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Contrôle des systèmes d'équations aux dérivées partielles de type dispersif
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Abstract: There are few results in the literature about the controllability of partial differential equations systems. In this thesis, we consider the study of control properties for three coupled systems of partial differential equations of dispersive type and an inverse problem of recovering a coefficient. The first system is formed by N Korteweg-de Vries equations on a star-shaped network. For this system we will study the exact controllability using N controls placed in the external nodes of the network. The second system couples three Korteweg-de Vries equations. This system is called in the liter-ature the generalized Hirota-Satsuma system. We study the exact controllability with three boundary controls. On the other hand, we will study a fourth-order parabolic system formed by two Kuramoto-Sivashinsky equations. We prove the well-posedness of the system with some regularity results. Then we study the null controllability of the system with two controls, to remove a control, we need a Carleman inequality which is not proven yet. Finally, we present for the fourth-order parabolic system the inverse problem of retrieving the anti-diffusion coefficient from the measurements of the solution.
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Résumé

Le but de cette thèse est l'étude des propriétés de contrôle pour des systèmes de dimension infinie décrits par des équations aux dérivées partielles. À travers les résultats obtenus dans ce travail, nous avons voulu faire une contribution à la théorie du contrôle des systèmes d'équations aux dérivées partielles de type dispersif en accordant une attention particulière au nombre de contrôles utilisés dans chaque cas.

Dans le chapitre 2 nous étudions la contrôlabilité exacte d'un système composé par N équations de Korteweg-de Vries. Ce modèle est connu dans la littérature sous le nom d'équation KdV sur un réseau en forme d'étoile, qui est utilisé pour modéliser le système cardiovasculaire.

Le système initialement a été présenté dans la littérature en considérant N équations de Korteweg-de Vries avec N + 1 fonctions de contrôle : N contrôles aux extrémités du réseau et un contrôle au centre du réseau. Notre premier résultat est une réponse au problème ouvert de contrôler ce système avec moins de contrôles. Nous prouvons que le système reste contrôlable sans le contrôle qui agit au centre du réseau. Ensuite, nous prouvons la contrôlabilité exacte du système avec N contrôles.

Le chapitre 3 est dédié à l'étude de la contrôlabilité d'un système qui couple trois équations de Korteweg-de Vries posées sur un intervalle fini. Le système étudié ici est appelé dans la littérature le système Hirota-Satsuma généralisé. Nous prouvons l'existence et l'unicité des solutions du système avec trois entrées de contrôle. Les résultats de contrôlabilité exacte pour le système linéaire et non linéaire sont obtenus en utilisant la contrôlabilité exacte d'une seule équation de Korteweg-de Vries et un argument de point fixe.

Dans le chapitre 4 nous étudions un couplage d'un système parabolique constitué de deux équations du quatrième ordre. Nous prouvons l'existence et l'unicité des solutions du système avec quelques résultats de régularité. Ensuite, nous étudions la contrôlabilité à zéro avec deux contrôles, un contrôle en chaque équation. Dans ce chapitre, nous présentons un résultat en cours de l'utilisation de la méthode de résolution algébrique pour supprimer le contrôle de la dernière équation. Pour obtenir la contrôlabilité à zéro avec un seul contrôle interne distribué dans un sous-ensemble ouvert non vide du domaine, nous avons besoin d'une estimation de Carleman avec des données non homogènes qui n'est pas encore prouvée.

Dans le chapitre 5, nous étudions le problème inverse de la récupération du coefficient d'anti-diffusion d'un système formé de deux équations de type Kuramoto-Sivashinsky à partir des mesures de la solution sur une partie de la frontière et également à un certain moment positif dans tout le domaine spatial. Nous prouvons la stabilité locale du problème inverse en utilisant la méthode de Bukhgeim-Klibanov et une estimation globale de Carleman.

Mots clés : Contrôlabilité exacte, contrôlabilité à zéro, méthode de contrôle fictif, l'équation de Korteweg-de Vries, l'équation de Kuramoto-Sivashinky, système parabolique du quatrième ordre, estimations de Carleman, la méthode de solvabilité algébrique.

Resumen

El propósito de esta tesis es el estudio de las propiedades de control para sistemas de dimensión infinita descritos por ecuaciones diferenciales en derivadas parciales. A través de los resultados obtenidos en este trabajo, deseamos contribuir a la teoría de control de sistemas conformados por ecuaciones diferenciales en derivadas parciales de tipo dispersivo, poniendo especial atención en el número de controles utilizados en cada caso.

En el Capítulo 2 estudiamos la controlabilidad exacta de un sistema conformado por N ecuaciones de Korteweg-de Vries (KdV). Este modelo se conoce en la literatura como la ecuación KdV en una red en forma de estrella el cual es utilizado para modelar por ejemplo el sistema cardiovascular. Inicialmente el sistema fue considerado con N + 1 controles donde N controles fronteras actúan en los extremos de la red más un control central. Nuestro primer resultado es una respuesta al problema abierto de controlar este sistema con menos controles. Probamos que el sistema sigue siendo controlable sin el control que actúa en el centro de la red. Es decir, demostramos que el sistema es exactamente controlable con N controles.

El Capítulo 3 está dedicado al estudio de la controlabilidad de un sistema conformado por tres ecuaciones de Korteweg-de Vries el cual se conoce en la literatura como el sistema Hirota-Satsuma generalizado. Demostramos la buena colocación del sistema, luego mostramos la controlabilidad exacta para el sistema lineal y el sistema no lineal utilizando un argumento de punto fijo y la controlabilidad exacta de la ecuación KdV con un control frontera.

En el Capítulo 4 estudiamos un sistema parabólico que acopla dos ecuaciones de cuarto orden.

Demostramos la buena colocación del sistema además de algunos resultados de regularidad.

Luego, estudiamos la controlabilidad a cero en el caso de dos controles, un control en cada ecuación. En este capítulo, presentamos un resultado en curso del uso del método de solubilidad algebraica para eliminar el control en la última ecuación. Para obtener la controlabilidad a cero del sistema con un solo control interno es necesario una estimación de Carleman con datos no homogéneos que aún no hemos probado.

En el Capítulo 5 estudiamos el problema inverso de recuperar el coeficiente de anti-difusión de un sistema de cuarto orden conformado por dos ecuaciones de tipo Kuramoto-Sivashinsky a partir de las mediciones de la solución en una parte de la frontera y también en cierto tiempo positivo en todo el dominio espacial. Demostramos la estabilidad local del problema inverso utilizando el método de Bukhgeim-Klibanov y una estimación global de Carleman.

Palabras Claves : Controlabilidad exacta, controlabilidad a cero, método de control ficticio, ecuación de Korteweg-de Vries, ecuación de Kuramoto-Sivashinsky, sistema parabólico de cuarto orden, estimación de Carleman, solubilidad algebraica. 
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Motivation

Le but de cette thèse est d'apporter une contribution à la théorie du contrôle à travers des résultats obtenus sur des systèmes d'équations aux dérivées partielles. Puisque notre objectif est d'obtenir des résultats de contrôlabilité pour les systèmes avec moins de contrôles que d'équations, nous nous concentrons sur le nombre d'équations et le nombre de contrôles.

L'étude d'équations aux dérivées partielles de type dispersif et parabolique a été étudiée dans différents modèles mathématiques et physiques. Dans cette thèse, nous considérons les systèmes couplant plusieurs équations du type de -L'équation de Korteweg-de Vries

v t + vv x + v xxx = 0, x ∈ [0, L], t ≥ 0.
-L'équation de Kuramoto-Sivashinsky

u t + u xxxx + u xxx + u xx + uu x = 0, x ∈ [0, L], t ≥ 0.
L'équation de Korteweg-de Vries (KdV) a été présentée par Korteweg et son élève Gustav de Vries dans [START_REF] Korteweg | On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves[END_REF] pour modéliser la propagation d'une vague de petite amplitude se propageant à droite dans un canal uniforme peu profond. L'existence et l'unicité de la solution de cette équation ont été étudiées dans les articles [START_REF] Coron | Exact boundary controllability of a nonlinear KdV equation with critical lengths[END_REF][START_REF] Cerpa | Control of a Korteweg-de Vries equation : a tutorial[END_REF]. Nous nous référons également au livre [START_REF] Linares | Introduction to nonlinear dispersive equations[END_REF], où l'existence et l'unicité pour l'équation KdV et d'autres équations différentielles partielles non linéaires sont étudiées.

Les premiers résultats sur les propriétés de contrôle de l'équation KdV ont été obtenus par Russell et Zhang dans [START_REF] Russell | Controllability and stabilizability of the third-order linear dispersion equation on a periodic domain[END_REF] et [START_REF] Russell | Smoothing and decay properties of solutions of the Korteweg-de Vries equation on a periodic domain with point dissipation[END_REF] pour un système avec des conditions périodiques aux bords et avec un contrôle interne. Dans le cas d'un contrôle frontière, quelques références importantes sont [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF][START_REF] Russell | Controllability and stabilizability of the third-order linear dispersion equation on a periodic domain[END_REF] et [START_REF] Sun | The Korteweg-de Vries equation on a periodic domain with singular-point dissipation[END_REF]. Plus tard, dans les articles [START_REF] Cerpa | Exact controllability of a nonlinear Korteweg-de Vries equation on a critical spatial domain[END_REF][START_REF] Cerpa | Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain[END_REF], la contrôlabilité exacte de l'équation KdV non linéaire a été prouvée dans le cas de domaines critiques.

En ce qui concerne les systèmes dispersifs, les article [START_REF] Capistrano-Filho | Boundary controllability of a nonlinear coupled system of two Korteweg-de Vries equations with critical size restrictions on the spatial domain[END_REF][START_REF] Cerpa | A note on the paper "On the controllability of a coupled system of two Korteweg-de Vries equations[END_REF][START_REF] Capistrano-Filho | Neumann boundary controllability of the Gear-Grimshaw system with critical size restrictions on the spatial domain[END_REF] étudient des systèmes avec l'équation KdV sur un domaine borné avec des contrôles aux bords. Dans [4,[START_REF] Cerpa | On the boundary controllability of the Korteweg-de Vries equation on a star-shaped network[END_REF], les auteurs ont étudié l'équation KdV posée sur un réseau. Concernant le contrôle interne des systèmes dispersifs, les travaux les plus récents sont [START_REF] Araruna | Internal null controllability of a linear Schrödinger-KdV system on a bounded interval[END_REF] où une approche d'estimation Carleman est utilisée pour obtenir la contrôlabilité à zéro d'un système linéaire couplant une équation KdV avec une équation Schrödinger et [START_REF] Carreño | Internal null controllability of the generalized Hirota-Satsuma system[END_REF] où la contrôlabilité à zéro d'un système Hirota-Satsuma généralisé, couplé par trois équations de Korteweg-de Vries non linéaires a été prouvée en utilisant une approche de dualité et certaines estimations de Carleman. D'autre part, l'équation de Kuramoto-Sivashinsky a été dérivée par Kuramoto dans [START_REF] Kuramoto | On the formation of dissipative structures in reactiondiffusion systems : Reductive perturbation approach[END_REF] et par Sivashinsky dans [START_REF] Sivashinsky | Nonlinear analysis of hydrodynamic instability in laminar flames -I. Derivation of basic equations[END_REF]. Cette équation différentielle partielle non-linéaire décrit les problèmes d'instabilité dans une variété de systèmes physiques et chimiques (voir [START_REF] Chen | Nonlinear waves on liquid film surfaces-II. Bifurcation of the long-wave equation[END_REF] et [START_REF] Hooper | Nonlinear instability at the interface between two viscous fluids[END_REF]). D'un point de vue mathématique, l'existence et l'unicité des solutions et les propriétés dynamiques de l'équation KS ont été étudiées dans [START_REF] Nicolaenko | Remarks on the Kuramoto-Sivashinsky equation[END_REF][START_REF] Nicolaenko | Some global dynamical properties of the Kuramoto-Sivashinsky equations : nonlinear stability and attractors[END_REF].

Concernant les propriétés de contrôle, dans [START_REF] Cerpa | Local exact controllability to the trajectories of the 1-D Kuramoto-Sivashinsky equation[END_REF], les auteurs ont étudié la contrôlabilité aux trajectoires avec contrôles aux frontières. La contrôlabilité à zéro et la stabilisation de l'équation linéaire de Kuramoto-Sivashinsky ont été prouvées dans [START_REF] Cerpa | Null controllability and stabilization of the linear Kuramoto-Sivashinsky equation[END_REF]. Plus tard, dans [START_REF] Cerpa | On the control of the linear Kuramoto-Sivashinsky equation[END_REF], la propriété de contrôlabilité à zéro a été présentée dans le cas de conditions aux bords de Dirichlet et Neumann. Dans [START_REF] Hu | Robust control of the Kuramoto-Sivashinsky equation[END_REF] l'auteur a considéré un contrôle frontière robuste pour l'équation de Kuramoto-Sivashinsky.

Dans le cas des systèmes paraboliques, l'article [START_REF] Cerpa | Null controllability of the stabilized Kuramoto-Sivashinsky system with one distributed control[END_REF] traite de la contrôlabilité à zéro pour un système non linéaire unidimensionnel, qui est constitué d'une équation de Kuramoto-Sivashinsky-Korteweg de Vries couplée avec une équation de la chaleur. Dans [START_REF] Cerpa | On the boundary control of a parabolic system coupling KS-KdV and Heat equations[END_REF], la contrôlabilité à zéro de ce système a été étudiée dans le cas où les deux équations sont contrôlées depuis la frontière.

Dans le cas du contrôle interne pour des systèms couplés réaction-diffusion, les articles [START_REF] Ammar-Khodja | Null-controllability of some reaction-diffusion systems with one control force[END_REF][START_REF] Mauffrey | On the null controllability of a 3× 3 parabolic system with non-constant coefficients by one or two control forces[END_REF] traitent de la contrôlabilité à zéro en utilisant les estimations de Carleman. De plus, dans [START_REF] Ammar-Khodja | Null-controllability of some systems of parabolic type by one control force[END_REF], la contrôlabilité à zéro de certains systèmes de type parabolique par une force de contrôle à été largement étudiée.

Dans les chapitres suivants, nous présenterons trois systèmes d'équations aux dérivées partielles. Pour les deux premiers systèmes, nous étudierons la contrôlabilité exacte. Pour le troisième système, nous présenterons la contrôlabilité à zéro en utilisant des méthodes de la théorie du contrôle et quelques résultats de stabilité d'un problème inverse associé.

Dans la suite de cette introduction, nous rappelons les principales notions de contrôle dans le cadre de l'équation de la chaleur, puis nous décrivons nos résultats.

Définitions de contrôlabilité

Afin d'introduire différentes notions, nous considérons l'équation de la chaleur 1-D suivante :

       u t -u xx = h1 w , (t, x) ∈ Q T , u(t, 0) = u(t, L) = 0, t ∈ (0, T ), u(0, x) = u 0 (x), x ∈ (0, L), (1.1) 
où Q T = (0, T ) × (0, L). L'état du système est u = u(t, x) et h = h(t, x) est la fonction de contrôle avec un support localisé dans ω ⊂ (0, L). Il est bien connu que pour u 0 ∈ L 2 (0, L)

et h ∈ L 2 (0, T ; L 2 (0, L)), le système (1.1) a une solution unique u ∈ C([0, T ]; L 2 (0, L)) ∩
L 2 (0, T ; H 1 (0, L)) et ainsi nous obtenons une trajectoire continue dans l'espace-état L 2 (0, L).

Le système (1.1) est dit être Contrôlable à zéro au temps T , si pour toute donnée initiale

u 0 ∈ L 2 (0, L) il existe un contrôle h ∈ L 2 (0, T ; L 2 (0, L)) tel que la solution de (1.1) satisfait u(T, x) = 0.
Approximativement contrôlable au temps T , si pour tout u 0 ∈ L 2 (0, L), tout nombre réel

> 0 et tout u f ∈ L 2 (0, L), il existe un contrôle h ∈ L 2 (0, T ; L 2 (0, L)) tel que la solution de (1.1) satisfait u(T, x) -u f (x) L 2 (Ω) < .
Exactement contrôlable au temps T , si pour tout

u 0 ∈ L 2 (0, L) et tout u f ∈ L 2 (0, L) il existe un contrôle h ∈ L 2 (0, T ; L 2 (0, L)) tel que la solution de (1.1) satisfait u(T, x) = u f (x).
Soit T > 0 et toute donnée initiale u 0 ∈ L 2 (0, L). L'ensemble des états accessibles est défini par

R(T, u 0 ) = {u(T ) ∈ L 2 (Ω) : u solution de (1.7) avec h ∈ L 2 (0, T ; L 2 (0, L))}.
Un élément de R(T, u 0 ) est un état accessible au temps T en partant de u 0 avec l'aide d'un contrôle h. Les notions de contrôlabilité peuvent être définies en utilisant l'ensemble des états accessibles.

Définition 1 Le système (1.1) est contrôlable à zéro au temps T si, pour toute donnée initiale u 0 ∈ L 2 (0, L), l'ensemble des états accessibles R(T ; u 0 ) contient l'élément 0.

Définition 2 Le système (1.1) est approximativement contrôlable au temps T si, pour toute donnée initiale u 0 ∈ L 2 (0, L), l'ensemble des états accessibles R(T ; u 0 ) est dense en L 2 (0, L).

Définition 3 Le système (1.1) est exactement contrôlable au temps T si, pour toute donnée initiale u 0 ∈ L 2 (0, L), l'ensemble des états accessibles R(T ; u 0 ) = L 2 (0, L).

Il existe quelques relations entre les différentes notions de contrôlabilité. Il est facile de montrer que la contrôlabilité exacte et la contrôlabilité approximative sont des propriétés équivalentes dans le cas d'un système linéaire de dimension finie. Nous savons que la contrôlabilité exacte implique la contrôlabilité à zéro et que la contrôlabilité à zéro implique que le système est approximativement contrôlable.

Observabilité et Contrôlabilité

On peut caractériser la contrôlabilité à zéro du système (1.1) par une inégalité d'observabilité pour le système adjoint (voir Théorème 2.19 dans [START_REF] Brezis | Analyse fonctionnelle. Théorie et applications[END_REF]). Plus précisément, nous devons montrer qu'il existe une constante C > 0 telle que

ϕ(0) L 2 (0,L) ≤ C T 0 ω ϕ 2 dxdt ∀ϕ 0 ∈ L 2 (0, L), (1.2) 
où ϕ est la solution du système adjoint

       -ϕ t -∆ϕ = 0, (t, x) ∈ Q T , ϕ(t, 0) = ϕ(t, L) = 0, t ∈ (0, T ), ϕ(T, x) = ϕ T (x), x ∈ (0, L). (1.3)
La preuve de cette inégalité se trouve dans [START_REF] Doubova | On the controllability of parabolic systems with a nonlinear term involving the state and the gradient[END_REF].

Nous pouvons remarquer que nous avons transformé le problème de contrôlabilité en une in- 

Soit (l j ) j=1,••• ,N ∈ (0, +∞) N et α ≥ N/2, N ∈ N. Considérons le système suivant de N équations de Korteweg-de Vries                        (∂ t u j + ∂ x u j + u j ∂ x u j + ∂ 3 x u j )(t, x) = 0, j = 1, • • • , N, x ∈ (0, l j ), t > 0, u j (t, 0) = u k (t, 0), j, k = 1, • • • , N, t > 0, N j=1 ∂ 2 x u j (t, 0) = -αu 1 (t, 0) - N 3 (u 1 (t, 0)) 2 , t > 0, u j (t, l j ) = 0, ∂ x u j (t, l j ) = g j (t), j = 1, • • • , N, t > 0, u j (0, x) = u 0 j (x), j = 1, • • • , N, x ∈ (0, l j ), (1.4 
)

pour la solution u = (u 1 , • • • , u N ), la fonction scalaire u j (t, x) pour x ∈ (0, l j ) et t > 0 contient
l'information sur le déplacement de l'onde à l'emplacement x et temps t.

Afin d'étudier les systèmes d'équations aux dérivées partielles, une question importante est :

• Pouvez-vous contrôler un système si vous avez N équations aux dérivées partielles couplées, quel est le nombre minimum de contrôles ?

Une réponse partielle à cette question est le résultat suivant.

Théorème 1 Soit (l j ) j=1,••• ,N ∈ (0, +∞) N et α ≥ N/2. Il existe L 0 , T min > 0 tels que si L = max j=1,..,N l j < L 0 et T > T min , (1.5) 
alors le système non linéaire de contrôle (1.4) est localement exactement contrôlable. Ce qui signifie qu'il existe > 0 tel que pour toute donnée initiales

u 0 = (u 0 1 , • • • , u 0 N ) ∈ L 2 (T ) et u T = (u T 1 , • • • , u T N ) ∈ L 2 (T ) avec u 0 L 2 (T ) < ε et u T L 2 (T ) < ε, il existe un contrôle g = (g 1 , • • • , g N ) ∈ L 2 (0, T ) N tel que la solution u = (u 1 , • • • , u N ) ∈ B de (1.4) satisfait u 1 (T, •) = u T 1 , u 2 (T, •) = u T 2 , • • • , u N (T, •) = u T N .
La preuve est en effet basée sur une approche multiplicative. Nous obtenons la contrôlabilité exacte pour L assez petit et T min donnée par

T min =        1 - L 3 lπ 2 - 2α -N (2α -N ) + N j=1 1 l 2 j               3 l (2α -N ) (2α -N ) + N j=1 1 l 2 j        -1 -∆ 1/2        3 l (2α -N ) (2α -N ) + N j=1 1 l 2 j        -1 avec ∆ =        1 - L 3 lπ 2 - 2α -N (2α -N ) + N j=1 1 l 2 j        2 -4 3 2l (2α -N ) (2α -N ) + N j=1 1 l 2 j 2L 3 3π 2 .
(1.6)

Système Hirota-Satsuma

Dans le chapitre 3, nous étudions la contrôlabilité exacte du système Hirota-Satsuma donnée par l'équation suivante, avec

T > 0 et Q T = (0, T ) × (0, L),        u t -1 4 u xxx = 3uu x -6vv x + 3w x , (t, x) ∈ Q T , v t + 1 2 v xxx = -3vv x , (t, x) ∈ Q T , w t + 1 2 w xxx = -3uw x , (t, x) ∈ Q T , (1.7) 
avec les conditions aux bords et initiales :

             u(t, 0) = 0, u(t, L) = 0, u x (t, 0) = h 1 (t), t ∈ (0, T ), v(t, 0) = 0, v(t, L) = 0, v x (t, L) = h 2 (t), t ∈ (0, T ), w(t, 0) = 0, w(t, L) = 0, w x (t, L) = h 3 (t), t ∈ (0, T ), u(0, x) = u 0 (x), v(0, x) = v 0 (x), w(0, x) = w 0 (x), x ∈ (0, L).
(1.8)

Nous démontrons le résultat suivant. 

, v 0 , w 0 ) ∈ L 2 (0, L) 3 et tout (u T , v T , w T ) ∈ L 2 (0, L) 3 vérifiant (u 0 , v 0 , w 0 ) L 2 (0,L) 3 < r et (u T , v T , w T ) L 2 (0,L) 3 < r, il existe trois contrôles (h 1 , h 2 , h 3 ) ∈ L 2 (0, T ) 3 tels que la solution (u, v, w) de (1.7)-(1.8) satisfait u(T, •) = u T , v(T, •) = v T , w(T, •) = w T .
La preuve consiste à étudier la structure en cascade du système linéaire. Nous utilisons la contrôlabilité avec un contrôle frontière pour une seule équation KdV linéaire sur un domaine borné. Ensuite, pour obtenir le résultat pour le système non linéaire, nous utilisons un théorème du point fixe.

Système parabolique d'ordre quatre

Soit T > 0, L > 0. Dans le chapitre 4, nous étudions la contrôlabilité à zéro du système parabolique suivant, avec

Q T = (0, T ) × (0, L),                    u t + u xxxx + b(x)u xx = v x + g 1 (x)v + f 1 (x)u x + g 2 (x)u + 1 ω h, (t, x) ∈ Q T , v t + v xxxx + d(x)v xx = u x + f 2 (x)v x + g 4 (x)v, (t, x) ∈ Q T , u(t, 0) = u x (t, 0) = 0, u(t, L) = u x (t, L) = 0, t ∈ (0, T ), v(t, 0) = v x (t, 0) = 0, v(t, L) = v x (t, L) = 0, t ∈ (0, T ), u(0, x) = u 0 (x), v(0, x) = v 0 (x),
x ∈ (0, L).

(1.9)

Nous souhaitons obtenir le théorème suivant mais nous n'avons obtenu à ce jour que des résultats partiels. 

Conjecture 1 Soit L > 0 et T > 0, pour toute donnée initiale (u 0 , v 0 ) ∈ L 2 (0, L) 2 il existe h ∈ L 2 (Q T ) tel que la solution unique (u, v) ∈ C([0, T ]; L 2 (0, L) 2 ) de (1.9) satisfait u(T, •) = v(T, •) = 0. De plus, le contrôle correspondant h satisfait h L 2 (Q T ) ≤ (u 0 , v 0 ) L 2 (0,L) 2 . ( 1 
) = (σ 1 (x), σ 2 (x)) et l'anti-diffusion (γ 1 , γ 2 ) = (γ 1 (x), γ 2 (x)
). Le système est donné par l'équation suivante

                 u t + (σ 1 (x)u xx ) xx + a(x)u xxx + γ 1 (x)u xx = v x + g 1 (x)v + f 1 (x)u x + g 2 (x)u + η 1 , in Q T , v t + (σ 2 (x)v xx ) xx + c(x)v xxx + γ 2 (x)v xx = u x + g 3 (x)u + f 2 (x)v x + g 4 (x)v + η 2 , in Q T , u(t, 0) = h 1 (t), u(t, L) = h 2 (t), , u x (t, 0) = h 3 (t), u x (t, L) = h 4 (t), in (0, T ), v(t, 0) = h 5 (t), v(t, L) = h 6 (t), v x (t, 0) = h 7 (t), v x (t, L) = h 8 (t), in (0, T ), u(0, x) = u 0 (x), v(0, x) = v 0 (x), in (0, L), (1.11) 
où 

Q := (0, T ) × (0, L), a, c ∈ H 4 (0, L), g i ∈ H 4 (0, L) pour i = 1, 2, 3, 4, f 1 , f 2 ∈ H 4 (0, L), η 1 , η 2 ∈ L 2 (0, T ; H 4 (0, L)) et h j ∈ H 2 (0, T ) pour j = 1
Y k := C([0, T ]; H k (0, L)) ∩ L 2 (0, T ; H k+2 (0, L)), pour k ∈ N, et Z := {z ∈ Y 6 /z t ∈ Y 2 }.
Let (σ 1 , σ 2 ) ∈ H 4 (0, L) 2 be such that

σ 1 (x) ≥ σ 0 > 0 and σ 2 (x) ≥ σ 0 > 0, ∀ x ∈ (0, L), (1.12) 
and h j ∈ H 2 (0, T ) for j = 1, • • • , 8 satisfy the compatibility conditions

(u 0 (0), v 0 (0)) = (h 1 (0), h 5 (0)), (u 0,x (0), v 0,x (0)) = (h 3 (0), h 7 (0)), (u 0 (L), v 0 (L)) = (h 2 (0), h 6 (0)), (u 0,x (L), v 0,x (L)) = (h 4 (0), h 8 (0)). (1.13) 
Nous prouvons notre résultat principal. 

Théorème 3 Soit (σ 1 , σ 2 ) ∈ H 4 (0, L) 2 satisfaisant (1.12), (γ 1 , γ 2 ) ∈ H 4 (0, L) 2 , (η 1 , η 2 ) ∈ F 2 , a, c ∈ H 4 (0, L), f i ∈ H 4 (0, L) pour i = 1, 2, g i ∈ H 4 (0, L) pour i = 1, 2, 3, 4, la donnée initiale (u 0 , v 0 ) ∈ H 6 (0, L) 2 et h j ∈ H 2 (0, T ) pour j = 1
inf{|u xx (T 0 , x)|, x ∈ (0, L)} ≥ η et inf{|v xx (T 0 , x)|, x ∈ (0, L)} ≥ η. (1.14)
Alors, étant donné M > 0, il existe une constante positive C dépendant des paramètres

(T, m, M, η), telle que pour tout (γ 1 , γ 2 ) ∈ L ∞ ≤m (0, L) 2 , 1 C ||γ 1 -γ1 || 2 L 2 (0,L) + ||γ 2 -γ2 || 2 L 2 (0,L) ≤ ||(u xx (•, 0) -ūxx (•, 0) 2 H 1 (0,T ) + v xx (•, 0) -vxx (•, 0))|| 2 H 1 (0,T ) + ||u xxx (•, 0) -ūxxx (•, 0) 2 H 1 (0,T ) + v xxx (•, 0) -vxxx (•, 0))|| 2 H 1 (0,T ) + ||u(T 0 , •) -ū(T 0 , •) 2 H 4 (0,L) + v(T 0 , •) -v(T 0 , •)|| 2 H 4 (0,L) (1.15) pour tout (u, v) satisfaisant (u, v) Z 2 ≤ M.
La preuve est basée sur une estimation globale de Carleman pour l'équation linéarisée de Kuramoto-Sivashinsky et la méthode Bulkhgeim-Klibanov.

Chapitre 2

On the boundary controllability of the 

Introduction

Let (l j ) j=1,••• ,N ∈ (0, +∞) N , N ∈ N. We consider the following N Korteweg-de Vries (KdV)

control system                        (∂ t u j + ∂ x u j + u j ∂ x u j + ∂ 3 x u j )(t, x) = 0, j = 1, • • • , N, x ∈ (0, l j ), t > 0, u j (t, 0) = u k (t, 0), j, k = 1, • • • , N, t > 0, N j=1 ∂ 2 x u j (t, 0) = -αu 1 (t, 0) - N 3 (u 1 (t, 0)) 2 + f 0 (t), t > 0, u j (t, l j ) = 0, ∂ x u j (t, l j ) = g j (t), j = 1, • • • , N, t > 0, u j (0, x) = u 0 j (x), j = 1, • • • , N, x ∈ (0, l j ), (2.1) 
where α > N/2. The state of the system is (u

1 , u 2 , • • • , u N ), the initial state is (u 0 1 , u 0 2 , • • • , u 0 N )
, and the boundary controls are f 0 , g 1 , • • • , g N . We call f 0 the control on the central node and

(g 1 , • • • , g N )
the controls on the external nodes. The main topics under study in [4] are the well-posedness and the stabilization of (2.1). At the end they state the controllability results they are able to prove. In particular, under some conditions on the lengths l j related to some critical phenomena (see for example [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF]), they say that (2.1) is locally exactly controllable by using the (N + 1) controls f 0 , g 1 , • • • , g N . Their result is based on an observability inequality proved by using a compactness-uniqueness argument. We improve the controllability results in [4] in two directions. We prove that system (2.1) is exactly controllable with only N controls g 1 , • • • , g N and we are able to consider the cases α ≥ N/2 and not only α > N/2 as in [4]. The star-shaped network is represented in Figure 2.1, with red nodes where we put control and the white node where there is no control. More precisely, our main result is the next Theorem.

Theorem 1 Let (l j ) j=1,••• ,N ∈ (0, +∞) N and α ≥ N/2. There exist L 0 , T min > 0 such that if L := max j=1,..,N l j < L 0 and T > T min , (2.2) 
then the nonlinear control system (2.1) is locally exactly controllable with f 0 = 0.

Our proof uses a multiplier approach in a direct way. That means, we avoid the use of a contradiction argument. A drawback of this method is that we obtain non sharp conditions on the lengths l j and on the time of control but we get an explicit constant of observability and thus en explicit characterization of the controllability. This chapter is structured as follows. In section 2.2 we state the well-posedness results we need for our system of N coupled Korteweg-de Vries equations on a finite star-shaped network.

Linear and nonlinear cases are included. In section 2.3 we prove that both linear and nonlinear systems are exactly controllable by using only N external inputs, under some conditions on the lengths of each interval and on the time of control. The linear case is studied in subsection 2.3.1 by using a duality approach and proving the desired observability inequality. The result for the nonlinear system is obtained in subsection 2.3.2 by applying a fixed-point argument.

Well-posedness and regularity results

In this section we state the regularity framework and the well-posedness results for the linear system

                       (∂ t u j + ∂ x u j + ∂ 3 x u j )(t, x) = f j (t, x), j = 1, • • • , N, x ∈ (0, l j ), t > 0, u j (t, 0) = u k (t, 0), j, k = 1, • • • , N, t > 0, N j=1 ∂ 2 x u j (t, 0) = -αu 1 (t, 0) + f 0 (t), t > 0, u j (t, l j ) = 0, ∂ x u j (t, l j ) = g j (t), j = 1, • • • , N, t > 0, u j (0, x) = u 0 j (x), j = 1, • • • , N, x ∈ (0, l j ), (2.3) 
and the nonlinear one

                       (∂ t u j + ∂ x u j + u j ∂ x u j + ∂ 3 x u j )(t, x) = 0, j = 1, • • • , N, x ∈ (0, l j ), t > 0, u j (t, 0) = u k (t, 0), j, k = 1, • • • , N, t > 0, N j=1 ∂ 2 x u j (t, 0) = -αu 1 (t, 0) - N 3 (u 1 (t, 0)) 2 , t > 0, u j (t, l j ) = 0, ∂ x u j (t, l j ) = g j (t), j = 1, • • • , N, t > 0, u j (0, x) = u 0 j (x), j = 1, • • • , N, x ∈ (0, l j ).
(2.4)

Remark 1 It is important to notice that we are not using f 0 in (2.3) as a control. However,

we have to consider it as a source term in well-posedness results for the linear system in order to deal with the boundary nonlinearity in (2.4). The same role is played by the source terms

f j in (2.3) with j = 1, • • • , N .
Let us define the spaces

L 2 (T ) = N j=1 L 2 (0, l j ), L 1 (0, T ; L 2 (T )) = N j=1 L 1 (0, T ; L 2 (0, l j )), L 2 (0, T ; L 2 (T )) = N j=1
L 2 (0, T ; L 2 (0, l j )),

H s r (0, l j ) = v ∈ H s (0, l j ) v (i-1) (l j ) = 0 for any 1 ≤ i ≤ s , H s e (T ) = u = (u 1 , • • • , u N ) ∈ N j=1 H s r (0, l j ) u j (0) = u k (0), ∀j, k = 1, • • • , N , and 
B := C([0, T ], L 2 (T )) ∩ L 2 (0, T ; H 1 e (T )).
We also consider the spatial operator

A : D(A) ⊂ L 2 (T ) → L 2 (T ), with 
D(A) = u ∈ H 2 e (T ) N j=1 H 3 (0, l j ) N j=1 d 2 u j dx 2 (0) = -αu 1 (0) ,
and defined by

Au := A(u 1 , • • • , u N ) = -∂ x u 1 -∂ 3 x u 1 , • • • , -∂ x u N -∂ 3 x u N .
The operator A is dissipative, similary we can see that the operator adjoint A * is dissipative. Therefore, by using semigroups theory, we have that the operator A generates a strongly continuous semigroup of contractions on L 2 (T ). Using this and a density argument, the following result is obtained. (2.3). Furthermore, we obtain the existence of positive constants

Theorem 2 Let u 0 = (u 0 1 , • • • , u 0 N ) ∈ L 2 (T ), g = (g 1 , • • • , g N ) ∈ L 2 (0, T ) N , f 0 ∈ L 2 (0, T ) and f = (f 1 , • • • , f N ) ∈ L 1 (0, T ; L 2 (T )). Then, there exists a unique mild solution u = (u 1 , • • • , u N ) ∈ B of system
C 1 , C 2 , C 3 such that ||u|| 2 B ≤ C 1 ||u 0 || 2 L 2 (T ) + ||g|| 2 L 2 (0,T ) N + ||f 0 || 2 L 2 (0,T ) + f 2 L 1 (0,T ;L 2 (T )) , ||∂ x u j (•, 0)|| 2 L 2 (0,T ) ≤ C 2 ||u 0 || 2 L 2 (T ) + ||g|| 2 L 2 (0,T ) N + ||f 0 || 2 L 2 (0,T ) + f 2 L 1 (0,T ;L 2 (T )) ,
and

||u 1 (•, 0)|| 2 L 2 (0,T ) ≤ C 3 ||u 0 || 2 L 2 (T ) + ||g|| 2 L 2 (0,T ) N + ||f 0 || 2 L 2 (0,T ) + f 2 L 1 (0,T ;L 2 (T )) .
Remark 2 As we autorize in this work the case α = N 2 we can not use directly the result in [4] [ Propositions 2.3] where the condition α > N 2 was imposed.

Proof. In a first time, we suppose that u 0 ∈ D(A), (g, f 0 ) ∈ C 2 0 ([0, T ]) N +1 , where C 2 0 ([0, T ]) := {ϕ ∈ C 2 ([0, T ]), ϕ(0) = 0} and f = 0. To prove the existence of a unique mild solution we consider the function

ψ j (x, t) = -x(l j -x)(2l j -x) l 2 j g j (t) and z j (x, t) = u j (x, t) -ψ j (x, t). The function z = (z 1 , • • • , z N ) satisfies the linear system                        (∂ t z j = Az -(∂ t ψ j + ∂ x ψ j + ∂ 3 x ψ j ), j = 1, • • • , N, x ∈ (0, l j ), t > 0, z j (t, 0) = z k (t, 0), j, k = 1, • • • , N, t > 0, N j=1 ∂ 2 x z j (t, 0) = -αz 1 (t, 0), t > 0, z j (t, l j ) = 0, ∂ x z j (t, l j ) = 0, j = 1, • • • , N, t > 0, z j (0, x) = z 0 j (x), j = 1, • • • , N, x ∈ (0, l j ).
(2.5)

As (∂ t ψ j + ∂ x ψ j + ∂ 3 x ψ j ) ∈ C 1 ([0, T ], L 2 (T )) using the semi-group theory (see chapter 4 in [51]) we have that z ∈ C([0, T ], D(A)) ∩ C 1 ([0, T ], L 2 (T )) then, there exists a unique mild solution u = (u 1 , • • • , u N ) ∈ B. Let q = (q 1 , • • • , q N ) ∈ C ∞ ([0, T ] × [0, l j ]; R) N ,
such that q i (., 0) = q k (., 0). Then by multiplying each first equation of system (2.3) by q j u j , integrating on [0, s] × [0, l j ] with s ∈ [0, T ] and using some integrations by parts, we obtain the following equation,

N j=1 l j 0 |u j (s, x)| 2 q j (s, x)dx - s 0 N j=1 |u j (t, 0)| 2 ∂ 2 x q j (t, 0)dt + (2α -N ) s 0 q 1 (t, 0)|u 1 (t, 0)| 2 dt = s 0 N j=1 l j 0 (∂ t q j + ∂ x q j + ∂ 3 x q j )|u j | 2 dxdt -3 s 0 N j=1 l j 0 |∂ x u j | 2 ∂ x q j dxdt - s 0 N j=1 (q j |∂ x u j | 2 + 2∂ x q j u j ∂ x u j )(t, 0)dt + N j=1 l j 0 |u j (0, x)| 2 q j (0, x)dx + s 0 N j=1 |g j (t)| 2 q j (t, l j )dt + 2 s 0 q 1 (t, 0)u 1 (t, 0)f 0 (t)dt. (2.6)
By choosing first q j (t, x) = 1, and integrating (2.6) in time on [0, T ], we obtain

u 2 L 2 (0,T,L 2 (T )) + ∂ x u(., 0) 2 L 2 (0,T ) ≤ T 2 T 0 |f 0 (t)||u 1 (t, 0)|dt + (g 1 , . . . , g N ) 2 L 2 (0,T ) + u 0 2 L 2 (T ) . (2.7)
Then we choose s = T and q j (t, x) =

x(2l j -x) l 2 j for j = 1, . . . , N . We see that :

1. q j (., 0) = 0,

2. ∀(t, x) ∈ [0, T ] × [0, l j ], 0 ≤ q j (t, x) ≤ 1, 3. ∀(t, x) ∈ [0, T ] × [0, l j ], 0 ≤ ∂ x q j (t, x) ≤ 2 l j , 4. ∀(t, x) ∈ [0, T ] × [0, l j ], ∂ 2 x q j (t, x) = -2 l 2 j .
Then (2.6) gives us

N L 2 u 1 (., 0) 2 L 2 (0,T ) ≤ 2 l u 2 L 2 (0,T,L 2 (T )) + ∂ x u(., 0) 2 L 2 (0,T ) + (g 1 , . . . g N ) 2 L 2 (0,T ) N + u 0 2 L 2 (T ) + L 2 N T 0 |f 0 (t)| 2 dt, (2.8) 
where L = max j=1...N l j and l = min j=1...N l j . Using this with (2.7) we get for some C > 0 that

u 1 (., 0) 2 L 2 (0,T ) ≤ C T 0 |f 0 (t)||u 1 (t, 0)|dt + (g 1 , . . . , g N ) 2 L 2 (0,T ) N + u 0 2 L 2 (T ) + f 0 2 L 2 (0,T ) ≤ C g 2 L 2 (0,T ) N + f 0 2 L 2 (0,T ) + u 0 2 L 2 (T ) . (2.9)
By the density of D(A) in L 2 (T ) and of C 2 0 ([0, T ]) in L 2 (0, T ) we easily obtain the desired three estimates in the case f = 0.

When we have a source term, f ∈ L 1 (0, T, L 2 (T )), by using the previous results, we can suppose that u 0 = 0, f 0 = 0 and g = 0. Then by using standard semi-group theory (see [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF]),

we get that if f ∈ L 1 (0, T, L 2 (T )) then u ∈ C([0, T ], L 2 (T )) and verifies u C([0,T ],L 2 (T )) ≤ C f L 1 (0,T,L 2 (T ))
. Thus we easily get the three desired estimates.

For the nonlinear system we can use the previous linear result and a fixed point argument similarly as in [4] where the case with no control was studied. Thus, we obtain the following.

Theorem 3 There exist ε > 0 and C > 0 such that for

u 0 = (u 0 1 , • • • , u 0 N ) ∈ L 2 (T ) and (g 1 , • • • , g N ) ∈ L 2 (0, T ) N with u 0 L 2 (T ) + (g 1 , • • • , g N ) L 2 (0,T ) N ≤ ε, there exists a unique solution u = (u 1 , • • • , u N ) ∈ B of the nonlinear system (2.4) which satisfies ||u|| B ≤ C u 0 L 2 (T ) + ||(g 1 , • • • , g N )|| L 2 (0,T ) N .

Controllability results

From now on the control in the central node f 0 is turn off, what means that f 0 = 0. This section is split into two subsections. The first one deals with the exact controllability of the linear system (2.3) by using a duality argument and the multiplier method in order to prove the observability inequality giving the result. In the second subsection, the nonlinear system (2.4) is considered and the local exact controllability is obtained by means of a fixed point theorem.

Linear System

Due to the linearity of system (2.3), in order to study its exact controllability, we can consider the case of null initial data, that means taking

u 0 1 = • • • = u 0 N = 0 in (2.
3). It can be easily seen that the exact controllability of (2.3) is equivalent to the surjectivity of the operator

Λ : (g 1 , • • • , g N ) ∈ L 2 (0, T ) N → (u 1 (T, •), • • • u N (T, •)) ∈ L 2 (T ), where u = (u 1 , • • • , u N ) is the solution of (2.
3) in order to study its exact controllability, we can when controls (g 1 , • • • , g N ) are chosen. From the well-posedness results we know that this operator is linear and continuous. It is known (see [START_REF] Brezis | Analyse fonctionnelle. Théorie et applications[END_REF] [Théorème II .19]) that the surjectivity of this operator is equivalent to an observability inequality for the adjoint operator of Λ, which is given by

Λ * : (ϕ T 1 , • • • ϕ T N ) ∈ L 2 (T ) -→ (∂ x ϕ 1 (•, l 1 ), • • • , ∂ x ϕ N (•, l N )) ∈ L 2 (0, T ) N .
(2.10)

where ϕ = (ϕ 1 , • • • , ϕ N )
is the solution of the backward adjoint system

                             (∂ t ϕ j + ∂ x ϕ j + ∂ 3 x ϕ j )(t, x) = 0, j = 1, • • • , N, x ∈ (0, l j ), t > 0, ϕ j (t, 0) = ϕ k (t, 0), j, k = 1, • • • , N, t > 0, ∂ x ϕ j (t, 0) = 0, j = 1, • • • , N, t > 0, N j=1 ∂ 2 x ϕ j (t, 0) = (α -N )ϕ 1 (t, 0), t > 0, ϕ j (t, l j ) = 0, j = 1, • • • , N, t > 0, ϕ j (T, x) = ϕ T j (x), j = 1, • • • , N, x ∈ (0, l j ).
(2.11)

The desired observability inequality giving the exact controllability of the linear system is stated and proven in the following theorem.

Theorem 4 Let (l j ) j=1,••• ,N ∈ (0, +∞) N and α ≥ N/2. There exist L 0 , T min > 0 such that if L = max j=1,..,N l j < L 0 and T > T min , (2.12) 
then we have

ϕ T 2 L 2 (T ) ≤ C N j=1 ∂ x ϕ j (t, l j ) 2 L 2 (0,T ) , ∀ϕ T ∈ L 2 (T ), (2.13 
)

where ϕ = (ϕ 1 , • • • , ϕ N ) is the solution of (4.5) with final condition ϕ T = (ϕ T 1 , • • • , ϕ T N ) and C is a positive constant.
Proof. By multiplying each equation of (4.5) by q j ϕ j and integrating by parts on [s, T ] × [0, l j ] with s ∈ [0, T ], we get after some computations

N j=1 l j 0 |ϕ j (T, x)| 2 q j (T, x)dx - N j=1 l j 0 |ϕ j (s, x)| 2 q j (s, x)dx = T s N j=1 l j 0 (∂ t q j + ∂ x q j + ∂ 3 x q j )|ϕ j | 2 dxdt -3 T s N j=1 l j 0 |∂ x ϕ j | 2 ∂ x q j dxdt + T s N j=1 |ϕ j (t, 0)| 2 ∂ 2 x q j (t, 0)dt + T s N j=1 |ϕ j (t, 0)| 2 q j (t, 0)dt + T s N j=1 |∂ x ϕ j (t, l j )| 2 q j (t, l j )dt + 2 T s N j=1 q j (t, 0)∂ 2 x ϕ j (t, 0)ϕ j (t, 0)dt. (2.14)
By choosing q j (t, x) = t and s = 0, we obtain

N j=1 l j 0 T |ϕ j (T, x)| 2 dx = T 0 N j=1 l j 0 |ϕ j (t, x)| 2 dxdt + T 0 N j=1 t|∂ x ϕ j (t, l j )| 2 dt, +2 T 0 N j=1 t∂ 2 x ϕ j (t, 0)ϕ j (t, 0)dt + T 0 N j=1 t|ϕ j (t, 0)| 2 dt, (2.15) 
from where we deduce with (4.5)

N j=1 l j 0 T |ϕ j (T, x)| 2 dx ≤ T 0 N j=1 l j 0 |ϕ j (t, x)| 2 dxdt + T T 0 N j=1 |∂ x ϕ j (t, l j )| 2 dt + T (2α -N ) T 0 |ϕ 1 (t, 0)| 2 dt. (2.16)
By choosing q j (t, x) = 1, we get that

N j=1 l j 0 |ϕ j (T, x)| 2 dx - N j=1 l j 0 |ϕ j (s, x)| 2 dx = T s N j=1 |∂ x ϕ j (t, l j )| 2 dt + (2α -N ) T s |ϕ 1 (t, 0)| 2 dt, (2.17)
from where we obtain

T 0 N j=1 l j 0 |ϕ j (t, x)| 2 dxdt ≤ T N j=1 l j 0 |ϕ j (T, x)| 2 dx. (2.18) 
By picking s = 0 in (2.14) and q j (t, x) =

(2l j -x)(l j -x) 2l 2 j which satisfy 1. 0 ≤ q j (t, x) ≤ 1, for all (t, x) ∈ [0, T ] × [0, l j ], 2. -3 2l j ≤ ∂ x q j (t, x) ≤ -1 2l j , for all (t, x) ∈ [0, T ] × [0, l j ], 3. ∂ 2 x q j (t, x) = 1 l 2 j > 0, for all (t, x) ∈ [0, T ] × [0, l j ],
we obtain

T 0 N j=1 1 l 2 j |ϕ j (t, 0)| 2 dt + T 0 N j=1 3 2l j l j 0 |∂ x ϕ j (t, x)| 2 dxdt ≤ N j=1 l j 0 |ϕ j (T, x)| 2 dx + T 0 N j=1 3 2l j l j 0 |ϕ j (t, x)| 2 dxdt -(2α -N ) T 0 |ϕ 1 (t, 0)| 2 dt. (2.19)
Let us recall

L = max j=1,..,N l j and l = min j=1,..,N l j .
Thanks to (2. [START_REF] Cerpa | Null controllability of the stabilized Kuramoto-Sivashinsky system with one distributed control[END_REF]) and (2.18) we have

(2α -N ) + N j=1 1 l 2 j T 0 |ϕ 1 (t, 0)| 2 dt + T 0 N j=1 3 2l j l j 0 |∂ x ϕ j (t, x)| 2 dxdt ≤ (1 + 3T 2l ) N j=1 l j 0 |ϕ j (T, x)| 2 dx. (2.20)
From Poincaré's inequality (with uniform constant L/π) and equation (2.16), we can write

N j=1 l j 0 T |ϕ j (T, x)| 2 dx ≤ L 2 π 2 2L 3 + LT l N j=1 l j 0 |ϕ j (T, x)| 2 dx + T (1 + 3T 2l )(2α -N ) (2α -N ) + N j=1 1 l 2 j N j=1 l j 0 |ϕ j (T, x)| 2 dx + T T 0 N j=1 |∂ x ϕ j (t, l j )| 2 dt, and then 
T - L 2 π 2 2L 3 + LT l - T (1 + 3T 2l )(2α -N ) (2α -N ) + N j=1 1 l 2 j ϕ(T, x) 2 L 2 (T ) ≤ T N j=1 ∂ x ϕ j (t, l j ) 2 L 2 (0,T ) .
Thus, we are led to study the sign of the constant

T - L 2 π 2 2L 3 + LT l - T (1 + 3T 2l )(2α -N ) (2α -N ) + N j=1 1 l 2 j ,
that can be written as

T 1 - L 3 lπ 2 - 2α -N (2α -N ) + N j=1 1 l 2 j -T 2 3 2l (2α -N ) (2α -N ) + N j=1 1 l 2 j - 2L 3 3π 2 .
(2.21)

The previous expression can be seen as a quadratic equation in variable T . Thus, in order to force this expression to be positive we have to impose that

∆ = 1 - L 3 lπ 2 - 2α -N (2α -N ) + N j=1 1 l 2 j 2 -4 3 2l (2α -N ) (2α -N ) + N j=1 1 l 2 j 2L 3 3π 2 (2.22)
is positive. This holds if and only if where a = T min and b = T max are the roots given by the following equation

1 - L 3 lπ 2 - 2α -N (2α -N ) + N j=1 1 l 2 j 2 > 4 (2α -N ) (2α -N ) + N j=1 1 l 2 j L 3 lπ 2 , ( 2 
1 - L 3 lπ 2 - 2α -N (2α -N ) + N j=1 1 l 2 j 3 l (2α -N ) (2α -N ) + N j=1 1 l 2 j -1 ± ∆ 1/2 3 l (2α -N ) (2α -N ) + N j=1 1 l 2 j -1
.

Once we have proved the observability inequality for T < T max , we observe that the inequality still holds for T ≥ T max . This ends the proof of this theorem.

Remark 3 In the limit case α = N 2 , then we obtain the simpler observability inequality

T 1 - L 3 lπ 2 - 2L 3 3π 2 ϕ(T, x) 2 L 2 (T ) ≤ T N j=1 ∂ x ϕ j (t, l j ) 2 L 2 (0,T )
under the conditions

L 3 lπ 2 < 1 and T > 2L 3 3π 2 1 -L 3 lπ 2 .
As by duality a direct consequence of the observability inequality is the controllability of the linear system (see Lions (1988)).

Theorem 5 Let (l j ) j=1,••• ,N ∈ (0, +∞) N and α ≥ N/2. There exist L 0 , T min > 0 such that if L = max j=1,..,N l j < L 0 and T > T min , (2.24) 
then the linear control system (2.3) is exactly controllable. This means that for any states

u 0 = (u 0 1 , • • • , u 0 N ) ∈ L 2 (T ) and u T = (u T 1 , • • • , u T N ) ∈ L 2 (T ), there exist some controls g = (g 1 , • • • , g N ) ∈ L 2 (0, T ) N such that the solution u = (u 1 , • • • , u N ) ∈ B of (2.3) satisfies u 1 (T, •) = u T 1 , u 2 (T, •) = u T 2 , • • • , u N (T, •) = u T N .

Nonlinear System

We study in this section the local exact controllability for the nonlinear system (2.4) which we rewrite here :

                       (∂ t u j + ∂ x u j + u j ∂ x u j + ∂ 3 x u j )(t, x) = 0, j = 1, • • • , N, x ∈ (0, l j ), t > 0, u j (t, 0) = u k (t, 0), j, k = 1, • • • , N, t > 0, N j=1 ∂ 2 x u j (t, 0) = -αu 1 (t, 0) - N 3 (u 1 (t, 0)) 2 , t > 0, u j (t, l j ) = 0, ∂ x u j (t, l j ) = g j (t), j = 1, • • • , N, t > 0, u j (0, x) = u 0 j (x), j = 1, • • • , N, x ∈ (0, l j ).
(2.25)

We have already mentioned in the introduction but let us be more precise in the statement of our main result.

Theorem 6 Let (l j ) j=1,••• ,N ∈ (0, +∞) N and α ≥ N/2. There exist L 0 , T min > 0 such that if

L = max j=1,..,N l j < L 0 and T > T min , (2.26) 
then the nonlinear control system (2.25) is locally exactly controllable. This means that there exists ε > 0 such that for any states

u 0 = (u 0 1 , • • • , u 0 N ) ∈ L 2 (T ) and u T = (u T 1 , • • • , u T N ) ∈ L 2 (T ) with u 0 L 2 (T ) < ε and u T L 2 (T ) < ε there exist some controls g = (g 1 , • • • , g N ) ∈ L 2 (0, T ) N such that the solution u = (u 1 , • • • , u N ) ∈ B of (2.25) satisfies u 1 (T, •) = u T 1 , u 2 (T, •) = u T 2 , • • • , u N (T, •) = u T N . Proof. Let u 0 , u T ∈ L 2 (T ) such that u 0 L 2 (T ) < ε and u T L 2 (T )
< ε for some ε > 0 to be chosen later.

We consider the map

Π : v ∈ B -→ u 1 + u 2 + u 3 ∈ B,
where u 1 , u 2 , u 3 are the solutions of

                             (∂ t u 1 j + ∂ x u 1 j + ∂ 3 x u 1 j )(t, x) = 0, j = 1, • • • , N, x ∈ (0, l j ), t > 0, u 1 j (t, 0) = u 1 k (t, 0), j, k = 1, • • • , N, t > 0, N j=1 ∂ 2 x u 1 j (t, 0) = -αu 1 1 (t, 0), t > 0, u 1 j (t, l j ) = 0, j = 1, • • • , N, t > 0, ∂ x u 1 j (t, l j ) = 0, j = 1, • • • , N, t > 0, u 1 j (0, x) = u 0 j (x), j = 1, • • • , N, x ∈ (0, l j ), (2.27) 
                             (∂ t u 2 j + ∂ x u 2 j + ∂ 3 x u 2 j )(t, x) = -v j ∂ x v j , j = 1, • • • , N, x ∈ (0, l j ), t > 0, u 2 j (t, 0) = u 2 k (t, 0), j, k = 1, • • • , N, t > 0, N j=1 ∂ 2 x u 2 j (t, 0) = -αu 2 1 (t, 0) - N 3 (v 1 (t, 0)) 2 , t > 0, u 2 j (t, l j ) = 0, j = 1, • • • , N, t > 0, ∂ x u 2 j (t, l j ) = 0, j = 1, • • • , N, t > 0, u 2 j (0, x) = 0, j = 1, • • • , N, x ∈ (0, l j ), (2.28) 
and

                             (∂ t u 3 j + ∂ x u 3 j + ∂ 3 x u 3 j )(t, x) = 0, j = 1, • • • , N, x ∈ (0, l j ), t > 0, u 3 j (t, 0) = u 3 k (t, 0), j, k = 1, • • • , N, t > 0, N j=1 ∂ 2 x u 3 j (t, 0) = -αu 3 1 (t, 0), t > 0, u 3 j (t, l j ) = 0, j = 1, • • • , N, t > 0, ∂ x u 3 j (t, l j ) = g j (t), j = 1, • • • , N, t > 0, u 3 j (0, x) = 0, j = 1, • • • , N, x ∈ (0, l j ), (2.29) 
where

g = (g 1 , • • • , g N ) ∈ L 2 (0, T ) N is a control such that u 3 (T, •) = u T -u 1 (T, •) -u 2 (T, •).
This control exists thanks to Theorem 5. It is important to notice that the control operator (mapping a final state to the respective control driving the linear system to that final state) is continuous. In this part we use the assumptions on L and T to guarantee the controllability of the linear system.

It is easy to see that this proof ends if we are able to find a fixed point u ∈ B of the operator Π. To do that, we will apply the Banach fixed point theorem. Let R > 0 and define

B(0, R) = u ∈ L 2 (0, T, H 1 e (T )) u L 2 (0,T,H 1 e (T )) ≤ R .
By using the estimates in Theorem 2 and the continuity of the control operator, we obtain

Π(ν) B ≤ C 1 u 0 L 2 (T ) + C 2 νν x L 1 (0,T ;L 2 T ) + ν 1 (., 0) L 2 (0,T ) + C 3 u T L 2 (T ) ≤ C 1 u 0 L 2 (T ) + C 2 ν 2 L 2 (0,T ;L 2 T ) + C 3 u T L 2 (T )
Thus for ν ∈ B(0, R), we have

Π(ν) B ≤ (C 1 + C 3 ) + C 2 R 2
with R and ε small enough so that (C

1 + C 3 ) + C 2 R 2 < R, we get that Π(B(0, R)) ⊂ B(0, R) Furthermore, ∀u, v ∈ B(0, R), Π(u) -Π(v) B ≤ C 4 ( uu x -vv x L 1 (0,T ;L 2 T ) + u 1 (., 0) -v 1 (., 0) L 2 (0,T ) ) ≤ C 4 R u -v L 2 (0,T,H 1 e (T ))
and then for R small enough, C 4 R ∈ (0, 1), thus, we obtain that Π is a contraction in B(0, R) ⊂ B, which ends the proof of Theorem 6.

Chapitre 3

Boundary exact controllability of the Hirota-Satsuma system 

Introduction

In this section, we study the controllability of Hirota-Satsuma system that couples three Korteweg-de Vries equations posed on a spatial domain [0, L].

The Hirota-Satsuma system is given by the following equations :

       u t -1 4 u xxx = 3uu x -6vv x + 3w x , v t + 1 2 v xxx = -3vv x , w t + 1 2 w xxx = -3uw x , (3.1) 
with the boundary and initial conditions :

             u(t, 0) = 0, u(t, L) = 0, u x (t, 0) = h 1 (t), v(t, 0) = 0, v(t, L) = 0, v x (t, L) = h 2 (t), w(t, 0) = 0, w(t, L) = 0, w x (t, L) = h 3 (t), u(0, x) = u 0 (x), v(0, x) = v 0 (x), w(0, x) = w 0 (x). (3.2)
Regarding the dispersive system, we find papers dealing with the Korteweg-de Vries equation on a boundary domain [START_REF] Araruna | Internal null controllability of a linear Schrödinger-KdV system on a bounded interval[END_REF][START_REF] Capistrano-Filho | Boundary controllability of a nonlinear coupled system of two Korteweg-de Vries equations with critical size restrictions on the spatial domain[END_REF][START_REF] Cerpa | Boundary controllability of the Korteweg-de Vries equation on a tree-shaped network[END_REF][START_REF] Micu | On the controllability of a coupled system of two Korteweg-de Vries equations[END_REF]. Concerning the Hirota-Satsuma system, the closest works are [START_REF] Hirota | Soliton solutions of a coupled Korteweg-de Vries equation[END_REF][START_REF] Xue | A generalized hirota-satsuma coupled KdV system : Darboux transformations and reductions[END_REF] where the explicit solutions of the generalized system are presented. Recently, using

Carleman estimates the null controllability has been proved in [START_REF] Carreño | Internal null controllability of the generalized Hirota-Satsuma system[END_REF] with two internal controls.

In this chapter, we are interested in studying the exact controllability for the system (3.1)-(3.2).

Our main result is the following :

Theorem 7 Let L, T > 0. Then the system (3.1)-(3.2) is locally exactly controllable. This means that there exists r > 0 such that for any initial data (u 0 , v 0 , w 0 ) ∈ L 2 (0, L) 3 and for all

(u T , v T , w T ) ∈ L 2 (0, L) 3 verifying (u 0 , v 0 , w 0 ) L 2 (0,L) 3 < r and (u T , v T , w T ) L 2 (0,L) 3 < r, there exist three controls, (h 1 , h 2 , h 3 ) ∈ L 2 (0, T ) 3 such that the solution (u, v, w) of (3.1)-(3.2) satisfies u(T, •) = u T , v(T, •) = v T , w(T, •) = w T .
This chapter is organized as follows. First, we prove the well-posedness of linear and nonlinear Hirota-Satsuma systems, we also give some regularity results. Second, we study the exact controllability for the linear case. Finally, we prove the exact controllability for the nonlinear system by means of a fixed point theorem, i.e. we prove our main result.

Well-posedness results

We introduce the following spaces

Y := L 2 (0, T ; H 1 (0, L))∩C([0, T ]; L 2 (0, L)), X := L 1 (0, T ; L 2 (0, L)) and Q T := (0, T )×(0, L). (3.3)
We consider the linearized system around 0 of (3.1)

       u t -1 4 u xxx = 3w x , (t, x) ∈ Q T , v t + 1 2 v xxx = 0, (t, x) ∈ Q T , w t + 1 2 w xxx = 0, (t, x) ∈ Q T . (3.4)
With the following boundary and initial conditions

             u(t, 0) = 0, u(t, L) = 0, u x (t, 0) = h 1 (t), t ∈ (0, T ), v(t, 0) = 0, v(t, L) = 0, v x (t, L) = h 2 (t) t ∈ (0, T ), w(t, 0) = 0, w(t, L) = 0, w x (t, L) = h 3 (t) t ∈ (0, T ), u(0, x) = u 0 (x), v(0, x) = v 0 (x), w(0, x) = w 0 (x), x ∈ (0, L). (3.5) 
The previous system is formed by three KdV equations. To study the well-posedness of linear system, we initially prove the well-posedness for each equation separately.

Single KdV Equation

To prove the well-posedness of system (3.1)-(3.2) the first step is to consider the single KdV

             y t -y xxx = 0, (t, x) ∈ Q T , y(t, 0) = y(t, L) = 0, t ∈ (0, T ), y x (t, 0) = h 1 (t), t ∈ (0, T ), y(0, x) = y 0 (x), x ∈ (0, L). (3.6)
We also consider the operator

A : w ∈ D(A) ⊂ L 2 (0, L) → L 2 (0, L), with D(A) = {w ∈ H 3 (0, L) : w(0) = w(L) = w (0) = 0},
and defined by

Aw = w .
We can see the operator A is dissipative, in fact

L 0 wA(w) = - 1 2 |w x (L)| 2 ≤ 0, ∀w ∈ D(A).
Its adjoint operator A * , defined by

A * : w ∈ D(A * ) ⊂ L 2 (0, L) → -w ∈ L 2 (0, L), with D(A * ) = {w ∈ H 3 (0, L) : w(0) = w(L) = w (L) = 0},
is also dissipative and therefore A generates a strongly continuous semigroup of contractions on L 2 (0, L) using this and a density argument we prove the following result.

Proposition 1 Let y 0 ∈ L 2 (0, L), h 1 ∈ L 2 (0, T ).
Then, there exists a unique mild solution (3.6). Moreover there exists a constant C > 0 such that the solution of (3.6) satisfies

y ∈ C([0, T ], L 2 (0, L)) of system
y Y ≤ C( y 0 2 L 2 (0,L) + h 1 2 L 2 (0,T ) ) 1/2 . (3.7) 
Proof. In a first time, we suppose that y 0 ∈ D(A), h 1 ∈ C 2 0 ([0, T ]) with h 1 (0) = 0. To prove the existence of a unique mild solution we consider the function

ψ(t, x) = x(L -x) L h 1 (t),
the previous function is very regular in space and satisfies

ψ(t, 0) = ψ(t, L) = 0, ψ x (t, 0) = h 1 (t), ψ ∈ C 2 ([0, T ]; C ∞ [0, L]).
We define

f h := (-ψ t + ψ xxx ) ∈ C 1 ([0, T ]; C ∞ (0, L)) and z := (y -ψ). The function z satisfies the equation        z t = Az + f h , (t, x) ∈ Q T , z(t, 0) = z(t, L) = z x (t, 0) = 0, t ∈ (0, T ), z(0, x) = y 0 (x),
x ∈ (0, L). 

D(A)) ∩ C 1 ([0, T ]; L 2 (0, L)) to (3.6).
To obtain the estimate (3.7) we multiply the system (3.6) by the function yq with q = q(x, t) a regular function and integrating by parts on [0, s] × [0, L] we get

s 0 L 0 1 2 (-q t + q xxx )|y| 2 dxdt + 1 2 L 0 |y(s, x)| 2 q(s, x)dx - 1 2 L 0 |y(0, x)| 2 q(0, x)dx - 3 2 s 0 L 0 |y x | 2 q x dxdt + 1 2 s 0 |y x (t, L)| 2 q(t, L)dt - 1 2 s 0 |y x (t, 0)| 2 q(t, 0)dt = 0. (3.9)
By choosing q = 1 in (3.9) we obtain

L 0 |y(s, x)| 2 dx = L 0 |y(0, x)| 2 dx - s 0 |y x (t, L)| 2 dt + s 0 |y x (t, 0)| 2 dt. (3.10)
From that we deduce

max s∈[0,T ] L 0 |y(s, x)| 2 dx ≤ L 0 |y(0, x)| 2 dx + T 0 |h 1 (t)| 2 dt, (3.11) 
which implies that the solution belongs to C([0, T ]; L 2 (0, L)). Moreover, integrating (3.11) on

[0, T ] we get

y 2 L 2 (0,T ;L 2 (0,L) ≤ T ( y 0 2 L 2 (0,L) + h 1 2 L 2 (0,T ) ). (3.12) 
By choosing q(x) = L -x and s = T in (3.9), we obtain

3 2 s 0 L 0 |y x | 2 dxdt ≤ L 2 s 0 |h 1 (t)| 2 dt + L 2 L 0 |y(0, x)| 2 dx. (3.13)
From where

T 0 L 0 |y x | 2 dxdt ≤ C(L) T 0 |h 1 | 2 dt + L 0 |y(0, x)| 2 dx , (3.14) 
and by using (3.14) and (3.12) we have that the solution belongs to L 2 (0, T ; H 1 (0, L)) which ends the proof of Proposition 1.

Proposition 2 Let y 0 ∈ L 2 (0, L), h 1 ∈ L 2 (0, T ) and f ∈ L 1 (0, T ; L 2 (0, L)) Then, there exists a unique mild solution y ∈ Y of              y t -y xxx = f, (t, x) ∈ Q T , y(t, 0) = y(t, L) = 0, t ∈ (0, T ), y x (t, 0) = h 1 (t), t ∈ (0, T ), y(0, x) = y 0 (x),
x ∈ (0, L).

(3.15)

Moreover, there exists a constant C > 0 such that the solutions of (3.15) satisfy

y Y ≤ C( y 0 2 L 2 (0,L) + h 1 2 L 2 (0,T ) + f 2 L 1 (0,T ;L 2 (0,L)) ) 1/2 . (3.16)
Proof. From previous results, we only have to consider the case y 0 = 0 and h 1 = 0. From the semigroup theory the unique mild solution y belongs to C([0, T ]; L 2 (0, L)) if the right-hand side belongs to L 1 (0, T ; L 2 (0, L)) and there exists a positive constant C such that

y C([0,T ];L 2 (0,L)) ≤ f L 1 (0,T ;L 2 (0,L)) .
To get a similar result in L 2 (0, T ; H 1 (0, L)) we have from (3.9) that

3 2 T 0 L 0 |y x | 2 dxdt + 1 2 L 0 |y(T, x)| 2 (L -x)dx = T 0 L 0 f y(L -x)dxdt, (3.17) 
from where

T 0 L 0 |y x | 2 dxdt ≤ 2L 3 T 0 f L 2 (0,L) y L 2 (0,L) dt ≤ C f 2 L 1 (0,T ;L 2 (0,L)) , (3.18) 
which implies that the solution belongs to L 2 (0, T ; H 1 (0, L)) and we have the estimation (3.16).

That ends the proof of Proposition 2.

In the second step, we consider a single KdV equation with a source term with a variation in the border condition

             y t + y xxx = g, in (0, T ) × (0, L), y(t, 0) = y(t, L) = 0, in (0, T ), y x (t, L) = h 2 (t), in (0, T ), y(0, x) = y 0 (x), in (0, L). (3.19) 
For this equation we have the following known result.

Proposition 3 Let y 0 ∈ L 2 (0, L), g ∈ L 1 (0, T ; L 2 (0, L)), and 
h 2 ∈ L 2 (0, T ), the system (3.19)
admits a unique mild solution y ∈ Y . Moreover there exists a constant C > 0 such that

y Y ≤ C( y 0 2 L 2 (0,L) + h 2 2 L 2 (0,T ) + g 2 L 1 (0,T ;L 2 (0,L)) ) 1/2 . (3.20)
The previous one was presented in [START_REF] Cerpa | Control of a Korteweg-de Vries equation : a tutorial[END_REF] (Proposition 3. Pag 52) where the estimate for the solution is obtained using integration by parts.

Regularity results for the linear system

Using the existence and uniqueness results of the single KdV equation, we will obtain the well-possedness for the linear system with three sources given by the following equations

       u t -1 4 u xxx = f 1 + 3w x , v t + 1 2 v xxx = f 2 , w t + 1 2 w xxx = f 3 , (3.21) 
with the boundary and initial conditions :

             u(t, 0) = 0, u(t, L) = 0, u x (t, 0) = h 1 (t), v(t, 0) = 0, v(t, L) = 0, v x (t, L) = h 2 (t), w(t, 0) = 0, w(t, L) = 0, w x (t, L) = h 3 (t), u(0, x) = u 0 (x), v(0, x) = v 0 (x), w(0, x) = w 0 (x).
(3.22)

Proposition 4 Let (u 0 , v 0 , w 0 ) ∈ L 2 (0, L) 3 , h = (h 1 , h 2 , h 3 ) ∈ L 2 (0, T ) 3 and (f 1 , f 2 , f 3 ) ∈ X 3 .
Then, system (3.21)-(3.22) admits a unique solution (u, v, w) ∈ Y 3 . Moreover there exists a constant C > 0 such that

(u, v, w) Y 3 ≤ C( (u 0 , v 0 , w 0 ) 2 L 2 (0,L) 3 + (f 1 , f 2 , f 3 ) 2 X 3 + h 2 L 2 (0,T ) 3 ) 1/2 . (3.23) 
Proof. We notice that given the cascade structure of the system, we can first solve the second and the third KdV equation with (h 2 , h 3 ) ∈ L 2 (0, L) 2 and initial condition (v 0 , w 0 ) ∈ L 2 (0, L) 2 and then we solve the first equation that depends of the variable u. From (3.16) and (3.20) we obtain the estimate (3.23).

Regularity results for the nonlinear system

We want to prove the well-posedness of nonlinear system (3.1)-(3.2). The first step is to prove that the nonlinearities uu x , vv x , uw x can be considered as source terms of the linear equations.

Let us consider the continuity property proved by Carreño, Crépeau and Cerpa in [START_REF] Carreño | Internal null controllability of the generalized Hirota-Satsuma system[END_REF].

Lemma 1 [See [START_REF] Carreño | Internal null controllability of the generalized Hirota-Satsuma system[END_REF] Lemma 6.] Let y, z ∈ L 2 (0, T ; H 1 (0, L)) then yz x ∈ L 1 (0, T ; L 2 (0, L)) and the map (y, z) ∈ (L 2 (0, T ;

H 1 (0, L)) 2 ) -→ yz x ∈ L 1 (0, T ; L 2 (0, L)) is continuous. Moreover,
there exists a constant C > 0 such that

yz x -ỹz x L 1 (0,T ;L 2 (0,L)) ≤ C (y, z) L 2 (0,T ;H 1 (0,L) 2 ) (y -ỹ, z -z) L 2 (0,T ;H 1 (0,L) 2 ) . (3.24) 
Using Lemma 1 we can now prove the following local result.

Proposition 5 Let L > 0 and T > 0. There exist > 0 and a positive constant C such that for every (u 0 , v 0 , w 0 ) ∈ L 2 (0, L) 3 , h ∈ L 2 (0, T ) 3 , such that

(u 0 , v 0 , w 0 ) L 2 (0,L) 3 + h L 2 (0,T ) 3 ≤ ,
there exists a unique solution (u, v, w) ∈ Y 3 of the nonlinear system (3.1)-(3.2) that satisfies

(u, v, w) Y 3 ≤ C( (u 0 , v 0 , w 0 ) L 2 (0,L) 3 + h L 2 (0,T ) 3 ). Proof. Let (u 0 , v 0 , w 0 ) ∈ (L 2 (0, L)) 3 , h ∈ (L 2 (0, T )) 3 such that (u 0 , v 0 , w 0 ) L 2 (0,L) 3 + h L 2 (0,T ) 3 ≤ ,
with > 0 to be chosen later. Given (u, v, w) ∈ Y 3 we consider the map Γ : Y 3 -→ Y 3 defined by Γ(u, v, w) = (ũ, ṽ, w) where (ũ, ṽ, w) is solution of

       ũt -1 4 ũxxx = 3uu x -6vv x + 3 wx , ṽt + 1 2 ṽxxx = -3vv x , wt + 1 2 wxxx = -3uw x , (3.25) 
with the conditions

            
ũ(t, 0) = 0, ũ(t, L) = 0, ũx (t, 0) = h 1 (t), ṽ(t, 0) = 0, ṽ(t, L) = 0, ṽx (t, L) = h 2 (t), w(t, 0) = 0, w(t, L) = 0, wx (t, L) = h 3 (t), ũ(0, x) = u 0 (x), ṽ(0, x) = v 0 (x), w(0, x) = w 0 (x). 

Γ(u, v, w) Y 3 = (ũ, ṽ, w) Y 3 ≤ C( (u 0 , v 0 , w 0 ) L 2 (0,L) 3 + (3uu x -6vv x , -3vv x , -3uw x ) X 3 + h L 2 (0,T ) 3 ) ≤ C( (u 0 , v 0 , w 0 ) L 2 (0,L) 3 + (u, v, w) 2 Y 3 + h L 2 (0,T ) 3 ).
We also have, for any

(u 1 , v 1 , w 1 ), (u 2 , v 2 , w 2 ) ∈ Y 3 , Γ(u 1 , v 1 , w 1 ) -Γ(u 2 , v 2 , w 2 ) Y 3 ≤ C( (u 1 , v 1 , w 1 ) -(u 2 , v 2 , w 2 ) Y 3 )( (u 1 , v 1 , w 1 ) Y 3 + (u 2 , v 2 , w 2 ) Y 3 ). (3.27)
We consider Γ restricted to the closed ball B(0, R) = {(u, v, w) ∈ Y 3 : (u, v, w) Y 3 ≤ R} with R to be chosen later. We have the estimates,

Γ(u, v, w) Y 3 ≤ C( + (u, v, w) 2 Y 3 )
and

Γ(u 1 , v 1 , w 1 ) -Γ(u 2 , v 2 , w 2 ) Y 3 ≤ 2CR (u 1 , v 1 , w 1 ) -(u 2 , v 2 , w 2 ) Y 3 .
If R, are small enough such that R < 1 2C , and < R 2C , we can apply the Banach fixed point theorem and prove that a unique fixed point of Γ exists, which ends the proof.

Controllability results

This section is dedicated to obtain the exact controllability of system (3.1)-(3.2). In the first subsection, we get the controllability for the linear system (3.4)-(3.5) using the exact boundary controllability for the single Korteweg-de Vries equation on a bounded domain. In the second subsection, the local exact controllability for the nonlinear system is obtained by means of a fixed point theorem.

Exact controllability of the linear system

We first consider the following known result for a single KdV equation Theorem 8 [See [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF], Section 3] Let L, T > 0. For any y 0 , y T ∈ L 2 (0, L) there exists h ∈

L 2 (0, L) such that the solution y ∈ C([0, T ]; L 2 (0, L)) ∩ L 2 (0, T ; H 1 (0, L)) of              y t + y xxx = 0, in (0, T ) × (0, L), y(t, 0) = y(t, L) = 0, in (0, T ), y x (t, L) = h(t), in (0, T ), y(0, x) = y 0 (x), in (0, L), (3.28) 
satisfies y(T, •) = y T .

The main result of this section concerning boundary controllability of the linear Hirota-Satsuma system is as follows Theorem 9 Let L, T > 0. For any (u 0 , v 0 , w 0 ), (u T , v T , w T ) ∈ L 2 (0, L) 3 there exist three controls, (h 1 , h 2 , h 3 ) ∈ L 2 (0, L) 3 such that the solution (u, v, w) of (3.4)-(3.5) satisfies

u(T, •) = u T , v(T, •) = v T , w(T, •) = w T . (3.29) 
Proof. From Theorem 8 there exist h 2 , h 3 ∈ L 2 (0, L) such that the solutions v, w ∈ C([0, T ];

L 2 (0, L))∩ L 2 (0, T ; H 1 (0, L)) of                                v t + 1 2 v xxx = 0, (t, x) ∈ (0, T ) × (0, L), w t + 1 2 xxx = 0, (t, x) ∈ (0, T ) × (0, L), v(t, 0) = v(t, L) = 0, t ∈ (0, T ), w(t, 0) = w(t, L) = 0, t ∈ (0, T ), v x (t, L) = h 2 (t), t ∈ (0, T ), w x (t, L) = h 3 (t), t ∈ (0, T ), v(0, x) = v 0 (x), w(0, x) = w 0 (x), x ∈ (0, L), (3.30) 
satisfy v(T, •) = v T and w(T, •) = w T . We consider ū ∈ C([0, T ]; L 2 (0, L)) ∩ L 2 (0, T ; H 1 (0, L)) solution of              ūt -1 4 ūxxx = 3w x , in (0, T ) × (0, L), ū(t, 0) = ū(t, L) = 0, in (0, T ), ūx (t, 0) = 0, in (0, T ), ū(0, x) = u 0 (x), in (0, L).
(3.31)

By Theorem 8 there exists a control h 1 ∈ L 2 (0, L) such that the solution ũ of 

             ũt -1 4 ũxxx = 0, in (0, T ) × (0, L), ũ(t, 0) = ũ(t, L) = 0, in (0, T ), ũx (t, 0) = h 1 (t), in (0, T ), ũ(0, x) = 0, in (0, L), (3.32 

Exact controllability of the nonlinear system

The main goal in this section is to prove the local exact controllability for the nonlinear system

(3.1)-(3.
2) which we rewrite here :

       u t -1 4 u xxx = 3uu x -6vv x + 3w x , v t + 1 2 v xxx = -3uv x , w t + 1 2 w xxx = -3uw x , (3.33) 
with the conditions

             u(t, 0) = 0, u(t, L) = 0, u x (t, 0) = h 1 (t), v(t, 0) = 0, v(t, L) = 0, v x (t, L) = h 2 (t), w(t, 0) = 0, w(t, L) = 0, w x (t, L) = h 3 (t), u(0, x) = u 0 (x), v(0, x) = v 0 (x), w(0, x) = w 0 (x), (3.34) 

Proof of Theorem 7.

Let L, T > 0 and (u 0 , v 0 , w 0 ), (u T , v T , w T ) ∈ L 2 (0, L) 3 such that

(u 0 , v 0 , w 0 ) L 2 (0,L) 3 < r and (u T , v T , w T ) L 2 (0,L) 3 < r,
for some r > 0 to be chosen later. We consider the map

Π : (u, v, w) ∈ Y 3 -→ (u 1 , v 1 , w 1 ) + (u 2 , v 2 , w 2 ) + (u 3 , v 3 , w 3 ) ∈ Y 3 , where (u 1 , v 1 , w 1 ) is the solution of        u 1 t -1 4 u 1 xxx = 3w 1 x , v 1 t + 1 2 v 1 xxx = 0, w 1 t + 1 2 w 1 xxx = 0, (3.35) 
with the conditions

             u 1 (t, 0) = 0, u 1 (t, L) = 0, u 1 x (t, 0) = 0, v 1 (t, 0) = 0, v 1 (t, L) = 0, v 1 x (t, L) = 0, w 1 (t, 0) = 0, w 1 (t, L) = 0, w 1 x (t, L) = 0, u 1 (0, x) = u 0 (x), v 1 (0, x) = v 0 (x), w 1 (0, x) = w 0 (x), (u 2 , v 2 , w 2 ) is the solution of        u 2 t -1 4 u 2 xxx = 3uu x -6vv x + 3w 2 x , v 2 t + 1 2 v 2 xxx = -3uv x , w 2 t + 1 2 w 2 xxx = -3uw x , (3.36) 
with the conditions

             u 2 (t, 0) = 0, u 2 (t, L) = 0, u 2 x (t, 0) = 0, v 2 (t, 0) = 0, v 2 (t, L) = 0, v 2 x (t, L) = 0, w 2 (t, 0) = 0, w 2 (t, L) = 0, w 2 x (t, L) = 0, u 2 (0, x) = 0, v 2 (0, x) = 0, w 2 (0, x) = 0,
and (u 3 , v 3 , w 3 ) is the solution of        u 3 t -1 4 u 3 xxx = 3w 3 x , v 3 t + 1 2 v 3 xxx = 0, w 3 t + 1 2 w 3 xxx = 0, (3.37) 
with the conditions

             u 3 (t, 0) = 0, u 3 (t, L) = 0, u 3 x (t, 0) = h 1 (t), v 3 (t, 0) = 0, v 3 (t, L) = 0, v 3 x (t, L) = h 2 (t), w 3 (t, 0) = 0, w 3 (t, L) = 0, w 3 x (t, L) = h 3 (t), u 3 (0, x) = 0, v 3 (0, x) = 0, w 3 (0, x) = 0.
By Theorem 9, we know that the linear system (3.37) is exactly controllable, this means that there exists a control (h 1 , h 2 , h 3 ) ∈ (L 2 (0, T )) 3 such that

(u 3 (T, •), v 3 (T, •), w 3 (T, •)) = (u T , v T , w T ) -(u 1 (T, •), v 1 (T, •), w 1 (T, •)) -(u 2 (T, •), v 2 (T, •), w 2 (T, •)).
In this part is also important the continuity of the control operator that maps a final state to the control driving the linear system to that state. We use the assumptions on L and T to guarantee the controllability of the linear system and we are interested in finding a fixed point (u, v, w) of the operator Π.

Let R > 0 which will be chosen later, we define

B(0, R) = {(u, v, w) ∈ (L 2 (0, T ; H 1 (0, L))) 3 / (u, v, w) L 2 (0,T,H 1 (0,L) 3 ) ≤ R}.

Introduction

Let T > 0, L > 0, Q T = (0, T ) × (0, L) and ω ⊂ (0, L). We are interested in the null controllability of a parabolic system given by

                   u t + u xxxx + b(x)u xx = v x + g 1 (x)v + f 1 (x)u x + g 2 (x)u + 1 ω h, in (0, T ) × (0, L), v t + v xxxx + d(x)v xx = u x + f 2 (x)v x + g 4 (x)v, in (0, T ) × (0, L), u(t, 0) = u x (t, 0) = 0, u(t, L) = u x (t, L) = 0, in (0, T ), v(t, 0) = v x (t, 0) = 0, v(t, L) = v x (t, L) = 0, in (0, T ), u(0, x) = u 0 (x), v(0, x) = v 0 (x), in (0, L), (4.1) 
where h ∈ L 2 (Q T ) is the control function and (u 0 , v 0 ) ∈ L 2 (0, L) 2 are the initial conditions,

the functions b, d ∈ C ∞ (0, L), f 1 , f 2 , g 1 , g 2 ∈ C ∞ (0, L) and g 4 ∈ C ∞ (0, L).
In the last years, different controllability properties have been studied for parabolic systems. In [START_REF] Boyer | Approximate controllability conditions for some linear 1D parabolic systems with space-dependent coefficients[END_REF][START_REF] Guerrero | Null controllability of some systems of two parabolic equations with one control force[END_REF][START_REF] Ammar-Khodja | New phenomena for the null controllability of parabolic systems : Minimal time and geometrical dependence[END_REF][START_REF] Olive | Boundary approximate controllability of some linear parabolic systems[END_REF] the approximate and null controllability results for parabolic equations have been proved

using Carleman inequalities and the moments method. In [START_REF] Olive | Null-controllability for some linear parabolic systems with controls acting on different parts of the domain and its boundary[END_REF] the null controllability of linear parabolic systems with several controls acting on subdomain has been presented using the Carleman estimate.

Concerning controllability of systems with fewer controls than equations the articles [START_REF] Cerpa | Null controllability of the stabilized Kuramoto-Sivashinsky system with one distributed control[END_REF][START_REF] Duprez | Indirect controllability of some linear parabolic systems of m equations with m -1 controls involving coupling terms of zero or first order[END_REF][START_REF] Fernández-Cara | On the controllability of the N-dimensional Navier-Stokes and Boussinesq systems with N-1 scalar controls[END_REF][START_REF] González-Burgos | Controllability of some coupled parabolic systems by one control force[END_REF][START_REF] González-Burgos | Controllability results for some nonlinear coupled parabolic systems by one control force[END_REF] deal with the internal controllability of systems. In [START_REF] González-Burgos | Controllability results for cascade systems of m coupled parabolic pdes by one control force[END_REF] the null controllability property for the system of N cascade parabolic equations with only one control was established using Carleman estimates.

The control community has been oriented to prove control properties in the case when there are few controls than equations. The algebraic solvability combined with the fictitious method can be used in this case. In [START_REF] Duprez | Positive and negative results on the internal controllability of parabolic equations coupled by zero and first-order terms[END_REF] the authors presented the method of algebraic solvability for the study of a second order system coupling two parabolic equations with a control that acts only in one equation. This method has also been used in [START_REF] Coron | Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components[END_REF] together with the return method to get the local null controllability of the three-dimensional Navier-Stokes equation. Later on it was used in [START_REF] Duprez | Indirect controllability of some linear parabolic systems of m equations with m -1 controls involving coupling terms of zero or first order[END_REF] for the null controllability of parabolic system of m equations with m -1 controls. In this chapter, we study the utility of the algebraic solvability method to prove the null controllability of the fourth order parabolic system (4.1) with a single control.

The appropriate control notion to study for system (4.1) is the null controllability, which is defined as follows. The system is said to be null controllable in time T > 0 if, given any initial state (u 0 , v 0 ), there exists a control h such that the corresponding solution (u, v) = (u(t, x), v(t, x)) satisfies

u(T, •) = v(T, •) = 0.
One important point is that the control has to be regular enough so that it can be differentiated a certain amount of times respect to space and time variables. We need to prove that the control h must be differentiable eight times in space and twice in time. This regularity is not yet proven and it is the step missing in order to prove the following conjecture.

Conjecture 1 Let L > 0 and T > 0, for any

(u 0 , v 0 ) ∈ L 2 (0, L) 2 there exists h ∈ L 2 (Q T ) such that the unique solution (u, v) ∈ C([0, T ]; L 2 (0, L) 2 ) of (4.1) satisfies u(T, •) = v(T, •) = 0.
Moreover, the corresponding control h satisfies

h L 2 (Q T ) ≤ (u 0 , v 0 ) L 2 (0,L) 2 . (4.2) 
This chapter is organized as follows. We start giving in section 4.2 the well-posedness for the considered system. Then, in section 4.3 we prove the null controllability with two controls using a Carleman estimate. Finally, in section 4.4 we present the Carleman estimate that we need to obtain the regularity of the control which is not proven yet and we explain the steps that we must follow to obtain the Conjecture 1 using the algebraic resolution and the fictitious method.

Well-Posedness and regularity results

In this section, we give some well-posedness results for system (4.1) and we present some regularity results. Let us introduce for k, m ≥ 0, the notation

L m (0, T ; H k (0, L)) := L m (H k ), B := C([0, T ]; L 2 (0, L)) ∩ L 2 (0, T ; H 2 (0, L)), Y := {z ∈ C([0, T ]; H 2 (0, L)) ∩ L 2 (0, T ; H 4 (0, L))}, M := {z ∈ C([0, T ]; H 6 (0, L)) ∩ L 2 (0, T ; H 8 (0, L))/z t ∈ Y}, G := C([0, T ]; H 4 (0, L) ∩ H 2 0 (0, L)) ∩ L 2 (0, T ; H 6 (0, L)), (4.3) 
and

F := {ξ ∈ L 2 (0, T ; H 4 (0, L))/ξ t ∈ L 2 (0, T ; L 2 (0, L))}.
We study the existence and uniqueness of the following system

                 u t + u xxxx + b(x)u xx = v x + g 1 (x)v + f 1 (x)u x + g 2 (x)u + η 1 , in Q T , v t + v xxxx + d(x)v xx = u x + f 2 (x)v x + g 4 (x)v + η 2 , in Q T , u(t, 0) = u x (t, 0) = 0, u(t, L) = u x (t, L) = 0, in (0, T ), v(t, 0) = v x (t, 0) = 0, v(t, L) = v x (t, L) = 0, in (0, L), u(0, x) = u 0 (x), v(0, x) = v 0 (x), in (0, L).
(4.4)

The adjoint system is given by the equation

                 -ϕ t + ϕ xxxx + (b(x)ϕ) xx = -ψ x -(f 1 (x)ϕ) x + g 2 (x)ϕ + φ 1 , in Q T , -ψ t + ψ xxxx + (d(x)ψ) xx = -ϕ x + g 1 (x)ϕ -(f 2 (x)ψ) x + g 4 (x)ψ + φ 2 , in Q T , ϕ(t, 0) = ϕ x (t, 0) = 0, ϕ(t, L) = ϕ x (t, L) = 0, in (0, T ), ψ(t, 0) = ψ x (t, 0) = 0, ψ(t, L) = ψ x (t, L) = 0, in (0, T ), ϕ(T, x) = ϕ T (x) ψ(T, x) = ψ T (x), in (0, L). (4.5) 
First, we only consider the main part of the linear differential operator in the next result. Let us consider the systems

                 u t + u xxxx = v x + η1 , in Q T , v t + v xxxx = u x + η2 , in Q T , u(t, 0) = u x (t, 0) = 0, u(t, L) = u x (t, L) = 0, in (0, T ), v(t, 0) = v x (t, 0) = 0, v(t, L) = v x (t, L) = 0, in (0, L), u(0, x) = u 0 (x), v(0, x) = v 0 (x), in (0, L), (4.6) 
and Proposition 6 (a) If (u 0 , v 0 ) ∈ L 2 (0, L) 2 and (η 1 , η2 ) ∈ L 1 (0, T ; L 2 (0, L) 2 ). Then, system (4.6) has a unique solution

                 ϕ t + ϕ xxxx = -ψ x + ξ 1 , in Q T , ψ t + ψ xxxx = -ϕ x + ξ 2 , in Q T , ϕ(t, 0) = ϕ x (t, 0) = 0, ϕ(t, L) = ϕ x (t, L) = 0, in (0, T ), ψ(t, 0) = ψ x (t, 0) = 0, ψ(t, L) = ψ x (t, L) = 0, in (0, T ), ϕ(0, x) = ϕ 0 (x) ψ(0, x) = ψ 0 (x), in ( 
(u, v) ∈ C([0, T ]; L 2 (0, L) 2 ) ∩ L 2 (0, T ; H 2 0 (0, L) 2 ).
Moreover, there exists C > 0 such that

||(u, v)|| C([0,T ];L 2 (0,L) 2 )∩L 2 (0,T ;H 2 0 (0,L) 2 ) ≤ C ||(u 0 , v 0 )|| L 2 (0,L) 2 + |(η 1 , η2 )|| L 1 (0,T ;L 2 (0,L) 2 ) . (4.8) (b) If (ϕ 0 , ψ 0 ) ∈ H 4 (0, L) 2 ∩ H 2 0 (0, L) 2 and (ξ 1 , ξ 2 ) ∈ L 1 (0, T ; H 4 (0, L) 2 ∩ H 2 0 (0, L) 2
). Then, system (4.7) has a unique solution

(ϕ, ψ) ∈ C([0, T ]; H 4 (0, L) 2 ∩ H 2 0 (0, L) 2 ) ∩ L 2 (0, T ; H 6 (0, L) 2 ).
Moreover, there exists a constant C > 0 such that

||(ϕ, ψ)|| C([0,T ];H 4 (0,L) 2 )∩L 2 (0,T ;H 6 (0,L) 2 ) ≤ C(||(ξ 1 , ξ 2 )|| L 1 (0,T ;H 4 (0,L) 2 ∩H 2 0 (0,L) 2 ) + ||(ϕ 0 , ψ 0 )|| H 4 (0,L) 2 ).
(c) If (ϕ 0 , ψ 0 ) ∈ H 6 (0, L) 2 ∩ H 2 0 (0, L) 2 and (ξ 1 , ξ 2 ) ∈ F 2 . Then, system (4.7) has a unique solution (ϕ, ψ) ∈ M 2 . Moreover, there exists a constant C > 0 such that

||(ϕ, ψ)|| M 2 ≤ C(||(ξ 1 , ξ 2 )|| F 2 + ||(ϕ 0 , ψ 0 )|| H 6 (0,L) 2 ).
Proof. (a) We consider the spatial operator

A : D(A) ⊂ L 2 (0, L) × L 2 (0, L) → L 2 (0, L) × L 2 (0, L), with D(A) = {w ∈ H 4 (0, L) × H 4 (0, L) : w(0) = w(L) = w (0) = w (L) = 0},

and defined by

Aw = A   u v   =   -u + v -v + u   .
It can be proven that operator A is dissipative, which means that

L 0 wA(w) = L 0 u(-u + v ) + L 0 v(-v + u ) = - L 0 (|u | 2 + |v | 2 ) ≤ 0, ∀w ∈ D(A).
Its adjoint operator A * , defined by

D(A * ) = {w ∈ H 4 (0, L) × H 4 (0, L) : w(0) = w(L) = w (0) = w (L)}, A * w = A *   u v   =   -u -v -v -u   , is also dissipative. Indeed, L 0 wA * (w) = L 0 -u(u + v ) + L 0 -v(v + u ) = - L 0 (|u | 2 + |v | 2 ) ≤ 0, ∀w ∈ D(A * ).
Therefore A generates a strongly continuous semigroup of contractions (see [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF]) and for each (u 0 , v 0 ) ∈ L 2 (0, L) 2 and (η 1 , η2 ) ∈ L 1 (0, T ; L 2 (0, L) 2 ), system (4.6) has a unique solution

(u, v) ∈ C([0, T ]; L 2 (0, L) 2 ).
We now obtain some useful inequalities in order to state the well-posedness framework. System (4.6) is multiplied by (u, v) and integrated over (0, L) in space. Some integrations by parts, together with Young's inequality give

1 2 L 0 d|u| 2 dt dx + L 0 |u xx | 2 ≤ 1 2 L 0 |u| 2 + 2 L 0 |v x | 2 + L 0 η1 u (4.9) and 1 2 L 0 d|v| 2 dt dx + L 0 |v xx | 2 ≤ 1 2 L 0 |v| 2 + 2 L 0 |u x | 2 + L 0 η2 v. (4.10) 
Taking > 0 small enough, from Poincaré inequality for u x and v x we get

d dt L 0 |u| 2 + |v| 2 dx + C L 0 (|u xx | 2 + |v xx | 2 ) ≤ C L 0 (|u| 2 + |v| 2 ) + C L 0 η1 u + L 0 η2 v . (4.11)
Young's inequality give

d dt L 0 |u| 2 + |v| 2 dx + C L 0 (|u xx | 2 + |v xx | 2 ) ≤ C L 0 (|u| 2 + |v| 2 ) + C L 0 |η 1 | 2 + L 0 |η 2 | 2 (4.12)
and Gronwall's lemma implies the existence of C > 0 such that

L 0 |u| 2 + |v| 2 dx ≤ C L 0 (|u 0 | 2 + |v 0 | 2 ) + T 0 L 0 |η 1 | + T 0 L 0 |η 2 | . (4.13)
and then

L 0 |u| 2 + |v| 2 dx ≤ C ( (u 0 , v 0 ) 2 L 2 (0,L) 2 + (η 1 , η2 ) 2 L 1 (0,T ;L 2 (0,L) 2 ) . (4.14) 
Taking into account this estimate, (4.11) is integrated over [0, T ] and we obtain C > 0 such that

T 0 L 0 (|u xx | 2 + |v xx | 2 )dxdt ≤ C( (u 0 , v 0 ) 2 L 2 (0,L) 2 + (η 1 , η2 ) 2 L 1 (0,T ;L 2 (0,L) 2 ) ). (4.15)
Thus, by a density argument we can prove that (η

1 , η2 ) ∈ L 1 (0, T ; L 2 (0, L) 2 ) and (u 0 , v 0 ) ∈ L 2 (0, L) 2 implies that the solution (u, v) lies in C([0, T ]; L 2 (0, L) 2 ) ∩ L 2 (0, T ; H 2 (0, L) 2 ).
(b) In the same way, if (ϕ 0 , ψ 0 ) ∈ H 4 (0, L) 2 ∩ H 2 0 (0, L) 2 the operator

F : D(F ) ⊂ L 2 (0, L) × L 2 (0, L) → L 2 (0, L) × L 2 (0, L)
defined by

D(F ) = {w ∈ H 4 (0, L) × H 4 (0, L) : w(0) = w(L) = w (0) = w (L) = 0}, F w = F   ϕ ψ   =   -ϕ -ψ -ψ -ϕ  
is dissipative F and the adjoint operator F * is also dissipative. Therefore F generates a strongly continuous semigroup of contractions and for each (ϕ 0 , ψ 0 ) ∈ H 4 (0, L) 2 ∩ H 2 0 (0, L) 2 and (ξ 1 , ξ 2 ) ∈ L 1 (0, T ; H 4 (0, L) 2 ∩ H 2 0 (0, L) 2 ), system (5.4) has a unique solution

(ϕ, ψ) ∈ C([0, T ]; H 4 (0, L) 2 ∩ H 2 0 (0, L) 2 ) ∩ L 2 ([0, T ]; H 6 (0, L) 2 ). (c) From (b) if (ϕ 0 , ψ 0 ) ∈ H 6 (0, L) 2 ∩ H 2 0 (0, L) 2 and (ξ 1 , ξ 2 ) ∈ F 2 .
Then, there exists a unique solution (ϕ, ψ) ∈ C([0, T ]; H 4 (0, L) 2 ∩ H 2 0 (0, L) 2 ). We will demonstrate that the solutions (ϕ, ψ) ∈ M 2 (refer to the notation introduced in (4.3)). System (4.7) is multiplied by (ϕ, ψ) and integrated over (0, L) in space. Some integrations by parts together with Young's inequality give

1 2 L 0 d|ϕ| 2 dt dx ≤ - L 0 |ϕ xx | 2 + 1 2 L 0 |ϕ| 2 + 2 L 0 |ψ x | 2 + 1 2 L 0 |ξ 1 | 2 + 1 2 L 0 |ϕ| 2 dx and 1 2 L 0 d|ψ| 2 dt dx ≤ - L 0 |ψ xx | 2 + 1 2 L 0 |ψ| 2 + 2 L 0 |ϕ x | 2 + 1 2 L 0 |ξ 2 | 2 + 1 2 L 0 |ψ| 2 dx. 1 2 L 0 d|ϕ| 2 dt dx + L 0 |ϕ xx | 2 ≤ 1 2 1 + 1 L 0 |ϕ| 2 + 2 L 0 |ψ x | 2 + 1 2 L 0 |ξ 1 | 2 dx and 1 2 L 0 d|ψ| 2 dt dx + L 0 |ψ xx | 2 ≤ 1 2 1 + 1 L 0 |ψ| 2 + 2 L 0 |ϕ x | 2 + 1 2 L 0 |ξ 2 | 2 dx.
Applying Gronwall's lemma, Poincaré's inequality and taking > 0 small enough, we get that there exists C > 0 such that

||(ϕ, ψ)|| C([0,T ];L 2 (0,L) 2 )∩L 2 (0,T ;H 2 (0,L) 2 ) ≤ C ||(ξ 1 , ξ 2 )|| L 2 (0,T ;L 2 (0,L) 2 ) + ||(ϕ 0 , ψ 0 )|| L 2 (0,L) 2 . (4.16)
Now, the first equation of system (4.7) is multiplied by ϕ xxxx and integrated over (0, L) in space, after some integrations by parts we get

1 2 d dt L 0 |ϕ xx | 2 dx + L 0 |ϕ xxxx | 2 dx ≤ L 0 |ψ x ϕ xxxx |dx + L 0 ξ 1 ϕ xxxx dx. (4.17) 
Using Young's and Poincaré's inequality we get

d dt L 0 |ϕ xx | 2 dx + L 0 |ϕ xxxx | 2 dx ≤ L 2 π 2 L 0 |ψ xx | 2 dx + L 0 |ϕ xxxx | 2 dx + L 0 |ξ 1 | 2 dx. (4.18)
Similarly, we multiply the equation on ψ by ψ xxxx and integrating by parts we get after some computations

d dt L 0 |ψ xx | 2 dx + L 0 |ψ xxxx | 2 dx ≤ L 2 π 2 L 0 |ϕ xx | 2 dx + L 0 |ψ xxxx | 2 dx + L 0 |ξ 2 | 2 dx. (4.19)
By using equations (4.18) and ( 4. [START_REF] Cerpa | Null controllability of the stabilized Kuramoto-Sivashinsky system with one distributed control[END_REF] we have that

d dt L 0 |ϕ xx | 2 + |ψ xx | 2 dx + (1 -) L 0 (|ϕ xxxx | 2 + |ψ xxxx | 2 )dx ≤ L 2 π 2 L 0 (|ϕ xx | 2 + |ψ xx | 2 )dx + L 0 (|ξ 1 | 2 +|ξ 2 | 2 )dx, (4.20)
for > 0 small enough, from Gronwall's Lemma and (4.20) we have the existence of C > 0

such that L 0 (|ϕ xx | 2 +|ψ xx | 2 )dx ≤ C T 0 L 0 |ξ 1 | 2 +|ξ 2 | 2 + L 0 |ϕ 0 | 2 +|ψ 0 | 2 dx . (4.21)
Then, equation (4.20) is integrated over [0, T ] and (4.21) is used to get

T 0 L 0 (|ϕ xxxx | 2 +|ψ xxxx | 2 ) ≤ C T 0 L 0 |ξ 1 | 2 +|ξ 2 | 2 + L 0 |ϕ 0 | 2 +|ψ 0 | 2 dx . (4.22)
From where

(ϕ, ψ) 2 Y 2 ≤ C T 0 L 0 (|ξ 1 | 2 + |ξ 2 | 2 ) + C (ϕ 0 , ψ 0 ) 2 H 2 (0,L) 2 . (4.23)
On the other hand, system (4.7) is derived with respect to time. Thus, (z 1 , z 2 ) := (ϕ t , ψ t )

satisfies the system

                   z 1 t + z 1 xxxx = -z 2 x + (ξ 1 ) t in Q T , z 2 t + z 2 xxxx = -z 1 x + (ξ 2 ) t in Q T , z 1 (t, 0) = z 1 x (t, 0) = 0, z 1 (t, L) = z 1 x (t, L) = 0, in (0, T ), z 2 (t, 0) = z 2 x (t, 0) = 0, z 2 (t, L) = z 2 x (t, L) = 0, in (0, T ), z 1 (0, x) = z 1 0 (x), z 2 (0, x) = z 2 0 (x), in (0, L). (4.24)
Where

z 1 0 (x) = ξ 1 (0, x) -ψ 0 (x) -ϕ 0 (x) and z 2 0 (x) = ξ 2 (0, x) -ϕ 0 (x) -ψ 0 (x).
Using (4.23) we obtain that (z 1 , z 2 ) ∈ Y 2 (refer to the notation introduced in (4.3)) if (z 1 0 , z 2 0 ) ∈ H 2 (0, L) 2 and ((ξ 1 ) t , (ξ 2 ) t ) ∈ L 2 (0, T ; L 2 (0, L) 2 ). These hypotheses are fulfilled if (ϕ 0 , ψ 0 ) ∈

H 6 (0, L) 2 ∩ H 2 0 (0, L) 2 and (ξ 1 , ξ 2 ) ∈ F 2 .
From the equation satisfied by (ϕ, ψ), the fact that (ξ 1 , ξ 2 ) ∈ F 2 and (ϕ t , ψ t ) ∈ Y 2 we have that

(ϕ, ψ) ∈ C([0, T ]; H 6 (0, L) 2 )∩L 2 (0, T ; H 8 (0, L) 2 )
which concludes the proof of this proposition.

Theorem 10 Let b, d, g 1 , g 2 , g 4 ∈ C ∞ (0, L) and f i ∈ C ∞ (0, L) for i = 1, 2. (a) If (u 0 , v 0 ) ∈ L 2 (0, L) 2 and (η 1 , η 2 ) ∈ L 1 (0, T ; L 2 (0, L) 2 ).
There exists a unique solution

(u, v) ∈ C([0, T ]; L 2 (0, L) 2 ) ∩ L 2 (0, T ; H 2 0 (0, L) 2 ) of system (4.4). Moreover, there exists C > 0 such that ||(u, v)|| C([0,T ];L 2 (0,L) 2 )∩L 2 (0,T ;H 2 (0,L) 2 ) ≤ C ||(u 0 , v 0 )|| L 2 (0,L) 2 + |(η 1 , η 2 )|| L 1 (0,T ;L 2 (0,L) 2 ) . (b) If (ϕ T , ψ T ) ∈ H 4 (0, L) 2 ∩H 2 0 (0, L) 2 and (φ 1 , φ 2 ) ∈ L 1 (0, T ; H 4 (0, L) 2 ∩H 2 0 (0, L) 2 )
the system (4.5) has a unique solution (ϕ, ψ) ∈ G 2 . Moreover, there exists C > 0 such that

||(ϕ, ψ)|| G 2 ≤ C ||(ϕ T , ψ T )|| H 4 (0,L) 2 + ||(φ 1 , φ 2 )|| L 1 (0,T ;H 4 (0,L) 2 ∩H 2 0 (0,L) 2 ) . (c) If (φ 1 , φ 2 ) ∈ F 2 for each (ϕ T , ψ T ) ∈ H 6 (0, L) 2 ∩ H 2 0 (0, L) 2
the system (4.5) has a unique solution (ϕ, ψ) ∈ M 2 . Moreover, there exists C > 0 such that

||(ϕ, ψ)|| M 2 ≤ C ||(ϕ T , ψ T )|| H 6 (0,L) 2 + ||(φ 1 , φ 2 )|| F 2 .
Proof. We use the change of variable t → T -t in the adjoint system in order to have a time-forward system.

(a) Let (u 0 , v 0 ) ∈ L 2 (0, L) and (η 1 , η 2 ) ∈ L 1 (0, T ; L 2 (0, L) 2 ). For any ( ŵ1 , ŵ2 ) ∈ C([0, T ]; L 2 (0, L) 2 ) ∩ L 2 (0, T ; H 2 (0, L) 2 ) (by (4.3) notation B 2 ), Π( ŵ1 , ŵ2 )
is defined as the solution of (4.6) with

η1 = η 1 -b w1 xx + g 1 w2 + f 1 w1 x + g 2 w1 and η2 = η 2 -d w2 xx + f 2 w2 x + g 4 w2 .
Note that (η 1 , η2 ) ∈ L 1 (0, T ; L 2 (0, L) 2 ) and therefore Π(w 1 , w 2 ) is well defined. If T is small enough, then Π is a contraction. Indeed, for any ( ŵ1 , ŵ2 ), (w 1 , w 2 ) ∈ B 2 , we have

Π( ŵ1 , ŵ2 ) -Π(w 1 , w 2 )) B 2 ≤ C( b(w 1 xx -ŵ1 xx ) + g 1 ( ŵ2 -w 2 ) + f 1 ( ŵ1 x -w 1 x ) + g 2 (x)( ŵ1 -w 1 ), d(w 2 xx -ŵ2 xx ) + f 2 ( ŵ2 x -w 2 x ) + g 4 ( ŵ2 -w 2 ) L 1 (0,T ;L 2 (0,L) 2 ) ) ≤ CT 1 2 ( b(w 1 xx -ŵ1 xx ) + g 1 ( ŵ2 -w 2 ) + f 1 ( ŵ1 x -w 1 x ) + g 2 (x)( ŵ1 -w 1 ), d(w 2 xx -ŵ2 xx ) + f 2 ( ŵ2 x -w 2 x ) + g 4 ( ŵ2 -w 2 ) L 2 (0,T ;L 2 (0,L) 2 ) ) ≤ CT 1 2 ( ŵ1 -w 1 L 2 (H 2 (0,L) 2 ) + ŵ2 -w 2 L 2 (H 2 (0,L) 2 ) ) ≤ CT 1 2 ( ŵ1 -w 1 B + ŵ2 -w 2 B ).
Hence, the operator Π has a unique fixed point in B 2 , which is the solution of (4.4). Using standard arguments and the linearity of this equation, the solution can be extended to a larger time interval

(b) Let (ϕ T , ψ T ) ∈ H 4 (0, L) 2 ∩ H 2 0 (0, L) 2 and (φ 1 , φ 2 ) ∈ L 1 (0, T ; H 4 (0, L) 2 ∩ H 2 0 (0, L) 2 ). For any ( ŵ1 , ŵ2 ) ∈ C([0, T ]; H 4 (0, L) 2 ∩ H 2 0 (0, L) 2 ) ∩ L 2 (0, T ; H 6 (0, L) 2 ) (by (4.3) notation G 2 ), Π( ŵ1 , ŵ2
) is defined as the solution of (4.7) with

ξ 1 = φ 1 -(b ŵ1 ) xx -(f 1 ŵ1 ) x + g 2 ŵ1
and

ξ 2 = φ 2 -(d ŵ2 ) xx + g 1 w 1 -(f 2 ŵ2 ) x + g 4 ŵ2 .
We can rewrite ξ 1 and ξ 2 as

ξ 1 = φ 1 -b ŵ1 xx -f1 ŵ1 x + g2 ŵ1
and

ξ 2 = φ 2 -d ŵ2 xx + g 1 ŵ1 -f2 ŵ2 x + g4 ŵ2 ,
where

f1 = 2b + f 1 , g2 = -b -f 1 + g 2 and f2 = 2d + f 2 , g4 = -d -f 1 + g 4 . Note that (ξ 1 , ξ 2 ) ∈ L 1 (0, T ; H 4 (0, L) 2 ∩ H 2 0 (0, L) 2
) and therefore Π(w 1 , w 2 ) is well defined. If T is small enough, then Π is a contraction. Indeed, for any ( ŵ1 , ŵ2 ), (w 1 , w 2 ) ∈ G 2 , we have

Π( ŵ1 , ŵ2 ) -Π(w 1 , w 2 )) G 2 ≤ C( b(w 1 xx -ŵ1 xx ) + f1 (w 1 x -ŵ1 x ) + g2 ( ŵ1 -w 1 ), d(w 2 xx -ŵ2 xx ) + f2 (w 2 x -ŵ2 x ) + g 1 ( ŵ1 -w 1 ) + g4 (x)( ŵ2 -w 2 ) L 1 (0,T ;H 4 (0,L) 2 ∩H 2 0 (0,L) 2 ) ) ≤ CT 1 2 ( b(w 1 xx -ŵ1 xx ) + f1 (w 1 x -ŵ1 x ) + g2 ( ŵ1 -w 1 ), d(w 2 xx -ŵ2 xx ) + f2 (w 2 x -ŵ2 x ) + g 1 ( ŵ1 -w 1 ) + g4 (x)( ŵ2 -w 2 ) L 2 (0,T ;H 4 (0,L) 2 ∩H 2 0 (0,L) 2 ) ) ≤ CT 1 2 ( ŵ1 -w 1 L 2 (H 6 ) + ŵ2 -w 2 L 2 (H 6 ) ) ≤ CT 1 2 ( ŵ1 -w 1 G + ŵ2 -w 2 G ).
Hence, the operator Π has a unique fixed point in G 2 , which is the solution of (4.4). Using standard arguments and the linearity of this equation, the solution can be extended to a larger time interval.

(c) Finally, for more regular data. Let (φ 1 , φ 2 ) ∈ F 2 for each (ϕ T , ψ T ) ∈ H 6 (0, L) 2 ∩ H 2 0 (0, L) 2 . For any ( ŵ1 , ŵ2 ) ∈ M 2 , Π( ŵ1 , ŵ2 ) is defined as the solution of (4.7) with

ξ 1 = φ 1 -b ŵ1 xx -f1 ŵ1 x + g2 ŵ1
and

ξ 2 = φ 2 -d ŵ2 xx + g1 ŵ1 -f2 ŵ2 x + g4 ŵ2 .
Note that (ξ 1 , ξ 2 ) ∈ F 2 therefore Π(w 1 , w 2 ) is well defined. For any ( ŵ1 , ŵ2 ), (w 1 , w 2 ) ∈ M 2 , we have

Π( ŵ1 , ŵ2 ) -Π(w 1 , w 2 )) M 2 ≤ C b(w 1 xx -ŵ1 xx ) + f1 (w 1 x -ŵ1 x ) + g2 ( ŵ1 -w 1 ), d(w 2 xx -ŵ2 xx ) + f2 (w 2 x -ŵ2 x ) + g1 ( ŵ1 -w 1 ) + g4 (x)( ŵ2 -w 2 ) F 2 ≤ C( ŵ1 -w 1 L 2 (H 6 ) + ŵ2 -w 2 L 2 (H 6 ) ) + C( ŵ1 t -w 1 t L 2 (H 2 ) + ŵ2 t -w 2 t L 2 (H 2 ) ) ≤ CT 1 4 ( ŵ1 -w 1 L 4 (H 6 ) + ŵ2 -w 2 L 4 (H 6 ) ) + CT 1 4 ( ŵ1 t -w 1 t L 4 (H 2 ) + ŵ2 t -w 2 t L 4 (H 2 ) ) ≤ CT 1 4 ( w 1 -ŵ1 L 4 (H 6 ) + w 2 -ŵ2 L 4 (H 6 ) ) + CT 1 4 ( ŵ1 t -w 1 t Y + ŵ2 t -w 2 t Y ) ≤ CT 1 4 ( w 1 -ŵ1 M + w 2 -ŵ2 M ).
Hence, for T is small enough, Π has a unique fixed point in M 2 , which is the solution of system (4.5). Using standard arguments and the linearity of this equation, the solution can be extended to a larger time interval, which concludes the proof of this Theorem.

Null controllability with two controls.

In the first part to approach Conjecture 1, let us consider an open subset ω 0 strictly

included in ω, θ ∈ C ∞ ([0, L]) such that        Supp(θ) ⊆ ω, θ = 1, in ω 0 , 0 ≤ θ ≤ 1, in (0, L), (4.25) 
and the following new system with two controls regular enough.

                   ût + ûxxxx + b(x)û xx = vx + g 1 (x)v + f 1 (x)û x + g 2 (x)û + θ ĥ1 in Q T , vt + vxxxx + d(x)v xx = ûx + f 2 (x)v x + g 4 (x)v + θ ĥ2 in Q T , û(t, 0) = ûx (t, 0) = 0, û(t, L) = ûx (t, L) = 0, in (0, T ), v(t, 0) = vx (t, 0) = 0, v(t, L) = vx (t, L) = 0, in (0, L), û(0, x) = u 0 (x), v(0, x) = v 0 (x), in (0, L). (4.26)
We can prove that this new system is null controllable using Carleman estimates. We want to prove the following result for system (4.26).

Theorem 11 For every (u 0 , v 0 ) ∈ L 2 (0, L) 2 there exists ( ĥ1 , ĥ2 ) ∈ L 2 (0, T, L 2 (0, L) 2 ) such that the unique solution

(û, v) ∈ C([0, T ]; L 2 (0, L) 2 ) ∩ L 2 (0, T ; H 2 0 (0, L) 2 ) of equation (4.26) satisfies û(T, •) = v(T, •) = (0, 0).
With the usual controllability-observability duality, we can prove this theorem by proving the existence of a constant C > 0 such that

L 0 (|ϕ(0, •)| 2 +|ψ(0, •)| 2 )dx ≤ C obs T 0 ω e -2sα (|ϕ| 2 +|ψ| 2 )dxdt, (4.27) 
where (ϕ, ψ) is solution of the adjoint system, which in this case is given by

                   -ϕ t + ϕ xxxx + (bϕ) xx = -ψ x -(f 1 ϕ) x + g 2 ϕ in , Q T , -ψ t + ψ xxxx + (dψ) xx = -ϕ x + g 1 ϕ -(f 2 ψ) x + g 4 ψ in Q T , ϕ(t, 0) = ϕ x (t, 0) = 0, ϕ(t, L) = ϕ x (t, L) = 0, in (0, T ), ψ(t, 0) = ψ x (t, 0) = 0, ψ(t, L) = ψ x (t, L) = 0, in (0, T ), ϕ(T, x) = ϕ T (x), ψ(T, x) = ψ T (x), in (0, L). (4.28) 
In order to prove the inequality observability (4.27), we will give in the next subsection some Carleman estimates of our problem.

Carleman Estimates

In this part, we prove a Carleman estimate, following [START_REF] Cerpa | Null controllability of the stabilized Kuramoto-Sivashinsky system with one distributed control[END_REF] for system (4.28). We take a function

β ∈ C 3 ([0, L]) satisfying β(x) > 0 ∀x ∈ (0, L), β(0) = β(L) = 0, (4.29) 
and

|β (x)| ≥ δ > 0 ∀x ∈ [0, L] \ ω for some δ > 0.
For λ > 0, we define the weight functions

α(t, x) = e 4λ β ∞ -e λ(2 β ∞+β(x)) t(T -t) , ζ(t, x) = e λ(2 β ∞+β(x)) t(T -t) . ( 4 

.30)

We will use the notation for all t ∈ (0, T )

α * (t) := max x∈[0,L] α(t, x) and ξ * (t) := min x∈[0,L] ξ(t, x).
We have a Carleman inequality for the Kuramoto-Sivashinsk equation given by the following result inspired from [START_REF] Cerpa | Null controllability of the stabilized Kuramoto-Sivashinsky system with one distributed control[END_REF].

Theorem 12 For α and ζ defined in (4.30), and β satisfying hypothesis (4.29). There exist

λ 1 , s 1 > 0 such that T 0 L 0 e -2sα |ϕ t | 2 + |ϕ xxxx | 2 sξ dxdt + T 0 L 0 e -2sα λ 8 (sξ) 7 |ϕ| 2 + λ 6 (sξ) 5 |ϕ x | 2 dxdt + λ 4 (sξ) 3 |ϕ xx | 2 + λ 2 (sξ)|ϕ xxx | 2 dxdt ≤ C T 0 L 0 e -2sα |P (ϕ)| 2 dxdt + T 0 ω e -2sα λ 8 (sξ) 7 |ϕ| 2 dxdt, (4.31) for every s ≥ s 1 , λ ≥ λ 1 , ω ⊂ (0, L), ϕ ∈ L 2 (0, T ; H 4 (0, L) ∩ H 2 0 (0, L)) ∩ H 1 (0, T ; L 2 (0, L)), f 1 ∈ C ∞ (0, L) and b ∈ C ∞ (0, L), where P = -∂ t + ∂ 4 x + b∂ 2 x -f 1 ∂ x .
Proof. We shall use an abbreviated notation for the integrals. We write instead of

T 0 L 0
avoiding the symbols dxdt. Using Theorem 3.3 in [START_REF] Cerpa | Null controllability of the stabilized Kuramoto-Sivashinsky system with one distributed control[END_REF], it is sufficient to prove an estimate for the norm in L 2 (0, T ; L 2 (0, L)) of ϕ t . We can write P = P m + P r with P m = -∂ t + ∂ 4

x and P r = b∂ 2

x -f ∂ x . We define the conjugate operator of P given by P w = e -sα P (e sα w). Hence, P = P m + P r . After some computations, we have that

P m w = P 1 w + P 2 w + Rw, (4.32) 
where

P 1 w = 6λ 2 s 2 (β ) 2 ξ 2 w xx + λ 4 s 4 (β ) 4 ξ 4 w + w xxxx + 6λ 2 s 2 ((β ) 2 ξ 2 ) x w x , (4.33) 
P 2 w = -w t -4λ 3 s 3 (β ) 3 ξ 3 w x -4λsβ ξw xxx , (4.34) 
and

Rw = -sα t w -6λ 3 s 3 (β ) 2 β ξ 2 w -6λ 4 s 3 (β ) 4 ξ 3 w + 3λ 2 s 2 (β ) 2 ξ 2 w + 4λ 2 s 2 β β ξ 2 w + 18λ 3 s 2 (β ) 2 β ξ 2 w + 7λ 4 s 2 (β ) 4 ξ 2 w -sλβ xxxx ξw -4λsβ ξw x -12λ 2 sβ β ξw x -6λsβ ξw xx -3λ 2 s(β ) 2 ξw -4λ 2 sβ β ξw -4λ 3 s(β ) 3 ξw x -6λ 2 s(β ) 2 ξw xx -λ 4 s(β ) 4 ξw -6λ 3 s(β ) 2 β ξw. (4.35)
We define, for a subset U ⊂ (0, L), the following integral terms :

I U (w, s, λ) := λ 8 U (sξ) 7 φ 7 |w| 2 + λ 6 U (sξ) 5 |w x | 2 + λ 4 U (sξ) 3 |w xx | 2 + λ 2 U sξ|w xxx | 2 .
Then, it directly follows that

P r w 2 L 2 (0,L) ≤ 1 s I (0,L) (w, s, λ), (4.36) 
and

Rw 2 L 2 (0,L) ≤ 1 s I (0,L) (w, s, λ). (4.37) 
We consider also the estimate for the I ij terms presented in [START_REF] Cerpa | Null controllability of the stabilized Kuramoto-Sivashinsky system with one distributed control[END_REF]. We have for λ ≥ λ 1 , s ≥ s 1 and for some positive constant C, that

P 1 w, P 2 w L 2 (0,L) = i=4,j=3 i=1,j=1 I i,j ≥ CI [0,L] (w, s, λ) -CI ω 0 (w, s, λ), (4.38) 
where ω 0 ⊂ ω.

In order to add the first and fourth order term to the inequality, let us note that from (4.33)

and the Cauchy-Schwarz inequality, we have

|w t | 2 ≤ C(|P 2 w| 2 + λ 6 s 6 ξ 6 |w x | 2 + λ 2 s 2 ξ 2 |w xxx | 2 )
and

|w 4x | 2 ≤ C(|P 1 w| 2 + λ 4 s 4 ξ 4 |w xx | 2 + λ 8 s 8 ξ 8 |w| 2 + λ 6 s 4 ξ 4 |w x | 2 ). (4.39) 
From where

|w t | 2 sξ + |w 4x | 2 sξ ≤ C |P 2 w| 2 + |P 1 w| 2 + CI (0,L) (w, s, λ). (4.40) 
By using (4.32) and (4.36)-(4.38) we obtain

|P 1 w| 2 + |P 2 w| 2 + |w t | 2 sξ + |w 4x | 2 sξ + I (0,L) (w, s, λ) ≤ | P w| 2 dxdt + CI ω 0 (w, s, λ). (4.41) Note that if ω 0 ⊂ ω 1 ⊂ ω 2 ⊂ ω λ 2 ω 0 sξ|w 3x | 2 ≤ ω 0 (sξ) -1 |w 4x | 2 + C λ 4 ω 1 (sξ) 3 |w 4x | 2 , λ 4 ω 1 s 3 ξ 3 |w xx | 2 ≤ λ 2 (0,L) (sξ)|w 3x | 2 + C λ 6 ω 1 (sξ) 5 |w x | 2 ,
and

λ 6 ω 2 (sξ) 5 |w x | 2 ≤ s 3 (0,L) ξ 3 |w xx | 2 + C s 7 λ 8 ω ξ 7 |w| 2 .
In this way

I ω 0 (w, s, λ) ≤ λ 8 ω (sξ) 7 |w| 2 . (4.42) 
By using (4.41) and (4.42) we deduce

|P 1 w| 2 + |P 2 w| 2 + λ 8 (sξ) 7 |w| 2 + λ 6 (sξ) 5 |w x | 2 dxdt + λ 4 (sξ) 3 |w xx | 2 + λ 2 sξ|w xxx | 2 + |w t | 2 + |w xxxx | 2 sξ dxdt ≤ C | P w| 2 dxdt + Cλ 8 ω (sξ) 7 |w| 2 . (4.43)
Let us get the Carleman estimate for the function ϕ = e sα w and P w = e -sα P (e sα w). Then applying the previous inequality to the function ϕ this concludes the proof of Theorem 12. Now, we prove that system (4.26) is null controllable.

Proof of Theorem 11.

In order to prove the observability inequality (4.27) we consider the following result for the energy defined by

E(t) = L 0 |ψ(x, t)| 2 +|ϕ(x, t)| 2 dx.
Lemma 2 There exists a constant C > 0 such that for every

(ψ T , ϕ T ) ∈ L 2 (0, L) × L 2 (0, L)
we have that

E(0) ≤ C 3T /4 T /4 E(t)dt. (4.44) 
On the other hand, by definition of function e -2sα there exist δ > 0 and M > 0 such that

0 < δ ≤ e -2sα ≤ M, ∀t ∈ [T /4, 3T /4]. (4.45) 
Proof of Lemma 2. We multiply the system (4.28) by the function (ϕ, ψ) and integrating by parts on [0, L] we get

- 1 2 L 0 d|ϕ| 2 dt dx = - L 0 |ϕ xx | 2 dx - L 0 ϕ(b(x)ϕ) xx dx - L 0 ϕψ x dx - L 0 ϕ(f 1 (x)ϕ) x dx + L 0 g 2 (x)|ϕ| 2 dx and - 1 2 L 0 d|ψ| 2 dt dx = - L 0 |ψ xx | 2 - L 0 ψ(d(x)ψ) xx dx - L 0 ψϕ x dx + L 0 g 1 ϕψ - L 0 ψ(f 2 (x)ψ) x dx + L 0 g 4 (x)|ψ| 2 dx.
From where

- 1 2 L 0 d|ϕ| 2 dt dx ≤ - L 0 |ϕ xx | 2 dx + L 0 |b | |ϕ| 2 2 dx + L 0 |b||ϕ x | 2 dx + L 0 |ψϕ x |dx + L 0 |f 1 | |ϕ| 2 2 dx + L 0 |g 2 ||ϕ| 2 dx and - 1 2 L 0 d|ψ| 2 dt dx ≤ - L 0 |ψ xx | 2 dx + L 0 |d | |ψ| 2 2 dx + L 0 |d||ψ x | 2 dx + L 0 |ψ x ϕ|dx + L 0 |g 1 ||ϕψ|dx + L 0 |f 2 | |ψ| 2 2 dx + |g 4 | L 0 |ψ| 2 dx.
Thanks to Young's inequality we obtain

- 1 2 L 0 d|ϕ| 2 dt dx ≤ - L 0 |ϕ xx | 2 dx + L 0 |b | |ϕ| 2 2 dx + b ∞ L 0 |ϕ x | 2 dx + 1 2 L 0 |ψ| 2 dx + 2 L 0 |ϕ x | 2 dx + L 0 |f 1 | |ϕ| 2 2 dx + L 0 |g 2 ||ϕ| 2 dx and - 1 2 L 0 d|ψ| 2 dt dx ≤ - L 0 |ψ xx | 2 dx + L 0 |d | |ψ| 2 2 dx + d ∞ L 0 |ψ x | 2 dx + 1 2 L 0 |ϕ| 2 + 2 L 0 |ψ x | 2 dx + g 1 ∞ 2 L 0 |ψ| 2 dx + g 1 ∞ 2 L 0 |ϕ| 2 dx + L 0 |f 2 | |ψ| 2 2 dx + |g 4 | L 0 |ψ| 2 dx. From Poincaré's inequality (with uniform constant C = L 2 /π 2 ) - 1 2 L 0 d|ϕ| 2 dt dx ≤ - L 0 |ϕ xx | 2 dx + L 0 |b | |ϕ| 2 2 dx + L 2 b ∞ π 2 L 0 |ϕ xx | 2 dx + 1 2 L 0 |ψ| 2 dx + L 2 2π 2 L 0 |ϕ xx | 2 dx + L 0 |f 1 | |ϕ| 2 2 dx + L 0 |g 2 ||ϕ| 2 dx and - 1 2 L 0 d|ψ| 2 dt dx ≤ - L 0 |ψ xx | 2 dx + L 0 |d | |ψ| 2 2 dx + L 2 d ∞ π 2 L 0 |ψ xx | 2 dx + 1 2 L 0 |ϕ| 2 dx + L 2 2π 2 L 0 |ψ xx | 2 dx + g 1 ∞ 2 L 0 |ψ| 2 dx + g 1 ∞ 2 L 0 |ϕ| 2 dx + L 0 |f 2 | |ψ| 2 2 dx + |g 4 | L 0 |ψ| 2 dx.
We define

K 1 := max{ b ∞ , b ∞ , g 2 ∞ , f 1 ∞ } K 2 := max{ d ∞ , d ∞ , g 1 ∞ , g 4 ∞ , f 2 ∞ }. Then - 1 2 L 0 d|ϕ| 2 dt dx ≤ - L 0 |ϕ xx | 2 dx + L 2 K 1 π 2 L 0 |ϕ xx | 2 + 2K 1 L 0 |ϕ| 2 dx + 1 2 L 0 |ψ| 2 dx + L 2 2π 2 L 0 |ϕ xx | 2 dx (4.46)
and

- 1 2 L 0 d|ψ| 2 dt dx ≤ - L 0 |ψ xx | 2 dx + L 2 K 2 π 2 L 0 |ψ xx | 2 + 5K 2 2 L 0 |ψ| 2 dx + 1 2 L 0 |ϕ| 2 dx + L 2 2π 2 L 0 |ψ xx | 2 dx + K 2 2 L 0 |ϕ| 2 dx. (4.47)
For K 1 , K 2 and small enough, we have that exists positive constants

C 1 , C 2 , C 3 such that - 1 2 d dt L 0 |ϕ| 2 + |ψ| 2 dx + C 1 L 0 (|ϕ xx | 2 + |ψ xx | 2 )dx ≤ C 2 L 0 |ϕ| 2 dx + C 3 L 0 |ψ| 2 dx, (4.48) 
from where we can conclude that there exists Ĉ > 0 such that

dE(t) dt + ĈE(t) ≥ C 1 L 0 (|ϕ xx | 2 + |ψ xx | 2 )dx ≥ 0,
then we deduce

E(t) ≥ E(0)e -Ĉt . (4.49) 
Integrating (4.49) on [T /4, 3T /4] we get that there exists a constant C > 0 such that

E(0) ≤ C 3T /4 T /4 E(t)dt,
which ends the proof of Lemma 2.

Finally, from (4.45) and the definition of the energy we get

3T /4 T /4 L 0 δ|ϕ| 2 dxdt ≤ 3T /4 T /4 L 0 e -2sα |ϕ| 2 dxdt ≤ T 0 L 0 e -2sα |ϕ| 2 dxdt, (4.50) 
using that

T 0 ω e -2sα |ϕ| 2 dxdt ≤ M T 0 ω |ϕ| 2 dxdt. (4.51) 
From the Carleman estimate of Theorem 12 we deduce

T 0 L 0 e -2sα (|ϕ| 2 +|ψ| 2 ) dxdt ≤ C 1 T 0 ω e -2sα (|ϕ| 2 +|ψ| 2 )dxdt,
then we obtain

3T /4 T /4 L 0 (|ϕ| 2 +|ψ| 2 )dxdt ≤ C 1 δ T 0 ω e -2sα (|ϕ| 2 +|ψ| 2 )dxdt, (4.52) 
from Lemma 2 we have that there exists a constant C 2 > 0 such that

L 0 |ϕ(0, x)| 2 +|ψ(0, x)| 2 dx ≤ C 2 3T /4 T /4 L 0 |ϕ(t, x)| 2 +|ψ(t, x)| 2 dxdt. (4.53) 
By using (4.52) and (4.53) we get there exists a constant C > 0 such that

L 0 |ϕ(0, x)| 2 +|ψ(0, x)| 2 dx ≤ C T 0 ω e -2sα (|ϕ| 2 + |ψ| 2 )dxdt,
and we get the observability inequality which ends the proof of Theorem 11.

Null controllability with one control

After obtaining the controllability with two controls, we try to eliminate the control on the last equation thanks to algebraic manipulations. We introduce the spaces

W 4,1 2 (ω T ) := {z ∈ L 2 (0, T ; H 4 (ω) ∩ H 1 0 (ω))/z t ∈ L 2 (ω T )}, and 
W 8,2 2 (ω T ) := {z ∈ L 2 (0, T ; H 8 (ω) ∩ H 1 0 (ω))/z tt ∈ L 2 (ω T )}.

Algebraic solvability

Given ( ĥ1 , ĥ2 ) we would like to find (z, y) with z = (z 1 , z 2 ) in an appropriate space such that

   z 1 t + z 1 xxxx + b(x)z 1 xx = z 2 x + g 1 (x)z 2 + f 1 (x)z 1 x + g 2 (x)z 1 + ĥ1 + y in ω T , z 2 t + z 2 xxxx + d(x)z 2 xx = z 1 x + f 2 (x)z 2 x + g 4 (x)z 2 + ĥ2 , in ω T , (4.54) 
with the support of (z, y) strictly included in ω T , so that z(0, x) = z(T, x) = 0 and z(t, 0) = z(t, L) = 0. We will use the algebraic solvability method used in [START_REF] Duprez | Positive and negative results on the internal controllability of parabolic equations coupled by zero and first-order terms[END_REF][START_REF] Gromov | Partial differential relations[END_REF] to solve this problem.

The idea is to write system (4.54) as a system in the variables z and y and to see ( ĥ1 , ĥ2 )

as a source term. In fact, we can rewrite the system (4.54) in terms of a differential operator acting on the variables z and y with a source function f = ( ĥ1 , ĥ2 ). More precisely, we can write system (4.54) as

L(z, y) = f, (4.55) 
where

L(z, y) :=   z 1 t + z 1 xxxx + b(x)z 1 xx -z 2 x -g 1 (x)z 2 -f 1 (x)z 1 x -g 2 (x)z 1 -y z 2 t + z 2 xxxx + d(x)z 2 xx -z 1 x -f 2 (x)z 2 x -g 4 (x)z 2   .
Definition : We say that the system (4.55) is algebraically solvable if there exists a differential operator A such that in ω T we have L • A = I d . This means that one can find a solution (z, y) := A(f ) to system (4.55) which can be written as a linear combination of some derivatives of the source term f .

We remark that to have the algebraic resolution, we need some regularity of data. Particularly, the control ( ĥ1 , ĥ2 ) has to be regular enough, so that it can be differentiated a certain amount of times with respect to the space and time variables. If we solve the algebraic problem, then -y) will be a solution to System (4.1) and will satisfy (u(T,

((u, v), h) := ((û, v)-z,
•), v(T, •)) = 0 in (0, L).
To have all this, we have to start with sources ( ĥ1 , ĥ2 ) regular enough which is equivalent to solve the problem with two controls in a very regular framework.

About the proof of Conjecture 1

After proving that the system with two controls is controllable to zero, finally we will develop the algebraic method to eliminate a control. We find some regularity problems avoiding us to get complete proof of this conjecture.

Proposition 7 Suppose that b, d, g 1 , g 2 , g 4 ∈ C ∞ (0, L) with g 4 = -g 4 + f 2 + d non zero in ω and f i ∈ C ∞ (0, L) for i = 1, 2. System (4.55
) is algebraically solvable. The solution

(z, y) belongs to W 4,1 2 (ω T ) 2 × L 2 (ω T ) with Supp(z, y) ⊂ ω T if f = ( ĥ1 , ĥ2 ) ∈ W 8,2 2 (Q T ) 2 with Supp( ĥ1 , ĥ2 ) ⊂ ω T .
Proof. The regularity of control ( ĥ1 , ĥ2 ) is important since the solution (z, y) can be written as a linear combination of some derivatives of ( ĥ1 , ĥ2 ). Note that finding a differential operator

A such that L • A = I d is equivalent to finding a differential operator A 0 such that L 0 • A 0 = I d , (4.56) 
where

L 0 (z 1 , z 2 ) := z 2 t + z 2 xxxx + d(x)z 2 xx -z 1 x -f 2 (x)z 2 x -g 4 (x)z 2 .
Hence, solving (4.55) is equivalent to solving the equation

L 0 (z 1 , z 2 ) = ĥ2 .
We remark that from system (4.55)

y = z 1 t + z 1 xxxx + b(x)z 1 xx -z 2 x -g 1 (x)z 2 -f 1 (x)z 1 x -g 2 (x)z 1 -ĥ1 , (4.57) 
hence we need only solve algebraically first the second equation of System (4.55) since y will then be given with respect to z 1 , z 2 and ĥ1 . We have that equality (4.56) is equivalent to

A * 0 • L * 0 = I d , (4.58) 
where the adjoint operator L * 0 given by :

L * 0 :=   L 1 ϕ R 2 ϕ   =   ϕ x -ϕ t + ϕ xxxx + (d(x)ϕ) xx + (f 2 (x)ϕ) x -g 4 (x) ϕ.   .
This means that we need to find the operator A * 0 satisfying (4.58). We remark that the operator R 2 can be rewritten as

R 2 (ϕ) = -ϕ t + ϕ xxxx + d(x)ϕ xx + f2 (x)ϕ x + g4 (x)ϕ.
We take the following linear combination of L 1 and R 2

L 2 = R 2 -[∂ xxx + d∂ x + f2 ]L 1 ϕ = -ϕ t + g4 (x)ϕ = R 2 -mL 1 ,
where m = [∂ xxx + d∂ x + f2 ] and we consider the operator :

L 2 ϕ = -ϕ t + g4 (x)ϕ. Note that (-L 2 • L 1 )(ϕ) + (L 1 • L 2 )(ϕ) = (ϕ xt -g4 ϕ x ) -(ϕ tx -g4 ϕ -g4 ϕ x ) = g4 ϕ, (4.59) with g4 non-zero. We can consider A * 0 defined for (ψ 1 , ψ 2 ) ∈ W 4,1 2 (Q T ) 2 by A * 0 (ψ 1 , ψ 2 ) = ∂ x (ψ 2 -(∂ xxx + d∂ x + f2 )ψ 1 ) + (∂ t -g4 )ψ 1 g 4 . (4.60) 
Then equation (4.58) is satisfied, that is mean that system (4.54) is algebraically solvable.

Taking into account the definition of A * 0 given in (4.60), one has (4.56) with the operator

A 0 : W 8,2 2 (Q T ) → W 4,1 2 (Q T ) 2 × W 4,1 2 (Q T ) 2 f -→ A 0 (f ),
defined by

A 0 (f ) =   -∂ 4 x f g 4 + ∂ 2 x -df g 4 -∂ x (d + f2 )f g 4 - f 2 f g 4 -ft+g 4 g 4 -∂ x f g 4   .
Let (z 1 , z 2 ) be defined by

  z 1 z 2   := A 0 (θ ĥ2 ).
We obtain that (z 1 , z 2 ) ∈ W 4,1 2 (Q T ) 2 . We remark that ((z 1 , z 2 ), y) is a solution to the control problem

       z 1 t + z 1 xxxx + b(x)z 1 xx = z 2 x + g 1 (x)z 2 + f 1 (x)z 1 x + g 2 (x)z 1 + ĥ1 + y in ω T , z 2 t + z 2 xxxx + d(x)z 2 xx = z 1 x + f 2 (x)z 2 x + g 4 (x)z 2 + ĥ2 in ω T , z 1 (t, 0) = z 2 (t, 0) = z 1 (t, L) = z 2 (t, L) = 0, in (0, T ), (4.61) 
where y was chosen such that

y = z 1 t + z 1 xxxx + b(x)z 1 xx -z 2 x -g 1 (x)z 2 -f 1 (x)z 1 x -g 2 (x)z 1 -ĥ1 .
Moreover, since Supp(z 1 , z 2 ) ⊂⊂ ω T , we have that (z 1 (0, •), z 2 (0, •)) = (z 1 (T, •), z 2 (T, •)) = 0 in (0, L). Thus the pair ((u, v), h) := ((û, v) -z, -y) would be a solution to system (4.1) and satisfies

(u(T, •), v(T, •)) = 0 in (0, L).
Using the algebraic method is possible to obtain a solution (z, y) ∈ W 4,1 2 (ω T ) 2 × L 2 (ω T ) of (4.55) if the control used in the algebraic solvability satisfies ( ĥ1 , ĥ2 ) ∈ W 8,2 2 (Q T ) 2 .

Regularity of the control

Our goal in this subsection is to investigate the existence of a control differentiable a certain amount of times with respect to the space and time variable. We present the following estimation that would give us the regularity of the function control ( ĥ1 , ĥ2 ).

Conjecture 2 Let Q T = (0, T ) × (0, L) and ω ⊂ (0, L). There exists a constant C > 0 such that for all (ϕ T , ψ T ) ∈ L 2 (0, L) 2 the corresponding solution (ϕ, ψ) ∈ of (4.5) satisfies

Q T e -2sα (|(ϕ, ψ)| 2 + (sξ) -8 |∂ t (ϕ, ψ)| 2 + (s 0 ξ) -16 |∂ tt (ϕ, ψ)| 2 ) + Q T e -2sα 8 i=0 [(s 0 ξ) -2i |∂ i x (ϕ, ψ)| 2 ≤ C ω T e -2sα |(ϕ, ψ)| 2 . (4.62)
This result is not proven yet. Let us remark that in this subsection we prove that the Conjecture 2 implies the following one.

Conjecture 3 Suppose that b, d ∈ C ∞ (0, L), f 1 , f 2 , g 1 , g 2 ∈ C ∞ (0, L) and g 4 ∈ C ∞ (0, L).

Then there exists a constant C > 0 such that for every initial conditions (u 0 , v 0 ) ∈ L 2 (0, L) 2 , we can find a control ( ĥ1 , ĥ2 ) ∈ W 8,2 2 (Q T ) 2 with supp( ĥ1 , ĥ2 ) ⊂ ω T such that the solution of system (4.26) is equal to zero at time T and the following estimates holds :

e s 0 α * /2 ( ĥ1 , ĥ2 ) W 8,2 2 (Q T ) 2 ≤ C (u 0 , v 0 ) L 2 (0,L) 2 , (4.63) 
where C > 0 does not depend on (u 0 , v 0 ).

Proof. We will use the duality method developed by Pierre Lissy and Michel Duprez in [START_REF] Duprez | Indirect controllability of some linear parabolic systems of m equations with m -1 controls involving coupling terms of zero or first order[END_REF] in the spirit of V. Barbu in [START_REF] Barbu | Exact controllability of the superlinear heat equation[END_REF] to obtain regular enough controls.

Let (u 0 , v 0 ) ∈ L 2 (0, L) 2 , k ∈ N * and ρ the weight defined by ρ := e 2s 0 α with α defined in (4.30). We consider the following optimal control problem

     minimize J k (h) := 1 2 Q T ρ|h| 2 dxdt + k 2 L 0 |(û(T ), v(T ))| 2 dx, h := ( ĥ1 , ĥ2 ) ∈ L 2 ρ (Q T ) 2 , (4.64) 
where (û, v) is the solution in C([0, T ]; L 2 (0, L) 2 ) to system (4.26). The functional J k : L 2 ρ (Q T ) → R + is differentiable, coercive and strictly convex on the space L 2 ρ (Q T ) 2 , then from the optimal control theory (see [START_REF] Lions | Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles[END_REF]) there exists a unique solution to the optimal problem (4.54) and the optimal control h k is characterized thanks to the solution (û k , vk ) of the system

                 (û k ) t + (û k ) xxxx + b(û k ) xx = (v k ) x + g 1 vk + f 1 (û k ) x + g 2 ûk + θ( ĥ1 ) k , in Q T , (v k ) t + (v k ) xxxx + d(v k ) xx = (û k ) x + f 2 (v k ) x + g 4 vk + θ( ĥ2 ) k , in Q T , ûk (t, L) = (û k ) x (t, L) = 0, vk (t, L) = (v k ) x (t, L) = 0, in (0, T ), ûk (t, 0) = (û k ) x (t, 0) = 0, vk (t, 0) = (v k ) x (t, 0) = 0, in (0, T ), ûk (0, x) = u 0 (x), vk (0, x) = v 0 (x), in (0, L), (4.65) 
the solution (ϕ k , ψ k ) to the dual system

                   -(ϕ k ) t + (ϕ k ) xxxx + (bϕ k ) xx = -ψ k x -(f 1 ϕ k ) x + g 2 ϕ k , in Q T , -(ψ k ) t + (ψ k ) xxxx + (dψ k ) xx = -ϕ k x + g 1 (x)ϕ k -(f 2 ψ k ) x + g 4 (x)ψ k , in Q T , ϕ k (t, 0) = (ϕ k ) x (t, 0) = 0, ϕ k (t, L) = (ϕ k ) x (t, L) = 0, in (0, L), ψ k (t, 0) = (ψ k ) x (t, 0) = 0, ψ k (t, L) = (ψ k ) x (t, L) = 0, in (0, L), ϕ k (T, x) = ku k (T, x), ψ k (T, x) = kv k (T, x), in (0, T ), (4.66) 
and the relation

   h k = -ρ -1 θ(ϕ k , ψ k ) in Q 2 T , h k ∈ L 2 ρ (Q T ) 2 .
(4.67)

The rest of the proof is divided into two steps. In the first step, we will prove that the sequence

(h k ) k∈N * converges to a control ( ĥ1 , ĥ2 ) ∈ L 2 ρ (Q T ) 2
with an associated solution (û, v) to system (4.26) satisfying (û(T ), v(T )) = 0 in (0, L). Then, in the second step, we will establish (4.63).

Step 1 : Firstly, the characterization (4.65),(4.66) and (4.67) of the minimizer

h k of J k in L 2
ρ (Q T ) 2 leads to the following computations

J k (h k ) = - 1 2 T 0 θ(ϕ k , ψ k ), (( ĥ1 ) k , ( ĥ2 ) k ) L 2 (0,L) 2 + 1 2 (û k (T ), vk (T )), (ϕ k (T ), ψ k (T )) L 2 (0,L) 2 ,
by integration by parts we have that

1 2 (û k (T ), vk (T )), (ϕ k (T ), ψ k (T )) L 2 (0,L) 2 = 1 2 (u 0 , v 0 ), (ϕ k (0), ψ k (0)) L 2 (0,L) 2 + 1 2 T 0 { (û k , vk ), ((ϕ k ) t , (ψ k ) t ) L 2 (0,L) 2 + ((û k ) t , (v k ) t ), (ϕ k , ψ k ) L 2 (0,L) 2 }. (4.68) J k (h k ) = - 1 2 T 0 θ(ϕ k , ψ k ), (( ĥ1 ) k , ( ĥ2 ) k ) L 2 (0,L) 2 + 1 2 (û k (T ), vk (T )), (ϕ k (T ), ψ k (T )) L 2 (0,L) 2 = 1 2 (u 0 , v 0 ), (ϕ k (0, •), ψ k (0, •)) L 2 (0,L) 2 .
Using the definition of J k and the Cauchy-Schwarz inequality, for all > 0

J k (h k ) ≤ 1 4 (u 0 , v 0 ) 2 L 2 (0,L) 2 + 4 (ϕ k (0, x), ψ k (0, x)) 2 L 2 (0,L) 2 . (4.69)
From our observability inequality, the definition of J k and the equality (4.67) we infer

(ϕ k (0), ψ k (0)) 2 L 2 (0,L) 2 ≤C obs T 0 ω e -2sα (|ϕ k | 2 + |ψ k | 2 )dxdt (4.70) ≤C obs T 0 ω ρ -1 θ 2 (|ϕ k | 2 + |ψ k | 2 )dxdt (4.71) ≤C obs T 0 L 0 |h| 2 dxdt (4.72) ≤2C obs J k (h k ). (4.73) 
Then, using (4.69) and (4.70), we deduce

J k (h k ) ≤ 1 4 (u 0 , v 0 ) 2 L 2 (0,L) 2 + 2 C obs J k (h k ).
For = 1 C obs , we have

h k 2 L 2 ρ (Q T ) 2 ≤ J k (h k ) ≤ C obs 2 (u 0 , v 0 ) 2 L 2 (0,L) 2 . (4.74)
The sequence (h k ) k∈N * is uniformly bounded in L 2 ρ (Q T ) 2 , we can extract a subsequence which we will note (h k ) k∈N * which converges weakly to a control h ∈ L 2 ρ (Q T ) 2 . Furthermore, we have from Theorem 11, (4.64) and (4.74)

(û k , vk ) C([0,T ];L 2 (0,L) 2 ) ≤ C( (u 0 , v 0 ) L 2 (0,L) 2 + h k L 2 (Q T ) 2 ) ≤ C (C obs + 1) (u 0 , v 0 ) L 2 (0,L) 2 ,
where C does not depend on (u 0 , v 0 ) and k. Then, we deduce that there exist subsequences, wich are still denoted (û k , vk ), such that following weak convergences hold :

       h k h = ( ĥ1 , ĥ2 ) in L 2 ρ (Q T ) 2 , (û k , vk ) (û, v) in C([0, T ]; L 2 (0, L) 2 ), (û k (T ), vk (T )) 0 in L 2 (0, L) 2 .
(4.75)

Passing to the limit in k in (4.75), (û, v) is solution of (4.26). Moreover, using the expression of J k and the inequality (4.74) with which we have to sequence (û k (T )/k, vk (T )/k) k∈N * is uniformly bounded, then (û k (T ), vk (T )) k∈N * strongly converges to 0. We deduce be letting k goint to infinity that (û(T ), v(T )) = 0. thus, the solution (û, v) to system (4.26) with control h ∈ L 2 ρ (Q T ) 2 satisfies (û(T ), v(T )) = 0 in (0, L) and using (4.74), we obtain the inequality

( ĥ1 , ĥ2 ) 2 L 2 ρ (Q T ) 2 ≤ C obs 2 (u 0 , v 0 ) 2 L 2 (0,L) 2 , (4.76) 
from where,

e s 0 α * /2 ( ĥ1 , ĥ2 ) 2 L 2 (Q T ) 2 ≤ C obs 2 (u 0 , v 0 ) 2 L 2 (0,L) 2 .
Step 2. We recall that h k is defined in (4.67), moreover, thanks to the definitions of ξ and α in (4.30) there exists a constant C > 0 such that for every n ≥ 0, After some calculations we have for 1 ≤ j ≤ 8 we get

|∂ t ((s 0 ξ) n e -2s 0 α )| ≤ C(s 0 ξ) n+2 T e -2s 0 α , |∂ tt ((s 0 ξ) n e -2s 0 α )| ≤ C(s 0 ξ) n+4 T 2 e -2s 0 α , |∂ x ((s 0 ξ) n e -2s 0 α )| ≤ C(s 0 ξ) n+1 e -
|∂ j x ((s 0 ξ) n e -2s 0 α )| ≤ C(s 0 ξ) n+j e -2s 0 α .
We remember that h k = -ρ -1 θ(ϕ k , ψ k ). These previous inequalities, lead to fact that

e s 0 α * /2 ∂ x (h k ) 2 L 2 (Q T ) 2 ≤ C Q T e -4s 0 α+s 0 α * [(s 0 ξ) 2 |(ϕ k , ψ k )| 2 + |(ϕ k , ψ k ) x | 2 ]dxdt, e s 0 α * /2 ∂ 2 x (h k ) 2 L 2 (Q T ) 2 ≤ C Q T e -4s 0 α+s 0 α * [(s 0 ξ) 4 |(ϕ k , ψ k )| 2 + (s 0 ξ) 2 |(ϕ k , ψ k ) x | 2 + |(ϕ k , ψ k ) xx | 2 ]dxdt and 
e s 0 α * /2 ∂ 3 x h k 2 L 2 (Q T ) 2 ≤ C Q T e -4s 0 α+α * s 0 [(s 0 ξ) 6 |(ϕ k , ψ k )| 2 + (s 0 ξ) 4 |(ϕ k , ψ k ) x | 2 + (s 0 ξ) 2 |(ϕ k , ψ k ) xx | 2 + |(ϕ k , ψ k ) xxx | 2 ]dxdt, e s 0 α * /2 ∂ 4 x h k 2 L 2 (Q T ) 2 ≤ C Q T e -4s 0 α+α * s 0 [(s 0 ξ) 8 |(ϕ k , ψ k )| 2 + (s 0 ξ) 6 |(ϕ k , ψ k ) x | 2 + (s 0 ξ) 4 |(ϕ k , ψ k ) xx | 2 + (s 0 ξ) 2 |(ϕ k , ψ k ) xxx | 2 + |(ϕ k , ψ k ) xxxx | 2 ]dxdt, (4.77) 
we deduce

e s 0 α * /2 ∂ 8 x h k 2 L 2 (Q T ) 2 ≤ C Q T e -4s 0 α+α * s 0 [(s 0 ξ) 16 |(ϕ k , ψ k )| 2 + (s 0 ξ) 14 |∂ x (ϕ k , ψ k )| 2 + (s 0 ξ) 12 |∂ 2 x (ϕ k , ψ k )| 2 + (s 0 ξ) 10 |∂ 3 x (ϕ k , ψ k )| 2 + (s 0 ξ) 8 |∂ 4 x (ϕ k , ψ k )| 2 + (s 0 ξ) 6 |∂ 5 x (ϕ k , ψ k )| 2 + (s 0 ξ) 4 |∂ 6 x (ϕ k , ψ k )| 2 + (s 0 ξ) 2 |∂ 7 x (ϕ k , ψ k )| 2 + |∂ 8 x (ϕ k , ψ k )| 2 ]dxdt, (4.78) 
together with

(e s 0 α * /2 h k ) t 2 L 2 (Q T ) 2 ≤ CT Q T e -4s 0 α+α * s 0 [(s 0 ξ) 4 |(ϕ k , ψ k )| 2 + |(ϕ k , ψ k ) t | 2 ]dxdt ≤ CT Q T e -4s 0 α+α * s 0 [(s 0 ξ) 4 |(ϕ k , ψ k )| 2 + |(ϕ k , ψ k ) xxxx | 2 + |(ϕ k , ψ k ) xxx | 2 + |(ϕ k , ψ k ) xx | 2 + |(ϕ k , ψ k ) x | 2 + |(ϕ k , ψ k )| 2 ]dxdt (4.79)
and

(e s 0 α * /2 h k ) tt 2 L 2 (Q T ) 2 ≤ CT 2 Q T e -4s 0 α+α * s 0 [(s 0 ξ) 8 |(ϕ k , ψ k )| 2 + (s 0 ξ) 4 |(ϕ k , ψ k ) t | 2 + |(ϕ k , ψ k ) tt | 2 ]dxdt.
For every r 1 , r 2 ∈ R, there exist a constant C r 1 ,r 2 such that |(s 0 ξ) r 1 e -4s 0 α+α * s 0 | ≤ C r 1 ,r 2 (s 0 ξ) r 2 e -2s 0 α , (4.80) then using (4.78)-(4.80), we deduce that

e s 0 α * /2 h k 2 W 8,2 2 (Q T ) 2 ≤ C Q T e -2s 0 α 8 i=0 [(s 0 ξ) -2i |∂ i x (ϕ k , ψ k )| 2 + C(T ) Q T e -2s 0 α [|(ϕ k , ψ k )| 2 + (s 0 ξ) -8 |(ϕ k , ψ k ) t | 2 + (s 0 ξ) -16 |(ϕ k , ψ k ) tt | 2 ]. (4.81)
From Conjecture 2 we obtain

e s 0 α * /2 h k 2 W 8,2 2 (Q T ) 2 ≤ C Q T e -2sα |(ϕ k , ψ k )| 2 , (4.82)
and the fact that (( ĥ1 ) k , ( ĥ2 ) k ) = -ρ -1 θ(ϕ k , ψ k ) then we infer

e s 0 α * /2 h k 2 W 8,2 2 (Q T ) 2 ≤ C h k 2 L 2 ρ (Q T ) 2 ,
by using the estimate (4.74) of h k , we obtain that there exists a C > 0 such that

e s 0 α * /2 h k 2 W 8,2 2 (Q T ) 2 ≤ C (u 0 , v 0 ) 2 L 2 (0,L) 2 .
We conclude the proof of the Conjecture 3 by letting k going to infinity in the last inequality.

Conclusions

We proved the null controllability with two controls and studied the algebraic solvability of the system when only one control is considered. In order to obtain the controllability with one control, we need the estimation given in Conjecture 2 which is not proven yet. However, we know that in order to prove Conjecture 2, it is necessary to study a Carleman estimate with non-homogeneous conditions which is part of our future research.

Introduction

Let T > 0, L > 0, Q T = (0, T ) × (0, L), a, c ∈ H 4 (0, L), g i ∈ H 4 (0, L) for i = 1, 2, 3, 4,

f 1 , f 2 ∈ H 4 (0, L), η 1 , η 2 ∈ L 2 (0, T ; H 4 (0, L)) and h j ∈ H 2 (0, T ) for j = 1, • • • , 8.
In this part, we present an inverse problem and the Lipschitz stability for a fourth-order parabolic system with non-constant coefficients describing the diffusion (σ 1 (x), σ 2 (x)) = (σ 1 , σ 2 ) and the anti-diffusion (γ 1 (x), γ 2 (x)) = (γ 1 , γ 2 ) given by the following equation

                   u t + (σ 1 (x)u xx ) xx + a(x)u xxx + γ 1 (x)u xx = v x + g 1 (x)v + f 1 (x)u x + g 2 (x)u + η 1 , in Q T , v t + (σ 2 (x)v xx ) xx + c(x)v xxx + γ 2 (x)v xx = u x + g 3 (x)u + f 2 (x)v x + g 4 (x)v + η 2 , in Q T , u(t, 0) = h 1 (t), u(t, L) = h 2 (t), , u x (t, 0) = h 3 (t), u x (t, L) = h 4 (t), in (0, T ), v(t, 0) = h 5 (t), v(t, L) = h 6 (t), v x (t, 0) = h 7 (t), v x (t, L) = h 8 (t), in (0, T ), u(0, x) = u 0 (x), v(0, x) = v 0 (x), in (0, L). (5.1) 
We study the inverse problem of recovering the unknown space-dependent coefficient γ :=

(γ 1 , γ 2 ) from boundary measurements of (u xx (•, 0), v xx (•, 0)), (u 3x (•, 0), v 3x (•, 0)) on (0, T ) and
(u(T 0 , •), v(T 0 , •)) on (0, L) where (u, v) is the solution to system (5.1) and T 0 ∈ (0, T ). We denote by (ū, v) the solution to system (5.1) with (γ 1 , γ 2 ) replaced by (γ 1 , γ2 ).

In this section we focus on the following question concerning the unknown (γ 1 , γ 2 ) and (γ 1 , γ2 ).

Uniqueness : Do the equalities of the measurements (u(T

0 , •), v(T 0 , •)) = (ū(T 0 , •), v(T 0 , •)), for x ∈ (0, L) and (u xx (•, 0), v xx (•, 0)) = (ū xx (•, 0), vxx (•, 0)), (u 3x (•, 0), v 3x (•, 0)) = (ū 3x (•, 0), v3x (•, 0))
for t ∈ (0, T ) imply (γ 1 , γ 2 ) = (γ 1 , γ2 ) on (0, L) ?

Stability : Is it possible to estimate ||γ -γ|| L 2 (0,L) by suitable norms measurements

(u(T 0 , •), v(T 0 , •)) -(ū(T 0 , •), v(T 0 , •)) in space and (u xx (•, 0), v xx (•, 0)) -(ū xx (•, 0), vxx (•, 0)) (u 3x (•, 0), v 3x (•, 0)) -(ū 3x (•, 0), v3x (•, 0)) in time ?
In order to answer these questions, we use the Bukgeim-Klibanov method and a global Carleman estimate for the KS equation with non-constant coefficients presented in [START_REF] Baudouin | Lipschitz stability in an inverse problem for the Kuramoto-Sivashinsky equation[END_REF].

To precisely state the results we prove in this chapter, we define, for m > 0, the set

L ∞ ≤m (0, L) := {γ ∈ L ∞ (0, L) : γ L ∞ ≤ m},
and the following spaces

Y k := L 2 (0, T ; H k+2 (0, L)) ∩ C([0, T ]; H k (0, L)), for k ∈ N; F := {ξ ∈ L 2 (0, T ; H 4 (0, L))/ξ t ∈ L 2 (0, T ; L 2 (0, L))} and Z := {z ∈ Y 6 / z t ∈ Y 2 }.
Theorem 13 Let (γ 1 , γ 2 ) ∈ H 4 (0, L) 2 and (σ 1 , σ 2 ) ∈ H 4 (0, L) 2 be such that

σ 1 (x) ≥ σ 0 > 0 and σ 2 (x) ≥ σ 0 > 0, ∀ x ∈ (0, L). (5.2) 
There exists an > 0 such that if

(u 0 , v 0 ) ∈ H 6 (0, L) 2 , (η 1 , η 2 ) ∈ F 2 and h j ∈ H 2 (0, T ) for j = 1, • • • , 8 satisfy the compatibility conditions (u 0 (0), v 0 (0)) = (h 1 (0), h 5 (0)), (u 0,x (0), v 0,x (0)) = (h 3 (0), h 7 (0)), (u 0 (L), v 0 (L)) = (h 2 (0), h 6 (0)), (u 0,x (L), v 0,x (L)) = (h 4 (0), h 8 (0)), (5.3) 
and

(u 0 , v 0 ) H 6 (0,L) 2 ≤ (η 1 , η 2 ) F 2 ≤ , and h j H 2 (0,T ) ≤ , for j = 1, • • • , 8, then system (5.1) has a unique solution (u, v) ∈ Z 2 .
First, we only consider the main part of the linear differential operator in the next proposition.

Proposition 8 Let (u 0 ,v 0 ) ∈ H 6 (0, L) 2 ∩ H 2 0 (0, L) 2 and (ξ 1 , ξ 2 ) ∈ F 2 .
Then, the following system

                   u t + (σ 1 (x)u xx ) xx = v x + ξ 1 , in Q T , v t + (σ 2 (x)v xx ) xx = u x + ξ 2 , in Q T , u(t, 0) = u x (t, 0) = 0, u(t, L) = u x (t, L) = 0, in (0, T ), v(t, 0) = v x (t, 0) = 0, v(t, L) = v x (t, L) = 0, in (0, T ), u(0, x) = u 0 (x), v(0, x) = v 0 (x), in ( 
0, L).

(5.4) has a unique solution (u, v) ∈ Z 2 . Moreover, there exists C > 0 such that

||(u, v)|| Z 2 ≤ C(||(ξ 1 , ξ 2 )|| F 2 + ||(u 0 , v 0 )|| H 6 (0,L) 2 ).
Proof. We consider the spatial operator A :

D(A) ⊂ L 2 (0, L) × L 2 (0, L) → L 2 (0, L) × L 2 (0, L), with 
D(A) = {w ∈ H 4 (0, L) × H 4 (0, L) : w(0) = w(L) = w (0) = w (L) = 0},
and defined by

Aw = A   u v   =   -(σ 1 (x)u ) + v -(σ 2 (x)v ) + u   .
It can be proven as in Chapter 4 that A generates a strongly continuous semigroup of contractions and for each

(u 0 , v 0 ) ∈ H 4 (0, L) 2 ∩ H 2 0 (0, L) 2 and (ξ 1 , ξ 2 ) ∈ C 1 ([0, T ]; L 2 (0, L) 2 ), system (5.4) has a unique solution (u, v) ∈ C([0, T ]; H 4 (0, L) 2 ∩ H 2 0 (0, L) 2 ) ∩ C 1 ([0, T ]; L 2 (0, L) 2 ).
On the other hand, we will demonstrate that the solutions (u, v) ∈ Z 2 . System (5.4) is multiplied by (u, v) and integrated over (0, L) in space. Some integrations by parts together with Young's inequality give

1 2 L 0 d|u| 2 dt dx ≤ - L 0 σ 1 |u xx | 2 + 1 2 2 L 0 |u| 2 + 2 2 L 0 |v x | 2 + 1 2 L 0 |ξ 1 | 2 + 1 2 L 0 |u| 2 dx and 1 2 L 0 d|v| 2 dt dx ≤ - L 0 σ 2 |v xx | 2 + 1 2 2 L 0 |v| 2 + 2 2 L 0 |u x | 2 + 1 2 L 0 |ξ 2 | 2 + 1 2 L 0 |v| 2 dx.
From we obtain

1 2 L 0 d|u| 2 dt dx + L 0 σ 1 |u xx | 2 ≤ 1 2 1 2 + 1 L 0 |u| 2 + 2 2 L 0 |v x | 2 + 1 2 L 0 |ξ 1 | 2 dx and 1 2 L 0 d|v| 2 dt dx + L 0 σ 2 |v xx | 2 ≤ 1 2 1 2 + 1 L 0 |v| 2 + 2 2 L 0 |u x | 2 + 1 2 L 0 |ξ 2 | 2 dx.
Applying Gronwall's lemma, Poincaré's inequality and taking > 0 small enough, we get that there exists C > 0 such that

||(u, v)|| Y 2 0 ≤ C ||(ξ 1 , ξ 2 )|| L 2 (0,T ;L 2 (0,L) 2 ) + ||(u 0 , v 0 )|| L 2 (0,L) 2 .
(5.5)

Now, the first equation of system (5.4) is multiplied by (σ 1 (x)u xx ) xx and integrated over (0, L) in space, after some integrations by parts we get

1 2 d dt L 0 σ 1 |u xx | 2 dx + L 0 |(σ 1 u xx ) xx | 2 dx ≤ L 0 |v x (σ 1 u xx ) xx |dx + L 0 ξ 1 (σ 1 u xx ) xx dx. (5.6) 
Using Young's and Poincaré's inequality we get

d dt L 0 σ 1 |u xx | 2 dx + L 0 |(σ 1 u xx ) xx | 2 dx ≤ L 2 π 2 L 0 |v xx | 2 + L 0 |(σ 1 u xx ) xx | 2 dx + L 0 |ξ 1 | 2 dx. (5.7)
Similarly, we multiply the equation on v by (σ 2 (x)v xx ) xx and integrating by parts we get after some computations

d dt L 0 σ 2 |v xx | 2 dx + L 0 |(σ 2 v xx ) xx | 2 dx ≤ L 2 π 2 L 0 |u xx | 2 + L 0 |(σ 2 v xx ) xx | 2 dx + L 0 |ξ 2 | 2 dx. (5.8)
Using equation (5.7) and (5.8) we have that

d dt L 0 (σ 1 |u xx | 2 + σ 2 |v xx | 2 )dx + (1 -) L 0 (|(σ 1 u xx ) xx | 2 + |(σ 2 v xx ) xx | 2 )dx ≤ L 2 π 2 L 0 |u xx | 2 + L 0 |v xx | 2 + L 0 |ξ 1 | 2 dx + L 0 |ξ 2 | 2 dx, (5.9) 
for > 0 small enough, from Gronwall's Lemma, equation (5.2) and (5.9) we get the existence of

C > 0 such that L 0 (|u xx | 2 +|v xx | 2 )dx ≤ C T 0 L 0 |ξ 1 | 2 +|ξ 2 | 2 + L 0 |u 0 | 2 +|v 0 | 2 dx .
(5.10)

Then, equation (5.9) is integrated over [0, T ] and (5.10) is used to get

T 0 L 0 (|(σ 1 (x)u xx ) xx | 2 +|(σ 2 (x)v xx ) xx | 2 ) ≤ C T 0 L 0 |ξ 1 | 2 +|ξ 2 | 2 + L 0 |u 0 | 2 +|v 0 | 2 dx , (5.11) 
and then taking into account that (σ 1 , σ 2 ) ∈ H 4 (0, L) 2 , we get

T 0 L 0 (|u xxxx | 2 +|v xxxx | 2 ) ≤ C T 0 L 0 |ξ 1 | 2 +|ξ 2 | 2 + L 0 |u 0 | 2 +|v 0 | 2 dx + C( u 2 L 2 (0,T,H 3 (0,L)) + v 2 L 2 (0,T,H 3 (0,L))
). (5.12)

For any > 0, from Ehrling's Lemma and (5.5) we have

T 0 L 0 (|u xxx | 2 + |v xxx | 2 ) ≤ T 0 L 0 (|u xxxx | 2 + |v xxxx | 2 ) + C T 0 L 0 (|u| 2 + |v| 2 ) ≤ T 0 L 0 (|u xxxx | 2 + |v xxxx | 2 ) + C T 0 L 0 (|ξ 1 | 2 + |ξ 2 | 2 ) + L 0 (|u 0 | 2 + |v 0 | 2 )dx . (5.13) 
Taking > 0 small enough, inequalities (5.10), (5.12) and (5.13) imply that

(u, v) 2 Y 2 2 ≤ C T 0 L 0 |ξ 1 | 2 + T 0 L 0 |ξ 2 | 2 + C (u 0 , v 0 ) 2 H 2 (0,L) 2 .
(5.14)

We consider also the function (z 1 , z 2 ) := (u t , v t ), by deriving system (5.4) with respect to time. Thus the function (z 1 , z 2 ) satisfies the system

                   z 1 t + (σ 1 (x)z 1 xx ) xx = z 2 x + (ξ 1 ) t in Q T , z 2 t + (σ 2 (x)z 2 xx ) xx = z 1 x + (ξ 2 ) t in Q T , z 1 (t, 0) = z 1 x (t, 0) = 0, z 1 (t, L) = z 1 x (t, L) = 0, in (0, T ), z 2 (t, 0) = z 2 x (t, 0) = 0, z 2 (t, L) = z 2 x (t, L) = 0, in (0, T ), z 1 (0, x) = z 1 0 (x), z 2 (0, x) = z 2 0 (x), in ( 
0, L).

(5.15)

Where

z 1 0 (x) = ξ 1 (0, x) -v 0 (x) -(σ 1 u 0 (x) ) and z 2 0 (x) = ξ 2 (0, x) -u 0 (x) -(σ 2 v 0 (x) ) .
Using estimate (5.14) we obtain that (z

1 , z 2 ) ∈ C([0, T ]; H 2 (0, L) 2 ) ∩ L 2 (0, T ; H 4 (0, L) 2 ) if (z 1 0 , z 2 0 ) ∈ H 2 (0, L) 2 and ((ξ 1 ) t , (ξ 2 ) t ) ∈ L 2 (0, T ; L 2 (0, L) 2 ). These hypotheses are fulfilled if (u 0 , v 0 ) ∈ H 6 (0, L) 2 ∩ H 2 0 (0, L) 2 and (ξ 1 , ξ 2 ) ∈ F 2 .
From the equation satisfied by (u, v) and the fact that (ξ 1 , ξ 2 ) ∈ F 2 and (u t , v t ) ∈ Y 2 2 , we determine that (u, v) ∈ Z 2 , which concludes the proof of Proposition 8.

Then, we focus on the linear problem with non-homogenous boundary conditions and low-order coefficients that depend on time.

Proof of Theorem 13. We first prove this result for null boundary data (i.e for h j = 0 for j = 1, • • • , 8). For any ( ŵ1 , ŵ2 ) ∈ Z 2 , Π( ŵ1 , ŵ2 ) is defined as the solution of (5.4) with

ξ 1 = η 1 + g 1 ŵ2 -a ŵ1 xxx -γ 1 ŵ1 xx + f 1 ŵ1 x + g 2 ŵ1 and 
ξ 2 = η 2 + g 3 ŵ1 -c ŵ2 xxx -γ 2 ŵ2 xx + f 2 ŵ2 + g 4 ŵ2 .
Note that (ξ 1 , ξ 2 ) ∈ F 2 and therefore Π( ŵ1 , ŵ2 ) ∈ Z 2 is well defned. If T is small enough, then Π is a contraction. Indeed, for any ( ŵ1 , ŵ2 ), (w 1 , w 2 ) ∈ Z 2 , we have

Π( ŵ1 , ŵ2 ) -Π(w 1 , w 2 )) Z 2 ≤ C g 1 ( ŵ2 -w 2 ) + a(w 1 xxx -ŵ1 xxx ) + γ 1 (w 1 xx -ŵ1 xx ) + f 1 ( ŵ1 x -w 1 ) + g 2 ( ŵ1 -w 1 ) + g 3 ( ŵ1 -w 1 ), c(w 2 xxx -ŵ2 xxx ) + γ 2 (w 2 xx -ŵ2 xx ) + f 2 ( ŵ2 x -w 2 ) + g 4 ( ŵ2 -w 2 ) F 2 ≤ C( ŵ1 -w 1 L 2 (H 7 ) + ŵ2 -w 2 L 2 (H 7 ) ) + C( ŵ1 t -w 1 t L 2 (H 3 ) + ŵ2 t -w 2 t L 2 (H 3 ) ) ≤ CT 1 4 ŵ1 -w 1 1/2 L ∞ (H 6 ) ŵ1 -w 1 1/2 L 2 (H 8 ) + CT 1 4 ŵ2 -w 2 1/2 L ∞ (H 6 ) ŵ2 -w 2 1/2 L 2 (H 8 ) + CT 1 4 ŵ1 t -w 1 t 1/2 L ∞ (H 2 ) ŵ1 t -w 1 t 1/2 L 2 (H 4 ) + CT 1 4 ŵ2 t -w 2 t 1/2 L ∞ (H 2 ) ŵ2 t -w 2 t 1/2 L 2 (H 4 ) ≤ CT 1 4 ( w 1 -ŵ1 Z + w 2 -ŵ2 Z ).
Hence, the operator Π has a unique fixed point in Z 2 , which is the solution of (5.1). Using standard arguments and the linearity of this equation, the solution can be extended to a larger time interval.

In order to prove the general case, take

h j ∈ H 2 (0, T ), j = 1 • • • 8 compatible with (u 0 , v 0 ). It is not difficult to find a function (q 1 , q 2 ) ∈ H 2 (0, T ; ; C ∞ ([0, L]) 2 )
satisfying the boundary conditions of (5.1). For instance, take

(q 1 (t, x), q 2 (t, x)) := 4 i=1 p i (x)(h i , h i+4 ),
where

p 1 = 1 -3x 2 /L 2 + 2x 3 /L 3 , p 2 = 3x 2 /L 2 -2x 3 /L 3 , p 3 = Lx -2x 2 /L + x 3 /L 2 and p 4 = -x 2 /L + x 3 /L 2 .
In particular, we have

G 1 q 1 := q 1 t + (σ 1 (x)q 1 xx ) xx + aq 1 xxx + γ 1 (x)q 1 xx -f 1 q 1 x -g 2 q 1 , R 1 := q 1 x + g 2 q 1 ∈ F, G 2 q 2 := q 2 t + (σ 2 (x)q 2 xx ) xx + cq 2 xxx + γ 2 (x)q 2 xx -f 2 q 2 x -g 4 q 2 and R 2 := q 2 x + g 1 q 2 ∈ F.
Then, if (w 1 , w 2 ) is solution of system (5.1) with null boundary data, initial condition (w 1 0 , w 2 0 ) -(q 1 (0, x), q 2 (0, x)) and the source term equal to (η 1 -G 1 q 1 + R 2 , η 2 -G 2 q 2 + R 1 ), let us define (u, v) := (w 1 , w 2 ) + (q 1 , q 2 ). We have that (u, v) is the required solution. Thus, we have proven Theorem 13. Now a global Carleman estimate for system (5.1) with nonconstant coefficients is obtained. It is then used to prove the main result of this chapter, which can be stated as follows.

Theorem 14 Let (σ 1 , σ 2 ) ∈ H 4 (0, L) 2 satisfying (5.2), (γ 1 , γ 2 ) ∈ H 4 (0, L) 2 , (η 1 , η 2 ) ∈ F 2 , a, c ∈ H 4 (0, L), f i ∈ H 4 (0, L) for i = 1, 2, g i ∈ H 4 (0, L) for i = 1, 2, 3, 4, the data (u 0 , v 0 ) ∈ H 6 (0, L) 2
and h j ∈ H 2 (0, T ) for j = 1, • • • , 8 under the compatibility conditions (5.3). Let (u, v) ∈ Z 2 be the solution of (5.1), and (ū, v) ∈ Z 2 the solution corresponding to a given (γ 1 , γ2 ) ∈ H 4 (0, L) 2 instead of (γ 1 , γ 2 ). We assume that there exist η > 0 and T 0 ∈ (0, T ) such that

inf{|u xx (T 0 , x)|, x ∈ (0, L)} ≥ η and inf{|v xx (T 0 , x)|, x ∈ (0, L)} ≥ η.
(5.16)

Then, given M > 0, there exists a positive constant C depending on the parameters (T, m, M, η), such that for every (γ 1 , γ 2 ) ∈ L ∞ ≤m (0, L) + ||u(T 0 , •) -ū(T 0 , •) 2 H 4 (0,L) + v(T 0 , •) -v(T 0 , •)|| 2 H 4 (0,L) (5.17) for all (u, v) satisfying

(u, v) Z 2 ≤ M.
The inequality (5.17) states the local Lipschitz stability result for our inverse problem. To prove Theorem 14 we use a method due to Bukhgeim-Klibanov [START_REF] Bugheim | Global uniqueness of class of multidimensional inverse problems[END_REF] and a global Carleman estimate for the linearized KS equation.

Carleman estimates

In this section we present the suitable Carleman estimates for the study of the Lipschitz stability of our inverse problem. Let (σ 1 , σ 2 ) ∈ H 4 (0, L) 2 , we define the space V = {(u, v) ∈ L 2 (0, T ; H 4 (0, L) 2 ∩H 2 0 (0, L) 2 )/L 1 u ∈ L 2 ((0, T )×(0, L)) and L 2 v ∈ L 2 ((0, T )×(0, L))},

where

L 1 u = u t + (σ 1 u xx ) xx + γ 1 u xx -f 1 u x -g 1 u
and

L 2 v = v t + (σ 2 v xx ) xx + γ 1 v xx -f 2 v x -g 4 u,
with g 1 , g 4 , γ 1 , γ 2 , f 1 ∈ L ∞ (0, L) and f 2 ∈ L ∞ (0, L). Consider a β ∈ C 4 ([0, L]) such that for some r > 0 we have, for all x ∈ (0, L) : (

Given T 0 ∈ (0, T ), we can choose φ 0 ∈ C 1 ([0, T ]) such that φ 0 (0) = φ 0 (T ) = 0, and 0 <φ 0 (t) ≤ φ 0 (T 0 ) for each t ∈ (0, T ).

(5.20)

Note that if T 0 = T /2, we can use φ 0 (t) = t(T -t). We also define the function

φ(t, x) = β(x) φ 0 (t) , (5.21) 
for (t, x) ∈ (0, T ) × [0, L], which is the weight function of the Carleman estimate. From (5.18) and

(5.20) it is not difficult to see that φ satisfies the following properties :

∃C > 0 such that φ ≤ Cφ x and (5.22)

φ n ≤ Cφ p for each positive integer n ≤ p.

(5.23)

The following result is proved in [START_REF] Baudouin | Lipschitz stability in an inverse problem for the Kuramoto-Sivashinsky equation[END_REF].

Theorem 15 [See [START_REF] Baudouin | Lipschitz stability in an inverse problem for the Kuramoto-Sivashinsky equation[END_REF]. for all (u, v) ∈ V, for all λ ≥ λ 0 .

Stability of the inverse problem

In this part, the local stability of the nonlinear inverse problem stated in Theorem 14 will be proved following the ideas of [START_REF] Baudouin | Lipschitz stability in an inverse problem for the Kuramoto-Sivashinsky equation[END_REF]. The proof is divided into two steps.

Proof of Theorem 14

Step 1 We study the local inverse problem.

Let γ, γ, (u, v) and (ū, v) be defined as in Theorem 14. If we set (ϕ, ψ) = (u, v) -(ū, v) and

(θ 1 , θ 2 ) = (γ 1 , γ2 ) -(γ 1 , γ 2 ), then (ϕ, ψ) solves the following system

                  
ϕ t + (σ 1 ϕ xx ) xx + a(x)ϕ xxx + γ 1 (x)ϕ xx = ψ x + g 1 (x)ψ + f 1 (x)ϕ x + g 2 (x)ϕ + θ 1 ūxx , in Q T , ψ t + (σ 2 ψ xx ) xx + c(x)ψ xxx + γ 2 (x)ψ xx = ϕ x + g 3 (x)ϕ + f 2 (x)ψ x + g 4 (x)ψ + θ 2 vxx , in Q T , ϕ(t, 0) = ϕ x (t, 0) = 0, ϕ(t, L) = ϕ x (t, L) = 0, in (0, T ), ψ(t, 0) = ψ x (t, 0) = 0, ψ(t, L) = ψ x (t, L) = 0, in (0, T ), ϕ(0, x) = 0, ψ(0, x) = 0, in (0, L).

(5.25)

We consider also the function z := (z 1 (t, x), z 2 (t, x)) = (ϕ t (t, x), ψ t (t, x)), by deriving equation (5.25) with respect to time. Thus the function z satisfies the system

                   z 1 t + (σ 1 z 1 xx ) xx + a(x)z 1 xxx + γ 1 (x)z 1 xx = z 2 x + g 1 (x)z 2 + f 1 (x)z 1 x + g 2 (x)z 1 + θ 1 (x)ū xxt in Q T , z 2 t + (σ 2 z 2 xx ) xx + c(x)z 2 xxx + γ 2 (x)z 2 xx = z 1 x + g 3 (x)z 1 + f 2 (x)z 2 x + g 4 (x)z 2 + θ 2 (x)v xxt in Q T , z 1 (t, 0) = z 1
x (t, 0) = 0, z 1 (t, L) = z 1 x (t, L) = 0, in (0, T ), z 2 (t, 0) = z 2 x (t, 0) = 0, z 2 (t, L) = z 2 x (t, L) = 0, in (0, T ), z 1 (0, x) = θ 1 (x)ū xx (0, x), z 2 (0, x) = θ 2 vxx (0, x), in (0, L).

(5.26)

The proof of Theorem 14 relies on the use of the Carleman estimate given in Theorem 15. The equation (5.26) allows to estimate (z 1 , z 2 ) in terms of (θ 1 , θ 2 ) and (ū xx , vxx ). The details are given in the next step below.

Step 2 Use of the Carleman estimate.

We set (w 1 , w 2 ) = (e -λφ z 1 , e -λφ z 2 ). Then, we work on the terms We can calculate I A and I B . Indeed, using (w 1 (0, x), w 2 (0, x)) = e -λφ (z 1 (0, x), z 2 (0, x)) = 0 for all

I A = 2
x ∈ (0, L) and equation (5.25), we can easily obtain where the constants C depends on σ 1 W 2,∞ , γ 1 L ∞ (0,L) , a L ∞ (0,L) , g 1 L ∞ (0,L) , g 2 L ∞ (0,L) , f 1 L ∞ (0,L)

I A + I B =
and Ĉ depending on σ 2 W 2,∞ , γ 2 L ∞ (0,L) , c L ∞ (0,L) , g 3 L ∞ (0,L) , g 4 L ∞ (0,L) and f 2 L ∞ (0,L) .

On the other hand, in order to bound the sum of I A and I B from above we apply the Carleman estimate (5.24) to equation (5.25), by the hypothesis in Theorem 14. We obtain that Therefore, the regularity of φ allows to prove that choosing λ 0 large enough, we obtain the existence of a constant C that depends on r, T, λ 0 , m such that for all λ > λ 0 , Abstract: There are few results in the literature about the controllability of partial differential equations systems. In this thesis, we consider the study of control properties for three coupled systems of partial differential equations of dispersive type and an inverse problem of recovering a coefficient. The first system is formed by N Korteweg-de Vries equations on a star-shaped network. For this system we will study the exact controllability using N controls placed in the external nodes of the network. The second system couples three Korteweg-de Vries equations. This system is called in the liter-ature the generalized Hirota-Satsuma system.

I A + I B = 2 L 0 T 0 0 w 1 (t,
We study the exact controllability with three boundary controls. On the other hand, we will study a fourth-order parabolic system formed by two Kuramoto-Sivashinsky equations. We prove the well-posedness of the system with some regularity results. Then we study the null controllability of the system with two controls, to remove a control, we need a Carleman inequality which is not proven yet. Finally, we present for the fourth-order parabolic system the inverse problem of retrieving the anti-diffusion coefficient from the measurements of the solution.
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1. 4 L

 4 'équation Korteweg-de Vries sur un réseau en forme d'étoile L'étude de l'équation de Korteweg-de Vries a été effectuée dans une configuration connue dans la littérature sous le nom d'équation KdV sur un réseau en forme d'étoile, le système considère N Korteweg-de Vries équations avec N + 1 fonctions de contrôle. L'étude des propriétés de contrôle pour les systèmes d'équations aux dérivées partielles est un nouveau sujet dans la théorie du contrôle et un défi intéressant puisqu'il est beaucoup plus compliqué de contrôler un système d'équations qu'une seule équation. L'équation de Korteweg-de Vries sur un réseau en forme d'étoile est décrit par la Figure 1.1 pour N = 3.

Figure 1 . 1 -

 11 Figure 1.1 -Réseau en forme d'étoile pour N = 3.

4 OFigure 2 . 1 -

 421 Figure 2.1 -Star-Shaped Network for N = 4

  .23) with the previous condition, the quadratic equation (2.21) has two real roots that are represented by the following Figure 2.2

Figure 2 . 2 -

 22 Figure 2.2 -Roots Quadratic Equation

(3. 8 )

 8 Therefore, there exists a unique classical solution z ∈ C([0, T ]; D(A)) ∩ C 1 ([0, T ]; L 2 (0, L)) of system(3.8). Thus, we get the existence of a unique classical solution y ∈ C([0, T ];

(3. 26 )

 26 Note that (u, v, w) ∈ Y 3 is a solution of nonlinear system (3.1)-(3.2) if only if (u, v, w) is a fixed point of the map Γ. From Proposition 4 and equation (3.24), we have that there exists a constant C > 0 such that

  ) satisfies ũ(T, •) = u T -ū(T, •). Taking advantage of the cascade structure of Hirota-Satsuma system, notice that (u = ũ + ū, v, w) is solution of (3.4)-(3.5) and we have three controls h 1 , h 2 , h 3 such that this solution verify the equation (3.29). That ends the proof of Theorem 9.

  0, L).

  2s 0 α , |∂ xx ((s 0 ξ) n e -2s 0 α )| ≤ C(s 0 ξ) n+2 e -2s 0 α , |∂ xxx ((s 0 ξ) n e -2s 0 α )| ≤ C(s 0 ξ) n+3 e -2s 0 α , |∂ xxxx ((s 0 ξ) n e -2s 0 α )| ≤ C(s 0 ξ) n+4 e -2s 0 α .

2 , 1 C ||γ 1 - 2 H 1 2 H 1

 2112121 γ1 || 2 L 2 (0,L) + ||γ 2 -γ2 || 2 L 2 (0,L) ≤ ||(u xx (•, 0)-ū xx (•, 0) 2 H 1 (0,T ) + v xx (•, 0)-v xx (•, 0))|| (0,T ) + ||u xxx (•, 0) -ūxxx (•, 0) 2 H 1 (0,T ) + v xxx (•, 0) -vxxx (•, 0))|| (0,T )

0

  <r ≤ β(x),0 <r ≤ β (x), β (x) ≤ -r < 0, max max x∈[0,L] |β (x)σ 1 (x)|, max x∈[0,L] |β (x)σ 2 (x)| ≤ r 4 min min s∈[0,L] |σ 1 (s)|, min s∈[0,L] |σ 2 (s)| ,

0 L 0 e 0 L 0 eeC T 0 eC T 0 e

 000000 Theorem 3.1] Let φ be a function defined by(5.21) and p > 0. Then thereexist λ 0 > 0 and a constant C = C(T, λ 0 , r, p) > 0 such that if ||g 1 || L ∞ (0,L) ≤ p, ||g 4 || L ∞ (0,L) ≤ p, ||f j || L ∞ (0,L) ≤ p and ||γ j || L ∞ (0,L) ≤ p for j = 1, 2 then we have T -2λφ |u t | 2 + |(σ 1 u xx ) xx | 2 λφ + λ 7 φ 7 |u| 2 + λ 5 φ 5 |u x | 2 + λ 3 φ 3 |u xx | 2 + λφ|u xxx | 2 dxdt + T -2λφ |v t | 2 + |(σ 2 v xx ) xx | 2 λφ + λ 7 φ 7 |v| 2 + λ 5 φ 5 |v x | 2 + λ 3 φ 3 |v xx | 2 + λφ|v xxx | 2 dxdt -2λφ (|L 1 u| 2 + |L 2 v| 2 )dxdt + -2λφ(t,0) (λ 3 φ 3 x (t, 0)σ 2 1 (0)|u xx (t, 0)| 2 + λφ x (t, 0)σ 2 1 (0)|u xxx (t, 0)| 2 )dt + -2λφ(t,0) (λ 3 φ 3 x (t,0)σ 2 2 (0)|v xx (t, 0)| 2 + λφ x (t, 0)σ 2 2 (0)|v xxx (t, 0)| 2 )dt (5.24)

w 2

 2 (t, x)w 2 t (t, x)dxdt.

L 0 |w 1 ( 0 |w 2 ( 0 e 0 e 0 e 0 e

 01020000 T 0 , x)| 2 dx + L T 0 , x)| 2 dx = L -2λφ(T 0 ,x) |(θ 1 ūxx + ψ x + g 1 ψ + f 1 ϕ x + g 2 ϕ -(σ 1 ϕ xx ) xx -aϕ xxx -γ 1 ϕ xx )(T 0 , x)| 2 dx + L -2λϕ(T 0 ,x) |(θ 2 vxx + ϕ x + g 3 ϕ -f 2 ψ x + g 4 ψ -(σ 2 ψ xx ) xx -cψ xxx -γ 2 ψ xx )(T 0 , x)| 2 dx ≥ L -2λφ(T 0 ,x) |θ 1 | 2 |ū xx (T 0 , x)| 2 + L -2λφ(T 0 ,x) |θ 2 | 2 |-C ϕ(T 0 ) 2 H 4 -Ĉ ψ(T 0 ) 2 H 4 ,

1 2 ≤- 3 L 0 T 0 ( 3 T 0 e 3 T 0 e 0 e 0 e 2 H 4 ≤- 3 L 0 T 0 (+ Cλ - 3 T 0 e+ Cλ - 3 T 0 e≤ Cλ - 3 L 0 e 2 H 4 +- 3 T 0 e+ Cλ - 3 T 0 e

 1230030300024300303030243030 Cλ e -2λφ(t,x) |θ 1 (x)ū xxt (t, x)| 2 + e -2λφ(t,x) |θ 2 (x)v xxt (t, x)| 2 )dxdt + Cλ --2λφ(t,0) (λ 3 φ 3x (t, 0)σ 2 1 (0)|z 1 xx (t, 0)| 2 + λφ x (0, t)σ 2 1 (0)|z 1 xxx (0, t)| 2 )dt + Cλ --2λφ(t,0) (λ 3 φ 3 x (t, 0)σ 2 2 (0)|z 2 xx (t, 0)| 2 + λφ x (0, t)σ 2 2 (0)|z 2 xxx (0, t)| 2 )dt.Thanks to the estimates of I A + I B that were obtained above, we haveL -2λφ(T 0 ,x) |θ 1 | 2 |ū xx (T 0 , x)| 2 + L -2λφ(T 0 ,x) |θ 2 | 2 |v xx (T 0 , x)| 2 -C ϕ(T 0 ) 2 H 4 -Ĉ ψ(T 0 ) Cλ e -2λφ(t,x) |θ 1 (x)ū xxt (t, x)| 2 + e -2λφ(t,x) |θ 2 (x)v xxt (t, x)| 2 )dxdt -2λφ(t,0) (λ 3 φ 3 x (t, 0)σ 2 1 (0)|z 1 xx (t, 0)| 2 + λφ x (0, t)σ 2 1 (0)|z 1 xxx (0, t)| 2 )dt -2λφ(t,0) (λ 3 φ 3 x (t, 0)σ 2 2 (0)|z 2 xx (t, 0)| 2 + λφ x (0, t)σ 2 2 (0)|z 2 xxx (0, t)| 2 )dt.From the hypothesis of the theorem, we have(ū, v) ∈ C([0, T ]; H 6 (0, L) 2 ), (ū t , vt ) ∈ C([0, T ]; H 2 (0, L) 2 ),|ū xx (T 0 , x)| > η > 0 and |v xx (T 0 , x)| > η > 0 in (0, L). Also using that the Carleman weight function satisfies(5.20), thus e -2λφ(t,x) ≤ e -2λφ(T 0 ,x) in (0, T ) × (0, L), we obtainL 0 e -2λφ(T 0 ,x) |θ 1 | 2 dx + L 0 e -2λφ(T 0 ,x) |θ 2 | 2 dx -2λφ(t,x) (|θ 1 (x)| 2 + |θ 2 (x)| 2 ) + C ϕ(T 0 ) 2 H 4 + Ĉ ψ(T 0 ) Cλ -2λφ(t,0) (λ 3 φ 3 x (t, 0)σ 2 1 (0)|z 1 xx (t, 0)| 2 + λφ x (0, t)σ 2 1 (0)|z 1 xxx (0, t)| 2)dt -2λφ(t,0) (λ 3 φ 3 x (t, 0)σ 2 2 (0)|z 2 xx (t, 0)| 2 + λφ x (0, t)σ 2 2 (0)|z 2 xxx (0, t)| 2 )dt.

1 C θ 1 2 L 2 2 L 2 2 H 1

 1222221 (0,L) + θ 2 (0,L) ≤ ϕ(T 0 , •) 2 H 4 (0,L) + ψ(T 0 , •) 2 H 4 (0,L) + ϕ xx (•, 0) (0,T ) + ϕ xxx (•, 0) 2 H 1 (0,T ) + ψ xx (•, 0) 2 H 1 (0,T ) + ψ xxx (•, 0) 2 H 1 (0,T ) . (5.27)This estimate leads to the local stability of the initial inverse problem sinceθ 1 = γ 1 -γ1 , θ 2 = γ 2 -γ2 , ϕ = u -ū and ψ = v -v,which ends the proof of Theorem 14.
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  x)w 1 t (t, x)dxdt + 2

									L			T 0	w 2 (t, x)w 2 t (t, x)dxdt
									0		0		
	≤	0	L	0	T 0	λφ(t, x)|w 1 (t, x)| 2 dxdt	1 2	0	L	0	T 0	|w 1 λφ(t, x) t (t, x)	dxdt	1 2
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  Inégalité de Carleman, Méthode de solvabilité algébrique Résumé: Il existe peu de résultats dans la littérature sur la contrôlabilité du système d'équations aux dérivées partielles. Dans cette thèse, nous considérons l'étude des propriétés de contrôle pour trois systèmes couplés d'équations aux dérivées partielles de type dispersif et un problème inverse de récupération d'un coefficient. Le premier système est formé par N équations de Korteweg-de Vries sur un réseau en forme d'étoile. Pour ce système, nous étudierons la contrôlabilité exacte avec N contrôles placés aux extrémités du réseau. Le deuxième système couple trois équations de Korteweg-de Vries. Ce système est appelé dans la littérature le système Hirota-Satsuma généralisé. Nous étudions la contrôlabilité exacte avec trois contrôles frontières. Après, nous étudierons un système parabolique du quatrième ordre formé par deux équations de Kuramoto-Sivashinsky. Nous prouvons l'existence et l'unicité de la solution du système. Ensuite, nous étudions la nulle contrôlabilité du système avec deux contrôles, pour supprimer un contrôle, nous avons besoin d'une inégalité de Carleman qui n'est pas encore prouvée. Finalement, nous présentons pour le système parabolique du quatrième ordre le problème inverse de récupérer le coefficient anti-diffusion à partir des mesures de la solution.
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Using Lemma 1, Proposition 4 and the continuity of the control operator, we get Π(u, v, w) Y 3 ≤ C 1 (u 0 , v 0 , w 0 ) Y 3 + C 2 (u T , v T , w T ) L 2 (0,L) 3 + C 3 (3uu x -6vv x , -3uv x , -3uw x ) L 1 (0,T ;L 2 (0,L) 3 ) .

≤ C 1 (u 0 , v 0 , w 0 ) Y 3 + C 2 (u T , v T , w T ) L 2 (0,L) 3 + C3 (u, v, w) 2 L 1 (0,T ;L 2 (0,L) 3 ) .

Then we deduce

where C 1 , C 2 and C3 are positive constants. We get thus the first condition :

R. Moreover we get the existence of a positive constant C such that

If R, r are small enough such that CR < 1, we can apply the Banach fixed point theorem and prove that a unique fixed point of Π exists, which ends the proof.

Remarks

Using the controllabiliy of the single KdV equation we proved the exact controllability of Hirota-Satsuma system. It could be very interesting in future research to reduce the number of controls and to get the exact controllability with some hypotheses on L and T .

Chapitre 5

Inverse Problem for a fourth-order parabolic system 

Chapitre 6 Conclusions

The purpose of this chapter is to present conclusions and comment some open problems that naturally arise from the problems we have addressed in this thesis. 

Control

Problem for a fourth-order parabolic system . . . . . . . .

6.4

Inverse Problem for a fourth-order parabolic system . . . . . . . .

The Korteweg-de Vries equation on a star-shaped network

In Chapter 2 we have proved the exact controllability with N control functions of the Kortewegde Vries equation in a configuration known as star-shaped network, under certain conditions on time and length L, which must be sufficiently small. We mainly used the multiplier method. It is important to emphasize that the selection of the functions in this method is essential since through the good selection of the functions is possible to obtain the inequality of observability and therefore the controllability of the system.

Open problem 1. We proved the exact controllability eliminating central control. It could be interesting to eliminate an external control and much more to see what is the maximum number of controls that can be eliminated.

The Hirota-Satsuma system

In Chapter 3 we studied the exact boundary controllability of the Hirota-Satsuma system coupling three KdV equations posed on a finite interval (0, L) with three boundary controls. We prove the exact controllability of the linear system for L > 0 and T > 0 using known results on the exact boundary controllability for the KdV on bounded domains. From this last result, we derive the exact boundary controllability for nonlinear Hirota-Satsuma system by means of a fixed point theorem.

Open problem 2. It could be very interesting to reduce the number of controls. For example, future research project can be directed to get controllability results for the following system :

with the conditions

In order to obtain the exact controllability of this system, we see from formal computations that the observability inequality to be proven is

with C a positive constant and (ϕ, ψ, φ) will be solution of adjoint system

with the conditions

(6.4)

Control Problem for a fourth-order parabolic system

In Chapter 4 we have studied the null controllability of a fourth-order system consisting of two parabolic equations of dispersive type. We have proven the well-posedness of the system using the semigroup theory and the solution by transposition for more regular initial data.

For the development of controllability we have used a new method in the literature based on algebraic manipulation, the main objective is to prove the usefulness of this algebraic method to obtain controllability results in systems of partial differential equations in the particular case when there are fewer controls than equations. Since in the original system there is only one control, we consider the fictitious method by which we add a function control and we proved that the new system with two controls is controllable to zero with initial data (u 0 , v 0 ).

In order to conclude the null controllability of the system with a regular enough control, we require a Carleman estimate presented in Conjecture 2, that is not yet proven. Our future research project is to prove Conjecture 2.

Inverse Problem for a fourth-order parabolic system

There are few results in the literature about the Lipschitz stability for systems of partial differential dispersive equations. It could be interesting to study the stability of the Kuramoto-Sivashinsky system with boundary controls and discontinuous main coefficient.

Open problem 3. For instance, with non-constant coefficients describing the diffusion (σ 1 (x), σ 2 (x)) = (σ 1 , σ 2 ) and the anti-diffusion (γ 1 (x), γ 2 (x)) = (γ 1 , γ 2 ), future research can be directed to get the stability results for the following system

u(t, 0) = h 1 (t), u x (t, 0) = h 2 (t), u(t, L) = h 3 (t), u x (t, L) = h 4 (t), in (0, T ), v(t, 0) = h 5 (t), v x (t, 0) = h 6 (t), v(t, L) = h 7 (t), v x (t, L) = h 8 (t), in (0, T ), u(0, x) = u 0 (x), v(0, x) = v 0 (x), in (0, L), (

where the main particularity that (σ 1 , σ 2 ) is discontinuous.