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Abstract 

Since the 1970s, Geosynthetics have been used in base course reinforcements supported by soft 

subgrade in unpaved road application. The experiences gained over the years have shown the 

benefits of reinforcement in improving the fill material compaction, the bearing capacity of the 

platform, the reduction of base course thickness and the increase of the structure service life.  

The underlying mechanisms observed in this reinforced structure are complex and are classified as 

follow: the lateral restraint mechanism and reinforcement of base course aggregates, tension 

membrane effect in rutted areas, and reduction of mixing between the subgrade and base course 

soils. In fact, the road structure becomes more heterogeneous and the mechanisms more complex 

with the reinforcement addition. In literature, and based on a supposed dominant mechanism 

different theories are suggested, and different analytical methods are proposed to design the base 

course thickness needed. The more recent proposed analytical method gives the privilege to the 

lateral restrain mechanism, contrary to the first studies in this field that were based on the tension 

membrane effect. The various factors and parameters influencing the dominant mechanism and its 

relative contribution on the platform improvement explain the need for more investigations in this 

topic.  

In this research work, large-scale laboratory tests were developed to study the reinforcement 

contribution in the unpaved road improvement. Therefore, an unpaved platform was built of 600 mm 

of artificial subgrade with a CBR<2% supporting a base course layer either of 350 or 220 mm with a 

CBR>12%. A detailed experimental Protocol was established regarding the soil preparation, the 

installation and the soils compaction procedure to reproduce the site conditions and insure the 

platform repeatability for each test. 

Ten tests were performed under a circular plate load test, in a box of 1.8 m in large, 1.9 m in length 

and 1.1 m in height. Cyclic load was performed on the prepared platform, with a maximum load of 

40 kN resulting in a maximum applied pressure of 560 kPa. The platform was subjected to 10,000 

cycles with a frequency of 0.77 Hz. An advanced and complete soil instrumentation was provided in 

order to collect the maximum data needed for thorough analysis.  

Under this test configuration, three repeatability tests were performed to verify the developed 

protocol. Quality control tests were performed before each test to verify the soil layers homogeneity 

and properties. Two base course thicknesses were tested under this test condition, 350 and 220 mm. 

Moreover, three geogrids were tested, an extruded geogrid with triangular aperture, a knitted geogrid 

with 1,000 kN/m of stiffness at 2% strain and another knitted geogrid with 2,500 kN/m at 2% strain. 

An additional performed test consisted of placing the geogrid at the base course half depth.  

Once the developed protocol was confirmed under the circular plate load tests, further tests using 

the Simulator Accelerator of Traffic (SAT) were performed. Actually, the laboratory prepared platform 

was placed in a larger box of 1.8 m in large, 5 m in length and 1.1 m in height. The prepared platform 

was subjected to two solicitations: a particular plate and a traffic load. The particular plate had the 
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shape and dimensions of the wheel contact area, and the same load of 28 kN was applied under the 

plate and the wheel in order to compare the experimental results. The Simulator Accelerator of Traffic 

was especially developed for this application. A machine that simulates the traffic load under an 

effective length of 2 m and a velocity of 4 km/h. The two areas were instrumented as follow: an area 

under the circulation load, and an area under the plat load, they are located aside.  

The 350 mm of base course of reinforced and unreinforced platforms showed no reinforcement effect 

on the platform behaviour. For all that, the circular plate load results highlighted the reinforcement 

effect in reducing the developed settlement with a base course platform of 220 mm. The most 

important platform improvement was shown for the knitted geogrid with the highest stiffness. 

Nevertheless, the extruded geogrid has provided a more significant platform improvement during the 

first cycles due to its special geometry, and it is designed mainly to provide lateral restrain 

mechanism.   

Under the traffic and particular plate load, the stiffer knitted geogrid and extruded geogrid provided 

the same improvement to the platform. This can be due to the fact, that the extruded geogrid is more 

mobilized under a localized load. Although, the results showed that the traffic load is more damaging 

to either the base course layer or the subgrade layer.  

In addition, a numerical model based on the differential element method using FLAC 3D was 

developed. The model simulated the circular plate load test with the same platform configuration 

under monotonic load. The results were compared to the first monotonic load applied on the rigid 

plate experimentally. The material parameters have been calibrated based on the laboratory 

characterization tests. The results showed that the model illustrates perfectly the platforms behaviour 

under the first loading. However, a parametric study shows that the interface reduction to an elastic 

perfectly plastic model in a continuous model does not simulate properly the geogrids apertures,  

aggregates interlocking mechanism and the geogrid lateral restrain behaviour.  

 

Keywords: unpaved roads, large-scale test, geosynthetic, geogrid, reinforcement, soft soil, 

subgrade, base course, cyclic plate load, traffic load, numerical model, differential element method.  
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Résumé 

Les géosynthétiques sont utilisés depuis les années 70 dans le renforcement des plateformes 

granulaires reposant sur des sols de faible portance ayant pour applications de routes non revêtues. 

Le retour d’expérience a validé l’efficacités de ces produits dans l’amélioration du compactage de la 

couche de forme, la capacité portante de la plateforme, la réduction de l’épaisseur de la couche de 

forme et l’augmentation de la durée de service de la plateforme.  

Les mécanismes développés dans ce renforcement de sol sont complexes. Dans la littérature, 

différents mécanismes ont été identifiés pour expliquer le transfert de charge : le confinement des 

agrégats par enchevêtrement des particules de sol dans la géogrille et par frottement entre le sol et 

le géosynthétique, par effet membrane du géosynthétique. Selon le type de géosynthétique, la 

fonction de séparation peut aussi être assurée entre la couche de forme et le sol de support. Ces 

différents mécanismes ont été mis en équations dans des méthodes analytiques de 

dimensionnement des géosynthétiques. La méthode la plus récente suppose que le mécanisme 

prépondérant du transfert de charge est dû au blocage du mouvement latéral des agrégats par 

enchevêtrement dans la géogrille. Cette méthode a été spécifiquement développée pour le 

dimensionnement de nouvelles géogrilles assurant ce rôle de confinement. La complexité des 

mécanismes développés et la diversité des produits de renforcement nécessitent encore d’étudier 

ces plateformes renforcer pour mieux appréhender leur comportement, développer des 

géosynthétiques adaptés et proposer des méthodes de dimensionnement.  

C’est avec ces objectifs qu’un essai de laboratoire permettant de tester des plateformes à échelle 

réelle a été développé. Une plateforme granulaire non revêtue reposant sur un sol de faible portance 

a été reproduite au laboratoire. Les deux épaisseurs de plateformes ont été testées (220 mm et 

350 mm) en respectant les règles de portance imposées dans les normes (CBR>12%). La 

plateforme repose sur une couche de 600 mm de sol peu porteur (CBR<3%). De nombreux 

mélanges de sable et d’argile ont été testés pour trouver la bonne composition du sol peu porteur. 

Un protocole de mise en place de ce sol a été élaboré pour assurer son homogénéité et la 

répétabilité des essais. Le géosynthétique et le matériau granulaire ont aussi fait l’objet d’un 

protocole de mise en œuvre adapté pour se rapprocher des conditions réelles de chantier. Des 

essais de contrôle de qualité ont été opérés avant chaque essai sur le sol peu porteur et la 

plateforme préparée pour vérifier leurs propriétés et s’assurer que le sol est homogène et toujours 

sous les mêmes conditions avant chaque essai. 

Après de nombreux essais de faisabilité, dix essais ont été effectués sous un chargement cyclique 

sur plaque circulaire, la plateforme testée a été placée dans un banc d’essai de 1,8 m de large, 

1,9 m de long et 1,1 m de haut. La charge maximum appliquée sur la plaque était de 40 kN donnant 

une contrainte à la surface de 560 kPa. La plateforme testée a été soumise à 10,000 cycles avec 

une fréquence de 0.77 Hz pour respecter les recommandations des normes du domaine. Une 

instrumentation spécifique a été développée pour ces essais pour collecter le maximum de mesures 
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utiles pour l’interprétation de transfert de charge et du comportement des géogrilles. Cette 

instrumentation a aussi permis de vérifier que les dimensions du banc d’essai étaient suffisantes 

pour éviter les effets de bords. 

Trois essais de répétabilité ont été effectués dans le but de vérifier le protocole de mise en place et 

la possibilité de reproduire le même sol avec les mêmes propriétés à chaque essai. Trois types de 

géogrille ont été testés : une géogrille extrudée avec des ouvertures triangulaires, deux géogrilles 

tricotées d’une rigidité de 1,000 kN/m et 2,500 kN/m à 2% de déformation.  En complément, un essai 

avec la géogrille tricotée d’une rigidité de 1,000 kN/m à 2% de déformation placée à mi- hauteur de 

la couche de forme a été effectué pour tester l’effet de la position du renforcement. 

Sur la base du même protocole de mise en œuvre, des essais de circulation avec un Simulateur 

Accélérateur de Traffic (SAT) ont été effectués. Pour ces essais la plateforme testée a été placée 

dans le banc d’essai allongé à 5 m. La plateforme de 220 mm d’épaisseur sur sol peu porteur a été 

soumise à deux types de sollicitations : un chargement cyclique sur plaque et un chargement de 

circulation. La plaque utilisée a été découpée pour avoir la forme de l’empreinte de la roue sur le 

sol. Dans les deux cas, la charge maximum appliquée par cycle est de 28 kN donnant une contrainte 

en surface de 680 kN. Le simulateur de circulation a été conçu et développé spécifiquement pour 

cette application avec notamment la possibilité d’un enfoncement important dans le sol sans perte 

de contact. Cette machine applique une contrainte de circulation sur une longueur effective de 

chargement de 2 m avec une vitesse de 4 km/h. Deux sections ont été instrumentées : la section 

sous la charge cyclique sur plaque et la section au milieu de la longueur circulée par le simulateur 

de circulation.  

 

A partir de ces quelques essais, plusieurs observations ont pu être faites sur le comportement des 

plateformes granulaires sur sol peu porteur. La présence d’un géosynthétique n’a pas permis 

d’améliorer la portance et de réduire le tassement des plateformes de 350 mm d’épaisseur soumises 

à des essais de chargement cyclique à la plaque de 300 mm de diamètre. Par contre, ils se sont 

avérés efficaces pour les plateformes de 220 mm d’épaisseur de couche de forme. En particulier, le 

renforcement par la plus rigide des géogrilles tricotées a permis d’obtenir la meilleure réduction du 

tassement en surface. Il ressort des essais que la géogrille extrudée améliore le plus le 

comportement de la plateforme sous faible déplacement au niveau des premiers cycles ; ceci peut 

être due à la forme géométrique et à la configuration de ce produit limitant le plus le déplacement 

horizontal des agrégats.  

Sous le chargement de Traffic et la charge cyclique avec la petite plaque, les deux produits testés 

(la géogrille extrudée et la géogrille tricotée la plus rigide) ont présenté le même facteur 

d’amélioration. Sous ce type de chargement plus concentré, la géogrille extrudée a été plus 

sollicitée, et ceci peut être due au mouvement latéral des agrégats important sous une charge plus 

localisée. Toutes les plateformes testées ont beaucoup plus tassé sous les sollicitations de 

circulations avec un orniérage différent de celui observé sous chargement sous plaque. Enfin 

l’utilisation de fibres optiques insérées dans les nappes géosynthétique a permis d’étudier les 

mécanismes de mise en tension différents selon le type de géosynthétique. 

D’autre part, un modèle numérique a été développé en se basant sur la méthode des éléments 

différentielles en utilisant le logiciel FLAC 3D®. La modélisation de l’essai de chargement par 

l’intermédiaire d’une plaque circulaire ayant la même configuration a été faite, mais sous uniquement 
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un chargement monotone croissant que représente le premier chargement appliqué 

expérimentalement sur la plateforme. La calibration des modèles de comportement des matériaux 

a été faite en se basant sur des essais de caractérisation expérimentale au laboratoire. Les résultats 

ont montré que le modèle illustre bien le comportement des plateformes renforcées et non 

renforcées lors de la première charge appliquée. D’autre part, une étude paramétrique a montré que 

la réduction du comportement de l’interface de la couche de forme et de la géogrille a une loi de 

comportement élastique parfaitement plastique n’illustre pas correctement l’interaction de ces deux 

matériaux. En effet, un modèle plus élaboré qui peut modéliser l’enchevêtrement des agrégats dans 

les ouvertures de la géogrille peut présenter une réponse plus proche de la réalité expérimentale.  

      

Mots clés : routes non revêtue, essai à grand échelle, géosynthétique, géogrille, sol de faible 

portance, sol support, couche de forme, charge cyclique sur plaque, charge de circulation, modèle 

numérique, méthode des différences finies.   
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General introduction 

 

Nowadays, a significant part of the economic development is directly related to the transportation 

and infrastructure network. In the USA trucks carry approximately 60% of total shipments by weight 

according to FHWA, 2006. In Brazil, roads haul approximately 61% of the freights with almost 90% 

of the total roads network length consisting of unpaved roads according to GEIPOT, 2008. With the 

roads network expansion, the unpaved roads construction on soft subgrade becomes often an issue 

due to excessive ruts development. The traditional soil replacement solution is not economically 

efficient, although other stabilization solutions were used such as the geosynthetic reinforcement. 

Mc-Gown in the UK and Leflaive in France firstly used geotextiles in this application thanks to 

pioneering work in the late 1960s (Giroud, 2009). Geotextile became extensively used during the 

1970s, first in Europe and then worldwide. The geogrids developed in the 1970s by Mercer, entered 

this application in the early 1980s.  

The mechanisms that govern the unpaved roads behaviour are complex: First because of the 

platform heterogeneity, indeed it consists of a cohesive loose subgrade that supports a granular 

layer, and second because of the road structure properties modification under the traffic cyclic load. 

The reinforcement addition makes the structure and the underlying mechanisms even more complex. 

Over the years, the sites experiments proved the geosynthetics efficiency in reducing the unpaved 

platforms surface rutting and increasing the platform serviceability. Thirty years of research in this 

field, provided a lot of knowledge and explanations. In literature, the developed mechanisms with 

reinforcements were well distinguished: the separation between the soft subgrade and the granular 

material, the base course lateral restrain and the tension membrane mechanism. Regarding the 

problem complexity and the various parameters that affect the platform behaviour, there are no clear 

ideas about the dominant mechanism and its relative contribution on the platform behaviour 

improvement. Moreover, various analytical and empirical design methods were developed based on 

different mechanisms. However, these methods have some particularities and limitations. Therefore, 

more investigations and studies are still needed to clarify the developed mechanisms and provide 

more knowledge in this field.  

The present research work was done in the context of the LabCom PITAGOR joining the laboratory 

GEOMAS of INSA de Lyon and the company AFITEXINOV, the Labcom PITAGOR was funded by 

the National agency of research in France (ANR Agence National de la recherche) for 3 years. This 

thesis was proposed with the aim of providing more knowledge and clarities about the developed 

mechanisms and their relative contribution in improving the platform behaviour. Thus, a large-scale 

laboratory experimental setup was designed, developed and tested. In fact, a cyclic plate load test 

was conducted, and a special attention was given to the platform layers preparation and installation 

protocol. The platform preparation repeatability was checked by comparing experimental results for 

identical performed tests. Furthermore, this cyclic plate load test was used to compare between the 
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different geogrids performance and to verify their benefits on the platform behaviour. In addition, this 

plate load test was a preparation for further performed traffic load tests using the developed 

apparatus the “Simulator Accelerator of Traffic” (SAT). In this research project, a numerical model 

was also proposed using the differential element methods under static load, and a comparison 

between the numerical and experimental results was done. This report is divided into five Chapters, 

detailed as follow: 

Chapter 1 presents a detailed literature review regarding the unpaved road geosynthetic 

reinforcement. In this Chapter, the performed laboratory small-scale and large-scale tests were 

presented and detailed, moreover in-situ tests and the tests performed using an Accelerated 

Pavement Tests Facility were detailed. The developed empirical and analytical methods and their 

limits were presented. Furthermore, the models developed to simulate this application were shown. 

A clear explanation of the work in relation to our research was discussed as well in this Chapter.  

Chapter 2 presents the developed test protocol, devices, used materials, instrumentations and 

quality control tests. In fact, a detailed presentation of the plate load and the Traffic load test 

performed were given. The Simulator Accelerator of Traffic (SAT) developed in this research in order 

to fit these application requirements was described. The used material for the subgrade soil, the 

base course layer and the three geogrids used in the tests were also presented. Moreover, the 

platform layers’ installation and compaction developed protocol was detailed. A special attention was 

given to this protocol in order to insure the platform preparation repeatability. Furthermore, a protocol 

for the quality control tests was established and detailed in this Chapter in order to control the 

platform homogeneity and properties before each performed test. Finally, the platform 

instrumentation under the plate load and traffic load tests was presented.  

Chapter 3 presents the plate load tests results performed in a box of 1.8 m in large, 1.9 m in length 

and 1.1 m in height. A plate with 300 mm of diameter was used to apply a load of 40 kN resulting in 

applied stress of 560 kPa. The cycles were performed under a frequency of 0.77 Hz. Each tested 

platform was subjected to 10,000 cycles. The quality control tests performed for each prepared 

platform results were presented. Different tests were performed under these loading conditions: 

three different geogrid types placed at the interface between the base course and the subgrade, two 

base course thicknesses, and one geogrid placed at the base course middle depth. Three 

repeatability tests were performed. The results were presented in terms of vertical stress distribution 

at the subgrade, base course settlement, subgrade settlement and the geogrid strain.  

Chapter 4 presents the tests performed in a larger box of 1.8 mm in large, 5 m in length and 1.1 m 

in height. The same prepared platform was subjected on a side to a plate load test under a particular 

plate shape similar to the wheel contact area, and on the other side to the circulation traffic load 

performed using the developed SAT machine. The SAT apparatus has a specific mechanical 

concept that allows the load application even after high rut development. In this test, the load applied 

on the wheel was equal to 28 kN resulting in a contact stress of 650 kPa. The circulation load was 

applied with a velocity of 4 km/h under an effective circulation length of 2 m. On the other hand, the 

particular plate load test was performed under the same load conditions of 28 kN maximum load, 

resulting in a contact stress of 650 kPa, and a loading frequency of 0.77 Hz. In order to compare the 
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solicitation effect, the circulation traffic load test results were compared to the particular plate load 

tests. Three different platforms were tested under these loading conditions.  

In Chapter 5, a continuous three-dimensional model based on the finite deferential method using 

FLAC 3D software was developed. This model simulated the plate load test performed 

experimentally in Chapter 3 with the same configuration. The simulation of the first monotonic load 

was performed and compared to the monotonic first load applied experimentally. The material 

parameters have been calibrated based on the laboratory characterization tests. Moreover, a 

parametric study was performed to identify the influence of the various parameters.  

 

Conclusions and Perspectives are drawing at the end of this report. 
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 State Of The Art 

 Introduction 

In the last few decades, geosynthetics (GSYs) were widely used in Civil engineering and especially 

in geotechnical field. In fact, GSYs can provide seven different functions as separation, drainage, 

filtration, protection, barrier, erosion protection and reinforcement. Due to their high mechanical 

properties, the GSYs are used for soil reinforcement in geotechnical constructions: retaining walls, 

pile supported embankments, unpaved roads and soft subgrade, etc…In some cases different GSY 

types can be assembled to provide several functions and this assembly is referred to geocomposites.  

The GSYs were used in the unpaved road application since 1970. According to the National Highway 

Institute (NHI), the application of GSYs for unpaved roads reinforcement is one of the more 

intensively used GSY field (NHI, 2008). For the first GSY applications, the geotextiles were used in 

unpaved roads reinforcement. After the development of the geogrids by Mercer in 1970, the geogrids 

integrated this application in 1980. Nowadays the geocells have been used in a relatively small 

number of cases in unpaved roads reinforcement.  

A statistic done in the beginning of 21st century regarding the use of GSYs in unpaved areas was 

reported by Giroud (2009):  

− 25% in real unpaved roads, 

− 50% in unpaved roads that will eventually become a paved roads, 

− 25% in unpaved areas.  

Along these years, the experience proved the efficiency of the reinforcement in increasing the load 

support capacity and the serviceability of the unpaved roads structures.  

Previous studies have highlighted the effect of the GSY-reinforcement. Indeed, Bloise and Ucciardo 

(2000) noted that the reinforcement presence facilitates the aggregate platform compaction. Floss 

and Gold (1994), Huntington and Ksaibati (2000) and Meyer and Elias (1999) reported that the GSY 

improves the platform bearing capacity. Bloise and Ucciardo (2000), Cancelli and Montanelli (1999), 

Huntington and Ksaibati (2000), Jenner and Paul (2000), Martin (1988) and Miura et al. (1990) 

concluded that the GSY allows the reduction of the granular platform thickness. 

Cancelli and Montanelli (1999), Knapton and Austin (1996) and Meyer and Elias (1999) reported the 

effect of the reinforcement on the rut development delay. 

More than 20 years of research in this field provided a lot of knowledge and scientific bases that we 

will be presented in this chapter. In fact, a general presentation of the application, the developed 

mechanisms and the influencing parameters are presented below. Moreover, the experimental tests 

and results, the empirical and analytical design methods and the numerical simulations developed 

in literature to characterize the GSYs effect on this application are also presented. Supported by this 

knowledge bases we will try to go further and add clarification to the mechanisms developed in this 

application.  
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 GSYs types and functions 

The GSYs have been widely used in Civil engineering to replace traditional materials, especially in 

environmental geotechnical field. 

The period between 1975 and 1990 was very important in innovation polymer inclusion for soil 

reinforcement. The advantages in reduction of materials cost and increasing in the service duration 

are proved either by the researches performed or by the experiences of the projects achieved. 

The synthetic polymers for GSYs production usually used in soil reinforcement are mainly: 

polypropylene (PP), Polyvinyl chloride (PVC), high-density polyethylene (HDPE), polyamide (PA) 

and polyester (PET).For special application, polyvinyl alcohol (PVA), aramids fibres (Aar) and 

expanded polystyrene (EPS) foam are also used. 

1.2.1. Geotextiles 

The geotextiles are permeable polymer textile products. There are three types of geotextile, the 

woven, the non-woven and the knitted geotextiles. 

The different polymer types, which are used in geotextile fabrication, are polypropylene (PP), 

polyamide (PA), polyester (PET), polyethylene (PE). 

1.2.2. GSY barrier 

Low-permeability geosynthetic material, used in geotechnical and civil engineering applications with 

the purpose of reducing or preventing the flow of fluid through the construction. 

• Geomembrane is defined by the French standard NF P84-500 as following: A manufactured 

product adopted in civil engineering, with a minimum width of 1.5 m, thin, flexible, continuous, 

fluid-tight at the end of the fabrication line, with an effective minimum thickness of 1 mm. The 

sealing factor of a membrane must be lower than 0.1 L/day/m3 on a hydraulic charge equal 

to 100 kPa (excluding the joints area). 

• Bituminous geomembrane: based on oxidized bitumen or modified bitumen by a polymer. 

• GSY Clay Liners: it is a geosynthetics and sodium bentonite clay combination, which forms 

an impermeable barrier.  

Every product has specific characteristics and behaviours that have to be taken into consideration 

when choosing the appropriate GSY. 

1.2.3. The apparent products 

The permeable products other than geotextiles are: 

• The geogrids used for soils reinforcement. 

• The geomats used as anti-erosion. 

• The geospacers used for drainage. 

• The geocells used for a thin soil layer confinement. 

• The geocontainers used as soil or other materials containers. 
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Figure 1.2-1: Some GSY products and applications (AFITEXINOV: http://www.afitex.com) 

 Unpaved roads  

The considered structure is composed of an unbounded aggregate layer supported by a soft 

subgrade layer and subjected to a traffic load. The traffic load is a cyclic load characterised by the 

magnitude of the axle load and the number of the axle passes. The road structure support this load 

under a certain service life. 

In general, the reinforcement by GSY is placed at the interface between the granular platform and 

the soft subgrade. As mentioned previously, the reinforcement increases the bearing capacity of the 

structure and increases its service life.  

The behaviour of this structure is complex due to the structural heterogeneity and the variation of 

the materials property under the cyclic traffic load. Moreover, the addition of the reinforcement 

complicates even more its behaviour. Especially because in this application the load is vertical and 

the reinforcement is horizontal.  

The contribution of the reinforcement in improving the structure behaviour depends on different 

mechanisms developed in the road structure: 

• The base course lateral restraint, 

• Tension membrane effect, 

• Separation. 

1.3.1. Lateral restraint of base course material 

By adding a tension stiffness at the bottom of the base course, the lateral movement of the aggregate 

under the wheels’ load is blocked. This mechanism reduces the shear stress on the subgrade top 

and increases the stiffness of the base course layer. Consequently, the vertical stress on the surface 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI027/these.pdf 
© [N. Khoueiry], [2020], INSA Lyon, tous droits réservés

http://www.afitex.com/


State Of The Art   8 | P a g e  

  

of the subgrade decreases. In fact, this is a two-layer system, and the stress distribution on the lower 

layer depends on the relative moduli contrast of the two layers. 

It is important to note that, the GSY adds the tension stiffness to the base course by two mechanisms: 

interface friction between GSY and aggregate when a geotextile is used, interlocking between GSY 

and aggregate and the friction between the geogrid strips and the aggregate when a geogrid is used 

(Giroud, 2009). Based on previous studies, the lateral restraint mechanism does not imply high 

rutting form (Collin et al., 1996; Perkins & Ismeik, 1997). 

As mentioned before, the restraint mechanism differs between geotextile-reinforcement and geogrid-

reinforcement. Palmeira and Antunes (2010) noted, based on large-scale laboratory tests, that the 

geogrid is more efficient than the geotextile in restraining the material lateral movement.  

In addition, Cuelho and Perkins (2009) proved, based on in-situ tests, that the geogrids provide a 

better overall performance than geotextiles. 

 
Figure 1.3-1: Lateral restraint mechanism- IGS (International GSYs Society) 

1.3.2. Tension membrane effect 

The tension developed in a curved GSY results in an upward force supporting the wheel load, so the 

pressure applied at the upper side of the reinforcement will be higher than the pressure applied on 

the lower side.  

In early studies on the GSY reinforcement mechanisms, the membrane effect was considered as 

the dominant mechanism. It was noted in literature that the tension membrane is predominant for 

small fill material thickness, low value of base course shear stiffness (Ghosh & Madhav, 1994), 

significant rut development and high GSY stiffness (Perkins & Ismeik, 1997).  

More recently, (Giroud & Han, 2004; Giroud, 2009; Qian et al., 2011 and Cook et al., 2016; 

Giroud, 2016) stated that the tension membrane mechanism is not the dominant mechanism, and 

highlighted the important contribution of the lateral restrain mechanism in improving the structure 

bearing capacity.  
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Figure 1.3-2: Tension membrane mechanism-IGS (International GSYs Society) 

1.3.3. Separation 

The separation between the soil layers is important to conserve the well-compacted base course 

layer properties. In fact, the separation prevents the loss of aggregates particles in the soft soil and 

the incorporation of the fine materials into the base course layer.  

Geotextiles are typically used to provide the separation function. However, Giroud (2009) mentioned 

that a geogrid with appropriate aperture size can also provide the separation function. 

 

 
Figure 1.3-3: Separation mechanism- IGS (International GSYs Society) 

As shown before, the mechanisms that take place in the reinforced structure are complex. In spite 

of the important researches in this field, there is still a lack of knowledge. In fact, the mechanisms 

are not perfectly clear and the dominance of the mechanisms is not well defined. In order to 

understand better the above-defined mechanisms, the parameters influencing the reinforcement 

behaviour are presented in section 1.4.  

 Reinforcement influencing parameters 
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In order to clarify the mechanisms developed and propose a design method for this structure, the 

influencing parameters should be defined. Based on experimental, analytical or numerical results, 

different influencing variables are identified: 

• the base course thickness, 

• the reinforcement position,  

• the GSY type and stiffness, 

• the geogrid aperture shape and dimension, 

• the geogrid aperture stability modulus. 

 

1.4.1. The base course thickness 

Many authors noted that the GSY impact is significant in the case of a base course thickness less 

than 0.4 m (Collin et al., 1996; Meyer and Elias, 1999). In contrast, Hufenus et al. (2006) based on 

an in situ test, concluded that the reinforcement reduces the rut development even for a base course 

thickness higher than 0.5 m. However, to prevent the GSY damage under the traffic load the GSY 

must be covered by a minimum 0.2 m of fill material (Meyer and Elias, 1999). 

1.4.2. The reinforcement position  

The GSYs are placed usually at the subgrade and base course interface. However, other locations 

of reinforcement can be considered. In literature, the authors stated that the optimum GSY position 

depends on the subgrade strength and the fill material thickness. With a soft subgrade and a thin 

base course thickness the optimum position is at the interface (Cancelli and Montanelli, 1999; 

Walters et al., 1999). However, the optimum position is between 0.25 - 0.35 m under the surface of 

the base course layer, in the case of a higher bearing capacity subgrade and a higher fill material 

thickness (Perkins et al., 1999). Akond (2012) noted, based on the results of laboratory cyclic plate 

load tests, that the optimum location of reinforcement for thick base course layer is at the upper one-

third position of the base course thickness. However, the author noted that for a thin base course 

layer placing the GSY at the interface is very effective.  

1.4.3. The GSY type and stiffness 

The lateral restrain mechanism can be insured by the friction at the interface when a geotextile is 

used and by the interlocking mechanism in the case of a geogrid.  Therefore, the effect of the GSY 

type is important. Moreover, the GSY manufacturing type (knitted woven geogrid, extruded 

geogrid…) changes the GSY performance and affects the mechanisms that take place at the 

interface. In the case of a geotextile, the stiffness of the product affects the performance of the 

reinforcement. The geogrid ribs stiffness is also an important factor that affects the reinforcement 

influence in the case of a geogrid. In fact, the effectiveness of reinforcement is increased by the use 

of a stiffer geogrid (Brown et al., 2007; Hufenus et al., 2006; Sun et al., 2015; Qian et al., 2013). 

However, Giroud (2009) stated that if the geogrid is too stiff it may disturb the aggregate structure 

during compaction.  
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1.4.4. The geogrid aperture shape and dimension 

The confinement is one of the mechanisms developed at the interface, and recently various studies 

have proved the important impact of this mechanism on the structure behaviour. The confinement 

mechanism, in the case of geogrids, depends on the interlocking between the geogrid apertures and 

the aggregate arrangements and the friction between the geogrid bands and the aggregate.  

Qian et al. (2011, 2013) performed laboratory plate load tests on unpaved roads and compared the 

effect of geogrid aperture shape. The authors showed that a triangular aperture shape performed 

better than a rectangular aperture shape. Dong et al. (2011), based on a numerical model, concluded 

that the triangular aperture geogrid has a better ability to distribute the load through 360 degrees. In 

contrast to the traditional biaxial geogrid, which has the tensile stiffness predominant in two 

directions. 

In addition to the aperture shape, the aperture size influences the interlocking mechanism.  

Szatmári (2016) stated, based on the results of a multi-level shear box tests, that the correct aperture 

size can improve the soil shear strength even 200 mm above the reinforcement level.  

McDowell et al. (2006) modelled the grid and the ballast using the Discrete Element Method; based 

on this theoretical and computational work, the authors stated that the ratio between grid aperture 

size and nominal size of the aggregate should be 1.4. Consequently, for 50 mm ballast, the best 

aperture size should be 70 mm. Brown et al. (2007) noted, based on a full-scale railway test facility, 

that for the 50 mm ballast (the maximum ballast diameter) the optimum aperture size is between 60-

80 mm. 

1.4.5. The geogrid aperture stability modulus 

More recently, an additional influencing parameter was introduced which is the aperture stability 

modulus. The geogrid torsion stiffness and the junction stiffness are combined in the aperture 

stability modulus property. Giroud & Han (2004) used this parameter in the developed design method 

to take into consideration the geogrid impact.  

The wide variation of these influencing parameters explains why this topic is still a research topic 

even after more than 20 years of studies.  

In fact, many authors proposed various empirical and analytical design methods to determine the fill 

material thickness by considering the reinforcement effect. These methods are limited due to their 

testing on limited range of the influencing parameters. Therefore, there are still an absence of an 

acceptable design technique that can cover the maximum number of situations.  

To overcome this issue and provide more knowledge regarding these impacting parameters, various 

authors have developed an experimental testing system on unpaved roads, and these tests are 

presented in the next section.  
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 Experimental testing on unpaved roads  

In this application, many parameters affect the role of reinforcement on their behaviour. In literature, 

numerous experimental studies were performed to characterise the reinforcement influence and the 

variation impact of each parameter. These testings’ can be classified in four different categories:   

• large-scale laboratory plate load tests,  

• large-scale in situ tests,  

• reduced scale laboratory cyclic traffic load tests,  

• large-scale laboratory cyclic traffic load tests. 

1.5.1. Large-scale laboratory plate load tests 

Two laboratory test approaches have been used in previous studies for the plate load test: the static 

loading plate load test and the cyclic loading plate load test. 

Dong et al. (2010) performed static laboratory plate load tests, and compared the ratio of bearing 

capacity of every test in order to study the influence of  variable factors: the aperture shape, the 

geogrid location and the number of geogrid layers. Based on the results of these tests the authors 

concluded that the geogrid placed at the depth of 2/3 of the plate diameter performed better than 

other positions. 

Akond (2012) conducted two series of laboratory tests: a monotonic plate load test and a repeated 

load triaxial test (RLT) (Figure 1.5-2). A monotonic load plate was applied on the aggregate base 

course surface placed over the subgrade in a box of 1.5 m in length, 0.91 m in width and 0.91 m in 

height. ASTM test procedure (ASTM D1196-93) came after in this study. The subgrade soil consists 

of a silty clay soil. The Kentucky limestone was used for the granular base course layer with variable 

thickness of 200 mm, 300 mm and 450 mm. The installation and compaction procedures are detailed 

in the report, and in situ tests were performed in order to control the compaction quality (The nuclear 

density gauge, the geogauge stiffness device, the dynamic cone penetrometer, and the light falling 

weight deflectometer). Several types of geosynthetics were used in this research: biaxial geogrids, 

triaxial geogrids and geotextiles. A total of 47 tests were performed during this thesis, with different 

geosynthetic types, different geosynthetic locations in base course and different base course and 

subgrade thicknesses (first case 600 mm of subgrade and 300 mm of aggregate, second case: 457 

mm of subgrade and 457 mm of aggregate, third case: 711 mm of subgrade and 203 mm of 

aggregate). The subgrade was instrumented with earth pressure cells; more over the geosynthetics 

were instrumented with strain gauges.  
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(a)  

(b) 

Figure 1.5-1: (a) Earth pressure distribution, (b) Vertical stress distribution on the subgrade layer along the centre line of 

the plate at 1724 kPa applied plate pressure for a 300 mm of base course thickness. (Akond, 2012) 

Based on the results in Figure 1.5-1, the authors mentioned above discussed the effect of the 

reinforcement on the stress distribution angle. However, it should be pointed out that when an earth 

pressure cell is used in soft subgrade there is an uncertainty caused by the sensor settlement, its 

rotation and the possible arching effect around the sensor. Nevertheless, this fact was not taken into 

account by the authors. Moreover, the earth pressure cell placed at the borders of the box shows a 

non-negligible vertical pressure that can demonstrate the box’s boundary condition effects.  

The authors noted as well that the optimum location of reinforcement is located at the upper one-

third position of thick base course. However, for a thin base course layer such as 20.32 mm of thick 

crushed limestone base, placing geosynthetic reinforcement at the interface is very effective. It is 

worth noting that not only the base course thickness was changing but also the thickness of the 

subgrade layer and this can affect the results.  

 
Figure 1.5-2: Plate load test setup. (Akond, 2012) 

Demir et al. (2013) performed large-scale field monotonic plate load tests with different plate 

diameters (0.3, 0.45, 0.6 and 0.9 m). The tests were performed in field test pit with 2.8 m in width, 

2.8 m in length and 2 m in depth. Sixteen field tests were respectively performed on unreinforced 

clay soil, granular fill reinforced clay soil and geogrid reinforced granular fill over clay soil. In-situ 

static penetrometer and pressuremeter tests were performed to characterise the in-situ clay. 
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Moreover, in-situ unconfined compression tests were performed to determine the undrained shear 

strengths CU. A white coloured, secugrid Q type geogrid with maximum tensile strength of 60 kN/m 

was used. No instrumentation was included in the platforms. The testing procedure was performed 

according to the ASTM D 1196-93 standard. The authors concluded that when the clay is placed 

with a compacted layer of fill material the bearing capacity increases by 40%. Furthermore, they 

observed no effect adding a geogrid at the base course and subgrade interface. However, they 

observed an additional improvement adding a second geogrid layer with the same type and 

properties in the base course.  

Another static plate load test was performed by Abu-Farsakh et al. (2016) aiming to evaluate the 

effect of the GSY type, the GSY location, the number of GSY layers, and the tensile modulus. The 

tests were conducted at the geotechnical engineering research laboratory of Louisiana 

Transportation Research Centre (LTRC). The model tests were placed inside a steel box with the 

dimensions of 1.5 m in length, 0.91 m in width and 0.91 m in height. The used subgrade was a silty 

clay classified as a CL soil according to the USCS with a target CBR of 1%. Crushed limestone was 

used for the base course layer. Two types of geogrids were tested: the extruded biaxial and triaxial 

aperture shape geogrids with different stiffness. The tests were performed regarding the ASTM 

D1196-93 standard using a plate of 190 mm diameter. The platform preparation and preparation 

protocol were detailed in the journal paper. The soil layers properties were controlled using a nuclear 

density gauge, a Light Falling Weight Deflectometer (LFWD) and a dynamic cone penetrometer 

(DCP). Earth pressure cells were placed at the surface of the subgrade and strain gauges were fixed 

on the geosynthetics. Abu-Farsakh et al. (2016) performed 22 different tests. Based on their 

comparison of the bearing capacity ratio between these tests, they concluded that the double 

reinforcement location with the same type and same stiffness contributes to a platform improvement 

and that the upper one-third location of a single layer reinforcement yields the highest improvement 

under static loading conditions.  

 

(a) 

 

(b) 

Figure 1.5-3: (a) Equipment used in the tests, (b) Plate settlement versus number of load repetitions-1st loading stage. 

(Palmeira & Antunes, 2010) 

A comparison between monotonic plate and cyclic plate loading was performed by 

Palmeira & Antunes (2010). The used equipment and instrumentation are illustrated in Figure 

1.5-3(a). The platform was placed in a box of 1.2 m in height, 1.6 m in width and 1.6 m in length. The 

load of 40 kN was applied on a plate of 300 mm diameter. The subgrade is a fine tropic soil with a 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI027/these.pdf 
© [N. Khoueiry], [2020], INSA Lyon, tous droits réservés



State Of The Art   15 | P a g e  

  

CBR of 8%. A fill material layer with a thickness of 200 mm was placed on the subgrade layer. A 

knitted biaxial geogrid and a woven geotextile were tested. The compaction and installation protocol 

was detailed, but the properties control tests are not mentioned. The instrumentation of the tests 

consists of: displacement transducers (LVDTs) in order to measure vertical displacements of the 

loading plate and the fill surface. A load cell attached to the jack measures the loads applied on the 

fill surface. Earth pressure cells set at different positions in the subgrade layer allow total vertical 

stress. Vertical strain measurement sensors were also placed at different depths in the subgrade 

soil.  The comparison between the monotonic and cyclic plate load results showed that the tests 

under monotonic loading conditions underestimate the reinforcement benefits. Palmeira & Antunes 

(2010) compared the effect of the two GSY under cyclic plate load test under 566 kPa and 1 Hz 

frequency. 

 

Figure 1.5-3(b) illustrates the developed rut at the surface with cycles. The performed cycles are 

over 10,000 cycles. The results show that 25 mm of rut was reached after 30,720 cycles for the 

reinforced platform and 5,000 cycles for the unreinforced platform. It is worth pointing out that the 

subgrade used in this application is fine-grained tropical soil and that its California Bearing Ratio is 

8%, which is higher than 3% (the limit under which a geosynthetic reinforcement is recommended 

according to the FHWA (2008) Standard). Moreover, the installation procedure and the control of the 

soil layer properties are not detailed in the journal paper. The authors concluded that the geogrid 

provides a better overall performance than geotextile in this application due to the interlocking effect. 

This study addressed the performance of these reinforced platforms after the maintenance of the 

surface. 

The large geotechnical test box (2 x 2.2 x 2 m) at the University of Kansas was used to perform 

various cyclic plate load tests at a frequency of 0.77 Hz. 

Qian et al. (2011) used this apparatus to perform cyclic plate load tests and to investigate the 

efficiency of the triaxial geogrids with triangular aperture shape. The weak subgrade was an artificial 

soil composed of a mixture of 75 % Kansas River sand and 25 % of kaolinite by weight with a target 

CBR of 2%. Well graded aggregate was used for the fill material layer with 300 mm of thickness. 

The dynamic cone penetrometer test was used to control the layer properties and a correlation 

between CBR was made. The platform was instrumented with earth pressure cells at the subgrade 

surface and displacement transducers (LVDTs) at the base course surface. The setup of the cyclic 

plate load test is illustrated in Figure 1.5-4. The maximum applied load is 40 kN which is the half of 

a truck axle load regarding the AASHTO (1993) Standard. The base course thickness was settled 

on 300 mm. The cycles load were applied until the maximum allowed rut was reached, which is equal 

to 75 mm in this study according to the FHWA (2008) Standard. An unreinforced platform and three 

reinforced platform using three Triangular-Aperture Geogrids were tested. The three Triangular-

Aperture Geogrids differ with their radial stiffness and aperture stability. 

The maximum applied cycles were of 1600 cycles for the performing geogrid reinforcement (Figure 

1.5-5). As for the unreinforced case, 100 cycles were enough to reach the allowable rut of 75 mm 

(Figure 1.5-5). It is worth noting that these structures are designed to be subjected to 10,000 cycles 

of heavy trucks load according to the FHWA (2008) Standard, and that 1600 cycles is a very small 

number regarding the maximum cycles that the structure should support. This experimental study 
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showed that the triangular aperture geogrid improves the performance of the structure, reduces the 

maximum vertical stress at the subgrade centre surface, and decreases the fill material deterioration 

with the cycles. 

 
Figure 1.5-4: Setup of the cyclic plate load test. (Qian et al., 2011) 

 
Figure 1.5-5: Permanent deformations of loading plate versus the number of cycles. (Qian et al., 2011) 

Qian et al. (2013) used the same device and the same protocol to compare the effect of base course 

thickness. Three different thicknesses were tested (150 mm, 230 mm and 300 mm). However, as 

seen before the maximum performed cycles were of 1600 cycles for the reinforced 300 mm base 

course. The experimental results showed the effect of the reinforcement on the reduction of the 

maximum vertical stress on the subgrade surface for the three different base course thicknesses. 

Moreover, the authors concluded that the more robust and thicker the GSY is the more important 

the benefit in the platform behaviour improvement. In addition, the authors highlighted the effect of 

the confinement mechanism in improving the reinforced base course behaviour, and pointed out that 

the tension membrane effect was recognised when the permanent surface deformation was higher 

than 33% of the base course thicknesses. A similar cyclic plate load test is performed in this study 

on different GSY types and different fill material properties and thicknesses. 
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Sun et al. (2015) performed the same test procedure, in order to investigate the effect of load 

amplitude on the unpaved road response. The same materials and control protocols were used. The 

authors added earth pressure cells in the vertical plane in order to measure the radial stress 

propagation. In this test, with every 100 cycles, the load intensity increased by 5 kN from 5 kN to 50 

kN. Three base course thicknesses were tested (150 mm. 230 mm and 300 mm). Extruded triaxial 

aperture geogrid with two different stiffness were tested. The test stopped when 75 mm of permanent 

surface deformation was reached. 1,000 cycles were the maximum performed cycles number, in the 

case of the reinforced 300 mm base course thickness. Based on the results the authors highlighted 

the effect of the geosynthetic in reducing the vertical stress on the subgrade, and related this 

improvement to the confinement mechanism that increased the radial stress in the reinforcement 

platforms. 

More recently, Satyal et al. (2018) used this device to test the performance of geocells in improving 

the railways on soft subgrade. In fact, the soft soil part remained the same, and this time it was 

covered by 300 mm of ballast layer reinforced by geocells. The platform was subjected to 

6,000 cycles, and the load amplitude increased by 10 kN every 1,000 cycles, starting from 10 kN 

and reaching 60 kN. The results showed that the geocell reinforcement decrease the surface 

settlement, and the applied vertical stress on the subgrade surface in the railways platforms. 

 
Figure 1.5-6: Schematic of large-scale model experiment (LSME). (Kim et al., 2006). 

Kim et al. (2006) conducted cyclic plate load tests on a reinforced and unreinforced platform (Figure 

1.5-6). The authors replaced the soft subgrade with an expanded polystyrene foam. Two granular 

materials were used in this study: the WisDOT (Wisconsin Department Of Transportation) grade 2, 

and the breaker run stone. Two base course thicknesses were studied: 300 mm and 460 mm. Four 

different GSY types were tested: biaxial polypropylene geogrid, polypropylene slit-punched 

geotextile, polypropylene woven needle-punched geotextile, and  drainage geocomposite. No quality 

control tests were mentioned in the article. Moreover, the platform was not instrumented so the 

results were based on the surface rut development only. The 35 kN load was applied on the plate 

load 250 mm of diameter. An applied load pulse consisted on a load period of 0.1 s followed by a 

rest period of 0.9 s. Based on the results, the authors observed a linear relation between the 
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equivalent base course thickness and the GSY-Base course interaction modulus, obtained from a 

pull-out test. 

 
Figure 1.5-7: Schematic diagram of the pavement test facility. (Christopher & Perkins, 2008). 

Christopher & Perkins (2008) performed a cyclic plate load test regarding the AASHTO 4E-SR 

method to evaluate the GSY drainage function in this application (Figure 1.5-7). The subgrade used 

in this study is a piedmont silt from Georgia with a CBR of 1%. A graded aggregate was used for the 

base course layer with a thickness of 300 mm. Two geosynthetics were used in this study: a welded 

polypropylene biaxial geogrid and a geogrid/geotextile geocomposite. The CBR was controlled 

during the placement, by using moisture content and hand held Pilcon vane shear strength.   

On one hand the platform was instrumented using displacement transducers (LVDT’s), calibrated 

load cell, pore pressure sensors and wire extensometers on the geosynthetics, on the other hand 

measurements were made on geosynthetics at the front of the box to control their movement on the 

edge of the box. A 40 kN initial load was applied to a 300 mm diameter plate. The cycles were 

applied with a load pulse frequency of 0.67 Hz. The authors concluded that the non-woven geotextile 

due to its drainage capacity could reduce the pore pressure in the subgrade. Moreover, they stated 

that the rutting is highly related to the pore pressure development in the subgrade.  

Sarici et al., (2016) performed a large-scale laboratory cyclic plate load test (Figure 1.5-8). The base 

course thickness varied between 300 mm, 400 mm and 450 mm. The platform was placed in a box 

of 2 m in length, 2 m in width and 2 m in height. The weak subgrade was installed in order to get a 

CBR of 4%. No quality control tests were executed. The geogrid used in this study is an extruded 

triaxial geogrid. 40 kN of load was applied on the base course surface on a plate load of 300 mm 

diameter. The frequency of the cyclic load pulse was 0.77 Hz. The platform was not instrumented 

and the results were based on the plate displacement with cycles. The geogrid position depth was 

changed from 0.33D, 0.67D to 1D with 450 mm base course thickness, where D is the plate load 

diameter. The authors showed that the geogrid placed at 0.33D depth was more efficient than the 

other positions.  
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Figure 1.5-8: Schematic sketch and photograph of the large-scale cyclic plate loading test setup. (Sarici et al., 2016). 

Gabr (2001) performed a cyclic plate load test. The platform is placed in a box of 1.5 m in length, 

1.5 m in width and 1.35 m in height. The subgrade soil is a mixture of 85% Lillington sand and 15% 

kaolinite with a target CBR of 3%. The aggregate base course used in this testing is classified as  

GW according to the USCS. Two base course thicknesses were tested: 152 mm and 24 mm. Nuclear 

density/moisture gage were used to control the soil layer compaction procedures. Earth pressure 

cells were placed at the subgrade surface and LVDTs were used to determine the surface 

displacement. Different extruded biaxial geogrid were tested in this study. Forty kN were applied on 

a 300 mm diameter plate with load pulse frequency of 0.67 Hz. Based on the results of this study 

two analytical methods were developed to design the reinforced unpaved roads (Giroud & Han, 2004 

and Leng & Gabr, 2006). However, these analytical methods were calibrated for the specific GSYs 

types used in Gabr (2001) testing.  

As seen in this literature revue on the plate load tests various tests with different configurations were 

performed. The comparison between the monotonic plate load test and the cyclic plate load tests in 

literature showed that the monotonic load underestimates the effect of GSYs 

(Palmeira & Antunes, 2010b). Moreover, the performed tests showed the evolution of vertical stress 

on the subgrade surface with cycles due to base course deterioration, and it showed the influence 

of the reinforcement on this mechanism developed with cycles. However, in many studies the 

maximum displacement criteria was reached after a relatively small number of cycles even with 

reinforcement, in comparison with the 10,000 cycles proposed for the design of these structures. 

Furthermore, the installation procedures and the control of the soil layer properties are rarely 

considered in the above presented works. In general, and according to the above presented work, 

the tested GSYs had the same manufacturing types.  

However, these tests aimed to simulate circulation traffic on unpaved roads by cyclic load on a plate. 

In literature, authors proposed in situ tests to simulate better the real applied load. Some of these 

studies are summarized in the following section.  
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1.5.2. Large-scale in situ tests 

In the previous laboratory testing the loading conditions do not simulate perfectly the real trafficking 

conditions on site, many research projects aim to develop an in-situ testing protocol with real traffic 

load.  

Maxwell et al. (2005) performed full-scale in-situ tests on different sections of a platform with different 

reinforcement types. Three types of geosynthetics were used: woven geotextile, knitted biaxial 

geogrid, and punched sheet drawn geogrid. The geosynthetics were equipped with strain gages to 

monitor the geosynthetics strain. A falling weight reflectometer test (FWD) was performed on the 

different reinforced and unreinforced sections.  

Hufenus et al. (2006) proposed full-scale field tests in order to evaluate the effect of the GSY 

reinforcement on the bearing capacity of an unpaved road supported by a soft subgrade. The soft 

soil is consisted of a relatively homogeneous clayey silt existing on the site field. The testing area 

was divided into 12 sections of 8 m in length and 5 m in width each; in which different types of GSYs 

were placed. Seven different GSYs were used, with different types of manufacturing processes. 

Each platform was tested under a state plate load test and the young modulus Ev1 and Ev2 were 

calculated. The platforms were trafficked with a loaded and unloaded truck. Based on the results the 

authors concluded that the effect of the reinforcement is significant regarding the bearing capacity 

of a thin base course layer (h < 0.5 m). Moreover, they noted that the reinforcement has reduced the 

rut development as well as the number of trafficking before reaching the allowable rut depth even for 

a thicker base course layer h>0.5 m. In this study, the soil installation and the soil compaction were 

controlled.  

Cuelho & Perkins (2009) proposed as well a full-scale test on site (Figure 1.5-9). The tested pit was 

4 m in width, 195 m in length and 1 m in depth, in which 12 different sections were tested with 10 

different GSY types. The subgrade is consisted of artificial soil, which is the site soil, treated and 

compacted in order to have a small strength. The traffic load was applied using a three-axle truck. 

The trafficking was applied until it reached 100 mm of rut in each section. A total 40 truck passes 

were applied. The results of this test permitted the comparison between different GSY types and 

manufacturing processes. The authors provided a correlation between the materials properties and 

the rut development, and proved that the stiffness of the GSY was the most important material 

property that dominates the behaviour of the GSY under relatively high rut development. Moreover, 

they compared the experimental results to the Giroud & Han (2004) analytical design method and 

they concluded that this method underestimates the base course thickness. Cuelho et al. (2014) 

performed an additional work on the same experimental field and with the same soil materials and 

installation protocol. Three control sections with different base course thicknesses, three sections 

with the same reinforcement but different subgrade strength and eleven more sections with the same 

base course thickness and subgrade strength but different GSY types. The trafficking was applied 

with the same truck as the one in the previous experimental test, but this time 700 truck passes were 

applied. Based on the results, the authors established a correlation between the GSY junction 

strength, the GSY stiffness, the ultimate strength and the cyclic stiffness in the cross-machine 

direction with the rut development. 
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(a) 

 

(b) 

Figure 1.5-9: (a) Delivery and distribution of the artificial subgrade in the test pit, (b) Installation of geosynthetics. (Cuelho 

& Perkins, 2009) 

Cuelho & Perkins (2017) performed in-situ test in the same pit with the same configuration. The 

authors changed the base course thickness for the controlled area from 270 mm to 410 mm and to 

630 mm. Moreover, they changed the subgrade strength for a given section with a given 

reinforcement from 1.79% in CBR to 2.17% and 1.64%. The results show the effect of the 

reinforcement on the platform performance improvement, and they show a relation between the 

reinforcement junction stiffness and the performance indicator. The authors used the experimental 

results to calibrate the analytical method given by Giroud & Han (2004). They proposed as well a 

new analytical solution to enhance the factor that depend on the geosynthetics properties based on 

the junction stiffness.  

Mekkawy et al. (2011) conducted an in-situ testing; 310 m of section with different reinforcements 

were prepared (Figure 1.5-11). The in-situ soft subgrade was characterised and classified as SC 

(A - 4). A crushed limestone was used for the base course layer. Three biaxial geogrid types were 

used to stabilize the platforms. The authors performed a dynamic cone penetrometer test and 

showed the effect of the reinforcement on the CBR of the granular layer. The sections were 

continuously monitored using in situ for a period of about one year. After one month from 

construction, an edge rut of about 127 mm was measured at the control section. The reinforced 

sections showed no rutting. It is worth noting that in this full-scale test, the load magnitude and the 

number of cycles were not controlled. Moreover, the sections were not instrumented; the results are 

based on surface rut development.  

On one hand, Mekkawy et al. (2011) performed a laboratory plate load test in a box of 600 mm in 

width, 600 mm in length and 450 mm in depth. On the other hand, the load was applied on the 

surface using a plate of 150 mm diameter. The authors compared the effect of the anchored and 

unanchored reinforcement, and showed that effect of the anchored geogrid is more important than 

the effect of the unanchored geogrid. However, this experiment was performed in a reduced 

dimension box.  
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(b) 

Figure 1.5-10: (a) Prepared testing sections, (b) 76 mm rut developed with few truck passes. (Mekkawy et al., 2011) 

 

Figure 1.5-11: Schematic diagram of the test section, (a) plan view, (b) cross section. (Mekkawy et al., 2011) 

These tests that have been performed in in-situ full-scale conditions simulate very closely the real 

conditions. However, the maximum truck axle passes were limited between 200 and 700 passes, 

which is a limitation, because as it is known based on the FHWA standard (2008), these structures 

should be designed to support 10,000 passes. Moreover, it is hard to control the soil conditions and 

the repeatability of the test in an outdoor environment. It is important to note that the platform 

installation procedure requires an important amount of time.  

1.5.3. Reduced-scale laboratory cyclic Traffic load 

tests 

In order to facilitate the platform installation procedure the scale reduction is a solution. 

Tang et al. (2008) proposed a laboratory test with a 1/3 scaling using the one-third scale model 

mobile load simulator (MMLS3). This test was performed on paved roads. Where the traffic speed 

was set to 7200 axles per hour; with a nominal speed of 9.4 km/h. The MMLS3 illustrated in Figure 

1.5-12 applied a wheel load of 2.7 kN. The subgrade material was silty sand SW-SM, with 6.2% of 

fine particles. Two different subgrade CBRs were used in this test, a CBR of 3% and a CBR of 1.5%. 

Dense-graded Crushed stone is used for the pavement base course layer. The pavement subgrade 

soil was compacted in three layers with a vibratory plate compactor. Four different geogrid types 
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were used in this study: two biaxial geogrids with high tenacity polyester multifilament yarns coated, 

one biaxial grid made of woven polypropylene yarns, and one biaxial extruded polypropylene 

geogrid. 

The end of the geogrid sections are folded against the pit walls to obtain necessary anchorage and 

slight pre-tensioning, in order to prevent the shifting of the geogrids out of their position. 

 
Figure 1.5-12: Schematic illustration of the One-third scale MMLS3. (Tang et al., 2008) 

However, the structural thickness of the pavement is accordingly reduced; the gradation of the 

pavement materials is not scaled because it is not possible to scale the geogrid. Thus, the 

experimental results may be limited to the purpose of comparison among different geogrids.  

Tang et al. (2016) performed more tests using the same machine.  The authors proposed a simplified 

finite element (FE) analysis to predict the mechanistic pavement response that is needed as input to 

the mechanistic-empirical (ME) performance model of subgrade permanent deformation. The 

authors compared the experimental results to the results of the mechanistic empirical model 

developed and the ME model was calibrated using the results of this reduced scale test. The results 

showed that the developed model underestimates the permanent developed deformation. 

Nonetheless, it is worth pointing out that the model was based on a reduced scale physical model 

were the geogrid and the pavement materials gradation were not scaled. 

Kareem et al. (2012) proposed a scaled laboratory test to compare the reinforced and unreinforced 

subbase over soft subgrade. The platform soil layers were placed in a box of 0.75 m in length, 0.5 m 

in width and 0.5 m in height. The base of the box is performed with holes in order to facilitate the 

saturated subgrade drainage. The soft subgrade material was white Kaolin Clay brought from Duitla, 

west of Baghdad. A Moisture-Density relationship was performed to characterise the subgrade. The 

kaolin was mixed with water by hands at moisture content equal to 37%. A weight of 375 kg, 

equivalent to a pressure of 10 kPa is applied and left for 4 days on the surface of the subgrade, so 

it to reaches an undrained shear strength of about 15 kPa. Two base course thicknesses were tested: 

100 mm and 125 mm. Two geogrids with two different aperture sizes were compared in this study. 

The geogrid layer is placed on the surface of the subgrade and folded in 90° against the long side 

of the steel container, in order to insure the anchorage and slight pre-tensioning. For the loading 

procedure, a new rubber tire is manufactured with 250 mm diameter and 100 mm in width. A total 
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load of 1.74 kN was applied which produces a contact pressure of 550 kPa. The load was applied 

with a speed equal to 3 km/h. The application of the load continues until 75 mm rut development. 

The comparison between the different tests is used on the comparison of the surface rut 

development with cycles. As mentioned previously the scaled laboratory tests can be used only for 

comparison since the geosynthetics cannot be scaled.  

Based on the results, the authors showed the effect of the reinforcement on the rut development 

reduction. Moreover, the results showed that the efficiency of the reinforcement decreases with the 

increase of the base course thickness.   

 

Figure 1.5-13: Test setup. (Farhan et al., 2012) 

1.5.4. Large-scale laboratory cyclic Traffic load tests 

As mentioned before the restrictions of a large-scale test are in fact the load application, and the 

large number of cycles. Over the years, the full-scale Accelerated Pavement Testing (f-sAPT) 

facilities were used in transportation researches to apply the traffic circulation load on the tested 

platforms.  

To avoid the inconvenient of the full-scale test on site, three f-sAPT facilities were used in literature 

to test the unpaved roads:  

• U.K. Transport Research Laboratory (TRL) pavement test facility,  

• U.S Army Corps Engineers (EDRC) waterways experimental station (WES),  

• Accelerated Pavement Testing (APT) facility at Kansas State University, 

• Accelerated Load Facility (ALF) of the Federal Highway Administration located in Mclean, 

Virginia.  

The TRL is a fixed facility located in a big hangar in Crowthorne, United Kingdom. The facility 

simulates a linear unidirectional or bidirectional one-axle dual-tire traffic load. The applied load range 

varies between 46 and 200 kN depending on the tested platform type.  The maximum speed range 

is 20 km/h. The tested platforms were placed in a 10 m width, 25 m long and 3 m depth pit.  

Watts et al. (2004) and Cook et al. (2016) used this facility to characterise the effect of the 

reinforcement on unpaved roads.  
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Cook et al. (2016) presented the results of 8 tests carried by the TRL f-sAPT facility since 2000 

(Figure 1.5-14). The platform tested in each of the 8 tests was divided into sections and panels with 

different reinforcement types. The subgrade layer was a natural grey silty London Clay. The 

subgrade strength was controlled by a correlation between the cone index and the CBR. The target 

subgrade CBR was 2% CBR. A crushed granite was used for the base course layer conforming to 

the requirements of 800 series of the specification for Highway Works (SHW).The base course 

thickness is about 300 mm.  Prior to trafficking the platform stiffness was controlled by a Falling 

Weight Deflectometer (FWD) test. The platform was not instrumented; the results are limited to the 

surface rut development with cycles. The geosynthetics tested in this study are: geogrids made by 

punching and stretching a polymer sheet, a geogrids made by extrusion and stretching, welded 

geogrids, woven geogrids, woven geotextiles, geocomposites.  

A bi-directional traffic was applied on the panels, using a duel-tire with a speed of 15 km/h and an 

applied load of 40 kN resulting in a contact pressure of 700 kPa. Based on the results, the authors 

highlighted the important contribution of the confinement mechanism in the behaviour of the 

reinforced platform.  

 
Figure 1.5-14: View of PTF carriage fitted with dual wheel assembly. (Cook et al., 2016) 

Watts et al. (2004) performed tests following the same protocol but with different GSY types (Figure 

1.5-15). The testing pit had those dimensions 10 m in width, 25 m in length and 3 m in depth. The 

subgrade used in this testing is a local grey silty London Clay with a very high plasticity, and a CBR 

of 2%. A static penetrometer was used to control the clay installation and compaction protocol. A 

correlation between the cone index (CI) and the subgrade CBR was proposed. The sub-base 

material consisted of a crushed granite aggregate with a thickness of 320 mm for the first section 

and 300 mm for the second trial. The pit was divided into 12 different sections with one unreinforced 

reference section and different types of geosynthetics (woven geotextile, welded bonded grid, woven 

grid, extruded internal grid, punched and stretched integral grid). The stiffness of the pavement was 

assessed using a Falling Weight Deflectometer (FWD).  

The platform was not instrumented, only the surface rutting was used to compare the results. 

Which show that the reinforcement improves the road serviceability. 

The authors compared the experimental results to the Giroud and Noiray (1981) design method, and 

concluded that the calculated base course thickness was overly conservative in some cases.  
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Figure 1.5-15: TRL pavement testing facility. (Watts et al., 2004) 

The U.S. Army Corps of Engineers facility is a mobile machine, that applies a unidirectional or 

bidirectional linear load using a single or double axle. The load range varies between 10 and 440 kN, 

and the tire used can be super single tires, single axle or dual axle truck tire, and even an aircraft 

single tire.  The speed range varies between 1 and 12 km/h.  

This facility was used to characterise the effect of GSY reinforcement by Jersey et al. (2012), 

Norwood & Tingle (2014) and Robinson et al. (2017). These research programs were constructed at 

the Hangar No.4 pavement facility at ERDC ‘s Vicksburg, MS location. The platforms were placed in 

a pit of 9 m wide, 15 m long and 1 m deep. The pit was divided into 5 different test sections with 

different GSY types. The trafficking was applied using a dual-wheel single axle loaded to a nominal 

load of 40 kN.  It is important to note that these applications were not for an unpaved road, they were 

for a flexible paved road on loose subgrade with a thin layer of asphalt, which reduces the developed 

rut at the surface. However, the authors highlighted the benefit of a specific manufacturing 

reinforcement product. It is worth pointing out that all these tests performed using the U.S. Army 

Corps of Engineers facility were executed on paved roads, which reduces the surface rut  

development and changes the mechanisms developed.  

Jersey et al. (2012), performed large scale test on paved roads with geosynthetics placed at the 

interface between the subgrade and the base course (Figure 1.5-16). The subgrade used in this test 

is a local high-plasticity clay with a CBR of 3%. The aggregate base course was made of crushed 

limestone with a thickness of 200 mm. Dynamic cone penetrometer (DCP) tests were conducted to 

control the layers properties, and the results were correlated to the CBR. Moreover, falling weight 

deflectometer tests were performed on each test. The platform was not instrumented, and the results 

were explored in terms of surface rut development.  
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Figure 1.5-16: Profile of test section. (Jersey et al., 2012), 

In the Robinson et al. (2017) study 150 mm of a crushed limestone were used as a base course 

layer (Figure 1.5-17). A locally sourced high-plasticity clay was used to construct the subgrade layer. 

A subgrade target CBR of 6% was fixed. The geogrids evaluated in this study are multi-axial geogrid 

products manufactured from a punched and drawn polypropylene sheet.  

The platform was instrumented with the following sensors: earth pressure cells, single-depth 

deflectometers, asphalt strain gauges, moisture sensors, pore pressure and temperature sensors 

(Figure 1.5-18). A dynamic cone penetrometer was used to control the soil layers properties. 

Moreover, Falling Weight Deflectometer tests were performed on the surface of both test items after 

construction and prior to trafficking.  

 
Figure 1.5-17: Dual-wheel tandem axle configuration. (Robinson et al., 2017) 
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Figure 1.5-18: Profile view of instrumentation layout. (Robinson et al., 2017) 

The Accelerated Pavement Testing (APT) facility at Kansas State University is an indoor fixed facility 

that applies a linear bi-directional traffic load using single or dual axles. The range of the applied 

load is between 5 and 22 kN for single axle and double in the case of dual axle. The circulation 

velocity range is between 8 and 11 km/h.  

This facility was used by Yang et al. (2012) to evaluate the efficiency of the geocell reinforcement in 

unpaved roads on soft soil (Figure 1.5-20). The tested platform was placed in a pit of 6.1 m in length, 

4.9 m in weight and 1.8 m in height. This pit was divided into four sections with different geocell 

types. The trafficking was applied using a single axle dual wheel, with an applied load of 80 kN 

resulting in a tire pressure of 552 kPa. The subgrade clay used in this application was classified as 

A-7-6 Clay according to the AASHTO soil classification. The CBR of the subgrade is about 5%. 

Dynamic cone penetrometer (DCP) tests were performed as a quality control test. Two base course 

materials were used in this test: a well-graded aggregate and a poorly graded sand. The sand was 

placed in the geocell aperture and covered by a well compacted aggregate layer. The 

instrumentation in this study is limited to strain gauges in the geocell (Figure 1.5-19). The results of 

this study showed the efficiency of the geocell regarding the reduction of the permanent surface 

displacement subjected to a load of 40 kN under a dual wheel assembly.   

 
Figure 1.5-19: Tested platform section. (Yang et al., 2012) 
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Figure 1.5-20: Tested platform top view. (Yang et al., 2012) 

The full-Scale Accelerated Load Facility (ALF) of the Federal Highway Administration located in 

Mclean, Virginia, is a fixed testing device which applies a linear unidirectional trafficking to the tested 

section with a velocity of 16.8 km/h.  

Tang et al. (2015)  used this facility to perform full-scale tests on reinforced sections. Six lane 

sections were prepared over native soft subgrade soil (Figure 1.5-21 and Figure 1.5-22). These tests 

were performed in an outdoor environment. The size test pit is 24 m in length and 4 m in width. The 

subgrade used in this study is classified as heavy clay. The aggregate used in this study is a dense-

graded crushed limestone. A triaxial geogrid and a high-strength woven geotextile were used in the 

reinforced sections. The tested sections were instrumented by: 

• Earth pressure cells placed at the subgrade surface in the wheelpath,  

• Piezometers placed at the wheel path in the subgrade,  

• LVDT (Linear Variable Differential Transformers) placed and connected to the subgrade 

surface in order to measure the subgrade total deformation,  

• Customized potentiometers placed at mid-height of the aggregate layer in order to measure 

the base course layer deformation, 

• Strain gauges placed at the geogrids to measure the geogrid strain.  

Quality control tests were performed in order to control and characterize the native in-situ subgrade: 

nuclear density gauge, Light Weight Deflectometer (LWD), Geogauge, dynamic cone penetrometer 

(DCP) and vane shear device. The load was applied on a dual wheel assembly with 43.4 kN axle 

load. The load was applied with a normal speed of 16.8 km/h. The journal paper shows no quality 

control nor layer property curves or results. The results showed a decrease in the vertical stress at 

the subgrade surface with cycles. The authors explained this decrease as the result of the base 
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course increase in stiffness under the applied load. The results of the circulation tests showed the 

effect of both GSYs in the permanent deformation reduction. The strain gauges showed that the 

developed strain in the geogrid was around 0.2%. Moreover, the geogrid installed at the upper one-

third of the aggregate base course layer showed twice the tensile of the geogrid installed at the base 

course/subgrade interface.  

 
Figure 1.5-21: ALF with insertion of dual-wheel assembly. (Tang et al., 2015) 

 
Figure 1.5-22: Testing platforms cross section. (Tang et al., 2015) 

Abu-Farsakh, & Chen (2012) used this same facility with the same protocol to compare the effect of 

the reinforcement on paved platforms. The authors noticed an important permanent displacement 

for the same platform under cyclic circulation wheel load in comparison with to the plate load test. 

They assigned these differences to the lack of stress rotation in the cyclic plate load test. However, 

they noticed that the friction between the tire and pavement during the rolling wheel load results 

in a tangential force that induces primarily shear stress on the surface. In addition, the authors 

explained that the particles in the base layer experienced lateral movements, which resulted in 

the reduction of their bearing capacity of the base layer, and thus caused the shear failure of the 

base layer.  

The authors in this study compared the behaviour of the pavement platform under cyclic and 

rolling load, and showed the differences in the behaviour that is due to the load application 

method.    

These tests performed in full-scale simulate very closely the real conditions, and the fact that these 

facilities are indoor facilities allows the control of parameters and avoid the environment variables. 

Moreover, the fact that the applied load is automatic permits the application of large cycle numbers. 

Nevertheless, the large pits dimensions involve important platform preparation works. Therefore, in 

this research work f-sAPT facility fits the most this application, reduces the amount of work regarding 

the soil preparation and develops its installation. 
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 Unpaved roads tests synthesis: 

References Type of test Loading type 

Platform size (m) 

Length,  Weight, 

Height 

Subgrade Base course 

Akond (2012) 
Small-scale 

laboratory test 

Monotonic plate load (ASTM 

D  1196-93) 
1.5 x 0.91 x 0.91 Silty saturated clay soil 

Kentucky limestone with 

300 mm, 450 mm and 

200 mm in thickness 

Demir et al. 

(2013) 

Field plate 

load test 

Monotonic plate load test : 

variable plate diameter 

(300, 450, 600, 900 mm) 

ASTM D 1196-93 

2.8 x 2.8 x 2 In situ saturated Clay 
Variable Base course 

thicknesses 

Abu-Farsakh et 

al. (2016) 

Laboratory 

plate load test 

Monotonic plate load  ASTM 

D 1196-93 
1.5 x 0.91 x 0.91 

Silty saturated clay with 

a CBR of 1% 
Crushed limestone 

Palmeira & 

Antunes (2010) 

Laboratory 

plate load test 

Monotonic and cyclic plate 

load, 

Plate diameter: 300 mm 

Max load: 40 kN 

Frequency: 1Hz 

1.2 x 1.6 x 1.6 
Fine tropic soil with a 

CBR of 8% 
200 mm of thickness 
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Qian et al. 

(2011) 

Laboratory 

plate load test 

Cyclic plate load, 

Plate diameter: 300 mm 

Max load: 40 kN 

Frequency: 0.77Hz 

2 x 2.2 x 2 

25% kaolinite and 75% 

of Kansas river sand 

with CBR 2% 

Well graded aggregate 

with 300 mm 

 Qian et al. 

(2013) 

Laboratory 

plate load test 

Cyclic plate load, 

Plate diameter: 300 mm 

Max load: 40 kN 

Frequency: 0.77Hz 

2 x 2.2 x 2 

25% kaolinite and 75% 

of Kansas river sand 

with CBR 2% 

Variable thickness: 

150 mm, 230 mm and 

300 mm 

Sun et al. 

(2015) 

Laboratory 

plate load test 

Cyclic plate load, 

Plate diameter: 300 mm 

Max load: 5 kN to 50 kN 

Frequency: 0.77Hz 

2 x 2.2 x 2 

25% kaolinite and 75% 

of Kansas river sand 

with CBR 2% 

230 mm of base course 

thickness 

Satyal et al. 

(2018) 

Laboratory 

plate load test 

Cyclic plate load, 

Plate diameter: 300 mm 

Max load: 10 kN to 60 kN 

Frequency: 0.77Hz 

2 x 2.2 x 2 

25% kaolinite and 75% 

of Kansas river sand 

with CBR 2% 

300 mm of ballast 

Kim et al. 

(2006) 

Laboratory 

plate load test 

Cyclic plate load, 

Plate diameter: 250 mm 

Max load: 35 kN 

Frequency: 1Hz 

3 x 3 x 3 Polystyrene foam 

Two types of base 

course fill material :  

300 mm and 460 mm of 

thickness 

Christopher & 

Perkins (2008) 

Laboratory 

plate load test 

Cyclic plate load, 

Plate diameter: 300 mm 

Max load: 40 kN 

Frequency: 0.65Hz 

2 x 2 x 1.5 

Saturated silt from 

Georgia with a CBR of 

1% 

300 mm of fill material 
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Sarici et al. 

(2016) 

Laboratory 

plate load test 

Cyclic plate load, 

Plate diameter: 300 mm 

Max load: 40 kN 

Frequency: 0.77Hz 

2 x 2 x 2 
Soft subgrade with a 

CBR of 4% 

A variable thickness: 

300 mm, 400 mm and 

450 mm 

Gabr (2001) 
Laboratory 

plate load test 

Cyclic plate load, 

Plate diameter: 300 mm 

Max load: 40 kN 

Frequency: 0.67Hz 

1.5 x 1.5 x 1.35 

15% of kaolinite and 

85% Lillington sand  

with a CBR of 3% 

Two base course 

thicknesses: 152 mm 

and  254 mm 

 Hufenus et al. 

(2006) 

Full-scale in-

situ test 

Uncontrolled full and empty 

truck passes 

12 x (8 x 5 x Variable) 

(12 is the number of 

sections) 

In situ silty clay with a 

variable CBR 

Relatively poorly 

compactable recycled 

rubble with variable 

thicknesses 

Cuelho & 

Perkins (2009) 

Full-scale in 

situ test 

A fully loaded three-axle dump 

truck ( with a tire pressure of 

690 kPa) 

12 x (15 x 4 x 1) 

 

A saturated subgrade 

classified as A-2-6 

according to the 

AASHTO with a CBR 

between 1.5 and 2% 

200 mm of crushed 

gravel grade 6A 

Cuelho & 

Perkins (2017) 

Full-scale in 

situ test 

A fully loaded three-axle dump 

truck ( with a tire pressure of 

690 kPa) 

17 x (15 x 4.9 x 0.9) 

 

A saturated subgrade 

classified as A-2-6 

according to the 

AASHTO with a CBR 

around 2% 

277 mm of crushed 

gravel grade 6A, with 

two unreinforced 

section with 414 mm 

and 632 mm 
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Mekkawy et al. 

(2011) 

Full-scale in 

situ test 
Opened for vehicle trafficking 

4 x (19 x 2.4 x in situ 

soil) 

 

In-situ soil classified as 

SC(A-4) with a CBR 

between 6 and 5% 

A crushed limestone 

classified as GW (A-1-

a) with 200 mm of  

thickness 

Tang et al. 

(2008 & 2016) 

1/3 scaled 

laboratory test 

Circulation with reduced 

wheel and a load of 2.7 kN 
4 x (2.06 x 3.64 x 1.2) 

Silty sand with 3 and 

1.5% of CBR 

Crushed stone with an 

asphalt layer 

Farhan et al. 

(2012) 

Reduced 

scale 

laboratory test 

Circulation with reduced 

wheel and a load of 1.74 kN 

and an applied pressure of 

550 kPa 

( 0.75 x 0.5 x 0.5) 
Subgrade is a saturated 

kaolin clay 

Classified as GP 

according to the USCS 

with a variable 

thickness (100 mm and 

125 mm) 

Cook et al. 

(2016) 

Large scale 

circulation 

laboratory test 

TRL f-SAPT facility 

Applied load : 40 kN 

Velocity: 15 km/happlied 

pressure: 700 kPa 

Variable numbers and 

dimensions of the pit 

sections with 3 m in 

depth 

Silty London Clay CBR 

2% 

Crushed granite with 

300 mm of thickness 

Watts et al. 

(2004) 

Large scale 

circulation 

laboratory test 

TRL f-SAPT facility 

Applied load : 40 kN 

Velocity: 15 km/happlied 

pressure: 700 kPa 

12 x ( 6 x 3 x 3) 
Silty London Clay CBR 

2% 

Crushed granite with 

300 mm and 320 mm of 

thicknesses 

Jersey et al. 

(2012) 

Large scale 

circulation 

laboratory test 

U.S. Army of engineers facility 

with an applied load of 40 kN 
5 x (7 x 2.5 x 1) 

Subgrade with high-

plasticity with a CBR of 

3% 

Crushed limestone with 

200 mm of thickness 

with an asphalt layer 

Robinson et al. 

(2017) 

Large scale 

circulation 

laboratory test 

U.S. Army of engineers facility 

with an applied load of 40 kN 
5 x (7 x 2.5 x 1) 

Subgrade with high-

plasticity with a CBR of 

6% 

Crushed limestone with 

150 mm of thickness 

with an asphalt layer 
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Yang et al. 

(2012) 

Large scale 

circulation 

laboratory test 

Kansas state university 

accelerated pavement-testing 

facility. 

Single axle dual wheel with an 

applied load of 820 kN and a 

resulted pressure of 552 kPa 

2 x ( 3 x 4.9 x 1.8 ) 

Subgrade clay classified 

as A-7-6 clay according 

to the AASHTO with a 

CBR of 5% 

Two base course 

material are used: well-

graded aggregate and a 

poorly graded sand 

Tang et al. 

(2015) 

Large scale 

circulation 

laboratory test 

The Federal Highway 

Administration Accelerated 

Load Facility (ALF) with an 

applied load of 43.4 kN with a 

velocity of 16.8 km/h 

6 x ( 4 x 24 x in situ 

soil) 

 

Subgrade clay classified 

as A-7-6 in AASHTO 

Crushed limestone with 

variable thicknesses 
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References Geosynthetics Quality control tests Instrumentation 

Akond (2012) 
Extruded triaxial and biaxial geogrids and 

geotextile placed at the interface 

  

Demir et al. (2013) 
Secugrid Q type Geogrid, placed at variable 

positions 

  

Abu-Farsakh et al. 

(2016) 

Extruded biaxial and triaxial geogrids and 

geotextiles  placed at the interface 

  

Palmeira & 

Antunes (2010) 

Knitted biaxial geogrid 

Woven geotextile 

placed at the interface 

  

Instrumentation 

 3-Subgrade strain measurements 2-Pore pressure measurements  1-Surface displacement 

 4-Vertical stress measurements  5-GSY strain measurements 

Quality Control tests 

 

 
4-Light falling weight / falling 

weight deflectometer 
 5-Pressuremeter test 

3- Dynamic cone penetrometer 2-Geogauge stiffness device 1-Nuclear density gauge 

 6-Static cone penetrometer 

 
9-In-situ unconfined compression 

tests / In-field CBR test / plate load 

 

 7-Moisture content  8-Vane shear strength 

1      2      3      4       5 

1      2      3      4       5 

1      2      3      4       5 

1      2      3      4       5 

1    2    3    4    5    6    7    8    9 

1    2    3    4    5    6    7    8    9 

1    2    3    4    5    6    7    8    9 

1    2    3    4    5    6    7    8    9 
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Qian et al. (2011) 
Three different extruded triaxial geogrid 

placed at the interface 

  

 

 Qian et al. (2013) 
Extruded triaxial geogrid 

placed at the interface 

 

 

 

Sun et al. (2015) 

Two extruded multi-axial geogrids 

Extruded triaxial geogrid 

placed at the interface 

  

Satyal et al. (2008) Geocell  placed at the interface  

 

Kim et al. (2006) 

Extruded triaxial geogrid 

Two types of geotextile 

Geocomposite 

placed at the interface 

 
 

Christopher & 

Perkins, (2008) 

Welded biaxial geogrid 

Geocomposite 

placed at the interface 

  

Sarici et al. (2016) 
The geogrid position varied between, 0.33D, 

0.67D and 1D were D is the plate diameter 

  

Gabr (2001) Extruded biaxial geogrids  placed at the interface  
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 Hufenus et al. 

(2006) 

Biaxial extruded PP grid, PVC coated knitted 

PET grid.... and different geotextile types with 

variable positions 

 
 

 

 

Cuelho & Perkins 

(2009) 

Biaxial welded geogrid, biaxial integrally-formed 

geogrid….. geocomposite, different geotextile 

types placed at the interface 

 
 
 
 
 

Cuelho & Perkins 

(2017) 

Different types of welded, integrally-formed and 

coated geogrids, a woven and non-woven  

geotextile placed at the interface 

  

Mekkawy et al. 

(2011) 
Three biaxial geogrids placed at the interface 

  

Tang et al. (2008 & 

2016) 

Biaxial geogrids with different types of 

manufacturing and joints placed at the interface 

  

Farhan et al. 

(2012) 

Two biaxial geogrids with different apertures size 

placed at the interface 

  

Cook et al. (2016) 

Geogrids with different manufacturing types, 

geotextile and geocomposite placed at the 

interface 

  

Watts et al. (2004) 

Welded geogrid 

Woven geogrid 

Extruded geogrid 

Punched and stretched integral geogrid 
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Jersey et al. (2012) Extruded geogrid placed at the interface 
 

 

Robinson et al. 

(2017) 

Multi-axial extruded geogrid placed at the 

interface 

 
 

Yang et al. (2012) Different geocell types placed at the interface 
  

v 

Tang et al. (2015) 
Triaxial extruded geogrid and high-strength 

woven geotextile placed at different positions 
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1      2      3      4       5 
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 Analytical and Empirical design methods 

Since 1970, various empirical design methods and analytical methods have been developed in order 

to determine the base course thickness by considering the GSY effect. 

Based on a large testing program proposed by Corps and Engineer, Hammitt & Iii (1970) suggested 

an empirical design method for an unreinforced unpaved road. This method consists of calculating 

the aggregate thickness for a rutting criterion of 75 mm.  

ℎ𝑜𝑠 = (0.0236𝑙𝑜𝑔𝑁 + 0.0161)√
𝑃

𝐶𝐵𝑅
− 17.8𝐴 Eq. 1.7-1 

hos= design thickness of the base course (m) 

N = passages number; P= wheel load (kN) 

CBR = California bearing Ratio of the subgrade 

A = tire contact area (m²) 

Giroud & Noiray (1981) proposed another empirical formula for an unreinforced unpaved road with 

other rutting criteria.  

ℎ𝑜𝑠 =
(0.190 log𝑁 + 0.445(𝑟 − 0.075))

𝐶𝐵𝑅0.63
 Eq. 1.7-2 

hos= design thickness of the base course (m) 

r = rutting criteria (m) 

N = passages number of standard axle load 80 kN 

This method is not recommended for N higher than 10,000 cycles or less than 20 cycles. 

Moreover, Giroud & Noiray (1981) proposed a theoretical design method for reinforced unpaved 

roads based on the large displacement mechanism. This design method was further elaborated by 

Giroud (1984). The reinforcement was included in the equations as stress distribution improvement 

and normal stress difference due to the tension membrane effect. 

This approach has become the basis of many design methods. It includes a tensioned membrane 

effect and incorporates, for the reinforced system, a bearing capacity failure in the subgrade that is 

one of the general shear failure, rather than a local shear failure.  

𝑞𝑢 = (𝜋 + 2)𝐶𝑢 + 𝛾ℎ = 𝑝 − 𝑝𝑔 Eq. 1.7-3 

qu = ultimate bearing capacity of the subgrade (kPa) 

Cu = subgrade undrained cohesion (kPa) 

ɣ = base course volumetric weight (kN/m3) 

h = base course thickness (m) 

p = subgrade pressure ( kPa) 

pg = reduction of the pressure due to the tension-membrane effect (kPa) 
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The failure of the unpaved road can occur in the subgrade or in the geotextile. The base course 

material is assumed to have sufficient friction to ensure mechanical stability of the layer and to 

prevent sliding over the geotextile.  

A pyramidal load distribution is presumed (Figure 1.7-1). For base course thickness of h0 without 

geotextile, the base course’s layer pressure at the base is calculated as below:  

𝑝0 =
2𝐿𝐵𝑝𝑒𝑐

2(𝐵 + 2ℎ0 tan 𝛼0)( 𝐿 + 2ℎ0 tan 𝛼0)
+ 𝛾ℎ0 Eq. 1.7-4 

A base course thickness of h in the reinforced case yields a stress in the subgrade as below: 

𝑝 =
2𝐿𝐵𝑝𝑒𝑐

2(𝐵 + 2ℎ tan𝛼)( 𝐿 + 2ℎ tan𝛼)
+ 𝛾ℎ Eq. 1.7-5 

L & B = dimensions of the wheels – base course contact area (m) (Figure 1.7-1) 

pec = applied stress at the base course surface (kPa) (Figure 1.7-1) 

p0 & p = applied load at the subgrade surface (kPa) (Figure 1.7-1) 

α & α0 = distribution stress angle (°) (Figure 1.7-1); this values were assumed equal and taken equal 

𝜋/4 − 𝜑/2 

 
Figure 1.7-1: Load distribution by base course layer: (a) case without geotextile; and (b) case with geotextile. 

(Giroud & Noiray, 1981). 

Strain in the geotextile is calculated, for an assumed parabolic deformed shape (Figure 1.7-2), as it 

is shown in the following:  

 
𝜀 =

𝑏 + 𝑏′

𝑎 + 𝑎′
− 1 𝑓𝑜𝑟 𝑎′ > 𝑎 Eq. 1.7-6 

 
𝜀 =

𝑏

𝑎
− 1 𝑓𝑜𝑟 𝑎′ < 𝑎 Eq. 1.7-7 

Where b and b’ are respectively the half-length of (P) and (P’) (Figure 1.7-2), and the widths a and 

a’ are obtained from Figure 1.7-1 and Figure 1.7-2. 
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Figure 1.7-2: Assumed parabolic shape of deformed geotextile. (Giroud & Noiray, 1981). 

The reduction in pressure due to the tensioned-membrane effect pg is considered a uniformly 

distributed pressure on AB (Figure 1.7-2) and is equal to the vertical component of the tension T in 

the geotextile at points A and B:  

  

𝑝𝑔 =
𝐸𝑔𝜀

𝑎√1 + (
𝑎
2𝑠)

2
 

Eq. 1.7-8 

Eg = geotextile elastic modulus 

ε = geotextile strain determined in Eq. 1.7-6 and Eq. 1.7-7 

a & s = geometric parameters determined from Figure 1.7-1 and Figure 1.7-1 

The thickness of the base course layer in the reinforced case is then determined from Eq. 1.7-3, Eq. 

1.7-5 and Eq. 1.7-8:  

(𝜋 + 2)𝐶𝑢 =
𝑃

2(𝐵 + 2ℎ tan𝛼)( 𝐿 + 2ℎ tan𝛼)
−

𝐸𝑔𝜀

𝑎√1 + (
𝑎
2𝑠)

2
 

Eq. 1.7-9 

Giroud (1984), modified the above design approach for geogrids use, in order to take into account 

the interlocking of the geogrid and base course material. Progressive deterioration of the subgrade 

shear strength is explained. The design is performed according to the same procedure described by 

Giroud & Noiray (1981), while pointing out that the tensioned-membrane effect should be neglected.  

Milligan et al. (1989) developed analytical design method based on small displacement mechanism 

of reinforced unpaved roads. This method allows the calculation of tension developed in GSY 

established on stress analysis at the base and subgrade shear interface.  

Their method does not follow the conventional tensioned-membrane approach, but emphasizes the 

role of shear stresses at the subgrade surface. When load is applied to the base course layer, it 

produces vertical and horizontal stresses in the subgrade layer. The base course material outside 

the loaded area resists some of the horizontal stress, and the remainder develops outward acting 

shear stresses on the subgrade surface. This acting shear reduces the subgrade bearing capacity 

significantly. If a GSY is installed at the subgrade surface, the outward acting shear stresses will be 

taken up by tension in the GSY. The method, that is developed to be used in the design of unpaved 

roads at small rut depths, does not consider a tensioned-membrane effect. Although, anchorage is 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI027/these.pdf 
© [N. Khoueiry], [2020], INSA Lyon, tous droits réservés



Analytical and Empirical design methods  43 | P a g e  

  

considered to be less important than other procedures. However, the stiffness of the GSY is 

important if small ruts are expected. The authors recognize the importance of the tensioned-

membrane effect, but only at considerable rut depth. The bearing capacity of a strip footing is 

predicted by using upper and lower bound theorems of plasticity theory.  

𝑁𝐶𝑎 = 1 +
𝜋

2
+ arccos (

𝜏𝑟
𝑆𝑢
) + √1 − (

𝜏𝑟
𝑆𝑢
)
2

 Eq. 1.7-10 

Where 

   

𝑁𝐶𝑎 =
𝜎𝑣𝑎 − 𝜎𝑣0
𝑆𝑢

 Eq. 1.7-11 

σva = the vertical stress distribution on the subgrade surface (kPa) 

σv0 = the vertical stress distribution on the subgrade surface by the base course layer weight (kPa) 

Su = the subgrade undrained shear strength (kPa) 

The vertical stress developed at the subgrade surface depends on the load spread angle β.  

Underneath the footing the base course is pushed outwards, developing active pressures. However, 

passive pressures are developed outside the influence zone of loading.  Based on the horizontal 

equilibrium of the rectangular area (Figure 1.7-3) between the base course surface and the subgrade 

surface the stress developed in the GSY can be calculated based on the following formula:  

𝜏𝑟 =
1

2
(𝐾𝑎 − 𝐾𝑝) (

1

𝐵′
) 𝛾ℎ2 +

𝐾𝑎𝑝

𝑡𝑎𝑛𝛽
(
𝐵

𝐵′
) . 𝑙𝑜𝑔 (

𝐵

𝐵′
) − 𝑝 (

𝐵

𝐵′
) tanδ Eq. 1.7-12 

τr = the minimum average shear stress required on the subgrade surface for stability is determined 

by solving the horizontal equilibrium of the rectangular area (kPa) 

B = the half footing width (m) 

B’ = the half loaded width on the subgrade surface (m)  

ɣ = base course volumetric weight (kN/m3) 

h = base course thickness (m) 

p = subgrade pressure ( kPa) 

δ = the base course friction angle (°) 

Ka & Kp = the earth pressure active and passive coefficient 

 
Figure 1.7-3: Soil block in equilibrium analysis. (Milligan et al., 1989). 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI027/these.pdf 
© [N. Khoueiry], [2020], INSA Lyon, tous droits réservés



Analytical and Empirical design methods  44 | P a g e  

  

In order to create a design using this method, it requires half-width of loaded area, base course 

thickness, load spread angle value, base course friction angle and unit weight, and subgrade 

undrained shear strength (kN/m3) knowledge. The required reinforcement force in the GSY is 

determined by T= τr x B’ 

More recent researches have been carried in this field and more analytical methods were developed 

(Giroud & Han, 2004; Leng & Gabr, 2006). In fact, Giroud & Han (2004) improved the methods 

developed earlier to determine the aggregate thickness of unreinforced and GSY-reinforced 

unpaved roads. This design method was developed for geogrid-reinforced unpaved roads, and takes 

interlocking between aggregates and geogrids into account, in-plane aperture stability modulus of 

the geogrid and stress distribution angle degradation with cycles.  This design method has been 

included in the “GSY Design and Construction Guidelines” manual by the FHWA (2008). 

Giroud & Han, (2004) proposed the following equation: 
 

ℎ =
(0.868+(0.661−1.006.𝐽𝐴𝑆𝑀

2 )).(
𝑟

ℎ
)
1.5
.𝑙𝑜𝑔𝑁

1−0.204.(𝑅𝐸−1)
 . 

(

 
 

√

𝑃

𝜋𝑟2

(
𝑠

𝑓𝑠
).(1−0.9𝑒

(−(
𝑟
ℎ
)
2
)
).𝑁𝐶 .𝐶𝑢

− 1

)

 
 
. 𝑟 Eq. 1.7-13 

h = base course thickness (m) 

𝐽𝐴𝑆𝑀 = aperture stability modulus of geogrid (mN/°) 

r = radius of the equivalent tire contact area (m) 

N = passages number; P = wheel load (kN); s = allowable rut depth (mm); fs = factor equal 75 mm.  

Nc = bearing capacity factor (Nc = 3.14 (unreinforced unpaved roads), Nc = 5.14 (geotextile-

reinforced unpaved road), Nc = 5.71 (geogrid-reinforced unpaved road)) 

𝐶𝑢 = 𝑓𝑐  𝐶𝐵𝑅𝑠𝑔 Eq. 1.7-14 

 

𝑅𝐸 = min(
𝐸𝑏𝑐
𝐸𝑠𝑔

, 5) = min(
3.48𝐶𝐵𝑅𝑏𝑐

0.3

𝐶𝐵𝑅𝑠𝑔
, 5) Eq. 1.7-15 

 
𝐶𝑢= subgrade undrained cohesion (kPa)  

𝐶𝐵𝑅𝑠𝑔 = California bearing ratio of the subgrade soil 

𝐶𝐵𝑅𝑏𝑐 = California bearing ratio of the base course soil 

 𝑓𝑐= factor equal to 30 kPa 

 𝑅𝐸 = limited modulus ratio 

Ebc = the base course Young modulus (kPa) 

Esg = the subgrade Young modulus (kPa) 

Leng & Gabr (2006) provided a further development in the geogrid-reinforcement unpaved roads 

design. This method is based on Odemark’s method, which is an approximate method to transform 

a two-layer system with different modulus into an equivalent one-layer system. This method takes 

the stress distribution angle, the base course and the subgrade modulus degradation with cycles 

into account. 
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ℎ =
(1+((

𝑟

ℎ
)
0.81

(0.58−0.000046𝐽𝑡
4.5)).𝑙𝑜𝑔𝑁)

𝑡𝑎𝑛𝛼1
.(√

𝑝𝑐

(
𝑠

𝑓𝑠
).(1−𝑒

(−0.78
𝑟
ℎ
)
).𝑁𝐶.𝐶𝑢

− 1) . 𝑎 

 

 

Eq. 1.7-16 

h = base course thickness (m) 

𝐽𝑡 = average geogrid tensile strength at 2% of strain (kN/m) 

r = radius of the equivalent tire contact area (m) 

N = passages number; p𝑐 = tire contact pressure (kPa) 

s = design rutting criterion (mm) 

𝑓𝑠 = critical subgrade deformation (mm)  

Nc = bearing capacity factor (Nc = 3.8 (unreinforced unpaved roads), Nc = 6 (geogrid-reinforced 

unpaved road)) 

𝐶𝑢= subgrade undrained cohesion (kPa) with the same formula as before 

𝛼1 = initial stress distribution angle.  

The design methods proposed in literature allow the aggregate thickness determination based on 

the rutting development, the cycle number, the subgrade and base course stiffness and the GSY 

reinforcement contribution. As previously seen various theories were proposed and different 

analytical methods were developed. In fact, depending on the displacement range Giroud & Noiray 

(1981) and Milligan et al. (1989) have proposed two different theoretical methods with different 

dominant reinforcement mechanisms. More recently, Giroud & Han (2004) and Leng & Gabr (2006) 

have proposed two analytical methods that were calibrated based on the results of a laboratory plate 

load tests performed by Gabr (2001). It is worth pointing out that these tests were performed using 

a specific GSY manufacturing type, and under the same conditions of base course and subgrade 

stiffness. Watts et al., (2004) compared the results of the large-scale performed tests with the 

expected base course thicknesses given by Giroud & Noiray (1981) and concluded that this design 

method was overly conservative. Cuelho & Perkins (2017) based on the results of the large-scale in 

situ performed tests calibrated Giroud & Han (2004) method and proposed other analytical formulas 

to calculate the parameter based on the geosynthetics junction stiffness. Calvarano et al. (2016) has 

concluded after comparing , Giroud & Han (2004) and Leng & Gabr (2006) analytical methods and 

the estimated base course thicknesses given by these two, that the method proposed by Leng & 

Gabr (2006) is more conservative than the method of Giroud & Han (2004). Moreover, the authors 

noted that these methods were calibrated using one type of geosynthetic.  

Therefore, more investigations are needed to clarify the dominant mechanism and to develop an 

analytical method that will cover more cases that are general. Moreover, in literature authors 

proposed numerical methods to try to understand the behaviour of the reinforcement in the structure, 

these developed numerical methods are presented in the next paragraph.  
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 Numerical Approaches 

In literature, many authors proposed numerical simulations to estimate the rut development in the 

reinforced unpaved roads under monotonic or cyclic loadings. Several numerical methods and tools 

were used. Miura et al (1990) developed a finite element model to simulate the behaviour of geogrid 

in unpaved roads over soft subgrade. In this model, the geogrid is simulated as a continuous 

membrane with a shear interface model to simulate the interaction with the soil layer. The authors 

observed no reinforcement effect in the simulation results regarding the displacement and stress 

distribution. They concluded that the reinforcement effect is not important because the analysis only 

takes into consideration the membrane tension effect but not the interlocking.  

Burd et al. (1986) developed a finite element formulation of large displacement analysis for one-

dimensional elastic membrane in plan strain condition. This formulation was used in reinforcement 

of fill material in unpaved roads application since it is an application where large displacements are 

imposed. 

Calvarano et al. (2017) proposed a finite element model, using the ABAQUS software, to simulate 

the behaviour of the geosynthetic in unpaved roads. The soil layers behaviour was modelled using 

an extended Drucker-Prager model and the geogrid behaviour was model using a linear elastic 

constitutive model. The geosynthetic was modelled as a membrane. A monotonic load was applied 

at the surface of the subgrade. Two reinforced and unreinforced models were performed with two 

different base course thicknesses. The numerical results show the benefits of the reinforcement in 

improving the bearing capacity. 

More recent works were proposed by  Hussein et al. (2016) using the ABAQUS software. A 3D finite 

element model that is capable of simulating the real geometry of the geogrid with the apertures and 

the interaction between the geogrid ribs and the surrounding soil (Figure 1.8-1). The geogrid-soil 

interaction method introduced in this work was calibrated based on the plate load laboratory test 

performed on reinforced crushed limestone and performed by Chen et al., (2009).The Mohr-Coulomb 

constitutive model was used for the crushed limestone layers. The authors simulated two geogrid 

reinforcement configurations under footing loading: one layer placed at the interface, and two layers 

at the reinforcement. The load-settlement results given by the numerical simulations and the 

experimental tests fits well up to a footing displacement of about 25 mm. Close to the failure state 

the reinforced model underestimates the footing bearing capacity. Based on the simulations results, 

the authors concluded that the increase of the  geogrid number results in an increase of the ultimate 

bearing capacity. However, the presented models above simulate monotonic load and are limited to 

simple constitutive models for the soil layers and the GSY. 
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Figure 1.8-1: Complete and partial 3D mesh geometry of the in-soil FE model. (Hussein et al., 2016) 

Studies were proposed to develop more advanced constitutive models to simulate the GSYs 

behaviour. Perkins (2000) described the finite element formulation of a constitutive model that 

incorporates direction-dependent elastic, plastic and time dependent creep properties. The 

performance of this model was tested under monotonic and cyclic tension loading, and the results 

were compared to experimental tension tests. However, the limitation of this model is the fact that 

this model does not take into account normal stress and temperature dependent. More recently, Liu 

et al. (2007) proposed an isothermal constitutive model within the framework of elasto-plasticity finite 

element formulation to simulate the time-dependent monotonic and cyclic behaviour of GSYs. This 

model was developed to simulate the time-dependent and cyclic behaviour of the GSY. This 

constitutive model was verified using simple tension test on GSYs. Nevertheless, this model needs 

to be calibrated with additional GSY types, and it needs to be verified with field full-scale tests. 

Dong et al. (2010, 2011) investigated the stress–strain responses of  uniaxial tension numerical test 

with different GSYs aperture shapes, using FLAC Software. Beam elements were used in this study 

to simulate the ribs of an extruded geogrid (Figure 1.8-2). The geogrid ribs were modelled as beams 

with rigid connection at the nodes, and linearly elastic-perfectly plastic material. The model was 

validated by comparing the numerical and test results of geogrid with rectangular apertures. Based 

on the results the authors pointed out that the triangular geogrid aperture has a more uniform stress 

and strain distributions in the different ribs than the rectangular geogrid apertures.  
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Figure 1.8-2: Meshes with beam elements. (a) Geogrid with rectangular apertures. (b) Geogrid with triangular apertures. 

(Dong et al.,  2011) 

As seen in the previous studies the continuum-based finite element or finite difference method 

reduces the interaction between the aggregate particles and the geogrid apertures to a constitutive 

law. Moreover, advanced constitutive models should be used to replicate the response of the system 

and simulate the micro-scale responses.  

The discrete element method (DEM) based on the discrete approach is used to better simulate the 

GSY-particles interaction. In fact, the discrete approach handle the problem at a micro-scale, force-

displacement relation is applied to each particle and very few parameters are required to simulate 

the response of the granular medium. Bhandari & Han (2010) investigated the behaviour of GSY 

reinforced and unreinforced bases using a 2D discrete element method model (Particle Flow Code 

(PFC2D) software). The main objective of this study was to characterise the mechanisms involved, 

and the importance of the depth and stiffness of the GSY under cyclic wheel load. The DEM analysis 

was based on the experimental work done by Han et al. (2008). In their tests, the authors used a 

reduced scale test using the Asphalt Pavement Analyser (APA) machine and a box of 

0.38 m x 0.45 m x 0.1 m where the soil was placed. In this test, a poorly graded, subrounded river 

sand with a mean grain size of 2.6 mm was used. Spheres were used to simulate the sand particles, 

and microscopic particle properties were calibrated based on a biaxial test simulation. The 

comparison between the numerical and experimental deformation versus cycles showed differences. 

The authors noted that the reason for this difference might be due to the number and dimensions of 

particles. The geotextile was modelled using bounded particles, and the microscopic properties were 

calibrated using a tensile test. The authors highlighted the effect of the GSY in improving the 

behaviour of the reinforced section. The results of the simulations showed the impact of the GSY 

position on the mechanism developed on the interface. However, the limitation of this method is the 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI027/these.pdf 
© [N. Khoueiry], [2020], INSA Lyon, tous droits réservés



Numerical Approaches  49 | P a g e  

  

simulation of the subgrade, which is a cohesive soil and the simulation of a granular material with 

high friction angle. Moreover, they require significant computation time.  

 
Figure 1.8-3: DEM model of Asphalt Pavement Analyser (APA) machine test simulation. (Bhandari & Han, 2010) 

The mechanistic-empirical method has been frequently used to estimate the long-term behaviour of 

flexible roads under cyclic load. This method consists of an empirical part that takes information from 

a mechanistic response model and extends this information by taking into consideration the damage 

to predict the long-term behaviour in terms of rut developed. To simulate the cyclic response of the 

structure in a purely mechanistic model advanced constitutive models of soil are needed. In 

mechanistic-empirical method, the empirical part predicts the long-term performance based on 

calibrated empirical formulas. 

Perkins et al. (2012) developed a mechanistic-empirical model for unpaved roads based on a model 

previously developed for paved roads by Perkins et al. (2009). This method consists of an 

axisymmetric finite element model, with a nonlinear elastic model for base course and subgrade and 

an elastic model for the membrane simulating the geogrid with a shear interface model between the 

membrane and the base course (Figure 1.9-4 (a)). In addition, an empirical damage model for the 

base course and the subgrade layers is included. Perkins et al. (2012) calibrated, based on the 

results of an instrumented unpaved road test section, a mechanistic-empirical method that takes into 

consideration the reinforcement effect. The reference tests used to calibrate the model are large-

scale plate load tests. Nine sections were tested: four unreinforced sections with different base 

course thicknesses varying between 400 and 200 mm, two sections reinforced with geotextile with 

different base course thicknesses, and three sections reinforced with two different geogrids. Limited 

details about the performed large-scale tests were given, regarding the installation protocol and, the 

GSY types. The finite-element model developed in this study is a two dimensional axisymmetric 

model. An isotropic elastic model was used for the base aggregate layer; a simple linear elastic 

model was used for the reinforcement behaviour, a contact shear interaction model for the interface 

between the reinforcement and base aggregate and a linear elastic model was used for the 

subgrade. Moreover, a damage model for permanent deformation was used for the base and 

subgrade layer to determine the rut during load cycle. However, the limitation of this method is the 

prediction of a quick rut development especially for unreinforced cases (Figure 1.8-4 (b)); in fact, the 

damage models used for rutting were unable to predict a linear rut development with cycles.  
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(a) 

 

(b) 

Figure 1.8-4: (a) Axisymmetric FE model deformed mesh of an unpaved road. (b) Model prediction of rutting curves for 

unreinforced Test Section I Georgia aggregate and subgrade. (Perkins et al., 2012) 

More recently, Tang et al. (2016) used the small-scale test on paved roads using the MMLS3 

machine detailed in section 1.5.3 to calibrate a mechanical-empirical design method. The developed 

finite element model over which the empirical method is based to predict the behaviour with cycles 

is illustrated in Figure 1.8-5. In this model, an asphalt layer is placed at the surface as in the 

experimental tests. For simplicity, the FE model is assumed to be elastic and the focus in this model 

is on the interface geogrid-pavement behaviour. In order to take into account the initial tension in the 

geogrid due to the construction in the model, an initial decrease in the geogrid temperature that 

creates a shrinkage in the membrane was applied. In this study, a permanent deformation model for 

unbound pavement layers was adopted and calibrated based on the experimental results of the APT 

I, and the results of the model were compared to the experimental results of the APT II (Figure 1.8-5). 

However, this model was calibrated using a 1/3 reduced scale experimental test. Based on the 

comparison between the numerical and experimental results, the authors concluded that the ME 

method underestimates the geogrid-modified subgrade permanent deformation.  

As mentioned before the use of continuum-based finite or differential element method reduces the 

interaction between the geogrid apertures and the aggregates to a simple elastoplastic shear law at 

the interface. Moreover, large deformation formulation is in need to model the behaviour of the 

unpaved reinforced road. In addition, complex constitutive models are also in need to simulate the 

cyclic behaviour of the reinforcement and the soil layers. Therefore, still no reliable continuum-based 

model and clear calibrated parameters can simulate the reinforcement effect in this application under 

monotonic and cyclic loads.  

Hence, in order to simulate the cyclic behaviour of these structures the ME method is frequently 

used, but the results of mechanistic model under monotonic load is an input for the empirical method. 

Therefore, more studies are in need to simulate better the effect of the reinforcement using the 

continuum-based finite approaches at least under monotonic load.  

The discrete element method is more used to simulate the micro-scale interaction between the GSY 

apertures and the aggregates. In fact, this approach requires less of the complex interaction law and 
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calibrated parameters than of the continuum-based approaches to simulate the cyclic behaviour. 

The limitation of this approach is the simulation of a cohesive soft soil and a granular material with a 

high friction angle.  

 

(a) 

 

 

(b) 

Figure 1.8-5: (a) Geometry of the axisymmetric finite element model for the test section. (b)Measured and modelled 

subgrade permanent deformation for sections in APT II. (Tang et al., 2016) 

 GSY installation damage 

The GSYs were used during the last decades to provide the filtration, damage, separation, 

reinforcement and protection functions. Between the large application numbers, we can mention a 

few cases where the GSYs failed in providing its function, due to the installation mechanical damage. 

In fact, the GSYs may be subjected to the highest service mechanical stresses during installation. 

To avoid that kind of failure cases, the GSYs manufacture focused on this phenomenon. 

A wide number of studies covers by literature, carries the GSYs installation damage topic, 

(Bathurst et al., 2011; Hufenus et al., 2005; Watn et al., 2002; Müller-Rochholz, 1996; 

Allen & Bathurst, 1994). 

The installation damage magnitude depends on different parameters. Watn & Chew (2002) cited 

these parameters: the GSYs characteristics, the aggregate diameters, the angularity and thickness 

of the aggregates layer, the construction equipment, and the climatic conditions. The GSY 

characteristics not only influence the magnitude, but also the mode of installation damage. 
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Six different installation damage modes were identified:  

• Abrasion (Figure 1.9-1): a repetitive sliding of the GSY on an abrasive material causes the 

abrasion. That kind of damage appears in general when the geotextile is placed on the top 

of the structure (Channel coating, embankment…). 

 
Figure 1.9-1: Example of a woven geotextile abrasion surface. (Brady et al., 1994) 

• Notches (Figure 1.9-2): the notches damage mode is observed when a cutting material is in 

contact with the geotextile, especially if this contact is combined with a vibration equipment. 

 

 
Figure 1.9-2: Example of notches on extruded polyethylene grid. (Brady et al. 1994) 

• Punching (Figure 1.9-3): the punching damage mode appears when an angular and cutting 

material is poured directly on the geotextile, or if an aggressive compaction equipment is 

used on a thin aggregate layer over the geotextile. In general, the non woven geotextile with 

a low flexibility is the most sensitive product on that kind of damage. 
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Figure 1.9-3: Example of geotextile punching. (Brady et al. 1994) 

• Failure under stress (Figure 1.9-4): the failure of geotextile under stress occurs generally 

when the geotextile is subjected to excessive stresses or deformations. That kind of damage 

is observed frequently when the geotextile is used for separation over soft soil. 

 

 
Figure 1.9-4: Deformation failure of geotextile due to traffic load. 

The failure of geotextile under stress occurs as well when a bounded load of heavy 

equipment is applied on a thin aggregate layer over a soil with low bearing capacity. 

 

• Fibres failure (Figure 1.9-5): the geotextile fibres failure occurs when an aggressive material 

acts as a knife, cutting the geotextile fibres. This mechanism is more likely to occur in the 

case of a woven geotextile. 
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Figure 1.9-5: Fibres failure of a non-woven polyester geogrid. (Brady et al. 1994) 

• Tear failure (Figure 1.5-6): The Tear failure occurs when the geotextile is subjected to a 

propagation of tear forces due to a preliminary damage. In fact, that kind of damage occurs 

when the geotextile is already damaged by another damage mode as the failure under stress, 

the fibres failure… 

 
Figure 1.9-6: Geotextile damage by tear failure. 

Most of GSY-reinforced soil structure have a long service period, which implies that the 

reinforcement will last accordingly. The GSY properties generally depend on time. In fact, at the 

installation phase the GSY is subjected to a damage that reduces it maximum tensile strength. 

Moreover, during its service period, the GSY is affected by the creep, aging, oxidation and abrasion 

effects. 

The current design approach proposes the reduction of the ultimate tension strength by three 

reduction factors to calculate the allowable tension strength used for structure design: 

𝑇𝑎𝑙 =
𝑇𝑢𝑙𝑡

𝑅𝐹𝐶𝑅𝑅𝐹𝐼𝐷𝑅𝐹𝐷
, 𝑅𝐹𝐶𝑅 , 𝑅𝐹𝐼𝐷,𝑅𝐹𝐷 ≥ 1 Eq. 1.9-1 

𝑅𝐹𝐼𝐷 The installation damage factor, 𝑅𝐹𝐶𝑅 the creep reduction factor and 𝑅𝐹𝐷 the durability reduction 

factor.  

During the last decades, numerous authors studied the GSYs installation damage approach. 

Koemer & Koemer (1990) presented the results of installation damage on 75 different geotextiles 

and geogrids from 48 construction sites and found tremendous variation in tensile strength after 
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installation and excavation. Watts & Brady (1990) proved that the tensile strength and the elongation 

at failure were subjected to a reduction after installation damage, but the Young’s modulus was 

largely unaffected. Hufenus et al. (2005) proposed a matrix to calculate the maximum expected 

installation damage. This matrix depends on the type of GSYs, the fill material, the compaction 

energies and the number of passes.  

The NF EN ISO 10722 Standard presents a laboratory test procedure, to determine the installation 

damage due to a cyclic load. Moreover, most field installation tests are already normalised 

(EBGEO, GT7 and ISO 13437). However, in literature various studies showed unconformity between 

the site damage and the estimated damage in the laboratory based on the procedure proposed by 

the NF EN ISO 10722 standard (Greenwood, 1998; Orsat & Khay, 1998). 

In spite of all the efforts put in this field, generalised installation damage factor does not always lead 

to a well damage prediction. Therefore, more investigations are in need to better estimate the 

installation damage, especially in the unpaved road application.  

 

 Conclusion 

 Over the years, the GSY reinforcement base course layers over soft subgrade support in unpaved 

roads application proved a significant improvement in the structure bearing capacity. However, as 

showed in this background Chapter, the physical quantification of this improvement is not yet fully 

understood. The fact that the load applied is in the vertical direction and the reinforcement is placed 

in the horizontal plan creates a confusion in explaining the mechanisms that happen in the structure 

and the dominance of mechanisms. Three types of mechanisms take place in the reinforced 

structure: the lateral restrain mechanism, the membrane effect and the separation. For more than 

thirty years of research in this field, authors proposed empirical and analytical methods to estimate 

the base course thickness needed to design the structure by taking into consideration the 

reinforcement effect. In fact, based on a supposed dominant mechanism, different theories were 

suggested. The more recent developed analytical method gives the privilege to the lateral restraint 

mechanism. This method was adopted by the “GSY Design and Construction Guidelines” manual 

by the FHWA (2008). However, this method was calibrated for one geogrid manufacturing type. The 

lack of knowledge and the various factors and parameters that affect the response of the structure 

result in the fact that there are no clear and general design method for this structure. This highlights 

clearly the need of further investigations in this field.  

Moreover, experimental investigations were performed to help understand the structural behaviour 

under cyclic vertical load. Different types of tests were performed: large-scale laboratory cyclic plate 

load tests, in situ tests, large-scale laboratory circulation load tests and reduced scale circulation 

laboratory tests. The large-scale cyclic plate load tests are one of the most used tests that 

characterise the behaviour of roads under traffic load in general, and since it is a laboratory test, the 

parameters can be controlled. However, it is clearly known that in situ tests simulate better the real 

applied load, but it is difficult to control the influencing parameters especially for the shallow depths 

of the soft subgrade. In addition, the number of axle passes causes problems for in-situ tests while 

such structure is normally designed to support more than 10,000 cycles.  
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Accelerated pavement tests facility were used in Large scale laboratory tests to simulate traffic load. 

These facilities are normally designed to simulate traffic on paved roads and specially to explore the 

behaviour of the asphalt superficial layer. Therefore, large facilities with long circulation length exist 

in the Transportation Research Departments, usually as large containers, these facilities are used 

to characterise the effects of the reinforcement in unpaved roads on soft subgrade. Hence, this kind 

of test requests important preparation and installation works especially for the soft subgrade soil 

layer regarding the pits large dimensions. More importantly, all these tests proposed in literature, 

investigated the effect of specific manufacturing GSY types.  

The aim of our work is to provide more knowledge regarding the mechanisms that take place within 

the reinforced structure, the influencing parameters, the overall structure behaviour and response. 

Therefore, an experimental protocol has been developed to test the unpaved roads under two 

loading types: the plate load and the circulation traffic load. In this experimental protocol, a special 

attention to the soil layer preparations and installations have been considered to insure the 

repeatability of the tests. Moreover, an Accelerator Simulator of Traffic has been developed for the 

unpaved road under soft subgrade structure testing. In fact, this facility has been designed to 

simulate circulation traffic load by taking into consideration the large settlement development at the 

surface of this flexible structure. In addition, the dimensions of the facility have been optimised in a 

way to reduce the installation and preparation soil works. More importantly, an advanced soil 

instrumentation has been considered in order to provide the maximum number and the best quality 

of measurements. 

This developed facility was used in this study to compare the effect of different GSY types and 

quantify the effect of the reinforcement in improving the structural bearing capacity. Moreover, a 

comparison between the plate load test and the circulation load test has been performed in this work 

to identify the effect of the load type. The installation damage of the product under the specific 

laboratory condition developed in this experimental study has been investigated as well.  

Many studies aimed to develop a numerical model to simulate the behaviour of these structures 

under monotone or cyclic load. However, these developed models showed several limitations. In 

fact, the use of the continuum – based finite or differential methods require the use of complex 

constitutive models to simulate the behaviour of the reinforcement and the soil layers especially 

under cyclic load. Moreover, these methods limit the geogrid and base course material interface to 

a perfect shear elastic plastic constitutive model. In addition, the discrete-based method simulates a 

more realistic interaction between the geogrid aperture and the base course aggregates, but the 

limitation of this method is the simulation of a cohesive soft subgrade, aggregates with high friction 

angle and the simulation of the complex behaviour of the GSY.  

In our present work, a continuum-based differential method using FLAC 3D® software has been 

developed to simulate the behaviour of the structure under monotonic and cyclic load. This model 

has been calibrated based on geotechnical laboratory testing and the numerical results were 

compared to the experimental results. The main objective of this numerical work is to develop a 

reliable model as a design tool. So this latest model can be used to predict the base course layer 

thickness and the tension developed in the reinforcement.    
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 Experimentation  

 Introduction 

In this Chapter, the developed experimental protocol is explained. In fact a large-scale laboratory 

experimental protocol has been developed.  

Two types of tests were performed: 

• A cyclic plate load test using a circular plate performed on the unpaved road platform and 

placed in a box of 1.8 m large, 1.9 m in length and 1.1 m in height.  

• A Traffic load test using a traffic Simulator Accelerator of Traffic (SAT), developed during 

this project and especially for this application. The tested platform was placed in a box of 

1.8 m large, 5 m in length and 1.1 m in height. The same platform was subjected throughout 

this test using different loading types: a cyclic traffic load and a cyclic plate load using a 

special plate, in order to have a similar load contact area as in the Traffic load.  

The aim of the experimental protocol developed is firstly and more importantly, the comparison of 

different GSY types reinforcement benefits. In this research work, three geogrids were tested, two 

knitted coated geogrid with two different stiffness and an extruded geogrid. Other than the GSY type 

effect, the base course thickness effect has been studied, in fact two base course thickness were 

tested (350 mm and 220 mm).  

In order to have comparable results, a special attention was given to the unpaved structure layer 

preparations, installations and the quality control tests. Actually, a preparation protocol was 

established and controlled for each tested platform. Moreover, several tests have been performed 

to check the installation protocol and its repeatability.  

In this Chapter, the experimental devices and configurations are presented. The tested platform 

constitution and used materials are detailed too. More importantly, in order to have the same platform 

with the same properties for each test the developed installation protocol and the quality control tests 

are presented. Furthermore, the platform instrumentation for the two test types are detailed.  

 Experimental configurations and devices 

2.2.1. Tests benches 

The cyclic plate load tests were performed on an unpaved platform placed in a box of 1.8 m large, 

1.9 m in length and 1.1 m in height. The platform was constituted of 350 or 220 mm of base course 

overcoming 600 mm of soft soil.  
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The traffic load test was performed on a platform placed in a box of 1.8 m large, 5 m in length and 

1.1 m in height. The tested platform had the same constitution of 220 mm of base course overcoming 

600 mm of soft subgrade. In this test, the Traffic circulation load was performed on a 3 m length and 

a plate load test was performed on the remaining 2 m in order to compare the solicitation type effect.  

The CBR of the soft subgrade should be less than 3%, and so a GSY reinforcement is needed 

according to the FHWA (2008) standard. The soft soil composition, installation and quality control 

are presented in the next sections. The CBR required for the granular platform is about 20% (FHWA, 

2008). In the plate load test, two granular platform thicknesses were tested, 350 mm and 220 mm. 

A light non-woven geotextile was placed at the interface between the soft subgrade layer and the 

base course layer in order to reduce the pollution of the two different layers, especially that the same 

soils are reused in the different constitutive tests. The geotextile used is very light and is free of any 

mechanical resistance so it does not affect the behaviour of the structure.  

The tested geogrid in most tests is placed at the interface since it is the most common position. 

However, in order to evaluate the GSY position effect a test was performed with geogrids placed at 

the base course middle thickness position.  

The borders of the box were covered with plastic films to prevent the water content variation. 

At the bottom of the box 200 mm of well-compacted aggregates were placed and covered with anti-

vibration mat to limit the vibration propagation. 

2.2.2. Cyclic plate load test 

 

(a) 

 

(b) 

Figure 2.2-1: (a) Load waves diagram, (b) Hydraulic Jack. 

The test consists on applying a cyclic load using a 300 mm diameter rigid plate on the surface of an 

unpaved road supported by soft subgrade (Figure 2.2-1(b)). The maximum applied load on the 

surface of the platform was 40 kN equal to the half-axle load (ESAL : Equivalent Single Axle 

Loads) according to the American standard AASHTO (1993), with an applied pressure of 566 

kPa.  
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The cyclic load was applied at a constant frequency no greater than 1 Hz as specified in the 

published document of the AASHTO standard (Berg, 2000).  The cycle load waves were generated 

by a hydraulic loading system. The maximum load was held for about 0.2 seconds, the unload phase 

was maintained for 0.5 seconds, and the loading-unloading phase was done in 0.6 seconds (Figure 

2.2-1(a)). Each cycle of pavement load will be considered to be one ESAL pass. The unpaved roads 

tested with this facility are supposed to support 10,000 ESAL passes, with a maximum rutting of 75 

mm regarding the FHWA (2008) standard. Therefore, 10,000 cycles are applied on the tested 

platform. 

 
Figure 2.2-2: Test setup. 

2.2.3. Traffic load test 

The apparatus Simulator Accelerator of Traffic (SAT) was designed to apply accelerated heavy traffic 

load on different road structures. The mechanical design of the apparatus is complicated because 

of the load magnitude and the allowable displacement of 100 – 75 mm in some tested structure 

cases. Regarding the mechanical concept, two chains carry the tire axle movement, and an electrical 

motor controls their movement. The motor velocity can be controlled by a velocity controller. The 

main piece of the machine is the central metallic beam of 3.3 m in length, which carries the two 

chains. In order to apply unidirectional traffic load, the central beam is raised up when the tire drops 

in the opposite direction, the beam is put down again and applies the load on the main load direction. 

This option can be deactivated, when bidirectional traffic is requested. The load is applied on the tire 

by the apparatus self-weight, and then controlled by two air pneumatic jacks (Figure 2.2-3). The main 

beam is attached to a deformable parallelogram in order to apply the same force at every tire 

position, and to insure the application of the same load magnitude on the platform surface even after 

excessive rut development. The total circulated platform length is 2.5 m, with an effective length of 

2 m far from the contact impact zone. Another central beam configuration can increase the circulated 

platform length to 4.5 m. The overall dimensions of the SAT are 5 m in length, 1.8 m large and 3.2 m 

in height. The total weight of the apparatus is 8,400 kg. The apparatus reduced dimensions and 

weight facilitates the mobility of the machine in the laboratory or even on site.  
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The SAT can apply load on a platform placed in a geotechnical box with a specific altitude, or even 

apply load with a zero altitude platform, due to its adjustable support.  

 
Figure 2.2-3: SAT plan. 

The principal parameters of the SAT can be adjusted depending on the application. Table 2.2-1 

resumes its main characteristics. Noting that the SAT was firstly designed for the specified 

application of the unpaved roads, as for the reduced dimension regarding the effective circulated 

length it aims at reducing the subgrade and base course preparation and installation. Moreover, all 

concepts that resulted in the control of the load are applied on the unpaved road surfaces even after 

the excessive rut development.   

Table 2.2-1: The SAT facility principal characteristics. 

Parameter Selection 

Mobile / fixed Mobile / can be used for elevated platform 

Linear / nonlinear(circular, elliptical) Linear 

Uni / bi-directional Both 

Number of axles 1 

Field site/fixed site Both 

Roads/airfields Roads 

Load range 
28 kN and more / can increase depending on 

the application 

Tire details 

Single filled Tire- L = 210 mm, D=821 mm, 

W=86 kg 

Can be modified for duel Tires configuration 

Speed range 
2-10 km/h / Variable depending on the 

application 

Suspension 
Yes, can be stopped in a specific position, with 

load application 

Maximum vertical displacement 100 mm 
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Figure 2.2-4: SAT placed over the tested platform. 

The specifications of the load were modified and adapted to this application. In fact, the load 

magnitude was determined based on the tire contact area in order to have a resulting contact 

pressure of about 560 kPa. The tire contact area was measured using the simple method of colour 

application as seen in Figure 2.2-5. The result showed a square central area with a dimension of 

180 mm, completed with two arcs at the borders with an area of 0.042994 m2. The minimum load 

that can SAT can applied under its own weight is 28 kN, which results in a contact pressure of 

650 kPa > 560 kPa applied above with the plate load test. The Traffic circulation velocity was fixed 

for 4 km/h. The applied load is bidirectional and the load is being applied until the maximum rut depth 

is reached.   

650 kPa  

Figure 2.2-5: Tire contact area. 

A plate load test was performed on the 2 m non-circulated part of the platform in order to compare 

the load application effect. The used plate in this test was not a circular plate but a plate with the 

same measured tire contact area (Figure 2.2-6). The applied load diagram was the same as the 

plate load test described above but with a maximum of 28 kN (Figure 2.2-1(a)), to compare the 
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results of the Traffic circulation and the plate load tests. This platform was instrumented in two areas, 

the first one is at the middle of the Traffic circulation area and the second one is under the plate load 

test.  

 
Figure 2.2-6: Illustration of the circulation and plate load platform test. 

 Materials  

The unpaved road platform was set up in the laboratory at a large-scale. In fact, the dimensions of 

the box where the platform was placed, were optimised in order to reduce the work related to the 

soil installation and at the same time limit the border’s effects, this was proved later in the 

experimental results. The Figure 2.3-1 illustrates a section of the soil layers constitution and the 

position of the GSY in the plate load test.  

 
Figure 2.3-1: Platform soil layers constitution. 

The tested platform consisted of 600 mm of soft subgrade and a variable base course thickness 

between 350 and 220 mm in the plate load test. The base course thickness was fixed to 220 mm in 

the Traffic circulation load tests. An artificial subgrade was used in order to simulate a soft subgrade 

in the laboratory and to reconstitute for every test the same subgrade properties. 
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2.3.1. Soft subgrade  

Regarding the FHWA (2008) standard a base course reinforcement is necessary when the CBR ratio 

of the subgrade layer is less than 3%, being in mind that the CBR ratio is determined according to 

the ASTM - D4429 standard.  

In order to simulate the same subgrade with the same properties for each prepared laboratory test 

an artificial subgrade was constituted of clay and sand mixture. 

2.3.1.a. Subgrade constitution 

Seven different mixtures were tested to get the mixture constitution that will give a CBR ratio of 2% 

at the right side of the proctor optimum (w > wOPN), within the unsaturated situation. 

Two clay types were tested: the calcium bentonite and the kaolinite. The Hostun sand (HN 34) was 

used in all the mixtures. Three different mixture percentages were tested for the bentonite clay: M2 

(25% Clay, 75% Sand), M3 (30% Clay, 70% of sand), M4 (40% Clay, 60% of sand). 

Moreover, for the kaolinite clay four different mixture percentages were tested for the kaolinite clay: 

M1 (20% Clay, 80% Sand), M2 (25% Clay, 75% Sand), M3 (30% Clay, 70% of sand), M4 (40% Clay, 

60% of sand). For every mixture a particle size distribution was drawn to verify that the two materials 

can be well mixed. In fact, we have the same particle distribution curves for different specimens 

taken from the same mixture percentage, this shows that the two soil materials can be well mixed 

(Figure 2.3-2). Furthermore. It is shown that the percentage of fine particles is close to the 

percentage of clay added. However, because of the chemical reaction between the sand particles 

and the clay not all the fine clay particles could pass the 0.1 mm diameter sieve. Actually, to 

distinguish more clearly this portion of particles diameters a wet particle size distribution is needed.  

 

(a) 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI027/these.pdf 
© [N. Khoueiry], [2020], INSA Lyon, tous droits réservés



Materials  64 | P a g e  

  

Figure 2.3-2: (a) Particles size distribution of the used Hostun sand, (b) Particles size distribution of the mixture 20% 

kaolinite Clay and 80% Hostun sand, (c) Particles size distribution of the mixture 40% kaolinite Clay and 60% Hostun 

sand. 

This artificial soil mixture will be used to physically simulate the soft subgrade in the laboratory, under 

which the reinforced granular platform will be placed. A CBR value less than 3% is needed. On site, 

the groundwater level is usually under the first superficial meter. Therefore, to simulate in a better 

way the site conditions an unsaturated soil is needed. Moreover, to avoid the saturation of the soil 

under the load and the accumulation of deformation an unsaturated soil far from the saturation water 

with a CBR of 2% is needed.  

For each mixture combination, the Proctor and CBR curves were drawn (Figure 2.2-2, Figure 2.2-3). 

Based on the curves, the water content over which the mixture was compacted to get a CBR of 2% 

was determined. 

 

(b) 

 

(c) 
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Figure 2.3-3: Calcium bentonite and Hostun sand mixtures proctor and CBR curves. 

Figure 2.3-3 illustrates the proctor and CBR curves of the three mixtures of calcium bentonite clay 

and hostun sand. It shows that the water content value that gives the maximum dry density 

decreases with the decreasing percentage of the clay in the mixture. The maximum dry density and 

the maximum CBR reached are made of 30% clay in the mixture.  

More importantly, the curves show that in order to reach a CBR of 2% bentonite clay and sand 

mixtures the percentage of saturation needed is around 95% and 90% which is a high number. In 

fact, with this percentage of saturation the risk of reaching 100% of saturation during the loading 

does exist, and this could change the behaviour of the soil. Therefore, the type of clay was changed 

and the kaolinite clay was used, which has a water reactivity lower than the bentonite clay.  

Figure 2.3-4 illustrates the proctor and CBR curves of the four kaolinite and hostun sand mixtures. 

As for the bentonite mixtures, the clay percentage of 30% presents a very high dry density, and the 

maximum reached density decreases for the 40% and 25% of clay percentage.  

The comparision between the bentonite and koalinte mixture proctor curves, shows that the optimum 

proctor for the bentonite is reached at around 18% of water content, as for the koalinite the optimum 

proctor is reached at around 11% of water content.  
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Figure 2.3-4: Kaolinite and Hostun sand mixtures proctor and CBR curves. 

Moreover, it is shown that the percentage of saturation at which the mixture CBR is 2% decreases 

with the clay percentage decrease (Table 2.3-1). Consequently, the mixture M1 ( 20% clay and 80% 

sand) with the kaolinite clay was chosen to simulate the subgrade soil, since the degree of saturation 

of this mixture at the point giving a CBR of 2% is 75%, far enough from the 100% of saturation.   

Table 2.3-1 : Mixtures degree of saturation at the water content giving a CBR of 2% under proctor compaction conditions. 

Mixture 
20% Clay 80% 

Sand 

25% Clay 75% 

Sand 

30% Clay 70% 

Sand 

40% Clay 60% 

Sand 

Kaolinite Sr (CBR 2%) = 75% Sr (CBR 2%) = 80% Sr (CBR 2%) = 90% Sr (CBR 2%) = 95% 

Calcium 

Bentonite 
--- Sr (CBR 2%) = 90% Sr (CBR 2%) = 95% Sr (CBR 2%) = 95% 

The used mixture of 20% of kaolinite clay and 80% of Hostun sand was compacted at 11.5% of water 

content to give a CBR ratio of 2% and a dry density of 18.5 kN/m3. The challenge was the preparation 

and compaction procedure in the large laboratory box in order to have a homogenous soil layer with 

the same CBR value of 2% over the depth and the area. The developed installation procedure will 

be explained in the next section.   
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2.3.1.b. Subgrade characterization 

The triaxial specimens were taken from the installed large-scale subgrade in the laboratory box. A 

cylindrical corer was used to withdraw the specimens from the prepared subgrade. A specimen has 

a diameter of 35 mm and a length of 70 mm (Figure 2.3-5). On one hand, an undrained 

unconsolidated test was performed on an unsaturated specimen. In fact, the soil was under the same 

conditions as in the large-scale test. One the hand, three tests with three different confinement 

stresses were performed (50 kPa, 100 kPa and 200 kPa).  

 
Figure 2.3-5: Triaxial prepared specimens. 

These tests give apparent cohesion (CUU) and friction angle (φUU) since they are performed on an 

unsaturated soil. These cohesions and frictions have no physical meaning, but they were used to 

calibrate the dry soil parameters applied in the numerical simulations in Chapter 4.  

Figure 2.3-6 shows the deviatoric stress versus the axial strain, as for Figure 2.3-7 it shows the 

volumetric strain versus the axial strain. Figure 2.3-7 was used later in the numerical Chapter to 

calibrate the soft soil dilatancy properties. With Mohr-Coulomb method in the total stress analysis, 

we can determine an apparent cohesion of 19 kPa and an apparent friction of 28°. 

 
Figure 2.3-6: Deviatoric stress versus the axial strain. 
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Figure 2.3-7: Volumetric strain versus the axial strain. 

Moreover, a cyclic triaxial test was executed under a confining stress of 100 kPa and the cycles were 

performed between a deviatoric stress of 0 and 150 kPa. Ten cycles were performed while the 

shearing test continued until the soil plasticity occurred. The results of this test were used to 

determine the soft soil reloading stiffness modulus in order to calibrate the numerical soft soil that 

used a constitutive model in Chapter 4.  

The curve in Figure 2.3-8 shows a reloading stiffness modulus of about 60 MPa. In addition, it is 

observed according to the graph that this modulus does not change between the first and the tenth 

cycle.  

 
Figure 2.3-8: Deviatoric stress versus the axial strain under cyclic loading. 
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2.3.2. Base course 

2.3.2.a. Base course identification 

The aggregates used in these tests are non-treated aggregates with particle diameters ranging 

between 0 and 31.5 mm (GNT 0/31.5), which is the most commonly used material for road 

constructions in France. 

 

Figure 2.3-9 (a) illustrates the aggregates size distribution. Based on the curve the Cu and Cc factors 

are respectively equal to 20 and 5. This soil is classified as a GP (poorly graded gravel) soil regarding 

the USCS standard (Cu = 11, Cc = 4.45) and the LPC standard. 

The CBR required for the base course layer is 20% regarding the FHWA (2008) standard. Figure 

2.3-9 (b) illustrates the proctor and CBR curves of the aggregates. Since the plate vibrator used to 

compact this layer is not qualified for the compaction of this material, we will test on a large scale 

the compaction of the aggregates at 4% of water content and fix the compaction protocol that will 

give us the 20% CBR. 

 

 

(a) 

 

(b) 

Figure 2.3-9: (a) GNT particles size distribution, (b) The GNT Proctor and CBR curves. 
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2.3.2.b. Base course characterization 

A large shear box test was performed, in order to characterize the aggregates and determine its 

friction angle. The shear box is composed of a large lower box of 450 mm in length, 200 mm in large 

and 200 mm in depth and of a smaller upper box of 200 mm in length, 200 mm in large and 180 mm 

in depth (Figure 2.3-10). The geometrical advantage of this box is that the shear plane does not 

change with the displacement. The shearing was performed under three normal stresses: 66 kPa, 

120 kPa and 200 kPa. This same box was used to characterize the aggregates and to characterize 

the base course and the geogrid interface. For the shearing, the upper box is fixed and the 

displacement is applied on the lower box with a velocity of 1 mm/min. The aggregates were placed 

in the box with a water content of 4% and compacted in six layers.  The Proctor hammer was used 

for the compaction, with two drops per position.  This compaction protocol was fixed so we have the 

same soil with the same density around 17 kN/m3 for each test.  

 
Figure 2.3-10: Configuration of the large shear box for soil test. 

Figure 2.3-11 (b) shows the shear stress versus the horizontal displacement. The analysis of these 

results gives a friction angle of 37° and a cohesion of 0 kPa (Figure 2.3-11(a)). The curves given 

by this test were used to calibrate the base course parameters in the numerical simulations. 

 

(a) 
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(b) 

Figure 2.3-11: (a) Maximum shear versus the normal stress of the reinforced and unreinforced interface, 

(b) Shear stress versus horizontal displacement at different normal stresses. 

Moreover, a cyclic load was performed to investigate the aggregates response to the unloading-

reloading under 200 kPa of normal stress. Five cycles were performed when 100 kPa of shear stress 

was reached, and then five more cycles were performed at 135 kPa of shear stress, and an additional 

five were performed as well when the plasticity was reached at 9.5 mm of displacement.  

It can be seen in the Figure 2.3-12 that the reloading stiffness is close to the initial loading stiffness 

with a high rigidity. However, the comparison between the curves without cycles and the curves with 

cycles demonstrates that the cycles reduce the maximum shear stress from 150 kPa to 135 kPa. 

Furthermore, in this Chapter a comparison between sgravel and gravel reinforced with geosynthetic 

shear plane will be discussed under the same shear box test protocol.  

 
Figure 2.3-12: Shear stress versus horizontal displacement for cyclic solicitation at a normal stress of 200 kPa. 
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2.3.3. GSYs 

A layer of a light non-woven geotextile (17 g/m2) was placed under the geogrid layer to separate the 

soil layers, and prevent the base course pollution by the soft soil. Two different GSY manufacturing 

types were tested: a knitted coated geogrid and an extruded geogrid. Moreover, in order to 

investigate the effect of the geogrid stiffness two different knotted coated geogrid were tested.  

Table 2.3-2 : Geogrid properties. 

Name Type 

Stiffness 

at 2% of strain 

(kN/m) 

Rectangular 

aperture 

(mm) 

Ultimate tension 

strength (kN/m) 

PD* TD* 

GSY 1 
Knitted coated 

 - PET* fibres- 
1,000 40 100 100 

GSY 2 
Knitted coated 

 - PVA* fibres- 
2,500 40 200 200 

Name Type 
Radial stiffness at 

2% of strain (kN/m) 

Hexagon 

aperture 

(mm) 

Nodes stability  

 (kg-cm/°) 

GSY 3 

Extruded 

geogrid 

-PP* fibres- 

360 80 6.1 

*PET: Polyester, *PP: Polypropylene, *PVA: Polyvinyl Alcohol 

*PD: Production Direction, *TD: Transversal Direction 

The tested GSY 1 and 2 products have a special manufacturing process (Figure 2.3-16). In fact, the 

bands are joined with a special knitting technology that keeps it in a straight position. These straight 

bands initial positions allow the development of tension in the product after a relatively small strain, 

which is not the case when the initial manufacturing bands state present some curves (Figure 

2.3-13). The product apertures have a square shape, with a dimension of 40 mm. The maximum 

tension strength is equal in both directions. More importantly, the manufacturing technology allows 

the implementation of fibre optics in the product bands during the production. 

 
Figure 2.3-13: Geometry of the Geosynthetic GSY 1. 
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The stiffness of this product changes by changing the yarns material (PET, PVA…) or the number 

of yarns per band.  

However, the nodes’ connections and stabilities are not characteristics of this product. In fact, the 

bands in both directions are connected using connection yarns. 

Figure 2.3-14 presents the tensile curves of the GSY 1 and the GSY 2. It shows that the GSY 2 is 

about twice the stiffness of the GSY 1. A cyclic tension test was performed on the GSY 1 with a load 

of 20 kN/m. Figure 2.3-15 shows that the GSY 1 presents under tension an imperfect elastic 

behaviour. In fact, the first loading and unloading cycle shows 0.7% plastic strain and 2.6% elastic 

strain. This plastic strain can be due to the yarns straightening and the structures’ geometry. After a 

1,000 cycle, the unloaded strain becomes equal to 3.13% due to the material damage.  

 
Figure 2.3-14: GSY 1 and GSY 2 tensile curves. 

 
Figure 2.3-15: GSY 1 tensile curve under cyclic load. 

The GSY 3 is an extruded polypropylene geogrid, with a hexagonal structure forming a series of 

triangular apertures (Figure 2.3-17). This geogrid is tested under a radial tensile load and the special 
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extruded manufacturing of this product gives a stability to the nodes. In fact, integral junctions are 

formed during the drawing of punched sheets, and the nodes’ stabilities are measured and given by 

the nodes’ stabilities. In the analytical method given by Giroud & Han (2004) to design these 

structures the geosynthetic effect is taken by considering the node’s stability. In literature, many 

studies tested this geogrid type with different radial stiffness and nodes ratio stabilities and showed 

the efficiency in increasing the platform bearing stability with the confinement mechanism (Gabr, 

2001; Qian et al. 2013 & 2011; al. Farhan et al., 2012; Jersey et al., 2012; Tang et al., 2015).  

 
Figure 2.3-16: Installation of the GSY 1 and aggregates. 

 
Figure 2.3-17: Installation of the GSY 3 and aggregates. 

2.3.4. Geosynthetic / Base course interface 

characterization 

The same large shear box presented in section 2.3.2.b, and used to characterize the aggregates, 

was used to characterize the aggregate and geosynthetic interface. At the interface between the 

upper box and the lower box, the geosynthetic GSY 1 was placed and fixed at the front edge of the 

box (Figure 2.3-18).  
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Figure 2.3-18: Configuration of the large shear box for GSY tests. 

The aggregates were placed in the box using the same protocol as the tests without reinforcement 

in order to have the same density of material. Three different tests with three different normal 

stresses were performed (66 kPa, 125 kPa and 200 kPa). The shear stress versus the horizontal 

displacement for the reinforced and unreinforced tests are plotted in Figure 2.3-19.  

The GSY 1 geogrid does not affect the curve shape and the elastic part. In fact, this part is mostly 

dominated by the aggregates-aggregates interface behaviour which is interlocked in the geogrid 

apertures. However, the geogrid at the interface increased the maximum shear strength of the 

interface. In fact, the maximum shear strength at 66 kPa of normal stress increases from 55 kPa to 

75 kPa with the geogrid. Figure 2.3-20 shows the intrinsic curves of the reinforced and unreinforced 

interface. The unreinforced interface demonstrates no cohesion on the contrary to the reinforced 

interface that demonstrates an apparent cohesion of 15 kPa. Moreover, the reinforcements increase 

the friction’s interface from 37° to 39°.  

 
Figure 2.3-19: Shear stress versus horizontal displacement at different normal stresses for the reinforced and 

unreinforced interface. 
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Figure 2.3-20: Maximum shear stress versus the normal stress of the reinforced and unreinforced interface. 

Furthermore, a cyclic test was performed on the interface under 200 kPa of normal stress. Five 

cycles were performed when 135 kPa of deviatoric stress was reached, and 15 additional cycles 

were performed in the plastic state at 9 mm of displacement.  Figure 2.3-21 shows that the reloading 

stiffness is close to the initial loading stiffness and it shows a high rigidity. It is seen in the graph that 

the cycles reduce the maximum shear strength from 170 to 160 kPa. However, compared to the 

unreinforced cyclic load test, the reinforcement reduces the damage of the interface due to the 

cycles.  

 
Figure 2.3-21: Shear stress versus horizontal displacement for cyclic solicitation at a normal stress of 200 kPa with 

reinforcement. 

 

 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI027/these.pdf 
© [N. Khoueiry], [2020], INSA Lyon, tous droits réservés



Installation procedure  77 | P a g e  

  

 Installation procedure 

A special grout mixer (EIRICH R08) was used to mix the two soil materials that constitute the 

subgrade soil at 11.5% of water content. To fill the 600 mm of the large box where the cyclic plate 

load tests were performed, 4 Tonnes of dry soil were mixed per steps of 65 kg, the maximum mixer 

capacity.  

The soil compaction was performed using a plate compactor (DQ-0139). Moreover, the aggregate 

installation was made using a mini excavator (K65 V2) to simulate better the real site installation.  

The main aim in this stage was to find a good installation protocol in order to obtain a homogeneous 

layer in depth and over the whole area with a CBR ratio of 2% for the soft subgrade and 20% for the 

fill material. Therefore, a series of installation tests were presented, and for each test, the quality 

control tests were performed to control the installed soil properties and homogeneity. The quality 

control tests performed will be presented in the section bellow.  

  

 

Figure 2.4-1: The mixer, plate compactor and mini excavator used for the soil installation. 

 A final installation protocol was fixed, and it was applied on all the steps of each test preparation. 

The same protocol was used for the preparation of the platform’s plate load test and the Traffic 

circulation load test, but with different soil quantities per layer since the platform dimensions are 

different. This protocol is presented with all its details in Table 2.4-1. The instrumentation illustrated 

in this table is specific for the plate load test. 
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Table 2.4-1 : Installation Protocol details. 

Stage Stage description Compaction Figure 

1 
Anti-vibration mats were placed at the bottom of the 

box to limit the vibration. 
-- 

 

2 

At first an earth pressure sensor was placed at the 

base. 

The first 1400 kg in the plate load test platform 

preparation (3800 kg in the case of the Traffic test 

platform preparation) of subgrade that correspond 

to 200 mm were not compacted since they will be 

subjected to the compaction of the layers above. 

No compaction 

 

3 

One more earth pressure sensor was placed at the 

surface centre. In addition, 700 kg in the plate load 

test platform preparation (1900 kg in the case of 

the Traffic test platform preparation) that 

correspond to 100 mm of subgrade were placed 

and compacted. 

One compactor pass 
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4 

An additional 100 mm (700 kg in the plate load test 

platform preparation and1900 kg in the case of the 

Traffic test platform preparation) of subgrade was 

placed and compacted. 

One compactor pass 

 

5 

One more earth pressure cell was placed at the 

centre of the surface. 

An additional 100 mm (700 kg in the plate load test 

platform preparation and1900 kg in the case of the 

Traffic test platform preparation) of subgrade was 

placed and compacted. 

One compactor pass 

 

6 

An extra 100 mm of subgrade was placed without 

any compaction since it will be subjected to the 

base course compaction. Moreover, 5 earth 

pressure and settlement sensors were placed at 

the surface. At this stage the non woven geotextile 

and the geogrid are placed. 

No compaction 
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7 

800 kg plate load test platform preparation (2200 

kg in the case of the Traffic test platform 

preparation) of dry base course at 4% of water 

content were  placed and compacted with four 

compactor passes. This quantity corresponds to 

110 mm of layer thickness. 

Four compactor passes 

 

8 

An additional 800 kg in the plate load test platform 

preparation (2200 kg in the case of the Traffic test 

platform preparation) was placed and compacted 

with 4 compactor passes. 

Four compactor passes 

 

Earth pressure cell 

Settlement sensor 
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 Quality control tests 

In order to compare the effect of different GSY reinforcement in this test, the variation in the soils 

properties is not allowed. Therefore, a series of quality control tests was performed on each soil layer 

prepared for testing. The quality control tests consist of a water content profile, a shear vane test, a 

static test and a dynamic penetrometer test (Figure 2.5-1).  

2.5.1. The water content profile 

The water content profile along the subgrade depth was plotted before and after each test to make 

sure that the subgrade water content does not change during the test and to make sure that there is 

no water migration from the upper layer to the bottom layer. The results will be presented in the next 

sections. However, it shows that the subgrade water content remains constant during the test and 

that there is no water migration.  

 

(a) 

 

(b) 

 

(c) 

Figure 2.5-1: Instrument used for the quality control tests : (a) Shear vane test instrument, (b) Static penetrometer 

instrument, (c) Dynamic penetrometer instrument. 

2.5.2. Shear vane test 

The shear vane test consists of introducing a vane in the soil, and applying a rotation moment on it 

to establish a relation between the moment applied and the soil shear resistance.  

The shear vane test was used to compare the maximum shear values along the subgrade depth and 

to verify the homogeneity of the soil. In fact, in a fully saturated clay soil the maximum shear value 

correspond to the undrained cohesion Su.  

However, since it is not the case in the subgrade used for this test, the maximum shear value is not 

the soil characterisation value; it is used only for comparison.  
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Two values are determined at the same vane position: 

The maximum shear resistance, which is the value determined at the first applied rotation moment: 

τu 

The residual shear resistance, which is the value determined after 25 rotation tours: τr 

The value used for the comparison at different vane positions is the soil sensibility, which is the ratio 

between τu and τr. 

 

2.5.3. Static penetrometer test 

The static penetrometer was used by in-situ to determine the penetration resistance of the soil. A 

lightweight rapidity measurement instrument for in-depth resistance to penetration was used. The 

penetration resistance is indicated in a dial in terms of in-situ CBR (California Bearing Ratio) value 

and the cone index value (CI). The CBR value range in the dial is between 0% and 15%. The CI 

value range is between 0 and 300 with a 60 division in a linear scale.  

The test consists of applying a force onto the instrument handles until a steady downward movement 

occurs into the soil layer. The instrument should stay in a perfectly vertical position. During the 

penetration at a steady rate, the cone is flush with the surface of the test area and the dial indicates 

the corresponding CI and CBR values. The measurements are taken all over the depth with an 

interval of 75 mm. This test was used only in the subgrade soil, since the penetration into the well-

compacted fill material is not possible with this instrument. Therefore, a dynamic penetrometer was 

used to characterise the base course and the subgrade layer.  

2.5.4. Dynamic penetrometer test 

The TRRL DCP (Dynamic Cone Penetrometer A 2465) was used in this application. It is a lightweight 

instrument designed for the rapid in-situ measurement of the structural properties for existing road 

pavements constructed with unbounded materials.  

The test consists of introducing a cone into the soil by a weight drop. Under each weight drop the 

cone penetration is noted and a correlation between the penetration and the CBR ratio is done. The 

used instrument has an 8 kg weight dropping through a height of 575 mm and a 60° cone having a 

diameter of 20 mm.  

The dynamic penetrometer test was performed in the subgrade and the base course layer, and the 

results were as far as correlated to the CBR value using Kleyn and Van Heerden formula given by 

the manufacturer technical file: 

Log10(CBR)=2.632-1.28 Log10(DCP) Eq. 2.5-1 

DCP= depression per blow (mm/blow). 

By comparing the results of the static and the dynamic penetrometers in the subgrade layer, we have 

the same CBR correlated value, which confirmed the correlation reliability. 
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 Instrumentation 

The aim of these tests is to improve the knowledge regarding the mechanisms developed at the 

base course and soft subgrade interface with geosynthetic reinforcement. 

Based on that, the test was instrumented with Earth Pressure Cells (EPC), settlement sensors (S), 

displacement laser sensors, inclination sensors (I), and fibre optic sensors.  

 
Figure 2.6-1: Platform instrumentation in the plate load test, view from above. 

 
Figure 2.6-2: Sensors installation plan for the plate load test, a section. 

In order to monitor the vertical stress distribution on the subgrade surface of the plate load test, five 

earth pressure cells were placed in  different locations from the plate load centre (Figure 2.6-1 and 

Figure 2.6-2). On one hand, earth pressure cells were placed in different depth positions under the 

plate load centre. On the other hand, five settlement sensors were placed in different positions at 
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the subgrade surface to monitor the surface displacement during cycles. In addition, a fibre optic 

sensor was placed at the centre under the plate load in the geosynthetic in order to measure its 

strain.  

Moreover, inclination sensors were placed on the earth pressure cells at the subgrade surface in 

order to monitor the sensors horizontality and check the reliability of the measured vertical stresses 

during the cycles.   

In the traffic load test, two areas were instrumented: the area under the plate load test and the area 

under the traffic test. The same sensors repartition was considered in the two areas. For additional 

precision two earth pressure cells were added at 300 mm and 600 mm from the centre (Figure 2.6-3, 

Figure 2.6-4 and Figure 2.6-5). In addition, two fibre optic sensors were added in the traffic circulation 

load area in the GSY, and two more earth pressure cells were placed around the circulation line in 

order to control the load magnitude along the circulation line.  

 

Figure 2.6-3: Platform instrumentation plan in the traffic load test, view from above. 
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Figure 2.6-4: Sensors installation plan in the Traffic load test, a section. 

A load sensor was used on the plate to control the load magnitude. Moreover, a laser sensor was 

used to monitor the plate displacement during the test, and to draw the settlement curve at the 

platform surface after the 10,000 cycles. 

 

Figure 2.6-5: Illustration of the sensors installation in the traffic load test. 

2.6.1. Earth pressure cell 

The vertical stress distribution in the subgrade was measured using the earth pressure cells. These 

cells measure the normal stress increment applied on the sensor area filed with oil. In fact, the sensor 

area is composed of two plates welded on the borders and field with oil and connected to a pressure 

sensor. The sensors dimensions are adapted to the application and to the box’s dimensions: 100 mm 

large and 200 mm length. The used sensor pressure ranges between 0-500 kPa with an accuracy 

of ±0.5% of the full scale.  

The sensor output signal measures currently 4-20 mA, it is the most used signal because of its 

technical and economic advantages. Unlike the tension signal, the current signal is not affected by 

the electromagnetic perturbation, nor by the alimentation tension variation or the cable length. The 

sensor alimentation and output signal are combined in the same cables.  

The measurement of the cycles pressure with this kind of sensors is possible as long as the sensor 

is alimented continuously.  

2.6.2. Hydraulic settlement sensor 

The technology of this sensor consists of measuring the displacement based on the measurement 

of the hydraulic pressure variation. The transmitters placed at the same level are connected to each 

other’s in series and connected to a tank placed on a fixed support out of the tested structure. The 

water tank keeps the sensors’ circuits at a saturated state and a constant water pressure. The 

transmitter measures the pressure variation between its position and the tank’s position. When the 

position of the sensor changes the measured pressure changes as well. An electrical cable connects 

each transmitter to the data logger. Like the earth pressure cells, the output signal is about 4-20 mA 
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as for the alimentation and the output, they are combined using the same cable. The transmitters 

have 50 mm diameter and 62 mm height. The measurements range of these sensors is between 0 

and 300 mm with an accuracy of ± 0.014% of the full scale.  

A transmitter was placed at a fixed position near the tank in order to control the variation of the water 

level in the tank, and insure that there are no measurement errors due to the water evaporation. It is 

worth noting that the measurement of the settlement during the cycles with that kind of sensors is 

not possible because of the vibrations’ perturbation.  

 
Fig. 2.6-1: Earth pressure cells and the settlement sensors. 

2.6.3. Inclination sensor 

Inclination sensors were placed at the surface of the earth pressure cells in order to check the 

horizontality of the sensors during the loading and unloading procedure. In fact, two directional 

sensors were used: x direction and y direction. Sensors with small dimensions were used to prevent 

the change of the pressure measurements: 45 mm in length and 22 mm in width. The output signal 

is a current 4-20 mA signal. The alimentation of these sensors is an external alimentation of 24 V. 

The measurements range is between -15 and +15 degrees with an accuracy of ± 0.5°.  

 
Fig. 2.6-2: Inclinometers placed on the earth pressure cells. 

2.6.4. Displacement laser sensor 

The displacement laser sensor was used in order to monitor the plate  and wheel displacements 

over the cycles. This sensor was placed on a fixed bar. The measurements range is between 200 
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mm and 700 mm with an accuracy of ± 0.07% of the full scale. An external generator of 24 V was 

used to aliment the sensors. The tension output signal was connected to the acquisition centre.  

However, the sensor was used to measure the base course surface displacement over the cycles 

and the surface deformation after 10,000 cycles as seen in Figure 2.6-5. 

Moreover, this sensor was used to control the base course thickness. In fact, the subgrade and the 

base course surface elevation after the installation were plotted. 

 
 

 

 

 

 

 

 

 

2.6.5. Data recording equipment 

The sensors data collection and more importantly the optimisation of this system are described in 

this section. In fact, this is a cyclic loading system where an important number of sensors was used 

and it is worth mentioning that the optimisation of the recording data system is important as well.  

Two kinds of data acquisition loggers were used: Data-Taker logger, and Scaime measurements 

acquisition instrument. 

 

 

Figure 2.6-6: Laser sensor installation and measurements. 
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2.6.5.a. Data-Taker logger 

The ST80’s used in this application, are tools to measure and record a wide variety of quantities and 

values. This data logger can measure analogue, digital or serial output signals. In fact, it includes a 

powerful programming language, which allows complex systems to be developed and monitored. 

The limitation of this logger lies at the measurement of continuous values with high frequencies. 

Therefore, this logger was used to measure the static values of settlement given by hydraulic 

settlement sensors, and the static vertical pressures given by earth pressure cells placed in depth in 

the subgrade soil.  

Although, to measure static values with an acquisition time of 1 min, loading and unloading static 

periods were taken between each series of loading. In order to connect all the sensors to the logger 

with five entries, too extensions were needed with 16 entries each.  

The static measurement periods were taken between 100; 200; 300; 400; 500; 1,000; 2,000; 3,000; 

4,000; 5,000; 6,000; 7,000; 8,000; 9,000; 10,000 cycles.  

 

 

Fig. 2.6-3: Data Taker setup and interface. 

2.6.5.b. Scaime measurements acquisition instrument 

The scaime measurements acquisition instrument was used for continuous measurements during 

cycles. In fact, the advantage of this data logger is that it aliments all the channels at the same time 

and it can read continuous output values. This system can be used for different output types; the 

entry modulus should be changed based on the sensor circuits type.  

 
 

Figure 2.6-7: Scaime measurements acquisition setup and interface. 
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The used sensors connected to this logger are the earth pressure cells placed at the subgrade 

surface, the laser sensors and the inclination sensors.  

The logger has an acquisition frequency of 8 Hz > 0.77 Hz of the load application frequency.  

2.6.6. Optical fibre 

Fibre optic sensors were placed in the GSY to measure the strain developed in the reinforcement 

during the loading. The spread sensor technology was used in this application, and the results 

analysis is based on the Retrodiffusion Rayleigh OFDR (Optical Frequency Domain Reflectometry) 

principle. The ODiSI-B optical centre was used to read the measurement values given by the optical 

fibre sensor. The ODiSI-B is able to measure the strain or temperature throughout the length of the 

fibre, and at intervals as low as 0.65 mm with an acquisition frequency of 62.5 Hz. It uses fibre optic 

sensors ranging from 1m to 20m in length.  

  
Fig. 2.6-4: Optical acquisition software. 

 Conclusion 

In this Chapter, the two performed tests were detailed: the devices used, the platform constitution, 

materials preparation, quality control and the instrumentation. In fact, the performed tests were 

presented:  

• The plate load test in the square box using the circular plate, 

• The traffic load test performed using the developed machine SAT and compared to the plate 

load test using a specific plate form, performed in the same prepared platform placed in the 

large box.  

The unpaved road prepared in the laboratory using a specific material was presented. A presentation 

of the material used in the platform and its characterisation was detailed. A special attention was 

given to the developed installation protocol and the quality control tests. A heavy installation was 

used in these tests in order to collect the maximum of useful data and measurements. The 

instrumentation and acquisition systems were detailed in this Chapter as well.  
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The results presentation and analysis of the plate load tests are presented in Chapter 3. The results 

of the traffic load test and its comparison with the plate load performed on the same prepared 

platform are presented in Chapter 4.  

  

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI027/these.pdf 
© [N. Khoueiry], [2020], INSA Lyon, tous droits réservés



 

Introduction 91 |P a g e  

  
 

 Plate Load Test  

 Introduction 

In Chapter 2, the developed experimental protocol was fully explained. The platform preparation, 

installation and the tests performed to control the layers’ properties were presented as well. 

Moreover, the instrumentation and the data acquisition system were explained.  

As mentioned in the previous Chapter, two types of solicitation were performed in two different 

experimental tests: the plate load test and the circulation load test.  

In this Chapter, the plate load tests results are presented and analysed. The plate load tests were 

performed on an unpaved platform placed in a box of 1.9 m in length, 1.8 m in large and 1.1 m in 

height. A cyclic load was applied on the circular plate with 300 mm of diameter. The load is applied 

using a hydraulic jack with a frequency of 0.77 Hz with a maximum applied load magnitude of 40 kN 

resulting in a contact vertical pressure of 560 kPa.  

Ten tests were performed under these loading conditions: with three different geogrid types, two 

base course thicknesses (350 mm and 220 mm), and one test with the reinforcement placed at the 

base course middle depth.  

The results are presented in terms of developed vertical stresses at the subgrade surface and in the 

subgrade depth, the subgrade surface settlements, the base course surface settlements and the 

strain developed in the geogrid. Moreover, the aggregate damage under the applied 10,000 cycles 

was tested and analysed. In addition, the GSY damage under the plate load and the installation was 

tested and characterised. The experimental results were compared to the calculated base course 

thickness determined from the empirical and analytical design methods.  

 Performed tests 

The base course thickness effect was studied by performing tests with reinforced and unreinforced 

platforms and two base course thicknesses (350 and 220 mm). In addition, the geosynthetic types 

were tested: two coated knitted geogrids with different stiffness’ the GSY 1 and the GSY 2 (1,000 

kN/m and 2,500 kN/m at 2% of strain) and an extruded triangular aperture geogrid the GSY 3. The 

main aim of these tests is to compare the geogrids’ platform improvement effect. In order to allow 

the comparison, the test repeatability should be insured. Therefore, two identical tests were 

performed for the unreinforced platform, and for the reinforced platform with the GSY 1 and GSY 3.  
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Table 3.2-1: Performed tests details. 

Test 

number 

Base course 

thickness (mm) 
Reinforcement GSY position Test status 

Test 1 350 Unreinforced  Reference test 

Test 2 350 GSY1 Interface 
GSY improvement 

test 

Test 3 220 Unreinforced  Reference test 

Test 4 220 Unreinforced  Repeatability test 

Test 5 220 GSY 1 Interface 
GSY improvement 

test 

Test 6 220 GSY 1 Interface Repeatability test 

Test 7 220 GSY 3 Interface Reference test 

Test 8 220 GSY 3 Interface Repeatability test 

Test 9 220 GSY 1 
At the base course 

middle depth 
 

Test 10 220 GSY 2 Interface  

The platform thickness was controlled using the laser sensor; however, the subgrade elevation and 

the base course elevation were measured during the installation. In addition, the settlement sensors 

measured the subgrade settlement using the base course installation, which allowed the base course 

thickness control. The measured thickness’ results are as follow:  

H test 4 = 230 mm, H test 6 = 233 mm, H test 7 = 221 mm, H test 8 = 222 mm, H test 9 = 225 mm,  

H test 10 = 221 mm. These values show that it is not possible to control and to have the exact base 

course thickness for each test, the thickness varies between 220 ± 10 mm.  

 Quality control tests results 

The quality control tests are performed on each prepared platform, in order to make sure that for 

each performed test the soil layers have the same properties and are under the same conditions. 

These tests were detailed in Chapter 2; however, in this section, the results of the performed quality 

control tests are presented: 

3.3.1.a. Water content 

The water content was measured in depth for each prepared subgrade. Figure 3.3-1 (a) shows the 

water content profile before and after the test was performed. The profiles show that the water 

content in depth varies between 11% and 12%. In addition, it shows that there are no water variation 

or migration in depth before and after the test. In fact, the conditions of the subgrade water content 

are constant during the test.  

Figure 3.3-1 (b) shows a cloud of water content points over the subgrade depth for each prepared 

layer. It shows a cloud of points between 10.5% and 12%, so the water content of the soil varies in 

an acceptable range.  
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(a) 

 

(b) 

Figure 3.3-1: (a) Water content profile before and after the test for the reinforced test 6, (b) Cloud of water content points 

of all the performed tests before the test. 

3.3.1.b. Shear vane test 

The shear vane test is usually performed in a saturated soil to determine the undrained cohesion 

(Cu). In this application, the prepared subgrade was an unsaturated soil. However, the shear van 

test was performed in order to have comparison values. The soil sensibility St that is the ratio 

between τu and τr was used to compare in depth and between the prepared platform the soil 

homogeneity.  

Figure 3.3-2 (a) shows the St profile in depth in two different positions for the reinforced  

(GSY 1) and unreinforced platforms with 350 mm of base course thickness tests. The graph shows 

a homogeneity over the subgrade depth and between the different positions. In fact, a concentration 

of the soil sensibility values (St) is between 4 and 6. It shows a consistency between the values for 

the two prepared platforms, which verifies the repeatability of the same installation protocol.  

Figure 3.3-2 (b) shows the St cloud of points over the depth of each prepared platform. The graph 

shows a soil sensibility concentration between 4 and 6 as in the Figure 3.3-2 (a). Based on the results 

of the shear vane test and the soil sensibility comparison, the soil homogeneity was verified over the 

depth and in the area, and it was the main characteristic to fix the right installation and compaction 

protocol.    
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(a) 

 

(b) 

Figure 3.3-2: (a) St profile in two different positions for the Test 1 and Test 2, (b) Cloud of St points of all the performed 

tests. 

3.3.1.c. Static penetrometer test 

The static penetrometer was used too in the subgrade soil to determine the cone index, which is 

correlated to the CBR (%) by the apparatus manufactural. Figure 3.3-3 (a) shows the profile in depth 

with regard to the cone index and the CBR (%). 

 

(a) 

 

(b) 

Figure 3.3-3: (a) The CI/CBR (%) profile in two different positions for the Test 1 and Test 2, (b) Cloud of the CI/CBR (%) 

points of all the performed tests. 
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Figure 3.3-3 (a) shows the CI/CBR (%) profile in depth for the reinforced (GSY 1) and the 

unreinforced platforms 350 mm base course thickness tests. The profile shows homogeneous soil 

from 200 mm in depth with a CBR between 1% and 2%. At the surface a null CBR is seen, which is 

because the static penetrometer is performed before the base course installation, and in the 

subgrade compaction protocol the last 100 mm are not compacted since they will be subjected to 

the base course compaction.  

Figure 3.3-3 (b) shows the CI/CBR (%) profile in depth of all the prepared platforms. It shows a CBR 

concentration between 1% and 2% from 200 mm in depth, as for the Figure 3.3-3 (a), the CBR at 

the surface is very low because of the compaction procedure.  

3.3.1.d. Dynamic penetrometer test 

 

(a) 

 

(b) 

Figure 3.3-4: (a) CBR (%) profile in two different positions for the Test 1 and Test 2 with H = 350 mm,  before the base 

course installation, (b) CBR (%) profile in two different positions for the Test 1 and Test 2 with H = 350 mm, after the 

base course installation. 

The dynamic cone penetrometer was performed on the subgrade soil before the base course 

installation and after the base course installation in order to control the base course and the subgrade 

CBR (%). In fact, the results were correlated with the CBR (%) based on formulas given by the 

manufactural, and detailed in Chapter 2.  

Figure 3.3-4 shows the dynamic penetrometer tests performed on the prepared reinforced and 

unreinforced platforms with 350 mm of base course thickness. Figure 3.3-4 (a) shows the CBR profile 

before the base course installation and Figure 3.3-4 (b) shows it after the installation and with the 

base course CBR values. 

Figure 3.3-4 (a) shows the variation of the base course between 1% and 2% as seen before in the 

graph given by the static penetrometer Figure 3.3-3 (a), which confirms the CBR correlation reliability 

in both static and dynamic penetrometers. 
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Figure 3.3-4 (b) shows the base course CBR between 0 and 350 mm in depth. At the base course 

surface, the CBR value was about 5% due the soil repulsion on the surface. However, more in depth 

the CBR varies between 10% and 15% and it reaches 20% on some of the points. The CBR is at 

approximately 2% at the subgrade depth.  

 

(a) 

 

(b) 

Figure 3.3-5: (a) CBR (%) profile in two different positions for the Test 3 and Test 5 with H = 220 mm,  before the base 

course installation, (b) CBR (%) profile in two different positions for the Test 3 and Test 5 with H = 220 mm, after the 

base course installation. 

Figure 3.3-5 show the dynamic penetrometer tests performed on the prepared reinforced (GSY 1) 

and unreinforced platforms with 220 mm of base course thickness. Figure 3.3-5 (a) shows the CBR 

profile before the base course installation, and Figure 3.3-5 (b) shows the CBR all platform depth 

after the base course installation. The CBR profile in Figure 3.3-5 (b) shows the base course CBR 

in the first 220 mm in depth, which is between 10% and 15% and reaches 20% on some points. The 

CBR is at approximately 2% at the subgrade depth and this was demonstrated in Figure 3.3-5 (a).  

Figure 3.3-6 show the CBR cloud points for all the prepared platforms with 220 mm of base course 

thickness. Figure 3.3-6 (a) shows the subgrade CBR before the base course installation and Figure 

3.3-6 (b) shows the CBR after the base course installation. The graphs show the superposition of 

the CBR profile, which confirms the soil repeatability for the different performed tests. In addition, it 

shows an average base course CBR of 15% and an average subgrade CBR of 2%.  
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(a) 

 

(b) 

Figure 3.3-6: (a) CBR (%) profile of all the performed tests with 220 mm of base course thickness before the base course 

installation, (b) CBR (%) profile of all the performed tests with 220 mm of base course thickness after the base course 

installation. 

The quality control tests were used first to define an installation and compaction protocol and to 

check that, under the defined protocol, the soil layers are homogeneous in depth and over the area 

and to confirm the soil properties.  

Moreover, they were used to control the soil properties for each prepared platform. The results 

presented in this section showed the efficiency of the installation protocol. In fact, the superposition 

of the results given by the different tests showed the soil properties repeatability and homogeneity.  

 Results and analysis 

During the tests, the subgrade, the base course surface displacement and the vertical stress 

distribution on the subgrade were monitored. The platforms were subjected to 10,000 cycles. The 

rut development at the platform surface is an important criterion in the results analysis, since it is the 

base of the design process. There are two rutting definition, the “elevation rut“ and the “apparent rut“ 

(Cuelho and Perkins, 2009). The rut depth was measured using a laser sensor, and the rut was the 

difference in the elevation of the measurement points over time witch is referred to the “elevation 

rut“.  

 
Figure 3.4-1: Illustration of rut measurement. 
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3.4.1. Measurements verifications 

During the first performed tests, earth pressure cells were placed vertically on the box’s borders in 

order to check the boundary effects. In fact, these sensors measured no stress on the borders during 

the loading, which insured that there are no boundary effects, and specified the box’s dimensions.  

Moreover, in order to check the measurements reliability, a verification of the sensors effect on the 

subgrade behaviour was performed, noting that the sensors have relatively important dimensions. 

Figure 3.4-2 shows the subgrade surface settlement profile after 10,000 cycles. The curve shows no 

great differences between the monitored the unmonitored sides. This shows that the presented 

sensors do not disturb the subgrade behaviour. 

 
Figure 3.4-2: Subgrade settlement profile after 10,000 cycles. 

The stress measurements in a soft soil can present some uncertainties related to the sensor 

movement and rotation during the loading, or to the arch effect that can occur around the earth 

pressure cells. In order to limit these uncertainties inclinometers were placed on the earth pressure 

cells to measure the sensor rotation and its evolution with cycles.  

In fact, the earth pressure cell rotation was monitored for the ones placed at the surface centre, at 

200 mm and 400 mm from the plate centre.  

Figure 3.4-3 presents the sensors inclinations at three surface positions and around two different 

axes (x and y) for two performed tests.  

All curves in both directions show an important inclination at the first loading; this can be due to the 

imperfections in the setup, or to the vertical stress non-uniform distribution on one earth pressure 

cell.  

Figure 3.4-3 (a) and (d) show the central sensor inclination respectively around the x and y directions. 

The curves show a constant inclination of this central sensor around 0°and 2°in both directions. This 

shows that the values of the central sensor correspond to the vertical stress.  

Figure 3.4-3 (b) and (e) show the inclination of the sensor placed at 200 mm from the plate sensor, 

this sensor was placed at the surface, it must curve the zone around the x axe. The inclinometer 

shows an important inclination in both tests that occur in the first cycles. In fact, in the 9th test, the 

inclination around the x axe reaches 11 degrees after 100 cycles and it continues to increase until it 

reaches the upper limit of the inclinometer which is 15 degrees after 2,000 cycles. In the 4th test, the 

inclination reaches 11degrees after 2,000 cycles and increase into a constant value of 14°after 3,000 

cycles. This shows that the values measured by the sensor present uncertainties related to the 
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inclination of the sensor. However, around the y direction the sensor shows a constant value around 

zero degrees after the first cycle. Figure 3.4-3 (c) and (f) show an inclination of 5 degrees during the 

first 1,000 cycles and then a constant value over the cycles around the x direction and a constant 

value in the y-direction. This shows that there are uncertainties related to the sensor inclination 

especially in the x direction and for the sensors placed at 200 mm from the plate’s centre. Therefore, 

the stress measurements are analysed in a qualitative way in the following sections.  

 
Figure 3.4-3: (a) Centre earth pressure cell inclination over the X direction, (b) Earth pressure cell placed at 200 mm from 

the load centre inclination over the X direction, (c) Earth pressure cell placed at 400 mm from the load centre inclination 

over the X direction, (d) Centre earth pressure cell inclination over the Y direction, (e) Earth pressure cell placed at 200 

mm from the load centre inclination over the Y direction, (f) Earth pressure cell placed at 400 mm from the load centre 

inclination over the Y direction. 

3.4.2. Repeatability tests 

Identical tests were performed to check the experimentation repeatability. In fact, in order to compare 

the results the test repeatability should be checked especially in such a large-scale test. Three 

repeatability tests were performed on an unreinforced platform and a reinforced platform with GSY 1 

and GSY 3. The 3rd and the 4th tests are the identical unreinforced tests, however, the 5th and the 6th 
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are the identical reinforced tests with GSY 1 as for  the 7th and the 8th, they are identical reinforced 

with GSY 3. All the repeatability tests were performed with 220 mm of base course thickness. 

The maximum central subgrade settlement evolution with cycles for the identical performed tests is 

shown in Figure 3.4-4. It shows as well close displacement results given by each two identical tests. 

For the first cycle, the unreinforced platforms displacement is 30 mm for both identical tests. The 

displacement at the first cycle for the reinforced with GSY 1 platforms is 24 mm (Test 5) and 26 mm 

(Test 6), with the GSY 3 platforms it is 13 mm (Test 7) and 9 mm (Test 8). It shows close results 

given by the identical tests at this specific point. With these cycles, the settlement evolves in the 

same way for each identical test. Figure 3.4-4 shows the subgrade settlement reduction also given 

by the reinforcement. However, the reinforcement effect will be discussed later in section 3.4.1, in 

this section the focus is only on the repeatability.    

 
Figure 3.4-4: Subgrade surface centre settlement evolution with cycles. 

Figure 3.4-5 below shows the maximum vertical stress at the subgrade surface centre evolution with 

cycles. It shows as well that the maximum stress of the unreinforced platform starts at 300 kPa (Test 

3) and 270 kPa (Test 4) and decreases in the first 100 cycles. It then shows a constant curve of 300 

kPa (Test 3) and 270 kPa (Test 4). The reinforced platform with GSY 1 shows a stress at the first 

cycle of 200 kPa (Test 5 & 6), which increases with the cycles until it reaches a constant value of 

250 kPa (Test 5) and 230 kPa (Test 6). The reinforced platform with GSY 3 shows a stress at the 

first cycle as well of 200 kPa (Test 7 & 8), which increases with the cycles until it reaches a constant 

value of 321 kPa (Test 7) and 350 kPa (Test 8).  

Three different stress categories can be noticed between the three identical cases. More importantly, 

differences between the identical tests are observed in stress terms. This can be due to the 

uncertainties related to the stress measurements. 
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Figure 3.4-5: Subgrade surface centre vertical stress evolution with cycles. 

Figure 3.4-6 presents the stress evolution with settlement at the same position, which is the subgrade 

surface centre. This graph demonstrates first the functionality of the earth pressure cells and 

settlement sensors. In fact, it shows that a higher stress level causes a higher settlement especially 

for the first points on a virgin subgrade.  

 
Figure 3.4-6: Subgrade surface central vertical stress evolution with settlement. 

The graph demonstrates three different categories given by the three identical performed tests. In 

fact, each test category starts at a given point and evolve differently depending on the reinforcement 

type. The graph also demonstrates that the two identical tests have the same behaviour and 

evolution with the cycles.  
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The results presented in this section proved the tests repeatability and the developed installation 

protocol. In section 3.4.1, the reinforcement effect will be discussed. Since the repeatability was 

already proven and presented, in the next analysis only one of the two identical tests will be 

presented: Test 3, Test 5 and Test 7.  

3.4.3. Base course thickness influence 

Two tests were performed with a base course thickness of 350 mm, one with reinforcement (Test 2) 

and the other without reinforcement (Test 1). Figure 3.4-2 shows a small difference in the final rutting 

for H = 350 mm between a reinforced and an unreinforced platform. In fact, both curves for H = 350 

mm have the same shape with an average maximum rut of 44 mm for the unreinforced platform and 

50 mm for the reinforced platform. The results show that the reinforcement effect can be negligible 

for a base course thickness of 350 mm. Moreover, this can be shown in the subgrade surface 

settlement Figure 3.4-13.  

It is worth pointing out that the base course thickness has the most significant influence on the 

surface rut development. The two unreinforced tests’ comparison for H=220 mm and H=350 mm 

shows an evident rut reduction (Figure 3.4-2). For 130 mm of base course thickness variation, the 

surface rut passes from 44 mm to 89 mm. Moreover, the subgrade surface stress distribution was 

illustrated in Figure 3.4-15 and Figure 3.4-16. Furthermore, Figure 3.4-15 shows that the central 

vertical stress in the unreinforced platform is 130 kPa and in the reinforced platform is 100 kPa at 

the first loading cycle. These values increased with the cycles until they have reached 140 kPa for 

the unreinforced platform and 120 kPa for the reinforced platform after 10,000 cycles (Figure 3.4-16). 

A small difference is shown between the reinforced and unreinforced platforms in terms of stress 

too. More importantly, the stress reduction due to 130 mm of base course thickness addition 

increases the maximum vertical stress on the subgrade of about 67%. In fact, on one hand the 

unreinforced platform with 350 mm of base course thickness presents a central vertical stress of 

300 kPa while on the other hand, the unreinforced platform with 220 mm of base course presents 

100 kPa of maximum stress. 

3.4.4. GSY benefit 

In this section the GSY reinforcement is discussed mainly for H = 220 mm 

Five tests will be compared in terms of settlement and stress: 

• Test 3, one of the identical performed unreinforced tests

• Test 5, one of the identical performed reinforced tests with GSY 1

• Test 6, one of the identical performed reinforced tests with GSY 3

• Test 9, a reinforced platform with the GSY 1 placed at the base course middle depth

• Test 10, a reinforced platform with GSY 2, regarding this test, the subgrade settlement and

the surface settlement profile after 10,000 cycles are missing because of technical issues

during the test.
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3.4.4.a. Settlement 

The base course settlement profile was measured after 10,000 cycles using the laser sensor. Figure 

3.4-7 shows the profiles measured for the reinforced and unreinforced platforms with 350 mm of 

base course thickness (Test 1 & 2) and three tests with 220 mm of base course.  

The remarkable point regarding the profiles is the curves symmetry around the plate load centre, 

which explains the platform instrumentation on one-half.  

Figure 3.4-7 shows a large displacement of the unreinforced platform (Test 3), which is  

90 mm > 75 mm the allowable rutting according to the FHWA (2008) standard. The two reinforced 

platforms with GSY 1 and GSY 3 show the same surface displacement of 70 mm < 75 mm.  

Figure 3.4-7: Base course surface settlement after 10,000 cycles. 

This first graph shows the effect of the reinforcement on the surface settlement. It shows no 

difference between the two types of reinforcement used; this can be due to the imprecise 

measurements related to the unsmooth base course surface. In order to look more closely at the 

reinforcement behaviour, the subgrade settlements are presented later.    

Figure 3.4-8 below shows the base course centre settlement evolution with cycles. The presented 

curves show an important displacement at the first loading and during the first 100 cycles. This 

settlement depends on the compaction method and can be eliminated on site by the heavy 

compaction machines. In this study, the behaviour of the platform under the first loading is different 

depending on the reinforcement, so the results of this first loading can be used for more explanations. 

However, another settlement evolution starting after 200 cycles was illustrated in order to eliminate 

the first settlements that can be removed on site by the compaction machines (Figure 3.4-9).  

Figure 3.4-8 shows a displacement of about 36 mm (Test 3), 29 mm (Test 5 & 7 & 9) and 10 mm 

(Test 10). The reinforced platform with the geogrid GSY 2 (the coated and knitted geogrid with the 

stiffness higher than GSY 1) presents the lower first displacement. The unreinforced platform 

presented the biggest first displacement.  
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Under the cycles, the evolution of the displacement is different depending on the reinforcement type. 

After 2,000 cycles the curves presents a linear part with different inclinations.  

However, after 10,000 cycles Test 10 with GSY 2 presents the smaller displacement of 65 mm, 

followed by Test 5 with GSY 1 and a displacement of 76 mm. Test 7 with the extruded geogrid 

presents a maximum displacement of 88 mm. The remarkable point in this graph (Figure 3.4-8) is 

the platform reinforced with the GSY 1 placed at the base course middle depth, which presents a 

settlement behaviour close to the unreinforced platform behaviour.  

 
Figure 3.4-8: Base course surface centre settlement evolution with cycles (for H = 220 mm). 

In order to look at the reinforcement behaviour on the surface settlement evolution with cycles the 

settlements were plotted after 200 cycles (Figure 3.4-9).  

In Figure 3.4-9, Test 10 and Test 5 present a close evolution curve until 3,000 cycles, after this point 

a small difference appears after 10,000 cycles with 5 mm of settlement difference. This shows that 

the most important efficiency is provided by the stiffer geogrid. 
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Figure 3.4-9: Base course surface centre settlement evolution after 200 cycles with cycles, (for H = 220 mm). 

More importantly, the reinforcement GSY 1 placed at the base course middle depth (Test 9) shows 

in Figure 3.4-9 a reinforcement effect on the settlement evolution with cycles. In fact, this platform 

presented an important settlement under the first cycles, but the reinforcement affected the platform 

behaviour over the cycles especially after 2,000 cycles.  

The extruded geogrid GSY 3 (Test 7) showed a reduced effect on the settlement evolution with 

cycles, in fact its behaviour after 200 cycles is the closest behaviour to the unreinforced platform.  

Figure 3.4-10 shows the subgrade centre settlement evolution with cycles. Tests 5 and 7 show the 

most reduced settlement at the subgrade surface of 65 mm. The first cycles show that GSY 3 is 

more efficient in reducing the subgrade settlement than the GSY 1. However,  

GSY 1 performs better with the settlement evolution and after 2,000 cycles, and it presents a better 

performance than the GSY 3. In fact, the GSY 3 concept is based on the confinement mechanism, 

which performs better under small displacement. While the GSY 1 concept is based on the tension 

membrane mechanism, with a high stiffness and negligible nodes stiffness, and it performs better 

under large displacement. This phenomenon was more observed in the graph showing the subgrade 

settlement evolution after 200 cycles (Figure 3.4-11). In fact, the GSY 3’s effect on the evolution of 

the settlement was close to the unreinforced platform, while GSY 1 shows a significant settlement 

reduction with cycles.   
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Figure 3.4-10: Subgrade surface centre settlement evolution with cycles (for H=220 mm). 

 

Figure 3.4-11: Subgrade surface centre settlement evolution after 200 cycles with cycles (for H=220 mm). 

In addition, Figure 3.4-10 above shows that Test 9 presents the highest settlement at the subgrade 

surface, noting that Test 9 is the reinforced test with GSY 1 placed at the base course middle depth. 

In the first 100 cycles, the settlement observed is about 40 mm; this can be due to some uncontrolled 

factors related to the installation and compaction. Therefore, Figure 3.4-11 is more reliable to 

compare with it this test behaviour. Figure 3.4-11, shows that the GSY 1 placed at the base course 

middle depth efficiency is limited and that the platform behaves as if there are no reinforcements.  
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Figure 3.4-12: Base course thickness variation evolution with cycles (for H=220 mm). 

A difference between the base course surface settlement and the subgrade surface settlement was 

observed above because of the base course thickness variation. Figure 3.4-12 shows the effect of 

the reinforcement on the base course thickness variation. The unreinforced platform and the 

reinforced platform with GSY 3 show the highest base course thickness variation of 20 mm. 

However, the unreinforced platform variation evolves with the cycles, while the reinforcement with 

GSY 3 platform shows an important variation of for the first cycle and then a very small variation 

during following cycles. The two reinforced platforms with GSY 1 show the smallest thickness 

variation, mainly the one placed at the base course middle depth.  

Figure 3.4-13 shows the subgrade surface settlement profiles of the first cycle and after 

10,000 cycles. The curves show that starting with 400 mm from the plate centre at the subgrade 

surface the settlement is null for the reinforced and unreinforced cases, which confirms again the 

boundary conditions respect.   

The settlement curvature shows no differences between the reinforced and unreinforced platforms. 

It is worth pointing out that the same settlement rank was observed at the plate centre, as well as at 

100 mm and at 200 mm from the plate centre. 

By comparing and analysing the settlement results, the reinforcement efficiency was observed and 

quantified. The knitted geogrid GSY 1 shows a platform behaviour improvement especially with the 

large displacement development when the geogrid is mobilised.  Moreover, the results show that the 

stiffer the geogrid is the more improvement on the surface settlement is observed specifically for the 

first cycles. The extruded geogrid GSY 3 shows a platform behaviour improvement for the first 

2,000 cycles, but it shows a significant change in its behaviour after a large displacement 

development. In addition, these results showed that the geogrid GSY 1 placed at the base course 

middle depth has a reduced benefit on the platform behaviour. In order to explain better these 

mechanisms and observations the vertical stress is analysed in the next section.  
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Figure 3.4-13: Subgrade surface settlement profile from the plate centre to the edge, at the first cycle and after 

10,000 cycles. 

3.4.4.b. Vertical stress 

Figure 3.4-14 shows the maximum vertical stress applied on the subgrade surface and its evolution 

with cycles. The graph (Figure 3.4-14) shows that the unreinforced platform’s first applied stress is 

300 kPa while for all the reinforced platforms first applied stress is around 200 kPa. Moreover when 

the cycles increase, the reinforced platforms stress increases. However, after 10,000 cycles for Test 

5 & 9 & (GSY 1 placed at the interface and at the middle depth) the maximum stress is still smaller 

than the unreinforced platform developed stress 250 < 300 kPa. The GSY 3 (Test 7) curve shows 

the most important stress evolution especially after 2,000 cycles. In fact, the curves show different 

stress evolution rates depending on the reinforcement type.  

It is clear in the graph (Figure 3.4-14) that the reinforcement decreases the stress magnitude applied 

on the subgrade surface. This stress reduction can be due to the base course stress distribution 

angle or to the tension membrane resultant and developed with the reinforcement.  
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Figure 3.4-14: Subgrade surface central vertical stress evolution with cycles. 

Figure 3.4-15 shows the vertical stress distribution on the subgrade surface for the first loading. The 

curves show that in all the tests the stress magnitude reaches zero at 400 mm from the plate centre, 

which was shown before by the subgrade settlement curves (Figure 3.4-13).  

Figure 3.4-13 shows that the stress distribution curve shape changes depending on the case. In 

Fact, the unreinforced platform (Test 3) shows a high stress concentration at the centre with a 

maximum stress of 300 kPa and 100 kPa at 200 mm from the centre of the first cycle, and this 

distribution stayed constant during all the cycles (Figure 3.4-16).  

Figure 3.4-15: Vertical stress distribution at the subgrade surface after 1 cycle. 

Figure 3.4-15 shows the reinforcement insures a stress distribution on a larger area (GSY 3 - Test 

7) or just decreases the stress intensity due to the tension membrane effect (GSY 1 - Test 9).

However, this observation is not accurate because of the sensor’s rotation. 
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Figure 3.4-16: Vertical stress distribution at the subgrade surface after 10,000 cycles. 

With the cycles, the stress of the reinforced platforms evolves, and this is clear in Figure 3.4-16. In 

fact, not only the central vertical stresses increase with the cycles but also the stresses at 100 mm 

from the plate centre. However, the stresses at a distance of 200 mm from the plate centre showed 

no evolution over the cycles and this can be due to the uncertainties related to the sensor’s rotation 

with the cycles.  

Figure 3.4-17 shows the stress distribution in depth under the plate centre line. The first cycle stress 

distribution confirms the fact that all the reinforced platforms start from the same point even at 

200 mm of the subgrade depth, while the unreinforced platform presents a stress concentration 

under the plate centre. With the cycles, the stress at 200 mm of depth increases too, after 1,000 

cycles and 10,000 cycles. Tests 7 & 9 (GSY 3 and GSY 1 at the BC middle depth) show vertical  

stress close to the unreinforced platform in depth while Tests 5 and 10 ( GSY 1 and GSY 2) keeps 

the same stress value of 100 kPa.    

More importantly, it can be seen in the graph (Figure 3.4-17) that at 400 mm of the subgrade depth 

the reinforcement effect decreases significantly and that at 600 mm of the subgrade depth the stress 

reaches to zero. 

The stress analysis shows that the reinforcement decreases the vertical stress applied on the 

subgrade surface significantly. It shows that the stress evolves over the cycles and the evolution 

changes depending on the type of the reinforcement.   
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Figure 3.4-17: Vertical stress in subgrade depth evolution with cycles at the plate centre, (for H=220 mm). 

In order to relate the stress analysis to the displacement, the graph in Figure 3.4-18 was plotted. In 

fact, Figure 3.4-18 shows the stress evolution with the settlement at the subgrade surface central 

point.  

The unreinforced platform (Test 3) demonstrates a high settlement at the first cycles with the highest 

stress magnitude of 300 kPa, and over the cycles, the settlement increases at an important rate due 

to the subgrade damage under the cyclic load.  

The GSY 1 reinforcement (Test 5) shows reduced settlement with a reduced stress regarding the 

unreinforced one, and with a reduced settlement rate evolution with the cycles.  

The GSY 1 (Test 9) placed at the BC middle depth position showed an important settlement evolution 

especially in the first 100 cycles, which is not coherent with the stress values; it could be related to 

some installation uncertainties. However, its settlement rate evaluation with the cycles is more 

important than the GSY 1 placed at the interface case, this can be due to the loss of subgrade 

confinement that the GSY 1 in tension can provide when placed at the interface.   

The GSY 3 (Test 7) showed a reduced stress and settlement in the first cycles, but with the following 

cycles, the stress evolved significantly provoking an important settlement increase.  
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Figure 3.4-18: Subgrade surface central vertical stress evolution with settlement. 

3.4.4.c. TBR comparison 

In order to highlight the reinforcements, Traffic Benefit Ratio (TBR) was calculated, at 45 mm, 60 

mm and 75 mm of surface rutting:  

𝑇𝐵𝑅 =
N𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑑

𝑁𝑢𝑛𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑑
Eq.3.4-1 

Nreinforced is equal to the load cycles’ number of the reinforced base at a certain permanent 

deformation and Nunreinforced is equal to the load cycle’s number of load cycles for the unreinforced 

base at the same permanent deformation. 

Table 3.4-1 presents the load cycles’ number of load cycles for the three different settlement values 

of the reinforced and the unreinforced platforms for the base course thickness of 220 mm, as for the 

TBR values they were presented in Table 3.4-2. 

In fact, the base course settlement reaches 45 mm after 50 cycles of the unreinforced platform, while 

this settlement’s value is reached after 75 cycles of the reinforced platform with GSY 3, 200 cycles 

with GSY 2, 100 cycles with GSY 1 placed at the interface and 50 cycles with GSY 1 placed at the 

base course middle depth. In order to verify these values kindly refer to Figure 3.4-8.   

The highest the TBR is, the more efficient the GSY is. The GSY 2 followed by the GSY 1 placed at 

the interface gives the highest TBR. In fact, the TBR of 75 mm with the GSY 1 is 24.28 and with the 

GSY 2 is higher than 30. The coated knitted geogrid improved the platform’s bearing capacity 

compared to the other used geogrids, and the reinforcement efficiency increased with the increasing 

of the stiffness from 1,000 kN/m at 2% of strain to 2,500 kN/m.  

The extruded geogrid with the triaxle apertures showed a significant improvement at the first cycles, 

but with the settlement increasing, its efficiency was reduced. However, it is the geogrid GSY 1 
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placed at the base course that showed the smaller TBR values, because of the large displacement 

that occurred at the first cycles, which can be related to the installation and compaction uncertainties. 

Table 3.4-1: Reinforced and unreinforced cycles number needed to reach the base course settlement of 45 mm, 60 mm, 

and 75 mm. 

Base 

course 

Settlement 

(mm) 

N 
GSY 1 

Interface 

N 
GSY 1  at 

BC middle 

depth 

N 
GSY 2 

N 
GSY 3 

N 
Unreinforced 

45 100 50 200 75 50 

60 750 75 3,000 300 100 

75 8,500 200 >10,000 1,500 350 

Table 3.4-2: Reinforced TBR = Nreinforced/Nunreiforced for 45 mm, 60 mm, and 75 mm of the base course surface settlement. 

Base 

course 

Settlement 

(mm) 

TBR 
GSY 1 

Interface 

TBR 
GSY 1  at 

BC middle 

depth 

TBR 
GSY 2 

TBR 
GSY 3 

45 2 1 4 1.5 

60 7.5 0.75 30 3 

75 24.2857 0.571429 >30 4.2857143 

3.4.5. GSY strain 

Optical fibre sensors were placed inside the geogrids. Due to the OFDR technology, the continuous 

strain developed in the GSY was measured even during the cycles. Measurements were taken even 

after the base course installation.  

3.4.5.a. After the base course installation 

Figure 3.4-19 illustrates the developed strain in the GSY 1 during the base course installation. It 

shows that the developed strain is between 1,500 and 2,000 με. From the strain, the tension 

developed in the GSY is calculated knowing that the product stiffness is equal to 1,000 kN/m. The 

developed tension is around 1.5 kN/m, which represents 1.5% of the product ultimate tensile 

strength.  

Figure 3.4-20 illustrates the developed strain in the geogrid GSY 2 during the installation; it shows it 

at different transversal positions in the box. The geogrid GSY 2 is more mobilised than the GSY 1, 

in fact, the developed strain in the GSY 2 during the base course installation is more important. It 

shows as well that the developed strain is between 2,500 and 3,000 με. From the strain, the tension 

developed in the GSY 2 is calculated knowing that the product stiffness is equal to 2,500 kN/m. The 

developed tension is around 7.5 kN/m, which is 3.75% of the product ultimate tensile strength.  
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Figure 3.4-19: GSY 1 strain and equivalent force developed after the base course gravel installation. 

Figure 3.4-20: GSY 2 strain the equivalent force developed after the base course gravel installation in four different 

positions. 

3.4.5.b. During the loading 

After the base course installation, the strains were set at zero in order to measure the strain during 

the loading. 

Figure 3.4-21 shows the developed strain in GSY 1 during the first loading. The maximum strain 

reached at the centre during the first loading is equal to 12,000 με. As mentioned before, knowing 

the GSY 1 stiffness, the developed force can be calculated, and it is equal to 12 kN/m (which 

represents 12% of the GSY maximum tensile strength).  

Figure 3.4-22 shows the maximum developed strain at the first loading of the GSY 2, which is related 

to a tensile force of 23 kN/m (which represents 10% of the GSY maximum tensile strength). The 
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signal of the optical fibre was lost after the first loading; therefore, no further results were presented 

for the GSY 2.   

Figure 3.4-21: GSY 1 unanchored strain and equivalent force developed at the first loading cycle. 

Figure 3.4-22: GSY 2 unanchored strain and equivalent force developed at the first loading cycle. 

During all the tests the geogrid borders were placed between two wood plates without any additional 

anchorage system, this configuration is called later on in the text, an unanchored geogrid. Figure 

3.4-21 and Figure 3.4-22 show the strain of unanchored geogrid. However, it is clear in both curves 

that the strain in the geogrid decreases respectively when moving away of the plate centre until it 

reaches zero near the box’s borders. This proves that the distance from the plate centre to the box’s 

borders is far from the geogrid solicitation area and that the geogrid anchor provided by the 

aggregates is enough.  

In order, to look more closely at the anchorage’s effect on the reinforcement mechanism, two 

different tests were performed with unanchored and anchored GSY1. Anchored means lifted around 

the box’s borders, so the anchorage is provided by the aggregates weight on the borders.  
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Figure 3.4-23: GSY 1 unanchored and unanchored strain and equivalent force developed after 1,000 cycles at the 

loading and unloading stage. 

Figure 3.4-23 shows the developed strain in the anchored and unanchored GSY 1 after 1,000 cycles 

during the loading and unloading phases. The curves show different shapes: the unanchored geogrid 

presents a larger strain curve, but this shape did not affect the maximum strain values developed in 

the GSY. However, both curve strains decrease respectively until reaching a negligible value near 

the borders. Moreover, both GSYs presented a maximum strain of 14,000 με during the loading and 

10,000 με during the unloading phase. These showed that GSY anchorage has no effect on the 

results.   

Moreover, Figure 3.4-23 shows the elastic and the plastic strain developed in the GSY during the 

loading and unloading phases. In fact, the plastic strain is about 60% of the total strain developed 

during the loading. Moreover, regarding the force developed in the GSY during the loading, it is equal 

to 15% of the ultimate tension strength. The maximum strain developed during the first applied load 

is about 9,000 με (Figure 3.4-21) and it increases after 1,000 cycles to reach 14,000 με (Figure 

3.4-23).  

In addition, at a distance of 200 mm from the box’s edge, the strain due to the loading is null. This 

shows that there is no anchorage effect on the results and on the GSY behaviour and that the 

developed tension in the GSY is taken by the interaction with the base course layer before it reaches 

the box’s edges.   

 Aggregates damage 

The cycle effect on the aggregates was studied too. In fact, the virgin aggregate was already 

classified and characterized in Chapter 2. Gravel specimens were taken from the platform centre 

after it was subjected to 10,000 cycles, more precisely after Test 9.  
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Figure 3.5-1 shows the particle size distribution of the virgin and damaged aggregates. In fact, it is 

clear that the particles were smashed under the cycles. The particle’s size distribution curve changed 

significantly after 10,000 cycles.   

 
Figure 3.5-1: Particles size distribution of the virgin and damaged aggregates. 

Table 3.5-1: The Virgin and damaged aggregates classification. 

Virgin aggregates Damaged aggregates 

D10 = 1 mm D10 = 0.2 mm 

D30 = 7 mm D30 =  2 mm 

D60 = 11 mm D60 = 10 mm 

Particles with diameter < 80 μm = 4% Particles with diameter < 80 μm = 4% 

𝐶𝑢 =
D60
D10

= 11 
𝐶𝑢 = 50 

𝐶𝑐 =
D30
2

D10𝑥D60
= 4.45 

 

𝐶𝑐 = 2 

GP (LPC & USCS standards) GW (LPC & USCS standards) 

 

The virgin and damaged classification factors are detailed in Table 3.5-1. The gravel passes from a 

poorly graded gravel to a well graded gravel according to the LPC and USCS standards.  

In fact, D10 passes from 1 mm to 0.2 mm, and D30 passes from 7 mm to 2 mm.  

Moreover, the damaged aggregates were characterized by the large shear box used in Chapter 3 to 

characterize the virgin aggregates. Figure 3.6-1 shows the shear stress evolution with the horizontal 

displacement for the virgin and damaged aggregates. The damaged aggregates show a reduction 

in the maximum shear stress at high normal stress of 200 kPa, it passes from 160 kPa to 140 kPa. 

In addition, the curves show that the plastic state starts earlier for the damaged aggregates and with 

a more curved beginning for the three different normal stresses.  
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Figure 3.5-2: Shear stress versus horizontal displacement at different normal stresses for the virgin and damaged 

aggregates. 

 GSY damages 

The geogrids were subjected to harsh installation conditions. It is true that the compaction machines 

are not heavy as the machines used on site, but the compaction was performed over 110 mm of 

base course thickness covering the geogrid, which is not recommended normally by the 

manufactural to avoid the geogrid damage during installation. 

Tensile tests were performed on virgin GSY 1 specimens, and later on, on the GSY 1 damaged 

specimens. Specimens were taken from the centre under the plate load and from the edges far from 

the load application. The aim was to separate between the damage only due to the installation and 

the damage due to the installation and the cycles.  

Figure 3.6-1 shows the tensile curve of the virgin GSY 1, the central and the edged damaged 

specimens. The results show no differences between the edged and central specimens’ tensile 

curves, which means that the installation damage is more important to the geogrid than to the 10,000 

tensile cycles performed. In fact, the used gravel is an angular gravel that can create notches in the 

geogrid when it is poured over it and compacted.   
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Figure 3.6-1: GSY 1 tensile curves for virgin specimen and damaged specimens under the plate load and at the box 

edges. 

The curves (Figure 3.6-1) show a significant maximum tensile strength reduction from 100 kN/m to 

70kN/m and 80 kN/m, which is about 20% and 30% of reduction.  

More importantly, the geogrid stiffness presents a reduction too, but this reduction was not regular 

for all the specimens, it depends on the specimen’s damage level. The stiffness at 2% of strain 

shows a reduction as well, from 1,000 kN/m to 650 kN/m for the most damaged specimens.  

Unfortunately, the extruded GSY 3 geogrid could not be tested under one direction tensile test. In 

fact, this material with triangular aperture is tested under radial tensile test and the radial stiffness of 

this product is given.  

 Empirical and analytical design methods 

The design methods proposed in literature allow the aggregate thickness determination based on 

the rutting development, the cycle number, the subgrade and base course stiffness and the GSY 

reinforcement contribution. 

Hammitt and Iii (1970) proposed the following empirical formula for unreinforced unpaved road with 

rutting criteria of 75mm: 

ℎ𝑜𝑠 = (0.0236𝑙𝑜𝑔𝑁 + 0.0161)√
𝑃

𝐶𝐵𝑅
− 17.8𝐴 

Eq. 3.7-1 

Where P is the wheel load (kN), and A the contact area (m2).  

Giroud and Noiray (1981) proposed another empirical formula for unreinforced unpaved road with 

rutting criteria (r) other than 75 mm: 
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ℎ𝑜𝑠 =
(0.190 log𝑁 + 0.445(𝑟 − 0.075))

𝐶𝐵𝑅0.63
 

Eq. 3.7-2 

Where, 𝐻 and r are in meter; N = to the number of passages of the standard axle load 80 kN. This 

method is not recommended for N higher than 10,000 cycles or less than 20 cycles. 

These empirical and analytical methods were used to design such structure in the case of an 

unreinforced platform. For the empirical method (Hammitt and Iii, 1970), the CBRsg calculated was 

equal to 2%, the platform was designed to support 10,000 load passes of 40 kN, noting that the 

rutting criteria in this method is 75 mm. The same parameters were used for the empirical method 

of Giroud and Noiray (1981), while the calculated N was taken equal to 10,000 cycles. 

More recently, the analytical methods where developed to determine the aggregate thickness for 

reinforced unpaved roads on soft subgrade. Giroud and Han (2004) proposed the following equation: 

ℎ =
(0.868+(0.661−1.006.𝐽𝐴𝑆𝑀

2 )).(
𝑟

ℎ
)
1.5
.𝑙𝑜𝑔𝑁

1−0.204.(𝑅𝐸−1)
 . 

(

 
 

√

𝑃

𝜋𝑟2

(
𝑠

𝑓𝑠
).(1−0.9𝑒

(−(
𝑟
ℎ
)
2
)
).𝑁𝐶 .𝐶𝑢

− 1

)

 
 
. 𝑟 Eq. 3.7-3 

For more details regarding this analytical method kindly refer to Chapter 1.  

Also for unreinforced cases, the analytical method of Giroud and Han (2004) was used with the 

following parameters: Nc = 3.14; CBRsg =2%; CBRbc = 12%; P = 40 kN; pi = 560 kPa;  

N = 10,000 cycles; JASM = 0 m.N/°; s = 75 mm; fs = 75 mm.  

For this method the subgrade soil is assumed to be saturated and to have a low permeability, 

therefore its bearing capacity is equal m.NC.Cu, where Cu is equal to 30 CBRsg, which is equal to 

60 kPa in that case. The bearing capacity mobilization coefficient was determined based on the 

following equation: 

𝑚 = (
𝑠

𝑓𝑠
) . (1 − 0.9𝑒

(−(
𝑟
ℎ
)
2
)
) 

Eq. 3.7-4 

With an assumed h of 390 mm the calculated m value is equal to 0.225 using Eq. 3.7-4.  

This design method proposed a calculated h of 390 mm in the unreinforced case.  

The same conditions were taken for the reinforced case using GSY 3, with a Nc = 5.71 because it is 

a reinforced case using a geogrid, and JASM = 0.61 m.N/°.  

For an assumed h of 100 mm the calculated m value is equal to 0.9456 using Eq. 3.7-4.  

This design method proposed a calculated h of 100 mm in the reinforced case using  GSY 3 the 

extruded geogrid.  

This given analytical method could not be used to estimate the base course thickness in the 

reinforced case using GSY 1 and 2 since they are not characterised by a node stability factor.  

Leng and Gabr (2006) developed the following analytical solution to calculate the aggregate 

thickness:  
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ℎ =
(1+((

𝑟

ℎ
)
0.81

(0.58−0.000046𝐽𝑡
4.5)).𝑙𝑜𝑔𝑁)

𝑡𝑎𝑛𝛼1
.(√

𝑝𝑐

(
𝑠

𝑓𝑠
).(1−𝑒

(−0.78
𝑟
ℎ
)
).𝑁𝐶.𝐶𝑢

− 1) . 𝑎 

 

 

Eq. 3.7-5 

In addition, the analytical method of Leng and Gabr (2006) was used with the same parameters as 

the above in Giroud and Han’s (2004) method, only Nc is equal to 3.8 in the unreinforced case, and 

Jt which is the average geogrid tensile strength at 2% of strain is equal to 0 kN/m. 

As in the previous method, the bearing capacity is equal to m.NC.Cu, where Cu is equal to 30 CBRsg, 

which is equal to 60 kPa in that case. The bearing capacity mobilization coefficient was determined 

based on the following equation: 

𝑚 = (
𝑠

𝑓𝑠
) . (1 − 0.9𝑒

(−0.78(
𝑟
ℎ
)
) Eq. 3.7-6 

With an assumed h of 590 mm the calculated m value is equal to 0.271 using Eq. 3.7-4 and Eq. 

3.7-6.  

This design method proposed a calculated h of 590 mm in the unreinforced case, with a variation of 

the base course stress distribution angle α, from α0 of 45.37° to an αN of 27.55° after 10,000 cycles.  

In the analytical method of Leng and Gabr (2006), the expression involving the geogrid 

characteristics is negative for Jt > 8 kN/m. Therefore, the comparison of the empirical and analytical 

methods was done only for the unreinforced conditions. 

Table 3.7-1 resumes the design results of the empirical and analytical methods. Moreover, the 

designed base course thicknesses were compared with the experimental base course thickness 

equal to 350 mm, since the experimental surface rutting after 10,000 cycles is equal to 44 mm lower 

than the rutting criteria of 75 mm. 

As shown in Table 3.7-1, the empirical methods propose a base course thickness of 460 mm 

(Hammitt and Iii, 1970) and 500 mm (Giroud and Noiray, 1981) without reinforcement, which is higher 

than the experimental base course thickness for about 30%. 

The highest required thickness is given by Leng and Gabr (2006) and it gives an overestimation of 

the thickness of about 40%, regarding the proposed experimental base course thickness. It is evident 

that the procedure proposed by Leng and Gabr (2006) is more conservative in comparison with the 

procedure of Giroud and Han (2004). In fact, the design dimension proposed by Giroud and Han 

(2004) is the lowest value and the closest one to the experimental proposed thickness. However, 

these conclusions are limited to the unreinforced platforms and to the experimental conditions 

applied throughout this study. 

Moreover, the reinforced thickness determined by Giroud and Han (2004) using the reinforcement 

extruded geogrid GSY 3 is equal to 100 mm which is the minimum required thickness. Experimentally 

a 220 mm base course thickness was used with the GSY 3 and the design criteria of 75 mm was 

reached after 350 cycles. However, these design methods were calibrated under specific conditions 

and the subgrade soil is assumed to be saturated which is not the case in these experiments. 

Therefore, these comparisons and conclusions are limited to the experimental conditions and so 

more investigations are needed.   
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Table 3.7-1: Designed base course thicknesses estimation in the unreinforced case 

The design methods 

Designed base 

course thickness for 

the unreinforced case 

(mm) 

Designed base 

course thickness 

for the reinforced 

case with GSY 3 

(mm) 

Experimental base 

course thickness 

(mm) 

Hammitt and Iii (1970) 460 --- 

< 350 

Giroud and Noiray 

(1981) 
500 --- 

Giroud and Han 

(2004) 
390 100 

Leng and Gabr (2006) 590 -- 

 Conclusions 

In this Chapter the plate load tests results were presented and detailed. An installation and 

compaction protocol was developed in order to prepare the tested platforms and insure its 

constitution repeatability and homogeneity. The quality control tests were used first to define and fix 

the installation protocol and then to control the installed soil properties for each prepared platform. 

The subgrade soil water content was controlled before and after the performed tests, and it showed 

that the soil water content remains constant during the test and between each test. The shear vane 

test, and the static and dynamic penetrometer tests results were presented. These results showed 

the efficiency of this protocol. In fact, identical platforms with the same properties could be prepared 

for each test, and these soil layers showed homogeneous properties over the depth and the area.  

The test repeatability was checked by the performance of two identical tests on three different 

configurations: Unreinforced platforms and reinforced platforms with GSY 1 and GSY 3. The results 

proved the test repeatability in terms of settlement and stress distribution.  

The reinforced and unreinforced tests performed on a base course thickness of 350 mm platforms 

showed that the reinforcement has a negligible effect on the platform behaviour. In addition, the 

results showed that an unreinforced platform with 350 mm of base course thickness is a well 

designed platform, and does not exceed the maximum allowable rut depth of 75 mm after 

10,000 cycles. In order to characterize the reinforcement effects, the base course thickness was 

reduced in the following tests to 220 mm.  

The results showed the different geogrid types and configurations efficiency in improving the platform 

bearing capacity and its durability: 

• Regarding the base course surface settlement, GSY 2 showed the most important 

improvement on the platform behaviour. In fact, it reduced the maximum surface settlement 

after 10,000 cycles of 35%. While, GSY 1 reduced it of 25% and GSY 3 of 12%.  

• The knitted geogrids GSY 1 and GSY 2 showed a significant platform improvement 

especially with the large displacement development (>50 mm) over the cycles when the 
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geogrids are mobilised. In fact, theses geogrid types with a dominant mechanism are the 

tension membrane effect. Moreover, the most important platform improvement was provided 

by the stiffer geogrid (GSY 2).   

• The extruded geogrid GSY 3, which behaves more as a confinement reinforcement due to 

its node significant strength, showed the most important platform improvement for the first 

2,000 cycles. However, it showed a significant change in its performance after 2,000 cycles 

when large displacement (>50 mm) occurred.  

• The GSY 1 placed at the base course middle depth showed a limited effect on the platform’s 

improvement. Even though the stress on the subgrade presented a reduction, the subgrade 

showed more settlements than the GSY 1 placed at the interface. This can be due to the 

loss of the subgrade confinement provided by the GSY 1 in tension and placed at the 

interface.  

• The stress analysis showed that the reinforcement decreases in a significant way the vertical 

stress applied on the subgrade surface. The central stress developed at the subgrade 

surface of the reinforced platforms showed there increase with the cycles. The stress 

evolution depends on the reinforcement type.  

• The platform reinforced with the GSY 3 presented the most important stress rise. While GSY 

1 and 2 presented a lower stress evolution rate with the cycles.  

• After 10,000 cycles, the GSY 1  presents a maximum stress reduction of 16% while GSY 2 

presents 10% of reduction, and GSY 3 presents no stress reduction after 10,000 cycles.  

These results showed that the extruded geogrid contributed more to the platform’s improvement by 

the lateral restrain mechanism under relatively small displacement in the first cycles. This is due to 

its special manufacturing type and rigid nodes. While the knitted geogrids showed no such 

contribution, however, they contributed with the tension membrane effect once mobilized after a 

certain developed displacement, due to their high stiffness.  

The fibre optics placed in the geogrids GSY 1 and GSY 2 showed that after the base course 

installation the geogrid is subjected to a small strain about 0.3%. Moreover, under the first load, 

 both the GSY 1 and the GSY 2 were subjected to a total strain of 1%. This strain evolved with the 

cycles to reach 1.5% after 1,000 cycles. Moreover, 60% of this total strain is made of plastic. 

On one hand theses experimental results were compared to the empirical and analytical design 

methods. This showed that these design methods provided in literature overestimate the required 

base course thickness in the case of an unreinforced platform. On the other hand, Giroud and Han’s 

(2004) method underestimated the base course thickness proposed for the reinforced GSY 3 

platform. Moreover, the analytical design method proposed by Leng and Gabr (2006) is more 

conservative than the method proposed by Giroud and Han (2004) for the unreinforced case. 

However, these design methods could not be used with this specific GSY 1 and GSY 2 products in 

order to estimate the reinforced base course thickness. 
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 Traffic Load Test  

 Introduction 

In Chapter 3, the unpaved platform was subjected to a plate load test under a configuration 

commonly used in literature to simulate the traffic load in laboratory tests.  

In order to better simulate the traffic load the Simulator Accelerator of Traffic (SAT) was developed. 

This apparatus has a special mechanical concept that allows the same load of magnitude application 

even after high rut depth (75 mm -100 mm), and at each circulation position. The applied wheel load 

magnitude was 28 kN resulting in a contact pressure of 650 kPa, used on an effective circulation 

length of 2 m with a velocity of 4 km/h. Moreover, on the same prepared platform a plate load test 

was performed too, with a plate shape similar to the wheel contact area and with the same maximum 

load magnitude of 28 kN. The aim of these two-load solicitation types is to compare between the 

plate load and the wheel circulation load. The tested platform was placed in a box of 1.8 m in large, 

5 m in length and 1.1 m in height. The platform installation compaction and quality control tests were 

detailed in Chapter 2. The test repeatability was confirmed in Chapter 3 using the plate load test.  

An unreinforced platform and a reinforced platform with GSY 2 and GSY 3 (Chapter 2) were tested 

under these loading conditions. The base course thickness was of 220 mm as in the plate load tests 

performed in Chapter 3.  

Two platform areas were instrumented, the area under the plate load and the area under the 

circulation load. The instrumentation was detailed previously in Chapter 2. The results are presented 

in terms of displacement, stress and geogrid developed strain. These experimental large-scale tests 

allowed the reinforcement effect characterisation and quantification again under the plate load and 

circulation load. Moreover, the comparison between the circulation load and the plate load results 

are presented in this Chapter. In addition, the particular plate load tests given in this Chapter were 

compared to the circular plate load tests presented previously in Chapter 3. 
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 Performed tests 

A reference of an unreinforced platform (Test 1) and two reinforced platforms using the extruded 

triangular aperture geogrid (GSY 3 – Test 2) and the knitted geogrid (GSY 2 – Test 3) were 

performed.  

The base course thickness was controlled like in the previous plate load tests. Moreover, the platform 

thickness was measured at two positions, under the plate load test and under the circulation load is 

240 mm. The measured thickness for Test 1 is 216 mm under the plate load and 229 mm under the 

circulation load. For Test 2 the measured thickness under the plate load is 231 mm and under the 

circulation is 240 mm. As for Test 3 it presented 220 mm of base course thickness under the plate 

load and 240 mm under the circulation load. The measured thickness shows that the thickness 

variation over the area is between 5 and 10 mm and that the real thickness for this tests is 

220 ± 20 mm.  

Table 4.2-1: Performed tests details. 

Test 

number 

Base course 

thickness (mm) 
Reinforcement GSY position 

Test 1 220 Unreinforced -- 

Test 2 220 GSY 3 Interface 

Test 3 220 GSY 2 Interface 

 Quality control tests results 

The platform layers installation and compaction protocol was defined and tested in the previous 

Chapters 2 & 3. The Traffic circulation tests were performed in a larger box of 5 m in length, 1.8 m 

in large and 1.1 m in height. More soil quantities were prepared to fill this large box (11.4 T of 

subgrade material and 4.4 T of base course material). The quality control tests were performed to 

control the soil homogeneity over this large area, and to verify that for each prepared platform the 

soil’s properties remain the same. The quality control tests results are presented in below in this 

section.  
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4.3.1. Water content 

 

(a) 

 

(b) 

Figure 4.3-1: (a) Water content profile under the plate and Traffic load areas for Test 1, (b) Water content profile for Tests 

1, 2 & 3. 

More subgrade was made and added to the existing prepared material in order to fill the large box. 

The target water content is always 11.5%. Figure 4.3-1 (a) shows the water content profile over the 

depth of the unreinforced test (Test 1) at four different positions: positions 1 and 2 under the plate 

load area and positions 1 and 2 under the Traffic load area. Figure 4.3-1 (a) shows that the water 

content is in the same range over the area, between 10.5% and 11%. Moreover, this was 

demonstrated in Figure 4.3-1 (b) at two different positions of the three prepared platforms. The water 

content range is slightly under the target water content. This can be due to the fact that the soil was 

mixed and stocked during the summer. However, this did not affect the soil’s properties in CBR terms 

(Section 4.3.3).  

4.3.2. Shear vane test 

The shear vane test was performed in order to check the prepared subgrade homogeneity over the 

area and depth. As mentioned before, this test was not performed to determine the undrained soil 

cohesion (Cu), since the prepared soil is an unsaturated soil. The St is the soil’s sensibility, which is 

the ratio between τu and τr, and was used in this section as a comparison factor.  

In Chapter 3, the St graphs showed homogeneous values between 4 and 6. Figure 4.3-2 (a) shows 

the St profiles for the prepared unreinforced platform at two different positions under the plate load 

test area and under the traffic load test area. The graph shows a homogeneity between the profiles 

over the area and the depth. In fact, the St values are mainly concentrated between 4 and 6. Figure 

4.3-2 (b) shows the St profiles at two different positions of the three prepared platforms. It shows 
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profiles matching between the three prepared platforms, and between the two positions of the same 

platform. These results present the prepared layers’ homogeneity and repeatability even over a 

larger prepared area.  

 

(a) 

 

(b) 

Figure 4.3-2: (a) St profile under the plate and Traffic load areas for Test 1, (b) St profile for Tests 1, 2 & 3. 

4.3.3. Static penetrometer test 

 

(a) 

 

(b) 

Figure 4.3-3: CI/CBR (%) profile under the plate and Traffic load areas for Test 1, (b) CI/CBR (%) profile for 

Tests 1, 2 & 3. 
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The static penetrometer test was performed in the subgrade, its results in term of cone index were 

correlated to CBR percentage, based on the apparatus manufactural proposed correlation. 

Figure 4.3-2 (a) presents the CI/CBR profiles over the depth at four different positions under the 

plate and Traffic load areas. It shows the CBR values concentration that varies between 1% and 2% 

in depth. The same is observed for the three prepared subgrades (Figure 4.3-2 (b)). At the 

subgrade’s surface, null CBR values are observed. In fact, the first subgrades of 100 mm were not 

compacted because they will be subjected to the base course compaction. 

4.3.4. Dynamic penetrometer test 

Moreover, the dynamic cone penetrometer was performed in the subgrade and in the base course 

layer. The results were correlated to the CBR percentage as well, based on a correlation formula 

given by the manufactural, and detailed in Chapter 2.  

Figure 4.3-4 (a) shows the dynamic penetrometer results in CBR terms over the subgrade depth for 

the prepared unreinforced platform. The graph shows CBR values between 1% and 2%, which is 

seen too in Figure 4.3-4 (b) after the base course installation.  

The base course CBR is around 10%, and at some point, it surpasses the 10%. At the surface, the 

CBR shows low values because of the soil repulsion. More in depth the subgrade CBR is around 2%.  

 

(a) 

 

(b) 

Figure 4.3-4: (a) CBR (%) profile under the plate and Traffic load areas for Test 1 before the base course installation, (b) 

CBR (%) profile under the plate and Traffic load areas for Test 1 after the base course installation. 

Figure 4.3-5 (a) shows the subgrade CBR point cloud for the three prepared platforms. It shows a 

concentration between 1 and 2%. Figure 4.3-5 (b) shows the base course and subgrade CBR point 

cloud for the three prepared platforms. It shows a base course CBR concentration of around 10% 

and 12% close to the CBR seen in the platforms prepared for the plate load tests prepared in Chapter 

3. In addition, as seen above at the base course surface the CBR is low because of the soil repulsion.  
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(a) 

 

(b) 

Figure 4.3-5: (a) CBR (%) profile under the plate and Traffic load areas for Tests 1, 2 & 3 before the base course 

installation, (b) CBR (%) profile under the plate and Traffic load areas for Tests 1, 2 & 3 after the base course installation. 

The quality control tests showed that the prepared platforms present homogeneity over the depth 

and the area, and that the platform repeatability is insured. Moreover, it showed a coherent platform 

preparation repeatability, between the small box of the plate load test showed previously in Chapter 

3, and the large box of the traffic tests.  

 Results and analysis 

Two areas of the prepared platforms were instrumented: the area under the plate load and the area 

under the Traffic load. The instrumentation is detailed in Chapter 2. The subgrade stress and 

displacement were monitored during the cycles and under the static load. In fact, after a certain 

number of cycles, the wheel was placed over the sensors location, the load was used and the applied 

stress was measured. In the same way, the subgrade surface settlement was measured. After a 

number of cycles, the load of the plate load tests was applied and the measurements were taken.  

Regarding the surface rutting measurements, during the plate load test, the plate displacement was 

measured and the laser sensor was placed on a fixed support, which gave an elevation rut as seen 

in Figure 4.4-1. However, under the plate load test the soil repulsion on the plate edges was not 

observed, this is presented later in section 4.4.2.a.  

During the Traffic load test the laser sensor was placed on the wheel, and the distance between its 

height and the base course surface was measured, which gives the apparent rut. Noting that under 

the Traffic load an important base course repulsion was observed on the wheel edges (section 

4.4.2.a).  
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Figure 4.4-1: Rutting plate and Traffic load tests measurements. 

The platform was subjected to 10,000 cycles under the plate load. While, it was subjected to 1,200 

cycles under the Traffic load. In fact, under the Traffic load an important surface rutting was 

developed in the first 100 cycles, and the limits of the SAT machine were reached quickly. In order 

to continue the tests and compare the results, the base course rutting area were backfilled and the 

circulations were resumed. This procedure was to be held twice per test, one after 150 cycles and 

one after 500 cycles.   

The performed plate load test using the particular shaped plate and the Traffic load results are 

presented in this section. A comparison between the same platforms subjected to the two different 

solicitations was presented in order to identify the loading type effect. Moreover, a comparison 

between the different platforms behaviour under the same solicitation was discussed.  

4.4.1. Measurements verifications  

The stress measurements in a soft soil using earth pressure cells present uncertainties due to the 

cell displacement and rotation possibilities under the load or the arching effect that can occur around 

the cell. Moreover, the cells can create hard points in the soft soil and change the soft soil behaviour. 

In Chapter 3, the subgrade surface profile was measured after 10,000 cycles using the laser sensor. 

The settlement profile over the instrumented and the not instrumented sides presented the same 

shape and values, which proves that the earth pressure cells do not disturb the soft soil behaviour. 

Moreover, the inclinometers were placed on the earth pressure cells to check their rotation over the 

cycles.  

In these tests, the inclinometers were placed under the Traffic load instrumented section. In this 

area, the sensors were located at the circulation middle length and distributed over the width. 

Additional earth pressure cells were placed along the circulated length, at 400 mm and 800 mm from 

the middle position of the sensors. The central inclinometer was placed on the earth pressure cell 

located at 400 mm from the circulation middle length and under the wheel centre. In addition, the 

other inclinometer was placed at the earth pressure cell located at the middle of the circulation length 

at 200 mm from the wheel centre line as illustrated in Figure 4.4-2. 

Figure 4.4-2 (a) and (c) present the earth pressure cell located under the wheel centre line inclination 

in both X and Y direction. The inclination curves present an initial variation due to the installation 

imperfections. However, with the cycles, the inclination curves show a constant inclination between 
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0 and 2 degrees. This proves that in the three performed tests the central earth pressure cell stays 

in a horizontal position over the cycles.  

Figure 4.4-2 (b) and (d) present the earth pressure cell placed at 200 mm from the wheel centre 

inclination in both X and Y direction. The curves show that the earth pressure inclination passes the 

sensor limits (15 degrees) in the first 10 cycles. In fact, this sensor presents an important inclination 

around the X axe. However, around the Y direction, it shows a small variation but it is still under 5 

degrees. Compared to the circular plate load tests, in Chapter 3, the same sensor placed at 200 mm 

presented the same important rotation around this axe, but this rotation did not occur in the first 

10 cycles.  

The inclinometers’ results show that during the Traffic load, and during the first cycles, the sensors 

placed between 200 mm and 300 mm present a high rotation around the X axe. This is due to the 

high curvature, that the subgrade surface settlement profile, presents between these two positions. 

The results given by these sensors do not represent the pure vertical stress applied on this position. 

Therefore, the stress measurements are analysed in a qualitative way in the following section.   

 
Figure 4.4-2: (a) Central earth pressure cell inclination over the X direction, (b) Earth pressure cell placed at 200 mm 

from the plate centre inclination over the X direction, (c) Central earth pressure cell inclination over the Y direction, (d) 

Earth pressure cell placed at 200 mm from the plate centre inclination over the Y direction. 
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4.4.2. GSY benefit 

In this section, the unpaved road improvement provided by the reinforcement is studied. The 

reinforced and unreinforced platforms were subjected to two different solicitation types: particular 

plate and Traffic load using the SAT machine. 

Three different platforms were tested and compared in this section in settlement and stress terms:  

• Test 1, an unreinforced platform, 

• Test 2, a reinforced platform using the GSY 3,  

• Test 3, a reinforced platform using GSY 2.  

4.4.2.a. Settlement 

The base course surface settlement profile after 10,000 cycles under the particular plate load was 

measured using the laser sensor. Figure 4.4-3 (a) shows the three performed tests settlement 

profiles. The unreinforced platform presents the highest settlement of 118 mm (Test 1) after 

10,000 cycles. The two reinforced platforms present the same profiles with a maximum settlement 

of 79 mm (Tests 2 & 3). This graph demonstrates that under this loading condition the GSY 2 and 

GSY 3 performed identically with a maximum surface settlement reduction of 33%. More importantly, 

the curves show no surface lifting at the plate edges. In fact, under this loading condition the base 

course platform presents no repulsion mechanism. 

Figure 4.4-3 (b) presents the surface profile after 1,200 cycles of Traffic load. Two settlement profiles 

were plotted for the same test over two different positions: at the circulation middle length, and 

300 mm further. The identical settlement profiles prove that the applied wheel load remains the same 

over the circulation length, and that the sensors placed under the middle length do not affect the 

platform behaviour.  

The analysis of this graph (Figure 4.4-3 ) should be qualitative not quantitative, because of the rutting 

zone backfilling after 150 cycles and 500 cycles. In fact, the surface settlement after the backfilling 

depends on the filling material density. 

The presented profiles show an important base course surface lifting on the wheel borders, which 

proves that under this load condition the base course layer presents important settlements due 

essentially to the aggregates lateral movement under the circulation loading.   
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Figure 4.4-3: (a) Base course surface settlement after 10,000 cycles, under the plate load test, (b) after 1,200 cycles 

under the Traffic load test for two different positions. 

Since under the plate load tests no base course surface lifting was observed, the apparent rut is 

equal to the elevation rut that was measured. Figure 4.4-4 (a) shows the apparent rut evolution with 

cycles under the plate centre. The unpaved platform presents a settlement of 40 mm (Test 1) at the 

first load, and this settlement increases during the cycles until it reaches 111 mm (Test 1) after 

10,000 cycles. The reinforced platforms with GSY 3 and GSY 2 show an important rut reduction. 

The settlement under the first cycle is 26 mm for GSY 3 (Test 2) and 30 mm for GSY 2 (Test 3). It 

increases with the cycles until it reaches 79 mm for GSY 3 (Test 2) and 72 mm for GSY2 (Test 3).  
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Figure 4.4-4: (a) Base course surface centre settlement evolution with cycles under the plate load test, (b) under the 

Traffic load test. 

Figure 4.4-4 (b) presents the apparent rut evolution with cycles under the Traffic load. This apparent 

rut evolves very quickly under the Traffic load for the three platforms. In fact, even under the first 

loading the unreinforced platform presents a higher rut than the plate load (54 mm > 37 mm) 

(Test 1). Moreover, after 10 cycles, 100 mm of the surface apparent rut was exceeded in the three 

performed tests. This shows clearly that the circulation load is a more damaging load than the plate 

load. As mentioned before the SAT apparatus rutting limit was reached after 150 cycles. A rutting 

area backfilling was performed after 150 cycles and 500 cycles. Therefore, the base course rutting 

evolution data cannot be analysed in details. It can only show the high rate of rutting evolution with 

the cycles. In fact, all the test settlements reach 250 mm and more after 1,200 cycles. However, 

Figure 4.4-4 (b) shows, before the backfilling and post the 150 cycles, that the reinforced platform 

with GSY 3 (Test 2) presents the lowest surface settlements.  

Figure 4.4-5 (a) shows the subgrade settlement under the plate load. Due to some technical issues, 

the subgrade surface settlement of Test 2 (GSY 3) is missing. Under the first cycle, the GSY 2 

(Test 3) shows no significant settlement reduction; in fact, both platforms present an initial settlement 

of 20 mm (Tests 1 & 2). During the cycles, the reinforcement is in tension and its efficiency in the 
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settlement reduction appears after the first 100 cycles. After 10,000 cycles, the GSY 2 insures a 

subgrade settlement reduction of 20%.  

 
Figure 4.4-5: (a) Subgrade surface centre settlement evolution with cycles under the plate load test, (b) under the Traffic 

load test. 

Figure 4.4-5 (b) shows the subgrade surface settlement evolution under the Traffic load. The 

unreinforced platform (Test 1) shows an initial subgrade settlement of around 20 mm, it evolves with 

the cycles to reach 120 mm after 1,200 cycles. Compared to the plate load, the unreinforced platform 

settlement evolves in a higher rate under the Traffic load. After 1,000 cycles the subgrade surface 

settlement reaches 67 mm, while the same platform reaches 120 mm after 1,200 cycles of Traffic 

load. This shows that the Traffic load is more damaging not only for the base course layer but for the 

subgrade layer too. As for the reinforced platform with GSY 2 (Test 3), under the plate load after 

1,000 cycles, the subgrade surface settlement reaches 57 mm, while the same platform reaches 

70 mm after 1,200 cycles of Traffic load. The Traffic presents less settlement on the reinforced 

platform, but still the platform still presents more settlements under the Traffic load than the plate 

load after the same number of the cycles.  

Moreover, Figure 4.4-5 (b) shows the reinforcement efficiency under the Traffic load. Beneath the 

first load, the unreinforced platform shows a settlement of 30 mm (Test 1), while the reinforced 

platforms present 16 mm (GSY 2, Test 3) and 12 mm (GSY 3, Test 2).  
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The two tested geosynthetics present the same behaviour under this type of loading, which was 

shown previously for the plate load test too (Figure 4.4-4 (a)). It reduces the subgrade settlement 

from 120 mm to 70 mm (GSY 2) and 65 mm (GSY 3) after 1,200 cycles.  

The Figure 4.4-4 and Figure 4.4-5 show an important difference of settlement between the base 

course surface and the subgrade surface, in particular under the Traffic load. After 1,200 cycles the 

unreinforced platform presents 120 mm at the subgrade surface and 300 mm at the base course 

surface which results in 200 mm of base course thickness reduction. It is worth pointing out again 

that the base course was backfilled twice during the test. The base course thickness variation is 

shown in Figure 4.4-6.  

 

Figure 4.4-6: (a) Base course thickness variation evolution with cycles under the plate load test, (b) under the Traffic load 

test. 

Figure 4.4-6 (a) presents the base course thickness variation under the plate load. The unreinforced 

platform (Test 1) shows a first thickness variation of 15 mm and it evolves with the cycles until it 

reaches 35 mm after 10,000 cycles. The reinforcement (GSY 2) reduces this thickness variation 

especially after the first loading, in fact the platform shows 10 mm (Test 3) at the first cycle and this 

value remains constant over the cycles.  
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Figure 4.4-6 (b) presents the base course variation under the Traffic load. It shows an important 

base course thickness variation under the three tests, and it starts under the first loading. The 

unreinforced platform (Test 1) shows a base course thickness reduction of 38 mm at the first loading, 

which increases to 68 mm after the first 10 cycles. The reinforced platform with GSY 3 (Test 2) 

presents a low base course thickness variation of 26 mm at the first loading and it reaches 62 mm 

after the 25 first cycles. The reinforced platform with GSY 2 (Test 3) presents 38 mm at the first 

loading and 77 mm after 20 cycles. These values show that the base course loses 30% of its 

thickness in the first 20 cycles of the Traffic load. These results showed that the Traffic circulation 

load induces an important gravel lateral movement and surface repulsion, which reduces the base 

course thickness. This phenomenon was not observed under the circular or the special plate load 

tests. However, this phenomenon can be more observed in these tests conditions, because of the 

loose base course compaction. In fact, the base course CBR in situ should be around 20%, but 

under the laboratory compaction conditions, the CBR obtained was around 12%. 

 
Figure 4.4-7: (a) Subgrade surface settlement profile from the load centre to the edge, for the plate load and Traffic load 

after 200 cycles, (b) after 500 cycles. 

Figure 4.4-7 shows the subgrade surface settlement profile after 200 (a) and 500 cycles (b), for the 

reinforced platform with GSY 2 and the unreinforced platform, under the plate and Traffic load tests.  

The profiles’ shapes are different under the Traffic and Plate load test. The graphs demonstrate that 

under the Traffic and plate load at 400 mm from the plate load centre line the settlement reaches 
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zero. Moreover, in both loading cases at 200 mm from the plate load for the reinforced and 

unreinforced platforms the settlement is around 30 mm.  

The unreinforced platform presents a larger central settlement under the Traffic load than under the 

plate load after 200 cycles and 500 cycles. In fact, after 200 cycles under the Traffic load the central 

settlement is of 77 mm, while under the plate load it is only of 54 mm.  

The reinforced platform with GSY 2 under the Traffic shows a central settlement after 200 cycles of 

60 mm, while under the plate load, the central settlement is equal to 47 mm.  

These results show that the same platform presents a higher settlement after many cycles under the 

Traffic load than under the plate load, and this higher settlement is mainly observed at the load 

centre. This results in a profile shape difference after the same performed cycles.  

The settlements’ results showed that the Traffic load is more damaging than the plate load, for the 

same platform. In fact, the Traffic load induced more gravel lateral movements and surface 

repulsions, which resulted in an important variation of the base course thickness. Moreover, the 

subgrade settlement presented a higher settlement under the Traffic load. The reinforcement 

presence reduced the subgrade settlement differences between the Traffic and plate load. However, 

under both solicitation types the reinforcement GSY 2 and GSY 3 presented an efficiency to reduce 

the surface settlement in subgrade and base course. Under the plate load test, both geogrid types 

showed the same base course settlement reduction efficiency of around 30% after 10,000 cycles. 

Under the Traffic load, both geogrid GSY 2 and GSY 3 reduced the subgrade surface settlement of 

about 40% after 1,200 cycles. In order to better understand the mechanisms the subgrade surface 

vertical stress is analysed in the following section.  

4.4.2.b. Vertical stress 

Figure 4.4-8 shows the maximum vertical stress applied on the subgrade surface and its evolution 

with the cycles. The graph (Figure 4.4-8) demonstrates the maximum stress reduction due to the 

reinforcement presence. Under the plate load test, the unreinforced platform presents a maximum 

vertical pressure of 320 kPa. The reinforced platform with GSY 2 under the plate load presents a 

maximum subgrade stress of 250 kPa at the first loading, which decreases in the first 100 cycles 

until it reaches 220 kPa. Moreover, the platform reinforced with GSY 3 presents an initial maximum 

stress of 220 kPa, which decreases in the first 100 cycles until it reaches 172 kPa. This stress 

reduction due to the reinforcement presence explains the subgrade settlement reduction observed 

in the previous section (section 4.4.2.a). Moreover, it shows that the GSY 3 presents a stress 

reduction ratio higher than the GSY 2 geogrid.  
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Figure 4.4-8: Subgrade surface central vertical stress evolution with cycles, under the plate and Traffic load. 

Regarding the Traffic load stress measurements, there were some uncertainties around the 

measured values. The wheel position was set manually on the static load application after a certain 

number of cycles. In fact, sometimes the wheel could be placed a bit away from the sensors position. 

On one hand the stress measurements during the cycles were not precise because of the sensors 

measurement, the loading and the logger frequencies incoherence. On the other hand, when the 

base course surface was backfilled after 150 cycles and 500 cycles, the base course thickness 

changed, and so affected the stress applied on the subgrade. 

However, Figure 4.4-8  shows the measured stress under the Traffic load too. Compared to the 

stress under the plate load, Figure 4.4-8 shows that the reinforced platforms present the same 

average stress applied on the subgrade.  The unreinforced platforms’ stress shows a difference 

between the plate and Traffic load tests, but the measured stress, during the cycles, of the 

unreinforced platform showed that the static measured stress in this test was probably wrong 

because of the wheel position during the static measurements. In fact, under the cyclic load the 

maximum values are around 300 kPa (Figure 4.4-9), which is the average stress under the plate 

load. As already mentioned the cyclic measurements do not always give the real applied maximum 

value because of the incoherence between the sensor, the load and the logger frequencies. 

However, the maximum given values for the first 22 cycles can give an idea about the average 

maximum value applied.  
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Figure 4.4-9: Subgrade surface central vertical stress cycles, for the unreinforced platform (Test 1). 

Figure 4.4-10 shows the vertical stress distribution on the subgrade surface of the first loading and 

after 100 cycles, under the plate and Traffic load.  

Figure 4.4-10 (a) shows the stress distribution under the first loading. Under the plate load, the 

profiles show a very concentrated stress at the plate centre line, for the reinforced and unreinforced 

platforms. Moreover, the same platforms under the Traffic load show the same stress concentration 

at the wheel centre line.  

Figure 4.4-10 (b) shows the stress distribution after 100 cycles. The plate load test results show that 

after 100 cycles the stress presents a more distributed shape. In fact, the central high stress 

presented at the first load decreased. This high stress seen of the first loading could be due to an 

installation and compaction irregularity. On one hand, the platforms tested under the Traffic load 

showed again, after 100 cycles, a concentrated stress profile under the wheel centre line.  

On the other hand, and regarding the unreinforced platform measured stress under the Traffic load, 

the profile presented in Figure 4.4-10 proves again that these measurements failed because of the 

wheel position while taking the static measurements.  

In conclusion, the stress analysis showed clearly the reinforcement effect in reducing the applied 

stress on the subgrade under the plate load and the Traffic load. The GSY 3 showed a better 

reduction ratio than the GSY 2. The remarkable point in this study is that the reinforced platforms 

showed no stress increasing under the particular shaped plate of the maximum stress at the load 

centre line with the cycles like seen in Chapter 3 with the circular plate load. This can be due to the 

geogrid different behaviour depending on the load intensity and surface shape. However, the 

comparison between the particular shaped and the circular plate load results are discussed later in 

section 4.5.  

Moreover, the stress distribution profile on the subgrade differs depending on the load type. In fact, 

the load is more localised on the load centre line under the Traffic load than under the plate load. 

Therefore, regarding all the uncertainties that affect the stress measurements, the overall stress 

analysis should be only qualitative.  
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Figure 4.4-10: Vertical stress distribution at the subgrade surface, (a) after 1 cycle, (b) after 100 and 150 cycles. 

4.4.3. GSY strain 

The GSY 2 and GSY 3 are two different geogrid types. The GSY 2 is a knitted geogrid with a low 

node strength but a high band stiffness, while the GSY 3 is an extruded geogrid with triangular 

apertures’ shapes and rigid nodes. The two geogrids’ efficiency in reducing the settlement under the 

plate load and the Traffic load was shown in the previous section. The optical fibre sensors were 

placed inside the geogrids to monitor the GSY strain during the base course installation and during 

the loading and unloading stages. 

4.4.3.a. After the base course installation 

Figure 4.4-11 illustrates the developed strain in the GSY 2 during the base course installation. The 

optical fibre was placed in three different positions over the box’s length. The graphs (Figure 4.4-11) 

demonstrate an average strain developed in the geogrid of about 2,500 με, this was shown 

previously in Chapter 3. While the GSY 3 presents an average developed strain of 3,500 με (Figure 

4.4-12).  
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Figure 4.4-11: GSY 2 strain and the equivalent force developed after the base course installation in three different 

positions. 

 
Figure 4.4-12: GSY 3 strain and the equivalent force developed after the base course installation in four different 

positions. 

The GSY 3 presents a higher deformation under the gravel installation. This can be due to its special 

geometry and its nodes strength that gives privilege to the gravel and aperture interlocking. 

Moreover, this product presents a node stability strength, which mobilization cannot be measured 

by the optical fibre. In fact, the optical fibre measures the bands strain only. However, the GSY 2 

was mobilized under the installation, next to the low nodes of stability factor, and to the large bands 

in comparison with the GSY 3.   

In this case, the comparison in term of tensile strength is not possible, because the two products are 

characterized by two different stiffness. In fact, GSY 2 is characterized by a unidirectional l stiffness 

of 2,500 kN/m at 2% of strain, while GSY 3 is characterized by a radial stiffness of 360 kN/m at 2% 

of strain. In fact, both products were under tension after the gravel installation.   
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4.4.3.b. During the loading 

After the installation, the measured strain of the optical fibre was put to zero, so only the strain due 

to the loading is measured in this section. In fact, to compare the geosynthetic strain with the 

subgrade settlement due to the loading,  the reference state should be the state after the base course 

installation.  

The geogrid strain was measured under the load and was monitored during the cycles.  

Figure 4.4-13 shows the geogrids GSY 2 and GSY 3 strain under the first loading and unloading 

states, for the plate and Traffic load. Figure 4.4-13 (a) and (c) show the strain developed in the GSY 2 

under the first plate and Traffic loading and unloading. It shows that the plate load induces more 

strain in the GSY 2 than the wheel load at the first cycle. In fact, under the loading, the plate load 

induces by 7,000 με in the reinforcement while the wheel’s first load induces by 5,000 με in the GSY 

2. After the loading, the remaining strain is about 5,000 με under the plate load and 2,000 με under 

the traffic load.  

 

Figure 4.4-13: GSY 2 and GSY 3 strain developed at the first loading and after the unloading, (a) GSY 2 under the plate 

load, (b) GSY 3 under the plate load, (c) GSY 2 under the Traffic load, (d) GSY 3 under the Traffic load. 

Figure 4.4-13 (b) and (d) present the GSY 3 strain under the first plate and Traffic load. The GSY 3 

presents a higher strain than the one induced in the GSY 2 under the same load conditions. In fact, 

it reaches 13,000 με under both loading cases. After the loading, the remaining strain under the 
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traffic load is about 7,000 με. This shows the difference in the two geogrids behaviour under the 

same load and the same soil displacement following the first load, the two geogrids were mobilized 

differently. More importantly, these results showed that under a relatively small displacement the 

GSY 3 is mobilized under the lateral restrain mechanism. In fact, under a localized load as the wheel 

or the plate load the aggregates tend to move laterally, and the geogrid blocks this movement. This 

phenomenon mobilizes the geogrid in its horizontal plan in addition to the geogrid strain due to the 

soil settlement accumulation under the load.  

With the cycles, the soil settlement increases and the geogrid strain too, which mobilize even more 

the geogrid and increases the tension membrane effect. In order to see this evolution, the geogrid 

strain was measured. However, some measurements were lost because the optical fibre strain limits 

were reached.  

 
Figure 4.4-14: GSY 2 stain evolution with cycles. (a) Under the pate load, (b) Under the Traffic load. 

Figure 4.4-14 illustrates the GSY 2 strain under the plate and traffic load. Under the plate load, the 

strain curves during the loading were lost, only the strain curves during the unloading were illustrated. 

The results show a coherence between the two loading types, in fact, the geogrid unloading strain 

after 1,000 cycles, under the plate load, is around 8,000 με and the GSY 2 presents 8,000 με of 

strain after 1,200 cycles under the Traffic load.  
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However, the loading strain presented in Figure 4.4-14 (b) shows that 80% of the strain is a plastic 

strain that remains during the unloading phase. In fact, after 1,200 cycles the maximum unloading 

strain is about 8,000 με, while the loading strain is around 10,000 με.  

Moreover, Figure 4.4-14 (a) shows that the unloading strain curves remain the same between 1,000 

and 10,000 cycles. In fact, after 1,000 cycles, the soil settlement shows an  

asymptotic evolution with cycles (Figure 4.4-4).  In addition, the curves show again as seen in 

Chapter 3, that the geogrid anchorage is provided by the aggregates and that no addition of 

anchorage is needed. In fact, in all these tests the geogrid is placed between in the wooden plate 

box without any additional anchorage. 

 
Figure 4.4-15: GSY 3 stain evolution under the plate load with cycles. (a) Evolution at the unloading stage, (b) after 

10,000 cycles under the loading and unloading. 

The evolution of the GSY 3 strain with the cycles under the traffic load could not be measured 

because of some technical issues. Therefore, only the curves of the GSY 3 strain under the plate 

load are illustrated in Figure 4.4-15. On one hand, Figure 4.4-15 (a) shows the GSY 3 strain curves 

evolution with cycles during the unloading phase. As seen under the first cycle the GSY 3 presents 

a more important strain than the GSY 2. In fact, even under the cycles the developed strain in the 

GSY 3 remains more important than the one developed in the GSY 2. After 1,000 cycles under the 
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unloading phase, the GSY 3 presents a maximum developed strain of 12,000 με while the GSY 2 

presents  8,000 με. On the other hand, Figure 4.4-15 (b) presents the loading and unloading strain 

curves after 10,000 cycles. These curves show that the elastic strain’s part forms only 12% of the 

total strain.  

The measured strain in the geogrids showed different mechanisms developed in the geogrids 

regarding their manufacturing types. In fact, the relatively high strain developed under the first load 

in the GSY 3 proved its mobilization due to the lateral restrain mechanism, which was not seen in 

the GSY 2. However, due to its high stiffness a small strain developed in the GSY 2 induces an 

important force. Moreover, the strain curves showed that the GSY 2 and the GSY 3 strain evolved 

with the soil settlement evolution. Therefore, even if it is due to different mechanisms the benefits of 

the two geogrids provided benefits, are as close as it was seen in section 3.4.1.   

More importantly, under the plate load and the traffic load, the natural geogrid anchor was enough, 

and the geogrids’ strain reaches zero, which is close to the box’s borders.  

 
Figure 4.4-16: Geogrids Maximum strain evolution with the base course central settlement evolution. 

In order to see better the geogrid developed strain due to the aggregate lateral restrain in the GSY 3, 

Figure 4.4-16 shows the developed geogrid maximum strain evolution with the base course central 

settlement. At the first cycle, the surface settlement is more or less the same for the two 

reinforcements, but the GSY3 is more mobilized. The additional strain developed in the GSY 3 can 

not be due to the soil settlement, it is due to the aggregates’ lateral movement. Moreover, this was 

shown over the cycles, in fact for the same settlement state the GSY 3 is always more mobilized and 

shows more strain than the GSY 2.  

 Circular and particular plate shape tests results 

comparison  

In Chapter 3, plate load tests were performed using a circular plate with 300 mm of diameter and 

40 kN of applied load resulting in 560 kPa of pressure, and a cyclic load frequency of 1 Hz. This 

configuration with the circular plate load (CPL) is the most used in literature. In this Chapter, in order 
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to compare between the circulation and the plate load tests, a particular plate shape similar to the 

wheel contact area was used. The applied load under the particular plate load was chosen 

depending on the applied wheel load, which was equal to 28 kN resulting in a contact pressure of 

650 kPa.  

The particular plate load (PPL) applies a more localized pressure on the surface and this can 

mobilize differently the reinforcement. Therefore, in this section the circular and particular plate load 

tests results were presented and compared. In fact, as mentioned in Chapter 3, the unreinforced 

platform (Test 3 – CPL), the reinforced platform using the GSY 3 (Test 7 – CPL) and the reinforced 

platform using the GSY 2 (Test 10 – CPL) were compared to the unreinforced and reinforced 

platforms under the particular plate load ( Test 1 – PPL, Test 2 – PPL and Test 3 – PPL). 

Figure 4.5-1 illustrates the base course surface centre settlement with the cycles. The unreinforced 

platform presents more settlement under the PPL than under the CPL. In fact, the unreinforced 

platform shows 111 mm after 10,000 cycles under the PPL, while under the CPL it shows 100 mm. 

This can be due to the more localized stress on the subgrade surface under the PPL. However, 

Figure 4.5-3 shows that under the PPL the stress applied on the subgrade for the unreinforced 

platform is around 330 kPa, while under the circular plate load it is around 300 kPa.  

 
Figure 4.5-1: Base course surface centre settlement evolution with cycles, for the circular plate load tests (Test 3, 7 & 

10); and the particular plate load tests (Test 1, 2 & 3). 

Figure 4.5-1 shows that the GSY 3 presents a more important improvement under the PPL than 

under the CPL. In fact, under the first cycles the settlement curves are close until the reach of 1,000 

cycles, while the settlement under the CPL continues to increase in a higher rate than under the PPL 

(Figure 4.5-1). Figure 4.5-2 presents the Base Course surface settlement evolution after 200 cycles. 

It shows that the platform reinforced with the GSY 3 differs the behaviour under the PPL and CPL 

after 1,000 cycles. In fact, under the CPL, the platform reinforced with the GSY 3 presents an 

important settlement evolution after 1,000 cycles, as if there are no reinforcement. This was due to 

the stress increase on the subgrade surface for this platform until it reaches the stress developed on 

the subgrade surface without any reinforcement (Figure 4.5-3). The stress under the PPL decreases 

under the first 100 cycles and then stays constant during the cycles (Figure 4.5-3). This proves that 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI027/these.pdf 
© [N. Khoueiry], [2020], INSA Lyon, tous droits réservés



 

Circular and particular plate shape tests results comparison 148 |P a g e  

  
 

under the PPL the GSY 3 behaves differently, this can be because under a localized stress the 

gravel lateral movement is more likely to happen and the GSY 3 is more mobilized in this case 

regarding its particular geometry and manufacturing type.  

 
Figure 4.5-2: Base course surface centre settlement evolution with cycles after 200 cycles, for the circular plate load 

tests (Test 3, 7 & 10), and the particular plate load tests (Test 1, 2 & 3). 

Figure 4.5-1 shows a difference between the platforms reinforced with GSY 2. This difference can 

be due to the first loading point. In fact, the stress applied on the subgrade surface under the first 

cycle is equal to 254 kPa under the PPL and 200 kPa under the CPL.  

Moreover, Figure 4.5-4 shows the geogrid strain developed under the first loading for the PPL and 

the CPL. This graph demonstrates that under the CPL, the GSY 2 is more in tension than under the 

PPL. However, this difference under the first loading can be due to the installation uncertainties. To 

look more into the settlement evolution, Figure 4.5-2 shows that under the PPL and the CPL the 

platform reinforced with the GSY 2 presents the same evolution rate. 

Figure 4.5-3 shows that the developed stress under the PPL shows no evolution with cycles 

contrarily to the stress developed under the CPL.  

Figure 4.5-3 shows significant differences between the developed stress on the subgrade surface 

under the PPL and the CPL tests especially for the reinforced platforms. It is important to remember 

that the surface applied pressure has a different shape and a different magnitude, in fact under the 

PPL the applied pressure is equal to 650 kPa on a smaller area,  under the CPL the applied pressure 

in equal to 560 kPa on a larger area.  
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Figure 4.5-3: Subgrade surface vertical stress evolution with cycles, for the circular plate load tests (Test 3, 7 & 10), and 

the particular plate load tests (Test 1, 2 & 3). 

Under the CPL the reinforced platforms start from the same stress point equal to 200 kPa and 

evolves with the cycles differently depending on the geogrid type. While under the PPL the first 

loading presents a higher stress point that decreases in the first 100 cycles and stays relatively 

constant during the cycles. 

 
Figure 4.5-4: GSY 2 strain at the first loading cycle, under the circular and the particular plate load test. 

However, the results show that under a more localised load the reinforced platform behaved 

differently, in fact the reinforcement was mobilized differently especially in the GSY3. 
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 Conclusions 

In this Chapter, the two different solicitation results were presented, the plate load and the traffic 

load. The same platform was subjected to two loading types, in order to compare the loading effect 

on the platform behaviour. Three platforms were tested: an unreinforced platform, a reinforced 

platform using the GSY 3 and a reinforced platform using GSY 2. During these tests, the base course 

thickness was fixed to 220 mm.  

The SAT apparatus was used to perform the traffic load solicitation on the tested platforms. This 

machine applied 28 kN on the wheel resulting in 650 kPa on the platform surface. This traffic load 

was applied on an effective 2 m length with a velocity of 4 km/h. The plate load test was modified in 

order to match the traffic load. In fact, a plate with the same wheel contact area shape was used, 

with an applied load of 28 kN resulting in a contact stress of 650 kPa. The two loaded areas were 

instrumented separately. The results were presented in terms of settlement, stress distribution and 

strain developed in the geogrids.  

The platform preparation and compaction protocol is the same protocol used in the plate load test 

and controlled previously in Chapter 3. The tests repeatability was proved previously in Chapter 3.  

The same quality control tests were performed on the prepared platforms under the plate load test 

area and the traffic load area. The results presented in this Chapter showed the platform 

homogeneity over the depth and over the large area. Moreover, the same soil layers properties were 

shown over the prepared platform area.  

The comparison results between the plate and traffic load showed that the traffic load is a more 

damaging load: 

• Under the first 10 cycles, the base course surface settlement under the traffic load reached 

more than 50 mm of apparent rut. In fact, under the traffic load the gravel lateral movement 

and surface repulsion was observed especially on the surface, which was not seen under the 

plate load test. 

• In addition to the base course important thickness variation, the subgrade presented a higher 

settlement under the traffic load. However, the reinforced platform presented less subgrade 

settlement differences between the traffic and the plate load, than the unreinforced platform.  

This base course thickness reduction under the circulation load was not taken into consideration in 

the analytical design methods; in fact, these analytical methods were calibrated based on circular 

plate load tests. Although, it was shown in the tests that the circulation load changes the platform 

behaviour and induces more settlement in the base course and on the subgrade surface.  

Under both solicitation, the reinforcement showed an efficiency in reducing the platform rut 

development and in increasing the platform serviceability: 

• The GSY 2 and GSY 3 under the plate load test showed a base course settlement reduction 

of 30% after 10,000 cycles. Under the traffic load test the GSY 2 and GSY 3 reduced the 

subgrade surface settlement of about 40%.  
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• The stress measurements under the traffic load tests were affected by many uncertainties, 

but the reinforced platform results showed that the average applied subgrade stress under 

the traffic load test were close to the applied stress under the plate load.  

• The GSY 3 showed a better stress reduction ratio than GSY 2. In fact, the unreinforced 

platform presented a maximum subgrade stress of 330 kPa. The reinforced platform with 

GSY 3 showed a maximum subgrade stress of 180 kPa while the reinforced platform with 

GSY 2 presented 220 kPa.  

• The developed strain in the geogrid under the gravel installation showed that the GSY 3 was 

more mobilized during the installation than the GSY 2. This can be due to its geometry and 

ability to interlock with the gravel particles.  

• The developed strain in the geogrid under the first load showed that the GSY 3 was more 

mobilized under the first cycle than the GSY 2. Even over the cycles the GSY 3 showed a 

larger strain than the GSY2. This can be due to the fact that under the first cycles the gravel 

lateral movement is more blocked by the GSY 3. In fact, due to its nodes stability and special 

geometry the GSY 3 can limit more the aggregates lateral movement, and this resulted in a 

higher strain developed in GSY 3 than in GSY 2.   

The comparison between the circular plate load tests presented in Chapter 3 and the particular plate 

load tests showed a difference in the reinforcement behaviour under a more localized load especially 

the GSY 3: 

• In fact, under the particular plate load test the GSY 3 improved in a better way the platform 

behaviour, it reduced significantly the base course settlement and the subgrade developed 

stress compared to its performance under the circular plate load. This is because under a 

localized stress the extruded geogrid is more mobilized due to the more important aggregates 

lateral movement.  

• The GSY 2 performance proved significant differences regarding the stress evolution with 

cycles, but these differences did not affect much the general settlement reduction compared 

to the circular plat load test.  

These results showed that the efficiency of the reinforcement, and the developed mechanisms at 

the interface in the base course platform and in the subgrade depends on the loading mode, 

magnitude and applied area. Moreover, the circulation load is a more damaging load for the platform, 

especially on the base course layer. This base course thickness variation under the traffic load was 

probably amplified in the performed tests because of the laboratory base course compaction 

conditions.  
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 Numerical Modelling 

 Introduction 

The unpaved roads on soft subgrade are a complicated practical and research application, which 

involve various mechanisms. The GSY reinforcement addition at the interface complicates even 

more the mechanisms. In order to provide knowledge and better understand the complex 

mechanisms, the authors in literature used different numerical methods to simulate this application.  

In literature, the discrete element method based on the discrete approach proved its efficiency in 

simulating the behaviour of the interaction between the geogrid apertures and the base course 

particles. However, the limitation of this method in the unpaved roads supported by soft subgrade is 

mainly the simulation of a cohesive soft soil layer.  

The continuous-based finite or differential element methods were used in literature to present a 

model that can simulate the behaviour of the structure under monotonic or cyclic load. In the 

continuous-based model, the geogrid is modelled as a continuous membrane with an equivalent 

stiffness. However, this approach reduces the geogrid apertures-aggregates interaction to a shear 

interface law. Moreover, in these methods a large deformation formulation is needed to deal with 

this application. In addition, complex constitutive models to simulate the materials behaviour 

especially under cyclic load are needed.  

The mechanistic-empirical method is a very common method used in the traffic applications in order 

to determine the long-term behaviour of the structures under cyclic load. This method consists of 

taking the information from a mechanistic response model and extend it into a long-term behaviour 

based on empirical approaches. However, in order to introduce more this method in the unpaved 

roads reinforced with GSYs, reliable base information from the mechanistic model are required.  

In this Chapter, a continuous three-dimensional model based on the finite deferential method have 

been developed using the calculation Software FLAC 3D. This model simulates the plate load test 

performed experimentally, with the same configuration.  

A special attention has been given to the soft soil constitutive model. Moreover, the material 

parameters have been calibrated based on the laboratory characterisation tests (triaxial test, direct 

shear test).  A first model with a monotonic loading have been validated based on the experimental 

results. Finally, this model has been used to determine the influence of various parameters. 
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 Soil constitutive models 

The constitutive model of a material is the relation between its internal stresses and its strains. It is 

a specific law that depends on each material behaviour. The general formulation of this law is given 

by the following equation: 

𝜎𝑖𝑗 = 𝐹(𝜀𝑖𝑗) Eq. 5.2-1 

Where 𝜀𝑖𝑗 is the strains tensor, 𝜎𝑖𝑗 is the stresses tensor and 𝐹 is the function. 

5.2.1. Elasticity 

The linear elasticity is characterized by reversible deformations upon unloading: the stress-strain 

laws are linear and path-independent. However, non-linear elasticity is divided into two main families: 

the hyper-elastic models and the hypo-elastic models. The hyper-elastic models are the first non-

linear category and are characterized by their null intrinsic dissipation. The hypo-elastic models are 

the second non-linear category and are characterized by the fact that the stress depends not only 

on the strain increment but also on the stress state itself.   

5.2.2. Elastoplasticity 

The elastoplasticity models describe the non-linear and irreversible behaviour of the material. These 

models present a yield surface, a hardening/ softening function and a plastic flow rule. In fact, we 

assumed an additive decomposition of the total strains, an elastic part and a plastic part such as:  

𝑑𝜀𝑖𝑗 = 𝑑𝜀 𝑖𝑗
𝑒 + 𝑑𝜀 𝑖𝑗

𝑝
 Eq. 5.2-2 

Where 𝑑𝜀 𝑖𝑗
𝑒  is the elastic strain increment and 𝑑𝜀 𝑖𝑗

𝑝
 is the plastic strain increment.  

The yield functions for each model define the stress combination for which plastic flow takes place. 

These functions or criteria are represented by one or more limiting surfaces in a generalized stress 

space with points below or on the surface being characterized by an incremental elastic or plastic 

behaviour, respectively. The yield function is a scalar that depends on the stress tensor 𝑓(𝜎𝑖𝑗): 

• If 𝑓(𝜎𝑖𝑗)<0, the stresses are in the elastic domain and no plastic strain occurs.  

• If 𝑓(𝜎𝑖𝑗)=0, the stresses are at the elastic domain borders and plastic strain occurs only 

if 
𝜕𝑓

𝜕𝜎𝑖𝑗
𝑑𝜎𝑖𝑗 > 0, so it is the loading case.  

𝜕𝑓

𝜕𝜎𝑖𝑗
𝑑𝜎𝑖𝑗 < 0 corresponds to an unloading condition 

where elastic strain occurs. 

• If 𝑓(𝜎𝑖𝑗)>0 is impossible to reach.  

Figure 5.2-1 illustrates the general concept of the yield function in a deviatoric plane for loading and 

unloading cases.  

One of the most used models in geotechnical is Mohr-Coulomb model. The shear yield function 

defined by Mohr-Coulomb model: 
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𝑓(𝜎𝑖𝑗) = (𝜎1 − 𝜎3) − sin∅ (𝜎1 + 𝜎3) − 2𝑐 cos∅ Eq. 5.2-3 

 

(a) 

 

(b) 

Figure 5.2-1: Yield function. (a) Loading case, (b) Unloading case. 

The yield function can depend on the stress components only as seen before, in this case, the state 

is called “perfect plastic”, or it can depend on the stress and plastic strain, in this case, hardening 

occurs.  

The hardening law gives the yield function evolution with the development of the plastic strain. 

Different hardening laws are distinguished: 

• The isotropic hardening, the yield surface undergoes an expansion or a contraction during 

the deformation process (Figure 5.2-2).  

• The cinematic hardening, the yield surface moves in stress space (Figure 5.2-2). 

• The anisotropic hardening, the yield surface undergoes in addition to the 

expansion/contraction a translation, rotation and evolution.  

 

(a) 

 

(b) 

Figure 5.2-2: (a) isotropic hardening, (b) cinematic hardening. 

In a constitutive model formulation, the hardening is introduced using a parameter in the yield 

function expression. In the case of an isotropic hardening, a scalar parameter is used, however, in 

a cinematic hardening a tensor is needed. 

The plastic flow rule gives the accumulation of the plastic deformation regarding the stress state (𝜎𝑖𝑗) 

and (𝑑 𝜎𝑖𝑗) and the hardening (K), using a plastic potential 𝑔. Non-associated flow rule is introduced 

if the plastic flow function 𝑔 is different from the yield function f.   
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𝑑𝜀𝑖𝑗
𝑝
= 𝑑𝜆.

𝜕𝑔

𝜕𝜎𝑖𝑗
 Eq. 5.2-4 

Where 𝑑λ, a positive scalar, is called the plastic multiplier. Based on the consistency condition, the 

plastic multiplier is determined. In fact, the stress state should stay in the yield surface (𝑓 = 0), so 

with the time steps, 𝑑𝑓 = 0. 

5.2.3. Hypoplasticity 

Hypoplasticity is based on a simple mathematical formulation in which the inelastic behaviour of a 

material is formulated using a single nonlinear tensorial equation of the rate-type. The hypoplastic 

constitutive equations are substantially different from the elastoplastic constitutive ones; in fact, it 

does not include concepts like the yield function, the plastic potential, the hardening and the additive 

decomposition of the deformation into elastic and plastic components.  

 

These two types of models do not address only the nonlinearity in the soil, the influence of density, 

the dilatancy, and the pressure level, but they take into consideration the deformation history in the 

soil.  

5.2.4. Literature revue  

A considerable number of constitutive models exist in literature to simulate the behaviour of soils, 

with a variable level of complexity depending on the application and the precision needed. In 

literature the constitutive models were classified based on the soil type, the theory used in the model 

and the number of tensor space as well used in the model. 

5.2.4.a. Models used to simulate the aggregates behaviour 

Most of the models are based on experimental observations of the granular soils behaviour in triaxial 

tests. The granular materials present complex behaviours that depend on the stress state, the 

density and the load history.  

There are elastoplastic models based on one shear of the mechanism (Monnet and Gielly, 1979). 

Moreover, there are more complicated models like the Drucker and Gibson (1957) model, the 

DiMaggio F (1971) model, the CJS2 model (Maleki et al., 2000), and the Hardening soil model 

(Vermeer, 1978; Schanz et al., 1999). These models are elastoplastic models with two mechanisms, 

especially developed for the granular soils. An isotropic hardening is added to these models, which 

allows to simulate the behaviour of granular material under monotonic load.  

The Mohr-Coulomb model is an elastic - perfectly plastic model widely used in geotechnical 

engineering to simulate the behaviour of granular and cohesive soils. This constitutive model is 

characterized by a linear isotropic elasticity of Hooke (E, υ), a constant yield surface in the space 

without any hardening law and a plastic potential. This model is described by two failure parameters: 

the cohesion c, and the friction angle φ. This model describes the shear failure of a soil. In our 

application, this model was used to simulate the behaviour of the base course layer as described in 
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Section 5.3.8, since it is the most widely used model to simulate the granular behaviour, and since 

we are focusing more on the subgrade soil behaviour. A  strain-hardening/softening model also 

implemented in FLAC 3D allows the representation of nonlinear material softening and hardening 

behaviour based on prescribed variations of the Mohr-Coulomb model properties (Cohesion, dilation, 

tensile strength) as functions of the deviatoric plastic strain.  

Special models in literature were developed to simulate the granular behaviour under cyclic load 

(Ghaboussi and Momen, 1979; Schwer  and Murray, 1994; Manzari and Dafalias, 1997; Desai, 1980; 

Fang, 2003). These models are based on kinematic and mixed hardening mechanisms. However, 

in this present work, we will keep on the basic Mohr-Coulomb model regarding the gravel.  

5.2.4.b. Models used to simulate the clay behaviour 

The most commonly used models for the clay behaviour are the Cam Clay model 

(Roscoe et al., 1958) and the modified Cam Clay model (Roscoe, 1968). The Cam Clay model was 

successfully used to simulate the behaviour of soft soil, especially the normally consolidated clay. 

This constitutive model was developed based on the compression test (oedometer test) and the 

shear tests (shear box and triaxial tests). This model is based on the concept of the critical stress 

state. The critical state is when a high distortion occurs in the soil without volumetric and stress 

variation. The Cam Clay model does not take into consideration the clay anisotropic behaviour. 

Moreover, this model can simulate the clay behaviour under monotonic load, but its limits are 

reached under cyclic loading. Melanie model was developed at LCPC by Kattan (1990) in order to 

study the clay anisotropy. The Lee and Oh (1995) model is based on the anisotropic hardening and 

allows the clay plasticity simulation. Authors in literature developed the Cam Clay model to  simulate 

clay behaviour under cyclic load (Al-Tabbaa and M. Wood, 1989; Al - Tabbaa and O'Reilly, 1990). 

The yield surface in these models is called “bounding surface”. 

In the presented work, the Cap-Yield model implemented model in FLAC 3D will be used to simulate 

the behaviour of the soft soil under monotonic.  

5.2.4.c. Unified models 

Some models were developed in literature to insure the simulation of both granular and cohesive 

soils behaviour (Aubry and Hujeux (1982); Crouch et al., 1994; CASM model (Yu, 1998); Khong et 

Yu, 2002; Matsuoka et al., 2005). These models were developed based on the Cam Clay model with 

the critical state concept. Moreover, these models allow the simulation of the soil dense and loose 

states.   

 The numerical computation code: FLAC 3D 

FLAC software is a computational software that allows the resolution of stress-strain problems of 

continuous media. The calculation code is based on the differential element method: the variables 

are known in the discretized element of the space without the constitution of the overall-medium 
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rigidity matrix. The code uses an explicit resolution method; the stress and strain computation in one 

element is independent from the elements around.  

The software FLAC is based on a numerical formulation called ‘Lagrangian Element 

Method (Billaux & Cundall, 1993). 

5.3.1. The computation code background 

The differential element method allows the differential equations system resolution based on the 

initial and /or boundary conditions. Each derivative in the differential equations system is replaced 

by an algebraic expression in the discretized medium in term of stress or strain variation. This 

numerical method does not require the computation and storage of the overall domain rigidity matrix. 

Unlike the ‘Eulerian’ formulation, the ‘Lagrangian’ formulation allows the variation of the node 

position and the mesh deformation for each time step, which provides a practical method to deal with 

large deformation boundary problems.  

The resolution method implemented in FLAC consists on the application of the non-traditional explicit 

method. This method is based on the resolution of a static problem through the dynamic formulation. 

In fact, part of the deformation energy accumulated in the system is dissipated in the medium as 

kinematic energy. Figure 5.3-1 shows the computation scheme used at each time step, which takes 

into consideration the dynamic movement equations. Indeed, the equations of motion are used to 

determine the new velocity and displacement from the stresses and forces.  

For a deformable body in a Lagrangian referential, the Newton equation of motion is expressed as:  

𝜌
𝜕𝑢𝑖 ̇

𝜕𝑡
=
𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
+ 𝜌𝑔𝑖 Eq. 5.3-1 

Where, ρ is the volumetric mass, t is the time, 𝑢𝑖 ̇ is the velocity, x is the position vector and g the 

gravitational acceleration constant.  

The strain rate is then derived from the velocity gradient. In addition, the stresses are determined of 

the material constitutive model. Details are given in the next Section. 

 
Figure 5.3-1: General computation sequence(Billaux & Cundall (1993)) 

The resolution method implemented in FLAC presents advantages and disadvantages comparing to 

the implicit method used in the Finite Element Method.  
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For a linear problem expressed in small deformation hypothesis, the small time step imposed in the 

explicit scheme results in a number of iterations to reach the solution, which is not the case in an 

implicit scheme. However, the explicit scheme allows the non-linear computations without additional 

iterations. Indeed, this scheme does not require the computation and storage of the overall rigidity 

matrix. This shows that the advantage of an explicit method is in the resolution of non-linear problems 

assuming large strains or instabilities for example.  

The explicit method is then an appropriate numerical tool for addressing the type of problems we are 

dealing with.  

5.3.2. Numerical formulation 

The solid body is divided, by the user, into a finite difference mesh composed of quadrilateral 

elements. Internally the software subdivides each element into two overlaid sets of constant-strain 

triangular elements. The four triangular sub-elements are termed a, b, c and d. The deviatoric stress 

components of each triangle are maintained independently, requiring sixteen stress components to 

be stored for each quadrilateral (4 x (𝜎𝑥𝑥,𝜎𝑦𝑦,𝜎𝑧𝑧,𝜎𝑥𝑦)). The force vector applied on each node is the 

mean value of the two force vectors applied by the two overlaid quadrilaterals.  

 
Figure 5.3-2: A discretized quadrilateral element used in FLAC. 

The difference equations for a triangle are derived from the generalized form of Gauss divergence 

theorem: 

∫𝑛𝑖

 

𝑆

𝑓 𝑑𝑠 = ∫
𝜕𝑓

𝜕𝑥𝑖
 

 

𝐴

𝑑𝐴 Eq. 5.3-2 

Where, ∫  
 

𝑆
is the integral around the boundary of a closed surface, 𝑛𝑖 is the unit normal to the surface 

S, 𝑓 is a scalar, vector or tensor, 𝑥𝑖 are the position vectors, 𝑑𝑆 is an incremental arc length and ∫  
 

𝐴
is 

the integral over the surface area A.  

The strain rate 𝜀𝑖̇𝑗 is written in terms of the node velocity using the gauss theorem: 

  

𝜕𝑢𝑖 ̇

𝜕𝑥𝑗
=
1

2𝐴
∑(𝑢 ̇ 𝑖

(𝑎)

𝑠

+ 𝑢 ̇ 𝑖
(𝑏))𝑛𝑗 ∆𝑠 Eq. 5.3-3 
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𝜀𝑖̇𝑗 =
1

2
[
𝜕𝑢𝑖 ̇

𝜕𝑥𝑗
+
𝜕𝑢𝑗 ̇

𝜕𝑥𝑖
] Eq. 5.3-4 

Where, ∆𝑠 is the distance between the two consecutive nodes a and b, and A is the element area, 

𝑢 ̇  the velocity vector.  

The constitutive model and rotation adjustment are then used to derive a new stress tensor from the 

strain-rate tensor. Once the stresses have been calculated, the equivalent forces applied on each 

nodal point are determined. At each node, the forces from all surrounding quadrilaterals are 

summed, in order to give the net nodal force vector, ∑𝐹𝑖. If the body is at equilibrium, or in steady-

state flow, ∑𝐹𝑖 on the node will be zero. Otherwise, the node will be accelerated according to the 

finite difference of Newton’s second law of motion: 

𝑢 ̇  𝑖

(𝑡+
∆𝑡
2
)
= 𝑢 ̇  𝑖

(𝑡−
∆𝑡
2
)
+∑𝐹𝑖

(𝑡) ∆𝑡

𝑚
 Eq. 5.3-5 

For large-strain problems, the new coordinate of the gridpoint is determined: 

𝑥 𝑖
(𝑡+∆𝑡)

= 𝑥 𝑖
(𝑡)
+ 𝑢 ̇  𝑖

(𝑡+
∆𝑡
2
)
 ∆𝑡 Eq. 5.3-6 

To solve static problems, the equation of motion must be damped to provide static or quasi-static 

solutions. The damping used in standard dynamic relaxation methods is the velocity-proportional. 

This is conceptually equivalent to a dashpot fixed to the ground at each nodal point.  

The convergence criteria which controls the end of the iterations is based on the elements 

equilibrium. After each time step, an equilibrium test is performed and the unbalanced force is 

registered. The equilibrium is obtained when a very small unbalanced forced defined by the user is 

reached. When the equilibrium occurs, the nodes’ velocity is very small (a criterion of 10-7m/s is 

assumed acceptable).  

5.3.3. Constitutive model in FLAC 

A certain number of constitutive models are implemented in the software FLAC, which can be divided 

into three groups:  

• The null model: a null material model is used to represent a material that is removed or 

excavated. 

• Elastic model group: Elastic isotropic model and Elastic transversely isotropic model.  

• Plastic model group: Drucker-Prager model, Mohr-Coulomb model, ubiquitous model, strain-

hardening/softening model, bilinear strain hardening/softening ubiquitous-joint model, 

double-yield model, modified Cam-Clay model, Hoek-Brown model and Cysoil model.  

All the models are implemented using the same algorithm formulation: from the previous stress state 

computed at the last time step and the total strain increment at the actual time step, the stress 

increment is calculated and the new stress state is determined. It is also possible to implement a 

new constitutive model in FLAC. 
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5.3.4. Interface elements 

FLAC provides interfaces that are characterized by Coulomb sliding and/or tensile separation model. 

Interfaces have friction, cohesion, dilatancy and shear stiffness and tensile strength properties. An 

interface can be specified between structural elements and a grid (in our application case) or 

between structural elements. An interface is represented as a normal and shear stiffness between 

two planes, which may be in contact with each other. FLAC uses a contact logic, which is similar to 

the one employed in the distinct element method, on either side of the interface (Cundall and Hart, 

1992).  

Under some circumstances, it may be necessary to use an interface to join two sub-grids. This type 

of interface is declared as “glued” on the INTERFACE command, thus preventing any slip or 

separation; values of friction, cohesion and tensile strength are not needed in this case, and are 

ignored if given. However, shear and normal stiffness must be provided. FLAC does ‘mass scaling’ 

based on stiffness so the response and solution convergence will be very slow if very high stiffness 

are specified. It is recommended that the lowest stiffness consistent with small interface deformation 

be used. A good rule-of-thumb is that Kn and Ks be set to ten times the equivalent stiffness of the 

stiffest neighboring zone. Where Kn and Ks are respectively the normal and the shear stiffness of the 

interface, and the apparent stiffness of a zone in the normal direction is: 

𝑚𝑎𝑥 [
(𝐾 +

4
3𝐺)

∆𝑧𝑚𝑖𝑛
] Eq. 5.3-7 

Where 𝐾 & 𝐺 are respectively the bulk and shear moduli; and  ∆𝑧𝑚𝑖𝑛 is the smallest width of an 

adjoining zone in the normal direction.  

This method is reasonable if the material on the two sides of the interface are similar, and the 

variations of stiffness occur only in the lateral directions. However, if the material on one side of the 

interface is much stiffer than that on the other side, the Eq. 5.3-7 should be applied to the softer side. 

In this case, the soft side dominates the deformation of the whole system; making the interface 

stiffness ten times the soft-side stiffness will ensure that the interface has minimal influence on 

system.  

5.3.5. Structural elements 

The structural elements can either be independent or coupled to the grid representing the solid 

continuum. The structural-element logic is implemented with the same explicit Lagrangian 

formulation procedure as the rest of the code. Large displacements, including geometric nonlinearity, 

can be used by specifying a large-strain solution formulation, and the full dynamic response of the 

system in the time domain can also be obtained with the dynamic-analysis option.  

Six different structure elements can be defined in FLAC. Each of these members can be joined to 

one another and/or the grid: Beam Structural Elements, Cable Structural Elements, Pile Structural 

Elements, Shell Structural Elements, Geogrid Structural Elements and Liner Structural Elements.  
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5.3.6. Geogrid structural elements 

The mechanical behaviour of each geogrid can be divided into the structural response of the geogrid 

material itself, and into the way in which the geogrid element interacts with the medium.  

Geogrids elements are used to model flexible membranes whose shear interaction with the soil are 

important, such as geotextiles and geogrids.  

 

(a) 

 

(b) 

Figure 5.3-3: (a) Stresses acting on the geogrid elements surrounding a node, (b) Interface behaviour of a geogrid node 

(FLAC manual report). 

The geogrid behaves as an isotropic or orthotropic linear elastic material with no failure limit. The 

behaviour at the geogrid-soil interface is summarized in Figure 5.3-3, it is a shear behaviour 

controlled by Mohr-Coulomb model. The stresses, consisting of an effective confining stress 𝜎𝑚 and 

of a total shear stress 𝜏, are balanced by the membrane stresses developed within the geogrid itself. 

The interface behaviour is represented numerically at each geogrid node by a rigid attachment in 

normal direction and spring-slider in the tangent plane to the geogrid surface.  

5.3.7. Cap-yield model implemented in FLAC 

The CYSoil model is a soil model presented in FLAC version 6. This model is a strain-hardening 

constitutive model that is characterized by a frictional Mohr–Coulomb shear envelope and an elliptic 

volumetric cap in the (p0, q) plane. The model uses three-yield surfaces that includes deviatoric 

(shear), volumetric (cap) and tension cut off. The CYSoil model in FLAC3D 6 is an updated version 

of the FLAC3D 5 CYSoil model with the following built-in features: 

• A cap hardening law to capture the volumetric power law behaviour observed in isotropic 

compaction tests. 

• A friction-hardening law to reproduce the hyperbolic stress-strain law behaviour observed in 

drained triaxial tests; 

• A compaction/dilation law to model irrecoverable volumetric strain taking place because of 

soil shearing. 

The formulation of this model is detailed as follow: 

• Incremental elastic law 

• Shear yield and Potential functions 
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• Volumetric Cap Criterion  

• Tensile Yield Criterion  

• Friction Hardening  

• Cap Hardening 

5.3.7.a. Incremental elastic law 

The elastic behaviour is expressed using Hooke’s law. The incremental law expression in terms of 

principal stress and strain has the following form: 

𝛥𝜎1 = 𝛼1𝛥𝜀1
𝑒 + 𝛼2(𝛥𝜀2

𝑒 + 𝛥𝜀3
𝑒) 

Eq. 5.3-8 𝛥𝜎2 = 𝛼1𝛥𝜀2
𝑒 + 𝛼2(𝛥𝜀1

𝑒 + 𝛥𝜀3
𝑒) 

𝛥𝜎3 = 𝛼1𝛥𝜀3
𝑒 + 𝛼2(𝛥𝜀1

𝑒 + 𝛥𝜀2
𝑒) 

Where 𝛼1 = 𝐾
𝑒 +

4𝐺𝑒

3
, 𝛼2 = 𝐾

𝑒 +
2𝐺𝑒

3
, and 𝐾𝑒and 𝐺𝑒 are respectively current tangent elastic bulk and 

shear moduli. 

The elastic bulk modulus 𝐾𝑒 is derived internally, using the relation: 

𝐾𝑒 = 𝐺𝑒
2(1 + 𝜐)

3(1 − 2𝜐)
 Eq. 5.3-9 

It is obvious that the implemented elastic model is a hypo-elastic formulation which does not derive 

from a potential as proposed by Ziegler (1968), Ziegler & Wehrli, C. (1987), Collins & Houlsby (1997) 

and Collins & Hilder (2002). 

5.3.7.b. Shear yield and Potential functions 

The shear yielding is defined by a Mohr-Coulomb criterion: 

𝑓𝑠 = 𝑀(𝑝 + 𝑐. 𝑐𝑜𝑡𝜙𝑓) − 𝑞 Eq. 5.3-10 

Where 𝑀 = 6 sin𝜙𝑚 /(3 − sin𝜙𝑚), 𝜙𝑚 is the mobilized friction, a quantity which can increase 

between an initial value and a final value 𝜙𝑓 set by the user. 

With a non associated potential function: 

𝑔𝑠 = 𝑀∗ − 𝑞∗ Eq. 5.3-11 

Where  𝑞∗ = −[𝜎1 + (𝛿
∗ − 1)𝜎2 − 𝛿

∗𝜎3], 𝛿
∗ = (3 + sinѰ𝑚)/( (3 − sinѰ𝑚), 

𝑀∗ = 6 sinѰ𝑚 /(3 − sinѰ𝑚), and Ѱ𝑚 is the mobilized dilatancy angle. 
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Figure 5.3-4: Mohr circles at in-situ stress and at failure. 

5.3.7.c. Volumetric Cap Criterion  

Yield on the cap is associated with the criterion: 

𝑓𝑠 = 𝑔𝑠 =
𝑞2

𝛼2
+ 𝑝2 − 𝑝𝑐

2 Eq. 5.3-12 

Where α is a dimensionless parameter defining the shape of the elliptical cap in the (p, q) plane, and 

𝑝𝑐 is the current cap pressure.  

5.3.7.d. Tensile Yield Criterion  

The tensile yield function is the same as that used for the Mohr-Coulomb model: 

𝑓𝑡 = 𝑔𝑡 = 𝜎𝑡 − 𝜎3 Eq. 5.3-13 

Where 𝜎𝑡 is the tensile strength.  

5.3.7.e. Friction Hardening  

For most soils, the curve of deviatoric stress versus axial strain obtained in a drained triaxial test can 

be approximated by a hyperbola. The CYSoil model incorporates a friction-strain hardening law to 

capture this trend. 

The evolution law for mobilized friction, 𝜙𝑚  is given by Eq. 5.3-14 

sin∅𝑚 = sin∅0 +
𝛽𝛾𝑝(1 + 𝑅)𝐺𝑟𝑒𝑓(sin∅𝑓 − sin∅0)

(sin∅𝑓 − sin∅0) + 𝛽𝛾
𝑝(1 + 𝑅)𝐺𝑟𝑒𝑓𝑅𝑓

 Eq. 5.3-14 

Where ∅𝑓 is the ultimate/failure friction angle, ∅0 is an internal constant (which, by default is set equal 

to the user-provided mobilized friction angle under in-situ conditions), 𝑅𝑓 is the failure ratio and one 

of the material parameters (less than 1.0 with a default value of 0.9), 𝛽 is the calibration factor of the 

hardening rule, 𝛾𝑝 is the plastic shear strain, the R parameter is the ratio between the elastic and 

plastic rates of the volumetric strain. 𝐺𝑟𝑒𝑓 is a dimensionless elastic shear modulus reference 

specified by the user. 
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The mobilized plastic shear modulus can be expressed in terms of plastic shear strain: 

𝐺𝑚
𝑝

𝐺𝑚,𝑖
𝑝 = (

1

1 + 𝐴𝛾𝑝
)
2

 Eq. 5.3-15 

Where 𝐺𝑚,𝑖
𝑝

 is the value of 𝐺𝑚
𝑝

 under in-situ conditions, and A is defined as follow: 

𝐴 = 𝛽
(1 + 𝑅)𝐺𝑟𝑒𝑓𝑅𝑓

sin∅𝑓 − sin∅0
 Eq. 5.3-16 

5.3.7.f. Cap Hardening 

Soil stiffness usually increases in a nonlinear way as a function of isotropic pressure. In the CYSoil 

model, the following power law describes soil volumetric behaviour in an isotropic compaction test:  

𝑑𝑝

𝑑𝜀
= 𝐾𝑟𝑒𝑓𝑝𝑟𝑒𝑓 (

𝑝

𝑝𝑟𝑒𝑓
)

𝑚

 Eq. 5.3-17 

Where e is the volumetric strain taken positive in compression, 𝐾𝑟𝑒𝑓 is the tangent elastic bulk 

modulus number, the product 𝐾𝑟𝑒𝑓𝑝𝑟𝑒𝑓 is the slope of the laboratory curve for p versus ε at reference 

effective pressure, 𝑝𝑟𝑒𝑓, and m is a constant (0 < m < 1). 

The hardening modulus, H is defined as follow: 

𝐻 =
𝑑𝑝𝑐
𝑑𝜀𝑝

= 𝐾𝑟𝑒𝑓𝑝𝑟𝑒𝑓
(1 + 𝑅)

𝑅
(
𝑝𝑐
𝑝𝑟𝑒𝑓

)

𝑚

 Eq. 5.3-18 

 

Where 𝑝𝑐 is expressed in terms of 𝜀𝑝, the plastic volumetric strain: 

𝑝𝑐 = 𝑝𝑟𝑒𝑓 [𝐾𝑟𝑒𝑓(1 −𝑚)
(1 + 𝑅)

𝑅
𝜀𝑝]

1
(1−𝑚)

 Eq. 5.3-19 

The tangent elastic modulus, 𝑘𝑒 is expressed in terms of  the hardening modulus H: 

𝑘𝑒 = 𝑅𝐻 = 𝐾𝑟𝑒𝑓𝑝𝑟𝑒𝑓(1 + 𝑅)(
𝑝𝑐
𝑝𝑟𝑒𝑓

)

𝑚

 Eq. 5.3-20 

5.3.7.g. Dilation Hardening 

There are two options regarding the flow rule model: The flow rule is defined in terms of the 

relationship between the plastic volumetric strain and plastic deviatoric strain in a way that 
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𝑑𝜀𝑠
𝑝

𝑑𝛾𝑝
= sinѰ𝑚 Eq. 5.3-21 

The first option of the plastic potential uses a constant dilation angle, similar to that of the Mohr-

Coulomb model where a dilation angle (Ѱ) is defined and controls the dilation tendency of the 

material. 

In the second option, the mobilized dilation angle is calculated based on the mobilized friction angle. 

Ѱ𝑚 is the mobilized dilation angle. The evolution law for mobilized dilation angle Ѱ𝑚 is given by the 

following law, based on Rowe’s stress-dilatancy theory (1962): 

sinѰ𝑚 =
sin𝜙𝑚 − sin𝜙𝑐𝑣
1 − sin𝜙𝑚 sin𝜙𝑐𝑣

 Eq. 5.3-22 

Where sin𝜙𝑚 is given in terms of  𝛾𝑝, and sin𝜙𝑐𝑣 is a constant given by the following expression: 

sin𝜙𝑐𝑣 =
sin𝜙𝑓 − sinѰ𝑓

1 − sin𝜙𝑓 sinѰ𝑓
 Eq. 5.3-23 

Where 𝜙𝑓 and Ѱ𝑓 are respectively ultimate values of friction and dilation. 

 

This constitutive model was used to simulate the behaviour of the soft soil supporting the granular 

platform in the unpaved roads application. In fact, the CYSoil model is a shear and volumetric 

hardening/softening model that provides a comprehensive exhibition of the nonlinear behaviour of 

soils. This double-yield model can present a more realistic representation of the loading/unloading 

response of soils (Itasca Group, 2012). 

5.3.8. Model geometry 

The plate load test performed in Chapter 3 was simulated using FLAC3D software. Due to the 

symmetry, only the quarter of the domain is modelled. The quarter of a cylinder with a radius of 

900 mm represents the quarter soil layers with 600 mm of subgrade and 220 mm of base course. 

Two different simulations with and without reinforcement were performed in order to compare the 

reinforcement effect. An interface is placed between the subgrade and the base course for both 

cases, and another interface is added between the geosynthetic and the base course in the 

reinforced simulation.  
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Figure 5.3-5: The model geometry. 

The boundary conditions are imposed regarding the symmetry and the physical model. In fact, the 

displacement in the z direction at the bottom face and the displacement in the normal directions of 

the model lateral faces were blocked.  

The influence of the boundary conditions and the domain limits was studied by changing the domain 

dimensions and looking at its influence on the results in terms of displacements and stresses states. 

This study showed no boundary effects with the current model dimensions. Moreover, a sensibility 

analysis was conducted using different element sizes to determine a suitable mesh that brings 

balance between accuracy and computing time. The model is composed of 48,000 zones and 5,101 

grid points.  

 Parameters calibration 

The characterisation of the soil materials used in the physical model was based on the laboratory 

geotechnical Chapter 2 (triaxial and shear box test). The results of these characterisation tests were 

used to calibrate the constitutive models parameters used in the numerical simulation.   

5.4.1. Base course 

Table 5.4-1: The base course Mohr-Coulomb Model calibrated properties. 

Density (kN/m3) 18 

K (Elastic bulk modulus) (MPa) 125 

G (Elastic shear modulus) (MPa) 58 

 (Poisson’s ratio) 0.3 
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φ (friction angle)(°) 37 

Ψ (dilation angle)(°) 15 

C (cohesion)(kPa) 10 

 
Figure 5.4-1: Shear stress versus displacement in the numerical and physical simulations of the shear box test, on the 

base course material. 

The base course material used in the physical model was characterised using a large shear box test. 

In order to simulate the same base course performances in the numerical model, a numerical shear 

box test was performed. As mentioned before, the Mohr-Coulomb constitutive model was used for 

the base course material. The comparison between the numerical and experimental stress versus 

the displacement curves at the three different normal stresses (66 kPa, 125 kPa, 200 kPa) is 

illustrated in Figure 5.4-1. The illustrated elastic perfectly plastic curves correspond to the 

parameters shown in Table 5.4-1. The Mohr-Coulomb constitutive model requests a minimum 

number of parameters. The granular material presents a non-linear behaviour that cannot be taken 

into consideration in the used constitutive model. The focus in this study was on the subgrade 

behaviour, therefore, another more complex constitutive model was not chosen for the base course 

material.  

5.4.2. Subgrade 

The focus in this study is on the behaviour of the soft soil material. The Cap-yield constitutive model 

implemented in FLAC was used to illustrate the subgrade behaviour. A shear and volumetric 

hardening/softening model that can simulate the nonlinear behaviour of the soil and the loading 

unloading behaviour.  

The model was calibrated based on a monotonic triaxial test and a cyclic triaxial test. Moreover, the 

parameters were validated based on a large-scale monotonic plate load test.  
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5.4.2.a. The triaxial test 

Three triaxial experimental tests were performed on the extracted specimens, from the installed and 

compacted large-scale platform, with three different confinement stresses (50 kPa, 100 kPa and 

200 kPa). An undrained experimental test was performed on an unsaturated soil (soil at 72% of 

saturation). The experiments give the apparent cohesion (CUU) of 19 kPa and the apparent friction 

angle (φUU) of 28° of the unsaturated soil. However, in the numerical simulations the soft soil is 

assumed to be a dry soil. The apparent behaviour of the unsaturated soil was used to calibrate the 

behaviour of the dry soil in the numerical simulations. It is obvious that the experimental undrained 

test is not performed as an isochoric (no volume changes) tests, the water is simply not allowed to 

move outward or inward.  

Table 5.4-2: Subgrade Cap-Yield Model calibrated properties. 

Density (kN/m3) 19 

K (Elastic bulk modulus) (MPa) 57.5 

G (Elastic shear modulus) (MPa) 26.5 

υ(Poisson’s ratio) 0.3 

φ(friction angle)(°) 28 

Ѱ(dilation angle)(°) 5 

C(cohesion) (kPa) 19 

Rf (Failure ratio) 0.9 

φf (Ultimate friction angle) (°) 28 

β (Calibration factor) 0.3 

Shear reference  200 

Critical friction angle(°) 19 

Pressure-reference (kPa) 100 

Exponent m 0.99 

The parameters given in Table 5.4-2 are the final parameters that gave the matching curves 

presented in Figure 5.4-2. The parameters that affected most the calibration are:  

• The shear – reference Gref a dimensionless elastic shear modulus, the failure ratio Rf and the 

calibration factor of the hardening rule that affect the friction hardening rule. These calibrated 

parameters are the same for the three models with the three different confinement stresses.  
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Figure 5.4-2: Deviatoric stress versus the axial strain in the numerical and physical simulations of the triaxial test, on the 

subgrade material. 

 

Figure 5.4-3: Volumetric strain versus the axial strain in the numerical and physical simulations of the triaxial test, on the 

subgrade material. 

The second option proposed for the dilation-hardening (section 5.3.7) rule was chosen for this 

simulation since it can predict the volumetric strain changes with the axial strain variation. The 

mobilized dilation angle is calculated based on the mobilized friction angle. Ѱ𝑚 is the mobilized 

dilation angle. The evolution law for mobilized dilation angle Ѱ𝑚 depends on the mobilized friction 

angle and 𝜙𝑐𝑣.where  𝜙𝑐𝑣 is a function of the ultimate friction angle and dilatancy angle. For the 

triaxial test with the confinement stress of 50 kPa the 𝜙𝑐𝑣  taken is equal to 15 °. While for the 

confinement stress of 100 and 200 kPa the 𝜙𝑐𝑣 taken is equal to 19°. 

Moreover, the cap-yield constitutive model simulates the loading-unloading state of the soil and the 

residual deformation and moduli. The simulation of the soil behaviour on the soil was performed 

based on cyclic triaxial tests performed on the extracted specimens under 100 kPa of confining 
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stress. The Figure 5.4-4 shows close numerical and experimental curves especially for the first 

loading-unloading cycle. However, the cap-yield model does not include the material hardening 

under cycles, it can only predict the first loading-unloading cycle.  

 
Figure 5.4-4: Deviatoric stress versus the axial strain under cyclic load in the numerical and physical simulations of the 

triaxial test, on the subgrade material. 

5.4.3. Base course/Subgrade interface 

As mentioned before the interfaces provided by FLAC are characterized by Coulomb sliding and/or 

tensile separation. FLAC manual recommends a method to determine the interface stiffness in the 

case of contact between a material much stiffer than the other. This method considers that the Ks 

and Kn should be equal to ten times the equivalent stiffness of the softer neighbouring zone given by 

the Eq. 5.3-7. The cohesion and friction angle are equal to the soft soil parameters.  

Table 5.4-3: The Base course/Subgrade interface. 

Normal stiffness (MPa) 9 280 

Shear stiffness (MPa) 9 280 

Friction angle(°) 28 

Cohesion (kPa) 19 

5.4.3.a. The plate load test 

In order to reproduce the behaviour of the soft soil exhibiting large strain a comparison between a 

physical and numerical plate load test applied on the soft subgrade directly was conducted.  

The aim of this experimental test was to reduce the problem of the subgrade in order to verify the 

behaviour of the soft soil without the interfaces, reinforcement and base course influences. 

The experimental test was performed in the same geotechnical box, the same installation procedure, 

subgrade properties and thickness as in the full test with the base course layer.  The load was applied 

via a 600 mm diameter plate with an external applied load of 80 kN that results in a contact stress of 

280 kPa (Figure 5.4-5), which is the average applied load on the subgrade surface during the full 
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plate load test with the base course layer. The subgrade was instrumented as in the full test. Earth 

pressure cells were placed at the subgrade surface under the plate to verify the applied stress. 

Settlement sensors were placed under the plate to measure the settlement. On the subgrade surface 

five earth pressure cells were placed at different positions from the plate centre: under the plate 

centre, 100 mm, 200 mm 400 mm and 600 mm from the plate centre. The settlement sensors were 

placed at the same positions under the pressure cells. Moreover, earth pressure cells were placed 

in the subgrade depth.  The earth pressure cells in the subgrade depth were placed at the plate 

centre at 200 mm, 400 mm and 600 mm in depth. 

 
Figure 5.4-5: Plate load test performed directly on the subgrade soil. 

Due to the symmetry, the quarter of the domain is modelled. The quarter of a square with 900 mm 

in dimension, represents the quarter soil layer with 600 mm in depth of soft subgrade. The simulation 

was resolved as a large-strain problem, in which the coordinate of new positions was calculated and 

updated for each step. In the physical simulation, the load was imposed on the plate surface, since 

the plate is a stiff plate the displacement at the surface is the same on the subgrade surface as under 

the plate, and the vertical stress is maximum at the plate edges; this was measured by the pressure 

cells. In the numerical model, the displacement measured in the experiment was imposed at the 

subgrade surface. The numerical stresses were determined and compared to the experimental 

measured stresses. Figure 5.4-6 shows the numerical model geometry according to the physical 

model geometry.  

Figure 5.4-7 shows the surface settlement obtained in the numerical and physical models. The 

experimental settlements as given by the settlement sensors shows the same values under the plate 

of about 50 mm. This plate displacement was imposed on the subgrade surface in the numerical 

simulation as seen in the same Figure 5.4-7.  

Figure 5.4-7 shows the surface settlement obtained in the numerical and physical models. The 

experimental settlements as given by the settlement sensors shows the same values under the plate 
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of about 50 mm. This plate displacement was imposed on the subgrade surface in the numerical 

simulation as seen in the same Figure 5.4-7.  

 
Figure 5.4-6: Subgrade loading simulation geometry. 

 
Figure 5.4-7: Surface settlement in the numerical and physical models. 

The surface stress distribution shows in both numerical and physical models an edge localisation of 

about 300 kPa that decreases by getting closer to the centre to reach 200 kPa, which can capture 

the stress distribution under a stiff plate. The surface stress distribution in Figure 5.4-8, shows that 

the numerical constitutive model can predict the soft soil behaviour even under large-strain 

conditions.  

 
Figure 5.4-8: Surface stress developed in the numerical and physical models. 
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Figure 5.4-9 shows the numerical and experimental stresses under the plate centre in the subgrade 

depth. The curves show that the numerical model can capture the stress distribution in the subgrade 

depth. These comparison results verify the choice of the Cap-Yield constitutive model and its 

parameters calibration for the soft soil simulation. In fact, it shows that the numerical simulations 

capture the experimental behaviour of the subgrade behaviour.  

 
Figure 5.4-9: Stress developed at the plate centre in the subgrade depth in the numerical and physical models. 

5.4.4. Geosynthetic 

The geogrid is simulated as a membrane characterized by an elastic behaviour in its plane.  

The experimental tests used to verify the numerical simulation are the ones conducted using GSY 1 

as a reinforcement: a knitted coated geogrid with 1,000 kN/m as stiffness at 2% of strain.  The 

membrane thickness taken is equal to 3 mm, so the Young modulus is equal to the geogrid stiffness 

expressed in kN/m and divided by the membrane thickness.  

Table 5.4-4: Geosynthetic properties. 

Isotropic material young modulus (MPa) 333 

Poisson’s ratio 0.33 

Thickness (m) 3e-3 

5.4.5. Base course/Geosynthetic interface 

The geogrid GSY 1(a knitted coated geogrid with 1,000 kN/m as secant stiffness at 2% of 

deformation) and base course interface was characterised using the same large shear box test used 

to characterise the base course material. A numerical shear box test was performed with 

geosynthetic placed at the interface. As mentioned before, the Mohr-Coulomb constitutive model 

was used on the geosynthetic interface. The comparison between the numerical and experimental 

shear stress versus the displacement curves at the three different normal stresses (66 kPa, 125 kPa, 
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200 kPa) is illustrated in Figure 5.4-10. The illustrated elastic perfectly plastic curves correspond to 

the parameters shown in Table 5.4-5. The Mohr-Coulomb constitutive model requests a minimum 

number of parameters. However, the interface presents a non-linear behaviour that cannot be taken 

into consideration in the used constitutive model. 

Table 5.4-5: Interface Base course/Geosynthetics interface properties. 

Coupling-cohesion-shear (kPa) 15 

Coupling-friction-shear (°) 39 

Coupling-stiffness-shear (MPa) 360 

 

 
Figure 5.4-10: Shear stress versus displacement in the numerical and physical simulations of the shear box test, on the 

Geosynthetic and base course interface. 

 Monotonic loading simulation 

The plate load tests performed and presented in Chapter 3 were simulated in this Chapter using 

Differential Element Methods. The geometry model is defined in Section 5.3.8 and the calibrated 

parameters are presented in Section 5.4. In this Section, the results of monotonic load plate 

simulations are presented. In details, a monotonic displacement was applied in this case on the top 

surface of the base course and the results were compared to the first load application results 

obtained from the experimental tests. In the numerical simulations, a displacement rate was applied 

until the average vertical stress at the surface reaches 560 kPa. This simulation was conducted for 

a reinforced and unreinforced case with two base course thicknesses: 220 mm and 350 mm. The 

simulation was resolved as a large-strain problem, in which the coordinate new positions are 

calculated and updated for each step. 
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5.5.1. Base course thickness 220 mm 

5.5.1.a. Settlement 

As mentioned above, a displacement rate was imposed at the base course surface, in order to have 

the same displacement over the plate surface as in the physical model. Figure 5.5-2 shows the 

settlement colour maps for both the reinforced and unreinforced models. It can be seen in both cases 

that the settlement is concentrated under the plate load. In order to analyse closely the results, the 

settlement profile on the subgrade surface is plotted and compared to the experimental settlement 

results in Figure 5.5-1. Under the plate centre line for the reinforced model, numerically the 

settlement is about 24 mm, experimentally 26 mm. For the unreinforced model, numerically the 

settlement is about 28 mm, experimentally 30 mm. By comparing the reinforced and unreinforced 

centre line settlement results, it can be noted that the reinforcement reduces the central settlement 

by 13% in both numerical and experimental models under monotonic load. 

 
Figure 5.5-1: Subgrade surface settlement for the reinforced and unreinforced numerical and physical model. 

However, it was proven experimentally, in the previous Chapters that with the settlement 

accumulation under cyclic load the reinforcement effect increases. More importantly, it is shown in 

Figure 5.5-1 that the settlement reaches zero at 400 mm from the plate centre line in the numerical 

and experimental models. Which proves that the stress distribution angle is not affected by the 

reinforcement. It is important to point out that the numerical and experimental settlement differ at 

100 mm and 200 mm from the plate centre line. These differences can be due to the non-regular 

base course stiffness in the experimental tests and the uncontrolled phenomenon related to the 

compaction, or to the simplified constitutive law used for the Base course layer.   
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(a) 

 

(b) 

Figure 5.5-2: Settlement (a) reinforced model, (b) unreinforced mode in m. 

5.5.1.b. Vertical stress 

The vertical stress colour maps in the reinforced and unreinforced models are shown in Figure 5.5-3. 

It shows a non-constant vertical stress distribution under the plate, which is the case under a stiff 

plate. Moreover, it shows a variation in the stress distribution between the reinforced and 

unreinforced models. In order to analyse the results the vertical stress distributions on the subgrade 

surface were plotted in Figure 5.5-4.  
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(a) 

 

(b) 

Figure 5.5-3: Vertical stress distribution (a) reinforced model, (b) unreinforced model in Pa. 

Figure 5.5-4 shows the comparison between the reinforced and unreinforced experimental and 

numerical vertical stress distributions on the subgrade surface.  

For the unreinforced platform, close results are observed between the experimental and numerical 

stresses at the plate centre, and at a distance of 200 mm and 300 mm from the plate centre line. In 

fact, at the plate centre, the numerical and experimental vertical stresses are about 306 kPa.  

For the reinforced platform a difference between the experimental and numerical results is observed 

particularly under the plate. Indeed, the numerical vertical stress at the plate centre line is 242 kPa, 

the experimental vertical stress is 200 kPa. However, for the reinforced and unreinforced platforms, 

the numerical and experimental vertical stresses reach zero between 300 and 400 mm from the plate 

centre. These slight differences can be due to local interface phenomenon between the aggregates 

and the geogrid apertures that are not perfectly simulated in this model and to the uncertainties of 

the stress measurements.  
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Figure 5.5-4: Subgrade surface vertical stress distribution for the reinforced and unreinforced numerical and physical 

model. 

Figure 5.5-5 presents the vertical stresses under the plate centre in the layers depth at the end of 

loading. The experimental unreinforced platform curve is predicted in the numerical model. However, 

the predicted reinforced curve shows differences in the experimental curve especially at 400 mm of 

depth.   

The numerical and experimental curves converge to the same value at 800 mm in depth, which 

shows again that the boundary conditions have no effect on the results.  

It is worth noting that the vertical stress distribution measurements using the earth pressure cells in 

a soft soil is not accurate, due to the cell displacement and rotation during the measurement. 

Moreover, the measured stress is an average stress applied on the cell area of 100 x 200 mm. These 

measured stresses are compared to local stresses given by the numerical model.  

 
Figure 5.5-5: Vertical stress in depth under the plate centre for the reinforced and unreinforced numerical and physical 

model. 
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5.5.1.c. The Geosynthetic developed efforts 

Figure 5.5-6 shows the geosynthetic nodes’ displacement in the x-direction. The coloured map 

shows a maximum node displacement between 150 and 350 mm from the plate centre. Indeed, the 

geosynthetic follows the subgrade settlement curve, and the maximum curvature is observed 

between 150 and 350 mm. The nodes’ displacement in the geosynthetic creates deformation in 

which it generates tension in the geosynthetic. An upward resultant within the GSY reduces the 

stress distribution on the subgrade soil and increases the platform bearing capacity due to the 

membrane effect.  

Figure 5.5-7 shows the developed nodes resultant force in the x-direction in the membrane plane. 

Experimentally this resultant force in kN/m was deduced using the deformation measured by the 

optical fibre. Figure 5.5-8 shows a comparison between the numerical and the experimental 

developed force in kN/m in the geoynthetic. It shows a match between the experimental and the 

numerical developed force. It can be seen that the numerical simulation underestimates the 

developed force. Actually, in the average maximum developed force, the numerically geosynthetic 

is 10 kN/m and experimentally 12 kN/m. Moreover, the geosynthetic presents experimentally a larger 

area of tension than the numerical case. These differences can be due to the interface aggregates 

and geogrid apertures interaction that is reduced in this model to a simple shear law.  

 

 
Figure 5.5-6: Geosynthetic nodes displacement in X-direction in m. 
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Figure 5.5-7: Geosynthetic nodes resultant force in X-direction in N/m. 

 
Figure 5.5-8: Force in kN/m developed in the geosynthetic in the numerical and physical model. 

The interaction between the geogrid and aggregates is reduced in this model to a Mohr-Coulomb 

shear law. Figure 5.5-9 shows the developed shear stress on the base course / geosynthetic 

interface. The illustrated colour map shows a maximum developed shear between 150 and 400 mm 

from the plate centre line. The maximum developed shear varies between 130 and 100 kPa. These 

shear non-negligible values show an impact of the horizontal interface interaction on the 

reinforcement mechanisms. The impact of the interface stiffness will be studied later on in this 

Chapter.  
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Figure 5.5-9: Geosynthetic/Base course interface shear stress in Pa. 

5.5.2. Base course thickness 350 mm 

Another numerical simulation was performed using the same calibrated parameters used previously 

for the model with 220 mm of base course thickness, but this time with 350 mm of base course 

thickness. The results of the numerical simulation were compared to the physical reinforced and 

unreinforced models results. However, as seen in Chapter 3, experimentally the reinforcement has 

no effect on the platform with 350 mm of base course thickness. The reinforced platform showed a 

larger displacement than the unreinforced one under the first cycle. This difference can be due to 

the uncontrollable compaction conditions. In this section, we will focus on the experimental 

displacement range to compare it with the numerical results.  

Figure 5.5-10 illustrates the subgrade settlement of the reinforced and unreinforced platforms for the 

experimental tests, the model with the calibrated parameters and another model with 45° as a base 

course friction angle instead of 37°.  

Differences in the settlement can be seen when comparing the results of the experimental tests and 

the numerical model to the calibrated parameters. The subgrade maximum settlement 

experimentally measured ranges between 5 and 10 mm, the calibrated model shows a maximum 

settlement around 15 mm. This difference is seen in the distributed vertical stress on the subgrade 

too. Figure 5.5-11 shows the vertical stress distribution on the subgrade surface for the physical and 

the two numerical models. A gap is observed between the experimental tests and the models with 

the calibrated parameters. Experimentally a maximum stress between 100 and 120 kPa is observed, 

numerically and with the above calibrated parameters it shows a maximum vertical stress between 

160 and 180 kPa.  

This gap can be due to the experimental base course compaction with three layers for the 350 mm 

instead of two for the 220 mm. So the lower two base course layers and the surface of the subgrade 

are subjected to more compaction than in the case of 220 mm.  

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI027/these.pdf 
© [N. Khoueiry], [2020], INSA Lyon, tous droits réservés



 

Monotonic loading simulation 183 |P a g e  

  
 

Therefore, a change in the base course friction angle from 37° to 45° was imposed to have closer 

numerical results in the experimental ones. In fact, the model with 45° of base course friction angle 

presents between 12 and 13 mm of maximum settlement and between 130 kPa and 140 kPa of 

maximum stress. Moreover, the vertical stress distribution curve is closer to the experimental tests 

with this new calibrated parameter.  

 

Figure 5.5-10: Subgrade surface settlement for the reinforced and unreinforced numerical and physical model. 

However, it can be seen that the calibrated model based on the 220 mm experimental tests gives a 

higher estimation of the settlement and the stresses. More importantly, for the numerical results, the 

reinforcement effect is not as important in that case of 350 mm base course thickness as seen 

experimentally.  

 

Figure 5.5-11: Subgrade surface vertical stress distribution for the reinforced and unreinforced numerical and physical 

model. 

The settlement developed in this case is not enough to develop the required tension in the 

geosynthetic and to improve the bearing capacity of the platform. In addition, this was shown in 

Figure 5.5-12 that illustrates the developed force in the geosynthetic in the numerical models with 

220 and 350 mm of base course thicknesses. The maximum tension developed in the geosynthetic 
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for 220 mm is about 9 kN/m and for the 350 mm is about 6 kN/m.  In the latter case, the reinforcement 

is less loaded by 35% than the reinforcement of 220 mm of base course thickness. 

 
Figure 5.5-12: Force in kN/m developed in the geosynthetic in the numerical model with two base course thicknesses 

(220 mm and 350 mm). 

 Parametric sensitivity study 

In order to better understand the mechanisms’ developed and how the parameters affect the stress 

distribution on the subgrade surface, a numerical parametric sensitivity was performed on the 

reinforced 220 mm of base course model. It is worth pointing out that in this Section the reference 

parameters correspond to the parameters values previously calibrated in Section 5.4 and validated 

experimentally in Sections 5.5.  

5.6.1. Base course parameters effect 

The base course parameters’ (Dilatancy Ѱ, Friction angle φ, Young modulus E) effects on the stress 

distribution under large-strain conditions were studied. Under the same loading condition previously 

presented, the same subgrade properties and the same reinforcement conditions, the variation of 

the base course parameters was performed.  

Figure 5.6-1 illustrates the effect of the parameters on the maximum vertical stress developed at the 

subgrade surface plate centre. In the graph (Figure 5.6-1), the x-axe is a dimensionless ratio. It is a 

ratio between the modified and the reference parameters. The reference parameters correspond to 

the parameters previously calibrated and compared experimentally to the 220 mm of the reinforced 

and unreinforced models (φref = 37°, Ѱref = 37°, Eref = 150 MPa). Only one parameter varied while the 

other were fixed to the reference parameters. It is observed that, when plasticity occurs in the base 

course layer, the elastic modulus is the parameter that affects the least the stress distribution as 

seen in Figure 5.6-1. It is the friction angle and the dilatancy that dominate the stress distribution.  

In literature, Leng & Gabr (2006) developed an analytical design method based on Odemark’s 

method. This method is based on the elastic layer analysis, and the vertical stresses distribution are 

related to the base course and subgrade elastic moduli ratio. However, for large displacement 
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problems like this problem, the plastic state is reached in the base course layer and the elastic 

approach is not valid.  

In conclusion, the friction angle affects highly the vertical stress distribution in this large – strain 

application, which means that even for a monotonic load the analytical elastic approaches are not 

applicable.   

 

Figure 5.6-1: Base course dilatancy, friction angle and elasticity modulus effect on the maximum vertical stress on the 

subgrade surface. 

5.6.2. Base course thickness effect 

The base course thickness highly affects the stress distribution angle. The estimation of the 

thickness sensitivity under these conditions was performed and presented in Figure 5.6-2. The linear 

equation slope is equal to -150. The curves show a high influence of the base course thickness. In 

fact, if the base course thickness is doubled from 100 mm to 200 mm, then the maximal vertical 

stress decreases from 250 kPa to 100 kPa.  

 
Figure 5.6-2: Base course thickness effect on the maximum vertical stress on the subgrade surface. 
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5.6.3. Geosynthetic/ base course interface effect 

One of the reinforcement mechanisms is the confinement of the base course by the interlocking 

between the aggregates and the geogrid apertures or by the friction in the case of a geotextile. In 

the continuous-based differential element method model the interface between the geogrid and the 

aggregates is reduced to a shear friction constitutive law. In order to verify the effect of the interface 

interaction friction on the load distribution in the developed model of 220 mm of base course the 

interface friction and elastic modulus were varied. Figure 5.6-3 shows the effect of the ratio between 

the friction angle and the reference parameter (Φref = 39°) on the maximum vertical stress. Similarly, 

the effect of the Young modulus ratio on the vertical stress distribution is illustrated in Figure 5.6-3. 

The linear equations of both the friction angle and the elastic modulus show relatively small slopes, 

of -17 for the friction angle and -24 for the elastic modulus. These results show the limited effect of 

the interface properties on the global behaviour of the reinforcement in the case of large-strain 

problem. 

We should emphasis the limitation of the continuum models to reduce the geogrid and aggregates 

interface to a shear friction constitutive law. In order to investigate deeply the interlocking mechanism 

and its effect on the vertical stress distribution, the numerical discrete element method can be used 

to simulate the interlocking mechanism in a more realistic way.  

 
Figure 5.6-3: The interface elastic modulus and friction angle effect on the maximum vertical stress on the subgrade 

surface. 

5.6.4. Subgrade / Base course interface effect 

The subgrade and base course interface exists in both reinforced and unreinforced models. In fact, 

when the reinforcement is added the interface between the base course and GSY is added to the 

interface of the subgrade and the base course. These interface properties are determined in a way 

to have the subgrade dominance on the interface behaviour. The friction angle and the cohesion of 

this interface are equal to the subgrade friction angle and cohesion. In this section the variation of 

the interface friction angle was performed.  
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Figure 5.6-4: Interface subgrade/ base course friction angle effect on the maximum vertical stress on the subgrade 

surface. 

Figure 5.6-4 shows the variation of the maximum vertical stress on the subgrade surface with the 

variation of the subgrade/base course interface friction angle. The result shows no influence of this 

interface property on the stress distribution.   

5.6.5. Geosynthetic stiffness effect 

 

Figure 5.6-5: Geosynthetic stiffness effect on the maximum vertical stress on the subgrade surface. 

The geosynthetic stiffness was varied to observe its effect on the maximum vertical subgrade surface 

stress. It is seen in Figure 5.6-5 that two linear equations are distinguished, one before a 

reinforcement stiffness equal to 500 kN/m and another following this point. The first linear equation 

presents a lower slope than the other equation. This shows the important effect of the geosynthetic 

stiffness on the stress distribution for a stiffness higher than 500 kN/m. In fact, the membrane tension 

effect is dominant in this large-strain problem model.   
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5.6.6. Geosynthetic position effect 

5.6.6.a. For 220 mm of base course thickness  

The geosynthetic position was changed to study its effect on the stress distribution. The geosynthetic 

is usually placed at the base course subgrade interface. Two other positions were considered 

(100 mm in depth and 150 mm in depth). Figure 5.6-6 shows a linear correlation between the position 

depth ratio and the maximum stress at the subgrade surface. The linear equation shows a relatively 

small slope, representing the small reinforcement position contribution. Moreover, the interface’s 

position between the subgrade and the base course is considered as the most effective position in 

this model.  

In the numerical model, the base course is modelled as a rigid platform and the deformation of the 

platform itself is not taken into account. The reinforcement placed into the aggregates platform may 

affect the platform deformation and the aggregates arrangement, but these behaviours can’t be seen 

in this model.  

 

Figure 5.6-6: Geosynthetic position depth effect on the maximum vertical stress on the subgrade surface. 

5.6.6.b. For 350 mm of base course thickness 

The GSY location was as well studied, for the 350 mm base course with a 37° and 45° of base 

course friction angle.  

Figure 5.6-7 shows the variation of the subgrade maximum vertical stress with the reinforcement 

position. The graphs demonstrate no reinforcement position influence in both cases. In this 

simulation, the base course is modelled as a rigid platform and the displacement at the top and 

bottom of the base course is the same.   
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Figure 5.6-7: Geosynthetic position depth effect on the maximum vertical stress on the subgrade surface 

H = 350 mm. 

 Geosynthetic effect regarding the developed settlement 

The parametric study showed that the dominant mechanism in this numerical model is the tension 

membrane effect. Actually, the reinforcement stiffness affects the stress distribution of the subgrade 

surface more than the interface base course/reinforcement parameters and the base course elastic 

modulus. However, the tension membrane mechanism depends on the settlement rate and the 

tension developed in the reinforcement. So in order to investigate the efficiency of the reinforcement 

dependency on the surface settlement, the imposed load on the top surface was switched to a 

maximum imposed displacement instead of a maximum imposed stress. In details, five models with 

five surface imposed settlement (5, 10, 15, 20 and 25 mm) were performed.  

 
Figure 5.7-1: Ratio of maximum vertical stress on the subgrade in the reinforced and unreinforced model versus the ratio 

of subgrade maximum settlement over the base course thickness. 

Figure 5.7-1 shows the variation of the maximum vertical reinforced and unreinforced stress with the 

ratio of the surface displacement normalized by the base course thickness. When the surface 
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displacement is equal to 2% of the base course thickness the figure shows no reinforcement effect 

on the maximum vertical stress. The effect of the reinforcement increases until the displacement 

reaches more than 5% of the base course thickness. In fact, when the displacement is equal to 5% 

of the base course thickness the maximal vertical stress decreases of about 20% and the stress ratio 

is equal to 0.8 and stays constant at 0.8 with the increasing of the surface settlement.  

The tension membrane effect depends on the geosynthetic curvature. Figure 5.7-2 shows the 

subgrade settlement for the five imposed settlements (5, 10, 15, 20 and 25 mm). In order to compare 

the curvature of the reinforcement between these five cases, the osculating circle at the point P was 

drawn geometrically and the radius was determined. The curvature at the point P is the inverse of 

the radius (k=1/R). The following curvatures were determined:  

K 5 mm = 0.00585, k 10 mm = 0.0143, k 15 mm = 0.0248, k 20 mm = 0.0323 and k 25 mm = 0.0444. 

 
Figure 5.7-2: The subgrade surface settlement for the five imposed settlements models with reinforcement (5, 10, 15, 20 

and 25 mm), with the radius of curvature at the point P. 

Figure 5.7-3 shows the stress distribution on the subgrade surface of the reinforced and unreinforced 

models at the five settlement states. The first curves show the vertical stress of the reinforced and 

unreinforced platform at 5 mm of deformation that correspond to 2% of the base course thickness 

and 0.00585 of curvature at the point P. It can be seen that there is no effect of reinforcement at this 

settlement stage, the stress distribution remains the same with and without reinforcement. At 10 mm 

of settlement, the curvature at P is equal to 0.0143, the reinforcement shows a difference in the 

stress distribution. The effect of the reinforcement is more obvious with the higher settlement and 

curvature. In fact, the stress distribution without reinforcement shows a maximum stress at the plate 

centre line, the reinforcement reduces this maximum stress at the plate centre line by a tension force 

developed in the membrane. The Figure 5.7-3 shows that in all stages the stress distribution tends 

to zero at 300 mm from the plate centre line for the reinforced and unreinforced cases, which 

confirms more the limited role of the confinement mechanism in this model.  
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Figure 5.7-3: The subgrade surface vertical stress in the reinforced and unreinforced models for the five imposed 

settlements (5, 10, 15, 20 and 25 mm) for base course thickness of 220 mm. 

 Conclusion 

In order to better understand the geosynthetic reinforcement behaviour in the case of unpaved roads 

under soft subgrade a numerical model was developed and calibrated.  

The continuous-based differential element method with the software FLAC 3D was used to simulate 

the behaviour of this structure. The model geometry is based on the physical plate load test. The 

numerical model was subjected to a monotonic load and compared to the experimental results of 

the first plate load cycle. The model was solved as a large-strain problem since we are dealing with 

large displacements. The advantage of using the differential element methods in this case is that the 

explicit numerical method used by FLAC allows the non-linear computations without additional 

iterations.    

The constitutive model used to simulate the soft subgrade is the Cap-yield model. It is a shear and 

volumetric hardening/softening model that can simulate the non-linear behaviour of the soil, and it 

can model the loading-unloading behaviour. Triaxial tests under monotonic and cyclic load were 

used to calibrate the subgrade properties. In addition, a comparison between a monotonic plate load 

experimental and numerical test under the soft soil only was performed to validate the soft soil 

constitutive model and the calibrated parameters under large deformations.  

The base course layer was modelled using Mohr-Coulomb constitutive model. The experimental 

behaviour of the base course under a shear box test showed a non-linear behaviour that can not be 

taken into consideration in the elastic perfectly plastic model of Mohr-Coulomb. 

The reinforcement was modelled as a membrane and characterized by an elastic behaviour in its 

plane. 

The base course/subgrade interface was modelled based on the software recommendations in a 

way that the soft soil dominates the interface behaviour. The base course/geosynthetic interface was 

reduced to a shear elastic perfectly plastic behaviour.  

Reinforced and unreinforced platforms were simulated with 220 mm of base course thickness and 

compared to the first cycle of the experimental reinforced and unreinforced results. The numerical 
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and experimental displacement curves showed that the numerical model can capture the 

experimental soft soil displacement. Moreover, the stress distribution on the soft subgrade surface 

was predicted by the numerical model. Differences were shown in the stress values especially in the 

reinforced model, but it can be assigned to the inaccurate stress measurements in a soft soil. The 

values can indeed be affected by the sensor displacement and rotation during the loading or the 

arch effect around the sensor. Moreover, the force developed in the geosynthetic was investigated. 

Using the fibre optics, the geosynthetic deformation was measured experimentally and from these 

measurements the force developed in the reinforcement was estimated. The comparison between 

the numerical and experimental geosynthetic developed force showed that the numerical model can 

predict the reinforcement behaviour.   

The comparison between the reinforced and unreinforced numerical results showed the effect of the 

reinforcement in reducing the maximum vertical stress on the subgrade, which reduced the surface 

settlement. Moreover, the results showed no reinforcement effect on the stress distribution angle.  

A parametric study was performed to investigate the parameters influences and their participation in 

the reinforcement mechanisms. The important effect of the base course friction angle and the miner 

effect of the elastic modulus were shown. In fact, the failure occurs in the base course under large 

displacement and the analytical elastic approaches are not applicable anymore.  

The base course thickness influence was investigated, and it was seen that this parameter affects 

the most the vertical stress distribution.  

The reinforcement parameters were investigated too. This study showed no base course/ 

geosynthetic interface parameters influence on the vertical stress distribution in our simple 

approximation. It showed the reinforcement stiffness effect on the maximum subgrade stress 

reduction. 

In order to investigate closely the reinforcement developed mechanism, several values of the 

settlement were imposed as well as their effects on the reinforcement. In fact, different models with 

different displacements were compared. And the results showed that the reinforcement effect on 

reducing the maximum stress is highly related to the settlement. These results showed the 

dominance of the tension membrane mechanism in this model.  

It is worth pointing out that, in this model, the non-linear behaviour of the base course related to the 

grains rearrangements is not taken into consideration. Moreover, the base course/geosynthetic 

interface is reduced to an elastic perfectly plastic behaviour. More developed model regarding the 

aggregates behaviour and the interlocking mechanism is needed to better investigate the interface 

behaviour and the lateral movement of the aggregates under the load.  
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Conclusions  

 

Using a large-scale laboratory setup for reinforced and unreinforced unpaved roads, the 

reinforcement’s efficiency was highlighted and quantified, the mechanisms developed at the 

interface were identified for certain geogrid types and the loading type was shown to be an 

influencing factor on the platform behaviour and the reinforcement’s efficiency. More in details, the 

Conclusions were divided into five parts: which concerns the developed protocol, the base course 

thickness effect, the geogrids performances, the solicitation effect, and the numerical simulations. 

The protocol developed in this research project aimed for the preparation of an artificial soft soil and 

a laboratory unpaved tested platform in order to control all the environmental conditions, limit the 

preparation work required for the large in situ tests, and insure the tests repeatability. The quality 

control tests were an efficient tool used to control the prepared platform properties: 

• The quality control tests showed that the developed installation protocol allowed the 

preparation of homogeneous layers over the depth and the targeted properties can be 

precisely reached. Moreover, the measured properties showed similarities between the 

prepared platforms; each platform corresponds to a test.   

• The repeatability plate load tests performed verified the protocol efficiency by showing 

similar results.  

The circular plat load tests performed on the reinforced and unreinforced platforms with 350 mm of 

base course thickness showed that the reinforcement has a negligible effect on the overall platform’s 

behaviour. Moreover, under these test conditions 350 mm of base course thickness is considered 

good without any reinforcement.  

When subjected to the circular plate load test, the platforms with 220 mm of base course thickness 

showed that: 

• The knitted geogrid with the highest stiffness (GSY 2) provided the most significant rut 

reduction after 10,000 cycles of about 35%, while the knitted geogrid with a smaller stiffness 

(GSY 1) reduced the rut of about 25%. The extruded geogrid (GSY 3) presented the least 

significant reduction percentage of 12%.  

• A difference between the GSY 1 and GSY 3 behaviour was observed especially on the 

subgrade surface settlement evolution. Indeed, the results showed that the GSY 3 was more 

efficient than the GSY 1, under a relatively low settlement. In fact, due to its particular 

geometry and manufacturing type the GSY 3 performed better in lateral restrain mechanism. 

However, under large settlement (>2,000 cycles) the GSY 1 in tension performed better with 

the tension membrane effect.  
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• The GSY 1 placed at the base course half depth showed a limited effect on the platform 

improvement. For the same stress level the subgrade showed indeed more settlement. 

The subgrade performed differently under these two configurations. In fact the GSY 1 in 

tension, placed at the interface provided a confinement to the subgrade and resulted in the 

reduction of the subgrade settlement. This mechanism did not exist when the GSY 1 was 

placed at the base course half depth.   

• The maximum stress measured in the subgrade layer was significantly reduced by the 

reinforcement during the first cycles. However, it increased with the cycles, after 

10,000 cycles a reduction of 15% and 10% with the GSY 1 and GSY 2 is observed, whereas 

no stress reduction is observed with GSY 3 after 10,000 cycles.   

• The strain developed in the geogrid showed that 900 mm from the applied load centre is 

enough to have a natural geogrid anchorage due to the interaction with the aggregates.  

• It was shown that under the gravel installation the geogrid GSY 2 and GSY 1 were mobilized 

under 0.3% of strain. Moreover, after 1,000 cycles the developed strain in the GSY 1 reached 

1.5%, and 60% of this developed total strain is a plastic strain.  

• A comparison between the existing empirical and analytical design methods showed that 

these methods overestimate the base course thickness of an unreinforced platform under 

the proposed test conditions. Moreover, the analytical design method proposed by Giroud 

and Han (2004) underestimated the reinforced base course thickness using the GSY 3 under 

the proposed test conditions. These showed that further calibration works are needed to 

improve these existing methods. 

Between the particular plate load and traffic load tests the reinforcement efficiency changed: 

• Under both loading types, the GSY 3 and GSY 2 showed the same settlement reduction 

ratio. Actually, under the plate load test both reinforcements showed a surface settlement 

reduction of 30% after 10,000 cycles, while under the traffic load they showed 40% of 

subgrade surface reduction after 1,200 cycles.  

• During gravel installation, the GSY strain measured using the fibre optics showed that GSY 3 

was more mobilized than GSY 2, probably because of its particular geometry and its capacity 

to interlock with the aggregates.  

• Moreover, the developed strain in the geogrid under the first load showed that the GSY 3 

was more mobilized than the GSY 2, and this pursued over the cycles. This can explain its 

more significant efficiency under a more localized load  

The comparison between the plate and traffic load test showed that the traffic load test is a more 

damaging load. Under the first 10 cycles, the base course surface settlement under the traffic 

load reached more than 50 mm of apparent rut. Under the traffic load the gravel lateral movement 

and surface repulsion was observed especially on the surface, which was not seen under the 

plate load test. In addition to the base course important thickness variation, the subgrade 

presented a higher settlement under the traffic load. 

However, the results analysis of the circular and particular plate load tests showed that the 

extruded geogrid GSY 3 performed better under the particular plate load test. This can be due 
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to the fact that under a more localized load the aggregates lateral restrain movement is more 

important, so the GSY 3 is more mobilized.   

A continuous-based differential element method was developed using FLAC 3D software to 

model the first monotonic applied load under the reinforced and unreinforced platforms:  

• The results showed that the calibrated model predicted the experimental subgrade stress 

distribution, the subgrade settlement, and the strain developed in the geogrid.  

• The analysis of the reinforced and unreinforced numerical models showed that the 

reinforcement reduced the surface settlement and the maximum stress, but showed no 

effect on the stress distribution angle.  

• The parametric study showed that the base course factor that affected the most the 

subgrade stress distribution is the friction angle. This proved that failure occurs in the 

base course layer under the first cycle, and that the analytical methods based on the 

elastic approaches are not applicable anymore.  

• The base course/geosynthetic interface parametric study showed no interface influence 

on the vertical stress distribution. This proves that the reduction of the interface to an 

elastic perfectly plastic behaviour do not simulate adequately the geogrids’ apertures, it 

aggregates interlocking mechanisms, and reduces the geogrid reinforcement mechanism 

to a tension membrane.  
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Further perspectives 

This research project contributed to improve the knowledge obtained over thirty years in this field. 

More importantly, this work left a precious tool in the hands of future researchers, by main of the 

developed SAT machine and the valid testing protocol. In fact, now that the protocol and the traffic 

machine SAT were developed and validated, series of tests and investigations can be performed, in 

an optimized time and preparation works since this was one the objectives while developing this 

protocol. Here are some further tests suggestions: 

• Tests using different products and manufacturing types such as geotextile, geocell, extruded 

biaxial geogrid, and knitted geogrid with different aperture size.  

• Test using two GSY 1 layers, one placed at the interface and one placed at the base course 

half depth.  

• Tests using the same geogrids, with an initial applied tension before the gravel installation. 

In fact, a geogrid subjected to a pretension may provide a better contribution to the platform 

improvement. 

• For more precise results under the SAT machine, a dense base course platform is needed, 

even if it does not represent the most used base course material in France.  

• In situ tests using real compactors can be performed under the SAT machine, in order to 

eliminate the first settlements that can be eliminated under the heavy compactors circulation 

on site.  

• Further tests can be performed using the SAT machine with a dual wheel in order to increase 

the wheel contact area and increase the applied load to 40 kN.  

• Tests using a saturated subgrade soil, in order to investigate the pore pressure effect on the 

platform behaviour. Moreover, a geocomposite combining the drainage, separation and 

reinforcement functions product can be tested under these conditions.   

• The performed tests showed that each geogrid product provide improvements based on its 

specific mechanism. In fact, the extruded geogrid provided the lateral restrain mechanism, 

while the knitted geogrid, due to its high tensile stiffness, provided the tension membrane 

effect. A more efficient product can be a product that provides both mechanisms.  

However, the developed numerical model showed limitations regarding the base course non-linear 

behaviour and the geogrid apertures and aggregates interaction. A more realistic model is needed 

to better investigate the interface behaviour and the aggregates lateral movement. In fact, this model 

can be a combination between a continuous domain representing the soft subgrade soil and a 

discontinuous domain representing the aggregates and geogrids. Moreover, more complex models 

are needed to simulate the material behaviour under cyclic load.  
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