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mes frères et soeurs pour vos encouragements, Alain, Hélène, Ludo, les belles-soeurs
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à un certain séminaire, là-haut sur une certaine montagne. Merci de m’honorer

chaque jour de ta présence, de ton soutien infaillible et de ton petit air moqueur

sans lequel le monde n’aurait plus aucun sens.

iv



Contents

0 Introduction 1

1 Mathematical Framework 7

1.1 Graphical Models . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Gaussian Graphical Models . . . . . . . . . . . . . . . . . . 13
1.3 Inference of incomplete data models . . . . . . . . . . . . . . . 20
1.4 Network inference from count data . . . . . . . . . . . . . . . . 23

2 Network Inference from Abundance Data 29

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2 Material and methods . . . . . . . . . . . . . . . . . . . . . 34
2.3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 47
Appendices. . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.A Supplementary material (augmented) . . . . . . . . . . . . . . 49
2.B Vignette for EMtree . . . . . . . . . . . . . . . . . . . . . . 56

3 Inference with Missing Actor 63

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . 78
Appendices. . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.A Supplementary material . . . . . . . . . . . . . . . . . . . . 83
3.B Vignette for nestor . . . . . . . . . . . . . . . . . . . . . . 90
3.C Clique initialization . . . . . . . . . . . . . . . . . . . . . . 94
3.D Comparison with PLN-network and EMtree . . . . . . . . . . . . 97

4 Perspectives 101

4.1 Unresolved questions . . . . . . . . . . . . . . . . . . . . . 102
4.2 Extensions of the adopted approach . . . . . . . . . . . . . . . 103
4.3 Network inference in the observed layer. . . . . . . . . . . . . . 108
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INTRODUCTION
Context

Networks are objects representing relationships between entities. They are useful

to comprehend systems joint organization and behaviors, leading to discoveries that

would not have been possible by analyzing the entities separately. Applications are

numerous in life sciences, among which genes regulatory networks (genomics), com-

munity assembly mechanisms (community ecology), or pathobiome organization

(microbiology). Networks can be built from observed interactions, as is the case of

host-parasite, plant-pollinator or trophic networks in ecology, or protein-protein

interaction networks in genomics. However this strategy, which we call network

reconstruction, limits the identified interactions to observable ones only, where

others would be interesting too (e.g. competition for food or space, shelter sharing,

etc.).

Integrated plankton community network related to carbon export at 150m (Guidi
et al., 2016).

This work is interested in species network inference, which is the art of identifying

interactions from observed measures on a set of species. Network inference neces-

sarily relies on a mathematical definition of species interactions, allowing to detect

a broad range of interactions. Their biological meaning is unknown and would have
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to be identified by experts later on.

A first idea of a mathematical species interaction is the correlation between the

species abundances. However using correlation results in dense networks prov-

ing hard to analyze, as spurious edges appear between two variables correlated

to the same third one 1. Instead, using conditional dependence relationships be-

tween species provides with a clear separation between direct and indirect effects,

and therefore yields sparse and easy to interpret networks.

Graphical models are the dedicated mathematical framework for the modeling

and inference of such networks, for they graphically represent a multivariate

random variable conditional dependencies. Gaussian Graphical Models (GGM) in

particular present with specific theoretical and algebraic properties which facilitate

the inference. GGM have been widely used on continuous data.

However measures on species are often counts, as is usually the case in ecology

and in experiments using high-throughput sequencing technologies in genomics

and microbiology. A way to go for network inference from count data with a

distinction between direct and indirect effects is then to adopt a modeling for the

count allowing the use of the GGM framework. To obtain interpretable results,

the model should also account for measured experimental offsets and covariates.

Furthermore, the observed measures on species are also very likely to be incomplete

as it is difficult to know in advance all the factors governing a phenomenon. This

causes the species interaction network to present spurious edges between the

species which should be linked to the unobserved actor (species or covariate). A

partial observation of the data thus provides with a marginal network instead of

the complete one, leading to biased further interpretations and analyzes.

Objectives and outline

The aim of the present work is to develop a methodology for the network inference

from incomplete abundance data. This task was divided into two sub-objectives.

First, develop a method for network inference from abundance data. To this aim

we model counts using the Poisson log-normal distribution, taking advantage of the

estimation procedure developed by Chiquet et al. (2018). This specific distribution

includes a latent layer of Gaussian parameters, within which the inference of the

species interaction network is performed. Following Meilă and Jaakkola (2006) and

Schwaller and Robin (2017), the inference is carried out using tree averaging, allow-

ing for a complete and efficient exploration of the space of spanning tree graphs,

1. e.g. the number of covid 19 cases detected correlates with both the real number of cases and the
number of tests done on the population, which induces a spurious correlation between the two latter where
obviously there is no direct effect of one on the other.
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and yielding edges probabilities.

Then, this work includes missing actors in the model to account for incomplete data.

There we model the missing actors as additional latent variables of the model Gaus-

sian latent layer. The Gaussian graphical model parameters maximum likelihood

estimators detailed in Lauritzen (1996) are adapted to the specific case of span-

ning tree structures, and applied within a variational Expectation Maximization

algorithm.

Chapter 1

The first chapter covers in details the mathematical and technical background used

in Chapters 2 and 3. It defines the general framework of graphical models and its

link with conditional independence relationships. The particular properties of the

Gaussian graphical models are then presented, along with its maximum likelihood

estimators. Two network inference methods are detailed: the penalized regulariza-

tion which estimates the precision matrix in a sparse manner, and tree averaging

which efficiently explores the super-exponential space of spanning-tree structures.

This chapter then draws a state of the art of the strategies for the modelization of

multivariate counts.

Chapter 2

Chapter 2 details the proposed methodology for the inference of species interaction

networks from measures of joint abundances. Counts are modeled in a hierarchical

manner: a spanning-tree graph T is first drawn, then parameters Z are modeled

conditionally on T as a multivariate Gaussian faithful to T , and finally counts

Y follow a Poisson log-normal distribution with parameters Z. This model thus

involves two latent layers of parameters: Z and T , and can be described by the

following graph:

T Z Y

The model inference estimates the tree distribution using an EM algorithm, which

had not been done before. The proposed methodology is implemented in the R

package EMtree (github.com/Rmomal/EMtree). It is compared to state-of-the-art

approaches and applied to two empirical datasets from ecology and microbiology.

This chapter has been published in the journal Methods in Ecology and Evolution

(Momal et al., 2020). The presented appendices are extended with a vignette show-

ing usage examples of the EMtree package.
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Chapter 3

This chapter presents an extended version of the previous model developed in Chap-

ter 2 to include possible missing actors. The Gaussian latent layer is assumed to

involve additional unobserved variables. The Gaussian layer is considered in its

normalized form and denoted U . This model thus involves three latent layers: T ,

UO where ”O” stands for ”observed”, and UH where ”H” stands for ”hidden”, and

can be described by the following graph:

T

UO UH

Y

The model is estimated with a variational EM algorithm, which takes advan-

tage of the average on trees to use the adaptation to the context of spanning

trees of the maximum likelihood estimators of GGM parameters detailed in

Lauritzen (1996). The developed procedure is implemented in the R package

nestor (github.com/Rmomal/nestor) and illustrated on two empirical datasets

from ecology.

This chapter has been submitted for publication in a statistical journal. The submit-

ted supplementary material is enriched with a vignette showing usage examples of

nestor, a section presenting different initialization methods and finally a comparison

of nestor, EMtree and PLN-network which is another method building on the PLN

distribution but uses a penalized approach for the network inference.

Chapter 4

This final chapter introduces some perspectives of this work. After summarizing

the specifics of the developed methodology and discussing unresolved issues, natural

extensions of the model are presented. They first include extensions about measures

on the inferred network, with a method for estimating the latent layer precision

matrix, and a strategy to use tree distributions for comparing networks. Then

perspectives about the data at hand are discussed, namely how to handle other

data types or datasets presenting with spatial dependencies. Finally a model for

the network inference not resorting to a latent layer is presented.

4
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Notations

Operations:

| · | : matrix determinant

� : Hadamard product

Matrices:

Y : observed counts

Z : latent Gaussian parameters

U : latent normalized Gaussian parameters

X : covariates

O : measured offsets

Dimensions:

n : samples

p : observed species

r : unobserved actors

d : covariates
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1
MATHEMATICAL FRAMEWORK

Contents
1.1 Graphical Models . . . . . . . . . . . . . . . . . . . . 8

1.1.1 General framework . . . . . . . . . . . . . . . . . . 8

1.1.2 Characterization of conditional independence . . . . . . . . . 10

1.1.3 Spanning trees . . . . . . . . . . . . . . . . . . . 11

1.2 Gaussian Graphical Models . . . . . . . . . . . . . . . . 13

1.2.1 Specific properties . . . . . . . . . . . . . . . . . . 13

1.2.2 Maximum likelihood estimation . . . . . . . . . . . . . . 15

1.2.3 Network inference from Gaussian data . . . . . . . . . . . 16

1.3 Inference of incomplete data models . . . . . . . . . . . . . 20

1.3.1 Expectation-Maximization algorithm . . . . . . . . . . . . 20

1.3.2 Variational estimation . . . . . . . . . . . . . . . . . 21

1.4 Network inference from count data . . . . . . . . . . . . . . 23

1.4.1 Modeling multivariate count data . . . . . . . . . . . . . 23

1.4.2 Shift to Gaussian universe . . . . . . . . . . . . . . . 24

1.4.3 Network inference . . . . . . . . . . . . . . . . . . 27

1.4.4 Proposed methodology . . . . . . . . . . . . . . . . 28

This first chapter details the technical background extracted from the literature

which is used in the next chapters. It is designed to be read independently of the

rest of this work, and therefore repetitions with elements from the next chapters are

unavoidable. The chapter begins by covering all the required notions from graph

theory, with a focus on tree-shaped graphs. A second section presents Gaussian

graphical models properties and explains why it is a golden framework for network

inference. After a reminder on the Expectation-Maximization algorithm as well as

its variational interpretation, the last part is a state of the art of network inference

from abundance data and presents methods stemming from both genomics and

ecology.
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1.1 Graphical Models

A graphical model is classically described as a probabilistic model which condi-

tional dependence structure is given by a graph. This first section gives the general

framework of graphical models, and adapts definitions and properties from Lau-

ritzen (1996) to undirected graphs involving only quantitative variables. Then, the

specific algebraic properties of spanning tree graphs are presented.

1.1.1 General framework

A graph is defined as a pair G = (V,E) such that V is a finite set of vertices, and

the set of edges E is a subset of V × V . Here we consider E such that vertices are

not linked to themselves and there are no multiple edges between two vertices. For

any given pair of nodes (k, `), we denote by k ∼ ` an edge and by k � ` an absence

of edge. In the literature, V can be composed of both quantitative and qualitative

variables. However here we only use variables of one kind (quantitative) and so

V is called pure. The following definitions apply to the particular case of a pure

vertex set V and an undirected graph G.

Let’s first consider a subset A of the vertex set V . A is said to be complete if all the

nodes it contains are linked with each other. If A is additionally of maximal size,

it is then called a clique. This definition makes the expression ”maximal clique” a

pleonasm. The subgraph GA defined by A is obtained from G by keeping edges with

both endpoints in A. Furthermore if A, B and S are disjoint subsets of V , S is said

to separate A from B if any path from GA to GB intersects with GS . The following

notions of decomposable graphs and perfect sequences are central in the definition

of a graphical model.

Definition 1.1 (Proper decomposition). A triple (A,B,C) of disjoint subsets of

the pure vertex set V of an undirected graph G forms a decomposition of G if V =

A ∪B ∪ C, and if C satisfies:

(i) C is a complete subset of V ,

(ii) C separates A from B.

If A and B are both non-empty, the decomposition is proper.

1

2

3

4

5

6

Figure 1.1 – An undirected graph with 6 nodes.
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The graph in Figure 1.1 gives an example. Let’s define the sets of nodes A = {1, 2},
B = {5, 6} and C = {3, 4}. As nodes 3 and 4 are linked, C is a complete set.

Moreover C separates A from B, and A and B are both non-empty, hence (A,B,C)

forms a proper decomposition. A decomposition is thus simply a separation of the

set of nodes with complete subsets. A decomposable graph is then defined using

Definition 1.1 in a recursive manner:

Definition 1.2 (Decomposable graph). An undirected graph is decomposable if it

is complete, or if there exists a proper decomposition (A,B,C) into decomposable

subgraphs GA∪B and GB∪C .

This definition proves to be very useful in demonstrations of decomposable graphs

properties, but not to identify decomposable graphs in practice. The following

notion of triangulation will help.

Definition 1.3 (Triangulated graph). An undirected graph G is said to be triangu-

lated if loops in G connect three nodes at most.

In other words in a triangulated graph, the loop of maximal size will form a triangle.

Triangulated graphs are also called chordal graphs, as it suffices to draw chords in

all loops to triangulate a graph. Then, a sequence is a numbered list of subsets of

the node set. A sequence is called perfect under the following conditions on the

subsets and the numbering order:

Definition 1.4 (Perfect sequence). Let B1, ..., Bk be a sequence of subsets of the

pure set of vertex V of the undirected graph G. Let Hj = B1 ∪ .. ∪ Bj, and Sj =

Hj−1 ∩Bj. The sequence is perfect if it satisfies the following conditions:

(i) for all i > 1 there is a j < i such that Si ⊆ Bj (running intersection property),

(ii) each Si is a complete subset.

Hj are called the histories and Sj the separators.

An example where separators are complete but the sequence is not perfect is given in

Figure 1.2. A sequence is B =
{
B1 = {1, 2}, B2 = {3, 4}, B3 = {2, 3, 5}

}
, with the

separators S2 = ∅, S3 = {2, 3}. As {2, 3} is not a subset of any of the Bi with i less

than 3, the running intersection property is violated and B is not perfect. Inverting

B2 and B3 however yields a perfect sequence, which also shows that a simple way of

designing a perfect sequence is to ensure that each new set Bj includes its separator

with the previous set Bj−1.

1

2 3

4
5

Figure 1.2 – An undirected graph with 5 nodes.
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The notion of perfect sequence then allows to define the multiplicity of a separator:

Definition 1.5 (multiplicity of a separator). The multiplicity ν(S) of the separator

S is an index counting the number of times S occurs in a perfect sequence.

The graph of Figure 1.3 gives an example. There a perfect sequence of its cliques

is C1 = {1, 2, 4}, C2 = {2, 3, 4}, C3 = {4, 5, 6}, C4 = {4, 6, 7}, C5 = {4, 8}. The

corresponding separators are S2 = {2, 4}, S3 = S5 = {4}, S4 = {4, 6}, which gives

the following multiplicities: ν(S2) = 1, ν(S4) = 1, ν(S3) = ν(S5) = 2.

1

2

3
4

5
6

7

8

Figure 1.3 – An undirected decomposable graph with 8 nodes.

Proposition 1.1. The following conditions are equivalent for an undirected graph

G:

(i) G is decomposable.

(ii) The cliques of G can form a perfect sequence.

(iii) G is triangulated.

This property is the most useful in practice, as it states that as soon as a graph

does not present with cycles of size 4 or more, it is decomposable on its cliques.

This decomposition is essential to the graphical model properties, as we will see in

Gaussian graphical models.

1.1.2 Characterization of conditional independence

The notion of conditional independence is central in the theory of graphical mod-

els. All that follows focuses on the case of variables associated with positive and

continuous densities. Let’s consider three random variables X,Y and Z with joint

distribution f . The conditional independence of X and Y conditional on Z is linked

to the factorization of f . More precisely:

X ⊥⊥ Y | Z ⇐⇒ f(x, y, z) = f(x, z) f(y, z)/f(z).

Conditional independence can be understood in terms of information. That is, ”X

is independent of Y , given Z” means that knowing Z, Y will not bring any new

information on X, and conversely. The Markov property below is the link between

conditional independence of variables and its representation in an undirected graph.
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Let’s consider a collection of random variables (Xv)v∈V taking values in probability

spaces (Xv)v∈V , and X = ⊗v∈V Xv. We further denote for any subset A of V ,

XA = (Xv)v∈A, and G a graph with vertex set V .

Definition 1.6 (Global Markov property). A probability measure P on X is global

Markov relative to the undirected graph G if for any triple (A,B, S) of disjoint subsets

of V , it holds that:

S separates A from B ⇒ XA ⊥⊥ XB | XS .

If additionally XA ⊥⊥ XB | XS ⇒ S separates A from B, then P is faithful Markov

and G perfectly describes the conditional dependence structure of P.

Therefore if a distribution is only global Markov, its related graph is possibly too

dense: it can contain edges between variables which are actually conditionally inde-

pendent from one another.

Definition 1.7 (Factorization). A probability measure P on X factorizes according

to G if it has density f with respect to measure µ = ⊗v∈V µv, where f can be written

as

f(x) =
∏
c∈C

ψc(x),

where C denotes the set of cliques of G, and for any subset C of the vertex set V ,

ψC is a positive function of XC only.

The following theorem links definitions 1.6 and 1.7 for positive and continuous dis-

tributions:

Theorem 1.1 (Hammersley and Clifford). For any undirected graph G and proba-

bility distribution P with strictly positive and continuous density f with respect to a

product measure µ, it holds that:

P factorizes according to G ⇐⇒ P is global Markov relative to G.

This equivalence means in practice that writing a density in a product form on some

combination of its variables helps to identify conditional independence relations.

1.1.3 Spanning trees

Trees are graphs with no cycles, meaning that all cliques are edges only. When a

tree connects all the nodes, it is called a spanning tree. This particular type of graph

is both the sparsest connected graph, and the most connected graph without loops.

This feature makes it a decomposable graph by definition, following condition (iii)

of Proposition 1.1. The following result is obtained directly.
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Proposition 1.2. If T is a spanning tree, all of its separators are nodes. For any

node k of T , d(k) denotes its degree. Then its multiplicity in any perfect sequence

is ν(k) = d(k)− 1.

The study of the spanning tree structure began in the latter part of the 19th cen-

tury. Then, Arthur Cayley established that the total number of spanning trees of a

complete graph with p nodes is pp−2. Kirchhoff generalized this result in a theorem

known as the ”all-minor” theorem, using the notion of graph Laplacian matrix.

Definition 1.8 (Laplacian matrix). The Laplacian matrix Q of a symmetric matrix

W = [wjk]1≤j,k≤p is as follows :

[Q]jk =

{
−wjk 1 ≤ j < k ≤ p∑p
u=1wju 1 ≤ j = k ≤ p.

When W is a graph adjacency matrix, Q is called the graph Laplacian matrix and

its diagonal is composed of the degrees of each node.

Hereafter Auv denotes the squared matrix A deprived from its uth row and vth

column, and remind that the (u, v)-minor of A is the determinant of this deprived

matrix, namely |Auv|.

Theorem 1.2 (Kirchhoff’s theorem). For any graph G, let Q denote its graph

Laplacian matrix. Then for any pair of nodes {u, v}, the total number of spanning

trees in G is equal to |Quv|.

The total number of spanning trees in any graph can thus be computed in polynomial

time (O(p3)). For the sake of clarity, we introduce the notation jk ∈ T which means

that nodes j and k are linked in tree T . Theorem 1.2 was extended for weighted

graphs in the late 20th century as follows, where T denotes the spanning tree space

on V = {1, ..., p}:

Theorem 1.3 (Matrix Tree Theorem Chaiken and Kleitman (1978); Meilă and

Jaakkola (2006)). For any symmetric weight matrix W with all entries in R+, the

sum over all spanning trees of the product of the weights of their edges is equal to

any minor of its Laplacian Q. That is, for any 1 ≤ u, v ≤ p,

W :=
∑
T∈T

∏
jk∈T

wjk = |Quv|.

Consequently, the operation of summing over all spanning trees can be carried out

in a computationally efficient way. Meilă and Jaakkola (2006) built on this result

to provide a close form expression for the derivative of the sum-product W with

respect to each entry of the input weight matrix W. Without loss of generality, we

choose Q11.
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Lemma 1.1 (Meilă and Jaakkola (2006)). Define the entries of the symmetric

matrix M as

[M]jk =


[
(Q11)−1

]
jj

+
[
(Q11)−1

]
kk
− 2

[
(Q11)−1

]
jk

1 < j < k ≤ p[
(Q11)−1

]
jj

k = 1, 1 < j ≤ p
0 j = k.

it then holds that

∂wjk
W = [M]jk ×W.

Theorem 1.3 actually gives the solution to the computation of the sum on trees of a

product function on the edges of a spanning tree, which can be used combined with

Lemma 1.1 to perform network inference using average on trees, as we will see later

on.

1.2 Gaussian Graphical Models

Gaussian graphical models (GGM) describe the conditional dependency structure

of a multivariate Gaussian distribution. The different properties of the multivariate

Gaussian distribution allow some specific interpretations and estimation results of its

related graphical model, making the GGM a sound and very convenient framework

to work with.

1.2.1 Specific properties

The multivariate Gaussian distribution possesses various properties which facilitate

computations as well as interpretations. Two in particular are of interest in the

graphical models setting. The first one concerns the natural writing of its density.

Proposition 1.3. Let X ∼ N (µ,Σ) with precision matrix Ω = Σ−1 and Xk de-

notes the kth column of X. Then the associated density f factorizes as:

f(X) ∝
∏

k,`,ωkl 6=0

exp(−Xkωk`X`/2).

Proposition 1.4. The density f of a multivariate Gaussian distribution N (µ,Ω−1)

is global Markov relative to an undirected graph G, the edges of which are determined

by the non-null entries of the precision matrix Ω.

Proof. This is a direct application of Theorem 1.1 to the factorized multivariate

Gaussian density reminded in Proposition 1.3.

As f is global Markov, any two non-neighbors in G are conditionally independent in

f . The multivariate Gaussian distribution also presents with a facilitating property
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about conditional independence, reminded below.

Proposition 1.5. If X ∼ NV (µ,Ω−1), then it holds for any k, ` ∈ V with k 6= `

that

Xk ⊥⊥ X` | XV \{k,`} ⇐⇒ ωk` = 0.

Proof. This comes directly from the fact that the 2×2 covariance matrix of variables

k and l conditional on all others expresses in terms of the precision matrix :

Σk,l|V \{k,l} = |Ω{k,l}|−1

(
ωkk −ωkl
−ωkl ωll

)
.

As conditional independence between Gaussian variables is equivalent to 0 terms

in the conditional covariance matrix, the above expression shows that it is also

equivalent with null precision terms.

Note that Proposition 1.5 is not a consequence of proposition 1.3.

Proposition 1.6 (Faithfulness property). Let X ∼ N (µ,Ω−1) with associated den-

sity f , G the graph which edges represent the non-null entries of Ω. Then it holds

that:

k � ` ⇐⇒ Xk ⊥⊥ X` | XV \{k,`}.

and f is faithful Markov relative to G.

Proof. The right implication is the global Markov property of the multivariate Gaus-

sian distribution reminded in Proposition 1.4.

The left implication comes for the combination of Propositions 1.3 and 1.5. From

Proposition 1.5:

Xk ⊥⊥ X` | XV \{k,`} ⇒ ωk` = 0,

and a null precision term implies no edge between the corresponding nodes in G
according to Proposition 1.3.

Proposition 1.6 is key for estimation in the GGM framework, as it states that

finding the null precision entries gives all the graph of conditional dependencies.

The Gaussian framework also offers specific conditioning results, and in particular

the regression interpretation of Ω entries.

Proposition 1.7 (Regression interpretation). Considering X ∼ N (µ,Ω−1), the

linear regression of Xj on X\j writes :

Xj =
∑
k 6=j

βjkXk + εj , where εj ∼ N (0, ω−1
jj ), βjk = −ωjk

ωjj
.

Hence ωjk is, up to a scalar, the coefficient of Xk in the multiple regression of Xj

on all other variables. This result is at the basis of GGM inference methods relying
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on regression (Meinshausen and Bühlmann, 2006), which we will see later on. But

first, let’s turn to Lauritzen’s parameters estimation for GGM, made possible by

the faithfulness property.

1.2.2 Maximum likelihood estimation

In this section we adopt the following notations: for any squared matrix A of

dimension p and B a subset of V = {1, ..., p}, we let AB refer to the block B of A:

AB = (aij){i,j}∈B. [AB]p then denotes the matrix obtained by filling up with zero

entries to obtain full dimension p× p, so that:

([AB]p)ij =

{
aij if {i, j} ∈ B,

0 if {i, j} ∈ V\B.

Hereafter we consider X ∼ N (µ,Ω) with dimension p. If X is associated with a

decomposable graph G, the Markov property 1.6 applies across the decomposition

and reflects in a multiplicative property for the density, and additive property for

the concentration matrix. More precisely, considering a perfect sequence of the

cliques of G as in Definition 1.4, we have that

f(X) =

∏
C∈C f(XC)∏

S∈S f(XS)ν(S)
.

This general expression of the density across decomposition of the graph is very

helpful in likelihood computations, especially when some hypotheses are made on the

structure of G. The following lemma gives the expressions for Ω and its determinant:

Lemma 1.2. In a decomposable Gaussian graphical model with precision matrix

Ω = Σ−1 of dimension p:
Ω =

∑
C∈C

[
(ΣC)−1

]p −∑S∈S ν(S)
[
(ΣS)−1

]p
|Ω| =

∏
C∈C |ΣC |−1∏

S∈S |ΣS |−ν(S)

where C is the set of cliques of G and S the set of separators with multiplicities ν in

any perfect sequence.

The GGM framework provides exact results about maximum likelihood estimators

(MLE) of the mean vector, the precision matrix, its determinant and the terms of

the covariance matrix corresponding to edges in the graph. They all depend on the

sufficient statistic that is the sum of squared deviations, defined as follows where

Xi denotes the ith sample of X:

Definition 1.9. Denoting X the empirical mean of the multivariate Gaussian X,
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the sum of squared deviations matrix, also known as total sum of squares, is given

by:

SSD =
n∑
i=1

(Xi −X)(Xi −X)ᵀ = XᵀX − nXX
ᵀ
.

The following theorems 1.4 and 1.5 give the MLE estimators in the GGM framework

using SSD = (ssdij)ij .

Theorem 1.4. In the Gaussian graphical model, the MLE of the unknown mean

and covariance matrix exist with probability one if n > p. When they exist, the

estimate of the mean is µ̂ =X, and the estimate of the unknown covariance matrix

Σ is determined as the unique solution of the system of equations{
nσ̂jj = ssdjj , j ∈ V
nσ̂k` = ssdk` , k ∼ `, (k, `) ∈ V

which also satisfies the model restriction ωk` = 0 ⇐⇒ k � `.

Theorem 1.5. In a Gaussian graphical model with graph G, the MLE of the preci-

sion matrix exists with probability one if n > maxC∈C|C|. It is then given as

Ω̂ = n

{∑
C∈C

[
(SSDC)−1

]p −∑
S∈S

ν(S)
[
(SSDS)−1

]p}
,

where C is the set of cliques of G and S the set of separators with multiplicities ν in

any perfect sequence. The determinant of the estimate can be calculated as

|Ω̂| = np
∏
C∈C |(SSDC)−1|∏

S∈S(|(SSDS)−1|)ν(S)
.

The stronger condition n > p of Theorem 1.4 is only sufficient, whereas the condition

n > maxC∈C|C| of Theorem 1.5 is necessary for the existence of all estimators, as

it ensures the positive definiteness of all SSDC (otherwise some might not have full

rank).

All of the above maximum likelihood estimators require the precise knowledge of

the graph structure and is therefore rarely available. However relying on simple

structures (e.g. spanning trees) greatly simplifies the expressions and make their

use possible.

1.2.3 Network inference from Gaussian data

Network inference here refers to the inference of the conditional dependence struc-

ture of multiple variables jointly observed in a series of sites. The interactions

between the species are unknown, therefore this is not to be confused with the art
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of inferring a network parameters (e.g. sign and strength of the interactions) from

observations of repeated interactions.

In the special framework of GGM, conditional dependence relations are perfectly

represented by the non-nul entries of the precision matrix Ω, as specified in Propo-

sition 1.6. Therefore the general approach to network inference in GGM is then to

perform a sparse estimation of Ω.

Penalized estimation

In a standard linear regression model with data matrix Y and covariates matrix X,

penalized estimation can be used to select predictors. The most popular penalized

method is the Lasso (Tibshirani, 1996) which applies the `1 penalty and estimates

the β coefficients as the solution of:

arg min
β∈Rp

{
||Y −Xβ||22 + λ||β||1

}
, ||β||1 =

p∑
i=1

|βi|,

where λ is a penalty called the regularization parameter. The form of the `1 penalty

forces some coefficients to exactly equal zero. Taking advantage of the regression

interpretation in GGM reminded in Proposition 1.7, a method for inferring non-nul

elements of the precision matrix is to run separate penalized regressions of each

node against all others and possible covariates, as in Meinshausen and Bühlmann

(2006).

A joint estimation of these regression models is performed by the widely used Graph-

ical Lasso (glasso) (Friedman et al., 2008). The glasso introduces sparsity in the pre-

cision matrix by imposing Lasso penalties on its entries. It is an iterative procedure

which aims a sparse MLE of the penalized precision matrix Ω. The log-likelihood

of a GGM writes:

L(Ω) = log |Ω|+ tr (YᵀYΩ) + cst.

The precision matrix is then estimated as the matrix which maximizes the penalized

log-likelihood:

arg max
Ω≥0

{
L(Ω)− λ||Ω||1

}
, ||Ω||1 =

∑
j 6=k

|ωjk|.

The glasso selects the network edges by forcing some of them to zero in the precision

matrix. The greater the penalty λ, the less edges are included in the network and

therefore choosing λ is critical for the glasso. The selection of λ can be performed

using classical tools such as cross-validation, Akaike information criterion (AIC),

Bayesian information criterion (BIC) or its extended version. Another popular

approach is to perform a stability selection with StARS (Liu et al., 2010a), which
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fosters the network robustness under random sampling of the input data.

Averaging on trees

Another inference strategy is to assume a sparse structure. The sparsest connected

graphs are spanning trees. If a multivariate variable Y i of dimension p is faithful

to a spanning tree T , its likelihood writes as a factorization on the nodes and the

edges of T :

pT (Y i) =

p∏
j=1

p(Yij)
∏
jk∈T

p(Yij , Yik)

p(Yij)p(Yik)
.

The quotient in the product on the edges is close to the mutual information

between two variables, which is the Küllback-Leibler divergence between the

bivariate density and the product of their marginal densities. It can be seen as a

measure of the independence between a pair of variables. The Chow-Liu algorithm

(Chow and Liu, 1968) finds the tree structure which maximizes the above likelihood

from observations. The maximal spanning tree is thus the tree with the maximal

bivariate dependencies on its edges. Note that the Chow-Liu algorithm is not

restricted to the Gaussian case, even if it is the most general one.

However the data conditional dependency structure is unlikely to be a tree in gen-

eral. Assuming the dependency tree T to be random provides with a more flexible

approach. Considering any distribution on the space of spanning trees, we now

define the tree averaging model (also called tree aggregation or mixture of trees)

which is a sum on a set of trees weighted by their respective probability to be the

random tree T . This is classically formulated as follows:

Definition 1.10 (Tree averaging (Meilă and Jordan, 2000)). Considering a collec-

tion of m spanning trees Tk, k ∈ {1, ...,m} and a choice variable z taking values in

{1, ...,m}, the distribution of an observed variable Y following a mixture of trees is

defined as:

p(Y ) =

m∑
k=1

p(z = k)p(Tk).

Conditionally on z, the distribution of Y is a tree.

Averaging on trees then means to treat the underlying tree T as a latent parameter

of the model. In the context of GGM the use of tree averages for network inference

relies on a Gaussian tree mixture, which is a mixture model of GGM that are faithful

to trees.

Definition 1.11 (Gaussian tree mixture). The distribution of a variable Y is a
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Gaussian tree mixture on the space of m spanning trees if it writes as follows:

p(Y ) =
m∑
k=1

p(Tk)p(Y | Tk), Y | Tk ∼ N (0,Ω−1
Tk

), ∀k ∈ {1, ...,m}.

Conditional on Tk, Y is faithful relative to this tree and follows a multivariate

Gaussian with the corresponding precision matrix ΩTk
.

Instead of a subset m, considering an average on all possible spanning trees presents

with the advantage of resorting to edges probabilities. Indeed the probability for an

edge to be in the tree T can be defined as the sum of the probabilities of all trees

containing this edge:

P{kl ∈ T} =
∑
T∈T
T3kl

pW(T ).

The final output of a strategy using an average on trees for network inference is not

the latent tree presenting with the highest probability, but the matrix filled with

the edges probabilities obtained by summing on all trees. Therefore the output is

a weighted network which has no reasons to be shaped as a tree itself.

We now detail a useful distribution on the space of trees: the decomposable distri-

bution, which assigns a strictly positive weight to each edge (Meilă and Jaakkola,

2006; Meilă and Jordan, 2000).

Definition 1.12 (Decomposable tree distribution). For any symmetric weight ma-

trix W with all positive entries, a decomposable distribution for the tree T is defined

as follows:

pW(T ) =
∏
kl∈T

wkl/W,

where W is a normalizing constant with sum-product form as in Theorem 1.3.

Therefore under the decomposable distribution, the probability of a tree is pro-

portional to the product of its edges weights. Such distribution is stable under a

multiplicative transformation applied to its weight matrix, which is particularly

useful during the implementation. The Chow-Liu algorithm actually maximizes

the decomposable distribution with the mutual information as the edges weights.

Defining a tree averaging with the decomposable tree distributions pW(T ) presents

several advantages. First, it introduces the quantity
∑
T∈T

∏
k`∈T wkl, which is a

sum-product form easily handled thanks to Theorem 1.3 and Lemma 1.1. Then, the

following algebraic result from Kirshner (2008) states that under a decomposable

distribution it is possible to compute all edges probabilities at the same time, and

this at the cost of the inversion of the Laplacian matrix of the edges weights.
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Lemma 1.3 (Kirshner (2008)). Let pW be a decomposable tree distribution with

symmetric and positive weight matrix W. Taking the symmetric matrix M as de-

fined in Lemma 1.1, the probability for an edge kl to be in the tree T writes:

P{kl ∈ T} = wkl Mkl.

Unlike the previous penalized approach which assumes a fixed graph, tree-averaging

methods consider the graph as a latent and random tree. Coupled with decompos-

able tree distributions, they offer an efficient and exhaustive exploration of the space

of spanning tree graphs. Tree averaging has recently been used in the context of

GGM inference in the Bayesian setting (Schwaller et al., 2019) and for the inference

of unobserved data (Robin et al., 2019).

1.3 Inference of incomplete data models

Incomplete data can refer either to unobserved variables due to experimental con-

straints, or latent variables in the model. The Expectation-Maximization (EM)

algorithm (Dempster et al., 1977) is the classic approach to compute the maximum

likelihood estimate in presence of hidden variables. In this section we present the

general principles of the EM algorithm, as well as its variational version. We let Y

denote the observed incomplete data, Z the hidden variables, p their joint distribu-

tion with parameter vector θ.

1.3.1 Expectation-Maximization algorithm

The EM algorithm is an iterative procedure which aims at maximizing the log-

likelihood log pθ(Y ) of the observed data Y . It is based on a decomposition of the

incomplete data likelihood:

log pθ(Y ) = Eθ[log pθ(Y ,Z) | Y ]− Eθ[log pθ(Z | Y ) | Y ].

This relation links the observed likelihood and the complete likelihood log pθ(Y ,Z).

The second term is actually the entropy of the latent variables Z given the observed

data. The iteration t + 1 of the EM algorithm then consists of the two following

steps:

E step: Given θt, compute Eθt [log pθ(Y ,Z) | Y ] as a function of θ,

M step: Update θ as θt+1 = arg maxθ{Eθt [log pθ(Y ,Z) | Y ]}.

There is no guarantee as for the convergence of the estimate of θ towards a global

maximum of log pθ(Y ). However an important property of the EM, obtained as

a consequence of the Jensen’s inequality, is that the log-likelihood of the observed
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data log pθ(Y ) increases with the iterations of the EM algorithm (Dempster et al.,

1977): log pθt+1(Y ) > log pθt(Y ).

Another formulation of the EM assumes a distribution q for the hidden variables

(Neal and Hinton, 1998) and defines a lower bound J as:

J (θ, q) = log pθ(Y )−KL(q(Z)||pθ(Z | Y ))

= Eq[log pθ(Y ,Z)]− Eq[log q(Z)].

where KL(q(Z)||p(Z)) = Eq[log q(Z)− log p(Z)] is the Küllback-Leibler divergence.

In this formulation, the link between the maximization of J and that of the like-

lihood is made clear. Iteration t + 1 of the EM can then be written as a double

maximization:

E step: qt+1 = arg maxq{J (θt, qt)} = arg minq{KL(q(Z)||pθ(Z | Y ))},

M step: θt+1 = arg maxθ{J (θt, qt+1)} = arg maxθ{Eq[log pθ(Y ,Z)]}.

The EM algorithm has become a classic approach to perform inference of models

involving hidden or latent variables. In particular it is widely used to infer mixture

models, for example mixture of trees Meilă and Jordan (2000). It corresponds to

the case where no constraint is imposed to the q distribution: the solution of the

E step is thus q(Z) = p(Z | Y ), and the Küllback-Leibler divergence is canceled.

Unfortunately the conditional density pθ(Z | Y ) is not always available, in which

case one might resort to a variational computation.

1.3.2 Variational estimation

Variational inference is a method for approximating conditional distributions (Blei

et al., 2017; Jordan et al., 1999; Wainwright and Jordan, 2008). It is widely used in

Bayesian settings to approximate posterior densities, that is looking for q(θ) ≈ p(θ |
Y ), as an alternative for Monte-Carlo Markov Chain (MCMC) sampling. Another

use of the variational inference is to approximate the conditional distribution of a

latent variable, thus looking for q(Z) ≈ p(Z | Y ). These are two examples of the

same general approximation problem.

When the conditional density of latent variables given the observed data cannot

be computed, the variational version of the EM reduces the search space of the

approximate distribution q to a set Q in the E step, and chooses a divergence

D to define the lower bound. Doing so results in a variational approximation of

pθ(Z | Y ). Therefore, in a Variation EM (VEM) algorithm, the E step is replaced by

a variational-E (VE) step, which computes an approximate conditional distribution
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as the solution of the following optimization problem:

qt+1 = arg min
q∈Q

{
D
(
qt(·) || pθt(· | Y )

)}
.

In other words the idea behind variational estimation is to choose a divergence

D and a family of densities Q, and then find the member of this family which is

the closest to the target distribution pθ(Z | Y ) as measured by the divergence.

Their exists a variety of divergence measures (see Minka (2005) for an overview),

and the Küllback-Leibler divergence as presented in the previous section is

generally preferred for maximum-likelihood estimations. The complexity of the

optimization is determined by the choice of the variational family. The set Q can

be chosen as a parametric family, for example the set of Gaussian distributions:

Q = {q(Z) = N (Z;m,S)}. Another widely used choice for Q is the set of

product-form or factorized distributions, where the latent variables are mutually

independent: for K hidden variables Q = {q(Z) =
∏K
k=1 qk(Zk)}. These two sets

can be combined into the set of factorized Gaussian distributions.

The optimization problem of the VE step is most commonly solved using coordinate

ascent. With a factorized approximate distribution q(Z), coordinate ascent consists

in iteratively optimize each hidden factor qk(Zk) of the product while keeping the

other fixed. A result from Beal and Ghahramani (2003) directly gives the optimal

solution for each variable of a factorized distribution and is given in Proposition

1.8 below. It was originally formulated in the Bayesian setting, and as such this

result applies to hidden variables as well as Bayesian random parameters. Hidden

variables in proposition 1.8 can refer to either latent factors, unobserved variables,

or Bayesian parameters.

Proposition 1.8 (Beal and Ghahramani (2003)). In a variational EM using a fac-

torized approximate distribution and the Küllback-Leibler divergence with observed

data Y and K hidden variables Z = {z1, ..., zK}, the solution of the VE step op-

timization problem is the following. At step t + 1 and for any k in {1, ..., p} the

optimal variational marginal distribution qk is proportional to the exponential of the

expected log of the complete joint density:

q
(t+1)
k (zk) ∝ exp

{
Eqt\k

[log pθt+1(Y ,Z)]
}
.

Proposition 1.8 shows that choosing Q as the set of factorized distributions leads to

a so-called ”mean-field” approximation, allowing a clearer presentation and easier

use of variational inference algorithms with factorized approximations. Variational

inference has been widely used in very diverse fields, among which computational

biology and genetics (Carbonetto et al., 2012; Raj et al., 2014). Its study in network

stochastic block model analysis yielded some specific theoretical results (Bickel et al.,
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2013; Celisse et al., 2012), however establishment of general theoretical guarantees

of variational inference is an active research area, as underlined in Blei et al. (2017).

1.4 Network inference from count data

Inferring a network from multivariate counts requires to model the joint distribution

of discrete variables. Discrete distributions are not particularly practical to work

with and their exist few options of multivariate formulations. A solution is then to

use Gaussian random latent parameters and rely on a mixed generalized multivariate

model, known as Joint Species distribution Model in ecology (Warton et al., 2015).

This model then allows to resort to the GGM framework for network inference. The

last part of this section summarizes several modeling strategies for network inference,

as well as the one we adopted.

1.4.1 Modeling multivariate count data

A convenient distribution for modeling discrete data is the Poisson, which possesses

some interesting features as it is part of the exponential family. As explained

in Inouye et al. (2017), the first idea for extending the Poisson distribution to

the multidimensional framework is it to build a multidimensional Poisson from

univariate Poisson distributions. The multivariate Poisson of dimension p is

formulated as a collection of variables that are the sums of p univariate Poisson

distributions. This construction takes advantage of the subsequent summation of

the Poisson distribution parameters (Teicher, 1954). It writes easily and presents

the advantage of preserving the marginal Poisson distributions, but the set of

possible correlations between variables is restricted. The extension of this formu-

lation allows for a full covariance structure modeling, and can be inferred using

an EM algorithm (see Karlis (2003)). However a significant modeling restriction is

that only positive dependencies can be modeled, which is generally too strong an

assumption. Moreover in higher dimensions the computational cost dramatically

increases, and the writing becomes intractable.

Fortunately, there exist other more general ways of jointly modeling discrete data,

the majority of which transposes the problem in the Gaussian framework, where

they can take advantage of the easy handling of the multivariate Gaussian distri-

bution and its practical properties. These methodologies can be gathered in the

framework of multivariate mixed models, which are a general class of statistical

parametric models for counts of multiple variables. More specifically, they are an

extension of the generalized linear model and thus readily handle covariates and

offsets. Additionally multivariate mixed models capture the correlation between

the variables, and resort to Gaussian random effects and a link function to do so.
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Hereafter we consider the input abundance data matrix Y, and denote by the index

i the rows (samples) and the index j the columns (species) of Y. A multivariate

random effect Zi is associated with each data sample Yi. Denoting xi the vector of

covariates with regression coefficients θj , oij a possible offset and g(·) a link function,

the mean abundance mij can be specified in a general manner as follows:

g(mij) = oij + xᵀ
i θj + Zij , Zi ∼ N (0,Σ).

The art of multivariate mixed modeling then resides in the specification of g and the

random effects. We here focus on counts, but binary data (e.g. presence/absence)

could also be handle through mixed modeling. This model is known as a Joint

Species Distribution Model in ecology, where the data at hand represents the sam-

pled measures on a set of species at different sites. The following section presents

some of the most used settings for multivariate mixed modeling of counts in ecology

and microbiology.

1.4.2 Shift to Gaussian universe

Transformations

The first idea when it comes to transposing counts into the Gaussian framework is

to transform them. Doing so allows to analyze the data without resorting to discrete

modeling. A common transformation of counts is to apply the log function, with a

small constant c added to counts to avoid zeros (pseudo-counts). In this case the

mean of log(Yij + c) is then assumed to follow a multivariate Gaussian distribution.

In genomics, high throughput sequencing yields samples Yi of observed counts of

p species or taxa that are constrained by the library size κi such that
∑
j Yij = κi

(Gloor et al., 2017). Thus the available observations are not absolute counts but

relative counts, and each sample can be viewed as a compositional vector (Aitchison,

1982) sampled from the simplex

Spi =

{
u = (u1, ..., up) ∈ Rp

∣∣∣∣ p∑
i=1

ui = κi

}
.

There exist several transformations for compositional data to change the κi-sum con-

straint, the most popular being the centered log-ratio transformation which writes:

clr(Y) =

(
log

Y1

m(Y)
, ..., log

Yp
m(Y)

)
,

where m(Y ) =
(∏p

j=1 Yj

)1/p

is the geometric mean. A clr-transformed vector is

thus constrained to a zero sum. In the framework of joint modeling, the clr function

can be used as a link function to account for covariates and offsets. Recent works
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on network inference use the clr transformation (Kurtz et al., 2015), or the logistic

normal distribution (Aitchison and Shen, 1980) to model relative counts (Fang et al.,

2017).

Copulas

Copulas are joint distributions which map the marginal cumulative distribution

functions of a multivariate random vector. Their use with continuous distributions

originates from the Sklar’s theorem which states that a joint continuous distribu-

tion can be decomposed into a copula and marginal distributions. Conversely the

pairing of a copula and some marginal distributions yields a valid joint distribution.

As copulas fully describe the dependence structure, these models allow to fully sep-

arate the modeling of marginal distributions from the modeling of dependencies. In

their original form, they only apply to continuous marginals, and their extension to

discrete data has been controversial in particular about identifiability, and computa-

tionally challenging (Faugeras, 2017). However recent developments made the use of

Gaussian copula coupled with discrete marginal distributions possible (Panagiotelis

et al., 2012; Popovic et al., 2018), opening the way to the application of copulas in

the analysis of multivariate count data (Anderson et al., 2019).

In this context, a first step estimates each p marginal univariate discrete distri-

butions parameters while accounting for covariates and possible offsets. Then the

distribution of the response Gaussian copula is computed as a p−dimensional in-

tegrand (see Popovic et al. (2018)). Popovic et al. (2019) showed that Gaussian

copulas are a relevant and promising approach to the problem of network infer-

ence from abundance data, even if the computation cost remains substantial as it

requires importance sampling as well as Monte Carlo Expectation Maximization

algorithms. One way of taking advantage of the copula theory without having to

actually estimate the joint distribution is to use copulas as a data transformation.

The nonparanormal transformation of counts is a semiparametric Gaussian copula

(Liu et al., 2009). It is estimated in a computational efficient manner by marginally

transforming the variables using ranks and univariate Gaussian quantiles. This

transformation however is sensitive to ex-aequo and 0 counts. Clark et al. (2018) re-

sorts to the nonparanormal approach in an attempt to estimate network parameters

varying across a gradient of covariates.

Latent variables

Latent variables enable the modeling of multivariate discrete data using a hierar-

chical setting where random discrete variables are modeled conditionally to random

latent variables. Two specifications of latent variables stand out in community

ecology (Warton et al., 2015): the Multivariate Generalized Linear Mixed Model

(GLMM) (Ovaskainen et al., 2010; Pollock et al., 2014), and the Latent Variable
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Model (LVM) (Ovaskainen et al., 2016, 2017). The difference between these models

lies in the dimension of their respective random effects: there are as many latent

variables as there are species in the GLMM, whereas in the LVM their number is a

parameter of the model.

In more details, a GLMM models the latent variables and abundances as follows:

Yij | Zi ∼ F (mij , φj)

Zi ∼ N (0,Σ),

where F is a distribution with mean mij and dispersion parameter φj . There are

as many latent variables as observed ones. In the case of LVM the random effect

associated with the mean abundance mij is a linear combination of a set of K < p

latent variables, and is generally specified as:

g(mij) = oij + xᵀ
i θj +

K∑
k=1

Zikλkj ,

where the matrix Λ gathers the factors loadings λj in columns. Abundances are

then assumed to follow

Yij | Zi ∼ F (mij , φj)

Zi ∼ N (0, I).

The covariance matrix of the latent layer of random effects is then of rank

K and can be computed from the factor loadings as Σ = ΛᵀΛ. The LVM is

appreciated for its small number of parameters to estimate (Ovaskainen et al., 2017).

The Poisson log-normal distribution (PLN, Aitchison and Ho (1989)) is a GLMM

where F is the Poisson distribution and g the log function. This model can also

be seen as an infinite Poisson mixture as presented in Inouye et al. (2017), with a

log-normal distribution for the parameters. The PLN model presents the advantage

of having closed form moments:

E[Yi] = eµi+
1
2σii = αi

V(Yi) = αi + α2
i (e

σii − 1)

Cov(Yi,yj) = αi αj(e
σij − 1).

An interesting property of the multivariate Poisson log-normal law is the

conservation of the correlation signs between the observed and latent layers:

sign(Cor(Yij , Yik)) = sign(Cor(Zij , Zik)), including the null correlation. Moreover if

σjk is null, then it can be shown that the bivariate distribution p(Yij , Yik) factorizes

26



C
h
a
p
te
r
1

under the product of its marginals, yielding the marginal independence of the two

variables (Aitchison and Ho, 1989). This model can be estimated using variational

inference in Chiquet et al. (2018). Biswas et al. (2016) and Chiquet et al. (2019a)

use the PLN distribution in the context of network inference.

1.4.3 Network inference

As stated in the previous section, most methodologies to infer networks from count

data first model count data in a way to transpose the problem in the Gaussian

setting. There they take advantage of the GGM framework detailed in section

1.2.1 to perform network inference. The majority of them then use the penalized

estimation using either the LASSO or the glasso as detailed in section 1.2.3. Table

1.1 below summarizes the modeling of counts and inference strategy adopted by

the methods of interest in this work, which have all been previously mentioned.

Note that we focused on methods using the framework of Graphical Models, and

included LITree and saturnin even if they do not model count data for they have

been a source of inspiration for this work.

Gaussian shift Network inference

Ref. Trans. Copulas LV Penalized Trees

SpiecEasi Kurtz et al. (2015) x x

MInt Biswas et al. (2016) x x

gCoda Fang et al. (2017) x x

MRFcov Clark et al. (2018) x x

ecoCopula Popovic et al. (2019) x x

PLNnetwork Chiquet et al. (2019a) x x

saturnin Schwaller et al. (2019) x

LITree Robin et al. (2019) x

Table 1.1 – Network inference methods of interest: their strategy to model counts
(transformation, copulas or latent variables), and choice for network inference (pe-
nalized estimation or tree average).

Inference in the observed layer Y

We presented methods relying on a Gaussian layer for the network inference. An-

other mathematical framework for graphs with discrete data are the Poisson Graph-

ical Models, which are graphical models of the observed layer Y directly, and not

the Z. These models use properties of the exponential family to derive graphical

models with node-conditional Poisson distributions. However this particular class

of graphical models entails a major drawback: only negative dependencies relation-

ships can be modeled. As this is a too unrealistic assumption when it comes to
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species interactions we did not discuss this solution here, although see Yang et al.

(2013) and Inouye et al. (2016) for valuable extensions of this model. In Chapter 4

we propose a model for network inference in the layer of Y , using tree averaging.

1.4.4 Proposed methodology

The network inference method which is developed in the following chapters of this

work models count data Y using the aforementioned PLN distribution, including

offsets and covariates:

Yij | Zi ∼ P(exp(oij + xᵀ
i θj + Zij)), (Yij ⊥⊥) | Zi.

The graph underlying the latent layer of Gaussian parameters Z is assumed to be

a random tree, so that the conditional distribution is faithful to T :

Zi | T ∼ N (0,ΩT ), {Zi}i iid.

The tree T is assumed to be distributed following a decomposable distribution as

defined in Definition 1.12:

T ∼
∏
kl∈T

βkl/B, B =
∑
T∈T

∏
kl∈T

βkl.

The approach then relies on tree averaging for the network inference as detailed in

section 1.2.3. Namely, the latent Gaussian parameters Z follow a Gaussian tree

mixture on the whole space of spanning trees T , where each Gaussian component

is faithful to a spanning tree as is specified in Definition 1.11. This writes

Zi ∼
∑
T∈T

p(T )N (Zi | T ; 0,ΩT ).

Chapter 2 details the inference of this model. Chapter 3 considers the case of

additional dimensions in the latent layer Z, that is when Zi is actually of dimension

p+ r, where r > 0 is a number of unobserved actors.
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This chapter is based on the article Tree-based Inference of Species Interaction Net-

works from Abundance data published in Methods in Ecology and Evolution (Momal

et al., 2020). It details an original network inference method from species observed

abundance data using the Poisson log-normal model and tree averaging. The devel-

oped methodology is compared to existing alternative methods for network inference,
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from ecology and genomics. After an enriching discussion with Nicolas Clark (MR-

Fcov R package), covariates adjustment has been corrected, as well as simulation

parameters of the Scale-free structures. Consequently Fig. 2.4 has been updated

and Fig. 2.5 added. The appendix has been updated accordingly. This chapter

augments the published material, and adds a vignette giving usage examples of the

R package implementing the developed method.

2.1 Introduction

There is a growing awareness of biotic interactions being crucial components of

biodiversity and relevant descriptors of ecosystems (Jordano, 2016; Valiente-Banuet

et al., 2015). Such interactions can be conveniently represented by networks, which

have been increasingly studied and used in recent years for describing and under-

standing living systems in ecology (Poisot et al., 2016), microbiology (Faust and

Raes, 2012) or genomics (Evans et al., 2016). Observing species interactions is a la-

borious task which restricts them to certain categories (e.g. pollination, predation,

parasitism), while many other types of interactions may be hard to observe and

key in the system organization (e.g. communication, shelter sharing). Many efforts

have been devoted in the last decade to get a more complete picture of the biotic

interactions existing between species living in the same niche: all these interactions

can be gathered in a so-called species interaction network .

Network reconstruction. A first attempt consists in using observed interactions

to predict other possible links based on species traits matching (see e.g. Bartomeus

et al., 2016; Graham and Weinstein, 2018; Olito and Fox, 2015; Weinstein and

Graham, 2017). The interaction strength can also be predicted (Wells and O’Hara,

2013). This can be viewed as a prediction task, and modern approaches arising

from signal processing and machine learning have been also proposed (Dallas et al.,

2017; Desjardins-Proulx et al., 2017; Stock et al., 2017). We name these approaches

network reconstruction to distinguish them from network inference, which is the

problem we consider in this article.

Network inference. Network inference approaches also aim at retrieving the in-

teractions among species, but do not rely on observed interactions and therefore,

remain agnostic as for their type. Such approaches have been developed in many do-

mains ranging from cell biology (Friedman, 2004, to infer gene regulatory networks)

to neurosciences (Zhu and Cribben, 2018, to deciphere brain connectivity struc-

tures). In ecology, it will typically aim at inferring the set of biotic interactions

linking species from the same guild. As summarized in Fig. 2.1, network inference

takes as input measures on species (here abundances) at similar sites, and returns

a network of species direct interactions. The importance of distinguishing between
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direct interaction and indirect association between species is explained in Popovic

et al. (2019).

Species not engaged in biotic interactions can appear linked if they respond similarly

or oppositely to an abiotic effect (spurious interaction). Therefore network inference

must account for environmental covariates. Fig. 2.2 illustrates this phenomenon: in

(c) species (1 and 4) are not in direct interaction, but are affected by the variations

of the same environmental covariate x. (d) displays the network when x is not

accounted for: a spurious edge appears between species.

date site

apr93 km03

apr93 km03

apr93 km03

apr93 km03

apr93 km17

apr93 km17
...

...

EFI ELA GDE GME HFA

71 1 5 6 0

118 2 3 0 0

69 0 6 2 0

56 0 0 0 0

0 1 1 0 0

0 0 2 0 0
...

...
...

...
...

(a) covariates (b) species abundances (c) inferred network

Figure 2.1 – Aim of species interaction network inference from abundance data.
Data sample from the Fatala river dataset (see Section 2.2.3).

Joint species distribution models. The rationale behind network inference is

that interactions between species must affect their joint distribution in a series of

similar sites. Such approaches necessarily rely on a joint species distribution model

(JSDM), as opposed to species distribution models (Elith and Leathwick, 2009)

where species are traditionally considered as disconnected entities. A JSDM is a

probabilistic model describing the species simultaneous presence/absence (Harris,

2015; Ovaskainen et al., 2017) or joint abundances (Popovic et al., 2018, 2019). An

important feature of JSDMs is to include environmental covariates to account for

abiotic interactions.

Recently, latent variable models have received attention in community ecology as

they provide a convenient way to model the dependence structure between species

(Warton et al., 2015). The JSDM proposed by Popovic et al. (2018, 2019) involves

a latent layer. So does the Poisson log-Normal model (PLN, Aitchison and Ho,

1989), which combines generalized linear models to account for covariates and offsets,

and a Gaussian latent structure to describe the species interactions. It can be

seen as a multivariate mixed model, in which correlated random effects encode the

dependency between the species abundances.
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1

2 3

4 1

2 3

4 1

2 3

4
x

1

2 3

4
x

(a) connected (b) disconnected (c) with covariate (d) missing covariate

Figure 2.2 – Examples of graphical models. (a) All species are dependent, (b) 4 is
independent from all others, (c) 1 and 4 are independent conditional on x, (d) not
accounting for x induces a spurious dependence between 1 and 4.

Graphical models: a generic framework for network inference. Although

they describe the dependence structure between the distributions of all the species

from a same niche, JSDM are not sufficient to perform network inference as they do

not distinguish indirect associations from direct interactions (Dormann et al., 2018).

Graphical models (Lauritzen, 1996) provide a probabilistic framework to do so and,

in the same time, a formal definition of the network to be inferred. This formalism

is therefore especially appealing for the inference of species interaction networks

(Popovic et al., 2019). In an undirected graphical model (which is the same as a

Markov random field: Clark et al., 2018), two species are connected if they are de-

pendent conditional on all other species, that is if the variations of their respective

abundances would still be correlated if ever both the environmental conditions and

the abundances of all other species were kept fixed. Two species are unconnected

if they are independent conditional on all other species: the observed correlation

between them only results from a series of links with other species (Morueta-Holme

et al., 2016) or environmental effects. Fig. 2.2 illustrates the concept of conditional

dependence/independence with toy graphical models. In (a), the network is con-

nected so all species are interdependent: an association exists between any two of

them. However, 1 is only directly interacting with 2 which mediates its association

with 3 and 4: 1 is independent from them conditional on 2.

In (b), the network is disconnected: species 4 is independent from all others. This

illustrates that graphical models enjoy all the desirable properties to represent in-

teractions between species in an interpretable manner, so that they can be used as

the mathematical counterpart of species interaction networks.

Network inference: the general problem. Network inference methods at-

tempts to retrieve the graphical model underlying the distribution of abundance

data. In every domains, network inference is impeded by the huge number of pos-

sible graphs for a given set of nodes, which increases super-exponentially with the

latter (more than 1013 undirected graphs can be drawn between 10 nodes, and more

than 1057 between 20). The exploration of the graph space is therefore intractable

from a combinatorial point of view. To reduce the search space, a common and rea-

sonable assumption is that a relatively small fraction of species pairs are in direct
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interaction: the network is sparse. In the case of continuous observations, one of

the most popular approaches is the graphical lasso (glasso: Friedman et al. (2008))

which takes advantage of the properties of Gaussian graphical models (GGM) to

efficiently infer a sparse network. Alternatively, tree-based approaches have been

proposed: Chow and Liu (1968) first made the too stringent assumption that the

network is made of a single spanning tree (that is connecting all nodes without any

loop, as in Fig. 2.3). More recent approaches introduced by Meilă and Jaakkola

(2006) and Kirshner (2008) rely on efficient algebraic tools to average over all possi-

ble tree-structured graphical models. The inferred network resulting from such an

averaging procedure is not restricted to be a tree: species or groups of species can

be isolated (e.g. Fig. 2.1), and loops can appear (e.g. Fig. 2.3).

Network inference from species abundance data. This work focuses on net-

work inference based on abundance data, and not only their presence/absence (as

considered in Clark et al., 2018; Ovaskainen et al., 2010). Network inference from

species abundance measures is a notoriously difficult problem (Ulrich and Gotelli,

2010), not only because network inference is complex, but also because it has to

account for the data specificities. Abundance data may spread over a wide range

of values and often result from sampling efforts (sample and/or species-specific),

making them difficult to compare. Obviously, count data do not directly fit the

Gaussian framework but many network inference methods dedicated to abundance

data actually rely on a latent Gaussian structure (see Section 2.2.3).

Contribution. In the present work, we adopt a model-based approach to perform

network inference from abundance data. To accommodate the data specificities we

use a PLN model, which includes the over-dispersion of the observed counts as well

as the sampling effort. Importantly, the PLN model allows us to account for abiotic

effects and avoid the detection of spurious interactions between species.

As for the network inference, we adopt a tree-based approach (as opposed to Biswas

et al., 2016, which also use a PLN model but resort to glasso), which provides a

probability for each edge to be actually part of the underlying graphical model.

Outline. We introduce the method EMtree, which combines two (variational)

Expectation-Maximization (EM) algorithms to estimate the model parameters. Im-

portantly, our approach provides the probability for each possible edge to be part

of the interaction network. We evaluate our approach on both synthetic and ecolog-

ical datasets. An R package implementing EMtree is available on GitHub https:

//github.com/Rmomal/EMtree.
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2.2 Material and methods

2.2.1 Model

Let us first describe the typical type of data we consider. We assume that p species

have been observed in n sites. The abundances are gathered in the n× p matrix Y.

Yij is the abundance of species j in site i, and Yi the abundance vector collected

in site i (ith row of Y). We further assume that a vector of covariates xi of size d

has been measured in each site i and that all covariates are gathered in the n × d
matrix X. The sites are supposed to be independent.

Our aim is to decipher the dependency structure between the p species, accounting

for the effect of the environmental covariates encoded in X. As explained above,

ignoring environmental covariates is more than likely to result in spurious edges.

Mixed model. To distinguish between covariates effects and species interactions,

we consider a mixed model which states that each abundance Yij has a (conditional)

Poisson distribution

Yij ∼ P (exp(xᵀ
i θj + oij + Zij)) . (2.1)

In model (2.1), oij is the sample- and species-specific offset which accounts for the

sampling effort. θj is the vector of fixed regression coefficients measuring the ef-

fect of each covariate on species j abundance. The regression part is similar to a

general linear model as used in niche modeling (see e.g. Austin, 2007). Zij is the

random effect associated with species j in site i. Importantly, the coordinates of the

site-specific random vector Zi = (Zi1, . . . Zip) are not independant: the multivariate

random term Zi precisely accounts for the interactions that are not due to environ-

mental fluctuations. For each site i, a vector Zi is associated with the corresponding

abundance vector Yi. The distribution given in Eq. (2.1) is over-dispersed as the

Poisson parameter is itself random, which suits ecological modeling of abundance

data (Richards, 2008).

We now describe the distribution of the latent vector Zi. To this aim, we adopt a

version of Kirshner’s model (Kirshner, 2008), which states that a spanning tree T

is first drawn with probability

p(T ) =
∏
jk∈T

βjk/B, (2.2)

where jk ∈ T means that the edge connecting species j and k is part of the tree T and

where B is a normalizing constant. Each edge weight βjk controls the probability

for the edge (j, k) to be in the interaction network.

Then for each site i, a vector Zi is drawn independently with conditional Gaussian
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distribution (Zi | T ) ∼ N (0,ΣT ), where the subscript T means that the distribution

of Zi is faithful to T . When T is a spanning tree, this faithfulness simply means this

distribution can be factorized on the nodes and edges of T as follows (see Kirshner,

2008):

p(Zi | T ) =

p∏
j=1

p(Zij |T )
∏
jk∈T

ψjk(Zi), (2.3)

where ψjk(Zi) does not depend on T . This factorization means that each edge

of T corresponds to a species pair in direct interaction; all other pairs are

conditionally independent. Experiments are independent, and in the sequel we con-

sider the product of all p(Zi) and use the simpler notation ψjk =
∏
i ψjk(Zi) instead.

According to Eq. (2.2), each Zi has a Gaussian distribution conditional on the tree

T , so its marginal distribution is a mixture of Gaussians: Zi ∼
∑
T∈T p(T )N (0,ΣT ),

where T is the set of all spanning trees. As a consequence, the joint distribution

of the Zi is modeled by a mixture of distributions with tree-shaped dependency

structure.

Besides, for all trees including the edge (j, k), the estimate of the covariance term

between the coordinates j and k is the same (see Lauritzen, 1996; Schwaller et al.,

2019). Hence, we may define a global covariance matrix Σ, filled with covariances

that are each common to spanning trees containing a same edge. Each ΣT is then

built by extracting from Σ the covariances corresponding to the edges of T .

2.2.2 Inference with EMtree

We now describe how to infer the model parameters. We gather the edges weights

into the p×p matrix β and the vectors of regression coefficients into a d×p matrix θ.

The p× p matrix Σ contains the variances and covariances between the coordinates

of each latent vector Zi. Hence, the set of parameters to be inferred is (β,Σ,θ).

Likelihood. The model described above is an incomplete data model, as it in-

volves two hidden layers: the random tree T and the latent Gaussian vectors Zi.

The most classical approach to achieve maximum likelihood inference in this con-

text is to use the Expectation-Maximization algorithm (EM: Dempster et al., 1977).

Rather than the likelihood of the observed data p(Y), the EM algorithm deals with

the often more tractable likelihood p(T,Z,Y) of the complete data (which consists

of both the observed and the latent variables). It can be decomposed as

pβ,Σ,θ(T,Z,Y) = pβ(T )× pΣ(Z | T )× pθ(Y | Z), (2.4)

where the subscripts indicate on which parameter each distribution depends.
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Observe that the dependency structure between the species is only involved in the

first two terms, whereas the third term only depends on the regression coefficients

θ. We take advantage of this decomposition to propose a two-stage estimation

algorithm. The first stage deals with the observed layer pθ(Y | Z), the second with

the two hidden layers pβ(T ) and pΣ(Z | T ). The network inference itself takes place

in the second step.

Inference in the observed layer. The variational EM (VEM) algorithm that

provides an estimate of the regression coefficients matrix θ is described in Appendix

2.A.1 (along with a reminder on EM and VEM). It also provides the (approximate)

conditional means E(Zij |Yi), variances V(Zij |Yi) and covariances Cov(Zij , Zik|Yi)

required for the inference in the hidden layer. As a consequence, this first step

provides the estimates θ̂ and Σ̂.

Inference in the hidden layer. The second step is dedicated to the estimation

of β. The EM algorithm actually deals with the conditional expectation of the

complete log-likelihood, namely E (log pβ,Σ,θ(T,Z,Y) | Y). As shown in Appendix

2.A.2, this reduces to

E (log pβ,Σ,θ(T,Z,Y) | Y) '
∑

1≤j<k≤p

Pjk log
(
βjkψ̂jk

)
− logB + cst (2.5)

where ψ̂jk is the estimate of ψjk defined in Eq. (2.3), and the ’cst’ term depends on θ

and Σ but not on β. Pjk is the approximate conditional probability (given the data)

for the edge (j, k) to be part of the network: Pjk ' P{jk ∈ T | Y }. It is also shown

in Appendix 2.A.2 that ψ̂jk = (1 − ρ̂2
jk)−n/2, where the estimated correlation ρ̂jk

depends on the conditional mean, variance and covariances of the Zij ’s provided by

the first step. Eq. (2.5) is maximized via an EM algorithm iterating the calculation

of the Pjk and the maximization with respect to the βjk:

Expectation step: Computing the Pjk with tree averaging. The conditional proba-

bility of an edge is simply the sum of the conditional probabilities of the trees

that contain this edge. Hence, computing Pjk amounts to averaging over all

spanning trees. Fig. 2.3 illustrates the principle of tree averaging for a toy

network with p = 4 nodes. Here, five arbitrary spanning trees t1 to t5 (among

the pp−2 = 16 spanning trees) are displayed, with their respective conditional

probability p(T | Y ). The edge (1, 3) has a high conditional probability P13

because it is part of likely trees such as t3 and t4, whereas P23 is small because

the edge (2, 3) is only part of unlikely trees (e.g. t1, t2).

Averaging over all spanning trees at the cost of a determinant calculus (i.e.

with complexity O(p3)) is possible using the Matrix Tree theorem (Chaiken

and Kleitman, 1978, recalled as Theorem 2.1 in Appendix 2.A.3). Kirshner
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t1 : 2.1% t2 : 3.5% t3 : 34.1% t4 : 15.6% t5 :< .1%
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4
Edge conditional probabilities Estimated graph

Figure 2.3 – Tree averaging principle. Top: 5 spanning trees with 4 nodes (t1, . . . t5),
with their respective conditional probability given the data P (T = t | Y ). Bottom
left: Weighted graph resulting from tree averaging. Each edge has width propor-
tional to its conditional probability. Bottom right: Estimated graph (obtained by
thresholding edge probabilities) is not a tree.

(2008) further shows that all the Pjk’s can be computed at once with the same

complexity O(p3), although the calculation may lead to numerical instabilities

for large n and p.

Maximization step: Estimating the βjk. This step is not straightforward, as the nor-

malizing constant B =
∑
T

∏
jk∈T βjk involves all βjk’s. We propose an exact

maximization built upon the Matrix Tree theorem (see Appendix 2.A.2).

Algorithm output: edge scoring and network inference EMtree provides

the (approximate) conditional probability Pjk for each edge (j, k) to be part of the

network. Whenever an actual inferred network Ĝ is needed (e.g. for a graphical

purpose), it can be obtained by thresholding the Pjk (see Fig. 2.3, bottom right).

Because we are dealing with trees, a natural threshold is the density of a spanning

tree, which is 2/p. More robust results can be obtained using a resampling procedure

similar to the stability selection proposed by Liu et al. (2010b). It simply consists

in sampling a series of subsamples s = 1 . . . S, to get an estimate Ĝs from each

of them and to collect the selection frequency for each edge. Again, these edge

selection frequencies can be thresholded if needed.

2.2.3 Simulation and illustrations

Because network inference is an unsupervised problem (as opposed to network recon-

struction), we compare the accuracy of the methods described above on synthetic

abundance datasets, for which the true underlying network is known.
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Alternative inference methods

We consider network inference methods dedicated to both metagenomics (SPIEC-

EASI, gCoda and MInt) and ecology (MRFcov, ecoCopula). All methods can handle

count data and rely on some (implicit) Gaussian setting. SPIEC-EASI (Kurtz et al.,

2015) and gCoda (Fang et al., 2017) resort to data transformation to fit a Gaussian

framework. MInt (Biswas et al., 2016) considers a Poisson mixed model similar to

the one we consider. MRFcov (Clark et al., 2018) uses a transformation which is

equivalent to a Gaussian copula, and ecoCopula (Popovic et al., 2019) defines a

multivariate count distribution, the dependency structure of which is encoded in a

Gaussian copula. These methods all rely on a Gaussian graphical model (GGM), so

that the network inference problem amounts to estimating a sparse version of the

inverse covariance matrix (also named precision matrix).

Edge scoring. These methods build upon glasso penalization (Friedman et al.,

2008). For each edge, there exists a minimal penalty value above which it is elim-

inated from the network. The higher this minimal penalty, the more reliable the

edge in the network, so it can be used as a score reflecting the importance of an edge.

Only SpiecEasi and gCoda provide unthresholded quantities (namely the glasso reg-

ularization path) that can be used for edge scoring; the other methods only return

their optimal graph.

Covariates. Only MInt and ecoCopula may take covariates into account in their

model. MRFcov includes covariates, but in the aim of predicting changes in inter-

actions across covariate gradients, which is different from adjusting for covariates.

Thus in order to draw a fair comparison, we give SPIEC-EASI and gCoda access

to the covariate information by feeding them with residuals of the linear regression

of the transformed data onto the covariates. A generalized linear model of the raw

data is adjusted for MRFcov (the same as in ecoCopula), which then infers the

network from the Gaussian residuals.

Comparison criteria

False Discovery Rate (FDR) and density ratio criteria. Inferred networks

are mostly useful to detect potential interactions between species, which then need

to be studied by experts to determine their exact nature. Falsely including an edge

lead to meaningless interpretation or useless validation experiments.

A network with a few reliable edges will be preferred to one having more edges

with a larger risk of possible false discoveries. Therefore we choose the FDR as

an evaluation criterion, which should be close to 0. Comparing FDR’s only makes

sense for networks with similar densities. We then compute the ratio between the

densities of the inferred and the true network (density ratio).
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Area Under the Curve (AUC) criterion. The AUC criterion allows to eval-

uate the inferences quality without resorting to any threshold. It evaluates the

probability for a method to score the presence of a present edge higher than that of

an absent one; it should be close to 1. Note that this criterion cannot be computed

for MRFcov, ecoCopula and MInt as they provide a unique network.

Simulation design

Simulated graphs. We consider three typical graph structures: Scale-free, Erdös

(short for Erdös-Reyni) and Cluster. Scale-free structure bears the closest similarity

to the tree one, with almost the same density and no loops; it is popular in social

networks and in genomics as it corresponds to a preferential-attachment behavior.

It is simulated following the Barbási-Albert model as implemented in the huge R

package (Zhao et al., 2012). The degree distribution of Scale-free structure follows

a power law, which constrains the edges probabilities such that the network density

cannot be controlled. Erdös structure is the most even as the edges all have the same

existence probability. It is a step away from the tree as it may contain loops and

its density can be increased arbitrarily. Cluster structure spreads edges into highly

connected clusters, with few connections between the clusters; the ratio parameter

controls the intra/inter connection probability ratio.

Simulated counts. The datasets are simulated under the Poisson mixed model

described in Eq. (2.1). We first build the covariance matrix ΣG associated with a

graph G following Zhao et al. (2012) and randomly choosing the sign of the link,

so that in our simulations we consider both positive and negative interactions. For

each site i, we simulate Zi ∼ N (0,ΣG), then use these parameters together with a

set of covariates to generate count data Y. We use three covariates (one continuous,

one ordinal and one categorical), with their regression coefficients θ drawn from

a standard uniform distribution to create heterogeneity in environmental response

across species.

Experiments. For each set of parameters and type of structure we generate 100

graphs, simulate a dataset under a heterogeneous environment and infer the de-

pendency structure using EMtree, gCoda, SpiecEasi MInt, ecoCopula and MRFcov

(the three latter only for Exp. 1). The settings of all methods are set to default,

except for ecoCopula for which we use the ”AIC” selection criterion (”BIC” gives

too many empty results). All computation times are obtained with a 2.5 GH Intel

Core 17 processor and 8G of RAM.

Exp. 1: effect of the data dimensions on the inferred network. We compare perfor-

mances in terms of FDR and density ratios on two scenarios: easy (n = 100,
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p = 20), and hard (n = 50, p = 30). The network density for Erdös and

Cluster structures is set to log(p)/p.

Exp. 2: effect of the network structure on edge rankings. AUC measures are

collected for alternate variations of n and p to get a general idea of each

performance. For comparison’s sake, the same density is fixed for all structures

in this case, so that only n and p vary in turn; the scale-free structure imposes

a common density of 2/p. The default values are n = 100, p = 20.

Exp. 3: effect of the graph density on edge rankings. AUC measures are collected

for variations of n and p with a density of 5/p (5 neighbors per node on

average), and for variations of density parameters. The default values are

n = 100, p = 20.

Illustrations

The first application deals with fish population measurements in the estuary of the

Fatala River, Guinea, (Baran, 1995, available in the R package ade4 ). The data

consists of 95 count samples of 33 fish species, and two covariates date and site.

We infer the network using four models including no covariates, either one or both

covariates (i.e. respectively the null, site, date and site+date models)

The second example is a metabarcoding experiment designed to study oak powdery

mildew (Jakuschkin et al., 2016), caused by the fungal pathogen Erysiphe alphitoides

(Ea). To study the pathobiome of oak leaves, measurements were done on three

trees with different infection status. The resulting dataset is composed of 116 count

samples of 114 fungal and bacterial operational taxonomic units (OTUs) of oak

leaves, including the Ea agent. The original raw data are available at https://www.

ebi.ac.uk/ena/data/view/PRJEB7319. Several covariates are available, among

which the tree status, the orientation of the branch, and three covariates measuring

the distances of oak leaves to the ground (D1), to the base of the branch (D2), and to

the tree trunk (D3). The experiment used different depths of coverage for bacteria

and fungi, which we account for via the offset term. We fitted three Poisson mixed

models including either none, the tree status or all of the covariates (i.e. respectively

null, tree, and tree+D1+D2+D3 models).

To further analyze the inferred networks, we use the betweenness centrality (Free-

man, 1978), a centrality measure popular in social network analysis. It measures a

node’s ability to act as a bridge in the network. High betweenness scores identify

sensitive nodes that can efficiently describe a network structure. We compute these

using the R package igraph.
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2.3 Results

2.3.1 On simulated data

Effect of dataset dimensions

Behaviors are compared on an easy setting (n = 100, p = 20) and a hard setting

(n = 50, p = 30). Fig. 2.4 displays FDR and density ratio measures for all methods

on the different cases. Detailed values of medians and standard-deviations are given

in Tables 2.3 and 2.4 in appendix. The behaviour of methods remains virtually the

same across Erdös and Cluster structures. Scale-free structure appears to entail a

greater difficulty for all methods with median FDR above 75%, except for EMtree

which stays at 30% in the hard setting. These poor performance are due to the in-

ferred networks being too dense compared to the original Scale-free graphs. Another

experiment with the Scale-free structure is detailed in Fig. 2.5, where the number

of species is fixed to 50, and the number of samples is 100 or 50. Under such setting

the behavior of ecoCopula and MRFcov greatly improves with FDR at about 30%,

where EMtree shows about 40% in median (detailed values available in Table 2.6 in

appendix).

The greater difficulty affects all methods. Density ratios either increase (MInt,

SpiecEasi) or decrease (gCoda, ecoCopula, MRFcov). In the first case, FDRs tend

to increase as well (e.g. 40% increase for MInt in Erdös and Cluster structures),

where a decrease in density ratio yields more empty results (e.g. in Table 2.5 25% of

empty graphs for ecoCopula with Erdös and Cluster structures, 15% with Scale-free

structures for p fixed to 50). EMtree seems to remain stable as for the density ratio,

however it shows an increase in FDR measures of about 20% for all structures.

Considering FDRs and density ratios combined, EMtree appears to be the method

with the lower FDR which maintains a density ratio reasonably close to 1. As a

consequence, the proposed methodology compares well to existing tools on problems

with varying difficulties. EMtree is also comparable on running times. Table 2.1

shows that for Erdös and Cluster it is the third quicker method in easy cases and

the second in hard ones. Table 2.7 (in appendix) shows that on hard scale-free

problems (p = 30 and p = 50 with n = 50) EMtree is the quicker method, and third

otherwise.

Interestingly, in easy cases when the network density is well estimated, methods

yield FDR of 10% − 30% in median. This reminds that network inference from

abundance data is a difficult task, and that perfect inference of the network remains

an out-of-reach goal.

Effect of network structure

As expected for a fixed p, the higher the number of observations n, the better the

performance for all methods and structures. Interestingly, the same happens when p
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Figure 2.4 – FDR and density ratio measures for all methods at two different dif-
ficulty levels and 100 networks of each type. White squares and black plain lines
represent medians and quartiles respectively. ecoCopula selection method: AIC. Number of
subsamples for SpiecEasi and EMtree: S = 20. SpiecEasi and gCoda: lambda.min.ratio = 0.001,
nlambda = 100.

SpiecEasi gCoda ecoCopula MRFcov MInt EMtree
Easy 19.99(4.19) 0.1(0.05) 4.2(0.24) 5.76(0.35) 54(26.9) 4.44(0.64)
Hard 24.29(5.07) 0.5(0.24) 8.19(0.16) 5.52(2.98) 33.87(18.37) 3.29(0.32)

Table 2.1 – Median and standard-deviation running-time values (in seconds) for
Cluster and Erdös structures, including resampling with S = 20 for SpiecEasi and
EMtree.
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Figure 2.5 – FDR and density ratio measures for all methods on scale-free graphs
with p = 50. White squares and black plain lines represent medians and quartiles
respectively. ecoCopula selection method: AIC. Number of subsamples for SpiecEasi and EMtree:
S = 20. SpiecEasi and gCoda: lambda.min.ratio = 0.001, nlambda = 100.

increases for a fixed n = 100 (except for SpiecEasi). EMtree performs well on Scale-

free structures (Fig. 2.6) which was also expected; the other methods performance

worsen compared to other structures. When lowering n to 30, EMtree performance

deteriorates along with p, yet remaining above 70% in median in the extreme case

where p = n (Fig. 2.6, right). The structure being Erdös or Cluster, each method

is affected in the same way by an increase of n or p (Fig. 2.7). Besides, increasing

the difference between the two structures by tuning up the ratio parameter has no

effect. Overall EMtree performs better than gCoda and SpiecEasi on all the studied

configurations. Running times are summarized in Table 2.2. EMtree is about 10

times slower than gCoda (4 for small n), and 4 times faster than SpiecEasi. The high

standard deviation for small n seems to be due to gCoda struggling with Scale-free

structures.

Figure 2.6 – Effect of Scale-free structure on AUC medians and inter-quartile inter-
vals for parameters n and p.
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n < 50 n ≥ 50 p < 20 p ≥ 20

EMtree 0.44 (0.14) 0.60 (0.17) 0.41 (0.13) 0.76 (0.21)

gCoda 0.11 (26.8) 0.05 (0.05) 0.05 (0.04) 0.09 (0.54)

SpiecEasi 2.09 (0.26) 2.37 (0.28) 2.42 (0.27) 2.42 (0.26)

Table 2.2 – Median and standard-deviation of running times for each method in
seconds, for n and p parameters.

Effect of network density

The comparison of top and bottom panels of Fig. 2.7 shows that network inference

gets harder as the network gets denser, whatever the method and the structure of the

true graph. Running times are not affected (Table 2.9). Fig. 2.8 shows that EMtree

performance does not deteriorate faster than that of other methods, demonstrating

that the tree hypothesis is not a limitation.

Figure 2.7 – Effect of Erdös and Cluster structures on AUC medians and inter-
quartile intervals for parameters n, p and ratio. Top: densities set to 2/p, bottom:
densities set to 5/p.
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Figure 2.8 – AUC median and inter-quartile intervals for parameters controlling
the number of edges in Erdös (edge probability) and in Cluster (density) structures,
p = 20, n = 100. The two vertical dotted lines are the 3/p and 5/p values.

2.3.2 Illustrations

In this section we emphasize the importance of covariates for network inference.

Accounting for environmental effects changes the structure of all inferred networks

we present; nodes with the highest betweenness scores are highlighted to spot these

changes. Most frequently, it results in reducing the number of edges (i.e. making

the network sparser). However new edges can appear as well, as adjusting for a

covariate also reduces the variability, which improves the detection power. In all

examples, we used the resampling method described in Section 2.2.2, which provides

edge selection frequencies. Eventually, we have to threshold these frequencies to

draw actual networks; the value of the threshold obviously affects the density of the

plotted networks (see Fig. 2.13).

Fish populations in the Fatala River estuary

Networks on Fig. 2.9 suggest a predominant role of the site covariate compared to

the date. Indeed, adjusting for the site results in much sparser networks (Fig. 2.13

in appendix). It deeply modifies the network structure: the site network has 12

new edges and only 6 in common with the null network. Besides, the highlighted

nodes only change when introducing the site covariate. This suggests that the

environmental heterogeneity between the sites has a major effect on the variations

of species abundances, while the effect of the date of sampling is moderate.
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Figure 2.9 – Interaction networks of Fatala River fishes inferred when adjusting for
none, both or either one of the covariates among site and date. Highlighted nodes
spot the highest betweenness centrality scores. Widths are proportional to selection
frequencies. S = 100, f ′ = 90%.

Oak powdery mildew

When providing the inference with more information (tree status, distances), the

structure of the resulting network is significantly modified. Nodes with high be-

tweenness scores differ from one model to another. There is an important gap in

density between the null model and the others, starting from a 25% selection thresh-

old (Fig. 2.13 in appendix). From a more biological point of view, the features of

the pathogen node are greatly modified too: its betweenness score is among the

smallest in the null network (quantile 16%), and among the highest in the two

other networks (quantiles 93% and 96%). Its connections to the other nodes vary

as well. Accounting for covariates results in less interactions with the pathogen but

a greater role of the latter in the pathobiome organization.

Figure 2.10 – Pathogen interaction networks on oak leaves inferred with EMtree
when adjusting for none, the tree covariate or tree and distances. Bigger nodes
represent OTUs with highest betweenness values, colors differentiate fungal and
bacterial OTUs. Widths are proportional to selection frequencies. S = 100, f ′ =
90% .
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Using the dataset restricted to infected samples (39 observations for 114 OTUs) and

correcting for the leaves position in the tree (proxy for their abiotic environment),

Jakuschkin et al. (2016) identifies a list of 26 OTUs likely to be directly interacting

with the pathogen. Running EMtree on the same restricted dataset with the same

correction yields a good concordance with edge selection frequencies, as shown in

Fig. 2.11.

Figure 2.11 – EMtree selection frequencies of pathogen neighbors compared to
Jakuschkin et al. (2016) results, computed on infected samples and adjusting for
the leaf position (100 subs-samples).

2.4 Discussion

The inference of species interaction network is a challenging task, for which a

series of methods have been proposed in the past years. Abundance data seems

to be a promising source of information for this purpose. Here we adopt the

formalism of graphical models to define a probabilistic model-based framework

for the inference of such networks from abundance data. Using a model-based

approach offers several important advantages. First, it enables easy and explicit

integration of environmental and experimental effects. These could be modeled in

a more flexible way using generalized additive models, which include non-linear

effects (Hastie, 2017). Then, as it also relies on a formal statistical definition

of a species interaction network in the context of graphical models, accounting

for abiotic effects and modeling species interactions are two clearly defined and

distinguished goals. Finally, all the underlying assumptions are explicitly stated in

the model definition itself, and can therefore be discussed and criticized.

We developed an efficient method to infer sparse networks, which combines a mul-

tivariate Poisson mixed model for the joint distribution of abundances, with an

averaging over all spanning trees to efficiently infer direct species interactions. As

we do consider a mixture over all spanning trees, our approach remains flexible and

can infer most types of statistical dependencies. An EM algorithm (EMtree) max-
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imizes the likelihood of the result and returns each edge probability to be part of

the network. An optional resampling step increases network robustness.

A simulation study in a heterogeneous environment demonstrates that EMtree com-

pares very well to alternative approaches. The proposed model can take all kind

of covariates into account, which when ignored can have dramatic effects on the

inferred network structure, as showed here on empirical datasets. Experiments on

simulated data and illustrations also demonstrate that EMtree computational cost

remains very reasonable.

Alternative methods used in this work all rely on an optimized threshold to tell an

edge presence. This particular threshold is obtained after testing a grid of possible

values which all yield a different network, and altogether build a path. Making this

path available to the user is useful, as the final threshold might need modification

and it gives the possibility to build edges scores and get more than a binary result.

We found few recent approaches doing this, which prevented us to study their

performance in a way that did not impose a threshold.

The proposed methodology could be extended in several ways. Species abundances

and interactions indeed vary across space, and depend on local conditions (Poisot

et al., 2012, 2015). This can either be considered as nuisance parameter or as feature

of interest. In the first case, the method could be extended to account for the

spatial autocorrelation of sampling sites, to obtain a ”regional” interaction network

corrected for this effect, i.e. assuming the network is the same in all sites. If of

interest, variation across space and local conditions could be studied by comparing

networks inferred from the different sampling locations. Networks comparison is

a wide and interesting question and tools lack to check which edges are shared

by a set of networks. The approach introduced by Schwaller and Robin (2017)

could be adapted to EMtree framework. Lastly, It is also very likely that not all

covariates nor even all species have been measured or observed. Another extension

may therefore be to detect ignored covariates or missing species. To this purpose

EMtree could probably be combined with the approach developed by Robin et al.

(2019) to identify missing actors.
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Appendices

2.A Supplementary material (augmented)

2.A.1 Variational EM in the observed layer

A reminder on EM and VEM. Expectation-Maximisation (EM: Dempster

et al., 1977) has become the standard algorithm for the maximum likelihood infer-

ence of latent variable models. Denoting γ the unknown parameter, Y the observed

variables and H the latent variables, the aim of EM is to maximise the observed (log-

)likelihood log pγ(Y). In the model defined in Section 2.2.1, the set of parameter to

estimate is γ = (β,Σ,θ) and the latent variables are H = (Z, T ). Because the com-

plete (log-)likelihood log pγ(Y,H) is often much easier to handle, EM alternatively

evaluates the conditional distribution of the latent variables pγ(H | Y) (E step) and

updates the parameter estimates by maximizing the conditional expectation of the

complete log-likelihood (M step).

Unfortunately, for many models, the conditional distribution pγ(H|Y) is intractable.

The variational EM (VEM) algorithm has been designed to deal with such cases.

Briefly speaking, the E step (during which the intractable conditional distribution

should be evaluated) is replaced with a VE step, during which an approximate distri-

bution p̃(H) ' pγ(H | Y) is determined. Actually, the VEM algorithm maximizes

a lower bound of the genuine log-likelihood, similar to this given in Eq. (2.6) (see

Blei et al., 2017; Ormerod and Wand, 2010, for an introduction).

Application to the Poisson log-normal model. To estimate the fixed regres-

sion parameters gathered in θ, we resort to a surrogate model where the entries of

the abundance matrix Y still have the conditional distribution given in Eq. (2.1),

but where the distribution of the Zi is not constrained to be faithful to a specific

graphical model. Namely, the latent vectors Zi are only supposed to be independent

and identically distributed (iid) Gaussian with distribution N (0,Σ), without any

restriction on Σ.

This surrogate model is actually a Poisson log-normal model as introduced by Aitchi-

son and Ho (1989), the parameters of which can be estimated using a variational

approximation similar to this introduced in Chiquet et al. (2018). More specifically,

we maximize with respect to the parameters θ and Σ the following lower bound of

the log-likelihood log p(Y):

J (Y;θ,Σ, p̃) := log pθ,Σ(Y)−KL (p̃(Z)||pθ,Σ(Z | Y)) , (2.6)

where KL(q||p) stands for Küllback-Leibler divergence between distributions q and
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p and where the approximate distribution p̃(Z) is chosen to be Gaussian. This means

that each conditional distribution p(Zi | Yi) is approximated with a normal distri-

bution N (m̃i, S̃i). As shown in Chiquet et al. (2018), J (Y,θ,Σ, p̃) is bi-concave

in (θ,Σ) and {(m̃i, S̃i)i}, so that gradient ascent can be used. The PLNmodels

R-package –available on CRAN– provides an efficient implementation of it.

The entries of the m̃i and S̃i provide us with approximations of the conditional

expectation, variance and covariance of the Zij conditionally on the Y, which we

use to get the estimates σ̂2
j and ρ̂jk given in Eq. (2.8). More specifically, we use

E(Zij | Yi) ' m̃ij , E(Z2
ij | Yi) ' m̃2

ij + S̃i,jj and E(ZijZik | Yi) ' m̃ijm̃ik + S̃i,jk.

2.A.2 EM in the latent layer

Complete log-likelihood conditional expectation

Because of the specific form given in Eq. (2.3), and because the Zi | T are Gaussian,

we have that

log pΣ(Z | T ) =

p∑
j=1

n∑
i=1

logP (Zij | T ) +
∑
jk∈T

n∑
i=1

log

(
P (Zij , Zik)

P (Zij)P (Zik)

)

= −n
2

log σ2
j −

1

2

p∑
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n∑
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Z2
ij

σ2
j

− n

2

∑
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log(1− ρ2
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2
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(
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jk
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ik
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k

− 2ρjk
ZijZik
σjσk

)
+ cst

where the constant term does not depend on any unknown parameter. In the M step

of the EM algorithm, we have to maximize the conditional expectation of Eq. (2.7)

with respect to the variances σ2
j and the correlation coefficients ρjk. The resulting

estimates take the usual forms, but with the conditional moments of the Zij , that

is

σ̂2
j =

1

n

∑
i

E(Z2
ij | Y), ρ̂jk =

1

n

∑
i

E(ZijZik | Y) / (σ̂j σ̂k). (2.8)

which do not depend on T. The maximized conditional expectation of Eq. (2.7)

becomes

E
(
log pΣ̂(Z | T ) | Y

)
= −n

2
log σ̂2

j −
n

2

∑
jk∈T

log(1− ρ̂2
jk) + cst. (2.9)

We are left with the writing of the conditional expectation of the first two terms of

the logarithm of Eq. (2.4), once optimized in Σ. Combining Eq. (2.2) and Eq. (2.9),

and noticing that the probability for an edge to be part of the graph is the sum
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of the probability of all the trees than contain this edge, we get (denoting ψ̂jk =

(1− ρ̂2
jk)−n/2)

E
(
log pβ(T ) + log pΣ̂(Z | T ) | Y

)
=
∑
T∈T

p(T | Y)
(
log pβ(T ) + log pΣ̂(Z | T )

)
= − logB +

∑
T∈T

p(T | Y)
∑
jk∈T

(
log βjk + log ψ̂jk

)
+ cst

= − logB +
∑
(j,k)

P{jk ∈ T | Y}
(

log βjk + log ψ̂jk

)
+ cst,

which gives Eq. (2.5).

As explained in the section above, we approximate expectations and probabilities

conditional on Y by their variational approximation. This provides us with the

approximate conditional distribution of the tree T given the data Y:

p̃(T | Y) =
∏
jk∈T

βjkψ̂jk

/
C,

where C is the normalizing constant: C =
∑
T

∏
jk∈T βjkψ̂jk. The intuition be-

hind this approximation is the following: according to Eq. (2.2), the marginal

probability a tree T is proportional to the product of the weights βjk of its edges.

The conditional distribution probability of tree is proportional to the same product,

the weights βjk being updated as βjkψ̂jk, where ψ̂jk summarizes the information

brought by the data about the edge (j, k).

Steps E and M

E step: From the above computation we get the following approximation:

P{jk ∈ T | Y} ' 1−
∑

T :jk/∈T

p̃(T | Y),

and so we define pjk as follows:

Pjk = 1−
∑
T :jk/∈T

∏
jk∈T βjkψ̂jk∑

T

∏
jk∈T βjkψ̂jk

.

Pjk can be computed with Theorem 2.1, letting [Wh]jk = βhjkψ̂jk and Wh
\jk =

Wh except for the entries (j, k) and (k, j) which are set to 0. The modification

of Wh
\jk with respect to Wh amounts to set to zero the weight product, and
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so the probability, for any tree T containing the edge (j, k). As a consequence,

we get

Ph+1
jk = 1−

∣∣∣Q∗uv(Wh
\jk)

∣∣∣ /∣∣Q∗uv(Wh)
∣∣ .

M step: Applying Lemma 2.1 to the weight matrix β, the derivative of B with

respect to βjk is

∂βjk
B = [M(β)]jk ×B

then the derivative of (2.5) with respect to βjk is null for βh+1
jk =

Ph+1
jk

/
[M(βh)]jk .

2.A.3 Matrix tree theorem

For any matrix W, we denote its entry in row u and column v by [W]uv. We define

the Laplacian matrix Q of a symmetric matrix W = [wjk]1≤j,k≤p as follows :

[Q]jk =

{
−wjk 1 ≤ j < k ≤ p∑p
u=1wju 1 ≤ j = k ≤ p.

We further denote Wuv the matrix W deprived from its uth row and vth column

and we remind that the (u, v)-minor of W is the determinant of this deprived matrix,

that is |Wuv|.

Theorem 2.1 (Matrix Tree Theorem Chaiken and Kleitman (1978); Meilă and

Jaakkola (2006)). For any symmetric weight matrix W, the sum over all spanning

trees of the product of the weights of their edges is equal to any minor of its Laplacian.

That is, for any 1 ≤ u, v ≤ p,

W :=
∑
T∈T

∏
(j,k)∈T

wjk = |Quv|.

In the following, without loss of generality, we will choose Qpp. As an extension

of this result, Meilă and Jaakkola (2006) provide a close form expression for the

derivative of W with respect to each entry of W.

Lemma 2.1 (Meilă and Jaakkola (2006)). Define the entries of the symmetric

matrix M as

[M]jk =


[
(Qpp)−1

]
jj

+
[
(Qpp)−1

]
kk
− 2

[
(Qpp)−1

]
jk

1 ≤ j < k < p[
(Qpp)−1

]
jj

k = p, 1 ≤ j ≤ p
0 1 ≤ j = k ≤ p.
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it holds that

∂wjk
W = [M]jk ×W.

2.A.4 Results

Simulations: dataset dimensions

SpiecEasi gCoda ecoCopula MRFcov MInt EMtree

E
a
sy

Cluster 0.86 (0.20) 0 (0.08) 0.33 (0.14) 0.27 (0.13) 0.38 (0.17) 0.12 (0.09)

Erdös 0.86 (0.21) 0 (0.15) 0.29 (0.15) 0.25 (0.14) 0.38 (0.15) 0.12 (0.08)

Scale-free 0.82 (0.15) 0.84 (0.07) 0.85 (0.02) 0.8 (0.03) 0.85 (0.04) 0.19 (0.11)

H
ar

d

Cluster 0.88 (0.12) 0 (0.2) 0.15 (0.18) 0.27 (0.19) 0.77 (0.09) 0.39 (0.09)

Erdös. 0.88 (0.11) 0 (0.24) 0 (0.15) 0.32 (0.2) 0.77 (0.1) 0.39 (0.09)

Scale-free 0.83 (0.1) 0.88 (0.05) 0.86 (0.02) 0.8 (0.03) 0.85 (0.04) 0.33 (0.09)

Table 2.3 – Medians and standard-deviation of FDR computed on 100 graphs of
each type (easy : n = 100, p = 20, hard : n = 50, p = 30)

SpiecEasi gCoda ecoCopula MRFcov MInt EMtree

E
as

y Cluster 0.16 (0.11) 0.05 (0.07) 1.04 (0.48) 0.62 (0.25) 0.3 (0.13) 0.81 (0.17)
Erdös 0.15 (0.09) 0.06 (0.08) 0.95 (0.5) 0.57 (0.26) 0.3 (0.14) 0.65 (0.12)
Scale-free 0.42 (0.17) 1.97 (0.82) 6.05 (0.4) 4.11 (0.34) 2(0.54) 1.05 (0.1)

H
a
rd

Cluster 0.21 (0.08) 0.02 (0.03) 0.02 (0.17) 0.15 (0.09) 0.68 (0.3) 0.49 (0.11)
Erdös 0.21 (0.08) 0.02 (0.02) 0 (0.18) 0.15 (0.08) 0.66 (0.25) 0.52 (0.1)
Scale-free 0.55 (0.12) 2.16 (0.88) 6.14 (0.47) 3.38 (0.29) 1.86 (0.32) 1.03 (0.09)

Table 2.4 – Medians and standard-deviation of density ratio computed on 100 graphs
of each type (easy : n = 100, p = 20, hard : n = 50, p = 30)

SpiecEasi gCoda ecoCopula MRFcov MInt EMtree

E
a
sy

Cluster 1.77 13.89 1.74 0 0 0
Erdös 0.68 11.95 0.99 0 0.83 0
Scale-free 0 0 0 0 0 0

H
ar

d Cluster 0 14.05 23.40 0 0 0
Erdös 0 20.85 27.28 0.60 0 0
Scale-free 0 0.43 0 0 0 0

Table 2.5 – Percentage of empty networks computed on 100 graphs of each type
(easy : n = 100, p = 20, hard : n = 50, p = 30)
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n Criteria (%) SpiecEasi gCoda ecoCopula MRFcov MInt EMtree

100
FDR 0.93(0.04) 0(0.04) 0.33(0.11) 0.29(0.08) 0.85(0.04) 0.41(0.08)
density ratio 0.62(0.13) 0.08(0.07) 0.92(0.3) 0.56(0.14) 1.97(0.54) 1.08(0.08)
empty graphs 0 1.88 0 0 0 0

50
FDR 0.94(0.05) 0(0.13) 0(0.16) 0.33(0.16) 0.85(0.04) 0.62(0.06)
density ratio 0.61(0.13) 0.04(0.03) 0.08(0.24) 0.22(0.1) 1.86(0.32) 1.14(0.11)
empty graphs 0 5.97 15.46 0 0 0

Table 2.6 – Medians and standard-deviation of FDR and density ratio critera, as
well as percentage of empty networks computed on 100 scale-free graphs with p = 50
nodes and n = 100 or n = 50 samples.

n p SpiecEasi gCoda ecoCopula MRFcov MInt EMtree
100 20 15.92(0.05) 0.34(0.79) 4.84(0.24) 5.62(0.79) 66.83(36.03) 5.06(0.74)
50 30 16.3(0.06) 21.93(32.44) 11.27(0.84) 5.97(1.45) 73.73(31.57) 3.71(1.11)
100 50 20.48(1.4) 1.07(0.24) 24.99(0.32) 15.53(0.12) 50.51(28.52) 20.54(2.42)
50 50 20.01(2.76) 44.21(14.78) 32.75(1.39) 27.32(1.8) 55.96(23.26) 11.54(0.66)

Table 2.7 – Median and standard-deviation of running times in seconds of meth-
ods for the inference of scale-free structures with different values of the number of
samples n and of the number of species p.

Figure 2.12 – FDR and density ratio measures of EMtree with varying values of
number of sub-samples S (Erdös structure).
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S 1 2 10 20 50 150
Easy 0.66 (0.15) 1.86 (0.23) 7.00 (0.81) 12.29 (1.27) 29.50 (3.39) 87.30 (10.36)
Hard 0.45 (0.12) 1.44 (0.14) 5.06 (0.78) 8.97 (0.87) 23.35 (2.40) 69.29 (10.83)

Table 2.8 – Median and standard-deviation running-time values in seconds of EMtree
with different values of the number of sub-samples S for the inference of Erdös
structures.

Simulations: network density

n < 50 n ≥ 50 p < 20 p ≥ 20

EMtree 0.41 (0.11) 0.60 (0.15) 0.38 (0.12) 0.71 (0.21)

gCoda 0.12 (0.47) 0.07 (0.03) 0.05 (0.03) 0.09 (0.06)

SpiecEasi 2.41 (0.25) 2.41 (0.25) 2.39 (0.25) 2.42 (0.25)

Table 2.9 – Median and standard-deviation of running times for each method in
seconds, for n and p parameters. corresponding to Erdös and cluster structures
with 5/p densities.

Illustrations: edge frequency threshold

Figure 2.13 – Quantity of selected edges as a function of the selection threshold (left :
Fatala fishes, right : oak mildew.)

The curves displayed on Fig. 2.13 are very smooth, which illustrates the difficulty

of setting this threshold.
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2.B Vignette for EMtree

EMtree implements an EM algorithm for the inference of interaction networks from

abundance data. It uses averages over spanning trees within a Poisson log-normal

model. In addition to functions performing the network inference, this package

includes functions for count data simulation under the Poisson log-normal model

which Gaussian layer of parameters is faithful to a desired graph structure. EMtree

also provides with network visualization functions.

2.B.1 Data simulation with EMtree

The EMtree package provides with simulation functions for graphs as well as for

count data under the Poisson log-Normal model. Four types of graphs are available

in the generator graph() function: erdos (Erdös-Reyni), cluster, scale-free (from

the huge package) and spanning tree (from the vegan package).

p=20

cluster=generator_graph(p, graph="cluster",dens=0.4, r=10)

erdos=generator_graph(p, graph="erdos",dens=0.3)

scaleF=generator_graph(p, graph="scale-free")

tree=generator_graph(p, graph="tree")

The output of generator graph() is an adjacency matrix, which can be given as

an input to generator param() to define a positive-definite precision matrix omega

with signed entries, and its corresponding variance-covariance matrix sigma.

cluster_param=generator_param(cluster, signed = TRUE)

Then it is possible to simulate n samples of multivariate counts under the PLN

model with generator PLN(). Here we simulate Y with the covariate matrix X

which includes an intercept and x1 ∼ N (0, 0.5) .

n = 100

X = data.frame(int=1,x1=rnorm(n, 0,0.5))

Y = generator_PLN(cluster_param$sigma,covariates = X, n = n)
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2.B.2 Inference of the Fatala fishes network

This is a basic example detailing how to infer a network, using fishes counts from

the Fatala River available in the Barans95 dataset (ade4 package).

Fatala fishes dataset

The data is composed of 33 species abundances measures in 95 samples. The avail-

able covariates are the site and date of the samples.

library(ade4)

library(tibble)

data(baran95)

Y = as.matrix(baran95$fau)

X = as_tibble(baran95$plan)

n = nrow(Y)

p = ncol(Y)

Network inference

EMtree infers a network from either a correlation matrix of a multivariate Gaus-

sian, or an object created by PLNmodels from count data. Here we first create a

PLNmodels object with the PLN() function:

library(PLNmodels)

PLNfit<-PLN(Y ~ X$site)

##

## Initialization...

## Adjusting a PLN model with full covariance model

## Post-treatments...

## DONE!
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And then run EMtree():

library(EMtree)

EMtreeFit<-EMtree(PLNfit, maxIter = 20, plot=TRUE, verbatim=FALSE)

−45.18

−45.16

−45.14

−45.12

−45.10

2 4 6 8
Iter

Li
ke

lih
oo

d

str(EMtreeFit)

## List of 6

## $ edges_prob : num [1:33, 1:33] 0 0.00696 0.02016 0.14686 0.03192 ...

## $ edges_weight: num [1:33, 1:33] 0 0.000946 0.000946 0.000948 0.000947 ...

## $ logpY : num [1:8] -45.2 -45.1 -45.1 -45.1 -45.1 ...

## $ maxIter : num 8

## $ norm.cst : num 2.07e-50

## $ timeEM : ’difftime’ num 0.353778123855591

## ..- attr(*, "units")= chr "secs"

To get a network from a fit of EMtree(), the probabilities stored in edges prob can

be thresholded. We suggest the 2/p threshold, which is the probability of an edge

in a tree with uniform weights:

probs<- EMtreeFit$edges_prob

net<-1*(probs>2/p)

To improve the robstness, the function ResampleEMtree() implements a statibility

selection of EMtree on S sub-samples. This function uses parallel computations

with mclapply(). The output Pmat gathers all the infered edges probabilities for

each sub-sample.

ResampEmtreeFit<-ResampleEMtree(counts=Y, covar_matrix = X$site ,

S=10, maxIter=20,cond.tol=1e-8, cores=1)

## Computing 10 probability matrices with 1 core(s)... 5.78 secs
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str(ResampEmtreeFit$Pmat)

## num [1:10, 1:528] 0.01361 0.01728 0.00562 0.00348 0.00364 ...

Edges selection frequencies can be derived from the Pmat output with the function

freq selec(). A final network can then be obtained by thresholding the frequencies,

to keep for example edges that are selected in more than 80% of sub-samples:

freqs<-freq_selec(ResampEmtreeFit$Pmat,Pt=2/p) # thresh. probabilities

resampNet<-1*(freqs>0.8)# thresh. frequencies

0

1

2

3

4

5

0.00 0.25 0.50 0.75 1.00
Edges selection frequencies

table(net, resampNet)

## resampNet

## net 0 1

## 0 873 0

## 1 112 104

Infer networks under several models:

The aim of function ComparEMtree() is to run network inference with different

covariates specifications. It uses ResampleEMtree() and adjust the different models

specified in model names as follows:

tested_models=list(1,2,c(1,2))

models_names=c("date","site","date + site")

compare_models<-ComparEMtree(Y, X, models=tested_models,

m_names=models_names, Pt=2/p, S=3, maxIter=5,cond.tol=1e-8,cores=1)

## model date : Computing 3 probability matrices with 1 core(s)...

## 3.68 secs

## model site : Computing 3 probability matrices with 1 core(s)...
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## 1.5 secs

## model date + site : Computing 3 probability matrices with 1 core(s)...

## 3.95 secs

The output of ComparEMtree() is a tibble in long format, which gathers information

of all interactions in all tested models.

head(compare_models,4)

## # A tibble: 4 x 4

## node1 node2 model weight

## <chr> <chr> <chr> <dbl>

## 1 1 2 date 0

## 2 1 3 date 0

## 3 2 3 date 0

## 4 1 4 date 0

2.B.3 Visualizations

The EMtree package provides with easy plotting functions for network visualizations.

They build from the ggraph and tidygraph packages.

Simple networks

The function draw network() takes a weighted matrix as input, and represents a

network with edges widths proportional to the input weights. Several layouts are

available (see the ggraph documentation). Nodes possessing among the highest

betweenness centrality measure can be highlighted with the parameter btw rank.

Example from the adjacency matrices simulated earlier (cluster, spanning-tree, scale-

free and erdos):

5

13
5

9 1 6 7 10

Weighted matrices can be edge probability matrices. For example, the Fatala fishes

weighted network adjusted on the covariate Site is:

probs[probs<2/p]=0 # threshold needed for representation clarity

draw_network(probs,title="Site", pal_edges="dodgerblue3",

layout="nicely",btw_rank=3)$G
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17

25

Site

Several networks

The function compare graphs() draws a facet plot of the output networks from

ComparEMtree(). Comparing network by eye is difficult, in particular choosing the

right layout to do so is often troublesome. Here by default, the circle layout is used

so that differences in density and sensitive nodes are easily identified.

compare_graphs(compare_models,shade=TRUE)$G

13

25

19

date site date + site

However, if another layout is preferred the nodes position is preserved along the

facet and defined by choosing the base model.

compare_graphs(compare_models,shade=FALSE, layout="nicely", curv=0.1,

base_model="site")$G

13

25

19

date site date + site
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This chapter details a Variational EM algorithm for the inference of missing actors in

species interaction networks. The model is similar to the one presented in Chapter

2: counts are modeled with a Poisson log-normal distribution with a latent layer of

Gaussian parameters, except here we use its normalized formulation. Therefore in

Chapter 2 the Gaussian parameters are Z ∼ N (0,Σ), whereas in this chapter we

use U ∼ N (0,R) with R a correlation matrix, and we have Zij = σj U ij . The

material of this chapter has been submitted to a statistical journal, and is available

as a preprint at http://arxiv.org/abs/2007.14299, along with the supplementary
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material of the appendix Article supplements. Other appendices supplement this

work: a vignette detailing the usage of the developed R package nestor, a section

presenting three strategies for its initialization, and finally a comparison study of

nestor, EMtree and PLN-network on simulated data.

3.1 Introduction

Network inference. Network inference (or structure inference) has become a

topical problem in various fields such as biology, ecology, neuro-sciences, social sci-

ences, to name a few. The aim is to unravel the dependency structure that relates

a series of variables that can be jointly observed. Graphical models (see e.g. Lau-

ritzen, 1996) provide a natural framework to achieve this task as it allows to encode

the dependency structure into a graph, the nodes of which are the variables. Two

variables are connected if and only if they are dependent, conditionally on all others.

Most methodologies build on the assumption that the network is sparse, meaning

that only a small fraction of variable pairs are conditionally dependent. The case

of Gaussian graphical models (GGM) is especially appealing as the network corre-

sponds to the support of the precision matrix of the joint Gaussian distribution.

The use of a sparsity-inducing penalisation gives raise to the celebrated graphical

lasso (Friedman et al., 2008). In a more general context, Chow and Liu (1968) con-

sider a spanning tree structure to impose sparsity to the network, but this drastic

form can be alleviated using mixtures of trees (Kirshner, 2008; Meilă and Jaakkola,

2006).

One important aspect of network inference is to distinguish between variables that

are marginally dependent (possibly because of their respective dependency with

some common other) from variables that are directly related, that is conditionally

dependent. This distinction requires to account for as many confounding effects as

possible, which includes all the other variables but also available covariates. It also

requires to consider the existence of some missing actors (or missing nodes), that

may induce an apparent direct dependency.

Abundance data. Count data is found in a multitude of fields (sociology, biol-

ogy, economy, ecology...). It results from the counting of events in a given setting

such as crime statistics in a state or the number of produced transcripts of a gene

in an experiment. The statistical processing of count data cannot always rely on

classical methods developed for continuous Gaussian data and appeals for specific

methods. It often exhibits specificities such as zero-inflation and a large dispersion.

The present work is motivated by the analysis of so-called abundance data, a count

data avatar, arising from ecological studies where the number of individuals (the

abundance) of a series of living species (plants or animals) is observed in a series

of sites. In this context, network inference aims at understanding which pairs of
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species are in direct interaction. The covariates are typically environmental descrip-

tors (altitude, temperature, distance to the see, etc.) of each collection site, while

the variables are the respective abundances of each species from the community

under study.

No nice and generic framework as the GGM exists for count data. A few alterna-

tives rely on copulas (Inouye et al., 2017) or models the node-wise conditional dis-

tributions as arising from exponential families. But most joint species distribution

models resort to a latent Gaussian layer, which encodes the dependency structure

between the species (Popovic et al., 2018, 2019; Warton et al., 2015). The Poisson

log-normal model (PLN: Aitchison and Ho, 1989) enters this category: it assumes

that a multivariate Gaussian random variable is associated with each species in

each site and that the observed abundances are conditionally independent Poisson

variables. The PLN model has already been applied to abundance data, both for

dimension reduction (Chiquet et al., 2018) and network inference (Chiquet et al.,

2019a; Momal et al., 2020).

Missing actors. In many situations, it is likely that not all actors involved in

the system have been observed. The term ’actors’ refers to either species that were

not observed but nonetheless influence the abundance of others, or environmental

conditions that were not accounted for.

In the perspective of unravelling the conditional independence structure, this can

typically lead to the inference of spurious edges, which are links between observed

actors that are not in direct interaction. In the graphical model framework, not

accounting for one variable amounts to consider the marginal distribution of the

rest of the system, as described in the left panel of Figure 3.1. Missing actors may

be quantitative or qualitative. In the latter case it defines a latent group structure

(Ambroise et al., 2009).

1

2 3

4
x

1

2 3

4
x

Figure 3.1 – Example of the marginalization when covariate x is unobserved. Left :
complete graphical model (including x). Right : marginal graphical model of the
observed variables (excluding x).

Several approaches have been proposed for network inference accounting for quanti-

tative missing actors in the context of GGM. Many of them (Chandrasekaran et al.,

2011; Giraud and Tsybakov, 2012; Lauritzen and Meinshausen, 2012; Meng et al.,

2014) adapted the principle of Robust PCA (Candès et al., 2011) to the concentra-

tion matrix, assuming it is a sum of two matrices: one low-rank and one sparse.

In terms of missing actors in a network, the low-rank part corresponds to missing
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actors connected to all variables, whereas the sparse part refers to missing actors

having a local effect. Following Robin et al. (2019) (also in the context of GGM),

we focus on the later aspect, that is looking for missing actors not necessarily linked

to all others. As far as we know, no model has been proposed for the inference of

missing actors from abundance data.

Variational inference. The model we consider in this paper involves different

types of variables, namely an unknown tree-shaped graphical model, a continuous

latent layer (to induce dependence between the species) and unobserved actors. The

most popular approach for the inference of such models is the EM algorithm (Demp-

ster et al., 1977), which requires the evaluation of the conditional distribution of

all unobserved variables given the data. In the problem we consider, some latent

variables are (multivariate) continuous and others are discrete, and their joint condi-

tional distribution turns out to be intractable. In this work we resort to a variational

approximation (Wainwright and Jordan, 2008) of this conditional distribution and

to a variational EM algorithm for its inference (see e.g. Blei et al., 2017).

Our contribution. In the context of the Poisson log-normal model, we propose

a tree-based approach to recover the structure of latent graphical model including

actors. The model we consider involves several layers of unobserved variables with

intractable conditional distributions, thus we resort to a variational EM algorithm

(Blei et al., 2017) for its inference. We introduce the model in Section 3.2 and

describe its variational inference in Section 3.3. The performance of the algorithm is

assessed via simulations in Section 3.4. The use of the proposed model is illustrated

in Section 3.5, where we demonstrate its ability to recover environmental drivers on

two ecological datasets. The inference procedure is implemented in the R package

nestor, available at github.com/Rmomal/nestor.

3.2 Model

3.2.1 Poisson log-normal and tree-shaped graphical models

Poisson log-normal model.

We start with a reminder on the multivariate Poisson log-normal model, with the

example of abundance data. The abundances of p species observed on n sites are

gathered in the n× p matrix Y where Yij is the count of species j in site i, and the

row i of Y , denoted Y i, is the abundance vector collected on site i. A covariate

vector xi with dimension d is also measured on each site i and all covariates are

gathered in the n × d matrix X. The PLN model states that a (latent) Gaussian
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vector U i of size p with variance matrix R = (ρkl)kl is associated with each site:

{U i}1≤i≤n iid, U1 ∼ Np(0,R), (3.1)

the sites being assumed to be independent. To ensure identifiability, we let the

diagonal of R be made of 1’s, so R is actually a correlation matrix. All latent

vectors U i are gathered in the n × p matrix U . The PLN model further assumes

that species abundances in all sites are conditionally independent, and that their

respective distribution only depends on the environment and the associated latent

variable:

{Yij}1≤i≤n,1≤j≤p | U independent, Yij | Uij ∼ P (exp(oij + xᵀ
i θj + σjUij)) ,

(3.2)

where oij is a known offset term which typically accounts for the sampling effort,

and σj is the latent standard deviation associated with species j. The vector d× 1

of regression coefficients θj describes the environmental effects on species j. An

important feature of the PLN model is that the sign of the correlation between

the observed counts is the same as this of correlation between the latent variables

(Aitchison and Ho, 1989): sign(Cor(Yij , Yik)) = sign(Cor(Uij , Uik)).

Tree-shaped graphical models.

Network inference relies on the assumption that few species are directly dependent

on one another, meaning that the underlying graphical model is sparse. In the

framework of the PLN model, the graphical model of interest rules the distribution

of the latent vectors U i and is encoded in the precision matrix Ω := R−1. A

way to foster sparsity is to impose Ω to be faithful to a spanning tree T , that is:

U1 ∼ Np(0,Ω−1
T ) where the non-zero terms of ΩT correspond to the edges of the

tree T . However this hypothesis is very restrictive as it allows only p−1 links among

p species (Chow and Liu, 1968). A more flexible approach consists in assuming that

the latent vectors are drawn from a mixture of Gaussian distributions, each faithful

to a tree T (Kirshner, 2008; Meilă and Jaakkola, 2006; Meilă and Jordan, 2000;

Schwaller et al., 2019):

U1 ∼
∑
T∈Tp

p(T )Np(0,Ω−1
T ), (3.3)

where Tp is the set of spanning trees with p nodes. We further assume that the tree

distribution {p(T )}T∈Tp can be written as a product over the edges:

p(T ) = B−1
∏
jk∈T

βjk, with B =
∑
T∈Tp

∏
jk∈T

βjk. (3.4)
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The weights βjk are gathered in the p × p symmetric matrix β with diagonal zero.

Observe that these weights are defined up to a multiplicative constant, so that only

p(p− 1)/2− 1 of them may vary independently. This PLN model with latent tree-

shaped dependency structure is similar to that considered by Momal et al. (2020).

3.2.2 Introducing the missing actor

PLN model with missing actors.

We now introduce the concept of missing actors, which corresponds to variables that

are involved in the graphical model but are not associated with observed variables.

To involve such actors in the model, we assume that a complete latent vector U i

with dimension p + r is associated with site i, where r is the number of missing

actors. This complete vector can be decomposed as Uᵀ
i = [Uᵀ

Oi U
ᵀ
Hi] where UOi

(with dimension p) corresponds to observed species and UHi (with dimension r)

corresponds to the missing actors. The complete n × (p + r) latent matrix U can

be decomposed in the same way as U = [UO UH ], UO and UH having dimension

n× p and n× r, respectively.

The model we consider states that

i the complete latent vectorsU i are all iid and distributed according to a mixture

similar to (3.3) and (3.4) but with Gaussian distributions (and matrices ΩT

and β) of dimension (p+ r), and trees drawn from Tp+r;

ii the abundances Yij of the p observed species are distributed according to (3.2),

replacing U with UO,

T

UO UH

Y

Figure 3.2 – Graphical model linking the count data Y , the latent layer of Gaussian
parameters U = (UO,UH), and the latent tree T .

In the sequel, we shall refer to the elements of UO and UH respectively as ’ob-

served’ and ’hidden’ (or ’missing’) latent variables, whereas obviously none of them

are actually observed. Figure 3.2 displays the graphical model of the quadruplet

(T,UO,UH ,Y ). The observed data Y still arise from an PLN model, but the graph-

ical model of the observed latent UO may not be sparse due to the marginalization

over the hidden latent UH . Our main goal is to infer the dependency structure of

the complete latent vectors, that is to estimate the elements of the matrices ΩT
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and the edges weights β. The latent dependency structure is similar to this consid-

ered by Robin et al. (2019), but the inference strategy much differs, because of the

additional hidden layer.

Identifiability restriction.

The proposed model only makes sense because the graphical model of the complete

latent vectors Uᵀ
i = [Uᵀ

Oi U
ᵀ
Hi] is supposed to be sparse. Missing actors could

obviously not be identified from a regular PLN model, without restriction on the

precision matrix Ω, as only the marginal precision matrix of the UOi could be

recovered. Still, to ensure identifiability we impose the same restriction as Robin

et al. (2019) that missing latent variables are not connected with each other (the

block corresponding to UH ×UH is diagonal in each ΩT ).

3.3 Inference

As said in the introduction, we resort to a variational EM algorithm to perform the

inference due to the complex latent structure.

3.3.1 Variational inference

The log-likelihood of the so-called complete data, that is (Y ,U , T ), writes

log pθ,β,Ω(Y ,U , T ) = log pβ(T ) + log pΩ(U | T ) + log pθ(Y | U).

where Ω stands for the set of all tree-specific precision matrices: Ω = {ΩT , T ∈
Tp+r}. The conditional distributions of the latent variablesU and of the tree T given

the data Y are both intractable. Variational inference then aims at maximizing a

lower bound of the log-likelihood of the observed data, which writes in our context

as

J (θ,β,Ω; q) = log pθ,β,Ω(Y )−KL (q(U , T )‖pθ,β,Ω(U , T | Y )) (3.5)

= Eq log pθ,β,Ω(Y ,U , T ) +H(q(U , T )),

where q(U , T ) stands for the approximate joint conditional distribution of the latent

layer and of the tree: q(U , T ) ' p(U , T | Y ).

Approximate distribution.

The efficiency of variational inference mostly depends on the choice of q(U , T ),

which is a balance between computational ease and adequation to the target distri-

bution p(U , T | Y ). We adopt here a classical product form for the approximate
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distribution: we impose to the latent variables U and to the tree T to be indepen-

dent according to q (whereas actually they are not conditional on the data), with

respective marginals h and g:

q(U , T ) = h(U)g(T ).

Because the sites are independent, and without further assumption, the distribution

h is a product over all sites. Following Chiquet et al. (2018) we approximate the

conditional distribution of each latent vector U i with a Gaussian distribution, that

is:

h(U) =
∏
i

Np+r(U i;mi,Si).

with all Si diagonal. We gather all the mean vectors mi in the n× (p+ r) matrix

M and pile up the diagonals of all the variance matrices Si in the n× (p+r) matrix

denoted S.

Variational EM.

The variational EM algorithm then consists in maximizing the lower bound J de-

fined in (3.5) with respect to the parameters (M step), and to the approximate

distributions (VE step), alternatively.

M step: At iteration t + 1, given the current approximate distribution qt(U , T ) =

gt(T )ht(U), the M step consists in the update of the model parameters, solving

θt+1 = arg max
θ

Eht [log pθ(Y | U)] , Ωt+1 = arg max
Ω

Eqt [log pΩ(U | T )] ,

βt+1 = arg max
β

Egt [log pβ(T )] . (3.6)

Observe that the matrix of edge weights β is considered here as a parameter

to be estimated, as opposed to Robin et al. (2019), where it was kept fixed and

supposed to be given.

VE step: Maximising J with respect to (wrt) q is equivalent to minimizing the

Küllback-Leibler divergence between q(U , T ) and pθ,β,Ω(U , T | Y ) that ap-

pears in (3.5). Because we adopted a product form for q, the solution of the

VE step for both g and h is known to be a mean-field approximation (Wain-

wright and Jordan, 2008). More specifically, maximising J gives

gt+1(T ) ∝ exp
{
Eht

[
log pθt+1,βt+1,Ωt+1(Y ,U , T )

]}
∝ exp

{
log pβt+1(T ) + Eht [log pΩt+1(U | T )]

}
, (3.7)
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and

ht+1(U) ∝ exp
{
Egt+1

[
log pθt+1,βt+1,Ωt+1(Y ,U , T )

]}
∝ exp

{
Egt+1 [log pΩt+1(U | T )] + log pθt+1(Y | U)

}
. (3.8)

Observing that log pβ(T )+ log pΩ(U | T ) can be written as a sum over all the edges

present in T , we see that gt+1(T ) has a product form. So, without any further

assumption, we may parametrize g(T ) in the same way as pβ(T ):

g(T ) =
∏
jk∈T

β̃jk/B̃ where B̃ =
∑

T∈Tp+r

∏
jk∈T

β̃jk. (3.9)

We gather the β̃jk’s in the (p+ r)× (p+ r) matrix β̃. The parameters β̃, M and S

are called the variational parameters, in the sense that it is equivalent to optimize

J wrt (g, h) or wrt (β̃,M,S).

3.3.2 Proposed algorithm

The model we consider is an extension of the PLN model, for which an efficient

inference algorithm have been implemented in PLNmodels, an R package available

on CRAN (Chiquet et al., 2018, 2019a).

Prior estimates of θ, MO and SO.

To alleviate the computational burden of the inference, we take advantage of this

available tool to get an estimate of the regression coefficient matrix θ̂ and an approx-

imation of the parameters of the observed latent variable conditional distribution

hO(UO) ' p(UO | Y ). These latter parameters are MO and SO (first p columns

of M and S respectively) and we denote M̃O and S̃O their approximation. The

quantities θ̂, M̃O and S̃O are kept fixed in the rest of the algorithm, so the VEM

algorithm only deals with the remaining unknown quantities: the model parame-

ters β, Ω, and the variational parameters β̃, MH , SH . As a consequence, the final

estimates we get yield a lower value of the objective function J as compared to an

optimisation wrt all model and variational parameters.

M step.

This step deals with the update of the model parameters β and ΩT . Some of the

calculations are tedious and postponed to Appendix 3.A.

Edges weights β: As shown in Equation (3.6), the maximization of J requires

the computation of the derivative of Egt [log pβ(T )] wrt β, which includes the deriva-

tive of the normalizing constant B. The latter can be computed via an extension
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of the Matrix Tree theorem (see Meilă and Jaakkola, 2006, Lemma 3.1 reminded in

Appendix 3.A). Setting the derivative of the expectation to 0 yields the following

update (same as in Momal et al. (2020) and detailed in appendix 3.A):

βt+1
kl =

P tkl
M(βt)kl

,

where M(β) is defined in Lemma 3.1 and P tkl is the probability that the edge (k, l)

belongs to the tree T according to gt:

P tkl = Pgt{kl ∈ T} =
∑
T∈T :
T3kl

gt(T ) =
1

B̃t

∑
T∈T :
T3kl

∏
uv∈T

β̃tuv.

P tkl is computed using a result from Kirshner (2008) (reminded as Lemma 3.2 in

appendix A). We now define the binary variable ITkl which indicates the presence of

the edge kl in tree T , so P tkl = Egt [ITkl] and IT = [ITkl]1≤k,l≤(p+r) is the adjacency

matrix of tree T .

Precision matrices ΩT : For a given dependency structure in the Gaussian

Graphical model framework, Lauritzen (1996) gives maximum likelihood estimates

for the precision matrix. These estimators are given as functions of sufficient

statistics of the multivariate Gaussian distribution. Indeed in the exponential

family framework, the M step of any EM algorithm requires the computation of the

expectation of a sufficient statistic, under the current fit of the variational laws (see

McLachlan and Krishnan (2007)). Here as U | T is centered, a sufficient statistic

is UᵀU . We now let SSD denote the matrix defined as

SSDt = Eht(UᵀU) = (Mt)ᵀMt + St+,

where St+ =
∑
i S

t
i. Applying Lauritzen’s formulas, we get:

ωt+1
Tkl =


−ssd tkl/n

1− (ssd tkl/n)2
if kl ∈ T

0 otherwise

, (3.10)

ωt+1
Tkk = 1 +

∑
l

ITkl
(ssd tkl/n)2

1− (ssd tkl/n)2
,

where ssdtkl stands for the entry kl of the matrix SSDt. The calculations are

postponed to Appendix 3.A. Observe that estimates of the off-diagonal entries

ωt+1
Tkl do not depend on T provided that the edge (k, l) belongs to T . Thus the

estimates of the off-diagonal terms of the precision matrices ΩT are common to all

trees sharing a given edge. This does not result from any assumption on the shape
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of ΩT , but from the properties of the maximum likelihood estimate of Gaussian

variance matrix. In the sequel we will simply denote off-diagonal terms by ωkl (as

opposed to ωTkk which still depends on T ).

Other quantities are needed for later computations. Lauritzen gives the maximum

likelihood estimator of every entry of the correlation matrix RT corresponding to

an edge kl being part of T , which is Rt+1
Tkl = ssd tkl/n. Hereafter for any matrix A,

A[kl] refers to the bloc kl of A: A[kl] = (aij){i,j}∈{k,l}. The determinant of Ωt+1
T

factorizes on the edges of T and writes as a function of blocks of the correlation

matrix as follows:

|Ωt+1
T | =

( ∏
kl∈T

|Rt+1
T [kl]|

)−1

and for any kl ∈ T , |Rt+1
T [kl]| = 1− (ssd tkl/n)2. (3.11)

Finally we define the matrix Ω
t+1

= Egt [Ω
t+1
T ]. Noticing that, for k 6= l,

Egt [Ω
t+1
T ]kl = Egt [Ω

t+1 � IT ]kl, edges probabilities appear as follows:

ωt+1
kl = −P tkl

ssd tkl/n

1− (ssd tkl/n)2
, ωt+1

kk = 1 +
∑
l

P tkl
(ssd tkl/n)2

1− (ssd tkl/n)2
.

VE step.

This step deals with the update of the approximate conditional distributions g and

hH , namely the update of the corresponding variational parameters β̃, MH and

SH .

Approximate conditional tree distribution g(T ): Computing the expression

(3.7) yields the following, where the constant term ’cst’ does not depend on a specific

edge:

log gt+1(T ) = log pβt+1(T ) + Eht [log pΩt+1(U | T )] + cst

=
∑
kl∈T

log βt+1
kl −

n

2
log |Rt+1

[kl] | − ω
t+1
kl

[
(Mt)ᵀMt

]
kl

+ cst.

Then remembering the product form of gt+1 given in (3.9), we obtain the expression

for each edge variational weight:

β̃t+1
kl = βt+1

kl

∣∣∣Rt+1
[kl]

∣∣∣−n/2 exp
(
−ωt+1

kl

[
(Mt)ᵀMt

]
kl

)
. (3.12)
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Approximate Gaussian distribution h: According to (3.8), we have that

log ht+1(U) = Egt+1 log p(Y | UO)− 1

2
tr
(
Ω

t+1

T (UᵀU)
)

+ cst.

Using the properties of the conditional Gaussian distribution we have that

ht+1(UH | UO) = N
(
UH ;−UOΩ

t+1

OH

(
Ω
t+1

H

)−1

,
(
Ω
t+1

H

)−1
)
.

Now, to get ht+1
H (UH), it suffices to integrate ht+1(UH | UO) wrt hO (the parameter

of which are kept fixed along iterations) to get

Mt+1
H = −M̃OΩ

t+1

OH

(
Ω
t+1

H

)−1

, St+1
H =

(
Ω
t+1

H

)−1

.

3.3.3 Algorithm peculiarities

Initialization.

As for any EM algorithm, the choice of the starting point is paramount. The

initialization we use here takes the primary estimate M̃O as an input.

Initial clique: As a starting point, we look for a clique of species as potential neigh-

bors of the missing actor h. There are many different ways to do so, and if any

prior knowledge exists on that matter it should be used. Otherwise, such a

clique can be found using sparse principal component analysis (sPCA; Erichson

et al., 2020), where principal components are formed using only a few of the

original variables, which is consistent with the assumption that each missing

actor is connected only to some actors in the network.

When applying sPCA to M̃O, the set of non-zero loadings of each principal

components provides us with an initial clique of neighbors of each missing

actor.

Parameters initialization: The eigenvectors resulting from the sPCA also provide us

with a starting value M0
H , as well as a first estimate of the latent correlation

matrix R0. The parameter β is uniformly initialized.

Numerical issues.

Because the Matrix Tree Theorem and Kirshner’s formula respectively resort to

the calculation of a determinant and a matrix inversion, the proposed algorithm

is exposed to numerical instabilities. To circumvent these issues, we rely on both

multiple-precision arithmetic and likelihood tempering (via a parameter α, similarly

to Schwaller and Robin, 2017). More details are given in Appendix 3.A.
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3.4 Simulations

3.4.1 Count datasets

For the simulation study, 300 count datasets of 15 species in total including one

missing actor are generated, thus p = 14 and r = 1. Data is generated as follows.

We generate a scale-free structure G (which degree distribution is a power law) with

p+ 1 nodes using the R package huge (Zhao et al., 2012) available on CRAN. The

missing species h is chosen as the one with highest degree. We measure the influence

of the missing actor with its degree, distinguishing three influence classes: Minor

(degree ≤ 5), Medium (5 < degree ≤ 7) and Major (degree ≥ 8). For each replicate,

the latent layer U and the observed abundances Y are simulated according to the

model defined in Section 3.2.

3.4.2 Experiment & Measures

For each simulated dataset, the VEM algorithm is initialized as described in Section

3.3.3. More specifically and because we only look for one missing actor, we consider

the cliques corresponding to each of the first two principal components of sPCA,

and their respective complements, which provides us with four cliques. Then four

VEM algorithms, as described in Section 3.3.2, are run starting from each of the

four candidate cliques, and the one yielding the highest lower bound J is kept. For

all simulations, we set the precision of the convergence criterion to ε = 10−3, the

tempering parameter to α = 0.1 and the maximal number of iterations to 100. The

inference quality is assessed regarding the global network inference, the missing

actor’s position in the network, and its values along the n sites. We refer to this first

procedure as the blind procedure. Additionally, we define the oracle procedure as

running the VEM with the set of true neighbors of the missing actor as initial clique.

For each procedure, a general measure of the whole network inference quality is

first given by comparing the inferred edge probabilities to the original dependency

structure. This is done using the Area Under the ROC Curve (AUC) criteria. Then,

to be more specific and target the neighbors of node h specifically, the probabilities

of edges involving h are transformed into binary values using the 0.5 threshold. The

values are then compared to the original links of h and yield quantities of true/false

(T/P ) positives/negatives (P/N), from which are built the precision (also known

as the positive predictive value, TP/(TP + FP )) and the recall (also known as

the true positive rate, TP/(TP + FN)) criteria. Finally, we assess the ability to

reconstruct the missing actor across the sites by computing the absolute correlation

between its inferred vector of means (Mh) and its original latent Gaussian vector

Uh.
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3.4.3 Results

Simulations performance measures are gathered in Table 3.1 and Table 3.2 for

blind and oracle procedures respectively. The distributions of the quality measures

are displayed in Figure 3.3.

Table 3.1 shows the network is well inferred, as all AUC means are above 0.85,

with almost perfect inference when the influence of the missing actor is major.

Its neighbors and values per site are very well retrieved in these cases with mean

recall values above 0.9 and mean correlation above 0.8, with a great confidence in

the algorithm outputs as mean precision is above 0.95. However, there exists a

clear deterioration of all performance as the influence decreases with lower means

are greater deviations, down to about 0.6 mean values for all measures when the

influence is minor. Moreover, the algorithm takes more and more time to converge

as the influence decreases, although it stays at about 3s for minor cases which is

reasonable. Figure 3.3 shows that as the influence decreases, the densities present

with several modes and dilute towards 0, illustrating that even if some networks

are still well-inferred, there also are more and more cases where the algorithm fails.

In particular, the performance decrease of medium cases seems to be only due to a

greater number of failed inferences.

All these elements point to minor cases being harder problems to solve, unsur-

prisingly. Yet as oracle results show in Table 3.2, it is possible to carry out

almost-perfect inference in all cases, if the algorithm is initialized with the true

clique; the deterioration is still present in all measures, but stays marginal. Thus the

harsh decrease in the blind procedures seems to be mainly due to the proposed ini-

tialization method failing at correctly finding some of the small cliques of neighbors.

N AUC Precision Recall Correlation Time (s)
Major 100 0.98 (0.06) 0.96 (0.14) 0.94 (0.17) 0.83 (0.10) 2.36 (0.91)
Medium 132 0.93 (0.12) 0.83 (0.26) 0.81 (0.30) 0.73 (0.17) 2.69 (1.15)
Minor 68 0.89 (0.10) 0.61 (0.34) 0.66 (0.36) 0.59 (0.21) 3.08 (1.14)

Table 3.1 – Blind procedure using cliques from initialization. The influence of the
missing actor is measured with its degree, distinguishing three influence classes:
Minor (degree ≤ 5), Medium (5 < degree ≤ 7) and Major (degree ≥ 8). For each
class of influence, the following quantities are reported: number of simulated graphs
(N), means and standard deviations of AUC, Precision, Recall, Correlation between
missing actor inferred vector of means and original latent vector, and running times
in seconds. AUC measures the retrieval of the dependence structure between all
variables (observed and missing), whereas precision and recall are specific to the
missing actor links.
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Figure 3.3 – The influence of the missing actor is measured with its degree, distin-
guishing three influence classes: Minor (degree ≤ 5), Medium (5 < degree ≤ 7)
and Major (degree ≥ 8). The distributions of performance measures are displayed
for each class of influence: AUC measures the retrieval of the dependence structure
between all variables, observed and missing. Precision and recall are specific to the
missing actor links.

About intialization. Figure 3.4 compares the initialization quality and the corre-

sponding final inferred neighbors, in terms of initial (-i) and final (-f) false negative

(FNR, also 1-TPR) and positive rates (FPR). It clearly appears that final measures

mostly increase with false negatives of the initial clique. This means that not in-

cluding a neighbor in the initialization is much worse for the inference than falsely

including a node. The increase of FNR-f is bigger than that of FPR-f, meaning

that a wrong initialization leads to a set of inferred neighbors which most part

can be trusted, but which will be largely incomplete. This advocates for bigger

initialization cliques when no prior information is available.

N AUC Precision Recall Cor. t(s)
Major 100 1 (0.00) 1 (0.00) 1 (0.01) 0.86 (0.02) 1.28 (0.21)
Medium 132 1 (0.02) 1 (0.00) 0.99 (0.04) 0.83 (0.02) 1.38 (0.46)
Minor 68 0.98 (0.04) 0.99 (0.03) 0.96 (0.12) 0.8 (0.04) 1.56 (0.69)

Table 3.2 – Oracle procedure using true clique as starting point. The influence of
the missing actor is measured with its degree, distinguishing three influence classes:
Minor (degree ≤ 5), Medium (5 < degree ≤ 7) and Major (degree ≥ 8). For each
class of influence, the following quantities are reported: number of simulated graphs
(N), means and standard deviations of AUC, Precision, Recall, Correlation between
missing actor inferred vector of means and original latent vector, and running times
in seconds. AUC measures the retrieval of the dependence structure between all
variables (observed and missing), whereas precision and recall are specific to the
missing actor links.
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Figure 3.4 – Comparison of initial and final FPR and FNR, for cliques of neighbors
of one missing actor obtained with the sparse PCA method. Position of dots are
defined according to initial values, their color according to the final FPR and FNR.
Sizes are proportional to the density of dots on a given position.

3.5 Applications

Cross validation criterion for model selection.

The proposed model obviously raises the problem of choosing the number of

missing actors r (which may be zero). Variational-based inference often relies on

approximate versions of the BIC or ICL criteria for model selection. Few theoretical

guarantees exist about these approximate criteria and, in the present case, we ob-

served that BIC and ICL penalizations did not yield consistent results. Therefore,

we resort to V -fold cross validation to determine the number of missing actors.

More specifically, we split the original dataset Y (X is dropped here for the sake

of clarity) into V subsets with almost equal sizes m1, . . .mV (
∑V
v=1mv = n), which

we denote {Y v}v=1,...V . For each subset v, we define its complement Y −v on

which we fit a model with r missing actors and get a parameter estimate Γ−vr =

(θ−vr ,σ−vr ,β−vr ,Ω−vr ) and measure the fit of Γ−vr to the test dataset Y v.

To avoid the integration over the (p+ r)-dimensional Gaussian latent layer, we mea-

sure the fit with the pairwise composite likelihood (Lindsay, 1988). For any given

tree T and parameter Γ, the bivariate Poisson log-normal pdf pPLN ((Yij , Yik); Γ, T )

can be easily computed for any sample i and pair of species (j, k) with available

tools such as the poilog R package (Vidar and Steinar, 2008) available on CRAN.
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The cross-validation criterion is defined as

PCLr(Y ) =
1

V

∑
v

1

B

B∑
b=1

1

mv

mv∑
i=1

∑
j<k

log pPLN

(
(Y vij , Y

v
ik); Γ−vr , T−vr,b

)
,

where the tree samples {T−vr,b }b=1...B are iid according to pβ−v
r

(T ).

The sampling procedure for spanning trees is given in Appendix 3.A; the complete

procedure for the calculation of PCLr(Y ) is described by Algorithm 1, given in

Appendix 3.A. Note that this criterion measures the fit of the model in terms of

abundance prediction, whereas our interest is mostly focused on the inference of the

dependency structure. In other words, our goal is identification, that is selecting

the smallest model and not the best model in terms of prediction (Arlot and Celisse,

2010).

We did not include this computationally greedy procedure in the simulation study

but applied it to the two ecological datasets that will be described in the next two

sections. The results, gathered in Figure 3.5, yield r = 1 missing actor for the

Barents Sea data set, and r = 2 missing actors for the Fatala River one.

Figure 3.5 – Pairwise composite likelihoods estimates of Barents and Fatala datasets
for models including 0 to 3 missing actors.

Initialization.

We performed a wider exploration for the initialization as compared to the simu-

lation study. To enlarge the list of possible cliques, we applied a resampling version

of the procedure described in Section 3.3.3, and applied it to 200 sub-samples, each

consisting in 80% of the whole data set. This yielded 200 lists of r initial cliques,

from which duplicates were removed.

3.5.1 Barents Sea

The dataset was first published by Fossheim et al. (2006) and consists

of the abundance of 30 fish species measured in 89 sites in the Barents

See in April-May 1997. In addition to abundances, the water temper-

ature was measured in each site. The complete dataset is available at

www.fbbva.es/microsite/multivariate-statistics/data.html. Fishes
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distributions are known to be greatly linked with the temperature. Hence to

illustrate our methodology, we present the results of the model fitted without

any covariate (that is not accounting for the temperature), but including one

missing actor (as suggested by Figure 3.5). To assess the ability of the proposed

methodology to retrieve the influence of temperature as a missing actor, we report

the empirical correlation between the temperature and the conditional expectation

of the missing actor Mh, which we denote ρ(H, temp).

The resampling initialization procedure resulted in 14 different cliques, for each

of which a VEM algorithm was run: the mean running time was 6.63mins with

deviation 0.70 mins.

The edge probabilities involving node h as an endpoint were either very close to 0 or

very close to 1, yielding a total of 6 highly probable neighbors of h. Figure 3.6 shows

that many direct interactions are inferred between the corresponding 6 species in

absence of a missing actor, which vanish when it is introduced. It also shows that

accounting for this actor has only a local effect and that the direct interactions

among the other species are preserved, which is consistent with our notion of a

missing actor.

In terms of interpretation, Figure 3.7 shows that the missing actor is highly cor-

related with the temperature. It also appears that the abundances of the species

neighbor to the missing actor are much more correlated with the temperature (mean

correlation = 0.78, sd = .06) than the abundances of the non-neighbor species (mean

correlation = 0.46, sd = .27). This example shows the ability of the method to re-

cover an underlying effect that would not be recorded in the data.

3.5.2 Fatala River

Baran (1995) collected the abundances of 33 fish species in 90 sites along the Fatala

River in Guinea between June 1993 and February 1994. The data are available from

the R package ade4 on CRAN (Dray et al., 2007), along with the date and site of

collection, from which we deduce the season (dry or rainy). Again the model was

fitted without any covariates, but with two missing actors, as suggested by Figure

3.5.

The resampling initialization procedure yielded 60 different cliques, for each of which

a VEM algorithm was run: the mean running time was 11.33 min (sd = 1.47 mn). 14

VEM did not reach convergence (with tolerance ε = 1e−3) after 100 iterations. We

filtered out the results obtained from the different initializations, when the algorithm

obviously ended in a degenerate solution (V(Mh) < exp(−20)).

Figure 3.8 shows the scatterplot of the estimated conditional mean of the two missing

actors (Mh1
,Mh2

) in each site, colored with either one of the available covariates

(site and season). The missing actor h1 is obviously linked to the site and separates

most upstream locations (kilometer 3) from most downstream locations (kilometer
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Figure 3.6 – Top left: adjacency matrix of the Barents Sea fishes interaction network
for r = 0 missing actor. The inferred neighbors are gathered in the last 6 columns, so
that their interactions are observable in the upper-right corner. Top right: adjacency
matrix for r = 1 missing actor. The last column gathers the interactions of the
inferred missing actor. Bottom: Inferred interaction network with r = 0 (left) and
r = 1 (right). Colored nodes refer to the inferred neighbors (blue) of the missing
actor (yellow). The edges width are proportional to their probability.

Figure 3.7 – Missing actor estimated vector of means Mh as a function of the
temperature. ρ(H, temp) = 0.85.
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46). This actor has 11 highly probable neighbor species. Again, this retrieved

missing actor corresponds to an underlying effect (in this case: geography) that

rules fish species abundances.

The second missing actor seems to be linked with the season but with a less clear

separation. Also the variability of Mh2 is much smaller than this of Mh1 . This effect

is therefore questionable, which brings us back to model selection. As mentioned

above, we used a procedure based on cross-validation, which may be prone to select

too complex models (Arlot and Celisse, 2010; Friedman et al., 2001; Shao, 1993).

The definition of a grounded model selection criterion for structure inference in

presence of missing actors remains open.

Figure 3.8 – Estimated means Mh1
and Mh2

of the two inferred missing actors. Left
column: scatterplots Mh1

vs Mh2
with site (top) and season (bottom) color code.

Right: distribution of the estimated means across sites. Top right: distribution of
Mh1 in each location, bottom right: distribution of Mh2 in each season.
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Appendices

3.A Supplementary material

3.A.1 Algebraic Tools

We here present some algebraic results about spanning tree structures which are

used during the computations. Theorem 3.1, Lemma 3.1 as well as Lemma 3.2 use

the notion of Laplacian matrix Q of a symmetric matrix W = [wjk]1≤j,k≤p, which

is defined as follows:

[Q]jk =

{
−wjk 1 ≤ j < k ≤ p∑p
u=1wju 1 ≤ j = k ≤ p.

We further denote Wuv the matrix W deprived from its uth row and vth column

and we remind that the (u, v)-minor of W is the determinant of this deprived

matrix, that is |Wuv|. The following Theorem 3.1 is the extension of Kirchhoff’s

Theorem to the case of weighted graphs (Chaiken and Kleitman, 1978; Meilă and

Jaakkola, 2006).

Theorem 3.1 (Matrix Tree Theorem). For any symmetric weight matrix W with

all positive entries, the sum over all spanning trees of the product of the weights of

their edges is equal to any minor of its Laplacian. That is, for any 1 ≤ u, v ≤ p,

W :=
∑
T∈T

∏
(j,k)∈T

wjk = |Quv|.

In the following, without loss of generality, we will choose Q11. As an extension

of this result, Meilă and Jaakkola (2006) provide a close form expression for the

derivative of W with respect to each entry of W.

Lemma 3.1 (Meilă and Jaakkola (2006)). Define the entries of the symmetric

matrix M as

[M]jk =


[
(Q11)−1

]
jj

+
[
(Q11)−1

]
kk
− 2

[
(Q11)−1

]
jk

1 < j < k ≤ p[
(Q11)−1

]
jj

k = 1, 1 < j ≤ p
0 j = k.

it then holds that

∂wjk
W = [M]jk ×W.
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Kirshner (2008) build on Lemma 3.1 to provide an efficient computation of all edges

probabilities.

Lemma 3.2 (Kirshner (2008)). Let pW be a distribution on the space of spanning

trees, such that pW (T ) =
∏
kl∈T wkl/W , where W is defined as in Theorem 3.1.

Taking the symmetric matrix M as defined in Lemma 3.1, the probability for an

edge kl to be in the tree T ∗ writes:

P{kl ∈ T ∗} =
∑
T∈T

pW (T ) = wkl Mkl.

3.A.2 Computations

Update of β.

As in Momal et al. (2020), the update of β is such that:

βt+1 = arg max
β

Egt [log pβ(T )] .

By definition of pβ(T ):

Egt [log pβ(T )] =
∑
kl

P tkl log βkl − logB , B =
∑
T∈T

∏
kl∈T

βkl.

Computing the derivative with respect to the edge weight βkl gives:

∂βkl
Egt [log pβ(T )] =

P tkl
βkl
− ∂βkl

Bt

Bt
.

According to Lemma 3.1: ∂βkl
Bt = [M ]kl × B. Finally setting the derivative to 0

yields the update formula βt+1
kl =

P t
kl

M(βt)kl
.

Update of ΩT

The update of ΩT respects

Ωt+1 = arg max
Ω

Eqt [log pΩ(U | T )] .

This is a problem of parameter optimisation in the context of Gaussian Graphical

Models (GGM). In what follows, for any q× q matrix A, A[kl] will refer to the block

kl of A: A[kl] = (aij){i,j}∈{k,l}. [A[kl]]
q will then denote the matrix obtained by
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filling up with zero entries to obtain full dimension q × q, so that:

([A[kl]]
q)ij =

{
aij if {i, j} ∈ {k, l}

0 if {i, j} ∈ {1, ..., q}\kl

In its proposition 5.9, Lauritzen (1996) states that in a GGM with p variables and

associated with the decomposable graph G, the maximum likelihood of the precision

matrix exists if and only if n > maxC∈C |C|. It is then given as

Ω̂ = n

(∑
C∈C

[SSD[C]
−1]p −

∑
S∈S

ν(S) [SSD[S]
−1]p

)

where C is the set of cliques and S the set of separators of G, with associated

multiplicities ν(S).

In our context, G is a spanning tree and so all cliques are edges and separators

are nodes. The multiplicity of a given node k as a separator in the graph is ν(k) =

d(k)−1, where d(k) is its degree. Therefore the estimator Ω̂T writes as the following

Ω̂T = n
∑
kl∈T

[(SSD[kl])
−1]p+r − n

∑
k

(d(k)− 1)[(SSDkk)−1]p+r

= n
∑
kl∈T

[(SSD[kl])
−1 − (SSDkk)−1 − (SSDll)

−1]p+r + n
∑
k

[(SSDkk)−1]p+r

As SSD has diagonal n, the expression simplifies. Denoting Id the identity matrix

of dimension d we obtain:

Ω̂T = n
∑
kl∈T

[(SSD[kl])
−1 − 1

n
I2]p+r + Ip+r.

Detailing each bloc matrices as follows gives the update formulas in (3.10):

n× [(SSD[kl])
−1 − 1

n
I2] =

1

1− (ssdkl/n)2

(
(ssdkl/n)2 −ssdkl/n
−ssdkl/n (ssdkl/n)2

)

Determinant of ΩT .

The determinant of a precision matrix of a GGM with a decomposable graph is

expressed as follows (Lauritzen, 1996):

|Ω| =
∏
C∈C |ΣC |−1∏

S∈S |ΣS |−ν(S)
,
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where Σ = Ω−1. As ΩT is tree-structured, its determinant factorizes on the edges

of T . It is expressed with the correlation matrix RT as follows, denoting d(k) the

degree of node k:

|ΩT | =
∏
kl∈T |RTkl|−1∏
k |RTkk|1−d(k)

.

Using that RT has diagonal 1, we obtain for step t+ 1 of the algorithm:

|Ωt+1
T | =

( ∏
kl∈T

|Rt+1
T [kl]|

)−1

.

Numerical issues.

Exact computations Our algorithm requires the computation of determinants

(from the Matrix Tree Theorem) and inverses (in Kirshner’s formula) of Laplacian

of weight matrices. As we deal with highly variable weights, numerical issues arise:

infinite determinants or matrix numerically non-invertible due to either the maximal

machine precision (about 1.7 · 10308), or with machine zero (about 2.2 · 10−16). To

enhance the precision of such computations, we rely on multiple-precision arithmetic

which allows the digit of precision of numbers to be limited only by the available

memory instead of 64 bits. We implemented matrix inversion and log-determinant

computation using both, symbolic computation and multiple precision arithmetic,

relying on the gmp R package available on CRAN, which uses (Lucas et al., 2020),

the C library GMP (GNU Multiple Precision Arithmetic).

Tempering parameter α

Definition: Weights β̃ are mechanically linked to the quantity of data available

n. To avoid reaching maximal precision when computing the determinant, a

tempering parameter α is applied to every quantity proportional to n, so that

the actual update performed is

log β̃kl = log βkl − α(
n

2
log |R̂Tkl|+ ω̂Tkl[M

ᵀM ]kl).

Heuristic for an upper bound : The proposed algorithm requires the computation

of the normalizing constant B̃, which is the determinant of any minor of the

Laplacian of the q× q variational weights matrix β̃. As these weights mechan-

ically increase with the quantity of available data n, this step is numerically

very sensitive. Hereafter we denote |Quv| this determinant and ∆ the maximal

machine precision. In order to ease the computations, we define the tempering
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parameter α as

log β̃kl = log βkl−α(
n

2
log |R̂Tkl|+ω̂Tkl[MᵀM ]kl) , under constraint |Quv| ≤ ∆.

Let’s first detail the expression for β̃kl. Following the definition of the SSD

matrix, and update formulas (3.10) and (3.11), we obtain:

log β̃kl = log βkl + αn

{
(ssdkl/n)2

1− (ssdkl/n)2
− 1

2
log
[
1− (ssdkl/n)2

]}
.

For large n, we thus have

β̃kl ≈ exp
[
αn·C(ssdkl/n)

]
, with C(x) = x/(1−x)−log(

√
1− x), x ∈ [0, 1[.

We then define Csup such that Csup = C(ssdmax), with ssdmax =

max{ssdkl, k 6= l}. By definition, Quv is positive-definite, so its deter-

minant is upper bounded by the product of its diagonal terms (Hadamard’s

inequality). Namely:

|Quv| ≤
q−1∏
i=1

Quv
ii ≤

q−1∏
i=1

q−1∑
i=1

exp(αCsupn)

≤ [(q − 1) exp(αCsupn)]
q−1

.

Then applying the constraint yields:

|Quv| ≤ ∆ ⇐⇒ α ≤ 1

Csupn

[
1

q − 1
log ∆− log(q − 1)

]
.

For ssdmax = 0.8, n = 200 and q = 15, we get α ≤ 1.05 · 10−1.

3.A.3 Model selection and cross-validation

Sampling spanning trees

Sampling non-uniform spanning trees (i.e. sampling T from pβ) is a research topic

by itself, especially for large networks (see Durfee et al., 2017, for a review). For

moderate size networks, a rejection algorithm (Devroye, 1986) can be defined in the

following way:

1. Sample T from a distribution q, such that there exists a constant M , that

ensures that, for all T , Mq(T ) > pβ(T );

2. Keep T with probability M−1pβ(T )/q(T ) or try step 1 again.

The efficiency of such an algorithm strongly relies on the choice of the proposal

distribution. Here we adopt the following proposal:
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i Sample a connected graph G with independent edges, each drawn with proba-

bility Qjk ∝ Pjk = Pβ{jk ∈ T};

ii Sample T uniformly among the spanning trees of G.

Evaluation of the proposal. To evaluate the proposal distribution for each

sampled tree, we may observe that, the probability for a graph drawn from the

proposal to contain a given tree T is approximately

Pq{G 3 T} ≈
∏
jk∈T

Qjk,

the approximation being due to the connectivity constraint. This constraint can

be almost surely satisfied by taking Qjk’s large enough. So, denoting |T (G)| the

number of spanning trees in G, we have that

q(T ) =
∑
G3T

q(T | G)q(G) =
∑
G3T

q(G)

|T (G)|
= Pq{G 3 T} E

(
|T (G)|−1 | G 3 T

)
.

The last expectation can be evaluated via Monte Carlo, by sampling a series of

graphs G according to the proposal q but forcing all edges from T to be part of G.

Upper bounding constant M . To evaluate the upper bounding constant M ,

we may observe that finding the tree T ∗ such that

mβ :=
Pq{G 3 T ∗}
pβ(T ∗)

= min
T∈T

Pq{G 3 T}
pβ(T )

= min
T∈T

∏
jk∈T

Qjk
βjk

.

is a minimum spanning tree problem. Then, obviously, for any tree T : Pq{G 3
T} ≥ mβpβ(T ). Now, because the maximum number of spanning trees within a

graph is pp−2, we have

Mq(T ) = M
∑
G3T

q(G)

|T (G)|
≥ M

pp−2

∑
G3T

q(G) =
M

pp−2
Pq{G 3 T} ≥M

mβ

pp−2
pβ(T ).

So we may set M = pp−2/mβ. Still, in practice, this bound turns out to be far too

large and needs to be tuned down to preserve computational efficiency.

Cross-validation for model selection

The cross-validation procedure to estimate the pairwise composite likelihood is given

in Algorithm 1. In practice V = 10 and B = 100.
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Algorithm 1: Cross-validation for model selection with r missing actors

// 0. INITIALIZATION;

Divide the dataset Y into V subset Y 1, . . .Y V ;

for v ∈ {1, · · · , V } do

// 1. Apply the VEM algorithm to the train dataset Y −v;

Γ−vr ← (θ−vr ,σ−vr ,β−vr ,Ω−vr ) // 2. MONTE CARLO APPROXIMATION OF
COMPLETE LOG-LIKELIHOOD EXPECTATION;

for b ∈ {1, · · · , B} do
// 2.1 Draw tree (see Section 3.A);

T−vr,b ∼ pβ−v
r

// 2.2. Build the precision matrix having non-nul

entries determined by T−vr,b and values stored in Ω−vr , and

its diagonal terms according to (3.10);

ΩT b ← f(T−vr,b ,Ω
−v
r )

// 2.3. Compute the marginal variance matrix;

ΣT bO ← ΩT bOO −ΩT bOHΩ−1
T bHH

ΩT bHO;

// 2.4. Compute the bivariate Poisson log-normal density
in test sites;

for site i ∈ v do
for pairs of species (j, k) do

pPLN

(
(Y vij , Y

v
ik); Γ−vr , T−vr,b

)
with means xᵀ

i θ
−v
r,j and xᵀ

i θ
−v
r,k

and variance matrix [ΣT bO][jk,jk]

// 2.5. Compute the average;

PCLrvb(Y
v,Γ−vr , T b) =

1

mv

mv∑
i=1

∑
j<k

log pPLN

(
(Y vij , Y

v
ik); Γ−vr , T−vr,b

)

// 3. AVERAGE OVER SUBSETS;

PCLr(Y ) =
1

V

∑
v

PCLrv(Y
v,Γ−vr ).
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3.B Vignette for nestor

nestor (Network inference from Species counTs with missing actORs) is an R pack-

age for the inference of species interaction networks from their observed abundances,

accounting for possible unobserved missing actors in the network.

3.B.1 Simulation and preparation

The function generate missing data() of nestor simulates data with missing

actors. It requires the desired type of network structure (scale-free, erdos, tree or

cluster) and the number of missing actors r. Here is an example with r=1 for the

scale-free structure:

library(nestor)

p=10

r=1

n=100

data=generate_missing_data(n, p, r,type="scale-free", plot=TRUE)

1

4
5 6

10

11

The true original set of the missing actor neighbors is available in the value TC:

data$TC

#> [[1]]

#> [1] 1 4 5 6 10

The data is then prepared for analysis with the first step of the procedure: fit the

PLN model. The norm PLN() function is a wraper to PLNmodels::PLN() which

normalizes all the necessary outputs, namely the mean, variance and correlation

matrices of the model latent Gaussian layer corresponding to observed species.

PLNfit<-norm_PLN(data$Y)

MO<-PLNfit$MO

SO<-PLNfit$SO

sigma_obs=PLNfit$sigma_O
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3.B.2 Inference

Single clique initialization

The VEM algorithm then needs to be initialized. One way is to find an initial clique

of neighbors for the missing actor, for example using the FitSparsePCA() function:

initClique = FitSparsePCA(data$Y,r=1, min.size = 3)$cliques

initClique

#> [[1]]

#> [1] 2 5 7 9 10

The min.size parameter defines the minimal size of the output clique. The

function init mclust() is also available for finding a single clique, it uses

mclust::Mclust().

Once an initial clique has been found, the algorithm can be initialized. This is

the aim of the function initVEM(), which initializes all required parameters. This

function builds one initialization from one initial clique. We initialize with the clique

previously identified:

initList = initVEM(data$Y, cliqueList=initClique, sigma_obs, MO, r=1 )

Then to set the tempering parameter alpha, we can look at the output of the

alphaMax() function.

alphaMax(p+r, n)

#> [1] 0.3000768

The actual tempering parameter should be lower than the upper bound given by

alphaMax(). Here we set alpha to 0.1. The core function nestor() can now be

run as follows:

fit = nestor(data$Y, MO,SO, initList=initList, alpha=0.1, eps=1e-3,

maxIter=30)

#>

#> nestor ran in 1.078secs and 24 iterations.

The object fit contains inferred means and variances of the complete data, as well

as edges weight and probability matrices.

This package contains several visualization functions. plotPerf() gives a quick

overview of the fit performance compared to initial graph:
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plotPerf(fit$Pg, data$G,r=1)

0

3

6

9

12

0 3 6 9 12

G hat

0

3

6

9

12

0 3 6 9 12

True G

Recall=0.8 (Obs=1 , Hid=0.67)
 Precision=0.8 (Obs=1 , Hid=0.67)

 AUC=0.98

The convergence of nestor() can be checked with the plotting function plotConv():

plotConv(nestorFit = fit)
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Initialization with a list of cliques

The fit of the nestor() function is very sensitive to the initialization, and so it

is recommended to try several initial cliques. Several functions are available for

finding a list of possible starting points:

— init blockmodels() uses the R package blockmodels,

— boot FitSparsePCA() is a bootstraped version using sparsepca::spca(),

— complement spca() looks in the complement of the sparsepca::spca() out-

put.

92



C
h
a
p
te
r
3

Note that several fits of the function init mclust() will also yield a list of cliques.

Here we use the complement spca() function, which uses the sparsepca package

and returns the cliques corresponding to the k first principal components as well as

their complement.

six_cliques = complement_spca(data$Y, k=3)

six_cliques

#> [[1]]

#> [[1]][[1]]

#> [1] 2 9

#>

#> [[2]]

#> [[2]][[1]]

#> [1] 7 10

#>

#> [[3]]

#> [[3]][[1]]

#> [1] 2 5 10

#>

#> [[4]]

#> [[4]][[1]]

#> [1] 1 3 4 5 6 7 8 10

#>

#> [[5]]

#> [[5]][[1]]

#> [1] 1 2 3 4 5 6 8 9

#>

#> [[6]]

#> [[6]][[1]]

#> [1] 1 3 4 6 7 8 9

This package provides with a parallel procedure for the computation of several

fits of nestor() corresponding to a list of possible cliques, with the function

List.nestor(). Below is an example with the list of six cliques previously

obtained with the complement spca() function:

fitList=List.nestor(six_cliques, data$Y, sigma_obs, MO,SO,r=1,

eps=1e-3, maxIter = 50, alpha=0.1, cores=1)

The object fitList is simply the list of all the nestor() fits. This procedure aborts

in case of degenerated behaviour, which happens when the provided clique is too

far from truth. Wrong fits can be identified by their small ouput size:
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do.call(rbind,lapply(fitList, length))

#> [,1]

#> [1,] 3

#> [2,] 12

#> [3,] 3

#> [4,] 12

#> [5,] 12

#> [6,] 12

Finally, as this is an example on simulated data we can assess the performance of

each converged fit with their AUC, Precision and Recall regarding the hidden node

h, and the correlation between the inferred means and the original latent Gaussian

vector of h.

do.call(rbind,lapply(fitList, function(vem){
if(length(vem)>4){

perf=ppvtpr(vem$Pg, data$G, r=r)

c(auc=auc(vem$Pg, data$G),precH=perf$PPVH, recH=perf$TPRH,

corMH=cor(vem$M[,p+r], data$UH))

}
})) %>% as_tibble()

#> # A tibble: 4 x 4

#> auc precH recH corMH

#> <dbl> <dbl> <dbl> <dbl>

#> 1 0.81 0.6 0.5 -0.785

#> 2 0.93 0.75 1 -0.815

#> 3 0.76 0.5 0.67 -0.715

#> 4 0.69 0.43 0.5 -0.585

3.C Clique initialization

It has been previously shown that the initial clique of the missing actor neighbors is

paramount for the developed method. Many initialization strategies can be designed,

in this section we present three of them that are implemented in the nestor package.

3.C.1 Sparse PCA

The sparse PCA is a specific kind of PCA where the principal components are linear

combinations of only a few other variables. This principle is coherent with the idea

of missing actors with a local effect, whereas a classic PCA would look for a global

missing actor affecting all other species. The sparse PCA is run directly on the
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Figure 3.9 – A scale-free graph with 11 nodes.

observed counts. The possible clique of neighbors for the missing actor is then the

set of variables associated with an axis of the PCA.

As it is a sparse method, the resulting clique might be too small and it is interesting

to control the minimal size. For example for a dataset simulated from the scale-free

graph in Figure 3.9 with the true clique C∗ = {1, 2, 3, 5, 6, 8, 9}, running a sparse

PCA with no constraint yields the clique C = {3, 9}, whereas imposing a minimal

size of 4 yields C = {1, 2, 3, 4, 5, 6, 9}.

3.C.2 Correlation clustering

A missing actor creates correlation among the other variables, which can be iden-

tified by looking for groups in the correlation structure. One way to observe the

latter is to consider the plan defined by the two first eigen vectors of the correlation

matrix, and to look for clusters in this space. Most clustering methods are designed

to separate the variables into k groups, whereas here the aim is to find k groups

(for k missing actors) which do not involve all the variables. To do this, we use the

mclust package which allows to specify a model for the clustering while including

some noise.

The aforementioned vector space is actually the correlation circle of the variables.

Noise points are uniformly simulated on the circle, then the desired number of

groups is found using mclust. The clustering is performed in polar coordinates to

take negatively correlated variables into account. In the example of Figure 3.10, the

clique of original neighbors is correctly identified, however this result is subject to

the randomness of the noise. It is therefore best to run the method a few times and

identify a list of cliques.

3.C.3 Structure clustering

Inferring the network from observed data only is equivalent to marginalizing the

complete network on the missing actors. The neighbors of the missing actors then

form a clique which can be identified as a block in the adjacency matrix of the

marginal graph. The package blockmodels is an implementation of the Stochastic
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Figure 3.10 – Left : original scale-free graph with 11 nodes among which one is
unobserved, with clique of neighbors C∗ = {1, 2, 3, 6}. Right : corresponding variable
correlation circle, the group found by mclust is highlighted in orange.

Figure 3.11 – Left : original cluster graph with 11 nodes among which one is un-
observed, with clique of neighbors C∗ = {3, 4, 5, 6, 7, 10}. Right : inferred marginal
network and the two groups identified by blockmodels.

Block Model. Running it on the adjacency matrix obtained with nestor or EMtree

(when nestor degenerates) with a Bernoulli model provides with a separation of the

nodes into a given number of blocks, which are the possible cliques.

Figure 3.11 is a simulated example on a cluster graph with 11 nodes. Count data

with one missing actor is generated with this conditional dependency structure, and

the inferred marginal network is given as an input to blockmodels. We ask for

a separation in 2 groups; the first group identified consists of 5 of the 6 original

neighbors.

This strategy gives a list of disjoint cliques and it is likely that some of them will

cause nestor to degenerate, for they would not contain original neighbors. On real

datasets, it is recommended to test different number of groups and consider the list

of all the resulting cliques.
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3.D Comparison with PLN-network and EMtree

This section compares the network inference methods from count data which build

on the estimation of the PLN model as described in Chiquet et al. (2018): PLN-

network (Chiquet et al., 2019a), EMtree and nestor without missing actors. The

R package PLN-network performs a sparse estimation of the precision matrix using

the glasso. Details about EMtree and nestor are available respectively in Chapter

2 and Chapter 3 of this work.

3.D.1 EMtree and nestor

Different models

The aim of EMtree is the network inference, and as such it focuses on the update

of the tree distribution parameters (the edges weights β). It thus performs network

inference without ever considering the precision matrix, which is the main difference

with nestor. Indeed, the inference of missing actors requires the estimation of their

means MH , which directly depends on terms of the proxy for the precision matrix

(Ω). MH is actually the parameter through which passes the information from

the data to the network parameters β̃, therefore the computation of the edges

probabilities is also different.

EMtree approximates the edges probabilities conditional on Y by applying the

Matrix Tree theorem on the matrix β � ψ, where ψ =
(
(1− ρ2

kl)
−n/2)

kl
with ρkl

the estimated correlation between variables k and l. Transposed in the variational

inference framework, edges probabilities conditional on Y are approximated by the

edges probabilities computed from the distribution g(T ), which approximates p(T |
Y ). The distribution g(T ) is parametrized with the variational edges weights β̃,

which update formula for the edges kl at step t+ 1 is given in equation (3.12):

β̃t+1
kl = βt+1

kl

∣∣∣Rt+1
[kl]

∣∣∣−n/2 exp
(
−ωt+1

kl

[
(Mt)ᵀMt

]
kl

)
.

Now noticing that
∣∣R[kl]

∣∣−n/2 = ψkl, we can link this formula to that of the quantity

used by EMtree to compute probabilities. We see that the difference between the

two strategies is the term exp
(
−ωt+1

kl [(Mt)ᵀMt]kl
)
, which stems from the modeling

difference of EMtree and nestor.

Different behaviors

The modeling difference induces differences in behaviors between the two algorithms.

The extra exponential term in the formula for the edges weights of nestor is directly

dependent on the data dimensions, and mechanically implies a high variability and a

wide range of values for the weights. This causes numerical instabilities, especially
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Figure 3.12 – Relationship between edges probabilities computed by nestor and
EMtree for cluster graphs of dimension p = 15 and density 5/p.

when manipulating the determinant and inverse of the weights Laplacian matrix.

That’s the reason why nestor is very sensitive to the initialization and value of the

tempering parameter.

On the other hand EMtree is a robust procedure. However its estimation involves

less information and the output probabilities are less discriminant than that of

nestor. Figure 3.12 illustrates this fact in the case of dense cluster graphs.

3.D.2 Performance comparison

Experiment

We compared the three methods ability to infer networks based on AUC, precision

and recall criteria. We simulated 100 datasets with n = 200 samples and p = 15

species for erdos (Erdös-Reyni) and cluster structures, and tested two density levels

(3/p and 5/p). To give an efficient presentation of Precision-Recall curves, mean

curves were computed, that is all graphs of a certain type and density level were

pooled together and precision and recall measures computed on the corresponding

pooled results of each method.

The edges scores of PLN-network are extracted from its regularization path as the

sum of all penalties that do not cancel an edge. The grid of penalties is parametrized

with min.ratio = 1 · 10−3, after checking that the PLN-network fit on some typical

simulated graphs visited the best model (reach of a maximum on the BIC curve).

For EMtree we consider edges probabilities obtained without the resampling step,

rather than edges selection frequencies. The nestor method is parametrized with the

tempering parameter set to 0.1. With density 3/p, nestor degenerated for 25 clusters

and 5 erdos graphs, and for 2 cluster graphs with density 5/p. Those datasets were
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Figure 3.13 – AUC measures obtained with PLN-network, EMtree and nestor on
100 datasets of each type and density level.

removed from the following results.

Figure 3.14 – Mean Precision-Recall curves obtained with PLN-network, EMtree
and nestor on 100 datasets of each type and density level.

Results

AUC measures are gathered in Figure 3.13. All types and density levels show

the same ranking of methods: the best AUC are obtained with EMtree, and the
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weakest with PLN-network which however stays above 60% in median. The median

values of nestor are closer to those of EMtree than to PLN-network. The higher

density levels represent a greater difficulty for all methods, and cluster graphs seem

slightly harder than erdos ones for nestor and PLN-network.

From the mean Precision-Recall curves available in Figure 3.14, we see than EMtree

also shows the best trajectory. PLN-network seems to never visit the value pairs

above 0.5, and its trajectory is not affected by the density level. The trajectory of

nestor is close to that of EMtree, and they both greatly deteriorate with the density

level. Due to its highly discriminant probabilities, nestor only visits a few value

pairs, which are above 0.5 for the 3/p density level with a Precision of at least 0.8

and a Recall of 0.5 to 0.6. For denser graphs, the Recall decreases below 0.5 and

the Precision remains above 0.7, making nestor a very conservative method.
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The previous chapters detailed the proposed methodology for network inference

from incomplete abundance data. The species abundances Y are jointly modeled

in a GLMM using the Poisson log-normal distribution, thus taking advantage of its

properties to account for offsets and experimental and/or environmental covariates

X. The problem of network inference is then transposed to the Gaussian latent

layer of model parameters Z, where it is performed using averaging on spanning-

tree structures with decomposable distribution on trees parametrized with edges

weights β. Missing actors are inferred in the Gaussian layer as well, simultaneously

with the network. We remind the mathematical formulation of this model:

T ∼
∏
kl∈T βkl/B, B =

∑
T∈T

∏
kl∈T βkl,

Zi | T ∼ N (0,ΩT ), {Zi}i iid,

Yij | Zi ∼ P(exp(oij + xᵀ
i θj + Zij)), (Yij ⊥⊥) | Zi.

The qualities of this approach have been demonstrated on simulated examples as

well as empirical datasets. But why does it work ? Mostly because exact computa-

tions are possible in the Gaussian layer, thanks to its maniability and the structure

and algebraic properties of spanning trees. This flexibility calls for some natural

extensions which were not developed due to time constraints, that we now present

together with specific details of this model.

101



P
e
rs
p
e
ct
iv
e
s

4.1 Unresolved questions

Offset modeling

The presented methodology allows to take into account covariates and offsets,

which is paramount in the modeling of experiments. A change in the covariates

included can greatly modify the inferred network, however this is an information

that can be controlled. On the other hand, not including offsets amounts to model

incoherent data and therefore yields inconsistent results. Unfortunately, offsets

are not always obvious or easy to get, and evaluating them possibly represents a

modeling step in itself. For example in an ecological census of fauna, the offset

has to at least account for the period of time of observation, the experience of the

observer and the species detectability, which is obviously the most difficult to get.

Detectability depends on the relative position of the species to the observer, and can

depend on the environmental conditions as well, making its modeling a delicate step.

Algorithm initialization

The approach can also infer missing actors as detailed in Chapter 3. The initial-

ization of the algorithm for this inference requires an initial clique of neighbors for

each missing actor. This parameter is critical, as it defines all the initialization

and if it is too far from the true clique, that is if not a minimum of true neighbors

are included, the procedure can degenerate and abort. Several methods for setting

this parameter are proposed in the nestor package. They are based on finding

groups of highly correlated variables (sparse PCA and model-based clustering

of the estimated correlation matrix), or finding clusters in the structure of the

marginal graph (using Stochastic Bloc Models). The estimated lower bound of

the likelihood can be used to choose between a large set of results with different

initializations, thus one way to go is simply to sample several starting points

(possibly by boostrapping the previous methods) and test all of them. Many other

methods could be used, as well as prior knowledge on species, and we do not

conclude on the best way to initialize the cliques. However we observed that it is

less important for the inference quality to be precise than to include some true

neighbors in the clique. Therefore we advise to choose the initial clique also based

on its size.

Model selection

One key question when working with possibly incomplete data is to know if it is

indeed incomplete, and to what extent. This amounts to model selection to chose
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the number of missing actors r. Usually model selection is carried out with com-

putations on the likelihood of each model. The model developed involves several

latent parameters, and the inference is therefore performed in a variational frame-

work which yields a lower bound of the likelihood. Moreover as the method takes

advantage of the variational estimation of the PLN model described in Chiquet

et al. (2018), the quantity that is computed is actually an approximation of this

lower bound. This results in the usual model selection tools, which originally apply

to likelihoods, to not work (Akaike/Bayesian/Extended Bayesian Information Cri-

terion). Then the only strategy left is to resort to cross-validation, which is greedy

and not very satisfying either. There is a need of adapted criteria for models with

variational inference, which is still an open research question of statistical theory.

4.2 Extensions of the adopted approach

In this section, we present direct extensions of the developed methodology regarding

the network in itself (estimation of its parameters, network comparison), and the

data nature (processing of different data types and spatialized data).

4.2.1 Characterizing species interactions

Generally, species interactions are characterized by their sign and strength.

This information is contained in the partial correlation matrix, defined as

Rp = (ρjk)1≤j,k≤p with

ρjk =
−ωjk√
ωjjωkk

,

which is simply the opposite of the correlation matrix built from the precision matrix

Ω. Some methods are thus dedicated to the estimation of the partial correlation

matrix to build knowledge on an ecosystem functioning. In the context of Gaussian

Graphical Models, Lauritzen (1996) develops maximum likelihood estimators for the

precision matrix which depends on that of the covariance matrix, and the structure

of the graph, as detailed in section 1.2.2. It thus requires the precise knowledge of

the graph, and even more than that: the only terms of the covariance matrix that

are correctly estimated are those corresponding to edges in the graph. Therefore

the prior inference of the structure is necessary. Moreover, these MLE are only valid

for decomposable graphs, therefore using Proposition 1.1 the network might need to

be triangularized as illustrated in Figure 4.1. Therefore following these three steps:

1. Infer the conditional dependency structure G,

2. Make G a chordal graph,

3. Compute Ω̂MLE .
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Figure 4.1 – Example of triangularization. Left : graph G. Right : a chordal version
of G: maximal loops are of size 3.

would lead to an approximation of Ω. Note that there is not a unique solution to

step 2. If the inferred network is already chordal, this yields the MLE of Ω, available

after the network inference.

4.2.2 Network comparison

Comparing networks has many applications and yields results of interest in various

fields, regarding for example the evolution of a system across seasons, or how a

pathogen modifies the organization of a microbiome.

The comparison from a statistical point of view is linked to testing differences,

or questioning the independence of two networks for example. Rather than

defining statistical tests based on networks distributions, current strategies consists

in summarizing networks with vectors of measures on nodes. These are called

embeddings, which aim to capture the structure of the graph and the relationships

between the nodes in a concise manner (e.g. Chen and Koga (2019); Tsitsulin et al.

(2018)). Embeddings can then be compared using PCA for example. The presented

approach assumes the graph is a latent tree, which estimated distribution can be

seen as another available graph summary.

A first step toward statistical network comparison using trees could be to compare

the estimated laws on trees, for example using the Küllback-Leibler divergence which

is easily written with tree distributions and gives two interesting quantities.

First, it is possible to compute the contribution of a specific edge kl to the distri-

bution. We denote pβ\kl
the decomposable tree distribution where the weight βkl

is set to zero. Its normalization constant is B\kl =
∑
T∈T

∏
uv 6=kl βuv. Computing

the Küllback-Leibler divergence between pβ and pβ\kl
yields the contribution of kl
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to pβ(T ). It writes:

KL(pβ(T ) || pβ\kl
(T )) = Epβ(T )[log pβ(T )− log pβ\kl

(T )]

= Pkl log βkl + log(B\kl/B).

Where Pkl = Epβ [1{kl ∈ T}] is the probability for the edge kl to be in tree T under

the tree distribution Pβ. Now noticing that B\kl/B = 1 − Pkl, we finally get the

following contribution of kl:

KL(pβ(T ) || pβ\kl
(T )) = Pkl log βkl + log(1− Pkl).

As the distribution under which the expectation is taken must be dominant over

the other, the divergence KL(pβ\kl
(T ) || pβ(T )) is not defined.

Then, if all edges weights are finite and non-null, the divergence can be symmetrized

into a so-called dissimilarity measure to compare two networks. Assuming the data

is observed under two conditions A and B, we consider the edges weights matrices

estimated from each subsets βA and βB. The dissimilarity measure between the

tree distributions pβA(T ) and pβB(T ) writes:

D(pβA(T ), pβB(T )) =
1

2

[
KL

(
pβB(T ) || pβA(T )

)
+KL

(
pβA(T ) || pβB(T )

)]
.

After computation, this actually simplifies into the following expression, where PAkl =

EpβA
[1{kl ∈ T}] is the probability for the edge kl to be in tree T under the tree

distribution pβA :

D(pβA(T ), pβB(T )) =
∑
kl

log(βAkl/β
B
kl)

(
PAkl − PBkl

2

)
.

Finally if we consider K different conditions, the K tree distributions could be

compared by computing the K ×K matrix of dissimilarity measures, provided that

all edges weights are finite and non-null.

4.2.3 Other data types

This work focuses on abundance data, however the network inference method de-

veloped here could be extended to other data types. Indeed, the strategy of tree

averaging is based on the Gaussian Layer of the Z. Therefore it could also be used

with a model which would keep this layer and add a different emission law than the
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Poisson to generate data Y , that is considering the model

T ∼
∏
kl∈T βkl/B, B =

∑
T∈T

∏
kl∈T βkl,

Zi | T ∼ N (0,ΩT ), {Zi}i iid,

Yij | Zi ∼ F (oij ,xi, Zij), (Yij ⊥⊥) | Zi

.

For example, choosing the emission law F as binomial, multinomial or a Tweedie

distribution (Tweedie, 1984) would respectively yield presence/absence, ordinal, or

positive continuous data (e.g. to model biomass). Mixed data could also be gen-

erated, as long as the emission law parameters are stored in the Gaussian layer

Z.

Another interesting extension is for F to be multidimensional. Nodes of the network

would then be vectors of information known as multi-attribute variables. This can

be the case when multiple measures on the same system are available. For example

in microbiology, different information can be measured on a set of genes such as

transcriptomics, proteomics, or metabolomics data. Then these multiple sources can

be integrated to infer the gene regulatory network (Chiquet et al., 2019b; Siahpirani

et al., 2019).

Choosing another emission law would require to estimate its parameters, which can

be a sensitive task. However the network inference mechanics in the Gaussian layer

using tree averaging would remain the same.

4.2.4 Spatial dependence

In ecological surveys, environmental conditions might be spatially heterogeneous

(e.g. different climate at different altitudes). This translates in spatial correlation

in the observed data, which has to be accounted for in the network inference.

Spatial correlation is due to spatially close environments being similar. Therefore

a first and quick way to correct for spatial dependence is to include environmental

covariates encoding the spatial proximity (e.g. spatial coordinates) in the model. For

example Figure 4.2 shows how a variogram may be flattened by adjusting for latitude

and longitude. However such correction might not be enough and the residuals

from the adjustment might still be spatially correlated. Spatial coordinates could

be adjusted in a more complicated way than the linear relationship, but another

solution is to consider this dependence to be the result of an unobserved variable.

As a missing variable, the spatial dependency can be taken into account to unravel

the direct dependencies among species by using the method detailed in Chapter 3.

Adjusting for spatial covariates corrects for the spatial effects on the means, whereas

including spatial dependence as a node in the interaction network corresponds to a

correction of the variances.
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Figure 4.2 – Variogram of the species Trisopterus esmarkii (Norway pout) from the
Barents dataset with and without adjusting linearly for the spatial coordinates.

Another way of correcting the variances for spatial dependencies is to include spatial

variances directly in the model. To do this a first approach is to assume a separation

of the dependencies due to the spatial effects stored in the matrix Γ = (Γst)1≤s,t≤n

on the one hand, and due to the species interactions stored in the matrix Σ =

(σjk)1≤j,k≤p on the other hand. To simplify we consider either pairs of species j

and k on the same site s or a same species j on pair of sites s and t. The Gaussian

parameters are then modeled as follows:

(Zsj , Zsk) ∼ N (0, γssΣ[j,k]),

(Zsj , Ztj) ∼ N (0, σjjΓ[s,t]).

That way we obtain Cov (Zsj , Zsk) = γssσjk and Cov (Zsj , Ztj) = σjjγst. This is

equivalent to consider the transformation of the matrix Z into the vector V ec(Z) =

(Z11, ..., Z1p, Z21, ..., Znp) ∈ Rn×p to be distributed as:

V ec(Z) ∼ N (0,Γ⊗ Σ).

As the covariance structure is different for a pair of sites or a pair of species, this

model requires to use the bivariate Poisson log-normal distribution for the count

data Y . It is then possible to write a pairwise composite log-likelihood which

involves all the variance parameters:

c`θ(Y ) =

p∑
j=1

∑
s<t

log pθ(Ysj , Ytj) +

n∑
s=1

∑
j<k

log pθ(Ysj , Ysj).

The number of parameters for the variance is 1
2(n2 +p2), which is quite large. Classi-

cally to reduce this number, the Γ matrix is parametrized with a spatial covariance

function. For example the Matérn functions (which include the exponential covari-

ance function and others) define the covariance between two points distant of d
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units from each other as a function of d and three other parameters (Cressie and

Wikle, 2015).

Performing network inference using tree averaging in this case would simply amount

to consider

V ec(Z) ∼ N (0,Γ⊗ ΣT ),

then the inference of edges probabilities would go as previously detailed.

4.3 Network inference in the observed layer

All of the above is an adaptation of the presented model to perform network inference

in the latent Gaussian layer of parameters. However it can be shown that if the

graphical model in the latent Gaussian layer Z is a connected graph, then the

marginal graphical model of the observed counts Y is a clique.

Figure 4.3 – Graphical representation of the joint distribution p(Zi, Yi) (left) and
marginal distribution p(Yi) (right) when the graphical model of the latent variables
is connected (top) or not (bottom).

As Figure 4.3 illustrates, only a separation in the latent space results in a separation

in the observed space.

It is possible to write a model which meets the primary goal of inferring the network

directly in the space of observed data Y . Considering any marginal and bivariate

discrete distribution for counts, assuming a tree-shaped dependency structure for

the counts writes:

pθ(Y i | T ) =

p∏
j=1

pθ(Yij)
∏
jk∈T

pθ(Yij , Yik)

pθ(Yij)pθ(Yik)
.
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Covariates and offsets could be involved as parameters on the distributions means.

Then the joint distribution of counts would be a mixture on trees:

pβ,θ(Y ) =
∑
T∈T

pβ(T )pθ(Y | T ).

This model involves only one latent layer: the tree T . With a decomposable distri-

bution on T , the quantity Eβ,θ[log pβ,θ(Y , T ) | Y ] of the E step of an EM algorithm

could be estimated using the Matrix Tree Theorem. Regarding the M step, the

estimation of the weights β would be the same as for the PLN model with network

inference in the Gaussian layer. However the estimation of the θ parameter is com-

plex, as its estimator is usually not explicit and is common to several terms of the

product on the edges in pθ(Y | T ). The M step is thus the main difficulty for the

estimation of this model.
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5
RÉSUMÉ
This chapter is a summary of the present work, written in French.

Les réseaux sont des objets qui permettent de graphiquement représenter des liens

entre des entités. Ces outils sont utilisés dans des domaines très variés, allant de

l’informatique aux neurosciences, aux sciences sociales et à la biologie. Ce travail

s’intéresse aux réseaux d’espèces en écologie et microbiologie (ou méta-génomique),

et plus particulièrement à l’inférence des réseaux de dépendances conditionnelles

entre espèces d’une même communauté partageant le même environnement. Les

réseaux représentent alors les espèces par des noeuds, et leurs liens de dépendances

par des arêtes.

L’inférence de réseau considérée ici a pour point de départ des mesures répétées de

comptages des espèces d’intérêt, soit un tableau de données de n mesures discrètes

de p espèces. Il est important de distinguer ce cas de figure où le réseau n’est

pas connu ni observé, de celui où il est possible d’observer les liens du réseau

directement, et donc de reconstruire ce dernier via des comptages d’interactions

observées, comme c’est classiquement le cas en écologie par exemple. Considérer

les relations de dépendances conditionnelles permet à la fois d’obtenir des réseaux

parcimonieux et interprétables en ne représentant que des liens directs entre espèces,

et d’inférer des liens qui ne sont pas directement observables comme par exemple

les dépendances entre des (pseudo-)espèces microscopiques (bactéries, champignons,

protéines, virus, gènes, etc.) ou des liens dont la nature les rend difficilement

identifiables (par exemple les relations de coopération ou de communication).

Les modèles graphiques sont le cadre mathématique des réseaux de dépendances con-

ditionnelles. Notamment, les modèles graphique gaussiens possèdent des propriétés

particulières facilitant leur inférence. Ce cas particulier est un cadre très utilisé pour

l’inférence de réseaux en biologie, cependant il n’est pas directement applicable à

des données discrètes. Le premier objectif de ce travail est ainsi de développer une

méthodologie pour l’inférence de réseaux de dépendances conditionnelles à partir

de données de comptages. Par ailleurs, pour assurer la validité des résultats il est

nécessaire que les covariables expérimentales ainsi que les offsets mesurés (durées

d’observation, profondeur de séquençage) soient inclus dans la modélisation des

comptages. L’inférence de réseau en elle-même tire parti des propriétés algébriques

des arbres couvrants pour réaliser une exploration efficace et exhaustive de l’espace
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des graphes réduit à celui de ces structures particulières.

Il est en outre possible que toutes les espèces ou covariables n’aient pas été mesurées

lors de l’expérience. Un réseau inféré à partir de données incomplètes est alors un

réseau marginal, qui présente mécaniquement des formations denses entre les espèces

liées à un acteur non observé menant à des interprétations biaisées et partielles.

Le second objectif de ce travail est d’inclure de possibles acteurs manquants dans

l’inférence, afin d’obtenir à la fois le réseau complet et des informations permettant

de caractériser et de mieux comprendre les acteurs manquants.

Chapitre 1

Le premier chapitre expose en détails les éléments de théorie invoqués pour la

modélisation et l’inférence développées dans les chapitres suivants. Le cadre des

modèles graphiques est tout d’abord abordé de manière générale et inspirée de Lau-

ritzen (1996), avant d’introduire les arbres couvrants et leurs propriétés algébriques.

Dans un second temps, les particularités des modèles graphiques gaussiens sont

présentées, anisi que deux méthodes pour leur inférence. Après un bref exposé

de l’inférence dans le cadre de données incomplètes, la dernière partie traite

de l’inférence de réseaux à partir de données de comptage et présente plusieurs

stratégies issues de la littérature en écologie des communautés et microbiologie.

Modèles graphiques

Définitions générales.

Un graphe G est constitué d’un ensemble de noeuds V et d’un ensemble d’arêtes E.

Pour un triplet (A,B, S) de sous-ensembles disjoints de V , l’ensemble S sépare A

et B dans G si tout chemin allant de A à B intersecte S. La notion de séparation

est essentielle pour établir le lien entre graphe et relations d’indépendances condi-

tionnelles au sein d’une variable aléatoire multi-variée.

Soit G un graphe non-dirigé et X = (Xv)v∈V un vecteur aléatoire à valeurs dans

un espace produit X = ⊗v∈V Xv. Pour tout sous-ensemble A de V , XA dénote

(Xv)v∈A.

Propriété (Markov globale). Une mesure de probabilité sur X satisfait la propriété

de Markov globale par rapport à G si pour tout triplet (A,B, S) de sous-ensembles

disjoints de V , on a

S sépare A et B ⇒ XA ⊥⊥ XB | XS .

Un modèle graphique pour X est alors tout graphe tel que la distribution de X

soit globale Markov par rapport à ce graphe. La propriété de Markov globale est

seulement une implication, ce qui signifie qu’il est autorisé qu’un modèle graphique
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n’inclue pas toutes les relations d’indépendances conditionnelles. Lorsque que la

relation est une équivalence, la distribution de X est dite fidèle Markov, et le graphe

associé représente exactement toutes les relations d’indépendances conditionnelles

dans X.

Si S sépare A et B et si de plus tous les noeuds dans S sont liés enter eux (S est

complet), le triplet (A,B, S) est alors une décomposition propre de G. Cette notion

permet de définir un graphe décomposable.

Définition (Graphe décomposable). Un graphe G est dit décomposable s’il existe

une décomposition propre (A,B,C) sur G, et si les sous-graphes définis par A ∪ B
et B ∪ C sont eux-mêmes décomposables.

Les modèles graphiques à graphes décomposables permettent de structurer l’écriture

des paramètres de variance sur des ensembles de variables complets, ce qui facilite

leur estimation.

Arbres couvrants.

Parmi l’ensemble des graphes, les arbres couvrants sont les structures les plus

parcimonieuses, et les structures sans cycles les plus denses. Naturellement

décomposables, ils sont pratiques à manipuler grâce à leurs propriétés algébriques.

L’espace des graphes non-dirigés est de taille super-exponentielle (2p(p−1)/2 graphes

possibles pour p noeuds). L’espace des arbres couvrants, bien que plus petit, reste

combinatoirement grand (pp−2 arbres pour p noeuds). Il est cependant possible

de sommer sur cet espace en O(p3) opérations. Ce théorème est l’extension aux

réels du théorème de Kirchhoff (Chaiken and Kleitman, 1978; Meilă and Jaakkola,

2006), connu sous le nom de théorème arbre-matrice ou des mineurs égaux.

Théorème (Arbre-matrice). Soit une matrice de poids symétrique W = (wjk)jk
dont les entrées sont dans R+. Alors la somme sur l’ensemble des arbres couvrants

du produit des poids de leurs arêtes est égal à n’importe quel mineur du Laplacien

Q de W. Formellement, pour tout 1 ≤ u, v ≤ p :

W :=
∑
T∈T

∏
jk∈T

wjk = |Quv|.

Ce théorème fait apparâıtre une forme somme-produit sur l’espace des arbres

couvrants. Le lemme technique qui suit, établi par Meilă and Jaakkola (2006),

permet de dériver une telle somme. On rappelle que le Laplacien d’une matrice est

la matrice dont les termes diagonaux (resp. extra-diagonaux) sont les sommes par

lignes (resp. l’opposé des termes extra-diagonaux) de la matrice de départ.

Lemme (Dérivation d’une somme-produit sur les arbres). Soit une matrice de poids

symétrique W = (wjk)jk dont les entrées sont dans R+. Q11 dénote le mineur [1,1]
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de son Laplacien. Soit alors la matrice M, définie termes à termes comme suit :

[M(W)]jk =


[
(Q11)−1

]
jj

+
[
(Q11)−1

]
kk
− 2

[
(Q11)−1

]
jk

1 < j < k ≤ p[
(Q11)−1

]
jj

k = 1, 1 < j ≤ p
0 j = k.

Alors la dérivée partielle de W =
∑
T∈T

∏
jk∈T wjk vaut :

∂wjk
W = [M]jk ×W.

Ces deux résultats rendent possible l’utilisation des arbres couvrants au sein de

procédures d’inférence.

Cas gaussien

Un cadre populaire.

Les modèles graphiques sont particulièrement utilisés dans le cas gaussien, notam-

ment pour leur propriété de fidélité.

Propriété (Fidélité). Soit X ∼ N (µ,Σ) une variable aléatoire gaussienne

multi-variée. Alors sa distribution est fidèle Markov au graphe G dont les arêtes

sont les termes non nuls de sa matrice de précision Ω = Σ−1.

Ainsi dans le cas gaussien le graphe représentant exactement les relations

d’indépendances conditionnelles est facilement défini. Dans le cadre des modèles

graphiques gaussiens, Lauritzen (1996) donne l’estimateurs du maximum de

vraisemblance des termes de Σ correspondant aux arêtes du graphe. Si le graphe

est de plus décomposable il existe un estimateur du maximum de vraisemblance

pour Ω, et une estimation simplifiée de son déterminant en découle. Ces estima-

teurs ont une forme complexe, mais sont manipulables si la structure de graphe

considérée est simple.

Inférence pénalisée.

L’inférence d’un modèle graphique gaussien revient à identifier les éléments non-

nuls de sa matrice de précision Ω. Classiquement, une estimation par régularisation

pénalisée de Ω est réalisée, connue sous le nom de graphical lasso (Friedman et al.,

2008). Cette approche maximise la log-vraisemblance pénalisée par la norme `1 de
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Ω :

arg max
Ω≥0

{
log |Ω|+ tr (YᵀYΩ)− λ||Ω||1

}
, ||Ω||1 =

∑
j6=k

|ωjk|.

Cette stratégie vise une estimation parcimonieuse en introduisant des termes nuls

dans Ω. Très utilisée, elle nécessite cependant une attention particulière pour la

sélection du niveau de parcimonie, c’est à dire du paramètre de régularisation λ.

Inférence par arbres.

Ce travail utilise une stratégie à base d’arbres couvrants. Une exploration de l’espace

des arbres couvrants suppose que le graphe sous-jacent est un arbre aléatoire T .

Ainsi contrairement à l’inférence pénalisée, le graphe est ici une variable latente

du modèle. En définissant une distribution de probabilité sur cet espace, il est

possible de définir un mélange d’arbre (Meilă and Jordan, 2000) pour des variables

gaussiennes.

Définition (Mélange d’arbres gaussien). La distribution d’une variable aléatoire

Y est un mélange d’arbres gaussien centré sur l’espace des arbres couvrants si elle

s’écrit :

p(Y ) =
∑
T∈T

p(T )p(Y | T ), Y | T ∼ N (0,ΣT ).

Dans l’expression d’un mélange d’arbres gaussien, la distribution gaussienne p(Y |
T ) s’écrit naturellement comme un produit sur les paires de noeuds. Donc, en

choisissant une distribution p(T ) qui se factorise de la même manière une forme

somme-produit apparâıt, qui est calculable grâce au théorème arbre-matrice.

Une telle distribution sur l’espace des arbres est par exemple la distribution

décomposable, qui attribue un poids à chaque arête et pour laquelle la probabilité

d’un arbre est proportionnelle au produit de ces poids. Cette distribution permet

notamment de calculer facilement des probabilités d’arêtes. En utilisant la

définition d’une probabilité d’arête comme la somme des probabilités des arbres

contenant cette arête, il devient clair qu’adopter une distribution décomposable

mène à une nouvelle forme somme-produit sur l’espace des arbres. Pour une

matrice de poids W = (wuv)uv, la probabilité que les noeuds j et k soient reliés

dans T est :

P{jk ∈ T} =
∑
T∈T
T3jk

p(T ) ∝
∑
T∈T
T3jk

∏
uv∈T

wuv.

Chaque probabilité peut ensuite être calculée par le théorème arbre-matrice, ou en

utilisant un résultat de Kirshner (2008) permettant de les calculer toutes en une

seule opération.
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Inférence de variables latentes

L’algorithme Espérance-Maximisation (EM, Dempster et al. (1977)) permet de

mener une inférence sur des données Y en présence de variables latentes Z. C’est

un algorithme itératif qui alterne deux étapes : une étape d’estimation (étape E)

de l’espérance conditionnelle de la log-vraisemblance jointe des variables observées

et latentes (complète), et une étape de maximisation (étape M) de cette quantité

en les paramètres du modèle.

Lorsque la distribution des variables latentes conditionnellement aux observées

p(Z | Y ) n’est pas disponible ou calculable, l’étape E a besoin d’être modifiée.

L’approche variationnelle permet alors d’approximer p(Z | Y ) en définissant un

ensemble de distributions autorisées Q, et une mesure de distance de la distribution

approchée à la vraie distribution conditionnelle. L’algorithme est alors Variationnel

EM (VEM), dont l’étape VE est un problème d’optimisation visant à trouver la

distribution q ∈ Q la plus proche de p(Z | Y ). L’algorithme VEM peut aussi être

vu comme l’optimisation d’une borne inférieure de la vraisemblance, pénalisée par

une mesure de la distance entre la distribution conditionnelle p(Z | Y ) et son

approximation variationnelle q(Z) .

Propriété (Approximation en champs moyen). Soit un algorithme VEM avec Q

l’ensemble des distributions factorisables et la divergence de Küllback-Leibler, ap-

pliqué aux données observées Y et à K variables latentes Z = {z1, ..., zK}. Alors

la solution du problème d’optimisation de l’étape VE à l’itération t+ 1 pour la dis-

tribution marginale qk de Zk est telle que:

q
(t+1)
k (zk) ∝ exp

{
Eqt\k

[log pθt+1(Y ,Z)]
}
.

Ce résultat, dû à Beal and Ghahramani (2003), est connu sous le nom

d’approximation en champ moyen et permet une écriture claire des algorithmes

VEM sous les conditions précisées.

Inférence à partir de données de comptages

L’inférence de réseaux à partir de données de comptages nécessite la définition d’une

distribution jointe permettant de modéliser les dépendances entre variables discrètes.

Il existe peu d’options dans le domaine, et une manière de faire est d’utiliser les

modèles linéaires mixtes généralisés. Pour chaque échantillon i et espèce j, un effet

aléatoire Zij gaussien est associé au comptage moyen mij par une fonction de lien

g. Une écriture générale de ce modèle prenant en compte l’offset oij et le vecteur
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de covariables xi de coefficient θj est la suivante :
g(mij) = oij + xᵀ

i θj + Zij ,

Zi ∼ N (0,Σ),

Y ij | Zi ∼ F (mij).

Y ij est distribué selon F , de moyenne mij . Par la suite, c’est la matrice de

variance-covariance Σ des effets aléatoires gaussiens Z qui est étudiée, plutôt que

les dépendances de Y directement. Il existe différentes stratégies pour se ramener

au cadre gaussien en utilisant les modèles linéaires mixtes généralisés, et dans les

chapitres suivants nous utilisons la distribution Poisson log-normale (PLN). Dans

ce cas précis, F est une distribution de Poisson et g la fonction log.

Chapitre 2

Ce deuxième chapitre présente la méthode développée pour l’inférence de réseaux

d’interactions d’espèces à partir de données de comptages. Les comptages Y sont

modélisés avec la distribution Poisson log-normale. L’inférence du réseau en elle-

même a lieu dans la couche des paramètres gaussiens Z, et utilise un mélange

d’arbres. Cela signifie que le graphe des dépendances conditionnelles sous-jacent

à Z est supposé être un arbre latent T . Ce modèle hiérarchique à deux couches

latentes peut se résumer ainsi : un arbre est d’abord tiré aléatoirement, puis les

paramètres gaussiens sont tirés conditionnellement à T , et enfin les comptages Y

sont tirés conditionnellement aux Z selon une loi de Poisson.

T Z Y

La stratégie d’inférence de réseaux mise en place vise la mise à jour de la distribution

de l’arbre latent T au travers des poids β, et le calcul de probabilités d’arêtes.

Modèle

Les comptages Y sont modélisés avec la distribution PLN. En notant Z les

paramètres latents, xi le vecteur de covariables correspondant à l’échantillon i, θj
son coefficient pour l’espèce j et oij l’offset associé, le modèle s’écrit comme suit :

Yij | Zi ∼ P(exp(oij + xᵀ
i θj + Zij)), (Yij ⊥⊥) | Zi.

Conditionnellement à l’arbre T , les paramètres latents Z sont distribués selon la loi

normale. La loi de Z | T est donc fidèle Markov à T et s’écrit :

Zi | T ∼ N (0,ΩT ), {Zi}i iid,
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où les termes non-nuls de ΩT correspondent aux arêtes de T . Enfin, l’arbre T est

supposé suivre une loi décomposable sur ses arêtes, avec β la matrice des paramètres

de poids et B la constante de normalisation :

T ∼
∏
kl∈T

βkl/B, B =
∑
T∈T

∏
kl∈T

βkl.

L’inférence du graphe des dépendances de la couche des Z repose alors sur un

mélange d’arbres gaussien. C’est à dire que les paramètres latents suivent une

distribution de mélange de gaussiennes indépendantes dont chaque composante est

fidèle à un arbre de l’espace des arbres couvrants T :

Zi ∼
∑
T∈T

p(T )N (Zi | T ; 0,ΩT ).

Inference

Les paramètres concernant directement le réseau sont les poids rassemblés dans β.

L’inférence du modèle comprend deux étapes qui séparent l’estimation de β du reste

des paramètres. La première étape utilise l’algorithme variationnel développé par

Chiquet et al. (2018) pour avoir accès aux estimateurs variationnels de θ et des

statistiques exhaustives relatives à Z. Ces paramètres sont fixés pour la suite de

l’inférence. La seconde étape est un algorithme EM qui a pour but l’estimation de

β, et le calcul des probabilités d’arêtes.

L’algorithm EM requiert le calcul de l’espérance conditionnelle de la log-

vraisemblance complète. En notant ρ̂jk la corrélation estimée entre les variables j

et k, et Pjk ' P{jk ∈ T | Y } la probabilité d’arête conditionnelle estimée entre j

and k, cette espérance est approximée par la quantité ci-dessous, où le terme cst ne

dépend pas de β : ∑
1≤j<k≤p

Pjk log
(
βjk(1− ρ̂2

jk)−n/2
)
− logB + cst.

Étape E : Les estimateurs des statistiques exhaustives de Z obtenus en première

étape de l’inférence donnent accès aux ρ̂jk. L’étape E consiste donc en le

calcul des probabilités approchées Pjk. On considère pour cela la probabilité

conditionnelle à Y de l’ensemble des arbres contenant l’arête jk, ce qui revient

à appliquer le théorème arbre-matrice à une nouvelle matrice de poids, de

terme général βjk(1− ρ̂2
jk)−n/2.

Étape M : Cette étape maximise la quantité précédente en β. La forme close de la

formule de mise à jour pour β est obtenue en utilisant un lemme de Meilă and

Jaakkola (2006), qui définit une matrice M(β), fonction de β. À l’itération
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t+ 1 de l’algorithme EM, la mise à jour est telle que:

βt+1
jk = P t+1

jk

/[
M(βt)

]
jk
.

Simulations et applications

La procédure d’inférence est implémentée dans le package R EMtree, disponible

sur GitHub (https://github.com/Rmomal/EMtree). Les performances de cette

méthode ont été comparées à celles d’approches venant de la micro-biologie

(SpiecEasi (Kurtz et al., 2015), gCoda (Fang et al., 2017), MInt (Biswas et al.,

2016)) et de l’écologie des communautés (MRFcov (Clark et al., 2018), ecoCopula

(Popovic et al., 2019)). Ces méthodes diffèrent sur la manière qu’elles ont de se

ramener au cadre gaussien. Toutes ces méthodes infèrent ensuite le réseau en ayant

recourt à une estimation pénalisée de la matrice de précision de la loi normale.

Lors de l’étude de simulations sur des graphes de densité et structure variables (clus-

ter, Erdös-Reyni, scale-free), EMtree s’illustre comme la méthode donnant le moins

de faux positifs (fausses arêtes) et conservant une densité de réseau comparable à

l’originale, tout en figurant parmi les algorithmes les plus rapides.

Deux exemples d’application d’EMtree, un en écologie et un en méta-génomique,

montrent l’importance de la prise en compte des covariables expérimentales dans le

modèle. Concernant la deuxième application, EMtree retrouve des résultats obtenus

précédemment dans Jakuschkin et al. (2016).

Chapitre 3

Le chapitre 3 considère le modèle exposé précédemment dans le chapitre 2, dans

le cas où la couche latente des paramètres gaussiens Z comprend des dimensions

supplémentaires qui ne correspondent à aucune donnée observée. Ces dimensions

supplémentaires représentent des acteurs, espèces ou covariables, qui ont une influ-

ence sur les données observées mais n’ont pas été mesurés. Ce sont des acteurs man-

quants, qui s’ils ne sont pas pris en compte génèrent des liens de dépendances condi-

tionnelles entre les espèces dépendantes de chacun des acteurs. Le modèle précédent

est modifié pour prendre en compte les dimensions supplémentaires indexées par H

de la couche latente, et considère la version normalisée de cette dernière, notée

U . Le graphe suivant synthétise les dépendances entre variables, où UO sont les

variables latentes des données observées, et UH celles des acteurs manquants :

T

UO UH

Y
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C’est un modèle plus complexe que précédemment, comprenant trois couches la-

tentes. Un algorithme VEM est développé pour l’inférence, qui permet d’obtenir

des informations concernant les acteurs manquants, en plus d’inférer le réseau com-

plet des dépendances conditionnelles.

Modèle

Les comptages sont modélisés avec la distribution PLN comme détaillé au chapitre

2, mais en considérant la version normalisée de la couche latente gaussienne :

Yij | Uij ∼ P (exp(oij + xᵀ
i θj + σjUij)) , (Yij ⊥⊥) | U i.

La couche latente gaussienne U est composée de UO, de dimension p qui correspond

aux Y observés, et UH qui rassemble les r variables supplémentaires non-observées.

Le reste du modèle est le même que précédemment, si ce n’est pour les dimensions

supplémentaires : l’arbre T est paramétré par une matrice de poids β de dimension

(p+r)× (p+r), la distribution marginale de U est un mélange gaussien sur l’espace

des arbres couvrants de dimension p + r, dont chaque composante est fidèle à un

arbre. On note Ω l’ensemble des matrices de précision des gaussiennes fidèles à un

arbre : Ω = {ΩT , T ∈ T }.

Inférence

La complexité supplémentaire de la structure latente de ce modèle demande une

inférence variationnelle. L’inférence présentée ici maximise la borne inférieure suiv-

ante qui utilise la divergence de Küllback-Leibler:

J (θ,β,Ω; q) = log pθ,β,Ω(Y )−KL (q(U , T )‖pθ,β,Ω(U , T | Y )) .

Ci-dessus, q(U , T ) est la distribution approchée des variables latentes condition-

nellement aux données observées : q(U , T ) ≈ p(U , T | Y ). On suppose que q

est une distribution produit, ce qui permet de séparer les distributions marginales

variationnelles de l’arbre T et des variables gaussiennes U comme suit:

q(U , T ) = h(U) g(T ).

La distribution h est de plus elle-même supposée être un produit de n gaussiennes à

matrices de variance-covariances diagonales, à l’instar de Chiquet et al. (2018). Les

paramètres de h sont les matrices M = [MO,MH ] et S = [SO, SH ] de dimensions

n × (p + r), rassemblant respectivement les moyennes et les variances de chaque

composante du produit. La distribution g de l’arbre T se factorise sur les arêtes de

T , et ses paramètres de poids sont rassemblés dans la matrice β̃.
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La procédure d’inférence tire à nouveau parti de l’estimation variationnelle du

modèle PLN développée dans Chiquet et al. (2018). Cette estimation donne une

approximation des paramètres θ, MO et SO qui sont considérés fixes pour la suite

de l’inférence.

L’algorithme VEM développé a pour but l’estimation des poids β et itère les étapes

suivantes:

Étape VE : Cette étape maximise J par rapport à q, ce qui revient à maximiser J
en les paramètres variationnels de g et ceux restants de h, soit en β̃, MH et SH .

L’écriture de q sous forme factorisée permet d’aboutir à une approximation en

champs moyen pour les estimations de h et g.

Étape M : Cette étape maximise J en les paramètres restants de la log-

vraisemblance complète, soit en β et Ω. La mise à jour de β est la même que

dans le chapitre 2 et nécessite le calcul des probabilités d’arêtes. Dans le cas

présent la distribution conditionnelle des arbres aux données est approchée

par g, ce qui justifie de calculer les probabilités d’arêtes en appliquant la

formule de Kirshner (2008) aux poids variationnels β̃.

L’estimation des matrices ΩT est plus complexe et applique au contexte des

arbres couvrants les formules du maximum de vraisemblance de Lauritzen

(1996), établies dans le cadre des modèles graphiques gaussiens décomposables.

Ces formules sont définies à partir de l’espérance de statistiques exhaustives,

calculée à partir de M et S.

Cette procédure est implémentée dans le package R nestor (Network inference from

Species counTs with missing actORs, https://github.com/Rmomal/nestor). Une

étude de simulations révèle son efficacité et l’importance fondamentale de son ini-

tialisation.

Applications

La procédure d’inférence donne une estimation du réseau complet et des paramètres

du modèle. Cela rend disponible deux informations clés pour caractériser les acteurs

manquants supposés du réseau, à savoir leur position dans le réseau, et l’estimation

de leur moyenne variationnelle MH sur les différents sites d’échantillonnage.

Un premier exemple d’application utilise des données de recensement de poissons

dans la mer de Barents. Là, l’inférence de réseau avec r = 1 acteur manquant donne

un noeud dont le vecteur de moyennes MH est fortement corrélé à la covariable

de température, tout comme ceux de ses voisins directs dans le réseau. Dans un

second exemple sur des poissons du fleuve Fatala en Guinée, l’inférence est réalisée

avec deux acteurs manquants. L’étude de leur moyenne variationnelle montre que

le premier est lié à la nature spatiale de ces donnée, et le second semble lié à la
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dimension temporelle de l’échantillonnage.

Ces applications illustrent à la fois la validité de la méthode en comparant les

acteurs inférés à des covariables d’importance, et une première approche pour la

caractérisation des acteurs manquants.

Chapitre 4

Le dernier chapitre présente des perspectives de ce travail. Après avoir résumé les

spécificités et discuté des points sensibles de la méthodologie développée, des ex-

tensions naturelles du modèle sont présentées. Les premières portent sur le réseau

inféré. Plus précisément, une méthode d’estimation de la matrice de précision Ω de

la couche latente est proposée, qui utilise les estimateurs de Lauritzen. L’estimation

précise de cette matrice permet des interprétations intéressantes dans le domaine

d’application en question, à propos de la force et du sens des interactions détectées.

Le sujet de la comparaison de réseaux est abordé dans un second temps. La

manière de faire générale est de résumer les réseaux à des vecteurs de mesures

caractéristiques, puis de comparer ces vecteurs. Ici nous proposons de comparer les

distributions d’arbres inférées sur les réseaux.

Des perspectives sur les spécificités des données disponibles sont ensuite discutées.

La procédure d’inférence de réseaux développée a lieu au sein d’une couche gaussi-

enne latente. Tant qu’elle est présente dans le modèle l’inférence de réseau reste la

même, aussi la loi d’émission des données à partir de ces paramètres latents peut être

différente. Ceci permet d’inférer des réseaux à partir de données de natures variées,

pourvu que l’estimation des paramètres de cette loi soit disponible. Par ailleurs, les

données peuvent présenter des dépendances spatiales, comme c’est souvent le cas

en écologie. Il est possible de prendre en compte ces effets en moyenne, en ajustant

par exemple des coordonnées spatiales au modèle. Cette première correction peut

ne pas être suffisante. Nous présentons une manière d’introduire des paramètres de

variance des effets spatiaux dans le modèle d’inférence de réseau directement, afin

d’ajuster les effets spatiaux en variance.

Enfin, une perspective plus générale sur l’inférence de réseau à partir de données de

comptages sans avoir recours à une couche latente gaussienne est présentée. Comme

la vraisemblance d’une variable aléatoire conditionnellement à une structure d’arbre

se factorise sur les arêtes de cet arbre, l’idée est d’inférer le réseau par un mélange

d’arbres en utilisant une loi bivariée sur les comptages. La difficulté de cette ap-

proche réside dans l’estimation des paramètres.
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Mots clés : Réseaux, Modèles Graphiques, Données d’abondances, Acteurs manquants, Algorithme VEM

Résumé : Les réseaux sont utilisés comme outils en

microbiologie et en écologie pour représenter des rela-

tions entre espèces. Les modèles graphiques gaussiens

sont le cadre mathématique dédié à l’inférence des

réseaux de dépendances conditionnelles, qui permettent

une séparation claires des effets directs et indirects.

Cependant, les données observées sont souvent des comp-

tages discrets qui ne permettent pas l’utilisation de ce

modèle. Cette thèse développe une méthodologie pour

l’inférence de réseaux à partir de données d’abondance

d’espèces. La méthode repose sur une exploration effi-

cace et exhaustive de l’espace des arbres couvrants dans

un espace latent des comptages observés, rendue possi-

ble par les propriétés algébriques de ces structures.

Par ailleurs, il est probable que les comptages observés

dépendent d’acteurs non mesurés (espèces ou covariable).

Ce phénomène produit des arêtes supplémentaires dans

le réseau marginal entre les espèces liées à l’acteur man-

quant dans le réseau complet, ce qui fausse la suite des

analyses. Le second objectif de ce travail est de pren-

dre en compte les acteurs manquants lors de l’inférence

de réseau. Les paramètres du modèle proposé sont es-

timés par une approche variationnelle, qui fournit des

éléments d’information pertinents à propos des données

non observées.

Title: Network inference from incomplete abundance data.
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Abstract: Networks are tools used to represent

species relationships in microbiology and ecology. Gaus-

sian Graphical Models provide with a mathematical

framework for the inference of conditional dependency

networks, which allow for a clear separation of direct

and indirect effects. However observed data are often

discrete counts and the inference cannot be directly per-

formed with this model. This work develops a method-

ology for network inference from species observed abun-

dances. The method relies on specific algebraic proper-

ties of spanning tree structures to perform an efficient

and complete exploration of the space of spanning trees.

The inference takes place in a latent space of the ob-

served counts.

Then, observed abundances are likely to depend on un-

measured actors (e.g. species or covariate). This results

in spurious edges in the marginal network between the

species linked to the latter in the complete network, caus-

ing inaccurate further analysis. The second objective of

this work is to account for missing actors during network

inference. To do so we adopt a variational approach

yielding valuable insights about the missing actors.
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