI. In QBI the ODF can be directly approximated from the spherically sampled q-space signals, by taking the Funk-Radon Transform (FRT) which, given a unitary direction vector, is defined as the sum over the corresponding equator (points perpendicular to the vector direction). Then, the result from the signal sum over an equator is approximately the diffusion probability in the direction normal to the equator plane (Figure 3.7) [START_REF] Tuch | Q-ball imaging[END_REF].

(A) (B) FIGURE 3.6: Diffusion sampling methods using HARDI data. (a) The usually employed method for DSI, where only the points inside the sphere in the q-space are kept. (b) With the FRT the sum of the signal attenuation over each equator is assigned to the point farthest from that equator. Images adapted from [START_REF] Gu | Advanced analysis of diffusion MRI data[END_REF].

Tractography

The tractography is a 3D reconstruction technique for the white matter fiber trajectories. This reconstruction is based on the local diffusion model (DTI, Q-ball, etc). The tractography is the only technique that allows the study of WM bundles in the whole brain in vivo and in a non invasive way. This is why it has been widely used in structural connectivity studies [START_REF] Mori | Fiber tracking: principles and strategies-a technical review[END_REF].

Nevertheless, tractography has several limitations related to the indirect nature of the diffusion data and their low resolution. This results in a significantly large amount of false positives and false negatives, due to the incapacity of determining the configuration of the underlying fiber within a voxel in a precise way. Another issue that tractography presents is that it does not allow to differentiate Chapter 4

White matter segmentation "If I have seen further it is by standing on the shoulders of Giants" . . .

Isaac Newton

As mentioned in Chapter 2, the brain structural connectivity is still a mystery. This mainly because the cartography of the macroscopic connection of the human brain is still incomplete. Mapping this network called human brain structural connectome is essential for a better understanding of the brain function and pathologies [START_REF] Sporns | The human connectome: a structural description of the human brain[END_REF]. In the past, white matter (WM) has been mainly

studied by means of postmortem dissections, in order to document the main pathways. However, thanks to the advances in medical imaging technologies, its study is now possible by other means.

As mentioned in Chapter 3, dMRI allows the study of brain white matter in vivo and in a noninvasive way, by measuring the perturbations of water diffusion induced by the cellular micro structures and their anisotropies. Therefore, it is the preferred method to perform white matter studies. Furthermore, this technique is a very valuable tool for the study of neuropathologies. Many of the brain diseases and disorders present changes in water diffusion, which can be simply established through dMRIbased indices.

The downside in using a tractography dataset for the WM study is that it contains a large amount of spurious fibers, therefore a processing pipeline must be applied in order to identify reliable fiber bundles. These bundles correspond to groups of white matter fibers with similar shape, size and position, that connect the same anatomical and/or functional areas. Anatomical knowledge is needed in order to identify actual anatomical structures. Many research groups have focused on developing methods to extract those bundles, either by manual identification, or using semi-automatic or automatic approaches. Whatever the tractography algorithm, the tractogram contains a large amount of spurious fibers that need to be filtered out. Most of the existing methods developed to identify WM bundles have been designed for large DWM bundles, which are more stable across subjects, the reason why they have been widely studied.

Nowadays, new equipment (tools) and software have been introduced into the field of diffusion imaging. Refined acquisition methods, diffusion models and tractography algorithms have been developed, yielding improved tractograms. For instance, as mentioned in Chapter 4, high angular resolution diffusion imaging (HARDI) has overcome to some extent the challenge raised by fiber crossing geometries, while keeping the acquisition time reasonable. Therefore, during the last years, several studies have focused successfully on the study of SWM fasciculi (that as mentioned in previous chapters present a more complex configuration), including applications to clinical research.

Furthermore, the relationship between DWM and SWM has taken special relevance lately, as some studies have demonstrated that in many brain pathologies or disorders, the changes might not only occur in DWM but also in specific regions of the SWM. Moreover, some developmental disorders are supposed to stem from a wrong balance between short and long connections.

In this Chapter a review of the main advances in the study of SWM using dMRI is presented.

Superficial white matter tractography analysis methods

In the last decade, the improvements of dMRI acquisition and the whole processing pipeline lead to a better reconstruction of fibers, in particular short association fibers. These fibers have been studied using tools mostly developed for DWM analysis. For example, regarding DWM, a group of methods allow the grouping of fibers into anatomically meaningful fiber bundles, given specific criteria [START_REF] Catani | Virtual in vivo interactive dissection of white matter fasciculi in the human brain[END_REF][START_REF] Guevara | Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas[END_REF][START_REF] O'donnell | A method for clustering white matter fiber tracts[END_REF][START_REF] Wakana | Fiber tract-based atlas of human white matter anatomy[END_REF][START_REF] Wassermann | Unsupervised white matter fiber clustering and tract probability map generation: Applications of a gaussian process framework for white matter fibers[END_REF][START_REF] Zhang | Identifying white-matter fiber bundles in dti data using an automated proximity-based fiber-clustering method[END_REF]. As the anatomy of DWM bundles is well-known, algorithms lead to similar results, which has been shown in comparative studies [START_REF] Zhang | Test-retest reproducibility of white matter parcellation using diffusion mri tractography fiber clustering[END_REF]. However, the consistency across approaches raises more concerns in the case for SWM bundles. Different studies have different definitions of short association fibers (fiber length restrictions, closeness of the regions they connect, closeness to the brain cortex, etc), therefore comparisons are difficult. Depending on the type of analysis used for identifying the bundles, these methods can be divided into: (i) placement of regions of interest (ROI), which allow the extraction of fibers that fulfill a given condition; (ii) clustering of fibers, that group fibers given a fiber similarity measure; and (iii) hybrid methods which combine both of the previously mentioned approaches.

ROI placement methods

The ROI placement methods define brain areas to be used as guides for identifying specific bundles or to isolate fibers connecting a pair of specific regions. This approach provides anatomical information to the analysis, since the ROIs often define known anatomical structures or functional areas. The ROIs are used as a guide to select fibers that satisfy a given condition i.e. if fibers end in a ROI, fiber bundles connecting the analyzed areas. The authors found short fibers connecting the supramarginal and angular gyri, and connecting both of these gyri to the superior parietal lobule. Finally, in a region-specific study of the parietal lobe by [START_REF] Catani | Short parietal lobe connections of the human and monkey brain[END_REF], the authors studied short connections in human and monkey brain. This is one of the few works that compare short fiber bundles across different species. They performed the analysis over the data of 21 alive humans and 11 ex vivo datasets, 5 vervet and 6 macaque monkeys. As in most of manual segmentations, only few regions were considered in the study: postcentral gyrus, superior parietal lobule and inferior parietal lobule.

The results show a close correspondence between the connections in human brains and in monkey brains (these connections in monkey brains have also been described by axonal tracing methods),

showing the evolutionary link between these species and their implication in human functions. The authors also performed a postmortem dissection in order to keep only the bundles found both in tractography and in the actual brain. The postmortem dissection was performed based on the Klingler method [START_REF] Ludwig | Atlas cerebri humani. the inner structure of the brain demonstrated on the basis of macroscopical preparations[END_REF], using the brain of a male donor. Thanks to the water crystallization process, the brain cortex can be easily removed, exposing the underlying white matter. Fiber bundles were then dissected by peeling off the white matter.

Automatic placement

Automatic ROI placement usually relies on templates containing the ROIs already defined, which are generally brain parcellations that are then automatically warped to the subject image. This kind of ROI delineation, in contrast to the manual one, can be easily extended to the whole brain and to a larger number of subjects. One of the first SWM studies conducted using this kind of approach is described in [START_REF] Oishi | Human brain white matter atlas: identification and assignment of common anatomical structures in superficial white matter[END_REF]. The authors created a ROI atlas of grey and white matter, constructed from the average of 81 subjects. Then, they applied this atlas to segment the fibers from the DTI data of 10 subjects. Using their white matter parcellation as ROIs, they isolated the fibers traversing them. Although the whole brain was analyzed, only a few bundles were successfully segmented, mainly because of the type of data utilized. As mentioned before due to SWM configuration, their tractography streamlines are difficult to successfully reconstruct, especially using DTI data which does not provide enough information about the different directions present in a voxel. Also, the size of the ROIs employed only allowed a rough delineation of the bundles. The authors later expanded their work by creating a single-subject WM atlas containing 46 SWM structures (based on the previous averaged atlas) [START_REF] Oishi | Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and alzheimer's disease participants[END_REF]. The difference with the previous work is that this time no fibers were segmented, only the voxels contained in the desired areas. The advantage of a single-subject atlas is that it contains sharper definitions of the delineated structures, unlike averaged atlas where these structures are blurred. This sharpness is especially useful for the delineation of the SWM, as it is highly variable. However, the downside of this kind of atlas is that they might contain subjectspecific structures, which are not common to the rest of the population. Following this idea, another SWM study was performed for the whole brain, presented in [START_REF] Zhang | Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy[END_REF]. It was conducted by first warping the same ROI atlas of [START_REF] Oishi | Human brain white matter atlas: identification and assignment of common anatomical structures in superficial white matter[END_REF] into the DTI data of 20 subjects by nonlinear registration. The authors looked for all possible connections between different pairs of cortical regions. These segmentations were then labeled based on the pair of ROIs they connected. The automated placement of ROIs and fibers segmentation allowed this work to be the first describing a large amount of fiber bundles. However, as in previous works, no detailed description of the bundles was given and only a rough delineation of them was presented as average density maps, due to the size of the ROIs. The existence of the connections was reported for a minimum of one fiber per connection.

Another whole brain study was the one performed in [START_REF] Ouyang | Global and regional cortical connectivity maturation index (ccmi) of developmental human brain with quantification of short-range association tracts[END_REF] in order to analyze the maturation index of the developmental brain. The authors segmented the brain cortex into 34 gyri per hemisphere using FreeSurfer3 and the Desikan-Killiany atlas [START_REF] Desikan | An automated labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of interest[END_REF] (see Although automatic placement of ROIs can ease the extraction of fibers in the whole brain, some works have also utilized this approach to study specific brain regions. This kind of studies can benefit from atlases already defined and available, and obtain a higher ROI reproducibility across subjects. For instance, in [START_REF] Bozkurt | Microsurgical and tractographic anatomy of the supplementary motor area complex in humans[END_REF] the authors focused on the anatomy of the supplementary motor area complex. Although the main idea of the work was to segment fibers in postmortem brains, the authors were also able to segment SWM in the pre-SMA and SMA from the tractograms of 2 subjects from the HCP database. The findings regarding the SWM unveiled a short fiber network within these functional areas, however only information about the regions they connect was given, lacking a proper bundle-based description of these fibers.

Even if automatic ROI definition facilitates group analysis in a population, the atlases often contain large ROIs (e.g. cortex main gyri), making difficult a fine description of the bundles. Another factor that has an impact on the results is the high cortex shape variability of the subjects [START_REF] Mangin | Spatial normalization of brain images and beyond[END_REF]. Different alignment methods vary the results from the subject-template registration, and therefore the ROI delineation. Hence, this kind of approach has the disadvantage of not being as precise as the manual one, altering the definition of the bundles, especially in their perimeter.

Semi-automatic placement

Finally, combining manual and automatic ROI placement leads to a semi-automatic definition of ROIs. There are some works that use this approach to get good results in a reasonable time. For instance, in [Vergani et al., 2014a] the authors utilized the Desikan-Killiany FreeSurfer brain parcellation [START_REF] Desikan | An automated labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of interest[END_REF] for the study of the SWM fibers connecting the supplementary motor area with the precentral gyrus and Broca's area in 10 subjects from the HCP dataset. The authors manually added some exclusion regions in order to remove spurious fibers. Since this cortical parcellation is based on major gyri, the ROIs were too large, so this kind of filter allowed the authors to better delineate the bundles. They described five connections within the supplementary motor area.

This study also proved the existence of fibers connecting these regions by comparing the tractography results with postmortem dissections. Another example is the work presented in [START_REF] Magro | Characterization of short white matter fiber bundles in the central area from diffusion tensor mri[END_REF] where the authors manually positioned 2D patches that were automatically extended to 3D

patches. The 2D patches were manually drawn, based on the external traces of the pre and postcentral sulcus. From them the 3D patches were constructed to cover the gray and white matter enclosed by the 2D patches. These delineations lead to a subdivision of fibers based on the combinations of different pairs of ROIs. With this processing the authors segmented 9 bundles connecting the pre and postcentral gyri. These bundle definitions are consistent with known functional areas.

Either automatic or semi-automatic approaches have the downside that fibers connecting two ROIs often present complex configurations and different shapes. Also, a large amount of outliers are segmented, especially if the regions utilized are large. These irregularities can reduce the usability of the bundles in segmentation analyses.

Fiber clustering methods

A completely different approach from ROI-based segmentation is the fiber clustering method. This class of approach is based on a fiber similarity measure. They take into account the shape and position of the fibers in order to group them into bundles, providing a disentanglement of the fibers and outliers removal. The results depend on the type of clustering and the fiber similarity measure employed. Although these approaches yield anatomically coherent bundles, they do not provide a direct reference to the cortical regions they connect [O'donnell et al., 2013] and often they have to be labeled after the grouping.

In general, fiber clustering has been widely used for the study of DWM. Thanks to their large size and low variability, those fibers can be easily analyzed. On the other hand SWM presents more complex configurations and overlapping, which makes them more difficult to reconstruct and variable across subjects. Their entanglement hinders the identification of homogeneous groups and outlier removal even with clustering methods. Despite this difficulty, in the past few years there have been some clustering-based studies focused in SWM. For instance, in [START_REF] Guevara | Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas[END_REF] the authors used an agglomerative average-link hierarchical clustering and a fiber Euclidean distance measure to group short fibers in the whole brain. The analysis was performed using a HARDI database of 12 subjects, and resulted in an atlas of 47 SWM bundles in the left hemisphere, that were then manually labeled in function of the connected regions. The underlying study was focused on DWM, therefore

In [START_REF] Yeh | Population-averaged atlas of the macroscale human structural connectome and its network topology[END_REF] the authors clustered by means of single-link clustering both long and short fibers reconstructed from the HCP-842 SDF template using DSI studio. This template was constructed from the average of the spin distribution function of 842 subjects (in ICBM-152 standard space) from the HCP dataset, and represents an average diffusion pattern within a normal population.

The clusters obtained were then labeled by neuroanatomist experts. However, the association fibers were only included into a generic category and no further information of bundle shape or the regions they connect was given. Another work, presented in [Zhang et al., 2018b] also performed a clustering for the whole brain over the data of 100 subjects from the HCP database. The aim of this study was to create a curated bundle atlas. First, the tractograms were directly aligned across subjects. Then the authors applied a group-wise spectral clustering and labeled the clusters (bundles) according to a FreeSurfer ROI atlas [START_REF] Desikan | An automated labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of interest[END_REF]. A second dataset composed of 584 subjects coming from different databases was conceived for segmentation purposes. Different types of subjects were considered, including data from newborn babies, autism disorder, neuropsychiatric disorders (schizophrenia, bipolar disorder and attention deficit), Parkinson disease, brain tumors and healthy subjects. The atlas results were therefore projected to the 584 subjects of the second dataset, showing a high reproducibility of the bundles. This work also described a high amount of bundles which are present in both hemispheres. Specifically regarding short fibers, 198 clusters were labeled as superficial connections in the whole brain. Although a high number of clusters was found, no specific description or validation of them was performed (this was done only for some DWM bundles).

Another work aimed at clustering the short fibers connecting the pre and postcentral gyri, using the gyri crest line [START_REF] Pron | Dense and structured representations of u-shape fiber connectivity in the central sulcus[END_REF]. These are used to define the fibers that are going to be clustered.

In order to do that, each line is parameterized to obtain a 1-D coordinate system as reference. The parameterization is done isometrically from the ventral to the dorsal extremity. The correspondence between the two crest lines is ensured by aligning the hand-knob structure, which is a well-known landmark of the central sulcus. Based on the fiber extremities, those who start or end in one of the crest lines are selected. Then, these fibers were clustered by means of a k-medoids algorithm, leading to subdivisions that are functionally coherent with the homunculus.

Although fiber clustering methods are automatic and can be extended to the whole brain and a population of subjects, the parameters are difficult to tune and calculations are expensive. Some reductions of complexity can be made, for example applying the analysis to only one hemisphere, a

given number of lobes, or after some filtering.

Different clustering algorithms result in a different grouping of the fibers, and for the same algorithm different parameters yield as well different bundle configurations. Usually, a fiber distance measure (e.g. Euclidean distance) is used to calculate a similarity index between fibers. A bundle can be defined for instance by choosing a maximum distance threshold [START_REF] Guevara | Reproducibility of superficial white matter tracts using diffusion-weighted imaging tractography[END_REF][START_REF] Guevara | Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas[END_REF][START_REF] Román | Clustering of whole-brain white matter short association bundles using hardi data[END_REF][START_REF] Yeh | Population-averaged atlas of the macroscale human structural connectome and its network topology[END_REF], or a fixed number of clusters [START_REF] Guevara | Reproducibility of superficial white matter tracts using diffusion-weighted imaging tractography[END_REF][START_REF] Pron | Dense and structured representations of u-shape fiber connectivity in the central sulcus[END_REF]Zhang et al., 2018a]. However, as SWM runs continuously along the sulci and anatomy is very different from one subject to another, it is difficult to define where a bundle starts or ends. Additional difficulties stem from the fact that there are areas of the SWM that are not well reconstructed due to partial volume effect and small size. Hence, the parameters must be adapted to each data, to extract as much information as possible.

Hybrid methods

As described above, both ROI placement and fiber clustering have their advantages and disadvantages. In an attempt to bring together the advantages of both methods, hybrid approaches can help to identify anatomically meaningful bundles with well-defined shapes and present in a large population of subjects. This kind of methods in general utilize the ROIs to extract and label the fibers connecting two different anatomically meaningful regions, and to diminish the amount of fibers to be clustered, simplifying and speeding up the process. Then a clustering is applied to each group of previously extracted fibers to get bundles containing only fibers with similar shape and position within a given pair of ROIs. Clustering also helps to filter off outliers and artifacts. Hence, the analysis takes into account the morphological information from the cortical folding patterns, and the shape and density of the fibers once they leave the cortex. Following this idea, in [START_REF] Guevara | Reproducibility of superficial white matter tracts using diffusion-weighted imaging tractography[END_REF] a FreeSurfer parcellation [START_REF] Desikan | An automated labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of interest[END_REF] is applied to the tractography data of 79 subjects of a HARDI database. This parcellation was used to extract fibers with length 20 to 80 mm, connecting two cortical ROIs (adjacent or not). To overcome the entanglement of the fibers connecting two ROIs that are often large, a first intra-subject hierarchical clustering was applied to group fibers. This yielded groups of fibers with similar shape and position within each pair of regions (bundles). A second clustering was then performed across subjects, for keeping only the bundles present in most of the population. These results were validated by applying the method to two different groups and by automatically projecting the bundles into a third group. This was the first work using a fully automatic approach describing well-defined bundles in the whole brain, based on HARDI data.

All the methods exposed in this section are summarized in Tables 4.1 and 4.2, along with their main findings.

Postmortem dissections

Although tractography is the preferred method for the study of brain connections in vivo, it is susceptible to artifacts, which results in many false positive and false negative fibers. A way to validate the tractography results is postmortem dissections [START_REF] Bozkurt | Microsurgical and tractographic anatomy of the supplementary motor area complex in humans[END_REF][START_REF] Burks | White matter connections of the inferior parietal lobule: A study of surgical anatomy[END_REF][START_REF] Catani | Short frontal lobe connections of the human brain[END_REF][START_REF] Catani | Short parietal lobe connections of the human and monkey brain[END_REF][START_REF] Maier-Hein | The challenge of mapping the human connectome based on diffusion tractography[END_REF]Vergani et al., 2014a,b]. DWM bundles have been widely validated using this technique, as thanks to their size, position and known trajectory, they are relatively easy to dissect. However this is not the case for SWM, since their proximity to the gray matter, variety of shapes and small size, make them more difficult to extract. Also, as mentioned before, Chain of U-shaped fibers running laterally to the inferior longitudinal fasciculus that connect adjacent gyri of the lateral occipito-temporal region [START_REF] Wakana | Fiber tract-based atlas of human white matter anatomy[END_REF] Tractography Co-localization patterns over DTI, HARDI and DSI data of human, chimpanzee (DTI) and macaque (DTI) brains. Verification of the existence of fibers, and preservation of U-shape [Vergani et Clustering (k-medoids) Semi-automatic clustering since this kind of fibers connect two neighbor gyri (or even regions within the same gyri) by running continuously along the sulci, it is complex to identify the bundle limits regarding its neighbors.
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Nevertheless some validations have been made for specific brain regions as the fronto-parietal region [START_REF] Catani | Short frontal lobe connections of the human brain[END_REF], occipital lobe [Vergani et al., 2014b], and supplementary motor area [START_REF] Bozkurt | Microsurgical and tractographic anatomy of the supplementary motor area complex in humans[END_REF]Vergani et al., 2014a], etc. Those works showed the existence of the short association bundles in the regions they studied. These results present a great correspondence with those obtained by means of tractography, independently of the virtual dissection technique employed. Therefore, although these bundles have no specific names, the fact of being found by two different techniques gives some degree of validation to their existence, that also allows results from new works to be compared against them.

Applications

In the last few years, thanks to an increasing development of new tools for the study of SWM, more clinical studies regarding these structures have been made. Those studies often aim to quantify differences in pathologies like Alzheimer and dementia, autism spectrum disorders or schizophrenia.

Either by segmenting specific bundles or doing a general inspection, different studies intend to identify the relation of short connections to specific diseases. This is in general achieved by measuring diffusion values as: fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD), and quantifying their changes with the pathology [START_REF] Alexander | Diffusion tensor imaging of the brain[END_REF]. In Tables 4.3 and4.4 a summary of clinical studies focused on SWM is presented.

Among those studies, some have revealed that the loss of integrity of the short fibers, quantified by an increased MD, contributes to a lower cognitive efficiency in healthy old adults and even more in Alzheimer patients [START_REF] Gao | The relevance of short-range fibers to cognitive efficiency and brain activation in aging and dementia[END_REF]. Here, the authors defined ROIs from fMRI activations in prospective memory tasks, and then created a common ROI for the three categories of subjects: healthy young (13), healthy older adults (13) and patients with mild Alzheimer disease (17). The ROI was warped into the DTI map of each subject in order to reconstruct the fibers passing through.

Only short fibers measuring from 4 mm to 35 mm were selected. Increased values of the MD, RD and AD in the SWM of the temporal region have also been reported to be related to Alzheimer disease [START_REF] Reginold | Altered superficial white matter on tractography mri in alzheimer's disease[END_REF]. The study utilized tractography datasets calculated from the DTI data from 24 controls and 16 patients. Fibers of interest were segmented by manually placing ROIs for each lobe.

Another study showed that the values of FA are inversely related with age in the SWM for healthy individuals, especially in the fronto-parietal and occipital regions [START_REF] Nazeri | Superficial white matter as a novel substrate of age-related cognitive decline[END_REF]. The study was carried out using the DTI data of 141 healthy individuals, across the adult lifespan (18 to 86 years old), from which fibers were later reconstructed using probabilistic tractography. Only SWM fibers were selected by seeding exclusively in the cortical gray/white matter boundary and excluding DWM using exclusion masks. In order to perform the analysis, the SWM tracts were then binarized and averaged across subjects, creating a SWM probabilistic mask. The mask was used to obtain the mean FA, which was then skeletonized to perform TBSS analysis. Additionally, a MNI probabilistic atlas of cortical structures was employed to identify the SWM from frontal, parietal, occipital and temporal areas. Another study focused on age changes in SWM is presented in [START_REF] Malykhin | Structural organization of the prefrontal white matter pathways in the adult and aging brain measured by diffusion tensor imaging[END_REF]. The authors utilized 69 DTI datasets from subjects aged 22-84 years for studying the prefrontal white matter connections, since functions in this lobe generally decline with age. In order to do that, they manually parcellated the prefrontal white matter by placing ROIs. The results showed that there is an increase in the AD and RD with age, starting from the 60s. Other age-focused work studied the development of the SWM in children and adolescents [START_REF] Wu | Development of superficial white matter and its structural interplay with cortical gray matter in children and adolescents[END_REF]. The authors measured the FA, MD, RD and AD in 133 healthy subjects aged 10-18 years. These diffusion measures were averaged along the direction normal to the WM surface and projected into a WM template from

FreeSurfer. The analysis results showed an increasing FA and decreasing MD and RD as the age increases, beneath bilateral motor sensory cortices and superior temporal auditory cortex, as well as an increase in FA and AD in bilateral orbitofrontal regions and insula.

Regarding the autism spectrum disorder (ASD), it is thought that it is generated by changes in the overall brain connectivity. Therefore, a special interest in this field has arisen not only for the study of DWM but also of the SWM. Recently a study of ASD utilized our SWM atlas of 63 bundles [START_REF] Guevara | Reproducibility of superficial white matter tracts using diffusion-weighted imaging tractography[END_REF] to identify specific bundles implicated in this pathology [d' Albis et al., 2018].

These bundles were segmented from the tractography datasets of 27 patients and 31 control subjects and the mean generalized FA among them was used as a measure of integrity. It was found that a deficit of the connectivity comprising 13 bundles, mostly from frontal, temporal and parietal regions, is associated with the severity of the disorder. Similar results were found in [START_REF] Sundaram | Diffusion tensor imaging of frontal lobe in autism spectrum disorder[END_REF],

where the authors also found an FA significantly lower in ASD. In this study the authors only focused on the temporal lobe. The analysis was performed by manual delineation of ROIs in order to extract the fibers from whole brain tractography datasets computed from the DTI data of 50 patients and 16 controls.

Studies relating schizophrenia with changes in SWM have also been performed. A recent study used tractography datasets of 31 patients with schizophrenia and 54 healthy controls, to segment SWM bundles using also ouratlas, as in [d' Albis et al., 2018]. This analysis exposed that there is a lower generalized FA in bundles connecting the frontal gyri, in patients with schizophrenia [Ji et al., 2018b]. This relationship has also been described previously by means of TBSS for the frontal and parieto-occipital connections (no specific bundles) [START_REF] Nazeri | Alterations of superficial white matter in schizophrenia and relationship to cognitive performance[END_REF]. A different approach is the one adopted in [START_REF] Phillips | Mapping corticocortical structural integrity in schizophrenia and effects of genetic liability[END_REF], where the authors analyzed the diffusion values by using meshes of the WM. The meshes of all subjects are aligned in terms of their sulcal lines and the FA values are obtained from the DTI image using a 10 mm sphere to average the values around each mesh vertex.

The FA values were previously masked and thresholded in order to keep only those corresponding to the SWM. The method was applied to the data of 150 subjects in total, including: schizophrenia patients and their relatives, and community comparison subjects and their relatives. Results from this analysis showed a reduced SWM FA in patients especially in the left temporal and bilateral occipital regions.

The same approach described in [START_REF] Phillips | Mapping corticocortical structural integrity in schizophrenia and effects of genetic liability[END_REF] was used in later analyses in order to study the relation of SWM in a variety of topics. In [START_REF] Phillips | Superficial white matter: effects of age, sex, and hemisphere[END_REF] a study about the age, sex and hemispheres is performed over the data of 65 subjects. They found a decrease of FA related to age, as well as an increase of AD and RD, and also a leftward asymmetry. Another study using the same approach as a base [START_REF] Phillips | Mapping corticocortical structural integrity in schizophrenia and effects of genetic liability[END_REF] was focused in studying the relation of SWM with Huntington's disease [Phillips et al., 2016b]. The study was performed over the data of 25 presymptomatic subjects, 24 patients and 49 healthy controls. An increase of the AD and RD disperse in the brain was found for pre-symptomatic subjects compared to controls. For patients this increase was found in all the brain. Another work covered the relation of SWM with Alzheimer's disease [Phillips et al., 2016a]. Forty-four patients and forty-seven healthy controls were analyzed. Results

showed an increase of the AD and RD across most of the SWM, especially in the parahippocampal regions and the temporal and frontal lobes. Finally, in [START_REF] Phillips | Superficial white matter damage in anti-nmda receptor encephalitis[END_REF] the authors studied the SWM damage in anti-NMDA receptor in encephalitis. Forty-six subjects with encephalitis and thirty controls were included in the study. The study of the MD revealed a microstructural integrity impairment in non-recovered patients versus recovered and non-recovered versus healthy controls.

This increase in MD is principally distributed in the frontal, temporal and parietal lobes.

Furthermore, some studies have been focused on the connections in the motor area, in order to investigate related dysfunctionalities. Among these connections we can distinguish the bundle connecting the pre supplementary motor area and Broca's region, namely the frontal aslant tract (FAT).

A study performed by Catani et al. showed that damage in this bundle has been related to progressive aphasia [START_REF] Catani | A novel frontal pathway underlies verbal fluency in primary progressive aphasia[END_REF]. The analysis was performed using the DTI data of 35 patients and 29 controls. Using manually drawn ROIs, the authors segmented the fiber bundles by setting them as seed regions.

Another pathology of interest in clinical studies is bipolar disorder. In [Zhang et al., 2018c] the authors utilized DTI data from 37 bipolar patients and 42 healthy controls and probabilistic tractography to calculate population-based SWM masks. TBSS analysis was employed to measure the FA of the SWM, as well as the MD, AD and RD. The clusters found after this analysis were reported according to the atlas presented in [START_REF] Guevara | Reproducibility of superficial white matter tracts using diffusion-weighted imaging tractography[END_REF] in order to identify the cortical regions connected by them. This allowed them to find a reduced FA of the bipolar patients compared to controls, in the dorsolateral prefrontal cortex, as well as an increased MD and RD in the right frontal cortex.

The relation between SWM and psychosis has also been studied. A study focused on the fibers in the insula-temporoparietal area used DTI data from 42 patients and 45 controls to reconstruct 13 SWM bundles and analyze their differences [START_REF] Hatton | Short association fibres of the insula-temporoparietal junction in early psychosis: a diffusion tensor imaging study[END_REF]. The fiber bundles were obtained by using as seed regions ROIs from the Desikan-Killiany atlas [START_REF] Desikan | An automated labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of interest[END_REF]. The authors found a reduced FA in the bundle connecting the superior temporal and middle temporal gyrus, as well as an increased white matter volume in the Heschl's gyrus.

Finally, a study aimed to look for changes in the WM for children with Tourette syndrome [START_REF] Wen | Combining tract-and atlas-based analysis reveals microstructural abnormalities in early tourette syndrome children[END_REF]. The authors combined TBSS and ROIs analyses for studying changes in FA, RD, AD and MD in DWM and SWM. A ROI atlas [START_REF] Oishi | Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and alzheimer's disease participants[END_REF] was used to parcellate the white matter and study the changes of DTI values locally, using the data of 27 patients and 27 controls.

Regarding the SWM the results showed a decrease of FA and increase of RD beneath bilateral primary somatosensory cortices in Tourette syndrome children. These changes were also underneath bilateral precentral, postcentral, fronto-orbital and superior temporal auditory cortices.

Discussion and conclusion

An extensive review of the state of the art regarding the study of superficial white matter with diffusion MRI was presented. Although the interest in their study is rather recent, an important amount of works have been published. SWM bundles are difficult to depict either from postmortem brains or tractography, however some research groups have managed to segment reliable bundles from both kinds of data. Even if these studies are often limited to reduced regions of the brain, they provide a valuable source of comparison.

Different techniques and data yield different outputs. Of course none approach is perfect and depending on the level of precision in the bundle delineation, the reproducibility and variability of the bundles, the quality of the data and the study goals, one can be preferred over the others. Also, a point to consider in the decision is the study extension, in terms of the amount of regions to be analyzed.

While manual positioning of ROIs offers a better delineation of the bundles extracted, it can only be applied to a reduced amount of them and most likely those with some a priori anatomical knowledge.

On the other hand automatic methods allow the study of reproducible connections within the whole brain, although with a lower precision. The different types of automatic methods also have their advantages and disadvantages if we compare between them. While automatic ROI placement adds anatomical information from the cortex to the segmented fibers, these do not necessarily conform exactly to a bundle. Depending on the ROI sizes, connections between a pair of them can be composed of fibers with different shapes, sizes and positions. In contrast, clustering methods can group similar fibers, resulting in anatomically meaningful bundles, however often no correspondence with the regions they connect is known a priori.

As SWM is closely related to cortical morphology, future progress will probably require a more explicit modeling of the variability of the folding patterns. Furthermore, while algorithmic progress now allows the manipulation of huge tractograms including a million streamlines, exploring further the short range connectivity may require to scale-up even further the amount of streamlines of interest. The current increase of available tools has allowed the inclusion of SWM in clinical studies. This grants a better and more localized understanding of the changes in the brain connectivity that trigger certain pathologies. In order to understand how the brain works we must be aware of all its components and how they relate to each other. The different clinical studies included in this review reveal that SWM is specially affected in different pathologies. These studies expose changes in different diffusion indices which are driven most likely by phenomena related to the myelination of the fibers.

The SWM is specially exposed during the brain maturation as its myelination occurs mostly during the third and fourth decade of life, making the SWM more prone to lesions. Their study is very sensitive to the dMRI data quality.

Chapter 5

Cortical folding study

"What I love about science is that as you learn, you don't really get answers. You just get better questions" . . .

John Green

As it has been mentioned in previous chapters, the superficial white matter is in intimate relation with the cortical mantle. It has also been already mentioned that the human brain cortex is highly convoluted, presenting folding patterns that are different and specific to each human being. It is believed that there exists a change in the SWM configuration linked to cortical morphology changes.

It has been for instance hypothesized that brain cortex folding is a result from the tension generated by the underlying white matter. Inter species studies have shown that humans presents a higher amount of short fibers, which is also presumably related to the higher gyrification of the cortex [START_REF] Zhang | Characterization of u-shape streamline fibers: Methods and applications[END_REF].

As mentioned in previous chapters, the brain main sulci serves as delimitation for brain structural regions, but they also can be linked to functional areas. Differences in cortical morphology have been proven to be related with the localization of functional areas [START_REF] Sun | Linking morphological and functional variability in hand movement and silent reading[END_REF]. Following this logic, one might think that localization of the fibers connecting these functional centers also change accordingly. Assuming that the cortex folding and fiber organization are actually related, one big question is which one is the cause and which is the consequence? Does the brain cortex folds because of the fiber tension, or does the fiber rearrange because of the folding?

Even though the focus of this thesis is not to study the cortical morphology itself, this subject is closely related to the SWM configuration. Therefore, in this chapter a brief review on this matter is presented.

Human brain cortical folding study

In humans, except for a few major fissures, cortical folding starts appearing only during the third trimester of pregnancy (a process called gyrogenesis) and extends until around the age of 10 years [START_REF] Sun | Inférence d'un dictionnaire des motifs des plissements corticaux[END_REF]. Until today, the underlying processes are still not fully understood. It is believed that the main goal of this process is to increase the number and diversity of the brain functions. It was first logically believed that a way to achieve this, since the space inside our skulls is limited, is by mechanical buckling, infolding and fissuring [START_REF] Sun | Inférence d'un dictionnaire des motifs des plissements corticaux[END_REF]. The primary effect of the brain folding results in an increase of the surface relative to the volume, which correlates with the number of neurons (and therefore the computational capacities). However, later on it was proved that this phenomenon cannot only be attributed to this constraint. Some studies suggest that brain cortical morphology is related to brain structural connection and therefore brain function. This relationship has also been studied from an evolutionary point of view, by comparing the human brain with the ones from our closer relatives, the monkeys. Findings in these studies showed that the monkey brain cortex is less convoluted than ours, which also correlates with a lower amount of short fibers connections in their brains [START_REF] Zhang | Characterization of u-shape streamline fibers: Methods and applications[END_REF].

It has been hypothesized that the formation of the brain cortex folding pattern is due to the role played by the fiber tension connecting different brain regions [START_REF] Van Essen | A tension-based theory of morphogenesis and compact wiring in the central nervous system[END_REF]]. This particularly brings our attention to the subject, since the WM closest to the brain cortex is the SWM, which might play an important role in gyrogenesis.

Cortical gyri and sulci from MRI

As it was already mentioned, the brain cortex folds forming a series of convolutions called gyri, and valleys called sulci. The major structures of each kind are, in general, similar among subjects.

Therefore they can be to some extent easily identified and labeled. An example of a well-known gyri parcellation is presented in [START_REF] Desikan | An automated labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of interest[END_REF] (see Figure 5.1), where the authors labeled the major gyri and their corresponding sulci walls. This labeling is part of the Freesurfer1 pipeline and is performed from a cortical mesh, whose vertices are aligned with a template describing the cortex morphology. Although these gyri are somehow easier to identify, their labeling still poses a challenge and is not perfect. The reason behind this issue is that the sulci defining the gyri boundaries vary among the population, rendering their precise labeling difficult. Some of these mayor sulci have Another brain cortex parcellation based on the major gyri and the surrounding sulci has also been proposed in [START_REF] Destrieux | Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature[END_REF] (also available from the Freesurfer pipeline). The difference with the atlas proposed in [START_REF] Desikan | An automated labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of interest[END_REF] is that the gyri and sulci are labeled separately.

Alternatively to the whole brain cortex parcellation and labeling, one can want to label only the brain sulci. For instance, an exclusive sulci atlas has been proposed in [START_REF] Perrot | Cortical sulci recognition and spatial normalization[END_REF], in an attempt to automatically label only these structures (see Figure 5.2). This labeling is part of the Brainvisa2 pipeline, and is based on the extraction of cortical folds from T1 MRI. The T1 image is skeletonized from an object made up from the union of gray matter and cerebrospinal fluid enclosed in the brain hull [START_REF] Mangin | From 3d magnetic resonance images to structural representations of the cortex topography using topology preserving deformations[END_REF]. From these objects Statistical Probabilistic Anatomy Maps (SPAM) are created, which define the probability of finding a sulcus in a given voxel [START_REF] Perrot | Cortical sulci recognition and spatial normalization[END_REF].

Relationship between brain folding and cortico-cortical connections

As already mentioned, brain cortex is in close relation with the cortico-cortical connections and especially with the shorter ones. It has been proposed that the neuronal connections developed during the second trimester of pregnancy produce a fiber tension that brings close together two densely interconnected regions [START_REF] Sun | Inférence d'un dictionnaire des motifs des plissements corticaux[END_REF]. This is particularly interesting because regions that present a greater connectivity move closer together and get enclosed in the rapidly growing brain, resulting in the formation of gyri. The characteristic folding pattern can then be explained based on this reason, since the folding does not occur in a random way. It is true that the folding pattern is unique to each individual, but its general organization is stable across a species, as the underlying highly species-specific white matter organization. The link between gyrification and fiber tension has been demonstrated by experimental findings in primate brains [START_REF] Hilgetag | Role of mechanical factors in the morphology of the primate cerebral cortex[END_REF]. But this point of view is not consensual, a wider community recently switched to the hypothesis that differential growth between the outer and the inner part of the cortex is at the origin of the folding [START_REF] Llinares-Benadero | Deconstructing cortical folding: genetic, cellular and mechanical determinants[END_REF].

Anyway, there is a growing interest in the potential connection of the cortical folding and the underlying white matter. In this spirit, this thesis intends to unveil if there exists a correlation between variability of the superficial white matter organization and the variability of the cortical folding morphology.

Cortical folding variability

As it has been stated previously, the folding pattern is unique for every individual. The primary folds, which appear before the 30th week of gestation, are relatively consistent and therefore more stable across subjects [START_REF] Sun | Constructing a dictionary of human brain folding patterns[END_REF]. The most complete atlas of the sulcal variability has been described FIGURE 5.2: Brainvisa sulci atlas. Atlas proposed for the labeling of a great amount of the human brain sulci. Image from [START_REF] Perrot | Cortical sulci recognition and spatial normalization[END_REF].

in [START_REF] Ono | Atlas of the cerebral sulci[END_REF], based on twenty different brains. Here the authors propose a list of possible patterns and their frequencies for each sulcus (defined for instance from the sulcus interruptions). It has been discussed before that white matter organization and cortical folding are most likely to be highly related, therefore one can think that these morphology changes are produced or have an effect on the underlying fiber bundles.

One of the most stable and prominent sulcus in the human brain is the central sulcus. Nevertheless, its size and shape vary across individuals, or even between hemispheres [START_REF] Sun | Linking morphological and functional variability in hand movement and silent reading[END_REF]. Other sulci can be also identified on the surface, however their variability is harder to model. Thanks to the advances in computational calculations, nowadays it is possible to identify and classify their different patterns. Therefore, a population can be classified into groups presenting specific folding patterns. In this spirit, Sun et al. proposed a dictionary of the different human brain folding patterns, called incompatible patterns [START_REF] Sun | Constructing a dictionary of human brain folding patterns[END_REF]. The authors clustered the cortical folds from the data of 62 subjects, obtained from the Brainvisa processing. The clustering was achieved by means of an average link hierarchical clustering, based on a geometric distance measure and dimension reduction techniques. The distance measure was calculated using the iterative closest point and then the dimensionality reduction was achieved by using an ISOMAP algorithm. This dictionary describes the folding patterns that are visually noticeable for the: central sulcus, cingulate sulcus, superior temporal sulcus, Broca's area, and the superior frontal area [START_REF] Sun | Inférence d'un dictionnaire des motifs des plissements corticaux[END_REF].

As this thesis's subject is closely related to the changes in the sulcus morphology and one of the goals is to establish if there is a relationship between it and the underlying white matter geometry, it is important to have in mind the different patterns that can be found. Therefore, in the following paragraphs, we present rapidly the morphological variability represented by the first dimension of the folding manifold computed by the method mentioned above using the HCP dataset for a few sulci.

These regions of interest will be our target when studying the variability of the fiber geometry.

Central region

Two typical configurations were found for the central sulcus: the single knob and the double knob.

An interesting fact is that in the left hemisphere the right-handers tend to have the double-knob configuration, while the left-handers tend to have the single-knob. The moving average images of the sulcus configuration changes are displayed in the Figure 5.3. It can be observed that there is a sort of transition between one configuration and the other along the ISOMAP axis for the first dimension.

The apparition of the second knob seems to push the first knob higher in the sulcus.

Precentral gyrus

In this region, from the left to the right, we can observe that the intermediate precentral sulcus changes orientation from more parallel to more perpendicular with respect to the central sulcus. 

Relationship between brain folding and functional organization

There is some evidence of close links between primary sulci and functional architecture of the brain, as these can be used as anatomical landmarks or delimitations to define them. Moreover, the work proposed in [START_REF] Sun | Linking morphological and functional variability in hand movement and silent reading[END_REF] exposes that functional activations from the hand area change localization depending on the shape of the central sulcus. As mentioned in the section 5.1.3.1, one of the major landmarks of the central sulcus is the hand knob, whose pattern changes along the ISOMAP axis. This landmark is located more dorsally in the left hemisphere in dextrals than in sinistrals.

As previously mentioned, the development of the brain folds is likely to be strongly related to the fiber development. Abnormalities in their development are usually translated into psychiatric pathologies. For instance, a link has been established between the folding patterns of the cingulate sulcus and schizophrenia. Two patterns are described: the single type and the double parallel type, related to the existence of the paracingulate sulcus. It has been proved that patients present more symmetric patterns than controls. Another example occurs for epilepsy, which is due often to the incomplete migration of neurons which do not reach the cortex, called cortical dysplasia. This dysplasia is often linked to abnormal patterns.

Chapter 6

Clustering and Manifold Learning The Chapter 4 describes different methods for the segmentation of brain white matter from tractography data. One of these methods is fiber clustering. There are a myriad of clustering algorithms, each one with their pros and cons. The choosing of a clustering algorithm depends on the type of grouping desired, the type of data, the a priori information (e.g. number of clusters), etc. In the first section of this chapter a brief definition of the clustering algorithm used in the tractogram analysis is presented. On the other hand, in Chapter 5 it was exposed that one way to analyze the morphology differences in the cortex folding studies is the dimensionality reduction analyses. This option is useful when the dataset does not include straightforward clusters. These techniques allow reduction of the amount of variables under analysis and identify the features that drive the organization of a low dimensional approximation of the manifold, where the data live. Fibers, as well as sulci, present complex morphology in a 3D space, which makes their analysis difficult. Keeping that in mind, the dimensionality reduction seems also adequate for the fiber organization morphology analysis. In the second section of this Chapter a brief description of the used dimensionality algorithms is given.

Clustering algorithms

A clustering is a process that allows grouping a set of objects based on their similarity, which can mean different things depending on the input data. Using this similarity as a clustering measure the objects that are more similar are grouped into the same group or cluster. This clustering task can be achieved by different algorithms that differ on their definition of what constitutes a cluster. The most appropriate clustering and the parameters setting depend on the type of input data and the desired results. Generally speaking, clustering problems can be divided into: (i) hard clustering, where an object belongs to one and only one cluster; and (ii) fuzzy clustering, where an object may belong to two or more clusters given certain probabilities [START_REF] Gan | Data clustering: theory, algorithms, and applications[END_REF]. In this thesis we will be focused on hard clustering, as we seek to classify fibers into well delimited bundles.

In general, conventional hard clustering algorithms are based on a similarity distance. They have the advantage that they can be used with almost any type of data, as long as an appropriate distance measure function is established. Often, custom distance measures are implemented for specific types of data, reducing the clustering problem to a matter of finding the adequate distance function for that data type [START_REF] Aggarwal | Data clustering: algorithms and applications[END_REF]. This is often the case for clustering tractography fibers, as they represent complex objects composed of several points in a 3D space. This feature can be used in arithmetic operations to quantify the degree of similarity between them. The most used distance measure in this kind of studies is the Euclidean distance, represented as:

d i j = k=1 ∑ n x ik -x jk 2 (6.1)
were x ik and x jk are k-dimensional data objects. Moreover, the hard clustering methods can be classified into two main categories: (i) partitional clustering and (ii) hierarchical clustering [START_REF] Gan | Data clustering: theory, algorithms, and applications[END_REF]. Other clustering algorithms utilize complex similarity measures, for instance those based on probabilistic methods [START_REF] Aggarwal | Data clustering: algorithms and applications[END_REF]. One of the most standard methods when clustering the white matter is the hierarchical clustering. In these kind of algorithms the clusters are represented hierarchically by means of a dendrogram, which displays the grouping of the nested elements and the levels of similarity at which the grouping changes. The root node of the dendrogram contains all the elements of the dataset, and each leaf corresponds to a single element (see Figure 6.1).

The final clusters are obtained by cutting the dendrogram at a given similarity level, a process called partition. This partition is performed according to a similarity relation between clusters. Hierarchical clusterings can be further divided into: (i) agglomerative, where the hierarchical representation is created in a bottom-up fashion; and (ii) divisive, where the representation is created in a top-down fashion [START_REF] Aggarwal | Data clustering: algorithms and applications[END_REF].

• Agglomerative: In these methods a bottom-up approach is implemented, i.e. the clustering starts off with individual data points (each point is a cluster) and successively merges clusters In the context of this work, we decided to stick to hierarchical clustering as it is one of the most standard clustering methods when the number of clusters is not known a priori. Moreover, it offers simplicity for understanding the structure of the bundles and how the fibers compose it. This translates into the ability to modulate and tune the different granularity level when defining a bundle and therefore the level of disentanglement. Note also that the choice of linkage is also a crucial parameter when evaluating the similarity of the elements. We decided to employ an average-link since it is less affected by noise, a common issue when clustering white matter.

Manifold learning

A manifold (also called topological manifold) can be thought as a topological space that locally looks flat and featureless and behaves like Euclidean space, but in fact it presents complex shapes at a larger scale (higher dimensionality) [START_REF] Ma | [END_REF]. Distinct points on a manifold can be separated by neighborhoods.

The manifold learning algorithms serve for recovering a low-dimensional manifold embedded in a high-dimensional space. Most of the embedding algorithms that serve this purpose are called spectral embedding methods, which are designed to recover linear or nonlinear manifolds in high-dimensional spaces [START_REF] Ma | [END_REF]. Linear methods include Principal Components Analysis (PCA) and Multidimensional Scaling (MDS). When these methods do not yield a good low-dimensional representation of the data, the data may lie in a nonlinear manifold and then nonlinear manifold learning algorithms are used. These kinds of algorithms include ISOMAP, Local Linear Embedding, Laplacian Eigenmaps, Diffusion Maps, etc. The main difference between these two kinds of algorithms is that linear methods aim to preserve the global structure of the manifold, while nonlinear algorithms are oriented to preserve the local structure in small neighborhoods on the manifold [START_REF] Ma | [END_REF]. This is why nonlinear methods seem more appropriate in the context of this thesis, as preserving the relation between close neighbors is important when analyzing the subject's morphology behavior also at a local level. This kind of algorithms compute a t ′dimensional estimates of the tdimensional manifold data. This t ′ can be as large as t, but since the main goal is to represent as a low-dimensional approximation of the manifold, often only the first two or three of the coordinate vectors are retained (this is usually sufficient to understand the core nature of the underlying manifold). The corresponding elements of these vectors can be plotted against each other, yielding these elements in a two-or three-dimensional space [START_REF] Ma | [END_REF]. For the analysis of the data, the algorithms first incorporate neighborhood information at each data point to construct a weighted graph.

Then, depending on the algorithm approach, this graph is taken and transformed into a suitable input for the spectral embedding.

One of the most used nonlinear manifold algorithms is the ISOMAP, where the neighborhood is defined by the k nearest points. This method is based on the MDS method with the difference that the distances between data pairs are not the Euclidean distances, but the shortest curve length which respects the geometry of the data (geodesic) [START_REF] Alpaydin | Introduction to machine learning[END_REF][START_REF] Zheng | Statistical learning and pattern analysis for image and video processing[END_REF]. This way the algorithm looks for preserving the intrinsic geometry of the data. In order to achieve that, it creates a graph whose nodes correspond to the input data points and their edges connect the k neighboring points, with a weight equal to their Euclidean distances. Neighboring points are defined by a threshold distance or the k nearest. The ISOMAP algorithms use the geodesic distances between all pairs of data points, which is calculated as the shortest path between two pairs of nodes. For neighboring points (close in the input space) their geodesic distance is just the Euclidean distance.

For distant points the geodesic distance is approximately calculated as the shortest path through the Resources "It is essential to have good tools, but it is also essential that the tools should be used in the right way" . . .

Wallace D. Wattles

As mentioned in the previous section, the preferred method for the white matter analysis is the tractography. It allows the study of the fiber structures in vivo and non-invasively. For this thesis, two tractography databases were used, which are described in this chapter. One is a small database with tractography datasets composed of a limited number of streamlines. This dataset is also reduced in the number of subjects. This smaller dataset allows a first approach to tackle the goal of this thesis, as the data is easier to handle. The second database is a much bigger one, in terms of number of subjects and streamline count. This higher quality database also presents a better definition, and therefore more detail on the fiber geometry can be obtained.

The different software for data processing, analysis and visualization are also described in this section.

Databases

For the experiments performed in the context of this thesis, three databases were used, which are described in the following.

ARCHI database

Its data were used for the first experiments performed in the context of this thesis. This database is relatively simple, the reason why it was used for a first approach and proof of concept.

The database consists of HARDI data from seventy nine healthy subjects: 23.6 ± 5. The diffusion data were processed using BrainVISA/Connectomist-2.0 software1 [START_REF] Duclap | Connectomist-2.0: a novel diffusion analysis toolbox for brainvisa[END_REF]. They were preliminary corrected for all the sources of artifacts (eddy currents and susceptibility effects) and outliers were also removed [START_REF] Dubois | Correction strategy for diffusion-weighted images corrupted with motion: application to the dti evaluation of infants' white matter[END_REF]. The outliers correspond to defective isolated slices, mostly produced by the motion of the subject, or to artifacts resulting from hardware problems like mechanical vibrations or spike noise. Then, the analytical Q-ball model [START_REF] Descoteaux | Regularized, fast, and robust analytical q-ball imaging[END_REF] was computed. For performing the fiber tracking, a T1-based propagation brain mask was calculated [Guevara et al., 2011a]. It includes superficial white matter voxels, allowing a good reconstruction of cortico-cortical connections. The mask was transformed from T1 to DW space and used for seeding (one seed per voxel at T1 resolution) and to define the space where fibers were tracked. Whole brain regularized streamline deterministic tractography [START_REF] Perrin | Fiber tracking in q-ball fields using regularized particle trajectories[END_REF] was performed in diffusion-weighted native space, using the described mask, with a forward step of 0.2 mm and a maximum curvature angle of 30°. This leads to tractography datasets with an average of one million fibers per subject, between 20 and 300 mm of fiber length. Fibers were finally processed using an intra-subject clustering [Guevara et al., 2011b], in order to remove outliers and reduce the data dimensionality. The clustering generates two tractography datasets per subject: the cluster dataset, consisting of compact fascicles of similar fibers, and the cluster centroid dataset, containing a representative fiber for each cluster, resampled with 51 equidistant points. The datasets present an average of 5300 clusters per subject. All the fibers are in each individual diffusion-weighted image space and in Talairach space by means of an affine transformation.

For the sulci extraction, these were extracted from the MRI data using the Morphologist toolbox of BrainVisa [START_REF] Mangin | Object-based morphometry of the cerebral cortex[END_REF][START_REF] Perrot | Cortical sulci recognition and spatial normalization[END_REF]. The software represents the sulci by a set of 3D points that sample the medial surface of the cerebrospinal fluid filling the fold. To control for the influence of variable brain size the sulci representations are all normalized to the standard Talairach reference frame (by a 9 parameter affine transformation).

Atlas validation dataset

Twenty six subjects from a high quality HARDI database were used for validating the stability of the bundles obtained with the method. Scans were acquired on a Tim Trio 3T MRI system with a 12-channel head coil (Siemens, Erlangen), and the MRI protocol included the acquisition of a T1-weighted dataset using the same protocol employed for the main database, a B0 fieldmap, and a SS-EPI single-shell HARDI dataset along 60 optimized diffusion-weighted directions, b=1400

s/mm 2 , (70 slices; FA=90; TE=92 ms; TR=9,300 ms; matrix=128×128; RBW=1,502 Hz/pixel; ES=0.75 ms; PF=6/8; GRAPPA=2; voxel size=2.0×2.0×2.0 mm). The data were processed using BrainVISA/Connectomist-2.0 software [START_REF] Duclap | Connectomist-2.0: a novel diffusion analysis toolbox for brainvisa[END_REF] using the same steps as for the database described in the previous Section 7.1.1, up to the computation of the tractography dataset. Also the fibers are in T2 subject space and an affine normalization from this space to Talairach referential is calculated.

Human Connectome Project (HCP) database

The Human Connectome Project (HCP) database [START_REF] Van Essen | The wu-minn human connectome project: an overview[END_REF] used is the S900 release.

This database has higher resolution and quality data, allowing a better reconstruction of the structural information and dMRI tractograms. The diffusion data were processed using BrainVISA/Connectomist-2.0 software2 [START_REF] Duclap | Connectomist-2.0: a novel diffusion analysis toolbox for brainvisa[END_REF]. They were preliminary corrected for all the sources of artifacts (eddy currents and susceptibility effects) and outliers were also removed [START_REF] Dubois | Correction strategy for diffusion-weighted images corrupted with motion: application to the dti evaluation of infants' white matter[END_REF]. The outliers correspond to defective isolated slices, mostly produced by the motion of the subject, or with artifacts resulting from hardware problems like mechanical vibrations or spike noise. Then, the analytical Q-ball model [START_REF] Descoteaux | Regularized, fast, and robust analytical q-ball imaging[END_REF] was computed. For performing the fiber tracking, a T1-based propagation brain mask was calculated [Guevara et al., 2011a]. It includes superficial white matter voxels, allowing a good reconstruction of cortico-cortical connections. The mask was transformed from T1 to DW space and used for seeding (eight seeds per voxel at T1 resolution) and to define the space where fibers were tracked. Whole brain regularized streamline probabilistic tractography was performed on diffusionweighted native space, using the described mask, with a forward step of 0.2 mm and a maximum curvature angle of 30°. This leads to tractography datasets with an average of 27 million fibers per subject, between 5 and 300 mm of fiber length.

For the sulci extraction, these were extracted from the MRI data using the Morphologist toolbox of BrainVisa [START_REF] Mangin | Object-based morphometry of the cerebral cortex[END_REF][START_REF] Perrot | Cortical sulci recognition and spatial normalization[END_REF]. The software represents the sulci by a set of 3D points that sample the medial surface of the cerebrospinal fluid filling the fold. To control for the influence of variable brain size the sulci representations are all normalized to the standard Talairach reference frame (by a 9 parameter affine transformation).

Software

The different software used during this thesis are described below. They are used for the data processing and its visualization.

BrainVISA/Connectomist and Anatomist

BrainVISA3 is a software that allows the brain MRI images processing. It possesses several toolboxes that allow for instance the segmentation of the brain, separating the grey from the white matter from a T1 image, and generating meshes from them. It also provides tools that allow the identification of the main brain sulci (Morphologist toolbox). One complementary toolbox associated with BrainVISA is Connectomist, which allows handling tractography datasets [START_REF] Duclap | Connectomist-2.0: a novel diffusion analysis toolbox for brainvisa[END_REF]. Another tool included in BrainVISA is Anatomist. This tool allows the data visualization, either MRI volumes, meshes or streamlines. The software offers different rendering, coloring and texturing options, which are useful when the data needs to be exposed in the best possible way. The biggest advantage of Anatomist is that it can be piloted using Python scripts, which allows the automation of the data visualization.

FreeSurfer

FreeSurfer4 presents a set of tools for the neuroimaging analysis. This software provides algorithms for quantifying the functional, connecting and structural properties of the human brain. This software primarily aims at the processing of T1 images, with tools including: volumetric segmentation of brain structures, subject registration based on the cortical folding pattern, cortical surface reconstruction, cortical segmentation and cortical thickness estimation. The software provides tools for longitudinal processing, fMRI analysis and white matter segmentation from dMRI. For the development of this thesis the cortex segmentation and parcellation offers a special utility, since the regions included in this parcellation can be used as ROIs for the fiber extraction.

Part III Superficial white matter bundles identification Chapter 8

Identification of Superficial White matter bundles in the whole brain "Shall I refuse my dinner because I do not fully understand the process of digestion?" . . .

Oliver Heaviside

As it was already mentioned in Section 4, superficial white matter has not yet been completely documented. Different methods have been used to identify reproducible bundles, both in a manual or automatic way, and with different segmentation pipelines. Each one of these methods presents its own advantages and disadvantages, consequently there is no consensus regarding the best approach to tackle this matter. On one hand, ROI-based white matter segmentation offers the advantage of including anatomical information. On the other hand, clustering methods offer results that keep the structure of the bundles. Therefore, it seems clear that a hybrid method that brings together the best of each method could offer a better solution in the SWM delineation.

The recognition of the SWM bundles is the key stone for this thesis, to provide a way to examine the differences between subjects. Here, the development of a hybrid method seems to take more importance. First, because using ROIs that are somehow related to the brain sulci helps isolating the bundles surrounding them. And second, because in order to analyze differences in geometry it is essential to keep the shape of the bundle as intact as possible. Keeping this idea in mind, a first approach into the identification of SWM bundles is proposed in this chapter. This is a hybrid method that allows the segmentation of SWM bundles in a population in order to create a model of these connections. In this first step, no differences are made regarding the brain folding or the bundle different configuration, just a general model is built composed by the most reproducible short connections. All the pipeline steps are described in the following sections.

Creation of a whole brain SWM atlas

The proposed SWM identification method implements the automatic creation of a diffusion-based SWM atlas. This method can be applied to the whole brain and to a large number of subjects. It is composed of several steps conceived to obtain a model of the most reproducible short association bundles in a population. As already mentioned, it consists of a hybrid strategy that combines anatomical and fiber shape information. The steps composing the method are: (i) sub-tractogram extraction, that aims to obtain a rough identification of the fibers connecting two different cortical regions in each subject; (ii) sub-tractogram subdivision, for finding the representative bundles for each extracted sub-tractogram; (iii) inter-subject bundle correspondence, for finding the bundles present in most of the subjects, and (iv) inter-hemispheric correspondence, in order to find a correspondence between the bundles of both brain hemispheres.

The analysis uses as input the pre-clustered centroid datasets, as they are a good representation of the subject tractography datasets, with a reduced number of fibers and without outliers, diminishing the computation time. To obtain reproducible results, the procedure was applied to two groups of 40 and 39 subjects of the ARCHI database to the whole brain. Only the bundles found in both groups were kept. In addition, the reproducibility of the bundles was analyzed by the means of automatic segmentation in 26 new subjects using a fast segmentation algorithm [START_REF] Labra | Fast automatic segmentation of white matter streamlines based on a multi-subject bundle atlas[END_REF]. Finally, a multi-subject atlas composed of the SWM diffusion-based bundles presenting moderate to low intersubject variability in shape and number of fibers was created. The details of these steps are described below.

Subtractogram extraction

As stated before, the method includes anatomical information from brain cortical parcellations, which are based on the main gyri. These are used as ROIs for the extraction of subtractograms from the whole tractography dataset. This parcellation is obtained from the processing of a T1 MRI image with

FreeSurfer, using the Desikan-Killiany atlas [START_REF] Desikan | An automated labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of interest[END_REF]. From this computation labeling files are obtained for a brain pial mesh, which are then transferred back to a volume using the T1 as template. In this way for every voxel there is a number label corresponding to a gyrus (0 otherwise).

The subtractogram extraction is performed by labeling the centroids that connect two pairs of ROIs, where for each fiber extremity the intersection with the ROIs volume is calculated (Fig. 8.1).

To speed up the calculations the centroids of the preprocessed data are used. As the bundle identification is restricted to the short association bundles only the centroids measuring between 20 mm and 80 mm are considered.

From these calculations an average of 1.800 centroids for the whole brain are obtained, which represent an average of 190.000 short association fibers per subject. An example of the extracted centroids and the corresponding fibers for a pair of ROIs is presented in Figure 8.2. A first filter is applied keeping only the connections that are present in at least half of the subject's population.

Subtractogram subdivision

Once all the subtractograms are extracted, a localized fiber shape analysis can be performed for each pair of ROIs. By looking at the results, it can be observed that for each subtractogram the shapes and positions of the fibers vary (Fig. 8. [START_REF] Alpaydin | Introduction to machine learning[END_REF]. This inhomogeneity of the fibers is due to the complex shapes of the regions or their size, which produces an unequal distribution of the fibers along them.

Moreover, the partial volume effects and the noise produced by artifacts lead to a non negligible number of outliers. Henceforth, these subtratograms need to be decomposed into groups of similar fibers, smaller and compact, which are called bundles or fascicles.

The disentangling of fibers into bundles is achieved by means of an average-link hierarchical clustering, implemented using NiPy1 . This processing regroups similar fibers, according to their shape, and removes outliers (Fig. 8.4). As similarity measure for the clustering, the Euclidean distance was used (see Section 6.1). Therefore the equation that defines the similarity between a pair of fibers is:

d me = min(max||a i -b i ||, max||a i -b np-i ||) (8.1)
Here a i and b i are the corresponding points between fibers A and B, and np is the total number of points. Notice that both fibers must have the same number of points. Because the direction of fibers is arbitrary regarding their storage in memory (i.e. it is not known which fiber extremity is the beginning and which is the end), the equation calculates the distance in both directions and then selects the smallest one [START_REF] Guevara | Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas[END_REF]. The distances are calculated between all pairs of centroids, from which a distance matrix is created.

This matrix is then used to create an affinity graph, which later on will be used to perform the clustering. The affinity is calculated as follows:

a i j = e -d 2 i j σ 2 (8.2)
Where d i j is the distance between elements i and j, and σ 2 defines the similarity scale. A σ = 60 mm was used, which defines a high distance between fibers. The affinity is only calculated for pairs of fibers that have a distance lower than 30 mm, if the distance is higher than this threshold the affinity is assumed to be 0. This thresholding allows dataset size reduction, allowing to do the clustering computation faster.

The number of clusters N cl is set for all subtractrogram. This number must be large enough to subdivide the subtractogram into representative bundles, but avoiding an over-segmentation. Larger regions must have a higher number of clusters, as they present greater numbers of fibers and more complex configurations. An empirically deduced formula, based on these characteristics, was employed for automatically set N cl . This formula uses the (i) normalized average distance between pairs of fibers d f and (ii) the normalized average volume of the two connected regions vr . Typical values for most of the subtractograms go from 3 to 5 clusters, with a maximum of 7 for two big regions as the precentral and postcentral gyri. Therefore, the inferred formula is the following: subjects. This correspondence processing is described in the next section.

N cl = 2 + 4 * d f + 3 

Inter-subject bundle correspondence

From the subtractogram subdivision, the obtained bundles present different shapes and reproducibility among subjects. Moreover, some of them are in fact outliers. With the aim of finding the bundle correspondence among subjects and evaluate their reproducibility in a population, a two-step intersubject clustering was performed (Fig. 8.6). This processing is performed over the subject's centroids transformed in Talairach space (all the centroids were transformed during the database preprocessing, see section 7.1.1). For each subject's bundle a mean centroid is computed. These centroids represent each bundle and allow to keep the integrity of them during the clustering, preventing them from being subdivided. The clustering is done for each pair of ROIs, by joining all the bundle centroids from all the subjects in one single file. The affinity measure is calculated in the same ways as for the intra-subject clustering, i.e. σ = 60 mm. However, unlike the previous clustering, this time as clustering cutting criteria a maximum distance is employed, instead of a fixed number of clusters.

This point is set mainly to avoid forcing the union of bundles from subjects that are in fact different, and keeping open the number of outliers that might result. Also, no dependency was found for the distance between fibers nor the ROIs volume. The distance threshold has set to d max1 = 30 mm. For setting up this value the behavior of the clustering was tested using values from 25 mm to 45 mm, selecting 30 mm as a good compromise between the outlier separation and the over-segmentation of some clusters. Once finished the clustering, the bundles that are present in less than a percentage of the population under analysis (Ns min1 ) are considered as outliers. In this case Ns min1 was set to 25%, keeping this way only those bundles considered reproducible within the population. Although at this stage clusters have good quality, a few clusters seem to be over-segmented. In order to avoid the over granularity of the results, an optional second clustering was applied for obtaining more compact bundles. Therefore, the same clustering processing is performed once more over the mean centroids of the already obtained bundles (those present in more than 25% of the population).

This time for d max2 values from 15 mm to 30 mm were tested and a value of 25 mm was selected.

For most of the cases only a pair of similar clusters is fused. Finally, to consider only reproducible bundles, they are kept if they are present in at least 50% of the population (Ns min2 ). Thus making the second large filtering in the method.

Taking the previous example (Fig. 8.5) in the third column the results of the inter-subject clustering are shown, where for the pre and postcentral regions 5 clusters are identified.

The final bundles are formed of centroids stemming from all the different subjects, and only those present in a number of subjects over a threshold are kept (Fig. 8.7). This principle will give origin to a multi-subject atlas.

Inter-hemisphere correspondence

The processing mentioned above in sections 8. 1.1, 8.1.2 and 8.1.3 are performed for each hemisphere separately. Once compact, well defined and highly reproducible bundles have been obtained in each hemisphere, a matching step between them is performed. This processing is based on a distance as similarity measure, and is applied independently to each pair of ROIs (only for those that present connections in both hemispheres). The distance measure corresponds to the Euclidean distance, as for the previous steps (Eq. 8.1). The goal is to assign a common label to those bundles that have an equivalent (similar position and shape) in the contralateral hemisphere (Fig. 8.8). Once again, mean centroids are calculated for representing each bundle, which are joined in a single file. For the right hemisphere their horizontal symmetrical is computed, in order to obtain their position in the left hemisphere. From the distance calculations a distance matrix is created, where for each left hemisphere centroid, the most similar one in the right hemisphere is looked for. This is achieved by selecting the closest centroid, under a threshold of a maximum distance d interH = 25 mm. If there is a match, both centroids (and therefore the bundles) will have the same label.

FIGURE 8.8: Schematic of the inter-hemisphere correspondence processing. In order to obtain the correspondence between the two hemispheres, centroids that represent each bundle are calculated. Then, the horizontal symmetrical for the left centroids is computed to find a similar one in the left hemisphere, according to a distance measure. From these matched centroids, the rest of centroids composing each bundle are labeled.

From this step the final bundle labels that compose a SWM model are obtained. These are formed by the abbreviations of the regions they connect (from the ROIs), and an index to differentiate the bundles connecting the same regions. All these bundles constitute a potential atlas, which contains the most reproducible SWM connections for the whole brain in a population.

Evaluation of model reproducibility

The method just described in Section 8.1 generates a model of the most reproducible bundles in a population. Although several stringent filtering steps ruled out the spurious fibers and outlier bundles, some of the resulting bundles might still exist only in the arbitrary population used to build the model. Therefore, some reproducibility testing of the bundles is needed. In the next sections, two reproducibility analysis in different groups are presented, with the aim of validating the method and the bundles it generates.

Inter-group intersection

The SWM identification method was applied over the data of the ARCHI database, in the first instance only for 40 subjects. With the idea of testing the reproducibility of the bundles obtained in this group, the method was applied in a second group of 39 subjects from the same database. This way two models or preliminary atlas were obtained, which are then compared. This comparison consists of the identification of similar bundles between both models, for keeping only those present in both of them. Therefore, the connections between pairs of ROIs that are only present in one of them are immediately discarded.

For the models comparison the similarity between pairs of bundles was estimated. This was achieved by calculating the Euclidean distance between all the centroids composing one bundle and all the centroids in the second bundle (Eq. 8.1). For each bundle, the number of centroids that have at least one close (similar) centroid from the other bundle was calculated. The criterion used to consider that two centroids are similar is a maximum distance dc max = 5 mm. Then, the percentage of centroids in a bundle that fulfill the similarity criterion is used as an intersection measure. This way, the bundles that present a percentage of intersection (Pi min ) over 50% are considered similar. This process analyses all the possible bundle pair combinations for a pair or ROIs, in consequence for a given bundle there can be more than one match. Hence, for every pair of bundles that meet the similarity condition, the mean distance between all centroids is also calculated in order to select the closest bundles as a final match.

Once all the bundles have been compared a new dataset is built. This new dataset is formed of the matched bundles from the intersection testing, i.e. those that are similar between both groups (Fig. 8.9). Therefore, each final bundle is composed of the centroids that met the similarity criterion, stemming from both preliminary atlas. This results in a multi-subject atlas containing information from 79 subjects from the ARCHI database. Notice that to avoid having redundant data in the final bundles, those centroids that have another too close are removed.

FIGURE 8.9: Schematic of the preliminary atlas intersection. The final bundle is obtained from the intersection between the bundles from both preliminary atlas. Only the centroids that are part of this intersection are kept.

Automatic segmentation

With the goal of having a second complementary reproducibility evaluation, the dataset resulting from the intersection between groups was utilized for an automatic segmentation of the bundles in a new population. This automatic segmentation consists in extracting and labeling from a new dataset those fibers that are similar to the ones of a given model. In this case, the model corresponds to the bundles forming the atlas. The data of twenty-six subjects from a second database were used (Section 7.1.2), which corresponds to tractography datasets that were transformed to Talairach space.

The segmentation method used the same similarity measure that the previous steps, defined by the maximum of the Euclidean distance (Eq. 8.1). The distance is computed between the centroids in the atlas bundles and the fibers in the dataset of each new subject (Fig. 8.10). The distance is normalized by the length difference between the centroid in the atlas and the subject's fiber [START_REF] Labra | Fast automatic segmentation of white matter streamlines based on a multi-subject bundle atlas[END_REF]]

d me n =    d me (A, B) + dn f , if dn f > 0 d me , otherwise with dn f = abs(l A -l b ) max(l A , l B ) + 1 2 -1 (8.4)
in the atlas and the subject's fiber. For the labeling, a restrictive threshold of 8 mm was used. This way all the subject's fiber that meet the criterion given an atlas bundle, are grouped and labeled under the bundle's name. The results of the segmentation are then considered to define if a bundle in the atlas is highly reproducible or not. For this matter it was considered: the number of subjects where the bundle was successfully segmented, the variability of the number of fibers among the subjects and the shape of the bundle. Taking into account these three criteria the degree of reproducibility of a bundle can be determined. First, only those present in at least 24/26 subjects were selected. Second, only those bundles that present a low or moderate variability of the number of fibers (relative standard deviation lower than 0.9) and their shape along subjects are selected.

Finally, a new dataset is obtained, conformed of highly reproducible bundles. These bundles have been continually obtained during the application of different filters and reproducibility tests. This dataset results in a final SWM bundle atlas, called LNAO-SWM79.

Results of the atlas creation

The method just described yields a SWM multi-subject atlas from whole brain tractography datasets, by extracting the connections between two ROIs and clustering them afterwards (Fig. 8.11). As the different steps are applied, the less reproducible bundles are filtered out. Table 8.1 presents the number of bundles obtained for each of the steps described in Section 8.1 for both groups (G1 and G2). 

Left Right Left Right ROIs G1 G2 Int Final G1 G2 Int Final ROIs G1 G2 Int Final G1 G2 Int Final CAC-IC 0 0 0 0 1 1 1 0 Li-SP 0 0 0 0 1 1 0 0 CAC-PoCi 1 2 1 0 2 2 1 1 MOF-Ins 0 1 0 0 0 0 0 0 CAC-PrCu 1 1 1 1 1 1 1 1 MOF-RAC 1 1 1 0 1 1 1 0 CAC-RAC 2 1 1 0 1 2 1 0 MOF-SF 2 2 0 0 3 2 2 0 CAC-SF 3 3 1 0 3 3 2 0 MOF-ST 1 1 1 1 1 1 1 1 CMF-Op 1 1 1 1 1 1 0 0 MT-SM 3 2 1 1 2 1 1 1 CMF-PoC 1 1 1 1 1 1 0 0 MT-ST 4 5 2 1 3 3 1 1 CMF-PrC 2 3 2 2 3 2 2 2 Op-Ins 1 1 1 1 1 1 1 1 CMF-RMF 2 2 1 1 1 2 1 1 Op-PrC 2 2 1 1 2 2 2 1 CMF-SF 3 3 2 1 3 3 2 2 Op-RMF 1 1 0 0 0 1 0 0 Cu-LO 1 1 1 0 1 0 0 0 Op-SF 3 2 2 1 2 3 2 1 Cu-Li 1 1 1 0 2 1 1 1 Op-Tr 2 1 1 0 1 1 1 1 Cu-PeCa 2 2 1 0 2 1 1 0 Or-Ins 1 1 1 1 1 1 1 1 Cu-PrCu 1 1 0 0 0 0 0 0 Or-RMF 1 0 0 0 1 1 0 0 Cu-SP 1 1 0 0 1 1 0 0 Or-SF 0 0 0 0 1 1 0 0 En-IC 0 1 0 0 1 0 0 0 Or-Tr 1 1 0 0 1 1 1 0 En-PH 1 1 1 0 1 1 1 0 PC-PoC 1 1 1 0 1 1 1 0 En-PrCu 0 1 0 0 0 0 0 0 PC-PoCi 1 1 1 0 0 1 0 0 Fu-IP 1 2 0 0 0 0 0 0 PC-PrC 1 1 1 0 1 1 1 0 Fu-IT 4 4 0 0 2 1 0 0 PC-PrCu 1 1 0 0 2 1 0 0 Fu-LO 3 1 1 1 3 2 1 1 PC-SF 1 2 1 0 2 1 1 0 Fu-Li 0 1 0 0 0 1 0 0 PH-PrCu 1 2 1 0 2 3 2 0 Fu-PH 1 1 1 0 1 1 1 0 PH-ST 1 1 0 0 0 1 0 0 Fu-SP 0 0 0 0 1 0 0 0 PoC-Ins 1 1 1 1 1 1 0 0 IC-PoCi 1 1 1 0 1 1 1 0 PoC-PrC 5 6 5 4 6 5 4 3 IC-PrCu 4 4 2 1 3 2 2 1 PoC-SM 4 3 3 2 3 4 1 1 IP-IT 1 1 1 1 1 1 1 1 PoC-SP 3 3 0 0 3 3 2 2 IP-LO 2 2 1 1 2 1 1 1 PoCi-PrCu 3 4 3 2 3 2 2 2 IP-MT 3 2 2 1 2 3 1 1 PoCi-RAC 1 1 1 1 1 1 1 1 IP-PoC 2 0 0 0 1 1 0 0 PoCi-SF 1 1 1 1 1 1 0 0 IP-PrC 0 0 0 0 0 1 0 0 PrC-Ins 1 1 1 1 1 1 1 1 IP-SM 2 1 1 1 2 2 2 1 PrC-RMF 1 1 0 0 0 1 0 0 IP-SP 2 3 2 2 3 3 1 1 PrC-SF 2 3 2 1 2 4 2 0 IT-LO 0 1 0 0 1 1 1 0 PrC-SM 3 3 2 1 3 2 1 1 IT-MT 4 4 1 1 3 4 2 2 PrC-SP 0 0 0 0 1 1 1 1 IT-PH 1 1 1 0 1 1 1 0 PrCu-SF 0 0 0 0 1 0 0 0 IT-ST 1 0 0 0 1 0 0 0 PrCu-SP 1 1 0 0 3 1 0 0 LO-Li 0 1 0 0 1 1 0 0 RAC-SF 2 1 1 1 1 2 1 1 LO-MT 0 1 0 0 0 0 0 0 RAC-ST 0 1 0 0 0 0 0 0 LO-PeCa 1 0 0 0 1 0 0 0 RMF-SF 5 4 2 2 4 4 2 2 LO-SP 2 1 0 0 3 3 1 1 SF-Ins 1 1 1 0 0 0 0 0 LOF-Ins 2 2 1 0 2 1 0 0 SM-Ins 1 1 1 1 1 1 1 1 LOF-MOF 2 3 0 0 2 2 1 1 SP-SM 2 1 1 1 1 1 1 1 LOF-Or 1 1 1 1 2 3 0 0 ST-Ins 1 1 1 1 1 1 0 0 LOF-RAC 0 1 0 0 0 0 0 0 ST-SM 2 2 1 0 2 1 0 0 LOF-RMF 2 2 2 2 2 2 2 2 ST-TT 2 2 2 1 1 2 1 1 LOF-SF 0 1 0 0 1 0 0 0 Tr-Ins 1 1 1 1 1 1 1 1 LOF-ST 1 1 1 1 1 2 1 1 Tr-RMF 2 3 1 0 2 2 1 0 Li-PH 1 1 0 0 1 1 1 0 Tr-SF 3 3 2 1 3 3 2 1 Li-PeCa 0 1 0 0 1 1 0 0
The results are split for the left (Left) and right (Right) hemispheres. The columns G1 and G2 list the number of bundles found for the inter-subject bundle correspondence step for the groups 1 and 2, respectively. The column Int lists the number of bundles resulting from the groups intersection step. Finally, the column Final list the number of bundles kept after the automatic segmentation

Once again, for both hemispheres, most of the regions present 1 to 3 bundles.

Results from the group intersection

After obtaining the two preliminary atlases for G1 and G2, the bundles composing them were subject to a reproducibility test by comparing them against each other. Only the coincidences between both atlases were kept, where in most cases corresponds of 2 bundles per pair of ROIs. 

Final SWM bundle atlas

The final SWM bundle atlas obtained consists of 50 bundles in each hemisphere, 35 of them common to both hemispheres. Table 8.2 shows the final bundles composing the atlas, where the name of each bundle is given by the connected ROIs abbreviations and an index.

Detailed images of the bundles are shown in Figures A. 1, A.2, A.3, A.4, A.5 and A.6. Some examples of the obtained bundles are displayed in Figure 8.12 for the pars opercularis and superior frontal (Op-SF), pars triangularis and superior frontal (Tr-SF), precentral and postcentral (PrC-PoC) gyri, and the insula (Ins) with neighboring regions.

SWM bundle atlas applications

In the previous section of this chapter the method for the automatic creation of a SWM bundle atlas was described. From applying this method to HARDI data a multi-subject atlas was obtained, which presents a model of the most reproducible bundles in a population. This atlas contains for each bundle a representation of its variability across the population, namely the bundle centroids in a large set of subjects, which provides an efficient way to project it on any new subject.

It was mentioned in Section 4.3 that one of the main goals of identifying specific bundles is to find a correlation with certain diseases. Changes or differences in some bundles can help diagnose a 

✗ Op-PrC 0 CAC-PrCu 0 Op-SF 0 CMF-Op 0 ✗ Op-Tr 0 ✗ CMF-PoC 0 ✗ Or-Ins 0 CMF-PrC 0 PoC-Ins 0 ✗ 1 PoCi-PrCu 0 ✗ CMF-RMF 0 1 CMF-SF 0 2 ✗ 1 ✗ PoCi-RAC 0 Cu-Li 0 ✗ PoCi-SF 0 ✗ Fu-LO 0 ✗ PoC-PrC 0 1 ✗ 1 IC-PrCu 0 2 IP-IT 0 3 ✗ IP-LO 0 ✗ PoC-SM 0 1 ✗ 1 ✗ IP-MT 0 PoC-SP 0 ✗ IP-SM 0 1 ✗ IP-SP 0 PrC-Ins 0 1 ✗ PrC-SF 0 ✗ IT-MT 0 ✗ PrC-SM 0 1 ✗ PrC-SP 0 ✗ 2 ✗ RAC-SF 0 ✗ LOF-MOF 0 ✗ 1 ✗ LOF-Or 0 ✗ RMF-SF 0 LOF-RMF 0 1 1 SM-Ins 0 LOF-ST 0 SP-SM 0 LO-SP 0 ✗ ST-Ins 0 ✗ MOF-ST 0 ST-TT 0 MT-SM 0 Tr-Ins 0 MT-ST 0 Tr-SF 0 Op-Ins 0
Each bundle name is given by the abbreviations of the regions it connects. An index is added to differentiate bundles connecting the same pair of regions. The column ROIs shows the pair of regions. The column Ind lists the indices of the bundles found for each region. The columns Left and Right present the existence of a bundle in the left and/or right hemisphere, respectively. The most stable bundles are highlighted in light blue.

disease even before the symptoms appear. Thanks to the availability of the whole brain atlas obtained in the previous section, the search for bundles with this kind of differences can be performed at the scale of the whole brain, instead of in a single region.

In this section, a few of the applications of the created atlas are presented for the Autism Spectrum Disorder and Schizophrenia. 

SWM bundles in Schizophrenia

Schizophrenia (SZ) also is a clinical condition that intrigues psychiatrists. Recent evidence supported by postmortem studies suggests that changes in SWM connections are related to this disease. A study using the LNAO-SWM79 atlas, and the tractography datasets of 31 SZ patients and 54 controls aimed to analyze this theory in-vivo [Ji et al., 2018b]. The analysis was performed using PCA and a varimax orthogonal rotation on mean gFA of the bundles located in the frontal cortex. Results of the PCA revealed three components explaining 19.7%, 5.8%, and 5.4% of the total variance. The second component showed a mean score significantly lower in the people with SZ compared with controls (p = 0.01) and included 13 bundles of the frontal region. These bundles connect regions in the pars orbitalis, insula, pars triangularis, pars opercularis, orbitofrontal cortex, anterior cingulate, superior frontal cortex and middle frontal cortex. These results are in accordance with the suggestions of the reduced white matter integrity in the frontal cortex in people with SZ. Following this idea, a similar study was performed but this time using an ANCOVA analysis over the same subjects data [Ji et al., 2018a]. This time the analysis was performed over all the bundles, from which 65 were successfully segmented. From these bundles, 17 yielded significant gFA differences, which connect the frontal, parietal and temporal regions (Fig. 8.14). Specifically, these bundles connect regions involved in language processing, mood regulation, working memory, and motor function (pars opercularis, insula, anterior cingulate and precentral gyrus). Also, increased gFA was found in patients in areas overlapping the default mode network (inferior parietal, middle temporal, precuneus), in agreement with the functional hyper-connectivity of this network seen in SZ.

FIGURE 8.14: SWM bundles found to be in relation with SZ. Seventeen bundles present a reduction of gFA in SZ, from the frontal, temporal and parietal regions. Image from [Ji et al., 2018a].

Discussion

The superficial white matter connections represent a great part of the total connections of the brain, which means their delineation is highly needed to have a complete whole brain connections cartography. Short white matter connections are not easy to delineate, because of their high variability and complex geometry. However, so far, a few methods have been implemented to elucidate the short connections organization, each with its advantages and disadvantages. In this section was presented a new automatic method to move one step forward in this matter, and help in the advancement of their description.

In this Section a new method for the identification of short bundles has been presented, yielding a non-negligible number of reproducible bundles for the whole brain. Moreover, the experimentation performed allowed the creation of a pipeline for the delineation of short connections in new subjects.

This can then be used for population differences analysis, where groups can be defined based on a given population characteristic instead of just a random picking of the subjects, as it was done during the experiments exposed in this section.

The creation of a model allows also the identification of specific bundles linked to certain diseases.

The more specific identification of malfunctioning or damaged connections will allow us to better explain the relationship between the disease and the structure of the brain.

Atlas creation

Specifically regarding the atlas creation, the development of an automatic method for the study of SWM bundles of the whole brain, based on a large population of subjects, allowed the identification of short range connections stable across subjects. This led to the creation of a multi-subject SWM diffusion-based bundle atlas, containing detailed information about the bundle shape, embedded in the bundle centroid coordinates.

The method includes several filtering steps that were designed to discard the outliers. The pipeline has the advantage of combining cortical morphological information and the clustering processing that allows us to disentangle the white matter into well-defined bundles. By including gyri-based information into the model, a track of the different region connectivity is maintained. Although the method is applied to all brain regions, this partitioning characteristic could also allow us to focus in one or few specific regions for more detailed studies in those particular zones.

Note that representing the inter-subject variability in the fiber space, using a set of centroids, is probably more efficient than probabilistic images for projection of the atlas onto new subjects.

Indeed bundle projection can rely on distances to the most similar subject rather than fit to an average subject, exploiting the recent very successful multi-atlas segmentation paradigm. Moreover, keeping the geometric information of the fibers composing the bundles can be of use for retrieving eventual differences for a particular bundle across the population.

In this particular case, the main goal was to build a general model of the connections and the implementation of the pipeline for it. The experimenting in this stage allowed us to test and set the different parameters, as well as analyze the pros and cons of the different steps.

In this general model more bundles were found for the frontal and parietal regions, which are also in most of the cases common to both hemispheres. It was detected that the variability and size of the bundles depend on the size, position and shape of the connected regions. As expected, smaller bundles were found to connect small regions. However, on the contrary of what might be thought, large bundles were found for some small regions when these connect to a large one, although these Opercularis) presented bundles with fibers connecting all the region area; for all the other regions, only a section of them was connected per each bundle.

The SWM connectivity exposed here is not homogeneous among the regions, as some present holes. These missing bundles might be due to the actual anatomy, or be related to the tractogram quality and tractography pitfalls [START_REF] O'donnell | Does diffusion mri tell us anything about the white matter? an overview of methods and pitfalls[END_REF]. In any case, only bundles reproducible in most of the subjects were kept, with moderate to low variability in shape and number of fibers. As mentioned above, SWM connectivity is not homogeneous among the regions and it is less likely to find stable connections between distant regions. Although in the step of sub-tractogram extraction we obtained some relatively long connections, these were discarded because of their low

reproducibility. An example is the insula, where only one stable connection was found with each neighbor ROI, connecting the closer areas, while its connection with SF was discarded. It is not clear if longer connections were not found due to real anatomical variability or to tractography artifacts.

With this automatic method we could find a non-negligible number of the bundles described in the literature, assuring that the method is actually capable of identifying real bundles. Also, a big amount of bundles not yet described was found. Of course, the shape description and position may not have the same precision as with the manual delineation of the ROI, which is a fair trade for the automation of the analysis.

From the most stable connections, we can highlight the already mentioned ones between the Superior Frontal with the Pars Opercularis and Pars Triangularis gyrus. In these regions the Broca's area is located, being part of the Frontal aslant tract (FAT) (Fig. 8.12), these connections have been also described in [START_REF] Catani | Short frontal lobe connections of the human brain[END_REF] and also in [Vergani et al., 2014a], where the relation between the SMA and language function is emphasized. Other result that is worthy of note are the bundles found connecting the precentral and postcentral gyri. Even though these connections present a large number of fibers and a high variability, a set of four stable bundles could be identified in the left hemisphere, from which 3 have their corresponding bundle in the right hemisphere. Similar bundles were previously described in previous works [START_REF] Catani | Short frontal lobe connections of the human brain[END_REF][START_REF] Magro | Characterization of short white matter fiber bundles in the central area from diffusion tensor mri[END_REF]. Another interesting result are the bundles connecting the insula with several neighboring regions, such as the subdivisions of the inferior frontal gyrus (Or, Tr and Or) and the pre and postcentral gyri, already described in [START_REF] Catani | Short frontal lobe connections of the human brain[END_REF]. In addition we also found connections to other neighboring areas, such as the Supramarginal and Superior Temporal gyri.

The main use of this type of model is in clinical studies, where different indices like DW values or functional data can be analyzed. Here using the model as a probe it allows us to identify bundles related with a particular disease. Some studies where this model has been used are described in the following section.

Here the model obtained includes a general description of each bundle, although it is clear that for some of them different configurations can be found for different subjects. Even though these differences are not further studied here, the final bundles include all the subjects specific geometry characteristics, instead of just an average, which would blur them out. Therefore, new subjects can be matched against the characteristics that best suit them. This aspect of the model is particularly important when more precise studies want to be achieved in the case of clinical tests.

This automatic bundle identification method can then be applied to new study groups either for specific regions or the whole brain, having different goals, and using different and better quality tractography datasets (with probably some parameters adjustments to do).

SWM atlas applications

Regarding the applications of the atlas, the existence of a model offers the advantage that the bundles composing it can be easily extracted from new subjects, without the need to perform again the group analysis for the bundle identification. Particularly, the model obtained from the method described in section 8.1 offers the possibility of looking into the new subject tractogram those fibers that are similar to those composing the model. This allows us to measure the diffusion indices in the specific voxels the fibers pass through, obtaining more precise results.

The fact that the model includes anatomical information allowed us to easily identify which regions are connected by the bundles showing diffusion statistical differences for certain diseases. These regions are in most of the cases corresponding to bundles in the frontal lobe. The identification of these bundles presenting abnormal states allows us to better hypothesize how they affect the brain functioning. This kind of understanding is crucial in identifying and diagnosing the diseases even before they start showing noticeable symptoms.

The studies exposed in this section expose changes in different diffusion indices which are driven most likely by phenomena related to the myelination of the fibers. The SWM is specially exposed during the brain maturation as its myelination occurs mostly during the third and fourth decade of life, making the SWM more prone to lesions.

Chapter 9

Reproducibility of the Superficial White

Matter bundles

"Science is a collaborative effort. The combined results of several people working together is often much more effective than could be that of an individual scientist working alone" . . .

John Bardeen

As already mentioned in Section 4, there are different approaches to achieve the SWM bundle identification. Different tractography datasets, ROIs definitions, clustering algorithms and parameters can affect the bundle definition. This raises the questions of whether these bundles are reproducible across different methods and input? How does it affect the results the quality of the database and the different strategies performed?

Most of the studies in Section 4 have been restricted to specific areas or bundles, which makes them difficult to compare against each other. Moreover the format of the results can differ, as some are often represented in image volumes as probability maps, and others as tractography datasets.

With the goal of exploring deeper how the input and methods affect the results and if the bundles obtained are reproducible across studies, in this chapter a comparison is performed. This comparison is made for the output obtained from the method described in Chapter 8 and two other publicly available atlases.

Method of comparison

In order to perform the comparison all atlas must be in the same space, therefore the three atlases were transformed to MNI space. The bundle similarity was measured as presented in Section 8.2.1, by computing the maximum Euclidean distance between corresponding points for each fiber in a bundle to all the fibers in another bundle. This is done for all bundles in the pair of atlases being compared.

Two fibers are considered to be similar if their distance is under 8 mm. Then, a bundle is considered to be similar or contained in another one, if its percentage of similar fibers is at least of 80%. Notice that when one bundle fulfills this amount of similarity to the fibers of another bundle, it does not mean that the reverse property is true. In some cases a bundle in one atlas is over-segmented into a group of bundles in another atlas. This could be due the better spatial resolution in the underlying dataset or the clustering algorithm. Then in order to perform a strict comparison, the equivalence between two bundles requires the threshold to be reached in the two directions.

Results of the comparison

The results for this experiment are presented in Table 9.1, where atlasX atlasY presents the results of the comparison between two atlases, including the number of similar bundles in each atlas and their average similarity percentage. Table 9.2 also lists separately those bundles that are common to the three atlases, so it can observe the correspondence between them (Fig. 9.2). In general, it can be seen that most of the similar bundles are located in the frontal and parietal regions, where one can find the most dense and reproducible SWM bundles in tractography datasets. Also, Figure 9.3 displays similar bundles obtained between one method using ROIs and another using just clustering. 

Bundle similarity between pairs of atlases. N bundles indicates the number of bundles in an atlas that have a similar one in the other atlas. P± std present the average percentage of all the similar bundles in the atlas and its standard deviation.

Bundle similarity for a pair of atlases. N bundles indicates the number of bundles in an atlas that have a similar one in the other atlas. P ± std presents the average percentage of all the similar bundles in the atlas and its standard deviation. In most cases, several bundles from atlas3 correspond to one from atlas1 and atlas2. These two last atlases present a one to one relationship between them for most of the bundles, most likely because they come from the same database. Both atlases (atlas1 and atlas2) present some gaps in the brain less covered by short bundles, especially in temporal and occipital regions, since most of the bundles are present in the fronto-parietal region.

Chapter 9. Reproducibility of the Superficial White Matter bundles 100 difficult to find patterns common to a population of subjects. Furthermore, it is even more difficult to identify patterns that are specific to subpopulations, which are often blurred into general models of the entire population. As SWM is closely related to cortical morphology, more explicit modeling of the variability regarding the folding patterns is also of interest.

The advancement of dMRI equipment and methods makes it now possible to acquire datasets that allow the study of a considerable set of short fibers, ideally based on HARDI or multi-shell data.

Furthermore, while algorithmic progress now allows the manipulation of huge tractograms including a million streamlines, exploring further the short range connectivity may require to scale-up even further the amount of streamlines of interest.

Finally, even if no postmortem validations are performed, reproducibility analyses based on the amount of subjects in which bundles are present can be achieved.

Chapter 10

Superficial white matter bundles morphology analysis

"What we know is a drop, what we don't know is an ocean" . . .

Isaac Newton

It has been stated in the previous chapters that the human brain is unique to each individual. While in general terms the connections are similar and present in the majority of the people, little is known about the differences that exist between the subjects, and the degree of these. As the brain cortical folding presents particular patterns among the population, so this can also happen for the underlying white matter bundles. As it was mentioned in the Chapter 5, there exists an algorithm that allows the identification of the different folding patterns in specific areas of the brain. This permits the stratification of different subjects, grouping them only with those that are similar in terms of folding.

During this thesis it has been mentioned that some scientists believe that these two kinds of structures are related. Therefore one can think that by classifying the folding of the cortex the variability of the underlying bundle organization can be revealed. In this spirit, and as a proof of concept for the different bundle morphology induced by different folding patterns, the first experiments performed during this thesis are based on this idea.

While the morphology must have an impact on the bundle geometry and maybe on the pattern of connectivity, the inter-subject variability of the organization of the fiber bundles may have other origins. Therefore, modelling this variability for itself, independently of the variability of the folding pattern, was the natural way to proceed further. Keeping this in mind a second set of tests was performed for characterizing the bundles morphology independently from the cortical morphology.

This separation between the two kinds of data is of special relevance when the bundles connect gyri other than nearest neighbors, as the involved area is bigger and might not rely on a single sulcus configuration.

In this chapter all the necessary data processing for the characterization of the white matter bundles morphology are presented. This processing includes a refinement of the input data so it can be analyzed, as well as the development of a pipeline that allows the identification of the different bundle configurations among a population.

The previous paragraphs described the basis of the SWM bundles identification. The work performed during this thesis is a continuation of the previous bundle characterization pipeline just described. This principally because the first version does not consider the identification of the different shades that can exist for a same bundle across a population. Also several optimizations have been included.

Identification of the white matter configuration from deterministic tractography and based on the cortical folding

Along this thesis it has been mentioned that cortical folding and the underlying white matter are most likely intimately related, and that one might influence the other. Even if this cause/effect mystery is not yet elucidated, it is reasonable to think that there is a degree of spatial relation between them.

Keeping this in mind, the first approach performed regarding this matter during this thesis, to identify the different SWM bundle organization, stems from the idea that different folding patterns in specific areas mean also different bundles morphology and/or organization. Therefore, once the different folding configurations are identified and subjects classified according to them, the differences between the bundles (if any) across these classifications could be observed. In Chapter 5 was briefly described a method to identify the different cortex folding patterns and classify the subjects according to them. This analysis was performed using an ISOMAP algorithm, with which each subject can be given coordinates in a low dimensional space characterizing the sulcus morphology. From the studies presented in Chapter 5 the most significant results were obtained for the first dimension, where the differences in the folding can be seen with the naked eye. Using the subject's ISOMAP coordinates in one dimension, they can be split into different groups presenting similar characteristics. Then for each group the different reproducible bundles connecting specific ROIs, related to the sulci under study, can be obtained. For this bundle identification we rely on the SWM characterization method described in the previous Section 8.1. Once the bundles have been identified in all the groups, correspondences can be searched along them and then we evaluate and characterize their potential morphology changes.

This first analysis of the bundle configuration based on the sulci morphology was performed using the ARCHI database. This database provides a deterministic tractography which does not require a high amount of calculations. Besides, as this tractography database has been already preprocessed, the calculations can be done using the fiber centroids instead of all the fibers. All the detailed processing and experiments related to this idea are described in the following paragraphs.

Region of study

Broadly speaking, the major brain folding patterns are similar for all healthy human beings, it is when zooming in specific regions and considering local morphology, that different patterns can be appreciated. For this first approach only one brain region was analyzed, the region of the central sulcus. The central sulcus presents a structure that can be identified without ambiguity, ensuring that the analysis will be restricted to it. Also, this region has been often studied, enabling a good source of comparisons. Therefore, all the short bundles neighboring the left central sulcus were studied.

For the subtractogram extraction, Using FreeSurfer parcels as ROIs offers a unique advantage as these are indeed brain gyri. As gyri are delimited by sulci, using gyri-based ROIs allows the precise extraction of the fibers surrounding a specific sulcus. In this case, for the central sulcus, the only considered pairs of ROIs are: PoC-PrC, CMF-PrC, CMF-PoC, Op-PrC, PrC-SP, PoC-SP, PrC-SM and PoC-SM. The fiber extraction was performed over the data of 71 subjects from the ARCHI database, using the pre-clustered centroids in order to reduce the calculations. To the centroid tractograms extracted from the native space of each subject, an affine spatial normalization to Talairach space was applied. This transformation allows us to get all the brains (and therefore the tractograms) in the same space and roughly aligned.

Creation of the groups

The ISOMAP of the central sulcus was calculated using the method described in [START_REF] Sun | Linking morphological and functional variability in hand movement and silent reading[END_REF] and the results are as those described in Chapter 5. The first dimension is the one that exhibits the most distinguishable characteristics of this sulcus, hence it is the one selected for the first analysis.

Along the axis of this first dimension two configurations can be perceived: the "single knob" and the "double knob". From the left to the right of the first ISOMAP dimension, the upper knob is moving up along the sulcus and the second knob is getting more and more visible. Consequently, splitting the set of subjects using their first coordinate leads to groups with a stable status relative to this continuum of change.

Practically, the 71 subjects were gathered in morphologically compatible groups by dividing the ISOMAP axis into 6 intervals of the same length, without overlapping.

Tractogram sulcus-specific alignment

The alignment of the tractograms in the Talairach space is sufficiently good to identify reproducible SWM bundles as proven in [START_REF] Guevara | Reproducibility of superficial white matter tracts using diffusion-weighted imaging tractography[END_REF], since the overall alignment of the fibers allows delineation of their general shape. However, this might not be the optimal alignment for a more thorough identification of the bundles that allows us to spot their differences across groups. The slight differences that might exist among specific bundles may be lost with a rough alignment. In order to be able to capture these differences, a more precise alignment is needed. The goal is to get the tractograms in perfect alignment with respect to the specific sulcus under study. In the following, the additional rigid transformations used for this alignment are computed from the subject's central sulci representations in Talairach space. Note that the affine normalization to Talairach has already been corrected for global brain shape differences. Note also that we stick to rigid transformations here because this was the class of transformations used to compute the distances between sulci leading to the morphological ISOMAP. A template sulcus is defined corresponding to the sulcus that minimizes the average distance to the rest of the whole set, which is supposed to have the most neutral shape and hence yields the best alignment across the set [START_REF] Sun | The effect of handedness on the shape of the central sulcus[END_REF]. From the Talairach space, the tractograms are aligned further towards this template sulcus, leading to an optimal alignment of the fibers relative to the central sulcus geometry.

Identification of SWM surrounding the sulcus

Once the groups have been defined and the subtractograms are aligned to the template subject, the inference of the bundles connecting the selected areas is performed. As mentioned before, we used the method described in Section 8.1. First the intra-subject clustering is performed over the data of each subject, independently for each pair of ROIs. This time, unlike in the original method, in order to avoid imposing extra restrictions in the definition of the bundles, no fixed number of clusters is given. Instead, the dendrogram cutting criteria is a maximum distance between clusters. This distance threshold is set to d intra = 30, since no over-segmentation or over-grouping is desired. By replacing the fixed number of clusters by a distance we avoid forcing clusters with fibers that present slight differences to join in order to fulfill a fixed number of clusters. This way more details of the underlying bundle configuration can be preserved for the following analyses.

Once the bundles have been identified in each subject's data, the per group analysis is performed.

The two-step inter-subject clustering was carried out independently for the 6 groups. The dendrogram cutting criteria was kept as described in the original method, i.e. d inter1 = 30 mm and d inter2 = 25 mm.

This step allows the fusion of bundles that have been over-segmented in the previous steps and to establish a correspondence between the bundles for all the subjects in a group. The bundle correspondence across the subjects in turn allows an evaluation of reproducibility of the bundles. This way only the bundles that are in most of the subjects are kept and the rest are discarded as outliers. Once again, the threshold parameters were kept as in the original method i.e. N s1 = 25% and N s2 = 50% of the population. This results in 6 different "atlas".

Across group bundle matching

In order to proceed further with the analysis and look for the variability of the bundles among the atlases, correspondences among them need to be found. In other words, for each bundle, their equivalents (if any) in all atlases need to be identified. This way we can look for possible differences after.

For this correspondence a simple distance measure between centroids, that represents each bundle, is used. The complete processing is described below.

First, all bundles connecting a pair of ROIs in all groups need to be identified. Notice that this considers only those that are kept after the reproducibility threshold (50% of the population). All bundle centroids are identified with a label stating to which atlas they belong and a temporary bundle number.

The matching process is based on a simple distance measure for identifying close bundles. For each label there can only be one bundle in each group. This is why during this step it is necessary to control the origin of each bundle, for ensuring that there are no double labels in the same group. This is why the idea of another clustering step is discarded. The processing is performed until all bundles are labeled and is described as follows. First, a centroid from the first atlas (the most to the left in the ISOMAP) is taken. A nearby centroid is sought from the second atlas, within a distance threshold. The distance used is the Euclidean distance (as for the clustering process Equation 8.1) and the threshold is set to d match = 25 mm. If a centroid match is found, a new centroid is calculated from these two, which is then used to seek a nearby centroid from the third atlas and so on. If no centroid is found in a particular atlas, it is just skipped. Once a centroid has been labeled, it is removed from the centroids pool. If it turns out that the closest centroid belongs to an atlas that already has another centroid with the same label, then the matched centroid is skipped and the second closest is considered. This is done iteratively until no possible candidates left or the maximum distance threshold is reached. Those bundles with no matches are kept but labeled with a single different label.

This computation was done for the bundles connecting the pairs of 6 regions close to the central sulcus. Some of the results are presented in Figure 10.1, for those pairs of ROIs that present at least one bundle with different morphology across groups. The same centroids that were calculated for the matching process can be also used for visualization, as they represent an average of all the fibers that form a bundle. A mesh of the central sulcus SPAM for each group is included, in order to have a spatial reference.

Identification of bundle differences

As seen in Figure 10.1 Some of the bundle differences can be identified just by looking at them.

However, a quantitative way of assessing these differences is desired. This is addressed by computing the correlation of fiber coordinates from 5 equidistant points (beginning, a quarter, middle, three First, in order to visually check the consistency of the groups, average sulci meshes were computed for each one of them. The outcome of this calculation are very similar sulci meshes between the groups. This occurs probably because the plis de passage are extremely variable in position and depth, which turns out into the blurring of this characteristic. Then the method was applied to compute the bundles for each group, but no meaningful differences were found.

The fact that the population was split only in a small number of groups did not allow us to separate the different subjects' morphology, which also ends up being blurred. Probably, if the population was divided into more groups, where a more exact position of the pits was known, a relationship between these structures and the underlying white matter could be found.

10.4 Identification of the white matter configuration from probabilistic tractography and based on fiber geometry.

It was briefly discussed in Section 10.2 that the quality of the database, and furthermore the number of fibers influence the results. A higher number of fibers means that more connections are mapped and therefore can be included into the analysis, allowing a better identification of the differences between groups; but also a greater number of outliers.

Nowadays better quality and resolution data is available. One broadly used database is the Human Connectome Project (HCP) database. The structural and diffusion data from the HCP have been processed according to the pipeline described in Section 7.1.3. This processing includes the generation of probabilistic tractography sets, i.e. a much higher number of fibers, which are now utilized in the white matter morphology analysis.

In this section is presented the analysis performed for the identification of the white matter configuration using datasets with higher definition and based directly on the tractograms geometry instead of the cortical morphology.

Database preprocessing

The tractography datasets were obtained according to the processing described in Section 7.1.3. Each dataset contains around 27 million fibers, and therefore they cannot be used directly as input to the clustering process. Hence a preprocessing to reduce the data size needs to be applied to the raw tractography datasets. The simplest approach would be to subsample the data, however it is not known how much of the data are actual connections due to the increased number of spurious fibers. Therefore a first filtering needs also to be made. The implemented preprocessing aims to have centroids that represent several streamlines with very similar shapes and position, generating a new centroid dataset as it was done for the ARCHI database. Unfortunately, at the time this work was performed, the method by which the ARCHI database was processed did not scale up for such a large dataset because of the implementation (a recent redesign of the code in the Connectomist library has now overcome this difficulty). This is why a different strategy had to be put in place.

As it was mentioned before, the probabilistic dataset cannot be used directly as input to the clustering algorithm developed, therefore in order to generate the centroid dataset several partitions of the whole brain tractogram need to be performed. As the aim of this thesis is to analyze the corticocortical connections, the fibers that do not fulfill this classification can be removed from the analysis.

Consequently, the partition used to split the tractogram of each subject is performed using a volume mask of the Desikan-Killiany cortical parcellation (see Section 5. 1.1). This allows us to separate left from right hemisphere and to subdivide further each of the resulting tractograms (around 5.8 millions fibers each) into groups with fibers between 251,953 on average for the biggest regions and 100 on average for the smallest ones. Notice that connections which have very few fibers on average are most likely tractography errors, since most of the subjects do not present these connections. For the biggest regions the amount of fibers is still too high to be used in the clustering and keep the calculations within a reasonable amount of time. Thus, the number of partitions was augmented, reducing this way the number of fibers even further. This further partition is performed over the already gyrusbased partitioned mask, by subdividing each gyrus. The idea is to create partitions of approximately the same size, hence bigger gyrus need to be split into more parts than the smaller ones. The number of voxels goes from 29,878 in average for the bigger gyri, to an average of 1,552 for the smaller ones. This was achieved by setting a number of voxels per partition. After a few tests, this number was set to 1,000 as it allows us to keep a reasonable clustering time without an over-division of the tractogram, which creates too small groups of fibers to be correctly clustered. This sub-partition is performed independently for each gyrus, by placing a number of random seeds within the voxels that belong to this gyrus and then performing a Voronoi partition, using the Euclidean distance. The number of seeds is calculated from the total number of voxels forming the gyrus and the desired number of voxels per partition. This way all the new sub-partitions will have about 1,000 voxels. Using this new partition mask the whole brain tractogram is partitioned in order to be clustered by parts later on. In total an average of 9,253 tractogram partitions per subject are obtained with an average of 627 (± 1,456) fibers each. A first filtering is applied by removing the tractogram partitions containing less than a minimum number of fibers N f min = 50.

When visualizing the partitioned tractograms it can be observed that most of the fibers present a logical path connecting two parcels, however some present unusual trajectories. Figure 10.4 presents an example of the fibers connecting two partitions from the pre and postcentral gyri. These trajectories are usually made by longer fibers doing far out turns, and are most likely tractography errors.

Also, sometimes small artifacts can be found in the tractograms. In order to filter out these kind of fibers from each partition, a length filter was implemented. This filter removes the fibers shorter or longer than a threshold. The threshold is calculated based on the average (L mean ) and standard deviation L std of the length for all the fibers in a tractogram partition. Then all the fibers shorter than L mean -L std and all those longer than L mean + L std are ruled out (see Figure 10.4). In order to keep the degree of dissimilarity between subjects, which can be later used in a correlation analysis with the subjects specific bundle's geometry. 

Influence of the fiber similarity measure

Until now, the similarity measure used for the bundle identification is the Euclidean Distance between pairs of fibers, as it was presented in the SWM bundle atlas creation (Section 8.1). This similarity measure is good enough for clustering fibers that present an overall similar configuration, yielding bundles whose fibers represent the variability of the subjects for a given connection. Thus the bundles do not offer a greater granularity with respect to the fibers that compose it. This works well when the goal is to build a general single model of the brain connections. Nonetheless, now the goal is to catch variability of the bundles within a population and characterize it. Even though using the same distance measure and dividing the population and groups allow us to roughly identify the bundles variability, a more stringent similarity measure is needed. This similarity measure must be able to distinguish more subtle differences between the fibers.

When inspecting the bundles it can be seen that they can be composed of fibers with the same shape, connecting the same regions, but with a different orientation in the space, i.e. some fibers are in fact tilted. Fibers presenting this kind of differences are prone to be clustered together if a simple Euclidean distance is used, since due to their small size the distances between points are small enough to be considered similar. However, these small changes in fiber direction could be actually liked with changes in the brain folding in the area the bundles traverse. Hence, it is important to be able to differentiate this kind of fiber configuration, into different clusters and consequently different bundles. In order to do that a new distance measure was designed.

The new distance measure is based on the Euclidean distance, modified by the orientation of the two fibers in the 3D space. The method calculates the Euclidean distance d me between fibers (same as Chapter 10. Superficial white matter bundle morphology analysis 123 before, according to the Equation 8.1) and the change in direction (angle) between them, from which a factor f ang is calculated. This factor is obtained from the angles between the vectors representing the orientation of the fibers in the 3D space. In order to calculate it, first the main axis of the fiber orientation must be identified. This axis is represented by the line (r1) that passes through the points 1p 4 and 3p 4 of the fiber, where p is the total number of points (see Figure 10.9). This line's director vector is v1. FIGURE 10.9: Schematic of the analysis for obtaining the fiber orientation. By drawing lines connecting different points of the fiber, the vectors that represent the fiber orientation can be obtained. These vectors are then used to compute the angle between different fiber orientations.

Then, in order to find the plane where the fiber lies more or less, the line that goes through the middle point of the fiber p 2 and the closest point of r1 to p 2 is drawn (r2). The director vector of r2 is v2. From the points in v1 and v2 the perpendicular vector v3, that is the direction vector of the line r3, is computed. This vector v3 is the one used to calculate the tilt of the plane where the fiber lies. Therefore, one of the indicators for the similarity degree is based on the angle formed by the v3 vectors of each fiber:

ang 1 = v3 f 1 • v3 f 2 (10.1)
The absolute value is considered as the fact that parallel vectors with opposite directions still mean the same tilt of the fiber plane in the 3D space. Although ang 1 is a good indicator of how the main orientation of the fibers differ, fibers can also present differences by rotating in the v3 axis. Therefore, the angle between the vectors v2 of each fiber is used to capture this difference.

ang 2 = v2 f 1 • v2 f 2 (10.2)
In this sense, parallel vectors with opposite directions mean that the fibers open in opposite directions. Hence, for keeping this information in the analysis, the values of ang 2 that go from -1 (vectors going in totally opposite direction) to 1 (vectors going in the same direction) are rescaled to values from 0 to 1.

Finally, the equation that describes the similarity between two fibers based on their distance and orientation is as follows:

d ang = d me f ang -1 2 + 1 with f ang = ang 1 * ang 2 (10.3)
The values for f ang go from 0 to 1. Notice that if two fibers have the same orientation ( f ang = 1) the original d me value does not change. On the other hand, if the two fibers have complete opposite orientations ( f ang = 0), then d ang will be double of d me . in that group (i.e. subjects that present similar geometries according to the ISOMAP). Since the groups were made based on the subject's white matter geometry similarity, the bundle differences between groups (if any) should express to some degree an accordance with the subjects ISOMAP values. This reasoning is based on the premise that different bundles might contribute in some degree to the different dimensions obtained from the ISOMAP computation. This means that for a given dimension, the subject's stratification might be driven by some specific bundles over the others. These are the bundles that we are interested in identifying in order to analyze their morphology across the groups. In order to quantitatively test this congruence, a correlation of the coordinates from 3 points of each centroid constituting each bundle, and the ISOMAP values of each subject was computed.

The goal is to identify the bundles driving the manifold changes, as they should be the ones showing higher correlation values. The points of each fiber used to assess the correlation are the first, middle and end point, as they can give an idea of the course that they follow. As points are composed of 3D coordinates, a one-to-one correlation is not direct, hence a decomposing strategy is used. Two different ways of extracting the geometric information from the points are implemented: (i) use each

Cartesian coordinate separately and (ii) dimensionally reduce the 3D points into a 1D space. This dimensional reduction was achieved by using the same ISOMAP algorithm that for the previous steps.

Then, for each bundle, the correlations of each subject ISOMAP value with the obtained geometric information of the centroids points are calculated.

Meshes representing each bundle were computed from all the centroids composing the bundle, in order to facilitate the visual inspection of the bundles. These centroids were mapped into a volume image, which is later smoothed and thresholded. Morphological operations (closing and smoothing) are then applied to obtain cleaner bundle meshes. Sulci meshes were also calculated, this time based on the fiber-based ISOMAP groups. These are obtained from an average of the subjects sulci volumes followed by the same processing as the one applied to the bundle meshes.

Sulcus-based ISOMAP studies have shown that the main change in the central sulcus is in the hand-knob area, which has also been related to changes in functional activation. Hence, in order to test how the bundle configuration relates to function, hand activation mesh averages were also computed for each group. These meshes were created based on the activation maps computed on the cortical surface of each subject represented in native space. Using surface-based fMRI analysis overcomes the blurring effect across the border of the cortical mantle occurring with volumetric analysis. These activation maps were transformed to the same target space (the neutral subject), averaged in image space and thresholded for 3D rendering using the same procedures as for the other structures.

From the visual inspection of the results, by comparing the group average sulci meshes that represent each group morphology, it can be observed that those obtained from ISO f are highly overlapping with those obtained from ISO s , showing a high concordance between them. Moreover, this is particularly noticeable in the "hand knob" area, where the changing pattern is consistent along both ISOMAPs (Fig. 10.14), showing the transition from a double knob to a single knob. Notice that ISO s 
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From the quantitative and visual inspection of the bundles it was observed that correlation values of at least 0.3 need to be obtained for xcoor and xISO , in order to consider that a bundle presents differences explaining the ISOMAP dimension. These differences are mainly expressed in changes in the bundle position along the sulcus, which generally goes up and down gradually along the ISOMAP no centroids that meet the threshold condition, then the analysis skips to the next group. This is done until reaching the last group. Next, a second centroid from the leftmost group is used as a starting point to continue the labeling process, as for the first centroid. The distances for this second centroid are calculated with all the centroids of the group under evaluation, even with those already labeled (if any). If it happens that the most similar centroid is already labeled, a ranking strategy is used. It considers the distance (similarity) with the centroid under which it was previously labeled and the new matching. The label of the bundle with which the centroid under evaluation has the less distance is the one that prevails. In the case of the old label being maintained, then to find the match of the bundle in this group, the other centroids (under d match , if any) are tested. This processing is done iteratively until there are no more changes in the assigned labels.

Once all the centroids from the first group have been labeled (whether they found a match or not), if the second group still has centroids unlabeled, then the process starts again using these centroids as starting point. This is done until all centroids from all groups have a label assigned. Notice that all the bundles that were not found match are assigned a label of their own. These implemented improvements allow the reduction of labeling errors, as all the matching possibilities are always evaluated instead of the previous "first come, first served" situation. Also, by continuously recomputing the mean centroid that represents a label we make sure that by the end of the iterations it will converge on the average that represents all the bundles under that particular label.

Another matter regarding the bundles matching is that there are gaps sometimes where some groups miss some bundles. Although this may be due to intrinsic characteristics of the white matter geometry, it can also be due to the method filtering procedures. During all the process, the fibers and bundles are trimmed using several filters. Some of these filters are designed to discard non reproducible bundles based on the number of subjects where they are present. However, these filters might be too stringent in some cases, where the actual number of subjects is close to the threshold, but the bundle is deleted. This becomes apparent when looking at all the groups together, where unexpected gaps can be observed. In order to avoid a possible loss of information at this level by keeping these discarded bundles for the posterior analysis, a principle of hysteresis was used to recover them in each group. From all the groups, the reincorporation into the analysis is evaluated for all the bundles that met the Ns min1 threshold but were discarded for not meeting the Ns min2 threshold. In the bundles matching step, to find the correspondence between bundles across the groups each labeled bundle is represented by a mean centroid. Then, the discarded bundles under evaluation are compared against these centroids to evaluate their similarity. The similarity measure remains the same used for the previous matching. If one of the bundles under evaluation finds a match with one of the already labeled bundles, in order to be included in the final group model it needs to fulfill two conditions: (1) that the bundle does not already exist in the group where the evaluated bundle belongs to (i.e. the bundle must be missing in this group); and ( 2) that at least one of the groups immediately adjacent to the group to which the bundle being evaluated belongs presents this bundle. If these two conditions are met, the bundle is recovered by including it into the group model with the same label of the bundle that was matched.

Number of groups and subjects overlapping

Another aspect to be considered during the analysis is the number of groups, and the number of subjects per group. The number of groups plays a key role in the analysis, since a number of groups too small might lead to a failure because of blurring. On the other hand, too much granularity is not desired either because small numbers of subjects lead to less stable atlas inference. Another issue regarding the subjects input is the overlapping between groups. The previous experiments have highlighted some noisy trajectory of the matched bundles across the ISOMAP. Introducing some overlapping between the group could regularize this trajectory.

In order to test the influence of the number of groups and of the overlapping of the subjects between groups, different partitions of the population were tested. The bundle delineation parameters were the same for all tests and only the group definition was changed. A group subdivision of one, five, and ten was tested, with an overlapping of 20 subjects.

Correlation of bundle geometry and ISOMAP values

So far, the method to identify the bundles that might drive the ISOMAP changes and therefore are correlated with the subject's ISOMAP values is based on the points coordinates of each fiber (centroid) in the bundles. This involves the evaluation of a considerable number of variables, which can entail errors either from themselves or from how we combined them to generate the indicators. The fact of having several variables under evaluation poses the issue of how we interpret them for deciding if a bundle is finally correlated or not. In order to find a better and less ambiguous single indicator, new tests are performed regarding this matter.

The fiber-based ISOMAP is built upon the tractograms fiber distances. As mentioned above, since each dimension captures only one component of the variability, we can assume that each dimension is probably related to a restricted subset of bundles. In the following, we decompose the global variability into a bundle-based variability to discover the correspondence. For this purpose, we use "bundle to tractogram" distances for each pair of subjects: we compute the distance from the fibers making up a bundle in the first subject to the fibers of the whole tractogram of the second subject, i.e. all those kept after the filtering steps.

The method seeks to get an idea of how well a given bundle of one subject fits into the geometry of another subject's tractogram. This consists of the following. First, for each subject and each bundle, all the fibers that form a fascicle are recovered from its centroids. Also, for each subject, the tractogram composed by all the centroids (and therefore all the fibers) that form each of the individual bundles is generated. This is to represent the general structure of the reliable connections in the region, after the outliers have been filtered out. Then, the analysis is done for each bundle, for all the labeled bundles. This is done for all possible pairs of subjects, of the whole population under study, if they both present the bundle under evaluation. The evaluation consists of computing the similarity between two subjects by calculating the distance for those fibers only composing the bundle under test for subject one, and the tractogram of subject two. The similarity calculated in the two directions, in a similar fashion as explained in Section 10.4.2, i.e. the distance is also computed for the fibers composing the bundle of subject two, and the tractogram of subject one. Then, the minimum distances are averaged. The final distance between two subjects for one particular bundle is then defined as the squared average of the two obtained averages, as described by Equation 10.4

d B-T = x dist B1-T 2 + x dist B2-T 1 2 2 (10.4)
Where x dist B1-T 2 is the average distance obtained for the bundle of subject 1 and the tractogram of subject 2, and x dist B2-T 1 is the average distance for the bundle from subject 2 and the tractogram of subject 1.

For a given bundle, the value d B-T represents the concordance that exists in terms of geometry between two subjects. Then, in the following, we look for consistency between this set of geometric distances and the positioning of the subjects in each ISOMAP dimension. For this purpose, for each bundle, using only the subjects including the bundle, we compute the correlation between this set of pairwise distances and the similarities between subject's coordinates in each ISOMAP dimension, one after the other. The coordinate similarities are represented by the squared distance between the subjects along the ISOMAP axis as presented in Equation 10.5.

d ISO = (ISO s1 -ISO s2 ) 2 (10.5)
10.6 Results

Results for the central sulcus

As it has been done so far, this processing was first tested for the connections in the central sulcus region. In this section the results from varying the group subdivisions are exposed in order to evidence how this affects the bundle identification. Also, the final results for the bundle matching are presented.

The method was first applied to only one group, this is equivalent to applying the method described in Section 8.1 to the whole HCP database. The resulting bundles are displayed in Figure 10.20. Even if there is no other groups to compare the different bundle organization, the correlation between the fibers and the subjects first dimension ISOMAP values was calculated (Table 10.4) 

Five groups

Secondly, the population was subdivided into five groups, with 20 subjects of overlapping. All the bundles obtained for each of the five groups are displayed in Figure 10.21. The average sulcus shape for each group was also analyzed and the results are displayed in Figure 10.22. Here it can be seen the average shape transition for the groups along the ISOMAP and also an overlapping for better distinguish the differences between the two extremities of the axis. The correlation results for the bundles with the subject's ISOMAP are presented in [START_REF] Sun | Linking morphological and functional variability in hand movement and silent reading[END_REF].

The correlation values from the bundles and the subject's ISOMAP values are presented in Table Another of the frequently studied regions is the temporal region. In order to investigate the white matter geometry around this area, the gyri around the superior temporal sulcus were selected. Here a widely studied area is the Wernicke's area in the posterior region of the superior temporal gyri, due to its functions in language.

Also, by looking at the sulcus study described in Section 5. 1.3.3 it can be appreciated that most changes occur in the posterior part of the sulcus, where it bifurcates. As a means to study the white matter geometry in this area, two categories are considered. The short connections that traverse the sulcus and the long connections that are part of the Arcuate fasciculus that connect with the Wernicke's area.

Short fibers

For the short connections we selected those surrounding the superior temporal sulcus, specially those in the posterior part branches. These connections are: ST-MT, IP-SM and IP-IP (connections within the same gyrus). Also, in order to evaluate the effect of the input ROIs into the model, a second test was performed by including the IP-ST connections to the previous three just mentioned.

From the fiber's geometry ISOMAP calculation, the correlation with the sulcus based ISOMAP was computed. The highest correlation was obtained for the fiber's ISOMAP first dimension and the sulcus ISOMAP first dimension. When using only three pairs of ROIs the value obtained was 0.56 (p<0.001), while when using the four pair of ROIs this value drops to 0.52 (p<0.001). The correlation between the two fiber based ISOMAPS is high for all dimensions, especially for both first ones with a value of 0.93 (p<0.001). Since the higher value of correlation with the sulcus ISOMAP was obtained considering only three pairs of ROIs, the posterior analysis was only performed using these connections.

All the obtained bundles for the ten groups are presented in Figure 10.32. The corresponding average sulci meshes for each group are displayed in Figure 10.33 for each group along the ISOMAP axis, as well as the overlapping for the extremities groups. Figure 10.34 presents the results obtained for the STS from the sulcus-based ISOMAP analysis [START_REF] Sun | Linking morphological and functional variability in hand movement and silent reading[END_REF], in order to compare between the two strategies. helps discard bundles that are in fact outside the segment but were present during the previous steps because they connect pairs of ROIs considered in the segment analysis. The masks were created for each group from the average of all the subject's binary masks, that were created from the projection of the streamline bundles segmented using a DWM atlas [START_REF] Guevara | Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas[END_REF] as part of the Connectomist software pipeline.

Long segment

The results of the correlation between the obtained fiber based ISOMAP and the sulcus based ISOMAP show that the highest correlation is achieved between both first dimensions, with a value of 0.35 (p<0.001).

All the bundles obtained from this analysis are presented in Figure 10.36. Average sulci meshes were also computed for each group and are displayed in Figure 10.37. The meshes obtained for the extremity groups are also overlapped for a better comparison. As for the results of the correlation analysis between the bundles and the subject's ISOMAP values, these are presented in Table 10.8. The bundles whose values indicate that they have at least a moderate

The resulting bundles obtained from the analysis are presented in Figure 10.39. The corresponding average sulci meshes calculated for each group along the ISOMAP axis are displayed in Figure 10.40, as well as the overlapping of the extremity groups. Table 10.9 presents the correlation values obtained from the analysis of the bundles and the sub- In the precentral region functional language activation was also tested in Broca's area. As for the central region, functional activation meshes were created based on the activation maps computed on the cortical surface of each subject. This time a mask was used to keep only the information around Broca's area. Figure 10.50 shows the activation meshes and their relation with the sulcus shape across the ISOMAP axis. Figures 10.52,10.53 and 10.54 show the relation of the bundles highlighted in Table 10.11 and the functional activations.

and precise analysis for new subjects, since the group in which they best fit can be pre-identified and used to segment the bundles.

Bundle identification based on sulcus shape

This linking between the cortex morphology and superficial white matter geometry was first tested by dividing a population according to the sulcal morphology. This allowed group subjects with similar folding patterns for their posterior bundle identification. The delineation of bundles independently for each group allowed a better clustering of them, since the density of the fibers was less scattered.

This results in a more precise definition of the bundles.

In order to identify which bundles present differences depending on the sulcal shape, the correspondences needed to be found. Using a simple distance measure allowed us to easily identify similar bundles across groups. This first experiment offers a proof regarding the hypothesis of the relation between the two kinds of structures, by revealing different configurations across groups with different folding patterns for the same bundle.

Bundle identification based on fiber geometry

Although using the sulci information as input for dividing the groups can help elucidate the underlying bundle configuration, it is not ideal to rely on this information as it is also a source of error.

Indeed sulcal identification is not perfect, due to the high variability of these structures. Moreover, the fibers are extracted from the whole brain tractograms using ROIs, which are not always in perfect accordance with the sulcus structure (due to different software strategies), especially when there is too much ambiguity in the sulcus identification. Therefore we switched to the use of the geometry of the fibers directly to perform the population stratification.

The fiber geometry based analysis allows us to address the different bundle configurations in a different way. However, we still rely on the sulcus-based alignment of the tractograms for their posterior manifold learning processing. This has both advantages and disadvantages, as it presents a simple means to perform a good rigid body alignment in a specific region of the brain, without all the complexities of other alignment methods. This can be particularly useful when studying the short connections around a specific area. However when studying longer connections (as the long segment of the arcuate fasciculus) this can be counterproductive as one specific region gets better aligned, the rest of the brain might get misaligned distorting one of the extremities of the bundles. Another issue is that the bundle variability might be biased by the variability of the sulcus morphology instead of remaining purely based on the geometry of the fibres. A posterior study on the type and quality of alignment needs to be conducted, in order to investigate and quantify the actual effects of using the sulci as a basis for the alignment. A diffeomorphic approach could also be used instead, although deforming the fibers geometry might not be desirable. Another approach could be performing the alignment directly based on the extracted tractograms.

Using ISOMAP dimensionality reduction performed from the fibers, the population can be stratified in order to infer the bundle configuration from subjects with similar fiber organizations. Furthermore, once the bundle atlases have been computed for each group, it is possible to link each bundle with the ISOMAP dimensions it contributes to. In this section, for the sake of clarity, it was done only for the first dimension, but this is a generic tool. Hence, once a correlation is found between one dimension of the fiber ISOMAP and one dimension of the folding ISOMAP, we know which of the bundles have a link with the folding variability of this dimension. This was well illustrated in the case of the hand-knob, which variable localization along the central sulcus fits the variable localization of nearby bundles.

Regarding the bundle delineation step from inter-subject clustering, its level of accuracy is of great importance. This is because the incorrect identification of bundles might lead to a misconception of different configurations. The method employed has proven to be able to define well delineated and reproducible short white matter bundles, as described in Sections 8 and 9. With the geometry-based improvements made for the similarity measure, the clustering processing allows a better delineation of fibers presenting slight differences of their orientation in the 3D space. This allows us to reach higher granularity for fibers that might actually belong to different bundles, without over-segmenting other bundles that do not present fibers with these characteristics.

The method presented in this section, based on the fiber's geometry, allows us to identify bundles with different configurations across sub-populations. The variability across these configurations has been shown to present a high correlation with morphological and functional variabilities. This was shown for the connections between the pre and postcentral gyri (specifically in the hand-knob area), since it is one of the sulci about which most information is available.

No doubt that the group definition plays an important role as the number of groups needs to be big enough to separate the intrinsic bundle characteristics from the other groups, but at the same time keep their reproducibility. As seen in Figure 10.20, clustering the fibers considering the whole population does not allow us to differentiate the nuances that can exist within a bundle, as they are all clustered together. Furthermore, close by bundles can be mixed up when the whole population is aggregated. As we augmented the number of groups to five, these differences started emerging for some bundles (Fig. 10.21). Hence we could reach a better granularity. The highest number of bundles showing differences was obtained for a ten group subdivision, confirming that this is the optimal splitting of this population. When increasing even further the number of groups to fifteen, the results start being incoherent both for the bundles and the sulcus average shape. Therefore, ten is considered an optimal number here for subdividing the population.

The central sulcus region is one of the most studied regions of the brain due to the sensorimotor system. The results obtained from our analysis of the ISOMAP first dimension for a ten group subdivision show the existence of bundles presenting different configurations across groups, which are in relation with the sulcus shape. The results show that sulcus shape changes gradually across the ISOMAP especially in the hand-knob area, where it can be seen that the upper knob is more prominent in one extremity and then becomes more flat and about the same size as the lower knob.

Furthermore, this upper knob is moving along the sulcus.This is corroborated with the high correlation that exists with the sulcus-based ISOMAP first dimension, that exhibits the same sulcal patterns and that can also be seen in Figures 10.25 and 10.26. Notice that in the sulcus-based results the meshes present these differences more clearly since they were generated using directly the sulcus information. The bundles found to have correlation with the fiber-based ISOMAP are in fact located in the hand-knob area and their 3D placement is coherent with the changes in the sulcal shape. As it can be seen in Figure 10.27, these bundles move up from left to right with the first knob. Moreover, these changes are also correlated with the localization of the hand functional activation (as seen in Figures 10.29,10.30), showing a coherent relations between the two structural components of the brain and the functionality.

The superior temporal region is a largely studied region of the brain due to its importance in language. However, unlike the central sulcus, its short fibers are more chaotic. This makes more difficult the definition of the limits of the bundles as these are frequently intertwined. From the ISOMAP first dimension analysis it was found that most of the bundles presenting correlation with the ISOMAP values are located in the upper posterior section of the superior temporal sulcus. From the sulcus average meshes (see Figure 10.33) it can be observed that in fact this place presents changes along the ISOMAP axis. From one extremity of the ISOMAP it can be seen that the posterior part of the main branch of the STS is longer and with a single ending, while at the other extremity the main branch is shorter and it ends in a bifurcation into two branches. These results are also corroborated with the sulcus-based ISOMAP (see Figure 10.34) that exhibits similar sulcal patterns, which confirms the high correlation obtained between both first dimensions. Regarding the correlated bundles, it can be observed for instance in Figure 10.35b that from the left to the right the bundles move down and to the left as the lower starts to emerge. A similar case occurs for the bundles in Figure 10.35d where the existence of the upper branch seems to pushing the bundle down, or in Figure 10.35h, where the same branch seems to push the bundle to the left. Notice that here, unlike the results for the central sulcus, for many bundles there are gaps between some groups. This evidence the higher variability of the connections in this area, as these connections might have been discarded during the filtering process due to the low reproducibility in the group. Notice also that sometimes only the groups in the extremities of the ISOMAP axis present connections. This kind of results probably highlights limitations of our current methodology. We should not perform bundle matching across long gaps.

The bundles located on both sides of the ISOMAP are probably unrelated. (see Figure 10.35f).

If we look at longer connections in the superior temporal sulcus, the studied segments of the arcuate fasciculus show also interesting results. Generally speaking not all the bundles in the long segment were found in all groups, which could mean that these connections are too small to survive the filtering or that they simply do not exist, influencing the fiber-based ISOMAP. This can be evidenced in Figure 10.38a where the bundles at the right side of the ISOMAP are missing. Also, in Figure 10.38d the bundles in the middle of the ISOMAP are missing suggesting a "only two" unrelated different configurations. Regarding the sulcus shape, the ones obtained from the fiber-based analysis do not correlate to the ones from the sulcus-based study. This could be due to the long nature of the bundles, whose differences in geometry that drive the ISOMAP do not necessarily are in relation with (or close to) the STS. Moreover, due the kind of alignment utilized, the distant part from the STS might be misaligned.

The posterior segment, unlike the long one is more intimately related with the posterior section of the STS. It shows similar sulcal patterns as for the short connections, and therefore with the sulcus-based ISOMAP (Figures 10.33,10.40 and 10.34). This could be explained because the fibers composing the posterior segment of the arcuate fasciculus are in fact restrained to the region where the sulcal differences are perceived. The two bundles showing a correlation are close to the upper posterior part of the STS. For the bundle in Figure 10.41a the bundle falls into the concavity created by the two branches. As the two branches appear (from left to right in the ISOMAP) this concavity is lower, and so is the position of the bundle. As for the bundle in Figure 10.41b the upper extremity of the bundle seems to turn towards the left side as the upper branch starts to emerge.

Regarding the cingulate region the connections are less chaotic, presenting often only one bundle for pairs of ROIs following in parallel the cingulate sulcus. From the sulcus meshes it can be seen that there is a vertical offset for the anterior part of the sulcus and a horizontal offset for the middle part of the sulcus, between the two extremities of the ISOMAP (see Figure 10.43). This offset is increasing gradually as one moves along the axis. These differences can also be appreciated in the sulcus-based analysis (see Figure 10.44), which corresponds to the high correlation value obtained between the two approaches. This characteristic is also reflected in the differences between the bundles, as all of them show an offset that is highly correlated with the ISOMAP values.

Finally, the precentral region is also frequently studied for its role in language, specifically in the Broca's area. In fact, the studied connections were restricted to the ROIs with a relation with it.

Shorter connections with Broca's have turned out to be more chaotic than the midrange ones. The main difference that can be seen from the sulci meshes is the lower portion of the precentral sulcus. In one extremity of the ISOMAP axis the shape exhibits a flat vertical bar, while for the other extremity this bar presents a "T" form and is closer to the central sulcus (see Figure 10.47). These results present a moderate correlation with the sulcus-based ISOMAP, both quantitatively and visually (see Figure 10.48). In fact, this vertical offset might be the strongest feature that relates Broca's area with the bundles connecting it. The bundles correlated with the fiber-based ISOMAP present also a shift in this orientation, unlike the rest of the bundles obtained. This can be seen for instance in the bundles presented in Figures 10.49b,10.49c,10.49d that present a strong vertical shift along the ISOMAP.

Also, the bundles coming from the Superior Frontal gyri, that form the "frontal aslant tract", present this offset in the extremity that connects with Broca's area (see Figure 10.49e and 10.49f). On the other hand, the language functional activations in Broca's area also show a visual correlation with the lower part of the precentral sulcus, as it also moves to the right into the sulcus. Moreover, the bundles with a correlation present one extremity that falls into these activation meshes, confirming this correlation between the three types of data.

From all the results just described, it can be concluded that the developed method allows us to stratify a population based on the specific fiber patterns of a brain region. This permitted the identification of bundles with different configurations across the population. Although the quality and accuracy of the results depends on the complexity of the connections in the studied region, it can certainly tell where the changes occur. By identifying the bundles that mainly drive the ISOMAP results, we can see how these relate with the sulcus shape and how this affects, for instance, the function. This is particularly important when we want to conduct studies where the definition and boundaries of the bundles need to be more exact.

The method can be applied to any region of the brain and to a desired number of ROIs. However it needs to be taken into account that keeping the amount of connections as clean as possible will generate better results that are also easier to interpret. Adding too many connections can result in an ISOMAP where main features that differentiate the subjects are lost or are too complex to analyze.

Not to mention also the increase of computation time. In this thesis we only considered a reduced amount of regions, which are the most studied ones in terms of cortical morphology, in order to evaluate the degree of relationship between these structures and the underlying fibers.

Another interesting point is that by being able to split the subjects presenting different patterns, we were able to get into a bundle finer organization. What we normally see as a bundle when performing a whole population clustering, can in fact be shredded into slightly different sub-bundles. This is especially important when analyzing the short connections as these are very tangled up and most of the time it is not really possible to see how they organize locally.

Chapter 11

Conclusion and discussion

"As long as our brain is a mystery, the universe, the reflection of the structure of the brain will also be a mystery" . . .

Santiago Ramón y Cajal

Contributions

Throughout this thesis several tools for the identification of the bundles formed by the white matter fibers were developed, with a focus on the short and middle range length ones. A pipeline for the delineation of short association fiber bundles was designed based on a hybrid approach mixing up ROI-based selection and fiber clustering. It offers the advantage that it can be applied for only a couple of regions as well as for the whole brain. It considers a ROI-based subtractogram extraction that helps localize and diminish the amount of data under analysis. Although any ROI set could be used as input, we choose to employ those described in the Desikan-Killiany atlas of the FreeSurfer package, as they provide anatomical information to the resulting bundles. Moreover, as these ROIs are gyri-based, they offer a good means to isolate short fibers circumventing a specific sulcus. Applied to the whole brain, our approach has generated a connection model or atlas that represents the most reproducible short bundles. These bundles were compared against bundles obtained with alternative methods and using different data, showing that depending on the method employed the granularity of the bundles can change but the connections are indeed present in the different models.

Moreover, the creation of this atlas allowed application to clinical studies that look for the potential link between short bundles and pathologies. Providing the possibility to explore the whole range of bundle length is an important advance when studying psychiatric syndromes. Some of these pathologies indeed are often supposed to be associated with an imbalance between long distance and short distance connectivity.

The first part of this thesis deals with the most reproducible, hence the largest short bundles connecting areas of the cortical mantle. On the other hand, an increased bundle granularity is needed to study the differences that can exist between different subjects. With this goal in mind, the second set of tools developed during this thesis helps to model the variability of the different bundle configurations in a population. The stratification of the population based on the regional fiber geometry provides a way to disentangle this variability. Groups of subjects with different fiber geometry lead to different bundle atlases, while atlas inference from a random group of subjects provide always the same reproducible result when the size of the groups is high enough. But the key point is that atlas inference from stratified groups provides a higher granularity atlas, because it helps to disentangle close bundles with varying localization across the population. Therefore, compared to an alternative strategy projecting first our low granularity atlas to all subjects before the variability analysis, as illustrated by a recent shape analysis of long bundles in bipolar disorder [START_REF] Sun | Shape analysis of the cingulum, uncinate and arcuate fasciculi in patients with bipolar disorder[END_REF], our strategy increases the sensitivity. Furthermore, it provides the opportunity to detect bundles that may exist only in a small proportion of the population and would have been discarded as unreliable with our first approach.

Separating a bundle into its different nuances, it was possible to evaluate its relationship with the shape of the circumvented sulci and the localization of the functional activations. The most evident such relationship was obtained for the central sulcus, where strong correlations between these three types of data were found in the hand-knob area. For the rest of the studied regions this kind of observations were also found in known areas with different sulcal patterns.

Limitations

Although we overcame the initial dependency on the sulcus pattern for the population subdivision used during our first attempts, we still rely on it for the tractogram alignment. Each subject is aligned to the neutral subject using its own sulcus configuration, which may create some bias in the pairwise geometrical distance used to infer the fiber ISOMAP, especially in very variable areas. Different sulcus patterns may align differently with the neutral template one. Furthermore, the sulcus automatic recognition process is not fully reliable, because of the variability of the folding pattern. In the future, pairwise alignment could be used for the distance computation to alleviate this bias, which is the strategy used for the sulcus shape ISOMAP.

Inter-subject alignment is a key issue when comparing white matter geometries. As long as the alignment is performed from the T1-weighted scan describing the cortex morphology, alternative alignment strategy could be employed, especially nonlinear spatial normalization techniques that are standard in the field. Note that we already exploit a surface-based alignment for the ROI definition.

Spatial normalization in the context of variability study, however, is raising complex issues related for instance to the template choice, the regularization of the warping, etc. Therefore, during this thesis, we have decided to focus on a controlled regional alignment and a globally affine and locally rigid technique.

The extreme variability of the bundles in some regions leads to numerous difficulties, which are illustrated in our experiments with the Superior Temporal Sulcus area. The matching of the atlases inferred from each stratified group is a complex task, which has to disentangle the variability induced by the atlas inference process and the actual anatomical variability across the population. For instance, it is difficult to balance the regularizing a priori knowledge that each group should normally lead to the same set of bundles, and the will to discover differences, for instance missing or supplementary bundles in subgroups of subjects. This issue is all the more crucial that a major application of our tools is the study of developmental pathologies. The variability induced by the atlas inference process has various origins. Some stem from the quality of the tractography itself. A poor quality diffusion dataset induced by subject motion may reduce the number of actual fibers and increase the amount of spurious ones. Some of the ISOMAP dimensions may simply result from this kind of variability. But the weaknesses of the atlas inference process result also from the nature of brain connectivity. Most of our experiments target the short bundle organization. The exact anatomical nature of short bundles, however, is unclear. For instance, U-fibers seem to exist all along the Central Sulcus, questioning the existence of local bundles versus a continuous organization. Recent studies have led to the hypothesis that plis de passage or buried gyri may correspond to localized high density of U-fibers [START_REF] Bodin | Plis de passage in the superior temporal sulcus: Morphology and local connectivity[END_REF][START_REF] Kaltenmark | Group-level cortical surface parcellation with sulcal pits labeling[END_REF]. Our results with the central sulcus seem to include several U-bundle connecting the buried gyri creating the knob-like shapes in the sulcus. One of the U-bundles missing in the whole population analysis but detected with the stratified approach seems to be the bundle connecting the motor hand knob with the lower sensory hand knob. Hence, the hypothesis that variations of U-fiber density along the sulci are stable across individuals, because they are rooted in the brain architecture, justify the definition of U-bundle atlases. But this hypothesis may be an oversimplification of the actual nature of the short bundle variability. These questions illustrate the challenge ahead. In cortical areas where the U-fiber organization is not stable, the atlas inference process is doubtful, leading to uncontrolled spurious variability explaining the difficulties observed during the matching process performed across stratified groups.

Perspectives

In the future, we may first try to get rid of the dependence on the sulcus identification, building the rigid alignment directly on the fiber geometry, in the spirit of the works performing tractogram alignment. We may also try to consider a wider set of spatial transformation, but in our opinion, highly regularized transformations are mandatory to tame the complexity of the underlying variability. Pairwise alignment before distance computation is probably optimal but may turn out beyond reach in terms of computational cost.

Also, in the context of this thesis, the method was only applied to a limited set of regions and only to one hemisphere of the brain. Therefore, an extension of the studied regions would be important, as well as its application in the right hemisphere, which would also allow lateralization studies.

But the most attractive future work will be related to the application of our methodology to developmental syndromes, mainly in the context of psychiatry. The stratification of the patient population has become a crucial objective. These syndromes probably aggregate patients with close symptoms but dissimilar developmental abnormalities. The possibility to stratify such populations according to the local geometry of the fiber organization in target regions would be a natural follow-up for us.

Closing remarks

This thesis addresses the study of the most mysterious part of the white matter organization, its superficial layer located under the cortical mantle and hosting short-range fiber bundles. Before the advent of diffusion MRI, superficial white matter was almost beyond reach for classical anatomical studies. Hence, current knowledge on its organization and inter-individual variability is very sparse.

In this context, we first provide a map of the most reproducible bundles of short fibers that have already been used for several clinical studies. For such studies, this map or atlas is projected onto the tractograms of patients and control subjects to segment the corresponding bundles. Then, bundlebased diffusion MRI properties can be compared across groups. Hence the variability under study is the microstructural organization of the most reproducible bundles that are supposed to exist in all the subjects.

Our second contribution is a new methodology for the study of another kind of variability related to the shape and localization of the bundles, or more importantly in a clinical context, their existence.

For this purpose, we target a finer granularity of the bundle organization. While the variability of the cortical folding pattern is a fact, the variability of the hidden bundle-based organization of the white matter is still an unknown world. We have shown that the intuitive hypothesis that the folding pattern variability has some link with the fiber bundle geometry is a reality. Although the organization of the fiber bundle is even more chaotic than the cortical folding pattern, we were able to find consistent links between these two structures. This confirms the hypothesis of the influence of one onto the other, even though it is still impossible to clarify the direction in which this influence is exerted.

Chapter 12

Resume in French 12.2 Création d'un atlas de faisceaux de matière blanche superficielle.

La connectivité structurelle du cerveau reste un mystère. Ceci est principalement dû au fait que la cartographie de la connectivité macroscopique du cerveau humain est encore incomplète. La cartographie de ce réseau appelé connectivité structurelle du cerveau humain est essentielle pour une meilleure compréhension des fonctions et des pathologies du cerveau [START_REF] Sporns | The human connectome: a structural description of the human brain[END_REF]. Dans le passé, la substance blanche a été principalement étudiée au moyen de dissections post-mortem, afin de documenter les principales voies de transmission. Cependant, grâce aux progrès des technologies d'imagerie médicale, son étude est maintenant possible par d'autres moyens, comme l'IRM et la tractographie. Cependant, les ensembles de données de tractographie contiennent une grande quantité de fibres parasites, c'est pourquoi un pipeline de traitement doit être appliqué afin d'identifier des faisceaux de fibres fiables. Dans ce but, on utilise des méthodes de segmentation de la substance blanche fondées sur des parcellisations de la substance grise ou/et des regroupements des fibres similaires. La première approche offre l'avantage d'inclure des informations anatomiques et la seconde des résultats qui conservent la structure des faisceaux.

Base de données : La base de données est constituée de données HARDI provenant de soixantedix-neuf sujets sains : 23,6 ± 5,2 ans ; 47 hommes et 32 femmes ; 76 droitiers et 3 gauchers).

Les données de diffusion ont été traitées à l'aide du logiciel BrainVISA/Connectomist-2.0 software [START_REF] Duclap | Connectomist-2.0: a novel diffusion analysis toolbox for brainvisa[END_REF]. un masque cérébral basé sur l'image anatomique T1 a été calculé pour contraindre la tractographie [Guevara et al., 2011a]. Il comprend les voxels de substance blanche superficiels, permettant une bonne reconstruction des connexions cortico-corticales. La tractographie déterministe du cerveau entier régularisée [START_REF] Perrin | Fiber tracking in q-ball fields using regularized particle trajectories[END_REF] a été calculée dans l'espace natif des sujets, avec un pas de 0,2 mm et un angle de courbure maximal de 30°. Cela conduit à des ensembles de données de tractographie avec une moyenne d'un million de fibres par sujet, entre 20 et 300 mm de longueur de fibre. Les fibres ont finalement été traitées en utilisant un regroupement intra-sujet [Guevara et al., 2011b], afin d'éliminer les valeurs aberrantes et de réduire la dimensionnalité des données. Base de données : Trois atlas de tractographie accessibles au public. Le premier est obtenu par l'application de la méthode hybride décrite dans la section précédente, appelée atlas1 (50 faisceaux par hémisphère) ; le second est décrit dans [START_REF] Román | Clustering of whole-brain white matter short association bundles using hardi data[END_REF], appelé atlas2 (44 faisceaux dans l'hémisphère gauche et 49 dans l'hémisphère gauche) ; et le troisième est décrit dans [Zhang et al., 2018b], appelé atlas3 (396 groupes de fibres courtes). L'atlas1 et l'atlas2 ont tous deux été construits à partir de la base de données ARCHI, tandis que pour l'atlas3, la base de données HCP a été utilisée. 
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FIGURE 2 . 1 :

 21 FIGURE 2.1: Schematic of the brain subdivision. It shows the three subdivisions of the brain: telencephalon, diencephalon and the brainstem. It also shows another anatomical characteristics of the brain: the sulci (cortical valleys) and gyri (cortical mountains). Image adapted from[START_REF] Blaus | Medical gallery of blausen medical[END_REF].
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 33 FIGURE 3.3: Schematic of the MRI slice selection. In the presence of a gradient magnetic field G ss the total magnetic field that a proton experiences and its resonance frequency depend on its position. In consequence every position has an unique resonance frequency. Image adapted from[START_REF] Brown | MRI: basic principles and applications[END_REF].
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 34 FIGURE 3.4: Schematic of water diffusion restricted in a cylindrical environment. Red lines represent the path made by water molecules. Image adapted from[START_REF] Van Hecke | Diffusion tensor imaging: a practical handbook[END_REF].
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 35 FIGURE 3.5: Schematic of water diffusion in the neuron and its model represented by an ellipsoid. The diffusion model presents a scheme of the water molecules diffusion orientation, given certain restrictions in the environment. In the soma random barriers can be found, therefore the diffusion is still isotropic (as in free water). On the other hand, in the axon the water molecules diffuse along them (anisotropic diffusion). The diffusion tensor model is the simplest historic model to characterize the water diffusion in 3D. The elements in the diagonal of the matrix represent the diffusivity in the 3 orthogonal axes, while the elements outside the diagonal correspond to the correlation between the displacements along them. A graphic representation of the model is made by ellipsoids. Image adapted from[START_REF] Mukherjee | Diffusion tensor mr imaging and fiber tractography: theoretic underpinnings[END_REF].

  frontal area, close to the SLF, a tract in the occipital lobe (VOF) , SP-An, SP-PrCu, SP-SO, SP-MO, SP-SM, Ci-SF, Ci-PrCu, SF-MF, SF-IF, SF-PrC, MF-IF, MF-PrC, IF-PrC, PrC-PoC, PoC-SM, An-MO, An-SM, Cu-Li, Cu-SO, Cu-MO, Fu-IO, FU-MO, SO-MO, IO-MO, ST-MT, ST-SM, IT-MT, LOF-MOF Comparison between manual and automated ROI placement [Catani et al., 2012] Tractography Left frontal lobe, central, pre-central, perinsular and fronto-marginal sulci Virtual dissection of the tracts connecting two ROIs Manual ROI placement 1 and 12 HARDI Frontal lobe: SF-IF (FAT), SF-MF, PrC-MF, Posterior/anterior orbitofrontal-polar cortex (FOP), posterior precentral cortex -anterior prefrontal cortex (FSL, FIL), FMT. PrC-PoC: paracentral, hand superior, hand middle, hand inferior, face superior and face inferior. Ins-Or/Tr/Op/PrC/SuC. (ant, mid and post), SF-MF (ant, mid and post), MF-IF, MF (mid, mid2, post, post2), IF-Ins, IF (post, inf), LFO (inf, sup), MFO, MFO-Ci, SF-Ci (mid), MF-PrC (sup, mid), PrC-PoC (sup, inf), PrC-Ins, PrC-SM, PaC-PrCu, PoC-SM, SM, SP, An (sup, inf), ST-An, MT-An, ST (post), MT-Ins, ST-Ins, IT-MO, Cu, Cu-Li, Li, Fu (ant, mid, post), PrCu-Ci, PrCu-SF, Ci (ant, mid, post) [Vergani et al.modalities: SF-MF, MF-IF, PrC-PoC, left SP-IF and right PoC-SP. DSI: MF-IP left SF-IP, MF-SM, IF-MT, PoC-IP, SP-SM, SM-MT, MT-IT, IP-MO; right SF-SP, MF-MT, IF-SP, PrC-SP, SP-IP, SP-SO, SP-MT, ST-MT. HARDI: SP-SM, MF-MT, SF-IF, SO-MO, MF-PrC; left PoC-SM,SP-MT, ST-MT; right SP-IP, SM-PrC, IP-SM, IP-MT. DTI: SF-IF, MF-PrC, IF-PrC, SM-MT, PrC-SP; left SF-PrC, SF-PoC, SF-SP, PrC-MT, SP-SO, IP-MT, IF-ST, PoC-IP; right PrC-IP, PoC-IP, IP-MO, SM-MO, ST-SM.

  CAC-PrCU 0, CMF-PrC 0, CMF-PrC 1, CMF-RMF 0, CMF-SF 0, IC-PrCu 0, IP-IT 0 IP-MT 0, IP-SM 0, IP-SP 0, LOF-RMF 0, LOF-RMF 1, LOF-ST 0, MOF-ST 0, MT-SM 0, MT-ST 0, Op-Ins 0, Op-PrC 0, Op-SF 0, Or-Ins 0, PoCi-PrCu 1, PoCi-RAC 0, PoC-PrC 0, PoC-PrC 1, PoC-PrC 2, PoC-SM 0, PrC-Ins 0, PrC-SM 0, RMF-SF 0, RMF-SF 1, SM-Ins 0, SP-SM 0, ST-TT 0, Tr-Ins 0, Tr-SF 0. Left Hemisphere: CMF-Op 0, CMF-PoC 0, Fu-LO 0, IP-LO 1, IP-SP 1, IT-MT 0, LOF-Or 0, PoC-Ins 0, PoCi-PrCu 0, PoCi-SF 0, PoC-PrC 3, PoC-SM 1, PrC-SF 0, RAC-SF 1, ST-Ins 0. Right hemisphere: CAC-PoCi 0, CMF-SF 1, Cu-Li 0, Fu-LO 1, IP-LO 0, IT-MT 1, IT-MT 2, LOF-MOF 0, LO-SP 0, Op-Tr 0, PoCi-PrCu 2, PoC-SP 0, PrC-SP 0, RAC-SF 0.

  FIGURE 5.6: Precentral gyrus variability ISOMAP. A: the image shows the moving averages of the ISOMAP. The forms at the two extremities are colored red and green. B: the image shows the two extremities of the ISOMAP superimposed on each other. Image adapted from[START_REF] Sun | Linking morphological and functional variability in hand movement and silent reading[END_REF].

2 :

 2 FIGURE 6.2: Schematic of hierarchical clustering. An agglomerative single-linkage approach is used. For each graphical representation of the clustering process, the dendrogram is presented. (a) First the closest similar single elements are joined into a cluster. (b) O 4 is added to the cluster formed previously by O 5 and O 6 . (c) O 3 is joined to the cluster formed by O 1 and O 2 . (d) All elements are joined in one single cluster. Depending on the number of desired clusters or a similarity threshold, the dendrogram can be cut to obtain the final clusters. Image prepared by the author.

  The database consists in HARDI data from 897 subjects (28.81 ± 3.69 years old of age; 394 males and 503 females; 813 right-handed and 84 left-handed), chosen by the HCP consortium to represent healthy adults beyond the age of major neurodevelopmental changes and before the onset of neurodegenerative changes[START_REF] Van Essen | The human connectome project: a data acquisition perspective[END_REF]. All subjects provided written informed consent on forms approved by the Institutional Review Board of Washington University. All HCP subjects were scanned on a customized Siemens 3T "Connectome Skyra" housed at Washington University in St. Louis, using a standard 32-channel Siemens receive head coil (Siemens, Erlangen) and a "body" transmission coil. The MRI protocol included the acquisition of two separate averages of the T1-weighted image using an 3D MPRAGE sequence (256 sagittal slices in a single slab; echo time TE=2.14 ms; repetition time TR=2400 ms; inversion time TI=1000 ms; flip angle FA=8; FOV = 224 mm; matrix=320; voxel size=0.7 mm isotropic; resolution bandwidth RBW=210 Hz/pixel; Echo Spacing (ES) = 7.6 ms). A Spin-echo EPI multi-shell HARDI dataset along 90 optimized diffusion-weighted directions, b=1000, 2000, and 3000 s/mm 2 , (111 slices; TE=89.5 ms; TR=5,520 ms; FA=78; matrix=168×144; voxel size=1.25 mm isotropic; RBW=1488 Hz/pixel; echo spacing ES=0.78 ms; partial Fourier factor PF=6/8; GRAPPA=2; total scan time=16 min and 46 s)

FIGURE 8 . 1 :FIGURE 8 . 2 :

 8182 FIGURE 8.1: Schematic of the subtractogram extraction. The subtractograms are extracted using the centroids and pairs of ROIs.

FIGURE 8 . 3 :

 83 FIGURE 8.3: Illustration of the subtractogram fiber complexity. The extracted fibers are shown for two pairs of ROIs: caudal middle frontal (CMF) and pars opercularis (Op), and precentral (PrC) and postcentral (PoC). In both examples it can be observed that there are fibers presenting different shapes and positions within the connected regions.

FIGURE 8 . 4 :

 84 FIGURE 8.4: Schematic of obtaining of the bundles. The processing to obtain the bundles by means of an intra-subject hierarchical clustering are shown.

  Figure 8.5 shows three examples for the N cl value. For instance, in the second row the number of clusters obtained is shown for the connections between the pre and postcentral gyri. The first image shows in light blue the extracted subtractogram, where can be seen the complexity of the fibers composing it. By visual inspection one can say that the subtractogram can be decomposed into 5 to 7 clusters, and by applying the Equation 8.3 the N cl is set to 7. The second image shows in different colors the results from the automatic disentanglement of the fibers into bundles. Notice that the clustering can result in less clusters, depending on the hierarchical tree topology and therefore the fiber's structure. Finally, the third image shows the results for the bundle correspondence between

  FIGURE 8.5: Examples of the bundles obtained for the atlas processing. A: Fibers obtained connecting pairs of ROIs. In the first column the extracted subtratograms are shown in light blue. The second column shows the automatically obtained bundles, from the intra-subject clustering. The third column presents the most representative bundles resulting from the inter-subject bundle correspondence. B: Tablethatshows the number of clusters N cl defined by hand and by an equation for the intra-subject clustering, and the number of clusters (bundles) obtained from the inter-subject clustering.

FIGURE 8 . 6 :

 86 FIGURE 8.6: Schematic of the inter-subject bundle correspondence. This processing is achieved by applying a two-step inter-subject hierarchical clustering.

FIGURE 8 . 7 :

 87 FIGURE 8.7: Schematic of bundles obtained from the inter-subject clustering. Each bundle is composed of the centroids stemming from all the subjects.

FIGURE 8 . 10 :

 810 FIGURE 8.10: Schematic of the automatic bundle segmentation from a model. The automatic segmentation of a new subject's data is performed by measuring the distance between its fibers and the fibers in the bundle model.

FIGURE 8 .

 8 FIGURE 8.13: SWM bundles found to be in relation with ASD. Thirteen bundles present a deficit of the connectivity in ASD, mostly from frontal, temporal and parietal regions. This deficit is associated with the severity of the disorder. Image from[START_REF] Albis | Local structural connectivity is associated with social cognition in autism spectrum disorder[END_REF].

  bundles connect only to a small part of the large region. This might be induced by the functional relationship between these regions. Some examples are the connections between the Pars Opercularis and the Superior Frontal gyri (Op-SF) or the Pars Triangularis and the Superior Frontal gyri (Tr-SF) (see Fig. 8.12). In general, only three small regions (Pars Orbitalis, Pars Triangularis and Pars

  FIGURE 10.8: Plot of two dimensions from the manifold learning of artificially different tractograms groups. A: Plot of the first and second dimensions from T-SNE. B: Plot of the first and second dimensions from ISOMAP.

Figure 10 .

 10 Figure 10.10 presents an example of using d ang as a similarity measure, instead of the simple Euclidean distance d me . The same set of fibers was clustered twice using the same parameters, with a cutting criteria of a maximum distance d max = 30 mm, but with different distance measures. It can be seen that the set presents two different fiber orientations. Because of their overall closeness, using the d me still clusters the fibers together. However, adding f ang to the Euclidean distance measure, according to Equation 10.3, allows us to separate the fibers according to their orientations.

FIGURE 10 . 10 :

 1010 FIGURE 10.10: Example of fiber clustering based on their distance and orientation. The same set of fibers is displayed with two different views. A: fibers clustered using the Euclidean distance. B: fibers clustered using the Euclidean distance modified by a factor based on the fibers orientation.

FIGURE 10 .

 10 FIGURE 10.21: Bundles obtained for the central sulcus from a five group subdivision of the population.

FIGURE 10 . 24 :

 1024 FIGURE 10.24: Bundles obtained for the central sulcus from a ten group subdivision of the population.

  FIGURE 10.26: Central sulcus variability ISOMAP. A: the image shows the SPAM of the ISOMAP. The forms at the two extremities are colored red and green. B: the image shows the two extremities of the ISOMAP superimposed on each other. Image adapted from[START_REF] Sun | Linking morphological and functional variability in hand movement and silent reading[END_REF].

FIGURE 10 . 36 :

 1036 FIGURE 10.36: Bundles obtained for the long segment of the arcuate fasciculus from a ten group subdivision of the population.

FIGURE 10 . 39 :FIGURE 10 . 40 :

 10391040 FIGURE 10.39: Bundles obtained for the posterior segment of the arcuate fasciculus from a ten group subdivision of the population.

FiguresFIGURE 10 . 45 :

 1045 FiguresB.16, B.17 and B.18. 

  FIGURE 10.49: Bundles presenting a correlation with the subject's ISOMAP values in the precentral sulcus area. These bundles are obtained from the population subdivision into ten groups. A: PreCentral 0, B: PreCentral 1, C: PreCentral 3, D: PreCentral 6, E: PreCentral 8, F: PreCentral 11 and G: PreCentral 19

"

  La science n'a pas de patrie" Louis Pasteur12.1 IntroductionLe cerveau humain est l'un des organes les plus complexes de notre corps. Le fonctionnement de notre esprit est un mystère intrigant depuis la nuit des temps. Pour comprendre le fonctionnement d'un objet, il faut identifier les parties qui le composent, ainsi que les relations entre elles.Par conséquent, pour mieux connaître notre cerveau, nous devons commencer par apprendre son anatomie. La division la plus générale du cerveau se situe entre la matière grise (le corps des cellules cérébrales où tout le calcul est effectué) et la substance blanche (le câblage du cerveau constitué entre autres d'axones qui transfèrent l'information).Au cours de l'histoire, l'analyse du cerveau a surtout été effectuée par des anatomistes au moyen de dissections post-mortem. L'apparition de l'imagerie par résonance magnétique (IRM) dans les années 1970 a ouvert la voie à l'étude du corps humain in vivo et de manière non invasive, grâce à des images reconstruites à partir des informations fournies par la distribution des atomes. De plus, l'émergence de l'IRM de diffusion (IRMd) au début des années 1990 a permis d'utiliser la diffusion des molécules d'eau comme une sonde de l'organisation cérébrale, en mesurant ses perturbations induites par les microstructures cellulaires et leurs anisotropies. A cela s'est ajouté l'apparition de la tractographie, permettant l'étude des trajets de la matière blanche du cerveau et la création de cartes ou d'atlas des connexions cérébrales. Ces atlas sont loin d'être complet car toutes les structures du cerveau ne sont pas faciles à identifier. C'est le cas de la substance blanche superficielle, en raison de sa petite taille et de sa grande variabilité au sein de la population. La substance blanche superficielle est étroitement liée aux sillons cérébraux. Il est donc naturel de penser que leurs organisations sont influencées les unes par les autres. Les neuroanatomistes pensent que le schéma de repliement du cortex cérébral est fortement lié à la connectivité du cerveau, bien que l'on ignore quelle en est la cause et quelle en est la conséquence. Comme chaque variation du plissement implique un réarrangement spécifique des différents faisceaux de substance blanche sous-jacents, elle a également un impact sur la position des régions fonctionnelles. La morphologie des plis corticaux du cerveau est spécifique à chaque être humain. Cela soulève un problème de normalisation spatiale précise du cerveau, car personne ne sait comment aligner les cerveaux avec des motifs de plissement différents. Il a été montré que des motifs de plis corticaux distincts sont associés à des différences dans la localisation des aires fonctionnels.Cependant, les liens avec l'organisation sous-jacente des faisceaux de fibres restent un mystère.La plupart des atlas de faisceaux de fibres disponibles ont été construits soit à partir d'un seul sujet, qui contient des caractéristiques qui pourraient n'exister que dans le sujet, soit à partir d'une moyenne de groupe, qui brouille les différences entre les sujets. Il est donc impératif d'élucider l'existence de différentes configurations de connexions et leur relation avec les sillons, afin de créer différents modèles qui reflètent ces différences.Contributions de la thèse : Les travaux réalisés au cours de cette thèse ont abouti à la création et à la mise en oe]uvre de différents outils pour l'identification des faisceaux courts de la substance blanche. Le premier outil consiste en une méthode hybride automatique, qui incorpore dans l'analyse des informations morphologiques anatomiques provenant d'une parcellisation du cortex cérébral; et générant des faisceaux anatomiquement cohérents au moyen d'un clustering. Cette méthode permet de délimiter les faisceaux de substance blanche reliant une paire de régions, et peut être appliquée à l'ensemble du cerveau. Cette analyse de l'ensemble du cerveau a permis de générer un modèle général des faisceaux courts de la substance blanche, reproductibles et stables pour une population, une tâche à laquelle seuls quelques groupes de recherche se sont attaqués en utilisant des méthodes et des ressources différentes. Un deuxième outil dérivé consiste à évaluer quantitativement la reproductibilité des faisceaux dans les modèles disponibles, ce que personne n'avait fait auparavant. Et enfin, un troisième outil, que l'on peut considérer comme une extension du premier, est une méthode d'identification des différentes configurations d'un faisceau dans la population. Ce troisième outil stratifie préalablement la population en fonction de la géométrie des fibres. Il montre que le plissement cortical et la géométrie des fibres qui sont en contact intime avec lui sont liés. Aucune expérimentation sur ce sujet n'a été faite auparavant. Elle a permis de créer différents modèles adaptés aux configurations spécifiques des sous-populations de chaque sujet, pour quelques régions.Ces modèles font émerger une granularité fine de l'organisation des faisceaux hors d'atteinte quand on travaille sur l'ensemble de la population, car les faisceaux y sont trop mélangés.

Méthode:

  Une méthode hybride a été conc ¸ue pour tenter de réunir le meilleur des méthodes basées sur les ROI anatomiques et le regroupement des fibres similaires. Les analyses futures centrées sur la géométrie des faisceaux nécessitent d'abord une méthode qui permette de garder la forme du faisceau aussi précise que possible, y compris les informations sur le plissement provenant indirectement des ROI, qui aident à isoler les faisceaux qui les entourent. Cette méthode peut être appliquée à l'ensemble du cerveau et à un grand nombre de sujets. Elle se compose de plusieurs étapes : (i) l'extraction du sous-tractogramme, qui vise à obtenir une identification approximative des fibres reliant deux régions corticales différentes chez chaque sujet ; (ii) la subdivision du sous-tractogramme, pour trouver les faisceaux représentatifs de chaque sous-tractogramme extrait ; (iii) la correspondance intersujets des faisceaux, pour trouver les faisceaux présents chez la plupart des sujets, et (iv) la correspondance inter-hémisphérique, pour trouver une correspondance entre les faisceaux des deux hémisphères cérébraux. L'analyse utilise comme données d'entrée les ensembles de données obtenus sont reproductibles d'une étude à l'autre, une comparaison a été effectuée entre deux atlas de tractographie accessibles au public et celui obtenu dans la section précédente.

Méthode:

  Avec tous les atlas dans l'espace MNI. La similarité des faisceaux a été mesurée telle qu'elle est présentée en calculant la distance euclidienne maximale entre les points correspondants de chaque fibre d'un faisceau et de toutes les fibres d'un autre faisceau. Cela a été fait pour tous les faisceaux de la paire d'atlas comparées. Deux fibres sont considérées comme similaires si leur distance est inférieure à 8 mm. Ensuite, un faisceau est considéré comme similaire ou contenu dans un autre faisceau, si son pourcentage de fibres similaires est d'au moins 80%. Pour que les deux faisceaux soient considérés comme similaires, il faut que le seuil soit atteint dans les deux directions. Résultats : La plupart des faisceaux similaires sont situés dans les régions frontale et pariétale, ce sont les faisceaux de matière blanche superficielle les plus denses et les plus reproductibles dans les ensembles de données de tractographie. Au total, 12 faisceaux sont considérés comme équivalents pour les trois atlas de l'hémisphère gauche et 21 pour l'hémisphère droit. Ces faisceaux sont visibles sur la Figure 12.2. Un plus grand nombre de similitudes peuvent être trouvées si l'on considère uniquement les paires d'atlas, mais pour être rigoureux dans les critères de reproductibilité, seuls ceux qui sont communs aux trois atlas sont pris en compte. Dans la plupart des cas, plusieurs faisceaux de l'atlas3 correspondent à un seule faisceaux de l'atlas1 et de l'atlas2. Très probablement en raison d'une sursegmentation, due à une meilleure résolution spatiale dans l'ensemble de données sousjacent ou à l'algorithme de regroupement. Ces deux derniers atlas présentent une relation un à un entre eux pour la plupart des faisceaux, très probablement parce qu'ils proviennent de la même base de données. Les deux atlas (atlas1 et atlas2) présentent certaines lacunes dans le cerveau moins couvertes par les faisceaux courts, en particulier dans les régions temporales et occipitales.12.4 Analyse de la morphologie des faisceaux de matière blanche superficielle Comme indiqué précédemment, le cerveau humain est unique à chaque individu. Bien qu'en termes généraux, les connexions soient similaires et présentes chez la majorité des personnes, on sait peu de choses sur les différences qui existent entre les sujets. Comme le plissement cortical du cerveau présent des caractéristiques particulières dans la population, cela peut également se produire pour les faisceaux de substance blanche sous-jacents. La classification du plissement du cortex peut partition de Voronoï et la distance euclidienne), pour avoir des parcelles de taille approximativement identique. Un filtre de longueur de fibre a été mis en place afin de filtrer les fibres qui présentent des trajectoires inhabituelles. Enfin, un regroupement est effectué pour chaque groupe de fibres classées par longueur dans chaque partition du tractogramme. Par conséquent, deux set de données avec des pré-clusters basés sur la connectivité pour chaque sujet de la base de données HCP sont obtenus : un avec les fibres cérébrales en cluster, contenant une moyennede 3.221.726 (± 753.127) fibres ; et un avec les centroïdes qui représentent ces clusters, avec une moyenne de 10.406 centroïdes (± 2 388).Les images IRM T1 ont été traitées avec le logiciel Morphologist pour identifier les sillons cérébraux.Méthode : L'étude de la morphologie d'un sous-tractogramme est devenue un problème d'apprentissage multiple, où la topographie de l'organisation des fibres dans le sous-tractogramme doit être dévoilée.Tout d'abord, une méthode pour définir la similarité de deux tractogrammes doit être établie, puisqu'elle doit être représentée par une seule valeur à inclure dans la matrice M de distance d'apprentissage multiple. Avant de calculer toute mesure de similarité, nous devons obtenir un alignement optimal des tractogrammes par rapport au sillon étudié dans l'espace de Talairach. Pour cela, un sillon modèle est défini, correspondant au sillon qui minimise la distance moyenne par rapport au reste de la population[START_REF] Sun | The effect of handedness on the shape of the central sulcus[END_REF]. Ensuite, les tractogrammes sont réalignés vers ce sillon modèle. Ensuite, lors du calcul de la distance euclidienne entre deux tractogrammes, une matrice de distance M T est obtenue, contenant pour chaque paire de sujets la distance entre les fibres des deux tractogrammes.La mesure de similarité entre fibres utilisée est une distance euclidienne modifiée par un facteur, en fonction de l'orientation des deux fibres dans l'espace 3D et du changement de direction (angle) entre elles. Une fois que toutes les distances entre les fibres ont été calculées, les valeurs minimales pour chaque tractogramme sont recherchées, afin de mesurer les similarités des fibres les plus semblables, qui sont ensuite moyennées afin de représenter toutes ces similarités en une seule valeur. Enfin, la valeur finale qui représente la distance (similarité) entre les deux tractogrammes correspond au maximum des deux distances minimales moyennes. Afin de conserver la géométrie réelle des fibres, un sous-échantillonnage des fibres réelles (0,5 %) est récupéré à partir des centroïdes pour la matrice de similarité. Ensuite, à partir de ces informations, l'analyse de réduction de la dimensionnalité a été effectuée en utilisant l'algorithme ISOMAP, avec lequel chaque sujet peut recevoir des coordonnées dans un espace de faible dimension caractérisant la géométrie des fibres de son tractogramme. Nous avons préféré utiliser ce type d'algorithme pour sa capacité à préserver les distances en respectant celles de l'espace original à haute dimension.De la base de données HCP, 816/897 sujets ont été utilisés pour l'analyse, qui peuvent être divisée en groupes présentant des caractéristiques similaires. L'inférence des atlas de faisceau pour chaque groupe est effectuée en utilisant la méthode décrite dans la section 12.2. Pour chaque sujet, les centroïdes reliant les régions d'intérêt voisines du sillon étudié sont extraits à l'aide de la parcellisation du cortex générée par FreeSurfer. Pour la division de la population, nous avons utilisé une subdivision de l'ISOMAP en 10 groupes avec un chevauchement de 20 sujets. Ensuite, nous avons appliqué la méthode d'identification des faisceaux, décrite précédemment, pour chaque groupe. Cette fois, aucun nombre fixe de faisceaux n'est donné. Au lieu de cela, le critère de découpage du dendrogramme est une distance maximale entre les faisceaux (d intra = 30). Le regroupement intersujets en deux étapes a été effectué indépendamment pour chaque groupe, ce qui a donné 10 atlas différents. Afin de pouvoir évaluer les différences entre les groupes spécifiques, les faisceaux doivent être mis en correspondance. Après avoir obtenu l'atlas de chaque groupe, nous avons procédé à l'étape de correspondance en nous basant sur une mesure de distance simple pour identifier les faisceaux similaires, où pour chaque étiquette il ne peut y avoir qu'un seul faisceau dans chaque groupe. Un principe d'hystérésis a été appliqué pour récupérer les faisceaux rejetés lors de la mise en correspondance, si des groupes voisins le présentent également. Le processus est effectué de manière itérative, jusqu'à ce que tous les faisceaux soient étiquetés sous le groupe le mieux adapté, en calculant un centroïde qui représente chaque "cluster" auquel les centroïdes des faisceaux entrants sont comparés (distance inférieure à 25 mm).Ensuite, l'identification des faisceaux à l'origine d'une des dimensions de l'ISOMAP est recherchée en calculant la corrélation de la géométrie des fibres (au moyen des distances euclidiennes) avec les valeurs ISOMAP des sujets. La méthode cherche à avoir une idée de la fac ¸on dont un faisceau donné d'un sujet s'intègre dans la géométrie du tractogramme d'un autre sujet. Pour ce faire, nous décomposons la variabilité globale en une variabilité basée sur les faisceaux pour découvrir la correspondance, par des distances "faisceau à tractogramme" pour chaque paire de sujets. Nous calculons la distance entre les fibres constituant un faisceau dans le premier sujet et les fibres du tractogramme entier du second sujet, c'est-à-dire toutes celles conservées après les étapes de filtrage. La similarité est calculée dans les deux directions. Ensuite, on fait la moyenne des distances minimales. La distance finale entre deux sujets pour un faisceau particulier est alors définie comme le carré moyen des deux moyennes obtenues. La similarité entre les valeurs ISOMAP des sujets est également calculée comme la différence au carré entre les deux valeurs.Résultats : Pour le sillon central, la corrélation entre l'ISOMAP à base de fibres et celui lié à la morphologie des sillons est de 0,58 (p<0,001). La méthode a également été appliquée à un seul groupe de l'ensemble de la population et à une subdivision de cinq groupes. Ces résultats comparés à la subdivision en dix groupes montrent qu'une stratification plus élevée des sujets permet de démêler les changements de la morphologie pour certains faisceaux, qui autrement sont perdus lors du regroupement de sujets ayant des motifs différents. Pour la subdivision de 10 groupes, on a constaté que trois faisceaux avaient une corrélation avec la première dimension de l'ISOMAP des sujets: PoC-PrC 1 (0,32, p<0,001), PoC-PrC 3 (0,30, p<0,001) and PoC-PrC 5 (0,40, p<0,001).Ces faisceaux sont situés dans la zone du "hand-knob", ce qui montre également une cohérence avec les changements de forme du sillon qui passent d'un premier knob supérieur plus gros à une configuration plus plate. La Figure12.3 montre les différences et les changements de forme du sillon, ainsi que la corrélation spatiale qui a également été trouvée avec l'activation fonctionnelle de la main.
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 4310324 FIGURE B.4: Bundles obtained for the central region from a subdivision of ten groups. From top to bottom: PoC-PrC 0, PoC-PrC 1, PoC-PrC 2 and PoC-PrC 3
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 5 

	.1) for the DTI data of 21 subjects. The fibers connecting two gyri were extracted for the
	whole brain, and categorized as short fibers only those that connect adjacent gyri. Although this
	work describes the presence of a high amount of short fibers, it does not present a classification
	of them into bundles. Only the fibers connecting two, rather large, regions are given and therefore
	there is no specific definition of the different SWM configurations (i.e. different fibers shapes and
	positions) within them.

TABLE 4 . 1 :

 41 Superficial white matter studies and their main findings

	Paper	Data type	Regions	Main analysis	Type of analysis	Number of subjects	Connections found	Validation/Comparison
	[Catani et al.,	Tractography	Occipital and temporal	Virtual dissection of the	Manual ROI	11 DTI (averaged)		
	2003]		gyri	tracts connecting two ROIs	placement			

TABLE 4 . 2 :

 42 Superficial white matter studies and their main findings(continuation) 

	Paper	Data type	Regions	Main analysis	Type of analysis	Number of subjects	Connections found	Validation/Comparison
	[Catani et al.,	Tractography	Parietal lobe	Virtual dissection of the	Manual ROI	21 human	SP-SM, SP-An, PoC-SM, PoC-An, SP-PoC, SM-An	Postmortem dissections
	2017]			tracts connecting two ROIs	placement	6 macaque	Intra-parietal U-fibers: Anterior SM-Posterior SM,	
				(startrack and trackvis)			anterior-intermediate-posterior PrCu,	
							Regions of the SP	
	[Guevara et al.,	Tractography	Whole brain	Fiber extraction and				
	2017]			labeling from ROIs,				
				followed by a clustering				

  Fu Fu 0i, PreC SM 0i, ST ST 0i, Tr RoMF 0i, LO LO 1i, RoMF SF 0i, RoMF RoMF 0i, SM SM 1i Left: IT IT 1l, SF SF 0l, Fu Fu 1l, IT IT 0l, PreC PreC 0l, ST ST 1l, Cu Lg 0l, PreCu PreCu 0l, MT MT 1l, LO LO 2l, PreC Ins 0l Right: Tr Tr 0r, Tr Ins 0r, MT MT 0r, SF SF 2r, RoMF SF 0r, RoMF RoMF 0r, RoMF RoMF 1r, PoC PoC 1r, PoC PreC 1r, SP SP 0r, PreCu PreCu 0r, SF SF 1r, IP LO 0r, IP IP 0r, LorF LorF 1r, Tr SF 1r.

							Between group atlas com-
							parison, bundle segmenta-
							tion and comparison with
							the literature
	[Román et al.,	Tractography	Whole brain	Clustering (hierarchical)	Automatic	74 HARDI	Both Bootstrap strategy, bun-
	2017]			and automatic labeling	clustering and		dles segmentation and
				based on gyri	ROI labeling		comparison	against
							another atlas
	[Jung et al.,	Tractography	Frontal lobe, parietal and	Virtual dissection of the	Automatic and	24 subjects	Intratemporal lobe: STt
	2017]		temporal lobes	tracts connecting two ROIs	manual		

hemispheres: SP SP 0i, PreC SF 0i, PoC PreC 3i, Op SF 0i, CMF PreC 0i, PoC PreC 1i, MT MT 0i, PreC SM 1i, CMF CMF 0i, Fu IT 0i, IP SP 0i, MT ST 0i, LorF LorF 0i, LO LO 0i, CMF Op 0i, RoMF SF 1i, Tr SF 0i, SM SM 2i, SM SM 0i, RoMF RoMF 1i, PoC SM 0i, PoC PreC 2i, PoC PreC 0i, MT MT 1i, CMF PreC 1i, p-LAT/STa, MED-Fua/PHa,m, LAT-MED/MTa/ITa, STa-MTa/He/STm, MTa-ITa/STm/MTm, ITa-Fua/MTm/ITm/Fum,p, Fua-PHa,m/ITm/Fum,p/Li1, PHa-Fum/PHm/Li2, He-STm/MTm, STm-MTm/STp, MTm-ITm/STp/MTp, ITm-Fum,p/ITp, Fum-PHm

TABLE 4 . 3 :

 43 SWM clinical studies using diffusion-weighted imaging

	Paper			Data type	Type of application	type of analysis	Regions	Type of bundle identification	Number of subjects	Results found
	Sundaram et al.	Tractography	SWM in autism	DTI-derived metrics (ADC	Frontal lobe	Manual delineation of 50 ROIs 50 children patients	ADC significantly higher in ASD group. FA significantly
	(2008)					and FA) and fiber length			16 controls	lower in ASD.
	Shukla et al.		Voxel	SWM in autism	DTI-derived metrics (MD,	Frontal, parietal and	SWM mask from FA skeleton	24 controls	Children with ASD presented and increased MD and RD
	(2011)					RD and FA)	temporal lobes in both		26 patients DTI	of SWM in frontal, temporal and parietal lobes of both
							hemispheres			hemispheres. FA was reduced in bilateral frontal lobes
	Phillips et al.		WM mesh	SWM and schizophrenia	DTI-derived metrics (FA)	Whole brain	No bundle identification	150 including patients	Reduced FA in the left temporal and bilateral occipital re-
	(2011)								and their relatives	gions of the patients
	Malykhin et al.		Voxel	SWM changes in age	DTI-derived metrics (AD,	Prefrontal white matter Manual parcellation of WM us-	69 aged 22-84	Increase in the AD and RD with age starting from the 60s
	(2011)					RD)		ing ROIs		
	Catani et al.	Tractography	Verbal fluency in aphasia	Bundle lateralization	Frontal	Manual segmentation of fibers	35 patients	FAT (connecting Broca's region with the anterior cingu-
	(2013)							connecting two ROIs	29 controls	late and Pre-SMA) left lateralized in right-handed. FAT
										correlated to verbal fluency.
	Nazeri et al.		Voxel	SWM in schizophrenia	DTI-derived metrics (FA)	Whole brain	SWM mask and TBSS	44 patients	Reduced FA in 5 SWM clusters (cortex): Superior lateral
	(2013)								44 controls	occipital, PrCu, PC, MF and IF, Orbitofrontal cortex, pre-
										central, insula operculum, frontal operculum.
	Phillips et al.		WM mesh	SWM relation with age, sex	DTI-derived metrics (FA,	Whole brain	No bundle identification	65 aged 18-74 years	Decrease of FA related to age, as well as an increase of
	(2013)				and hemisphere	RD and AD)				AD and RD, and also a leftward asymmetry
	Gao et al. (2014) Tractography and	Relevance of SWM in	DTI-derived metrics (AD)	Whole brain	ROIs from regions activated in	13 young	Short fibers more vulnerable to aging (less myelinated).
				fMRI	Alzheimer	and fMRI		prospective memory task (4mm	13 healthy older	MD correlated (+) with fMRI signal change and (-) with
								<fibers <35mm)	17 patients	efficiency in prospective memory performance.
	Hatton et al.		Tractography	SWM in early Psychosis	DTI-derived metrics (FA)	Insula-temporoparietal	13 SWM bundles obtained by	42 patients	Reduced FA in the bundle connecting the superior tempo-
	(2014)						junction	using ROIs as seed	45 controls	ral and middle temporal gyri
	Wu et al.			WM mesh	SWM development in chil-	DTI-derived metrics (FA,	Whole brain	WM parcellation template	133 aged 10-18 years	Increased FA and decreased MD and RD beneath bilat-
	(2014)				dren and adolescents	AD, RD, MD)				eral motor sensory cortices and superior temporal auditory
										cortex, as well as an increase in FA and AD in bilateral or-
										bitofrontal regions and insula
	Nazeri et al.		Tractography	SWM in Alzheimer	DTI-derived metrics (FA)	Whole brain SWM	SWM skeletonized probabilis-	141 healthy	Inverse relationship of FA and age decline in tracts: right
	(2015)							tic map, obtained from ROI		superior frontal sulcus tract, left superior frontal sulcus
								masks (MNI atlas of cortical		tract, right orbito-polar tract, right sub-intra-occipital tract,
								structures) and TBSS (auto-		right sub-precuneal tract, left sub-parieto-occipital tract,
								matic)		left sub-intra-parietal tract
	Ecker	et	al.	Tractography	SWM and gyrification in	DTI-derived metrics (AD)	Whole Brain	3D ROIs from clusters of in-	51 patients	Tracts originating/terminating in clusters of increased
	(2016)				ASD			creased gyrification (fibers <30	48 controls	gyrification showed increased AD
								mm)		

TABLE 4
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	.4: SWM clinical studies using diffusion-weighted imaging (continuation)

posed of 13 bundles, left : SM-Ins, MT-SM, MT-ST, PrC-Ins, PoC-PrC 0, IP-IT, POCi-SF, IT-MT, right : SM-Ins, MOF-ST, PoC-PrC 1, PrC-SM.

TABLE 8 . 1 :

 81 Number of bundles obtained during the processing for the atlas construction.

Table 8

 8 

	.1 shows

From the automatic segmentation over 26 subjects as a second means of reproducibility test, only the bundles present in at least 24 of them and presenting a low/moderate variability are kept. These are listed in Table

8

.1 under the column Final. It was found that 41 pairs of regions per hemisphere present stable connections with at least one bundle connecting them. From these, 34 present connections in both hemispheres and 7 in only one of them.

TABLE 8 . 2 :

 82 Final bundles composing the SWM atlas.

	ROIs	Ind	Left	Right	ROIs	Ind	Left	Right
	CAC-PoCi	0						

TABLE 9 . 1 :

 91 Matching of SWM bundles across three public atlases

				left			right
			atlas1 /atlas2	atlas1 /atlas3	atlas2 /atlas3	atlas1 /atlas2	atlas1 /atlas1	atlas2 /atlas3
		N bundles	20	25	37	27	30	45
	atlas X	P± std 0.985 ± 0.038 0.952 ± 0.053 0.909 ± 0.058 0.99 ± 0.032	0.946 ± 0.06 0.907 ± 0,057
		N bundles	22	44	65	30	62	88
	atlas Y	P± std 0.928 ± 0.067 0.918 ± 0.064 0.924 ± 0.066 0.944 ± 0,055 0.909 ± 0.065 0.954 ± 0.052

TABLE 9 . 2 :

 92 SWM bundles common to three public atlases

	left

TABLE 10 . 1 :

 101 Correlation between the fiber points and the ISOMAP values

	Bundle	r	p
		0.175 <0.001
		0.165 <0.001
	PoC PrC 1	0.128	0.001
		0.172 <0.001
		0.172 <0.001
		0.237 <0.001
		0.217 <0.001
	PoC PrC 2	-0.313 <0.001
		-0.032	0.519
		0.237 <0.001
		0.217 <0.001
		-0.188 <0.001
	PoC-SM	0.233 <0.001
		-0.307 <0.001
		-0.395 <0.001
		0.21	0.011
		0.145	0.081
	PoC-SP	0.057	0.494
		-0.05	0.546
		-0.025	0.767
		0.139	0.025
		0.184	0.03
	PrC-SM 1	0.239 <0.001
		0.34	<0.001
		-0.261 <0.001
		0.145	0.02
		-0.232 <0.001
	PrC-SM 2	0.083	0.186
		0.122	0.052
		-0.133	0.033

Correlation between the point coordinates of the bundles and the subject's ISOMAP values. For each bundle five equidistant points were evaluated for all the centroids forming it. The points coordinates were correlated with each subject's ISOMAP value.

TABLE 10 . 2 :

 102 Presence of the bundles in each group

TABLE 10 . 3 :

 103 Correlation of the bundles fiber points and the subjects ISOMAP values

	Bundle	X s	X m	X e	Y s	Y m	Y e	Z s	Z m	Z e	ISO s ISO m ISO e xcoor xISO
	PoC-PrC 0 0.27 0.40 0.33 0.17 0.11 0.20 0.29 0.48 0.33 0.33 0.46 0.35 0.31 0.38
	PoC-PrC 1 0.12 0.31 0.35 0.26 0.19 0.39 0.15 0.49 0.30 0.20 0.43 0.38 0.30 0.34
	PoC-PrC 2 0.10 0.08 0.16 0.19 0.10 0.27 0.17 0.31 0.16 0.18 0.19 0.22 0.18 0.19
	PoC-PrC 3 0.03 0.01 0.04 0.17 0.10 0.25 0.26 0.17 0.07 0.02 0.09 0.02 0.10 0.04
	PoC-PrC 4 0.42 0.44 0.37 0.24 0.22 0.26 0.36 0.42 0.32 0.44 0.43 0.39 0.36 0.42
	PoC-PrC 5 0.11 0.16 0.04 0.09 0.13 0.31 0.14 0.38 0.33 0.14 0.27 0.34 0.20 0.25
	PoC-PrC 6 0.26 0.53 0.38 0.04 0.12 0.32 0.32 0.55 0.36 0.29 0.54 0.40 0.34 0.41

  10.6.1.1 One group FIGURE 10.20: Bundles obtained for the central sulcus from one group. Each bundle is represented by a mean centroid.

TABLE 10 . 4 :

 104 Central sulcus bundles ISOMAP correlation for 1 group

	Bundle	r	p
	PoC-PrC 0 0.18 <0.001
	PoC-PrC 1 0.20 <0.001
	PoC-PrC 2 0.02	0.66
	PoC-PrC 3 0.03	0.59
	PoC-PrC 4 0.10	0.04
	PoC-PrC 5 0.13 <0.001
	PoC-PrC 6 0.20 <0.001
	PoC-PrC 7 0.10	0.04
	PoC-PrC 8 0.18 <0.001
	Correlation of the bundle fibers with the subject's ISOMAP values, for only one grouping of the population (all the
	subjects).		

Table 10

 10 

	.5. The

  10.6. The bundles whose values are above 0.3 are considered to have correlation with the different bundle configuration, and are highlighted in green. These bundles are displayed in Figure 10.27. The rest of the bundles can be observed in Figures B.4, B.5, B.6 B.7 10.6.2 Results for the superior temporal sulcus

TABLE 10 . 7 :

 107 Superior temporal sulcus bundles ISOMAP correlation for 10 groups

	Bundle	r	p
	STS 0	0.31 <0.001
	STS 1	0.43 <0.001
	STS 2	0.04	0.27
	STS 3	0.38 <0.001
	STS 4	0.25 <0.001
	STS 5	0.02	0.58
	STS 6	0.06	0.12
	STS 7	0.29 <0.001
	STS 8	0.03	0.45
	STS 9	0.46 <0.001
	STS 10 0.02	0.70
	STS 11 0.35 <0.001
	STS 12 0.35 <0.001
	STS 13 0.19 <0.001
	STS 14 -0.13	0.26
	STS 15 0.53 <0.001
	STS 16 0.45 <0.001
	STS 17 0.03	0.56
	STS 18 0.07	0.61
	STS 19 -0.07	0.60
	STS 20 -0.09	0.41
	STS 21 0.27 <0.001
	STS 22 0.01	0.90
	Correlation of the bundle fibers with the subject's ISOMAP values, for a ten groups subdivision of the population.

TABLE 10 .

 10 11: Precentral sulcus bundles ISOMAP correlation for 10 groupsCorrelation of the bundle fibers with the subject's ISOMAP values, for a ten groups subdivision of the population.

	Bundle	r	p
	PreCentral 0	0.75 <0.001
	PreCentral 1	0.46 <0.001
	PreCentral 2	0.28 <0.001
	PreCentral 3	0.47 <0.001
	PreCentral 4	0.17 <0.001
	PreCentral 5	0.29 <0.001
	PreCentral 6	0.36 <0.001
	PreCentral 7	0.25 <0.001
	PreCentral 8	0.42 <0.001
	PreCentral 9	0.25 <0.001
	PreCentral 10 0.24 <0.001
	PreCentral 11 0.50 <0.001
	PreCentral 12 0.06	0.19
	PreCentral 13 -0.06	0.40
	PreCentral 14 0.18	0.04
	PreCentral 15 -0.05	0.57
	PreCentral 16 -0.12	0.26
	PreCentral 17 0.14	0.05
	PreCentral 18 0.00	0.98
	PreCentral 19 0.32 <0.001
	PreCentral 20 0.07	0.55
	PreCentral 21 0.04	0.77
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Contribution of this thesis

In the context of this thesis we were able to take a step forward into the understanding of the short white matter connections. We developed an automatic method for the delineation of the short association fiber bundles, that can be applied to the whole brain in order to create a map or atlas of these connections. This kind of atlases present a valuable tool in clinical studies, since they allow the study of specific connections or areas in order to find their relation to different pathologies or disorders.

Part IV Superficial white matter bundles morphology analysis when looking at its specific area. Notice that visual inspection of the subtractograms is harder, as the high number of fibers and level of entanglement between them would render difficult to visualize any differences when looking at all the fibers that compose it. Therefore, even if we were able to sort out the subject's subtractograms geometry, it would be difficult to see without a posterior bundle delineation if this ordering correlates with a morphological characteristic of the fibers.

The issue of studying a subtractogram morphology has now become a manifold learning problem, where the topography of the fibers organization in the subtractogram has to be unveiled. The dimensionality reduction algorithms usually take as input directly the samples and their features, or matrices that represent somehow the relationship between the samples (e.g. distance matrices). As tractograms are complex objects, composed of several fibers, which in turn are composed of several points in a 3D space, it is not possible to use this information directly as input. Therefore, no matter what the dimensionality reduction method used for the manifold learning, a similarity measure has to be established. The matter of how to evaluate the similarity between two tractograms has been presented earlier in this thesis, in Section 8.2.1 for the comparison of bundles across atlases. There, the tractogram (or bundle) similarity is given by how coincident (close) their fibers are. Thus, the greater the number of fibers having one similar fiber in the second tractogram, the most similar the two tractograms are. This closeness between fibers is measured by the Euclidean distance (Eq. 8.1).

When computing the Euclidean distance between two tractograms a distance Matrix M T is obtained first, containing the pairwise distance between fibers from both tractograms. Nonetheless, the similarity between tractograms must be represented by one single value to be included in the manifold learning input distance matrix M In . This value is obtained from M T as follows. Let M T be the In order to test the feasibility of being able to unveil the tractograms manifold by dimensionality reduction algorithms, an artificial extreme situation was created. This condition consists of removing a specific portion of the tractogram from some subjects, in order to induce a difference between groups. For this experience 200 subjects of the HCP database were used. All the centroids connecting two well-known areas, the pre and postcentral gyri, were extracted according to the Desikan-Killiany atlas from the whole brain dataset. Each centroid tractogram is formed by around 221 centroids (± 45). In order to force one group to be different and test if the manifold learning algorithms are sensitive to these differences using the designed similarity measure, for half of the population So far, we have been under the idea that both the sulcus shape and fiber geometry are related, if this were true we could expect a similar distribution of the subjects along the two ISOMAPs. This hypothesis was tested by computing the correlation for the subject's sulcus-based ISOMAP (ISO s ) values, from 10 dimensions, with the subject's fiber-based ISOMAP (ISO f ) values for all 10 dimensions too. It was found that both first dimensions are moderately correlated with a value of 0.49 (p<0.001). Notice that only the absolute value of the correlation is considered, as the ISOMAP dimensions can flip direction without meaning. This is particularly interesting since it is in fact the first dimension from the sulcus-based ISOMAP, the one showing the strongest morphology changes of the central sulcus across the subjects, specifically in the hand-knob area.

Although the fiber centroids are a good representation of the fibers that help ease the clustering computation, these might hinder the capture of the fibers geometry. This is because each centroid is an average of all the fibers in the precluster it represents, therefore it blurs the geometry of the individual fibers. Moreover, by representing a cluster by a centroid we also lose information regarding the density of the fibers, as these can represent both few and many fibers. In order to test this issue, an ISOMAP based on the fibers themselves must be calculated. However this makes M T computation too heavy. In order to reduce this computation load, the subtractograms containing around 89,506 (± 15,330) fibers, were subsampled to 0.5% of the fibers (in order to have a number close to the amount of centroids subtractogram). See Figure 10.12 for a visual comparison between the full subtractogram, the centroids and the sampling of the fibers. In order to guarantee that fibers from each subtractogram precluster are included in the analysis, a random sample of 0.5% of the fibers from each cluster is considered (with a minimum of 1 fiber per cluster). Hence, this value was used to test our approach with the sampled tractogram (ISO f ). Figure 10.13 shows the ISOMAP values for the first and second dimensions. Using the ISO f obtained from the subsampled tractogram, the comparison against the ISO s was once more tested, to see how the correlation between the two has changed after choosing a sampling of the actual fibers instead of the centroids. A higher correlation of 0.58 (p<0.001) was obtained between both first dimensions, when the fibers are sampled only to 0.5% of the subractogram. This

Results for the precentral region

The precentral region study covers mainly those short connections with Broca's area. Therefore the connections selected are: PrC-Op, CMF-Op, CMF-PrC, SF-Op.

From the computation of the correlation between the calculated fiber based ISOMAP and the sulcus based ISOMAP the higher value obtained was between both first dimensions 0.47 (p<0.001) All the bundles obtained from the analysis for each group are displayed in Figure 10.46. For each group the corresponding average sulci meshes are displayed in Figure 10.47, according to the ISOMAP axis. The overlapping between the extremity groups is also included. For comparison purposes, the results obtained from the sulcus-based ISOMAP approach [START_REF] Sun | Linking morphological and functional variability in hand movement and silent reading[END_REF] are presented in Figure 10.48. FIGURE 10.46: Bundles obtained for the precentral sulcus from a ten group subdivision of the population.

Cingulate 6 (0,40, p<0.001), Cingulate 7 (0,49, p<0.001) and Cingulate 8 (0,50, p<0.001); qui sont également cohérentes avec la forme du sillon.

Pour la région précentrale, on a trouvé une corrélation de 0,47 (p<0,001) entre les deux premières dimensions d'ISOMAP. Les principales différences notables dans la forme du sillon se situent dans la partie inférieure du sillon précentral qui est légèrement déplacée verticalement et qui passe d'une forme en "I" à une forme en "T". Sur les 22 faisceaux, sept ont été trouvés en corrélation avec les valeurs ISOMAP des sujets: PreCentral 0 (0,75, p<0,001), PreCentral 1 (0,46, p<0,001), PreCentral 3 (0,47, p<0,001), PreCentral 6 (0,36, p<0,001), PreCentral 8 (0,42, p<0,001), PreCentral 11 (0,50, p<0,001) and PreCentral 19 (0,32, p<0,001). De plus, une corrélation spatiale a été trouvée avec l'activation du langage dans la région de Broca. 

Conclusion
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