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Résumé: Une vaste classe de problémes
d’optimisation non convexes est celle de
Ioptimisation rationnelle. Cette derniére appa-
rait naturellement dans de nombreux domaines
tels que le traitement du signal ou le génie des
procédés. Toutefois, trouver les optima globaux
pour ces problémes est difficile. Une approche
récente, appelée la hiérarchie de Lasserre, four-
nit néanmoins une suite de problémes convexes
assurée de converger vers le minimum global.
Cependant, cette approche représente un défi
calculatoire du fait de la trés grande dimension
de ses relaxations. Dans cette thése, nous abor-
dons ce défi pour divers problémes de traitement
du signal.

Dans un premier temps, nous formulons la
reconstruction de signaux parcimonieux en un
probléme d’optimisation rationnelle. Nous mon-
trons alors que ce dernier posséde une structure
que nous exploitons afin de réduire la complex-
ité des relaxations associées. Nous pouvons ainsi
résoudre plusieurs problémes pratiques comme
la restoration de signaux de chromatographie.
Nous étendons également notre méthode & la

restoration de signaux dans différents contextes
en proposant plusieurs modéles de bruit et de
signal.

Dans une deuxiéme partie, nous étudions
les relaxations convexes générées par nos prob-
lémes et qui se présentent sous la forme de
problémes d’optimisation semi-définie positive
de trés grandes dimensions. Nous considérons
plusieurs algorithmes basés sur les opérateurs
proximaux pour les résoudre efficacement.

La derniére partie de cette thése est con-
sacrée au lien entre les problémes d’optimisation
polynomiaux et la décomposition de tenseurs
symétriques. Fn effet, ces derniers peuvent étre
tous deux vus comme une instance du prob-
léme des moments. Nous proposons ainsi une
méthode de détection de rang et de décompo-
sition pour les tenseurs symétriques basée sur
les outils connus en optimisation polynomiale.
Parallélement, nous proposons une technique
d’extraction robuste des solutions d’un prob-
léme d’optimisation poylnomiale basée sur les
algorithmes de décomposition de tenseurs. Ces
méthodes sont illustrées sur des problémes de
traitement du signal.
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Keywords:
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Abstract: A wide class of nonconvex opti-
mization problem is represented by rational op-
timization problems. The latter appear natu-
rally in many areas such as signal processing
or chemical engineering. However, finding the
global optima of such problems is intricate. A
recent approach called Lasserre’s hierarchy pro-
vides a sequence of convex problems that has the
theoretical guarantee to converge to the global
optima. Nevertheless, this approach is compu-
tationally challenging due to the high dimen-
sions of the convex relaxations. In this thesis,
we tackle this challenge for various signal pro-
cessing problems.

First, we formulate the reconstruction of
sparse signals as a rational optimization prob-
lem. We show that the latter has a structure
that we wan exploit in order to reduce the com-
plexity of the associated relaxations. We thus
solve several practical problems such as the re-
construction of chromatography signals. We

Rational models optimized exactly for solving signal processing problems

Rational optimization, Moment problem, Semi-definite programming, Tensor and

also extend our method to the reconstruction
of various types of signal corrupted by different
noise models.

In a second part, we study the convex re-
laxations generated by our problems which take
the form of high-dimensional semi-definite pro-
gramming problems. We consider several al-
gorithms mainly based on proximal operators
to solve those high-dimensional problems effi-
ciently.

The last part of this thesis is dedicated to the
link between polynomial optimization and sym-
metric tensor decomposition. Indeed, they both
can be seen as an instance of the moment prob-
lem. We thereby propose a detection method
as well as a decomposition algorithm for sym-
metric tensors based on the tools used in poly-
nomial optimization. In parallel, we suggest a
robust extraction method for polynomial opti-
mization based on tensor decomposition algo-
rithms. Those methods are illustrated on signal
processing problems.

Université Paris-Saclay
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RESUME

Cette thése de doctorat porte sur I'application des méthodes d’optimisation polynomiale
et rationnelle & des problémes du traitement du signal. Récemment, plusieurs méth-
odes d’optimisation globales ont été développées pour des problémes polynomiaux. Ces
derniéres sont basées sur des certificats de positivité pour les polynémes et garantissent
sous certaines conditions, de converger vers 'optimum global et de retrouver tous les
minima globaux. En contrepartie, ces méthodes sont souvent trés exigeantes en cotit de
calcul et leurs applications sont encore limitées. Dans cette thése, nous nous concentrons
sur la méthode connue sous le nom de la hiérarchie de Lasserre et nous montrons que
cette derniére peut étre utilisée pour résoudre avec succés plusieurs problémes difficiles
et de taille modérée en traitement du signal. Nous illustrons notamment comment la
structure de ces problémes peut étre utilisée pour diminuer la complexité calculatoire de
I’algorithme.

La hiérarchie de Lasserre consiste a reformuler les problémes d’optimisation polyno-
miale ou rationelle dans I’espace des mesures positives afin de les linéariser. Le probléme
de mesure est ensuite transformé en un probléme de moments, avant que la séquence de
ces moments ne soient tronqués jusqu’a un certain ordre pour donner une suite de relax-
ations convexes sous forme de problémes d’optimisation semi-définie positives (SDP). La
complexité calculatoire de la hiérarchie est alors due a la grande dimension de ces relax-
ations SDP. Nous rappelons les principes de la hiérarchie de Lasserre dans le Chapitre 3
ainsi que sa généralisation & la minimisation d’une somme de fonctions rationnelles. Les
problémes auxquels est ramené le probléme de départ et qui sont résolus numériquement
sont ici des problémes SDP. Nous étudions donc la complexité de ces derniers en fonction
des données de départ du probléme rationnel.

La premiére motivation de notre travail a été la résolution de problémes inverses pour
la reconstruction de signaux de chromatographie. Deux difficultés se présentent: les sig-
naux reconstruits doivent posséder une structure parcimonieuse et la reconstruction doit
prendre en compte des effets non-linéaires, tels que la saturation. Ces deux obstacles
aboutissent a la résolution de problémes d’optimisation non-convexes. Nous montrons
dans le Chapitre 4 que ces problémes peuvent étre traduits sous la forme d’un probléme
d’optimisation rationnelle. En effet, de nombreuses approximations continues et exactes
de la fonction £y sont polynomiales par morceaux. Nous appliquons alors la hiérarchie
de Lasserre en tirant parti de la structure du probléme pour reconstruire le signal parci-
monieux recherché. Notre étude de la complexité des relaxations SDP montre que le
défi calculatoire de la méthode de Lasserre peut étre relevé pour ces problémes de recon-
struction de signaux parcimonieux dans un contexte ol des non-linéarités apparaissent
dans le modéle. De plus, nous traitons dans notre modéle la contrainte expérimentale
ol seul un signal sous-échantillonné est observé. Cette limitation sur le signal observé
émerge naturellement lors de ’acquisition de nombreux échantillons en un temps limité.

De nombreuses fonctions d’intérét dans les applications de traitement du signal sont
rationnelles par morceaux ou peuvent étre approchées précisément par une telle fonction.
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Dans le Chapitre 5, nous traitons notamment de la reconstruction de signaux corrompus
par un bruit de Poisson-Gauss. Nous montrons notamment que le calcul de I'estimateur
de maximum de vraisemblance peut étre approché par un probléme d’optimisation ra-
tionelle que nous résolvons en utilisant le cadre développé aux chapitres précédents. Nous
étendons également notre méthode & des signaux parcimonieux dans un domaine trans-
formé comme par exemple des signaux dont le gradient discret est parcimonieux. Nous
illustrons nos résultats sur la reconstruction de signaux parcimonieux et de signaux de
communication en lumiére visible (VLC). Une autre classe intéressante de fonctions ra-
tionnelles par morceaux est la classe des fonctions objectifs robustes au bruit des données
aberrantes. En effet, les résultats expérimentaux contiennent souvent quelques valeurs
aberrantes pour lesquelles nous ne souhaitons pas grandement pénaliser la vraisemblance
pour ne pas fausser notre estimateur. Ainsi la fonction de Huber ou les fonction ¢; et
£y tronquées sont des exemples de fonctions robustes rationnelles par morceaux. Nous
montrons que notre méthode s’adapte parfaitement & ces fonctions robustes et donne
de meilleures reconstructions. Nous traitons également de contraintes exprimées sous la
forme d’union de sous-ensembles. Bien que difficiles & faire respecter par de nombreuses
méthodes d’optimisation convexe, ces contraintes peuvent s’exprimer sous la forme de
contraintes polynomiales et donc rentrer dans notre cadre.

Afin d’étendre 'application de notre méthode des chapitres précédents a des prob-
lémes de plus grandes dimensions, nous développons dans le Chapitre 6, des algorithmes
de résolution pour des problémes SDP de grande tailles. En effet, les limites calculatoires
se situent dans la résolution de ces derniers par les méthodes de points intérieurs qui
sont trés vite limitées lorsque la dimension et le nombre de variables augmentent. Nous
explorons notamment une dizaine d’algorithmes basés sur I’opérateur proximal ainsi que
quelques méthodes basées sur les points intérieurs. Bien que certains de ces algorithmes
se révelent meilleurs que les méthodes de point intérieurs pour des situations données,
ils ne peuvent rivaliser avec eux pour la résolution des relaxations SDP de problémes
d’optimisation polynomiale sous contraintes.

La derniére partie de cette thése est consacrée au lien entre la décomposition d’un
tenseur symétrique en une somme de tenseurs de rang un, appelée décomposition canon-
ique polyadique (CP), et les problémes d’optimisation polynomiale. En effet, nous
réécrivons dans le Chapitre 7, la décomposition CP d’un tenseur symétrique en un prob-
léme de moment. En utilisant les outils du probléme des moments, nous dérivons alors
une méthode de détection de rang ainsi qu’une méthode de décomposition CP. Cette
derniére est inspirée par 'extraction des minima dans la hiérarchie de Lasserre et est
basée sur un algorithme de résolution d’un systéme de polyndémes. Dans un second
temps, nous effectuons le cheminement inverse et utilisons les méthodes de décomposi-
tion CP robustes, telles que les moindres carrés non linéaires, pour effectuer une extrac-
tion des minima globaux dans la hiérachie de Lasserre a partir d’un vecteur de moments
bruité. En effet, la méthode algébrique classiquement utilisée est trés sensible au bruit.
L’intérét de notre proposition est donc de pouvoir retrouver les minima globaux lorsque
seuls les premiers problémes SDP de la hiérarchie peuvent étre résolus numériquement
et que donc seul un nombre limité de moments bruités est disponible.

Finalement, dans le Chapitre 8, nous résumons nos différentes contributions et nous
suggérons plusieurs pistes afin d’étendre les résultats présentés dans cette thése.



SYMBOLS

: Greatest integer lower than its argument

: Smallest integer greater than its argument

: Binomial coefficient “among n choose k”

: Set of n x n real symmetric matrices

: Set of n x n real symmetric positive semi-definite matrices

: Set of n x n real symmetric positive definite matrices

: Set of n x n real symmetric negative semi-definite matrices

: Subset of n-tuples of natural integers whose absolute value is less

than or equal to ¢

: Set of multivariate polynomials in x having real coefficients

: Cone of Sum-of-Squares polynomials on n variables

: Cone of positive measures supported on X

: Cone of the infinite moment vectors of positive measure supported on

X

: Transpose of a matrix

: Convolution operator

: Kronecker product

: Hadamard product

: Inner product

: Barrier function on R™*™
: Characteristic function of X
: Indicator function of X

: Projection on X

: Normal cone to X at x

: Identity matrix of R™*"

: Diagonalizing operator
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ACRONYMS

ADAL Alternative Direction Augmented Lagrangian method
ADMM Alternative Direction Method of Multipliers

CPD Canonical Polyadic Decompostion
DSoS Diagonally-dominant-Sum-of-Squares

FB Forward-Backward algorithm

FBHF Forward-Backward Half-Forward Algorithm
FISTA Fast Iterative Shrinkage-Thresholding Algorithm
FPR False Positive Rate

GAST Generalized Anscombe Transform

KKT conditions Karush-Kuhn-Tucker conditions
LP Linear Programming

MAP Maximum A Posteriori

PG Poisson-Gaussian

PSINR Peak Signal to Noise Ratio

REP Relative Entropy Programming
RFBPD Rescaled Forward-Backward Primal-Dual algorithm

SDP Semi-Definite Programming

SDSoS Scaled-Diagonally-dominant-Sum-of-Squares
SOCP Seconde-Order Cone Programming

SONC Sum-of-Non-negative Circuit

SoS Sum-of-Squares
TPR True Positive Rate

WLS Weighted Least Squares
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- CHAPTER 1 -

GENERAL INTRODUCTION

§ 1.1 CONTEXT

The work in this thesis was firstly motivated by the reconstruction of chromatography
signals from their corrupted measurements through sensors in chemical engineering. This
inverse problem can be solved by variational methods which consist in minimizing a
well-chosen criterion. Due to the advances in convex optimization of the last decades,
variational methods often result in the minimization of a convex criterion (often under
convex constraints) that is successfully solved with one of the many efficient existing
algorithms.

However, although convex optimization has become a cornerstone of engineering,
many realistic physical models, such as the reconstruction of chromatography signals,
are more accurately modelled by nonconvex formulations for which scarcer theoretical
guarantees are available. A research direction consists of convexifying problems to ben-
efit from previously developed theory and tools. The main difficulty resides in finding a
convex equivalent problem or a faithful convex relaxation of the original problem leading
hopefully to global optimal solutions. Recent theoretical results in real algebraic geom-
etry show that one can successfully follow this path when dealing with optimization of
rational functions (i.e. functions that are ratios of two polynomials) under polynomial
constraints. In this context, remarkable properties indeed hold providing global optimal
guarantees.

Polynomial and rational functions encompass a wide class of practically relevant
models. In view of approximation theory, the latter functions provide optimal approxi-
mations, globally or piecewise, for most functions of practical interest. Hence, they are
nowadays the workhorses for many numerical computations. As a consequence, rational
optimization can be used to approximate most optimization problems. For instance,
optimization problems mixing real-valued and binary variables can be translated into
polynomial problems.

In this work, we focus on the application of the moment/SoS hierarchy, also known
as Lasserre’s hierarchy, to relax rational optimization problems into a hierarchy of con-
vex problems. While being a breakthrough from a theoretical standpoint, the obtained
relaxations have very high dimensions that unfortunately often prohibit any numeri-
cal resolution in a reasonable time. Our main goal here is to show the benefit of the
moment/SoS hierarchy in practical signal processing problems and overcome the com-
putational limitations. More specifically, we look at various inverse problems for signal
reconstruction involving nonlinear models and nonconvexity. For instance, our frame-
work is relevant to deal with models in gas chromatography.
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Leveraging the structures of the latter problems, we are able to reduce drastically the
complexity of the relaxations and therefore solve them in a fair amount of time. After
studying the general complexity of the convex relaxation, we study the beneficial impact
of exploiting these structures and develop algorithms to solve them efficiently.

We show in numerical simulations that our proposed framework is able to solve
various challenging signal processing problems and compares favorably to existing ap-
proaches. Hence, the outcomes of our work show that global optimization methods
emerging from real algebraic geometry, although known to be computationally intensive,
can have a practical impact in signal processing applications.

This work has been done in the framework of a fruitful collaboration with IFP En-
ergies nouvelles, and more specifically Dr Laurent Duval who was at the origin of the
applicative motivation of this PhD work.

§ 1.2 OUTLINE

This manuscript is organized as follows.

Chapter 2 first exposes through the light of approximation theory why polynomial
and rational functions form an important class of modelling functions. Afterwards, it
presents the general rational optimization problem as well as the different strategies
to solve it. The connection between rational optimization and certificates of positivity
for polynomials is then recalled and recent optimization frameworks based on these
certificates are summarized.

In Chapter 3, we detail Lasserre’s hierarchy, the current state-of-the-art framework
for global optimization of rational problems. We then propose to adapt this framework
for problems that have some specific structures and study the complexity of the resulting
method. The latter forms the foundation of our work.

In Chapter 4, we apply the previous methodology to the reconstruction of a non-
linearly distorted and subsampled sparse signal. This problem is highly challenging due
to its nonconvexity and its high computational complexity. Moreover, it has practical
interest in various areas such as gas chromatography. We thereby detail how to use
the structure of the problem in order to solve it in a fair amount of time. Numerical
simulations illustrate the performance of our method.

Chapter 5 extends the results of Chapter 4 in several ways. First, we consider differ-
ent fit functions that are successfully used to handle Poisson-Gaussian noise as well as
outliers. Second, we also extend our framework to signals sparse under a linear transfor-
mation such as a discrete gradient. This adds extra complexity in our final relaxation.
Finally we show how our framework can successfully handle some nonconvex constraints
expressed as unions of subsets that cannot be handled by standard methods.

Chapter 6 proposes several proximal algorithms to solve Semi-Definite Program-
ming (SDP) problems arising from Lasserre’s hierarchy. Those SDP problems are high-
dimensional, both in terms of variables and constraints and are challenging for current
interior point methods. We explore several possibilities on the original problems and
suggest some equivalent problems that are easier to solve.

Chapter 7 sets out the link between tensors decomposition and the moment prob-
lem. Using results from the literature on the truncated moment problem, we derive a
rank detection and a Canonical Polyadic Decompostion (CPD) algorithm for symmet-
ric tensors. On the other hand, we propose a robust extraction method for rational
optimization problem based on tensor decomposition methods.

Finally, Chapter 8 draws conclusions and gives several perspectives.
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§ 1.3 CONTRIBUTIONS

We summarize here the contributions of this work.

In Chapter 3, we study a specialization of Lasserre’s hierarchy for structured prob-
lems. More specifically, we use the recent work of Bugarin et al. [BHL15] to adapt the
general framework of Lasserre to a sum of rational functions in a few variables. Our main
contribution here is a study of the complexity of the obtained relaxations. We show that
this approach is important to reduce the computation complexity in signal processing
applications.

In Chapter 4, our contribution is twofold:

(i)

(i)

We investigate a wide range of continuous approximations to the ¢y penalty and
we extend the framework of Lasserre’s hierarchy to piecewise rational functions in
order to minimize the resulting nonconvex criterion. Unlike standard approaches,
we are able to find and certify the global optimum of this nonconvex optimization
problem. Compared to previous works, the class of regularizers is much richer and
is combined with a nonlinear observation model and a subsampling.

Through a complexity analysis and extensive simulations, we show how the struc-
ture of the problem and the subsampling allow us to alleviate the computational
burden of the original framework presented in Chapter 3. Our approach can be
successfully applied to signal processing and compressed sensing problems as il-
lustrated by the provided example inspired by the acquisition of signals in gas
chromatography.

In Chapter 5, we extend the previous methodology to noise distributions that differ from
the standard additive white Gaussian model.

(i)

We propose a new rational approximation to the Poisson-Gaussian data fidelity
term and we show that rational approximations to the ¢y sparsity measure intro-
duced in Chapter 4 can be combined efficiently with a linear operator such as a
discrete gradient. The resulting nonconvex Maximum A Posteriori (MAP) prob-
lem is then successfully solved with our methodology of Chapter 3 and practical
examples illustrate the good performance.

We adapt our methodology to make it robust to the presence of possible outliers.
Moreover we consider extra nonconvex constraints on the signals that are modelled
as unions of subsets. While this type of constraints cannot be solved, we show that
our methodology can handle them.

In Chapter 6, we develop many proximal algorithms to handle high-dimensional SDP
problems and our contributions are as follows.

(i)

(i)

(iii)

We derive several proximal algorithms to solve SDP problems in their primal, dual
and primal-dual forms.

We propose several equivalent reformulations of SDP problems together with al-
gorithms to solve them. We also suggest two algorithms inspired by interior point
methods.

We conduct extensive simulations to determine the most suitable algorithm de-
pending on the dimensions of the SDP problem. Especially, we show that, although
some proximal methods are more interesting to solve unconstrained polynomial
problems, interior point methods are currently the most efficient solvers for SDP
problems emerging from our methodology.
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In Chapter 7, we explore the link between tensor decomposition and moment problem.
This yields the three following main results

(i)

(iii)

We propose a symmetric rank detection method for symmetric tensors based on
the tool of moment problem. This method is based on a necessary condition on
the rank of moment matrices built with the tensor elements. We illustrate it on a
blind source separation problem.

We develop an algebraic method for tensor CPD that yields higher accuracy than
standard optimization-based methods in a noiseless context. The latter method is
based on the extraction step in polynomial optimization problem that amounts to
solving a polynomial system.

We provide a robust extraction method for polynomial optimization. In contrast to
the standard extraction method, our method allows us to recover the exact global
minima from a noisy moment vector. This is of practical interest to reduce the
computational burden and to cope with the inaccuracy of the solver for the convex
relaxations.

§ 1.4 RELATED PUBLICATIONS

The work in this thesis has given rise to the followings publications:

Published journal articles

e Marc Castella, Jean-Christophe Pesquet, and Arthur Marmin. Rational optimiza-

tion for nonlinear reconstruction with approximate ¢y penalization. IEEE Trans.
Signal Process., 67(6):1407-1417, March 2019 [link|

e Arthur Marmin, Anna Jezierska, Marc Castella, and Jean-Christophe Pesquet.

Global optimization for recovery of clipped signals corrupted with poisson-gaussian
noise. IEEFE Signal Process. Lett., 27:970-974, May 2020 [link]|

e Arthur Marmin, Marc Castella, Jean-Christophe Pesquet, and Laurent Duval.

Sparse signal reconstruction for nonlinear models via piecewise rational optimiza-
tion. Signal Process., 179:107835, February 2021 [link|

Conference proceedings

Arthur Marmin, Marc Castella, Jean-Christophe Pesquet, and Laurent Duval. Sig-
nal reconstruction from sub-sampled and nonlinearly distorted observations. In
Proc. European Signal Processing Conference, pages 1970-1974. IEEE, September
2018 |[link|

Arthur Marmin, Marc Castella, and Jean-Christophe Pesquet. How to globally
solve non-convex optimization problems involving an approximate £y penalization.
In Proc. Int. Conf. Acoust. Speech Signal Process., pages 5601-5605. IEEE, May
2019 |[link|

Arthur Marmin, Marc Castella, and Jean-Christophe Pesquet. Sparse signal re-
construction with a sign oracle. In Proc. Signal Processing with Adaptive Sparse
Structured Representations (SPARS) workshop, July 2019 [link|


https://hal.archives-ouvertes.fr/hal-01852289v2/document
https://hal.archives-ouvertes.fr/hal-02877910/document
https://hal.archives-ouvertes.fr/hal-02972442/document
https://hal.archives-ouvertes.fr/hal-01957568/document
https://hal.archives-ouvertes.fr/hal-02196878/document
https://hal.archives-ouvertes.fr/hal-02196881/document
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e Arthur Marmin, Marc Castella, and Jean-Christophe Pesquet. Detecting the rank
of a symmetric tensor. In Proc. European Signal Processing Conference, pages 1-5.
IEEE, September 2019 |link]|

e Arthur Marmin, Marc Castella, and Jean-Christophe Pesquet. A moment-based
approach for guaranteed tensor decomposition. In Proc. Int. Conf. Acoust. Speech
Signal Process., pages 3927-3931. IEEE, May 2020 |link|

e Arthur Marmin, Marc Castella, and Jean-Christophe Pesquet. Globally optimizing
owing to tensor decomposition. In Proc. European Signal Processing Conference.
IEEE, September 2020. to appear

e Arthur Marmin, Marc Castella, and Jean-Christophe Pesquet. Robust reconstruc-
tion with nonconvex subset constraints: A polynomial optimization approach. In

IEEE Int. Workshop Mach. Learn. Signal Process. IEEE, September 2020 |link|

§ 1.5 GENERAL NOTATION

Throughout this thesis, we use the following notation: N denotes the set of nonnegative
integers, R, Ry, and R* denote respectively the sets of real, positive real, and non-zero
real numbers. For any nonnegative integer n, S, 8", and S} , are respectively the set of
n X n real symmetric, symmetric positive semi-definite, and symmetric positive definite
matrices. Id,, is the identity matrix of size n X n. For any pair of nonnegative integers
n and k, (Z) is the binomial coefficient “among n choose k” given by k'(nnilk;)' || (resp.
[]) denotes the greatest (resp. smallest) integer lower (resp. greater) than its argument.
For a multi-index a = (g, ..., ) of N” |a| = a1 + - - - 4+ o, denotes its absolute value
and N} is the subset of multi-indices in N whose absolute value is less than or equal to
t. We define the graded lexicographic ordering for two multi-indices v and 3 as follows:
we write a > B if || > |B| or if |&| = |3| and the leftmost non-zero entry of o — 3 is
positive.

Upper case calligraphic letters denote tensors (7), bold upper case letters (M) denote
matrices, bold lower case letters (v) denote vectors, and lower case letters (s) denote
scalars. We use the same script to denote a linear application and its corresponding
matrix representation.

The superscript ' indicates the transpose of a matrix, Diag is the operator that
creates a diagonal matrix with its arguments on the diagonal. Scalar, Kronecker, and
Hadamard products are respectively denoted with (.,.), ®, and ®. For a given set X,
Li.cxy is the characteristic function of X with 1y,cxy =1 if z is in & and 0 otherwise.

For a given polynomial p(z) = Z pax”, we define the following operator d
|ax|<degree p
degree p
4, = | SE= ] (1

and we denote by p a vector composed of the coefficients corresponding to monomials
in p up to the total degree of p.


https://hal.archives-ouvertes.fr/hal-02284991/document
https://hal.archives-ouvertes.fr/hal-02654329/document
https://hal.archives-ouvertes.fr/hal-02977062/document
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BACKGROUND ON POLYNOMIAL OPTIMIZATION

§ 2.1 POLYNOMIAL AND RATIONAL FUNCTIONS AS MODELLING
TOOLS

The large flexibility of polynomial and rational functions has made them a vigorous
research topic for ages. Their great modelling power makes them one of the pillars of
approximation theory and they are consequently often used as tractable surrogates for
more intricate functions.

A systematic use of power series to approximate transcendental functions was started
in the late sixteenth century and early seventeenth century by Newton and Taylor. How-
ever, those formulae do not provide a uniform approximation and the error beyond the
expansion point usually grows quickly. At the same time, Gauss developed the least
squares regression method but the latter can still undergo an arbitrary high error at a
given point. A specific approximation of periodic continuous functions using trigono-
metric series instead of power series was suggested by Fourier in the early eighteenth
century. The essential step in approximation theory is the Stone-Weierstrass approxima-
tion theorem that allows uniform approximations of any continuous function defined on
a closed interval by polynomials. A generalization of this result to functions defined on
a compact subset of the complex plane was proved by Mergelyan in 1951. Bernstein and
Chebyshev polynomials provide two different constructive examples of such approxima-
tions to any continuous function on the interval [0, 1]. Moreover, the Remez exchange
algorithm proposed in 1934 builds, for a given degree, a polynomial approximation of a
continuous function on a bounded interval that minimizes the error in the sense of the
uniform norm.

In contrast, local polynomial approximations were also considered. Gluing together
such local approximations under some smoothness conditions gave birth to piecewise ap-
proximations called splines. Especially, cubic splines have been widely used because of
their quick computation. Refinement of splines based on Bernstein polynomials yields the
Beziers curves and their generalization, the B-splines and the NURBS (Non-Uniform Ra-
tional Basis Splines) which form now the cornerstone of computer graphics and computer-
aided design.

Although polynomials yield good approximations, rational approximations require
less terms and also provide smoother and better approximations in the neighborhood of
a singularity or a discontinuity by avoiding oscillation effects. As early as the seventh
century, Bhaskara I exposed an approximation of sinus as the ratio of two quadratic
polynomials. In the late nineteenth century, Padé gave a systematic construction of a
good rational approximation of an analytic function. A benefit of Padé approximants is

7
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the high accuracy obtained only with a few terms in the involved polynomial compared
to polynomial approximations. Indeed, Padé approximants can be interpreted as the
non-linear acceleration of an expansion into powers of x or z~! known as the generalized
Shanks transformation. Acceleration of convergence aims to construct a new sequence
that converges to the same limit but faster than the initial one. The Padé approximants
can be viewed as truncations of continued fractions.

More details about approximation theory and its link with polynomial and rational
functions can be found in the book [Pow81].

§ 2.2 GLOBAL RATIONAL OPTIMIZATION

In view of Section 2.1, polynomial regressions, interpolations and approximations are
therefore workhorses for many numerical methods. The realm of rational functions has
subsequently pervaded many scientific fields and consequently the problem of finding
global extrema of multivariate rational criteria over polynomial constraints emerges nat-
urally. As the involved criteria and constraints are not necessarily convex, finding global
solutions is intricate as well-known convex optimization methods become only local. The
general topic of this thesis consists in solving rational optimization problems which takes,
for a given dimension T, the following general form
J* = minimize @
x€RT q(x) (2.1)
subject to x € IC,

where p and ¢ are polynomial functions on R” and, for a collection of J polynomials
S = (sy) e[’ the feasible set K is a subset of R” defined by polynomials inequalities

K={xeR'|(Vje[L,J]) sj(x)>0}. (2.2)

Such a set K is said to be a closed basic semi-algebraic set |[AB08, Las09]. When ¢
is the constant polynomial equal to 1, Problem (2.1) includes the case of polynomial
optimization. Note that if p and ¢ have no common roots on /C, then a sufficient condition
for J* to not be equal to —oo is that ¢ should have a constant sign on K. Hence, we
assume that ¢ is strictly positive on K.

Finding the global optimal value J* as well as the feasible points where it is reached
is a critical problems in many applications. Indeed, most optimization problems can be
approximated by a problem in the form of (2.1). Some examples are provided in the
next section.

2.2.1 Examples in signal processing

We give here a few uses of rational functions in signal processing;:

e The Rational Function Model [THO1| used for the geometric processing of satel-
lite or remote sensing images is based on rational approximation. Physical-based
models were first used to link the pixel coordinates to the object coordinates in the
3D scene. However, those models are computationally expensive and, in order to
perform real-time processing, rational approximations are used as a substitute and
proved to be highly accurate. Ratio of first and second order terms model respec-
tively optical distortion and correction due to Earth curvature and atmospheric
refraction. Ratio of higher orders may be included to model unknown noise such
as camera vibration.
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e Using the Z-transform of discrete signals, the transfer function of IIR digital filters
becomes a rational function. For a FIR filter, the Z-transform is a polynomial
in z~! which can be seen also as a rational function. Designing filters is then
often equivalent to the minimization of such rational function under polynomial
constraints. For instance, one can consider the design of a passband FIR filter
of maximum magnitude where the constraints linking the magnitude to the stop
frequencies and the attenuation coefficients are polynomial inequalities [Dum07].
In a similar spirit, the design of filter banks such as the two-channel conjugate
quadrature filter banks can be interpreted as the minimization of a polynomial
under polynomial constraints [YLO09],

e In the control of congestion in communication networks, one goal is to maximize
the utility of the network with respect to the flow constraints corresponding of the
capacity of each link. Interesting utility functions are often modelled with rational
function such as sigmoidal-like functions for voice applications [Chi09].

e The aim of optimal design is to plan an optimal set of experiments in order to
find the coefficients of a large class of regression models, usually rational regression
models. There are different classes of optimal design depending on the statistical
criterion to be optimized such as A-optimal, D-optimal, and T-optimal. All those
problems can be unified as a root search for a given polynomial [Pap12].

e A recent trend in machine learning has been the emergence of neural networks and
their numerous applications. Building neural networks consists in approximating
unknown functions of interest using a class of highly tunable functions composed of
a large number of parameters. For some kinds of networks, this class shares a close
link with rational functions: it does not only approximate well rational functions
but is also well approximated by such functions [HW92, Tell7|. The ubiquity of
these neural networks should therefore not be surprising in light of approximation
theory.

In this thesis, we will mainly focus on the reconstruction of various corrupted signals.

2.2.2 Different classes of algorithms

Problem (2.1) is highly challenging in general due its nonconvexity. Indeed, many
local optima may trap standard algorithms used in convex optimization. Note that
in some very specific cases, even if Problem (2.1) is nonconvex, it possesses hidden
convexity and can be solved globally in polynomial time with a convex optimization
method [BTT96, KS15|. However, these are rare and some global optimization methods
have been developed for the general case. They mainly divide into two families:

e Deterministic methods which offer theoretical guarantees on the optimality of the
solutions. It includes the exact convex relaxations as well as the branch-and-
bound/branch-and-reduce algorithms [RS96, BD14]. There exist also iterative nu-
merical methods that guarantee, after a finite number of steps, to return a point at
which the value of the criterion is the global optimum within a chosen tolerance. An
example of such method is the successive incumbent transcending scheme [Tuy16]
inspired from monotonic optimization. The main drawback of this family is its
expensive computation time.

e Randomized methods that aims to solve problems more quickly than deterministic
methods at the cost of losing the theoretical guarantees on global optimality. The
underlying idea is to explore the feasible space in a clever fashion but with a
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certain randomness in order to decrease the computations. It includes for instance
the simulated annealing and the particle swarm optimization.

In the following, we focus exclusively on deterministic methods as one of the goal
of this thesis to obtain theoretical guarantees on the retrieved solutions. Moreover,
we do not look at general methods from global optimization that are not limited to
rational objective functions. More specifically, we only deal with methods from real
algebraic geometry, i.e. methods that rely on the properties of polynomials, especially
their certificates of positivity. The remaining of this chapter is dedicated to provide an
overview of such methods.

§ 2.3 HILBERT 17™ PROBLEM AND POSITIVSTELLENSATZE

2.3.1 Rational optimization and certificates of positivity

Rational optimization is closely connected to the certificate of positivity of polynomials.
Indeed, Problem (2.1) can be written as the maximization of a lower bound v on J*

Y« = maximize y
ek (2.3)
subject to  (Vx € K) p(x) —yq(x)>0.

Problem (2.3) has solutions only if the polynomial p — ¢ is non-negative on X for some
values of «. The feasibility problem hence amounts to determine whether a polynomial
is non-negative on a closed basic semi-algebraic set. This problem is known to be NP-
hard [DG13] and certificates of positivity are used as substitutes.

2.3.2 Certificates of positivity on RT

Certificates of positivity for polynomials have a long history. It started with the decom-
position into a Sum-of-Squares (SoS) of polynomials, which are clearly non-negative on
the whole space RT. Especially, Hilbert proved that all polynomials taking non-negative
values on R™ are exactly the polynomials that can be decomposed into SoS for the fol-
lowing three cases: univariate polynomials (7" = 1), quadratic poynomials, and bivariate
polynomials (7' = 2) of degree 4. He also showed in 1888 the existence of a non-negative
bivariate polynomial of degree 6 which is not a SoS. Nevertheless, his proof does not give
an explicit construction and the first constructive example was given by Motzkin in 1967
with the famous bivariate polynomial given below

p(z,y) = x4y2 + x2y4 +1— 3222, (2.4)

The impossibility of the SoS decomposition follows from the arithmetic-geometric mean
inequality. On the other hand, Hilbert proved that any bivariate polynomial can be
written as a sum of squares of rational functions. The generalization of the latter result
for any dimension T' gave birth to the famous Hilbert’s 17" problem, which was proved
by Artin in 1927.

2.3.3 Certificates of positivity restricted to compact sets

The next step was to search for similar certificates of positity on closed basic semi-
algebraic sets of the form of K instead of the whole space. In the second half of the twen-
tieth century, a first result in this direction is Krivine-Stengle’s Positivstellensatz [Ste74].
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For a collection of polynomials S = (sj)j e[1,g] We defined the associated preorder Ts as

Ty = E st sroe | o € X ),
ec{0,1}™

where Y7 is the cone of the SoS polynomials in R”. The polynomials in the preorder T
are all non-negative on K but all non-negative polynomials on I are not necessarily in
Ts. Krivine-Stengle’s Positivstellensatz generalizes Artin’s results by giving a description
of all non-negative and positive polynomials on K as ratio of polynomials in T:

Theorem 1 (Krivine-Stengle’s Positivstellensatz)
Let f be a polynomial on RT.

e f is non-negative on K if and only if there exist g and h in Ts and k in N such
that gf = 2 + h.

o f is strictly positive on K if and only if there exist g and h in Ts such that gf =
1+ h.

Note that the polynomial g plays the role of the denominator.

Furthermore, Schmiidgen observed that when K is compact, polynomials that are
strictly positive on K always belong to Ts. He proved the following Positivstellen-
satz [Sch91] which is a denominator-free formulation of Krivine-Stengle’s Positivstellen-
satz

Theorem 2 (Schmiidgen’s Positivstellensatz)
If K is compact and a polynomial f is strictly positive on IC, then f belongs to Ts.

A stricter version of Schmiidgen’s Positivstellensatz was given by Putinar [Put93|.
Let us define the quadratic module associated to the collection S as

Mg=Yr+s1270+ -+ s527.
Notice that Mg is a subset of the preorder Tg

To=Yp+ 8127+ 4+ Sp2p +81S9%57 + -+ 81...85%7 .

The module Mg is said to be Archimedean if for any polynomial f in R[x], there exists a
natural integer N such that N £ f belongs to Mg, or equivalently such that N — Zthl x?
belongs to Mg. Putinar’s Positivstellensatz can then be stated as follows

Theorem 3 (Putinar’s Positivstellensatz)

If Mg is Archimedean and a polynomial f is strictly positive on K, then f belongs to
Msg.

Note that a similar Archimedean property can be defined for the preorder T and,
in this case, this property is equivalent to the compactness of X as proved by Schmiid-
gen [Sch91]. However, although the Archimedean property of Mg implies the compact-
ness of the set /C, the reverse does not always hold [Sch08|.

The main advantage of Putinar’s Positivstellensatz is that it needs only J 4+ 1 SoS
polynomials compared to the 27 required by Schmiidgen’s. Finally, notice that both
Schmiidgen’s and Putinar’s Positivstellensétze certify strict positivity and they usually
do not hold for non-negative polynomials.
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The three Positivstellensitze presented here have therefore been used to relax the
positivity constraint on p — ¢ in Problem (2.3). They form the basis for today’s state-
of-the-art real algebraic methods to solve rational problem. Several other certificates
of positivity have been developed, for example by Reznick [Rez95] and Polya [Pol28],
and they lie at the heart of the methods solving polynomial and rational optimization
problem. An overview of such methods is given in the next section.

§ 2.4 OVERVIEW ON REAL ALGEBRAIC METHODS

Problem (2.1) being NP-hard, different relaxations have been proposed based on Posi-
tivstellensidtze. We present here some of the most prominent techniques. More details
about the dependencies and connections of the four hierarchies exposed in this section
can be found in the recent work of Kurpisz and De Wolff [KdW19).

2.4.1 Hierarchy of LP relaxations

Sherali and Adams proposed the relaxation and linearization technique [SA99| that aims
to solve several optimization problems by using Linear Programming (LP) relaxation.
This framework was one of the first method to solve polynomial optimization problems
of the form (2.1) when ¢ is the constant polynomial equal to 1. The main idea is to lift
Problem (2.1) by introducing a new optimization variable for each nonlinear monomial
appearing in the polynomials. The constraint linking those variables to the monomials
are neglected and therefore yield an LP problem. Moreover, the original optimization
variable x is assumed to be in a bounded box. A branch and bound algorithm is finally
used, where an LP problem is solved at each iteration and the size of the bounded box
is then reduced.

A more general framework to relax Problem (2.1) into an LP problem is based on
the following Positivstellensatz from Krivine [Lau08|

Theorem 4

If K is compact, the polynomials (Sj)jeﬂj’(]]] have values between 0 and 1, and together
with the constant polynomial 1, they generate the algebra R[x|, and a polynomial f is
positive on IC, then f can be written as

J J
f= > eslls?IT0-9)”
j=1  j=1

(e0,8)€eNY xNJ
for finitely many non-negative scalar coefficients Aag.

Hence fixing a maximal degree on the multi-indices a and 3 to d, we can use Theo-
rem 4 to replace the constraint p — vq of Problem (2.3) and we obtain a hierarchy of LP
problems

Y4 = maximize -y
YA
A _ (2.5)
subject to p—yq= Z )‘aﬁHSjj H(l—sj)ﬁf .
(a,8)eN xNJ Jj=1 Jj=1

Problem (2.5) is indeed an LP problem since the number of non-zero coefficients Ao g is
finite and thus there is a finite number of linear constraints. It has been proved [Las09]
that the sequence (74)4cn i monotone, non-increasing, and that it converges to the
optimal value v, of Problem (2.3). The relaxation and linearization technique is a special
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case of the formulation (2.5). Since current LP solvers can solve numerically high-
dimensional problems with millions of variables and constraints, this method scales well.
However, a main drawback of LP hierarchies is their convergence which is only asymptotic
and not finite as proved by Lasserre [Las09].

2.4.2 Sum-of-Squares and moment problem

Using a Positivstellensatz from Section 2.3, we can transform Problem (2.3) into a SoS
problem. For instance, assuming that Mg is Archimedean, we can use Theorem 3 to
replace the constraint in Problem (2.3) by the constraint [JAKO05]

p—~q € Mg. (2.6)

Furthermore, any decomposition into SoS can be characterized using a semi-definite
matrix as follows [PWOS].

Lemma 1 (Semi-definite characterization of SoS)

A polynomial s of degree 2d is a SoS if and only if there exist a semi-definite matrix
X such that s = [x]j{X[x}d, where [x], is the vector of all monomials up to degree d
arranged according to the graded lexicographic order.

Remark that, for clarity, the basis of monomials is used here but for numerical com-
putation other choices of basis may be more suitable [LP04].
Constraint (2.6) reads

J
p—’yq:To—i-ZSjTj, (2.7)
j=1

where (7;);cpo s 18 @ collection of SoS polynomials. Using Lemma 1 and fixing the
maximal degree of the polynomials in the right hand side of (2.7) to 2k, we obtain
at most (T;L,fk) linear equality constraints between the coefficients together with the
J + 1 semi-definite constraint on the matrices (Vj)j €[0,J corresponding to each s;. The
problem is now in the form of an SDP problem for each fixed degree 2k. We remark that

V0 is a matrix of dimension (Tzk) X (T;rk) while the other matrices V; has lower dimension

(T:fd_dsj) (Tzk;dsj) since the overall degree is 2k. Solving the SDP problem for the
8 sy

different order k yields an increasing sequence of lower bounds on 7, which converges
to the latter [Par03]. This hierarchy of SDP convex relaxation is often called the SoS
hierarchy.

However, this result was already proved by Lasserre in the dual perspective of the
K-moment problem [Las01| where the derived SDP problems are exactly the dual of the
ones in the SoS approach. For this reason, the hierarchy is also often named Lasserre’s
hierarchy in the literature. The moment approach lifts the original polynomial problem
into the space of probability measures on JC where we minimize over a measure. Measures
are then replaced by their moments at the cost of additional semi-definite constraints
that insure that the sequence of moments represents a measure of probability supported
on K. The approach of Lasserre is explained in detail in Chapter 3. The proof of
the convergence of the hierarchy relies heavily on Putinar’s Positivstellensatz, which
emphasises the importance of those certificates of positivity.

This application of the Positivstellensédtze illustrates the main advantage of Putinar’s
Positivstellensatz over Schmiidgen’s. Indeed the number of semi-definite constraints is
here decreased from 27 to J + 1 which is crucial to perform the computation in the SDP
solvers.
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One of the main benefit of SDP hierarchy over the previous LP hierarchy is its finite
convergence. Indeed, the convergence of SDP hierarchy occurs at a finite order generi-
cally [Niel3|. Generic finite convergence means that for any instance of Problem (2.1)
where the coefficients of the polynomials are drawn from an absolutely continuous prob-
ability distribution, there exists almost surely a finite relaxation order for which the
optimal value of the SDP relaxation is equal to J*.

SoS hierarchy and its dual approach, Lasserre’s hierarchy, are very efficient for low-
scale problems. However, the dimensions of the SDP relaxations are growing quickly
with the order k£ and the number of variables n and limit the practical application of
the method. Sparse versions of the Positivstellensétze have been developed |[GNS07| to
transfer the sparsity of the polynomials involved in Problem (2.1) to its SDP relaxations
and consequently lighten the computational burden of the latter.

2.4.3 Scaled diagonally dominant Sum-of-Squares

To tackle the computational complexity of Lasserre’s hierarchy, several representations
stepping aside SoS certificates have been proposed. A first scheme was proposed by
Ahmadi et al. [AM19, AH19] and relies on a more limited Positivstellensatz.

Putinar’s and Schmiidgen Positivstellensédtze can be seen as approximations to the
cone of non-negative polynomials by the cone of SoS polynomials. For a fixed degree,
Blekherman gave a bound on the ratio of the volume of both cones and showed that
the ratio of SoS polynomials among the non-negative ones decreases with the dimen-
sion T' [Ble06]. However, they are numerous non-negative polynomials that can be
expressed as SoS of higher degree polynomials. In fact, Lasserre even showed that non-
negative polynomials can be approximated by SoS polynomials coefficient-wide when
the degrees of the approximating polynomials goes to infinity. From this point, Ah-
madi et al. proposed to approach the cone of non-negative polynomials with the cone of
Diagonally-dominant-Sum-of-Squares (DSoS) polynomials which has the advantage to
be characterized by Seconde-Order Cone Programming (SOCP) instead of SDP prob-
lems [AM19]. Indeed, current SOCP solvers scale better than SDP solvers and changing
the approximating cone allows to solve some rational problems of higher dimensions.

Diagonally dominant matrices are defined as matrices whose diagonal terms are
greater than the sum of the absolute value of all the elements on their correspond-
ing row. Similarly, a matrix A is said to be scaled diagonally dominant if there ex-
ists a diagonal matrix D with positive coefficients such that DAD is diagonally dom-
inant. In the spirit of Lemma 1, Ahmadi et al. define a polynomial p to be a DSoS
(respectively Scaled-Diagonally-dominant-Sum-of-Squares (SDSoS)) polynomial if it can
be expressed under the form [X];—X[X] 4 Where X is a diagonally dominant matrix (re-
spectively scaled-diagonally matrix) [AH19|. DSoS and SDSoS polynomials are always
non-negative [AM19], therefore a decomposition into such polynomials is a certificate
of positivity. The corresponding Positivstellensatz called optimization-free is derived
by the authors in [AH19|. Its use with DSoS or SDSoS polynomials leads respectively
to LP for DSoS polynomials and SOCP problems [AH17, AM19| which have a lighter
computational complexity.

The drawback of this approach is that the expressiveness of SDSoS polynomials is
more limited than the one of SoS polynomials. Indeed, SDSoS polynomials can be seen
as binomial squares and thus are SoS. Conversely, SoS polynomials are not necessary

SDSoS.
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2.4.4 Sum of non-negative circuit polynomials

The Sum-of-Non-negative Circuit (SONC) polynomials approach is similar to the SoS
approach except that polynomials are now decomposed into non-negative circuit poly-
nomials. Circuit polynomials were introduced by Iliman and De Wolff [IdW16] and are
polynomials composed of T'+ 2 monomials whose multi-indices form a circuit, i.e. an
affinely dependent subset of N7 whose any proper subset is affinely independent. Most
polynomials used in science and engineering are composed only of a few monomials. This
property allows to reduce the complexity when the dimension of the variable or the de-
gree of the involved polynomials are high. Inherently, circuit polynomials are composed
of a few monomials and thus they can transfer the structure of Problem (2.1) into the
hierarchy of relaxations. In contrast, in Lasserre’s and the SoS hierarchies, we consider
all the monomials up to a given degree, which is colossal for a high degree or a high
number of variables.

Furthermore, the non-negativity of a circuit polynomial is easily verified by comput-
ing its circuit number and deciding whether a polynomial belongs to the SONC cone is
equivalent to solving a Relative Entropy Programming (REP) problem [IdW16|. Simi-
larly to LP, SOCP, and SDP, REP is a conic optimization problem where a linear cost
function is minimized under linear constraints and conic constraint. The cone here is de-
fined by a relative entropy and have the form { (p,v,8) € RT x RT x RT | 114 log <’Ij—z> <

d: }. Note that REP problems are convex and thus can be efficiently solved.
In the spirit of Schmiidgen and Putinar, a Positivstellensatz [DIdW17], has been
proved for SONC polynomials.

Theorem 5 (Positivstellensatz for SONC polynomials)
If K is compact and a polynomial f is strictly positive on K, then f is a sum of products
of the polynomials (Sj)je[[l g ond SONC polynomials.

Using this certificate in Problem (2.3) and fixing the degrees of the SONC polynomials
yields a hierarchy of REP problems whose optimal values form a non-decreasing sequence
that converges to the optimal value ~, of the original problem [DIdW17|. Note that the
SONC and SoS cones are not contained in each other. Thereby, some polynomials
are SONC but not SoS and vice versa. For instance, Motzkin polynomial given in
Equation (2.4) is SONC but not SoS. However, a polynomial can belong to both cones.

Although promising, the SONC approach is very recent and the theory is not yet
mature enough for applications. Hence, there exists currently no numerical solver able
to solve problems in the form of (2.1).

§ 2.5 SUMMARY

Polynomial and rational functions prevail in many scientific and engineering domains
due to their great modelling flexibility. As a consequence, many optimization problems
involving polynomials naturally appear. Although optimizing rational functions under
polynomial constraints is in general an NP-hard problem, recent techniques based on
certificate of positivity for polynomials have shown some successful results. In the next
chapter, we focus on Lasserre’s hierarchy to solve rational problems. The main challenge
is the computational workload which we tackle by handling the structure of the problem
with special care.
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- CHAPTER 3 -

RATIONAL OPTIMIZATION WITH LASSERRE’S HIERARCHY

This section is concerned with the detailed resolution of a rational optimization problem
using Lasserre’s hierarchy presented in a progressive manner. In Section 3.1 we present
the method for a general rational optimization problem while in Section 3.2, we explicitly
show how the structure of a sum of rational functions allows us to reduce the dimensions
of the final convex relaxation.

§ 3.1 MINIMIZING A RATIONAL FUNCTION

In this section, we consider the following generic problem:

o @
J —Hllilellnglze ) (3.1)

subject to x € IC,

where p and ¢ are polynomial functions on R” and K is the basic semi-algebraic set
defined below:

K={xeR"|(Vje[L,J]) sj(x)>0}. (3.2)

3.1.1 Condition on the feasible set

As we often work with bounded variables in practical applications, we make the mild
assumption that I contains T' polynomial constraints of the form

(vt € [1,T]) «? < B?, (3.3)

where B is a positive constant. Since K is a closed set in a finite dimensional space,
the above boundedness condition ensures that K is a compact set. Moreover, this condi-
tion ensures that the quadratic module associated to K is Archimedean as explained in
Section 2.3.3. To simplify the notation, we write those constraints into a vector form as

B-x)®(x+B)>0,

where B and 0 are the vectors composed solely of B and 0, respectively and the operator
® denotes the element-wise Hadamard product.

17
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3.1.2 Reformulation as a moment problem

As shown in [Las09, Proposition 5.20], Problem (3.1) is equivalent to solve

inf /K p(x)1(dx)

pEM1(K)

(3.4)
s.t./lcq(x)p(dx) =1,

where M (K) denotes the cone of positive finite measures supported on K. The equiv-
alence between Problems (3.1) and (3.4) relies on the possibility to link any optimal
point x, of (3.1) to a Dirac measure §(x4)/q(x.) solution to (3.4). The main idea here
is to embed the original problem in a higher dimensional space in order to linearize it.
At first glance, (3.4) looks more intricate than (3.1) since we need to minimize over
an infinite-dimensional cone of measures supported by K instead of minimizing on
itself. However, the objective function and the constraint are now both linear in the new
optimized variable p. Furthermore, by defining x® = z{" ... 27", notice that

[ peoutax) = [ 3 paxu(@) = 3 pava (3.5)

acNT acNT

where vo = fK x®u(dx) denotes the moment of order a of the measure pu. For con-
venience, we will use infinite vectors to write sums such as the rightmost member
of (3.5). We define the infinite vector p = (pa)qyenr and the infinite moment vector
V = (Va)genr- Because p has a finite number of nonzero elements, the sum in (3.5) is
well-defined and can be written p' v.

Since K is a compact set, the measure p is uniquely defined by its moments and we
reformulate Problem (3.4) as

inf p'v
veRNT
st. g v=1" (3.6)
v € D(K)

where q is defined similarly to p as the infinite vector extensions of q obtained by zero
padding and D(K) is the cone of moments of positive measures supported on K. Our
objective now is to replace this difficult conic constraint by simpler constraints. We
introduce two tools, respectively, the moment matrix M(Vv) associated to the moment
vector v and the localizing matrix M*(Vv) associated to v with respect to a given poly-
nomial s. Those matrices are infinite-dimensional and are both defined through their
entries as follows

(V(a,8) e NT x NT)  Maqg(V) = Vats

(V(e,8) e NT xNT) M2, 5(V) = > syTaspiy-
~yeNT

<\

We define such infinite-dimensional matrices to be positive semi-definite if all their
finite-dimensional principal submatrices are positive semi-definite. Since K is compact,
Putinar’s theorem [Hen13, Proposition 3.1] states that v has a representing measure in
M (K) if and only if the corresponding moment matrix M(v) and localizing matrices
(M (V)) ;e are positive semi-definite. The positive semi-definiteness of the moment
and localizing matrices guarantee respectively that v represents a positive measure and
ensures that its support is K.
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3.1.3 Converging hierarchy of SDP problems

To solve numerically Problem (3.6), we replace the conic constraint with semidefinite
constraints and then truncate the moment vector v, as well as its associated moment
and localizing matrices, up to a degree 2k for a given integer k. This yields a hierarchy
of convex SDP problems, known as Lasserre’s hierarchy [Las01]. For a given relaxation
order k, we have to find

..7]: = inf Z PaVa

veR™ pa
aeNy,

s.t. =1
Z JaVa (3-7)

(Vj e [1,J]) M. s, (v)es?,

are defined in (1.1). The cardinality of NI, is (T;rk;z k) and thus v is
T+2/€)
2k

where (ds;, )je[[l,J]]
a vector containing m = ( moments. Furthermore, the truncated moment matrix
My (v) is the principal submatrix of the infinite-dimensional moment matrix M(v) that
has dimension ng X ng with ng = (T;:k). Thereby, My (v) is indexed by (e, 3) in Nf X N{
and contains all the moments up to degree 2k. Similarly, the truncated localizing matrices

are the submatrix of their infinite-dimensional counterparts that have the dimensions
T+k—ds .,
k—ds; ! )
Problem (3.7) is an SDP problem in its dual form with linear equality constraints.
Indeed, aggregating the moment and localizing matrices into a single symmetric block

diagonal matrix before separating it into a sum along the elements of v, we obtain

n; X n; with n; = (

* L T
Ji = mlvnelﬂg}nlze PV
m
s.t. C - ZUiAi S Si (3'8)
i=1
a—-G'v=o0,

where C and (Ai)z‘e[[l,m

R™**. The dimension n is thus given by n = E‘j]:O nj. Notice that, in this section, (3.7)
has only one linear constraint thus £ = 1, a = 1, and G = q. However, in Section 3.2,
more linear constraints will be involved, so that we prefer to employ this matrix-vector
notation here. Chapter 6 provides a detailed discussion on SDP problems and how to
solve them efficiently. After truncation, the semi-definite positivity condition on the
moment and localizing matrices is still a necessary but a not sufficient condition for
v to have a representing measure. Hence, solving each SDP problem yields a lower
bound j,;" on the optimal value J*. Furthermore, the higher the order k, the tighter
the bound J;* but the higher also the dimensions of the SDP problem. In our context
where the optimized variable x is bounded, (J}), cn I8 an increasing convergent sequence
whose limit is J* [Las01]. Moreover, the hierarchy has finite convergence generically,
i.e. for any instance of Problem (3.1) where the coefficients of the polynomials are drawn
from an absolutely continuous probability distribution, there exists almost surely a finite
relaxation order k for which the optimal value J;* is equal to the optimal value J* [Niel3].
Finally, the exact global solutions of (3.1) can be extracted from the solution of an SDP
problem (3.7) indexed by a relaxation order at which convergence has occurred through
an algebraic method [HLO5|. The extraction method is detailed in Appendix D.

] are symmetric matrices, a is a vector of R, and G is a matrix of
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Note that the relaxation order k& should be chosen such that

k> dy.d,. d b
g Gt

This is a necessary condition which ensures that 2k is greater than the maximum degree
of p, ¢ and all the (sj)j €[] and prevents truncation of the latter polynomials. There is
no a priori known sufficient relaxation order to ensure the convergence of the hierarchy.
However, once the SDP relaxation is solved, there exists a sufficient condition that
guarantees the convergence. Namely, if the moment matrices My and Mj_; have the
same rank, then convergence has occurred [Las09].

We remark that the dimensions n and m of the SDP problem grows respectively as T*
and T?* when T is large, hence exponentially in the degree of the involved polynomials.

§ 3.2 PROBLEM STRUCTURE EMERGING FROM A SUM OF RATIO-
NAL FUNCTIONS

Although constituting the theoretical foundation of our work, the approach presented in
Section 3.1 is computationally inefficient for many practical problems and requires further
improvements that we now explain. Indeed, in many encountered rational problems, the
objective function is a sum of rational functions. Reducing a sum of rational functions
using a common denominator often yields a rational function with very high degree,
which then requires a high relaxation order k£ in the hierarchy of SDP problems. As a
consequence, the obtained SDP problems are too high-dimensional to be solvable in a
reasonable time using state-of-the-art solvers. However, a more ingenious method is to
use the structure induced by the sum to yield a block SDP problem [CPM19]|. There are
two types of structure to consider in our problem: first we deal with a sum of rational
functions instead of a single one, and then each of those functions depend on a small
subset of variables only. The latter structure is sometimes referred to as sparse problems
and sparse polynomials [WKKMO06, BHL15]. However, in order to prevent confusion
with the sparsity of the signals considered in our applications of Chapters 4 and 5, we
will not use this terminology. To illustrate our methodology, let us turn our attention
on finding a global minimizer x, and the optimal value J* such that

I

) 3.9
xEX P q; (XEZ) ( )

where p; and ¢; are polynomials in T} variables and K is a compact subset of R” having
the form of (3.2). The vector xg, denotes the subvector of x composed of the elements
indexed by the set Ej;, the latter being a subset of [1,T] of cardinality 7;. We further
assume that the polynomials in (3.9) involve only a few variables, i.e.

Vie[l,I]) T,<T. (3.10)
(vien.1)

3.2.1 Exploiting the sum of rational functions structure

Instead of introducing a single measure on all the variables, we now introduce a measure
w; for each rational function p;/¢; of the sum. However, coupling between variables from
different measures appears when the sets (E;) i€ L] intersect. We therefore need to add
moment equality constraints to ensure that the overlapping moments of two measures
are identical. Moreover, we need some restrictions on how variables can appear in several
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measures in order to keep the problem consistent. The required condition is that the
sets (Ei)ie[[1 il verify the so-called running intersection property [Las09, BHL15| which
is stated as

i—1
(viel21],35€1,i-1]) E(|UE]| B
j=1

Together with the compactness of I, it guarantees that Problem (3.9) is equivalent to

I
inf Z/]C pi(XEi)Mi(dXEi)
=1 i

HEE“
1=

s.t. (Vi € [1,1]) /_Qi(XEi)Mi(dXEi) =1 (3.11)

(3

(V(i,5) € [L, 1] x [1, I])(vy € NOdtFua)

[ aoeexh, (axe) = [ ayGee, )k s (ax,).

T J
where F; ; = E;(E; and p = (Mi)ie[[l,f}] is the new optimization variable belonging to
the product Z = X;cpy M4 (KC;). The sets (Ici)ie[[l,f]] are subsets of R defined by the
subsets of polynomials in variables x g, defining K. The last equality constraints in (3.11)
enforce equality between the marginal distributions of g;u; and g;u; along Xg,;. In other
words, those constraints ensure the equality of overlapping moments between different
measures.

3.2.2 Block structure in the SDP problems of the hierarchy

As in Section 3.1, we now use Putinar’s theorem to replace each measure by its moment
vector at the cost of additional semi-definite constraints. We then truncate the moment
vectors as well as the moment and localizing matrices, before stacking them. As a result,

T T]T

the moment vector v =[v;,...,Vv 7l isa stack of the moment vectors of each measure

. Similarly, the moment matrix My(v) = Diag (Mlﬁk(vl), e 7MI~k(VI~)) and the

localizing matrices sz_dsj- (v) = Diag (Misz—dsj (v1),... ,Mj{k_dsj (Vf)) have a block
diagonal structure where each diagonal block corresponds respectively to the moment or

localizing matrix of one of the measures p;. This leads to the following SDP problem:

j’: - vier]gm pTV

st. (Vie[L,I]) q'vi=1
My (v) € ST (3.12)
(Vi € [1,J]) MY, (v) €S}
Fv=0,

where
LT+ 2k LT+ k LT+ k—d
— 2 — 1 L 7 - Msj
T
p=[p/.....p;] .

and F is a matrix in Rf>™

representing the linear constraints linking the (vi)l.e[[1 il
together and coming from the constraints between the projections in (3.11). Similarly

to Section 3.1, Problem (3.12) can be finally expressed in the canonical form (3.8).
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There are two main differences with the situation discussed in Section 3.1:

e Instead of having a single measure on all the variables, we obtain several measures
on different smaller subsets of variables. The SDP optimization variable v is now
a vector built by stacking the different truncated moment vectors (v;) i€ [LI] of
each measure. As a consequence, the moment and localizing matrices have a block
diagonal structure, each block corresponding to a measure, or equivalently to a
term in the sum of Problem (3.9). Thanks to Assumption (3.10), the size of the
blocks in the moment matrix, equal to (Ti;;fk), is much smaller than the size (T;r,fk)
obtained in Section 3.1. Especially when k increases, the difference in size becomes
even more significant. The block structure can then be efficiently exploited by SDP
solvers to decrease the computational time.

e Extra moment constraints due to the coupling between variables arise. Although
those constraints may be numerous, they are linear equality constraints in the SDP
problem; their impact on the computational time of the SDP solver is minor.

3.2.3 Complexity of the SDP relaxations

The complexity of an SDP problem under the form (3.8) is expressed as a quadruple
of integers (n,m,mg,¢). The integer m denotes the size of the vector of optimized
variables, n is the size of the semi-definite inequality constraint, £ is the number of linear
equality constraints, and mg is the number of block matrices involved in the semi-definite
constraint. Note that n is related to myg since it is the sum of the size of each block. The
above quadruple therefore does not fully characterize the structure of an SDP problem.
For example, having one huge block of size 90 x 90 and nine tiny ones of size 10 x 10 is
not equivalent in terms of complexity to having ten medium blocks of size 18 x 18. In
both cases, n is equal to 180 while the semi-definite constraint in the SDP relaxation of
order 3 has size 132340 in the first case and 13300 in the second. However, knowing n
and my is usually enough to get a good evaluation of the complexity of the problem.

We give here an expression for n, mg, and m as they are usually the main bottleneck
for SDP solvers.

Number of blocks msg

In order to solve Problem (3.9), we introduce I measures. Moment and localizing matri-
ces of each measure yield a block in the relaxed SDP problems. The number of localizing
matrices for each measure is equal to the number of polynomial constraints defining the
set K; denoted 1;. We have at least T; constraints for each set K; due to the bound
condition (3.3) and at most J. The final number of blocks in the matrices of the SDP
relaxation is thus

1

ms=> (L+m). (3.13)

=1

Dimension of the global moment vector m
The dimension m of the vector v is the sum of the dimension of the moment vectors for
each measure (“i)ie[[l i Le

m =

)

i
—\ 2%

<Ti * 2’“) . (3.14)

1
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Dimension of the semi-definite constraint n
The dimension n of the conic constraint is the sum of the dimensions of all the mo-

ment and localizing matrices. The moment matrices have a size of (Ti;fk) whereas the
. . . (Titk—ds, . .
localising matrices have size ( d ~7), which gives
5
Lo((Tivom\ (Tt k—d
= ' AR A I 3.15
' ; ( 2k >+g§< k= ds; > 19

3.2.4 Coupling and linear equality constraints

As noted, introducing several measures numerous extra linear moment constraints due
to the coupling between the variables of the different measures. However, among those
extra constraints, we remark that many of them are actually redundant. Let us take a
simple example to illustrate this fact.

Example Assume that we want to minimize over the variable x = (xt>te[[1,5}]7 a sum
of three rational functions which has the following form

p1(x1, T2, 23) P2($2,$3,$4)+P3($379€4,$5)
q1(z1,22,23)  qo(z2,23,24)  q3(23, 24, T5)

Following the method developed in Section 3.2.1, we introduce three measures pq, po
and ps, one for each term of the sum. We thus need the following equality constraints
between moments, for every (a, 3) in N2,

/Q1($1,$2,$3)$3$§m(d$1,dl‘z,dw?)) = /Q2($2’583,$4)$S‘$§u2(d$2,diﬂ3,d$4)
/QQ($2,$3,$4)UC§$§M2(dx27d$3,d$4) = /qg(:cg,x4,x5)x§‘xfu3(dx3,dx4,dx5)

/Q1(961,962,x3)9€§‘m(d961,dw2,d96'3) = /Q3(363,$4,$5)$§M3(d$3,dw4,d965)-

We observe that the variable x3 appears in each term of the sum and thus also in
moments of each measure. In particular, we notice that the last constraint is redundant
with the first two ones when 8 = 0. It is thus sufficient to consider only moment equality
constraints on consecutive measures (“i)ue[[l,s]]'

3.2.5 Linear versus quadratic polynomial constraints

The methodology explained in this chapter is valid if only if the constraint set K is
compact. We therefore assume bound conditions (3.3) in the definition of K Those
bound constraints can be expressed in two ways:

e first, as two linear vector constraints
B-x>0
x+B >0,

e or as a single quadratic vector constraint

B-x)®(x+B)>0.
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Following Section 3.2.3, using two linear inequality constraints per variable introduces
2 Zi[:l T; localizing matrices and consequently as many blocks in our SDP problems while

using a quadratic inequality constraint only adds Ele T; blocks. Moreover, linear and
quadratic constraints yield blocks of identical size. Indeed, the size of a localizing matrix
Mj, corresponding to a polynomial s in w variables is given by (‘“ZE;SS) and here dg =1
for both linear and quadratic constraints. Therefore, formulating the bound constraints
as quadratic constraints reduces by a factor two the number of blocks associated to such

bounds.

§ 3.3 SUMMARY

This chapter forms the backbone of the methodology developed in Chapters 4 and 5. We
have recalled the basic framework of Lasserre’s hierarchy to solve rational optimization
problems before specializing it to leverage a particular structure of the criterion. We have
then studied the complexity of the obtained SDP relaxations in order to understand the
impact of the different parameters. In the next chapters where we apply the framework
to signal processing problems, the latter study will be essential to obtain problems that
are computationally feasible.



- CuHAPTER 4 -

SPARSE SIGNAL RECONSTRUCTION FOR NONLINEAR MODELS

§ 4.1 MOTIVATION

Sparse signals, i.e. signals composed of a few spikes, are of particular interest. They
either occur naturally in many areas or emerge after sparsifying transformations such as
time-frequency or wavelet decompositions [GDP09, PDCP14]|. However, accurate data
acquisition of sparse signals from real-world measurements remains an open challenge.
The difficulty of the problem is further increased when acquiring data at a reduced rate.
This is however an important practical situation, since it permits faster acquisitions for
high-throughput experiments and analysis.

A common approach to recover the original signal from the observations is first to
define a well-chosen criterion and then to minimize it. The criterion is often composed of
two terms: a fit function depending on the investigated model as well as the observations,
and a (possibly composite) regularization term that allows good estimates to be selected
among those consistent with the data [CCPWO07]. However, few methods today are
able to deal with nonlinear models and to globally optimize sparsity promoting criteria.
Indeed, integrating any of these two properties in the criterion often yields an intricate
optimization problem that is difficult to solve due to nonconvexity.

Thence, to deal with nonlinear effects, linearization techniques are often used since
the vast majority of available methods only apply to linear models [Tib96, BD08, SBFA15|
or to models with weaker linearity assumptions [Sch10, DTR*14, DD15]. On the other
hand, the standard approach to promote sparse solutions consists in adding an £y
penalization to a data-fit cost function which leads to NP hard optimization prob-
lems [Nik13, BNCM16|. Consequently, several surrogates to the ¢y penalization have
been suggested, the simplest one being the /1 norm. The latter has the enjoyable prop-
erty of being convex, which simplifies the optimization task [CP08, CP11], but it also
strongly penalizes high values of the variables and thus introduces a bias in the solu-
tions. Albeit providing good results, the nonconvex Geman-McClure function [CP15]
also tends to introduce bias. Therefore further relaxations of £y function have been in-
vestigated [FLO1|. A major drawback is that those relaxations are nonconvex and result
in optimization problems which are difficult to solve globally in the sense that currently
available algorithms only converge to local solutions and therefore may be highly depen-
dent on their initialization [FLO1, ODBP15, CWB08, BH11, PN15, BD08, Sel17].

In the case of a linear model, a first approach for ensuring global convergence of
an exact relaxation of the ¢y function has been proposed in [BNCM16| and is based on
mixed-integer programming. Our work proposes a different approach grounded on the
global minimization of the broad class of piecewise rational functions under polynomial

25
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constraints. Based on it, we propose a novel recovery method for sparse signals from
subsampled observations obtained through a noisy model involving nonlinear functions.
More precisely, we show that the fit function and the regularization term can be modelled
as piecewise rational functions. Fortunately, many well-known good approximations to
the ¢y penalization satisfy the latter property [ZhalOb, FLO1, ZhalOa, AFS13, JTVW11,
SBFA15]. Moreover, various nonlinear degradations, such as saturation, can be mod-
elled with rational functions. Hence, several criteria of interest for reconstructing sparse
signals which have been nonlinearly degraded can be modelled, or faithfully approxi-
mated, as piecewise rational. We then reformulate the corresponding piecewise rational
optimization problem as the minimization of a sum of rational functions, for which the
methodology of Chapter 3 can be applied. As SDP problems are playing an important
role in our methodology, we study the overall complexity of the SDP relaxations and show
how to reduce it efficiently in several ways. We especially emphasize the advantageous
effect of subsampling.

The chapter is organized as follows: after introducing our model and criterion in
Section 4.2, we present in Section 4.3 the class of approximations to the £y penalty we
consider and we reformulate the minimization of our criterion as a rational optimization
problem. Section 4.4 details how to solve such optimization problems by leveraging
its inherent structure. Section 4.5 studies the complexity of the obtained SDP problems
before explaining how to decrease it efficiently. Section 4.6 presents numerical simulations
in order to validate our method.

§ 4.2 OBSERVATION AND SIGNAL MODEL

4.2.1 Our observation model

We consider the reconstruction of an unknown discrete-time sparse signal X of length 7'
The measurement process deteriorates X in the following way: the peaks it contains are
enlarged and the sensors introduce a saturation effect. In the literature, these degrada-
tions are commonly modelled respectively by a convolution with a finite impulse response
filter and by a memoryless nonlinear function ®. The filter coefficients are given by a
vector h of length L. Finally, a noise is superimposed, which is modelled by an addi-
tive vector term w with samples drawn from an i.i.d. zero-mean Gaussian distribution.
Different noise models will be discussed in Chapter 5.

An important feature of our model is its ability to deal with a subsampling of the
measured signal during the acquisition, which is an interesting property as in many
applications such as spectroscopy, the physical limitations may allow only subsampled
data acquisition. We thereby introduce a decimation operator D. Interestingly, we will
see that our approach is applicable in this context and allows one to use well-suited
penalization terms to promote sparsity. Defining the observation vector y of size U after
subsampling and the convolution operator *, the equation corresponding to our model
finally reads

yzD(@(h*i)—i—W). (4.1)

For instance, Model (4.1) can emulate narrow-peak signals from gas chromatography
experiments [VRGBT05, VRGBT07]. In this case, the filter h has a discretized Gaussian
shape. This choice arises from traditional stochastic or plate modeling, representing a
Galton-Hennequin bell distribution [Fel98, Chapter 3|. Peak saturation is also modelled,
which cannot be done in standard analytical chemistry practice. According to [KKS18],
filter lengths L from 3 to 9 samples may suffice for a relatively accurate estimation of
the peak area, a quantity related to the concentration of a particular molecule.
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We will be interested in regular decimation patterns Ds where all the elements in-
dexed by a multiple of an integer ¢ are deleted, namely

D(S((St)te[[l,T]}) = (SA(U75))UG[[1,U]] > (42)
where
U=T-|T/] (4.3)
and A is defined as
(e ILUD Atwd) =t [$=1] (1.4

We denote by Do, the identity operator that preserves the entire signal. Let us illustrate
the two decimation patterns Dy and Dy on the example vector s = [s1, S92, .., S7, 58]T

D
s+ [s1,53, 85,57 = (582 yepi a

D T
s > 51,52, 53, 55, 56, 57] = (SA(u,4))ue[[176]] :

The smaller parameter d, the higher the decimation and harder the reconstruction of the
signal X.

To estimate the original signal X, we minimize a penalized criterion 7 composed of
two terms:

(Vx €RT)  T(x) = fy(x) + Ra(x). (4.5)

The first one fy is a fit measure with respect to the acquired measurements y while
the second one R is a regularization term which will be discussed in more detail in
Section 4.2.2.

As a fit function, we choose the standard least-squares error between y and the
output of the noiseless model for a given estimate x of the original signal X

(vx € RT)  fy(x) = |ly — Ds(@(h*x))|;
= |ly — Ds(®(Hx))||5 ,

where H is a Toeplitz band matrix corresponding to the convolution with h with convo-
lution boundaries using zero padding. Because of the transformation @, the fit function
fy is possibly nonconvex. This is in contrast with more classical linear models in which
the fit function reduces to the quadratic function x — |y — D(;(Hx)||§. In our ap-
proach, other fit functions fy can be chosen to model different problems as long as they
are rational. Examples of different fit functions are studied in Chapter 5 to reconstruct
signals deteriorated by non-Gaussian noise. In the following, the nonlinear function ®
is assumed to be rational and to act component-wise. Note that it is not a restrictive
assumption as any function can be tightly approximated with a suitable rational or piece-
wise rational function [DBO08|. Setting the components of x with non-positive index to
be identically zero in order to unclutter notation, f, hence reads as a sum of rational
functions

U L 2
fy(x) = Z (yu - ‘13( hle(u,é)l+1)> )
1

u=1 =

/

~~

Gu(TA @S —L+1> - -+ > TA(u,5))

where (gu)ue[[l,U]] are rational functions in L variables.
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4.2.2 Sparsity and examples of /; approximations

The unknown original signal X sought by the reconstruction method is assumed to be
sparse. In other words, it comprises only few peaks and many of its components are zero.
Following this assumption, the second term R in (4.5) is a sparsity-promoting penal-
ization weighted by a positive parameter A. Ideally, we would like R to be the sparsity
measure Ay (where £y counts the number of nonzero elements) but, in order to derive
computationally efficient optimization techniques, a suitable separable approximation is
substituted for it, which reads

T
(Vx = (@)ieprg €ERT) Ra(x) =D Wa(wi). (4.6)
t=1

Common approaches consist in using either convex functions ¥y such as the ¢; norm, or
nonconvex ones that still maintain the convexity of the overall criterion [Sel17]. However,
a good approximation ¥y : R — R to the £y function requires the following three
properties [FLO1| leading to nonconvex criteria: unbiasedness for large values, sparsity
to reduce the complexity of the model by setting small values to zero, and continuity
to ensure the stability of the model. In previous works [CP15, CP17, CPM19|, the
nonconvex Geman-McClure function was used as an approximation to the ¢y function
but it introduced bias in the estimate. Here, in contrast, we propose a much wider class of
piecewise rational function approximations that satisfy the three mentioned properties.
Those approximations extend significantly our previous work to settings of more practical
interest.

Several examples of functions ¥y shown in the literature to yield good approximations
to the ¢y function are actually piecewise rational functions, for which we will show in
this chapter that exact minimization is achievable. We list below examples of the most
commonly used piecewise rational approximations to the £y penalization that appear
in several areas such as imaging or statistics. Figure 4.1 displays the graph of those
functions on [—3, 3].

e Capped ¢, |ZhalOb, AFS13, JTVW11]:
U (x) = [z’ Tgjgi<ny + N Lgzsay -

e Smoothly clipped absolute deviation (SCAD) [FLO1]: (v €]2, +0o0|)
(v + 1)A?
Ua(@) = Mzl Lz + 51>

A2 — 29\ |z| + 22
BT S CS U ESAVE

e Minimax concave penalty (MCP) [ZhalOal: (y € R%)
z? Y2
Ua(z) = ()\ |z — 27) Lijai<ony + 5 el

e Continuous exact ¢y (CELO) [SBFA15]: (y € RY)

9 2
Un(x) = A - (m - V?) Lz}
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Figure 4.1: Ezamples of continuous relaxation of by penalization
(A =1, vscap = 2.5, ymep = 2, YcLo = 1).

Although CELO and MCP share a similar expression for the function Wy, they are
quite different in their overall form R, due to the choice of the parameter . In (4.6),
this parameter for MCP is fixed for all the samples x;, while for CELO, its value is
adapted to each sample. In the above penalization, the lower the parameter v, the
tighter the approximation to the £y penalization but the stronger also the nonconvexity.
An important remark concerning the above examples is that, when ® is set to the identity,
a suitable choice of the parameter v guarantees that the global minimizers of the criterion
fy + R are exactly the global minimizers of the criterion fy 4+ Ay [SBFA17]. The choice
of v depends on the parameter A and the norm of the columns of DsH. This behavior
provides important insights and guarantees on the quality of the above functions as
penalization terms to enforce sparsity of the solutions.

§ 4.3 RATIONAL FORMULATION OF THE PROBLEM

4.3.1 Exact polynomial reformulation of the ¢, function

Let us remind that the signal reconstruction problem is tackled through the minimization
of criterion J which has been defined in (4.5). We thus want to find
J*=min J(x). 4.7
min J(x) (@7
We emphasize that formulating our problem as a polynomial /rational one allows us to
apply the framework developed in Chapter 3. First, let us show that there exists a poly-
nomial reformulation of the ¢y criterion. Indeed, choosing Ry = Ay in the penalization
term of criterion (4.5), the original problem (4.7) can be reformulated by using a rational
function and polynomial constraints, as follows:

T
minze, [y~ Do(B(hx (xOEI +2 D&

s.t. (Vt € [1,T]) & =¢&2.
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The &;’s are introduced to formulate the ¢y penalization in a polynomial form, while
the constraints ensure that they are binary variables. Unfortunately, this formulation
results in twice as many variables than in the original problem. As a consequence, we
will show in Section 4.5 that the relaxation resulting from (4.8) has a high complexity.
The method presented below allows us to overcome this complexity barrier by using a
different formulation of (4.5).

Looking closer at the relaxations of £y mentioned in Section 4.2.2; an original alter-
native approach consists in considering penalization functions that are piecewise rational
and can be expressed under the general form

I
(Vz €R) Uy(z) = Z Ci(a:)]l{ai—1§1<ai} ) (4.9)
i=1

where [ is a nonzero integer, ((;). are rational functions, and (o), is an in-

» Gi)ieq, ) i)iefo,1]
creasing sequence of real values. The resulting criterion is thus a sum of rational and
piecewise rational functions:

U
j(X) = Zgu(xA(u,a)fL+1a s 7‘TA(u,a))
u=1
. (4.10)
+ Z Z C’L (*’L‘t)]]-{(fiflgxt<0'i} .
t=1 i=1

4.3.2 Piecewise rational criteria

In this section, we first show how to transform the piecewise rational criterion in Prob-
lem (4.10) into the equivalent minimization of a sum of rational functions under poly-
nomial constraints. To do so, we introduce the binary variables (z(z))i e[LI] such that

(VZ S [[O,I]]) Z(Z) = ]l{aiﬁx} .

We set 09 = —o0, 2(0 =1 and o7 = +o0, 200 = 0 to define ¥, on the whole real line
R. From the definition of (z(i))ie[[l 1 we deduce that

(Vi = [[07 I]]) 1{0171§z<a¢} = Z(iil)(l - Z(Z)) (4'11)
Finally, the constraint z(!) = L{s,<s) is equivalent to two polynomial constraints

A\ 2 .
(i) _ ()" == =0
z L<ay = { (z(i) . %) (x —0;) >0. (4.12)

Indeed, the polynomial equality constraint enforces z(*) to be a binary variable while
the polynomial inequality constraint ensures that it takes the same values as 14, <4
for every z in R. Therefore, substituting (4.12) in (4.10), Problem (4.7) reads as the
minimization of a sum of rational functions depending on vectors x and z = (z(i) )Z elo.1]
under polynomial constraints, namely ’

U
(XI’IZl)lélﬂlg%liZR?]T ; gu(flfA(u,a)—L+1, . e 73:A(u,a))
T I
i—1 I3
+33 Gl)n V-2 (4.13)
t=1 i=1
N2
. Z§Z)> . Zﬁz) _
s.t. (V(i,t) € [0,1] x [1,T]) o
At §> (2t —0441) 20
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More generally, this reformulation can be applied to the minimization of any piecewise
rational function. For instance, a piecewise rational fit function f, could also be chosen.

4.3.3 Symmetry of regularizers

All the piecewise rational approximations to the £y penalty listed in Section 4.2.2 are
even functions. This symmetry property is expressed here by an absolute value on the
input variable x; in the expressions of function Wy. This absolute value is handled in our
framework by adding an additional variable r; for each z; and adding the two constraints

2 2
Ty =X
{ Lo (4.14)

’r‘tZO.

This symmetry is important to decrease the number I of variables z involved in (4.13)
and therefore to reduce the overall complexity of the final problem to be solved, as will
be explained in Section 4.5. Indeed, it can divide by two the number of pieces in Wy,
leading to only I/2 pieces instead of I. Taking the example of the MCP penalization,
instead of having the four intervals, | — oo, —yA[, [=7A, 0], [0,7A[, and [yA, +o0], we
have only the two intervals, [0,7A[ and [yA, +oo[. Using symmetry results in adding
(4)

one variable r; and I/2 variables (zt for each z; as well as 2+ I /2 polynomial

ie1,1/2]

constraints corresponding to constraints (4.12) and (4.14). This has to be compared with

the direct formulation where we introduce I variables (zzf(z))' with I polynomial
e 1,

constraints. Note that in our analysis of Section 4.5, we omit the equality constraints

that force (zt(i)>
ie[1,1/2]
those constraints in Section 4.5.2.

to be binary variables since substitution will be performed for

§ 4.4 SOLVING THE OPTIMIZATION PROBLEM

This section is concerned with the resolution of Problem (4.13). We apply the method
developed in Chapter 3. More specifically, we leverage the structure of our problem as
detailed in Section 3.2. Indeed, we have to handle a sum of I = U + T terms. We
hence introduce a measure for each term, i.e. U measures (Nu)ue[[l,U]} for the rational
functions (gu)y,ep,pp and T' measures (14)cpy 7 for the rational functions in the refor-
mulated penalization. The measures (,Uu)ue[[LUﬂ are measures on at most L variables
TA(u,a)—L+1s - - - » TA(u,e) While the measures (Vt)te[[LT]] are measures on I 4 1 scalar vari-
ables, corresponding to x; and z;.

4.4.1 Feasible set

As we often work with bounded signals, we assume that our signal verifies Assump-
tion (3.3). In Problem (4.13), the sets (K;);cp 47y are thus defined by the bound con-
straints and the polynomial constraints arising from the reformulation of Section 4.3.2.
Namely, the sets (’Ci)ie[[l,U}] are defined by

(Vi € [1,U]) (B—XEi)Q(XEi—i-B) >0, (4.15)
while the sets (Ki);eqp 41,0417 are defined by
(B = zi—v)(zi-u + B) 20

Vicwsrosr) JMemI) P~ =0 (4.16)

il (- ;) @ oz 20,
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Note that, since we introduce a measure for each rational function in the sum, we have
to cope with more than T bound constraints. Indeed several measures are defined on
identical variables and we need to introduce bound constraints for each of those measures.

By definition of the convolution matrix H in Section 4.2, the sets (Ei)ie[[l, j satisfy
the running intersection property. We then perform the relaxation (3.12) to generate a
hierarchy of SDP problems.

4.4.2 Coupling and linear equality constraints

We observe two kinds of coupling as discussed in Section 3.2.1: one between the differ-
ent measures (y),eq,pp and one between the measures (pu),ep 7 @nd the measures
(Z/t)te[[le]]. We remark that many of moment equality constraints between moments of
the measures (lu’u)ue[[l,Uﬂ are redundant. Following Section 3.2.4, it is thus sufficient to
consider only constraints on consecutive measures (pu) e, i (4.13). We can thus
drastically reduce the number of moment linear equality constraints.

§ 4.5 REDUCING THE COMPLEXITY OF THE RELAXATIONS

Current state-of-the-art SDP solvers are interior point methods which are known to be
very efficient for small and medium scale problems. Nevertheless, their running time
becomes prohibitive for large scale problems. More specifically, the current bottleneck
is mainly the dimension of both n and m. This is a major drawback when relaxing
rational optimization problems into SDP problems. Chapter 6 is dedicated to explore
alternative methods to solve such SDP problems. Nevertheless, in Sections 3.2 and 4.4,
we worked on the structure of the relaxation and leveraged the latter to yield a structured
and alleviated SDP problem. This section gives an asymptotic estimation for n and m
depending on the parameters of our initial model (4.1) and the relaxation order k. We
give a more detailed derivation for the expression of (n,m,ms, ¢) in Appendix A.

Our analysis reveals that signal processing problems are computationally tractable
when using sparsity patterns and subsampling. We first show that subsampling and
sparsity allow to overcome the latter bottleneck and make the numerical resolution of
the associated SDP problems tractable. Then, we introduce tools and tricks that allow
us to decrease further the dimension of the SDP problems to be solved, so reducing the
computational time of our method.

4.5.1 Consequence of the subsampling on the dimensions of the SDP
problem

For a given relaxation order k, when the number of samples T' goes to infinity and
L > 1 (i.e. we lose the band structure of H), the size of the SDP problem asymptotically
becomes of the order (see Appendix A)

m=0UL*+T) , n=0ULF+T). (4.17)

We note that both sizes n and m grow exponentially with £ and blow up quickly. In
particular, m grows faster than n. However, we will see that the SDP hierarchy often
converges quickly in practice, that is (7)) pen converge to J* for a relaxation order k
of 2, 3, or 4. From our analysis, we observe that the main bottleneck of our method
is the number of variables per measure and the order of relaxation. While the number
of variables in measures (Vt)te[[l,T]] is fixed to I + 1, the total number of variables in
measures (fu),eqr,p 18 L and (4.17) shows that m and n rise quickly with L.
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Although the subsampling reduces the quality of the reconstruction by eliminating
some information of the signal, it also has, in our context, the beneficial side effect of
allowing the size of the SDP relaxation to be reduced. As shown by (4.3), decimation
decreases U, which plays a prominent role in the complexity parameters (n,m,msg,?)
of the SDP problem. Table 4.1 compares the size of SDP relaxations for the SCAD
penalization without decimation (D) and with Dy (resp. Dy4) decimation. As discussed
above, the dimensions n and m increase quickly with the relaxation order k and the
length of the filter L. Note that because of the approximation made in Appendix A.1,
stating that measures (/‘L“)ue[[l,U]] are on L variables, the SDP dimension presented here
are slightly overestimated.

Table 4.1: Dimension of the relaxation of the SCAD penalization for different decima-
tions.

m n Mg J4
T Lk D Dy Do Do Dy Do Do Dy Dy Ds Dy Do
50 3 3 8400 7476 6300 7000 6450 5750 600 556 500 1035 735 420
100 3 3 16800 14784 12600 14000 12800 11500 1200 1104 1000 2085 1755 845
50 4 3 14700 12390 9450 9250 8205 6875 650 595 425 2015 1355 660
100 4 3 29400 24360 18900 18500 16220 13750 1300 1180 1050 4065 3405 1335
100 5 3 54600 43512 31500 25600 21236 17050 1400 1256 1100 7530 6375 2315
50 3 4 16500 14685 12375 13500 12455 11125 600 556 500 1772 1184 568
100 3 4 33000 29040 24750 27000 24720 22250 1200 1104 1000 3572 2102 1143
100 4 4 66000 54120 41250 38500 33460 28000 1300 1180 1050 9116 7268 2172

4.5.2 Polynomial equality constraints and substitution

For a given measure, equality constraints involving monic monomials in the definition
of the support set IC; can be substituted. The constraint is then used to reduce the
number of moments in the vector of moments. We clarify this process here through the
example of the SCAD penalization. Substitution is carried out automatically by some

software [HLL09|, but has not been clearly documented.

Let us focus our attention on the measure v, depending on the three variables xy,
zgl), and zt(2), as well as on the associated truncated vector v; of moment up to degree 2.
Using the equality constraints in (4.16), we substitute the related monomial in v;. The

)2

2
moments associated with monomials (zt ) and <zt(2)) are thus the same as the ones

associated with zt(l) and zt(Q). Therefore, the moment vector v; has a dimension reduced
by two. When v; contains moments up to degree 2k, substitution reduces the number
of moments from (3;]3]“) to 8k.

In the general case, for a given relaxation order k, v; contains only 2k(k+ 1) moments
after substitution which is much fewer than the original (1+£;“2k) moments. Substitution
significantly decreases the values of n, m and mg which all have a major impact on the
computational cost of SDP solvers. However, it does not impact the number of linear

constraints .
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4.5.3 Sign oracle

For real-valued signals X, convergence is observed at orders k for which building and
solving the corresponding SDP problems is highly demanding in terms of computation
and memory storage. Conversely, when X is a positive signal, we observed [CPM19]
convergence at a lower order k. This suggests a method yielding similar results for
real-valued signals using an oracle. Instead of

(x € BY) J(x)= 1 Iy~ Ds(@ +Z% (1)
we minimize

(vx eRT) J(x) 2Hy Ds(®(Hx)) H +Z\I/A 1)

where H = H Diag(e), € € {—1,1}T is the sign vector of X provided by the oracle, and
Diag(e€) is a diagonal matrix with the vector € on the diagonal. An oracle is built by solv-
ing a standard least absolute shrinkage and selection operator (LASSO) problem [Tib96|,
i.e. we choose for the function W) the ¢; norm weighted with the parameter A, A|.|. Note
that our oracle is not a true oracle but more a sign estimator as there is a probability
that it gets the sign wrong. The availability of an oracle allows us to restrict the min-
imization of (4.10) to positive valued signals thanks to the new convolution matrix H.
Our oracle decreases significantly the computational time in two ways:

e Since the convergence of the SDP hierarchy occurs for smaller order k, the dimen-
sions of the SDP problem to solve are much lower according to Section 4.5.

e Moreover, since we optimize now on positive variables, we do not need to use the
additional variables (Tt)te[[l,T]] introduced in Section 4.3.3 to account for symmetries
and the presence of absolute values. This results in smaller vectors of moments,
hence a lower dimensional SDP problem.

An exact solution is thus retrieved by solving an SDP problem of fair dimension. Finally,
the computational cost of our oracle is low since we solve a LASSO using a forward-
backward algorithm. It typically takes less than a second which is negligible compared
to the computational time of our method as shown in Section 4.6 while providing accurate
oracle on the sign of the initial signal.

§ 4.6 NUMERICAL SIMULATIONS

4.6.1 Experimental set-up

To show the efficiency of our framework, we apply it to the reconstruction of a sparse
signal subject to nonlinear distortion and subsampling. We use a piecewise relaxation
of £y to promote sparsity as detailed in Section 4.2.2. We perform simulations on 60
test cases where the initial sparse signal X has length 7' = 100 with 10 non-zero values.
Those values are drawn randomly according to a uniform distribution on [—1,—0.1] U
[0.1,1]. The position of the non-zero values are also drawn randomly according to uniform
distribution on [1, 7. The length L of the filter is set to 3 and its coefficients are sampled
from a Gaussian distribution. This kind of filter is useful to model enlargement due to
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measurement from sensors for example. We choose the following saturation function for

the nonlinear distortion ¢
t

X+ [t

where x is set to 0.3. Finally, we perform the relaxation into SDP for relaxation orders
2, 3, and 4. We use GloptiPoly [HLL09] to relax rational problems into SDP problems
which are then solved with the solver SDPT3 [TTT99|. All the simulations have been
run on a standard computer with an Intel Xeon CPU running at 3.7 GHz and 32 GB of
RAM allocated to the process.

(Vi eR) o(t) =

4.6.2 Example of rational relaxation: SCAD

To clarify the reformulation of Section 4.3.2, we demonstrate it on the regularizers given
in Section 4.2.2. Taking advantage of symmetry as explained in Section 4.3.3, SCAD has
three pieces and thus requires to introduce variables zt(l) and z§2) leading to

2) (7 + 1)A?

T
mlmmlze fy(x —|—Z l—zt )\| t|+ 5
t=1

A2 — 29\ || + 27
2(y = 1)

St (i) € (L2 x L] (47) =0 =0 (4.18)

et (47 - 3) =) 20

-1 -7

e LT (7= 3) Gl -2 2 0.

A similar approach applies to Capped ¢,, MCP, and CELO penalties; the details are
omitted for conciseness. Although we use SCAD penalization in all the subsequent sim-
ulations, similar results can be obtained with Capped ¢,, MCP, and CELO. Nonetheless,
SCAD is more demanding in terms of computation since it has more rational pieces. It
consequently provides a worst case scenario for the computational time compared with
the other penalizations. The parameter v for SCAD is set to 2.1 in order to approximate
£y closely. The value of the parameter A was determined empirically and set to 0.15.

4.6.3 Acceleration of convergence with the sign oracle

In this section, we want to show how the oracle impacts the convergence of the SDP
hierarchy. We first consider the use of a sign oracle in a linear model, i.e. the case
when ¢ = Id. We then delve into the more challenging case of a nonlinear model. The
decimation is set to D, in this section. The oracle is build on solving a LASSO problem
by using a forward-backward algorithm as described in Section 4.5.3.

4.6.3.1 Linear case

Solving each SDP problem in the hierarchy provides both a lower bound J;*, which
is the value of the objective function of the SDP at optimality, and an approximate
minimizer Xg, which is extracted from a minimizer of the SDP problem. We compare
here the value of the criterion at x; with J;°. Since increasing the relaxation order k
yields larger lower bounds and smaller criterion values, we consider that the convergence
of the hierarchy happens when J(x;) and J;* are equal. Figure 4.2 compares those two
values respectively in the cases with oracle and without the use of our oracle on 100 test
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(a) With oracle: k =2 (top), 3 (middle) 4 (bottom).
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(b) Without oracle: k =2 (top), 3 (middle) 4 (bottom).

Figure 4.2: Comparison between the lower bound [J;; and the value of the criterion
J(Xk) for 100 tests (Linear Case).

cases. From top to bottom, the two figures are drawn for relaxation orders k = 2, k = 3,
and k = 4. Criterion values are represented in red while lower bound are represented in
blue. Each point of the x-axis represents the values for a single test case. For the sake
of clarity, the values are ordered according to the value of the lower bound. We observe
that, without oracle, the convergence is slow and still not reached in general at order
k = 4. On the other hand, when we use our oracle, convergence appears quickly, i.e.
k = 3 in most of the test cases.

4.6.3.2 Nonlinear case

Figure 4.3 is similar to Figure 4.2 but in the context of a nonlinear model. The continuous
line with cross dots represents the cases without the use of an oracle while the dashed
line with circle dots represents the cases with our sign oracle. We observe here that even
with a sign oracle, the convergence of the hierarchy does not occur for low values of k
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due to the nonlinearity. However, we can notice that the gap between the lower bound
and the criterion value at the Xj is greatly reduced when we use our oracle.

2eaXo

00X X X0 X000, e 00003% 0 X000 *% 0 X0 X OX X
8@@@@8@0@@’0@8@“@'@@'600’0@@6 560800060000000000800000008600000
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Figure 4.3: Comparison between the lower bound J;; and the value of the criterion
J(Xx) when the oracle is used. Plain line with cross dots: no oracle used, dashed line
with circle dots: use of our oracle (Nonlinear case).

4.6.4 Reconstruction of sparse signals
4.6.4.1 Global optimality

In this section, we want to demonstrate the quality of the minimizers of Problem (4.18)
returned by various methods. Note that we do not use the oracle here. We use the
decimation operator D4 but similar results hold for the other operators. We compare
our method to a Forward-Backward algorithm (FB) applied directly to the criterion
J = fy + R where the gradient step is first performed on the data fitting term and a
proximal step is then performed on the penalization. Hence the criterion to minimize
is the same for both methods. We initialize the FB algorithm first with the null vector
and denote by xpgg the resulting solution. Then we perform a warm start of the FB
algorithm using the solution obtained from our method as an initializer. The resulting
estimate is denoted by xpp1.

In Figure 4.4, we compare the value of the criterion J at xpgg and xpg; with the
solution returned by our method for a relaxation order k = 4. The solid blue curve with
cross dots represents the values of the lower bound J;, the pointed red curve with circle
dots represents J(X4), the dashed green curve with plus dots represents J (xrpo), and
the dashed purple curve with plus dots represents J (xpp1).

Since the criterion J is highly nonconvex, the forward-backward algorithm gets stuck
in local minimizers. Indeed, changing the initialization point changes the output of the
algorithm. We can observe it on Figure 4.4 where the green and purple curves are
not superposed. Moreover, we observe that the convergence in the hierarchy has not
occurred at order 4 according to Section 4.6.3.2. A solution to improve the quality of
the minimizer is to use the solution X4 as a warm start of the FB algorithm as shown by
the purple curve.
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1.8

1.6¢

Figure 4.4: Comparison between the different values of the criterion for the minimizers
returned by the different methods. In red J(X4), in blue J, in green J(XxrBo), and in

purple J (XpB1)-

4.6.4.2 Quality of signal reconstruction

We now look at the quality of the signal reconstruction in terms of mean square error: our
method is compared with several other ones to illustrate its interest for faithful recovery
of the original signal X. In addition to the FB algorithm presented in Section 4.6.4.1,
we compare our method with the oracle to iLASSO, a LASSO approach modified to
handle the nonlinearity of the model. It consists first in applying the LASSO using a
linearization of the nonlinear operator ¢. Namely, it solves

argmin ||y — Da(Le(h* x))[* + ALasso [Ix];
xeRT

where L4 is a linearization of ¢ and Apasso is a parameter set empirically to 0.1. Note
that for our choice of ¢, the linearization Ly is a constant scaling factor given by x!.
We subsequently apply a modified iterative hard thresholding (IHT) that handles the

nonlinearity. Namely, we apply the FB algorithm to find

argmin |y — Do (®(h X))|I” + Atrlo(x)
xER

where we perform a gradient step on the data fidelity component and a proximal step on
the penalization Ajgm£y. This method provides better reconstruction results than the FB
algorithm presented in Section 4.6.4.1. We also compare our method to the Iteratively
Reweighted ¢ algorithm (IRL1) [CWBO08| applied to

arg H;in |y — Da(Le(h* X))H2 + Rpe (%)
x€R

where R is the SCAD regularization. Both IRL1 and FB algorithms are initialized with
the null vector.

Figure 4.5 illustrates the different signals for a single realization using Dy decimation.
From top to bottom, we display the original signal X, the subsampled observed signal y,
the signal reconstructed respectively with iLASSO x;1,as50, and the signal reconstructed
using our method X3 at the relaxation order k£ = 3. We do not display the signal recon-
structed with FB and IRL1 since those algorithms are not well suited for solving (4.10)
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and thus provide poor quality reconstruction. We first notice that iLASSO misses many
peaks and also detects a peak that does not exist in the original signal while our method
detects almost all peaks. One could argue the threshold coefficient A\igr in iLASSO is too
high but, when we decrease it, small artifacts appear. In contrast, our method detects
almost all peaks and do not leave any artifacts. We observe that some peaks do not
have the same amplitude as the ones in the original signal. This is due to subsampling.
Indeed, if a peak is located on an even index, it will be eliminated by the subsampling.
However, the convolution with h, that represents the physical limitation of sensors in
our example, allows us still to recover the peak since it gets enlarged to odd neighboring.
Even though, we lose information about the amplitude of this peak.
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Figure 4.5: Comparison between iLASSO and our method for signal reconstruction
under nonlinear transformation and subsampling. From top to bottom: the original signal
X, the observed signal y, and respectively the signal reconstructed with iLASSO Xi1,AssO
and with our method X3.

Figures 4.6 shows the mean square error | X — x|| / ||X|| for Do, D4 and Dy decimation
between the original signal X and: in green xpp, in orange Xjgrr,1, in blue Xjr,asso, and
in red X4. Those confirm the good reconstruction result shown in the specific example
of Figure 4.5.

Finally, Table 4.2 shows the average computational times for different decimation
operators and relaxation orders. As we expected, the better performance of our method
comes at the expense of a higher computational cost than iLASSO, which takes less than
1 second.

Table 4.2: Computation time of our method (in seconds).

Without oracle With oracle
D, Dy D, Dy Dy Dy

k=2 41 35 29 38 31 25
k=3 162 121 87 144 106 74
k=4 29991 14575 5801 24362 11062 4084




40 Chapter 4. Sparse signal reconstruction for nonlinear models

AN \ M §
U MR VRYAS
XOWOU

86

0.5 |*

- A8l SANIL
0.2 yo00o"" oose000%e%®

0 10 20 30 40 50 60 0 10 20 30 40 50 60

(a) Do decimation. (b) D4 decimation.

e ' Average values Do Dy Do

N XFB 0.72 0.84 0.89

R =2 XIRLL 0.67 0.73 0.87

05 f mmmww XiLASSO 0.71 0.80 0.84

X4 0.39 0.48 0.56

10 20 30 40 50 60
(¢) D2 decimation.

Figure 4.6: Mean square error between the estimated signal and the original signal X.
In dashed green: xpg, in dashed orange: Xiri1, in blue: Xjasso, and in dotted red: Xy4.
Average values are shown in the table.

4.6.4.3 Handling higher-dimensional signal

Although our method provides good reconstruction results for medium-size signals, han-
dling higher-dimensional signals is highly demanding in terms of computations as shown
in our study of Section 4.5.1 and in Table 4.2. Moreover, we observed that the memory
requirements of the SDP solver for its internal process become too important. To tackle
this issue, we split the signal into smaller overlapping chunks that are processed inde-
pendently and then reassembled together. We illustrate the example of Figure 4.7 where
we reconstruct a signal of dimension T = 1000 using 11 chunks of length 100 with 10
overlapping samples on both extremities. The overlapping sections are averaged in order
to obtain the final signal. The decimation operator is D, and the relaxation order is
set to 3. We observe that our method yields a better reconstruction than iLASSO with
a mean square error of 0.43 against 0.69 for iLASSO.

§ 4.7 SUMMARY

In this chapter, we have proposed a method to globally solve nonconvex problems in-
volving exact relaxation of £y in order to reconstruct sparse signal from degraded ob-
servations. One of the main advantages of our method is that it is able to deal with
nonlinear degradations. We have first reformulated our piecewise rational criterion into
a rational optimization problem before applying the framework of Chapter 3 that bene-
fits from the sparsity of the rational functions. We have then discussed the complexity of
the obtained SDP relaxation and methods to decrease both the dimension of the latter
and the converging order in the hierarchy. Finally, our simulations illustrate the domain
of applicability of the method and its high potential for finding a good approximation
to a global minimum. Although providing good results for medium-size problems, our
method shows computational limitations for larger-scale signals. In the next chapter, we
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Figure 4.7: Reconstruction of higher-dimensional signals (T = 1000). From top to bot-
tom: the original signal X, the observed signal y, and respectively the signal reconstructed
with 1LASSO xir,asso and with our method X3.

propose to extend this methodology to non-Gaussian noise.
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- CHAPTER O -

SIGNAL RECONSTRUCTION FOR NON-(FAUSSIAN NOISE

§ 5.1 BACKGROUND

The additive white Gaussian noise is a widely used model. Its prominence due to its
simplicity and to the central limit theorem makes Gaussian distribution a good approxi-
mation to the noise in various models such as the electrical noise of sensors and detectors
in the previous chapter. However, this approximation may not be suitable in some spe-
cific applications. For instance, Poisson distribution is a more faithful model for the
photon shot noise of image sensors [TPAB09|. Another important noise for practical
applications that does not follow a Gaussian distribution is caused by the presence of
outliers in the observations, for instance due to sensor malfunction.

The goal of this chapter is to extend the methodology exposed in Chapter 4 to handle
some non-Gaussian noises. This corresponds to alternative choices of the fit function.
Hence, in Section 5.2, we first show how to reconstruct efficiently signals corrupted
with Poisson-Gaussian (PG) noise but that show some form of sparsity. Section 5.2.1
introduces the considered data model as well as the general form of the addressed op-
timization problem. Section 5.2.2 reformulates the original optimization problem into
a rational optimization one. Numerical simulations and results are presented in Sec-
tion 5.2.3 to validate our approach. This work has been done in collaboration with Anna
Jezierska from Gdansk University of Technology.

Then in Section 5.3, we adapt the methodology of Chapter 4 to a robust scheme
that reduces the impact of possible outliers. In addition, some restrictions on the sought
signal are considered under the form of nonconvex unions of subsets. Section 5.3.1
introduces the model for the observed signal. Section 5.3.2 details the reformulation
of the optimization problem that we follow to reconstruct the initial signal. Finally,
simulation results are presented in Section 5.3.3.

§ 5.2 POISSON-GAUSSIAN NOISE

Over the last decades, there has been a growing interest for signal reconstruction from
measurements corrupted by PG noise. Examples of application areas include fluorescence
microscopy [CJPT15], low dose computer tomography [DLZF18, LLK18, ZXZ19], and
Visible Light Communication (VLC) [CHYT17]. When PG noise model is considered,
most reconstruction methods rely on some approximations to PG statistics. Among
them, the weighted least squares approximation is one of the most popular [Gre84,
LSYZ15]. In existing works, the log-likelihood is approximated by the log-likelihood of a

43
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Gaussian variable whose variance depends on the data model. The data fit term is then
a sum of a weighted least squares plus a logarithm term, the latter being often omitted in
order to ensure the convexity of the problem, and to simplify it. Recently in [DLZF18],
the authors proposed to keep this term and to handle the resulting nonconvex optimiza-
tion problem. The latter problem was addressed by employing the alternating direction
method of multipliers. However, in this nonconvex setting, it provides only a guarantee
to return a local minimizer. We propose in this section a new rational approximation to
the PG data fidelity term and then show how to use our methodology from Chapter 4 to
globally optimize the corresponding MAP problem and reconstruct the original signal.

5.2.1 Considered model and optimization problem

Observation model

We consider the reconstruction of a discrete positive signal X of length T" from an
observation vector y. Similarly to the Model (4.1), the signal X is first degraded by a
linear operator represented by a matrix with positive coefficients H and then by a scalar
nonlinear function ¢ which takes positive values. Finally, the output signal is corrupted
with a PG noise. For instance, matrix H can model the convolution with a filter impulse
response, while ¢ can represent saturation effects such as clipping [TK19, JGX19]. Our
model hence reads

(vee [LT]) y~N(e+P(o((HR),).0?) (5.1)

where (HX), denotes the ¢-th component of the vector HX, P and A denote respec-
tively Poisson and Gauss distributions, ¢ is a nonnegative constant modelling the average
background noise, and o2 is the variance of the independent and identically distributed
Gaussian noise.

To reconstruct the original signal X, a MAP estimator X is computed, which amounts
to minimizing the sum of the negative log-likelihood fy, plus a regularization R balanced
by a parameter A > 0

% = argmin fy(x) + Ra(x) . (5.2)
xeRT

Likelihood fit term

The likelihood of PG Model (5.1) is given by
2
. n - Yyg—n—c
[ ($3 e ooy A7)
n! V2ro

t=1 \n=0

(5.3)

The corresponding log-likelihood is intricate and surrogates are often used for fy.

When ¢ is the identity function, classical approaches often approximate the negative
logarithm of (5.3) with a more tractable function of the form 23:1 g9((HX),,y:) [LSYZ15,
CJPT15, MZCP17, LLK18]. Such a good approximation is the Weighted least squares
with a logarithm term (WLOG):

1(9—@2 1 2
Gwlog(T,Y) = 3wt ol + §log(x +07).
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Sparse regularization

The regularization R is chosen according to the prior information available on X. We
suppose here that, after a suitable linear transformation D, X is a sparse signal, i.e. only a
few of its components are nonzero. This extends our work in Chapter 4 where the signal
itself was composed of only a few spikes and the operator D was restricted to the identity.
Alternatively, D can be a gradient operator for a signal with sharp discontinuities. The
£y regularization function is an effective way to enforce the sparsity of the solution
since it penalizes equally the nonzero components of the vector DX. Therefore, we use
again a tight continuous approximation of it such as the ones described in Section 4.2.2.
However, the pre-composition with the operator D, which is introduced here, adds an
extra flexibility to the criterion. Finally, in the following, to build our MAP estimator,
we consider the optimization Problem (5.2) with

Z gwlog ) +c yt) (5.4)

x) = Z ¥((Dx),) , (5.5)
t=1
where Uy is a continuous approximation such as the ones given in Section 4.2.2.

5.2.2 Rational formulation

In order to apply our methodology from Chapter 3, we reformulate Problem (5.2) into
a rational problem. The approximation to the ¢y function is handled as described in
the Section 4.3.2 Furthermore, we substitute a rational approximation log for the log
function in gylog. An example of a good rational approximation for the log function is
given by the following Padé approximant [DBOS]

T4+5
dr +2°7

(Vz € RY) log(x) = (z —1) (5.6)

such that, for all z in R* | log(x) < b/\g(x) This approximation is satisfactory on a broad

interval and especially accurate on [0.2,3.9] where the relative error is less than 8%.
Substituting the log function with its rational approximation lo/\g, Equation (5.4)

becomes a sum of rational functions. As an example, we express Problem (5.2) as a

rational optimization problem in the case of interest where D is the discrete gradient
operator and W) is the capped ¢; regularization:

T—1
min fy —I—Z Tt 1—Zt +)\Zt)
t=1

Zt:zf 9 N > (5.7)
st (Vte[l,T—1]) izt>—0/ )(re—A) >0

7“t2 = (2441 — iEt)2 )

where fy is the function in (5.4) with the log term replaced by lo/\g, (2t)ep,r—1) and
(Tt)te[[l,T—l]] are extra real-valued variables used to handle respectively the indicator
function and the absolute value of the capped ¢; function. Problem (5.7) is then solved
using the method from Chapter 3.
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Note that the operator D imposes extra complexity to (5.7). Instead of having a
polynomial in the three variables (zy, z¢, ) as in Chapter 4, we now have a polynomial
in four variables (x¢11,z, z¢, 7). The choice of the operator D is thereby important for
the complexity of the model: using a higher-order discrete difference operator indeed
leads to an increase in the number of variables per polynomial.

5.2.3 Numerical simulations

Throughout this part, H is a Toeplitz matrix corresponding to the convolution with the
lowpass filter with impulse response h = [0.25,0.5,0.25] (except in Table 5.3) and with
convolution boundaries using zero padding. The variance o2 of the Gaussian noise is set
to 0.15 (except in Table 5.2) and ¢ to 0. We solve Problem (5.2) using (5.4) and (5.6)
for the data fit term together with a SCAD regularization (with parameter equal to
2.1) in (5.5). We use the software GloptiPoly [HLLO09| to perform the relaxation of
the rational problem into SDP problems which are then solved using SDPT3 [TTT99].
We set the relaxation order in the SDP hierarchy to 3, i.e. we consider moments up to
degree 6. We compare our method to proximal methods applied on the following convex
problem:

T
minimize Z g9((Hx),,y:) + M1 (Dx) , (5.8)
xeRT =1

where ¢ is one of the common convex approximations to the negative log-likelihood
mentioned in Section 5.2.1. We use the Peak Signal to Noise Ratio (PSNR) between the
original signal X and the estimator X to assess the quality of the reconstruction.

5.2.3.1 Sparse signals reconstruction

The linear operator D is first set to identity. We performed simulations on 100 randomly
generated sparse signals of length 7' = 200 with 20 nonzero elements. The positions of
the latter are drawn uniformly between 1 and T'.

Linear case

We first consider the case when ¢ = Id. We compare our method to the classic FB
applied to Problem (5.8) as the considered function g is differentiable. More precisely,
we compare our method with the results obtained with FB applied for the four approx-
imations Generalized Anscombe Transform (GAST), Weighted Least Squares (WLS),
WLOG, and SPOI (Shifted Poisson) [CJPT15, MZCP17] of the likelihood (5.3). The
value of the regularization parameter A has been tuned empirically to 5.5 for our method
and 0.5, 2.5, 0.9 and 1 for FB respectively on GAST, WLS, WLOG, and SPOL.

Table 5.1 shows statistics on the PSNR of the estimated signal over 100 runs for each
tested methods. We set the maximum number of iterations to 10000 for FB. Further-
more, we show in Table 5.2 the impact of the variance o2 on the quality of the signal
reconstructed with our method.

We finally show that our results hold for different impulse responses h. We drew 50
different signals X randomly of length 7" = 200 with 20 nonzero elements as previous.
We also drew 4 filter finite impulse responses h of length 3 following a standard normal
distribution. The impulse responses were then normalized to sum up to 1. We give the
expression of the obtained vectors h:

0.15 0.39 0.15 0.67
hy= (053] ,hy={054]| ,h3=[023] , hy={0.12
0.32 0.07 0.62 0.21
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Table 5.1: Statistics on the PSNR (in dB) between the original sparse signal and the
estimated signal (100 realizations).

Average Median Minimum Maximum

FB (GAST) 12.0 12.0 10.5 13.8
FB (WLS) 7.3 7.1 4.1 10.9
FB (WLOG) 8.8 8.7 7.1 11.8
FB (SPOI) 10.7 11.2 6.9 13.5
Our method 12.5 12.5 11.3 14.1

2

Table 5.2: Impact of the variance o on the reconstruction quality

o? 0.15 0.25 0.5 0.85
Average PSNR on 100 realizations (in dB) 12.5 11.3 10.5 8.1

For each filter, we generated an observation vector y for each signal X and we applied our
algorithm to obtain an estimate of X. Table 5.3 shows statistics on the PSNR between
the original signal and its estimate. We observe that the results are similar for each
impulse response and are also similar to the ones reported with the impulse response

h = [0.25,0.5,0.25).

Table 5.3: Statistics on the PSNR (in dB) between the original sparse signal and the
estimated signal for four different filters (50 realizations)

Average Median Minimum Maximum

h; 121 12.1 11.2 13.7
h; 124 12.3 11.2 13.4
h; 127 12.7 10.8 13.6
h; 1238 12.9 11.3 14.4
Nonlinear case
We now choose ¢(z) = %ILBI with § = 0.3. Since ¢ is nonconvex, we linearize it around

0 in (5.8) in order to apply FB. Figure 5.1 shows an example of the reconstruction in
the nonlinear case where our method performs better than FB. Moreover, we observe
that in both linear and nonlinear cases, the convergence in the SDP hierarchy occurs
and that our method returns a global solution to (5.2). Indeed, the relative gap between
the lower bound returned by solving the SDP problem of order 3 and the value of the
criterion in (5.2) is in the order of magnitude of 1075.

Impact of logarithmic term

In this paragraph, we study the impact of the log term by dropping it in (5.4) and
compare it with the previous criterion. We use the same methodology developed in
Section 5.2.2 and the same experimental settings of Section 5.2.3.1 in the nonlinear case.
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(a) From top to bottom: the observed signal y, the original signal X, and the
stgnal reconstructed with our method.
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(b) From top to bottom, the estimator returned by FB for respectively GAST,
WLS, and SPOI approximations.

Figure 5.1: Ezample of sparse signal reconstruction with PG noise and a nonlinear
model.

In Figure 5.2, we zoom in the first 60 samples of the signals to compare them. We
observe that without the log term, the WLS approximation always overestimate the
amplitudes of the peaks. This is consistent with [LLK18] where the authors evidence
that WLS approximation, as well as SPOI and GAST, introduce bias since the observa-
tions y must be nonnegative. Conversely, we also note that after adding the log term,
the amplitude of the peaks are slightly underestimated. However, many small artifacts
are removed. Table 5.4 shows that adding the log term results in an 1.4 dB PSNR
improvement in average.

5.2.3.2 Visible light communication signal reconstruction

We now observe y according to Model (5.1) when ¢(z) = %M and D is the discrete
gradient operator. We consider 100 binary signals X such that there are only 20 transi-
tions between the 0 and 1 states. The location of the transitions are drawn uniformly
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Figure 5.2: Comparison of the reconstructed signal using our method. In red, the
original signal X, in dashed blue, the signal reconstructed using gwlog, and in dotted
green, the result by using gyls-

Table 5.4: Comparison on the PSNR (in dB) for WLS and WLOG approzimations
using our method (100 random realizations).

Average Median Minimum Maximum
WLS 11.0 10.8 9.2 13.4
WLOG 12.0 11.9 10.5 15.1

between 1 and T'. This model is inspired from VLC where a digital signal is transmitted
by a LED that is alternatively switching between high and low intensity [CHYT17].

As the proximal operator of £; o D does not have a closed form, our method is now
compared to the forward-backward primal-dual algorithm (FBPD) [KP15] instead of FB.
Moreover, we use the GAST approximation for the log-likelihood in FBPD as it gives
the best reconstruction results. Algorithm 1 shows the final FBPD algorithm where sgn
denotes the sign function, max the element-wise maximum, A the vector composed of
solely A, B = maxcq1, 7 B+ the overall Lipschitz constant of the GAST approximation,
and d the vector (g’((Hx)t,yt))te[[LT]]. We recall the expression of g, ¢/, and f; for the
GAST approximation [MZCP17|:

glz,y) = 2(\/yt +02+3/8—\/x+02+ 3/8)2

Yyt + 02+ 3/8
r+02+3/8

3 82 3
5t:<8+02> y+ott o

Note that the last line of Algorithm 1 is actually the expression of proxgy,, ) () according
to Moreau’s formula (cf. Proposition 5 in Appendix B).

The value of the regularization parameters A is tuned empirically to 2 for our method
and to 1.1 for FBPD. Figure 5.3 illustrates the obtained signals for a single test. We
observe that our method provides a better estimator of the original signal. This is

gl(mayt) =2-2
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confirmed in Table 5.5 that shows different statistics on the PSNR between the original
signal X and the estimated one X.

Algorithm 1: Forward-backward primal-dual algorithm to solve (5.8)
Input: Set (x(0),2(0)) € RT x RT-1
Input: Set (7,60) € Ry x Ry such that 7 (g +0 HDTDH) <1
Output: x, solution of (5.8)

1 for k =0,1,... do

xFH)  x®) _ 7 HTd+ D z®) ;

Z — 2z LoD (2xF+D) — x(k))

25t 7 — fmax(0~1(Z — X),0) © sgn(z) ;
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Figure 5.3: FExample of VLC signals reconstruction. From top to bottom: the observed
signal y, the original signal X, the estimator obtained with our method, and the estimator
returned by FBPD.

Table 5.5: Statistics on PSNR (in dB) between the original VLC signal and the esti-
mated signal (100 realizations).

Average Median Minimum Maximum
FBPD 8.16 8.18 5.87 9.94
Our method  9.20 9.12 6.38 12.22

§ 5.3 IMPULSE NOISE

In many applications, the noise is modelled by a zero-mean normal distribution which
is added to the noiseless signal as in Chapter 4. As a consequence, minimization of a
mean square error appears as a ubiquitous technique in signal processing. However, in
practice, it is common that outliers are present in the observations, so altering the noise
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distribution. This results in poor performance of least squares based estimators. Indeed,
outliers produce large errors making their corresponding weight prevalent in least squares
fitting. Consequently, even very few of them can significantly decrease the performance
of the estimator.

With the emergence of big data, manually discarding outliers is not a suitable solu-
tion. Moreover, it can be difficult to decide which data are outliers, especially in high
dimensional problems. Hence, many robust fit functions have been proposed in order to
reduce the impact of outliers on the estimate.

A standard approach in robust estimation is to cap the £5 function in order to keep the
least squares behavior for small error values around zero and to apply a constant term in
order to penalize equally errors and outliers above a given threshold [LHY16|. However,
the convexity of the fit function is lost and the resulting optimization problem becomes
intricate. A convex surrogate is the £1 norm, or a smoothed version of it, which reduces
the influence of the outliers as it gives a steadily increasing weight to the errors [Nik02].
Nonetheless, it results in a shrinkage of low errors towards 0, which is not desirable as it
induces biased estimates. In order to keep benefits both of least squares for low errors and
of the least absolute values for high errors, the Huber function has been proposed [Hub64].
The latter also has the advantage of being convex, which is an enjoyable property for
optimization. Smoother version of Huber functions are also used such as the pseudo-
Huber function [CBFAB94|. Other M-estimators have been proposed such as Tukey’s
function for instance [MMYSB19|. Furthermore, transpositions of robust estimators for
sparse signals estimation [ZKOMI18| and for multivariate signals [MMYSB19, DP18] have
also been proposed.

Exploiting the properties of the original signal is an important feature in inverse
problems, that can also contribute to improve robustness. For instance, in the previous
chapters, we considered that the original signal was sparse of sparse under a linear trans-
formation. Here, we concentrate on an assumption corresponding to a union of subsets
model. Such a model has been a topic of interest in signal processing, especially when the
subsets are affine spaces. For instance, it has appeared in compressed sensing where one
wants to reconstruct a signal having only a given number of nonzero components from
linear observations [Blull]. Other examples that can be expressed as union of subspaces
include reconstruction of a stream of Dirac impulses where both the location and the
amplitude are unknown, determination of overlapping echoes with unknown delay and
amplitude, or reconstruction of a signal whose Fourier transform is known to be located
in a union of sub-bands [LDO08|. Union of subspaces are also useful in matrix completion
to express nonlinear connections between elements [OWNB17].

Working in a union of subsets often leads to a challenging problem as linearity and
convexity are lost. By making additional assumptions on the shapes of the subspaces
or on the model, some methods have been shown to be successful in solving specific
problems [EM09, Blul1l, HIS16, AH18|. Nevertheless, more general forms are still difficult
to solve and the proposed methods do no extend easily to the union of general subsets.

A key observation is that many unions of subsets, can be expressed as polynomial
constraints. Similarly, many robust fit function, such as the capped ¢o function, are
piecewise polynomial. The versatility of rational functions thus allows us to encompass
both contexts together. In the remaining of this chapter, we address a problem of robust
signal reconstruction on a union of subsets. We add extra nonconvex constraints that
force the amplitude of the signal to be greater than a threshold or identically zero.
Although, this constraint is usually difficult to handle, it can be addressed under the
form of polynomials constraints. We propose to reformulate this nonconvex problem on
a union of subsets as a rational optimization problem that is then solved by using the
method of Chapter 3 in order to guarantee global optimality.
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5.3.1 Observation model
Model with outliers

Similarly to the model of Chapter 4, we first consider a degraded version y of an
original signal X of size T such that

¥y = ¢(HX) + w, (5.9)

where H is a T' x T matrix corresponding to a linear operator, w is a zero-mean white
Gaussian noise, and ¢ is a rational function, i.e. a ratio of two polynomials, that acts
component-wise.

The novelty of this section is to add a significant perturbation on some of the samples
of y. This models for instance the possibility of a sensor malfunction. It follows that the
observation vector includes a certain number of outliers, i.e. values that differ significantly
from the others. Finally, the observation model becomes

T ith bability 1 — &
(Ve [L,T]) w = gt W? proa?y )
Uy +n¢  with probability .

In the above equation, y comes from Model (5.9), ¢ is a small real between 0 and 1, and
nyt is the realization of a noise with high amplitude compared to values of y.

Signal model as a union of subsets

Similarly to many methods for inverse problem, ours relies on both data fidelity
and some assumptions about the original signal X. We consider the following prior
knowledge on X: its components are either zero or have absolute value above a given
positive threshold A, i.e.

(Vt e [1,T]) z:=0 or |z >A. (5.10)

Constraints (5.10) imply that each sample of the signal X belongs to the union of three
convex subsets, namely {0}U]—o0, —A]U[A, +00[. The benefit of such a model is to reduce
the space where we search for a solution. Let us emphasize that the union we consider
here is composed of subsets that are not necessarily linear subspaces. Constraints (5.10)
are nonconvex and thus result in a difficult optimization problem.

Our assumption on the signal model may be related to the standard union of sub-
spaces approach from compressed sensing, where the dimension of the subspaces is low
compared to the underlying space dimension. This accounts for sparsity. On the other
hand, the union of subspaces model does not necessarily restrict the number of non-zero
components nor impose sparsity on the components [BNFR19]. Hence, the method we
propose can be applied to recover sparse signals as well as dense signals in the sense that
only a few elements are null.

5.3.2 Problem formulation
5.3.2.1 Robust reconstruction criteria

To reconstruct the original signal X, we minimize a criterion matching the data to the
model. A classic approach for dealing with Model (5.9) is to minimize the mean square
error ||y — ¢(Hx)||* with respect to x. However, the presence of outliers skews the
solutions. To tackle this issue, several robust surrogates for the squared norm have been
proposed. The latter are all written under the form Zle Uy (yr — ¢((Hx),)) where the
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function ¥y : R — R may depend on a positive real parameter §. We obtain the following
criteria:

e the previously mentionned £, norm: ¥y(z) = 22,

e the ¢; norm: Yy(x) = |z|,

Huber function [Hub64]:

1

1
Wo(x) = §$2]1{|x\§9}($) +0 <!x\ - 29> Lijz>01(2)

the pseudo-Huber function [CBFABY4|: Wy(z) = V22 + 62,

and the capped {5 function:

Figure 5.4 displays the considered robust fit functions Wy. The capped ¢ and Huber
functions aim at reducing the impact of the outliers by decreasing the penalization on the
high errors while preserving mean squares on the low errors. The parameter 6 represents
here the threshold value on the error between these two penalties. It must be set carefully
depending on the level of noise w and of the outliers.
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Figure 5.4: Considered robust fit functions Wy (0 = 0.5 for the capped ¢3 and Huber
functions, 8 = 0.1 for the pseudo-Huber function).

Considering the fit criterion to be minimized and Constraints (5.10) simultaneously,
we finally obtain the following optimization problem:

T

minimize Z Vo(y: — o((Hx),))

T
x€eR —1

s.t. (Vt e [1,T]) =z =0o0r |z > A,

(5.11)
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where (Hx), denotes the ¢-th component of the vector Hx. Problem (5.11) is difficult
since the constraints are nonconvex. Moreover, the objective function is also nonconvex
for the capped {5 fit. However, we propose to use the methodology of Chapter 4 to
solve Problem (5.11) for any above choice of the function ¥y. We hence reformulate the
optimization problem as a rational one before solving it. We start with the reformulation
of the constraints.

5.3.2.2 Reformulation as a rational optimization problem

Constraints expressed as polynomial inequalities

The constraints in (5.11) can be expressed as polynomials ones by introducing extra
binary variables (; for all ¢ in [1,77]. We can indeed substitute the product (;a; for z;
in (5.11) and, letting (; = 0 account for vanishing z;, the constraints in (5.11) reduce
to the inequalities |z, > A for all ¢ in [1,7]. Finally, binary values can be imposed
by the polynomial constraints ¢; = ¢? for all ¢ in [1,T]. We thus obtain the following
polynomial optimization problem

T
minimize Z Yo (y: — ¢(H(x © ¢)),))
t=1

(%,£)eRT xRT
.t. (Ve [LT]) oo > A
vte[L,T]) &=¢-

Note that the constraints |z] > A are still nonconvex and make Problem (5.12) difficult
to solve with standard methods. However, under the transformation of the objective
function of the next paragraph, it leads to the minimization of a polynomial function
subject to polynomial constraints. Therefore, it can be solved with the tools of Chapter 3.

Nevertheless this formulation doubles the number of optimization variables and simi-
larly to the example in Section 4.3.1, Problem (5.12) cannot be solved by state-of-the-art
polynomial optimization solvers in a fair amount of time, even for signals of small size
T. Instead, we suggest to relax the equality constraints in (5.10) into an inequality and
we obtain the following constraints

(5.12)

(Vt € [1,T]) |xe| <e€or |z > A, (5.13)

where € < A is a small positive real. Notice that this constraint can also be used to
expressed signals that are in two different bands as in [LDOS§]| for instance. We now write
the above constraints as polynomial inequalities and we obtain

(Vte[1,T]) (e—ri)(A—r) >0
(Vte[1,T]) r?=2?,r >0.

The absolute value in the constraints of (5.13) is handled by adding the extra variable r
as detailed in Section 4.3.3.

Objective function expressed as a rational function

In the following, we study the reformulation for the capped ¢2 function since it is the
most challenging case. The method can be easily adapted for other fit functions from
Section 5.3.2.1.

As witnessed by the characteristic functions that appear in the definition of the
capped fy function, the objective in (5.11) is piecewise polynomial. Following Sec-
tion 4.3.2, a characteristic function can be replaced by a binary variable z that takes
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identical values. For instance, if ¥y is the capped £5 function as defined in Section 5.3.2.1,
we introduce a binary variable z which takes value 0 when || is smaller than 1/v/8, and
1 otherwise. This can be written as

(- 1/2) <|x| - 1/\/5) >0. (5.14)

Substituting similarly the characteristic functions for all ¢ in [1,7] and the origi-
nal constraints in Problem (5.11), we finally obtain the following rational optimization
problem

T
nimi 4 (1 — 20y, — ¢((Hx),))?
(,fﬁfg,lzr)nelﬁ% 2 2zt + ( 20)0(ye — o(( X)t))
st.(Vte [1,T]) (e—r)(A—1m) >0
r{=af, >0 (5.15)

(2 —1/2) (vt - 1/\/5) >0
v >

v} = (y — ¢((Hx),))* 0
= ZtZ,

where the extra variable v is used to handle the absolute value in Constraint (5.14).
The objective function is now a rational function in x and z while the constraints are
polynomial inequalities in x, r, v, and z. Problem (5.15) can then be solved using the
method from Chapter 3.

Note that the radical in the pseudo-Huber function can be handled similarly to the
absolute value. Indeed, we can replace vx2 + 62 by an additional variable u and add
the polynomial constraints

{u2 =2 + 6>

u>0.

5.3.3 Numerical results

For each test, we generate an initial signal X of size T' = 50 satisfying Constraints (5.10):
a given percentage of elements of X, called the degree of sparsity, chosen randomly are
set to 0 while the others are set to have their absolute value uniformly selected between
A = 0.7 and 1. We choose H as a convolution matrix associated to a finite impulse
response filter h of length 3 whose elements are drawn uniformly in [0, 1], i.e. H is
Toeplitz-band with h defining the elements on the band. The white noise w has a
standard deviation of 0.15. The vector y contains 1% of outliers and their location have
been drawn randomly with equal probability among the T" samples. The impulse noise
n has a fixed amplitude set to twice the maximum of ¥ and a random sign with equal
probability. The parameter € is set to 1072 and the value of @ for the capped ¢ and
Huber functions is tuned to 0.4. The nonlinearity ¢ is chosen as a saturation expressed

by the rational function
x

T 03+ ||

We  use GloptiPoly [HLLO9| together  with  the SDP  solver
SDPT3 [TTT99] to solve the rational problem. In all our simulations, we compute
the order 3 SDP relaxation of Lasserre’s hierarchy. The problem is formulated using the
approach of [CPM19| in order to use the structure of H and reduce the computational

burden. All the simulations have been run on an Intel i7 CPU running at 1.90 GHz with
16 GB of RAM.

(Ve €R) ¢(x)
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We compare our approach for the different fit functions listed in Section 5.3.2.1. We
run 50 simulations and compare the different relative errors ||X — x|| / ||X]|| between the
initial signal X and the signal X estimated with our method.

5.3.3.1 Convergence of the SDP hierarchy

We first look at the convergence of Lasserre’s hierarchy. For the ¢o, the capped #o, and
Huber functions, the convergence has occurred at relaxation order 3. This is certified by
the sufficient rank condition given in Section 3.1.3 and implemented in GloptiPoly, which
additionally certifies that the optimal point is unique. This is an important feature since,
in contrast to many nonconvex optimization methods, we have the theoretical guarantee
that the obtained solutions are exactly the global minimizers of Problem (5.15).

On the other hand, for the ¢; and the pseudo-Huber functions, the convergence does
not always occur at order 3. This is shown for the ¢; function in Figure 5.5 where we draw
for the 50 tests, the obtained lower bound in plain blue and the value of the criterion
at the computed solution in dotted red. We observe a gap between the two curves that
shows that a higher relaxation order would be required for convergence of the hierarchy.
Moreover, a consequence for these two fit functions is that the imposed constraints are
not always satisfied by the candidate approximate optimal point.
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Figure 5.5: Convergence study of Lasserre’s hierarchy for the ¢1 fit function on 50 tests:
In plain blue the value of the lower bound, in dotted red the value of the criterion at the
solution. For the sake of clarity, the results are ordered according to the values of the
lower bound.

The convergence at a low relaxation order is important for the global minimum
guarantee as well as for the applicability of the method by limiting the SDP to a fair
size. Therefore in the following section, we focus our attention on the capped /9 and
Huber functions against the /5 fit.

5.3.3.2 Comparison of the robust approach with least squares

We compare here the ¢ with the capped ¢2 and Huber fit functions for three different
degrees of sparsity of the original signal x. Table 5.6 shows the relative error for the
different fit functions. We observe that both robust fit functions yield a smaller error
than least squares but the capped £ gives the smallest error. This confirms the interest of
our methodology, which is able to deal with nonconvex penalty functions. Furthermore,
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Table 5.6: Statistics on the relative error between X and X with different degrees of
sparsity for 50 tests.

Degree of sparsity 80% 50% 30%

0 Average 0.87 0.66 0.54
2 Median 0.85 0.66 0.55
Average 0.65 0.48 0.35

Huber Median 0.69 0.47 0.33
Average 0.43 0.36 0.30

Capped £ Median 0.34 0.34 0.28

similar results are observed for both sparse and dense signals. Table 5.7 shows both the
True Positive Rate (TPR) and the False Positive Rate (FPR)for both ¢5 and the capped
£y functions. We use a threshold value of 0.1 for the peak detection. Note that since
Constraints (5.10) are enforced when solving (5.15), the threshold value can be taken in
le, A indifferently. We notice that for the capped ¢5 fit, the average TPR is close to 1,
which means that almost all the peaks are well detected, and the FPR is close to zero,
i.e. we do not detect peaks at samples originally equal to zero. This is in contrast with
the results for the ¢5 fit.

Table 5.7: Statistics on the TPR and FPR of peak detection between X and X with
different degrees of sparsity for 50 tests.

Fit function Capped £o ly
Degree of sparsity 80% 50% 30% 80% 50% 30%

Average 096 0.94 094 084 0.81 0.82
TPR Median  1.00 093 095 083 0.80 0.83

Average  0.01 010 0.09 0.15 022 0.22
FPR Median 004 007 0.0 012 020 0.20

The poor results above for the {5 fit are due to the outliers together with the con-
volution matrix H which makes the estimation inaccurate in the neighborhood of the
outliers as illustrated in Figure 5.6. The latter shows a comparison between a robust
and a least squares recovery on a single test. The red curve represents the initial signal
X and the blue and green curves are the estimated signal using respectively the capped
£y and the /5 functions. For the capped ¢o function, we observe that the locations of the
non-zero samples are well recovered and the amplitudes are close to the ones of X. At
locations far from any outliers, comparable results are observed for both the capped /£
and /o fit functions. However, close to an outlier value, the estimated signal is prone to
many errors using £» in contrast with its robust counterpart. This illustrates the benefit
of the capped ¢5 for robust reconstruction.
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Figure 5.6: Reconstruction of a signal with degree of sparsity of 50%. Top: the
corrupted observation y, Bottom: in red circle dotted curve, the initial signal X and
respectively in blue cross plain curve and green dotted curve, the estimated signal X

using the capped lo and the £y fit functions.

§ 5.4 SUMMARY

In this chapter, we have extended the reconstruction method of Chapter 4 to different
types of noise as well as different signal models.

We have first considered the reconstruction of a signal which is sparse in a trans-
formed domain and subject to Poisson-Gaussian noise. We have proposed a rational
approximation to the log-likelihood as a fit function and have added a linear operator to
the nonconvex approximation to the £y regularizations. The final rational problem has
then been solved globally using the framework of Chapter 3. The improvement obtained
with our proposed approach is shown on two different applications.

We have also tackled the issue of robust estimation in the presence of outliers. Instead
of the mean squares used in Chapter 4, we have proposed to use robust fit functions that
may be nonconvex but are piecewise rational. Moreover, we have considered a signal
model that is expressed as a union of subsets constraints. We have showed that the
resulting inverse problem can be reformulated into a polynomial optimization problem
using additional variables and thus globally solved using the methodology of Chapter 3.
Finally our simulations have shown the good quality of the signal reconstructed in the
presence of outliers.
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SEMI-DEFINITE PROGRAMMING PROBLEMS

Part of the work in this chapter has been done in collaboration with Luis Bricefio Arias
from Universidad Técnica Federico Santa Maria during its visit in our lab. He suggests
some of the formulations of the SDP problems ans some associated algorithms to solve
them.

§ 6.1 BACKGROUND

Semi-Definite Programming (SDP) aims at minimizing a linear objective function over
the intersection of the cone of positive semi-definite matrices S’} with an affine space
defined by m linear constraints. SDP problems have been studied in many works [dK02]
(and references therein) for the last few decades as they often appear as relaxations
of many more intricate problems. For instance, SDP problems appear in polynomial
optimization as shown in Chapter 3, but also in graph theory [GW95], in the quadratic
assignment and the traveling salesman problems [Sot11], in sparse principal component
analysis [ZdG11], in floorplanning of large scale integration circuits [AL11], or in MIMO
detection [LMS*10].

The current state-of-the-art SDP solvers are based on interior point methods [Ren01,
dKO02| which enjoy a polynomial-time complexity with respect to the dimension of
the problem. Popular implementations of the latter methods include CSDP [BY07],
DSDP [BYZ00], SDPA [FNYF07], SDPT3 [TTT99|, and SeDuMi [Stu99|. Interior point
methods are however limited in terms of scaling. For instance, if the sparsity of involved
matrices is not considered, computation becomes too heavy when the dimension n of the
semi-definite constraint is greater than 10% or when the number m of linear constraints
is greater than 103. More specifically, iterations of interior point methods involve solv-
ing a linear system of size m X m which is highly demanding in terms of computation
and memory when m is large. Many alternative methods have been proposed to solve
such SDP problems: the bundle method [HRO0]|, the mirror descend algorithm [LNMO6],
or augmented Lagrangian methods [MPRWO09, ZST10, HM11, OCPB16]|. Nevertheless,
those methods are able to overcome interior point methods only on some specific SDP
problems. A recent approach based on Burer-Monteiro factorisation [BM03, WW18|
has shown some encouraging results. However, the latter factorisation leads to noncon-
vex problems and retrieving their global minimizers is possible only under some condi-
tions [WW18, BVB19|.

Our goal in this chapter is to explore proximal methods based on fixed point strate-
gies [CP20] to solve SDP problems. We are especially interested in solving SDP problems
arising from our relaxations (3.7) and (3.12) of rational problems, that are problems

99
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where both the dimensions of the matrices n and number of linear constraints m are
high. Previous works [MPRW09, NW12| have explored the benefit of proximal meth-
ods for SDP problems with a large m, which is a bottleneck for interior point methods.
However, the dimension n has always been kept low, which does not correspond to our
applications of the previous chapters as shown in Table 4.1.

The remaining of this section provides a short overview on SDP problems, their differ-
ent forms, and the challenge they rise in comparison to LP problems. In Section 6.2, we
reformulate both SDP primal and dual problems as unconstrained optimization problems.
We then apply forthright several standard proximal methods using different splitting of
the objective function. The latter methods are recalled in Appendix B. In Section 6.3,
we modify the initial SDP problem with several regularizations in order to favour conver-
gence of the proximal methods. We first apply the proximal algorithms on the augmented
Lagrangian formulation of the dual SDP problem before using a quadratic regulariza-
tion on the objective of the dual SDP problem in order to improve the decrease of the
objective function. Similar approaches are tested on the primal problem as well. Fi-
nally, we substitute the semi-definite constraint with a barrier function in the spirit of
interior point methods. All the developed algorithms are then compared on numerical
simulations in Section 6.4.

Note that the SDP relaxations (3.8) of our rational optimization problems are in the
dual form and thus we are particularly interested in the solution of this problem as they
are the moments of the measure solution to Problem (3.11). Consequently, the dual
solution is the focus of our algorithms.

6.1.1 Notation

The notation of this chapter is independent of the one used in other chapters. Further-
more, we introduce the following specific notation to this chapter: for a non empty closed
convex set X in a Hilbert space H, tx, Ily, and Ny (x) denote respectively the indicator
function, the projection, and the normal cone at x defined as

(2) 0, ifreX
tx(x) =
& 400, otherwise

Mx(z) = argmin [}y — |
yeX

N(z) = fueH|(VyeX) (uly—ax)y <0}, if:cep.(
0, otherwise .
The barrier function on R™*™ is denoted by 1d and defined as
(VM € R™™)  1d(M) = — log det(M)..

We define the following inner products
(V(a,b) eR" xR") (a|b)pn =Y aib;
i=1

(V(A,B) €S" xS") (A |B)g» = Tr(AB).

Similarly to S, we define S" the cone of negative semi-definite n x n matrices. Some
background on optimization can be found in Appendix B. The superscript * indicates
either the convex conjugate of a function or the adjoint operator, d denotes the subdiffer-
ential of a proper function, prox the proximal operator of a proper lower-semicontinuous
convex function, and Ju the resolvent of a monotone operator M. Definitions of the
latter operators are also given in Appendix B.
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6.1.2 SDP canonical formulations

The canonical primal and dual forms of an SDP problem are respectively defined as
follows

i i i C X_ n i 1 b m
minimize  {(C | X)s maximize (b |y)r
subject to A(X)=Db (P) subject to A*(y)+S=C (D)
X e S SeSh

where C is a symmetric matrix in S”, b is a vector in R, A is a linear application from
S™ to R™ and A* is its adjoint operator. Note that, by the Riesz representation theorem,
the linear application A can be represented by the set of matrices (Ai)ie[[l m] of S™ such

that
(VX eS")  AX) = ((Ai | X)sn)icq1m] -

Its adjoint operator is then
m
(Vy eR™)  A(y) =D il
i=1

If both the primal and the dual feasible sets are non empty and if A is surjective, i.e.
Robinson’s constraint qualification condition is verified, the triplet (X,y,S) is a primal-
dual solution of (P) and (D) if and only if

A(y)+S =C,Ses!
A(X) —b,Xesn
(X[S)sn =0

For SDP problems, Robinson’s qualification condition is equivalent to Slater’s condition,
which is verified if there exists a strictly feasible point [GOL98|. The duality gap is then
expressed by

duality gap = (C | X)sn — (b | y)rm = (S [ X)sn .

The complementary slackness condition hence gives information on the duality gap: the
constraint qualification condition implies that strong duality holds.

Note that Problem (3.8) does not take exactly the form of (D) but Section 6.1.4
provides reformulations of (3.8) into the standard dual form.

6.1.3 Link between primal and dual solutions

As stated above, we look for the dual solution of SDP problems in order to solve rational
optimization problems of Chapter 3. In this section, we show that the dual solution can
actually be extracted from the primal solution using the Lagrangian duality.

Let us write the Lagrangian £ of the SDP primal problem (P)

(VX e §")(Vy e R™)  L(X,y) = (C | X)gn + (v | b — A(X))rm + 157 (X).
At optimality, the Karush-Kuhn-Tucker conditions (KKT conditions) state that

0€ Ox L(X,y) = C— A'(y) + Ny (X).
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Setting Z = A*(y) — C, we obtain
0€C—Ay) +Nsn(X) <= 0€ Nsn (X) - Z
<:>XeN*11(Z) = Nsn (Z)
= X+7Ze (Ns» +1d)(Z)
= ZE I, (X+1Z)
— Z=1s(X+Z).

The variable Z is hence a fixed point of the operator Ilg» (X + .). Moreover, if AA* is
invertible, we have

Z=A*(y)— C= A(Z+ C) = AA*(y)
— y = (AA) Y A(Z + C)).

Therefore, an optimal solution y, of the dual problem (D) can be retrieved from an
optimal solution X, of the corresponding primal problem (P) by using Algorithm 2.
The convergence of the latter algorithm results from the firm non-expansiveness of the
operator Ilg» (X 4 .) [BC11]. However, in practice, Algorithm 2 converges slowly and we
will favour methods that return directly y..

Algorithm 2: Retrieve SDP dual solution from SDP primal solution

Input: X,, optimal solution of problem (P)
Input: Set Z € S”
Output: y., solution of (D)

1 for k=0,1,... do

2 | Z0HD = Tlgn (X, + 20) ;

3 yi = (447)71(A@ZW + C)) ;

6.1.4 Free variables

Some SDP problems may include unrestricted variables, or equivalently linear constraints
on the dual problem. Those variables are referred as free variables and appear naturally
in many problems. For instance, the variable 7 in (2.3) is a free variable and the linear
constraints on the moments in Problems (3.6) and (3.12) generate free variables.

Assuming p is an integer smaller than m, the primal and dual SDP problems hence
take the following more general forms

()I(I’lglellsrrlllfﬁp (C|X)sn + (f | z)re maximize (b |y)rm
subject to  A(X)+ D(z)=b (Pre) subject to C — A*(y) € S} (Dt
X eSh D*(y)—f=0

where z is the vector of free variables in RP, f is a vector of RP, and D is a linear
application from RP to R™.

Free variables are not a theoretical issue but a rather important computational one.
Indeed, interior point methods solve a positive definite linear system at each iteration
using Cholesky factorisation customised to benefit from sparsity. However, free variables
make the system indefinite and consequently harder to solve.

We present below four common methods to deal with free variables, each one aiming
at allowing the use of Cholesky factorisation. They all reduce Problem (F) and (D)
to their standard form in order to use the same algorithms to solve it.
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e Splitting Method: The free variable z is split into two positive variables z, and
z_ such that z = z, — z_. Problems (P:) and (Dg) can then be written in the
canonical forms of (P) and (D) with matrices in Si“p . Albeit simple, this method
is numerically unstable. Indeed, the converted SDP problem has a continuum of
optimal solutions and its dual has no interior feasible point. Moreover, z, and z_
may be unbounded individually whereas their difference z is bounded. These are
serious issues in interior point methods. Splitting is the default method used in
SeDuMi because of its cheap cost. However, when numerical instability appears,
Andersen method can be used.

e Kobayashi Method: This method [KNKO07] eliminates z using a well-chosen basis
that preserves sparsity of A. Compared to the splitting method, the dimension of
the matrix space does not change and this method prevents numerical difficulties.
Nonetheless, the choice of the basis is highly important but can be difficult in
practice.

e Andersen Method: [ABO8| The free variables are arranged inside a Lorentz cone
KlLorentz together with an extra unconstrained variable zg

KLorentz = { (ZO’Z) € Rp+1‘20 > ||Z||2 } :

Problems () and (Dg) can thus be written in the canonical forms by using the
additional linear matrix inequality

-
20 z p+1
[z 20 Idp} €5y

This method is numerically more stable. However, the dimension of the matrix
space increased since instead of S, we now work in S x R? and consequently the
computational time to solve the problem also increases.

e Mészaros Method: This method [Més98| is mainly used in interior point algo-
rithms to handle free variables directly by perturbing the indefinite linear system
to be solved at each iteration in order to make it quasi-definite. The method also
preserves the sparsity of the operator A and D, which is of special interest for large
scale problems. The main downside is that, since the solutions of the linear system
are perturbed, they need to be handled carefully in the following steps to ensure
the convergence of the interior point method. A variant of this method is used in
the solver SDPT3.

Note that those methods to deal with free variables in SDP are highly inspired from the
ones used in solving LP problems.

In the following, we suppose that the SDP relaxation (3.8) has been preprocessed by
one of the above method and thus focus on solving the standard forms (P) and (D).

6.1.5 Comparison with LP

Although LP and SDP problems share a common form, they have significant differences.
The feasible set of a LP problem is a polyhedron which has nice properties. For instance,
its projection is also a polyhedron and its image by a linear application is always closed.
Hence, LP problems are either infeasible or solvable, that is we can find a primal-dual
solution. Moreover strong duality always holds in LP: the primal optimal value and the
dual optimal value are identical. In other words, the duality gap is identical to zero at
optimality. Thereby, we can apply the separating hyperplane theorem on the compact
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set {b} and on the closed set A(R,). If we can find a separating hyperplane, then the
problem is infeasible, otherwise it is feasible and strong duality holds.

On the other hand, the feasible set of a SDP is called a spectrahedron which is also a
closed convex set. However, its projection, albeit convex, is not closed in general. In the
same way, its image by a linear application is not necessarily closed. As a consequence,
Slater’s condition may not hold. This is the root of some strange cases that do not
happen in LP.

Let us take the following examples [Tod01] (detailed computations can be found in
Section C.1):

e Problem (P) is feasible and bounded but does not have a solution while Prob-
lem (D) has a solution:

0 -1 2 -1
a= | S e=12 ] e

The optimal value of Problem (P) is —2 but it is never reached.
e Problem (P) has a solution, Problem (D) is feasible but does not have solution:
-1 0 0 O 0 1 —1
S R R RS
Note that there is no duality gap since both primal and dual optimal values are
zero.

e Problem (D) has a solution whereas Problem (P) is infeasible:

=y o) ae=[t o) e=[0 o) 2= )

e Problem (P) and Problem (D) have a solution but there is a duality gap:

100 010 000 0
A1—000,AQ:IOO,C:OOO,b:[Q]
000 00 2 00 1

The optimal value of the primal is 1 while the optimal value of the dual is 0.

Therefore, solving a general SDP may be difficult. Fortunately, for SDP problems ob-
tained from relaxations of polynomial optimization problem, it has been proved [JH15]
that strong duality always holds and as a consequence, those weird cases do not arise.
Moreover, we assume that the considered SDP problems are feasible. Indeed, we search
for faster algorithms to process high dimensional problems. Methods to detect infea-
sibility such as the homogeneous self-dual embedding [dKRT97, LSZ00| or the big M
approach [MAS89| are available in the literature and can be used to package the devel-
oped algorithms.

Therefore, in the following, we only focus on solving feasible SDP problems in their
canonical forms where strong duality holds.

§ 6.2 PROXIMAL METHODS ON STANDARD FORMS

6.2.1 Primal problem

Our goal in this section is to apply standard proximal methods, such as Chambolle-Pock
or Douglas-Rachford algorithms (cf. Appendix B.4) as well as some enhanced versions
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of those methods, on different formulations of the standard SDP problem. Hence, we
reformulate both SDP primal and dual problems as unconstrained optimization problems
and apply proximal methods forthright using different splitting of the objective function.
6.2.1.1 Chambolle-Pock algorithm

We write the primal SDP problem (P) as an unconstrained problem

(P) = min (C|X)sn +51(X) + 1p} (AX)) - (6.1)

=f(X) =goA(X)
Applying Fermat’s rule, we write (6.1) as a monotone inclusion problem:

Find X in S™ such that
0€0f(X)+0(goA)X). (6.2)

As the subdifferential is a monotone operator (see Property 1 in Appendix B) and A
is a linear operator, Problem (6.2) can be solved with Chambolle-Pock algorithm (see
Appendix B.4). The algorithm is shown in Algorithm 3 where the blue expressions are
the results of the computations of the resolvents.

Algorithm 3: ChamPockP, Chambolle-Pock algorithm applied on (6.1)
Input: Set (X, y©)) e s x R™
Input: Set 6 € [0,1] and (7,0) € Ry x Ry
Output: X, solution of (P) and y, solution of (D)
1 Set X = XO);
2 for k = 0,1,... do
3 y#) ProX,g» (y(k) + UAX(k)) =y 4o (Af(k) — b) ;
4 XD prox, (X(k) — TA*y(kH)) = Isn (X(k) -7 (A*y(kH) -Q));
5 XEHD  x(k+1) +0 (X(k+1) _ X(k)) ;

In order to obtain feasible iterates and based on [BAR18|, we propose to add an extra
projection on the hyperplane of the affine constraints at the end of each iteration in the
algorithm. It may also help the convergence to occur with a lower number of iterations.
The projection is shown in red in Algorithm 4.

Algorithm 4: ChamPock—+II, Chambolle-Pock algorithm applied on (6.1)
with projection
Input: Set (X©@, y(©) e s" x R™
Input: Set 6 € [0,1] and (7,0) € Ry x Ry
Output: X, solution of (P) and y, solution of (D)
1 Set XV =X ;
2 for k = 0,1,... do
3 y#F) ProX g+ <y(k) + UAX(k)) ;
4 P+ Prox, s (X(k) - TA*y(k+1)) ;
5 | XO0HD - pOHD — A4x(44%) 7! (APKEHD —b)

6 XEHD  x(k+1) +0 (P(k+1) _ X(k)) :
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6.2.1.2 Douglas-Rachford algorithm

The primal SDP problem (P) can also be reformulated as a problem with only linear

constraints | x) x)
min (C | X)gn + tgn (X
(P) <« { Xesn i (6.3)
st.  AX)=b

We write the Lagrangian £ of Problem (6.3)
(V(X,y) € §" xR™)  L(X,y) = (C [ X)sn + 152 (X) + (y | b = AX))rm

By writing the KKT conditions, we search for a point (X,y) of S” x R™ at optimality

such that
{0 € C+Ns:(X)+ A% (y)

0= b — A(X).

By defining the constants C and b as translations, the above conditions can be written
as a monotone inclusion problem:

<g> © [NS10+C lﬂ (if) + [_OA ‘ﬂ C;) (6.4)
T —

In Algorithm 5, we apply Douglas-Rachford algorithm on the monotone inclusion prob-
lem (6.4). Note that the main variables in the algorithms are (Z,w) while we are
interested only in the intermediate variables (X,y).

Algorithm 5: DougRachP, Douglas-Rachford algorithm applied on (6.4)

Input: Set (Z©, w(©®) € §* x R™

Input: Set v € Ry

Output: X, solution of (P) and y, solution of (D)
1 for k=01, .. do

X (k) 7,(k)
2 <y<k>> s <w<k>> ?
7,(k+1) X (k) 7,(k) 7.(k) X (k)
| () a2 G ) = (G0)) = (o) = (o)
The two resolvents J,5 and J, 4 are given by
X Z L (Z-X A* —(Id+72AA*) " (w + vAZ
<>=73<><:>71< )Z( y>(:>y( 7*)(W7)
y w W=y -AX X =Z-~vA%y

(@)= () o (G0~ {570

Note that we can interchange the two resolvents, i.e. applying first J, 4 and then .J,5 in
Algorithm 5.

6.2.2 Dual problem
6.2.2.1 Chambolle-Pock algorithm

In a similar manner to the primal standard form, we reformulate the dual SDP prob-
lem (D) first as an unconstrained minimization problem

(D) <= (y,s)%ig{lnxsn (=b [ y)rm + 152 (8) + 1} (A"y + 8), (6.5)

=f(y,S) =goL*(y,S)
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where L* = [A* Id} and hence L = [Iill] . We notice the close similarities with the un-

constrained formulation written for the primal problem (P) in (6.1). Applying Fermat’s
rule, we write (6.5) as a monotone inclusion problem:

Find (y,S) in R™ x S™ such that
0€df(y,S)+0(goL)(y,S). (6.6)

Problem (6.6) is a monotone inclusion problem that can be solved using Chambolle-Pock
algorithm as shown in Algorithm 6.

Algorithm 6: ChamPockD, Chambolle-Pock algorithm applied on (6.5)
Input: Set (y(o), S(O),X(O)) € R™ x S™ x S

Input: Set 6 € [0;1] and (7,0) € Ry x Ry

Output: (y,S), solution of (D) and X, solution of (P)

Set (70,87) = (y©,80)) ;

for k = 0,1,... do

3 X (k+1) —

prox

N =

oo X®) 4 o(A*5FH + S g ))> X 4 o (A*y(k) +§(k) _ C) ,

(k+1) (k) (k) — 7(AX*+D) 4 p

y y 7( +b)

4 <S(k+1 ) ¢ Prox,; << (k > TLX k+1)> <Hgn (S(k) _ TX(’H_I)) ) ;
+

)
ylk+1) y(k+1) y(k+1) y () -
5 gk+D) k+1 k+1 “\g®) )

6.2.2.2 Douglas-Rachford algorithm

We can reformulate the function g o L* in problem (6.5) as an indicator function

goL*(y,8) = ycy(A'y +8) = wn(y, S)
where D = {(y, S) e R™ x §"| L* <}S’> = C}. Problem (6.5) hence reads

0<cdf(y,S)+ duwp(y,S).

As 0f and Ovp are monotone operators, we can apply Douglas-Rachford algorithm to
the latter problem and we obtain Algorithm 7.

Algorithm 7: DougRachD, Douglas-Rachford algorithm applied on (6.5)
Input: Set (w(®,Z©)) ¢ R™ x §»
Input: Set v € Ry
Output: (y,S), solution of (D)

1 for k=0,1,... do

(k) (k)
Yy w .

2| (Bw) oo (Gw)
wE+D) (k) w® w®) y(®)

3 <z<k+1)> S PrOXyp <2 (Sw)) - <z<k>>> + <z(k)> - <S<k>) ;
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We compute the projection IIp and the proximal operator prox, :

(1) =10 (3) - (3) -0 arwzo

LAY y (Y —W —b W=y +7b
7 ) =Prox%plg) <=7 |g_7z)€ Nsr (Z) T\ z =gz (S)
2, 2

Notice that the computation of IIp requires to inverse a n® X n* matrix while in Algo-
rithm 5, the computation of the first resolvent requires to inverse a m X m matrix.

6.2.2.3 FISTA

We can eliminate the dual variable S and keep only the dual variable y in (D), and we
obtain

mz;)éiﬂg%ize (b |y)rm

subject to A*(y)+S=C - A*(y) € S}

We then express it as an unconstrained problem using an indicator function:

minimize (—b | y)rm + 52 (C — A*(y)) - (6.7)
YER™ e — + ,
=f(y) =goA*(y)

We apply Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [BT09], an over-
relaxed version of FB which is given in Appendix B, to solve Problem (6.7) as shown in
Algorithm 8. Notice that the work of Chambolle and Dossal [CD15] provides a sufficient
condition on the sequence (6x),cy to ensure the convergence of the iterates of FISTA to
a minimizer.

Algorithm 8: FISTA, Fast Iterative Shrinkage-Thresholding Algorithm to
solve (D)

Input: Set y(© € R™ and define v(¥) = y(©)
Output: y, solution of (D)
1 for k=1,2,... do
Qk — ki-i-l )
z <+ (1— Qk)y(k_l) + Gkv(’f—l) ;
y ) ProX,, goax(z — V£ (2)) ;
vE)  yk=1) 4 ei(y(k) —y&=Dy

k

(S, N M

To compute prox,, 4,4+, we need to solve the following optimization problem:

Find y in R™ such that

y= PrOXq; goA* (¥) = arglgling(A* (¥) +o(y),
yeR™

where ¢(y) = 5 |ly — y|* for y in R™.
We actually solve its dual problem

X = argmax — g*(X) — ¢*(—A(X)) = argmin g*(X) + ¢* (- A(X)),
Xesn XeSsn

where ¢*(y) = y'y + % ||yH2 for all y in R™. The dual problem is also solved using
FISTA as shown in Algorithm 9. We set the step-size v, to ||AA*|| ™" since the gradient
of the differentiable function (¢* o (—A)) is ||AA*||-Lipschitz

(VX €§") V(6" o (—A))(X) = —A"(§ — AX).
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Algorithm 9: Inner loop to compute proxg, - in Algorithm 8

Input: A point y where to compute prox 4«
Input: Set X(© e " and define V(© = X(©)
Output: y, value of prox,, ;o4+ at point y
for k = 0,1,... do
Qk — ki—&-l ;
Z «— (1—60,)XE1) 4 g, vE-D .
y "y - A(Z) ;
X*)  Z + B LA*y*)
X X — 5, B4(C  Tlgy (C = 7 BXO))
VF)  x(k-1) 4 é(X(’“) — X(k—l)) :

b I = N L B N VUR VI

6.2.2.4 Rescaled forward-backward primal-dual algorithm

Rescaled Forward-Backward Primal-Dual algorithm (RFBPD) [KP15] is a variant of
Chambolle-Pock algorithm that adds a scaling as well as an extra relaxation step on the
dual variable, and applies Moreau’s formula to compute the resolvent of the operator
affected by the convex conjugate. We apply it on (6.7) as shown in Algorithm 10.

Algorithm 10: RFBPD, Rescaled forward-backward primal-dual algorithm
to solve (D)

Input: Set y(© € R™ and X(©) ¢ ST

Input: Set (7,0) € R} x RY

Output: y: solution of the problem (D)
1 for k=0,1,... do

2 ph) profo(y(k) — 70 AXW))=y(*) _ 754X *) — b ;

3 WE  — XF) 4 A (2p*) — y(#))

4 QM (1d - proxa_lg)W(k): Wk —C+ Ign (C — WARNE
5 | Set A®)in]0;2[;

7 X(E+1) o x (k) ¢ /\(k)(Q(k) — X(k))

8 X+ oX;

6.2.2.5 Combettes-Eckstein algorithm

In this section, we still consider Problem (D) under the form (6.7) and we apply the idea
from |CE16] to solve it. We first express it as the monotone inclusion problem (6.8)

0€df(y)+(goA)(y). (6.8)
Using the chain rule, we can expand equation (6.8) into
0<cdf(y)+A(0g)A(y)-
Its dual problem is as follows [BC11]
0c —A"0f")(—AX) 4+ 9g*(X) .
Applying the KKT conditions, we obtain

—A(X) € 0f(y)
A*(y) € 9g"(X) .
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We call Z the set of points (y, X) in R™ x S" that verifies those KKT conditions. Thus
we have

(v, —A(X)) € gradf
(A*(y), X) € gradyg,

where gra denotes the graph of an operator and is defined in Appendix B. Since df and
dg are monotone operators, we have by definition

(V(u,v) €gradf) (u—y|v+AX)gn =0
(V(U,V) e gradg) (U—-A%(y) |V —-X)s» 20.

Thus,

(u—y | v+AX))zn +(U—A(y) | V= X)su >0
= u| Ve + (| AX))gn — {y | Vien — (y | AX))zn

(U | Vs — (U [ X)gn — (A°(y) | V)sn + (A*(y) | X)sn >0
= (U Vpn (U] Vg > (y [ v+ AV))se + (X | U = A%(w)sn.

Let us set the following notation
en=(u|v)pm +(U|V)sn €R
e s=(v+AV),U—-A*(u)) e R™ x S"

The pair (7, s) hence defines a hyperplane in R” x S™ whose normal is the vector s. Note
that 7 and s both depends on the points (u,v) and (U, V). This hyperplane divides the
space in two half-spaces, one of which named H contains the set Z

H={(y,X) e R" x 8" [ n = ((y,X) | )snxrm} -

Algorithm 12 follows the general Fejérian scheme exposed in Algorithm 11 using the
above hyperplanes [ComO01].

Algorithm 11: General Fejérian scheme

Input: Set H a Hilbert space and £ a non-empty closed and convex set of H
Input: Set 20 ¢ H
Input: Set € €]0;1[ and (A, )nen € [6,2 — €N
Output: z, a point in £
for k = 0,1,... do
Generate an affine half space H*) containing & ;
Project %) onto H®): pk) = Iy (*))
Perform over-relaxation: z(++1) = z(*) 4 \(k) (p(k) - x(k)) :

_Wwo N =

It selects first two sequences of points (u(k), V(k))keN and (U(k), V(k))keN respectively
in gradf and gradg before building the corresponding hyperplane defined by n*) and
s(®)_ Tt then projects the current iterate (y(k),X(k)) into the half-space H®*), with a
potential over-relaxation. Algorithm 12 adds an extra subspace K that is used to limit
the number of possible hyperplanes we could pick. The projection of s*) onto the
subspace K is yet used as the normal to the hyperplane.
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Algorithm 12: CombEck, Combettes-Eckstein algorithm to solve (6.7)

Input: Set K = K, x K,, a closed vector subspace of R™ x S™ that contains
the space of primal-dual solutions

Input: Set (y(©,X0) ¢ K, x K,,,

Input: Set € €]0;1[ and (A,),,cy € [6,2 — N

Output: (y, X), a primal dual solution of (P) and (D)

1 for k= 0,1,... do

2 | Pick (u®, v(*)) € gra(of)

3 u® « prox f(y( ) — 7 AX®)

4 v(F) L (y®) —u®)) — AX®)

5 Pick (U®), V() € gra(dg)

6 U® + prox,,(A*y®) + oX®))

7 V) XE) 4 g=t(gxy®) gk,

s | s e (/1 ACVI), O — o))
o | (6™, TW) Mk (s™M) 4

o | 7® — [[6®]* + @

1 | if 78 >0 then

12 n® — (@®) | vO)gm + (UE) | VF)gn ;

w | | 0w 2y max {0, ((y®), XB) | (6, T®))zmn =M}
14 else

15 | o®

16 | yHHD y) g .

17 X(k+D) o X k) — gR) (k) |

§ 6.3 PROXIMAL METHODS TO SOLVE ALTERED FORMS

In order to try to accelerate the convergence of the algorithms, we modify the standard
SDP problem by several means. In Sections 6.3.1, 6.3.2 and 6.3.4, we add a quadratic
term respectively to the Lagrangian and to the dual objective function. The goal is
here to accelerate the minimization of the target function while solving an equivalent
problem. On the other hand, in Section 6.3.3, we relax the semi-definite constraints in
order to ease the original optimization problem.

6.3.1 Augmented Lagrangian

The dual SDP problem (D) can be reformulated as a minimization problem with only
linear constraints

min (=b [ y)rm + 157 (S)

(D) (v, 8)€Rm xS" (6.9)
s.t. A*(y)+S=C.

We build the augmented Lagrangian £, of Problem (6.9) by adding to the standard
Lagrangian a quadratic term controlled by a strictly positive real parameter p:

£,(y,8.X) = (=b | Y)an +157.(8) + (X | A"(y) + 8 = C)sn + £ | 4"(y) + S — C

Note that the extra quadratic term depends only on the conic constraint and does not
affect the minimizer nor the minimum of Problem (6.9).
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Let us compute its partial subdifferentials

dy L,(y,S,X) = —b + A(X) + pA(A*(y) +S - C)
s Lo(y,8,X) = Ng () + X + p(A*(y) +S - C)
Ox L,(y,8,X) = A*(y)+S - C.

By writing the KKT conditions and splitting the operator, we obtain

0 —b — pAC 0 0 AA* A 0O 0 0 A y

0] € 0 Ngf}r —pC 0| 4+p| A* Id 0| + 0 0 Id S

0 0 0 C 0 0 0 -A* —Id O X
=A =B =B2

(6.10)

6.3.1.1 Douglas-Rachford algorithm

In Algorithm 13, we perform Douglas-Rachford splitting on operator A4 and B of Prob-
lem (6.10) where B = By + Bs.

Algorithm 13: DougRachD+AL, Douglas-Rachford algorithm applied
on (6.10)

Input: Set (W(O),Z(O),V(O)) € R™ x S" x S"

Input: Set v € Ry

Output: X, solution of (P) and (y,S), solution of (D)
1 for k=0,1,... do

y (k) wik)
2 S(k) —JyalzZ® | ;

X (k) v (k)

wlk+1) y(®) w®) w®) y (k)
3 ZED ) T2 S| - Z® | |+ 2% | - S®];

v (k+1) X (k) v (k) v (k) X (k)

The two resolvents J,z and J,4 are given by (cf. Appendix C.2.1 for the detailed
calculations)

w (Id +KAA*) ™! (w — kA(Z) — ﬁA(V))
S| Z|= s Z Ay + (T +)Y)
v —Ay +97H (X - V)
y +7(b+ pA(C))
Joal S| = Usy(S+7pC)
X X —7C

6.3.1.2 Forward-backward half-forward algorithm

In Problem (6.10), we notice that operator B; is cocoercive, that operator By is Lipschitz
continuous and monotone and that operator A is maximally monotone.
y w
Indeed, weset U= | S | and W= | Z
X \%
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e Cocoercivity of By:

IB1(U) — Bi(W)||* = [|A(A*(y — w) + (S — Z))|* + | A*(y — w) + (S — Z)|”
<1+ AP 1A% (y —w) + (S — Z)|]?
< (14 [|AIP){B1U) = Bi(W) | U — W)gm xgnxsn

-1
Operator By is therefore cocoercive with a cocoercivity coefficient (1 + [|A[|%)

e Lipschitz continuity of Ba:

1B2(U) = Bo(W)|> = |JAX = V)|* + (X = V)|* + | -4*(y —w) — (S — Z)||”
< (4> +1) U -w|?

Operator By is 1/ (1 4 || A||*)-Lipschitz.

We thus apply the Forward-Backward Half-Forward Algorithm (FBHF) [BADI1S|
given in Appendix B on Problem (6.10) as shown in Algorithm 14. We choose the closed
convex set C = R™ x §"! x D to perform the projection, where D is the hyperplane
defined in Section 6.2.2.2. According to Appendix B, the coefficient y is here given by

4
2 4 2
L+ AP + AL + 18] A2 + 17

X:

Algorithm 14: FBHF applied on (6.10)

Input: Set (y(©,80) X(0)) ¢ R™ x §* x §»

Input: Set v € [e; x — €]

Output: X, solution of (P) and (y,S), solution of (D)
1 for k=01, .. do

y(k+1) wik) wik)
2 S( ] JyA yAQN - ~v(B1 + B2) yAL) ;
X (k+1) v (k) v (k)
wk+D) y(k+1) w® y(k+1)
3 Zk+D) ) IIe S( ] + v | B 7k | — Bo S(k+1) ;
Vk+D) X (k+1) v (k) X (k+1)
The projection Il¢ is simply
y y
Ie [ S ] = | g (S)
X Ip(X)

The resolvent J, 4 as computed in Section 6.3.1.1 and the projection onto D was given
in Section 6.2.2.2.

6.3.1.3 ADMM and ADAL

Using (6.9), we reformulate Problem (D) into

min (—=b | y)rm + tsn o 7c(Z)
(D) <= (69) «— (v, S)€Rm xS" " (6.11)
s.t. A*(y)=1Z
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where 7¢ is the affine application such that
(VZeS") 1¢(Z)=C-17Z.
The augmented Lagrangian £, of Problem (6.11) is given by

Loy, 2.X) = (b | y)sn + 157 0 70(Z) + (X | A°(y) = Z)n + 2| 4% () — 2

. X[* 1
A(y)—Z+; - — x|

_ P
~ (b ¥)an + sy 070(2) + 5| -

In Algorithm 15, we apply Alternative Direction Method of Multipliers (ADMM)
on the previous augmented Lagrangian £,, that is we first minimize £, with respect to
(y,Z) alternatively and then apply a gradient ascent with respect to X. It is well-known
ADMM is equivalent to Douglas-Rachford splitting applied on the dual [EB92]. The
computation of the subproblems is done in Appendix C.2.2.

Algorithm 15: ADMM to solve problem (D)
Input: Set X e §" and Z() e $”
Input: Set p € R*
Output: y: solution of the problem (D)

1 for k=0,1,... do

2 | y®HD) o (Aa) T (A(Z®) — p 1 XE)) 4 p 1)

3 | Zk+) O _ sy (C — Ax(y* Dy — p=1x (k) .

4 X(k+1) — X(k) + p(A*(y(kJrl)) _ Z(kJrl)) :
Improvement

Building the Gram matrix of the set (Ai)z’e[[l,m]] in the linear system at line 2 of Algo-
rithm 15 and solving it directly may be costly when m is high. If the matrices (Ai)z‘e[[l,m]]
are sparse, sparse Cholesky factorisation and multi-frontal solvers can be used together
with parallelisation techniques to speed-up the computation time [OCPB16, ZFP117].
Iterative methods such has conjugate gradient method can also be used to solve the linear
system in a fast and tractable manner [WGY10, YST15, OCPB16|. Moreover, empirical
update of the parameter p can be used when stagnation is observed in order to accelerate
the convergence [WGY10|. Those upgrades have been implemented in an alternative of
ADMM named Alternative Direction Augmented Lagrangian method (ADAL) by Wen
et al. [WGY10].

6.3.2 Augmented quadratic objective function

In order to speed up the convergence of the previous methods, we want to find a problem
equivalent to (D) but with a quadratic objective function instead of a linear one. To
derive such a problem, we start from the assumption that the dual variable y is bounded,
which is always satisfied in practice:

GK eRy) [yl <K.
Then Cauchy-Schwarz inequality gives

(=b|y)gm > —[b|K <= (-b|y)rm +[b] K >0.
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Hence, the dual SDP problem (D) is equivalent, in the sense they have the same mini-
mizer y, to the following problem

1
minimize §(<—b | y)rm + ||b| K)2

yEeR™
subject to Ay +S=C (6.12)
S eSSy
We write problem (6.12) as in Section 6.2.2.2
: 1 2
—((-b m + [|b|| K n A* 1
i (b an 4 [BIK) 4 00y () 1y (Ay +8), (613

—/(y,S) =up(y,8)

where D = {(y, S) e R™ x §" | (A* Id) (g) = C}. We then apply Douglas-Rachford

algorithm to Problem (6.13) as shown in Algorithm 16.

Algorithm 16: DougRach+Q, Douglas-Rachford algorithm applied on (6.13)

Input: Set w(® e R™

Input: Set Z(®) ¢ s»

Input: Set v € Ry

Output: (y,S), solution of (D)
1 for k =0,1,... do

(k) (k)
y w .
| (o) oG
wik+D) MONEE O ONY
3 z+1) ) PO (2{gw |~z ) ) T lzm ) ~(sw )

We have already computed the projection IIp in Section 6.2.2.2. The new operator
prox, s is given by (cf. Appendix C.2.3 for detailed computations)

_ 2(yb)am —[bllK)b
prox, (y) =7 14+[[b]? .
S Is (S)

6.3.3 Objective function with a barrier

6.3.3.1 Primal-dual Newton algorithm

Even if their iterations are cheap, the previous proposed proximal methods usually re-
quire a high number of such iterations before convergence occurs. In contrast, interior
point methods converge after a very few iterations, which are however costly for medium
and large scale problems.

In this section, we propose a second order method based on interior point methods.
Hence, we relax the positive semi-definiteness constraint on the primal variable X of (P)
by adding a barrier to the objective function

minimize  (C | X)gn + p1d(X)
{ Xesn . (PM)
subject to A(X)=Db

The barrier function is controlled by a strictly positive real parameter . We start with
a given (%), not too small in order to be able to solve Problem (P,). Afterwards, we de-
crease yu and use the solution of (P,) found with the previous value u!) to solve (P,) with
the new value pt1). As u goes to zero, we obtain a solution of the initial problem (P).
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Solving the inner problem (F,)
We write the Lagrangian of ()

Lu(X,y) =(C | X)gn + puld(X) +(y [ b — AX))gm ,
and we compute its gradient
Vx Lu(X,y) = C — X~ — A%(y)
Vy Lu(X,y) = b — AX).
We write the stationary KKT conditions at optimality

vX EI-L(X7y) =0

We thereby look for the zeros of the gradient of the Lagrangian £,,. We can reformulate
it as the following inclusion problem

0 (Vx Ly x (—Vy L)) (X,y). (6.14)

Note that since the Lagrangian £, is convex in X and concave in y, we look at —Vy £,
instead of Vy £,. The operator Vx £, x (—Vy L) is hence monotone and we apply
Newton’s iteration to solve (6.14), namely

20D — 50 _ ) (g £,(z0),

where 2(¥) = (X(*) y(*)) is the primal-dual variable and M®*) = Mx k) yry is the
Hessian matrix with
X te Xt -4
Mx,y) = A 0 |-
Note that we can add a preconditioner AId to Mx y:

X Tte X —AF
MA—{ A Ad |

We compute the inverse of M)y:

(V(W,v) € S" x R™)(Y(Z,u) € S” x R™)

W\ (Z W= (' X®X)(Z+ A*(v))
A ( v > a <u> - { v=(AE X @X)A* + A1d) (u— A(u'X ® X)Z)

Line-search
For the choice of the step size 7¥), we perform a line-search following [Sal17]

7| 19) (9 L, P @D, ) = V£, | <8P @) 20

where ||.,, is the norm associated to the scalar product (. | M®*).) and J*) is defined as
T0(@® ) = 7280 _ (Y £, (zM).
Note that we can reformulate the line-search criterion by squaring each side
VUV L(JB) = £,(z0) | (MB) (T L,(J¥) = ¥ £,(zM))
< 52<J(k) _ 7k , M(k)(J(k) _ Z(k))> )

If the line-search criterion fails, we update v by multiplying it with a parameter 6 in
10, 1[. Typical values for 6 and § are respectively 0.9 and 0.7.
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Outer loop and update of u

The update of p is a sensitive issue. Indeed, if the variation of p is too quick, the algo-

rithm will not converge. On the other hand, if its variation is too slow, the convergence

will not happen in polynomial time and the method will not be applicable in practice.

Moreover, the optimal update of y depends on the current primal-dual solution of (F,).
Inspired by interior point method, we tried the three following criteria:

o 1Y) = 1M (1 — 7) where 7 is a fix parameter

o uH) = 40 (1 - 01

+1) = (1 — O wi -2 - ; i
o L (1 — a)u'" with « ViE depending on the dimension n of the
semi-definite constraint of (D).
The last option is more efficient but results are still far from the ones obtained from

interior point methods where p is updated according to the chosen search direction.
Algorithm 17 shows the overall algorithm with the inner and outer loops.

Algorithm 17: Newton-PD, Newton algorithm to solve the barrier prob-
lem (P,)

Input: Set (X, y©)) e s x R™

Input: Set (¥ € R, v € R%, 6 €]0,1[ and § € R

Output: X, solution of (P) and y, solution of (D)

1 forl =201, .. do

2 | 20 (XO,y0);

3 for k =0,1,... do

4 Compute (M(k))_1 and V.C“(z(k)) :

5 while 12(V £,,(J®) = V £,(z®) | (M®) ™ (V L,(J®) = ¥ £,,(z)))

< 62(JR) — 2k | M F) () — z2(F))) do

6 AT

4 7® <

8 2" =20 =) £,z ) ;
9 (X D)y D)y o gkt+D)
0 | pY e (1 -a)ul

6.3.3.2 Dual Newton algorithm

We can perform the same steps of Section 6.3.3.1 but on the dual problem only. We first
express the dual of (F,):

max (b [ y)gm + min (C | Xjgn + pld(X) = {y | AX))gm

We solve the minimization with respect to X and we obtain
0=C—A*(y) —pX ' = X =pu(C-A"(y) .
So we have,

max (b | y)gm +pu(C— A"(y) | (C - A*(y)) Hgn — plog(det(u(C — A*(y)) ™))

= npu(1l —log(n)) — nin, —(b | y)gm + plogdet(C — A*(y)).
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We set
Yu(y) = —(b | ¥)gm + plogdet(C — A*(y)),

and compute its gradient and Hessian

Viu(y) = —b — nA(C — A*(y)) ™
V23, (y) = pA((C — A*(y)) ' ® (C — A*(y)) HA*.

We finally apply Newton algorithm to solve the following dual problem arg miny cgm ¥, (y):
* -1 * -1 * -1 * -1 —
y" ) =y®-(A(C - a*y™) @ (C-a'(yW) A (AC-A(yH)) —bu).

Afterwards, we can add a line-search and an update of parameter p such as the ones of
Section 6.3.3.1 as shown in Algorithm 18 where J*) is defined similarly to Section 6.3.3.1:

1
TB (y®) y) =y &) — (M) vy, (y V).

Algorithm 18: Newton-D, Newton algorithm to solve the dual problem
of (P,)

Input: Set y(@ e R™

Input: Set 40 € R, v € R*, 6 €]0,1[ and § € R

Output: y, solution of (D)
1 forl =201, .. do

2 |y <y
3 for k= 0,1,... do
-1
4 sM —(c—ay® )
M®) (A8 @ 8™ a4y
while
k —1 k
V2V (S = Ve (y el ) | (MB) T (T, (JR)) — T, (yik) ) <
k k
2(JW —y | ME (JE) —y ) ) do
7 | v« 0v;
8 Y® ey
—1 -1
9 vy A0 ()T (AP —b(u®) " ;
o || y® eyt
1| a0t e (1 - a)u®

6.3.4 Objective function with a regularization

We look at the following problem
L € 2
ClX)en + = |IX
mipimize  {(C | X)gn + 5 [|IX]
subject to A(X)=Db (Pe)
X e S
where € is a strictly positive real parameter.

In a similar way of Section 6.3.3, we first solve the inner problem (P.) and then
update the parameter € until it comes close to zero for a given tolerance.
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Solving the inner problem (F,)
Let us write the dual of problem (F,):

. € 2 _
max min (C | X)gn + 5 IXI + 157 (X) + {y | b= A(X))zm

_ . n E 2\* * o _
= yrgﬂlgil (LSJr + 5 1|1l ) (A*(y)—C) — (b | Y>]Rm

We set the function 1. such that

(Vy €R™) uly) = (151 + 5 11%) (A" () = ©) = (b | ¥z

and compute its gradient

(fy €B”) TU(y) = b+ Allyy (1) - ©))
We finally compute y by applying gradient descent algorithm:

y D = y®) — 4B <AH51 C(A*(y(’“)) - C)) - b)

Note that an update of the algorithm to solve the inner problem would be to apply
Newton’s method instead of gradient descent. However, this requires to compute the
derivative of the projection on the cone S. Such derivative can be computed [MS06]
but it raises the complexity of the problem.

Outer loop and issue

Finding a suitable updating rule for € is a hard problem. Indeed, the decrease has to
be fast enough to make the convergence occurs after a reasonable time. On the other
hand, if the decrease is too fast, Problem (P.) may be hard to solve. We tried rules
inspired from interior point methods but we did not succeed to obtain a suitable update
rule for e.

§ 6.4 NUMERICAL COMPARISONS

6.4.1 Set-up

We have run the simulations on a standard computer with an Intel I7 CPU running at
3.60 GHz and 32 GB of RAM. We used SeDuMi [Stu99| as implementation of interior
point methods. Since interior point methods are more accurate than first-order methods,
we use the value of the criterion returned by SeDuMi as our reference value.

We generate random SDP problems that have strong duality and that are not sparse.
Unlike SeDuMi, our algorithms do not yet detect infeasibility nor exploit the sparsity of
problem data. These features can be added following the examples of CDCS |[ZFP 17|
or SCS [OCPBI16|.

Solving linear systems

Many algorithms presented involve solving a linear system. We can solve it by caching LU
decomposition of the linear operator since it is unchanged at each iteration. However
we prefer performing a single step of conjugate gradient method which is cheaper for
high-dimensional matrices as advised in [OCPB16|. Performing more steps of conjugate
gradients methods per iteration does not really accelerate the global convergence of the
algorithms.
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Convergence and stopping criterion
For all the tested algorithms, we use the following stopping criterion

¢+ _ (k)

O

where € is a given tolerance and £ is the variable output by the algorithm. Depending
on algorithm, £ may be either X, y, the concatenation of X and y, of y and S, of X and
y,of y, S and X or of Z and w.
Another possible criterion, which is not used here, is the DIMACS [WGY10] for
primal-dual algorithms
max{pinf, dinf, gap} < ¢,

where

AX)—b|

e pinf = I THB] is the renormalized primal infeasibility

e dinf = % is the renormalized dual infeasibility
— bly)rm —(C[X)sn |
® 89D = T bly)an+ (O K)o

is the renormalized duality gap.

It measures the distance to both primal and dual feasible sets as well as the duality gap.
In order to avoid extremely long running time, we set a maximal number of iterations
to 100,000.

We list here the different algorithms to solve SDP problems developed in the previous
sections

1. ADMM: ADMM on dual problem (D) (Section 6.3.1)
2. ADAL: ADAL, a variant ADMM with automatic update of the augmented La-
grangian’s parameter and early exit of the algorithm when stagnation is detected

(Section 6.3.1)

3. CombEck: Combettes-Eckstein algorithm applied on dual problem (D) (Sec-
tion 6.2.2)

4. ChamPockP: Chambolle-Pock algorithm applied on primal problem (P) (Sec-
tion 6.2.1)

5. ChamPockP—+II: Chambolle-Pock algorithm applied on primal problem (P) with
an additional projection (Section 6.2.1)

6. ChamPockD: Chambolle-Pock algorithm applied on dual problem (D) (Section 6.2.2)

7. DougRachP: Douglas-Rachford algorithm applied on primal problem (P) (Sec-
tion 6.2.1)

8. DougRachP+I: DougRachP where the two resolvents are interchanged (Sec-
tion 6.2.1)

9. DougRachD: Douglas-Rachford algorithm on dual (D) (Section 6.2.2)
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10. DougRachD-+AL: Douglas-Rachford algorithm applied on the first order op-
timality condition of the augmented Lagrangian of the dual problem (D) (Sec-
tion 6.3.1)

11. DougRachD+Q: Douglas-Rachford algorithm on transformed dual problem (D)
to get a quadratic objective function (Section 6.3.2)

12. FBHF: FBHF applied on dual problem (D) without the projection on C (Sec-
tion 6.3.1)

13. FBHF+II: FBHF applied on dual problem (D) with the additional projection on
C (Section 6.3.1)

14. FISTA: FISTA on dual problem (D) (Section 6.2.2)

15. Newton-PD: Newton method applied on primal-dual problem whose primal is (P)
regularised with a barrier (Section 6.3.3)

16. Newton-D: Variant of Newton-PD where Newton method is only applied to he
dual problem (Section 6.3.3)

17. RFBPD: RFBPD on dual problem (D) (Section 6.2.2)

18. SGD-D: Steepest gradient descent on the dual problem whose primal is (P) reg-
ularised with § |X|? (Section 6.3.4).

6.4.2 Computational time versus SDP dimensions

We first compare the computational time of the different algorithms depending on the
dimension of the SDP problem to investigate their scalability. Notice that we choose
a(vah)le of m higher than n to foster first-order methods while insuring m is less than
n(n+1

We discard FISTA from our tests since the nested loop calling another FISTA re-
sults into a very slow convergence as shown in Table 6.1. Moreover, we also discard
DougRachD, Douglas-Rachford algorithm performed on the dual problem (D). Indeed
it involves the resolution of a linear system of size n? x n? which is untractable in high
dimension.

Table 6.1: Computational time of FISTA (e = 10*)

n m Computational time
3 2 0.190s
5 3 0.260s
5 7 1.588s
8 5 1.646s
8 10 2.272s
8 27 5.173s

30 20 >12h
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Tables 6.2 and 6.3 show the running time, the number of iterations as well as the
value of the objective function for the different algorithms. Conversely to interior point
methods, the iterates of proximal algorithms are not necessarily feasible points. As a
consequence, we observe some the proximal algorithms return a value of the criterion
lower than the true minimizer as they have not converged yet. Moreover, we notice that
some algorithms are extremely slow to converge and prohibit their use in higher dimen-
sional SDP. Especially, we observe that CombEck, ChamPockP, ChamPockP-+1I1,
FBHF and FBHF+II have not converged yet after reaching the maximum number of
iterations. Moreover, adding an extra projection in ChamPock+II and FBHF-+I1
does not help to speed up the convergence. On the other hand, ADAL, ADMM and
DougRachP+1 are extremely fast and beat the interior point method. We therefore
focus on those three algorithms in the following.

Table 6.2: Computational time of the different algorithms (e = 1074, n = 50)

m =70 m = 600

time (s) iter obj time (s) iter obj
ADAL 0.382 363 -38.423475 0.498 141 841.807956
ADMM 0.146 135 -38.406085 0.874 248  841.807956
RFBPD 12.349 6461 -38.425691 6.252 1116  841.976605
ChamPockP 99.712 100000 -49.821443 206.492 100000 1581.347600
ChamPockP+II 94.104 100000 -49.821443 155.350 100000 1581.347603
ChamPockD 14.475 15480 -38.430796 17.782 11080  841.828828
DougRachP 0.101 68 -38.374347 3.527 148 841.584556
DougRachP+1 0.077 63 -38.297025 0.724 56  841.773766
DougRachD+AL 1.379 1027  -37.796357 4.590 296  842.028312
DougRachD+Q 4.805 3227 -38.436199 154.092 6446  833.078498
FBHF 134.967 100000 -37.127093 353.559 26948  843.035183
FBHF+II 136.501 100000 -37.127093 352.529 26948  843.035183
CombEck 211.599 100000 -38.547321 690.991 100000 -883.063651
SeDuMi 0.127 9 -38.433519 2.082 7 841.801410

Table 6.4 shows the same information for higher dimensional SDP problems. We
first confirm that when n is bigger than m, interior point method is the fastest algorithm
as predicted. Then, we observe that the three first-order methods scale well with m as
opposed to SeDuMi. However m needs to be much larger than n to make first-order
faster than interior point methods; if m is only slightly larger, interior point methods
still converge faster.

The results also show that in lower dimensions, DougRachP+1 is the fastest al-
gorithm albeit it gives the looser criterion. It is due to the fact that Douglas-Rachford
algorithm iterates on an auxiliary variable and not on the variable of interest. Neverthe-
less, in high dimensions, ADMM yields faster convergence and more accurate solution.

We finally remark that SeDuMi has a very low number of iterations compared to
first-order methods. It is a well-known property of interior point methods; they converge
in a very low number of iterations but each iteration may be expensive depending on the
size of m.
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Table 6.3: Computational time of the different algorithms (e = 1074, n = 80)
m = 100 m = 800
time (s) iter obj time (s) iter obj
ADAL 2 705  49.493843 1 86  718.360621
ADMM 1 305  49.492202 1 86  718.375590
RFBPD 103 16677  49.494452 65 3009  718.518761
ChamPockP 290 100000 15.884938 793 100000  909.639582
ChamPockP+II 274 100000 15.884938 663 100000 909.639615
ChamPockD 84 30553  49.503565 284 46304  718.373913
DougRachP 1 103 49.669413 8 77 718.380938
DougRachP+1 <1 71 49.712329 3 65  T718.257126
DougRachD+AL 6 1172 50.684067 21 343 719.396799
DougRachD+Q 23 3660  49.465634 518 4756  718.120190
FBHF 13 2461 117.548962 263 4808  1229.568565
FBHF+-II 13 2461 117.548962 262 4808 1229.568565
CombEck 661 100000 49.379735 2926 100000  714.006605
SeDuMi 1 9  49.484113 9 7 718.363112
Table 6.4: Computational time of the fastest algorithms (e = 107%)
ADAL ADMM DougRachP+I1 SeDuMi
time (s)  iter obj time (s) iter obj time (s) iter obj time (s) iter obj
n = 80
m =50 5 948 168.87 2 421 168.86 18 17056 <1 8 168.84
m =100 3431 330.11 1 192 33011 168 33008 17 33004
m = 450 1 64 564.05 178 56403 2 67 56407 5 7 56403
m = 800 2 84 -887.60 2 86 -887.62 4 60 -887.48 15 7 -887.63
n = 300
m = 200 644 3293 -963.08 133 680 -963.09 20 108 -970.29 39 9 -963.27
m = 500 394 1333 745338 110 350 745275 69 115 7357.07 176 9 7451.81
m = 1500 119 206 2195.97 126 220 2189.42 211 148 2083.70 807 8 2189.06
m = 4000 340 244 7820.09 185 132 7821.39 758 146 7786.32 5125 8 782167
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6.4.3 Computational time versus precision

We are now interested by the impact of the desired accuracy € on the stopping criterion.
Indeed, the accuracy of the solution returned by the SDP solver is critical for SDP
relaxations of rational optimization problems [WNM11, LM18|. Table 6.5 compares
the computational time and the value of the objective function for different values of
precision. We first notice that even with a low desired accuracy, SeDuMi is often
highly precise. It is another well-known property of interior point methods. For first-
order methods, we need to set at least an accuracy of 1073 or 10~ to be close to a
minimum. Furthermore, increasing precision is more and more costly when we approach
a minimum. This effect is even amplified with the slowest first-order methods as shown
in Table 6.6. Here, we notice that increasing the precision blows up the number of
iterations.

Table 6.5: Impact of precision on running time

ADAL ADMM DougRachP+I1 SeDuMi

time (s)  iter obj time (s)  iter obj time (s) iter obj time (s) iter obj
(n,m) = (300,200)
e=10"! 3 23 -851.40 3 23 -851.40 1 3 -1243.83 20 5 -971.47
e=10"2 10 76 -910.07 18 139 -942.08 1 4 -1193.42 27 7 -963.29
e=10"° 262 1693 -961.29 58 385 -961.53 4 15 -1200.92 39 8  -963.28
e=10"* 644 3293  -963.08 133 680 -963.09 29 108 -970.29 39 9  -963.27
e=10"" 792 5226 -963.25 150 1044 -963.25 57 215 -961.96 47 10 -963.27
e=10"¢ 1121 7258 -963.27 253 1447 -963.27 144 467  -963.30 55 12 -963.27
(n,m) = (300, 500)
e=10""1 5 15 7648.86 5 15 7648.86 3 3 6850.18 83 4 52106.29
e=10"2 11 44 7512.45 11 44 7512.45 3 4 7034.06 124 6 7448.59
e=10"° 31 106 7483.64 45 160 7461.44 9 16 6864.28 169 8  7451.78
e=10"" 394 1333 7453.38 110 350 7452.75 69 115 7357.07 176 9 745181
e=10"° 729 2496 7451.97 180 604 7451.88 140 231  7448.16 190 10 7451.82
e=10"6 1044 3575 7451.84 254 887 T7451.83 248 398  7451.56 167 11 7451.82
(n,m) = (300,1500)
e=10"" 10 17 2305.30 10 17 2305.30 9 3 620.82 411 4 31525.00
e=10"2 21 36 2232.00 21 36 2232.00 11 4 1594.80 609 6 2188.62
e=1073 44 76 2204.50 51 88 2197.17 30 18 551.62 706 7 218894
e=10""* 119 206 2195.97 126 220 2189.42 211 148  2083.70 807 8 2189.06
e=10" 825 1435 2189.11 198 345 2189.09 307 215 2185.00 903 9  2189.06
e=10"° 1187 2068 2189.07 270 471 2189.07 413 292 21838.71 1020 10 2189.07
(n,m) = (300, 4000)
e=10"! 40 29  6896.46 41 29  6896.46 59 4 7116.89 2628 4 2628.44
e=10"2 70 51 777171 74 53 TT72.72 62 5 7076.62 3910 6 7821.25
e=10"° 122 89 7808.27 120 87 7817.89 63 5 7076.62 4644 7 7821.53
e=10"" 340 244 7820.09 185 132 7821.39 758 146  7786.32 5125 8  7821.67
e=10"° 508 376 7821.22 553 186 7821.66 888 176  7819.83 6257 9 7821.68
e=10"6 800 582 7821.61 336 243 7821.68 1073 210 7821.52 7541 11 7821.68

Table 6.6: Number of iterations for different values of precision ((n,m) = (80,800))

RFBPD ChamPockD DougRachD+Q FBHF
e=10"3 2213 4458 40 887
e=10""* 3902 46566 41 4752
e=10"° 5752 88073 1862 41533

6.4.4 Comparison on SDP relaxations from polynomial optimization

We now compare our fastest methods on SDP problems which are relaxations of the
unconstrained minimization of random polynomials on 10 variables. Those problems are
generated from the code given in [HM11]. We compare our methods with the augmented
Lagrangian method proposed by [YST15] and implemented in the software SDPNAL.
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Results are presented in Tables 6.7 and 6.8 where we have fixed the relaxation order
to 3 to compare later with the case of constrained minimization. Note that the maximum
number of iterations has been set to 5000. We observe that ADAL, our fastest solver,
shows similar performance with SDPINAL. Moreover, both have a shorter computational
time than the interior point methods SeDuMi.

However, when constraints are added in the polynomial optimization problem, the
computational times of SDPNAL and our first order methods both explode and become
higher than the one of SeDuMi. This is illustrated in Table 6.9 where we add some
polynomial constraints to the previous considered problems and increase the maximum
number of iterations to 20000. We observe that none of the proximal methods have con-
verged before reaching the maximum number of iterations. In this case, both dimensions
n and m are high as explained in the complexity study of Appendix A. Indeed, in the
unconstrained case, we had m = 8008 and n = 286 while in this constrained case, we
still have m = 8088 but now n = 1606.

Table 6.7: Comparison of running time with SDPNAL for SDP problems coming from
relaxations of quadratic polynomial optimization

Time (s) Number of iterations Optimal value

SeDuMi 0.656 7 8.75.1073
ADAL 0.140 123 8.74-1073
DougRachP 0.306 94 8.75.1073
DougRachD 0.318 93 8.75-1073
DougRach+1 0.813 82 8.75-1073
ChamPock+AL 0.597 362 8.75-1073
SDPNAL 0.140 102 8.75-1073

Table 6.8: Comparison of running time with SDPNAL for SDP problems coming from
relazations of cubic polynomial optimization

Time (s) Number of iterations Optimal value

SeDuMi 319 6 6.27 - 1074
ADAL 3 367 6.26 - 10~4
DougRachP 95 286 6.11-10~*
DougRachD 92 282 6.18-10*
DougRach+1 204 53 6.27-107*
ChamPock+AL 20 612 6.03-107*
SDPNAL 1 101 6.27 - 1074

§ 6.5 SUMMARY

From our study of proximal algorithms to solve large-scale SDP problems, we make the
following conclusions: (i) First-order methods are only interesting to solve SDP problems
when m is much higher than n and when n is small enough. Indeed, we have seen that
when both n and m are high, interior point methods are more efficient. Conversely, the
considered methods have a slow convergence that requires a high number of iterations.
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Table 6.9: Comparison of running time with SDPNAL for SDP problems coming from
relaxzations of cubic polynomial optimization with 20 polynomial constraints

Time (s) Number of iterations Optimal value

SeDuMi 1851 25 —-3.29-10%
ADAL 1588 20000 —4.64-10°
DougRachP 13144 20000 —1.20- 10!
DougRachD 12100 20000 —1.20- 10!
DougRach+1 175008 20000 —2.15-10%
ChamPock+AL 2304 20000 —6.43
SDPNAL 2272 20000 —8.85-10°

This may be due to the angle between the cone and of positive semidefinite matrix with
the hyperplane of the linear constraints which makes them almost parallel. Therefore,
we have shown in this section that interior point methods are the most efficient to solve
constrained rational optimization problems such as the ones considered in the other
chapters. (ii) First-order methods converge slowly when the desired precision increases.
This point can be an issue for application to rational optimization as the extraction
algorithm is highly sensitive to noise. This point will be discussed in more details in
Chapter 7. (iii) Among the considered algorithms, ADMM and ADAL are the most
efficient ones.
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TENSOR DECOMPOSITION AND MOMENT PROBLEM

Symmetric tensors are closely related to homogeneous polynomials: for instance, a de-
composition of a symmetric tensor can be seen as the decomposition of a homogeneous
polynomial as a sum of powers of linear forms [BCMT10|. In this chapter, we propose
to interpret the extraction step of rational optimization as the decomposition of a sym-
metric tensor. Both are instances of the same moment problem, i.e. searching for an
R-atomic measure supported on a compact set, some of its moments being known. The
goal of this chapter is to explore this connection in both directions.

§ 7.1 BACKGROUND

Tensors are useful mathematical tools in a wide range of scientific areas. The diffusion
kurtosis tensor is used in medical imaging and the elasticity tensor in physics. Tensors
play also important roles in image authenticity validation, in crystal study, or in quan-
tum physics [BACT15, QCC18|. At the origin of the wide spread of tensors stand tensor
decompositions, which have become fundamental operations in today’s science and en-
gineering. Indeed, due to their high dimensionality, tensors remain difficult to visualize,
to handle, and to interpret. More precisely, tensor factorizations aim at decomposing an
intricate or large tensor into a sum of smaller and simpler atoms that are more easily
interpreted and lead to faster computations. Several decompositions have been proposed
for different applications such as the Canonical Polyadic Decompostion (CPD) or Tucker
decomposition [KB09, SLF17] as well as tensor-train [Osel1] or block-term [SBL13| de-
compositions.

The focus of this chapter is on CPD. The current methods for performing this de-
composition include mainly optimization techniques such as alternating least squares
(ALS) [SLFT17], nonlinear least squares (NLS) [SLFT17|, and unconstrained non-linear
optimization (OPT) [ADK11, SBL12|. A few algebraic methods have also been pro-
posed such as the generalized eigenvalue method (GEVD) [SK90] or methods based on
the decomposition of a homogeneous polynomial into a sum of given powers of linear
forms [CGLMOS].

Moreover, in order to perform the decomposition, all the mentioned methods require
to know explicitly the tensor rank, i.e. the number of atoms in the CPD. Yet, finding the
true rank is difficult, as it is known to be an NP-hard problem [HL13]. Furthermore, any
error in the sought rank can yield dramatic consequences, as the set of tensors of given
rank does not form a closed set. Common rank estimation methods are based on opti-
mization problems using the nuclear norm as a surrogate for the rank [RFP10], Bayesian
models [ZZZ716], or on matrix unfoldings such as balanced matricization [SLF117].

87
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In this chapter, we deal more specifically with the CPD of a symmetric tensor,
which has application in blind identification of under-determined mixtures [CGLMOS§|
for instance. Applications of symmetric tensors to machine learning can also be found
in [AGH"14] and applications to other areas in [QCC18]. Note that, for symmetric
tensors, one can introduce the notion of symmetric rank, which is also NP-hard to
determine [HL13] but has the benefit to be computable by some existing algebraic meth-
ods [BGI11]. Although, the rank and the symmetric rank may be different [Shil8|, they
are equal in many cases.

We first propose an alternative moment-based approach for CPD that offers theo-
retical guarantees to determine the symmetric rank as well as a method to recover the
generating vectors of the CPD of a symmetric tensor. Our method has the advantage
to provide a necessary and sufficient condition to obtain the true rank whereas for in-
stance, rank-revealing matrix unfoldings [SLF*17] give only a sufficient condition. Note
that the authors in [TS15] suggest also to reformulate the minimum rank CPD problem
as a generalized problem of moments. Nevertheless, their approach is different as the
moment problem is relaxed into a hierarchy of convex semi-definite programming prob-
lems using Lasserre’s hierarchy, the dual problem of which provides certificates for the
correctness of the CPD. Experiments are restricted to small dimensional tensors, which,
from our experience, is related to the heavy computational load of Lasserre’s hierarchy.
In contrast, our proposed method scales well for medium to high dimensional tensors.
On the other hand, the extraction of the generating vectors is grounded on methods for
solving polynomial systems based on algebraic results, which allow us to solve a moment
problem. Theoretical results guarantee that the retrieved CPD is exact. The algebraic
methods in [BBCM13, Niel5, Niel7| yield similar result but provide a completely dif-
ferent perspective based on a sum of given powers of linear forms that requires a heavy
theoretical background. Although similar in spirit, the simplicity of our method may
provide further insight and accessibility.

Secondly, we adopt the reverse viewpoint: we use CPD algorithms to solve a moment
problem. This is especially of interest in the context of rational and polynomial opti-
mization while performing the extraction of the global optima. Indeed, we show here
that this extraction is equivalent to performing a CPD on a specific tensor. The extrac-
tion method [HLO5| used so far and recalled in Appendix D, shows good performance
when the truncated moment vector is estimated with a high accuracy and has a sufficient
size. However, if the recovered moments are subject to a small perturbation, it yields
inexact results. We thus use the prolific literature on CPD to propose an extraction
method which is more robust to noise as shown experimentally. An additional benefit
of using those CPD algorithms is the reduction in dimensions of the relaxation to be
solved, which results in a lighter computational load.

This chapter is organized as follows: Section 7.2 recalls basic definitions for tensors
and their CPD. Section 7.3 reformulates the CPD of a symmetric tensor as a moment
problem and reviews the main tools to solve the latter problem. Based on these tools,
Section 7.4 derives a necessary and sufficient condition to determine the rank of a sym-
metric tensor illustrated by a practical signal processing application, while Section 7.5
proposes a new algebraic CPD algorithm. Section 7.6 expresses the extraction method
of Appendix D as the CPD of a symmetric tensor. It then exposes a robust extraction
algorithm for rational optimization problems based on tensors decomposition algorithms.
The benefits of our proposed approach are exposed numerically on a few examples.
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§ 7.2 TENSOR DECOMPOSITION

We consider in this chapter tensors as multidimensional arrays. The dimension d of those
arrays is called the order of the tensor. A tensor T is hence an element of the product
of d vector spaces that can be indexed using a d-tuple i = (i1, ...,i4). We consider here
only tensors that are defined on the product of d real spaces R**!. The entries of the
tensor are thereby denoted by (7;,... i d)o <iyooig<n’ Matrices are a special case of tensor
of order 2. Moreover, in this chapter, we deal with symmetric tensors only, i.e. tensors

whose entries (7;1:-~~7id)0<i1 ig<n 8T€ unchanged by any permutation of the indices.

7.2.1 Canonical polyadic decomposition

Let 7 denote a tensor of order d on R"*! with d an even integer higher than or equal
to 4. A tensor is said to be symmetric rank-1 if it can be expressed as

————

d times

for a vector v = (vi)ie[[o,n]] of R™1, that is [V®d]le iy = Vit - Vig-
The CPD problem that we consider consists in finding a decomposition of 7 into a

finite sum of rank-1 tensors, 7 = Zil v(r)®?, or equivalently

Tivia = D _ Uiy (1) .05, (1) . (7.1)

r=1

The symmetric rank', denoted by rankg 7 is the minimum number of terms required
in any representation of 7 as above. To determine the CPD of T, we first detect its
rank R and then look for an approximation of rank R, that is we determine the vectors
(v(r)),ep,ry- Notice that, since d is strictly higher than 2, Decomposition (7.1) is unique
up to the order of the generating vectors (v(r)),cpy gy as well as their sign. This is in

contrast with the matrix case [SLF*17].

7.2.2 Dehomogenization
We make the following assumption, which is not restrictive in most applications,
Assumption 1. (31 € [0,n])(Vr € [1,R]) wvi(r) #0.

Thence, by normalizing each vector v(r) with its I*" coordinate, Decomposition (7.1)
can be expressed in the equivalent form

_ v \* _§ o
T_ZATQW)) = Aau(r)®, (7.2)

r=1 r=1

where u(r) = (Z;((:)) e, Ui}‘l(lg), Ul;l(lT()T) e 1;)7((:))) is the dehomogenization of v(r) and

Ar = v;(r)% is a coefficient that is positive since d is even. The coordinate index [ € [0,7]
used for the above normalization is the same for all . With no loss of generality, we
take [ = 0 in the following but all the results still hold for any other index [ after an
adequate permutation of coordinates.

In the following, rank will systematically mean symmetric rank.
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7.2.3 Re-indexing of the tensor elements

Due to the symmetry assumption, the order of the indices in i = (i1,...,%4) has no
influence on the value of the tensor elements 7;, . ;,, which are uniquely defined by
specifying the number of times each index value appears in i. More precisely, to any
d-tuple i = (i1,...,1q), we associate an n-tuple a(i) = (aq(i),...,an(i)) of NJj, where
for each j in [1,n], o;(i) is the number of times the index value j appears in i. Note that,
since the order of the tensor is d, the number of times the index 0 appears is uniquely
defined by a through d — |a|. We therefore index our tensor with a in N/} instead of i
and define the tensor values

Ti = Tagi) -

In the following, we simply write T4 instead of T ;) for readability.

Example Let us take a tensor T of order 4 in R? (d = 4 and n = 2). This example runs
through this chapter to illustrate the different concepts. The natural description of any
symmetric tensor is by its coefficients 7;,iyigi, With 0 < 41,49,13,724 < 2 and the latter
coefficients are unchanged by any permutation of {ij,ia,i3,74}. We can equivalently
describe the same tensor with the indices a1, s counting the number of occurrences of
1 and 2 respectively. For example, with oy = 1, 22 = 1 we have

T11 «— Too12 = Too21 = To102 = To120 = T1002 = T1020 = T1200 = T2001 = T2010 = T2001 -

Note that the number of times the index 0 appears is equal to d — (a1 + ag) = 2, as
already mentioned.

§ 7.3 CPD AND MOMENT PROBLEM

This sections gives an interpretation of Decomposition (7.1) as an integral with respect
to a measure supported on R points.

7.3.1 CPD as a measure integration

Following the re-indexing in 7.2.3, and with the dehomogenization performed in Sec-
tion 7.2.2, the rank R decomposition in (7.1) also reads

R
Tt nan = Z vo(r) 1My (1) Loy ()
r=1

R R
= X ()™ (1) =D Au(r)*. (7.3)
r=1 r=1
Now, we write (7.3) in an equivalent integral form
Ta=F0n,on = /xau(dx), (7.4)

where pu is the discrete positive measure
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defined on n variables and supported on the points (u(r)), ¢ gp- Such a measure, which
is concentrated on a finite set of R points, is referred to as an R-atomic measure. Finding
the vectors (u(r)),c gy and the coefficients (Ay),cp gy of the CPD is hence equivalent
to determining the R-atomic measure p in (7.5).

Notice that the right hand side of (7.4) is the moment of order a of the measure p.
Therefore, (7.4) shows that finding a CPD of a symmetric tensor 7 as in (7.1) is equiva-
lent to the estimation of a discrete measure p from its moments of degree up to d. This
is a truncated moment problem similar to the one encountered in Appendix D during
the extraction step where the minimizers of the rational problem are extracted from the
solution to SDP relaxations. We can hence leverage the tools from truncated moment
problems [KN77, CF96|, and especially the extraction method, to find a CPD of the

tensor 7.

Example In the example provided in Section 7.2.3, the elements of 7 are moments
up to degree 4 of a 2-atomic measure g on x = (x1,x2). Table 7.1 represents some of
the monomials corresponding to those moment along with their corresponding tensor
elements expressed with both kinds of indexing.

Table 7.1: Tensors elements and related moments

Tensor Moment
elements monomials x
Toooo oo 1
Tooor %10 1
Tooo2 o1 T2
Too11 a0 z3
Too12 T11 122
Toozz To2 3

7.3.2 Moment matrix

An important tool for solving the truncated moment problem (7.4) is the moment matrix
M. of order k = % defined in Chapter 3. Here, this matrix is built from the tensor 7
such that

(Ve 8) € (N)*) (M) (a9 = Tara

where the multi-indices o« and 3 are arranged with respect to the graded lexicographic
order. Hence, the matrix My contains all the moments up to degree d = 2k of the
measure y. Its number of rows and columns are both N = (";k), i.e. the number of
moments up to degree k.

Furthermore, for any integer [ such that £k — [ > 1, we define the moment matrix
My_; of order k — [ as the leading principal submatrix of My of size ("?il_l), i.e. the
matrix composed of the ("Zﬁ;l) first rows and columns of M.

We notice that the moment matrix only contains N? terms which is smaller than
the n? terms of the original tensor or of its matricization. This is an important point
since moment matrices are the primal tool of our moment framework to solve CPD.
Table 7.2 compares the dimensions for some values of n and d. For n = 1 and n = 2,
the moment matrices contain more elements than the full tensors but those cases are not

challenging in terms of computation and memory. However, the dimension of moment
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matrix becomes much smaller for higher n at any order d, which is a significant gain in
terms of memory storage requirements when compared to rank estimation methods that
require the full tensor or its matricization [SLF*17].

Table 7.2: Comparison of the number of element in T and My

n+1
2 3 4 5 6 8 10
n® 16 81 256 625 1296 4096 10000
d=4 N2 36 100 225 441 784 2025 4356

nd 64 729 4096 15625 46656 262144 1000000
d=6 N2 100 400 1225 3136 7056 27225 81796

Example We proceed with our example from Section 7.2.3. We build the following
moment matrices from the tensor T with respect to the lexicographic ordering:

%0 T To2
M, T30 To1r T2
31 T2 To3

M- —
2 Too T30 T31 Tuo T3z Too

T Tor To2 a1 Tar T3
To2 T2 Toz T2 Tz Toa

with
%o T Tor
M; = [%90 T2 Tn
o1 T To2

Remark: We assumed that d is an even integer. However, this is not a restriction to

our method. Indeed, odd order tensors can be handled identically by setting k = %.

The moment matrix hence contents all the moments up to degree d — 1. Note that some
elements of the tensors are then not used.

Kernel of the moment matrix

As we will see in Section 7.5, a key element to estimate p from (7.4) is the kernel of
the moment matrix My which is defined as

KerMj, = {p € RY | Myp = 0} .

The moment matrix My, is indexed by the pair of multi-indices (o, 3) in N} x N'. Since
each multi-index a corresponds to a monic monomial X%, we can associate to each vector
p in the kernel of the moment matrix My, a polynomial p such that

(Vx e R") p(x) = Z Pax®.
acNy
7.3.3 Solving the truncated moment problem

To solve the moment problem corresponding to the CPD of T, we rely on the following
important result on the moment matrices from [Lau08, Theorem 5.29].
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Theorem 6

If My, is positive semi-definite and if the rank of both My, and My_1 are equal to R, then
the moments they contain represent a unique R-atomic measure whose support are the
zeros of the polynomials associated to the kernel of M.

Based on Theorem 6, Section 7.4 links the tensor rank to the ranks of its associated
moment matrices and offers a necessary and sufficient condition in contrast to other
methods such as matrix unfoldings. On the other hand, Section 7.5 details how to use
this theorem to extract the generating vectors of the CPD by exploiting the kernel of
the moment matrix M.

Note that, in our context, the necessary positive semi-definiteness condition for a
matrix to be a moment matrix is always verified. Indeed, since 7 admits a CPD, there
exists an unknown integer R and vectors (v(r)),¢p gy satisfying (7.1). A corresponding
positive measure p can thus always be defined as in 27.5). Then, we have

(VvaeRY) a'Ma= Z aa03% o+
lo|<K,|B|<k

= Y aaap [xp(ax)

|| <K,|B|<k

— [ m0u(x = 0

where p, is the polynomial p, = Z‘ ol <k aaXx®. It follows that the moment matrix My
that we defined for a tensor is always positive semi-definite.

§ 7.4 TENSOR RANK DETECTION

Using the tools of Section 7.3, we provide here two results concerning the rank detection
of a symmetric tensor before illustrating them on numerical examples.

Since the points supporting the measure p in (7.5) are the generating vectors of the
CPD, if the rank condition in Theorem 6 is verified, we obtain that R is also the rank of
the tensor 7. This gives the following result that provides a sufficient condition on the
moment matrices My and Mj_4 for certifying the rank of the corresponding symmetric
tensor T

Corollary 1
The tensor T has rank R if its moment matrices of order k and k — 1 both have rank
equal to R:

(rank M =rankMy_; =R) = (rankg7 =R).

Corollary 1 offers a conceptually simple tool to get the rank of a tensor. Indeed,
we can first build the associated moment matrix My, from 7, then extract the principal
submatrix My_; and finally check whether their ranks are equal. The conditions for
which this corollary is applicable are discussed in more details below and an extension
is given.

7.4.1 Extended detection result

Since the order k of the moment matrix needs to be non-negative to make sense, the
matrix than My_; is defined for £ > 2 only. This means that our detection method can
only be applied to symmetric tensors of order at least d = 4.
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Furthermore, Corollary 1 cannot be used to detect ranks exceeding the size of the
moment matrix My_1. It can thus only be used to detect rank values smaller than
(”;ﬁ;l) The tensor rank can be greater since, to our knowledge, the lowest rank upper-
bound is (nzd) (see |[CGLMOS|). The rank value restriction of our method is hence
R< ("Zﬁ;l) Note that for a tensor of order 4, it reduces to R < n + 1. In large tensor
data, and in many applications where a low rank representation of the tensor is looked
for, our result may however provide interesting guarantees.

When the tensor rank is known in advance to have smaller rank than the size of

Mj_1, the following reciprocal of Corollary 1 holds

Corollary 2
Under Assumption 1, if R < (”+k 1), we have the following equivalence

(rankg T = R) <= (rankMj =rankM;_; =R) .

The proof of the equivalence in Corollary 2 results directly from a theorem proved by
Curto and Fialkow [CF96, Theorem 7.10]. Nevertheless Assumption 1 must hold. Indeed,
dehomogenization is always possible when M}, and Mj_; have same rank. Conversely,
if 7 has rank R but Assumption 1 does not hold, then rank M_; may be different from
rank M}, as shown by the following counterexample.

Counterexample Let 7 be a tensor of order 4 on R? with rank 2. Hence, 7 reads:
T =v(1)® 4+ v(2)®*.
We assume that both vp(1) and v1(2) are equal to zero. Therefore, we have:
Toooo = To = vo(1)* + vo(2)"* = v(2)*

(2)

(1)

(1%01(1) +v0(2)°v1(2) =0
Too11 = To = vo(1)?v1(1)” + v0(2)*01(2)> = 0

(1) ’

(1)

3
Tooo1 = ‘31 =vo(1)° 1

(
+op(2u1(2)* =0
Tiinn = %4 = o1 (1) +01(2)* = vy (1)*

To111 = T3 = vo(1)v1 (1

The moment matrices M; and My are thus given by:

A w(2)* 0 0
M, = [”0%2) 8] S Me=| 0 0 o0
0 0 v (1!

We notice that rank M; is equal to 1 while rank M5 is equal to 2.

7.4.2 Numerical results

For numerical illustration, we generate randomly rank-R tensors by drawing their CPD
vectors (v(r)),cp gy according to a uniform distribution on [0, 1",

7.4.2.1 Importance of rank detection

Most of the standard algorithms to perform CPD require as input, the rank of the sought
CPD.

To show the importance of rank detection, we compare the relative error between
a tensor of known rank and the CPD returned by algorithms ALS, NLS, OPT, and
GEVD for various input ranks. For the latter algorithms, we use the implementation
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Figure 7.1: Relative error of the CPD

from Tensorlab 3.0 [VDS*16]. The relative error between tensors 7 and 7 is used to
assess the quality of the CPD and it is defined as

relative error =

where ||.|| » is the Frobenius norm.

Figure 7.1 shows the average relative error on 100 random tensors of rank 5, order
4 and dimension 30 for the different input ranks. We can notice the sensitivity of the
algorithms to the input rank. More specifically, the algebraic method GEVD shows
a high improvement potential when the true rank is known. Similarly NLS shows a
particularly good performance for the real rank value. This shows the importance of a
correct rank detection and thus of our method, which can be used to find directly the
rank of a given tensor before feeding it into a CPD algorithm.

7.4.2.2 Finding the rank of a symmetric tensor

We now look at the numerical rank of moment matrices to verify that Corollary 1 applies
well in practice. We compute the rank of the tensor through the ranks of moment
matrices M, and Mj_; and if both are equal, then this delivers the rank of the tensor.

On four different examples with different tensor ranks, Figure 7.2 plots the first twelve
singulars values of the moment matrices, normalized by the largest singular value o;.
We observe a significant drop after the same singular value for both moment matrices.
We can conclude that they have the same numerical rank and infer that this rank is also
the rank of the tensor.

We then generate 100 random rank-7 tensors of dimension 20 and of order 6. Fig-
ure 7.3 shows the ratio of the successive singular values (sorted in decreasing order)
o5/06, 06/o7 and, o7/og of My, without noise and in a presence of an additive zero-
mean Gaussian noise of variance 104, In both case, we observe a gap in the ratios that
indicate a rank of 7 for the moment matrix. We observe a similar gap for M3 which
shows that our method detects the rank of the tensor correctly.

In conclusion, for noiseless or moderate level of noise scenarios, we observe that My
and Mj_; always have same rank under conditions of Section 7.4.1. We therefore can
determine the rank of the corresponding tensor and confirm that Corollary 1 leads to
satisfactory numerical results.
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7.4.2.3 Application to cumulant-based source separation

We consider the cumulant tensor of a random vector y such that
y=As+w

where A € R™ % is an unknown matrix, w is a white Gaussian noise with zero-mean,
and s is a vector of R independent random variables. In our experiments, we draw the
elements of A according to a uniform distribution on [0,1] and the elements of s take
value —1 or 1 with equal probability.

Our goal is to retrieve the number of sources R from several samples of the observation
vector y. It is known [Com10] that the tensor of cumulant of order 4 follows a CPD

R
Cum (ys, y7, yeo ) = Y Air Ajr Ay Ay Cumn(s,).
r=1

We use the empirical estimation of moments to compute the estimated cumulant ten-
sor, which is a noise-corrupted version of a low-rank tensor. We then apply our method
to detect the low rank model and thereby recover the number of sources. Table 7.3
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Figure 7.4: Average relative error depending on noise variance (R = 3)

shows the percentage of cases where the number of sources is correctly detected over 200
runs. For each of them, 100,000 samples of vectors y of size 20 are generated, for various
variance values of the noise w. We detect the rank numerically in the moment matrices
by a gap of 10% in the ratio of successive singular values. We then feed the detected
ranks into NLS, ALS, OPT and GEVD algorithms and look at the CPD they returned.
Figure 7.4 plots the average relative errors for the four algorithms in the case of three
sources.

Table 7.3: Percentage of successful detection of the number of sources

Number of sources R

Variance of the noise 3 4 5
0 100% 97%  69%
1-1076 100% 97%  69%
1-1074 100% 97%  69%
1-1072 100% 97%  69%
1-1071 100% 95%  57%

We note that even with a reasonable level of noise, the moment matrices have still
the same rank that corresponds to the rank of the tensor. The method shows satisfactory
results for low rank tensor corrupted with noise. Nevertheless, we observe that the higher
the rank, the higher the sensitivity to the estimation noise and the higher the number of
samples must be. Figure 7.4 also shows that algebraic methods such as GEVD are more
sensitive to the noise despite their good performance in the noiseless case.

§ 7.5 EXTRACTING THE CPD VECTORS

This section deals with the recovery of the support of the measure u, or equivalently the
vectors in the CPD, from My. Results from Section 7.3.3 guarantee the existence of the
measure p satisfying (7.4). Moreover, we assume that we know the rank R of the tensor
T and thus the rank of Mj. It can be detected using a rank detection method such as
the one from Section 7.4.
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7.5.1 Eigenvalue method and CPD generating vectors

According to Theorem 6, the vectors (u(r))reHl, R] forming the support of the sought
measure p are the common zeros of the polynomials with coefficients in Ker My, that is

(u(r),ep,ry = {x €R" | (Vp € KerMy) p(x) =0}.

Finding the generating vectors of the CPD is therefore equivalent to solving a multivari-
ate polynomial system.

The eigenvalue method transforms the original polynomial system into a linear alge-
bra problem. Despite being described in a few places [HLO5|, this method seems to be
widely ignored by the signal processing community. We briefly describe here the different
steps in our context. A more general and theoretical explanation of the method can be
found in [CLOO5].

The first step consists in computing through Gaussian elimination the reduced row
echelon form of My, which is an upper triangular N x N matrix whose last N — R rows
are composed solely of zeros. Dropping the last N — R rows of zeros, we note U the
obtained R x N matrix and (uq) aeN? its N column vectors. We then read from U the
column multi-indices of the pivot elements. We get R pivots whose indices are denoted
by (:67“)7«6[[1, R]" We have then the following result:

Theorem 7
For every i in [1,n], the i-th coordinates of the R points (u(r)),cpi gy are the R eigen-
values of the matrices N; extracted from U such that

Ni = [u51+ei e uIBR+ei] .

where €; is a multi-index of N™ whose all elements are equal to zero except its i-th element
which is 1.

This result is a direct application of Stickelberger eigenvalue theorem |[CLOO05, The-
orem 4.5]. The matrices (Ni)ie[[l,n] are called the multiplication matrices. The origin of
this name can be found in [CLOO05].

Example The moment matrix Ms corresponding to the example from Section 7.2.3 is
a 6 X 6 matrix that can be seen indexed by the following ordered set

N3 = {(0,0),(1,0),(0,1),(2,0),(1,1),(0,2)} .

We then obtain its reduced row echelon form, e.g.

1 0 0 uwp wug wuy
U=(0 1 0 u2 U5 U
0 0 1 wug wug wug

We read out the indices of the pivots

ﬁlz(0,0), /32:(170)) /33:(0’1)7

whence the corresponding multiplication matrices

0 u wug 0 ug wuy
N1 = |1 Uz us| , N2 = |0 us us
0 us Ug 1 Ug U9

Note, for instance, that the second column of Ny is u(y ).
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7.5.2 Computation of the eigenvalues of (N;);.; 1

Since multiplication matrices all commute pairwise, they preserve the eigenspaces of
each others. A numerically stable way to compute their eigenvalues based on Schur
factorization [CGT97] is then available and summarized below.

First, build a random linear combination Ny, of the matrices (N;);cpy ]

Nh = Z a,;N,; y (76)
i=1

where (ai)ie[[l,n]] are randomly chosen real numbers summing up to one. Now, a key
point is that the left eigenspaces of Nj need all to be one-dimensional in order to avoid
to miss any points in the support of p. Since the rank of the matrix My is R, this
holds almost surely [CLOO5] for any random choice of the (a;);cpy , With absolutely
continuous probability density function. Following [CGT97], the left eigenspaces of Ny,
are then found by computing an ordered Schur decomposition QTQ' of Ny, where
Q is an orthogonal matrix and T is upper triangular. The coordinates of the points
(u(r)),eq, gy are thus given by

(Vi € [1,n])(vr € [1,R]) w(r) = aq, Niq,,
where q; is the r-th column of matrix Q. The sketch of the extraction method is provided

in Algorithm 19. Finally, the weighting coefficients (Ay),.cpy gy of (7.2) can be retrieved
as explained below.

Algorithm 19: Extraction of CPD vectors
Inputs : Moment matrix My and rank R of T
Output: Vectors (u(r)), e gy generating 7

1 Compute the reduced row echelon form of My and extract U ;
2 Find the column indices of the pivots in U ;
3 Read multiplication matrices (N;);¢cp ) from U ;

4 Find the common eigenvalues of the multiplication matrices:

5 Compute a random combination Ny, of the multiplication matrices as
in (7.6) ;

6 Compute the ordered Schur decomposition QTQ" of Ny, ;

7 Read the i-th coordinate of points (u(r))re[[LR]] by computing Q' N;Q :

7.5.3 Retrieving the coefficients (Ar)re[[LR]

In order to retrieve the coeflicients ()‘T)re[[l, R]y We solve a linear system. We select
randomly S samples from both the original tensor 7 and the R rank-1 tensors generated
from each vector u(r). We stack the samples of 7 into a vector b of R® and the samples
from the R rank-1 tensors into row vectors of a matrix A of RS We then find the
least squares solution to the overdetermined linear system AAX = b using a least squares,
to retrieve the vector A that contains the values of ()‘T)re[[l, R]- Sampling the tensors
is a cheaper alternative than flattening the whole tensors, especially when the tensors
have high orders or dimensions. We typically choose a number of samples S equal to ten
times the order of the tensors 10d.
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7.5.4 Decomposition of high order tensors

For high order tensor, it may not be necessary to build the full moment matrix My to
retrieve a CPD. In fact, the rank condition in Corollary 1 can be verified for moment
matrices M; and M;_; with [ much smaller than k£ = % The additional moments
contained in My but not in M; thus do not bring more information on the measure
w1 and hence on the CPD. Since the dimension N of the moment matrix is increasing
exponentially with the order k, it is computationally interesting to look whether the rank
condition in Corollary 1 is full-filled by the principal submatrices This is equivalent to
building the moment matrix associated to a subtensor of 7. Indeed fixing some indices
in i, we can take a slice of 7 and get a smaller order symmetric tensor. We then apply
our moment framework to this slice.

For instance, decomposing a tensor 7 of order n = 6 on R3% of rank R = 4 using our
method takes around 560 seconds. On the other hand, if we take a slice of T of order 4
by fixing the indices i5 and ig and build the corresponding moment matrix, Algorithm 19
takes only 3 seconds. In both cases, we retrieve the correct generating vectors with an

accuracy higher than 1075,

7.5.5 Numerical experiments
7.5.5.1 Performance of the proposed method

We generate each symmetric rank-R tensor 7 randomly by drawing the coeflicients of its
vectors (v(r)),c g) from a uniform distribution on [—1,1]. We then apply our method

to retrieve the CPD of 7 and denote by 7 the tensor reconstructed from the computed
CPD. We assume that the rank R is known (using any existing rank detection method)
and we focus only on the retrieval of the generating vectors in the CPD.

For each test case, we run 100 simulations and show only the average results. To
assess the quality of the reconstruction, we use the relative error between tensors 7 and
7. Moreover, we also compute a score inspired by [BKT17] to evaluate the reconstruc-
tion quality. The score measures the similarity between the original generating vectors
(v(r))rep,ry of a symmetric rank-R tensor and the vectors (¥(r)), ¢ gy obtained after
computing its CPD. It is computed as the product of the correlation between the vectors

(V(T))re[[l,R]] and (\7(7“))%[[175,}]7 namely

Thereby, when the score is close to 1, the vectors (‘A’(T))re[u, ] are strongly correlated
to (v(r)),ep,z) and the CPD is accurate. However, if the score is close to 0, the CPD
yields a poor quality decomposition.

Table 7.4 shows that our method can accurately reconstruct the CPD of a symmetric
tensor for various combinations of dimension, order and rank. The running time is still
fair and scales well with the order or the rank of the tensor.

Figure 7.5 shows several cases where the data in the tensor are corrupted with an
additive i.i.d. zero-mean Gaussian noise. We first perform a truncated SVD of My at
rank R before applying Algorithm 19. For a low noise level, the score is very high, close
to 1; the CPD is exactly retrieved. Indeed, in the noiseless case, the decomposition
returned by our method is guaranteed to be exact in contrast to some methods such as
ALS. However, as the variance increases, the score reduces, the CPD is not accurate
anymore and we lose any guarantee. Furthermore, for given dimension and order, we
observe that the lower the rank, the lower the sensitivity to the noise.
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Table 7.4: Quality and reconstruction time of our method

n+1 d R Relative error Time (s)
10 4 10 4.10e-12 0.02
30 4 10 7.62e-12 7.11
50 4 10 4.51e-12 178.3
100 4 10 9.95e-12 13818
30 4 5 7.83e-13 3.97
30 4 30 1.20e-11 20.27
30 5 10 7.16e-13 7.27
30 6 10 9.06e-13 7.30
[ euguns R=15
—R=10
0.8 -R=5
—R=2
o 0.6
3
PDo4
0.2
0 """""""""
1073 1072 107! 10°

Noise standard deviation

Figure 7.5: Reconstruction score for noisy tensor (n = 29,d = 4)

7.5.5.2 Comparison with other methods

We now compare our method to state-of-the-art CPD algorithms, especially the imple-
mentation of ALS, NLS, OPT and GEVD from Tensorlab 3.0 [VDST16]. Table 7.5 shows
a comparison of the relative error for the different algorithms and several different types
of symmetric tensors. Results for GEVD have not been reported as they are similar
to results for our method. Generally speaking, algebraic methods retrieve faithful CPD
but, as shown in Figure 7.5 for our method, are sensitive to noise. On the other hand,
Table 7.5 shows that methods based on optimization strategies are much less accurate
than our method for exact decomposition.

§ 7.6 ROBUST EXTRACTIONS OF GLOBAL SOLUTIONS IN POLY-
NOMIAL OPTIMIZATION WITH TENSOR CPD

In the previous sections of this chapter, we have interpreted the CPD of a symmetric
tensor as a moment problem and we have used the tools from the moment problem to
perform the CPD. However, we adopt in this section the reverse point of view and we
propose to use the CPD literature to solve a specific moment problem: the extraction of
the global minima in rational and polynomial optimization presented in Chapter 3. The
standard extraction method, detailed in Appendix D, is similar to Algorithm 19 and thus,
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Table 7.5: Comparison with standard CPD methods

Tensor features Relative error

n+1 d R ALS OPT NLS Our method
10 4 10 9-107% 2.-1072 1-1073 4-10710
30 4 10 1-1072 2.107%2 5.107* 8.10712
50 4 10 1-1002 2-1072 1-107% 5-10712
100 4 10 1-1072 7-1073 8-107° 1-10713
30 4 5 7-107% 2.107! 1.10°3 8.10713
30 4 20 4-107% 5-1072 3-.10°* 1-10711
30 4 30 4-107% 5-1072 4.107* 1-1071

shows the same advantages and weaknesses. Namely, although providing very accurate
results in a noiseless context, the standard extraction method requires the knowledge of
enough moments in order to recover the measure . solution of the infinite-dimensional
moment problem, i.e. a sufficiently high relaxation order, and it is highly sensitive to
noise on the moments. The two latter drawbacks limit its practical use. Indeed, since the
dimensions of SDP problems increase exponentially with the relaxation order, solving
them with a sufficient order is often computationally too intensive for state-of-the-art
SDP solvers and one has to settle for the solutions at the first orders of relaxations. As
a consequence, we have access only to a limited number of moments which are moreover
approximations to the true moments of u,. In this context, the extraction method
in [HLO5| either fails due to the lack of some moment values, or extract minimizers
far from the global optima of the original rational problem due to the perturbation on
the moments. Therefore, a robust extraction method is required for many practical
applications of rational optimization in order to retrieve the exact global minimizers.
A first robust extraction has been proposed by Kleb et al. [KPV18] and is based
on functional analysis and the Gelfand-Naimark-Segal construction. We propose here a
different approach based on the connection from Section 7.3 between moment problem
and tensor CPD. Namely, we suggest to use robust CPD methods such as NLS to solve
the moment problem corresponding to the extraction of the solutions.
In this section we consider the generic rational problem (2.1):
J* = minimize @
x€RT q(x) (2.1)
subject to x € IC,

where p and ¢ are polynomial functions on R and K is the basic semi-algebraic set
defined in (3.2). Following the methodology of Chapter 3, we lift Problem (2.1) into
the moment problem (3.4) and relax it into a hierarchy of SDP problems that are solved
with a SDP solver. The optimal solution to the order £ SDP problem is denoted y* (k) =
(yf;(k:))aeNQTk and it corresponds to all the moments up to degree 2k.

7.6.1 Benefit of using interior point methods

Many state-of-the-art SDP solvers rely on interior point methods. Those methods have
the advantage to return as a solution an interior point, i.e. a point y*(k) in the relative
interior of the optimum face of the feasible set. It can be proved [Lau08, Lemma 1.4] that
the corresponding moment matrix returned by the SDP solver then has maximum rank
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Input: a polynomial optimization problem

|

Generate SDP relaxation of order &

|

Solve the SDP relaxation
and get the solution y*(k)

|

Build the tensor ¥ such that T, = v} (k)

|

Compute the CPD of rank R of the tensor ¥

|

Dehomogenize the CPD solutions

Output: The R solutions
of the polynomial problem

Figure 7.6: Solving polynomial optimization problem with a robust extraction method

among all the matrices which are solutions to the SDP problem. This is an important
feature as it guarantees [Lau08] that all global minimizers of (2.1) can be recovered from
y*(k). Indeed, the rank of the moment matrix, and thus of the tensor 7 built from
v*(k), is equal to the number of global optima of (2.1). Having a maximal rank solution
implies that no minimizers will be missed after performing the extraction. The choice of
the SDP solver is therefore important for the extraction.

7.6.2 Robust extraction methods

We showed in Section 7.3 that the extraction problem is equivalent to finding the CPD
of a symmetric tensor. Thereby robust tensor CPD methods can be used to perform the
extraction instead of the algorithm in [HLO5|. Especially, many algorithms relying on the
minimization of a fit function instead of algebraic tools such as ALS or NLS have been
developed to recover faithfully tensors corrupted by noise, even when some elements are
missing [VDSL14].

Hence, after solving the SDP relaxations of order k, we build the symmetric tensor
T out of the solutions y*(k) of the SDP problem by setting To = v (k) as shown in
Figure 7.6. This tensor can be seen as a noisy subtensor of the infinite tensor of rank
R containing all the moments of the sought measure p,. Therefore, we apply robust
CPD algorithms to get a better approximation to the rank R infinite tensor and enhance
the quality of the global optimum of the polynomial problem. Hence, using a moment
vector from a low order of the hierarchy, we can avoid huge computational burden while
obtaining accurate global minimizers of Problem (2.1).

An important remark is that many CPD algorithms require the prior knowledge
of the rank R of the tensor decomposition which implies, in our context, to know the
number of solutions to Problem (2.1).
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7.6.3 Cases Study

7.6.3.1 A simple polynomial optimization problem

Let us take the following simple polynomial optimization problem from [HLO5]

minimize — (21 —1)* — (23 — 1)? — (23 — 1)?
x€R3
2
s.t. 1—(z1—-1)">0 (7.7)
1—(22—1)*>0
1—(z3—1)?>0

Problem (7.7) has eight global minima

] =(0,0,0) x5 = (2,0, x5 =(0,2,0) x; = (0,0,
CU::): ) 70) xg:(27 72 x;: 9y $§:(2, ) )

and the optimal value is —3. Notice that it is not a convex problem. We use Glop-
tiPoly [HLLO9| to perform the relaxation into SDP problems and to extract solutions
using the algebraic method [HLO05|. Those SDP relaxations are solved by the SDP solver
SDPT3 [TTT99|. We compare the extraction method from GloptiPoly with the imple-
mentation of NLS from Tensorlab [VDS*16]. We choose NLS as it gives better results
than ALS and OPT.

Extraction method from GloptiPoly. We first apply directly Lasserre’s framework
in GloptiPoly to solve Problem (7.7). At the relaxation orders £k = 1, k = 2, and
k = 3, we do not have convergence in Lasserre’s hierarchy and the extraction method
fails. Indeed, at those orders, there are not enough moments in y*(k) and thus the
extraction procedure from [HLO5| fails while extracting the multiplication matrices from
the moment matrix. More precisely, in Theorem 7, the multi-index 3,.+e; may be greater
than the dimension of the moment matrix My and thus the multiplication matrix N;
cannot be extracted from it. The certificate of convergence is obtained for the relaxation
order £k = 4 and the algebraic extraction procedure hence retrieves the eight solutions
and the optimal value with a precision higher than 1074

Robust Extraction using NLS. On the other hand, instead of the standard algebraic
method, we extract the solutions by applying the NLS algorithm on the tensor generated
by the moment vector y*(k) for k = 1, k = 2, and k = 3. At each order, we retrieve
the eight approximate solutions listed in Table 7.6. Furthermore, Table 7.7 shows the
value of the criterion at optimality for the solutions extracted with NLS and GloptiPoly,
respectively. We observe that, by applying NLS on the tensor corresponding to y*(3), we
retrieve the eight global solutions and the correct optimal value at a precision higher than
10~%. Therefore, there is no need to solve the SDP problem of order k = 4. Moreover,
at the order k = 2, NLS gives already a good approximation within an accuracy of 107"
that can be enough in several applications. The same conclusion holds for the optimal
value: it is clear from Table 7.7 that the optimality is not reached in the hierarchy at
k = 3 since the obtained optimal value is —2.94 instead of —3. However, using NLS
as an extraction method yields the correct optimal value with an accuracy higher than
10~*. We yet remark that the lower bounds J;, J5, and J3 all equal the optimal value
-3.
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Table 7.6: Extraction of solution of Problem (7.7) using NLS (accuracy of 1074)

k=1 k=2 k=3
—0.0116 0 0
2t | —0.0110 0 0
—0.0459 0 0
1.0835 1.9998 2
x5 | —0.1286 0.0006 0
—0.2224 0.0015 0
—0.2187 0.0002 0
x5 | 1.1305 1.9994 2
—0.2055 0.0015 0
—0.1728 0.0002 0
z; | —0.1758 0.0006 0
0.9500 1.9985 2
1.3728 2.0006 2
zt | 1.2453 2.0017 2
—0.3417 —0.0044 0
1.4839 2.0006 2
zi | —0.3589 —0.0017 0
1.5066 2.0044 2
—0.3968 —0.0006 0
zt | 1.5726 2.0017 2
1.5603 2.0044 2
4.7932 1.9984 2
z; [ 5.2755 1.9957 2
47767 1.9862 2

Table 7.7: Value of the criterion at the extracted global minima (accuracy of 1074)

-3.1395 -3.0001 -3.0000

-2.7751 -2.9954 -3.0000

-2.9556 -2.9954 -3.0000

. -2.7604 -2.9954 -3.0000

Using NLS -1.9994 -3.0135 -3.0000

-2.3375 -3.0135 -3.0000

-2.5927 -3.0135 -3.0000

-4.6932 -2.9666 -3.0000

Using GloptiPoly -1.2762 -2.5297 -2.9401
Lower bound from GloptiPoly -3 -3 -3
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7.6.3.2 Blind source separation application

We consider a blind source separation problem similar to the one of Section 7.4.2.3.
Namely, we observe a vector y according to the model

y=As+w

where A € R™* is a mixing matrix, w is a white Gaussian noise with zero-mean, and s
is a vector of R independent random variables. The vectors s and w as well as the matrix
A are all unknown. However, we assume in the following that w and s are independent.
We aim at recovering the source vector s from a given number of samples of y. To
do so, we look for a left inverse of the mixing matrix A. We hence want to solve the

following polynomial optimization problem [Com10]:
maximize ‘Cum4(uTy)‘
ucR” (78)

subject to uTRyu =1,

where Ry is the covariance matrix of y and ‘Cum4(uTy)‘ is given by:

‘Cum4(uTy)’ = Z ’Uiujukulcum4(3’)i,j,k,l‘ :
(i7j7k7l)€H17Q]]4

4th

If the distribution s has independent components and is not Gaussian, then its order

cumulants are nonzero and all global solutions u. of Problem (7.8) are such that
GrelLRD) |u[A|=e, (7.9)

where e, is the vector of R whose elements are all equal to zero except its r-th element
which is 1. Note that Problem (7.8) is a polynomial problem which has R global solutions
(2R if the sign indeterminacy is taken into account). In practice, we use the empirical
estimates of the cumulant tensor Cum?(y) and of the covariance matrix Ry .

Let us illustrate our methodology with R = 5 and n = 5. We draw the elements of A
according to a uniform distribution on [0, 1] and the elements of s take value —1 or 1 with
equal probability. The variance of the noise w is set to 0.1. We generate 1,000,000 sam-
ples of the vector y and estimate the covariance matrix Ry and the cumulant Cum4(y).
We then solve Problem (7.8) using GloptiPoly [HLL09] and SDPT3 [TTT99|. From
relaxation order 3 to relaxation order 7, GloptiPoly is not able to recover the global
solutions as the extraction method from [HLO5| fails. We only obtain a noisy truncated
moment vector and a lower bound of the optimal value. Nevertheless, since Problem (7.8)
has many solutions, we cannot directly read the first order moments. Moreover, compu-
tation limits prohibit the use of higher relaxation orders. We therefore build the tensor
corresponding to the truncated moment vector for the relaxation order 3 and perform a
CPD on the latter tensor using the implementation of NLS from Tensorlab [VDST16].
The solutions of (7.8) are obtained by reading the generating vector of the CPD.

NLS requires as input, the tensor and the rank of the CPD, which is the number
of solutions of Problem (7.8). In our numerical application, the theoretical number of
solutions is 2R = 10. Table 7.8 shows the ten solutions obtained after performing the
CPD together with their corresponding vector e,, the value of the criterion and the
value of the constraint. Note that the lower bound at the order 3 has the value —2 which
confirm we have obtained global solutions.

Remark: If the dimension n is greater than R, than there is a continuum of solutions
to Problem (7.8). Indeed, for any solution w,, the affine space w, + Ker(AT) is also
a solution. However, if additional constraints are considered, it is possible to use our
proposed method.
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Table 7.8: Solutions to Problem (7.8) extracted from the SDP relaxation of order 3
using a CPD (n=5, R=15)

Solution u, Vector e, Criterion value Constraint value

—1.1225 1

0.4673 0

1.0796 0 -2.0000 1.0000
1.1697 0

—0.3323 —1-1076

1.1225 -1

—0.4673 0

—1.0796 0 -2.0000 1.0000
—1.1697 0

0.03323 1-1076

—0.1056 —-1-1076

1.1335 1

—0.1775 -3-107 -2.0000 1.0000
—1.8194 0

0.8228 -3-10

0.1056 1-1076

—1.1335 -1

0.1775 3-1076 -2.0000 1.0000
1.8194 0

—0.8228 3-1076

0.2016 3-1076

2.1834 —7-1076

—1.4173 1 -1.9999 1.0000
0.6765 0

—0.7927 —1-1076

—0.2016 -3-10

—2.1834 7-1076

1.4173 -1 -1.9999 1.0000
—0.6765 0

0.7927 1-1076

1.8057 —2.107°

2.1418 1-1076

—1.2604 2.1076 -1.9999 1.0000
—3.2253 1

—0.8676 7-1076

—1.8057 —2.107°

—2.1418 —-1-1076

1.2604 —2.1076 -1.9999 1.0000
3.2253 -1

0.8676 —7-107

0.0071 —6-1076

—4.9901 5.1076

2.0384 2.107° -1.9998 0.9999
2.4953 4.107°

1.5310 1

—0.0071 6-1076

4.9901 —5-1076

—2.0384 —2.107° -1.9998 0.9999
—2.4953 —4.107°

—1.5310

-1
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This application illustrates that our proposed extraction method allows to retrieve
all the global solutions at a low order of relaxation in contrast to the standard one.

§ 7.7 SUMMARY

In this chapter, we have studied the link between tensor decompositions, the moment
problem and polynomial optimization.

We have first reformulated the CPD of a symmetric tensor into a moment prob-
lem. By using the moment matrix, we have provided a tensor rank detection method
as well as an algebraic algorithm to extract the CPD generating vectors. Our rank de-
tection method relies on the estimation of the rank of the moment matrix, which has a
smaller dimension compared to the matrix obtained by unfolding the tensor. Our pro-
posed methods both provide theoretical guarantee and are highly accurate in a noise free
context.

Then, we have proposed to use optimization-based tensor decomposition methods
in order to perform the extraction step in Lasserre’s hierarchy. While the standard
extraction method works well with a sufficiently large and accurate moment vector, it
often returns wrong results if the latter is noisy. Interpreting the extraction as a tensor
decomposition, we have used optimization-based CPD methods that are more resilient to
noise. As a result, we have solved polynomial optimization problem at a lower relaxation
order, thus decreasing the computational complexity of the relaxed SDP problem.
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CONCLUSION

§ 8.1 SUMMARY

Within this thesis, our main focus has been on the application of rational optimization
to different signal processing applications. This has led us to investigate three main
problems.

e First, we have used the recent advances in polynomial optimization to solve intri-
cate signal processing problems. While such problems are usually solved approxi-
mately, our goal has been to tackle them directly. Our objective has been to find
the exact global solutions to the problem.

In Chapter 3, we have started by recalling the basis of Lasserre’s hierarchy that
relaxes a rational problem into a sequence of convex problems whose optimal values
converge to the one of the initial problem. This method is especially interesting
as it provides theoretical guarantees to recover all the global minimizers. Then,
we showed through a complexity study, how the structure of the problem can
decrease the overall computation and memory complexity. More specifically, if the
objective function can be expressed as a sum of rational functions sharing only a
few variables, the complexity can be decreased drastically.

In Chapter 4, we have applied the method developed in Chapter 3 to an inverse
problem that arises in chromatography. Namely, we have considered the recon-
struction of a sparse signal deteriorated by linear and nonlinear degradations, a
Gaussian noise, and a subsampling. We have proposed criteria involving non-
convex but exact relaxation of the ¢y function in order to promote sparsity. We
have shown that those criteria are all piecewise rational and thus, the correspond-
ing variational problems can be reformulated as rational optimization problems.
Moreover, we have proved that the latter problems have a structure that can be
exploited using our method from Chapter 3. Then, we have derived the com-
putational complexity of our optimization method and we have discussed several
ways to decrease it. Numerical simulations illustrate the domain of applicability
of the method and its high potential for finding a good approximation to a global
minimum.

In Chapter 5, we have extended the method developed in Chapter 4 in several
directions. We have first adapted our method to handle Poisson-Gaussian noise
instead of Gaussian noise. We have also proposed a more accurate approximation
to the log-likelihood of Poisson-Gaussian distribution based on an accurate ratio-
nal approximation of the log term. Moreover, instead of considering only sparse
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signals, we have extended our method to signals that are sparse in a transformed
domain. We have shown that our approach provides better reconstruction results
than standard ones for two different types of application, namely the reconstruction
of sparse signals and of visible light communication signals.

On the other hand, we have extended the model of Chapter 4 in order to make
it robust to outliers. Especially, we have demonstrated how to handle various
common convex and nonconvex robust functions in our criterion. Moreover, we
have considered a different structure on the sought signal: we have assumed here
that the signal is in a union of subsets. The latter assumption results in nonconvex
constraints that are hard to handle in the state-of-the-art methods whereas it has
several applications. We have expressed this assumption in a polynomial form and
solved the overall problem using the method of Chapter 3. We finally have provided
numerical simulations that illustrate the good quality of the signal reconstructed
through our method.

In a second part, we have studied several proximal algorithms to solve large-scale
SDP problems. Although interior point methods are the current state-of-the-art
solvers for SDP problems, they are quickly limited when they have to deal with
the high-dimensional SDP relaxations of rational problems. They are currently the
bottleneck of the method developed in Chapter 3 and our goal was therefore to
find a more adapted algorithm to treat such SDP problems.

In Chapter 6, we have applied several common proximal algorithms as well as
some more advanced ones on the canonical formulations of SDP problems. We
have applied these methods on the primal and the dual problems. We also applied
primal-dual methods. Then, we have proposed several reformulations of SDP prob-
lems in order to speed up the convergence. Two second-order methods inspired by
interior point algorithms have also been developed. Finally, numerical comparisons
between the proposed methods and an interior point method implementation have
been conducted. They illustrate that proximal methods outperform interior point
methods when the number of linear constraints m is high while the dimension of
the semi-definite constraint n is kept low. Among them, ADMM and ADAL are
especially efficient. However, they also show that when both m and n are high,
interior point methods are still faster and more accurate than proximal methods.
Unfortunately, the latter case corresponds to the SDP relaxations of the rational
problems we have considered in Chapters 4 and 5.

Finally, we have explored the connection between polynomial optimization and ten-
sor decomposition through the moment problem. More specifically, we have shown
that the extraction step in polynomial optimization and the canonical polyadic
decomposition of a symmetric tensor are both instances of the moment problem.

In Chapter 7, we have explored this fruitful link in two different ways. By inter-
preting the CPD of a symmetric tensor as a moment problem, we have proposed
a method to find the symmetric rank of a symmetric tensor by using tools related
to truncated moment problems. We have hence obtained a necessary condition to
deduce the tensor rank. Numerical simulations have been performed on a blind
source separation example. We have also proposed an algebraic method that guar-
antees to recover the generating vectors of the CPD. Our method has shown to
be quite competitive with other common decomposition algorithms in a noiseless
context.

On the other hand, we have proposed an alternative approach to the standard
method for performing the extraction of the solutions in polynomial optimization.
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By interpreting the extraction as a tensor decomposition problem, we have used
robust methods to perform CPD in order to extract the global solutions at lower
relaxation orders. Using robust extraction allows to use lower relaxation orders in
the method of Chapter 3 and thus, alleviate the computational burden. This point
has been illustrated along a case study.

In the next section, we suggest several directions to extend the aforementioned results
that could be investigated in future works.

§ 8.2 PERSPECTIVES

We propose here some possible extensions of our signal reconstruction framework of
Chapter 4.

Extension to longer signals: Using the structure of signal processing problems,
we showed that we could handle medium size signals. The next step would be to
handle large signals. The signal could be split into overlapping chunks of small size
before we apply our framework to reconstruct each chunk. The whole signal could
then be reconstructed with a method to piece together the different chunks. For
instance, the overlapping part of each chunk could be averaged. This point has
been sketched in Section 4.6.4.3 but a thorough study should be conducted.

Extension to 2D signals: Our signal reconstruction method could be extended
for images. The latter could be split into overlapping small patches, say of size of
15 x 15, before applying our method. The patches would be then glued together
by averaging the values of overlapping pixels.

Extension to complex signals: By interpreting complex numbers as a vector of
two real ones, our reconstruction framework could be used to reconstruct complex
signals such as the ones obtained after a wavelet of a Fourier transform. A successful
application of Lasserre’s hierarchy to handle complex variables and data can be
found in the work of Josz [Jos16].

Extension to trigonometric polynomials: In this work, we have considered
only polynomial expressed in the canonical basis. However, the use of trigono-
metric polynomials is particularly fruitful in many applications such as filter de-
sign [Dum07|. Trigonometric polynomials can also a suitable way to handle com-
plex signals.

Comparison of the different criteria to find the global minima of f, + \/:
In order to quantify the improvement of our method, it would be interesting to
compare the minimization of fy + R with the four nonconvex regularizers given
in Section 4.2.2 and the minimization of fy + Af;. All the minimizations have to
be done with our proposed method in order to show the benefit of the nonconvex
regularizations to promote sparsity.

Moreover, a comparison of the minimization of the criterion fy 4R with the mini-
mization of f;}n—i-/\ﬂl and f;}n—k)\ﬁo could be performed, where f;,m is a linearization
of the function fy. This comparison could show the interest of considering a non-

linear function ® in our model instead of a linearization of it.

In Chapter 5, we considered Poisson-Gaussian noise as well as outliers. We suggest

here some research direction concerning other noise models that can be handled by our
framework. Moreover, we provide possible extensions of the union of subsets model we
considered.
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Reconstruction under impulse noise: Recent approaches to handle impulse
noise following Levy alpha-stable distributions rely on rational data fit and ratio-
nal regularization terms of low degrees [CF18, CHNO04| This particularly fits the
framework we developed in the first part of this thesis.

Mixture of models: The union of subsets model could also be used to handle
mixture of models. For instance, we could consider a collection of models that fit
different part of a signal. However, we would not know which model corresponds to
a given part of the signal. This problem can be formulated as a union of subspaces
problem to which our framework could apply.

In Chapter 6, we explored several algorithms to solve the high-dimensional SDP we obtain
from our framework. However, they were not able to outperform interior point methods.
We suggest some directions which could improve our proposed proximal algorithms.

Burer-Monteiro factorization: The Burer-Monteiro factorization consists in
replacing the symmetric positive semidefinite variable X in a SDP problem with
the rectangular matrix U such that X = UUT. It is particularly well adapted
when a low rank solution is sought as the matrix U then has only a few columns.
Nevertheless, it leads to a nonconvex problem that is then solved with standard
proximal methods that guarantees only to find a local extremum. Some recent
works have been searching for conditions for which retrieving global optimum is
guaranteed [WW18, BVB19|. Together with the robust extraction proposed in
Chapter 7, it could be an alternative to solve SDP relaxations for Lasserre’s hier-
archy.

Acceleration scheme: Some acceleration schemes for ADMM and ADAL have
been proposed recently [PL19|. Although they have not been designed to solve
SDP problems specifically, these accelerations could speed up ADMM and ADAL
enough to beat interior point methods at solving our SDP relaxations.

Loop unrolling: Unrolling several iterations of iterative algorithms before re-
placing them by layers of a convolutional neural network has recently shown great
success [BCCT20, MJU17|. The main benefit of this method is to adapt param-
eters for each iteration. It could be used to replace our proximal algorithms in
order to solve high-dimensional SDP problems faster than interior point methods.
However, the number of iterations to unroll is hard to determine at first glance
and a correct data set of SDP problems needs to prepared in order to train the
network.

Distributed SDP solvers: A recent trend to solve high-dimensional SDP prob-
lems are the distributed solvers [MKL18, KL15]. Those approaches could be used
to handle the high-dimensional SDP relaxations emerging form Lasserre’s frame-
work. However, they require a dedicated computation infrastructure and cannot
be used on a standard laptop or desktop.

In Chapter 7, we limit our studies to tensors defined on product of real spaces. However,
the CPD and its associated algorithms like NLS are well-defined for tensors with complex
values. An extension of our work to complex-valued tensors could be performed.
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COMPLEXITY OF THE RELAXED SDP PROBLEMS

We detail here the computation of the complexity of the SDP relaxation of Chapter 4,
i.e. the quadruple (n, m,mg,¥), depending on the initial data like U, L and T as well as
the relaxation order k.

§ A.1 NUMBER OF BLOCKS

The number of blocks in the matrices C and (A;),cpy,,p in (3.8) is given in Equa-

tion (3.13). In order to solve (4.13), we introduce U + T measures and thus I = U 4+ T
n (3.13). We now determine the number of localizing matrices 7; in each measure which
is equal to the number of polynomial constraints defining the set ;. Equation (4.15)
gives T; constraints for the definition of each set K; associated to the measures (/‘u)ue[[l,U]]
while (4.16) gives 1431 constraints for each set K; associated to the measures (v¢),ep1 77-
Indeed the polynomial equality constraint in (4.16) is translated into two polynomial in-
equality constraints. The first L — 1 measures ('L‘u)ue[[l,U]] are defined on a number T;
of variables smaller than L due to the convolution filter. In the following, we neglect it
for the sake of clarity and assume that 7; is equal to L for all the measure (Hu)ue[[l,U]]'
Considering the above elements, Equation (3.13) finally becomes

ms=U(1+L)+T(2+3I).

It is interesting to notice that the relaxation order k£ does not have any effect on the
number of blocks; it only increases the size of the blocks.

§ A.2 NUMBER OF LINEAR EQUALITY CONSTRAINTS

We then count the number of linear equality constraints in (3.12), without considering
the redundant ones. For u belonging to [1,U — 1], 6, denotes the overlap parameter
defined as the number of variables shared between g, and g,+1. Note that 6,, depends
on u but also on the length of the filter L and on the parameter of the decimation §.
Furthermore, we remark that all the rational functions (gu)ue[[l,U]] have same degree at
their numerator and denominator. We denote their denominator by q,, and we define
dg = dg,-
Following Section 3.2.4, we need to consider e uahty of moments of monomials in 6,

variables up to degree 2(k —d,), which glves 6“+ k dq equahty constraints for every u
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in [1,U — 1] on consecutive measures (/‘u)ue[[l,U]]- Adding the linear constraints linking
moment related to (pu)yepr oy and (¥)yeqr g, We finally obtain

U-1
Oy + 2(k — dy)
(= I 2(k — do)T
> ("ot ) 2t dorr
u=1

where d¢ corresponds to (1.1) for the maximal degree of the denominator of rational
function (Ci)ie[[l, - The impact of linear equality constraints on the computational time

of SDP solver is minor compared to n, m and ms.

§ A.3 DIMENSION OF THE GLOBAL MOMENT VECTOR

Considering (/‘u)ue[[l,U]] as U measures on L variables and (Vt)te[[l,T]] as T measures on
1 + I variables, it follows from Equation (3.14) that

L+ 2k 1+1+2k
m—U< ok >+T< o )

§ A.4 DIMENSION OF THE SEMI-DEFINITE CONSTRAINT

The measures (ftu),eq1,p are on L variables while the measures (v¢),cpy rp are on 1+ 1
variables. Since all the polynomial constraints defining the sets (Ici)ie[[l U] are linear
or quadratic, the value of ds; in (3.15) is equal to 1 in this case. Finally, Equation (3.15)
yields

e () e CE)) e () roean(G 1))
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OPTIMIZATION BACKGROUND

Let (M, (.| .)2) be a Hilbert space.

§ B.1 MONOTONE OPERATORS

We recall here some definitions for operators.

Definition 1 (Power set)
Let X be a set.
The power set 2% of X is the family of all subsets of X.

Definition 2 (Graph of an operator)
Let M be an operator from the set X into the power set 27,
The graph of M s defined as

graM ={(z,y) e X x YV |ye M(x)}

Definition 3 (Monotone operator)
Let M be an operator from H into its power set 2.
M is monotone if

(V(z,u) € graM)(V(y,v) € graM) (z—y|u—v)y >0

Definition 4 (Maximally monotone operator)

Let M be an operator from H into its power set 2.

M is mazimally monotone if there is no monotone operator T from H into 2% such that
graT contains gra M.

Definition 5 (Cocoercive operator)
Let B a strictly positive real, D be a non-empty subset of H and let M be an operator
from D to H.

M is B-cocoercive if BM is firmly non-expansive,
(V(z,y) €D X D) (z—y|M@) = M(y)u > BM(z) - My)|*.

Definition 6 (Resolvent of an operator)
Let M be an operator on H.
We define the monotone operator Jaq associated with the operator M such that

Ju=M+1d)™? (B.1)

This operator is the resolvent of M.
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§ B.2 CONVEXITY AND SUBDIFFERENTIAL

Some definitions and properties related to convex optimization are remind in this section.

Definition 7 (Convex conjugate)
Let f: H — R be a function.
Its convex conjugate f* is defined as:

(VyeM) [ (y) =suply | z)n — f(z)
z€H
Definition 8 (Moreau subdifferential)
Let f : H —] — 00; +00] be a proper function.
The Moreau subdifferential of f, denoted Of, is defined as:

(VeeH) Of(x)={uveH|[(VyecH){y—z|wn+f(z)<[f(y)}

Property 1 (Monotonicity of the subdifferential)
Let f : H —] — 00; +00] be a proper function.
Then Of is a monotone operator.

Property 2

uedf(x) = x€df(u)

Corollary 3
Let f be a proper convex lower semi-continuous function.
Then,

uedf(x) <= zedf(u).

It implies that (Of)~" = af*.

Let H1 and Hgy be two Hilbert spaces., f and g be two proper functions respectively
from H; to RU{oo} and from H; to RU{oo}, and L be a bounded linear operator from
Hq to Hs.

Property 3 (Addition and pre-composition with linear mapping rule)
If f and g are convex semi-continuous and int(dom(g)) N L(dom(f)) is not empty
Then,

(Vo € Hi) Of(z)+ L*(9g(L(x))) = O(f + go L)(x)

Definition 9 (Proximal operator)
Let f : H —] — 00; +00] be a proper convez function.
The proximal operator of f is defined as:

. 1
(Ve € H)  prox;(z) = argmin f(y) + 5 [ly — =3
yeH

Property 4 (Subgradient characterisation of the proximal operator)
The proximal operator can be characterized using the subdifferential:

e v=proxs(z) <<= 0€df(v)+v—z
e v=prox,s(z) <<= 0€df(v)+3(v—2z)

ov:prox}g(m) <~ 0€df(v)+ B(v—=x)
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Remark: (Link between proximal operator and resolvent)

v =proxs(r) <= 0€df(v)+v—=x
= rev+0f(v)
= xz € (0f +1d)(v)

—  v=(0f +1d) (2
Hence prox; is equal to (0f + Id)f1 which is Jsy, the resolvent of Jf.

Property 5 (Moreau’s decomposition formula)
This formula generalises the decomposition by orthogonal projection on subspaces.

® z = prox,(z) + prox .« (z)
o & = prox,;(z) + Aprox,-i /(A1)

o= prox?(:n) + B! pI"OX?,:l(B:E)

§ B.3 SOME FORMULAE

We recall in this section some common formulas that are used in Chapter 6.
e Projection on an affine set X = {x € H | Az = b}:

My(z) =z — A*(AA*) " (Az — b)

Subdifferential of an indicator function of a set X

Oy (z) = Ny (x)

Convex conjugate of an indicator function of a set X

ty(y) = SEE@ | 2)n
T

Resolvent at x of the subdifferential of an indicator function of a set: X

Jroun (@) = Hx(z)
e If X is a non-empty convex cone, then

(x —2) e Ny(2) <= z=Ixy(2)
§ B.4 PROXIMAL ALGORITHMS

We present in this section, the proximal algorithms used in Chapter 6.

e Douglas-Rachford Splitting [LM79]:
Let ‘H be an Hilbert space and A and B two monotone operators on H.
We want to solve the following monotone inclusion problem

Find x in H such that
0€ A(x) + B(x). (B.2)
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Algorithm 20: Douglas-Rachford algorithm

Input: Set (9 e H
Output: z, solution of (B.2)
1 for k=201, .. do
2 L 2k H1) JyA (2nylgz(k) — Z(k)) + z(k) — JVBz(k) ;

3z Jpzth)

e Chambolle-Pock Algorithm [CP10]:
Let Hy and Ho be two Hilbert spaces, A and B two monotone operators on respec-
tively H1 and Ho, and L a linear operator from i to Ho.
We want to solve the following monotone inclusion problem

Find x in H; such that
0€ A(x)+ Bo L(x). (B.3)

Algorithm 21: Chambolle-Pock algorithm
Input: Set (z(9,4©) € H; x Hy
Input: Set 6 € [0,1]
Output: z, solution of (B.3)
70 = 200 .
for k= 0,1,... do
D e (4 + o La0) |
P o (209 7 Ly
D) g (kt1) 6 (ak+! — k) ;

(k1)
6 x+ kD) .

[S NI VA

e Forward-backward algorithm [BC11]:
Let ‘H be an Hilbert space, A is a maximally monotone operator on ‘H and B is a
[-cocoercive operator on H.
We want to solve the following monotone inclusion problem

Find z in H such that
0€ A(x) + B(x) . (B.4)

Algorithm 22: Forward-Backward algorithm

Input: Set (0 ¢
Input: Set v €]0,20]
Output: z, solution of (B.4)
1 for k=201, .. do
2 L g® D T4 (z® — 4Bz ®)

e Forward-Backward Half-Forward Algorithm [BAD1S|:
Let H be an Hilbert space and A, By and By are operators on H.
We assume that A is maximally monotone, B is S-cocoercive and Bs is K -lipschitz
and monotone.
We want to solve the following monotone inclusion problem

Find z in H such that

0 € A(x) + Bi(z) + Ba(x) . (B.5)
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Let C be a closed convex and non empty subset of an Hilbert space H.

Algorithm 23: FBHF
Input: Set (z(9,2(0) e H x H
Input: Set v € [e, x — €]
Output: z, solution of (B.5)
1 for k =0,1,... do
* D T (2% — 4 (By + Ba)z®)
Lk+1) e (:L,(k-‘rl) + "Y(BQZ(I{:) _ Bgl’(k+l))) :
k1) p(+1) g (zh+1 — k) ;

—(k+1) .
5 ¢ gkt .

W N

The step-size 7 has to be chosen in [¢; x — €] where x is given by

4p

X = :
1+4/1+1668%2K7
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DETAILED COMPUTATIONS FOR SDP

§ C.1 SDP WEIRD CASES

For n = 2, we set
X — [x1 wa}

Tro I3
For n = 3, we set
r1 T2 I3

X = To T4 Xy
T3 Ty Te

C.1.1 Case 1: Feasible and bounded primal without solution

We set the following SDP problem of dimensions n =2, m =1

0 -1 2 -1
N T e Y
The semi-definite constraint in (D) gives

C—yA, es? X—[ 2 y_l}esi

y—1 =2y
—dy—(y—1)>>0
(y+1)><0
ye = -1

Ll

Hence the optimal value of the dual objective function is —2.
On the other hand, the affine condition in (P) gives

<A1‘X>§n:b = x3=x2+1

The value —2 is obtained in the primal objective function if and only if x5 = 21+ 1. The
semi-definiteness of X implies that its determinant is positive and thus gives

(2 —)(z2+1) —23>0 = —1>0.
This is impossible. We conclude that the optimal value —2 is never reached.
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C.1.2 Case 2: Feasible dual without solution

We set the following SDP problem of dimensions n = 2, m = 2

O R e A RS S

The semi-definite constraint in (D) gives

1
C—y1A1—y2A2€Si — X:[yll y]ESi
2

= y1+y2>0 and wyyo>1
= y1=>0

The dual problem maximises —y, thus the optimal value of the dual objective function
is 0. However, there is no feasible point satisfying y; = 0.
Looking at the affine constraints of (P), we obtain

<A1 ’ X>Sn =—-1 = x1=1 (Cl)
The semi-definiteness of X thus gives o = 0 and we derive that the primal objective
function optimal value is equal to 0. There is no duality gap.
C.1.3 Case 3: Feasible dual and infeasible primal

We set the following SDP problem of dimensions n = 2, m = 2

SR R R R AL

The semi-definite constraint in (D) gives

C—y1A1—y2A2€Si - X—{_zl _5/2]683_
=2

= 1 <0 and y%ﬁ()
= 11 <0 and y2=0

Therefore the optimal value of the dual objective function is 0.
The affine constraints of (P) gives two conditions on X

<A2 ‘ X>Sn =2 = 1x9=1 (C4)

The semi-definiteness of X thus gives —1 > 0, which is impossible. The primal problem
is infeasible.

C.1.4 Case 4: Non-zero duality gap at optimality

We set the following SDP problem of dimensions n =3, m =1

100 010 000 0
Al_ooo,Ag_loo,c_ooo,b_H
000 00 2 00 1
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The semi-definite constraint in (D) gives
—y1 —Y2 0
C—yA; —pAeST = X=|-yp 0 0 |es?
0 0 1-— 2y2
— <0 and 25<0
= y1 <0 and Yy =0
Therefore the optimal value of the dual objective function is 0.
Looking at the affine constraints of (P), we obtain
(A1 | X)gn =0 = x1=0 (C.5)
<A2 | X>Sn =2 = ax2taxs=1 (C.G)

The semi-definiteness of X thus gives zg = 1, which is also the optimal value of the

primal objective function.
There is a duality gap of 1.

§ C.2 COMPUTATIONS OF SUBPROBLEMS IN PROXIMAL METH-

ODS

C.2.1 Resolvents for Douglas-Rachford algorithm on the augmented

Lagrangian formulation

We compute here the two resolvents J,5 and J, 4 for the algorithm DougRachD-AL

in Section 6.3.1.

e Computation of J,z:

y w w-=Yy
S|=Jp|Z]|=7v'|Z-S]|= pA*(y) + pS + X
X \% V-X —A*(y) - S

— A (y)+7 (X =V)
(1+79p)S +9X +vpA*(y)
(Id +7pAA")y +7pA(S) + vA(X)

S
~— < Z
A%

Let us express A(X)

Z=(1+~vp)S+X +ypA'y

Z=(1+vp)(~A"(y) +7 (X = V) + 71X +7pA*(y)
Z=—A(y)+ (7 )X - (T )V
X

S — (Z+A(y)+ (" +p)V)
A(X) T (A(Z) + AA*(y) + (v + p)A(V))
We can now express w
w = (Id +ypAA")y + vpA(S) + vA(X)
= (Id+7pAA")y +pA (= A*(y) + 771 (X = V)) +7A(X)
=y + (v + n)AX) - pHA(V)

—y+ L (AZ)+ AA(y) + (7 + p)AV)) — pA(V)

T+ 4

pAA*(y) + pA(S) + A(X)
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We set s such that
__Ater
T+ e

Hence,

w = (Id+xAA")y + KA(Z) + (k(y + p) — p) A(V)
But,

- v+ +0)
k(y+pu ) —p=
(Y+u ) —p I

_ (e +p) —p(r+17 +p)
Y+ +p

1
oyt
Thus,

y = (Id+rAA")"! <w — wA(Z) 1A(V))

Finally, we get

= RAAD) T (w— & S S
y =(Id+rAA*) ( A(Z) oS pA(V))
1

- (Z+A(y)+ (v +p)V)

S Ay + 4 H(X - V)

e Computation of J, 4:

(@) ()= (2) < (=)
Z)|=Ju|S|ev'|S-2Z|¢c|Ns(Z)-pC
A X X-V

C
w =y + (b + pA(C))
& ¢ Z =lIs» (S +vpC)
V =X — 7C

C.2.2 Subproblems in ADMM

W solve here the two subproblems to get the expression of y**t1) and Z(*+1) for ADMM
in Section 6.3.1.3. We start with y*+1)

y* ) = argmin Ly(y, yARND <)
yeR™

2
= argmin(—b | y)rm + p HA*(y) AL p_lX(k)H
yeRm 2

— 0= —b+ pA(A*(yF+tD) — 2R 4 p=1xX(R))
— yF ) = (A4 (p o+ A(ZW — p X)),
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and then Z(*+1)

Z*HY) = argmin £,(y* ), Z, X %)
ZES"

2
= argmingn o 7.(Z) + 4 HA*(y(kH)) 7+ pflx(k)H
Zesr 2

— 0 € —Nin (C - ZEF0Y _ pa* (y B0y — D) 41X (k)
= —A*(y# ) + 20D — 71X B e N (C — ZFHY)
— C — A (y*HD) — 1B ¢z ¢ N (C — Z(+1))
O gk — Mg (C — A (yEHDy — p1x ()
— 7+ _ o _ g (C — A (y*Dy — pmix ()
C.2.3 Proximal operator for Douglas-Rachford algorithm on the aug-

mented quadratic objective

We compute here the proximal operator used in the Douglas-Rachford algorithm in
Section 6.3.2

(g) = prox, <§> = @:VZV) c <(<b | vz%ﬂngzﬁ HbHK)b)

w =y — (b | w)rmb +v|b|] Kb
S—Z € Ny (Z)

w =y —v(b | w)rmb + v|/b|| Kb
Z =Ilg; (S)

We first compute (w | b)gm:

A\%

y — (b | w)rmb + v|[/b|| Kb

(W | b)rm = (y | b)gm — (b | w)gm |[b]|* + v |b|’ K
_(y|b)rm +y|b|’K
()

<W ’ b)Rm

We then express w as a function of y:

w =y — (b | w)gmb +|b| Kb
(y | B)rm +7]|b|]> K

—y -1 b Kb
@+ 1blP)

_, ([ b)an = [BI Kb
L+ bl?

Finally, we obtain

_ 7y [ b)rm — |[b]| K)b

w =y
() =vromss (3) = T+ bJP
Z =Ils» (S)

+
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- ApPENDIX D -

EXTRACTION METHOD FOR RATIONAL OPTIMIZATION

This appendix shows how to recover the support of an R-atomic measure p from its
truncated moment matrix My containing all its moments up to degree 2k. This method
is used to extract the minimizers (x*(r)), ¢ gy of polynomial and rational problems from
the solutions of the SDP relaxations in Lasserre’s hierarchy, i.e. the truncated vector of
moments.

§ D.1 LINK BETWEEN MINIMIZERS AND MOMENT MATRIX

The moment matrix My, is indexed by the pair of multi-indices (e, 3) in NZ X N{. To
each multi-index o corresponds a monic monomial x* in R[x], and the moment matrix
can thus be seen as indexed by monomials. We define M} = {x® | a € N}'} the set of
all monomials with degree less than k. It is a basis of R[x],, the set of polynomials in
R[x] whose degree is lower or equal to k. My, can thereby be interpreted as the matrix
expressed in M} of a linear application ¢ : R[x|, — R[x],. We write Ker ¢ its kernel,

Ker¢ = {p € R[x]; | ¢(p) = 0}.

According to |[Lau08, Theorem 5.29], if the sufficient rank condition on My and My_4
is satisfied, the minimizers (x*(r)),ep gy are the common zeros of the polynomials in
Ker ¢, that is

(" (1), epumy = (W € R" | (vp € Ker ) p(w) = 0}

The extraction of the minimizers is therefore equivalent to solving a polynomial system.
Note that, if x* is a solution of the latter polynomial system, then for any polynomials
p1, p2 in Ker ¢ and ¢, g2 in R[x], x* is a zero of p1q; + p2g2. Hence, we define Z, the
ideal generated by Ker ¢:

I= {Zpi% | s € N*,q; € Ker ¢, p; ER[X]}

i=1

The set of common zeros (or roots) of polynomials in Z is the same as the set of common
zeros of polynomials in Ker ¢ [CLO05|.

§ D.2 EIGENVALUE METHOD TO SOLVE POLYNOMIAL SYSTEMS

The eigenvalue method transforms the original polynomial system into a linear algebra
problem and has been described in several places (see [CLOO05]). It works in the quotient
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space R[x]|/Z of all the possible remainders in the division of polynomials in R[x] by
elements of Z. In other words, two polynomials whose difference belongs to Z are identical
in R[x]/Z.

The method requires two key elements: a monomial basis B of R[x]/Z and the cor-
responding multiplication matrices (Ni)ie[[l,nﬂ' The latter is the representation in the
basis B of the linear application m;, defined for each coordinate z; as

(Vi e [1,n]) mg @  Rx]/Z —  R[x|/Z
p —  xp

By [Lau08, Theorem 5.29|, the dimension of R[x]/Z is given by the rank of ¢. Moreover,
any set indexing a maximum linearly independent set of columns of My is a basis of
R[x]/Z. In our context, a basis B and its associated multiplication matrices can be
easily computed simultaneously using the reduced row echelon form U of M [HLO5].

Indeed, the columns of M, corresponding to the pivot elements in U are linearly
independent and span the range of Mj,. Therefore, the set of monomials {x%, ... xPr}
corresponding to those columns is the sought monomial basis B of R[x]/Z. Any other
monomial x* in M} \ B can be expressed as

R
x* =3 b ()P ¢ (D.1)
r=1
~—
€Span(B) €Ker ¢

where the coefficient b,(x%) is the element of U in the column indexed by e and in the
row indexed by G,

(vr € [LRD (Ve € N})  b,(x*) = Up,.a

Equation (D.1) shows that all monomials of M} can be expressed in R[x|/Z as a linear
combination of the monomials in the basis B. In particular, reading in U the coefficients
(bs(xixﬁ"))seﬂl R of the monomial z;x? for r € [1, R] gives the expression of the

multiplication matrix IN;

bl({L‘Z‘Xﬁl) bl(acixﬂ2) - bl(acixﬁR)

bg(&?ixﬂl) bg(.TiXBQ) e bg(:ﬁiXBR)
N; = . ) . .

br(x;xP) bp(x;xP?) ... bp(x;xPr)

§ D.3 MULTIPLICATION MATRICES AND MINIMIZERS

Stickelberger eigenvalue theorem [CLOO05, Theorem 4.5| states that, for any polynomial
x; with ¢ € [1,n], an eigenvalue of the operator m,, corresponds to a value of z; at
a point w of (x*(r)),ep gy That is to say, the eigenvalues of N; correspond to the
i-th coordinates of (x*(r)), ¢y gp- Note that since multiplication matrices all commute
pairwise, they preserve each other’s eigenspaces.

A numerically stable way to compute those eigenvalues based on Schur factorization
has been proposed in [CGT97| and is summarised below. First, take a random linear
convex combinations Ny, of (IN;);cy

Np = Zn: aiNj ,
i=1
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where (ai)ie[[l,n]] are real numbers chosen randomly and summing up to one. Now, a key
point is yet to use the radicality of Z, i.e. any common roots of polynomials in Z has
single multiplicity. Indeed, according to [CLOO05, Proposition 4.7|, the left eigenspaces
of Ny, are then all one-dimensional. In our case, the radicality of Z is implicitly given
by [Lau08, Theorem 5.29]. Indeed, it gives that dimR[x|/Z = R. This condition is yet
equivalent to the radicality of Z [CLOO05, Theorem 2.10].

Following [CGT97], the left eigenspaces of Nj, can be found by computing an ordered
Schur decomposition of Nj: Nj, = QTQ' where Q is an orthogonal matrix and T is
upper triangular. The coordinates of the points (x* (T))re[[l, R] are finally given by

(Vi € [Ln])(¥r € [LR]) i(r) = a' Nigy,

where q, is the r-th column of the matrix Q.

Remark that, without the radicality of Z, the dimension of the left eigenspaces could
be different from the multiplicities of the roots and consequently the dimension of R[x]/Z
could be greater than R.
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