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” Chaque soir, espérant des lendemains épiques,
L’azur phosphorescent de la mer des Tropiques
Enchantait leur sommeil d’un mirage doré ;

Ou, penchés à l’avant des blanches caravelles,
Ils regardaient monter en un ciel ignoré
Du fond de l’Océan des étoiles nouvelles.”

José Maria de Heredia, ”Les Conquérants”, Les Trophés
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Résumé

Approches gaussiennes aux systèmes de spins quantiques
hors-équilibre.

Que se passe-t-il quand un système quantique à N corps est brutalement amené
loin de son état d’équilibre ? Vers quelle sorte d’état relaxe-t-il et quelle infor-
mation peut-on extraire de sa dynamique ? Fournir des réponses à ces ques-
tions est un problème difficile qui a suscité l’intérêt de toute une communauté
de physiciens. Cependant, le coût numérique important requis pour étudier le
comportement de ces systèmes, en particulier pour de grandes tailles, a motivé
le développement de méthodes numériques et théoriques de pointe.

Cette thèse s’inscrit dans la continuité de ces efforts en proposant un ensemble
de méthodes basées sur une représentation en termes d’une théorie de champs
Gaussiens afin d’étudier l’évolution des systèmes de spins. Plus particulièrement,
ces méthodes sont appliquées à plusieurs modèles inspirés par les expériences
d’atomes froids simulant le comportement de systèmes de spins avec un accent
particulier sur l’étude des phénomènes de localisation. Cette thèse présente donc
des résultats mettant en évidence l’émergence de la localisation dans des systèmes
sans désordre par un effet d’interférence appelé cage d’Aharonov-Bohm; ainsi
qu’une dynamique explorant un riche spectre allant de la diffusion balistique à
la localisation, en passant par la diffusion anormale, cela dans un modèle d’Ising
quantique avec désordre géométrique — ce dernier exemple présence un scénario
bien plus riche que celui offert par la dynamique des particules libres dans un
milieu désordonné. Enfin, nous avons exploré la possibilité pour les approches
gaussiennes de décrire la dynamique de systèmes interagissant et leur relaxation
vers des états thermiques.

Mots-clés : Dynamique de spin, intrication, localisation, atomes de
Rydberg .
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Abstract

Gaussian-state approaches to quantum spin systems away
from equilibrium

What happens when a quantum many-body system is brutally driven away from
equilibrium ? Toward which kind of states does it relax and what information
can one extract from the resulting dynamics ? Providing answers to these ques-
tions is a challenging problem that spured the interest of a whole community of
physicists. However, the numerical cost required to investigate the behaviour of
these systems, particularly for large system sizes, motivated the development of
cutting-edge numerical and theoretical techniques.

This thesis aims at contributing to these efforts by proposing a set of methods
based on a representation of the systems in terms of a Gaussian field theory, with
the purpose of studying the evolution of spin systems. More specifically, these
methods are applied to several models inspired by cold-atoms experiments sim-
ulating the behaviour of spin systems, with a stress on the study of localization
phenomena. Therefore, this thesis highlights the emergence of localization in sys-
tems devoid of disorder due to an interference effect, the so-called Aharonov-Bohm
caging; as well as a geometrically disordered quantum Ising model displaying a
dynamics exploring a rich spectrum ranging from balistic diffusion to anomalous
diffusion, an then localization - this last example offers a scenario richer than the
one exhibited by the dynamics of free particles in a disordered medium. Finally,
we explored the possibility for Gaussian approaches to describe the dynamics of
interacting systems and their relaxation toward thermal states.

Keywords: Spin dynamics, entanglement, localization, Rydberg atoms.
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fois mes visites intempestives. Quant à Barbara, elle a tous mes remerciements
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évoluent (principalement) par-delà ses murs. Je commencerai donc par exprimer
ma gratitude envers tous les membres de France Shotokan Lyon, et en particulier
Anne-Laure et Helen qui m’ont transmis le virus du karaté, une maladie qui
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à ce que je faisais de ma vie n’a jamais cessé de me soutenir. Et si je peux me
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Introduction

”Nous voulons, tant ce feu nous brûle le cerveau,
Plonger au fond du gouffre, Enfer ou Ciel, qu’importe ?
Au fond de l’Inconnu pour trouver du nouveau !”

Charles Baudelaire, ”Le Voyage”, Les Fleurs du Mal

Studying and understanding the behaviour of quantum many-body systems
is a challenging problem of prime interest, both for expanding the fundamental
knowledge of this domain of physics where complex and exotic states of matter
often emerge, but also to open new perspectives in technological development.
However, gaining insights onto the behaviour of these systems requires formidable
efforts, as said theoretical approaches are often missing to get quantitative pre-
dictions for quantum many-body systems. A general strategy in modern physics
amounts to rely on numerical methods, but the quantum nature of the models
at hand and the calculation capacities of classical computer limit fundamentally
these approaches to small systems. Quantum simulation aim at overcoming these
difficulties by implementing many-body quantum physics directly into the hard-
ware of a quantum machine [36].

During the past few decades, the development of experimental techniques in
atomic physics enabled the cooling and trapping of atoms in order to simulate
the physics of bosonic or fermionic particle lattice models. More recently quan-
tum simulation transcended the area of atomic physics to inspire the engineering
of simulators in photonic and polaritonic platforms, in superconducting circuits
etc [40]. In particular, progress in the individual trapping of particles and the
coupling of their internal degrees of freedom led to implementation of spin sys-
tems in controlled geometries, thus offering new possibilities for the simulation of
quantum magnetism.

This thesis proposes an approximate numerical approach to many-body dy-
namics based on a Gaussian Ansatz for the many-body state, and applies it to
several implementations of quantum spin Hamiltonians in different geometries
and dimensions, all relevant for a realization in a class of quantum simulators
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CONTENTS

for spin systems. We also propose realistic tools to probe the exotic dynamical
properties exhibited by these models. Our discussion will be structured in six
chapters :

1. In the first chapter, we will review the specificities and phenomenology
of quantum many-body dynamics, how it leads to the production of en-
tanglement and the etablishment of correlations between subparts of the
whole system. The characterization of the asymptotic state after relax-
ation will also be discussed, distinguishing between the generic situation in
which such a state has the same local features as those of a thermal equi-
librium ensemble, and the special cases in which thermalization is instead
escaped. After reviewing the different experimental approaches available
in atomic physics for the description of many-body physics (with a special
focus on Rydberg-atom simulators), we will delve into the spectrum of pos-
sible numerical methods developed for the study of many-body dynamics
and discuss briefly their capabilities and limitations.

2. The second chapter is dedicated to present the theoretical framework of
the Gaussian Ansatz, first in its linearized bosonic formulation to spin-
wave theory, before extending it to cases where non-linearities play a more
prominent role. We shall discuss the application of these approaches both
to thermal equilibrium as well as to out-of-equilibrium physics. We will
conclude this chapter by also providing a complementary image of Gaussian
states, namely the fermionic formulation of the Gaussian Ansatz.

3. The third chapter focuses on the application of linear spin-wave theory to
the physics of flat-band systems realized on quantum spin models relevant
for Rydberg-atom simulators [63]. In particular, we propose two protocols
for preparing the quantum state away from equilibrium, each providing a
different perspective on the dynamics of elementary excitations, their spec-
tral properties and spatial structure. We used these protocols to highlight
localization effects in systems with flat bands of excitations, and discrimi-
nate between the different mechanisms resulting into band flatness.

4. A second application of linear spin-wave theory is presented in the fourth
chapter, where we will discuss of the widely different effects of disorder
on the low-temperature thermodynamics and dynamics of a positionally
disordered spin system [64]. We offer a scaling analysis suggesting that
the spectrum experiences at finite disorder a transition to localization that
is decoupled from the ground-state properties and we offer evidence that,
at intermediate values of disorder the eigenmodes in the band center pos-
sess a multifractal structure, resulting in anomalous diffusion in the non-
equilibrium dynamics. Moreover, we show that the multifractal properties
of these eigenmodes can be directly probed by analyzing the magnetization
profile of the system at long times.

5. The fifth chapter of this thesis tackles the question of the extension of
the Gaussian Ansatz to systems where non-linearities and interactions be-
come more prominent. We will benchmark this approach in the case of

2
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the transverse-field Ising chain, which has the two-fold advantage of be-
ing integrable and relevant for an experimental implementation in different
quantum simulation platforms. We will then lead this same study in the
two-dimensional case of the square lattice, for which a description in terms
of an integrable model is not available, and we will compare these results
with quantum Monte Carlo simulations for the steady-state regime, and
with other numerical approaches for the transient dynamics.

6. Finally, the sixth chapter will conclude this thesis by summarizing our find-
ings and discussing further applications of the Gaussian-state approaches
to dynamics, both to answer questions left open in the previous chapters
and to explore new models and physical effects.
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Chapter 1
Quantum systems out of
equilibrium

”One foot he centered, and the other turned
Round through the vast profundity obscure
And said, thus farr extend, thus farr thy bounds,
This be thy just Circumference, O World.”

John Milton, Paradise Lost

1.1 Of entanglement in many-body physics
1.1.1 A brief history of entanglement
The early 20th century was a pivotal moment in the history of modern physics as
it witnessed two major breakthroughs in the understanding of Nature: one was
Einstein’s theories of relativity, the other was quantum mechanics. The birth
of this second theory results from the joint efforts of several physicists trying to
provide answers to unsolved questions such as the origins of black-body radiation
or the stability of matter. Their work led to the development of a very powerful
and predictive theoretical framework, which succesfully answered the questions
left open by classical physics, but also unveiled counterintuitive behaviours of
matter at microscopic scales. Indeed, quantum theory in general cannot predict
the outcome of measurements with certainty: contrarily to the classical view on
the game of head or tail, where the outcome is decided before the measurement
due to an underlying deterministic dynamics, for quantum mechanics the result
would be left undecided until a measurement is performed on the coin. Therefore,
the state of the coin prior to measurement is described as a superposition of both
head and tail, and this description holds the actual nature of the state, leaving
no room for any deterministic picture.

Unconvinced by this interpretation as it deeply mismatched with his philo-
sophical beliefs, Einstein, along with Podolsky and Rosen (EPR), tried to demon-

5



Chapter 1. Quantum systems out of equilibrium

strate in a now famous article [32] that the quantum theory in its standard
(Copenhagen) interpretation was incomplete. For this purpose, EPR designed
a thought experiment where two particles are simultaneously emitted and pos-
sess special correlations such that from measuring the state of one of the particles,
one can instantaneously deduce the state of the other, regardless of the distance
separating the two particles. An exemple of a state exhibiting this property is
the singlet state of two spins-1

2 ,

|ψy � 1?
2
p| Òy1 b | Óy2 � | Óy1 b | Òy2q . (1.1)

The measurement of the spin labeled as 1 then leads to two outcomes: either it is
up-oriented and then the partner spin is down-oriented, or the contrary happens.

According to EPR, the perfect correlations among measurements of differ-
ent spin components of spins 1 and 2 contradict the fact that such components
are incompatible observables in quantum mechanics, because EPR assume the
property of local realism, namely the fact that a measurement on spin 1 cannot
affect the state of spin 2. Indeed, according to this point of view, predicting
with certainty e.g. the x- or y-components of spin 1 by measurement the same
components of spin 2 attributes to the latter two elements of reality which are
nonetheless incompatible with quantum mechanics. The conclusion of EPR is
that the quantum mechanical description of many-particle systems is incomplete,
and it requires the introduction of further hidden variables to be compatible with
local realism.

The objections raised by EPR to the Copenhague interpretation remained
confined to the philosophical ground until Bell showed that the expectation val-
ues of a quantum theory with local hidden variables are bounded and obey in-
equalities, therefore offering the possibility to experimentally test the existence
of hidden variables. Though the experimental demonstration of the violation of
Bell’s inequalities by Aspect [7] ultimately proved wrong the hidden variables
argument, the work of EPR was pioneering in the sense that it outlined a re-
markable property of quantum physics, namely the possibility for a collection of
quantum objects to develop correlations escaping any classical description. In
other words, quantum many-body systems cannot be described as the sum of all
their parts, but instead as whole coherent entities which remain as such however
distant their components may be from each other. Therefore, measuring the state
of a subpart impacts the system as a whole. This concept was dubbed entangle-
ment by Erwin Schrödinger in a seminal article of 1935 [84], where he described
it as the most intrinsically quantum feature a many-body system can exhibit.

Entanglement of pure states can be defined mathematically by stating that,
for a bipartite system S � A � B, an entangled state cannot be decomposed as
a tensor product |Ψy � |ψAy b |ψBy, where A and B label the two subparts of
the system. Consequently, entangled states admit a more general expression, this
time in terms of a coherent superposition of factorized states

6



1.1. Of entanglement in many-body physics

|Ψy �
¸
n

?
pn |ψpnqA y b |ψpnqB y, (1.2)

where
!
|ψpnqi y

)
are orthonormal vectors from the Hilbert space of subsystem

i � A,B, while ?pn are positive real numbers. The formula given in Eq. (1.2)
is the so-called Schmidt decomposition of the state, indicating the presence of
entanglement if at least two of the Schmidt coefficients pn are non-zero.

A way to quantify entanglement is to probe the Shannon entropy of the dis-
tribution of the normalized probabilities pn, Er|Ψys � �°n pn ln pn, called en-
tanglement entropy. The latter admits an upper bound lnDmin, where Dmin �
minpDA, DBq, Di being the Hilbert space dimension of subsystem i. Let us con-
sider an arbitrary state of the pDA�DBq-dimensional joint Hilbert space for the
whole system - namely

|Ψy �
DA̧

n�1

DB̧

m�1
cnm|αpnqy b |βpmqy (1.3)

where t|αpnqyu and t|βpnqyu are orthonormal bases for respectively subsystems
A and B, while cnm are arbitrary complex coefficients. It has been shown by
Page [72] that such a state exhibits on average an entanglement entropy very
close to its upper bound lnDmin. This points to a fundamental difference between
factorized and entangled states: while the former are described by DA�DB coef-
ficients, specifying the states of the subparts |ψAy and |ψBy, the characterization
of the latter generically requires DA�DB coefficients, which must be statistically
independent for the subsystems to be arbitrarily entangled.

Extending the previous discussion on the structure of bipartite states to N ¡ 2
parties, the description of factorized states

|Ψy �
Nâ
i�1

|ψiy (1.4)

requires ND coefficients, where D is the Hilbert space dimension for each of the
parties (assumed to be uniform for the sake of simplicity). On the other hand,
a generic state of the DN dimensional joint Hilbert space can always be written
in the form given by Eq. (1.3), where t|αpnqyu are for instance the states of the
first N{2 parties and t|βpmqyu specify the states of the N{2 remaining ones. In
this case DA � DB � DN{2, and the state is parametrized by DA � DB � DN

coefficients, namely it contains an amount of information scaling exponentially
with the system size. This difference in the quantity of information encoded in the
state suggests that factorized states live in a restricted area of the Hilbert space,
while entangled ones are free to span it in its entirety, leading to the conclusion
that quantum many-body states hold more generality and exhibit richer variety
of behaviours than factorized states could possibly grasp. Solid-state physics
offer several examples of entangled states, such as Fermi liquids, superconductors
or quantum spin liquids, yet the degree of entanglement of these states does

7



Chapter 1. Quantum systems out of equilibrium

not compare with the highly entangled ones that can be produced by artificial
quantum many-body systems (quantum computers, quantum simulators) away
from equilibrium, as we will discuss in the following.

1.1.2 Many-body dynamics and correlations
Placing entanglement at the heart of the physics of quantum many-body systems
naturally gives rise to new questions regarding its behaviour at and away from
equilibrium: given an initial state and a many-body Hamiltonian H governing
its unitary evolution, how does its entanglement evolve in time ? Does it relax
toward an equilibrium value and, if so, how can it be characterized ?

The choice of the initial state fundamentally dictates the portion of the Hamil-
tonian spectrum which will be relevant for the subsequent dynamics; however for
the moment we will only assume that the initial state |Ψ0y is not an eigenstate of
the Hamiltonian, namely Ĥ|Ψ0y � λ|Ψ0y. Indeed, under the assumption that the
initial state is actually an eigenstate of the Hamiltonian, the unitary dynamics
only results in the state picking up a global phase which leaves the expectation
value of observables untouched. An alternative point of view consists in treating
the initial state as an eigenstate of some Hamiltonian Ĥi, and imagining that
at time t � 0� some parameters of the Hamiltonian are suddenly shifted in or-
der to bring Ĥi toward Ĥf � Ĥ for which |Ψ0y is no longer an eigenstate, with
the aforementioned consequences on dynamics. Systems pushed away from their
equilibrium states in such a manner are said to undergo a quantum quench.

We shall now provide some insights on the dynamical behaviour one should
expect to observe. The joint work of Lieb and Robinson [58] in 1972 disclosed
that, in systems with short-ranged interactions, the propagation of information,
namely the reorganization of correlations in the quantum state under the effect of
the Hamiltonian dynamics, is constrained by the so-called Lieb-Robinson bounds
[19]. For two observables Â and B̂ with a finite norm and acting on two finite
disconnected spatial regions of the system, taken at two different times, the norm
} � } of their commutator is bounded as

}rÂptq, B̂p0qs} ¤ c}Â}}B̂}minp|Â|, |B̂|qe�pdpA,Bq�vLR|t|q{ξ, (1.5)

where dpA,Bq stands for the distance between the supports of Â and B̂, while
|Â| and |B̂| are the size of their respective supports, and c, ξ and vLR are positive
constants. In other words, the Lieb-Robinson bound states that the propagation
of information is exponentially suppressed outside of the boundaries of a light
cone, whose aperture is dictated by a characteristic velocity vLR named Lieb-
Robinson velocity. As the emergent causality enforced by the Lieb-Robinson
bounds constraints the dynamics of any form of correlation between two points of
a system, one should expect the appearance of light-cone structures in microscopic
systems when one looks at correlation functions, as shown in Fig. 1.1 (a) for the
correlations among the z-spin components in a spin chain described by the XX
model,

8



1.1. Of entanglement in many-body physics

light cone

qp

(a) (b)

Figure 1.1: Light cone effect - (a) shows the time evolution of xSzx0S
z
x0�xy correla-

tion function of an XX spin chain of L � 100 following a quench from the Néel
state along the z axis | ÒÓÒÓ . . . y. (b) shows in a schematic way the emergence
of the light-cone effect from the Cardy-Calabrese image.

Ĥ � �J
¸
i

rŜxi Ŝxi�1 � Ŝyi Ŝ
y
i�1s, (1.6)

where Ŝαi pα � x, y, zq are S � 1{2 spin operators at site i, mappable onto
free fermions (quasiparticles) [56]. The observation of light-cone structures of
correlations motivated some seminal experimental studies, highlighting the light-
cone effect in cold-atom simulation of the Bose-Hubbard model [25] or trapped-
ions realizations of spin systems [53].

Precious insights into the physical origin of this emerging causality were pro-
vided by the work of Calabrese and Cardy [21]. Their interpretation of the
light-cone effect relies on a representation of the initial quenched state as a gas of
correlated pairs of quasiparticles; their ballistic propagation during the dynamics
then results in the linear spreading of correlations as the particles carry informa-
tion in their wake, as shown in Fig. 1.1(b). The quasiparticle image also enables
to make sense of the Lieb-Robinson velocity by relating it to the maximal group
velocity of the quasiparticles themselves

vLR � 2 max
kPBZ

|∇kωk|, (1.7)

where ωk is the quasiparticle dispersion relation. The factor of 2 in this expression
is due to the fact that correlations between two points are established when they
are reached by the fastest quasiparticles emitted at the mid point.

The quasiparticle picture provided by Calabrese and Cardy also offers some
insights into the behaviour one can expect for the dynamics of entanglement. Pro-
vided that quasiparticles act as messengers carrying information and establishing
correlations, their propagation should participate to the build-up of entanglement
between the different subparts they cross. Therefore, the evolution of entangle-
ment estimators should reflect the dynamics of the quasiparticles that underlies

9



Chapter 1. Quantum systems out of equilibrium

Figure 1.2: Time-evolution and scalling of the entanglement entropy of XX spin
chains initialized in the Néel state - the considered subsystems are sections of
length l of chains of L � 10 � l sites. The inset shows the volume-law scaling of
entanglement entropy as all curves collapse on a universal one. All calculations
are performed with a free fermions approach.

their evolution. For instance the von Neumann entanglement entropy defined for
a subsystem A in terms of the reduced density matrix (see previous section)

EA � �Tr rρ̂A ln ρ̂As (1.8)
grows linearly with time until it reaches saturation once the quasiparticles have
explored the entirety of the subsystem A, and established correlations between
all sites. The entanglement entropy dynamics displays therefore a characteristic
time which scales linearly with the linear size lA of the subsystem of interest,
namely t� � lA{p2vLRq, corresponding to the time necessary for the light cone
to spread from the center of A to its boundary, covering a distance lA{2. The
quasiparticle picture also unravels a second meaningful scaling law : as every site
of the subsystem A participate into the correlations with its complement B, the
equilibrium entropy scales like the size ldA of the considered subsystem, namely it
exhibits a so-called volume law scaling. These different behaviours and scaling
relations are illustrated by Fig. 1.2 in a one-dimensional case (d � 1).

The dynamical features that we reviewed up to this point do not survive the
introduction of strong disorder and the appearance of Anderson localization [6]
in the absence of interactions between quasiparticles. The light-cone structure
of correlations for instance breaks down as the propagation of excitations - and
consequently information - is suppressed. A direct consequence of localization is
then that the amount of entanglement generated by dynamics is much weaker
compared to what is observed in clean systems. Moreover, localization also has
the more dramatic effect of preventing the system from relaxing towards a state
with volume-law scaling of the entanglement entropy. Instead, it exhibits a subex-
tensive growth with the subsystem size lA, as the only sites able to participate
to the exchange of information between the subsystem A and its complement are
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1.1. Of entanglement in many-body physics

localized at their interface. The equilibrium entropy of a subsystem A then scales
linearly in the size of its boundaries, and it obeys a so-called area law such that
EA9ld�1

A .

1.1.3 Thermalization of quantum systems
In generic quantum many-body dynamics (not admiting a description in terms of
free quasiparticles), at long times the entanglement entropy acquires an extensive
nature reminiscent of the extensive character of the thermodynamic entropy of
thermal equilibrium. This indeed suggests that individual quantum states may
equilibrate so as to admit a local description in terms of the Gibbs ensemble

lim
tÑ�8 ρ̂Aptq �

1
Z
e�βĤA , (1.9)

where the inverse temperature β depends on the energy initially injected in the
system by the quench, namely xΨ0|ĤA|Ψ0y and ĤA is the Hamiltonian for the
degrees of freedom of A only. If indeed such a condition is met, the system is
said to have thermalized. Indeed if the considered subsystem is small enough
compared to the overall system, and yet sufficiently large so that the coupling
energy between A and B can be considered as a small term compared to the
energy of A, then an effective image consists of viewing the complement B as
a thermal bath weakly coupled to A, and establishing thermal equilibrium in
A once the correlations between the subsystem and its complement have finally
settled.

The description of equilibration in terms of thermalization is however only
possible under some general assumptions on the nature of the Hamiltonian eigen-
states. In the following, we will explicitly state sufficient conditions essential to
a statistical description of equilibrium states, and situations in which these con-
ditions are not met. Let us decompose the initial state of the evolution on the
eigenbasis of the evolution Hamiltonian |Ψ0y �

°
n cn|ψny, so that the evolved

state |Ψptqy obtained by the action of the unitary evolution operator Ûptq � e�itĤ

admits a very simple expression, where the coefficients cn only acquire a rotating
phase factor

|Ψptqy �
¸
n

cne
�iωnt|ψny, (1.10)

with ωn � En{~ and En is the eigenenergy corresponding to eigenstate |ψny.
From the above result, we obtain the expression for the time-evolution of the
expectation of any observable Â

xÂyptq �
¸
m,n

c�mcne
�itpωn�ωmqxψm|Â|ψny. (1.11)

The form provided by Equation (1.11) for the expectation value in terms of a
sum of oscillating functions suggests a persistent dynamics at all times. Yet
the equilibrium value of the observable can be extracted by time averaging the
evolution, thus eliminating the oscillations
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Chapter 1. Quantum systems out of equilibrium

xÂyeq � lim
TÑ�8

1
T

» T
0
xÂyptqdt (1.12)

�
¸
n

|cn|2Ann. (1.13)

If indeed xÂypt Ñ 8q � xÂyeq, then equilibration is the result of dephasing be-
tween the different oscillating terms in Eq. (1.11), only leaving the diagonal con-
tributions (Eq. (1.13)) to the observable. The statistical ensemble with weights
|cn|2 is dubbed diagonal ensemble. Such an ensemble is in principle dictated by
the specific choice of the initial state of the evolution through the coefficients
cn. Hence it is not at all obvious how it can provide expectation values for local
observables that would correspond to those of a Gibbs ensemble, Eq. (1.9), given
that the latter depends on |Ψ0y only through its energy and not through its full
structure. How can one lose memory of the initial state and therefore achieve
ergodicity in a quantum evolution ?

Sufficient conditions to recover ergodicity are provided by a set of assumptions
forming the framework of the Eigenstate Thermalization Hypothesis (ETH) [75].
This hypothesis states that consecutive eigenstates of Hamiltonians that lead to
thermalizing evolutions have very similar physical properties, namely that, for
any local observable Â, An,n � xψn|Â|ψny and An�1,n�1 � xψn�1|Â|ψn�1y differ
by an amount which scales exponentially to zero with the system size, similarly
to the energy difference En�1 � En; namely the limit pAn�1,n�1 � An,nq{pEn�1 �
Enq ÑEn�1�EnÑ0 fpEnq is well defined, and therefore the expectation values of
the local observables are smooth functions of the eigenstate energies, Ann �
ApEnq. Moreover, for a generic initial state |Ψ0y of energy E0 and a Hamiltonian
composed of local terms Ĥ � °

i Ĥi (where Ĥi is an operator acting on a finite
support around site i of a lattice) the energy is a self-averaging quantity, namely

δE

E0
�
b
xĤ2y � xĤy2

E0
�
b°

ij xpHi � xHiyqpHj � xHjyqy
E0

� 1?
N
, (1.14)

where we have used the fact that E0 � OpNq, and that for generic quantum states
the correlation function xpHi � xHiyqpHj � xHjyqy is exponentially decaying, so
that its double integral is extensive.

As a consequence the sum over eigenstates in Eq. (1.13) has support on an
energy window whose relative width scales to zero with the system size. This
aspect, added to the fact that the Ann are smooth functions of the energy, implies
that for N " 1 the diagonal ensemble average for generic initial states coincides
in practice with a microcanonical average over an energy window δE � Op?Nq

xÂyeqpE0q � lim
NÑ8

1
NE0,δE

¸
n:|En�E0|¤δE

Ann, (1.15)
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1.1. Of entanglement in many-body physics

regardless of the (generic) initial state. In order for Eq. (1.15) to represent the
asymptotic value of observables, a further condition must be imposed on the off-
diagonal matrix elements Anm pn � mq. We shall not discuss this condition here,
and we refer the reader to Ref. [27] for an in-depth review.

In classical systems, the validity of statistical mechanics hinges upon the er-
godicity of the considered system, and in particular it breaks down in cases where
the model displays integrability, as the system evolves on closed orbits of phase
space [27]. Similarly, the ETH may fail to describe the relaxation of quantum
systems if the system is characterized by an extensive number of integrals of mo-
tion [89]. Indeed, the ETH leads to a description of quantum states in terms of a
Gibbs ensemble which only accounts for the conservation of energy, and therefore
it should be generalized so as to include the conservation of further integrals of
motion. A complete statistical image of integrable systems is then provided by
a new statistical ensemble dubbed as Generalized Gibbs Ensemble (GGE) [76]
described by a distribution of the form,

ρ̂GGE � 1
ZGGE

e�
°

j λjIj , (1.16)

where each λj is a Lagrange multiplier attached to a different integral of mo-
tion Ij. Approximating a non-integrable quantum system (verifying ETH) with
an integrable one - for instance via a harmonic approximation, as we shall dis-
cuss at length in Chap. 2 - is often a practical way to get a theoretical handle
on the behaviour of many-body systems. Yet clearly through such an approx-
imation one is missing fundamental aspects of the original system. In several
cases, though, integrable many-body systems are ”close” to integrable ones - at
least in some specific energy range- in the sense that integrability-breaking terms
(such as non-linearities beyond the harmonic approximation) can be considered
as weak perturbations. Under this assumption there is a separation of time-scales
between:

1. a short-time dynamics, governed by the integrable part of the Hamilto-
nian and leading the system to relax to a transient state with properties
compatible with a GGE;

2. a long-time dynamics in which the integrability-breaking terms eventually
start playing a role, driving the system toward a state compatible with
an ordinary Gibbs ensemble. In this scenario the nearly-integrable system
is said to display pre-thermalization to a GGE before thermalizing to a
standard GE.

The introduction of strong disorder, on the other hand, causes the com-
plete breakdown of the ETH framework as it violates its cornerstone assumption:
namely the hypothesis that eigenstates in the same energy window are sufficiently
alike for the expectation value of local observables to be almost identical. The
possibility that disorder contradicts this fundamental assumption of the ETH
can be understood in the context of non-interacting quantum systems, where, by
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Chapter 1. Quantum systems out of equilibrium

means of destructive interferences effects, disorder induces Anderson localization
of the eigenstates. As a consequence, energetically close localized wavefunctions
may actually be localized in widely different regions of the system and give dif-
ferent expectation values for a same local observable. A similar phenomenon
occurs at the many-body level when the so-called many-body localization [2, 70]
takes place: in many-body localized systems consecutive energy eigenstates may
be radically different - e.g in the spatial distribution of particles, which adjust
differently to an external disordered potential, yet with very similar energies. If
disorder is very strong, the kinetic part of the Hamiltonian may fail to hybridize
such quasi-degenerate spatial distributions, which result then in quasi-degenerate
eigenstates with very different expectation values of local observables. As a result
of the breakdown of ergodicity, the dynamics of many-body localized systems is
unable to fully erase the memory of the inital state, and the localization dynamics
does not admit a Gibbs ensemble description.

1.1.4 Rydberg atom simulators
The latest decades witnessed a leap forward in the study of cold atomic gases.
Since the first experimental realization of a Bose-Einstein condensate in 1995 by
Cornell and Wieman [5] and Ketterle [28], several cold-atom experiments were
designed in order to mimic and study the properties of condensed matter systems,
giving access to regimes which are inacessible in the condensed-matter realm; as
well as to novel ways to diagnose their behaviour [17].

An example commonly used to illustrate this research program is the ex-
perimental study of the superfluid-Mott insulator transition using a gas of cold
bosonic atoms trapped in an optical lattice [43]. Let us consider a gas of laser-
cooled bosonic atoms placed at the intersection of several coherent laser beams,
thus creating a periodic interference pattern realizing a periodic potential for the
atoms. In an effective description, the bosons can tunnel from one site of the lat-
tice to a neighbouring one, despite the repulsive interactions penalizing multiple
occupancy of a single site. If the tunneling prevails on the repulsion, the atoms
can delocalize over the whole lattice and form a coherent superfluid condensate;
on the other hand if interactions are predominant, they induce a Mott insulator
phase where atoms are localized.

In the case of the implementation of the Bose-Hubbard model in cold atoms,
the interplay between hopping and repulsion can be continuously tuned by mod-
ulating the intensity of the laser trap which controls the depth of the optical
lattice. The transition between a superfluid and an insulating phase can then be
directly studied by means of absorption images after time of flight of the inter-
ference pattern formed after the release of the atomic cloud from the trap. As
it can be seen in Fig. 1.3 for small depths of the optical lattice - when tunnel-
ing is dominating - the interference pattern exhibits sharp peaks manifesting the
phase coherence of a superfluid phase. However, as the lattice depth increases the
peaks progressively start to blur and ultimately become rounded maxima, thus
heralding the loss of coherence and the emergence of the Mott insulator.
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1.1. Of entanglement in many-body physics

(a) (b) (c) (d)

Figure 1.3: Quantum simulation of the superfluid-Mott insulator transition -
examples of absorption image obtained of the interference pattern obtained after
releasing the particles from the trap : (a) V0 � 0Er, (b) V0 � 3Er, (c) V0 � 14Er,
(d) V0 � 16Er, where V0 is the lattice depth and Er the recoil energy (pictures
adapted from [43]).

Another fundamental field of interest for quantum simulation is the study of
quantum magnetism of localized spins. If a Mott insulator is realized using spin-
ful atoms (either bosonic or fermionic), the residual motion of the atoms around
the site at which they are pinned leads to effective exchange interactions between
the spins [31]; this mechanism is at the basis of e.g. antiferromagnetism in mag-
netic insulators [8]. Yet observing antiferromagnetic spin correlations in atomic
Mott insulators, while achieved in some remarkable experiments [62], remains
a challenge because of the very low entropies required for the spin ensemble to
develop ordering. An alternative route for the study of quantum magnetism in
atomic physics is offered by Rydberg atoms [20].

Rydberg atoms are atoms in which an electron got promoted to a high-energy
state (n � 50, for instance). They are characterized by their long lifetime (gener-
ically of the order of 100µs for n � 50) that scales with the principal quantum
number like τ9n3. Besides, as the excited electron lies in a highly excited orbital,
the electric dipole moment of Rydberg atoms is also especially large and scales
like d9n2. This property is particularly interesting as it stands at the origin of
the so-called Rydberg blockade. Indeed, below a distance Rb called the blockade
radius, the energetic cost of the dipole-dipole interactions (in the form of van der
Waals interactions decaying as 1{R6 with R the interatomic distance) prevents
two atoms from being simultaneously driven to the same Rydberg state. As a
result the transition to the doubly excited state becomes off-resonant in favour of
an entangled state |ψy � p|gry � |rgyq{?2, where |gy stands for the ground state
of the atom and |ry for the driven Rydberg state.

Further progress in the trapping and manipulation of individual atoms using
arrays of optical tweezers has opened the way to the realization of Rydberg-atom
simulators, offering an ideal platform for the quantum simulation of magnetism,
as we shall describe in the following paragraphs.

Rydberg atoms are mappable in an effective manner onto S � 1
2 spins, by

associating the Rydberg state to spin-up state (|ry � | Óy) and ground state to
spin-down state (|gy � | Òy) [80]. Considering a set of laser-cooled atoms pinned
on the sites of a regular lattice and exposed to an external laser driving the
transition |gy Ñ |ry, their interactions are described by the atomic Hamiltonian,
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a b c

d e f

Figure 1.4: Examples of 2d and 3d arrays of trapped atoms - the upper row shows
two-dimensional realization of atom arrays : (a) a square lattice, (b) a honeycomb
lattice, (c) a kagomé lattice (pictures from [12]). On the other hand, the lower
row shows three-dimensional atomic structures : (d) a Möbius stripe, (e) a torus
and (f) a hyperboloid (pictures from [11])

Ĥ � Ω
2
¸
i

pσ̂rgi � σ̂gri q �∆
¸
i

σ̂rri � 1
2
¸
i�j

Vijσ̂
rr
i σ̂

rr
j , (1.17)

with σ̂rgi � |gyixr|i and σ̂rri � |ryixr|i. While the first term describes the Rabi
coupling of amplitude Ω between the ground state and the Rydberg state induced
by the driving laser, the second accounts for the detuning ∆ � ω�ωgÑr between
the laser frequency and the actual atomic transition frequency. As for the third
term, it contains the dipole-dipole interactions between the Rydberg states, with
Vij � C6{|ri � rj|6 taking the form of a van der Waals interaction.

The atomic Hamiltonian can then be recast as a spin system by using the
aformentioned identification between atomic and spin states. Indeed, according
to this prescription |gyixr|i � | ÓyixÒ |i accounts for spin-flip operator at site
i, while |ryixr|i � | ÒyixÒ |i counts the population of up-oriented spins at this
same site. Besides, by using the identities Ŝxi � p| ÒyixÓ |i � | ÓyixÒ |iq {2 and
| ÒyixÒ |i � Ŝzi � 1i{2, the Hamiltonian can be rewritten as an Ising model
immersed in transverse and longitudinal magnetic fields,

Ĥ � Ω
¸
i

Ŝxi �
¸
i

pκi �∆q Ŝzi �
1
2
¸
i�j

VijŜ
z
i Ŝ

z
j , (1.18)

where κi � 1
2
°
j,i�j Vij. Therefore, Rydberg atoms offer an experimental platform

for the exploration of the physics of quantum Ising models.

In addition to their suitability to mimic the physics of antiferromagnetic spin
systems, Rydberg simulators also demonstrated the ability to arrange the atoms
into complex cristalline structures in dimensions d � 1, 2 or 3 [11,12], thus opening
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AFM

Figure 1.5: Phase diagram of a one-dimensional Rydberg-atom simulator on the
plane defined by the ratios between Rabi driving Ω, detuning ∆ and nearest-
neighbour coupling VNN � C6{a6, where a stands for the lattice spacing. Rydberg
blockade leads to the emergence of a Néel state (Rydberg states are represented as
black dots and ground states a white ones), however for strong nearest neighbours
interactions Zn-symmetric phases appear.

the way to the experimental study of systems where the interplay of antiferro-
magnetism and geometry is especially determinant, such as in frustrated systems.
This high tunability of the system geometry is reached by trapping each atom in
an individual dipole trap called optical tweezer; the ensemble of tweezers can then
be arranged in a controlled manner in order to reproduce translational invariance
and symmetries. A few examples of atom arrays that can be produced using this
technique are shown in Fig. 1.4.

Seminal experiments have demonstrated the appearance of spin-spin corre-
lations induced by the above many-body Hamiltonian between Rydberg atoms,
either via a quench protocol from an initially factorized state [14, 54], or via an
adiabatic protocol [45,59] aiming at reproducing the ground-state correlations of
the quantum Ising model in its long-range ordered phase. In either case, these ex-
periments explored a rich phase diagram shown in Fig. 1.5, where one can observe
that interactions among Rydberg atoms compete with the Rabi driving and the
detuning to lead to a quantum phase transition between a Z2-ordered phase (with
a finite staggered magnetization) and a disordered state. Moreover, more com-
plex states with Zn-order appear when interactions beyond nearest neighbours
become important.

The Ising model is actually only one of the spin models that can possibly
be simulated by Rydberg atoms. Another regime accessible to the experimental
set-ups of trapped atoms enables to implement dipolar XX spin models. This
model relies on two types of Rydberg states coupled by a microwave electromag-
netic field, both with the same principal quantum number n but differing by
their orbital quantum number, for instance the pair |n, sy and |n, py. In that
case the dipole-dipole interactions induce a state exchange between two atoms
|n, sy1|n, py2 Ø |n, py1|n, sy2, with an exchange rate directly related to the dipolar
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interactions Vij � C3p1 � 3 cos2 θq{|ri � rj|3, where θ is the angle between the
quantization axis and the internuclear axis. By identifying the Rydberg states as
spin states in the following manner |n, sy � | Óy and |n, py � | Òy, the Hamiltonian
can be written as

Ĥ � Ω
¸
i

Ŝxi �∆
¸
i

Ŝzi �
¸
i�j

Vij

�
Ŝ�i Ŝ

�
j � Ŝ�i Ŝ

�
j

	
. (1.19)

This model can be mapped onto a model of hardcore bosons with dipolar hopping,
and it has been used to investigate transport and the emergence of edge states in
an interacting version of the Su-Schrieffer-Heeger model (SSH) [60].

Rydberg simulators, due to the high control they offer on the lattice geometry
and to the richness of possible models they exhibit, offer a precious springboard
for the study of models relevant for condensed matter physics, and they already
proved their ability to explore a very wide spectrum of phenomena. In the follow-
ing we will mainly focus on the transverse-field Ising model and the possibilities
it offers for the exploration of exotic quantum dynamics.

Individually trapped Rydberg atoms are not the only quantum simulators that
offer the possibility to investigate the physics of quantum spin systems; another
popular platform for the quantum simulation of quantum magnetism is offered
by trapped ions [82]. The internal states of the ions encoding S � 1{2 spins are
coupled via virtual phonons of the Coulomb crystal induced by external lasers.
The laser frequency selects the phonon modes involved in the process, thereby
controlling the spatial structure of the couplings. The setup realizes a long-range
Ising model in a transverse field with the Hamiltonian

Ĥ � 1
2
¸
i�j

J0

|ri � rj|α Ŝ
z
i Ŝ

z
j � Ω

¸
i

Ŝxi , (1.20)

where the exponent α can be varied in the interval 0   α   3.

Finally, we can summarize the different spin Hamiltonians accessible to quan-
tum simulation on Rydberg-atom and trapped-ion set-ups by the α�XXZ model
in longitudinal and transverse magnetic fields, whose Hamiltonian reads:

Ĥα�XXZ � 1
2
¸
i�j

1
|ri � rj|α

�
J

2

�
Ŝ�i Ŝ

�
j � Ŝ�i Ŝ

�
j

	
� JzŜ

z
i Ŝ

z
j

�
(1.21)

�
¸
i

�
ΩŜxi �HŜzi

�
.

1.2 The challenge of quantum complexity
As we have discussed in the previous section, quantum many-body systems fea-
ture a rich phenomenology of dynamical effects related to fundamental aspects of
relaxation and thermalization. Experimentally, dynamics following the perturba-
tion of a system is also used to extract information on its properties by analyzing
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1.2. The challenge of quantum complexity

how it responds to the perturbation in question. For these reasons, the study
of dynamics motivates the development of experimental platforms offering pos-
sibilities for quantum simulation, but also numerical approaches that can tackle
the problem of many-body dynamics. However, apart from some very specific
models which exhibit explicit solutions to their equations of motion, the study
of the dynamics in quantum many-body physics is a challenging problem that
can only be addressed by means of cutting-edge numerical approaches. In the
following, we will review some of the strategies developed to provide predictions
on the dynamics of many-body systems.

1.2.1 Exact diagonalization and beyond
Considering an assembly of N quantum objects described by local Hilbert spaces
hi of arbitrary dimension D, the ensemble of possible states that the whole system
can explore is a Hilbert space H � bihi of dimension DN . As a result, the expo-
nentially growing number of independent variables to handle puts large systems
out of reach for exact diagonalization schemes, mainly as a matter of memory
storage. However, the use of clever numerical methods can help reduce the com-
plexity of the calculations compared to a naive, brute-force approach. One of the
most celebrated examples of such numerical methods is the Lanczos algorithm [55]
designed to reconstruct a portion of the spectrum of large matrices. Given an ar-
bitrary state |ψy, the algorithm consists in projecting the Hermitian matrix H on
the m-th order Krylov space Km p|ψyq � Spant|ψy,H|ψy,H2|ψy, . . . ,Hm�1|ψyu,
where it can be written in term of a m � m tridiagonal matrix which can be
diagonalized with a much smaller numerical cost.

In order to explore the physics and dynamics of quantum many-body systems
for sizes beyond the reach of exact diagonalization, we need to renounce to ex-
actly reconstructing the many-body state. A general strategy is to find an Ansatz
(a guess of the state’s form) that captures enough of its physical properties so
as to provide a faithful description in terms of a smaller amount of independent
parameters, ideally scaling polynomially with system size N . The starting point
of this quest should be the most basic level of understanding we can grasp of the
physics at hand, and this level is generically offered by the mean-field approx-
imation which amounts to approximating the quantum state with a factorized
form (Eq. (1.4)). Although this description proves to be effective in the treat-
ment of many-body phenomena such as superconductivity (within the celebrated
Ginzburg-Landau theory), it totally neglects the existence of entanglement, hence
the need to complete the mean-field approach with quantum correlations. This
aim can be achieved in two main ways:

1. One can make an educated guess (Ansatz) of the wavefunction which entan-
gles the degrees of freedom in the manner most appropriate to the physics of
the system under investigation, and then adjust the parameters according
to a variational principle valid either for the search of ground state or of
Hamiltonian evolutions. This strategy represents the basis of the variational
approaches.
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Chapter 1. Quantum systems out of equilibrium

2. The other strategy is based on developing so-called semi-classical methods,
in which quantum mechanical corrections to a mean-field description (or
to a fully classical description) are taken into account only partially in or-
der to make the problem tractable. Semi-classical approaches may consist
in in refining the mean-field image in order to take into account quantum
correlations, by building a linearized quantum field theory on top of the
mean-field picture (as done e.g. in Bogoliubov theory); or by introduc-
ing quantum noise in the initial state of a classical evolution dynamics of
classical spins (as done in the so-called Truncated Wigner Approximation).

In the following, we will discuss these two approaches, the possibilities they
offer and their limitations.

1.2.2 Variational approaches
The principle of the variational method consists in finding a relevant representa-
tion for the quantum state parametrized by a set of adjustable parameters that
need to be optimized in order to minimize some functional of the state, namely
the expectation value of the Hamiltonian when searching for the ground state, or
the action if our interest is focused on dynamics [13].

Let us start from the assumption that the many-body state is faithfully
described by a variational state parametrized by a vector aptq P Cm of time-
dependent variational parameters whose number is assumed to scale polynomially
with system size N : m � Nk,

|Ψ paqy �
¸
σ

cσ paq |σy, (1.22)

where the sum runs over an orthonormal factorized basis |σy � |σ1y b � � � b |σNy
of the Hilbert space.

At this point it is important to stress that for the same problem several possible
variational Ansätze are possible and may give similar results, while on the con-
trary some others are inefficient for the considered class of systems and would
fail at providing a satisfactory description. Knowing the limits of a variational
approach is then essential in order to determine its relevance and efficiency in ex-
ploring the physics of a system. In the following, we will shortly review two major
classes of variational states: Tensor Network States (TNS) and correlated vari-
ational states treated with time-dependent variational Monte Carlo algorithms
(tVMC)

Matrix Product States The Matrix Product States (MPS) [83] belong to the
wide familly of TNS Ansätze which also encompass Projected Entangled Pairs
State (PEPS) [85]. Let us consider a chain of N sites: a matrix product state
has coefficients cσ parametrized as the trace of a matrix product,

|Ψy �
¸
σ

Tr rAσ1
1 . . . AσN

N s |σ1 . . . σNy (1.23)
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1.2. The challenge of quantum complexity

where the Apσiq
i are a set of χ�χ matrices, one for each state of the local Hilbert

space (of dimension D). As a result, MPS states are described by a linearly grow-
ing number of free parameters m � NDχ2, χ being called the bond dimension.

Though very efficient in the investigation of ground-state properties, MPSs
suffer from a limitation linked to entanglement, restricting their efficiency for the
study of quantum dynamics. First and foremost, the amount of entanglement that
can be encoded in MPS states depends logarithmically on the bond dimension
EA � lnχ, meaning that we need an exponentially growing bond dimension in
order to faithfully reproduce states with volume-law entanglement scaling. MPS
states provide a very good description of the dynamics for short times, when the
amount of entanglement remains limited, but ultimately fail to provide insights
on the equilibration of quantum systems. These limitations are common to fur-
ther TNS, such as PEPS extending MPS construction to approximate weakly
entangled many-body states at dimension d ¡ 1.

Artificial Neural Network states A valuable alternative to TNS is offered by
a class of states in which coefficients cσ are given an explicit functional form. An
example thereof are so-called entangled plaquette states (EPS) [65] or correlator
product states (CPS) [24], for which

cσ �
¹
ij

fijpσi, σjq, (1.24)

where fij are functions of the spin configuration of a pair of lattice sites, introduc-
ing correlations among them. A most general parametrization of such functions
for S � 1{2 systems is in the form

fijpσi, σjq � exp paiσi � ajσj � bijσiσjq . (1.25)

Another popular example of such functions, hinging upon the representation
of N -argument functions via neural networks, is offered by the so-called neu-
ral network quantum states, such as the one built upon a restricted Boltzmann
machine [22]

|Ψy �
¸
σ

e
°

i aiσi

M¹
j�1

2 cosh
�
bj �

Ņ

i�1
Wjiσi

�
|σ1 . . . σNy, (1.26)

where taiu, tbju and tWjiu are complex variational parameters for the Ansatz. All
these states can be optimized or time evolved by Monte Carlo sampling of their
average energy (and gradients thereof, calculated with respect to the variational
parameters); therefore their use to study many-body physics at equilibrium or
away from it goes generally under the name of variational Monte Carlo (VMC).

Unlike TNS, the above states can exhibit volume-law scaling of entanglement
entropy. Yet, also unlike TNS, it is difficult to efficiently extend their parameters
so as to progressively span the whole Hilbert space. Therefore their use may often
lead to results that cannot be systematically improved.
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Figure 1.6: Dynamics of spin imbalance for an XX spin chain of length L � 50 in
a random z-oriented magnetic field. The dynamics was computed both using the
DTWA approach and exact diagonalization using Jordan-Wigner transformation
and averaged over 50 realization of disorder.

1.2.3 Semi-classical methods
As we outlined earlier, an alternative to variational Ansätze for the study of
many-body physics is offered by semi-classical approaches. This thesis will fun-
damentally rely upon the idea of building a linearized quantum-field theory on
top of the mean-field approximation, as it will be fully explained in the next
chapter. As already mentioned above, an alternative to this approach is offered
by the Truncated Wigner Approximation (TWA).

The TWA method is built upon the formalism of the Wigner transform which
represents a wavefunction as a function defined on the classical phase space of
the problem [102], thus establishing a correspondence between the Hilbert space
of quantum states and configurations of an equivalent classical system. The
phase-space representation of the quantum state, the so-called Wigner function,
is a pseudo-probability distribution of classical configurations accounting for the
noise inherent in the quantum nature of the state. When the Wigner function is
non-negative, the TWA approach consists of using it as a probability distribution
to sample initial conditions of the dynamics, which are subsequently evolved using
classical equations of motion. Classical observables average over different classical
trajectories generated in this way can then be used to reconstruct the evolution of
quantum operators. This approximation has been recently specialized to discrete
quantum systems (DTWA) such as spins [79], where the classical equations of
motion amount to a precession dynamics, reading

d
dtSi � Ω ptSuq � Si, (1.27)

where Si is a classical vector on a sphere, and ΩptSuq is the sum of an external
magnetic field and of the field instantaneously induced by the other spins on the
i-th spin.
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Despite showing good agreement with exact results on short time scales, the
DTWA has fundamental limitations in describing accurately the relaxation of
quantum many-body states. Indeed, at long times, the classical nature of the
equations of motion brings the system towards a classical thermal state, as er-
godicity generically loses memory of the quantum origin of the initial conditions.
The DTWA is bound to fail to account for quantum interference effects, especially
in cases where these effects are dominant as in the case of Anderson localization.
This effect is illustrated in Fig. 1.6, where the time evolution of the spin imbal-
ance, or staggered magnetization, defined as

I � 1
N

¸
i

p�1qixSzi y, (1.28)

is represented for a XX spin chain initialized in a Néel state | ÒÓÒÓ . . . y, and
exposed to a random magnetic field �°i hiS

z
i , where hi is uniformly distributed

over the window r�W,W s, with W � 2. In this case, the spin model can be
reformulated in terms of free fermions in a random potential, realizing Anderson
localization. While the exact calculation of the spin imbalance reaches a plateau
at long times, the DTWA calculations, after agreeing at short times with the
exact solution, show at longer times a slow relaxation towards 0, the failure to
reproduce localization.

The conclusion of this brief review of the different approaches to dynamics is
that, beyond the exact diagonalization algorithms, there is no universal method
which equals in any case the same level of accuracy as exact solutions. The
method we will present in the next chapter is not an exception, although it offers
several advantages, compared to the methods discussed so far, in terms of the
simplicity of the approach, as well as of the showcase of quantum phenomena
that it can describe.
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Gaussian approaches for
quantum spin systems

”L’ange qui descend et qui monte
Sur l’escalier d’or voltigeant ;
La cloche mêlant dans sa fonte
La voix d’airain, la voix d’argent ;”

Théophile Gautier, ”Contralto”, Emaux et Camées

2.1 Linear spin-wave theory
2.1.1 Quantum-field corrections to mean-field
In this chapter we will discuss the theoretical approach which is at the heart
of the original results presented in this thesis, namely the semiclassical approach
based on adding quantum corrections to the mean-field solution of the many-body
problem, either at equilibrium or away from it.

This approach is widespread in the context of many-body physics, and it is
the basis of seminal theoretical approaches for quantum fluids and lattice models:

1. In the context of bosonic fluids, quantum corrections to the mean-field
solution are described by Bogoliubov theory, which, in its modern for-
mulation [35], represents the correction to Gross-Pitaevskii (GP) theory,
namely to the solution of the many-body problem assuming the existence of
a perfect condensate with a macroscopic wavefunction satisfying the non-
linear Gross-Pitaevskii equation. Bogoliubov theory describes the parti-
cles pushed outside of the condensate by the interactions as a gas of non-
interacting quasi-particles, obtained by the diagonalization of the Hamilto-
nian approximated to a quadratic form around the GP solution.

2. A similar construction in the context of fermionic fluids is that of Bardeen-
Cooper-Schrieffer (BCS) theory, which, on its most general formulation, can
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Chapter 2. Gaussian approaches for quantum spin systems

be viewed as a description in terms of a quadratic fermionic Hamiltonian of
the elementary excitations on top of a condensate of Coopers pairs – which,
unlike in Bogoliubov theory, is self-consistently calculated from the solution
of the quadratic Hamiltonian.

Finally in the context of spin systems, most relevant for this thesis, the above
approach is embodied by spin-wave theory, which consists in the search for the
ground state of the Hamiltonian in the classical limit of infinite spins (S Ñ 8);
and to the calculation of the first quantum correction to such a picture via a
spin-to-boson mapping of the Hamiltonian; and to a description of the deviations
of the spins from this classical ground-state orientation as a gas of non-interacting
bosonic quasi-particles, in a very similar manner to what is done in Bogoliubov
theory.

In the following, we shall discuss in details linear spin-wave theory in the
specific case of the quantum Ising model, inspired by the capabilities of Rydberg-
atom simulators.

2.1.2 Spin-boson projection
In order to conduct our study, we shall give ourselves a general framework fitting
the description of any spin systems described by the tranverse field Ising model,
under the unique assumption that the ground state displays long-range order,
either spontaneous or induced by an external field. So let us consider N spins
arranged on a lattice: the magnetic structure of the ordered ground state usually
defines a unit cell containing n distinct elements (e.g. n � 2 in the case of the
antiferromagnetic square lattice). We shall consider Ising spins coupled according
to a distance-dependent function Jprq and immersed in a magnetic field B �
pΩ, 0,∆q in the x� z plane. The Hamiltonian then reads

Ĥ � 1
2
¸
lp,l1p1

J ll
1

pp1Ŝ
z
lpŜ

z
l1p1 � Ω

¸
lp

Ŝxlp �∆
¸
lp

Ŝzlp, (2.1)

where the pair of indices pl, pq labels the unit cell and the site on the unit cell,
respectively. The matrix we previously used to encode the couplings between
spins can be rewritten as J ll1pp1 , a N � N matrix of n � n blocks, each describing
the couplings between the unit cells l and l1.

Mean-field approximation � The linear spin-wave theory approach starts
from the construction of a reference state displaying long-range order, which in
general corresponds to the ground-state of the model in the classical (S Ñ 8,
where S is the spin length) limit. The construction can also be done at the
level of quantum states in a variational manner, by using a mean-field Ansatz
for the ground state. For a set of spin-1

2 , the mean-field picture is provided by a
factorized form, in which each spin has a well-defined orientation of states on a
Bloch sphere parametrized by the angles pθlp, φlpq
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2.1. Linear spin-wave theory

|ΨMFy �
â
l,p

�
cos

�
θlp
2



| Òylp � eiφlp sin

�
θlp
2



| Óylp



. (2.2)

The determination of the proper set of angular parameters defining this Ansatz
relies on the variational minimization of the mean-field energy, defined as

EMF ptθlpu, tφlpuq � xΨMF|Ĥ|ΨMFy. (2.3)
Generically, the mean-field state exhibits translational invariance, such that every
unit cell has the same magnetic structure. Therefore the number of free variables
to determine in the minimization of the energy is reduced to n pairs of angles
pθp, φpq.

For spins of arbitrary length S the Ansatz for the ground state takes the more
specific form of a so-called coherent spin state (CSS) :

|ΨCSSy �
â
lp

|Spθp,φpqylp, (2.4)

where |Spθp,φpqy is the state of an S-spin fully aligned with the pθp, φpq direction
on the unit sphere. Even though we shall develop the following treatment to the
case of an arbitrary value of S, all of our results will be specialized to the case
S � 1{2, relevant for the physics of Rydberg-atom simulators.

For the model at hand (Ising spins coupled to a magnetic field), the orienta-
tions of the spins in the above factorized states can be searched in the px � zq
plane in order to minimize the spin-spin interaction and the coupling to the field,
namely @p, φp � 0. The angles θp define an operator transformation as a set of
local rotations around the y-axis Rypθpq which will bring the local z-axis to co-
incide with the axis defined by the mean-field orientation. Under such a rotation
the spin operators transform as

Ŝx
1

lp � cos θpŜxlp � sin θpŜzlp
Ŝy

1

lp � Ŝylp (2.5)
Ŝz

1

lp � cos θpŜzlp � sin θpŜxlp,

and the trial ground state becomes a perfect ferromagnet with all spins aligned
along the z1 axis. The Ising Hamiltonian, in terms of these rotated spins, takes
the form

Ĥ � 1
2
¸
lp,l1p1

J ll
1

pp1

�
cos θp cos θp1Ŝz

1

lp Ŝ
z1

l1p1 � sin θp sin θp1Ŝx
1

lp Ŝ
x1

l1p1

	

� 1
2
¸
lp,l1p1

J ll
1

pp1

�
cos θp sin θp1Ŝz

1

lp Ŝ
x1

l1p1 � sin θp cos θp1Ŝx
1

lp Ŝ
z1

l1p1

	
(2.6)

�
¸
lp

rpΩ cos θp �∆ sin θpq Ŝx1lp � pΩ sin θp �∆ cos θpq Ŝz1lps.
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Chapter 2. Gaussian approaches for quantum spin systems

Once the mean-field ground state has been established, spin-wave theory amounts
to treating the quantum fluctuations beyond the mean-field approximation, which
are introduced by means of a mapping of the spins onto a boson field via the
Holstein-Primakoff transformation.

Holstein-Primakoff transformation � Let us consider a set of bosonic op-
erators b̂lp, b̂:lp defined on each site of the lattice, such that rb̂lp, b̂:l1p1s � δll1δpp1 .
The number of bosons on each site maps onto the local spin deviation with re-
spect to the z1 direction Ŝz1lp � S � b̂:lpb̂lp. Hence, the bosonic Fock space must be
truncated to prevent the single-site occupancy to go beyond b̂:lpb̂lp � 2S. Building
the other spin components so as to satisfy the SUp2q algebra leads the canonical
transformation called Holstein-Primakoff transformation (HP) [50]

Ŝz
1

lp � S � b̂:lpb̂lp

Ŝ�lp �
b

2S � b̂:lpb̂lp b̂lp (2.7)

Ŝ�lp � b̂:lp

b
2S � b̂:lpb̂lp. (2.8)

Bosonic commutation relations ensure the preservation of the spin algebra rŜαi , Ŝβj s �
iεαβγδijŜ

γ
i . This non-linear transformation can be linearized under the assump-

tion that the Bose gas with which we approximate the magnetic excitations of the
spin system is sufficiently dilute, namely that the bosonic population is far from
the maximal allowed population: xb̂:lpb̂lpy ! 2S. Under this assumption, we may
neglect the boson number with respect to 2S under the square roots defining the
Ŝ� and Ŝ� operators, and have Ŝ�lp �

?
2S b̂lp. In so doing the spin Hamiltonian

is mapped onto that of a system of coupled harmonic oscillators, or in other words
a quadratic form of bosonic operators :

Ĥ � EMF � 1
2
¸
lp,l1p1

�
b̂:lp
b̂lp

�T

All1

pp1

�
b̂l1p1

b̂:l1p1

�
�Opb3q, (2.9)

where EMF is the mean-field energy defined previously, while All1

pp1 stands for
a n � n real-valued symmetric matrix whose explicit expression is detailed in
Appendix A for the case of interest of the Ising model in a magnetic field.

2.1.3 Bogoliubov transformation
The above quadratic Hamiltonian can be block-diagonalized by moving to Fourier
space and considering the transformed operators b̂k,p �

a
n{N °l exppik � rlqb̂lp,

leading to the following expression

Ĥ � EMF �
¸
k

�
tb̂:k,pu
tb̂k,pu

�T

Ak

�
tb̂k,pu
tb̂:k,pu

�
, (2.10)
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where tb̂k,pu are vectors of bosonic operators with n entries, and Ak is a 2n� 2n
matrix. The k vectors are defined on the Brillouin zone corresponding to the
Bravais lattice of N{n magnetic unit cells.

The diagonalization of the quadratic Hamiltonian is accomplished via a lin-
ear transformation on the operators which preserves the bosonic commutation
relations. Such a transformation, called Bogoliubov transformation, introduces
new bosonic operators β̂k,r and β̂:k,r as a linear combination of the b̂k,p and b̂:k,p
operators

�
β̂k
β̂:�k



� Tk

�
b̂k
b̂:�k



(2.11)

Under such a transformation the Hamiltonian describes free quasi-particles

Ĥp2q �
¸
k,r

ω
prq
k

�
β̂:k,rβ̂k,r �

1
2



, (2.12)

where ωprqk are the eigenenergies attached to the quasi-particle of momentum k of
the r-th band. The preservation of the bosonic commutation relations requires
that Tk obeys to the relation TkηT

:
kη � 1, where

η �
�

1n 0n
0n �1n



. (2.13)

The eigenenergies are then obtained by transforming the modified Hamiltonian
ηA with respect to the matrix Tk, namely TkηAkT

�1
k � Ωk, with

Ωk � diagpωp1qk , . . . , ω
pnq
k ,�ωp1qk , . . . ,�ωpnqk q. (2.14)

It shall be useful in the latter to unravel the inner structure of the Bogoliubov
matrix, which is separated in n� n blocks

Tk �
�
Uk V �

k

Vk U�
k



, (2.15)

which are themselves composed of n column vectors of length n, such that Uk �
pup1qk , . . . ,u

pnq
k q and Vk � pvp1qk , . . . ,v

pnq
k q, each encoding the spatial structure over

the unit cell of the eigenfunction associated with the couple of quantum numbers
pk, rq. Besides, the expression of the inverse Bogoliubov transformation T�1

k �
ηT Tk η translates into a property of η-orthogonality : puprqk ,v

prq
k qηpupr1qk ,v

pr1q
k q �

δrr1 . Once the diagonalization scheme is achieved, one holds the keys to explictly
caculate the equilibrium properties as the dynamics of the β-bosons fields and,
applying backwards the Bogoliubov and HP transformations, one can reconstruct
the some properties for the spin.
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Figure 2.1: b- and β-boson images of dynamics - the upper panel illustrates
the spontaneous creation and annihilation of bosonic pairs from the vacuum of
excitations (mean-field state). The lower panel represents the same situations
from the point of view of a gas of free quasi-particles. At initialization, the
system is a combination of coherent states of pairs, the dynamics only ballistically
propagating these pairs.

2.1.4 Bosonic Gaussian states
In the following, we shall be mostly concerned with the study of quenches starting
from the mean-field state, namely the vacuum of b-bosons. This state has the ad-
vantage of being simple and, if it offers a reasonnable approximation of the ground
state of the evolution Hamiltonian, the dynamics initialized from it is expected
to generate a dilute gas of quasiparticles, thereby justifying the linear spin-wave
theory approach, as described below. Indeed, due to the pair-creation and an-
nihilation terms b̂lpb̂l1p1 introduced in the Hamiltonian by the Sx1Sx1 couplings,
the vacuum of b-bosons is not an eigenstate of the system, and consequently
the time evolution results in the spontaneous creation of magnetic excitations
as illustrated in the upper panel of Fig.2.1. The resulting density of b-bosons,
r � 1{p2SNq°lp xb̂:lpb̂lpy is then expected to grow until reaching a finite value
at equilibration. The density r quantifies the validity of the dilution hypothe-
sis upon which the linear spin-wave theory stands, thus gauging how reliable its
results are. In order to be accurately described by the LSW theory, the spin
dynamics shall keep the density at sizably small values

rptq � 1
2SN

¸
lp

xb̂:lpb̂lpyptq ! 1. (2.16)

On the other hand, β-bosons offer a dual and complementary point of view on the
system and its dynamics. While, the mean-field state is devoid of any b-boson, it
can be described in terms of β-quasiparticles as a gas of finite and fixed density.
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Indeed, the population n̂k,r � β̂:k,rβ̂k,r of β-bosons at every momentum and for
every band is a conserved quantity of the quadratic model used to approximate
the system of interest (rn̂k,r, Ĥs � 0). In terms of the β-bosons, the mean-field
state takes the form of a combination of two-mode squeezed states [15]

|ΨMFy � N exp p�Kq |0yβ (2.17)

K � 1
2
¸
k

¸
r,r1

β̂:k,rrpU :
kq�1V :

k srr1 β̂:k,r1 ,

where N is a normalization factor and |0yβ the vacuum of β-quasiparticles, or
in other words the ground state of the LSW quadratic Hamiltonian. This image
also puts the quench dynamics into another perspective. Indeed, the form taken
in Eq.(2.17) by the many-body state, namely a collection of two-mode squeezed
states, belongs to a broader family of states dubbed as Gaussian states [42]. These
states are characterized by their reduced density matrices for any subsystem A,
which admit a description in terms of the exponential of an Hermitian quadratic
form of bosonic (or fermionic) operators called entanglement Hamiltonian,

ρ̂A � 1
Z

exp
�
�1

2
¸
i,jPA

�
b̂:iAij b̂j � b̂iBij b̂j � h.c

	�
� 1
Z

expp�ĤpAq
E q, (2.18)

Z being a normalization factor ensuring the property Trrρ̂s � 1. One of the
main characteristics of Gaussian states is that they can be fully described in
terms of their covariance matrix, or in other words by the two-point correlators
Gij � xb̂:i b̂jy and Fij � xb̂ib̂jy due to Wick’s theorem.

Theorem 1 (Wick). Let us consider pφ1, φ2, � � � , φnq an even-numbered set of
zero-mean valued bosonic operators (φ � bp:q); the expectation value of their prod-
uct on a Gaussian state reads

xφ1φ2 � � �φny �
¸
pPP2

n

¹
ti,juPp

xφiφjy, (2.19)

where P2
n is the ensemble of possible pairing of n elements, while the product runs

on all the pair configurations contained in p.

Assuming that the Hamiltonian involved in the unitary evolution of the bosonic
operators b̂p:qi is quadratic, then the evolved form of the operators at any time
is a linear combination of the b-operators at t � 0, which can be written in a
vectorial way as �

bptq
b:ptq



� Uptq

�
bp0q
b:p0q



, (2.20)

where Uptq is a 2N � 2N time-dependent matrix. Injecting this linear relation
into the expression of the entanglement Hamiltonian, one finds that the unitary
evolution preserves the Gaussian nature of the state,
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HEptq �
�
b:p0q bp0q�U :ptqMp0qUptqloooooooomoooooooon

Mptq

�
bp0q
b:p0q



, (2.21)

where Mp0q is the matrix describing the quadratic form of b-operators at t � 0,
therefore enabling the application of Wick’s theorem at all times, as well as
all other properties descending from the Gaussian nature of the state. One of
them, being the ability to compute exactly the entanglement entropy of a reduced
density matrix.

Similarly to the linear spin-wave theory, the quadratic form encased in the
exponential can be diagonalized via an invertible Bogoliubov transformation U
in order to obtain a set of eigenvalues ωα called entanglement spectrum

η

�
A B
B� A�



� U

�
diagpωαq 0

0 �diagpωαq


U�1. (2.22)

As the state of the system is fully described by the two-point correlators, one
must be able to use the information stored in the covariance matrix to deduce the
eigenspectrum. As it shares its eigenbasis with the entanglement Hamiltonian,
the covariance matrix can actually be related to the entanglement spectrum by
means of the relation

��1�G� F
�F � G



� U

�
diagp�1� nαq 0

0 diagpnαq


U�1, (2.23)

where the coefficients nα � 1{pexppωαq � 1q are the populations of each entan-
glement mode of the density matrix [39]. Similarly to thermal entropy of a Bose
gas, these bosonic populations can be linked to the entanglement entropy using
the relation

EA �
¸
α

rp1� nαq lnp1� nαq � nα lnnαs. (2.24)

The theoretical framework of linear spin-wave theory provides an approximate
description of the system in terms of an integrable model with a Gaussian rep-
resentation of states, leading to a full description of the system in terms of the
two-point correlators. However, one should keep in mind that this description
in terms of an integrable model is inaccurate at long times, however valid the
dilution hypothesis might be. Indeed, the conservation of the integrals of motion
constraints the long-time and equilibration dynamics, leading the system toward
a pre-thermalized state. Which may not be realized by the exact diagonalization
of the system.
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2.2 The treatment of non-linearity : the Gaus-
sian Ansätze

2.2.1 Modified spin-wave theory
Linear spin-wave theory relies on the strong assumption that the deviation of
the quantum state from the mean-field state is sufficently weak to justify a lin-
earization of the Holstein-Primakoff transformation. This dilution hypothesis is
accurate when the mean-field state is itself a good approximation of the quantum
ground state, but breaks down when quantum fluctuations become sizably large,
e.g. near quantum critical points at equilibrium. On the other hand, stronger
deviations from the mean-field state can be accounted for when dealing with the
non-linear terms of the Hamiltonian, something that can be done in an approxi-
mate fashion while retaining the Gaussian nature of the states generated by the
approach, either at equilibrium as well as away from it. These observations are
at the heart of Takahashi’s modified spin-wave theory (MSW) [92], which pro-
vides self-consistent equations for the two-point correlators fully describing the
Gaussian state of the system.

In the following, we will outline the reasoning underlying MSW theory for
translationally invariant systems at equilibrium, and then discuss its successes and
limitations. Let us assume that the density matrix for the state of the system
of interest, described by the Hamiltonian Ĥ, has a general Gaussian structure
reading

ρ̂ � 1
Z

exp
�
�1

2
¸
i,j

�
b̂:iAij b̂j � b̂iBij b̂j � h.c

	
�
¸
i

�
Cib̂i � h.c

	�
. (2.25)

Similarly to LSW theory, by means of a Bogoliubov transformation, the quadratic
form can be diagonalized to reconstruct a collection of harmonic oscillators de-
scribed by operators λ̂α, λ̂:α associated to eigenvalues ωα. For systems with
translational invariance, the index labelling these modes is represented by the
quasi-momentum k; the Bogoliubov transformation is then parametrized by an
momentum dependent Bogoliubov angle θk#

λ̂k � cosh θkβ̂k � sinh θkβ̂:�k
λ̂:k � � sinh θkβ̂�k � cosh θkβ̂:k

(2.26)

where we have introduced the shifted operators β̂k � b̂k�ck, with shifts ck � xbky
such that the linear part of the Gaussian form vanishes, only leaving the quadratic
part. In a state described by the density matrix

ρ̂ � 1
Z

expr�
¸
α

ωα
T
λ̂:k,αλ̂k,αs, (2.27)

where T is the temperature, the population of the mode k is Bose-Einstein dis-
tributed,
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FM QPM

PM

(a)

(b)

(c)

Figure 2.2: Phase diagram of the transverse field Ising model - (a) shows a
schematic phase diagram for the ferromagnetic transverse field Ising model, FM
standing for ferromagnetic, PM for paramagnetic. The blue and red lines on the
figure represent the inserts (b) and (c) which respectively compare MSW results
with LSW and quantum Monte-Carlo simulations obtained for a system of size
64� 64.

nk � xλ̂:kλ̂ky �
1

eωk{T � 1 (2.28)

leading to the following expression for the two points correlators Cij and Fij

$''&
''%
Cij � xβ̂:i β̂jy �

1
2δij �

1
N

°
k e

�ik�pri�rjq coshp2θkq
�
nk � 1

2




Fij � xβ̂iβ̂jy � xβ̂:i β̂:j y �
1
N

°
k e

�ik�pri�rjq sinhp2θkq
�
nk � 1

2



.

(2.29)

As suggested by Eq.(2.29), all the information on the two-point correlators, and by
extension on the Gaussian state, is actually carried by a finite set of independent
coefficients pθk, ωk, ckq. One can reconstruct the equilibrium of the system in a
variational fashion by treating the Bogoliubov angles, the eigenfrequencies and
the operator shift as variational parameters for the Gaussian state. As the system
is put into contact with a thermal bath at temperature T , the variational principle
that must be satisfied by the Gaussian state is the minimization of the free energy
F � xĤy � TS, where S is the thermodynamic entropy defined for bosonic
systems as S � °

k p1� nkq lnp1� nkq � nk lnnk. The Gaussian nature of the
state becomes central at this point, as it enables the use of Wick’s theorem,
reducing the expectation value of Ĥ to a function of the two-point correlators even
when including arbitrary non-linearities in the Hamiltonian. As a consequence,
the equations for the pθk, ωk, ckq parameters defining the minimum of the free
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energy are non-linear, but they can be generally solved in a self-consistent manner.
We remind that in the context of diluted Bose gases, this Gaussian approach is
also well known as the Hartree-Fock-Bogoliubov theory [44].

An example of implementation of the MSW theory is shown in Fig. 2.2 in the
case of the ferromagnetic transverse-field Ising model on the square lattice, whose
Hamiltonian is expanded up to the quartic order in terms of the b-operators. The
field-induced magnetization obtained using LSW and MSW theories is compared
with results obtained via quantum Monte-Carlo simulations along two lines of
the phase diagram (Fig. 2.2 (a)): at constant temperature T {J � 0 (blue) and at
fixed field Ω{J � 3 (red). We can see that although modified spin-wave theory
sizeably improves the results of the linear spin-wave approach and compares well
with the numerical simulation, especially on Fig. 2.2 (c), it still fails to grasp
the physics of the system in the vicinity of the quantum critical point (located
in Fig. 2.2 at Ωc{J � 1.522), since the self-consistent equations do not admit
a solution in the range 1.5 À Ω À 2. This numerical instability of equations
is caused by the emergence of imaginary parts in the frequencies ωk and are a
signature of strong quantum fluctuations that escape the description provided by
a self-consistent harmonic approximation [46].

2.2.2 Dynamical Gaussian Ansatz
The improvement brought to LSW theory by the extension of the Gaussian de-
scription of spins beyond the linearization regime leads us to implement the same
type of approach to the dynamics of quantum many-body systems. The Gaussian
Ansatz is also especially relevant as it enables to deal with the infinite hierarchy
of correlation functions in interacting systems.

Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy � Let us consider a
bosonic Hamiltonian written as the sum of quadratic and quartic forms of bosonic
operators Ĥ � Ĥp2q � Ĥp4q. In general, the expectation value of any observables,
expressed in terms of bosonic operators, can be generically written as a combi-
nation of n-point correlators, the simplest ones being the two-point correlators.
In the Heisenberg picture of quantum mechanics, the evolution of operators is
dictated by the Heisenberg equation. The equation of motion for the two-point
correlators xb̂:i b̂jy reads

i
d
dtxb̂

:
i b̂jy �

A
rb̂:i b̂j, Ĥp2qs

E
looooooomooooooon

f p2qpCp2qq

�
A
rb̂:i b̂j, Ĥp4qs

E
looooooomooooooon

f p4qpCp4qq

, (2.30)

where the f pnq functions are linear combinations of n-point correlators noted Cpnq.
We should particularly stress that this expression involves correlation functions
of higher order, and that consequently the dynamics of two-point correlators is
coupled to the evolution of four-point correlators. Writing down the equation
of motion for the four-point correlators, one can notice that new correlators of
higher degree appear. We can then deduce that, for interacting systems, the
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dynamics of n-point correlators is described by an infinite set of first-order linear
differential equations,

d
dtC

p2q � F p2qptCp2qu, tCp4quq
d
dtC

p4q � F p4qptCp4qu, tCp6quq (2.31)
d
dtC

p6q � F p6qptCp6qu, tCp8quq (2.32)
...

where F pnq are linear functions of the correlators. This set of linear differential
equations is generally called Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)
hierarchy and its infinite structure reflects the difficulty of studying the dynamics
of correlations in interacting systems.

Dynamical Gaussian Ansatz � Similarly to modified spin-wave theory, we
propose to overcome the problem of the BBGKY hierarchy by assuming that the
quantum many-body state of the system is Gaussian, allowing for the application
of Wick’s theorem. The high-order correlators can then be split into products
of two-point correlators, which then provide a full description of the physics of
the system of interest, and lead to a truncation of the BBGKY hierarchy to the
lowest order.

Let us now consider an arbitrary bosonic Hamiltonian Ĥ. Assuming that
the quantum state can be described according to the form given in Eq.(2.25)
the Heisenberg equations for the mean-field xb̂iy � ci and the two-point correla-
tors Gij � xβ̂:i β̂jy and Fij � xβ̂iβ̂jy result in a closed set of non-linear coupled
differential equations

d
dtci � ixrĤ, b̂isy � Jiptciu, tGiju, tFijuq

d
dtGij � ixrĤ, β̂:i β̂jsy � Gijptciu, tGiju, tFijuq (2.33)
d
dtFij � ixrĤ, β̂iβ̂jsy � Fijptciu, tGiju, tFijuq.

The first equation of this set describes the dynamics of the mean-field ci, and it
plays the same role as the Gross-Pitaevski equation in the theory of the dilute
Bose gases. Yet, within the Gaussian Ansatz the mean-field dynamics is coupled
to that of the two-point correlators, as in Hartree-Fock-Bogoliubov theory.

The dynamical Gaussian Ansatz offers an effective approach for the study
of dynamical phenomena that exceed the scope of linear spin-wave theory, with
applications to the physics of spin systems related to the current capabilities of
quantum simulators.

36



2.3. Fermionic Gaussian states

2.3 Fermionic Gaussian states
2.3.1 Spin-fermion projection
So far, we have seen how the physics of quantum spins could be projected onto
a bosonic image with an imposed constraint on the dimension of the local Fock
space. In particular, in the case where S � 1{2, the spin excitations map onto a
gas of hardcore bosons. In the following we shall consider an alternative mapping
of spins onto (spinless) fermions, which becomes particularly convenient in one
spatial dimension as it can map strongly interacting spin models onto models of
free fermions.

Jordan-Wigner transformation � For a S � 1{2 spin chain, one can easily
establish a correspondance between the local Hilbert space of a spin and that of
a fermionic mode f ,

| Òy Ø |0y , | Óy Ø f̂ :|0y. (2.34)
However, the fermionic anticommutation relations between different sites are not
compatible with the spin algebra, and to fix this inconsistence one shall attach
a non-local phase factor to every fermionic operators in order to reproduce spin
operators:

Ŝ�i � f̂ :i e
iφi , (2.35)

where the phase factor is called string operator, and contains the sum of the
fermionic populations to the left of the i-th site,

φi � π
¸
k i

n̂k. (2.36)

The full spin-fermion transformation, or so-called Jordan-Wigner transforma-
tion [56], then provides expressions of the spin operators in terms of fermionic
operators,

Ŝzi �
1
2 � f̂ :i f̂i

Ŝ�i � e�iπ
°

k i n̂k f̂i (2.37)
Ŝ�i � f̂ :i e

iπ
°

k i n̂k .

The transverse-field Ising chain � Let us consider a set of N spins arranged
in a chain and coupled to a magnetic field whose orientation is orthogonal to the
direction set by the Ising coupling of spins. Choosing the direction of the magnetic
field as the quantization axis, the Hamiltonian reads

Ĥ � �J
¸
i

Ŝxi Ŝ
x
i�1 � Ω

¸
i

Ŝzi , (2.38)

which can be equivalently written as
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Ĥ � �J4
¸
i

�
Ŝ�i Ŝ

�
i�1 � Ŝ�i Ŝ

�
i�1 � h.c.

	
� Ω

¸
i

Ŝzi . (2.39)

The implementation of the Jordan-Wigner transformation leads to a free-fermion
representation of the system, due to the cancellation of the string operator in
the case of the nearest-neighbour Ising couplings. The Hamiltonian can then be
written as a quadratic form of fermionic operators,

Ĥ � �J4
¸
i

�
f̂ :i f̂i�1 � f̂ :i�1f̂i � f̂ :i f̂

:
i�1 � f̂i�1f̂i

	
� Ω

¸
i

�
1
2 � f̂ :i f̂i



, (2.40)

which in Fourier space takes the form

Ĥ � 1
2
¸
k

�
f̂ :k f̂�k

�� ξk iζk
�iζk �ξk


�
f̂k
f̂ :�k



, (2.41)

where ξk � �pJ{2q sin k � Ω and ζk � pJ{2q sin k. Similarly to the bosonic case,
quadratic forms of fermionic operators can be readily diagonalization via a Bogoli-
ubov transformation which preserves the fermionic anticommutation relations [3]

�
η̂k
η̂:k



�
�

cos θk sin θk
sin θk � cos θk


�
f̂k
f̂ :k



. (2.42)

Under this transformation, the Hamiltonian takes a diagonal form in terms of a
fermionic gas of quasiparticles [74]

Ĥ �
¸
k

ωk

�
η̂:kη̂k �

1
2



(2.43)

where the spectrum ωk � Ω
?

1� λ2 � 2λ cos k and λ � J{p2Ωq, also leading to an
analyticalt expression for the matrix elements of the Bogoliubov transformation,

$''''&
''''%

cos θk �
d

1
2

�
1� ξk

ωk




sin θk �
d

1
2

�
1� ξk

ωk


 , (2.44)

therefore providing full access to any spin observable or correlation function ex-
pressed in terms of the Jordan-Wigner fermions.

2.3.2 Fermionic Gaussian Ansatz
From the perspective of the fermionic η-quasiparticles, the vacuum of the Jordan-
Wigner fermions is a BCS state, namely a fermionic two-mode coherent state
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|0yf � N
¹
k

�
1� cotan pθkq η̂:kη̂:�k

�
|0yη (2.45)

� N
¹
k

exprcotan pθkq η̂:kη̂:�ks|0yη, (2.46)

which also admits a description in terms of a Gaussian state. The whole rea-
soning we developed for bosonic Gaussian states holds as well as their fermionic
counterpart: at all times, a Gaussian fermionic state evolved by a quadratic
Hamiltonian remains Gaussian. Moreover, the covariance matrix fully character-
izes the system, and in particular entanglement entropy can be extracted from
its eigenvalues,�

1�G� F
�F G



� U

�
diagp1� nαq 0

0 diagpnαq


U�1, (2.47)

where the occupancy of the corresponding eigenmode nα � 1{pexppωαq � 1q is
Fermi-Dirac distributed and leads to the form

EA � �
¸
α

rp1� nαq lnp1� nαq � nα lnnαs. (2.48)

If the Ising chain in a transverse field maps into a model of fermions, other
spin models such as the XXZ chain map onto a problem of interacting fermions
with a quartic Hamiltonian,

Ĥ � �
¸
i

J

2

�
f̂ :i f̂i�1 � f̂ :i�1f̂i

	
� Jz

�
1
4 � f̂ :i f̂i � f̂ :i f̂if̂

:
i�1f̂i�1



. (2.49)

In order to investigate dynamical properties of these cases, we propose to extend
the Gaussian Ansatz to treat the case of interacting fermionic systems similarly to
what is done for non-linear bosonic Hamiltonians. Under the assumption that the
system can be described in terms of a fermionic Gaussian state, all information
on the many-body state is contained into the mean-field value of the fermionic
operators φi � xf̂iy and the two-point correlators. Defining the shifted fermionic
operators as γ̂i � f̂i� φi, the elements of the covariance matrix Gij � xγ̂:i γ̂jy and
Fij � xγ̂iγ̂jy, these quantities obey the same type of equations as Eq. (2.33),

d
dtφi � ixrĤ, f̂isy � Jiptφiu, tGiju, tFijuq

d
dtGij � ixrĤ, γ̂:i γ̂jsy � Gijptφiu, tGiju, tFijuq (2.50)
d
dtFij � ixrĤ, γ̂iγ̂jsy � Fijptφiu, tGiju, tFijuq,

with the notable difference that the decomposition of the n-point correlators
follows the prescription of the fermionic Wick’s theorem [34].
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2.4 Conclusion
In this chapter, we reviewed a semi-classical approach to the physics of quantum
spin systems based on a linearized bosonic field theory of the quantum fluctu-
ations around the mean-field approximation. This method, the so-called linear
spin-wave theory, is limited to regimes in which the fluctuations are sufficiently
weak to allow one to neglect the interactions of the bosonic field. Modified spin-
wave theory, introduced by Takashi, allows one to include the effects of non-
linearities in the study of low-temperature thermodynamics by using a Gaussian
Ansatz for the study of non-equilibrium dynamics, leading to a set of coupled
non-linear equations for the evolution of the mean field and of two-points cor-
relation functions. Such an approach can be applied to both bosonic as well as
fermionic models onto which one can map quantum spin Hamiltonians.

In the next chapters, we will use these Gaussian approaches to explore the
dynamics of spins sytems, first in regimes where the linear spin-wave theory
is sufficient to disclose exotic dynamical phenomena. Then we will apply the
Gaussian Ansatz to investigate strongly quenched regimes where the linearized
approach to dynamics does not provide a valid image any more.
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Chapter 3
Dynamics of flat-band systems

”Ils vont, de l’aube au soir, faire éternellement
Dans la même prison le même mouvement.”

Victor Hugo, ”Melancholia”, Les Contemplations

3.1 Flat-bands of excitations
3.1.1 Band flatness and Aharonov-Bohm caging
The concept of flat-band systems originates from the work of Sutherland [88]
on tesselations of the two-dimensional plane, and especially on the so-called dice
lattice. He noticed that a tight-binding model cast on such a geometry results
in the emergence of a flat band of excitations, namely a band of constant energy
over the whole Brillouin zone. Shortly after Lieb [57] showed that, at half-filling,
the Hubbard model on systems with chiral flat bands of excitations could exhibit
ferrimagnetic order, such as in the dice lattice or in the so-called Lieb lattice.
The latter work of Mielke and Takasaki [93] extended the results of Lieb to other
lattice structures with flat-bands, leading to a burst of new possible structures
in one or two dimensions (diamond chain, stub lattice, kagome lattices among
others). Perfect flatness however is often a fine-tuned effect that does not survive
to the introduction of perturbations as the band then acquires a slight width.
This leads us to formulate a less restrictive definition of flat-band systems as
systems exhibiting a band whose width is much smaller than that of the other
dispersive bands of the spectrum. A direct consequence of band flatness is the
(nearly) vanishing group velocity attached to the propagation of these excitations,
and consequently their apparent localization at sufficiently short time scales (or
at any time scale for perfectly flat bands).

Several mechanisms can explain the emergence of band flatness. Perfectly
flat bands can indeed appear for some geometries in the spectrum of the π-flux
Harper-Hofstadter model describing a particle on a lattice subjected to an exter-
nal magnetic field [94]. In some periodic structure such as the dice lattice, the
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Figure 3.1: Examples of geometries exhibiting Aharonov-Bohm caging - (a) Dice
lattice, (b) Lieb lattice, (c) kagome lattice, (d) diamond ladder. The sites colored
in orange represent the support of a caged states, while the � and � signs indicate
the local sign of the wavefunction.

application of a magnetic flux induces destructive interference effects that trap
excitations in a spatially restricted eigenmode, and therefore leads to localiza-
tion. This effect, known as Aharonov-Bohm caging, is exhibited by several lattice
structures and it can be either seen as the effect of a magnetic flux threading the
lattice, or, under a suitable gauge transformation of a phase pattern exhibited by
a localized wavefunction, which even in the absence of a magnetic flux, prevents
it from spreading through the lattice under the effect of hopping - Fig. 3.1 pro-
viding some illustrative examples of such localized eigenmodes without magnetic
field. One can observe on every example a common feature of the wave function,
namely the alternation between positive and negative weights, all with the same
amplitude. As a result, every neighbouring site of the caged mode is connected to

Figure 3.2: The triangular lattice can be separated into two sublattices, a con-
nected lattice (blue) labeled A and a disconnected one (orange) labeled B. If an
energy offset is imposed between the sublattices A and B, then the off-resonant
propagation of excitations between the sites of B leads to a nearly flat band.
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(a) (b)

(c) (d)

Figure 3.3: Examples of the realizations of Lieb lattices with quantum simulators -
(a) Lieb lattice realized with an artificial atomic lattice, (b) Interference pattern
of an optical Lieb lattice realized using several laser sheets, (c) Assembly of
waveguides engraved in the shape of a Lieb lattice, (d) one-dimensional Lieb
lattice (or stub lattice) realized with a chain of coupled micropillar quantum
cavities.

as many positively as negatively valued sites, leading to a destructive interference
that prevents the localized wavefunction from spreading to the rest of the system.

On the other hand, an imperfect flatness can emerge from a lattice in which
an energetic offset is imposed between two sublattices as illustrated in Fig. 3.2
for the case of the triangular lattice: the first sublattice hosts strongly dispersive
eigenmodes, as its sites form a connected network. The second sublattice, how-
ever, is disconnected and, as a consequence of the energy off-set, supports weakly
dispersive modes that need to overcome the energy offset and go through the
dispersive sublattice in order to propagate from one site to another. As we will
discuss in Sec. 3.2.2, the off-resonant motion of the modes between sublattices
leads to a very weak dispersion of the corresponding band.

3.1.2 From models to experiments
Flat-bands of excitations motivated the engineering of several experimental set-
ups using different quantum simulation platforms to capture signatures of their
peculiar band structure. Four experimental realizations of the Lieb lattice are
shown on Fig. 3.3, each using a different platform. The first displayed example
is the reconstruction proposed by Drost & al. [30] of an artificial atomic lattice
by creating vacancies in a monolayer of chlorine set on a copper substrate. The
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electrons trapped in the vacancies can then tunnel from one site to a neighbouring
one similarly to a tight-binding model, in a direct implementation to the model
historically proposed by Lieb. The second method shown relies on the protocol
of Taie & al. [91] to engineer a Lieb optical lattices that can latter hold laser-
cooled atoms, simulating a Bose-Hubbard model on a flat-band geometry with
the purpose to study the dynamics of localized states. The physics of the Lieb
lattice was also explored in the context of photonic lattices [67]: light is injected
in a periodic arrangment of optical waveguides engraved in a host material, and
can hop from one to another as it ballistically propagates along the waveguides.
For weak couplings between the waveguides, the system can be mapped on a
tight-binding model where the propagation axis acts as the time-dimension, thus
providing yet another platform for the implementation of the Lieb lattice and
the study of its localized modes. The last experimental platform represented
on Fig. 3.3 simulates a one-dimensional equivalent of the Lieb lattice (the stub
lattice) for exciton-polariton in semiconductor cavities [9]. Each site of the lattice
is a micropillar consisting of a quantum well embedded in an optical cavity, the
coupling between these micropillars enables a description in terms of a tight-
binding model, with the additional possibility to probe the amplitude and phase
of the polaritons on each site by photoluminescence imagery.

Due to the modulability of their geometries, Rydberg-atom simulators provide
a new experimental platform for the study of flat-band systems in general, yet in
models that differ from the tight-binding one. In the following we will discuss the
influence of flat bands of excitations in the dynamics of spin models accessible to
Rydberg-atom simulators, and propose diagnostic tools to probe the properties of
localized modes. For this purpose, we will focus our interest on models illustrating
the two aformentioned possible mechanisms for the emergence of flat bands: either
by imposing an energy offset between two sublattices, or by Aharonov-Bohm
caging.

3.2 Geometric frustration : the triangular lat-
tice

3.2.1 Ground-state degeneracy
The first case we shall consider in our exploration of the physics of flat-band
systems is the transverse-field Ising model on a triangular lattice with antifer-
romagnetic nearest-neighbours couplings, a model notorious for being the proto-
type of frustrated systems. Frustration is the impossibility for a physical system
to simultaneously minimize the interaction energy within each pair of interact-
ing degrees of freedom, resulting from the competition between all the involved
interactions. In the triangular lattice, this competitive effect stems for the anti-
ferromagnetic nature of Ising interactions, that require the spins on neighbouring
sites to have antiparallel orientation in order to be minimized. This condition
however cannot be simultaneously satisfyed by all spins on a triangular plaque-
tte, leading to frustration on the triangular lattice. A similar situation is also

44



3.2. Geometric frustration : the triangular lattice

featured by other two-dimensional lattice geometries, such as the kagome lattice,
or the checkerboard lattice [47].

Figure 3.4: Frustrated antiferromagnetic Ising model on the triangular lattice -
Once opposite spin orientations has been fixed in the blue and orange sites, the
spins on the grey sites can be oriented arbitrarily.

Among the intriguing features displayed by the physics of frustrated systems,
a remarkable one is the large degeneracy of the ground state, which may even
become macroscopic, leading to a finite entropy per spin even at zero temper-
ature, as observed by Wannier [100] for the antiferromagnetic Ising model on
the triangular lattice. The construction of spin configurations in the degener-
ate ground-state manifold obeys a simple constraint, the so-called up-down rule:
every triangular plaquette of the lattice should have at least one spin oriented
along the up-direction and one along the down-direction, while the orientation
of the third one is left undetermined. Through this construction, some spins are
surrounded by an equal number of up- and down-oriented nearest neighbours,
with the consequence that the local mean field felt by these sites is vanishing.
These spins, which occupy a finite fraction of the lattice, can be flipped without
any energy cost, leading to an exponential degeneracy of the ground state.

An example of such partial magnetic tiling of the triangle lattice with the up-
and down-oriented spins with respect to the up-down rule is provided on Fig. 3.4.
One can observe that the sites with a local arbitrary spin orientation occupy a
finite fraction (N{3) of the system. As for each of these sites two spin configu-
rations are possible, the total degeneracy of the states of this kind amounts to
2N{3, providing a lower bound for the total degeneracy and consequently to the
microcanonical entropy as S{N � ln 2{3 � 0.231. The actual ground-state en-
tropy is much larger, S{N � 0.3383. This degeneracy is actually problematic for
a theoretical study of the quantum antiferromagnetic triangular lattice. Indeed,
the linear spin-wave theory as we described it in the previous chapter relies on
the existence of a well-defined mean-field image for the ground state to set the
foundations of a description of spins in terms of linear quantum fields. Degen-
eracy prevents this construction by offering an exponential number of possible
mean-field spin states. Therefore, the construction of the linear-spin wave theory
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Chapter 3. Dynamics of flat-band systems

for the antiferromagnetic triangle lattice requires the degeneracy to be lifted and
an unambiguous mean-field state to be selected in the ground-state manifold.

1 2

3

Figure 3.5: State selected by the order-by-disorder mechanism on the triangle
lattice - the unit cell of the long-range ordered system is represented in grey
while its different elements are labeled 1, 2, 3. The vectors a1 and a2 stand for
the unit vectors of the lattice.

The application of a transverse field is expected to induce a selective mech-
anism in the ground-state manifold which lifts the degeneracy according to an
effect dubbed as order by disorder by Villain [96]. This seemingly paradoxal ef-
fect consists of an energy selection of the ground-state configurations that are
connected to the largest possible number of equally degenerate ground states via
elementary transformations (namely spin flips). The addition of a transverse-field
term �Ω

°
i Ŝ

x
i acts on the spins by flipping their orientation, therefore it induces

a selection of the configurations in the ground-state manifold according to their
”flippability”, namely the number of spins they possess that can be flipped with-
out any energetic cost. As shown on Fig. 3.4 all spins surrounded by as many
up- as down-oriented spins are flippable; yet chosing the orientation of flippable
spins carefully, namely chosing them to point up in Fig. 3.4, makes all the other
up spins flippable as well, leading to the largest possible fraction (2{3) of flip-
pable spins. This argument suggests that an ordered configuration with ÒÒÓ (or
respectfully ÓÓÒ) unit cell is energetically favoured by the transverse field, leading
to long-range order, as shown by Moessner and Sondhi [66]. The ordered nature
of the ground state (Fig. 3.5) in a finite but moderate transverse field is mani-
fested by the structure factor, showing Bragg peaks at wave-vectors k � �4π

3 , 0
�

and k �
�

2π
3 ,

2π?
3

	
.

The lifting of degeneracy from the application of a transverse magnetic field
and the resulting emergence of long-range order in the antiferromagnetic triangle
lattice seems to be a good starting point for the application of linear spin-wave
theory and to investigate the effects of frustration on the elementary excitations.
However, as the calculation unfolds, one can notice that for all values of the field
Ω the linear spin-wave theory breaks down as it predicts that the lowest band
of the excitation spectrum contains imaginary frequencies, actually revealing an
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3.2. Geometric frustration : the triangular lattice

Figure 3.6: Spectral properties of the antiferromagnetic TFIM on a triangle lat-
tice - (a) Lowest energy of the first band of the spectrum computed over the
pΩ{J,H{Jq plane. The vanishing of Emin indicates a phase transition, or the
emergence of imaginary frequencies in the spectrum. (b) Density of excitations
r. (c) Width of the upper band of the spectrum δωp3q. (d) Excitation spec-
trum of the TFIM on a triangular lattice computed for the set of parameters
pΩ{J � 0.6, H{J � 0.3q.

instability of the quasi-particle picture. The breakdown of LSW theory also re-
veals that the ground state selected by the order-by-disorder mechanism exhibits
strong fluctuations that cannot be properly captured by an harmonic approxima-
tion. This problem can be addressed by adding a longitudinal field �H°i Ŝ

z
i ,

which partially lifts the ground-state degeneracy in favour of the spin configura-
tions with two up-oriented spins per unit cell (if H ¡ 0) and stabilizing the linear
spin-wave theory on a model relevant for Rydberg-atom simulators.

3.2.2 Spectral properties
In the following we shall develop linear spin-wave theory for the Ising antifer-
romagnet on the triangular lattice in a longitudinal and transverse field with
Hamiltonian

Ĥ � J
¸
xi,jy

Ŝzi Ŝ
z
j � Ω

¸
i

Ŝxi �H
¸
i

Ŝzi (3.1)

As we have just discussed, the application of the magnetic fields stabilizes a three-
fold degenerate ground state for the antiferromagnetic Ising model, enabling a
reliable application of the linear spin wave theory. One can quantify the validity
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Chapter 3. Dynamics of flat-band systems

of the LSW theory with two indicators: the spectral gap of the lowest band of
the spectrum, namely the lowest energy level of the excitation spectrum; and the
density r of the magnetic excitations predicted by the linear spin-waves theory
in the ground state. The vanishing of the spectral gap in the model at hand is
accompanied by the appearance of imaginary energies in the spectrum; moreover
the density of excitations in the ground state must be sufficiently low to trust their
treatment as non-interacting quasi-particles, at the heart of the linear spin-waves
approach.

The spectral gap Emin � minωp1qk and the excitation density r as a function of
the fields pΩ{J,H{Jq plane are plotted in Fig. 3.6 (a) and (b). One can observe
that the spectrum displays a gap as it is expected from the excitations of a sys-
tem that breaks discrete symmetries, which is a first consistency test for the LSW
prediction. However, the gap closes and imaginary frequencies appear for a suffi-
ciently small longitudinal and transverse field -in particular for all Ω ¤ Ωc � 1.5J
and H � 0, where Ωc is the critical field (within the mean-field approximation)
for the transition between long-range order and quantum paramagnetism. As for
the ground-state density of excitations r � 1{p2SNq°k,r |vprqk |2 whose expression
involves the Bogoliubov vectors of the LSW theory, it remains at a sizeably weak
value except at the boundaries of the unstability area, and at the transition line
with the paramagnetic state, therefore ensuring the validity at equilibrium of the
linear spin-wave construction. The actual transition point is at Ωc � 0.82J [52]
as predicted by quantum Monte Carlo simulations. The mean-field prediction
Ω � 1.5J is highly inaccurate, and linear spin-wave theory corrections do not
shift this value significantly, showing that the linearization of fluctuations around
the mean-field state is a rough approximation at sufficiently strong transverse
fields. Therefore in the following we shall stay away from this regime as well.

The boundaries of the explorable set of parameters being defined, we shall
examine the spectral properties of the excitations, as predicted by the LSW for-
malism. The LSW spectrum exhibits two low-lying bands touching at Dirac cones
and a single branch lying at higher energies, which is nearly flat compared to the
width of the two other bands, as illustrated on Fig. 3.6(d). The flatness of the
high energy band is a robust property that characterizes it on a large range of
parameters inside the stability domain of the LSW theory. The band structure of
the spin excitations can be understood by inspecting the associated eigenmodes
at any given wavevector k encoded in the Bogoliubov vectors uprqk and vprqk . The
eigenmodes are fundamentally characterized by their wavevector in the Brillouin
zone of the magnetic lattice; as well as by their structure within each unit cell
(Fig.3.5) which can be parametrized via two bond-dependent coefficients aprqk and
b
prq
k for the sites 1, 2 paprqk q and 3 pbprqk q, according to the numbering convention of

Fig. 3.5. The eigenmodes of the two lowest bands exhibits a structure reminis-
cent of optical and acoustic modes of phonon spectra, with in- and out-of-phase
oscillations in the unit cell
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Figure 3.7: Evolution of the band openings with respect to the transverse field
Ω, for J � 1 and H � 0.9. Solid lines represent the polynomial fitting for the
bandwidth by Ω.
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where |ap1,2qk | " |bp1,2qk |. The excitations of the low-lying bands are then mainly
propagating on the up-oriented spins of the unit cell, while the down-oriented one
is marginally involved in the wavefunction. The structures of eigenmodes shed
light on two properties of the low-lying bands : the presence of Dirac cones in the
spectrum and the low energy excitations they describe. Indeed, the excitations of
the lowest bands have predominantly support on the honeycomb-shaped lattice
formed by the up-oriented sites, leading to a graphene-like spectrum. Moreover,
since the up-oriented sites are flippable due to a vanishing local mean-field, the
only energetic cost paid to excite the up-oriented sublattice comes from the longi-
tudinal magnetic field H, which fundamentally controls the minimum excitation
energy.

On the other hand, the third band has mainly support on the triangular lattice
of down-oriented spins,

u
p3q
k � pap3qk , a

p3q
k , b

p3q
k q (3.3)

with |bp3qk | " |ap3qk |; the energetic cost necessary to create these excitations is
much higher due to the strong up-oriented mean-field felt by these sites. This
structure of eigenmodes also explains the relative flatness of the high-lying band
of the spectrum: as the down-oriented sites are disconnected and they are only
weakly coupled to the rest of the lattice, excitations have to propagate according
to a two-fold mechanism which involves an intermediate step through the up-
oriented lattice. This propagation mechanism is highly non-resonant as can be
deduced from a perturbative treatment of the effects of the transverse field. As
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we discussed in the previous chapter, the introduction of a tranverse field leads
to a tilting of the quantization axis z1 and therefore to the introduction of Ising
couplings along the local x1-axis Sx1Sx1 . From the point of view of the bosonic
excitations of the spin system, these terms induce tunneling and pair creation
and annihilation terms with an effective amplitude Jeff � J sin2 θ, in the low field
limit Ω ! 1. Given that sin θ � Ω{Ωc, with Ωc � 1.5J , the resulting effective
coupling for the propagation of excitation on the sublattice A is expected to be of
the form Jeff � Ω2{J and to display a bandwidth of the same form. On the other
hand, excitations sitting on the sublattice B propagate by performing a virtual
transition through a lower energy state of the sublattice A, so that the two-step
propagation mechanism leads to an effective hopping amplitude Jeff � Ω4{J3

controlling the bandwidth of the upper band. These scaling relations for the
bandwidths #

δωp1,2q9Ω2

δωp3q9Ω4,
(3.4)

compare well with the actual behaviour of the bandwidth for low fields as demon-
strated on Fig. 3.7.

3.2.3 Quench dynamics
As discussed in the previous section, the excitations of the antiferromagnetic
transverse-field Ising model on a triangular lattice exihibits rich spectral proper-
ties. In the following we will investigate several dynamical signatures of their dis-
tinctive properties, namely the existence of excitation modes with radically differ-
ent propagation properties as well as spatial structures. All the results presented
hereafter are obtained with the choice of parameters Ω � 0.6J and H � 0.3J , for
which the width of the high-energy band is δωp3q � 0.04pδωp1q � δωp2qq, ensuring
the stabilization of a mean-field state and a large separation in width between
the bonds.

Global quench and correlation functions � The first property we will
investigate is the evolution of spin-spin correlation functions in search of evidences
of the band flatness. Indeed, the multiband nature of the spectrum is expected to
result in a dynamics with several typical timescales defined by band-dependent
Lieb-Robinson velocities vprqLR � 2 maxkPBZ |vprqg pkq|.

The dynamics is initialized from the mean-field ground state, which is a fully
factorized states displaying no correlations between spins. Correlations are intro-
duced by the ensuing non-equilibrium evolution, and we will focus on the x-spin
component as it is the one displaying the strongest build-up of correlations. The
corresponding correlation function is:

Cxx prlp, rl1p1 ; tq � xδŜxlpδŜxl1p1yptq, (3.5)

where δŜxlp � Ŝxlp � xŜxlpy, which in terms of linearized bosonic operators reads
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3.2. Geometric frustration : the triangular lattice

Figure 3.8: Evolution of spin-spin correlation functions on the triangle lattice
after a global quench from the mean-field state - The first row shows the build-up
of correlations between a site p � 2 with the rest of the system, while the second
row shows the correlations taken from a site at p � 3

Cxx prlp, rl1p1 ; tq � sin θp sin θp1
�
xb̂:lpb̂l1p1yxb̂lpb̂:l1p1y � xb̂:lpb̂:l1p1yxb̂lpb̂l1p1y

	
(3.6)

� S

2 cos θp cos θp1
�
xb̂:lpb̂l1p1y � xb̂lpb̂:l1p1y � xb̂:lpb̂:l1p1y � xb̂lpb̂l1p1y

	
.

Due to translational invariance modulo the magnetic unit cell, the correlation
function only depends on the distance |rlp � rl1p1 | as well as on the reference site
p within the unit cell - more specifically, it depends on whether the reference site
belongs to the A sublattice (p � 1, 2) or to the B sublattice (p � 3). Hence we
shall focus our attention on two distinct correlation functions, namely Cxx

A prq and
Cxx
B prq, whose evolution is represented in Fig.3.8. For both correlation functions,

one can clearly observe the ballistic spreading of correlations within light cones,
whose apperture velocity is consistent with the predictions of LSW theory. Yet
their most remarkable feature lies in their internal structures. Indeed, Cxx

A , and
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Figure 3.9: Evolution of the density of excitations. The dashed line represents
the time-average of r, verifying the condition r ! 2S
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Cxx
B to a lesser extent, show the establisment of predominant correlations with

the sublattice A resulting in honeycomb patterns, corresponding to the support
of the low energy eigenmodes. This suggests that the short time dynamics of
correlations is dominated by the propagation of modes belonging to the low-lying
bands of the spectrum, due to their high group velocity. We shall also note that
linear spin-wave theory remains well-controled over time as shown by Fig. 3.9,
where one can see that at all times the dilution condition r ! 2S remains valid.

The slow dynamics of the high energy band manifests at longer time scales,
but an analysis of the density of excitation per band shows that the observation
of this phenomenon is actually problematic. Indeed, the density per band nprq �
pn{Nq°k xΨ0|β̂:k,rβ̂k,r|Ψ0y quantifies the amount of excitations injected in the
system by the initial state for each band, and how much they weight in the
dynamics of the system. In the cases at hand, the dynamics triggered by the
mean-field state results in a low population of the higher energy band (np3q � 8.4�
10�4) compared to the low energy ones (np1q � 1.0� 10�2 and np2q � 2.6� 10�3).
Therefore, the dynamics of correlations is dominated by the fast-propagating
excitations, preventing an unambiguous observation of the slow dynamics of the
high energy band.

Local quench and magnetization � In order to highlight the transport prop-
erties of the highest band, we modify the previous quench protocol by initializing
the system to the mean-field state plus a single spin-flip on the site pl0, p0q be-
longing to the sublattice B. In other words, the system undergoes a global plus
local quench starting from the state |Ψ1

MFy � Ŝ�l0,p0 |ΨMFy, or in terms of the
bosonic operators |Ψ1

MFy � b̂:l0,p0 |0yb. Given that the eigenmodes attached to the
flat band have support mainly on the B sublattice, exciting a down-oriented spin
will result in locally injecting a supplementary amount of β-bosons into the flat
band, therefore enhancing the signatures of their slow dynamics.

We monitor the spreading of the wavepacket of extra excitations by means of
the local excess of magnetization with respect of the global quench starting from
the mean-field state

δmlpptq � �xΨ1
MF|Ŝz

1

lpptq|Ψ1
MFy � xΨMF|Ŝz1lpptq|ΨMFy

� xΨ1
MF|n̂lpptq|Ψ1

MFy � xΨMF|n̂lpptq|ΨMFy. (3.7)

The above expectation values can be easily computed as they can be seen as ex-
pectation values over the vacuum of b-bosons (|ΨMFy) either of the evolved number
operator n̂lpptq or of its transformed partner b̂l0p0n̂lpptqb̂:l0p0 (for the expectation
value on the |Ψ1

MFy state). In the second case the use of Wick’s theorem reduces
the expectation value to a time-dependent function of the LSW parameters uprqk,p,
v
prq
k,p and ω

prq
k .

The result of this quench protocol for the local excess of magnetization is
shown on Fig. 3.10. Similarly to the spin-spin correlation function, it displays
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3.2. Geometric frustration : the triangular lattice

Figure 3.10: Evolution of the local spin excess δmlp following the global/local
quench with p0 � 3. The time chosen for the evolution are integer multiples of
the characteristic propagation time attached to the flat band t � d{vp3qLR � 50J�1.

causal propagation from the injection point pl0p0q. However, one can notice two
main differences from the behaviour observed in correlations: firstly, the spreading
wavepacket has essentially support on the sites of the sublattice B; and secondly,
compared to correlations, it exhibits a much larger time scale for propagation,
given by t � d{pvp3qLRq, where d stands for the lattice spacing. Therefore, the local
quench protocol successfully highlights two properties of the eigenmodes of the
flat band : its spatial structure, mainly involving the sites of the B sublattice
on one hand, and the flatness of the band, resulting in the long characteristic
timescales for the propagation of these excitations.

3.2.4 Quench spectroscopy
The previous quench protocol highlights the slow dynamics associated with the
highest band of the spectrum, and provides an estimate of the bandwidth through
the characteristic time scale of propagation t � pδωp3qq{Q, where Q is the norm of
a basis vector of the reciprocal space, while δωp3q is the width of the high energy
band. In the following, we will present a diagnostic method to probe the spectral
properties of the system in a more quantitative manner.

As we discussed in the first chapter of this thesis, the expectation value of
any observable can be expressed in any eigenbasis of the evolution Hamiltonian
t|ψnyunPN as the sum of functions oscillating at frequencies differences between
the eigenenergies of the spectrum ωn � En{~,

xÂyptq �
¸
m,n

xΨMF|ψmyxψm|Â|ψnyxψn|ΨMFyeipωm�ωnqt. (3.8)

As one can see in Eq. (3.6), the eigenfrequencies of the Hamiltonian pilot the
evolution of the expectation and their differences can be extracted by a Fourier
analysis. Moreover, in order to have a k-resolved spectrum, the evolved observ-
able should depend on k itself. A convenient choice for the evolved observable is
the spin-spin structure factor defined for the x-component as

Sxxpp1pk, tq �
c
n

N

¸
l,l1

eik�prl�rl1 qCxxprlp, rl1p1 ; tq, (3.9)
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Figure 3.11: Quench spectroscopy of the TFIM on a triangle lattice - The left pan-
nels represent the power spectrum |FTrSxxpp spω,kq|2 computed after a postquench
evolution of 200 units of J . The right panels represent twice the value of the
eigenfrequencies 2ωprqk , with r � 1, 2 for the upper panel and r � 3 for the lower
one.

where rl is the position of the l-th unit cell defined as rl � rl,p�1. The choice of the
considered correlations, AA, BB or AB, selects the type of excitations involved
in the dynamics and consequently the frequencies appearing in the dynamics.

The quadratic approximation underlying the linear spin-wave theory enables
to express the spin-spin structure factor at vector k as

Sxxpp1pk, tq � fpp1pkq
�
¸
r¤r1

grr
1

pp1pkq cosrpωprqk � ω
pr1q
k qts � igrr

1

pp1pkq sinrpωprqk � ω
pr1q
k qts (3.10)

�
¸
r¡r1

hrr
1

pp1pkq cosrpωprqk � ω
pr1q
k qts � ih

rr1

pp1pkq sinrpωprqk � ω
pr1q
k qts.

This shows that the Fourier spectrum of the structure factor is composed of
sum and differences of the eigenfrequencies ωprqk , respectively weighted by grr

1

pp1

and grr
1

pp1 for sums and hrr
1

pp1 and h
rr1

pp1 for differences, whose explicit expression is
provided in Appendix C. As a result, a Fourier transform discloses the band
structure of the excitation via the frequency sums; while the Fourier amplitudes
g and h inform us of the overlap of the modes at hand with the sites p and p1

of the unit cell. Such an analysis provides a complete description of both the
spectral properties of excitations and the spatial structure of the corresponding
eigenstates over the unit cell. This spectroscopic analysis based on the post-
quench evolution of observables, which we call quench spectroscopy, offers an
alternative to scattering-based spectroscopic techniques (such as neutron or light
diffraction) in the analysis of synthetic condensed matter systems, as shown by
some successful implementation in cold-atom experiments [51,81]. This idea has
been recently generalized beyond the realm of LSW theory by Villa & al. [95].
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We appliyed the quench spectroscopy protocol to the dynamics of the anti-
ferromagnetic TFIM on the triangular lattice evolved from the mean-field state,
for the same set of parameters as for the correlation functions shown on Fig.3.8,
namely pΩ{J � 0.6, H{J � 0.3q. The result of the Fourier analysis performed on
a system of size 120�120 at times up to tJ � 200 are displayed on Fig.3.11. The
structure factors SxxAA (upper left panel) and SxxBB (lower left panel) both reveal
complementary aspects of the band structure : due to their support on the A
sublattice, the former discloses the two lower bands of the spectrum with the fre-
quency combinations 2ωp1qk and 2ωp2qk (represented for comparison next to the AA
structure factor). On the other hand, the latter clearly reveals the flat band as
it displays a line of peaks at 2ωp3q. One can also notice that secondary peaks can
be seen on the BB structure factor, corresponding to other band combinations
such as ωp2qk � ω

p3q
k , due to the non-vanishing overlap between their respective

eigenmodes.

3.3 Aharonov-Bohm caging : Lieb and Kagome
lattices

3.3.1 High-energy quench protocols
In the following, we will explore the dynamics resulting from the second mecha-
nism responsible for the emergence of flat bands, namely Aharonov-Bohm caging.
Among the large family of lattice geometries supporting such behaviour, we chose
to focus our investigation on two of them : the Lieb lattice and the kagome lat-
tice, with the purpose of directly evidencing the emergence of localized states.
In the case of the kagome lattice, the study of the antiferromagnetic Ising model
with LSW theory is faced with much more difficulties than in the case of the
triangular lattice, as the infinite degeneracy of the ground state without trans-
verse field is not lifted in favor of a ground state with long-range order when
a field is applied [66]. This state of affairs is not substantially altered by the
application of a longitudinal field, making the application of LSW theory very
problematic as it systematically results in the emergence of imaginary frequen-
cies. Nonetheless, when focusing on quench dynamics from a uniform state with
all spins aligned with a given direction, one can change perspective, thanks to
the following theorem proved in Refs. [38,78].

Theorem 2. Consider a Hamiltonian Ĥ admitting a real-valued representation
over a basis of vector t|φnyu, if the unitary dynamics piloted by Ĥ is initalized
from a state |Ψ0y written on the same basis as a linear combination with only
real coefficients. Then the evolution of any observable Â admitting a real-valued
representation is invariant under time-reversal symmetry, namely at all times

xÂyptq � xΨptq|Â|Ψptqy � xÂyp�tq. (3.11)

As a corollary of this theorem, the unitary evolution starting from |Ψ0y and
governed by Ĥ is equivalent to the evolution governed by �Ĥ. In the case at hand,
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Figure 3.12: Lattice and band structures of flat-band systems - (a) shows the
unit cell and the excitation spectrum of the Lieb lattice computed for Ω{J � 1,
while (b) displays the unit cell and band structure of the kagome lattice also for
Ω{J � 1.

one can consider a quench starting from the mean-field ground state of the ferro-
magnetic Ising model, |Ψ0y � bi| Òyi, where | Òyi is the spin configuration at site i
aligned with the z1-axis, tilted with respect to the z-axis by the application of the
field. As both the initial state as well as the Hamiltonian obey the hypothesis of
the above theorem, then evolving this state with the ferromagnetic Hamiltonian
gives the same results as evolving it with the antiferromagnetic Hamiltonian, ap-
propriate for the physics of Rydberg atoms. In other words, instead of exploring
the low-energy excitations spectrum, this type of quench prepares the antiferro-
magnetic system in its highest energy states, which is equivalent to exploring the
low-energy dynamics of the ferromagnetic Hamiltonian.

The linear spin-wave theory is well-defined for the ferromagnetic model, and
no imaginary frequencies appear in the spectrum. In the spirit of the above
discussion we shall adapt the same strategy for the Lieb and kagome lattices.
The resulting spectra and unit cells for the two lattice structures are represented
in Fig. 3.12. The spectrum computed for the kagome lattice exhibits Dirac cones
and a flat band in a manner that is identical to what can observed for its tight-
binding counterpart modulo a global energy shift. On the contrary, the excitation
spectrum of the Lieb lattice differs from that of the tight-binding model. Indeed,
it displays two low-lying bands, one of which being the flat band, and a single
high energy band, while the tight-binding model predicts also the existence of
a Dirac cone on the spectrum. This discrepancy between the LSW spectrum
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Figure 3.13: Caged state in the Lieb lattice - (a) Asymptotic spin deviation
δmlp following a local/global quench. (b) Representation of the localized states
overlapping with the injection site pl0p0q. (c) Evolution of the localized fraction
computed for a 30�30 lattice for several transverse magnetic fields. (d) Rescaled
evolution of the localized fraction by the typical propagation timescale.

and the tight-binding model is actually explained by the site-dependent chemical
potential appearing in the LSW Hamiltonian described in Appendix. A. Indeed,
this local chemical potential depends on the coordination of the sites, and since
sites 2 and 3 of the unit cell have two nearest neighbours (contrarily to site 1
which has four of them), the chemical potential is inhomogenous (µ1 � µ2,3) on
the unit cell, hence the opening of a gap between the low- and high-energy parts
of the spectrum. On the other hand, given that every site of the kagome lattice
has the same number of nearest neighbours, the chemical potential is homogenous
over the unit cell and the energy spectrum expected from a tight-binding model
is preserved.

3.3.2 Emergence of caged states
As we did for the triangular lattice, we can analyse the structure of eigenmodes
and how they are supported on the unit cell. The translational invariance of the
Hamiltonian leads to a description of the flat-band modes in terms of extended
Bloch functions ψkprq � exppik � rqukprq, where

uk � p0, ak,�bkq (3.12)

is defined over the unit cell; yet given that all Bloch waves of the flat band are
at the same energy, they can be supperposed to form localized eigenmodes at
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Figure 3.14: Caged state in the kagome lattice - (a) Asymptotic spin deviation
δmlp following a local/global quench. (b) Representation of the localized states
overlaping with the injection site pl0p0q. (c) Evolution of the localized fraction
computed for a 30�30 lattice for several transverse magnetic fields. (d) Rescalled
evolution of the localized fraction by the typical propagation timescale.

the same energy, with the same geometry as in Fig. 3.1. A local/global quench
provides a way to populate the flat band by injecting a magnetic excitation on
one site and then let the wavepacket of the excitation spread so as to reveal the
localized modes. This strategy is particularly important in the case of the Lieb
lattice, as one find that a global quench from the mean-field ground state leaves
the flat band completely empty of excitations, so that its presence completely
disappears from the ensuing dynamics.

Lieb lattice � The dynamics is initialized from the ferromagnetic mean-field
state with one flipped spin: |Ψ0y � b̂:l0,p0 |ΨMFy, with the injection site chosen such
that p0 � 2, 3 (following the convention established in Fig. 3.12), as suggested by
Eq. (3.12), in order to populate a localized mode. As shown on Fig. 3.13, once
part of the injected wavepacket escaped due the dispersive modes overlaping with
the flipped site, one can observe the emergence of the pattern expected from the
localized state in the excess magnetization at long times δm. Moreover, since
we set H � 0, the only remaining parameter left to control the bandwidth and
the characteristic time of the propagation of excitation is the transverse field Ω.
Therefore, by tuning the transverse field, one can control the time at which the
localized mode emerges, and possibly the population of excitations remaining
trapped in it. Hereafter, we introduce the localized fraction, namely the excess
magnetization that remains trapped in the localized modes (LM) overlapping
with site pl0, p0q
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Dptq �
¸

pl,pqPLMpl0p0q
δmlp. (3.13)

As seen on Fig. 3.13, the localized fraction decreases with time as the wavepacket
spreads and partially escapes the Aharonov-Bohm cage before reaching an Ω-
independent asymptotic value. Though the asymptotic value of the localized
fraction is independent of the transverse field, the saturation time actually does
and therefore controls the emergence of the caged state.

Kagome lattice � The same kind of study can be performed for the kagome
lattice with similar effects, as shown on Fig. 3.14. As for the Lieb lattice, the
dynamics exhibits the emergence of a caged state which is the superposition of
the two hexagone-shaped localized modes overlapping with the injection site.
Similarly to the Lieb lattice, one can investigate the evolution of the localized
fraction of the magnetization deviation for different values of the magnetic field
and study the localization dynamics. It turns out that D displays similarities
with what we witnessed for the Lieb lattice: for every value of the magnetic
field the localized fraction relaxes towards the same asymptotic value, and field
dependence is only shown by the time necessary to observe the stabilization of the
caged state. However, contrarily to the Lieb lattice, the dynamics of the localized
fraction exhibits more pronounced universal features, for if time is rescaled by the
characteristic time t � d{p2vLRq9Ω2, all points collapse on the same universal
curve, whose origin is still to be fully understood.

3.3.3 Effects of van der Waals interactions
The results and phenomena we observed in the flat band systems rely on the
existence of nearest neighbours couplings only, neglecting the long-range nature
of van der Waals coupling, which are naturally present in the models realized by
Rydberg-atom quantum simulators. In particular, the Aharonov-Bohm caging
effect at the heart of the flatness of bands for the Lieb and kagome lattices is a
fine tuned effect that specifically relies on nearest-neighbour interactions. These
observations question the relevance of the study of flat-band systems with for
Rydberg-atom simulators. In the following, we will investigate the robustness of
flat bands of excitations when the algebraic tail of the van der Waals couplings
is taken into account into the linear spin-wave calculations.

The additional intersite couplings introduced by the long-range nature of van
der Waals interactions result in a finite width of the flat band as one can see on
the left panels of Fig. 3.15 which compare the nearest-neighbour spectra (blue)
with the one obtained with van der Waals interactions (orange). On can clearly
see that the flat band of the Lieb lattice acquires a sizeable width, while the
width of the flat band is nearly invisible for the kagome lattice. This discrepancy
is explained by the geometries of these two lattices and the resulting distance
between the next-nearest neighbours. Indeed the next-nearest neighbours are at
a distance of

?
3a (where a is the lattice spacing) for the kagome lattice, leading
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Figure 3.15: Influence of the long-range nature of van der Waals interactions - Left
panels show the time-evolution of the localized fraction for both van der Waals
and nearest-neighbours interactions, for Lieb and kagome geometries. The right
panels show the influence of van der Waals interactions on the band structure,
particularly on the width of the flat bands.

to ratio between nearest and next nearest neighbours of Jnnn{Jnn � 1{27, while
for the Lieb lattice this distance is

?
2a with a coupling ratio of Jnnn{Jnn � 1{8.

Therefore the effects of the tail in the van der Waals couplings are more sizeable
in the Lieb lattice and give rise to a wider bandwidth. The direct consequence of
a finite band width δω is that the previously localized modes now acquire a finite
life-time τ � 1{δω that limits their observation at long times.

The evolution of the localized fraction is also compared on the right panels of
Fig. 3.15 for nearest-neighbour and van der Waals couplings. While the dynamics
of D matches the one predicted for nearest neighbours at short time scales, the
localized fraction is eventually found to go to zero at long times given by the
inverse of the bandwidth. The kagome lattice however exhibits a plateau in
the evolution of the localized fraction over a much longer time scale, enabling in
practice the observation of Aharonov-Bohm caging via Rydberg-atom simulators.

3.4 Conclusions
In this chapter, we discussed the quench dynamics of several two-dimensional
antiferromagnetic Ising models featuring flat bands of excitations. We observed
how the flatness of excitations affects the dynamics of spin systems following
global or global/local quenches and how we could use this dynamics in order to
design spectroscopic strategies to unveil the spectral properties of experimentally
relevant models in the context of Rydberg atoms simulators.
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However, during this study we also restricted ourselves to cases where the
density of quasiparticles was weak enough to allow us to neglect the effects of
interactions, and especially the non-linearities that mimic the hardcore constraint
set on bosonic excitations. In the case of quenches inducing higher densities of
quasiparticles than those that we presently considered, such effects cannot be
neglected any more, thus putting into question several aspects of the physics of
flat-band systems. Indeed, we expect the repulsive hardcore interaction to induce
scattering among the quasiparticles and consequently rearrange the populations
of each band. As we will further elaborate in the concluding chapter of this thesis,
the robustness to non-linearities of the localization effects reported above is an
intriguing question that we postpone to further works.
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Chapter 4
Anomalous diffusion in
positionally disordered quantum
spin systems

”Souvent dans l’être obscur habite un Dieu caché ;
Et comme un œil naissant couvert par ses paupières,
Un pur esprit s’accrôıt sous l’écorce des pierres !”

Gérard de Nerval, ”Vers dorés”, Les Chimères

4.1 Disordered spin systems
4.1.1 Ground-state localization and localization of the ex-

citations
Coherent waves in a disordered medium are subject to multiple reflections and
interference effects that may lead eventually to a drastic suppression of their
propagation - a phenomenon known as Anderson localization [6]. In the con-
text of quantum mechanical systems such a phenomenon alters substantially the
eigenstates of single particles in a disordered potential, which acquire an exponen-
tially localized nature. On the other hand, disorder also impacts the low-energy
behaviour of quantum many-body systems by disrupting the long-range correla-
tions that one may observe in the ground state of a clean system, thus driving the
system toward a quantum phase transition. Several examples of such disorder-
induced phase transitions are offered by solid-state physics models such as the
Bose-glass transition [37], superconductor-insulator transition [29] or the Mott-
glass transition [98]. These transitions are also characterized by the localization
of the elementary excitations above the new disordered ground state, as stressed
by a representation of the elementary excitations of disordered quantum spin in
terms of bosonic spin-waves [4] and slave bosons [97].

In particular, for systems whose ground state spontaneously breaks a contin-
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uous symmetry -such as bosonic or fermionic superfluids with Up1q symmetry, or
spin systems with SUp2q symmetry- elementary excitations are expected to re-
main extended as long as the continuous symmetry broken by the ground state is
not restored. The robustness of the properties of elementary excitations against
disorder stems from the Goldstone theorem [68] and the low-energy excitations
(Goldstone bosons) that it predicts in systems spontaneously breaking a conti-
nous symmetry. Indeed, a Goldstone boson is a gapless, long-wavelength excita-
tion which connects the symmetry breaking ground state with other ground states
having a ”rotated” order parameter - hence its gapless nature. The fact that it
has the tendency to rearrange the order parameter of the system globally requires
that it has an extended nature, and therefore it prevents localization even in the
presence of disorder. On the other hand, if disorder restores the broken symmetry
in the ground state, it also exposes the low-energy excitation spectrum to localiza-
tion. Therefore, if a ground-state transition toward localization occurs, its effects
should be observable in both the low-temperature thermodynamic properties of
the system (governed by the ground state) and the low-energy dynamics, which
reflects the nature (extended or localized) of the excitations.

For system breaking a discrete symmetry, however, Goldstone theorem does
not apply and the excitation spectrum is expected to be gapped. In this case,
spontaneous symmetry breaking in the ground state cannot prevent the localiza-
tion of low-energy excitations. The paradigm that we have just outlined above
breaks down, and the properties of the low-energy excitation are generically de-
coupled from the presence or absence of long-range order in the ground state. The
excitations atop a discrete symmetry breaking ground state may then be localized.
Though rarely highlighted, this dichotomy between the ground-state properties
and those of excitations has been nonetheless reported in quasi-periodic Ising
chains with a transverse magnetic field [23,26]. In this chapter, we will discuss a
similar illustration of the separation between ground-state and excitation prop-
erties in a two-dimensional disordered Ising model inspired by the possibilities
offered by Rydberg atoms simulators.

4.1.2 Positionally disordered atoms arrays
Let us consider a square array of L� L atoms whose internal states are mapped
onto S � 1{2 spins according to the transverse-field Ising model that we previ-
ously described (Eq. (2.1)). We will take advantage of the flexibility offered by
the individual trapping of single atoms via optical tweezers to introduce geomet-
rical disorder in the atom array in a controlled manner. Positional disorder can
be implemented by means of a tunable displacement of the atoms with respect
to their ordered position ri � pn1 � d1qe1 � pn2 � d2qe2, where e1,2 are the basis
vectors of the square lattice, while n1,2 are integer numbers standing for the lo-
calization of site i in the clean case. The displacements d1,2, on the other hand,
are uniformly distributed random variables with value in the interval r�∆,∆s,
where the disorder parameter ∆ is the knob that tunes the system from perfectly
ordered (∆ � 0) to completely disordered ∆ À 1{2, the upper-bound being half
the lattice spacing. As a consequence of the position dependence of the van der

64



4.1. Disordered spin systems

Figure 4.1: Disordered square lattice - The Rydberg atoms represented by the
orange spheres are displaced away from the position on the ordered square lattice
shown as an array of black circles. The dashed blue lines shows the randomized
nearest-neighbours Ising couplings, representing the strongest source of random-
ness in the Hamiltonian.

Waals couplings, positional disorder translates into the model as a randomization
of the spin-spin couplings Jij � J0{|ri� rj|6, with a high sensitivity to positional
variations due to the fast decay of the van der Waals interactions.

In the following study, we shall focus our attention on the quench dynam-
ics starting from a (nearly) homogeneous spin configuration. This choice, rather
natural for experiments, amounts to preparing the spins in a high-energy state
for the antiferromagnetic van der Waals interactions. Yet, as we have seen in
Sec. 3.3.1, when starting from a time-reversal invariant state, the quantum dy-
namics generated by H and �H have the same physical properties (in terms of
average values of observables as well as of entanglement entropies), so that we
can more conveniently view the quench dynamics that starts from a (nearly) ho-
mogneous spin state as a low-energy quench for the ferromagnetic Hamiltonian
�H. We shall adjust this point of view in the following and analyze the proper-
ties of the quantum Ising model on the positionally disordered square lattice with
ferromagnetic van der Waals interactions. Moreover, we will also make the simpli-
fying assumption that the detuning perfectly compensates the term κi �

°
j Jij,

so that the longitudinal field H vanishes. This is strictly impossible as κi is a
site-dependent term due to the randomization of the spin positions. Taking it
into account would introduce a further source of randomness in the Hamiltonian,
with the effect of strengthening the disordered nature of the Hamiltonian, but
not altering substantially the phenomenology of the system at hand. Under these
assumptions, the Hamiltonian of interest reads

Ĥ � �1
2
¸
i,j

JijŜ
z
i Ŝ

z
j � Ω

¸
i

Ŝxi , (4.1)

describing a Rydberg-atom simulator that mimics the physics of a random-bond
transverse field ferromagnetic Ising model with van der Waals couplings and cor-
related bond randomness, as represented on Fig. 4.1. In the following we shall
consider only the case where Ω � |J0|.
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Figure 4.2: Ground-state Ising order parameter in the linear spin-wave theory as
a function of the disorder parameter ∆, computed for several linear sizes L

As the introduction of disorder disturbs the translational invariance of the
system, the linear spin-wave formalism that we introduced in Chapter 2 should
be amended. Similarly to the clean case, we start the spin-wave construction by
aligning the local quantization axes with the ones defined by the mean-field state
|ΨMFy � bircospθi{2q| Òyi � sinpθi{2q| Óyis, where θi is the local angle imposed by
the transverse field. The mean-field state consequently defines a set of local rota-
tions around the y-axis R � biRpiq

y pθiq leading to a transformed spin Hamiltonian
R:ĤR that can be mapped onto a bosonic Hamiltonian according to the Holstein-
Primakoff transformation. Under the assumption that the described Bose gas is
sufficiently dilute (n̂i ! 2S), the bosonic Hamiltonian can be expanded up to
quadratic order and then takes the form Ĥ � EMF �p1{2q

°
i,j pb̂:i , b̂iqAijpb̂j, b̂:jqT ,

that can be diagonalized in a straightforward manner by the means of a Bo-
goliubov transformation. However, due to the lack of translational invariance,
the Bogoliubov modes are not labeled by the momentum k, but by a generic
index α for the new bosonic operators β̂p:qα expressing the Holstein-Primakoff
bosonic operators through the linear transformation b̂i �

°
α u

pαq
i β̂α � v

pαq
i β̂:α. The

condition
°
i r|upαqi |2 � |vpαqi |2s � 1 guarantees that the β operators are bosonic

ones. The Bogoliubov transformation leads to the diagonalized Hamiltonian
Ĥ � EMF�

°
α εαβ̂

:
αβ̂α, where εα stands for the α-th eigenenergy of the spectrum.

4.1.3 Ground-state properties : dirty ferromagnetism
In the following, we will discuss the ground-state behaviour of the positionally
disordered transverse-field Ising model and how the randomization process that
we implemented preserves and even enhances long-range order, through an aver-
age strenghtening of the nearest-neighbours couplings, thereby fully justifying a
spin-wave treatment.

Ising order is described by the magnetization mz of spins along the z-axis,
namely mz � p1{Nq°i xSzi y. Alternatively, the longitudinal magnetization can
also be obtained via the spin-spin structure factor at momentum k � 0 defined as
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Figure 4.3: Nearest-neighbours coupling distribution

Szzk�0 � p1{Nq°i,j xSzi Szj yβ computed over the ground state (namely the vacuum
of the β-bosons). The order parameter can then be estimated as

mz �
c

1
N
Szzk�0. (4.2)

The structure factor can be explicitly computed in terms of the Bogoliubov vec-
tors upαq and vpαq with entries given by the coefficients upαqi and vpαqi . In terms of
such coefficients, the spin-spin structure factor takes the form

Szzk�0 �
1
N

�
S2N2 � 2S

¸
α

|vpαq|2 �
¸
α,γ

|vpαq|2|vpγq|2 (4.3)

�
¸
α,γ

pvpαq � upγqqpupαq � vpγq � vpαq � upγqq
�
.

Fig. 4.2 shows the ground-state order parameter as a function of disorder strength
for different lattice sizes. The results have been averaged over a hundred realiza-
tions of disorder. It can be observed that instead of weakening the ferromagnetic
order, the introduction of positional disorder leads to its stregthtening. Such a
seemingly paradoxal affect can be understood as a result of a disorder-induced
increase in the average nearest-neighbour coupling. Indeed, the convex property
of the coupling function (J � r�6) ensures the inequality Err�6s ¡ Errs�6, where
Er�s accounts for the statistical average over disorder.

4.1.4 Probability distribution of the disordered couplings
We shall further discuss the properties of the coupling distribution and quantify
the behaviour and sensitivity of the system with respect to disorder. In order to
gain insight through analytical calcultations, we will consider in the following a
slightly simplified case where two atoms are displaced in one spatial dimension
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with respect to a reference distance (set to 1), with respective displacements
d1 and d2 uniformely distributed over the interval r�∆,∆s. We will thereafter
consider the general case where couplings decay as a power-law of the distance
with the exponent α, but we will later specialize the discussion to the case of
van der Waals interactions (α � 6). The dimensionless coupling y then takes the
form

y � J

J0
� 1
|1� d1 � d2|α , (4.4)

where the total displacement of the two atoms z � d1�d2 is also a random variable
following a triangle distribution p∆ with support on the interval r�2∆, 2∆s

p∆pzq � θp�zqpz � 2∆q � θpzqp2∆� zq, (4.5)
where θ stands for the Heaviside distribution. As a result, the distribution of
normalized couplings with support on the interval ry�, y�s, where y� � |1�2∆|�α
and y� � |1� 2∆|�α, is described by the function

P∆pyq � 1
4∆α2y1�1{α rθpy� 1qpy�1{α� 2∆� 1q� θp1� yqp2∆� 1� y�1{αqs. (4.6)

From this expression of the distribution of normalized couplings, one can deduce
its n-th moment

Eryns � p1� 2∆q2�αn � p1� 2∆q2�αn � 2
4α2∆2pn� 2{αqpn� 1{αq , (4.7)

which in the limit of weak disorders (∆ Ñ 0) can be Taylor expanded to obtain
the approximated expression

Eryns � 1� α2

6 n
�
n� 1

α



∆2 �Op∆4q. (4.8)

In particular, one can deduce that the variance of the couplings behaves at small
disorder as

Varpyq � α2

3 ∆2 �Op∆4q. (4.9)

One can then observe that the variance displays a higher sensitivity of the cou-
plings to disorder the higher the α exponent is. Indeed, the greater α is, the
stronger variations are induced by positional disorder in the couplings.

The actual form of the distribution P∆ of the nearest-neighbour couplings,
as computed for atoms displaced on a square window in two dimensions and for
α � 6, is shown on Fig. 4.3, along with the average value of the coupling µ
and the standard deviation σ. One shall notice that the distribution displays
an asymmetric form with an increasing skewness as the displacement parameter
∆ grows. Similarly to the one-dimensional case, the support of the distribution
is bounded by y� and y�, which admit different behaviours in the limit case
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∆ Ñ 0.5, as y� Ñ 1{125, while for the same limit the upper bound y� diverges.
As predicted in the one-dimensional case, the average value µ grows quadratically
with respect to small values of the disorder parameter ∆, which is consistent
with the strengthening of ferromagnetism we observed in the order parameter.
Moreover, the standard deviation σ � a

Varpyq grows linearly with ∆ but with
a larger proportionality factor than the one predicted by the one-dimensional
calculation, since here σ � 5∆ instead of

?
12∆. As a result for a relative

displacement of a few percent, namely ∆ � 0.04, one observes significant coupling
fluctuations with σ � 0.2. As we shall see this small amount of positional disorder
will have a drastic impact on the low-energy excitations of the model.

4.2 Spectral properties and localization
4.2.1 Inverse participation ratio
In the case of disorder-induced quantum phase transition involving a contin-
uous symmetry of the ground-state, long-range order is preserved -and even
strengthened- by the introduction of disorder, one should not observe localization
of the low-energy elementary excitations. However, since the symmetry broken
by the Ising order is discrete, the spectrum exhibit an energy gap which decouples
the spectrum from the ground-state order. In the following, we will explore the
spectrum properties, in particular the form taken by the eigenmodes in search for
traces of localization.

The localized nature of a Bogoliubov eigenmode can be captured and stud-
ied via the generalized inverse participation ratio (IPRq) [33]. In the case of a
normalized wavefunction

°
i |ψi|2 � 1, the IPRq takes the form,

Iqrψs �
¸
i

|ψi|2q (4.10)

In particular for q � 2, one recovers the expression of the conventional IPR, which
scales like the inverse volume of the effective support of the eigenfunction. If I2
scales like I2 � L�D � N�1, the wavefunction has support on the whole system,
namely it is extended. On the contrary, a localized eigenmode has effective sup-
port on a finite portion of the system, implying that I2 � cste. Similar properties
carry out to the generalized IPRq which is generally expected to exhibit a scaling
of the kind

Iq � N�Dqpq�1q{D, (4.11)
with Dq � D for extended states and Dq � 0 for localized states, expressing the
effective dimensionality of the wavefunction support [69]. Yet an intermediate
case between extended and localized states is offered by the so-called extended
non-ergodic or multifractal states, namely states whose effective support is a set
of zero measure in the spatial embedding in which the wavefunction is defined,
yet this support diverges with system size exhibiting a sub-extensive scaling. A
simple example could be offered by a wavefunction localized on a line of points
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(a) (b)

Figure 4.4: IPR and its scaling - (a) I2 as a function of the energy density ε and
the disorder parameter ∆, computed for a system of size 40 � 40. (b) Scaling
with the system size N of I2 for several points along the line ε � 0.5

in a two-dimensional system. In this case, the effective dimensionality is given
by Dq � 1 (independent of q). More generally the effective dimensionality Dq is
an irrational number, expressing the fractal nature of the wavefunction support;
and it is dependent upon the index q, in which case one speaks of multifractal
wavefunctions.

We propose to generalize this classification to the case of Bogoliubov eigen-
modes (upαq, vpαq) normalized so that

°
i r|upαqi |2 � |vpαqi |2s � 1. This normaliza-

tion suggests that the role of the squared wavefunction |ψi|2 is played here by
the quantity |upαqi |2 � |vpαqi |2, which, although not being non-negative a priori,
turns out to be non-negative in all practical applications we considered. This is a
physical consequence of the diluteness of the gas of Holstein-Primakoff bosons in
the ground state: indeed the diluteness condition leads to xn̂iy �

°
α |vpαqi |2 ! 1,

which imples a fortiori |vpαqi |2 � xn̂iy{N ! 1 for any α; while in order for the
mode to be correctly normalized, one needs |upαqi |2 � Op1{Nq, namely |vpαqi |2 �
xn̂iy|upαqi |2 ! |upαqi |2. Hence, we introduce the generalized IPRq for the Bogoliubov
modes in the form

Ipαqq �
¸
i

�
|upαqi |2 � |vpαqi |2

�q
. (4.12)

This quantity will be subject of our analysis in the following paragraph.

4.2.2 Scaling of the inverse participation ratio
The behaviour of I2 as a function of the disorder parameter ∆ and the normalized
energy εα � pεα�εminq{pεmax�εminq, where εmin,max are the extremal values of the
LSW spectrum, is shown on Fig. 4.4. The inverse participation ratio is computed
for Ω � |J0| and averaged over windows of energy densities of width δε � 0.02,
and then further averaged over several hundreds of disorder realizations. One can
distinguish three regimes in the behaviour of I2 :
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1. At low disorder, namely for ∆ À 10�2, all modes of the spectrum are
extended.

2. For stronger disorder 10�2 À ∆ À 4�10�2, the system lies in an intermediate
regime where low- and high-energy eigenmodes exhibit a scaling with system
size which is consistent with localized behavior, while the scaling properties
of the medium part of the spectrum (namely ε � 0.5 as shown on Fig. 4.4)
suggest that the eigenmodes remain delocalized.

3. At high disorder, namely for ∆ Á 4 � 10�2, all eigenmodes undergo localiza-
tion.

Indeed, Fig. 4.4 (b) shows how I2 scales with system size for different values
of the disorder parameter ∆ for eigenmodes at energy density ε � 0.5. For
weakly disordered system (∆ � 0� 0.01) the inverse participation ratio displays
a scaling compatible with an extended nature of eigenmodes. On the contrary,
at high values of disorder (∆ � 0.05 � 0.06), I2 is size-independent, as expected
from localized eigenmodes. For values of disorder standing in between these two
limiting cases, however one finds that I2 shows an algebraic scaling that will be
further discussed in Sec. 4.2.4.

One can find this phenomenology puzzling since tight-binding Hamiltonians
with short-range hopping in the absence of spin-orbit coupling and magnetic
fields, possessing the same symmetries as those of the Gaussian orthogonal en-
semble of random matrices, are not expected to exhibit a localization transition
at finite disorder for dimension D ¤ 2. However, the bosonic quadratic Hamil-
tonian treated in this study, despite describing spinless particles in the absence
of (orbital) magnetic field, contains pairing terms that ascribe it to a different
class of models whose localization properties are still far from being fully un-
derstood, leaving open the possibility for the system to undergo localization at
finite disorder in D � 2, as pointed out by recent numerical studies [18]. One
should not exclude however the possibility that the observed extended phase is
actually a finite-size effect, and that localization occurs at any disorder but with
a localization length that exceeds the system sizes explored in this study ξl " L.
In that case one would not be able to grasp the truely localized nature of the
eigenmodes unless one explores systems whose size compares with ξl.

4.2.3 Dynamical structure factor
As shown in [97], the extended versus localized nature of eigenmodes can also be
probed via the properties of the dynamical structure factor defined as

Szzpk, ωq �
» �8

�8

dω
2π
¸
i,j

eik�pri�rjq

N
x0|Szi ptqSzj p0q|0yβ. (4.13)

Indeed, since disorder breaks translational invariance, Bloch’s theorem does not
apply anymore and the momentum k cannot be used to label the eigenstates. As a
result, contrarily to clean systems, the eigenmodes acquire a non-trivial structure
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(a) (b) (c)

Figure 4.5: Spin-spin structure factor as a function of impulsion k and energy
density, computed for three values of the disorder parameter (a) ∆ � 1 �10�2, (b)
∆ � 3 � 10�2, (c) ∆ � 5 � 10�2, all with the same system size 20� 20

in momentum space and in particular the appearance of a finite momentum width
in the case of localized eigenmodes whose localization length corresponds to the
inverse of the width in question. The evolution of the structure factor can be
easily accessed using linear spin-wave theory, which provides an expression of the
dynamical structure factor in terms of the Bogoliubov coefficients upαqi and vpαqi ,
and the local mean-field angle θi,

Szzpk, ωq � S

2N
¸
α

δpω � ωαq|
¸
i

e�ik�ri sin θipupαqi � v
pαq
i q|2, (4.14)

where δ stands for the Dirac distribution.

The dynamical structure factor computed for three different disorder param-
eters ∆ in the three aforementioned regimes is shown on Fig. 4.5, as a function
of momentum k and of the energy density ε. One can indeed observe the same
phenomenology as the one exhibited by I2: while at weak disorder the extended
nature of the eigenmodes is preserved, as ∆ increases the peaks of the dynamical
structure factor start to acquire a finite momentum width as disorder increas-
ingly localizes the eigenmodes, starting from the edges of the spectrum. Then,
ultimately, the whole spectrum attains localization and a finite momentum width
appears for modes at all energies. The dynamical structure factor therefore shows
evidences of the transition toward localization.

4.2.4 Multifractal eigenmodes
In the intermediate regime of coexistence between localized and extended eigen-
modes, the scaling of I2 with system size (shown on Fig. 4.4) displays a power-law
decay I2 � N�a with an exponent 0 ¤ a ¤ 1, which suggests that the effective
support of the eigenmodes in the middle of the spectrum has non-integer dimen-
sions, a property typical of fractals. In the following, we will investigate and
identify the fractal properties of the eigenmodes lying in the intermediate regime
of disorder.

In particular, the generalized inverse participation ratio Iq provides a tool to
probe the possible multifractal nature of the eigenmodes, namely the property of
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Figure 4.6: Generalized inverse participation ratio Iq at energy density ε � 0.5q
computed for four values of ∆, and four different values of q.

being described by an infinite number of dimensions Dq, governing the size-scaling
of Iq as

Iq � NDqpq�1q{D. (4.15)

Dq can be interpreted as the effective dimensions of the eigenmode’s support
revealed by Iq. Indeed, for all values of q, we expect to observe Dq � D in the
case of extended non-fractal eigenmodes, while Dq � 0 for localized eigenmodes.
On the other hand, a q-dependent Dq signals the multifractal property of the
eigenmode.

The scaling of Iq in the middle of the spectrum (ε � 0.5) is shown on Fig. 4.6
for several values of q, while the dimensions extracted from the power-law fitting
of Iq for linear sizes ranging from L � 18 to L � 34 are displayed on Fig. 4.7. As
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Figure 4.7: Anomalous dimensions corresponding to the curves shown on Fig. 4.6.
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(a) (b)

Figure 4.8: Entanglement entropy computed at ∆ � 3 � 10�2 for several linear
system sizes L - (a) entanglement entropy computed for the full van der Waals
interactions (b) entropy computed for truncated van der Waals couplings.

expected, for all values of q, Dq � D in the clean case and Dq � 0 in the fully
localized one; on the other hand in the mixed extended-localized case (10�2 À
∆ À 4 � 10�2) the effective dimension Dq is q-dependent, thus highlighting the
multifractal nature of the mid-spectrum states.

4.3 Anomalous dynamics and localization
4.3.1 Entanglement entropy
Several numerical studies have evidenced a link between multifractal properties of
eigenstates and anomalous diffusion, namely non-ballistic propagation of particles
and/or information [69, 71, 73, 86, 103]. This connection between multifractality
and dynamical properties provides a tool to probe the structure of the eigenmodes
and record the transition toward localization by studying the quench dynamics
of the system.

In the following, we will proceed according to the global quench protocol
described in the previous chapter, namely the dynamics will be initialized from
the mean-field state, which in terms of the linear spin-wave theory translates
to the vacuum of the b-bosons. The post-quench evolution of this factorized
uncorrelated state then leads to the build-up of correlations and entanglement
via the generation of correlated pairs of bosons and their propagation through
the lattice. Moreover, due to the Gaussian nature of the states described by linear
spin-wave theory, entanglement entropy is readily computable. We then consider
a two-dimensional toroidal system of size L�L, and entanglement entropy EL{2 �
Trrln ρ̂L{2s is computed for the reduced density matrix ρ̂L{2 of half of the torus
(namely a system of size L� L{2).

The asymptotic value of the entanglement entropy has very different scaling
behaviours depending on whether the system is fully localized or still retains some
extended eigenmodes. In the former case, entanglement entropy scales like the size
of the interface between the subsystem and its complement, following a so-called
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(a) (b)

Figure 4.9: Disorder dependence of the growth of the entanglement entropy -
(a) post-quench evolution of the entanglement entropy as a function of time for
several values of the displacement parameter ∆ (here L � 30) (b) power-law
exponent z as a function of ∆. The dashed line shows an heuristic fit to an
exponential decay z � expp�∆{δq.

area law; while in the latter entanglement entropy scales like the subsystem size
according to a volume law. The results displayed in Fig. 4.8 show that at sizeable
disorder corresponding to regime II (namely ∆ � 3 � 10�2) the entanglement
at long-times does not follow an area-law scaling. This aspect further indicates
the persistence of extended eigenmodes in spite of positional disorder; a finite
occupation of bosons in such modes leads to the observed asymptotic scaling of
entanglement. One can also notice that, unlike in the clean case, the growth of
entanglement entropy is not linear, but instead follows a power-law growth of the
form

EL{2 � t1{z, (4.16)

where z � 2.8 at the disorder (∆ � 3 � 10�2) shown on Fig. 4.8. This power
law growth, while manifesting itself as a transient behavior at short times for a
given system size, appears to persist over longer time spans as the size increases,
suggesting that it may persist indefinitely in the thermodynamic limit. This

Figure 4.10: Dynamics of entanglement entropy in the localized regime (III)
computed for two values of ∆ (∆ � 6 � 10�2 and ∆ � 10�1)
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(a) (b)

Figure 4.11: Evolution of the spatial structure of the two-point correlators fol-
lowing a global quench at disorder ∆ � 2 � 10�2 - (a) Green function (b) pairing
function. Both quantities are computed for a system of size 50�50 and averaged
over 500 realizations of disorder. Here β � 0.58.

behaviour is not an effect of the long-range nature of the van der Waals couplings
as Fig. 4.8 also shows the evolution of entanglement entropy in the case where
the tail of the van der Waals interactions is cut-off and couplings brought to zero
for distances longer than r0 �

?
2, there we observe that entanglement entropy

still displays a power-law growth, albeit with a different exponent z � 2.2.

Repeating the study of the growth of entanglement entropy for various dis-
order strengths, (Fig. 4.9) the results suggest that the exponent z grows contin-
uously from z � 1 in the clean case to span the sub-ballistic (1   z   2) and
sub-diffusive regimes (z ¥ 2), until the system reaches localization, at which z
should diverge. The behaviour of entanglement entropy in the localized regime is
shown in Fig. 4.10. Sufficiently close to the localization transition (∆ � 6 � 10�2),
the entanglement entropy seems to grow logarithmically in time before reaching
a saturation regime seemingly described by an area law (at least for the larger
systems sizes considered here) consistent with Anderson localization. For an even
stronger disorder (∆ � 10�1) the apparent logarithmic growth at short times dis-
appears, and a clear area-law scaling is observed at all times and for all the sizes
we considered.

4.3.2 Correlation functions
Since linear spin-wave theory describes Gaussian states, the post-quench evo-
lution of entanglement entropy as well as of any other quantity descends from
the dynamics of the Green functions xb:ibjy and the anomalous Green functions
xbibjy. Therefore, one expects to observe into the Green functions the anomalous
diffusion that is exhibited by the entanglement entropy.

The evolution of the two-point correlators is characterized by the instanta-
neous post-quench emergence of an algebraic spatial profile of the form r�6 due to

76



4.3. Anomalous dynamics and localization

Figure 4.12: Spin-spin correlation function and light-cone effect in a system of
size 50� 50 at disorder ∆ � 3 � 10�2.

the van der Waals form of the couplings. Then as quasi-particles propagate, cor-
relations build-up and stabilize an emergent disorder-dependent spatial structure
of the form r�β, with β   6, within the boundaries of a light-cone which opens
up sub-ballistically. The evolution of the correlators is shown on Fig. 4.11 for a
value of disorder (∆ � 2 �10�2) that corresponds to the intermediate regime of co-
existence between extended and localized eigenmodes. The asymptotic algebraic
decay of correlations is another consequence of the non-ergodic (algebraically lo-
calized) nature of the eigenmodes, moreover it deviates strongly from what one
would expect at thermal equilibrium namely an r�6 decay imposed by the long-
range interactions. Hence the asymptotic behavior represents a pre-thermalized
regime, dominated by the integrable nature of the linearized spin-wave Hamilto-
nian.

The spin-spin correlation function for e.g. the x-spin component, being ex-
pressed in terms of the two-point Green functions, provides a straightforward
platform to probe both the subdiffusive propagation of information through a
curved light cone with an algebraic aperture t � rz, where z is the exponent gov-
erning the growth of entanglement entropy; as well as the non-ergodic nature of
the eigenmodes via the algebraic decay of the asymptotic correlations. In terms
of the two-points correlators, the spin-spin correlation function for the x-spin
components reads

Cxx pri, rj; tq � sin θi sin θj
�
xb̂:i b̂jyxb̂ib̂:jy � xb̂:i b̂:jyxb̂ib̂jy

	
� S

2 cos θi cos θj
�
xb̂:i b̂jy � xb̂ib̂:jy � xb̂:i b̂:jy � xb̂ib̂jy

	
. (4.17)

The correlation function, multiplied by rβ (with β � 1.1) in order for the light-
cone structure to be more visible, is represented on Fig. 4.12, and as expected it
shows a sub-ballistic light cone which further highlights the anomalous diffusion
of correlations in the model at hand. More importantly, the exponent z extracted
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Figure 4.13: Local excess density of bosonic excitations δni as a function of time
computed for ∆ � 3 � 10�2 for a system of size 30 � 30. The upper row shows
the density profile on linear scale while the lower row displays the same density
profiles in logarithmic scale.

from the study of entanglement entropy is consistent with the one piloting the
aperture of the light cone.

4.3.3 Probing multifractality via quench dynamics
In the previous chapter, we introduced a second quench protocol (local + global
quench) which is complementary to the global quench protocol in the sense that
it enables to target the excitation of specific eigenmodes. In the following, we will
use this quench protocol to highlight the multifractal structure of eigenmodes in
the intermediate regime of disorder.

The locally quenched system from which we initialize the dynamics is the
mean-field state, on top of which a single spin is flipped at the injection site
j, resulting in the addition of a single b-boson |Ψ0y � b̂:j|ΨMFy. Therefore, the
flipping of a spin at site j leads to a local excess in the density of the Bose gas
of excitations. We record the evolution of this excess density compared to the
density of quasi-particles induced by a global quench, as encoded in the quantity
δni defined as

δniptq � xΨMF|b̂jn̂iptqb̂:j|ΨMFy � xΨMF|n̂iptq|ΨMFy, (4.18)

which corresponds to the local density of bosons following a local spin-flip. This
excess density of bosonic excitations, from a peak localized at injection site j, is
expected to progressively spread via the most extended eigenmodes that overlap
with site j, thereby exposing their spatial structure -either extended, multifractal
or localized. This is particularly important in the regime in which the most
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Figure 4.14: Size scalling of nq compared to the generalized participation ratio
and corresponding effective dimension at ∆ � 3 � 10�2.

extended eigenmodes are multifractal, as shown in Fig. 4.13. Identifying the
asymptotic density profile with its time-average, we obtain an expression for δni
at long times as

δniptÑ 8q �
¸
α

�
pupαqi q2 � pvpαqi q2

� �
pupαqj q2 � pvpαqj q2

�
. (4.19)

This expression shows that modes that contribute the most to the long-time
excess density are those that have a significant overlap with both site j as well as
site i -namely δni reflects the spatial structure of modes thar are centered around
j and that extend all the way to site i. To analyze their spatial structure, we
investigate their generalized inverse participation ratio defined as

nq �
¸
i

rδniptÑ 8qsq, (4.20)

since
°
i δni � 1. We can then deduce from the finite-size scaling of this quantity

a q-dependent multifractal dimension of the density profile, noted D1
q dictating

the power-law scaling of nq

nq � N�D1
qpq�1q{D. (4.21)

Such a scaling is indeed evidenced by Fig. 4.14 at disorder ∆ � 3 � 10�2. The
size- and q-dependent behaviours of nq are compared with the scaling of the
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generalized inverse participation ratio Iq of the mid-spectrum eigenmodes (being
the ones that are most extended) for the same value of the disorder parameter.
For all considered values of q, the generalized inverse participation ratios for the
eigenmodes and for the excess density show similar scaling properties, resulting in
close multifractal dimensions. This similarity in the respective behaviours of nq
and Iq can be understood a posteriori given the value of the disorder parameter at
which this study is conducted, namely ∆ � 3�10�2. For this intermediate disorder
regime, the low- and high-energy eigenmodes are localized, and the remaining
extended ones lie in the middle of the spectrum, namely at the energy density
ε � 0.5. As a result, the eigenmodes that contribute the most to the propagation
of the spin flip are localized at ε � 0.5.

4.4 Conclusions
In this chapter, we illustrated the stark dichotomy between equilibrium and out-
of-equilibrium properties exhibited by a positionally disordered quantum many-
body system that can be realistically implemented in Rydberg-atoms simulators.
Similar physics could also be explored with trapped ions in microtrap arrays.
We evidenced how the non-ergodic and multifractal nature of the eigenmodes
could be explored via the properties of a rich post-quench dynamics ranging
continuously from ballistic to sub-diffusive and to localized. This study is also
relevant for experiments in light of the high sensitivity to disorder of van der Waals
interactions, and the positional disorder that thermal fluctuations can induce in
trapped-atoms arrays [61].
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Chapter 5
Gaussian Ansatz approaches to
non-linear spin dynamics

”Je t’ai vu grandir comme un arbre,
Inénarrable éternité ;
Je t’ai vu durcir comme un marbre,
Indicible réalité.”

Marguerite Yourcenar, ”Vers gnomiques”

5.1 Interacting spin systems
5.1.1 Motivations
Despite its seemingly simplistic formulation, linear spin-wave theory provides
an insightful framework to explore exotic dynamical effects, such as localization
through Aharonov-Bohm caging, or anomalous diffusion and multifractality in
geometrically disordered spin systems. However, linear spin-wave theory is in-
herently limited by the amount of excitations on top of a mean-field reference
state that can be faithfully described without accounting for their interactions,
and this limitation prevents the theory from correctly describing high-energy
quenches. Moreover, the linearization of the Hamiltonian implies that the sys-
tem is approximated in terms of an integrable model, whose dynamics leads to
an equilibration towards a state described by the Generalized Gibbs Ensemble
(GGE), thus failing to reach proper thermalization.

Searching for an approach beyond the linearized picture provided by linear
spin-wave theory opens new ways towards the study of many-body dynamics
far from equilibrium, in cases where the effects of interactions on dynamics can-
not be neglected. Extending linear spin-wave theory beyond the dilute regime
also enables to consider quenches that are more realistically implemented in
cold-atom experiments. In the following, we will apply the Gaussian Ansatz
approach sketched in Sec. 2.2.2 to the transverse-field Ising model, first for a
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one-dimensional chain - for which an exact solution is available - and then for the
two-dimensional square lattice.

5.1.2 Non-linear spin-wave Hamiltonian
The physics of one-dimensional systems, characterized by strong non-linear fluctu-
ations [41], typically expose the linear approach to spin-wave theory to the limits
of its relevance . Moreover, as we discussed in Sec. 2.3.1, the transverse-field Ising
chain admits an exact description in terms of free fermions, and therefore its dy-
namics is constrained to conserve an extensive number of integrals of motion. The
transverse-field Ising chain, as it lies beyond what can be accurately described by
linear spin-wave theory, provides at the same time a suitable benchmarking test
for a Gaussian-state approach to non-linear spin dynamics.

In order to lead this comparative study between the results of the Gaussian
Ansatz (GA) and the free fermions (FF) exact solution, we will initialize the
dynamics in a simple state, namely the spin configuration where every spin is
polarized along the transverse-field,

|Ψ0y �
â
i

| Ñyi, (5.1)

which in the particle image of spins -either bosonic or fermionic- corresponds to
a vacuum of quasiparticles.

Choosing the direction of the transverse field as the quantization axis z1 of
the transverse-field Ising model, the corresponding Hamiltonian then reads

Ĥ � �1
2
¸
i,j

JijŜ
x1

i Ŝ
x1

j � Ω
¸
i

Ŝz
1

i . (5.2)

As discussed in Chapter 2, linear spin-wave theory starts from a bosonization of
the spin operators based on the Holstein-Primakoff transformation, the resulting
Bose gas is then assumed to be dilute enough to linearize the expression of spin
operators in terms of the bosonic operators. Still under the assumption that
the amount of quasiparticles is small, one can bring one step further the Taylor
expansion of the square-root term present in the transformation as follows

Ŝ�i �
b

2S � b̂:i b̂i b̂i �
?

2S
�

1� 1
2
b̂:i b̂i
2S

�
b̂i �O

�
b̂3
i

	
. (5.3)

This results in the appearance of quartic terms in the Hamiltonian, describing pair
creation/destruction and hopping modulated by local quasiparticle occupation:

Ĥ � �NΩS � S

4
¸
i,j

Jij

�
b̂:i � b̂i

	�
b̂:j � b̂j

	
� Ω

¸
i

b̂:i b̂i (5.4)

� 1
16
¸
i,j

Jij

��
b̂:i � b̂i

	�
b̂:j b̂

:
j b̂j � b̂:j b̂j b̂j

	
�
�
b̂:i b̂

:
i b̂i � b̂:i b̂ib̂i

	�
b̂:j � b̂j

	�
.
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The unitary evolution of the system governed by this Hamiltonian is tackeld by
using the dynamical Gaussian Ansatz framework we established in Chapter 2.
Within that Ansatz, the system is fully described by the two-point correlators
Gij � xb̂:i b̂jy and Fij � xb̂ib̂jy - while ci � xb̂iy � 0 as the Hamiltonian only
contains even terms. The evolution of two-point correlators is driven by a set
of first-order non-linear differential equations (given in Appendix D) that can be
solved numerically for a set of initial conditions corresponding to the two-point
correlators of the initial Gaussian state.

The mapping of spins onto bosons requires to set bounds to the elements of the
covariance matrix of the bosonic Gaussian state in order for it to be compatible
with the physics of spin degrees of freedom. These constraints impose consistency
between the bosonic and spin Hilbert spaces, and form in principle an infinite set
of conditions, but for practical purposes we shall limit ourselves to conditions
refered to single-spin and spin-spin observables:

1. the expectation value of all spin components shall obey to the relation
|xŜαi y| ¤ S,

2. the spin-spin correlation functions for all components are expected to obey
the inequality |xŜαi Ŝβj y � xŜαi yxŜβj y| ¤ S2.

Neither linear spin-wave theory nor the Gaussian Ansatz approach are bound
to satisfy the above constraints, and therefore the predictions should be con-
sidered as physical only when the above criteria are met. Except when stated
otherwise, all the results presented in this chapter have been tested to satisfy the
above criteria.

5.2 Transverse-field Ising chain
5.2.1 Fermionic and bosonic images of dynamics
It is very instructive at this point to contrast the exact solution of the transverse-
field Ising chain in terms of free fermions with the picture offered by spin-wave
theory, linear and non-linear. As seen in Sec. 2.3.1, the Jordan-Wigner transfor-
mation allows one to map the transverse-field Ising chain into the free-fermion
Hamiltonian [74]

Ĥ �
¸
k

εk

�
η̂:kη̂k �

1
2



, (5.5)

where εk � Ω
?

1� λ2 � 2λ cosk and λ � J{p2Ωq. On the other hand, linear spin-
wave theory amounting to the Hamiltonian Eq. (5.4) in which only the quadratic
tterms are retained, describes the S � 1{2 spin chain in terms of free bosons as

ĤLSW � �NΩ
2 �

¸
k

ε̃kβ̂
:
kβ̂k, (5.6)
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with ε̃k � Ω
a

1� λ̃ cosk and λ̃ � J{Ω. Hence applying spin-wave theory to
the Ising chain for strong polarizing fields amounts to trying to mimicking a free
Fermi gas via a free Bose gas. This approach can only be successful in the limit
of a very dilute gas, in which the statistics of the particles plays a minor role.
At higher densities instead, the results are expected to differ signficantly: the
Holstein-Primakoff transformation indeed describes the S � 1{2 spin system as
a gas of hardcore bosons, as a consequence strong non-linearities are necessary
to have a faithful bosonic description of the fermionic gas. A first step in this
direction is precisely taken by non-linear spin-wave theory. The purpose of the
following analysis is precisely that of assessing the latter approach.

5.2.2 Quench dynamics of the transverse magnetization
Choosing the polarized state as the initial state for the dynamics amounts to
preparing the system in the ground state at infinite transverse field (Ω � �8),
and evolving it with finite field. The value Ω of the transverse field then tunes
the strength of the quench: the weaker the field, the further the polarized state
is from the ground state of the post-quench Hamiltonian. The most extreme
cases correspond to when Ω crosses the critical value (Ωc � 0.5J) below which
the ground state exhibits ferromagnetic order. The evolution of the expectation
value of the transverse magnetization

mx � 1
N

¸
i

xŜz1i y � S � 1
N

¸
i

xb̂:i b̂iy, (5.7)

computed using the Gaussian Ansatz and compared to the exact solution is shown
on Fig. 5.1 for three different values of the transverse field lying above, below and
at the critical field. Fig. 5.1 (a) shows an example of a ”small” quench with Ω �
3Ωc � 1.5J , keeping the field well above the transition point. We observe that
this quench keep the transverse magnetization close to its initial value, implying
the appearance of a gas of fermionic quasiparticles (in the exact solution) or
bosonic quasiparticles (within spin-wave theory) of very low density. While this
feature is correctly captured by linear spin-wave theory, we observe that the
latter theory predicts an asymptotic value which is lower than the exact one
(namely it overestimates the density of quasiparticles), and oscillations around
the asymptotic value which are far more persistent and possess a significantly
lower frequency than the exact solution. This reveals in particular the fact that
linear spin-wave theory predicts an incorrect excitation spectrum and persistent
oscillations in the absence of non-linearities. All these artifacts are corrected
by the inclusion of non-linearities at the level of the Gaussian Ansatz, which
recovers at once the correct asymptotic value of the transverse magnetization,
and the correct frequency of the oscillations as well as the correct time scale for
their damping.

Remarkably, the Gaussian Ansatz is able to reproduce the dynamics of the
spin chain in regimes where linear spin-wave theory breaks down. Indeed, for
values of the transverse field lying below the critical value predicted by the mean-
field approximation, namely ΩMF

c � J , imaginary frequencies arise in the linear

84



5.2. Transverse-field Ising chain

Figure 5.1: Quench dynamics of the transverse field Ising chain - (a) (b) and (c)
represent the transverse magnetization mx as a function of time, computed for a
chain of length N � 50 at three values of the transverse field Ω � 3Ωc, Ω � Ωc,
Ω � 0. (d) represents the transverse magnetization as a function of the transverse
field averaged over a time-window of width 40J .

spin-wave spectrum, leading to the dynamical instabilities. On the other hand
the Gaussian approach remains stable in these regimes of strong quenches, as
illustrated on Fig. 5.1 (b)-(c) for transverse fields such as Ω � Ωc and Ω � 0.
In these two cases, the agreement between the exact solution and the Gaussian
Ansatz on the asymptotic value of the transverse magnetization becomes less
quantitative, yet the main features of the dynamics are still well captured. On
Fig. 5.1 (b), refering to a quench with Ω � Ωc, one can observe that, while
overestimating the asymptotic value compared to the exact result, the Gaussian
Ansatz captures correctly the frequency of the oscillations around that value
and it also shows damping of such oscillations altough with an underestimated
damping rate. As for Fig. 5.1 (c), it describes the extreme case where Ω � 0;
although the oscillations exhibited by the Gaussian Ansatz do not fit perfectly
the exact result, both the frequency and the amplitude are rather close to exact
behaviour of the spins, despite the high densities of quasiparticles generated by
the quench.

The comparison between the linear spin-wave theory, the Gaussian Ansatz and
the exact result is summarized on Fig. 5.1 (d), where the time-averaged transverse
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Figure 5.2: Performances of the Gaussian Ansatz for a transverse-field Ising chain
of N � 50 sites. The upper panel shows the distance d between the exact solution
and the Gaussian solution as a function of the transverse field, while the lower
panel displays the evolution of the equilibrium magnetization, also as a function
of the transverse field.

magnetization is represented as a function of the transverse field, or in other
words as a function of the strength of the quench. While linear spin-wave theory
only gives accurate predictions for the time-averaged magnetization for small
quenches and then becomes unstable at Ω � ΩMF

c , the Gaussian Ansatz provides
quantitative results for all values of Ω, with a generically good agreement with
the exact solution except at a point around Ω � 0.1J , where the time-averaged
magnetization decreases below the exact value of mx � 0.25 before showing a
cusp and going back up toward the exact solution. In this restricted area, the
solutions of the non-linear equations of motion display numerical instabilities.

To gain a global insight into the ability of the Gaussian Ansatz to reproduce
the dynamics of the transverse magnetization, one can look at a measure of the
distance d between the exact solution (free fermions) and the Gaussian Ansatz,

d � }mx
FF �mx

GA}2, (5.8)
where } � }2 accounts for the 2-norm defined on L2pr0, T sq as

}f}2 �
�» T

0
dt|fptq|2


1{2
, (5.9)

with T being the upper bound of the time considered during the evolution of the
system.

The performances and accuracy of the Gaussian Ansatz are tested for low
values of the transverse field, namely for the strongest quenches, in conditions
where the approach is most likely to break down. As illustrated by Fig. 5.2,
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5.2. Transverse-field Ising chain

the distance d between the exact and the Gaussian solution remains relatively
small for Ω ¡ 0.2Ωc � 0.1J , but it increases significantly below this value; most
importantly in that range of spin-spin correlation functions are predicted by the
Gaussian Ansatz to take unphysical values (exceeding S2). Nonetheless, as illus-
trated on Fig. 5.1 (c), the dynamics of the transverse magnetization still retains
some of the main features of the exact solution.

A possible path to incrementally improve the results provided by the Gaussian
approach could be to expand the Holstein-Primakoff transformation to the higher
orders, thus including new terms to the Hamiltonian. This strategy however
would imply to manipulate 2n-points correlators expanded into the sum of p2n�
1q!! products of n two-points correlators.

5.2.3 Spin-spin correlation functions
The picture provided by the dynamics of the transverse magnetization however
is not sufficient to assess the efficiency of the Gaussian approach, as it only
involves the diagonal elements of the covariance matrix. To complete the picture,
it is necessary to study how quantities involving the off-diagonal terms of the
covariance matrix compare to the exact solution. A readily computable example
is the spin-spin correlations for the x spin components:

Cxxpri � rj; tq � xδŜxi δŜxj y � xŜz1i Ŝz
1

j y � xŜz1i yxŜz
1

j y (5.10)
� xb̂:i b̂jyxb̂ib̂:jy � xb̂:i b̂:jyxb̂ib̂jy.

The correlation functions computed via linear spin-wave theory and the Gaussian
Ansatz are compared to the exact solution in Fig. 5.3. In all cases, we observe a
light-cone structure of the correlation with comparable Lieb-Robinson velocities;
yet linear spin-wave theory fails to reproduce the inner structure of the light
cone as it exhibits undamped oscillations of correlations at all distances. The
Gaussian Ansatz, on the other hand, reproduces more accurately the structure
of the correlations with strongly damped oscillations.
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Figure 5.3: Spin-spin correlation function along the x-axis as a function of dis-
tance r between two sites and time. The results shown here are computed for
N � 50 and Ω{Ωc � 3.
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Figure 5.4: Time-averaged structure factor computed for a chain of length N � 50
at a transverse-field value of Ω{Ωc � 3.

Fig. 5.3 probes the ability of spin-wave theories to reproduce the dynamical
behaviour of correlations but it does not illustrate whether such approaches are
able to reproduce the asymptotic structure of correlations at long times. To do
so, we focus our attention on the time-averaged spin-spin structure factor for x
spin components, defined as the Fourier transform of correlations,

Sxxeq pkq �
1
T

» T
0

dt
N

¸
i,j

eik�pri�rjqCxxpri � rj; tq. (5.11)

Fig. 5.4 shows the time-averaged structure factor for the same value of transverse
field and the same chain length as the ones used to compute the correlation
functions shown in Fig. 5.3. All three curves represented on the figure exhibit
a Lorentzian-like profile consistent with an exponential decay of the correlation
functions. Yet, linear spin-wave theory significantly overestimates the strength of
correlations, while the Gaussian Ansatz provides an accurate description of the
structure of correlations at long times.

5.2.4 Entanglement entropy
The full structure of the covariance matrix of a sub-system enters in the entangle-
ment entropy, which can be computed for the exact free-fermion picture as well as
for bosonic Gaussian states. The evolution of entanglement entropy is expected
to be characterized by two properties : the time necessary to observe a satu-
ration, and the value taken by entanglement entropy at the saturation plateau.
Indeed, the time t� necessary for entanglement entropy to reach saturation is
controlled by the propagation of excitations, or more precisely by their maximum
group velocity. An accurate relaxation time is therefore suggestive of a faithful
reproduction of the spectral properties of the excitations. On the other hand,
if the entanglement at saturation is reproduced faithfully, this suggests that the
statistical ensemble describing the equilibrium state is properly adressed. This
last point is particularly significant in the case of the one-dimensional transverse-

88



5.3. Transverse-field Ising model on the square lattice

0 10 20 30 40 50
tJ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
A

FF

LSW

GA

Figure 5.5: Entanglement entropy as a function of time computed for a chain of
N � 150 sites with periodic boundary conditions. The subsection A is a segment
of size NA � N{10 and the transverse field used for the calculation is Ω{Ωc � 3

field Ising model due to its integrability and, consequently, to the existence of
conserved quantities that constrain the generalized Gibbs ensemble describing
long-time behaviour.

An illustration of the comparative evolution of entanglement entropy is shown
in Fig. 5.5, entanglement entropy being computed for a chain with boundary con-
ditions of length N � 150, the subsection considered here being a tenth of the
total chain. As it was already indicated by the study of the transverse magnetiza-
tion and correlations, linear spin-wave theory fails to capture both the relaxation
dynamics of the system following the quench and the state toward which it equili-
brates. The entanglement entropy computed by means of the Gaussian approach
shows a significant improvement compared to linear spin-wave theory, in the sense
that reproduces well the general behaviour of the exact solution - namely a linear
growth of entanglement up to a plateau close to the prethermal value of the inte-
grable model. We observe however a discrepancy in the relaxation times between
the Gaussian Ansatz and the exact solution: the entanglement entropy described
by the former relaxes more slowly than the latter, indicating that the maximum
group velocity of excitations described by the Gaussian approach is smaller than
expected and that, as a result, the finer details of the excitation spectrum are not
perfectly reproduced.

5.3 Transverse-field Ising model on the square
lattice

5.3.1 From the chain to the square lattice
In contrary to the one-dimensional case of a chain, the transverse-field Ising model
on the square lattice is not integrable, and while the thermal state toward which
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Chapter 5. Gaussian Ansatz approaches to non-linear spin dynamics

the post-quench dynamics bring the system can be described by quantum Monte
Carlo calculations, the study of the dynamics itself for large systems calls for the
use of approximate methods. The substantial improvement over linear spin-wave
theory offered by the inclusion of non-linearities within the Gaussian Ansatz, in
the case of the Ising chain, encourages us to look into the predictions of the latter
approach for systems in higher dimensions.

Indeed, the distinctive traits of one-dimensional physics, namely strong fluc-
tuations and interactions, are expected to be weaker in the physics of systems of
high dimensions. In particular, the density of bosonic quasiparticles is expected to
be generically smaller and consequently the importance of non-linearities should
be weaker. Moreover, as shown in Sec. 2.2.1, the Gaussian Ansatz as formulated
in Takahashi’s modified spin-wave theory showed an accurate description of the
ground state of the transverse-field Ising model on the square lattice. These con-
siderations suggest the possibility that the Gaussian Ansatz may provide accurate
results as well as for the non-equilibrium quantum dynamics.

In the following, the Gaussian approach is applied to two types of initial states.
The first case we will consider is the same as the one we used to test the Gaussian
Ansatz:

1. the system is initialized from the state where the all spins are aligned along
the field direction

|Ψ0y �
â
i

| Ñyi, (5.12)

which equates to quenching the system from an infinite to a finite field
(8 Ñ Ω).

2. The second type of quenches considered hereafter starts from the ferromag-
netic state where all spins are aligned along the z-axis

|Ψ0y �
â
i

| Òyi, (5.13)

which amounts to turning on a magnetic field to a finite value (0 Ñ Ω).

The study of the second quench differs fundamentally from the first as the
system starts its evolution in the ferromagnetic phase and, depending on the
value taken by the final field the system can be driven out of the ferromagnetic
phase, resulting in a paradigmatic example of a dynamical phase transition, as
shown by Blaß and Rieger [16]
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(a) (b)

(c) (d)

Figure 5.6: Transverse magnetization of the square lattice of size N � 8�8 - As a
function of time, the transverse magnetization, both for the Gaussian Ansatz and
the CNN Ansatz, is represented for (a) Ω � 2Ωc, (b) Ω � Ωc and (c) Ω � 0.1Ωc.
(d) compares the magnetization averaged over a time window of width 20J with
linear spin-wave theory and quantum Monte Carlo results (QMC).

5.3.2 Quenching from the field-polarized state
We will start our discussion by studying quenches in which the system is initialized
from the x-polarized state. As for the Ising chain, our purpose here is two-
fold: we aim at reproducing the non-equilibrium dynamics of the system, as
well as describing its post-quench thermalization. To this end, we will compare
the calculations led with the Gaussian Ansatz with results obtained by other
means, namely quantum Monte Carlo simulations for the thermalization [16] and
a accurate time-dependent variational study based on a neural network Ansatz
(the convolutional neural network, thereafter refered to as CNN) reported in
Ref. [49]

The evolution of the transverse magnetization is represented on Fig. 5.6 for
three different values of the transverse field, all computed for a square lattice
of size N � 8 � 8 with periodic boundary conditions. The evolution of mx for
a transverse field Ω � 2Ωc, with Ωc{JS � 1.52219p1q, is shown on Fig.5.6 (a)
and exhibits a good agreement between the Gaussian Ansatz and the neural
network Ansatz (which was itself succesfully compared to iPEPS calculations).
The near overlap of the two curves indicates that the Gaussian approach is able
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Spin-spin correlation functions along the z-axis as functions of time
and position computed for a square system of size N � 8 � 8 - The first column
(a),(c) and (e) represents the correlation function at distance |i � j| � 1, while
the second column (b), (d) and (f) shows them at distance |i � j| � 2. On the
other hand, the first row (a) and (b) is at transverse field Ω � 2Ωc, the second
(c) and (d) accounts for Ω � ωc and the third row (e) and (f) are computed for
Ω � 0.1Ωc.

to describe faithfully the post-quench evolution of the system in terms of the
spectral content of the oscillations as well as their amplitudes. A good agreement
is also exhibited by the data at Ω � Ωc as shown on Fig 5.6 (b), where one can
observe oscillations of matching frequencies in the curves associated and long-time
asymptotes with the two Ansätze, despite a disagreement in their amplitudes.
The Gaussian Ansatz remains coherent with the neural network results, even for
quenches as strong as the one shown on Fig. 5.6 (c) for Ω � 0.1Ωc: indeed the
magnetization is expected to experience a revival, which the Gaussian succeeds
in reproducing albeit at a later time.

The agreement between the Gaussian Ansatz and the actual physical be-
haviour of the system is further confirmed by the time-averaged magnetization
represented as a function of the transverse field on Fig. 5.6 (d) and compared with
thermal equilibrium values (obtained via quantum Monte-Carlo) at an inverse
temperature β such that xΨ0|Ĥ|Ψ0y � Trre�βHHs{Trre�βHs. Such a temperature
has been systematically mapped out by [16]. As the transverse field decreases,
the Gaussian Ansatz predicts a progressive depolarization of the system, though
at a slower rate than what shown by the thermal equilibrium values. The overall
agreement between the Gaussian approach and the thermal equilibrium results
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5.3. Transverse-field Ising model on the square lattice

survives down to very low fields, where the Gaussian Ansatz fails to describe the
full depolarization of the system, as a result of the high densities of quasiparticles
generated by the quench.

To complete the picture of the dynamics given by the Gaussian Ansatz, we
investigate the evolution of the off-diagonal terms of the covariance matrix en-
coded in the correlation function. Following the results of Ref. [49], we explore
the evolution of the spin-spin correlations along the z spin components, xŜzi Ŝzj y,
which is expressed in terms of the b-bosonic operators as

Ŝzi Ŝ
z
j �

S

2

��
b̂i � b̂:i �

1
4S

�
b̂:i b̂ib̂i � b̂:i b̂

:
i b̂i

	
�
b̂j � b̂:j �

1
4S

�
b̂:j b̂j b̂j � b̂:j b̂

:
j b̂j

	
�
,

(5.14)

and compare them with the results provided by the neural network Ansatz. This
comparison is made on Fig. 5.7 and confirms the observation made on the be-
haviour of transverse magnetization: namely that the Gaussian Ansatz captures
accurately the evolution of the covariance matrix for quenches at strong field
(Fig. 5.7 (a)-(b)) and maintains this accuracy up to Ω À Ωc (Fig. 5.7 (c)-(d)). As
shown in particular on Fig. 5.7 (e)-(f), for quenches at lower fields the correla-
tions at |i� j| � 1 show an overall agreement between the results of the Gaussian
Ansatz and those of the CNN Ansatz, while the correlations at |i� j| � 2 differ
substantially for the smallest field Ω � 0.1Ωc, but in this regime the accuracy of
the CNN Ansatz is not fully controlled.

5.3.3 Quenching from the ferromagnetic state
In the following, we will focus our attention on quenches where the system is
initially prepared in the ferromagnetic phase. Though the Hamiltonian is the
same as the one previously encountered, it is more natural in that case to choose
a different quantization axis, aligned with the direction set by the Ising couplings,
namely

Ĥ � �1
2
¸
i,j

JijŜ
z
i Ŝ

z
j � Ω

¸
i

Ŝxi . (5.15)

The Holstein-Primakoff transformation applied to this choice of axes leads to
a spin-wave Hamiltonian which displays terms with an odd number of bosonic
operators,

Ĥ � �1
2
¸
i,j

JijS
2 � Ω

c
S

2
¸
i

pb̂i � b̂:i q �
S

2
¸
i,j

Jijpb̂:i b̂i � b̂:j b̂jq (5.16)

� Ω
4S

c
S

2
¸
i

pb̂:i b̂:i b̂i � b̂:i b̂ib̂iq �
1
2
¸
i,j

Jij b̂
:
i b̂ib̂

:
j b̂j �Opb5q.
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Figure 5.8: Evolution of the longitudinal magnetization for a square lattice of size
N � 6 � 6 initialized in the ferromagnetic state. Calculation are performed at
Ω � J{2. The left panel compares the LSW solution to results obtained through
exact diagonalization (ED), while the right panel shows how the Gaussian Ansatz
compares to the same results.

resulting in a non-vanishing bosonic mean-field ci � xb̂iy, while the covariance
matrix elements Gij � xb̂:i b̂iy � xb̂:iyxb̂iy and Fij � xb̂ib̂iy � xb̂iyxb̂iy respectively
are stationary and acquire a global rotating phase. A remarkable feature of this
Hamiltonian is that at the quadratic order it does not contain any hopping or pair
creation/annihilation term for the quasiparticles, the dynamics is then piloted
by the mean-field ci whose evolution is dictated by a Gross-Pitaevskii equation.
As one can see in the full equations of motion given in Appendix D, taking into
account terms of higher order in the Hamiltonian gives rise to effective mean-field
assisted hopping and pairing terms, with the distinctive feature that fluctuations
described by the covariance matrix feed back on the mean field dynamics.

This new framework, both for linear spin-wave and Gaussian approaches, is
benchmarked by comparing the dynamics of the longitudinal magnetization

mz � S � 1
N

¸
i

xb̂:i b̂iy � S � 1
N

¸
i

pGii � |ci|2q (5.17)

with exact diagonalization results from Ref. [16]. The result of these calculations
is represented on Fig. 5.8 for a square system driven out of equilibrium by a
transverse field of value Ω � J{2. A first observation is that linear spin-wave
theory describes single sinusoidal oscillations of the longitudinal magnetization
which lack the more complex frequency structure of the exact results, and that
overestimates as well the expected time-averaged magnetization. The corrections
brought to linear spin-wave theory by the Gaussian Ansatz, however, lead to
predictions closer to the actual spin dynamics, in that the fluctuations acquire a
richer frequency spectrum.

In that regard, the Gaussian Ansatz shows a clear improvement compared to
linear spin-wave theory. In order to further ascertain the quality of its predictions,
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Figure 5.9: Time-average longitudinal magnetization as a function of the trans-
verse field, computed for a square lattice of size N � 6 � 6, computed for the
linear spin-wave theory and the Gaussian approach and compared with quantum
Monte Carlo simulations.

we shall compare the time-averaged value of the longitudinal magnetization mz

obtained via linear spin-wave theory and Gaussian Ansatz calculations with the
thermal equilibrium states computed with Monte-Carlo simulations. The different
results provided by these methods are summarized in Fig. 5.9, where one can see
that the Gaussian Ansatz results are in good agreement with the ones provided
by quantum Monte Carlo simulations up to fields Ω{J � 0.9, namely past the
critical value of Ω{J � 0.8 at which the system is expected to exhibit a dynamical
phase transition from ferromagnetism to paramagnetism in its asymptotic state
[16]. Even though numerical instabilities prevent us from pushing the Gaussian
Ansatz to larger quenches, these results suggest the possibility of investigating
the dynamical phase transition by considering larger system sizes.
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”Ainsi, sans arrêt ni faux pas, sans licol et sans étable,
sans mérites ni peines, tu parviendras, non point,
ami, au marais des joies immortelles,
Mais aux remous pleins d’ivresses du grand fleuve
Diversité.”

Victor Segalen, ”Conseils au bon voyageur”, Stèles

Linear and non-linear Gaussian approaches to spin dynamics

Exotic dynamics in linearized quantum spin-models

In this thesis, we presented results regarding the equilibrium physics and
dynamics of several many-body spin systems, relevant for quantum simulators
that use the internal states of individually trapped atoms to mimic the behaviour
of quantum spins. Using a simple bosonic Gaussian-state framework (linear spin-
waves theory) explicited in Chapter 2 for the spin models of interest, we developed
a set of tools aimed at revealing the spectrum of elementary excitations and the
spatial structure of their associated eigenmodes.

The first case we treated in Chapter 3 was inspired by the ongoing experimen-
tal efforts to reproduce flat-band systems using the variety of different platforms,
from photonic crystals to nanostructured electronic states; and by the geometrical
tunability of arrays of atoms individually trapped with optical tweezers. Consid-
ering two mechanisms that can lead to band flatness - either an energy offset
between two sublattices (as in the frustrated triangular lattice) or Aharonov-
Bohm caging (as in the Lieb and kagome lattices) - we showed how the flat bands
and their vanishing group velocities manifest in the post-quench dynamics of a
quantum Ising model; and that, depending on the applied quench protocol, we
could highlight overall interesting traits through the study of the dynamics. In
particular, we proposed a diagnosis method (quench spectroscopy) that can pro-
vide an overall picture of the elementary excitation spectrum and of the spatial

97



Chapter 6. Conclusions and outlooks

structure over the unit cell of the magnetic lattice associated with each band.
We illustrated this method in the case of the frustrated triangular lattice and
evidenced the presence of a flat band in the spectrum of excitations. The second
method we explored consists of locally applying a spin-flip and monitoring its
evolution. If a fraction of the excitation propagates, the remaining fraction can
remain trapped inside a localized state. We used this technique to highlight the
Aharonov-Bohm caging effect in systems with perfectly flat bands, and we also
showed that the existence of these localized modes was robust against the pres-
ence of van der Waals interactions. As a consequence, Aharonov-Bohm caging is
a realistically observable phenomenon in the context of Rydberg-atom simulators.

The focus of Chapter 4 was set on another model inspired by the physics
and flexibility of Rydberg-atom simulators. We considered a deformed square
array of atoms where disorder is introduced in a controled manner by displac-
ing the optical tweezers, and we investigated how the introduction of disorder
affects the long-range order of the ground state and the extended nature of the
eigenstates. We found out that, due to the algebraic decay of the van der Waals
interactions and how disorder is implemented into the model, the ferromagnetic
long-range order of the system is preserved (and even strengthened) by the ad-
dition of disorder. On the other hand the excitation modes in the spectrum,
which is decoupled from the ground state, experiences several regimes ranging
from extended, to partially and then to fully localized. Furthermore, a scaling
analysis of the eigenmodes reveals that in the mixed regime, where extended
and localized eigenmodes coexist, the extended eigenmodes exhibit multifractal
properties which result in anomalous propagation of the excitations. Effects of
the anomalous diffusion can be captured in the algebraic growth of entanglement
entropy and in the sub-ballistic diffusion of correlations. The multifractal nature
of the eigenmodes can also be directly probed by performing a local quench on
the system, as the local excess of magnetization develops at long times a profile
with multifractal scaling properties.

Spin dynamics beyond linearization

Having explored the possibilities offered by a linearized theory of spin-wave
systems for the study of exotic spin dynamics, we proposed in Chapter 5 a strategy
to extend this framework to account for non-linearities by means of a Gaussian
representation of quantum many-body states, consequently reducing the descrip-
tion of the whole system to two-point correlators. We have validated this ap-
proach in the case of the quantum Ising chain, admitting an exact solution in
terms of fermionic excitations: the Gaussian Ansatz was able to accurately re-
produce fine aspects of the dynamics, such as the spreading of correlations and
the evolution of the average spin. Furthermore, the time-averaged quantities
described by the Gaussian Ansatz bear striking similarities with those of the
prethermalized states described by the integrable fermionic problem. Therefore,
we conclude that the Gaussian Ansatz is a suitable tool to explore regimes of the
dynamics of quantum spin sytems, in which linear spin-wave theory breaks down.
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We then applied the Gaussian Ansatz to a non-integrable model, with the
two-fold goal of exploring its dynamical properties and its thermalization. We
explored the dynamics of the transverse-field Ising model on the square lattice
and compared the obtained results with quantum Monte Carlo simulations for
the thermalized state, and with other numerical methods (exact diagonalization
and variational approaches) for the non-equilibrium dynamics. The quality of the
agreement between the Gaussian Ansatz and the other methods encourage us to
try to apply this framework in the future to the study of other types of systems,
either bosonic or fermionic, as we shall discuss in the following.

Gaussian state approaches to challenging problems of quantum
dynamics

The accuracy showed by the Gaussian Ansatz approach in its description of
the dynamics and relaxation of one- and two-dimensional interacting systems
opens the perspective of further applying it to other challenging dynamical prob-
lems, where strong quenches or interactions play a pivotal role. Two examples of
current interest, and generically tackled with exact diagonalization, are quantum
dynamical phase transitions and discrete time crystals. The former are charac-
terized by singularities in the evolution of the Loschmidt echo, defined as [48]

λptq � lim
NÑ8

2
N

ln |xΨ0|Ψptqy|, (6.1)

where |Ψ0y is the initial state of a many-body state of N elements. A Gaussian
description of the quantum-spin states offers the precious advantage of providing
a general expression in terms of the covariance matrix of Gaussian states for
the overlap between two states ( |xΨ0|Ψptqy|2) [10, 90]. The second example we
mentioned is a dynamical regime born from the combination of several effects
generically difficult to treat, namely interactions, disorder and a periodic driving.
The interplay of these elements can lead to the spontaneous breaking of the
discrete time-translational symmetry imposed by the driving and establish a new
one instead [77]. As the Gaussian Ansatz provides a framework where the effects
of interactions, disorder and a periodic driving can be readily implemented, one
can hope to be able to observe the emergence of these effects in the dynamics.

Further applications of the Gaussian Ansatz can be found in addressing the
questions left open in our study of flat-band systems and positionally disordered
spin arrays. Indeed, as we stated several times, linear spin-wave theory provides
an approximate image of spin systems in terms of integrable models, and there-
fore it is unable to describe properly thermalized states. The presence of non-
linearities questions the stability of the effects we witnessed in flat-band systems,
as non-linearities can induce in-band and inter-band scattering, and consequently
they give a finite lifetime to localized excitations. In that case, are the flat-band
effects robust against the introduction of non-linearities, and namely how sta-
ble is the quasiparticle population in a flat-band? Exploring these possibilities
raises exciting questions regarding the relaxation and thermalization of a gas of
interacting quasiparticles in a flat band.
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Figure 6.1: Spin imbalance as a function of time computed on a chain of L � 48
sites at values of disorder W ranging from W � 2� 17.

The Gaussian Ansatz approach could also be applied to studying the so-called
many-body localization (MBL). This physical phenomenon occurs in systems of
strongly interacting particles in the presence of disorder, which would generically
undergo Anderson localization in the absence of interactions [1]. While for weakly
disordered systems interactions restore the extended and ergodic nature of the
dynamics, strong disorder may instead lead to a transition toward localization.
However, contrarily to an Anderson localized state, where disorder suppresses
both the transport of matter and information, in many-body localized states
only the transport of matter is blocked. Through an effect of residual interac-
tion between localized degrees of freedom, entanglement entropy keeps increasing,
though at a logarithmic pace [87]. Numerical investigations of many-body local-
ization are usually led by using exact diagonalization algorithms with limitations
on the size and dimensionality of the considered systems. The Gaussian Ansatz,
albeit being approximate, offers the possibility of bypassing these difficulties and
to explore the physics of large disordered interacting many-body systems. This
possibility has been partially explored with a fermionic Gaussian approach of the
canonical model used for the study of MBL, namely the one-dimensional XXZ
spin model in a random longitudinal magnetic field [101], which after a Jordan-
Wigner transformation can be mapped onto the following Hamiltonian for spinless
fermions

Ĥ �
¸
i

�
�Jpf̂ :i f̂i�1 � f̂ :i�1f̂iq � 2Un̂in̂i�1 � hin̂i

�
, (6.2)

where hi are random numbers chosen into the interval r�W,W s, and W quantifies
the strength of disorder. Initializing the system in a state with staggered density
|Ψ0y � |010101 . . . y, corresponding to a Néel state along the z-axis, the transition
between the extended and localized regimes can be monitored via the relaxation
in the population imbalance

Iptq � 1
N

¸
i

p�1qin̂i. (6.3)
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Figure 6.2: Dynamical exponent z as a function of the disorder parameter W ,
extracted from the evolution of spin imbalance.

The evolution of the imbalance computed with a fermionic Gaussian ansatz for
several values of the disorder is represented in Fig. 6.1, and it shows an algebraic
decay of imbalance Iptq � t1{z for weakly disordered systems. We also observe
that as disorder increasingly strengthens, the exponent z increases until the alge-
braic decay vanishes and imbalance relaxes toward a plateau at a size-independent
finite value, therefore indicating that the system entered the many-body localized
regime. This behaviour of the exponent z, extracted from the data represented
in Fig. 6.1 is shown in Fig. 6.2. Suggesting the appearance of the MBL transition
in the Gaussian Ansatz approach.

Describing the whole system only in terms of the two-point correlators also
has the advantage of providing a straightforward access to correlations and en-
tanglement entropy, and therefore offers a complementary point of view on the
dynamical phase transition from extended to many-body localized dynamics be-
yond that offered by the imbalance. Such a study could then give access to a
Gaussian image of this transition and its critical behaviour, and possibly give
some insights on the controversal question about the existence of the MBL tran-
sitions in dimensions D � 2 and higher [99]. Such a study would also be relevant
in the context of positionally disordered Rydberg atoms arrays, as a possible
template for many-body localization in state-of-the-art quantum simulators.
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Tommaso Macr̀ı, Thierry Lahaye, and Antoine Browaeys. Tunable two-
dimensional arrays of single Rydberg atoms for realizing quantum Ising
models. Nature, 534(7609):667–670, June 2016. Number: 7609 Publisher:
Nature Publishing Group.

[55] C. Lanczos. An iteration method for the solution of the eigenvalue problem
of linear differential and integral operators. National Bureau of Standards,
1950.

[56] Elliott Lieb, Theodore Schultz, and Daniel Mattis. Two soluble models of
an antiferromagnetic chain. Annals of Physics, 16(3):407 – 466, 1961.

[57] Elliott H. Lieb. Two theorems on the Hubbard model. Phys. Rev. Lett.,
62(10):1201–1204, March 1989. Publisher: American Physical Society.

[58] Elliott H. Lieb and Derek W. Robinson. The Finite Group Velocity of
Quantum Spin Systems. In Bruno Nachtergaele, Jan Philip Solovej, and
Jakob Yngvason, editors, Statistical Mechanics: Selecta of Elliott H. Lieb,
pages 425–431. Springer, Berlin, Heidelberg, 2004.

[59] Vincent Lienhard, Sylvain de Léséleuc, Daniel Barredo, Thierry Lahaye,
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Appendix A
Linear spin-wave theory of the
transverse field Ising model

We present in the following the general theoretical framework of the linear spin-
wave theory for any model described by a transverse-field Ising model. Let us
consider an organized ensemble of spins N on a regular lattice, each labeled by
a couple of integers pl, pq denoting respectively the magnetic unit cell and the
position. The general form taken by the Hamiltonian of the transverse-field Ising
model is then

Ĥ � 1
2
¸
lp,l1p1

J llpp1S
z
lpS

z
l1p1 � Ω

¸
lp

Sxlp. (A.1)

Linear spin-wave theory hinges on a treatment of quantum fluctuations around
the mean-field state of the Hamiltonian in terms of linear bosonic operators (fol-
lowing the Holstein-Primakoff transformation), or in other words the system is
approximated in terms of a collection of coupled harmonic oscillators.

The first step of this strategy is to identify the mean-field state, namely finding
the set of angles tθpu that minimize the mean-field energy

EMF � S2

2
¸
lp,l1p1

J ll
1

pp1 cos θp cos θp1 � S
¸
lp

pΩ sin θp �H cos θpq. (A.2)

The second step of the LSW approach consists in rotating the spin axes in the
Hamiltonian around the y-axis so that their orientation matches the one of the
mean-field state. The linearized bosonic Hamiltonian then reads,

Ĥ � EMF �
¸
lp

hpb̂
:
lpb̂lp �

S

4
¸
lp,l1p1

J ll
1

pp1 sin θp sin θp1
�
b̂lp � b̂:lp

	�
b̂l1p1 � b̂:l1p1

	
, (A.3)

where the local chemical potential term is expressed as

hp � S
¸
l1p1

J ll
1

pp1 cos θp cos θp1 � Ω sin θp �∆ cos θp. (A.4)
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Under this form, the bosonic Hamiltonian can be rewritten as a quadratic form
of operators, like in Eq. (2.9), where the matrix elements of All1

pp1 are written as

pAll1

pp1qij � pJ ll1pp1qij � hpδll1δpp1δij. (A.5)

Using the translational invariance of the system, one can perform a Fourier trans-
form of the quadratic form in order to bring it into the compact form of Eq. 2.10,
where Ak is a 2n� 2n block matrix

Ak �
�
Ak Bk
Bk Ak



, (A.6)

with matrix elements given by#
pBkqpp1 � S

2 sin θp sin θp1
°
l e
ik�rlJ0l

pp1

pAkqpp1 � pBkqpp1 � hpδpp1
. (A.7)

The application of the Bogoliubov transformation on Ak as outlined in Sec. 2.1.3
then leads to the eigenfrequencies of the spectrum of elementary excitations ωprqk
and to the eigenmodes.
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Appendix B
Modified spin-wave theory

This appendix provides the detailed equations of the treatment of the transverse-
field Ising model via modified spin-wave theory. The MSW approach starts, like
the LSW one, with the mean-field approximation of the following spin model,

Ĥ � �1
2
¸
i,j

JijŜ
z
i Ŝ

z
j � Ω

¸
i

Ŝxi . (B.1)

By treating the spins as classical ones (S Ñ 8), one can determine the classical
spin angles θ, φ � 0q which minimize the classical energy. This set of classical
angles define a local rotation of spins around the y-axis,#

Szi � cos θSz1i � sin θSx1i
Sxi � cos θSx1i � sin θSz1i

, (B.2)

which transform the spin Hamiltonian in the following manner

Ĥ � 1
2
¸
i,j

Jij

�
cos2 θŜz

1

i Ŝ
z1

j � sin2 θ sin Ŝx1i Ŝx
1

j

	

� 1
2
¸
i,j

Jij cos θ sin θ
�
Ŝz

1

i Ŝ
x1

j � Ŝx
1

i Ŝ
z1

j

	
(B.3)

�
¸
i

rΩ cos θŜx1i � Ω sin θŜz1i s.

Unlike the previously considered case, we will not further proceed by applying
the Holstein-Primakoff spin-boson transformation, but rather use the alternative
transformation proposed by Dyson and Maleev

Ŝ�i � b̂i

Ŝ�i � b̂:i p2S � b̂:i b̂iq (B.4)
Ŝzi � S � b̂:i b̂i,
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which, despite being non-hermitian, reproduce the SUp2q spin algebra. This
transformation has the advantage of giving rise to a finite number of non-linear
terms (up to 6th order) in terms of the b-bosons. However we will limit ourselves
to the quartic order in this study, leading to an expansion of the Hamiltonian as

Ĥ � EMF � Ĥp2q � Ĥp3q � Ĥp4q �Opb5q, (B.5)
where the different parts of the bosonic Hamiltonian are

Ĥp2q � �1
2
¸
i,j

Jijr�2S cos2 θb̂:i b̂i �
1
4 sin2 θp2Sb̂:i � b̂iqp2Sb̂:j � b̂jqs (B.6)

� Ω
¸
i

sin θb̂:i b̂i,

Ĥp3q � �1
4
¸
i,j

Jij cos θ sin θ
�
b̂:i b̂ib̂j � b̂ib̂

:
j b̂j � 2Spb̂:i b̂ib̂:j � b̂:i b̂

:
j b̂jq

�
, (B.7)

and

Ĥp4q � �1
2
¸
i,j

Jij

�
cos2 θ b̂:i b̂ib̂

:
j b̂j �

1
4 sin2 θ

�
b̂ib̂

:
j b̂
:
j b̂j � b̂:i b̂

:
i b̂ib̂j (B.8)

� 2S
�
b̂:i b̂

:
j b̂
:
j b̂j � b̂:i b̂

:
i b̂ib̂

:
j

	�
.

The strategy of MSW theory consists then in minimizing the free energy
F � xHy � TS parametrized by the set of parameters tθk, ωk, cu defined in the
main text. The evaluation of the different contributions of the energy using the
Gaussian nature of the state leads to non-linear expressions in terms of the Green
functions Gij, Fij and of the mean field c:

Ep2q �
�
S
¸
i,j

Jij cos2 θ �NΩ sin θ
��

Gp0q � 1
2 � c2



(B.9)

� 1
8
¸
ij

Jij sin2 θ
��

1� 4S2�Fij � 2S pGij �Gjiq � p1� 2Sq2 c2�,
where Jk � p1{Nq°j e

ik�rjJ0j is the Fourier transform of the coupling matrix. We
can note that the contribution of the quadratic Hamiltonian corresponds to the
results provided by the linear spin-wave theory. The contributions of the higher
orders are

Ep3q � �1
2
¸
i,j

Jij cos θ sin θ p1� 2Sq
���

Gp0q � 1
2



� Fij � Re pGijq



c� c3

�
(B.10)
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for the third order contribution

E
4q
I � �1

2
¸
i,j

Jij cos2 θ

��
Gp0q � 1

2


2

� F 2
ij �GijGji (B.11)

� c2 p2Gp0q � 1� 2Fij � 2RepGijqq � c4�
for the Ising interactions and

E
4q
HC �

1
4
¸
ij

Jij sin2 θ rp2Gp0q � 1qpGij � 2SFijq � F p0qpFij � 2SGijq

� c2 pp2� 2SqGij � p1� 4SqFij � p1� 2Sqp2Gp0q � 1� F p0qqq (B.12)
� c4p1� 2Sq�

for the terms stemming from the hardcore constraint.

The minimization of the free energy then leads to self-consistent equations for
the Green functions$''&

''%
Gij � 1

N

°
k e

�ik�pri�rjqAk
ωk

�
nk � 1

2




Fij � 1
N

°
k e

�ik�pri�rjqBk
ωk

�
nk � 1

2


 , (B.13)

where nk � 1{pexppβωkq � 1q, with the frequency ωk �
a
A2
k �B2

k and the
coefficients Ak and Bk are expressed as the sums of several contributions comming
from the different terms of the Hamiltonian,#

Ak � A
p2q
k � A

p3q
k � A

p4q
I,k � A

p4q
HC,k

Bk � B
p2q
k �B

p3q
k �B

p4q
I,k �B

p4q
HC,k

, (B.14)

namely $'&
'%
A
p2q
k � Ω sin θ � S cos2 θJk�0 � S

2 sin2 θ Jk

B
p2q
k � 1

8 sin2 θp1� 4S2qJk
, (B.15)

$&
%
A
p3q
k � �1

2 cos θ sin θp1� 2SqcpJk�0 � Jkq
B
p3q
k � 1

2 cos θ sin θp1� 2SqcJk
, (B.16)

$'&
'%
A
p4q
I,k � � 1

N

°
i,j Jij cos2 θ

��
Gp0q � 1

2 � c2


� Re

�
eik�pri�rjqpGij � c2q��

B
p4q
I,k �

1
N

°
i,j Jij cos2 θ

�
eik�pri�rjqpFij � c2q� ,

(B.17)
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A
p4q
HC,k �

1
4
¸
i,j

Jij sin2 θ

�
2
N
ppGij � c2q � 2SpFij � c2qq (B.18)

� 1
N
e�ir�pri�rjqpp2Gp0q � 1� 2c2q � 2SpF p0q � c2qq

�
,

and finally

B
p4q
HC,k � �1

4
¸
i,j

Jij sin2 θ

�
1
N
ppFij � c2q � 2SpGij � c2qq (B.19)

� 1
N
e�ir�pri�rjqp2Sp2Gp0q � 1� 2c2q � pF p0q � c2qq

�
.

As for c, it is the solution of the equation

0 ��
¸
i,j

Jij

�
�2S cos2 θ � 1

4 sin2 θp1� 2Sq2
�
c� 2NΩ sin θ c (B.20)

� 1
2
¸
i,j

Jij cos θ sin θp1� 2Sq
���

Gp0q � 1
2



� Fij � RepGijq



� 3c2

�

�
¸
i,j

Jij cos2 θ
�
2c3 � cpGp0q � 1� 2Fij �Gij �Gjiq

�
� 1

4
¸
i,j

Jij sin2 θ
�
2cpp2� 2SqGij � p1� 4SqFij � p1� 2Sqp2Gp0q � 1� F p0qq � 4c3q�.
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Appendix C
Quench spectroscopy

This section is dedicated to the study of the time evolution of the momentum-
dependent structure factor, providing the demonstration of Eq. (3.10) and the
explicit expression of the prefactors fpp1 , grr

1

pp1 , hrr
1

pp1 , grr
1

pp1 and h
rr1

pp1 . Following the
convention taken in Eq. (3.9), the correlation function in k-space is expressed as

Sxxpp1 pk, tq � sin θp sin θp1
¸
q

�
xb:�k�q,pb�k�q,p1yxbq,pb:q,p1y

� xb:�k�q,pb:k�q,p1yxbq,pb�q,p1y
	

� s

2 cos θp cos θp1
�
xb:�k,pb�k,p1y � xbk,pb:k,p1y

� xb:�k,pb:k,p1y � xbk,pb�k,p1y
	
. (C.1)

Given the diluteness of the quasi-particle gas, we can safely neglect the quartic
terms, and restrict our attention to the quadratic terms only. Notice that the
numerical calculation leading to Fig. 3.11 includes the quartic terms as well;
the success of our analysis based uniquely on the quadratic terms confirms the
weakness of the quartic terms.

The time-Fourier transform of these terms can be explicitly computed, reveal-
ing the spectral information we are searching for. Indeed, using the Bogoliubov
transformation twice leads to an expression of the bosonic excitation operator
bk,p in terms of oscillating functions,

bk,pptq �
¸
r,s

�
puprq�k,p u

prq
k,s � v

prq
k,pv

prq�
k,s q cospωprqk tq

�ipuprq�k,p u
prq
k,s � v

prq
k,pv

prq�
k,s q sinpωprqk tq

�
bk,sp0q

�
�
puprq�k,p v

prq
k,s � v

prq
k,pu

prq�
k,s q cospωprqk tq

� i puprq�k,p v
prq
k,s � v

prq
k,pu

prq�
k,s q sinpωprqk tq

�
b:�k,sp0q. (C.2)
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As a result, the time dependence of the structure factor is provided by a sum of
oscillating functions, as summarized in Eq. (3.10), with the following prefactors:

fk,pp1 � s

2 cos θp cos θp1 pδpp1

�
¸
r

�
2
�
u
prq�
k,p u

prq
k,p1 |vprqk |2 � v

prq
k,pv

prq�
k,p1 |uprqk |2

	
�
�
v
prq
k,pu

prq
k,p1 ppurk � urkq � pvrk � vrkqq�

� u
prq�
k,p v

prq�
k,p1 ppurk � urkq � pvrk � vrkqq

	�	
, (C.3)

for the time-independent part of the structure factor,

grr
1

pp1pkq �
s

2 cos θp cos θp1
�
�2
�
v
prq
k,pu

pr1q
k,p1puprqk � vpr1qk q�

� v
pr1q
k,p u

prq
k,p1pupr

1q
k � vprqk q�

� u
prq�
k,p v

pr1q�
k,p1 pvprqk � upr1qk q � u

pr1q�
k,p v

prq�
k,p1 pvpr

1q
k � uprqk q

	
�
�
puprqk � vprq�k � vprqk � uprq�k qpuprq�k,p u

pr1q
k,p1 � v

pr1q
k,p v

prq�
k,p1 q

� pvprq�k � upr1qk � vpr1qk � uprq�k qpupr1q�k,p u
prq
k,p1 � v

prq
k,pv

pr1q�
k,p1 q

	�
, (C.4)

and

hrr
1

pp1pkq �
s

2 cos θp cos θp1
�
2
�
u
prq�
k,p u

pr1q
k,p1pvprqk � vpr1q�k q

� u
pr1q�
k,p u

prq
k,p1pvpr

1q
k � vprq�k q

� v
prq
k,pv

pr1q�
k,p1 puprq�k � upr1qk q � v

pr1q
k,p v

prq�
k,p1 pupr

1q�
k � uprqk q

	
�
�
puprqk � upr1qk � vprqk � vprqk q�pvprqk,pupr

1q
k,p1 � v

pr1q
k,p u

prq
k,p1q

� puprqk � upr1qk � vprqk � vpr1qk qpuprqk,pvpr
1q

k,p1 � u
pr1q
k,p v

prq
k,p1q

	��
, (C.5)

are the amplitude of the cosine parts of the structure factor, while

grr
1

pp1pkq �
s

2 cos θp cos θp1
�
2
�
v
prq
k,pu

pr1q
k,p1puprqk � vpr1qk q�

� u
prq�
k,p v

pr1q�
k,p1 pvprqk � upr1qk q

� v
pr1q
k,p u

prq
k,p1pvprqk � upr1qk q� � u

pr1q�
k,p v

prq�
k,p1 pvpr

1q
k � uprqk q

	
�
�
puprqk � vpr1q�k qpuprq�k,p u

pr1q
k,p1 � v

pr1q
k,p v

prq�
k,p1 q

� pupr1qk � vprq�k qpupr1q�k,p u
prq
k,p1 � v

prq
k,pv

pr1q�
k,p1 q

	
�
�
puprq�k � vpr1qk qpupr1q�k,p u

prq
k,p1 � v

prq
k,pv

pr1q�
k,p1 q

� pupr1q�k � vprqk qpuprq�k,p u
pr1q
k,p1 � v

pr1q
k,p v

prq�
k,p1 q

	�
, (C.6)
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and

h
rr1

pp1pkq �
s

2 cos θp cos θp1
�
2
�
u
prq�
k,p u

pr1q
k,p1pvprqk � vpr1q�k q

� v
prq
k,pv

pr1q�
k,p1 puprq�k � upr1qk q

� u
pr1q�
k,p u

prq
k,p1pvpr

1q
k � vprq�k q � v

pr1q
k,p v

prq�
k,p1 pupr

1q�
k � uprqk q

	
�
�
pvprqk � vpr1qk q�pvprqk,pupr

1q
k,p1 � v

pr1q
k,p u

prq
k,p1q

� pupr1qk � uprqk qpuprq�k,p v
pr1q�
k,p1 � u

pr1q�
k,p v

prq�
k,p1 q

	
�
�
puprqk � upr1qk q�puprqk,pvpr

1q
k,p1 � u

pr1q
k,p v

prq
k,p1q

� pvprqk � vpr1qk qpvprqk,pupr
1q

k,p1 � v
pr1q
k,p u

prq
k,p1q�

	�
. (C.7)

are the prefactors for the sine parts. We notice that the ḡ and h̄ coefficients are
purely imaginary, resulting in a real expression in Eq. (3.10).
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Appendix D
Gaussian Ansatz approach of the
transverse field Ising model

This Appendix provides the expression of the equations of motion for the mean
fields ci and the two-point correlators Gij and Fij for two choices of the quanti-
zation axes.

D.1 Quenching from the field-polarized state
The equations of motion for the Hamiltonian given at Eq. (5.4) are the following

d
dtGij � i

�
�S2

¸
k

Jik pGkj � Fkjq � S

2
¸
k

Jjk pG�
ki � F �

kiq (D.1)

� 1
8
¸
k

Jik r2pF �
ki �G�

kiqFij � p2Gii � 2Gkk � F �
ii � F �

kkqFkj

� 4RepFki �GkiqGij � p2Gii � 2Gkk � F �
ii � FkkqGkjs

� 1
8
¸
k

Jjk
�
2pFkj �GkjqF �

ji � p2Gjj � 2Gkk � Fjj � FkkqFki

� 4RepFki �GkiqG�
ji � p2Gjj � 2Gkk � Fjj � F �

kkqG�
ki

��
and

d
dtFij � i

�
S

2
¸
k

Jik pGkj � Fkjq � S

2
¸
k

Jjk pGki � Fkiq � 2ΩFij � S

2 Jij (D.2)

� 1
8
¸
k

Jik r2pFki �GkiqGij � p2Gii � 2Gkk � Fii � FkkqGkj

� 4RepFki �GkiqFij � p2Gii � 2Gkk � Fii � F �
kkqFkjs

� 1
8
¸
k

Jjk r2pFkj �GkjqGji � p2Gjj � 2Gkk � Fjj � FkkqGki

� 4RepFkj �GkjqFji � p2Gjj � 2Gkk � Fjj � F �
kkqFkis
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model

� 1
4
¸
k

JjkpFkj �Gkjqδij � 1
8Jijp2Gii � 2Gjj � Fjj � Fiiq

�

D.2 Quenching from the ferromagnetic state
The equations of motion derived from Eq. (5.16) are

d
dtci � i

�
Ω
c
S

2 � S
¸
k

Jikci � Ω
4S

c
S

2 p2Gii � Fii � 2|ci|2 � c2
i q (D.3)

�
¸
k

JikrGkkci �Gkick � Fkic
�
k � |ck|2cis

�
,

d
dtGij � i

�
�S

¸
k

JikGij ��S
¸
k

JjkG
�
ji (D.4)

� Ω
2S

c
S

2
�pci � c�i qGij � c�i Fij � pcj � c�j qG�

ji � cjF
�
ji

�
�
¸
k

Jik
�pGkk � |ck|2qGij � pF �

ik � c�i c
�
kqFkj � pGik � c�i ckqGkj

�

�
¸
k

Jjk
�pGkk � |ck|2qG�

ji � pFjk � cjckqF �
ki � pG�

jk � cjc
�
kqG�

ki

��

and

d
dtFij � i

�
S
¸
k

JikFij ��S
¸
k

JjkFji (D.5)

� Ω
2S

c
S

2
�pci � c�i qFij � ciFij � pcj � c�j qFji � cjGji � cjδij

�
�
¸
k

Jik
�pGkk � |ck|2qFij � pFik � cickqGkj � pG�

ik � cic
�
kqFkj

�
�
¸
k

Jjk
�pGkk � |ck|2qFji � pFjk � cjckqGki � pG�

jk � cjc
�
kqFki

�
� JijpFij � cicjqq . (D.6)
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