
HAL Id: tel-03098433
https://theses.hal.science/tel-03098433v1

Submitted on 5 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep multi-agent reinforcement learning for dynamic
and stochastic vehicle routing problems

Guillaume Bono

To cite this version:
Guillaume Bono. Deep multi-agent reinforcement learning for dynamic and stochastic vehicle routing
problems. Networking and Internet Architecture [cs.NI]. Université de Lyon, 2020. English. �NNT :
2020LYSEI096�. �tel-03098433�

https://theses.hal.science/tel-03098433v1
https://hal.archives-ouvertes.fr

N° d’ordre NNT : 2020LYSEI096

THESE de DOCTORAT DE L’UNIVERSITE DE LYON
opérée au sein de

l’INSA de LYON

Ecole Doctorale 512

InfoMaths

Spécialité/discipline de doctorat : Informatique

Soutenue publiquement le 28/10/2020, par :

Guillaume Bono

Deep Multi-Agent Reinforcement

Learning for Dynamic and Stochastic

Vehicle Routing Problems

Devant le jury composé de :

Mandiau, René Professeur Université Polytechnique

des Hauts de France

Président

Charpillet, François Directeur de Recherche INRIA Nancy Grand Est Rapporteur

Billot, Romain Professeur IMT Atlantique Rapporteur

Beynier, Aurélie Maître de Conférence HDR Sorbonne Université Examinatrice

Wolf, Christian Maître de Conférence HDR INSA de Lyon Examinateur

Simonin, Olivier Professeur INSA de Lyon Directeur de thèse

Dibangoye, Jilles Maître de Conférence INSA de Lyon Co-encadrant

Matignon, Laëtitia Maître de Conférence Université Lyon 1 Co-encadrante

Pereyron, Florian Ingénieur Volvo Group Invité

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

Département FEDORA – INSA Lyon - Ecoles Doctorales – Quinquennal 2016-2020

SIGLE ECOLE DOCTORALE NOM ET COORDONNEES DU RESPONSABLE

CHIMIE CHIMIE DE LYON

http://www.edchimie-lyon.fr
Sec. : Renée EL MELHEM
Bât. Blaise PASCAL, 3e étage
secretariat@edchimie-lyon.fr
INSA : R. GOURDON

M. Stéphane DANIELE
Institut de recherches sur la catalyse et l’environnement de Lyon
IRCELYON-UMR 5256
Équipe CDFA
2 Avenue Albert EINSTEIN
69 626 Villeurbanne CEDEX
directeur@edchimie-lyon.fr

E.E.A. ÉLECTRONIQUE,
ÉLECTROTECHNIQUE,
AUTOMATIQUE

http://edeea.ec-lyon.fr
Sec. : M.C. HAVGOUDOUKIAN
ecole-doctorale.eea@ec-lyon.fr

M. Gérard SCORLETTI
École Centrale de Lyon
36 Avenue Guy DE COLLONGUE
69 134 Écully
Tél : 04.72.18.60.97 Fax 04.78.43.37.17
gerard.scorletti@ec-lyon.fr

E2M2 ÉVOLUTION, ÉCOSYSTÈME,

MICROBIOLOGIE, MODÉLISATION

http://e2m2.universite-lyon.fr
Sec. : Sylvie ROBERJOT
Bât. Atrium, UCB Lyon 1
Tél : 04.72.44.83.62
INSA : H. CHARLES
secretariat.e2m2@univ-lyon1.fr

M. Philippe NORMAND
UMR 5557 Lab. d’Ecologie Microbienne
Université Claude Bernard Lyon 1
Bâtiment Mendel
43, boulevard du 11 Novembre 1918
69 622 Villeurbanne CEDEX
philippe.normand@univ-lyon1.fr

EDISS INTERDISCIPLINAIRE

SCIENCES-SANTÉ

http://www.ediss-lyon.fr
Sec. : Sylvie ROBERJOT
Bât. Atrium, UCB Lyon 1
Tél : 04.72.44.83.62
INSA : M. LAGARDE
secretariat.ediss@univ-lyon1.fr

Mme Sylvie RICARD-BLUM
Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
(ICBMS) - UMR 5246 CNRS - Université Lyon 1
Bâtiment Curien - 3ème étage Nord
43 Boulevard du 11 novembre 1918
69622 Villeurbanne Cedex
Tel : +33(0)4 72 44 82 32
sylvie.ricard-blum@univ-lyon1.fr

INFOMATHS INFORMATIQUE ET

MATHÉMATIQUES

http://edinfomaths.universite-lyon.fr
Sec. : Renée EL MELHEM
Bât. Blaise PASCAL, 3e étage
Tél : 04.72.43.80.46
infomaths@univ-lyon1.fr

M. Hamamache KHEDDOUCI
Bât. Nautibus
43, Boulevard du 11 novembre 1918
69 622 Villeurbanne Cedex France
Tel : 04.72.44.83.69
hamamache.kheddouci@univ-lyon1.fr

Matériaux

MATÉRIAUX DE LYON

http://ed34.universite-lyon.fr
Sec. : Stéphanie CAUVIN
Tél : 04.72.43.71.70
Bât. Direction
ed.materiaux@insa-lyon.fr

M. Jean-Yves BUFFIÈRE
INSA de Lyon
MATEIS - Bât. Saint-Exupéry
7 Avenue Jean CAPELLE
69 621 Villeurbanne CEDEX
Tél : 04.72.43.71.70 Fax : 04.72.43.85.28
jean-yves.buffiere@insa-lyon.fr

MEGA MÉCANIQUE, ÉNERGÉTIQUE,

GÉNIE CIVIL, ACOUSTIQUE

http://edmega.universite-lyon.fr
Sec. : Stéphanie CAUVIN
Tél : 04.72.43.71.70
Bât. Direction
mega@insa-lyon.fr

M. Jocelyn BONJOUR
INSA de Lyon
Laboratoire CETHIL
Bâtiment Sadi-Carnot
9, rue de la Physique
69 621 Villeurbanne CEDEX
jocelyn.bonjour@insa-lyon.fr

ScSo ScSo*

http://ed483.univ-lyon2.fr
Sec. : Véronique GUICHARD
INSA : J.Y. TOUSSAINT
Tél : 04.78.69.72.76
veronique.cervantes@univ-lyon2.fr

M. Christian MONTES
Université Lyon 2
86 Rue Pasteur
69 365 Lyon CEDEX 07
christian.montes@univ-lyon2.fr

*ScSo : Histoire, Géographie, Aménagement, Urbanisme, Archéologie, Science politique, Sociologie, Anthropologie Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

Résumé

Dans des environnements urbains en pleine extension, dans lesquels les conditions de circula-
tion peuvent rapidement évoluer et augmenter les temps de trajet de façon imprévisible, il est
très difficile de planifier les tournées des véhicules de livraisons assurant la logistique des entre-
prises, des commerces, et des particuliers. Les besoins logistiques de ces différents acteurs ont
d’ailleurs tendance à se complexifier, avec l’apparition des services de livraison de nourriture,
de livraison dans la même journée, ou de partage de véhicules. Pour faire face à de tels en-
vironnements dynamiques et stochastiques, il faut déployer des stratégies robustes et flexibles.
Ces problèmes logistiques sont souvent modélisés en utilisant le formalisme des problèmes de
planification de tournées de véhicules dynamique et stochastique (abrégés DS-VRPs en anglais).
Ils peuvent être augmentés d’une large sélection de contraintes opérationnelles comme la capa-
cité limitée des véhicules, ou les fenêtres temporelles dans lesquelles les clients préfèrent être
servis (DS-CVRPTWs). La littérature de la recherche opérationnelle (OR) est riche de nom-
breuses approches heuristiques pour résoudre de tels problèmes dynamiques et stochastiques.
Néanmoins celles-ci consistent la plupart du temps à considérer de nouveaux problèmes aux
caractéristiques figées à chaque fois qu’un événement fait évoluer l’information disponible, en
initialisant la recherche de solutions à partir de celles trouvées précédemment. Ceci permet de
tirer avantages de toutes les heuristiques et méta-heuristiques existantes pour le problème de
planification de tournées dans sa version la plus simple, statique et déterministe, qui n’ont eu de
cesse de s’améliorer depuis les années 60, et permettent aujourd’hui d’obtenir des tournées très
efficaces. Cependant, cela ne permet pas de capturer la dynamique des DS-VRPs et d’anticiper
sur tous les futurs événements possibles.

Dans la littérature de l’apprentissage par renforcement (RL), il existe plusieurs modèles
basés sur les processus de décision de Markov (MDPs) qui conviennent naturellement à décrire
l’évolution de systèmes dynamiques et stochastiques. Leur application à des cas de plus en plus
complexes est en plein essor grâce aux progrès réalisés dans le domaine des réseaux de neurones
profonds (DNNs). Ces derniers sont aujourd’hui capables d’apprendre à fournir des approxi-
mations d’un grand nombre de classes de fonctions, dans des espaces de grandes dimensions,
permettant ainsi de représenter les solutions de problèmes difficiles avec de très bonnes perfor-
mances. Le défi scientifique principal dans l’application du RL à des problèmes combinatoires
tels que le VRP est de trouver une structure d’approximation suffisamment riche, tout en restant
compacte et efficace pour représenter l’état du système à tout instant. En ce qui nous concerne,
les travaux les plus récents ayant étudié la possibilité d’appliquer des approches à base de DNNs
au VRP ont montré que les architectures basées sur des mécanismes d’attention (AM) avait la
capacité de représenter efficacement des ensembles de clients et leurs caractéristiques pour pro-
duire des règles de décision qui se généralisent à différents scénarios et différentes configurations
du problème. Néanmoins, à notre connaissance, aucune des approches existantes utilisant des
DNNs ne tient compte du caractère multi-agent du problème. Ils utilisent en effet une reformu-
lation dans lequel un seul véhicule réalise l’ensemble des livraisons en l’autorisant à revenir au

3

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

4

dépôt central autant de fois que nécessaire pour ne pas enfreindre sa limite de capacité. Étant
développée dans ce cadre, les architectures existantes n’ont donc pas la capacité de représenter
l’état d’une flotte de véhicules déployés en parallèle, et ne peuvent donc pas leur fournir des
règles de décisions adaptées au cours de leurs tournées.

Dans cette thèse, nous avons étudié comment appliquer les méthodes issues de l’apprentis-
sage par renforcement profond (Deep RL) aux DS-VRPs soumis à des contraintes opérationnelles
variées, en tenant compte du caractère multi-agent de ces problèmes. Dans un premier temps,
nous avons exploré les méthodes basées sur le gradient de la politique dans le cadre du RL
multi-agent (MARL). Nous avons contribué à étendre les fondements mathématiques des ap-
proches acteur-critique (AC) dans le cas des MDPs partiellement observables décentralisés (Dec-
POMDPs). Nous nous sommes basés sur un paradigme d’entrâınement assez original en ap-
prentissage (où les modèles de transition et de récompense sont inconnus) mais ayant fait ses
preuves en planification (où les modèles sont connus). Dans ce paradigme que nous appelons
“entrâınement centralisé pour un contrôle décentralisé” (CTDC), on donne accès à l’ensemble de
l’information disponible en regroupant les observations de tous les agents, ainsi qu’à l’état caché
du système pendant l’entrâınement. On veille néanmoins à préserver la capacité des agents à choi-
sir leurs actions de façon décentralisée, en se basant uniquement sur leurs propres observations
individuelles. Nous avons évalué notre approche par rapport à deux autres paradigmes proposant
un apprentissage complètement centralisé ou complètement décentralisé. Nos expérimentations
montrent l’intérêt d’une telle approche, qui a plus de facilités à explorer l’espace de solution que
la version complètement centralisé, tout en bénéficiant de l’information jointe disponible pour
améliorer l’efficacité de l’entrâınetment par rapport à la version complètement décentralisée.

s0

a1
0

ι0 = 1

r0

s1

a2
1

ι1 = 2

r1

s2

a2
2

ι2 = 2

r2

s3

a2
3

ι3 = 2

r3

s4

a1
4

ι4 = 1

r4

s5

a1
5

ι5 = 1

r5

s6

veh.1&2 at depot
capa. max
avail. now

cust.1,2&3 pending
cust.4 hidden

go to cust.1

veh.1 at cust.1
capa. high
avail. later

cust.1 served

dist. 0-1
lateness

go to cust.2

veh.2 at cust.2
capa. high
avail. now

cust.2 served

dist. 0-2

go to cust.3

veh.2 at cust.3
capa. low
avail. now

cust.3 served
cust.4 appeared

dist. 2-3

go to depot

veh.2 at depot
never avail.

dist. 3-0
go to cust.4

veh.1 at cust.4
capa. low
avail. now

cust.4 served

dist. 1-4

go to depot

veh.1 at depot
never avail.

dist. 4-0
lateness

no pending

Figure 1 – Exemple de trajectoire échantillonnée avec notre modèle sMMDP d’un DS-VRP
jouet à quatre clients et deux véhicules

Pour résoudre des problèmes de planification de tournées dynamique et stochastique, nous
avons ensuite développé un nouveau modèle de MDP multi-agent séquentiel (sMMDP) dans
lequel les agents ont une observation parfaite de l’état de l’environnement. Ce qui fait l’intérêt
et l’originalité de ce nouveau modèle est la séquentialité des actions individuelles. Cette ca-
ractéristique implique que les effets des actions de chaque agent sur l’état du système et la
récompense globale perçue peuvent être isolés. Nous avons formalisé ce modèle et établi les pro-
priétés permettant de construire les algorithmes de résolution similaire aux autres variantes de
MDPs. Nous avons ensuite comparé ce modèle à son équivalent en MDP multi-agent (MMDP)
où la prise de décision est simultanée, et évalué leurs performances relatives sur un problème de

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

5

planification de tournée jouet. Pour de tels problèmes, qui vérifient la propriété de séquentialité
des actions individuelles des agents, notre modèle sMMDP a un net avantage en termes d’effi-
cacité d’entrâınement par rapport au modèle simultané équivalent.

Ce cadre nous a alors permis de modéliser des DS-VRPs riches sous la forme de sMMDPs. Un
exemple de trajectoire échantillonnée via ce modèle est donnée en Figure 1. Chaque véhicule est
un agent indépendent ayant son propre état individuel. Tous les véhicules partagent l’information
sur les clients en attente de service via un état commun. Leurs actions individuelles consistent
à aller servir l’un des clients, ou à retourner au dépot pour mettre fin à leur tournée. Dans
notre modèle, on considère que l’on peut prédire quand le véhicule aura terminé le service lié
à sa dernière action et ainsi mettre à jour son état individuel instantanément sans impacter
l’état des autres agents. Le signal de récompense perçu correspond à la distance parcourue par
le véhicule, à laquelle s’ajoute une pénalité de retard s’il arrive à destination après la fenêtre
de service du client. Une récompense globale est accordée à l’ensemble de la flotte à la fin de la
trajectoire pour pénaliser les agents s’il reste des clients n’ayant pas été servis.

Afin de permettre le passage à l’échelle et de pouvoir dépasser le stade de problèmes jouets,
nous avons proposé une nouvelle architecture de réseau de neurones à base de mécanismes
d’attention que nous avons baptisé MARDAM. Cette architecture s’organise autour de quatre
blocs afin de représenter les différents facteurs composant l’état du système et correspondant
aux clients et aux véhicules. Elle fournit une règle de décision à chaque agent à son tour étant
donné l’état global du système.

Customers
Encoder

0

s̄0,0k

1

s̄0,1k
. . .

j

s̄0,jk
∀j

h0,0k h0,1k
. . . h0,jk

Vehicles
Encoder

1

s̄1k

2

s̄2k . . .

i

s̄ik ∀i

h1k h2k . . . hik ∀i

Vehicle turn
Focus

ik

ρik
Travels
Scorer

Ξik(s̄k)

πik(aik|s̄k) ∀aik

Figure 2 – Architecture globale de notre réseau de neurones MARDAM servant de politique
paramétrée pour les DS-VRPs modélisés sous la forme de sMMDPs.

Les quatre blocs composant notre politique représentés sur la Figure 2 se répartissent la
fonction de représentation de l’état du système comme suit. Le flot d’information au sein du
réseau va de haut en bas. Le bloc “Customer Encoder” est le premier point d’entrée de notre
réseau. Il a pour rôle de représenter l’ensemble des clients avec leurs caractéristiques. Il doit
apprendre à extraire les patterns qu’ils forment les uns par rapport aux autres pour permettre
à MARDAM de généraliser à différentes configurations du problème. Il fournit le contexte dans
lequel les véhicules évoluent. Le second bloc “Vehicle Encoder” s’appuie sur les représentations

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

6

des clients produites par le premier pour extraire une représentation interne de chaque véhicule
dans la flotte à partir de son état individuel. Le troisième bloc “Vehicle turn focus” focalise
ces représentations de tous les véhicules de la flotte sur celui dont c’est le tour de choisir une
nouvelle action, après qu’il ait fini de servir le client choisi précédemment. Nous obtenons ainsi
une représentation de l’état interne du véhicule ayant à prendre une décision. Enfin, cet état
interne est mis en relation avec la représentation de chaque client pour obtenir un score pour
chaque action dans le bloc “Travels scorer”. Un masque est appliqué à ces scores pour empêcher
le véhicule de choisir un client déjà servi, ou dont la demande excède sa capacité restante.
On obtient ainsi, après normalisation, une règle de décision pour l’agent en cours donnant la
probabilité de choisir chaque client comme prochaine destination.

Enfin, nous avons développé un ensemble de bancs de tests artificiels pour évaluer les per-
formances de MARDAM sur plusieurs aspects des problèmes de planifications de tournées dy-
namiques et stochastiques. Nous avons empiriquement démontré sa capacité à généraliser à
différentes configurations de clients, à maintenir des tournées robustes face à des temps de tra-
jets incertains, et à s’adapter dynamiquement à des clients apparaissant en cours de tournées.
De plus, la qualité des tournées obtenues est compétitive par rapport aux approches existantes.
Afin d’évaluer MARDAM dans des situations plus réalistes, nous avons aussi dévelopé un autre
banc de test basé sur une simulation microscopique de traffic permettant de simuler un large
ensemble de véhicule sur un réseau routier. Nous présentons les résultats préliminaire issus
de l’entrâınement de MARDAM dans cet environnement, et mettons en avant sa capacité à
s’adapter à différents réseaux, différents scénarii de traffic, et différentes configurations de clients.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

Abstract

Routing delivery vehicles in dynamic and uncertain environments like dense city centers is a
challenging task, which requires robustness and flexibility. Such logistic problems are usually for-
malized as Dynamic and Stochastic Vehicle Routing Problems (DS-VRPs) with a variety of addi-
tional operational constraints, such as Capacitated vehicles or Time Windows (DS-CVRPTWs).
Main heuristic approaches to dynamic and stochastic problems in the OR literature often simply
consist in restarting the optimization process on a frozen (static and deterministic) version of
the problem given the new information available based on the previous solutions found. It makes
it possible to re-use all hand-crafted expert heuristic and meta-heuristic for VRPs, which have
been shown to output high-quality routes but might fail to properly capture and anticipate the
dynamics of DS-VRPs.

Reinforcement Learning (RL) offers models such as Markov Decision Processes (MDPs)
which naturally capture the evolution of stochastic and dynamic systems. Their application
to more and more complex problems has been facilitated by recent progresses in Deep Neural
Networks (DNNs), which can learn to represent a large class of functions in high dimensional
spaces to approximate solutions with very high performances. Finding an efficient, compact
and sufficiently expressive state representation is the key challenge in applying RL to complex
combinatorial problems such as VRPs. Recent work exploring this novel approach demonstrated
the capabilities of Attention Mechanisms to represent sets of customers and learn policies gen-
eralizing to different scenarios and configurations. However, to our knowledge, all existing work
using DNNs reframe the VRP as a single-vehicle problem and cannot provide online decision
rules for a fleet of vehicles.

In this thesis, we study how to apply Deep RL methods to rich DS-VRPs as multi-agent
systems. We started by exploring the class of policy-based approaches in Multi-Agent RL,
and extended the mathematical foundation of Actor-Critic methods for Decentralized, Partially
Observable MDPs (Dec-POMDPs) to a somewhat new paradigm inspired by planning called
Centralized Training for Decentralized Control (CTDC). In this CTDC paradigm, we consider
that we have access to the complete joint information during training, while preserving the
ability of agents to choose their individual actions in a decentralized way. We presented results
highlighting the advantages of the CTDC paradigm compared to fully centralized and fully
decentralized approaches.

To address DS-VRPs, we then introduce a new sequential multi-agent model we call sMMDP.
This fully observable model is designed to capture the fact that consequences of decisions can
be predicted in isolation. Once we established the classical Bellman equations, we experimented
on its performance compared to the existing MMDP. Afterwards, we used it to model a rich

7

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

8

DS-VRP. To represent the state of the customers and the vehicles in this new model, we designed
a new modular policy network we called MARDAM. It provides online decision rules adapted
to the information contained in the state, and takes advantage of the structural properties of
the model.

Finally, we developed a set of artificial benchmarks to evaluate the flexibility, the robustness
and the generalization capabilities of MARDAM. We maintain competitive results compared
to more traditional OR heuristics, and report promising results in the dynamic and stochastic
case. We demonstrated the capacity of MARDAM to address varying scenarios with no re-
optimization, adapting to new customers and unexpected delays caused by stochastic travel
times. We also implemented an additional benchmark based on micro-traffic simulation to
better capture the dynamics of a real city and its road infrastructures. We reported preliminary
results as a proof of concept that MARDAM can learn to represent different scenarios, handle
varying traffic conditions, and customers configurations.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

Acknowledgements

First, I would like to thank my thesis director, Olivier Simonin, for the coordinating and coun-
seling role he played throughout these four years. He helped conciliating in periods of tension
during this thesis, and was a key advisor to lead it towards what it became today.

I also address my sincere thanks to my thesis supervisor, Jilles Dibangoye, who I respect
for his sheer scientific commitment. Our professional relation went through ups and downs
but he had the patience and wiseness to get over these tense periods, enabling a constructive
collaboration since then.

I thank my two other supervisors, Laëtitia Matignon and Florian Pereyron, who provided
me with helpful advices and feedbacks on the work I conducted.

I want to thank the Volvo / INSA Lyon chair for initiating and financing my work for the
first three years of this thesis.

I am grateful to all the members of the jury, François Charpillet, Romain Billot, Aurélie
Beynier, René Mandiau, and Christian Wolf, for the interest they gave to my work, and the
time they offered me. I would like to address special thanks to François Charpillet who had an
eye on this thesis since its first year as a member of the following committee.

I would like to acknowledge all coffee and crossword addicts, board games players, and other
members of the CITI lab, which I had pleasure discussing of both scientific and non-scientific
topics at lunch time throughout these years. I want to make a special mention to the fellow
PhD students I shared my office with, Mihai, Jonathan, Patrick, Tristan and Gautier, for all
the discussions and laughs we shared, and without whom this thesis would not have been as
endurable as it was.

I am very grateful to my parents, who offered me a roof, and everything I ever needed to
study in good conditions. Finally, to Marion, who gave me the love, strength and motivation I
needed to successfully go through all these years.

9

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

List of Abbreviations

TSP Travelling Salesman Problem
VRP Vehicle Routing Problem
PDP Pickup and Delivery Problem

DARP Dial-A-Ride Problem
CVRPTW Capacitated VRP with Time Windows

DS-VRP Dynamic and Stochastic VRP
DS-CVRPTW Dynamic and Stochastic Capacitated VRP with Time Windows

MILP Mixed Integer Linear Programming
CP Constraint Programming

ADP Approximate Dynamic Programming
VNS Variable Neighborhood Search
LNS Large Neighborhood Search

ACO Ant Colony Optimization
GA Genetic Algorithm

RL Reinforcement Learning
MARL Multi-Agent RL

MDP Markov Decision Process
MMDP Multi-agent MDP

POMDP Partially Observable MDP
Dec-POMDP Decentralized POMDP

sMMDP sequential MMDP

CTCC Centralized Training for Centralized Control
DTDC Decentralized Training for Decentralized Control
CTDC Centralized Training for Decentralized Control

SGD Stochastic Gradient Descent
DNN Deep Neural Network
RNN Recurrent Neural Network

LSTM Long Short-Term Memory
MHA Multi-Head Attention

AM Attention Model
MARDAM Multi-Agent Routing Deep Attention Mechanisms

10

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

List of Notations

X Random variable
X Domain of the variable X

x P X Realization of the variable X
PrtX “ xu

Probability that the variable X takes value x P X
Prtxu

Prty | xu Conditional probability that variable Y takes value y given that X “ x
ErXs Expected value of the random variable X

N pµ, σ2q Normal distribution with mean µ and variance σ2

Bppq Bernoulli distribution with probability of success p
Upa, bq Discrete uniform distribution ranging from a to b

x Scalar value
x Tensor, matrix or vector

rxsi Element i of vector x

δxy Kronecker’s delta δxy “ 1 if x “ y, 0 otherwise

℘pX q Set of all possible subsets, a.k.a. power-set, of a set X
Ja, bK Set of integers i P Z such that a ď i ď b

11

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

List of Figures

1 Exemple de trajectoire échantillonnée avec notre modèle sMMDP d’un DS-VRP
jouet à quatre clients et deux véhicules . 4

2 Architecture globale de notre réseau de neurones MARDAM servant de politique
paramétrée pour les DS-VRPs modélisés sous la forme de sMMDPs. 5

1.1 General architecture of our approach. To model and address rich DS-VRPs,
we propose a policy network, MARDAM, implemented using attention mech-
anisms, and an event-based, multi-agent MDP we call sMMDP. The different
arrows illustrates the standard interaction and training loop of Reinforcement
Learning. 23

2.1 Taxonomy of VRPs - In the middle row, framed nodes are variants of the prob-
lems. Below them are a selection of operational constraints that we consider
addressing. Above them we illustrate a few common example of dynamic and/or
stochastic elements. 26

2.2 Example of TSP instance with 23 customers, created based on the first nodes of
the berlin52 instance in the TSPLIB [88] benchmark. Edges are weighted by the
euclidean distance between the nodes, and the ones in blue form the optimal tour
for this instance. 27

2.3 Example of CVRP instance with 25 customers and a depot, created based on
the first 26 nodes of the test2 instance in the VRPLIB [115] benchmark. Nodes
are weighted by the demand of the customers, represented here by their size. As
in previous example, edges are weighted by the euclidean distance between the
nodes. The blue, green and red edges, show the 3 routes minimizing the total
cost while respecting the capacity constraints. 29

2.4 Example of CVRPTW instance with 25 customers and a depot, created based on
the first 26 nodes of the rc201 instance in the Solomon [102] benchmark. Nodes
are weighted by the demand of the customers, represented here by their size,
and labeled with the time window for this customer. The service duration is not
represented. The euclidean distance between two nodes i and j, gives both the
cost cij and the travel time τij associated with the edge between them. The blue,
green and red edges, show the 3 routes minimizing the total cost while respecting
the capacity and time-window constraints. 31

12

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

LIST OF FIGURES 13

2.5 Illustration of a small toy DS-CVRPTW. Two vehicles are stationed at depot 0.
They are initially aware of three customers waiting to be served. While executing
their initial plan, the environment evolves dynamically: delays can be experienced
on some travels and new customers can appear. Routes are adapted online to
get the best of the situation, compromising on delays, detours and customers
satisfaction. 33

2.6 Abstract representation of a neuron in a deep neural network. Its inputs (blue)
are linearly combined, weighted by learned parameters (red). This combination
is then fed to a non-linear activation function to form its output (green). Here,
some alternatives for this activation function are represented: hyperbolic tangent
(top), sigmoid (middle) or rectified linear unit (bottom). 40

2.7 A Multi-Layer Perceptron with three hidden layers of size 4, 5 and 3 and a single
output neuron. This network could be trained as a simple binary classifier in an
input space of dimension 3. 40

2.8 Small graph of customers with vectors of attributes vi and vi,j as labels on nodes
and edges, respectively. Here, these vectors contains the customers features and
travel costs and times of a VRPTW as an example. We need to encode the whole
graph in order to use it as an input of a DNN. 42

2.9 Illustration of how a RNN can be used to encode the graph introduced in Fig-
ure 2.8. Each node label vj is fed to the RNN in an arbitrary order to progressively
build a representation h5 of the whole graph. 43

2.10 Illustration of how a Pointer Network iteratively generates a permutation of the
input nodes in the graph of Figure 2.8 to form a solution to the TSP. 44

2.11 Multi-Head Attention layer which combines a set of values regrouped in tensor
v based on the similarity between their associated keys k and some queries q.
Different combinations ṽh are produced in multiple parallel heads, and finally
recombined into an output value v̂ for every query. 46

2.12 Illustration of how the representations for every node in the graph of Figure 2.8
are obtained using a MHA layer. 47

2.13 Transformer Encoder. The structure is not recurrent and the nl layers do not
share the same weights. The new notations that are introduced are |.| representing
a normalization operation and p.q` a rectified linear unit (relu). 48

3.1 Simple representation of the interaction loop modelled by an MDP. At each deci-
sion step, the agent observes the state (green arrow) and executes an action (blue
arrow) to gather rewards (red arrow). 51

3.2 Interaction loop between an agent and its partially observable environment. The
state updates (gray arrow) are hidden, and only perceived through an imperfect
observation (green arrow). The agent keeps track of all past observations and
actions taken that constitute its history (cyan arrow), to accumulate information
and drive its decisions to choose an action (blue arrow). It still receives rewards
(red) and tries to accumulate as much as possible along its trajectory. 53

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

14 LIST OF FIGURES

3.3 Interaction loop between 3 agents and their environment. Agents receive corre-
lated individual observations (green arrows) which they cannot share with each
other. They choose their individual actions separately based on the information
they have available stored in individual histories (cyan arrows). The combined ef-
fect of their action (blue arrows) makes the environment transition to a new state
(gray arrow) and emit a joint reward signal (red arrows) which all agents tries
to maximize, enforcing their cooperation and coordination. Notice that bold ar-
rows represent joint or common variables, while normal arrows are the individual
components. 55

3.4 Comparison between actor-critic in the fully centralized paradigm (a) on the left,
the fully decentralized paradigm (b) on the right (also called independent learn-
ers), and the CTDC paradigm (c) in the middle. While the independent learners
have to build individual statistics to drive their optimization, the extra informa-
tion we have available during training in CTDC makes it possible to maintain a
joint statistic that help avoid local minima and can lead the agents to coordinate
themselves better when executing their individual policies in a decentralized way. 61

3.5 Individual policy architecture using LSTM to compress history and maintain an
individual internal state for each agent. 67

3.6 Comparison of different structures used to represent histories. 67

3.7 Comparison of the three paradigms for T “ 10. 68

3.8 Comparison of the three paradigms for T “ 8. 68

4.1 Illustration of a trajectory in the small Stochastic VRP (S-VRP) that we use to
illustrate the properties of our sMMDP model, built on top of the formalization
of a standard MMDP. Two vehicles have to serve four customers. Travelling from
one location to the next takes some time, and is associated with a cost. The goal
is to find the optimal routes minimizing the total expected costs. 72

4.2 Illustration of a transition from step sk to step sk`1, without factorized transition
(a), with separable transition (b), and with separable transition and factorized
states (c). States in blue are in the original state space S while states in red
are in the intermediate state space S̄ accessible by individual actions. 75

4.3 The same motivating example of a small S-VRP but introducing sequential indi-
vidual decisions. The next agent to act ik P t1, 2u is the one whose current action
finishes first. We can easily keep track of which agent is next using the cumulated
time since departure. We skipped all intermediate states corresponding to a NOP

action, which have no effect on the state. 77

4.4 Comparison of decision trees for the MMDP and sMMDP models. 79

4.5 Learning curves of tabular Q-Learning applied to the MMDP and sMMDP models
of our toy S-VRP with different numbers of customers n and vehicles m, in terms
of objective value, size of the Q-value table and execution time. 80

5.1 Example of a DS-CVRPTW with 10 customers that we will model as a sMMDP.
It is only a sample of all possible customer configurations, which are randomly
distributed. 84

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

LIST OF FIGURES 15

5.2 State reached after vehicle 1 served customer 8 and vehicle 2 served customer 5. 86

5.3 Example of a goal state reached after vehicles 1 and 2 respectively served cus-
tomers p8, 7, 10, 1q and p5, 9, 4, 3q . 87

5.4 Vehicle speed distribution for different slowdown probabilities 89

5.5 Overview of MARDAM - Four blocks composes this policy architecture, each
specializing in one of the factor of the state. At the end, it produces a decision rule
giving the probabilities of choosing any pending customer as the next destination
for the vehicle that has just finished its previous service. 92

5.6 Customer encoder block in MARDAM implemented as a Transformer encoder to
create internal representation h0,j

k for a set of customers described by features

vectors s̄0,j
k . 93

5.7 Vehicles encoder block in MARDAM implemented as a MHA layer to create
internal representation hik for a set of vehicles based on their states s̄ik and the

internal representations of the customers h0,j
k . 94

5.8 Turn focus block of MARDAM. From the internal representation of every agents,
it focuses on the one currently taking a decision given by the turn variable ik. It
uses a MHA layer to generate an internal state representation for this agent given
the intermediate representation of the whole fleet. 95

5.9 Travels scorer block in MARDAM implemented as the scoring part of a head in
a MHA layer with masking. It outputs an individual decision rule πp¨|s̄kq for the
agent ik currently acting based on its internal state representation ρik and the

internal representation h0,j
k of the customers. 96

6.1 Illustration of data generation for DS-CVRPTWs with 10 customers. The di-
amond node represents the depot, labelled 0. All other nodes are customers,
labelled from 1 to 10, whose sizes map to their demand. Square nodes are static
customers known before the vehicles leave the depot. Circle nodes are dynamic
customers appearing after vehicles deployment, for which the upper (x:xx) label
indicates appearance time. The lower label ([x:xx y:yy]) indicates the time windows. 100

6.2 Learning curves of MARDAM on a static and deterministic CVRPTW with 20
customers. 102

6.3 Comparison between routes sampled using MARDAM and routes obtained by
ORTools on a few instances of CVRPTW. Each column corresponds to the same
customer configuration for MARDAM and ORTools. If parts of some routes seem
almost identical, ORTools solutions sometimes look more convoluted than the
ones of MARDAM. This might be caused by the former being stricter on lateness
than the latter, even though both consider soft TWs. 105

6.4 Distribution of total cumulated rewards on 3 different problem sizes (10, 20,
50 horizontally) for MARDAM trained using only instances with 10, 20, or 50
customers, and for MARDAM trained with a dataset containing instances with
20 to 50 customers. This variety in the training dataset helps generalizing better
across dimensions. 107

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

16 LIST OF FIGURES

6.5 High level overview of SULFR, our interface between a learning algorithm such
as Actor-Critic and the SUMO micro-traffic simulator. 108

6.6 Finite state machine governing a vehicle when it travels from one customer to the
next, based on the information available from the TraCI interface of SUMO. . . . 109

6.7 Selection of routes obtained by MARDAM after 5000 iterations on 3 different
scenarios, and 2 different random order books per scenario. The depot is repre-
sented as a red diamond, and all active customers are orange squares. The routes
followed by vehicles 1 and 2 are indicated as blue and green lines, respectively. . 110

7.1 Summary of the MARDAM architecture which learns to represent the multi-agent
state of a DS-VRP with varying sets of customers and vehicles, to provide online
decision rules and choose individual actions in a sequential decision process. . . . 114

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

List of Tables

2.1 Selection and classification of resolution methods based on the variant of problem
they were applied to. 38

6.1 Model and training meta-parameters used in all experiments. 101

6.2 MARDAM compared to ORTools and BestIns in terms of travel and lateness cost,
and QoS on DS-CVRPTWs instances of various sizes and degrees of dynamism . 103

6.3 MARDAM compared to ORTools in terms of travel, lateness and pending cost on
S-CVRPTWs instances of various sizes and probabilities of slowdown 104

6.4 MARDAM compared to LKH3, ORTools, AM and RNN in term of travel, lateness
and pending cost on CVRP and CVRPTW instances of various sizes 106

6.5 Mean and standard deviation of the cost for soft or hard lateness penalty 106

17

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

Contents

1 Introduction 21

2 Vehicle Routing Problems 25

2.1 VRPs formalization . 26

2.1.1 Travelling Salesman Problem . 27

2.1.2 Capacitated Vehicle Routing Problem . 28

2.1.3 Unifying capacity, time windows, and energy constraints 30

2.1.4 Pickup and Delivery Problem . 32

2.1.5 Information evolution and quality . 32

2.1.6 Dynamic and Stochastic CVRPTW . 33

2.2 Exact methods for solving VRPs . 34

2.2.1 Integer Linear Programming . 34

2.2.2 Constraint Programming . 35

2.3 Heuristic methods for VRPs . 36

2.3.1 Tabu Search and Simulated Annealing . 36

2.3.2 Approximate Dynamic Programming . 37

2.3.3 Evolutionary Algorithms . 37

2.3.4 Ant Colony Optimization . 38

2.4 Focus on dynamic and stochastic problems . 38

2.5 Deep Neural Networks Heuristics . 39

2.5.1 Basics of Deep Learning . 40

2.5.2 Using DNN to solve routing problems . 41

2.6 Conclusion . 48

3 Multi-Agent Reinforcement Learning 50

3.1 Markov Decision Processes . 50

18

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

CONTENTS 19

3.1.1 Basics of MDPs . 51

3.1.2 Multi-agent MDPs . 52

3.1.3 Partially Observable MDPs . 52

3.1.4 Decentralized POMDPs . 54

3.2 Statistics and solution methods . 57

3.2.1 Bellman equations . 57

3.2.2 Value-based algorithms . 58

3.2.3 Policy-based algorithms . 59

3.3 Centralized Training for Decentralized Control 60

3.3.1 Multi-Agent Policy Gradient Theorem . 62

3.3.2 Critic compatibility . 64

3.3.3 Experimental validation . 65

3.4 Conclusion . 69

4 Sequential Multi-agent Markov Decision Process 70

4.1 A toy S-VRP modeled as an MMDP . 71

4.1.1 Motivating example . 71

4.1.2 The initial MMDP model . 72

4.2 Building up a sequential MMDP . 74

4.2.1 Sequential states . 74

4.2.2 Sequential transitions . 75

4.2.3 Sequential rewards . 76

4.2.4 Sequential MMDPs . 76

4.3 Simultaneous vs. sequential model . 79

4.4 Model discussion . 81

4.5 Conclusion . 82

5 Multi-Agent Routing using Deep Attention Mechanisms 83

5.1 Modelling a DS-CVRPTW as a sMMDP . 83

5.1.1 Agents set . 84

5.1.2 State space . 85

5.1.3 Constrained individual actions . 87

5.1.4 Turn and transition functions . 88

5.1.5 Reward function . 89

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

20 CONTENTS

5.1.6 Initial state distribution and planning horizon 91

5.2 MARDAM, a modular Policy Network for DS-VRPs 91

5.2.1 Customers encoding . 93

5.2.2 Vehicles encoding . 94

5.2.3 Turn focus . 95

5.2.4 Travels scorer . 96

5.3 Conclusion . 97

6 Experimental Evaluation 98

6.1 Useful web resources . 98

6.2 Experimental setup . 99

6.3 Typical learning curves . 101

6.4 DS-CVRPTW . 103

6.5 S-CVRPTW . 104

6.6 CVRP and CVRPTW . 105

6.7 Lateness penalties and hard TW constraints . 106

6.8 Avoiding dimension specialization . 107

6.9 Towards more realistic scenarios . 108

6.9.1 The SULFR framework . 108

6.9.2 Preliminary results training MARDAM with SULFR 110

6.10 Conclusion . 111

7 Conclusion 112

7.1 Contributions . 113

7.2 Perspectives . 115

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

Chapter 1

Introduction

In our modern world, urban areas attract more and more inhabitants and economic activities.
In 2017, cities, town and suburbs in Europe sheltered more than 70% of its population and in
2014, metropolitan regions generated 47% of its Gross Domestic Product (GDP) [21]. Moreover,
customers consumption habits are evolving, and new services are emerging with the develop-
ment of e-commerce, same-day delivery, externalized food delivery, or car-ride sharing. Such
densely-populated environments with important economic actors require well-organized logistic
distribution networks on schedules tighter than they have ever been. Developing complex logis-
tic networks while respecting the social, economic and ecological objectives that condition our
future is a challenging task for decision makers and all actors of the sector.

New technologies in the domains of smart cities and autonomous vehicles open up many
opportunities to improve the capabilities of such logistic systems. Indeed, they give us access
to real-time information on uncertain factors that can affect logistic operations, such as traffic
conditions and parking space availability. They also offer the possibility to take decisions in a
decentralized way, such that agent can react and adapt to local perturbations while still fulfilling
a common objective.

The Vehicle Routing Problem (VRP) is the generic abstract problem class that models multi-
vehicle logistics. It has been extensively studied since the late 50s [28], and numerous extensions
have been proposed to take into account a variety of operational constraints [111], such as Ca-
pacitated Vehicles and Time Windows (CVRPTW). If classical approaches mainly focused on a
static and deterministic formulation where customers and travel costs are known a-priori, vari-
ants of the problem integrating some Dynamic and Stochastic information (DS-VRPs) received
increasing attention in the last decades [85, 90]. Solving such DS-VRPs is the main motivating
problem for the work developed in this thesis.

Context of the thesis. This thesis was initiated and founded by the industrial chair held by
the Volvo group and operated by INSA Lyon under the supervision of Didier Remond. Although
the main activity and domain of expertise of Volvo are not logistic operations, they design and
produce trucks covering the needs of logisticians ranging from long-haul freight to last-kilometer
delivery, with more focus on the former. The thesis being prospective, potential impacts for Volvo
will only appear on the middle- or long-term. Our contributions will support future development
at Volvo as an early step towards services related to city logistics. Additionally, part of their
research effort is directed towards improving the energetic efficiency of their vehicles. To that
end, the team of Florian Pereyron, who participated in the supervision of this thesis, develops

21

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

22 CHAPTER 1. INTRODUCTION

realistic simulations and generative models which cover both the mechanical and energetic aspect
of Volvo trucks, but also the traffic conditions encounter on city roads. We could use these
simulation tools to sample delivery trajectories while evaluating and training our decision policy.

This thesis was carried out in the INRIA/INSA team CHROMA, more precisely in the
work group hosted at the CITI laboratory of INSA Lyon. This group specializes in artificial
intelligence for robotics and multi-agent systems, with contribution ranging from mathematical
foundations of Multi-agent RL, to real-world applications on mobile robotics, including drones
and autonomous vehicles.

Positionning of the thesis. For the past sixty years, the Operations Research community
has been developing and refining its approaches to solve the problem of finding routes serving all
customers for a fleet of vehicles minimizing the costs while respecting some constraints. Exact
approaches such as Branch-and-Cut-and-Price [79] have reach a level of performances where they
can find routes for problems with up to a few hundreds of customers and prove the optimality
of the solutions. For larger problems, or ones with more complex sets of constraints, meta-
heuristics search such as Simulated Annealing [82], Ant Colony Optimization [101] or Genetic
Algorithms [68] have been successfully used to obtain near optimal results. They are combined
with specialized local operators, like 2-opt [27] and its variations. However, the existing ap-
proaches for DS-VRPs mostly rely on the same hand-crafted expert heuristics that are used for
static and deterministic problems, which do not take full advantage of all the information avail-
able, especially the past experiences from which the system could automatically learn specialized
heuristics to generate near-optimal routes much faster online.

When decisions should be adapted dynamically to a stochastic environment, Reinforcement
Learning (RL) [105] offers promising tools to optimize policies that prescribe actions conditioned
on the state of the system in a sequential decision-making process. Exact RL methods scale
poorly with the dimensions of the problem. That is why we need customized approximate
representations designed such that the subset of solutions we can explore matches the structure
of the problems. This subset is then more likely to contain near optimal solutions. Hopefully,
the generalization power of Deep Neural Networks (DNNs) and their capability to learn complex
non-linear functions have open many opportunities in the field of Deep RL [70, 71, 97], and more
specifically their application to combinatorial problems [7]. Recent advances in Deep Learning
over graphs provide state representations to encode VRPs [7, 47, 50]. They have given birth
to fast and competitive heuristics that generalizes over a large set of problem instances. The
main difficulties are to create meaningful vector representations of graph-structured data and to
efficiently take into account the constraints of the problems. Nonetheless, all existing works in
this domain reframe the VRP as a single-vehicle problem. This thesis contributes towards taking
into account a multi-agent viewpoint. It also extends the class of problems that approaches based
on Deep RL are capable of addressing to rich DS-VRPs. But to what extend this multi-agent
viewpoint can help leveraging the issues encountered in DS-VRPs?

This is what we will try to answer in this thesis. The core of our approach is globally
summarized by Figure 1.1. Two modules interact with one another in a standard RL loop.
An environment, modelled as a sequential Multi-agent Markov Decision Process (sMMDP), is
controlled by a policy, here implemented as a DNN architecture called Multi-Agent Routing
Deep Attention Mechanisms (MARDAM). The policy observes the state of system, in this case
describing the customers and the vehicles, from which it can choose an action. It is trained by
a learning algorithm which updates the policy parameters based on a reward signal provided by
the environment for each state transition provoked by an action.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

23

Policy (Actor)
MARDAM

Learning
Algorithm

Environment
sMMDP

State

Action

Reward

Update

customers features
vehicles states

Figure 1.1 – General architecture of our approach. To model and address rich DS-VRPs, we
propose a policy network, MARDAM, implemented using attention mechanisms, and an event-
based, multi-agent MDP we call sMMDP. The different arrows illustrates the standard inter-
action and training loop of Reinforcement Learning.

The sMMDP model is a new variant of MMDP which we developed to take into account
that agents do not act simultaneously. MARDAM is also a novel DNN architecture that can
learn to provide decision rules to the vehicles depending on the current state of the system. This
state captures both the variability of the customers configurations the fleet can face, and the
uncertain and dynamic information the vehicles collect while serving them. As the objective
of the learning algorithm is to maximize the expected cumulated reward, the policy is trained
to adapt to the information contained in the state to anticipate on the dynamic and stochastic
evolution of the system.

Scientific challenges. To address DS-VRPs using Multi-agent Deep Reinforcement Learning,
we face the following scientific challenges:

1. The basic VRP already has a non-polynomial time complexity, i.e. the VRP is NP-hard,
which limits our capacity to scale up to high numbers of customers and vehicles. We did
not focus on this issue in this thesis, and our approach is limited in term of scalability.

2. Optimally solving the dynamic and stochastic VRP would correspond to solving static
VRPs for every possible realizations and evolutions of its random variables. It would
quickly become untractable, hence we need robust and flexible approximate strategies to
adapt our solutions to the data available at any time.

3. To – at least partially – transfer the decision authority from a centralized dispatcher to
vehicles having their own individual decision capabilities, we need to study the influence
of individual actions on the global objective, and identify some structure to exploit in our
model.

4. To avoid training a DNN for a specific configuration of the DS-VRP, but instead allow it
to generalize over multiple instances with no fine-tuning and costly retraining, we need to
represent all the characteristic of the problem, i.e. a graph of customers evolving through
time with stochastic edge weights.

5. Finally, training DNNs is a data-hungry task and it requires a large amount of trajec-
tory samples. Hence we need rich dataset and benchmarks that capture the diversity of
configurations and dynamic evolution our learned heuristic will have to face.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

24 CHAPTER 1. INTRODUCTION

Outline of the manuscript. The following of this manuscript is organized as follow:

• In Chapter 2, we build a taxonomy of VRP variants we are interested in, and formalize
them using a classical Mixed Integer Linear Programming (MILP) model. We review a few
exact approaches and heuristics, then draw an overview of which methods were previously
applied to which variant of the problem. Finally we introduce the basics of Deep Learning
and review the state of the art methods based on DNNs, especially how graphs are being
encoded to represent the customer configurations and states in a VRP.

• In Chapter 3, we introduce some background knowledge on Reinforcement Learning and
Markov Decision Processes (MDPs), especially their multi-agent (MMDPs) and Decen-
tralized, Partially Observable (Dec-POMDPs) extensions. We review the basics of exist-
ing resolution methods, including Value-based and Policy-based algorithms. Finally, we
present some preliminary work we conducted on a training paradigm we refer to as Cen-
tralized Training for Decentralized Control (CTDC). In this paradigm, more information
can be used during training than is available when executing the learned policy. We con-
tribute to the mathematical foundation of Actor Critic (AC) methods in this paradigm,
and evaluate our approach through experiments comparing it to other existing paradigms
on standard Dec-POMDP benchmarks.

• In Chapter 4, we present a new variant of MMDPs we call a sequential MMDP (sMMDP),
that can capture the properties of VRPs problems. We especially focus on the fact that
agents take decisions independently triggered by specific events. We start by building the
model iteratively through the properties that differentiate it from an MMDP, then derive
theorems corresponding to Bellman equations for this new sequential variant. We evaluate
the performances of our model compared to an MMDP, and show how it scales better with
the number of agents.

• In Chapter 5, we explain how we model a Dynamic and Stochastic Capacitated VRP
with Time Windows (DS-CVRPTW) as a sMMDP. We then describe how we designed
MARDAM as a modular policy with blocks dedicated to each factor of the state. We
discuss the properties we needed to efficiently represent sets of customers and vehicles, and
the main difference with existing architectures that enables us to capture the multi-agent
dimension of VRPs, and use MARDAM as an online policy in a dynamic and stochastic
environment.

• In Chapter 6, we evaluate MARDAM on a set of artificially generated benchmarks. We
demonstrate the capability of our policy to address a variety of scenarios, with no specific
retraining. MARDAM is able to flexibly adapt to dynamically appearing customers, and
compromise with delays caused by stochastic travel times. We also present a more complex
benchmark based on a finer simulation of the dynamics of a road network. We got some
preliminary results training MARDAM, and discuss how it could be further improve.

• Finally, Chapter 7 concludes the manuscript summarizing our contributions and discussing
perspectives about the future of our approach in term of learning algorithms, model anal-
ysis, architecture improvement, and experimental validations.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

Chapter 2

Vehicle Routing Problems

In an ongoing trend for globalization, our modern world relies heavily on complex multi-modal
logistic networks. Planes, boats, trains, long-haul trucks, smaller delivery vehicles and even bikes
work together to ship goods from one side of the world to the other. Their synchronization and
the optimization of their costs require a lot of careful planning, and robust recourse solutions in
case of incidents. Among other costs to optimize, at one end of the logistic chain, assigning and
ordering the deliveries to the final customers is one of the big challenges in Operations Research
(OR), with high social, ecological and economic stakes.

A standard mathematical abstraction of this combined assignment and ordering problem
is called the Vehicle Routing Problem (VRP). To the best of our knowledge, it has been first
introduced in 1959 by Dantzig and Ramser [28], who considered Capacitated vehicles (CVRP).
Since then, VRPs have been thoroughly studied in the OR literature [111], and extended to
take into account a variety of operational constraints, such as customers with Time Windows
(VRPTW) or services including Pickup and Delivery (PDP). On top of these constraints, what
usually makes the difference between classical abstractions and real-world applications is the
evolution (Static or Dynamic) and the quality (Deterministic or Stochastic) of the information
available, as stated by Pillac et al. [81].

Original static and deterministic VRPs are usually formalized as (Mixed) Integer Linear
Programs ((M)ILPs) [78] or Constraint Optimization Programs (COPs) [101]. These are solved
offline, either by exact methods such as Branch-and-Bound, or heuristics such as Large Neigh-
borhood Search (LNS), Ant Colony Optimization (ACO) or Genetic Algorithms (GAs). In this
static and deterministic setup, solutions take the form of plans which can then be executed
by the dispatcher and the vehicles. Stochastic VRPs (S-VRPs) can also be addressed offline
knowing the distributions governing the random variables of interest, and considering objectives
with expected values or robustness criteria. Dynamic VRPs (D-VRPs) require a way to adapt
the routes of the vehicles online, in reaction to newly available pieces of information. There
are a few different methods to achieve this, including re-optimizing the plan every time new
information is available, or having a policy that provides decision rules for any possible state
encountered.

Recently, a new class of heuristics based on Deep Reinforcement Learning (DRL) has emerged
[7]. Using the representation power Deep Neural Networks (DNNs) offer, the goal is to learn to
solve combinatorial problems from large sets of data. Key challenges include: efficiently repre-
senting unordered sets of customers, taking into account hard constraints of the problem; and
keeping track of individual internal state for every vehicle. Once trained, these DRL approaches

25

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

26 CHAPTER 2. VEHICLE ROUTING PROBLEMS

have been shown to provide solutions competitive with the ones obtained by hand-crafted expert
heuristics. Furthermore, in exchange for the initial offline training time investment, they have
a clear advantage over other heuristics both in term of running time at execution. Moreover,
they can be easily parallelized for solutions sampling.

The following of this chapter is organized as follow. Section 2.1 introduces classical formu-
lation of a few VRP variants. Sections 2.2 and 2.3 review some classical exact and heuristic
methods to address routing problems. Section 2.4 proposes a review of a few recent references
with a focus on dynamic and stochastic problems. Section 2.5 reviews recent methods based on
DRL. The three first sections correspond to a review paper [3] we presented at JFPDA in 2017.

2.1 VRPs formalization

In this section, we will build up a complete formalization of VRPs as a MILP, mostly inspired
by the one of Cordeau et al. [24]. Figure 2.1 provides an overview of the VRP variations we
will present, with a selection of constraints of interest. We also list a few common examples of
variables that can make the problem dynamic and/or stochastic.

vs.
Static

Dynamic

Information evolution

• travel times
• customers

vs.
Deterministic

Stochastic

Information quality

• travel times
• demands
• customers

VRP

eVRP

electric Vehicles
(aka. green VRP)

CVRP

Capacitated Vehicles

VRPTW

with Time Windows

TSP

Travelling Salesman
(single-vehicle)

PDP

Pickup and Delivery

DARP

Dial A Ride

PDPT

with Transfers

Figure 2.1 – Taxonomy of VRPs - In the middle row, framed nodes are variants of the problems.
Below them are a selection of operational constraints that we consider addressing. Above them
we illustrate a few common example of dynamic and/or stochastic elements.

We start with the historical Travelling Salesman Problem (TSP) which can be seen as a
specialization of VRP for single-vehicle problems even though it was introduced way earlier in
the literature. We then extend it to the simplest form of VRP, simply adding the multi-vehicle
dimension. Afterwards we present a way to enforce the Capacity (CVRP), Time Windows
(VRPTW) and energy (eVRP) constraints in a unified formalization using state variables. Fi-
nally we introduce the Pickup and Delivery Problem (PDP), and the closely related Dial-A-Ride
Problem (DARP), for which we will consider Transfer (PDPT) possibilities.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

2.1. VRPS FORMALIZATION 27

2.1.1 Travelling Salesman Problem

The Travelling Salesman Problem (TSP) is a very well known problem that is closely related to
VRPs. Its origin dates back to the 19th century, but is not clearly defined, as the problem has
been discussed long before being mathematically formalized. Given a set of customers indexed
by integers ranging from 1 to n which we note J1, nK, and the costs cij of travelling from any
customer i to any other customer j, the TSP consists in finding a tour of minimal total cost
going through all customers once. It can be pictured as finding the Hamiltonian cycle of minimal
cost in a fully-connected directed graph where each vertex i is a customer, and each edge i, j
is weighted by the travel cost cij . Figure 2.2 illustrates an example of such graph, with the
solution to the corresponding TSP.

1

2

3

4
5 6

7

8

9

10

11

12

13

14

15

16

17
18

19

20

21

22

23

Figure 2.2 – Example of TSP instance with 23 customers, created based on the first nodes of the
berlin52 instance in the TSPLIB [88] benchmark. Edges are weighted by the euclidean distance
between the nodes, and the ones in blue form the optimal tour for this instance.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

28 CHAPTER 2. VEHICLE ROUTING PROBLEMS

Mathematically, the problem can be formalized as ILP (2.1) with boolean decision variables
xij P t0, 1u, indicating whether each edge i, j belongs to the route or not.

min
n
ÿ

i“1

n
ÿ

j“1
j‰i

xijcij (2.1a)

s.t.
n
ÿ

j“1
j‰i

xij “ 1 @i P J1, nK (2.1b)

n
ÿ

j“1
j‰i

xij ´
n
ÿ

j“1
j‰i

xji “ 0 @i P J1, nK (2.1c)

ÿ

iPS

ÿ

jPSztiu

xij ď |S| ´ 1 @S Ă J1, nK, |S| ą 2 (2.1d)

xij P t0, 1u @i P J1, nK @j P J1, nKztiu (2.1e)

where (2.1a) encodes the objective of minimizing the total cost of the tour, (2.1b) constraints
every node to be visited once and only once, (2.1c) enforces flux conservation, (2.1d) eliminates
sub-tours, and (2.1e) defines the boolean decision variables.

The sub-tours elimination constraints (2.1d) are quite numerous (Op2nq). In practice, they
are often iteratively added to the model only when a sub-tour is detected. The state consistency
constraints we will consider in latter subsections will make these sub-tour elimination constraints
redundant. Hence we will not develop further on their treatment.

Using a simple reduction of the Hamiltonian cycle problem, it is quite straightforward to
prove that the TSP1 is NP-complete. Even worse, without additional hypotheses, even the
approximation problem, i.e. finding a solution within a proportional range above the optimal,
is NP-hard. For example, a polynomial-time heuristic known as Christofides algorithm [19]
provides a solution within 1.5 times the optimal value only for the euclidean TSP, where costs
verify the triangular inequality cij ď cik ` ckj .

2.1.2 Capacitated Vehicle Routing Problem

Next step to build the formalization of our rich VRP is to integrate its multi-agent dimension.
We now consider a fleet of m vehicles to serve our n customers. We must assign customers to
vehicles and route each vehicle through its assigned customers. We will consider a homogeneous
fleet, meaning that all vehicles have identical characteristics, and suffer the same travel costs cij .
They all initially start at a common depot, and must return to it at the end of their routes. This
depot will be represented as two identical extra nodes 0 and n` 1 in our graph of customers.

1Strictly speaking, the decision version of TSP, using a threshold on the objective value, is NP-complete.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

2.1. VRPS FORMALIZATION 29

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Figure 2.3 – Example of CVRP instance with 25 customers and a depot, created based on the
first 26 nodes of the test2 instance in the VRPLIB [115] benchmark. Nodes are weighted by
the demand of the customers, represented here by their size. As in previous example, edges are
weighted by the euclidean distance between the nodes. The blue, green and red edges, show the
3 routes minimizing the total cost while respecting the capacity constraints.

To the best of our knowledge, the VRP was first introduced and formalized in [28]. To
motivate the use of a fleet of vehicles, this original version implicitly includes capacity constraints.
In this setup, more explicitly referred to as Capacitated VRP (CVRP), every customer j has
a demand qj corresponding to the quantity of items to deliver. Every vehicle has a limited
capacity κmax such that it can only serve a fraction of the customers. This abstract payload
model does not account for the weights, volumes and shapes of the packages, but we will assume
the demands are expressed in a standardized unit which factors these parameters in. Figure 2.3
illustrates an example of CVRP highlighting how customers are allocated to different vehicles
to respect their capacity.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

30 CHAPTER 2. VEHICLE ROUTING PROBLEMS

Formally, the boolean decision variables xkij gain an extra index k to indicate which vehicle

travel through edge i, j to serve customer j. We also introduce state variables κki to keep track
of the remaining capacity of vehicle k before serving customer i (when it is assigned to it).
Borrowing all other notations from the TSP, ILP (2.2) describes the VRP.

min
m
ÿ

k“1

n
ÿ

i“0

n`1
ÿ

j“1
j‰i

xkijcij (2.2a)

s.t.
m
ÿ

k“1

n`1
ÿ

j“1
j‰i

xkij “ 1 @i P J1, nK (2.2b)

n`1
ÿ

j“1
j‰i

xkij ´
n
ÿ

j“0
j‰i

xkji “ 0 @k P J1,mK @i P J1, nK (2.2c)

n`1
ÿ

j“1

xk0j ď 1 @k P J1,mK (2.2d)

xkijpκ
k
i ` q

i ´ κkj q “ 0 @k P J1,mK @i P J0, nK @j P J1, n` 1Kztiu (2.2e)

κk0 “ κmax @k P J1,mK (2.2f)

κki ě qi @k P J1,mK @i P J1, nK (2.2g)

xkij P t0, 1u @k P J1,mK @i P J0, nK @j P J0, nKztiu (2.2h)

where (2.2a) states the objective of minimizing the cost of all routes, (2.2b) constraints every
node to be visited once and only once by any vehicle, (2.2c) enforces flux conservation, (2.2d)
guarantees that each vehicle can only leave the depot once, (2.2e) enforces capacity consistency
from one customer to the next, (2.2f) sets the initial capacity at the depot, and (2.2g) prevents
capacity overloads.

There exists an alternative 2-index formulation which is a direct adaptation of (2.1). It
reduces the number of variables but increases the number of constraints, and cannot differentiate
between individual vehicles. This way of handling capacity constraints is neither in the original
formulation [28], nor in common CVRP ones [111], which generalize the sub-tour elimination
constraints (2.1d) to guarantee that the total demand of any subset of customers S can be
satisfied by incoming vehicles. In this form, we can see that, just as the TSP, the CVRP is also
NP-hard.

Using state variables has the disadvantage of involving quadratic constraints (2.2e), which
needs to be linearized or specifically handled as conditional constraint by solvers. It is however
much closer to the MDP model we will present in Chapter 5, and falls into a unified formalization
that can be used for many other constraints.

2.1.3 Unifying capacity, time windows, and energy constraints

State variables can be used to take into account a variety of operational constraints. We have
already added variables κki to keep track of vehicles’ capacities in CVRP. We now introduce new
variables to address VRP with Time Windows (VRPTW) and electric VRP (eVRP, also known
as green VRP).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

2.1. VRPS FORMALIZATION 31

In VRPTW, every customer j must be served for a duration dj in a limited Time Window
(TW) bounded by a ready time ej (early) and a due time lj (late). In addition to the travel
costs cij , we are given the travel times τij between pairs i, j of customers (plus the depot). As
illustrated on Figure 2.4, these TW constraints can require some compromises on the travel cost
to be met.

0

1

15:13
-17:13

2

6:32
-8:32

3

11:51
-13:51

4

14:44
-16:44

5

5:13
-7:13

6

10:28
-12:28

7

9:00
-11:00

8

10:07
-12:07

9

10:11
-12:11

10

12:39
-14:39

11

7:15
-9:15

12

7:43
-9:43

13

14:53
-16:53

14

4:35
-6:35

15

6:54
-8:54

16

8:15
-10:15

17

15:43
-17:43

18

9:35
-11:35

19

8:14
-10:14

20

12:57
-14:57

21

7:35
-9:35

22

10:15
-12:15

23

7:21
-9:21

24

15:21
-17:21

25

17:04
-19:04

Figure 2.4 – Example of CVRPTW instance with 25 customers and a depot, created based on
the first 26 nodes of the rc201 instance in the Solomon [102] benchmark. Nodes are weighted by
the demand of the customers, represented here by their size, and labeled with the time window
for this customer. The service duration is not represented. The euclidean distance between
two nodes i and j, gives both the cost cij and the travel time τij associated with the edge
between them. The blue, green and red edges, show the 3 routes minimizing the total cost while
respecting the capacity and time-window constraints.

We will not recall the entire ILP (2.2), but simply provide the 3 constraints to add to take
into account TWs. We use state variables tki to represent the time at which vehicle k starts
serving customer i (if it is assigned to it):

xkijpt
k
i ` d

i ` τij ´ t
k
j q ě 0 @k P J1,mK @i P J0, nK @j P J1, n` 1Kztiu (2.3a)

tk0 “ 0 @k P J1,mK (2.3b)

ej ď tkj ď lj @k P J1,mK @j P J1, n` 1K (2.3c)

where (2.3a) maintains state consistency, (2.3b) initializes time when leaving the depot (arbi-
trarily at t “ 0), and (2.3c) enforces TWs. Again, just as (2.2e), (2.3a) is quadratic and needs
to be linearized or handled as a conditional constraint.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

32 CHAPTER 2. VEHICLE ROUTING PROBLEMS

Very similarly, we can add many other dimensions to the problem. For example to take
into account the energy consumption of electric vehicles, we can introduce state variables to
keep track of the remaining charge of vehicles, an energy cost on every edge, and constraints
to enforce state consistency, initialization and bounds. eVRP models [22, 36] often also imply
additional charging station nodes which require more specific constraints.

2.1.4 Pickup and Delivery Problem

The last variant of routing problems we consider is the Pickup and Delivery Problem (PDP) [30],
and its closely related application to passenger transport called Dial-A-Ride Problem (DARP)
[84, 23]. In both these setups, every customer j is not longer associated with just a single node
but a pair of nodes: a node labelled j for pickup associated with a `qj demand, and one for
delivery labelled n` 1` j with a ´qj demand. Obviously we need to constraint the routes such
that the same vehicle handles the pickup and the delivery of a given customer, but also such
that the pickup happens before the delivery.

2.1.5 Information evolution and quality

Many sources of uncertainty can be included in the model. Mostly three of them have been
considered in the literature:

1. Stochastic Travel Times: tτij @i, ju are random variables

2. Stochastic Demands: tqj @ju are random variables

3. Stochastic Customers: tδj @ju are new binary random variables that indicate whether
customer j is present or not.

Whatever the source of uncertainty is, the problem is called Stochastic CVRPTW (S-CVRPTW).
All approaches do not consider the same objective when dealing with a stochastic model. Some
of them will consider a recourse action, for example returning to the depot if the customer’s
demand exceed the one that was expected. Some will try to minimize the risk of violating a
time-window or a capacity constraint given the distributions of the random variables. Finally,
other will add penalties to the objective for violated constraints and minimize its expected value.

Later, we will mainly focus on stochastic travel times and we choose to allow for relatively
small time window violations by adding a proportional penalty term for any late service start
at a customer. This is called soft Time Windows, by opposition to hard Time Windows when
the constraints have no slack. Our objective becomes:

min
m
ÿ

k“1

n
ÿ

i“0

n
ÿ

j“0
j‰i

xkij

´

cij ` κE
“

pT jk ´ l
jq`

‰

¯

(2.4)

where κ is the cost per unit time of lateness, pxq` “ maxt0, xu, and the expected value E is
taken over the distribution of random state variables T kj induced by the distribution of travel
times τij and constraints (2.3a)-(2.3b) that define transition rules. (2.3c) is modified to only
constraint ready time:

tik ě ei @k P J1,mK @i P J0, nK (2.5)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

2.1. VRPS FORMALIZATION 33

2.1.6 Dynamic and Stochastic CVRPTW

The final variant of VRP we will introduce is Dynamic and Stochastic CVRPTW (DS-CVRPTW).
In this problem, only a fraction of customers is known a-priori before the vehicles leave the de-
pot. The remaining customers appear dynamically while the vehicles are travelling. The ratio
between the number of unknown customers and the total number of customers is known as the
degree of dynamism rdyn P r0, 1s of the problem. A scenario based on a small toy problem is
illustrated on Figure 2.5.

0

1

2

3

Init

0

1

2

3

1

2

Veh.1 → Cust.1
Veh.2 → Cust.2

0

1

2

3

12

Veh.2 → Cust.3

0

1

2

3 4

1

2

!

Veh.1 delayed!
New Cust. (4)

0

1

2

3 4

1

2

Veh.2 → Depot

0

1

2

3 4

1

2

Veh.1 → Cust.4

0

1

2

3 4

1

Veh.2 done

0

1

2

3 4

1

Veh.1 → Depot

Figure 2.5 – Illustration of a small toy DS-CVRPTW. Two vehicles are stationed at depot 0.
They are initially aware of three customers waiting to be served. While executing their initial
plan, the environment evolves dynamically: delays can be experienced on some travels and new
customers can appear. Routes are adapted online to get the best of the situation, compromising
on delays, detours and customers satisfaction.

Most approaches relax the service constraint and allow to discard some customers requests.
The ratio of the number of served customers on the total number of customers is called the
quality of service of the solution. The way this quality of service is balanced with the cost of the
solution depends on the approach. Not only do the different methods to address this problem
have different objectives to optimize, they also differ in the form of the solution they provide.
Some of them will anticipate and include some waiting points in the routes [94], relying on
predefine strategies to serve newly appearing customers at proximity, which can be compared
to some kind of complex recourse actions. Other methods will re-optimize the routes at every
new customer encountered, sometimes maintaining a pool of virtual anticipatory plans to add
some variety and speed up the search for a new solution [8]. Finally, closer to our approach
and an MDP formulation, some methods will provide policies that take online measurements or
observations of the state of the environment, and build the routes sequentially by committing
only to one delivery at a time [98].

An Integer Linear Program is not anymore very well adapted to describe this variant of
the problem. One could consider a new ILP every time a new customer appear, but would
have to introduce additional state variables to take into account the deliveries that were already
committed to and the partial routes traveled by the vehicles. We will later propose a model

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

34 CHAPTER 2. VEHICLE ROUTING PROBLEMS

inspired by Markov Decision Processes (MDP), which seems more adapted to DS-CVRPTW, as
it naturally describe the temporal evolution of a stochastic environment.

2.2 Exact methods for solving VRPs

Now that we have presented and formalized the problem and a few of its variants, we will review
some classical methods to solve it to optimality. A lot of engineering went into the development
of powerful solvers, which combines many heuristics to quickly search the solution space. Our
goal in this section is not to review in details all these optimizations, but to give an overview of
the base methods involved.

2.2.1 Integer Linear Programming

These approaches directly address the problem using the ILP formulation introduced above. The
goal is to find an assignment of the binary decision variable xkij P t0, 1u minimizing the objective
while satisfying constraints. Most algorithms rely on a Divide-and-Conquer approach and split
the initial solution space into smaller sets. One of the basic algorithmic structure implementing
this approach is called Branch-and-Bound [54, 57] and is described in Algorithm 2.1. The main
idea behind this algorithm is that a fast heuristic ComputeLowerBound can quickly filter out
subsets of the solution space that cannot lead to an improvement of the cost. The key point is
the branching function Branch that subdivides the problem, and governs the branching factor
and the depth of the search tree.

1 currentBest, upperBound Ð FindInitialSolution(problem)

2 add problem to queue
3 while queue not empty do
4 problem Ð pop item from queue
5 foreach subProblem in Branch(problem) do
6 if CanSolve(subProblem) then
7 candidate, cost Ð Solve(subProblem)

8 if cost ď upperBound then
9 currentBest, upperBound Ð candidate, cost

10 else if ComputeLowerBound(subProblem) ď upperBound then
11 add subProblem to queue

Algorithm 2.1: Branch-and-Bound

One of the simplest way to implement the lower-bound heuristic is to linearly relax the ILP
into a (convex) Linear Program (LP), which can be solved in Opn3q by the simplex algorithm for
example. This relaxation consists in removing the integral constraint on the decision variable
xkij and allow them to take any real value in r0, 1s. The optimal cost of the relaxed LP is a
lower-bound of the cost of the original ILP. However, the tighter the bound is, the less branches
will be expanded, and this one can be quite loose. Advanced heuristics can be used as bounding
function, but they need to be faster than expanding the branch itself to be efficient.

One example of branching function is to use the solution of the LP relaxation to identify the
“most fractional” variable assignments (xkij « 0.5) and create constraints that prevent it (i.e.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

2.2. EXACT METHODS FOR SOLVING VRPS 35

one branch will have xkij “ 0 as an additional constraint, the other xkij “ 1). More complex
cutting planes [41], can be deduced from the LP solution to isolate the fractional solution from
any integer solution. They help getting closer to integral solution before branching, leading to
what is called the Branch-and-Cut algorithm [77]. Also, similarly to bounding functions, many
specialized branching strategies based on expert-knowledge are available for specific problems.
One simple example for VRPs is to branch on the number of vehicles involved in the solution.

Another optimization that can be conducted on this general class of Branch-and-Bound
algorithms, which does not explicitly appear in Algorithm 2.1, is the way the sub-problems are
ordered in the search queue. A depth-first search using a Last In-First Out queue (a.k.a. a
stack) can help find feasible solution quicker and maintain meaningful upper-bound, when no
initial solution is available. An A˚ search (best-first) based on a priority queue ordered by
lower-bounds of the sub-problems is also a great alternative.

2.2.2 Constraint Programming

The other large class of methods to find exact solutions to VRPs and its variants is built around
Constraint Programming (CP) [101, 91]. In CP, all variables are associated to their domains and
linked together by the constraints in which they are involved. Constraint propagators update
the domains of linked variables to avoid incompatible assignments. When all propagators have
reduced the domains of the variables, a search branch can be expanded by committing to an
assignment for a variable and propagating its consequences through constraints. If at some
point this propagation leads to an empty variable domain, the candidate assignment is infeasible
and the algorithm backtracks to the previous feasible state. Algorithm 2.2 depicts a recursive
implementation of a basic search procedure for CP. The key points of the algorithm are: the
way the constraints are propagated, and the order in which candidate assignment are tested.

1 function Solve(partialSolution) /* empty solution for initial call */

2 PropagateConstraints(partialSolution)
3 if all domains are singletons then
4 return partialSolution

5 else if any domain is empty then
6 return failure

7 else
8 foreach candidateAssignement in partialSolution do
9 add candidateAssignement to partialSolution

10 if Solve(partialSolution) is solution then
11 return partialSolution /* and exit for loop */

12 revert candidateAssignement /* in case of failure */

Algorithm 2.2: Constraint Programming

A classical way to model VRPs in CP is to define n`2m successors variables sj P J1, n`2mK
for every customer j P J1, nK and as many copy of the depot as twice the number of vehicles
m. These 2m special depot nodes represents vehicles leaving and returning to the depot. The
“returning” node of every vehicle is constraint to be followed by the “leaving” node of the
next vehicle (in a cycle), i.e. sn`m`i “ sn`i`1 @i P J1,m ´ 1K and sn`2m “ sn`1. This
modelling enables the CP to use very powerful and efficient global propagators that involves

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

36 CHAPTER 2. VEHICLE ROUTING PROBLEMS

many variables and reduce all their domains at once, such as an “all different” and a “circuit”
constraints on this successors variables. Adding new assignment variables aj P J1,mK for every
customer j P J1, nK, the capacity constraint can be handled by a “bin-packing” subroutine and
its specialized propagators.

If CP approaches are easier to adapt to new problem variants and enrich with more specific
operational constraints, they are often slower than a well-defined ILP with an expertly designed
Branch-and-Bound.

2.3 Heuristic methods for VRPs

After reviewing the two main classes of approach to find exact solutions to VRPs, we will now
focus on approximation methods, which are the only one that can be applied in many real-case
scenarios due to the computational complexity of VRPs. First, it is important to note that both
ILP and CP methods presented as exact often maintain intermediate solutions which have not
been proven optimal yet but are nonetheless valid approximations which can be retrieved at any
time by interrupting the search. In this section, we will present search procedure which have no
guarantee to converge to an optimal solution (and often no bounds on the relative performance
of the solution compared to an optimal one), but are much quicker to find empirically good
approximations in a majority of cases.

2.3.1 Tabu Search and Simulated Annealing

We start by reviewing these two variants of local neighborhood search that are Tabu Search [39]
and Simulated Annealing [82]. Both rely on local operators that make minor modifications of an
initial candidate solution to create new ones called its neighbors. If any neighbor yields better
performances, it becomes the new candidate solution. However both algorithms allow worsening
solution to become candidate in order to better explore the solution space and escape from local
optima and plateaus. Their difference comes from this escape mechanisms: Tabu Search keeps
a list of the last candidate solutions explored and prevents the search from coming back to it,
while Simulated Annealing uses a random perturbation of solution in a neighborhood whose size
shrink with time. For the same reason, they both allow a candidate solution to violate some
constraints. They keep track of the last best valid solution (if any is ever found) which they can
return at any time. Finally, they allow the user to interrupt the search based on any desirable
stopping criterion. Algorithm 2.3 illustrates a combination of these two local search procedures.

1 candidate Ð FindInitialSolution()

2 best Ð candidate
3 while stopping criterion not met do
4 if IsValid(candidate) and Cost(candidate) ă Cost(best) then
5 best Ð candidate

6 neighbor Ð FindBestNeighbor(candidate)
7 if Cost(neighbor) ă Cost(candidate) or AllowWorse(neighbor) then
8 candidate Ð neighbor

Algorithm 2.3: Local Search

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

2.3. HEURISTIC METHODS FOR VRPS 37

Because of their very competitive running time for acceptable routes quality, Tabu Search and
Simulated Annealing meta-heuristics have been widely used in combinations with local search
heuristic such as Variable Neighborhood Search (VNS) to address Dynamic and Stochastic
problems [38, 25, 95, 96]. However they blindly explore the solution-space and cannot exploit
specific patterns in the customers configuration. It is non-trivial to identify such exploitable
patterns, however it is possible to learn them from experiences, which is what we will contribute
to in this thesis using Reinforcement Learning.

2.3.2 Approximate Dynamic Programming

Approximate Dynamic Programming (ADP) [83] addresses stochastic and dynamic VRPs from
the point of view of a centralized dispatcher that takes decisions to allocate resources (vehicles)
to tasks (deliveries). The state of the fleet is described as a very large integer vector that
count the number of vehicles in any particular configuration (position, load, duty time, etc...).
Effect of every decision is decomposed into a deterministic part (vehicles move to their assigned
deliveries) and a stochastic part (lateness, unexpected load, etc...). Both parts update the state
vector by decreasing and increasing the counters. To limit its size, one can built aggregated
state vector where the configurations are quantized into larger bins.

This approach is naturally well-suited to address DS-VRPs, and is very close to our modelling
approach which we will detail in a Chapter 5. Indeed it relies on a sequential decision model and
propose concise state representation to compute sufficient statistics (value functions) updated
recursively from successive decision steps. However it differs from our approach on the model
of the problem and the approximation structures used to represent these statistics.

It has been successfully applied to large-scale truck routing [100] and train routing [16]
problems. The model developed in [83] and used in both application case uses counters of
vehicles and customers with certain characteristics to describe the state of the systems. The
authors demonstrated the capacity of the ADP method to efficiently scale up to problems with up
to thousands of vehicles. However, the counter-based state representation they use degenerates
to one-hot vectors and exhaustive representation for smaller fleet where vehicles are considered
individually. Hence, it cannot be easily applied to city logistics.

2.3.3 Evolutionary Algorithms

Evolutionary algorithms, in particular Genetic Algorithms (GAs) [68], have been successfully
used to solve sub-problems in DS-VRP instances [64, 93]. From a population of initial candidate
solutions, a new generation of solutions is generated by recombining and mutating the most
promising solutions according to a fitness criterion. The process is iterated on many generations.
The size of the population and the mutation encourage diversity in the exploration of solutions,
while the fitness criterion guide this exploration towards the best solutions.

One of the advantage of GA is that they can easily integrate many other heuristics as re-
combination or mutation operators, hence indirectly benefiting from any progress made in the
literature. This gives birth to many hybrid approaches which combine the efficient solution ex-
ploration offered by GAs and the performances of other heuristics, such as Large Neighborhood
Search for example [93]. However, they cannot naturally anticipate on dynamic and stochas-
tic information, except maybe internally by using lookup search and generative model while
evaluating the fitness of each solution in the population.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

38 CHAPTER 2. VEHICLE ROUTING PROBLEMS

2.3.4 Ant Colony Optimization

Ant Colony Optimization [101] is also a meta-heuristic that has proven to be useful to solve
routing problems. As the name suggest, it is inspired by the pheromone mechanism used by
ants to coordinates themselves. Each simulated ant travels through the edges of the graph to
form a solution. At the end of the routes, it deposits pheromones on the edges it selected,
proportionally to the quality of the solution it obtained based on the objective value. The
process is then iterated, but ants select edges with higher probability if the pheromone trail is
intense. Pheromones slowly evaporate after each iteration, such that only most promising edges
remain at the end.

One interesting property of ACO in the case of DS-VRPs is that new problems arising from
the evolutions of the situation (new customers, infeasibility of previous solution due to delays)
can be solved using the pheromone trails obtained while solving the previous configuration of
the system [72, 65]. This assume that the new information does not disrupt the current solution
too much and that the old solution still contains interesting pattern which can biased the new
search in the right direction. However, except for this interesting potential persistance of the
pheromone, the utilization of ACOs in the dynamic and stochastic case often simply consists in
restarting the search procedure in an updated, and frozen configuration of the customers and
partial routes, without any anticipation of the future evolution of the system.

2.4 Focus on dynamic and stochastic problems

Now that we reviewed most of the major methods in the literature for routing problems, we will
discuss a few recent work in the state-of-the-art focusing on dynamic and/or stochastic VRPs.
Table 2.1 positions some references based on the methods they used and the problems variations
they considered. It draws from the review of [90], and adds a few additional references.

T
ra

ve
lin

g
Sa

le
sm

an
P

ro
bl

em

V
eh

ic
le

R
ou

ti
ng

P
ro

bl
em

P
ic

ku
p

an
d

D
el

iv
er

y
P

ro
bl

em

. .
.

w
it

h
ca

pa
ci

ta
te

d
ve

hi
cl

es

. .
.

w
it

h
el

ec
tr

ic
ve

hi
cl

es

. .
.

w
it

h
T

im
e

W
in

do
w

. .
.

w
it

h
T
ra

ns
fe

rs
D

yn
am

ic
re

pl
an

ni
ng

St
oc

ha
st

ic
de

m
an

d
St

oc
ha

st
ic

cu
st

om
er

s
St

oc
ha

st
ic

tr
av

el
ti

m
es

Problem flavors Var. properties

Chance Constrained Programming [35, 55] [35, 55] [35] [55]

Stochastic Programming with recourse [55, 56] [56] [55]

Approximate Linear Programming [110] [110] [110]

Approximate Dynamic Programming [66, 74] [100, 16] [16]2 [100, 16] [16] [74] [66, 74] [100, 16] [100, 16]

Stochastic VNS [96] [95] [95] [95] [95] [95] [95]

Multiple Plan Approach [8, 95] [8, 95] [8, 95] [8, 95]

Multiple Scenario Approach [8, 95] [8, 95] [8, 95] [8, 95] [8, 95] [95]

Genetic Algorithm [64] [93] [64, 93] [93] [64, 93] [93] [93]

Particle Swarm Optimization [26, 18] [26, 18] [26] [26] [26]

Auction-based algorithm [67, 20] [67, 20] [67, 20] [20] [67, 20]

Monte-Carlo Tree Search [89] [62] [62] [89]

Table 2.1 – Selection and classification of resolution methods based on the variant of problem
they were applied to.

2The work presented in [16] addresses a train routing problem with constrained “distance budget” before
mandatory maintenance, which could be compared to the limited autonomy of electric vehicles.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

2.5. DEEP NEURAL NETWORKS HEURISTICS 39

Based on the references listed in this table, heuristic approaches seems to receive more focus
in the last years than exact or approximate approaches to address rich DS-VRPs, because of
the complexity of the problem. A variety of methods have been proposed, and all of them
have demonstrated some success. The main take-away is that methods that can efficiently take
into account and anticipate on stochastic and dynamic events through lookup strategies (e.g.
Monte-Carlo trajectory sampling) have a net advantage in DS-VRPs compared to more reactive
approach simply updating plans as soon as new information is available.

From this review, the Variable Neighborhood Search (VNS) introduced in [69] seems to have
received a lot of attention in the last fifteen years. It can be seen as a specialized extension of
Simulated Annealing where local-operators with increasing level of perturbation on the solution
defines growing neighborhoods around the current solution. These neighborhoods are explored
in sequence until a better solution is found. The VNS is allowed to go through invalid solutions
by relaxing some of the constraints of the problem, but tries to return a valid one if it finds any.
Its Stochastic variant S-VNS [43] uses a generative model to estimate the value of a solution
on a short horizon. It was adapted to the Dial-a-Ride Problem (DARP) by [95]. The Multiple
Plan Approach (MPA) and its stochastic variant the Multiple Scenario Approach (MSA), both
introduced in [8], are approaches which maintain batches of solutions and revisit them based on
dynamic events while executing consensual decisions. If the original paper used VNS to produce
the candidate solutions in the batch, one could combine this framework with any other heuristic
and meta-heuristic.

All these approaches still lack the ability to extract knowledge from past experiences, and
blindly explore new solutions every time the customer configuration changes. That is why ap-
proaches based on Deep Neural Networks, and more specifically Deep RL, have been recently
proposed to automatically learn heuristics based on data, as discussed in the following Sec-
tion 2.5.2.

2.5 Deep Neural Networks Heuristics

The Deep Learning trend has reached many fields of Artificial Intelligence during the last twenty
years, emphasized by some great successes in Image Recognition and Segmentation [87], Text
Analysis and Translation [86], or Reinforcement Learning [71], to only cite a few. These tech-
niques have recently reached the field of Intelligent Transport Systems [113]. Borrowing struc-
tures initially used for text encoding, and some training algorithms from Reinforcement Learning,
a recent line of work has emerged to address some well-known combinatorial problems [7], includ-
ing the Travelling Salesman Problem and the Vehicle Routing Problem. Deep Neural Networks
can either be used as intermediate heuristics involved in more classical local search approaches,
to evaluate a partial solution or select the next node to be inserted for example [47], or as an
end-to-end planner that directly outputs a solution from an encoding of the raw characteristics
of the problem instance [50]. They are capable of extracting patterns and knowledge from past
experiences and historical data, learning compact and informative representation to build a solu-
tion for a new instance of the same problem without any human expert intervention. Combined
with the fact that a forward pass computation can be highly parallelized, getting the best from
GPU hardware acceleration, they have an incredible quality to speed ratio compared to all other
existing heuristics. In this section, we will first review some basic background knowledge about
Deep Learning, before detailing the recent advances in Combinatorial Optimization using Deep
RL and Attention Mechanisms used as graph encoders.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

40 CHAPTER 2. VEHICLE ROUTING PROBLEMS

2.5.1 Basics of Deep Learning

∑

x1

w1x2

w2

x3 w3

x4

w4

x5

w5

b

y

Figure 2.6 – Abstract representation of a neuron in a deep neural network. Its inputs (blue) are
linearly combined, weighted by learned parameters (red). This combination is then fed to a non-
linear activation function to form its output (green). Here, some alternatives for this activation
function are represented: hyperbolic tangent (top), sigmoid (middle) or rectified linear unit
(bottom).

Before diving at the heart of the problem, let’s first introduce some basic notions of Deep
Learning. A Deep Neural Network is a stack of layers composed of neurons. Each neuron
computes a simple linear combination of its inputs, coming from previous layers of the network,
which is then saturated by a non-linear activation function to yield this neuron’s output, as
illustrated on Figure 2.6. Theoretically3, activation functions should be differentiable on R.
The linear combination is weighted by free parameters w P Rd which will be optimized during
training, where d P N is the size of the input and parameter vectors. It can be optionally offset
by an additional bias parameter b P R.

On its own, a single neuron cannot learn much, but combined with many others, they are
theoretically capable of learning any function. Layers of neurons are assembled as illustrated
on Figure 2.7, forming a network called Multi-Layer Perceptron [92] (MLP).

x1

x2

x3

∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

∑
y

Figure 2.7 – A Multi-Layer Perceptron with three hidden layers of size 4, 5 and 3 and a single
output neuron. This network could be trained as a simple binary classifier in an input space of
dimension 3.

3In practice, the rectified linear unit and its variants are not differentiable at 0 but works anyway.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

2.5. DEEP NEURAL NETWORKS HEURISTICS 41

Mathematically, it is more practical to regroup every input, output, parameters and inter-
mediate results as tensors. Let’s consider for example an MLP of L layers of respective sizes
d1, d2, . . . , dL. We note x P Rd0 the input vector, y P RdL the output vector. wl P Rdl´1ˆdl is
the matrix of weights, and bl P Rdl the vector of biases of layer l P J1, LK. Any intermediate
results hl P Rdl is computed as:

hl “ Γlphl´1 ¨ wl ` blq (2.6)

where Γl is the activation function of layer l P J1, LK applied element-wise, h0 “ x and y “ hL.
The objective pursued while training the network is expressed as minimizing a scalar loss function
ξ whose definition depends on the application. It at least takes the network output y as one of its
input, and must be differentiable w.r.t. it, i.e. Bξ

Byi
exists and is finite @i P J1, dLK. Using the chain

rule, this enables us to optimize the parameters of the network using first order optimization,
a.k.a. gradient descent. Indeed for any layer l P J1, LK:

Bξ

Bwl
“
Bξ

By

By

BhL´1
. . .
Bhl`1

Bhl

Bhl
Bwl

(2.7)

wl Ð wl ´ α
Bξ

Bwl
(2.8)

where (2.7) illustrates the chain rule, and (2.8) is the gradient descent update rule with α ą 0
the learning rate, a meta-parameter controlling the step-size of each update. Similar calculation
can be written for the biases bl.

However, the objective is actually defined as minimizing the expected value of the loss w.r.t.
some distribution of the input X. The support of this distribution is often high-dimensional, so
it is intractable to precisely compute the gradient. Instead, a dataset containing many samples
of the input is fractioned into mini-batches of size B, for which we can efficiently compute
corresponding mini-batches of output in what is called a forward pass into the network. The
objective is estimated from the empirical mean of the loss function on this mini-batch, making
the optimization algorithm a Stochastic Gradient Descent (SGD). The gradients w.r.t. the
parameters of the different layers are also efficiently computed during a backward pass into the
network. An optimizer then uses the estimated gradient values to update the parameters and
the forward-backward passes are repeated until there are no more mini-batches and the whole
dataset has been through the network. At this point, we have reached the end of a training
epoch, some meta-parameters can be updated, and some accuracy and performance tests can
be conducted using a separated dataset, containing samples never encountered during training
to detect and avoid over-fitting. Afterwards, a new epoch starts using new mini-batches of
the training dataset. The size of the mini-batches, the number of training epoch, the learning
rate and the way it is updated at each epoch, the choice of optimizer, . . . are as many meta-
parameters we can tune to get the best performances from our network.

2.5.2 Using DNN to solve routing problems

Now that we are more familiar with some basic notions of Deep Learning, let us review how
to train a network to solve routing problems. The goal is to learn to represent the customer
configuration and the partial routes already travelled, and to output a distribution over the next
step of the route. We will need architectures capable of efficiently representing structured data.
Indeed, if images can directly be viewed as tensors, it is not the case for words in a text, or

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

42 CHAPTER 2. VEHICLE ROUTING PROBLEMS

nodes of a graph. We will not go into the details of how words are embedded and combined to
encode a whole sentence. However we will see how the architectures developed for text can be
used to encode fully-connected graphs such as the ones formed by customers in a VRP. As an
illustrative example, we will consider the graph depicted on Figure 2.8, which corresponds to
the toy DS-VRP presented earlier in Figure 2.5. There are 5 nodes representing the depot and
the 4 customers, each of them labelled by a vector of attributes containing its position, demand,
time window and duration. Because vehicles can travel from any node to any other node, the
graph is fully-connected and all edges are labelled by vectors containing their travel costs and
times.

e0,1

e0,2

e0,3

e0,4

e1,2

e1,3

e2,3

e3,4

0

1

2

3

4

Node label v1 = [x1, y1, q1, e1, l1, d1]

Edge label e1,4 = [c1,4, τ1,4]

v0

v2

v3

v4

Figure 2.8 – Small graph of customers with vectors of attributes vi and vi,j as labels on nodes
and edges, respectively. Here, these vectors contains the customers features and travel costs and
times of a VRPTW as an example. We need to encode the whole graph in order to use it as an
input of a DNN.

The following of this section will describe state-of-the-art architectures to encode such a graph
and to learn heuristics to solve VRPs on a distribution of instances with different configurations
of customers. We will start with the pioneering approach of Vinyals, Fortunato, and Jaitly[116]
which uses an advanced variant of Recurrent Neural Network (RNN) called Long Short-Term
Memory (LSTM), and combines it with an additive attention mechanism to form an architecture
called Pointer Network. We will then introduce a more recent architecture called Transformer
[112] and its core Multi-Head Attention (MHA) layer based on multiplicative attention that
it relies on. We will review its application to VRPs through the work of Kool, Hoof, and
Welling [50].

In all this section, we will use the notation wxy P R¨¨¨ˆdxˆdy to indicate a tensor of learned

parameters that projects an input vector x P Rdx to a new vector denoted y P Rdy , where dx P N
and dy P N are the input and output dimensions, respectively. If we need to index a component
of such a tensor of parameters, we will use the notation rwxy si to help differentiate the name of
the tensor from the index i of the component we want to select.

Recurrent Neural Networks

Before we dive into Pointer Networks, let us first introduce how a RNN accumulates information
from a sequence of input vectors v0, . . . ,vn into a hidden state h. We will denote dv P N the
dimension of the input vectors and dh P N the dimension of the hidden state vector. At each
input element vj P Rdv in the sequence, the hidden state hj P r´1, 1sdh gets updated as follow:

hj`1 “ tanhpvj ¨w
v
h ` hj ¨w

h
h ` bhq (2.9)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

2.5. DEEP NEURAL NETWORKS HEURISTICS 43

where tanh is used as an activation function applied element-wise, wvh P Rdvˆdh is a matrix of
parameters projecting the input element vj to the hidden vector-space of the RNN, whh P R

dhˆdh

is a matrix of parameters re-projecting the previous hidden state hj to the same hidden vector-
space to be combined with the new input, and bh P Rdh is an optional vector of biases. The initial
hidden state h0 which initiate the output sequence can either be an arbitrary constant vector,
or a learned parameter. To encode the example graph pictured in Figure 2.8 through a RNN,
we would feed it with the nodes labels in any arbitrary order. With this architecture, we cannot
take into account the edge labels (here: travel costs and times), and can only indirectly rely
on the correlations between them and the nodes labels (e.g. customer coordinates). Figure 2.9
illustrates how the example graph previously introduced in Figure 2.8 would be encoded through
a RNN.

0

1

2

3

4

v0

h0
RNN

v1

h1
RNN

0

v2

h2
RNN

0
1

v3

h3
RNN

0
1

2

v4

h4
RNN

0
1

2

3

h5

0
1

2

3 4

Unrolled RNN
operations

Figure 2.9 – Illustration of how a RNN can be used to encode the graph introduced in Figure 2.8.
Each node label vj is fed to the RNN in an arbitrary order to progressively build a representation
h5 of the whole graph.

The interesting property of RNNs which make them useful for encoding graphs is that they
can learn representation of sequences v0, . . . ,vn of variable lengths. Nonetheless, even though
they re-use the same parameters for all input elements, they are not invariant to permutations in
the order of these elements. This property greatly reduces their efficiency when trying to learn
to represent an unordered set of nodes (through their labels). Additionally, RNNs accumulate
information on prefixes of the sequence until they reach the last element vn, and their hidden
states hn`1 finally contain a representation of the whole input. Because of this, we do not
get a proper encoding for each node of the graph, as intermediate hidden states hj lack the
information contained in the suffix vj , . . . ,vn of the sequence. The only representation that can
really capture all the information available is the one obtained at the end, corresponding to the
whole graph. Finally, as all elements are treated equally, RNNs have a tendency to forget older
elements when the sequence length increases, because information gets diluted in the hidden
state through successive updates.

To solve this last issue of RNNs, more advanced recurrent architectures have been proposed.
For example, Long Short-Term Memory (LSTM) cells [46] add another internal vector called the
cell state, denoted c P Rdh . This cell state can be seen as a read/write memory within the layer,
and is updated through a set of four gates that learn what information should be forgotten,
saved, or extracted from the cell state based on the successive input elements and hidden states.
Although LSTMs try to counter-act the biases of RNNs that forget older inputs, they still suffer

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

44 CHAPTER 2. VEHICLE ROUTING PROBLEMS

from the same limitations when it comes to encoding the nodes of a graph. To solve the lack
of dependencies between the intermediate hidden states and the suffixes of the input sequences,
one could use bidirectional LSTM, where the reversed sequence is fed to another “backward”
LSTM cell whose hidden states are then combined with the ones of the “forward” cell.

Pointer Networks

We have just presented how RNNs can be used to represent a graph, and we are now ready
to review how to address the second challenge in applying RNNs to solving routing problems,
which is to produce a permutation of the input sequence. In sequence-to-sequence (seq-to-seq)
models, which are used to translate sentences from one language to another, two RNNs work in
tandem. An encoder produces a hidden state for every element of the input sequence. Then, a
decoder produces a sequence of output elements based on the context provided by the encoder.
In the simplest seq-to-seq models, this context only consists in the final hidden state hn of the
encoder. To enrich the information available to the decoder, an additive attention layer g can be
added, as describe as follow. It takes as input the whole sequence of encoder states h1, . . . ,hn`1

regrouped as a tensor h P Rnˆdh and the current hidden state of the decoder RNN h1 P Rdh ,
and outputs a glimpse g P Rdh which combines them as follow:

a “ ηpph ¨wha `
Ø

h1 ¨wh
1

a q ¨waq (2.10)

g “ a ¨ h (2.11)

where wha P R
dhˆda , wh

1

a P R
dhˆda and wa P Rda are matrices and vector of learned parameters,

Ø

h1 denotes a matrix P Rnˆdh built from stacking n copies of the decoder state h1, and η is the
soft-max function. The vector a P r0, 1sn contains the attention scores associated with every
encoder state. They weight a linear combination of the encoder states to form the enriched
glimpse g driven by the current decoder state h1.

0 2 3 4 1

h′
0

RNN
h′

1
RNN

h′
2

RNN
h′

3
RNN

h′
4

RNN
h′

5

Encoder states

h1

0
1

2

3 4

1

Attention
h

h2

0
1

2

3 4

1

Attention
h

h3

0
1

2

3 41

Attention
h

h4

0
1

2

3 4
1

Attention
h

h5

0
1

2

3 4

1

Attention
h

Unrolled decoding RNN
operations

=

h

0 1 2 3 4

2

0 1 2 3 4

3

0 1 2 3 4

4

0 1 2 3 4

1

0 1 2 3 4

0

Figure 2.10 – Illustration of how a Pointer Network iteratively generates a permutation of the
input nodes in the graph of Figure 2.8 to form a solution to the TSP.

In [116], Vinyals, Fortunato, and Jaitly proposed to use the same attention mechanism to
output a permutation of the input sequence. Indeed the result of the Additive Attention glimpse

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

2.5. DEEP NEURAL NETWORKS HEURISTICS 45

was previously used as an intermediate hidden state which was re-projected by further layers
to form a distribution on an output dictionary completely independent of the input. Instead of
using the attention vector a as weights to linearly combine the encoder hidden state and enrich
the decoder state, they directly use it as the parameters of a distribution on the input sequence.
This operation is illustrated on Figure 2.10. They sample this distribution to get the index of
the next output selected from the input sequence, such that the probability to select a node
j P J0, nK as the next destination is equal to the attention score aj . In our example, this output
index indicates which node to visit next.

They trained their model to solve 3 combinatorial problems on graphs: Convex Hull, Delau-
nay Triangulation, and more importantly for us TSP. For each problem, they randomly generated
a million training instances, which they solved using existing exact or approximate algorithms
to get ground truth labels. With this Supervised Learning approach, they could not outperform
the heuristics they used to label the dataset.

In [6], Bello et al. extend the architecture by inserting some attention glimpses between the
decoder and the final additive attention layer outputting the distribution on the input sequence.
More importantly, they used a loss function borrowed from Reinforcement Learning to train
their model directly from the performances of solutions sampled from the model. This self-
improving approach enabled them to outperform the basic heuristics used as ground truth in
[116]. However with no guidance from ground truth labels, there are many possibilities to explore
in the solution space. The model even has to learn the “hard way” (i.e. by highly negative reward
signals penalizing the performance measure) to avoid invalid solutions. However to temper this
increased complexity, the authors added a masking mechanism applied on the distributions
output by the model to prevent it from sampling invalid solutions.

These two first approaches used LSTM to encode the graph, and we already underlined that
this structure does not have the desired property of invariance to permutations of its input. In
[73], Nazari et al. propose to greatly simplify the initial encoding of the graph. They use a
simple linear layer to project each node vj P Rdv to a intermediate representation hj P Rdh .
Formally, this translates to:

hj “ vj ¨w
v
h ` bj (2.12)

where wvh P R
dvˆdh and bj P Rdh are a matrix and a vector of learned parameters. They use this

flexibility and efficiency to address the CVRP, by re-encoding customers when they get served
to update the internal representation of the state of the problem. However, because there is no
relation between the encoding of each node, this efficiency comes with a cost in the complexity
of the patterns the model can extract from the graphs of customers.

Multi-Head Attention

We now want to get rid of the RNN structure in favor of a permutation-invariant structure. To
this end, the Multi-Head Attention (MHA) layer is a promising building block for efficient graph
encoders. In a recent article [112], Vaswani et al. introduced this MHA layer for structured-data
representation, originally applied to Natural Language Processing. We mentioned earlier that
the additive attention in the existing structures (i.e. Pointer Networks and variants) played an
important role in aggregating and focusing information from all nodes of the graph. Here, they
propose a Multiplicative Attention model which can be highly parallelized, and defines attention
scores based on a learned similarity measure. Moreover, their proposition is to split the compu-
tation to multiple heads, which offer more diversity in the internal intermediate representation.
Thereby they obtain what is now called a Multi-Head Attention (MHA) layer.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

46 CHAPTER 2. VEHICLE ROUTING PROBLEMS

Multiplicative
attention

nh
heads

q
nq × dq

[wq]1
dq × d′

k

·

k
nkv × dk

[wk]1
dk × d′

k

·

v
nkv × dv

[wv]1
dv × d′

v

·

.ᵀ

· η ·

[w′
v]1

d′
v × dv

· ṽ1.
.

ṽnh

v̂
nq × dv

+

Figure 2.11 – Multi-Head Attention layer which combines a set of values regrouped in tensor v
based on the similarity between their associated keys k and some queries q. Different combina-
tions ṽh are produced in multiple parallel heads, and finally recombined into an output value v̂
for every query.

As illustrated in Figure 2.11, it takes as input a set of nq queries of size dq, and a set of
nkv key-value pairs of respective sizes dk and dv. Splitting the computation onto nh parallel
heads, it aggregates the values weighted by compatibility scores between their respective keys
and the queries. Mathematically, for every head h, this compatibility xq,kyh between a matrix
of queries q P Rnqˆdq and a matrix of keys k P Rnkvˆdk can be written as:

xq,kyh “ pq ¨ rw
qshq ¨ pk ¨ rw

kshq
ᵀ (2.13)

where rwqsh P Rdqˆd1k and rwksh P Rdkˆd1k are matrices of learned parameters, specific to
each head h P J1, HK, that projects q and k in an intermediate space of size d1k where their
scalar product plays the role of a similarity measure. Again, the notation rwqsh indicates the
component of the tensor wq containing the query projection weights of the hth head of the MHA
layer. Then, each head h P J1, HK computes a value per query as a matrix ṽh P Rnqˆd

1
v :

ṽh “ η

˜

xq,kyh
a

d1k

¸

¨ pv.rwvshq (2.14)

where rwvsh P Rdvˆd
1
v is another matrix of learned parameters. In this intermediate representa-

tion, the contribution of every input value in v is weighted by the normalized similarity measure
between its corresponding key in k and each query in q. Finally all head values are recombine
through:

v̂ “
H
ÿ

h“1

ṽh.rw
1
vsh (2.15)

where trw1vsh P R
d1vˆdv @hu are the last matrices of learned parameters that project every head

values back to a single value per query v̂ P Rnqˆdv in the original value space.

This MHA layer can easily be used to aggregate information in a fully-connected graph,
and has the advantage of producing a unique representation for each node (contrary to RNNs in
[116]) but also encode the relations between the nodes (contrary to independent linear projection
with shared parameters in [73]). Another net advantage of a MHA layer compared to a RNN
cell is that all computations can be conducted in parallel, whereas successive hidden state can
only be computed sequentially. Figure 2.12 illustrates how a MHA layer could be used to

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

2.5. DEEP NEURAL NETWORKS HEURISTICS 47

0

1

2

3

4

v0

v1

v2

v3

v4

MHA

k vq4

v′
4

0
1

2

3 4

MHA

k vq0

v′
0

0
1

2

3 4

MHA

k vq1

v′
1

0
1

2

3 4

MHA

k vq2

v′
2

0
1

2

3 4

MHA

k vq3

v′
3

0
1

2

3 4

Parallel operations
in MHA for all queries

Figure 2.12 – Illustration of how the representations for every node in the graph of Figure 2.8
are obtained using a MHA layer.

encode the graph presented in Figure 2.8. The nodes attributes v P Rnˆdv are fed to all
three inputs of the layer, used as a self-attention mechanism. For any head h P J1, HK, the
compatibility scores xv,vyh P Rnˆn can be viewed as a scalar edge attribute between any pair
of nodes. If the graph is not fully connected, the scores can be masked by forcing some elements
to ´8, thereby preventing the propagation of information between the corresponding nodes.
However, if the graph is too sparse, a lot of useless computation will be conducted, and the
MHA layer could be replaced by a more efficient structure. Finally, MHAs as graph encoders
cannot naturally integrate edge labels into their computations, hence their application to VRPs
still rely on features only associated with the customers, e.g. travel times and costs correlated
to the customers coordinates.

Transformers

If the MHA layer could be used as a graph encoder on its own, it would not form a really deep
architecture and would lack the capacity to represent richer non-linear functions. In [112], the
authors then integrated the MHA layer into a larger structure called a Transformer, designed
to enrich the intermediate representations by adding non-linearities in-between self-attention
passes. This Transformer can then be used as a more powerful and expressive graph encoder.
An illustration of the architecture of a Transformer is given in Figure 2.13. After getting an
initial embedding h0 P Rnˆdh of the nodes attributes v P Rn`1ˆdv , successive Transformer layers
first apply an MHA sub-layer used as a self-attention mechanism It combines and updates the
attributes of the nodes by pulling information from all others. Through this learned aggregation
and update function, it can extract more complex patterns formed by any subset of nodes in
the graph. It is followed by a simple feed-forward layer (2-layers MLP) that adds non-linear
relations to enrich the class of functions the Transformer can learn.

Both sub-layers (MHA and feed-forward) are short-circuited by skip-connections to improve
gradient flow, and normalized to avoid biases due to the number of nodes. During training,
the normalization operation keeps running averages of the mean and standard deviation of the
intermediate attributes of the nodes. These estimations are saved along the other parameters

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

48 CHAPTER 2. VEHICLE ROUTING PROBLEMS

Transformer layer

nl
layers

v
n × dv

·

wv
0

dv × dh

+

b0
dh

h0
n× dh

Initial
Embedding

·w ·w ·w

.ᵀ

· η · ·
w

MHA

+

Skip-connection

|.| ·

[wh
f]1

dh × df

+

[bf]1
dh

(.)+

·

[wf
h]1

df × dh

+

[bh]1
dh

Feed-forward

+

Skip-connection

|.|
h1

hnl
n × dh

Figure 2.13 – Transformer Encoder. The structure is not recurrent and the nl layers do not share
the same weights. The new notations that are introduced are |.| representing a normalization
operation and p.q` a rectified linear unit (relu).

of the model, and their values can be frozen at inference time. Some dropout can be inserted to
improve robustness and avoid over-fitting. This consists in randomly setting some elements of a
tensor to 0 with a fixed probability, and emphasizes redundancy and diversity in the intermediate
projections learned during training.

Attention Model

Deudon et al. [31] integrate the Transformer Encoder of [112] into an architecture designed to
sample high-quality initial solutions for TSPs, which are then simply refined by a 2-opt heuristic.
In parallel to this work, Kool, Hoof, and Welling [50] also build around the Transformer Encoder
and the Multi-Head Attention layer to propose an end-to-end heuristic that can efficiently sample
solutions for a variety of problems ranging from VRPs to Stochastic TSPs. Additionally to this
architecture contribution, they introduce a Monte-Carlo baseline to reduce the variance of the
gradient estimator during training.

Their Attention Model (AM) learn to represent the graph of customers through a Transformer
encoder. From the encodings of the customers and depot, they create a context vector which
gets updated after each decision. This context vector drives an attention mechanism which
computes a score for each node, used as the probability to select it as next target. The MARDAM
architecture we built to address rich DS-VRPs we will present in Chapter 5 is inspired by and
can be seen as an extension of AM. It uses the same attention mechanisms, namely Transformer
and MHA, to encode the global state of customers and vehicles and build individual decision
rules for every agent controlling the vehicles. We will also use AM in Chapter 6 as a state-
of-the-art baseline for solving VRPs using Deep RL in the experimental benchmarks we use to
evaluate the performances of MARDAM.

2.6 Conclusion

Vehicle Routing Problems (VRPs) have come a long way since their introduction in the late
fifties [28]. Exact approaches such as the modern Branch-and-Cut-and-Price of [79] have found
provably optimal solutions to larger and larger instances of the static and deterministic VRP.
However the problem is still quite involving, and instances dealing with more than a few hundreds
customers can only get approximate solutions, where progress is made towards reducing the

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

2.6. CONCLUSION 49

optimality gap. Other heuristics and meta-heuristics such as Genetic Algorithm, Ant Colony
Optimization or Variable Neighborhood Search have been developed and are used extensively
to address larger VRPs with a collection of additional constraints. If they do not provide a
way to measure the optimality gap of the solution they return, it has been experimentally
observed that they tend to produce high quality solutions. These heuristics are also more easily
integrated into frameworks dealing with dynamic and stochastic information. The Multiple
Plan Approach and Multiple Scenario Approach of [8] is a typical example of such frameworks.
Nonetheless, most of these approximate approaches rely on hand-crafted expert heuristics and
do not automatically learn from past experiences. They blindly explore the solution space given
the customer configuration they are facing. One notable exception in the OR literature is the
work of [83] on Approximate Dynamic Programming which exploit historical data from large
logistic networks (e.g. long-haul trucks [100], or railroads [16]) to learn dispatching policies
indicating how to allocate vehicles considered as resources to customer services or tasks.

A recent line of works initiated by [116] tried to use Deep Neural Network to learn to solve
routing problems directly from data. Following works [6, 73] improved on the method and used
Deep Reinforcement Learning to learn efficient heuristic for the Travelling Salesman Problem
(TSP) and VRP without supervision. The complexity in applying such methods is to find an
efficient way to represent the graph formed by customers and the state of the system. The latest
improvement to address this challenge that has been proposed in the literature is Attention
Mechanism, especially the Multi-Head Attention layer and the Transformer encoder of [112].
They have been successfully used to solve TSPs and VRPs with a few variants in [50]. However,
all existing approaches based on Deep RL have reframed the VRP as a single-vehicle problem,
and do not take into account the multi-agent dimension of the problem. Hence, they cannot
represent the global state of the system in a dynamic and stochastic environment, where multiple
vehicles evolve in parallel. In the following of this thesis, we will study such a multi-agent model
and address it using an approach based on DNN, more specifically MHA and Transformer layers.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

Chapter 3

Multi-Agent Reinforcement Learning

We just reviewed in Chapter 2 traditional models and solution methods for the Vehicle Routing
Problem (VRP). Its basic static and deterministic variant is already computationally involving,
and considering dynamic and stochastic events only makes the complexity of the problem grow.
To avoid having to consider decision variables for every possible realizations of the stochastic
variables, and every possible evolution of the dynamic ones upfront, most traditional approaches
in the OR literature for the Dynamic and Stochastic VRP (DS-VRP) tend to solve new problems
with freezed variables every time new information is available.

Markov Decision Processes offer a general framework that naturally describes agents inter-
acting with a stochastic environment. If the dynamic state representation of DS-VRPs will still
be a challenge in this MDP framework, it opens up opportunities to use all the recent tools
of Deep Multi-Agent Reinforcement Learning (Deep MARL) which have demonstrated their
capabilities to represent and compress complex state space while empirically performing near
optimally. In this chapter, we will first introduce the formalization and some basic proper-
ties of Markov Decision Processes in Section 3.1 their direct extension to multi-agent (MMDP)
settings in Section 3.1.2, and their decentralized, partially observable (Dec-POMDP) variant in
Section 3.1.4. Then we will review the main approaches to optimize policies that provide decision
rules to the agent while it interacts with its environment in Section 3.2. We will then report our
preliminary work that contributed to extend the mathematical foundations of Policy Gradient
methods, especially the Actor-Critic algorithms, to the decentralized setup in Section 3.3. This
work was published in [2].

3.1 Markov Decision Processes

In this first section, we are going to present the different models we are interested in, by pro-
gressively introducing the properties we want to capture, namely the multi-agent dimension
and the partial observability of the state. We will also present the more complex Dec-POMDP
setting, where agents must take their decisions independently, based on their own individual
observations. We will highlight how each of this model can be reduced to the simple MDP
case using complex, and often continuous, augmented state spaces. This help understand how
all the mathematical properties of MDPs can be generalized to more complex variants. It also
highlights the challenge of finding efficient and rich state representations for this augmented
state spaces, so that we can adapt the algorithms and resolution methods to the more complex
cases.

50

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

3.1. MARKOV DECISION PROCESSES 51

3.1.1 Basics of MDPs

Environment

Agent

State
s ∈ S

Action
a ∈ A

Reward
r ∈ R

Figure 3.1 – Simple representation of the interaction loop modelled by an MDP. At each decision
step, the agent observes the state (green arrow) and executes an action (blue arrow) to gather
rewards (red arrow).

In a Markov Decision Process (MDP), an agent controls the evolution of an environment, in
an interaction loop illustrated on Figure 3.1. After observing the environment state, the agent
makes a decision and executes an action, which affects the environment and makes it transition
to a new state. State transitions are generally stochastic, and obeys the Markov property which
imposes that every transition only depends on the previous state and the last action. The agent
also receives a reward after each transition, and will try to choose its action to accumulate as
much reward as possible. Formally, an MDP is defined as follow:

Definition 3.1 (Markov Decision Process). An MDP is defined by the tuple pS,A, P,R, P0q

where:

S is the set of possible states of the system;
A is the set of possible actions to interact with the system;
P : ps, a, s1q ÞÑ PrtSt`1 “ s1 | St “ s,At “ au

is the transition rule which gives the probability of reaching state s1 P S after
executing action a P A from state s P S – we will use a shorter mixed notation and
write P ps1|s, aq;

R : ps, a, s1q ÞÑ Rps, a, s1q P R
is the immediate reward function;

P0 : s ÞÑ PrtS0 “ su
is the initial state distribution.

Depending on the system we want to model as an MDP, we can consider a few different
variant to define how long the agent will interact with its environment. We call this number
of decision steps the planning horizon, denoted T . It can either be finite (T P N`), infinite
(T “ 8) or undetermined. This last case corresponds to models where specific termination
conditions defines a subset G of goal states that put an end to the episode once reached, after
a finite but unknown number of decision steps. In many cases, there are more than one way to
model a system in term of planning horizon. It is even possible to convert one horizon model
to another with only minor modification to the objective function, that yields the same results.
The fundamental properties on MDP are mostly the same whatever the nature of the planning
horizon is. As an example, we could translate a finite horizon model to an infinite horizon one
by augmenting the state with a step counter t and define a sink state that repeats indefinitely
with 0 reward once t ě T . With that in mind, let’s now formally define how our agent takes its
decision through what we call its policy, denoted π:

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

52 CHAPTER 3. MULTI-AGENT REINFORCEMENT LEARNING

Definition 3.2 (Policy). A non-stationary stochastic policy π provides decision rules πt :
ps, aq ÞÑ PrtAt “ a | St “ su which give the probability of choosing action a P A from any
state s P S at any decision step t P J0, T K. We will use the short-hand notation πtpa|sq.

For infinite horizon settings, we consider stationary policies π that do not vary in time, and
prescribe actions a P A given a state s P S. Policies can also be deterministic functions of the
form π : S Ñ A, which can be seen as a degenerated conditional distributions that associate
a specific action a to any state s with probability 1. We will see later that there always exists
an optimal deterministic policy. However, the more general stochastic ones have the advantage
of being continuous, which can make them easier to represent with some policy approximation
architecture, such as deep neural networks. Stochastic policies can also be differentiable, which
opens up opportunities to train them using gradient descent algorithms.

The objective in an MDP is to find a policy that maximizes the expected cumulated reward

Eπ,P,P0

«

T´1
ÿ

t“0

γtRpSt, At, St`1q

ff

(3.1)

where γ Ps0, 1s is a discount factor balancing the objective between immediate and future re-
wards, S0 „ P0 and At „ πtp¨|Stq St`1 „ P p¨|St, Atq @t P J0, T ´ 1K. If the planning horizon is
infinite (T “ 8), we need γ ă 1, otherwise the problem is undecidable.

3.1.2 Multi-agent MDPs

The VRPs which we want to solve using Reinforcement Learning (RL) involve a fleet of multiple
vehicles. Hence, we need models that can capture the interactions of multiple agents with a
shared environment. One of these models derives from MDP and is called Multi-agent MDP
(MMDP) [15]. In MMDP, the evolution of the state and the rewards all agents receive result
from the effect of all their individual actions combined into a joint action. They share a common
objective which is to cooperate to maximize the expected cumulated reward. Given Definition 3.1
of an MDP, an MMDP is defined as follow:

Definition 3.3 (Multi-agent MDP). An MMDP is defined by the tuple pI,S,A, P,R, P0q where
S, P,R, P0 have the same definitions as in MDPs and:

I is the set of agents interacting in the system;
A “

Ś

iPI
Ai

is the set of possible joint actions which can be decomposed into individual actions
ai P Ai chosen independently by every agent i P I;

3.1.3 Partially Observable MDPs

Unfortunately, some systems require way to many variables to describe their state evolution from
one step to the next, and the agent is often forced to base its decisions on noisy and limited
measurements correlated to this inaccessible and sometimes intractable environment state. This
new model is called Partially Observable MDP (POMDP). This has for consequences that we

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

3.1. MARKOV DECISION PROCESSES 53

can no longer devise policies based on the state, which had the advantage of summarizing all the
previous steps due to the Markov property. To guarantee that we do not loose any information,
we a-priori need to keep track of all past observations and actions taken, which we call the
history of the agent. Figure 3.2 illustrates the new interaction loop between the agent and the
partially observable environment it evolves in.

Environment

Hidden state
s ∈ S

Agent

History
h ∈ H

Action
a ∈ A

Observation
z ∈ Z

Reward
r ∈ R

Figure 3.2 – Interaction loop between an agent and its partially observable environment. The
state updates (gray arrow) are hidden, and only perceived through an imperfect observation
(green arrow). The agent keeps track of all past observations and actions taken that constitute
its history (cyan arrow), to accumulate information and drive its decisions to choose an action
(blue arrow). It still receives rewards (red) and tries to accumulate as much as possible along
its trajectory.

Definition 3.4 (Partially Observable MDP). A Partially Observable Markov Decision Process
(POMDP) is a variant of MDPs defined by the tuple pS,A,Z, P,Ω, R, P0q where S,A, P,R, P0

have the same definitions as in MDPs and:

Z is the set of possible observations received from the system;
Ω : ps, zq ÞÑ PrtZt “ z | St “ su

is the observation rule which gives the probability of receiving observation z P Z
from state s P S – we will use a shorter mixed notation and write Ωpz|sq;

Definition 3.5 (History). An history ht P Ht aggregates all the information available to the
agent up to decision step t P J0, T ´ 1K. h0 starts as a single-element sequence containing the
initial observation z0 P Z, and is recursively updated at each decision step t to include the last
action at´1 P A and the resulting observation zt P Z. Formally, we can write:

h0 “ pz0, q (3.2)

ht “ ht´1 q pat´1, ztq “ pz0, a0, . . . , at´1, ztq @t P J1, T ´ 1K (3.3)

where q is the concatenation operator.

Ht “ Ht´1 ˆ A ˆ Z is the set of possible histories at decision step t P J1, T ´ 1K (with

H0 “ Z), and we call H “
T´1
Ť

t“0
Ht the set of all possible histories.

Definition 3.6 (Policy). A non-stationary policy π provides decision rules πt : ph, aq ÞÑ PrtAt “
a | Ht “ hu for each step t P J0, T ´ 1K which give the probability of choosing action a P A after
history h P H. We will use the short-hand notation πtpa|hq.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

54 CHAPTER 3. MULTI-AGENT REINFORCEMENT LEARNING

The major drawback of this partially observable model is that the cardinality of the set H
of all possible histories grows exponentially with the planning horizon T . It is then mandatory
to find a way to compress it, through concise sufficient statistics that preserve the information
required to take decisions. Fortunately, we can prove that there exists such a statistic which is
called belief state, and is formally defined as follow:

Definition 3.7 (Beliefs). A belief state bt is a statistic summarizing histories which indicate
the probability to reach any state s after t steps. It is defined as follow:

bt : s ÞÑ PrtSt “ su @t P J0, T ´ 1K (3.4)

If the transition model is known, belief can be efficiently updated from step to step given the
previous belief state, the last action taken and the observation received. The following recursive
update rule results from the Markov property and the Bayes rule.

Theorem 3.1 (Beliefs recursion). Knowing the previous belief state bt´1, after taking action
a P A and observing z P Z, the new belief state bt can be deduced through the following recursive
relation:

btps
1q “

1

Prtz1|bt´1, au
Ωpz1|s1q

ÿ

sPS
P ps1|s, aqbt´1psq @s1 P S @t P J1, T ´ 1K (3.5)

and initially:

b0psq “ P0psq @s P S (3.6)

where Prtz1|bt´1, au “
ř

s1PS Ωpz1|s1q
ř

sPS P ps
1|s, aqbt´1psq in the normalization factor can be

computed by marginalizing over states.

Without the transition model, one can try to maintain approximate beliefs through sam-
pling and/or model learning. There are however many alternatives to construct approximate
representations that drive decision rules, which we call internal state of the agent, e.g. trun-
cated histories or recurrent neural networks. The belief states and the update rule defined in
Theorem 3.1 can be used to define an augmented MDP where they respectively play the roles
of states and transition function.

3.1.4 Decentralized POMDPs

Finally, we want a model that can capture the properties of systems where multiple agents
control the environment but must take their decision in a decentralized way, based on their
own individual observations. This model is called Decentralized POMDP (Dec-POMDP), and
is much harder than all the variants we introduced before. All agents perceive the environment
through their own incomplete and imperfect measurements, and cannot communicate with each
other, at least not losslessly or not instantaneously. The hidden state of the environment evolves
under the influence of all agents actions combined, and correlates the individual observations.
The reward signal is shared and all agents must cooperate to maximize its accumulation along
time. Figure 3.3 illustrates the interaction loop between 3 agents and their environment.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

3.1. MARKOV DECISION PROCESSES 55

Environment

Hidden state
s ∈ S

Agent 1

Indiv. History
h1 ∈ H1

Agent 2

Indiv. History
h2 ∈ H2

Agent 3

Indiv. History
h3 ∈ H3

Joint Observation
z ∈ Z

z1 z2 z3

Joint Action
a ∈ A

a1a2a3Joint Reward
r ∈ R

Figure 3.3 – Interaction loop between 3 agents and their environment. Agents receive corre-
lated individual observations (green arrows) which they cannot share with each other. They
choose their individual actions separately based on the information they have available stored
in individual histories (cyan arrows). The combined effect of their action (blue arrows) makes
the environment transition to a new state (gray arrow) and emit a joint reward signal (red ar-
rows) which all agents tries to maximize, enforcing their cooperation and coordination. Notice
that bold arrows represent joint or common variables, while normal arrows are the individual
components.

Given Definition 3.3 of an MMDP and Definition 3.4 of a POMDP, Dec-POMDPs are defined
as follow:

Definition 3.8 (Decentralized POMDP). A Decentralized Partially Observable Markov De-
cision Process (Dec-POMDP) is defined by the tuple pI,S,A,Z, P,Ω, R, P0q where I,S,A “
Ś

iPI Ai, P,R, P0 have the same definitions as in MMDPs, Ω is the joint observation function as
defined in POMDP and:

Z “
Ś

iPI
Z i

is the set of possible joint observations that are composed of individual observations
zi P Z i, each received only by a specific agent i P I;

Similarly to what we introduced for a single agent in POMDP, we will formalize the in-
formation available to each individual agent i P I stored as individual histories which are
concatenations of past individual observations and actions.

Definition 3.9 (Individual history). An individual history hit P Hi
t aggregates all the informa-

tion available to a specific agent i P I at decision step t P J0, T ´1K. It starts as a single-element
sequence containing the initial individual observation zi0 P Z i, and is recursively updated at
each decision step t to include the last individual action ait´1 P Ai and the resulting individual
observation zit P Z i (see Definition 3.5 for a more formal description). We can regroup individual
histories thit @i P Iu into a joint history h P Ht.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

56 CHAPTER 3. MULTI-AGENT REINFORCEMENT LEARNING

Definition 3.10 (Individual policy). An non-stationary individual policy πi provides decision
rules piit : phi, aiq ÞÑ PrtAit “ ai | H i

t “ hiu to a specific agent i P I which give the probability
of choosing individual action ai P Ai after accumulating individual history hi P Hi. We will use
the short-hand notation πitpa

i|hiq. We can regroup these individual policies tπi @i P Iu into a
separable joint policy π with decision rules πtpa|hq “

ś

iPI π
i
tpa

i|hiq at any step t.

Contrary to MMDPs, there is no trivial way to extract individual policies even from a
deterministic joint policy because agents do not have access to the common knowledge, e.g.
states or beliefs, and have their own local observations. The only sufficient statistic for individual
histories known so far [33] relies on the occupancy state which is defined as follow:

Definition 3.11 (Joint occupancy states). In a Dec-POMDP, the joint occupancy states are
statistics summarizing the common knowledge, which are defined by:

ot : s, h ÞÑ PrtSt “ s,Ht “ hu @t P J0, T ´ 1K (3.7)

Joint occupancy states can be seen as the multi-agent equivalent of the POMDP beliefs. From
this joint occupancy states, we can define individual occupancy states oit, which are sufficient
statistics for individual histories:

Definition 3.12 (Individual occupancy states). In a Dec-POMDP, the individual occupancy
state for an agent i P I is given by:

oit : s, h´i ÞÑ PrtSt “ s,H´it “ h´i | H i
t “ hiu @t P J0, T ´ 1K (3.8)

They can be deduced from a marginalization of the joint occupancy states ot:

oitps, h
´i, hiq “

otps, hq
ř

s̄PS

ř

h̄PHt

h̄i“hi

otps̄, h̄q
(3.9)

In practice, computing exact individual occupancy states is often intractable, as it requires
marginalizing on all possible joint occupancy states. Models rely on summarized approximate
representations, where the features composing these representations are often hand-crafted. For
example, one can use truncated individual histories of the few last action-observation pairs.

Conclusion. We have now defined all the properties of decision models we will consider
throughout this thesis. We can describe systems where multiple agents interact with an en-
vironment, choosing individual actions based on their own observations and actions. They
cooperate towards a common objective to maximize their joint expected cumulated rewards.
Something interesting to notice here is that even though the models increase in complexity, the
mathematical foundations of the simple MDP can be applied to all its extensions by considering
augmented state spaces. These augmented states correspond to the statistics compressing all
the information available to the agents, like the beliefs in POMDP or the occupancy states in
Dec-POMDPs. Hence, we will now discuss resolution methods only in the frame of MDPs. They
can be extended to all other variants by adapting the representations structures and the update
operators to the corresponding augmented state spaces. This adaptation is non-trivial, espe-
cially when the augmented state space is continuous, but does not question the mathematical
foundations of the methods, which only rely on the Markov property.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

3.2. STATISTICS AND SOLUTION METHODS 57

3.2 Statistics and solution methods

Now that we have defined MDPs, MMDPs, POMDPs and Dec-POMDPs, we will review the
basic solution methods for MDPs. As we discussed earlier, all models can be reframed as MDPs
with augmented continuous states, and the methods described in this section can be adapted to
partially observable, and/or decentralized settings. Although the mathematical foundations are
pretty similar, it is non-trivial to adapt the exact algorithms we will present in this section to
continuous state-space without additional structure (such as convexity of the value function).
However, their heuristic variants often rely on parameterized approximation structures for the
value function or the policy. They are easier to generalize to more complex problem settings,
but are limited by their capacity to represent rich individual internal states on top of which we
can base our decision rules. We will start by presenting some inevitable statistics when dealing
with Markov Decision Processes. Then, we will review some algorithms based on them, starting
with model-based ones. We will finally focus on model-free algorithms, especially ones based on
the policy gradient method.

3.2.1 Bellman equations

A very important statistic in RL, and more generally in Dynamic Programming (DP), is the
state value function V π of policy π. It takes its value in R and evaluates the expected cumulated
reward from any state s P S when following π at each decision step. It is formally defined as
follow:

Definition 3.13 (State Value function). In a finite-horizon MDP pS,A, P,R, P0, T q, the value
of a policy π in any state s at step t is given by the state value function V π defined as:

V π
t : s ÞÑ Eπ,P

«

T´1
ÿ

τ“t

γτ´tRpSτ , Aτ , Sτ`1q | St “ s

ff

@t P J0, T ´ 1K

where Aτ „ πτ p.|Sτ q and Sτ`1 „ P p.|Sτ , Aτ q @τ P Jt, T ´ 1K.

For infinite horizon problem (T “ 8), we can similarly define a stationary value function
V π : S Ñ R which is not indexed by time. The reason why this statistic is so inevitable in RL
is that it obeys the following recursive relation, known as Bellman Equation:

Theorem 3.2 (Bellman Equation [5]). In a finite-horizon MDP, the state value function V π

obeys the following recursive relation:

V π
t psq “ Eπt,P

“

Rps,A, S1q ` γV π
t`1pS

1q
‰

@s P S @t P J0, T ´ 1K

In particular, we can focus on the optimal state value function V ˚, of any optimal policy π˚

maximizing our objective stated in Equation 3.1. We can verify by recursion that the following
decision rules constitute an optimal deterministic policy:

π˚t : s ÞÑ arg max
aPA

EP rRps, a, S
1q ` γV ˚t`1pS

1qs @t P J0, T ´ 1K

Moreover, V ˚ obeys the same recursive relation as any state value function, meaning we
could state the following corollary to Theorem 3.2 replacing V π by V ˚, which is referred to as
Bellman Optimality Equation:

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

58 CHAPTER 3. MULTI-AGENT REINFORCEMENT LEARNING

Corollary 3.1 (Bellman Optimality Equation [5]). In a finite-horizon MDP, the optimal state
value function V ˚ obeys the following recursive relation:

V ˚t psq “ max
aPA

EP
“

Rps, a, S1q ` γV ˚t`1pS
1q
‰

@s P S @t P J0, T ´ 1K

If we add a degree of freedom on the first action a taken in state s, we obtain another statistic
named the state-action value function, often shorten Q-value, because of its usual mathematical
notation Qπt ps, aq.

Definition 3.14 (State-Action Value function). In a finite-horizon MDP, the value of a policy
π after taking any action a in state s at step t is given by the state-action value function Qπ

defined as:

Qπt : s, a ÞÑ Eπ,P

«

T´1
ÿ

τ“t

γτ´tRpSτ , Aτ , Sτ`1q | St “ s,At “ a

ff

@t P J0, T ´ 1K

where Aτ „ πτ p¨|Sτ q @τ P Jt` 1, T ´ 1K and Sτ`1 „ P p¨|Sτ , Aτ q @τ P Jt, T ´ 1K.

The Q-value function also obeys a Bellman equation similarly to Theorem 3.2:

Theorem 3.3 (Bellman equation for Q-Value). The Q-Value function Qπ obeys the following
recursive relation:

Qπt ps, aq “ EP,πrRps, a, S
1q ` γQπt`1pS

1, A1qs @s P S @a P A @t P J0, T ´ 1K (3.10)

and, similarly to the optimal value function, the optimal Q-value function Q˚ obeys:

Q˚t ps, aq “ EP rRps, a, S
1q ` γmax

a1PA
Q˚t`1pS

1, a1qs @s P S @a P A @t P J0, T ´ 1K (3.11)

3.2.2 Value-based algorithms

Corollary 3.1 leads to the following iterative algorithm (Algorithm 3.1) called Value Iteration,
that converge towards V Ñ V ˚, from which we can extract an optimal deterministic policy π˚:

1 foreach s P S, t P J0, T K do Vtpsq Ð 0
2 while stopping criterion not met do
3 foreach s P S, t P J0, T ´ 1K do
4 Vtpsq Ð maxaPA

ř

s1PS P ps
1 | s, aq

`

Rps, a, s1q ` γ Vt`1ps
1q
˘

5 foreach s P S, t P J0, T ´ 1K do
6 π˚t psq Ð arg maxaPA

ř

s1PS P ps
1 | s, aq

`

Rps, a, s1q ` γVt`1ps
1q
˘

Algorithm 3.1: Value Iteration

In the Operation Research literature, the Value Iteration algorithm is often simply called
Dynamic Programming, and its approximation have been successfully used to address some vari-
ants of VRP [83, 100, 16].

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

3.2. STATISTICS AND SOLUTION METHODS 59

If it is capable of converging towards optimal policies, Value Iteration requires to know
the transition function P and the reward function R in order to compute the expected value over
the possible next states while applying the Bellman update operator and the policy extraction.
From now on, we will review what are referred to as model-free algorithms. They do not require
to know the model a priori, but rely on a way to collect trajectories of interactions between the
agent and its environment.

1 foreach s P S, a P A, t P J0, T K do Qtps, aq Ð 0
2 while stopping criterion not met do
3 trajectory Ð sample trajectory(Q)
4 foreach t, ps, a, r, s1q P enumerate(trajectory) do
5 δtps, aq Ð

`

r ` γmaxa1PAQt`1ps
1, a1q

˘

´Qtps, aq
6 Qtps, aq Ð Qtps, aq ` α.δtps, aq

Algorithm 3.2: Q-Learning

The SARSA algorithm is almost identical to Q-Learning as described in Algorithm 3.2, except
that when computing the TD error δ, the action a1 maximizing the Q-value in the next state is
replaced by the next action a1 taken by the agent in the trajectory (hence the name: foreach
ps, a, r, s1, a1q P trajectory do . . .). Given a proper exploration policy and enough training
iterations, Q-Learning and SARSA are both guaranteed to converge towards an optimal policy.

3.2.3 Policy-based algorithms

This next algorithm follows an approach quite different of the one of Q-Learning. We now
consider a non-stationary stochastic policy composed of decision rules πtpa|s;θtq parameterized
by weights θt P Rdπ @t P J0, T ´1K, where dπ P N is the dimension of the parameter vector θ, i.e.
the number of parameters that drive the policy. We regroup parameters of π at all time steps in
the vector θ P RT.dπ by concatenation. The idea is to use gradient descent on the objective to
directly update the parameters of the policy. This gradient is given by the following theorem:

Theorem 3.4 (Policy Gradient Theorem [106]). For any finite horizon MDP pS,A, P,R, P0, T q,
and any non-stationary parameterized policy πp¨;θq, the partial derivative of the objective value
w.r.t. the policy parameters is given by the following relation:

BEP0

“

V π
0 pS0q

‰

Bθ
“ Eπ,P,P0

«

T´1
ÿ

t“0

B log πtpAt|St;θtq

Bθ

T´1
ÿ

t“0

γtRpSt, At, St`1q

ff

(3.12)

“ Eπ,P,P0

«

T´1
ÿ

t“0

B log πtpAt|St;θtq

Bθ
γtQπt pSt, Atq

ff

(3.13)

Equation (3.12) was previously used by Williams [117] to develop the REINFORCE algorithm,
which simply consists in a (stochastic) gradient descent using trajectory samples to approximate
the gradient of the objective function w.r.t. the parameters θ of the policy. It converges towards
a local optimum and suffers from the high variance of the reward accumulated during the whole
trajectory.

To reduce the variance of the gradient approximation, we can replace the exact policy gradi-
ent stated above in Theorem 3.4 by an unbiased estimation using an approximate Q-value func-
tion pQπt ps, a;wtq, parameterized by weights regrouped by concatenation in the vector w P RT.dQ ,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

60 CHAPTER 3. MULTI-AGENT REINFORCEMENT LEARNING

where dQ P N is the number of parameters characterizing the Q-Value approximation for each
step. To guarantee that the gradient estimation stays unbiased, the following sufficient condition
should be enforced:

Theorem 3.5 (Critic compatibility [106]).

B pQπt ps, a;wtq

Bw
“
B log πtpa|s;θtq

Bθ
@t P J0, T ´ 1K, s P S, a P A (3.14)

Sutton et al. suggest that it might in fact also be a necessary condition.

It yields the following Actor-Critic algorithm (Algorithm 3.3) where an “actor” trains the
policy based on the guidance of an approximate Q-value representation, which is itself trained
at the same time by a “critic”. To lighten the notation, we will write Φtps, a;θq “ B log πtpa|s;θq

Bθ P

Rdπ . The hyper-parameters α P r0, 1s and β P r0, 1s are the learning rates of the actor and the
critic, respectively.

1 θ, w Ð initialize parameters()

2 while stopping criterion not met do
3 ∆θ,∆w Ð 0
4 trajectory Ð sample trajectory(θ)
5 foreach t, ps, a, r, s1q P enumerate(trajectory) do
6 δ Ð pr ` γmaxa1 q value(s’,a’,t+1,w)q ´ q value(s,a,t,w)

7 ∆w Ð ∆w `Φtps, a,θq.δ
8 ∆θ Ð ∆θ `Φtps, a,θq.γ

t.q value(s,a,t,w)

9 θ Ð θ ` α.∆θ
10 w Ð w ` β.∆w

Algorithm 3.3: Actor-Critic

3.3 Centralized Training for Decentralized Control

In many real-world cooperative multi-agent systems, conditions at the training phase do not need
to be as strict as those at the execution phase. During rehearsal, for example, actors can read
the script, take breaks, or receive feedback from the director, but none of these will be possible
during the show. To win matches, a soccer coach develops tactics before the games, that players
will apply during the game. This asymmetry of information available during training and at
execution has not been highly investigated for model-free Reinforcement Learning method, and
it is natural to wonder whether the policy gradient approach in such a paradigm could be as
successful as for the single-agent case.

We call this paradigm Centralized Training for Decentralized Control (CTDC). It has already
been quite successful in planning [44, 109, 2, 75, 32]. More recently, (model-free) learning-based
methods [33, 60, 51] have also demonstrated that CTDC offers somme advantages over more
traditional, fully decentralized, approaches. In this CTDC paradigm, we have access to more
information during training and we can use the common knowledge (states or beliefs) that
agents normally cannot observe. Nonetheless, CTDC still preserves the ability of all agents to
act independently at the execution phase.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

3.3. CENTRALIZED TRAINING FOR DECENTRALIZED CONTROL 61

While most previous works on multi-agent policy gradient method, such as [80], belongs to
the Decentralized Training for Decentralized Control (DTDC) paradigm, also called Indepen-
dent Learners, [37, 42, 61] demonstrated successful application of this new CTDC paradigm with
policy gradient methods applied to Deep Neural Networks. Figure 3.4 illustrates the difference
between an implementation of actor-critic in each of the two paradigms. Despite these promising
existing works, the mathematical foundations of multi-agent RL are still in their infancy. We
start with some of our theoretical results that contribute to extend these foundations. From it,
we deduce an algorithm called Actor Critic for Decentralized Control (ACDC) that exploits the
properties we highlighted. We then conclude on some experiments using two different internal
state representation using some standard benchmarks of Dec-POMDPs. This section describes
one of the contribution of this thesis, as a preliminary work on multi-agent sequential deci-
sion making. It was published in [2] and [4], with complementary information available in the
companion research report [6].

Environment

Hidden state
s ∈ S

Joint Actor

Joint History
h ∈ H

Joint Critic

Q̂(s, h, a)

Joint Observation
z ∈ Z

Joint Action
a ∈ A

Joint Reward
r ∈ R

(a) CTCC

Environment

Hidden state
s ∈ S

Actor 1

Indiv. History
h1 ∈ H1

Critic 1

Q̂1(h1, a1) Actor 2

Indiv. History
h2 ∈ H2

Critic 2

Q̂2(h2, a2)

Joint Observation
z ∈ Z

z1 z2

Joint Action
a ∈ A

a1a2Joint Reward
r ∈ R

(b) DTDC

Environment

Hidden state
s ∈ S

Actor 1

Indiv. History
h1 ∈ H1

Actor 2

Indiv. History
h2 ∈ H2

Joint Critic

Joint history
h

Q̂(s, h, a)

Joint Observation
z ∈ Z

z1 z2

Joint Action
a ∈ A

a1a2Joint Reward
r ∈ R

(c) CTDC

Figure 3.4 – Comparison between actor-critic in the fully centralized paradigm (a) on the left,
the fully decentralized paradigm (b) on the right (also called independent learners), and the
CTDC paradigm (c) in the middle. While the independent learners have to build individual
statistics to drive their optimization, the extra information we have available during training
in CTDC makes it possible to maintain a joint statistic that help avoid local minima and can
lead the agents to coordinate themselves better when executing their individual policies in a
decentralized way.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

62 CHAPTER 3. MULTI-AGENT REINFORCEMENT LEARNING

3.3.1 Multi-Agent Policy Gradient Theorem

Our primary result is an extension of the policy gradient theorem [106] presented in Theorem 3.4
for MDPs to Dec-POMDPs. For now, we will consider non-stationary parametric individual
policies πi for every agent i P I. Every individual decision rule at time t P J0, T ´ 1K is
parameterized by a vector θit P Rdπ . As a notation shortcut, we can concatenate all these
vectors of parameters to get a single vector θ P R|I|.T.dπ for the joint policy π.

The joint state-action value function Qπ of our Dec-POMDP can be rewritten from Defini-
tion 3.14 as a function of the state, the joint history and the joint action:

Qπt : s, h, a ÞÑ Eπ,P,Ω

«

T´1
ÿ

τ“t

γτ´tRpSt, At, S
1
tq | St “ s,Ht “ h,At “ a

ff

@t P J0, T ´ 1K

Similarly, we can redefine a joint state value function V , which is also augmented with the joint
history:

V π
t : s, h ÞÑ Eπ,P,Ω

«

T´1
ÿ

τ“t

γτ´tRpSt, At, S
1
tq | St “ s,Ht “ h

ff

@t P J0, T ´ 1K

The Policy Gradient Theorem adapted to the multi-agent case can now be stated as follow:

Theorem 3.6 (Multi-agent Policy Gradient). For any finite horizon Dec-POMDP
pI,S,A,Z, P,Ω, R, P0, T q, and any separable non-stationary parameterized policy πp¨;θq, the
partial derivative of the objective value w.r.t. the policy parameters is given by the following
relation:

B

Bθ
EΩ,P0

“

V π
0 pS0, H0q

‰

“ Eπ,P,Ω,P0

«

T´1
ÿ

t“0

ÿ

iPI

B log πitpA
i
t|H

i
t ;θ

i
tq

Bθ
γtQπt pSt, Ht, Atq

ff

Proof of Theorem 3.6. Starting from the Bellman equation for Qπt :

Qπt ps, h, aq “ EP
“

Rps, a, S1q
‰

` γ Eπt`1,P,Ω

“

Qπt`1pS
1, H 1, A1q

‰

we take partial derivative and write the expected value w.r.t. πt`1 explicitly:

ô
BQπt ps, h, aq

Bθ
“ γ EP,Ω

«

ÿ

a1PA

B

Bθ

`

πt`1pa
1|H 1qQπt`1pS

1, H 1, a1q
˘

ff

expend the partial derivative:

“ γ EP,Ω

«

ÿ

a1PA

Bπt`1pa
1|H 1q

Bθ
Qπt`1pS

1, H 1, a1q ` πt`1pa
1|H 1q

BQπt`1pS
1, H 1, a1q

Bθ

ff

use a log trick to factor πt`1:

ô
BQπt ps, h, aq

Bθ
“ γ Eπt`1P,Ω

„

B log πt`1pA
1|H 1q

Bθ
Qπt`1pS

1, H 1, A1q `
BQπt`1pS

1, H 1, A1q

Bθ

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

3.3. CENTRALIZED TRAINING FOR DECENTRALIZED CONTROL 63

split πt`1 into independent individual decision rules:

“ γ Eπt`1P,Ω

«

ÿ

iPI

B log πit`1pA
1i|H 1iq

Bθ
Qπt`1pS

1, H 1, A1q `
BQπt`1pS

1, H 1, A1q

Bθ

ff

We can now apply this recursive relation to our objective until we obtain the final result:

B

Bθ
EΩ,P0

“

V π
0 pS0, H0q

‰

“
B

Bθ
Eπ0,Ω,P0 rQ

π
0 pS0, H0, A0qs

“ Eπ0,Ω,P0

«

ÿ

iPI

B log πi0pA
i
0|H

i
0q

Bθ
Qπ0 pS0, H0, A0q `

BQπ0 pS0, H0, A0q

Bθ

ff

“ Eπ0,π1,P,Ω,P0

«

ÿ

iPI

B log πi0pA
i
0|H

i
0q

Bθ
Qπ0 pS0, H0, A0q

` γ
B log πi1pA

i
1|H

i
1q

Bθ
Qπ1 pS1, H1, A1q ` γ

BQπ1 pS1, H1, A1q

Bθ

ff

“ . . .

“ Eπ,P,Ω,P0

«

T´1
ÿ

t“0

ÿ

iPI

B log πitpA
i
t|H

i
tq

Bθ
γtQπt pSt, Ht, Atq

ff

Additionally, the same relation holds if we replace the Q-value of the policy by its advantage
Aπ, which is defined as:

Aπt ps, h, aq “ Qπt ps, h, aq ´ V
π
t ps, hq @t P J0, T ´ 1K, s P S, h P Ht, a P A

and gives the relative benefit of choosing a specific action a instead of following policy π in state
s after history h at time t. We get the following corollary to Theorem 3.6:

Corollary 3.2 (Multi-agent policy gradient with advantage). With the same hypotheses as
Theorem 3.6, the partial derivative of the objective value w.r.t. the policy parameters is also
given by the following relation:

B

Bθ
EΩ,P0

“

V π
0 pS0, H0q

‰

“ Eπ,P,Ω,P0

«

T´1
ÿ

t“0

ÿ

iPI

B log πitpA
i
t|H

i
t ;θ

i
tq

Bθ
γtAπt pSt, Ht, Atq

ff

Proof of Corollary 3.2. The proof starts by reverting the split into individual policies and the
log trick in the following expression, which holds @t P J0, T ´ 1K, s P S, h P Ht:

Eπt

«

ÿ

iPI

B log πitpA
i
t|h

i
tq

Bθ
γtV π

t ps, hq

ff

“ Eπt

„

B log πtpAt|htq

Bθ
γtV π

t ps, hq

“
ÿ

aPA

Bπtpa|hq

Bθ
γtV π

t ps, hq

“
B

Bθ

˜

ÿ

aPA
πtpa|hq

¸

γtV π
t ps, hq

“ 0

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

64 CHAPTER 3. MULTI-AGENT REINFORCEMENT LEARNING

We can subtract all these null terms to the expression of Theorem 3.6 for each time step to get
the result.

3.3.2 Critic compatibility

Now, similarly to the single agent case, we will discuss the problem of critic compatibility
when replacing the exact Q-value of the policy by an approximation pQ parameterized by some
vectors wt P RdQ @t P J0, T ´ 1K, which we can regroup into a single vector w P RT.dQ by
concatenation. To guarantee that the gradient approximation is unbiased, we have the following
sufficient condition:

Theorem 3.7 (Multi-agent compatible critic). If the parameters w minimize the mean square
error between Qπ and pQ, and if, @t P J0, T ´ 1K, s P S, h P Ht, a P A, the following condition
holds:

pQtps, h, aq “ pAtps, h, a;wA
t q `

pVtps, h;wV
t q where wA

t q wV
t “ wt

s.t.
B pAtps, h, a;wA

t q

BwA
t

“
ÿ

iPI

B log πitpa
i|hi;θitq

Bθt

then the gradient of the objective w.r.t. the policy parameters as stated in Theorem 3.6 is
preserved when replacing Qπ by its parameterized approximation pQ.

Proof of Theorem 3.7. If w minimize the mean square error between Qπ and pQ, it means that
@t P J0, T ´ 1K:

B

Bw
Eπ,P,Ω,P0

”

`

Qπt pSt, Ht, Atq ´ pQtpSt, Ht, Atq
˘2
ı

“ 0

ñ Eπ,P,Ω,P0

”

B pQπt pSt, Ht, Atq

Bw

`

Qπt pSt, Ht, Atq ´ pQtpSt, Ht, Atq
˘

ı

“ 0

focusing on some components of w this means in particular that:

ñ Eπ,P,Ω,P0

”

B pQtpSt, Ht, Atq

BwA
t

`

Qπt pSt, Ht, Atq ´ pQtpSt, Ht, Atq
˘

ı

“ 0

ñ Eπ,P,Ω,P0

”

B pAtpSt, Ht, Atq

BwA
t

Qπt pSt, Ht, Atq
ı

“ Eπ,P,Ω,P0

”

B pAtpSt, Ht, Atq

BwA
t

pQtpSt, Ht, Atq
ı

if we introduce the condition stated in Theorem 3.7, we get:

Eπ,P,Ω,P0

”

ÿ

iPI

B log πitpa
i|hiq

Bθt
Qπt pSt, Ht, Atq

ı

“ Eπ,P,Ω,P0

”

ÿ

iPI

B log πitpa
i|hiq

Bθt
pQπt pSt, Ht, Atq

ı

We can now sum on t to recover the expression of Theorem 3.7 on the left, and obtain the final
result:

B

Bθ
EΩ,P0

“

V π
0 pS0, H0q

‰

“ Eπ,P,Ω,P0

”

T´1
ÿ

t“0

ÿ

iPI

B log πitpa
i|hiq

Bθ
pQπt pSt, Ht, Atq

ı

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

3.3. CENTRALIZED TRAINING FOR DECENTRALIZED CONTROL 65

It is interesting to note that the vector of partial derivatives
B log πitpa

i|hi;θitq
Bθ is mostly zeros

except for the block corresponding to
B log πitpa

i|hi;θitq

Bθit
. This structural property combined with

the sufficient condition in Theorem 3.7 has a very interesting consequence on the form of the
compatible critic pQ: its advantage term is separable into individual components, while its value
term offers some degree of freedom to incorporate additional information available only during
the centralized training phase:

pQtps, h, a;wtq “
ÿ

iPI
pAitph

i, ai;wi
tq `

pVtps, h;wV
t q @t P J0, T ´ 1K, s P S, h P Ht, a P A

where pAitph
i, aiq “

ˆ

B log πitpa
i|hiq

Bθit

˙ᵀ
wi
t @i P I

3.3.3 Experimental validation

To evaluate the benefit of considering the CTDC paradigm with Policy Gradient methods,
we have implemented a variant of Actor-Critic algorithm based on the theoretical results we
stated in Theorems 3.6 and 3.7. We call this algorithm Actor-Critic for Decentralized Control,
or ACDC for short, for which we provide pseudo-code in Algorithm 3.4. The major difference
with more classical Actor-Critic lies in the structure of both the actor (which is decentralized,
i.e. with separable individual policies) and the critic (which meets the sufficient condition for
compatibility stated above). We also use mini-batches of trajectories to reduce the variance in
each parameters update. Similarly to what we have done before to lighten the notation, we
write:

Φi
tph

i, aiq “
B log πitpa

i|hi;θitq

Bθit
“
B pAitph

i, ai;wi
tq

Bwi
t

P Rdπ

and ΦV
t ps, hq “

BpVtps, h;wV
t q

BwV
t

P RdV

There are many key components in actor-critic methods that can affect their performances.
These key components include:

• training paradigms (CTCC vs DTDC vs CTDC);

• policy representations (stationary vs non-stationary policies);

• approximation architectures (linear vs Recurrent Neural Networks (RNN));

• history representations (truncated histories vs hidden states of RNN).

We implemented three variants of actor-critic methods that combine these components.
Unless otherwise mentioned, we will refer to actor-critic methods from: the acronym of the
paradigm in which they have been implemented, e.g., CTDC for ACDC; plus the key compo-
nents, “CTDC TRUNC(K)” for ACDC where we use K last observations instead of histories as
inputs of a tabular non-stationary policy; or “DTDC RNN ” for distributed Reinforce where
we use RNNs as a stationary policy, see Figure 3.5.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

66 CHAPTER 3. MULTI-AGENT REINFORCEMENT LEARNING

1 θ,w Ð initialize parameters()

2 while stopping criterion not met do
3 ∆θ,∆w Ð 0
4 foreach mini-batch element do
5 trajectory Ð sample trajectory(θ)
6 sÐ s0

7 foreach i P I do hi Ð initialize history repr(zi0)
8 foreach t, pa, r, s1, z1q P enumerate(trajectory) do

9 foreach i P I do h1i Ð update history repr(hi, ai, z1i)

10 δ Ð
`

r ` γmaxa1 pQt`1ps
1, h1, a1;wt`1q

˘

´ pQtps, h, a;wtq

11 ∆wV
t Ð ∆wV

t `ΦV
t ps, hq.δ

12 foreach i P I do

13 ∆wi
t Ð ∆wi

t `Φi
tph

i, aiq.δ

14 ∆θit Ð ∆θit `Φi
tph

i, aiqγt pQtps, h, a;wtq

15 sÐ s1

16 foreach i P I do hi Ð h1i

17 θ Ð θ ` α.∆θ
18 w Ð w ` β.∆w

Algorithm 3.4: Actor-Critic for Decentralized Control (ACDC)

We run simulations on standard benchmarks from Dec-POMDP literature, including Dec.
Tiger, Broadcast Channel, Mars, Box Pushing, Meeting in a Grid, and Recycling Robots, which
can be found on http://masplan.org.

Broadcast Channel Two agents want to communicate through a shared communication chan-
nel. They have to learn a strategy, i.e. a communication protocol, to avoid sending mes-
sages all at once. There are 4 states, 2 actions, and 2 observations.

Recycling Robots Two robots have to collect small and large cans while watching out their
battery level. They can pickup small cans alone but must cooperate for large can. Actions
are abstracted to the level of “searching for cans” and “recharge”.

Meeting in a Grid Two robots evolve in a small 3ˆ 3 grid world and must meet on the top
left or bottom right corner. They can observe the walls around them, and move in all four
directions or stay in place.

Box Pushing Two robots have to move two small and one large boxes to some target positions
on a grid. They can only see what is on the cell right in front of them, then move forward,
turn on the spot, or stay in place. They can push the small boxes alone but must cooperate
to move the large one.

Mars Two rovers must conduct a set of experiments on different sites on Mars. It can be seen
as an advanced version of the recycling robots problem, with more states, actions and
observations.

Dec. Tiger Two agents needs to open one of two doors avoiding a hidden tiger. They can
listen for roars, but cannot communicate with one another. They need to listen multiple
time to confirm where they hear the tiger from, and need some form of memory in their
internal representation.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

http://masplan.org

3.3. CENTRALIZED TRAINING FOR DECENTRALIZED CONTROL 67

zi, ai ↓.

e
|Z||A| × dM

Embedding

·w

·w

+b σ

�

·w

·w

+b σ

�

+

·w

·w

+b tanh

·w

·w

+b σ

�

tanh

LSTM

h
dM

·
w

+
b

(.)+

·
w

+
b

η

Feed-Forward

πi
t(·|hi)
|A|

Figure 3.5 – Individual policy architecture using LSTM to compress history and maintain an
individual internal state for each agent.

History Representation Matters

In this section, we conducted experiments with the goal of gaining insights on how the represen-
tation of histories affects the performance of ACDC methods. Figure 3.6 depicts the comparison
of truncated histories vs hidden states of deep neural networks. Results obtained using an
ε-optimal planning algorithm called FB-HSVI [33] are included as reference. For short plan-
ning horizons, e.g., T “ 10, CTDC RNN quickly converges to good solutions in comparison to
CTDC TRUNC(1) and CTDC TRUNC(3). This suggests CTDC RNN learns more useful and
concise representations of histories than the truncated representation. However, for some of the
more complex tasks such as Dec. Tiger, Box Pushing or Mars, no internal representation was
able to perform optimally.

0 20000 40000 60000 80000 100000
0

1

2

3

4

5

Ep
. V

al
ue

Meeting in a Grid

0 20000 40000 60000 80000 100000
5

0

5

10

15

20

25

Mars

0 20000 40000 60000 80000 100000
24

26

28

30

32

Recycling Robots

0 20000 40000 60000 80000 100000
Episodes

10

20
30

60

100

200

Ep
. V

al
ue

Box Pushing

0 20000 40000 60000 80000 100000
Episodes

6.5

7.0

7.5

8.0

8.5

9.0

9.5

Broadcast Channel

0 20000 40000 60000 80000 100000
Episodes

60

40

20

0

20
Dec. Tiger

trunc(3) trunc(1) RNN FB-HSVI

Figure 3.6 – Comparison of different structures used to represent histories.

Overall, our experiments on history representations show promising results for RNNs, which
have the advantage over truncated histories to automatically learn equivalence classes and com-
pact internal representations based on the gradient back-propagated from the reward signal.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

68 CHAPTER 3. MULTI-AGENT REINFORCEMENT LEARNING

Care should be taken though, as some domain planning horizons and other specific properties
might cause early convergence to poor local optima. We are not entirely sure which specific fea-
tures of the problems deteriorate performances, and we leave for future works to explore better
methods to train these architectures.

Comparing Paradigms Altogether

0 2000 4000 6000 8000 10000
0

1

2

3

4

Ep
. V

al
ue

Meeting in a Grid

0 2000 4000 6000 8000 10000

0

5

10

15

20

25

Mars

0 2000 4000 6000 8000 10000
24

26

28

30

32

34

Recycling Robots

0 2000 4000 6000 8000 10000
Episodes

10

20
30

60
100

200

Ep
. V

al
ue

Box Pushing

0 2000 4000 6000 8000 10000
Episodes

6.5

7.0

7.5

8.0

8.5

9.0

9.5

Broadcast Channel

0 2000 4000 6000 8000 10000
Episodes

150

100

50

0

50

Dec. Tiger

CTCC CTDC DTDC FB-HSVI MCEM

Figure 3.7 – Comparison of the three paradigms for T “ 10.

0 20000 40000 60000 80000 100000
0

1

2

3

4

5

6

Ep
. V

al
ue

Meeting in a Grid

0 20000 40000 60000 80000 100000
0

5

10

15

20

25

Mars

0 20000 40000 60000 80000 100000
24

26

28

30

32

34

Recycling Robots

0 20000 40000 60000 80000 100000
Episodes

10

20
30

60
100

200

Ep
. V

al
ue

Box Pushing

0 20000 40000 60000 80000 100000
Episodes

6.5

7.0

7.5

8.0

8.5

9.0

9.5
Broadcast Channel

0 20000 40000 60000 80000 100000
Episodes

150

100

50

0

Dec. Tiger

CTCC CTDC DTDC FB-HSVI MCEM

Figure 3.8 – Comparison of the three paradigms for T “ 8.

In this experiments, we compare paradigms, CTCC, DTDC, and CTDC using our RNN
approximation structure. We complement our experiments with results from other Dec-POMDP
algorithms: an ε-optimal planning algorithm called FB-HSVI [33]; and a sampling-based planning

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

3.4. CONCLUSION 69

algorithm called Monte-Carlo Expectation-Maximization (MCEM) algorithm [118], which shares
many similarities with actor-critic methods. It is worth noticing that we are not competing
against FB-HSVI as it is model-based. As for MCEM, we reported performances1 recorded in
[118].

In almost all tested benchmarks, CTDC seems to take the better out of the two other
paradigms, for either T “ 10 (Fig. 3.7) or T “ 8 (Fig. 3.8). CTCC might suffer from the high
dimensionality of the joint history space, and fail to explore it efficiently before the learning
step-sizes become negligible, or we reached the predefined number of training episodes. Our on-
policy sampling evaluation certainly amplified this effect. Having a much smaller history space
to explore, CTDC outperforms CTCC in these experiments. Compared to DTDC which also
explores smaller history space, there is a net gain to consider a compatible centralized critic in the
CTDC paradigm, resulting in better performances. Even if CTDC achieves performances better
or equal to the state of the art MCEM algorithm, there is still some margins of improvements
to reach the global optima given by FB-HSVI in every benchmark. As previously mentioned,
this is partly due to inefficient representations of histories.

3.4 Conclusion

In this chapter, we introduced the basics of sequential decision making modelled as Markov
Decision Processes, which are naturally designed to describe stochastic and dynamic interactions
between an agent and its environment, hence our interest when considering online stochastic
vehicle routing problems. We have reviewed some standard approaches to find optimal policies
which define how the agent should act to accumulate some reward signal over time. We have
then extended this model to the partially observable, and the multi-agent decentralized settings.
If we mentioned some statistics that are capable of compressing the information available to
every agent involved, we also insisted on the core problem of internal state representation in
Reinforcement Learning, especially when using model-free approaches.

We then described some preliminary theoretical contributions that focused on a somewhat
new paradigm where training is conducted under favorable circumstances that provide more in-
formation than what will be available to each agent at execution time, while still preserving the
capability to act independently later on. We extended known results of Actor-Critic methods
from MDPs to Dec-POMDPs in this Centralized Training for Decentralized Control paradigm,
and exposed some interesting structural properties of the different functions involved. We eval-
uated our approach against other standard paradigms, and reported competitive and promising
results. We also compared different individual history representation and compression functions,
which demonstrated that Deep Neural Networks, and more particularly recurrent ones, can learn
quite efficient individual internal state representation.

1Two results in MCEM [118] were above optimal values, so we reported optimal values instead.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

Chapter 4

Sequential Multi-agent Markov
Decision Process

In Chapter 2 we presented the state of the art in Vehicle Routing Problems (VRPs), especially the
Dynamic and Stochastic variants (DS-VRPs), where the information available to make decisions
evolves along the route during execution and is subject to uncertainty. We saw that classical
formalization based on Mixed Integer Linear Program (MILP) or Constraint Programming (CP)
are not well adapted to describe such dynamic and stochastic problems.

That is why we presented in Chapter 3 some background knowledge on Markov Decision
Processes (MDPs) and Reinforcement Learning (RL), which naturally describe dynamic decision-
making processes under uncertainty. We focussed on multi-agent models, such as the more
general Decentralized POMDPs (Dec-POMDPs) or the simpler Multi-agent MDPs (MMDPs).
Indeed, the systems we are interested in when dealing with DS-VRPs involve many vehicles
which we would like to consider as autonomous agents. However, we wanted to take into account
that more information is available while training our agents than when they will execute their
learned policies. To study this information asymmetry, we introduced a learning paradigm we
call Centralized Training for Decentralized Control (CTDC) and contributed to the development
of Policy Gradient methods in this paradigm.

In this chapter, we will develop another contribution in the modelling of multi-agent systems.
Existing multi-agent models in the RL literature have been built as refinement of single-agent
MDPs, where agents take their decisions simultaneously at every step. The evolution of the
environment state from one step to the next is driven by the joint action of all agents. This
does not naturally describe many high-level multi-agent planning problems, in which agents
can choose their next tasks at different times, as in VRPs. Starting from an MMDP, we will
introduce a few properties of such planning processes that deal with abstract actions or tasks.
It will lead us to a new variant of MMDP we call sequential MMDP (sMMDP). In this variant,
agents do not take their decisions simultaneously anymore. Instead, only a single agent acts
at each step, because actions naturally have a temporal dimension. With sequential individual
decisions, the agent currently acting has access to more information, because it can observe the
results of all the actions other agents have previously taken. The decision taken at each step
is also much simpler, as it has to consider only the individual actions available to the current
agent, instead of a full set of joint actions that grows exponentially with the number of agents.
This invites us to treat the system as event-based, and trigger a decision for a particular agent
only when it has finished its previous action, or on some changes of the environment state. If the

70

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

4.1. A TOY S-VRP MODELED AS AN MMDP 71

Multi-Agent RL (MARL) literature mainly focused on simultaneous decisions models inherited
from MDPs, sequential models have been extensively studied in the Game Theory literature [58,
108]. The sMMDP model we propose can be seen as a special case of a more general collaborative
sequential Markov Game [99, 59], where agents act one after the other in an order resulting from
the dynamics of the system, sharing a common objective to maximize a cumulated reward.

In Section 4.1, we will introduce a toy S-VRP as a motivating example that will help us
illustrate the properties of our sMMDP. Afterwards, Section 4.2 will describe the defining prop-
erties of the sMMDP, and analyze what they imply on the state value function associated with
such a process. Finally, we illustrate the advantages of a sequential model for problems natu-
rally described with sequential decisions in a small experiment using our motivating example in
Section 4.3.

4.1 A toy S-VRP modeled as an MMDP

Before diving into our sequential variant of MMDPs, we introduce a motivating example in-
spired by the main focus in this thesis: routing problems. However, we will simplify it to focus
on the structure and the properties we want to capture in our model. What we will describe
in this section is a small VRP with stochastic travel times, and no additional operational con-
straints, for the sake of simplicity. After illustrating a trajectory sampled from the process in
Subsection 4.1.1, we will informally explain how it can be modelled as a standard MMDP in
Subsection 4.1.2. While doing so, we will highlight informally the properties we want to exploit
in problems such as ours, and why a simultaneous model such as an MMDP is not well adapted
to describe them. The processes we are interested in are indeed controlled by durative actions,
or tasks. We could describe it more naturally using durative, sequential actions.

4.1.1 Motivating example

In this subsection, we will introduce the motivating example that will drive us through the entire
section. We are interested in multi-agent processes with slow-paced decisions and uncertainty,
such as concurrent tasks planning, or other high-level decision layers in multi-robot systems for
example. The VRP, that is central in this thesis, is a particular case of such a problem. To keep
it simple in this motivating example, we will get rid of all traditional operational constraints that
come with such problems. For a more detailed formalization of a rich Dynamic and Stochastic
VRP, we refer to Section 5.1 of the next chapter.

Example 4.1. Here, we consider m “ 2 vehicles 1 and 2 , both initially parked at a central

depot 0 . They have to travel to n “ 4 customers 1 , 2 , 3 and 4 , before returning to the

depot. Every travel between two locations j, j1 P t0, 1, 2, 3, 4u is associated with a cost cpj, j1q,
and takes some random duration τ „ Upτmin, τmaxq sampled from a discrete uniform distribution
independently at each decision and revealed as soon as the vehicle leaves its previous location.
Vehicles can choose a new destination only when they have reached their previous target. Once
a customer is visited, it cannot be chosen as target anymore, and as soon as a vehicle travels
back to the depot, it must stay there. A trajectory ends when both vehicles have returned to
the depot. The goal of the vehicles is to find the routes that minimize the total travel cost.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

72 CHAPTER 4. SEQUENTIAL MULTI-AGENT MARKOV DECISION PROCESS

−25

100

−
1520

−
3
040

−
1
5

20

−
2
0

20 −20
30

0

1

2

3

4

1

2

0

0

Initial state s0

0

1

2

3

4

1

2

100

20 State s1

a0 = (1, 2) 0

1

2

3

4

1

2

100

60

State s2

a1 = (NOP, 3)

0

1

2

3

4

1

2

100

80

State s3

a2 = (NOP, 0)

a2 = (NOP, 0)

0

1

2

3

4

1

2

120

80

State s4

a3 = (4, NOP) 0

1

2

3

4

1

2

150

80

Goal state s5

a4 = (0, NOP)

(a) A complete trajectory in 6 steps in the toy S-VRP we use as motivating example.

0

Depot node

j

Customer j node

i
tik

Vehicle i
with availability time tik

Possible individual action

r
i

τ
i

Chosen individual action
with reward r and duration τ

(b) Legend

Figure 4.1 – Illustration of a trajectory in the small Stochastic VRP (S-VRP) that we use to
illustrate the properties of our sMMDP model, built on top of the formalization of a standard
MMDP. Two vehicles have to serve four customers. Travelling from one location to the next
takes some time, and is associated with a cost. The goal is to find the optimal routes minimizing
the total expected costs.

Figure 4.1 illustrates a small trajectory in this toy S-VRP, where vehicle 1 serves customer

1 , while vehicle 2 has the time to serve 2 and 3 . Afterwards, 2 returns to the depot 0

and 1 serves 4 . Finally 1 also returns to 0 . Now that we have setup this small problem,
we will recall the formal notations of MMDPs and explain how we can use them to model it.

4.1.2 The initial MMDP model

We will start by modelling our small S-VRP described in Example 4.1 as a finite horizon goal-
oriented MMDP [40]. In such a model, an episode starts from an initial state governed by the
distribution P0 and ends when reaching some goal states s P G. Given the definition of a basic
MMDP (c.f. Definition 3.3 in Chapter 3), finite horizon goal-oriented MMDPs are formally
defined as follow:

Definition 4.1 (Finite horizon goal-oriented MMDP). A finite horizon goal-oriented MMDP is
a Multi-agent MDP with finite horizon L and a subset of goal states G Ă S. Any goal state s in
G is absorbing, meaning that once reached, no action will be able to cause a transition to any
other state. Mathematically it translates to P ps1 | s, aq “ δs

1

s and Rps, a, s1q “ 0 @s P G, where
δ denotes the Kronecker delta, such that δxy “ 1 if x “ y, 0 otherwise. An extra reward RGpsLq
is received at the end of the trajectory if the agents have reached a goal state, i.e. sL P G.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

4.1. A TOY S-VRP MODELED AS AN MMDP 73

Recall from Chapter 3 that our objective is to find a deterministic joint policy π : S Ñ
Ś

iPI Ai indicating which individual action each agent has to take at any state in order to max-

imize the expected cumulated reward Er
řL
k“0RpSk, Ak, Sk`1qs. As the state is fully observable

for all agent, it is quite straightforward to extract individual policies πi from this deterministic
joint policy. Some solution methods based on policy gradients search the space of stochastic
policies, in which it is non trivial to enforce that the optimal joint policy is separable into
independent individual policies.

In our small S-VRP, the set of agents I is composed of the two vehicles 1 and 2 . Without
loss of generality, this set can be mapped to natural integers, so we will often write i P J1,mK in
the latter where m “ |I| is the number of agents (m “ 2 in this case).

A state s P S of the system decomposes into multiple factors, namely the set of pending
customers, the last customer served by each vehicle, and the time elapsed since each vehicle

leaved the depot. For example at step 1 on Figure 4.1, customers 3 and 4 are pending, 1

is busy travelling to and serving 1 until t11 “ 100 minutes, and 2 has just finished serving

2 after t21 “ 20 minutes. A goal state s P G is reached once both vehicles have returned to the

depot 0 as we can see at step 5 on Figure 4.1. The set of goal states also includes a failure
state FAIL P G which prematurely ends a trajectory if vehicles choose an invalid action.

Each vehicle can choose from 6 possible individual actions in total: ai “ 0 to return to the
depot, ai P J1, 4K to travel to and serve any of the 4 customers, or ai “ NOP to do nothing and
wait until it finishes serving its current target. However the two vehicles should not be able to
serve a customer more than once, nor to interrupt a service they have committed to.

We enforce these constraints through the transition function P that triggers the failure state
FAIL P G as soon as one of them is violated. More importantly, P has what we call a sequential
structure which can isolate the effect of each individual action on the different factors of the
state. Here, it deterministically updates the vehicle’s position and removes the chosen customer
from the set of pending ones. The only stochastic factor comes from the travel duration which
affects the cumulated time since departure of the vehicle, but it is also independent of the actions
of the other agents.

The reward function R is given by the travel costs from the vehicles previous locations
to their new locations. It can also be decomposed into additive / sequential terms, one per
individual action. Additionally, we consider a completion reward, only added when the vehicles
reach a goal state. We use it to penalize the vehicles for leaving customers pending at the end of

their routes. At step 5 for example, 1 suffers costs cp4, 0q “ 20 and 2 is idle (NOP) at depot
with no cost. They reach a goal state and there is no customer left pending, so the reward is
Rps4, a4, s5q “ ´cp4, 0q ´ 0 “ ´35.

Finally, the initial state distribution P0 is concentrated on a single state where both vehicles

are located at 0 at time t10 “ t20 “ 0, with all customers pending. Concerning the planning
horizon L, the maximum number of decisions the vehicles can make is L “ n `m “ 4 ` 2 “ 6
because they can only serve each customer once, and must come back to depot.

We have now completely modelled this simple motivating example as a goal-oriented MMDP.
However while doing so, we highlighted that some properties of problems such as the small S-
VRP we used as example are not well exploited by such a simultaneous model. It does not take
full advantage of the separability of the transition and reward function, and has to explore the
joint-action space which grows exponentially with the number of agents m, with a lot of dead

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

74 CHAPTER 4. SEQUENTIAL MULTI-AGENT MARKOV DECISION PROCESS

ends on fail state. Hence we propose a sequential variant of MMDP which would more naturally
describe high-level multi-agent decision processes with slow-paced durative actions.

4.2 Building up a sequential MMDP

To better describe multi-agent systems where actions have different durations and are executed
sequentially, we propose a new variant of MMDPs we call sequential MMDP (sMMDP). In
this variant, agents do not take their actions simultaneously anymore. We take advantage of
the separability of the transition and reward to make all individual actions sequential. Each
decision step involves only a single agent. However, all agents still share a common objective
and must cooperate to achieve it.

In this section, we will progressively introduce the properties we want to model, formalizing
them in the case of a general (s)MMDP. We will illustrate each of them on our motivating
example of Section 4.1.

4.2.1 Sequential states

The first property that we want to exploit is the structure of the states. We are indeed interested
in multi-agent systems where we can isolate the effect of each individual action.

First let us recall what a state s is in a traditional MMDP: it is a statistic that contains all
the necessary information to choose a joint action a and to describe how the system will evolve
from one step to the next (respecting the Markov property). To take into account the effect of
each individual actions separately, we define what we call sequential states as follow.

Definition 4.2 (Sequential states). A sequential state, denoted s̄ P S̄, is a statistic containing
all the necessary information to:

1. indicate which agent has to act at a given time;

2. choose an individual action for this agent;

3. predict the next sequential state s̄1 for the next agent;

4. estimate the immediate reward associated with any individual actions.

A decision process based on sequential states S̄ does not have the same temporal scale as
its corresponding MMDP (see Figure 4.2). For every joint transition sk Ñ sk`1, there are m
individual transition s̄m.k Ñ s̄m.k`1 Ñ ¨ ¨ ¨ Ñ s̄m.k`m´1 Ñ s̄m.k`m. For example in a two-agent
system, s̄3 denotes the state reached in-between step 1 and 2 after applying agent 1 action.

It is important to note that the original state space S is included in this new sequential state
set, i.e. S Ď S̄. In particular, s̄m.k “ sk is the state reached at step k before any agent actions is
applied, and we loop back to sk`1 “ s̄m.pk`1q once we have applied action amk of the last agent.
For example in our toy S-VRP, when a joint action makes each vehicle serve a customer, we can
go through an intermediate state where only one of the two customers has been served.

On top of this decomposition into sequential states, we can also decompose the state in
individual and shared factors.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

4.2. BUILDING UP A SEQUENTIAL MMDP 75

Definition 4.3 (Factorized states). An MMDP is said to have factorized states if its state space
S can be written as a Cartesian product:

S “ S0 ˆ

m
ą

i“1

Si (4.1)

such that any state s P S decomposes into factors s “ ps0, s1, s2, . . . q, where s0 is a shared state
factor controlled by all agents, and si is the individual state of agent i P I.

In our example the shared factor s0 of the state corresponds to the set of pending customers.
The individual factors s1 and s2 respectively regroup the position and time since departure

of agents 1 and 2 . This state structure will be key when designing approximate structure
capable of representing it, either to estimate its value or derive decision rules.

4.2.2 Sequential transitions

The second property which enables sequential MMDPs is the separability of the transition
function. Because of this structure, we can isolate the effect of each individual action on the
state of the whole system, as shown on Figure 4.2a and Figure 4.2b. Here, there are only
two agents, and a transition from sk to sk`1 caused by a joint action ak decomposes into two
sequential transitions from s̄2.k to s̄2.k`1 because of a1

k then from s̄2.k`1 to s̄2.k`2 because of a2
k.

We will use this property to make individual decision step sequential at the end of this section.

Definition 4.4 (Sequential transition). An MMDP is said to have sequential transition if its
transition function P can be written as a product

P psk`1|sk, akq “ P ps̄m.pk`1q|s̄m.k, akq “
m
ź

i“1

P ips̄m.k`i|s̄m.k`i´1, a
i
kq (4.2)

where P i is a transition function indicating how the individual action aik of agent i affects the
global state of the system, going through all intermediate states s̄m.k`1 to s̄m.k`m´1 starting
from sk “ s̄m.k and finally reaching s̄m.pk`1q “ sk`1.

sk sk+1ak = (a1k, a
2
k)

(a) Joint transition in the original MMDP

sk s̄2.k= s̄2.k+1

a1k
s̄2.k+2 sk+1=

a2k

(b) Separable transition through an inter-
mediate state s̄2.k`1

s1k

s0k

s2k

s̄02.k=

s1k+1

s̄02.k+1

s2k

a1k

s̄02.k+2

s1k+1

s0k+1

s2k+1

=

a2k

(c) Separable transition combined with
factorized states

Figure 4.2 – Illustration of a transition from step sk to step sk`1, without factorized transition
(a), with separable transition (b), and with separable transition and factorized states (c). States
in blue are in the original state space S while states in red are in the intermediate state space
S̄ accessible by individual actions.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

76 CHAPTER 4. SEQUENTIAL MULTI-AGENT MARKOV DECISION PROCESS

In our example, we can apply independently the individual actions of both agents. When
a vehicle chooses to serve a customer, it does not impact the service of the other vehicle. The
corresponding partial transition function P i removes the chosen customer from the set of pending
ones, moves the vehicle to its new location and updates its time since departure.

Something interesting to notice in this example is that the structure of the separable tran-
sition can relate to the structure of the state. Typically, an individual action aik will affect only
the shared state s0 and the individual state si of the agent i through the partial transition P i,
leaving the individual states si

1

, i1 ‰ i of other agents untouched. We illustrate this combination
of factorized transition and states on Figure 4.2c. Combining factorized and sequential states,
we can write:

P psk`1|sk, akq “
m
ź

i“1

P ipsik`1, s̄
0
m.k`i|s

i
k, s̄

0
m.k`i´1, a

i
kq (4.3)

4.2.3 Sequential rewards

Next property that will be key to make the model sequential is the separability of the reward
function.

Definition 4.5 (Sequential reward). An MMDP is said to have a sequential (additive) reward
if its reward function R can be written as a sum of sequential rewards:

Rpsk, ak, sk`1q “ Rps̄m.k, ak, s̄m.pk`1qq “

m
ÿ

i“1

Rips̄m.k`i´1, a
i
k, s̄m.k`iq (4.4)

where Ri are sequential reward functions scoring each individual action on every partial transi-
tion through intermediate states s̄m.k`i P S̄.

Recalling our example, the sequential reward function Ri corresponds to the negative travel
cost of each individual travel. The completion reward RG penalizes the vehicles for leaving
customers pending at the end of the trajectory.

It is important to notice that even if the immediate reward can be separated per actions, the
goal of every agent is still to maximize the global cumulated reward collected. Said otherwise,
an action is evaluated on all its consequences for all the agents, meaning we still consider a joint
cooperative objective.

4.2.4 Sequential MMDPs

Using the structures we identified in previous subsections in terms of transition and reward
functions, we are now ready to formally define what a sMMDP is.

Definition 4.6 (sequential MMDP). A sequential MMDP is a Multi-agent MDP where agents
take their decision sequentially. It is formally defined by the tuple pI, S̄,G,Ai, P i, Ri, RG , P0, Lq,
where I, S̄, G and Ai are respectively the sets of agents, intermediate states, goal states, and
individual actions. P i, Ri, RG and P0 are the transition, reward, goal reward, and initial state
distribution functions, respectively. L is the (finite) planning horizon.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

4.2. BUILDING UP A SEQUENTIAL MMDP 77

−25

100

−
1520

−
3
040

−
1
5

2
0

−
2
0

20 −20
30

0

1

2

3

4

1

2

0

0

Initial state s̄0,1

Turn: 1

0

1

2

3

4

1

2

100

0

State s̄0,2

Turn: 2

a10 = 1 0

1

2

3

4

1

2

100

20 State s̄1,2

Turn: 2

a20 = 2 0

1

2

3

4

1

2

100

60

State s̄2,2

Turn: 2

a21 = 3

0

1

2

3

4

1

2

100

80

State s̄3,1

Turn: 1

a22 = 0

a22 = 0

0

1

2

3

4

1

2

120

80

State s̄4,1

Turn: 1

a13 = 4 0

1

2

3

4

1

2

150

80

Goal state s̄5,1

a14 = 0

Figure 4.3 – The same motivating example of a small S-VRP but introducing sequential indi-
vidual decisions. The next agent to act ik P t1, 2u is the one whose current action finishes first.
We can easily keep track of which agent is next using the cumulated time since departure. We
skipped all intermediate states corresponding to a NOP action, which have no effect on the state.

If we reframed the motivating example previously described as a MMDP, we get the trajec-
tory illustrated on Figure 4.3. Here, we can skip all the NOP actions of vehicles committed to a
service and use sequential transitions and rewards to directly jump to sequential states where
one of the vehicles has to make a decision. Because a single agent acts at each step in a sMMDP,
we can define a turn function σ defined as follow:

Definition 4.7 (Turn function). The turn function σ : S̄ Ñ I indicates which agent σps̄q has
to act in any sequential state s̄.

The goal is now to find a sequential policy πk : S̄ Ñ YiPIAi indicating the optimal individ-
ual action πkps̄q for the agent making a decision on state s̄ at step k to maximize the expected
cumulated reward Er

řL
k“0

řm
i“1R

ipS̄m.k`i´1, A
i
k, S̄m.k`iq ` RGpS̄m.Lqs. Because the decisions

are based on the sequential states S̄, it is much easier than in standard MMDPs to search for
stochastic individual policies πikpa

i|s̄q. Indeed, a stochastic sequential joint policy can be de-
composed in terms of individual policies as πkpa

i|s̄q “ πσps̄qkpa
i|s̄q, whereas in the simultaneous

case, the separability of the joint policy needs to be constrained.

Similarly to classical MDP and MMDP, we can define the state value function V π of policy
π that indicates the expected cumulated rewards from any state s̄ when agent i has to act,
following joint policy π until reaching a goal state.

Definition 4.8 (Sequential state value). In a sMMDP, the state-value function V π
m.k`i´1 of a

sequential policy π at step k ă L when agent i has to act gives the expected cumulated reward
when following π from state s̄m.k`i´1, and onwards. Formally, it is defined as:

V π
m.k`i´1ps̄m.k`i´1q “ E

»

–

m.pL´1q
ÿ

l“m.k`i´1

RσpS̄lqpS̄l, A
σpS̄lq
l , S̄l`1q

fi

fl (4.5)

Additionally, the value V π
m.Lps̄q when reaching the planning horizon L is given by the completion

reward RGps̄q.

Just as standard MDPs, the state value function V π in sMMDPs obeys a Bellman recursive
relation.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

78 CHAPTER 4. SEQUENTIAL MULTI-AGENT MARKOV DECISION PROCESS

Theorem 4.1 (Sequential Bellman equation). In a sMMDP, the state-value function V π of
policy π obeys the following recursion:

V π
m.k`i´1ps̄m.k`i´1q “ EP i,πrR

ips̄m.k`i´1, A
i
k, S̄m.k`iq ` V

π
m.k`ipS̄m.k`iqs (4.6)

Proof. Starting from the definition of V π
m.k`i´1 at intermediate sub-step m.k`i´1 and isolating

the immediate reward, we can identify the remaining sum as V π
m.k`i

V π
m.k`i´1ps̄m.k`i´1q “ E

»

–

m.pL´1q
ÿ

l“m.k`i´1

RσpS̄lqpS̄l, A
σpS̄lq
l , S̄l`1q

fi

fl

V π
k ps̄m.k`i´1q “ E

»

–Rips̄m.k`i´1, A
i
k, S̄m.k`iq `

m.pL´1q
ÿ

l“m.k`i

RσplqpS̄l, A
σplq
l , S̄l`1q

fi

fl

V π
k ps̄m.k`i´1q “ ErRips̄m.k`i´1, A

i
k, S̄m.k`iq ` V

π
m.k`ipS̄m.k`iqs

From this property, we can deduce the following Bellman optimality equation.

Theorem 4.2 (Sequential Bellman optimality equation). The optimal state-value function V ˚

for a sMMDP can be recursively defined as follow:

V ˚m.k`i´1ps̄m.k`i´1q “ max
aiPAi

E
“

Rips̄m.k`i´1, a
i, S̄m.k`iq ` V

˚
m.k`ipS̄m.k`iq

‰

(4.7)

This properties follows from the sequential Bellman equation of Theorem 4.1 and can be
proven using the same steps as for traditional MDP. Indeed a sMMDP can be viewed as an
equivalent centralized MDP with augmented state S̄. The Bellman optimality equation shows
that the sequentiality of sMMDP preserves the optimality of deterministic policies, as the in-
dividual policies defined by taking the arg max in Equation 4.7 are optimal. Parameterized
stochastic policies can still be useful to search in a continuous solution space using Stochastic
Gradient Descent (SGD).

If we compare the complexity of sMMDPs to the one of MMDPs, we can see that we made a
trade-off between the augmented state-space dimension and the time-horizon which grows by a
factor m one side, and the exponential simplification of the joint action-space to the individual
action-space of each agent. To illustrate this, let us consider a sMMDP with 2 agents, 2 states,
and 3 individual actions, and the corresponding MMDP which then has 32 “ 9 joint actions.
Figure 4.4 depicts the decision tree on the first decision step of both models. We can see that the
number of decision nodes stays in the same order of magnitude in both case. Indeed the sMMDP
has an exponentially lower branching factor and a linearly greater depth than its corresponding
MMDP.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

4.3. SIMULTANEOUS VS. SEQUENTIAL MODEL 79

s0

a0

x

s1

0, 0

a1

x

a1

y

s1

0, 1

a1

x

a1

y

s1

0, 2

a1

x

a1

y

s1

1, 0

a1

x

a1

y

s1

1, 1

a1

x

a1

y

s1

1, 2

a1

x

a1

y

s1

2, 0

a1

x

a1

y

s1

2, 1

a1

x

a1

y

s1

2, 2

a1

x

a1

y

(a) MMDP
s̄0

a10

x

s̄1

0

a20

x

s̄2

0

a11

x

a11

y

s̄2

1

a11

x

a11

y

s̄2

2

a11

x

a11

y

a20

y

s̄2

0

a11

x

a11

y

s̄2

1

a11

x

a11

y

s̄2

2

a11

x

a11

y

s̄1

1

a20

x

s̄2

0

a11

x

a11

y

s̄2

1

a11

x

a11

y

s̄2

2

a11

x

a11

y

a20

y

s̄2

0

a11

x

a11

y

s̄2

1

a11

x

a11

y

s̄2

2

a11

x

a11

y

s̄1

2

a20

x

s̄2

0

a11

x

a11

y

s̄2

1

a11

x

a11

y

s̄2

2

a11

x

a11

y

a20

y

s̄2

0

a11

x

a11

y

s̄2

1

a11

x

a11

y

s̄2

2

a11

x

a11

y

(b) sMMDP

Figure 4.4 – Comparison of decision trees for the MMDP and sMMDP models.

4.3 Simultaneous vs. sequential model

To test the performances of our sequential model compared to the original simultaneous one,
we implement two tabular Q-Learning algorithms to solve our motivating example. The first
one uses simultaneous joint action and the initial MMDP model (Algorithm 4.1). The second
one (Algorithm 4.2) uses sequential individual actions and the sMMDP model. We randomly
sample the costs cpj, j1q and the travel times τ from uniform distributions using a random number
generator initialized with different fixed seeds.

1 for a fixed number of iterations do
2 s Ð reset environment();
3 while s not a goal state do
4 if random() ă ε then
5 a Ð random joint action();
6 else
7 a Ð arg maxaQrs, as;

8 s, r Ð step environment(a);
9 v1 Ð maxa1 Qrs

1, a1s;
10 Qrs, as Ð

p1´ αqQrs, as ` αpr ` v1q;
11 s Ð s1;

12 ε, α Ð update metaparameters();

Algorithm 4.1: Q-Learning

1 for a fixed number of iterations do
2 s̄, i Ð reset environment();
3 while s̄ not a goal state do
4 if random() ă ε then
5 ai Ð random indiv action();
6 else
7 ai Ð arg maxai Qrs̄, i, a

is;

8 s̄1, i1, r Ð step environment(ai);

9 v1 Ð maxa1i Qrs̄
1, i1, a1is;

10 Qrs̄, i, ais Ð
p1´ αqQrs̄, i, ais ` αpr ` v1q;

11 s̄, i Ð s̄1, i1;

12 ε, α Ð update metaparameters();

Algorithm 4.2: Sequential Q-Learning

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

80 CHAPTER 4. SEQUENTIAL MULTI-AGENT MARKOV DECISION PROCESS

100

80

60

40

20

Va
lu

e

n = 4, m = 2
MMDP
sMMDP

150

125

100

75

50

25

n = 6, m = 2
MMDP
sMMDP

125

100

75

50

25

n = 6, m = 3
MMDP
sMMDP

500

1000

1500

2000

2500

Si
ze

0

10000

20000

30000

0

100000

200000

300000

400000

500000

0.00 0.25 0.50 0.75 1.00
Episodes 1e6

0

20

40

60

80

100

Ti
m

e
(s

)

0.00 0.25 0.50 0.75 1.00
Episodes 1e6

0

50

100

150

0.00 0.25 0.50 0.75 1.00
Episodes 1e6

0

100

200

300

400

500

600

Figure 4.5 – Learning curves of tabular Q-Learning applied to the MMDP and sMMDP models
of our toy S-VRP with different numbers of customers n and vehicles m, in terms of objective
value, size of the Q-value table and execution time.

We slightly varied the number of customers and the number of vehicles to test how both
approaches scale up. However, the tabular Q-value representation quickly grows towards in-
tractable sizes, so in this section, we limit our experiments to three setups ToySVRP(4,2),
ToySVRP(6,2) and ToySVRP(6,3) where the first number is the number of customers (n “ 4 or
6) and the second one (m “ 2 or 3) is the number of vehicles. The approximation structure we
use to address larger and richer DS-VRPs is detailed in Chapter 5.

We used the same set of meta-parameters (number of episodes, learning rate and epsilon
greedy exploration) for both MMDP and sMMDP approaches. Experimental results in terms of
objective value, size (number of entries in the Q-value table), and execution time are reported on
the learning curves of Figure 4.5. As we can see, both approaches converge in the given number
of iterations in our small problems. The sequential model enables us to drastically reduce the
size of the Q-value tables, and iterations applying the Bellman update operator are much faster
than in the standard MMDP. Scaling with the dimensions of the problems in terms of size and
time is also clearly in favor of the sMMDP in that case.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

4.4. MODEL DISCUSSION 81

4.4 Model discussion

Constrained actions subset. Many high-level planning problems such as the ones we are
interested in have to respect some hard constraints on the actions that the agents can take
at each step. In the classical RL literature, impossible actions would simply make the system
transition to a sink state with highly negative rewards. However, in our cases, these actions
are easily identifiable from the state of the system, and we would like to avoid using many
training samples just to learn to avoid choosing these actions at the wrong time. Also, when
the problems grows and the number of states and actions becomes intractable, we have to
use approximation structures to represent our value functions or our policies. Some of these
approximation structures, including Deep Neural Networks (DNNs), rely on (learned) kernels
that project the states to some internal representation space. The discontinuities caused by
invalid actions in the reward signal can be very hard to isolate in these internal spaces, and
bias the approximation, reducing its performances. In next chapter, we will develop how we
encode the set of possible actions and match it against the internal state of the agent to create
a decision rule that only consider valid actions.

To integrate this property in our model, we consider that there exists a known, deterministic
function Ξi : S̄ Ñ ℘pAiq that yields the subset of valid actions Ξips̄q Ď Ai given the global state
s̄ of the system, where ℘pAiq denotes the power-set, i.e. the set of all possible subsets, of the
set of individual actions Ai. In our example, agents (i.e. vehicles) can only travel to pending
customers and cannot choose the same target, except if they both return to the depot. It is
much easier to express this constraint in the individual action space based on the intermediate
state resulting from the separated execution of individual actions, instead of in the joint action
space.

Temporally extended actions. Another property that is at the core of the problems we
want to address is the slow pace of the decisions. Contrary to lower-level control systems
which need to work at high frequencies, our abstract decisions naturally describe some long-
lasting actions. Such temporally extended actions have been studied in Semi-Markov Decision
Processes (SMDPs) [17, 63]. This model explicitly considers stochastic continuous time in-
between decisions during which a continuous reward is perceived. Additionally, the options
framework [107] builds a bridge between MDPs and SMDPs, taking benefit of an underlying
MDP model to build a hierarchical temporal abstraction of decisions. Multi-agent extension of
SMDPs or options are still rare [76]. In our sMMDP model, we aim at taking advantage of the
problem structure and actions durations to simplify the agents interactions through time.

However, contrary to models applying the options framework to multi-agent systems, we
simplify the state space we have to explore by considering our transition function can directly
predict the final result of each individual actions. We still preserve the order in which the agents
act by also predicting the completion time of all actions. In this configuration, the sMMDP
model becomes much more interesting, because most of the intermediate actions will be NOP

while waiting for the initial action termination. In these conditions, the sMMDP has a net
advantage over the simultaneous MMDP approaches. Indeed it can skip all intermediate steps
corresponding to agents that must apply a NOP action in the current state. The function σ can
be repurposed as a turn function S̄ Ñ I which indicates based on the state which agents has
to act. In the general case, it could even be a stochastic function S̄ ˆ I Ñ r0, 1s, as long as the
sequential states contains enough information to predict which agent has to act at any state.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

82 CHAPTER 4. SEQUENTIAL MULTI-AGENT MARKOV DECISION PROCESS

4.5 Conclusion

In this chapter, we discussed how to model slow-paced decision processes involving multiple
agents. These agents interact with a common environment through temporally extended actions
whose effects on the state can be isolated. Thanks to this property, we defined a variant of
MMDP called sequential MMDP (sMMDP) which describes decision processes where agents
do not act simultaneously anymore. Instead, only one agent acts at a given step, causing
a state transition and receiving a reward. However, because a factor of the state is shared
between agents, and because they pursue a common objective, the problem cannot be solved
independently. There are also constraints on the available individual actions which depend on
the shared factor of state, which interleave the trajectory of each agent.

sMMDPs are better suited to describe problems that naturally involve sequential decisions.
The agents have access to more information to take their decisions at each step. Also, while
having only one agent make a decision at each step causes the trajectory to be longer, it involves
searching only in the individual action space instead of the exponentially larger joint action
space. That is why we can preserve the complexity of the problem we try to model. Even with
the reduction of the number of entries in the Q-value table we observed in our experiments,
larger problem are still intractable using such an exhaustive representation. To solve this issue,
we will now propose an approximation architecture which relies on the state structures identified
in our sMMDP model to extract features from the state of the system and output decision rules
online for any agent, taking advantage of the properties of the model. It enables us to extend
the discussion on efficient state representations we started in Chapter 3.

We will now use the models we introduced here to address our initial problem: a rich Dynamic
and Stochastic VRP. More specifically, we will learn a parameterized policy implemented as
an architecture we call Multi-agent Routing Deep Attention Mechanisms (MARDAM) that
generalizes to unknown instances of the problem, with different sets of customers configurations.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

Chapter 5

Multi-Agent Routing using Deep
Attention Mechanisms

After describing standard models and solution methods for Vehicle Routing Problems (VRPs)
in Chapter 2, we introduced in Chapter 3 Markov Decision Processes (MDPs) borrowed from
the Reinforcement Learning (RL) literature, that are naturally well suited to describe Dynamic
and Stochastic variants of the problem (DS-VRPs). We analyzed the structure and properties of
our problems of interest in Chapter 4, which led us to define a new variant of Multi-agent MDP
we call sequential MMDP (sMMDP). We conducted an experiment comparing sMMDP to its
MMDP counterpart. One of the conclusion of this experiment was that even though sMMDP
behaved better in term of scaling up the number of vehicles and customers, an exhaustive
representation of the value function is still intractable for larger problems. Hence, we need an
approximation structure that can efficiently capture the properties of the problem.

We now have all the tools we need to address rich DS-VRPs. In this chapter, we will first
provide details about how we model DS-VRPs with Capacitated vehicles, stochastic travel times
and stochastic customers with Time Windows (DS-CVRPTWs) as a sMMDP. To circumvent
the issue of scaling up the dimensions of the problems, adapted approximation structures are
required. To learn to represent the complex state of rich DS-VRPs, we introduce a new policy
architecture we call Multi-Agent Routing Deep Attention Mechanisms (MARDAM) network. It
is designed around specialized encoders for the customer configuration, the vehicles states (in
continuous space) and a flexible scoring of possible next travels (actions). Unfortunately, we
then cannot guarantee the optimality of the solution, nor give bounds on its optimality gap.
The best we can say is that we will find a local optimum in the class of function we are capable
of representing. However, because this class is very rich when using DNNs as approximation
structures, we expect our approach to output high quality solutions. We will empirically evaluate
if this claim holds in Chapter 6. We published these model, architecture and the experimental
results that accompany them in [1].

5.1 Modelling a DS-CVRPTW as a sMMDP

The first step before we can develop on our approach using Attention Mechanisms on DS-VRPs
is to model the problem as a sMMDP. It will enable us to train a policy that can take online
decisions depending on the evolution of the available information. Recall from Definition 4.6
that a sMMDP is formally defined by the tuple pI, S̄,G,Ai, P i, σ, Ri, RG , P0, Lq. The following

83

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

84 CHAPTER 5. MULTI-AGENT ROUTING USING DEEP ATTENTION MECHANISMS

subsections give details on each of these elements. We provide an extensive formalism in order
to show how the model will be fully integrated in a Deep RL training loop, using efficient tensor
structures and operations optimized in many standard frameworks.

0

[0:00 8:00]

1

[3:25 4:17]

2:38

2

[4:38 5:23]

3

[2:57 3:45]

4

[3:24 4:13]

3:09
5

[2:15 7:32]

6

[4:52 6:01]

4:33

7

[3:55 6:28]

2:50

8

[0:53 7:26]

9

[5:49 7:42]10

[3:53 5:16]

2:02

1
0:00

2
0:00

Figure 5.1 – Example of a DS-CVRPTW with 10 customers that we will model as a sMMDP.

It is only a sample of all possible customer configurations, which are randomly distributed. 0

represents the depot where all vehicles are initially parked. j are the customers initially known,

and j are dynamically appearing customers. The node sizes are proportional to their demands,
and their time window rej , ljs is indicated below. Service durations are not represented. The

appearance time bj of dynamic customers is indicated at the top left. Vehicles 1 and 2 start
at depot. Their remaining capacities are shown as filled rectangles, and their availability times
as a label above them.

Figure 5.1 illustrates a sample of a DS-CVRPTW with 10 customers, 5 of which are dynamic
customers, i.e. they appear only after some time. Their appearance time, and all their other

features are not known/observable a priori. The two vehicles 1 and 2 start at the depot at

time t10 “ t20 “ 0, with maximum capacity κ1
0 “ κ2

0 “ 50.

5.1.1 Agents set

Each vehicle composing the fleet is an autonomous agent i P I in the system. As introduced
before in Chapter 2, we call m P N the number of vehicles in the fleet, hence I “ J1,mK. In
the latter, we will consider problems with up to m “ 10 vehicles, but here in our example of
Figure 5.1, there are only m “ 2 vehicles. However, we will benefit from the symmetries there
are between the different agents when the fleet is homogeneous to share experiences between
them and improve the efficiency of our learning procedure. Some more traditional OR heuristic
approaches can handle problems with a much higher number of vehicles, up to hundreds, or even
thousands of vehicles [100]. The limiting factor for these methods is the number of customers,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

5.1. MODELLING A DS-CVRPTW AS A SMMDP 85

which is also higher than what we are capable of representing with DNN. However most standard
OR approaches rely on hand-crafted expert heuristics, whereas DNN opens up possibility to
learn such heuristics, adapting to past experiences while preserving the capacity to generalize
to unknown problems.

5.1.2 State space

As previously introduced in Section 4.2 of the last chapter, any state s̄ P S̄ is factorized into a
shared state s̄0 and individual states s̄i for every agent i P J1,mK.

Shared customer state The shared state s̄0 not only indicates the set of pending customers,
represented as a boolean vector ξ P t0, 1un`1, such as ξj “ 1 if customer j is still pending and
ξj “ 0 if j has already been served. s̄0 also contains their configuration. Indeed customers
coordinates pxj , yjq, demands qj , TWs rej , ljs, durations dj and appearances bj are sampled
when initializing the trajectory. Formally, we can write s̄0 as a matrix of size pn` 1q ˆ 8 where
each row contains the features of customer j, and a boolean ξj indicating whether customer j
is pending or not (depot is always “pending”), with n the number of customers.

s̄0 “

»

—

—

—

—

—

—

–

x0 y0 0 0 l0 0 0 1
x1 y1 q1 e1 l1 d1 b1 ξ1

. . .
xj yj qj ej lj dj bj ξj

. . .
xn yn qn en ln dn bn ξn

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.1)

Demands of
all customers

Pending status of
all customers

State s̄0,j of
customer j P J0, nK

Because the number of customers can vary, the shared state encoder block of the policy,
also called customers encoder, will need an efficient way to represent sets of vectors. See the
following Section 5.2 for the solution we selected to implement this customer encoder. That
makes our problem a VRP with stochastic customers, adding a first source of uncertainty.

For example, the features of the customers in the instance illustrated in Figure 5.1 at time
t “ 0 where the dynamic customers have not appeared are described by the matrix:

s̄0
0 “

»

—

—

—

—

—

—

–

32 20 0 0 480 0 0 1
5 33 12 278 323 15 0 1
33 1 6 177 225 17 0 1
16 26 9 135 452 26 0 1
´26 ´22 6 53 446 34 0 1
49 41 12 349 462 12 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.2)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

86 CHAPTER 5. MULTI-AGENT ROUTING USING DEEP ATTENTION MECHANISMS

If we consider that vehicles 1 and 2 have respectively served customers 8 and 5 ,

enough time has gone by for customers 1 and 10 to appear. The customers state s̄0
2 is then:

s̄0
2 “

»

—

—

—

—

—

—

—

—

—

—

–

32 20 0 0 480 0 0 1
15 ´14 8 205 257 18 158 1
5 33 12 278 323 15 0 1
33 1 6 177 225 17 0 1
16 26 9 135 452 26 0 0
´26 ´22 6 53 446 34 0 0
49 41 12 349 462 12 0 1
´9 34 14 233 316 24 122 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.3)5 and 8
have been served.

1 and 10
have appeared.

Individual vehicle state Each agent state s̄i is a vector composed of the coordinates pxi, yiq
of the last customer it served, its remaining capacity κi and its next availability time ti (corre-
sponding to the cumulated time since departure, including travel, wait and service times).

s̄i “
“

xi yi κi ti
‰

(5.4)

The two last components describe the same dynamic quantities as the state variables of Equa-
tions (2.2) and (2.3) in the MILP formulation, but they are associated with a vehicle instead
of a node (a customer). That is why we chose to introduce the MILP formulation of Cordeau
et al.[24], which uses quadratic/conditional constraints to maintain the consistency of state
variables for capacity and time.

0

[0:00 8:00]

1

[3:25 4:17]

2:38

2

[4:38 5:23]

3

[2:57 3:45]

4

[3:24 4:13]

3:09
5

[2:15 7:32]

6

[4:52 6:01]

4:33

7

[3:55 6:28]

2:50

8

[0:53 7:26]

9

[5:49 7:42]10

[3:53 5:16]

2:02

1
2:53

2
2:41

X

X

Figure 5.2 – State reached after 1 decided to serve 8 and 2 served 5 . Vehicles have moved,
their capacities and availability times have been updated, served customers are marked as such,

and customers 1 and 10 have appeared.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

5.1. MODELLING A DS-CVRPTW AS A SMMDP 87

Taking the same example trajectory as in previous paragraph, where 1 and 2 have served

8 and 5 , we reach the state s̄2 depicted in Figure 5.2. At this step, we have:

s̄1
2 “ r´26 ´22 44 173s
s̄2

2 “ r16 26 41 161s
(5.5)

Goal states A goal state s̄ P G is reached when all vehicles are back to the depot. Such a goal
state is illustrated on Figure 5.3.

0

[0:00 8:00]

1

[3:25 4:17]

2:38

2

[4:38 5:23]

3

[2:57 3:45]

4

[3:24 4:13]

3:09
5

[2:15 7:32]

6

[4:52 6:01]

4:33

7

[3:55 6:28]

2:50

8

[0:53 7:26]

9

[5:49 7:42]10

[3:53 5:16]

2:02

1
7:28

2
8:12

X

X

X

X
X

X

X

X

Figure 5.3 – Example of a goal state reached after 1 served 8 , 7 , 10 , and 1 , while 2

served 5 , 9 , 4 , and 3 .

5.1.3 Constrained individual actions

In this formalization of DS-VRPs as sMMDPs, an individual action consists in travelling to and
serving a customer or return to the depot, It means that the set of all possible individual actions
can be mapped to Ai “ J0, nK for all agents i P J1,mK, where n is the number of customers.

ai “ 0 corresponds to returning to the depot 0 , and ai “ j to serving customer j .

The constraints of the DS-VRP can be expressed as a partition between valid and invalid
actions. An action ai “ j can only be selected by a vehicle i at step k if:

1. j is still pending, i.e. ξjk “ 1 in the shared state matrix s̄0
k

2. j has already appeared when i takes its decision, i.e. tik ě bj

3. i has enough remaining capacity to serve j , i.e. κik ě qj

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

88 CHAPTER 5. MULTI-AGENT ROUTING USING DEEP ATTENTION MECHANISMS

Given these three constraints, we can define the set of possible actions for i at step k as a

deterministic function of the state denoted Ξi : S̄ Ñ t0, 1un`1, such as Ξips̄q is a binary vector
whose components are 1 only where the three conditions stated above are met. Checking the
validity of each action can be made for all customers and vehicles at once, through element-wise
operations on vectors extracted from the shared and individual states. These binary vector will
be later used as an input of our policy network MARDAM (c.f. Section 5.2), to enforce that
invalid actions have no probability to be selected in the decision rules it outputs.

For example, if we consider the state s̄2 depicted on Figure 5.2, the valid actions for 2 are
given by the binary vector:

Ξ2ps̄2q “
“

1 1 1 1 0 0 0 0 1 1
‰

(5.6)

Here, the remaining capacity κ2
2 of 2 is never a limiting factor, and all pending customers can

be served.

5.1.4 Turn and transition functions

Now that we have identified the structures we use to describe all possible states S̄ of the DS-
CVRPTW, and how we classify actions of travelling to customers as valid or invalid, we will
define how these states evolve given the action of the vehicles. As we want to model a sequential
system, we only have one vehicle acting at a time, and we will define how the information of
which vehicle acts next can be extracted from the state.

Transition function The transition function P i is for the most part deterministic. When
agent i travels to customers j after choosing action aik “ j, its individual state s̄ik gets updated
as followed:

s̄ik`1 “
“

xj yj κik ´ q
j maxttik ` τ

ij , eju ` dj
‰

(5.7)

where τ ij “ dij

Vik
is the time it takes to vehicle i to travel from its previous position pxik, y

i
kq to

the position of its targeted customer pxj , yjq. In our setup, this travel time is a random variable
resulting from the euclidean distance dij between the two locations and the stochastic travelling
speed V ik of the vehicle at this step.

This speed is sampled independently for each travel from a continuous bimodal distribution:
the first mode emulates flowing traffic with nominal vehicle speed Vnom and low variance σ2

nom,
while the second mode corresponds to congested traffic with reduced mean speed Vslow ă Vnom

and higher variance σ2
slow ą σ2

nom. The following equation formalizes this distribution:

PrtV ik “ vu “ p1´ pslowq N pv;Vnom, σ
2
nomq

` pslow N pv;Vslow, σ
2
slowq

where N denotes the normal distribution. The resulting distribution for varying values of pslow

is illustrated on Figure 5.4. In this model, travel times are completely independent from one
another. We consider that there is enough background traffic formed by the flow of uncontrolled
vehicles such that the travel of one agent does not affect the ones of other agents. A finer model
would need to consider the correlations between travel times given the road network, and the
traffic conditions at every time of day.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

5.1. MODELLING A DS-CVRPTW AS A SMMDP 89

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Vehicle speed (km/min)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

p.
d.

f.
va

lu
e

pslow = 0%
pslow = 5%
pslow = 10%
pslow = 20%
pslow = 30%
pslow = 50%

Figure 5.4 – Vehicle speed distribution for different slowdown probabilities

Shared state update The features of the customers stored in the first seven columns of the
shared state s̄0 are sampled once at the beginning of the episode, but are then invariant along
the trajectory. However the last column ξk is updated to indicate that customer aik has just
been served and is not pending anymore. We also check that no new customers have appeared
between the last and current decision time.

Turn function Recall form Chapter 4 that in our sMMDP model, only one agent acts at a
time. Any sequential state s̄ P S̄ contains enough information to predict which agent has to
act. We defined the turn function σ : S̄ Ñ I which extract this information from the state,
and return the agents currently awaiting a decision. In our model of DS-VRPs, it returns the
agent with the smallest availability time σps̄kq “ arg miniPJ1,mK t

i
k. Because the travel times

are stochastic, the order in which the agents act is not pre-determined, even though the turn
function is deterministic.

5.1.5 Reward function

The next element to define our DS-CVRPTW model is the reward function. It is the key
element that will guide the optimization of the policy. That is why we will discuss the design of
the reward signal, to match the objective of traditional DS-VRPs formulations, while trying to
minimize the risk ill-defined solutions corresponding to local optima of the expected cumulated
reward objective function in our RL framework.

The reward associated with each individual travel corresponds to the negative cost of travel
in the original problem formulation. In our DS-CVRPTW, we use the euclidean distance dij

between the coordinates of the customers, and we want to minimize the total distance travelled.
In more realistic scenarios, it could be based on the fuel and maintenance costs of the vehicles.
As we are considering soft TWs, a second term corresponding to a lateness penalty is subtracted
to this base travel cost if the vehicle arrives to serve a customer after its due time. Formally, we
write it as:

Rips̄k, a
i
k, s̄k`1q “ ´d

ij ´ Clate maxt0, tik ` τ
ij ´ lju (5.8)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

90 CHAPTER 5. MULTI-AGENT ROUTING USING DEEP ATTENTION MECHANISMS

The proportionality coefficient Clate associated with this penalty is a meta-parameter we
can tweak to balance how late we are allowed to serve a customer. If we increase it enough,
the lateness penalty can become a predominant term in the reward, so that we can mimic hard
TWs. There is still one very important constraint of the CVRP we did not address in our model
yet. If we can limit the actions available to an agent at any time such that no customers can be
served twice, we still have no incentive to even serve any customer at all. The trivial optimal
solution for our model at this stage is to stay at the depot indefinitely to avoid all costs. We
considered multiple alternatives to solve this issue:

1. Give a positive reward to the agent when it successfully delivers its item to a customer
compensating for the travel cost;

2. Associate the action of staying at the depot with an additional negative reward and only
end the trajectory when all customers have been served;

3. Give a discouraging negative reward to the whole fleet at the end of the trajectory for any
customer left pending.

The first alternative is maybe the most intuitive as it directly echoes the real economic
incentives logistics companies are subject to. However, in reinforcement learning it is very hard
to balance between a high enough value to avoid the trivial solutions of preferring the depot
to any delivery, and a low enough value so that it does not completely overshadow the costs.
Theoretically a high value should work, but in practice, most RL algorithms will fall into a local
optima where every customer is served before it can even try to optimize for travel and lateness
cost.

The second alternative is directly inspired by classical approaches to shortest path problems.
As every action is associated with a cost, trajectories with as few decision steps as possible are
emphasized. In our case any useless stay at the depot will only worsen the cost of the trajectory.
However this alternative causes some problems in our sequential durative action model. When
should a decision for a vehicle parked at the depot be triggered? Obviously at the beginning
of the trajectory, all vehicles have to choose if they leave the depot or not. But after that, any
“wait at depot” action could be extended indefinitely. If we triggered a new decision any time
another vehicle finishes its action, we would loose on the advantages of considering durative
actions to limit the size of the spaces to explore. One possibility is to consider only external
events modifying the environment state, such as when a new client appears. Again, the value of
this cost of waiting needs to be balanced so that vehicles are encouraged to serve the customers
despite the travel cost, but also such that no extra vehicle is deployed when only part of the
fleet can manage all the deliveries in time.

The last alternative is quite similar to the second one, as it also only involves negative
rewards, which needs to be just high enough to discourage all vehicles to stay at the depot
without serving any customer. However it has the advantage to not penalize vehicles that
choose to stay at the depot when only part of the fleet can deal with all deliveries. That is why
we converged to this reward model for our sMMDP, and integrated a completion reward RG to
the model.

RGps̄k`1q “

#

´Cpend
řm
j“1 ξ

j
k`1 if s̄k`1 P G

0 otherwise
(5.9)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

5.2. MARDAM, A MODULAR POLICY NETWORK FOR DS-VRPS 91

To conclude on these thoughts on reward signal design, it is both a critical and a difficult
part of any RL-based approach, which we adapted to our new formalization taking into account
durative actions and sequential event-based decision.

5.1.6 Initial state distribution and planning horizon

As we quickly mention when describing the factored state space, the initial state distribution
P0 samples a set of customers with varying configurations. A detailed example of this sampling
will be presented in Section 6.2 when discussing the benchmarks we used in our experiments.
An example of a resulting instance of the problem is illustrated above in Figure 5.1. This could
be seen as a generalization of a S-VRP with stochastic customers. The goal here is not only to
adapt to the potential presence of some pre-defined customers but to train our learning agents to
adapt to many different situations and use the same pre-trained policy for a variety of problems.

It also deterministically initializes every vehicle at depot with full capacity, which we can
write:

s̄i0 “
“

x0 y0 κmax 0
‰

@i P I (5.10)

where px0, y0q are the coordinates of the depot, and κmax is the full capacity of every vehicle.
Finally, all customers are marked as pending in the vector ξ, i.e. :

ξj0 “

#

1 if bj “ 0

0 otherwise
(5.11)

Concerning the horizon L, as vehicles cannot serve every customer more than once and must
come back to depot, the total number of decision cannot exceed L “ n`m.

5.2 MARDAM, a modular Policy Network for DS-VRPs

We have now described how we model a DS-CVRPTW as a sMMDP. As the problems we
consider involve up to ten vehicles and fifty customers, the sizes of the state and action spaces
become intractable, and we cannot use an exhaustive representation of the policy. To circumvent
this issue, adapted approximation structures are required. We are only guaranteed to find a local
optimum in the class of function we are capable of representing. However, because this class
is very rich when using DNNs as approximation structures, we expect our approach to output
high quality solutions. That is why we propose a modular DNN architecture to implement a
parameterized stochastic policy which we will train using an Actor-Critic algorithm. We call
this specialized policy network Multi-agent Routing Deep Attention Mechanisms, or MARDAM.
In this section, we will detail how the Attention Mechanisms presented in Section 2.5 help us
address such a sequential problem and how masking is used to enforce hard constraints on the
decision rules the policy outputs. Figure 5.5 gives a high-level overview of MARDAM, and how
the four blocks composing it interact. Every following subsection describes one of the blocks
that need to encode part of the environment state.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

92 CHAPTER 5. MULTI-AGENT ROUTING USING DEEP ATTENTION MECHANISMS

Customers
Encoder

0

s̄0,0k

1

s̄0,1k
. . .

j

s̄0,jk
∀j

h0,0k h0,1k
. . . h0,jk

Vehicles
Encoder

1

s̄1k

2

s̄2k . . .

i

s̄ik ∀i

h1k h2k . . . hik ∀i

Vehicle turn
Focus

ik

ρik
Travels
Scorer

Ξik(s̄k)

πik(aik|s̄k) ∀aik

Figure 5.5 – Overview of MARDAM - Four blocks composes this policy architecture, each
specializing in one of the factor of the state. At the end, it produces a decision rule giving the
probabilities of choosing any pending customer as the next destination for the vehicle that has
just finished its previous service.

The “customers encoder” block has the critical role to represent the customers features
which is key to characterize the problem we are facing. It is implemented as a Transformer
encoder [112] that can efficiently learn a representation of the fully connected graph formed by
the customers as discussed in Section 2.5. It outputs an internal representation h0,j

k for the
depot and every customer j. All other internal representations in MARDAM are based on this
initial customer encoding. Indeed vehicles states and actions are closely related to the customer
features.

The “vehicles encoder” block uses an Attention Mechanism to map each vehicle state s̄ik to
its own internal representation hik, built as a weighted combination of the customers encoding.
Contrary to existing approaches based on Deep Neural Networks (DNN) found in the litera-
ture [50, 73, 31], we model the problem as a multi-agent decision process. Instead of encoding
the partial route of a single vehicle, we base our policy directly on the factored state of all
agents. It enables us to provide online decision rules to any agent in a dynamic environment,
contrary to existing method which can only be used offline to plan multiple routes. The “agent
turn focus” combines all internal representations of the vehicles states into a single internal state
representation ρik for the vehicle ik taking a decision at the current step k using an attention
mechanism driven by the internal representation of the current agent.

Finally the “travels scorer” block matches each customer representation h0,j
k with the internal

state representation of current vehicle ρik using a learned measure similarly to how Attention
Mechanisms compute the weights to combine their input values. As the set of actions directly
maps to the set of customers, we do not create a new encoding for them, but simply use the
one of the customers coming from the first block. To take into account only valid action, the
resulting scores are masked using the binary vector given by Ξikps̄kq.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

5.2. MARDAM, A MODULAR POLICY NETWORK FOR DS-VRPS 93

5.2.1 Customers encoding

The “customers encoder” block is the first entry point of our policy. This encoder has to learn
to extract useful features from the shared state s̄0. In this case, it learns to represent the fully-
connected graph formed by the depot 0 and the customers j P J1, nK. It identifies patterns
relating their features to one another, and provides an enriched vectorial representation h0,j

k of
every node j (depot or customer). This representation is driven by the experiences and rewards
encountered during training. For example, some components of these learned representations
could correspond to a notion of priority for customers with early and tight TWs, other could score
them in term of relative demands, or classify them into spatial clusters which could help pre-
allocating them to the vehicles. Nonetheless, because an encoder based on DNN is completely
learned and is capable of approximating almost any kind of function, the representations we
obtain do not necessarily have such a strict and interpretable semantic. They are mostly abstract
vectors which might make sense only for the layers using then afterwards, even though they
contain all the important information.

0

s̄0,0k

1

s̄0,1k
. . .

j

s̄0,jk
∀j

MHA

Feed Fwd

Transformer layers

h0,0
k h0,1

k
. . . h0,j

k

Figure 5.6 – Customer encoder block in MARDAM implemented as a Transformer encoder to
create internal representation h0,j

k for a set of customers described by features vectors s̄0,j
k .

As we developed in Chapter 2, many kinds of DNN layers could have fulfilled the role of a
graph encoder to represent the set of nodes (depot and customers) that constitute the shared
state of our sMMDP formalization of DS-VRPs. Similarly to [50, 31], we chose to exploit the
flexibility and efficiency of the Transformer encoder introduced in [112], illustrated in the context
of MARDAM on Figure 5.6. The Transformer is flexible because the same set of weights can
be used for inputs of different sizes, making it capable of generalizing to configurations of VRPs
involving varying number of customers. Its efficiency comes from the fact that its operations are
invariant to permutations of its input, hence it can naturally capture the nature of unordered
sets without having to learn that all permutations of their elements are equivalent.

The Transformer encoder is an alternating stack of Multi-Head Attention (MHA) layers and
fully connected (a.k.a. linear) layers, which are all short-circuited by skip connections and batch-
normalized. We refer our readers to Figure 2.13 in Chapter 2 for more details on the operations
involved in a MHA layer. We developed our own implementation of Transformer encoder before
it was integrated in pytorch, one of the leading library for DNN we have chosen to use during
this thesis. An efficient implementation of the MHA layer only declares one set of weights for
all heads, taking care of initializing them per block, to perform all operations in parallel heads
at once, then reshape the results. It takes advantage of the caching and parallelization of batch

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

94 CHAPTER 5. MULTI-AGENT ROUTING USING DEEP ATTENTION MECHANISMS

operations which are well optimized in the standard low level linear algebra libraries for GPUs,
such as CUDA and CUBLAS.

We picture the shared state of the customers as a way to provide a common context to the
agents. Hence the encoding resulting from this first block will be carried along the other blocks
to enrich their input with more information. In particular, it will complement the individual
state of every agent to form individual intermediate representations relating to all factors an
agent can influence through its actions.

5.2.2 Vehicles encoding

The “vehicles encoder” block in MARDAM also learns to extract features from the state of the
system. The role of this block is to independently produce an intermediate representation in a
high dimensional space for every agent i P I at any point of the trajectory. This individual in-
termediate representation takes as input both the individual state of all the vehicles s̄1, s̄2, . . . , s̄i

and the context coming from the shared state s̄0 through its encoding h0.

Combined with the “agent turn focus” block which comes right after it, it constitutes the
key difference with existing DNN approaches to routing problems [50, 73]. Together they enable
us to model the VRP as a true multi-agent system, instead of reformulating it as a single vehicle
problem. Adopting a multi-agent model is required to be able to adapt our decision rules online
for all vehicles given the stochastic and dynamic information we gather while executing them.

Closest to our approach is the Attention Model (AM) of Kool, Hoof, and Welling [50],
which has been previously discussed in Section 2.5. It creates a context vector directly from
the customers embeddings produced by the Transformer. This context can only describe one
route at a time and cannot represent the state of multiple vehicles evolving in parallel. This
auto-regressive representation could be considered as a representation of the history of actions
taken by the vehicle.

h0,0
k

h0,1
k . . .

h0,j
k

1

s̄1k

2

s̄2k . . .

i

s̄ik ∀i

h1
k h2

k
. . . hi

k ∀i

MHA

keys
and values

queries

Figure 5.7 – Vehicles encoder block in MARDAM implemented as a MHA layer to create internal
representation hik for a set of vehicles based on their states s̄ik and the internal representations

of the customers h0,j
k .

To circumvent this limitation, we propose to learn an intermediate representation directly
from the continuous states of all the vehicles in the fleet using a MHA layer, which was described
in details in Section 2.5 of Chapter 2. Each individual state s̄ik is used as a query on the set

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

5.2. MARDAM, A MODULAR POLICY NETWORK FOR DS-VRPS 95

of internal representations h0,j
k of the customers, playing the role of both keys and values. In

every head of the MHA layer, a learned measure scores queries against keys to output weighted
combinations of the values. The results of the different heads are then mixed together through
a fully connected layer. We obtain an internal representation hik for all vehicles i P J1,mK,
which regroups the information coming from the individual state of each agent and the context
provided by the shared state, i.e. the features of the customers, which characterizes the problem.

This block can take advantage of potential symmetries between agents. In our case, we
consider an homogeneous fleet of vehicles, hence the role of each vehicle could be swapped with
another one without impacting the objective value, and all individual states s̄i lie in the same
space S̄i. That is another advantage of the MHA layer that motivated our design choice. The
parameters of the query projections in the MHA of the “vehicles encoder” block are shared
between agents, which improve learning efficiency. It also means that MARDAM can be trained
to solve problems with a fleet of varying size, which helps it generalize to problems with more
agents.

The internal representations hik of the vehicles are then focused on the vehicle ik currently
taking a decision, which is given by the environment through the turn function σ. The “agent
turn focus” block also uses a MHA to combine the representations of every agent given the
shared context, i.e. the global state of the system, into a single individual internal state vector
ρik.

5.2.3 Turn focus

It is in the “Vehicle turn focus” block that we take into account the sequentiality of our model.
It takes as input the set of intermediate representations produced above and the current turn
value ik to produce the individual internal representation of the state for the agent currently
taking a decision. Figure 5.8 shows how the intermediate representation hikk of the agent ik
currently acting is selected and compared to all the other intermediate representations, in order
to form the internal state ρik of the agent. Similarly to the previous “vehicles encoder” block,
this block is able to take a variable number of inputs in order to adapt to different number of
agents.

h1k h
2
k
. . . hik ∀i

ik

ρik

•

keys
and values

current vehicle repr.
as query

Figure 5.8 – Turn focus block of MARDAM. From the internal representation of every agents, it
focuses on the one currently taking a decision given by the turn variable ik. It uses a MHA layer
to generate an internal state representation for this agent given the intermediate representation
of the whole fleet.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

96 CHAPTER 5. MULTI-AGENT ROUTING USING DEEP ATTENTION MECHANISMS

This block is meant to help the coordination between agents by extracting the features that
customize the decision rule for this specific agent, isolating it from the rest of them. It is
implemented using a MHA layer. Intermediate representations hi

1

k @i
1 play the role of keys and

values. The one of the agent ik currently acting drives the attention as a query vector hikk . The
query and the keys are projected to a different vector space in multiple parallel heads, where
they can be scored against each other using a simple scalar product. These scores are normalized
and used as weights to combine projections of the values associated to the keys. The projection
of the query and the keys corresponds to learn a metric comparing them to one another. The
multiple heads provide some variety and some redundancy that help the layer explore the class
of function it can learn and extract more relevant features.

As shown on the bottom-left of Figure 5.5, we obtain a single vector ρik which is a combination
of the intermediate states of all agents, driven by the one of the agent currently acting. ρik will
play the role of the individual internal state for this agent when computing a decision rule in
the next block.

5.2.4 Travels scorer

From the individual internal state ρik output by the previous block, the “travels scorer” block
has to produce an individual decision rule πikpaik|s̄kq indicating the probabilities of choosing
any valid action aik P Ξikps̄kq for the current agent ik given the current state s̄k. In the case of
MARDAM, we can take advantage of the fact that the set of individual actions directly maps to
the set of customers. Hence, we can use the internal customers representation h0,j

k as encoding
of the individual actions to be matched against the individual internal state ρik.

h0,0k h0,1k
. . . h0,jk

ρik

Ξik(s̄k)

πik(aik|s̄k) ∀aik

MHA score

Masking0

Figure 5.9 – Travels scorer block in MARDAM implemented as the scoring part of a head in a
MHA layer with masking. It outputs an individual decision rule πp¨|s̄kq for the agent ik currently
acting based on its internal state representation ρik and the internal representation h0,j

k of the
customers.

To enforce that only valid actions can be selected, the resulting scores are masked such that
customers that cannot be served by the current vehicle have a zero probability to be chosen as
next target. Using masking, we avoid having to re-encode only the valid customers at every
decision step. This greatly improves the efficiency of MARDAM, because customers represen-
tations are only updated when the set of customers varies (in case of dynamic appearance),
and all projections depending on them in the vehicles encoder and travels scorer blocks are also
pre-computed.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

5.3. CONCLUSION 97

5.3 Conclusion

In this chapter, we used the sMMDP model we introduced in Chapter 4 to model a Dynamic
and Stochastic VRP with Capacitated vehicles and Time Windows (DS-CVRPTW). We con-
sider three main sources of uncertainty and dynamism: stochastic customers whose features
are randomly sampled from a-priori unknown distributions; stochastic travel times which also
follows an a-priori unknown distribution; and dynamic customers appearing while vehicles are
travelling. We first extensively explained how we model this rich DS-VRP problem relying on
tensor structures compatible with Deep RL frameworks and easily parallelized into batches to
reduce the variance of the gradient estimation and improve training efficiency. We discussed
relevant modelling choices including state structure and reward model.

Then we presented a novel DNN architecture based on Attention Mechanisms which we call
MARDAM. It is designed as a modular policy decomposed into four blocks. Each of them
is responsible for representing part of the state of the system. This architecture is capable of
encoding both the shared state of the environment, which represents a distribution over different
customers configurations on which we can generalize, and the dynamic state of the whole fleet
of vehicles to adapt to uncertain events as customers appearance or delays while executing
the route. The representation power offered by the Attention Mechanisms enabled us to learn
policies that generalize to multiple scenarios and instances of DS-CVRPTW, and output online
decision rules contrary to existing architectures which do not capture the multi-agent dimension
of the problem.

Each block in MARDAM can evolve independently from the other blocks in order to adapt
to new problem variants or inherit from other fields making progress on representing unordered
set of vectors. From this initial architecture, it should be possible to deepen some of the blocks,
especially the vehicles encoder and the turn focus, to enrich the class of functions they are capable
of representing. Additionally, one of our short-term perspective is to explore how we could revisit
MARDAM to handle problems where vehicles have to take their decisions in a decentralized way,
only based on local partial observation of the state. In this case, we would also like to reconnect
to our preliminary work on Centralized Training for Decentralized Control (CTDC) [2] which
we presented in Chapter 3. This implies redesigning the vehicle encoder to only take as input
local individual observations, and compress the individual history of the vehicle using recurrent
layers. This also means we need to extract the centralized fleet representation such that the
resulting policies stay separable, however in the CTDC paradigm, we could still benefit from
this extra information on the whole state of the system during training.

In the next chapter, we evaluate our model and policy architecture. We report the results
we obtained using MARDAM on a set of artificially generated benchmarks compared to more
traditional heuristics used in the OR literature.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

Chapter 6

Experimental Evaluation

After reviewing existing approaches to address DS-VRPs in Chapter 2, we developed in Chap-
ter 4 a new specialization of Multi-agent Markov Decision Processes (MMDP) which we call
sequential MMDP (sMMDP). In this model, agents act sequentially meaning that we can isolate
the effect of their individual actions on the states, and separate the rewards they receive into in-
dividual contributions. We then developed a new policy network architecture called MARDAM
in Chapter 5. This policy is designed around four blocks which specialize into representing their
own factor of the state. It takes advantage of the multi-agent and sequential structure of the
problem.

To test the performances and desirable properties of MARDAM, we implement artificial
benchmarks on different variants of VRPs. We start by reviewing existing benchmark sources,
which do not fit our needs for large sets of Dynamic and Stochastic scenarios in Section 6.1.
Then we describe how we generate our benchmarks, and which methods we use to address them
in Section 6.2. Once the setup is defined, we test the flexibility of MARDAM and its capacity
to update its internal representations when customers appear dynamically along the routes in
DS-CVRPTWs in Section 6.4. Secondly, we test the adaptability and robustness offered by
MARDAM against stochastic travel times in S-CVRPTWs in Section 6.5. To further evaluate
the generalization capabilities of MARDAM, and compare it to existing DL approaches [50, 73],
we run an experiment on deterministic CVRPs and CVRPTWs in Section 6.6. We then study
the impact of lateness penalty and how we can emulate hard TWs in Section 6.7. Afterwards, we
show that MARDAM is sufficiently flexible to address problems of different sizes with the same
set of weights in Section 6.8. We published all these results in IEEE Transactions on Intelligent
Transportation Systems [1]. Finally we will open up the discussion about more realistic logistic
simulation built upon micro-traffic simulation, which we initially presented in [5].

6.1 Useful web resources

There are a lot of resources online to obtain benchmarks for many variants of VRPs, because
the OR literature is not used to open-source its algorithms, but instead often provides tables
comparing approaches on pre-defined benchmarks. However, there are not many benchmarks
available for rich DS-VRPs [48] especially not in the quantity required by Deep Learning ap-
proaches. In this section, we will review four sources of benchmarks freely available online,
namely VRP-REP, Solomon benchmarks, TSPLIB and VRPLIB.

98

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

6.2. EXPERIMENTAL SETUP 99

VRP-REP (http://www.vrp-rep.org) It might be the most useful resource available online,
as it references many variants of problems, and proposes a standardized format for the instances
definitions, and best known solutions. It also references for each dataset the articles that declared
using the benchmarks. Among the variety of datasets, some are modelled from real-life scenarios
while other are purely artificial.

Solomon benchmarks (http://web.cba.neu.edu/~msolomon/problems.htm) One of the
first benchmark we considered. It was introduced in [102] and consists in artificial instances
of CVRPTW with 100 customers. It considers three different patterns for their positions –
uniformly random, clustered, or a mix of both– in an area of 100ˆ 100 units. For each of these
three spatial patterns, different temporal scenarios are studied: horizons ranging from short (240
units) to long (3390 units), with various distributions of time windows (ratios of constrained
customers, wide or narrow TW width, ...) Customers’ demands ranges from 1 to 50 units, and
are matched against three configurations of a homogeneous fleet of 25 vehicles, with a capacity of
200, 700 or 1000 units. All instances are feasible, and depending on the combination of features
as presented above, the optimal routes will be mostly constrained by capacities or time windows,
or any intermediate balance between both.

TSPLIB and VRPLIB (http://elib.zib.de/pub/mp-testdata) These two datasets pro-
pose a unified and standardized format for a few variants of static routing problems, initially
designed to be solved by mathematical programming, specifically Mixed Integer Linear Pro-
gramming (MILP). Most instances are modelled from real life logistic scenarios.

None of the datasets mentioned above met our need for dynamic and stochastic environments,
in a large amount of configurations, and representing various situations. Indeed, DNNs require
a large amount of data to train, and it would be counter-productive to overfit on a few hundred
samples, as can be found in standard benchmark, when we want to test our capability to gen-
eralize to new problems. That is why we developed our own DS-CVRPTW artificial instances
generator and an RL dynamic environment from which we could sample trajectories and train
our policy.

6.2 Experimental setup

To train MARDAM, with the objective of generalizing to any instance of DS-CVRPTWs, we
need a rich dataset containing thousands of scenarios with different customers positions, de-
mands, time window distributions, and appearance patterns. The data generation procedure
decomposes into 4 steps, as illustrated in Figure 6.1.

1. First, we sample the locations of the depot and customers from a discrete uniform distri-
bution in an area of 100ˆ100km2. This spatial distribution of customers’ location is quite
straightforward, and was used previously in most existing work applying DNN to routing
problems [50, 6, 73].

2. Next step associates to each customer a discrete demand sampled uniformly between 0.5
and 4m3 with 1-decimal precision. We fix the capacity of our vehicles to 20m3. If necessary,
we scale down all demands such that the total capacity of the fleet can satisfy the total
demand of all customers.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

http://www.vrp-rep.org
http://web.cba.neu.edu/~msolomon/problems.htm
http://elib.zib.de/pub/mp-testdata

100 CHAPTER 6. EXPERIMENTAL EVALUATION

0

1

2

3

4

5

6

7

8

9

10

(a) Step 1: Locations

0

1

2

3

4

5

6

7

8

9

10

(b) Step 2: Demands

0

1

2:38

2

3

4

3:09
5

6
4:33

7

2:50

8

9

10

2:02

(c) Step 3: Dynamic appearance

0

[0:00 8:00]

1

[3:25 4:17]

2:38

2

[4:38 5:23]

3

[2:57 3:45]

4

[3:24 4:13]

3:09
5

[2:15 7:32]

6

[4:52 6:01]

4:33

7

[3:55 6:28]

2:50

8

[0:53 7:26]

9

[5:49 7:42]10

[3:53 5:16]

2:02

(d) Step 4: Time windows

Figure 6.1 – Illustration of data generation for DS-CVRPTWs with 10 customers. The diamond
node represents the depot, labelled 0. All other nodes are customers, labelled from 1 to 10,
whose sizes map to their demand. Square nodes are static customers known before the vehicles
leave the depot. Circle nodes are dynamic customers appearing after vehicles deployment, for
which the upper (x:xx) label indicates appearance time. The lower label ([x:xx y:yy]) indicates the
time windows.

3. Then, we sample the appearance times of dynamic customers from a distribution charac-
terized by two parameters, similarly to [8]: a) the degree of dynamism pdyn; b) the fraction
of customers that appear early. For a horizon of 8h, early customers will appear in the
first 2h40, late customers between 2h40 and 5h20, and we suppose no more orders are
accepted afterwards. This early/late ratio parameter gives us some control on the length
of the partial routes that have already been committed to when new customers appear.

4. Finally, we sample the time windows limiting when customer can be served, as proposed
in the classical CVRPTW benchmark of [102]. A ratio controls how many customers are
constrained. We start by sampling a service duration between 5 and 30min and a time
window width between 30min and 1h30. Then we randomly position the window such that
the ready and due times stay coherent with the earliest the customer can be reached at,
and the latest the service can start to return to depot in time. We can adjust the ratio of
customer constrained by time windows, and sampling their width first makes it possible to
control how tight these windows are, and constraint the trajectories in a way that makes
stochastic travel times critical.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

6.3. TYPICAL LEARNING CURVES 101

We implemented an artificial environment from which we can sample trajectories based on
these generated data and our sMMDP model of DS-CVRPTWs. MARDAM is trained using this
environment on a training dataset of more than a million customer configurations. All model
and training meta-parameters are summarized in Table 6.1.

M
o
d
el

p
ar

am
s

Customers features size DC P t3, 6, 7u
Vehicles states size DV “ 4
Inner model dimension D “ 128
Head dimension DH “ 16
Number of heads NH “ 8
Feed-forward hidden dim. DF “ 512
Number of encoder layers NL “ 3
tanh saturation Ctanh “ 10

T
ra

in
in

g
m

et
a-

p
ar

am
s

Number of training samples Btrain “ 1280000
Number of testing samples Btest “ 128
Number of validation samples Bvalid “ 10000
Mini-batch size B “ 512
Number of iteration / epoch Niter “ 2500
Number of training epoch Nepoch “ 100
Actor learning rate απ “ 0.0001
Critic learning rate αbl “ 0.001
Max gradient norm |∇|max “ 2
Optimizer Adam[49]

Table 6.1 – Model and training meta-parameters used in all experiments.

1 generate dataset ;
2 initialize policy ;
3 foreach training epoch do
4 foreach mini-batch in dataset do
5 foreach instance in mini-batch do /* ran in parallel */

6 sample trajectory using policy ;
7 estimate values of encountered states using critic ;

8 estimate mean Policy Gradient on mini-batch of trajectories ;
9 estimate MSE of critic on mini-batch of trajectories ;

10 back-propagate ;
11 update policy and critic parameters ;

Algorithm 6.1: Actor-Critic algorithm to train MARDAM on DS-CVRPTW

6.3 Typical learning curves

Before presenting the results in terms of performances for the different benchmarks we developed,
we will discuss how the architecture behaved during training in our sMMDP environment. We
train MARDAM using the Actor-Critic algorithm detailled in Algorithm 6.1 where we alternate
between an evaluation and an update phase. We sample a batch of trajectories using the current
policy to estimate its value (critic) and the gradient of the objective w.r.t. its parameters (actor).

A typical run of such an algorithm produces the learning curves depicted in Figure 6.2. Each
epoch on the horizontal axis corresponds to a pass through the entire training dataset. It took

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

102 CHAPTER 6. EXPERIMENTAL EVALUATION

approximately 6 minutes with our hardware setup1. The expected cumulated reward estimated
by the critic matches the observed rewards on the training set right from the first epoch, with a
slight tendency to overestimate the policy’s performances. It is not surprising, as it is only an
evaluation of the current policy, focused on a subset of states encountered during exploration.
The Actor-Critic loss (AC loss) and gradient norm are related and slowly tend towards 0 as the
policy converges.

0 200 400 600 800 1000
Training epoch

10.5

10.0

9.5

9.0

8.5

8.0

7.5

7.0

6.5

M
ea

n
cu

m
ul

at
ed

 re
wa

rd

observed on train data
estimated by critic on train data
observed on test data

0 500 1000
0.00

0.05

0.10

Ro
ut

es
 p

ro
b.

0 500 1000

2

4

AC
 lo

ss

0 500 1000
Train. epoch

25

50

75

Gr
ad

. n
or

m

Figure 6.2 – Learning curves of MARDAM on a static and deterministic CVRPTW with 20
customers.

On all our curves, we notice a mode switch after approximately 15 epochs, especially on
the mean cumulated rewards and the mean routes/trajectories probabilities. On the former,
we can identify two phases: before epoch 15, we have a very fast improvement phase and after
that, we switch to an exponential stabilization phase. On the latter, the first 15 epochs are
exploratory, and no particular sequences of actions are reinforced. After 15 epochs, we enter an
exponential growth phase. We think that this switch appears when the policy has learned that
leaving customers pending at the end of a trajectory is highly penalized, causing a discontinuity
in the reward signal. For the first 15 epochs, vehicles return to depot early and the reward is
dominated by a term proportional to the number of customers left pending. Afterwards the
policy can focus on improving the routes in term of travelled distances and lateness.

Once trained, we test it on a test dataset of ten thousand problems, sampled independently
of the training set. We have 2 decoding schemes to exploit the decision rules output by MAR-
DAM. “MARDAM (g)” greedily chooses the action with maximum probability at each step.
“MARDAM (s)” samples actions from the decision rules to obtain 100 different trajectories,
then keeps the best one.

We obtain most of our baselines using Google’s ORTools [1] backed by their CP-SAT solver.
It outputs plans for each instance of the validation sets which are then executed in our simulated
environment. “ORTools (d)” dynamically replans the parts of the routes that have not been
committed to every time a new customer appears. “BestIns” is a greedy online insertion heuristic
we implemented. It uses ORTools to initialize the routes with the customers known a-priori.
Then it tries to insert any new customer where it minimizes the detour cost and discards it if
this cost goes over a fixed threshold. “ORTools (o)” uses an optimistic constant speed Vnom to

1It took 3min/epoch for N “ 10, and 22min/epoch for N “ 50.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

6.4. DS-CVRPTW 103

compute travel times, while “ORTools (e)” uses the expected value ErVts “ p1 ´ pslowqVnom `

pslowVslow of this speed, of the speed distribution illustrated on Figure 5.4.

We include 2 state-of-the-art approaches based on DL as baselines for deterministic CVRP:
the Attention Model (AM) of [50] and the Recurrent Neural Network (RNN) of [73]. Both
architectures are trained using the code provided by the authors. For evaluation, “AM (g)” and
“AM (s)” follows the same decoding schemes as MARDAM. “RNN (g)” is also greedy, while
“RNN (bs)” uses a beam search of width 10. For the sake of comparison, we also report the
results of the Lin-Kernighan-Helsgaun [45] heuristic, noted “LKH3”.

All results are reported as the mean and standard deviation of the total cumulated rewards
on the problem instances of the test dataset. Cumulated rewards include travelled distances
plus lateness and pending customers penalties. For DS-CVRPTW, we also report separately
the average Quality of Service (QoS) i.e. the fraction of customer served. Otherwise, percentages
indicate relative gaps compared to the starred methods in each table row. Bold fonts highlight
best values.

6.4 DS-CVRPTW

In this first experiment, we test the flexibility of MARDAM and its capacity to update its internal
representations when customers appear dynamically along the routes in DS-CVRPTWs. We
want to evaluate how MARDAM balances QoS and costs compared to 2 simple online baselines.
Our results for increasing degrees of dynamism pdyn are reported in Table 6.2.

Table 6.2 – MARDAM compared to ORTools and BestIns in terms of travel and lateness cost,
and QoS on DS-CVRPTWs instances of various sizes and degrees of dynamism

pdyn
dim. N “ 10 N “ 20 N “ 50

Method (Cost) (QoS) (Cost) (QoS) (Cost) (QoS)

0%
ORTools (d) 3.97˘ 0.61 100.00% 6.28 ˘ 0.79 100.00% 12.11 ˘ 1.36 100.00%

MARDAM (g) 3.89 ˘ 0.58 99.94% 6.35˘ 0.77 99.95% 12.77˘ 1.34 99.95%

BestIns 4.79˘ 1.53 94.69% 12.59˘ 5.73 98.05% - -
ď 40% ORTools (d) 5.87˘ 1.64 96.20% 10.93˘ 2.75 98.64% 26.85˘ 7.08 99.71%

MARDAM (g) 4.63 ˘ 0.86 99.81% 7.37 ˘ 1.01 99.92% 17.24 ˘ 3.26 99.30%

BestIns 4.79 ˘ 1.59 89.38% 15.55˘ 8.37 96.17% - -
ă 60% ORTools (d) 5.83˘ 1.59 94.96% 11.21˘ 2.77 98.17% 27.54˘ 7.42 99.61%

MARDAM (g) 4.93˘ 0.97 99.70% 7.70 ˘ 1.07 99.89% 17.89 ˘ 3.69 98.38%

BestIns 4.40 ˘ 2.05 79.86% 17.97˘ 9.42 92.28% - -
ě 60% ORTools (d) 5.87˘ 1.57 94.53% 11.20˘ 2.64 97.94% 28.41˘ 7.95 99.54%

MARDAM (g) 4.69˘ 2.09 86.78% 8.17 ˘ 1.17 99.85% 18.64 ˘ 4.13 91.54%

“BestIns” was too slow to properly run on larger instances. Its cost / QoS balance is driven
by the threshold on the insertion cost. As no existing part of the routes get questioned, the
insertion cost can quickly exceed the threshold. That’s why it has a relatively poor QoS for
a relatively low cost avoiding detours on smaller problems. However its performance quickly
degrades with the problem dimension.

Although “ORTools (d)” could use disjunctions to ignore customers, it seems it emphasized
the QoS over travel and lateness costs of detours. MARDAM maintains relatively low costs
while keeping a competitive QoS for low and intermediate degree of dynamism, with a slight
degradation for pdyn ě 60%. It naturally balances QoS and costs because of the reward model
we used during training. Hence MARDAM is capable of efficiently mitigating costs degradation
without sacrificing too much on the QoS, especially as the dimension of the instances increases.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

104 CHAPTER 6. EXPERIMENTAL EVALUATION

6.5 S-CVRPTW

Next, we test the adaptability and robustness offered by MARDAM against stochastic travel
times in S-CVRPTWs. As an online policy, we expect it to mitigate delays and behave better
than the offline planning baselines “ORTools (o)” and “ORTools (e)” which can only use a-priori
statistics. Table 6.3 compares MARDAM and ORTools for increasing probabilities of slow down
pslow.

We can see that MARDAM takes the best over both baselines when the slow down probability
and the entropy of the vehicle speed increase. Even if “ORTools (e)” seems more robust than
“ORTools (o)”, it still cannot adapt to given realizations of the random variables and tends
to accumulate lateness that propagates along routes on tight schedules. This mostly explains
the relative advantage of an online policy such as MARDAM compared to pre-planned routes.
However, we note that MARDAM seems to have difficulties scaling up with the number of
customers, as its performances are not as favorable for larger instances (N “ 50) and low
slow probability (pslow ă 30). We think that this indicates some limitations in the capacity of
MARDAM to represent larger instances, as we can notice the same discrepancies on deterministic
CVRPs in the final experiment of Section 6.6.

Table 6.3 – MARDAM compared to ORTools in terms of travel, lateness and pending cost on
S-CVRPTWs instances of various sizes and probabilities of slowdown

pslow Method \ dim. N “ 10 N “ 20 N “ 50

0%
*ORTools (o) 4.39˘ 0.70 6.98˘ 0.90 13.38 ˘ 1.55
MARDAM (g) 4.24 ˘ 0.64p´3%q 6.91 ˘ 0.84p´1%q 13.66˘ 1.45p2%q

*ORTools (o) 4.47˘ 0.72 7.11˘ 0.91 13.64˘ 1.59
5% ORTools (e) 4.47˘ 0.72p´0%q 7.07˘ 0.91p´0%q 13.58 ˘ 1.58p´0%q

MARDAM (g) 4.31 ˘ 0.65p´4%q 7.00 ˘ 0.83p´1%q 13.84˘ 1.44p2%q

*ORTools (o) 4.55˘ 0.75 7.22˘ 0.95 13.87˘ 1.67
10% ORTools (e) 4.55˘ 0.74p´0%q 7.20˘ 0.95p´0%q 13.84 ˘ 1.68p´0%q

MARDAM (g) 4.37 ˘ 0.67p´4%q 7.11 ˘ 0.86p´1%q 14.02˘ 1.49p1%q

*ORTools (o) 4.72˘ 0.81 7.47˘ 1.04 14.39˘ 1.84
20% ORTools (e) 4.72˘ 0.81p0%q 7.46˘ 1.03p´0%q 14.37 ˘ 1.85p´0%q

MARDAM (g) 4.52 ˘ 0.72p´4%q 7.33 ˘ 0.92p´2%q 14.41˘ 1.59p0%q

*ORTools (o) 4.90˘ 0.88 7.74˘ 1.12 14.94˘ 2.01
30% ORTools (e) 4.90˘ 0.87p0%q 7.72˘ 1.12p´0%q 14.92˘ 2.04p´1%q

MARDAM (g) 4.67 ˘ 0.76p´5%q 7.58 ˘ 1.00p´2%q 14.86 ˘ 1.72p´1%q

*ORTools (o) 5.31˘ 1.04 8.37˘ 1.33 16.25˘ 2.44
50% ORTools (e) 5.27˘ 0.99p´1%q 8.28˘ 1.29p´1%q 16.07˘ 2.41p´1%q

MARDAM (g) 5.01 ˘ 0.87p´5%q 8.14 ˘ 1.17p´3%q 15.92 ˘ 2.05p´2%q

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

6.6. CVRP AND CVRPTW 105

6.6 CVRP and CVRPTW

0

1

11:54 -
- 13:21

18min

2

10:51 -
- 11:42

27min

3

13:26 -
- 14:47

25min

4

10:31 -
- 11:14

10min

5

12:34 -
- 13:44

21min

6

8:44 -
- 10:07

15min

7

9:36 -
- 10:24

26min

8

14:22 -
- 15:20

29min

9

8:29 -
- 9:33

28min

10

10:38 -
- 11:13

10min

11

9:05 -
- 10:09

19min

12

8:10 -
- 8:57

23min

13

14:45 -
- 15:25

17min

14

13:23 -
- 14:42

14min

15

12:47 -
- 13:51

21min

16

9:06 -
- 9:48

25min

17

12:02 -
- 13:04

17min

18

10:56 -
- 11:41

20min

19

13:45 -
- 14:26

20min

20

14:26 -
- 15:14

19min

0

1

8:20 -
- 9:12

23min

2

10:18 -
- 10:55

14min

3

14:01 -
- 15:14

22min

4

9:26 -
- 10:39

21min

5

8:13 -
- 8:46

27min

6

9:23 -
- 10:33

24min
7

11:26 -
- 12:42

28min

8

10:00 -
- 11:27

28min

9

9:20 -
- 10:09

12min

10

12:32 -
- 13:32

10min

11

9:23 -
- 10:31

28min

12

9:50 -
- 11:12

10min

13

10:50 -
- 11:50

23min

14

9:11 -
- 10:31

22min

15

14:21 -
- 15:08

29min

16

10:36 -
- 11:15

29min

17

8:53 -
- 9:40

26min

18

14:36 -
- 15:39

25min

19

13:30 -
- 14:53

16min

20

13:55 -
- 15:03

23min

0 1

9:15 -
- 9:47

13min

2

11:29 -
- 12:44

20min

3

9:11 -
- 10:00

18min

4

8:16 -
- 9:03

10min

5

9:01 -
- 9:36

10min

6

9:21 -
- 10:44

10min

7

11:26 -
- 12:49

22min

8

12:30 -
- 13:06

11min

9

9:24 -
- 10:28

17min

10

10:14 -
- 11:37

25min

11

13:41 -
- 14:59

14min

12

8:15 -
- 8:52

18min

13

10:28 -
- 11:47

29min

14

11:06 -
- 12:25

21min

15

14:17 -
- 15:18

13min

16

9:40 -
- 10:25

30min

17

8:32 -
- 9:44

28min

18

11:41 -
- 12:55

17min

19

13:46 -
- 14:16

20min

20

13:10 -
- 14:00

17min

0

1

12:56 -
- 14:04

21min
2

11:37 -
- 12:47

13min

3

13:05 -
- 14:27

27min

4

12:27 -
- 13:33

12min

5

8:28 -
- 9:44

17min

6

12:29 -
- 13:10

23min

7

13:59 -
- 14:44

15min

8

11:41 -
- 12:24

14min

9

10:10 -
- 11:26

14min

10

12:00 -
- 13:23

28min

11

9:37 -
- 10:37

13min

12

10:45 -
- 12:08

21min

13

8:44 -
- 9:49

27min

14

11:12 -
- 12:39

17min

15

9:50 -
- 10:35

14min

16

10:17 -
- 11:30

26min

17

10:51 -
- 11:50

15min

18

8:08 -
- 8:51

28min

19

14:26 -
- 14:59

22min

20

8:24 -
- 9:25

12min

(a) MARDAM

0

1

11:54 -
- 13:21

18min

2

10:51 -
- 11:42

27min

3

13:26 -
- 14:47

25min

4

10:31 -
- 11:14

10min

5

12:34 -
- 13:44

21min

6

8:44 -
- 10:07

15min

7

9:36 -
- 10:24

26min

8

14:22 -
- 15:20

29min

9

8:29 -
- 9:33

28min

10

10:38 -
- 11:13

10min

11

9:05 -
- 10:09

19min

12

8:10 -
- 8:57

23min

13

14:45 -
- 15:25

17min

14

13:23 -
- 14:42

14min

15

12:47 -
- 13:51

21min

16

9:06 -
- 9:48

25min

17

12:02 -
- 13:04

17min

18

10:56 -
- 11:41

20min

19

13:45 -
- 14:26

20min

20

14:26 -
- 15:14

19min

0

1

8:20 -
- 9:12

23min

2

10:18 -
- 10:55

14min

3

14:01 -
- 15:14

22min

4

9:26 -
- 10:39

21min

5

8:13 -
- 8:46

27min

6

9:23 -
- 10:33

24min
7

11:26 -
- 12:42

28min

8

10:00 -
- 11:27

28min

9

9:20 -
- 10:09

12min

10

12:32 -
- 13:32

10min

11

9:23 -
- 10:31

28min

12

9:50 -
- 11:12

10min

13

10:50 -
- 11:50

23min

14

9:11 -
- 10:31

22min

15

14:21 -
- 15:08

29min

16

10:36 -
- 11:15

29min

17

8:53 -
- 9:40

26min

18

14:36 -
- 15:39

25min

19

13:30 -
- 14:53

16min

20

13:55 -
- 15:03

23min

0 1

9:15 -
- 9:47

13min

2

11:29 -
- 12:44

20min

3

9:11 -
- 10:00

18min

4

8:16 -
- 9:03

10min

5

9:01 -
- 9:36

10min

6

9:21 -
- 10:44

10min

7

11:26 -
- 12:49

22min

8

12:30 -
- 13:06

11min

9

9:24 -
- 10:28

17min

10

10:14 -
- 11:37

25min

11

13:41 -
- 14:59

14min

12

8:15 -
- 8:52

18min

13

10:28 -
- 11:47

29min

14

11:06 -
- 12:25

21min

15

14:17 -
- 15:18

13min

16

9:40 -
- 10:25

30min

17

8:32 -
- 9:44

28min

18

11:41 -
- 12:55

17min

19

13:46 -
- 14:16

20min

20

13:10 -
- 14:00

17min

0

1

12:56 -
- 14:04

21min
2

11:37 -
- 12:47

13min

3

13:05 -
- 14:27

27min

4

12:27 -
- 13:33

12min

5

8:28 -
- 9:44

17min

6

12:29 -
- 13:10

23min

7

13:59 -
- 14:44

15min

8

11:41 -
- 12:24

14min

9

10:10 -
- 11:26

14min

10

12:00 -
- 13:23

28min

11

9:37 -
- 10:37

13min

12

10:45 -
- 12:08

21min

13

8:44 -
- 9:49

27min

14

11:12 -
- 12:39

17min

15

9:50 -
- 10:35

14min

16

10:17 -
- 11:30

26min

17

10:51 -
- 11:50

15min

18

8:08 -
- 8:51

28min

19

14:26 -
- 14:59

22min

20

8:24 -
- 9:25

12min

(b) ORTools

Figure 6.3 – Comparison between routes sampled using MARDAM and routes obtained by
ORTools on a few instances of CVRPTW. Each column corresponds to the same customer con-
figuration for MARDAM and ORTools. If parts of some routes seem almost identical, ORTools
solutions sometimes look more convoluted than the ones of MARDAM. This might be caused
by the former being stricter on lateness than the latter, even though both consider soft TWs.

In this experiment, we are looking for a reliable point of comparison where classical ap-
proaches and heuristics are known to give near optimal results. Figure 6.3 provides a few
illustrations of routes obtained by MARDAM compared to routes returned by ORTools on a
random selection of a few CVRPTW instances. Both methods respect capacity constraint while
assigning customers to vehicles. Even though TWs are considered soft in both cases, MAR-
DAM looks more forgiving on lateness and emphasizes shorter distances, while ORTools seems
stricter on the customers due time, hence causing more detours to limit lateness. That being
said, we want to compare the generalization capability of MARDAM to other state-of-the-art
DL approaches on a larger set of validation instances. As we can see in Table 6.4, MARDAM
is keeping up with offline planning methods on the CVRP, but scales poorly with the number
of customers and vehicles. We believe it is not an intrinsic limitation of the method but more a
question of engineering and fine-tuning hyper-parameters.

Surprisingly, while competitive on the largest instances, the performances of RNN quickly
degrade the smaller the problem is. We suppose that this behavior is due to the absence of
hard limitation on the number of vehicles involved. If this does not make a high difference to
add an extra vehicle when the total demand of 50 customers already requires 10, it is much
more detrimental to start one extra route when no more than 2 vehicles are required to cover
the demand of 10 customers. Even if not constraining the number of vehicles either, AM does
not have the same difficulties, and displays better performances than MARDAM except when
N “ 10.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

106 CHAPTER 6. EXPERIMENTAL EVALUATION

Table 6.4 – MARDAM compared to LKH3, ORTools, AM and RNN in term of travel, lateness
and pending cost on CVRP and CVRPTW instances of various sizes

Pb. Method \ dim. N “ 10 N “ 20 N “ 50
C

V
R

P
*LKH3 3.40˘ 0.44 5.39˘ 0.56 10.64˘ 1.16

ORTools (o) 3.41˘ 0.51p0%q 5.41˘ 0.60p0%q 10.67˘ 1.19p0%q
AM (g) 3.47˘ 0.50p2%q 5.39˘ 0.59p´0%q 10.42˘ 1.12p´2%q
AM (s) 3.39˘ 0.48p´0%q 5.28 ˘ 0.57p´2%q 10.15 ˘ 1.09p´5%q

RNN (g) 4.74˘ 0.80p41%q 6.50˘ 0.82p22%q 11.21˘ 1.26p6%q
RNN (bs) 4.60˘ 0.77p37%q 6.39˘ 0.83p19%q 10.98˘ 1.24p4%q

MARDAM (g) 3.44˘ 0.49p1%q 5.78˘ 0.70p7%q 11.24˘ 1.27p6%q
MARDAM (s) 3.38 ˘ 0.47p´1%q 5.46˘ 0.57p1%q 10.88˘ 1.20p2%q

C
V

R
P

T
W *LKH3 4.05˘ 0.67 6.17˘ 0.81 11.40 ˘ 1.35

ORTools (o) 3.98˘ 0.59p´5%q 6.27˘ 0.76p´1%q 12.09˘ 1.38p5%q
MARDAM (g) 3.87˘ 0.56p´7%q 6.33˘ 0.75p0%q 12.68˘ 1.32p10%q
MARDAM (s) 3.82 ˘ 0.54p´9%q 6.06 ˘ 0.67p´4%q 12.05˘ 1.23p4%q

When adding TW constraints, MARDAM presents favorable results for smaller instances,
while getting much closer for the largest ones. We believe that the penalty cost used in LKH3
to take into account TW constraints during its search might not be well adapted to soft TW,
and the instances we generated are not guaranteed to be solvable with hard TW.

6.7 Lateness penalties and hard TW constraints

We preferred considering soft time windows because of stochastic travel times, and because it
was easier to model as a reward signal. Nonetheless, as CVRPTW is traditionally solved with
hard time windows, we wanted to investigate how MARDAM would learn to penalize lateness
more and more, until a prohibitive cost would enforce service strictly in time. We had to
also increase the cost of pending customers to avoid situations where the policy would prefer
completely ignore a customer instead of risking to serve it late.

In the following experiment, as reported in Table 6.5, we show how a policy trained with low
lateness penalties (MARDAM soft) and one trained with high lateness penalties (MARDAM
hard) behave compared to the Lin-Kernighan-Helsgaun heuristic, which preferably outputs so-
lutions which do not violates any constraint (unless the local search finds none, our generated
instances are not guaranteed solvable with hard TWs). As expected, MARDAM (soft) compro-
mises a lot on lateness to reduce distances, hence it performs poorly in environment with high
penalties. MARDAM (hard) is almost as good as LKH3 to meet TWs, at the cost of slightly
less optimal distances. Further fine-tuning balancing the cost of lateness compared to travelled
distances might enable MARDAM to reach global performances as good as LKH3.

Table 6.5 – Mean and standard deviation of the cost for soft or hard lateness penalty

Method Total Distance Total Lateness Total Cost Total Cost
(low penalty) (high penalty)

LKH3 6.25˘ 0.92 0.02 ˘ 0.05 6.27 ˘ 0.94 6.47 ˘ 1.25
MARDAM (soft) 6.06 ˘ 0.70 0.27˘ 0.24 6.34˘ 0.78p2%q 8.79˘ 2.58p36%q
MARDAM (hard) 6.67˘ 0.85 0.03˘ 0.04 6.69˘ 0.87p7%q 6.93˘ 1.08p8%q

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

6.8. AVOIDING DIMENSION SPECIALIZATION 107

We also implemented a small variant of the algorithm where the lateness penalty was con-
sidered as a varying parameter along the different training epochs. It starts small in order to
help exploration and slowly increase until it reaches its prohibitive value. When experimenting
with this variant, we did not observe noticeable differences in performance in term of mean cost
or convergence time compared to learning directly with the highest late penalty.

6.8 Avoiding dimension specialization

In all our previous experiments, MARDAM was trained separately on every problem dimension,
such that we had specific sets of weights for N “ 10, N “ 20 and N “ 50. Because of this
specialization, we expect any of our trained policy to not generalize properly to problems of
different dimensions.

However a solution to overcome this limitation is not hard to find: we simply need to train
MARDAM on a dataset containing problems of any size. Ideally we would like to make mini-
batches with various number of customers, to avoid biasing our gradients estimates, which is
not straightforward because the tensors we use to describe a mini-batch of customers have fixed
dimensions. Luckily, we already have a solution for this small technical difficulties: customer
masking. Using the same mechanism we implemented to hide dynamic customers, we can
permanently mask dummy padding customers, which are filled with zeros to match the mini-
batch dimension, so that their contributions to all intermediate activations in the network is
null.

CVRP-TW-10 CVRP-TW-20 CVRP-TW-5050

40

30

20

10

0

MARDAM-10
MARDAM-20
MARDAM-50
MARDAM-20-50

Figure 6.4 – Distribution of total cumulated rewards on 3 different problem sizes (10, 20, 50
horizontally) for MARDAM trained using only instances with 10, 20, or 50 customers, and for
MARDAM trained with a dataset containing instances with 20 to 50 customers. This variety
in the training dataset helps generalizing better across dimensions.

Figure 6.4 illustrates our result using this varied dataset generation and masking procedures
compared to our previous trainings. As we can see, each network trained on a specific dimension
behaves at its best only when solving problems matching the dimension its trained on, and
its performances quickly degrade when the number of customers differs. On the contrary the
network trained with instances of various sizes maintains pretty good performances all across the

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

108 CHAPTER 6. EXPERIMENTAL EVALUATION

board. Moreover, we would like to highlight that this dimension-generalizing network did not
benefit from more training epochs: all 4 networks were trained with the same hyper-parameters,
only the range of numbers of customers during dataset generation differs. More interestingly,
we notice that even though the MARDAM-20-50 network did not see instances with only 10
customers during training, its degradation in performance is still limited compared to the other
training conditions. We suppose that introducing variety in the training dataset widen the
range of dimension the network can generalize to even further than the range available during
training. We also expect this variety in training samples to also help the network address
dynamic problems, because the subset of customers considered at each time step is also not of
fixed size.

6.9 Towards more realistic scenarios

Training our policy on artificial data is only a first step to address real-world routing problems
online. Indeed, our artificial benchmark with euclidean travel costs and independent random
travel times does not capture the dynamics of a dense city center. To address this issue while
still preserving the ability to generate and sample a large training dataset, we introduce in
this section an alternative benchmark based on the micro-traffic simulator SUMO [52]. The
benchmark relies on a framework we developed and called SULFR (pronounced “sulfur”) for
Simulation of Urban Logistics For Reinforcement learning. We will start by describing how
SULFR works, then report some preliminary results obtained after training MARDAM with it.

6.9.1 The SULFR framework

We designed SULFR as an interface between the simulator SUMO and a learning algorithm such
as Actor-Critic. It was originally developed for Pickup and Delivery Problems (PDP) a variant
of VRPs where vehicles do not resupply at a common depot but must first pickup a package
at a node before delivering it to another one. We also included support for electric vehicles,
which have to plan for recharge at pre-defined charging stations. We later focussed on the setup
we worked on with MARDAM and adapted SULFR to DS-CVRPTWs with the objective to
minimize total travelled distance and lateness penalties.

SULFR

Random
scenario
generator

Scenario
net.xml
rou.xml
stops.xml

Random
order book
generator

Order book
customers stops,

demands,
TWs, durations,
appearances

Simulation
vehicles

sMMDP
customers
vehicles
turn

rewards

ik travels
to aikk

ik+1

is idle

Policy
Actor (+ Critic)

aikk sk, ik

SUMO
TraCI interface

target(), stop() subscription()

Figure 6.5 – High level overview of SULFR, our interface between a learning algorithm such as
Actor-Critic and the SUMO micro-traffic simulator.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

6.9. TOWARDS MORE REALISTIC SCENARIOS 109

Its components are described in Figure 6.5. We provide tools to generate random scenarios
and customers configurations (referred to as order books) but the users can also directly provide
their own training dataset based on historical data. From these data, we spawn a batch of
SUMO processes that will simulate the operations of our fleet of delivery vehicles in different
road network layouts, and dynamic traffic conditions. The states of all simulations are monitored
and controlled in parallel by a sMMDP environment model through the TCP interface of SUMO
called TraCI.

Thanks to SUMO, we simulate the operations of a fleet of delivery vehicles in different
configurations. We can vary the city or district in which the vehicles evolve which are described
as SUMO net.xml files. They are associated with a set of potential customers addresses listed
as SUMO container stops in add.xml files. We only use these stops to locate the customers on
the road networks and do not rely on the simulation of logistics integrated in SUMO to handle
customer services, to keep more control over vehicles assignment and routing. Last elements that
are required to setup the SUMO simulations are descriptions of the dynamic traffic conditions.
They consist in lists of uncontrolled vehicles that start travelling from one location to another
at a given time. The traffic flow is then an emerging property of their interactions on the road
when each one of them obeys simple car-following and lane-switching rules [53].

Idle

Leaving

Moving

ServingDone

target
6= cur. loc.

target
= cur. loc.
6= depot

target
= cur. loc.
= depot

not parked
(at cur. loc.)

parked
(at target)
6= depot

parked
(at target)
= depot

wait ready
+ duration
elapsed

Figure 6.6 – Finite state machine governing a vehicle when it travels from one customer to the
next, based on the information available from the TraCI interface of SUMO.

We rely on the router included in SUMO to make the agent travel from one customer location
to the next. The customer services are simulated by SULFR while the vehicles simply wait at
their stops in SUMO. Vehicles are handled by the finite state machine depicted in Figure 6.6.
The upper-level policy we are training gets queried for the next action (i.e. a target, either
the next customer to serve or returning to the depot) every time the vehicle is in the “idle”
state, and all other transition are triggered by feedbacks from the TraCI connection provided
by SUMO.

If the user does not provide any specific scenario, the random scenario generator creates a
random graph following a power-law for nodes connectivity to be used as a road network, selects
random addresses for the customers and makes random trips from pairs of edges at starting at
a varying frequency. The random order book generator creates a set of customers features very
similarly to our previous benchmarks. The only difference is that the locations are now sampled
from the set of potential customers addresses of the scenario. The demands, time windows,
durations and appearances are still sampled as indicated in Section 6.2.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

110 CHAPTER 6. EXPERIMENTAL EVALUATION

6.9.2 Preliminary results training MARDAM with SULFR

We trained MARDAM for 5000 iterations using batches of size 4 on 16 different scenarios. It
represents a very small number of updates to our policy parameters, but even if ran in parallel,
the simulation remains quite slow. This 5000 iterations already took a few days of training,
mostly waiting for the simulator to run. We did not reach convergence in that time, and would
need at least 50 times more iterations to get the same number of parameters updates as in our
artificial benchmarks. However, as a proof of concept, we report in Figure 6.7 a selection of
routes sampled using this early training of MARDAM on 3 random scenarios of our pool.

 0:00
[0:00 - 8:00]

 0:00
[2:01 - 3:16]

 5:15
[6:47 - 7:30]

 4:52
[5:04 - 6:18]

 3:33
[6:24 - 7:05]

 0:52
[4:28 - 5:38]

 0:00
[0:32 - 1:03]

 0:00
[0:00 - 8:00]

 0:00
[2:21 - 3:42]

 0:00
[4:17 - 5:00]

 0:00
[3:36 - 5:05] 0:00

[0:00 - 8:00]

 0:00
[0:00 - 8:00]

 0:00
[0:00 - 8:00]

 1:06
[5:49 - 6:53]

 0:00
[2:52 - 3:51]

 0:00
[0:00 - 8:00]

 0:08
[1:17 - 2:29]

 0:00
[0:00 - 8:00]

 4:33
[4:44 - 5:33]

(a) Scenario 1

 0:00
[6:36 - 7:25]

 0:00
[0:00 - 8:00]

 0:00
[0:00 - 8:00]

 2:41
[5:24 - 6:14]

 0:50
[1:24 - 2:10]

 1:25
[0:00 - 8:00]

 0:00
[0:03 - 0:54]

 0:06
[5:25 - 6:52]

 2:34
[0:00 - 8:00]

 0:22
[3:48 - 4:51]

 4:04
[4:36 - 5:42]

 3:11
[0:00 - 8:00]

 0:00
[0:00 - 8:00]

 0:23
[0:00 - 8:00]

 0:11
[2:18 - 2:48]

 0:00
[3:01 - 3:37]

 0:00
[1:03 - 2:20]

 3:14
[0:00 - 8:00]

 0:00
[3:56 - 4:57]

 0:00
[3:58 - 5:20]

(b) Scenario 2

 0:00
[0:00 - 8:00]

 0:00
[0:00 - 8:00]

 0:00
[0:00 - 8:00]

 3:33
[5:20 - 6:28]

 1:35
[0:00 - 8:00]

 5:10
[5:41 - 6:11]

 0:52
[0:00 - 8:00]

 4:17
[0:00 - 8:00]

 0:11
[6:00 - 7:14]

 0:10
[4:04 - 4:56]

 1:02
[2:32 - 3:12]

 5:20
[0:00 - 8:00]

 0:00
[6:25 - 6:58]

 2:10
[5:28 - 6:47]

 0:00
[0:00 - 8:00]

 1:34
[6:00 - 7:06]

 0:58
[0:00 - 8:00]

 0:00
[0:00 - 8:00]

 0:00
[5:08 - 6:03]

 0:00
[1:43 - 2:28]

(c) Scenario 3

Figure 6.7 – Selection of routes obtained by MARDAM after 5000 iterations on 3 different
scenarios, and 2 different random order books per scenario. The depot is represented as a red
diamond, and all active customers are orange squares. The routes followed by vehicles 1 and 2
are indicated as blue and green lines, respectively.

We show that MARDAM was capable of learning a policy which can adapt to any of the three
scenarios, and represent different configuration of customers described in randomly sampled
order books. We are still far from optimal routes in all cases, and we would need many more
update iterations or better sample efficiency to reach proper results.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

6.10. CONCLUSION 111

6.10 Conclusion

In this chapter, we developed benchmarks where we could train and evaluate MARDAM, our
specialized policy network based on Attention Mechanisms, which we previously presented in
Chapter 5. The representation power offered by the Attention Mechanisms enabled us to learn
policies that generalize to multiple scenarios and instances of DS-CVRPTWs, and output online
decision rules competitive with both classical solvers such as ORTools and LKH3 and recent
DNN-based approaches, namely AM [50] and RNN [73]. Our MARDAM architecture is fast,
robust and flexible compared to myopic a-priori routes. It can efficiently adapt to real-time
perturbation and appearing customers.

This generalization power comes with a requirement for rich training datasets. We are not
aware of any DS-CVRPTW dataset large enough to properly train a DNN architecture, and
realistic problem instances of this kind are currently lacking [48]. To tend towards this goal,
we developed a new environment called SULFR interfacing with the micro-traffic simulation
SUMO [52]. There are still a lot of open questions on the proper way to represent the road net-
works and the customers address, but Graph Encoders [4] combined with Attention Mechanisms
look like promising solutions. Another point which still needs to be addressed is the low sample
efficiency of Deep RL, because as it stands, the simulator is too slow to sample many training
trajectories and obtain proper results in reasonable time.

However, this original data cost is compensated by the adaptation and generalization capa-
bilities of the MARDAM policy. On top of this, we wish to extend our training procedure and
improve our architecture to enable MARDAM to keep learning online, while being deployed on
a real fleet of vehicles. If this creates a risk of over-fitting to the last scenarios encountered, it
can also make MARDAM keep improving and specializing on the situations it has to face the
most.

On a final thought, MARDAM is currently built as a policy where all agents have full
observability. To improve its robustness in more realistic scenarios where perceptions and com-
munication might be imperfect or delayed, we want to extend our model and policy to support
partial local observability and individual internal representation for every agents.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

Chapter 7

Conclusion

The goal of this thesis was to explore how we could address rich Vehicle Routing Problems
(VRPs) in a stochastic and dynamic environment using the modern and promising tools offered
by Deep Reinforcement Learning. The first step was to established the state of the art on
Dynamic and Stochastic VRPs (DS-VRPs). We started by reviewing the exact methods such as
the modern Branch-and-Cut-and-Price of [79], which have found provably optimal solutions to
larger and larger instances of the static and deterministic VRP. However these exact methods do
not adapt very well to the dynamic and stochastic case, which multiplies the number of decision
variables, required to describe solutions for every potential outcome and dynamic evolution of
the system. Complementary to these exact approaches, the OR literature is rich of many efficient
heuristics which cannot guarantee an optimality gap but can very efficiently explore the space
of solutions for larger problems, with a variety of operational constraints. There application to
DS-VRPs is still subject to some limitations, and often consists in solving new frozen problems
from scratch every time their solutions are invalidated by new dynamic and stochastic events,
in framework such as the Multiple Scenario Approach [8].

After this state of the art review, we decided to explore an alternative approach based on
Reinforcement Learning [105], which naturally describes dynamic and stochastic problems. The
challenge was to find a way to represent the state of the system. Indeed, we wanted to train
policies that could adapt to various customers configurations, and represent the state of our
fleet of vehicles. To this end, we drew inspiration from a recent line of works initiated by [116]
who used Deep Neural Network to learn to solve routing problems directly from data. The
architectures kept improving to more efficiently represent fully-connected graphs of customers
for which current state of the art is to use a Transformer encoder [50, 31]. Nonetheless, all
existing approaches based on Deep RL have reframed the VRP as a single-vehicle problem, and
do not take into account its multi-agent dimension. Hence, they cannot represent the global
state of the system in a dynamic and stochastic environment, where multiple vehicles evolve in
parallel.

112

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

7.1. CONTRIBUTIONS 113

7.1 Contributions

Actor-Critic for Decentralized Control. We first started by investigating Policy Gradi-
ent methods for multi-agent systems in the general case of Decentralized Partially-Observable
Markov Decision Processes (Dec-POMDPs). We focussed on a particular training paradigm
which we call Centralized Training for Decentralized Control (CTDC). In this paradigm, we
consider two separate phases for policy training and policy deployment. During training, we
have access to additional information, similarly to how a football coach will observe and give in-
structions to his players during training, so that they can learn strategies which they will execute
during a match without his interventions. We developed the mathematical foundations of Actor
Critic algorithm in the CTDC paradigm, extending the Policy Gradient Theorem [106] and the
Critic compatibility conditions to this setup. We also highlighted the relation to Natural Actor
Critic algorithms. We validated our approach using traditional benchmarks of the Dec-POMDP
literature, and showed a net advantage to the CTDC paradigm compared to fully centralized
or fully decentralized approaches. This work was also the occasion to start discussing the prob-
lem of individual internal state representation. We compared two different history compression
methods: truncated history and Recurrent Neural Network (RNN), and noticed better perfor-
mances on the latter in term of objective value and convergence speed. The individual internal
state approximation problem is still an open issue, but RNN showed promising capabilities.

Sequential MMDP. After this preliminary work on multi-agent policy gradient methods in
the general Dec-POMDPs case, we developed a novel multi-agent model which could describe
the rich DS-VRPs we want to address. We introduced a new variant of Multi-agent MDP model
which we call sequential MMDP (sMMDP). It captures the property of routing problems that
all agents do not choose their decision simultaneously, but instead target a new customer only
when they are done serving the previous one. It could be applied to any other planning problem
where agents actions describe tasks with a temporal dimension, whose effects on the state of the
system can be isolated. We derived variants of the Bellman equation for sMMDP and analyzed
its complexity compared to its equivalent simultaneous counterpart (MMDP). Our experiments
tend to show a net advantage to using a sMMDP for problems which naturally have a sequential
structure. However the sequentiality constraint we impose on the model slightly reduces its
expressivity compared to the general MMDP, hence it is only adapted to such cases.

MARDAM. In the last part of the thesis, we proposed to apply our sMMDP model to DS-
VRPs. As the state and action spaces become much larger than what we considered previously,
we designed a new DNN architecture to implement a parametric policy. This policy we called
MARDAM decomposes into four blocks, as shown on Figure 7.1. Each of them corresponds to
one of the factor of the state in our sequential model of DS-VRPs, namely the set of customers
features, the set of vehicles states, the current vehicle turn, and the subset of valid individual
actions. We extensively use Multi-Head Attention layers and the Transformer encoder of [112].
The former helps us deal with sets of customers and vehicles of various size, with the interest-
ing property to be invariant to permutation of its input which improves its sample efficiency
compared to recurrent structures. The latter can capture the structure of the customers con-
figurations which result from a priori unknown random distributions, and extract patterns from
the graph they form.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

114 CHAPTER 7. CONCLUSION

h0,0k h0,1k h0,2k h0,3k h0,4k

Customer
Encoder

h1k h2k

Vehicles
Encoder

•

ρik

Vehicle turn

ik = 1

Turn
Focus

Actions mask

Ξik(s̄k)
= [1, 0, 0, 0, 1]

πik(aik|s̄k) ∀aik
Decision rule

0 0 0
| | | | Travels

Scorer

Customer states

0

1

2

3

4

s̄0,0k

s̄0,1k

s̄0,2k

s̄0,3k

s̄0,4k

Vehicle states

0

1

2

3

4

1

2 s̄1k
s̄2k

Figure 7.1 – Summary of the MARDAM architecture which learns to represent the multi-agent
state of a DS-VRP with varying sets of customers and vehicles, to provide online decision rules
and choose individual actions in a sequential decision process.

To the best of our knowledge, we were the first to take into account the multi-agent dimen-
sion of VRPs with a Deep RL approach. We reported promising experimental results in term
of adaptability, robustness, and objective value on a set of artificially generated benchmarks
inspired by existing generation processes [102, 8]. We demonstrated the overall quality of our
approach, in particular for Dynamic and Stochastic VRP compared to ORTools, a solver devel-
oped by Google AI which uses Adaptive Large Neighborhood Search backed by their CP-SAT
solver. We also developed a more involving benchmark based on the micro-traffic simulation
SUMO [52], a software which Volvo also experimented with to evaluate the energy consumption
of their vehicles while travelling on existing city road networks. We reported preliminary results
as a proof of concept training MARDAM on a small selection of scenarios corresponding to
different road networks and customers set.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

7.2. PERSPECTIVES 115

7.2 Perspectives

There are still a lot of open questions about the application of Deep RL techniques to real-world
routing problems. We have identified multiple axes of improvement for future research.

Combining Deep RL and other heuristics. First, Deep RL is really data-hungry, and all
commonly used training algorithms are not very sample-efficient. In order to avoid relying on
artificially generated dataset to get enough samples to train DNNs, it is important to improve
the efficiency of Deep RL algorithms while making sure to avoid over-fitting. For example,
instead of Stochastic Gradient Descent, recent approaches [103, 104] have successfully trained
DNNs using a simple evolutionary algorithm, which drastically reduced the number of training
iterations required to reach similar performances.

There are other opportunities to combine Deep RL and traditional heuristics from the OR
literature. One could train a DNN to produce initial solutions before applying local search
operator to improve it, as was proposed in [31]. However synergies between Deep RL and OR
heuristics are not limited to such a two-phase approach. For example, being able to quickly
sample batches of solutions in a single forward pass of a DNN could prove very useful and
efficient in any framework relying on sets of solutions, including but not limited to lookup search,
Genetic Algorithms, Ant Colony Optimization, and Multiple Scenario Approach. The challenge
in such hybrid approaches is to redesign the reward signal to be able to keep applying Deep
RL algorithms or find new ways to update the parameters of the network with nice convergence
properties.

Model scalability and policy refinement. The next axis for improvement which appeared
clearly in our final experiments is to work on the scalability of our approach. Even though
MARDAM is built around Multi-Head Attention layers that use the same set of parameters for
inputs of varying sizes, its ability to address larger problem seems limited. There is certainly a
problem of representation capabilities for graphs of customers and fleets of vehicles of larger sizes.
This could be solved by deepening the architecture, but also comes with technical difficulties. If
sharing parameters and exploiting the nature and structure of the states in the blocks composing
MARDAM help reducing the number of parameters, we are limited in the number of intermediate
activations we can store by the memory available on our GPUs. Deepening the network would
require compromises on the batch size, increasing the variance of the gradient estimations. One
way to address this issue is to take into account the synergies between a global level of decision,
for example from the point of view of the dispatcher managing the whole fleet, and a local
level of decision for each vehicle. In a way, such hierarchical levels of decision have already
proven useful in [100, 16], who used state aggregation to enable their Approximate Dynamic
Programming approach to scale up to thousands of customers. There is already a few tools in
the RL literature that can help us model this hierarchy and global-local interaction, such as
Options [107, 3], Feudal Learning [29, 114], or MaxQ [34].

Additionally, we have not fully exploited the Multi-Agent Policy Gradient theory we devel-
oped in the Centralized Training for Decentralized Control (CTDC) framework [2] of Section 3.3.
Indeed, our current sMMDP model for DS-VRPs is fully observable, hence it did not require
a decentralized control. However, vehicles might only have partial and local observability in
real-world scenarios, in which case it is necessary to consider more complex model, such as
Dec-POSMDP [76], the semi-Markov variant of Dec-POMDP, which takes into account durative
actions. The partial observability and decentralized control constraints also impose a refinement

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

116 CHAPTER 7. CONCLUSION

of the policy architecture, which would need to be separable, and may benefit from a distinct
centralized critic structure, to capture the additional information available at training in the
CTDC framework, as proposed in [37] for example.

Realistic DS-VRPs and state representation. The last perspective we want to discuss
here is the continuation of the work we initiated with our SULFR simulation framework. First,
we think there is more engineering to do to improve the interface and the parallel management
of the simulations, using frameworks such as Asynchronous Advantage Actor Critic (A3C) [70]
to avoid waiting for all simulations at each step. On a side note, there are also potential
improvements on some of the mechanisms integrated in SUMO, namely the integrated router
and the side-parking. Otherwise SUMO is a very promising tool, which can simulate very rich
scenarios with road infrastructures, traffic lights, public transport lines, trains, and pedestrians.

More importantly, we are going to keep searching for efficient and compact state represen-
tations for realistic DS-VRPs using DNNs. To go further than customers in an euclidean space,
and take into account the underlying road infrastructures, we think it is necessary to add an
encoder level that learn to represent these networks of streets and intersections. A Transformer
would not be the best solution for this task, as it is much more efficient for fully-connected
graphs, and more general Graph encoder architecture [4] would be more adapted. Once we ob-
tain an internal representation for the city or district where the vehicles will evolve in, Attention
Mechanisms seem like a good candidate to learn representations for the customers and vehicles
locations.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

List of Publications

Journals

[1] Guillaume Bono, Jilles Steeve Dibangoye, Olivier Simonin, Laëtitia Matignon, and Flo-
rian Pereyron. “Solving Multi-agent Routing Problems using Deep Attention Mecha-
nisms”. In: IEEE Transactions on Intelligent Transportation Systems (2020), pp. 1–10.

Conferences

[2] Guillaume Bono, Jilles Steeve Dibangoye, Laëtitia Matignon, Florian Pereyron, and
Olivier Simonin. “Cooperative Multi-agent Policy Gradient”. In: Machine Learning and
Knowledge Discovery in Databases - Proceedings of the European Conference on Machine
Learning. Ed. by Michele Berlingerio, Francesco Bonchi, Thomas Gärtner, Neil Hurley,
and Georgiana Ifrim. 2018, pp. 459–476.

[3] Guillaume Bono, Jilles Steeve Dibangoye, Laëtitia Matignon, Florian Pereyron, and
Olivier Simonin. “Classification des problèmes stochastiques et dynamiques de collectes
et de livraisons par des véhicules intelligents”. In: Journées Francophones sur la Planifi-
cation, la Décision et l’Apprentissage pour la conduite de systèmes. 2017.

[4] Guillaume Bono, Jilles Steeve Dibangoye, Laëtitia Matignon, Florian Pereyron, and
Olivier Simonin. “Sur le Gradient de la Politique pour les Systèmes Multi-agents Coopératifs”.
In: Journées Francophones sur la Planification, la Décision et l’Apprentissage pour la
conduite de systèmes. 2018.

Workshops

[5] Guillaume Bono, Jilles Steeve Dibangoye, Laëtitia Matignon, Florian Pereyron, and
Olivier Simonin. “Simulation of Stochastic Vehicle Routing Problems in Urban Envi-
ronment”. In: Prediction and Generative Modeling in Reinforcement Learning. Ed. by
Matteo Pirotta, Roberto Calandra, Sergey Levine, Martin Riedmiller, and Alessandro
Lazaric. 2018.

Reports

[6] Guillaume Bono, Jilles Steeve Dibangoye, Laëtitia Matignon, Florian Pereyron, and
Olivier Simonin. On the Study of Cooperative Multi-Agent Policy Gradient. Tech. rep.
INSA Lyon, INRIA, 2018. url: https://hal.inria.fr/hal-01821677.

117

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

https://hal.inria.fr/hal-01821677

Bibliography

[1] Google AI. Google’s Operations Research Tools. online. 2018. url: https://developers.
google.com/optimization/.

[2] Christopher Amato, Jilles Steeve Dibangoye, and Shlomo Zilberstein. “Incremental Policy
Generation for Finite-Horizon Dec-POMDPs”. In: Proceedings of the 19th International
Conference on International Conference on Automated Planning and Scheduling. Ed. by
Alfonso Gerevini, Adele Howe, Amedeo Cesta, and Ioannis Refanidis. 2009, pp. 2–9.

[3] Pierre-Luc Bacon, Jean Harb, and Doina Precup. “The Option-Critic Architecture”. In:
Proceedings of the 31st AAAI Conference on Artificial Intelligence. Ed. by Satinder Singh
and Shaul Markovitch. 2017, pp. 1726–1734.

[4] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan
Faulkner, Caglar Gulcehre, Francis Song, Andrew Ballard, Justin Gilmer, George Dahl,
Ashish Vaswani, Kelsey Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas
Heess, Daan Wierstra, Pushmeet Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, and
Razvan Pascanu. Relational inductive biases, deep learning, and graph networks. arXiv.
2018. eprint: 1806.01261 (cs.LG).

[5] Richard Bellman. “Dynamic Programming”. In: Science 153.3731 (1966), pp. 34–37.

[6] Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural
Combinatorial Optimization with Reinforcement Learning. arXiv. 2016. eprint: 1611.

09940 (cs.AI).

[7] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine Learning for Combinatorial
Optimization: a Methodological Tour d’Horizon. arXiv. 2018. eprint: 1811.06128 (cs.LG).

[8] Russell W. Bent and Pascal Van Hentenryck. “Scenario-Based Planning for Partially Dy-
namic Vehicle Routing with Stochastic Customers”. In: Operations Research 52.6 (2004),
pp. 977–987.

[15] Craig Boutilier. “Planning, Learning and Coordination in Multiagent Decision Processes”.
In: Proceedings of the 6th Conference on Theoretical Aspects of Rationality and Knowl-
edge. Ed. by Yoav Shoham. 1996, pp. 195–210.

[16] Belgacem Bouzaiene-Ayari, Clark Cheng, Sourav Das, Ricardo Fiorillo, and Warren B.
Powell. “From Single Commodity to Multiattribute Models for Locomotive Optimization:
A Comparison of Optimal Integer Programming and Approximate Dynamic Program-
ming”. In: Transportation Science 50.2 (2016), pp. 366–389.

[17] Steven J Bradtke and Michael O Duff. “Reinforcement learning methods for continuous-
time Markov decision problems”. In: Advances in Neural Information Processing Systems.
Ed. by D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo. 1995, pp. 393–400.

118

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

https://developers.google.com/optimization/
https://developers.google.com/optimization/
1806.01261
1611.09940
1611.09940
1811.06128

BIBLIOGRAPHY 119

[18] Mu-Chen Chen, Yu-Hsiang Hsiao, Reddivari Himadeep Reddy, and Manoj Kumar Ti-
wari. “The Self-Learning Particle Swarm Optimization approach for routing pickup and
delivery of multiple products with material handling in multiple cross-docks”. In: Trans-
portation Research Part E: Logistics and Transportation Review 91.1 (2016), pp. 208–
226.

[19] Nicos Christofides. Worst-case analysis of a new heuristic for the travelling salesman
problem. Tech. rep. Carnegie Mellon University, 1976.

[20] B. Coltin and M. Veloso. “Online pickup and delivery planning with transfers for mobile
robots”. In: IEEE International Conference on Robotics and Automation. Ed. by Ning
Xi, William R. Hamel, and Jindong Tan. 2014, pp. 5786–5791.

[21] European Commission. Region and Cities Illustrated. online. 2018. url: https://ec.
europa.eu/eurostat/cache/RCI.

[22] Ryan G Conrad and Miguel Andres Figliozzi. “The Recharging Vehicle Routing Prob-
lem”. In: Proceedings of the 2011 Industrial Engineering Research Conference. Ed. by T.
Doolen and E. Van Aken. 2011.

[23] Jean-François Cordeau. “A Branch-and-Cut Algorithm for the Dial-a-Ride Problem”. In:
Operations Research 54.3 (2006), pp. 573–586.

[24] Jean-François Cordeau, Guy Desaulniers, Jacques Desrosiers, Marius M. Solomon, and
François Soumis. “VRP with Time Windows”. In: The Vehicle Routing Problem. Ed. by
Paolo Toth and Daniele Vigo. Society for Industrial and Applied Mathematics, 2002.
Chap. 7, pp. 157–193.

[25] Jean-François Cordeau and Mirko Maischberger. “A parallel iterated tabu search heuris-
tic for vehicle routing problems”. In: Computers and Operations Research 39.9 (2012),
pp. 2033–2050.

[26] Cristián E. Cortés, Doris Sáez, Alfredo Núñez, and Diego Muñoz-Carpintero. “Hybrid
Adaptive Predictive Control for a Dynamic Pickup and Delivery Problem”. In: Trans-
portation Science 43.1 (2009), pp. 27–42.

[27] G. A. Croes. “A Method for Solving Traveling Salesman Problems”. In: Operations Re-
search 6.6 (1958), pp. 791–908.

[28] G. B. Dantzig and J. H. Ramser. “The Truck Dispatching Problem”. In: Management
Science 6.1 (1959), pp. 80–91.

[29] Peter Dayan and Geoffrey E Hinton. “Feudal Reinforcement Learning”. In: Advances
in Neural Information Processing Systems. Ed. by J. D. Cowan, G. Tesauro, and J.
Alspector. 1993, pp. 271–278.

[30] Guy Desaulniers, Jacques Desrosiers, Andreas Erdmann, Marius M. Solomon, and François
Soumis. “VRP with Pickup and Delivery”. In: The Vehicle Routing Problem. Ed. by Paolo
Toth and Daniele Vigo. Society for Industrial and Applied Mathematics, 2002. Chap. 9,
pp. 225–242.

[31] Michel Deudon, Pierre Cournut, Alexandre Lacoste, Yossiri Adulyasak, and Louis-Martin
Rousseau. “Learning Heuristics for the TSP by Policy Gradient”. In: Integration of Con-
straint Programming, Artificial Intelligence, and Operations Research. Ed. by Willem-Jan
van Hoeve. 2018, pp. 170–181.

[32] Jilles Steeve Dibangoye, Christopher Amato, Olivier Buffet, and François Charpillet.
“Optimally Solving Dec-POMDPs as Continuous-State MDPs”. In: Proceedings of the
23rd International Joint Conference on Artificial Intelligence. Ed. by Sebastian Thrun,
Francesca Rossi, Carla Gomes, and Umberto Grandi. 2013, pp. 90–96.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

https://ec.europa.eu/eurostat/cache/RCI
https://ec.europa.eu/eurostat/cache/RCI

120 BIBLIOGRAPHY

[33] Jilles Steeve Dibangoye, Christopher Amato, Olivier Buffet, and François Charpillet.
“Optimally Solving Dec-POMDPs as Continuous-State MDPs”. In: Journal of Artificial
Intelligence Research 55.1 (2016), pp. 443–497.

[34] Thomas G Dietterich. “Hierarchical reinforcement learning with the MAXQ value func-
tion decomposition”. In: Journal of Artificial Intelligence Research 13.1 (2000), pp. 227–
303.

[35] Moshe Dror, Gilbert Laporte, and Francois V. Louveaux. “Vehicle routing with stochastic
demands and restricted failures”. In: Zeitschrift für Operations Research 37.1 (1993),
pp. 273–283.

[36] Sevgi Erdoğan and Elise Miller-Hooks. “A Green Vehicle Routing Problem”. In: Trans-
portation Research Part E: Logistics and Transportation Review 48.1 (2012), pp. 100–
114.

[37] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon
Whiteson. “Counterfactual Multi-Agent Policy Gradients”. In: Proceedings of the 32nd
National Conference on Artifical Intelligence. Ed. by Shlomo Zilberstein, Sheila McIlraith,
and Kilian Weinberger. 2018, pp. 2974–2982.

[38] Michel Gendreau, Gilbert Laporte, and Jean-Yves Potvin. “Metaheuristics for the Ca-
pacitated VRP”. In: The Vehicle Routing Problem. Ed. by Paolo Toth and Daniele Vigo.
Society for Industrial and Applied Mathematics, 2002. Chap. 6, pp. 129–154.

[39] Fred Glover. “Tabu Search - Part I”. In: ORSA Journal on Computing 1.3 (1989),
pp. 190–206.

[40] Claudia V Goldman and Shlomo Zilberstein. “Decentralized control of cooperative sys-
tems: Categorization and complexity analysis”. In: Journal of Artificial Intelligence Re-
search 22.1 (2004), pp. 143–174.

[41] Ralph E. Gomory. “Outline of an algorithm for integer solutions to linear programs”. In:
Bulletin of the American Mathematical Society 64.1 (1958), pp. 275–278.

[42] Jayesh K. Gupta, Maxim Egorov, and Mykel Kochenderfer. “Cooperative Multi-agent
Control Using Deep Reinforcement Learning”. In: Autonomous Agents and Multiagent
Systems. Ed. by Gita Sukthankar and Juan A. Rodriguez-Aguilar. 2017, pp. 66–83.

[43] Walter J. Gutjahr, Stefan Katzensteiner, and Peter Reiter. “A VNS Algorithm for Noisy
Problems and Its Application to Project Portfolio Analysis”. In: Stochastic Algorithms:
Foundations and Applications: 4th International Symposium. Ed. by Juraj Hromkovič,
Richard Královič, Marc Nunkesser, and Peter Widmayer. 2007, pp. 93–104.

[44] Eric A Hansen, Daniel S Bernstein, and Shlomo Zilberstein. “Dynamic Programming for
Partially Observable Stochastic Games”. In: Proceedings of the 19th National Confer-
ence on Artifical Intelligence. Ed. by George Ferguson and Deborah McGuinness. 2004,
pp. 709–715.

[45] Keld Helsgaun. An extension of the Lin-Kernighan-Helsgaun TSP solver for constrained
traveling salesman and vehicle routing problems. Tech. rep. Roskilde University, 2017.

[46] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neural Com-
putation 9.8 (1997), pp. 1735–1780.

[47] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. “Learning Com-
binatorial Optimization Algorithms over Graphs”. In: Advances in Neural Information
Processing Systems. Ed. by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett. 2017, pp. 6348–6358.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

BIBLIOGRAPHY 121

[48] G. Kim, Y. Ong, C. K. Heng, P. S. Tan, and N. A. Zhang. “City Vehicle Routing Problem
(City VRP): A Review”. In: IEEE Transactions on Intelligent Transportation Systems
16.4 (2015), pp. 1654–1666.

[49] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv.
2014. eprint: 1412.6980 (cs.LG).

[50] Wouter Kool, Herke van Hoof, and Max Welling. “Attention, Learn to Solve Rout-
ing Problems!” In: International Conference on Learning Representations. Ed. by Tara
Sainath, Alexander Rush, Sergey Levine, Karen Livescu, and Shakir Mohamed. 2019.

[51] Landon Kraemer and Bikramjit Banerjee. “Multi-agent reinforcement learning as a re-
hearsal for decentralized planning”. In: NeuroComputing 190.1 (2016), pp. 82–94.

[52] Daniel Krajzewicz, Jakob Erdmann, Michael Behrisch, and Laura Bieker. “Recent Devel-
opment and Applications of SUMO - Simulation of Urban MObility”. In: International
Journal On Advances in Systems and Measurements 5.3 (2012), pp. 128–138.

[53] S. Krauß. Microscopic Modeling of Traffic Flow: Investigation of Collision Free Vehicle
Dynamics. Tech. rep. Institute of Transport Research - Hauptabteilung Mobilität und
Systemtechnik, 1998.

[54] A. H. Land and A. G. Doig. “An Automatic Method of Solving Discrete Programming
Problems”. In: Econometrica 28.3 (1960), pp. 497–520.

[55] Gilbert Laporte, François Louveaux, and Hélène Mercure. “The Vehicle Routing Problem
with Stochastic Travel Times”. In: Transportation Science 26.3 (1992), pp. 161–170.

[56] Gilbert Laporte and François V. Louveaux. “The integer L-shaped method for stochastic
integer programs with complete recourse”. In: Operations Research Letters 13.3 (1993),
pp. 133–142.

[57] John D. C. Little, Katta G. Murty, Dura W. Sweeney, and Caroline Karel. “An Algorithm
for the Traveling Salesman Problem”. In: Operations Research 11.6 (1963), pp. 972–989.

[58] Michael L. Littman and Csaba Szepesvári. “A Generalized Reinforcement-Learning Model:
Convergence and Applications”. In: Proceedings of the 13th International Conference on
Machine Learning. Ed. by Lorenza Saitta. 1996, pp. 310–318.

[59] Michael Lederman Littman. “Algorithms for sequential decision making”. PhD thesis.
Brown University, 1996.

[60] Miao Liu, Christopher Amato, Emily P Anesta, John Daniel Griffith, and Jonathan P
How. “Learning for Decentralized Control of Multiagent Systems in Large, Partially-
Observable Stochastic Environments”. In: Proceedings of the 30th National Conference
on Artifical Intelligence. Ed. by Dale Schuurmans and Michael Wellman. 2016, pp. 2523–
2529.

[61] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. “Multi-
Agent Actor-Critic for Mixed Cooperative-Competitive Environments”. In: Advances in
Neural Information Processing Systems. Ed. by I. Guyon, U. V. Luxburg, S. Bengio, H.
Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. 2017, pp. 6379–6390.

[62] Jacek Mańdziuk and Cezary Nejman. “UCT-Based Approach to Capacitated Vehicle
Routing Problem”. In: Artificial Intelligence and Soft Computing: 14th International
Conference. Ed. by Leszek Rutkowski, Marcin Korytkowski, Rafal Scherer, Ryszard Tadeusiewicz,
Lotfi A. Zadeh, and Jacek M. Zurada. 2015, pp. 679–690.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

1412.6980

122 BIBLIOGRAPHY

[63] Peter Marbach, Oliver Mihatsch, Miriam Schulte, and John N Tsitsiklis. “Reinforcement
learning for call admission control and routing in integrated service networks”. In: Ad-
vances in Neural Information Processing Systems. Ed. by M. J. Kearns, S. A. Solla, and
D. A. Cohn. 1998, pp. 922–928.

[64] Yannis Marinakis and Magdalene Marinaki. “A hybrid genetic - Particle Swarm Optimiza-
tion Algorithm for the vehicle routing problem”. In: Expert Systems with Applications
37.2 (2010), pp. 1446–1455.

[65] M. Mavrovouniotis and S. Yang. “Ant colony optimization with memory-based immi-
grants for the dynamic vehicle routing problem”. In: IEEE Congress on Evolutionary
Computation. Ed. by Hussein Abbass, Daryl Essam, and Ruhul Sarker. 2012, pp. 1–8.

[66] Stephan Meisel, Uli Suppa, and Dirk Mattfeld. “Serving Multiple Urban Areas with
Stochastic Customer Requests”. In: Dynamics in Logistics: 2nd International Conference.
Ed. by Hans-Jörg Kreowski, Bernd Scholz-Reiter, and Klaus-Dieter Thoben. 2011, pp. 59–
68.

[67] Martijn Mes, Matthieu van der Heijden, and Peter Schuur. “Interaction between intelli-
gent agent strategies for real-time transportation planning”. In: Central European Journal
of Operations Research 21.2 (2013), pp. 337–358.

[68] Melanie Mitchell. An Introduction to Genetic Algorithm. Ed. by Bradford Books. MIT
Press, 1998.

[69] N. Mladenović and P. Hansen. “Variable Neighborhood Search”. In: Computers and Op-
erations Research 24.11 (1997), pp. 1097–1100.

[70] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lilli-
crap, Tim Harley, David Silver, and Koray Kavukcuoglu. “Asynchronous Methods for
Deep Reinforcement Learning”. In: Proceedings of the 33rd International Conference
on Machine Learning. Ed. by Maria Florina Balcan and Kilian Q. Weinberger. 2016,
pp. 1928–1937.

[71] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc
G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski,
Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dhar-
shan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. “Human-level control
through deep reinforcement learning”. In: Nature 518.1 (2015), pp. 529–533.

[72] R. Montemanni, L. M. Gambardella, A. E. Rizzoli, and A. V. Donati. “Ant Colony System
for a Dynamic Vehicle Routing Problem”. In: Journal of Combinatorial Optimization 10.4
(2005), pp. 327–343.

[73] MohammadReza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takac. “Rein-
forcement Learning for Solving the Vehicle Routing Problem”. In: Advances in Neural
Information Processing Systems. Ed. by S. Bengio, H. Wallach, H. Larochelle, K. Grau-
man, N. Cesa-Bianchi, and R. Garnett. 2018, pp. 9861–9871.

[74] Clara Novoa and Robert Storer. “An approximate dynamic programming approach for the
vehicle routing problem with stochastic demands”. In: European Journal of Operational
Research 196.2 (2009), pp. 509–515.

[75] Frans A Oliehoek, Matthijs T J Spaan, Christopher Amato, and Shimon Whiteson. “In-
cremental Clustering and Expansion for Faster Optimal Planning in Dec-POMDPs”. In:
Journal of Artificial Intelligence Research 46.1 (2013), pp. 449–509.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

BIBLIOGRAPHY 123

[76] Shayegan Omidshafiei, Ali-Akbar Agha-Mohammadi, Christopher Amato, Shih-Yuan
Liu, Jonathan P How, and John Vian. “Decentralized control of multi-robot partially
observable Markov decision processes using belief space macro-actions”. In: The Interna-
tional Journal of Robotics Research 36.2 (2017), pp. 231–258.

[77] M. Padberg and G. Rinaldi. “A Branch-and-Cut Algorithm for the Resolution of Large-
Scale Symmetric Traveling Salesman Problems”. In: SIAM Review 33.1 (1991), pp. 60–
100.

[78] Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algo-
rithms and Complexity. Ed. by Christos H Papadimitriou and Kenneth Steiglitz. Dover
Publications, Inc., 1998.

[79] Diego Pecin, Artur Pessoa, Marcus Poggi, and Eduardo Uchoa. “Improved branch-cut-
and-price for capacitated vehicle routing”. In: Mathematical Programming Computation
9.1 (2017), pp. 61–100.

[80] Leonid Peshkin, Kee-Eung Kim, Nicolas Meuleau, and Leslie Pack Kaelbling. “Learn-
ing to Cooperate via Policy Search”. In: 16th Conference on Uncertainty in Artificial
Intelligence. Ed. by Craig Boutilier and Moisés Goldszmidt. 2000, pp. 1–8.

[81] Victor Pillac, Michel Gendreau, Christelle Guéret, and Andrés L. Medaglia. “A review of
dynamic vehicle routing problems”. In: European Journal of Operational Research 225.1
(2013), pp. 1–11.

[82] Martin Pincus. “A Monte Carlo Method for the Approximate Solution of Certain Types
of Constrained Optimization Problems”. In: Operations Research 18.6 (1970), pp. 967–
1235.

[83] Warren B Powell. Approximate Dynamic Programming: Solving the curses of dimension-
ality. Ed. by Warren B Powell. John Wiley and Sons, 2007.

[84] Harilaos N. Psaraftis. “A Dynamic Programming Solution to the Single Vehicle Many-to-
Many Immediate Request Dial-a-Ride Problem”. In: Transportation Science 14.2 (1980),
pp. 130–154.

[85] Harilaos N. Psaraftis, Min Wen, and Christos A. Kontovas. “Dynamic vehicle routing
problems: Three decades and counting”. In: Networks 67.1 (2016), pp. 3–31.

[86] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language Models are Unsupervised Multitask Learners. OpenAI blog. 2019. url: https:
//d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_

unsupervised_multitask_learners.pdf.

[87] Joseph Redmon and Ali Farhadi. “YOLO9000: Better, Faster, Stronger”. In: Conference
on Computer Vision and Pattern Recognition. Ed. by IEEE. 2017, pp. 6517–6525.

[88] Gerhard Reinelt. TSPLIB. online. 1995. url: http://comopt.ifi.uni-heidelberg.
de/software/TSPLIB95/.

[89] Arpad Rimmel, Fabien Teytaud, and Tristan Cazenave. “Optimization of the Nested
Monte-Carlo Algorithm on the Traveling Salesman Problem with Time Windows”. In:
Evo˚. Ed. by Jennifer Willies. 2011.

[90] Ulrike Ritzinger, Jakob Puchinger, and Richard F. Hartl. “A survey on dynamic and
stochastic vehicle routing problems”. In: International Journal of Production Research
54.1 (2016), pp. 215–231.

[91] Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of Constraint Programming.
Ed. by Francesca Rossi, Peter Van Beek, and Toby Walsh. Elsevier, 2006.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

124 BIBLIOGRAPHY

[92] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal rep-
resentations by error propagation. Tech. rep. California Univ San Diego La Jolla Inst for
Cognitive Science, 1985.

[93] Doris Sáez, Cristián E. Cortés, and Alfredo Núñez. “Hybrid adaptive predictive control
for the multi-vehicle dynamic pick-up and delivery problem based on genetic algorithms
and fuzzy clustering”. In: Computers and Operations Research 35.11 (2008).

[94] Michael Saint-Guillain, Yves Deville, and Christine Solnon. “A Multistage Stochastic
Programming Approach to the Dynamic and Stochastic VRPTW”. In: Integration of AI
and OR Techniques in Constraint Programming. Ed. by Laurent Michel. 2015.

[95] M. Schilde, K.F. Doerner, and R.F. Hartl. “Metaheuristics for the dynamic stochastic
dial-a-ride problem with expected return transports”. In: Computers and Operations Re-
search 38.12 (2011), pp. 1719–1730.

[96] Michael Schneider, Andreas Stenger, and Dominik Goeke. “The Electric Vehicle-Routing
Problem with Time Windows and Recharging Stations”. In: Transportation Science 48.4
(2014), pp. 500–520.

[97] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
“Trust Region Policy Optimization”. In: Proceedings of the 32nd International Confer-
ence on Machine Learning. Ed. by Francis Bach and David Blei. 2015, pp. 1889–1897.

[98] Nicola Secomandi and Francois Margot. “Reoptimization Approaches for the Vehicle-
Routing Problem with Stochastic Demands”. In: Operations Research 57.1 (2009), pp. 214–
230.

[99] Yoav Shoham and Kevin Leyton-Brown. Multiagent systems: Algorithmic, game-theoretic,
and logical foundations. Ed. by Yoav Shoham and Kevin Leyton-Brown. Cambridge Uni-
versity Press, 2008.

[100] Hugo P. Simão, Jeff Day, Abraham P. George, Ted Gifford, John Nienow, and Warren
B. Powell. “An Approximate Dynamic Programming Algorithm for Large-Scale Fleet
Management: A Case Application”. In: Transportation Science 43.2 (2009), pp. 178–197.

[101] Christine Solnon. Ant Colony Optimization and Constraint Programming. Ed. by John
Wiley and Inc. Sons. Wiley Online Library, 2010.

[102] Marius M. Solomon. “Algorithms for the Vehicle Routing and Scheduling Problems with
Time Window Constraints”. In: Operations Research 35.2 (1987), pp. 254–265.

[103] Kenneth O. Stanley, Jeff Clune, Joel Lehman, and Risto Miikkulainen. “Designing neural
networks through neuroevolution”. In: Nature Machine Intelligence 1.1 (2019), pp. 24–
35.

[104] Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O.
Stanley, and Jeff Clune. Deep Neuroevolution: Genetic Algorithms Are a Competitive
Alternative for Training Deep Neural Networks for Reinforcement Learning. arXiv. 2017.
eprint: 1712.06567 (cs.NE).

[105] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. Ed. by Bradford
Books. MIT Press, 1998.

[106] Richard S Sutton, David A. McAllester, Satinder P. Singh, and Yishay Mansour. “Policy
Gradient Methods for Reinforcement Learning with Function Approximation”. In: Ad-
vances in Neural Information Processing Systems. Ed. by S. A. Solla, T. K. Leen, and
K. Müller. 2000, pp. 1057–1063.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

1712.06567

BIBLIOGRAPHY 125

[107] Richard S. Sutton, Doina Precup, and Satinder Singh. “Between MDPs and semi-MDPs:
A Framework for Temporal Abstraction in Reinforcement Learning”. In: Artificial Intel-
ligence 112.1 (1999), pp. 181–211.

[108] Csaba Szepesvári and Michael L. Littman. Generalized Markov Decision Processes: Dynamic-
programming and Reinforcement-learning Algorithms. Tech. rep. University of Szeged,
1997.

[109] Daniel Szer, François Charpillet, and Shlomo Zilberstein. “MAA*: A Heuristic Search
Algorithm for Solving Decentralized POMDPs”. In: 21st Conference on Uncertainty in
Artificial Intelligence. Ed. by Max Chickering, Fahiem Bacchus, and Tommi Jaakkola.
2005, pp. 576–590.

[110] Alejandro Toriello, William B. Haskell, and Michael Poremba. “A Dynamic Traveling
Salesman Problem with Stochastic Arc Costs”. In: Operations Research 62.5 (2014),
pp. 1107–1125.

[111] P. Toth and D. Vigo. The Vehicle Routing Problem. Ed. by Paolo Toth and Daniele Vigo.
Society for Industrial and Applied Mathematics, 2002.

[112] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. “Attention is All you Need”. In: Advances
in Neural Information Processing Systems. Ed. by I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. 2017, pp. 5998–6008.

[113] M. Veres and M. Moussa. “Deep Learning for Intelligent Transportation Systems: A Sur-
vey of Emerging Trends”. In: IEEE Transactions on Intelligent Transportation Systems
21.8 (2020), pp. 3152–3168.

[114] Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jader-
berg, David Silver, and Koray Kavukcuoglu. FeUdal Networks for Hierarchical Reinforce-
ment Learning. arXiv. 2017. eprint: 1703.01161 (cs.AI).

[115] Daniele Vigo. VRPLIB. online. 1995. url: http://or.dei.unibo.it/library/vrplib-
vehicle-routing-problem-library.

[116] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. “Pointer Networks”. In: Advances
in Neural Information Processing Systems. Ed. by C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett. 2015, pp. 2692–2700.

[117] Ronald J. Williams. “Simple statistical gradient-following algorithms for connectionist
reinforcement learning”. In: Machine Learning 8.3 (1992), pp. 229–256.

[118] Feng Wu, Shlomo Zilberstein, and Nicholas R. Jennings. “Monte-Carlo Expectation Max-
imization for Decentralized POMDPs”. In: Proceedings of the 23rd International Joint
Conference on Artificial Intelligence. Ed. by Sebastian Thrun, Francesca Rossi, Carla
Gomes, and Umberto Grandi. 2013, pp. 397–403.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

1703.01161
http://or.dei.unibo.it/library/vrplib-vehicle-routing-problem-library
http://or.dei.unibo.it/library/vrplib-vehicle-routing-problem-library

FOLIO ADMINISTRATIF

THESE DE L’UNIVERSITE DE LYON OPEREE AU SEIN DE L’INSA LYON

NOM : BONO DATE de SOUTENANCE : 28/10/2020

Prénoms : Guillaume

TITRE : Deep Multi-Agent Reinforcement Learning for Dynamic and Stochastic Vehicle Routing Problems

NATURE : Doctorat Numéro d'ordre : 2020LYSEI096

Ecole doctorale : InfoMaths (ED512)

Spécialité : Informatique

RESUME : La planification de tournées de véhicules dans des environnements urbains denses est un problème difficile qui
nécessite des solutions robustes et flexibles. Les approches existantes pour résoudre ces problèmes de planification de
tournées dynamiques et stochastiques (DS-VRPs) sont souvent basés sur les mêmes heuristiques utilisées dans le cas
statique et déterministe, en figeant le problème à chaque fois que la situation évolue. Au lieu de cela, nous proposons dans
cette thèse d’étudier l’application de méthodes d’apprentissage par renforcement multi-agent (MARL) aux DS-VRPs en
s’appuyant sur des réseaux de neurones profonds (DNNs). Plus précisément, nous avons d’abord contribuer à étendre les
méthodes basées sur le gradient de la politique (PG) aux cadres des processus de décision de Markov (MDPs) partiellement
observables et décentralisés (Dec-POMDPs). Nous avons ensuite proposé un nouveau modèle de décision séquentiel en
relâchant la contrainte d’observabilité partielle que nous avons baptisé MDP multi-agent séquentiel (sMMDP). Ce modèle
permet de décrire plus naturellement les DS-VRPs, dans lesquels les véhicules prennent la décision de servir leurs prochains
clients à l’issu de leurs précédents services, sans avoir à attendre les autres. Pour représenter nos solutions, des politiques
stochastiques fournissant aux véhicules des règles de décisions, nous avons développé une architecture de DNN basée sur
des mécanismes d’attention (MARDAM). Nous avons évalué MARDAM sur un ensemble de bancs de test artificiels qui nous
ont permis de valider la qualité des solutions obtenues, la robustesse et la flexibilité de notre approche dans un contexte
dynamique et stochastique, ainsi que sa capacité à généraliser à toute une classe de problèmes sans avoir à être réentraînée.
Nous avons également développé un banc de test plus réaliste à base d’une simulation micro-traffic, et présenté une preuve de
concept de l’applicabilité de MARDAM face à une variété de situations différentes.

MOTS-CLÉS : Problème de Planification de Tournées Dynamique et Stochastique (DS-VRP),
Apprentissage par Renforcement Profond (Deep RL), Mécanismes d’Attention, Systèmes Multi-Agent (MAS)

Laboratoire (s) de recherche : CITI

Directeur de thèse : Olivier SIMONIN

Président de jury : René MANDIAU

Composition du jury : René MANDIAU, François CHARPILLET, Romain BILLOT, Aurélie BEYNIER, Christian WOLF,
Olivier SIMONIN, Jilles DIBANGOYE, Laëtitia MATIGNON.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI096/these.pdf
© [G. Bono], [2020], INSA Lyon, tous droits réservés

	Notice XML
	Page de titre
	Résumé
	Abstract
	Acknowledgements
	List of Abbreviations
	List of Notations
	List of Figures
	List of Tables
	Contents
	Introduction
	Vehicle Routing Problems
	VRPs formalization
	Travelling Salesman Problem
	Capacitated Vehicle Routing Problem
	Unifying capacity, time windows, and energy constraints
	Pickup and Delivery Problem
	Information evolution and quality
	Dynamic and Stochastic CVRPTW

	Exact methods for solving VRPs
	Integer Linear Programming
	Constraint Programming

	Heuristic methods for VRPs
	Tabu Search and Simulated Annealing
	Approximate Dynamic Programming
	Evolutionary Algorithms
	Ant Colony Optimization

	Focus on dynamic and stochastic problems
	Deep Neural Networks Heuristics
	Basics of Deep Learning
	Using DNN to solve routing problems

	Conclusion

	Multi-Agent Reinforcement Learning
	Markov Decision Processes
	Basics of MDPs
	Multi-agent MDPs
	Partially Observable MDPs
	Decentralized POMDPs

	Statistics and solution methods
	Bellman equations
	Value-based algorithms
	Policy-based algorithms

	Centralized Training for Decentralized Control
	Multi-Agent Policy Gradient Theorem
	Critic compatibility
	Experimental validation

	Conclusion

	Sequential Multi-agent Markov Decision Process
	A toy S-VRP modeled as an MMDP
	Motivating example
	The initial MMDP model

	Building up a sequential MMDP
	Sequential states
	Sequential transitions
	Sequential rewards
	Sequential MMDPs

	Simultaneous vs. sequential model
	Model discussion
	Conclusion

	Multi-Agent Routing using Deep Attention Mechanisms
	Modelling a DS-CVRPTW as a sMMDP
	Agents set
	State space
	Constrained individual actions
	Turn and transition functions
	Reward function
	Initial state distribution and planning horizon

	MARDAM, a modular Policy Network for DS-VRPs
	Customers encoding
	Vehicles encoding
	Turn focus
	Travels scorer

	Conclusion

	Experimental Evaluation
	Useful web resources
	Experimental setup
	Typical learning curves
	DS-CVRPTW
	S-CVRPTW
	CVRP and CVRPTW
	Lateness penalties and hard TW constraints
	Avoiding dimension specialization
	Towards more realistic scenarios
	The SULFR framework
	Preliminary results training MARDAM with SULFR

	Conclusion

	Conclusion
	Contributions
	Perspectives

	List of Publications
	Bibliography
	Folio administratif

