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RÉSUMÉ EN FRANÇAIS

Chapitre 1 : Introduction

Ce doctorat s’inscrit dans le cadre du projet ANR Crowdguard 1, qui a pour but
de protéger les participants aux plateformes de crowdsourcing. Dans cette thèse, nous
entendons par crowdsourcing l’ensemble des interactions qui régissent trois types d’acteurs
que sont les travailleurs, les employeurs et les plateformes, dans le cadre d’une relation
de travail : les employeurs ont des tâches à effectuer, et passent par les plateformes en
ligne pour rémunérer les travailleurs qui vont les effectuer. La protection, quant à elle, a
de nombreuses facettes : de nombreux abus sont référencés à la fois dans la presse, dans
les jurisprudences, et dans les travaux de recherche en sociologie, et nous nous focalisons
dans ce travail sur certains d’entre eux.

Parmi les problèmes fréquemment cités, deux se distinguent particulièrement : d’une
part la surveillance de masse effectuée par les plateformes sur les travailleurs, et d’autre part
le statut ambigu des travailleurs, souvent qualifiés non pas d’employés mais d’indépendants,
ce qui pose de nombreuses questions vis à vis du manque de protection dont bénéficie
ce dernier statut. Dans cette thèse, nous nous focalisons en particulier sur la protection
de la vie privée des travailleurs dans le cadre de leurs interactions avec la plateforme,
et sur leur protection légale, par la mise en place d’outils permettant de réguler les
plateformes et de fournir des preuves d’éventuels abus. Les domaines abordés étant assez
variés, et par souci de lisibilité, nous proposons dans chaque chapitre l’état de l’art
correspondant. Le Chapitre 2 est consacré à la création de versions respectueuses de la
vie privée d’algorithmes utiles aux plateformes. Nous explorons au Chapitre 3 la création
d’outils de régulation (également respectueux de la vie privée) afin de faciliter l’application
des décisions des législateurs. Nous nous intéressons dans le Chapitre 4 aux limites du PIR
(Private Information Retrieval, dont nous n’avons pas trouvé de traduction appropriée
en français), technique utilisée dans le Chapitre 2, bien que celles-ci soient relativement
indépendantes des problématiques liées au crowdsourcing. En effet, bien que cette optique
ne semble pas être étudiée dans l’état de l’art sur le sujet, une utilisation naïve du PIR

1. https://crowdguard.irisa.f/
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à de multiples reprises engendre des problèmes de sécurité qui ne sont pas présents lors
d’une utilisation unique. Enfin, le Chapitre 5 conclut notre manuscrit, en résumant les
contributions et en proposant des pistes pour des travaux futurs.

Chapitre 2 : Protéger la vie privée lors de l’affectation
de tâches et de calculs statistiques sur les données per-
sonnelles

Dans ce chapitre, nous nous intéressons à deux manières d’utiliser les données person-
nelles des travailleurs, ici comprises comme leurs niveaux de compétence dans différents
domaines susceptibles d’être utiles dans le crowdsourcing. Ces données sont fréquemment
utilisées en crowdsourcing, que ce soit pour effectuer une affectation des tâches aux tra-
vailleurs (utilisation que nous qualifions de primaire) ou pour calculer des statistiques,
utilisables à diverses fins (utilisations secondaires, par exemple, pour que la plateforme
puisse faire la promotion de la population de travailleurs qu’elle a à sa disposition, ou
pour que les employeurs puissent concevoir leurs tâches au mieux en fonction de cette
population). Le travail exposé dans ce chapitre permet d’éviter la surveillance des tra-
vailleurs, tout en autorisant ces utilisations légitimes, ce que ne permet pas de faire l’état
de l’art en toute généralité, du fait de limites dans le contexte étudié (crowdsourcing basé
uniquement sur la géolocalisation), de temps de calcul irréalistes pour des applications
concrètes, ou une qualité trop faible.

Tout d’abord, nous nous intéressons aux usages secondaires. Pour pouvoir fournir
les statistiques nécessaires à ces usages tout en protégeant la vie privée des travailleurs,
nous avons conçu l’algorithme PKD (pour Private KD-tree). Cet algorithme garantit, en
terme de sécurité, que les données rendues accessibles à un attaquant dit honnête mais
curieux sont à tout instant au minimum soit chiffrées soit protégées par la confidentialité
différentielle (differential privacy), en utilisant pour cela de l’ajout de bruit aléatoire pour
la confidentialité différentielle, ainsi que des méthodes venant de la cryptographie. La
démarche globale pour les usages secondaires est résumée dans la Figure 1.

Pour résumer, nous calculons un partitionnement de l’espace des compétences des tra-
vailleurs, en fonction de la distribution de ceux-ci. La méthode générale de partitionnement
choisie, le KD-tree, coupe successivement chaque dimension au niveau de la médiane
des points représentés (ici, la représentation graphique des profils des travailleurs). Pour
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Figure 1 – Illustration de l’algorithme PKD: autoriser des usages secondaires de profils des
travailleurs en protégeant leur vie privée

effectuer ces coupes sans connaître la position des points (pour protéger les données), nous
calculons des histogrammes de manière distribuée, en utilisant pour cela du chiffrement
homomorphe qui, couplé à la confidentialité différentielle, permet de garantir que les
résultats dévoilés seront protégés. Au final, le résultat obtenu est une distribution bruitée
(bien qu’elles restent statistiquement correctes, les valeurs affichées peuvent différer de la
réalité afin de satisfaire les contraintes de confidentialité différentielle) mais respectueuse de
la vie privée des travailleurs dans l’espace des compétences. Cette approche est illustrée par
une démonstration 2, qui implémente l’approche sur un scénario dans lequel des employeurs
cherchent à concevoir des tâches adaptées à la population de travailleurs. Elle est aussi
validée par des preuves de sécurité (confirmant que cette approche est sécurisée contre des
attaquants dits “honnêtes mais curieux”), ainsi que des expérimentations sur la qualité des
distributions obtenues et sur les temps de calcul, permettant de conclure que la qualité de
la distribution obtenue est comparable aux résultats de l’état de l’art en contexte centralisé,
et que le temps de calcul est viable pour des scénarios réalistes.

Ensuite, nous nous intéressons à l’utilisation dite primaire, qui est une utilisation plus
directement en lien avec le crowdsourcing : l’affectation des travailleurs aux tâches. Pour
ce faire, nous utilisons essentiellement le PIR, qui permet à un utilisateur de télécharger
des données sans que l’hébergeur ne sache quelles données ont été téléchargées. Cette
technique est cependant limitée car ses garanties ne s’appliquent plus lors de multiples
téléchargements successifs, ce qui la rend inapplicable en crowdsourcing pour un travailleur

2. disponible publiquement ici : https://gitlab.inria.fr/crowdguard-public/implems/pkd-demo
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souhaitant télécharger plusieurs tâches. Pour cette raison, des adaptations de ces protocoles,
tenant compte de nos contraintes, ont été conçues. L’idée principale est de télécharger un
sur-ensemble des tâches réellement souhaitées en une seule fois, afin qu’il soit impossible
de déduire quoi que ce soit du nombre de téléchargements. Le KD-tree précédemment
construit est alors utilisé pour limiter le plus possible les téléchargements inutiles. Cette
approche est elle aussi validée par des preuves de sécurité et des expérimentations portant
sur le temps de calcul et la qualité des affectations, permettant là encore de conclure que
les temps de calcul sont raisonnables à grande échelle.

Dans l’ensemble, ce chapitre a mené à de multiples publications au long de la
thèse 3 4 5 6 7 8 9.

Chapitre 3 : Réguler le crowdsourcing tout en pro-
tégeant la vie privée avec SEPAR

Le manque de régulation dans le milieu du crowdsourcing est fréquemment dénoncé
par les travailleurs, syndicats, médias, ou travaux en sociologie, et la loi reste parfois
inappliquée. Cependant, il est notable qu’il n’existe à ce jour aucun outil permettant
d’appliquer une régulation uniformisée sur l’ensemble des plateformes tout en protégeant la
vie privée des participants. Dans ce Chapitre 3, nous proposons donc un outil, SEPAR, qui
permet de répondre à cette problématique. Nous considérons une situation dans laquelle
de multiples plateformes, travailleurs et employeurs sont présents, et interagissent : un
travailleur peut être présent sur plusieurs plateformes, et faire appel à plusieurs employeurs,

3. Joris Duguépéroux and Tristan Allard, « From Task Tuning to Task Assignment in Privacy-Preserving
Crowdsourcing Platforms », in: Transactions on Large-Scale Data and Knowledge-Centered Systems (2020),
(40 pages).

4. Joris Duguépéroux and Tristan Allard, « Privacy-Preserving Informed Task Design in Crowdsourcing
Processes », in: BDA’19, (10 pages), 2019.

5. Joris Duguépéroux, Antonin Voyez, and Tristan Allard, « Task-Tuning in Privacy-Preserving
Crowdsourcing Platforms », in: Proc. of EDBT’20, (4 pages), 2020, pp. 623–626.

6. Joris Duguépéroux, « Guaranteed Confidentiality and Efficiency in Crowdsourcing Platforms », in:
APVP’19, (2 pages), 2019.

7. Joris Duguépéroux, « Guaranteed Confidentiality and Efficiency in Crowdsourcing Platforms », in:
BDA’17, (2 pages), 2017.

8. Joris Duguépéroux and Tristan Allard, « Un algorithme de partitionnement de l’espace des com-
pétences pour plateformes de crowdsourcing respectueuses de la vie privée », in: HIA’20, (17 pages),
2020.

9. Joris Duguépéroux, Antonin Voyez, and Tristan Allard, « Task-Tuning in Privacy-Preserving
Crowdsourcing Platforms », in: HIA’20, (8 pages), 2020.
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et inversement pour les employeurs. Bien que des travaux traitant de problèmes analogues
aient pu être présentés dans des contextes bancaires ou avec des chaînes de blocs protégeant
les informations personnelles, ceux-ci ne permettent pas de résoudre notre problème, qui
mélange trois types distincts de participants ainsi que des contraintes de régulation,
transparence et confidentialité.

Dans ce contexte, nous proposons un système distribué permettant d’appliquer des
règles génériques et simples à exprimer, qui autorise la régulation des échanges entre les
participants en garantissant à la fois transparence et respect de la vie privée. Ces règles
peuvent prendre la forme de contraintes, comme interdire aux travailleurs de travailler
plus de 40h par semaine sur l’ensemble des plateformes, ou limiter le nombre de tâches
effectuées sur une certaine plateforme pour favoriser la concurrence. Ces contraintes sont
alors exprimées par un nombre arbitraire de règles spécifiant (ou non) des participants
(travailleurs, employeurs ou plateformes) et interdisant à ces participants toute interaction
au delà d’un certain seuil. Une autre forme de règle possible est la demande de certification,
par exemple pour qu’un travailleur puisse prouver le nombre de tâches effectuées afin de
cotiser à des droits sociaux, ou dans le cadre d’une poursuite en justice d’une plateforme
pour une requalification en emploi salarié. Cette demande de certification spécifie des
participants (au moins un) et un seuil, et garanti que les participants spécifiés ont interagi
un nombre de fois supérieur au seuil indiqué.

Pour obtenir ce résultat, nous proposons un système distribué dont les éléments clés
sont les suivants :

— Les plateformes constituent des nœuds d’interactions : ils peuvent être constitués
de multiples serveurs, et les décisions et actions de la plateforme résulteront du
consensus dit “local” de ces serveurs

— Un registre global, accessible publiquement et concrétisé sous la forme d’une chaîne
de blocs à permissions (permissioned blockchain), est mis à jour à chaque étape
par consensus global entre l’ensemble des plateformes afin d’enregistrer des traces
des transactions, permettant de garantir la transparence sans compromettre la vie
privée

— Des consensus inter-plateformes, lorsque des tâches concernent de multiples plate-
formes (par exemple, un employeur pourrait vouloir soumettre une tâche à de
multiples plateformes concurrentes)

Ces trois formes de consensus régissent l’utilisation de jetons (token) qui sont garants
des règles décidées. Ces jetons sont émis initialement par une entité de confiance, telle
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qu’une autorité administrative par exemple, qui est en charge de garantir l’unicité de tous
les participants (éviter la création de multiples comptes), de distribuer les jetons, et de
trancher les désaccords en cas de contestation. Deux types de jetons existent. D’abord,
les jetons de contraintes, distribués en nombre contrôlé, et utilisés à chaque tâche, qui
permettent de s’assurer qu’aucun participant n’excède le quota d’interactions autorisées (les
jetons ne contiennent pas d’informations liées à l’identité, mais sont diffusés publiquement
sur le registre global et leur authenticité peut être vérifiée, de sorte qu’il est impossible
qu’un participant agisse une fois tous ses jetons utilisés). Ensuite, les jetons de certificat,
eux aussi utilisés à chaque tâche, comportant une partie publique diffusée sur le registre
global, et une partie privée, liée à son identité ainsi qu’à celle des autres participants à
une même tâche, et qui permet de prouver son implication dans une tâche (une fois la
partie publique du jeton validée).

De cette manière, chaque participant peut certifier son implication dans les tâches avec
lesquelles il est lié (ainsi que la présence d’autres participants), tout en étant limité dans
le nombre des tâches par des contraintes décidées par une autorité administrative.

En terme de sécurité, nous considérons ici un attaquant caché, c’est à dire qu’il peut
agir malicieusement si cela n’est pas détecté, mais qu’il s’abstiendra s’il sait qu’il sera
détecté. Avec ce modèle d’attaque, nous exigeons (pour simplifier) qu’aucun participant,
à l’exception de l’autorité administrative, ne puisse apprendre quoi que ce soit d’une
interaction avec laquelle il n’a aucun lien. Enfin, des expérimentations sur le temps de
calcul et le passage à l’échelle, ainsi que des preuves de sécurité permettent de voir que le
temps de calcul augmente avec le nombre d’interactions (notamment lorsque les tâches
sont nombreuses et toutes sur plusieurs plateformes), tout en restant applicable à des
scénarios réalistes.

Ce travail sera bientôt soumis pour une publication à la conférence SIGMOD 10.

Chapitre 4 : Extension du PIR aux téléchargements
multiples

Dans le Chapitre 4, nous nous intéressons plus en profondeur au problème du PIR déjà
abordé dans le premier chapitre : considérant une liste de contenus, cette technique permet

10. Mohammad Javad Amiri, Joris Duguépéroux, et al., SEPAR: A Privacy-Preserving Blockchain-based
System for Regulating Multi-Platform Crowdworking Environments, Soon submitted to the SIGMOD
conference (14 pages), 2020, url: https://arxiv.org/abs/2005.01038.
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à un utilisateur de télécharger l’un de ces contenus sans que l’hébergeur ne sache lequel
a été choisi. Cependant, les garanties de cette technique ne s’étendent pas au-delà d’un
unique téléchargement, ce qui limite fortement son usage pour des applications concrètes.
Pourtant, nous n’avons pas pu trouver dans la littérature actuelle de mentions claires de
cette limite, qu’il s’agisse de l’attaquer ou de la défendre. Ce chapitre, moins formel et
approfondi que les précédents, propose tout d’abord une attaque possible, en se basant sur
des connaissances extérieures sur les contenus ainsi que sur le nombre de téléchargements
effectués. Dans un second temps, nous proposons des pistes de défense afin de pallier ce
problème et d’autoriser le PIR pour effectuer de multiples téléchargements sans perdre en
sécurité. Malgré le manque de preuves et de validations expérimentales, ce travail ouvre des
pistes intéressantes sur de nouveaux modèles de sécurité et offre un aperçu des différentes
solutions susceptibles d’être développées à l’avenir.

Chapitre 5 : Conclusion et travaux futurs

Dans ce dernier chapitre, nous synthétisons nos apports et contributions, et proposons
des pistes pour les prolonger. Ces pistes peuvent s’étendre dans deux directions principales.
D’une part, une continuation directe des objectifs de nos travaux est possible, par exemple
pour améliorer la qualité des affectations et statistiques dans le Chapitre 2, pour augmenter
l’expressivité des contraintes du Chapitre 3, ou pour valider théoriquement ou expérimen-
talement les hypothèses émises dans le Chapitre 4. Cependant, une autre continuation
est possible, qui consisterait à étendre encore le champ des protections apportées aux
travailleurs. Par exemple, il n’y a que très peu de travaux dans la littérature traitant
de l’équité entre les travailleurs, de la transparence des traitements individuels, ou de la
portabilité des profils et notes reçues d’une plateforme à une autre. Ces points en suspens
sont pourtant autant de problématiques qui concernent directement les travailleurs dans
le crowdsourcing, et nous semblent donc importantes à souligner.
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Chapter 1

INTRODUCTION

Originally, this PhD was described as a “research project dedicated to designing models
and algorithms for the enforcement of strong protection measures of the individuals
participating in crowdsourcing processes dedicated to work”. In this description 1, two main
concepts are combined: crowdsourcing, and protection, both kept relatively undefined.
Crowdsourcing, as a name, is a contraction of “crowd” and “outsourcing”, and was first
introuced by Howe 2, in 2006. This word is used in many senses, and in this work, we
define it as follows: crowdsourcing refers to the ecosystem which encompasses professional
and economic interactions between three parties: requesters, who have tasks to accomplish,
workers, who are willing to do these tasks in exchange for a reward and constitute the
“crowd”, and platforms, which are intermediaries. With this definition are included well-
known companies, such as Uber or Amazon Mechanical Turk. The protection part is
no easier to define: who is to be protected, and from what? This work mostly focuses
on the protection of workers. More specifically, this manuscript focuses on providing
sound protection of the privacy of workers (without compromising efficiency of usual
crowdsourcing algorithms) and access to legal protection (e.g. being able to defend their
cases in a court, or benefiting from legal restrictions).

To introduce this work, we first try to understand with more depth the concept of
crowdsourcing in Section 1.1: what are the assumptions of this concept, why do so many
concurrent names exist, and how is it studied in Computer Science? The reality behind
crowdsourcing is then explored in Section 1.2: what kind of issues can be seen in the news,
what legislations apply in this economic model, and what Social Sciences can say about.
Finally, we introduce our contributions in Section 1.3, and explain how they articulate to
answer the issues that have been found.

1. From the Crowdguard ANR Project, which funded the PhD https://crowdguard.irisa.fr/
2. Jeff Howe, « The rise of crowdsourcing », in: Wired magazine 14.6 (2006), pp. 1–4.
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1.1 Did you say “crowdsourcing”?

As stated previously, crowdsourcing refers to the idea of outsourcing work to a poten-
tially unknown crowd. However, this succinct definition hides many realities. We propose
here to explore first the objectives of crowdsourcing, the way it is treated in Computer
Science, and a few of the numerous words that refer to this phenomenon, which reflect
different points of view and nuances.

1.1.1 What is crowdsourcing?

While outsourcing assumes that it is more efficient to have work done by people in
other countries or by intermediate companies, crowdsourcing assumes that some tasks
exist, that are more efficiently done by potentially numerous unknown people than by
a limited number of known employees. The metrics used to measure efficiency, in this
context, is often profitability. For instance, in outsourcing, profitability may be increased by
low-paid workers and less protective legislations. Although legislations play an important
role for crowdsourcing too, as we will see later, this is not the only element which makes it
more profitable: the diversity of the crowd (real or assumed) also plays an important role.
Diversity can be interesting for tasks that have specific requirements to be accomplished
(e.g. close geolocation to optimize transportation, understanding a given language for
translations, etc.), for market studies on specific crowds or even for art contests. All these
tasks require workers, but hardly justify recruitment.

To fully understand what crowdsourcing means, it is interesting to distinguish its use-
cases. Many typologies have been proposed to distinguish various kinds of crowdsourcing
processes in the last decade 3 4 5 6. In particular, the typology used by Casilli in 2019 7

proposes the three following categories:
— On-demand services, which propose services to individual requesters, such as trans-

portation or delivery. We also include freelancing in this category.
— Micro-tasks, which refer to tasks that do not require advanced skills, are numerous,

3. Thierry Burger-Helmchen and Julien Pénin, « Crowdsourcing: définition, enjeux, typologie », in:
Management & Avenir 1 (2011), pp. 254–269.

4. Anhai Doan, Raghu Ramakrishnan, and Alon Y Halevy, « Crowdsourcing systems on the world-wide
web », in: Communications of the ACM 54.4 (2011), pp. 86–96.

5. David Geiger, Michael Rosemann, et al., « Crowdsourcing Information Systems - Definition, Typology,
and Design », in: Proc. of ICIS’12, 2012.

6. Antonio A Casilli, En attendant les robots-Enquête sur le travail du clic, Le Seuil, 2019.
7. Ibid.
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quick to perform and poorly paid, such as building datasets to train artificial
intelligences (e.g. recognizing patterns in pictures, transcribing discussions, etc.),
which is easy for humans, but harder for algorithms.

— Social media labor, which includes all actions performed on a social media (e.g.
liking a content, adding content or posts, visiting any webpage, or anything that
can be measured on these social media), seen as work in the way that they are used
to produce value by the owner of the network, although “workers” are not paid in
the process.

With our previous definition, we voluntarily exclude social media labor from our scope, as
requesters and platforms, in this context, are hard to distinguish, when they are distinct
at all. It is interesting to notice that the nature of task is not the only difference between
on-demand services and micro-task. Indeed, even the assignment process varies a lot
between these two categories. For micro-tasks, the identity of the worker does not really
matter for the requester, as the task does not require specific skill, and no real-life contact
is made. Therefore, workers are made as invisible as possible by the platform: the task is
often published on the platform and chosen by workers 8. On the opposite, for on-demand
services, requesters often have the last word to decide whether or not they accept a worker,
because of the required skills, or to ease the client for real-life contacts: for freelancing, the
choice is often let to the requesters to decide which worker they hire, according to their
presentation or curriculum vitae 9.

1.1.2 Why do we use the expression “crowdsourcing”?

Although “crowdsourcing” is relatively widespread in Computer Science, it is far from
being the only word that refers to this phenomenon. We explore here a few of these names,
along with their connotations and variations.

In many cases, the meaning of the word is straightforward: for instance, “playbour”
insists on the fact that online work may look like a game on platforms, and “crowdsourcing”
insists on the fact that work can be moved to an unknown crowd. Similarly, the “gig
economy” 10 insists on variations on the economy and the way it works, making abstraction
of the life of workers and of the tasks, to focus on the fact that these tasks are smaller and

8. See for instance platforms such as Amazon Mechanical Turk, Appen or Kicklox
9. Examples include fiverr, 99designs, or Upwork
10. Valerio De Stefano, « The rise of the just-in-time workforce: On-demand work, crowdwork, and

labor protection in the gig-economy », in: Comp. Lab. L. & Pol’y J. 37 (2015), p. 471.
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smaller, that hardly require full-time employees, so that workers have to adapt and to be
more “agile”. “Platform capitalism” 11 is also relatively clear in its meaning, describing the
rise of powerful platforms, with increased power on job market.

However, meanings and nuances are not always that obvious, and it is also interesting
to focus on the word used to refer to the work itself. Indeed, as reminded from Marxian
philosophy of work, work is a many-faceted notion 12 13, as it refers to (1) the relationship
between the worker and the task, the qualitative content of a productive activity, (2) the
relationship between the worker and others, or in other words, the role of human activity
in production, measured quantitatively and independently from its concrete properties (e.g.
through money or the work time), and (3) the professional identity which determines social
status. In English, “work” is used to express the first connotation, “labor” the second, and
“job” the last one.

Although it is incomplete, this grid of analysis provides tools to understand some
possible implicit nuances. “Freelancing job” uses job as an independent unit of work, but
can also be seen as a social status given to workers: platforms give them a job that they
do not have to be ashamed of. “Digital labor”, used in sociology, focuses on the living
conditions of these workers, insisting on the fact that these activities do create value,
although this value is appropriated by platforms. “Crowdwork”, simply states that tasks
are performed by the crowd. “Ghost work” 14, focuses on the fact that tasks, and not only
workers, are hidden from the public sight. Interestingly, “future of work” 15 16, can also be
analyzed through this prism. This expression focuses on the evolution of tasks, how to
perform them differently, and what their future will be. However, this syntactic analysis of
the “future of work” does not say anything about workers. Although the authors using
this expression all have an opinion on what the future of workers should be (and not only
work), this opinion is hard to deduce only from the expression itself (e.g. whether this
future is meant to improve their lives or to focus on profitability): not all expressions were
created using the Marxian distinction between work, labor and jobs in mind, and the
corresponding analysis is not relevant in all contexts.

11. Nick Srnicek, Platform capitalism, John Wiley & Sons, 2017.
12. Casilli, op. cit.
13. Dominique Méda, Le Travail. une valeur en voie de disparition?, Flammarion, 2010.
14. Mary L Gray and Siddharth Suri, Ghost Work: How to Stop Silicon Valley from Building a New

Global Underclass, Eamon Dolan Books, 2019.
15. FoW participants, Imagine all the People and AI in the Future of Work, ACM SIGMOD blog post,

2019.
16. Janine Berg, Marianne Furrer, et al., Digital labour platforms and the future of work : Towards

decent work in the online world, tech. rep., International Labour Organization, 2018.
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In this manuscript, we mostly use the word “crowdsourcing”. This choice does not
reflect our opinion or focus on the phenomenon, but a more pragmatical choice: to the
best of our knowledge, “crowdsourcing” is the most commonly used wording in Computer
Science to refer to this phenomenon, therefore, it appears to be both easier and more
practical to use it for communications.

1.1.3 Crowdsourcing in Computer Science

In recent years, works focusing on crowdsourcing have increased a lot in Computer
Science. We propose here a very succinct overview of various ways in which Computer
Science studies crowdsourcing.

According to a survey provided by Chittilappilly et al. 17, it is clear that an important
focus is given on helping requesters and platforms in crowdsourcing. In particular, this
survey highlights the diversity of techniques used in crowdsourcing, in incentives for
workers, decompositions of tasks, assignment, or quality control. A survey from Li et al. 18

makes this focus even clearer: their analysis on crowdsourcing efficiency determines that
most of the problems come from the workers. Indeed, the three problems they identify in
crowdsourcing are “(1) Quality Control: Workers may return noisy or incorrect results
[. . . ] (2) Cost Control: The crowd is not free [. . . ] (3) Latency Control: The human workers
can be slow [. . . ]”.

However, many computer scientists are also interested in other aspects of crowdsourcing.
For instance, a survey from Amer-Yahia et al. 19 focuses on what its authors call worker-
centric aspects of crowdsourcing, saying that “it is essential to shift from requester-centric
optimizations to an approach that integrates what workers want from a crowdsourcing
platform”. This survey studies among other things the design of incentives or feedbacks,
various ways to assign tasks to workers (for both “micro-tasks” and “collaborative tasks”),
and, more generally, how to optimize crowdsourcing processes by taking workers’ psychology
into account.

Finally, some works focus on privacy and protection of crowdsourcing in general. Some

17. Anand Inasu Chittilappilly, Lei Chen, and Sihem Amer-Yahia, « A Survey of General-Purpose
Crowdsourcing Techniques », in: IEEE Transactions on Knowledge and Data Engineering 28.9 (2016),
pp. 2246–2266.
18. Guoliang Li, Jiannan Wang, et al., « Crowdsourced data management: A survey », in: IEEE TKDE

28.9 (2016), pp. 2296–2319.
19. Sihem Amer-Yahia and Senjuti Roy, « Toward worker-centric crowdsourcing », in: (2016).
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of them focus on the protection of tasks, seen as sensitive 20 21, while other rather focus
on the protection of workers, so that they can work without risks 22 23 24 25. These works
are not interested in improving profit of workers, platforms or requesters: they rather see
crowdsourcing as a potential source of danger, and try to enforce protections through a
wide diversity of techniques. In this manuscript, our work follows this last approach.

1.2 Real-life issues with crowdsourcing

In this section, we focus on the issues that have been seen in crowdsourcing in the last
decade. These limits, both legal and ethical, are frequently mentioned in the news and in
the law, but can also be analyzed more precisely thanks to Social Sciences.

1.2.1 Crowdsourcing in the news and in the law

In recent years, crowdsourcing has drawn more and more attention. In France, the
importance of crowdsourcing has risen so much that even the President gave his opinion
in 2016 on the situation of Uber drivers and their legal status in an interview 26. This
discussion took place with a Uber trade-unionist, worried about the living conditions of
workers, and their legal situation as independent contractors, and not employees from Uber.
Indeed, using the status of independent contractors allows platforms to avoid regulations
that exist on workers or employees, often heavier and more protective. As summed up
by Toxtli et al. 27, “the question of whether a worker is an employee or an independent
contractor is important because a worker who is an employee is entitled to many rights
and protections, including minimum wage, overtime pay, paid vacation, sick pay, employer-
subsidized health insurance, and the right to unionize and negotiate collective bargains

20. L Elisa Celis, Sai Praneeth Reddy, et al., « Assignment Techniques for Crowdsourcing Sensitive
Tasks », in: Proc. of CSCW’16, 2016, pp. 836–847.
21. Hiroshi Kajino, Yukino Baba, and Hisashi Kashima, « Instance-Privacy Preserving Crowdsourcing »,

in: Proc. of HCOMP’14, 2014.
22. Louis Béziaud, Tristan Allard, and David Gross-Amblard, « Lightweight privacy-preserving task

assignment in skill-aware crowdsourcing », in: Proc. of DEXA’28, 2017, pp. 18–26.
23. Hiroshi Kajino, « Privacy-Preserving Crowdsourcing », PhD thesis, Univ. of Tokyo, 2015.
24. Hien To, Gabriel Ghinita, and Cyrus Shahabi, « A framework for protecting worker location privacy

in spatial crowdsourcing », in: Proc. of the VLDB Endow. 7.10 (2014), pp. 919–930.
25. Yuan Lu, Qiang Tang, and Guiling Wang, « Zebralancer: Private and anonymous crowdsourcing

system atop open blockchain », in: Proc. of ICDCS’18, IEEE, 2018, pp. 853–865.
26. https://www.youtube.com/watch?v=ggigQxtN5vU
27. Regulating gig, crowd, and platform work, url: https://humancomputerinteraction.wvu.edu/cr

owd-work/literature-review.
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over pay and working conditions with their employer. A worker who is classified as self
employed has none of these rights.”.

Although these lighter protections are sources of conflict, rare are the situations in which
workers are legally considered as employees in crowdsourcing platforms: even when courts
conclude that workers should legally be employees (and not contractors), crowdsourcing
companies do their best to limit the decision to very specific cases 28. This conflict over
the status of workers can be a source of instability for both the platforms and the workers,
but also explains why more and more media address this topic. It is yet noticeable that,
although profitability of crowdsourcing platforms heavily depends on this status, it is
highly unlikely that forbidding the contractor status would end all these businesses 29.

However, the conflict about the status of workers is not the only issue reported in
the news. Privacy issues are also reported, as trade-unionists were allegedly tracked by
Deliveroo 30, and tracking may be an issue with Uber too, as it was allegedly used to track
a journalist during an investigation 31. Other examples also include cases where workers’
personally identifiable information is trivially exposed online 32.

1.2.2 Crowdsourcing in Social Sciences

These questions, prominent in the media, are also studied in Social Sciences. We here
present some findings and views of crowdsourcing that have risen from Social Sciences
works, together with some political issues 33.

28. Lawsuits exist since 2015, in both California and Florida, and yet, Uber still tries to avoid these
rulings. In France, similar decisions can be seen.
https://www.nytimes.com/2015/06/18/business/uber-contests-california-labor-ruling-that
-says-drivers-should-be-employees.html
https://www.theguardian.com/technology/2020/feb/07/uber-ab5-changes-drivers-california
https://www.lexpress.fr/actualite/societe/justice/la-cour-de-cassation-requalifie-en-c
ontrat-de-travail-le-lien-entre-uber-et-un-chauffeur_2120045.html
29. According to Uber, Deliveroo and Amazon

https://www.theguardian.com/business/2017/feb/22/amazon-deliveroo-uber-hermes-still-vi
able-no-gig-economy-workers
30. Internal emails that were leaked from Deliveroo indicate that the geolocation system of Deliveroo

was used internally for identifying the riders that participated to strikes against the platform
https://www.lemonde.fr/culture/article/2019/09/24/television-cash-investigation-a-la-r
encontre-des-nouveaux-proletaires-du-web_6012758_3246.html
31. https://www.theverge.com/2014/11/19/7245447/uber-allegedly-tracked-journalist-wi

th-internal-tool-called-god-view
32. Matthew Lease, Jessica Hullman, et al., « Mechanical Turk is Not Anonymous », in: SSRN Electronic

Journal (2013).
33. Although we hope not to misrepresent these fields or their findings, we do not pretend that this

selection of results is fully representative, and mostly focus on criticisms that guide and motivate our

25

https://www.nytimes.com/2015/06/18/business/uber-contests-california-labor-ruling-that-says-drivers-should-be-employees.html
https://www.nytimes.com/2015/06/18/business/uber-contests-california-labor-ruling-that-says-drivers-should-be-employees.html
https://www.theguardian.com/technology/2020/feb/07/uber-ab5-changes-drivers-california
https://www.lexpress.fr/actualite/societe/justice/la-cour-de-cassation-requalifie-en-contrat-de-travail-le-lien-entre-uber-et-un-chauffeur_2120045.html
https://www.lexpress.fr/actualite/societe/justice/la-cour-de-cassation-requalifie-en-contrat-de-travail-le-lien-entre-uber-et-un-chauffeur_2120045.html
https://www.theguardian.com/business/2017/feb/22/amazon-deliveroo-uber-hermes-still-viable-no-gig-economy-workers
https://www.theguardian.com/business/2017/feb/22/amazon-deliveroo-uber-hermes-still-viable-no-gig-economy-workers
https://www.lemonde.fr/culture/article/2019/09/24/television-cash-investigation-a-la-rencontre-des-nouveaux-proletaires-du-web_6012758_3246.html
https://www.lemonde.fr/culture/article/2019/09/24/television-cash-investigation-a-la-rencontre-des-nouveaux-proletaires-du-web_6012758_3246.html
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From this perspective, some studies provide interesting results on the population that
constitutes the workforce of crowdsourcing: for instance, it has been shown 34 that, for
French workers of crowdsourcing platforms, the most important motivation is money,
and that 41% of them do not benefit from regular pension or wage. The social impact
of crowdsourcing is firmly criticized by Anwar et al. 35, which argue that “gig work in
its current capitalist manifestation can create and maintain conditions of precarity and
vulnerability among gig workers in Africa”, as the “structural and technological design
of platforms contributes towards loneliness and social isolation, high work intensity, non-
payment of wages, and unfair dismissals which adds to African workers’ precariousness
and vulnerability”.

In a wider perspective, the analysis from Schmidt 36 insists on the key role of surveillance
in crowdsourcing, taking the example of Upwork, to assert that “the freelance marketplaces
are characterised by a relatively high level of surveillance. Upwork, for example, uses
a software application called "Work Diary" to allow clients to virtually look over the
shoulders of their independent contractors. Six times per hour and at random intervals, the
software takes screenshots of the freelancers’ computer.”. A focus is given by Casilli 37 on
the importance of recognizing crowdsourcing as work: this work should not be disregarded
nor workers be dehumanized, and a better regulation is required. In this matter, the
work of De Stefano 38 mentions a “cultural struggle to avoid that workers are perceived as
extensions of platforms, apps, and IT-devices”, a problematic perception which seems to
be encouraged even in some academic Computer Science articles, such as Parameswaran
et al. 39, who propose a system that aims at “[appearing] to the end user as similar as
possible to a conventional database system (a relational one in our case), while hiding
many of the complexities of dealing with humans as data sources”. As for regulation, De
Stefano 40 also reminds us that “it is far from being demonstrated that deregulation of

work.
34. Antonio Casilli, Paola Tubaro, et al., « Le Micro-Travail en France. Derrière l’automatisation, de

nouvelles précarités au travail? », in: (2019).
35. Mohammad Amir Anwar and Mark Graham, « Between a rock and a hard place: Freedom, flex-

ibility, precarity and vulnerability in the gig economy in Africa », in: Competition & Change (2019),
p. 1024529420914473.
36. Florian Alexander Schmidt, Crowd Design: From Tools for Empowerment to Platform Capitalism,

Birkhäuser, 2017.
37. Casilli, op. cit.
38. De Stefano, op. cit.
39. Aditya Ganesh Parameswaran, Hyunjung Park, et al., « Deco: declarative crowdsourcing », in: Proc.

of CIKM’21, 2012, pp. 1203–1212.
40. De Stefano, op. cit.

26



Introduction

labor markets and of nonstandard forms of work in particular has positive impacts on
growth, innovation or employment rates.”

As for solutions, many suggestions exist: technical suggestions include ensuring trans-
parency and fairness in all business decisions, such as ratings, deactivation of profiles, or
change in the conditions of use 41. Portability of profiles, and ratings in particular, is also
suggested. However, most propositions include political, legal or economic rethinking of
crowdsourcing. For instance, Casilli 42 proposes three main solutions: giving the employee
status to workers when it is possible, helping the development of non-profit platforms,
and giving to personal data a common good status, which is still to be defined with more
details, depending on the nature of tasks.

1.3 Our answers

In this work, we focus on two aspects: privacy and regulation. First privacy, because
we believe that many issues are possible due to surveillance from requesters or platforms.
Then regulation and transparency, to make it possible for law-makers to enforce their
decisions, and end-users to prove their cases in courts. Due to the diversity of studied
domains, and to preserve clarity, we expose in each chapter the corresponding state of the
art.

As surveillance is a key issue in crowdsourcing, we believe that this protection cannot
be achieved without preventing platforms, requesters, or even other participants from
obtaining private information. However, as private information about workers is also
used for assigning relevant tasks to workers, or to retrieve meaningful statistics for the
platform, it is not sufficient to simply evacuate them. For instance, the two critical aspects
highlighted by Schmidt 43 to characterize digital labour platforms (mostly focusing on
freelance marketplaces) are (1) the impact of skills and specialization of workers on the
stability of their job and on their revenue, and (2) the high level of surveillance to which
workers are submitted. In Chapter 2, we propose two main contributions that use privacy-
preserving techniques along with encryption tools. First, we compute privacy-preserving
statistics on the worker population with an algorithm we developed: the PKD algorithm.
These statistics allow the platform to quantify the available workforce more precisely,
either to advertise it to requesters, or to help requesters build more suited tasks by
41. Ibid.
42. Casilli, op. cit.
43. Schmidt, op. cit.
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adapting them to the crowd. A demonstration has been developed, to illustrate a possible
use-case of these statistics. Security proofs and experiments on quality and computation
time are also provided to validate our approach. Then, these statistics are used to assign
tasks to workers, by making use of Private Information Retrieval (PIR) techniques in
order to submit relevant tasks to workers. As these techniques are not designed to be
used multiple times, proper adaptations are made to preserve their protective properties.
This contribution is also validated by security proofs and experiments on quality and
computation time. This work has led to several publications 44 45 46 47 48 49 50.

However, breaking surveillance is not the only way to protect workers. As seen in
Section 1.2, regulations and politics are demanded by workers, and law-makers’ attention
is drawn to crowdsourcing accordingly. In this context, it seems natural to study how
technical tools could be built to support possible legislations. In Chapter 3, we present
SEPAR, a system that makes it possible to both enforce restrictions on activities and
prove participations in crowdsourcing processes. This system considers a multi-platform
setting to which any platform can be plugged, and restricts the impact on privacy as
much as possible. That way, we aim at providing technical solutions to enforce limits on
work time that would take a whole crowdsourcing ecosystem into account, and to make it
possible for users to prove their participation in tasks they did (e.g. for engaging lawsuits
against abusers or in order to prove their eligibility to social grants). This work will soon
be submitted for a publication in the SIGMOD conference 51.

In Chapter 4, we extend our work on PIR techniques from Chapter 2, by generalizing
it to cope with other contexts than crowdsourcing. Indeed, the limitations of PIR when
multiple downloads are performed are not specific to crowdsourcing, and can also be seen
in other contexts such as media consumption 52. This chapter presents our questions and
findings on this topic, with both an attack model and analyses of the possible counter-
measures. However, we stress that this work is still ongoing, and has not reached yet the

44. Duguépéroux and Allard, « From Task Tuning to Task Assignment in Privacy-Preserving Crowd-
sourcing Platforms ».
45. Idem, « Privacy-Preserving Informed Task Design in Crowdsourcing Processes ».
46. Duguépéroux, Voyez, and Allard, « Task-Tuning in Privacy-Preserving Crowdsourcing Platforms ».
47. Duguépéroux, « Guaranteed Confidentiality and Efficiency in Crowdsourcing Platforms ».
48. Idem, « Guaranteed Confidentiality and Efficiency in Crowdsourcing Platforms ».
49. Duguépéroux and Allard, « Un algorithme de partitionnement de l’espace des compétences pour

plateformes de crowdsourcing respectueuses de la vie privée ».
50. Duguépéroux, Voyez, and Allard, « Task-Tuning in Privacy-Preserving Crowdsourcing Platforms ».
51. Amiri, Duguépéroux, et al., op. cit.
52. Trinabh Gupta, Natacha Crooks, et al., « Scalable and Private Media Consumption with Popcorn. »,

in: Proc. of NSDI’16, 2016, pp. 91–107.
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same maturity as the others.
Finally, in Chapter 5, we conclude by providing first an overview of our work and then

our own point of view on possible future work to continue our contributions.
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Chapter 2

FROM TASK TUNING TO TASK

ASSIGNMENT IN PRIVACY-PRESERVING

CROWDSOURCING PLATFORMS

2.1 Introduction

Crowdsourcing platforms are online intermediates between requesters and workers. The
former have tasks to propose to the latter, while the latter have profiles (e.g., skills, devices,
experience, availabilities) to propose to the former. Crowdsourcing platforms have grown
in diversity, covering application domains ranging from micro-tasks 1 or home-cleaning 2 to
collaborative engineering 3 or specialized software team design 4.

The efficiency of crowdsourcing platforms especially relies on the wealth of information
available in the profiles of registered workers. Depending on the platform, a profile may
indeed contain an arbitrary amount of information: professional or personal skills, daily
availabilities, minimum wages, diplomas, professional experiences, centers of interest
and personal preferences, devices owned and available, etc. This holds especially for
platforms dedicated to specialized tasks that require strongly qualified workers. But even
micro-tasks platforms may maintain detailed worker profiles (see, e.g., the qualification
system of Amazon Mechanical Turk that maintains so-called premium qualifications 5 -
i.e., sociodemographic information such as age range, gender, employment, marital status,
etc. - in the profiles of workers willing to participate to surveys). The availability of such
detailed worker profiles is of utmost importance to both requesters and platforms because
it enables:

1. https://www.mturk.com/
2. https://www.handy.com/
3. https://www.kicklox.com/
4. https://tara.ai/
5. https://requester.mturk.com/pricing
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Primary usages of worker profiles: to target the specific set of workers relevant
for a given task (through e.g., elaborate task assignment algorithms 6).

Secondary usages of worker profiles: to describe the population of workers avail-
able, often through COUNT aggregates, in order, for instance, to promote the platform
by ensuring requesters that workers relevant for their tasks are registered on the
platform 7, or to participate to the task design by letting requesters fine-tune the
tasks according to the actual population of workers (e.g., setting wages according
to the rarity of the skills required, adapting slightly the requirements according to
the skills available).

Both primary and secondary usages are complementary and usually supported by today’s
crowdsourcing platforms, in particular by platforms dedicated to highly skilled tasks and
workers 8.

However, the downside of fine-grained worker profiles is that detailed information
related to personal skills can be highly identifying (e.g., typically a unique combination
of location/skills/centers of interest) or sensitive (e.g., costly devices or high minimum
wages may correspond to a wealthy individual, various personal traits may be inferred
from centers of interest 9). Recent privacy scandals, mentioned in the introduction of the
manuscript, have shown that crowdsourcing platforms are not immune to negligences
or misbehaviours. It is noticeable that workers nevertheless expect platforms to secure
their data and to protect their privacy in order to lower the privacy threats they face 10.
Moreover, in a legal context where laws firmly require businesses and public organizations
to safeguard the privacy of individuals (such as the European GDPR 11 or the California
Consumer Privacy Act 12), legal compliance is also a strong incentive for platforms for
designing and implementing sound privacy-preserving crowdsourcing processes. Ethics

6. Panagiotis Mavridis, David Gross-Amblard, and Zoltán Miklós, « Using Hierarchical Skills for
Optimized Task Assignment in Knowledge-Intensive Crowdsourcing », in: Proc. of WWW’16, 2016,
pp. 843–853.

7. See for example the Kicklox search form (https://www.kicklox.com/en/) that inputs a list of
keywords (typically skills) and displays the corresponding number of workers available.

8. See for example, Kicklox (https://www.kicklox.com/en/) or Tara (https://tara.ai/). The
secondary usage consisting in promoting the platform is sometimes performed through a public access to
detailed parts of worker profiles (e.g., Malt (https://www.malt.com/), 404works (https://www.404wor
ks.com/en/freelancers)).

9. See, e.g., http://applymagicsauce.com/about-us
10. Huichuan Xia, Yang Wang, et al., « Our Privacy Needs to be Protected at All Costs: Crowd Workers’

Privacy Experiences on Amazon Mechanical Turk », in: Proc. of HCI’17 1 (2017), p. 113.
11. https://eur-lex.europa.eu/eli/reg/2016/679/oj
12. https://www.caprivacy.org/
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in general, and privacy in particular, are indeed clearly identified as key issues for next
generation future of work platforms 13. Most related privacy-preserving works have focused
on the primary usage of worker profiles, i.e., the task-assignment problem (e.g., based on
additively-homomorphic encryption 14 or on local differential privacy 15 16).

Our goal in this chapter is twofold: (1) consider both primary and secondary usages
as first-class citizens by proposing a privacy-preserving solution for computing multi-
dimensional COUNTs over worker profiles and a task assignment algorithm based on recent
affordable Private Information Retrieval (PIR) techniques, and (2) integrate well with
other privacy-preserving algorithms possibly executed by a platform without jeopardizing
the privacy guarantees by requiring our privacy model to be composable both with usual
computational cryptographic guarantees provided by real-life encryption schemes and with
classical differential privacy guarantees as well.

These two problems are not trivial. First, we focus on secondary usages. The problem
of computing multi-dimensional COUNTs over distributed worker profiles in a privacy-
preserving manner is not trivial. Interactive approaches - that issue a privacy-preserving
COUNT query over the set of workers each time needed (e.g., a requester estimates the
number of workers qualified for a given task) - are inadequate because the number of queries
would be unbounded. This would lead to out-of-control information disclosure through the
sequence of COUNTs computed 17 18. Non-interactive approaches are a promising avenue
because they compute, once for all and in a privacy-preserving manner, the static data
structures which are then exported and queried by the untrusted parties (e.g., platform,
requesters) without any limit on the number of queries. More precisely, on the one hand,
hierarchies of histograms are well-known data structures that support COUNT queries and
that cope well with the stringent privacy guarantees of differential privacy 19. However, they

13. participants, op. cit.
14. Kajino, op. cit.
15. Béziaud, Allard, and Gross-Amblard, op. cit.
16. Note that limiting the information disclosed to the platform (i.e., perturbed information about

worker profiles) relieves platforms from the costly task of handling personal data. The European GDPR
indeed explicitely excludes anonymized data from its scope (see Article 4, Recital 26 https://gdpr-inf
o.eu/recitals/no-26/).
17. Aloni Cohen and Kobbi Nissim, « Linear Program Reconstruction in Practice », in: CoRR (2018),

arXiv: 1810.05692.
18. Irit Dinur and Kobbi Nissim, « Revealing information while preserving privacy », in: Proc. of

SIGACT-SIGMOD-SIGART’03, 2003, pp. 202–210.
19. Wahbeh Qardaji, Weining Yang, and Ninghui Li, « Understanding Hierarchical Methods for Differ-

entially Private Histograms », in: Proc. VLDB Endow. 6.14 (2013), pp. 1954–1965, issn: 2150-8097.
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do not cope well with more than a few dimensions 20, whereas a worker profile may contain
more skills (e.g., a dozen), and they require a trusted centralized platform. On the other
hand, privacy-preserving spatial decompositions 21 22 are more tolerant to a higher number
of dimensions but require as well a trusted centralized platform. Second, algorithms for
assigning tasks to workers while providing sound privacy guarantees have been proposed
as alternatives against naive spamming approaches - where all tasks are sent to all workers.
However they are either based (1) on perturbation only 23 and suffer from a severe drop in
quality or (2) on encryption only 24 but they do not reach realistic performances, or (3)
they focus on the specific context of spatial crowdsourcing and geolocation data 25.
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Figure 2.1 – Overview of the PKD algorithm: supporting secondary usages of worker profiles
with privacy guarantees

Our Contribution First, we propose to benefit from the best of the two non-interactive
approaches described above by computing a privacy-preserving space partitioning of the
worker profiles (for coping with their dimensionality) based on perturbed 1-dimensional
histograms (for their nice tolerance to differentially private perturbations). We propose

20. Ibid.
21. Graham Cormode, Cecilia Procopiuc, et al., « Differentially private spatial decompositions », in:

Proc. of ICDE’12, 2012, pp. 20–31.
22. Jun Zhang, Xiaokui Xiao, and Xing Xie, « PrivTree: A Differentially Private Algorithm for Hierar-

chical Decompositions », in: Proc. of SIGMOD’16, 2016, pp. 155–170.
23. Béziaud, Allard, and Gross-Amblard, op. cit.
24. Kajino, op. cit.
25. Hien To, Cyrus Shahabi, and Li Xiong, « Privacy-preserving online task assignment in spatial

crowdsourcing with untrusted server », in: Proc. of ICDE’18, 2018, pp. 833–844.
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the Privacy-preserving KD-Tree algorithm (PKD for short, depicted in Figure 2.1), a privacy-
preserving algorithm for computing a (perturbed) multi-dimensional distribution of skills
of the actual population of workers. The PKD algorithm is distributed between mutually
distrustful workers and an untrusted platform. It consists in splitting recursively the space
of skills in two around the median (similarly to the KD-tree construction algorithm) based
on the 1-dimensional histogram of the dimension being split, and it protects workers’ profiles
all along the computation by combining additively-homomorphic encryption together with
differentially private perturbation. No raw worker profile is ever communicated, neither
to the platform nor to other workers. The output of the PKD algorithm is a hierarchical
partitioning of the space of skills together with the (perturbed) COUNT of workers per
partition (see Figure 2.1). The PKD algorithm is complementary to privacy-preserving task
assignment works and can be used in conjunction with them provided that the privacy
models compose well. In particular, since our privacy model is a computational variant of
differential privacy, the PKD algorithm composes well with state-of-the-art approaches 26 27

since they are based on usual computational cryptographic model or differential privacy
model. Second, we use Private Information Retrieval techniques 28 in order to design
a solution to task assignment that is both private and affordable. We perform an in-
depth study of the problem of using PIR techniques for proposing tasks to workers, show
that it is NP-Hard, and come up with the PKD PIR Packing heuristic that groups tasks
together according to the partitioning output by the PKD algorithm. Obviously, the PKD
PIR Packing heuristic composes well with the PKD algorithm.

More precisely, we make the following contributions:
1. We design the PKD algorithm, a distributed privacy-preserving algorithm for com-

puting a multi-dimensional hierarchical partitioning of the space of skills within a
population of workers.

2. We formally prove the security of the PKD algorithm against honest-but-curious
attackers. The PKD algorithm is shown to satisfy a computational variant of differ-
ential privacy called the εκ-SIM-CDP model. We provide a theoretical analysis of its
complexity.

3. We provide an in-depth study of the problem of using PIR techniques for proposing
tasks to workers and design the PKD PIR Packing heuristic that benefits from the

26. Kajino, op. cit.
27. Béziaud, Allard, and Gross-Amblard, op. cit.
28. Carlos Aguilar-Melchor, Joris Barrier, et al., « XPIR: Private information retrieval for everyone »,

in: Proc. of PET’16 2016.2 (2016), pp. 155–174.
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partitioning computed by the PKD algorithm for grouping tasks together. We show
that the PKD PIR Packing heuristic satisfies our privacy model.

4. We provide an extensive experimental evaluation of the PKD algorithm and of the
PKD PIR Packing heuristic over synthetic and realistic data that demonstrates
their quality and performance in various scenarios. Our realistic skills dataset is
built from data dumps of StackExchange online forums.

Overall, this work has led to multiple publications 29 30 31 32 33 34 35.
The chapter is organized as follows. In Section 2.2, we survey the related work. Sec-

tion 2.3 introduces the participant model, the security and privacy models, and the technical
tools necessary in the rest of the chapter. Section 2.4 describes the PKD algorithm in details
and formally analyzes its cost and security. Section 2.5 studies the problem of using PIR
techniques for task assignment, describes the PKD PIR Packing heuristic, and formally
analyzes its security. We discuss some details on how to allow updates for both the PKD
algorithm and the PKD PIR Packing heuristic in Section 2.7. Section 2.6 experimentally
validates their quality and efficiency. In Section 2.8, we provide a proof of concept for some
of these techniques. Finally, Section 2.9 concludes and discusses interesting future works.

2.2 Related work

We present here works that focus on topics closely related to those presented in this
chapter: privacy preserving space-partitioning and task-assignment, and task design.

2.2.1 Privacy-preserving space partitioning

We focus here on techniques which are not directly related with crowdsourcing, but
provide helpful background to understand our use of private histograms and KD-trees. It
is noticeable that these techniques, which are centralized and do not take into account
some specificities of crowdsourcing, cannot be directly compared to our work. Yet, these
29. Duguépéroux and Allard, « From Task Tuning to Task Assignment in Privacy-Preserving Crowd-

sourcing Platforms ».
30. Idem, « Privacy-Preserving Informed Task Design in Crowdsourcing Processes ».
31. Duguépéroux, Voyez, and Allard, « Task-Tuning in Privacy-Preserving Crowdsourcing Platforms ».
32. Duguépéroux, « Guaranteed Confidentiality and Efficiency in Crowdsourcing Platforms ».
33. Idem, « Guaranteed Confidentiality and Efficiency in Crowdsourcing Platforms ».
34. Duguépéroux and Allard, « Un algorithme de partitionnement de l’espace des compétences pour

plateformes de crowdsourcing respectueuses de la vie privée ».
35. Duguépéroux, Voyez, and Allard, « Task-Tuning in Privacy-Preserving Crowdsourcing Platforms ».
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techniques provide interesting tools to privately estimate a distribution. We first introduce
quickly a few elements on the interest of count queries in research, before focusing on
histograms, and finally presenting more complex structures used in spatial partitioning.
In this section, we make extensive use of differential privacy notations and concepts, and
refer the unfamiliar reader to Section 2.3.2 for more details.

Private count queries One common way to use differential privacy is through the
computation of counts, in order to compute the number of individuals in a database
who match some criteria. Indeed, computing differentially private counts is relatively
straightforward since the sensitivity of counts is 1: the difference between the counts of two
databases differing by at most one individual cannot exceed 1. Therefore, a straightforward
application of differential privacy is sufficient.

However, most applications (such as ours) require multiple counts. Although compos-
ability theorems offer interesting ways to deal with multiple count queries, the privacy
budget consumed remains linear in the number of queries (unless these queries can be
parallelized). Furthermore, if queries are not managed at all, redundant counts may be
computed, which are likely to consume budget for a limited gain. Therefore, many works
focus on finding more efficient ways to compute either significant counts, that can be used
for multiple queries without increasing the privacy budget, or on optimal distribution of
this budget throughout requests.

Private histograms As we used histograms in our approach, we present here some
families of approaches that are dedicated to computing high quality histograms. More
precisely, we focus here on histograms representing the whole distribution of a one-
dimensional domain. Histograms are interesting as they are based on parallel computation
(i.e. computation on disjoint sub-datasets according to differential privacy standards), and
are therefore well-suited for differential privacy budget optimization. Intuitively, there
are two main possible ways to compute an histogram. First, the one called flat method 36,
directly computes the counts of all bins of the histogram. This method makes full use of the
parallelism of the data structure, but its results may lack precision for counts that require
more than one bin. The other method, called hierarchical method, uses a tree structure
and combines both parallel and sequential compositions to make use of redundancies.
One interesting optimization allowed by this structure has been introduced by Hay et

36. Qardaji, Yang, and Li, op. cit.
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al. 37, and relies on the consistency of hierarchical histograms. Indeed, through hierarchical
histograms, multiple queries appear to be redundant. For instance, if we compute an
histogram of the number of workers according to their age, we may learn that there are,
in the dataset, 37 workers between 20 and 40 years old, 25 workers between 40 and 60
years old, etc. Due to the hierarchical structure, we may also learn information on more
precise ranges, e.g. 20 workers between 20 and 30 years old, and 12 workers between 30
and 40 years old. Note that these values are not necessarily consistent with each other,
due to the noise induced by differential privacy. The idea of Hay et al. 38 is to make use of
the knowledge that underlying data is consistent, to improve the overall quality of results.
In that case, the sum of workers between 20 and 30 and between 30 and 40 should equal
the number of workers between 20 and 40. As the noise distribution is centered on 0, it is
possible to use this knowledge to reduce the error (e.g. the real number of workers between
20 and 40 is likely to be between 32 and 34). In a similar idea, Qardaji et al. 39 propose
optimizations by showing how to select the best branching factor (the numbeer of children
of each node in a tree) while taking this consistency into account.

Private spatial partitioning These techniques are useful for histograms, but can
also be used in another context: spatial partitioning. Indeed, an histogram is actually a
partitioning of a one-dimensional space. From this perspective, the extension to 2 or more
dimensional spaces seems quite natural. An important improvement brought by Cormode
et al. 40, consists in optimizing the ε budget distribution policy among the levels of the
hierarchy. Although it would be intuitive to split the ε budget equally among all depths, it
is more efficient to use a geometric policy, with a budget proportional to 2i/3 for a depth i
(i = 0 for the root of the hierarchy). Another possible optimization proposed by Qardaji
et al. 41 introduces adaptative grids, that compute finer grain for bins with higher density.

Although they are a bit out of our focus, we can also mention other works that focus
on improving the computation of differentially private hierarchical histograms. Indeed,
some works propose to eliminate the need of fixing the height of trees beforehand (which
can be hard to parametrize although it has an important impact on computation time

37. Michael Hay, Vibhor Rastogi, et al., « Boosting the accuracy of differentially private histograms
through consistency », in: Proc. of the VLDB Endow. 3.1-2 (2010), pp. 1021–1032.
38. Ibid.
39. Qardaji, Yang, and Li, op. cit.
40. Cormode, Procopiuc, et al., op. cit.
41. Wahbeh Qardaji, Weining Yang, and Ninghui Li, « Differentially private grids for geospatial data »,

in: Proc. of ICDE’13, 2013, pp. 757–768.
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and precision), and replace it with other parameters easier to manage 42, to tackle the
efficiency issues of privacy-preserving hierarchies of histograms 43, or to apply a general
benchmark method to compare histograms 44.

2.2.2 Privacy-preserving task assignment

Recent works considering privacy issues in crowdsourcing have focused a lot on the
privacy-preserving task assignment problem. Literature on this topic can be split into
two main categories. First, what could be called general crowdsourcing (general meaning
that it does not focus on a specific application of crowdsourcing), and second spatial
crowdsourcing, which refers to crowdsourcing applications that make use of geolocation,
such as Uber, Deliveroo, taking pictures at some specific places, etc. We present now the
main advances within each of these categories, along with their weaknesses, which we
attend to solve in our work. In this section, we also make extensive use of differential
privacy notations and concepts, which details and definitions are presented in Section 2.3.2.

General crowdsourcing In general crowdsourcing, several works exist that focus on
privacy-preserving task assignment.

First, Kajino 45 proposes an approach that makes extensive use of additively-homomorphic
encryption. This work is interesting as the quality of the assignment is optimal, does
not suffer from any information loss, and preserves privacy without requiring a trusted
third party. However, their protocol uses homomorphic encryption a lot, which results in a
prohibitive cost in terms of performance, unusable in real-life scenarios (e.g. 4.5 days for
computing the assignment of 100 workers and tasks after optimization according to the
author).

Another approach, relying on differential privacy, is proposed by Béziaud et al. 46.
Each worker profile - a vector of bits - is perturbed locally by the corresponding worker,
based on a local differentially private bit flipping scheme 47. A classical task-assignment

42. Zhang, Xiao, and Xie, op. cit.
43. Georgios Kellaris, Stavros Papadopoulos, and Dimitris Papadias, « Engineering Methods for Differ-

entially Private Histograms: Efficiency Beyond Utility », in: IEEE TKDE 31.2 (2018), pp. 315–328.
44. Michael Hay, Ashwin Machanavajjhala, et al., « Principled evaluation of differentially private

algorithms using dpbench », in: Proc. of SIGMOD’16, ACM, 2016, pp. 139–154.
45. Kajino, op. cit.
46. Béziaud, Allard, and Gross-Amblard, op. cit.
47. Cynthia Dwork and Aaron Roth, « The algorithmic foundations of differential privacy », in: Foun-

dations and Trends in Theoretical Computer Science 9.3–4 (2014), pp. 211–407.
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algorithm can then be launched on the perturbed profiles and the tasks. The application
of noise locally, by each worker, makes it possible to avoid heavy encryption schemes, as
all transmitted data is already secured. Furthermore, it is noticeable that this procedure
is possible even if the platform does not collaborate (the worker would then be protected,
but the matching may be deteriorated). However, local perturbation also has its limits. As
the perturbation is applied locally, and multiple times, it appears to heavily deteriorate
the quality of the assignment: compared to a centralized context (with a trusted party
adding noise only once), the perturbation required leads to more noise in the result 48. The
lack of precision that derives from it makes it hard to rely on in a real-life scenario as well.

Spatial crowdsourcing Other works have focused on the specific context of spatial
crowdsourcing. Similarly to general crowdsourcing, spatial crowdsourcing aims at optimizing
the assignment of workers to tasks. However, some specificities of spatial crowdsourcing
make the proposed solutions inadequate in a more general context. For instance, these
specificities include a focus on a small number of dimensions (typically, the two dimensions
of a geolocation) and often an incompatibility with static worker profiles: indeed, spatial
crowdsourcing mostly consider mobile and dynamic profiles, for which revealing perturbed
information at multiple times can be considered less dangerous than doing the same with
static profiles (for which these multiple perturbed divulgations make predictions more
and more precise). However, this context also enables solutions that make use of these
specificities (that cannot be assumed in a general crowdsourcing context), often resulting
in a better quality and/or computation time.

For instance, To et al. 49 assume that (1) workers use a cellphone, and (2) geolocation
is already known by the cellular service provider (e.g. through cell tower triangulation).
Therefore, this service provider can be used as a trusted third party to perturb geolocation
of workers in order to release differentially private data to crowdsourcing platforms.

Other works 50 51 use a definition derived from differential privacy called geo-indistingui-
shability. As opposed to differential privacy, which is more suited for aggregates and
hiding individuals in a crowd, geo-indistinguishability makes the privacy level depend
on the position and neighborhood. To summarize, a probabilistic function fulfilling geo-

48. Ibid.
49. To, Ghinita, and Shahabi, op. cit.
50. To, Shahabi, and Xiong, op. cit.
51. Miguel E Andrés, Nicolás E Bordenabe, et al., « Geo-indistinguishability: Differential privacy for

location-based systems », in: Proc. of SIGSAC CCS’13, 2013, pp. 901–914.
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indistinguishability guarantees that close individuals are nearly indistinguishable from each
other (meaning that the distributions of possible outputs are close), but this guarantee
diminishes with the distance. This definition makes it possible to obtain interesting results
without compromising privacy too much 52. Yet, it is noticeable that this notion is less
protective than differential privacy: for instance, as the guarantee diminishes with the
distance, an isolated individual might be quickly singled out using geo-indistinguishable
functions, which is not possible with differentially private functions.

For Zhai et al. 53, the privacy guarantee does not come from differential privacy or
any anonymization processes based on data perturbation, but from another family of
anonymization techniques: k-anonymity 54. A k-anonymized dataset is a dataset in which
any individual is indistinguishable from at least k − 1 other individuals. Although this
notion is often lighter and easier to use than differential privacy, many limits or flaws
have been revealed along the years 55 56 57 58 59 60 61 (e.g. issues when multiple k-anonymized
datasets are released, when considering external knowledge of the attacker, etc. ). This
work is still interesting in the way it combines many different techniques, from auction
mechanisms, to oblivious transfer, homomorphically encrypted XOR (exclusive or) and
k-anonymity, to achieve private assignment for spatial crowdsourcing.

Finally, Tao et al. 62 use geo-indistinguishability combined with a tree structure. The
idea is to build a tree in which leaves match some areas of the space (such that the whole
space considered is mapped with the tree). After that, rather than adding noise to perturb

52. To, Shahabi, and Xiong, op. cit.
53. Dongjun Zhai, Yue Sun, et al., « Towards secure and truthful task assignment in spatial crowdsourc-

ing », in: World Wide Web 22.5 (2019), pp. 2017–2040.
54. Latanya Sweeney, « k-anonymity: A model for protecting privacy », in: International Journal of

Uncertainty, Fuzziness and Knowledge-Based Systems 10.05 (2002), pp. 557–570.
55. Bee-Chung Chen, Kristen LeFevre, and Raghu Ramakrishnan, « Privacy skyline: privacy with

multidimensional adversarial knowledge », in: Proc. of VLDB’07, VLDB Endowment, 2007, pp. 770–781.
56. Daniel Kifer, « Attacks on privacy and deFinetti’s theorem », in: Proc. of SIGMOD’09, 2009,
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57. Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian, « t-closeness: Privacy beyond k-
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59. David J Martin, Daniel Kifer, et al., « Worst-case background knowledge for privacy-preserving data

publishing », in: Proc. of ICDE’07, IEEE, 2007, pp. 126–135.
60. Raymond Chi-Wing Wong, Ada Wai-Chee Fu, et al., « Minimality attack in privacy preserving data

publishing », in: Proc. of VLDB’07, 2007, pp. 543–554.
61. Xiaokui Xiao and Yufei Tao, « M-invariance: towards privacy preserving re-publication of dynamic

datasets », in: Proc. of SIGMOD’07, 2007, pp. 689–700.
62. Qian Tao, Yongxin Tong, et al., « Differentially Private Online Task Assignment in Spatial Crowd-
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geolocation, for a given position, the revealed obfuscated position will be computed as
follows. First, consider the leaf of the real position. Then, go upward the tree, step after
step, with a given probability depending mostly on the arity of the tree and on ε. After
that, go downwards, down to a leaf, choosing the child uniformly and randomly at each
step. The arrival position will be revealed. The overall mechanism is proven to enforce
geo-indistinguishability, and the quality of this approach overcomes previously found
results with similar guarantees.

All these works are interesting in many ways, but most are confronted to some
limitations. First, as they focus on spatial crowdsourcing, they cannot be applied to other
contexts: their algorithms may not work as efficiently with higher dimensional spaces. Then,
the security guarantees provided by these algorithms does not protect as well as differential
privacy, and isolated individuals (in the considered space) may suffer from it. Finally, as
they focus on spatial issues, and as locations may change with time, these algorithms
require to be used frequently, which may lead to issues for static profiles, whether they rely
on k-anonymity (which does not compose well with itself 63), or on geo-indistinguishability
(as it increases the ε budget without upper bound).

2.2.3 Task design

To the best of our knowledge, the problem of designing a task according to the actual
crowd while providing sound privacy guarantees has not been studied by related works.
Most works dealing with task design focus on the complexity of the task 64, on the interface
with the worker 65 66 67, on the design of workflows 68 69, or on the filters that may be
embedded within tasks and based on which relevant workers should be selected 70. However,
these approaches ignore the relevance of tasks with respect to the actual crowd, and thus

63. Xiao and Tao, op. cit.
64. Ailbhe Finnerty, Pavel Kucherbaev, et al., « Keep it Simple: Reward and Task Design in Crowd-
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66. Finnerty, Kucherbaev, et al., op. cit.
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ignore the related privacy issues.

2.3 Preliminaries

2.3.1 Participants model

Three types of participants collaborate together during our crowdsourcing process.
Workers are interested in solving tasks that are relevant to their profiles; requesters propose
tasks to be solved by relevant workers; and the platform is an intermediary between workers
and requesters.

A worker profile pi ∈ P is represented by an n-dimensional vector of floats, where each
float value pi[j] ∈ [0, 1] represents the degree of competency of the worker i with respect to
the jth skill. The set of skills available and their indexes within workers’ profiles is static
and identical for all profiles.

A task tk ∈ T is made of two parts. First, the metadata part is a precise description
of the worker profiles that are needed for the task completion. More precisely it is an
n-dimensional subspace of the space of skills. This work does not put any constraint on
the kind of subspace described in the metadata part (e.g., hyper-rectangles, hyper-spheres,
arbitrary set operators between subspaces). However, for the sake of concreteness, we focus
below on metadata expressed as hyper-rectangles. More formally, the metadata mk ∈M
of a task tk ∈ T is an n-dimensional vector of ranges over skills where the logical connector
between any pair of ranges is the conjunction. We call mk[j] the range of float values
(between 0 and 1) for task k and skill j. The second part of a task consists in the necessary
information for performing the task and is represented as an arbitrary bitstring {0, 1}∗. In
this work, we essentially focus on the metadata part of tasks. We say that a worker and a
task match if the point described by the worker profile belongs to the subspace described
by the task metadata, i.e., worker pi and task tk match if and only if ∀j ∈ [0, n− 1], then
pi[j] ∈ mk[j].

We do not make strong assumptions on the resources offered by participants. Workers,
requesters, and the platform are equipped with today’s commodity hardware (i.e., the
typical CPU/bandwidth/storage resources of a personal computer). However, we expect
the platform to be available 24/7 - contrary to workers or requesters - similarly to a
traditional client/server setting.

We assume that all participants follow the honest-but-curious attack model in that
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they do not deviate from the protocol but make use of the information disclosed, in any
computationally-feasible way, for inferring personal data. Workers may collude together
up to a reasonable bound denoted by τ in the following.

2.3.2 Privacy tools

Our proposal builds on two families of protection mechanisms: a semantically secure
encryption scheme and a differentially private perturbation scheme. The resulting overall
privacy model thus integrates both families of guarantees together.

We explain here these two models, together with some related techniques that we use
in this work.

Cryptography Cryptography originally aims at providing secure communications be-
tween two or more participants. Usually, two main families are distinguished: symmetric
cryptography, that relies on a shared secret between participants in order to encode and
decode communications, and asymmetric cryptography, that provides ways to avoid this
shared secret, at the expanse of longer computation times. As we do not need symmetric
cryptography background, we focus here on asymmetric cryptography.

Asymmetric cryptography, sometimes called public-key cryptography, uses pairs of
keys to protect communications. First, a private key, that is not supposed to be shared
with anyone, and then, a public key, that can be shared with anyone (and in particular,
with the sender or receiver). The public key of a party (let say Alice) is used by another
party (Bob) to send a protected message. For instance, Bob will use Alice’s public key to
encrypt a given message (anyone can send private messages), such that only Alice can
decrypt this message thanks to her private key (only Alice can read her messages). On
the other hand, the private key is used to decrypt the message. Asymmetric cryptography
can also be used to create signatures. For instance, if Bob wants to prove to Alice that
the message was really emitted by him, he can add a digital signature, created using his
private key (therefore, only he can sign). Upon reception, Alice will then be able to verify
Bob’s signature by using his public key (anyone can check the signature).

Note that this whole scheme assumes a relationship between the public and the private
key, but also that the private key cannot be deduced from the public key, nor from
encrypted messages or signatures. These assumptions are legitimated through two main
points. First, some theoretical results are assumed to be true, that ensure that finding
the private key, to decrypt a message without it, or to forge a falsified signature is hard

44



2.3. Preliminaries

(e.g. in most cases the computation time to do it is exponential in the size of the key),
while doing it while knowing the private key is not. Then, it is assumed that the attacker
has access to limited amount of time and computation power. Semantic security 71 is a
security definition against such an attacker, whose computational power is bounded.

An usual way to prove security in cryptography is to use the simulation paradigm 72.
The idea is first to define an ideal behavior, that corresponds to what we want to achieve
(e.g. no-one can read the message that Bob sent to Alice, and Alice knows that Bob’s
signature is valid), and then to prove that the protocol actually simulates this behavior.
For instance, to protect a secret message, or a set of secrets, we define these sets, different
parties (e.g. Alice, and an external attacker), and what they may learn. Then, we prove
that, assuming a given set of hypothesis (limited computation time and power), whatever
an attacker can gain through any attack using messages or other elements of the protocol,
can also be obtained with a benign behavior, i.e. while conforming to the protocol. For
instance, external attackers cannot learn anything about the message, Alice cannot learn
anything more than the validity of Bob’s signature and the content of the message (in
particular, she cannot learn the private key of Bob).

Homomorphic encryption Homomorphic encryption is a form of encryption that
allows useful computation to be made using only ciphertexts. With schemes allowing it,
the idea is that the output of computations made on ciphertexts, when decrypted, is the
result of some given operations (e.g. sums or multiplications) on decrypted ciphertexts
given as inputs. For instance, with additively homomorphic encryption schemes 73, it is
possible to take two ciphertexts as an input, and to output the encrypted sum of the
cleartexts corresponding to the input (note that neither the keys nor the knowledge of
the initial cleartexts is required in this algorithm, and that the result is also encrypted).
Informally, given a and b two integers, E the encryption function, X the encryption key, K
the decryption key, D the decryption function, and +h the homomorphic addition operator,
then DK(EX(a) +h EX(b)) == a+ b.

This property is particularly interesting when using the storage and computing resources
of an untrusted third party. For instance, it may be interesting to send encrypted values to

71. Shafi Goldwasser and Silvio Micali, « Probabilistic encryption », in: Journal of computer and system
sciences 28.2 (1984), pp. 270–299.
72. Oded Goldreich, « Foundations of Cryptography–A Primer », in: Foundations and Trends® in

Theoretical Computer Science 1.1 (2005), pp. 1–116.
73. Pascal Paillier, « Public-key cryptosystems based on composite degree residuosity classes », in: Proc.

of EUROCRYPT’99, 1999, pp. 223–238.
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a third party, that will perform computations over them according to a public algorithm,
and outputs the encrypted result. The client can then decrypt the result while the third
party will not learn anything about the data itself.

It is noticeable that this property has been widely studied, and that many homomorphic
schemes exist. These schemes are implemented within various cryptographic schemes, and
rely on diverse hypothesis (e.g. on the hardness of decomposing a number in prime
factors, on finding the minimal length of a lattice vector, etc. ). Furthermore, they also
provide support for various operations. For instance, we can distinguish fully homomorphic
encryption schemes 74 that provide arbitrary operations, partially homomorphic encryption
schemes 75 that are limited to a given set of operations (either additions or multiplications),
or somewhat homomorphic encryption schemes 76 that can perform arbitrary operations a
limited number of times. However, even within this diversity, to the best of our knowledge,
no solution exist that provides limitless number of additions and multiplications (for a
so-called fully homomorphic encryption scheme) without ending in prohibitive computation
time for real-life applications.

In this work, we benefit from partially homomorphic encryption schemes that satisfy the
following properties. First, it must provide semantic security guarantees. Second, it must
be additively-homomorphic: it must support additions. Third, the scheme must support
non-interactive threshold decryption. We additionally use this last property, available in
some schemes 77 78. It allows the decryption key to be split in nK key-shares Ki such that
a complete decryption requires to perform independently T ≤ nK partial decryptions
by distinct key-shares. Note that in a typical key generation setting, pairs of keys are
generated once and for all by a non-colluding, independent entity.

The Damgard-Jurik cryptosystem 79, a generalization of Paillier’s cryptosystem 80, is an
instance of encryption scheme that provides the desired properties. We refer the interested
reader to the original papers for details 81 82.

74. Craig Gentry and Dan Boneh, A fully homomorphic encryption scheme, vol. 20, 9, Stanford university
Stanford, 2009.
75. Paillier, op. cit.
76. Craig Gentry, « Fully homomorphic encryption using ideal lattices », in: Proc. of STOC’09, 2009,
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80. Paillier, op. cit.
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82. Paillier, op. cit.
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Private Information Retrieval Private Information Retrieval (PIR) techniques allow
a client to download binary objects called items (e.g., a record, a movie) stored on a server
in a library of objects, without revealing to the server which of the binary objects has been
downloaded. We call this function the PIR-get function, and request its input. Emerging
PIR protocols are now affordable and able to cope with the latency constraints of real-life
scenarios (e.g., in media consumption scenarios 83 84 85). Our approach makes use of the
security guarantees of PIR techniques. In this chapter, for concreteness, we consider a
PIR protocol based on additively-homomorphic encryption called XPIR 86. It is part of
the computational PIR family of protocols, that provides semantic security guarantees.

It is to be noticed that three main parameters may affect computational PIR efficiency:
(1) the size of the library itself, that has to be read for each call to the PIR-get function;
(2) the size of items, that impacts the size of downloads (multiplied by an expansion factor,
the ratio between the size of an encrypted value and the clear value); (3) the number of
items (again, multiplied by the expansion factor), as it directly impacts the size of the
request (which can be quite large in some cases).

As Chapter 4 focuses on PIR techniques and develops examples of PIR schemes, we do
not go further into details here.

Differential privacy Differential privacy 87 88 is a model that aims at providing a given
protection to individuals within a database, while allowing statistical uses of the data
it contains. As opposed to other models, such as k-anonymity 89, this model does not
necessarily aim at publishing a database, but rather considers a function f , that takes
the database as input, and publishes its anonymized output 90. Although publishing
an anonymized version of the whole database is hard, processes that focus on specific
computations can easily be achieved (e.g. if we are only interested in the mean value of an
attribute).

83. Gupta, Crooks, et al., op. cit.
84. Aguilar-Melchor, Barrier, et al., op. cit.
85. Benny Chor, Oded Goldreich, et al., « Private information retrieval », in: Proc. of FOCS’95, 1995,

pp. 41–50.
86. Aguilar-Melchor, Barrier, et al., op. cit.
87. Cynthia Dwork, « Differential privacy », in: Proc. of ICALP’06, 2006, pp. 1–12.
88. Dwork and Roth, op. cit.
89. Sweeney, op. cit.
90. In this manuscript, the word of “anonymization” refers to techniques that make it impossible to

identify or single out an individual, in an irreversible way. In this regard, this definition is similar to the
one used in the GDPR, and is not to be confused with “pseudonymization”. https://gdpr.eu/recital-
26-not-applicable-to-anonymous-data/
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Although this formal model is relatively new (it was first introduced in 2006 91), some
differentially private processes were actually used in 1970, to estimate the number of
abortions in North Carolina 92.

Intuitively, the definition of anonymisation provided by differential privacy states that
a function f is anonymised if, for any given dataset D, and any other dataset D′ differing
from D by one individual, f(D) is close to f(D′). In that case, the participation of any
individual in the database is not leaked through from f , and therefore, its output can be
published without endangering individuals.

More formally, two more details have to be added. First, if f were deterministic (and
gave at least two different results), an attacker could deduce information on the database
from its result, in an indisputable way. To avoid this issue, differential privacy considers
that f is a probabilistic function, meaning that the output f(D) is not deterministic. As a
consequence, saying that f(D) has to be close to f(D′) means that the output distribution
of f on D has to be close to the one on D′. Then, it is also required to add a parameter: ε
(ε > 0) 93. This parameter sets the proximity allowed between f(D) and f(D′): the lower
the value of ε, the higher the protection, and the least f depends on the dataset. This
leads to the formal Definition 1.

Definition 1 (ε-differential privacy 94). The randomized function f satisfies ε-differential
privacy, where ε > 0, if:

P (f(D) = X) ≤ eε × P (f(D′) = X)

for any output X ∈ Range(f) and any datasets D and D′ that differ in at most one
individual.

However, transforming a function f̃ into a differentially private function f heavily
depends on f̃ itself. Indeed, when f̃(D) and f̃(D′) differ a lot, transformations to make f̃
differentially private are heavier than when f̃(D) is already close to f̃(D′). For instance,
when counting individuals, f̃(D) and f̃(D′) differ by at most 1, as D and D′ differ by
at most one individual. When summing all ages in a database, this difference can be
91. Dwork, op. cit.
92. James R Abernathy, Bernard G Greenberg, and Daniel G Horvitz, « Estimates of induced abortion

in urban North Carolina », in: Demography 7.1 (1970), pp. 19–29.
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94. Dwork, op. cit.
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as high as the maximum age represented in the database. Therefore, we also introduce
the sensitivity of a function f̃ : ∆f̃ = maxD,D′|f̃(D) − f̃(D′)|, that is useful to enforce
differential privacy.

Geometric mechanism In most cases, this definition is enforced by adding random
noise to the output, depending on both ε and ∆f . For instance, the geometric mechanism 95,
defined in 2, adds random values drawn from a geometric distribution and parametrized
with ε and ∆f to enforce differential privacy. Note that many other mechanisms, such as the
Laplace mechanism 96, exist to allow continuous outputs, or the exponential mechanism 97,
useful for categorical attributes as it draws an output among all possible solutions to
respect differential privacy.

Definition 2 (Geometric mechanism 98). Let G denote a random variable following a
two-sided geometric distribution, meaning that its probability density function is g(z, α) =
1−α
1+αα

|z| for z ∈ Z. Given any function f : N|X | → Zk the Geometric Mechanism is
defined as MG(x, f(.), α) = f(x) + (Y1, . . . , Yk) where Yi are independent identically
distributed random variables drawn from G(e−ε/∆f), and ∆f is its global sensitivity
∆f = max

P1,P2
||f(P1)− f(P2)||1 for all (P1,P2) pairs of sets of individuals such that P2 is P1

with one more individual.

Composition with differential privacy Finally, we present two composition prop-
erties of differential privacy in Theorem 1, which allow multiple differentially private
processes to be used in a single algorithm, while keeping track of the level of protection
guaranteed. We especially highlight that sequential composition ensures that applying
an ε1-differentially private process and an ε2-differentially private process results in an
ε1 + ε2-differentially private process. This property explains that the parameter ε is also
called the privacy budget. A common way to design differentially private algorithm is to
fix an initial ε, and to decompose it along the steps of the algorithm, without exceeding it.

Theorem 1 (Sequential and parallel composability 99). Let fi be a set of functions such
that each provides εi-differential privacy. First, the sequential composability property of
95. Arpita Ghosh, Tim Roughgarden, and Mukund Sundararajan, « Universally utility-maximizing

privacy mechanisms », in: SIAM Journal on Computing 41.6 (2012), pp. 1673–1693.
96. Dwork, op. cit.
97. Frank McSherry and Kunal Talwar, « Mechanism design via differential privacy », in: Proc. of
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98. Ghosh, Roughgarden, and Sundararajan, op. cit.
99. Dwork and Roth, op. cit.
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differential privacy states that computing all functions on the same dataset results in
satisfying (∑i εi)-differential privacy. Second, the parallel composability property states
that computing each function on disjoint subsets provides max(εi)-differential privacy.

Computational differential privacy Computational differential privacy 100 was intro-
duced to compose differentially private processes with cryptography security hypothesis.
This relaxation of differential privacy requires the function actually computed to be com-
putationally indistinguishable from a pure (information theoretic) ε-differentially private
function to adversaries whose computational power is limited (this limitation is quantified
by a security parameter κ ∈ N). Definition 3 provides a more formal definition for this
notion.

Definition 3 (εκ-SIM-CDP privacy 101 (simplified)). The randomized function fκ provides
εκ-SIM-CDP if there exists a function Fκ that satisfies ε-differential privacy and a negligible
function negl(·), such that for every dataset P, every probabilistic polynomial time
adversary Aκ, every auxiliary background knowledge ζκ ∈ {0, 1}∗, it holds that:

|Pr[Ak(fκ(P , ζκ)) = 1]− Pr[Ak(Fκ(P , ζκ)) = 1]| ≤ negl(κ)

Infinite divisibility Intuitively, a distribution is said to be infinitely divisible if it can
be decomposed as a sum of an arbitrary number of independent identically distributed
random variables. This property allows to distribute the generation of the noise over a set
of participants. It is valuable in contexts such as ours where no single trusted party, in
charge of generating the noise, exists. Definition 4 below formalizes the infinite divisibility
property, and Theorem 2 shows that the two-sided geometric distribution is infinitely
divisible.

Definition 4 (Infinite divisibility). A probability distribution with characteristic function
ψ is infinitely divisible if, for any integer n ≥ 1, we have ψ = φnn where φn is another
characteristic function. In other words, a random variable Y with characteristic function ψ
has the representation Y d= ∑n

i=1Xi for some independent identically distributed random
variables Xi.

100. Ilya Mironov, Omkant Pandey, et al., « Computational Differential Privacy », in: Proc. of
CRYPTO’29, 2009, pp. 126–142.
101. Ibid.
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Theorem 2 (Two-sided geometric distribution is infinitely divisible). Let Y follow two-
sided geometric distribution with probability density function d(z, ε) = 1−ε

1+εε
|z| for any

integer z. Then the distribution of Y is infinitely divisible. Furthermore, for every integer
n ≥ 1, representation of definition 4 holds. Each Xi is distributed as X1n−X2n where X1n

and X2n are independent identically distributed random variable with negative binomial
distribution, with probability density function g(k, n) =

(
k−1+1/n

k

)
(1− α)k ∗ α1/n.

To prove this result, we will use a similar property for the geometric distribution.

Theorem 3 (Geometric distribution is infinitely divisible 102). Let Y have a geometric
distribution with probability density function f(k, α) = (1− α) ∗ αk for k ∈ N. Then the
distribution of Y is infinitely divisible. Furthermore, for every integer n ≥ 1, representation
of 4 holds. Each Xi is distributed as Xn where Xn are independent identically distributed
random variable with negative binomial distribution, with probability density function
g(k, n, α) =

(
k−1+1/n

k

)
(1− α)kα1/n.

Proof. Using this theorem, proving that a two-sided geometric distribution with density
function d(z, α) = 1−α

1+αα
|z|is equal to the difference between two independent identically

distributed geometric distributions with density function f(k, α) = (1− α)αk is enough to
deduce the result. Let X+ and X− be two such random variables.

P (X+ −X− = z) =



if z ≥ 0∑∞
j=0((1− α)αz+j)((1− α)αj)

if z < 0∑∞
j=0((1− α)αj)((1− α)α−z+j)

P (X+ −X− = z) = ∑∞
j=0(1− α)2α|z|+2j

= (1− α)2α|z|
∑∞
j=0(α2)j

= (1− α)2α|z| 1
1−α2

= (1−α)2

(1−α)(1+α)α
|z|

= 1−α
1+αα

|z|

= P (Y = z)

for Y a random variable with a two-sided geometric distribution with parameter α.

102. Fred W Steutel and Klaas Van Harn, Infinite divisibility of probability distributions on the real line,
2003.

51



Partie , Chapter 2 – From task tuning to task assignment in privacy-preserving crowdsourcing
platforms

2.3.3 Quality measure

We evaluate the quality of the (perturbed) output of the PKD algorithm by measuring
the loss of accuracy resulting from its use rather than using non-protected raw profiles.
As stated in Definition 5, given a set of tasks T , we compute the average absolute error
between (1) the approximate number of workers matching each task t ∈ T according to
the (perturbed) partitions and counts and (2) the exact non-protected number of matching
workers. Note that the error comes from the perturbation used for satisfying differential
privacy but also from the inherent approximation due to the use of a coarse grain data
structure (partitions and counts) synthesizing raw data.

Definition 5 (Quality). Given a set of worker profiles P , a set of tasks T , and, for each
task t ∈ T , the real number of workers matching with it tmatch and its approximated value
t̃match according to the perturbed distribution we provide. We compute the quality of the
distribution as

Q = 1
|T |

∑
t∈T

|tmatch − t̃match|
tmatch

We also measure the quality of our assignment by using precision, to quantify the
number of tasks that are uselessly downloaded by workers, as seen in Definition 6. Note
that in our context, all matching tasks will be downloaded, such that a recall measure is
not relevant as it will always be equal to 1.

Definition 6 (Precision). For a given assignment, we call precision the fraction of down-
loaded tasks that match with the worker. This precision is computed as:

precision = meant∈T ( |{w : match(w, t) ∧ download(w, t)}|
|{w : download(w, t)}| )

2.4 The PKD algorithm

Our proposal comes from a rethinking of the centralized version of the KD-Tree con-
struction algorithm. A KD-Tree 103 is a well-known data structure designed for partitioning
datasets in k-dimensional balanced partitions. It is constructed by recursively dividing the
space in two around the median. It is widely used to index data. Moreover, it contains
valuable information about the data distribution (it is balanced) without sizing individual

103. Jon Louis Bentley, « Multidimensional binary search trees used for associative searching », in:
Communications of the ACM 18.9 (1975), pp. 509–517.
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data points. In our setting, each worker holds its own, possibly sensitive, profile and no
single centralized party is trusted. Centralizing the profiles of workers in order to compute
a KD-Tree over them is therefore not possible. A naive approach could make use of an
order-preserving encryption scheme 104 (OPE), but these schemes are well-known for their
low security level 105 and especially their inherent weaknesses against frequency analysis
attacks. We rather favor sound privacy guarantees - without sacrificing efficiency - by
approaching the median through the computation of histograms, with a computation
distributed between workers and the platform. Similarly to its centralized counterpart, each
iteration of our recursive algorithm divides the space of skills in two around the median
(of one dimension at a time) given a perturbed histogram representing the distribution of
a single skill in the crowd. For simplicity, the current version of the algorithm terminates
after a fixed number of splits, but more elaborate termination criteria can be defined.

2.4.1 Computing private medians

From private sum to private histogram We start by explaining how to perform
differentially private sums based on noise-shares and additively-homomorphic additions. It
allows the platform to get the result of the addition of a single bin over n different workers
while satisfying differential privacy. We then show that this function is a sufficient building
block for computing perturbed histograms.

Let us consider a fixed ε > 0, a maximum size of collusion τ ∈ N, τ > 0, a set of
workers P (of size |P|), and a single bin bi associated to a range φ. Each worker pi holds
a single private local value, i.e., her skill on the dimension that is currently being split.
Initially, the bin bi is set to 0 on all workers. Only the workers whose local values fall
within the range of the bin bi set bi to 1. Our first goal is to compute the sum of the
bins bi of all workers pi ∈ P such that no set of participant smaller than τ can learn any
information that has not been perturbed to satisfy ε-differential privacy.

The privacy-preserving sum algorithm, depicted in Fig. 2.2, considers that keys have
been generated and distributed to workers, such that T > τ key-shares are required for
decryption (see Section 2.3.2). The algorithm consists in the following steps:

Step 1 (each worker) - Perturbation and encryption First, each worker perturbs

104. Rakesh Agrawal, Jerry Kiernan, et al., « Order-Preserving Encryption for Numeric Data », in: Proc.
of SIGMOD’04, 2004, pp. 563–574.
105. Alexandra Boldyreva, Nathan Chenette, and Adam O’Neill, « Order-Preserving Encryption Revisited:
Improved Security Analysis and Alternative Solutions », in: Proc. of CRYPTO’31, 2011, pp. 578–595.
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Workers Platform

1: encrypt
private values
and noise

bi = EX(bi + νi)

2: send
encrypted
values bi

3: computes
homomorphic
addition b∗4: sends b∗

the sum5: partially
decrypt
the sum :
DKi

(b∗)

6: send
decrypted
result

7: combines
decryptions
and publishes
differentially
private results

Figure 2.2 – Computing a private sum

its value by adding a noise-share, denoted νi, to it. Noise-shares are randomly gen-
erated locally such that the sum of |P| − τ shares satisfies the two-sided geometric
distribution (see Definition 2 for the geometric distribution, and Theorem 2 for its
infinite divisibility). Note that noise-shares are overestimated 106 to guarantee that
the final result is differentially private even for a group of up to τ workers sharing
their partial knowledge of the total noise (their local noise-share). Each worker
computes bi + νi and encrypts it by the additively-homomorphic encryption scheme
in order to obtain bi : bi = EX(bi + νi).

Step 2 (platform) - Encrypted sum The platform sums up together the encrypted
values received : b∗ = ∑

∀i bi where the sum is based on the additively-homomorphic
addition +h.

Step 3 (subset of workers) - Decryption The platform finally sends the encrypted
sum b∗ to at least T distinct workers. Upon reception, each worker partially de-
crypts it based on her own key-share - DKi(b∗) - and sends it back to the platform.
The platform combines the partial decryptions together and obtains b̃∗, i.e., the
differentially private sum of all private bins bi.

Now, assuming that the histogram format is fixed beforehand - i.e., number l of bins
and ranges (φ0, . . . , φl−1) - it is straightforward to apply the private sum algorithm on
each bin for obtaining the perturbed histogram based on which the median can then

106. We require that the sum of |P| − τ noise-shares be enough to satisfy differential privacy but we
effectively sum |P| noise-shares. Note that summing more noise-shares than necessary does not jeopardize
privacy guarantees.
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Algorithm 1: PrivMed : Privacy-preserving estimation of the median in the PKD
algorithm
Data:
P : Set of workers
Dmin,Dmax: Definition domain of the private local value of workers
l: Number of bins
(φ0, . . . , φl−1) : the l ranges of the bins
X : public encryption key (same for all workers).
{Ki} : private decryption keys (one per worker).
εm: differential privacy budget for this iteration
τ : maximum size of a coalition (τ < |P|)
T : number of key-shares required for decryption (T > τ)
Result: m̃: estimate of the median of the workers’ local private values

1 for all workers pi ∈ P do
2 Compute l noise shares νi,j = R1 −R2, where 0 ≤ j < l and R1 and R2 are

independent identically distributed random variables with probability density
function g(k) =

(
k−1+ 1

|P|−τ
k

)
(e−εm)k(1− e−εm)

1
|P|−τ

3 Set the value of the bin bi,k = EX(1 + νi,k), where φk is the histogram range
within which the local value of the worker falls.

4 Set the value of the other bins to: bi,j = EX(νi,j), j 6= k.
5 Platform: sum the encrypted bins at the same index received from different

workers in order to obtain the encrypted perturbed histogram :
(b∗,0 = ∑

∀i bi,0, . . . , b∗,l−1 = ∑
∀i bi,l−1).

6 Workers (T distinct workers): Decrypt partially the encrypted perturbed
histogram bin per bin and send the resulting partially decrypted histogram to the
platform : (DKi(b∗,0), . . . , DKi(b∗,l−1)).

7 Platform: Combine the partial decryptions together to obtain the decryption of
the histogram and estimate the median m̃ according to Equation 2.1.

8 return m̃
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be computed. For example, in order to get a histogram representing the distribution of
skill values for, e.g., Python programming, and assuming a basic histogram format - e.g.,
skill values normalized in [0, 1], l = 10 bins, ranges (φ0 = [0, 0.1[, . . . , φ9 = [0.9, 1]) - it is
sufficient to launch ten private sums to obtain the resulting perturbed 10-bins histogram.

PrivMed: privacy-preserving median computation The histogram computed based
on the privacy-preserving sum algorithm can be used by the platform to estimate the value
of the median around which the split will be performed. When by chance the median falls
precisely between two bins (i.e., the sum of the bins on the left is exactly 50% of the total
sum, same for the bins on the right) its value is exact. But when the median falls within
the range of one bin (i.e., in any other case), an additional hypothesis on the underlying
data distribution within the bin must be done in order to be able to estimate the median.
For simplicity, we will assume below that the distribution inside each bin is uniform but a
more appropriate distribution can be used if known.

m̃ = Dmin + Dmax −Dmin
l

· (k + 1
2 + θ> − θ<

2 · b̃∗,k
) (2.1)

The resulting PrivMed algorithm is detailed in Algorithm 1.
Let’s consider the histogram obtained by the private sum algorithm. It is made of l

bins denoted (b̃∗,0, . . . , b̃∗,l−1), and each bin b̃∗,j is associated to a range φj. The ranges
partition a totally ordered domain ranging from Dmin to Dmax (e.g., from Dmin = 0 to
Dmax = 1 on a normalized dimension that has not been split yet). Let φk denote the range
containing the median, θ denote the sum of all the bins - i.e., θ = ∑

i<l b̃∗,i - and θ< (resp.
θ>) the sum of the bins that are strictly before (resp. after) b̃∗,k - i.e., θ< = ∑

i<k b̃∗,i (resp.
θ> = ∑

i>k b̃∗,i). Then, an estimation m̃ of the median can be computed as follows 107:

2.4.2 Global execution sequence

Finally, the Privacy-preserving KD-Tree algorithm, PKD for short, performs the median
estimation described above iteratively until it stops and outputs (1) a partitioning of the
space of skills together with (2) the perturbed number of workers within each partition.
The perturbed number of workers is computed by using an additional instantiation of

107. Note that in the specific case where the median falls within a bin equal to 0 (i.e., b̃∗,k = 0), then
any value within φk is equivalent.
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the private sum algorithm when computing the private medians 108. We focus below on
the setting up of the parameters of the various iterations, and on the possible use of the
resulting partitions and counts by the requesters. An overview is given in Algorithm 2.

Main input parameters Intuitively, the privacy budget ε input of the PKD algorithm
sets an upper bound on the information disclosed along the complete execution of the
algorithm - it must be shared among the various data structures disclosed. Thus, each
iteration inputs a portion of the initial privacy budget such that the sum of all portions
remains lower than or equal to ε - see the composability property in Theorem 1. Computing
a good budget allocation in a tree of histograms is a well-known problem tackled by several
related works 109 110. In this work, we simply rely on existing privacy budget distribution
methods 111, and ε is divided as follows. First, ε is divided in two parts: one part, denoted
εm, is dedicated to the perturbations of the medians computations (i.e., the bins of the
histograms), and the other part, denoted εc, is dedicated to the perturbation of the number
of workers inside each partition. Second, a portion of each of these parts is allocated to
each iteration i as follows. For each iteration i such that 0 ≤ i ≤ h, where h is the total
number of iterations (i.e., the height of the tree in the KD-Tree analogy), the first iteration
is h (i.e., the root of the tree) and the last one is 0 (i.e., the leaves of the tree) :

εci = 2(h−i)/3εc
3
√

2− 1
2(h+1)/3 − 1 (2.2)

εmi = εm

h
(2.3)

Note that similarly to Cormode et al. 112, we set the distribution of ε between εc and
εm as follows: εc = 0.7 · ε and εm = 0.3 · ε. Other distributions could be used.

The PKD algorithm stops after a fixed number of iterations known beforehand. Note
that more elaborate termination criteria can be defined (e.g., a threshold on the volume
of the subspace or on the count of worker profiles contained). The termination criteria
must be chosen carefully because they limit the number of splits of the space of skills

108. Note that the perturbed histograms could have been used for computing these counts but using a
dedicated count has been shown to result in an increased precision.
109. Cormode, Procopiuc, et al., op. cit.
110. Qardaji, Yang, and Li, op. cit.
111. Cormode, Procopiuc, et al., op. cit.
112. Ibid.
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and consequently the number of dimensions of worker profiles that appear in the final
subspaces. Ideally, the termination criteria should allow at least one split of all dimensions.
However, this may not be possible or suitable in practice because of the limited privacy
budget. In this case, similarly to a composite index, a sequence of priority dimensions
must be chosen so that the algorithm splits them following the order of the sequence. The
dimensions that are not part of the sequence will simply be ignored. Note that the number
of dimensions in worker profiles, and their respective priorities, is closely related to the
application domain (e.g., How specific does the crowdsourcing process need to be ?). In
this work, we make no assumption on the relative importance of dimensions.

Algorithm 2: The PKD algorithm
Data:
P : Set of workers
E the current space of skills of d dimensions
h: height of the KD-Tree
Result: T : A Privacy-preserving KD-tree with approximate counts of workers for

each leaf
1 We create T as a single leaf, containing the whole space E and a count of all

workers.
2 while current height is smaller than final height do
3 Choose a dimension d (for exemple, next dimension).
4 for all leaves of the current tree T do
5 Compute m the private median of the space of the leaf, as explained in

Section 2.4.1.
6 For both subspaces separated by the median, compute a private count as

explained in Section 2.4.1.
7 Create two leaves, containing the two subspaces and associated counts.
8 Replace the current leaf by a node, containing the current space and count,

and linking to the two newly created leaves.
9 Increment the current height.

10 Apply post-processing techniques explained in Section 2.4.2.
11 return Tree T

Post-processing the output Considering the successive splits of partitions, we can
enhance the quality of the counts of workers by exploiting the natural constraints among
the resulting tree of partitions : we know that the number of workers in a parent partition
must be equal to the number of workers in the union of its children. Constrained inference
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techniques have already been studied as a post-processing step to improve the quality
of trees of perturbed histograms 113 and then improved and adapted to non-uniform
distributions of budget 114. These constrained inference techniques can be used in our
context in a straightforward manner in order to improve the quality of the resulting
partitioning. We refer the interested reader to the original papers for details 115 116.

2.4.3 Complexity analysis

We evaluate here the complexity of the PKD algorithm with respect to the number
of encrypted messages computed and sent both to and by the platform. The results are
summed up in Table 2.1.

The first step to consider is the number of partitions created in the KD-tree. Seen as
an index (with one leaf for each point), the construction of a KD-tree requires 2h+1 − 1
nodes, including 2h − 1 internal nodes, where h is the maximum height of the KD-Tree.
For each node, an encrypted sum is performed, and for each internal node, a histogram is
additionally computed, which require l sums, for a total of (2h+1 − 1) + (l · (2h − 1)) sums.
These counts all require the participation of every worker: for each count, |P| encrypted
messages are computed and sent.

The platform also sends back encrypted messages for each sum, for decryptions to be
performed. For each sum, it sends at least T times the homomorphically computed sum,
where T is the threshold number of key-shares required for decryption. For simplicity, we
assume that the platform sends the ciphertexts to T workers (these are the only encrypted
messages that have to be sent to workers during this protocol). Each contacted worker
then answers by an encrypted value (the partial decryption). As a conclusion, the total
number of encrypted values sent by the workers to the platformMΣw is:

MΣw = (|P|+ T ) · (l · (2h − 1) + (2h+1 − 1)) (2.4)

However, as our computation is distributed among all workers, each worker only sends
fewer encrypted messages on averageMw.

Mw = (1 + T

|P|
) · (l · (2h − 1) + (2h+1 − 1)) (2.5)

113. Hay, Rastogi, et al., op. cit.
114. Cormode, Procopiuc, et al., op. cit.
115. Hay, Rastogi, et al., op. cit.
116. Cormode, Procopiuc, et al., op. cit.
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To the platform (|P|+ T ) · (l · (2h − 1) + (2h+1 − 1))
By worker (avg) (1 + T

|P|) · (l · (2
h − 1) + (2h+1 − 1))

By the platform T · (l · (2h − 1) + (2h+1 − 1))

Table 2.1 – Number of encrypted messages sent. P is the set of workers, T the number of
partial keys required for decryption, h the depth of the KD-tree, and l the number of bins
per median

Finally, the platform sendsMpf encrypted messages.

Mpf = T · (l · (2h − 1) + (2h+1 − 1)) (2.6)

2.4.4 Security analysis

The only part of the PKD algorithm that depends on raw data is the private sum. The
security analysis thus focuses on proving that a single private sum is secure, and then
uses the composability properties (see Theorem 1). Theorem 4 proves that the privacy-
preserving sum algorithm is secure. We use this intermediate result in Theorem 5 to prove
the security of the complete PKD algorithm.

Theorem 4 (Security of the privacy-preserving sum algorithm). The privacy-preserving
sum algorithm satisfies εκ-SIM-CDP privacy against coalitions of up to τ participants.

Proof. (sketch) First, any skill in a profile of a participating worker is first summed up
locally with a noise-share, and then encrypted before being sent to the platform. We require
the encryption scheme to satisfy semantic security, which means that no computationally-
bounded adversary can gain significant knowledge about the data that is encrypted. In
other words, the leak due to communicating an encrypted data is negligible. Second,
the homomorphically-encrypted additions performed by the platform do not disclose
any additional information. Third, the result of the encrypted addition is decrypted by
combining T > τ partial decryptions, where each partial decryption is performed by a
distinct worker. The threshold decryption property of the encryption scheme guarantees
that no coalition of participants smaller than T can decrypt an encrypted value. The
final sum consists in the sum of all private values, to which are added |P| noise-shares.
These shares are computed such that the addition of |P| − τ shares is enough to satisfy
ε-differential privacy. Thanks to the post-processing property of differential privacy, adding
noise to a value generated by a differentially-private function does not impact the privacy
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level. The addition of τ additional noise-shares consequently allows to resist against
coalitions of at most τ participants without thwarting privacy. As a result, since the
privacy-preserving sum algorithm is the composition of a semantically secure encryption
scheme with an ε-differentially private function, it is computationally indistinguishable
from a pure differentially private function, and consequently satisfies εκ-SIM-CDP privacy
against coalitions of up to τ participants.

Theorem 5 (Security of the PKD algorithm). The PKD algorithm satisfies εκ-SIM-CDP

privacy against coalitions of up to τ participants.

Proof. (sketch) In the PKD algorithm, any collected information is collected through the
PrivMed algorithm based on the privacy-preserving sum algorithm. Since (1) the privacy-
preserving sum algorithm satisfies εκ-SIM-CDP (see Theorem 4) against coalitions of up to
τ participants, (2) εκ-SIM-CDP is composable (see Theorem 1), and (3) the privacy budget
distribution is such that the total consumption does not exceed ε (see Section 2.4.2), it
follows directly that the PKD algorithm satisfies εκ-SIM-CDP against coalitions of up to τ
participants.

2.5 Privacy-preserving task assignement

Once the design of a task is over, it must be assigned to relevant workers and delivered.
Performing that while satisfying differential privacy and at the same time minimizing
the number of downloads of the task’s content is surprisingly challenging. We already
discarded in Section 2.1, for efficiency reasons, the spamming approach in which each
task is delivered to all workers. More elaborate approaches could try to let the platform
filter out irrelevant workers based on the partitioned space output by the PKD algorithm
(see the Section 2.4). The partitioned space would be used as an index over workers in
addition to its primary task design usage. For example, workers could subscribe to their
areas of interest (e.g., by sending an email address to the platform together with the area
of interest) and each task would be delivered to a small subset of workers only according to
its metadata and to the workers’ subscriptions. However, despite their appealing simplicity,
these platform-filtering approaches disclose unperturbed information about the number of
workers per area, which breaks differential privacy, and fixing the leak seems hard (e.g.,
random additions/deletions of subscriptions, by distributed workers, such that differential
privacy is satisfied and the overhead remains low).
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We propose an alternative approach, based on Private Information Retrieval (PIR)
techniques, to diminish the cost of download on the workers side, while preserving our
privacy guarantees.

2.5.1 PIR for crowdsourcing: challenges and naive approaches

The main challenge in applying PIR in our context consists in designing a PIR-library
such that no information is disclosed during the retrieval of information, and performance
is affordable in real-life scenarios. To help apprehending these two issues, we here present
two naive methods that break these conditions and show two extreme uses of PIR: one
efficient but unsecure, the other is secure but unefficient.

A first PIR-based approach could consist in performing straightforwardly a PIR protocol
between the workers and the platform, while considering the PIR-library as the set of
tasks itself. The platform maintains a key-value map that stores the complete set of tasks
(the values, bitstrings required to perform the tasks) together with a unique identifier per
task (the keys), together with their metadata. The workers download the complete list of
tasks identifiers and metadata, select locally the identifiers associated to the metadata that
match their profiles, and launch one PIR-get function on each of the selected identifiers.
However, this naive approach leads to blatant privacy issues through the number of calls
to the PIR-get function. Indeed, in some cases, the platform could deduce the precise
number of workers within a specific subspace of the space of skills: with the knowledge
of the number of downloads for each worker 117, it is possible to deduce, for each k, the
number of workers downloading k tasks. From that, the platform can deduce that the
number of workers located in subspaces where k tasks intersect together, and therefore
precise information on their skills. This information, kept undisclosed thanks to the PKD
algorithm, breaks differential privacy guarantees.

A secure but still naive approach could be to consider the power set of the set of
tasks (i.e. the set of all possible sets of tasks) as the PIR-library, with padding to all file
such that they are all the same size (in bits). After this, a worker chooses the PIR-object
corresponding to the set of tasks she intersects with, and uses PIR-get on it. Although this
method prevents the previously observed breach to appear (all behaviours are identical to
the platform since everyone downloads exactly one PIR-object, and all PIR-objects are of

117. Even if the identity of workers is not directly revealed, it is possible to match downloads together to
break unlinkability and deduce these downloads come from the same individual, for example by using the
time of downloads, cookies or other identification techniques

62



2.5. Privacy-preserving task assignement

the same size), this method would lead to extremely poor results: as every object of the
library is padded to the biggest one, and the biggest set of the super set of tasks is the
set of tasks itself, this algorithm is even worse than the spamming approach (everyone
downloads at least as much as the sum of all tasks, with computation overheads).

These two naive uses of PIR illustrate two extreme cases: the first one shows that using
PIR is not sufficient to ensure privacy, and the second one illustrates that a naive secure
use can lead to higher computation costs than the spamming approach. In the following,
we introduce a method to regroup tasks together, such that each worker downloads the
same number of PIR items (to achieve security), while mitigating performance issues by
making these groups of tasks as small as possible.

2.5.2 PIR partitioned packing

The security issue showed in the naive PIR use comes from the fact that the number of
downloads directly depends on the profiles of workers. Indeed, as the platform has access
to the number of downloads, this link leaks information about workers’ skills. In order
to break this link, we propose to ensure that each worker downloads the same number of
items, whatever their profile is. For simplicity, we fix this number to 1 118, and call packing
a PIR library that allows each worker to retrieve all their tasks with only one item, and
bucket an item of such a library, as seen in Definition 7. We prove in Theorem 6 that any
packing fulfills our security model.

We can now formalize the conditions that a PIR library must fulfill in order to both
satisfy privacy and allow any worker to download all the tasks she matches with.

Definition 7 (Packing, Bucket). A packing L is a PIR library which fulfills the following
conditions:

1. Security condition Each worker downloads the same number of buckets. This
number is set to 1.

2. PIR requirement Each PIR item has the same size in bits (padding is allowed):

∀b1, b2 ∈ L, ||b1|| = ||b2||

This condition comes from the use of PIR.

118. In general, more files can be downloaded at each worker session, but this does not impact significantly
the overall amount of computation and does not impact at all the minimum download size for workers.
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3. Availability condition For all points in the space of skills, there has to be at least
one item containing all tasks matching with this point. In other words, no matter
their skills (position in the space), each worker can find a bucket that provides
every task they match with.

A bucket b ∈ L is an item of a packing. We note |b| for the number of tasks contained in
the bucket b, and t ∈ b the fact that a task t is included in bucket b. The size in bits of a
bucket b is denoted as ||b||.

Theorem 6. The use of PIR with libraries which fulfill the packing conditions satisfy
εκ-SIM-CDP privacy against coalitions of up to τ participants.

Proof. (sketch) In order to prove the security of packing, we observe that (1) the XPIR
protocol has been proven computationally secure 119, such that it satisfies εκ-SIM-CDP, and
(2) the use of packing prevents any sensitive information on workers to leak through the
number of downloads. Indeed, Condition 7.1 (security) makes each worker call the PIR-get
function only once, such that the behaviours of any two workers are indistinguishable.
Therefore, the number of PIR-get calls does not depend on profiles. More precisely, the
number of PIR-get can only leak information on the number of workers (which is bigger
than or equal to the number of PIR-get calls), which does not depend on their profiles,
and is already known by the platform.

Before considering how to design an efficient packing scheme, we highlight a few
noticeable implications of these conditions. First, due to Condition 7.3 (availability), any
worker is matched with at least one bucket. To simplify this model, we propose to focus
on a specific kind of packings, that can be seen as a partitioning of the space, where each
bucket can be linked to a specific subspace, and where all points are included in at least
one of such a subspace. We call partitioned packing such a packing (Definition 8).

Definition 8 (Partitioned Packing). A partitioned packing is a packing that fulfills the
following conditions:

1. Each bucket is associated with a subspace of the space of skills.

2. A bucket contains exactly the tasks that intersect with the subspace it is associated
with (this means that all workers in this subspace will find at least the task they
match with in the bucket)

119. Aguilar-Melchor, Barrier, et al., op. cit.
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3. Subspaces associated with the buckets cover the whole space (from Condition 7.3
(availability)).

4. Subspaces associated with the buckets do not intersect each other

In the following, we will focus on partitioned packing. However, in order not to lose
generality, we first prove that these packings do not impact efficiency. Indeed, when it comes
to the design of a PIR library, efficiency can be affected by two main issues: the number of
items and the size of the largest item (in our case, bucket) impact the communication costs,
while the size of the overall library (equal to their product) impacts the computation time
on the platform. We show in Theorem 7 that with any packing, we can build a partitioned
packing that is equivalent or better.

To prove this theorem, we introduce a specific kind of packing that we call consistent
packing, defined in Definition 9. Essentially, a consistent packing is a packing where no
useless task is added to any bucket: in all buckets b, all tasks match with at least one point
(a possible worker profile) which has all her tasks in the bucket b. As a result, a consistent
packing avoids cases where tasks are in a bucket, but no worker would download it as the
bucket does not match all their needs.

Definition 9 (Consistent packing). A packing P is called consistent if and only if, for all
buckets b ∈ P , for all tasks t ∈ b, there exists at least one point w in the subspace of t
such that all tasks matching with w are in b:

∀b ∈ P, ∀t ∈ b,∃w, (match(w, t) ∧ ∀t′ ∈ T,match(w, t′)⇒ t′ ∈ b)

Theorem 7. For any packing P of tasks, there exists a partitioned packing that either has
the same size of buckets, number of buckets, or smaller ones.

Proof. (sketch) Let P be a packing of tasks that is not partitioned. To prove that a
partitioned packing can be created that is more efficient than P , we distinguish two cases.
First, we consider that each bucket of P can cover a subspace, containing exactly the
tasks that intersect with that subspace (thus fulfilling Conditions 8.1 and 8.2). Then, we
prove that any consistent packing (as in Definition 9) fulfills Condition 8.2. After that, we
consider the case where P does not fulfill this condition, and create a new, smaller packing
Pf from P that is consistent, and therefore fulfills Condition 8.2, and use previous results.

We first consider the case where all buckets of P can cover a subspace while fulfilling
Condition 8.2, meaning that each bucket contains exactly the tasks that intersect with the

65



Partie , Chapter 2 – From task tuning to task assignment in privacy-preserving crowdsourcing
platforms

subspace it covers. In that case, Condition 8.1 is trivially fulfilled. If Condition 8.3 is not
fulfilled, this means that there is at least a subspace that is not covered by the packing P .
Let w be a point in such a subspace. Since P is a packing, the Condition 7.3 (availability)
makes it possible to match any point of the space with at least one bucket. In particular,
w can be matched with a bucket b. It is enough to extend the subspace associated with
b such that it includes w (note that this extension does not break Condition 8.2). We
can proceed that way for any point (or more likely any subspace) that is not covered
by a subspace, to associate subspaces to a bucket of P , such that this matching fulfills
Conditions 8.1, 8.2 and 8.3. If, in this matching, two subspaces associated with buckets of
P intersect, it is trivial to reduce one of them to fulfill Condition 8.4 too. Therefore, if all
buckets of P can be matched with a subspace while fulfilling Condition 8.2, the theorem
holds, since P is equivalent to a partitioned packing.

It can be noticed that if a packing is consistent (Definition 9), Condition 8.2 is fulfilled.
Indeed, if ∀b ∈ P, ∀t ∈ b,∃w, (match(w, t) ∧ ∀t′ ∈ T,match(w, t′)⇒ t′ ∈ b) (Definition 9),
then, for all b in P , we can take V as the union of the |b| points w described in the equation,
one for each task t in b. In that case, Condition 8.2 is fulfilled: for each bucket b and its
associated subspace V , all tasks in b intersect with V (by definition, as we took V as the
union of one point in each task in b), and b contains all tasks that intersect with V (again,
by definition, as each task t′ that match with a point of V are in b).

In other words, and using the above case, making a packing consistent is sufficient to
create a partitioned packing.

We now consider the case where at least one bucket b of P does not cover a subspace
such that Condition 8.2 does not stand. In particular, P is not consistent. This means that
there is at least one task t ∈ b such that for all points w in the subspace of t, there is at
least one task t′ with which w matches and that is not contained by the bucket b. In other
words, no points in t can be matched with the bucket b, as b lacks at least one task for
each point of t. As a consequence of the Condition 7.3 (availability), this means that all
points in t are matched with another bucket. Therefore, the task t can be removed from
bucket b, without breaking the properties of a packing, and without increasing the number
of buckets, the minimal size of buckets. We proceed so, by removing all such tasks in all
buckets recursively: this trivially ends thanks to the finite number of tasks and buckets.
By construction, the final packing Pf is consistent.

Therefore, packing Pf is smaller than P , and fulfills Condition 8.2, and we proved
in the first case that a packing that fulfills this condition is equivalent to a partitioned
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packing, so Pf is equivalent to a partitioned packing.

2.5.3 Optimizing the packing

With this secure partitioned packing approach, we can discuss how to optimize the
overall complexity. First, it can be noticed that Conditions 7.2 and 7.3 (PIR requirement
and availability) set a minimal size of bucket: according to Condition 7.3 (availability), there
has to be a bucket containing the largest (in bits) intersection of tasks, and Condition 7.2
(PIR requirement) prevents any bucket from being smaller. Furthermore, this minimum is
reachable if we consider a packing that creates a partition for each different intersection
of tasks and pad to the largest one. However, by building a different bucket for all the
possible intersections of tasks, this packing strategy is likely to lead to a very large number
of buckets (e.g. if a task’s subspace is included in another, this packing leads to two buckets
instead of one: one containing both tasks, and the other containing only the largest one as
it is a different intersection), while we would like to minimize it (and not only the size of
buckets). Therefore, although this packing scheme reaches the minimal size of buckets, we
cannot consider it as optimal. However, it illustrates what we call an acceptable packing
(Definition 10), which will be used to define optimality: a packing in which the size of
buckets is minimal.

Definition 10 (Acceptable partitioned packing). Let E be a multi-dimensional space, T
a set of tasks, i.e. a set of positively weighted hyper-rectangles (the hyper-rectangle is the
volume of the task, and the weight is their size in bits, denoted wt for t ∈ T ) in the space
E and P a packing of these tasks. We call weight of a packing wP the size in bits of a
bucket in P (due to Condition 7.2 (PIR requirement), this size is unique). We call weight
of a point wp in E the sum of the weights of all tasks in T which match with p.

We call minimal weight mT of the set of tasks T the maximum weight of a point in
E: it is the maximum size a worker could require to download. A partitioning P is called
acceptable for T if the size of P is equal to mT : mT = wP .

NP-hardness of optimal packing

To define optimality, we take this minimum size of buckets, but also try to minimize
the number of buckets (or in an equivalent way, the size of the PIR library), as expressed
in Definition 11.
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Definition 11 (Optimal partitioned packing). For a set of tasks T , we call optimal packing
an acceptable packing that minimizes the number of buckets.

However, we prove in Theorem 8 that determining whether there exists an acceptable
packing of size n is NP-hard, and therefore, finding the optimal partitioned packing is also
NP-hard.

Theorem 8. Given a set of tasks T , it is NP-hard in |T | to determine whether there exists
an acceptable partitioning of n buckets. We call P(T, n) this problem.

Proof. (sketch) To prove that this problem is NP-hard, it is enough to demonstrate that a
certain problem P+ known to be NP-complete can be polynomially reduced to P .

We recall that the Partition Problem is NP-complete 120. P+(S): given a multiset S
of N positive integers ni, i ∈ [0, N − 1], decide whether this multiset can be divided into
two submultisets S1 and S2 such that the sum of the numbers in S1 equals the sum of the
numbers in S2, and the union of S1 and S2 is included in S.

Let us consider a multiset S and the problem P+(S). We assume the existence of
a deterministic algorithm A that solves P(T, n) in a polynomial time in |T |. We first
distinguish a trivial case where the problem P+(S) can be solved in polynomial time.
Then, we build an algorithm that uses P(T, 3) to solve P+(S) in polynomial time similarly
to the remaining cases, which leads to a contradiction.

We first consider a trivial case: if there exists nk in S such that nk >
∑
i∈[0,N−1],i6=k ni,

then we return False. Deciding whether S falls in that specific case is linear in |S|, and so
is the computation of the answer. If not, let E be a one dimensional space, with bounds
[0, |S|+ 1[. We build T as a set of |S|+ 1 tasks (T = {ti, i ∈ [0, N ]}), such that no task
intersects with each other: therefore, the minimum size mT of T (from Definition 10) will
be the same as the size of the biggest task t in T . The |S| first tasks are all associated
with an element of S, while the last one will be used to fix mT . More precisely, we build T
as follows:

— the range of ti is [i, i+ 1[
— for i 6= N , the weight of ti is equal to the value of ni ; wtN =

∑
i∈[0,N−1] ni

2 .
Building T and tmax is subpolynomial.

By hypothesis, ∀k, nk ≤
∑
i∈[0,N−1],i6=k ni (as we dealt with this case previously), and

by construction, no hyper-rectangle intersects any other, so the minimal weight is the size

120. Narendra Karmarkar and Richard M Karp, The Difierencing Method of Set Partitioning, tech. rep.,
Technical Report UCB/CSD 82/113, Computer Science Division, University of California, Berkeley, 1982.
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of the biggest task, which is the last one: mT = maxti(wti) = wtmax . Therefore, if S can
be divided into two submultisets S1 and S2 of the same size, this size is

∑
i∈[0,N−1] ni

2 , and
P(T, 3) answers True.

Reciprocally, if P(T, 3) answers True, this means that there exists a packing of size 3
such that no packing is bigger than mT =

∑
i∈[0,N−1] ni

2 . In particular, as wtN = mT , this
means that no task is added to the bucket containing it, and that the two remaining
buckets contain all tasks ti, i 6= N . If one of these buckets where smaller than mT , the
other would be bigger than mT (as mT =

∑
i∈[0,N−1] ni

2 ), and therefore, both buckets weight
exactly mT . Therefore, it is possible to separate S in S1 and S2 such that the sum of the
numbers in S1 equals the sum of the S2 by taking all the elements corresponding to the
tasks in the first bucket for S1, and the elements corresponding to the second bucket for
S2.

Therefore, if we are not in the trivial case treated above, P(T, 3) answers True if and
only if P+(S) is true in polynomial time. As both deciding whether we are in that trivial
case and computing the answer in that trivial case can be computed in polynomial time,
an algorithm deciding P+(S) in polynomial time can be built. The assumption of P(T, n)
not being NP-hard leads to a polynomial algorithm solving P+, which is absurd, so P(T, n)
is NP-hard.

Static packings

Another point can be highlighted: the difference between what we call static packing
and dynamic partitioning. Indeed, when trying to optimize the use of partitioned buckets,
two main approaches can be used: adapt buckets to tasks, or adapt tasks to buckets. In
the first case, we consider a fixed set of tasks, and try to build partitions in order to
minimize the cost of PIR. On the one hand, this optimization makes it possible to perform
the best with any set of tasks. On the other hand, as we consider a fixed set of tasks,
we may have to compute a new partitioning when this set evolves (when a task is added
or removed, at least when it affects the largest bucket). In the second case however, we
consider a fixed partitioning, that is independent from the set of tasks. This method is
more likely to be suboptimal, but it avoids heavy computation of optimal packing and
allows a greater flexibility in the context of crowdsourcing, by allowing a large variety of
choices and policies from the platform, which can even lead to other kinds of optimization.
For instance, it allows the platform to manage prices policies (e.g. making tasks pay for
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each targeted subspace, higher prices for tasks willing to target highly demanded subspaces,
etc.), in order to even the load within the whole space, and to reduce the redundancy of
tasks within the PIR library (tasks that target more than one partition).

As finding the optimal is NP-hard, we prefer to set aside dynamic packings, as its
main asset is the theoretical possibility to reach optimality while remaining unrealistic in
a real-life scenario, and focus instead on static packings.

Static packing means that the design of partitions is independent of tasks: the tasks
contained within the bucket may change, but not the subspace delimited by the partition.
These heuristic packing schemes are not optimal in general but may be affordable in
real-life scenarios. We propose to use a simple heuristic static packing scheme, the PKD PIR
Packing, consisting in using the partitioned space of workers profiles computed primarily
for task design purposes: to each leaf partition corresponds a bucket containing all the tasks
that have metadata intersecting with it (possibly with padding). The resulting algorithm is
presented in Algorithm 3. The accordance of this scheme with the distribution of workers
can lead to both useful and efficient buckets (as assessed experimentally, see Section 2.6),
and the stability over time of the space partitioning (static approach) makes it easier to
design policies to approach optimality through incentives on the task design (rather than
through bucket design).

Algorithm 3: PKD PIR Packing
Data:
T a Tree computed with the PKD algorithm
T a list of tasks
Result: P : A static partitioned packing depending on workers distribution

1 Create an empty packing P
2 for all leaves l of the tree T do
3 Create a new empty bucket b, assigned to the subvolume of l
4 for all tasks t in T do
5 if t and l intersect then
6 Add t to the bucket b
7 Add b to P

8 return Packing P

70



2.6. Experimental validation

2.6 Experimental validation

We performed a thorough experimental evaluation of the quality and performances of
both the PKD algorithm and our PKD PIR Packing heuristic (that we abbreviate as PIR
in the experiments).

2.6.1 Datasets

In this section, we introduce the datasets and data generators that are used in our
experiments.

Realistic Dataset To the best of our knowledge there does not exist any reference
dataset of worker profiles that we could use for our experiments. This led us to building
our own dataset from public open data. The StackExchange 121 data dumps are well-known
in works related to experts finding. We decided to use them as well in order to perform
experiments on realistic skills profiles. We computed profiles by extracting skills from
users’ posts and votes. In StackExchange, users submit posts (questions or answers) that
are tagged with descriptive keywords (e.g., “python programming”) and vote positively
(resp. negatively) for the good (resp. bad) answers. We consider then that each user is
a worker, that each tag is a skill, and that the level of expertise of a given user on a
given skill is reflected on the votes. We favored a simple approach for computing the
expertise of users. First, for each post, we compute a popularity ratio as follows: r =
upvotes/(upvotes + downvotes), where upvotes is the number of positive votes of the
post and downvotes is the number of negative votes. Second, for each user pi, for each tag j,
the aggregate level of expertise pi[j] is simply the average popularity ratio of the posts from
p tagged by j. Note that more elaborate approaches can be used 122. Finally, we removed
the workers that do not have any skill level higher than 0. We applied this method on three
StackExchange datasets: stackoverflow.com-Posts.7z, stackoverflow.com-Tags.7z,
and stackoverflow.com-Votes.7z which resulted in 1.3M worker profiles 123. Figure 2.3

121. StackExchange is a set of online forums where users post questions and answers, and vote for good
answers https://archive.org/download/stackexchange.
122. Ivan Srba and Maria Bielikova, « A comprehensive survey and classification of approaches for
community question answering », in: ACM TWEB 10.3 (2016), p. 18.
123. The scripts for generating our dataset are available online: https://gitlab.inria.fr/crowdgua
rd-public/data/workers-stackoverflow
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a) On the x-axis: Skill level. On the y-axis:
Skill. On the heatmap: frequency of the
given skill-level on the given skill within
workers - including the workers having a

skill level at 0.

b) On the x-axis: Skill level. On the y-axis:
Skill. On the heatmap: frequency of the
given skill-level on the given skill within
workers - excluding the workers having a

skill level at 0.
Figure 2.3 – Frequencies of ten common skills within the STACK dataset.

(a) shows for ten common skills 124 and for the possible levels divided in ten ranges
(i.e., [0.0, 0.1[, [0.1, 0.2[, . . . , [0.9, 1]) their corresponding frequencies. It shows essentially
that whatever the skill considered, most workers have a skill level at 0. The rest of the
distribution is not visible on this graph so we show in Figure 2.3 (b) the same graph but
excluding, for each tag, the workers having a skill level at 0.

Data Generators We performed our experiments over both synthetic and realistic data.
Our two synthetic generators are specifically dedicated to evaluating the PKD algorithm
with two different kinds of assumptions. First, our UNIF synthetic data generator draws
skills uniformly at random between 0 and 1 (included) (1) for each dimension of a worker’s
profile and (2) for each dimension of a task (more precisely, a min value and a max value
per dimension). Second, our ONESPE generator considers that workers are skilled over a
single dimension and that tasks look for workers over a single dimension. The specialty of
each worker is chosen uniformly at random, and its value is drawn uniformly at random
between 0.5 and 1. The other skills are drawn uniformly at random between 0 and 0.5.
Similarly to workers, the specialty looked for by a task is chosen uniformly at random as
well, its min value is chosen uniformly at random between 0.5 and 1 and its max value is

124. The ten common skills considered are the following: .net, html, javascript, css, php, c, c#, c++,
ruby, lisp.
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set to 1. The min values of the other dimensions of a task are 0, and their max values are
chosen uniformly at random between 0 and 0.5. Although this second heuristic is obviously
not perfect, it seems far more realistic than the previous one. For the two task generation
heuristics, we require that all tasks must contain at least one worker so that the quality
can be correctly computed.

Finally, our realistic data generator, called STACK, consists in sampling randomly workers
(by default with a uniform probability) from the STACK dataset. For our experiments, we
generated through STACK workers uniformly at random and performed the ONESPE task
generation strategy described above.

2.6.2 PKD algorithm

Quality of the PKD algorithm For our experiments, we implemented the PKD algorithm
in Python 3 and run our experimental evaluation on commodity hardware (Linux OS,
8GB RAM, dual core 2.4GHz). In our experiments, each measure is performed 5 times
(the bars in our graphs stand for confidence interval), 1k tasks, 10 dimensions, and τ = 1.

In Fig. 2.4 (a), we fix the privacy budget to ε = 0.1, the number of bins to 10, and
the number of workers to 10k, and we study the impact of the depth of the tree on the
quality. UNIF achieves the lowest error, as long as the tree is not too deep. This can be
explained by the uniform distribution used in the generation method, which matches
the uniform assumption within leaves in the tree. When the depth (and the number of
leaves) grows, this assumption matters less and less. ONESPE is more challenging for the
PKD algorithm because it is biased towards a single skill. It achieves a higher error but
seems to benefit from deeper trees. Indeed, deep trees may be helpful in spotting more
accurately the specialized worker targeted. The results for STACK are very similar. For all
of these distributions, we can see that having a tree deeper than the number of dimensions
leads to a significant loss in quality.

In Fig. 2.4 (b), we analyze the variations of quality according to the value of ε, with 10
bins, a depth of 10, and 10k workers. In this case, the relative error seems to converge to
a non-zero minimum when ε grows, probably due to inherent limits of KD-Tree’s precision
for tasks.

In Fig. 2.4 (c), we fix the privacy budget to ε = 0.1, the depth of the tree to 10 and
10k workers. We can see the impact of the number of bins for each histogram used to
compute a secure median. This value does not greatly impact the relative error for the
UNIF and STACK models, although we can see that performing with 1 bin seems to give
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slightly less interesting results, as it looses its adaptability toward distributions. For the
ONESPE model, having only 1 bin gives better results: indeed, the uniformity assumption
within the bin implies that all dimensions are cut at 0.5, which is also by construction the
most important value to classify workers generated with this procedure.

In Fig. 2.4 (d), we compare the quality according to the number of workers with ε = 0.1,
10 bins and a depths of 10. As the ε budget is the same, the noise is independent from
this number, and thus, the quality increases with the number of workers.

We can notice that our results for the relative error are quite close to the state of
the art results, such as the experiments from Cormode et al. 125, which are performed on
2-dimensional spaces only, with strong restrictions on the shapes of queries (tasks in our
context) and in a centralized context.

Computation time of the PKD algorithm Our performance experiments were per-
formed on a laptop running Linux OS, equipped with 16GB of RAM and an Intel Core
i7− 7600U processor. We measured the average computation time across 100 experiments
of each of the atomic operations used in the PKD algorithm: encryption, partial decryption,
and encrypted addition. The results are summed up in Fig. 2.5, with keys of size 2048
bits, using the Paillier implementation of the University of Texas at Dallas 126. We use
our cost analysis together with these atomic measures for estimating the global cost of
the PKD algorithm over large populations of workers (see Equation 2.4, Equation 2.5, and
Equation 2.6 in Section 2.4.3).

We can observe that the slowest operation is by far the generation of the keys. However,
since this operation is performed only once, the cost of less than 1000 seconds (about 17
minutes) for 10k workers is very reasonable: this operation can be performed as soon as
there are enough subscriptions, and the keys may be distributed whenever the workers
connect. The other operations are faster individually, but they are also performed more
often. For 10k workers, 10 workers required for decryption, a depth of the KD-Tree of 10
and 10 bins, we can observe that: each worker will spend less than 10 seconds performing
encryptions, the platform will spend less than 1000 seconds performing encrypted additions,
the average worker will spend less than 1 second performing decryptions, and the platform
will spend less than 3000 seconds performing decryptions.

Overall, these costs are quite light on the worker side: less than 20 seconds with

125. Cormode, Procopiuc, et al., op. cit.
126. http://cs.utdallas.edu/dspl/cgi-bin/pailliertoolbox/index.php?go=download
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a) Variations according to the depth of the
tree.

10 dimensions, 10k workers, 1k tasks, τ = 1,
ε = 0.1, 10 bins

c) Variations according to the number of
bins.

10 dimensions, 10k workers, 1k tasks, τ = 1,
ε = 0.1, depth = 10

b) Variations according to ε privacy budget.
10 dimensions, 10k workers, 1k tasks, τ = 1,

10 bins, depth = 10

d) Variations according to the number of
workers.

10 dimensions, 1k tasks, τ = 1, ε = 0.1, 10
bins, depth = 10

Figure 2.4 – Quality (see Definition 5, the lower the better)
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Figure 2.5 – Computation time of homomorphically encrypted operations

commodity hardware. On the server side, the computation is more expensive (about one
hour), but we could expect a server to run on a machine more powerful than the one
we used in our experiments. Additionally, it is worth to note that: (1) the perturbed
skills distribution is computed only once for a given population of workers and then used
repeatedly, and (2) we do not have any real time constraints so that the PKD algorithm
can run in background in an opportunistic manner.

2.6.3 Assignment using packing

Quality of our packing We here propose to evaluate the quality of our partitioned
packing approach. Our experiments are performed with the same settings as those used to
measure the quality of the PKD algorithm (see Section 2.6.2). To do so, we propose two
main metrics. First, we measure the mean precision for tasks, as defined in Definition 6.
Although this measure is useful to understand the overall improvement of our approach, it
does not take into account the fact that downloads caused by PIR scale with the largest
item. Therefore, we introduce a second measure, the mean number of tasks that a worker
would download. This value, that we call maximum tasks, is computed as the maximum
number of tasks that a leaf of the KD-tree intersects with: indeed, due to Condition 7.2
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a) Precision in log scale, according to the
ratio of leaf taken by task for the UNIF

model.
10 dimensions, 10k workers, 1k tasks, τ = 1,

ε = 0.1, 10 bins, depth = 10

b) Precision in log scale, according to the
ratio of leaf taken by task for the ONESPE

model.
10 dimensions, 10k workers, 1k tasks, τ = 1,

ε = 0.1, 10 bins, depth = 10
Figure 2.6 – Precision (the higher the better)

(PIR requirement), all workers will download as many data as contained in the biggest
bucket.

In the task generation methods introduced previously, tasks are built independently
from the KD-tree itself. This independence was logical to measure the quality of the PKD
algorithm. However, this very independence leads to poor results when it comes to building
efficient packing on top of a KD-tree: as tasks are independent from the KD-tree, they
have little restriction on how small they are (meaning that few workers will match with
them, although all workers in leaf that intersect with it will download it), or on how many
leaves they intersect with, leading to low precision, and high size of buckets.

Therefore, we introduce a new method to build tasks: SUBVOLUME. With this method,
we build tasks as subleaves, meaning that all tasks are strictly included within one leaf of
the KD-tree. Furthermore, we also enforce the size of the task as a parameter, such that
the volume of the task is equal to a given ratio of the task. More precisely, for a ratio
r ∈ [0, 1], a space E of d dimensions and a picked leaf l, the interval of a task in a given
dimension di ldi × r1/d, where ldi is the interval of the leaf in dimension di. The SUBVOLUME
model of tasks can easily be introduced by economic incentives from the platform, such as
having requesters pay for each targeted leaf, which is likely to induce a maximization of
the volume taken, and a reduction of the tasks that intersect with more than one leaf. Note
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Figure 2.7 – Number of tasks downloaded according to the ratio of leaf taken by task
for the packing approach. 10 dimensions, 10k workers, 1k tasks, τ = 1, ε = 0.1, 10 bins,
depth = 10

that we do not perform experiments with this generation of tasks on the Stack dataset,
as most workers have their skills set to either 0 or 1, which leads to very unreliable results
as tasks almost never encompass either of these values.

The comparison between the PKD PIR Packing heuristic and the spamming approach
using this new method to generate tasks, presented in Figure 2.6, shows that our approach
improves precision by at least two orders of magnitude. Also, note that for r = 1, the
precision is equal to 1 in the PIR approach. This result comes from the fact that, with
r = 1, all workers within a leaf are targeted by all tasks that intersect with that leaf,
meaning that they do not download irrelevant tasks.

The maximum number of tasks connected to a leaf, showed in Figure 2.7, shows that
the cost of download is also significantly improved (these values are to be compared to
1000, the total number of tasks that are downloaded with the spamming approach) also
shows great improvement (around 2 orders of magnitude), as tasks are more evenly spread
within the leaves (there are 210 = 1024 leaves for a depth 10 of the tree, which can explain
this improvement).

Cost of the PIR protocol We evaluate our heuristic by first measuring experimentally
the efficiency of the PIR protocol, and then proposing a cost model that builds on these
measures.
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Figure 2.8 – Computation time of the retrieval of an item according to the PIR library’s
size

We study the impact of the number of files and of the size of files on the computation
time. In the experiments, we used a computer with 8GB of RAM, and a Ryzen 5 1700
processor, using the implementation of Aguilar-Melchor et al. 127 128.

As we can see in Figure 2.8 with keys of size 1024 bits, computation time is proportional
to the overall size of the PIR library (the coefficient of determination gives r2 = 0.9963),
and that it grows at 0.14s/MB for a given request, as long as the library can be stored in
RAM.

We now evaluate the maximum number of tasks nmax that our system can take into
account, according to two parameters: the time t that workers accept to wait before the
download begins, and the size s that workers accept to download. As nmax does not solely
depend on t and s, we introduce a few other notations:

— f is the expansion factor of the encryption scheme.
— |task| the mean size of a task.
— k the proportion of tasks that are in the biggest leaf of the KD-tree (for instance,

k = 0.1 means that the biggest leaf contains one tenth of all tasks)
— depth, the depth of the KD-tree (that is linked with the number of buckets)

In the spamming approach, the maximum number of tasks that can be managed by

127. Aguilar-Melchor, Barrier, et al., op. cit.
128. https://github.com/XPIR-team/XPIR

79

https://github.com/XPIR-team/XPIR


Partie , Chapter 2 – From task tuning to task assignment in privacy-preserving crowdsourcing
platforms

our system is independent from t and can be simply computed as:

nmax,SPAM = s

|task|

For the PKD PIR Packing heuristic, both s and t lead to a limitation on nmax,PIR. We
first consider the limit on the computation time t: according to our results in Figure 2.8,
the PIR library cannot be bigger than t

0.14 , and the size of a bucket, can be computed as
k× |task| × nmax,PIR (by definition of k, as all buckets weight as much as the biggest one).
As the library can be computed as the product of the number of buckets and their size, this
leads us to 2depth×k×|task|×nmax,PIR ≤ t

0.14 , or equivalently nmax,PIR ≤
t

0.14×2depth×k×|task| .
We now consider the limit s on the size of download. For each worker, the size of a download
will be the same, computed as the product of the expansion factor and the size of a bucket:
f ×k×nmax,PIR×|task| ≤ s. This inequality leads to nmax,PIR ≤ s

f×|task|×k . By combining
these two inequalities, nmax,PIR takes its maximum value when

nmax,PIR = min( s

f × |task| × k
,

t

2depth × 0.14× |task| × k )

In Figure 2.9, we compare the number of tasks that a crowdsourcing platform can
manage with different values of t and s, using either the spamming approach or our PKD
PIR Packing heuristic. For the sake of simplicity, we consider that the expansion factor
f is 10, although smaller values are reachable with XPIR protocol 129. This factor will
impact the amount of tasks that a worker can download. We take d = 10 similarly to our
previous experiments. We consider a mean size of task |task| = 1MB. It can be noticed
that |task| has no impact on the comparison ( maxn,PIR

maxn,SPAM
does not depend on |task|).

For k, we consider two possible values: k = 0.01, as suggested by the experiments
in Figure 2.7, and k = 1

210 , which represents the optimal case, where tasks are perfectly
spread among buckets (for instance, due to strong incentives from the platform).

In these experiments, we can notice that our approach depends on both the computation
time allowed and the size of the number of task in the largest bucket. In a real-life scenario,
platforms would benefit from enforcing incentives to even the load between buckets.
However, if workers are willing to limit their download to less than 100MB, the PKD PIR
Packing heuristic outperforms the spamming approach as long as users are willing to limit
their download even with relatively short computation times (less than 10 minutes) by up

129. Aguilar-Melchor, Barrier, et al., op. cit.
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a) Number of tasks n manageable by our
system according to the size s a worker

accepts to download.
k = 0.01, |task| = 1MB, f = 10,

depth = 10

b) Number of tasks n manageable by our
system according to the size s a worker

accepts to download.
k = 0.001, |task| = 1MB, f = 10,

depth = 10
Figure 2.9 – Precision (the higher the better) ; curves are in the same order as the captions

to several orders of magnitude. Our method is especially interesting in settings where the
bandwidth is low (e.g. with mobile devices), with low values of s. On the opposite, it is
interesting to highlight that high computation times are not necessarily prohibitive: as the
computation is performed by the platform, a worker could very well ask for a bucket of
tasks and download it later on when it is ready.

2.7 Discussion

In this section, we propose a discussion on questions raised by our work that are not
our primary focus. More precisely, we elaborate our views on updates that our system may
or may not allow (both for the PKD algorithm and the PKD PIR Packing heuristic), with
some advantages and drawbacks.

2.7.1 Updating tasks and PIR libraries

In this work, we dealt with the download of tasks as a one-shot download, meaning
that a worker will download tasks once and for all. However, in a real-life scenario tasks
are likely to evolve (e.g. new tasks will be added and old tasks will be outdated), and
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workers are equally likely to update their tasks. Without further improvement, our design
would require each worker to download a whole packing for each update of the available
tasks. However, more elaborate approaches are possible. Although it is not our focus to
develop them exhaustively, we propose a few tracks that are likely to diminish the costs
greatly.

For that purpose, we propose to divide time into fixed duration periods (e.g. a day, a
week, etc.) and to additionally take into account the period at which a task is issued in
order to pack it. We give below two options for allowing updates. These schemes result into
an increase of the memory cost on the server side, but alleviates the overall computation
required.

Packing by Period

A simple scheme that allows easier updates while reducing the size of single PIR request
consists in designing packing not only according to a specific partitioning but also according
to time periods. The platform builds one PIR library per period, i.e., considering only the
tasks received during that period. 130. Workers simply need to perform PIR requests over
the missing period(s) (one request per missing period). As a result, the PIR-get function
is executed on the library of the requested period, which is smaller than or equal to the
initial library.

However, this scheme may result in high costs if the distribution of tasks is skewed.
For instance, let’s consider two time periods p1 and p2, two subspaces of the space of skills
s1 and s2, and three tasks t1, t2 and t3 such that t1 and t2 appear only in p1 and s1, while
t3 appears only in p2 and s2. In that case, all workers will download first the PIR item
for period p1, which is the same size as wt1 + wt2 (due to padding for workers not in p1)
and then a second PIR item for p2, of size wt3 . Without that period strategy, a worker
who performs regular updates would have downloaded tasks t1 and t2 (or equivalent size)
twice due to the update, and t3 once, but a worker who would not have performed the
intermediary download would have downloaded max(wt3 , wt1 + wt2). Therefore workers
who update frequently would benefit from this strategy, while workers who do not would
have worse results.

130. In this kind of methods, a task can be either maintained into its starting period up till its lifespan,
or one can consider keeping up a limited number of periods (e.g. all daily periods for the current month)
and re-adding tasks on new periods packing each time they are deleted (e.g. for tasks that are meant
to be longer than a month). More elaborate or intermediate methods are also possible, but we will not
explore this compromise in this work.
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Personalized Packing by Period

In order to tackle the previously mentioned issue caused by skewed distribution of
tasks, and to optimize the size of the downloaded bucket for any frequency of downloads,
we propose to adapt the packing to the workers’ frequency of downloads.

Indeed, we observe that it is enough to perform as many packings as there are possible
time-lapses for workers, e.g., one packing for the last period, one packing for the last two
periods, one packing for the last three periods, etc.. As a result, each PIR-get request
is associated with a time-lapse in order to let the PIR server compute the buckets to be
downloaded (or use pre-computed buckets). With this method, we can get the best of both
worlds with the previous example: someone who downloads frequently will only have small
updates, while someone who does not will not suffer from overcosts.

The main (and limited) drawback of this method is that the platform will have to store
multiple PIR-libraries, which increases the storage required.

Security of Packing by Period

In both of the above schemes, we consider multiple downloads from workers. Even
worse, in the second case the number of downloads may vary depending on workers’ habits.
If the above proposition were to be used, more accurate proofs of security would have to
be done. Although it is not our focus to propose them in this chapter, we provide here
some intuitions on their requirements. In the first case, the number of downloads is the
same for all workers, and would therefore not lead to great modifications of our proof. In
the second case however, the number of downloads depends on the frequency of downloads
of workers. In order not to reveal information about worker’s profiles, a new hypothesis is
likely to be required, that states or implies that the frequency of downloads of workers is
independent from their profiles.

2.7.2 Updating PKD

The PKD algorithm is not meant to allow users to update their profiles, as they would
have to communicate information to do it, and this would either break our security policy,
or exceed the ε privacy budget. However, departures or arrivals are not inherently forbidden
by our security policy. A simple and naive way to upgrade the PKD algorithm to take new
arrivals into account is to create multiple KD-trees, and to combine them. For instance,
one could imagine using the PKD algorithm on every new k arrivals (e.g. k = 1000 or
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k = 10000). The estimation of the number of workers within a subspace would be the sum
of the estimations for each KD-tree, and a new PIR library could be built for each of these
KD-trees. For retrieval of workers, as it is impossible to know where the worker was, the
most naive way to proceed is to retrieve a given value to each leaf of the approximated
KD-tree, for instance nleaf

ntree
, where nleaf is the approximated number of workers in the leaf,

and ntree the total number of workers. Once again, more elaborate methods are possible,
but stand out of our focus.

2.8 Demonstration

In this section, we present the demonstration that is based on this work. This demon-
stration focuses on secondary usages and the task-tuning in particular, and does not
implement the assignment part.

This demonstration illustrates the PKD algorithm by (1) allowing its execution on a
wide variety of parameters (e.g., various populations of workers, different numbers of
iteration, different values of the ε privacy parameter) and (2) allowing the audience to
create tasks matching the population of workers through a simple task tuning helper. The
demonstration platform is centralized and simulates the distributed components of the
PKD algorithm. We present below the technicals details of the demonstration platform, the
parameters that can be set up by the audience (called mutable parameter), the parameters
that are fixed, and the demonstration scenario.

2.8.1 Platform

Figure 2.10 depicts the demonstration platform. The demonstration is implemented
as a web application running through a single docker-compose file. In this file, several
services handle every aspect of the application without any configuration or installation
(except for docker and docker-compose, which are not specific to this demonstration).
The first service and the core of the application is a Python Django web server used to
serve the web interface and handle the commands issued by the demonstrator. The user
interface, served by Django consists in simple HTML pages using the CSS framework
Bootstrap for the design and ViewJS scripts for the dynamic components. A second service
handles the long tasks in the background that cannot reasonably be handled by Django
without causing a loss of the user experience (i.e., tasks that last more than a few seconds
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Figure 2.10 – The demonstration runs on a single laptop executing the demonstration
platform: the web server (Python Django), the background tasks handler (Celery) and
the databases (PostgreSQL and Redis). The demonstration is accessible through a web
interface (e.g., on the browser of the demonstration laptop).

such as the PKD algorithm and the CSV import of the workers). This service is written in
Python with the Celery framework. Databases required by the application (PostgreSQL
and Redis), to handle data persistency, are directly embedded in the docker-compose file.
The homomorphic encryption features are disabled in order to reduce computation time for
the demonstration. Indeed, for the sake of simplicity, all distributed operations, normally
done by distinct workers, are done locally by the demonstration platform 131. In particular,
worker profiles are stored locally rather than being hold by individual workers, and the
encrypted sum of histograms is replaced by a cleartext sum. These simplifications have no
consequence on the output of the PKD algorithm. The source code of the demonstration
is available publicly 132 and can be executed on a laptop where docker is installed (no
configuration is required).

2.8.2 Parameters

In this demonstration we let the audience set various parameters, while others are fixed
to default values. Default parameters are chosen to reflect plausible real-life settings while
keeping the computation time reasonable. In particular, we limit the number of skills (e.g.,
2 or 3 skills chosen by the audience) and the number of workers (e.g., a few hundreds
instead of a few thousands in a real-life system).

131. In a real-life scenario, encrypted operations would be performed in parallel by workers and the
platform itself, which greatly reduces the costs
132. https://gitlab.inria.fr/crowdguard-public/implems/pkd-demo
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The audience is able to set the skills, the worker profiles (either manually or automati-
cally) and the PKD algorithm parameters. For these parameters, we also provide default
values to help the audience: the differential privacy security parameter (ε = 0.1), the
number of splits for the partitioning (splits = 7) and the number of bins of histograms
(bins = 10). Finally, the audience can tune tasks to fit with the previously defined workers.

Note that the termination criteria must be chosen carefully because it limits the number
of splits of the space of skills 133. The dimensions that are not part of the sequence will simply
be ignored. The number of dimensions in workers profiles, and their respective priorities,
is closely related to the application domain (e.g., How specific does the crowdsourcing
process need to be?). In this paper, we make no assumption on the relative importance of
dimensions.

2.8.3 Datasets

Three populations of workers are available by default: two populations are generated
synthetically (i.e., through our UNIF worker generator that samples skill levels uniformly
at random and our ONESPE worker generator that choses one strong skill uniformly at
random for each worker and sets a low skill level to all others skills - see pkdtr for details),
and one population is computed from the public Stackoverflow dataset 134. Additionally,
the audience can instantiate a set of workers manually. Additional arbitrary populations
of workers defined by the audience can be imported. Our platform accepts CSV files, such
that each line is defined by three columns, as shown in Figure 2.11.

UserID (int) SkillID (int) SkillLevel (float in [0; 1])
12 3 0.4

Figure 2.11 – Format of a worker dataset and illustration on a single worker.

2.8.4 Scenario

The demonstration scenario presents a simple execution sequence allowing the audience
to observe the different steps of the PKD algorithm and to use the task tuning module. It

133. It also impacts the overall computation time and quality of the estimation
134. We consider that a user is a worker, tags of posts are skills, and skill levels are a simple popularity
score computed from the number of up-votes of each post. See https://gitlab.inria.fr/crowdguard-p
ublic/data/workers-stackoverflow for more details (i.e., description of the method and pre-processing
scripts).
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Figure 2.12 – Tuning the task with information from the hierarchy of partitions. On the
first half of the screen (top), the skills requirements of a task are being tuned over the
Java and C programming skills (the union of the leaf partitions appears on the green
lines, and neighboring nodes appear on the red lines). On the second half of the screen
(bottom), the screen displays information about the perturbed and actual number of
workers corresponding to the task requirements.

concentrates on the task design, only the necessary information about the distribution
of workers is displayed. A strong focus has been put on the simplicity and the clarity of
the GUI which includes all the explanations needed to understand intuitively each step
of the demonstration. The GUI is divided into a sequence of screens, where each screen
is dedicated to a specific step of the execution sequence. First, an introduction screen
presents the demonstration and its objective. Second, the audience choses the set of skills
to consider. Third, the audience can launch the workers import (according to the various
methods described above, including the import of a CSV file from the audience). Additional
information about the distribution of skills within the dataset chosen is displayed through
a Notebook document and commented. Fourth, the PKD algorithm is executed on the
population of workers defined and outputs the space partitioning computed. Finally and
most importantly, the audience uses our simple task tuning helper in order to tune a few
tasks (1) without any information on the underlying population (default method within
privacy-preserving crowdsourcing platforms) and (2) with the hierarchy of partitions
computed by the PKD algorithm. Figure 2.12 shows the screen dedicated to tuning the task
with information from the hierarchy of partitions. Optionnally, in order to observe the
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privacy/utility tradeoff, the audience is invited to explore the hierarchy of partitions and
inspect the impact of the differentially private perturbation by comparing the perturbed
counts to the exact unperturbed number of workers within each partition.

2.9 Conclusion

We have presented a privacy-preserving approach dedicated to enabling various usages
of worker profiles by the platform or by requesters, including in particular the design of tasks
according to the actual distribution of skills of a population of workers. We have proposed
the PKD algorithm, an algorithm resulting from rethinking the KD-tree construction
algorithm and combining additively-homomorphic encryption with differentially-private
perturbation. No trusted centralized platform is needed: the PKD algorithm is distributed
between workers and the platform. We have provided formal security proofs and complexity
analysis, and an extensive experimental evaluation over synthetic and realistic data that
shows that the PKD algorithm can be used even with a low privacy budget and with a
reasonable number of skills. Exciting future works especially include considering stronger
attack models (e.g., a malicious platform), protecting the tasks in addition to worker
profiles, and guaranteeing the integrity of worker profiles.
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Chapter 3

SEPAR: A PRIVACY-PRESERVING

APPROACH TO REGULATE

CROWDSOURCING

3.1 Introduction

The rise of the platform economy 1 2 is reshaping work all around the world. By
providing requesters (resp. workers) 24/7 access to a worldwide workforce (resp. worlwide
task market), crowdsourcing platforms have grown in numbers, diversity, and adoption.
Today, workers in crowdsourcing come from countries spread all over the world, and work
on several, possibly competing, platforms 3. The use of crowdsourcing platforms is expected
to continue growing 4, and in fact they are envisioned as key technological components of
the future of work 5.

Crowdsourcing platforms, however, challenge national boundaries, weaken the formal
relationships between workers and requesters, and are often not considered as legal
employers. Guaranteeing the compliance of crowdsourcing platforms with national or
regional labour laws is hard 6 7 despite the stringent need for regulating work. For example,
the preamble of the 1919 constitution of the International Labour Organization 8, written

1. Julie E Cohen, « Law for the platform economy », in: UC Davis Law Review, Forthcoming 51 (2017),
p. 133.

2. Martin Kenney and John Zysman, « The rise of the platform economy », in: Issues in science and
technology 32.3 (2016), p. 61.

3. Berg, Furrer, et al., op. cit.
4. Global Commission on the Future of Work, Work for a brighter future, tech. rep., International

Labour Organization, 2019.
5. participants, op. cit.
6. See, e.g., the Otey V Crowdflower class action against a famous microtask platform for "substandard

wages and oppressive working hours" (https://casetext.com/case/otey-v-crowdflower-1).
7. Future of Work, op. cit.
8. Commission on International Labour Legislation, Constitution of the International Labour Organi-
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in the ruins of World War I, states that: “Whereas universal and lasting peace can be
established only if it is based upon social justice; (. . . ) an improvement of those conditions
is urgently required; as, for example, by the regulation of the hours of work, including the
establishment of a maximum working day and week, the regulation of the labour supply
(. . . )”. The global regulation of the work hours represents the minimal and maximal number
of hours that participants, i.e., worker, requester, and platform, can spend on crowdsourcing
platforms. While legal tools are currently being investigated, e.g., a Universal Labour
Guarantee 9, there is a stringent need for technical tools allowing official institutions to
enforce regulations.

Most current crowdsourcing platforms are independent of each other. However, the
emergence of more complex tasks and novel requirements for both workers and requesters,
on one hand, and the enforcement of legal regulations, on the other hand, highlights
the need for collaboration between crowdsourcing platforms, thus resulting in multi-
platform crowdsourcing systems. For example, many drivers work for both Uber and Lyft
concurrently 10, while requesters may also request multiple drivers from both Uber and
Lyft concurrently. The observation holds also for microtask platforms 11, where a common
combination among workers is Amazon Mechanical Turk and Prolific, or for on-demand
services 12. Participants in a crowdsourcing task may also behave maliciously or act as
adversaries for their benefits, e.g., violate the privacy of participants or the regulations.
Therefore, to check the enforcement of legal regulations in a multi-platform crowdsourcing
environment, we need to reconcile transparency with privacy. Indeed, while enforcing
limits on the hours of work over several crowdsourcing platforms requires the transparent
sharing of information about the crowdsourcing tasks performed by each platform, without
any privacy protection measures, this may lead to out-of-control disclosures about the
participants. Transparent and privacy-preserving collaboration between multiple platforms
might also be needed to address complex cross-platform tasks. If a requester submits a
task with a specified number of requested solutions to multiple platforms, the involved
platforms need to collaborate with each other in order to assign workers and provide the
specified number of solutions. As a result, a multi-platform system needs to establish
consensus between platforms to enable them either to enforce legal regulations or to process

zation, 1919.
9. Future of Work, op. cit.

10. For example, ridesharapps.com provides tutorials to help drivers manage apps to optimize their
earnings https://rideshareapps.com/drive-for-uber-and-lyft-at-the-same-time/.
11. Berg, Furrer, et al., op. cit.
12. See, e.g., https://tinyurl.com/nytgigmult.

90

https://rideshareapps.com/drive-for-uber-and-lyft-at-the-same-time/
https://tinyurl.com/nytgigmult


3.1. Introduction

cross-platform tasks.
In this chapter, we present SEPAR, a technical solution to the problem of imposing

global constraints on distributed independent entities in the context of multi-platform
crowdsourcing systems. The problem is non-trivial because of the complexity of the
conjunction of the required properties:

1. Expressibility: The constraints need to be expressed in a simple and non-ambiguous
manner.

2. Transparent and Privacy-preserving Constraint Enforcement: Crowdsourc-
ing platforms need to share information about the tasks performed without jeop-
ardizing the privacy of participants in order to allow both the enforcement of the
global constraints and the collaborative processing of cross-platform tasks.

3. Distributed Collaboration: Crowdsourcing platforms are naturally distributed
and need to collaborate through distributed consensus algorithms.

SEPAR proposes a privacy-preserving token-based system where global constraints are
modeled using lightweight and privacy-preserving tokens distributed to workers, platforms,
and requesters. Our system formally guarantees that global constraints are satisfied by
construction and limits the information shared among platforms and participants to the
minimum necessary for performing the tasks against adversarial participants acting as
covert adversaries. We extend our token-based system to allow participants to prove
to external entities (e.g., social security agencies) their involvement in crowdsourcing
tasks. The resulting proofs are called certificates. To provide transparency across multiple
platforms, SEPAR proposes a blockchain-based distributed ledger shared across platforms.
Nonetheless, for the sake of privacy and to improve performance, the blockchain ledger is
not maintained by any single platform and each platform maintains only a view of the
ledger. We then design a suite of distributed consensus algorithms across platforms for
coping with the concurrency issues inherent to a multi-platform context and formally prove
their correctness. Salient features of SEPAR include the simplicity of its building blocks
(e.g., usual asymmetric encryption scheme) and its compatibility with today’s platforms
(e.g., it does not jeopardize their privacy requirements about requesters and workers for
enforcing the regulation).

In a nutshell, the contributions of this chapter are as follows:

1. A privacy model stating formally the privacy requirements of a multi-platform
regulated crowdsourcing system based on the well-known simulation paradigm,
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2. A simple language for expressing global constraints, e.g., limits on the number of
work hours, and mapping them to SQL constraints to ensure semantic clarity,

3. SEPAR, a privacy-preserving transparent multi-platform crowdsourcing system that
enforces a given set of constraints. (1) Privacy is ensured using lightweight and
privacy-preserving tokens, while (2) transparency is achieved using a blockchain
shared across platforms,

4. A suite of distributed consensus protocols, and

5. A formal security analysis and thorough experimental evaluation.

This work will be submitted soon to the SIGMOD conference 13.
The chapter is organized as follows. The technical background and related work are

discussed in Section 3.2. Section 3.3 defines the problem that SEPAR addresses. The
language for expressing constraints is developed in Section 3.4. The token-based system for
enforcing constraints and the extended system for certificates are described in Section 3.5.
The blockchain ledger and consensus protocols are presented in Section 3.6. Section 3.7
details our thorough experimental evaluation, and finally, Section 3.8 concludes the chapter.

3.2 Related work

In this section, we present relevant related work from crowdsourcing and blockchain
literature.

3.2.1 Decentralized systems

In the context of blockchains, Hyperledger Fabric 14 ensures the confidentiality of data
using Private Data Collections 15. Private Data Collections manage confidential data that
two or more entities want to keep private from other entities. The underlying idea is
that data is sent only to authorized entities, while others only manipulate a hash of data.
Quorum 16, as an Ethereum-based 17 blockchain, supports two types of public and private

13. Amiri, Duguépéroux, et al., op. cit.
14. Elli Androulaki, Artem Barger, et al., « Hyperledger fabric: a distributed operating system for

permissioned blockchains », in: Proc. of EuroSys’18, 2018, pp. 1–15.
15. Private Data Collections: A High-Level Overview, https://www.hyperledger.org/blog/2018/10/23/private-

data-collections-a-high-level-overview.
16. JP Morgan Chase, Quorum white paper, 2016.
17. Ethereum blockchain app platform, https://www.ethereum.org, 2017.
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transactions and ensures the confidentiality of private transactions using zero-knowledge
proofs (that make it possible to prove statements about data without revealing the data
itself).

Providing privacy as well as untraceability in payments has been addressed by ZCash 18.
It also relies on zero-knowledge proofs, which are used to store proofs of ownership of
money and to transfer it to someone else, without revealing participants to external parties.
Hawk and Raziel 19 20 manage wider issues, and include general smart contracts: these
"contracts" allow arbitrary programs to be computed, as opposed to money systems, which
only handle a very limited set of operations. The solution proposed relies on a party
performing the computation, and providing zero-knowledge proofs of that its execution is
correct.

These structures are fully decentralized, which may come as an asset in many contexts,
but prevent them from any direct application for crowdsourcing, in which platforms play
an important role. Furthermore, these structures are not designed to allow control from
an external entity, which may also be an issue for legislators.

Solidus 21 proposes to privately manage a multi-platform banking system, with distinct
banks each managing their clients, while allowing cross-platform transactions. In this
system, if Alice uses bank A to send money to Bob in bank B, bank A does not learn the
identity of Bob (only that Alice transfers money to someone in bank B), nor does bank B
learn the identity of Alice (only that someone from bank A sends money to Bob), and any
other bank or user cannot learn the identity of Alice, Bob, or the amount of the transaction.
However, all can check that the transaction was correct (e.g. no-one spent money that
they did not own). This mixture of transparency and privacy is achieved by managing, in
a public ledger (e.g. a blockchain), a complex ORAM-like structure (ORAM 22 being a
family of techniques that aim at allowing private download and modification of data on an
external server), while letting banks locally manage their users with cleartext values. The
architecture of this solution appears to be close to what we attend to provide. However,

18. Daira Hopwood, Sean Bowe, et al., « Zcash protocol specification », in: GitHub: San Francisco, CA,
USA (2016).
19. Ahmed Kosba, Andrew Miller, et al., « Hawk: The blockchain model of cryptography and privacy-

preserving smart contracts », in: Proc. of SP’16, IEEE, 2016, pp. 839–858.
20. David Cerezo Sánchez, « Raziel: Private and verifiable smart contracts on blockchains », in: arXiv

preprint arXiv:1807.09484 (2018).
21. Ethan Cecchetti, Fan Zhang, et al., « Solidus: Confidential distributed ledger transactions via

PVORM », in: Proc. of SIGSAC CCS’17, 2017, pp. 701–717.
22. Emil Stefanov, Marten Van Dijk, et al., « Path ORAM: an extremely simple oblivious RAM

protocol », in: Proc. of SIGSAC CCS’13, 2013, pp. 299–310.
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allowed operations (spending and receiving money) are far too limited compared to what
could be expected in the context of crowdsourcing.

3.2.2 Global crowdsourcing processes

To take into account the overall crowdsourcing process, it is necessary to take into
account the reward and its policy. It is clear that all workers want the highest reward,
but also that requesters do not want to reward spammers, or tasks that have not been
correctly performed. To avoid this issue, it is possible to have the requesters formalize
a reward policy available to workers, as proposed in Zebralancer 23 and zkCrowd 24. This
policy will define the conditions in which workers can be paid or not, and the amount of
the payment. For instance, the reward can depend on some test questions, or only given
to answers close to the mean answer. In these systems, the satisfaction of this reward
policy is then ensured by using blockchain structures to enable transparency, along with
zero-knowledge proofs to maintain privacy, that ensure that the actual payment satisfy
the announced policy.

The idea is the following: first, when submitting a task, the requester adds a reward
policy, along with the maximum possible reward to the blockchain (this money will not go
back to requesters unless they are legitimate to get it back). Contributions of workers to
the task are sent in two steps: first, to the requester, and then, encrypted, to the blockchain.
To end the process, the requester will analyze the contributions according to her policy,
and submit a reward proposition (e.g. give $3 to the first contribution, and $5 to the
second one, etc.), together with a zero knowledge proof that (1) the contributions match
the encrypted contributions on the blockchain, and (2) the rewards respect the reward
policy.

This proof can then be verified on the blockchain, and payment is made this way,
without revealing the identity of workers nor their contributions, and preventing the risk
of requesters not rewarding their workers.

It is noticeable that, while the protocol proposed by zkCrowd 25 is more efficient
than Zebralancer 26, spammers are avoided in the latter by making use of a Registration
Authority. This Registration Authority will provide keys to workers, which will be used

23. Lu, Tang, and Wang, op. cit.
24. Saide Zhu, Zhipeng Cai, et al., « zkCrowd: a hybrid blockchain-based crowdsourcing platform », in:

IEEE Transactions on Industrial Informatics (2019).
25. Ibid.
26. Lu, Tang, and Wang, op. cit.
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to prevent workers from contributing twice in the same task (without endangering their
identity nor enable linkability between their contributions). However, neither of these
works provide a way to implement external regulations, or to manage multiple platforms.

3.3 Problem formulation

3.3.1 Motivating example

Multi-platform crowdsourcing systems face two main privacy preserving challenges:
enforcing multi-platform regulations and supporting cross-platform tasks. We consider
constraining the number of work hours in a ridesharing use-case to illustrate the challenge
of enforcing privacy preserving multi-platform regulations. In ridesharing scenarios, a set
of workers (i.e., drivers) gives rides to a set of requesters (i.e., travelers) through a set of
platforms, e.g., Uber, Lyft, Curb, and Juno, where each driver (resp. traveler) registers
to one or more platforms. Regulations on the hours of work often specify minimal and
maximal number of work hours that can be performed by the participants. For instance, (1)
the total work hours of a driver per week may not exceed 40 hours to follow the Fair Labor
Standards Act 27 (FLSA), (2) a driver has to work at least 5 hours per week to be eligible for
insurance coverage, and (3) the total work hours of all drivers on a platform should be at
least 1000 hours per week to enable the platform to fill for a tax refund. A multi-platform
crowdsourcing system needs to express and enforce such regulations while preserving
the privacy of participants. Indeed, the system needs to (1) provide a technical tool to
enable official institutions expressing the regulations, (2) support transparent sharing of
information about the crowdsourcing tasks performed by each platform to enable them
checking the enforcement of regulations, and (3) preserve the privacy of participants.

Supporting complex cross-platform tasks that may need multiple contributions from
possibly different platforms raises the second set of challenges. For instance, a requester
who has registered with Amazon Mechanical Turk, Appen and other microtask platforms
might need hundreds or thousands of contributions at the same time. The requester
would like to accept these contributions from workers regardless of the platforms the
microtasks are performed on. Since workers from different platforms might want to perform
these contributions, the system needs to establish consensus among the various microtask
platforms to assign workers and provide the specified number of solutions without revealing

27. https://www.dol.gov/agencies/whd/flsa
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any private information about the workers to competing platforms.

3.3.2 Crowdsourcing environment

Participants

Today’s realistic crowdsourcing environments consist of a set of workers W interacting
with a set of requesters R through a set of competing platforms P . We call participants the
workers, platforms, and requesters of a crowdsourcing environment. Each worker w ∈ W
(1) registers to one or more platforms Pw ⊂ P according to her preferences and, through
the latter, (2) accesses the set of tasks available on Pw, (3) submits each contribution to
the platform p ∈ Pw she elects, and (4) obtains a reward for her work. On the other side,
each requester r ∈ R similarly (1) registers to one or more platforms Pr ⊂ P , (2) issues a
submission which contains her tasks Tr to one or more platforms p ∈ Pr, (3) receives the
contributions of each worker w registered to Pr ∩ Pw having elected a task t ∈ Tr, and
(4) launches the distribution of rewards. Platforms are thus in charge of facilitating the
intermediation between workers and requesters. A crowdsourcing process π connects three
parties – a worker w, a platform p, and a requester r – with each other and aims to solve
a task t ∈ Tr through p, and consists in the steps (2) to (4) above. Figure 3.1 shows a
crowdsourcing infrastructure with four platforms, four workers and four requesters.

In this work, we do not focus on the description of tasks and contributions and
consequently model both as arbitrary bitstrings {0, 1}∗ and make no assumption on the
distribution of rewards to workers 28.

Finally, workers, requesters, and platforms are all equipped with the cryptographic
material required by SEPAR: a pair of usual public/private asymmetric keys (e.g., RSA)
and a pair of public/private asymmetric group keys 29 where the union of all workers forms
a group (in the sense of group signatures), similar to the union of all requesters, and to
the union of all platforms. Participants acquire them when joining SEPAR (see Section 3.5
for more information).

28. A task embeds all the information necessary to be performed by a worker (e.g., the precise description
of the work that must be performed, a reward policy for distributing the reward among contributors, the
expected number of contributions).
29. Jan Camenisch and Jens Groth, « Group signatures: Better efficiency and new theoretical aspects »,

in: Proc. of SCN’04, Springer, 2004, pp. 120–133.
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Figure 3.1 – A crowdsourcing infrastructure

Interactions with institutions

Crowdsourcing environments do not exist in a vacuum but rather are integrated within
society as a whole. The participants need in particular to interact with legal institutions (in
order to enforce the local labor laws) and with social institutions (in order to enable local
social rights). We capture these interactions through less-than constraints and greater-than
certificates.
Constraints. A set of constraints embodies the labor policy that applies to a given
crowdsourcing environment. Essentially, a constraint expresses a limit on the actions
that can be performed by the participants of the crowdsourcing environment, e.g., the
total working hours of a worker per week must not exceed 40 hours across all platforms.
Constraints must be expressed in an intuitive language that is both expressive enough
to adapt to a variety of real-world policies and at the same time restrictive enough to
guarantee the efficiency of their enforcement.
Certificates. A certificate is a piece of information that participants can provide to
third parties to prove that they took part in a given crowdsourcing process. Contrary
to constraints, they are not a priori specification: they are made available during the
process to the participants involved and can be provided by participants to other parties
on demand after the process. Certificates are well suited to real-world situations such as
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conforming to legal obligations, suing other parties in court in case of abuse, or legitimizing
applications to grants or tax refund depending on local legislation, e.g., a driver has to
work at least 5 hours per week to be eligible for insurance coverage or the total work hours
of all drivers on a platform should be at least 1000 hours per week to enable the platform
to fill for a tax refund.

Distribution of Platforms

We do not make any assumptions on the inner working of platforms, especially on
their inner implementation of crowdsourcing processes (e.g., task assignment algorithm,
workers contributions delivery). However, we stress that our approach is compatible with
distributed infrastructures, supported by one or more data centers, following today’s fault
tolerance and performance standards. In particular, we assume each platform consists of a
set of nodes in an asynchronous distributed network where transactions are replicated on
the distributed persistent transparent datastore of each node. In this chapter and due to
the unique features of blockchains such as transparency, provenance, and fault tolerance,
the datastore is implemented using a blockchain.

A crowdsourcing environment processes internal, i.e., submitted to a single platform,
and cross-platform, i.e., submitted to more than one platform, tasks. Processing a task
(either internal or cross-platform) requires agreement from the nodes of the involved
platforms. To establish agreement among the nodes, we introduce local and cross-platform
consensus protocols. In addition, we enable all platforms checking the satisfaction of
constraints by establishing consensus among every node of all platforms. To do so, a global
consensus protocol is introduced.

3.3.3 Security model

We consider that any participant in a crowdsourcing environment may act as a covert
adversary 30 that aims at inferring anything that can be inferred from the execution
sequence and that is able to deviate from the protocol if no other participant detects it.
Adversarial participants may additionally collude.

The privacy definition that we adopt requires that no participant obtains or infers any
information about a crowdsourcing process beyond what is strictly needed for accomplishing

30. Yonatan Aumann and Yehuda Lindell, « Security against covert adversaries: Efficient protocols for
realistic adversaries », in: Proc. of TCC’07, Springer, 2007, pp. 137–156.
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its local crowdsourcing processes and for the distributed enforcement of constraints. We
formalize below this requirement by defining the set of secrets and by using the well-known
simulatability model often used by secure multi-party computation algorithms.

Consider a crowdsourcing process π between worker w, platform p, and requester
r for solving task t. The information generated by the execution of π consists at least
of a starting event BEGIN, an ending event END, and the relationship between the three
participants (w, p, and r) with the task t. We denote it by the 6-tuple (BEGIN, END, w, p, r, t).
The {BEGIN, END} events are abstract representations of the information that π is starting
or ending. They may be given, e.g., by the exchange of messages between the participants
to π, and may come with additional concrete information (e.g., timestamps, IP address).
Our privacy definition focuses on workers, requesters, and tasks and requires the secrecy
of the corresponding parts of this tuple from the participants that are not involved in π.
However, since a given task t may be submitted to several platforms and then be accessed
by several workers, the platforms and workers not involved in π but that receive t still
need to learn that t has been completed (e.g., to manage their local copy of the task). We
capture this subtlety through a varying set of disclosures, denoted δπ, plugged into a unified
simulation-based privacy definition. Our definition does not leak any information about
the worker and the requester involved in π when it is not needed by π. It tolerates the
disclosure of the {BEGIN, END} events and of the platform p to all participants, whatever
their involvement in π. This allows platforms to share information for enforcing global
regulations (e.g., check that all participants satisfy the related constraints before executing
π), and to collaborate for managing correctly the cross-platforms tasks. Note that for
simplicity we will use the same notation δ for disclosures concerning sets of crowdsourcing
processes as well.

We specify the set of disclosures as follows:

— Secrecy against the participants that are not involved in π and that have not
received task t from requester r: they must not learn anything about the worker,
the task, and the requester involved in π:

δπ¬R¬I = (BEGIN, END, p)

— Secrecy against the platforms and workers that have received the task t from r

but that are not involved in π: they must be aware that t has been performed
(e.g., for not contributing to t) but must not know that it has been performed by
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worker w:
δπR¬I = (BEGIN, END, p, r, t)

— Secrecy against participants that are directly involved in π (and have thus received
task t): the information about the execution of π disclosed to w, p, and r is complete
simply because they run π 31:

δπRI = (BEGIN, END, w, p, r, t)

We are now ready to state the privacy definition.

Definition 12. Let Π be a set of crowdsourcing processes executed by σ an instance of
SEPAR over a set of participants. We say that σ is δΠ-private if, for all π ∈ Π, for all
computationally-bounded adversaries A, the sets of disclosures (δπ¬R¬I , δπR¬I , δπRI), arbitrary
background knowledge χ ∈ {0, 1}∗, the distribution representing the adversarial knowledge
over the input dataset in the real setting is computationally indistinguishable from the
distribution representing the adversarial knowledge in an ideal setting in which a trusted
third party cp executes the crowdsourcing process Π of σ:

REALσ,A(χ,δπi )(W ,P ,R, T ) c≡ IDEALcp,A(χ,δπi )(W ,P ,R, T )

where i ∈ {¬R¬I, R¬I, RI}, and REAL denotes the adversarial knowledge in the real
setting and IDEAL its counterpart in the ideal setting.

3.3.4 Problem

We address the problem of designing the SEPAR system in charge of allowing the
execution of crowdsourcing processes (1) while guaranteeing together the correctness of the
constraints defined by external institutions and the privacy of participants against covert
adversaries, (2) over distributed crowdsourcing platforms that communicate through the
local, cross-platforms, and global consensuses.

31. There exist cases where the platform acts as a proxy between a worker and a requester such that one
side has no information on the other side. Our privacy definition does not require that, but is compatible
with more stringent secrecy.
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3.4 Expressing global regulations

3.4.1 Expressing constraints

Syntax. We define a constraint c as being essentially (1) a triple (w, p, r) that associates
a worker w, a platform p, and a requester r, and (2) a threshold θ (an integer) that defines
the upper bound of c 32. Intuitively, a constraint ((w, p, r), θ) states that there must not be
more than θ actions between the worker w, the platform p, and the requester r (see below
for the detailed semantics). We also allow two wildcards to be written in any position of a
triple: ∗ and ∀. First, the ∗ wildcard allows to ignore one or more elements of a triple 33.
For example (∗, p, r) means that the constraint applies to the couple (p, r). A triple may
contain up to three ∗ wildcards. An element of a triple that is not a ∗ wildcard is called
a specified participant of the constraint. Second, the ∀ wildcard factorizes the writing of
triples because it allows to express a constraint that must hold for all participants in the
same group of participants 34. For example, (∀, p, r) represents the following set of triples:
{(w, p, r)}, ∀w ∈ W . We denote C the complete set of constraints.
Semantics. We give now a precise definition of the semantics of our constraints by
illustrating how they translate to SQL constraints. Let assume that there exists a table
of actions A that records all actions performed between any triple of worker, platform,
requester. The attributes of A are WORKER, PLATFORM, REQUESTER. For simplicity, we consider
a constraint c without any wildcard, i.e., c← ((w, p, r), θ). The semantics of c is the same
as the following SQL query :

ALTER TABLE A ADD CONSTRAINT c CHECK (

NOT EXISTS (

SELECT * FROM A

WHERE WORKER=w AND PLATFORM=p AND REQUESTER=r

GROUP BY WORKER, PLATFORM, REQUESTER

HAVING COUNT(*) ≥ θ

) );

32. Extending constraints with, e.g., labels for defining categories of actions (e.g., working time) or
validity periods (e.g., "one week", "one month"), is straightforward.
33. Intuitively, the ∗ wildcard means "whatever".
34. Intuitively, the ∀ wildcard means "for each".
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The presence of a ∗ wildcard in the triple simply leads to removing the corresponding
attributes in the WHERE and GROUP BY clauses. The presence of a ∀ wildcard leads to
expanding it to the set containing all the elements that it represents (e.g., all workers if
the ∀ wildcard is at the first position in the triple) and to generate the cartesian product
between the resulting set and the elements at the two other positions of the triple (that
may be ∀ wildcards as well). Finally, the semantics of a set of constraints is the conjunction
of the constraints contained in the set.

Example. the weekly FLSA limit on the total work hours per worker can easily be
expressed as cFLSA ← ((∀, ∗, ∗), 40).

3.4.2 Expressing requests for certificates

Syntax and Semantics. Certificates allow a participant called prover (e.g., worker) to
prove to an external entity called verifier (e.g., social security agency) that a minimal
number of hours have been spent on crowdsourcing platforms (e.g., for applying to insurance
coverage). Requests for certificates (e.g., from social security agencies) are expressed using
the same syntax as the constraints with the following two differences. First, the θ threshold
does not represent an upper bound on actions that cannot be exceeded, but a lower
bound on actions that have to be proved. And second, there must always be at least one
specified participant in a request for certificates, i.e., typically the prover. This syntax
allows verifiers to follow minimal disclosure principles by requesting from the prover
exactly the information needed about the crowdsourcing processes performed. There is
no need to request the identities of the participants with whom the prover collaborated.
Additionally, it is trivial to connect multiple requests for certificates through conjunctions
and disjunctions if needed.

Examples. A social security institution can request each worker w applying for insurance
coverage to prove that she worked in total more than 5 hours: r1 ← ((w, ∗, ∗), 5) is both
necessary and sufficient. Similarly, the request r2 ← ((∗, p, ∗), 1000) allows a tax institution
to ask for each platform p applying for a tax refund to prove that the total work hours of
all its workers is at least 1000 hours.
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3.5 Enforcing global regulations

In this section, we develop our conception of constraints and certificates, how they are
built and how to use them, and we prove the correctness and the privacy guarantees of
our construction.

3.5.1 Implementing a token-based system

In this section we show how constraints and certificates, which are expressed in
Section 3.4, can be enforced and produced respectively. Inspired by e-cash systems, we
enforce constraints and produce certificates by managing two budgets per participant
while preserving both the privacy of participants and the correctness of budgets. Our
proposal makes use of a centralized authority, called the registration authority (RA for
short). RA registers the participants to the crowdsourcing environment, sends them
the required cryptographic material, receives the set of constraints, and manages the
budgets. The required cryptographic material includes a pair of public/private asymmetric
keys (e.g., RSA) and a pair of public/private asymmetric group keys 35 for which the
registration authority is the group manager, while the set of constraints may be expressed
by the regulators through a dedicated interface. We instantiate the budgets based on
labeled, single-use, privacy-preserving tokens and use a persistent transparent datastore to
guarantee their correct and validated spending by participants. The persistent datastore is
implemented using a blockchains. To process crowdsourcing tasks, our token-based system
is defined by five functions: GENERATE for initializing the budgets and refilling them, SPEND
for spending portions of the budgets, PROVE for providing certificates to a third party,
CHECK for checking whether a given spending is allowed or not, and ALERT for reporting
dubious spending.

The GENERATE function

The registration authority uses the GENERATE function to initialize the budgets, i.e.,
constraint and certificate tokens of all participants (i.e., workers, platforms, requesters)
and refill them periodically 36 according to the set of constraints C to enforce.

35. Camenisch and Groth, op. cit.
36. The refreshment rates of budgets is easily computed from the validity periods of constraints (see

Section 3.4).
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Constraint tokens. For each constraint c ← ((w, p, r), θ), the registration authority
generates θ tokens and sends a copy of each token to each specified participant of c. A
token consists of a public and a private component. The public component is a pair made
of a number used only once (referred to as a nonce below) generated by the registration
authority and a signature of the nonce produced by the registration authority 37. The
public component will be used later (upon completion of the corresponding task) by other
platforms to check the validity of tokens. The private component is an index allowing the
participants involved in a crowdsourcing process to select the correct set of tokens given the
other specified participants involved in the process. We implement this private component
as a list containing the public keys of the specified participants (in the corresponding
constraint) 38. Let tk† be a constraint token, tk†pub be its public component, tk†priv be its
private component, N be a nonce and pubs the list of public keys. The constraint token is
thus the couple (tk†pub, tk

†
priv) where tk†pub = (N,Sign(keypriv,RA, (N))) and tk†priv = pubs.

Certificate tokens. Certificate tokens are generated initially by the registration authority
for all participants. For each crowdsourcing process, a single certificate token is linked to a
fully specified triplet of participants (w, p, r). The number of certificate tokens produced
is decided initially, but their quantity is not as easy to decide as for constraint tokens
since it is not capped by a θ threshold. For simplicity, we assume that there is at least one
constraint in the system, and the smallest threshold for all constraints is θmin. Then, θmin
is a sufficient upper bound of the number of crowdsourcing processes in which any given
triplet of participants is involved. It is therefore enough to produce θmin× |W|× |P| × |R|
certificate tokens. In practice, the number of tokens produced can be drastically reduced in
a straightforward manner by letting participants declare to RA the subset of participants
they may work with (e.g., selecting a subset of platforms, or domains of interest).

As stated above, a certificate token always relates to a fully specified triplet (w, p, r)
and to its owner o (i.e., one of the participants in the triplet). Similar to a constraint token,
it consists of a public and a private component. The public component consists of a nonce
as well as the signature of the nonce produced by the registration authority. The private
component, on the other hand, is a triplet in which each element certifies (i.e., signs) the

37. Extending tokens with labels and/or timestamps for supporting the validity periods of constraints is
straightforward.
38. The use of a public key generated by the registration authority is important here because (1) it

can be shared among participants without disclosing their identities, i.e., it is a pseudonym, (2) the
corresponding private key can be used by participants for mutual authentication in order to guarantee the
correctness of the index and consequently of the choice of tokens.
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association between the owner o and another specified participant. More formally, let tk∗

be a certificate token, tk∗pub be its public part, tk∗priv be its private part, N be a nonce, o
be the identity of the participant owner of the token, and (w, p, r) be the related triplet.
The certificate token is thus the pair (tk∗pub, tk∗priv) where tk∗pub = (N,Sign(keypriv,RA,
(N))) and tk∗priv = (Sign(keypriv,RA, (N, o, w)), Sign(keypriv,RA, (N, o, p)), Sign(keypriv,RA,
(N, o, r))).

The SPEND function

Requesters create and send their tasks to a platform and the platform submits the tasks
in either its own datastore (for local tasks) or all involved platforms (for cross-platform
tasks). Once the task is published, the workers can indicate their intent to perform the
task by sending a contribution intent to their platforms. If a contribution is still needed for
the task, the SPEND function is performed as follow. First, for a given constraint c ∈ C, the
platform requests the public component of a constraint token corresponding to c from the
initiator (one of the specified participants in constraint c). For certificates, the platform
is the initiator. The platform includes the task, an identifier for the contribution (e.g., a
nonce generated by the platform), and a signature of the identifier concatenated to the
task in its request message. Therefore, workers and requesters will be able to prove that
they were asked for tokens, even if the platform fails. The initiator then chooses a token
to spend and sends it to the platform. Once the platform receives the required token, it
sends the public component of the constraint token to all the specified participants. For
certificates, the platform sends the public part of the certificate tokens to all participants
of the process. The platform also requires them to send back two signatures: (1) the group
signature of the token (which will be later verified by all platforms, together with the token,
when it is shared with all platforms), and (2) the group signature of the pair consisting of
a token and a task. Note that the second signature, while not revealing the task by itself,
can be used by participants to verify that tokens are used on the task they are intended
to be used on. Again, this demand is associated with the task and the identifier of the
contribution, and is signed by the platform.

Finally, for each task, a transaction consisting of all spent constraint tokens from each
specified participant (all spent certificate tokens from every participant in the case of certifi-
cates) is committed to the datastore of all platforms. For each token, the transaction includes
first, the public component of each token, second, the group signature of the public compo-
nent of each token (i.e., for a constraint token tk†: GroupSign(keypriv,part, Group, tk†pub)),

105



Partie , Chapter 3 – SEPAR: a privacy-preserving approach to regulate crowdsourcing

and third, the group signature of the public part of each token together with the associated
task t (i.e., for a constraint token tk†: GroupSign(keypriv,part, Group, (t, tk†pub))).

The PROVE function

The PROVE function is used by participants to provide certificates to a third party. The
use of certificate tokens is relatively straightforward. During the crowdsourcing processes,
participants store the private components of certificate tokens which will be used later
to deliver certificates on demand. A participant indeed initiates the PROVE function by
sending the related subpart(s) of the private component of the corresponding tokens to
the verifier. As an example, for a ((w, ∗, ∗), 5) request for certificates, the worker w sends
the subparts containing w from the private parts of all 5 certificate tokens. The verifier,
first, checks the signature of the registration authority to verify that the participant was
involved in the task, and then, checks the nonce stored in the datastore to ensure that the
token has been shared and validated by all platforms.

The CHECK and ALERT functions

The CHECK and ALERT functions are used to detect and report either the malicious
behavior of participants resulting in an invalid consumption of tokens or the failure of
a platform. The complete set of verifications protects against (1) the forgery of tokens
(verification of the signatures), (2) the replay of tokens (verification of the absence of
double-spending), (3) the relay of tokens (verification of the absence of usurpation), and
(4) the illegitimate invalidation of tokens (timeout against malicious platform failures).
The first two verifications are straightforward and performed during the global consensus.
We explain the last two verifications.

Usurpation. When a token is appended to the datastore of all platforms, anyone (whether
involved in the corresponding crowdsourcing process or not) can CHECK its nonce. If a
participant detects a nonce that was received from the registration authority but not
spent 39, she ALERTs the registration authority. The registration authority will reveal the
corresponding participant in the group signature (e.g., the worker’s group signature if the
alert comes from a worker), and checks whether it has been signed by the same participant
that sent the token. Similarly, if a participant detects that a token has not been spent

39. For example, a platform p can collude with a worker w1 to spend a token dedicated to a (w2, p, ∗)
constraints.
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on the right task, she ALERTs the registration authority. After an alert, the registration
authority has to act either against the target participant of the alert (true positive) or
against the participant originating the alert (false positive). The possible actions (e.g., ban
the participant) depend on the context.

Platform failure. If a platform fails after it requested tokens or signatures and does
not recover (e.g., tokens are not appended to the datastore), the tokens revealed to the
platform are lost: they cannot be used in any other crowdsourcing process because they
are not as protective as intended (i.e., the platform knows the association between them
and the corresponding participants), and they are not spent either. In that case, workers
or requesters send an ALERT to the registration authority including (1) the identifier of
the platform, (2) the identifier of the task, and (3) all the requests received from the
platform. The registration authority then checks whether the number of requests sent by
the platform for the given task matches the corresponding number of messages committed
in the datastore. If there are more requests, the registration authority sets a timeout
(e.g., to let unfinished transactions end or the platform recover from a failure). When the
timeout is over, the registration authority can act against the platform.

3.5.2 Task processing sequence

In summary, five main phases exist during the processing of a crowdsourcing task: (1)
initialization, (2) publication, (3) assertion, (4) verification, and (5) execution.
Initialization. The registration authority provides all parties with their keys and tokens.
Publication. Requesters create and send their tasks to platforms. If a requester wants
to publish its task on more that one platform (i.e., a cross-platform task), the involved
platforms collaborate with each other to create a common instance of the task. The involved
platforms then publish the tasks on their datastores through submission transactions and
inform their workers in their preferred manner for accessing tasks.
Assertion. After a worker has retrieved a task, the worker sends a contribution intent
message to the platform without revealing the actual contribution. The platform then
updates the number of required contributions for the task and publishes the contribution
intent in its datastore through a claim transaction. For cross-platform tasks, the platform
informs other involved platforms about the received contribution intent, so that all involved
platforms agree with the number (and order) of the received contribution intents (i.e.,
claim transactions). If the desired number of contribution for the task has been achieved,
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the process is aborted. Note that while the requester does not choose the workers, it is
possible to enforce a selection with a priori criteria, passed through the platform. Another
straight-forward enhancement would be to add a communication step, by forwarding the
contribution intent, together with the worker’s identity to the requester, and letting her
approve it or not. This communication, however, requires the disclosure of the worker’s
identity to requesters even before a contribution is accepted.
Verification. Once the contribution intent has been accepted by the platform(s), the
platform asks the corresponding requester and worker to send the required tokens and
signatures, through the SPEND function, developed in Section 3.5.1. Upon receiving all
tokens and signatures, the platform shares them with all platforms and the tokens and
their signatures are published to the datastores through verification transactions. From this
point, anyone can check the validity of requirements with the CHECK function (and ALERT
if required), as developed in Section 3.5.1.
Execution. Once all parties have checked the validity of the task, its tokens and group
signatures, the actual contribution can be given to the requester and reward to the worker
through the platform.

A sequence chart of this protocol is provided in Figure 3.2.

3.5.3 Privacy analysis

We show below in the suite of Theorem 9, Lemma 1, Lemma 2, and Theorem 10 that the
global execution of SEPAR satisfies the δΠ-private model against covert adversaries. First,
Theorem 9 restricts the adversarial behavior to inferences (i.e., similar to a honest-but-
curious adversary) and shows that the execution of SEPAR satisfies δΠ-privacy. Second, we
extend the possible behaviors to malicious behaviors aiming at jeopardizing the enforcement
of constraints and of requests for certificates, and show that they are systematically
detected by SEPAR (Lemma 1 focuses on constraints and Lemma 2 on certificates). This
prevents covert adversaries to perform malicious actions, limiting them to inferences. Since
Theorem 9 shows that SEPAR is δΠ-private against adversaries restricted to inferences,
and Lemma 1 and Lemma 2 show that malicious behaviors are prevented, it follows that
SEPAR is δΠ-private against covert adversaries (Theorem 10).

Theorem 9. (Privacy (inferences)) For all sets of crowdsourcing processes Π executed over
participants W, P, and R by an instance of SEPAR σ, then it holds that σ is δΠ-private
against covert adversaries restricted to inferences.
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Figure 3.2 – Sequence chart (references to specified participants include all participants for
certificate tokens)

(sketch). First, we focus on the content of tokens and show that it is harmless. For each
crowdsourcing process π, the information contained within the tokens exchanged and
stored in the public datastore is made of (1) the public parts tkpub of the tokens involved
(i.e., a nonce and a signature) and (2) of the group signatures of the participants to π. The
nonce is generated by the registration authority independently from π, thus do not leak any
information about π 40. Since the group signatures are generated by a semantically-secure
group signature scheme, they do not leak anything to the real adversary (computationally
bounded) beyond the groups of the signers, which is also available to the ideal adversary.

Second, we concentrate on the information disclosed along the execution sequence of
crowdsourcing processes. We consider below each disclosure set δπi in turn and show that
the computational indistinguishability requirement between the ideal setting and the real
setting (where the instance of SEPAR σ executes Π) is satisfied in all cases.

40. Including a generation timestamp into the public part of tokens, for supporting the validity periods
of constraints, would not leak information about π beyond its probable execution timeframe, which is
already captured by the BEGIN and END events allowed to leak in the δΠ-confidentiality model. Indeed,
the timestamps would be generated by the registration authority independently from π.
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Disclosure set δπ¬R¬I . The δπ¬R¬I disclosure set contains the information allowed to be
disclosed to the participants that are not involved in a crowdsourcing process π ∈ Π and
that have not received the related task (i.e., (BEGIN, END, p)). First, we focus on the subset
of such participants that are requesters or workers. In the ideal settings, these participants
learn nothing beyond the information contained in δπ¬R¬I . In the real setting, when π is
executed by σ, these participants are not involved in any consensus. They are only able to
observe the state of the datastore. The latter is updated exactly once for π, when π ends,
for storing the tokens spent: only the ending event (END) is disclosed, which is already
contained within δπ¬R¬I . Second, we focus on the platforms. In the ideal setting, they are
given δπ¬R¬I . In the real setting, they participate to the global consensus and are able to
observe the state of the datastore. Consequently, they learn p from the global consensus
(i.e., the platform that initiates the global consensus) and the ending event END 41. Both
are already contained within δπ¬R¬I .

Disclosure set δπR¬I . The δπR¬I disclosure set contains the information allowed to be
disclosed to the workers and platforms that have received the task t from r but that are
not involved in the crowdsourcing process π ∈ Π (i.e., (BEGIN, END, p, r, t)). First, we focus
on the subset of participants that are workers. In the ideal settings, they learn nothing
beyond the information contained in δπR¬I . In the real setting, we see from the global
execution sequence of SEPAR that (1) they are not involved in any consensus, (2) but are
able to observe the state of the datastore, (3) have received the task t, and (4) may receive
an abort from their platform if they contribute to t while t has already been solved. From
(2) and (4), they are able to learn the ending events of crowdsourcing processes, from (3)
they learn t, and from (1) they do not learn any other information. As a result, they learn
(END, t), which is contained in δπR¬I . Second, we focus on the subset of participants that are
platforms. In the ideal settings, they learn nothing beyond the information contained in
δπR¬I . In the real setting, (1) they receive the tasks from the requesters, (2) they participate
to the cross-platform consensuses and to the global consensuses in addition to (3) observing
the same information as the workers. From (1) they learn t and r for each process π ∈ Π.
From (2), they learn p, BEGIN, and END because: the cross-platform consensus discloses
the initiating platform and the starting event, and the global consensus discloses the
initiating platform together with the ending event. From (3), they learn the ending event

41. The verifications performed by the worker and the requester involved in π are performed on the
instance of the datastore stored on p. Indeed, the block resulting from the global consensus contains all
the necessary information both for performing the verification and for checking that it results from the
global consensus.

110



3.5. Enforcing global regulations

and the task. As a result, such platforms learn about all π ∈ Π the following information
(BEGIN, END, r, p, t), which is exactly δπR¬I .

Disclosure set δπRI . The computational indistinguishability requirement between the
real setting and the ideal setting is trivially satisfied for the δπRI set of disclosures because
δπRI contains all the information about the execution of the crowdsourcing process π so σ
does not (and cannot) disclose more information.

Lemma 1. (Detection of malicious behaviors (constraints)) A crowdsourcing process π
executed over participants W, P, and R by an instance of SEPAR σ, completes successfully
without rising a legitimate alert if and only if it does not jeopardize any constraint.

(sketch). We have to show first that the constraint tokens allocated to participants can
be spent, and second that participants cannot spend more.

Participants can spend their tokens. In order to prevent participants from spend-
ing their constraint tokens, an attacker has three main possibilities. First, she can try to
acquire tokens belonging to another participant and to spend them (i.e., relay attack).
However, this rises an ALERT with certainty. Indeed, if a token is spent by an illegitimate
participant, it is stored on the datastore and is thus accessible to the legitimate participant
who is able to detect it through the nonce and to rise an ALERT to the registration authority
(including the group signatures stored along the token). Second, the attacker (platform
only) could try to misuse tokens by spending them in a way that was not intended by the
legitimate owner (i.e., relay attack). However, this would be detected by participants as
well because the signature of the task would not be valid. Third, the attacker (platform
only) may abort the process after having received tokens but before performing the global
consensus (i.e., illegitimate invalidation). However, after a timeout, the other involved
participants simply send an ALERT to the registration authority and prove that their tokens
were requested by the platform (signatures of the requests for tokens and signatures), and
therefore that the platform behaves illegitimately.

Participants cannot spend more. First, an attacker may produce additional tokens
(i.e., forge attack). However, the public parts of tokens must contain valid signatures
produced by the registration authority. Second, an attacker may try to spend a token
more than once (i.e., replay attack). However, the nonce of a token that must be spent
must not already be in the datastore. Finally, an attacker may simply omit sending any
token. However, the public parts of tokens are required for the successful completion of
the global consensus.
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Lemma 2. (Detection of malicious behaviors (certificates)) A participant can produce a
certificate about a crowdsourcing process π executed over participants W, P, and R by
an instance of SEPAR σ, if and only if (1) she was involved in π and (2) π completes
successfully.

(sketch). First, certificates about a crowdsourcing process π that completed successfully
can always be produced by the participants involved in π. Indeed, the certificate tokens
are produced by the registration authority and sent to all participants (i.e., the number of
certificate tokens is correct), and only the successful crowdsourcing processes store the
certificate tokens in the datastore. Second, participants cannot spend a certificate token
more than once because the nonce of a token that must be spent must not already be
in the datastore. Third, participants cannot produce any certificate token by themselves
because their public parts must contain valid signatures produced by the registration
authority.

Theorem 10. (Privacy (inferences and malicious behaviors)) For all sets of crowdsourcing
processes Π executed over participants W, P, and R by an instance of SEPAR σ, then it
holds that σ is δΠ-private against covert adversaries.

Proof. Theorem 9 shows that the execution of SEPAR satisfies δΠ-privacy against covert
adversaries restricted to inferences, while Lemma 1 and Lemma 2 shows that malicious
behaviors aiming at jeopardizing the guarantees token-based system are detected and
consequently prevented within SEPAR. As a result it follows directly that the execution
of SEPAR satisfies δΠ-privacy against covert adversaries.

3.6 Coping with distribution

SEPAR is a multi-platform crowdsourcing system where multiple globally distributed
platforms collaborate with each other to process crowdsourcing tasks. To realize such
distributed collaborations and due to the unique features of permissioned blockchains
such as transparency and provenance, which are needed by crowdsourcing applications,
SEPAR is deployed on a permissioned blockchain to implement the persistent datastore.
In this section, we first present the distributed blockchain ledger of SEPAR and then, show
how SEPAR establishes consensus on the order of transactions within and across different
platforms.
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3.6.1 Blockchain ledger

In a blockchain, transactions are recorded in an append-only data structure, called
Blockchain ledger. The blockchain ledger in SEPAR includes all submission, claim, and
verification transactions of all internal as well as cross-platform tasks. To ensure data
consistency, an ordering among transactions in which a platform is involved is needed.
The total order of transactions in the blockchain ledger is captured by chaining the
transactions (blocks) together, i.e. each transaction block includes a sequence number or
the cryptographic hash of the previous transaction block. Since SEPAR supports both
internal and cross-platform tasks and more than one platform are involved in each cross-
platform transaction, similar to other works from Amiri et al. 42 43, the ledger is formed
as a directed acyclic graph (DAG) where the nodes of the graph are transaction blocks
(each block includes a single transaction) and edges enforce the order among transaction
blocks. In addition to submission, claim, and verification transactions, a unique initialization
transaction (block), called the genesis transaction is also included in the ledger.

Fig. 3.3(a) shows a blockchain ledger created in the SEPAR model for a blockchain
infrastructure consisting of four platforms p1, p2, p3, and p4. In this figure, λ is the genesis
block of the blockchain, ti’s are submission transactions, ticj is the j-th claim transaction
of task ti, and tiv is the verification transaction of task ti. In Fig. 3.3(a), t10, t20, t30, and
t40 are internal submission transactions of different platforms. In SEPAR, as can be seen,
the internal transactions of different platforms can be appended to the ledger in parallel.
t10c1, t10c2, ..., and t40c2 are the corresponding claim transactions. As shown, t10 requires
3 contributions (thus 3 claim transactions) whereas each of t20, t30, and t40 needs two
contributions. t10v, t20v, t30v, and t40v are also the verification transactions. t11,21 is a cross-
platform submission among platforms p1 and p2. Similarly, t31,41 is a cross-platform submission
among platforms p3 and p4. Here, t11,21 needs a single contribution and t31,41 requires two
contributions. Note that the claim transactions of a cross-platform task might be initiated
by different platforms and as mentioned earlier, the order of these claim transactions is
important (to recognize the n first claims). Finally, t22,32,42 is a cross-platform task among
platforms p2, p3, and p4 that is processed in parallel to the internal task t12 of platform p1.

The introduced blockchain ledger includes all transactions of internal as well as cross-
platform tasks initiated by all platforms. However, due to the data privacy requirement,

42. Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi, « CAPER: a cross-application
permissioned blockchain », in: Proc. of the VLDB Endow. 12.11 (2019), pp. 1385–1398.
43. Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi, « SharPer: Sharding Permissioned

Blockchains Over Network Clusters », in: arXiv preprint arXiv:1910.00765 (2019).
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Figure 3.3 – (a): The ledger of a system consisting of four platforms, (b), (c), (d), and (e):
The views of the blockchain from the four different platforms

each platform must access only a subset of these transactions, i.e., the transactions in which
the platform is involved. As a result and for the sake of performance, in SEPAR, the entire
blockchain ledger is not maintained by any platform and each platform only maintains
its own view of the blockchain ledger including (1) all submission and claim transactions
of its internal tasks, (2) all submission and claim transactions of the cross-platform tasks
that the platform is involved in them, and (3) verification transactions of all tasks. Note
that verification transactions are replicated on every platform to enable all platforms to
check the satisfaction of constraints. The blockchain ledger is indeed the union of all these
physical views.

Fig. 3.3(b)-(e) show the views of the blockchain ledger for platforms p1, p2, p3, and
p4 respectively. As can be seen, each platform pi maintains only submission and claim
transactions of all internal tasks as well as cross-platform tasks that pi is involved in
them and verification transactions of all tasks. For example and as shown in Fig. 3.3(b),
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platform p1 maintains all transactions of its two internal tasks t10 and t12. These are either
submission transactions, i.e., t10 and t12, or claim transactions, i.e., t10c1, t10c2, t10c3, t12c1,
t12c2, or verification transactions, i.e., t10v, t12v. Platform p1 also maintains cross-platform
transactions that p1 is involved in, i.e., t11,21, t11,21c1, and t11,21v. Finally, p1 maintains the
verification transactions of all other tasks within the system, i.e. t20v, t30v, t40v, t31,41v, and
t22,32,42v. Note that, since there is no data dependency between the verification transactions
of the tasks that a platform is not involved in and the transactions of the tasks that a
platform is involved in, the verification transactions might be appended to the ledgers in
different orders, e.g., t20v (of platform p2) and t40v (of platform p4) are appended to the
ledger of platforms p1 and p3 in two different orders.

3.6.2 Consensus in SEPAR

In SEPAR, each platform consists of a (disjoint) set of nodes (i.e., replicas) where
the platform replicates its own view of the blockchain ledger on those nodes to achieve
fault tolerance. Nodes follow either crash or Byzantine failure model. In the crash failure
model, nodes operate at arbitrary speed, may fail by stopping, and may restart, however,
in the Byzantine failure model, faulty nodes may exhibit arbitrary, potentially malicious,
behavior. Nodes of the same or different platforms need to establish consensus on a unique
order in which entries are appended to the blockchain ledger. To establish consensus among
the nodes, asynchronous fault-tolerant protocols have been used. Crash fault-tolerant
protocols guarantee safety in an asynchronous network using 2f+1 nodes to overcome
the simultaneous failure of any f nodes while in Byzantine fault-tolerant protocols, 3f+1
nodes are usually needed to provide the safety property in the presence of f malicious
nodes.

Completion of a crowdsourcing task, as discussed earlier, requires a single submission, one
or more claim, and a verification transaction. For an internal task of a platform, submission and
claim transactions are replicated only on the nodes of the platform, hence, local consensus
among nodes of the platform on the order of the transaction is needed. For a cross-platform
task, on the other hand, submission and claim transactions are replicated on every node of
all (and only) involved platforms. As a result, cross-platform consensus among the nodes
of all involved platforms is needed. Finally, verification transactions will be appended to
the blockchain of all platforms, therefore, all nodes of every platform participate in a
global consensus protocol. In this section, we show how local, cross-platform, and global
consensus are established in the presence of crash-only or Byzantine nodes.
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Local consensus

Processing a submission or a claim transaction of an internal task requires local consensus
where nodes of a single platform, independent of other platforms, establish agreement on
the order of the transaction. The local consensus protocol in SEPAR is pluggable and
depending on the failure model of nodes, i.e., crash-only or Byzantine, a platform uses a
crash fault-tolerant protocol, e.g., Paxos 44, or a Byzantine fault-tolerant protocol, e.g.,
PBFT 45.

The local consensus protocol is initiated by a pre-elected node of the platform, called
the primary. When the primary p receives a valid internal transaction (either submission
or claim), it initiates a local consensus algorithm by multicasting a message, e.g., accept
message in Paxos or pre-prepare message in PBFT, including the requested transaction to
other nodes of the platform. To provide a total order among transactions, the primary
also assigns a sequence number to the request. Instead of a sequence number, the primary
can also include the cryptographic hash of the previous transaction block in the message.
If the transaction is a claim transaction, the primary includes the cryptographic hash of
the corresponding submission transaction and any previously received claim transactions for
that particular task (if any). The nodes of the platform then establish agreement on a total
order of transactions using the utilized consensus protocol and append the transaction to
the blockchain ledger.

Cross-platform consensus

Submission and claim transactions of a cross-platform task must be appended to the
blockchains of all involved platforms in the same order to ensure data consistency. To process
such transactions, therefore, consensus among the nodes of all (and only) involved platforms
is needed. SEPAR addresses the lack of trust in the collaboration between platforms, by
using an asynchronous Byzantine fault-tolerant protocol to establish consensus on the order
of cross-platform transactions. Since the number of nodes of each platform depends on the
utilized consensus protocol within the platform (i.e. crash fault-tolerant protocols require
2f + 1 whereas Byzantine fault-tolerant protocols require 3f + 1 nodes), the required
number of matching replies from each platform, i.e., the quorum size, to ensure the safety
of protocol depends on the failure model of nodes of the platform. We define local-majority

44. Leslie Lamport et al., « Paxos made simple », in: ACM Sigact News 32.4 (2001), pp. 18–25.
45. Miguel Castro and Barbara Liskov, « Practical Byzantine fault tolerance and proactive recovery »,

in: Proc. of TOCS’02 20.4 (2002), pp. 398–461.
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Algorithm 1 Cross-Platform Consensus
1: init():
2: r := node_id
3: pi := the platform that initiates the consensus
4: π(p) := the primary node of cluster p
5: P := the set of involved platforms
6: π(P ) := the primary nodes of clusters in P
7: upon receiving valid transaction m and (r == π(pi))
8: multicast 〈〈PREPARE,hi,d〉σπ(pi) ,m〉 to π(P )
9: multicast 〈〈PROPOSE, hi, d〉σπ(pi) ,m〉 to all nodes of pi

10: upon receiving valid µ= 〈〈PREPARE,hi,d〉σπ(pi) ,m〉 and r==π(pj)
11: if r is not involved in any uncommitted request m′ where m and m′ intersect in

some other platform pk
12: multicast 〈〈PROPOSE, hj , d, r〉σπ(pj) , µ〉 to all nodes of pj
13: multicast 〈ACCEPT, hi, hj , d, r〉σπ(pj) to P
14: upon receiving valid 〈〈PROPOSE, hi, d〉σπ(pi) ,m〉 and r ∈ pi
15: multicast 〈ACCEPT, hi, d, r〉σr to P
16: upon receiving valid 〈〈PROPOSE, hj , d, r〉σπ(pj) , µ〉 and r ∈ pj
17: multicast 〈ACCEPT, hi, hj , d, r〉σr to P
18: upon receiving valid matching 〈ACCEPT, hi, hj , d, r〉σr from local-majority of every platform

pj in P
19: multicast 〈COMMIT, hi, hj , ..., hk, d, r〉σr to P
20: upon receiving valid 〈COMMIT, hi, hj , ..., hk, d, r〉σr from local-majority of every platform in P
21: append the transaction block to the ledger

as the required number of matching replies from the nodes of a platform. For a platform
with crash-only nodes, local-majority is f + 1 (from the total 2f + 1 nodes), whereas for a
platform with Byzantine nodes, local-majority is 2f + 1 (from the total 3f + 1 nodes).

SEPAR processes cross-platform transactions in four phases: prepare, propose, accept, and
commit. Upon receiving a cross-platform (submission or claim) transaction, the (pre-elected)
primary node of the (recipient) platform initiates the consensus protocol by multicasting a
prepare message to the primary node of all involved platforms. Each primary node then
assigns a sequence number to the request and multicasts a propose message to every node
of its platform. During the accept and commit phases, all nodes of every involved platform
communicate with each other to reach agreement on the order of the cross-platform
transaction.

Algorithm 1 presents the normal case of cross-platform consensus in SEPAR. Although
not explicitly mentioned, every sent and received message is logged by nodes. As shown in
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lines 1-6 of the algorithm, pi is the platform that initiates the transaction, π(p) represents
the primary node of platform p, P is the set of involved platforms in the transaction where
π(P ) represents their current primary nodes (one node per platform).

Once the primary π(pi) of the initiator platform pi receives a valid submission or claim
transaction, as presented in lines 7-8, the primary node assigns sequence number hi to the
request and multicasts a signed prepare message 〈〈PREPARE, hi, d〉σπ(pi)

,m〉 to the primary
nodes of all involved platforms where m is the received message (either submission or claim)
and d = D(m) is the digest of m. The sequence number hi represents the correct order of
the transaction block in the initiator platform pi. If the transaction is a claim transaction,
the primary includes the cryptographic hash of the corresponding submission transaction
as well. As shown in line 9, the primary node also multicasts a signed propose message
〈〈PROPOSE, hi, d〉σπ(pi)

,m〉 to the nodes of its platform where d = D(m) is the digest of m.

As indicated in lines 10-12, once the primary node of some platform pj receives a
prepare message µ from the primary node of the initiator platform, it first validates the
message. If node r is currently waiting for a commit message of some cross-platform
transaction m′ where the involved platforms of the two requests m and m′ intersect,
the node does not process the new transaction m before the earlier transaction m′ gets
committed. This ensures that requests are committed in the same order on different
platforms. Otherwise, it assigns sequence number hj to the message and multicasts a
signed propose message 〈〈PROPOSE, hj, d〉σπ(pj) , µ〉 to the nodes of its platform. The primary
node π(pj) also piggybacks the prepare message µ to its propose message to enable the
node to access the request and validate the propose message. The primary node π(pj), as
presented in line 13, multicasts a signed accept message 〈ACCEPT, hi, hj, d〉σπ(pj) to every
node of all involved platforms.

Upon receiving a propose message Once a node r of an involved platform pj receives a
propose message, as indicated in lines 8-10, it validates the signature and message digest
(if the node belongs to the initiator platform (i = j), it also checks hi to be valid (within
a certain range)) since a malicious primary might multicast a request with an invalid
sequence number. In addition, if the node is currently involved in an uncommitted cross-
platform request m′ where the involved platforms of two requests m and m′ overlap in
some other platform, the node does not process the new request m before the earlier
request m′ is processed. This is needed to ensure requests are committed in the same order
on different platforms. The node then multicasts a signed accept message including the
corresponding sequence number hj (that represents the order of m in platform pj), and
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the digest d = D(m) to every node of all involved platforms.

As presented in lines 18-19, each node waits for valid matching accept messages from
a local majority (i.e., either f + 1 or 2f + 1 depending on the failure model) of every
involved platform with hi and d that matches the propose message which was sent by
primary π(pi). We define the predicate accepted-localpj(m,hi, hj, r) to be true if and only
if node r has received the request m, a propose for m with sequence number hi from the
initiator platform pi and accept messages from a local majority of an involved platform pj

that match the propose message. The predicate accepted(m,h, r) where h = [hi, hj, ..., hk]
is then defined to be true on node r if and only if accepted-localpj is true for every involved
platform pj in cross-platform request m. The order of sequence numbers in the predicate
is an ascending order determined by their platform ids. The propose and accept phases of
the algorithm basically guarantee that non-faulty nodes agree on a total order for the
transactions. When accepted(m,h, v, r) becomes true, node r multicasts a signed commit
message 〈COMMIT, h, d, r〉σr to all nodes of every involved platforms.

Finally, as shown in lines 20-21, node r waits for valid matching commit messages from
a local majority of every involved platform that matches its commit message. The predicate
committed-localpj (m,h, r) is defined to be true on node r if and only if accepted(m,h, r) is
true and node r has accepted valid matching commit messages from a local majority of
platform pj that match the propose message for cross-platform transaction m. The predicate
committed(m,h, v, r) is then defined to be true on node r if and only if committed-localpj
is true for every involved platform pj in cross-platform transaction m. The committed
predicate indeed shows that at least f + 1 nodes of each involved platform have multicast
valid commit messages. When the committed predicate becomes true, the node considers the
transaction as committed. If all transactions with lower sequence numbers than hj have
already been committed, the node appends a transaction block including the transaction
as well as the corresponding commit message to its copy of the ledger.

In addition to the normal case operation, SEPAR has to deal with two other scenarios.
First, when the primary node fails. Second, when nodes have not received a quorum
of matching accept messages from the local-majority of every involved platform due to
conflicting accept messages. Indeed, the primary nodes of different platforms might multicast
their propose messages in parallel, hence, different overlapping platforms might receive
the messages in different order. Furthermore, nodes might assign inconsistent sequence
numbers since they have not necessarily received the latest propose message from the
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Algorithm 2 Global Consensus
1: init():
2: r := node_id
3: pi := the platform that initiates the consensus
4: π(p) := the primary node of cluster p

5: upon receiving valid transaction m and (r == π(pi))
6: multicast 〈〈PREPARE,hi,d〉σπ(pi) ,m〉 to the primary node of every cluster
7: multicast 〈〈PROPOSE, hi, d〉σπ(pi) ,m〉 to all nodes of pi

8: upon receiving valid µ= 〈〈PREPARE,hi,d〉σπ(pi) ,m〉 and r==π(pj)
9: if r is not involved in any uncommitted request m′ where m and m′ intersect in

some other platform pk
10: multicast 〈〈PROPOSE, hj , d, r〉σπ(pj) , µ〉 to all nodes of pj
11: multicast 〈ACCEPT, hi, hj , d, r〉σπ(pj) to all nodes

12: upon receiving valid 〈〈PROPOSE, hi, d〉σπ(pi) ,m〉 and r ∈ pi
13: multicast 〈ACCEPT, hi, d, r〉σr to all nodes

14: upon receiving valid 〈〈PROPOSE, hj , d, r〉σπ(pj) , µ〉 and r ∈ pj
15: multicast 〈ACCEPT, hi, hj , d, r〉σr to all nodes

16: upon receiving valid matching 〈ACCEPT, hi, hj , d, r〉σr from local-majority of two-thirds of
platforms

17: multicast 〈COMMIT, hi, hj , ..., hk, d, r〉σr to all nodes

18: upon receiving valid 〈COMMIT, hi, hj , ..., hk, d, r〉σr from local-majority of two-thirds of plat-
forms

19: append the transaction block to the ledger

primary of their own platform. We use a technique similar to SharPer 46 to address these
two situations.

Global consensus

The verification transactions include group signatures and all tokens that are consumed
by different participants to perform a particular task. In SEPAR and in order to enable
all platforms to check constraints, verification transactions are appended to the blockchains
of all platforms. To do so, a Byzantine fault-tolerant protocol is run among all nodes of

46. Amiri, Agrawal, and El Abbadi, op. cit.
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every platform where the protocol needs agreement from the local majority of the nodes
of two-thirds of the platforms. The local majority, similar to cross-platform consensus, is
defined based on the utilized consensus protocol within each platform. However, there are
two main differences between cross-platform consensus and global consensus. First, in cross-
platform consensus only the involved platforms participate, whereas, in global consensus,
every platform verifies transactions by checking the group signatures and consumed tokens.
Second, cross-platform consensus requires agreement from every platform, whereas, in
global consensus, agreement from only two-thirds of platforms is needed. In fact, in cross-
platform consensus, there might be some dependency between cross-platform transactions
and internal ones. Thus, to ensure data consistency, every involved platform must agree
on the order of the cross-platform transaction. However, in global consensus, the goal is to
verify the correctness of the transaction and as soon as two-thirds of platforms verify that
(assuming at most one-third of platforms might behave maliciously), the transaction can
be appended to the blockchain ledger.

Algorithm 2 shows the normal case of global consensus in SEPAR where a Byzantine
protocol is run among all nodes of every platform (in contrast to cross-platform consensus
where only the involved platforms participate). The protocol, similar to cross-platform
consensus, process a transaction in four phases of prepare (lines 5-6), propose (lines 7-10),
accept (lines 11-15), and commit (lines 16-19), however, each node waits for matching accept
and commit messages from the local majority of only two-thirds of the platforms (as shown
in lines 16 and 18).

Correctness arguments

A consensus protocol has to satisfy four main properties 47: (1) agreement: every correct
node must agree on the same value (Lemma 3), (2) Validity (integrity): if a correct node
commits a value, then the value must have been proposed by some correct node (Lemma 4),
(3) Consistency (total order): all correct nodes commit the same value in the same order
(Lemma 5), and (4) termination: eventually every node commits some value (Lemma 6).
The first three properties are known as safety and the termination property is known as
liveness. In an asynchronous system, where nodes can fail, as shown by Fischer et al. 48,
consensus has no solution that is both safe and live. Therefore, SEPAR guarantees safety

47. Christian Cachin, Rachid Guerraoui, and Luís Rodrigues, Introduction to reliable and secure
distributed programming, Springer Science & Business Media, 2011.
48. Michael J Fischer, Nancy A Lynch, and Michael S Paterson, « Impossibility of distributed consensus

with one faulty process », in: Journal of the ACM (JACM) 32.2 (1985), pp. 374–382.
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in an asynchronous network. However, similar to most fault-tolerant protocols, it deals
with termination (liveness) only during periods of synchrony using timers.

Lemma 3. (Agreement) If node r commits request m with sequence number h, no other
correct node commits request m′ (m 6= m′) with the same sequence number h.

The propose and accept phases of both cross-platform and global consensus protocols guar-
antee that correct nodes agree on a total order of requests. Indeed, if the accepted(m,h, r)
predicate where h = [hi, hj, ..., hk] is true, then accepted(m′, h, q) is false for any non-faulty
node q (including r = q) and any m′ such that m 6= m′. This is true because (m,h, r)
implies that accepted-localpj(m,hi, hj, r) is true for each involved platform pj and a local
majority (f + 1 crash-only or 2f + 1 Byzantine node) of platform pj have sent accept (or
propose) messages for request m with sequence number hj . As a result, for accepted(m′, h, q)
to be true, at least one non-faulty node needs to have sent two conflicting accept messages
with the same sequence number but different message digest. This condition guarantees
that first, a malicious primary cannot violate the safety and second, at most one of the
concurrent conflicting transactions, i.e., transactions that overlap in at least one platform,
can collect the required number of messages from each overlapping platform. Across
different views, the view-change routine of SEPAR guarantees that non-faulty nodes of
some platform pj agree on the sequence number of requests that are committed-local in
different views at different nodes.

Lemma 4. (Validity) If a correct node r commits m, then m must have been proposed by
some correct node π.

In the presence of crash-only nodes, validity is ensured since crash-only nodes do
not send fictitious messages. In the presence of Byzantine nodes, however, validity is
guaranteed mainly based on standard cryptographic assumptions about collision-resistant
hashes, encryption, and signatures which the adversary cannot subvert them. Since the
request as well as all messages are signed and either the request or its digest is included in
each message (to prevent changes and alterations to any part of the message), and in each
step 2f + 1 matching messages (from each Byzantine platform) are required, if a request
is committed, the same request must have been proposed earlier.

Lemma 5. (Consistency) Let Pµ denote the set of involved platforms for a request µ. For
any two committed requests m and m′ and any two nodes r1 and r2 such that r1 ∈ pi,
r2 ∈ pj, and {pi, pj} ∈ Pm ∩ Pm′, if m is committed before m′ in r1, then m is committed
before m′ in r2.
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Figure 3.4 – Varying the Number of Tokens

As mentioned in both cross-platform and global consensuses, once a node r1 of some
platform pi receives a propose message for some transaction m, if the node is involved in
some other uncommitted transaction m′ where m and m′ overlap, node r1 does not send an
accept message for transaction m before m′ gets committed. In this way, since committing
request m requires accept messages from a local majority of every (involved) platform, m
cannot be committed until m′ is committed. As a result the order of committing messages
is the same in all involved platforms.

Lemma 6. (Termination) A request m issued by a correct client eventually completes.

In an asynchronous system, where nodes can fail, as shown by Fischer et al. 49, consensus
has no solution that is both safe and live. Therefore, SEPAR, similar to most fault-tolerant
protocols, deals with termination (liveness) only during periods of synchrony using timers.
To do so, three scenarios need to be addressed. If the primary is non-faulty and accept
messages are non-conflicting, following the normal case operation of the protocol, request
m completes. If the primary is non-faulty, but accept messages are conflicting, the request
will be re-initiated. Finally, view change routines handle primary failures.

3.7 Experimental evaluations

In this section, we conduct several experiments to evaluate SEPAR. We have imple-
mented a blockchain-based multi-platform crowdsourcing system. For the purpose of this

49. Ibid.
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evaluation, and as explained earlier, we do not focus on the description of tasks and
contributions (both are modeled as arbitrary bitstrings). In addition, certificate tokens,
as explained earlier, are very similar to ((w, p, r), θ) tokens except for the private part
that has no significant impact on the performance and the number of interaction phases
which is even less than constraint tokens. Therefore, we only focus on constraint tokens in
the experiments. To implement group signatures, as discussed in Section 3.2, we use the
protocol proposed by Camenisch et al. 50. The experiments were conducted on the Amazon
EC2 platform. Each VM is c4.2xlarge instance with 8 vCPUs and 15GB RAM, Intel Xeon
E5-2666 v3 processor clocked at 3.50 GHz. When reporting throughput measurements, we
use an increasing number of tasks submitted by requesters running on a single VM, until
the end-to-end throughput is saturated, and state the throughput and latency just below
saturation.

3.7.1 Token generation

In the first set of experiments, we measure the performance of token generation in
SEPAR for different types of constraints. We consider constraints with a single specified
participant (e.g., ((w, ∗, ∗), θ)), two specified participants (e.g., ((∗, p, r), θ)), and three
specified participants (e.g., ((w, p, r), θ)). As shown in Figure 3.4(a), SEPAR is able to
generate tokens in linear time. SEPAR generates each token in 0.7ms, hence, generating 1
million tokens in 12 minutes. This is an acceptable amount of time since token generation
is executed periodically, e.g., every week or every month. Note that since tokens of different
constraints can be generated in parallel, SEPAR can easily parallelize the token generation
routine in order to improve the throughput. As can be seen in Figure 3.4(b), the type of
constraints, i.e., the number of specified participants, also does not affect the performance
and the token generation throughput and latency is constant in terms of the number
of participant. However, it should be noted that a more complicated constraint, i.e., a
constraint with more specified participants, requires more tokens to be generated.

3.7.2 Impact of cross-platform tasks

In the second set of experiments, we measure the performance of SEPAR for workloads
with different percentages of cross-platform tasks. We consider four different workloads with
(1) no cross-platform tasks, (2) 20% cross-platform tasks, (3) 80% cross-platform tasks, and

50. Camenisch and Groth, op. cit.
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Figure 3.5 – Varying Number of Cross-Platform Tasks

(4) 100% cross-platform tasks. We also assume that two (randomly chosen) platforms are
involved in each cross-platform tasks and completion of each task requires a contribution
coming from a randomly chosen worker. The system includes four platforms and each task
has to satisfy two randomly chosen constraints. We consider two different networks with
crash-only and Byzantine nodes. When all nodes follow crash-only nodes, as presented in
Figure 3.5(a), SEPAR is able to process 8600 tasks with 400 ms latency before the end-to-
end throughput is saturated (the penultimate point), if all tasks are local. Note that even
when all tasks are local, the verification transaction of each task still needs global consensus
among all platforms. Increasing the percentage of cross-platform tasks to 20%, reduces
the overall throughput to 5800 (67%) with 400 ms latency since processing cross-platform
tasks requires cross-platform consensus. By increasing the percentage of cross-platform
tasks to 80% and then 100%, the throughput of SEPAR will reduce to 1900 and 700 with
the same (400 ms) latency. This is expected because when most tasks are cross-platform
ones, more nodes are involved in processing a task and more messages are exchanged. In
addition, the possibility of parallel processing of tasks will be significantly reduced. In
the presence of Byzantine nodes, as shown in Figure 3.5(b), SEPAR demonstrates the
similar behavior as the previous case (crash-only nodes). When all tasks are local, SEPAR
processes 7100 tasks with 450 ms latency. Increasing the percentage of cross-platform
tasks to 20% and 80% will reduce the throughput to 4900 and 1700 tasks with the same
(450 ms) latency respectively. Finally, when all tasks are cross-platform, SEPAR is able to
process 700 tasks with 450 ms latency.
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3.7.3 Varying the types of constraints

In the next set of experiments, we measure the performance of SEPAR with different
types of constraints. We consider four different scenarios where each task has to satisfy
(1) no constraints (i.e., basic scenario), (2) a one-specified constraint, (3) a two-specified
constraint, and (4) a three-specified constraint. The system consists of four platforms and
the workload includes 90% intra- and 10% cross-platform tasks (the typical settings in
partitioned databases 51 52) where two (randomly chosen) platforms are involved in each
cross-platform tasks. As before, completion of each task requires a single contribution. To
measure the overhead of group signatures and tokens, we compare the results with the basic
scenario where there is no constraints in the system, thus, there is no need to exchange and
validate tokens and signatures. When nodes follow the crash failure model and the system
has no constraints, as can be seen in Figure 3.6(a), SEPAR is able to process 7000 tasks
with 390 ms latency before the end-to-end throughput is saturated (the penultimate point).
Adding constraints to the tasks results in more phases of communication between different
participants to exchange tokens and signatures, however, SEPAR is still able to process 6200
tasks (the penultimate point) with 450 ms latency (only 11% and 15% overhead in terms of
the throughput and latency respectively). The number of participants in each constraint, on
the other hand, does not significantly affect the performance of SEPAR. This is expected,

51. Alexander Thomson, Thaddeus Diamond, et al., « Calvin: fast distributed transactions for partitioned
database systems », in: Proc. of MOD’12, ACM, 2012, pp. 1–12.
52. Rebecca Taft, Essam Mansour, et al., « E-store: Fine-grained elastic partitioning for distributed

transaction processing systems », in: Proc. of the VLDB Endow. 8.3 (2014), pp. 245–256.
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because more participants results in only increasing the number of (parallel) tokens and
signature exchanges and the consensus protocols and other communication phases are
not affected. Similarly, in the presence of Byzantine nodes and as shown in Figure 3.6(b),
SEPAR is able to process 6140 tasks with 409 ms latency with no constraints and 5331
tasks (13% overhead) with 467 ms (14% overhead) latency with one-specified constraint.
As before, the number of participants does not significantly affect the performance.

It should be noted that with an increased number of constraint, SEPAR still demon-
strates similar performance as shown in this experiment (increasing the number of partici-
pants in each constraints). Indeed, adding more constraints results in adding more tokens
and possibly more participants and signatures, however, it does not affect the consensus
protocols and other communication phases.

3.7.4 Varying the number of platforms

In the last set of experiments, we measure the scalability of SEPAR in crowdsourcing
systems with different number of platforms. We measure the performance of SEPAR in
networks including 1 to 5 platforms for both crash-only and Byzantine nodes (assuming
f = 1 in each platform). Each task has to satisfy on average two randomly chosen
constraints, two (randomly chosen) platforms are involved in each cross-platform tasks,
completion of each task requires a single contribution, and the workloads include 90%
intra- and 10% cross-platform tasks. Note that in the scenario with a single platform, all
tasks are intra-platform. As shown in Figure 3.7(a), in the presence of crash-only nodes,
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the performance of the system improves by adding more platforms, e.g., with five platform,
SEPAR processes 6600 tasks with 400 ms latency whereas in a single platform setting,
SEPAR processes 3300 task with the same latency. While adding more platforms improves
the performance of SEPAR, the relation between the increased number of platforms and
the improved throughput is non-linear (the number of platforms has been increased 5
times while the throughput doubled). This is expected because adding more platforms
while increasing the possibility of parallel processing of local tasks, makes the global
consensus algorithm (which is needed for every single task) more expensive. In the presence
of Byzantine nodes, SEPAR demonstrates similar behavior, e.g., processes 5500 tasks with
470 ms latency with 5 platforms.

3.8 Conclusion

In this chapter, we introduce SEPAR, a multi-platform crowdsourcing system that
enforces global regulations in a privacy-preserving and transparent manner. SEPAR consists
of two main components. First, a token-based system that enables official institutions to
express legal regulations in simple and unambiguous terms, guarantees the satisfaction of
global constraints by construction, and allows participants to prove to external entities
their involvement in crowdsourcing tasks, all in a privacy-preserving manner. Second,
a permissioned blockchain that provides transparency using distributed ledgers shared
across multiple platforms and enables collaboration among platforms through a suite
of distributed consensus protocols. To the best of our knowledge, SEPAR is the first to
address the problem of enforcing global regulation over multi-crowdsourcing platforms.
We prove the privacy requirements of the token-based system as well as the correctness of
the consensus protocols and conduct an extensive experimental evaluation to measure the
performance and scalability of SEPAR.
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Chapter 4

TOWARDS EXTENDING PIR TO MULTIPLE

DOWNLOADS

4.1 Introduction

Private Information Retrieval, or PIR for short, is a family of techniques that allows
clients to download an item from a list stored on a server, without the server knowing which
item is downloaded. In the context of crowdsourcing, PIR allows workers to download
tasks without the platform knowing what they are interested in, as developed in Chapter 2.
However, the security model of PIR, introduced by Chor et al. 1, only states security
properties for individual queries, while applications often use it for multiple queries, such
as episodes of series 2.

This focus on individual queries can be seen as a limitation when it comes to security,
and the claims of PIR can be misleading when using multiple queries, making clients,
platforms, or even developers think PIR provides a better security than it actually does.
However, to the best of our knowledge, no related works ensure that multiple uses of PIR
preserve the security properties of a single query. In order to illustrate the reasons for
which considering this omission is an issue, we propose the three following examples:

Episodes of series Let consider a case in which items to be downloaded are closely
interconnected, such as episodes of series, in a media provider context (e.g. Netflix),
providing PIR to protect its clients 3.

Let consider three series: one of 12 episodes, one of 14 episodes, and one of 15 episodes
and a client who downloads 14 items. Even without having access to a large study on the
behaviour of clients, it is easy to see that all episodes of all series do not hold the same

1. Chor, Goldreich, et al., op. cit.
2. Gupta, Crooks, et al., op. cit.
3. Ibid.
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probability of having been downloaded As people usually watch series untill the end, the
client probably downloaded the 14 episodes series. Even if it was not the case, watching
the last episode of a series while missing one episode is very unusual, so the 15th episode
of the longest series was probably not included in the downloads.

Statistical knowledge on population In a similar way, considering a movie database,
we could also consider external knowledge on the population. Let say for instance that
people watching a lot of movies mostly look at old movies. Then, it is immediate to see
that knowing the number of downloads performed by a client leaks statistical information
on the downloaded content.

Crowdsourcing In crowdsourcing, workers perform tasks that are provided by re-
questers, using a platform as an intermediary. In the context of topic-aware tasks and
workers (meaning that workers have some degree of skill in some topics and that tasks
have some requirements on these skills, similar to the model used in Chapter 2), workers
may want to download tasks without the platform knowing what they are interested in,
and the platform can implement a PIR protocol to provide this guarantee.

In such a situation, knowing the requirements of tasks (e.g. a task that can be given only
to workers who are good in software development, no matter their skills in cooking) and
how many tasks a worker downloads (e.g. a worker downloads 50 tasks), some information
can be deduced on which tasks are downloaded, although this is the information PIR is
supposed to protect. For instance, if we know that the requirements of the 50 downloaded
tasks intersect in at least one point, this knowledge may exclude some possibilities (e.g.
if a worker downloads 50 tasks, and 50 tasks intersect only with high requirements in
software development skills, we can deduce that the worker is a good software developer).

The main issue that is highlighted in the above examples is that queries are rarely
completely independent from each other. As a consequence, the PIR definition ensuring
that each individual query is protected cannot be extended to multiple queries without any
change. Therefore it seems necessary to extend this security of PIR to take into account
sets of queries. As a privacy requirement, we propose here to extend the original and
informal formulation of Chor et al. 4 to match multiple queries and desired items in the
following: our privacy requirement is that each set of queries is distributed independently

4. Chor, Goldreich, et al., op. cit.
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of the set of desired items, so that the server gains no information about the interests of
the user.

Note that the set of queries does not necessarily contain as many items as the set of
desired items (e.g. a query for 2 items has to be indistinguishable from a query for 50
items). Although this informal definition is not suitable for formal proofs of security, we
believe that the diversity of models and assumptions used in PIR (from information theory
to cryptography) makes it hard, if not impossible, to propose a formal unified model. In
order to prove that algorithms respect privacy models, it is assumed that more formal
models will be built according to the specificities of protocols (e.g. assuming non-colluding
parties, or limits on computation power).

Also, note that Chapter 2 takes these limitations into account when PIR techniques
are used to match tasks and workers: the current chapter is an attempt to extend the
scope of the previous work, in order to better understand the limitations of PIR, and the
ways to overcome them.

However, this chapter is a preliminary work and we do not claim our analysis to be
exhaustive, nor that our attack is the only one possible. We mostly aim at emphasizing
possible side-channel attacks, and at opening discussions on this important matter: both
experiments and in-depth security analysis are future works to be done. Yet, we believe
that the work provided in this section provides interesting material to consider limitations
of PIR, and build counter-measures that avoid them in future work.

In this chapter, we propose the following contributions:
— A model describing external knowledge on a dataset, along with an attack model

exploiting this knowledge together with naive use of PIR revealing the number of
downloads.

— An attack, following this attack model, that manages to retrieve information
illegitimately on the downloaded items.

— Instantiations of this attack with the three examples presented above.
— Possible counter-measures in order to (1) respect naive instantiations of our informal

privacy requirement for multiple queries, or (2) mitigate the attack if the cost of
privacy on efficiency were to be too heavy.

In Section 4.2, we provide the necessary background on PIR protocols. In Section 4.3,
we develop an attack model, together with an attack, and explain how this model fits our
examples. We propose in Section 4.4 a short review of possible counter-measures that we
envision, either to match the security of PIR techniques with multiple downloads, or at
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least to mitigate our attack. Possible future works are presented in Section 4.5, and we
conclude in Section 4.6.

4.2 Related Work

In this section, we present the two main families of Private Information Retrieval
techniques. A Private Information Retrieval (PIR) protocol 5 is a protocol that makes it
possible for a user to download an item (e.g. a record, a movie, etc.) from a library (an
ordered list of items) from a server or from a set of servers, without the server(s) knowing
which item of the list has been downloaded. As stated by Chor et al. 6: “The privacy
requirement is that each individual query is distributed independently of [the desired item]
and thus the server gains no information about the identity of the desired item.”

A naive approach to this problem is to allow the user to download the whole library,
as the servers would be unable to learn which item the user was interested in. However,
this approach requires a significant overhead in bandwidth. Two main approaches exist
to PIR protocols: computational PIR (cPIR) and Information Theoretical PIR (ITPIR).
Although both families have several variations and implementations, we explain here their
basic requirements and main ideas. It is also noticeable that some approaches propose to
use both, in order to get most of each method 7 8.

4.2.1 Computational PIR

Computational PIR makes use of cryptographic tools to create PIR protocols. As a
result, it also inherits from cryptographic security hypothesis on computation time and
power of attackers.

We present here a simplified version of the protocol proposed by Kushilevitz et al. 9,
as an example. This protocol relies on homomorphic encryption schemes, providing (1)
addition (we denote +h - respectively Σh - the operation that inputs two encrypted values
- respectively any number of them - and outputs the encrypted sum of their clear values)

5. Ibid.
6. Ibid.
7. Gupta, Crooks, et al., op. cit.
8. Casey Devet and Ian Goldberg, « The best of both worlds: Combining information-theoretic and

computational PIR for communication efficiency », in: Proc. of PETS’14, 2014, pp. 63–82.
9. Eyal Kushilevitz and Rafail Ostrovsky, « Replication is not needed: Single database, computationally-

private information retrieval », in: Proc. of FOCS’97, IEEE, 1997, pp. 364–373.

132



4.2. Related Work

and (2) scalar multiplications (we denote ×h the operation that inputs an encrypted value
and a clear value, and outputs the encrypted product of the corresponding clear values of
both inputs). We consider a library L of n binary objects (items). It is assumed that all
items share the same length in bits, denoted l, that each item has a unique identifier, and
that users know the list of ids of the existing items in L. The library is stored as a vector
of l-bit integers: L ∈ ({0, 1}l)n. Now a client wants to retrieve the item of id i. First, she
instanciates a vector of n bits, initializes all bits to 0s, and sets to 1 the bit at position i.
She then encrypts each bit separately, and sends the resulting encrypted vector - denoted
c - to the server. After that, the server computes r = ∑n

h,i=1 c[i]×h Li and sends it back to
the client. Actually, r is a sum of (1) encrypted 0s (corresponding to the encrypted 0s in
c) and (2) an encrypted bit-subsequence of the requested binary object (corresponding to
the encrypted 1 in c), which are undinstinguishable for the server. Third and finally, the
user decrypts r, obtaining the requested item.

Although this protocol diminishes communication costs in most cases compared to
the naive version (sending everything), the computation cost increases a lot (for instance,
servers have to read the whole dataset, and to perform computations on it). For this reason,
cPIR has been mostly disregarded. For example, an analysis provided by Sion et al. 10

argued that the use of cPIR in a single-server context would always be slower than the
naive PIR protocol (according to the evolution of hardware and bandwidth, computation
costs were to exceed benefits from lower requirements in communication). However, a
recent line of work initiated by Aguilar-Melchor et al. 11 disputes these claims by making
use of more efficient cryptographic schemes, thus making cPIR significantly faster.

4.2.2 Information theoretical PIR

Information Theoretical PIR does not assume limitations on the computation time or
power of the attacker. However, other assumptions are used on the behaviours of servers
(e.g. hypothesis on collusions between servers, on the number of servers giving incorrect
answers, etc.). We explain here one of the many existing protocols, introduced by Chor et
al. 12, as an example.

This protocol relies on the XOR operator, which takes as inputs two bits, and outputs

10. Radu Sion and Bogdan Carbunar, « On the computational practicality of private information
retrieval », in: Proc. of NDSS’07, 2007, pp. 2006–06.
11. Aguilar-Melchor, Barrier, et al., op. cit.
12. Chor, Goldreich, et al., op. cit.
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1 if and only if they are different. When used on multiple bits, it outputs 1 if and only if
the number of 1-bits is uneven (which is the same as a bitwise sum). We first assume, just
as for cPIR protocols, that all items share the same length l in bits, that each item has a
unique id between 0 and n− 1, and that users know the list of ids of the existing items
in L. Furthermore, we denote k the number of servers, and assume that not all servers
collude together. If a user requests an item i, she will first build a bitstring of size n. This
bitstring, called eb, is composed of 0 at all positions, except for eb[i] which is equal to 1.
Then, the user generates k − 1 bitstrings of n random bits (called qj, j between 0 and
k − 2). A last bitstring of similar length, is computed, for each bit, as the XOR of the
corresponding bit of all qj and eb. This last vector is qk−1. Note that XORk−1

j=0qj = eb, and
that knowing all but one qj is not sufficient to deduce the real query eb (which explains
the hypothesis on collusions). Each of these qj is sent to a different server. At reception,
the server will compute the matricial product rj = qj × L, and send the result to the user.
Finally, the user only has to compute a XOR of all results to obtain the requested item.

These mechanisms, relying on distribution and information theory, are interesting as
they are faster than computational PIR (for instance XOR computations are very fast)
and avoid hypothesis on the power of the attacker. However, in many real-life applications,
non-collusion assumptions on servers can be hard to reach.

4.3 Attacks

In order to be more concrete about the dangers of naive uses of PIR, we propose here
an attack against it. This attack considers a PIR use that protects neither the identity
of users (their queries are traceable) nor the number of queries. Furthermore, external
knowledge on the stored items is also accessible by the attacker. We first develop the
knowledge of the attacker, and then some possible attacks. Note that neither the attack
model nor the attack itself are meant to reflect exhaustively the possible weaknesses of
PIR: we only attend to illustrate possible dangers.

4.3.1 Model

In order to take into account the examples presented in the introduction, we propose
to model the knowledge of an attacker with two different pieces of information. First,
information on the client: the provider or the attacker knows how many items the client
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downloads. Then, information on the database: this includes relationship between items,
and how frequently they are downloaded.

Information on the client

We here assume that the client uses a PIR protocol respecting the privacy requirement
stated by Chor et al. 13, for a single query, but no more: "The privacy requirement is that
each individual query is distributed independently of [the desired item] and thus the server
gains no information about the identity of the desired item."

However, as the requirement for multiple queries is not respected, we consider that the
attacker has access to the number N of queries of the client.

External knowledge

To model the information on the database, which is independent from the targeted
client, we consider the following notations. Let D denote the database of downloadable
items, |D| its size, and i1. . . in the items it contains, where n = |D|. We also consider an
external knowledge on a population P : for simplicity, P is here instantiated as a database
of past downloads of a representative population. The external knowledge accessible by
attackers on P is instantiated with a count function C, that inputs a set of items and
outputs the number of people who downloaded it. This knowledge is used as statistical
information on the behaviour of clients. From this knowledge, we deduce what we call
relational knowledge denoted KD,P . This function takes as input a set S of items from D,
and its output KD,P (S) is the probability that this set of items is the one that interests a
client who downloaded |S| items. More precise definitions are provided in Definition 13.

Definition 13 (Relational knowledge). Consider a dataset D, composed of items ik, k ∈
1, n, and a population P , composed of individuals who all downloaded a set of items included
in D. We denote C(S) the function that equals the number of users who downloaded
the set of items S ∈ D. The relational knowledge on D regarding P , denoted KD,P , is a
function which takes as input a set S of items of D, and outputs the proportion of users
of P who downloaded exactly S among users who downloaded the same number of items:

KD,P (S) = C(S)∑
S′∈D,|S′|=|S|C(S ′)

13. Ibid.
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Note that, with this definition, the sum of the relational knowledge on all sets of a
given size always equals 1.

With these notations, it is possible to model the information on the database with a
weighted hypergraph. An hypergraph is a generalization of a graph, in which an edge is
defined as the set of vertices that it connects together, instead of a couple of them. In our
context, we consider a weighted hypergraph, meaning that edges also have a weight: they
are weighted sets of vertices. For an edge E, we denote w(E) its weight, and s(E) its set
of vertices. The hypergraph is designed as follows. Each item of the downloadable library
is represented as a vertex. An edge E is a weighted set of vertices, meaning that the set of
all edges is the powerset of vertices. The weight of an edge E is then w(E) = KD,P (s(E)),
the probability that this set of item is downloaded by a client who downloads exactly
|s(E)| items. For simplicity, we consider that an edge of null weight doesn’t belong to the
hypergraph.

An illustration is provided in Figure 4.1, with three items. In this example, we consider
that items are movies, and that movie i3 is the direct following of movie i1, and that both
are comedies. Movie i2 is an horror movie. As a result, movie i3 is never downloaded if i1
is not. Furthermore, the movie i2 is more often downloaded alone than any other movie,
although it is more likely that i1 is downloaded with i3 than with i2.

More formally, we propose the definition 14.

Definition 14 (Hypergraph of knowledge). An hypergraph of knowledge H, related with
a population P and a dataset D is a weighted hypergraph designed as follows:

— There is exactly one vertex for each item in D. Vertex vk corresponds to item ik,
and they will be used equivalently in the following.

— An edge is a weighted set of item. The weight w(E) of an edge E is the relational
knowledge of the set of items s(E) of E: w(E) = KD,P (s(E)). If this value equals
0, the edge is not represented in the hypergraph.

Examples

Although information in this model may be hard to obtain in real life, it seems in
fact quite easy to access at least partial information about it thanks to simple heuristics.
To make it more concrete, we instantiate this definition in the example provided in the
introduction.
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i1
w1 = 0.4

i2
w2 = 0.6

i3
w3 = 0

w1,2 = 0.3 w1,3 = 0.7

w2,3 = 0

w1,2,3 = 1

Figure 4.1 – Representation of an hypergraph of knowledge: crosses are items (vertices);
ellipses and circles are sets of items (edges); w are the relational knowledge about corre-
sponding sets of items: e.g. wa,b,c = KD,P ({ia, ib, ic}); dashed lines represent null probability
of download (KD,P (s(E)) = 0)

Episodes of series In the case of series, vertices would be episodes, and edges are
weighted sets of episodes, from any series. Many edges, of many sizes are likely to have a
non-zero weight, but heuristics seems easy to create, and quite intuitive. For instance, it is
unlikely that an episode of a series is downloaded if previous episodes are not. Therefore,
edges containing such episodes are likely to have a very small weight. Similarly, if all series
have the same number of episodes, downloading a multiple of this number likely means
downloading complete series, leading to heavier weights on corresponding edges than on
other edges of same cardinality.

Statistical knowledge on population For a movie database, each vertex would
be a movie, and edges would be weighted sets of movies. With statistical knowledge, such
as "the more movies someone watches, the more likely it is that these movies are old ones",
it is possible to infer that large edges containing old movies are likely to be heavier that
large edges that do not (and reciprocally for smaller edges).

Crowdsourcing For a crowdsourcing database, vertices would represent tasks, and
edges weighted sets of tasks. In this example, requirements of the tasks will have a huge
impact on the structure of the hypergraph. Indeed, tasks whose requirements do not
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intersect will not be downloaded by a single client, as the client cannot match both
requirements. Therefore, any edge containing tasks with non-intersecting requirements
will weight 0 and not be represented. Weights for other sets of tasks may be estimated
through the provided reward or the similarity between tasks and their requirements. In
other words, the overall structure can be a lot lighter, and the maximum size of an edge is
likely to be rather small (compared to the previous examples).

4.3.2 Attack

With this very rich model, several attacks are possible, depending on what the attacker
wants to access. We propose here a naive attack with our model.

First, we consider an attacker who wants to know whether a set of items (called
target set) has been downloaded or not by a target client. Note that the target client may
download more items than included in the target set. With our model, the attack is quite
simple: it is enough to consider all edges of cardinality equal to the number of downloads
of the target client. Among this set of edges, we can compute the probability of the target
set being downloaded by the target client as the sum of the weights of all edges containing
the target set of items. Note, with this attack, the following cases:

— If the cardinality of the target set is larger than the number of downloads of the
client, the probability that it is downloaded is null.

— If it is the same, the probability is equal to the weight of the edge containing exactly
the set: KD,P (t), for t the target set.

Then, in a very similar way, if the attacker doesn’t know what she is looking for, it is
possible to compute a list of item sets, ordered by their probability of download. To do
so, it is enough to take a size of set as input, and to compute, for all sets of items of this
size, the probability it is downloaded. A sorted list of these probabilities is provided as an
output.

Algorithm 4 sums up both aspects of this attack.

4.4 Counter-measures

We here consider various counter-measures. First, we extend our definition of packing,
already used in Chapter 2. Despite its bandwidth overhead, we believe that it is the closest
one to a direct extension of PIR protocols, in the way that it strictly fulfills our multi-
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Algorithm 4: Attack algorithm
Data:
N : Number of queries of the client
D: Dataset of items
P : Representative population
t: Target set of items
Result:
List: List of all possible downloaded sets of items, ordered from the most probable
to the least probable
Pt: The probability that all items within t have been downloaded

1 Pt = 0
/* Pt is initialized at 0 */

2 List = []
/* List will be filled with possible sets */

3 for all sets Si of items within D, of size N
/* There are

(
|D|
N

)
*/

4 do
5 proba = KD,P (Si)

/* Compute the probability that Si is the downloaded set of items
*/

6 if t ⊂ Si then
7 Pt = Pt + proba

8 List = List+ (Si, proba)
9 Sort List in descending order, according to their second element (probability of

being downloaded)
10 return List, Pt
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query security requirement, without requiring complex architectures (in the number of
involved parties) nor additional properties (such as unlinkability between requests). Then,
we consider other defenses, that rely on additional mechanisms and provide interesting
protections to mitigate the attack studied in Section 4.3. However, these counter-measures
seem to be inadequate as a PIR successor, either because they do not perfectly fit our
additional requirement, or because they require further assumptions that are optional in a
single-request PIR context.

This section presents interesting ways to counter our attack. However, proofs and
experiments of these counter-measures are not provided, and are to be looked at carefully
in future work.

4.4.1 Packing

A first way to protect clients against attackers is to make their behaviour indistin-
guishable from each other. This can be achieved by making all of them download the
same number of items, even if they do not need that many. This method has already been
proposed in the context of crowdsourcing in Chapter 2, and we propose here to generalize
it.

We assume that there exists a maximum limit on the number of downloads and call h
this limit. This limit may come from a server or economic limitation (e.g. only h downloads
are allowed), from empirical observations (e.g. no edge contains more than h items), or
any other reason. By definition, no client will download more than h items, and therefore,
if all of them download h items (or cannot be distinguished with someone that does), an
attacker will not be able to know how many items their target really intended to download.

To allow this, we propose to use PIR on what we call packing of items instead of
isolated items, in a similar way as Definition 7 in Chapter 2.

Definition 15 (Packing, Bucket). We consider a dataset D of items ik. A packing L is
a PIR library that fulfills the following conditions. In order to avoir any confusion with
items, we call buckets the objects in such a PIR library (that can be downloaded through
PIR).

1. Security condition Each client downloads the same number of buckets. This
number is set to 1.
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2. PIR requirement Each bucket has the same size in bits (padding is allowed):

∀b1, b2 ∈ L, ||b1|| = ||b2||

This condition comes from the use of PIR.

3. Availability condition For all sets of items S for which KD,P (S) 6= 0, there has
to be at least one bucket containing all items in S.

This method requires to create buckets for all possible sets of items which can be
required (e.g. for all edges of the hypergraph). However, it is noticeable that a single bucket
can be used for various sets of items (e.g. a bucket containing items a and b can be used
for requests (a), (b) or (a, b)). It is noteworthy that all buckets do not necessarily contain h
items or more: for instance, if a single item is very heavy, but those who download it never
download any other items, it is possible to make it a single-item bucket (with padding if
necessary).

This protocol does not assume strong hypothesis, and still allows for PIR privacy
properties. However, this does not come without any cost. Indeed, if h is too large (in the
worst case, the size of the database itself), clients will endure huge download overcosts, up
to the whole database. Optimizations and heuristics are possible, as proposed in Chapter 2,
or even combined with recursive versions of PIR 14, but are context specific and thus out
of our focus. Therefore, this protocol is likely not suitable if h is large, but may work well
when the largest number of donwload is small, for instance in a topic-aware crowdsourcing
context.

4.4.2 Mitigating the attack

In this section, we provide other possible counter-measures that do not perfectly
match the PIR requirement, either because they lack guarantees, or because they add
requirements. We see these counter-measures as interesting tracks to protect against the
attack presented in Section 4.3, in cases where packing is not possible. Although this attack
is only one among many others, we believe protecting against it is a first step towards
complete and sound protections.

14. Julien P Stern, « A new and efficient all-or-nothing disclosure of secrets protocol », in: Proc. of
ASIACRYPT’98, Springer, 1998, pp. 357–371.
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Non-colluding parties

In order to exploit the attack developed in Section 4.3, an ill-intended party must
gather two things: first, the knowledge graph, and then, the number of downloads of the
client. A first naive counter-measure consists in splitting this knowledge, to ensure no-one
has access to both pieces of information.

In order to do so, we propose a distributed protocol inspired from the one used by
Gupta et al. 15, which uses independent parties to achieve efficiency without revealing data.
We here assume the following hypothesis:

— The provider does not require to know the amount of items accessed by the client
(e.g it provides an access through monthly subscription)

— There exist at least two third parties that:
— do not collude with the provider
— do not collude with each other
— do not have access to any external information on the library (this includes, for

instance, the knowledge that the database contains series, which may be a hard
criteria to reach if the client is Netflix)

Although these hypothesis are hard to achieve in real-life scenarios, we believe that
it is interesting to see how they can articulate to provide security guarantees. The idea
behind this is to consider three servers, or sets of servers. The first one, which belongs to
the provider, will grant authorization keys (e.g. a group signature key) to the client. The
second one, a non-colluding third party, will receive the encrypted items of the library from
the provider. This server is not supposed to know anything about the items. It will then
provide access to these encrypted items through a PIR protocol to authorized clients. The
third server will receive the decryption keys corresponding to encrypted items provided to
the second server. Similarly, it does not know anything about the items, and will provide
access to these keys to authorized clients, through PIR. Finally, after having received the
authorization from the provider, and downloaded both the encrypted item she is interested
in and the corresponding key from non-colluding servers, the client will simply decrypt
the item to access it. The overall approach is summed up in Algorithm 5.

Thanks to this architecture, only the company’s server knows what data are hosted,
but it has no access to the number of downloads. The other two servers have access to the
number of downloads, but not to the knowledge hypergraph.

15. Gupta, Crooks, et al., op. cit.
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Algorithm 5: Non-collusion based counter-measure
Data:
L: The library of items (items are denoted ik, k ∈ [1, N ])
P : The data provider, which decides who can access items in L
TP1 and TP2: Two third parties, which do not collude with each other, nor with P .
They are able to perform PIR protocols
c: The client, willing to retrieve privately a list of items l
Result:
c privately retrieves all items from l
/* Initialization: */

1 Provider: for all items ik in the library L do
2 Generates a key keyk
3 Encrypts ik with keyk, resulting in Enc(keyk, ik)

/* The choice of the encryption scheme is free */
4 Sends Enc(keyk, ik) to TP1
5 Sends keyk to TP2
6 Sends an authorization access to c

/* Again, implementation details are free */

/* Retrieving: */
7 Client: for all items ik in l do
8 Gets authorization access from P to TP1 and TP2
9 Sends a PIR request to TP1 to retrieve Enc(keyk, ik)

10 Sends a PIR request to TP2 to retrieve keyk
11 Decrypts Enc(keyk, ik) with keyk
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Preserving Privacy

Another solution to preserve the security requirement on PIR for multiple requests is
to enforce privacy on clients themselves. Indeed, if clients are not identified nor traced
and all downloads are made through a PIR protocol, sets of items cannot be singled out.
As a consequence, the security requirement for multiple requests holds. Although privacy
may not be suitable in all contexts (e.g. it can be in contradiction with the interests of the
client or of the provider if each accessed content has to be paid for), we believe that a
wide range of applications may still benefit from this family of protections.

Yet, we draw attention on the fact that identification and traceability can be achieved
through multiple ways (e.g. IP address, browser fingerprinting 16, or even side-channel
attacks based on dates of download can be enough to trace a behaviour). If even one of
them is possible and clients can be singled out, this protection is not sufficient to ensure
our multi-query security requirement.

In the case of identification through client accounts, interesting examples include the
following:

— Trusted Third Party: Relying on a trusted third party to aggregate requests and
forwarding it back to clients is a possible solution to ensure privacy. However, it also
relies on trusting an external party, which may not always be an easy assumption
to reach.

— Cryptographic Techniques: Cryptographic techniques, such as group signatures 17,
can be used to ensure the validity of the request without revealing the identity of
the client. When combined with tools like TOR 18, these tools may provide a very
interesting defense to protect the identity of the client.

Perturbation of the number of downloads

Adding noise to the number of downloads, alone or in addition to other techniques,
may seem an intuitive solution to our issue, in order to make it hard or impossible to
deduce the real value. For instance, by downloading items in which she is not interested
in, the client may be able to make some attacks far less efficient. This is all the more

16. Pierre Laperdrix, Nataliia Bielova, et al., « Browser fingerprinting: a survey », in: ACM Transactions
on the Web (TWEB) 14.2 (2020), pp. 1–33.
17. David Chaum and Eugène Van Heyst, « Group signatures », in: Proc. of EUROCRYPT’91, Springer,

1991, pp. 257–265.
18. The Onion Rooter is a software providing anonymity of once IP address by forwarding queries

through multiple servers randomly https://www.torproject.org/

144

https://www.torproject.org/


4.5. Future work

interesting that this decision does not depend on anyone but the client, meaning she can
protect herself even without external support. This idea is to be distinguished from the
previous one as it does not require to prevent any traceability of the downloads.

However, this protection has very strong limits. First, it increases the load on bandwidth
(as more requests than necessary are made), and therefore deteriorates efficiency. Then,
adversaries may be able to adapt their model to fit this behaviour (e.g. by creating a derived
hypergraph knowledge graph that takes the probability of "lying" into account). Last but
not least, it is very hard to quantify precisely the quality of protection that is reached.
Indeed, usual definitions of anonymization do not apply in this context: k-anonymity 19

seems hard to apply, and most mechanisms for differential privacy 20 can lead to negative
noise, while the number of downloads can only be an over-approximation of the number of
desired items (it cannot be an under-approximation, as this would mean that the client
does not download all desired items). The resulting guarantees would be close to those
developed in Aegis 21, but this model assumes both that the client (or her proxy) has
access to the hypergraph of knowledge, and that the attacker will either not know the
strategy of the client, or not adapt to it.

4.5 Future work

As stated in the introduction, we do not intend here to present a fully finished work on
attacks against PIR using external knowledge and the number of downloads, but to expose
this issue that has not been, to the best of our knowledge, dealt with in existing works.

We presented in Section 4.4 possible tracks that we envision as counter-measures
against these attacks, but a lot of work still has to be made. In particular, we performed
no exhaustive experiment nor detailed theoretical analysis on these counter-measures.

Other future works may also include studying the impact of these attacks on other

19. Sweeney, op. cit.
20. Dwork, op. cit.
21. Victor Zakhary, Ishani Gupta, et al., « Multifaceted Privacy: How to Express Your Online Persona

without Revealing Your Sensitive Attributes », in: arXiv preprint arXiv:1905.09945 (2019).
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protocols following similar objectives as PIR, such as ORAM 22 23 24 25. The impact of other
side-channel attacks based on other external information is also to be considered. For
instance, does using the date of download reveal information about the download itself?
If so, does PIR pretend to protect against it or not, and what kind of counter-measures
could be used? Exploring blind decoding 26, which allows a client to get the cleartext
from a message encrypted with the server’s key, without learning the server’s secret key
nor revealing the cleartext to the server may also be interesting to design new defense
solutions.

Another track to explore is to improve our knowledge model: the current knowledge
model is interesting, as it allows us to encompass all our use-cases, but it is very heavy
(possibly exponential in the number of items), and may be hard to obtain. Lighter models,
or efficient methods and heuristics to obtain these models may help designing better and
more suitable counter-measures against side-channel attacks.

4.6 Conclusion

In this chapter, we exposed some issues that appear when PIR is used to retrieve
multiple items. We presented an attack model, along with an algorithm to directly access
some private information that is protected when PIR is used naively to download multiple
items. To prevent this leakage, some counter-measures are envisioned, which may adapt
to various settings and hypothesis. Although none of these solutions are perfect nor fully
tested, we hope that they provide interesting research tracks in the future, to extend a
safe use of PIR protocols.

22. Oded Goldreich and Rafail Ostrovsky, « Software protection and simulation on oblivious RAMs »,
in: Journal of the ACM (JACM) 43.3 (1996), pp. 431–473.
23. Martin Maas, Eric Love, et al., « Phantom: Practical oblivious computation in a secure processor »,

in: Proc. of SIGSAC CCS’13, 2013, pp. 311–324.
24. Travis Mayberry, Erik-Oliver Blass, and Agnes Hui Chan, « Efficient Private File Retrieval by

Combining ORAM and PIR. », in: Proc. of NDSS’14, 2014.
25. Emil Stefanov, Elaine Shi, and Dawn Song, « Towards practical oblivious RAM », in: arXiv preprint

arXiv:1106.3652 (2011).
26. Kouichi Sakurai and Yoshinori Yamane, « Blind decoding, blind undeniable signatures, and their

applications to privacy protection », in: Proc. of IH’96, Springer, 1996, pp. 257–264.
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Chapter 5

CONCLUSION AND FUTURE WORK

5.1 Summary of contributions

In this manuscript, we have proposed three main contributions. First, we focused on
the protection of privacy in a single-platform setting, using a wide diversity of techniques.
Anonymization techniques thanks to random noise, combined with additively homomorphic
encryption were used to provide an overview of the distribution of skills among workers.
This privacy-preserving distribution can be used to help requesters design tasks more
suited to the crowd, or to allow the platform advertising its crowd without endangering
the individuals. But we also use this distribution in a second more concrete step: the
assignment of tasks to workers. In order to preserve the privacy level expected, we used
Private Information Retrieval techniques (with some enhancements) to keep the number
of downloads of any given task unknown. Both of these algorithms have been proven
secure and experimentally validated: the quality of the distribution and of the assignment,
although not perfect due to anonymization and approximations, are reasonable, and the
required computation time is also realistically achievable in real-life scenarios.

In the second chapter, the focus was made on regulations in a multi-platform context.
In this setting, we proposed two main tools. First a restriction tool, parametrized by
law-makers, which regulates the number of interactions allowed between participants (e.g.
to prevent workers from working more than 40 hours a week, all platforms included, or to
prevent monopolies by setting a maximum number of tasks on a given platform). Then,
a certification tool, used by participants, allowing them to prove their involvement in
tasks, which can be useful for legal actions, social grants, or various legal statuses. Both of
these tools are used in a way that preserves privacy as much as possible, while providing
transparency by storing traces of all transactions in a public ledger (a permissioned
blockchain). Again, these approaches have been both proved and experimentally validated.

Finally, we proposed in the last chapter a work in progress, which aims at drawing
attention on an issue with PIR to which we were confronted in the first chapter. To the
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best of our knowledge, no related work has documented this issue nor provided solutions
to avoid it. Indeed, PIR guarantees that, for a given library of items, the exact item
downloaded by a user remains unknown by the uploader. However, this guarantee is only
valid for a unique download, and multiple uses of PIR may break the security of the
approach. In this last chapter, we proposed a possible attack that can be achieved when
multiple uses of PIR are made, by an attacker having access to some external knowledge
on the database. Tracks for solutions are also discussed, such as packing queries to avoid
leaking their number, distributing the knowledge among participant, providing anonymity
to clients, or adding noise to the number of queries. Although none of these approaches have
been proved or experimentally validated, we believe that they still provide an interesting
first attempt to advertise and maybe even solve this issue.

5.2 Future work

Following these leads, many continuations of our work are possible, either by improving
our solutions, or by exploring other crowdsourcing issues. To go on with our solutions, it
is still possible, if not necessary, to work on privacy-preserving crowdsourcing platforms:
our solution provides an interesting track for general crowdsourcing (e.g. not focused on
geolocated tasks), but both the quality of our assignment and our computation costs can
certainly be improved, while preserving high-level guarantees. Such improvements may
come from other partitioning methods than the KD-tree, from randomly sampling the
surveyed workers, etc. Other attack models can also be envisioned: honest-but-curious
attackers provide an interesting tool, but it is not guaranteed that the platform will
comply with the rules all the way (which is the reason for this work). Dealing with covert
adversaries 1, that may act maliciously as long as they are not detected, may be a first step
toward fully malicious adversaries. In a regulation context, our proposition is mostly a first
attempt to explore the combination of privacy, transparency and expressiveness of rules to
help law-makers. However, privacy can still possibly be improved and the expressiveness
of our model, while sufficient to deal with many real-life scenarios, is still very limited
for computer science standards: one may want to enforce conjunctions, disjunctions or
negation between constraints, e.g. “workers can spend 40 tokens in Uber or in Lyft, but
not both”, which is currently impossible in our model. Continuations of our work on PIR
are pretty straightforward: our intuitions and proposals have to be tested, or submitted to

1. Aumann and Lindell, op. cit.
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in-depth analysis. As such, we hope that security experts will seize this topic, and help in
providing a secure way to download multiple contents while keeping them unidentified
from the provider.

Other possible future works may also focus on untreated issues in crowdsourcing.
Transparency, accountability and explainability are explicitly described, in the blog of
SIGMOD 2, as one of the intellectual challenges of the “Future of Work”. In particular,
enforcing transparency for all decisions of platforms remains an important matter for
workers, as stated by De Stefano 3. Although mentioned by the same author, portability of
profiles or ratings for crowdsourcing has, to the best of our knowledge, been subject to
little investigation in current Computer Science literature, and comes at the expense of
privacy 4. Finally, although explored a bit by Elbassuoni et al. 5, fairness in assignment
decisions still remains a widely untouched topic, possibly due to the difficulty of designing
an absolute definition of fairness in the first place 6.

2. https://wp.sigmod.org/?p=2931
3. De Stefano, op. cit.
4. Siyuan Han, Zihuan Xu, et al., « Fluid: A blockchain based framework for crowdsourcing », in: Proc.

of SIGMOD’19, 2019, pp. 1921–1924.
5. Shady Elbassuoni, Sihem Amer-Yahia, et al., « Exploring fairness of ranking in online job market-

places », in: 2019.
6. Sorelle A Friedler, Carlos Scheidegger, and Suresh Venkatasubramanian, « On the (im) possibility

of fairness », in: arXiv preprint arXiv:1609.07236 (2016).

149

https://wp.sigmod.org/?p=2931




BIBLIOGRAPHY

Abernathy, James R, Bernard G Greenberg, and Daniel G Horvitz, « Estimates of induced
abortion in urban North Carolina », in: Demography 7.1 (1970), pp. 19–29.

Agrawal, Rakesh et al., « Order-Preserving Encryption for Numeric Data », in: Proc. of
SIGMOD’04, 2004, pp. 563–574.

Aguilar-Melchor, Carlos et al., « XPIR: Private information retrieval for everyone », in:
Proc. of PET’16 2016.2 (2016), pp. 155–174.

Allahbakhsh, Mohammad et al., « Quality control in crowdsourcing systems: Issues and
directions », in: IEEE Internet Computing 17.2 (2013), pp. 76–81.

Allard, Tristan et al., « From Self-Data to Self-Preferences: Towards Preference Elicitation
in Personal Information Management Systems », in: Proc. of PAP’17, (6 pages), 2017.

Amer-Yahia, Sihem and Senjuti Roy, « Toward worker-centric crowdsourcing », in: (2016).
Amiri, Mohammad Javad, Divyakant Agrawal, and Amr El Abbadi, « CAPER: a cross-

application permissioned blockchain », in: Proc. of the VLDB Endow. 12.11 (2019),
pp. 1385–1398.

— « SharPer: Sharding Permissioned Blockchains Over Network Clusters », in: arXiv
preprint arXiv:1910.00765 (2019).

Amiri, Mohammad Javad et al., SEPAR: A Privacy-Preserving Blockchain-based System
for Regulating Multi-Platform Crowdworking Environments, Soon submitted to the
SIGMOD conference (14 pages), 2020, url: https://arxiv.org/abs/2005.01038.

Andrés, Miguel E et al., « Geo-indistinguishability: Differential privacy for location-based
systems », in: Proc. of SIGSAC CCS’13, 2013, pp. 901–914.

Androulaki, Elli et al., « Hyperledger fabric: a distributed operating system for permissioned
blockchains », in: Proc. of EuroSys’18, 2018, pp. 1–15.

Anwar, Mohammad Amir and Mark Graham, « Between a rock and a hard place: Freedom,
flexibility, precarity and vulnerability in the gig economy in Africa », in: Competition
& Change (2019), p. 1024529420914473.

Aumann, Yonatan and Yehuda Lindell, « Security against covert adversaries: Efficient
protocols for realistic adversaries », in: Proc. of TCC’07, Springer, 2007, pp. 137–156.

151

https://arxiv.org/abs/2005.01038


Bentley, Jon Louis, « Multidimensional binary search trees used for associative searching »,
in: Communications of the ACM 18.9 (1975), pp. 509–517.

Berg, Janine et al., Digital labour platforms and the future of work : Towards decent work
in the online world, tech. rep., International Labour Organization, 2018.

Béziaud, Louis, Tristan Allard, and David Gross-Amblard, « Lightweight privacy-preserving
task assignment in skill-aware crowdsourcing », in: Proc. of DEXA’28, 2017, pp. 18–26.

Boldyreva, Alexandra, Nathan Chenette, and Adam O’Neill, « Order-Preserving Encryp-
tion Revisited: Improved Security Analysis and Alternative Solutions », in: Proc. of
CRYPTO’31, 2011, pp. 578–595.

Burger-Helmchen, Thierry and Julien Pénin, « Crowdsourcing: définition, enjeux, typolo-
gie », in: Management & Avenir 1 (2011), pp. 254–269.

Cachin, Christian, Rachid Guerraoui, and Luís Rodrigues, Introduction to reliable and
secure distributed programming, Springer Science & Business Media, 2011.

Camenisch, Jan and Jens Groth, « Group signatures: Better efficiency and new theoretical
aspects », in: Proc. of SCN’04, Springer, 2004, pp. 120–133.

Casilli, Antonio A, En attendant les robots-Enquête sur le travail du clic, Le Seuil, 2019.
Casilli, Antonio et al., « Le Micro-Travail en France. Derrière l’automatisation, de nouvelles

précarités au travail? », in: (2019).
Castro, Miguel and Barbara Liskov, « Practical Byzantine fault tolerance and proactive

recovery », in: Proc. of TOCS’02 20.4 (2002), pp. 398–461.
Cecchetti, Ethan et al., « Solidus: Confidential distributed ledger transactions via PVORM »,

in: Proc. of SIGSAC CCS’17, 2017, pp. 701–717.
Celis, L Elisa et al., « Assignment Techniques for Crowdsourcing Sensitive Tasks », in:

Proc. of CSCW’16, 2016, pp. 836–847.
Chase, JP Morgan, Quorum white paper, 2016.
Chaum, David and Eugène Van Heyst, « Group signatures », in: Proc. of EUROCRYPT’91,

Springer, 1991, pp. 257–265.
Chen, Bee-Chung, Kristen LeFevre, and Raghu Ramakrishnan, « Privacy skyline: pri-

vacy with multidimensional adversarial knowledge », in: Proc. of VLDB’07, VLDB
Endowment, 2007, pp. 770–781.

Chittilappilly, Anand Inasu, Lei Chen, and Sihem Amer-Yahia, « A Survey of General-
Purpose Crowdsourcing Techniques », in: IEEE Transactions on Knowledge and Data
Engineering 28.9 (2016), pp. 2246–2266.

Chor, Benny et al., « Private information retrieval », in: Proc. of FOCS’95, 1995, pp. 41–50.

152



Cohen, Aloni and Kobbi Nissim, « Linear Program Reconstruction in Practice », in: CoRR
(2018), arXiv: 1810.05692.

Cohen, Julie E, « Law for the platform economy », in: UC Davis Law Review, Forthcoming
51 (2017), p. 133.

Cormode, Graham et al., « Differentially private spatial decompositions », in: Proc. of
ICDE’12, 2012, pp. 20–31.

Damgård, Ivan and Mads Jurik, « A generalisation, a simplification and some applications
of paillier’s probabilistic public-key system », in: Proc. of PKC’01, 2001, pp. 119–136.

De Stefano, Valerio, « The rise of the just-in-time workforce: On-demand work, crowdwork,
and labor protection in the gig-economy », in: Comp. Lab. L. & Pol’y J. 37 (2015),
p. 471.

Devet, Casey and Ian Goldberg, « The best of both worlds: Combining information-
theoretic and computational PIR for communication efficiency », in: Proc. of PETS’14,
2014, pp. 63–82.

Dinur, Irit and Kobbi Nissim, « Revealing information while preserving privacy », in: Proc.
of SIGACT-SIGMOD-SIGART’03, 2003, pp. 202–210.

Doan, Anhai, Raghu Ramakrishnan, and Alon Y Halevy, « Crowdsourcing systems on the
world-wide web », in: Communications of the ACM 54.4 (2011), pp. 86–96.

Duguépéroux, Joris, « Guaranteed Confidentiality and Efficiency in Crowdsourcing Plat-
forms », in: BDA’17, (2 pages), 2017.

— « Guaranteed Confidentiality and Efficiency in Crowdsourcing Platforms », in: APVP’19,
(2 pages), 2019.

Duguépéroux, Joris and Tristan Allard, « From Task Tuning to Task Assignment in
Privacy-Preserving Crowdsourcing Platforms », in: Transactions on Large-Scale Data
and Knowledge-Centered Systems (2020), (40 pages).

— « Privacy-Preserving Informed Task Design in Crowdsourcing Processes », in: BDA’19,
(10 pages), 2019.

— « Un algorithme de partitionnement de l’espace des compétences pour plateformes de
crowdsourcing respectueuses de la vie privée », in: HIA’20, (17 pages), 2020.

Duguépéroux, Joris, Antonin Voyez, and Tristan Allard, « Task-Tuning in Privacy-
Preserving Crowdsourcing Platforms », in: Proc. of EDBT’20, (4 pages), 2020, pp. 623–
626.

— « Task-Tuning in Privacy-Preserving Crowdsourcing Platforms », in: HIA’20, (8 pages),
2020.

153

https://arxiv.org/abs/1810.05692


Dwork, Cynthia, « Differential privacy », in: Proc. of ICALP’06, 2006, pp. 1–12.
Dwork, Cynthia and Aaron Roth, « The algorithmic foundations of differential privacy »,

in: Foundations and Trends in Theoretical Computer Science 9.3–4 (2014), pp. 211–407.
Elbassuoni, Shady et al., « Exploring fairness of ranking in online job marketplaces », in:

2019.
Ethereum blockchain app platform, https://www.ethereum.org, 2017.
Finnerty, Ailbhe et al., « Keep it Simple: Reward and Task Design in Crowdsourcing », in:

Proc. of SIGCHI’13, 2013, 14:1–14:4.
Fischer, Michael J, Nancy A Lynch, and Michael S Paterson, « Impossibility of distributed

consensus with one faulty process », in: Journal of the ACM (JACM) 32.2 (1985),
pp. 374–382.

Friedler, Sorelle A, Carlos Scheidegger, and Suresh Venkatasubramanian, « On the (im)
possibility of fairness », in: arXiv preprint arXiv:1609.07236 (2016).

Future of Work, Global Commission on the, Work for a brighter future, tech. rep., Interna-
tional Labour Organization, 2019.

Geiger, David et al., « Crowdsourcing Information Systems - Definition, Typology, and
Design », in: Proc. of ICIS’12, 2012.

Gentry, Craig, « Fully homomorphic encryption using ideal lattices », in: Proc. of STOC’09,
2009, pp. 169–178.

Gentry, Craig and Dan Boneh, A fully homomorphic encryption scheme, vol. 20, 9, Stanford
university Stanford, 2009.

Ghosh, Arpita, Tim Roughgarden, and Mukund Sundararajan, « Universally utility-
maximizing privacy mechanisms », in: SIAM Journal on Computing 41.6 (2012),
pp. 1673–1693.

Goldreich, Oded, « Foundations of Cryptography–A Primer », in: Foundations and Trends®
in Theoretical Computer Science 1.1 (2005), pp. 1–116.

Goldreich, Oded and Rafail Ostrovsky, « Software protection and simulation on oblivious
RAMs », in: Journal of the ACM (JACM) 43.3 (1996), pp. 431–473.

Goldwasser, Shafi and Silvio Micali, « Probabilistic encryption », in: Journal of computer
and system sciences 28.2 (1984), pp. 270–299.

Gray, Mary L and Siddharth Suri, Ghost Work: How to Stop Silicon Valley from Building
a New Global Underclass, Eamon Dolan Books, 2019.

Gupta, Trinabh et al., « Scalable and Private Media Consumption with Popcorn. », in:
Proc. of NSDI’16, 2016, pp. 91–107.

154



Han, Siyuan et al., « Fluid: A blockchain based framework for crowdsourcing », in: Proc.
of SIGMOD’19, 2019, pp. 1921–1924.

Hay, Michael et al., « Boosting the accuracy of differentially private histograms through
consistency », in: Proc. of the VLDB Endow. 3.1-2 (2010), pp. 1021–1032.

Hay, Michael et al., « Principled evaluation of differentially private algorithms using
dpbench », in: Proc. of SIGMOD’16, ACM, 2016, pp. 139–154.

Hopwood, Daira et al., « Zcash protocol specification », in: GitHub: San Francisco, CA,
USA (2016).

Howe, Jeff, « The rise of crowdsourcing », in: Wired magazine 14.6 (2006), pp. 1–4.
International Labour Legislation, Commission on, Constitution of the International Labour

Organization, 1919.
Kajino, Hiroshi, « Privacy-Preserving Crowdsourcing », PhD thesis, Univ. of Tokyo, 2015.
Kajino, Hiroshi, Yukino Baba, and Hisashi Kashima, « Instance-Privacy Preserving Crowd-

sourcing », in: Proc. of HCOMP’14, 2014.
Karmarkar, Narendra and Richard M Karp, The Difierencing Method of Set Partitioning,

tech. rep., Technical Report UCB/CSD 82/113, Computer Science Division, University
of California, Berkeley, 1982.

Kellaris, Georgios, Stavros Papadopoulos, and Dimitris Papadias, « Engineering Methods
for Differentially Private Histograms: Efficiency Beyond Utility », in: IEEE TKDE
31.2 (2018), pp. 315–328.

Kenney, Martin and John Zysman, « The rise of the platform economy », in: Issues in
science and technology 32.3 (2016), p. 61.

Kifer, Daniel, « Attacks on privacy and deFinetti’s theorem », in: Proc. of SIGMOD’09,
2009, pp. 127–138.

Kosba, Ahmed et al., « Hawk: The blockchain model of cryptography and privacy-preserving
smart contracts », in: Proc. of SP’16, IEEE, 2016, pp. 839–858.

Kucherbaev, Pavel et al., « Crowdsourcing processes: A survey of approaches and opportu-
nities », in: IEEE Internet Computing 20.2 (2015), pp. 50–56.

Kulkarni, Anand Pramod, Matthew Can, and Bjoern Hartmann, « Turkomatic: automatic,
recursive task and workflow design for mechanical turk », in: Proc. HCOMP’11, 2011.

Kulkarni, Anand, Matthew Can, and Björn Hartmann, « Collaboratively crowdsourcing
workflows with turkomatic », in: Proc. of CSCW’12, 2012, pp. 1003–1012.

155



Kushilevitz, Eyal and Rafail Ostrovsky, « Replication is not needed: Single database,
computationally-private information retrieval », in: Proc. of FOCS’97, IEEE, 1997,
pp. 364–373.

Lamport, Leslie et al., « Paxos made simple », in: ACM Sigact News 32.4 (2001), pp. 18–
25.

Laperdrix, Pierre et al., « Browser fingerprinting: a survey », in: ACM Transactions on
the Web (TWEB) 14.2 (2020), pp. 1–33.

Lease, Matthew et al., « Mechanical Turk is Not Anonymous », in: SSRN Electronic
Journal (2013).

Li, Guoliang et al., « Crowdsourced data management: A survey », in: IEEE TKDE 28.9
(2016), pp. 2296–2319.

Li, Ninghui, Tiancheng Li, and Suresh Venkatasubramanian, « t-closeness: Privacy beyond
k-anonymity and l-diversity », in: Proc. of ICDE’07, IEEE, 2007, pp. 106–115.

Lu, Yuan, Qiang Tang, and Guiling Wang, « Zebralancer: Private and anonymous crowd-
sourcing system atop open blockchain », in: Proc. of ICDCS’18, IEEE, 2018, pp. 853–
865.

Maas, Martin et al., « Phantom: Practical oblivious computation in a secure processor »,
in: Proc. of SIGSAC CCS’13, 2013, pp. 311–324.

Machanavajjhala, Ashwin, Johannes Gehrke, and Michaela Götz, « Data publishing against
realistic adversaries », in: Proc. of VLDB’07 2.1 (2009), pp. 790–801.

Martin, David J et al., « Worst-case background knowledge for privacy-preserving data
publishing », in: Proc. of ICDE’07, IEEE, 2007, pp. 126–135.

Mavridis, Panagiotis, David Gross-Amblard, and Zoltán Miklós, « Using Hierarchical Skills
for Optimized Task Assignment in Knowledge-Intensive Crowdsourcing », in: Proc. of
WWW’16, 2016, pp. 843–853.

Mayberry, Travis, Erik-Oliver Blass, and Agnes Hui Chan, « Efficient Private File Retrieval
by Combining ORAM and PIR. », in: Proc. of NDSS’14, 2014.

McSherry, Frank and Kunal Talwar, « Mechanism design via differential privacy », in:
Proc. of FOCS’07, IEEE, 2007, pp. 94–103.

Méda, Dominique, Le Travail. une valeur en voie de disparition?, Flammarion, 2010.
Mironov, Ilya et al., « Computational Differential Privacy », in: Proc. of CRYPTO’29,

2009, pp. 126–142.
Paillier, Pascal, « Public-key cryptosystems based on composite degree residuosity classes »,

in: Proc. of EUROCRYPT’99, 1999, pp. 223–238.

156



Parameswaran, Aditya Ganesh et al., « Deco: declarative crowdsourcing », in: Proc. of
CIKM’21, 2012, pp. 1203–1212.

participants, FoW, Imagine all the People and AI in the Future of Work, ACM SIGMOD
blog post, 2019.

Private Data Collections: A High-Level Overview, https://www.hyperledger.org/blog/2018/10/23/private-
data-collections-a-high-level-overview.

Qardaji, Wahbeh, Weining Yang, and Ninghui Li, « Differentially private grids for geospatial
data », in: Proc. of ICDE’13, 2013, pp. 757–768.

— « Understanding Hierarchical Methods for Differentially Private Histograms », in: Proc.
VLDB Endow. 6.14 (2013), pp. 1954–1965, issn: 2150-8097.

Regulating gig, crowd, and platform work, url: https://humancomputerinteraction.w
vu.edu/crowd-work/literature-review.

Sakurai, Kouichi and Yoshinori Yamane, « Blind decoding, blind undeniable signatures,
and their applications to privacy protection », in: Proc. of IH’96, Springer, 1996,
pp. 257–264.

Sánchez, David Cerezo, « Raziel: Private and verifiable smart contracts on blockchains »,
in: arXiv preprint arXiv:1807.09484 (2018).

Schmidt, Florian Alexander, Crowd Design: From Tools for Empowerment to Platform
Capitalism, Birkhäuser, 2017.

Sion, Radu and Bogdan Carbunar, « On the computational practicality of private infor-
mation retrieval », in: Proc. of NDSS’07, 2007, pp. 2006–06.

Srba, Ivan and Maria Bielikova, « A comprehensive survey and classification of approaches
for community question answering », in: ACM TWEB 10.3 (2016), p. 18.

Srnicek, Nick, Platform capitalism, John Wiley & Sons, 2017.
Stefanov, Emil, Elaine Shi, and Dawn Song, « Towards practical oblivious RAM », in:

arXiv preprint arXiv:1106.3652 (2011).
Stefanov, Emil et al., « Path ORAM: an extremely simple oblivious RAM protocol », in:

Proc. of SIGSAC CCS’13, 2013, pp. 299–310.
Stern, Julien P, « A new and efficient all-or-nothing disclosure of secrets protocol », in:

Proc. of ASIACRYPT’98, Springer, 1998, pp. 357–371.
Steutel, Fred W and Klaas Van Harn, Infinite divisibility of probability distributions on

the real line, 2003.

157

https://humancomputerinteraction.wvu.edu/crowd-work/literature-review
https://humancomputerinteraction.wvu.edu/crowd-work/literature-review


Sweeney, Latanya, « k-anonymity: A model for protecting privacy », in: International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10.05 (2002), pp. 557–
570.

Taft, Rebecca et al., « E-store: Fine-grained elastic partitioning for distributed transaction
processing systems », in: Proc. of the VLDB Endow. 8.3 (2014), pp. 245–256.

Tao, Qian et al., « Differentially Private Online Task Assignment in Spatial Crowdsourcing:
A Tree-based Approach », in: Proc. of ICDE’20, IEEE, 2020, pp. 517–528.

Thomson, Alexander et al., « Calvin: fast distributed transactions for partitioned database
systems », in: Proc. of MOD’12, ACM, 2012, pp. 1–12.

To, Hien, Gabriel Ghinita, and Cyrus Shahabi, « A framework for protecting worker
location privacy in spatial crowdsourcing », in: Proc. of the VLDB Endow. 7.10 (2014),
pp. 919–930.

To, Hien, Cyrus Shahabi, and Li Xiong, « Privacy-preserving online task assignment in
spatial crowdsourcing with untrusted server », in: Proc. of ICDE’18, 2018, pp. 833–844.

Wong, Raymond Chi-Wing et al., « Minimality attack in privacy preserving data publish-
ing », in: Proc. of VLDB’07, 2007, pp. 543–554.

Xia, Huichuan et al., « Our Privacy Needs to be Protected at All Costs: Crowd Workers’
Privacy Experiences on Amazon Mechanical Turk », in: Proc. of HCI’17 1 (2017),
p. 113.

Xiao, Xiaokui and Yufei Tao, « M-invariance: towards privacy preserving re-publication of
dynamic datasets », in: Proc. of SIGMOD’07, 2007, pp. 689–700.

Zakhary, Victor et al., « Multifaceted Privacy: How to Express Your Online Persona
without Revealing Your Sensitive Attributes », in: arXiv preprint arXiv:1905.09945
(2019).

Zhai, Dongjun et al., « Towards secure and truthful task assignment in spatial crowdsourc-
ing », in: World Wide Web 22.5 (2019), pp. 2017–2040.

Zhang, Jun, Xiaokui Xiao, and Xing Xie, « PrivTree: A Differentially Private Algorithm
for Hierarchical Decompositions », in: Proc. of SIGMOD’16, 2016, pp. 155–170.

Zhu, Saide et al., « zkCrowd: a hybrid blockchain-based crowdsourcing platform », in:
IEEE Transactions on Industrial Informatics (2019).

158





Titre : Protection des travailleurs dans les plateformes de crowdsourcing : une perspective
technique

Mot clés : Crowdsourcing, Protection de la Vie Privée, Confidentialité Différentielle, Systèmes

Distribués, Régulation, PIR

Résumé : Ce travail porte sur les moyens
de protéger les travailleurs dans le cadre du
crowdsourcing. Une première contribution s’in-
téresse à la protection de la vie privée des
travailleurs pour une plateforme unique, tout
en autorisant différents usages des données
(pour affecter des tâches aux travailleurs ou
pour avoir des statistiques sur la population
par exemple). Une seconde contribution pro-
pose la mise à disposition d’outils, pour les lé-
gislateurs, permettant de réguler de multiples
plateformes en combinant à la fois transpa-

rence et respect de la vie privée. Ces deux
approches font appel à de nombreux outils
(d’anonymisation, de chiffrement ou de distri-
bution des calculs notamment), et sont à la fois
accompagnées de preuves de sécurité et vali-
dées par des expérimentations. Une troisième
contribution, moins développée, propose de
mettre en lumière un problème de sécurité
dans une des techniques utilisées (le PIR)
lorsque celle-ci est utilisée à de multiples re-
prises, problème jusqu’à présent ignoré dans
les contributions de l’état de l’art.

Title: Protecting Workers in Crowdsourcing Platforms: a Technical Perspective

Keywords: Crowdsourcing, Privacy, Differential Privacy, Distributed Systems, Regulation, Pri-

vate Information Retrieval

Abstract: This work focuses on protecting
workers in a crowdsourcing context. Indeed,
workers are especially vulnerable in online
work, and both surveillance from platforms and
lack of regulation are frequently denounced
for endangering them. Our first contribution
focuses on protecting their privacy, while al-
lowing usages of their anonymized data for,
e.g. assignment to tasks or providing help for
task-design to requesters. Our second contri-
bution considers a multi-platform context, and
proposes a set of tools for law-makers to reg-
ulate platforms, allowing them to enforce lim-

its on interactions in various ways (to limit
the work time for instance), while also guar-
anteeing transparency and privacy. Both of
these approaches make use of many tech-
nical tools such as cryptography, distribution,
or anonymization tools, and include security
proofs and experimental validations. A last,
smaller contribution, draws attention on a limit
and possible security issue for one of these
technical tools, the PIR, when it is used mul-
tiple times, which has been ignored in current
state-of-the-art contributions.
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