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RESUME SUBSTANTIEL

Cette thése de doctorat concerne un probléme d’optimisation combinatoire aléa-
toire introduit par Mézard et Parisi comme modéle-jouet de verre de spin en di-
mension finie (50). Une premiére motivation pour entreprendre cet effort est que
les verres de spin, malgré leur réle importants ces derniéres années, se sont révélées
assez difficiles & résoudre ( trouver I’énergie de 1'état fondamental d’un verre de
spin en dimension finie est un probléme NP-dur ) de sorte que, & certains égards,
ils restent mystérieuses surtout au-dela de 'approximation de champ moyen, ou
I’etude rencontre des difficultés méme numériques; d’ou l'intérét pour un cadre
théorique qui dépasse le champ moyen tout en partageant les caractéristiques de
base d’'un verre de spin ( voir désordre et frustration ) tout en restant attachable,
tant analytiquement que a 'ordinateur.

Dans ce probléme, les lois microscopiques de 'interaction sont données une fois
pour toutes et 1’aléa est associé aux positions de certains constituants élémentaires
» placés dans un espace par ailleurs homogéne. Cette hypothése complique con-
sidérablement 1’étude des propriétés typiques d’intérét par rapport au probléme
d’assignation aléatoire en dimension infinie précédemment étudié par Mézard—
Parisi (/0), et ensuite rigoureusement par Aldous (88). Maintenant, les constitu-
ants élémentaires peuvent modéliser des atomes ou des impuretés. Mathématique-
ment, ce sont deux familles de n éléments chacune : ils peuvent étre représentés
comme 'ensemble des sommets V' (IC,, ,,) d'un graphe bipartite complet IC,, ,, ( ¢’est-
a~dire, les éléments correspondent aux deux ensembles partis du graphe ). Nous
appellerons dorénavant ces familles des points les « bleus » et « rouges », et nous
leur réserverons deux symboles spéciaux : B et R. Enfin, le choix de la loi de
probabilité associée aux positions de B et R dépend du type de questions que l'on
veut poser, et certaines hypothéses seront nécessaires. Par exemple, si B et R
sont des particules d’encre qui ont été vigoureusement mélangées dans un verre
d’eau, I’hypothése d’une distribution uniforme de B et R dans le volume d’eau
semble raisonnable pour la plupart des objectifs pratiques ; au contraire, si B sont
des vélos qui doivent étre déposés dans des raquettes (R) dans la ville de Paris,
I’hypothése d’une distribution uniforme pour R ne semble pas appropriée.

Pour nous situer dans un cadre suffisamment général, nous supposons que B =
{bi}iz, et R = {r;}}_, sont des familles de variables aléatoires i.i.d. réparties
selon une certaine mesure v ( qui est une donnée du probléme ). Par exemple,
dans un scénario typique, v est supportée sur ( un sous-ensemble de ) un espace

métrique M ; ou les points d'une couleur ( comme ’étaient les raquettes dans
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I’exemple de Paris ) sont fixés sur une grille d-dimensionnelle, et les autres sont des
variables aléatoires i.i.d. comme ci-dessus ( sinon nous n’aurions pas de caractére
aléatoire ). Dans tous cas, nous appelons la distribution de probabilité associée a
la mesure v I’ ensemble statistique ou désordre, et nous nommons la donnée de B
et R échantillonnée & partir d'une telle distribution une instance ou réalisation du
désordre. L’interaction entre b; et ; ( c’est-a-dire le cott de l’assignation de b; &
r; ) a une intensité ¢;; := ¢(b;, ;) pour une certaine fonction ¢ : M x M — R. Les
n? nombres réels {cij}zjzl, qui peuvent étre considérés comme positives, peuvent
étre arrangés dans une matrice de cotit d’assignation non symétrique, n x n

C(bl, 7"1) C(bl,TQ)

c(bp, 1) c(bp, 1)

qui peut étre interprétée comme la matrice de contiguité pondérée du graph &C,, ,.
Un premier énoncé équivalent mais plus succinct en langage physique est que
I’hamiltonienne pour ce systéme ne comprend que des interactions a deux corps
inter-couleurs®.

La caractéristique essentielle qui empéche ce cadre de modéliser, par exemple,
un plasma a deux composants, est qu'une fois qu'un bleu est couplé & un rouge
dans une configuration, il disparait du systéme. Une configuration est codée par
une permutation 7w € §,, et a énergie

H(r) = Z Cin(s) = Tr[Prc] ,
i=1

ol Pr est la matrice de permutation de 7 ( c’est-a-dire, P;; = 0,4 ). Plus
généralement, la fonction de cotit C peut jouer le role d’'une énergie, d’'une fonction
de fitness, ou d’une distance générique. En principe, on peut considérer des fonc-
tions de cotit encore plus générales C : M x M — R, mais nous ne discuterons pas
ce cas ici. Afin de modéliser les aspects de base d'un systéme physique critique, et
notamment 'invariance de translation, de rotation et d’échelle, nous nous limitons
dans ce travail & une fonction de coit C : R — R* qui est le monome |z|P dans la

*C’est-a-dire que, en analogie avec I’électrostatique on B et R représentent respectivement des charges
électrostatiques unitaires positives et négatives, nous négligerons la répulsion de Coulomb.



fonction de distance D', c’est a dire

P =e(Db,ry) = DP(biyry),  dj=1,....n,
ou nous avons remarqué la dépendance de la matrice ¢ du nombre réel p, appelé
I’exposant « énergie-distance ». Dans ce travail, D est exclusivement la distance
euclidienne d-dimensionnelle, mais il est clair que d’autres choix pour la métrique
D sont possibles. Enfin, une assignation optimale 7, satisfait

Hopt := H(Tops) = min H(r)
TES,
ou la variable aléatoire H,p: est appelée 1’énergie de l’état fondamental.

Le choix d’un espace métrique (M, D), d'un ensemble statistique pour les posi-
tions aléatoires de B et R, et d’un exposant p identifie un probléme d’assignation
aléatoire bien défini qui on appelle probléme d’assignation aléatoire euclidien
( ou ERAP de l'acronyme de sa traduction anglais, Euclidean Random As-
signment Problem ). Une étude des propriétés statistiques de Hopt en fonction
du triple ((M, D), (vg, v5), p) constitue la principale contribution de ce manuscrit.

Le Chapitre 1 est une promenade a travers divers concepts et idées que nous
avons pu identifier comme un contexte plausible pour ce travail de thése. Compte
tenu de la nature introductive du chapitre, nous privilégions un style discursif et
donnons la priorité aux motivations plutét qu’a I'exhaustivité, en fournissant au
lecteur intéressé quelques points d’entrée vers les littératures connexes par le biais
de critiques et d’articles de référence. L’accent est mis sur les méthodes existantes
et les liens pertinents avec d’autres sujets. Ce faisant, nous souhaitons transmet-
tre au moins en partie les idées remarquablement unifiantes qui sous-tendent notre
discussion et, nous l'espérons, quelques raisons d’en considérer certaines a la lu-
miére du probléme examiné dans cette thése de doctorat. Suivent des exemples
ou nous discutons des notions physiques de solution sous-optimales et de passage
de niveau dans un cadre algorithmique, et une discussion de certains liens avec
d’autres problémes a l'interface de la physique théorique, des probabilités et de
I'informatique théorique. Le Chapitre 1 est clos par un plan du manuscrit et une
liste des contributions nouvelles contenues dans cet ouvrage.

Dans le Chapitre 2 nous étudions le cas unidimensionnel pour p et désordre
quelconque. Aprés avoir résumé ’état de 'art, nous présentons certains nouveaux
résultats tels que la distribution asymptotique de H,p, dans la cas M = le cercle
unitaire & p = 2 pour un désordre uniforme, exprimée en termes de la fonction 9, de
Jacobi ( Eq. 2.3.3.15 ) ; une étude de 'asymptotique de 'espérance mathématique

"Nous rappelons qu'une distance D sur un espace métrique M est une application binaire symétrique
et définie positive D : M x M — R™ qui satisfait I'inégalité triangulaire. Si cela n’est pas évident
d’aprés le contexte, nous indiquerons un espace métrique avec l’écriture explicite (M, D).



de Hopt pour different choix du desordre a p > 1 ( « anomalous scaling » ),
d’abord avec une méthode inspirée par la régularisation avec cutoff en théorie
quantique des champs ( § 2.5, voir aussi 'article (169) ), puis avec une approche
analytique—combinatoire a n fini ( § 2.6, article correspondant en preparation ).
Dans § 2.7, dédiée au cas concave p € (0,1), nous présentons les « appariements
de Dyck », des solutions sous-optimales dont nous avons calculé 'asymptotique
de I’énergie moyenne. Sur la base de simulations numériques approfondies, nous
conjecturons que les appariements de Dyck partagent la meme asymptotique du
vrai état fondamental & moins d’une constante multiplicative dépendante de p
( Conjecture 2.7.1 ). Cette section correspond a la publication (173), et nous
a permis de compléter la section & d = 1 du diagramme de phase du ERAP,
qui, remarquablement, présente deux nouveaux points critiques, respectivement a
p=setp=1(Fig 2.17).

Dans le Chapitre 3, nous considérons le cas bi-dimensionnel & p = 2 sur la base de
I’approche de théorie de champs proposée par Caracciolo—Lucibello-Parisi-Sicuro
( CLPS ) (145). En particulier, dans la § 3.1 nous présentons de nouveaux ré-
sultats concernant les differences des énergies entre deux variétés Riemanniennes
Q, €Y et montrons qui ces differences peuvent étre obtenues a partir du spectre de
I'opérateur Laplace-Beltrami de la variété. Nous avons vérifié nos prédictions an-
alytiques a l'aide d’expériences numériques approfondies pour de nombreux choix
de variétés ( voir les figures 3.3,3.8 ). Cette section a donné lieu au travail (172).

Dans § 3.2 nous obtenons des relations linéaires approximatives entre les énergies
des problémes ou les configurations des points sont liées par des transformations
de symétrie qui préservent le spectre de l'opérateur de Laplace—Beltrami de la
variété.

Dans § 3.3, toujours basée sur I'approche CLPS, nous étudions le probléme défini
sur les 2-torus Ty & p = 2 dans le cas « Grid—Poisson », ¢’est & dire, une variante du
probléme ot les points d’une des deux couleurs sont fixés sur une grille déterministe
( dans ce cas, la grille carrée bi-dimensionnelle ). Dans ce cas, nous développons
I'idée que le champ de transport ( c’est-a-dire le champ vectoriel associant les
bleus aux rouges dans la solution optimale ) peut satisfaire, par analogie avec
I’électrodynamique, une « décomposition d’Helmholtz » dans une partie longitu-
dinale et une partie transverse. Nous étudions en details les propriétés statistiques
des deux composantes pour le cas d’une distribution uniforme des points et nous
montrons que la partie longitudinale et la partie transverse contribuent a un ordre
différent dans I'asymptotique du cotit moyen optimal.

Le Chapitre 4 concerne un extension du ERAP au cas d'une dimension de Haus-
dorff dy € (1,2). Dans cette étude, primairement numérique, nous considérons des
points bleus et rouges uniformément distribués sur deux ensembles fractals ( «
fractal de Peano » et « fractal de Cesaro » ) qui fournissent une interpolation
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différente de I'intervalle (1,2) dimension de Hausdorff. En particulier, grace a des
simulations numériques approfondies, nous obtenons evidence que, modulo une
constante multiplicative, ’exposant leading du cout moyen optimal soit le meme
pour les deux fractals dans une grande région du plan (p,dy).

Enfin, le Chapitre 5 contient quelques conclusions provisoires et une sélection
de perspectives de recherche.

vii
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~ CHAPTER 1 «—

INTRODUCTION

This chapter starts with a “promenade” through various concepts and ideas which
we have been able to identify as a plausible background to this work. We favor
a discorsive style and give priority to motivations over completeness, providing
to the interested reader some entry points to (many) related literatures through
reviews and milestone papers. Emphasis is put on existing methods and relevant
connections with other topics. In doing so, we wish to convey at least in part
the remarkably unifying ideas which underlie our discussion and, hopefully, some
reasons to consider any of them in the light of the problem considered in this PhD
Thesis, the “Fuclidean Random Assignment Problem”. A self-contained definition
of this problem is given § 1.3, which can be used as a reference for the remaining
part of the manuscript, and it is followed by an example where we discuss the
physical notion of level crossing in an algorithmic setting. A discussion of some
possibly interesting connections with other problems at the interface of theoretical
physics, mathematics and theoretical computer science follows. The chapter ends
with the plan of the manuscript and a list of novel contributions contained in this
work.

1.1. Background

N a seminar held at Princeton in 1951 and reported in the second volume of the
I series “Contributions to the Theory of Games” (74 ), von Neumann considered
the following two-person, non-cooperative zero-sum game (/7). There is a square
n x n battlefield (like a n x n chessboard) and the positions of this battlefield are
worth some amount of money which is encoded by a square cost matrix m;;, 4,7 =
1,...,n. There are two players: let us call them G and LV. G chooses (or “hides”
under) one position of the battlefield with n* choices (G’s pure strategies). LV,
unaware of G’s choice, guesses either a row or a column (or “seeks” G), with 2n
choices (LV’s pure strategies). The rule of this game is that if LV finds G at
position (7, j), then G gives m;; to LV; otherwise, G keeps that money for himself.
How should G play in order to maximize his return in the long term?

The answer to this question is considerably simplified if G abandons a deter-
ministic approach and thinks in terms of a probability distribution over the set of
possible choices (also called a mixed strategy in game theory). In this light, what
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Figure 1.1. — (Left) Example battlefield m for von Neumann’s game at n = 5
(annotated prizes are in § currency). (Right) G’s optimal mized strategy for the
battlefield on the left requires G to choose myq = 28§ (upper right corner) about
7 times in 25 turns, and my; = 108 slightly more than 1 time out of 20 turns
(but never the other 10§ bills).

von Neumann’s paper shows is that the optimal mixed strategy depends on a small
proportion of positions (i.e. n out of the n? available positions). These n positions
are found by interchanging the columns (or rows) of the matrix ¢;; ;== —1/m;; until
its trace is minimal. Rows and columns incident to those n positions span the
whole battlefield, thus identifying one out of the n! = n(n —1)--- ways of placing
n rooks (chess pieces) at non-attacking positions onto the n x n chessboard (an
example game at n = 5 is given in Fig. 1.1). These special n positions constitute
an assignment of n row elements to n column elements (and vice-versa), and can
thus be specified by a permutation of n objects, which we will generically call
Topt” |- The problem of finding a . is usually called “the assignment problem®”

*A permutation of a finite set is a bijection on that set. The set of all permutations equipped with
composition “o” is a group called the symmetric group which we denote by S,. In the game of
von Neumann, if G looks for a rearrangement of rows instead of columns (i.e., if G “rotates” the
battlefield by an angle 7 ), he finds the permutation w;plt, the unique group inverse of mopt satisfying
Topt O wgplt = ﬂ;plt o opt = (1,...,m) in one line notation.

fyon Neumann (14) also shows that, rather intuitively, G’s should think probabilistically and choose
the position {(k, mopt(k))}r=1 with probability proportional to /m,. ) (the higher the reward, the
higher the chance of LV considering a row or column containing that position). von Neumann’s
seminal contribution has been extensively discussed later on, possibly due to its many connections
with other important problems at the time, such as the Birkhoff-Von Neumann Theorem on doubly
stochastic matrices (see e.g. (12)) (to not be confused with the anterior pair of fundamental works (5,
7) by the same authors concerning ergodic theory), or with the problem of allocation of indivisible
resources in economics (16).

fAn assignment problem is a linear combinatorial optimisation problem in which the function to be
minimised (the cost or energy function) is a sum over the entries of a cost matrix. For this reason, it



and the assignment defined by 7, is usually called an “optimal assignment” (since
in general there may be more than one ).

Fortunately, G can avoid to test every possible permutation, since finding an
optimal assignment given the cost matrix requires a number of operations which
is a power of n at worse, as it seems to have been known for a long time: other
than to von Neumann himself (see (7/), end of pag. 5), it has been recently
discovered (720) that a procedure for finding the optimal assignment in a matrix
of positive integers was known already to Jacobi®.

One of the best-known methods for solving the assignment problem has been
popularised by Kuhn (75), who termed it “the Hungarian method” in honor of a
fundamental notion of “duality!” introduced by magyar mathematicians Kénig (/)
and Egervary (6). The Hungarian method solves an assignment problem in worst
case O(n®) time complexity (/7) (incidentally, the same complexity of Gaus-
sian elimination in linear algebra). After the Hungarian method, several algo-
rithms for solving the assignment problem (such as the so-called “primal-dual al-
gorithms”) have been developed (/5). Our favorite one is the Jonker-Volgenant al-
gorithm (46), which we have described and tested elsewhere (see (151), Chapter 2);
among the other polynomial algorithms for finding a 7., based on different strate-
gies, among the most used algorithms there are the network flow approach (24 ),
the simplex method (22) (see (52) for an historical account), or more recently the
auction algorithm (see (717), Chapter 7). The interested reader is referred to (8/)
for a comprehensive review on the matter.

Large assignment problems served also as computational benchmarks for com-

is sometimes called “Linear Sum Assignment Problem” (see e.g. (80)). Linearity of the cost (or objec-

tive) function and convexity of the search space —which is a convex polytope in R™ called “Birkhoff
polytope” comprising the set of all doubly stochastic matrices— are the fundamental properties that
make the assignment problem special among otherwise very similar combinatorial optimisation prob-
lems.

$In a paper appeared in Crelle’s journal in 1860, communicated posthumously by Weierstrass (140),
Jacobi was concerned with the problem of bounding the order of a system of ordinary differential
equations. He had shown already shown the equivalence of this problem to the reduction of certain
tables of positive integer numbers representing the order of equation ¢ in variable j, called therein
“schema” (corresponding to our cost matrix ¢ —recall that the term “matrix” has been introduced
only around 1850 by Sylvester, see (135)-), to special tables called “canones” (namely, matrices with
their maxima in non-attacking rook positions). Within this context, Jacobi discusses a procedure to
reduce canones to certain canones simplicissimi by means of elementary operations, and even gives
some application of his procedure to a few 7 x 7 examples (see (140), pag. 308).

TWe are referring here to the bijection between maximum matchings and minimum vertex covers in
bipartite graphs, which usually goes under the name of Konig’s theorem (133). Duality is a sort
of leitmotiv in several related problems. We may mention the “Monge-Kantorovich” duality, which
arises in the problem of optimal transport of continuum measures. Interestingly, Kantorovich, who
played a crucial role in the development of linear-programming (19), is also considered to be one of
“the founding fathers of optimal transport” (see (127), pag. 43). Or also the other “duality”, which
was implicit in the von Neumann’s game, since LV’s mixed strategy is “dual” to G’s in the sense
that it is uniquely defined by the latter at the Nash equilibrium of the game.



puting systems already since the early nineties (59). Nowadays, a ¢ for a typical
dense matrix can be found in less than one second for sizes up to n ~ 1000 with
common hardware, and roughly less than one minute for n up to 10* (Fig. 1.2).
Therefore, one may arguably say that the problem of quickly finding a solution
has been successfully tied to the technological development for most practical pur-
poses. Notably, this is a consequence of the remarkable mathematical properties
of the objective function and search space: the extrema of a linear function over a
convex set (the set of all convex combinations of the permutations of n objects, also
called the Birkhoff polytope) are attained at extremal points (i.e., permutations),
modulo possible inessential unicity issues.
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Figure 1.2. — Awverage time to solution for the assignment problem (y-azis) as

a function of matrix size (n, z-axis). The benchmark has been performed on a
2014 laptop using a 2,5 GHz Intel Core i7 processor, using the Jonker-Volgenant
algorithm (46) on n x n matrices with i.i.d. standard normal random entries,
in the range n = 10 to n = 5000 (average over seven independent runs for each
n). A least square fit is reported in dash-dotted trait to aid the eye.

A major conceptual breakthrough came in the eighties and involved the removal
of a second, completely different layer of deterministic reasoning. Going beyond
the specific solution to a combinatorial optimisation problem! at fixed instance, it

A combinatorial optimisation problem consists in studying the extrema of a real-valued function
(sometimes called objective function) defined on a space of finite cardinality (sometimes called search
space). See e.g. (38) for an elementary introduction to classical combinatorial optimisation problems
with applications to applied problems such as car pooling and the construction of phylogenies.



was realized that, when considering instead random instances of an optimization
problem, the typical properties of the solution were accessible with the methods
of statistical mechanics in the presence of a quenched randomness (in our case
of the assignment problem/von Neumann’s game, this amounts to think at the
prizes of matrix m as random variables). The new viewpoint has been pioneered
by physicists Mézard and Parisi (40), and Orland (41), who considered some sta-
tistical properties of minimum weight perfect matchings of the random complete
(bipartite) graph (/0). The basic idea, which dates back at least to Kirkpatrick
et al. (36), is to interpret the problem as a single disordered physical system, and
recover the optimal solution as a suitable zero temperature limit of a quenched free
energy. Generally, the constraints of the underlining combinatorial problem forbid
the existence of microscopic configurations satisfying all the couplings, which is
a well-known feature arising in the physics of disordered physical systems called
frustration (31, 44). In particular, the ground state of the system corresponds to
the ensemble of globally optimal solutions induced by the distribution of random
interactions, and may share the original, fixed instance symmetries only on aver-
age **. Of course, while this program is appealing, one may argue that 1) there
is a certain degree of arbitrariness in considering a “stochastic” version of the as-
signment problem (instead of other problems), also in consideration that we have
not yet motivated such an effort with practical problems where this study may be
useful; and 2) the game may not be worth the candle, due to possible specificities
of the assignment problem which are not shared by other combinatorial problems.
Indeed, what does make the assignment problem so special, among other prob-
lems? We shall try to address point 2) in § 1.4 by showing that, before any further
developments, stochastic assignment problems are a suitable test-ground for inves-
tigating even advanced features of disordered systems, such as level crossing, in an
extremely simple way. We believe that this feature, besides its clear pedagogical
value, can be useful in the challenge of understanding finite dimensional disordered
systems. In order to partially address point 1), in the next section we shall take a
small detour to review the development of the simplest, and most studied (mean-
field) stochastic version of the assignment problem, and some further remarks on
the nature and implications of statistical physics approaches in this area.

**A detailed discussion of the several applications of methods and ideas from the statistical physics of
disordered systems to ensembles of combinatorial optimisation problems is beyond the scope of the
present work. The interested reader is referred to the classical book (44) for an introduction, and
to (90) and (124) for discussions more oriented towards information theory and interdisciplinary
applications.



1.2. Random Assignment Problems and
extensions

N the “random assignment problem *” (/(), /1) the cost matrix becomes a random
matrix with independent and identically distributed entries. The problem has
been studied extensively, so that we can take its historical development as an
opportunity to illustrate a nice example of fruitful interaction between physicists,
mathematicians and theoretical computer scientists around the broad themes of
universality and phase transitions.

Concerning the first theme, in (40) Mézard and Parisi showed that consider-
able insight on the problem can be obtained by looking only at the very small
edges. More precisely, by means of the replica method, they have shown that
the (appropriately rescaled) large n limit of the expected optimal cost (that is,
the expected ground state energy in the physical picture) depends on just a real
number r, the leading exponent in the small argument expansion of the involved
probability density function’. In particular, at 7 = 0 (that is, for probability distri-
butions taking a finite value at zero), the limit is given by the non-trivial constant
¢(2) = %21, a remarkable result that was rigorously proven® about fifteen years
later by Aldous (88).

In the meantime, Parisi uploaded a preprint on the arXiv (77) claiming the
much stronger conjecture that the exact, finite n expected value of the optimal
cost in the random assignment with i.i.d. exponential entries of unit mean equals
> Y&2 (unpublished). Proofs of the Parisi conjecture, and of its generalisation
to the case of rectangular assignment cost matrices termed the Coppersmith-Sorkin

*The random assignment problem has been conceived as a mean-field (or infinite-dimensional) model
of “spin glass”. Spin glasses were originally introduced by Edwards and Anderson (25) as theoretical
models for understanding experiments showing sharp peaks in the susceptibility of certain magnetic
alloys (see e.g. (42) for a review). A well-studied model of mean-field spin glass is due to Sher-
rington and Kirkpatrick (26, 32). The SK model is often called an “infinite-dimensional” (or also
“fully connected”) model because (roughly speaking) the microscopic configurations consist of Ising
spins placed on the vertices of the complete graph K, and interacting through (g) centered and
independent random normal interactions (see (142) for a comprehensive review). The solution of
the SK model is due to Parisi (35-35) and has been put on rigorous grounds by Talagrand (713)
building on ideas by Guerra (97).

TLoosely speaking, the universality of r in p(x) ~ 2" as © — 0 is understood in terms of the leading
tail behavior of the Laplace transform of p(z)

C
J dx e—tacxr - t—(r+1)
0

for large t.

fAn early investigation of the value of the limit constant in the case of matrix entries uniformly
distributed in [0, 1] is due to Donath (25%).

$Together with the possibly counter-intuitive result, also derived in (40), that the probability for a link
of arbitrarily small length to enter an optimal assignment is roughly 1/2.



conjecture (73), have appeared later on (98, 107), resulting in a number of prob-
abilistic and combinatorial results of independent interest. Random assignment
problems and extensions, and more generally statistical properties of Euclidean
functionals of discrete sets (58) remain a topic of mathematical interest especially
in probability, where more recently some work has been devoted to study recursive
distributional equations in connection with the cavity method (105). Existence
and unicity of a relevant quantity in the whole range r € (0, ) for this problem,
the so-called Parisi order parameter, has been proven only recently (746, 150).
If cross-fertilization between statistical physics and probability around the theme
of universality may certainly appear not at all surprising, it is remarkable that
methods from statistical physics of disordered systems have been useful also at
a research frontier in the direction of theoretical computer science. This fron-
tier, broadly speaking, aims at understanding and quantifying the complexity of
combinatorial problems borrowing from physics the notion of phase transition.
Following (86), let us recall first that a possible measure of complexity of a
problem Y involves the largest possible time spent by an algorithm for finding
the solution, depending on the size of the problem (worst-case analysis). After
devising the algorithm, one derives the leading scaling behavior of the largest
time to solution over a given class of instances, depending on the size n. If such
leading scaling is a polynomial, the problem belongs to the P class. Besides the
assignment problem, other well-known P problems are to find a spanning tree of
minimal total weight on a weighted graph (MST) (which is solved in polynomial
time with greedy methods such as Prim’s algorithm (73%)) and to test whether a
given number is prime (/01). However, there are also problems for which it is not
known if a polynomial time algorithm for finding an optimal solution exists but,
instead, the optimality of a known solution “given by an oracle” can be certified
in polynomial time (NP problems). Lastly, the NP class contains a sub-class of
problems, termed NP-complete problems, comprising the hardest NP problems,
and the general opinion is that a polynomial time algorithm for solving them does
not exist. A prototypical example is to find the shortest closed path among a set of
n cities, visiting each city exactly once, also called the Traveling Salesman Problem
(TSP). Many efforts have been devoted to this problem since it can be shown that
a polynomial algorithm for the TSP could be used to solve any other NP-complete
problem in polynomial time. Indeed, establishing if there are NP problems which

are not in the P class is a formulation of the well-known P = N P problem, a major
open theoretical problem in computational complexity theory. However, a major

IThe classification into complexity classes refers more properly to decision problems. However, any
optimization problem can be casted as a decision problem upon application of a threshold (for
example, in the von Neumann’s game, given a battlefield m, should G expect to gain more than
10 $ applying its optimal mixed strategy?). In our discussion, when discussing complexity of an
optimization problem, we shall always implicitly refer to its decision version.



contribution of the statistical mechanical approach has been to focus on the average
properties of the solution, which can be quite different from the worst case one.
Indeed, for several random such problems (such as the two dimensional random
decision version of TSP (67)), a scalar parameter could be identified, exhibiting a
critical value associated to the onset of hard instances, in analogy with the behavior
of an order parameter in the physics of phase transitions. Perhaps the most known
success in this area is due to Mézard—Parisi—Zecchina, who have shown that, for the
random 3sat (a NP-hard decision problem), the parameter is the ratio of variables
over clauses, and unveiled a SAT-UNSAT transition in the phase diagram following
the spin glass interpretation (93). Moreover, the information gained from their
analytic approach could be used to build performing algorithms for finding the
solution in particular regions.

Coming back to the random assignment, the general belief is that, qualitatively,
there should be no such phase transition!. However, an extension of the random
assignment problem to the case of k partite graphs has been proposed, termed the
Multi-Index Matching Problem (70/) (MIMP). In a MIMP (which is NP-hard for
k = 3) it has been shown by means of the cavity method that the replica symmetric
phase is unstable below a critical temperature, requiring replica symmetry to be
broken for consistency (706). The results were extensively supported by numerical
experiments but still await to be put on rigorous grounds.

Despite its own interest, in this work we shall not discuss further the infinite di-
mensional random assignment problem (nor any other mean-field model), nor pur-
sue further the theme of phase transitions and computational complexity which,
for the problem that we are going to discuss, is still at its infancy (if not its con-
ception..), and will be addressed only indirectly. For a review on the statistical
mechanical approach to phase transitions in optimization problems, the reader
may consult (89) and the references therein; for recent results on the random
assignment problem with usual methods from statistical physics, see our recent
paper (153). Besides an extended review of the problem, it contains an analyt-
ical derivation (using the replica method under the replica symmetric ansatz),
comforted by numerical experiments, that the aforementioned Mézard—Parisi uni-
versality property does not persist at the level of sub-leading asymptotics, with an
example in which one can infer whether the support of the distribution is finite
from the sign of the finite-size correction.

I'This on the account that the solution, which has been obtained under the so-called ansatz of replica
symmetry (40), has been confirmed a posteriori by independent rigorous methods. However, direct
arguments are still lacking (to the best of our knowledge).



1.3. The Euclidean Random Assignment
Problem

NSTEAD, this manuscript concerns a different stochastic assignment problem,
which also had early consideration by Mézard and Parisi as a prototypical
model of finite-dimensional spin glass (50). At instance with the random as-
signment problem, which in some cases can be considered as its “mean-field”
approximation, the problem is termed finite-dimensional since, heuristically, it
involves microscopic variables placed in a d-dimensional space, in analogy with
finite-dimensional spin glasses. A first motivation to undertake this effort is that
spin glasses, despite their breakthrough role in recent years, have shown to be quite
hard to solve (to find the ground state energy of a Sherrington-Kirkpatrick model
is NP-hard) so that, in certain respects, they remain mysterious especially beyond
the mean-field approximation, where they face difficulties even numerically. Thus,
the development of a theoretical framework that goes beyond mean-field while
sharing all the basic features of a spin glass (namely disorder and frustration) and
remains manageable (both to analytical and computational investigations) may be
of value.

In this model the microscopic laws of interaction are given once and for all.
The quenched randomness, instead that to edges, is now associated to the random
positions of some “elementary constituents” (i.e. to vertices of the bipartite graph)
placed in an otherwise homogeneous ambient space. This assumption complicates
considerably the study of typical properties. The “elementary constituents” model
atoms or impurities. Mathematically, they are two families of n elements each:
they can be represented as the vertex set V (K, ,,) of a complete bipartite graph
Krn (that is, elements correspond to the two partite sets of the graph). For the
sake of brevity, from now on we will refer to such families (or equivalently to their
graph theoretical representation) as “blue” and “red” points, and reserve for them
two special symbols: B and R. Lastly, the choice of randomness for modeling
the positions of B and R depends on the kind of questions that one may want to
ask, and some assumptions will be necessary. For example, if B and R are ink
particles that have been vigorously mixed in a glass of water, the assumption of
B and R uniformly distributed in the water volume appears to be reasonable for
most practical purposes; on the contrary, if B are bikes which must be reported
to deposit rackets (R) in the city of Paris, the assumption of uniform distribution
for R does not appear to be appropriate.

To accommodate ourselves in a sufficiently general setting, we shall assume that
B = {bj}i-, and R = {r;}}_, are families of i.i.d. random variables distributed
according to some measure v (which is a datum of the problem). For example,
in a typical scenario, v will be supported on (a subset of) a metric space M;



or the points of one color (as the rackets in the Paris example were) are fixed
on a deterministic d-dimensional grid, and the others are i.i.d. random variables
as above (otherwise we would have no randomness). In any case, we will call
the probability distribution associated to the measure v the statistical ensemble
or disorder distribution, and name the datum of B and R sampled from such a
distribution an instance or realisation of the disorder. The interaction between
b; and r; (that is, the cost of assigning b; to r;) has an intensity ¢;; := c(b;, ;)
for some function ¢ : M x M — R. The n* real numbers {c;;}};_; (which may
be taken to be positive w.l.o.g.) can be arranged into a non-symmetric, n x n
assignment cost matrix

C(bl, 7“1) C(bl, 7’2)
= : - , (1.3.0.1)

c(bp,m) c(bp, 1)

which can be interpreted as the weighted adjacency matrix of the underlining
graph K, ,,. A first equivalent but more succinct statement in physical language
is that the hamiltonian for this system comprises only inter-color, two-body in-
teractions®. The essential feature preventing this framework from modeling e.g. a
two-components plasma, is that once a blue is coupled to a red in a configuration,
it “disappears” from the system. We shall encode a configuration by a permutation

m e S, with energy

H(m) = > Cingy = Tr [Prc] | (1.3.0.2)
i=1

where P is the permutation matrix of 7 (that is, P; ; = 6, »(;)). More generally, the
cost function C may play the role of an energy, of a fitness function, or of a more
general distance' in the problem of interest (such as hamming distance, if B and
R represent strings taken from an alphabet). In order to share basic requirements
for a physical system at criticality, and namely translational, rotational and scale
invariance, in this work we shall restrict ourselves to a cost function C : R — R*
which is a simple monomial |z[P in the underlining distance function D*, namely
A = C(D(bi,r;)) = DP(bsy7;), 6,5 =1,...,n, (1.3.0.3)

v

*That is, in an analogy with electrostatics where B and R represent respectively positive and negative
unit electrostatic charges, we shall neglect Coulomb repulsion.

In principle, one can consider even more general cost functions C : M x M — R, but we will not
discuss this case further here.

#We recall that a distance D on a metric space M is a symmetric and positive definite binary map
D : M x M — R which satisfies the triangular inequality. If not obvious from the context, we will
indicate a metric space with the explicit writing (M, D).
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where we have stressed the dependence of the matrix ¢ on the real number p,
termed the “energy-distance” exponent. In this work, D will be almost exclusively
d-dimensional Euclidean distance, but it is understood that other choices for the
metric D are possible. Finally, an optimal assignment 7, satisfies

Hopt 1= H(Topt) = min H(m), (1.3.0.4)
where the random variable H,py is called the ground state energy.

The choice of a metric space (M, D), of a statistical ensemble for the random
positions of B and R, and of an exponent p identifies a well-defined stochas-
tic assignment problem which is called the Euclidean Random Assignment
Problem (or “ERAP” for brevity). A study of statistical properties of Hop de-
pending on the triple ((M,D), (vg,v5),p) constitutes the main contribution of
this manuscript.

1.4. On approximate solutions and level crossing

ET us expand on the statistical mechanical approach to the ERAP and point
L out some qualitative features of the problem as further motivations to our
work. We will consider a two-dimensional system, which in several respects is
the most interesting case®, and discuss, at a fixed realization of the disorder as a
function of p,

> a study of the energy of two canonical excited states, obtained via two simple
greedy heuristics;

» an analysis of the ground state energies and their relative rank as p varies;

» an investigation of the distribution of the Euclidean lengths of the edges
entering in the ground state.

In the first case, it will turn out that the greedy heuristics are not strikingly good,
in the sense that the energies of these canonical but otherwise generic states are not
good approximations of the ground state, and that moreover their performances
appear to exhibit (statistically) a cross-over as a function of p. In the second case,
we will show that ground states energies at p < 1 (p > 1) appear to have a defined
order at p < 1 (p > 1), and that such ordering is reversed at p > 1 (p < 1)
through level crossings in between. Optimal solution at p > 1 are typically bad

*For the sake of definiteness, we will consider here a specific statistical ensemble (a “Grid Poisson ERAP
on the unit square”, see § 3.3 for definitions), but it should be noted that our analyses, which depend
only on the cost matrix, may be of possible interest also beyond the ERAP setting.
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candidate solutions at p < 1, and viceversa. In the third case, we will show that the
distribution of the lengths appears to display a transition from a bell-shaped one
at p > 1 to a bi-modal one (with an algebraic tail for large values of the Euclidean
length) at p < 1, a further signature of the persistence of the well-understood
transition in the one dimensional problem (see § 2.1 for details). The presence of
such interesting cooperative effects can be taken as an indication that the system
is poised, in some sense, near a critical point (even at zero temperature).

1.4.1. On approximate solutions and greedy heuristics

Algorithm 1: Row-column Algorithm 2: Saddle point or row-
minimal configuration column minimax configuration
Input : Cost matrix ¢ Input : Cost matrix ¢
Output: Permutation .y Output: Permutation 7,
1 Function rem(c®): 1 Function sp(c®)):
2 Trem < Void 2 Tep < void
3 1<—0 3 1«0
4 while i < size(c”) do 4 while i < size(c? ) do
; — in c®
I o S B e (e
7 cP)(4,:) « +oo 6 Tp(j) < k
8 P (k) «— +oo 7 delete row j in ¢
9 1—1+1 8 delete column k in ¢®)
10 end 9 1—1+1
11 return m., 10 end
11 return 7,

For a fixed instance with points B and R, besides 7, consider the following
configurations:

» a configuration 7, (from “row-column-minimal”) obtained in a greedy ap-
proach made of successive “annihilation” of nearest neighboring blue and reds
(Algorithm 1). In this case, the energy increment at algorithmic time 7 is
strictly monotone increasing in i (Fig. 1.3, blue continuous trait).

» A configuration 7y, (from “saddle point”) obtained iteratively matching the
farthest blue among the n —i available (i = 0,...,n—1) in the set of nearest
neighbors of red points, and annihilating that pair (Algorithm 2). Now the
energy increment at algorithmic time 7 is not anymore monotone in ¢, and
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large spikes (reflecting the geometry of the underlining space) appear on top
of a roughly constant (if sligthly decreasing) baseline (Fig. 1.3, orange dashed
trait).
Let us denote with Hl(,fgel the energy at a fixed disorder with exponent p for con-
figuration mape, with label € {opt,rcm,sp}. Our numerical experiments indicate
that there exists a p* (close to 2), such that, on average, in the limit n — oo,
HE), < Héf,) if p < p*, and HE), > "Hgf,) if p > p* (our findings may even be true
in the almost-sure sense, see Fig. 1.4).

10% A / 10! /

SRR W
. 1071 10! (/,r
s £ ol
2 2
< c
<[g 104 %» 10-3
10-5 | Tlrem 10-5 Mrem
Msp Msp
-1
— V=% — V=&
1077 T T T T T T T T 1077 T T T T T T T T
0 100 200 300 400 _500 600 700 800 900 0 100 200 300 400 500 600 700 800 900
i i
(a)p=1 (b) p=3
Figure 1.3. — Energy contributions along the execution of algorithms 1 and 2,

normalised at the AKT scale, for p =1 (Fig.1.3a) and p = 3 (Fig.1.5b) at the
same disorder (the corresponding total energies are the areas under the curves).
The black line is the n — oo limit average contribution of each edge at p = 2.
Notice the large fluctuations of the mg, trajectories.

Both procedures are faster than the Hungarian algorithm, but their energy dif-
ference with the optimal solution trade places with p. In the present case, e is
more suitable when the most important aspect of the optimal strategy is not to
miss the shortest edges, which is the case when p is small, while 7y, is more suitable
when the most important aspect of the optimal strategy is not to be forced to use
any long edge, which is the case when p is large (notice that the one dimensional
ERAP in the p — oo limit, can be understood as a minimax problem, see (744 ),
Eq. 6).
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Figure 1.4. — Scatter plots of Hopt (x-azis) vs excited states energies (y-axis,
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colors) at fized disorder. The exponent p increases from top-left (p = .5) to
bottom left (p = 4) in clock-wise order, Hyem corresponds to blue dots, and
Hep to orange dots (n = 100, 10° realisations). As a function of p, the blue
and orange clouds positions relative to the black line (bisector) invert. For
comparison, we display also the energy associated to the n row minima FE,p,
(green points), which gives an absolute lower bound —and it is bounded above by
the column minima due to our choice of the disorder— but does not generically
correspond to a permutation.



1.4.2. On crossings of ground state energies

For a fixed instance of B and R, and n large, let W(()?t be the optimal assignment at

exponent p, and let H(pl)(ﬂ(()ﬁ)) be the energy for the ground state at p = p,, eval-
uated at exponent p;. By definition, if p; # p, then H(pl)(ﬂéﬁ)) > H(pl)(wé’glt ) =

Hopt p, - One can easily obtain the energy profile H(pl)(ﬁc(ﬁ)) as a function of py,

and study these profiles for states that are optimal for at least one value of p; (in

the considered list). In one dimension, the profiles collapse at p;, ps > 1, since ﬂéf))t

2
P 4.0

1.0 77
= /
— p2=1 S

N o o
ES o o
L L s

log[HPY (Mopt, p, ) Hopt, p, ]

1

p1
o
N

Figure 1.5. — Energy profiles for ground states at p; > 1 (dotted lines, cold tones)
and py < 1 (dashed lines, warm tones) depending on py. Energy is measured
in units of Hoptp,, and we display its logarithm divided by py to better display
the small py region for wvisualization purposes. Protocol: 25 values of p evenly
spaced in logarithmic scale between 1/10 and 105 = 3.98107 ...

is unchanged by monotonicity (see § 2.1 for details). Much less is known also at
d = 1for p < 1, where it is only known that m,,¢ depends on p (see § 2.7). In two di-
mensions, we observe that solutions at p > 1 are poor approximations of solutions
at p < 1 (and viceversa). Notably, we observe an ordering #(*) (/Wg;t)) < H(p)(cggt))
if p' < p” at p « 1, which is completely reversed to H® (W(Egt)) > HP) (Wéit)) if
p <p” at p> 1, implying a fan of crossings at intermediate values of p (Fig. 1.5).
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1.4.3. Possible persistence of transition near p =1 at d = 2

Let us fix again a large n (say n = 10%) and, for a fixed disorder instance (B, R),
let us study how the distribution f,(]e,|) of the Euclidean length of an edge e,, in
the optimal assignment varies with p. We will consider the associated tail function
Fy(z) = §7dy f,(y) that is, the probability that |e,| is not smaller than z. A
uniform lower bound for £}, is obtained from the distribution of nearest neighbors
in a Poisson Point Process in two dimensions. The corresponding tail function is

X
t(r)=1- f dromre ™ =1—(1—e ™) =™ (1.4.3.1)
0

First, we have observed that the empirical tail function transitions from a region
where it is monotone decreasing and concave at p > 1 (where the leading, large n
scaling of the ground state energy is known, and the histogram is bell-shaped), to
a region at p < 1 where it becomes non-concave (Fig. 1.6, left). As is well-known,

— p2=1 — p2=1
— t(x) (n.n. LB)

logPlvn|en| > x]
I

logx

Figure 1.6. — (Left) Empirical tail functions (in log-log scale) for the rescaled
edge length \/nle,| as a function of py at ps > 1 (dotted lines, cold tones) and
po < 1 (dashed lines, warm tones). The lower bound of Eq. 1./.5.1 is represented
by a continuous black line. (Right) For u = log+/nle,| (z-axis), the Legendre
transform of log probability (s* = py + 1), as a function of u (and divided by
inessential \/py for enhanced visualization), transitions from mono-modal curve
at po > 1 to a bi-modal curve at py < 1. Protocol: 25 values of p evenly spaced
in logarithmic scale between /10 and 105 = 3.98107. . ..
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this corresponds to a double regime in the Mellin transform of p:

[Mfp](s) = fdx fol@)zs™ = (s — 1) de Fy(2)2"2

_ (S . 1) Jdt eG(t)+(S*1)t

t=log x

(1.4.3.2)

where G(t) = log F),(2)|tziogz- Indeed, the extremum for the integrand ¢*(s), which
gives the logarithm of the Euclidean lengths of edges contributing to the moments
of p, is a smooth function of s if G is concave but discontinuous otherwise. Notice
that the Mellin transform [M f,](s) is essentially the evaluation of H(pl)(w((ﬁ)) at
p1 = s—1. Hence, the loss of concavity describes here a sort of “moral bi-modality”,
in the sense that, in H(pl)(ﬂc(ﬁ)), there is a domination of short or long edges if p;
is smaller or greater than a certain threshold, that we conjecture to be at around
p2. The optimal solution balances the contribution of long and short edges, as can

be seen in Fig. 1.6 (right).

1.5. Some related topics

N our previous discussions, several connections with other research topics be-
I yond the original statistical physics motivation were mentioned (explicitly or
implicitly). In this section, we wish to emphasize some other connections since,
we believe, a methodological transfer of methods and ideas between the involved
communities could be of general benefit.

In recent years many efforts have been devoted to a fundamental problem in the
Calculus of Variations, which is how to optimally transport continuum measures
one into another, or the “Monge-Kantorovich problem” (see (761) for an histor-
ical introduction and (71/) for a discussion of related problems). It is a simple
exercise to show that the ground state energy H,y in an ERAP (Eq. 1.3.0.2) is
proportional to (the p-th power of) the p-Wasserstein (or Kantorovich) distance
between the empirical measures associated to B and R*. Another way to state
this correspondence is: for measures supported onto a finite collection of points,

“Let (¥, Dy) be a Polish metric space, that is, a metric space which is also complete —every Cauchy
sequence converges in J)— and separable —) contains a countable dense set— (common Polish metric
spaces are: C, the d-dimensional torus T¢, unit-cube Q¢, sphere S?. The interested reader may
consult (62), Chapter 3). Following Villani (127), the p-Wasserstein distance (to the power p)
between two probability measures p1, g2 on a Polish metric space (), Dy) is

W2 (g1, p2) := inf J dv(z,y) DY (x,y), (1.5.0.1)
Y

VEWT X pi2

where the infimum is taken among all the product measures v € p; x pe with marginals gy and
w2. Given an ERAP on (Y, Dy), consider the empirical measures for an instance B = {b;}j-; and
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transference plans of optimal transport (727) are in bijection with the Birkhoff
polytope of doubly stochastic matrices. The correspondence can be traced back at
least to Kantorovich’s work (see (727), Chapter 3 and (158) for a recent discus-
sion). This connection will play an important role in Chapter 3. On a parallel line,
starting from the seminal work of Beardwood—Halton-Hammersley (18), interest
has arisen around almost-sure limits of Euclidean functionals of finite random
point sets, including the length functional in the random minimum spanning tree
problem, or the aforementioned traveling salesman problem, even in a self-similar
setting embedded in two dimensional Euclidean space (54 ). See (58) for an entry
point, and (69, 79) for monographs. See also (156) for a recent account and
results on bipartite Euclidean functionals.

A second connection deals with the aforementioned longstanding program of
statistical physics approaches to computational complexity theory. It emerges if
one insists in thinking that the Hungarian method plays a similar role as Gaussian
elimination in linear algebra (4/9)". The basic observation is that, from the per-
spective of linear programming, the assignment problem constitutes only a “slight”
(but crucial) modification of combinatorial problems in a different complexity class,
such as the traveling salesman problem (TSP), which is NP-complete (59), as it
falls in the same class of the 3SAT problem (750). The situation shares analogy
with a “slight” modification of the 3SAT, called 3-XOR-SAT, which is solvable in
polynomial time (for example using Gaussian elimination on Z /27, see also (115)).
Hence, the general hope is that the ERAP may serve as a paradigm toy-model sim-
plification for gaining insights on stochastic versions of more difficult NP-complete
problems, and a possibly comparative tool to understand what makes them diffi-
cult.

A third connection further emerges if one insists on the statistical mechanical
description of an ERAP beyond the ground state. In fact, the canonical partition
function at inverse temperature 3 (in units of Boltzmann’s constant) of any ERAP

R = {r;}i=, defined by

p5(x) :% S 6@ bi) s pr(a) :% S b — ), (1.5.0.2)

b;eB TLER
where § is Dirac’s function. Then by straightforward computation
nWh (ps, pr) = Hopt (1.5.0.3)

as announced.

T Actually, there is more to the analogy since the optimal cost to an assignment problem can be directly
seen as a certain determinant of the cost matrix. The price to pay for such an interpretation, which
is in the same spirit of the statistical physics approach to optimization problems, is to consider “zero-
temperature free energies”, or, more precisely, to formulate the assignment problem on the so-called
“tropical semi-ring” (instead of the ring of real numbers) (752). Informally, one replaces = + y by
min(z,y) and zy by x + y.
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is the permanent of the Hadamard exponential of the n x n cost matrix ¢®*. Such
a correspondence, where both sides are quite generally little understood, allows to
ask several questions in both languages. On physical grounds, one would like to
access the full quenched free energy f,(5) = —%]E[ln Z(P)] (E denoting expecta-
tion with respect to the disorder distribution), or at least some asymptotics for
f4(B) for large 3. However, the study of excited states in the ERAP (and in other
stochastic optimisation problems) turned out to be very difficult, as the spectrum
can show non-trivial features (see e.g. § 1.4), so that very little is known about the
excited states even for the simplest disorder distributions (see (100) for some work
in this direction). On mathematical grounds, the different viewpoint offered by
the ERAP may be useful in understanding the statistical properties of permanents
of positive random matrices, a topic of interest in probability but considerably less
understood than random determinants (see e.g. (57, 66)). Moreover, here one
may notice that the permanent constitutes a “slight” (but crucial) modification
of the determinant, and functions interpolating between the permanent and the
determinant have been studied from different viewpoints during the years (70).
In our opinion, the exploration of such themes in the light of computational com-
plexity theory may also be of possible general benefit.

Regarding applications, as we have already mentioned, an ERAP is so elemen-
tary in his description that, under appropriate choice of the statistical ensemble for
B and R, it may conceivably describe several important real-life situations, some
of which have been already been hinted at in § 1.5. For another, consider a linear
chain, in some configuration within a solvent constituted of monomers which may
be “charged” (e.g., they have different electronegativity). The optimal electrostatic
pairing of the molecule (say, the optimal pattern of hydrogen bonds) can be rea-
sonably described by an ERAP whose cost or fitness matrix is determined by a
function of the Euclidean distance of the candidate positive and negative pairs. In
a natural, simplified parametrization, we can imagine that the system is described
by two parameters: the fractal effective dimension of the system, d, and the cost
exponent, p (that is, the cost for connecting a pair of monomers at distance r
scales as 7). Our focus in this manuscript will mostly be on theoretical aspects,
but a discussion of another possibly useful application of our framework is given
at the end of Chapter 5.

(p)
iThat is, defining [W(8)]i; := ¢ P45 for the cost matrix ¢ with exponent p, the partition function
of the corresponding ERAP at inverse temperature S is

_gyn P e
28 = Y e ¥ = 3 [[e 0 = perm [W(B)] (1.5.0.4)

TESH TESy i=1

where perm [W ()] is a polynomial of degree n in the W(8);;’s with positive coefficients, and the
two quantities are equal in distribution.
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1.6. Plan of the Thesis and list of contributions

THE manuscript develops as follows: in Chapter 2, focused on the problem
in one dimension, we present some new results using mostly analytic and
combinatorial methods (plus a conjecture supported by numerical experiments).
In Chapter 3, we investigate some aspects of the problem in dimension two, such as
the regularization of the asymptotic series of the ground state energy. The study
builds on a recently proposed continuum field theoretical approach (75, 1/8) and
involves also the verification of theoretical predictions by numerical experiments.
At the end of the Chapter 3, we pose the basis of a finite n, lattice statistical
field theory approach for which we report some promising preliminary results. In
Chapter 4, we address the question of universality at intermediate dimensions with
the introduction of an ERAP at fractal dimension and an extensive numerical
investigation of relevant ground state energies scaling exponents. Some specific
research problems are reported at the end of each chapter. Novel contributions
discussed in this manuscript resulted in the following works (published, submitted
or in preparation):
» 2018: ANOMALOUS SCALING OF THE OPTIMAL ASSIGNMENT IN THE ONE DIMEN-
SIONAL RANDOM ASSIGNMENT PROBLEM,
with Sergio Caracciolo and Gabriele Sicuro, published in the Journal of Sta-
tistical Physics (169).
» 2019: THE DYCK BOUND IN THE CONCAVE 1-DIMENSIONAL RANDOM ASSIGN-
MENT MODEL,
with Sergio Caracciolo, Vittorio Erba and Andrea Sportiello, published in
the Journal of Physics A: Mathematical and Theoretical (177).
» 2020: RANDOM ASSIGNMENT PROBLEMS ON 2d MANIFOLDS,
with Dario Benedetto, Emanuele Caglioti, Sergio Caracciolo, Gabriele Sicuro

and Andrea Sportiello, submitted (172).

» 2020: ANOMALOUS SCALING OF THE OPTIMAL ASSIGNMENT IN THE ONE DIMEN-
SIONAL RANDOM ASSIGNMENT PROBLEM: SOME RIGOROUS RESULTS,

with Andrea Sportiello, in preparation (17/).

» 2020: EUCLIDEAN RANDOM ASSIGNMENT PROBLEMS AT NON-INTEGER HAUS-
DORFF DIMENSIONS dy € (1,2),

with Andrea Sportiello, in preparation (175).

Some provisional conclusions are given in Chapter 5 followed by a discussion of
research perspectives.
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~ CHAPTER 2 «—

ONE-DIMENSIONAL EUCLIDEAN
RANDOM ASSIGNMENT
PROBLEMS

2.1. On convex, concave and C-repulsive regimes

N established fact about one dimensional ERAPs is that there are special val-
A ues of p separating three qualitatively different regimes®: the convex regime
at p > 1, the C-repulsive regime at p < 0 and the concave regime at p e (0,1)". In
each regime, some combinatorial properties of 7. are independent on the choice
of disorder, as we shall briefly review.

Lemma 2.1.1 (Convex regime, part ). Let M = R (or a connected subset of
R, such as Q', or a union of disjoint intervals), equipped with D the Euclidean
distance, and let B and R be sorted in natural order. Then, if p > 1,

Topt = (1,2,...,1) (2.1.0.1)
independently on the disorder distribution.
Proof. See (1/3), Proposition 2.1, or also (15/ ), Proposition IL.3. O

A permutation such as 2.1.0.1 in which the k-th blue is assigned to the k-th red
is called ordered (see Fig. 2.1a for a pictorial representation). Lemma 2.1.1 (which
in fact holds more generally for any convex and strictly increasing cost function)
implies, by monotonicity, that m,, remains the same independently on p > 1,
giving a first example of complexity reduction (from O(n?) to O(nlogn)) induced
by the knowledge of the mathematical properties of the (admittedly simple) or-
dered solution. We shall see that following such a guiding principle of algorithmic
simplification proved useful also in a less simple case (§ 2.7).

“Names stem from the properties of the cost function ¢®) = DP (z,y) seen as a real function of |z — y|.

"The case p = 0 is trivial, as every = € S, has the same chance to be a 7op, independently on the
disorder distribution. The qualitative picture in the concave regime p € (0,1) is even richer, and only
partially understood, and the case p = 1 is special. We will discuss them in § 2.7.
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Borrowing from physics language, Lemma 2.1.1 describes a case of “open bound-
ary conditions”. Correspondingly, one can consider the case of “periodic boundary
conditions”.

Lemma 2.1.2 (Convex regime part II). Let M = S' be equipped with D the
arc distance, and let B and R be sorted in natural order (both clockwise or anti-
clockwise). Then, if p > 1, there exists an integer k such that

Topt(1) =1+ &k (mod n), i=1,...,n.

Proof. See (15/), starting from Corollary II.8. O

Lemma 2.1.2 also gives an improvement with respect to the Hungarian method,
as the solution is completely specified by the random variable mqp(1). The search
of mopy may thus be restricted to the subgroup of n-cycles C, (which contains
only n configurations), a configuration in which B and R are contained in one
“large” permutation cycle (see Fig. 2.1b). Based on these results, it is natural to
ask if a 7, must have a prescribed cycle structure also in other regimes. Quite
surprisingly, the answer to this question turned out to be affirmative at p < 0, in
which case the cost function is not upper bounded (being singular at the origin).

Lemma 2.1.3 (C-repulsive regime). Let M = R or S', and let D be geodesic
distance. For the cost function ¢®) = DP with p < 0, let cP)(z,y) = |v —y|P. Then
there exists k such that

Topt (1) = 1+ Kk (mod n), i=1,...,n.

Proof. See (15/), where there is a characterisation of the cost functions c¢(z,y) =
f(Jz — y|) such that the property above holds. It turns out that the defining
condition is that

f(t2) = f(t) <min[f(ta +n) = f(t1 +0), f(n—t2) = f(h—t)]  (2.1.0.2)

with n € [0,1 — 3], n € [1 —t3,1], for all 0 < t; < t3 < 1, and that it is easily
verified that the function above satisfies this condition. O]

Remark 2.1.1. Condition (2.1.0.2) is equivalent to the convexity requirement for
a continuous function f (see (154), Appendix A). Moreover, condition (2.1.0.2)
holds for a broader class of cost functions, called C-functions. A simple example of
C-function is fu,(x) == (z — ap)? on [0,1] for ag = % (which is convex and strictly
increasing on [0, 1] for oy < 0).

The last combinatorial result that we shall review pertains the less studied
regime: the concave regime with p € (0,1), before which we need the following
definition.
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Definition 2.1.1 (Non-crossing matching). Let M = [0,1] (or S'). A matching
associated to the permutation 7 is non-crossing if, for all couple of intervals A =
(bisTr(i))s B = (bj,7x(j)), either AnB =@ or Ac B,or Bc A

(a) Ordered (p > 1) (b) Cyclical (p < 0) (c) Non-crossing (0 <p < 1)

Figure 2.1. — Ordered (a), cyclical (b) and non-crossing (c) permutations.

Use of the term “non-crossing” stems from the fact that if the matching corre-
sponding to 7 is represented by arcs in the plane joining the involved blue and red
points arranged on a line, arcs do not cross (see Fig. 2.1¢). By extension, for the
sake of brevity from now on we will say that a permutation 7 is non-crossing to
mean that the corresponding matching is non-crossing. In the same way, for the
situation in which A ¢ B or B < A we will say that the corresponding arcs are
nested.

Lemma 2.1.4 (Concave case). Let M =R (or subset of ), D be geodesic distance
and let the cost function be ¢P) = DP with p € (0,1). Then Topt is non-crossing.

Proof. See (151), Lemma 3 (which is inspired to (82)) for apagogical arguments.
O

An alternative proof of Lemma 2.1.4 is given in § 2.7.5 (Lemma 2.7.2). In
the following, §§ 2.3 through 2.6 deal with the convex problem, which is better
understood. The concave regime is much less understood, and some aspects of
it (such as the approximate optimal solutions known as “Dyck matchings”) are
discussed in § 2.7.
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2.2. Poisson-Poisson, Grid-Poisson ERAPs &
the Brownian Bridge

N § 2.1 we have reviewed the state of the art on combinatorial properties of the
I optimal permutation 7,y in a one dimensional ERAP. These properties are
valid for any disorder distribution due to the particularly simple geometry of the
problem.

In this Section we shall add randomness. After recalling three basic definitions,
which will turn out to provide a useful compact notation, we recall a useful result
about the solution in the continuum limit n — oo for the convex and C-repulsive
regimes.

Definition 2.2.1 (Poisson-Poisson ERAP). An ERAP on a domain M is of
“Poisson-Poisson” kind (abbreviated “PP”) if both B = {b;}l, and R = {r;}I,

are sets of independent random variables, uniform and i.i.d. on M.

Definition 2.2.2 (Grid-Poisson ERAP). An ERAP on a domain M = [0,1]
(resp. M = S}/,M) is of “Grid-Poisson” kind (abbreviated “GP”) if R = {r;}I, is
a set of independent random variables, uniformly distributed on M, while B is a
deterministic grid on the domain AM.

For example, in one dimension, one can consider a GP ERAP with open bound-
ary conditions, where R are uniform and i.i.d. on M = Q! and

B=A% = {b|b;=ifn+1),i=1,...,n}; (2.2.0.1)

or the GP ERAP with periodic boundary conditions, where R are i.i. uniformly
distributed on M = S}/QW whereas

B=AS = (b | bps1 — b = Yins1), k=1,...,n—1} (2.2.0.2)

for an arbitrary fixed point b; by translation invariance (representations of small
instances in a PP and a GP ERAP are given in Fig. 2.2).

Definitions 2.2.1 and 2.2.2 have natural generalizations in d > 1, and we shall
recall them when needed. Early consideration of the GP ERAP can be found
in (74%) where the following notion was introduced.

Definition 2.2.3 (Transport field). Consider the Grid-Poisson ERAP on M =
[0,1] (M =S}, ). For — difference (difference modulo 1/2), the map 4 : AM —> M
defined by

w(b;) = T rtopt (i) — b; 1=1,...,n (2.2.0.3)

is called the optimal transport field or displacement field.
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(a) Grid Poisson (p > 1). (b) Poisson Poisson (p >1).

Figure 2.2. — Ezxample instances in a Grid-Poisson ERAP (Fig. 2.2a) and in a
Poisson-Poisson ERAP (Fig. 2.2b) at n = 6. The optimal assignment Ty, s
represented pictorially by arcs.

By an abuse of notation we also call the family of “differences” {rr_ ) — bi}iz,
in a PP ERAP the optimal transport field. In terms of i, the ground state energy
writes Hopt = . |l?-

Statistical properties of the optimal transport field for the GP ERAP have also
been considered first in (747), and later on in a series of works devoted to both
the PP and GP case (14, 15/). They have been useful to compute, among other
quantities, asymptotic series for the expectation of Hepe in the n — oo limit, and
two-point correlation functions, with both open and periodic boundary conditions,
in both the convex and C-repulsive regime (15/).

The basic idea builds on a Theorem by Donsker (1), sometimes called “func-
tional central limit theorem” (see also (718)), which we shall briefly review. Given
n independent observations {z;}! ; sampled from a distribution function ¢(z), if
one considers the empirical cdf (i.e. the relative fraction of observations smaller
than z)

Pn(x) = %{#wilxi <z} (2.2.0.4)

then, as n — o, v/n(¢,(z) — ¢(x)) converges in distribution to a certain con-
tinuum gaussian process, called the Brownian Bridge®. Universality here means
that local details are largely irrelevant, as the statement holds for a vast class of

*We recall that for W; the standard Wiener process with ¢ € [0, 1], the Brownian Bridge can be defined
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distribution functions. Due to the combinatorial properties of 7.y in the convex
and C-repulsive regimes, Donsker’s Theorem thus allows to relate the displacement
field v (rescaled by the Donsker’s 4/n universal term) to a sample path from the
Brownian Bridge process in the n — oo limit (or to a linear combination of sample
paths in the C-repulsive regime, see (15/ ), Theorem I1.9 and the discussion in § 1
therein). We give an example in Fig. 2.3b for the ordered case. We shall review the
relationship between the discrete and continuum transport field in the specially
simple case p = 2 in § 2.3.

vnu

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
t X

(a) Sample path from the Brownian Bridge  (b) Rescaled displacement field for an
with standard methods. ERAP at p > 1 on the unit interval.

Figure 2.3. — (Fig. 2.5a) Sample path from the standard Brownian Bridge gen-
erated with a standard forward method (see e.g. (103)). (Fig. 2.3b) Rescaled
optimal transport field for the PP ERAP at p = 2. Both plots consist of n = 100
linearly interpolated successive points.

As a consequence, in the n — oo limit, relevant quantities for the ERAP (such as
(Hopt) Or two-point correlation functions for p) are reduced to gaussian integrals
depending on p, and one can even study finite n corrections through the saddle
point method (we shall review some calculations in the spirit of this approach

by
Bt = Wt — th,

so that By is centered and gaussian. It follows that
(BsByy = {(Ws — sW1)(Wy — tW1)) = min(s, t) — st, s,t€[0,1] x [0,1]. (2.2.0.5)

The Brownian Bridge is discussed in most textbooks on stochastic processes, see e.g. (157), Example
22.2.1 or (75), pag. 358. The interested reader is referred to (160) for a review of stochastic processes
related to Brownian motion.
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in § 2.4, see (154) for a detailed account). Theoretical predictions have been
confirmed by extensive numerical experiments (143, 1/4, 15/ ). In conclusion, let
us comment on a simple consequence of the remarkable “universality property”
underlining our discussion at p > 1. If the disorder probability density function
has connected support and does not vanish, the ground state energy is made of n
contributions which are typically of order (n="?)?, so that

(Hopt) lp=1 ~ con' ™ (1+0(1)),  n— o, (2.2.0.6)

with a constant ¢, depending on p and on the choice of distribution (the scaling
exponent of sub-leading corrections may depend on the boundary conditions).
Notice that the leading order in Eq. 2.2.0.6 is much larger than the scaling of
the lower bound EMB. The latter is found by assigning points in their Euclidean
neighborhoods, so that EL® ~ nn~"?|;_; = n'™?, and is self-averaging by the
central limit theorem. As a side remark, it is worth noticing that this “universal
property” can be traced back at least to the work of Kolmogorov (see (&), Teorema
1, or (57), § 2 for an english translation), which is often quoted as the basis of a
wide-spread goodness-of-fit test in non-parametric statistics, named Kolmogorov-
Smirnov statistics (10). We will come back to this point in § 2.5.1. By completely
analogous arguments it is simply seen that in the C-repulsive regime

1
(Hopt) [p<o ~ 2" (1+0(1)), n — o0, (2.2.0.7)
for both S; and @y, where the factor % = MQ\ is the typical length of an edge in

the optimal assignment (see (15/) for further details).

If on the contrary the disorder distribution is discontinuous and /or vanishes, the
problem is considerably more difficult and the scaling properties of (Hopt) require
further efforts to be unveiled, as we will discuss in § 2.6.
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2.3. Lattice and continuum modes of the optimal
transport field at p = 2

N this Section we shall discuss some statistical properties of both discrete and
I continuum Fourier modes of the displacement field (Def. 2.2.3) in the special
case p = 2, where we have already seen that lim,,_,o (Hopt) exists and is finite
(Eq. 2.2.0.6). The discussion is elementary in that it combines discrete/continuum
Fourier analysis and manipulations of moment generating functions. At fixed n,
among other things we shall show that, both in the discrete and continuum case,
the problem is “diagonalized” by an appropriate (discrete or continuum) Fourier
transform, and the ground state is decomposed into a sum of centered gaussian,
uncorrelated modes. We will also show that mode correlations, at finite n, are
exactly proportional to the inverse lattice Laplacian associated to our choice of
grid. For the continuum case, we shall derive exact expressions for the probabilities
of contributions from any given mode to Hp. We will give an expression of the
full distribution of H,p¢ in terms of an elliptic ¥4 function in the case of periodic
boundary conditions as an application. Besides the intrinsic value of our discussion,
which employs old tools but appears to be new in the literature, we shall discuss
our calculations in some details also in prevision of the analogous discussion on
lattice Fourier modes of the optimal transport field in the more challenging two-
dimensional case of Chapter 3.

2.3.1. Unit interval at fixed n

Let us consider M = Q!, blue points on the grid B = {b;}1,, b; = n+r1 with i =

1,...,n, with the addition of the two endpoints at 0 and 1. For the displacement
field defined by A
1

i =T; — s .:O,...7 ]., 2.3.1.1

pi =T i n + ( )

where reds are R = {r;}_; u {0, 1}, the ground state energy is just

n+1

Hope = Y 117 (2.3.1.2)
=0

Consider the red r;, which is distributed according to

(o) fori =0
Py(ri) =34 (") riN(1—r)™ forl<i<n (2.3.1.3)
§(rps1 — 1) fori=n+1,
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where ¢ is Dirac function. It follows that

(1 +k—1)n!

@bz(mqﬂm+kﬂ

(2.3.1.4)

and therefore the moment generating function is an hypergeometric function

(i+k—1)n! (—w)* .
e = 1 Fi(1; 1;—w). 2.3.1.5
)= ];) i—D(n+ k) K i+ 15 —w) ( )

In particular from Eq. 2.3.1.5 we read the balancing condition

rip= =7 (2.3.1.6)

and, using for j > ¢ the discrete Wiener formula

Pij(ri,ry) =i (j —1) (2 ; " ) ri oy =TT =), (2.3.1.7)

—uLn—=7
we get
i(j+1)
Ty = 2.3.1.
T = G D+ 2) (23.18)
for j = 1. It follows that the transport field satisfies
(piy =0
in+1—y) (2.3.1.9)

<:ul,u]> = (n + 1)2(7’L + 2) :
As a consequence we recover the exact expression for the expected ground state
energy

<Hopt> Z</%2 )= 6(

Tl) (2.3.1.10)

which is half of the well-known Poisson-Poisson value (see e.g. (154), Eq. 54). Let
us go now to momentum space. Since p satisfies Dirichlet boundary conditions,
we can perform the expansion

2 - 7ls
= A/ i =1.,... 2.3.1.11
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corresponding to the discrete momenta

s = , =1,...,n. 2.3.1.12
P n+1 ° " (23 )
We immediately get
{igy =0, s=1,...,n, (2.3.1.13)
and
G 2 Z”:< , mis \ . S
; in sin
H’s _'_11 lLL/l,] 5 1 n—l—l
2« i(n+1—1d) . ([ wis
= + 2.3.1.14
n+1;(n+1)2(n+2)sm (n+1> (23 )
4 A < n—i—l—j) , mis \ . s
n+1;Z n+2)sm<n+1>sm(n+1 ’

2]11

where Eq. 2.3.1.9 has been used. Using the orthogonality relation (¢;; is the Kro-

necker symbol)
2 & 7is s
i i — 5, 2.3.1.15
n+1§sm(n—l—1>sm(n+1) ! ( )

we can easily verify the Parseval’s identity

PRCIEDITE (2.3.1.16)

Eq. 2.3.1.14 becomes

(2 = 1 1 ]
He) = = pox s =1, y 1,
4(2 + 3n + n?)sin? (2(248}1)) (n+1)(n+2) p?
(2.3.1.17)
where we have introduced the lattice Laplacian p?
. P
pi= 2sm§ (2.3.1.18)
which for small p satisfies
P’ =p*+ 0. (2.3.1.19)

Eq. 2.3.1.17 provides ezactly the contribution to H,p from the s-th discrete Fourier
mode of p in terms of the inverse lattice Laplacian. Incidentally, notice that
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combining Eqs. 2.3.1.10 and 2.3.1.16 gives

1 nn+2)
=7 2.3.1.20

This fact can be alternatively obtained using the result in (72, B.27) with L =
2n + 2
2n+1
1 2(n+1) . a
- th |20+ 1 b(5)] @s1a
SZ o () + o cho (n + 1) arcsin 5 ( )

coupled with the identity

2n+1
1

_ , 1
; 4sin® ( +1) +042 B Z 4 sin® ( ) + a2 ™ 4+ a2 + 2 (2.3.1.22)

in the a — 0 limit, since

n 1 . n—1 1
2 - = lim - 5 =
i 2 a=0 = 4 sin? ) +

(n+1
. 1] 2(n+1) ) « 1 1
R [M—Taz‘”th |20+ Dy avesint ()] - 75 - a—]
n(n + 2)
6
(2.3.1.23)
as claimed. Lastly, the mode-mode correlation is
(iafin) 2 Zn:< Y si TS . mjt (2.3.1.24)
stht) = ——— ift;) sin sin 3.1.
bt n+1ij:1””j n+1 n+1
2 iln+1—1) . s\ . it
= 2.3.1.25
n+1§(n+1)2(n+2)Sm<n+1>sm<n+1>Jr ( )
2 o j(n+1—4) Tis Tt
I I 2.3.1.26
n—i—lg;(n—l—l) (n—i—2)sm nt 1)\ o )
2

Zn: (n. T;; 1(n_+j>2) o (nwisl) sin <n7rit1> - (23.1.27)
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By performing the sum over j and using the orthonormality relation we get

ugfie) = ! ‘ ) Zsm( mis ) sin (nﬁfl) (2.3.1.28)

2 (n + 1)%(n + 2) sin’ ( i)
5st

- (2.3.1.29)
4(n +1)(n + 2) sin? <m>
as claimed. Notice that
1. 6st 5st
o . = : 2.3.1.30
A+ 2)sin? () ( )

Regarding the Poisson Poisson case, recall that in this case for B = {b;}I", and
= {r;}_, in increasing order the displacement field is

but now

(rey =(biy = ——

B i) (2.3.1.32)
<Tz‘Tj> —<bzb]> = (n n 1)(n n 2)
for j > 1. It follows that
{pi) =0
iy =2 i(n+1-7) (2.3.1.33)

(n+1)%(n +2)

and the whole analysis develops as in the Grid Poisson case, up to a factor 2 (i.e.,
compare Eqs. 2.3.1.33 and 2.3.1.9).

2.3.2. Unit interval in the n — o0 limit

Let us consider the Grid-Poisson case first, and let us take the continuum limit
n — +00 as

v+ 1 — p(x;) (2.3.2.1)
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with z; € [0,1] so that u(x;) from well-known properties of the Brownian Bridge
process for 1 < x5

(u(xy)p(ze)) = 21(1 — 29) . (2.3.2.2)
We have )
fis == \/2 J dx pu(x) sin(msz) (2.3.2.3)
0
with s € N, and the orthonormality relations
1
2f dx sin(msz) sin(mtz) =g . (2.3.2.4)
0
Then
(figfigy =2 f dx f dy {u(z)p(y) ) sin(mwsz) sin(wty) (2.3.2.5)
f da f dy [0y — 2)a(1 — )+ (2.3.2.6)
O(x — y)y(l — x)] sin(wsx) sin(nty) (2.3.2.7)
9 (1
=—— | dx sin(wsx)sin(wtx) (2.3.2.8)
m2t? ),
5st
= (2.3.2.9)

where 6(z) is Heaviside function (compare to Eq. 2.3.1.30). Now, as the u(z)
are centered Gaussian variables, also the [i; are centered Gaussian variables, with
variance (ms)?. Recalling Parseval’s identity Hopy = .., 12, we find for the
moment generating function

(e7WHorty = (e EZ ATy — H 2 (= ) <u2ks> (2.3.2.10)

_ ﬁ - (2.3.2.12)

(2.3.2.13)
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In particular, as for a fixed mode

, 1
(e7Wy = —— (2.3.2.14)
1+ 25

the probability to get a contribution F; to Hgpy by the s-th mode is given by the
inverse Laplace transform

ms2

p5F (E)dE, == (3(E, — ji2))dE, = SEERAYION (2.3.2.15)

where 6(x) is Dirac function. The cdf is thus

PEP(2) = de P (Es) = erf<7rs\/§) : (2.3.2.16)

where erf(x) denotes the standard error function. For the Poisson-Poisson case,
let us set )
fis = & — 1N, s=1,...,n, (2.3.2.17)

which are the contributions from R and B once their average values is subtracted.
The moment generating function becomes

. 0 —_aks
<6—w7-topt> — <e—w2?=1(§s_”$) > = l_[ ( ]::U') <(fs - ﬁ8)2ks>

ks
Jry @j ><£2’““2J‘772”>

s=1ks=0 ks! js>0 S

:ﬁ k m% Z( ) s — 2js — D24, — D!

s=0

»
Il

—_

5

z —2w)"s (2k, — 1)
[y 2w ek

1 k! (ms)2ks
4w
s=1 1 + (7'('8)2

(2.3.2.18)
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In this case the probability to get a contribution F, from the s-th mode is

ms2

Pror (Es)dEs = (§(Bs — i2))dE; = e i P R, (2.3.2.19)

s

whose cdf is

2

A simple relationship between the Poisson-Poisson and Grid-Poisson case

OPP(2) = f dE, p5F (E,) = erf(ﬂs\/g) . (2.3.2.20)
0

PP (22) = B8P (2) (2.3.2.21)

holds for each s.

2.3.3. Distribution of H,, on the unit circle in the n — o
limit

Let us consider the problem on M = S! in the continuum limit. In this case the

transport field is
1

u(t) = Bt—JOdTBT, (2.3.3.1)

where B, is the Brownian Bridge. As (u(t)) must be independent from ¢ and with
vanishing average on S!, we get

(ult)) =0,

1 (1—7) (2.3.3.2)
)t -7
Ot +7)) = = = "
Now the Fourier modes are
1 .
fis = f dx pu(z) 25" (2.3.3.3)
0

with s € Z\{0}, complemented with the orthonormality conditions

1
J dg ¥t = 5, (2.3.3.4)
0

As p(z) € R we must have
0= i (2.3.3.5)
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and we soon get

(i) = 0. (2.3.3.6)
For the correlations, for s,t € Z\{0}

1 1
Gty = [ do [ dyptomty e
0 0
1 1
= J dx J dy () p(x + y)) 2Ltz
0 0

1
=5stf dy<u(0)u(y)>62”“y (2.3.3.7)
— 5_ dyy(l _ ) 2mity

2 Jo
_ 551&
C Ax2s2

The ground state energy is

1
1
o) = | A2 (0) = 35, (23.3.5)
0
which coincides with Eq. (2.3.3.2) at 7 = 0, a result first derived in (74%). The
same result may be recovered also through Parseval’s identity, since

o) = Sy =2 Y0 = 15 2 5 = 1aC@ = 75 (2339)

A2 2
s#0 s=1 47T s=1 S

as announced. The ground state energy moment generating function is

(emuHon’y — <6—2w25>1 Iﬂs|2>
-11 3 S

ks=0

z k!
- H Z k l QWS)%S (2.3.3.10)

V)
Il
—_
x>~
w
V
o

I
—18
—_
+
—_
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Using the expansion from (21

)

Vi |
sinh [\/Z] P 15 o (2.3.3.11)
where

(1+552) V5

cs = lim =

TN
- (I—w)msyw ETS o/ qys—1
lm sin(rsw) pat sin[7s (1-£)] 217, (233.12)

we can inverse Laplace transform Eq. (2.3.3.10) and show that the pdf of the
ground state energy can be written as

Pop (Bs) = D (—1)° s 72" (2.3.3.13)

s=1

whose cdf is the elliptic ¥-function
OCP (1) = ¥, (o,e—%%) . (2.3.3.14)

Under the change of variables 7(x) = 2mix, an alternative expression for ®F(z)
Is

o)
—2m4x
94 (0, e ) ) (2.3.3.15)
where 7 is the Dedekind function (see also Eq. B.1.0.8 and the discussion therein).
By our previous remarks, for the distribution of H,p in the Poisson-Poisson case
we just have

OFP(22) = P (x). (2.3.3.16)

Eq. 2.3.3.15 nicely agrees with results of numerical experiments in both the GP
and PP case already at moderately small values of n (Fig. 2.4).
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Figure 2.4. — Continuum limit cdf for Hopy for the ERAP with periodic boundary
conditions at p = 2 (eq. 2.3.3.14 or 2.3.5.15, dashed black line) and results of

numerical experiments (blue line for 'HS}E and orange line for 2 HEE

tions were performed at n = 100 with 10* repetitions.
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2.4. Beyond uniform disorder: anomalous vs
bulk scaling of (H,,) at p > 1

s anticipated in Eq. 2.2.0.6, for general p > 1 it is well established that (Hopt)
A is of order ~ n'~"? as long as the disorder distribution satisfies some mild
requirements (namely, its support is compact and the distribution does not vanish).
Heuristically, this is because an extensive number of edges all contribute at the
same scale (the one fixed by Donsker’s Theorem). The optimal transport field
converges weakly to the Brownian Bridge process (up to constants in n), a fact
that can be exploited to compute several quantities of interest in the continuum
limit. What if such requirements on the disorder distribution are removed?

In the following Section we shall discuss a simple method, inspired by cutoff
regularisation methods of quantum field theories, to partially address this question
and compute the aforementioned constants in some cases. The essence of the
method is that leading and/or sub-leading constants for the asymptotics of (Hopt)
are computable from a possibly divergent one-dimensional integral, provided the
value of a certain cutoff constant is fixed by the results of (extremely simple)
numerical experiments (if necessary). This is an analogy with Physics, where
so-called coupling constants must be fitted to experimentally measured values in
order to have finite results. The method, which is simple but conjectural, has
been applied to a number of choices for the disorder distribution, and comparison
with results of numerical experiments have served to clarify both its value and
limitations. The latter have started to be more properly addressed by the finite n
approach of § 2.6.
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2.5. Anomalous Scaling of the Optimal Cost in
the One-Dimensional Random Assignment
Problem

THE content of this Section has been published in (173).

2.5.1. Notations

Let us consider a PDF p(z): R — R* on the real line, szdx p(x) = 1 with a
support
= {z € R|p(x) > 0} (2.5.1.1)

so that p(z) = 0 Vz € R\Q. Let us denote by € the closure of ©, possibly includ-
ing the points at infinity. The cumulative function ®(x) and the complementary
cumulative ®(z) := 1 — ®(z) are

() = Jx p(&)dé =1 — d(x). (2.5.1.2)

—00

Let us suppose now that blue points B and red points R are two sets of points
generated on the line, independently and with the same PDF p. As usual, we will
assume B and R are labeled in the natural order of the real line, that is in such a
way that b; < b;;1 and r; <r;yq fori =1,...,n — 1. Consider the transport field

HE = T’k—bk, k= 1,...,71 (2513)

which extends the analogous quantity for the Poisson-Poisson case (see § 2.2), at
p=1,

en = Hopt) = i J |p|? Prpx € d p]. (2.5.1.4)

where we have used the notation z € do < z € (z,z + dx). As a generalisation
of Eq. 2.3.1.3 (which corresponds to the case of uniform distribution for which
®(x) = x), for a general disorder ® we just have

Pr[z), e dz] = (Z) d"F(z)d ¥ (x), (2.5.1.5)

so that the distribution of py is

Prlpr e dpu] = d,u( ) fj —y42)®" K (2)d"F (y) d ®F (2) d DF(y) . (2.5.1.6)
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In order to evaluate ¢, we may just write*

e = sﬂz ly — x|pén(z>2§>"—k(x)(§"_k(y) d O (z) d d* (y) (2.5.1.7a)

KA
KA

:Qﬂ) ly — [’ o Fy [1 —n,1—n;1; CDEB %] do"(z)dd"(y). (2.5.1.7b)

Up to now no approximation has been performed. A nontrivial large n limit
of Eq. (2.5.1.6) can be obtained setting, for each value of k, & = (n + 1)s and
introducing the variables ¢ and 7 such that

O(z)=s+—=, Py)=s+—F4 (2.5.1.8a)

in such a way that s is kept fixed when n — +4o00. This rescaling has a clear
interpretation if we observe that an optimal assignment configuration between B
and R for p > 1 can be mapped, through the cumulative function ®, to an optimal
assignment configuration of the same type between points uniformly distributed
on [0, 1], being ® ordering preserving. We will develop this remark in § 2.6.3.

As shown in Refs. (1/4, 15/) and recalled in § 2.2, the optimal assignment
between random points uniformly distributed on the unit interval is asymptot-
ically equivalent to a Brownian Bridge process after a rescaling of the type in
Eq. (2.5.1.8a) is performed. This also implies that, as a consequence of Kol-
mogorov’s universality, the (rescaled) transport field itself can be expressed, in
the n — 400 limit, in terms of the Brownian bridge process composed with the
(inverse) cumulative function ®~!. Assuming that Q = Q2 and that Q is connected
— i.e., that (po @) (s) # 0 for all s € [0,1] —, we have

o1 (H\%) _ ®_1(3)+m+0<\%)’ (2.5.1.8b)

*To obtain Eq. (3.1.0.2) we have introduced the Gauss hypergeometric function

k —
oy [a7 b; (& Z] = ]goozo (@) () 77!7 (x)kﬁ = Hﬁ:é(x + n)?
and we have used the fact that

o1 (:)2k2zk = ”QZZZD:O uin)(?)(iin)k ZITI? =n?22F [1—n,1—n;1;2].
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where we have introduced the function
U(s) = (po @) (s). (2.5.1.8¢)

A similar equation holds for ®~! (s +7/ym)!. This fact suggests that, in order to
obtain a non trivial n — 400 limit, p; must be rescaled as

U = @ (2.5.1.8d)

Recall also that

<s<1-— ,
n+1 n+1

a fact that will have important consequences in the following. At the leading order,
we may write the PDF of u as

(2.5.1.9)

If the involved Riemann’s sums converge, the sum over k in Eq. (2.5.1.7a) can be
replaced with an integral over s

1 2 1 — 2 +c0 —ﬁ
. < [as=o=2F [ s 4du) W14 o) (25.111a)

0 [W(s)]” ) ™ 2ym
' M ’ S nlfp/z o
f [ W(s) ] d) (I+o0(1))  (25.1.11b)

0

- (j_;r (%) de%) n'="2(1 + o(1)) (2.5.1.11c)

which is the leading constant appearing in our argument of Eq. 2.2.0.6, and guar-
antees the so-called bulk scaling ¢, = O (nl_p/Q) for large n. This result can be
stated in a slightly different way by saying that, if p(x) has compact and connected
support, then

u 2P (p+1 P2 (2)D% (x) 1
Coplre i p (P [ g2 _ 2.5.1.11d
Y ( 2 )L T o ( )

TWe will develop further these points in § 2.6.3.

8
SN~—
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On the other hand, we will say that ¢, has an anomalous scaling whenever the
integral diverges. We will show now how information on the anomalous scaling
can be extracted from the very same expression in Eqgs. (2.5.1.11d) by means of a
regularization recipe.

2.5.2. The problem of regularization

The recipe provided by Eqgs. (2.5.1.11) for the calculation of the asymptotic of &,
might fail due to the presence of divergences that have been neglected assuming
Q) = Q connected, as may happen for some PDFs. To explore this possibility, we
will now relax the condition € = €2, but not the assumption that the closure Q is
connected. The set Q\(Q is therefore given at most by isolated points (possibly at
infinity). We will consider a disconnected € in § 2.5.3.

The divergence of the expression in Eq. (2.5.1.11) suggests that lim, n”/*"'c, =
+o0, but gives no hints about the scaling of n”2~'¢,, in n. In this case, a regulariza-
tion can be performed which takes into account the discrete nature of the problem,
i.e., the finiteness of n. Such a regularization will allow us to extract information
on the anomalous scaling of ¢, and, possibly, on the coefficients appearing in the
leading or sub-leading asymptotics. Under the hypothesis Q # Q with Q con-
nected, the expression in Eq. (2.5.1.11b) may diverge due to the presence of a
point z, € 0Q (possibly at infinity) such that lim,,,, p(x) = 0. In particular,
denoting by s, = lim, ., ®(x) € [0,1], a non-integrable divergence appears in
Eq. (2.5.1.11b) if

O (31/2+1/P) if s, =0,
U(s) =4 O (]s — s.|") if 0 < s, <1, (2.5.2.1)
O((1—s)rtr) ifs, =1.

Assuming that Q is connected, £ # Q does not automatically imply the presence
of an anomalous scaling of ¢,: this is therefore a necessary, but not sufficient,
condition.

We avoid the divergence by means of a cut-off. The correct cut-off to be
adopted is suggested by the very approximations we have performed to obtain
Egs. (2.5.1.11) from Eq. (3.1.0.2), that is an exact expression.

A first regularization rule is obtained by taking into account Eq. (2.5.1.9) and

therefore substituting S(l) ds — Si;n/" dsin Eq. (2.5.1.11Db), where ¢y and ¢; are two
positive regularizing constants that are unspecified at this level. The regularization
is required to obtain the proper leading scaling of the asymptotic &, only if a
nonintegrable singularity appears in the integral in Eq. (2.5.1.11b) at s, = 0
and/or s, = 1, and it provides information on the scaling of the o(1) corrections
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otherwise.

If a nonintegrable pole s, € (0,1) is present, Eq. (2.5.1.8a) suggests to incor-
porate a finite-size correction removing an open ball centered at s, having radius
ex/yn for some positive regularizing constant c, to be determined. Indeed, in
Eq. (2.5.1.8a) we have approximated the quantity ®(xy), image of the position of
the kth point through the cumulative @, with its average value s = k(n + 1)1,
introducing an error that scales as O (1/yn).

In all cases, it is clear that the coefficients appearing in the scaling of €,, obtained
after the regularization will depend on the introduced regularizing constants, that
have to be determined by means of a fit procedure. We will give now some examples
of the approach described above, comparing the obtained predictions with the
results of numerical simulations.

2.5.3. Applications
Absence of singularity: the flat distribution

Let us start from the simplest case M = = [0, 1], the Poisson-Poisson case
(Def. 2.2.1) discussed in § 2.3.2 at p = 2. Here, blue and red points are extracted
with uniform distribution p(x) = 6(z)0(1 — x). The flat PDF case requires no
regularization, being W(s) = 1 and therefore we will briefly recall the final result
only as an application of Eq. (2.5.1.11b) for the sake of completeness and for com-
parison with other cases studied below. The integral in Eq. (2.5.1.11b) converges
for any p > —2 and gives

€n = L Wikt +o0 ( ! ) . (2.5.3.1)

p+1 nrR-t

which is the expected ground state energy of our problem at p > 1 only. In
particular, at p = 2, we have lim, e, = 1/3, a result which can be alternatively
derived via the n — oo limit of the exact formula, valid Vn, that is

= MR (Z)z ﬂ(y — )2 (1 —a) (1 -y ey e dy

P (2.5.3.2)

1 n
3n+1

Notice that this exact result is exactly two times the exact result for the Grid-
Poisson case obtained by different methods in Eq. 2.3.1.10.
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Singularity for s, € {0, 1}

Let us now consider a set of examples in which ¥(s,) = 0 for a value s, € {0, 1}.
We consider both exponentially decaying PDFs (in particular the exponential dis-
tribution and the normalized positive part of minus the derivative of a standard
gaussian distribution, also called Rayleigh distribution) and power-law decaying
PDFs (Pareto laws).

Exponential distribution For the exponential distribution
px) = e "0(z), ®(x)=(1—e7)0(x), (2.5.3.3)

with 2 = [0, +o0), and depending on p a non-integrable singularity may appear
in Eq. (2.5.1.11b) for z — +o0. For 1 < p < 2, the integral in Eq. (2.5.1.11b) is
convergent and we have

nh -l — j—;r <7%1) Ll (1 - S) " s +o(1) =T(1 +p)l (1 - g) ?2();13)4)

Formula 2.5.3.4 is fully consistent with numerical results (Fig. 2.5a) and indicates
that a divergence appears when p — 2, due to the rightmost pole of the I' function
on the real axis. Indeed, with reference to Eq. (2.5.2.1), we have that U(s) = 1—s =
O ((1—s)"*7) if p > 2. In order to elucidate the nature of this divergence,
one can profit of the fact that, as in the case of uniform distribution, &, can
be computed exactly for the exponential distribution at p = 2, directly from
Eq. (3.1.0.2) *. It is given by

n 2 1 1
1—
N (”) J dsf dt In? =2 (st)L (1 —s)" F (1 — )" *
k=1 k 0 0 1 _t
; (2.5.3.5)

2 2H 21 + 2 +1 ! + L
— =2H, =2Inn ———+40 ,
k e n  6n?

€n

n2

where H,, is the n-th harmonic number and ~g is the Euler’'s gamma constant.
Eq. (2.5.3.5) is compared to numerical experiments in Fig. 2.5b. The appearance
of the divergence in our integral expression in Eq. (2.5.1.11b) is therefore due to an
actual (logarithmic) divergence of ¢, for n — +00. Following the criterion given

*We will re-obtain this result via a different path in § 2.6.6.
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in § 2.5.2, Eq. (2.5.1.11b) for p = 2 is regularized as

oP 1 1—¢/n 5
€nm—F(p—;— >J <18 > ds
v 0 -8 (2.5.3.6)

opt1 p+1 c\ 17 pp P c
— r (1——) F[—,— 1.2 2;1——].
(p+2)\/7 (2) n gy Tl n

The expression above must be interpreted as a regularization-dependent asymptotic
formula for the corresponding €,. In particular, the large n expansion will provide
us the scaling properties of the optimal cost, up to some coefficients depending on
the regularization. For example, at p = 2 the expression above becomes

en=2Inn—2logc— 2+ o(1), (2.5.3.7)

that is perfectly compatible with the exact formula in Eq. (2.5.3.5), whereas
the finite-size correction depends on the regularization c¢. By comparison with
Eq. (2.5.3.5) we can infer that

c=e "1~ 0.20655. (2.5.3.8)

For p > 2 we can expand Eq. (2.5.3.6) as

2p+1 1-7f2 1 P p
nle, — B _Z)ﬁp (p—;— ) n2t+o (n§_1> ) (2.5.3.9a)

In particular, for 2 < p < 4 we have

2p+1cl—p/2 p+ 1 » D
phl. _ T 51 r(1——>r 1 1). (2.5.3.9b
e, = ZGr (B )t T (1= B T o). (25300

In analogy with the discussion of (7//), § 3, we obtain therefore the scaling &, =
O (1) for the leading term but we cannot give a prediction for the coefficient in front
of it, due to its dependence on the regularization constant c. We have, instead, a
complete analytic prediction for the first finite-size correction. For p = 4, a new
logarithmic correction appears. In this case, indeed, our formula in Eq. (2.5.3.6)

gives
12
ne, = —n—24lnn+ O (1). (2.5.3.9¢)
c

Once again, the coefficient of the leading term is unaccessible, despite the fact
that the correct scaling is recovered, but we obtain a prediction of a logarithmic
correction, with its coefficient. We do expect, but it is not obvious a priori, that
the value of ¢ appearing in Egs. (2.5.3.9) is the same that we have obtained for
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p = 2. Performing a fit on our numerical results, presented in Fig. 2.5¢, we have
obtained ¢ = 0.203(2) for p = 3, 0.2084(4) for p = 4 and ¢ = 0.2069(5) for p = 5,
that are all within few errors from the value of in Eq. 2.5.3.8 analytically obtained
for p = 2.

Rayleigh distribution As a further example of regularization in the case of a
PDF with exponential tail, we consider now the Rayleigh distribution,

p(x) = ze” 7 0(x), ®(z)= (1 — e’%> 0(z). (2.5.3.10)
In this case 2 = (0, +00) and we have
U(s) =(1—s)y/—2In(l —s) (2.5.3.11)

which is infinitesimal both in s = 0 and in s = 1. In particular, ¥(s) =
V2s + O (53/2) for s — 0 and therefore, according to Eq. (2.5.2.1), there are no
integrability issues for s — 0 for any value of p > 1. On the contrary, for s — 1
U(s) = O ((1 —s)"2*7) for any p > 1. The integral is therefore always divergent
and a regularization is needed. We proceed in the usual way, restricting ourselves
to the p = 2 case,

=% s 1 n T dz
n & ds = Inln — =Inl 1).
£ Jo T s 7E+nnc+ﬁ/c Slns nlnn + g + o(1)
(2.5.3.12)

which is in excellent agreement with numerical experiments (Fig. 2.5d).

Pareto distribution Let us now consider a power-law decaying PDF, such as
the Pareto distribution,

% —1

IO[

palz) = xfﬂe(:c —1), ®u(z) = Oz —1), a>0. (2.5.3.13)

Here we have Q = [1, +0). If we consider the case

(2.5.3.14)
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(a) Values of €, in the case of exponentially
distributed points, obtained for p € (1,2)
compared with the theoretical prediction in
Eq. (2.5.3.4) (smooth line). The asymp-
totic values of n**~le, for each value of
p (points) have been obtained fitting nu-
merical results for n up to 2.5-10° points,

assuming the scaling f(n) = € + eynz 1,
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(c) Numerical results for e, at p > 2 in
the case of exponentially distributed points.
The smooth lines are fits obtained assuming
the scaling behavior of Egs. (2.5.3.9).
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(b) At p = 2 in the case of exponentially dis-
tributed points, €, shows a logarithmic di-
vergence, in agreement with the prediction
in Eq. (2.5.3.7). The smooth line is the
prediction in FEq. (2.5.3.5).
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(d) Plot for exp [exp (,)] ~ n¢"" in the case
of Rayleigh distribution and p = 2, com-
pared with leading order the theoretical pre-
diction in Eq. (2.5.3.12) (triangle).

Figure 2.5. — Comparison between numerical experiments for €, and theoretical
predictions in the case of exponential and Rayleigh distributions (error bars are

represented but hardly visible).
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Eq. (2.5.1.11b) gives a finite result, namely

. _ 2P p+1 1 P p_p_
pf2a—1 _ — o P
lim n"*"e, &pﬁr< : )L82(1 s)2 ds
2 T(2+1)T(1—22p)I ()

2

ary/m r2-12)

This formula has been verified, for a subset of values of p and «, in Fig. 2.6a. When
(2 — p)ar < 2p the integral does not converge (in particular, does not converge for
any value of @ when p = 2). Indeed, with reference to Eq. (2.5.2.1), ¥,(s) =
all — )1+a and, therefore, a non-integrable singularity appears for s* = 1 when
1+1a>1k+ 15 We can proceed regularizing the integral for p >
=5
J s2(1—s)2 e Pds

2P 1
nPe, ~ r P+
aP\/T 2 0
2 D) g _eyEt L p, pat2p
= 1 2F1

C
—+1,= =+ 21— —
aP\/T p+ 2 272 a 2 n| (2.5.3.16)
p+1

op+1 F(T) (n)p 2a2— pet2_q
— aP~1y/m 2p+ap—2a \c +o{n" 2 fOI‘p> a+2’

22 nn — 222 (H,, + Inc) + o(1) for p = 2.

(2.5.3.15)

+27

n

For example, when p = 2 and o > 2 we find

1 /n\?%e 1
=~ (—) - —+o(1) (2.5.3.17)

which is compared to numerical experiments in Fig. 2.6b.

Singularity for s, € (0, 1)

Let us now consider a PDF such that ¥(s,) = 0 for 0 < s, < 1 and let us derive
the scaling properties of the corresponding ¢, in this case. As an example, we
consider

2 cos?(amz)
1 + sinc(27a)
1 + sinc(2mza)

O,(r) =x T+ simc(@ra) O(z)0(1 — x). (2.5.3.18b)

palx) = 0(z)0(1 —x), «ae(0,1], (2.5.3.18a)

(where we have used the common definition sinc(z) : Smx(x)). The distribution

above recovers the uniform one for @ — 0 and it has a (double) zero for z = L2a €
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(a) Values of €, obtained for p = 1.1
and p = 1.2 and different values of
«, compared with the theoretical predic-
tion in Eq. (2.5.3.15) (smooth lines).
The asymptotic value of n"?~ e, for
each value of p has been obtained fit-
ting the numerical results for n up to
105 points, assuming the scaling f(n) =
€+ enPEa 1,
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(b) Numerical results for the €, at p = 2

and different values of a. The fits are
obtained using a fitting function in the
form given by Eq. (2.5.3.17); we obtained
¢ = 0.0668(5) for a = 3, ¢ = 0.0939(5)
for ao =4 and ¢ = 0.1121(6) for a = 5.

Figure 2.6. — ¢, in the case of Pareto distribution. FError bars are represented

but smaller than the markers.

50



[1/2,1] if o € [1/2,1]. The support is therefore Q = [0, 1]\{}/2a}. In particular, for
« € [/, 1], we have

B (6ra)*
¥/2 + 2sinc(2ma)

U, (s) (s — S*)2/3 +o0 ((s — s*)2/3> ,

1 1

—— . (2.5.3.1
2a 1 + sinc(27ma) (253.19)

with s, =

Therefore, by the general exposition given above, there are three different regimes
for the asymptotic of ¢,, depending on «.

For « € (0, 1/2) the asymptotic of €, is finite for any value of p > 1. The integral
in Eq. (2.5.1.11b) has been evaluated numerically and the prediction has been
compared with our numerical results in Fig. 2.7a with excellent agreement.

When a = 1/ the singularity s, moves to 1. We obtain the regularized integral

C1/2 b _ P
2° 1\ ("%, ®i(x)P2
n" e, = —T <p_—|— ) f o dx—(x_)l (z) + o(1)
VT 2/ Jo po(z)
ne! for p > 6, (2.5.3.20)
o< Inn for p = 6,

constant for 1 < p < 6.

We verified the scaling above in Fig. 2.7c. In the p = 6 case, in particular, we have

2 160
9Tt

Inn + O(1). (2.5.3.21)

For a € (1/2,1], instead, there is a singularity in s, € [1/2,1) and the regular-
ization procedure has to be modified. In this case we have to exclude from the
integration domain a ball centered in s, and radius O(!/y/n). Observing that

! (2a(1 n silnc(2a7r)) + \/Lﬁ) :% + éi/gcu Eii%m)) o (\;ﬁ>

1 Ca N 1
= — 0
200 ¥/n n )’

H-

(2.5.3.22)

and denoting the “regularized” domain by

1 Co 1 Ca
Qa = [O, 1]\ (% - \6/—5, % + \6/5) ) (25323)
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we can write the regularized integral as

n"* e, = \2/—;1“ <]%1) La dx% +o(1)

ISINTIS]
Qs

ns" for p > 35, (2.5.3.24)
o« < Inn for p =3/,

constant for 1 < p < 3/,

where we limited ourselves to the leading asymptotics. The scaling predicted by
Eq. (2.5.3.24) has been confirmed by numerical experiments at p = 2,3 (Fig. 2.7b).
For p = 3/2 in particular, we find

-1 T (1/a) (1 + sinc(2rar) — 5=

Ep =
2avm?

3/4
= G (1 1 sinc(2ra)) ) Inn+ O(1). (2.5.3.25)

In Fig. 2.7d we show our numerical results for this case, once again in agreement
with the prediction. Remark that the different regularization applied in this case
implies a completely different scaling of the asymptotic of &, with respect to the
one obtained for s, = 1.

Assignment on disjoint intervals: an example

In the examples above, and in the general remarks in § 2.5.2, we have always
assumed that the domain € is such that  is a connected interval, and therefore
® is an invertible function on 2. This is not the case if the domain € has a “gap”.
In this Section we will study the effects of such a gap on the asymptotic of &,.
We will limit ourselves to the case Q = A U B with A, B connected intervals
such that A n B = @. In the following we will assume that Yz € A and Yy € B,
x < y. To avoid complications due to the presence of singularities in the integrals,
we will also assume that Q = Q. The lack of invertibility of ® is due in this
case to the fact that lim, ,qp4 @(x) = lim, i p ®(x) = §, despite the fact that
a =supA # inf B = b. We expect that our approach proposed in § 2.5 fails in
this situation, because the transport field py in Eq. (2.5.1.3) is not infinitesimal in
general for n — +oo0.

In the simple case mentioned here, Q = A U B with A n B = @, the exact
formula in Eq. (3.1.0.2) can be written as

Q0
o= [l Y, [0+ 57760+ 5070 + 700 253260
k=1
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(a) Values of €, in the case of points dis-

np/2415n

tributed with PDF given in Eq. (2.5.3.18),
obtained for different values of p and «
for which lim,, n"?*~ e, is finite, compared
with the theoretical prediction obtained
using FEq. (2.5.1.11b) (smooth lines).
The limit curve for a = 0, given by
Eq. (2.5.3.1), is also represented (gray),
along with the numerical results for the
asymptotic AOC in the uniform distribu-
tion case.
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(¢) Numerical results for e, in the case

of points distributed with PDF given in
Eq. (2.5.3.18) with o = 1/2. The represented
fits have been obtained assuming a fitting
function f(n) = n"*= (e; + 2/n) + €. The
obtained scaling laws are in agreement with
the prediction in Eq. (2.5.3.20).
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(b) Numerical results for e, in the case

of points distributed with PDF given in
Eq. (2.5.3.18) with « = 1. The smooth
lines are fits obtained a scaling of the type
f(n) =n"="2 (e; + e2/n) +€y. The obtained
scaling are in agreement with the prediction
in Eq. (2.5.3.24).
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(d) Numerical results for e, in the case
of points distributed with PDF given in
Eq. (2.5.3.18) in the cases in which a log-
arithmic divergence appears. The smooth
lines are fits obtained assuming a Scal-
ing f(n) = elnn + € + €1/lnn, where
€ has been provided by the predictions in
Eq. (2.5.3.25) and Eq. (2.5.3.21).

Figure 2.7. — Comparison between numerical experiments and theoretical predic-
tions for e, in the case of of points distributed with PDF given in Eq. (2.5.3.18).
Error bars are represented but hardly visible.
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In the expression above, the quantity

ps () dp = Prl e dp,ap e X, yp e Y]

=du(> ” (n—y+ )" *(2)d"*(y) d ¥ (2) d d*(y) (2.5.3.27)

XxY

is the joint probability that the kth transport field p, = yr — x5 takes value in the
interval (p,n +dp), xzx € X and y, € Y. We expect that, to obtain a nontrivial
n — +oo limit from p,iAA) and p,gBB), we have to rescale iy, following Eq. (2.5.1.8),
due to the fact that matched points in the same interval can be arbitrarily close in
the thermodynamical limit. Indeed, we can repeat the same calculations in § 2.5.1
performing the rescaling in Eqgs. (2.5.1.8) and recovering, with the same caveat, a
limiting distribution exactly in the form given in Eq. (2.5.1.10),

n

Z kEdM7$k6B7ykEB]

1
—ZPY kEdILL,Z’kEA ykEA
k=1

N
;’IH

= dqu d s& exp {—M;ﬂ} +o(1). (2.5.3.28)

0o 2+/7ms(l—s) 4s(1 —s)

This formula is exactly the expression we would have obtained if ) were con-
nected. If convergent, as it will happen under the hypotheses adopted here, this
contribution will give a O(n'~*?) term in the expression of &, for n » 1.

On the other hand, the last two contributions in Eq. (2.5.3.26) corresponds to
the matching transport between the two components of €2, i.e., A —> Bor B — A,
and therefore the transport field in this case is of the order of the distance between
A and B, namely inf B — sup A. The asymptotic rescaling given in Eqgs. (2.5.1.8),
therefore, cannot be applied to this term. However, from the fact that two matched
points xj and yx have |®(x;) — P(yx)| = O (I/vn), if 2, € A and y, € B we have

(I)(ZEk> =S+ S—k @(yk) =54 — (25329)

N

with & < 0 and 7, > 0, and therefore

xk=a+%+o<%ﬁ), yk=b+%+o<\%>, (2.5.3.30)

where a = sup A and b = inf B and, under our hypotheses, p(a) # 0 and p(b) # 0.
The relations above suggest the rescaling puy — b — a + fx/yn for k = ns + 1. A
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nontrivial distribution for ;i is obtained assuming s = § + 9/y/n. Indeed

Z r[pp € dp, v € A,y € B]

’“‘ZO Jd“ J do*s (= @) + @7 (w) (1 - )" (1 - 0)" "

(6*0)2+(n*0)2>

+00 exp | — 5(1—3
. n 5 ( 23(1-3)
%\/ﬁdu( dUJ déf dn(S(,LL— + > - -
Jo p(b)  pla) 2ms(1 - 3)
Mlerf <M> — erf < pb) )] O(n) pla) # p(b)
| 2(p(a)=p(b)) A/25(1—38) 25(1-3) wy e PR
== \/ﬁdﬂ < 7ZAE?)7%§
kPQ(CL),&;T(I_g)e(ﬂ) pla) = p(b),

=+ /nPr[iedp, A— B
(2.5.3.31)

The expression for Pr[ji € d i, B — A] can be obtained in a similar manner. Col-
lecting our results, we can write down the contribution to the asymptotic proba-
bility for ¢ given by the matching between points of different subintervals as

p(a)p(b) —57 —~%  pla) # p(b),

Pr[i(s) edji, A< B] =+/ndj o 2(p(b)—p(a))
e T 43(1-3) .
p*(a)|flF>——= 2\ /m5(1-9) p(a) = p(b).
(2.5.3.32)

Observe that the previous contributions are not normalized in ¢. This is due to the
fact that they appear as O(1/yn) corrections to the distribution Pr[u(s) € d u] that
has Eq. (2.5.3.28) as leading term: higher order corrections to Pr[¢x € d ¢,z €
A yp € A] and Pr[¢p € d o,z € B,y, € B], that would guarantee for n » 1
the total integral of the corrections to Pr[¢(s) € d¢] to be zero, have not been
computed. This will be irrelevant for our final computation, because the matching
field is O(1/y/n) when matching points in the same interval, but O(1) when matching
points in different intervals. The final result is

|b—a|pfj Prfi(s) € d i, A < B] + o (v/n)

= 2|b — alPy/ @\/ﬁ +o(vn), (25.3.33)
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Eq. (2.5.3.34) with ¢ = Y2 and p = 2. with ¢ = 3/4 and and p = 4. The fits
The fits are obtained assuming a scaling are obtained assuming a scaling f(n) =
f(n) = OLZW+ 0, where § is a fitting Usr/3/ra*n’? + 8y/n, where & is a fitting
parameter. The dashed line represents the parameter . The dashed line represents the
asymptotic limit for ¢ = 0 predicted by asymptotic limit for ¢ = 0 predicted by
Eq. (2.5.1.11). Eq. (2.5.1.11).

Figure 2.8. — Comparison of numerical experiments and analytical predictions for
en In the case of points distributed with the “gapped” PDF given in Eq. (2.5.3.34)
(error bars are represented but hardly visible).

irrespectively from the fact that p(a) = p(b) or not. Remarkably, the coefficient in
front of the leading term does not depend on p(z) but only on the average fraction
of points that are in each of the two subintervals, i.e., on §. Moreover, the obtained
scaling can be intuitively justified observing that the number of blue points that
are expected to fall, e.g., in A are ns, but the fluctuations to this number scale
as 4/n, and the same reasoning applies to R. This means that O(4/n) points in
A have necessarily to be matched with points in B, by “crossing the gap”, with a
matching cost that is O(|b — al?), giving a final O(4/n) contribution to &,.

Uniform distribution with a gap To exemplify the previous remarks, let us
consider the following PDF on Q = [0,12 — @] U [12 + /2, 1] with a € [0,1) and
q€(0,1),

24 if x e [0,1p — ap,

11—«
Pag(r) = 222 if e [Lh+ap1], (2.5.3.34)
0 otherwise.
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A gap of width « is present in = 2 when a # 0. With reference to the notation
adopted in this Section, in this case we have exactly § = ¢ for any value « € (0, 1)
and therefore Eq. (2.5.3.33) applies immediately, giving us

En = 207 @\/ﬁ +o(vn). (2.5.3.35)

This scaling law is compared to numerical experiments in Fig. 2.8a, where we
consider ¢ = 12 and p = 2, and in Fig. 2.8b, where we assume ¢ = 3/4 and p = 4, in
both cases with different values of a. The predictions are in excellent agreement
with numerical results.

2.5.4. Conclusions

In this Section we have discussed the ERAP with convex weight cost c¢(x,y) =
Dr(z,y) = |z — yP for p > 1, assuming the points to be independently and
randomly distributed on the line, according to a PDF p(x). We have given a general
expression for the asymptotic of ¢, (Eq. 2.5.1.11) and we have shown that this
general expression is possibly divergent, due to regions of very low density of points,
i.e., to the zeros of p(x). We have provided a regularization recipe which takes
into account the effects of the discreteness of the problem when, denoting by €2 =
{z € R: p(x) > 0}, the set Q\Q is made up by isolated points (possibly including
the point at infinity). We have then exemplified our approach by applying the
regularisation recipe to a set of examples, providing exact scaling of the asymptotic
of (Hept) and, if possible, the coefficients appearing in it. Finally, we have also
considered the case in which the set €2 has a gap, i.e., is composed by two disjoint
intervals, showing that, in this situation, the effect of fluctuations in the number
of points falling in each sub-interval dominates the whole asymptotic of (Hept),
and the asymptotic coefficient is just given by the width of the gap.
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2.6. Combinatorial and analytic approach to
anomalous scaling: universality classes

He continuum method discussed in § 2.5 allows to deal with the calculation
T of asymptotic constants if the involved integrals are convergent, and, when
this is not the case, suggested a simple regularisation recipe for understanding the
scaling of (H,pt) in some cases.

Although that regularisation recipe could be written in general (such as in the
case of a probability density of points vanishing at the frontier of the support),
being non-rigorous, it could predict wrong scalings in some cases (such as in the
case of probability density functions vanishing in the interior of their support).

Moreover, in the spirit of universality, one may want to know a priori what
properties of the PDF are relevant for determining deviations from the bulk scaling
behavior of (Hopt). The latter task appears to be more difficult to attain through
continuum methods, given the broad variety of possible scaling behaviors of (Hpt)
which we have found for natural choices of PDF already (power law, logarithmic
and even log-log scalings).

A possibility is to take a step back from continuum methods and study the origin
of anomalous scalings of (Hpt) “from scratch”, that is, from an analysis of relative
contributions of individual edges (or evaluations of transport field) entering the
optimal assignment at finite n, and look at their relative magnitudes depending
on the choice of PDF. A promising indication in this direction, which has been
already foreseen in § 2.3, is that unexpectedly deep analogies (and new facts) have
emerged upon studying the problem at finite n and then postponing the n — o
limit as much as possible (see e.g. Eq. 2.3.1.17). These aspects altogether suggest
that such a program might not be hopeless, and this is precisely the philosophy and
content of the present Section, an extension of which constitutes the manuscript
in preparation (17/).

2.6.1. Notations and setting

As above, let us consider B and R sorted in natural order on M = R (or a
subset of), that is we have n blue points x; < 25 < ... < 7, and n red points
Y1 < Y2 < ... < yp. The points of each color are the sorted list of n i.i.d. random
variables, sampled according to a probability density p(z) (which is the same for
red and blue). We call R(z) its cumulant, and R~(u) the inverse cumulant or
quantile function. As a result, we can equivalently consider the extraction of u;’s
and v;’s, uniform and independent in [0, 1], and 2; = R (u;), v = R~ (v;) ™.

*This fact is very much exploited in low-dimensional statistics, where it is sometimes called “inverse
transform sampling” or “inversion method” (437).
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For 7 a permutation of size n, the cost function H,,) () is determined by a
real parameter p > 0, and is

H((i,)y) (m) = Z |z; — yﬂ(i)|p (2.6.1.1)
=1

(the dependence of H from p may be omitted when clear).

We call W(()I;)t one optimal matching of the given instance for the exponent p,
that is, one matching 7 that minimises the expression above, mg the (unique)
identity matching mq(i) = ¢ (see Lemma 2.1.1), and mpye the (unique) Dyck
matching’ (these two notions are independent of p). We call H(()I;%(x, ), Hi((f) (x,y)
and H]()?Ck(x, y) the function H () evaluated at 7 = Topt, Tid ald Tpyck, respectively.
Recall from § 2.5 that m,,y = mq if p > 1. Here, we will also use the fact that

Topt = Thyek at p = 1. Our goal is to evaluate, as precisely as possible (and at least
to the leading asymptotics for n large), the quantity <H§§)t>p,n’ that is averaged
over the possible instances of size n sampled according to p, determined by the
triple (p(x),p,n).

As we have already mentioned, the Poisson-Poisson case has already been ex-
tensively studied. The case of p(x) uniform on the interval [0, 1] has been studied
in (154) for the case p = 1 real, and in the variant in which p < 0 (more precisely,
in (15/) results are established for a whole class of cost functions, called there “C-
functions”, which include the latter case). Recently (170), exploiting a connection
with Selberg integrals, an exact expression in terms of p and n has been obtained
for the case of p(z) uniform on [0, 1] and p > 1 real, namely

_ T(1+p/2) Tn+1)
(Hopt),, =1 p+1 T(n+1+p/2)

F(1+p/2) 10 pp +2) -3
:an /<1—T+O(n ))

(2.6.1.2)

The case p € (0,1] is the most challenging one, and investigations have been
started only recently (77%) (plus a companion paper in preparation). We report
a summary for the asymptotic behavior of (Hyp) in Table 2.1.

When p is a smooth function valued on a compact connected interval, and log p
is bounded on the domain, the asymptotics above does not change, that is, the
scaling exponent is universal within this class of densities. Furthermore, the edges

fFor o € {0,1}™ denoting the interlacing of blue and red points on the real line, we anticipate the
construct of its Dyck matching mpyck as follows: first, construct a Dyck bridge by replacing the +1
and —1 of o by up- and down-steps, then, pair, in the unique possible way, up- and down-steps which
are at the same height and such that the segment connecting their mid-points doesn’t cross the walk.
See § 2.7 for further details.
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P scaling of (Hopt)
pe(0,3) n'r
p= % nzlnn
1 1
3 <p < 1 n2p
p=1 nt=2

Table 2.1.: State of the art regarding the phase diagram of the “bulk” scaling
behavior of the expected optimal cost in the one dimensional ERAP
(see text for definitions).

give contributions to the cost which are all of the same order (for what concerns
the scaling with n), regardless from their position along the segment (and the
density in the position). For this reason the corresponding asymptotics is called
the bulk scaling and is reported in Table 2.1.

However, the situation changes when p vanishes, either because it has a zero at
a finite value or because it has an unbounded support, and vanishes at infinity. In
such cases, depending on the choice of p, the large n behavior of (H,p) may be
considerably different from the bulk one, due to contributions of few “elongated”
edges in the region of low density, which becomes more important than the “bulk”
one discussed above. In this regime, we say that (Hop) displays an anomalous
scaling, and that the “edge” contibution outweighs the “bulk” one.

This situation has been investigated recently in (168) for the optimal transport
of continuum measures, and, for the 1-dimensional ERAP, it is discussed in § 2.5
(see also the corresponding paper (169)). The present study is thus to be con-
sidered as a natural continuation of the investigations already appeared in (769),
with a number of important modifications:

e Among the functions p(x) decreasing at infinity faster than algebraically,
in (169), only the Gaussian and the exponential cases are considered. Here
we study the whole family of stretched-exponential tails, which, as we will
see, determine a continuous family of critical exponents;

e The approach of (7169) makes use of a non-rigorous and potentially dangerous
regularisation scheme of certain diverging integrals, that is avoided here;

e As a further consequence of the “regularised integral” approach of (169),
only the asymptotic behaviour could be determined, while the overall mul-
tiplicative asymptotic constant remains undetermined. Our approach allows
to determine also these constants.

A limitation of our method is that we can only access the exponent values at p = 1
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and p > 2 even integer, and we can only conjecture that the results extend to real
values of p in suitable intervals, via the analytic continuation which is naturally
suggested by the formula.

2.6.2. Families of distributions

As we explain at the end of Section 2.6.3, the possible anomalous behaviour of
a general distribution p(x) can be “decomposed” on the zeroes of this function,
and, for each zero, only the local properties of p in a neighbourhood of the zero
will determine the leading anomalous behaviour. Because of these facts, once we
classify the possible local behaviours of main interest, we would have identified
the possible universality classes of anomalous behaviour in our model, and it will
suffice to study, for each universality class, a single distribution p which has one
zero in the class. This analysis is performed here.

Distribution with a gap

First of all, the support of p(x) can be connected or not. If it is not connected, we
say that there is a gap. We start by analysing this simple situation.

Without loss of generality, say that the support of p is contained in | — o0, 0] U
[a, +oo[, with @ > 0, and that the integrals of p in these two intervals are ¢ and
1 —gq, with 0 < ¢ < 1. Then, we have N~ and N, red and blue points on the left,
and N, =n— N and N;” = n— N, on the right. On average, both N~ and N,
are ~ qn. However, these quantities fluctuate, independently, asymptotically in a
Gaussian way, with variance ¢(1 — ¢)n, so that their difference én = N7 — N, is
Gaussian with variance 2¢(1 — g)n.

While the bulk energy is of the order of Epyx(n) ~ n'~%, we have a trivial lower
bound to the contribution to the energy coming from the én « W edges that jump
across the gap, which has the form /4¢(1 — q)/m a? /n. Whenever p > 1, already
this rough lower bound is leading over the bulk behaviour. When p = 1, as mq
is still optimal, we know that there is an optimal solution with ezactly dn edges
jumping across the gap, so that the energy of an instance is exactly the energy
of the same instance in which the points on the right part are translated by —a,
plus a dn. So, calling p’ the translated density, we have that the average energy at
p = 1 satisfies the relation

Eu(p) - <En(p’) ta Mﬁ) (14 0(1). (2.6.2.1)

In this section we do not address the complicated concave case p < 1 (which we
leave to a future work), so that the analysis above completely solves the case of a
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density with a gap, and from now on we will only consider densities with connected
support (more precisely, with a support with connected closure).

Types of zeroes

For a smooth function p(x) on a connected support |a,b[, with a value xy such
that p(x¢) = 0 (or lim,_,,, p(z) = 0), there are three possibilities:

Finite endpoint: when the zero z is the endpoint a (or b), and it is finite.

Endpoint at infinity: when the zero z, is the endpoint a (or b), and it is a = —o0
(or b = +0).

We will consider the following two possible behaviours (let us write f(x) ~ g(z)

when In(f(z)/g(x))/ n(f(x)g(x)) — 0)

Stretched-exponential: p(z) ~ exp(—|z — xo|™®) for x — xg, when z is finite,
and p(z) ~ exp(—z®) for = large, when zg = +0.

Algebraic: p(z) ~ |z — 0|~ for 2 — 2, when zy is finite, and p(x) ~ 277! for
x large, when ¢y = +o0.

In principle, in the case of an internal zero, we could have different behaviors on
the two sides, however, for sake of simplicity, we will not investigate this case.

In light of the universality of the anomalous behaviour discussed above, and of
the crucial role of the function R~!(u) in the analytical treatment of the Lemmas
in Section 2.6.3, we will choose one representative function for each of the cases
described above (and, in particular, whenever the zero z, is finite, we will choose
zo = 0), namely:

Endpoint at infinity, stretched exponential: for a > 0, we consider the distri-
butions pio(r) = az®'exp(—x®), with support on [0,00[. In this case

Rico(z) = exp(—2*) and R\ (u) = (—Inu)s .

ie,a

1

BxP~1 with support on [0,1]. In this case Ry, s(z) = 27, and R;';(u) = u?

Finite endpoint, algebraic zero: for 5 > 0, we consider the distributions pg, s(z) =
fa,B 5.

Endpoint at infinity, algebraic zero: for 5 > 0, we consider the distributions
piag(z) = Br=P~! with support on [1,00[. In this case R, 5(z) = 277,

1

and R '5(u) = u™7.

ia,

Internal, algebraic zero: in this case we just consider the distributions pgs, g(x) =
$pi,5(|2]) with support on [—1,1]. Thus R, g(x) = 5(sign(z) |z]° + 1), and

R, (u) = sign(2u — 1) [2u — 1|%
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For each family of distributions we shall establish a “phase diagram” coupling
the relevant parameter, o for the exponential cases and 3 for the algebraic cases,
to the energy-distance exponent p. In the stretched exponential case parametrized
by «a, we will show that the leading scaling is a power of logn and obtain both the
exponent and leading coefficients explicitly. In the algebraic cases parametrized
by 3, in the phase diagram in the plane (3, p) there is a region where there is no
anomalous behavior (that is, the bulk contribution to the energy is larger than the
one coming from the summands in the window around the zero), and in this region
the energy is just given by the integral which is the continuum limit of Eq. 2.6.4,
which has indeed only integrable singularities. Then, the complementary region
consists of points where the anomalous contribution is leading. In this case we
will also provide an evaluation of the constant in front of the leading anomalous
term (we will derive the critical line for the internal algebraic zero case and only
sketch the computations of aforementioned quantities, leaving the details to appear
elsewhere). Then, universality implies that for any distribution we can evaluate
the associated constant, by the appropriate decomposition of bulk part of the
integral, and of windows around the zeroes. Finally, on the boundary between the
two regions, there is a critical line where the type of zero is marginally-anomalous.
It is often the case that, in this situation, the anomalous behaviour is larger of the
bulk one just by a logarithmic factor. In these cases we will try to establish both
the leading constant, in front of the logarithmic factor, and the first sub-leading
correction.

Families of prob. dens. leading scaling of (Hop)
25 [In(n)]> " =2

Stretched exponential (sec. 2.6.5) s [In(n)] (s—1) P
2¢(p — 1)sPp! [In(n)]¥ P p = 4 even
bg i P/ Bulk regime

Finite endpoint, algebraic zero (sec. 2.6.8) ag PP Anomalous regime
Q(p)n¥@=Alnn Critical line B = 22/p - 2)
2B n' P Bulk regime

Internal endpoint, algebraic zero (sec. 2.6.11) (245, + Kgz,) n2(1-7/8)  Anomalous regime
R(p)n®=A/C0=E)nn  Critical line 8 = P/p-1)

Table 2.2.: Summary of results for the families of probability distributions consid-
ered in this paper (left column), with corresponding leading asymp-
totics of (Hopt) (right column). Here, ¢ denotes Riemann’s zeta func-
tion, and the functions bg,, ag,, Q(p), Bsp, Asp, Kpp, R(p) are given
explicitly in the corresponding sections.

63



2.6.3. General technical facts

In this section we establish various general lemmas, which apply to the study of
all the distributions listed in the previous section, and in fact to any density p(z).
Recall that we call p(z) the probability density (which is the same for red and
blue points), R(z) its cumulant, and R~'(u) the inverse of R.
As we have seen, the probability that the k-th point of one given color is in
a given infinitesimal interval, x;, € [R™'(u), R~'(u + du)], is given by the Beta
distribution

n!
P du = 1 — )R du. 2.6.3.1
e(w) du (k:—l)!(n—k:)!u (1 —u) u (2.6.3.1)
Correspondingly, averages of a function F'(xy) can be performed as
1
(F(xr)),, = J du P, x(u)F(R™ (u)). (2.6.3.2)
0
Call (2,...,29,) the sorted list of the union on the z;’s and the y;’s, that is z

is k-th point of the 2n points, irrespectively on the color. The probability that
this point is in a given neighbourhood z;, € [R™!(u), R™'(u + du)], is given by a
similar Beta distribution Py, ;(u) du. As a result, averages of a function F'(z;) can
be performed as

1
(F(z1)),, = J du Py, (W) F(R™(u)) . (2.6.3.3)

0
More generally, averages of a function of ¢ points, F(zx,, 2k, .- -, 2k,), for 1 <

ki < ko < ... < ky < 2n, are described by a multi-dimensional Beta distribution,
supported on the t-dimensional simplex 0 = ug < up < - < up < Uqq = 1

Po ey (U, - uy) dug - - - duyg
2n!
(b — D)l (ks —kr — D)1= (b — 1 — )12 — Fy)!
X ullﬁ—l(uQ — ul)kQ—k1—1 .. (Ut _ ut_l)kz—kt,l_l(l B ut)Qn_kt du1 o dut
(2.6.3.4)

and we have

<F(Zk1, e Zkt>>p,n = Jdul ce dut P2n7k1 ..... kt(uh .. ,ut>F(R71(ul)’ ey Rfl(’u,t)) .

O0<uy <-<ur<1
(2.6.3.5)
We will use these properties in order to write the summands of our cost function
in terms of suitable averages over the Beta distribution. The first Lemma concerns
the case of p even.
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Lemma 2.6.1 (Case p > 2 even). Let R, " (u) be the quantile function correspond-
ing to density p. Define

ke = <Ik>pn = (R, !( )£>Pn,k ; leN. (2.6.3.6)

Then, for p = 2 even, we have

( 0pt> ii < > POMY MY (2.6.3.7)

Proof. When p > 1, we know that Hop = Hiq (see Lemma 2.1.1), and thus we can
simply calculate <H 7T1d)> , a procedure that involves no optimisation. By
pn

definition of m;q we just have

(:):y Tid Z zr — Yel” (2.6.3.8)

By linearity, we can just write

<H((§y) i > — Z ol (2.6.3.9)

Fppn(F) = [ dudv o) Pas(o) [, )~ B (26310)

p

h

If p is an even integer we can drop the absolute value and write

Eypn(k) = Zp] rdu dv P, i (u) P, (v) (g) (—1)P—qR;1(u)qu—l(v)p—q

" (2.6.3.11)
:Z(S)(_lp q<R q>Pk<R pq>Pn,k.
O

The second Lemma concerns the case p = 1. In this case we have an annoying
absolute value in the expression (2.6.3.10) for E,,,(k), and we do not know how
to perform the calculation along the same line of Lemma 2.6.1. However, we have
an alternate strategy that allows us to access our desired quantity. Instead of
using the relation Hyp, = Hiq, we profit of the degeneracy at p = 1 and use instead
Hopt = HDyck~

Let us consider the ordered list of z;’s (from the right) of the 2n points, and let
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us define p,(k1, ko) as the probability that the ki-th and ko-th steps of a random
Dyck bridge are paired in mpye (thus, in particular, p,(k1, k2) # 0 only if ks — k; is
odd). Various declinations of the function p,(k1, k2) have been calculated in (177).
A version that we need here is as follows. Using the shortcut h = %, and Cj,
for the Catalan’s number, we have

Co [/2n—20—2\ 1+ (=18 [k —1\ /20 — ky
pn(kbk:z) = (2n_n) [( n—h—1 ) +# ki—1 2n—ko :

2 2

(2.6.3.12)
A related quantity is g, (¢), which is the average number of edges (ij) in mpye such
that ¢ < ¢ < 7, that is

gn(0) = pali, ), (2.6.3.13)
<L
>0

that is, the average of the absolute value of the height of the Dyck bridge in £. We
have the following:

Proposition 2.6.2. If% & 1, we have

() = l o2 (2:)] (1 +0 (g)) (2.6.3.14)

0<k<%

gn(l) =~ \/; /mg—n_@. (2.6.3.15)

Proof. For the case ¢,n — ¢ » 1, we can apply the Stirling approximation to
the expression for the absolute value of the height of the Dyck bridge in £. This
gives the Wiener formula for the associated Brownian Bridge, with the appropriate
scaling factors. Integrating |x| over the resulting Gaussian distribution gives the
claimed result.

while if £,n — € > 1 we have

For the case % « 1, we can apply the Stirling approximation to the binomials

(2”), (2"_%_2) and (2225522) in (2.6.3.12), and approximate /n + O(kq, ko) factors

n n—h—1
by /n. This leads to an analogue of equation (2.6.3.12), valid for generic Dyck
walks instead of Dyck bridges (that is, walks not constrained to have height 0 at
2n). Thus, in this regime the distribution of the height of the Dyck bridge in ¢ is
well-approximated by the analogous distribution for the Dyck walk, which is just
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the binomial distribution. As a result we have
d ¢
qn(€) ~ q(0) == 2 25( >|2k‘ — . (2.6.3.16)
k=0 k

Now, these quantities satisfy a simple recursion: calling ¢/ = ¢ — 1,

0 -2 ((0)+ () e
— 24’*12 ((i) 12K — ¢ + 1| + (/i) 12K — ¢ — 1\) .

As for n € Z we have |n + 1| + |n — 1| = 2|n| + 26,0, we get

g0 +1) = { aly -, Lisodd: (2.6.3.18)

(2.6.3.17)

q(0) +27%(1) Cis even.

[SIE NI

]

Lemma 2.6.3 (Case p = 1). For a probability density p, let Mé’p,z’q be defined as
in Lemma 2.6.1. Then atp =1

<H0pt>p,1,n = <HDyck>p,1,n = Z qn(l) <M2(f3l+1,1 - Méﬁ?l,l) : (2.6.3.19)

=1

~

Proof. Since the cost is a linear function of the positions, we have

<H1(3py)ck o = Z Pr (K1, ko) 2y — Zk1>p7n (2.6.3.20)
’ k’1<k32

where z;’s is the ordered list of the 2n points. But zj, — zj, is a special case of a
function F'(zy,, zx,), and thus is calculated through the case ¢t = 2 of the formulas
(2.6.3.4) and (2.6.3.5), that is we have, by defining the quantity

En(kis ko) = Cary — 2000 = J du dv Pgn,khkz(u,v)(R;l(u) - R;l(v))
0

<u<v<]
(2.6.3.21)
that

(1) _
<HDyck>p7n = k; Pr(Krs ko) B (K, ka) - (2.6.3.22)

So we need to evaluate the RHS of equation (2.6.3.21). A useful general fact is that
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the expression for this specific function F'(zy,, zx,) seperates in the two variables,
so that in fact we just have

Eo(ky, ) — J Qtt Py () R (11) — L o Paus (0, (0)
<v<

0<us<l (2.6.3.23)
(p) (p)
= M2Z,k1,1 - MQZ,kQ,l .
The claimed expression then follows by telescoping. O

Now we state a Proposition concerning the bulk behaviour at p > 1 which has
been implicitly used in (169) (see also (154), appendix B). A corollary of this fact
is that, if p vanishes in more than one point, the anomalous contributions coming
from the various zeroes can be treated separately.

Proposition 2.6.4. Let p, R and R™' be as above. For every u such that p(x)
is continuous and strictly-positive in a neighbourhood of x = R~(u), the limit
limy, g—oo nng,p’n(k) exists, 1s finite, and is given by

k/n—u
b U (7Y (2y/ul—u)\"
lim n2E,, (k) = 2 . 2.6.3.24
27/];__:03 PP, ( ) ﬁ p(R*l(u)) ( )

We only give a sketch of proof of this fact. Let us call uy = R(x) and vy = R(yy),
and let us inspect the expression (2.6.3.10). By the conditions on p, we can use the
CLT to infer that the quantities u; —u and v, — u are asymptotically independent
centered Gaussian random variables with variance w (and the error terms can
be easily handled at this point). Similarly, calling z = R~'(u), also z; — = and
yr — x are asymptotically independent centered Gaussian random variables, now

with variance p(;)Z ’W;;’“) (at this point the error terms are more subtle, and involve

the Taylor series of the logarithm of p around z). As a result, their difference is a

centered Gaussian random variable with variance p(i)Q k(:gk). As we have
o0 p 22 20)P
da u‘eﬁz:(JE)r@§) (2.6.3.25)

oo 2o NG

we deduce that

4 k(nfk) 1 p
y (et P (e (2 /uli=w)
] 5E, (k)= 1 A I (Ptl) — 2
A R vy

(2.6.3.26)
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as was to be proven.

Now, suppose to work at n large but finite, and suppose that p vanishes in a
finite list of points {z1, ..., x,,} (which may include +00). The images {u1, ..., un}
under R are thus a list of values on [0, 1]. Fix some “window” value W ~ n7, with
+ <7 < 1. We can use Proposition 2.6.4 on all k& such that min;(|k — nu;|) > W,
and perform a more careful analysis on the remaining values of k. Such a value
of the window is chosen in order to have, asymptotically, two crucial properties.
On one side, it is large enough that the proposition above can be applied because,
up to exponentially-rare events, the approximation of p(z’) in a neighbourhood
of ¥ = R7'(k/n) by the value at z, and the use of CLT, are legitimate. On the
other side, it is small enough that, for n large enough, the set of k£’s which need
a more careful analysis is split into m intervals, one per zero x; of the density, so
that the zeroes of p can be treated separately. Also, the window is small enough
that the contribution of each of these intervals of values of k£ to the total energy
depends on the shape of p only through the value of u;, and through the leading
local behaviour of p(x) in a neighbourhood of = = z;.

Once we classify the possible local behaviours of main interest, we would have
identified the possible universality classes of anomalous behaviour in this model.
This justifies the restriction of the analysis to the families of distributions described
in Section 2.6.2.

2.6.4. Ensembles in which the average cost is infinite

When the support of the distribution p is not compact, it may be the case that
(Hypt), = 0 also when n < co. We want to identify this situation, in order to
exclude a priori the corresponding region from the study of the phase diagram.

Say that the support is contained within the interval [0, +oo[, and label the
points {z1,. .., 22,} from right to left. Assume, w.l.o.g., that z; is blue (the other
case is treated identically). Then, there is a probability g, (k) = (2"7:1“; 2)/ (2”7:1)
that the right-most red point is z5,2. As z; must be connected to some point of

opposite color, and z;,, is the nearest one, we have

Hopt = (21 — Zk+2)p (2641)
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that is, using (2.6.3.5),

<u<wv<l

(Hopt), = (21 = 2k42)") 0 = 2 n (k) Ldudv Pop 1 g2 (u, 0) (R () = R ()"

_ 2 ( n_—l_ ) JO dudv 2n! (U_U) (1 _U) S (R71<U) _Rfl(U»p

k=0 (%n_l) <u<v<l k'(2n — k — 2)!
=) <n : 1) Ldl“‘i"f (v = w1 =) (R (W)~ R (0))
=2 Ldgill} (1 =w)(1 =) (R (u) = R (v))”.

(2.6.4.2)

This is the general expression for our trivial lower bound to the optimal cost, which
we shall check for finiteness.

As v > u, a slightly simpler bound is given by
(21 = 242, 0 = Xy i= 207 JO dudo (1= 0 H (R () = B ) (2643

In general, when the support is on the positive real axis,* we have R~!(u) > R (v),
and we can perform an expansion, to get, for the quantity in Eq. 2.6.4.3,

Anp _ D=1 (i) JO dudv (1 — 0)* 2R (u)P R (v)*. (2.6.4.4)

2
LU~ Suswsl

In the specific case of our endpoint at infinity, algebraic zero family of distributions
Piap (see § 2.6.2) we have

Xnp e(P) J op_9 _b=t _ ¢
== -1 dudv (1 —v)" “u” 5 v 5. 2.6.4.5
2n? g§)( ) 4 O<u<sv<l ( ) ( )
When p/f < 1 we can use the general integral
f dudv (1_U)2n—2uavb _ fldv (1_U)2n—21}a+b+1 _ (2n — 2)!F(CL +b+ 2)
O<u<v<l a+1) (a+DI'2n+a+b+1)
(2.6.4.6)

*When this is not the case, because the support is [—a, +00[, we can just translate the distribution
by a. When the support is the whole real axis, we can still perform the analysis, by “folding” the
support, using the fact Hopt(Z1,. .., Zn; Y1, .-, Yn) = Hopt(|Z1], - -, [2nl; ly1ls - - -y |yn])-
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which gives

Xop _ N1y (P (2n —2)I0(2 - 5)
%2—211)Q)u—%ﬁmm+1_@

£=0

(2.6.4.7)
(2 =2A -5 T+ 8- p)I(1+p)
[2n+1-%) I'(1+p)
that is, for large n, whenever p < 3,
LT =21+ 8—pI(1+yp
Xpp = nb (1= 5 T+ 7) (2.6.4.8)

2'75T(1 + B)

Conversely, when p > [ this expression diverges, as is also evinced from the

analytic continuation of the result, which has a factor T'(1 — £) which is singular

in the limit p 3. ’

As a result, we evince that, for our family of distributions with endpoint at
infinite, algebraic zero, we just have (Hyp), = o0 whenever p > 3. Also, we have
a first glance to an “anomalous behaviour”: recalling that the bulk energy scales as
n'="2 (see Table 2.1), we see that the leading behaviour in n of {(z; — zg42)?)

pyn
takes over the bulk behaviour at least in the region f(5) < p < g, for

<1
<B<2 (2.6.4.9)
<pf.

2.6.5. Family of stretched exponentials with endpoint at
infinity pi, and p;;a

Let us consider the 1-parameter family of stretched exponential distributions de-
pending on a parameter a > 0

Piea(x)dr = az® ' exp(—2*)0(z) dx (2.6.5.1)
that is R, (z) = exp(—z®)f(z) and hence
R'(u) = (—Inu)= . (2.6.5.2)

We will use the shortcut s = 1/a. We will call

ES? = (Hopt), o (2.6.5.3)
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and our goal is to study the function ESP . A second family of measures also
depending on a parameter o > 0 is

pit o(x) dz = ax®texp(l — 2*)0(z — 1) d (2.6.5.4)
for which R, (z) = exp(1 —2*)0(x — 1) and hence
R'(u) = (1—Inu)= = (1 —Inu)®. (2.6.5.5)
We will correspondingly call

E7(ls+,p) — <H0pt>p'+ . (2.6.5.6)

and we also aim to study the function B .

As we will see, this second family of distributions will make the calculations more
cumbersome. However, it has the advantage that p;f ,(x), contrarily to pic () in
general, is neither vanishing nor diverging at the left endpoint of the support, so
that we know for sure than any anomalous scaling of the cost (w.r.t. the case of
uniform distribution) must come from the tail located at +oo, and not from the
second singularity in 0 (or from a combination of the two effects). As we will see a
posteriori, the singularity in zero gives a less relevant anomalous scaling than the

singularity at infinity, as ES and ES P do have the same leading asymptotics.

Exact and asymptotic results at p > 1 even

Let us consider the family of distributions (2.6.5.1) first. From Lemma 2.6.1, we
just need to compute for ¢, k,n € N the integral

1
My kg = f du P, p(u)(—Inu). (2.6.5.7)
0
Of course My, 0 = 1, since the P, j, distributions (eq. (2.6.3.1)) are normalized.

From this point onward, we will assume the basic notions of the theory of Sym-
metric Functions (see for example (76), chapter one). Let us introduce the alphabet

1 1 1
Agn =3 —y——, ..., — 2.6.5.
k7 {k’k—f—l’ 7n} ( 658)

and let us use the symbol hy(X) for the complete homogeneous symmetric func-
tion of degree k, in the alphabet X, (and, for future convenience, e;(X) for the
elementary symmetric functions), that is, in the case of a finite alphabet of size m
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= {z1,..., %y}, the functions

hi (1, ..., 2p) = Z TjyTjy - Ty (2.6.5.9)
Isji<..<grsm
ek (T1,. ., xy) = Z TjyTjy - T, - (2.6.5.10)

1<ji<...<jg<m

We also set the useful convention ho(X) = eo(X) = 1. We have

Lemma 2.6.5.

In order to establish Lemma 2.6.5 we will need a useful (simple) technical Lemma:

Lemma 2.6.6. Let pe N. Let A(q) = a,q” + ap_14°1 + ... + ag be a polynomial
of degree at most p. Then we have

i ( > )P1A(q) = play . (2.6.5.12)

Proof of Lemma 2.6.6. Rewrite A(q) as

_ 2 beg(g—1)---(g—k+1). (2.6.5.13)

In particular, b, = a,. In this basis we have

a=0 \4 k=0 q=0 \4
p p p|
=) b (1) q(g—1)---(¢—k+1)
,;) ; q'(p—q)!
P p—k P
by, p! Z (p—k)! k by, p!
SHp-kSrip—k-r = (p—k)!
(2.6.5.14)
This completes the proof. n
Proof of Lemma 2.6.5. Using the fact —Int = lim,_,q ==L, we can write M, Jep =
lim,,_,0 M, :p(uw), where the expression
1 - P
_ Lt =1 L(n+1)
My pep(u) = | dt "2 (1 —t)"* 2.6.5.15
kn(t) L (1-1) u T —kt1) )
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is well-defined for u < p~!, and in particular in a neighborhood of u = 0. Ex-
panding the binomial (¢~ — 1)P, we recognise that each term in the sum can be
evaluated in terms of a Beta integral, and we just get

My p(u) = w (™ = 1)P)p, ,

(7)o,

(];) = EEZ) (n) +(1 - Zzi (2.6.5.16)
(e TIe-5)”

(p) (=170 Y g uhe( Ap) -

q >0

—

S

=

-Pp

I
IS

1
o
vQ

I
I
<
7=

Q
Il
o

I
I
<
=

<
Il

I
I
<
7=

0

<
Il

At this point, Lemma 2.6.6 allows to compute the limit u — 0 straightforwardly:

p
p - 0 ¢
M jp = limu™" < >(—1)p TN quhe(Agp)
T u0 ;) q ;) (2.6.5.17)

= lim u™? (p! WPhy(Akp) + O(uP™h)) = p! hy(Agn) .

O
Since MT(LIZSZ) = M, .1, Lemma 2.6.5 implies
p
= Z ( ) p ankqunks(p q)
" (2.6.5.18)
= Z ( ) ( (p CI))' hsq(Ak n)hs(pfq)(Akm) .

As of our second family of distributions (2.6.5.4), MSZ’Zﬂ = ((1—=Inwu)*), can
still be written in terms of the M, ;. ;’s, namely ’

sq
M = 3 (Srq) My jr (2.6.5.19)

r=0
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so that by Lemma 2.6.1 we have

Egpnlt) = Y (Z ) (Srq) (S(p . Q)) (1)U Mp oy Moo

O0<q<p
0<r<sq
0<r'<s(p—q)

TS )b

0<g<p
0<r<sq
0<r'<s(p—q)

(2.6.5.20)

where in the last step Lemma 2.6.5 has again been used.

In the case s = 1, corresponding to an exponential decay at +co0, an important
simplification occurs and we have an exact result. Call H(t, X) = 3, ho(X)t" =

[Lex(1—tz) ™ and E(t, X) = >,opee(X)t" = [[,cx(1 + tz). Then

P
E(lfp),n(@ = p! Z(_l)qhq(Ak,n)hpfq(Ak,w

q=

0 (2.6.5.21)
p' tp]H(t, Akm)H(—t, Ak,n) .

For X = {z,7,...}, call X? the alphabet X? = {2? 22, ...}. We obviously have
H(t,X)H(—t,X) = H(t*, X?), and we recognise

Eqpyn(k) = pI[EP1H(#, A7) = D hypa(AR) (2.6.5.22)

(recall that we assumed that p is even). Also, E(14 ) n(k) = Eqpn(k), as in fact
p;g’a(x) = piea(x — 1) at @ = 1, and of course the cost function is invariant under
a global translation of the 2n points.

For general s we only have an asymptotic result. Call as customary pg(X)
the power-sum functions py(X) = Y v 2*. Define P(t, X) = X,_; k™ 'pu(X)t" *.
Then we have H(t, X ) = exp(P(t, X)) and E(t, X) = exp(—P(—t, X)). The first
of these two formulas provides polynomial expressions in the p;’s for the h;’s. If all
the elements of the alphabet X are real-positive, the generalised-mean inequalities
imply that (p;(X))Y’ form a decreasing monotonic sequence.

In a situation in which p; » ,/p2, we can study a perturbative expansion of the
expressions for Esp) (k) and Eg+ ), (k) w.r.t. this parameter. Call P, (t,X) =

*Note that, contrarily to H(¢, X), and its companion F(t, X) for elementary symmetric functions, in
which there exists a single natural definition, in literature there exist different choices of definition
for a generating function P(¢, X ), and we have chosen the one that is more convenient in our context,
so our formulas involving P may differ from the ones the reader is accustomed to.
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P(t, X) — tp1(X). Then we have
- X Ve[t exp(P (1, X))

(2.6.5.23)
Let us start the analysis with the case of the family in eq. (2.6.5.1). Substituting
eq. (2.6.5.23) in (2.6.5.18), gives

p 1(A ,n)spféff’
Beanll) = 20 oot - DT P

9=

< ([t] exp(Py(t, Ay, n)))([té/] exp(Ps (t, Apn))) -

k
() = [ X) = [ exp(P (X)) = 3
£=0

(2.6.5.24)

The smaller ¢ and ¢ are, the larger is the power of p;, which, under our assumption,
is the leading factor. However, the associated factor (Squ))!!((;(gﬂ:g))z! 71 18 a polynomial
in ¢ of degree ¢ + ', so that by Lemma 2.6.6 we know that all the contributions
with £+ ¢ < p vanish exactly. The leading contribution thus comes from the terms

with ¢ + ¢ = p, which give

O, (P plAk)SI)p
E(S’p)’”<k)_§]( Y (q)( 'ze: (s¢ = Ol(s(p —a) — (p = 0))!
x ([T exp(Py(t, Ar.n))) (7T exp( Py (t, Akn)))

=pls p1(Ak,n) s=Lp

2 DT ([ exp(Pe(t, Awa))) ([ Texp(Pe(t, Axn))

£=0

= p! Sppl(Akm)(s_l)p[tp](eXP(Rr (t, Akn)) exp(Py(—t, Akn)))
(2.6.5.25)

X

Now observe that

exp(Py (t, X)) exp(Py (—t, X)) = exp(Py.(t, X) + Py (—t, X))
=exp(P(t, X) + P(—t, X)) = H(t*, X?)
(2.6.5.26)

so that, in conclusion,
Es (k) ~ plspi(An) P hyo(A7 ) (2.6.5.27)
Note that this approximated formula for generic s matches the exact formula at

s = 1, equation (2.6.5.22).
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The validity of the approximation above relies on the fact that p; (Ag,) ~ In(n)—
In(k) + O(1) whenever n » k, while p,(A,) ~ 75 (K" —n'™") if n » k > 1, so
that, in any case, whenever n » k we have that p,/,/p; is at least of order In(n).
Within the same precision of approximation, we can thus replace p;(Ag,) with
In(n) in (2.6.5.27), and get

Espyn(k) = pls?In(n)E=P hp2(A7 ) (14 O((1 +Ink)/Inn)) . (2.6.5.28)

This implies the possibly surprising fact that the ratio of the average weights of
the ki-th and ko-th edges of the matching, whenever n » ki, ks, depends only on
p, and not on o = 1/s.

Now we perform the analysis with the more complicated expression (2.6.5.20).

We have

Bewa®= 3 (P) () (7)ot b (A ()

/
0<g<p q r "
0<r<sq

0<r'<s(p—q)

. 0§<p (Z;) (Srq) (8(297; Q)) (—=1)" %l

0<r<sq
0<r'<s(p—q)

o<l<r

o' <r!

y pl(Ak,n)r-HJ_g_gl
(r—=0O)(r" =2

([t exp(Py (£, Aen))) ([£°] exp(P (t, Axn))) -
(2.6.5.29)

Consider the sum over r. Isolating only the relevant factors gives

s 1(Ag) " (sq)! sq—/{ —t
Z rq P — == Z )P (Ak.n)
0<r<sq ( ) (r=0Ot ?Sq)f)! t<r<sq ( ‘ ) (2.6.5.30)

= m(pl(Ak,n) +1)%
This gives that s+ p) (k) has exactly the same expression (2.6.5.24) for E ) . (k),

with pi(Ag,n) replaced by pi(Ag,) + 1. As a result, we can obtain directly the
analogue of (2.6.5.27)

Bt (k) = pl P (p1(Apy) + 1) by n (A7) (2.6.5.31)

Note again that this approximated formula for generic s matches the exact for-
mula (2.6.5.22) for s = 1.
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As in the previous case, within the same precision of approximation, we may
replace py(Ay,,) + 1 with In(n) and get
Egt pya(k) = pl P In(n) P by (AZ) (1 + O((1 + Ink)/Inn))

2.6.5.32
= EpaB)(1+ O((1 + n )/ lnm) e

as announced.

2.6.6. Estimation of complete homogeneous functions

Equations (2.6.5.28) and (2.6.5.32) provide explicit expressions for E(s ), (k) and

E(s+ p)n(k), and thus for the desired quantity ES? = S0 Epya(k) (and its
st analogue). Nonetheless, we are left with the task of estimating the relevant
quantity

Foqi= Y he(A7,). (2.6.6.1)
k=1

We do this in the present section. Each monomial entering the sum has the form

2.6.6.2
0213 - - - 42 ( )
for some g-tuple 1 < i3 < iy < -+ < 43 < n. Such a monomial enters exactly ;
times in the sum. Thus we can write
1 | 9
F,= > —— =), —ha-1(AR,). (2.6.6.3)
I<ii<iz<-<ig<n 127 Y 4
When ¢ = 1 this simply gives
Fo. = H, (2.6.6.4)

where H,, is the n-th Harmonic number, and in particular, from the well-known
perturbative expansion for H,,,

Fo1=1In(n)+~+ % +0O(1/n?). (2.6.6.5)

When ¢ > 2, as for a real-positive alphabet we have %hl(X)q < hy(X) < i (X)1,
we have in particular that he_ (A7 y) ~ k=Y for n » k, and the whole sum is
convergent in the limit n — oo.

In this limit, we can identify the exact result (2.6.6.3) with a special case of the
so-called “symmetric sums”, or “multiple ¢* values” (50) which are modifications
of multiple { values that generalise classical special values of the Riemann’s (
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function (61). Multiple ¢ values are not new in physics, as they naturally arise,
for example, in the calculation of scattering amplitudes in perturbative quantum
field theory (67).

We have, for g > 2,
Frog=C"2711). (2.6.6.6)

It is a well-known fact that (*(2,1) = ((2,1) + ¢(3) (by simple inspection), and
that ¢(2,1) = ((3) (by a famous identity of Euler, see e.g. (7/) for a derivation).
This gives

Flros = 20(3). (2.6.6.7)
More generally we have (*(2¢971,1) = 2¢(2¢ — 1) (this result can be found as (3a)

in (119), or also as (1.8) in (152) or in (111), example (b) with m = 1), so that
for generic ¢ = 2 we have the result

Frpg=20(2g—1). (2.6.6.8)

Combining (2.6.6.8) with (2.6.5.28) and (2.6.5.32) finally gives, for s and p/2 pos-
itive integers,
(2.6.6.9)

E0) ~ E(S+’p) N { 252 ln(n)stl

p=2
nooT 2¢(p — 1)sPp!In(n)>=P p >4

A\

Notice that at s = 1 eq. (2.6.6.9) is the leading order asymptotics of the known,
exact result for the exponential distribution (see (169), eq. 23), namely

E7(11’2) _ C

Hence, for a generic distribution composed both of a bulk part with a stretched
exponential tail, an anomalous scaling of the optimal cost is always observed at
p=2.

. (2.6.6.10)

| =

Case of s integer and p =1

Using our general Theorem 2.6.3, for the first family of distributions we just have

E, (k1 ko) = {(—In u)S>P2n,kl —{(=In u)S>P2n,k2

(2.6.6.11)
= M2n,k1,s - M2n,k2,s
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In the case of the second family we have

Ep st (ky k) = (1 =Tnw)*)p, = (1 =Inu)®p,

= Z <8> (M2n,k:1,r - MQnJcQ,r) .
r=0 r

Yet again the s = 1 (that is, of exponential tail) case is specially simple*, and we
just obtain the exact formula

(2.6.6.12)

ko—1

1
Ena(k, ko) = Eye (b1, ka) = ha(Apy 2n) = ha(Agyon) = Y, ;- (26615
l=k1

In the general stretched exponential case s # 1, for the first family of distributions,
we have

1 ko— 1
B sk, k2) = ha(Ag, 2n) = ha( A, 20) = Z Ly (Agan) - (2.6.6.16)
’ {= k1

For the second family we have the analogous

1 ko— 1 s
B (b ko) = 35 Z () r—1(Agan) (2.6.6.17)

Ekl r=1

*Notice that the same expression in Eq. (2.6.6.15) is obtained if we consider another distribution
E*E

with simple exponential tail, such as a logistic pdf p(z)dz =
RV (u) = log =% and we have

mdw. Indeed, in this case

—k+
logistic __ (—1) _ .(0) 1
M a™ = <R (U)>P’hk =97 (n—k+1) :E T (2.6.6.13)

where 9™ (z) = % In (T'(2)) is a the PolyGamma function of order m. Therefore

ka—1
Eiﬁ%ISt‘c(kl,kg) M;Zg‘,ff‘c M;‘;g}f;j = Z = (2.6.6.14)

1=k

as announced.
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As a result we have

E(Sl 3' Z - s 1 AZZn)7

o1 (2.6.6.18)
(st,1) _ qn f
El —slg 7 Z<>T1Ae2n)-
Now, under our assumptions
1 1
hs(AK,Qn) ~ gpl (Ag,gn)s = ;(11’1(271) —Inl+ YE + O(l/ﬁ))s, (26619)
so that, upon introducing x = £/(2n), | « n, Theorem 2.6.3 implies
E(s 1) '2”2_31 \/5 £(2n — E) 1 1 (1 (2 ) 1 f)s_l
o~ gl —A/ - n(2n) —In
" =N 2n  L(s—1)!
~ 2sn Jldx L= x —Inzx (2.6.6.20)
0 T A/ 2n
2
= s/ —f dz —ln:v)s_l
T Jo

(and the same expression for E7(f+’1)). Note how now the leading contribution
comes from the bulk, and the terms ¢ = ©(1) are sub-leading, so that there is
no anomalous exponent, as /n coincides is the bulk (Dyck) behavior at p = 1
(see table 2.1). In this regime eq. (2.6.6.20) recovers also the asymptotic constants
depending on s, eq. (15b) in (169). The first few values are

7 +3m(2+ 2In4) + (In4)?
NG e

VT, 27 (1 + In4), . s=1,2,3,... .
(2.6.6.21)

Incidentally the integrals So dr 4/ L1=E —%(—Inx)® just make by means of our standard

trick (used e.g. in eq.(2.6.5.16)) the combinations

lim u~* 2 (S) (—1)8—4F€ —qu)l') , (2.6.6.22)

u—0
q=0
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which are indeed polynomial combinations of Riemann ((s)’s and In4. They are

given by
/1 — a: o T'(3 —u)T(2)
dz —Inz)® — - -
J TR - wl,, (2.6.6.23)

o 4% T(1 - 2u)
Coousl —ul(1—u)?

(3 —u)

aus 1—u F(%)F(l — u)

u=0 u=0

where the duplication formula for the Gamma function has been used. Indeed, the
Y, are obtained from the fundamental quantities

o T(5-w)
Xs = 8u5 In m o 5 (26624)

which satisfy

Pp©(12) —9©(1/2) =1+1n4 s=1
X = { (s — DI(1 4+ (21— 1)2((s)) s> 2, (2:6.6.25)

(4™ (2) are the PolyGamma functions of order m) simply via

tk
> k'Yk — exp (2 k!Xk) . (2.6.6.26)
k=0 k=1

2.6.7. Non-integer values of s

When s = 1/ is not an integer, the functions R;'(t) and R_!(t) are not poly-
nomials of (—1Int), and we cannot use directly our formula for the moments in
Lemma 2.6.5. Nonetheless, we can access some information on M, ; ; when s is
not an integer, through a strategy that we now illustrate.

For se R" \ N, let s =5 — 0, with S € N and o € (0,1). Then we will use the
representation

—-u __ S o xofl
(=Int)* = (=Int)%(=Int)™ = ili% <t " 1) L dz e exp(xInt).
(2.6.7.1)
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As a result we have

© gl ol e —1\° T(n+1)
My s = lim | do J dt t* =1 (1 — )" * ( > t*
U o)

u—0 J,  T'(0) u F'n—Fk+1)
0 o—1 S
S
=limu_sf del ( ) —1)5¢
fim ™ ], do gy 20 )Y

I'(n+1)
L(k)I'(n—k+1)
1 S
= lim v~ wxﬂ 9 (1)5-
~limys [ r<o>q§)<q)( g

M'k+z—qul'(n—Fk+1) I'(n+1)

I'n+1+2—qu) Fk)I'(n—k+1)

1
x f dt th1 (1 — )R
0

dx

s T TR 1+ 0y s Akrense)

_ Ood 2 'T(k+2)I'(n+1)

_L T TRT(n+ 1+ )
: J+r—qu)l(n+1+z)
X}}E(l)u SZ() IF'k+2)l(n+1+z—qu)

)

)

_JOO 2 I T(k+z)l(n+1

(2.6.7.2)

where, consistently with our previous notation, Ay, 1, is the alphabet where the
inverse of the symbols are shifted by =, {(k+x)™ !, (k+z+1)7' ..., (n+x)"'}.

Note that (
['(k+x)T'(n+1) n
1—-— 2.6.7.3

F(k)F(n +1+2) z_l_ilc ( ) ( )

which is both equal to E(—x, Agisn+a) = exp(—P (2, Agyzn+a)) and to H(—z, Ay ) =

exp(P(—x, Ay)). Thus we can give the two representations

0 Ia—l
Mn,k;s = S'J F(O.) 7P(£7Ak+z',n+w) [tS] eP(t:Ak+w,n+1')
oo (2.6.7.4)
= S' f dx F(O.) P(_x’Ak,n) [ts] ep(t)Ak+z,n+z)
0

The second representation is specially convenient when s < 1, that is S = 1. In
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this case we just have

o9] xafl .
Mn,k;l—o = JO dx F(O’) eP( ’Ak‘")pl (Ak+z,n+x) (2675)
and we can write
pl(Ak+x,n+x) =N (Ak:,n) - 37])2(Ak,n) + 372]93(Ak,n) - x3p4(Ak,n) + - (2676)

Let us just write p; for p;(Ay,). Then we have

pie Pt exp <z2p2 o + - ) (1 -y TP ) .

2 3 P1 y4i
(2.6.7.7)

o—1

(o)

Q0
My ki—0 = f dx
0

Again, p; is a “large” parameter (of order Inn whenever n » k, and of order 1
when n ~ k, but in this case p; ~ k71 « 1 for j > 2), so that we can treat
perturbatively the two rightmost factors in Eq. (2.6.7.7), and get

Myj1—o = (1 +3 ( ) S Il

(=2 (ma,ms,...) =2 J
2 ]m]—f

me ) (2678)

where we recall that p; = p;(Ax,), and we have the following the result.

Lemma 2.6.7. Call s* = s(s—1)(s—2)---(s—a+1). Form = (mg,mg,...),
call |m| = 3, jm;. Then for all s > 0 we have

Mygs =py Y sl _'m']_[ Tk (2.6.7.9)

(m2,ms,...)

Remark 2.6.1. If s € N M,, . is a special evaluation of the complete Bell poly-
nomial By(xq,...,xs) (see e.g. (96)) at x; = (i —1)!p; or, equivalently, it is propor-
tional to the cycle index of the symmetric group Ss acting on the formal variables
P1,---,Ps- LThat is

Mn,k;s = Bs(pla 2]727 R (S - 1)']95) = S!h’S(Ak,n) ) (26710)

which coincides with our result (Eq. (2.6.5.17)) if s is an integer. Our approach al-
lows to study e.g. the gaussian case s = 1/2 also considered in the case of continuum
measures (/08). The details of this calculation, where rather delicate cancellations
at the level of Eq. 2.6.5.25 happen, will be the subject of a future investigation.
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2.6.8. Family with finite endpoint, algebraic zero py, 3

4 - B
3 322
2+ ; 20
— Ry (u)
1+ B 0.2 —Rgl(u) B
Ry (u)
0 | | | | 0 | | | |
0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1
x u

Figure 2.9. — Members from the family in eq. 2.0.8.1 at § = 2,3,4 (left), and
corresponding R;l functions (right).

Recall the family of probability distributions
prp(x) = pz” 1 (ze0,1]) (2.6.8.1)

indexed by a real 8 > 0, for which Rf_a,lﬁ(u) — u7. For them

M(fa’) 7/8 —

k,niq

(u?)?) = s (2.6.8.2)

< . > INCGRINCES %)
Py D(E)T(n/ + %) '

where we have used n’ = n+1 for notational convenience. In light of the application
of Theorem 2.6.1 we profit of the following fact.

Lemma 2.6.8. The function
nPT(n)
W(B)=In | ——2 2.6.8.3
has the series expansion

B—-p* pB-382+23% —p+2p-p
o 12n2 * 12n3 *

_ —k pl+1
= e "B
k.l

Un(B)
(2.6.8.4)
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where

(k)

k=1, 0<(<k, 2.6.8.5
T(OT(k—(+ 1) ( )

cre = (—1)*By_y

and B, is the s-th Bernoulli number.”

Now, at leading order in %, the coefficient of 8P in

2k—1—1 —(k=1)
en®) = exp _g Z (—2¢h1) (g) (%2) (2.6.8.7)

k>1
0<i<k
concentrates around the term with k& = [ = 1 (that is, at the minimum of 2k — 1 —1

within the range £ > 1, 0 < [ < k), and we can work with just the first term in
eq. (2.6.8.4). We thus get

(fa),8 F(Fk(z)ﬁ) —q/B k small
Mkm,;q ~ oo (1 () (1 _ g1 o8 _k_op (2.6.8.8)
p(—% (L) a-a )2 o= —0()

which by Theorem 2.6.1 gives

P
b fa),B 1 r(fa),B
&MAM=Z()<WW%$MMM

q=0 q

p g DU+ DT (k+ 54

n—p/B Z ()( 1)P- —5F2(k) k small

~

q=0

(2.6.8.9)

Let us consider first the contributions coming from edges that are “far” from the
region of low density of points, k = xn’ (i.e. the bulk regime). By Lemma 2.6.6,

*A further series expansion, satisfied by the difference of contiguous expressions (2.6.8.3), to be com-
bined with the fact that 1 (8) = —InT'(8), is that, for n > 2,

(1 _ ﬁ)erl -1
(m + 2)n™

1—B s

n2

(2.6.8.6)

D18

Pn(B) = Yn-1(B) = (1 = B)log <”T—1> ~log (1 LB - 1)

0

m
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we just have

1+ \"? 1
Egpn(k) ~ aP/8 k=axn'. 2.6.8.10
(8.,p), (k) ~x < 32 ) T2 +1) n ( )

Therefore, given a cutoff A = O(y/n), the Riemann’s sums >, _, may be trans-
formed into integrals without affecting the leading asymptotics, giving

1
Egpn ~n' 7 JA/ dzah~

P
2

P(x), (2.6.8.11)

where P(x) is a polynomial in z. The integral in (2.6.8.11) does not diverge as long
as % — £ > —1, and in this case we may just take the limit A — 0 and make the

substitution Sj\ n Sé (we “remove” the ultraviolet cutoff A, in physics language),
to get the following result.

Lemma 2.6.9 (Bulk regime). For the family pt. g with a finite endpoint, algebraic
zero of order § —1 (2.6.8.1), if

28+ 2p—pB >0 (2.6.8.12)

then
Egpn =n""2bg, (14 0(1)) (2.6.8.13)

where
bao — p! 1d p/ﬁ(_1+ 71>p/2
8p = /2 ) T T T

I(2+1)T (1 _ M) (2.6.8.14)

p! 23

(p/2)!pP r (2 + %)

Remark 2.6.2. In the § — 17 limit, the distribution pg,; recovers the uniform
distribution supported on [0, 1], and we just get

pl T(2+1)0(1+p/2)

lim bg, =
ot P (pf2)l T (2+p) (2.6.8.15)
(1 +p/2)
p+1 7

which coincides with the known leading asymptotic constant, Eq. (2.6.1.2).

Let us consider now the anomalous contributions coming from edges in the region
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of the zero, that is, Eq. (2.6.8.9) at small k. We have

Egpn(k) ~n~ Bk: i ( ) (k + B) r <k + %) . (2.6.8.16)

which, at first sight, may seem to grow as k”/#. However, one easily sees that
the cancellations due to the (5 )(—1)7 combination lower the growth in k& down to

the one of the bulk contribution, that is, Eg ) n(k) ~ n~?Pk5%. Recalling the
hypergeometric identity

i (k +a) kk+b) :F(_l_a_b)l“(a+1)1“(b+1) (2.6.8.17)

['(=a) T(=b) "
when the sum in Eq. 2.6.8.16 does not diverge, we can just take A — oo limit (i.e.
we remove the infrared cutoff) T and get the following result.

Lemma 2.6.10 (Strict anomaly). For the family with a finite endpoint, algebraic
zero of order B —1 ppp (Eq. 2.6.8.1), if

28+2p—pB <0 (2.6.8.19)
then
Egpyn ~ agpn " (2.6.8.20)
where
c F(l +4T(1 + 29)
—1- & Cay 2.6.8.21
agp p/ﬂ Z ( ) F(—%)F(—p%’) ( )

Lastly, let us consider the limiting case
264+ 2p—pB =0, (2.6.8.22)

which defines a critical hyperbola (Fig. 2.10).
In this case the anomalous and bulk contributions are of the same order (that

is, B p) ~ nglpk) + E(“g‘;) at leading order in n), and we need to keep a finite cutoff

TInserting the T function definitions in eq. 2.6.8.16, and then summing over g and k leads to

_ ©dt; dta _ t1t
E(B,p),n ~n »/B i tll t; (i1+t2)(t )P (]0(2 /t1t2) 11— ( 102

(2.6.8.18)
where Io(z) is the modified Bessel function of the first kind of order 0, so that the last term is
negligible in the A — o0 limit.
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10

Anomalous regime

Y 6 i
af |
Bulk regime
%) 4 6 8 10
Figure 2.10. — Critical line separating the region of anomalous scaling (p >

Perit(8)) from the region of bulk scaling (p < peit(5)) for a density with a zero
of order B — 1 at one border of the support.

1 « A « n throughout the calculation.

The bulk part is given by

L 142R ol
Ehik f dp LT 2B NJ dz = +J dz R(x) (2.6.8.23)
’ A/n x A/n €z 0

where R(z) is a polynomial in z (as it was in (2.6.8.11)). In order to study the
relevant asymptotics, recall the useful integral representation for the k-th Harmonic
number Hj,

J;di (1—2)"—1) = —H,

x
k oy (2.6.8.24)
= — Z -, ke N,
=17
and introduce the function
p! p! p—2\"
Q) = —ov = — (—) : (2.6.8.25)
(p/2)!B? B=Pe(p)=225 (p/2)! 2p
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Eq. (2.6.8.23) then becomes
1

EPulk nlp/Qf dz _Q(p) (1— a:)p/2 znl’p/QQ(p) [(Inn —InA)+
A/n

(n,p) T
(rger)]
+{(1+=+...+- i
2 P

Now we have to deal with the small k part contributing to Efzié).

(2.6.8.26)

2.6.9. On sub-leading contributions at the critical line

2(p+ ) = pB

Recall that for a series of general term ay, s.t. a, ~ £ for large k, we have

A A
Zak Z(ak——>+cHA
k=1

i (“k - —> ey + 0 (A) (2.6.9.1)

=c¢(InA +7g) + lim (cln (1-=) i ) (%) .

B
—_

bl
—_

r—1— —

Recall also that

Z I'(k+ a)l'(k +b) el

T2 (k) =T(a+1)0(b+1)2F (a+1,b+11;z)  (2.6.9.2)

k=1
where o F7 (m,n; ¢; x) is Gauss hypergeometric function. We thus have

tail, 3 1—

[SIiS]

(2.6.9.3)

with

op = [Q(p)(ln/\ +p) + Jim (2 (];) (1) (1 ' %) r (1 + f%) .

o F (1 +
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(the last term being @ = oF(1,1;2;2)), and by simple comparison with

eq. (2.6.8.26) we have the following crucial remark.

Remark 2.6.3. At leading order in n, the bulk (resp. tail) part of the energy car-
ries a +Q(p) log A (resp., —Q(p)log A) contribution, so that the quantity Etaii)) +

(n,
EZ’;‘%‘) is independent on A.

We wish now to evaluate the relevant limit

(2.6.9.5)

on the critical line 5, = %. In order to do so, we need to manipulate o F1 (a, b; ¢; x)
when a + b — ¢ € N, and this can be done with the aid of formulas 15.8.12 and
15.8.10 of https://dlmfnist.gov/15.8. Fora =1+ £, b=1+ *3 and ¢ = 1, since
at the critical line

C_b_a:1—(1+]%p?q>—(1+<p_Q)pz;pQ) (2.6.9.6)

using the identity 15.8.12 we get

JF) (1 + 51, 1+ 1%; 1;a:) — (1—2)"?%,F (—pg q —%; 1;x) . (2.6.9.7)

Using the other identity 15.8.10, with

p g pP—q
a=1—=+—=— ,
2 P Be
q
b=——, 2.6.9.8
Be ( )
P
fr b —_—
c=a-+ +2,

so that T’ (a + g) =T (1 + %) and T’ (b + g) =T <§ — %), and Eq. 2.6.9.7, we
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easily get

op = lim {Q(P)w +(1—a) Py <2>(—1)QF <1 + %) r (1 + pﬁ—cq) :

r—1-

p( _ria p<_i> = K+

. (log(l—x)—@/)(k:Jrl)—@/)(kJrg+1)+¢(k+1+i)+w<g—é+k)>]}.

(2.6.9.9)

where (a);, is Pochhammer symbol and 4 is the Digamma function. Eq. 2.6.9.9 can
be considerably simplified by the following remarks. First of all, we can discard
the whole first summand in square parentheses, which is a polynomial of degree
strictly < p in ¢ and thus lie in the kernel of }7_, (2’)(—1)‘1. Secondly, we can
discard all terms with £ > 1 in the second summand in square parentheses, as
they vanish in the x — 17 limit. Hence, by straightforward algebra, we are just
left with

= i [apB=2), O

. (log(lw)w(l)w<1+g>+¢(1+%> “”(g%))(] .
)

Now, the symmetry of Eq. 2.6.9.10 suggests to consider the function

<p) - (1+£)r (1+22)

q

v(z) = Flgijz;) I (Z;_ D sin (7z) (2.6.9.11)
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in terms of which we have the remarkable simplification

s Z() : é%) -G (Z)“”q[(%) 5] 2 <W((:_)>>

g (e |(3)
—Q(p),

Q(

~

=(—1)P/2 at p even

[rors

C _op 1
2B

(2.6.9.12)

where we have used, recalling the falling factorial notation s¢ = s(s — 1)(s —

2)...(s—a+1), that
<% - z) - (g) (2.6.9.13)

so that <%) is the ordinary generating function for the Stirling numbers of the

first kind . k
(61) :ZZ ( )(5) . (2.6.9.14)

Hence, since lim,_,;- Q(p) <M log (1 — x)) = 0, we can perform the z — 1~

'S

r

~
Il
(=]
RS

[ors

[rors

limit, noting that all contributions independent on ¢ just give a —Q(p) factor, and
get the following

Lemma 2.6.11 (Tail contribution at the critical line). For the family pg. 5, the
tail contribution at the critical line has no logarithmic correction. It is given by

Etaﬂ Be 15 [Q(p) (Hg — QVE) + vp] (2.6.9.15)

(n,p)

where Hy, s the k-th harmonic number, vg the Euler-Mascheroni constant, and

the
v (@) ] (i) e (6-2)

(2.6.9.16)
for i the Digamma function.

Lemma 2.6.11 combined with Eq. 2.6.8.26 imply that for this family of distribu-
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tions, at the critical line

o 1
E(gepyn =12 InnQ(p) (1 + O<logn>) (2.6.9.17)

which is always (even if only logarithmically) leading over the Selberg contribution
~ n'~%. We shall call the emergence of a logarithmic correction to scaling along
the critical line a marginal anomaly. We remark the particularly small range of

the constants at the critical line, Q([2,4]) = [0, Z].

2.6.10. Family of distributions with endpoint at infinity
and algebraic zero pj, 3

Let us recall our family of probability densities depending on a parameter 5 > 0

s
Piap(x)dr = $B+10(:v — 1)dx (2.6.10.1)

1
for which, counting from the right, Ri;lﬁ(u) = (%) 5. We have a duality relation

with the family with finite endpoint, algebraic zero pg, 5 (see Section 2.6.8), under
the transformation  — —f3. We thus immediately get

g

a8 _ I'(n+1I'(k— %)

it T(k)D(n+1 -4

_ 8 gt 8 (2.6.10.2)

) k,n;q kn;—q *

(compare with eq. (2.6.8.2)).
We get immediately

p
b ia),3 1 s(ia),B p fa),8 1 r(fa),B
Baa®) = 3 (V) 0y, = 3% (7) -omm i,

—0(1).

q=0 q q=0 q
D(k— )T (k+219)
np/B 22’:0 (Z)(_l)q —ﬂFQ(k) B k small

g1
ey () (~texp (<55 @+ (-0 + O () w=k
(2.6.10.3)

Still by duality, the critical line is given by

2(p— B) = —pf (2.6.10.4)

(or also p.(f) = 62—52), and in this case the bulk regime is at p < p.(5), and the

strictly anomalous one at p > p.(3). Therefore, the asymptotic coefficient is just
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given by Eq. 2.6.8.14 under § — —f, that is

) r N 1—wp
w g, Lt ( e ) (2.6.10.5)
B T 2)

which recovers (169), Eq. 29 upon renaming § = « and the use of Legendre
formula for the I' function.
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2.6.11. Family of distributions with internal endpoint,
algebraic zero pg, s

2.5 1 I
— Ra(7)
— R3(z)
2 | 0.8 B
Ry(z)
1.5 2 0.6 - B
1F x / E= 0.4} .
0.5 B 0.2 B
O | | | | 0 | | |

-15 -1 -05 0 0.5 1 1.5 -1 —-0.5 0 0.5 1

Figure 2.11. — Members from the family in Eq. 2.6.11.1 at B = 2,3,4 (left), and
corresponding Ry functions (right).

In this section we consider the situation in which p vanishes due to a zero at a
finite value inside the support. We exemplify this case with a 1-parameter family
of polynomial measures with a zero of order f — 1 in the interior of the support
Q = (—1,1), namely

ps(z)dx = gmﬁl&(x +1)0(1 — x)dx, (2.6.11.1)

so that Rg(x) = 1(1 + sgn(z)|z|?) (examples are given in Fig. 2.11). In this case
<(R§1(u))q> p  does not lend itself to simple direct manipulations”, and we follow
n,k

a different strategy. First of all, let us split the interval in half Q = (—1,0) U
(0,1) := Qp, U Qg. Let us also assume that we have n; reds and n; + dn blues on

*We have the equivalent representations
doubl 9

Mty = (2u ) )

n,k

q
(2m+1)

_ @ e —sgs Lk +s) T(n+1)
B sgo <( s+>>( b b2 (k) T(n+1+s)

(2.6.11.2)

=(-1) T 2 (k, —ﬁ;n + 1; 2)

/2
-9 F(n + 1) ) J do (COS(QQ))Q/(ZWH-I) Cos2k—1(9) Sin2(n—k’)+1(9) )
0

T(k)T(n—k + 1
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the left of the zero; and ny+dn reds and ns blues on the right, with ny+no+dn =n
(we may assume that dn > 0, otherwise the argument is identical upon exchanging
reds and blues). As usual, we wish to evaluate Hiq, so that, on €y, we wish to
assign the n; red points to the left-most n; blue points, in order, and on (g,
we wish to assign the ny blue points with the rightmost ns red points; lastly, we
want to assign dn blue points in €y to the dn leftmost red points on Q. With
this decomposition, it is advantageous to enumerate points starting from the zero
(around which the largest contributions are expected a priori) allowing to extend
finite sums to series. Hence, we shall enumerate points from left to right on Qg
and from right to left on Q.

Let B,(m) = £ (*"), and let n/ (resp., nj) be the number of red (resp., blue)

points to the left of the zero. Let us introduce

n’ = min(n,,n;)
" =n—max(n,ny) (2.6.11.3)
n” =mn—n'—n"=max(n.,n,) —min(n.,ny).

The total energy is given by

Eg,p = Z Bn(n;))BTL(nr/,-) : [Z E (’R,;/l (Uk/) — R;/l_,'_n/// (uk/Jrn///)‘p) =+

n;,n;;o k=1

+ Z ]E |R 4 uk‘” - RT_L”l+n’” (Uk//+n///)|p)
o (2.6.11.4)

n
+ 2 ]E n +n’” u’k”’) + Rn//+n///<un///+1_k///)‘p)]

k/// 1

7,l/ 7,74// n”/
= By,(ny) Bu(n).) [Z Livps+ Y, Ripp+ Y, Crnpp

nt.nf >0 k'=1 k=1 k=1

Hence in eq. (2.6.11.4) the £ (R) contributions come from edges falling entirely
within Qp (resp. Qg); and the C contributions (notice the plus sign in their
definitions) come from edges “on top” of the zero, that is, edges matching points
in 7, to points in Qg. It can be easily calculated that

(R Mup)?y = F<l;/(;)%> Fé/(i Jlr?%) : (2.6.11.5)

Expanding the binomials in eq. 2.6.11.4 at p > 1 and even, the three contributions
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are constituted of simple ratios of I' functions, respectively (note that there is no
minus sign (—1)? in the third expression)

Leas =35 (7). ) reen P ren e
k' p,B — - )
r L(&") F(n’ +1+ %) DK +n") F(n’ +n” + 1+ ’%)
p F(k” + g) " 'k +n"+ 24 " "
p ] I'(n”+1) ( 6) F'(n”+n" +1)
Rurgs = 3 (1)

F(k”) F(n” 14 %> F(k‘” + n///) F(?’L” +n" +1+ Z%) ,

o B ZP: p F(k/” + %) F(n’ +n" + 1) F(n”’ +1-—K"+ %) F(n” + "+ 1)
S F(k”’) F(?‘L' "+ 14+ %) F(n’” +1-— k’”’) F(n” "+ 14 Z%)
(2.6.11.6)

so that, calling

" "

Lops =D Lips,  Rups= D, Rwps  Cops= Y, Crnpp, (26.11.7)

k'=1 k'"=1 =1

the energy is given by Eﬁyp = Lpps+Copp + Rpps. The first remark is that
n' — % = O(y/n) (almost surely) so that, at % = 0(1), we get

T +1) T —2+2+1) -4 N
Toeid) opegeny @) (7o) e

(and an analogous expression mutatis mutandi for ratios of I' functions involving
n” and n”, and terms in which ¢ < p — ¢). Let us focus first on the central

T . 1 _ 1 ("1
contribution C'. Since NCINCEEs e Rl eyt (k,,,_l

), we just get

o (S (T )
k" p,B 92 = q F(k"”) F(n’” +1-— k:’”)

_P ro0 0 K" =1, n"—k" m __
~(5) | | au () S ()
2 0 0 (n/// _ 1)! km 1

(2.6.11.9)
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! 1 NP /n\—5 [[© V" Ts
~ | d B 1—12)5 _ dv -V
L o <x +(1-2) ) (2) L T (2.6.11.10)

where the change of variables t = Vx and u = V(1 —x) (such thatdudt = VdVdz)
has been suggested by the homogeneity properties of the integrand, and the limit
constants are just

s r<1+%>r<1+7%>
Kp, = (q) r(2+§) (2.6.11.11)

(notice the absence of the (—1)¢ term). Since also n” = O(y/n) (almost surely),

so that
D) o
=nztt8 14+ =— 2.6.11.12

T (") " (+ (ﬁ)) ( )

q=0

we just have
Copp =1 502K, (1+0(1) =n?"" DK, (1+0(1).  (2.6.11.13)

Thus, a contribution from edges jumping above the region of low density of
points scales as the bulk one, n'~%, if it were that the contributions of the £ and
‘R parts have no stronger scaling,

p+ B =ps. (2.6.11.14)

Eq. (2.6.11.14) defines a critical hyperbola p.(8) = % (or equivalently 5.(p) =
[%) separating the anomalous from the bulk regime (Fig. 2.12). Incidentally,
except for a factor 2 at lhs, it corresponds to the critical line for the family of
densities with a single zero, eq. (2.6.8.22).

Let us now evaluate the “single-sided” contributions to the energy £, , 5 (Rnp.s

can be evaluated analogously). We shall address the evaluation in two ways:

1. an approach inspired by § 2.5 and valid for the bulk regime § < f., in which
we threat k' in Ly ,p as a variable of order n. The explicit expression of
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Anomalous regime

Perit (’j)

Bulk regime

1 | | |
1 2 3 4 5

Figure 2.12. — Critical hyperbola separating the region of anomalous scaling (p >
Perit(B) ) from the region of bulk scaling (p < perit(B)) for the family of probability
densities (2.6.11.1). Notice the p < [ symmetry (with corresponding self-dual
point at (Be,pe) = (2,2)), and that there can be no anomalous correction to the
Dyck scaling (p = 1), which is always bulk.

Ly , 5 in terms of inverse cumulative functions is evaluated with the saddle
point approximation of the involved beta distribution (which is valid when
k is order n), and is divergent at the critical hyperbola;

2. an approach tailored for the anomalous regime 5 > . in which we assume
that the the dominant &” are the small ones.

These two computations are done in § 2.6.12 and § 2.6.13.

2.6.12. £, , 3 (Rnpp) in the bulk region
The explicit expression for the contribution of the k-th edge on the left is

1

Lips = J qudv Poi(w)Pag(o) (1= 203 = (1= 20)%)"
0 Jo
N r qudv o (B()+(v) [(1 —ou)h — (1 Qv)é]p (2.6.12.1)
0 Jo
1 1P
~ ffdudvG (Usp, 7%n/n) G (Vsp, 9%p/n) [(1 —2u)? — (1 — 21))5]

where the integration is restricted to [0, 1] x [0, 3] since the endpoints of the edge

are both to the left of the zero, in the second line the normalization constant is
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12 : . : : :
Nog = (".')7, and in the third line G(m, 0?) is a gaussian of mean m and variance

o?. Tt is obtained from the quadratic expansion around the extremum of

k—1

o(t) == log (t) + o

—k log (1 — t) (2.6.12.2)
n

so that £¢(t)|;—., = 0 and é = % d(t)]4=t,,- Let us put u = ug, + du and

v = vg, +0v, and let us expand ((1 —2u)? ; —(1—20)% > around the saddle point.

We have
2 5 2 7"
1+ ou — |1+ ov
1-— 2'LLSp 1— 2usp

(2.6.12.3)

we can now perform the integrations and get

-
ReyiS]

((1 —2u)F —(1— QU)B)p — (1 - 2uy,)

since ug, = vg,. Calling ¢ = ﬁ,

T (3).00- 25 (). () e
farG e ey = 5% (258) = 3 2 (29) () 0

beven
(2.6.12.4)

whe

Jdu G (usp, 95 /n) (1 + cou)

where (y), = y(y+1)---(y + k —1). We are thus left with

Lips ~ (1 —2ug,)b f J dudv G (ugp, 72/n) G (ubp,aw/n)2< )(-1)%61(1 +csu)? (14 cov)' 7

q
“0-a () 3 5 (2) (55, (2) oo
— (1 - 2ug)5 ) gpgp (?)Z (a - ”':fj" 1)l
(2.6.12.5)
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where from the second to the third line we have used Lemma 2.6.6 (which has
forced a + b = p). But

(a—DUG-D L1 11
2 2 2,

—
[ 14

)!

b b (E)l
a+b=p a+b=p 2 a+b=p T\2 2/
a,beven a,beven a,beven
_ 2 3 ()"
(%)' a+b=p (%)' (g)‘
a,beven

(2.6.12.6)

Now we can evaluate £, 5 in the regime 2 = £ (for x € [0,1/2]). The saddle point
equation becomes

k
Usp = =T, ol = (1l —x) (2.6.12.7)
so that
20 pl (3 . ,
Lops ~ntE 2 fdx (1 — 20"V [p(1 - 2))% . (2.6.12.8)
Zon!

Lastly, since

1

1 B 1
f dz (1 —22)" [z(1 — )" &> 21—2bf dt (1 — %)’
0 0

1
_s=t? 2-%] dss™5 (1 — s (2.6.12.9)
0

(<0 +1)

2
Lt +b+1)

_ 2726

we just get that, in the bulk regime p (% — 1> < 1 (see Fig. 2.12),

Lyps=n"2Bg, (1 +0(1)) (2.6.12.10)
with
T(p + 1)r(£ . 1)
1 28 2 T 2
Bs» =5 R , (2.6.12.11)
r(%+3)
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and Ry, 3 = L, p s by symmetry.

Remark 2.6.4. Let us call the total energy of the single-sided contributions (i.e.
the sum of left and right contributions)

Ey5 " (n) = Lops + Rups. (2.6.12.12)

In the § — 17 limit, the distribution pg,; recovers the uniform distribution sup-
ported on the interval = [—1, 1] and there is no central term, so that the total
energy is asymptotically

ERER () = VL (p 1) 1+ o(1)) . (2.6.12.13)

)1 3
! TED
On the other hand, the asymptotic series for the energy where points are uniformly
distributed on [0, 1] is (see Eq. (2.6.1.2))

B S /LS B (2.6.12.14)

p+1

p7n

so that their ratio is

B () _ ( il
0,1]]

)p (1+0(1)) =2 (1+0(1)) (2.6.12.15)

Spn

as expected.

2.6.13. £,,5 (R, ) in the anomalous regime and on the
critical line

Recall from Eq. 2.6.11.6 that

Loy = Zp: (p) (_)qr<k/ + ) D( 4 n 4 25 (2)5 (2.6.13.1)

= q F(k/) F(k/+n///)

so that, for A; « y/n, we have

3 BE e )’

,,,,, K q—=0 : )
- , ; 2.6.13.2
~ A (Vn)? (g) P = cAn % =0 <n%_ﬁ>
= 0(Cnpp)
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which is always sub-leading with respect to the central contribution C,, , 5. Hence,
the contribution from the first A; edges may be discarded without affecting the
leading scaling and for &’ » 4/n the continuous approximation of the sum with an
integral up to the appropriate upper cutoff Ay can be done. Calling &' = (n’ and
n' = &y/n, so that k' = (€/n, we have that max (¢6y/n) = 3, so that A, () = 3¢
(observe that a.s. £ = ©(1)). We thus get

Vn/2
Lops = Z Ly ps ~ ff d¢ Leefmp,s
W=0(/n)

ffmdci() 1 (V)T (vt (5)
— 5<JW2 i ) (C+£)>

(2.6.13.3)
where (...), denotes average with respect to the distribution of . But {y/n 4
my + meo with my, mo indep. and distrib. with puinomial, Where

w\»—'
i

1 _ m?2
pbinomial(m) = \/Fe 2"% dm 5 (26134)
™4

i.e. p(&)d¢ = T e €0(€)d¢, so that, in particular (£2) = FST;) Setting n = &¢,

Lops =n2(175 Z<gﬁf dn 0()(—1)qn’7ﬁq(n+1)§>. (2.6.13.5)

3

Since a.s. A, (§) » 1, we may split the integration as

LAH(E)dnn (n+1)° fdm] g})()n +f h Hb;)( >

(2.6.13.6)
—;()[GMH ple=a=b-LAE)]
where
p(z,y) = {fnz fg;(_;) i i 2' (2.6.13.7)
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We thus get

Lopp=n3(175)28 qZ:‘) <§> (1)), (?) [ﬁ +p (% +0— 1,A(§))] g§>§

=p
(2.6.13.8)
where the second sum has been restricted to ¢ > p as the discarded terms would
be zeroed in light of Lemma 2.6.6. In the anomalous region above the critical
hyperbola g + p = fp, % +¢—1> 0 for all 3 > p. If we are on the critical

hyperbola, then the only dangerous term is ¢ = p. In the first case (see the
function p) we have no further dependence on ¢ and

()
<§%> -/ (2.6.13.9)
. NG .6.13.
is factored out. In the second case there is one single “dangerous” term from the
upper extremum of integration

(i (42)e5), = (gn-2) L AT (108 iy

where 1 is the Digamma function. In conclusion

- (D o (98 1 1
(;)<q (_1)2(3>[%+£+1+§+€—1] p+p<pp

(—1)q[(q/ﬁ) (;+%mn+ p+B=pp

[~
S|

= \4 p) \HF+p+1
L [1+E 1/ 1 1

3 B)—ln2>+2< )( ; |
2 2

\ o\ Bl+i+1 5+0-1

(2.6.13.11)

In particular, we have a logarithmic correction to scaling on the critical hyperbola

B =Plp-1):

Lemma 2.6.12 (Marginal anomaly for the family pg,). At the critical line p+ 3 =
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pB where Cn,p,ﬁ = O(L‘n’p’p%), we have

p

o 1
Eip' = Lop 2.+ Rop 2 +... = n'P2R(p)Inn (1 + (9(—)) (2.6.13.12)

Inn
with

Rip) = 2 p) (Z—j - 1)! (%)p . (2.6.13.13)

Instead in the anomalous region p > B/ 1) L, , 3, Rnpp and C, 5 are of the
same order and we get

BS, = n3(78) 245, + Ks,) (L4 0(1),  p+B<pB,  (2613.14)

where

P<1+%> N /
p 2 [ /8 1 1
T =N S )[ -
VT =0 \4 AN s AR - Rl
(2.6.13.15)
and K, g is given in Eq. 2.6.11.11.

2.6.14. Section provisional conclusions

In this Section we have studied possible anomalous scaling behaviors of the optimal
cost in the convex regime p > 1. We have derived phase diagrams which involve
p and the relevant exponent characterizing the kind of zero of the probability
distribution of points at a finite or infinite endpoint. For stretched exponential
distributions parametrized by a, the leading scaling is ~ a;(«, p) (In n)az(a’p ) and
we have explicitly determined both a; and a,. During the derivation, several
connections to topics (and recent results) in number theory have emerged, such
as with multiple zeta values (§ 2.6.6). For the algebraic cases parametrized by g,
an even simpler pattern has emerged: in the (p, ) plane hyperbolae separate a
bulk from an anomalous region. The hyperbolae are 2(p + 8) = pf for the case
of a finite endpoint, and p + f = pp for the case of an internal endpoint (finite
and infinite endpoints being related by 8 — —/). In the bulk regimes the leading
scaling is the Donsker’s Theorem one (i.e. ~ n'™?/2), and the leading coefficients
have been determined explicitly; in the anomalous regimes the leading scalings
have also been determined explicitly being respectively ~ n~?/8 and ~ n'/20-2/8),
The corresponding leading constants have been also obtained. In both cases, at the
critical lines a logarithmic correction to scaling was found (“marginally anomalous
scaling”), and the leading and first-sub-leading coefficients were also obtained.

106



2.7. The Dyck bound in the concave regime

THE content of this Section has been published in (177).

2.7.1. Problem statement and models of random
assignment considered

Contrary to the convex regime p > 1, where in d = 1 the optimal matching is
completely determined, and the C-repulsive case p < 0, where in d = 1 it is known
that the optimal matching has certain cyclic properties and can thus be readily
found in a subset of the symmetric group, the non-crossing property is not sufficient
to fully characterize the optimal assignment; the regime 0 < p < 1 is thus much
more challenging to study.

The relevance of non-crossing matching configurations among elementary units
aligned on a line has emerged both in physics and in biology. In the latter case,
this is due to the fact that they appear in the study of the secondary structure of
single stranded DNA and RNA chains in solution (85). These chains tend to fold
in a planar configuration, in which complementary nucleotides are matched, and
planar configurations are exactly described by non-crossing matchings between
nucleotides. The secondary structure of a RNA strand is therefore a problem of
optimal matching on the line, with the restriction on the optimal configuration
to be planar (95, 110, 1/1). The statistical physics of the folding process is
highly non-trivial and it has been investigated by many different techniques (971,
99), also in presence of disorder and in search for glassy phases (64, 87, 91, 92,
141). Therefore, as a further motivation for the present work, understanding the
statistical properties of the solution to ERAP with a concave cost function could
yeld results and techniques to better understand these models of RNA secondary
structure.

2.7.2. Choice of randomness for B and R

Let us fix €2 to be a segment, that is we consider the problem with open bound-
ary conditions (the alternate possible choice of considering () as a circle is not
considered here).

Notice that in the literature €2 is typically taken to be deterministically the unit
segment [0, 1], while in this §we will find easier to work with a segment [0, L], where
L may be a stochastic variable, whose distribution depends on n. We will work in
the framework of constant density, that is E(L) ~ n, so that, for comparison with
the existing literature, our results should be corrected by multiplying by a factor
of the order nP.
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So S159 S3 S4

AR —— :

by 1 by bz 1

Figure 2.13. — Ezample of instance J = (B,R) = [s,0], in the PPP model.
Bottom: the configuration of points. Top: the Dyck bridge associated to o.
Heren =8, and o = {+,—,+,+,—, +,—, — —, —, +,+, — +,+,—}.

We can encode an instance J = (B, R) by the ordered lists B = (by,bs,...,b,),
b < b1, and R = (rq,79,...,7,), 73 < 7i11. A useful alternate encoding of the
instance is J = [S, 0], where s = (so,51,...,S2,), S; € RT, encodes the distances
between consecutive points (and between the first/last point with the respective
endpoint of the segment §2) and the vector o = (01,09, ...,09,) € {—1, +1}*", with
Y. 0i = 0, encodes the sequence of colours of the points (see Fig. 2.13, where the
identification blue = +1 and red = —1 is adopted). In other words, the partial
sums of §) i.e. (sg, S + S1,80 + 81+ S2,...,S0+ -+ + So_1), constitute the ordered
list of B U R, and o describes how the elements of B and R do interlace. In this
notation, the domain of the instance Q = [0, L] is determined by L = 37" s;.
Remark that the cardinality of the space of possible vectors o is just the central

binomial,
2n
B, = ) 2.7.2.1
() (27.2.1)

For simplicity, we consider here only the non-degenerate case, in which almost
surely all the s;’s are strictly positive, that is, the values in B U ‘R are all distinct.

In this Section, and more crucially in subsequent work, we shall consider two
families of measures. In all these measures, we have a factorisation u([3,c]) =
p1(8)p2(o), and the measure on o is just the uniform measure.

Independent spacing models (ISM). The measure (5) is factorised, and the s;’s
are i.i.d. with some distribution p(s) with support on R* (and, for simplicity,
say with all moments finite, {dss*p(s) < oo for all k). Without loss of
generality, we will assume that the average of p(s) is 1, i.e. the average of L
is 2n + 1. In particular, we will consider:

Uniform spacings (US): the s;’s are deterministic, identically equal to 1,
and thus L = 2n + 1 for all instances;

Exponential spacings (ES): the s;’s are 1.i.d. with an exponential distribu-
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tion p(s) = ¢g1(s) = exp(—s), and thus L concentrates on 2n + 1, but
has a variance of order n.

Exchangeable process model (EPM). This is a generalisation of the ISM above,
but now the s;’s are not necessarily i.i.d., they are instead exchangeable
variables, that is, for all 0 < i < 2n,

,u(So, ey Sy SigTy e ,Sgn) = /L(S(), ey Sit1y, Sy ey Sgn) . (2722)

In particular, within this class of models we could have that u is supported
on the hyper-tetrahedron Ty, described by s; > 0, and L = Y, s; = 2n + 1.
In this paper, we will consider:

Poisson Point Process (PPP): the s;’s are the spacings among the sorted
list of 0, 2n+1, and 2n uniform random points in the interval [0, 2n+1].

Each of these three models has its own motivations. The PPP case is, in a sense,
the most natural one for what concerns applications and the comparison with
the models in arbitrary dimension d. Implicitly, it is the one described in the
introduction. The ES case is useful due to a strong relation with the PPP case
(see Remark 2.7.1 and Lemma 2.7.5 later on in Section 2.7.6). In a sense, it is the
“Poissonisation” of the PPP case (where in this case it is the quantity L that has
been “Poissonised”, that is, it is taken stochastic with its most natural underlying
measure, instead of deterministic). The US case will prove out, in future work, to
be the most tractable case for what concerns lower bounds to the optimal cost.
As all of the measures above are factorized in o and S, and the measure over o
is uniform, it is useful to define two shortcuts for two recurrent notions of average.

Definition 2.7.1. For any quantity A(.J) = A(c, 5), we denote by A the average
of A over o

A:=F,(A) = BLRZA<O',§); (2.7.2.3)

This average is independent from the choice of model among the classes above.
We denote by
(A) =E,5(A) (2.7.2.4)

the average of A over §, with its appropriate measure dependence on the choice
of model. Finally, we denote by E,(A) the result of both averages, in which we
stress the dependence from the size parameter n in the measure, that is

En(A) = E, 5 (A) = (A) = (A). (2.7.2.5)

For a given instance, parametrised as J = (B, R), or as J = [§, 0], (and in which
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the cost function also has an implicit dependence from the exponent p), we will
call as usual 7,y one optimal configuration, so that Hop(J) = Hj(mopt)-

2.7.3. Synthesis of results

In this Section we will introduce the notion of Dyck matching mpyac of an instance
J and we will compute its average cost Hpye := E,(H (7pyek)) for the measures
ES and PPP (with a brief discussion on the US case).

In particular we prove the following theorem:

Theorem 2.7.1. For the three measures ES, US and PPP, let E, (Hpye) denote
the average cost of the Dyck matchings. Then

n 0<p<i
IE71(]¥Dyck) =~ nllnn b= % (2731)
n2t? 1l<p<l

where a(n) ~ b(n) if % tends to a finite, non-zero constant when n — 0.

This Theorem follows directly from the combination of our suitable Lemmas,
namely Proposition 2.7.6 and Corollary 2.7.6 appearing later on. In fact, our re-
sults are more precise than what is stated in the Theorem above (we describe the
first two orders in a series expansion for large n, including formulas for the associ-
ated multiplicative constants), details are given in the forementioned propositions.

The average cost of Dyck matchings provides an upper bound on the average
cost of the optimal solution; numerical simulations for the PPP measure, described
in Section 2.7.8, suggest the following conjecture, that we leave for future investi-
gations:

Conjecture 1. For the three measures ES, US and PPP, and all 0 < p <1,

hmwzk

, 2.7.3.2
n—0w0 En (HDyck) b ( )

with 0 < k, < 1.
2.7.4. Basic facts

Before starting our main proof, let us introduce some more notations, and recall
some basic properties of the optimal solution for convenience.
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2.7.5. Basic properties of the optimal matching

A Dyck path of semi-length n is a lattice path from (0,0) to (2n,0) consisting of
n ‘up’ steps (i.e. steps of the form (1,1)) and n ‘down’ steps (i.e., steps (1, —1)),
which never goes below the z-axis. There are C, Dyck path of semi-length n,

where ) ) | )
n n n

= — = 2.7.5.1

Cn (n) (n—l—l) n+1<n) (2.7.5.1)

are the Catalan numbers. Therefore the generating function for the Dyck paths is

1—+v1—-4 2
C(z) = Z Cp2™ = -
= 2z 14+ +v/1—4z

The historical name ‘Dyck path’ is somewhat misleading, as it leaves us with no
natural name for the most obvious notion, that is, the walks of length n with steps
in {(1,1),(1,—1)}. With analogy with the theory of Brownian motion (which re-
lates to lattice walks via the Donsker’s theorem) (160), we will define four types of
paths, namely walks, meanders, bridges and excursions, according to the following
table:

(2.7.5.2)

y(2n) =0 y(x)=0Ve
walk no no
meander no yes
bridge yes no
excursion yes yes

(of course, by “no” we mean “not necessarily”). Thus, in fact, the “paths” are the
most constrained family of walks, that is the excursions.

In general a Dyck path (i.e., a Dyck excursion) can touch the z-axis several
times. We shall call an rreducible Dyck excursion a Dyck path which touches the
x-axis only at the two endpoints. It is trivially seen that the generating function
for the irreducible Dyck excursions is simply zC(z). As we said above a Dyck
bridge is a walk made with the same kind of steps of Dyck paths, but without the
restriction of remaining in the upper half-plane, and which returns to the z-axis.
The generating function for the Dyck bridges is

1 1
B(z) := = = Y Bk 2.7.5.
B = 1o cm T vith ,; ke (2.7.5.3)

with By the central binomials (2.7.2.1), and k is the semi-length of the bridge
(just like excursions, all Dyck bridges must have even length). The factor 2 in the
functional form of B(z) in terms of C'(z) enters because a bridge is a concatenation
of irreducible excursions, each of which can be in the upper- or the lower-half-plane.
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Now, it is clear that each configuration o corresponds uniquely to a Dyck bridge
of semi-length n, with o; = +1 or —1 if the ¢-th step of the walk is an up or down
step, respectively.

In a Dyck walk we shall call (Kpe(?), Ape(?)) the two coordinates of the mid-
point of the i-th ascending step of the walk (minus (3, 3), in order to have integer
coordinates and enlighten the notation), and call (keq(7), hreq(7)) the coordinates
of the mid-point of the i-th descending step (again, minus (1, 1)). For e = (i, )
an edge of a matching 7, call |e| = kpue(?) — krea(j) the horizontal distance on the
walk, and |e| = |b; — r;| the Euclidean distance on the domain segment.

For a given Dyck bridge o, we say that m € S, is non-crossing if, for every
pair of distinct edges e; = (i1,71) and es = (i, jo) in m, we do not have the
pattern Kpe(i1) < kplue(i2) < krea(J1) < krea(j2), or the analogous patterns with
Eple(i1) < Kred(J1), OF Kplue(ia) <> krea(J2), or (1)1 <> (+)2 (recall Lemma 2.1.4, see
also bottom part of Figure 2.14). Note that the notion of 7 being non-crossing
only uses the vector o.

For a given Dyck bridge o, we say that 7 € S, is sliced if, for every edge
e = (i,7) € m, we have hpue(i) = hrea(J)-

Two easy Lemmas have a crucial role in our analysis.

Lemma 2.7.2. All the optimal matchings are non-crossing.

Proof. (This is Lemma 2.1.4. However, the proof appears to be new and for this
reason we report it here.) The proof is by absurd. Suppose that 7 is a crossing
optimal matching. If we have a pattern as kg(i1) < krea(J2) < krea(j1) < kp(i2),
then the matching 7’ with edges €} = (i1, j2) and e}, = (is, j1) has H;(7") < H;(m),
because |e]| < |e1| and |e}| < |es].

If we have a pattern as kg(i1) < kp(i2) < krea(J1) < krea(j2), then again the
matching 7’ with edges €| = (i1, j2) and €}, = (is, j1) has H;(n") < H (), although
this holds for a more subtle reason. Calling a = xo—x1, b = y; —x9 and ¢ = ys —y1,
we have |e;]| = a+0b, |eo] = b+ ¢, || =a+ b+ cand |ey| =b. It is the case that,
for a,b,c>0and 0 <p < 1,

(@a+b)P+(b+c)>(a+b+c)P +V°. (2.7.5.4)

A proof of this inequality goes as follows. Call F(a,b,c) = (a + b)? + (b + ¢)P —
(a+b+c)?—bP. We have F(a,b,0) =0, and

10 1 1
-—F = — : 2.7.5.
pdc (a:5,) b+t (a+b+c)-p =0 (2.7.5.5)

All the other possible crossing patterns are in the first or the second of the forms
discussed above, up to trivial symmetries. O
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The second Lemma states that a necessary condition for an optimal matching
to be optimal is to be sliced.

Lemma 2.7.3. All the optimal matchings are sliced.

Proof. The proof is by absurd. Suppose that 7 is a non-sliced optimal matching.
If we have (i,7) € m with Aplue(?) # hrea(J), say hpe(i) — hrea(j) = 0h # 0, we
have that the point z; is matched to y;, and that, between z; and y;, there are
Npe and nyeq blue and red points, respectively, with nyue — nrea = —0h # 0. So
there must be at least |0h| points inside the interval (z;,y;) which are matched
to points outside this interval, and thus, together with (i, 7), constitute pairs of
crossing edges. So, by Lemma 2.7.2, 7w cannot be optimal. [

The slicing of optimal assignments was studied in (754).

2.7.6. Reduction of the PPP model to the ES model

Theorem 2.7.1 (and, hopefully, Conjecture 1), in principle, shall be proven for
three different models, Uniform Spacings (US), Exponential Spacings (ES) and
the Poisson Point Process (PPP). However, as we anticipated, the PPP case is a
minor variant of ES. In this Section we give a precise account of this fact.

The starting point is a relation between the two measures:

Remark 2.7.1. We can sample a pair [57, 0] with the measure p25 by sampling
a pair [3, 0] with the measure utt?, a value L € RT with the measure go,,1(L) =

é—:;! exp(—L)dL, and then defining s} = 5,52

Indeed, the measure on § in the PPP can be seen as the measure over indepen-
dent exponential variables conditioned to the value of the sum; thus, the procedure
leads at sight to a measure over §' which is unbiased within vectors §” with the
same value of L = ). s/. Then, from the independence of the spacings in the ES

model we easily conclude that the distribution of L must be exactly g (2n+1)(L),
i.e. the convolution of 2n + 1 exponential distributions.
More precisely, for k£ an integer, define the Gamma measure

l.kfl

gr(x) = me_z = gt (x). (2.7.6.1)

We use the same notation for its analytic continuation to k real positive.
We introduce (the analytic continuation of) the rising factorial (following a
notation due to Knuth (55)):

p._ Ln+p)

nP = () = de gn ()2 (2.7.6.2)
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This choice of notation is motivated by the fact that n! = n! = n, and that, for
n>» p?, n? = nP(1 + O(p?*/n)). More precisely we have:

Lemma 2.7.4. For0<p<1landn>1
(n+p—1)P<nf <nP. (2.7.6.3)

Proof. It is well known that the Gamma function is logarithmically convex (1/7).
In particular, for any 0 < p < 1,

InT'(n+p) <(1—-p)InT'(n) + pInT'(n +1) =InT'(n) + plnn, (2.7.6.4)
that is
n? =exp(InT(n + p) —InT(n)) < exp(plnn) = n”. (2.7.6.5)
Analogously, we have
InT'(n) < (1—p) InT'(n+p)+pInT'(n+p—1) = InT'(n+p)—pln(n+p—1), (2.7.6.6)
that is
n? =exp(InT'(n +p) —InT(n)) = exp(pln(n+p—1)) = (n+p—1)". (2.7.6.7)

]

See (139) for a recent review of inequalities involving n?. Summing up, Re-
mark 2.7.1 and Lemma 2.7.4 allow to prove that:

Lemma 2.7.5. The following inequalities hold:

on+ 1 opt opt

m p(1-p)
( > E(Hyy) < E(HDT) <E(HL). (2.7.6.8)

Also the corresponding inequalities with Hopy replaced by Hpyex do hold, as well as
for any other quantity H(mw*(J)), whenever m* is some matching determined by the
instance, and invariant under scaling of the instance, that is 7*(s, o] = 7*[\§, o].

Proof. For compactness of notation, we do the proof only for the H,, case, but
the generalisation is straightforward. Of course, Hpso)(m) = APHz.(m) for
all instances [3,c], all configurations m, and all scaling factors A > 0 (so as
m*[5,0] = 7*[As, 0], it follows that Hpg o (7*[AS,0]) = NWHgze(7%[5,0])). In
particular, Hop([AS, 0]) = NWHop([S5,0]). In light of Remark 2.7.1, we can de-
scribe the average over ugs|3, o] in terms of an average over uppp|3, o], and over
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Gon+1(L). More precisely

BHE) = [duss[5",0] Hoe([5",0)
p
f pppp|3, 0 JdLQQn-i-l ( ST 1) Hopi([5,0])
. P (2.7.6.9)
- BUE) [ ) (527
pppy (21 + 1)P
= E(Hop") (2n + 1)p°

The upper bound follows directly from Lemma 2.7.4. The lower bound follows as:

(2n + 1)P 1—p\” 1\t P

—=(1- = (1-— 2.7.6.10

(2n +1)p 2n+1 2n+1 ( )
where first one uses Lemma 2.7.4, then the inequality (1 — ge)? > (1 — €)P? (valid
for €,p,q € [0,1]), w1the—mandq—1—p O

In light of this Lemma, it is sufficient to consider Theorem 2.7.1 (and Conjecture

1) only for the US and ES models.

The precise statement of our conclusions is the following:

Corollary.
E}"" (Hpya) = EL® (Hpye) (1+ 0 (n71)) . (2.7.6.11)

The relevance of this statement lies in the fact that, in the forthcoming equa-
tion (2.7.7.1), we provide an expansion for EX®(Hpyq) in which corrections of
relative order 1/n appear as the third term in the expansion (and we provide ex-
plicit results only for the first two terms). As a result, the very same conclusions
that we have for the ES model do apply verbatim to the PPP model.

2.7.7. The Dyck matching

For every instance [5, 0], there is a special matching, that we call mpyc, which
is sliced and non-crossing for ¢. This is the matching obtained by the canonical
pairing of up- and down-steps within every excursion of the Dyck bridge (see
Figure 2.14 for an example). In analogy with our notation Huu(J) = Hj(mopt), let
us introduce the shortcut Hpyek(J) = Hj(Tpyek)-
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Figure 2.14. — The Dyck matching mpyc associated to the Dyck bridge o in the
example of Figure 2.135.

Remark 2.7.2. The Dyck matching mpyck is determined by the order of the colours
of the points, . In particular it does not depend on the actual spacings between
them, s, and it does not depend on the cost exponent p.

Remark 2.7.2 is a crucial fact that makes possible the evaluation of the statistical
properties of mpyck, with a moderate effort. In particular, it will lead to the main
result:

Proposition 2.7.6. For all independent spacing models

A 2PT(p—1) 1
TPH+WZ)+12)H2+Z)+O<1) < %
E,(Hpya) ~ { Z=nlogn + (5= + A,)n+ O(logn) p=3. (2.7.7.1)
2T (p—3) 1 Ap _1
4r((§+12))”2+p +ZFn+ 0 2"P) P> %

where A, and A, are model-dependent quantities, which are not larger than

A 2 AmaX—\F(l 2 4 7p) (2.7.7.2)
P (1-2p)l(1—-p)’ w TR R

and

N Vg + 2log2 — 2
* V2T .

In particular, for the ES model

FG-»)Tp+1) \F
ES _ 2 ES _ < B
4 or=1 /7T (2 — p) A - (5log2 + e —4) . (2.7.7.4)

The remaining of this Section is devoted to the proof of this Proposition. First,
we factorize the average over the instance J = [3, 0] in two independent averages,

(2.7.7.3)
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the average over o and the one over § (see Definition 2.7.1):

]E HDyck (Z Jz TDyck (4 ) = Z<Ji»7TDyck(i)>
- B ZZ <‘kB - T‘E‘d WDka(Z))’p> )

o i1=1

(2.7.7.5)

where in the last line we emphasize that mpyac depends only on o, as stated in
Remark 2.7.2, and we adopted again the shortcut B,, = (2:) for the total number
of configurations o.

Due to the fact that the spacings s; are independent, the quantity appearing
above, (|kg(7) — Kred(TDye(7))[), only depends on the length || = 2k + 1 of the
corresponding link e = (¢, Tpye (7)), via the formula

)i (i) ~ ()P — <(2)> 2170

where the s;’s are i.i.d. variables sampled with the distribution p(s) (that is, in
the ES model, i.i.d. exponential random variables).

Then, as a general paradigm for observables of the form » | __(F(|e|)), we rewrite

the sum over all possible o and over all links e of a given matching 7 = mpye(0)
as a sum over the forementioned parameter k, with a suitable combinatorial factor
Un, k-

;<F||> B, Z<F(Z)> (2.7.7.7)
Un,k:Z Z Olef2k+1 - (2.7.7.8)

0 eEmpyck(0)

(note that Y., v, = nB, = 2(**")). In particular, in our case,
n—1
E,(Hpya) = By D var S (2.7.7.9)
k=0

So we face two separate problems: (1) determining the combinatorial coefficients
Up, i, Which are “universal” (i.e., the same for all independent-spacing models, for all
cost exponents p and for all observables F' as above); (2) determining the quantities
S,ip ), that is, the average over the Euclidean length |e| of the link (which depends
from the function f(s) that defines the independent-spacing model, and from the
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exponent p).

For what concerns S (») , this can be computed exactly both in the US and ES
cases: in the US case Sk = (2k+1)P, asin fact |e| = 2k+1 = |e|| deterministically,
while in the ES case S,(f) =I['(2k+1+p)/I'(2k +1). More generally, for any model
with independent spacings we would have that S,E;p ) = {dx zP f*?+1 (1) that is, the
sum of 2k + 1 i.i.d. random variables is distributed as the (2k 4 1)-fold convolution
of the single-variable probability distribution. For the ES case this is exactly the
Gamma distribution gk, 1(s). Up to this point, we could have also evaluated the
analogous quantity for the PPP model, although with a bigger effort (but, from
Section 2.7.6, we know that this is not necessary).

For what concerns v, x, in Appendix A.1 we prove that

n—k

Vne = Ch [4”"“‘1 - Bn_k] —: CyVion - (2.7.7.10)

In particular, the simple expression for V,,_p_; gives in a straightforward way
= 3
= Z (1—42)"" 4+ (1—42)=. (2.7.7.11)

We pause to study the distribution of the lengths |e|| of links in mpyq, that is,
the normalised distribution (in k), with parameter n, given by the expression
Uni/(nBy). It is known that planar secondary structures have a universal be-
haviour for the tail of such a distribution, with exponent —%. Indeed, by perform-
ing a large n expansion at fixed k, and then studying the large k& behaviour, one
has

Uy, Cr [ n n—k
nék B nt; [4 T B”*’“]
" (2.7.7.12)
oAk P 2t

™

reproducing the known behaviour.
Equation (2.7.7.9), with the help of (2.7.7.10) and (2.7.7.11), can be used to
relate the generating functions

E(Z7p) = HDka 2" (27713)

S(z;p) = (2.7.7.14)

i
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Lemma 2.7.7.

E(z;p) = 2V(2) S(z;p) (2.7.7.15)
Proof.
0
E(Z,p) = Z BnEn(HDyck)Zn
n=0
0 n—1 )
= CkVn_k_lS P z"
;_:(Jk_o * (2.7.7.16)
- (Z cks,ngk) ( > vn“z"’f)
k=0 n=k+1
=2V(z)S(z;p) .
O

The behaviour at large k of S,(f ) is determined by the theory of large deviations.
Said heuristically, the sum of the 2k + 1 i.i.d. variables s; concentrates on 2k + 1,
with tails which are sufficiently tamed that the average of z? is equal to (2k +

1)P(1 + O(k™Y)). That is, S ~ (2k + 1)P ~ 2°k?, and we have
o’
CpSP) ~ \—54%17 2 (2.7.7.17)

We recall a fundamental fact in the theory of generating functions: the singularities
of a generating function determine the asymptotic behaviour of its coefficients. In
particular, the modulus of the dominant singularity (that nearest to the origin)
determines the exponential behaviour, and the nature of the singularity determines
the subexponential behaviour (see (7129), Ch. 6 for a comprehensive treatment of
singularity analysis, and Appendix A.2 for a short summary of results). This tells
us that we just need an expression for F(z;p) around its dominant singularity
to extract asymptotic information on the total cost, i.e. we just need to evaluate
S(z; p) locally around the dominant singularity of E(z;p).

First of all, one needs to locate the dominant singularity of S(z;p) and compare
it with the z = }1 singularity of V(z). From Equation 2.7.7.17, we find an expo-
nential behaviour ~ 4™ of the coefficient of S(z;p), trivially due to the entropy of
Dyck walks of length 2n, thus, the singularity must be in z = }L. Notice that this
agrees with the dominant singularity of V(z) (which also is, essentially, a gener-
ating function of Dyck walks up to algebraic corrections), so that both generating
functions will combine to give the final average-cost asymptotics.

At the dominant singularity, the power-law behaviour of the coefficients is given
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by a generating function of the kind
S(z;p) = Ap + Bp(1 —42)% + o((1 — 42)%), (2.7.7.18)

where A, encodes the regular terms at the singularity, and o((1 — 4z)%) accounts
for all other singular terms leading to non trivial subleading corrections (among
them one finds power, logarithms. . .in the variable 1 — 4z).

In fact, in such a simple situation as in our case, we expect a more precise
behaviour, S(z;p) = A,(1 + O(1 —4z2)) + B,(1 — 42)% (1 + O(1 — 4z2)), where we
have two series of corrections, in integer powers, associated to the regular and
singular parts of the expansion around the singularity (up to the special treatment
of the degenerate case g, € Z).

Notice that B, and g, can be found by computing the asymptotic behaviour of
the coefficients of Equation 2.7.7.18

B 2P 8
S(P) N P pkf—9p—1 — = pkppr—3 , 2.7.7.19
g I'(—gp) VT ( )

giving, by comparison with Equation 2.7.7.17,

1 _QPF(p—%)

Gp=15"P B, Nz (2.7.7.20)

Nothing can be said on the coefficient A, without performing the exact resumma-
tion of the generating function at the singularity (possibly, after having subtracted
a suitable diverging part).

This analysis results in an asymptotic expression for E(z;p):

2pF(p—

E(z;p) ~ i [Apu —42)77 4 NG 2) (1-— 4z)(1+p>] (2.7.7.21)

for p # %, and
1 o 1 /2 P 1
Bp=b) = 0497 [y 1y ey () ”(6)]
1 _3 [ N 2 1
21(1—42) A +\/;log (—1_42)]

1
3

(2.7.7.22)

for p = %, where ¢ = p — 5. The hypothesis of S(z;p) being non-singular in p
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implies that A, must cancel the % singularity, leaving a regular part

1 /2
A, = lli% [AéJre + - ;] . (2.7.7.23)
This set of results has remarkable consequences, as it unveils a certain universality
feature for E(z;p). In fact, for all models in our large classes, the nature of the
dominant singularity of F(z;p) is the same, giving a universal asymptotic scaling
in n for the average cost of Dyck matchings. Moreover, in the p > % regime, also
the coefficient of the dominant singularity is universal.

We can now expand the generating function using standard techniques (Ap-
pendix A.2, (723)) and the fact that B, ~ —— , obtaining

Jrn
%n + o(n) p<3
E, ~ \/%nlogn +o(nlogn) p=1. (2.7.7.24)
2T (p—2) 1 1
4r((§+12))m+p +o(n2*?) p>3
and in fact, more precisely,
A 2°T(p—3) 1 1
2 F T 2+ O p<3
E, ~ { s=nlogn + (4= + A)n+O(logn) p=1. (2.7.7.25)
1
ot O k) peg

where the terms of the expansion are just the same for the p < % and p > %
cases, but have been arranged differently, in the order of dominant behaviour.
The quantity A, has been defined in (2.7.7.23), for the behaviour of S(z; 5), while
the quantity

vg + 2log2 — 2

V21

is a further (universal) correction coming from taking into account how S(z;3)
enters in E(z; §), via V(z) (and ~g is the Euler-Mascheroni constant).

A (2.7.7.26)

The formulas above gives the precise asymptotics, up to relative corrections
of the order n=t. As a corollary, we have this very same behaviour in the PPP
model, as, from Lemma 2.7.5 and Corollary 2.7.6, we know that also the relative

corrections between ES and PPP models are of the order n~?.

For higher-order corrections, one would need to take into account more sublead-
ing terms in Equation 2.7.7.18.

For the ES case the resummation of F(z;p) can be performed analytically by
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writing the Catalan number in terms of Gamma functions, namely

AT (R +3)

giving
ptl pt2
S(zip) =T+ 1)F( 22 ‘42) (2.7.7.28)

where F' is the o F7 hypergeometric function (a reminder is in Appendix A.2, equa-
tion (A.2.0.5)). This allows for an explicit computation of the two non-universal
quantities in our expansion:

r(i-p)T(p+1) 2
ABS — — 12 ABS — 4 [Z (5log?2 —4) . 2.7.7.29
P op—1 \/EF (2 _p) * T ( 0g 2+ Ve ) ( )

note how the A, and A/, terms involve combinations of quantities of the same
algebraic nature. See Appendix A.2 for the details of the derivation.

Similar but more complex resummations seem possible in the independent spac-
ing case, when the function f(x) is a Gamma distribution, f(z) = ag,(ax) for
a € N/2, and S(z;p) is obtained in terms of generalised hypergeometric functions
k+1F). However no exact resummation seems possible for the US case (which would
require a limit @ — o0 in this procedure).

2.7.8. Numerical results and the average cost of the
optimal matching

Our main results concern the leading behaviour of the average cost of the Dyck
matching, which, of course, provides an upper bound to the average cost of the
optimal matching. The explicit investigation of small-size instances suggests that
the optimal matching is often quite similar to the Dyck matching, in the sense
that the symmetric difference between 7o, and mpye typically consists of “few”
cycles, which are “compact”, in some sense. Thus, a natural question arises: could
it be that the large-n average properties of optimal matchings and Dyck matchings
are the same? If not, in which respect do they differ? In order to try to answer
this question, we have performed numerical simulations by generating random
instances with measure 27 and we have computed the average cost associated

to the optimal and to the Dyck matching.

Figure 2.15 gives a comparison between the two average costs by plotting their
ratio as a function of n for various values of p. The corresponding fits seem to
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Figure 2.15. — Ratio of the average cost of optimal matchings over that of Dyck

matchings as a function of n"», where w, = —|p — % . Forp= %, the ratio is
plotted against 1/log,yn. Dashed lines are linear extrapolations for n*» — 0.
The number of simulated instances at each value of (p,n) is 10000, whenever

n < 4000, and 5000, whenever n = 5000 or 6000.

exclude the possibility that the limit for large n of the ratio of average costs go to
zero algebraically in n (and also makes it reasonable that there are no logarithmic
factors, although this is less evident), that is, these data support the content of
Conjecture 1.

In order to further test this hypothesis, we fitted the optimal average cost to
the same scaling behaviour found for the Dyck matching average cost, i.e.

{ap" + by p7 (2.7.8.1)

cn(logn+d) p=

D= N =

fixing the scaling exponents and aiming to compute the scaling coefficients. Notice
that the term a,n is leading for 0 < p < %, while bpn%ﬂ” is leading for % <p<l.
Figure 2.16 summarizes the fitted parameters.

For the Dyck matching, the fitted parameter for the leading scaling coefficient
agrees perfectly with the computed coefficient, as expected. The coefficient of the
subleading term seems to agree with the computed coefficient in a less precise way,
probably due to stronger higher-order corrections. For the optimal matching, the
fitted coefficients behave qualitatively as the coefficients that we have computed
for the Dyck case, but the agreement is visibly not quantitative. The fit seems to
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Figure 2.16. — Fitted scaling coefficients as a function of p.

confirm the hypothesis that the two average costs have the same scaling exponents
with different coefficients.

To completely confirm such hypothesis, we suggest that lower bounds for the
cost could be computed. We expect such lower bounds to share the same scaling
as that found in this paper, but with different constants. We leave such matter
open for future work.
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2.8. Chapter provisional conclusions and
research perspectives

N this Chapter we have investigated the one dimensional Euclidean Random
Assignment Problem. After reviewing the state of the art, we have presented
some new results concerning both the convex and concave regime. For the sake of
clarity, let us split our concluding remarks, provisional conclusions and perspectives
in two paragraphs according to the involved regimes.

2.8.1. Convex regime

In the case p = 2 several variants of the problem can be studied in much detail
essentially due to Fourier Duality. Here, we have focused on the statistical prop-
erties of the optimal transport field in both the Poisson-Poisson and Grid-Poisson
problem, both in the continuum and in the discrete setting. In particular, in the
case of the Poisson-Poisson problem on the unit circle, we have shown that, in the
continuum, the full ground state energy distribution is given explicitly as an el-
liptic ¥4 function, a calculation comforted by the results of numerical experiments
already for moderately small values of n.

Then, we have considered the case p > 1 for a general probability distribution
(not necessarily finitely supported) of blue and red points. In such a case we have
studied the occurrence of an anomalous scaling with respect to the bulk behavior
(the one fixed by the well-known brownian bridge qualitative picture) for a number
of exemplifying choices of the probability density function.

In particular in § 2.5 we have studied this problem via a continuum approach
which reduces the calculation of asymptotic constants to quadratures (if the in-
volved integrals converge). If the involved integrals do not converge, the method
suggests a cutoff-based regularization procedure to deal with the singularity(ies).
The energy scaling behavior can be obtained by fixing a single unknown scalar
parameter to a numerically determined value, which is easily accessible since the
solution is ordered. The predictions of the method have been extensively verified
by numerical experiments. We have also shown, through Beta integrals at fixed
n, an exact expression of the expected ground state energy for points distributed
according to an exponential of mean 1, a result which appears to be new in the
literature. We notice that the importance of the discussed regularization method
is not restricted to the one-dimensional ERAP. Indeed, analogous formulas for the
expected optimal costs appear also in other one-dimensional random optimization
problems, such as the random Euclidean 2-matching and the Traveling Salesman
Problem in the bipartite and the monopartite case. The understanding of the
proper regularization to be adopted, when the simpler expression cannot be used
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and an anomalous scaling appears, is therefore relevant for a larger class of op-
timization problems, to which the analysis presented here can be applied. Also,
in Ref. (1/9), an integral expression for the (M) in the large n limit was given
for d > 1. As the authors stress therein, the higher dimensional case might also
require a regularization, depending on the properties of the domain and on the
disorder distribution associated to B and R. The criteria for such a regularization
remain an open problem for future investigations.

In § 2.6 we investigated the possible emergence of an anomalous scaling by
combinatorial and analytic methods whose aim was to postpone the n — oo limit.
By these methods, we have considered several cases in which logarithmic scaling
of the expected ground state energy emerges, and determined both the scaling
exponent and limit constants explicitly in terms of special functions. Our analytic-
combinatorial approach, which holds at even-integer values of p, is extended by
analytic continuation of the results in the whole p > 1 region, and is able to
address (even if, admittedly, with considerable more efforts) also the case in which
the continuum method of § 2.5 cannot be used due to ill-posed involved integrals.

Concave regime. In § 2.7 we have started to address the ERAP in dimension
1, for points chosen in an interval, with a cost function which is an increasing and
concave power law, that is ¢(|z]) = |z|P for 0 < p < 1. We have introduced a new
special matching configuration, uniquely associated to an instance of the problem,
that we called the Dyck matching, as it is produced from the Dyck bridge that
describes the interlacing of red and blue points on the domain M.

As this is a deterministic configuration, described directly in terms of the in-
stance, instead of involving a complex optimisation problem, this configuration
is much more tractable than the optimal matching. On top of this fact, we can
exploit a large number of nice facts, from combinatorial enumeration, which pro-
vides us also with several results which are exact at finite size, this being, to some
extent, surprising. In particular, we have been able to compute the average cost
of Dyck matchings under a particular choice of probability measure (the one in
which the spacings among consecutive points are i.i.d. exponential variables). Fi-
nally, we have performed numerical simulations that suggest that the average cost
of Dyck matchings has the same scaling behaviour of the average cost of optimal
matchings (Fig. 2.15). We leave this claim as a conjecture. A promising way to
prove this conjecture seems to be that of providing a lower bound on the average
cost of optimal matchings with the same scaling as our upper bound, by producing
“sufficiently many” or “sufficiently large” sets of edge-lengths which must be taken
by the optimal solution. If we assume our conjecture, this result allows to fill in
a missing portion in the phase diagram of the model in one dimension, for what
concerns the scaling of the average optimal cost as a function of p (see Figure 2.17).
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Figure 2.17. — Scaling exponent of the average optimal cost as a function of p,
in the case of cost function C(|z|) = +|x|P (that is, attractive case for p > 0
and repulsive case for p < 0). In red (solid line), our conjectured result. In
black (dashed line), existing results from (154) (notice that we have rescaled our
results of Theorem 2.7.1 by a factor (2n+1)"P in order to make the comparison,
i.e. we plotted the result for M = [0,1]).

These new facts highlight a much richer structure that what could have been pre-
dicted in light of the previous results alone, with the concatenation of four distinct
regions, and a new special point with logarithmic corrections at p = 15.

The case of uniformly spaced points needs further analysis in the region p < 1/2.
One can define an interpolating family of independent spacing models, which en-
compasses both the ES and US cases, by taking as function f(s) the Gamma
distribution ag,(as), for a > 0. For example, when « is an integer, each s; is
distributed as a sum of « i.i.d. exponential random variables, each with mean
a~t. The ES case is, of course, a = 1, while, due to the central limit theorem,
the US model is the limit as « tends to infinity. This generalised model appears
to be treatable with the same technique that we employed for the pure ES case
whenever « is a half-integer: the generating function of the average cost can be
computed exactly in this case, and involves more and more complicated hypergeo-
metric functions as a grows (namely, if & = k/2, we have a ,Fj_; hypergeometric
function). Performing singularity analysis over such functions is a challenging task,
which builds on classical results on generalised hypergeometric functions (due to
Ngrlund and Biihring), that we leave for future work.
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Besides the above directions, for which an attacking strategy is at sight, other
specific problems in the concave regime can be identified, for the understanding of
which an alternative point of view may be useful. We sketch two of them in the
following, in the form of Research Problems.

Research Problem 1 (Beyond the rule of three). We have recalled in several
occasions (Lemmas 2.1.4 and 2.7.2) a characteristic property of the optimal per-
mutation 7., in the concave one dimensional regime, namely the non-crossing
property. A further property is due to McCann (see (82), Theorem 2.5), who
has shown that a m.p, in the concave regime must satisfy a geometric nesting
inequality called “rule of three”. The name comes from the fact that, for two
nested intervals A = (b;,7x¢)) and B = (r(;),b;) corresponding to the situation
bi < 1) < bj <7z (or the one with reverse inequality signs),

1
B <54, (2.8.1.1)

which is true for all strictly increasing, concave cost functions (as the non-crossing
property). Unfortunately, the non-crossing property is not sufficient to fully char-
acterize T,pt, and neither the rule of three is, so that the space of possible solutions
remains fairly large (a partial reason for the introduction of Dyck matchings).
Therefore, the discovery of additional properties could help to reduce the size of
the space of the possible solutions. By the way, for the cost function |z — y[? with
p € (0,1), one can show that a bound tighter than the rule of three holds directly
from the nesting requirement. For two nested sets B and A as above, consider the
inequality
| B| < k(p)|Al

and call the lengths of three involved intervals in a nested configuration x,1 and y
(e.g. from left to right). In this parametrization, the nesting requirement becomes

I+ (x+y+1)P <aP+y° (2.8.1.2)

(which is false for any concave strictly increasing cost function if 1 + x +y < 3
according to McCann). However, the requirement is already false for a larger con-
stant in our case. To see this, fix 2 = x+y which gives the equivalent parametriza-
tion

L+ (1+2)P < (t2)P + (1 =t)2)? (2.8.1.3)

that has to be true for all ¢ € [0,1], and it is easy to show that the worst case is

attained at ¢ = 1/2. In this parametrization, we simply have that k(p) = 1++(M’
where z(p) solves
P

1+ (1+42)P =2 (%) (2.8.1.4)
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in the appropriate (z, p) region. z(p) is a monotone increasing curve, starting from
2(1 ++/2) at p = 0, and diverging as p — 1~. k(p) is in good agreement with the
results of numerical experiments already at fairly small values of n (Fig. 2.18).

0.18

e Data(n=10)
0.04 1 Data (n=50)
e Data (n=100) s

....... k(p) = i

T T T T .
0.0 0.2 0.4 0.6 0.8 1.0
p

Figure 2.18. — Results of numerical experiments (colored dots) for the ratio of
nested intervals corresponding to matching in opposite directions vs the theoret-
ical prediction k(p) from the nesting requirement (Eq. 2.8.1.4, dotted curve) as
a function of p.

Research Problem 2 (Cycle structure of 7, in the concave regime). A useful
information about one dimensional ERAPs is the cycle structure of the optimal
permutation 7., (where the identical permutation is defined to be the ordered
one). Indeed, a way of reformulating our discussion of § 2.1 is as follows. Take
e.g. M = Q! and for a permutation 7 € S, introduce the observable N¢(7)
“number of permutation cycles in m with respect to the ordered one”. Assuming
(Ng(mopt) ()Y ~ n*®) for large n, we know that, exactly,

)1 p>1
V(p)—{o <0 (2.8.1.5)

without sub-leading corrections (we also consider 1-cycles or fixed points). Numer-
ical experiments strongly suggest that v(myp(p)) is fairly constant in the concave
regime (in particular for p < 1/2 where it hardly varies), and with high confidence
satisfies 12 < v(mopt(p)) < 23 (Fig. 2.19). What is the value of the exponent v
for Dyck matchings, and how does it compare to the “true” exponent v? What

129



about the scaling exponent in n of other permutation related quantities, such as
the number of inversions?

0.75
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0.65 -

V(nopt(p)
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0.0 0.2 0.4 0.6 0.8
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Figure 2.19. — Numerical estimates for the scaling exponent v(mop)(p) (red

points and error-bars, see text for definitions) as a function of p in the con-
cave regime (z-axis). Numerical protocol: n € {10,25,50,100,250,1000},
pe{l,.2.3 4,5 6, .75.9, .95 .99}, 10* repetitions at each fized (n,p) value.
V(Topt)(p) obtained as slope in a least square fit in log-log coordinates.
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~ CHAPTER 3 «—

FIELD-THEORETIC APPROACH TO
THE EUCLIDEAN RANDOM
ASSIGNMENT PROBLEM

T is a longstanding question to understand the asymptotic behaviour, for large n,
I of the expected ground state energy Eq(n) for a domain €2 in general dimension.
When d > 2, the results are very partial for any choice of a domain €2, including
the conceptually simplest ones (like the unit hypercube, or the unit hypertorus),
and any value of p, including the special cases p = 1 and p = 2. A first attempt was
carried on by Mézard and Parisi (50) that showed how, for d > 2, the random-link
result can be used as a zero-order approximation for the finite-dimensional solution,
adding perturbatively a series of corrections. In the same years, a remarkable
result was obtained by Ajtai and coworkers (57) for d = 2: they proved that, if
the problem is considered on the unit square Q2 = [0, 1]?, then Eg(n) ~ Inn.*

Recently, the forementioned result has been refined. In particular, by means
of non-rigorous arguments, in Refs. (7/5, 148) it was claimed that, on the unit
square R := [0, 1], X

Egr(n) = o Inn + 2cg(n) (3.0.0.1)

where cg(n) = o(lnn) (the factor 2 is for later convenience). This result has been
later rigorously proved by Ambrosio and coworkers (764) and extended to any
2-dimensional compact manifold © (763). The latter paper also proves rigorous
bounds for cq, namely that co(n) = O(vInnlnlnn). It has been recently conjec-
tured that Eq. (3.0.0.1) holds also in the case of points generated from non-uniform
densities (160). In the following Section we wish to argue, in the context of the
field-theoretic approach to this problem, that all possibly divergent terms in cq(n)
are universal, in the sense that the first finite-size correction depending on the do-
main {2 is a constant, verify this statement for several (flat and curved) manifolds,
and compare our predictions with numerical experiments for several choices of the
surfaces (2.

*More precisely Ajtai et al. studied the case p = 1, but they also sketch how their analysis can be
ol . . . 1—2 p . . .
extended to p a positive integer, and predicted the scaling Fq(n) ~ n-~2(Inn)2 in this generality.

See also (167) for a recently proposed alternative proof of the AKT theorem.
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3.1. Random Assignment Problems on 2d
manifolds

THE content of this Section is part of a submitted paper (172).

Let M = Q < R? be a compact domain, and let us assume that B = {X;}*,
and R = {Y;}", are generated via a homogeneous Poisson Point Process (PPP)
on (). Let us introduce the two atomic measures

(3.1.0.1)

= %ié)fl

The energy of a permutation 7 € S,, is
E,(7|B,R) Z 1 X; — Yaii (3.1.0.2)

where |z — y| is two dimensional Euclidean distance between the points x and y.
The average ground state energy is

E,q = E[min E,(7|B,R)] (3.1.0.3)

where E denotes expectation w.r.t. the disorder distribution. We have recalled in
the Introduction (Eq. 1.5.0.3) that

min B, (7] X, ) = nWi(vy, vy) (3.1.0.4)

holds, where W7 is the squared Kantorovich distance between the measures 3.1.0.1,
and promised to elaborate further on this connection in a subsequent Chapter.
This is where we do it.

Under the hypothesis that the atomic measures in Eq. (3.1.0.1) have the same
distribution limit, in (744, 145, 148) it has been suggested to solve the ERAP by
means of a linearization of the Monge-Ampére equation which solves the variational
problem in the continuum. The result requires a proper regularization that takes
into account the finite-n effects to avoid divergences. In this approach, a close
analogy naturally emerges between the evaluation of the ground state energy in the
ERAP and the evaluation of the electrostatic energy of n + n particles of opposite
charge, respectively located at the blue and red points. In a sense, the proposed
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linearization follows the opposite track of the suggestion by Born and Infeld (9) of
a non-linear version of electrodynamics to solve the problem of divergencies. See
also the more recent proposals by Brenier for fluid motion (83, 102).

In order to fix some notations, let us introduce, for each permutation m, a
corresponding field pir, such that p.(X;) = Yz — X;, corresponding to the map
T, so that the energy of a configuration can be written as

By (xlx, o) — L 12 (2)ve(d ). (3.1.0.5)

On the other hand, the field p, has to satisfy a mass-conservation condition, i.e.,
for any function ¢: 2 — R,

L 6@ + pa(z))re(dz) = L o@)y(dr), zeq. (3.1.0.6)

This condition is simply a rewriting of the fact that u, corresponds to a permu-
tation that maps bijectively blue points onto red points. The idea is now to write
down a Lagrangian that combines the cost expression in Eq. (3.1.0.2) with the
mass-conservation condition in Eq. (3.1.0.6) as

Lol = | i@e(da) + | [0+ ple)sta) ~ sy (o). (3.107)
where ¢ plays the role of a Lagrange multiplier. Here we dropped the subscript ,
whose meaning is incorporeted in the condition (3.1.0.6). The optimal map u(z)
satisfies the nonlinear Lagrange equations obtained from the Lagrangian above.
The next observation, at this point, is that for n — 4+ we expect p(z) — 0 for
any = € (2, due to the fact that the matched pairs become infinitesimally close.
Setting

Su(z) = %Z 5(z — X:) — 6(z — V)], (3.1.0.8)

the Lagrangian is approximated, in this limit, by its linearized version,

A

Llp, @] = L [17(2) + p(z) - Vo(z)]da + L dv(z)p(x)de, (3.1.0.9)

where we have used the fact that the flux of the field p through the boundary is

n—+00
E—

zero (points cannot be moved outside Q) and vy(d z) d z, uniform measure.
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The new Lagrangian is extremized for p and ¢ satisfying the equations

p(z) = =Vo(z), (3.1.0.10a)
V- p(x) = ov(x), (3.1.0.10Db)
implying the Poisson equation
Ap(z) = dv(z) (3.1.0.10c)
to be solved with Neumann boundary conditions. Here A := —V? := Aq (note

the minus sign) is the Laplacian operator on 2. Starting from these equations and
using the fact that

2
E[ov(z)ov(y)] = 5(5(56 —y)—1) (3.1.0.11)
in Ref. (748) it is argued that, for n » 1, the formal result
Eno=—-2TrAy' (3.1.0.12)

holds, where Ag' is the inverse Laplace operator on €. The expected ground state
energy is therefore directly related to the spectrum of the Laplacian on the domain
2, a result that is valid in the limit of the linearization approximation (7/8).
Moreover, the arguments above can be repeated replacing Neumann boundary
conditions with other boundary conditions, depending on the domain of interest.
The simple intuition to regularize the Eq. (3.1.0.12) is observing that, at finite n,
there is an intrinsic lengthscale in the problem, i.e., the typical distance between
a point and its nearest neighbour. This lengthscale goes as n~"* for large n and
effectively induces a cutoff that allows us to neglect the largest eigenvalues of the
Laplacian (7/8). At the leading order, the details of such a cut-off are not relevant
and Eq. (3.1.0.12) becomes

1
E,[Q] = o logn + 2cq + o(1), (3.1.0.13)

for some constant ¢ depending on the cut-off (the inessential factor 2 appears for
matters of convention) and possibly on n. The leading term in Eq. (3.1.0.13) is
indeed the correct result on the unit square Q = [0, 1] (see Refs. (163-165) for
proofs), the presence of a logarithm being known since the work of Ajtai, Komlos
and Tusnady (57).
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3.1.1. Regularisation through the integral of the
zero-mean regular part of the Green function

Consider the Green function G(z,y) of the Laplacian on the orthogonal comple-
ment of the locally constant functions, defined by

LG(:C,y)Aﬂy) dy = f(z) - j f(w)dy, (3.1.11)

where f is a test function defined on €. The Green function is symmetric and
satisfies the equations

AG(z,y) =6(x —y) — 1, (3.1.1.2a)
nG(2,Y),c0q = 0. (3.1.1.2b)

where 0,G(2,y)|,caq 18 the normal derivative with respect to the boundary o€
of the domain. The equations above identify a unique Green function up to an
additive constant: we will fix this constant adopting the convention

f G(z,y)dx =0. (3.1.1.2c)
Q

The operator A™! is thus defined then by

A7) = | Glenf)dy. (3.11.3)
It is well-known that the Green function of A can be written as
1
Go(z,y) = —5—Inlz —y| +m(y) + O (jz —yl) (3.1.1.4)

and is thus logarithmically divergent in the ultraviolet limit  — y (which is the
classical issue of self-interaction in two-dimensional electrostatics, as G(z,y) can
be interpreted as the potential generated at position y by a unit charge at position

Following Ref. (748), a regularization can be performed starting from the cor-
relation function of the optimal transport field f which is the gradient of the
Lagrange multiplier, p = V¢, where A¢ = dv. It is

C(z,y) =nE|[p(z) - ply)] = QL V.G(z,z) - V,G(z,y)d 2. (3.1.1.5)

The “diagonal” C(x,z) = nE[u?(x)] plays the role of a “cost density” and the
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optimal cost is given by its “trace” E,[ SQ x,x)dx. The quantity C(x,x) is
itself divergent for any x € €2 and must be regularized. Let us introduce therefore

= O\B;s(z), where Bs(x) is the ball of radius 0 < § < 1 centered in z. We can
introduce a regularized version of C(x, z),

Ci(z) = 2f V.G(z, 2)2d 2, (3.1.1.6)
Qs
and a corresponding “regularized cost”

B[] — L Cs(x) da = 2 H V. (G2 2)VaGlz,2)) (] — 2] > 6)dzd 2
= 2f dzjs - G(z,u)0,G(z,u)|,cedS
(3.1.1.7)

where the second integral runs over the border dBs(z) = {z € Q: |x — z| = 4}
of Bs(z), and 0, is the derivative in the direction of the versor orthogonal to the
surface of the ball Bs(z). For 0 < § « 1, the inner integral can be estimated using
the expression in Eq. 3.1.1.4, so that

Es[Q] = —@ + QJ m(x)dz + O(6). (3.1.1.8)

The logarithmic divergence is recovered in the ultraviolet limit § — 0, and the
constant part depends only on the local function m(y), sometimes called Robin
mass (120, 125), which determines the corrections only through its integral

Rq = L m(xz)dx. (3.1.1.9)

3.1.2. Zeta regularisation and the Kronecker mass
Eq. (3.1.0.12) can be rewritten as
- 22— (3.1.2.1)
=1

where 0 = \g < Ay < Ay < ... is the spectrum of —Ag, and the sum is loga-
rithmically divergent for any domain 2 (recall that Weyl’s law in two dimensions
implies that the number A((\) of eigenvalues less then A grows as A, and therefore
YA~ faTtdad(N). A widely adopted way to regularize expressions such as
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Eq. 3.1.2.1 is via analytic continuation in the so-called zeta regularization consid-
ered e.g. by Hawking (50). Consider the generating function

1
Z“V:ZX? (3.1.2.2)
=1

which is known to be absolutely convergent for $(s) > 1. Then, — Tr A~! can be
regularized by looking at Z(s) near s =1 (51)

B 1 1
S drs—1

Z(s) + Ko+ O(s—1) (3.1.2.3)
and by removing the pole at s = 1. We will call the constant K¢ the Kronecker’s
mass.

3.1.3. Connection between Robin and Kronecker masses

The constant Rg depends on € only, being related to the expansion in Eq. (3.1.1.4)
for the Laplacian. Eq. (3.1.0.13) is recovered assuming that

§~n~ (3.1.3.1)

at the leading order, as one would expect: this is indeed the scaling of the typical
distances between points uniformly generated on €2, i.e., the scale at which the
discrete nature of the problem becomes relevant. However, having no information
about ¢ (or, in general, on the proper cure of the divergence of the Green function
to get the correct cost), the result will be determined up to an unknown additive
contribution (possibly scaling with n). From the arguments above it is clear that
the regularization is related to the local behavior of the solution, and in particular
to the local distribution of points.

On the other hand, in zeta regularization the scaling in Eq. (3.1.0.13) is formally
recovered imposing

1
- =ln+0(1). (3.1.3.2)

s —
Obviously, Ko # Rq in general. However, it can be proved that, given a domain
), Rg— K is a universal constant that does not depend on (2, being given by (94,
109, 120, 121)
e In2

— Ko =—22 4+ =2 20.0184511.... 1.3.
Ro — Kq = —3~ + 5~ = 0.01845 (3.1.3.3)

We expect that, if different domains are considered with uniform distribution
of points on them, the proper regularization to be adopted is the same and pro-
vides therefore the same, regularization-dependent additive contribution. In other
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words, given two compact domains of equal measure 2 and €', we expect for
n — +0oo

En[Q] — En[Q/] = Cq — Cqy = RQ — RQ/, (3.1.3.4)

i.e., the differences are expected to be regularization-independent.

3.1.4. Applications

To test our conjecture we will first compute both Kronecker’s and Robin’s masses
for different domains and different boundary conditions, and then compare our
analytical results to numerical experiments in § 3.1.5.

The flat torus

Let us start considering the flat torus. Consider the lattice of points on R?,

A={w-n, neZ? (3.1.4.1)
generated by the matrix
¢ 0 n
wi={_ 4 l,heRT, seR, (3.1.4.2)

corresponding to the base vectors

W, = (g) Wy = (Z) . (3.1.4.3)

In such lattice it is possible to define fundamental parallelograms, containing no
further lattice points in its interior or boundary. A fundamental parallelogram is
given for example by

D={reR*:r=w-x, x€l0,1)?%} (3.1.4.4)
of area A := ¢h. For each w, we introduce the half-period ratio

7= ;m e C. (3.1.4.5)

It is a well known fact that, given a lattice A generated by w, the same lattice is
also generated by the pair
Ww=aw (3.1.4.6)

where a is an element of the modular group SL(2, 7). Note that 7 is not a modular
invariant, and it is usually specified fixing a fundamental region, i.e., a subset of
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R? such that no two distinct points of it are equivalent under the action of the
modular group (each fundamental parallelogram is an example of fundamental
region) (27). Having fixed the fundamental region, a value 7 can be uniquely
associated to each lattice A.

Given a lattice A, it is possible to associate to it a dual lattice A* defined as
AN ={y"eR* v -veZ, VyeA} (3.1.4.7)

Given the generator w of the lattice A, a generator w* of the lattice A* has to
satisfy w* - w! = I, identity matrix, i.e.,

«. L (h —s
w'_Z(O €> (3.1.4.8)

so that for this lattice 7 = 1/7.

The torus is defined as a quotient between the complex plane and a lattice A,
T := R?/A. In other words, each point x € D is identified with the set of points
{r +w-n, ne Z*, the distance between two points in D being the minimum
distance between the elements of their equivalence classes. Each torus can be
associated to a dual torus given by T* := R?/A*.

In the following, we will restrict, without loss of generality, to the case of fun-
damental parallelograms of unit area, choosing

1 /10
w=— =7 =0+ 1p, 3.1.4.9
w ¢p@_9 p ( )

such that p € R* and o € R, and we will denote the corresponding torus by T(7).

The Kronecker mass Due to the periodicity conditions, the eigenfunctions of
A on T(7) have the form

uyx () = exp(2miy* - x)) (3.1.4.10)

for all v* = Q* - ke A*, k = (Z) € Z2. The corresponding eigenvalue is
o |n + 7m]?

Anm = |2m7* 2= (2n
2my*[* = (2m) p

(3.1.4.11)
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Figure 3.1. — Pictorial representation of an assignment at n = 3 on a torus gen-
erated by quotient of R? with a periodic lattice, with fundamental parallelogram
and the corresponding base vectors.

As in the case of the torus, we compute the Kronecker mass using the regularized
function

1 1 [S(7)]°
8) - Z ¥|25 2s Z [ <31412)
'Y* ‘271-7 | (27T) (m,n)€Z2 |n + Tm|
n2+m?2+#0

and removing the pole in s — 1 as discussed with reference to Eq. (3.1.2.2). Here
we have introduced 7 = 7p. This calculation is readily performed observing that

G (s) = Z [SOF = + 2m [ny — In(24/S(7)|n(7) ] +o(s — 1),
ez n+71m|?  s—1
n2—i7-m27$0

(3.1.4.13)
where ~g is the Euler-Mascheroni constant, and 7(7) is the Dedekind 7 function.
In Fig. 3.2 we show a contour plot of (7)|n(7)[* in the complex plane 7. The ex-
pansion in the proximity of the pole is a result due to Kronecker (see Appendix B.1
for further details). Kronecker’s formula allows us to immediately obtain

Kry(1) = ;—i - iln (167>3(7)[n(T)]*) . (3.1.4.14)

We will see in the following that Eq. (3.1.4.13) will allow us to extract the Kro-
necker’s mass for many types of flat domains.
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Figure 3.2. — Contour plot of S(7)|n(7)|* in the complex plane 7.

The Robin mass Let us now evaluate, for the generic flat torus T(7), the Robin
mass Ry(;). The Green’s function on the torus is given in this case by (157)

W (A/S(T) 27 S(7) (29 — g)?
G@@:-%m <7W) ) + “(2y>(MAm

z=(z1—y1)+i(z2—Yy2)

where 91 (z;7) is an elliptic ¥ function. The Robin mass is obtained from

=0 | 27 n(7) 2 (3.1.4.16)
- _i In [47*3() ()]

It is immediately seen that Eq. (3.1.3.3) is satisfied.

Example: the rectangular torus The rectangular torus is obtained assuming
T =1ip, with p > 0. In this case

~In(4 1
_ o Ump) Ly, (3.1.4.17)
2 s

K (ip)
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which is invariant, by modular invariance, under the map p — p~!. In the region
p € (0,1] the lowest value is achieved at p = 1 (see also Fig. 3.2) where

1 1
Kr(i) = ;—i + % —— Il (). (3.1.4.18)

In particular

Kr(ip) — Ko(i) = —T—Wp . %m ”;Zg - —%1 %. (3.1.4.19)

We also remark that
lim 2Kr(ip) — 2K71(i)

p—D p

1
= lim p[2Kx(ip) — 202 (i)] = ¢ . (3.1.4.20)
p—0

which is the asymptotic energy of the one-dimensional problem on the circle (see
Eq. 2.3.1.10).

10!

100 |

AFEq

1072 ¢

1073

1074 | | | | | | | | |
0 0.1 02 0.3 04 0.5 06 07 08 09 1

p

Figure 3.3. — Differences on expected ground state energies on the rectangle R(p),
on the torus T(ip) and on the Boy surface B(p) with the corresponding costs for
p = 1. The numerical results, represented by the dots, are compared with the
analytical prediction obtained from Kronecker’s masses.
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Example: the hexagonal torus Let us consider 7 = ¢, with 0 < 6 < 7/,
obtained for example using

1

Wy = 3.1.4.21

' v/sin ( )

wy =(cot @ + i)Vsin O (3.1.4.22)

in order to keep unit area. Then
, —In(4 1 1 :
Kr(e") = e —Infdm) L Insing — = log |n (”) |. (3.1.4.23)
27 47 s

By using the results in (57), in (720) it is recovered that the minimum is achieved
at @ = 7/3, the hexagonal torus.

Unit rectangle

In the previous paragraphs we have considered the case of a periodic domain. Let
us consider now the problem on the rectangle

R(p) = [0, /7] x [o, \%1 R (3.1.4.24)

with Neumann boundary conditions. The eigenfunctions of A on R(p) are given
by

Umon (2, ) = 08 (y/prma) cos (\/lﬁny) : (3.1.4.25)

with (z,y) € Q and (m,n) € N?\(0,0). The corresponding eigenvalues are
2

Ay = T (pm2 + %) (3.1.4.26)

We proceed computing the Kronecker mass using the regularized function

Py 1 r=ip &(s) PTG
Z(S) = <—2> Z CY) ne %5 + %% N (31427)
w2 e (p*>m? + n?) A 27 ~n
n2+m?2#0

Here we have introduced 7 = ip, in analogy with the flat torus parametrization.
As in the torus case, Eq. (3.1.4.13) gives us an expression for the Kronecker’s mass,

Ka(p) = ’2y_7Er B ln(471-22|77r7(ip)\4) n 2;2 <p 4 1) ¢(2) (3.1.4.28)
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that for p = 1 (unit square) simplifies as

_ e In(4r) Inl'(1A4)

Cor 47 T

Kg(1) + é. (3.1.4.29)

Other boundary conditions on the unit rectangle

The unit rectangle and the rectangular torus are obtained starting from the fun-
damental domain

D = [0,/p] x [0,\%}] . p>0, (3.1.4.30)

and assuming respectively open and periodic boundary conditions. Other choices
of boundary conditions are possible. Each choice corresponds to a different spec-
trum of the Laplacian and, in particular, to a different finite-size correction to
ground state energy of the ERAP.

Cylinder

Figure 3.4. — The Cylinder.

Let us consider the domain 2 and let us take periodic boundary conditions in
the z direction at size ,/p and Neumann boundary conditions in the y direction at
size 1/, see Fig. 3.4. This is the topology of a cylinder C(p). The eigenfunctions
of A are the set of functions

2immex

NG

The corresponding eigenvalues are therefore

Umn(T,Y) = exp ( > cos (my/pny), me Z, neN. (3.1.4.31)

2
Ay = 72 (4m7 + an) meZ, nel. (3.1.4.32)
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Repeating the same type of calculations performed for the rectangle, we obtain

¢(2)
Ke(p) = 22 - 220 P Zjoen(2 1.4.
c(p) o o og n(2ip) + Iy (3.1.4.33)
w0 that 32 lnr  logT (1) 1
VB n nm log 4
Ke(1) = 22 — —. 3.1.4.34
C( ) 2 * 8 * 47 T + 24 ( )
We also remark that ol o R(] .
lim 20c(?) = 2Kc() _ 1 (3.1.4.35)

p—0 p 3’

which is the cost density for the one-dimensional assignment problem with open
boundary conditions, while

1
lin% p|2Kc(p) — 2Kc(1)] = 5 (3.1.4.36)
p—
which is the density of cost for the one-dimensional assignment problem with
periodic boundary conditions. The nontrivial solution of the equation K¢ (p) =

Kc(1) is p = 0.625352.... The minimum value of the mass occurs instead for
p=0.793439. ...

Moéebius strip

Figure 3.5. — The Mdoebius strip.

Starting again from the rectangle D, we can identify each point (z,y) € D
with all its images obtained through the law (z,y) ~ (z + \/p, /s — y). This
is equivalent to assume antiperiodic boundary conditions in the x direction. The
obtained domain M(p) has the topology of the Méebius strip, see Fig. 3.5. The
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eigenfunctions of A are

TN

> cos (my/pny), me Z, ne N, (3.1.4.37)
0

umm(x, y) = eXp <

but such that n and m are constrained to have the same parity (to fulfill the
antiperiodicity requirement). The corresponding eigenvalues are

Ay = 7 (p~'m® + pn®) . (3.1.4.38)

Repeating now the usual arguments we get

e In(dr’p) 1 n*(ip) ¢(2)
Ky(p) = 22 - 28T P 2 22 3.1.4.39
wa(p) 27 A T8 n(i2p)n (18) ~ 4n2p ( )
so that @) T () .
VE n(2m n 4
Ky(l) = — — —. .1.4.4
ml) = o+ = T 2 (3 0)
We also remark that o o i (1 .
lim 22alp) = 2Kua(l) L (3.1.4.41)
p—>00 1% 12
while 1
lim p[2Ka(p) — 2Ku(1)] = ¢, (3.1.4.42)
p—

which is the asymptotic value for the ground state energy of the Poisson-Poisson
ERAP with periodic boundary conditions, Eq. 2.3.1.10.

A nontrivial solution of the equation Ky(p) = Ky (1) is found for p = 4.1861. . .,
whereas the the minimum of the mass is achieved at p = 2.30422. . ..

Klein bottle

If we add periodic boundary conditions in the y direction to the Moebius strip we
obtain the topology of the Klein bottle K(p), see Fig. 3.6. The eigenfunctions of
A are in this case

U (2, ) = € V77 cos (2mn/py)
m € 7, n € N with same parity
(3.1.4.43)

and
2m+1 __ -

Umn(T,y) =€ V7 " sin (2mny/py), me Z, ne NT. (3.1.4.44)

146



Figure 3.6. — The Klein bottle.

As before one can obtain

e In(dr?p) 1 p\ - ((2)
™ g (ZZ) 2m2p

ve 7 1 Inl'(Ya) 1

Kg(l) = — 4+ —log2+ —logm — ———— —

or 87w 4 T 12°

We also remark that, in analogy with the Mobius strip
ZKK(p) — QKK(1> 1

lim = —,
p—00 p 12
while ]
lim p[2Kk(p) — 2Kk (1)] = -
p—0 6

(3.1.4.45)

(3.1.4.46)

(3.1.4.47)

(3.1.4.48)

Here Kx(p) = Kx(1) for p = 1.09673. .., whereas the the minimum is obtained at

p=1.04689. ...

Boy surface

As final example, let us take antiperiodic boundary conditions in both directions
on P, obtaining the topology of the so-called Boy surface B, see Fig. 3.7. The
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Figure 3.7. — The Boy surface.

eigenfunctions of A are

™m

() = 008 (%) cos (/7).

m,n € IN with same parity (3.1.4.49a)

™m
Umon () = sin (—x) cos (Tn/py)
VP Ve
m,n € IN with opposite parity. (3.1.4.49b)

The calculation proceeds as in the other cases, giving

e In(4n%p)  Inn(ip) 1 1

so that in particular

¥ 3 1 InT (1/4 1
Kg(p) = ﬁ + o log2 + e logm — # ~ 1 (3.1.4.51)

In analogy with the Mobius strip, once again,

tim 520 = Ks() k() — 2Ka(1)] = % (3.1.4.52)

p—®© P p—0

Notice in particular that Kg(!/p) = Kg(p) since \/pn(ip) = n(/p).
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Figure 3.8. — Absolute shift of ground state energies for the cylinder C(p), the
Moebius strip M(p) and the Klein bottle K(p) with respect to the case p = 1. Nu-
merical results, represented by dots, are compared with the analytical prediction
obtained from Kronecker’s masses as function of p.
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Disc

Up to now, we have solved the problem using the zeta regularization of the Lapla-
cian, and relying on Kronecker’s first limit formula. To exemplify a calculation of
a Robin mass, we consider here the disc of radius r > 0,

D(rr?) = {zx € R*: |z] <7} . (3.1.4.53)

It can be verified by direct inspection that the function

2

1 1 xr
9(w,y) = =gz —y| — o~ log |y — B (3.1.4.54)
satisfies
Ayg(r,y) =6(x —y) for [y| <, (3.1.4.55)
Ony)9(z,y) =0 for |y| = r.

The function in Eq. (3.1.4.54) can be found with the method of image charges.
Here, however, we look for the function G(z,y) that satisfies Eq. (3.1.1.2), i.e.,

{AyG(x, y)=d(x—y)— = forly <r (3.1.4.56)

an(y)G(l‘ay) =0 for |y| =T,

and such that its average for y in the disc is null. Therefore, noticing that

Ay=y]> = =5, we can define G as
Glo,y) = 9(a, ) + — Iyl - c(a) (3.1.4.57)
vy) =gl y) + —5ly c(x
where ¢(x) is
1 1,
= d .1.4.
@)= o [ (oo + o) ay (3.1.458)

Therefore the regular part of the Green function is

2

1 xr 1

=1 - 2_ ) 3.1.4.59
v(2,y) = —5-Injy o + el @) ( )
and, finally,
2] 3
J dry(z,z) = i LA —r?, (3.1.4.60)
|z|<r 2 8
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where we used the fact that ¢ is a radial function, and we repeatedly applied the
divergence Theorem. In particular, the Robin mass for the disc of area 1 is

1 /3 Innm
Rp=—|-——]. 3.1.4.61
P (8 4 ) ( )

The Kronecker mass is readily obtained using Eq. (3.1.3.3). Observe that the
Kronecker mass can be also directly estimated using the spectrum of the Laplacian
on the disc.

Other surfaces
Unit sphere S?

The transportation problem on the surface of the sphere S? has already been con-
sidered in Ref. (159), where the problem of trasporting a uniform mass distribution
into a set of random points on S? is analized. Here we consider the problem in
our usual setting, i.e., a transportation between two atomic measures of random
points. As in the previous cases, the information on the finite-size corrections is
partially contained in the spectrum of the Laplace-Beltrami operator on the man-
ifold. It is well-known that the eigenfunctions of —A on the surface of a sphere
of radius r are the spherical harmonics Y, ,,(0,¢) with [ € N and m € Z with
—l < m < [. The corresponding eigenvalues are

I(1+1)

2

)\l,m =

with multiplicity 2[ + 1. (3.1.4.62)
r

2

By fixing unit area of the surface taking r = (47)~"
regularization, i.e., computing

, we proceed using the zeta

1 2l + 1
Z(s) = r 1221 T (3.1.4.63)

In this case we just recall that for the Riemann zeta function

11
((s) = ; m= 7 tw+O0-1) (3.1.4.64)
so that
1 In(4 |
Z(s) = _Um e L o), (3.1.4.65)
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The Kronecker mass for the unit sphere is thus

In(dr) g 1
Kg = — — = 3.1.4.
° AT - 2r  Am ( 66)

Projective sphere PS

The real projective sphere PS? is obtained from the sphere S? by identification
of antipodal points. The eigenfunctions of the Laplace-Beltrami operator are still
the spherical harmonics Y;,,(6,¢) with [ € N and m € Z, =l < m < I, but we
have to restrict ourselves to eigenfunctions that invariant under the transformation
(0,7) — (m—0,¢ + ), ie., to even values of I. Working on the unit-area sphere
as before, we get the zeta function

1 41 + 1
Z2(9) = Ty 2 2020 + 1)]°

=1

1 In(2r) w1
- - m_ —1) (3.14.
Am(s — 1) 47 * 2r  2rw +0(s—1) (3.1.467)

so that the Kronecker’s mass is

In(27) g 1
Kpee = — — = 1.4.
Ps? 47 * 2T 27 (3 68)
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3.1.5. Numerical results

Assignment problems have been solved with the Jonker-Volgenant algorithm, which
has complexity O(n®) (47) (i.e. the same of Gaussian elimination in linear alge-
bra). For a domain  and A independent instances, so that EF®(7*|x, ) is the
k-th instance at size n, we fitted the data assuming

N
1{1 1 Lo | 20

| =) EFY(r*x, ) — —1 =cq+ — + = 3.1.5.1
2<N;n<w|,y> %ogn> co + 212 4 (315.1)
via least square linear regression (protocol: n € {32,64,...,1024} and N/ = 10*
instances for each n). Results for cq have relative errors within 1%, and cq — Kq
are compatible with each other within the errors for all considered domains. The
smallest relative errors were observed for the cylinder and the Boy surface, for

which (Tab. 3.1)

KQ CQ Co — KQ
T(i —0.2270289 ... | 0.0653(9) | 0.2923(9)
T(exp(%)) | —0.2287134... | 0.064(2) | 0.293(2)
R(1) 0.0499556... | 0.341(1) | 0.291(1)
C(1) —0.1026239... | 0.1889(1) | 0.2915(1)
M(1) —0.1302033... | 0.160(1) | 0.290(1)
K(1) —0.2276239 ... | 0.0646(8) | 0.2922(8)
B(1) —0.2000444 ... | 0.0915(1) | 0.2915(1)
D(1) 0.0098204 ... | 0.302(1) | 0.292(1)
S —0.1891233... | 0.1016(9) | 0.2908(9)
PS —0.2135418... | 0.079(1) | 0.292(1)

Table 3.1.: Kronecker mass and finite-size corrections cq evaluated by numeri-
cal simulations of random assignments on different domains. In the
last column, the difference between the finite-size correction and the
Kronecker mass is given.
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3.1.6. Uniform—Poisson transportation and grid effects

Up to now, we have considered the transportation between two sets of points
uniformly generated on the given domain. A related and also interesting problem
is the optimal transportation from the uniform measure on 2 to a set of n points
(obtained by a Poisson process) on the same domain. We will refer to this problem
as to the Uniform—Poisson (UP) problem. The functional approach described in
Section 3.1 can be repeated to consider this case, substituting vy (x) with v, (z) = 1
and observing then that in this case E[6v(z)dv(z)] = n~1(6(x —y) — 1)) I. The
final expression for the cost is

E'Q] =TrA™Y, (3.1.6.1)
that, upon regularization, reads
1
E![Q] = o Inn + ¢, + o(1). (3.1.6.2)
™

The correctness of the leading term coefficient has been proven in Ref. (164).
Eq. (3.1.6.1) differs from Eq. (3.1.0.12) by an overall factor 2: however, there is
no guarantee that cq = ¢ at fixed 2 as one might naively expect. One intuitive
reason is that the nature of the transportation is, at small scale, different in the
two problems. In Ref. (16/) it is proved that

cq < cd. (3.1.6.3)

As in the PP case, however, the value of the constant cg is out of the reach of the
linear approximation.

One way to numerically approximate the uniform distribution, and then estimate
¢y, is to perform an assignment between two sets of points, supposing that one
of them (e.g., the blue ones) is fixed on a grid and not random. We will call this
version of the problem Grid-Poisson (GP) problem. The approach in Ref. (148)
predicts indeed for this case the same Eq. (3.1.6.1), so that the average optimal
cost is

B9[Q)] — i Inn + &, + o(1). (3.1.6.4)

with a constant ¢, # cf. For example, let us consider the case of the unit square
with n = L? and let us take a square grid, in positions L™! (12 + n,12+ m),
n=1,...,Land m =1,..., L. In this case, we numerically estimate the constant

fThat is, in this variant of the problem the density cross-correlation is halved with respect to the
Poisson-Poisson case, in analogy with the discussion about Eq. 2.3.1.9.
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to be
g = 0.458(1), (3.1.6.5)

The constant ¢f, however depends in general on the specific adopted grid and by

KQ C?Z Cg — KQ
T(3) —0.2270289 ... | 0.1883(3) | 0.4154(3)
T(exp(ZE)) | —0.2287134... | 0.184(1) | 0.413(1)
R(1) 0.0499556... | 0.458(1) | 0.408(3)
C(1) —0.1026239... | 0.3088(6) | 0.4114(6)
M(1) —0.1302033... | 0.281(1) | 0.411(1)
K(1) —0.2276239 ... | 0.1878(1) | 0.4154(1)
B(1) —0.2000444 ... | 0.2153(6) | 0.4153(6)
D 0.0098204 ... | 0.423(3) | 0.413(3)
S —0.1891233... | 0.2255(8) | 0.4146(8)
PS —0.2135418 ... | 0.2022(8) | 0.4157(8)

Table 3.2.: Kronecker mass and finite-size corrections cf, evaluated by numeri-

cal simulations of random assignments on different domains using a
lattice. In the last column, the difference between the finite-size cor-
rection and the Kronecker mass is given. For all domains, except
for the disc, the sphere and the projective sphere, a square lattice
has been used: the corresponding difference ¢, — Kq is in this case
domain-independent and equal to ¢, — Ko ~ 0.413(2). In the case of
the disc, we used a sunflower lattice (68).

the adopted boundary conditions. In Ref. (7/9) it has been observed numerically
that, considering the constant ¢ for the GP problem on the flat torus T(7), ¢ # cf,
being

¢ = 0.1879(3). (3.1.6.6)

As in the case discussed in Section 3.1, we expect that the grid effects enter in the
regularization in such a way that two domains covered with the same grid have
the same grid-contribution to the finite-size corrections. We expect therefore that

C?z = CZ + Kq, (3167)

so that ¢ depends on the adopted grid and Kgq is the usual Kronecker’s mass. This
ansatz is numerically verified, when ¢ is evaluated comparing different domains
with the same grid (see Table 3.2). The results in Table 3.2 also suggest that the
effects of the details of the grid are quite weak, although the presence of the grid
makes c¢j # c*.
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As aforementioned, the constants ¢, are different from . However, as intu-
itively expected, they provide some information on cg. For example, by classical
convexity properties of the squared Kantorovich distance, it can be proved that,
given n = L? and considering a squared L x L grid on the unit flat 2-torus,

1
ch— 6 < ¢p < . (3.1.6.8)

One can perform a transportation between a grid of cardinality M and a set of
n random points. Proceeding in this way, it can be proved that the GP constant
approaches the UP one for M » n (see (172), Appendix A).

3.1.7. Section provisional conclusions

In this Section we have considered the random assignment problem of two sets
of n points on a smooth, two-dimensional manifold 2 of unit area. Within the
linearization framework of the field-theoretical formulation of the problem, we
have studied the asymptotic series of the expected ground state energies beyond
the known leading logn divergence. We have argued that, in the remainder, the
first {2-dependent finite size corrections contribute to the constant (in n) part of
the expected ground state energy. These contributions can been computed exactly
using zeta-regularization of the trace of the inverse Laplace-Beltrami operator on
() in several variations. Our analysis, which has been applied to a number of
different manifolds (from the unit square to the projective sphere) suggests the
following picture: the remainder “splits” into an {2 independent part, depending
on the choice of local randomness (among the ones considered in this section) and
on the choice of grid; and a “geometric” correction depending only on the manifold
2, and not on the local choice of randomness or grid. The latter quantity can
be computed either directly as the Kronecker’s mass in zeta regularization, or
as a Robin mass from the regular part of the appropriate Green function, the
two constants differing by a universal constant, as established in a Theorem due
to Morpurgo. Our numerical experiments strongly suggest that, indeed, (within
our computational limitations) the remainder does not diverge with n (while it is
currently only known that it diverges at most as y/lognloglogn (16%)). A further
investigation of such a remainder part (and possibly its limit value in the n — oo
limit) is an interesting open question.
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3.2. On approximate linear relations among
energies

3.2.1. General remarks

OR a domain 2, let {f\} be an orthonormal basis of eigenfunctions of the

Laplace-Beltrami operator —A, A\ the corresponding eigenvalues, and T a

unitary transformation of the basis, which commutes with —A, and leaves invariant
the uniform measure, that is

—Afx=A\ = —A(Tofy)=ATofy. (3.2.1.1)

and dv(z) = dv(Tz) (where the action of 7 on the coordinates is the action on
the Dirac delta function, induced by the action on the basis).

Let pq, p2 be the empirical measures of two independent Poisson Point Processes
of size n, and let p], pJ be shortcuts for T o py, T o po. Let us also consider the

shortcuts .
(h,g) Fo =) MF (%) (3.2.1.2)

and
(R, g) Far = (h, 9) Fyn — (h, g) Fun , (3.2.1.3)

where F' is the unknown cutoff function of the field theoretical approach, and the
Fourier coefficients

h()) — Lh £ (3.2.1.4)

have been introduced.
Let us consider the following list of instances constructed from p; and ps:

instance | size R B
1 n P1 P2
2 2n [ pr+p] [ p2+0]
3 2n | pi+pa | pl +07
4 n P1 Pl
5 n P2 Py
6 n p1 Py
7 n P2 i

Table 3.3.: The seven instances considered.

According to the linearized field theory, for a system at size an, and distribution
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of reds and blues pr and pg, the energy of a single instance is given by

1 1, — A
Blpw.pal = - 3 3o~ pe 0P ()
s an (3.2.1.5)
1
= — (b8 — Pr: PB — PR) Fon ,
an
for some unknown cutoff function F(z). Therefore
1
Ey = - (p1 = p2,p1 — p2) Fy,
1
Ey = o (b1 + 0] —p2—pl v+ p] —p2—p]) Fon
1
E3 = o (p1+p2—pl —p3.p1+p2—pl —p3) Foy
1
Ey = - (o1 — ol o1 —p]) Fu (3.2.1.6)
1
Es = ; (pz - p;a P2 — pgT) F,
1
Eg = (o1 = 03,01 —p3) Fn
1
Er = n (/)2 —P1T7P2 —PD n -
Since 7 is unitary, we have
(pzT7 pf) F, = (pivpj) Fon, (3'2'1'7)

for all 4,7 € {1,2}, and all @ > 0, and hence we can identify the different con-
tributions as follows (we consider only combinations which are symmetric under
exchange of p; and ps):

E FEs FEs Ey+ E; FEg + E7
[(p1; p1) + (p2, p2) | F Yn () En | 2on () Fon | 2Pn () Fon | () B | Pe( ) By
[(p1,p2) + cc]F —Un (. ) Fy | =2n(..) Fon | 2n(...) Fyy 0 0
(p1,0]) + (/)2,/)2) +cc|F 0] Yon(...)Fo | —Yon(...)Foy | —th(...)F, 0
(p1,07) + (p] . p2) + cc.|F 0] —Yon(...)Foy | —1on(...)Foy 0] —n(...)F,

Table 3.4.: (Part [1/2]). Contributions entering in our list of energies Tab. 3.3
(c.c. denotes complex conjugate of preceding expression).

Our goal is to devise linear combinations in which the terms combine into ex-
pressions of the form (f, g)F2". In this respect, we should analyse the (left) kernel
of the matrix
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E Es Es | By, + E5 | Eg+ Er

[(p1, p1) + (2, p2)] F 1 1 1 2 2
[(p1,p2) + c.c.] F —1 —1 1 0 0
(pl,plT) + (,02,,027) +c.c. | F 0 lp | —1p -1 0
(,01,,02T) + (,OZ—, pg) +c.c.| F 0| 12| —1r 0 1

The kernel is generated by the vectors vy = (0,1,1,0,—1) and vy = (2,—1,1,—1,0).
Indeed, if we analyse the quantity associated to vy, we get

OEWY .= 2F, — Ey + E3 — E, — F;

= % {_2 [(p1,p2) + cc.] (F — Fap) + [(pl,plT) + (pg,p;) + c.c.] (F, — an)}
= % [(p1 — o3, p1—p3) + (p2 = pl,p2 — p] )| (Fon — F,)
= 25 (= ADE ¢ o2 D) (r(5)-r(2))

(3.2.1.8)

This expression has the form that we are demanding. The consequence of this fact
is that, in the field-theoretical perspective, it takes contributions only from large
momenta, n < A < 2n, and hence is analogous to a shift in the free energy that
one would get from implementing the flow of the renormalisation group on the two
systems Eg and E; (by a scaling factor 1/1/2).

More concretely, as we see in a moment, this stochastic quantity will turn out to
be expressed as a deterministic shift of order 1, plus a zero-mean stochastic shift
of variance O (%)

The deterministic shift can be easily computed taking averages. For example,
at d = 1 we immediately get that such shift is zero since I’ = 1 independently on
n (recall that the sum over the modes is convergent there). At d = 2 we get

Z_| NP ffd/\—i 110 n+c
(o~ %) ~ o T o\

Zl fmd)\ 2 lo 2n +

A (o1 = '02 2n 27T ganTce

(3.2.1.9)
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from which we get

log 2

(EWY = QF, — By + B3 — By — E5) ~ =0.110317. .. (3.2.1.10)

Numerical data corresponding to this combination is reported in Fig. 3.9.
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Figure 3.9. — Typical scatter plot of numerical data (n = 10, 10® points) corre-
sponding to SEW) (Eq. 5.2.1.8) for a domain with an involution (see § 3.2.3).

Another vector in the kernel is the combination (—1,1,0, 3, —%), that is

1 1
0E® = —E, + Ey + 5 (Ba+ E5) = 5 (Eg + Ex) (3.2.1.11)
which, by calculations analogous to the ones performed above, gives

1 1
SE® = *E1+E2+§(E4+E5)*§(E6+E7)
Tl \ \ (3.2.1.12)
I 5 Fl2A)Y_fp(2
OWICEVEr moe(F(5)-7(3)).

which now is analogous to a shift in the free energy that one would get from
implementing the flow of the renormalisation group on the systems FE5. This
combination has a small simplification in the case in which 7 is an involution,
which implies (f7,g) = (f,¢”) and in particular Es = E.

In § 3.2.3, the average of 6E® is considered in details in some examples of
domains with an involution.
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3.2.2. On linear relations in domains with no symmetries

In the previous section we have considered linear relations emerging from the com-
bination of two point distributions, p; and p,, and one unitary transformation on
the domain, 7. In this section we show that similar relations exist also in absence
of the transformation 7, at the price of combining now four point distributions,
P15 -5 P4

Let p1, p2 be the empirical measures of two independent Poisson Point Processes
of size n, and let p3, py be the empirical measures associated of two independent
Poisson Point Processes of size m. Note that n and m may differ.

Let us consider the following list of instances constructed from py, ..., ps:
instance | size R B
1]2 n P1 P2
3|4 m P3 P4

13‘24 n+m/| p1+p3| p2+ pa
14]23 n+m | p1+ps| p2+p3

Table 3.5.: The four instances considered.

Repeating the reasonings of the previous section, we get

1
Eyp = n (p1 = p2, p1 — p2) Fyy

1
B3y = — (p3 — pa; p3 — pa) Fin
m

1

Ei3p04 = - (p1+ p3 — p2— pa, p1 + p3s — p2 — pa) Frgm

(3.2.2.1)

1
B3 = n+m(p1+p4—pz—p3,p1+p4—p2—p3)Fn+m.

Again, we identify the various contributions as follows:

[(p1,p1) + (po2, p2)] ' | [(p3, p3) + (p1; pa)] F [(pi,pj) +cc]F
Eyp %( . F, 0 7,17 (-12)F,
Ey 0 % (...)Fn —% (- 34) F
Fi3pa nim () Farm nim () Fogm "im [ (12) +(13) = (1a) = (28) + (24) = ( 34)] Foym
Eryp23 niﬁ o) Fosm ﬁ o) Fosm "im [—( 12) = (13) + (1a) + (23) — (24) — (- 3,4)] Foim

Table 3.6.: Contributions entering in our list of energies (c.c. denotes complex
conjugate of preceding expression).

Again, our goal is to devise linear combinations in which the terms combine into

expressions of the form (f, g) F;;*™ or (f, g)F;;™™. In this respect, calling 7 =
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we should analyse the (left) kernel of the matrix

Epp |2 0 -2 0 0 0 0 0
By, |0 &= 0 0 0 0 0 —=
Egpa|1 1 -1 1 —1 -1 1 —1
Eup |1 1 -1 -1 1 1 -1 -1

Now the kernel is generated by a unique vector, (—27,—2(1 — 7),1,1). Indeed, if
we analyse the quantity associated to this vector, we get

SE®) = —27Ep — 2(1— T)E3\4 + Eigjo4 + Eiapo3
1

— _ , _ F?’L+m+ _ , _ Fn+m
A1 =P =) (p3 — pa,ps — pa) F'™}

- (F () - F (7)) - @22

| ek (7 () - ()]

This expression has the form that we are demanding. The consequence of this
fact is that, in the field-theoretical perspective, if both n and m are large, it takes
contributions only from large momenta, n, m < A < n+m, and hence is analogous
to a shift in the free energy that one would get from implementing the flow of the
renormalisation group on the two systems Ej» (by a scaling factor 4/7) and Ejj
(by a scaling factor /1 — 7). And also, yet again, this stochastic quantity will
turn out to be expressed as a deterministic shift of order 1 (which is a function
of 7), plus a zero-mean stochastic shift of variance O (% + %) As previously, the
deterministic shift can be easily computed taking averages, and at d = 1 is zero
since F' = 1 as the sum over the modes is convergent there. At d = 2 we get

f d/\ 2 (1
F — —1 2.2.
< ALY, > o S (Glene) 223

from which we have

(BE®)) = (=27 Byp — 2(1 = 7) Egja + Eapos + Euapos)

% l(%log(n—i—m)—l—c) (=271 —2(1—-7)+1+4+1)+7logT + (1 —7)log(l —7)

&

= o [rlog T+ (1~ 7)log(1 — 7)]
(3.2.2.4)

162



In terms of the parameter a = I_TT = ", we get the expression
fo = 5 OEY)) = Dy (aloga — (14 a)log(l + «)) (3.2.2.5)
T

which is easily confirmed by numerical experiments * (Fig. 3.10).

-------- Theory
. R _'C’%Z = —0.2206...
-0.10 +
. { Data
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—0.25 1

—0.30 1

T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
a

Figure 3.10. — Comparison of Eq. 3.2.2.5 (dotted black line) and results of nu-
merical experiments, obtained by a linear fit as in Fig. 3.9 (blue dots with error
bars). The horizontal black, dashed line denotes the value when the two involved
sets have the same cardinality, « =1 (1 =1/2).

3.2.3. Kronecker masses in the case of involutions

Let us consider domains €2 for which a natural involution I exists, that is, a
map I : Q — Q such that [ (I(z)) = z, Vz € Q. Instead of the cutoff function
regularization approach of § 3.2.1, in this section we will work in zeta regularization
to compute the Kronecker masses (in analogy with § 3.1), and then exploit the
relations between different models and the parity of the relevant contributions
under [ to obtain Eq. 3.2.1.11.

*Numerical protocol: v € {1,3,...,2}, n€ {32,64,...,512} and 10 realizations for each (n, ) point.
At fixed a, fo extracted by a quadratic fit (least square) of <1+Ta (E13|24 + E14|23) — By — aFEsy)
in 1/n.
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We will assume that [ admits a set of fixed points of zero d-dimensional Lebesgue
measure, so that, for Q' = I(Q2), we can write Q" = Q\(Y. In order to fulfill the re-
quirement of Eq. 3.2.1.1 we will assume that I preserves the appropriate boundary
conditions for the Poisson equation. Let us consider the following examples.

Example 1 Let €2 = T(1) be the 2-torus of aspect ratio 1 and let the involution
I be
x bz T z d1
Fiae = bia+ 3 (mod 1) i=1,....n. (3.2.3.1)
Tiy = b‘7y

so that € = [0, 5] x [0,1]. The eigenfunctions of A are factorized along the two
coordinate directions, so that in our choice only the factor depending on x matters.
In this case we have all the eigenfunctions, i.e. both “sines and cosines” €™, and
they are odd or even according to the parity of [ as an integer.

Example 2 Let Q = S? be the 2-sphere of unit area (i.e. the sphere of radius
ﬁ;) I is the antipodal map z — —z acting in spherical coordinates as

0, =1 — 0, ,
§ ST i=1,....n, (3.2.3.2)
¢T¢ =T+ ¢bi

where 0,.,) € [0, 7) is the colatitude of r; (resp. b;) and ¢, ) € [0,27) is the lon-
gitude of r; (resp. b;). In this case 2’ can be chosen to be the northern hemisphere
z = 0 w.l.o.g., and the eigenfunctions are the spherical harmonics Y, (0, ¢) with [
an integer.

Example 3 Let Q = S? and [ the rotation of 7 along the z axis, that is

0, = by, i=1....m (3.2.3.3)
¢n‘ =m+ (bbi

for 0,, ;) and ¢, ;) as in Example 2. Now the eigenfunctions are Y;,,, Y, ,, where
the + sign corresponds to the parity under I. Instances at small n for Examples
2 and 3 are given in Fig. 3.11.

In the case of involutions, recalling that {fy}, is the basis of eigenvectors of —A,
we can just write

dp(z) = Z Ipafa(z) = Z Ipa+fas(2) + Z Ipa—fr—(2), (3.2.3.4)
) ) )

where + denotes parity under I. For {\;}; the Laplacian spectrum, for large n
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Figure 3.11. — (Left) An instance from Ezample 2 (n = 25). (Right) An instance
from Example 3 (n = 50).

the (non-regularized) energy of a single instance can be written as

B 0pel® 10pk,+|? 10pk,—|?
E=n Z =N Z N + ; N (3.2.3.5)

k20 Ok k0

where we are summing over the modes orthogonal to the zero mode(s).
For the problem with charge densities pr(z) and pg(z) and involution I we
consider the 5 energies:

» E; : the “usual” Poisson-Poisson case where B and R are not related, that is
0p(2) = pr(2) — ps(2), (3.2.3.6)

and hence

— 2 _ 2
E, =n Z PR b+ — PBR+] n Z PRk~ — PBR,-| . (3.2.3.7)
k#0 Ak [ Ak

» F5 : This is the instance at size 2n in which the starting points B and R are
complemented with their images under [, i.e. we consider the assignment of
B =BulIB)toR =RulI(R). In this case

5p9) () = pr(2) + pr(1(2)) 2— ps(z) — ps(1(2)) (3.2.3.8)
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so that only the even parts under I survive, giving

_ |PB,k,+ - PR,k,+|2
Ey=2n), . (3.2.3.9)
k0 A

» FE4 : now B are distributed according to pr(I(z)), so that

0p%(2) = pr(2) = pr(1(2)) = =3p* (I(2)) (3.2.3.10)

is odd under I, and hence

2
E, — 4n2’p73#. (3.2.3.11)
3 k

» Fs : same as above, but with B < R, and hence

|05~ |
FEs =4n = 3.2.3.12
5 Z = ( )
» E7 : now pr(2) = pr(I(z)), so that
0pP(2) = pr(1(2)) — ps(2) (3.2.3.13)
and
_ 2 2
Br=n(Y PR K+ — PBR+] <Y PRk~ + BRI ) (3.2.3.14)
k#0 A 2 Ak

We remark that Eg = E7 for an involution.

Example 1

Let us consider first the one dimensional torus, for which f;(z) = *"* with [ € Z,
so that the parity under I is just the parity of [ as an integer. We have for the
unrestricted sums

(Er) = (Er) = %Z% - (3.2.3.15)
=1

T2
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as is well-known. The sum over the odd modes gives

2 < 1
E EF)=—) ——— =— 3.2.3.16
(Ei) = (Bs) = w22z+1 4 ( )
while the sum over even modes gives
2 0
(By) = — (3.2.3.17)
72

so that in one dimension we get

1 1 1 1/1 1 1
<5E(2)>:<_E1+E2+§(E4+E5>_E7>:_6+ﬁ+§(Z+Z>_E
 241+3-2

a 12

—0
(3.2.3.18)

as expected.

For the two-dimensional torus, recall that the spectral zeta function (Eq. 3.1.4.13)
satisfies, at aspect ratio 1,

1
2y T L

k0 (n,m)#(0,0)

8 = 1 8 1
- T Z TR + Ok Z = (3.2.3.19)

n,m=1 =1

— # [5%1 + 27 (yp — log 2]77(z)]2)] +o(s—1)

where 7 is Dedekind’s function. Therefore, around s = 1, we get for the unre-
stricted sums

(B = (Byy = ——

2r(s — 1)

where we can directly read the Kronecker mass. The sum over the odd modes is

+ = e + log /7 — 2log T(1/4)] +ofs ~ 1) (3.2:3.20)

0 4 0 0]

N 1
o) 2 @n 1 +m2]s o > e (3.2.3.21)

n=0 m:1 =0
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so that, expanding around s = 1, we get

1 1 1 1
Eypy={(Fs) = ————+— =1 2+ =1 —2logI'(1/2 —-1).
(B = (B8) = s+ - [+ 1o vE+ Jlogn — 210571/ +ofs - )
(3.2.3.22)
Lastly, the sum over the even modes is
2 1
N 2s Z 2 2\s
(2m) (2 (00) (4n? + m?)
0 0 0 0
- (2 8)25 Z [4 2_,1_ 2]8 (24)252 (211>2s (24)23 Z 123 (3.2.3.23)
T n=1m=1 n m @ =0 @ n=1 n
2| 2 (- g V@O | + o5 - 1)
= —lo i o(s —
(2m)%s [s—1 T\E & 1
so that near s = 1 we get
(E») - Llog vz 4+ 11 2logT(1/4) | + o(s — 1)
=— + — ——lo —logm —2lo —1).
2 T ons—1) x| 2% g BT T 208 o8
(3.2.3.24)

Reminding that at leading order (E,) ~ 2% (since in instance 2 the size is 2n),
we just have

(Es) = (Ey) = (E5) (3.2.3.25)
so that 1
(BB = == ’ (3.2.3.26)

as expected.
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Example 2

The discussion of § 3.2.3 is extended almost verbatim to Example 2. Now the
eigenfunctions of —A are the spherical harmonics Y}, and their parity under I is
just the parity of [ as an integer. Now the unrestricted sum over all (i.e. both even
and odd under I) modes gives

(B = <E7>

47rs

2+l 1 1 1 1
2 s — = log (47) — = 1
; (+1)] 27(3—1)+w[7E  log (4m) 2]+0(5 )

(3.2.3.27)

the sum over the odd modes gives

4 S 4l—1

Al )’

16 & 1 1 & 41 —1 1

6 +_Z( )+0(3_1) (3.2.3.28)
=1 7Tl

167rsl [2s—1 2021 - 1) 1l

1

- m ! (7E—§log(47r)> +o(s—1),

and the sum over the even modes gives

4 & 4l+1
(4 )s;[m(zwm

16 1< 41 + 1 1
_ L 1 3.2.3.29
(16m)° 2, 128—1 - WZE (2z 20+ 1) z) tos=1) | )

=1 l

(Ey) =

%1 g(47r)—1) +o(s—1).

Recalling that at size 2n

log2 I 1 1
(Ey) = Og oen | - (VE — ~log (47) — 1) +o(1) (3.2.3.30)
2T T 2
we find again
log2
5B 2.3.31
@E®) = = (3.2.3.31)

An analogous calculation can be done for Example 3. The predictions of Eqs. 3.2.3.26
and 3.2.3.31 are in good agreement with results of extremely simple numerical ex-
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periments, which are reported in Tab. 3.7.

Example | (¢E®) (Eq. 3.2.1.11)
1 0.111(1)
2 0.110(1)
3 0.103(1)
Eq. Tr., pp, 0.109(1)
| log2/or \ 0.110317... |

Table 3.7.: Numerical results for Eq. 3.2.1.11 for different involutions in d =
2. “Eq. Tr.” denotes a (unit area) equilateral triangle and p, = [
denotes a reflexion along a height. Numerical protocol: n = 1000,
1000 disorder realizations, direct average of Eq. 3.2.1.11.

3.2.4. Section provisional conclusions

In this Section we have shown that, within the context of the field-theoretic ap-
proach to the Euclidean Random Assignment Problem, unitary symmetries can
be exploited to build certain (simple) linear combinations of energies with rational
coefficients, which evaluate to a deterministic constant plus a (small) stochastic
error. In the case of an involutive symmetry I, the linear relations hold due to
cancellations among unrestricted, odd and even modes under I, in the common
basis of the Lapace-Beltrami operator, as we have shown explicitly in zeta regular-
ization. Our findings can be of interest since, while the linear relations are exact
at a single instance in the continuum theory, they are only approximate at finite
n, due to the non-linear contributions which are neglected by the linearization in
the field theoretic approach, and can be thus useful to study such non-linearities
in great generality. As a by-product, due to their simplicity and robustness, the
linear relations can be used as an easy numerical protocol to unveil possible loga-
rithmic scaling of the ground state energy in less studied regimes at p = 2 at d # 2
(an example will be discussed in § 4.6).
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3.3. The Lattice Helmholtz decomposition of the
transport field on T, at p = 2

N the previous Section we have considered the ERAP for several two dimen-
I sional compact geometries and discussed a persistence of universality beyond
the leading asymptotics by considering a functional analytical and a zeta regular-
ization of the logarithmically divergent ground state energy. Among other things,
we have shown that the relative ground state energies for domains with rectan-
gular fundamental polygons at varying aspect ratios are given exactly in terms of
certain logarithmic ratios of the Dedekind 7 function (provided the domains have
the same area). However, the overall constant, common to all these domains, can-
not be determined with the methods of the previous sections, and remains elusive
(we cannot even exclude that it is not a constant, but rather a slowly-increasing
function of n).

In this Section we wish to investigate further the grid-regularization approach.
Somehow in analogy with § 2.3, we will set aside continuum methods and discuss
a lattice statistical field theory approach to this problem, with an emphasis on
the statistical properties of the optimal transport field and its Fourier modes.
After introducing the appropriate formalism (the one of lattice calculus, aspects
useful for our discussion are reported in Appendix C.1), one can work out some
consequences of the theory which appear to not be easily accessible by continuum
methods. However one is left with the task of understanding the scaling limit
of the theory, as it is non-obvious a priori if expectations of relevant observables
(such as the ground state energy) depend on the particular lattice chosen, an
aspect that we shall discuss elsewhere. More generally, the sub-leading, constant
term is not accessible to the linearized field theoretical approach, whose Euler-
Lagrange equations give the optimal transport field as p = V¢, or equivalently,
only a divergence part is present. Therefore, here we start to study the correction
to the linearized theory perturbatively, in which ¢ also admits a curl part, in the
hope that this approach will help clarifying aspects inaccessible to the linearized
theory.

For this reason, in this Section we shall start this endeavor by considering the
simplest possible case, namely, the two dimensional Grid-Poisson ERAP with pe-
riodic conditions (or on Ts), in which e.g. the blue points sit on a regular square
grid. Here, Fourier Duality at p = 2 and the well-known self-duality of the square
lattice at d = 2 imply considerable simplifications of the theory. A guiding prin-
ciple in our discussion is the notion of a natural “change of variables” on the 2n
degrees of freedom of the field. The change of variable, which is inspired by elec-
trodynamics, consists in decomposing the optimal transport field (which is defined
on the direct lattice) as a sum of appropriate longitudinal and transverse part,

171



namely, “derivatives” of potentials (which are defined on the dual lattice). The de-
composition is the analogue of the Helmholtz decomposition in electrodynamics,
where an electric field can be written as the sum of a conservative and a solenoidal
part. In particular, we shall elucidate some statistical properties of the lattice
laplacians of both potentials, both in coordinate and momentum representations,
which turn out to be very different. Then we shall study their Fourier modes and
report numerical evidence that their contributions to the (unknown) asymptotic
series of the expected ground state energy are at different orders in n.

3.3.1. Setup and notations

Let us consider the Grid-Poisson ERAP on the flat two dimensional torus Ts, that
is, for n = L? and L an integer, blues B = {;}; sit on a L x L square grid which
can be chosen by translation invariance to be

1 1 1 1
An:{o,z,...,l—z}x{O,Z,...,l—z}, (3311)

where x denotes Cartesian product. Reds are Poisson, that is R = {r;}; is a
family of i.i. random variables uniformly distributed on the unit square Qy. The
dual lattice is obtained by translating rigidly A, by (1/2L,1/2L), that is

" 1 3 1 1 3 1

We impose periodic boundary conditions so that the squared distance between
two points 21 = (214, 21,) and 23 = (22,4, 22,4) 18

D2, (21, 22) = [min (|21, — 200], 1 — |21 — 20 ]) ] +[min (|21 — 20,[, 1 — |21, — 224[)]* -

At fixed disorder R, the n x n assignment cost matrix is thus 334
AV =D (by,m),  kl=1,...n, (3.3.1.4)
so that the energy of a microscopic configuration is just
H(r) = i c,(jr)(k) (3.3.1.5)
k=1
for a permutation 7. As usual, a 7, satisfies
Hopt == H(Topt) = min H (7). (3.3.1.6)

TES,
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The usual optimal transport field @ : A,, — T is

N o _ _ 1z (bk) _
u(bk) = Trope (k) bk (HlOd 1) = <,My(bk;)> s k= 1, e, n (3317)

so that the components p, and p, of i are scalar fields valued onto S; (the cir-
cumference of radius %) When treated as real numbers, the components of i are
chosen as to be valued in | — 1/2,1/2] (a choice with small loss of generality, as we

expect that |u| ~ 4/logn/n).

Let us use for any function f : A, — C the notation f(i,7) to denote the
value of f at site (i,7) in the lattice (and the analogous notation for a function
on A,), as induced by the lexicographic order of our definition (3.3.1.1) (so that
i,7=0,...,L—1)". For

sinf  cosf

R(&)::(COSQ ——ﬁn@) (3.3.1.8)

the standard rotation matrix of angle 6, we can consider the “rotated” optimal
transport field

o= (i) D= - miy) G
The crucial point is to write fi_,/, in terms of appropriate functions on the dual

lattice through diagonal derivatives (a pictorial representation of the action of
diagonal derivatives is given in Fig. 3.12a, see Def. (C.1.0.8) for details).

By simple manipulations (which are detailed in Appendix C.1), we can show
that 7i_, /4 (like any vector field) admits a Helmholtz decomposition

finy=Vo—VAQ, (3.3.1.10)

for two scalar fields ¢, : A, — R. More explicitly, Eq. 3.3.1.10 can be written
component-wise as

fo = Vo —€asVs, «o,0=12 (3.3.1.11)

where € is the two-dimensional Levi-Civita symbol and the convention on repeated
indices has been used. Borrowing from standard terminology in classical electro-
dynamics, we shall call ¢ the scalar potential and 1 the vector potential of [i_ 4.

*That is, k = 1 +4L + j with 4, =0,...,L — 1.
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(a) Rule for the diagonal derivatives V1 and (b) Rule for the laplacian A
Vs
Figure 3.12. — Pictorial rules of lattice calculus for diagonal derivatives

(Fig. 3.12a) and the laplacian (Fig. 3.12b). Sites of the direct lattice are de-
picted as full blue circles and sites of the dual lattice as empty diamonds.

In local form, the Helmholtz decomposition Eqs. (3.3.1.11) are

m(i,j>=%[¢<i+%7j+%>—qb(z’—%,j—%)
s(gae)es(oba-3)
(3.3.1.12)
1 N A A |
MQ(%])_%[QS(Z 27.7+2) ¢<Z+27] 2)
+w<i+%,j+%)—¢(i—%,j—%)].

where, e.g. for a site (i,7) in the direct lattice, (z + %,j + %) denotes the site
sitting northeast to it in the dual lattice (see Fig. 3.12), for i,5 =0,..., L — 1.
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3.3.2. Longitudinal and transverse contributions to the
ground state energy H,t

In continuing to pursue the analogy with the local formulation of electrodynamics
in terms of potentials, one is tempted to take derivatives of the Helmholtz decom-
position for 7i_=z, Eq. (3.3.1.11). This task, which is standard in the continuum,
is not straightforwardly accomplished on the lattice if one uses the standard dis-
crete directional derivatives, as fields and potentials cannot be defined on the same
space in the discrete setting. This fact was among our motivations for introducing
diagonal derivatives (Eq. (C.1.0.9)).

Let us recall the divergence and curl of a vector field E - An(An) — T,

V.-E=V,E,,

- (3.3.2.1)
VAE=¢sVaEs (a,=12).

Taking the divergence (resp., the curl) of both sides in the Helmholtz decomposi-
tion 3.3.1.10 for 7i_=, by simple manipulation (e.g. specialize Eq. (C.1.0.12) to ¢
and 1) we just get

V- ﬁfﬂ/4 = va,ua = A¢a

- 3.3.2.2
V ATi_r/s = €apValipg = A0, ( )

where also the laplacian is a lattice laplacian, more precisely it is the diagonal
lattice laplacian described in Appendix C.1, and here depicted in Fig. 3.12b. At
this point, using (3.3.2.2) and straightforward lattice calculus computations (which
are recalled for convenience in Appendix C.1), we can separate the ground state
energy Hopt (Eq. (3.3.1.6)) into a sum of two contributions, as

Hop = (7 71) = (Fnjas Tiorjs) = = (Vad = €asV g0, 1)
= (6, Vaita) — (¥, capVakts)

3.3.2.3
- —(6,20) - (¥, 89) 5323
— HD L @)
Borrowing terminology from classical electrodynamics, we shall call H(®) := —(¢, Ag)
and HW) := —(2p, Avp), respectively, the longitudinal and transverse contributions

to the ground state energy Hop:. We remark that such a decomposition, as the
analogue decomposition in continuum electrodynamics, is independent on the dis-
order distribution, in the same manner as Maxwell’s equations are valid for any
distribution of charges. Everything we have discussed up to now is indeed valid
beyond our current choice of red points uniformly distributed on the domain, and
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in fact can be performed for any lattice vector field i, even if it does not correspond
to the optimal transport field of an ERAP.

3.3.3. Synthesis of results

In the following we shall introduce “the charges”, and namely, we will study some
statistical properties of the scalar fields A¢ and Ay (and hence ¢ and 3 upon
inversion of the lattice laplacian), both in coordinate and momentum representa-
tions, in the special case of R uniformly distributed on the torus. We will show
that upon simple rescaling and translation A¢ is log-normally distributed, while
At is gaussian, and give numerical estimates for their two point-correlation func-
tions. Afterwards, we will go to Fourier space and estimate the large n limit of
expected longitudinal and transverse contributions

En(9) = (H'),
E,(¢) = <7_[(w)>

which will turn out to be of qualitatively different nature (and quantitatively
different order of magnitudes) inside the asymptotic expansion for the expected
total ground state energy E,, := (Hqpt). In particular, we shall discuss their relative
contribution to Eq. 3.1.6.4 for Q@ = T(1), namely

(3.3.3.1)

1

E,=—logn+c+ O (l> = E,(¢) + E,(¥) (3.3.3.2)
Am n

where the constant ¢q is estimated® “directly” (Fig. 3.13) to ¢y = 0.1875(4), in
agreement with 0.1879(3) of previous numerical studies (see (1/9), Eq. 60).

3.3.4. Statistical properties of A¢p and Avy in coordinate
representation

Independently on n = L?, the empirical histograms of LA¢ + 2 can be reasonably
described by a lognormal distribution (Fig. 3.14, top); the histograms for LA
are well described by a single, centered gaussian (Fig. 3.14, bottom) of standard
deviation o = 0.6349(1) (obtained by bootstrapping).

Observation 3.3.1. A¢ and A appear to satisfy the inequality (Fig. 3.15)

L(JAy| = Ag) <2 (3.3.4.1)

*Numerical protocol: n € {64, 144,256,400, 576, 784, 1444, 2116}, 10* realisations for each n.
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Figure 3.13. — Numerical estimation for the sub-leading constant appearing in
the asymptotics for E, (Eq. (3.3.3.2), black dots + one error). Data analysis:
least square linear regression in % (blue dashed line).
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Figure 3.14. — FEzxperimental histograms for the fields LA¢ (top-left, with
corresponding symmetrized log probability functions at top-right, where v; =
Samp’m ) and LA (bottom-left, symmetrized log probability functions on the
right). Colors encode different sizes n = L* (see legend) and the dashed black
lines denote either the corresponding continuum fits (left), or the symmetrized

log probability of an empirical sample of 10° from the fits (right).
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which would imply in particular that, independently on z € A,, and n, LA is
lower bounded as

LAG > —2. (3.3.4.2)

— LA¢p=L|AY| -2
- n=64

n=400
n=2116

LAY

Figure 3.15. — Scatter plot of (LA¢, LAY) at different values of n (colors). Each
colored cloud contains 10n uniformly sampled values {L(A¢(z;), LAY(z;)) 2%

and it is centered at (0,0) within statistical errors. The grey area appears to be
forbidden.

3.3.5. Two-point correlation functions

Let us go beyond single-site analysis and consider the extent of spatial correlations
for the fields A¢ and Aw. By discrete translation invariance, for e; = (1,0)
es = (0,1) we can restrict our analysis to the two point correlation functions

CW) aslis 1) = n{AG(0)Ad(ies + jes)),
CL) i, ) = n(AG(0) At (iey + jeo)), (3.3.5.1)
O a(i,§) = n{AG(0) Adh(ier + jeo)),
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i/ 0 1 2 3
0 | 0.4936(2) — 0933/, | 0.1115(1) — 095@)/n | 0.0003(1) — 099@)/, | 0.0025(1) — 0922
I ~7=0.0086(1) — 9955 | 0.0050(2) — 100G), | 0.00114(7) — 1060/
2 - T —0.00251(6) — L5/ | -0.00040(8)-1-050)%,
3 - - ~1=0.0002(1) — 103,
) : (n) o
Table 3.8.: Numerical results for Cx; »,(i, 7).
ifj 0 1 2 3
0 | 0.40287(9) — 067/ | 0.0125(2) — 0063, 0.0039(1) + 001D/, [ —0.0007(2) — 001G/
1 T —0.10067(9) + 001/ | —0.0050(1) + 097/ | 0.00007(5) — 00708
2 - ~1=0.00233(6) + 00740, | -0.00037(8)-0:01(1);
3 - - ~ 1 —0.00043(7) + 0020
) : (n) .
Table 3.9.: Numerical results for Cxy 1, (1 7)-
i/j 0 1 2
0 | 0.0075(1) + 9310/n | 0.2204(1) + 909/ | —0.0364(1) + 90@/n | —0.0086(1 )+003<6>/
1 | —0.1688(1) + 020, | 0.02987(1) + 002/ | —0.0189(2) — 0-123) /| —0.01091(3) + 00870,
2| 0.03900(6) + 030/ | 0.0210(1) — 0012/ | —0.0066(2) — 028/ | —0.0098(1) + 011©)/;
3| 0.0255(1) + 0030G)/ | 0.01555(9) + 0066), | 0.00014(3) + 0B/ | —0.0058(1) + 0-200)

Table 3.10.: Numerical results for C(An(;mﬁ(i,j).

for integers ¢, j. The value at (i,j) was obtained by an extrapolation to n — o,
and first-finite size corrections could be estimated '. Intra-field numerical results
for C(A¢> Aol J) (resp., CAw auli; 7)), which are invariant under the exchange of
i — j, are reported in Tab. 3.8 (resp., Tab. 3.9). Inter-field numerical results for

C’(A”(; Ay(i;7) (which is not invariant under the exchange of i — j) are reported in
Tab. 3.10.

tNotice that we are aided in this task by the large statistical power guaranteed by translation invariance.
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3.3.6. On L2<]AA¢|2> and L2<\&\M2>

In this Section we shall provide the numerical estimation of the typical transverse
and longitudinal contributions through Fourier analysis. The Fourier components

of A¢ and Ay are (see C.1.0.4)

Kolp) = 7 3 e 702

2€A,

_ 1 ‘ (3.3.6.1)
Ay(p) = 7 2 e PAY(z).
zEN,
Recalling the modified laplacian in momentum space
. o 1o
Paod = P* = 5P105 (3.3.6.2)

we are thus concerned with the expectation of the random variables (see Eq. C.1.0.19)

5o i
%wzz%%izmiwwzz%%ﬂ, (3.3.6.3)
p#£0 +'mod p#0 mod

which are two-dimensional analogues of Eq. 2.3.3.9. Heatmaps of n|&b(p)|2 and

n|@(p)|2 at large n are reported in Fig. 3.16a. The longitudinal part (left) dis-
plays the characteristic area near n = (0, 0) (upper left-corner and periodic images)
responsible for the logarithmic divergence, and also remarkable rotational symme-

try around n = (£,%). The transverse part (right) shares the same symmetries
of p2 4, with the small n = (0,0) and large n = (%, %) wavelengths both de-
pleted, and connected through a saddle-point at n = (%, %)i . On the basis of

these observations, the numerical data were fitted as follows. Let us consider the

six-dimensional linear subspace spanned by f, s(z,y) = cos (%’rm) cos (%’Tsy) with

#Notice that the zero mode at n = (0,0) corresponds to the conservation law

Y Ag(z) =0, (3.3.6.4)

and the one at n = (%, %) corresponding to the vanishing of the “checkerboard” sum
L—1

DT (=) A, 5) = 0. (3.3.6.5)

,j=0
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r,s =0,1,2. Setting

-~ 1
aZopf = (1-5*) + X0, 336
in this subspace we have

X = ago+arg (fio+ for)+aso (foo + foo) +arifii+ass (for + fiz) +asafos.
(3.3.6.7)
However, the Fourier coefficients a; ; are not all independent, as two of them may
be expressed in terms of the others via the conservation laws at n = (0,0) and
n= (%, é), giving e.g. as1 = —a1p and ass = — (app + 2a20 + 2a;1,1). We are thus
left with a 4 parameter fit which can be solved in the least square sense to give

g0 = —0.00432 ;0 = —0.02454

(3.3.6.8)
Q20 = 0.02223 11 = —0.01875.

We can proceed analogously for the transverse part: setting (see also Eq. C.1.0.18)

1

—~ 1. L 1.,
n|Ap(p)® = 7 Pmod * Y ¥ (p) = 1 ( ?— —p2p2> + Y (p), (3.3.6.9)

for the expansion

erw) = boo+ b0 (fio+ fo1) +bo0 (foo + fo2) +biafia+bo1 (fan1 + fi2) +b2afos,

(3.3.6.10)
which is also to be complemented by by = —by g and by = — (boo + 2b2 + 2b11),
we get

boo = 0.10156 bio = 0.02353

(3.3.6.11)
byo = —0.00030 by, = 0.06375.

The results of fits to Eq. 3.3.6.7 and Eq. 3.3.6.9 are reported in Fig. 3.16b and are
in excellent agreement with numerical data. The remainder is localized in small
regions related by the lattice symmetries.
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(a) Numerical data for energy contributions in momentum space as a function of momentum
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Figure 3.16. — Heatmaps of longitudinal (Fig. 3.16a, left) and transverse
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(Fig. 5.16a, right) contributions in momentum space (indices n on azxes). No-
tice the (approximate) complete invariance under the action of any element of
the symmetry group of the square (so that one could symmetrize and consider
the regionn € [0, £) x [0, £) only). Below (Fig. 3.16b) we report the least square
fits discussed in the main text.



One may now perform the division by p2 ., and sum over the momenta. Assum-

ing the functional form

1 c c
En(¢) = 5-log L = ¢y + % + % (3.3.6.12)

we have obtained by least squares cso = —0.0163(4), c51 = 0.63(6) and cyo =
—9(1) (errors on last digits in parentheses, see Fig. 3.17a). Analogously, the typical

longitudinal contribution can be fitted assuming

B (¥) = ey + % + i;”—j (3.3.6.13)

giving ¢y 0 = 0.20437(6), cy1 = —0.70(3) and ¢y = 11(1) (errors on last digits
in parentheses, see Fig. 3.17b). Recalling the Kronecker mass for the 2-torus

(Eq. 3.1.4.18)

1 1
Krgpy = ;—i + % — —InT (14) = ~0.2270289 ... (3.3.6.14)
we get
Cy0 — Ko+ Cp0 = 04151(4) , (33615)

in agreement with the universal constant for the Grid-Poisson problem, Tab. 3.2.

—0.004 0.206
---- Least Square parabola
0.006 4 $ Data
//% 0.204 ﬁ\
-
-0.008 ,// H\i
/” \\ i
- 0.202 4 ~
c -7
o) -0.010 4 o] \\
K} ~
& s E) IS
| —0.012 57, = 0.200 1 &
N
s w
id ~
T -0.014 s N
w , 0.198 N
A Lo
N
~0.016 A S~
~
0.196 8 3
—0.018+ ---- Least Square parabola
¢ Data
-0.020 0.194 v T T T T T T
0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016

2| T T T T T T T
0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016
1

1
n n

(a) Fit of the regular part of longitudinal con-(b) Transverse contribution E, (¢) (y-axis) vs
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3.3.7. Section provisional conclusions and perspectives

In this Section we have introduced a statistical field theory approach to the GP-
ERAP, in which blue points sit on a deterministic square grid and red points are
uniformly distributed on the domain. In particular, we have considered some con-
sequences of the theory for the special case (d,p) = (2,2). Inspired by classical
electrodynamics, we have examined a “change of variables” for the optimal trans-
port field and shown that the new variables have a different statistical nature: their
average values contribute at different orders in the asymptotic expansion of the
ground state energy. More precisely, the longitudinal (or conservative) part, which
is associated to an approximately lognormal field, and through Fourier analysis,
fully responsible for the well-known logarithmic divergence of the expected ground
state energy; and a transverse (or solenoidal) part, associated to a gaussian field
appearing to enjoy the self-averaging property in the large n limit, and contribut-
ing to the ground state energy through a constant plus corrections in /n that have
been numerically estimated with good precision. Not only the sum of (the regular
part of ) transverse and longitudinal contributions recovers within errors the known
numerically estimated constant (749)

co = 0.1879(3)  0.1880(4) = ¢y + ¢y (3.3.7.1)

but, once the Kronecker mass of the torus is taken into account, the longitudinal
part carries most of the sub-leading constant (Eq. 3.3.6.15). In doing so, we
have also devised the stable numerical method of § 3.3.6, which indicates the
way to the theoretical understanding of the origin of such strange sub-leading
constants. As a by-product, our findings imply that the cutoff function F' for
the GP-ERAP is different from the one of the PP-ERAP, and also different from
1, as one could have possibly guessed. Lastly, we remark that the Helmholtz
decomposition can be readily applied for studying the GP-ERAP in which random
points are distributed with a measure different from the uniform measure and,
without conceptual modifications, to other choices for the grid, and thus may
serve as useful tool for investigating anomalous behaviors in two dimensions.
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~ CHAPTER 4 «—

EUCLIDEAN RANDOM
ASSIGNMENT PROBLEMS AT NON
INTEGER HAUSDORFF
DIMENSIONS dj € (1,2)

4.1. Introduction

ESPITE recent efforts, even at integer values of p and d and for the simplest
D choices of disorder, the phase diagram of an ERAP (that is, the leading
exponent of the expected ground state energy F, for large n as a function of
(p,d)) remains in part mysterious. It has already been established that, already
in the “simplest” case d = 1, it is rather rich (15/, 169) especially in the concave
region p € (0,1). In this case we have conjectured the existence of a critical point
with logarithmic scaling

E, ~ v/nlogn = n'~(log? )| (p,d)=(1/2,1) (4.1.0.1)

separating a trivial region (p € [0, 1/2)) where a nearest neighbor argument applies,
E, ~ n'~i|4; from the Dyck scaling region at p € (1/2,1] where E, ~ \/n (see
Fig. 2.17). On the other hand, at d > 2 with uniform disorder, it is known (60)
that points are optimally assigned with high probability in their Euclidean neigh-
borhoods, so that

p
By ~ cpan (n—%> (4.1.0.2)

for asymptotic constants ¢, which are not known in closed form but can be
addressed by the mean-field theory (namely, the random assignment problem)
with Mézard-Parisi exponent Y/r+1) = 1 —P/a (154). It is not known how the
critical points at (p,d) = (1/2,1) and (p,d) = (1,1) “enter” as critical lines in the
phase diagram at generic (p, d), and vanish at d > 2.

As we have recalled in Chapter 3, many efforts have been devoted during the
years to the special case d = 2, where the ground state energy is logarithmically
divergent at large n (see § 3.1) and logarithmic corrections may already appear at
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d = 1, if the disorder distribution vanishes (§ 2.6).

In this Chapter we shall take a first step into the unknown (as far as we know)
region of the phase diagram with the introduction of a notion of ERAP at non-
integer Hausdorff dimensions dy € (1,2). In this problem, the disorder distribution
is identical for B = {b?}7_, c M and R = {r?#}? , = M, and it is the uniform
measure supported on a fractal set M. The fractal sets depend on a simple ge-
ometrical parameter in a way that the corresponding Hausdorff dimensions give
different interpolations of the interval dy € (1,2), providing us a simple proxy for
universality of the energy leading scaling exponent.

It is interesting to notice that statistical properties of sets of points sampled from
measures supported on fractal sets using the two dimensional distance have been
considered during the years for vastly different reasons, ranging from grow rates of
the number of points defining the convex hull of a random sample of size n (81) to
the crossover transition in the distribution of nearest-neighbors distances, in con-
nection with random matrix theory (708, 712). Our main motivations stem from
the question of whether universal behavior extends “beyond” d = 2, in particular
in the perspective of one dimensional anomalous behavior, § 2.6. The latter sug-
gested that, beyond the bulk behavior, the scaling is determined by “holes” in the
support of the disorder distribution (i.e. endpoints of the measure p at d = 1). As
a consequence, one is naturally led to wonder about the geometry of the optimal
assignment also at higher dimensions, in a situation in which neighborhoods of
blue and red points are not anymore homogeneous but, from the point of view of
the embedding space, are full of inhomogeneities.

4.2. Setup

For a real number p > 0, consider the random variable
Hopt = ginZDP(bfr’é), rday (4.2.0.1)
i=1

where S, is the symmetric group on n objects and D?(x,y) = Zle(xi —;)? is the
(squared) two dimensional Euclidean distance. Denoting with (O),, expectation
of observable O with respect to the uniform measure on M, we wish to investigate
the large n asymptotics of the expected ground state energy

EY ) = Hopt) us (4.2.0.2)

n,(p,dn

depending on (p,dy) and on the fractal set M considered.
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4.3. Choice of randomness

4.3.1. Peano fractal

The construction of our first fractal is inspired by properties of space-filling curves,
such as the Peano curve (1) (see also e.g. (117), Chapter 2). Consider the aspect
ratio parameter & (peano) € [0, 1] depending on the Hausdorff dimension dy as

Q(Peano) = (QdH_l - 1)l/dH (4311)

and introduce the deterministic quantities

1
P = (1 o o 1)
d ’ 7" (Peano)’ ~"(Peano)’ ’
2(1 + a(lgeano)) ( o )
1 d d
A= 5 (1, a(ﬁeano)’ Oé(geano)y 1) ) (4312)
P = (17 Zla _i7 1)7
1 .
V = 5 (0, 1,1+ 1 (Peano) 1)

Calling R the cumulative distribution function of P, and R~ its inverse function,
draw a random integer i = |[R~*(u)|, i € {1,2, 3,4}, for u chosen uniformly in [0, 1],
where | x| is the largest integer smaller than z. For P = (£, z) € C?, Eq. (4.3.1.2)
and ¢ uniquely define the random map fp : C* — C?

fo(P) == (N®ig, 2 + Vi€) . (4.3.1.3)
Starting from an initial datum Py = (1,0), we apply fp recursively as

P, = f3(Py) = feo fp--o fp (P) (4.3.1.4)

g times

for a suitably large ¢*, and then consider the second component of Py, z, := (Fy)a.
We will say that z, (which can be either a red or blue point) is uniformly distributed
on the Peano fractal of Hausdorff dimension dg. In order to enforce the y < —y
symmetry, as an additional step we consider either z, or Z; with probability 1/2
(Z being the complex conjugate of z). Example instances of the disorder from the
Peano fractal at increasing Hausdorff dimensions are displayed in Fig. 4.1.

*In our settings g = 10 appeared to be large enough to prevent issues due to floating point precision.
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dy = 1.3 (Q(peano) = 0.324)

0.4
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0.0 J.sz::':%. } g :;i'};i;::i':
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Figure 4.1. — Instances with n = 2'2 blue and red points drawn uniformly from the
Peano fractal at increasing Hausdorff dimensions dy, in clock-wise increasing

order from dg = 1.3 (top-left) to dg = 1.9 (bottom-left).
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4.3.2. Cesaro fractal

The construction of our second fractal takes inspiration from the Koch curve (2),
which has Hausdorff dimension dy = m4/m3 ~ 1.26186". The Koch curve has
also been considered by Cesaro who, among other things, described a geometrical
construction for inscribing the Koch curve between two lines drawable in the plane,
and gave a binary representation of its points (7). The construction proceeds in
analogy with § 4.3.1. Given a bending angle ®(cesaro) € [0,7/2] related to the

Hausdorff dimension dg by

1

2
Q/(Cesaro) = arccos (ZE_ - 1) s (4321)
as in 4.3.1.2 we first build the quantities
Il = ! (1,1,1,1)
2(1 + Cos (a(Cesaro))) B
1 d d
A= 5 (1’ Oé(gesauro)7 a(gesaro)’ 1) (4322>
¢ — (17 eia(Cesaro) , e_ia(Cesaro)’ 1)
VvV = 1 (O7 1’ 1 + eia(Cesaro)’ 1 + eia(Cesaro) + efia(Cesaro)) .
2

and get a random index i € {1,2,3,4} with the inverse cumulative distribution
function associated with IT. For P = (£, z) € C?, ¢ and Eq. 4.3.2.2 we consider the
action of the random map

fCesaro(P) = ()\1¢1€> Z+ sz) s (4323)

and apply it a large number of times ¢ to the initial datum P, = (1,0)

Pg = f(%esaro(PO) = fCesaro © fCesaro *:+ 0 fCesarg(PO) : (4324)

~~
g times

We will correspondingly say that z, is uniformly distributed on the Cesaro fractal
of Hausdorff dimension dy, and again to preserve the y — —y symmetry we take
either z, or Z, with probability 1/2. Example instances of disorder on the Cesaro
fractal at several Hausdorff dimensions are displayed in Fig. 4.2.

fThe Koch curve is often used at school as an example of continuous curve which is not differentiable
at any point (see (116) for an elementary proof), but has also been considered in applications. For
example, due to the space filling property, small antennas with the design of the first few iterations
of the Koch curve display practical advantages over linear designs, such as larger radiation resistance
and smaller reactance (78).
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4.4. Numerical protocol, data analysis, and
results

Values of p,dy,n considered in our numerical experiments are reported in Ta-
ble 4.1. At fixed (n,p,dy) we have simulated 10 instances for both Peano and
Cesaro disorder, resulting in about two weeks of simulation time on a single ma-
chine of commodity hardware.

p | .33.,.66, 1.0, 1.33, 1.66, 2.0, 2.33, 2.66, 3.0, 3.33
dn 1.1,1.3,15, 1.7, 1.9
n 32, 64, 128, 256, 512, 1024

Table 4.1.: Numerical protocol (10* instances).

At fixed (p,dy) and choice of fractal (Peano (P) or Cesaro (C)), we have assumed
that the expected ground state energy EP(C) = (Hopt) pic p(c) Brows at leading order

. (p,dm)
as* P(C)
B ~ e @401

for a scaling exponent 75)(2{) and for some function CZJ(SL independent on n. It

follows that

P(O) P(©)
EQPTE,((?o,dH) N CE;S) (2n) 0 ~ Qi) fg}dm (4.4.0.2)

The functions 01(3(3) ) depend in a complicated way on the ensemble used and will

be discussed elsewhere. The scaling exponents Vipd P(C)

methods:

i) have been estimated by two

» Method 1. We have first computed E(Pp(gll), and then estimated the two free parameters
in
[10g2 EP©

n,(p,dH

2
)= (05, oy n + oy ) )| (4.4.0.3)

in the least square sense.

» Method 2. Called hP(C) a5y the sorted Vector of numerical data (so that hP(C ) € R104)
P(C)
2n,( pde) n,(p,du

to obtain 5 estimates for v, ((pl)i ) with our choice of numerical protocol, see

Table 4.1), and afterwards we have averaged among such estimates.

we have ﬁrst minimized ||h )||2 in the least square sense (so

fQur current numerical protocol does not allow us to draw reliable conclusions about possible logarith-
mic corrections.
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For each fractal set, numerical estimates for 75)(321) obtained by the two methods

agree with each other within two statistical errors at most. They are reported,
respectively, in Table 4.2 (Peano fractal) and 4.3 (Cesaro fractal).

Method 1 Method 2
[ P\dis | L1 13 L5 L7 19| [ p\dy | L1 1.3 L5 L7 19|
033 | .7T18(7) .773(3) .802(2) .822(1) .836(1) 033 | 71(1) .772(5) .802(3) .822(2) .836(2)
0.66 | .574(5) .614(4) .647(3) .673(3) .691(2) 0.66 | 571(8) .612(7) .645(5) .671(5) .689(4)
100 | .504(2) .522(2) .538(3) .549(3) .558(3) 100 | .502(4) .520(5) .534(4) .547(5) .556(4)
133 | .358(3) .394(2) .419(2) 418(3) .415(4) 133 | .360(9) .390(4) .415(2) .414(4) .411(6)
166 | .205(3) .265(3) .209(3) .291(2) .272(5) 166 | .200(5) .261(8) .294(6) .286(4) .265(8)
200 | .047(3) .135(3) .175(2) .168(2) .128(5) 2.00 | .040(9) .133(9) .169(4) .159(5) .119(9)
2.33 | -103(3) .003(3) .054(2) .047(1) -.018(5) 2.33 | -.109(5) -.001(6)  .05(1) .036(6) -.033(7)
2.66 | -254(2) -.126(3) -.064(3) -.070(4) -.156(7) 2.66 | -26(1) -.130(5) -.070(6) -.08(1) -.17(1)
3.00 |-417(6) -.248(5) -.175(3) -.188(5) -.298(7) 3.00 | -42(2)  -25(1) -18(1) -.20(1) -.31(1)
3.33 | -550(9) -.380(5) -.287(4) -.302(7) -.445(6) 3.33 | -56(3) -.376(9) -.29(1) -.31(2) -.469(9)

Table 4.2.: Estimated scaling exponents 757@,{) (see Eq. 4.4.0.1). Errors on the

last digit in parentheses.

Method 1 Method 2
N | 11 3 5 17 o] |p\du| 11 13 L5 17 19 |
0.33 | .757(4) .T87(3) .808(3) .824(2) .832(2) 0.33 | .756(6) .786(5) .808(4) .823(4) .831(4)
0.66 | .600(4) .632(4) .659(3) .678(3) .690(2) 0.66 | .598(7) .630(7) .657(6) .677(5) .688(4)
1.00 | 516(2) .531(2) .543(4) .552(3) .557(3) 1.00 | .513(3) .529(4) .541(6) .550(4) .555(5)
1.33 | .307(2) 423(1) .420(2) .416(3) .415(4) 1.33 | .397(4) .423(3) .418(4) .412(4) .411(7)
166 | .253(4) .310(1) .304(1) .284(2) .271(4) 1.66 | .255(9) .312(3) .300(4) .278(2) .264(6)
200 | .111(5) .188(1) .189(4) .152(3) .127(5) 200 | 11(1) .187(5) .184(8) .144(2) .118(7)
2.33 | -.036(6) .073(2) .075(5) .023(3) -.019(5) 233 | -.03(1) .071(7) .07(1) .014(9) -.032(7)
2.66 | -.180(6) -.046(3) -.036(8) -.104(5) -.162(7) 2.66 | -.18(1) -.039(5) -.04(2) -.12(1) -.18(1)
3.00 | -319(8) -.166(3) -.147(7) -.228(8) -.311(7) 3.00 | -30(2) -.163(8) -.15(2) -.24(2) -.33(1)
3.33 | -A73(7) -297(4) -25(1) -35(1) -.45(1) 3.33 | -47(2)  -30(1) -.26(3) -.37(3) -.47(1)

Table 4.3.: Estimated scaling exponents 783 a4y (see Eq. 4.4.0.1). Errors on the
last digit in parentheses.
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C(P)

4.5. On the qualitative behavior of Vipdy

evidence of universality

) and

((;)fgl){) > 1 - ﬁ. Moreover

%’y(cp (dPF),)|dH < 0, while ﬁfy(cp(g;)\p appears to change sign at some (non-trivial)

From Tables 4.2 and 4.3 it can be evinced that -~

critical value d;’C(P) (p) inside the explored parameter space. More generally, the
absolute difference |’yg)’ ) ’y(% dH)’ is small throughout the whole investigated
area, being at most ~ 0.1 (at (pdy) = (3,1.1)). In a whole sub-region of the
considered domain, which appears to “engulf” the line dg = 2, it is on the order
of 1073 and hence indistinguishable from statistical errors. This fact is consistent

with the existence of a whole universal region in the (p,dy) plane, corresponding
roughly to dy = max (2 —p,2— #) (Fig. 4.3, qualitative separation line in dash-
dotted black). The area appears to extend down to dy = 1 in a narrow region
around p = 1.

du
Viou = Vo

VING T
------------ 0.08
I I
17f . e

0.04

N, Kl 0.

NEN
w N
o
[RNTS

2

w N
w

Figure 4.3. — Shift in the numerically obtained ground state energy leading scaling
exponents 7(};)0,dH) —yngH) (colorbar) as a function of (p,dy) (axes). Raw values
(resp. Tables 4.2 and 4.3). The white area denotes the region where scaling
appears to be universal.
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4.6. Energy approximate linear relations

3.0 = 3.0
7
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Figure 4.4. — X and Y wariables for the Peano fractal at p = 2 and n = 500
(scatter plots) and their linear fits (dashed, red lines). The bisector Y = X is
represented by a dotted black line. Notice that the linear fits appear to acquire
an intercept as dg grows, a signature of logarithmic scaling.

The setting discussed in § 3.2.2 is motivated by a prediction, from the linearised
field theory, that two suitable linear combinations of ground-state energies for cer-
tain instances differ only by a quantity of order 1/n. Although in the present
setting, of fractal domains, we do not have a satisfactory field-theoretical descrip-
tion, we can experiment with the same numerical setting, and possibly use the
numerical results to get a hint towards such a theory. So, consider four sets of n
points Py, P, Ps, Py, uniformly distributed on a fractal set of choice, and let F; ;
be the ground state energy for the assignment problem of P, to P; (we omit the
dependence on p, dy, n and the fractal set for notational convenience). At a fixed
instance, we have considered the quantities

{X = Brp+ By (4.6.0.1)

Y =Eiuz2040+ Eioa203
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where e.g. F/1 3204 denotes the optimal cost of assigning the set P, U P5 to Py u Py
(i.e. an assignment problem between two sets of 2n points each). Independently
on the considered fractal set and robustly in the range of considered (p, dg) values,
Y and X appear to satisfy in good approximation a linear relation (that is, the
scatter plots X vs Y describe a cloud of variance of order 1 along a direction and
of order Y/n in the orthogonal direction). An example is provided in Fig. 4.4 for
the Peano case. These findings may be useful for acquiring information on scaling
exponents 7y’ ) (e.g. via the slope of least square linear regression) and sub-

(p7dH
leading constants, in presence of pure logarithmic scaling (i.e. via the intercepts).
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4.7. Energy profile at fixed disorder along the
(2,dy) line in the Cesaro fractal

In the Cesaro fractal construction (Eq. 4.3.2.2) the transition probabilities do
not depend on dy. This fact allows, for example, to fix the pseudo-random se-
quence for generating blue and red points and study the average energy profile

EC

n7(padH

) “along” the dy direction. For example, at p = 2, we have found numer-

ical evidence that ES ) is a rather smooth function of dy, admitting a global

maximum around dgy ~ 1.07. When subtracted the bi-dimensional, universal 102%
asymptotics, £ (2.dy) @PPears to converge rapidly to a constant as dg — 2.

n,

1.4

1.2 1

1.0 1

logn

L
2n

C
En, (2,dw) —

0.4 4

0.2 4

0.0

e n=50
n=100
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« n=1000
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AQA::::::::xx‘t
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Figure 4.5. — Average energy profiles ES,(MH) (y-azis, after subtraction of 102%)
for increasing values of the size n (legend) vs Hausdorff dimension dy (z-axis).
Shaded areas denote + one error on the average. Numerical protocol: dg in
steps of LR9 from 1.05 to 1.95, 1000 disorder realizations for each value of dy.
The non-monotone behavior of the curves may be related to accidental properties

of the Cesaro fractal, as the peaks at dy ~

/5, T/3.
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4.8. Conclusions and research perspectives

In this Chapter we have introduced a notion of ERAP at non-integer Hausdorff
dimensions. By considering two fractal ensembles, the Peano and Cesaro fractals,
providing different interpolations of the interval (1,2) in Hausdorfl dimension, we
have provided numerical evidences that the scaling exponents 7, 4,,) are larger than
the nearest-neighbors exponents 1 — P/dy, and generically display non-monotone
behavior in the dy direction. Our numerical findings suggest the existence of a
universality region in the plane (p,dy) where 7(,q,) appears to be independent
on the fractal set considered (two cases having the same scaling exponent are
reported in Fig. 4.6). Providing a first application of the general method discussed
in § 3.2.2, we have also shown that energies associated to certain combinations
of two independent systems appear to be roughly linearly related. Also, for the
Cesaro fractal, we have obtained the energy profile along the dy direction at “fixed
disorder”, showing surprising features (such as a maximum at dy € (1,1.1)) that
may be worth investigating further. We leave the elucidation of these novel findings
(especially the possible critical line which separates a universal region from a non-
universal one) to future work.
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(a) Instance on the Peano fractal. (b) Instance on the Cesaro fractal.

Figure 4.6. — Example instances for the Peano (/.6a) and Cesaro (/4.6b) ensemble
at dy = 1.5, together with the solutions at p = 1.33 (arrows, only the longest
are visible), giving the same energy scaling exponent v(1.331.5) = .417(2).
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~ CHAPTER 5 «—

(GENERAL PROVISIONAL
CONCLUSIONS AND RESEARCH
PERSPECTIVES

N this PhD Thesis we have studied a random combinatorial optimization prob-
lem, the Euclidean Random Assignment Problem. Our focus has been on
the statistical properties of the optimal configuration, depending on the energy-
distance exponent p and on the dimension and geometry of the ambient space. In
particular, we have presented some new contributions on the asymptotic behavior
of the cost at low dimensions, where the Parisi-Mézard mean-field description is
less satisfactory.

In one dimension (Chapter 2) we have reviewed the state of the art and discussed
some properties of Fourier modes of the optimal solution at p = 2, both in the
discrete and continuum case. As an application, we have shown that the proba-
bility distribution of the ground state energy can be written in terms of an elliptic
function in the latter case on the circle. The determination of such a probability
distribution for general finite p > 1 remains an open problem.

In the one dimensional ordered regime, motivated by the problem with non-
uniform disorder, we have introduced the notion of an anomalous scaling. In this
case, the leading asymptotic behavior of the ground state energy is determined by
a sub-extensive number of edges, the ones nearer to a depleted region. In order to
study possible anomalous behaviors we have first considered a simple continuum
method, inspired by cutoff regularisation methods in quantum field theory, which
reduces the problem to the study of convergence (and possible regularization)
of an integral (169). If the integral diverges, the anomalous behavior can be
determined fixing a constant by trivial numerical experiments. If the integral is not
divergent, the problem is “reduced to quadratures”. It is truly remarkable that our
physical motivations led us to consider questions that, in the continuum, appear
to be related to topics of current interest in probability (see e.g. the extensive
memory (168)).

Still in the ordered regime, we have also shown that, at the price of setting
aside simpler continuum methods, in the problem at finite n a qualitatively sim-
ple picture appears, where anomalous and bulk scaling are separated by critical
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lines. The critical lines are hyperbolic relations involving only two parameters,
the energy distance exponent p and the leading exponent characterizing the local
behavior of the pdf of B and R near endpoints at a finite or infinite value. Gener-
ically, logarithmic corrections appear at the critical line (marginally-anomalous
scaling), and for a generic stretched-exponential tail. Our combinatorial approach
has allowed us to address also the case in which the continuum method does not
exist (due to non-convergence of Riemann’s sums), and to point out several con-
nections with topics in Number Theory (such as, in particular, with multiple zeta
values). Anomalous behaviors at p € (0, 1) is not expected, except for a “gapped”
distribution, and at p € (12, 1] where the the system is marginal. We shall elucidate
this matter elsewhere.

In the concave or non-crossing regime, we have introduced the notion of Dyck
matching, a sub-optimal configuration independent on both p and the disorder
distribution and completely determined by the ordered list of colors. We have
given analytical expressions for the energy scaling of Dyck matchings through
analytic-combinatorial methods. On the basis of numerical experiments, we have
conjectured that the scaling behavior of the expected energy of Dyck matchings
and ground state energy coincide. Our conjecture implies a logarithmic correction
to scaling at p = 1/, the origin of which should be investigated further. A proof
of our conjecture is still incomplete (it goes through the determination of lower
bounds which have the same scaling of the Dyck upper bound), but it is under
development, and we are optimistic on its completion in a near future. On the
contrary, the analytical determination of the constant in front of the true asymp-
totics for the ground-state energy (or, in other words, the asymptotics of the ratio
between the cost of the Dyck matching and the optimal cost), besides the bounds
that would be implied by the forementioned analysis, seems out of reach with our
techniques.

In two dimensions (Chapter 3), we have focused on the case p = 2 using both
continuum and lattice methods, investigating (among other aspects) the logarith-
mically divergent series for the expected ground state energy, predicted by the
Caracciolo-Lucibello—Parisi-Sicuro formalism, beyond the leading divergence. For
a generic Riemannian manifold, we have argued, within the linearization frame-
work of the field theoretical approach to this problem, that universality persists
at sub-leading level with respect to the leading logn behavior. Among other as-
pects, we have related several regularisations methods for the divergent traces of
the inverse Laplace-Beltrami operators on the manifold: the integral of the Robin
mass and the Kronecker mass via zeta regularization. We have considered the
problem for several domains and shown that Robin and Kronecker masses are the
only relevant quantities in determining relative energies for different manifolds.
Moreover, for domains with a rectangular fundamental polygon, we have given
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explicit expression for shifts at varying aspect ratios, in terms of linear combi-
nations of rational functions and logarithmic ratios of the Dedekind n function,
admitting non trivial extrema. Our findings point at the existence of a universal
constant for the Poisson-Poisson problem, independent on the considered domain
and regularisation method used. On the basis of extensive numerical experiments,
in the accompanying paper (172) we have given a four-digit estimate of this con-
stant, with the hope of comparing this result with a future theoretical prediction.
In § 3.2 we have studied some conditions under which, in the linearised theory,
the energies of a collection of related instances are not linearly independent. In
particular we have considered 1) instances built acting on the domain 2 with a
spectrum preserving, unitary transformation: among them, some explicit examples
of involutive symmetries have been studied in details, also in zeta reguralization;
and 2) instances built via the union of independent point processes. As a by-
product, the study of the latter case has indicated a simple numerical procedure
for providing evidence of logarithmic scaling of the ground state energy. As in
the field-theoretical approach our predicted linear relations are exact (and with
simple coefficients), our findings constitute a promising tool to study non-linear
contributions in a rather general setting, and will be the content of a future paper.

In order to elucidate the grid-regularised problem (or Grid-Poisson problem),
where ultraviolet divergence of the theory are automatically removed, we have
introduced a lattice statistical field theory approach and studied some of its prop-
erties in the case of the square grid on the two dimensional torus. By means of
appropriate lattice calculus operators, we have been naturally led to an exact de-
composition of the optimal transport field u = Vo + V A ¢, where the conservative
part V¢ and solenoidal part V A 1 are in complete analogy with the Helmholtz
decomposition of classical electrodynamics. For the choice of uniform distribution
of one set of points, the statistical properties of the potentials ¢ and 1 appear to
be very different, contributing at different orders to the asymptotic series of the
expected ground state energy. In particular, the conservative part appears to be
responsible of the logn divergence (plus possible sub-leading divergencies, which
cannot be addressed by our current methods), while the transverse part appears
to converge to a finite (and grid-dependent) constant in the large n limit. Our
findings appear to be very promising and certainly require further investigation.
In particular, with only technical modifications, our proposed statistical field the-
ory approach may be applied to other choices for the grid (such as the hexagonal
lattice), giving different UV regularizations. It would be interesting to compare
the results for the same disorder to understand if and in what sense they give the
same continuum limit. Also, the approach can be readily extended to other choices
of the “charges” (that is, disorder distribution associated to red points other than
uniform). The latter extension appears to be particularly promising towards devel-
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oping an understanding of two-dimensional anomalous behaviors. For example, it
is known that stretched edges may contribute additional logarithmic terms to the
leading behavior of E[Hyp], such as in the case of a gaussian disorder on M = R?,
where E[Hpi] ~ ¢ (logn)? for some unknown constant ¢, as was recently shown
by Talagrand (762) and Ledoux (177).

Finally, in order to understand a possible phase diagram of the model in the
plane (p,d), interpolating between the known results for integer values of d, we
have introduced a notion of ERAP at non integer Hausdorff dimensions. By con-
sidering two fractal ensembles, the Peano and Cesaro fractals, which give different
interpolations of the interval (1,2) in Hausdorff dimension, we have addressed the
simplest possible question, namely if there is an indication of universal scaling of
the ground state energy at Hausdorff dimensions different from 2. On the basis
of extensive numerical experiences, we have strong evidence of the persistence of
such a universal scaling well below dy = 2, and exhibited very different geometries
resulting in the same scaling exponent (see Fig. 4.6), suggesting that the scaling
exponent should be a function of p and the Hausdorff dimension only. The ana-
lytical determination of such exponents giving the extent of such universal region
as a function of p will be a matter of future work.

A major unsatisfactory point of our work concerns the problem at p # 2. The
special role of the problem at p = 2 is interesting on its own, and possibly still
to be explored on the basis of our introductory remarks (Fig. 1.4) which seem to
indicate that the solution at p = 2 could capture most features of the solutions
at (p — €,p + €) for some ¢ > 0. However, as at p # 2 tools such as Fourier
transforms or lattice duality do not appear to be easily exploitable (of course,
Fourier transform always exists, but the fact that the energy is the ¢? norm of the
transport field, instead of the /? norm as is generally the case, is an important
simplification, as only the f5 norm is preserved by Fourier transform), so that
the problem is much less understood (even more so at the rigorous level). Our
opinion is that substantial mathematical work may profit from the many numerical
evidences accumulated during the years (7/4, 151). Besides the need of a better
mathematical understanding of these problems which —as we stressed in several
occasions— have been already capable of stimulating mathematical work, several
physical questions remains untouched by our present work, especially in the light of
the physics of spin-glasses. To mention but one, the existence, determination and
characterization of glassy phases for the ERAP is not established. Neither replica
nor cavity calculation to address this problem is known (to the best of the author
knowledge). Some work in this direction has been started only recently, addressing
mono-partite Euclidean matching problem (756) (which however, contrarily to the
mean-field case, in low dimension has a completely different thermodynamics w.r.t.
the bipartite case).

201



Another major unsatisfactory point pertains the little studied case p = 1, which
appears to be special at d = 1 as it separates the Dyck from the ordered regime. In
particular, in two dimensions, one easily shows that edges connecting optimally as-
signed points cannot cross. Heuristically, this two dimensional non-crossing prop-

erty appears to promote the formation of “long combs” in the optimal transport

logn

field, regions where the typical edge is much longer than in finite vol-

ume. Consequences of the non-crossing property in two dimension have not been
worked out even in the simplest cases, and it is expected that the field-theoretical
approach should not hold in this case. Extensions in two dimensions for p < 0
also appear also to be interesting, as this problem may share analogies with the
two-components log-gas (155) (except that one does not consider intra-color con-
tributions).

Lastly, it appears fair to state that the phase diagram of the Euclidean Ran-
dom Assignment Problem at low dimensions displays interesting but still poorly
understood features. For example, we have given strong experimental evidence of
persistence of universality below d = 2 (in a certain sense), and have evidence of
a phase transition, accompanied by a logarithmic correction factor at the critical
point, at (d,p) = (1,1/2).

Specific research problems, the resolution of which may in our opinion help to
find an angle of attack to some of the previous questions, have been detailed at
the end of each Chapter in the hope of providing “soft” entry points to the topic.
In the following, we would like to mention five, broader research themes sharing
tight relations with the present work in the hope of promoting new approaches to
possibly interesting problems on a longer time-scale research perspective.
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Permanent of random matrices and ERAP at non-zero temperature.
We have mentioned in the introduction that the canonical partition function of
an ERAP at finite temperature Z(3) satisfies Z(f) = perm[W (5)], where perm
is matrix permanent and the positive matrix W (/) is the Hadamard (entry-wise)
exponential of the assignment cost matrix (see Eq. 1.5.0.4). The statistical prop-
erties of the “elementary excitations” in an ERAP, that is, closed cycles of even
length (in units of edges of the underlining bipartite graph) which are alternat-
ing on the optimal solution, are well-exposed if the cost matrix is brought in the
so-called Hungarian gauge (that is, with the zeros of assigned positions along the
diagonal, as in the standard output of the Hungarian algorithm). Let W®(3) be
the Hadamard exponential of the assignment cost matrix in the Hungarian gauge.
As the bound |det [W(5)]| < Z(p) is gauge-invariant, a promising research di-
rection appears to be the study of the distribution of |det(FW ™ (53))|, where F};
is an uniformly random complex number of modulus 1 and FW is element-wise
multiplication of the matrices. A study of the statistical properties of the complex
zeros of perm [W ()], depending on > 0 and the choice of y, in the n — oo limit
appears also to be a promising research perspective in this direction. Lastly, for
a € C, a possible generalization of the partition function is

n

$la, B) = D> a" O T [W(B)inir. (5.0.0.1)

TES, i=1

where v(7) is the number of cycles in the permutation 7. Eq. (5.0.0.1) is related to
the a-permanent considered by Vere-Jones and others (70, 138), and provides an
interpolation between the determinant (w = —1) and permanent (o = 1), and at
high temperatures 5 — 0 reduces to ¢(«,0) = 1—[;;1 (14 ka) (that is, the ordinary
generating function of the Stirling numbers of the first kind).

ERAP and the d-dimensional Brownian loop. Very little is known for an
ERAP in which M has non-integer Hausdorff dimension dy, even considering a
cost function which can be canonically related to the dimension of an ambient
space. For example, on the basis of numerical evidences, we have argued that the
scaling exponent of E[H,p] appears to be universal in a region pmin(dy) < p <
Pmax(dgr) comprising the line p = 1, and expanding at large dy (see Chapter 4,
Fig. 4.3). Within this context, one is naturally led to consider blue and red points
distributed with the (e.g.) uniform measure on a d-dimensional Brownian loop (an
instance at d = 2 being shown in Fig. 5.1). We propose that the latter may be a
conceivable natural model for a charged polymer in solution. One finds that local
violations of the “charge neutrality” condition are associated with “bottlenecks”
of a certain physical flow. Especially at d = 2, a possible connection between
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Figure 5.1. — Optimal assignment of n, = 22 blue points onto n, = 2'% red
points unif. distr. on a two dimensional Brownian loop rooted at the origin (the
solution at p = 1 is depicted by black arrows, which do not cross due to the
parallelogram inequality). Notice the presence of long arrows assigning regions
where, locally, the “conservation law” ny, — n, = 0 is violated.

the statistical properties of such bottlenecks and cut times of the simple random
walk appears possible, in particular in connection with the well-studied intersection
exponents (g (65), which may be related to the large n scaling exponent of E[Hpt]-

Field theoretic approach to the ERAP beyond linearization. In (7/4),
Caracciolo-Lucibello-Parisi-Sicuro (CLPS) first proposed a field theoretic approach
to the ERAP which allowed to recover certain aspects of the asymptotic expan-
sion of E[H,pt] depending on the dimensionality d of M. In that approach, the
authors considered the action of a free field complemented by a constraint enforc-
ing the transport condition. The variational principle for the linearized action
gives rise to a Poisson equation which can be interpreted as a linearization of the
Monge-Ampére equation arising in optimal transport. As customary in Quan-
tum Field Theory, the authors assumed the existence of a cutoff function F(z)
in momentum space with prescribed small argument behavior lim, o F'(z) = 1
and such that lim, ,, F(z) = 0. At d = 2, the CLPS approach allowed to access
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the leading (Ajtai-Komlés-Tusnady) behavior, which, in retrospective, is typical
of the renormalization group acting on the critical dimension, where the defining
term appearing in the action is a marginal operator. However, sub-leading terms
of the asymptotic series are not directly accessible with this approach. Moreover,
the alternative PDE approach introduced by Ambrosio-Stra-Trevisan (164 ), which
allowed to establish rigorously the value of limit constants, also cannot go beyond
the leading behavior and does not appear to be easily generalizable, due to essen-
tial technical aspects in their proof. However, in the field theoretical approach, one
can go beyond linearization and consider the full perturbative series arising from
the exact action. This approach allows to describe the full distribution of Hopt
by means of a diagrammatic (possibly asymptotic) series with intriguing combi-
natorial properties (some results having been presented by Sportiello at the THP).
We wish to develop further these aspects, in particular in connection with the
extension of the ERAP at arbitrary densities on possibly non-compact underlying
spaces M, and explore the connections of this problem with the recently intro-
duced classification of the scaling of E[H,p] into anomalous and bulk regimes for
the ERAP at d = 1.

On logarithmic derivatives of the Dedekind 7 function appearing in reg-
ularisations of the ERAP at d =2 and p = 2. In § 3.1 we have considered
two regularization schemes for the ERAP at (p,d) = (2,2) on several highly sym-
metrical domains M, also in connection to certain classical invariants expressed
in terms of the the spectrum of the Laplace-Beltrami operator associated to the
surface M (51, 120). We have also considered a regularisation of the (logarith-
mically) divergent spectral sum by performing the analytic continuation of the
associated zeta function in the Kronecker limit. The method allowed for exam-
ple to compute differences in sub-leading constants among different domains M
and M. The theoretical predictions were in excellent agreement with numerical
experiments performed on several geometries.

A motivation behind this work was that very little is known about the asymp-
totic series of E[Hop| beyond the now-established universal ~ 5-logn behavior,
and indeed no method appears to be currently able to address this problem directly.

In our studies we have considered domains with a rectangular, [; x [; fundamen-
tal polygon (such as the cylinder or the torus), and shifts at fixed geometry but
variable aspect ratio p = % Quite surprisingly, we have observed a number of in-
stances in which such relative energies between different geometries admit (unique)
global extrema at non-trivial values of the aspect ratio p. In these “extremal ge-
ometries” a fundamental building block appeared to be logarithmic derivatives of
the Dedekind 7 function. More precisely, optimal p are determined by solutions
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to equations of the type

> p  nlip)
where 7 is the Dedekind function, and a, b, c € R, and we have been able to solve
these kind of equations only numerically. On the other hand, it is well-known that
the rhs of Eq. 5.0.0.2, at certain special values of p (which are not extremal for our
considered problems), reduces to the evaluation of series of reciprocal hyperbolic
functions (see e.g. Prop. 2.25 in (29), and (157)), and some of these series have
already been considered in the context of the Neumann problem on the rectan-
gle (28). The possibility that different extremal geometries (that is, optimal aspect
ratios for different domains M) may be related through non-trivial relationship
appears to be an interesting research perspective.

a b, (5.0.0.2)

Cycle structure of the optimal permutation for the ERAP on a general
graph. We have argued that an understanding of the combinatorial structure
of the optimal configuration 7,y for an ERAP in cases where B and R can be
naturally ordered (as in d = 1 and M = R) can be very useful, but has been
possible for a handful choices of the cost function only. Indeed, combinatorial
results either allowed to study the exact solution with analytical methods (e.g.
when ¢(z) = |z|? and p > 1, in which case 7oy is the identity, or p < 0, in which
case Topy is cyclical (15/)), either served as a guiding principle for the introduction
of approximate solutions, such as the “Dyck matchings” (777), which conjecturally
have the same asymptotic behavior of the optimal one. In this direction, even
weaker notions of order for points could be further exploited. A typical example
would be to consider points distributed along the edges of some graphs (such as
star graphs). In such a problem, starting from the simples choices of cost function,
is it possible to relate the combinatorial properties of myp (or the myus?) to the
topology of the graph?

Dynamics of indistinguishable agents. Tracking the motion of many identi-
cal agents can be seen as an assignment problem in which the positions of agents
at time ¢; (B) have to be assigned to positions of agents at time t;.; (R) by
preserving their individual identities. An analogous construction arises in the
Feynman-Kac representation of the Bose gas, upon interpreting time as inverse
temperature (122). If t;,1 — t; is sufficiently small, and the cost function is the
maximum likelihood function for “recognising” the dynamics (e.g., c(z) = |z|? is
the maximum likelihood function for diffusive motion, or balistic motion with mi-
nor modifications), one expects the transport field to correspond to the actual
displacement field in the limit ¢,,1 —¢; — 0. An approximate algorithm to address
similar questions, based on belief propagation, has been already applied to turbu-
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lent flow (729). However, in many real-life situations of interest, the motion of
many individual agents displays long-range correlations. For example, evidences
have been reported that the motion of a flock of birds displays an intriguing col-
lective response to external perturbations (728). How to extend the assignment
approach to such dynamical situations in order to understand deviations from un-
correlated dynamics appears to be an interesting research perspective, especially
in light of the availability of extensive empirical data.

We hope to address some of these research directions in future work.
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~ APPENDIX A «

A.1. The number of edges of length 2k + 1 in a
Dyck matching at size n (§ 2.7.7)

The goal of this Appendix is to compute the coeflicients v, j, crucially used in
the calculation of the average cost of the Dyck matching, starting with FEq. 2.7.7.9.
These coefficients count, among the n edges of all the possible (27:‘) Dyck matchings
on 2n points, the number of edges e of length |e| = 2k + 1. That is, vnk((r;;—l_)lﬂ),
is the probability that, taking a random Dyck matching mpyq uniformly, and an
edge e € mpye uniformly, we have |e| = 2k + 1.

Dyck matchings correspond to Dyck “bridges”, w.r.t. the notation introduced in
§ 2.7.5. We proceed with the calculation by first computing the analogous quantity
on a restricted ensemble, associated to Dyck “excursions” (that is, the ordinary
Dyck paths), which are Dyck bridges satisfying the extra condition >}, 0; = 0
for all 1 < j < 2n.

In the whole class of Dyck paths of length 2n there are

n—=kFk+1

Tnk =
2

1
edges of length [le| = 2k+1 (see http://oeis.org/A141811), with 0 < k < n—1.
These numbers obey the recursion relation, which determines them univocally
(together with the initial conditions)

n—1
Tk = CrCh—p1 + Z [rm,k Chem—_1 + Tn—m—1k Cm] . (AIOQ)

m=0

The recursion can be understood in terms of a first-return decomposition. If we
decompose the path into its first return, i.e. the portion between its left endpoint
and its first zero (say at position 2m + 2, 0 < m < n — 1), and into its tail, i.e. the
remaining portion of the path on the right, then:

e the first term counts all the paths in which the link between the first step
and the first zero is of the required length. The multiplicity of paths in
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which this situation arise is given by all the possible paths composing the
first excursion times all the possible paths composing the tail;

e the sum counts, for all the possible positions of the first zero, the possible
links of the required length hidden in the first excursion or in the tail of the
path. To count links of the required length hidden in the first excursion,
one can use 7, itself, times all the possible tails C),_,,,—1. The tail case is
symmetric.

It is easy to prove by induction that

Tnk = Ok Rn—k:—l (A103>
and the recursion reduces to
s—1
Ry=Ci+2) CoyRur. (A.1.0.4)
m=1

By introducing the generating function

R(z):= Y R, 2" (A.1.0.5)
n=0
we get the equation
R(z) =C(2) +22C(2) R(2) (A.1.0.6)

and therefore

R(z) = —é( — C(:)B(2) = [; - 1]

1-22zC(z 22 1+/1—4
) : (A.1.0.7)
:_i L ZBn—i-l n:ZBn+1 n
22z 2z = 2 = 2
indeed .
Bn+1
> CiBnoy = 5 (A.1.0.8)
k=1
It follows that B
Ry 1 = ’;““ (A.1.0.9)

as announced.

The preliminary computation of the 7, coefficients suggests to use the same
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technique for the v, ;, and provides an ingredient to write a recursion for the v, x:

n—1
Unk = 2 Ck Bn—k—l + 2 Z (Tm,k Bn—m—l + Un—m—1,k Cm)
m=0
n—1 n—1
=2 Ck ankfl + 2 Ok Bmfk anmfl +2 Z U,k Cnfmfl
m=k+1 m=k+1
n—k—1 n—k—1
=20y By—p1 + Z Cy B By jp—m—1 + 2 Z Utk Onk—m—1
m=1 m=1
(A.1.0.10)
and if we again set
Unk = C’kVn_k_l (Al()ll)
we get
Veo=2B,+ Y BuBem+2 Y Vi1 o
m=1 m=1
=Bi+ Y BuBim+2 > Vi1 Co (A.1.0.12)
m=0 m=1
=B, +4°+2 Y Vi1 Cor
m=1
We introduce now the generating function
2 Vi 2° (A.1.0.13)

to get the relation

V(z) = + +2z ———V(2) (A.1.0.14)

so that

1 2k+ 1!
V(z) = + ;= [4’“ ] 2, (A.1.0.15)
1—-4z2 (1—42)>2 ];)

which is our seeked result. We can finally check that the recursion above is indeed
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satisfied, as

212

Unk = Cy l4n_k_1 +

(2n — 2k — 1)!]
[(n—k—1)1]?
(n—k)?
2(n—k) B”"f]
n—FkK)rn.

¢, l4n—k—1 N (A.1.0.16)

=4kl Cr + (



A.2. Expansion of the generating function S(z;p)
via singularity analysis (§ 2.7.7)

Singularity analysis is a technique that allows to extract information on the co-
efficients of a generating function f(z) when an explicit series expansion around
z = 0 is not available. Roughly speaking, two main principles hold (see e.g. (71257,

pg. 227)):

1. the moduli of the singularities of f dictate the asymptotic exponential growth
of its coefficients. If z = a is a singularity of f(z) = >} _, fu2", then f,, ~
lal™™;

2. the nature of the singularities of f dictate the asymptotic sub-exponential
growth of its coefficients, i.e. they determine the (typically polynomial or
logarithmic) function 6(n) such that f,, ~ |a|™"0(n).

We will specialise this analysis to the case of a single singularity, along the real
positive axis, which is pertinent to series with positive coefficients, and no oscil-
latory behaviour. Generalizations of these principles (and of the related theorem
below) for the case of multiple singularities at the same radius hold as well, but
in our case are not relevant and will not be discussed.

The main result that we are going to need is a theorem (see (727, Theorem
VI.4)) that states that if f(2) is a “well-behaved” complex function analytic in 0,
with a singularity at z = ¢ + ¢0 such that

f(z) = a(2/C) + o(7(2/C)) (A.2.0.1)

for some functions o = >, _,0,2" and 7 = >} _7,2" in the span of the reference
set

S = {(1—2)"‘ (%logliz>ﬁ‘a,ﬁeﬁj}, (A.2.0.2)

then
fo=C"on +0(C"). (A.2.0.3)

Here, “well behaved” means that there exists an indented disk of radius bigger
than ¢, with the indentation that specifically excludes z = ( + i0, where f(z) can
be analytically continued. This means that the theorem is applicable to functions
with very general singularities (isolated poles, branch cuts, ... ), and in particular
to hypergeometric functions.

The reference set S is composed of functions whose expansion can be computed
exactly thanks to generalizations of the binomial theorem. These functions are
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ubiquitous in series expansions around poles of complex functions, so that the
theorem is extremely versatile.

In our specific case of the ES model, the generating function to study is of the
form

£(2) = s(42) F ( “0

42) (A.2.0.4)

where s(z) € span S is singular at z = 1, and F' = 5F] is the (2, 1)-hypergeometric
function defined by

a,b ) = 'n+a)T'(n+b) I(c) 2"
F( c ’) ;0 Tla) T(®) Tmtonl’ (4.2.0.5)

or, equivalently, by

ZTL
z) = Sn (A.2.0.6)

n=0

sner _ (atn)brn) (A.2.0.7)
Sp c+n

To expand and study the hypergeometric function around z = 1, a celebrated
“inversion formula” due to Gauss is available

P00 ) Rt (aenth o 1-2)
F(C)Efiﬁif Ui oot ( s ‘1 - Z) '
(A.2.0.8)

This formula restates the seeked expansion around z = 0 in terms of an expansion
near the singularity at z = 1. As the hypergeometric function is analytic in z = 0,
the singular behaviour at z = 1 of the right-hand side combination is described by
the power-law prefactors in the inversion formula.

In our specific case, a = I%l, b= 1%2 and ¢ = 2 with p € [0, 1], giving c—a—b =
1222 ¢ [-1, 1], Thus, the leading terms of the expansion of f(z) are:
L(c)T'(c—a—Db) N Fe)l'a+b—c)
['(c—a)l'(c—b) [(a)T'(b)

) = staz)| (1 - dz)emad
+0O((1 —42),(1 - 4z)c—a—b+1)]. (A.2.0.9)

The above expression is valid only for p # % A limit procedure combines the
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diverging I'’s and the (1 — 4z) term to give

1

e (In(1 — 42) + 298 + 90 (2) + v (2))

7(2) = s(a2) [ -
+0O((1 —42)In(1 — 42))]. (A.2.0.10)

where g is the Euler-Mascheroni constant and 1 is the digamma function. The
limit is to be performed with care: each term must be written as a function of
€E=p-— % and expanded in powers series. The expansion of the hypergeometric
functions must be performed using their definition. When everything is expanded,
o(e) are discarded taking the limit € — 0, and the leading terms in the (1 — 4z2)

are found by taking n = 0 in the sum of the hypergeometric function definition.

215



~ APPENDIX B

B.1. The first Kronecker limit formula (§ 3.1.2)

In this Appendix we will summarize some results obtained in the realm of analytic
number theory that have been useful to obtain our results. General references for
our discussion are Siegel (20) (Chapter 1) and Lang (48).

Let z € C. The Riemann (-function ((z) is defined in the half-plane $(z) > 0
by
1
((2) =), = (B.1.0.1)
k=1
The series converges absolutely for ®(z) = 1 + € for every € > 0. Riemann proved

that ((z) has an analytic continuation in the whole z-plane which is regular except
a simple pole at z = 1 with residue 1. At z = 1, {(2) has an expansion

1 0 k+1
((2) — = Z J du (k7% —u™?) =95 + o(z — 1). (B.1.0.2)
k=1"k

-1

As generalization of the Riemann (-function, we consider a positive-definite binary
quadratic form, in the real variables u,v € R

Q(u,v) == au® + 2buv + cv? (B.1.0.3)

where, a,b,c€ R and a > 0 and d := ac — b* > 0. Let us define

Coz) = )] S — (B.1.0.4)
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Now

a a

2
Q(u,v) =a (u + é) + @

( b+i\/3>< b—ivd
=a | u+ p v u+

=alu + Tv|?

where
b+ ivd

a

T =

with S(7) = a™*v/d > 0.

(B.1.0.5)

(B.1.0.6)

If d =1, (o(2) = (-(2), associated to (), is defined for R(z) > 1 can be analyt-
ically continued into a regular function for %(z) > /2 except for a simple pole at
z = 1 with residue 7, and the function ((#), has an expansion (first limit formula

of Kronecker)

CT( )_

where

0
LZ; | | 27rmz

1—2%[7E—1n2\/7|77 ]+oz—1)

(B.1.0.7)

(B.1.0.8)

is the Dedekind n-function (27), which satisfies the functional equations

1 .
0(-2) ~v=Ente).
Known particular values are

I (/)
2/

NERACD)
1(20) = S s

~ (0.76823

n(i) =

~ 0.59238

n(ai) = (=14 v2) v <1/4)4 ~ 0.35002.

229/1

(B.1.0.9a)

(B.1.0.9b)

(B.1.0.10a)
(B.1.0.10Db)

(B.1.0.10¢)
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~ APPENDIX C

C.1. Calculus on the square lattice (§ 3.3)

In this Appendix we shall recall some basic definitions of calculus on the lattice.
Our review could have been independent on the two-dimensional Grid-Poisson
ERAP, but for the sake of definiteness we shall restrict to the square lattice used
in § 3.3.

For a complex valued function f defined on the d-dimensional regular lattice,
for v =1,...,d recall the positive and negative directional derivatives

Vo f(z) =f(z+e) = f(2)
V;f(Z) ::f(z)_f(z_eu) :vjf<z_eu)

in terms of which the lattice laplacian is
2 V, Vi f(z Zwv f(2)
_Z (z+e) + flz—e) = 2f(2)] (C.1.0.2)

:Z 1/_ v f(Z)

A is a self-adjoint operator with respect to the lattice inner product defined, for
any two complex valued functions f,g: A,, — C, by

g9) =2, F(2)a(2), (C.1.0.3)

z€A,

(C.1.0.1)

where Z is complex conjugate of z (an analogous definition holds for the dual
lattice). In our setting at d = 2, where n = L?, the discrete Fourier representation
of a function f is

. %Zeip'zf(p) (C.1.0.4)
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where the discrete lattice momenta p = 2% <Zl) depend on (ni,ny) € Z2 Tt
2
follows that

Af(p) =—7p"f(p) (C.1.0.5)
where .
pi = 2sm%, i=1,2 (C.1.0.6)

is a generalization of Eq. 2.3.1.18. If vector fields are considered, Definition C.1.0.4
holds component-wise, and when obvious we shall always understand sum over
components, so that e.g.

Hopt = (ﬁa ﬁ) = Z(Mi,ﬂi) . (ClO?)

A main tool of our discussion are diagonal derivatives, which informally are finite
differences operators acting “between” the direct and the dual lattice. More pre-
cisely, for a function h : A, U An — C, defined both on the direct lattice A,, and
on the dual lattice An, they are defined as

o 1 A | o101
v = |1 (i g+ ) - (- 30-3)
1
2

Vah(i, j) =\/% [h (Z I %) -h (” %’j_ %>]

for i,j = 0,...L — 1 (see Fig. 3.12a for a graphical rule). In terms of diagonal
derivatives, it is possible to introduce the divergence and curl of any vector field

~

o A, (A,)) — Ty. They are the scalar fields

(C.1.0.8)

V. E=V.E,,

- (C.1.0.9)
VAE=€sVeEs (a,0=12),

where €,p is the 2-dimensional Levi-Civita symbol (and the convention on repeated
indices has been used). Remark that for a complex valued vector field defined on
An(A,), its divergence and curl are defined on A, (A,). Moreover, they satisfy the
zero-sum conservation laws

N (V-E)x= Y (VAE):)=0 (C.1.0.10)

2ehn(An) 2€An(An)
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by two-dimensional telescoping®. On the other hand, recall that the lattice lapla-
cian A acts either “on” the direct or “on” the dual lattice, but not “between” them:

~

for any function f : A,(A,) — C, we can write locally

[f+1Li+D)+fGi—-1,j—-1)+f(i—-1,74+1)+
fl+1,5-1)—4f@G,5)]. (C.1.0.12)

N —

(Af)(E,5) =

fori,7 =0,... L —1 (see Fig. 3.12b for a graphical rule). Of course, the laplacian
of any function also satisfies the zero-sum condition

>, (Af)z) =0, (C.1.0.13)

zeAn(An)

To elucidate the combined effect of our “rotation” (Eq. 3.3.1.9) and expression of
the rotated field in terms of diagonal derivatives (Defs. C.1.0.8), it may be useful
to observe that the divergence of Ji_/ can be written locally as

m ; L 1 +1,7+1) - ,J) + ,7+1) —  + 1,7
(V Fiiepa) (i 45,5+ = LG+ Y) = (GF) +pe (65 +1) = pa (i 4 1,5)
2 2 V2
:Mx(i+1’j+1)_ux(iaj)_Mx(iaj+1>+ﬂm(i+1,j)+
2
py 0+ 1,5+ 1) = gy (,5) + gy (6,5 + 1) — py (0 + 1, 5)
2 )
(C.1.0.14)

or, in terms of the standard directional lattice derivatives and ordinary i compo-
nents as

2 ;) _— [ux(i,j +1) +Mx(i>j>:| s [:uy(i +1J)+ My(i>j>]

1
(v'ﬁfﬂ'/él) (i+—,j+— 9 9

b ;o x 7;7' + ’i, ]
= Vaua(i,j) + V(i j) + Vivy [“( 7) + J)] |

2
(C.1.0.15)
*Indeed, the stronger conservation laws
Y (ViB)x) =0, i=12 (C.1.0.11)

hold separately.
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Correspondingly, the curl can be written as

R oL TN e (L) — e () (5 + D)+ G+ 1, 7)
v —T - — —
( AT /4)<z+23+2) 7
_THe (LG D)+ e (55) — e (g + 1) + 4 (T4 1,5)
2
,uy(i"‘1aj+1)_My(i7j)_/~Ly<iaj+1)+,uy(i+1aj)
2
_y+ fy (3,5 + 1) 4 pay (4, ) o+ (41, 5) + pa (4, 5)
v -V

2 2
;Mm(iaj)] '

= v:ﬂy(@j') - V;—Nm(l,]) + V;v;- l”y(l7])
(C.1.0.16)

As of the role of the modified lattice laplacian, observe that it follows from our
definition 3.3.1.10 that the components of fi_,/, have the Fourier representation

—z—z = [sin 222 G(p) — sin L2 ) |

2
(C.1.0.17)
2 - Mz x
() =i L2 S [P i) +sn 2 )
and hence '
- 2 - Pa + P Pe =Dyl 7
_ _ = 1Pz 2 Y 2 Yy
(Vi) (2) == 7 e +sin? | ()
1 ) ]52]52 R
_ ipz | A2 P11
=7 Zp]e [p 5| 2, (C.1.0.19)
1 ) ]32]52 R
- _ = ipz | 22 P12
(¥ nse) ()= De - P22 g
TAs can be readily verified using the trigonometric identity
2sin? p1tp2 +osin2 P2 =P2 o cos(p1 + p2) — cos(pr — p2)
A2 ~2
=2 —2cosp; COSpa = 2—2(1—%) (1—%) (C.1.0.18)
~2 A2
=pi+p2— p12pg
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