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Chapter 1

A Short Introduction

My research interests revolve essentially around the physical modelling of ge-
ological fluid flows in the Earth’s crust. My approach is not to try to reproduce
natural phenomena but rather to identify the physical processes that govern these
geological flows. To achieve this is, I use a combination of small-scale, analogue,
laboratory experiments, analytical and numerical modelling. My aim is to identify
governing scaling laws and upscale them to geological conditions to discuss their
range of validity and implications for natural systems.

Over the years, I have delved into three different strands of research, which I
will introduce and summarise in the following separate chapters:

In Chapter 2, I present my work on porous fluid flows, which includes the
fracturing of porous media induced by fluid flows, the effect of thermal inertia
on the morphology and dynamics of porous flows, mechanical dispersion, and the
development of Rayleigh-Taylor instabilities;

Chapter 3 deals with the degassing of volcanic systems and associated magma
dynamics, with applications to the passive degassing of basaltic volcanoes, mod-
elling the impact of volcanism on the performance of underground nuclear waste
repositories, the diffusion of volatiles from rhyolitic melt inclusions and its potential
use as a magmatic geospeedometer;

In Chapter 4, various aspects of magma transport and storage are presented
including the transport of magma through the Earth’s crust in dykes, how dykes
can assist continental rifting, how dyke swarms could form, the formation of sills
and their role in the formation and growth of plutons and magma chambers.

Each chapter is followed by a list of selected publications, before I finally present
in Chapter 5 the different projects I envisage to conduct over the next years.
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Chapter 2

Porous Flows (1998, 2000–2003;
Cambridge)

(Funding: Schlumberger Cambridge Research, and Isaac Newton Trust Research

Fellowship)

The displacement of fluids through porous rocks occur in a wide range of
geophysical, environmental and industrial applications. It is fundamental for the
recharge of geothermal and hydrocarbon reservoirs (Grant et al., 1982; Lake, 1989),
for contaminant dispersal through the groundwater (Bear, 1972), in controlling
mineral reactions in permeable rocks (Phillips, 1991), as well as the repeated in-
trusion of sea water into aquifers in coastal environments. These displacements
can also have a strong impact on the integrity of the surrounding solid matrix.

My interest in this strand of research started during my PhD when I had the
opportunity in 1998 to join and do an internship in the Geomechanics Group at
Schlumberger Cambridge Research. There I worked for three months on the frac-
turing and disintegration of porous media induced by fluid flowing through their
pores. This first experience was then followed in 2000 by a postdoc at the Uni-
versity of Cambridge, BP Institute for Multiphase Flow where I focused on various
aspects of miscible displacements in porous media.

Most porous flows of geological interest occur at low Reynolds numbers (which
expresses the ratio of inertial to viscous forces), that is the average flow velocity u
through the pores is slow enough that the Reynolds number Re = (ρud)/µ << 1,
where ρ is the density of the fluid, µ is its dynamic viscosity, and d is the average
size of the pores. In this particular case, porous flows are governed by Darcy’s
law, which states that the transport velocity, referred to as the Darcy velocity, is
proportional to the pressure gradient:

u = − k
µ

(∇p + ∆ρg) z. (2.1)
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u is the velocity vector, z is a unit vector directed vertically upward, k is the
permeability of the medium, and fluid flows through the pores of the solid matrix
owing to a pressure gradient, which can be split into a non-hydrostatic component,
∇p, and a hydrostatic component, ∆ρg, that arises when the density of the fluid
differs from that of the solid matrix by an amount ∆ρ = ρsolid − ρ f luid. Equation
(2.1) is referred to as the transport or Darcy velocity. It corresponds to the average
macroscopic velocity with which the fluid moves through the entire porous medium.
It is an average flux per unit area of the medium, i.e. pores plus grains. However,
the fluid actually flows through the pores only, and so travels at the interstitial
speed u/φ where u is the transport (Darcy) velocity and φ is the porosity of the
matrix.

Despite its simplicity, Darcy’s law accounts for a great variety of flows. A key
parameter is the medium permeability k, which has the dimensions of a surface
area, and so can be viewed as the pore cross section area. The permeability is
a scalar if the porous medium is isotropic or a tensor if the medium is instead
anisotropic, such as rocks made of strata each characterised by different porosity
and permeability for instance. More refined and complex treatment are needed
to account for fractured porous media where both the intrinsic permeability of
the medium and that of its fractures will affect the flow. Also, strictly speaking,
equation (2.1) is only valid for the case of a porous rock saturated with one fluid.
However, this expression can be extended to the case of simultaneous flow of two
immiscible fluids by considering the effective permeability and viscosity as those of
the phase that is considered, for instance u = −(k1/µ1)(∇p + ∆ρg)z for fluid phase
1. The effective permeability k1 will then depend on the structure of the porous
medium involved, and more specifically on the permeability of that medium to a
single-phase fluid completely saturating it.

Equation (2.1) gives the velocity field for a fluid flowing through a porous
medium, provided the properties of both the fluid and medium are known as well
as the pressure gradient the fluid is subjected to. However these conditions can
change, which in turn will affect the fluid flow. This could happen in a variety of
different ways. One possibility is that the permeability of the porous medium is
modified, which could occur because of some reactive transport, either increasing
or decreasing locally the matrix permeability, or because of fracturing. Another
possibility is that the properties of the fluid are altered such that the pressure
gradient changes as well. This will be the case if the density of the fluid changes
for instance. I investigated some aspects of these two mechanisms: fracturing and
density change.
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2.1 Fluid-induced fracturing

Fracturing and disintegration of a porous medium can occur because of in-
creased pore pressure. This is as much an important issue in academic research,
both fundamental and applied, as it is for the hydrocarbon industry. When ex-
tracting low-viscosity hydrocarbons, high-production flow rates, although econom-
ically desirable, can lead to substantial erosion of unconsolidated formations, a
phenomenon referred to as solid-particle co-production, which represents a major
production and safety hazard. Conversely, the solid-particle co-production from
unconsolidated formations stemming from the exploitation of highly viscous hydro-
carbons at low flow rate induces an increase of the permeability of these formations
and thus of their economic viability. An additional side effect is that solid-particle
co-production affects and usually diminishes the stability of the host rock forma-
tion. This hazard echoes the wider issue of slope instability induced by increased
pore pressure.

At the rock formation scale, porous flow usually involves several phases: one
or several fluids (liquid, gas or both) present or flowing through the pores, and the
solid grains of the matrix. In the late 1990s, the processes and mechanisms that
lead to fracturing and disintegration of poorly-consolidated rocks were not well
understood, when such formations host potentially large hydrocarbon reservoirs.
One particular issue was whether capillary forces between the fluid and solid phases
could play a role and perhaps even impede the co-production of solid particles in
the weakest formations. The aim of my internship at the Geomechanics Group
at Schlumberger Cambridge Research was to test this hypothesis by means of
laboratory analogue experiments.

In these experiments, a viscous hydrocarbon fluid, was made to flow through a
water-wet sand pack of cylindrical geometry. Water was both giving some cohesion
to the sand pack, and simulating the presence of brine in natural formation. The
fluid flowed at a constant volumetric flow rate from the outer perimeter of the
sand pack to its centre, where it was collected through a hole whose diameter was
much smaller than that of the sand pack; the overall geometry was designed to
simulate, at the laboratory scale, the extraction of interstitial hydrocarbons through
a production well. It was observed that at very low flow rates, the fluid would flow
without disturbing the sand pack. At higher flow rates, however, sand grains at the
centre of the sand pack, near the experimental well, were observed to separate from
each other leading to erosion of the well. This erosion was only transitory, however.
It always followed an increase in the fluid flow rate, and ultimately a steady state
would be achieved after the well had eroded to a greater stable diameter.

The hypothesis was made that the observed erosion could be induced by the
viscous drag exerted by the flowing fluid on the sand grains, which would tend to
haul them out of position, and resisted by the capillary forces exerted by the water
film wetting the sand grains. A scaling analysis was then made to test this hypoth-
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esis. First, all sand grains were assumed to be identical rigid spheres, arranged in a
cubic packing, and saturated with the viscous fluid. These approximations allowed
the geometry of the pores to be simplified and allowed the average size of pores
to be related to the diameter of the spherical grains, which then allowed simple
expressions for the capillary force and the fluid viscous drag to be derived.

In the case of constant fluid flow rate, balancing the capillary forces and vis-
cous drag reveals the existence of an optimum or critical well radius below which
the viscous drag exceeds the capillary forces and above which the opposite holds.
To first order, this critical radius compared well with the diameter of the eroded
experimental well. Moreover, this simple scaling analysis explains qualitatively the
experimental observations: i) sand co-production starts once the viscous drag on
the grains becomes greater than the capillary forces; and ii) the sand co-production
stops once the eroded well reaches a critical radius for which the balance between
capillary forces and viscous drag is restored.

At a geological scale, however, flow rate is rarely constant, whether during
industrial hydrocarbon production or for natural flows. Solid co-production and flow
rate will therefore be interdependent, and the conditions for potential fracturing
and disintegration of the porous medium will vary and depend on the strength of
the fluid flow.

This first experience whetted my appetite for porous flows by highlighting the
important role played by the forces driving fluid flow. After my PhD, I decided to
delve into the displacement of miscible fluids in porous media, and more specifically
on the effects of temperature and mixing on the fluid driving forces.

2.2 Thermal inertia

Many natural and industrial situations involve the invasion of a porous medium
by some fluid, which results in the displacement of the fluid that originally saturated
the porous medium. In many cases, the buoyancy force induced by the density
difference between the formation and displacing fluids controls the rate and pattern
of flow through the permeable rock. The density of the fluids, hence the buoyancy
force, depend on the composition and the temperature of the fluids. However, in
most cases, the composition and temperature of both fluids are different, which
has a profound impact on the flow.

When a fluid flows through a formation initially saturated with a fluid of different
temperature and composition, a thermal and compositional stratification develops
as the properties of the injected fluid adjusts to that of the formation fluid. This
stratification arises because solute and heat do not travel at the same rate through
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the porous medium. As stated earlier, the compositional (solute) front travels with
the interstitial speed u/φ. Heat, on the other hand, is transferred between the
invading fluid and the whole rock matrix: as the injected fluid migrates through
the pores, it exchanges heat with both the formation fluid and porous medium.
As a result the thermal front travels with the speed Γu where Γ = (ρCp)liq/

�
ρCp

�

has value close to one and is the ratio of the specific heat of the liquid to the
average specific heat of the liquid and porous matrix (Woods and Fitzgerald, 1993;
Barenblatt, 1996; Turcotte and Schubert, 2002). Therefore heat travels at a rate
that is φΓ times that of the fluid interstitial speed. In many cases, this factor φΓ is
smaller than unity, which results in the development of a compositional front, that
separates the invading and formation fluids, and a thermal front that lags behind
and through which the invading fluid adjusts its temperature to that of the porous
medium (Fig. 2.1). This lagging of the thermal front behind the compositional
front is referred to as thermal inertia.

The initial composition and temperature of the invading fluid relative to those
of the original formation fluid determine the density difference between the two

Figure 2.1: Diagram illustrating the spatial distribution of the temperature T , the com-
position C, and the resulting density ρ as a fluid of one temperature and
composition is injected into a bead pack saturated with a fluid of different
temperature and composition. The spatial decoupling of the thermal and
fluid fronts creates three regions in which the fluid has different density:
near the source (region a), between the thermal and compositional fronts
(region b) and in the original formation fluid (region c).



14 2 Porous Flows (1998, 2000–2003; Cambridge)

fluids and so the initial buoyancy force acting on the flow. However, as the flow
proceeds and thermal inertia operates, the density difference, hence the buoyancy,
changes as the invading fluid crosses the thermal front. This has a profound effect
on the dynamics and pattern of buoyancy-driven porous flows as illustrated in Fig.
2.2. This figure shows photographs of four different analogue experiments where
a saline solution was injected at a constant rate into a bead pack saturated with
an aqueous solution of different salinity and temperature. The bead pack, made of
millimetre-size glass beads, had a porosity φ = 0.40±0.01 and a specific heat ratio

Figure 2.2: Photographs illustrating four different flow patterns that arise owing to
different injection conditions (Menand et al., 2003). The injected and for-
mation fluids have different temperature and composition, and the injected
fluid is initially dyed red and then black to reveal the evolving flow pattern.
(a) The fluid injected at the base of the bead pack has a smaller NaCl con-
centration than the formation fluid, but the same temperature; its buoyancy
stays constant through time. (b) The fluid injected at the base of the bead
pack has the same composition, but is hotter that the formation fluid; as
the fluid crosses the thermal front it becomes neutrally buoyant. (c) The
fluid injected at the base of the bead pack has a greater NaCl concentration
but is hotter than the formation fluid, so that initially it is of smaller density;
as the fluid crosses the thermal front, its buoyancy is reversed because of a
greater NaCl concentration than the ambient fluid. (d) The fluid injected
at the top of the bead pack has a greater NaCl concentration but is hotter
than the formation fluid so that, as in (c), it is initially less dense than the
formation fluid; the buoyancy of the injected fluid evolves as in (c) but the
injection configuration leads to a strikingly different flow pattern. In each
case, the bead pack is 50 cm high, 80 cm large and only 3 cm thick so that
the flow can be approximated as two-dimensional.
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Γ � 1.7, so that the thermal front propagated at approximately two-third the fluid
interstitial speed. The bead pack was much thinner than its two other dimensions,
and the flow could be approximated as two-dimensional. The key aspect of these
experiments is that the initial composition and temperature of the invading fluid
were different for all cases, but its initial buoyancy was identical: the invading fluid
was initially buoyant because of a deficit in NaCl concentration, a higher injection
temperature, or a combination of both concentration and temperature difference.
These experiments reveal how the separation of the compositional and thermal
fronts evolves through time, and how this leads to a buoyancy increase, decrease
or even reversal for the invading fluid (Fig. 2.2). Thus these experiments show
that the pattern and dynamics of the flow depend on the nature (compositional
and thermal) more than the actual value of the buoyancy of invading fluids.

These experiments are limited to two dimensions when in nature flow is es-
sentially three-dimensional, although to some extent it can be locally restricted or
confined to two-dimensional strata. In principle, numerical modelling could resolve
the issue and deal with three-dimensional flow. However, one difficult aspect in
the case of miscible fluids is that of the inevitable mixing of the two fluids that
occurs in the pore space as one displaces the other. Numerical modelling could
deal with such a mixing but this would require considerable computing power to
account for a wide range of scales, from that of the individual pores to that of the
entire formation. One way to circumvent this difficulty is to establish macroscopic
mixing laws at a scale that is larger than that of the pores, which would then be
more easily dealt with numerically. This requires a relationship between mixing at
the pore-scale and the flow conditions.

2.3 Mixing and the development of Rayleigh-Taylor
instability

When a fluid migrates through a porous formation already saturated with an-
other fluid, if both fluids have identical physical properties, such as density and
viscosity, then the heterogeneities of the permeable formation will dictate the be-
haviour of the fluid interface, i.e. the mixing between both fluids (Phillips, 1991).
Tracer dispersion is often used to map out such heterogeneities, whereby tracer is
injected into the underground flow and its concentration is then measured some
distance away from the point of injection. However, the presence of multiple, tor-
tuous pathways in a porous medium leads to mechanical and dynamical dispersion
of the flow (Bear, 1972). This dispersion is usually characterized by a coefficient
of mechanical dispersion, D, which depends on both the geometrical structure of
the porous matrix and the structure of the fluid flow, as well as fluid molecular dif-
fusion. Additionally, fluid dispersion has been shown to be affected by density and
viscosity contrasts (Jiao and Hötzl, 2004; Wood et al., 2004). Quantifying this
dependency is important because dispersion-induced mixing will affect the local
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density contrast between invading and formation fluids and thus the overall flow
behaviour. Dispersion could also act against or delay the onset of buoyancy-driven,
Rayleigh-Taylor instability.

Analogue experiments were therefore carried out to quantify the effect of den-
sity difference on mechanical dispersion both in gravitationally stable and unstable
flows, and to determine how this process relationship affects the spatial and time
development of Rayleigh-Taylor instability (Menand and Woods, 2005). An aque-
ous solution was injected at a constant rate through a 15-cm wide, 23-cm high
and 1-cm thick homogeneous, isotropic bead pack made of 1.5 mm glass beads
and saturated with an aqueous solutions of different density. The injected and am-
bient fluids were both aqueous solutions with variable amounts of NaCl to control
their respective density. As shown earlier, flows in porous media at low Reynolds
number are governed by Darcy’s law (equation 2.1), which can be written as the
sum of a velocity induced by a non hydrostatic pressure gradient us = −k/µ∇p,
that is a background-flow velocity, and a velocity associated with the gravitational
force ug = −k/µ∆ρg. The NaCl concentration of the injected and ambient fluids
controlled the density difference between the two fluids hence the gravity-driven
velocity ug, whereas a pump independently controlled the background-flow velocity
us. Experiments were carried out over a range of background-flow and gravity-
driven velocities as well as total Darcy velocity u under both potentially stable and
unstable conditions.

When there is no density difference between the invading and ambient fluids,
a diffusive mixing zone develops at the interface between the two fluids. However
sharp this interface is initially, diffusive mixing occurs between the fluids owing to
fluid dispersion, and as the invading fluid migrates through the porous bead pack
the width of this mixing zone at the interface grows as

√
Dt where t is time. When

both fluids have differing densities and flow occurs in a stable configuration (the
densest fluid lies above the lightest), diffusive dispersion at the fluid interface still
occurs but it is decreased by the stable density difference: flow proceeds as in the
tracer case but with a reduced dispersion coefficient D.

When flow occurs in an unstable configuration, its pattern and behaviour are
markedly different with the development of Rayleigh-Taylor instability. Two disper-
sive regimes are successively observed (Fig. 2.3). Initially, the fluid interface grows
diffusively with a diffusion coefficient D that is increased by the mixing taking place
at the fluid front. Then an advective regime develops whereby Rayleigh-Taylor un-
stable fingers emerge from the mixing zone and propagate at a greater, constant
speed proportional to the gravity-driven velocity ug. It is also observed that the
wavelength of these unstable fingers scales with the width of the mixed interface
at the onset of the Rayleigh-Taylor instability. These unstable experiments show
that as flow proceeds, mixing at the interface grows and thus reduces locally the
density difference between invading and ambient fluids, which delays the onset of
gravitaty-driven instability. Unstable fingers emerge when their propagation ve-
locity becomes greater than the diffusive growth rate of the mixed interface. A



2.3 Mixing and the development of Rayleigh-Taylor instability 17

Figure 2.3: The development of unstable fingers as dense salty water (red) migrates
from top to bottom through a porous bead pack saturated with lighter
fresh water (Menand and Woods, 2005). The bead pack has a porosity
φ = 0.39 ± 0.01 and a permeability k = (1.9 ± 0.1) 10−9 m2. The onset of
the Rayleigh-Taylor instability is delayed by the mechanical dispersion that
takes place at the interface between the two fluids: (a) initially, the mixing
zone at the fluid interface grows diffusively; (b) later on, unstable fingers
emerge from the mixed interface; (c) these unstable fingers migrates with
a constant velocity proportional to the gravity-driven velocity ug and with
a wavelength that scales with the width of the mixed interface.

consequence is that higher imposed background flow rates lead to higher mechan-
ical dispersion of the interface and thus wider fluid interface. In turn, this leads
to a larger delay in the development of the Rayleigh-Taylor instability with a larger
wavelength.

Fluid dispersion is affected by both the density contrasts between invading and
ambient fluid and the relative strength of the background flow, which in turn de-
termines the onset and wavelength of Rayleigh-Taylor instability. When applied to
homogeneous and uniform geological settings, these results suggest that mechani-
cal dispersion suppresses the onset of Rayleigh-Taylor instability until a mixed zone
1–2 m thick has developed. The wavelength of the instability would then be ex-
pected to be of the order of centimetres to metres depending on the relative value
of background-flow and gravity-driven velocities (Menand and Woods, 2005).
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[1] The displacement of fluids through porous rocks is
fundamental for the recharge of geothermal and hydrocarbon
reservoirs [Grant et al., 1982; Lake, 1989], for contaminant
dispersal through the groundwater [Bear, 1972] and in
controlling mineral reactions in permeable rocks [Phillips,
1991]. In many cases, the buoyancy force associated with
density differences between the formation fluid and the
displacing fluid controls the rate and pattern of flow through
the permeable rock [Phillips, 1991; Barenblatt, 1996;
Turcotte and Schubert, 2002]. Here, using new laboratory
experiments, we establish that a striking range of different
flow patterns may develop depending on whether this
density contrast is associated with differences in temperature
and/or composition between the two fluids. Owing to the
effects of thermal inertia in a porous rock, thermal fronts lag
behind compositional fronts [Woods and Fitzgerald, 1993;
Turcotte and Schubert, 2002], so that two zones of different
density develop in the region flooded with injected fluid.
This can lead to increasing, decreasing or even reversing
buoyancy in the injected liquid; in the latter case it may then
form a double-flood front, spreading along both the upper
and lower boundary of the rock. Recognition of these
different flow regimes is key for predicting sweep efficiency
and dispersal patterns in natural and engineered flows, and
offers new opportunities for the enhanced recovery of
natural resources in porous rocks. INDEX TERMS: 1832
Hydrology: Groundwater transport; 1884 Hydrology: Water
supply; 1829 Hydrology: Groundwater hydrology; 3665
Mineralogy and Petrology: Mineral occurrences and deposits.
Citation: Menand, T., A. Raw, and A. W. Woods, Thermal
inertia and reversing buoyancy in flow in porous media, Geophys.
Res. Lett., 30(6), 1291, doi:10.1029/2002GL016294, 2003.

1. Introduction

[2] When a fluid of temperature T + !T and composition
C + !C migrates through a porous layer initially saturated
with fluid of temperature T and composition C, thermal and
compositional fronts develop across which the properties of
the injected fluid adjusts to that of the formation fluid. The
compositional front travels with the interstitial speed, u/f,
where u is the transport (Darcy) velocity and f the porosity
of the matrix. However, heat is transferred between the
invading fluid and the rock matrix, causing the thermal front
to travel with the slower speed "u where " = (rCp)liq/(rCp)
! O(1) is the ratio of the specific heat of the liquid to the
average specific heat of the liquid and porous matrix
[Woods and Fitzgerald, 1993; Barenblatt, 1996; Turcotte
and Schubert, 2002]. This separation of the two fronts
results in three regions of different density (Figure 1a).

Near the source, the fluid retains the temperature and
composition of the injected solution r(T + !T, C + !C )
(region a); ahead of the thermal front, but still within the
injected solution, the fluid temperature has adjusted to that
of the rock, and so the density has value r(T, C + !C )
(region b); finally, in the original formation fluid, the
density has value r(T, C ) (region c). These three regimes
may be clearly seen in a simple draining experiment (Figure
1b) in which a fresh, hot aqueous solution, dyed in red,
drains at a constant rate through a fine-bead pack initially
saturated with a cold, saline aqueous solution. The succes-
sive positions of both the fluid front (compositional signal)
and the temperature front (thermal signal) have been meas-
ured during the experiment (Figures 1b and 1c) and are in
very good accord with the theoretical prediction.

2. Impact of the Thermal Inertia on
Buoyancy Driven Flows in Porous Media

[3] In flows driven by the gravitational force associated
with the difference in density between the injected and
original fluid, the spatial decoupling of the thermal and
compositional signals in the migrating fluid is crucial. To
illustrate this we present three laboratory experiments (A, B
and C) in which a dyed aqueous solution was injected from
a point source at the base of a bead pack initially saturated
with an aqueous solution of different density. In all experi-
ments, the injected fluid is approximately 0.5% less dense
than the fluid originally in the bead pack. However, the
injected fluid had three different temperatures and compo-
sitions denoted by points A (!T = 0!C, !C = "0.75 wt%),
B (!T = 19!C, !C = 0) and C (!T = 33.5!C, !C = 0.75
wt%) in Figure 2. As the three injected fluids migrate
through the porous layer, the temperature of the injected
fluid adjusts to that of the porous layer and hence their
densities evolved in very different ways (Figure 2). Fluid A
remains at the same temperature and hence density; fluid B
cools to the temperature of the bead pack and the density
adjusts to the density of the formation fluid; fluid C cools
until its temperature matches that of the formation, at which
point it has become dense relative to the formation fluid.
These different density structures lead to very different
flooding patterns as shown in Figures 3a to 3c.
[4] In case A, fluid of the same temperature as the fluid in

the bead pack, but smaller composition, was injected from
below. This produced a buoyant plume with no change in
density of the source fluid (Figure 2, point A). As the flow
evolved, there was a small amount of mixing in the head of
the flow, but subsequently a sharp, nearly parallel-sided
plume developed (Figure 3a). In case B, fluid of the same
composition as the fluid in the bead pack, but higher
temperature, was injected from below. As this fluid
migrated upwards, the thermal front lagged behind the
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injected fluid so that neutrally buoyant fluid was supplied to
the head of the plume (Figure 2, point B). This neutrally
buoyant fluid then displaced the formation fluid radially
outwards (Figure 3b), leading to a much larger head
structure than in the saline experiment (Figure 3a). Mean-
while, the continuing injection of hot fluid heated up the
porous layer to form a focused hot plume behind the head.
Heat transferred from this plume to the surrounding porous
matrix produced a zone of heated ambient fluid beside the
source. This ambient fluid also ascended, producing the
clear halo around the hot plume of injected fluid (Figure
3b). In case C, the injected fluid was hot but relatively saline
compared to the formation fluid. As it displaced the for-
mation fluid and cooled down, the density of the injected
fluid actually became larger than the formation fluid, owing
to the greater initial composition (Figure 2, point C). This
change in the sign of the density of the injected fluid led to a
more complex flow pattern. Initially, the injected fluid was
of smaller density than the formation fluid, and so it
ascended upwards. However, once it had cooled down,
the density difference became controlled by the composi-
tional difference, so that the injected fluid became relatively dense. It then descended back to the base of the bead pack,

and spread laterally as a relatively dense compositional
gravity current (Figure 3c). The continuing injection pro-
duced a growing fountain of hot fluid above the source and
supplied the laterally spreading dense current.
[5] In the case of reversing buoyancy, a fourth, different

flow regime, case D, may develop and this is shown in
Figure 3d. Here, relatively hot but saline fluid (Figure 2,
point D) was injected from the top of the bead pack rather
than the base of the bead pack. Initially, the relatively
buoyant fluid spread laterally along the upper surface of
the formation. However, as the fluid migrated through the

Figure 2. A Temperature-Composition phase diagram for
an aqueous solution of NaCl illustrating curves of constant
density, r1 < r2 < r3. The different initial conditions for the
experiments A-D are shown by solid circles. Arrows
indicate how the density of the injected fluid evolves as it
moves through the bead pack and its temperature adjusts to
that of bead pack.

Figure 1. (opposite) (a) Diagram illustrating the spatial
distribution of (i) temperature, T; (ii) composition, C and
(iii) density, r as fluid of one temperature and composition
is injected into a bead pack saturated with fluid of different
temperature and composition. The spatial decoupling of the
thermal and fluid fronts creates three regions in which the
fluid has different density: near the source (region a),
between the thermal and compositional fronts (region b) and
in the original formation fluid (region c). (b) Photographs
from an experiment in which hot, fresh water dyed red
drained downwards at a constant rate through a bead pack
initially saturated with cold, saline water. The bead pack has
porosity 0.4 ± 0.01, has dimensions 15 cm wide, 19 cm
high, 1 cm deep, and is made of ballotini 425–600 mm in
diameter. The specific heat ratio for this experiment
including the thermal mass of the bead pack and cell walls,
which are in equilibrium with the fluid, is " # 1.7. The flow
rate was 0.3 cm3 s"1. The advancing front of fresh water is
shown by the red dye front, while the yellow horizontal line
on the liquid crystal strip illustrates the leading edge of the
thermal front. (c) The location of the dye front and the
thermal front measured during the experiment are indicated
by circles and squares respectively. The solid line indicates
the location of the dye front as predicted by a pure volume
displacement, indicating that there is little dispersive mixing
across the compositional front. The dashed line indicates the
location of the thermal front "ut. Both are in excellent
accord with the data.
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hot thermal front and cooled, the greater composition of the
injected fluid caused it to become dense relative to the
formation (Figure 2, point D), and the fluid sank to the
base of the layer. Here, a compositionally-driven dense
current spread out along the base of the layer. Meanwhile,
the continuing injection of fluid led to a gradual lateral
spreading of the hot thermal front along the upper surface
of the porous layer, thereby forming a double-flood front
(Figure 3d).

3. Conclusion

[6] This rich variety of flow patterns resulting from the
separation of the thermal and compositional fronts may be
key for accurate prediction of (i) the dispersal of contam-
inants injected into permeable sub-surface rocks, especially
in evaluating risks of sub-surface storage of nuclear waste;
(ii) the dispersal of reacting fluids over geological time-
scales, which may control the spatial distribution of
diagenetic reactions and hence mineral deposits; and, (iii)
the sweep pattern in high permeability geothermal or
hydrocarbon reservoirs in which there are often significant
temperature and compositional contrasts between the
injected and formation water. These complex thermo-sol-
utal transport effects introduce new challenges for theoret-
ical models of dispersion and transport, since the flow
structures identified herein are controlled by thermal boun-
dary layers located in the interior of the flow domain and
which are therefore hard to resolve accurately. However,
the fundamental process of buoyancy reversal can lead to
injected fluids spreading along both the upper and lower
boundaries of a permeable rock; as with our experiments.
If the injected fluid is engineered appropriately, this could
result in substantially enhanced oil recovery from high
temperature sub-surface hydrocarbon reservoirs or layered
reaction zones within a reacting permeable matrix.

[7] Acknowledgments. This work was supported by the BP Institute
for Multiphase Flow. T. Menand was also supported by a Newton Trust
Fellowship.
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Figure 3. Four sequences of photographs illustrate the
flow patterns that arise when fluid of one temperature and
composition, dyed red, is continuously injected from a point
source into a porous layer saturated with fluid of different
temperature and composition. The initial conditions are
shown in Figure 2. In the experiments, darker dye is added
to the red injected fluid after some time to reveal the
evolving flow pattern. (a) The fluid injected at the base of
the bead pack has smaller composition than the formation
fluid, but the same temperature; (b) The fluid injected at the
base of the bead pack has the same composition, but is
hotter that the formation fluid; (c) The fluid injected at the
base of the bead pack has greater composition but is hotter
than the formation fluid, but so that initially it is of smaller
density; (d) The fluid injected at the top of the bead pack
has greater composition but is hotter than the formation
fluid so that, as in (c), it is initially of smaller density.
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[1] We report on an experimental study of the mixing of two miscible fluids in a porous
medium driven by either a gravitationally stable or unstable linear displacement flow. A
solution of a given NaCl concentration was injected at a constant rate into a homogeneous
bead pack saturated with an aqueous solution of different NaCl concentration. The
position and width of the fluid interface were recorded using digital image analysis. Our
results highlight the strong interplay between gravity and mechanical dispersion. For
stable flows, at low Péclet number Pe, the dispersion coefficient increases with Pe,
whereas for Pe >500, it becomes constant. Although similar regimes are observed with
pure mixing, the stabilizing effect of gravity reduces significantly the dispersion
coefficient by a factor of 2–4, even for density contrasts as low as 0.07%. For unstable
flows, gravitational instability is delayed by mechanical dispersion. The ratio of the
gravitational to background fluid velocity, G, controls the initial diffusive growth of the
mixing zone and the time at which the instability subsequently arises. The wavelength of
the instability scales with the width of the diffusive mixing zone at onset of instability and
its subsequent linear convective growth rate is one fourth of the unstable gravity speed.
For natural porous flows, mechanical dispersion can suppress the onset of gravitational
instability until the mixing zone is 1–2 m thick. The width of this mixed zone then
controls the length scale of the unstable fingers.

Citation: Menand, T., and A. W. Woods (2005), Dispersion, scale, and time dependence of mixing zones under gravitationally stable
and unstable displacements in porous media, Water Resour. Res., 41, W05014, doi:10.1029/2004WR003701.

1. Introduction

[2] Miscible displacements in porous media occur in a
wide range of geophysical, environmental and industrial
applications. Examples include miscible displacements in
oil reservoirs, the migration of pollutants through aquifers
and the repeated intrusion of sea water into aquifers in
coastal environments. A crucial issue in these applications is
the characterization of the zone in which the displacing fluid
mixes with the original fluid. If both fluids have identical
physical properties, such as density and viscosity, then the
heterogeneities of the permeable rock dictate the behavior of
the interface [Phillips, 1991]. Tracer dispersion is often used
to map out such heterogeneities; tracer is injected into the
underground flow and its concentration is then measured at
some distance from the point of injection. However, in
many cases the properties of the displacing and displaced
fluids differ and this can lead to flow instabilities.
[3] Study of flow instabilities in porous media started

50 years ago when Hill [1952] showed that both density
and viscosity contrasts can either trigger or suppress the

development of instabilities in homogeneous porous media.
This experimental and analytical work was followed by
theoretical studies which showed how negative density
gradients or positive viscosity gradients favor Rayleigh-
Taylor and Saffman-Taylor instabilities respectively, where-
as opposite gradients prevent them [Saffman and Taylor,
1958; Chuoke et al., 1959; Chandrasekhar, 1961].
[4] Factors that act against the onset of instability are

dispersion, in the case of miscible displacements, and
surface tension, in the immiscible case, which both tend
to suppress the smallest wavelengths. Molecular diffusion is
generally too small a parameter to affect flow instability.
However, the presence of multiple pathways in a porous
medium leads to natural dispersion of the flow. This
dispersion is usually characterized by a coefficient D, the
coefficient of mechanical dispersion, which depends on
both the geometrical structure of the porous matrix and
the structure of the fluid flow. As a result, this flow
dispersion is difficult to quantify: models require some
assumption on how fluid mixing occurs in the pores; for
example if it occurs along capillaries or at the pore junc-
tions, one gets rather different relationships between the
dispersion coefficient and the mean flow velocity u [Taylor,
1953; Scheidegger, 1954; Aris, 1956; De Josselin de Jong,
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1958; Saffman, 1959, 1960; Bear, 1972]. Hydrodynamic
dispersion depends generally on both molecular diffusion
Do and the flow field [Pfannkuch, 1963]. The Péclet number
Pe = ua/Do, where the length scale a is typically the grain
size of the medium, characterizes the strength of convection
relative to molecular diffusion. In the tracer case, where
displacing and displaced fluids have identical density, it has
been observed experimentally that the coefficient of me-
chanical dispersion increases continuously with Pe from a
value close to that of molecular diffusion for flows at
extremely low Péclet number to values that are several
orders of magnitude greater when the flow regime reaches
the limit for which Darcy’s law applies [Pfannkuch, 1963].
[5] The dimensionless number that is usually used to

described the occurrence of instability in variable density
systems is the Rayleigh number Ra, the ratio of buoyancy to
diffusion and dispersion. Wooding [1959] showed that the
occurrence of instability was related to density differences
and the average pore velocity but also that instability cannot
develop if the Rayleigh number of the flow is less than a
critical value Rac, below which the negative, and therefore
potentially unstable, density gradient is resisted by viscous
resistance and diffusion and the flow remains stable. How-
ever, this Rayleigh stability criteria gives only a threshold
for the onset of instability but does not provide any
information on the wavelength or the growth rate of the
instability. List’s [1965] analysis and the work by Schincariol
and Schwartz [1990] and Schincariol et al. [1994, 1997]
showed that whether or not perturbations become unstable
depends not only on the Rayleigh number of the system but
also upon the perturbation wavelength, which must exceed
some critical wavelength determined by the flow and the
transport parameters; a system where a heavy fluid overlies
a lighter one is always potentially unstable, but only
perturbations with a wavelength greater than a critical
wavelength will grow, while those below decay. These
studies reveal also that (1) larger wavelengths grow at a
larger rate and are thus more unstable, (2) the instability
growth rate increases with density difference, and (3) the
instability is enhanced by decreasing dispersivity; disper-
sion acts against instability.
[6] There is often difficulty in applying Rayleigh number

concepts in a transient system, however, because of the
difficulty in defining an unambiguous length scale and
determining the dispersion associated with the flow [Oostrom
et al., 1992a; Simmons et al., 2001]. Arguments based on
dimensional analysis reveal that in amixed convective system
the Rayleigh number alone is not sufficient to characterize the
instability of the system and that the ratio of free over forced
convection must also be considered [Oostrom et al., 1992a,
1992b; Liu and Dane, 1996]. Moreover, Rayleigh number
concepts implicitly assume that mechanical dispersion is
constant and independent of the convective flow velocity.
Instead, the onset of instability has been shown to be depen-
dent upon the dispersivity of the system, which depends on
the convective flow velocity, particularly inmixed convective
systems [Schincariol et al., 1994].
[7] Recent studies have investigated how dispersivity is

affected by density and viscosity contrasts [Jiao and Hötzl,
2004; Wood et al., 2004]. The work by Wood et al. [2004]
dealt specifically with gravitationally unstable flows and
shows that unstable mixing increases as the density differ-

ence between fluids increases, as parameterized by the ratio
of free over forced convection M. However, this work does
not provide any quantitative information for the relationship
that exists between this ratio M and the fluid mixing at the
interface, other than the qualitative statement that mixing
increases with M. This increase of mixing, induced by the
development of unstable fingers could be interpreted as an
increase in effective or apparent dispersion. However, as the
authors state, additional experimental and theoretical devel-
opment is required in order to explore the time and scale
dependence of the mixing caused by unstable fingering.
Jiao and Hötzl [2004] studied both stable and unstable
displacements and measured the dispersion coefficient for
various density or viscosity contrasts. Their results show
that dispersion is reduced by stable density contrasts and is
enhanced by unstable density contrasts whereas dispersion
increases with the viscosity ratio, irrespective of the viscous
stability of the flow. However, the authors have not devel-
oped quantitatively the process relationship as a function of
dimensionless parameters such as the Péclet number and the
ratio of free over forced convection, nor a complete de-
scription of the spatial and temporal scaling.
[8] The aim of the present paper is (1) to quantify the

effect of density difference on mechanical dispersion both in
gravitationally stable and unstable flows and (2) to deter-
mine how this process relationship affects the spatial and
time development of instability in the latter case. As
mentioned previously, several difficulties arise when one
wants to apply Rayleigh number concepts in a transient
system undergoing mixed convection with variable density.
For these reasons, Rayleigh number calculations are not
given in this paper. Instead, the dimensionless numbers
presented here are limited to more easily quantified param-
eters such as the ratio of the gravitationally driven flow rate
to the applied flow rate, referred to here as the gravity
number, and the Péclet number that capture the key physical
parameters, that is the density difference and the strength of
advective flow.
[9] Flows in porous media at low Reynolds number are

governed by Darcy’s law which states that the transport
velocity, or Darcy velocity, is proportional to the pressure
gradient:

u ¼ " k

m
rpþ Dr gð Þ z: ð1Þ

Here, u is the velocity vector, z is a unit vector directed
vertically upward, k is the permeability of the medium, m is
the dynamic viscosity of the fluid, rp is the non hydrostatic
pressure gradient and Drg is the pressure gradient induced
by the density change experienced by the fluid Dr. The right
hand side of this expression can be split into two terms us =
"k/mrp and ug = "k/mDrg. us is the velocity associated
with the non hydrostatic pressure gradient and can be seen
as a source velocity created by an external imposed flow
rate (the background flow), whereas ug is the velocity scale
associated with the gravitational force. We now introduce
the gravity number G to represent the ratio of buoyancy to
viscous forces:

G ¼ k Dr g
m us

¼ ug

us
: ð2Þ
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Increasing the background flow decreases the gravity
number and thus the impact that gravity could have on
the porous flow and in particular on instabilities. This
should be the case particularly when the background flow is
comparable to or greater than the gravitational flow, that is
for G & 1. Moreover, this partition could in principle affect
mechanical dispersion as well.
[10] Finally, by recognizing that the Rayleigh number can

be expressed as the product of the Péclet and gravity
numbers, we argue that the description of the system in
term of its Péclet and gravity numbers provides a complete
description of the mixing.
[11] Here, we report our study of the impact of the gravity

number on the behavior of the mixing zone between two
miscible fluids. This work is based on laboratory experi-
ments in which a solution of a given NaCl concentration is
injected, vertically and downward, at a constant rate into a
homogeneous porous medium saturated with an aqueous
solution of different NaCl concentration. Two series of
experiments have been carried out. In the first series, the
invading fluid is less saline and so it is lighter than the
displaced fluid and the configuration is gravitationally
stable. In the second series, the invading fluid is the more
saline leading to a gravitationally unstable configuration.
We first introduce the experimental apparatus and techniques
that we developed to measure the evolution of the mixing
zone. We then describe the experimental results.

2. Experimental Method

2.1. Setup

[12] Our porous medium is a 15 ± 0.1 cm wide, 23.5 ±
0.1 cm high and 1 ± 0.05 cm thick bead pack made of glass
beads of size a = 1.5 mm, with porosity f = 0.39 ± 0.01 and
permeability k = 1.9 ' 10"9 ± 0.1 ' 10"9 m2. A homoge-
neous and isotropic bead pack was achieved by slowly
pouring the glass beads into the tank after the latter had
been previously filled with the ambient fluid, either water or
NaCl solution. This technique prevented the entrapment of
air bubbles in the bead pack and thus ensured its saturation.
[13] The coefficient of molecular diffusion Do of the

aqueous solutions used in the experiments has been as-
sumed to be 10"9 m2 s"1 [Phillips, 1991]. The injected
solution flows vertically downward and displaces the am-
bient solution at a constant rate; fluid drains out of the base
of the bead pack at the same rate as it is injected at the top.
This was achieved by using a double head peristaltic pump,
one head being connected to the top of the bead pack and
the other at its bottom, which ensured that both inflow and
outflow were constant and identical during an experiment.
[14] Both the Péclet number and the gravity number have

been systematically varied to assess their effect on the
spreading of the fluid front (Figure 1). This was achieved
by varying the flow rate of the pump and the density
difference between the fluids. Pump limitations restricted
the Péclet number to a minimum value of 15 whereas its
maximum value was 4300. This latter number corresponds
to a maximum Reynolds number of 10, usually considered
as the upper limit of Darcy regime [Nield and Bejan, 1999].
NaCl concentrations between 0 and 20 wt% enabled a range
of gravity number of 0–300. Details of experimental con-
ditions are given in Table 1.

[15] In the gravitationally unstable configurations, a 3 cm
thick layer of fine glass beads (180–300 mm in diameter)
was placed at the top of the bead pack in order to start the
experiments with a horizontal, flat interface. The salty fluid
was initially injected rapidly through this very low perme-
ability layer and then the flow rate was lowered to the
experimental rate as the fluid interface approached the bead
pack. This technique delayed the growth of the gravitational
instability sufficiently that the injected fluid enters the bead
pack with a horizontal and flat interface.
[16] To follow the interface between the two fluids and

measure the rate of dispersion, the injected solution was
dyed red. The mass of dye used was low enough (5 '
10"2 wt%) to ensure that it does not affect the density
difference between the two fluids. Digital photographs
were taken at regular time intervals during an experiment
with a Nikon Coolpix 995. The digital camera was placed
at a distance of 1.5 m from the bead pack, which was
illuminated by a projector 1.3 m behind it with a mask that
ensured light was only transmitted through the bead pack.

2.2. Image Analysis

[17] Digital photographs were analyzed with the software
MATLAB using the following procedure. Each digital pho-
tograph was first rotated to ensure they all had the same
orientation. The portion containing the bead pack was then
cropped, thus providing the image that was subsequently
analyzed. When reading a colored image with MATLAB,
each pixel of that image is assigned a red, green, and blue
value between 0 and 255 according to the transmitted light
intensity, so a simple way of defining a light intensity for each
pixel is to add these values. This was done in several steps.
[18] Although great care was taken to ensure the light was

as uniform as possible, spatial and temporal variation cannot
totally be avoided. One of the best ways to correct the
lighting nonuniformity is to subtract a photograph of the
bead pack that had been taken just prior to the start of
the experiment and that is used as a background image
[Schincariol et al., 1993]. This gave corrected red, green
and blue values for each pixel.

Figure 1. Range of gravity and Péclet numbers covered in
the experiments. Dots refer to experiments in stable
configurations and circles to experiments in unstable
configurations.
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[19] Red, green, and blue values do not vary with the dye
concentration in the same way however: both the blue and
green values increase with dye concentration while the red
value decreases with increasing dye concentration. There-
fore an intensity profile was defined by adding the blue and
green profiles and subtracting the red one. This intensity
varies linearly with dye concentration provided the latter
does not exceed 0.5 g/L (Figure 2), higher concentration
leading to intensity saturation.
[20] In order to estimate the vertical mixing of the fluids,

the dye intensity values for each horizontal row of pixels
were averaged. This provided a very high resolution,
horizontally averaged vertical profile of the dye intensity.
In order to reduce the noise in this profile associated with
subbead-scale scattering of light, the signal was then filtered
by using the average intensity of each set of nine adjacent
data points to represent the dye intensity at the central point
of each set of nine data points; this leads to a very smoothly
varying profile of dye intensity.
[21] Finally, we used the fact that dye concentration at

both ends of the bead pack is fixed: dye concentration has
value 1 at the source, provided that the fluid interface has
progressed sufficiently into the bead pack, typically more
than 2 cm, and has value 0 at the bottom of the bead pack.
Therefore, for each image, the average intensity value at
the source and at the bottom of the bead pack were used to
normalize the intensity profile of that image. The normal-

ized profile of dye concentration was then identified with
this normalized intensity profile.
[22] This simple method gives results that are reproduc-

ible within 5% (the difference between two intensity pro-
files calculated from two photographs taken in quick
succession). Its resolution depends mainly on the capacity
of the digital camera. For the study described in this paper,
images were acquired at a resolution of 7 pixels per mm.
[23] Repeating this procedure for digital photograph

taken at successive times, enabled us to follow the time

Figure 2. Variation of light intensity with dye
concentration.

Table 1. Experimental Details of the Experimentsa

Stable Configuration Unstable Configuration Tracer Case

Exp !vs, m s"1 G Pe Exp !vs, m s"1 G Pe Obs Exp !vs, m s"1 Pe

1 3.1 ' 10"5 7.6 46 35 1.5 ' 10"3 0.2 2265 S 56 6.2 ' 10"5 93
2 7.4 ' 10"5 3.2 110 36 7.6 ' 10"4 0.4 1142 S 57 1.2 ' 10"4 183
3 1.5 ' 10"4 1.6 218 37 3.8 ' 10"4 0.9 566 T 58 2.2 ' 10"4 330
4 2.2 ' 10"4 1.1 326 38 2.3 ' 10"4 1.5 343 T 59 5.6 ' 10"4 840
5 2.9 ' 10"4 0.8 433 39 3.0 ' 10"4 1.1 457 T 60 2.5 ' 10"3 3750
6 3.6 ' 10"4 0.6 541 40 1.5 ' 10"4 2.2 232 U 61 2.8 ' 10"5 42
7 4.3 ' 10"4 0.5 648 41 7.5 ' 10"5 4.3 116 U 62 1.3 ' 10"3 1890
8 7.2 ' 10"4 0.3 1079 42 3.7 ' 10"4 4.3 551 U 63 1.5 ' 10"5 23
9 1.4 ' 10"3 0.2 2154 43 3.6 ' 10"4 4.3 544 U 64 9.7 ' 10"6 15
10 1.4 ' 10"3 0.02 2154 44 7.3 ' 10"4 2.1 1099 U
11 1.1 ' 10"3 0.03 1616 45 1.1 ' 10"3 1.4 1639 T
12 7.2 ' 10"4 0.05 1079 46 1.4 ' 10"3 1.1 2163 T
13 2.9 ' 10"4 0.1 433 47 7.3 ' 10"4 3.9 1095 U
14 1.5 ' 10"4 0.2 218 48 1.4 ' 10"3 2.1 2065 U
15 7.4 ' 10"5 0.5 110 49 2.0 ' 10"3 1.4 3075 S
16 2.9 ' 10"3 0.01 4306 50 4.9 ' 10"5 0.7 74 T
17 2.2 ' 10"3 0.02 3230 51 8.0 ' 10"5 0.4 120 T
18 7.4 ' 10"5 39 110 52 1.6 ' 10"4 0.2 236 S
19 3.1 ' 10"5 93 46 53 3.1 ' 10"4 0.1 466 S
20 1.5 ' 10"4 20 218 54 7.7 ' 10"4 0.04 1155 S
21 2.9 ' 10"4 9.8 433 55 1.5 ' 10"3 0.02 2263 S
22 7.2 ' 10"4 4.0 1079
23 1.4 ' 10"3 2.0 2154
24 2.8 ' 10"5 161 42
25 1.5 ' 10"5 306 22
26 8.6 ' 10"5 53 129
27 1.5 ' 10"4 31 218
28 2.9 ' 10"4 16 439
29 7.4 ' 10"4 6.2 1106
30 1.5 ' 10"3 3.0 2250
31 3.1 ' 10"5 91 47
32 1.6 ' 10"5 174 25
33 1.5 ' 10"5 16 22
34 1.6 ' 10"5 2.1 25

aExp, Experiment; Obs, Observations; S, stable interface; T, transition; U, unstable interface.
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evolution of the interface between the red injected solution
and the ambient one, and to measure the spreading of the
mixing zone by mechanical dispersion.

3. Experiments With a Gravitationally Stable
Configuration

[24] In this series of experiments, fresh red water dis-
placed a NaCl solution at a constant rate and G and Pe have
been varied over five and three orders of magnitude
respectively (Figure 1). We also report tracer experiments,
for which the displacing fluid was identical to the displaced
fluid except for its small dye content. These tracer experi-
ments serve as a reference.
[25] In the stable configuration, the interface between the

two fluids, characterized by a zone with various shades of
pink, remains horizontal during the whole displacement
(Figure 3) and becomes thicker as it flows through the bead
pack. The concentration of the injected fluid along the bead
pack is obtained from each photograph. In the pure tracer
dispersion case, as the injected fluid invades a porous
medium and disperses the ambient fluid, the mixing zone
at the fluid interface spreads according to the dispersion
equation [Bear, 1972]. We now investigate whether the
concentration of injected fluid C(x, t) in our experiments
also varies along the flow direction from C(0, t) = 1 at the
top of the bead pack, x = 0, to C(H, t) = 0 at the bottom, x =
H, according to the relation

C x; tð Þ ¼ 1

2
erfc

x" xint tð Þ
w tð Þ=

ffiffiffi

2
p

 !

: ð3Þ

Here, the position xint(t) of the interface is calculated by a
pure volume displacement: xint = !vs t = ust/f, where the
interstitial velocity (or mean pore velocity) is obtained by
dividing the source flow rate Q by the effective cross-
sectional area fA of the bead pack. The width w(t) of the

interface is usually taken as the distance that separates
concentrations C = 0.8413 ’ 0.84 and C = 0.1587 ’ 0.16
[Fried and Combarnous, 1971; Bear, 1972]. We find that in
the stable displacement experiments, the actual concentra-
tion profile is in very good accord with the theoretical
model equation (3) as shown on Figure 4. By fitting the
concentration profiles obtained from the photographs with
equation (3), we can determine the width of the mixing zone
at different times and measure its evolution during each
experiment. In a stable configuration, we expect the mixing
zone to spread diffusively and therefore to grow as

w tð Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi

2DL t
p

; ð4Þ

where DL is the longitudinal coefficient of mechanical
dispersion [Fried and Combarnous, 1971]. This coefficient
controls the growth of the mixing zone and therefore
characterizes the spreading of the interface as it travels
through the bead pack. For each experiment, DL has been
calculated by fitting the time evolution of the width w(t) with
equation (4). The coefficients of mechanical dispersion DL

for these stable experiments are shown on Figure 5 as a

Figure 3. Photograph of experiment 4 at time t = 405 s
after start of injection. The mixing zone is 3.1 cm thick. See
color version of this figure at back of this issue.

Figure 4. Concentration profiles (circles) at three different
times during experiment 4. Fits are equation (3).

Figure 5. Normalized dispersion coefficient as a function
of Péclet number. Each symbol corresponds to a density
contrast: dots, tracer case (no density contrast); stars,
0.07%; squares, 0.5%; diamonds, 0.7%; dotted circles,
1.4%.
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function of Pe where they have been normalized by the
coefficient of molecular diffusionDo. Coefficients calculated
from tracer experiments are also reported on Figure 5 for
comparison.
[26] In the tracer case, several regimes have been

experimentally observed [Pfannkuch, 1963; Fried and
Combarnous, 1971; Bear, 1972], which correspond to
different mixing mechanisms. Two end-member mixing
models for mechanical dispersion in porous media have
been derived. In the first model, mechanical dispersion
occurs mainly across the individual channels that connect
pores and as a result DL is proportional to !vs

2 [Taylor,
1953; Aris, 1956]. In the other model, it is assumed that
mixing occurs on the contrary within the pores, that is at
the junctions of the channels, which leads to a dependence
of DL on !vs [Bear, 1972]. According to these models, (a !vs)
arises as a natural dispersion scale and, therefore a natural
graphic representation of mechanical dispersion is illustrated
by plottingDL/(a !vs) as a function of Pe [see also Perkins and
Johnston, 1963]. It then appears that for Péclet numbers
greater than 5–10 mechanical dispersion becomes more
important than, although influenced by, molecular diffusion
and DL/(a !vs) ’ 0.5 Pem with 0 < m < 0.2. This regime
corresponds to a fluid mixing which is intermediate to
that predicted by Taylor’s and Bear’s models. The pure
mechanical dispersion regime occurs at higher Péclet
numbers, typically Pe > 102–103, where DL/(a !vs) ’
1.8 ± 0.4. This latter regime corresponds to Bear’s model
where all the mixing occurs within pores.
[27] We have normalized the coefficients of mechanical

dispersion for both tracer and stable experiments by (a !vs)
and plotted them as a function of the Péclet number on
Figure 6. Scalings reported in the literature for tracer case
have also been drawn for comparison. Our dispersion
coefficients appear to be systematically of lower value than
those from the literature, even when comparing tracer case
values. This might reflect the use of regular, round glass
beads in contrast to most other studies which have used less
regular materials, such as sand [Pfannkuch, 1963]. How-
ever, the key point here is that Figure 6 clearly shows that
mechanical dispersion is decreased significantly by gravity.
For the tracer case, we observe that the two different
regimes of mechanical dispersion are characterized by a
change of scaling at Pe ( 300:

DL= a!vsð Þ ’ 0:07 Pe0:45 for Pe < 300; ð5Þ

DL= a!vsð Þ ’ 0:8) 0:1 for Pe > 300; ð6Þ

whereas, despite some scattering, we observe for stable
experiments that the two regimes are characterized by two
different scalings with transition at Pe ( 500:

DL= a!vsð Þ ’ 0:005) 0:0025ð Þ Pe0:7)0:3 for Pe < 500; ð7Þ

DL= a!vsð Þ ’ 0:4) 0:1 for Pe > 500: ð8Þ

In the high Péclet number regime, gravity halves DL/(a !vs)
compared with the tracer case. In the low Péclet number
regime, dispersion coefficients get even smaller and are
only approximatively 1/4 of the tracer values, even for very

low density contrasts. However, given the scattering of the
data, measured dispersion coefficients in the stable experi-
ments do not seem to differ markedly from one another
despite a gravity number spanning two orders of magnitude
at a given Péclet number (Figure 1).
[28] Density contrasts act on perturbations of the fluid

front. In a homogeneous medium, perturbations of the fluid
front arise owing to (1) the fluid flowing faster at the center
of pores than close to the surface of grains, (2) changes in
pore cross section along the flow path and (3) local flow
directions, induced by the tortuosity of the medium, that
differ both from one pore to another and from the mean flow
direction. Our results indicate that density contrasts as small
as 0.07% (corresponding to a concentration difference in
NaCl of 0.1 wt%) are able to oppose such perturbations and
thus to decrease significantly the spreading of the front by
dispersion that would be expected in the tracer case.
Perhaps more surprisingly, our results also seem to indicate
that higher density contrasts, even 200 times as high, are not
more effective in suppressing such perturbations and hence
do not reduce the dispersion relative to flows with lower
density contrasts. This may indicate that there is some
irreducible dispersive mixing associated with the tortuous
flow which cannot be suppressed by gravity, that is,
perturbations of the fluid front induced by the tortuous flow
seem to be always present that cannot be suppressed by
gravity forces. For dispersion to be even more reduced
would require the further reduction of these perturbations
but it seems that the tortuous pathways of the flow creates
always some perturbations of the fluid front and that
although gravity forces will tend and oppose such pertur-
bations these ever present multiple tortuous pathways en-
sure that some perturbations will always be created and lead
to some irreducible mixing.

4. Experiments With a Gravitationally Unstable
Configuration

[29] In this series of experiments, red NaCl solution
displaced fresh water downward at a constant rate and G

Figure 6. DL/(a !vs) versus Pe. Symbols are the same as on
Figure 5. Solid curves are tracer case scalings reported in
the literature [Pfannkuch, 1963; Fried and Combarnous,
1971; Bear, 1972] and our scalings (equations (7) and (8)).
Dashed curves represent the uncertainties on our scalings.
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and Pe have been varied over two orders of magnitude
(Figure 1).

4.1. Observations

[30] Although the starting configuration of this series of
experiments is unstable, it was observed that the flow did
not develop any instability for a certain range of initial
conditions and that the fluid interface remained horizontal,
whereas the flow developed unstable fingers for other initial
conditions.
[31] Indeed, for small gravity numbers, the flow appeared

to be very similar to the flow started from a gravitationally
stable configuration, maintaining a flat fluid interface that
widened as it flowed through the porous medium. For large
gravity numbers, the flow developed unstable thin fingers of
red fluid that intruded into the layer of lighter fluid, 5 to 7
fingers being typically observed initially although up to 12
tiny fingers have been observed at the onset of some experi-
ments. As the flow carried on, the number of fingers seemed
to decrease as the fingers widened and some of themmerged.
Typically, 4 to 5 of them remained at the end of the experi-
ments, defined as the time at which the fingers reached the
base of the experimental tank. These sinking red fingers were
separated by channels of white, lighter fluid that were
gradually flushed downward by the continuing flow from
above. Moreover, these channels of light fluid were generally
thicker than the dense sinking fingers. Such a feature has also
been observed in the case of Rayleigh-Taylor instability in a
Hele-Shaw cell rather than a porous medium [Lewis, 1950],
but in the present porous case the tip of the light channels
appear less rounded. Finally, it was noticed that the upper part
of the bead pack, flushed by the dense red solution and lying
above the channels of light fluid, was not uniform; instead, it
was in fact interspersed with darker red regions, above the red
fingers, and lighter red or pink-colored regions, above the
white channels, in which some of the pores still contained
light fluid (Figure 7).

4.2. Analysis

[32] Although we observe that unstable fingers seem to
develop only when the gravity number is greater than 1, this
does not necessarily mean that fingers do not develop at
smaller gravity number. Although, previous works suggest
that unstable fingering will be observed only if the density
contrast is high enough to overcome viscous and dispersion
resistance, it has also been observed in laboratory experi-
ments that instabilities require some time before they
develop [Schincariol and Schwartz, 1990]. Therefore un-
stable fingers might not be observed if they have not had
time to develop on the time and length scales of the
experiments.
[33] Moreover, the spectrum of unstable wavelengths is

function of the density contrast and the dispersion, which
both evolve with time as the flow proceeds [Schincariol et
al., 1994]. The initial development of the instability is
damped by mechanical dispersion: in the case of distur-
bances with shorter wavelength, dispersion is increasingly
more efficient at smoothing out or eliminating the fingers or
perturbations before they have a chance to grow while it also
reduces the density difference that drives the instabilities.
Furthermore, instability growth rate increases with density
difference [Schincariol et al., 1994]. Therefore, as the
density contrast is reduced by dispersion, instability growth

rate would be expected to be reduced as well. Since mechan-
ical dispersion increases with the advection rate, thus for
smaller gravity numbers, the onset of instability would be
delayed owing to its smaller growth rate. This is consistent
with the fact that for small gravity number experiments we
did not observe fingers, at least over the length of our tank.
[34] Provided that the density difference is high enough

and that unstable fingers could develop ultimately, we
expect the mixing zone to spread diffusively at early times,
growing like t1/2, but subsequently it will develop fingers
and grow convectively like t owing to the advection of these
unstable fingers. In order to quantify the effective dispersion
coefficient for these experiments, we modified the method-
ology used for the stable regime because of the finger zone
which developed progressively during each experiment.
[35] At time t, the fluid interface is centered at position

xint(t) and we can define the function f(x) as

f xð Þ ¼ 1" C x; tð Þ; 0 < x < xint tð Þ;

f xð Þ ¼ C x; tð Þ; H > x > xint tð Þ;

8

<

:

ð9Þ

where H is the height of the bead pack. We find that f(x) is
not symmetric, particularly when unstable fingers have fully

Figure 7. Photograph of experiment 47. Dense, red, salty
fingers, separated by white channels of fresh water, are fed
from regions flushed by the invading fluid. Between these
regions the beads have only been partially flushed, as
revealed by its lighter color, and some of the pores are still
containing the initial fresh water. See color version of this
figure at back of this issue.
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developed. Moreover, the concentration profiles obtained
from the digital photographs contain some noise, owing to
the diffraction of light by the individual grains of the bead
pack, that tends to induce negative values of the function
f(x) as it gets closer to x = 0 and x = H, instead of fading
away to zero (equation (9)). As a result, calculating the
standard deviation of the function f would be meaningless.
Instead, we have identified the width of the mixing zone
with the interquartile distance ID of this function. This
distance is defined as ID = x3/4 " x1/4, where one quarter of
the integral of the function f lies at the right of x3/4 and one
quarter at the left of x1/4:

Z x1=4

0

f xð Þdx ¼ 1

4

Z H

0

f xð Þdx; and

Z x3=4

0

f xð Þdx ¼ 3

4

Z H

0

f xð Þdx:

ð10Þ

Although in a sense this choice for determining a width of
the function f is arbitrary, ID can be calculated for any
function f and in the pure tracer dispersion case it
corresponds to half the width w(t) of the concentration
profile given by equation (3). Therefore we have defined the
width of the mixing zone that develops in a gravitationally
unstable configuration as w = 2 ID(t). The results derived
for the stable regime are therefore directly comparable to the
analysis of the dispersive mixing in the unstable regime
prior to the onset of convective fingering.
4.2.1. Diffusive Regime
[36] As mentioned above, in experiments with low grav-

ity number (G < 1), the source velocity us is much greater
than the buoyancy velocity ug and any potential gravita-
tional instability is therefore expected to have not enough
time to fully develop over the length and time scales of the
experiment; during the course of an experiment, mechanical
dispersion suppresses the growth of unstable fingers, which
remain confined within the diffusive mixing zone, so that
the fluid front remains planar in an analogous fashion to the
gravitationally stable case. As a consequence, the mixing
zone in fact obeys the dispersion equation and the variation
of the injected fluid concentration along the bead pack may
be represented by equation (3) (Figure 8). When G ’ 1, a

transition appears: the interface remains fairly flat at the
beginning of the experiment and subsequently unstable
fingers develop (Figure 15). During the initial stage of these
experiments, the mixing zone obeys the dispersion equation,
as in experiments carried out at lower gravity numbers
[37] In this diffusive regime, as for gravitationally stable

flows, the mixing zone grows like t1/2 and a coefficient of
mechanical dispersion can be calculated. Figure 9 represents
DL/Do as a function of the Péclet number, and Figure 10
shows DL/(a !vs) versus Pe. On both Figures 9 and 10,
coefficients obtained from the stable experiments are also
shown for comparison. Both Figures 9 and 10, particularly
Figure 10, show that both the Péclet number and the gravity
number impact mechanical dispersion in unstable flows,
even though it behaves diffusively. For small gravity
number, the normalized mechanical dispersion DL/(a !vs)
calculated in unstable configurations has value similar to
that in stable configurations. However, for G larger than
approximately 0.4, it becomes significantly higher, up to
one order of magnitude higher, than in stable ones. This is
observed even for density contrasts as low as 0.07%.

Figure 8. Concentration profile during experiment 35 at
t = 59 s (G = 0.2, Pe = 2265). The measured profile is
represented by the solid curve, and the dashed curve
corresponds to the diffusive equation (3).

Figure 9. Normalized dispersion coefficient DL/Do versus
Pe. Open circles are stable configurations; other symbols are
unstable configurations that display a diffusive regime:
stars, density contrast of 0.07%; squares, 0.7%; triangles,
3.5% and diamonds, 7%.

Figure 10. DL/(a!vs) versus Pe. Symbols are the same as on
Figure 9. Values of G are in parentheses for unstable
configurations.
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[38] However, the impact of gravity on mechanical
dispersion in unstable configurations is better seen when
DL/(a !vs) is presented as a function of G rather than Pe, as
shown on Figure 11, where all data collapse on the same
curve. This is in striking contrast to the stable case where
the control parameter appears to be the Péclet number
rather than G, even though gravity does reduce the
mechanical dispersion compared to that found for the pure
tracer dispersion. Figure 11 identifies two different scal-
ings depending on the value of the gravity number:

DL= a!vsð Þ ’ 0:4) 0:1 for G < 0:2; ð11Þ

DL= a!vsð Þ ’ 1:2) 0:2ð ÞG1:2)0:5 for G > 0:2: ð12Þ

For gravity numbers lower than approximately 0.2, DL/(a !vs)
appears to remain constant at a value identical to that
measured in the diffuse regime. This suggests that for gravity
numbers lower than approximately 0.1, dispersion is
sufficiently large to prevent the development of instability
in the bead pack; despite being gravitationally unstable, the
fluid interface remains flat and grows diffusively. The
dispersion coefficient depends then only on the background
flow as parameterized through the Péclet number. For
gravity numbers greater than approximately 0.2, we observe
that, although the fluid interface still grows diffusively, G is
sufficiently large to enhance the dispersion and DL/(a !vs)
appears to increase as G1.2.
[39] As will be shown below, for values of G greater

than 1.5, the mixing zone grows linearly with time owing
to the advection of unstable fingers. For intermediate
values of G, between 0.2 and 1.5, the flow is at the
transition between these two regimes: the mixing zone
appears to grow initially diffusively and then subsequently
advectively. This is during the initial seemingly diffusive
growth that DL/(a !vs) appears to increase as G1.2. There-
fore this nearly linear scaling presumably reflects the fact
that the flow is at that transition between the two regimes
with the mixing zone switching to an advective growth
controlled by the finger velocity and thus by G.
4.2.2. Convective Regime
[40] Ultimately, unstable fingers are observed to develop

at the interface (Figure 12) and emerge from the diffusive
mixing zone so that unstable convection is established. This

distorts the concentration profile, which can no longer be
modeled by the simple diffusive equation (3) (Figure 13).
[41] The fingers appear to propagate at a constant veloc-

ity. This velocity has been measured by following the
progression of the point on the horizontally averaged
concentration profile that corresponds to fluid containing
5% of the injected solution. This value is sufficiently large
to be accurately measured but sufficiently small that it is
located near the average position of the tips of the fingers.
[42] We expect that the velocity of the fingers, in the

linear convective regime, should scale with the gravity
number. Indeed, in Figure 14, vfinger measured in the
reference frame of the laboratory, normalized by !vs, has
been plotted as a function of G. All data collapse on the
linear relationship

vfinger=!vs ¼ 1þ 0:25G; ð13Þ

so that in the moving frame of reference of the fluid front

vfinger ¼ 0:25 vg: ð14Þ

The reduction in the finger velocity by the factor a = 0.25 is
presumably a result of the intermediate density of the mixed

Figure 11. DL/(a!vs) versus G. Symbols are the same as on
Figure 9.

Figure 12. Convective regime (experiment 47, G = 3.9,
Pe = 1095). See color version of this figure at back of this
issue.

Figure 13. Evolution of the concentration profile in the
convective regime (experiment 41, G = 4.3, Pe = 116). The
emergence and growth of unstable fingers at the interface
distort the concentration profile (thick solid curve). The
dashed curve is the diffusive equation (3) for comparison.
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zone which is the initial source of fluid for the descending
fingers.
4.2.3. Transition Between Regimes
[43] In experiments carried out at gravity numbers close

to unity, the transition between the diffusive and linear
convective regimes is observed. As shown on Figures 15
and 16, the interface is horizontal in the early stage of the
experiments and, as a result, the mixing zone behaves
diffusively and grows like t1/2; subsequently the interface
becomes unstable and develops fingers, which leads to the
linear convective growth of the mixing zone.
[44] We expect instabilities to develop when the growth

rate of unstable fingers becomes greater than the rate of spread
of the mixing zone owing to mechanical dispersion. This
argument is similar to that for the onset of thermal convection,
which arises when its growth rate overcomes that of conduc-
tion over the thickness over which the temperature difference
is effective. This arguments can be expressed as

vfinger >
dw

dt
¼ 2DL

t

" #1=2

: ð15Þ

Combining this condition with the finger velocity measured
experimentally (14) and the dispersion scalings (11) and

(12), we find that instability does not develop until t > tc =
2DL/(a vg)

2 with

tc ¼
0:8a2

a2 Do Pe
G"2 for G < 0:2; ð16Þ

tc ¼
2:4a2

a2 Do Pe
G"0:8 for G > 0:2: ð17Þ

As shown on Figure 17, the theoretical transition time (17)
compares well with the transition time measured experi-
mentally (G & 0.4 in all transition experiments).
[45] Finally, when unstable fingers develop, they emerge

from the mixing zone, which grew previously owing to
mechanical dispersion. Schincariol et al. [1994] have shown
that dispersion is increasingly more efficient at smoothing
out the perturbations with the shortest wavelength and their
experiments reveal that the critical wavelength for onset of
instability increases as the density difference is reduced.
Therefore, as the mixing zone grows owing to dispersion,
the density contrast is reduced, which increases the critical

Figure 14. Nondimensional finger velocity vfinger/!vs
versus gravity number G for all experiments started from
an unstable configuration. Symbols are the same as on
Figure 9. Fit is equation (13).

Figure 15. Transition between an initial diffusive regime
(Figure 15a) and a subsequent linear convective regime
(Figure 15c) (experiment 39, G = 1.1, Pe = 457): (a) t =
210 s, (b) t = 390 s, and (c) t = 570 s. See color version of
this figure at back of this issue.

Figure 16. Width of the mixing zone w as a function of
time showing the transition between initial diffusive regime,
where w / t1/2, and later linear convective regime, where
w / t. Each symbol corresponds to an experiment: circles,
37; squares, 38; pluses, 39; crosses, 45; triangles, 46;
diamonds, 50; inverted triangles, 51.

Figure 17. Experimental transition time tcexp compared
with the theoretical transition time 2.4 a2/(a2 Do G

0.8 Pe).
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wavelength for instability. Since the thickness of the mixing
zone and the critical wavelength for instability both increase
as the dispersion increases, we make the assumption that
dispersion will favor the emergence of an instability in
which the wavelength scales with the thickness of the
mixing zone at the onset of instability, l ( w(tc). We
therefore expect l to scale like 4 DL/(a vg) and using
dispersion scalings (11) and (12), we get

l ( 1:6a

aG
for G < 0:2; ð18Þ

l ( 4:8a

a
G0:2 for G > 0:2: ð19Þ

Figure 18 shows that l (equation (19)) is close indeed to the
experimental values of the interface thickness measured at
the transition between regimes, thereby verifying our initial
assumption. Also, these theoretical length scales correspond
to 4–6 initial fingers, a value close to the average number of
observed fingers in these experiments.

4.3. Discussion and Comparison With Previous
Theoretical Descriptions

[46] We have found that the onset of the fingering
instability occurs when the growth rate of the unstable
fingers is larger than that of the mixing zone by dispersion
and that the size of the fingers scales with the width of the
mixed zone, which can be expressed as a function of the
gravity number G by the equations (18) and (19). In
particular, we have found that the wavelength l associated
with the emergence of instabilities tends to infinity as G
tends to zero (equation (18)). Also, we find that l is weakly
dependent on G but tends to the value 4.8 a/a ’ 19 a,
which is determined by the grain size of the porous medium,
for large values of G (equation (19)). These findings are
consistent with the works by Schincariol et al. [1994] and
Simmons et al. [2001]. They found that the critical wave-
length corresponding to the first instance of instabilities
seems to asymptote to infinity for very small density
differences and to a small constant value for large density
differences.

[47] Our experimental results have also implications for
the use and the validity of Rayleigh numbers Ra in
stability criteria. Usually, a flow is assumed unstable if
Ra becomes larger than a critical value Rac. Linear
stability analysis gives the value Rac = 4p2 = 39.48
[Nield and Bejan, 1999], although the pioneering work of
Wooding [1959] gives also Rac = 3.39. The Rayleigh
number associated with a porous flow is Ra = Drgkh/mD.
As mentioned earlier, the length scale h is difficult to
define unambiguously. However, the thickness of the
mixing zone (equation (4)) seems the most appropriate
since it represents the distance over which the effective
density difference has an influence, in which case Ra =
8Drgk

m

ffiffiffiffiffiffiffiffi

t=D
p

. Therefore the onset of instability can be
understood by evaluating the Rayleigh number of the
mixing layer, and observing that this increases with time
until exceeding the critical value for stability, hence the
mixing layer becoming unstable. The key physics is that
at a critical thickness, the convective transport of fluid
within the mixing layer becomes faster than the diffusive
transport and hence fingers develop.

5. Geological Implications

[48] In the uniform porous medium used in our laboratory
experiments, with vertical displacement flows, the unstable
gravitational fingers developed vertically while the gravita-
tionally stable interface remained horizontal. In a more
natural geological environment, heterogeneities such as
layers of lower permeability will certainly affect the flow
and may distort fluid-fluid interfaces. However, assuming a
uniform porous medium we can estimate the timescale and
the wavelength associated with the development of gravi-
tational instability. Baring in mind these are highly idealized
settings, they nevertheless enable to illustrate how the
interplay between gravity and dispersion could prevent or
delay unstable mixing.
[49] An example of miscible displacement through

porous rocks occurs following the injection of seawater
in hydrocarbon reservoirs, a technique that is widely used
to enhance the productivity of offshore oil reservoirs.
Usually, the density of seawater differs noticeably from
that of connate water and density contrasts as high as
10% can be observed. As seawater is injected from a
well, it flows preferentially along layers of high perme-
ability, from which it also seeps through the neighboring
layers of lower permeability. Knowledge about the devel-
opment of unstable fingers is key for the hydrocarbon
industry as they can have a strong impact on the sweep
efficiency. For instability to be prevented over the thick-
ness h of a porous layer, h has to be smaller than the
distance the fluid front would need to travel for instability
to occur, that is h < !vs tc. For porous layers 1–10 m
thick, with a grain size of (1 mm, this requires G <
10"2–10"1. Expressing this condition as a function of
injected flux Q per unit width of porous layer, we require
kDrgh/(mQ) < 10"2–10"1. Taking k = 10"14 m2, m =
10"3 Pa s and Dr = 100 kg m"3, we would expect
instability to be prevented by mechanical dispersion if
seawater is injected at flux Q higher than 10"7–10"5 m2 s"1

or 0.05–5 bbl day"1 m"1.
[50] An example of a geological miscible, porous

displacement is the repeated invasion and retreat of

Figure 18. Experimental width of the mixing zone at
transition time, w(tc), compared with the theoretical
wavelength of instability 4.8a G0.2/a.
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seawater into carbonate layers originally saturated with
fresher water of lower magnesium content, a mechanism
which leads to the dolomitization of the carbonate rocks
[Phillips, 1991]. Again, we would expect mechanical
dispersion to be able to prevent or delay the onset of
gravitational instability if G < 10"2–10"1. For a back-
ground flow driven by a head Dh, this corresponds to
(Dr/r) (h/Dh) < 10"2–10"1. Seawater contains typically
3.5 wt% NaCl but this concentration can increase by a
factor of 5 or even 10 when halite deposits form
[Phillips, 1991]. This gives a range of density contrasts
Dr/r ( 10"2–10"1. As a result, instability would not
develop if the relative head Dh/h that drives the back-
ground flow is greater than unity. Thus mechanical
dispersion might be able to prevent or delay instability
only in layers thinner than a meter or so.
[51] Our experiments suggest that when gravitational

instability develops, its wavelength scales with the thick-
ness of the fluid front. In homogeneous porous rocks
with grain size (1 mm, equations (18) and (19) indicate
that this wavelength would be of centimeter to meter
scale depending on the value of G. For gravity number
greater than (0.2 the initial instability wavelength is
weakly dependent on G and should be approximately
constant with value (3 cm. For lower value of G
however, the wavelength scales as 1/G and it is therefore
expected to have greater value for smaller density con-
trasts. For example, a gravity number of 10"2 would give
l ( 60 cm.

6. Conclusion

[52] We have investigated the behavior of the mixing
zone between two miscible fluids in a porous medium
when the flow starts from either a stable or an unstable
configuration. Our experimental results highlight the
strong interplay that exists between gravity and mechan-
ical dispersion.
[53] In stable configurations, our results show different

scalings: at low Péclet number, the dispersion coefficient
increases with Pe whereas for Péclet numbers higher than
500, a pure mechanical dispersion regime is achieved and
the dispersion coefficient remains constant. Although a
similar transition in scalings is observed in the pure tracer
dispersion case, our results show that gravity decreases
significantly the degree of mixing of the fluids by reducing
the dispersion coefficient by a factor of 2 to 4, depending on
the Péclet number, even for density contrasts as low as
0.07%.
[54] In the case of flows starting from an unstable

configuration, we observe that the Rayleigh-Taylor insta-
bility is damped by mechanical dispersion until the time at
which the speed of the dispersing front has fallen to a value
equal to that of the unstable gravity driven fingers. At the
onset of the fingering instability the size of the fingers
scales with the width of the mixed zone. During the
dispersive regime, for gravity number lower than 0.2,
mixing does not appear to be affected by gravity and is
characterized by a constant coefficient of dispersion. For
higher values of G, mechanical dispersion scales as DL ( Pe
G1.2. In turn, this controls the initial diffusive growth of the
mixing zone and therefore the time at which the instability
subsequently arises as well as its wavelength.

[55] When applied to homogeneous and uniform geo-
logical settings, these results would suggest that mechan-
ical dispersion suppresses the onset of Rayleigh-Taylor
instability until a mixed zone 1–2 m thick has developed.
The wavelength of the instability would be expected to
have value of order centimeter to meter depending on the
value of G.
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Figure 3. Photograph of experiment 4 at time t = 405 s
after start of injection. The mixing zone is 3.1 cm thick.

Figure 7. Photograph of experiment 47. Dense, red, salty
fingers, separated by white channels of fresh water, are fed
from regions flushed by the invading fluid. Between these
regions the beads have only been partially flushed, as
revealed by its lighter color, and some of the pores are still
containing the initial fresh water.

Figure 12. Convective regime (experiment 47, G = 3.9,
Pe = 1095).

Figure 15. Transition between an initial diffusive regime
(Figure 15a) and a subsequent linear convective regime
(Figure 15c) (experiment 39, G = 1.1, Pe = 457): (a) t =
210 s, (b) t = 390 s, and (c) t = 570 s.
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Chapter 3

Magma Degassing (2003–2008; Bristol)

(Fundings: Center for Nuclear Waste Regulatory Analyses, and Leverhulme Trust)

In 2003, I moved to the University of Bristol, UK, as a Research Associate where
I started working on magma degassing, focusing essentially, but not exclusively, on
basaltic systems.

3.1 Control exerted by the geometry of the plumb-
ing system on basaltic passive degassing

Magma degassing exerts a fundamental control on the eruptive style of volca-
noes. The effusive behaviour of basaltic volcanoes is commonly characterised by
a relatively mild and fairly continuous degassing, whereas silicic volcanoes exhibit
more violent eruptions owing to constrained and thus more powerful and sporadic
degassing. Yet, although the duration and cyclicity of these two eruption styles
are different, the initial dissolved gas content does not vary significantly between
either style. Basaltic magmas typically contain 1–3 wt.% volatiles, although dis-
solved water contents as high as 6 wt.% have been measured in arc basalts (Sisson
and Layne, 1993), whereas silicic magmas contain 4–6 wt.% volatiles (e.g. Wallace,
2001). The observed difference between basaltic and silicic eruptive styles implies
a more efficient gas exsolution and separation in less silicic magmas owing to lower
viscosity.

Another feature of basaltic volcanoes is that many emit vast amounts of gas
while erupting relatively little, if any, degassed lava. Furthermore, some of these
volcanoes have been persistently degassing for years to millennia. This requires
a physical gas separation from the magma that remains efficient over very long
periods of time. Mass balance requires that large amounts of magma must be
processed during gas separation. This could imply growth of the volcanic plumbing
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system whereby influx of fresh, gas-bearing magma is stripped of its volatiles and
degassed magma is then stored at shallow depth. Alternatively, long-lived degassing
could be achieved by a recirculation of magma between shallow parts of volcanic
plumbing system, where over-saturated volatiles are extracted, and deeper parts of
the system where degassed magma is recycled.

The main control on gas separation in basaltic magmas is their low viscosity,
which allows more efficient extraction than from more viscous silicic magmas (e.g.
Vergniolle and Jaupart, 1990; Phillips and Woods, 2001). However, gas separation
does not simply result from gas bubbles rising more rapidly than the magma on
ascent; this mechanism would require centimetre-scale bubbles, usually associated
with fragmented flows hence at or very near the conduit surface. Alternative and
physically viable mechanisms include bubble coalescence (Sparks, 2003), convec-
tion processes within volcanic conduits (Stevenson and Blake, 1998) and foam
development in reservoirs (Jaupart and Vergniolle, 1989). All these mechanisms
are intimately linked to the geometry and degree of connectivity of the volcanic
plumbing systems, which often involve a complex network of interconnected sub-
units, from vertical conduits to horizontal dykes and sills and other sub-reservoirs
of less well-defined geometry.

Analogue experiments were carried out to study how the geometry and con-
nectivity of the plumbing system affects the circulation of magma, and how this
circulation impacts gas separation. The investigation was restricted to the geom-
etry of a vertical conduit connected to a horizontal magma body to identify the
key physical principles that govern gas separation in magmatic systems. To this
end, two interconnected glass tubes simulated a vertical conduit connected to a
horizontal intrusion with a closed end. The tubes were filled with various mixtures
of golden syrup, water and NaCl. Their respective concentrations determined the
density and viscosity of the mixture, while gas bubbles were produced either by
electrolysis (Menand and Phillips, 2007a) or by aerating the mixture (Menand and
Phillips, 2007b). The presence of these bubbles (up to 40 vol.%) increased the
bulk viscosity and decreased the bulk density of the mixture. Whether the bulk
bubbly mixture was forced to rise in the vertical conduit or staid still instead, the
presence of the bubbles was the catalyst for an exchange flow between the vertical
conduit and the horizontal arm, whose timescale was controlled by the viscosity of
the bulk mixture, the bubble size and the side arm dimensions.

Irrespective of the flow rate in the vertical tube and for bubble content up to
40 vol.%, the same fluid-flow processes were observed as illustrated in Fig. 3.1.
At the beginning of the experiments, the presence of the bubbles in the vertical
conduit decreases the bulk density of the mixture, which creates a density difference
between the bubbly fluid in the vertical conduit and the fluid originally at rest in
the horizontal side arm. In turn, this density difference drives an exchange flow
between the two tubes (Fig. 3.1A). The time-scale associated with this exchange
is long enough that bubbles in the horizontal side arm have time to rise, separate
from the fluid, and accumulate at its top. This separation is coupled with the
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accumulation of degassed, hence bubble-free fluid at the base of the side arm (Fig.
3.1B). Ultimately, a steady state is reached whereby the influx of bubbly fluid into
the side arm is balanced by the outward flux of lighter foam and denser degassed
fluid, which are respectively reinjected up the conduit toward the surface, and
recycled at depth in the vertical section (Fig. 3.1C). The structure of the fluid
stratification in the side arm is then fixed, with the thickness of both the foam and
the layer of degassed fluid remaining constant.

Figure 3.1: Schematic illustration of the control exerted by the geometry of a volcanic
plumbing system on gas separation, and of the exchange flow that develops
between a vertical conduit and a horizontal side arm of length L and thick-
ness D. Arrows indicate flow directions. A) The bubble-rich fluid originally
present in the vertical conduit is less dense than the bubble-free fluid in the
side arm, which induces a bubbly gravity current that intrudes the side arm.
B) As this bubbly gravity current spreads, bubbles rise and separate from
the carrying liquid to form a bubble-rich foam at the upper surface of the
side arm. C) A steady exchange flow is ultimately established between the
vertical conduit and the side arm.

The length and time scales of the gas separation are controlled by the rise of
bubbles in the horizontal intrusion and the rate at which the gas-rich foam flows
out of the side arm. Once a steady-state is reached, the height of the gas-rich
foam h can be written as the product of a characteristic height H and a shape
function f (x):

h(x) = H f (x), (3.1)

where

f (x) =
�

x
L
− x2

4 L2

�1/4
, (3.2)

and

H =
�

c (1 − c)2 d2 L2

� (1 − �)5/2 (� − c)

�1/4
(3.3)

at low volumetric gas fraction c (less than 0.1), or

H =
�

c (1 − c)7/2 d2 L2

� (1 − �)5/2 (� − c)

�1/4
(3.4)

at higher volumetric gas fraction (Menand and Phillips, 2007a,b; Menand et al.,
2008). d is the characteristic size of gas bubbles, L is the length of the intrusion, �
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is the gas fraction of the foam, and the variable x is the position along the intrusion
with origin at the junction with the conduit.

The time scales to reach steady-state are the time taken by bubbles to rise,
following Stokes’ law, to the top of the intrusion

Tb =
12 µl D
ρl g d2 , (3.5)

and the time taken by the foam to develop a steady-state height

T f =
12 µl L1/2

ρl g d3/2

�
�3

c3 (1 − �)5/2 (� − c)

�1/4
. (3.6)

D is the height or thickness of the intrusion, µl and ρl are the viscosity and density
of the liquid phase, respectively, and g is the gravitational acceleration. These
time scales correspond to low volumetric gas fractions (c < 0.1). They should
be multiplied by a factor 1/(1 − c)7/2 and 1/(1 − c)21/8), respectively, at higher
gas fractions. Whether the gas separation processes reported here operate also in
nature depends on the cooling and solidification of the intrusion. A conservative
estimate for this time scale is obtained by considering cooling and solidification by
conduction (Turcotte and Schubert, 2002):

Ts =
D2

16 κ λ2 . (3.7)

A typical value for magma thermal diffusivity is κ = 5 10−7 m2 s−1, and the dimen-
sionless constant λ depends on the temperature difference between the magma and
surrounding rocks and is typically in the range 0.5–0.75 (Turcotte and Schubert,
2002). This time scale Ts is a lower estimate because if the intrusion were con-
nected to an active conduit, the solidification time would be larger as any exchange
flow would mean both mass and heat are exchanged, keeping the intrusion hotter
than in the purely conductive scenario. Comparison of these time scales suggests
that more efficient gas separation occurs in sills than in horizontal dykes. Both time
scales associated with gas separation, Tb and T f , increase with magma viscosity
and intrusion size, but the cooling and solidification time scale Ts appears to be
the most sensitive to intrusion size. As a result, gas separation could be efficient
within large intrusions with magmas of basaltic to intermediate composition as well
as within smaller, basaltic intrusions (Menand and Phillips, 2007a).

This gas-separation process is essentially the same as that of Jaupart and
Vergniolle (1989). However, it is shown here that gas separation by foam accumu-
lation is not restricted to occurring solely in magmatic reservoirs; any non-vertical
elements of volcanic plumbing systems can also act as strong gas segregators. This
model of gas separation has also implications for the generation of gas-rich and
gas-poor magmas and their eruptive behaviour. For low magma supply rates at
a persistent volcano, very efficient gas separation is expected, inducing episodic
degassing and pulse-like activity that erupt relatively gas-poor magmas, because
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separation rates are larger than overall magma supply rate. At higher magma supply
rates, gas separation is expected to be less effective, leading to stronger explosions
erupting gas-rich as well as gas-poor magmas. These general physical principles
for gas separation in shallow horizontal intrusions can be applied to Stromboli, and
their implications are all consistent with independent field data. Gas separation at
Stromboli is likely to occur in a shallow reservoir of sill-like geometry at 3.5 km
depth with bubbles of exsolved gas 0.1–1 mm in diameter. The transition between
Strombolian activity erupting gas-poor, highly porphyritic magmas and violent ex-
plosions that erupt also gas-rich, low porphyritic magmas would correspond to a
critical magma supply rate on the order of 0.1–1 m3 s−1 (Menand and Phillips,
2007a).

3.2 Impact of magmatism on nuclear waste repos-
itory performance

The previous investigation of the control exerted by the geometry of a magmatic
plumbing system on the degassing and movements of basaltic magmas in that sys-
tem has also been applied to an engineering problem, namely the impact a basaltic
dyke would have on the performance of the potential nuclear waste repository at
Yucca Mountain in Nevada, USA.

Until recently, Yucca Mountain was a proposed site for a potential underground
nuclear waste repository (the program has now been closed). However, regulations
require repository developers to consider various natural hazards when evaluating
repository performance. The proposed site for the Yucca Mountain repository is
located within a historically geologically active basaltic volcanic field with six Qua-
ternary basaltic volcanoes located within 20 km, whose activity has been charac-
terised by Strombolian bursts to violent Strombolian eruptions as well as effusions of
lavas. Based on probabilities estimated for repository disruption by future basaltic
volcanism (e.g. 1.8 x 10−8, Bechtel SAIC Company, LLC (2007); 1.0 x 10−6, Smith
and Keenan (2005)) and the potential risks for this natural hazard, performance
assessments should evaluate the consequences of a basaltic dyke intersecting the
drifts and tunnels of the potential repository, which might damage the emplaced
waste packages and waste form, and could transport radioactive material to the
biosphere (NRC, 2005).

There is almost no precedent for a volcanic eruption interacting with an un-
derground storage facility of the kind envisaged for radioactive waste repositories.
These facilities generally consist of a network of tunnels or drifts. Some designs
require the drifts to remain empty apart from their inventory of radioactive waste
containers, at least up to the time the repository is permanently closed (i.e. on
the order of several hundred years in some cases). Thus, the generic processes
that might occur if magma erupts into empty drifts have been a prominent topic
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of study.

Previous work at the University of Bristol (Lejeune et al., 2009) focused on
laboratory analogue experiments that investigated the transient dynamics of how
gas-bearing and gas-free fluids similar to magmas could suddenly decompress into
subsurface openings, which can accelerate and fragment the fluids. Following the
initial transient decompression of gas-bearing magma into the drift, the flow would
likely adjust to a steady state within seconds to hours depending on whether magma
flow is diverted along the drift or is limited to the main dyke if access drifts are
backfilled with crushed rocks (Woods et al., 2002; Dartevelle and Valentine, 2005).
At shallow crustal depths typical for repository drifts (< 500 m), magma volatiles
are very likely to exist as exsolved bubbles. For instance, initial water contents of
basalts that have erupted in the vicinity of Yucca Mountain range from 1.9–4.6
wt.% (Nicholis and Rutherford, 2004), and at a depth of 300 m a basaltic magma
with 4.6 wt.% initial water will have exsolved 3.8 wt.% of its water (Holloway and
Blank, 1994), which would correspond to volumetric gas fractions in the range of
70–90% at that depth (Menand et al., 2008), provided no gas loss occurred before
magma reach the repository drifts level.

The gas separation processes described in the previous section (3.1) could also
occur at these high volumetric gas fractions (Menand and Phillips, 2007b; Menand
et al., 2008). For the potential Yucca Mountain repository geometry, the time
required for steady-state gas separation ranges from hours to hundreds of years
depending on the average size of exsolved gas bubbles and on the viscosity of de-
gassed magmas, which depends strongly on the degree of water exsolution, cooling
and crystallisation. The steady-state flux Qex associated with gas separation ranges
from 1 m3 s−1 for the less viscous magmas, to 10−8 m3 s−1 for the most viscous de-
gassed magmas. These flux values are strongly dependent on the average exsolved
bubble diameter. The relative proportion of erupted degassed magma will depend
on the value of the magma supply rate relative to the value of Qex. If magma is
supplied at a rate higher than Qex, then gassy as well as degassed magmas are
expected to be violently erupted; if the supply rate is lower, then mainly degassed
magma would be erupted by milder episodic Strombolian explosions generated by
the repeated collapse of the foam accumulated at the top of drifts (Menand et al.,
2008, 2009).

3.3 Diffusion of water in hourglass melt inclusions:
a magmatic geospeedometer

In parallel to the work on the passive degassing of basaltic systems described
in the previous sections, I also worked on the diffusion of water in imperfectly
trapped melt inclusions, also called hourglass inclusions, and its use as a magmatic
geospeedometer. Indeed, a major challenge in physical volcanology is to obtain
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direct, in situ measurements of ascent velocity during explosive volcanic eruptions.
The ascent rate of magma controls the height and strength of the eruption column
and thus determines the physical dispersal of tephra. Magma ascent velocity is also
a key parameter in numerical conduit-flow models. Melt inclusions permit direct,
independent measurements of ascent velocity from erupted materials.

Melt inclusions in phenocrysts are now routinely used to measure the pre-
eruptive volatile contents, and hence crystallisation pressures, of volatile-saturated
magmas (e.g. Dunbar and Hervig, 1992; Blundy and Cashman, 2001; Wallace,
2005). However, not all melt inclusions are perfectly trapped within the host phe-
nocryst. Some are elongate tubes connected to the external melt, allowing them
to exchange chemical components, including volatiles, with the matrix (Ander-
son, 1991). Others have ruptured and vesiculated during ascent. However, these
imperfections can be exploited to obtain information about the timescale over
which components have been exchanged by diffusion with the matrix, and thus
offer insights into the degassing history of the magma. For example, Anderson
(1991) used the variation of bubble volumes and H2O concentrations in imper-
fectly trapped hourglass inclusions in quartz (similar features are also called melt
tubes, melt pockets, reentrant inclusions) to infer decompression rates during the
eruption of the Bishop Tuff.

We developed at Bristol University a new technique for using syn-eruptive
volatile diffusion in imperfectly trapped melt inclusions to obtain a direct esti-
mate of such ascent velocities, and we applied this technique to melt inclusions
from the May 18th, 1980 Plinian eruption of Mount St Helens, Washington, USA
(Humphreys et al., 2008). In this study we showed there is a negative, linear corre-
lation between melt H2O concentrations measured by SIMS analysis and greyscale
intensity of glass in back-scattered electron images (Fig. 3.2). Greyscale inten-
sity profiles, extracted using image-processing software, can therefore be calibrated
against H2O measured at discrete points by ion microprobe. An advantage of this
new technique is that concentration profiles can be determined in melt tubes that
are otherwise too small to analyse directly, with a spatial resolution (≤ 1 µm) that
is considerably better than that obtainable by ion microprobe or FTIR.

The time taken to produce the measured H2O concentration profiles was esti-
mated by calculating the time required to establish such profiles by diffusion. The
tubular melt inclusions were approximated as cylindrical tubes whose lengths are
much larger than their radii so that diffusion occurred mainly along the inclusion
length, consistent with the geometry of melt tubes observed in transmitted light
on other similar samples. Diffusion perpendicular to the tube axis was neglected
because the diffusivity of H2O within plagioclase is low compared with the melt.
The model assumed that the outer end of each tube underwent instantaneous de-
hydration, with 1-D diffusion of H2O occurring along the melt tube towards its
open end, in the time taken to ascend to the fragmentation horizon and quench.
The concentration of H2O remaining at fragmentation (C f ) was measured directly
from the concentration profile and was defined as the concentration at the open
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Figure 3.2: H2O diffusion profile for a tubular (hourglass) inclusion in a plagioclase from
Mount St Helens (Humphreys et al., 2008). Left: BSE image showing a
strongly zoned plagioclase crystal, the melt tube (highlighted by white box)
and other inclusions, and matrix glass filaments used in the calibration. The
spots mark the positions of SIMS analyses. Centre: H2O diffusion profile
constructed from BSE image. The model fits use the H2O diffusivity of
Nowak and Behrens (1997). The break in the profile at x ∼ 80 µm is where
the profile crosses a crack in the glass (see BSE image). Right: Calibration
of wt.% H2O from SIMS measurements against greyscale intensity from the
BSE image, used to construct the profile.

end of the tube, close to vesicle walls, consistent with petrological observations
that matrix glasses contain 0.5–2.2 wt.% H2O. The initial magma H2O content
was constrained by petrological information to be in the range 4.6–6.4 wt.%, and
was assumed to be the initial concentration in the inclusions (Ci). However, this
could not be constrained further because none of the tubes was sufficiently long
that the initial concentration was preserved in the diffusion profile. Consequently,
the diffusion times produced by the model were not unique: for a given final value
of H2O concentration C f , different initial H2O concentration Ci could fit the data
equally well, and the calculated diffusion times would increase with Ci. For this
reason, we performed calculations using the extreme likely values of Ci, 4.6 and
6.4 wt.%, in order to give lower and upper bounds, respectively, on time. The fi-
nal pressure used in the model was the pressure at fragmentation, calculated from
the C f of the H2O-saturated melt using (Newman and Lowenstern, 2002). We
assumed a pre-eruptive temperature of 880 C̊, ignored latent heat effects, and
assumed that the magma underwent closed-system, isothermal degassing during
ascent in the conduit, with equilibrium maintained between melt and vapour.

H2O diffusivity in rhyolitic melts depends on H2O concentration in the glass as
well as temperature and pressure. We therefore used the generalised form of Fick’s
second law:

∂C
∂t
=
∂

∂x

�
D(C)

∂C
∂x

�
(3.8)

where C is H2O concentration (wt.%), D is diffusivity, x is distance and t is time.
This cannot be solved analytically, and a 1-D finite element model was built using
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the commercially available finite element software Comsol Multiphysics. The model
calculated the evolution of H2O concentration with time, in a semi-infinite system,
as a function of distance with the following initial and boundary conditions: C =
Ci for all x at t = 0, C = C f in x = 0 for t > 0, and ∂C/∂x = 0 at the
closed end of the melt inclusion (x = L). Best fits to the data were determined
by a least-square algorithm, which focused on the regions of the concentration
profiles showing the strongest changes in gradient (i.e., excluding most of the non-
hydrated part of the experimental sample profiles). The best fits provided the
best estimates of the time taken to produce the measured concentration profiles,
and the uncertainties on these time estimates were determined using a moving,
variable-length, block bootstrap technique as described by Efron and Tibshirani
(1993). Other bootstrapping techniques usually assume that all data points are
independent. However, because DH2O depends on H2O concentration, adjacent
data points along the concentration profiles are dependent over a length-scale which
depends on the H2O concentration at that point. For every data point we therefore
used a block length l, such that l =

�
DH2O∆t

�1/2, where DH2O is the H2O diffusivity
at that data point, and ∆t is the timestep between two successive theoretical
concentration profiles (typically 10 s). With this technique, data more than a
block length apart are assumed to be nearly independent (Efron and Tibshirani,
1993). This procedure gives a 99% confidence interval for each time estimate.

Our technique was first applied to experimentally hydrated glass chips in or-
der to determine the nature of the relationship between BSE intensity and H2O
concentration, assess the ability of previously published empirical H2O diffusivity
relationships to fit the data, and to test the accuracy of our technique. The H2O
diffusivity model of Nowak and Behrens (1997) was found to give the best fit to
the synthetic concentration profiles, and the best estimate of the time duration of
the experiments. This diffusivity model was then used to fit the H2O concentration
profiles measured in the melt inclusions from Mount St. Helens. Our model pro-
duced good fits to the data, indicating very rapid ascent times of between 102 and
166 s, which correspond to mean magma ascent velocities of 37–64 m/s, or mean
decompression rates of 0.9–1.6 MPa s−1, in agreement with previous estimates
from petrological studies (Anderson, 1991) and numerical modelling (Papale et al.,
1998). This new technique is applicable to any fresh pumice sample containing
phenocrysts with melt inclusion tubes.
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Abstract

Many basaltic volcanoes emit a substantial amount of gas over long periods of time while erupting relatively little degassed
lava, implying that gas segregation must have occurred in the magmatic system. The geometry and degree of connectivity of the
plumbing system of a volcano control the movement of magma in that system and could therefore provide an important control on
gas segregation in basaltic magmas. We investigate gas segregation by means of analogue experiments and analytical modelling in
a simple geometry consisting of a vertical conduit connected to a horizontal intrusion. In the experiments, degassing is simulated by
electrolysis, producing micrometric bubbles in viscous mixtures of water and golden syrup. The presence of exsolved bubbles
induces a buoyancy-driven exchange flow between the conduit and the intrusion that leads to gas segregation. Bubbles segregate
from the fluid by rising and accumulating as foam at the top of the intrusion, coupled with the accumulation of denser degassed
fluid at the base of the intrusion. Steady-state influx of bubbly fluid from the conduit into the intrusion is balanced by outward flux
of lighter foam and denser degassed fluid. The length and time scales of this gas segregation are controlled by the rise of bubbles in
the horizontal intrusion. Comparison of the gas segregation time scale with that of the cooling and solidification of the intrusion
suggests that gas segregation is more efficient in sills (intrusions in a horizontal plane with typical width:length aspect ratio 1:100)
than in horizontally-propagating dykes (intrusions in a vertical plane with typical aspect ratio 1:1000), and that this process could
be efficient in intermediate as well as basaltic magmas. Our investigation shows that non-vertical elements of the plumbing systems
act as strong gas segregators. Gas segregation has also implications for the generation of gas-rich and gas-poor magmas at
persistently active basaltic volcanoes. For low magma supply rates, very efficient gas segregation is expected, which induces
episodic degassing activity that erupts relatively gas-poor magmas. For higher magma supply rates, gas segregation is expected to
be less effective, which leads to stronger explosions that erupt gas-rich as well as gas-poor magmas. These general physical
principles can be applied to Stromboli volcano and are shown to be consistent with independent field data. Gas segregation at
Stromboli is thought likely to occur in a shallow reservoir of sill-like geometry at 3.5 km depth with exsolved gas bubbles 0.1–
1 mm in diameter. Transition between eruptions of gas-poor, high crystallinity magmas and violent explosions that erupt gas-rich,
low crystallinity magmas are calculated to occur at a critical magma supply rate of 0.1–1 m3 s−1.
© 2006 Elsevier B.V. All rights reserved.

Keywords: gas segregation; persistent volcanism; sills; volcanic gas fluxes; magma evolution; Strombolian activity

1. Introduction

Magma degassing provides a fundamental control on
the eruptive style of volcanoes. The activity of Kilauea,
Hawaii, is characterized by short-lived, intense fire-
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fountaining and longer-lived gentle effusion of lava. In
contrast, explosive activity such as the May 18th 1980
eruption of Mt. St. Helens is characterized by intense
degassing in the volcanic conduit, leading to explosive
fragmentation of silicic magma to form a Plinian erup-
tion column and pyroclastic density currents. Although
the duration and cyclicity of these two eruption styles
are different, the initial dissolved gas content does not
vary significantly between either style. Basaltic magmas
typically contain 1–3 wt.% volatiles, although dissolved
water contents as high as 6 wt.% have been measured in
arc basalts (Sisson and Layne, 1993), whereas silicic
magmas contain 4–6 wt.% volatiles (e.g.,Wallace, 2001).
Petrological, theoretical and analogue experimental stud-
ies suggest that the rate of degassing, and not the absolute
volatile abundance, is of primary importance in control-
ling eruptive style (Sparks et al., 1994; Sparks, 2003).
Processes that may affect the rate of degassing include
ascent rate and nucleation. Degassing rate can also be
strongly influenced by processes of gas segregation with-
in the sub-surface magma.

Many basaltic volcanoes emit a substantial amount of
gas while erupting relatively little, if any, degassed lava.
Examples includeKilauea inHawaii (Francis et al., 1993),
Mount Etna (Allard, 1997) and Stromboli in Italy (Francis
et al., 1993), Erta'Ale in Ethiopia (Le Guern et al., 1979),
Nyiaragongo in Zaire (Le Guern, 1987), Masaya in
Nicaragua (Stoiber et al., 1986) and Mount Erebus in
Antarctica (Kyle et al., 1990). These volcanoes have been
persistently degassing for years to millennia, which re-
quires a physical separation of volatiles from the magma
that must remain efficient over very long periods of time.
Mass balance requires that large amounts of magma must
be processed during gas segregation. This would imply
growth of the volcanic plumbing system whereby influx
of new, gas-bearing magma is stored at shallow depth
where it degases. Alternatively, long-lived degassing can
be achieved by a recirculation of magma between shallow
parts of volcanic plumbing system, where over-saturated
volatiles can be extracted, and deeper parts of the system
where degassedmagma can be recycled. Regardless of the
precise mechanism, gas segregation must occur so that
exsolved volatiles are physically decoupled and separated
from the melt.

The main control on gas segregation is that the lower
viscosity of mafic magmas allows the development of
bubbly suspensions from which bubbles can escape more
rapidly than from more viscous silicic melts (Vergniolle
and Jaupart, 1990; Phillips and Woods, 2001). The pro-
cess of gas segregation, however, does not simply result
from gas bubbles rising more rapidly than the magma on
ascent; even in very low viscosity basalts (∼1 Pa s) with

typical ascent speeds on the order of 0.1–1 m s−1, centi-
metric-scale bubbles are required for bubble rise speeds
to exceed magma ascent speeds. In explosive basaltic
eruptions, larger bubbles (N1 cm) are observed in scoriae.
These large bubbles are usually associated with fragment-
ed flow in conduits where gas velocities exceed typical
rise velocities, although they may also be able to expand
at atmospheric pressure after fragmentation, suggesting
that during the flow they were probably much smaller.
However, this centimetric scale bubble size is at least one
order of magnitude larger than typical bubble diameters in
basaltic lavas, intrusions, and scoriae (Sarda and Graham,
1990; Cashman and Mangan, 1994; Sparks, 2003), sug-
gesting that alternative mechanisms of gas segregation
must be considered.

Rates of degassing in excess of those due to inde-
pendent ascent of equilibrium-sized bubbles include
bubble coalescence (Sparks, 2003), convection processes
in conduit (Stevenson and Blake, 1998) and foam devel-
opment in reservoirs (Jaupart and Vergniolle, 1989). A
simple plumbing system with a single vertical conduit
connected to a single deeper reservoir is usually assumed
in process models. Volcanic plumbing systems, however,
often involve a complex geometry of interconnected sub-
units, from vertical conduits to horizontal dykes and sills
and other sub-reservoirs of less well-defined geometry.
For example, flank eruptions are usually fed by dykes
propagating laterally from a summit conduit (Woods and
Cardoso, 1997; Acocella and Neri, 2003), although such
eruptions can involve a more complex degree of connect-
ivity (Acocella and Neri, 2003; Andronico et al., 2005).
Seismic studies of Kilauea volcano, Hawaii, suggest a
three dimensional, interconnected plumbing system (Ryan
et al., 1981; Ryan, 1988) with a complex plexus of sills
and dykes beneath Halemaumau (Dawson et al., 2004).
Evidence for complex plumbing systems also is apparent
from geochemical studies, which suggest multistage
magma ascent and degassing during the volcanic activity
at, for example, Mt. St. Helens in 1980 (Berlo et al.,
2004).

The geometry and degree of connectivity of the
plumbing system could provide an important control on
magma movement in the system and thus on gas segre-
gation processes in basaltic magmas. Here we investigate
1) how the geometry and connectivity of the plumbing
system affects the circulation of magma and 2) how this
circulation impacts gas segregation. We restrict our
investigation to the geometry of a vertical conduit con-
nected to a horizontal magma body. This simple geomet-
ry enables the identification of the key physical principles
that govern gas segregation in more complex magmatic
plumbing systems. In Section 2 we describe laboratory
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analogue experiments investigating bubble segregation in
idealized geometry, and in Section 3 we develop ma-
thematical models for transient and steady-state flow
driven by gas segregation process. In Section 4 we dis-
cuss the implications and limitations of our work in de-
tail, before concluding in Section 5.

2. Analogue experiments

2.1. Setup and calibration

We have carried out a series of analogue laboratory
experiments to investigate gas segregation in a simple
geometry consisting of two interconnected glass tubes
that simulated a vertical conduit connected to a hori-
zontal intrusion with a closed end. Both ends of the
vertical glass tube are connected to a peristaltic pump to
form a recirculating flow loop (Fig. 1). The internal
diameter of the vertical tube was 4 cm, whereas the
length and the diameter of the horizontal side arm were
varied.

The solutions used as a magma analogue were various
mixtures of golden syrup, water and Sodium Chloride
(NaCl). Density, ρl, and viscosity, μl, of these Newtonian
solutions were varied by changing the relative amount of
water and golden syrup. Density was measured by weigh-
ing a known volume, and the viscosity was measured
using a Haake RV20 viscometer. Properties of the experi-
mental mixtures are summarised in Table 1.

Small bubbles were produced by electrolysis (Fig. 1)
of the viscous NaCl solution to simulate magma degas-

sing by cooling and crystallisation (Cardoso andWoods,
1996; Phillips and Woods, 2002). An electrolysis cell
was set up into the vertical tube using a 20 mesh nickel
gauze with wire diameter 180 μm as the cathode and a
platinum wire as the anode. The nickel gauze was po-
sitioned across the vertical tube below its junction with
the horizontal side arm, and the platinum wire was
situated 5 cm above. A 35 V power supply drove the
electrolysis cell. Bubble size distributions were mea-
sured by pressing samples of the mixtures between two
glass plates 0.5 mm apart. Bubbles rose and collected on
the upper glass plate, and a digital image was taken
through a microscope at 4× magnification. A typical
image contained approximately 150 bubbles. The mean
bubble diameter, d, was measured for different golden
syrup:water:NaCl mass ratios, and one standard deviation
was used as a measure of the bubble size distributions.
Mean bubble diameters of 25±10 μm and 35± 21 μm
were measured for mixture mass ratios of 45:45:10 and
60:30:10, respectively. These values were used together
with the solution viscosity to calculate the bubble rise
speed using Stokes law and showed that bubbles rose at
an average speed of 0.06 mm s−1 and 0.03 mm s−1 in the
45:45:10 and 60:30:10 mixtures, respectively. The low
viscosity of 30:60:10 mixtures meant that most of the
bubbles escaped during the sample preparation, prevent-
ing any reliable measurement.

The gas flux produced by electrolysis was calibrated
by installing the anode and cathode in the vertical tube
without a side arm, but connected to a 1 mm diameter
capillary tube at the upper end. The tube was filled with
a golden syrup:water:NaCl mixture. The fluid was not
circulated by the pump during the calibration measure-
ments. Gas produced by electrolysis drove a liquid film
up this tube, and recording of its successive positions
enabled the gas flux to be estimated. As shown in Fig. 2,
these experimental measurements enable the gas produc-
tion rate Qg to be related to electric current intensity I by
the linear relationship Qg=(1.43±0.03)×10

−7× I m3

s−1, where I is expressed in Ampere.
The volumetric gas fraction, c, produced by electrol-

ysis was calibrated by weighing known volumes of

Fig. 1. Schematic diagram of the apparatus.

Table 1
Properties of golden syrup (GS), water and Sodium Chloride (NaCl)
mixtures

GS:water:NaCl
(mass ratio)

ρl
(kg m−3)

μl
(mPa s)

30:60:10 1187.6±0.4 3.4±0.1
45:45:10 1257.6±0.4 11±1
60:30:10 1325.9±0.4 43±3
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bubble-free liquid and bubbly fluid. The ratio of the
measured mass of bubbly fluid, mb, to that of the
bubble-free liquid, mo, is the volumetric fraction of
liquid so that c=1−mb /mo (bubble mass is negligible
and the density of degassed and non-degassed liquids is
similar). This procedure was repeated for different
electric current intensities. Electric current intensity in
the range 0–0.5 amp gives gas fractions in the range 0–
5 vol.%. These measurements, however, lead to high
systematic uncertainties of typically 1–2 vol.%. It was
therefore decided to use the gas fraction as a fitting
parameter when comparing model and experiments, pro
vided the fitting values are concordant with the gas
production rates. Because gas production rate increases
linearly with electric current intensity (Fig. 2) and gas
fraction is proportional to gas production rate, the gas
fraction also must increase linearly with electric current
intensity.

At the start of an experiment, the apparatus was filled
with golden syrup:water:NaCl mixture and all gas bub-
bles introduced by the filling process were removed.
The experiment was initiated by setting the peristaltic
pump to a desired flow rate. The electrolysis cell was
then switched on, and the desired gas flux was set inde-
pendently of the liquid flux. Experimental duration was
measured from the time that the electrolysis cell was
switched on, and the position of the interface between
the bubbly liquid, the foam layer and bubble-free liquid
was measured as the experiment proceeded.

2.2. Observations

We have investigated a range of liquid and gas flow
rates from the case of no fluid flow (i.e., bubbles rose
through and separated from the liquid in the vertical
tube) to that of a fluid flow rate 80 times larger than the

gas flux (i.e., bubbles were carried by and rose at the
same speed as the liquid).

Irrespective of the flow rate in the vertical tube, the
same fluid-flow processes were observed. At the begin-
ning of the experiments, the electrolysis creates bubbles
that rise up the vertical conduit. These bubbles decrease

Fig. 3. Establishment of a steady-state exchange flow (golden syrup:water:
NaCl mixture ratio is 60:30:10, no fluid flow, Qg=2.9×10

−8 m3 s−1).
Black rectangles on ruler are 1 cm high and 5 mm wide. Arrows indicate
flow directions. (A) time=4 min; the bubble rich mixture can clearly be
seen as the opaque fluid in the vertical tube and the initial part of the side
arm, and the black curve indicates the position of the interface between
bubbly and bubble-free liquids. (B) time=8 min; the interface has
propagated further into the side arm and a more opaque foam is visible at
the upper surface of the side arm. (C) time=46 min; a steady exchange
flow is established between the vertical tube and the side arm. Dashed
curves show the approximate thickness of the upper foam layer and the
lower degassed liquid layer.

Fig. 2. Gas production rateQg as a function of electric current intensity
I. The uncertainty on the measurements is represented by the symbol
size. The black line represents the linear regression Qg=(1.43±
0.03)×10−7× I m3 s−1 (R2=0.99914).
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the bulk density of the mixture, which creates a density
difference between the bubbly fluid rising in the vertical
conduit and the bubble-free fluid originally at rest in the
horizontal side arm. In turn, this density difference drives
an exchange flow between the two tubes (Fig. 3A). The
time-scale associated with this exchange is long enough
that bubbles in the horizontal side arm have time to rise,
segregate from the fluid, and accumulate at its top. This
segregation is coupled with the accumulation of degassed
fluid at the base of the side arm (Fig. 3B). Ultimately, a
steady state is reached whereby the influx of bubbly fluid
into the side arm is balanced by the outward flux of lighter
foam and denser degassed fluid, which are respectively
reinjected up the conduit toward the surface, and recycled
at depth in the vertical section (Fig. 3C). The structure of
the fluid stratification in the side arm is then fixed, with
the thickness of both the foam and the layer of degassed
fluid remaining constant.

3. Model

3.1. Transient exchange flow

Before modelling the gas segregation in the side arm,
let us focus on the buoyancy-driven exchange flow set
up between the rising bubbly fluid with density ρb, and
the initially bubble-free fluid with density ρl in the
horizontal arm of thickness D. Modelling this transient
exchange flow will allow us to determine how the
length, L, of the intruding bubbly current evolves with
time, and therefore the areal extent of the bubbly source
for gas segregation. Fig. 4 shows a schematic diagram of
the transient flow.

We treat the inflowing bubbly flow as a viscous gra-
vity current. After an initial adjustment, we assume that
the pressure distribution in the bubbly current becomes
hydrostatic because of negligible vertical accelerations.
Excess pressure driving the exchange flow comes from
the density difference between the bubbly fluid and the
bubble-free fluid, Δρ=ρl−ρb, and is balanced by
viscous dissipation. Density of the bubbly fluid is a
function of the liquid density, the gas bubble density ρg
and the gas fraction c: ρb=cρg+(1−c)ρl. Therefore, the
density difference that drives the flow is Δρ=c(ρl−ρg),
which because ρl»ρg simplifies to

Dq ¼ cql: ð1Þ

The viscosity of the bubbly fluid, μb, can be
estimated from the viscosity of the bubble-free fluid,
μl, and the volumetric gas fraction, c, in the current.
Several expressions for the dependence of effective
viscosity on gas volume fraction exist, depending on the
value of the volumetric gas fraction, and some of these
are based on experimental measurements (Wallis, 1969).
For our experimental gas fractions (typically less than
0.1), the viscosity of the bubbly fluid may be appro-
ximated as

lb ¼ llð1þ cÞ: ð2Þ

This expression is based on theory and validated by
experiments (Wallis, 1969; Jaupart and Vergniolle, 1989).
For these low gas fractions, viscosities of the bubbly
current and the bubble-free fluid only differ by a few
percent. As a result, the advance of the current is resisted
by viscous dissipation occurring within as well as around
the bubbly current (Huppert, 1982). The exact mathema-
tical treatment of the problem is thus complex, but we can
use arguments based on dimensional analysis to find how
the current length varies as a function of the other relevant
variables.

The bubbly current length, L, depends on the side
arm diameter, D; the gravitational pressure gradient,
ΔρgD /L, where g is the gravitational acceleration; the
viscosity of the bubbly fluid, μb; bubble-free fluid, μl;
and time, t:

L ¼ L
DqgD
L

;D; lb; ll; t
! "

: ð3Þ

Dimensional analysis yields the following three di-
mensionless groups

P1 ¼
L
D
; P2 ¼

ll
lb

; P3 ¼
DqgDt
lb

; ð4ÞFig. 4. Schematic illustration of the transient exchange flow between
the vertical tube and the horizontal side arm.
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such that Π1=Φ(Π2,Π3) where Φ is an unknown func-
tion that needs to be defined (Barenblatt, 1996). Thus,
the length of the current can be expressed as

L ¼ D U
ll
lb

;
DqgDt
lb

! "
: ð5Þ

We do not know the form of function Φ but can use
the following physical argument to estimate it. The fluid
current is driven by the gravitational pressure gradient;
the current would not exist if there were no density
difference between the bubbly and bubble-free fluids.
This density difference depends on the volumetric gas
fraction c (Eq. (1)), thus, Lmust be directly proportional
to Δρ, and therefore proportional to the dimensionless
groupΔρgDt /μb. We now make the assumption that the
dependence of L on the density difference follows a
power law, which is a common assumption when using
dimensional analysis. That is, the dimensionless group
ΔρgDt /μb can be raised to some power α, from which
we get the following expression for the current length:

L ¼ D
DqgDt
lb

! "a

F
ll
lb

! "
: ð6Þ

The time dependence tα of the current length does
not depend on the viscosity ratio μl/μb (Eqs. (5) and (6)).
Therefore, this time dependence should remain the same
whatever the viscosity ratio is, and we can choose the
viscosity ratio to simplify the problem and determine α.
In the particular case of a gravity current that is much
more viscous than the surrounding fluid, advance of the
current is resisted mainly by internal viscous dissipation
(Huppert, 1982). Thus, the buoyancy-viscous balance
that governs the current flow is

DqgD
L

flb
L
D2t

ð7Þ

and the length of the current increases with time as
LfðDqgD3t=lbÞ

1
2. This time dependence of L is

independent of the viscosity ratio, so we expect L to
increase with time similarly in the general case:

LðtÞ ¼ DqgD3t
lb

! "1
2
F

ll
lb

! "
ð8Þ

where F is an unknown function of the viscosity ratio
μl/μb.

We use the experiments to test the time dependence
of the bubbly current given by Eq. (8). There is a maxi-
mum distance, Lmax, that the current can travel, which
corresponds to the point where all bubbles have risen to
the top of the side arm. Because of low bubble con-
centrations, bubble interactions can be neglected, and

bubbles rise according to Stokes law with constant ve-
locity vb=(Δρggd2) / (12μl), where Δρg is the difference
between the density of the pure liquid and the gas
bubble, Δρg=ρl−ρg, and d is the bubble diameter [the
numerical constant 12 at the denominator differs from
the usual constant 18 because of constant stress con-
dition at the bubble surface between the inner gas and
the outer liquid, whereas the constant 18 should arise in
the case of a rigid sphere on which surface a no slip
condition applies (Batchelor, 1967)]. Because ρl»ρg,
the density difference can be approximated by Δρg=ρl
and bubbles rise at speed

vb ¼ ðqlgd2Þ=ð12llÞ: ð9Þ

The maximum distance that bubbles can rise is the
diameter, D, of the side arm, so the maximum time that
bubbles take to reach the top of the side arm isTb=D /vb=
12μlD / (ρlgd2). Therefore, the maximum current length
is:

Lmax ¼ LðTbÞ ¼
12llDqD

4

lbqld2

# $1
2
F

ll
lb

! "
: ð10Þ

Substituting Eq. (1) for Δρ and (2) for μb, the maxi-
mum current length becomes

Lmax ¼
D2

d
12c
1þ c

! "1
2
F

ll
lb

! "
: ð11Þ

Evolution of the bubbly current length in the ex-
periments was measured by recording the successive
positions of the tip until advance ceased. For each

Fig. 5. The experimental dimensionless current length L⁎=L(t) /Lmax

comparedwith the theoretical dimensionless length [ρlgd2t / (12μlD)]1 / 2.
Beyond one, L⁎ is constant according to theory as shown by the solid
line. Each set of symbols corresponds to measurements from a single
experiment: squares, Qg=(5.7±0.1)×10

−8 m3 s−1 and μl=8 mPa s;
inverted triangles, Qg=(2.9±0.1)×10

−8 m3 s−1 and μl=39 mPa s; Xs,
Qg=(2.7±0.1)×10

−8 m3 s−1 and μl=42 mPa s; open circles, Qg=(7.7±
0.2)×10−8 m3 s−1 and μl=8 mPa s; open crosses, Qg=(5.7±
0.1)×10−8 m3 s−1 and μl=9 mPa s; and diamonds, Qg=(3.6±
0.1)×10−8 m3 s−1 and μl=7 mPa s.
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experiment, the length of the current has been non-
dimensionalised on the maximum length, Lmax, attained
by the current, allowing comparison over a range of
conditions. This approach enables us to eliminate the
unknown function F. Fig. 5 shows the experimental
dimensionless current length as a function of the
theoretical dimensionless length L⁎=L(t)/Lmax=[ρlgd2t /
(12μlD)]1 / 2. After an initial adjustment phase, the data
collapse onto the theoretical relationship up to the point
where the current has reached its maximum length.
Beyond this point,L⁎ remains equal to unity as the bubbly
current has ceased to propagate. In the adjustment phase,
data are quite scattered, and in some experiments the
measured length needs to reach almost 60% of the
theoretical maximum length before the measured length
follows the theoretical relationship. However, the adjust-
ment phase is shorter for most experiments. Close
examination of the data reveals that the initial mismatch
appears proportional to the velocity scale in the vertical
conduit (either the average fluid velocity imposed by the
pump or the bubble rise speed when no fluid was
circulated by the pump). This suggests that the initial
spread of the bubbly gravity current is controlled, in some
way, by the vertical movement of bubbly fluid up the
conduit. Fig. 5 shows, however, that ultimately the bubbly
current is controlled by the segregation of the bubbles
from the fluid as they rise and accumulate at the top of the
horizontal arm; the advance of the bubbly gravity current
is then described by L⁎.

3.2. Gas segregation and foam development

We now consider the bubble segregation that occurs
in the bubbly current. This problem is similar to that
investigated by Jaupart and Vergniolle (1989) and we
shall base our analysis on their model.

We approximate the foam as a long and thin viscous
gravity current, in which the vertical acceleration is
negligible and pressure is hydrostatic (Fig. 6). Thus, the
flow is driven by the horizontal gradient of the hydro-
static pressure and resisted by the viscous stresses. The
foam, however, is much more viscous than the under-
lying fluid because of a high gas content, ϵ, that is

approximately 70% by volume. Foam viscosity, μf, is
well approximated by the relationship (Jaupart and
Vergniolle, 1989)

lf ¼ llð1−ϵÞ
−5=2: ð12Þ

Using this expression, a foam with 70 vol.% bubbles
is approximately 20 times more viscous than the under-
lying fluid. Therefore, the main viscous dissipation that
resists the flow occurs within the foam and the shear
stress at the interface between the foam and the bubbly
fluid can be neglected (Huppert, 1982). Consequently,
the problem allows analytical treatment.

The horizontal flow is governed by the momentum
equation

Dqf g
∂h
∂x

¼ lf
∂2u
∂z2

ð13Þ

where x is the horizontal distance from the entrance of
the side arm and z the vertical distance from its top. Δρf
is the density difference between the bubbly fluid (ρb=
cρg+(1−c)ρl) and the foam (ρf=ϵρg+(1−ϵ)ρl), such
that Δρf=(ϵ−c) (ρl−ρg). Because ρg≪ρl, this simpli-
fies toΔρf=(ϵ−c)ρl. Integrating the momentumEq. (13)
with the two boundary conditions of (i) no slip at the top
of the side arm, u(z=0)=0, and (ii) no shear stress at the
interface, ∂u

∂z ¼ 0 for z=h, gives the foam velocity, u, as

u ¼
Dqf gz
2lf

ðz−2hÞ∂h
∂x

: ð14Þ

Mass conservation for gas in the foam layer can be
expressed as

∂h
∂t

¼ q−
∂
∂x

Z h

0
udz: ð15Þ

The left hand term represents the vertical growth of
the foam thickness. It is balanced on the right by two
terms: the gas flux per unit area, q, that is supplied by
the underlying bubbly current, and a second term repre-
senting the outward flux of foam per unit area into the
vertical conduit that represents the lateral extend of the
foam, which is controlled by the foam velocity u. In the
bubbly current, the rise of bubbles is characterised by
the rise speed, vb, (9) so the vertical gas flux per unit
area that feeds the foam is q=cvb /ϵ. Using the foam
velocity (14) to integrate the foam mass balance (15), we
get

∂h
∂t

¼ qþ
Dqf g
12lf

∂2h4

∂x2
: ð16Þ

Fig. 6. Schematic illustration of the flow of foam.
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This equation is non-dimensionalised using the scales
x=Lx′, where L is the length of the underlying bubbly
current, h=Hh′, and t=Ht′ /q, with H=[(12μf qL2) /
(Δρf g)]1 / 4 and where the primes denote dimensionless
variables:

AhV
AtV

¼ 1þ A2hV4

AxV2
: ð17Þ

We seek the steady-state shape of the foam, ∂hV
∂t V¼ 0.

Integrating this equation twice with the boundary con-
ditions of (i) zero foam thickness at the entrance of the
side arm, h′(x′=0)=0, and (ii) no lateral foam flux at the
end of the side arm, ∂hV

∂xV¼ 0 for x′=1, gives

hVðxVÞ ¼ xV−
xV2

2

! "1=4

: ð18Þ

Therefore, expressed in dimensional variables, the
height of the foam, h, can be written as the product of a
characteristic height, H, and a shape function, f (x):

hðxÞ ¼ Hf ðxÞ; ð19Þ

where

H ¼
12lf qL

2

Dqf g

" #1=4

; ð20Þ

and

f ðxÞ ¼ x
L
−

x2

4L2

! "1=4

: ð21Þ

From Eq. (20), the characteristic foam height can be
simplified further by recalling that Δρf= (ϵ− c)ρl,
q=cvb /ϵ and by using Eq. (9) for vb and (12) for μf :

H ¼ cd2L2

ϵð1−ϵÞ5=2ðϵ−cÞ

" #1=4

: ð22Þ

This two-dimensional analysis does not account for
the cap-like geometry of the foam in the cylindrical side
arm used in the experiments; the foam is assumed to
have a constant thickness over its entire width, perpen-
dicular to the direction of flow (i.e., Fig. 6). Conse-
quently, at a given position along the side arm, for a
given foam flux per area perpendicular to the flow, the

predicted foam height is underestimated by the theory
(i.e., dotted rectangle in Fig. 7). Because the foam has in
fact a cap-like cross section, it requires a greater height to
accommodate the same flux (i.e., striped area in Fig. 7).
To compare the model with the experiments, the theo-
retical height was increased so that it gives the same
foam flux in both the theoretical model and the ex-
periments (Fig. 7).

To calculate the foam height, we also need to know the
foam gas fraction, ϵ. Stable foams typically contain
approximately 70 vol.% of gas (Jaupart and Vergniolle,
1989). This value is likely to be a lower bound in our
experiments, however, because the fine bubbles produced
by electrolysis tend to coalesce and create centimetric to
decimetric long bubbles of free gas phase floating on top
of the foam. Observation indicates that the foam gas
fraction in the experiments is thereforemore likely to be in
the range ϵ=0.7–0.9.

For each experiment, the steady-state foam thickness
was measured from a digital photograph at different
positions along the tube, with an uncertainty of ±1 mm.
The gas fraction, c, in the bubbly layerwas used as a fitting
parameter when comparing experimental and theoretical
steady-state foam thicknesses (see Section 2.1). The foam
height is also very sensitive to the foam gas fraction, ϵ,
because it is close to unity (Eq. (22)). Fig. 8 shows the
foam thickness measured along the side arm in three
experiments that differ by their electrolysis electric current
intensities, and hence gas fraction, c. In all three
experiments, the theoretical thickness predicted by the
model is shown for a foam gas fraction ϵ=0.7 and ϵ=0.9.
Our simple foam model is in good agreement with the
data. Unrealistically high bubbly gas fractions, however,

Fig. 7. Illustration showing how the theoretical foam height was
corrected. For a given foam flux, hence area perpendicular to the flow,
the two-dimensional analysis underestimates the foam height (dotted
rectangle); for the same foam flux, the cap-like foam is in fact thicker
because of its shape (striped area). The theoretical height was increased
such that both dotted rectangle and stripped cap have identical areas,
ensuring identical foam flux in both model and experiment.
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are required if the foam is assumed to contain 70 vol.% gas
(Fig. 8B and C). More realistic values are obtained if
instead the foam gas fraction is higher, in accord with the
experimental observations.

We have implicitly assumed that the flow of rising
fluid in the vertical conduit has no effect on the ex-
change flow and gas segregation that occur in the side
arm. Fig. 9 shows that this assumption is indeed correct.

Foam thickness was measured in three experiments that
differ by their vertical conduit fluid flux,Ql, only:Ql=0,
Ql=9Qg and Ql=79Qg, with Qg=2.9×10

−8 m3 s−1 in
all three experiments. Within the experimental errors, the
foams that developed in these three experiments have
identical thickness even though the fluid flux varied over
two orders of magnitude in the vertical conduit.

Finally, the lateral extent of the foam will be larger
than the underlying bubbly current length, Lmax, if the
side arm is longer than Lmax. In this case, as bubbles
accumulate at the top of the side arm, the foam tip
opposite the vertical conduit rests against a bubble-free
fluid of higher density. The foam will therefore flow
towards the closed end of the side arm until ultimately
reaching a constant thickness. The steady-state foam
thickness is then described by Eqs. (19)–(21) between
the entrance of the side arm and x=Lmax, and will have
value h(x=Lmax) away from the entrance.

4. Implications and limitations

4.1. Time scales

To apply this model of gas segregation to magma
degassing, the time scale needs to be smaller than that of
magma cooling and solidification. Two time scales arise
in our model: a bubble time scale, Tb (for bubbles to rise
over the thickness of the horizontal intrusion), and a
foam time scale, Tf (to establish a steady-state foam).
Cooling and solidification of magma occur over a time
scale Ts.

Fig. 8. Variation of the steady-state foam height along the side arm in
three different experiments with a 45:45:10 golden syrup:water:NaCl
mixture ratio and no fluid flow. (A) current intensity I=0.1 A, (B)
I=0.2 A, (C) I=0.3 A. The solid line shows the prediction of the
theoretical model for a foam gas fraction ϵ=0.7 and a bubbly gas
fraction c=0.7× I. The dashed line shows the prediction for a foam gas
fraction ϵ=0.9 and a bubbly gas fraction c=0.2× I.

Fig. 9. Foam heights for three different experiments with a 60:30:10
golden syrup:water:NaCl mixture ratio. Each symbol corresponds to a
fluid flux in the vertical conduit: triangles, no fluid flux; diamonds,
Ql=9Qg; squares, Ql=79Qg. Qg is the same in all experiments. The
solid line shows the model prediction with a gas fraction c=0.06 in the
bubbly layer and a gas fraction ϵ=0.8 in the foam.
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Bubbles rise in the laminar regime according to
Stokes law, so

Tb ¼
12llD
qlgd2

: ð23Þ

Tf is obtained by dividing the characteristic foam
thickness H (Eq. (22)) by the foam velocity scale q,

Tf ¼
12llL

1=2

qlgd3=2
ϵ3

c3ð1−ϵÞ5=2ðϵ−cÞ

" #1=4

: ð24Þ

Throughout our calculations we assume a foam gas
fraction ϵ=0.7. Although foams in our experiments have
higher gas fraction, a value of 0.7 is a generally accepted
value for generic foams and thus seems a reasonable
value for magmatic systems (Jaupart and Vergniolle,
1989). The horizontal intrusion is assumed to cool down
by conduction. As magma cools and solidifies at the
walls, latent heat is released that warms up the interior of
the intrusion. The exact and detailed treatment of this

problem is described in Turcotte and Schubert (1982),
from which the time needed to cool and solidify an
intrusion of thickness, D, by conduction is

Ts ¼
D2

16jk2
: ð25Þ

Magma thermal diffusivity κ=5 10−7 m2 s−1 and the
dimensionless constant λ, which depends on the temper-
ature difference between the magma and surrounding
rocks and is typically in the range 0.5–0.75 (Turcotte and
Schubert, 1982). Throughout our calculations, we assume
λ=0.5. Ts is a lower estimate; if the intrusion were con-
nected to an active conduit, the solidification time would
be larger as any exchange flow would mean both mass
and heat are exchanged, keeping the intrusion hotter than
in the purely conductive scenario.

Fig. 10 shows the three time scales as a function of
magma viscosity for sills with a thickness:length aspect
ratio of 1:100. All three time scales increase with the
intrusion size, but Ts is more sensitive to size than Tb and
Tf. In consequence, efficient gas segregation in smaller
sills would require magmas of relatively lower viscosity
than in larger intrusions. The foam time scale decreases
with increasing volumetric gas fraction, c, so gas segre-
gation is favoured in magmas with higher volumetric gas
fraction. The time scales also are strongly sensitive to the
bubble size (Fig. 11). An order of magnitude change in
bubble diameter affects Tb and Tf by two orders of
magnitude (Eqs. (23) and (24)).

Using the exsolved gas fraction c=0.01–0.1 and
bubbles 1 mm in diameter as reasonable values for

Fig. 10. The different time scales as a function of magma viscosity for
different sill sizes. (A) sill thicknessD=10m and lengthL=1 km; (B)D=
100 m and L=10 km. The horizontal solid curve represents the
solidification time Ts, the slanted solid curve represents the bubble rise
time Tb and the dashed curves represent the foam time Tf for different
volumetric gas fractions: short dashes, c=0.01; medium dashes, c=0.05;
long dashes, c=0.1.Magma density ρl=2700 kgm−3 and gas bubbles are
1 mm in diameter in all calculations. Thick black ticks on time axis
represent 1 day (⋍9 103 s) and 1 year (⋍3 107 s).

Fig. 11. The different time scales as a function of magma viscosity and
bubble diameter d for a sill 25 m thick and 2.5 km long. The horizontal
solid curve represents the solidification time Ts, the slanted thick
curves represent the bubble rise time Tb, and the slanted thin curves
represent the foam time Tf for different bubble diameters: short dashes,
d=0.1 mm; long dashes, d=1 mm; solid curves, d=10 mm.
Volumetric gas fraction c=0.1 in all calculations. Thick black ticks
on time axis represent 1 day (⋍9 103 s) and 1 year (⋍3 107 s).
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shallow magmatic degassing, efficient gas segregation
in a sill 10-m thick and 1-km long would require mag-
mas of viscosity lower than 103–104 Pa s, whereas in a
sill 100-m thick and 10-km long, gas segregation would
remain efficient with magma viscosity as high as 105 Pa
s. Recalling that Ts is a lower estimate for the solidi-
fication time, gas segregation by foam formation in sills
is a supportable process for intermediate as well as ba-
saltic magmas.

We expect gas segregation to be more efficient in sills
than in horizontally-propagating dykes. Dykes typically
have a thickness:length aspect ratio of 1:1000 whereas
the sill aspect ratio is usually 1:100, reducing Ts by a
factor of 100. Bubble rise time also is substantially
increased for a dyke. Both effects reduce gas segrega-
tion efficiency. Our analysis, however, does not account
for two processes that both would increase the soli-
dification time scale. The first one is the advection of
heat induced by any exchange flow between an active
vertical conduit and the horizontal dyke. The second is
bubble convection, which has not been considered for
any geometry (see Section 4.4). Consequently, the soli-
dification time scale would be longer and gas segrega-
tion could occur in dykes containing magmas of low
viscosity.

4.2. Implications for gas segregation

Different eruptive scenarios can be envisaged de-
pending on the values of supply rate, Qs, exchange rate
asssociated with gas segregation, Qex, foam layer return
flow,Qg, and degassed magma return flow,QD (Fig. 12).
We infer from our experiments that gas segregation

processes and rates in an intrusion will be independent of
moderate changes in magma supply rate because the
exchange of magma and gas between the conduit and the
horizontal intrusion is predominantly driven by the gas
segregation that occurs in the latter. Thus, the exchange
rate does not depend on the magma supply rate. If
magma supply rate is low and QexNQs, then effective
gas segregation can occur in the intrusion and can lead to
episodic Strombolian eruptions of relatively gas-poor
magma (QD) driven by the rise of expanding foam
packets and slugs up the conduit. If the magma supply
rate is sufficiently large that it exceeds the exchange rate,
QsNQex, then there will be ineffective gas segregation
suggestive of stronger explosions driven mainly by the
deep supply in fresh magma and therefore erupting gas-
rich (Qs) as well as gas-poor (QD) magmas.

As illustrated in Fig. 12, the steady-state volumetric
flux of bubbly fluid entering an intrusion,Qex, is balanced
by an outward gas flux, or foam layer return flow,Qg, and
a degassed magma return rate, QD, so that Qex=Qg+QD.
A proportion, c, of Qex is made of exsolved gas, Qg=
cQex. By mass balance, QD=(1−c)Qex. The gas return
flux is Qg=Acvb /ϵ, where A is the interface area between
the bubbly fluid and the foam in the intrusion. Assuming
A is similar to the surface area of the intrusion,A∼L2, and
using Eq. (9) for the bubble rise speed, it follows that

Qex ¼
qlgd

2L2

12llϵ
; ð26Þ

QD ¼ ð1−cÞqlgd2L2

12llϵ
; ð27Þ

Fig. 12. Schematic illustration of an exchange flow of bubbly and
degassed magma driven by steady-state gas segregation. In a system
with supply rate Qs, an exchange rate Qex of bubbly fluid entering the
intrusion is balanced by an exsolved gas return rate Qg and a degassed
magma return rate QD: Qex=Qg+QD.

Fig. 13. Exchange flow rate Qex (solid curves), exsolved gas return
rate Qg (short dashed curves) and degassed magma return rate QD

(long dashed curves) as a function of magma viscosity. Thick lines
corresponds to an average bubble diameter d=1 mm, thin lines to a
diameter d=0.1 mm. We assume an intrusion 2.5 km long and wide,
and a volumetric gas fraction c=0.1.
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Qg ¼
cqlgd

2L2

12llϵ
: ð28Þ

These fluxes are shown in Fig. 13 as function of
magma viscosity for two different bubble diameters,
d=0.1 mm and d=1 mm.

We expect a transition between Strombolian activity
when QsbQex and more explosive eruptions when QsN
Qex to occur when both fluxes are comparable,

QsfQex ¼
qlgd

2L2

12llϵ
: ð29Þ

As shown on Fig. 13, the transition to more explosive
eruptions would require a much higher supply rate with
low viscosity magmas than with more viscous magmas;
low viscosity produces very effective gas segregation.
Bubble size has also a strong effect and will increase with
decreasing pressure, which also increases Qex. Thus, we
expect gas segregation processes to become more
important at lower pressure (i.e., shallower depths).

4.3. Stromboli volcano

We can apply these general principles to degassing and
eruption processes at Stromboli volcano, Italy. Stromboli
has been experiencing continuous phases of activity for
millenia (Allard et al., 1994). Persistent activity consists
of mild explosions occurring every tens of minutes asso-
ciated with a more quiescent, continuous open-conduit
degassing from the summit craters, while extruding very
little basalt. Between 1980 and 1993, the time-averaged
gas mass flux has been estimated at 6–12×103 t/day
(350–680 m3 s−1). The associated flux of degassed
magma,QD, estimated frommeasured SO2 flux, was 0.3–
0.6 m3 s−1, which is two orders of magnitude greater than
the observed magma eruption rate of approximately
2.5×10−3 m3 s−1 (Allard et al., 1994). This degassing is
predominantly quiescent (Allard et al., 1994).

Normal Strombolian activity erupts highly porphy-
ritic (HP) black scoriae, lapilli, ash, and occasionally
lava with approximately 50 vol.% crystals (Francalanci
et al., 1999; Métrich et al., 2001). This normal activity is
punctuated by more violent and paroxysmal eruptions
that eject crystal-poor (b5 vol.% phenocrysts) and high-
ly vesiculated pumices and scoriae that are referred to as
low porphyritic (LP), in addition to crystal-rich, dense
HP scoriae identical to the products of normal activity
(Francalanci et al., 1999; Métrich et al., 2001). Petro-
logical evidence reveals that LP products represent fresh,
crystal-poor, gas-rich magma that feeds the plumbing
system and HP products are the stored and differentiated
form of the fresh magma (Francalanci et al., 1999).

Thermal and gas budget balances indicate that the
plumbing system of Stromboli has been in steady state for
millenia (Giberti et al., 1992; Allard et al., 1994; Harris
and Stevenson, 1997). CO2- and H2O- rich magma is
continuously supplied from a deep reservoir into the
crystal-rich shallow plumbing system where it undergoes
crystallization driven by decompression and volatile loss
at low pressure (Métrich et al., 2001). Pressure estimates
from fluid inclusions in restitic quartzite nodules suggest a
three stage plumbing system with (i) a deep reservoir at
about 11 km depth (∼290MPa), (ii) a shallow reservoir at
about 3.5 km depth (∼100 MPa) and (iii) a near-surface
reservoir (Vaggelli et al., 2003; Francalanci et al., 2004).
The latter corresponds to the location of shallow explosive
activity about 250 m below the surface (Chouet et al.,
1997; Ripepe et al., 2001; Chouet et. al., 2003), whereas
the 3.5-km-deep reservoir is envisaged as the crystal-rich
HP body (ρl=2700 kg m−3, μl=1.4×104 Pa s) that is
continuously renewed by deeper volatile-rich LP magma
(2.4–2.8 wt.% H2O, ρl=2500 kg m−3, μl=15–20 Pa s)
(Métrich et al., 2001). Brittle deformation of CO2-rich
fluid inclusions suggests rapid ascent of the gas-rich
magma from a deep to a shallow reservoir, implying a high
magma flow rate. Fast ascent and injection of gas-rich
magma into the 3.5-km-deep reservoir has been proposed
to cause themore violent explosions at Stromboli (Vaggelli
et al., 2003).

We apply the general principles of gas segregation and
generation of gas-rich and degassed magma identified in
our experiments to these processes at Stromboli. The
geometry of the shallow reservoir at 3.5 km is not well-
constrained, mainly because the seismicity is restricted to
very shallow depths (b1 km) (Chouet et al., 2003), and
there is poor knowledge of the internal structure of the
volcano (Chouet et al., 1997). Nevertheless, 3.5 km
corresponds approximately to the transition to crustal
basement, where a lithological discontinuity is expected
(Vaggelli et al., 2003), which is favourable to the for-
mation of a sill-like reservoir. Analysis of Sr isotope ratios
of scoriae and lavas from Stromboli enabled Francalanci
et al. (1999) to estimate the volume of this shallow re-
servoir at approximately 0.3–0.04 km3. We calculate the
reservoir dimensions assuming two bounding geometries:
(i) a disk-like sill with a thickness:length aspect ratio of
1:100, whose volume would require an average thickness
D=25m and diameter L=2.5 km, and (ii) an equant body
with diameter D=500 m. The true geometry of the
Stromboli shallow reservoir is likely to lie in between
these two end members.

Estimating a priori bubble sizes in the range 0.1–
1 mm, which is reasonable for shallow basaltic systems
(Sarda and Graham, 1990; Cashman and Mangan,
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1994), time scales have been calculated for the sill-like
geometry (Fig. 11) and the equant body (Fig. 14) using
Eqs. (23)–(25). Recalling that Ts is a lower estimate for
the solidification time, Figs. 11 and 14 show that, re-
gardless of the shallow chamber geometry, sufficient time
is present for gas segregation to occur at Stromboli (gas-
poor magma viscosity ∼104 Pa s) with bubble diameters
in the range 0.1–1 mm. In comparison, Francalanci et al.
(1999) estimated the average magma residence time in the
shallow reservoir at τ∼19±12 years (i.e., 6±4×108 s).
In our model, we assume that gas segregation occurs on a
time scale shorter than the magma residence time. Al-
though this is not a severe restriction for the sill-like
geometry, because the residence time is comparable to the
solidification time (Fig. 11), gas segregation in an equant
body of gas-poor magma would only be possible with
bubble diameters ∼1 mm or larger (Fig. 14).

The average magma residence time and volume
estimated by Francalanci et al. (1999) for the shallow
reservoir enable us to calculate an exchange flow rate of
orderQex∼V/τ∼0.07–0.5m3 s−1. This rate is in the range
given by Giberti et al. (1992) ( ∼0.06 m3 s−1 estimated
from thermal and gas budget balances) and Allard et al.
(1994) (0.3–0.6 m3 s−1 estimated from measured SO2
flux). Assuming ρl=2700 kg m−3, μl=1.4×104 Pa s, and
ϵ=0.7 in Eq. (26), these exchange rates would imply an
average bubble diameter d∼0.2–0.6 mm in a sill 2.5 km
long and d∼1–3 mm in an equant reservoir. These values
are in the bubble size range measured in lapilli from
Stromboli (Lautze andHoughton, 2005) and arewithin the
range of acceptable sizes for gas segregation to occur on
time scale shorter than the magma residence time.

We would expect normal, episodic Strombolian de-
gassing for a magma supply rate smaller than the ex-
change rate, and more violent eruptions at higher supply
rates. Using our model with bubble sizes consistent with
gas segregation in the Stromboli shallow reservoir, we
expect the transition between these two eruptive regimes
to occur at a supply rate on the order of 0.1–1 m3 s−1

(Fig. 13). Landi et al. (2004) estimated the eruption rate of
gas-rich material during violent recent eruptions at
Stromboli at ∼30 m3 s−1, implying that Qs exceeded
Qex by two orders of magnitude, in accord with our model
principles.

Although our experimental work was not expressly
designed to study degassing and generation of gas-poor
and gas-rich magmas at a specific volcano, we have
shown that the general physical principles governing gas
segregation in shallow horizontal intrusions can be ap-
plied to Stromboli volcano. Model implications, in terms
of the bubble sizes of exsolved gas in the shallow cham-
ber, the fluxes of gas-poor and gas-rich magmas gene-
rated by gas segregation as well as the different eruptive
regimes determined by the relative values of supply rate
and exchange flow, are all consistent with a variety of
independent field data.

4.4. Limitations of our analysis

Two processes that have not been accounted for in our
analysis are bubble convection and thermal convection.
Bubble convection effects arise as the concentration of
bubbles increases. Although it is difficult to predict the
onset of bubbly convection in shallow magmatic sys-
tems, and consequently laminar bubble rise is considered
to be a reasonable regime, we now consider the con-
vective regime for completeness.

Bubbly convection occurs in suspensions of uni-
formly-distributed bubbles when the characteristic gas
bubble size d is large enough that three-dimensional
inertial effects become important and bubbles are
entrained in each other's wake. This is thought to
occur when dN4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=ðqlgÞ

p
(Wallis, 1969), where σ is

the coefficient of surface tension between gas and
liquid, of density ρl. For most magmas, σ=0.3–0.4 kg
s−2 (e.g., Williams and McBirney, 1979), and three-
dimensional inertial effects are expected to be important
for centimetric gas bubbles, or larger, but not for bubbles
of smaller size. However, the departure from a uniform
bubbly pattern can also occur due to the characteristics
of the production of the gas bubbles and their interaction
with the overall flow dynamics (Wallis, 1969). This
effect is difficult to assess, but the associated convective
velocity scale has been observed experimentally to be

Fig. 14. The different time scales as a function of magma viscosity for
an equant reservoir 500 m in diameter. The horizontal solid curve
represents the solidification time Ts, the slanted thick curves represent
the bubble rise time Tb and the slanted thin curves represent the foam
time Tf for different bubble diameters: short dashes, d=0.1 mm; long
dashes, d=1 mm. Volumetric gas fraction c=0.1. Thick black ticks on
time axis represent 1 day (⋍9 103 s) and 1 year (⋍3 107 s).
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typically greater than laminar rise speed (e.g., Cardoso
and Woods, 1999; Phillips and Woods, 2001). We note,
however, that both the bubble time scale, Tb, and the
foam time scale, Tf, are inversely proportional to bubble
rise speed (see Section 4.1). As convecting gas bubbles
are expected to rise faster than in the laminar regime,
both time scales will thus decrease by the same amount.
Therefore, steady-state gas segregation will be estab-
lished more rapidly. This also implies that the range of
magma viscosity over which gas segregation could
occur is increased (see Figs. 10 and 11). Regardless of
the time needed for gas segregation to occur, the same
physical principles apply whether bubbles rise in a
laminar or turbulent suspension, with laminar analysis
leading to conservative modelling of the bubble rise and
therefore of the time needed to establish steady-state gas
segregation.

In deriving the cooling and solidification time scale
(25), we assumed that a horizontal sill cools down by
conduction. However, the impact of thermal convection in
the sill also needs to be considered. Conditions for thermal
convection in a sill are reachedwhen the Rayleigh number,
Ra, exceeds approximately 2000 (Sparks et al., 1984). The
Rayleigh number is defined by

Ra ¼ bqlgDTD
3

llj
; ð30Þ

where β is the volumetric coefficient of thermal expansion
of themagma (2×10−5 K−1; Annen et al., 2006) andΔT is
the temperature difference between the magma and the
surrounding rocks. Application of Eq. (30) with a magma
viscosity of 105 Pa s and a temperature difference of 1 °C
shows that the Rayleigh number exceeds 2000 for any sill
thicker than 6 m. This indicates that thermal convection
can be attained in relatively thin sills even with relatively
small thermal gradients accross the magma layer, as
recognised in previous studies (e.g., Sparks et al., 1984;
Annen et al., 2006). However, magma cooling and
crystallisation induce exsolution of gas bubbles, which
decreases the density and increases the viscosity of the
magma. Cardoso and Woods (1999) have calculated the
evolution of the Rayleigh number as the melt cools and
becomes volatile saturated. Their study shows that the
magnitude of the Rayleigh number, and thus the intensity
of the convection, increases by a factor of 10–100 as a
result of the bubble production. Convection in a horizontal
intrusion will therefore be driven predominantly by gas
bubbles. As shown above, we expect steady-state gas se-
gregation to be established more rapidly than in the pure
conductive case.We stress again that regardless of the time
needed for gas segregation to occur, whether bubble sus-
pension is laminar or turbulent, the same physical prin-

ciples for gas segregation apply, as captured by the present
laminar analysis.

Finally, our analysis of gas segregation was restricted
to horizontal intrusions, whereas real plumbing systems
will involve more complex geometries with elements
departing from being perfectly vertical or horizontal.
These geometries will affect the extent over which gas
segregation processes occur; a downward inclined sill
would limit the intrusion of bubbly material, whereas an
upward inclined intrusion would enhance the storage and
thus gas segregation efficiency. However, gas segregation
as described in this paper is a dynamic process. Therefore,
the key physical principles that govern gas segregation
will hold regardless of the real geometry of the system.

5. Conclusion

Gas segregation in plumbing systems of persistent
volcanoes has been investigated by means of analogue
experiments in the specific case of low exsolved volumetric
gas concentrations in a vertical conduit connected to a
single horizontal intrusion. These experiments show that
the presence of horizontal intrusions can lead to strong gas
segregation effects in volcanic plumbing systems.

Gas segregation is driven by an exchange flow bet-
ween the conduit and the horizontal intrusion because of
the presence of exsolved bubbles. Bubbles rise and accu-
mulate as foam at the top of the intrusion, thereby se-
gregating bubbles from the fluid. Bubble segregation is
coupled with the accumulation of denser degassed fluid at
the base of the intrusion. Steady state is ultimately reach-
ed, whereby any influx of fluid from the conduit and into
the intrusion is balanced by an outward flux of lighter
foam and denser degassed fluid. The length and time
scales of this gas segregation are controlled by the rise of
bubbles in the horizontal intrusion.

The comparison of time scales for gas segregation
processes with that of the cooling and solidification of
the intrusion suggests that more efficient gas segregation
occurs in sills than in horizontal dykes. All time scales
associated with gas segregation increase both with
magma viscosity and intrusion size. However, the
cooling and solidification time scale appears to be the
most sensitive to intrusion size. This suggests that gas
segregation could be efficient within large intrusions
with magmas of basaltic to intermediate composition as
well as within smaller, basaltic intrusions.

Our analysis has also implications for the generation of
gas-rich and gas-poor magmas by gas segregation pro-
cesses in persistent plumbing systems. For a low magma
supply rate at a persistent volcano, very efficient gas
segregation is expected, inducing episodic degassing and
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pulse-like activity that erupt relatively gas-poor magmas,
because segregation rates are larger than overall magma
supply rate. At highermagma supply rates, gas segregation
is expected to be less effective, leading to stronger
explosions erupting gas-rich as well as gas-poor magmas.

The general physical principles governing gas se-
gregation in shallow horizontal intrusions can be applied
to Stromboli, and their implications are all consistent
with independent field data. Gas segregation at Strom-
boli is likely to occur in a shallow reservoir of sill-like
geometry at 3.5 km depth with bubbles of exsolved gas
0.1–1 mm in diameter. The transition between Strombo-
lian activity erupting gas-poor, highly porphyritic
magmas and violent explosions that erupt also gas-rich,
low porphyritic magmas would correspond to a critical
magma supply rate on the order of 0.1–1 m3 s−1.

Our analysis of gas segregation in the conduit plumb-
ing system was restricted to horizontal dykes and sills.
The effect of more complex geometries should be
addressed in future studies. Although the key physical
principles that govern gas segregation are not expected
to differ, the system geometry affects the extend over
which gas segregation processes occur, and in turn their
efficiency.
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Abstract

The model of gas segregation in volcanic systems developed by Menand and Phillips [Menand, T., Phillips, J.C., 2007. Gas
segregation in dykes and sills. J. Volcanol. Geotherm. Res. 159, 393–408] show that non-vertical elements of the plumbing systems,
such as dykes and sills, act as strong gas segregators and can explain the persistent degassing displayed by many basaltic volcanoes as
well as their associated eruptive characteristics. However, this model is based on laboratory experiments carried out at low volumetric
gas fractions b10%. We present additional laboratory experiments which show that the processes governing gas segregation at high
volumetric gas fractions are identical to those occurring at low gas fractions, except that higher gas fractions lead to an increase of the
viscosity of the bubbly fluid and thus increase the time scales associated with gas segregation. We show that the theory developed by
Menand and Phillips [Menand, T., Phillips, J.C., 2007. Gas segregation in dykes and sills. J. Volcanol. Geotherm. Res. 159, 393–408],
originally valid at low volumetric gas fractions, can be extended to high gas fractions, at least as high as 40% by volume.

Keywords: gas segregation; persistent volcanism; dykes; sills; Strombolian activity

1. Introduction

Menand and Phillips (2007) have recently developed a
model of gas segregation in volcanic plumbing systems,
which shows that non-vertical elements of the plumbing
systems, such as dykes and sills, can act as strong gas
segregators. The model suggests that very effective gas
segregation occurs at low magma supply rates and in-
duces episodic degassing of relatively gas-poor magmas,
whereas higher magma supply rates lead to less effective
gas segregation and thus to stronger explosions of gas-rich

as well as gas-poor magmas. This model was successfully
applied to Stromboli volcano, Italy, and suggests a critical
magma supply rate of 0.1–1 m3 s−1 for the transition
between Strombolian degassing and a more explosive
regime in which bubbly magma supplied from depth is
erupted before much gas segregation can take place
(Menand and Phillips, 2007).

Menand and Phillips (2007) investigated gas segrega-
tion in the simple geometry of a vertical conduit connected
to a horizontal magma body by means of analogue ex-
periments with two interconnected glass tubes, with both
ends of the vertical glass tube being connected to a peri-
staltic pump to form a recirculating flow loop. Degassing
involving low volumetric gas fractions (b10%) was simu-
lated by electrolysis, producing micrometric bubbles in
viscous mixtures of water and golden syrup. The presence
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of exsolved bubbles induces a buoyancy-driven exchange
flow between the conduit and the horizontal intrusion,
whereby bubbly fluid flows from the conduit into the
intrusion as a viscous gravity current. This exchange flow
is slow enough that bubbles in the intrusion have time to
rise, segregate from the fluid and accumulate as foam at its
top, with corresponding accumulation of degassed fluid at
its base. Ultimately a steady state is reached whereby
influx of bubbly fluid into the intrusion is balanced by
outward flux of lighter foam and denser degassed fluid
back into the conduit. The length scale of the intrusion of
bubbly fluid into the horizontal intrusion and the time
scale of the gas segregation that occurs are both controlled
by the rise of bubbles within the horizontal intrusion.

However, this model of gas segregation is derived
from laboratory experiments that have been carried out at
low volumetric gas fractions (typically less than 10% by
volume). Consequently, this model of gas segregation
might not be directly applicable to other volcanic
systems involving higher volumetric gas fractions, as
higher bubbly gas fractions might not necessarily lead to
stronger exchange flow characterized by higher Rey-
nolds number. Instead higher bubbly gas fractions could
impede the strength of the exchange flow because (1) the
difference in density between the bubbly fluid, now with
a higher bubbly gas fraction, and the foam would
decrease, and (2) a higher gas fraction would increase the
viscosity of the intruding bubbly magma.

Consequently, additional laboratory analogue exper-
iments were carried out in order to better understand
whether and how gas segregation operates at high volu-
metric gas fractions and to assess the range of gas fractions
over which the model of gas segregation described by
Menand and Phillips (2007) is valid. In Section 2 we
describe the technique used to generate volumetric gas
fractions as high as 40 percent and present the result of the
analogue experiments. In Section 3 we extend the mathe-
matical model of Menand and Phillips (2007) to high gas
fractions before concluding in Section 4.

2. Analogue experiments

2.1. Setup

The experiments reported in the present paper were
carried out in the same apparatus as that described by
Menand and Phillips (2007): a vertical dyke intercon-
nected to a horizontal intrusion was simulated by two
interconnected glass tubes 4 cm in diameter. The tech-
nique used to generate bubbles was different, however,
to obtain higher volumetric gas fractions. We used
the aeration technique described by Llewellin et al.

(2002) whereby golden syrup was aerated with air using
a Mondomix aerator. Pure golden syrup (density ρl=
14391±1 kg m−3, measured by weighing a known
volume) was used as the liquid phase in order to obtain
the highest volumetric gas fraction. Using this method
we could generate polydisperse bubble suspensions with
volumetric gas fraction c=0.35±0.05. The bubble size
distribution was measured using the technique described
by Menand and Phillips (2007). Bubble diameters range
from 2 to 500 μm with a mean diameter of 30±33 μm.
We note, however, that the largest bubbles account for
most of the gas volume: 50% of the total gas volume is
contained in bubbles larger than 250 μm and bubbles
larger than 125 μm represent 80% of the total gas
volume. Once aerated, the bubbly mixture was poured
into the tubes, and so the bubbles were initially evenly
distributed throughout the conduit and the side arm. The
mixture was then left to evolve without imposing any
fluid movement.

2.2. Observations

The same fluid-flow processes were observed in these
high gas fraction experiments as in the low gas fraction
experiments reported by Menand and Phillips (2007).
These are shown in Fig. 1, taken 4 days after the start of
an experiment, to ensure that a steady-state had been
fully established. Bubbles in the horizontal side arm are
observed to rise and segregate from the fluid, accumu-
lating as a foam at the top of the side arm, and creating
a layer of degassed liquid at its base. A steady state is

Fig. 1. Establishment of a steady-state exchange flow between the
vertical tube and the side arm at high volumetric gas fraction. The liquid
phase is pure golden syrup and the mixture contains 40% of gas in
volume. Dashed curves show the approximate thickness of the upper
white foam layer and the lower darker degassed liquid layer. Arrows
show outward flow directions (the arrow indicating the inward flow of
bubbly material from the conduit into the side arm is omitted for clarity).
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reached whereby influx of bubbly fluid from the vertical
conduit into the side arm is balanced by outward flux of
lighter foam and denser degassed liquid.

3. Steady-state gas segregation

Experiments carried out at low gas fractions suggest
that fluid movement in the vertical conduit does not
have any influence on gas segregation in the side arm
(Menand and Phillips, 2007). Further, we expect the
static starting configuration of the experiments at high
gas fractions not to affect the steady-state segregation
and that segregation at high gas fractions to be controlled
by the rise of bubbles in the side arm.

The rising velocity of a single bubble through a fluid of
viscosity μ is given by the Stokes velocity vs=(Δρ g d2) /
(12 μ), where d is the bubble diameter and Δρ is dif-
ference between the density of the fluid and that of the
bubble gas. Here, individual bubbles rise through the
ambient bubbly mixture, so the bulk density and the bulk
viscosity, μb , of the bubbly mixture are the appropriate
continuous phase properties for calculating the Stokes
velocity. Neglecting the density of the gas relative to that
of the fluid, ρl , we obtain Δρ=(1−c)ρl and so:

vb ¼
ð1−cÞqlgd2

12lb
: ð1Þ

The bubbly mixture in the high gas fraction experi-
ments described here is polydisperse with bubble diam-
eters ranging from 2 to 500 μm. However, we note that
50% of the total gas volume is accounted for by the largest
bubbles, with diameters in the range 250–500 μm. We
therefore expect these bubbles to rise the fastest and thus to
be the bubble population that dominates gas segregation.
Consequently, we have taken d=375 μm as the average
bubble diameter that controls the bubble rise velocity vb.

Establishing an expression for the viscosity of the
bubbly mixture μb is more problematic. In principle, the
mixture viscosity can be estimated from the viscosity of
the fluid phase, μl , and the volumetric gas fraction, c.
Several expressions for the dependence of effective vis-
cosity on gas volume fraction exist, depending on the
value of the volumetric gas fraction, and some of these are
based on experimental measurements (Wallis, 1969;
Llewellin and Manga, 2005). The mixture viscosity also
depends on the tendency of bubbles to deform owing to
viscous stresses induced by flow, relative to their tendency
to remain spherical owing to interfacial stresses, and the
rapidity of this response (Llewellin andManga, 2005). For
steady flows involving spherical bubbles, the commonly
accepted relationship is μb=μl / (1−c) (Llewellin and

Manga, 2005). However, Llewellin and Manga (2005)
describe this relation as a minimum viscosity model. They
also derive amaximum viscosity model where themixture
viscosity μb=(1+9c)μl based on the study of Llewellin
et al. (2002), which used aerated golden syrup similar to
our mixtures with volumetric gas fraction c in the range 0
to 0.5. As pointed out by Llewellin andManga (2005), the
true mixture viscosity will be somewhere between these
two models. We also note that for higher volumetric gas
contents, the behavior of the bubbly mixture becomes
closer to that of a foam, and that for gas fractions as high as
70% by volume its viscosity is better approximated by the
relationship (Jaupart and Vergniolle, 1989)

lb ¼ llð1−cÞ
−5=2: ð2Þ

In the range c=0 to c=0.5, Eq. (2) lies in between the
minimum and maximum viscosity models introduced by
Llewellin and Manga (2005) and so we assume here that
the viscosity of our bubbly mixtures is adequately ap-
proximated by Eq. (2). Using this viscosity model, we
obtain a bubble rising velocity

vb ¼
ð1−cÞ7=2qgd2

12ll
: ð3Þ

We calculate the time needed for bubbles to rise and
accumulate as a foam in the side arm by dividing the side
arm diameter (the maximum distance bubbles can rise) by

Fig. 2. Variation of the steady-state foam height along the side arm in a
high gas fraction experiment. The solid line shows the prediction of the
theoretical model for a foam volumetric gas fraction ϵ=0.8 a bubbly
volumetric gas fraction c=0.35 and the viscosity model (Eq. (2)). The
dashed lines show the predictions for two other limiting viscosity
models (see text): μbmin=μl / (1−c) (short dashes) and μbmax=(1+9c)μl
(long dashes). The dotted line shows the foam height that would be
predicted if the viscosity of the pure fluid μl was considered instead of
that of the bulk mixture, as in the very low vesicularity case (Menand
and Phillips, 2007).
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the rising bubble velocity (Eq. (3)). For a volumetric
gas fraction c=0.35 and an average bubble diameter
d=375 μm, steady state in a side arm 4 cm in diameter is
reached in 14 h as shown on Fig. 1 (using the smallest
bubble velocity derived from the maximum viscosity
model, steady state should be achieved in 20 h).

We tested the analysis derived for gas segregation at
low gas fractions by Menand and Phillips (2007) by
calculating the height of the foam that develops at the top
of the side arm (using Eqs. (19−21) of Menand and
Phillips, 2007). Fig. 2 compares the theoretical foam
height with the experimental foam height, measured
from the experiment shown in Fig. 1, and shows very
good agreement between theory and data. We conclude
that the theory developed by Menand and Phillips
(2007), originally valid at low volumetric gas fractions,
can be extended to high volumetric gas fractions, at least
up to 40% by volume.

4. Conclusion

Our experiments show that the processes governing
gas segregation at high volumetric gas fractions are iden-
tical to those occurring at low gas fractions, as described
by Menand and Phillips (2007), except that higher gas
fractions lead to an increase of the viscosity of the bubbly
fluid and thus increase the time scales associated with gas
segregation.

We have shown that this is the case for volumetric gas
fractions up to 40% by volume. At higher volumetric gas

fractions, however, bubbly fluid would behave like a foam.
Whether the gas segregation processes described here
would also operate in this case requires further in-
vestigation. Indeed, gas segregation might then become
negligible because of the viscosity increase and smaller
density difference between the bubbly mixture and any
foampotentially built from gas segregation. However, such
high gas fractions would also increase the propensity of the
whole bubbly fluid to collapse (Jaupart and Vergniolle,
1989). This would lead to strongly explosive behavior as
exemplified by Stromboli, Italy, or Kilauea, Hawaii.
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The pre-fragmentation velocity of magma ascending during explosive volcanic eruptions remains difficult to
quantify. Here we present a new technique for using syn-eruptive volatile diffusion in imperfectly trapped
melt inclusions to obtain a direct estimate of such ascent velocities. H2O diffusion profiles are obtained from
back-scattered electron images of synthetic, partially hydrated glasses and tube-shaped melt inclusions. The
greyscale intensity of glass in the images shows a good negative linear correlation with melt H2O
concentration. Greyscale intensity profiles, extracted using image-processing software, can therefore be
calibrated against H2O measured at discrete points by ion microprobe. An advantage of the technique is that
concentration profiles can be determined in melt tubes that are too small to analyse directly, with a spatial
resolution (≤1 μm) that is considerably better than that obtainable by ionmicroprobe or FTIR. A finite element
model, which incorporates previously published estimates of concentration-dependent H2O diffusivity, is
used to fit the resulting continuous concentration profiles. We apply the technique to tube-shaped melt
inclusions from the May 18th, 1980 Plinian eruption of Mount St Helens, Washington, USA. The model
produces good fits to the data, indicating very rapid ascent times of between 102 and 166 s, which correspond
tomean ascent velocities of 37-64m/s, or mean decompression rates of 0.9-1.6 MPa/s. These are in agreement
with previous estimates from petrological studies and numerical modelling.

© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Amajor challenge in physical volcanology is to obtain direct, in situ
measurements of ascent velocity during explosive volcanic eruptions.
The ascent rate of magma controls the height and strength of the
eruption column and thus determines the physical dispersal of tephra.
Magma ascent velocity is also a key parameter in numerical conduit-
flow models. Previous studies have attempted to estimate magma
ascent velocity through petrological methods (Anderson, 1991; Castro
et al., 2005; Toramaru, 2006; Liu et al., 2007) or numerical modelling
(e.g. Papale et al., 1998; Proussevitch and Sahagian, 2005). Alternative
methods use reconstruction of ballistics or the volumes of erupted
magma to determine discharge rates, and thus infer ascent velocities
(e.g. Wilson et al., 1980; Carey and Sigurdsson, 1985, 1989; Carey et al.,
1990). Such reconstruction methods are rather indirect, while
numerical models require a priori assumptions to be made about the
magmatic system. In contrast, petrological methods permit direct,
independentmeasurements of ascent velocity from eruptedmaterials.

Melt inclusions in phenocrysts are now routinely used to measure
the pre-eruptive volatile contents, and hence crystallisation pressures,
of volatile-saturated magmas (e.g. Dunbar and Hervig, 1992; Blundy
and Cashman, 2001; Wallace, 2005). Studies of melt inclusions have

shown that dome-forming eruptions typically undergo H2O-saturated,
polybaric crystallisation (e.g. Sisson and Layne, 1993; Geschwind and
Rutherford,1995; Blundy and Cashman, 2001; Humphreys et al., 2008)
while magmas may undergo almost no crystallisation during a Plinian
eruption (e.g. Blundy and Cashman, 2005). Not all melt inclusions are
perfectly trappedwithin the host phenocryst. Some are elongate tubes
connected to the external melt (see Fig. 1, Blundy and Cashman, 2005),
allowing them to exchange chemical components, including volatiles,
with thematrix (Anderson,1991; Humphreys et al., 2008). Others have
ruptured and vesiculated during ascent. However, these imperfections
can be exploited to obtain information about the timescale over which
components have been exchanged by diffusion with the matrix, and
thus offer insights into the degassing history of the magma. For
example, Anderson (1991) used the variation of bubble volumes and
H2O concentrations in imperfectly trapped “hourglass” inclusions in
quartz (similar features are also called melt tubes, melt pockets, re-
entrant inclusions) to infer decompression rates during the eruption of
the Bishop Tuff. Castro et al. (2005) measured mm-scale variations in
H2O across interbanded obsidian-pumice samples, using Fourier
transform infra-red spectroscopy (FTIR), to obtain timescales of
vesiculation. Liu et al. (2007) also used FTIR measurements of the
quenched CO2 and H2O concentrations in quartz-hosted inclusions to
estimate the timescale of volatile diffusion into the external melt, and
thus the ascent time. However, their method is limited for melt
inclusions because of size constraints - the diffusion profile is defined
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only by 3-4 measured points. Here, we present a novel technique for
measuring continuous H2O diffusion profiles in plagioclase-hosted
melt tubes. We anticipate that this technique will be suitable for any
phenocryst phase where melt tubes are formed, and is therefore
applicable to a wide range of magma compositions.

2. Approach

This study takes a two-pronged approach. First, we extracted a
series of synthetic H2O diffusion profiles from back-scattered
electron (BSE) images of experimentally hydrated glass chips. This
was done in order to determine the nature of the relationship
between BSE intensity and H2O concentration; to assess the ability
of previously published, empirical H2O diffusivity relationships to fit
the data; and to test the accuracy of our technique. Second, we
applied the technique to tube-shaped melt inclusions in pumices
from Mount St. Helens volcano, USA. A series of concentration
profiles was produced from SEM photographs of melt tubes, by
calibrating the greyscale intensity of back-scattered electron images
against H2O measured by ion probe. The resolution of the images
allowed us to measure the shape of the diffusion profiles accurately,
even in tubes which would have been too small to analyse by ion
probe or FTIR. Using finite-element modeling, we were able to fit the
diffusion profiles and thus determine magma ascent velocities
during the Plinian eruption of 1980.

3. Geological background

3.1. The May 18th, 1980 eruption of Mount St. Helens

In theweeks leading up to 18thMay,1980, therewas an increase in
seismic activity at Mount St. Helens, followed by phreatic explosions
and deformation on the NE side of the volcano. This was interpreted as
intrusion of a cryptodome into the summit region (Moore and Albee,
1981; Cashman, 1992). At 0832 PDT on 18th May, a magnitude 5

earthquake triggered failure of the north flank of the volcano, resulting
in a debris avalanche of N2 km3 (Voight et al., 1981), followed by a
lateral blast which devastated an area of over 500 km2 (Kieffer, 1981;
Eichelberger and Hayes,1982). The cloud that lifted off the blast/ surge
region reached 25 km in height (Sparks et al., 1986). Nine hours of
sustained Plinian activity followed, with an eruption column reaching
amean height of 16 km (Carey and Sigurdsson,1985; Careyet al.,1990).
Tephra were dispersed to the east-northeast, producing a tephra fall
deposit of ∼1.3 km3 (Rose and Hoffman, 1982).

The eruption has been separated into four phases on the basis of
variations in sedimentary features of the fall deposits (Criswell, 1987;
Carey et al., 1990). Average magma discharge rates during the Plinian
activity are thought to have fluctuated between ∼5.0×106 and
4.4×107 kg s-1, based on eruption column heights (Carey et al.,
1990). The highest average magma discharge rate, 4.4×107 kg s-1,
occurred during the period of co-ignimbrite plumes and pyroclastic
flows which formed unit B3 (Criswell, 1987). Modelling of pyroclast
dispersion suggests that exit velocities at the vent reached 200 m s-1

or more (Carey and Sigurdsson, 1985). The magma fragmentation
depth (the point at which the magma moves from a continuous liquid
phase to a continuous gas phase) was estimated at 500-600 m depth
or 13-16 MPa (Carey and Sigurdsson, 1985).

3.2. Petrological information from melt inclusions

Melt inclusions are droplets of magmatic liquid that become
trapped within growing crystals. Quenched to glass, they can provide
information about pre-eruptive conditions within the magma. For
example, incompatible trace-element concentrations can be used to
determine the degree of crystallinity of the magma; dissolved
volatile contents can be used to infer the depth of storage through
known solubility relationships; and for plagioclase-hosted inclu-
sions, the composition of the host and coexisting inclusion can be
used to determine pre-eruptive magma temperatures (Blundy et al.,
2006).

Fig. 1. Major-element composition ofmelt inclusions fromMount St. Helens, after Blundy andCashman (2005). Melt inclusions from dome-forming eruptions follow a trend of increasing
SiO2with decreasing H2O, consistent with H2O-saturated decompression crystallisation. In contrast, melt inclusions from the 1980 Plinian eruptionwere trapped at high pressures prior to
decompression crystallisation, and cluster at low SiO2, with 4.6 – 6.4wt.% H2O. This forms the basis for our estimate ofCi. Plinianmatrix glasses have lowH2O but are not anymore evolved
because therewasno time for decompression crystallisationduring the eruption. TheH2Ocontents ofmatrix glasses reflect thepressure of fragmentation and formthebasis of ourestimate
of Cf. Ruptured melt inclusions from the Plinian eruption have leaked H2O during ascent and therefore lie part way between the pristine inclusions and the matrix glasses.
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Detailed studies of melt inclusions from Mount St. Helens
(Rutherford et al., 1985; Blundy and Cashman, 2001, 2005; Berlo
et al., 2004; Blundy et al., 2006, in press; ) have allowed the evolution
of the magma and plumbing system at the volcano to be assessed. Our
current understanding is briefly summarised here from Blundy et al.
(in press) and Blundy and Cashman (2005). In samples of dome-rock,
plagioclase-hosted melt inclusions are rhyodacite to rhyolite in
composition, and define major-element trends that are oblique to
those of the whole-rocks. The inclusions contain up to 6.7 wt.% H2O,
and H2O concentrations decrease with increasing fractionation as
defined by K2O, SiO2 and incompatible trace element concentrations.
Matrix glasses plot at the low-H2O end of this trend. These features are
consistent with closed-system crystallisation of H2O-saturated
magma, in response to decompression and exsolution of H2O.

Melt inclusions from the 1980 Plinian eruption follow a rather
different chemical trend to that of subsequent dome-forming
eruptions. Major element variation is very limited, and in particular
SiO2 and K2O contents do not show a consistent increase with
decreasing H2O (Fig. 1; Blundy and Cashman, 2005). Matrix glasses
have lost H2O, but otherwise have very similar compositions to the
melt inclusions (see Table 1; Rutherford et al., 1985; Blundy and
Cashman, 2005). This is consistent with syn-eruptive degassing of
H2O, during which there was insufficient time for crystallisation to
occur, thus preventing any change in SiO2 or K2O. The H2O contents of
unruptured melt inclusions thus represent Ci, the volatile concentra-
tion in the magma prior to ascent (4.6 – 6.4 wt.% H2O; Fig. 1). Matrix
glasses give Cf, the H2O content after fragmentation and quenching
(0.5 – 2.2 wt.% H2O; Fig. 1). Because the magma at Mount St Helens is
H2O-saturated (Blundy and Cashman, 2005), we can use the solubility
of H2O in rhyolite (Newman and Lowenstern, 2002), combined with
experimental data (Rutherford et al., 1985) to constrain the range of
pressures at which the magma resided prior to the eruption (137 -
230 MPa), and at which fragmentation occurred (9 - 33 MPa). For this
we assume negligible CO2 concentration in the vapour, and a pre-
eruptive temperature of 880 °C (Blundy et al., 2006).

3.3. Tube melt inclusions

The shape of plagioclase-hostedmelt inclusions depends primarily
on the mode of trapping. Inclusions trapped during simple crystal
growth are typically euhedral (or “negative-crystal” shaped) whereas
inclusions trapped in old, corroded cores of partially dissolved crystals
are typically highly irregular (Humphreys et al., 2008). Tube-shaped
inclusions may be common (Anderson, 1991; Thomas et al., 2003;
Blundy and Cashman, 2005; Humphreys et al., 2008). These inclusions
have not been completely sealed off from the surrounding matrix and
may consequently exchange chemical components with the matrix as
it evolves. During an explosive eruption there will only be time for
diffusive exchange of components with very high diffusivities (e.g.
H2O and Li). In this study we use the diffusive exchange of H2O along
the melt tubes to determine the duration of ascent.

4. Experimental and analytical methods

4.1. Experimental methods

The experiments were designed to achieve partial hydration of the
initially anhydrous rhyolite. Dehydration experiments were also
attempted, but these consistently resulted in micro-vesicular products
without simple diffusion profiles. Similar problems were reported by
Zhang and Behrens (2000).

The experimental starting materials were glass cylinders, 2.9 mm in
diameter and 2-4 mm in length, cored from a single block of Lipari
obsidian, LIPRF (generously donated by D.K. Bailey), using a diamond-
coring device. The obsidian glass (Table 1) was homogeneous and
contained ∼ 0.25 wt.% H2O prior to hydration. In each experiment, a
single glass cylinder (∼40-100mg)was loaded into a gold capsule 3mm
in diameter, together with 10-20 wt.% H2O added by micro-syringe. A
small amount (∼1 mg) of finely ground powder of the same Lipari
obsidian was also added to each capsule in an attempt to minimise
dissolution of the glass cylinder during the experiment. The loaded
capsule was frozen using wet tissues and liquid N2 and arc-welded.
Capsules were re-weighed after welding to ensure no H2O loss.

Experiments were carried out at the University of Bristol, in
hydrothermal cold-seal apparatus equippedwith rapid-quench capability,
described in more detail in Carroll and Blank (1997). The pressure vessel
was first pressurised and then externally heated. The temperature of the
vessel was controlled by a thermocouple inserted into a small hole, 5 mm
from the sample. The final sample temperaturewas calibrated against the
outer temperature, with an error of ±5 °C. Once the vessel was at
temperature the sample was inserted into the hot spot by means of a
magnetic ring and filler rod. Pressure was adjusted manually to minimise
fluctuations during sample insertion, and throughout the run to within
10 MPa. All experiments were designed to be super-liquidus; conditions
ranged from 150 to 200 MPa and 855-905 °C, with run durations of 20 to
80 min (Table 2). No allowance was made for the small amount of time
(typically in the range tensof seconds)needed toheat the sampleup to the
run temperature. One run, LIPRF6, was first held at 150 MPa for 4 h to
ensure full hydration, and then further pressurised to 200MPa for 40min;
however the run product broke on mounting and no clear concentration
gradient could be discerned on the BSE image.

Table 2
Run conditions for glass hydration experiments

Run texp
(min)

P
(MPa)

T
(°C)

Measured H2Oi

(wt.%)
Measured H2Of

(wt.%)
tmodel

(min)
+ - Modelled Ci Modelled Cf Eqm H2O

(NL 2002)

LIPRF - starting material 0.23±0.02
LIPRF2 20 200 857 0.23 5.6 15.5 0.7 0.3 0.23 6.2 5.9
LIPRF3 80 200 859 0.19 5.0 102.7 5.7 5.6 0.5 5.5 5.9
LIPRF5 67 150 899 0.25 5.4 100 8.7 5.3 0.53 5.4 4.8
LIPRF7 20 150 901 0.21 4.8 22.3 4.6 1.6 0.2 5.2 4.8

Measured H2O values are from SIMS. “Eqm H2O” indicates H2O predicted from solubility relationships (Newman and Lowenstern, 2002). Modelled Ci and Cf are the values used in fitting.

Table 1
Normalised, anhydrous compositions of average Mount St Helens matrix glass and
average plagioclase-hosted melt inclusions, from Blundy and Cashman (2005)

Avg MSH
matrix glass
(n=9)

±1σ Avg MSH plag-
hosted melt
inclusion
(n=29)

±1σ AOQ (Nowak
and Behrens,
1997)

Lipari obsidian
(Nielsen and
Sigurdsson, 1981)

SiO2 71.68 0.81 71.94 1.12 76.14 75.27
TiO2 0.36 0.04 0.34 0.1 0.08
Al2O3 14.79 0.33 14.76 0.85 13.53 12.93
FeO 2.39 0.30 2.1 0.4 1.59
MgO 0.56 0.06 0.58 0.12 0.00
CaO 2.40 0.18 2.22 0.47 0.73
Na2O 5.84 0.37 5.94 0.5 4.65 4.13
K2O 1.97 0.15 2.12 0.14 5.68 5.27
Total 100.0 100.0 100.0 100.0

‘AOQ’ is the composition used for the H2O diffusivity experiments of Nowak and Behrens
(1997). Lipari obsidian was used in our synthetic diffusion experiments, also normalised to
anhydrous.
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At the end of each experiment, the sample was quickly withdrawn
into the water-cooled nut below the pressure vessel using the
magnetic ring. The pressure in the line was reduced at the same
time to ensure a near-isobaric quench. The fO2 during the run was
controlled by the material forming the pressure vessel (Nimonic 105)
and is∼1 log unit above the Ni-NiO buffer (Fabbrizio et al., 2006). After
quenching, samples were extracted and weighed to verify that no
leakage had occurred during the run. The capsules were then pierced
to check if excess vapour was present; this was true for all runs except
LIPRF2, which did not appear to liberate H2O on puncture. However,
the weights of this capsule before and after the run agreed to within
0.2 mg, suggesting vapour saturation. Samples were extracted from
their gold capsules, mounted longitudinally in resin and polished to a
depth close to the centre line of each glass cylinder. This was relatively
straightforward as each glass cylinder had changed little in diameter
in the course of a run. All run products were entirely glassy, with no
sign of quench crystals.

4.2. Identification of melt inclusions

Individual plagioclase phenocrysts were hand-picked from
pumices in two splits of a single sample, KVC518B, erupted on 18th
May 1980 at Mount St. Helens. Both splits are described in Blundy et al.
(in press), and represent a microlite-free pumice from pyroclastic flow
deposits of the Plinian eruption. The crystals were mounted in resin
and polished to expose melt inclusions. Inclusions zoned in H2O
content were identified using a JEOL JSM-820 SEM at the University of
Cambridge, or a Philips XL30CP SEM at the University of Edinburgh Ion
Microprobe Facility. Back-scattered electron images were taken of
each inclusion.

4.3. Analytical methods

4.3.1. Electron probe micro-analysis (EPMA)
Melt inclusions and experimental run products were analysed for

major elements using a CAMECA SX-100 five-spectrometer electron
microprobe at the University of Cambridge, using methods described
in Humphreys et al. (2006). The experimental glass chips were found
to be homogeneous in terms of major elements, indicating that no
major-element diffusion had occurred during the experiment. Thus
the only cause of variations in mean atomic number, and hence BSE
intensity, is H2O content.

4.3.2. Secondary ion mass spectrometry (SIMS)
Points selected for use in BSE image calibration (see later) were

analysed for 1H+, 7Li+, 9Be+, 11B+, 19F+, and 47Ti+ using a CAMECA ims4f
secondary ion mass spectrometer at the University of Edinburgh.
SRM610 was used as a primary trace element calibration standard. A
10.75 kV, 2 nA, O- primary beamwas accelerated onto the samplewith
a net impact energy of 14.5 kV. Secondary ions were extracted
at +4.5 eV using a 75 V offset and 40 eV energy window. A pre-sputter
period of approximately 2 min, with a 20 μm rastered beam, was used
to clean the surface. For quantitative analysis, the ∼15 μm focused
beamwas finely rastered to approximately 5 μm tominimise charging
of the sample. The beamwas manually aimed onto the melt inclusion
or experimental glass. H2O contents of the glass were derived from
measured H+/Si+, using a daily working curve of H+/Si+ vs. H2O from
well-calibrated hydrous glass standards (Blundy and Cashman, 2005).
The working curves gave a straight line with R2 N0.98 (usually
R2≥0.997). Errors on H2O concentrations are typically less than 5%
relative.

5. BSE profiles and calibration

Back-scattered electron (BSE) images of each experimental glass
chip or inclusion were taken at the University of Edinburgh Ion

Microprobe Facility using a Philips XL30CP SEM. Typical image
resolution is 1424×1064 pixels. Contrast in the BSE signal is observed
because the diffusion of H2O produces variations in mean atomic
number in the sample. The open-source software package ImageJ
(Rasband, 2007) was used to extract a profile of greyscale intensity
along a specified path in the inclusion. The scale of the BSE image was
used to measure the length of the profile. To convert the greyscale
intensity profile into a profile of H2O concentration, H2O was
measured by SIMS at several points along each profile. For each
equivalent point (∼15 μm in diameter) on the image, ImageJ was used
to obtain three measurements of greyscale intensity (1 σ of greyscale
intensity ∼3%). The average of the three measurements was plotted
against wt.% H2O. These data were fitted using a linear least squares
relationship, with R2 usually ∼ 0.96 or better. Neighbouring melt
inclusions andmatrix glass filaments were also used in the calibration,
providing that they were included in the same SEM image as the tube,
i.e. under identical conditions of contrast and brightness, and had the
same major element composition. This allowed profiles to be
measured even along narrow tubes which were too small to be
analysed directly by ion probe. Since there is little difference between
matrix glass and melt inclusion compositions (Fig. 1; Rutherford et al.,
1985; Blundy and Cashman, 2005), the effect of any slight variations in
major element composition (between melt inclusions) on the back-
scatter intensity was negligible.

Each BSE image was calibrated independently, since the absolute
value of greyscale intensity depends on the contrast and brightness
conditions used, in addition to the absolute variation in atomic
number, field of view, and noise (Newbury, 1975; Reed, 2005). In
practice, the quality of the polished surface is also of major importance
in producing a clear image. The signal to noise ratio is determined by
the accelerating voltage, beam current and scanning rate, as well as
factors like the specification of the back-scatter detector. The standard
deviation of the measured greyscale intensity at any point (and the
vertical scatter on the resulting concentration profile) gives a measure
of the precision of the profile, which is limited by the resolution of the
image. The concentration profiles presented here have low precision
but relatively high accuracy.

6. Modelling – overview and assumptions

H2O diffusivity is dependent on H2O concentration in the glass as
well as temperature and pressure (e.g. Shaw, 1972; Delaney and
Karsten, 1981; Zhang et al., 1991; Jambon et al., 1992; Nowak and
Behrens, 1997; Zhang and Behrens, 2000). We therefore used the
generalised form of Fick's second law:

AC
At

¼ A

Ax
D Cð ÞAC

Ax

! "
ð1Þ

where C is the concentration (wt.%), D is diffusivity, x is distance and t
is time. This cannot be solved analytically, and a 1-D finite element
model was built using the commercially available finite element
software COMSOL Multiphysics. The model calculates the evolution of
H2O concentrationwith time, in a semi-infinite system, as a function of
distance. The following initial and boundary conditions were applied:

C ¼ Ci; x; t ¼ 0 C ¼ Cf ; x ¼ 0; tN0 ð2Þ

and

AC
Ax

¼ 0; x ¼ L ð3Þ

where Ci is the initial (homogeneous) H2O concentration, Cf is the final
H2O concentration (fixed at the rim) and L is equivalent to the
maximum length of the profile. Best fits to the data were determined
by a least-square algorithm, which focused on the regions of the
concentration profiles showing the strongest changes in gradient (i.e.,
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excluding most of the non-hydrated part of the experimental sample
profiles). We initially used H2O diffusivity models from Nowak and
Behrens (1997) and Zhang and Behrens (2000) to fit our synthetic
concentration profiles. The model that gave the better fit to the data,
and a better estimate of the time duration of the experiment, was then
used to fit the H2O concentration profiles measured in the melt
inclusions from Mount St. Helens.

The best fits provided the best estimates of the time taken to produce
the measured concentration profiles, for given values of Ci and Cf. The
uncertainties on these time estimates were determined using a moving,
variable-length, block bootstrap technique as described by Efron and
Tibshirani (1993). Other bootstrapping techniques usually assume that all
data points are independent. However, because DH2O depends on H2O
concentration, adjacent data points along the concentration profiles are
dependentovera length-scalewhichdependson theH2Oconcentrationat
that point. For every data point we therefore used a block length l, such
that l=(DH2OΔt)

1/2, whereDH2O is the H2O diffusivity at that data point, and

Δt is the timestep between two successive theoretical concentration
profiles (typically 10 s).With this technique, datamore than ablock length
apart are assumed to be nearly independent (Efron and Tibshirani, 1993).
This procedure gives a 99% confidence interval for each time estimate.

6.1. Experimental diffusion profiles

For the experimental profiles, we assume instantaneous hydration
of a finite space, corresponding in size to the radius of the glass
cylinders. Diffusion of H2O is assumed to occur radially within the
glass cylinders, and perpendicular to their length. In practice this
means that we can model diffusion in the cylinders as a 1-D process,
since the diffusion profiles weremeasured sub-parallel to the radius of
the cylinders. In cases where the polished surface did not coincide
exactly with the centre-line of the cylinder, measured profile lengths
were normalised to radial distance from the centre of the cylinder. The
initial H2O value (Ci) was derived from the measured H2O

Fig. 2. Schematic figure outlining some of the processes occuring during Plinian eruptions and the assumptions made in the model. H2O-saturated magma ascends from its storage
region in the chamber, containing Ci wt.% dissolved H2O and ∼40% crystals. During ascent, H2O vapour exsolves from the external melt into bubbles, H2O diffuses along tube-shaped
melt inclusions into the external melt. As ascent continues, the volume fraction of bubbles in the magma increases, until fragmentation occurs at ∼75 vol.% bubbles and Cf wt.% H2O.
At fragmentation, the melt is quickly quenched to glass, preserving H2O concentration profiles in partially diffused melt tubes.
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concentration in the undiffused core of the cylinder (0.20-0.25 wt.%
H2O). Boundary H2O concentrations (Cf) were derived from the known
P, T conditions of each experiment, and the H2O concentration at the
rim of the cylinder (Table 2).

6.2. Melt inclusion diffusion profiles

We assume that the melt inclusions can be approximated as
cylindrical tubes whose lengths are much larger than their radii, so
that diffusion occurs mainly along the length of the inclusion. This is
consistent with the geometry of melt tubes observed in transmitted
light on other similar samples. We also assume that diffusion
perpendicular to the tube axis is negligible; this is reasonable because
the diffusivity of H2O within plagioclase is low compared with the
melt. The model assumes that the outer end of each tube undergoes
instantaneous dehydration, with 1-D diffusion of H2O occurring along
the melt tube towards its open end, in the time taken to ascend to the
fragmentation horizon and quench (Fig. 2). The initial H2O of the
magma is constrained by petrological information to be in the range
4.6 - 6.4 wt.% H2O (see section 2.3; Fig. 1), and we assume that this is
equivalent to the initial concentration in the inclusions (Ci). This
cannot be constrained further because none of the tubes is sufficiently
long that the initial concentration is preserved in the diffusion profile.
Consequently, the diffusion times produced by the model are not
unique (see later). The concentration of H2O remaining at fragmenta-
tion (Cf) is measured directly from the concentration profile and is
defined as the concentration at the open end of the tube, close to
vesicle walls. These values are consistent with petrological observa-
tions that matrix glasses contain 0.5 - 2.2 wt.% H2O (see Fig. 1). The
final pressure used in the model was the pressure at fragmentation,
calculated from the Cf of the H2O-saturated melt using Newman and
Lowenstern (2002). We assume a pre-eruptive temperature of 880 °C,
consistent with recent geothermometry (Blundy et al., 2006), and
ignore latent heat effects. We assume that the magma undergoes
closed-system, isothermal degassing during ascent in the conduit,
with equilibrium maintained between melt and vapour.

7. Results

7.1. Experimental diffusion profiles

BSE images of the synthetic glass chips show clear concentration
gradients parallel to the walls of the chips, manifest as changes in
greyscale intensity (Figs. 3–6). This is consistent with diffusion of H2O
inward from the edge of the cylinder. Profiles LIPRF2 and LIPRF5 run
across cracks in the glass chip, which are black in the greyscale image

and translate to anomalously high H2O concentrations. These
anomalous points have been removed and are apparent as small
gaps in the profiles. Bright rims are probably due either to topographic
or compositional edge effects (Newbury, 1975). Excellent linear
negative correlations of greyscale intensity and H2O concentration
were obtained for each chip (Figs. 3–6). Figs. 3–6 show the synthetic
diffusion profiles with fits from Nowak and Behrens (1997) and Zhang
and Behrens (2000). The best fits to the synthetic profiles were
obtained using the expression of Nowak and Behrens (1997):

logDH2O ¼ $4:81$ 0:045:CH2O þ 0:027:C2
H2O

# $

$ 3378$ 483:CH2O þ 46:9:C2
H2O þ 47:5

# $
=T

ð4Þ

where DH2O is in cm2 s-1, P is in kbar and T is in K. The modelled
diffusion times arewithin a factor of 1.5 of the experimental run times
(Table 2). We consider this to be reasonable given that the diffusivity
model was calibrated for haplogranite melts (Nowak and Behrens,
1997; Table 1), and that the exact run duration is not precisely known
because of the finite time taken for heating the sample after insertion
into the bomb, and for quenching. The formula of Zhang and Behrens
(2000) did not give comparable fits to the data (Figs. 3–6), in particular
to the strong curvature of the concentration profiles. We therefore
used Eq. (4) to model diffusion in the melt inclusions.

7.2. Melt inclusion diffusion profiles

The melt inclusions also show clear concentration gradients in BSE
images. H2O concentration again correlates well with greyscale
intensity, giving robust H2O diffusion profiles, although with a
relatively high degree of scatter (Figs. 7–9). The scatter is derived
from noise in the BSE image, and could be reduced by capturing higher
resolution images. One profile (MSH1-3) shows an excursion to higher
H2O near the interior of the profile. This is an artefact derived from the
BSE image, and could represent either topography from the walls of
the inclusion, or interference from the crack that runs across it.

Values of Cf range from 1.0±0.6 to 2.0±0.5 wt.% H2O. The maximum
H2O concentration observed in each inclusion ranges from 2.9 to 3.6±
0.5 wt.% H2O, although the real initial H2O concentration, Ci, is
constrained by petrology to be 4.6 - 6.4 wt.% H2O (see earlier). Diffusion
was therefore sufficiently prolonged that C (x=0) dropped below Ci. This
means that the fits provided by the model are not unique: for a given
value of Cf, different Ci can fit the data equally well, and the calculated
diffusion times will vary with Ci. For this reason, we performed
calculations using the extreme likely values of Ci, 4.6 and 6.4 wt.% H2O,
in order to give lower and upper bounds, respectively, on time.

Table 3
Results of diffusion modelling of melt tubes

A. Ascent times and decompression rates, Ci=4.6 wt.%

Inclusion Cf Pf Final depth Ci (1) Pi (1) Initial depth ΔP Δdepth t + - Mean decomp. rate Mean ascent velocity + -

(wt.%) (MPa) (m) (wt.%) (MPa) (m) (MPa) (m) (s) (MPa/s) (m/s)

KV518b-1 2.0 33 1328 4.6 137 5590 104 4262 116 10 12 0.9 37 4 3
MSH1-3 1.8 27 1101 4.6 137 5590 110 4489 102 16 18 1.1 44 9 6
MSH1-6 1.0 9 389 4.6 137 5590 128 5201 107 13 11 1.2 49 6 5

B. Ascent times and decompression rates, Ci=6.4 wt.%

Inclusion Cf Pf Final depth Ci (2) Pi (2) Initial depth ΔP Δdepth t + - Mean decomp. rate Mean ascent velocity + -
(wt.%) (MPa) (m) (wt.%) (MPa) (m) (MPa) (m) (s) (MPa/s) (m/s)

KV518b-1 2.0 33 1322 6.4 230 9380 197 8058 141 10 13 1.4 57 6 4
MSH1-3 1.8 27 1099 6.4 230 9380 203 8281 129 15 20 1.6 64 12 7
MSH1-6 1.0 9 400 6.4 230 9380 221 8980 166 12 11 1.3 54 4 4

Diffusion times are presented assuming variation of Ci between 4.6 wt.% (a) and 6.4 wt.% (b). Calculated depths use a density model which includes the effects of gas exsolution and
40% crystals. Bubble-free magma density is 2500 kg m-3. Pressures are calculated from H2O solubility at 880 °C, assuming negligible CO2 (Newman and Lowenstern, 2002).
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The model gives good fits to the data (Figs. 7–9), with Cf evaluated
by eye. The model times range from 102 to 166 s, depending on the
value of Ci used (Table 3). This is equivalent to decompression rates of
1.2 - 1.6 MPa/s. Because the magma is volatile-saturated (Blundy and
Cashman, 2001, 2005), variations in Ci also relate to variations in
pressure, and hence the distance ascended. For example, the
calculations using 4.6 wt.% H2O involve shorter times, but also shorter
decompression paths, compared with those using 6.4 wt.% H2O. The
use of different Ci therefore does not strongly alter the ascent rate.
Errors in fitting are estimated by evaluating the 99% confidence
interval of the least square best fit, using the moving block bootstrap
technique (section 6).

To convert pressure to depth, we use a magma density model
(Wilson et al.,1980; Carey and Sigurdsson,1985)which incorporates the
effects of bubble exsolution and 40% pre-existing phenocrysts in a
column of magma (Rutherford et al.,1985; Blundy and Cashman, 2005):

q ¼ 1$ n
qm

! "
þ nRT

P

! "% &$1

ð5Þ

where ρm is the bubble-free magma density (∼2500 kg m-3), n is the
mass fraction of exsolved volatiles, R is the gas constant and P is the
pressure. The ascent velocity (v) is then determined by:

v ¼ 1
t

Pi
qig

$
Pf
qf g

 !
ð6Þ

where g is the acceleration due to gravity (9.81 m s-2), and t is the
diffusion time. Density effects due to adiabatic expansion are neglected.
Ascent rates calculated in this way range from 37 to 64m s-1, taking into
account the possible variation in Ci (Table 3).

8. Discussion

8.1. Magma ascent rate, magma supply, and fragmentation depth

In our model, the concentration (Cf) of H2O at the exit of the tube is
inferred to be that in equilibriumwith the external melt at the point of
fragmentation, i.e. when diffusion effectively stopped (see below). Our
measured Cf are in the range 1.0 - 2.0±0.5 wt.% H2O, equivalent to
fragmentation pressures of 9 to 33 MPa, or depths of approximately
400 - 1300 m. This agrees well with previous estimates of fragmenta-
tion pressure in Plinian eruptions: 40 MPa for the Bishop Tuff
(Anderson,1991),15-20MPa for a rhyolitewith 4.5-6wt.% H2O (Papale
et al., 1998) and for Mount St. Helens, 16 MPa (Carey and Sigurdsson,
1985). A review of conduit flow models gave fragmentation pressures
of 12-28 MPa for H2O-rich rhyolite at 850 °C (Sahagian, 2005). The
calculated average magma ascent rate is 37 - 64 m s-1, equivalent to a
decompression rate of 0.9 - 1.6 MPa s-1. This is considerably greater
than ascent rates estimated using reconstructed eruption dynamics
(∼0.6 - 1ms-1, Scandone andMalone,1985; Eichelberger, 1995), which
was based on the nearly 4 h time interval between the initial landslide
and the onset of the climactic phase of the eruption (Scandone and
Malone,1985; Criswell,1987). This suggests thatmagma from the deep
chamber was being erupted before the onset of the climactic phase
(Criswell, 1987; Papale and Dobran,1994). Our ascent rate is much less
than the very high rate estimated from textural characteristics
(140 MPa s-1, Toramaru, 2006), although this value may reflect bubble
nucleation during the passage of a shock wave (Toramaru, 2006). Our
method agrees well with values calculated from other petrological
methods and from numerical models. Anderson (1991) obtained
decompression times of ∼2 min by modelling rates of melt loss from
hourglass inclusions in quartz from the Bishop Tuff. This is equivalent
to ascent rates of 40 ms-1, using an inferred fragmentation pressure of
40 MPa and ascent from 180 MPa (Anderson, 1991). From numerical
models, Papale et al. (1998) obtained comparable magma velocities of

approximately 15-20 ms-1 up to the point of fragmentation, for a
rhyolite containing 6 wt.% H2O.

Our model provides a robust method for measuring magma ascent
rates in explosive volcanic eruptions. However, the calculated values
represent themean speed of the magma in the conduit. Ascent speeds
increase sharply close to fragmentation (Papale et al., 1998), so the
calculated values may slightly overestimate the magma velocity along
the majority of the conduit length.

The radius of themagma conduit atMount St. Helens is estimated to
be∼25 - 40m (Careyand Sigurdsson,1985; Scandone andMalone,1985;
Pallister et al., 1992) or 17-33 m (Papale and Dobran, 1994). For a
cylindrical conduit of radius 25 m, our calculated ascent velocity of 37 -
64 m s-1 indicates a magma supply rate of 7.3 - 12.6×104 m3 s-1.
Assuming a magma density of 2500 kg m-3, this equates to 1.8 –
3.1×108 kg s-1. This is significantly greater than the values calculated by
Scandone and Malone (1985) and Carey and Sigurdsson (1985) on the
basis of tephra volumes (0.14×108 and 0.19×108 kg s-1 respectively).
Fluctuations in column height indicate magma discharge rates up to
0.44×108 kg s-1 during eruption of co-ignimbrite plumes (Carey et al.,
1990), while numerical modelling for crystal-free rhyolite with 4.5 -
6 wt.% H2O predicts mass flow rates of 3 - 4×108 kg s-1 (Papale et al.,
1998). Our estimate therefore seems high compared with field-based
estimates, although it is consistent with the results of numerical
modelling. This could be because (i) we use mean ascent speed to
calculate magma supply rate, (ii) distal tephra volumes may be
underestimated (Pyle, 1989) or (iii) our samples come from a period in
the eruption which experienced particularly high discharge rates.

At decompression rates of N0.25 MPa s-1, equilibrium cannot be
maintained between vapour andmelt (Gardner et al., 1999). Degassing
is retarded, resulting in supersaturation of the melt, manifest as melt
H2O contents greater than the equilibrium concentration. For rhyolite
ascending at ∼ 1 ms-1, the maximum supersaturation is reached some
way below the surface, and H2O levels fall back towards equilibrium
values (Proussevitch and Sahagian, 2005). However, for ascent rates of
10 ms-1 or greater, the maximum supersaturation will occur at very
shallow depths (Larsen and Gardner, 2004). This means that our
calculations will tend to overestimate ascent speed.

8.2. Thermal variations during ascent

A key simplification in our model is the assumption of isothermal
conditions up to the point of fragmentation, followed by instantaneous
quenching. Estimated cooling rates in a Plinian eruption column are
∼60-100 °C per second (Kaminski and Jaupart, 1997) due to entrain-
ment and turbulent mixing of cold air from outside the column. An
assumption of rapid quenching therefore seems reasonable, although
cooling rates may differ between clasts of different diameters, or clasts
which take differing trajectories through the column (Thomas and
Sparks, 1992). However, magma-gas mixtures may undergo cooling
prior to fragmentation during isentropic ascent, which ismost likely to
occur when velocity and gas expansion are high (Mastin and Ghiorso,
2001). For rhyolite magma initially at 200 MPa and 900 °C, modelling
suggests that the temperature can drop to ∼850 °C at 30 MPa, and to
∼800 °C at 10 MPa (Mastin and Ghiorso, 2001). Thus the majority of
cooling occurs during the final stages of ascent towards fragmentation.
This adiabatic cooling would reduce H2O diffusivity by about 25% at
850 °C, or about 40% at 800 °C. Significant undercooling during ascent
would cause our model to underestimate the true diffusion time, and
hence overestimate the ascent speed.

8.2.1. Diffusion blocking temperature
The H2O concentration profiles in the melt tubes are effectively

“frozen in” onceDH2Ohas dropped belowa critical temperature, atwhich
diffusion becomes ineffective. At fragmentation, the melt still contains
1-2 wt.% H2O. Using Eq. (4), DH2O drops to b0.1 μm2 s-1 at ∼ 400 °C (for
1 wt.% H2O) or ∼350 °C (for 2 wt.% H2O). At cooling rates of 60-100 °C,
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thiswould take only 4-8 s. This suggests that little diffusivemodification
of the profiles occurred after fragmentation, and that the measured
profiles accurately reflect concentration gradients at the point of
fragmentation.

8.3. Gradual decompression

The 1980 eruption of Mount St Helens was triggered by a large
landslide, which is estimated to have created a pressure drop of 12-
20 MPa inside the conduit (Kieffer, 1981; Eichelberger and Hayes, 1982).
This would have immediately reduced H2O solubility throughout the
magmatic system, by∼1wt.% at 1 kmdepth, or∼0.4wt.% at 5 kmdepth.
Our model assumes an instantaneous drop in pressure from Pi to Pf,
which simulates a pressure drop of ∼100 MPa (Ci=4.6 wt.% H2O) or
∼200 MPa (Ci=6.4 wt.% H2O). This simplification creates an artificially
low H2O diffusivity at the tube exit, and an artificially high driving force
for diffusion. In terms of the modelled diffusion time, these effects may
counteract each other; however a full treatment of different pressure
profiles is beyond the scope of this study.

9. Conclusions

A new technique for obtaining continuous H2O diffusion profiles
from tube-shaped melt inclusions has been applied to plagioclase-
hosted inclusions from the May 18th, 1980 eruption of Mount St.
Helens. Diffusion profiles are extracted from greyscale variation on
back-scattered electron images of the melt tubes. BSE greyscale
intensity is calibrated against H2O concentrations measured by ion
probe. The model takes into account concentration-dependent
diffusivity of H2O and assumes instantaneous decompression and
isothermal ascent. Modelled diffusion times were 102 - 166 s. Known
initial and final magma pressures allow decompression rates to be
quantified. Modelled decompression rates were 0.9 – 1.6 MPa s-1,
equivalent to an average ascent speed of 37 - 64 m s-1. This new
technique is applicable to any fresh pumice sample containing
phenocrysts with melt inclusion tubes.
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Abstract Following an intersection of rising magma with
drifts of the potential Yucca Mountain nuclear waste
repository, a pathway is likely to be established to the
surface with magma flowing for days to weeks and
affecting the performance of engineered structures located
along or near the flow path. In particular, convective
circulation could occur within magma-filled drifts due to
the exsolution and segregation of magmatic gas. We
investigate gas segregation in a magma-filled drift inter-
sected by a vertical dyke by means of analogue experi-
ments, focusing on the conditions of sustained magma flow.
Degassing is simulated by electrolysis, producing micro-
metric bubbles in viscous mixtures of water and golden
syrup, or by aerating golden syrup, producing polydisperse
bubbly mixtures with 40% of gas by volume. The presence
of exsolved bubbles induces a buoyancy-driven exchange
flow between the dyke and the drift that leads to gas
segregation. Bubbles segregate from the magma by rising
and accumulating as a foam at the top of the drift, coupled
with the accumulation of denser degassed magma at the
base of the drift. Steady-state influx of bubbly magma from
the dyke into the drift is balanced by outward flux of lighter
foam and denser degassed magma. The length and time
scales of this gas segregation are controlled by the rise of
bubbles in the horizontal drift. Steady-state gas segregation
would be accomplished within hours to hundreds of years

depending on the viscosity of the degassed magma and the
average size of exsolved gas bubbles, and the resulting
foam would only be a few cm thick. The exchange flux of
bubbly magma between the dyke and the drift that is
induced by gas segregation ranges from 1 m3 s−1, for the
less viscous magmas, to 10−8 m3 s−1, for the most viscous
degassed magmas, with associated velocities ranging from
10−1 to 10−9 m s−1 for the same viscosity range. This model
of gas segregation also predicts that the relative proportion
of erupted degassed magma, that could potentially carry
and entrain nuclear waste material towards the surface,
would depend on the value of the dyke magma supply rate
relative to the value of the gas segregation flux, with violent
eruption of gassy as well as degassed magmas at relatively
high magma supply rates, and eruption of mainly degassed
magma by milder episodic Strombolian explosions at
relatively lower supply rates.

Keywords YuccaMountain . Nuclear waste repository .

Gas segregation .Magma circulation . Volcanic gas fluxes .

Magma fluxes . Strombolian activity

Introduction

Future volcanic activity may disrupt the potential Yucca
Mountain radioactive waste repository site during the next
10,000 years. Consequently, health and safety hazards that
may result from future igneous activity must be quantita-
tively estimated. In addition, a broad range of models and
data proposed by the US Department of Energy must be
evaluated before potential licensing of the repository. A
key component of the hazard analysis is understanding
how rising basaltic magma may interact with subsurface
repository structures, such as tunnels or drifts.
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Previous work at the University of Bristol (Lejeune et al.
2007) has focused on laboratory experiments using ana-
logue materials that simulate magma and drifts. These
experiments investigated the transient dynamics of how
gas-bearing and gas-free fluids similar to magmas could
suddenly decompress into subsurface openings, which can
accelerate and fragment the fluids. Following this work,
new experiments have been developed to investigate the
potential circulation of bubbly magma within drifts due to
density variations caused by separation of bubbles.

Following intersection of rising magma with a drift, a
pathway will likely be established to the surface. Magma
will then flow through this pathway for days to weeks,
affecting the performance of engineered structures located
along or near the flow path. Convective circulations may
occur in magma-filled structures due to gas exsolution and
segregation. Different flow regimes may develop, depend-
ing on the flux of gas and magma through the system, the
size of bubbles in the magma, the magma rheology and
the geometry of flow system. The flux of magma through
the potential dyke may drive a recirculating flow within a
drift, which may result in significant mixing between
magma in the drift and in the dyke. Conversely, there
may be stagnant regions where the magma has a long
residence time. Vapour bubbles also will exsolve or grow
from the magma. If the bubble size is large, the bubble rise
speed may be large compared to the flow within a drift,
resulting in significant melt-bubble separation in the drift and
the formation of a coalesced foam at the drift roof. Along with
bubble rise, denser (i.e., degassed) magma may drain back
into the dyke/conduit system and possibly be re-entrained into
the ascending magma flow. These processes need to be
quantified in order to evaluate the likely impacts on waste
containment structures and effects on health and safety.

A series of experiments has been carried out to
investigate convective circulation in magma-filled struc-
tures due to gas exsolution and segregation. This work
considered magma rising towards the surface through a
vertical dyke that intersects a drift and focused on the
conditions of sustained magma flow. The aim of this work
is to quantify (1) the time and length scales for bubble
segregation and flow recirculation in the drift and (2) the
fluxes associated with this gas segregation. The results of
this work have been applied to gas segregation in the
plumbing systems of basaltic volcanoes (Menand and
Phillips 2007a). The present report applies these concepts
and results to the particular geometries of the potential
Yucca Mountain repository. We first review the different
experimental methods that were used to explore the range
of parameters relevant to Yucca Mountain. Then, we
introduce the model we derived in analyzing the experi-
mental data, before applying this model specifically to
Yucca Mountain.

Analogue experiments

A volcanic eruption at the potential Yucca Mountain
repository is likely to involve magma with a high
volumetric gas fraction (Nicholis and Rutherford 2004;
see section on the application to the potential Yucca
Mountain repository). However, given the uncertainty on
the gas volume fraction, experiments have been carried out
over a range of gas fraction varying from a few percent up
to 40 percent by volume. This resulted in two separate sets
of experiments referred to as low and high gas fraction
experiments, respectively.

Low gas fraction experiments

Setup and calibration

The geometry of a vertical dyke intersecting a drift was
simulated at the laboratory scale by two interconnected
glass tubes, both ends of the vertical glass tube being
connected to a peristaltic pump to form a recirculating flow
loop (Fig. 1). The internal diameter of the vertical tube was
4 cm, whereas the length and the diameter of the horizontal
side arm have been varied.

The solutions used as a magma analogue were various
mixtures of golden syrup, water and sodium chloride
(NaCl). The density ρl and viscosity μl of these Newtonian
solutions were varied by changing the relative amount of
water and golden syrup. The density was measured by
weighing a known volume and the viscosity was measured
using a Haake RV20 viscometer. Degassing of the magma
was simulated by electrolysis of the viscous NaCl solution.
The electrolysis cell was situated in the vertical tube below
its junction with the horizontal side arm. It produced
micrometric bubbles, whose mean diameter d were mea-
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Fig. 1 Schematic diagram of the apparatus
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sured from a digital image taken through a microscope at
4× magnification with one standard deviation used as a
measure of the bubble size distributions. Electrolysis
calibration gives a gas production rate Qg proportional to
current intensity I: Qg=(1.43±0.03)×10

−7×I m3 s−1, where
I is expressed in Ampere. The reader is referred to Menand
and Phillips (2007a) for a more detailed account of how
these different measurements were carried out. The proper-
ties of the experimental mixtures and bubble sizes d are
summarized in Table 1.

At the start of an experiment, the apparatus was filled
with golden syrup:water:NaCl mixture and all gas bubbles
introduced by the filling process were removed. The
experiment was initiated by setting the peristaltic pump to
a desired flow rate. The electrolysis cell was then switched
on, and the desired gas flux was set independently of the
liquid flux. The duration of the experiments was measured
from the time that the electrolysis cell was switched on, and
the position of the interface between the bubbly liquid, the
foam layer and bubble-free liquid in the side arm was
measured as the experiment proceeded.

Observations

A large range of liquid and gas flow rates has been
investigated, from the case of no liquid flow (bubbles rose
through and separated from the liquid in the vertical tube)
to that of a liquid flow rate 80 times larger than the gas flux
(bubbles were carried by and rose at the same speed as the
liquid).

Over the range of experimental flow rates in the vertical
tube, the same fluid-flow processes were observed (Fig. 2).
At the beginning of the experiments, the electrolysis creates
bubbles that rise up the vertical conduit. These bubbles
decrease the bulk density of the mixture, which creates a
density difference between the bubbly fluid rising in the
vertical conduit and the bubble-free fluid originally at rest
in the horizontal side arm. In turn, this density difference
drives an exchange flow between the two tubes (Fig. 2a).

The time-scale associated with this exchange is long
enough that bubbles in the horizontal side arm have time
to rise, segregate from the fluid and accumulate at its top as
a foam. This segregation is coupled with the accumulation
of degassed fluid at the base of the side arm (Fig. 2b).
Ultimately, a steady state is reached whereby the influx of
bubbly fluid into the side arm is balanced by the outward
flux of lighter foam and denser degassed fluid, which are
respectively reinjected up the conduit toward the surface
and recycled at depth in the vertical section (Fig. 2c). The
structure of the fluid stratification in the side arm is then
fixed, with the thickness of both the foam and the layer of
degassed fluid remaining constant.

High gas fraction experiments

Setup and calibration

These experiments differed from the low gas fraction
experiments in the technique used to obtain higher
volumetric gas fractions. The production of bubbles by
electrolysis in golden syrup:water:NaCl mixtures is limited
by the maximum electrical current intensity that drives the
electrolysis and which is related to the amount of golden
syrup present in the mixture. For low golden syrup
contents, high electrical current intensity can be used but
mixtures have a low viscosity, which allows bubbles to
easily rise through the mixture and escape at its free surface
in the upper part of the flow loop. Higher golden syrup
contents result in higher mixture viscosity and, consequent-
ly, bubbles stay longer in suspension in the mixtures.
However, higher golden syrup contents decreased the
maximum electrical current intensity that can be used to
drive the electrolysis cell and hence the bubble production
rate. In practice, only volumetric gas fractions lower than
10% could be generated with the electrolysis technique.

In order to achieve higher volumetric gas fractions, we
used the aeration technique described by Llewellin et al.
(2002). Pure golden syrup was aerated with air using a

Table 1 Properties of golden syrup (GS), water and sodium chloride (NaCl) mixtures and bubbles created by electrolysis

GS:water:NaCl (mass ratio) ρl (kg/m
3) μl (mPa s) d (μm) Rising velocity (mm/s)

Low gas fraction experiments
30:60:10 1,187.6±0.4 3.4±0.1 – –
45:45:10 1,257.6±0.4 11±1 25±10 0.06
60:30:10 1,325.9±0.4 43±3 35±21 0.03
High gas fraction experiments
100:0:0 1,439±1 46,700±400 30±33 –

375 –

The low viscosity of 30:60:10 mixtures prevented any reliable measurement (Menand and Phillips, 2007a). The lower bubble diameter for the
high gas fraction experiments is the average measured value of the bubble diameter distribution and the higher diameter is the value used in the
analysis (see section on the application to the potential Yucca Mountain repository).
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Mondomix aerator.. This technique provided polydisperse
mixtures with volumetric gas fraction c=0.35±0.05. The
bubble size distribution was measured by the same
technique used for low gas fraction experiments. Bubble
diameters range from 2 to 500 μm with a mean diameter of
30±33 μm (Table 1). However, the largest bubbles account
for most of the gas volume, and Menand and Phillips
(2007b) found that gas segregation processes are dominated
by bubbles with the highest diameter. This will be
important when modelling gas segregation, as explained
in the modeling section.

The high viscosity of golden syrup at room temperature
(47 Pa s) combined with the high gas fraction of the
mixture created a very viscous bubbly mixture, which could
not to be pumped by a peristaltic pump within the flow loop
without coalescing the bubbles. Once aerated, the bubbly
mixture was poured into the flow loop, and bubbles were

therefore evenly distributed throughout the conduit and the
side arm. The mixture was left to evolve without imposing
any flow loop circulation.

Observations

Despite starting from a static condition (no fluid flow
imposed), the same fluid-flow processes were observed.
Bubbles in the horizontal side arm are observed to rise and
segregate from the liquid, accumulating as a foam at its top
and creating a layer of degassed liquid at its base, and a
steady state is reached with influx of the bubbly liquid into
the side arm balanced by outward flux of the lighter foam
and the denser degassed fluid.

Model

Transient exchange flow in low gas fraction experiments

Before modelling the gas segregation that occurs in the side
arm during low gas fraction experiments, we first focus on
the buoyancy-driven exchange flow set up between the
rising bubbly fluid, of density ρb, and the initially bubble-
free fluid, of density ρl, in the horizontal arm of thickness
D. This allows us to determine how the length L of the
intruding bubbly current evolves with time, and therefore
the areal extent of the bubbly source for gas segregation.
Figure 2a shows a schematic diagram of the transient flow.

We treat the inflowing bubbly flow as a viscous gravity
current. After an initial adjustment, we assume that the
pressure distribution in the bubbly current becomes
hydrostatic because of negligible vertical accelerations.
The excess pressure driving the exchange flow comes from
the density difference between the bubbly fluid and the
bubble-free fluid, Δρ ¼ ρl " ρb, and is balanced by viscous
dissipation. The density of the bubbly fluid is a function of
the liquid density, the gas bubble density ρg and the
volumetric gas fraction c: rb ¼ crg þ 1" cð Þrl. Since
r1 & rg, the density difference that drives the flow
simplifies to

Δρ ¼ cρl ð1Þ

The viscosity of the bubbly fluid μb can be estimated
from the viscosity of the bubble-free fluid μl and the
volumetric gas fraction c in the current. The experimental
volumetric gas fraction was typically less than 0.1 so the
viscosity of the bubbly fluid can be approximated as (Wallis
1969; Jaupart and Vergniolle 1989; Llewellin and Manga
2005)

mb ¼
ml

1" cð Þ
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Fig. 2 Schematic illustration of the transient exchange flow between
the vertical tube and the horizontal side arm. Arrows indicate flow
directions. a The bubble rich mixture originally present in the vertical
conduit is less dense than the bubble-free fluid in the side arm, so that
a bubbly gravity current intrudes the side arm. b The bubbly gravity
current has propagated further into the side arm and a bubble-rich
foam has formed at the upper surface of the side arm. c A steady
exchange flow is established between the vertical tube and the side
arm
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For these low volumetric gas fractions, the viscosities of
the bubbly current and the bubble-free fluid differ by a few
percent only. As a result, the advance of the current is
resisted by viscous dissipation occurring within, as well as
around, the bubbly current (Huppert 1982). The exact
mathematical treatment of the problem is thus complex, but
we can use arguments based on dimensional analysis to
find how the current length varies as a function of the other
relevant variables. The details of these mathematical scaling
arguments are given in Menand and Phillips (2007a) and
only the main findings are reported here.

From these scaling arguments, we find that the length L
of the bubbly current increases with time as

L tð Þ ¼ ΔρgD3t
μb

! "1
2

F
μl

μb

! "
ð3Þ

where F is an unknown function of the viscosity ratio μl/μb.
The experiments were used to test the time dependence

of the bubbly current given by Eq. 3. There is a maximum
distance Lmax the current can travel, which corresponds to
the point at which all bubbles have risen to the top of the
side arm. Due to low bubble concentrations, bubble
interactions can be neglected and bubbles of diameter d
would rise according to Stokes’ law with constant velocity
vs ¼ ρl " ρg

# $
gd2

.
12μlð Þ. Although bubble interaction

and convection will certainly arise at high bubble concen-
tration, the use of Stokes’ law leads to conservative
modelling of the bubble rise and thus time-scale over
which gas segregation processes occur (Menand and
Phillips 2007a). The numerical constant 12 at the denom-
inator differs from the usual constant 18 because of
constant stress condition at the bubble surface between the
inner gas and the outer liquid; the constant 18 should arise
in the case of a rigid sphere on which surface a no slip
condition applies (Batchelor 1967). However, the upward
movement of bubbles results in a downward counter-
current flow of liquid. The Stokes’ velocity vs is relative
to the liquid velocity, and, therefore, the true upward
velocity of rising bubbles is 1" cð Þvs. Moreover, bubbles
are rising through the bubbly mixture, so the Stokes’
velocity should be modified and use the mixture viscosity
(2) instead of the pure fluid viscosity. Sincerl & rg, the
density difference can be approximated by Δrg ¼ rl and
bubbles rise at speed

vb ¼ 1" cð Þ2 ρlgd
2% &.

12μlð Þ: ð4Þ

The maximum distance that bubbles can rise is the
diameter D of the side arm so the maximum time that
bubbles take to reach the top of the side arm is
Tb ¼ D=vb ¼12μ1D

.
ρ1gd

2 1" cð Þ2
h i

. Therefore, the max-

imum current length is Lmax=L(Tb) and making use of Eqs.
1 for Δρ and 2 for μb, the maximum current length
becomes

Lmax ¼
D2

d
12c
1" c

! "1
2

F
ml

mb

! "
: ð5Þ

Menand and Phillips (2007a) measured the evolution of
the bubbly current length in the experiments by recording
the successive positions of its tip until its arrest. For each
experiment, the length of the current was non-dimensional-
ised on the maximum length Lmax attained by the current,
so that experiments over a range of conditions could
be compared: L' tð Þ ¼ L tð Þ=Lmax ¼ ½ρ1gd2 1" cð Þ2t= 12μ1ð
DÞ)

1
2 . Menand and Phillips (2007a) found that after an

initial adjustment phase, the data collapse onto the
theoretical relationship L*(t) up to the point where the
current has reached its maximum length, at which point L*
remains equal to unity as the bubbly current has ceased to
propagate. In the adjustment phase, data are quite scattered.
In some experiments the measured length needs to reach
almost 60% of the theoretical maximum length before the
measured length follows the theoretical relationship, but the
adjustment phase is shorter for most experiments. Close
examination of the data reveals that the initial mismatch
appears proportional to the velocity scale in the vertical
conduit (either the average fluid velocity imposed by the
pump or the bubble rise speed when no fluid was circulated
by the pump). This suggests that the initial spread of the
bubbly gravity current is controlled, in some way, by the
vertical movement of bubbly fluid up the conduit. We
expect an entry effect whereby the exact characteristics of
the adjustment phase are related to the particular geometry
of the junction. However, this effect should be localised at
the entrance and limited to a length of the side arm of the
order of its diameter, as it appears to be the case in the
experiments. Ultimately, the experimental data show that
the bubbly current is controlled by the segregation of the
bubbles from the fluid as they rise and accumulate at the
top of the horizontal arm, and that the advance of
the bubbly gravity current is then described by L* (Fig. 5,
Menand and Phillips 2007a).

Steady-state gas segregation in low gas fraction
experiments

We now consider the bubble segregation that occurs in the
bubbly current. This problem is similar to that investigated
by Jaupart and Vergniolle (1989) and our analysis is based
on their model.

We approximate the foam as a long and thin viscous
gravity current, in which the vertical acceleration is

Bull Volcanol (2008) 70:947–960 951



negligible, pressure is hydrostatic and side-wall drag is
negligible (Fig. 2b and c). Thus, the flow is driven by the
horizontal gradient of the hydrostatic pressure and resisted
by the viscous stresses. However, the foam is much more
viscous than the underlying fluid because of the high foam
volumetric gas fraction ɛ, typically ∼ 70% by volume, and
the foam viscosity μf is well approximated by the
relationship (Jaupart and Vergniolle 1989)

mf ¼ ml 1" "ð Þ
"5
2 : ð6Þ

Stable foams contain typically around 70% of gas by
volume (Jaupart and Vergniolle 1989). However, this is
likely to be a lower bound in our experiments because the
fine bubbles produced by electrolysis tend to coalesce into
centimetric to decimetric bubbles at the top of the foam.
The foam volumetric gas fraction ɛ in the experiments is
therefore more likely to lie in the range ɛ=0.7–0.9. Over
this range, and using Eq. 6, the foam in our experiments is
20–320 times more viscous than the underlying fluid.
Therefore, the main viscous dissipation that resists the flow
occurs within the foam and the shear stress at the interface
between the foam and the bubbly fluid can be neglected
(Huppert 1982). Consequently, the problem allows analyt-
ical treatment, the details of which are given in Menand and
Phillips (2007a).

Menand and Phillips (2007a) integrate the momentum
equation for the foam flow, with the two boundary
conditions of (a) no slip at the top of the side arm and (b)
no shear stress at the interface, to give the foam velocity,
which in conjunction with mass conservation for the gas in
the foam layer determines the steady-state shape of the
foam layer. The thickness h can be written as the product of
a characteristic thickness H and a shape function f(x):

h xð Þ ¼ Hf xð Þ; ð7Þ

where

H ¼ c 1" cð Þ2d2L2max

" 1" "ð Þ
5
2 "" cð Þ

" #1
4

; ð8Þ

and

f xð Þ ¼ x
Lmax

" x2

4L2max

! "1
4

: ð9Þ

The two-dimensional analysis does not account for the
cylindrical geometry of the side arm; both foam and fluid
are assumed to have a constant thickness over the entire
width perpendicular to the direction of flow. Consequently,
the predicted foam thickness is underestimated by the
theory because the foam has in fact a cap-like cross section
and thus requires a greater depth to achieve a given area
perpendicular to the flow. In order to compare the model

with the experiments, the theoretical thickness was in-
creased so that it gives the same foam area in both the
theoretical model and the experiments, following the
method described by Menand and Phillips (2007a).

For each experiment, the steady-state foam thickness
was measured from a digital photograph at different
position along the tube, with an uncertainty of ±1 mm.
The experimental foam thickness measured along the side
arm was compared with the theoretical thickness predicted
by the model for different volumetric gas fraction c, and our
simple foam model was shown to be in good agreement
with the data (Fig. 8, Menand and Phillips 2007a).

Our model implicitly assumes that the flow of rising
fluid in the vertical conduit has no effect on the exchange
flow and gas segregation that occur in the side arm.
Comparison of experimental foam thickness with our
theoretical model for three different experiments that
differ by their net vertical conduit liquid flux, Ql, only
(Ql=0, Ql=9 Qg and Ql=79 Qg, with identical gas flow
rate Qg in all three experiments) shows that this is indeed
the case: within the experimental errors, the foam that
developed in these three experiments has identical thick-
ness even though the fluid flux varied over two orders of
magnitude in the vertical conduit (Fig. 9, Menand and
Phillips 2007a).

If the side arm is longer than the maximum lateral extent
of the bubbly current Lmax, the lateral extent of the foam
will be larger than the underlying bubbly current length
Lmax. In this case, as bubbles accumulate at the top of the
side arm, the foam tip opposite the vertical conduit rests
against a bubble-free fluid of higher density. The foam will,
therefore, flow towards the closed end of the side arm until
it reaches the closed end. The steady-state foam thickness
will then described by Eqs. 7, 8 and 9 between the entrance
of the side arm and x ¼ Lmax, and will have a value of
h x ¼ Lmaxð Þ away from the entrance.

Finally, we note that this two-dimensional analysis
neglects the drag exerted by the side walls of the
horizontal arm. Taking full account of this effect would
require a detailed three-dimensional analysis of the
exchange flow and gas segregation that takes place in
the cylindrical side arm. However, this added complica-
tion to the analysis does not seem necessary based on the
good agreement between the experimental measurements,
that reflect any drag occurring in the cylindrical side arm,
and our two-dimensional analysis. This good agreement
between model and experiments gives confidence that the
present analysis correctly captures the key physical
principles that control exchange flow and gas segregation
in the cylindrical side arm. We also note that our model
does not consider non-newtonian effects which might
become important for bubble-rich foams with large bubble
contents.
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Steady-state gas segregation in high gas fraction
experiments

Experiments carried out at low gas fractions suggest that
fluid flow in the vertical conduit does not affect gas
segregation in the side arm. Further, we expect the static
starting not to affect the steady-state segregation and that
segregation at high volumetric gas fractions to be controlled
by the rise of bubbles in the side arm.

As explained in the section on the transient exchange
flow in low gas fraction experiments, the bubble rise
velocity vb is relative to the fluid velocity within the
mixture: vb¼ 1"cð Þρlgd2

'
12μbð Þ. Experiments carried out

at high gas fractions differ from those involving low gas
fractions in two aspects. First, they involve polydisperse
bubbly mixtures with bubble diameters ranging from 2 to
500 μm. However, 50% of the total gas volume is
accounted for by the largest bubbles, with diameter in the
range 250–500 μm, and an average bubble diameter d=
375 μm can be taken as that controlling the average bubble
rise velocity vb through the bubbly mixture (Menand and
Phillips 2007b). Second, the high volumetric gas fraction
strongly increases the viscosity of the bubbly mixture. For
gas fractions in the range c=0 to c=0.5, Menand and
Phillips (2007b) show that the viscosity of the experimental
bubbly mixtures is best approximated by the expression

mb ¼ mlð1" cÞ
"5
2 : ð10Þ

This equation is consistent with Eq. 6, which is valid for
foams (Jaupart and Vergniolle 1989), and gives slightly
higher viscosities than Eq. 2 at lower bubble concentra-
tions. Using the viscosity model (10), we obtain a bubble
rising velocity

vb ¼
1" cð Þ

7
2rlgd

2

12ml
: ð11Þ

The analysis derived for gas segregation at low volu-
metric gas fractions was tested by calculating the thickness
of the foam that develops at the top of the side arm in high
gas fraction experiments with the bubble rising velocity
(Eq. 11). Comparison of this theoretical foam thickness
with the experimental foam thickness shows very good
agreement between theory and data, and we conclude that
the theory developed for low volumetric gas fractions can
be extended to high gas fractions, at least as high as 40% by
volume (Menand and Phillips 2007b).

Application to the potential Yucca Mountain repository

Geometry of the repository and value of the model
parameters

The proposed site for the Yucca Mountain repository is
located within a historically geologically active basaltic
volcanic field with six Quaternary basaltic volcanoes
located within 20 km, whose activity has been characterized
by Strombolian bursts to violent Strombolian eruptions as
well as effusions of lavas. The geology and eruptive
sequence of this volcanic field have been studied in detailed
by Valentine et al. (2006) and Valentine et al. (2007) and
Table 2 only summarises the geometry of the repository and
the value of the parameters used in our model.

The diameter D and length L of the repository are based
on the values reported in the 2004 DOE report on dyke-drift
interactions (BSC 2004); we use here an average length of
repository drifts, 500 m, and assume a dyke intersects the
drifts at one of their extremities. [The width of dykes
erupting at Yucca Mountain would likely be on the order of
a meter based on the composition of the magma erupted at
Lathrop Wells (Nicholis and Rutherford 2004), which is
typical of that of mafic dykes in general and of mafic dykes
in southern Nevada in particular (Valentine and Krogh
2006; Valentine et al. 2006; Valentine et al. 2007).]

Nicholis and Rutherford (2004) determined the magma
composition of a hawaiite from the Crater Flat volcanic
zone near Yucca Mountain and measured an initial water
content of up to 4.6 wt.%. At this initial water content, the
magma density is 2,750 kg m−3 (following Lange 1994).
The viscosity of the magma is a crucial parameter in our
model that will strongly depend on the degree of water

Table 2 Value of the potential Yucca Mountain repository geometry
and parameters of the gas segregation model

Parameter Value Source

Repository geometry
D 5.5 m BSC (2004)
L 500 m BSC (2004)
Magma properties
Water content 1.9–4.6 wt.% Nicholis and Rutherford (2004)
Bubbly gas fraction c 50–70 vol.% control parameter
Foam gas fraction ɛ 70 vol.% Jaupart and Vergniolle (1989)
Bubble diameter d 100 μm–

5 mm
control parameter

Density ρl 2,750 kg m−3 Lange (1994); Nicholis
and Rutherford (2004)

Viscosity μl 10–105 Pa s control parameter
Thermal diffusivity k 5×10−7 m2 s−1 Turcotte and Schubert (1982)
Thermal constant 1 0.5 Turcotte and Schubert (1982)
Temperature 970°C Nicholis and Rutherford (2004)
Surface tension σ 0.3 kg s−2 Vergniolle and Jaupart (1990)
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exsolution, cooling and crystallisation. We estimate a range
of viscosity by using the composition and temperature
(970°C) of Nicholis and Rutherford (2004) with the models
of Shaw (1972), for a wet basalt with 4.6 wt.% water, and
Giordano and Dingwell (2003, 2004), for a dry (degassed)
basalt. We obtain viscosities of 10 Pa s and 1.5×105 Pa s,
respectively. These latter estimates give only the viscosity
of the melt, however, and the viscosity of the magma will
be larger if it contains crystals. However, as will be shown
in the section on time scales, we note that efficient gas
segregation in magmas with viscosities larger than 105 Pa s
requires bubbles that are nearly centimetric in size. These
bubble sizes seem unrealistic and we therefore limit the
range of explored viscosity to 10–105 Pa s.

We estimate that the foam that would develop from gas
segregation would have a volumetric gas fraction similar to
that of stable foams or ɛ=0.7. Although foams in our
experiments have higher volumetric gas fraction, a value of
0.7 is a generally accepted value for generic foams and thus
seems a reasonable value for magmatic systems (Jaupart
and Vergniolle 1989). The fate of the foam depends on the
coefficient of surface tension σ between the melt and the
gas in the bubbles, and Vergniolle and Jaupart (1990) report
an average value for basaltic melts of 0.3 kg s−2.

We also investigate a range of average exsolved bubble
diameter for shallow magmatic degassing between d=
100 μm and d=5 mm, that is typical of the bubble
diameters observed in basaltic rocks (Sarda and Graham
1990; Cashman and Mangan 1994; Sparks 2003).

Finally, owing to high initial water content, basaltic
magmas in the Yucca Mountain region are expected to have
a high volumetric gas fraction, particularly at the low depth
and pressure of the repository. At an average repository
depth of 300 m (BSC 2004), the lithostatic pressure is
7 MPa with an average rock density of 2,400 kg m−3 (BSC
2004). The magma pressure may be greater or less than
lithostatic during eruption, but this cannot be quantified
without knowing the detailed dynamics of the eruption.
Assuming a basalt solubility of 3×10−6 Pa1/2 and an initial
water content of 4.6 wt.% water, the amount X of exsolved
water is 3.8 wt.% at the depth of the repository. We assume
that exsolved water vapour follows the perfect gas law
P ¼ ρgRT

.
M , where M=18 g/mol is the molar mass of

water, R=8.31 J mol−1 K−1 is the universal gas constant, T
is the temperature of the magma (1,273 K; Table 2), and ρg
is the density of the water vapour at these pressure and
temperature. This gives us a gas density of 12.2 kg/m3. The
volumetric gas fraction c is obtained from the exsolved
mass fraction using the following equation: 1"cð Þ

c ¼ rg
rl

1"Xð Þ
X .

For a magma density of 2,750 kg/m3 (Table 2), this
expression gives a volumetric gas fraction c = 0.9. We
note, however, that such a volumetric gas fraction is much
higher than the generally accepted value of 0.7 for generic

foams. As will be shown in the following section, this
suggests an unstable collapse regime will result within the
entire drift (Jaupart and Vergniolle 1989). Alternatively, any
gas loss during magma flow from a deeper source up to the
depth of the repository will reduce the volumetric gas fraction
c. Therefore, we investigate a range of volumetric gas fraction
c=0.5 to c=0.7. (According to Eqs. 8, 12 and 15, the foam
height and time scale cannot be calculated at a volumetric gas
fraction equal to the volumetric foam fraction, c=ɛ =0.7. In
this case, a bubbly fraction c=0.69 is used to calculate values
for the foam height and time scale.)

Length scales

According to our model, the intrusion of bubbly magma
into a drift is limited to a maximum length Lmax (Eq. 5).
Although Eq. 5 was derived from experiments with low
bubbly volumetric gas fraction, it can be seen from Eq. 3
that the viscosity of the mixture enters only the function F
(its explicit contribution in the square root of Eq. 3 is
cancelled by its implicit contribution within t=Tb) and
therefore that Eq. 5 is also valid at high volumetric gas
fraction. F is an a priori unknown function of the viscosity
ratio μl=μb. However, as discussed in the modelling section,
for the high volumetric gas fractions likely to characterise
conditions at the potential Yucca Mountain repository, the
viscosity of the bubbly magmas is better approximated by
Eq. 10. With a volumetric gas fraction c in the range 0.5–0.7,
the viscosity ratio μl=μb ¼ 1" cð Þ 5=2 * 0:1 and the func-
tion F has value of order 10−1 (Matson and Hogg, personal
communication, 2006). Consequently, Lmax ranges from
about 100 km, for an average bubble diameter 100 μm, to
about 2 km, for bubble 5 mm in diameter, and the bubbly
current is expected to invade the entire length of the drift.

The steady-state characteristic foam thickness is then
given by Eq. 8, modified to take into account the bubbly
fluid viscosity (Eq. 10) and the bubble rise velocity (Eq.
11):

H ¼ c 1" cð Þ
7
2d2L2

" 1" "ð Þ
5
2 "" cð Þ

" #1
4

: ð12Þ

However, H is limited by the way bubbles are packed in
the foam and how they respond to this packing; as the foam
grows, bubbles deform and, eventually, can coalesce
leading to the collapse of the foam. Therefore, there is a
maximum, critical thickness Hc the foam can sustain before
collapsing. If the steady-state characteristic foam thickness
H is smaller than the critical thickness Hc, then the foam is
stable and has thicknessH. If instead H > Hc, then the foam
structure collapses when it reaches Hc (Jaupart and
Vergniolle, 1989). This foam collapse occurs as a result of
bubble packing. Foam collapse occurs when this packing
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generates deformation that can not be resisted by surface
tension anymore. As such, foam collapse can occur in static
foams. The critical thickness depends mainly on the
coefficient of surface tension σ between the melt and the
gas trapped in bubbles and on the bubble diameter with no
dependence upon viscosity (Jaupart and Vergniolle 1989):

Hc ¼
4s

"rlgd
: ð13Þ

Figure 3 represents the steady-state foam thickness H
(Eq. 12) that can develop in a 500 m long drift as a function
of the bubble diameter d and the volumetric gas fraction c.
The maximum thickness the foam can reach is Hc (Eq. 13).
If the theoretical steady-state thickness H is greater than Hc,
then the foam will never reach steady-state but instead
collapse and rebuilt periodically, releasing pockets of low
viscosity gas in the process. Assuming a volumetric gas
fraction c in the range 0.5–0.69 (H tends towards infinity
when the volumetric gas fraction c tends towards that of the
foam, ɛ=0.7, but, as discussed below, this is not critical
given the fate of the foam), the maximum foam thickness
cannot exceed approximately 60 cm. However, this requires
bubbles about 100 μm in diameter or smaller. Bubbles would
presumably be bigger because of the shallow depth of the
repository, however, leading to foam collapse at smaller
thickness. In the case of magma containing bubbles 1 mm in
diameter, the maximum foam thickness will be about 6 cm,
which is several orders of magnitude lower than the steady-
state thickness the foam would reach if no collapse were to
occur. Therefore, magma with the properties considered
typical for the Yucca Mountain region would likely form an
unstable foam collapse regime, with the foam being unable
to reach a steady-state thickness but instead experiencing
repeated collapse as it accumulates at the top of the drift.

Time scales

Two time scales arise in our model. There is first a bubble
time scale Tb for bubbles to rise over the drift diameter D.
Bubbles rise in the laminar regime according to Stokes’
law, so

Tb ¼
12μlD

ρlgd2 1" cð Þ 7=2
: ð14Þ

Second, there is a foam time scale Tf to establish a
steady-state foam, which is obtained by dividing the
characteristic foam thickness H (Eq. 12) by the foam
velocity scale cvb=",

Tf ¼
12mlL

1
2

rlgd
3
2

"3

c3 1" cð Þ
21
2 1" "ð Þ

5
2 "" cð Þ

" #1
4

: ð15Þ

However, the foam thickness H is presumably not larger
than a few cm and thus does not represent more than a
small fraction of a drift diameter. Therefore, this means that
the time needed to reach maximum foam thickness, before
collapse, is much smaller than the steady-state foam time Tf
and, consequently, the time scale associated with the
building of foam in a drift is the bubble time scale Tb
(Eq. 14). Calculations of the foam time scale Tf are,
nevertheless, given for completeness.

Gas segregation occurs within a drift if these two time
scales are smaller than the time scale for cooling and
solidification of the magma, Ts. Analysing how magma
cools and solidifies in a drift should take into account the
presence of nuclear waste canisters and their engineered
barrier system, both in terms of their geometry and their
thermal properties, and how magma would flow around
them. Such an analysis would require 3-D computational
modelling coupling mass, momentum and heat transfer.
Such complex modelling, however, is beyond the scope of
this paper. Instead, the aim of the paper is to assess whether
magma circulation and gas segregation have the potential to
develop within drifts, and the worst case scenario would be
that where engineered barrier system does not have any
effect in preventing such circulation and segregation.
Therefore, our thermal analysis will neglect the presence
of engineered barrier system and instead consider the
cooling and solidification problem of a simple cylindrical
magma-filled drift.

A magma-filled drift will cool down by conduction and
crystallise, releasing latent heat in the process. Following
Turcotte and Schubert (1982), the time needed to cool
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Fig. 3 Foam thickness H (Eq. 12) as a function of bubble diameter d
and volumetric gas fraction c. Foam usually collapses unless bubbles
are smaller than 100 μm in diameter and the volumetric gas fraction is
less than 0.7
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down and solidify a magma-filled drift of thickness D by
conduction is

Ts ¼
D2

16kl2
; ð16Þ

where k is the magma thermal diffusivity and the thermal
constant 1 depends on the temperature difference between
the magma and surrounding rocks (Turcotte and Schubert
1982). Ts is a lower estimate, however; the solidification
time will certainly be larger as any exchange flow between
a dyke and a drift would mean both mass and heat are
exchanged, keeping the drift hotter than in the conduction-
only scenario.

Figure 4 shows the three time scales as a function of
magma viscosity, bubble size and volumetric gas fraction.
Larger bubbles decrease both the bubble and the foam time
scales and thus increase the viscosity range over which gas
segregation can occur. Depending on the volumetric gas
fraction, gas segregation with bubbles 100 μm in diameter
requires very fluid magmas, with viscosity less than 10 Pa
s, whereas 5 mm bubbles enable gas segregation to occur
with magma viscosity as high as 103–104 Pa s. However,
given that Ts is only a lower estimate, gas segregation and
magma recirculation within a drift would occur presumably
with degassed magmas of higher viscosity.

Depending on the viscosity of the degassed magma,
average bubble diameter and volumetric gas fraction, and
recalling that the time scale associated with the building of
the foam is the bubble time scale, the time scale associated
with gas segregation ranges from a day to tens of years
(Fig. 4).

Although our model does not account for any magma
quenching on the wall of a drift, it can be demonstrated that
quenching is not a significant factor. First, on the time scale
of magma emplacement and circulation into a drift the
change in cross-section is negligible and so will not affect
the results. For example a chilled margin of 2 cm thickness

reduces the cross-section by 1.6% in a 5 m diameter drift.
Second, the eruption of basalt lava through a 10 cm
diameter borehole with a length of over 1 km during the
1977 eruption of Krafla volcano, Iceland (Larsen et al.
1979) demonstrates empirically that basalt magma can flow
along a hole that has a cross-sectional area two orders of
magnitude smaller than a repository drift, and that quench-
ing is not a major factor provided the time scale of the
flows being considered are much shorter than the solidifi-
cation time scale. Thus cooling to form a quenched layer is
not a significant factor, so that the gas segregation model
reported here, which does not take account of cooling, is
not invalidated.

Fluxes and velocities associated with gas segregation

As illustrated in Fig. 5, a steady-state gas segregation
between a dyke and a drift would be characterised by a
balance between a volumetric flux Qex of bubbly fluid
entering the drift and outward volumetric fluxes of gas, Qg,
and degassed magma, QD, so that Qex=Qg+QD. A
proportion c of Qex is made of exsolved gas, Qg=cQex.
By mass balance, QD=(1−c)Qex. The gas return flux
Qg ¼ Acvb=", where A + DL is the interface area between
the bubbly fluid and the foam in the drift. Using Eq. 11 for
the bubble rise speed, it follows that

Qex ¼
1" cð Þ

7
2rlgd

2DL
12ml"

; ð17Þ

QD ¼ 1" cð Þ
9
2rlgd

2DL
12ml"

; ð18Þ

Qg ¼
c 1" cð Þ

7
2rlgd

2DL
12ml"

: ð19Þ
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Figure 6 shows these fluxes vary strongly with magma
viscosity and bubble diameter, ranging from 10−8 to 1 m3

s−1 in the parameter ranges considered for Yucca Mountain.
So, unless gas segregation involves suspensions of large
bubbles in low viscosity magmas, these fluxes are much
lower than typical magma ascent rates (∼1 m3/s).

The associated depth-averaged velocities u are obtained
by dividing the fluxes (Eqs. 17, 18, and 19) by the
characteristic cross section area Si * DHi of the specific
layer i that is considered, where Hi is the thickness of that
layer (foam, bubbly fluid or degassed layer). The thick-
nesses of the bubbly and degassed fluids depend on the
viscosity ratio μl=μb, which determines the viscous dissi-
pation associated with the exchange flow. For a volumetric
gas fraction c=0.5–0.7, the viscosity ratioml=mb * 0:1 and
the bubbly layer thickness Hb and the degassed layer
thickness HD are approximately equal (Matson and Hogg,
personal communication, 2006). Thus, by mass balance

Hb * HD ¼ D" Hð Þ=2 * D=2 (since H , D), which
gives us the cross section areas Sb * SD ¼ πD2

'
8. The

foam thickness H is much smaller than the diameter of a
drift. Moreover, we found that the Yucca Mountain system
would very likely be in an unstable foam collapse regime,
so the maximum thickness the foam can reach before
collapsing is Hc (Eq. 13). Simple geometrical consider-
ations show that the cross section area Sf of very thin
(Hc , D) cap-like foam is well approximated by
Sf * H3

c D" Hcð Þ
( )1

2. Depth-averaged velocities in foam,
bubbly fluid and degassed layers are obtained by dividing
the fluxes (Eqs. 17, 18, and 19) by their respective cross
section areas:

uex ¼
2 1" cð Þ

7
2ρlgd

2L
3πμl"D

; ð20Þ

uD ¼ 2 1" cð Þ
9
2ρlgd

2L
3πμl"D

; ð21Þ

ug ¼
c 1" cð Þ

7
2ρlgd

2DL

12μl" H3
c ðD" HcÞ

( )1
2

: ð22Þ

These velocities are shown in Fig. 7 as function of
magma viscosity, bubble diameter and volumetric gas
fraction. It appears that, although these three fluxes have
similar values for a given average bubble diameter,
associated velocities differ by 1 to 3 orders of magnitude
since the foam thickness represents typically only 1 percent
of the drift diameter. Consequently, foam velocities have
much higher value than bubbly and degassed magma
velocities. We note, however, that the current model treats

magma 
supply 
rate Qs

exchange 
flow rate Qex

gas flow rate Qg = cQex

degassed magma
flow rate QD = (1-c)Qex

dyke

drift

Fig. 5 Schematic illustration of the exchange flow of bubbly and
degassed magma driven by steady-state gas segregation. For a dyke
with supply rate Qs, an exchange rate Qex of bubbly fluid entering the
drift is balanced by an exsolved gas return rate Qg and a degassed
magma return rate QD: Qex=Qg+QD
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the foam flow as a viscous gravity current, which is valid
for low Reynolds numbers only, and consequently will
break down at high foam velocities.

More importantly, both fluxes and associated averaged
velocities vary inversely proportionally to magma viscosity
and increase as the square of the average bubble diameter.
Comparatively, the effect of the volumetric gas fraction is
negligible in the framework of the present model. It is
therefore crucial to constrain as far as possible the
petrological evolution magmas will undertake as they rise
and interact with drifts in order to get the best estimate for
their viscosity and the size of their exsolved gas bubbles.

Implications for potential eruptions

We infer from our experiments that gas segregation in the
drift will be independent of moderate changes in the dyke
magma supply rate. However, different eruptive scenarios
can be envisaged depending on the values of supply rate
Qs, exchange rate Qex associated with gas segregation,
foam layer return flow Qg and degassed magma return flow
QD. If Qex>Qs then we have strong segregation in the drift
leading to episodic Strombolian eruptions of relatively gas-
poor magma (QD) driven by foam collapse; if Qs>Qex,
there will be ineffective segregation suggestive of stronger
explosions erupting gas-rich (Qs) as well as gas-poor (QD)
magmas. This prediction of the model is in agreement with
the observation at Stromboli, Italy, of more violent
eruptions occurring at higher supply rate and with
estimations of the critical magma supply rate between
the two eruptive regimes (Menand and Phillips 2007a).
This has strong implications for the amount of degassed
magma generated by gas segregation that could be
entrained towards the surface.

We expect a transition between Strombolian activity
when Qs<Qex and more explosive eruptions when Qs>Qex

to occur when both fluxes are comparable, Qs~Qex (Eq.
17).

As shown on Fig. 6, the transition to more explosive
eruptions would require a much higher supply rate with low
viscosity magmas than with more viscous magmas; low
viscosity produces very effective gas segregation. The
critical magma supply rate, which delimits a Strombolian
eruptive regime that erupts mainly degassed magma from a
more explosive regime that erupts degassed as well as gas-
rich magma, ranges from 10−4 to 1 m3 s−1, for μl∼10 Pa s,
to about 10−8 to 10−4 m3 s−1, for μl∼105 Pa s, depending on
the average bubble size (Fig. 6).

Limitations of the model

Our experiments show that the processes governing gas
segregation at high and low volumetric gas fractions are
identical except that higher gas fractions lead to an increase
of the viscosity of the bubbly fluid and thus increase the
time scales associated with gas segregation. We have shown
that this is the case for volumetric gas fractions as high as
40% by volume but could not investigate higher gas
fractions because of the difficulty of generating these high
gas fractions experimentally. We assume that gas segrega-
tion involving gas fractions as high as 60–70% would be
controlled in a way similar to that identified in our
experiments. At higher volumetric gas fractions, however,
the bubbly fluid would behave like a foam. Although it
could be argued that gas segregation might then become
negligible because of the viscosity increase and of the
negligible density difference between the bubbly fluid and
any foam potentially built from gas segregation, such high
gas fractions would also increase the propensity of the
whole bubbly fluid to collapse (section on the gas
segregation length scales; Jaupart and Vergniolle 1989).
This could lead to strongly explosive behaviour. Assessing
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this possibility is particularly important given the high
volumetric gas fraction likely to be present within magmas
that could interact with the potential Yucca Mountain
repository and should be addressed in future studies.

Our experiments and analysis are also limited to the case
of horizontal drifts. Although gas segregation would also
occur in non-horizontal drifts, the exact arrangement or
geometry of drifts would certainly affect the overall pattern
of magma circulation induced by gas segregation. This
could have strong implications for the potential mobiliza-
tion of nuclear waste by magma movement and should be
assessed in future studies.

Conclusion

In the event of a vertical dyke intersecting the potential Yucca
Mountain repository, convective circulation in horizontal
magma-filled structures could occur owing to gas exsolution
and segregation. Gas segregation in a magma-filled drift has
been investigated by means of analogue experiments with
focus on the conditions of sustained magma flow. These
experiments reveal how gas segregation is driven by an
exchange flow between the vertical dyke and the horizontal
drift due to the presence of exsolved gas bubbles.

The length and time scales of this gas segregation are
controlled by the rise of bubbles in the drift. For the
potential Yucca Mountain repository geometry, the time
required for steady-state gas segregation ranges from hours
to hundreds of years depending on the average size of
exsolved gas bubbles and on the viscosity of degassed
magmas, which depends strongly on the degree of water
exsolution, cooling and crystallisation.

The flux Qex associated with gas segregation ranges
from 1 m3 s−1, for the less viscous magmas, to 10−8 m3 s−1,
for the most viscous degassed magmas. These values of
flux are strongly dependent on the average exsolved bubble
diameter. Associated depth-averaged velocity uex ranges
from 10−1 to 10−9 m s−1 for the same viscosity range. The
relative proportion of erupted degassed magma depends on
the value of the magma supply rate relative to the value of
Qex. If magma is supplied at a rate higher than Qex, then
gassy as well as degassed magmas are expected to be
violently erupted; if the supply rate is lower, then mainly
degassed magma would be erupted by milder episodic
Strombolian explosions generated by the repeated collapse
of the foam accumulated at the top of drifts.

Our analysis neglects the presence of engineered barrier
system which adds additional thermal mass to the problem
and thus a more complex cooling system which is coupled to
the complex flow of magma around canisters. Assessing how
this could affect gas segregation within drifts will require
three-dimensional computational modelling that couples

mass, momentum and heat transfer. Future studies should
also address the petrological evolution of magmas as they
rise and interact with drifts and their content. This evolution
determines their viscosity and the size of their exsolved gas
bubbles, which in turn control strongly the fluxes and
average velocities associated with gas segregation. Further-
more, better constraints on magma viscosity are crucial in
order to estimate more accurately the heat transfer and
cooling rates during and after gas segregation, and thus the
duration of magma exchange flow within repository drifts.
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Modeling the flow of basaltic magma into subsurface

nuclear facilities
T. Menand, J. C. Phillips, R. S. J. Sparks and A. W. Woods

Worldwide, a consensus is developing among countries using nuclear power that deep, geo-
logic disposal of spent nuclear fuel and high-level radioactive waste is the safest long-term
option (National Research Council, 1990, 2001; EPA, 2001). The geologic medium acts as
a component of a multiple barrier system (including the waste form and engineering com-
ponents) designed to isolate the waste from the biosphere. Regulations in many countries,
therefore, require repository developers to consider various natural hazards when evalu-
ating repository performance. Among the hazards considered is the potential for igneous
activity at the site and surrounding area (Long and Ewing, 2004). For example, in the United
States, regulations governing the geologic disposal of high-level radioactive waste at the
potential Yucca Mountain, Nevada, repository require inclusion of risk (i.e. probability and
consequence) in assessments of the safety of the repository system. Based on probabilities
estimated for repository disruption by future basaltic volcanism (e.g. 1.8 × 10−8: Bech-
tel SAIC Company, LLC, 2007; 1.0 × 10−6: Smith and Keenan, 2005) and the potential
risks for this natural hazard, performance assessments should evaluate the consequences
of a basaltic volcano intersecting the drifts and tunnels of the potential repository, which
might damage the emplaced waste packages and waste form, and could transport radioactive
material to the biosphere (NRC, 2005).

There is almost no precedent for a volcanic eruption interacting with an underground
storage facility of the kind envisaged for radioactive waste repositories. These facilities
generally consist of a network of tunnels or drifts. Some designs require the drifts to remain
empty apart from their inventory of radioactive waste containers, at least up to the time
the repository is permanently closed (i.e. on the order of several hundred years in some
cases). Thus, the generic processes that might occur if magma erupts into empty drifts have
been a prominent topic of study. Because no such events have occurred and analogues
such as eruptions into natural caves have not yet been identified, the assessment of igneous
disruption will need to rely largely on non-empirical information. In general, such assess-
ments may consider the limited empirical evidence of volcanic and intrusive processes;
knowledge of the properties of erupting magmas that help constrain the dynamics of these
processes; laboratory experiments designed to elucidate how multiphase fluids interact
with drifts; and finally, development of models. Because of the complexity of the processes
and current state of the art in representing those processes, a comprehensive approach to
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assessing igneous consequences that integrates knowledge from each of these sources is
appropriate.

This chapter focuses on modeling with an emphasis on the use of analog laboratory exper-
iments that are designed to either (i) test theories and numerical models or (ii) gain insights
into processes in circumstances where numerical models are either poorly understood or
too complex. To develop representative models, we considered results from volcanological
studies of eruption behavior and products. We also incorporated the physical properties of
magma when choosing relevant analog fluids and addressing scaling issues.

17.1 Magma properties and fluid dynamics relevant to
magma–drift interaction

17.1.1 Physical properties of magmas

The magma properties that exert the strongest control on flow dynamics are the magma den-
sity ρ and viscosity µ, both of which decrease with increasing temperature. Typical basalt
eruption temperatures range from 1000–1300 ◦C (Kilburn, 2000; Francis and Oppenheimer,
2004), and over this range of temperatures the density and viscosity of natural, dry basaltic
melts range between 2600 and 2800 kg m−3 and between 1 and 1000 Pa s at atmospheric
pressure, respectively (Murase and McBirney, 1973; Kilburn, 2000; Spera, 2000; Francis
and Oppenheimer, 2004).

Magma typically consists of three phases: melt (liquid), crystals (solid) and bubbles (gas).
The temperature dependence of the melt viscosity can be described by several models; the
simplest is the Arrhenian model µ = µ0 exp(E∗/RT ), where µ0 is the melt viscosity at
infinite temperature, E∗ is the melt activation energy, R is the universal gas constant and
T is the temperature in Kelvin. According to this model, melt composition mainly affects
the activation energy E∗, and Shaw (1972) estimated the activation energy from the partial
molar coefficients of SiO2. Although melts with high silica content do not exactly follow
the Arrhenian temperature–viscosity relationship (Hess and Dingwell, 1996), it is usually
necessary to employ the simpler Arrhenian model of Shaw (1972) for petrologic purposes
(Spera, 2000), which is a good approximation for low-viscosity basalts (Giordano and
Dingwell, 2003).

Small amounts of dissolved volatiles can have important effects on the density, viscosity
and crystallization of melts and magmas, which will strongly influence the ability of magmas
to flow. Of all the volatile species, water is the most abundant and accounts for the largest
variations in density and, more importantly, viscosity. Basaltic magmas typically contain 1–
4 wt.% volatiles, although dissolved water contents as high as 6 wt.% have been measured in
arc basalts (Sisson and Layne, 1993); and water contents up to 4.6 wt.% have been estimated
for the Lathrop Wells basalts near the proposed site for the high-level radioactive waste
repository at Yucca Mountain, Nevada (Nicholis and Rutherford, 2004; Valentine et al.,
2007). Dissolved water contents of 3 wt.% will lower the density of basaltic melts by
5 wt.% (Lange, 1994; Wallace and Anderson, 2000) and lower the melt viscosity of basalts



CONNORMAN: “CHAP17” — 2009/3/31 — 20:01 — PAGE 408 — #3

408 Menand et al.

by two orders of magnitude (Shaw, 1972; Giordano and Dingwell, 2003). Water is not the
only volatile species, however. Carbon dioxide is also present in magmas, but the amounts
of dissolved CO2 are typically one to two orders of magnitude less than those of water.
Furthermore, the effect of CO2 on melt density and viscosity is smaller than for water:
Wallace and Anderson (2000) report that adding 3 wt.% of CO2 to a basaltic melt will
decrease its density by ≈ 3%. Contrary to water, dissolved CO2 appears to have a minimal
effect on melt viscosity. This effect depends on the speciation of CO2, and dissolved CO2

can increase melt viscosity slightly if the CO2 is dissolved as carbonate (Lange, 1994).
Dissolved CO2 in melts can also have important indirect effects on melt viscosity because
dissolved CO2 lowers the solubility of water (Holloway and Blank, 1994).

The presence of exsolved gas bubbles and crystals also has a strong influence on magma
density and viscosity. Crystals act to increase both magma viscosity and density. Estimating
the speciation and volume fraction of different crystal phases present in the melt requires
modeling the thermal and decompression history of the magma. This is a complex process
using an incomplete understanding of the phase behavior, particularly the solubility of CO2

in basalts. Therefore a more typical approach in recent studies has been to investigate a wide
range of magma viscosities that will account for the ranges of temperatures, compositions
and crystal contents that characterize basaltic magmas.

The presence of exsolved gas bubbles also significantly affects the density of magmas,
which decreases linearly with the volumetric concentration c of the bubbles: ρ ∼ ρl(1 − c)
where ρl is the density of pure melt. The effect of bubbles on magma viscosity is more
complex as it depends on the tendency of bubbles to deform under viscous stresses induced
by flow, relative to their tendency to remain spherical as a result of interfacial stresses,
and the rapidity of this response (Llewellin and Manga, 2005). For steady flows involving
spherical bubbles, the commonly accepted empirical relationship at low volumetric fractions
(< 10%) for viscosity of the bubbly mixture, µb, as a function of bubble content and melt
viscosity, µl, is µb = µl/(1 − c) (Llewellin and Manga, 2005; Menand and Phillips,
2007b). For higher bubble contents, viscosity appears to be better approximated by the
relationship µb = µl(1 − c)−5/2 (Jaupart and Vergniolle, 1989; Menand and Phillips,
2007b).

An important consideration in the eruption of water-rich basalts is the crystallization
that is principally related to the change in liquidus temperatures of the main stable min-
eral phases. Degassing-induced crystallization and the consequent rheological changes are
key to understanding conduit flows and lava extrusions in andesite eruptions (Cashman,
1992; Melnik and Sparks, 1999). This is likely to be the case for wet basalt eruptions, too,
although there is less supporting research. The viscosity increases dramatically as ground-
mass crystals form from degassing basalt, and the crystal content may become so high that
the rheology can become non-Newtonian. For example, wet trachybasalt with a liquidus at
950−1000 ◦C (Nicholis and Rutherford, 2004) tends toward the solidus at one atmosphere
pressure. The effects of degassing on crystallization and viscosity will be counteracted by
the latent heat of crystallization (Blundy et al., 2006) such that the temperature will be
above the solidus in the fully degassed and decompressed state at one atmosphere. Fifty
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percent crystallization will increase the temperature by ≈ 100 ◦C based on the latent heat
of crystallization of plagioclase as the dominant groundmass mineral. Thus, the eruption
temperature of trachybasalt should be ∼ 1050−1100 ◦C. The rheology of such magmas can
be compared to the field rheological measurements of Etna trachybasalt lava (Pinkerton and
Sparks, 1978), which is ∼ 105 Pa s with ≈ 50% total crystal content at 1070 ◦C.

At lower pressures, gases become less soluble in magmas, leading to an increase in
gas exsolution and magma crystallinity. Additionally, gas bubbles expand as the magmatic
pressure decreases, so the controls exerted by bubbles and crystals on magma properties
become more significant at lower pressures, and these effects will be especially important at
the typically shallow depths (∼ 500 m) of radioactive waste repositories. The exsolved gas
mass fraction n varies with pressure according to the solubility law (based on Henry’s law),

n(P) = n0 − sP1/2 (17.1)

where n0 is the total gas mass fraction, P is pressure and s is the solubility constant for
water in basalt, with a value 3 × 10−6 Pa1/2 (Holloway and Blank, 1994). In general, the
gas pressure will not be equal to the bulk flow pressure or to the surrounding rock lithostatic
pressure. Exsolving gas bubbles are overpressured with respect to the surrounding fluid due
to surface tension, viscous resistance, and inertia, as gas bubbles expand in ascending magma
due to diffusion and decompression (Sparks, 1978; Sparks et al., 1994). In basalt magmas,
overpressures due to surface tension and inertia are typically negligible but overpressures
due to viscous resistance can be significant in very fast explosive flows. Additionally, the
bulk flow pressure is initially determined by the pressure in the source chamber but decreases
due to frictional losses in the magma flow. Thus, gas pressure evolves during magma ascent,
which in turn determines volatile exsolution and depends on the detailed dynamics of the
eruption (Massol et al., 2001). A common approach is to assume that pressure is lithostatic,
but magma pressures that deviate significantly from lithostatic are likely. For example, a
dike typically requires internal pressure that exceeds lithostatic pressure and the tensile
strength of the surrounding rock to propagate (Lister and Kerr, 1991), whereas an explosive
eruption through an open conduit can result in large underpressures (e.g. Mason et al.,
2006). Significant disequilibrium is also possible for fast flows so that kinetics have to be
taken into account. If flows are at equilibrium, however, the solubility law given by (17.1)
can be used for any pressure assumption.

17.1.2 Magma flow dynamics

Magma ascends through the Earth’s crust by means of dikes, which are sheet-like igneous
intrusions typically several centimeters to meters or tens of meters (rarely several hundreds
of meters) in thickness and several kilometers (rarely several hundreds of kilometers) in
extent (Pollard, 1987). The present study considers a 1 m-width and a 1–10 km lateral
extension as reasonable average dimensions for basaltic dikes (Lister and Kerr, 1991; Rubin,
1995). Magma fluxes can range from 1 m3 s−1, an average replenishment rate for the summit
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reservoir at Kilauea volcano, Hawaii (Rubin and Pollard, 1987), to 106 m3 s−1, such as may
be appropriate to very high volumetric flow flood basalt eruptions (Swanson et al., 1975;
Wilson and Head, 1981). An average magma flux of 103 m3 s−1 would correspond to an
average magma ascent rate of 1 m s−1 through a 1 m-wide, 1 km-long dike.

Magma ascent through dikes is mainly driven by magma buoyancy, initially determined
by magma composition and ultimately controlled by volatile exsolution, which becomes
the dominant control at shallower depths. A key fluid dynamical parameter for magma flow
is the Reynolds number, Re = ρuL/µ, which represents the ratio of viscous to inertial
forces (u is the flow velocity and L is a typical length scale such as dike thickness). Magma
flow is laminar if Re << 10, and the flow is considered to become turbulent when the
Reynolds number exceeds a critical value of ∼ 1000 (Lister and Kerr, 1991). In most cases,
magma flow is laminar with a Reynolds number of ∼ 1 for basaltic magma with viscosity
of 1000 Pa s and density of 2750 kg m−3 flowing at a rise velocity of 1 m s−1 in a 1 m-
wide dike. However, flows that involve magmas of much lower viscosity or higher magma
ascent rates, such as during flood basalt eruptions, may become turbulent (Huppert and
Sparks, 1985).

An important question is whether exsolved volatile bubbles are uniformly distributed
throughout the magma, forming a uniform bubbly mixture, or whether phase separation
occurs, which would strongly modify the flow behavior. Two-phase flow regimes range,
in order of increasing bubble content and flow explosivity, from: bubbly flows; to slug
flows, where bubbles coalesce into larger gas pockets; to annular flows, where gas flows
in the center of a dike or conduit while the fluid phase flows on its periphery; to dispersed
flows, where fragmented magma is carried by gas flow (Wallis, 1969; Jaupart, 2000; Slezin,
2003; Figure 17.1).Although magma flow will evolve through these different regimes as the
bubble content increases, how magma flows change from one regime to another is still not
fully understood. The different two-phase flow regimes depend on various parameters that
include, but are not restricted to, bubble contents, flow rates, and flow geometries (Wallis,
1969). A reasonable assumption is to consider that deeper in a basaltic system, bubbles are
well mixed due to low volumetric concentration, the relatively small size of the bubbles,
the relatively low viscosity of basaltic melts, and the effects of magma convection (Phillips

Bubbly flow Slug flow Annular flow Dispersed flow

Fig. 17.1 The different flow regimes experienced by two-phase flows, going from bubbly flow to
dispersed flow as both gas content and flow explosivity increase.
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and Woods, 2001). As we shall show, the geometry of the magmatic system provides a
strong control on bubble segregation from the melt, so an appropriate starting condition is
to assume exsolved gas bubbles are uniformly distributed throughout the melt.

17.2 Modeling magma–repository interaction

17.2.1 Transient flows

The initial interaction with repository drifts involves the transient case where a magma-filled
dike propagates and intersects a drift; however, it is unknown whether this magma will be
degassed. Degassed lava emerges early in some basaltic eruptions and can be associated with
simultaneous explosive activity.As mentioned previously, gas segregation processes are not
understood well enough to determine whether the magma that first flows into a drift will be
degassed.Thus, both end-member cases should be considered to bound possible interactions.
Lejeune et al. (Chapter 18, this volume) consider the degassed case through laboratory
experiments and theoretical analysis. Here we consider the explosive end-member where
the magma and gas have not segregated.

An explosive flow is expected for the interaction of rapidly decompressing gas-rich
magma rising in a dike with an underground drift structure. Repository drifts are usually
proposed to be maintained at atmospheric pressure (Rosseau et al., 1999), while at the
potential Yucca Mountain repository depths of 200–300 m, the magma pressure just behind
the tip of a dike is estimated to be typically 10–20 MPa, based on the lithostatic pressure
and the fluid pressure required to drive a fracture at the dike tip (Pollard, 1987; Lister and
Kerr, 1991; Woods et al., 2002). When the dike intersects the drift, the magma will rapidly
decompress, and at the relatively high water contents measured for Lathrop Wells basalts
of up to 4.6 wt.% (Nicholis and Rutherford, 2004), this decompression will be explosive
(Blackburn et al., 1976), assuming that the gas has been retained during ascent.

Aquantitative model of the process of magma decompression into a subsurface horizontal
drift was proposed by Woods et al. (2002). On decompression, volatile exsolution within
the magma in the dike and the drift will cause the magma to expand and accelerate, and if
this process occurs sufficiently rapidly, the magma will fragment into a two-phase mixture
of vesicular magma and gas. Woods et al. (2002) modeled this flow as a one-dimensional
homogeneous mixture of magma and gas in a coordinate frame that was continuous for
the flow from the dike into the drift (Figure 17.2). The cross-sectional area was assumed to
vary smoothly between the dike and drift, and the flow was assumed to remain isothermal
during volatile exsolution due to the high thermal inertia of the magma.

The motion of the magma–gas mixture can be described in terms of its averaged velocity,
u, and averaged density, ρ, at position x, at pressure P and at time, t, leading to the equation
for the conservation of momentum,

ρ

(
∂u
∂t

+ u
∂u
∂x

)
= −∂P

∂x
− fu − ρgG(x) (17.2)
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Dike

Drift

Fig. 17.2 The coordinate frame used in the one-dimensional simulations of Woods et al. (2002).

where f is a drag coefficient, g is the acceleration due to gravity and G(x) has value 1
in the vertical dike and 0 in the horizontal drift. The terms on the left-hand side describe
the inertia of the magma–gas mixture, and the terms on the right-hand side represent the
pressure gradient in the flow, the resistance to motion due to flow against the walls of the dike
or drift, and the buoyancy forces, respectively. The drag coefficient was parameterized as

f = αµ

D2 + 2Cρ|µ|
D

(17.3)

where α is a coefficient with value 12 for a two-dimensional dike and 8 for a cylindrical
drift, D is dike width or drift diameter and C is the turbulent-drag coefficient. The first term
on the right-hand side is the viscous drag, and the second term is the turbulent drag.

The equation of conservation of momentum was coupled with an equation for mass
conservation,

∂(A(x)ρ)

∂t
+ ∂(A(x)ρu)

∂x
= 0 (17.4)

where A(x) is the cross-sectional area of the dike or drift, and an equation for the bulk
density of the magma–gas mixture (based on the perfect gas law),

1
ρ

= n(P)RT
P

+ (1 − n(P))

ρl
(17.5)

where R = 462 J kg−1 K−1 is the gas constant for H2O, T is the (constant) temperature,
and n(P) is the exsolved gas mass fraction given by the solubility law (17.1).

For their model simulations, Woods et al. (2002) assumed basaltic values µ = 10 Pa s,
ρ = 2600 kg/m−3, a water content of 2 wt.% and C = 0.01. The results of a typical
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simulation for a dike intersecting a drift and remaining open are shown in Figure 1 in
Woods et al. (2002). Initially, the magma–gas mixture rapidly expands as a rarefaction
wave propagates back into the dike through the magma, and volatiles are exsolved. The
expanding mixture accelerates along the drift, reaching speeds of tens to hundreds of meters
per second, with the density decreasing as the pressure falls.Air is displaced and compressed
ahead of the magma–gas mixture, and as a result, a shock forms in the air and moves down
the drift at speeds of several hundreds of meters per second. If the drift is closed at its ends,
then the shock is reflected when it reaches the end of the drift, increasing its amplitude by
an order of magnitude. The reflected shock recompresses the magma–gas mixture, and a
region of higher pressure, up to a few MPa, is formed in the drift. If the drift is open ended,
the flow adjusts to a steady regime within seconds once the drift system is completely filled
(Woods et al., 2002).

Dartevelle and Valentine (2005) further investigated the eruption scenario proposed by
Woods et al. (2002) using the GMFIX multiphase numerical model (Dartevelle, 2004).
This model allowed the properties of each phase (pyroclasts and gas) to be determined in
a two-dimensional Cartesian frame with full time-dependence, relaxing the assumption of
homogeneous flow made by Woods et al. (2002). The results of a simulation corresponding
to the intersection of an overpressurized dike containing basalt with 1 wt.% water with a drift
at atmospheric pressure are shown in their Figure 1 (Dartevelle and Valentine, 2005). About
30−35% of the magma-gas mixture flows into the drift, forming a shock that propagates
into the drift at speeds of about 200 m s−1. The following flow forms a low-density current
that flows along the drift roof at speeds of about 120 m s−1. If the end of the drift is closed,
the shock is reflected and weakens through interaction with the following gas flow before
interacting with the current of pyroclasts and ash at a time of 1.10 s. On reaching the closed
end of the drift, the current is concentrated in density and reflected to form a dense current
that flows along the base of the drift. When the dense return flow reaches the dike, some
of the material is entrained into the rising flow and reaches the surface, while some is
recirculated back into the drift.

Both Woods et al. (2002) and Dartevelle and Valentine (2005) investigated scenarios
where there are secondary openings in the drift due to the presence of a further dike and
found that there is little difference to the flow patterns and velocities and pressures generated.
Both studies show the generation of high-speed shocks due to the initial decompression of
the magma–gas mixture into the drift, although the shock amplification on reflection from the
closed end of the drift observed by Woods et al. (2002) is not recognized in the simulations
of Dartevelle and Valentine (2005). The formation of high-pressure regions in the magma–
gas flow has important implications for the potential disruption of waste containers and
transport of small fragments of spent nuclear fuel, as discussed further in Section 17.2.3.

We are aware that other models have been presented in various reports on igneous con-
sequences at Yucca Mountain by different panels and bodies. We have not referred to this
work, which has not been subject to peer review. However, the results of such studies
all confirm that fast explosive flows will occur if volatile-rich basaltic magma is rapidly
decompressed into tunnels or drifts.
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The only reported natural example of the interaction of basalt with an analogous man-
made structure occurred as an eruption along a geothermal borehole during the 1977 Krafla
eruption (Larsen et al., 1979). The borehole was 10 cm in diameter and 1138 m in length. The
eruption involved an explosive Strombolian jet, lasted 20 minutes and erupted a volume of
26 m3. In the context of potential repository interactions, this example is important because
it shows that basalt magma can flow along a hole that has a cross-sectional area two orders
of magnitude smaller than a radioactive waste repository drift. This case shows that cooling
during magma flow to form a quenched layer is not significant, so models that do not account
for cooling reasonably simulate the pertinent processes.

17.2.2 Steady-state flows

Following the initial transient decompression of the gas-bearing magma into the drift, the
flow will adjust to a steady state within seconds to hours depending on whether magma flow
is diverted along the drift or is limited to the main dike if access drifts are backfilled with
crushed rocks (Woods et al., 2002; Dartevelle and Valentine, 2005). If steady-state magma
flow is established in the drift, Woods et al. (2002) calculated that magma will flow past
the waste containers with steady speeds of ∼ 10 m s−1. Waste containers will experience
considerable thermal stress from the magma and gradually heat by thermal conduction and,
for times greater than ≈ 1000 s (based on diffusion of heat into the waste containers),
they will become deformable and may break open. If the end of the drift remains closed,
magma flow will be limited to the drifts directly intersected by the main dike; but basaltic
magma will nevertheless fill the drift. In both cases, magma pressure in the repository will
ultimately decrease to be close to lithostatic (Woods et al., 2002).

This latter result is consistent with observations of natural volcanic systems. It is com-
monly observed that many basaltic eruptions tend to become less explosive with time.
Initial basaltic eruptions occur explosively along fissures, typically in Strombolian-style
fire fountains. Within hours to a few days, activity focuses onto a progressively restricted
number of vents along the fissures; tephra plumes form, along with subordinate volumes of
lava (Thorarinsson, 1969; Fedotov and Markhinin, 1983; Macdonald et al., 1983). There
is a general tendency for such eruptions to become less explosive with time and for lava
to become an increasingly dominant product. However, observations of eruptions such as
Eldfell volcano (Iceland) in 1973 show that even at the very beginning of an eruption,
explosive flow of gas rich magma and discharge of degassed lava occur simultaneously.
The interaction of a dike with an underground drift is therefore likely to involve magma flow
of decreasing intensity. Basaltic magma can fill the drift, and subsequent magma circulation
will depend on processes of gas segregation within the drift (Menand and Phillips, 2007a).
Moreover, as the eruption proceeds, magma flow can be sustained for days to weeks in
the vertical dike; for example, the great Tolbachik basaltic fissure eruption of 1975–1976
lasted for more than one and a half years (Fedotov and Markhinin, 1983). Over these time-
frames, the dike may increase in size and change from a planar cross-section to a more
circular cross-section owing to mechanical and thermal erosion as well as solidification
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of the dike in areas away from the focused flow (Macdonald et al., 1983; Bruce and
Huppert, 1990).

At shallow crustal depths (< 500 m) typical for repository drifts, magma volatiles are
very likely to exist as exsolved bubbles. For instance, initial water contents of basalts that
have erupted in the vicinity of Yucca Mountain range from 1.9 wt.%−4.6 wt.% (Nicholis
and Rutherford, 2004) and at a depth of 300 m, a basaltic magma with 4.6 wt.% initial
water will have exsolved 3.8 wt.% of its water (Holloway and Blank, 1994), which would
correspond to volumetric gas fractions in the range of 70−90% at that depth in equilibrium
(Menand et al., 2008). The presence of exsolved bubbles as well as the amount of water that
remains dissolved will strongly affect the density and viscosity of the basalts. Furthermore,
there may be a range of bubble volumetric contents depending on exsolution at greater
depths and gas loss during ascent. The amount of exsolved gas in magma within the drift
will determine the nature and strength of magma circulation in the drift.

Menand and Phillips (2007a; 2007b) investigated gas segregation in a magma-filled drift
intersected by a vertical dike using analog experiments. The apparatus consisted of a glass
recirculating flow loop with a vertical mounting section (to simulate the vertical dike)
connected to a horizontal section (to simulate the drift; Figure 1 in Menand and Phillips
(2007a)). Electrolysis of the recirculating flow was used to simulate low volumetric gas
fractions (< 10%), producing micrometric bubbles in viscous mixtures of water and golden
syrup. These low gas fractions correspond to the situation where magma has lost a large
proportion of its gases at some depth greater than that of the repository, or during the latest
waning stages of an eruption. To simulate higher volumetric gas contents, golden syrup
was aerated before its injection into the recirculating flow loop, leading to volumetric gas
fractions as high as 40%.

The experiments of Menand and Phillips (2007a) at low gas fractions (< 10%) show
that exsolved bubbles induce a buoyancy-driven exchange flow between the dike and the
drift, whereby bubbly fluid flows from the dike into the drift as a viscous gravity current
(Figure 17.3; Figure 3 in Menand and Phillips, 2007a). This exchange flow is slow enough
that bubbles in the drift have time to rise, segregate from the fluid, and accumulate as foam
at the top of the drift in conjunction with the accumulation of degassed fluid at the base of
the drift. The maximum distance Lmax that the gravity current can travel corresponds to the
point where all bubbles have risen to the top of the side arm,

Lmax = D2

d

(
12c

1 − c

) 1
2

F(c) (17.6)

where D is the drift diameter, d is the average bubble diameter, c is the volumetric bubble
concentration, and F is a function of c which has a value ∼ 0.1 (Menand et al., 2008).
Ultimately, a steady state is reached, whereby influx of bubbly fluid into the drift is balanced
by outward flux of lighter foam and denser degassed fluid back into the dike. Moreover, gas
segregation processes and rates appear to be independent of moderate changes in magma
supply rates in the dike.
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(a) (b)

(c) (d)

Basaltic dike

Drift

Rising flow of bubbly magma

Dike

Drift

Rising flow of bubbly magma fills drift

Bubbly magma
flow velocity in
drift is much less
than that in dike

Degassed layer formed
by bubble segregation

Lmax

Bubbles rise
in low velocity
flow in drift

Foam layer formed by
bubble segregation

Bouyancy-driven
flow of light foam layer

Exchange flow of
bubbly magma

Bouyancy-driven flow of
dense degassed layer

Fig. 17.3 Schematic illustration of magma flow in an interconnecting dike and drift. (a) System
geometry. (b) Initial condition with the drift filling with bubbly magma from the dike. (c) Bubble
segregation within the drift leads to the formation of a foam layer at the top of the drift and a degassed
layer at its floor. (d) Steady-state exchange flows set up by bubble segregation.

The laboratory experiments at high gas fractions showed that the same processes occurred
as for lower volumetric gas fractions, with the increased viscosity and reduced den-
sity contrast increasing the timescale for gas segregation (Menand and Phillips, 2007b;
Menand et al., 2008). The amount of foam that collects at the top of the drift is deter-
mined by the balance between the amount of bubbles rising from the bubbly fluid within
the drift and the outward flux of foam that leaves it; the steady-state foam thickness h(x)
can be written as the product of a characteristic thickness H and a shape function f (x),
h(x) = Hf (x), with

H =
[

c(1 − c)
7
2 d2L2

max

ε(1 − ε)
5
2 (ε − c)

] 1
4

f (x) =
(

x
Lmax

− x2

4L2
max

) 1
4

(17.7)

where ε is the volumetric gas fraction of the foam and x is the position along the foam (the
origin is fixed at the dike–drift junction). The foam thickness is limited by the packing of
the bubbles in the foam: as the foam thickness increases, bubbles deform and can coalesce,
leading to the collapse of the foam. The maximum, critical thickness Hc the foam can sustain
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before collapsing is (Jaupart and Vergniolle, 1989; Menand et al., 2008)

Hc = 4σ

ερlgd
(17.8)

where σ is the surface tension between the melt and the gas trapped in the bubbles of
the foam. The steady-state foam thickness H described by (17.7) can develop only if it is
smaller than the critical thickness Hc. If this is not the case, accumulation of bubbles at the
top of the drift will lead to repeated collapse of the foam.

Two timescales are associated with this gas segregation process, and both are controlled
by the rise of bubbles within the drift. The first one is the time needed by the bubbles to rise
the diameter of the drift, D, and accumulate as the foam

Tb = 12µlD

ρlgd2(1 − c)
7
2

(17.9)

The second timescale is the time needed for the steady-state foam to fully develop

Tf = 12µlL
1
2

ρlgd
3
2

[
ε3

c3(1 − c)
21
2 (1 − ε)

5
2 (ε − c)

] 1
4

(17.10)

Gas segregation occurs in the drift if these two timescales are smaller than the timescale
for cooling and solidification of the magma, Ts. Menand and Phillips (2007a; 2007b) based
their calculations on cooling by pure conduction so that

Ts = D2

16κλ2 (17.11)

where κ is the magma thermal diffusivity and the thermal constant, λ, depends on the
temperature difference between the magma and surrounding rocks (Turcotte and Schubert,
1982).

Gas segregation leads to a steady-state recirculation of fluid in the drift with exchange
of bubbly fluid with foam and degassed fluid, and this recirculation is characterized by a
volumetric flux

Q = (1 − c)
7
2 ρlgd2DL

12µlε
(17.12)

Up-scaled to the potential Yucca Mountain repository conditions, the results suggest that
steady-state gas segregation would occur within hours to hundreds of years depending on
the viscosity of the degassed magma, 10−105 Pa s, and the average size of exsolved gas
bubbles, 0.1−1 mm (right-hand plot of Figure 4 in Menand et al., 2008). For comparison,
Menand et al. (2008) give a solidification timescale by pure conduction of about 3 months
for a 5 m-diameter drift; note that this estimate will be a lower bound due to circulation in
the drift and replenishment with hotter magma as the eruption proceeds.
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Using (17.12), Menand et al. (2008) calculated the fluxes that would be associated with
gas segregation in a 5 m-diameter drift for different magma viscosities (right-hand plot of
Figure 6 in Menand et al., 2008). These range from 1 m3 s−1 for the less viscous magmas
to 10−8 m3 s−1 for the most viscous degassed magmas. Gas segregation is likely to be in
an unstable foam collapse regime, with the foam accumulated by gas segregation at the
top of the drift reaching a few centimeters in thickness before its collapse due to bubble
coalescence (Jaupart and Vergniolle, 1989; Menand et al., 2008). The relative proportion
of erupted degassed magma, which could potentially transport radioactive waste material
towards the surface, depends on the value of the dike magma supply rate relative to the
value of the gas segregation flux; with violent eruption of gas-rich as well as degassed
magmas at relatively high magma supply rates, and eruption of mainly degassed magma
by milder episodic Strombolian explosions at relatively lower supply rates (Menand and
Phillips, 2007a). Menand et al. (2008) calculated that, depending on the average size of
exsolved gas bubbles, the critical magma supply rate delimiting these two eruptive regimes
would range from 10−4−1 m3 s−1 for magma viscosity of ≈ 10 Pa s to 10−8−10−4 m3 s−1

for magma viscosity of ≈ 105 Pa s.
Menand and Phillips (2007a) also applied these general principles to degassing and erup-

tion processes at Stromboli volcano, Italy. The results and their implications are consistent
with a variety of independent field data. Gas segregation at Stromboli likely occurs in a
shallow reservoir of sill-like geometry at a 3.5 km depth with bubbles of exsolved gas 0.1–
1 mm in diameter. Menand and Phillips (2007a) also calculated that the transition between
Strombolian activity, erupting gas-poor, highly porphyritic magmas, and violent explosions
that also erupt gas-rich, low porphyritic magmas would correspond to a critical magma
supply rate of ∼ 0.1−1 m s−1.

If magma flows along the drift, either because the drift is open-ended or because magma
pressure in the repository is able to drive open a new fracture in the surrounding rocks,
steady-state flow will be characterized by speeds of ∼ 10 m s−1 (Woods et al., 2002; Dartev-
elle and Valentine, 2005), which corresponds to steady-state fluxes of ∼ 100 m3 s−1 in a 5 m
diameter drift. These fluxes are at least two orders of magnitude greater than fluxes induced
by gas segregation processes. In this scenario, gas segregation processes are unlikely to
affect the flow as they would occur on timescales much longer than those needed for
magma to flow along the drift. Therefore, the steady-state flow pattern would depend on
the magma supply rate from the dike.

17.2.3 Magma flow dynamics and cooling within repository drifts

As magma flows up the dike and along the drift, heat will be advected by the flowing magma
and will simultaneously be lost by conduction into the colder surrounding rocks and waste
containers. Competition between heat advection and conduction can affect magma dynam-
ics, as investigated quantitatively by Bruce and Huppert (1989; 1990) and Petford et al.
(1993). During the initial stage of magma flow up a dike, magma cools in response to
the lower temperature of the surrounding rock walls. Subsequently, the continual supply
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of magma transfers heat into the solid walls. Magma cooling within the dike is typically
confined to a thin thermal boundary layer adjacent to the dike walls, and the width of this
thermal boundary layer increases with the length of the dike (Carrigan, 2000). Whether the
dike becomes blocked or remains open is determined by the balance between the rate of
solidification of the magma (dike closure) and that of melting of the walls (dike opening).
These rates are in turn controlled by the magnitude of the latent heat (released during solid-
ification and consumed during melting) as well as the difference between the heat supplied
to the walls by the thermal boundary layer and that conducted into the surrounding rocks.
Bruce and Huppert (1989; 1990) and Petford et al. (1993) showed that a critical width

wc = 1.5
[

cheat(Tw − T∞)2

Lheat(Tm − Tw)

] 3
4
(

µκHdike

(ρg

) 1
4

exists, where cheat is the specific heat, Lheat is the latent heat, Tm is the initial magma
temperature, Tw is the temperature of the walls, T∞ is the far field temperature of the rocks,
Hdike is the dike length, and (ρ is the density difference between magma and rocks. If the
dike is thinner than this critical width, it will solidify before it can transport a significant
volume of magma to the surface. When applied to basaltic dikes, these analyses show
that dikes must be thicker than ∼ 0.5 m if they are to reach the surface before solidifying
completely; this prediction agrees with field observations (Wada, 1994; Kerr and Lister,
1995; Wada, 1995). Three-dimensional analyses suggest that magma flowing through an
initially long surface fissure will tend to localize to a number of isolated vents (Bruce and
Huppert, 1989; 1990), as observed during basaltic fissure eruptions.

Insights about the cooling of magma as it flows within a drift can be obtained from studies
of horizontal igneous intrusions (sills) and lava tubes. Holness and Humphreys (2003)
observed that rocks surrounding the Traigh Bhàn na Sgùrra sill on the Isle of Mull, Scotland,
displayed thermal aureoles up to 4 m thick around that sill, which taken in conjunction with
the spatial distribution of crystals within the sill demonstrate that progressive focusing
of magma flow into the wider parts of the sill was sustained for up to five months. Lava
tubes, which form when the lava flow surface solidifies as a crust while hot lava continues
to flow beneath, are a common feature of basaltic lava flow fields. If the flow rate is
sufficiently high, lava can thermally erode its way into the surrounding solidified lavas
(Francis and Oppenheimer, 2004). Lava tubes can extend significant distances because lava
is well insulated by the tube crust and loses very little heat by conduction or radiation. Lava
tubes up to 20 m in diameter and > 100 km in length have been observed in Queensland,
Australia; these would have enabled the lava flow fields to develop over several months to
years despite involving overall effusion rates perhaps as low as 10 m3 s−1 (Stephenson et al.,
1998). The Krafla borehole eruption also shows that cooling may not be a major factor in
the initial filling of a tunnel.

Precise assessment of magma cooling while flowing in a drift partially obstructed by waste
containers is difficult because of the complex three-dimensional geometry of the flow field.
Nevertheless, a conservative estimate can be made by assuming conductive cooling of the
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magma through the wall of the drift, which gives about three months for magma to solidify by
conduction (Menand et al., 2008). This estimate is comparable to the timescales associated
with lava flows within sills and lava tubes and suggests that magma could remain fluid for
several months, at least in some part of the drift. For comparison, based on the diffusion of
heat into metal waste containers, Woods et al. (2002) calculated that the waste containers will
become deformable and may break open for times ! 1000 s (< 1 h). Improved estimates
for potential magma cooling rates within repository drifts and their effect on flow dynamics,
if warranted, would require three-dimensional numerical simulations.

If transient or steady magma flow occurs through radioactive waste repository drifts,
possible consequences include the generation of waste container motion due to drag exerted
by the flowing magma, heating and possible disruption of the waste containers, and transport
of the container contents. Woods et al. (2002) estimate the drag force acting on the waste
containers

Fd = Cdρu2A (17.13)

where A is the area of the face of the container perpendicular to the flow direction, and
Cd is the drag coefficient, which is order unity for these flow conditions. For steady flow
conditions, Woods et al. (2002) estimated the ratio of the drag force to container weight to be
typically of order or smaller than 0.1−1.0, suggesting that the containers may be displaced
down the drift. However, the flow is too weak to keep the containers in suspension, and any
container motion is likely to be relatively slow. Later calculations of the flow conditions
following the intersection of a basaltic dike with a repository drift conducted by Dartevelle
and Valentine (2005) were made with smaller dike widths and resulted in much lower
flow velocities than those calculated by Woods et al. (2002). In Dartevelle and Valentine’s
calculations, the drag force was insufficient to generate waste container motion; furthermore,
because the waste containers will be placed in a line along the length of the repository drift,
only the first container will feel the drag force estimated by Woods et al. (2002). Subsequent
containers will feel a lower drag force in the wake flow behind the first container – the same
effect exploited by the formations adopted by migrating birds and racing cyclists.

To the extent that waste containers can be disrupted by the combined effects of magma
flow and heat transfer, waste container contents can possibly be transported in the magma
flow through the drifts and to the surface. Although the exact contents of waste containers
will vary, current models typically assume that the waste material is spent nuclear fuel that
has been fragmented by disruptive processes in the size range 10−500 microns (CRWMS
M&O, 2000) with a density of ≈ 10 000 kg m−3. Erosive transport of small particles by
turbulent stream flows has been widely studied in sedimentology, and the key parametric
relationship between the Shields number θ (ratio of shear stress acting on a particle to its
weight) and particle Reynolds number (the ratio of inertial to viscous forces acting on a
particle in the flow) has been empirically determined for turbulent flow conditions (Figure 2
in Miller et al., 1977). However, until recently, there has been little study of particle transport
under viscous flow conditions, as would be appropriate for magma flow.
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The experimental and theoretical studies of Charru et al. (2004) provide a framework for
estimating the transport properties of small particles in a uniformly sheared viscous flow. The
experiments were conducted in a rotating annular viscous flow, to achieve steady flow over
long times and under conditions in which the secondary velocity generated by centrifugal
forces was negligible compared to plane Couette flow in the channel. Direct observations
showed that small particle motion took the form of a series of saltation “flights,” whose
duration τ was found to be independent of shear rate γ , τ ≈ 15 dp/vS, where dp is the
particle diameter and vS is the Stokes settling speed of the particle. The mean particle
velocity ū was found to depend linearly on the shear rate, ū ≈ 0.1 γ dp. The particle flow
rate Qp was found to have a quadratic dependence on shear rate,

Qp ≈ 0.1γ (0.47/dp)(θ − 0.12). (17.14)

Erosive transport of small particles by fluid flow is a complex process that depends
on interaction of the particles and fluid, and the particles with each other. Further work
is required to understand the flow conditions representative of potential magma–waste
repository interaction and particle transport under these conditions. However, the scaling
arguments presented here form a fundamental framework for estimating transport properties
of high-density particles in viscous magma flow.This can be illustrated with simple estimates
for magma properties for basalts in the Yucca Mountain region (density of 2750 kg m−3,
viscosity of 10 Pa s, 70 vol.% of degassed bubbles 1 mm in diameter), assuming in this
example that the magma flow pattern corresponds to flow through a circular cross-section
drift. The presence of waste containers in the drift will complicate the flow patterns (e.g. cre-
ate local eddies that can affect Couette flow dynamics), but the principles illustrated here
should hold. For a maximum average velocity of degassed magma in a 5 m-diameter and
1 km-long drift of about 10−3 m s−1 (using (17.12) for the flux) and assuming a standard
Poiseuille flow profile for viscous flow in a cylindrical cross-section (Schlichting, 1960),
the maximum shear rate 0.1 m above the base of the drift is approximately 7.5 s−1. Using
the range of particle sizes and densities for fragments of spent nuclear fuel given previ-
ously, the maximum Shields number is ∼ 2 for this viscous flow (Charru et al., 2004),
corresponding to a particle flow rate of ∼ 1500 particles per unit drift width per second,
(17.14). This particle flow rate is estimated for the largest fragments of spent nuclear fuel
500 µ in diameter. Particle transport from potentially disrupted waste containers will be
limited by the volume of particles available to the flow.

Concluding remarks

The models discussed here provide some first-order constraints on the interaction of basaltic
magma with an open-drift system that is the basis for some potential radioactive waste
repositories. A first-order conclusion is that potentially intersected drifts rapidly will be
filled by magma. This will be the case irrespective of whether the magma is explosive
due to the exsolution and expansion of gases or degassed as a consequence of as yet poorly
understood gas segregation processes during ascent. Lejeune et al. (Chapter 18, this volume)
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have presented the degassed end-member, and we present the explosive case. At typical
eruption rates of monogenetic basaltic eruptions (10−1000 m3 s−1), a drift can be filled in a
few tens of seconds for the explosive case and a few tens of minutes for the degassed case.
Although the magma will form a thin quench on contact with the drift walls and containers,
estimates of cooling timescales indicate that these effects are small and will not inhibit
the filling of the drifts. This view is verified by the observation that basalt flowed along a
geothermal borehole for hundreds of meters despite having a volume-to-surface area ratio
that is two orders of magnitude smaller than a repository drift.

Characterizing container disruption is complex. In addition to considering the state of
magma upon entry into a drift, disruption is also dependent on the design and properties
of container materials, particularly in relation to response to impacts and heating. Such
considerations go well beyond the scope of this paper, but some inferences can be made.
Container failure could occur due to prolonged heating and pressure effects. Heating weak-
ens the containers, making them more likely to fail, and the interior pressure of the container
is expected to increase due to heating of the gases. Simultaneously, the pressure in the sur-
rounding magma after a drift has been filled may increase substantially to lithostatic values
or above. For example, if an eruption is occurring, the magma-static pressure at a 300 m-
deep repository would be above 8 MPa for a column of degassed magma. In response to
the combined thermal and mechanical stresses, the container might be deformed or broken
open, and the contents of the affected containers might be released and transported to the
surface by entrainment in the erupting column.

If a subvolcanic conduit developed through a drift, waste that is directly entrained in
the erupting conduit could be transported to the surface. Two additional scenarios have
been investigated that consider the ability of magma to entrain waste from drifts potentially
intersected by a dike. Woods et al. (2002) described a “dogleg” scenario in which the dike
intersects a drift and a secondary fracture develops in a new location along the drift so that
once the magma breaches the surface, the magma flows along the drift to connect the inlet
dike with the outlet dike. Here, a second scenario is considered where the original supply
dike continues to the surface and there is convective exchange between the magma in the
drift and the magma flowing up the dike.

In this alternative scenario, Menand and Phillips (2007a; 2007b) infer from their exper-
iments that, independently of moderate changes in the dike magma supply rate, gas
segregation processes will occur in the drift and lead to a convective exchange of gas-
rich foam and degassed magma flowing out of the drift and back into the dike with bubbly
magma from the dike. Using the potential Yucca Mountain repository geometry as an exam-
ple, flows will likely be in an unstable collapse regime with the gas-rich foam experiencing
repeated collapse as it accumulates at the top of the drift. The length and timescales of the gas
segregation processes are controlled by the rise of bubbles in the drift. The time required
for steady-state gas segregation is estimated to range from hours to hundreds of years,
depending on the average size of exsolved gas bubbles; and on the viscosity of degassed
magmas, which depends strongly on the degree of water exsolution, cooling and crystal-
lization. The associated magma flux is estimated to range from 1 m3 s−1−10−8 m3 s−1,
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depending on the magma viscosity and the size of exsolved gas bubbles. The relative pro-
portion of erupted degassed magma depends on the value of the dike magma supply rate
relative to that of the gas segregation flux. If magma is supplied at a higher rate, then
gas-rich as well as degassed magmas are expected to be violently erupted; if the supply
rate is lower, then mainly degassed magma would be erupted by milder episodic Strom-
bolian explosions generated by the repeated collapse of the foam accumulated at the top
of drifts.

A related matter is whether a potential magma flow could transport very dense waste
particles. Based on estimates of magma fluxes in the initial stages of basaltic volcanic
eruptions, it is unlikely that significant transport of intact waste containers would occur,
regardless of whether the flow is unidirectional along the drift (Woods et al., 2002; Dartevelle
and Valentine, 2005) or recirculates within the drift (Menand and Phillips, 2007a; 2007b).
In the event of waste-container disruption, estimates suggest that small fragments of spent
nuclear fuel of the size and density used in current design calculations might be transported
along the drift in a viscous saltation regime. Two-phase flows of this type have not been
widely studied, although recent interest has established the key principles and identified
transport regimes (e.g. Charru et al., 2004). As outlined in this chapter, precise estimates of
potential magma transport dynamics for laminar Couette flows will not become available
until the exact configuration of disrupted waste containers and drift geometry can be better
constrained, but the first-order estimates presented here suggest that even modest magma
shear rates can initiate erosive motion of dense waste fragments along the base of a drift,
irrespective of the precise geometric details. For the scenario of volcanic activity potentially
interacting with a repository drift, the calculations indicate magma flows are capable of
transporting small waste fragments along the drift and into the erupting conduit, with the
possibility that this material could be subsequently transported to the surface and dispersed
in explosive eruptions or effusive flows.

Further lines of investigation

The presence of engineered barrier systems and their additional thermal mass will likely
affect the flow of magma within drifts and thus the thermal evolution of the system.Assessing
how waste containers and barrier systems may affect heat transfer into the containers and
the cooling rate of magma, as well as gas segregation processes within drifts, is complex
and may warrant three-dimensional computational modeling.

Confidence in models for potential magma–drift interaction processes would benefit from
improved knowledge of the petrological evolution of magmas in the shallow subsurface
during dynamic eruptions (see Spera and Fowler, Chapter 8, this volume). This evolution
will affect magma viscosity and the size of exsolved gas bubbles, which in turn will exert
a strong influence on the fluxes and average velocities associated with gas segregation and
convective exchange flow. Constraining the petrological evolution of magmas will improve
estimates of the heat transfer and cooling rates during and after gas segregation, and thus
the duration of potential magma exchange flow within drifts.
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Further reading

White (1979) provides a particularly clear introduction to fluid mechanics with applica-
tions to engineering problems including flow in ducts, flow around immersed bodies and
calculations of drag coefficients for various flow configurations. Analytical techniques for
the treatment of two-phase flow problems as well as practical applications can be found
in Wallis (1969). Integrating observation, theory and experimental studies, Sparks et al.
(1997) provide a technical and complete reference to physical volcanology using historical
volcanologic events as case studies.
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Chapter 4

Magma Transport and Storage in the
Crust (1995–present; IPGP, Bristol, UBP)

(Funding: Allocation de recherche du Ministère de la Recherche et de l’Éducation
Nationale, Leverhulme Trust, CNRS-INSU and Chaire d’excellence mixte UBP-
IRD)

In parallel to these studies on porous flows and magma degassing, I pursued

the work on magma intrusions I started during my PhD and I developed a research

programme to address the formation of plutons and magma chambers.

A major process of evolution of the Earth’s lithosphere is the upward transport

of magma by the creation and propagation of dykes from zones of partially molten

rocks in the upper mantle to the surface. Forty years ago, Weertman (1971a,b)

proposed that water-filled cracks could self-propagate through glaciers owing to

their buoyancy once they had reached a critical size, and suggested that magma-

filled dykes could propagate through the Earth’s crust by the same mechanism.

His reasoning was that smaller water-filled cracks would not have enough (nega-

tive) buoyancy, hence overpressure, to overcome the strength of ice whist larger

cracks would have enough buoyancy to do so. According to Weertman (1971a,b),

propagating liquid-filled cracks would maintain a constant length by fracturing the

surrounding solid at their leading tip whilst at the same time closing at their trail-

ing tip. Later, this seminal work was extended to dyke propagation, and refined to

account for the primarily elastic deformation of crustal rocks and their fracturing,

as well as the viscous flow of magma and its buoyancy (Spence and Sharp, 1985;

Spence and Turcotte, 1985; Emerman et al., 1986; Spence et al., 1987; Spence and

Turcotte, 1990) until Lister and Kerr (1991) seemingly nailed the problem. Their

work summarises nicely two previous, more mathematical papers (Lister, 1990b,a),

and discuss the problem of dyke propagation in terms of the pressure scales involved

during dyke propagation.
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Lister and Kerr (1991) identified four different pressure scales that tend to
drive or resist dyke propagation: an elastic pressure scale, Pe, that characterises
the elastic deformation of the rocks surrounding the dyke; a buoyancy scale, Pb,
associated with de density difference ∆ρ between magma and host rocks; the
viscous pressure drop induced by the flow of viscous magma along the dyke, Pv;
and a resistance pressure scale, Pf , related to the rock fracture toughness Kc.
These different pressures scale as follows:

Pe ∼
E

2(1 − ν2)
w
l

Pb ∼ ∆ρgh Pv ∼
µul
w2 Pf ∼

Kc√
L
. (4.1)

E and ν are the rock Young’s modulus and Poisson’s ratio, respectively, w is the
dyke thickness, l is the smallest of its other two dimensions (height h or breadth), g
is the gravitational acceleration, µ is the magma viscosity, u is the average magma
flow velocity, and L is the dyke length. Comparing these resisting and driving
pressure scales, based on laboratory measurements on rock samples (Atkinson,
1984) and scaling analysis, Lister and Kerr (1991) showed that once a dyke has
been initiated and has grown to a small critical length, dyke propagation would
be mainly driven by buoyancy and resisted by the viscous pressure drop induced
by magma flow within the dyke, and that rock resistance to fracture would be
comparatively negligible. Moreover, this scale analysis shows that a steady-state
propagating dyke would develop a thick near-tip, head region that gradually tapers
off behind (away from the tip) to a much thinner tail region. The size of the head
region is defined by a balance between the elastic, buoyancy and fracture pressures,
and often referred to as the buoyancy length:

Lb ∼
�

Kc

∆ρg

�2/3
. (4.2)

However, fracture resistance only affects the dyke shape near its tip, not its dynam-
ics. These are determined by magma flow in the tail region of the dyke (away from
the tip, at a distance greater than the effective buoyancy length) which adjusts
its width wtail elastically to balance the viscous pressure drop induced by magma
flowing owing to its buoyancy gradient:

wtail ∼
�
µu
∆ρg

�1/2
. (4.3)

Rubin (1995b) considered the case of dykes propagating laterally away from
their feeding source. If the driving force comes from the overpressure present
in the source, Rubin (1995b) showed dyke propagation would be controlled by a
balance between this excess source pressure ∆P0 and the viscous pressure drop
induced by magma flow. Dykes would thus propagate with a velocity

u ∼ (1 − ν2)2

E2

∆P3
0

µ
L. (4.4)

One notes that in the case of a constant excess source pressure, this velocity would
increase exponentially.
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In parallel, the thermal aspects of dyke propagation were first addressed by
Bruce and Huppert (1989, 1990) for basaltic dykes, and then by Petford et al.
(1993, 1994), who extended the approach to felsic magmas, as well as Rubin
(1993b,a, 1995a). These studies revealed the exsitence of a critical dyke width wc

below which dykes will ultimately freeze solid before they could propagate far, and
above which melting of the host rock by the hot, flowing magma would cause dykes
to widen by thermal erosion and ensure further propagation. This critical width
wc is determined by a balance between heat advected along the dyke by inflowing
magma and heat conducted way by the surrounding colder host rocks:

wc = 1.5
�

S m

S 2
∞

�3/4 �
µκH

∆ρg

�1/4
, (4.5)

where S m = L/[Cp(T0 − T f )], S∞ = L/[Cp(T f − T∞)], L is the latent heat of the
magma, Cp is its specific heat capacity, T0, T f and T∞ are the initial magmatic
temperature, the magma freezing temperature and the far-field temperature of
the crust, respectively, and κ is the magma thermal diffusivity (e.g. Petford et al.,
1993). These thermal considerations enable to explain the observed relationship
that dykes containing more viscous magmas tend also to be thicker (Wada, 1994;
Kerr and Lister, 1995; Wada, 1995).

Yet In spite of this extensive study carried out over the years, we could not
answer some key questions of geological importance when I started my PhD. For
instance, what determines the flux of magma carried by a dyke? Dyke propagation
is likely to be initially pressure-driven close to the source when dykes are of small
vertical extent before buoyancy could then become the driving force. However, the
analysis of Rubin (1995b) showed pressure-driven dykes would tend to propagate
with accelerating velocity whereas buoyancy driven dykes would tend to propagate
steadily (Lister and Kerr, 1991). How would such a transition operate?

Additional questions I have tried to address since pertain to the fate of dykes
and the conditions for magma storage: Why does the vast majority of dykes stall in
the crust and never reach the surface? Which mechanisms are involved and what
are their timescales? Answering these questions is key if we are to understand the
inner workings and development of magmatic and volcanic systems.

4.1 Gelatine as a crustal analogue for modelling
magma intrusions

Most of my work on magma intrusions involves laboratory-scale experiments
where a solid of gelatine is used as an analogue for crustal rocks and is intruded
by a fluid that simulates a magmatic intrusion.

During my PhD, I demonstrated that indeed gelatine solids deform and be-
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have at the laboratory scale like elastic, brittle solids (including rocks), that is
the Young’s modulus E of a solid of gelatin and its fracture toughness Kc follow
the theoretical relationship expected for such solids, Kc ∼

�
2γsE where γs is the

energy required to create a unit surface area. The best fit through the data was
Kc = 0.97 E

0.55 (Menand and Tait, 2002). This relationship enables an experimen-
talist to calculate the fracture toughness of a gelatin solid from the measurement
of its Young’s modulus in a nondestructive manner.

More recently, I refined this relationship with Katherine Daniels, a Bristol PhD
student I co-supervise with Steve Sparks, and Janine Kavanagh from Monash Uni-
versity. We also studied in detail how the Young’s modulus of gelatine evolves with
time, as a function of the volume and concentration of gelatine used for its prepa-
ration (Kavanagh et al., 2012). As shown in Fig. 4.1, we find gelatine Young’s

Figure 4.1: The fracture toughness Kc of gelatine solids as a function of their Young’s
modulus E. The continuous curve is the best fit through the data: Kc =

(1.4 ± 0.1)
√

E, with the 95% confidence limits (dashed lines). This shows
gelatine solids behave like ideal elastic, brittle solids and rocks; their fracture
toughness Kc and Young’s modulus E follow the theoretical relationship
expected for such solids: Kc =

�
2γsE with a best estimate for the gelatine

surface energy γs = 1.0 ± 0.2 J m−2 (Menand and Tait, 2002; Kavanagh
et al., 2012).
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modulus and fracture toughness are best fit by the following relationship:

Kc = (1.4 ± 0.1)
√

E, (4.6)

where the best estimate for the gelatine surface energy is

γs = 1.0 ± 0.2 Jm−2. (4.7)

We also found gelatine Young’s modulus E increases continuously with time towards
a plateau value E∞, which correlates linearly with gelatine concentration:

E = E∞
�
1 − e

−t/τ
�

with E∞ = 6000cgel − 7800, (4.8)

where the gelatine concentration cgel is expressed in wt.% and E∞ in kPa (R2 =

0.9992).

Finally, we demonstrated that analogue experiments that use solids of gela-
tine to simulate the propagation of magmatic intrusions in the elastic crust, such
as dykes or sills, are adequately scaled geometrically, kinematically and dynami-
cally when carried out at 5–10 ◦C and with gelatine concentrations of 2-5 wt.%
(Kavanagh et al., 2012).

4.2 Magma transport in dykes

4.2.1 Propagation of a single dyke

Dynamics of a buoyant dyke fed by a source with constant excess pressure

During my PhD, I wanted to address two questions: what determines the flux
of magma carried by a dyke? and how does dyke propagation change from being
initially pressure-driven to buoyancy-driven later on?

Up to the mid-1990s, most theoretical studies neglected the fracture resistance
of rocks when dealing with dyke propagation, mainly motivated by laboratory mea-
surements on rock samples (Atkinson, 1984). Based on scaling analysis, Lister and
Kerr (1991) showed that the pressure associated with the strength of rocks should
be negligible in comparison with the other pressure scales, especially magma vis-
cous pressure drop. However, field estimations give values 102–103 times greater
than those measured in the laboratory (e.g. Delaney and Pollard, 1981; Reches and
Fink, 1988). Moreover, it is difficult to believe that fracturing is negligible from
the very beginning of the propagation in the case of flawless solids. Hence the
question: how may a dyke grow from a regime where the fracture resistance of
rocks would be significant to a regime where it could be neglected?
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I therefore used laboratory experiments to study the propagation of a fissure
fed by a reservoir under a constant pressure. Fracturing processes are very difficult
to handle in numerical models whereas they are always present in laboratory exper-
iments using gelatine (Takada, 1990; Lister and Kerr, 1991). In these experiments,
aqueous solutions were injected under constant source pressure in gelatine solids,
care being taken to start fissure propagation from a well-characterized initial con-
dition, and the fissure velocity and injection rate were measured rather than being
imposed (Menand and Tait, 2002).

The results allowed evaluation of how the different driving and resistive pres-
sures evolved during fissure propagation and highlight the influence of the fracture
resistance of the host solid. Two propagations regimes were successively observed
(Fig. 4.2). In an initial transient propagation regime, the elastic pressure gener-
ated by the fissure was balanced by the fracture pressure; the fissure propagated
radially with decreasing velocity and increasing injection rate, controlled by the
source conditions. Subsequently, buoyancy overcame the source pressure as the
driving force, and vertical steady state propagation was established. The fissure
developed a bulbous head whose size was controlled by a balance between buoyancy
pressure and fracture pressure, hence equal to the buoyancy length Lb (equation
4.2). The steady-state values of velocity, flux, and strain energy release rate were
established at the transition between the two regimes and so reflected the source
conditions. Thus contrary to being negligible, rock fracture resistance would play a
significant role in determining the transition between regimes hence the subsequent
steady-state propagation velocity and magma flux.

An implication of this model is that greater horizontal dyke cross section reflects
larger source pressure, and that dykes propagating from shallow magma chambers
are unlikely to attain steady state. Additionally, these experiments place constraints
on the mechanics of time-dependent failure of the solid as a process that resists
fissure propagation: propagation velocity scales with the square of the height of
the fissure head, and fracture toughness of rocks would be length-scale dependent
rather than a material property.

Additional experiments investigated the effect of syn-propagation degassing on
dyke dynamics (Menand and Tait, 2001).

Influence of syn-propagation gas exsolution

As silicate magmas ascend towards the Earth’s surface, the reduction of pressure
causes dissolved volatile components to exsolve and form gas bubbles. At the
tip of a vertically oriented fissure, pressure is lowest because there is least rock
overburden. In addition, the high viscosities of magmatic liquids implies large head
losses as the fissure tapers to vanishing thickness (Barenblatt, 1962; Lister, 1990b).
As the fissure propagates towards the surface, ambient pressure decreases, driving



4.2 Magma transport in dykes 39

Figure 4.2: Schematic illustration of the fissure propagation regimes in cross section
(left) and in plane (right) views. Propagation is initially transient, driven
by the excess source pressure, and the fissure adopts a penny-shaped ge-
ometry. Once the fissure reaches a height Lb, steady, buoyancy-driven
propagation regime is achieved and the fissure propagates mainly vertically
with a bulbous head of length Lb (Menand and Tait, 2002).

further exsolution and expansion of the volatiles. Moreover, because of the no-slip
boundary condition at the dyke wall, magma near the dyke wall moves more slowly
than at the tip and, from mass balance, magma near the dyke centre moves faster
than the tip. This means that fresh magma that has not been degassed is always
being transported into the low-pressure region, where it should turn into foam.
The subsequent lowering of magma density provides a buoyancy force that tends
to keep it there. Intense shearing in this region may cause the foam to break down
and allow the gas to collect into a separate pocket at the tip, which grows during
propagation. This process is certainly complex but it is likely bubbles do not need
to move significant distances with respect to the surrounding magma to feed the
gas pocket. (Lister, 1990b) had shown theoretically, in the framework of a steadily
propagating fissure with a fixed volume of gas at its tip, that the fissure tends to
pinch off between the gas and the following liquid. Laboratory experiments were
thus performed to look at the transient propagation of a liquid-filled crack with a
gas pocket at its tip that grows with time.

The apparatus used for these experiments was essentially the same as before,
except that to simulate exsolution and expansion of volatiles at the crack tip, air
was continuously injected into the liquid-filled fissure some time after it began to
propagate. The air collected at the fissure tip and formed a pocket that grew
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continuously as the fissure propagated (Fig. 4.3). As magma analogue, aqueous
solutions of four different viscosities were used: 1, 41, 126 and 342 mPa s, achieved
by dissolving small amounts (less than 0.5 wt.%) of hydroxyethylcellulose.

Figure 4.3: Propagation of a liquid-filled fissure with a growing gas pocket at its tip.
(a) Initially the fissure propagates owing to the reservoir overpressure. (b,
c) As the injected air accumulates at the tip it dramatically deforms the
crack and dictates its width (b) as well as its breadth (c). From that point,
the dynamics of the fissure are entirely controlled by that of the air pocket
(Menand and Tait, 2001).

After the injection of air into the fissure, a bubble formed at its tip. When it
became higher than about 2 cm, the shape of the crack was deformed markedly
in both vertical cross-sections (Fig. 4.3b, c). When this happened, it was also
observed that the fissure velocity (which was the bubble velocity) increased abruptly
while the liquid injection rate stayed constant, indicating that the crack was closing.
Having both a closing crack and an accelerating air bubble indicated that the bubble
could separate from the liquid. This dynamic behaviour of the fissure was observed
irrespective of the liquid viscosity. However, the liquid injection rate, which was
not imposed but rather evolved naturally, was observed to decrease with the liquid
viscosity. The transition from fissure dynamics determined by those of the liquid
phase to fissure dynamics controlled by those of the gas phase occured when the gas
pocket had enough buoyancy to overcome the fracture resistance of the surrounding
solid.

These experiments provide a phenomenological model for the intense explosions
of relatively short duration that frequently precede large explosive and effusive vol-
canic eruptions, by as much as weeks to months in the case of very viscous magmas.
These explosions are intense but of short duration, and contain variable amounts
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(sometimes only very little) of juvenile magmatic component. The experiments
provide a phenomenological model whereby fast-moving, gas-rich pockets reach-
ing the surface ahead of the main liquid-filled fissure could be the origin of these
precursor eruptions. In the experiments, the period of time between the beginning
of precursor events and the main eruption, as well as the volume of erupted gas,
depends mainly on liquid viscosity. One general prediction of the model is that
precursor activity should be shorter in the case of basaltic volcanoes than for silicic
ones. This seems to be supported by accounts of the Paricutin eruption, which
indicate that gas and fine ash emissions began only hours before the main magma
conduit reached the surface (Foshag and Gonzalez, 1956), a time period consider-
ably shorter than the weeks to months typical of silicic eruptions such as that of
Mount Pinatubo in 1991 (Newhall and Punongbayan, 1996).

Influence of cooling and inelastic deformation

To leading order, rocks are assumed to deform elastically around dykes during
their propagation. But to which extent is this a valid approximation?

Solidified dykes are the end result of the flow of pressurized magma through
fractures, recording magma transport through the crust. Crustal rocks are usually
assumed to deform mainly elastically around propagating dykes, except for inelastic
deformation taking place near their very tip. Furthermore, it is usually assumed
these regions of inelastic deformation are minute compared to the size of dykes,
so that inelastic deformation can be neglected when evaluating their overall shape.
Thus the shape of a preserved solidified dyke is often used to calculate the pressure
in the crack at the time of solidification, on the basis that this shape reflects a
simple elastic deformation control with fixed overpressure. However, most studies
report only the maximum thickness of dykes and use this maximum opening to
infer magma overpressure at the time of emplacement, as opposed to using the
entire shape of the dykes.

Recently, Katherine Daniels (Bristol PhD student) and Janine Kavanagh from
Monash University tested these assumptions by measuring precisely the shapes
of well-exposed examples of basaltic dykes from the Isle of Rum, Scotland, and
Swartruggens kimberlite dyke swarm from Helam Mine, South Africa (Daniels et al.,
2012). The thickness of these dykes was measured at regular intervals along their
length; only dykes with crack tips exposed at both ends were selected for measure-
ment. The elastic model of Pollard and Muller (1976) predicts the two-dimensional
shape of a fluid-filled fracture subjected to both an internal overpressure and a re-
mote stress gradient. This model was used to fit the field data in order to assess
the extent to which elastic deformation can adequately describe dyke shape.

Dyke thickness measurements from the two data sets were analysed using the
model of Pollard and Muller (1976). Best overpressure and gradient estimates
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for the Rum and Swartruggens were determined by minimizing the least-squares
misfit between the model and the observations. Overpressures and stress gradients
estimated from the best-fit models were then used to generate a model to fit the
shape of an observed solidified magma-filled crack. By interpreting the static shape,
the assumption was made that the fluid-filled crack had reached a static equilibrium
and that flow effects as solidification occurred could be neglected. It was found
that the shapes of most of the dykes differ from that expected from elastic theory,
and that the difference is statistically significant. Most dykes appear too thin
at their centre and too thick and blunt at their tip. As a result, elastic models
overestimate both the magma pressures and regional stress gradients that opened
these dykes. Furthermore, irrespective of the goodness of fit, most estimated
values are implausibly high. Average calculated overpressure of ∼ 700 MPa and
stress gradient of ∼ 600 MPa/m are much larger than independent estimates based
on rock strength, particularly for the small-scale basaltic dykes on Rum.

As illustrated in Fig. 4.4, dyke shape can be explained by a combination of host-
rock inelastic deformation prior to and coeval with magma emplacement, which
would induce blunt dyke tips, and by magma chilling at the dyke tapering edges,
which would prevent its closure as magma pressure declines during emplacement;
this sequence provides the most complete explanation for the mismatches between
the data and the model (Daniels et al., 2012). The permanent wedging of the
dyke edges due to chilling has implications for crustal magma transport, since this
would prevent dykes from closing fully and thus would enable them to act as open
conduit for longer, as well as strain response in the crust due to dyke emplacement.
However, care should be taken when extrapolating the observations from the dykes
measured from the Swartruggens swarm and on Rum. Because the mean observed
dyke thickness was less than 1 m, it should not automatically be assumed that our
analysis will apply to larger dykes.

Dyke interactions with pre-existing faults

Another limitation of current dyke propagation models is that most if not all
of them assume surrounding rocks are devoid of faults. Yet, it is likely both faults
and propagating dykes interact with each other as suggested by geophysical and
field observations (e.g. Cayol et al., 2000; Gudmundsson et al., 2008). These inter-
actions might play an important role in the transport of magma through the crust,
especially in monogenetic volcanic fields. These are characterized by numerous
volcanic centers, each typically resulting from a single eruption. Therefore magma
must be transported from source to surface at different places yet within the same
field, which raises the question of the relative importance of 1) the self-propagation
of magma through pristine rock, and 2) the control exerted by pre-existing frac-
tures.

To address this issue, Nicolas Le Corvec came over to Bristol in 2010 as part
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C) Solidified magma in fracture

B) Chilled crack tips

A) Magma-filled fracture

Figure 4.4: Schematic illustration of the impact of cooling on preserved dyke geometry,
presented as three time steps in the evolution of a horizontal section through
the dyke. (A) Magma intrudes a fracture, and (B) cooling ensues at the
dyke margins. (C) Chilled fracture tip magma props the fracture open as
the overpressure reduces, preventing crack closure and creating the observed
dyke profile (solid line) with a thinner center and thicker tips. The dashed
line in C indicates the expected profile of a pressurized magma-filled fracture
in an elastic media. (Daniels et al., 2012).

of his PhD at the University of Auckland on the physical controls on monogenetic
basaltic volcanism. He carried out a series of analogue experiments to constrain the
interaction of a propagating dyke with pre-existing fractures. These experiments
involved the injection of air (an analogue for buoyant magma) into a 40-cm-wide
cubic gelatine solid, which was previously cut into its upper part to simulate pre-
existing fractures. The number of pre-existing fractures, the volume of the dykes,
their distance from the fractures and that separating fractures were systematically
varied to assess their influence on potential dyke-fracture interactions. Moreover,
the influence of two different stress fields was also tested: hydrostatic stress con-
ditions and an extensional stress environment.

The initial stress field of a solidified gelatine solid is hydrostatic (Takada, 1990).
Because gelatine solids have too weak a tensile strength, a tensile deviatoric stress
cannot be applied directly to them. Instead, a compressive load can be imposed
on their upper surface, and by imposing a no-displacement boundary condition on
two opposite vertical sides of the gelatine and a free-surface boundary condition
on the two other vertical sides, this vertical load translates into a horizontal defor-
mation. Because gelatine solids are nearly incompressible (ν � 0.5), this horizontal
deformation �x is directly related to the compressive vertical load σz (Le Corvec et
al., submitted):

�x = −�z =
3
4
σz

E
, (4.9)
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These experiments show that the volume of the dykes, the distance and angle
between dykes and fractures as well as the distance separating adjacent pre-existing
fractures and their dip all influence the dyke trajectory, and thus whether a dyke in-
teracts and exploits a pre-existing fracture (Fig. 4.5). Dyke geometry and dynamics
are also affected by both the presence of the fractures and the dyke volume; dykes
propagating in between fractures tend to decelerate. The natural length-scale in
these experiments is the buoyancy length Lb of the dykes. Interaction between a
dyke and a fracture is observed when they are separated by a distance smaller than
∼ 0.5 Lb or when adjacent fractures are separated by less than ∼ Lb. Lower fracture
dip increases the likelihood for interaction. The presence of pre-existing fractures
affects also the dynamics of dykes by decreasing their ascent velocity, although
this decrease is rather small (less than 10%). The experiments do not reveal any
evidence for a potential effect of the stress regime on the mechanics and dynamics
of the dykes (Le Corvec et al., submitted).

Figure 4.5: Successive photographs of a dyke rising in between two pre-existing fractures
(black lines). Upon entering the region bounded by the fractures, the dyke
modifies its trajectory (white curve) and ultimately intersects one of them.
The vertical white scale at the bottom of each photograph is 5 cm long,
and the stress field was hydrostatic (Le Corvec et al., submitted).

Uspcaled to magmatic conditions, interactions are expected for dykes and frac-
tures separated by less than about 200 m, and dykes with a volume less than about
10−2 km3 would experience a small velocity decrease. This study shows how the
presence of pre-existing crustal fractures can influence the direction of propaga-
tion and the dynamics of dikes, and thus help magma to erupt at different places
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within a volcanic field. These heterogeneities should therefore be considered when
studying the transport of magmas in the upper parts of the crust.

4.2.2 Repeated dyke intrusions: rifts and swarms

However, dykes rarely occur as single entities, and I am interested in under-
standing the spatial and temporal relationship of repeated dyke injection in the
same crustal region. I have investigated this relationship at two different geological
scales: the repeated injection of dykes into the Dabbahu-Manda-Harraro segment
of the Red Sea Rift in Afar (regional scale); and the formation of giant dyke swarms
(crustal scale).

Rifts

The emplacement of magma in dykes is an effective mechanism for releasing the
tensional stress which builds up at divergent plate margins, and can lead to both
fissure eruptions and normal faulting. In sub-aerial magmatic rifted margins, for
example the East African Rift, the crust slowly spreads via the processes of dyke in-
jection, normal faulting and volcanic eruption to form new oceanic crust. However,
whether faulting, stretching or magma intrusion dominate the extension remains
ambiguous (Bastow and Keir, 2011). The magmatic activity that started in Afar,
Ethiopia, with a large dyke intrusion in September 2005 and has involved fourteen
other intrusions since then offers the opportunity to study continental break up
first-hand. The majority of the strain at the Afar triple junction is accommodated
by magma intrusion (Ebinger and Casey, 2001). This is supported by the obser-
vation that repeated dyke injections can produce the morphology of the recently
intruded Dabbahu-Manda-Harraro segment of the Red Sea Rift in Afar (Wright
et al., 2006), and that magma intrusion, not faulting due to ductile stretching,
is taking place in this part of Ethiopia (Bastow and Keir, 2011). However, the
thermal structure, and by inference the strength, of an extending plate over time
is poorly constrained.

The main part of Katherine Daniels’ PhD at Bristol University was thus de-
voted to modelling the thermal evolution of a spreading rift margin where dykes
are intruded repeatedly, which was then applied to the geological setting of the
actively spreading Main Ethiopian and Red Sea rifts. Katherine developed a ther-
mal conduction model that simulates the repetitive intrusion of basalt dykes into a
rift by solving the heat-flow equation, incorporating the latent heat of fusion, both
in one and two dimensions. This requires to define a relationship X(T ) between
melt fraction and temperature, and Katherine defined a linear piece-meal relation-
ship using both MELTS and Rhyolite-MELTS with the composition of samples of
recently erupted basalt (2007–2009) collected from Afar (Ferguson et al., 2010).
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The model was run for multiple injection of basaltic dykes at constant tem-
perature, each instantaneously intruded into a basaltic crust, sequentially and at a
constant rate. The case of intra-accretion, where each successive dyke is emplaced
through the centre of the previous one, was considered with a dyke injection fre-
quency ψ proportional to the spreading rate S of the rift: S = 2wψ, i.e. spreading
is entirely accommodated by dyke injections. The effect of injection frequency,
geothermal gradient, and temperature and composition of the injected material on
the thermal evolution of the crust were investigated.

The temperature of the intruded region rises gradually up to reaching the solidus
after an incubation time tc: prior to tc, each dyke injection solidifies completely be-
fore the arrival of the next, and from time tc onward melt starts accumulating in the
intruded region. When considering the different parameters that were systemati-
cally varied, spreading rate has by far the largest effect on the thermal evolution of
the intruded crust. Indeed, the time taken to reach a given isotherm some distance
away from the rift axis is linearly correlated with the spreading rate: the spreading
rate controls the rate at which heat is transported away from the injection locus,
while diffusion of heat by conduction is comparatively minimal. Additionally, the
spreading rate controls also the time taken to reach the solidus, the incubation
time tc, at the injection locus: tc is found to scale like S

−2, i.e. tc scales with
the injection rate like ψ−2. The model predicts also the extent of the region with
potential melt and its evolution with time, and has been compared with data from
MT surveys (Fig. 4.6) conducted by researchers at the Universities of Edinburgh
and Addis Ababa. MT data are consistent with repeated dyke injections in the
Manda Harraro-Dabbahu rift segment during 1 to 2 Ma (Fig. 4.6).

These results highlight the key control of the injection rate (here commensurate
with the spreading rate) on the thermal evolution of the intruded rift. The model
provides also an estimate of the time required to heat a rifting margin to the
temperature for brittle-ductile transition and thus a constraint on the timescale
over which the transition from continental rifting to sea floor spreading occurs.

This numerical modelling was complemented by analogue experiments designed
to quantify the spatial relationship between successive dykes injected into a gela-
tine solid subjected to a remote tensile stress σy (this tensile stress was imposed
as described in the previous section on dyke interactions with pre-existing faults).
These experiments involved the repeated injection of a vegetable oil at a tempera-
ture above its solidification temperature of 31 ◦C (Galland et al., 2006) into a much
colder gelatine solid. Each intrusion was let to solidify before the next injection
of fluid was carried out. This allowed the spatial relationship between successive
intrusions to be measured at the end of the experiments, and to relate them to
the remote tensile stress σy, the initial distance ds between successive fluid injec-
tions, the length of the experimental dykes 2a, and their overpressure ∆P. This
overpressure was derived from the shape and thickness of the dykes at the end of
the experiment after excavating the intrusion out of the gelatine solid.
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Figure 4.6: MT survey (WSW-ENE traverse line across the Manda Harraro-Dabbahu
rift segment, Afar) compared with the numerical model results for S =

10 mm/yr. Three sets of four coloured lines show the model results after
500 ka (red lines), 1 Ma (green lines) and 2 Ma (white lines), and are
symmetrical about the rift axis (solid black line). The sets of lines show the
position of the solidus (solid lines) and the 600 ◦C isotherm (dashed lines),
which represents the brittle-ductile transition (Daniels, 2012).

Each intrusion modifies locally the pre-existing, and initially tensile, stress field.
As a result, a nearby subsequent intrusion would tend to orient itself according to
this stress perturbation. Dimensionless analysis suggest that the rotation angle θ
between two successive injections depends on two dimensionless ratios: the ratio of
the distance separating the injections to the half-length of the first injection, ds/a;
and the ratio of the remote tensile stress to the overpressure of the first injection,
σy/∆P:

θ = f

�
ds

a
,
σy

∆P

�
. (4.10)

The effect of both ratios should be independent. Analysis of the stress perturbation
induced by a single intrusion suggests it should decay with distance d away from
the intrusion as 1/[1 + d

2/(a2√π)]. Furthermore, in the case of an intrusion with
a fluid pressure much greater than the remote stress, we expect a second nearby
intrusion to be strongly affected and to orient itself with a 90 degrees angle relative
to the first one. In the opposite case, we expect the rotation angle θ to be zero.
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Also, the fluid pressure must always remain positive (it can only be equal to zero
at minimum). These considerations suggest the following relationship between
rotation angle θ and distance and stress ratios:

θ
� σy

∆P
≤ 1
�
=

π
2

�
1 + σy

∆P

�

1 + d
2
s

a2 √π

and θ
� σy

∆P
≥ 1
�
= 0. (4.11)

As shown in Fig. 4.7, within uncertainty all measured experimental rotation angles
follow the expected theoretical relationship given by equation (4.11).

The stress change caused by the opening of the September 2005 dyke in Afar
has been estimated to be 30–80 MPa (Grandin et al., 2010; Hamling et al., 2010),
while the tectonic force available for rifting has been estimated to be 4.2 Tera
N/m (Bialas et al., 2010), which distributed over the thickness of the crust in Afar
would correspond to a tensile stress of 170 MPa. Thus the magma overpressure
associated with the opening of the September 2005 dyke would be in the range 200
to 250 MPa, hence correspond to a stress ratio −σy/∆P of 0.68 to 0.85. Rotation
angles between successive dyke injections have been estimated to range from 1◦

Figure 4.7: Rotation angle θ between successive injections as a function of normalised
distance ds/a and normalised stress σy/∆P. Within uncertainty all measured
angles (red points) fall on the expected theoretical surface (equation 4.11).
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Figure 4.8: Histogram of the injection spacing ds generated by Monte Carlo simulations
for the range of rotation angles and stress ratios estimated for the recent
Afar dyking sequence (Daniels, 2012).

to 16◦ from estimates of the dyke strikes. Using this range of rotation angles
and stress ratios, a range of expected dyke spacings can be calculated. Fig. 4.8
shows the dyke spacing distribution that results from a Monte Carlo simulation that
randomly drew a thousand values from the estimated ranges of rotation angles and
stress ratios each. This distribution provides an estimate of the most likely injection
spacing values that would be expected for the recent Afar dyking sequence. The
most frequently occurring injection spacing is 4–5 km (∼ 15%) whereas 80% of
the generated spacings are ≤ 10 km. Thus for the range of stress ratios and
rotation angles estimated in Afar, the vast majority of dyke intrusions are predicted
to intrude within 10 km of the previous one and most frequently between 4 and 5
km, which would be consistent with MT data (Fig. 4.6).

Dyke swarms

As commonly observed, dykes often grow next to other dykes, evidenced by
the widespread occurrence of dyke swarms made of several hundreds of individual,
sub-parallel dykes originating from apparently a single source region. Dyke swarms
appear to be ubiquitous and can be found over a wide variety of tectonic settings
and length scales, from individual volcanic dyke systems, to mid-ocean ridges,
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to giant mafic dyke swarms that extend over hundreds to several thousands of
kilometers in length (Ernst and Baragar, 1992, see also Fig. 4.9). In giant dyke
swarms, dykes are observed to maintain a finite spacing from their neighbours that
is tens to hundreds of times smaller than their length. Yet, in spite of their ubiquity,
dyke swarms have been studied rather descriptively. As a result, field data that
could inform about the mechanics and dynamics of dyke swarms remain scarce.

Figure 4.9: The 1270 Ma giant Mackenzie mafic dyke swarm in the northwestern Cana-
dian Shield (after Le Cheminant and Heaman, 1989), whose dykes extend
over more than 2,000 km with an average thickness of 30 m (Fahrig, 1987).
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Furthermore, to date, mechanical models have not been able to clarify whether
there exists an optimum, or natural spacing between the dykes. And yet, the
existence of a natural spacing is at the heart of why dykes grow in swarms in the
first place.

I developed a Finite Element Method (FEM) numerical model (using the Comsol
Multiphysics software) to study the propagation of a swarm of identical, parallel and
equally-spaced two-dimensional dykes away from a single source (Menand, to be
submitted). In this model, dykes are modelled as edge-cracks and stress interactions
between them are quantified by calculating the stress intensity factor KI at their
tip. In a first quasi-static case, the dynamics of the dykes were ignored and various
dyke driving pressures were considered: buoyancy, a constant source overpressure,
a remote tectonic stress or any combinations of these driving pressures. In a second
case, dyke dynamics were accounted for by imposing a constant source overpressure
and a linear pressure gradient along the dykes so that their overpressure was zero
at the tip.

In both the quasi-static and dynamic cases, when the cracks are separated by a
distance 2d that is greater than five times their length a, the stress intensity factor
was found to be independent of the crack spacing, and thus could be expressed by
the classical expression for a single crack with uniform load embedded in an infinite
elastic medium (Tada et al., 2000): KI = ∆P

√
a for the static case (∆P is the

average driving pressure over the entire length of the crack), and KI = ∆P0
√
πa

for the dynamic case (∆P0 is the constant source excess pressure). That the stress
intensity factor KI does not dependent on the spacing indicates that cracks do not
interact with one another when 2d > 5a; in effect, although the cracks belong to
the same swarm, they do not feel the presence of their neighbours. This provides
also an a posteriori positive test of the numerical scheme, in that the computations
retrieve the case of a single crack embedded in an infinite elastic solid.

When cracks are closer to each other such that 2d < 5a, cracks do interact
with each other and the previous expressions for KI are no longer valid. In the
quasi-static, it is found instead that the stress intensity factor at their tip can be
expressed by a single relationship, irrespective of the exact type of crack loading
(internal pressure, remote deviatoric stress, or buoyancy):

KI =

�
3
4
∆ρga + ∆P0 + σ0

� √
d, (4.12)

where ∆ρ is the density difference between the host rocks and the fluid in the crack,
g is the gravitational acceleration, ∆P0 is the constant source overpressure, and σ0

the remote stress they experience. In the dynamic case, KI can be expressed as

KI =
1
π

3
2

∆P0

a
d

3
2 . (4.13)

As shown in Figure 4.10, equations (4.12) and (4.13) holds over 3 and almost 5
orders of magnitude, respectively. These results show that closer dykes will need
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Figure 4.10: Stress intensity factor at the tip of two-dimensional edge-cracks separated
by a distance 2d < 5a. Left: quasi-static case. Right: dynamic case
(Menand, to be submitted).

higher driving pressures to exceed a given rock fracture toughness Kc and propagate.
Another result is that, everything else being equal, there exists a minimum dyke
spacing below which the stress intensity factor KI at the dyke tip will be smaller than
the rock fracture toughness Kc hence precluding dyke propagation. This suggests
that simultaneous dyke propagation in a swarm would be unstable, and would
favour either the merging of adjacent dykes or the arrest of some of them so that
dyke spacing is locally increased, which in turn would increase the stress intensity
factor and so enable longer dykes to propagate. However, these expressions are
only valid for two-dimensional dykes, for which the propagation length is much
shorter than their breadth (their second larger dimensions).

With Andrew Bunger and Xi Zhang, both from CSIRO, Sandy Cruden, from
Monash University, and Henry Halls, from the University of Toronto, we have
developed another mechanical model for the horizontal propagation of multiple,
closely-spaced blade-like dykes (Bunger et al., submitted). This model is not de-
signed to solve analytically or numerically the governing equations for multiple dyke
propagation. Rather, the model is used to derive appropriate scaling relationships
for understanding the behaviour of the dominant terms in an energy balance. The
ultimate aim is to determine whether a characteristic dyke spacing arises naturally
from this energy balance.

We consider a model for an array of equally-spaced blade-like dykes that are
propagating horizontally through brittle host rock. This model is justified for large
dyke swarms that grow to be many times greater in length than the thickness of
the crust. For the sake of simplicity, we assume the swarm is characterized by a
single spacing between adjacent dykes, and we investigate how this spacing affects
the propagation of the dykes; details of dyke initiation and early growth are not
considered. Practically, the model is valid when the dyke length is at least 3 to 5
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times greater than their height. When this is the case, it is valid to assume: 1)
fluid flow to be unidirectional along the horizontal dyke-propagation direction, and
2) pressure to be uniform within each vertical planar cross section of the hydraulic
fracture with the pressure and thickness related according to a local, plane strain
condition. Both closely- and widely-spaced dykes are considered along with two
limiting cases for the source condition: a constant source pressure (corresponding
to an infinitely large and compressible source), and constant influx magma source
(the case of a small, incompressible source).

We examine the model to find energetically optimal dyke spacings associated
with both constant-pressure and constant-influx magma sources. Energy considera-
tions indicate that for a constant-pressure source, the most energetically favourable
condition amounts to maximizing Qp0, where Q is the inlfux of magma leaving the
source and feeding the dykes and p0 is the constant source pressure. For the
constant-influx source, the most energetically favourable situation is that which
minimizing Qp, where p is the pressure in the source. In both case, the prod-
uct Qp represents the net dyke propagation work rate and can be estimated from
scaling analysis.

From this analysis we find that the constant-pressure source leads to an opti-
mal spacing that is equal to the height of the blade-like dykes. The constant-influx
source case, on the other hand, leads to two candidates for an optimal spacing,
one which is expected to be around 0.3 times the dyke height and the other which
is expected to be around 2.5 times the dyke height. We find also that for both
constant-pressure and constant-influx sources, with time it becomes more advan-
tageous energetically to initiate new dykes in between previous ones. Thus dyke
spacing in a dyke swarm will decrease with time as more dykes are injected.

Comparison with measurements on dyke swarms in both Iceland and Canada
lend initial support to our predictions, and we conclude that dyke swarms are indeed
expected to have a natural spacing and that this spacing scales with, and is on the
order of, the height of the blade-like dykes that comprise the swarm.

4.3 Formation of sills and magma storage in the
crust

One must keep in mind that not all dykes lead to eruptions. In fact, the vast
majority of dykes stall en route and remain trapped in the crust. Ratios of intrusive
to extrusive magma volumes have been estimated to be of the order of 10:1 (Crisp,
1984; Shaw, 1985) whilst Gudmundsson et al. (1999) have calculated that the
actual proportion of dykes reaching the surface in Iceland and Tenerife, Canary
Islands, is only a few %. In many cases, those dykes which did not make it to
the surface are associated with the formation or feeding of sub-horizontal sills (e.g.
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Gudmundsson et al., 1999; Burchardt, 2008). Sills could therefore be envisaged as
either arresting the advance of dykes or, conversely, forming as a result of dykes
being prevented from propagating further. Repeated sill intrusion with evolution
to laccolithic bodies (Pollard and Johnson, 1973) has also been proposed as a
mechanism for forming crustal magma chambers and granite plutons (John, 1988;
Hutton, 1992; Parsons et al., 1992).

Several models have been proposed for the arrest of dykes and associated sill
formations: a buoyancy control, with sills emplacing at crustal levels where their
magma becomes neutrally buoyant (Gilbert, 1877; Corry, 1988); a rheology control,
where a rheology contrast between ductile rock layers and adjacent elastic, brittle
strata would help stop feeder dykes and promote sill formation (Parsons et al.,
1992); a rigidity control, as suggested by the many field studies showing that
when sills intrude sedimentary sequences they commonly abut stiff rock layers,
thus suggesting that these rigid layers could have arrested the vertical propagation
of their feeder dyke and encouraged sill formation; or a stress control, because
since igneous intrusions tend to propagate perpendicular to the least compressive
stress (Anderson, 1951) sills should form when the least compressive stress is or
becomes vertical.

We first tested the validity of the buoyancy and rigidity controls using analogue
experiments with gelatine solids (Kavanagh et al., 2006). These experiments show
that under lithostatic conditions the formation of sills requires the presence of
interfaces. However, the presence of an interface is not sufficient. The experiments
show that sills could only form when their feeder encountered an interface that
separates a rigid layer that overlies a less rigid, lower layer (Fig. 4.11). In the
opposite case, where a less rigid layer lies on top of a more rigid one, feeders would
not intrude the interface between the two layers but would instead cross-cut that
interface and carry on their propagation as vertical dykes (Kavanagh et al., 2006).
Additionally, the properties of the interface itself can also have an important effect
on whether a dyke would be deflected and intrude the interface (He and Hutchinson,
1989). This is supported by the analogue experiments of Kavanagh et al. (2006),
who report instances where a dyke was expected to form a sill, because a rigid layer
was overlying a less rigid layer, but instead was arrested by the interface without
intruding the interface nor penetrating the upper layer; the interface was inferred
to be too strong to be intruded by the dyke.

These experiments show also that contrary to dykes, sill dynamics are con-
trolled by viscous dissipation of the fluid along their length (Kavanagh et al., 2006;
Menand, 2008). If this interpretation is correct, this would have consequences for
the size and shape of sills. Viscously-controlled dynamics would enable sills to
propagate further and thus to grow thicker than dykes of similar magmas. These
dynamics would also enable sills to propagate faster and thus to induce non-elastic
deformations in surrounding rocks that could deviate them from the interface they
originally follow. This could provide a mechanism for or assist the formation of
concave saucer-shaped sills in sedimentary basins.
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Figure 4.11: A) Photograph of a rigidity-controlled sill formation (Kavanagh et al.,
2006). The rigidity modulus of the upper layer was 10% larger than that
of the lower layer. The feeder dyke propagated from the injection point
toward the interface, reached it and then intruded the interface as a sill
in both opposite directions from the point where the dyke intersected the
interface. Note the protruding dykelet that extended beyond the interface
and into the more rigid upper layer; this dykelet was short-lived and stalled
whilst the sill continued propagating. The arrows indicate flow directions.
B) Rigidity contrasts (EU/EL) greater than unity are a prerequisite for sill
formation.

Although these experiments were inconclusive regarding the role of neutrally
buoyant levels, other studies suggest a neutral buoyancy alone is not expected to
control sill formation, although it could arrest the vertical propagation of a rising
buoyant dyke (Lister and Kerr, 1991; Pinel and Jaupart, 2004). However, overpres-
sures large enough for sill intrusion could potentially develop provided high-density
dykes manage to propagate far enough into low-density rocks (Taisne and Jaupart,
2009). Also, because a level of neutral buoyancy corresponds to the crustal level
where a dyke is no longer buoyant and thus does not have any more internal vertical
driving force, a dyke would become even more sensitive to horizontal compressive
stress near its level of neutral buoyancy. So in principle, levels of magma neutral
buoyancy could assist the formation of stress-controlled sills because, provided ad-
equate stress conditions, levels of neutral buoyancy would represent advantageous
horizons for sill emplacement.

How adequate stress conditions lead to sill formation was then investigated by
Menand et al. (2010). Transition from dyke to sill is expected when the minimum
compressive stress rotates from being horizontal, such as in extension tectonic en-
vironment, to being vertical, which would be the case in a horizontally compressive
stress field. However, the orientation of an intrusion does not solely depend on
the principal stress directions. It depends also on the magma overpressure, in that
intrusions with higher overpressure need to propagate over greater distance before
they can fully adjust their propagation to the principal directions (Mériaux and
Lister, 2002). To quantify the conditions for the formation of stress-controlled
sills, Menand et al. (2010) carried out analogue experiments where air was injected
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into a solid of gelatine that was then compressed laterally so that the minimum
deviatoric compressive stress became vertical. The lateral deviatoric compressive
stress was applied to the gelatine solid by inserting plastic sheets between the solid
gelatine and the lateral walls of its container, thus imposing a horizontal deforma-
tion �x proportional to the thickness of these sheets hence a compressive lateral
stress σx = 4E�x/3 (E is the Young’s modulus of the gelatine solid). Air acted as
an analogue for buoyant magma. As shown in Fig. 4.12, air-filled cracks initially
driven vertically by their buoyancy changed their trajectory and ultimately formed
sills in response to the minimum compressive stress being vertical. But this tra-
jectory re-adjustment was not instantaneous. Cracks of higher buoyancy required
greater distances to re-orient themselves fully, and they could reach the surface in
spite of the vertical minimum compressive stress, and therefore not form sills, if
these distances happened to be larger than that separating the intrusions from the
surface.

Applying dimensional analysis to their experimental data, Menand et al. (2010)
related the vertical distance d the buoyant crack needed to propagate before turning
into a sill to the buoyancy of the crack and the horizontal maximum deviatoric
compressive stress σx. Upscaled to magmatic conditions over a range of reasonable
geological values — tensile strength of homogeneous host rock Ts = 1–10 MPa,
fracture toughness Kc = 1–1000 MPa m1/2, density difference between dyke and
host rock ∆ρ =100–500 kg/m3, and σx = 0.1–100 MPa — the vertical distance d

can be expressed as a function of Ts as
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In a homogeneous and elastic crust, and over this range of geological conditions,
a dyke would have to travel a distance of the order of at least 200 m and in most
cases of the order of 1 to 10 km to adjust to a vertical minimum compressive stress
and turn into a sill. This distance is typically greater than the average thickness of
lithological units, and therefore suggests that in most cases crustal heterogeneities
and the distance between interfaces that are favourable to sill intrusions will play
a larger role than remote tectonic stress rotation in determining where in the crust
sills form, unless these favourable interfaces are several hundred meters or more
apart.

This study has also implications for magma transport through dykes. The
characteristic length-scale for stress-controlled sill formation is found to be typ-
ically greater (and in many instances much greater) than the average thickness
of lithological units, in accord with previous studies (e.g. Dahm, 2000; Watanabe
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Figure 4.12: (a-c) Series of photographs of a stress-controlled sill formation (Menand
et al., 2010). The ratio of initial crack buoyancy to horizontal compressive
stress was 2.1. (a) The injection of air in the gelatine solid created a crack
that was initially driven vertically by the air buoyancy. (b) The gelatine
solid was compressed laterally, and so the crack experienced an additional
horizontal compressive stress to which it reacted by changing its direction
of propagation. (c) Ultimately, the crack rotated by 90◦ and formed a
sill before coming to a stop. (d-e) Upscaling to magmatic conditions:
the vertical distance a dyke has to propagate before turning into a sill is
represented as a function of the ambient horizontal compressive stress for
different rock tensile strengths Ts (equation 4.14) and fracture toughnesses
Kc (equation 4.15); the grey areas represent a range of density differences
between 100 and 500 kg/m3.

et al., 2002). This therefore suggests that buoyant dykes would reach the surface
even in a compressive hence a priori unfavourable tectonic environment if the char-
acteristic length-scale for dyke-to-sill transition is greater than the distance that
separates them from the surface. This contrasts with the field observations that
only a few percentage of dykes reach the surface, and that not all the dykes that
do not reach the surface turns into sills (Gudmundsson et al., 1999). In fact, this
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apparent contradiction would reinforce the point made by previous studies that
crustal heterogeneities play an important role in controlling sill formation hence
the fate of many dykes.

Reviewing these different mechanisms and the field evidence for rheology-
controlled sills, Menand (2011) suggests that principal physical controls include
rigidity contrasts, where sills form at the interface between soft strata overlaid by
comparatively stiffer strata; rheology anisotropy, where sills form within the weakest
ductile zones; and rotation of deviatoric stress, where sills form when the minimum
compressive stress becomes vertical. Comparatively, the concept of neutral buoy-
ancy is unlikely to play a leading control in the emplacement of sills, although it
could assist their formation, whereas the efficiency of a stress-control would be
strengthen by the presence of heterogeneous crustal layers, thus highlighting the
dominant role played by crustal heterogeneities.

These mechanical considerations are key if we are to understand how intrusions
can stall and magma be stored in some regions of the crust, and by extension
the thermal evolution of these crustal regions, that is the formation of plutons
(sensu lato) and magma chambers. Indeed, an increasing number of geophyscial
and geochronological data as well as geological observations is currently modifying
our understanding of pluton construction. When plutons were initially envisaged
as quasi-spherical bodies growing slowly and essentially by an overall inflation,
they are now recognized as growing incrementally by the accretion of successive
and relatively small magma pulses, over variable periods of time, from less than a
century to millions of years, depending on geodynamic setting and source fertility.
I suggest that the formation of a sill provides favourable rigidity anisotropy for
the emplacement of subsequent sills so that plutons grow by over-accretion, under-
accretion or even mid-accretion of successive sills (Menand, 2008, 2011). In accord
with field data, this model predicts these plutons grow mainly by vertical expansion,
representing the cumulative thickness of their internal sills, while maintaining a
comparatively constant lateral extend. The model also predicts that the time-scale
over which laccoliths form is essentially determined by the cumulative time between
successive sill intrusions. In any case, pluton growth by small increments brings
new challenges and has far-reaching implications. The evolution of magma bodies
is related to the processes that control the timescale and the spatial distribution
of the successive pulses. Depending on their emplacement rate and on their ability
to amalgamate, repeated magma pulses can either rapidly solidify or ultimately
build up an active magma chamber. Thus understanding how magma bodies grow
has fundamental implications for the link between volcanism and plutonism as well
as for magma differentiation and ultimately for our understanding of the growth
and evolution of the Earth’s crust. The concept of pluton incremental growth
challenges our understanding as well as our field interpretations of the processes
involved during pluton construction. Indeed, these processes and how they operate
in governing the emplacement and growth of plutons, both in space and time, are
still debated (Menand et al., 2011).
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8$)8+:+,%( ,)0+$/( ,1% ('$5+&%? +34-%2, 8$%(('$% /%&$%+(%(? /$-.-2:
5'$,1%$ %<()6',-)2 +2/ %<8+2(-)2 )5 ,1% .)6+,-6%(! Q)$%).%$? 4%&+'(%

)5 ,1% 2)7(6-8 4)'2/+$* &)2/-,-)2 +, ,1% /*=% 0+66? 3+:3+ 2%+$ ,1%
/*=% 0+66 3).%( 3)$% (6)06* ,1+2 +, ,1% ,-8 +2/? 5$)3 3+(( 4+6+2&%?
3+:3+ 2%+$ ,1% /*=% &%2,$% 3).%( 5+(,%$ ,1+2 ,1% ,-8! C1-( 3%+2(
,1+, 5$%(1 3+:3+ ,1+, 1+( 2), 4%%2 /%:+((%/ -( +60+*( 4%-2:
,$+2(8)$,%/ -2,) ,1% 6)078$%(('$% $%:-)2? 01%$% -, (1)'6/ ,'$2
-2,) 5)+3! C1% ('4(%W'%2, 6)0%$-2: )5 3+:3+ /%2(-,* 8$).-/%( +
4')*+2&* 5)$&% ,1+, ,%2/( ,) =%%8 -, ,1%$%! V2,%2(% (1%+$-2: -2 ,1-(
$%:-)2 3+* &+'(% ,1% 5)+3 ,) 4$%+= /)02 +2/ +66)0 ,1% :+( ,)
&)66%&, -2,) + (%8+$+,% 8)&=%, +, ,1% ,-8? 01-&1 :$)0( /'$-2:
8$)8+:+,-)2! C1% &)386%< /*2+3-&( )5 ,1-( 8$)&%(( :) 4%*)2/
,1% (&)8% )5 )'$ 0)$=Z 1)0%.%$? 0% -25%$ ,1+, 4'446%( /) 2), 2%%/ ,)
3).% (-:2-9&+2, /-(,+2&%( 0-,1 $%(8%&, ,) ,1% ('$$)'2/-2: 3+:3+
,) 5%%/ ,1% :+( 8)&=%,! [2% ,1%)$%,-&+6 -2.%(,-:+,-)2 1+( (1)02? -2
,1% 5$+3%0)$= )5 + (,%+/-6* 8$)8+:+,-2: 9(('$% 0-,1 + 9<%/ .)6'3%
)5 :+( +, ,1% ,-8? ,1+, ,1% 9(('$% ,%2/( ,) 8-2&1 )55 4%,0%%2 ,1% :+(
+2/ ,1% 5)66)0-2: 6-W'-/Y! \% 8%$5)$3%/ 6+4)$+,)$* %<8%$-3%2,( ,)
6))= +, ,1% ,$+2(-%2, 8$)8+:+,-)2 )5 + 6-W'-/7966%/ &$+&= 0-,1 + :+(
8)&=%, +, -,( ,-8 ,1+, :$)0( 0-,1 ,-3%!
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*9%2+&9 )*(: ,(.$% /2.%0-)*)&9 90(.&)&0(-4 ;&<,&. 7*- )/$( &(=$9)$. )/%0,1/ )/$ 1$+*)&(

3%0' * %$-$%>0&% ,(.$% 90(-)*() 0>$%#%$--,%$4 ?0 -&',+*)$ $"-0+,)&0( *(. $"#*(-&0( 03

>0+*)&+$- *) )/$ 9%*9: )&#5 *&% 7*- 90()&(,0,-+2 &(=$9)$. &()0 )/$ +&<,&.@8++$. 8--,%$ -0'$

)&'$ *3)$% &) A$1*( )0 #%0#*1*)$4 ?/$ *&% 90++$9)$. *) )/$ 8--,%$ )&#4 B2$. *<,$0,-

-0+,)&0(- 03 30,% .&33$%$() >&-90-&)&$- 7$%$ ,-$.C D5 ED5 DFG *(. HEF 'I* -5 *9/&$>$. A2

.&--0+>&(1 -'*++ *'0,()- J+$-- )/*( K4L 7)MN 03 /2.%0"2$)/2+9$++,+0-$4 ?/$-$ +07 #0+2'$%

90(9$()%*)&0(- *++07$. -0+,)&0( >&-90-&)&$- )0 A$ >*%&$. 7&)/0,) *33$9)&(1 0)/$% #%0#$%)&$-4

I%0#*1*)&0( >$+09&)2 7*- %$90%.$. A2 >&.$0)*#&(1 )/$ $"#$%&'$()O +&<,&. &(=$9)&0( %*)$ 7*-

'0(&)0%$. 0( * #$%-0(*+ 90'#,)$% A2 '$*-,%&(1 0,)#,) 3%0' )/$ %$-$%>0&%4 !"#$%&'$()*+

.,%*)&0(- 7$%$ +$-- )/*( L'&(5 * )&'$ #$%&0. -/0%) $(0,1/ )0 90(-&.$% )/$ %/$0+01&9*+

A$/*>&0,% 03 )/$ 1$+*)&( )0 A$ #,%$+2 $+*-)&9FE4 )5 P$+*)&0(-/&# A$)7$$( Q0,(1R- '0.,+,- !

*(. 3%*9),%$ )0,1/($-- "9 03 )/$ 1$+*)&(4 ! 7*- 9*+9,+*)$. 3%0' )/$ '$*-,%$. >$%)&9*+

.$S$9)&0( &(.,9$. A2 * 7$&1/) 0( )/$ 3%$$ -,%3*9$ 03 )/$ 1$+*)&(4 "9 7*- .$8($. *- )/$
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><8%$-3%2,+6 +88+$+,'( +2/ ,%&12-W'%( +$% /%(&$-4%/ -2 d-:! G+!
h)'2:N( 3)/'6'( +2/ 5$+&,'$% ,)':12%(( 1+.% 4%%2 3%+('$%/
-2/%8%2/%2,6* ', 0'&/ -2 )'$ %<8%$-3%2,+6 +88+$+,'(! C1%(% &)27
5)$3 ,) ,1% %<8%&,%/ ,1%)$%,-&+6 $%6+,-)2(1-8 5)$ + 8'$%6* %6+(,-&
()6-/GJ?GX @d-:! G4A! C1-( =2)06%/:% )5 ,1% 5$+&,'$% ,)':12%(( )5 ,1%
:%6+,-2 8$).-/%( +2 -38)$,+2, ,%&12-&+6 4+(-( 5)$ ,1% (,'/*! d-:'$% I
(1)0( 8-&,'$%( )5 ,0) /-55%$%2, (,+:%( )5 +2 %<8%$-3%2,! V2-,-+66* ,1%
6-W'-/7966%/ &$+&= 8$)8+:+,%( .%$,-&+66* +2/ $+/-+66* )0-2: ,) ,1%
$%(%$.)-$ ).%$8$%(('$% @d-:! I+A! L5,%$ 0% 4%:+2 ,) -2B%&, +-$ -2,) ,1%
9(('$%? + 4'446% 5)$3%/ +, -,( ,-8! \1%2 -, 4%&+3% 1-:1%$ ,1+2 +4)',
I &3? ,1% (1+8% )5 ,1% &$+&= 0+( /%5)$3%/ 3+$=%/6* -2 4),1 .%$,-&+6
&$)((7(%&,-)2( @d-:! I4? &A! Q)$%).%$? ,1% &$+&= .%6)&-,* @01-&1 -( ,1%
4'446% .%6)&-,*A -2&$%+(%/ +4$'8,6* 01-6% ,1% 6-W'-/ -2B%&,-)2 $+,%
(,+*%/ &)2(,+2, @d-:! DA? -2/-&+,-2: ,1+, ,1% &$+&= -( &6)(-2:! U+.-2:
4),1 + &6)(-2: &$+&= +2/ +2 +&&%6%$+,-2: +-$ 4'446% -2/-&+,%( ,1+, ,1%
4'446% 3+* (%8+$+,% 5$)3 ,1% 6-W'-/! a-W'-/ -2B%&,-)2 $+,% 0+( +
/%&$%+(-2: 5'2&,-)2 )5 6-W'-/ .-(&)(-,* @d-:! D4A!

C1% &)2,$)66-2: -2i'%2&% )5 ,1% +-$ 8)&=%, )2 9(('$% 8$)8+:+,-)2
)2&% -, $%+&1%/ + &$-,-&+6 1%-:1, :& -( 4%,,%$ (%%2 )2 + :$+81 )5 &$+&=
.%6)&-,* +( + 5'2&,-)2 )5 ,1% 1%-:1, )5 ,1% +-$ 4'446% :4 5)$ 1%-:1,(
:$%+,%$ ,1+2 :& @d-:! KA! \1+,%.%$ ,1% .-(&)(-,* )5 ,1% i'-/ +2/ ,1%
-2B%&,-)2 $+,% )5 +-$? ,1% &$+&= .%6)&-,* E -( 8$)8)$,-)2+6 ,) ,1%
(W'+$% )5 ,1% 4'446% 1%-:1,b

E ! :I
4 !G"

S'&1 + $%6+,-)2 1+( +6$%+/* 4%%2 $%8)$,%/ 5)$ 4')*+2, &$+&=( )5
&)2(,+2, .)6'3% 966%/ 0-,1 6)07.-(&)(-,* i'-/GY? 01-&1 %381+(-T%(
,1+, -2 )'$ %<8%$-3%2,( 6-W'-/ .-(&)(-,* 1+/ 2) 5'2&,-)2 -2 :).%$27
-2: .%6)&-,* )5 ,1% 9(('$% ,-8 )2&% ,1% +-$ 4'446% $%+&1%/ -,( &$-,-&+6
1%-:1, :&! \% 8$)8)(% ,1+, :& -( ,1% 3-2-3'3 1%-:1, 2%%/%/ ('&1
,1+, ,1% +-$ 4'446% &+2 5$+&,'$% ,1% :%6+,-2 ()6-/? )2 ,1% 4+(-( )5 )'$
=2)06%/:% )5 5$+&,'$% ,)':12%(( 5)$ :%6+,-2!

V2 ,1% 5$+3%0)$= )5 6-2%+$ %6+(,-& 5$+&,'$% 3%&1+2-&( ,1% -2,%2(-,*
)5 ,1% ,%2(-6% (,$%(( &)2&%2,$+,-)2 +, ,1% 4'446% ,-8 )0-2: ,)
4')*+2&* )5 +-$ -( &1+$+&,%$-T%/ 4* + (,$%(( -2,%2(-,* 5+&,)$ F8

@$%5! XA! :& -( ,1% 1%-:1, 5)$ 01-&1 F8 $%+&1%/ ,1% 5$+&,'$% ,)':12%((
F& )5 ,1% :%6+,-2 ()6-/? ,1)':1, ,) 4% + 3+,%$-+6 8+$+3%,%$ -2/%7
8%2/%2, )5 ,1% 6)+/-2: )$ ,1% .%6)&-,* )5 ,1% 9(('$%! L( F8 -( +63)(,
%<&6'(-.%6* /'% ,) ,1% 4')*+2&* )5 ,1% +-$ 4'446%GR? 0% )4,+-2 ,1%
5)66)0-2: $%6+,-)2 5)$ :& @$%5! XA?

:& #
KF&

D!:6
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"# $I
D

!I"

01%$% !: -( ,1% /%2(-,* )5 ,1% :%6+,-2 ()6-/ +2/ 6 ,1% :$+.-,+,-)2+6
+&&%6%$+,-)2! C1% :%6+,-2 ()6-/( -2 )'$ %<8%$-3%2,( 1+/ + 5$+&,'$%
,)':12%(( F&! FK #+3GjI? 01-&1 :-.%( :&! D &3? + .+6'% &6)(% ,)
,1% I &3 ('::%(,%/ 4* )'$ )4(%$.+,-)2(! \% &)2&6'/% ,1+, )2&% ,1%
4'446% 4')*+2&* ).%$&)3%( ,1% 5$+&,'$% $%(-(,+2&% )5 ,1% :%6+,-2 -,
&)2,$)6( ,1% &$+&= ,-8 .%6)&-,*!
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C1% .%6)&-,* )5 ,1% 9(('$% -2&$%+(%( 0-,1 ,1% .)6'3% )5 ,1% :+(
8)&=%,Z 1)0%.%$? ,1% .%6)&-,* )5 ,1% 6-W'-/ -( 6-3-,%/ 4* ,1% .-(&)'(
8$%(('$% :$+/-%2, -2(-/% ,1% 9(('$% ,+-6? 01-&1 4+6+2&%( +2/ -(
,1%$%5)$% %W'+6 ,) 6-W'-/ 4')*+2&*! L(('3-2: ,1+, ,1% 9(('$% ,+-6
1+( + (,%+/*7(,+,% 1)$-T)2,+6 %66-8,-&+6 &$)((7(%&,-)2 +2/ %W'+,-2:
,1% =-2%3+,-&+66* /%,%$3-2%/ ,+-6 0-/,1 0-,1 ,1% #)-(%'-66% i)0
0-/,1? 0% )4,+-2 ,1% 9(('$% .%6)&-,* /( +4).% 01-&1 (%8+$+,-)2
)&&'$( 4%,0%%2 ,1% :+( 8)&=%, +2/ ,1% 6-W'-/b

/( #
Y.I"!6

#"I#I

% &G
D

!
Y.I"!6

#"I:I
4

% &G
D

!D"

01%$% . -( ,1% 6-W'-/ i'<? "! ,1% /-55%$%2&% 4%,0%%2 ,1% /%2(-,* )5
,1% ()6-/ +2/ ,1% /%2(-,* )5 ,1% 6-W'-/? # ,1% 6-W'-/ .-(&)(-,* +2/ # ,1%
4$%+/,1 )5 ,1% &$+&=? 01-&1 -( +88$)<-3+,%6* %W'+6 ,) ,1% 1%-:1, )5
,1% :+( 8)&=%, :4 @d-:! I&A! [2&% 9(('$% .%6)&-,* %<&%%/( /(? ,1% :+(
8)&=%, %55%&,-.%6* (%8+$+,%( 5$)3 ,1% 6-W'-/7966%/ 9(('$%Z + (3+66
W'+2,-,* )5 6-W'-/ -( :%2%$+66* &+$$-%/ +6)2: 0-,1 ,1% :+( 8)&=%,
4%&+'(% ,1% .-(&)(-,* )5 ,1% 6-W'-/ 8$%.%2,( &6%+2 (%8+$+,-)2 )5 ,1%
81+(%(!

C1% .%6)&-,* +, 01-&1 ,1% :+( 8)&=%, 0-66 8$)8+:+,% )2&% -, 1+(
(%8+$+,%/ $%3+-2( '2=2)02! \% 1+.% (1)02 ,1+, :%6+,-2 -( 4%1+.7
-2: +( +2 %6+(,-&? 4$-,,6% ()6-/ +2/ ,1+, ,1% (,$%(( -2,%2(-,* 5+&,)$ -(
:$%+,%$ ,1+2 -,( 5$+&,'$% ,)':12%((! d'$,1%$3)$%? 0% 92/ ,1+, &$+&=
,-8 .%6)&-,* -( + (-386% 5'2&,-)2 )5 ,1% 1%-:1, )5 ,1% :+( 8)&=%,! C1%
5'2/+3%2,+6 &)2,$)6 -2 ,1-( $%:-3% -( 8$%('3+46* ,1% 3%&1+2-&( )5
5+-6'$% +2/ &$+&= 8$)8+:+,-)2 +, ,1% ,-8 -2 $%(8)2(% ,) ,1% 4')*+2&*
5)$&% )5 ,1% :+(! L2),1%$ 8)((-4-6-,* -( ,1+, ,1% .%6)&-,* )5 ,1% :+(
8)&=%, -( 6-3-,%/ 4* ,1% 8$)8+:+,-)2 )5 %6+(,-& 0+.%( -2 ,1% ()6-/ +2/
-( &)38+$+46% ,) ,1% .%6)&-,* )5 ('&1 0+.%(! V5 ,1% 1)(, ()6-/ -( $)&=?
,1%(% +$% )5 ,1% )$/%$ )5 =3 (!G? &)2(-/%$+46* :$%+,%$ ,1+2 ,1)(%
8$%/-&,%/ 4* ,1% $%:-3% )4(%$.%/ -2 )'$ %<8%$-3%2,(! k*=% .%6)&-,*
&+2 4% %(,-3+,%/ 4* 3)2-,)$-2: 3-&$)7(%-(3-& %.%2,( /'% ,)
&$+&=-2: +, -,( ,-8IH! C1%$%5)$% &+$%5'6 +2+6*(-( )5 (%-(3-&-,* B'(,
4%5)$% 8$%&'$()$ %$'8,-)2( &)'6/ 8),%2,-+66* $%()6.% ,1% -(('%! C1%
8$%&-(% 3%&1+2-&+6 -2,%$8$%,+,-)2? 1)0%.%$? -( 2), &$-,-&+6 ,) )'$
8$)8)(%/ 3)/%6 5)$ 8$%&'$()$ %$'8,-)2(! C1% %((%2,-+6 8)-2, -( ,1+,
,1% :+( 8)&=%, 0-66 3).% 5+(,%$l)5,%2 &)2(-/%$+46* 5+(,%$l,1+2
,1% 3+-2 6-W'-/7966%/ 5$+&,'$%? 4%&+'(% 6-W'-/ .-(&)(-,* 6-3-,( ,1%
.%6)&-,* )5 ,1% 6+,,%$!

V2 )'$ %<8%$-3%2,(? ,1% 8%$-)/ )5 ,-3% 4%,0%%2 ,1% 4%:-22-2: )5
8$%&'$()$ %.%2,( +2/ ,1% 3+-2 %$'8,-)2? +( 0%66 +( ,1% .)6'3% )5
%$'8,%/ :+(? /%8%2/( 3+-26* )2 6-W'-/ .-(&)(-,*Z -, &)2,$)6( /( +2/
,1'( ,1% (%8+$+,-)2 /%8,1! d)$ $%+6 3+:3+(? 1)0%.%$? ,1% (%8+$+,-)2
/%8,1 (1)'6/ +6() /%8%2/ )2 .)6+,-6% &)2,%2, +2/ 1%2&% (+,'$+,-)2
8$%(('$%! C1% ()6-/ -( 5$+&,'$%/ +1%+/ )5 ,1% 6-W'-/ +2/ -( &1+$+&,%$7

-T%/ 4* + 6)0%$ 5$+&,'$% ,)':12%((Z 2%0 :+( 8)&=%,( 0)'6/ 2%%/ +
6)0%$ &$-,-&+6 1%-:1, :& ,) (%8+$+,% @%W'+,-)2 @IAA? +2/ &)'6/
8),%2,-+66* 8$)8+:+,% +, :$%+,%$ .%6)&-,*IG?II! ]%0 :+( 8)&=%,( 5)$37
-2: +, ,1% ,-8 )5 ,1% 6-W'-/ &$+&= &)'6/ 8)((-46* &+,&1 '8 0-,1 ,1% 9$(,
)2%! U)0%.%$? -5 + 6-,,6% 3+:3+ -( ,$+2(8)$,%/ 0-,1 ,1% :+( 81+(%? -,
&)'6/ +-/ -2 M1%+6-2:N ,1% 5$+&,'$%/ $)&= +5,%$ 8+((+:% )5 ,1% :+(7$-&1
81+(%Z -, (%%3( 8$)4+46% ,1+, ()3% 3+:3+ 0)'6/ 4% 6%5, 4%1-2/ +(
,1% 0+66( &6)(% 4%1-2/ ,1% 3+-2 :+( 8)&=%, +2/ &)'6/ 8),%2,-+66*
5$%%T%!

d'$,1%$ $%(%+$&1? 4),1 )4(%$.+,-)2+6 +2/ ,1%)$%,-&+6? -( $%W'-$%/
,) :-.% 3)$% W'+2,-,+,-.% 8$%/-&,-)2(! ]%.%$,1%6%((? ,1-( 2%0 5$+3%7
0)$= 8$).-/%( + (-386% -2,%$8$%,+,-)2 )5 8$%&'$()$ %$'8,-)2(? +2/
&+2 4% -38$).%/ ,) :-.% 3)$% 8$%&-(% %(,-3+,%( )5 ,1% /'$+,-)2 )5
8$%&'$()$ +&,-.-,* -2 (8%&-9& &+(%(! [2% :%2%$+6 8$%/-&,-)2 -( ,1+,
8$%&'$()$ +&,-.-,* (1)'6/ 4% (1)$,%$ -2 ,1% &+(% )5 4+(+6,-& .)6&+2)%(
,1+2 5)$ (-6-&-& )2%(! C1-( (%%3( ,) 4% ('88)$,%/ 4* +&&)'2,( )5 ,1%
#+$-&',-2 %$'8,-)2? 01-&1 -2/-&+,% ,1+, :+( +2/ 92% +(1 %3-((-)2(
4%:+2 )26* 1)'$( 4%5)$% ,1% 3+-2 3+:3+ &)2/'-, $%+&1%/ ,1%
('$5+&%ID? + ,-3% 8%$-)/ &)2(-/%$+46* (1)$,%$ ,1+2 ,1% 0%%=( ,)
3)2,1( ,*8-&+6 )5 (-6-&-& %$'8,-)2(! !

^%&%-.%/ GG k%&%34%$ IHHHZ +&&%8,%/ IJ Q+$&1 IHHG!

G! U%-=%2? m! n Q&e)*? d! P$ e+6/%$+ /%.%6)83%2, /'$-2: ,1% Q-2)+2 %$'8,-)2? C1-$+? e*&6+/%(? m$%%&%!

>G 3($<:+0G H(0G IE? YKKGEYKJI @GRYKA!

I! m+$/2%$? P! >!? e+$%*? S! n S-:'$/(()2? U! #6-2-+2 %$'8,-)2( +, m6+&-%$ #%+= +2/ ]%04%$$* .)6&+2)%(?
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[1] We study the propagation of a buoyant liquid-filled fissure from a reservoir under
constant pressure within the framework of linear elastic fracture mechanics. We
conducted laboratory experiments by injecting aqueous solutions into gelatin solid: an
analogue for elastic and brittle crustal rocks. Fissure velocity and injection rate of
liquid were measured rather than being imposed. Our experimental results allow
evaluation of how the different driving and resistive pressures evolved during fissure
propagation and highlight the influence of the fracture resistance of the host solid. In an
initial transient propagation regime, elastic pressure generated by the fissure is balanced
by the fracture pressure; the fissure propagates radially with decreasing velocity and
increasing injection rate, controlled by the source conditions. Subsequently, buoyancy
overcomes the source pressure as the driving force, and vertical steady state propagation is
established. The fissure develops a bulbous head and propagation is controlled by the
balance in this head, between buoyancy pressure and fracture pressure. Even after this
transition, the constant values of velocity, flux, and strain energy release rate reflect the
source conditions. Our model suggests that greater horizontal dyke cross section reflects
larger source pressure and that mafic dykes propagating from shallow magma chambers
are unlikely to attain steady state. Moreover, our experiments place constraints on the
mechanics of time-dependent failure of the solid as a process that resists fissure
propagation: propagation velocity scales with the square of the height of the fissure head,
and fracture toughness of rocks would be length scale dependent rather than a material
property. INDEX TERMS: 5104 Physical Properties of Rocks: Fracture and flow; 8110 Tectonophysics:
Continental tectonics—general (0905); 8145 Tectonophysics: Physics of magma and magma bodies; 8434
Volcanology: Magma migration; KEYWORDS: dyke, fissure propagation, analogue experiments, fracture
resistance, rock failure, magma migration

Citation: Menand, T., and S. R. Tait, The propagation of a buoyant liquid-filled fissure from a source under constant pressure: An
experimental approach, J. Geophys. Res., 107(B11), 2306, doi:10.1029/2001JB000589, 2002.

1. Introduction

[2] A major process of evolution of the Earth’s litho-
sphere is the upward transport of magma by the creation
and propagation of magma-filled cracks, or dykes, from
zones of partially molten rocks in the upper mantle to the
surface. At great depths and close to the mantellic source
region magma percolates through a porous medium. Closer
to the surface magma propagates by hydraulic fracturing.
The latter transport mechanism is a complex problem
mixing fracture mechanics, elasticity, and fluid dynamics.
However, simplifications can be made: dykes may be
idealized as planar sheets opening in mode I in brittle,
elastic solid as the average strain associated with their

emplacement, approximately their thickness to length
aspect ratio, is typically of the order of 10!3 [Pollard,
1987]. Previous studies, mainly numerical, enabled us to
understand separately the effects of the elasticity, the
viscosity and the buoyancy of the fluid on crack propaga-
tion. Early studies presented static solutions for the equi-
librium shape of fluid-filled cracks [e.g., Pollard, 1987].
Nevertheless, Weertman [1971a] showed that buoyant
dykes are unstable and should move upwards. Studies that
have taken into account the flow of liquid inside the
fissure first focused on the coupling between elastic
deformation and viscous flow and similarity solutions have
been found when the injection rate is prescribed, whether
the flow is laminar [Spence and Turcotte, 1985] or
turbulent [Emerman et al., 1986]. Solutions were also
found for injection rates as a general power law in time
[Spence and Sharp, 1985] and for propagation from a
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chamber with constant overpressure [Spence and Sharp,
1985; Rubin, 1993b, 1995a]. Subsequently, fluid buoyancy
has been taken into account. Spence et al. [1987] and
Lister [1990a] found solutions to the steady state case.
According to Lister [1990a], the pressures associated with
the elastic deformation and the strength of the host solid
are only significant in the neighborhood of the fissure tip.
The problem of the fissure shape far from its tip is thus
simplified and Spence and Turcotte [1990] found solutions
for fissures of constant volume. Similarity solutions have
also been found for the lateral extent of a fissure that
propagates vertically from a point source as well as its
horizontal propagation in a stratified solid at the level of
neutral buoyancy [Lister, 1990b]. Lister and Kerr [1991]
applied these results to the propagation of magma-filled
fractures and a comprehensive review of dyke propagation
has been made by Rubin [1995b].
[3] Some experimental studies have also been carried

out. However, it should be noted that few theoretical
studies refer to them. All these experimental studies used
a gel to simulate the elastic and brittle behavior of the
Earth’s crust. By injecting dyed water in gelatin, it has
been shown that the direction of propagation is controlled
by the stress field around the fissure which may be
induced by topography [Fiske and Jackson, 1972] or by
regional tectonics [McGuire and Pullen, 1989]. Further
studies dealt with the effects on propagation direction of
planar discontinuities in the host solid and spatial gradients
in its elastic properties [Pollard, 1973], with formation of
laccoliths [Pollard and Johnson, 1973; Hyndman and Alt,
1987], and linear elasticity has been applied to explain the
shape of fluid-filled cracks in gelatin [Maaløe, 1987].
Following these static solutions, Takada [1990] seems to
be the first to propose scaling laws by means of small-
scale laboratory experiments. He found that fluid-filled
fissures of constant volume propagate at a constant veloc-
ity which depends on the height of the fissures as well as
on the difference of density between fluid and gelatin,
contrary to fissures fed with a constant injection rate; in
this latter case propagation velocity increases both with
time and with injection rate. Takada [1990] also carried
out experiments in which gelatin had been fractured prior
to the propagation of a fluid-filled fissure. In those experi-
ments, for which the strength of the gelatin was greatly
reduced, crack velocities were observed to be two orders
of magnitude greater than in experiments carried out with
virgin gelatin but nonetheless were still lower by at least
three orders of magnitude than velocity predicted by a
Poiseuille flow, hence highlighting the role of the strength
of gelatin. More recently, Heimpel and Olson [1994] put
forward a new model for the propagation of cracks of
constant volume, proposing notably that their speed might
be limited by the transmission of information on the crack
shape by elastic waves.
[4] Despite this intensive study we cannot answer some

key questions of geological importance. For instance, what
determines the flux of magma carried by a dyke? It is
unlikely that a source can maintain a constant injection rate
during fissure propagation. The few data on magma fluxes
seem to indicate that the injection rate is not constant
during the propagation of a dyke [Brandsdóttir and
Einarsson, 1979; Einarsson and Brandsdóttir, 1980]. Fur-

thermore, assuming a steady state boils down to not taking
into account the initiation process. As a consequence the
physical characteristics of the source are no longer linked
to propagation and are excluded from the model. Mériaux
and Jaupart [1998] studied crack propagation from a
reservoir under constant overpressure and showed that
the initial crack loading determines its subsequent prop-
agation. However, these authors, like others, have
neglected the fracture resistance of the solid. This was
mainly motivated by laboratory measurements on rock
samples [e.g., Atkinson, 1984]. Based on scaling analysis,
it is shown that once a dyke has been initiated and has
grown to a critical length, the pressure associated with the
strength of rocks is negligible in comparison with the other
pressure scales, especially magma viscous resistance [Lis-
ter, 1990b; Lister and Kerr, 1991]. However, field estima-
tions give values 102–103 times greater than those
measured in the laboratory [Delaney and Pollard, 1981;
Reches and Fink, 1988]. Moreover, it is difficult to believe
that fracturing is negligible from the very beginning of the
propagation in the case of flawless solids. Hence we ask,
how may a dyke grow from a regime where the fracture
resistance of rocks would be significant to a regime where
it could be neglected?
[5] We suppose in our study that magma cannot intrude

the surrounding rock by hydraulic fracturing as long as the
fracture resistance of the rock is not overcome. Similar to
most studies on dyke propagation we base our analysis on
linear elastic fracture mechanics. Therefore, we assume that
a liquid-filled crack cannot propagate as long as the stress
intensity factor K at its tip does not reach the fracture
toughness Kc of the surrounding solid. One basic question
is whether Kc is a material property independent of the crack
dimensions and loading. This has been assumed in the vast
majority of the literature on dykes, although Rubin [1993a]
has argued that this vision may not be adequate for dykes at
high confining pressure. We use this simplification in our
initial approach but will return to this key issue in the light
of our experimental results. We do not deal with the
influence of the volatiles that could be present at the crack
tip [Barenblatt, 1962]. A theoretical investigation of this
effect has been made by Lister [1990a] and the hypothesis
that such volatiles could be an origin for precursor volcanic
eruptions has been experimentally investigated by Menand
and Tait [2001]. Finally, because we concentrate on the
mechanical aspects of the problem, we do not take into
account thermal effects.
[6] Fracturing processes are very difficult to handle in

numerical models whereas they are always present in
laboratory experiments using gelatin [Takada, 1990; Lister
and Kerr, 1991]. In this paper, we study with laboratory
experiments the propagation of a fissure fed by a reservoir
under a constant pressure. In these experiments, aqueous
solutions are injected in gelatin solids simulating the
elastic, brittle crust and care was taken to start fissure
propagation from a well-characterized initial condition.
We first introduce the experimental techniques that we
developed to measure in situ Young’s modulus and the
fracture toughness of gelatin solids with which we char-
acterize their rheology. We then present our experiments
and propound a new model of fluid-filled fissure prop-
agation. We conclude with a short discussion on our
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results and the geological application and implications of
our work.

2. Rheology of the Gelatin

[7] Gelatin is a clear, brittle, viscoelastic solid with a low
shear modulus and a Poisson’s ratio of nearly 0.5. It has
been used in experimental studies of dyke propagation
because its low shear modulus allows it to deform signifi-
cantly under gravity at laboratory scale [e.g., Fiske and
Jackson, 1972; Maaløe, 1987; Takada, 1990; Heimpel and
Olson, 1994]. If it was assumed in these studies that gelatin
behaves in an elastic, brittle manner, such an assumption
however has never been carefully verified. Elasticity and
brittleness are two different properties. However, Griffith
[1920] and Irwin [1957] showed that they are not inde-
pendent for elastic solids. In this ideal case, fracture tough-
ness follows the relation

Kc ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

2 gs E
p

; ð1Þ

where E is the Young’s modulus of the elastic solid and gs is
its surface energy which is thought to depend only on the
temperature [Griffith, 1920]. Elastic solids of a similar
composition at a given temperature should have surface
energies of the same order of magnitude and therefore
should differ only by their Young’s modulus. We thus
developed techniques to measure Young’s modulus E and
fracture toughness Kc of gelatin solids in situ in our
experiments, which allowed us to verify relation (1) for
gelatin.
[8] High-clarity, 200 bloom, acid, pigskin-derived gelatin

in granular form was supplied by SKW Bio-Systems. The
gelatin was prepared by dissolving the powder in distilled
water. The solution was heated until complete dissolution of
the gelatin at 60!C, after which 0.1% sodium hypochlorite
was added to prevent fungal growth. The gelatin was then
poured in two identical acrylic tanks; one to measure its
Young’s modulus and the other to measure its fracture
toughness. The gelatin was left to solidify in these two
tanks under hydrostatic conditions, horizontal strains are nil
and Poisson’s ratio n = 0.5, in an air-conditioned room at
20!C for 48 hours, timescale of gelification was approx-
imately 1 day for the concentrations used, in order to ensure
thermally homogeneous gelatin solids. A thin layer of
silicon oil was poured on the gelatin surface in order to
avoid evaporation during solidification, which would create
a gradient of gelatin properties. Once the gelatin was solid
both measurements of E and Kc were performed.

2.1. The Measurement of Young’s Modulus

[9] We measured Young’s modulus of the gelatin solid by
putting a rigid, circular cylinder, made of duraluminum, on
the surface of the gelatin. The radius of this object was
small compared to the dimensions of the tank; the gelatin
could thus be seen as a semiinfinite medium. The vertical
deflection w created was then measured and Young’s
modulus was calculated by means of the following relation
[Timoshenko and Goodier, 1970]:

E ¼ M g 1! n2ð Þ
2 aw

; ð2Þ

where M and a are the mass and radius of the cylindrical
weight, g is the gravitational acceleration, and n is the
Poisson’s ratio of the gelatin. The crucial point is to
measure the deflection as accurately as possible. This was
done by using a digital micrometer to determine the
position of the top of the weight with respect to a
reference position rigidly attached to the tank. This method
allowed us to measure E with an error less than 2.5%.
Solids of different Young’s modulus were made by
changing the concentration of gelatin. Note, however, that
Young’s modulus of a gelatin is not a constant but
continuously increases with time as gelification continues.
Thus, for each experiment, several measurements of
Young’s modulus were made and the experiment was
carried out when the desired value of E was attained.
Experimental durations were less than 5 min, a short time
period when compared to the time evolution of Young’s
Modulus so it could be assumed to be constant during an
experiment.

2.2. The Determination of the Fracture Toughness

[10] In the case of an edge crack embedded in a semi-
infinite elastic solid, the stress intensity factor K at the crack
tip may be expressed as [Sneddon and Das, 1971]

K ¼ a!P
ffiffiffiffiffiffiffi

p h
p

; ð3Þ

!P being the overpressure of the crack averaged over its
height h. The overpressure of the crack is defined as the
difference between the pressure in the crack and the stress in
the solid in the absence of the crack. a is a dimensionless
factor which is a function of boundary conditions,
especially those at the surface of the semiinfinite solid, in
the case of a crack embedded in an infinite elastic solid we
would have a = 1.
[11] We created a small edge crack in our gelatin by

plunging a rigid, metallic blade, made of stainless steel, in
the solution of gelatin before its solidification. Once
the gelatin was solid, the blade was carefully removed.
The fissure was then filled with water as well as the part
of the tank that was free of gelatin. The tank was then
turned over in order to have the water reservoir beneath
the gelatin and the reservoir was fed in such a way that its
pressure balanced exactly the weight of the gelatin.
According to linear elastic fracture mechanics, once the
stress intensity factor K at the tip of the fracture reaches
the fracture toughness Kc of the solid the crack propagates.
This was achieved by slowly increasing the crack over-
pressure: we injected some air into the crack by using
compressed air going first through a pressure reducer and
then through a small capillary positioned in the fissure. As
air was injected into the crack, the excess water was bled
from the reservoir in order to maintain a free surface
condition at the interface between the reservoir and the
gelatin. The experimental apparatus is schematically drawn
in Figure 1. Measuring the height of air in the fissure,
which gives us the crack overpressure at the onset of its
propagation, and using equation (3) we calculated the
stress intensity factor at the crack tip. The calculation
requires determination of the factor a, which was done
following the work of Sneddon and Das [1971] for an
edge crack linked to a free boundary. We identified this
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stress intensity factor with the fracture toughness of the
gelatin solid.

2.3. Relationship Between Young’s Modulus and
Fracture Toughness

[12] In the case of an edge crack embedded in a semi-
infinite elastic solid, the stress intensity factor at the crack
tip differs from the case of a crack in an infinite elastic solid
by the factor a. However, we can still apply the approaches
developed by Griffith [1920] and Irwin [1957]. Therefore, if
our gelatin solids behave in a pure elastic manner they
should obey relation (1). Figure 2 is a plot of Kc of our
different gelatin solids as a function of their Young’s
modulus. The plain curve corresponds to the theoretical
equation (1). The best fit through our data is

Kc exp ¼ 0:97E0:55 Pa m
1
2: ð4Þ

Taking into account the error bars on Kc and E our data are
in good agreement with the expected theoretical relation for
pure elastic, brittle behavior. Furthermore, equation (4)
enables us to calculate the fracture toughness of a gelatin
solid from the measurement of its Young’s modulus, the
obvious advantage being the nondestructive determination
of the latter. It also gives us the surface energy of the gelatin
solids: gs ’ 1 J m!2.

3. Propagation of a Buoyant Fissure From a
Reservoir Under Constant Overpressure

3.1. Experimental Method

[13] In this section we present the experimental apparatus
that we used to study the propagation of a water-filled fissure
from a reservoir under constant overpressure (Figure 3).
Details of experimental conditions are given in Table 1.
Gelatin was set under hydrostatic conditions in an acrylic
tank 30 cm wide by 50 cm high. A rigid reservoir filled with
dyed water was situated beneath the gelatin tank. The
injection of water into the gelatin was allowed by a 5 mm
wide and 20 cm long slit made in the undeformable roof of
the reservoir. Furthermore, the reservoir was fed by an

additional reservoir placed on a small elevator. This elevator
enabled us to lift the additional reservoir in order to increase
the reservoir overpressure. Once the small elevator was
locked, the additional reservoir fed the main reservoir with
a given head level. This header tank was large enough to
maintain a constant head level during the propagation
because the total volume of water injected in a crack was
small, the maximum variation of the head level was 1–2
mm. Therefore the reservoir overpressure stayed constant
during the crack propagation. We also measured the injection
rate using scales placed on the small elevator and beneath the
additional reservoir. The scales were linked to a PC, which
recorded the mass of water lost by the reservoir and thus
injected into the crack. This allowed us to measure the
injection rate instead of imposing it. The propagation was
videotaped in order to measure the crack tip velocity. The
video camera was manually moved up on a vertical track to
keep it level with the tip of the fissure.
[14] Inside the reservoir was a movable plate on which a 1

mm thick, 1.5 cm high, and 12 cm long metallic blade, made
of stainless steel, was mounted. Before pouring the gelatin
solution into its tank, we initially sealed the slit with the
movable plate. This way, the metallic blade penetrated the
slit in the reservoir roof. Once the gelatin was solid, the plate
was carefully moved down. The metallic blade was thus
taken out of the gelatin solid and created a small fissure filled
with fluid from the reservoir. This technique enabled us to
propagate the fissure from a well characterized linear source.
[15] Just prior to starting an experiment, the Young’s

modulus of the gelatin was measured by the technique
described in section 2.1. The reservoir overpressure, ini-
tially nil, was slowly increased with the aid of the small
elevator and the head level was maintained constant once
the fissure started to propagate. The injection rate was then
recorded and the propagation was videotaped.

3.2. Experimental Observations and Measurements

[16] When the fissure started to propagate, we observed in
all experiments that the propagation was initiated from a

Figure 1. Schematic diagram of the experimental appara-
tus used for the determination of the gelatin fracture
toughness. The excess of water is bled off the reservoir
while air is injected in the crack insuring a free surface
condition at the interface between the water reservoir and
the gelatin solid.

Figure 2. The fracture toughness Kc as a function of the
Young’s modulus E for different gelatin solids. Each point
represents a gelatin solid. The plain curve represents the
theoretical equation Kc /

ffiffiffiffi

E
p

.
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point of the linear source. Then, the source injection
extended laterally and the fissure propagated radially in a
nearly vertical plane. We also observed that the fissure had
an approximately elliptical cross section, as expected for a
pressurized cavity embedded in an elastic solid [Sneddon,
1946]. The form of the fissure during this early stage of the
propagation is shown on Figure 4. Afterward, the propaga-
tion became mainly vertical and the shape of the fissure
stretched out vertically. Moreover the fissure seemed to
develop a head thicker than its tail. This was not easily
observed because the fissure sometimes became slightly
curved and was not along the axis of the camera, but it
was particularly noted in experiments 19, 20, and 22. The
transition between the initially radial and later vertical
propagation occurred after typically 10–15 cm of propaga-
tion. Figure 5 shows the shape of the fissure after the
transition. In almost all experiments we observed that during
propagation in the uppermost part of the tank, after approx-
imately 25–30 cm of propagation, the fissure deviated from
vertical trajectory and followed a path that curved toward
one side of the tank, presumably due to wall effects. We will
restrict our description to the part of the fissure propagation,
which is not affected by the walls of the tank.
[17] We measured the distance of propagation of the

fissure and the mass of water injected into the fissure as
functions of time, as shown on Figure 6 for experiment 24.
Instantaneous velocity was calculated by differentiating a
linear regression through the distance data for five fissure
positions, the point on which the fit was centered and two
either side. The instantaneous volumetric injection rate was
calculated in the same manner from the mass data divided
by the density of the fluid. Figure 7 is a plot of the
velocity and the injection rate of the fissure as a function
of its length for experiment 24, deduced from the data
shown on Figure 6. The velocity data seem to be noisier
than the injection rate data. This may be due to the
measurement procedure that we used, the video camera
was manually moved up, although we cannot rule out that
this effect may be real and related to the dynamics of

propagation. However, there are clearly two different
regimes. This is particularly visible from the injection rate
data, the transition between the two regimes occurring
after about 10 cm of propagation in this case, experiment
24. The first regime was characterized by an increasing
injection rate and a decreasing velocity. This implies that
the fissure inflated and/or propagated laterally at the level
of the source. It seems therefore that there is a corre-
spondence between these velocity and injection rate meas-
urements and the radial propagation we initially observed
in the experiments. In the second regime, both the fissure
velocity and the injection rate were essentially constant.
This steady state was not imposed in our experiments but
rather was naturally adopted by the system; we emphasize
that this steady state was approached from a regime with
an increasing flux and a decreasing velocity.
[18] Finally, in all experiments the flow inside the fissure

was always laminar. In the case of a fissure of width w,
which is filled with a liquid of density r and viscosity h, and
that propagates at a velocity u, flow inside the fissure is
turbulent if the Reynolds number Re ¼ ruw

h exceeds a critical
value of order 1000. Conversely, flow is laminar if Re %
1000. In all experiments, the injected liquid was water, for
which density and viscosity are 1000 kg m!3 and 10!3 Pa s,
respectively, the velocity of propagation was always less
than 1 cm s!1 and the fissure width was always less than 5
mm. As a consequence, the Reynolds number Re was
always less than 50.

3.3. The Different Pressure Scales

[19] In order to quantitatively analyze our observations,
we follow Lister [1990b] and Lister and Kerr [1991] and
define five different pressure scales. The geometry of the
fissure that we use is shown on Figure 8. The height of the
fissure is h, its breadth is 2b, its thickness is 2w and we use
the letter l when we refer to a length, h or 2b, in a
nonexplicit manner. There are three driving pressures. These
are the elastic pressure scale required to open the fissure

Pe &
E

2 1! n2ð Þ
w

l
; ð5Þ

where l is the smallest of the height or the breadth of the
fissure, the source overpressure !Pr and the hydrostatic, or
buoyancy, pressure

Ph & !r g h; ð6Þ

where !r is the difference between the density of the solid
and the density of the liquid, so that the fluid overpressure is

Figure 3. Schematic diagram of the experimental appara-
tus used for the propagation of a water-filled fissure from a
reservoir under constant overpressure.

Table 1. Details of the Experimental Conditionsa

Experiment rg (kg m!3) rl (kg m!3) h (Pa s) E (Pa) !Pr (Pa)

19b 1013.0 1000.6 10!3 1525 749
20 1013.0 1000.0 10!3 1581 327
21 1013.0 1000.3 10!3 929 190
22 1024.9 1001.2 10!3 5529 749
24 1024.6 1001.2 10!3 7899 1133

aAll experiments were dyed water injected in gelatin solid. !Pr

corresponds to the reservoir overpressure needed to propagate the fissure.
The overpressure was progressively increased until the fissure propagates
except in experiment 19: !Pr has violently been imposed and fissure has
immediately propagated.

b!Pr violently imposed.
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the sum of !Pr and Ph. The two other scales are resistive
pressures. One is the viscous pressure drop

Pv &
3 h u l
w2

; ð7Þ

where h is the viscosity of the fluid, u the average velocity
of the fluid inside the fissure, which is also the fissure
velocity, and l the length of the fissure. The other is the
fracture pressure

Pf &
K
ffiffiffiffiffiffi

p l
p : ð8Þ

This is the overpressure needed by the liquid to generate a
stress intensity factor K at the crack tip, which should be at
least equal to Kc for the host solid to be fractured.
[20] The elastic pressure (5) and the fracture pressure (8)

are quasi-static from an elastic point of view, which means
that they are not necessary valid for the dynamic problem
of the propagation of a fissure. However, the use of these

equations in the present study is justified by the fact that
fissures propagated with velocities that were two orders of
magnitude less than the velocities of elastic waves, hence
propagated quasi-statically: in the range of the experimen-
tal conditions, shear wave velocities were approximately

Figure 4. The shape of the fissure during the early stage of
its propagation in experiment 22. The photo (a) taken after 9
cm of propagation shows the elliptical cross section of the
fissure. The in plane view (b) is a schematic illustration of
the radial propagation.

Figure 5. The shape of the fissure in cross section, in
experiment 22, after 21 cm of propagation (a). The fissure
seemed to develop a head thicker than its tail. Initially
radial, the propagation became mainly vertical as schema-
tically illustrated by the in plane diagram (b).
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equal to 1 m s!1 while fissure velocities were always less
than 1 cm s!1.

3.4. Initial Propagation Regime

[21] We initially observed that the propagation was radial
and in a vertical plane or nearly so, in short, there was no
specific direction for fissure propagation. This suggests that
the buoyancy pressure (6) was initially negligible compared
with the other pressure scales. The initial height of the
fissure was indeed small, 1.5 cm. Moreover, the fissure
velocity was low as well as the viscosity of the injected
liquid, water for which h = 10!3 Pa s, suggesting that the
viscous pressure drop (7) could be neglected as well.
[22] This can be shown quantitatively by comparing

terms explicitly. The fissure was observed to have an
ellipsoidal shape and to resemble ‘‘half a penny’’ so that
its breadth was approximately equal to twice its height. Its
basal width, 2w, is thus easily expressed as a function of its
volume V, which is known from the data of the mass of
injected fluid:

2w ¼ 3V

p l2
: ð9Þ

It appears that, except in experiment 24, the basal width
of the fissure remains nearly constant, influenced by the
lower boundary condition of no displacement on the
lower gelatin surface, as expected. In experiment 24,
however, the fissure width appears to be proportional to
the fissure length implying that the elastic pressure
remains constant, as would be expected if slip occurred
between the base of gelatin solid and the base of the tank.
We assume that in this case, the gelatin adhered less well
to the tank base than in the other experiments, although
we were unable to check it independently. Equation (9)
enables us to express the pressure scales as functions of V
rather than w. Figure 9 represents the evolution of the four
pressure scales (5)–(8) during the fissure propagation for
the two boundary conditions: no displacement and slip
displacements. It shows that the buoyancy pressure and
the viscous pressure drop can be neglected during the
initial propagation regime in both cases. Note that, in this
transient regime, the viscous pressure drop stayed constant
in most experiments and even decreased in the slip
displacement case. This suggests that, initially, propaga-
tion occurred in a regime characterized by an approximate

Figure 6. The distance of propagation of the fissure (a)
and the mass of water injected in the fissure (b) as a function
of time in experiment 24.

Figure 7. The velocity (a) and the injection rate (b) of the
fissure as a function of its length in experiment 24.
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balance between the elastic pressure (5) and the fracture
pressure (8); as propagation was quasi-static, dilation of
the fissure occurred much faster than propagation and
during this initial regime the elastic pressure balanced the
source overpressure while propagation was controlled by
the stress intensity factor at the tip of the fissure:

E

2 1! n2ð Þ
w

l
& !Pr &

K
ffiffiffiffiffiffi

p l
p : ð10Þ

[23] The quasi-static behavior of the fissure is not
assumed but observed. The volume of the fissure V is
function of the constant fissure width (equation (9)). By
differentiating it with respect to time and dividing by the
velocity u = dl/dt, we obtain the ratio of the flux q = dV/dt
over the crack velocity u as a linear function of the crack
length. In experiment 24 however the elastic pressure
rather than the fissure width was constant and V must
be expressed as a function of the constant overpressure in
the fissure !Pr before differentiating it with respect to
time, by combining equations (9) and (10). We therefore
obtain that

q

u
¼ b

V

l
; ð11Þ

with the numerical factor b = 2 for experiments 19–22 and
b = 3 for experiment 24. Figure 10 shows that the
experimentally measured ratios q/u follow the quasi-static
relation (11).
[24] We therefore have observational evidence that the

fissure is behaving quasi-statically, from an elastic point of
view, even though it is propagating and even though the
stress intensity factor at its tip K is larger than the fracture
toughness Kc, as suggested by equation (10). Moreover,
equation (10) implies that the rate of propagation of the

fissure was being controlled in some way by time-depend-
ent failure of the solid ahead of the tip. Before discussing
the implications of this idea for dyke propagation we
describe the propagation observed during the latter stages
of experiments.

3.5. Steady State Regime

[25] After 10–15 cm of propagation we observed a new
regime characterized by a constant fissure velocity and a
constant injection rate. Furthermore, we observed that the
propagation became mainly vertical which suggests that the
buoyancy pressure had become an important driving force.
Indeed, according to Figure 9, the buoyancy pressure Ph

becomes comparable to the elastic pressure Pe at approx-
imately this height. As the fissure propagated, the buoyancy

Figure 8. Schematic diagram of a fissure. The fissure has
a height h, a breadth 2b, and a thickness 2w such as 2w '
2b % h.

Figure 9. The evolution of the four pressure scales during
the fissure propagation for two different lower boundary
conditions: (a) no displacement, experiment 19 in the
present case, and (b) slip displacements, experiment 24. In
both cases, the stress intensity factor at tip of the fissure has
been assumed to be equal to the fracture toughness of the
solid during the whole propagation. The vertical dashed line
separates the transient initial regime from the steady state
one, as observed from the velocity and injection rate data.
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increased. Ultimately, when the fissure reached a critical
height

lc &
!Pr

!r g
; ð12Þ

the buoyancy pressure and the fissure overpressure were of
the same order. Moreover, the viscous pressure drop Pv was
negligible in comparison to the fracture pressure (Figure 9).
It is therefore reasonable to assume that propagation was
controlled subsequently by a balance between Ph and Pf :

!r g lc &
K
ffiffiffiffiffiffiffi

p lc
p : ð13Þ

This new balance explains the transition from a radial to a
vertical propagation. We also observed qualitatively that the
fissure developed a bulbous head although this was not
practically possible to quantify. We propose that once the
buoyancy pressure overcame the source pressure, the fissure
developed a bulbous head of length lc (equation (12)) that
was connected to the source by a thinner tail and that the
propagation was controlled by the balance which took place
in this head between the buoyancy pressure and the fracture
pressure. Figure 11 is a schematic illustration of such a
propagation. At this point, the fissure head, in which elastic
and buoyancy pressures are in balance, had a thickness

wc &
2 1! n2ð Þ

E
!Pr lc &

2 1! n2ð Þ
E

!P2
r

!r g
: ð14Þ

The fissure tail was thinner and viscous pressure drop is
expected to be important there. Figure 9 shows that, in the
steady state regime, it increased linearly with the height of
the tail. So did the buoyancy pressure. Our interpretation is
that the buoyancy balanced exactly the viscous pressure
gradient as the tail of the fissure steadily lengthened and

adjusted elastically its thickness ws in order to maintain such
a balance. According to White [1974], this thickness was

ws ¼
4 h q

p b!r g

" #1
3

; ð15Þ

where b is half the breadth of the fissure tail.
[26] At the transition between regimes, when the fissure

had a height lc, the buoyancy pressure generated a stress
intensity factor Kt at the tip of the bulbous head. At the
transition, both balances (10) and (13) should be approx-
imately valid. By combining these two equations with the
ratio q/u, used as a kinematic estimate for the cross-sec-
tional area of the fissure pw lc, we obtain that

lc &
E

2 1! n2ð Þp!r g
q

u

$ %1
3

; ð16Þ

and

Kt &
E!r g

2 1! n2ð Þ
q

u

$ %1
2

: ð17Þ

There is therefore a correspondence between a constant
stress intensity factor at the fissure tip, which controls the
fissure propagation, and the observed steady state propaga-
tion, with a constant ratio q/u. We propose that the steady
state propagation was established by the constant head
height lc, and therefore the constant stress intensity factor
Kt, that was determined at the transition between regimes. In
this interpretation, the tail fed in a passive manner the
steadily propagating fissure while the buoyancy pressure in
its head overcame the fracture pressure and we suppose that
the fracturing processes that controlled the propagation
operated in a quasi-static manner.

4. Discussion

4.1. Results

[27] We have found that a buoyant liquid-filled crack fed
by a reservoir under constant pressure can steadily prop-
agate. The shape of the fissure in the steady state regime
was the same as in the ‘‘viscous model [Lister and Kerr,
1991].’’ In fact, once the steady state regime is achieved,
the head regime that we describe and the tail regime of the
‘‘viscous model’’ are exactly balanced, and hence we
cannot tell the difference in a sense. That our model,
controlled by fracture resistance of the host solid, and the
‘‘viscous model’’ give identical steady state regimes might
seem a paradox. It is not: we show that we must take
account of the transient regime through which the steady
state is approached in order to know what the steady state
will be. The ‘‘viscous model’’ determines what shape of
crack is required to satisfy the assumed steady state
propagation. This assumption means that the source is
excluded, and thus we lose important information: we
cannot say what kind of a geological source we are dealing
with, at least not more than that it must be able to maintain
a constant flux. We should therefore expect that in this
steady state framework, the fracture toughness does not
affect the rate of propagation, as the ‘‘viscous model’’
indeed shows.

Figure 10. The ratio of the volumetric injection rate q over
the crack velocity u as a function of the ratio of the volume
of the fissure V over its length l. b = 2 for experiments 19–
22 and b = 3 for experiment 24 in order to compare all the
data on the same graph (see text). Each symbol represents
an experiment: 6 19, . 20, 6 21, 4 22, and ¤ 24. The
plain curve is the theoretical relation q

u ¼ b V
l .
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[28] But this vision is too restrictive. At steady state the
head and the tail must have the same speed, but different
physical balances determine their respective velocities. We
show that if the source is characterized by relatively con-
stant pressure, which is reasonable physically, the speed of
propagation in fact initially depends on the pressure in the
source and the fracture toughness (Figure 9) and this also
determines the speed of the head in the subsequent steady
state. Once a dyke has reached a buoyancy-driven steady
state, although the source is no longer directly ‘‘visible’’
(i.e., as in the ‘‘viscous regime’’), the source is ‘‘remem-
bered’’ in the following sense. The flux and velocity of the
dyke transiently adjust in the fracturing regime to the steady
state that is consistent with the source pressure and the
fracture characteristics of the host as well as the density and
viscosity of the liquid. Hence it is important geologically to
characterize as well as possible this fracturing regime that
we have shown to exist.
[29] However, the way fracturing processes operate at the

fissure tip remains unclear. In our experiments, the viscosity
of the liquid appears to exert no active control on the
velocity of crack propagation. Propagation is controlled
by time-dependent failure of the gelatin solid at the tip of
the crack. The linear elastic fracture mechanics framework
does not contain any timescale and thus cannot provide a
model for propagation velocity; it only provides a threshold
above which the solid fractures and thus crack propagation
takes place. Nevertheless, our experiments provide some
constraints on failure-controlled crack propagation. In the
case of buoyant liquid-filled cracks of constant volume, it
has been argued that, all else being equal, the velocity of
cracks should be proportional to the square of their height
[Heimpel and Olson, 1994, equation (8)]. Recently, it has
been observed that fissures that have a growing gas pocket
at their tip propagate with velocities proportional to the
square of the height of the gas pocket, which is the fissure

head [Menand and Tait, 2001]. There is no conceptual
difference between this study and the steady state regime
observed in our experiments; the tail of gas driven fissures
does not play any role in the propagation, the latter being
entirely controlled by the fissure head. We should therefore
find that our fissures and those driven by gas are subject to
the same fundamental control. Figure 12 shows that velocity
data from both sets of experiments can indeed be correlated:

u / !r l2c : ð18Þ

This relationship highlights that as lc was determined by the
source conditions, lc & !Pr/(!rg) and !Pr & Kc/

ffiffiffiffiffiffi

pli
p

,
so was the crack velocity even in the steady state regime.
[30] We can illustrate this result in another way. In the

steady state regime the stress intensity factor Kt & !
Pr

ffiffiffiffiffiffiffi

p lc
p

was constant. The propagation being quasi-static,
Kt may also be written as

Kt ¼
ffiffiffiffiffiffiffiffiffi

G E
p

; ð19Þ

where G is the strain energy release rate during the steady
propagation [Lawn, 1993] and, like Kt, stayed constant. At
the onset of fissure propagation

Kc ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

2 gs E
p

& !Pr

ffiffiffiffiffiffiffi

p li
p

¼ constant; ð20Þ

and combining equations (12), (19), and (20) we obtain

G & 2 gs
!Pr

!r g li
: ð21Þ

Therefore the strain energy release rate G in the steady state
regime was a function of gs and the ratio !Pr/(!rgli). All
our gelatin solids being characterized by the same surface
energy gs, G in the steady state regime was thus determined
by the ratio of the source overpressure and the buoyancy
pressure in the initial fissure, that is to say by the initial
source conditions.
[31] This result resembles that obtained by Weertman

[1971a]: once the buoyancy pressure became nonnegligible
and hence became the driving pressure, the length of the
fissure head was determined. On the other hand, we found
that the propagation was steady contrary to Weertman
[1971b]. This difference comes from a discrepancy in his
argument. Indeed, Weertman [1971b] assumed that the
crack velocity was controlled by the fluid in the fissure,
more specifically by the viscous pressure drop, but he also
assumed that the crack had a constant volume. However, it
is not possible to completely extract the fluid out of the
crack tail as it closes. In other words, Weertman [1971b]
took the fluid viscosity into account in the thicker part of the
fissure to calculate its velocity but by assuming that the
fissure could close to maintain a constant volume he
implicitly neglected the viscosity in the thinner part of the
fissure. In our work, we have shown that the viscosity
affected only the thickness of the tail, which fed the fissure
in a passive manner. The rate of propagation was seemingly
entirely controlled by the fissure head and the mechanics of
failure at its tip in response to its buoyancy.

Figure 11. Schematic illustration of the fissure propaga-
tion in the steady state regime in cross section (a) and in
plane (b) views. Once the fissure reaches a height lc, the
hydrostatic pressure and the source pressure become
comparable. Then, the fissure propagates mainly vertically
and develops a bulbous head of length lc. The propagation is
controlled by the balance that takes place in the fissure head
between the hydrostatic pressure and the fracture pressure.
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[32] The propagation was limited by the fracturing pro-
cesses while the fissure overpressure remained constant
during the initial regime. This would imply that the stress
intensity factor K increased and became larger than the
fracture toughness Kc:

K & !Pr

ffiffiffiffiffiffi

p l
p

& Kc

ffiffi

l
p
ffiffiffi

li
p ( Kc: ð22Þ

If this is correct, then our experimental results show that a
fissure may steadily propagate in a quasi-static manner even
if the stress intensity factor at its tip is greater than the
fracture toughness of the solid. In our experiments Kt could
be up to 4 times greater than Kc. Note however that
although K apparently increased during the initial propaga-
tion regime, we observed that the fissure slowed down. This
suggests that the resistance to the propagation, performed by
the fracturing processes, did not stay constant but increased
as the fissure propagated, and hence that fracture resistance
is not a material property but is length scale dependent.

4.2. Geological Application

[33] Is it possible to apply our model to dyke propaga-
tion? Answering this question requires knowledge of the
fracture resistance of rocks. Our experiments suggest that
time-dependent failure of the gelatin solid controls the
propagation of fissures and one can argue that mechanics
of time-dependent failure might be different for gelatin and
rocks. However, when applied to dyke propagation, such
complex mechanics are still not well understood as time-
dependent failure depends on the deformation of rocks
around the dyke tip, which in turn is affected by failure
of rocks at the dyke tip [Mériaux et al., 1999]. On the other
hand, despite that linear elastic fracture mechanics does not
provide any timescale, such a framework was nevertheless
successful to explain the regimes we observed in our
experiments. Moreover, we have shown that gelatin

behaves as an elastic, brittle solid, which is the behavior
thought to be relevant for rocks, at least to leading order.
We therefore think that such a framework should be enter-
tained for dyke propagation and briefly outline the geo-
logical implications, although these should be considered as
preliminary at this stage.
[34] A typical value for the fracture toughness of rocks

measured in laboratory is Kc ) 1 MPa m12 [Atkinson, 1984]
whereas estimations deduced from field measurements are
two to three orders of magnitude greater [Delaney and
Pollard, 1981; Reches and Fink, 1988]. By comparing Pv

and Pf we see that these two pressure scales are comparable
when a dyke has a length

l & K w2

3
ffiffiffi

p
p

h u

" #
2
3

: ð23Þ

We may take for a typical mafic dyke from Hawaii a
thickness 2w & 1 m and a velocity u & 1 m s!1. We
therefore obtain that Pv and Pf are comparable when a
Hawaiian dyke has a length l & 60 m if we take Kc ) 1 MPa
m12 or l & 3.8 km if we take Kc ) 500 MPa m12. Thus, this
would suggest that, depending on the value of Kc, the
resistive pressure may be the viscous pressure drop rather
than the fracture pressure. However, several remarks may be
made. First, the rock has to be fractured so that a dyke may
propagate. If the rock has no weaknesses, in the light of the
linear elastic fracture mechanics it is not possible to prop-
agate a dyke as long as Kc has not been reached. If the rock
is not fractured there is no propagation, which means Pv '
Pf. Second, as previously mentioned, our experiments
showed that in the case of a crack propagation initially
controlled by a balance between Pe and Pf, the viscosity of
the liquid acted on the propagation in a passive manner,
affecting only the tail thickness. We therefore think that
dyke propagation is not controlled by the viscous pressure
drop but is rather controlled by the fracture resistance of the
rocks. However, if rocks have weaknesses then things may
be different. It has been observed that sometimes magma
invades older fractures rather than propagating its own
hydraulic fracture [Delaney et al., 1986]. In those cases,
the fracture resistance would be much lower and Pv may
become the dominant resisting pressure scale. So the key
question is: what is the real fracture resistance of rocks? It
seems to be the key parameter for determining the prop-
agation regime of a dyke.

4.3. Geological Implications

[35] Coupled with field measurements of dyke cross
sections, our model enables us to estimate the source over-
pressure at the time of the emplacement of dykes and to
infer whether they propagated in a steady state regime or
not. We apply our model to two different magmatic systems:
Hawaii and the MacKenzie Dyke Swarm, Canada. In the
model framework, we have to make a number of assump-
tions. We first assume that the source pressure remains
constant during dyke propagation. Moreover, although we
are dealing with dykes that propagated toward the surface
and in most cases reached it, we make the strong assump-
tion that the surface did not have any effect on their
propagation. Finally, we also assume that dykes have been

Figure 12. Fissure velocity scales with !rlc2. Both liquid-
filled fissures, same symbols as in Figure 10, and gas-driven
fissures from the work ofMenand and Tait [2001] identified
by * are represented.
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propagating in a steady state regime up to the surface. Such
an assumption will be tested in order to infer the propaga-
tion regime of the dykes: if it is incompatible with the field
measurements, then dykes would have been propagating in
the initial transient regime.
[36] Combining equations (12) and (16), the source over-

pressure !Pr may be expressed as a function of the ratio q/u
in the steady state regime:

!Pr &
E !r gð Þ2

2 1! n2ð Þp
q

u

" #1
3

: ð24Þ

As q/u is a kinematic estimate for the fissure cross section
pw l, it increases with the length of the fissure during the
transient regime and is therefore greater in the steady state.
Hence, substituting measured cross sections of dykes,
assumed to have reached steady state propagation, into
equation (24) enables us to infer a minimum value for the
overpressure !Pr in the magmatic source that fed those
dykes. Moreover, equation (16) enables us to estimate the
transition height between the transient and steady state
regimes from the measurements of these dyke cross
sections. Figure 13 represents the dyke cross section as a
function of the source overpressure (equation (24)) and of
the critical height for the transition between regimes
(equation (16)), we use E = 40 GPa, n = 0.25 and !r =
300 kg m!3 as typical values for the Earth’s crust and for
the density contrast between rock and magma. Typical cross
sections for dykes from Hawaii and the MacKenzie Dyke
Swarm, shown as ellipses, have been drawn as well. Table 2
gives the estimations of dyke cross sections, source
overpressures and transition heights (equations (16) and
(24)) for Hawaii and the MacKenzie Dyke Swarm.
[37] The magma chamber in Hawaii is thought to be about

1.5 km below the surface [Ryan et al., 1981; Rubin and
Pollard, 1987]. This depth is comparable to our transition
height estimation. However, our density contrast may be an
overestimation for that between magma and rocks close to
the surface. This would increase the transition height and
thus suggests that Hawaiian dykes fed by shallow regions of
the magma chamber may be unlikely to attain the steady
state regime. Equation (24) estimates the source overpres-
sure to be between about 40 and 100 bars. These values are
close to those given by Rubin and Pollard [1987]. However,
an overestimation of the density contrast would also lead to
an underestimated source overpressure suggesting that !Pr

would therefore be greater than 100 bars.
[38] In the Canadian shield, the MacKenzie Dyke Swarm

is more than 2000 km long and 500 km wide with a mean
dyke thickness of 30 m. It is thought to appear 1.27 Ga ago
because of a giant mantellic plume [Fahrig, 1987; LeChe-
minant and Heaman, 1989] the head of which would have
measured 1000 km in diameter [Ernst and Baragar, 1992].
According to Ernst and Baragar [1992] the flow in dykes
was vertical above the plume head and horizontal around it.
Although such a plume would have strongly thinned the
lithosphere, this thinning remains unknown and a compar-
ison with our transition height estimation is therefore
difficult. However, the presence of sills [LeCheminant and
Heaman, 1989] as well as the indication of horizontal flow
[Ernst and Baragar, 1992] suggest that the propagation was
dominated by the overpressure in the plume head rather than

by the buoyancy of the magma. Vertical dykes would have
therefore propagated in a non-steady state regime and our
estimations of transition height and source overpressure
would be underestimated. This would suggest an enormous
overpressure in the plume head, more than 1500 bars, at the
time of the swarm emplacement. If we have overestimated
dyke cross sections, because we considered dykes that
propagated laterally and not vertically, our model would
still predict overpressures of several hundreds of bars.
Another possibility is that a giant mantellic plume such as
this one would have dramatically modified the thermal
structure of the lithosphere and, as a result, its stiffness
would have been strongly reduced. In that case, our esti-
mated source overpressure would be lowered.
[39] Are such overpressures realistic? We have assumed

that dyke initiation and propagation are controlled by the
fracture toughness of rocks, which is thought to be inde-
pendent of the dimensions of the dykes as well as their
loading. This seems to be in contradiction with our results
that suggest a greater source overpressure is needed to create
a greater geological object, such as a giant dyke swarm, and
therefore that fracturing processes depend on a length scale.

Figure 13. Dyke cross section as a function of (a) source
overpressure (equation (24)) and (b) transition height
(equation (16)). E = 40 GPa, n = 0.25, and !r = 300 kg
m!3. Ellipses are estimations of typical dyke cross sections
estimated for Hawaii and MacKenzie Dyke Swarm.
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However, fracture toughness estimated from field measure-
ments are 102–103 greater than those measured in laboratory
on rock samples [Delaney and Pollard, 1981; Atkinson,
1984; Reches and Fink, 1988] and it has been argued that
the fracture energy required to propagate a dyke, or meas-
ured for earthquakes, is many orders of magnitude larger
than laboratory-scale measurements [Rudnicki, 1980; Dela-
ney et al., 1986]. Both field and laboratory observations can
only really be consistent if fracture toughness is scale
dependent. Indeed, it has been argued that rock fracture
toughness does scale with the size of the fracture because the
volume of rock affected, and hence undergoing damage, is
greater [King, 1983; Scholtz et al., 1993]. Increase in the
resistance to propagation of a fault with the length of the
fault can explain why small earthquakes occur; if this were
not the case, earthquakes would always propagate unstably
and therefore become ‘‘megaearthquakes.’’ In short, damage
and fracture at one scale lead not to catastrophic failure of the
rock (as happens in small-scale experiments on rock sam-
ples) but to damage and fracture at larger scales in a process
of evolving damage [King and Sammis, 1992]. It therefore
seems that the fracture dominated regime, which we
observed in our experiments and in which a dissipative,
scale-dependent process resists fissure propagation, is likely
to exist under geological conditions.

5. Conclusion

[40] Fissure propagation from a reservoir with constant
overpressure is characterized by two regimes. Initially, the
propagation is controlled by a balance between the source
pressure and the fracture pressure. In this transient regime
both the injection rate and the fissure velocity depend on the
initial conditions. Once the buoyancy pressure overcomes
the source pressure, a steady state is achieved. The fissure
develops a bulbous head, in which buoyancy pressure
balances the fracture pressure that resists the propagation,
fed by a thinner tail, the thickness of which is determined by
a balance between buoyancy and viscous pressure gradient.
Fissure velocity and injection rate become constant at the
transition between regimes. Even in the steady state regime,
the velocity and the injection rate reflect the source con-
ditions because the fissure latches onto a steady state regime
that is consistent with the source characteristics. Likewise,
the strain energy release rate during the steady propagation
is determined by the initial source conditions.
[41] Although our model cannot, at this preliminary stage,

predict the propagation velocity of a liquid-filled fissure, it
does nevertheless provide constraints on the failure mech-
anism: the steady propagation velocity appears to be propor-
tional to the square of the height of the buoyant fissure head.
Moreover, the fissure can propagate steadily even though

the stress intensity factor at its tip is greater than the fracture
toughness of the host solid.
[42] Our model suggests that the cross-sectional area of

dykes provides two quantitative pieces of information. It
first gives the nature of the propagation regime of the dykes,
whether it is steady or not. Second, it gives an estimation of
the overpressure present in the source at the time of their
emplacement. These overpressures appear to depend on the
dimensions of the dykes, suggesting a length scale depend-
ence of time-dependent failure of rocks. Hence, like fault
propagation, dyke propagation seems very likely to be
controlled by the fracture resistance of rocks.
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Abstract

A series of experiments are described where dyed water (a magma analogue) was intruded into solid gelatine (a crustal
analogue) to investigate the formation of sills. We considered a layered gelatine system with contrasting adjacent layers. By
varying the density and rigidity of the gelatine we found that experimental sills form when the upper layer is more rigid than the
lower layer, with intrusion occurring in a plane directly below the interface. Experimental dykes were observed to propagate to
the surface when the Young's Modulus ratio of upper to lower gelatine layers was less than one. Experimental dyke arrest
occurred when the upper layer was more rigid and the interface was strong. Two varieties of experimental sill formed when the
upper layer was more rigid than the lower layer and the interface was sufficiently weak. The form of the intrusion depends on the
balance of driving pressures and the Young's Modulus ratio of contrasting adjacent layers. When the rigidity ratio is high and
there is a large driving pressure the experimental feeder dyke completely converts to propagate as a sill. However, when the
rigidity ratio and driving pressure are both close to one a dyke–sill hybrid forms. Under these conditions the experimental sill
formation is accompanied by contemporaneous dyke intrusion into the overlying more rigid layer. During sill propagation
deformation structures such as faults and en echelon fractures are formed into the lower layer. Experimental sill propagation
dynamics are controlled by viscous dissipation along the length of the sill; causing acceleration with increasing length. Our study
suggests that rigidity contrasts may play a major role in the location of sills and development of igneous complexes. In ancient
cratonic areas the Moho is a suitable site for the preferential formation of sills with higher rigidity continental crust overlying
weaker mantle. Mantle plumes impacting ancient continents provide a situation in which large sills can form to fractionate prior
to eruption of flood basalts. The boundary between the upper and lower crust (Conrad discontinuity) may provide a preferential
focus for the emplacement of sheets of silicic magma at continental arcs where the lower crust is weakened by prolonged heating
and possible hydration.
© 2006 Elsevier B.V. All rights reserved.

Keywords: sills; fractures; layered crust; intrusions

1. Introduction

Sill intrusion is a major mechanism of constructing
continental crust. Repeated sill intrusion with evolution
to laccolithic bodies [1] is a favoured mechanism for
forming crustal magma chambers and granite plutons
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[2–4]. Igneous differentiation also occurs in sills [5]. A
common explanation of seismic layering in the lower
crust is the formation of sill complexes [6]. However,
the dynamics and mechanics of sill emplacement are
poorly constrained. There is economic incentive to
understand sill emplacement as these intrusions
improve the petroleum prospectivity of sedimentary
basins [7] and form part of diamond-bearing kimberlite
complexes [8].

Sills have been relatively unstudied compared to
dykes and there are different concepts regarding their
mechanism of emplacement and propagation dynam-
ics. Previous work has focused on the growth of an
established sill [7] and has considered the transfor-
mation of sills into laccolith [1,9]. The conditions
under which vertical magma intrusions convert to
propagate as a sill have been studied theoretically
[10–13] but these hypotheses are conflicting. Exper-
imental studies of dyke formation [14] and propaga-
tion [15–21] are numerous and have proved
successful. In comparison, studies of the dyke to sill
transition are sparse [22,23].

In this study the controls on sill emplacement have
been investigated experimentally by intruding dyed
water (a magma analogue) into solidified gelatine (a
crustal analogue). The aims are to identify potential
controls on sill emplacement and then to characterise
sill propagation dynamics. Background information is
first provided regarding the characteristics and
geological settings of sills, and then a theoretical
framework is presented that can be used to
characterise them. Using this theoretical framework
a series of experiments are described in which
dynamical data are collected, and the conditions
suitable for sill formation are determined by varying
the host material's of density and rigidity. Finally we
apply the results to interpretation of preferred levels
of intrusion in the continental lithosphere in different
tectonic settings.

2. Geological settings, sill morphology and
formation hypotheses

Sills commonly intrude parallel to bedding planes
[24], though are also found intruded into basement
rocks [25], pre-existing lavas, and steeply dipping
rocks where the intrusion is discordant to bedding or
metamorphic layering (for example the Traigh Bhan
na Sgurra Sill, Isle of Mull, Scotland). Sills can extend
over thousands of square kilometres and can be
hundreds of metres thick [24,26,27]. Sills can be
formed in all tectonic contexts though the largest sills

tend to be doleritic and are associated with crustal
thinning, continental break-up and sedimentary basin
formation [24]. Smaller sills (extending over only a
few square kilometres) are generally found in
association with volcanic centres [28]. Underplating
can also produce horizontal planar magma bodies at
the crust–mantle interface [29,30]. Here for simplicity
we define sills as horizontal magma sheet intrusions,
compared to dykes that are defined as vertical sheet
intrusions.

Three forms of sill have been identified: radial
symmetrical sills, bilaterally symmetrical sills and a
hybrid variety that forms due to their interaction. Radial
symmetrical sills are commonly thickest at their centre
[24,31], though examples where the edge of the sill is
thickest have also been described [12]. Dykes feed sills
and are either centrally located [31] or offset [12,24,32].

Field studies show that when sills intrude sedimen-
tary sequences they commonly abut rock layers that
could have acted as a barrier to vertical propagation and
encouraged horizontal propagation. Examples include
high rigidity sandstones [33], shales [34], ancient lava
flows [25] or a previously formed sill (e.g. Kimberlite
sills abut dolerite sills in the Wesselton mine, Kimber-
ley, South Africa [35]). The load of volcanic edifices can
trap magma within the crust [36] to form horizontally
propagating dykes [37] and potentially horizontal sills.

There are two conflicting hypotheses of sill forma-
tion with their emplacement controlled either by buoy-
ancy forces or by the tectonic stress system. Intruding
magma is commonly of intermediate density to
basement rocks and sedimentary sequences. The
hypothesis that sills are emplaced at the magma's level
of neutral buoyancy [11] is not consistent with field
observations that show basalt sills emplacement both
within lower density sedimentary sequences [24] and
higher density basement sequences [38]. Roberts' [10]
tectonics hypothesis states that sills are emplaced during
conditions of horizontal compression. The transition
from dyke to sill is attributed to a change in ambient
stress from horizontal tension (σx<σz) that favours dyke
propagation at depth, to horizontal compression
(σx>σz), which promotes sill propagation at shallow
crustal levels (see Table 1 for parameter definitions).
Roberts' [10] and Bradley's [11] hypotheses of sill
formation predict a morphology that is either parallel
to or mirrors the overlying contemporaneous surface
topography, respectively [31]. 3-D seismic reflection
data from the North Rockall Trough have shown
that neither of these sill morphologies is observed,
and consequently there is no current model that ade-
quately describes the mechanism of sill formation. The
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observation that sills often abut a particularly rigid
horizontal layer (such as a previously emplaced sill [35]
or a particularly rigid sandstone layer [33]) provides an

alternative hypothesis of sill intrusion controlled by rock
rigidity.

3. Theoretical background

Dyke and sill intrusion are likely to be mechanically
different as dykes are typically discordant whereas sills
often intrude horizontal planes of weakness such as
bedding planes or unconformities. Dyke propagation
has previously been studied using the principles of
linear elastic fracture mechanics (LEFM) where the
intrusion is idealised as a crack intruding a brittle, elastic
material and its propagation is governed by both fluid
and fracture mechanics [15–21]. This physical frame-
work is independent of the orientation of the intrusion,
and we assume the same principles can be applied to
study sill formation and propagation. The intrusion of
magma into a propagating crack involves driving and
resistive pressure forces, characterising the elastic
deformation of the host solid, the resistance to fracture,
the buoyancy of the fluid and its viscous resistance to
the flow. These pressures are now introduced.

Sills have a thickness over length aspect ratio of
∼10−3 [26], which enables us to consider them as
planar sheet intrusions [22]. The crust responds
elastically to sill intrusion which exerts a relatively
small amount of strain on the host material and has a
short timescale of deformation [20]. A magma-filled
crack can be divided into three regions: the intact host
material, the process zone and the crack itself [39] (see
Fig. 1). Between the magma front and crack tip there is a
cavity that may be filled by exsolved volatiles from the
magma.

Fig. 1. Schematic diagram of a pressure driven fluid-filled crack
propagating in an elastic solid (based on [39]).

Table 1
Notation and parameters

U– Average flow velocity m/s
Pb Buoyancy pressure Pa
XG Composition: gelatine wt.%
XLG Composition: gelatine lower layer wt.%
XUG Composition: gelatine upper layer wt.%
XLS Composition: NaCl lower layer wt.%
x Deflection m
ρG Density: gelatine kg/m3

ρliq Density: injected liquid kg/m3

ρL Density: lower layer gelatine kg/m3

ρU Density: upper layer gelatine kg/m3

a Diameter m
Pe Elastic pressure Pa
PeL Elastic pressure: lower layer Pa
PeU Elastic pressure: upper layer Pa
M Elastic stiffness Pa
ρ Fluid density kg/m3

P Fluid Pressure Pa
η Fluid viscosity Pa s
Pf Fracture pressure Pa
PfL Fracture pressure: lower layer Pa
PfU Fracture pressure: upper layer Pa
Kc Fracture toughness Pa m0.5

KcL Fracture toughness: lower layer Pa m0.5

KcU Fracture toughness: upper layer Pa m0.5

g Gravity m/s2

w Half-thickness m
H Head pressure height m
h Height of crack m
hL Height: lower layer thickness m
hc Height: crack thickness m
l Length of crack m
m Mass kg
P0 Overpressure Pa
ν Poisson's ratio N/A
PL Pressure: load Pa
U Propagation velocity m/s
Re Reynolds number N/A
y Second longest crack dimension m
μ Shear modulus Pa
εx Strain in x-direction N/A
εy Strain in y-direction N/A
σx Stress in x-direction Pa
σy Stress in y-direction Pa
σz Stress in z-direction Pa
K Stress intensity factor Pa m1/2

S Surface area m2

γs Surface energy of gelatine J m−2

t Time s
U Velocity m/s
Pv Viscous pressure Pa
V Volume m3

E Young's Modulus Pa
EL Young's Modulus: lower layer Pa
EU Young's Modulus: upper layer Pa
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In order for magma to intrude its host material the
magma pressure P needs to overcome the elastic
pressure Pe to deform the host material elastically [20]:

Pe ¼
E

2ð1−m2Þ
w
y
; ð1Þ

where E is Young's Modulus, ν is Poisson's ratio, w is
the typical half-thickness of the crack and y is half the
crack's second smallest dimension. Pe expresses the
elastic properties of the host rock and is reflected in the
dimensions of the resulting crack. It follows that a
higher magma pressure is required to elastically deform
a very rigid material with high E.

In order for a fracture to propagate, the pressure at the
crack tip has to exceed the strength of the host rock.
Stresses are concentrated at the crack tip and are
characterised by a stress intensity factor K. This is
controlled by the overpressure P0 (defined as the magma
pressure in excess of the ambient stress) and the length
of the crack l [39]. Fracture can occur when K exceeds
the fracture toughness Kc (which characterises the
strength of the host rock) [39]. Therefore, the excess
magma pressure, P0, needs to surpass the fracture
pressure, Pf, of the rock in order to initiate crack
propagation [20] and can be expressed as follows:

P0 > Pf ¼
Kcffiffiffiffiffi
lk

p : ð2Þ

This is the overpressure required to create a stress at the
crack tip which is capable of fracturing the host material
[16]. It is easier to propagate a crack in a host material
that has a low fracture toughness Kc; additionally, the
longer the crack the easier it is to propagate.

The density difference (Δρ) between that of the
intruded host material and the magma results in a
buoyancy pressure Pb, [39]:

Pb ¼ Dqgh: ð3Þ

The buoyancy pressure thus depends on gravity, g, and
the height of the magma, h.

The Reynold's number (Re) determines magma flow
dynamics and velocity profile along the thickness of the
crack:

Reu
qliqU

$w

g
; ð4Þ

where U– is the average velocity, w is the half-thickness
of the flow, ρliq is the liquid density and η is its vis-
cosity. A laminar flow regime occurs at low Reynold's
number and turbulent flow at a high Reynold's

number. The transition from laminar to turbulent
flow behaviour occurs between 10 and 1000 depending
on the flow geometry [20]. The Reynold's number is
typically low for dyke intrusion [40], corresponding to
laminar flow behaviour. However, sills can show
evidence of turbulent flow [25]. For example, a
basaltic dyke propagating at an average velocity of
1 m/s, with a typical half-thickness of 1 m, a density of
∼2800 kg/m3, and viscosity of 100 Pa s would have
Re=28. This is in the transitional regime between
laminar and turbulent flow, though the behaviour will
be predominantly laminar. However, as sills are
typically thicker than dykes, magma with the same
velocity and viscosity in a 10 m thick intrusion would
have Re=280, and thus may develop local or
intermittent turbulence. A 100 m thick intrusion should
develop fully turbulent flow. The Reynold's number is
used to scale small laboratory experiments to these
large natural phenomena.

The velocity profile across the crack thickness
depends on the flow regime. Magma is a viscous fluid
and, in both laminar and turbulent flows, viscous
dissipation Pv along the length of the crack occurs. In
laminar flow this viscous pressure drop, Pv, is estimated
from the equation [20]:

Pvc
gl2

w2t
; ð5Þ

where t is time. By considering the balance of resistive
pressures (Pv and Pf) [20] it can be determined whether
sill propagation is controlled predominantly by the
viscosity of the intruding fluid or fracture of the host
solid. Viscosity is important when Pv>Pf and fracture is
dominant when Pv<Pf [20]. Sills are commonly
observed to intrude parallel to bedding planes and one
can assume that fracturing between two adjacent beds
requires less energy than fracturing through coherent,
more competent rocks. Therefore, sills are more likely to
be controlled by viscous dissipation than dykes. The
buoyancy pressure acting over the thickness of a sill can
be considered negligible when compared to the elastic
pressure as the maximum thickness of sill extends to a
few hundred metres; over this distance elastic pressure
would dominate [20]. Based on the assumption of
negligible buoyancy and fracture pressure, sill propa-
gation would be controlled by a balance between
viscous dissipation, Pv, and overpressure, P0. Conse-
quently, the velocity U along the length of the sill can be
calculated [39]:

U ¼ 1
3g

P3
0

M 2 l; ð6Þ

802 J.L. Kavanagh et al. / Earth and Planetary Science Letters 245 (2006) 799–813



whereM is the elastic stiffness of the host material and is
the balance of its shear modulus, μ, and Poisson's ratio,
ν [39]:

M ¼ l
ð1−mÞ ¼

E
2ð1−m2Þ : ð7Þ

4. Experimental methods

The mechanics of forming sills are now investigated
using layers of gelatine injected by water-filled cracks.
The experiments involve varying the pressure driving
crack propagation, and the rigidity and density of the
gelatine layers.

Three sets of experiments are described. Firstly, fluid
was intruded into homogeneous gelatine solid in the
presence of a load. Secondly, fluid was intruded into a
two-layered system with the upper layer less dense and
less rigid than the lower layer. Thirdly, the fluid intruded
a two-layered system with layers of approximately equal
density but with an upper more rigid layer. From this
point onwards vertical to sub-vertical fluid-filled cracks
shall be referred to as “experimental dykes” and cracks
that propagate in a horizontal plane shall be referred to
as “experimental sills”. The propagation of each fluid-
filled crack was photographed and videoed from the side
and above to monitor the propagation and evolution of
the intrusion with time. Distances were measured with
an accuracy of ±0.5 cm, with errors attributed
predominantly to distortion of the viewing perspective
by the experimental tank walls. Data collection
commenced once the valve on the injector pipe was
opened and propagation of the crack had begun.

Gelatine is an elastic material that has brittle
behaviour and is thus a good analogue for geological
systems [16,41]. It is easily prepared and is transparent
when solid, making viewing and measuring an intrusion
and its propagation straightforward. We can measure the
properties of the host material and injected fluid, the
pressures driving and resisting crack propagation, and
the propagation velocity. This allows the characterisa-
tion of conditions suitable for sill formation to be
determined, and the geometry of these bodies to be
observed, enabling their propagation dynamics to be
analysed.

When magma intrudes crustal material the ambient
stress field is likely to differ from hydrostatic. Our
experiments are conducted under initially hydrostatic
conditions, however the physical principles of sill
emplacement identified in our experiments are still
valid.

4.1. Preparation of experiments

The experiments were conducted in a square based
0.4 m⁎0.4 m⁎0.3 m perspex container with nine
equally spaced injection points in its base (see Fig. 2). A
forty-litre gelatine solution is poured into the experi-
mental tank to cool and solidify overnight. To accelerate
the solidification process all experiments were prepared
in a cold room kept at 7 °C. A thin layer of oil poured on
top of the solution inhibits water evaporation during the
cooling process [14,16]. A two-layered system com-
prises equal volumes of gelatine with contrasting
properties. The properties of the gelatine are altered by
varying the wt.% of gelatine, enabling a range of
rigidities to be obtained. Adding salt increased the
density of the gelatine and injecting fluid.

4.2. Material properties

The material properties of the gelatine solid and
injecting fluid were measured prior to an experiment.
Density measurements were made using a density
bottle of known volume, with a mean average error of
±0.55%. The gelatine rigidity is quantified by the
Young's Modulus, E, and is calculated from the
deflection, x, caused by a cylindrical load of known
mass, m, and radius, a, placed on the free surface.
Provided the diameter of the load is small compared to
the dimensions of the experimental tank the gelatine
solid can be considered a semi-infinite medium [42]. The
Young's Modulus, E, is then obtained by the equation:

E ¼ mgð1−m2Þ
2ax

: ð8Þ

Gelatine has a Poisson's ratio ν of 0.5, and gravity is
taken as g=9.814 m/s2. The deflection, x, is measured to

Fig. 2. Apparatus and set-up used during the experimental series.
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a high accuracy using a digital micrometer; the mean
average error on the Young's Modulus is ±6%. Young's
Modulus of gelatine evolves with time though can be
considered to be constant over the duration of an
experiment, which typically lasts less than 20 min.

In a two-layered system the Young's Modulus of the
lower layer cannot be directly measured. Equal volume
samples of each gelatine layer were prepared, left to
solidify alongside the filled experimental tank and the
Young's Modulus of each sample was measured. The
Young's Modulus ratio was assumed to equal that of the
layers in the experimental tank, allowing Young's
Modulus of the lower layer to be estimated.

Young's Modulus is used to calculate the fracture
toughness of each gelatine layer, with an accuracy of
±4%:

Kc ¼
ffiffiffiffiffiffiffiffiffiffi
2gsE

p
; ð9Þ

where γs is the surface energy. Gelatine has a surface
energy of 1 J m-2 [16]. Subsequently, the fracture
pressure Pf required for crack propagation in each
gelatine layer is calculated (see Eq. (2)), with a mean
average error of ±6.5%.

Once the gelatine is prepared and all material
properties have been determined the fluid-injecting
system is attached to the experimental tank (see Fig. 2).
An injector pipe is inserted into the base of the tank
piercing the gelatine solid. The valve on the pipe is
opened and fluid from an external reservoir is forced
into the gelatine solid under a constant overpressure, P0.
The orientation of the resulting fluid-filled crack is
controlled by the tapered injector [15].

4.3. Pressure measurements

The fracture pressure (see Eq. (2)) of the lower layer,
PfL, was evaluated at the start of each experiment when
the crack length, created by the insertion of the injector,
was approximately 1 cm. In a two-layered system the
fracture pressure of the upper layer, PfU, was calculated
when the experimental crack had propagated to the
interface and the crack length was approximately
12.5 cm (see Table 3). During crack propagation the
overpressure, P0, exceeds the fracture pressure both in
the lower layer, PfL, and at the interface PfU. The
overpressure was calculated via the following equation:

P0 ¼ qliqgH ; ð10Þ

where H is the distance between the gelatine free-
surface and the height of the water in the external

reservoir (see Fig. 2). P0 was varied between experi-
ments by increasing or decreasing H (see Table 3).
A small pressure loss at the injector tip resulted in P0

being measured with ±18% accuracy. By using a pump
the external reservoir was kept full ensuring a constant
head H, and hence overpressure, throughout each
experiment.

During crack propagation the elastic response of the
gelatine solid was estimated from the dimensions of the
fluid-filled crack. The elastic pressure, Pe, was then
calculated (see Eq. (1)) with a mean average error of
±43%; the uncertainty is due to the difficulties in
estimating crack thickness accurately as the viewing
perspective distorts it.

The buoyancy pressure of the experimental crack
was calculated when it had propagated 12.5 cm in
vertical height, hL (see Table 3). This corresponded to
the layer half-depth in a single-layered gelatine system
and the position of the interface in a two-layered
system (see Fig. 2). In the event of crack propagation
along the interface the buoyancy contribution across the
thickness of the crack, hc, was added:

Pb ¼ ðqL−qliqÞghL þ ðqU−qliqÞghc: ð11Þ

Initial stress conditions are hydrostatic due to the
undeformable walls of the experimental tank [15]. When
crack propagation is initiated the stress field is altered. A
load added to the free surface will add to this effect, and
it can be calculated with a mean average error of ±1.2%:

PL ¼ mg
S

; ð12Þ

where PL is the pressure exerted by the load, m is the
mass of the load, g is gravity, and S is the surface area of
the load.

5. Experimental observations

5.1. Single-layered system

The aim of these experiments was to determine
whether experimental sill intrusion is possible in a
homogeneous solid, and to assess the effect of an edifice
load on the crack propagation.

A homogeneous gelatine solid was prepared and the
injection system set up in the manner described above.
Once the initial crack had formed its “penny-shaped”
geometry quickly converted to an arc-shaped elliptical
disc with greater length than breadth. When a load was
placed above the propagating crack it acted as an
attractor and it was possible to stop vertical propagation

804 J.L. Kavanagh et al. / Earth and Planetary Science Letters 245 (2006) 799–813



directly below the load. Propagation continued laterally
along the crack breadth. Vertical propagation was reini-
tiated when the breadth reached a magnitude where the

effect of the load was reduced, and the crack erupted at
the surface next to the load (see Fig. 3). When the load
was instead placed offset relative to the propagating
crack it again acted as an attractor. The propagation front
was deflected from vertical to an inclined path towards
the load. Horizontal propagation in a plane parallel to
the free surface did not occur; under these conditions
experimental sill formation is not observed.

5.2. Two-layered system with low rigidity ratio (EU/EL)

A two-layered system was then prepared to
consider the effect of a density interface that could
potentially be intruded to form a sill. A less dense,
less rigid upper layer was considered and a fluid with
a density intermediate between the densities of the two
layers intruded the system (see Table 2). The
overpressure of crack propagation was greater than
the buoyancy pressure (see Table 3). Initially a
“penny-shaped” crack formed, as this propagated
vertically it developed into an elliptical form with
length greater than breadth. The experimental dyke
narrowed in breadth as it reached the horizontal
interface between upper and lower layers, and it then
propagated through the interface (see Fig. 4). The
breadth and thickness of the crack increased as it
propagated into the upper layer. Its breadth tapered as
it approached and then broke through the free surface
and it was observed that the intrusion accelerated
towards the free surface. The crack did not stall at the

Fig. 3. Photograph of experimental dyke formation propagated with an
overlying load (side view, at 909 s, Experiment 12). The load acts as an
attractor to dyke propagation.

Table 2
Material properties of each experiment

No. XLG XLS ρL EL XUG ρU EU EU/EL ρliq Comments

Homogeneous solid
1 6 1014 4000 1 1000 Dyke
2 5 1010 1200 1 997 Dyke
12 2 1003 1941 1 1000 Dyke
13 2 1003 1941 1 1000 Dyke

Two-layer system
3 10 3.0 1048.6 14,651 5 1006 2834 0.19 1026 Dyke
4 5 15.0 1125 615 10 1027 24,614 40.02 1002 Sill
5 5 15.0 1125 615 10 1027 24,614 40.02 1002 Sill
6 5 1.0 1018 11,515 6 1014 9979 0.87 1003 Dyke
7 5 1.0 1018 11,515 6 1014 9979 0.87 1003 Dyke
8 5 1.5 1019 22,791 8 1019 44,117 1.94 999 Dyke–sill hybrid
9 5 1.0 1023 22,205 8 1019 28,423 1.28 1001 Sill
10 1 0.5 1003 657 5 1007 7524 11.45 999 Sill
11 4 0.5 1011 16,244 5 1007 17,806 1.10 1000 Dyke–sill hybrid
14 2 1 1008 1429 10 1027 17,945 12.56 1000 Sill
15 2 2 1011 3900 8 1019 25,739 6.60 1002 Sill
16 2 3 1018 2900 10 1027 43,340 14.95 1001 Arrested dyke
17 2 3 1018 2900 10 1027 43,340 14.95 1001 Arrested dyke
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interface separating the layers. The presence of an
interface between contrasting layers was insufficient to
induce experimental sill formation.

5.3. Two-layered system with high rigidity ratio (EU/EL)

A two-layered system was then prepared with an
upper more rigid layer of approximately equal density to
the lower layer. Intrusion was by a lower density fluid
(see Table 2). The overpressure of intruding fluid was
larger than the fracture pressure of both layers (see Table
3); consequently the crack had the potential to propagate
to the free surface.

Initial experimental dyke formation was as a
“penny-shaped” disc (see Fig. 5: stage 1). The crack
propagated to the horizontal interface between upper
and lower layer, developing an elliptical form. The
vertical propagation then stalled upon reaching the
interface and continued just along its breadth (see Fig.
5: stage 2). During some experiments an arrested
experimental dyke formed with no propagation either
into the upper layer or into the interface, crack
propagation continued purely along the breadth of the
crack. In other experiments the experimental dyke
propagated along the interface and at the same time
propagated into the overlying layer, forming an
experimental dyke–sill hybrid (see Fig. 5: stage 3
and Fig. 6b). However, during most experiments the
experimental dyke completely turned horizontally at
the interface and continued its propagation as an
experimental sill (see Fig. 6a). The experimental sill

Table 3
Pressure scales calculated during experiments

No. KcL KcU PfL
a PfU

b PeL PeU PL P0 Pb
c Comments

Homogeneous solid
1 95 535 27 400 687 Dyke
2 52 293 13 670 192 16 Dyke
12 66 373 28 739 638 3.5 Dyke
13 66 373 33 739 491 3.5 Dyke

Two-layered system
3 182 79 1024 127 54 13 196 28 Dyke
4 38 235 210 376 18 392 154 Sill
5 38 235 210 376 14 1128 154 Sill
6 161 150 908 239 349 151 932 18.3 Dyke
7 161 150 908 239 349 238 638 18.3 Dyke
8 226 315 1278 503 380 2158 25 Dyke–sill hybrid
9 224 253 1261 404 888 3110 30 Sill
10 38 130 217 208 18 285 5.5 Sill
11 191 200 1079 319 667 1472 14.5 Dyke–sill hybrid
14 57 201 320 321 19 1373 11 Sill
15 94 241 529 384 104 2158 13 Sill
16 81 312 456 498 97 1177 21 Arrested dyke
17 81 312 456 498 77 2354 Arrested dyke
a PfL is evaluated at the start of each experiment when the crack length, created by the insertion of the injector, is approximately 1 cm.
b PfU is evaluated when the experimental crack has propagated to the interface and the crack length is approximately 12.5 cm.
c The buoyancy pressure is calculated when the crack length is 12.5 cm. When an experimental sill forms at the interface the buoyancy pressure

contribution over its thickness is included (see Eq. (11)).

Fig. 4. Photograph of experimental dyke formation in a two-layered
system with a less dense and less rigid upper layer (Experiment 3). The
dyke (with dashed outline) has propagated through both layers to the
surface, with no horizontal propagation parallel to their interface
occurring. Note the dyke narrows at the interface and tapers towards
the surface. The camera angle is not parallel to crack axis.
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propagation front was lobed as the fluid-filled crack
intruded the interface. During the propagation defor-
mation structures, such as inclined en echelon tension
structures and faults, formed within the lower less
rigid layer (see Fig. 6c and d). Additionally, once the
lateral extent of the experimental sill reached greater
than ∼30 cm diameter upwards doming of the

gelatine free surface was observed, forming an
experimental laccolith.

6. Experimental data

Plotting the dimensionless driving and resistive
pressures, (P0/PfU), against the rigidity ratio of upper

Fig. 5. A schematic sketch of the three stages of sill formation under initially hydrostatic conditions and with an upper more rigid gelatine layer. Stage
1: front view, the initial dyke formation is a circular to elliptical disc. Stage 2: front view, the vertical dyke propagation has stalled at the interface
between the contrasting solid layers. The propagation is now lateral along the crack breadth and is perpendicular to the interface. Stage 3: side view,
the dyke has fractured parallel to the interface separating upper rigid layer from lower layer forming a sill with contemporary dyke protrusion into the
upper more rigid layer.

Fig. 6. A series of photographs from the experiments. (a) A vertically propagating dyke has turned to intrude as a sill along the interface separating
upper rigid layer from lower layer (Experiment 15, EU/EL=6.6). Note the protrusions from the sill periphery into the lower less rigid layer. (b)
Formation of a dyke–sill hybrid (Experiment 11). The rigidity ratio of upper to lower layer is 1.096. Side view, T=187 s. The dyke has reached the
interface and has intruded horizontally as a sill and into the upper rigid layer. The camera is not perpendicular to crack axis. (c) Deformation structures
that formed during sill emplacement. Side view, en echelon fractures formed in the lower less rigid layer during sill emplacement (Experiment 10, EU/
EL=11.45). (d) Plan view, inclined fractures formed into the lower less rigid layer during the sill-to-laccolith transition phase.
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to lower layer, (EU/EL), we show that under initially
hydrostatic conditions experimental sills were observed
to form only in the presence of a more rigid upper layer
(see Fig. 7). Additionally, when the driving pressure was
greatly in excess of that required to propagate a crack
into the upper layer the experimental feeder dyke turned
to propagate horizontally into the interface as an
experimental sill. However, when the driving pressure
just exceeded the overpressure an experimental dyke–
sill hybrid formed with contemporary propagation of an
experimental sill along the interface and of an
experimental dyke into the upper layer.

The velocity data collected from each experiment
show experimental sill propagation dynamics are
different to experimental dyke propagation dynamics.
After an initial acceleration due to the injection of fluid,
experimental dyke propagation maintains an approxi-
mately constant velocity with length; however experi-
mental sills accelerate as their length increases (see Fig.
8b). The propagation data show experimental sill
formation can be divided into four stages (see Fig. 8).
Stage one describes a vertically propagating experi-
mental dyke that propagates towards a horizontal
interface between an upper rigid layer and a lower less
rigid layer (see Fig. 5). The experimental dyke
decelerates as it approaches the interface, though the

propagation velocity along the crack breadth is
unaffected (see Fig. 8). Stage two of experimental sill
formation is characterised by pure lateral propagation
along the breadth of the crack (see Fig. 5). Experimental
sill nucleation is initiated at the start of stage three,

Fig. 7. Dimensionless ratio of driving and resistive pressure scales P0/
PfU (±16%) as a function of a dimensionless rigidity ratio EU/EL

(±6.7%), showing different styles of intrusive behaviour. The solid line
represents the boundary between experimental dyke formation and sill
formation. The dashed line represents the approximate boundary
between experimental sill formation and dyke–sill hybrid formation.

Fig. 8. Example plots of data collected during the experiments showing
the four stages of crack propagation where a vertical propagating crack
turned to propagate horizontally into the interface. Stage 1: a vertically
propagating crack with constant velocity begins to decelerate as it
approaches a more rigid horizontal layer. Stage 2: vertical propagation
of the crack is inhibited, the propagation continues along the breadth of
the crack. Stage 3: horizontal crack propagation into the interface is
initiated, sometimes with contemporary inclined propagation into the
upper more rigid layer (characterised by an initial acceleration and then
rapid deceleration). The crack propagation accelerates as it intrudes the
interface. Stage 4: The propagation of the crack into the interface
rapidly decelerates when the horizontal crack dimension becomes
comparable to the size of the experimental tank. (a) Distance versus
time plot of experimental sill formation in a hydrostatic two-layered
system, with EU/EL=1.10 (Experiment 11). (b) Plot of length velocity
versus length of intrusion during experimental sill propagation.
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accompanied by contemporary experimental dyke
intrusion into the upper rigid layer in some cases.
Experimental sill formation only occurred when the
interface was comparatively weak. The thickness of the
feeder dyke approximately halves in response to sill
formation. The continued experimental dyke intrusion
into the upper layer is short-lived with an initial
acceleration and then rapid deceleration (see Fig. 8).
In contrast, the experimental sill maintains almost
constant acceleration. The experimental sill propagation
then decelerates in stage four, a feature attributed to the
influence of the experimental tank walls because the
dimensions of the sill are then comparable to those of
the tank.

As an example, the average velocity of crack pro-
pagation in Experiment 11 was 2.4×10−3 m/s as an
experimental dyke in the lower layer and 4.5×10−3 m/s
when propagating as an experimental sill (see Fig. 8).
The Reynold's number is calculated as ∼18 during
experimental dyke propagation and ∼34 during
experimental sill propagation (see Eq. (4)). This
corresponds to a predominantly laminar flow regime
with local or intermittent turbulence and implies the
velocity profile along the thickness of the intrusion is
parabolic. Rubin's [39] propagation velocity (Eq. (6))
is applied to assess the controlling dynamics of crack
propagation firstly of the experimental dyke propagat-
ing in the homogeneous lower layer and then of the
experimental sill intruding the interface. Rearranging
Eq. (6) for overpressure, P0, and recalling that this
equation assumes a balance where P0∼Pv, the viscous
dissipation is calculated:

Pv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3UgM 2

l
3

r
: ð13Þ

During Experiment 11 the parameter values for the
experimental dyke propagating in the homogeneous
lower layer were U=2.4×10−3 m/s, η=1×10−3 Pa s,
M=10,830 Pa (evaluated using Eq. (7) and EL) and
l=0.08 m (see Tables 2 and 3 and Fig. 8b). Substituting
these into Eq. (13) gives Pv∼30 Pa. The overpressure,
P0, of this experiment was 1472±300 Pa and thus the
viscous contribution to experimental dyke propagation
is minor. Fracture mechanics is therefore the dominant
control on experimental dyke propagation dynamics. In
contrast, when evaluating the propagation of the
experimental sill of Experiment 11, which had
parameter values of U= 4.5× 10− 3 m/s, η= 1×
10−3 Pa s, M=10,830 Pa and l=0.27 m (see Tables 2
and 3 and Fig. 8b), Eq. (13) gives Pv∼1800 Pa and is
comparable to the overpressure of the experiment.

Therefore the dominant control on the propagation
dynamics of a crack intruding an interface as an
experimental sill is viscous dissipation.

7. Discussion

7.1. Sill formation

The experiments have shown that under initially
hydrostatic and isotropic stress conditions experimental
sills are unlikely to form in a homogeneous material.
The continued propagation of an experimental dyke will
result in either its arrest within the host material or,
given sufficient driving pressure, extrusion. Upon
extrusion the experimental dyke thickness approximate-
ly halves due to a drop in confining pressure [33], as has
been documented at Kilauea, Hawaii [43]. Additionally,
the experiments imply that the surface expression of
dyke breadth during an eruption largely under-repre-
sents the breadth of the dyke within the host rock. Our
experiments have shown that to form sills in a
homogeneous solid a deviatoric stress is likely required,
and therefore under these conditions Roberts' [10]
hypothesis could be valid, but was not tested in these
experiments.

We found that the presence of an interface is a
necessary but not sufficient condition to induce
experimental sill emplacement. Experimental dyke
formation occurred when intruding an intermediate
density fluid into a layered system with upper less dense
and less rigid layer. However, “pinching” of both the
experimental dyke's breadth and thickness occurred at
the interface, with these dimensions increasing upon
entering the upper less rigid material (see Fig. 4). This
change in geometry reflects the upper less rigid layer's
greater susceptibility to deformation by the intrusion. To
form experimental sills under initial hydrostatic condi-
tions a layered system is required, with an upper more
rigid layer that inhibits vertical crack propagation. Many
sills have been observed in field studies to lie directly
below a more rigid layer [25,33,35,44]. Experimental
sill intrusion occurs along the weak interface in a plane
underlying the more rigid layer. It was observed that
when experimental sills formed they were always
preceded by a stage of vertical crack arrest with
propagation continuing just along the breadth of the
crack (Stage 2). We infer that fluid pressure at the
interface increases during this stage and experimental
sill initiation then occurs when the fluid pressure
overcomes the tensile strength of the interface (Stage 3).

The sills that we obtained in our experiments present
several features that have been recognised in various
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field studies. The propagation of our experimental sills
occurred in lobes; the Trachyte Mesa Intrusion of the
Henry Mountains, southern Utah, U.S.A. is thought to
have formed via the propagation of a series of lobes
[44]. Deformation structures were observed in the
experiments to form in the less rigid host material,
reflecting its relative ease of deformation. Such features
were observed in field studies of sills formed within
sedimentary sequences. For example, sediments in
direct contact with the periphery of the Shonkin Sag
laccolith, Montana, U.S.A., show a variety of defor-
mation structures such as cataclastic shear planes in
sandstone beds and kink-bands in shale layers [45].
Our experimentally formed en echelon fractures may
have formed due to stress reorientation [22] (see
Fig. 6a, c and d), whereas those that formed during
experimental laccolith formation are likely tension
fractures formed when the bonded interface was
separated as the overlying layer was bent upwards
(see Fig. 6d). These deformation features occur in the
lower, less rigid layer and therefore highlight the role
of the upper, more rigid layer as a barrier to upward
intrusion that promotes sill formation.

Our results are consistent with the modelling of
Pollard and Johnson [1] which predicted the sill to
laccolith transition when the sill has spread horizontally
approximately three times the overburden thickness.
The overburden thickness of our experimentally formed
sills was 12–12.5 cm, and the upward deflection of this
layer occurred once the aerial extent of the sill reached
approximately 30 cm.

During the experiments some sills occurred with
simultaneous experimental dyke intrusion into the
upper layer. When this occurred the experimental
dyke quickly arrested leading to just propagation of
the experimental sill. This outcome is despite all
experimental intrusions having sufficient driving
pressure to theoretically propagate to the surface.
The cessation of experimental dyke propagation
occurs when its driving pressure falls below the
fracture pressure of the intruded material. The
experimental sill intrusion would quickly have a
greater length than that of the dyke protrusion, and
would therefore have a lower fracture pressure (see
Eq. (2)) [20]. Perhaps it is the competition between
the energy efficiency of different intrusions that leads
to the arrest of the upper layer experimental dyke
protrusions, with the preferential propagation of the
experimental sill, which has a lower energy con-
sumption. Such dyke protrusions have also been
described in field studies. Johnson and Pollard [44]
describe a series of dykes protruding from the upper

surface of the Trachyte Mesa that could be aborted
attempts to propagate dykes from the upper surface of
the sill into the overlying sandstone unit. Our
experimental results imply that under initially hydro-
static conditions these protrusions would have formed
when the rigidity contrast between the overlying
sandstone unit and underlying unit was a little greater
than one and when the driving pressure was
marginally in excess of that required to intrude the
more rigid upper layer (see Fig. 7).

7.2. Sill propagation dynamics

During each experiment the overpressure was kept
constant. Despite this, experimentally formed sills had
contrasted propagation dynamics to those of their feeder
dykes. Our data show that experimental dyke propaga-
tion occurs at approximately constant or slightly
decreasing velocity and fracture mechanics is the
dominant control on the propagation dynamics. This
supports previous work investigating dyke propagation
in a homogeneous solid [16].

In contrast to experimental dykes, experimental sill
propagation accelerated with increasing length of the
intrusion (see Fig. 8b). Resistance to fracture propaga-
tion is much reduced at the interface compared to that of
a homogeneous material and as a result the fracture
pressure is not the resistive pressure that opposes and
controls experimental sill propagation. Instead a viscous
drop along the length of the experimental sill exerts the
main control on its propagation.

7.3. Geological implications

The experiments suggest that rigidity contrasts might
provide important sites of preferential sill emplacement
and development of igneous complexes. We consider
two contrasted situations. First we consider magmatism
during continental break-up and flood basalt volcanism
where initially the Mohorovičić discontinuity (Moho) is
a site of large rigidity contrast between the cold
seismogenic crust above relatively weak mantle. Second
we consider magmatism in continental arcs where
prolonged heating and possible hydration have weak-
ened the lower crust so that the boundary between the
upper and lower crust (Conrad discontinuity) may
provide a preferential focus for emplacement of granite
and sheets.

Dykes propagating through the upper mantle beneath
Shields should be arrested at the Moho, with sill
formation below the strong rigid lower crust. Traditional
models of the rheological structure of the continental
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lithosphere describe a relatively weak lower crust
“sandwiched” between a strong and rigid upper mantle
and upper crust [3,46,47]. However, reanalysis of
seismic data has found the seismic thickness of the
lithosphere (TS) varies from 10 to 40 km and the
continental mantle is almost completely aseismic [48].
Water can be preferentially removed from the lower
crust as the solidus temperature of hydrous basic rock is
lower than that of a hydrous peridotite; this produces a
strong dry metastable granulite lower crust [49]. This
metastability keeps the lower crust both rigid and strong
enabling it to support mountain belts. The intrusion and
ponding of hot magma at the Moho at regions of
thickened crust would reduce the viscosity of the lower
crust and provide a mechanism of lower crustal flow
[6,50]. Geodynamic situations where sill formation at
the Moho is anticipated are in rifting of large continents
associated with disruption by mantle plumes and
development of flood basalt volcanism. The Iceland
plume has been inferred to have formed due to the
impingement of hot, subvertical, convective sheets at
the base of the lithosphere, which later developed a
plume head structure [30]. In the case of the Deccan
Traps, India, very large volumes of fractionated basalt
are discharged and require very large magma bodies for
fractionation to occur. Formation of very large sills at
the Moho provides the situation to allow extensive
fractionation before eruption.

In the case of continental arcs prolonged magmatism
and tectonism provides a hot lower crust below a cold
upper crust, so that the boundary between the two is
both one of density and rigidity contrast and so a
potential preferred site of sill emplacement. Silicic
magmas generated by partial melting in the deep crust or
residual melts from basalt crystallisation rise to form
sills and sheet-like silicic intrusions in the middle crust
[4,50]. For example, the Lauterbrunnen migmatites of
the central Swiss Alps are believed to have acted as a
reaction site in which crystallisation and partial melting
of the country rock modified the magma composition
feeding the overlying Gastern granite [51]. Magmas in
the Taupo Volcanic Zone, New Zealand, form large
volume sheet-like intrusions in the middle crust at an
estimated 15 km depth [51]. Sills may develop into
sheet-like magma bodies or plutons due to the
successive accretion and amalgamation of sills
[4,52,53] or by having undergone crystallisation and
differentiation within a convecting magma body [5].
These magma bodies may founder due to density
differences, with an estimated sinking rate of several
kilometres per million years [54], and evolve into a
pluton [55].

8. Conclusions

Rigidity contrasts provide preferred sites to intrude
magma sills and for the development and evolution of
major igneous complexes. Sills intrude in a plane
underlying the more rigid material. The form of the
intrusion depends on the rigidity ratio of adjacent layers,
the strength of the interface and the magnitude of the
driving pressure. Geological settings where magma
could potentially stall and form sills due to rigidity
contrasts include beneath ancient cratonic bodies at the
Moho beneath the more rigid lower crust, and at
continental arcs where the upper crust can be more rigid
than the lower crust due to prolonged heating and
possible hydration. The viscosity of the intruding
magma is likely to play a dominant role controlling
the sill propagation dynamics. The evolution of this
stored magma as it crystallises and differentiates can
proceed to feed higher-level intrusions of increasingly
silicic composition. The continued input of magma to
these intrusions leads to their transition into laccolithic
and plutonic complexes.
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Abstract

The recent experimental work by Kavanagh et al. [Kavanagh, J.L., Menand, T. and Sparks, R.S.J. (2006). An experimental investigation of sill
formation and propagation in layered elastic media. Earth Planet. Sci. Lett. 245, 799–813.] shows that lithological discontinuities and rigidity
contrasts can control the formation and dynamics of sills at interfaces separating upper, rigid strata from lower, weaker strata. The present paper
extends this work and focuses on its implications in terms of the length- and time-scales associated with the development of laccoliths and other
igneous complexes. Sill formation controlled by rigidity contrasts is shown to provide a growth mechanism for laccoliths. The formation of a sill
provides favourable rigidity anisotropy for the emplacement of subsequent sills so that laccoliths grow by over-accretion, under-accretion or even
mid-accretion of successive sills. In accord with field data, this model predicts that laccoliths grow mainly by vertical expansion, representing the
cumulative thickness of their internal sills, while maintaining a comparatively constant lateral extend. The model also predicts that the time-scale
over which laccoliths form is essentially determined by the cumulative time between successive sill intrusions. Also, sill dynamics are controlled
by viscous dissipation of the fluid along their length, which have consequences for the size and shape of sills. Viscously-controlled dynamics
would enable sills to propagate further and thus to grow thicker than dykes of similar magmas. These dynamics would also enable sills to
propagate faster and thus to induce non-elastic deformations in surrounding rocks that could deviate them from the interface they originally follow.
This would allow them to feed new sills along other interfaces and could assist in the formation of the step structures and saucer-shapes that are
commonly observed in sill complexes.
© 2007 Elsevier B.V. All rights reserved.

Keywords: sills; laccoliths; plutons; emplacement; igneous complexes

1. Introduction

Igneous intrusions represent a major mechanism for the
construction and evolution of the Earth's crust. Much of the
research on magmatic intrusions has focused on the mechanics
and dynamics of dykes, which are the main agent for the vertical
transport of magma through the crust (e.g. Lister and Kerr,
1991; Rubin, 1995; Menand and Tait, 2002). In comparison,
most of the research on sills (sensu lato) has focused mainly on
the mechanical and dynamical aspects of the propagation of sills
that have already formed, and on the deformation induced by

sill intrusions (Pollard, 1973; Pollard and Holzhausen, 1979;
Fialko et al., 2001; Malthe-Sørenssen et al., 2004) but the
questions of how and why sills form in the first place and where
they are observed have not been studied to the same extent. Yet,
geological evidence, conceptual reasoning and numerical models
suggest that sills, laccoliths and plutons represent a more fun-
damental mode of emplacement, and that they are an important
mechanism by which chemical differentiation of magma occurs
within the crust (Blundy and Gardner, 1997; Annen and Sparks,
2002; Annen et al., 2006).

The crust is layered in density, composition, physical pro-
perties and strength (Fountain et al., 1992; Orcutt et al., 1976),
with a vertical stratification from a mainly mafic lower crust to a
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more granitic upper crust (Rudnicki and Fountain, 1995). This
cannot have developed by vertical intrusions. Instead, hori-
zontal seismic layering of the lower crust is consistent with the
development of sill complexes (Fountain et al., 1992; Chmie-
lowski et al., 1981; Al-Kindi et al., 2003; Nedimović et al.,
2005). There is also a growing body of evidence that magma
chambers and plutons develop and grow by amalgamation of
numerous but distinct episodes of sill intrusion (Coleman et al.,
2004; Glazner et al., 2004). Also, sills increase the petroleum
prospectivity of sedimentary basins (Schutter, 2003a,b), are
associated with ore deposits (Ramirez et al., 2006) and geo-
thermal systems (Wohletz and Heiken, 1986), and are part of
diamond-bearing Kimberlite complexes (Mitchell, 1986; Sparks
et al., 2006). Yet, despite their importance and the wealth of
available field data, the mechanics and dynamics of sill for-
mation are still poorly understood.

Extensive geological and geophysical data constrain the size
of sills and their rate of emplacement. Field measurements of
the geometry and dimensions of sills, laccoliths and plutons
show that a generic, continuous link exists between the thick-
ness and length of these intrusions. But, as shown by Cruden
and McCaffrey (2002) and McCaffrey and Cruden (2002) (see
also Breitkreuz and Petford, 2004), this scaling relationship
does not follow a single power law. Sills grow mainly by lateral
propagation whereas laccoliths seem to grow by vertical thick-
ening before extending laterally again as plutons and batholiths
(Fig. 1). This suggests the existence of different growth pro-
cesses that are related to the length-scale of the intrusions.

Many field and geochronological data indicate that laccoliths,
plutons and magma chambers develop and grow by amalgama-
tion of numerous sill intrusions. For instance, ages from U–Pb
data from the Tuolumne Intrusive Suite in California show that it
was emplaced within 10 Myrs. However this is in contradiction
with simple thermal considerations. For instance, a pluton the
size of the Half Dome Granodiorite, which is part of the
Tuolumne Intrusive Suite, should cool down and solidify in less
than 1 Myr if one assumes it represents a single discrete igneous

event. Geochronological data, however, reveal that the Half
Dome Granodiorite was emplaced in at least 4 Myrs. This result
implies that its formation involved multiple igneous events,
which is in accord with field observations of the pluton being
composed of numerous dykes and sills (Coleman et al., 2004;
Glazner et al., 2004). Field studies of smaller plutons suggest
even shorter emplacement time-scales, perhaps less than
100 years in the case of the Black Mesa bysmalith in the
Henry Mountains in Utah (Habert and de Saint-Blanquat, 2004;
de Saint-Blanquat et al., 2006). Therefore, as well as their length-
scale, the time-scale for the growth of laccoliths and plutons
seems to be dependent on the size of the intrusion considered.

The main hypotheses for sill formation invoke either a
buoyancy (Corry, 1988) or a tectonic stress orientation (Roberts,
1970) control. However, the concept of sill emplacement at the
level of neutral buoyancy seems in contradiction with field
observations and 3D seismic data of individual sills intruding
successively different stratigraphic levels and yet feeding one
another (Thomson and Hutton, 2004; Cartwright and Hansen,
2006; Thomson, 2007); if one of these stratigraphic levels
represents a level of neutral buoyancy then the intrusion of other
stratigraphic levels by the same sills must be controlled by other
mechanisms. Alternatively, magmatic intrusions tend to orient
themselves parallel to the minimum compressive stress (Ander-
son, 1951). Therefore a transition from dyke to sill would be
expected when the minimum compressive stress changes from
horizontal to vertical. This could occur either because of the
presence of stress anisotropy or due to stress rotation induced by
magmatic intrusions, as shown by Roman et al. (2004, 2006). In
the latter case, dyke injection could potentially induce the
subsequent formation of a sill by switching stresses such that σ3

becomesσ1 due to magma pressure andσ2 (vertical) becomesσ3.
Field investigations have led to the view that sills form

mostly in more compliant strata such as shales, mudstones or
hyaloclastites (e.g. Mudge, 1968; Fridleifsson, 1977; Antonel-
lini and Cambray, 1992). The opposite situation has also been
observed, however, with dykes being arrested and sills forming
at the interface between a lower more compliant and an upper
more rigid strata such as sandstones, limestones or lavas
(Fridleifsson, 1977; Hyndman and Alt, 1987; Gudmundsson
and Brenner, 2001; Holness and Humphreys, 2003). The soft
shales and hyaloclastites that cap some sills may have been
ductile at the time of sill emplacement (Mudge, 1968), in which
case the rheology contrast with a lower brittle strata would have
helped stop the feeder dykes (Parsons et al., 1992). It has also
been suggested that stress redistribution in layered elastic media
would strengthen some strata relative to others; when a multi-
layer is subjected to horizontal compression, stiffer layers take
up most of the compressive stress, whereas when the same
multilayer is subjected to a horizontal extension, softer layers
will experience a lower reduction in compressive stress and thus
appear, comparatively, to be more horizontally compressive
(Gudmundsson, 1986; Gudmundsson and Brenner, 2001).
Recently, Kavanagh et al. (2006) showed that in the absence
of tectonic stresses sills can form only at the interface between
lower more compliant and upper more rigid elastic strata. Thus
these studies suggest that, assuming elastic rock behaviour,

Fig. 1. Schematic diagram showing the scaling relationship between sills,
laccoliths, plutons and batholiths based on Cruden and McCaffrey (2002) and
McCaffrey and Cruden (2002). Each type of intrusion appears to be linked to the
others following an S-shaped growth law over several orders of magnitude.
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favourable interfaces for sill formation are those with an upper
strata which appears more rigid, either because of stress re-
distribution or because of their mechanical properties.

The present paper extends this finding and focuses on its
implications in terms of the length- and time-scales associated
with the development of laccoliths and other igneous com-
plexes. Here, laccoliths are defined in a generic sense as large
igneous bodies that have formed by forced, and possibly re-
peated, intrusion of magma between adjacent strata that could
deform and lift upper rock layers. (No distinction is made
between laccoliths and lopoliths given the lack of a clear dis-
tinction between the two terms and the possibility that with time
one could evolve into the other (Corry, 1988)).

2. Sill formation controlled by rock rigidity contrasts

Kavanagh et al. (2006) tested different hypotheses for sill
emplacement using analogue experiments involving the injec-
tion of fluid into a solid of gelatine, and found that under
hydrostatic conditions, the formation of sills requires the pre-
sence of layers of different rigidity. Sills were observed to form
only when their feeder dyke intersected the interface between an
upper more rigid, stronger layer and a lower less rigid, weaker
layer. In these experiments, a feeder dyke would rise vertically
from the injection point up to the interface where it would stop
its vertical propagation. There it generated deformations which,
once large enough, allowed the fluid to intrude the interface and
thus to form a sill between the two layers (Fig. 2). Sometimes,
the sill was accompanied by a small dyke protruding into the
upper more rigid layer (Fig. 2). However this dykelet would
always be short lived and stopped while the sill continued its
propagation.

The conditions for the formation of sills and their resulting
morphology are summarized in Fig. 3. Sills cannot form if the
ratio of the rigidity of the upper layer to that of the lower layer is
less than unity, that is if the upper layer is weaker than the lower
layer. Sills only form if the rigidity ratio is greater than one. In
most cases, the feeder dyke turns completely into a single sill.
However, for certain conditions of pressure and rigidity ratios
greater than but close to one, a dyke-sill hybrid would form
(whose geometry is illustrated in Fig. 2) with a dykelet pro-

truding over a short distance into the upper rigid layer during the
sill propagation. Interestingly, these conditions could be the
most commonly present in the crust because rock rigidities
differ marginally from one another, usually by less than an order
of magnitude (Birch, 1966; Turcotte and Schubert, 1982).
Likewise, the fluid pressure driving a dyke is mainly determined
by the amount of stress rocks can sustain before breaking and
in which case it will be marginally larger than the strength of
rocks. These experiments thus suggest that hybrids composed of
interconnected dykes and sills could be more common than
simpler sills connected to their underlying feeder.

3. Formation of laccoliths by sill accumulation

Fig. 3 shows how rigidity contrasts control sill formation,
and this has implications for the length-scale and the time-scale
associated with the growth of laccoliths (sensu lato).

As a sill forms and solidifies, it generates a rigidity contrast
with the rocks both above and below it. One possibility is that
the solidified sill becomes more rigid than the rocks below it.
Alternatively, it can become less rigid than these rocks but in
this case it will also become less rigid than the rocks above it.
Either way, the solidified sill will provide a favourable site for
the emplacement of subsequent sills, either underneath or above
itself. This will be the case irrespective of the exact mechanism
for the emplacement of the sill. The key point here is that once a
sill has solidified it will provide a favourable rigidity anisotropy
for the emplacement of other sills. Therefore, this gives a mech-
anism for the formation and growth of laccoliths by the vertical
stacking of successive sills (Fig. 4).

This concept is in accord with field observations of sheeted
granite plutons (Hutton, 1992) and of laccoliths, such as the

Fig. 2. Diagram illustrating the experimental observations of Kavanagh et al.
(2006) for the formation of sills in layered elastic solids under lithostatic stress
conditions. Sills were observed to form only when their feeder dyke intersected
an interface separating a lower, less rigid layer from an upper, more rigid one. In
some cases, a dykelet would protrude into the upper rigid layer, yet would
always quickly strop propagating while the sill pursues its propagation. Arrows
show the directions of propagation.

Fig. 3. The conditions for sill formation and the resulting morphologies as a
function of the ratio of driving and resistive pressure scales P0/Pf U and the ratio
of upper and lower rigidities EU/EL. The solid line represents the boundary
between the formation of dykes and that of sills. The dashed line represents the
approximate boundary between the formation of simple sills and that of dyke-sill
hybrids. Reprinted from Kavanagh et al. (2006) with permission from Elsevier.
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Maiden Creek sill and the Trachyte Mesa laccolith, both in the
Henry Mountains in Utah. These intrusions in the Henry Moun-
tains have been studied in detail and appear to be composed of
two separate igneous sheets in the case of the small Maiden
Creek sill, and of dozens of separate sills in the case of the
Trachyte Mesa laccolith (Horsman et al., 2005, 2006; Morgan
et al., 2005). There is no definitive evidence whether the Maiden
Creek intrusion formed through successive emplacement of new
sheets atop old sheets or vice versa, referred to as over-accretion
and under-accretion, respectively. Emplacement of the Trachyte
Mesa intrusion, in contrast, clearly involves at least some under-
accretion, although there is also evidence that some sheets in-
truded in between older ones (Morgan et al., 2005), which could
be defined as a case of mid-accretion.

According to this growth mechanism, the length of a lac-
colith would be essentially comparable to the length of the sills
that composes it whereas its thickness would represent the
cumulative thickness of all these sills, in accord with field
observations (Horsman et al., 2005, 2006; Morgan et al., 2005).
This growth mechanism is therefore able to explain the trend
displayed by field measurements of the dimensions of igneous
intrusions, where laccoliths appear to grow mainly by vertical
expansion and thus depart from the trend of sills, which instead
grow mainly by lateral propagation (Cruden and McCaffrey,
2002; McCaffrey and Cruden, 2002).

Another implication is that the time-scale for the growth of
laccoliths is mainly determined by the time that separates
successive sill intrusions since, comparatively, the time for the
emplacement of a single injection can be seen as instantaneous.
Therefore, this model predicts that larger laccoliths and plutons
would develop over much longer periods of time than smaller
plutons, as suggested by field and geochronological data.

Previous theoretical and experimental works have established
that a transition from sill to laccolith occurs when the char-
acteristic size of a sill becomes comparable to its depth, at which
point the sill is able to lift the overlying strata upwards (Pollard
and Johnson, 1973; Pollard and Holzhausen, 1979; Fialko et al.,
2001; Kavanagh et al., 2006). The growth mechanism presented

here is complementary and indicates that sill-laccolith transitions
may not necessarily involve single episodes or pulses of magma
injection but could instead involve multiple pulses. This could
explain the observed lack of correlation between the depth of
intrusion and the size of multilevel laccoliths, such as Christmas-
tree laccoliths (Corry, 1988). Also, deeper sill-laccolith transitions
would require largermagma volumeswhichwould bemore easily
achieved by multiple injection episodes, although over longer
periods of time.

4. Dynamical implications for the geometry of igneous
intrusions and complexes

Kavanagh et al. (2006) found that the dynamics of their
experimental sills differ markedly from those of the feeder dykes.
They measured the evolution with time of the intrusions which
allowed them to calculate their propagation velocity. Their results
show that the velocity of the feeder dykes remained approxi-
mately constant, until the dykes reached the interface where they
stopped before turning into sills. Sills on the contrary propagated
in accelerating continuously with a velocity proportional to their
length. This accelerating behaviour indicates that the dynamics of
the sills were controlled by the viscous dissipation of the fluid
along their length, presumably because of a low cohesion between
the gelatine layers at the horizontal interface. This contrasts with
the dynamics of the feeder dykes, which were controlled instead
by the time-dependent failure of the gelatine solid at their tip and
which, as a result, propagated at approximately constant velocity
(Menand and Tait, 2002).

It has been argued, however, that gelatine experiments are
not in the same regime as magma-filled dykes propagating
through rocks based on scaling analyses and laboratory mea-
surements of rock strength, and that in fact dyke dynamics are
controlled instead by a balance between the fluid pressure and
the viscous dissipation induced by the magma flow within
dykes (Lister and Kerr, 1991). But it has also been suggested
that the effective fracture toughness of rocks could be two to
three orders of magnitude greater than that inferred from labo-
ratory measurements on rock cores due to extensive inelastic
deformation around and ahead of the crack tip as revealed by
field observations (Delaney et al., 1986; Fialko and Rubin,
1997). This would support the argument that dyke dynamics are
controlled by the time-dependent failure of rocks at their tip
(Menand and Tait, 2002). It is probable that the true dynamics of
dykes will be somewhere between these two alternative models,
considering that dykes propagate both by fracturing their own
way through rocks and by intruding pre-existing fractures and
joins (Delaney et al., 1986). However, the two models have
different implications for the relative size of sills and dykes.

Both models predict that the dynamics of sills are viscously-
controlled. As a sill propagates and extends its length it becomes
also thicker owing to the elastic deformation of the surrounding
rocks. But because the sill becomes thicker, the viscous dis-
sipation decreases. Unless the source pressure decreases at the
same rate, the only way for the sill to restore the balance with the
source pressure is to accelerate. If the velocity of dykes is also
controlled by viscous dissipation, then dykes would propagate

Fig. 4. Schematic illustration of the growth of the Trachyte Mesa laccolith by
vertical stacking of individual and separate sills (Morgan et al., 2005). Themodel of
rigidity-controlled sill emplacement predicts that once solidified a sill will induce a
strength anisotropy that will enable subsequent sills to emplace either underneath it
(under-accretion) or above it (over-accretion). Subsequently, mid-accretion can
also occur whereby a new sill intrudes in between previously emplaced sills. In the
case of the Trachyte Mesa laccolith, growth occurred mainly by under-accretion
with some observations of mid-accretion (Morgan et al., 2005). Arrows show the
directions of magma flow as a sill formed.
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faster than sills owing to their higher buoyancy and hence higher
driving pressure gradient. A higher buoyancy would also imply
that, everything else being equal, dykes have a greater magma
pressure and thus would tend to be thicker than sills. If dyke
dynamics are instead controlled by time-dependent failure of
rocks, they would then propagate at approximately constant velo-
city even if the source pressure remains constant (Menand and
Tait, 2002), and thus for identical source pressure conditions sills
would propagate faster and be thicker than dykes. In this case, sills
could thus propagate further and their propagation could be
sustained over a much longer period of time than dykes.

The latter finding seems to be supported by several field
observations. For instance, sills are commonly observed to be
much thicker than dykes of similar magmas. An explanation
could be that magma pressures are larger within sills than in
dykes or that shallower sills deform more easily the nearby free
surface. However, magma pressure is essentially determined by
the strength of surrounding rocks and magma buoyancy. Given
that rock strength should be the same whether rocks are intruded
by dykes or sills, one would thus expect greater magma pres-
sures in dykes owing to their higher buoyancy hence dykes to be
thicker than sills. On the other hand, assuming that deforma-
tions around intrusions are elastic, a larger or longer intrusion
will be thicker than a smaller intrusion for identical pressure
conditions. Therefore faster propagating viscously-controlled
sills would be expected to grow larger than fracturing-controlled
dykes and thus to be thicker as well.

Also, some sills display evidences of prolonged flow such as
the Traigh Bhàn na Sgùrra sill that is part of the Loch Scridain
Sill Complex on the Isle of Mull, Scotland. The Traigh Bhàn na
Sgùrra sill ranges in thickness from 2.5 m to more than 10 m,
and other sills from the Loch Scridain Complex are as 14 m
thick (Holness and Humphreys, 2003). One particular feature of
the Traigh Bhàn na Sgùrra is that surrounding rocks display
substantial thermal aureoles around the thickest parts of that sill.
By measuring the size distribution of crystals within the sill,
Holness and Humphreys (2003) were able to relate the thickest
parts of the sill with a localization of magma flow. They then
determined flow duration from the width of the metamorphic
aureole and found that where flow had been localized it had
been sustained for up to 5 months. As shown by Holness and
Humphreys (2003) this analysis is fully consistent with inde-
pendent theoretical models of viscously-controlled magma
flow, in which magma cools the fastest in the thinnest parts of

intrusions thus leading to flow localization where intrusions are
the widest. Although flow localization could conceivably hap-
pen in non-viscously-controlled flows, flow localization would
occur more strongly in viscously-controlled flows because of
the positive feedback that exists between the increase in magma
viscosity in the thinnest parts of an intrusion, as a result of a
fastest cooling, and the localized flow in the widest parts of the
intrusion which channels more heat. Therefore the findings of
long flow duration in the Traigh Bhàn na Sgùrra could provide
indications of viscously-controlled dynamics for that sill.

A second implication is that viscously-dominated dynamics
could also affect the shape of sills and the subsequent de-
velopment of igneous complexes. Kavanagh et al. (2006)
observed that sill propagation can induce deformation structures
such as en echelon fractures for instance. These fractures can
occur either because the sill intrusion induces a rotation of the
local stress field at its tip, or because the sill induces defor-
mations that are too large for the ambient solid to sustain
without breaking. A viscously-dominated sill that accelerates
will get thicker and thus deforms the surrounding rocks at an
accelerating rate, and so ultimately fracture of the surrounding
strata is bound to happen. This could happen in the softer rock
layer underneath the sill or in the rock layer above the sill where
the overburden is lower and which has potentially a nearby free
surface. In this case, the sill would pursue its course through
stiffer rocks and two different outcomes could then arise. The
stiffer rocks of the upper strata could arrest the propagation of
the sill, or alternatively the sill might be able to reach another
favourable interface and then feed another horizontal sill at
this new interface before being arrested (Fig. 5). In both cases,
the main point is that the sill will deviate from the interface
it initially intruded and adopt an out-of-plane, transgressive
propagation.

Previous studies have shown that an upward, transgressive
propagation is expected as a consequence of lateral expansion
and interaction of a sill with the free surface (Fialko, 2001;
Malthe-Sørenssen et al., 2004). This interaction with the free
surface could explain the saucer-shaped geometry that is com-
monly exhibited by many sills and their feeders, particularly
within sedimentary basins (Malthe-Sørenssen et al., 2004;
Thomson and Hutton, 2004; Thomson, 2007). Interaction with
the free surface is expected to occur when the characteristic
horizontal size of sills exceeds their emplacement depth (Fialko,
2001; Malthe-Sørenssen et al., 2004), so this would imply that

Fig. 5. A viscously-controlled sill is likely to fracture surrounding strata and thus to branch off from the interface it initially follows. It could then be able to reach
another favourable interface and feed another sill at this new interface.
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the horizontal part of deeper saucer-shaped sills is larger than
that of shallower sills.

Here I propose that viscously-controlled dynamics could
facilitate the out-of-plane propagation of sills. This mechanism
would presumably be independent of the emplacement depth.
However, it would certainly depend on the deformation rate,
with higher deformation rates increasing the sill tendency for
transgressive propagation. Following Rubin (1995), the length
of a viscously-controlled intrusion increases exponentially with
time as

l tð Þgl0 exp
P3t
3gm2

! "
; ð1Þ

where l0 is the intrusion length at time t=0, P is the magma
pressure in excess of the stress acting normal to the intrusion, η
ismagma viscosity and the rock elastic stiffnessm depends on rock
elastic shear modulus µ and Poisson's ratio ν as m=µ / (1−ν). As
the intrusion increases in length, its deformation ϵ increases as
(l− l0) / l0 so that the deformation rate is :!≃u/l0. The intrusion
velocity u is readily obtained by deriving Eq. (1) with respect to
time, which gives a deformation rate

:
!g

P3

3gm2l0
: ð2Þ

Eq. (2) suggests higher deformation rates in softer, less rigid
layers (lower stiffness m). It is therefore unlikely that saucer-
shaped sills, with upward transgressive propagation, could form
solely by viscously-controlled dynamics. However, Eq. (2) also
suggests that if two sills were to propagate under identical con-
ditions, the only difference being the magma viscosity, one would
expect the sill with the lowest magma viscosity to induce higher
deformation rate and thus to have a greater tendency to propagate
out-of-plane and help produce a saucer-shaped geometry. In this
sense, viscously-dominated sill dynamics could affect the shape
of sills with low viscosity magmas in promoting or facilitating
their saucer-shaped geometry. This could be tested by looking at
the distribution of saucer-shaped sills as a function of magma
viscosity.

5. Conclusions

Recently Kavanagh et al. (2006) have shown that under
hydrostatic conditions, sill formation requires the presence of
layers of different rigidity, and that sills can only form at the
interface between upper, rigid layers overlaying lower, weaker
layers.

It is shown here that this control of sill formation by rigidity
contrasts provides a mechanism for the growth of laccoliths
whereby a sill provides favourable rigidity anisotropy for the
emplacement of successive sills. Thus laccoliths can grow by
vertical stacking of successive sills, either by over-accretion,
under-accretion or even mid-accretion. In accord with field data,
this mechanism for the growth of laccoliths predicts that lac-
coliths grow mainly by vertical expansion, representing the
cumulative thickness of their internal sills, while maintaining a
comparatively constant lateral extend. The model also predicts

that the time-scale over which laccoliths form is essentially
determined by the cumulative time between successive sill
intrusions.

From a dynamical perspective, sill dynamics are controlled
by viscous dissipation of the fluid along their length. This could
have consequences for the size and shape of sills. Viscously-
dominated dynamics would enable sills to propagate faster and
further than dykes whose dynamics are controlled by the fracture
of rocks at their tip. In turn, this would enable sills to become
thicker than dykes of similar magmas.

Furthermore, faster sills induce non-elastic deformations in
surrounding rocks that could deviate them from the interface
they originally follow and would potentially allow them to feed
new sills along other interfaces. This mechanism could assist in
the formation of the intricate geometry displayed by sills and
their feeders in igneous complexes, such as step structures and
saucer-like shapes, particularly when involving low viscosity
magmas.
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[1] Sills could potentially form as a result of dykes modifying their trajectory in response
to remote tectonic compression. Here, we use analogue experiments to investigate how a
buoyant vertical dyke adjusts its trajectory to a compressive remote stress to form a sill,
and over which vertical distance this sill formation does occur. Our investigation is
restricted to an intrusion propagating through a homogeneous solid, which enables us to
identify the characteristic length‐scale over which a dyke responds to remote stress
compression, independently of the presence of crustal layers. The experiments involve the
injection of air in a gelatine solid that experiences lateral deviatoric compression. The
response of the buoyant air crack to the compressive stress in not instantaneous but
operates over some distance. An important observation is that some cracks reach the
surface despite the compressive environment. Dyke‐to‐sill rotation occurs only for large
compressive stress or small effective buoyancy. Dimensional analysis shows that the
length‐scale over which this rotation takes place increases exponentially with the ratio of
crack effective buoyancy to horizontal compressive stress. Up‐scaled to geological
conditions, our analysis indicates that a dyke‐to‐sill transition in response to tectonic
compression in homogeneous rocks cannot occur over less than two hundred meters and
would need several kilometers in most cases. This is typically greater than the average
thickness of lithological units, which supports the idea that crustal heterogeneities play an
important role in determining the fate of dykes and in controlling where sills could form.

Citation: Menand, T., K. A. Daniels, and P. Benghiat (2010), Dyke propagation and sill formation in a compressive tectonic
environment, J. Geophys. Res., 115, B08201, doi:10.1029/2009JB006791.

1. Introduction

[2] The transport of magma from its source regions up to
the Earth’s surface occurs essentially via vertical or sub‐
vertical dykes, which ultimately feed volcanoes. However,
not all dykes lead to eruptions. In fact, the vast majority of
dykes stall en route and remain trapped in the crust. Ratios
of intrusive to extrusive magma volumes have been esti-
mated to be of the order of 10: 1 [Crisp, 1984; Shaw, 1985]
whilst Gudmundsson et al. [1999] have calculated that the
actual proportion of dykes reaching the surface in Iceland
and Tenerife, Canary Islands, is only a few %. In many
cases, those dykes which did not make it to the surface are
associated with the formation or feeding of sub‐horizontal
sills [e.g., Gudmundsson et al., 1999; Burchardt, 2008].
Sills could therefore be envisaged as either arresting the
advance of dykes or, conversely, forming as a result of
dykes being prevented from propagating further.

[3] There is a renewed interest in the formation of sills
because they are increasingly recognized as being the
building blocks of larger magma chambers and their frozen
equivalent that are laccoliths, plutons and other larger bath-
oliths [Gudmundsson, 1990;Menand, 2008]. Indeed, there is
mounting geological, geophysical and geochronological
evidence that plutons grow by the amalgamation of indi-
vidual intrusive igneous sheets [Bedard et al., 1988; John,
1988; Hutton, 1992; John and Blundy, 1993; Vigneresse
and Bouchez, 1997; Wiebe and Collins, 1998; Coleman et
al., 2004; Glazner et al., 2004; Horsman et al., 2005,
2008;Morgan et al., 2005, 2008; Belcher and Kisters, 2006;
de Saint‐Blanquat et al., 2006; Pasquarè and Tibaldi, 2007].
Consequently, sills are also being recognized as potential
sites of magma differentiation [Annen and Sparks, 2002;
Annen et al., 2006; Michaut and Jaupart, 2006].
[4] Sills form when their feeder dyke stops propagating

mainly vertically and instead intrude concordantly along a
lithological plane of weakness. However, the vast majority
of magmatic intrusions are discordant, and so the mere
presence of lithological discontinuities or planes of weak-
ness is not a sufficient condition for the formation of sills.
This observation is also corroborated by analogue experi-
ments [Kavanagh et al., 2006].
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[5] One of the early model for sill formation proposed that
sills tend to form when dykes become neutrally buoyant and
lose their vertical driving force. Sills were therefore thought
to form preferentially at levels of neutral buoyancy [Gilbert,
1877; Corry, 1988], that is at stratigraphic horizons where
magma density equals that of the host rocks. However, this
is contradicted by field and seismic data, which show many
sills intruding successively different stratigraphic levels,
likely characterized by different density [Johnson and
Pollard, 1973; Cartwright and Hansen, 2006; Thomson,
2007]. This suggests that levels of neutral buoyancy do
not provide a complete explanation for the mechanism and
level of sill emplacement. In fact, as illustrated by the lab-
oratory experiments of Lister and Kerr [1991], magma
accumulation at levels of neutral buoyancy is more likely to
involve lateral dyke propagation rather than sill formation
because the latter case requires an additional rotation of the
intrusion or the presence of a lithological plane of weakness
that could be intruded. If a plane of weakness is present,
levels of neutral buoyancy could assist sill formation, but
Taisne and Jaupart [2009] showed that sill intrusion would
still require very specific conditions with low‐density
stratigraphic layers that are at least 700‐meter thick, and
2‐kilometer thick on average. Other mechanisms that have
been proposed for the formation of sills include the pres-
ence of layered rocks with rigidity contrast [Fridleifsson,
1977; Hyndman and Alt, 1987; Gudmundsson and Brenner,
2001; Holness and Humphreys, 2003; Rivalta et al., 2005;
Kavanagh et al., 2006; Burchardt, 2008], rheology contrast
between adjacent layers of elastic and ductile rocks [Mudge,
1968; Fridleifsson, 1977; Antonellini and Cambray, 1992;
Watanabe et al., 1999], as well as the presence of weak layer
contacts [e.g., Gudmundsson, 2003].
[6] Additionally, it has been observed that magmatic in-

trusions tend to orient themselves perpendicular to the least
compressive stress. As a result they modify their propaga-
tion trajectories in response to spatial changes in, or rotation
of, the surrounding stresses [Odé, 1957;Muller and Pollard,
1977; Dahm, 2000; Mériaux and Lister, 2002]. Therefore,
an initially vertical dyke would be expected to turn into a
horizontal sill if it were to become subjected to a horizontal
compressive stress field where the least compressive stress
is vertical [e.g., Gretener, 1969; Gudmundsson and Phillip,
2006]. However, theoretical studies have shown that the
dynamics and direction of propagation of dykes depend on
their buoyancy as well as the external deviatoric stress field
including the stresses induced by the dykes themselves at
their tip [e.g., Lister and Kerr, 1991; Dahm, 2000; Mériaux
and Lister, 2002]. Also, the difference in density between
rocks and magma is not the only source of buoyancy for
dykes; vertical gradients of the normal external deviatoric
stress contribute also to the effective buoyancy of the
intrusions [Takada, 1989]. Therefore, whether propagating
buoyant dykes could reach the Earth’s surface or instead stall
in the crust and lead to magma accumulation depends on the
relative importance of their effective buoyancy and the
ambient deviatoric stress [Watanabe et al., 1999; Dahm,
2000; Pinel and Jaupart, 2000, 2004]. The numerical work
of Dahm [2000] and analogue experiments of Watanabe
et al. [2002], for instance, show that dykes can stop their
propagation and form sills, despite being buoyant, if they

experience relatively large stress gradients. Conversely,
dykes could reach the surface even when experiencing a
compressive stress field provided their effective buoyancy is
large enough. As an example, Kühn and Dahm [2004, 2008]
adapted and applied the model of Dahm [2000] to dyke
propagation at mid‐ocean ridges and showed how the rela-
tive strength of magma pressure and gradient of deviatoric
stress could focus dykes as sheeted‐dyke complex or instead
lead to the formation of sill‐like magma chambers.
[7] One key question that remains unanswered, however,

is the length‐scale over which a dyke‐to‐sill rotation occurs
since this will determine whether a dyke can reach the
surface or stalls as a sill instead. Both crustal heterogenities
and adequate stress field can lead to sill formation, but they
involve separate length‐scales.
[8] Gradients in or rotation of a stress field could be

induced by various mechanisms and could thus occur over
different length‐scales. These mechanisms can, however, be
sorted into two broad categories. A modification in stress
field could occur because of remote, i.e. non localized,
change or rotation. Magma initially originates from the
mantle and propagates toward the surface through dykes, so
the minimum compressive stress is likely to be horizontal in
the lower crust. Yet crustal compressive and horizontal
stress fields with a vertical minimum compressive stress,
which would thus favor sill formation, do also exist. Stress
rotation can also operate at the length‐scale of a volcanic
edifice, either in response to magma intrusion within the
edifice[Roman et al., 2004, 2006] or as an effect of the load
of the edifice itself [Watanabe et al., 2002; Pinel and
Jaupart, 2004].
[9] The second type of mechanism that could induce

stress rotation is more localized, and involves the presence
of heterogeneous rock layers. For instance, a rheology
contrast between a ductile rock layer and an adjacent elastic
and brittle strata underneath might stop feeder dykes and
promote sill formation into the ductile layer because the
ductile zone would, at least partially, relax the pre‐existing
deviatoric stress favorable to dyke injection in the elastic
layer [Parsons et al., 1992; Watanabe et al., 1999]. Alterna-
tively, stress redistribution could also occur in layered elastic
rocks with different mechanical properties. Adequate contrasts
in Young’s modulus and toughness between adjacent layers
would lead to heterogeneous stress distribution with some
layers concentrating horizontally compressive stress more than
others [Gretener, 1969; Gudmundsson, 1986; Gudmundsson
and Phillip, 2006]. Previously emplaced intrusions would
also modify the ambient stress field. Such intrusion‐induced
stress anistropy would affect the crust over distances pro-
portional to the intrusion thickness [Westergaard, 1939], until
it is relaxed by the crust.
[10] The key difference between these two broadly defined

mechanisms for stress rotation is the presence, or absence,
of crustal heterogeneous layered rocks; in one case stress
anisotropy is induced by the presence of crustal heteroge-
neities (strata of different properties or previous intrusions),
whereas in the other case stress rotation occurs remotely and
whether heterogeneous rock strata are present or not. Here,
we investigate (1) how a buoyant vertical dyke responds
and adjusts its trajectory to a compressive remote stress to
form a sill, and (2) over which vertical distance this sill
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formation occurs. We restrict our investigation to the case
of an intrusion propagating through a homogeneous elastic
solid. This does not mean that crustal heterogeneities are
considered unimportant for the growth and orientation of
intrusions, or that our analysis only applies to homogeneous
crustal regions. Rather, considering the case of a homoge-
neous crust enables us to identify the characteristic length‐
scale over which a dyke would respond to a remote stress
rotation, independently of the potential presence of crustal
layers and their properties. This will in turn enable us to
quantify if and under which conditions crustal hetero-
geneities need to be taken into account when dealing with
dyke propagation under anisotropic stress conditions. For
the same reason, we limit ourselves to the case of a single
intrusion, and do not investigate the effect previously
formed sills could have on the propagation of subsequent
intrusions. Although the state of stress in the Earth’s crust
can be complex, we also simplified our analysis to a uni-
form compressive deviatoric stress. Indeed, tectonic stresses
have been shown to play an important role on the propa-
gation of dykes only when their variations occur over the
length scale of the dykes [Lister and Kerr, 1991; Dahm,
2000], and vertical stress gradients can be incorporated
into the effective buoyancy force that drives the intrusion
[Takada, 1989; Lister and Kerr, 1991]. Finally, we neglect
any potential interaction between the intrusion and the free
surface, which is a reasonable assumption provided the
intrusion depth is greater than half the height of the intru-
sion [Rivalta and Dahm, 2006]. In section 2 we describe
laboratory analogue experiments investigating the propaga-
tion of a buoyant crack in a compressive environment, and in
section 3we analyze our experimental data using dimensional
analysis. In section 4 we apply our results to geological
conditions, discuss their implications and the limitations of
our work, before concluding in section 5.

2. Experimental Method

[11] The behavior of a buoyant dyke in a compressive
stress field was investigated by injecting air into a solid of
gelatine that was compressed laterally. The solid gelatine
was used as an analogue for elastic crustal rocks, and air
acted as an analogue for buoyant magma. (Since we are
interested in the mechanics and not the dynamics of dyke
propagation and sill formation, inviscid air could be used as a
magma analogue.) These materials enable us to scale down
and investigate at the laboratory scale the elastic and brittle
response of magmatic intrusions and elastic rocks to buoy-
ancy and tectonic forces at the geological scale [Menand and
Tait, 2002].
[12] The experiments involved varying the amount of

injected air, which determined the buoyancy of the crack at
the start of its propagation, and the amplitude of the com-
pressive stress applied to the gelatine solid. The experiments
were initially carried out in a square‐based 40 cm × 40 cm ×
30 cm acrylic tank, with equally spaced injection points in
its base that allowed several successive experiments to be
carried out with a single gelatine solid. Additional experi-
ments were later on carried out with higher buoyancy and
lower compressive stress in a taller (30 cm × 30 cm × 50 cm)

acrylic reservoir so that dyke‐sill transition could be inves-
tigated over larger vertical distances.

2.1. Preparation of the Gelatine Solid
[13] High‐clarity, 260 bloom, acid, pigskin‐derived gela-

tine in granular form was supplied by Gelita UK Ltd. The
gelatine was prepared by dissolving the powder in distilled
water. Once complete dissolution of the powder was
achieved, the solution was poured into the experimental
tank, and left to cool and solidify overnight. To accelerate
the solidification process, all experiments were prepared and
then performed in a cold room kept at 7°C. A thin layer of
oil poured on top of the gelatine solution inhibited water
evaporation during the cooling process [Menand and Tait,
2002]. The rigidity of the gelatine was controlled by vary-
ing the mass concentration of gelatine (between 2 wt% and
4 wt% in our experiments), and characterized by measuring
the gelatine Young’s modulus E following the method of
Menand and Tait [2002]. (Knowledge of the gelatine
Young’s modulus enables also to calculate its fracture
toughness Kc via the relationship Kc =

ffiffiffiffiffiffiffiffiffiffi
2!sE

p
, where the

surface energy of the gelatine gs ’ 1 J m−2 [Menand and
Tait, 2002].)

2.2. Lateral Compressive Stress
[14] After solidification, the gelatine solid was in a

hydrostatic state of stress (section A1) [see also Takada,
1990]. A lateral deviatoric compressive stress was applied
to the gelatine solid by inserting plastic sheets between the
solid gelatine and the lateral walls of the tank. These plastic
sheets had the same dimensions as the tank walls and cov-
ered them entirely to ensure a uniform and homogeneous
lateral compressive stress. To facilitate the insertion of these
sheets without tearing the gelatine, copper plates were in-
serted in the tank, against opposite walls, before the gelatine
was let to solidify. Once the gelatine was set, hot water was
circulated through the copper plates to initiate a slight
melting of the gelatine so that it no longer adhered to the
copper plates. Plastic sheets could then be easily inserted
between the gelatine solid and the copper plates. Several
plastic sheets could be successively inserted, thus inducing
higher compressive stress.
[15] The insertion of the plastic sheets in the plane yOz

compressed the gelatine solid in the x direction by an
amount equal to the total thickness of the plastic sheets u.
This compression also induced a vertical uplift of the upper
free surface of the gelatine solid because the tank walls
prevented the gelatine to deform in the y direction. With a
knowledge of the gelatine Young’s modulus E and Pois-
son’s ratio n (0.5 for gelatine [Crisp, 1952; Richards and
Mark, 1966]), the compressive stress field generated by
the insertion of the plastic sheets can be calculated (see
Appendix A)

"x ¼
4Eu
3L

; "y ¼
2Eu
3L

; "z ¼ 0; ð1Þ

where L is the initial lateral extent of the gelatine solid. The
compressive stress field is therefore uniform with the max-
imum compressive stress s1 = sx, the intermediate principal
stress s2 = sy, and the least compressive stress s3 = sz,
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which is thus always vertical (Figure 1). Experimental dykes
were therefore expected to rotate about a horizontal axis and
to ultimately form horizontal sills. The Young’s modulus of
the gelatine solid was measured just prior to carrying out an
experiment following the method of Menand and Tait
[2002].

2.3. Experiments and Data Measurements
[16] For each experiment, once the gelatine solid was set

and its Young’s modulus measured, a small amount of air
was injected with a syringe at the base of the gelatine to
initiate a crack parallel to the walls of the tank on which
the compression is applied. Air was then withdrawn from
that tiny crack, and plastic sheets were inserted to apply the
desired compressive stress. The experiment was then carried
out by injecting into the pre‐existing crack a volume of air,
the amount of which was chosen before the start of the
experiment. The progression of the air‐filled crack was then
recorded on video. From the video record (see Movies S1–S3
in auxiliary material), the height of the crack when it started
propagating was measured to calculate its buoyancy (referred
to as initial height and initial buoyancy, respectively) as
well as the vertical distance the crack propagated before
turning into a sill in response to the lateral compressive stress.
We note that since the applied compressive stress field is

uniform, the effective buoyancy of the crack at the start of
each experiment is simply its initial buoyancy.1

3. Experimental Results

3.1. Observations
[17] In all experiments, it was observed that as air was

being injected, the crack propagated radially with a penny‐
shaped geometry in a vertical to sub‐vertical plane, including
downward movement towards the base of the tank. This
condition lasted only a few seconds before the crack stret-
ched out vertically upward. This transition occurred once all
of the air had been injected and buoyancy had taken over as
the driving force from the pressure induced by injection.
From this point, the crack propagated smoothly vertically
upward, and with no further influx of air the crack extended
and detached from the needle point source, propagating
upwards whilst closing fully at its lower tip.
[18] An important observation was that sill did not always

formed despite the presence of a horizontal compressive
stress field. When a small compressive stress was applied, or
when a large amount of air was injected into the gelatine
solid, the air crack propagated up to the upper free surface of
the gelatine with its trajectory barely deviating from the
vertical (Movie S1 in auxiliary material).

Figure 1. Numerical computation of the compressive stress field within the prism of gelatine solid using
the finite element software COMSOL Multiphysics (see sections A2 and A3). The compressive stress
field appears uniform with principal stresses s1 = sx = 0.9984Eu3L , s2 = sy = 0.4984Eu3L , and s3 = sz = 310−11–
410−11. This compressive stress field is independent of the size of the gelatine solid.

1Auxiliary materials are available in the HTML. doi:10.1029/
2009JB006791.
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[19] Only when a large compressive stress was applied or
when the crack had a small volume, did the crack rotate
toward the horizontal to form a sill (Movie S2 in auxiliary
material). Experiments which lead to sill formation are
summarized in Table 1. Sill formation always followed the
same pattern. Initially, the crack started to propagate verti-
cally driven by the air buoyancy (Figure 2a). The crack then
experienced the horizontal compressive stress that was
applied to the gelatine solid, and the crack changed its
direction of propagation (Figure 2b). In those experiments
where the compressive stress was relatively large, the crack
ultimately formed a sill, having turned 90° and stopped its
propagation (Figure 2c).
[20] In experiments involving intermediate compressive

stress and air amount, the crack deviated and rotated its
trajectory towards one of the walls, but the compressive
stress was not large enough for a sill to form. Instead the
crack was observed to propagate to either the free surface of
the gelatine or the wall of the tank at an angle before it could
really form a sill (Movie S3 in auxiliary material).
[21] These experimental observations are in accord with

the results of previous numerical and analogue studies [e.g.,
Dahm, 2000; Watanabe et al., 2002], and show that the
response of buoyant crack propagating in a horizontal
compressive environment is not instantaneous but instead
occurs over some distance. If this distance is greater than the
vertical extend of the solid the buoyant crack is intruding
then the crack will reach the solid surface even though it is
in a compressive environment.

3.2. Data Analysis
[22] The distance traveled by the crack before it fully

formed a sill was found to be determined by a balance
between its initial buoyancy, which drove the crack
upwards, and the applied horizontal compressive stress that
opposed this buoyancy and promoted the formation of the
sill: relatively higher buoyancies were observed to favor
further propagation distances whereas relatively stronger
lateral compressive stress promoted faster crack rotation into
sills. In order to quantify this better, experiments were
repeated with different amounts of air injected in the gela-
tine and different compressive stresses applied. In each

experiment, the initial height h0 of the crack and the vertical
distance d traveled by the crack before its arrest as a sill
were measured. Based on our observations, we defined and
measured h0 as the height the crack had when it detached
from the needle, which also corresponded to its maximum
vertical extension. Experimental data are summarized in
Table 1.
[23] Dimensional analysis was used to relate the vertical

distance traveled by the crack before it formed a sill to the
other parameters. The initial buoyancy of the crack drives it
vertically and opposes the effect of the applied horizontal
compressive stress. The problem only depends on four
parameters characterized by two independent dimensions:
the initial height of the crack h0, the vertical distance d
traveled by the crack, the initial buoyancy of the crack
Drgh0 (g is the gravitational acceleration, and Dr is the
density difference between the gelatine and the air), and the
applied compressive deviatoric stress sx. Dimensional
analysis yields the two dimensionless groups

P1 ¼
d
h0

; P2 ¼
D#gh0
"x

; ð2Þ

such that P1 = f (P2) where f is an unknown function that
needs to be determined [Barenblatt, 1996].
[24] When plotting, for all experiments that produced a

sill, the final distance traveled by the crack normalized by its
initial height P1 as a function of the stress ratio P2, all the
experimental data indeed follow a single curve (Figure 3).
Careful analysis of the data suggests a linear relationship
between Ln(P1) and P2 (Figure 4). Using the method of
least squares [Bevington and Robinson, 2003], we find the
linear fit

LnðP1Þ ¼ ð0:36$ 0:07Þ þ ð0:10$ 0:01ÞP2; ð3Þ

with a correlation coefficient R2 = 0.8964. This equation
can be re‐expressed as the following exponential relation-
ship between the vertical travel distance d and the other
parameters:

d ¼ ð1:4$ 0:1Þh0 exp ð0:10$ 0:01ÞD#gh0
"x

" #
: ð4Þ

Table 1. Experimental Data Associated With Sill Formationa

Experiment h0 (cm) d (cm) E (Pa) sx (Pa) P1 P2 Observations

4 4.4 9.4 1713 95.6 2.1 ± 0.3 4.6 ± 0.7 –
6 5.1 12.5 1713 95.6 2.5 ± 0.3 5.2 ± 0.7 –
7 4.1 7.0 4736 268.8 1.7 ± 0.2 1.5 ± 0.2 –
8 5.4 10.0 4736 268.8 1.8 ± 0.2 2.0 ± 0.3 –
12 4.6 15.4 3877 55.6 3.3 ± 0.4 8.2 ± 1.2 –
13 3.7 5.8 3877 389.0 1.6 ± 0.3 0.9 ± 0.2 –
17 2.8 5.3 3734 56.9 1.9 ± 0.4 4.8 ± 1.0 –
18 5.2 7.4 3734 56.9 1.4 ± 0.2 8.9 ± 1.5 –
23 5.5 43.1 3100 29.0 7.8 ± 1.5 18.7 ± 3.3 rotation, wall hit
24 4.1 22.6 3100 29.0 5.6 ± 2.0 13.7 ± 2.7 rotation
34 4.4 42.6 2645 24.6 9.6 ± 2.0 17.6 ± 3.3 rotation, wall hit
35 4.0 35.2 2306 21.6 8.9 ± 2.2 18.1 ± 3.6 rotation, wall hit
36 4.4 43.8 2306 21.6 10.0 ± 2.1 19.9 ± 3.8 rotation, wall hit
44 3.0 50 1564 14.6 16.9 ± 3.8 19.9 ± 4.5 Rotation, surface hit
45 2.7 26.6 1564 14.6 9.9 ± 3.3 18.2 ± 4.4 wall hit

aP1 is normalized traveled distance d/h0, and P2 is stress ratio (Drgh0)/sx. Observations: rotation indicates rotation around a vertical axis; wall or
surface hit occurred before the crack could form a horizontal sill. The uncertainty on the dimensionless ratios P1 and P2 takes each observation into
account (see text).
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As expected, when the stress ratio tends to zero
(corresponding to negligible initial buoyancy or extremely
high remote compressive stress) the crack rotates and turns
into a sill over a distance comparable to its initial height.
Conversely, when the stress ratio tends to infinity (thus
corresponding to negligible remote compressive stress or

extremely high initial buoyancy) the crack needs to propa-
gate over an infinite distance in order to rotate and form a
sill; in effect, sill formation is prevented by the buoyancy of
the crack.

3.3. Evaluation of the Quality of the Data
[25] Some experimental limitations mean that some of our

data have rather large uncertainties. This only affected those
experiments carried out in the taller tank (normalized distance
P1 > 5 and stress ratio P2 > 20). We evaluate the possible
causes and discuss the implications this would have on the
relationship that has just been determined (equation (4)).
[26] As noted previously, in some experiments, the crack

propagated towards a tank wall or the free surface of the
gelatine before it could form a sill. However, when the crack
hit the wall or the surface at a small angle, typically less than
∼ 30° relative to the horizontal, the vertical distance traveled
by the crack before it hit the wall or the surface was mea-
sured and included to the data set in Table 1. These data,
therefore, correspond to under‐estimations of the vertical
distance the crack would have traveled had the tank been

Figure 3. Experimental results. The final distance d trav-
eled by the crack normalized by its initial height h0 is plotted
as a function of the stress ratio (Drgh0)/sx. As predicted by
dimensional analysis, all data follow a single curve (the
solid curve is equation (4)). Each point corresponds to one
experiment.

Figure 2. Three successive photographs of an experiment
that lead to the formation of a sill. (a) When all the air
has been injected into the gelatine solid, the crack stretched
vertically and started to detach itself from the needle point
source, propagating at a speed of typically a few mm/s.
(b) As the crack propagated vertically, driven by the air
buoyancy, it felt the applied compressive deviatoric stress
and as a consequence started to adjust its trajectory by rotat-
ing to the left. (c) Ultimately, the crack rotated to the hori-
zontal and came to a halt as an experimental sill.

MENAND ET AL.: SILL FORMATION IN COMPRESSIVE REGIONS B08201B08201

6 of 12



much larger. These under‐estimated distances were never-
theless included into the overall data set because they cor-
responded to some of the highest values of both normalized
distance P1 and stress ratio P2 of the whole set. From our
observations of crack trajectories in experiments where the
crack truly stopped and formed a sill, we estimate the under‐
estimations to be less than 5–10 cm, and these latter values
were incorporated into the data uncertainties. We note that
our data set is therefore likely to be skewed toward these
higher values, but also that data uncertainties, at least partly,
take this skewness into account.
[27] Other experiments showed some rotation of the crack

around a vertical axis towards or away from the observer.
This could reflect the stress field being non‐uniform as a
result of the gelatine adhering to the tank walls where no
deformation was imposed on the gelatine solid (the walls
closest and furthest away from the observer). Potentially
restricted movement along both these walls would have
induced a non‐slip boundary condition, which would thus
have affected the stress field, causing some rotation of the
cracks around a vertical axis. In this case, our stress calcu-
lations would therefore overestimate compressive stress and
thus skew data towards lower stress ratio P2. This potential
effect of non‐uniform stress field is difficult to quantify, but
by comparing the degree of crack rotation around a vertical

axis relative to crack rotation around the horizontal axis
Oy towards plastic sheets, we estimated a maximum addi-
tional uncertainty on our stress calculations to be of the order
of 10 %.
[28] It is difficult to assess the implication of these

potential under‐estimations of normalized distance P1 and
over‐estimations of stress ratio P2 on the experimental
relationships (3) and (4). We note, however, that the potential
increase or decrease in the experimental constants is partly
accounted for by the data uncertainties.

4. Geological Implications and Limitations

4.1. Upscaling to Magmatic Conditions
[29] Dimensional analysis was used to analyze our

experimental results, as detailed in section 3. Considering
reasonable ranges of natural parameters result in values of
the dimensionless ratios falling in the same range as the one
investigated in our experiments (Table 2). Thus, our analysis
also enables us to upscale our experimental results to
magmatic conditions since the experimental constants in
equation (4) are dimensionless.
[30] As a dyke propagates away from its source under

lithostatic conditions, the effective buoyancy of that dyke
increases. Menand and Tait [2002] have shown that once
the effective buoyancy of the dyke becomes comparable to
the source overpressure, it becomes the main driving force
and the dyke then propagates steadily. The height of the
buoyant dyke at that point, which we defined as its initial
height h0 in our experiments, is not really well constrained
but can be estimated, however, from the dyke overpressure,
which depends on the initial stress conditions in the source
region.
[31] Here, we assume that a buoyant dyke rises from a

source under lithostatic conditions and then, some distance
from the source, enters a region of the crust subjected to a
horizontal compressive deviatoric stress. We assume that
initially, as the dyke leaves its source, buoyancy is negli-
gible and that the magma overpressure, DP, in the source
drives the dyke away from the source region.
[32] It can be constrained by the tensile strength of sur-

rounding rocks, Ts, so that

DP ’ Ts: ð5Þ

The effective buoyancy becomes the main driving force of
the dyke when it becomes comparable to the source over-
pressure so that

DP ¼ D#gh0: ð6Þ

At this point, the buoyant dyke has reached it initial buoyant
height h0 and subsequently propagates in a steady‐state

Figure 4. Plotting the natural logarithm of the vertical trav-
eled distance as a function of the stress ratio reveals a linear
relationship: Ln(P1) = (0.36 ± 0.07) + (0.10 ± 0.01)P2
(equation (3)). Correlation coefficient of the fit R2 =
0.8964. Each point corresponds to one experiment.

Table 2. Parameters and Dimensionless Ratios in Nature and Experimentsa

h0 (m) d (m) Dr (kg/m3) sx (Pa) Ts (Pa) P1 P2

Experiment 0.02–0.06 0.05–0.5 1000 15–390 – 1–17 1–20
Nature 200–104 100–104 100–500 105–108 106–107 0.01–50 0.01–100

aThe experimental value for Dr neglects the density of air and thus corresponds to that of gelatine [Di Giuseppe et al., 2009]. Other experimental values
are taken from Table 1. Natural values for h0 are estimated from equation (7). Other ranges of natural values are taken as representative of geological
conditions.
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[Menand and Tait, 2002] until it enters a region of the crust
that is subject to some deviatoric stress field. These two
different expressions for magma overpressure can be com-
bined to express the initial height of the dyke as a function
of the rock tensile strength and the density difference
between magma and rocks

h0 ’
Ts
D#g

: ð7Þ

[33] Alternatively, we can define the magma overpressure
needed to initiate dyke propagation as that for which the
resistance to fracture, or fracture toughness Kc, of the source
rocks is exceeded (which depends on the dyke height h, and
thus corresponds to a length‐scale dependent tensile
strength)

DP ’ Kcffiffiffi
h

p ; ð8Þ

in which case the dyke becomes buoyancy‐driven when its
initial height

h0 ’
Kc

D#g

$ %2=3

: ð9Þ

[34] We assume that the dyke propagates some distance
and becomes fully driven by buoyancy before entering a
region where a compressive deviatoric stress acts horizon-
tally. For the sake of simplicity, we also assume that this
deviatoric stress is uniform with value sx. Combining
equation (7) with our experimental expression (4) gives the
vertical distance the buoyant dyke would have to propagate
within the region under compression before turning into a
sill in response to the deviatoric stress ax

d ’ Ts
D#g

exp ð0:10$ 0:01Þ Ts
"x

$ %" #
: ð10Þ

Using equation (9) instead yields

d ’ Kc

D#g

$ %2=3

exp ð0:10$ 0:01Þ
D#gK2

c

& '1
3

"x

" #
: ð11Þ

[35] Equations (10) and (11) are represented in Figure 5 as
a function of the compressive stress for a range of density
differences, 100–500 kg/m3, two different tensile strengths,
1 and 10 MPa, and a corresponding range of fracture tough-
ness 10–1000 Pa m1/2 (see equations (7) and (9)). Figure 5
shows that the dyke‐to‐sill transition takes place over some
non‐negligible distance. Over the range of geological para-
meters considered here, Figure 5 shows that a dyke propa-
gating in homogeneous, elastic rocks would require a
minimum distance of two hundred meters, and in most cases
of the order of one to ten kilometers, to fully adjust to a
horizontal compressive stress field and turn into a sill.
[36] As expected, Figure 5 shows that dykes entering

regions that are subjected to higher compressive deviatoric
stresses would adjust more rapidly to those stresses and

thus form sills over shorter vertical distances. However,
even for very high compressive stress, the dyke‐to‐sill
transition does not happen instantaneously but instead
occurs over a minimum distance of the order of the initial
buoyant height of the dyke (see equation (4)).
[37] Figure 5 also shows that a dyke propagating through

stiffer rocks would need to propagate over a greater distance
before forming a sill. This can be understood by recalling
that a dyke originating from a stiffer rock region would need
a higher source overpressure in order to overcome that rel-
atively higher rock resistance to fracture which in turn
would result in a higher subsequent driving effective
buoyancy. This higher effective buoyancy would then be
able to drive the dyke over a greater distance before it fully
rotates into a sill.

4.2. Implications for the Formation of Sills
[38] Equations (10) and (11) represent the distance over

which a buoyant dyke would transform into a sill owing to
remote compressive deviatoric stress in homogeneous elastic
rocks. In the absence of crustal heterogeneities, a stress‐
controlled dyke‐to‐sill transition would occur over a mini-
mum distance of two hundred meters, and presumably of
several kilometers in most cases (Figure 5).
[39] This contrasts with the fact that the crust involves a

large number of strata with different mechanical properties
that alternate rapidly. For instance, the Michigan basin
sedimentary strata exhibit vertical density variations over
distances ranging from few tens to several hundred of
meters [Hinze et al., 1978]. Likewise, composite volcanoes
and rift zones in Iceland are composed of layers with con-
trasting mechanical properties, mostly pyroclastic rocks, lava
flows and other igneous sheets, many of which are only a few
meters thick although some unit thicknesses can reach up to
100 m [Gudmundsson, 2003; Gudmundsson and Phillip,
2006].
[40] Our study shows that the characteristic length‐scale

for stress‐controlled sill formation is typically greater (and
in many instances much greater) than the average thickness
of lithological units. In accord with previous studies [e.g.,
Dahm, 2000; Watanabe et al., 2002], our experiments show
also that dykes would reach the surface even in a com-
pressive tectonic environment if the characteristic length‐
scale for a dyke‐to‐sill transition is greater than the distance
that separates them from the surface. This contrasts with the
field observations that only a few percentage of dykes reach
the surface, and that not all the dykes that do not reach the
surface turns into sills [Gudmundsson et al., 1999].
[41] These findings reinforces the point made by previous

studies that crustal heterogeneities play an important role
in determining where in the crust sills form, even when
dykes are subject to horizontal compressive deviatoric
stress. Contrasts in mechanical and rheological properties
can indeed arrest the advance of dykes and lead to sill
emplacement [Mudge, 1968; Gudmundsson and Brenner,
2001; Gudmundsson, 2003; Kavanagh et al., 2006; Taisne
and Jaupart, 2009]. Moreover, the finding that stress‐
controlled sill formation operates over distances that likely
encompass numerous crustal strata would also imply that a
stress control on sill formation involves almost certainly
some stress interactions with these rock strata [Gretener,
1969; Gudmundsson, 1986; Gudmundsson and Phillip,
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Figure 5. Upscaling to magmatic conditions: the vertical distance a dyke has to propagate before turning
into a sill is represented as a function of the ambient horizontal compressive stress (equations (10) and
(11)). (a) The two curves correspond to two different rock tensile strengths, Ts = 1 MPa (solid curve) and
Ts = 10 MPa (dashed curve), and the grey areas represent a range of density differences between 100 and
500 kg/m3. (b) The three curves correspond to three different fracture toughnesses, Kc = 10 MPa m1/2

(solid curve), Kc = 100 MPa m1/2 (short‐dashed curve) and Kc = 1000 MPa m1/2 (long‐dashed curve), and
the grey areas represent a range of density differences between 100 and 500 kg/m3.
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2006]. These stress interactions must therefore be taken into
account when considering potential stress control on the
emplacement of sills and indeed on the mechanical behavior
of igneous sheets.

4.3. Limitation of Our Analysis
[42] Our experiments and analysis have only considered

the case of buoyancy‐driven cracks, when dykes could also
be driven by their source overpressure. Indeed, a dyke
overpressure is really the sum of that from its source and of
the dyke effective buoyancy, minus the loss due to viscous
pressure drop.
[43] Once the effective buoyancy is large enough and

becomes comparable to the source overpressure, it becomes
the main driving force of a steady‐state propagation [Menand
and Tait, 2002]. We note, however, that as a buoyant dyke
modifies its trajectory in response to a horizontal compres-
sive stress, it would also experience a decrease in effective
buoyancy owing to a reduction in its vertical extent. Indeed,
propagation of buoyant dykes is controlled by the local
effective buoyancy balance that takes place at the dyke nose
region [Lister and Kerr, 1991]. In our experiments, the
air‐filled cracks represent the dyke nose region. (The elastic
gelatine solid closes shut behind these cracks because of the
inviscid air, whereas if the cracks were filled by a viscous
fluid, as magma‐filled dykes are, then the dykes would
develop a tail behind their nose region. Yet, in this latter case
the material left within the tail would not contribute to the
force budget that drives crack propagation; buoyancy crack
propagation is entirely and only controlled by local effective
buoyancy considerations [Lister and Kerr, 1991].) There-
fore, as a buoyant dyke starts adjusting its trajectory to a
horizontal compressive stress field and starts turning into a
sill, the vertical extent over which the effective buoyancy
balance operates decreases. Ultimately this vertical dimen-
sion is the thickness of the new sill formed by the complete
rotation of the dyke.
[44] The case we have not dealt with is that of dykes

entering compressive regions before they are fully driven by
buoyancy. In this case, source overpressure and potential
viscous pressure drop should be taken into account. If one
assumes that a dyke overpressure remains essentially con-
stant then, by definition, this dyke would continually
experience the same constant internal driving pressure, and
thus would be expected, perhaps paradoxically, to be able to
rise vertically further than a buoyancy‐driven dyke (which
would instead experience a continuous reduction in effective
buoyancy). One would therefore expect, everything else
being equal, constant‐pressure‐driven dykes to adjust their
course to a horizontal compressive stress over greater ver-
tical distances when compared to buoyant dykes.
[45] However, dyke overpressure is likely not to remain

constant because magma withdrawal from the source into
the dyke and viscous pressure drop would continuously
reduce it whilst the effective buoyancy would continuously
increase it (before the dyke enters the compressive region).
The response of such a vertically‐propagating pressure‐
driven dyke to horizontal compressive stress cannot be
deduced from our buoyant experiments, and would require
addressing the dynamics of such a pressure‐driven dyke.
Nevertheless, what our work suggests, in conjunction with
the observation that most dykes get arrested by crustal

heterogeneities, is that these heterogeneities are likely to be
very important in affecting the trajectories of dykes and in
controlling where sills form.

5. Conclusions

[46] Using analogue experiments, the behavior of a
buoyant crack rising through a horizontal compressive de-
viatoric stress field in a homogeneous elastic solid has been
investigated and quantified. These experiments show that the
horizontal compressive stress opposes the vertical advance of
the buoyant crack, and forces the crack to modify its tra-
jectory into the horizontal plane.
[47] The experimental data show how the balance

between the driving effective buoyancy and the deviatoric
horizontal compressive stress determines the vertical dis-
tance over which the crack rotation takes place. Using
dimensional analysis, the characteristic length‐scale for this
dyke‐to‐sill rotation is shown to increase exponentially with
the ratio of the initial crack effective buoyancy to horizontal
compressive stress. If this length‐scale is larger than the
distance that separates the crack from the surface then the
crack reaches the surface even though it is subject to a
horizontal compressive deviatoric stress. Conversely, if this
length‐scale is smaller then the crack stops its propagation
as a sill despite being buoyant.
[48] When upscaled to magmatic conditions and over a

range of typical values for tensile strength, fracture tough-
ness, density difference and deviatoric compressive stress,
our results suggest that a dyke propagating through homo-
geneous elastic rocks would need to propagate vertically
over a minimum distance of two hundred meters and more
likely of several kilometers in most cases before it could form
a sill in response to the horizontal compressive deviatoric
stress.
[49] The characteristic length‐scale for stress‐controlled

sill formation is typically greater than the average thickness
of lithological units, which thus supports the idea that
crustal heterogeneities play an important role in determining
the fate of dykes and in controlling where sills form, and
that a stress control on igneous sheets propagation and sill
formation most likely involves stress interactions with and
redistribution within rock strata.

Appendix A: State of Stress of the Gelatin Solid

[50] Stresses s and strains $$$$$ in an elastic solid can be
linearly related according to Hooke’s law, which in Carte-
sian coordinates is expressed as

$x ¼ 1
E

"x & %ð"y þ "zÞ
( )

;

$y ¼ 1
E

"y & %ð"x þ "zÞ
( )

;

$z ¼ 1
E

"z & %ð"x þ "yÞ
( )

;

ðA1Þ

where E and n are the Young’s modulus and Poisson’s ratio
of the elastic solid, respectively [Timoshenko and Goodier,
1970].
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A1. Initial State of Stress

[51] Initially, the gelatine solid adheres to the tank walls
and so there is no horizontal strain, $x = $y = 0. Using
Hooke’s law (A1), we obtain the following relationship
between the three stress components:

"x ¼ "y ¼
%

ð1& %Þ "z: ðA2Þ

Given that gelatine has a Poisson’s ratio n = 0.5 [Crisp,
1952; Richards and Mark, 1966], sx = sy = sz and the
initial stress field is hydrostatic.

A2. Compressive Stress Field

[52] Gelatine is compressed by imposing a horizontal
displacement u in the x direction, whilst the tank walls
prevent any deformation in the horizontal y direction. This
induces a horizontal deformation $x = u

L (L is the initial
lateral extend of the gelatine solid) and $y = 0. This reduces
Hooke’s law (A1) to

E$x ¼ "x & %"y & %"z;

"y ¼ %"x þ %"z;

E$z ¼ "z & %"x & %"y;

ðA3Þ

from which we obtain

E$x ¼
ð1þ %Þð1& 2%Þ

ð1& %Þ "x &
%

ð1& %ÞE$z: ðA4Þ

Gelatine Poisson’s ratio n = 0.5, and it follows that

$x ¼ &$z: ðA5Þ

Combining this expression with the modified Hooke’s law
(A3) for a Poisson’s ratio of 0.5, we obtain

"x ¼
4
3
E$x þ "z; "y ¼

2
3
E$x þ "z: ðA6Þ

The vertical stress sz cannot be calculated analytically
because the modified Hooke’s law (A3) reduces to a system
of two equations with three unknowns in the limit of a
Poisson’s ratio n = 0.5. Finite element computations were
therefore carried out to evaluate sz (section A3). These
numerical calculations indicate that the vertical stress is nil,
and therefore, recalling that $x = u

L, that the compressive stress
field within the prism of solid gelatine is

"x ¼
4Eu
3L

; "y ¼
2Eu
3L

; "z ¼ 0: ðA7Þ

The compressive stress field is thus uniform with sx as the
maximum compressive stress, sy the intermediate principal
stress, and sz the least compressive stress which is thus
always vertical.

A3. Numerical Validation

[53] The finite element software COMSOL Multiphysics
was used to evaluate the three‐dimensional stress field
within the elastic gelatin solid, and to test the validity of the
expressions for the compressive stresses (A6). The geometry

was that of the gelatine prism, and the boundary conditions
were identical to those in the experiments: imposed dis-
placement u in the x direction, no displacement in the y
direction, no displacement at the base of the prism and a free
upper surface. A displacement u = 8 mm and a Young’s
modulus E = 2000 Pa were chosen as representative of the
experimental values, whereas the Poisson’s ratio n had value
0.499 since a value of 0.5 could not be handled numerically.
[54] Figure 1 shows that the compressive stress field is

uniform, with the maximum compressive stress being sx and
the least compressive stress being sz. To test the validity
of the analytical expressions of the compressive stresses (A6),
the computed principal stress values have been normalized by
sx theoretical value 4Eu

3L . Computed normalized values gives
sx = 0.998, sy = 0.498, and sz in the range 310−11–410−11.
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Preface

Emplacement of magma pulses and growth of magma bodies

Keywords:
Plutons
Sills
Granite
Incremental emplacement

1. Introduction

Magmatism is responsible for the formation of continental and
oceanic crusts. It is themain agent of mass and heat transfers from the
mantle towards the crust, the hydrosphere (oceanic and continental
hydrothermalism) and the atmosphere (emissions of volcanic gas and
ashes). Its expressions are the crystallization of intrusive rocks and the
eruption of volcanic products. However, with a ratio between the
volumes of extrusive and intrusive magmatic rocks estimated to be of
the order of 1:5 for most magmatic systems (White et al., 2006), one
of the main characteristics of magmatism is that magmas rarely reach
the Earth's surface. This suggests that the prevailing conditions in the
crust are not favourable to the arrival of magma on the Earth's surface,
but instead lean heavily towards the formation of intrusive bodies in
the crust. These intrusive bodies, referred to here as plutons,
constitute the elementary building brick of the continental crust. An
increasing number of geophyscial and geochronological data as well
as geological observations is currently modifying our understanding
of pluton construction. When plutons were initially envisaged as
quasi-spherical bodies growing slowly and essentially by an overall
inflation, they are now recognized as growing incrementally by the
accretion of successive and relatively small magma pulses, over
variable periods of time, from hundred to millions of years, depending
on geodynamic setting and source fertility. This brings new challenges
and has far-reaching implications. According to this new model of
plutonism, the evolution of magma bodies is related to the processes
that control the timescale and the spatial distribution of the
successive pulses. Depending on their emplacement rate and on
their ability to amalgamate, repeatedmagma pulses can either rapidly
solidify or ultimately build up an active magma chamber. Thus
understanding how magma bodies grow has fundamental implica-
tions for the link between volcanism and plutonism as well as for
magma differentiation and ultimately for our understanding of the
growth and evolution of the Earth crusts. The concept of pluton
incremental growth challenges our understanding as well as our field
interpretations of the processes involved during pluton construction.
Indeed, these processes and how they operate in governing the
emplacement and growth of plutons, both in space and time, are still
debated.

A state-of-the-art session on these very issues was held at the 2008
General Assembly of the European Geosciences Union. As a follow-up
of this session, this special volume Emplacement of magma pulses and
growth of magma bodies brings together both theoretical models and

field studies that cover most aspects of the emplacement and growth
of plutons.

2. This volume

The volume starts with three reviews of the thermal, mechanical
and structural aspects of the emplacement and construction of crustal
magma bodies. Annen (this issue) reviews the thermal evolution of
magma bodies growing by slow amalgamation of discrete pulses, and
suggests that incremental growth could explain the bi-modal
character of magmatic provinces with intermediate magmas resulting
from the open nature of the systems through the mixing of both mafic
and silicic end-members. This review also supports a model of magma
bodies construction as a multi-time-scale process with the develop-
ment of large magma chambers corresponding to the highest magma
fluxes, several orders of magnitude higher than the average pluton
emplacement rate. Menand (this issue) then reviews the different
mechanisms controlling the formation and emplacement depths of
sills, and how these can amalgamate to form larger igneous bodies.
The main conclusion of this review is that the dominant control on sill
emplacement is exerted by crustal heterogeneities via their rigidity
and rheological anisotropy, and their interaction with the local and
tectonic stress fields. In turn, this determines whether and how
successive sills can amalgamate to form larger magma bodies. Finally,
Saint Blanquat et al. (this issue) review the mechanisms and duration
of pluton construction in continental magmatic arcs. Field studies on
plutons of various sizes (from 1 to more than 1000 km3) show that
each pluton size is related to a pulsed magmatic activity with a
characteristic time scale, and that each of these coupled time-space
scales is related to a specific process. High magma fluxes relative to
crustal tectonic strain rates ensure that magmatic processes control
the system from below. One of the main consequences is that for high
fluxes or over short time scales the dynamics of the pulsed
magmatism observed in continental arc plutonic systems are a direct
proxy for deep lithospheric and magmatic processes.

These reviews are complemented by two thermal and mechanical
studies. First, Michaut and Jaupart (this issue) discuss two thermal
models for the formation of magma reservoirs by small increments.
The authors show that if a magma body grows by amalgamation of
relatively thick individual igneous sheets, crystallization in that body
proceeds at equilibrium as described by Annen (this issue). If the body
grows instead by amalgamation of relatively thin sheets, the thermal
evolution of the body is kinetically controlled such that the initial
sheets do not crystallize completely but instead preserve a glassy
residue. As the temperature of the system subsequently increases,
devitrification of this glass occurs which leads crystallization to
proceeds catastrophically in a positive feedback loop involving latent
heat release and temperature rise. These two thermal models have
different implications for the formation of magma chambers as well as
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the amount of melt generated. Then, Gudmundsson (this issue)
discusses the mechanisms for the arrest of dykes and their deflection
into sills at discontinuities in the upper crust in relation to the
formation of shallow plutons and magma chambers. The emphasis is
put on the role of host-rock layering and three associatedmechanisms
for the arrest of dykes and their deflection into sills. The Cook–Gordon
mechanism corresponds to a weak contact that opens up as a result of
tensile stresses induced by a nearby dyke, a mechanism that is likely
to operate primarily at shallow crustal depths. A secondmechanism is
the development of stress barriers, which occurs within rock layers
where the minimum compressive stress becomes vertical and thus
opposes the advance of dykes and favours sill emplacement. In the
third mechanism, adjacent layers with different elastic properties can
lead to material-toughness ratios that are favourable to sill formation.
This situation is most likely to arise when a rock layer is stiffer than
the one underneath, such as in the case of a relatively stiff lava flow
overlying a comparatively softer pyroclastic layer; a propagating dyke
would then have a greater tendency to be deflected into the contact
between the adjacent rock layers.

The volume closes with three field-based studies that cover a range
of pluton emplacement settings, sizes and localities. They also illustrate
the challenges faced when interpreting field observations in the light of
our improved understanding of pluton emplacement and growth.

Numerous evidence suggest and support an incremental growth of
plutons. Yet well-defined contacts within plutons remain commonly
elusive. Miller et al. (this issue) compare and contrast the structural and
zircon features of the Spirit Mountain batholith and the smaller Aztec
Wash pluton in southern Nevada, USA, to explain this discrepancy. Both
are proposed to have grown by magma replenishments and sheet-
stacking into low-strength mush zones, but the contacts between
successive sheets would have disappeared gradually owing to the
continuous increase in magma content and heat during their growth.
According to Miller et al. (this issue), the smaller Aztec Wash pluton
retained a more diverse composition and texture because of its smaller
volume and history, whereas a much more protracted history lead to a
much larger and more homogenized Spirit Mountain batholith except
for the latest stage of its construction. This interpretation explains not
only the apparent contradiction between incremental and protracted
pluton growth and a seeming absence of intrusive contacts, but is also
consistent with the recent thermal models exposed in this special
volume on the thermal evolution of plutons growing by amalgamation
of sills and the conditions for the existence of long-lived shallow crustal
magma chambers (Annen, this issue; Michaut and Jaupart, this issue).
Allibon et al. (this issue) document a rare example of a pluton located in
the oceanic crust which could be interpreted as a feeder of the
Fuerteventura volcano, in Canary Islands. It is a vertically layered mafic
dyke-like pluton constructed in a transtensive tectonic environment.
The structural features of the pluton attest of an incremental growth by
periodic injections and amalgamations of dykes similar to a sheeted-
dyke complex, and the authors interpret this emplacement geometry as
controlled by the extensional regional tectonic setting that prevailed
during the Miocene pluton growth. The authors attribute also the
observed sequence of internal differentiation of individual dykes, their
subsequent compaction and the migration of interstitial melt that
followed, as reflecting the interplay between the regional tectonic
setting and the rate and volume of the successive dyke injections that
were controlled instead by source-related processes. Finally, Marko and

Yoshinobu (this issue) document the structural and thermal aureoles of
the White Horse Pluton in eastern Nevada, USA. The authors use the
structures of the contact aureole to show both spatial and temporal
variations in the rheology of the host rocks associatedwith the repeated
injections ofmagma that lead to the formation of the pluton, and thus to
constrain the temporal and spatial construction of this pluton. The
authors show evidence of both ductile and brittle deformation within
the contact aureole, and that brittle deformation occurred in the late
stage of the pluton construction following previous episode of ductile
deformation. Additionally, the authors place geometric constraints on
the shape and growth of theWhite Horse Pluton, and their estimates of
the strain associated with the pluton growth suggest that shortening of
the contact aureole could accounts for half the space created during the
pluton formation. Other deformation mechanisms are thus required to
account for the remaining space created during pluton emplacement.

Our understanding of pluton construction is sharpening, and we
hope this special volume Emplacement of magma pulses and growth of
magma bodies provides a balanced and critical overview of our current
knowledge of the incremental growth of plutons. With a set of both
theoretical models and field studies that, we think, covers most aspects
of the emplacement and growth of plutons, we also hope that this
volume will be of interest for both the volcanic and plutonic
communities, including theoreticians, field geologists and petrologists.
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The formation and growth of magma bodies are now recognised as involving the amalgamation of successive,
discrete pulses such as sills. Sills would thus represent the building blocks of larger plutons (sensu lato).
Mechanical and thermal considerations on the incremental development of these plutons raise the issue of the
crustal levels at which magma can stall and accumulate as sills. Reviewing the mechanisms that could a priori
explain sill formation, it is shown that principal physical controls include: rigidity contrast, where sills form at
the interface between soft strata overlaid by comparatively stiffer strata; rheology anisotropy, where sills form
within the weakest ductile zones; and rotation of deviatoric stress, where sills form when the minimum
compressive stress becomes vertical. Comparatively, the concept of neutral buoyancy is unlikely to play a
leading control in the emplacement of sills, although it could assist their formation. These different controls on
sill formation, however, do not necessarily operate on the same length scale. The length scale associated with
the presence of interfaces separating upper stiffer layers from lower softer ones determines the depth atwhich
rigidity-controlled sills will form. On another hand, the emplacement depths for rheology-controlled sills are
likely to be determined by the distribution of the weakest ductile zones. Whereas the emplacement depth of
stress-controlled sills is determined by a balance between the horizontal maximum compressive stress, which
favours sill formation, and the buoyancy of their feeder dykes, which drives magma vertically. Ultimately, the
depth atwhich a sill forms depends onwhether crustal anisotropy or stress rotation is the dominant control, i.e.
which of these processes operates at the smallest length scale. Using dimensional analysis, it is shown that sill
formation controlled by remote stress rotation would occur on length scales of hundreds of meters or greater.
This therefore suggests that crustal heterogeneities and their associated anisotropy are likely to play a larger
role than remote stress rotation in controlling sill emplacement, unless these heterogeneities are several
hundred meters or more apart. This also reinforces the role of local stress barriers, owing to interactions
between deviatoric stress and crustal heterogeneities, in the formation of sills.

© 2009 Elsevier B.V. All rights reserved.
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1. The formation of plutons

The formation and growth of igneous bodies (plutons sensu lato)
have long been recognised as important processes that have shaped
much of the Earth's crust. Over the years, a growing body of geological
evidence, conceptual reasoning and theoretical models has lead to a
better understanding of pluton construction. When plutons, especially
those of granitic nature, were before envisaged as growing by an overall
inflation, their construction is now recognised as involving the accretion
of repeated, discretemagma injections orpulses. Yet, theseprocesses and
how they operate in governing the emplacement and growth of plutons,
both in space and time, are still debated.

1.1. Mechanical challenge or “the space problem”

The formation of plutons is first a mechanical challenge. Plutons are
large igneous bodies up to several kilometres to tens of kilometres in
thickness. Their formation and the associated deformation of the host
rocks must be mechanically compatible on the long term with the
average lithospheric strain rate (Petford et al., 2000), and the depth of
emplacement of these bodies does certainly play a significant role.
Indeed, the emplacement of a pluton in the shallow upper crust will be
facilitated by the presence of the near free surface, whereas the
deformation induced by the emplacement of deeper plutons in the
lowermost parts of the crust will benefit from ductile flow, either from
the mantle or the ductile crust or even both (Petraske et al., 1978;
Cruden, 1998; Cruden and McCaffrey, 2001). However, the develop-
ment of igneous bodies may not follow a single growth process.
Extensivefieldmeasurements of the geometry and dimensions ofmany
intrusions, from the smaller sills to the larger batholiths, seem to
indicate that a generic, continuous link exists between the thickness and
the average horizontal dimension of these intrusions, but also that this
scaling relationship does not seem to follow a single power law
(McCaffrey and Cruden, 2002; Cruden and McCaffrey, 2006). Instead,
sills seem to grow mainly by lateral propagation whereas laccoliths
seem to grow by vertical thickening before extending laterally again as
plutons and batholiths, hence suggesting different growth mechanisms
depending on the size of the intrusive body that is considered (Pollard
and Johnson, 1973; Cruden and McCaffrey, 2002).

1.2. Thermal considerations

The construction and development of an active magma chamber is
also a thermal problem. For a magma chamber to remain active or for
an igneous body to be able to convect, heat must be accumulated in
that body at rates that are higher than that at which heat is conducted
away from the body. Recent studies have shown that the thermal
evolution of an igneous body depends critically on several parameters
including the supply rate of magma that feeds that body as well as the
position of this igneous body along the ambient geotherm. Indeed, the
depth at which magma is accumulated, or stored, in the crust is
important because this determines the initial temperature of the
igneous body and thus its subsequent thermal evolution (Annen et al.,
2006; Michaut and Jaupart, 2006; Annen, 2009).

The mechanical and thermal aspects of pluton formation and
growth are also intimately intertwined. Themechanics and associated
styles of pluton formation directly affect the geometry of a pluton,
which in turn controls its thermal evolution. This has strong
implications for magma differentiation and anatexis. Plutons can
grow through different emplacement sequences. Repeated amalgam-
ation of magma of younger age underneath older igneous material
would lead to grow by under-accretion (Harrison et al., 1999; de
Saint-Blanquat et al., 2001; Michel et al., 2008). The opposite growth
sequence, referred to as over-accretion, occurs when younger igneous
units accumulate on top of older ones (Wiebe and Collins, 1998; Benn
et al., 1999; Galerne et al., 2008). Finally, pluton formation can also
involved scattered injections of magma, with septa of host rocks
trapped in between individual intrusions (Quick et al., 1994;
Westerman et al., 2004). These different growth sequences will lead
to radically different thermal evolutions, and thus to extremely
different relative amounts of residual melt from incomplete crystal-
lization of the pulses and of partial crustal melt (Annen et al., 2008;
Annen, 2011-this issue).

1.3. Evidences for sills as pluton-building blocks

There is a vast body of evidence from geological, geophysical and
geochronological data (Cargill et al., 1928; Hawkes and Hawkes, 1933;
Gretener, 1969; Bedard et al., 1988; John, 1988; Gudmundsson, 1990;
Hutton, 1992; John and Blundy, 1993; Rutter et al., 1993; Vigneresse
and Bouchez, 1997; Wiebe and Collins, 1998; Benn et al., 1999;
Coleman et al., 2004; Glazner et al., 2004; Horsman et al., 2005;
Morgan et al., 2005; Belcher and Kisters, 2006; de Saint-Blanquat et al.,
2006; Pasquarè and Tibaldi, 2007; Horsman et al., in press; Morgan
et al., 2008; Miller et al., this issue) as well as theoretical models
(Gudmundsson, 1990; Annen and Sparks, 2002; Michaud and Jaupart,
2006; Menand, 2008) that plutons (sensu lato) throughout the crust
grow by the amalgamation of individual intrusive igneous sheets.
Although rare instances of plutons that grew by amalgamation of
vertical dykes have been identified (Allibon et al., 2011-this issue), the
individual sheetsmakingupmost plutons can be described as sills. Sills
could therefore be envisaged as representing the building blocks of
larger bodies (Horsman et al., 2005; Morgan et al., 2005; de Saint-
Blanquat et al., 2006; Menand, 2008; Horsman et al., in press; Morgan
et al., 2008; Miller et al., this issue). This in turn raises the questions of
the formation of sills, their emplacement depth, and how this depth is
determined.

2. Existing models of sill formation

A sill forms when a dyke stops it vertical propagation and then
intrudes along an existing discontinuity (Fig. 1). Several models have
been proposed for the arrest of dykes and associated sill formations.

2.1. Buoyancy control

Neutral buoyancy has long been proposed as a mechanism to form
sills, with sills emplacing at crustal levels where their magma becomes
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neutrally buoyant (Gilbert, 1877; Corry, 1988). However, this model
contradicts field observations (e.g. the Buckhorn Ridge intrusion in
Utah, USA, Johnson and Pollard, 1973) and 3D seismic data (Thomson
and Hutton, 2004; Cartwright and Hansen, 2006; Thomson, 2007) of
sills intruding different rock strata, and thus characterised by different
density, and of transgressive sills intruding successively different
stratigraphic levels; if one of those levels represents a level of neutral
buoyancy the others clearly cannot. Likewise, if neutral buoyancy were
to control the formation of sills and therefore the arrest of dykes then it
would almost invariably prevent basaltic lava flows to occur on the
Earth's surface owing to their larger density.

Thus, alone, a level of neutral buoyancy is unlikely to be sufficient
for promoting sill formation. Although in some cases it could indeed
arrest the vertical propagation of a dyke (Pinel and Jaupart, 2004),
further magma flow would most likely result in lateral dyke
propagation, as illustrated by the laboratory experiments of Lister
and Kerr (1991), rather than sill formation because this would also
requires a rotation of the intrusion so that it propagates in a horizontal
plane. However, Taisne and Jaupart (2009) have recently shown that
buoyancy effect may lead to sill formation in specific conditions.
Buoyancy-driven dyke propagation is determined by a local buoyancy
balance in the inflated nose region of the dike, independently of the
total buoyancy of the magma column between source and tip (Lister
and Kerr, 1991; Taisne and Jaupart, 2009). Therefore, a dyke intruding
low-density layers would develop an internal overpressure that may
be large enough to generate a horizontally propagating sill at or near
the base of the low-density layers. However, the development of such
a large overpressure requires the thickness of these low-density layers
to be at least 700 m and 2 km on average. This is typically larger than
the thickness of sedimentary strata (e.g. Hinze et al., 1978), and
therefore suggests that the concept of neutral buoyancy does not
provide a complete explanation for the mechanism and level of sill
emplacement, although they could assist their formation. Additional
mechanisms are thus required.

2.2. Rheology control

The observations of sills intruding soft layers such as shales,
mudstones or hyaloclastites (Mudge, 1968; Fridleifsson, 1977;

Antonellini and Cambray, 1992), which might have deformed ductily
at the time of sill formation, suggest that rheology contrasts between
adjacent crustal layers can play an important role in controlling sill
formation.

Parsons et al. (1992) suggest that the rheology contrast between
ductile rock layers and adjacent elastic, brittle strata would help stop
feeder dykes and promote sill formation. Their reasoning is that a
vertical dike increases locally the horizontal least principal stress of
the host rocks it intrudes. This effect would be magnified in
rheologically ductile zones owing to partial relaxation of pre-existing
deviatoric stress. Therefore, a dyke or a series of dyking events within
ductile rocks could modify the stress conditions to the extent that the
local least principal stress becomes vertical, which would thus force
subsequent magma intrusions within this ductile region to form sills.

Ductile behaviour is also expected from partially solidified, or
heated, successive magma pulses, as they accumulate in the same
region. In this case, the emplacement of sills could be controlled by the
presence of horizons separating crystal-poor from crystal-rich
material with sills forming within the weakest ductile zones (Wiebe
and Collins, 1998; Miller et al., this issue).

2.3. Rigidity anisotropy

However, in many and perhaps most cases, sills form within rocks
that deform elastically instead of ductily. One possibility is that sills
form because of a favourable crustal rigidity anisotropy. Many field
studies show that when sills intrude sedimentary sequences they
commonly abut stiff rock layers, thus suggesting that these rigid layers
could have arrested the vertical propagation of the feeder dyke and
encouraged sill formation. Examples include high rigidity sandstones,
limestones, ancient lava flows and solid mushes of high-crystal
content (Fridleifsson, 1977; Hyndman and Alt, 1987; Gudmundsson
and Brenner, 2001; Holness and Humphreys, 2003; Miller et al., this
issue).

Using analogue experiments with gelatine solids, Kavanagh et al.
(2006) have tested this hypothesis. Their experiments show that under
lithostatic conditions the formation of sills requires the presence of
interfaces. However, the presence of an interface is not sufficient. The
experiments show that sills could only form when their feeder

Fig. 1. Photograph of a rotated sill with its feeder dike on the south side of Gold Creek, east Mount Hillers, Henry Mountains, Utah, USA. The sill is about 10 m thick. The view is from
the east. The sill, its feeder and the intruded sandstone have all been rotated almost 90° by the later formation of Mount Hillers' intrusive centre (situated further north, to the right of
the photograph). Photo courtesy of Michel de Saint-Blanquat.
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encountered an interface that separates a rigid layer that overlies a less
rigid, lower layer (Fig. 2). In the opposite case, where a less rigid layer
lies on top of a more rigid one, feeders would not intrude the interface
between the two layers but would instead cross-cut that interface and
carry on their propagation as vertical dykes (Kavanagh et al., 2006).

Additionally, the properties of the interface itself can also have an
important effect on whether a dyke would be deflected and intrude
the interface. Theoretical analysis shows that whether an interface is
intruded or crossed over depends on the elastic properties of the
adjacent layers as well as the interface toughness relative to that of
the upper layer, with stiffer upper layers favouring intrusion of the
interface (He and Hutchinson, 1989; Gudmundsson, this issue). This
analysis is supported by the analogue experiments of Kavanagh et al.
(2006), who report instances where a dyke was expected to form a
sill, because a rigid layer was overlying a less rigid layer, but instead
was arrested by the interface without intruding the interface nor
penetrating the upper layer; the interface was inferred to be too
strong to be intruded by the dyke. Also, in the case of weak and
shallow contacts, sill intrusion of these contacts could also occur by
debounding whereby as a dyke approaches a weak contact, the tensile
stress generated at the dyke tip is large enough to open up this contact
and intrude it as a sill (the Cook–Gordon mechanism referred to by
Gudmundsson (this issue).

2.4. Stress control

Sill formation can also result from adequate stress conditions.
Igneous intrusions tend to propagate perpendicular to the least
compressive stress (Anderson, 1951). Therefore, dykes are expected
to form when the least compressive stress is horizontal, whereas sills
should form when the least compressive stress is vertical. A corollary
is that a transition from dyke to sill is expected when the minimum
compressive stress rotates from being horizontal, such as in extension
tectonic environment, to being vertical, which would be the case in a
horizontally compressive stress field.

However, the orientation of an intrusion does not solely depend on
the principal stress directions. It depends also on the magma
overpressure, in that intrusions with higher overpressure need to
propagate over greater distance before they can fully adjust their
propagation to the principal directions (Mériaux and Lister, 2002).
This is confirmed by recent analogue experiments which investigated
the transition from dyke to sill as a result of a rotation of the deviatoric
stresses (Menand et al., 2009). In these experiments, air was injected

into a solid of gelatine that was then compressed laterally so that the
minimum deviatoric compressive stress became vertical. Air acted as
an analogue for buoyant magma, and the solid gelatine was used as an
analogue for elastic crustal rocks. Air-filled cracks initially driven
vertically by their buoyancy change their direction of propagation and
ultimately form sills in response to the minimum compressive stress
being vertical (Fig. 3). But this trajectory re-adjustment is not
instantaneous. Cracks of higher buoyancy require greater distances
to re-orient themselves fully, and they could reach the surface in spite
of the vertical minimum compressive stress, and therefore not form
sills, if these distances happen to be larger than that separating the
intrusions from the surface (Menand et al., 2009).

Stress conditions favourable to sill formation can also result from
the presence of layered elastic rocks. A multilayer subjected to
horizontal compression, for instance, would result in the stiffest layers
taking up most of the compressive stress, whereas if this multilayer

Fig. 2. A photograph of a rigidity-controlled sill formation (Kavanagh et al., 2006). The
rigidity modulus of the upper layer was 10% larger than that of the lower layer. The
feeder dyke propagated from the injection point toward the interface, reached it and
then intruded the interface as a sill in both opposite directions from the point where the
dyke intersected the interface. Note the protruding dykelet that extended beyond the
interface and into the more rigid upper layer; this dykelet was short-lived and stalled
whilst the sill continued propagating. The arrows indicate flow directions.

Fig. 3. A series of photographs of a stress-controlled sill formation (Menand et al.,
2009). The ratio of initial crack buoyancy to horizontal compressive stress was 2.1.
(a) The injection of air in the gelatine solid created a crack that was initially driven
vertically by the air buoyancy. (b) The gelatine solid was compressed laterally, and so
the crack experienced an additional horizontal compressive stress to which it reacted
by changing its direction of propagation. (c) Ultimately, the crack rotated by 90° and
formed a sill before coming to a stop.
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were in horizontal extension, the softest layers would experience
lower reduction in compressive stress and thus appear comparatively
more compressive (Gudmundsson, 1986, 1990). Those layers where
the minimum compressive stress becomes vertical would thus
represent favourable horizons for sill intrusions.

3. Depth of emplacement: what are the controls?

Sills are expected to form in the crust owing to either favourable
contrasts in mechanical or rheological properties, or favourable stress
conditions. These different controls on sill formation, however, do not
necessarily operate on the same length scale. In fact, the depth at
which a sill forms will depend on which process is dominant, i.e.
which process operates on the smallest length scale.

3.1. Rheology-contrast control

Field observations suggest that the formation of sills controlled by
rheology contrasts and, by extension, the depth at which these sills are
emplaced are likely to be determined by the distribution of the weakest
ductile zones (Wiebe and Collins, 1998; Miller et al., this issue).

3.2. Rigidity-contrast control

The formation of sills through a rigidity-contrast control requires
not only the presence of layers with different mechanical properties
but also necessitates the presence of interfaces that separate more
competent layers overlaying less rigid ones (Kavanagh et al., 2006;
Gudmundsson, this issue). Therefore, the length scale associated with
the presence of these specific interfaces is what determines the depth
at which rigidity-controlled sills would form.

3.3. Stress control

In contrast, stress rotation can occur in homogeneous as well as
heterogeneous solids. Stress rotation could occur in response to
magma intrusion within an edifice (Roman et al., 2004, 2006) or
owing to the load of an edifice itself (Pinel and Jaupart, 2004), for
instance. Although the Earth's crust is highly heterogeneous,
considering the homogeneous case is instructive because it reveals
the length scale over which the effect of the stress-control alone
operates. Considering the crust as homogeneous, sills would be
expected to form within the crustal regions where the minimum
compressive stress has been rotated vertically. In these specific
regions, Menand et al. (2009) have shown that the depth at which sills
form is determined by a balance between the horizontal maximum
deviatoric compressive stress, which favours the formation of sills,
and magma buoyancy, which drives magma vertically and thus
opposes sill formation. This competition between maximum devia-
toric compressive stress and buoyancy determines the length scale
over which stress-controlled sill formation occurs.

Menand et al. (2009) applied dimensional analysis to their
experimental data, which enabled them to relate the vertical distance,
d, the buoyant crack needed to propagate before turning into a sill to
the buoyancy of the crack and the horizontal maximum deviatoric
compressive stress, σx. Upscaled to magmatic conditions over a range
of reasonable geological values — tensile strength of homogeneous
host rock Ts=1−10 MPa, density difference between dyke and host
rock Δρ=100−500 kg/m3, and σx=0.1−100 MPa — Menand et al.
(2009) expressed the vertical distance, d, as

d≃ Ts
Δρg

exp ð0:10" 0:01Þ Ts
σx

! "
; ð1Þ

where the dimensionless constant was determined by their dimen-
sional analysis. (The reader is referred to Menand et al. (2009) for a

more detailed account of how this equation was determined.) Their
results show that in a homogeneous and elastic crust, and over this
range of geological conditions, a dyke would have to travel a distance
of the order of at least 200 m and in most cases of the order of 1 to
10km to adjust to a vertical minimum compressive stress and turn
into a sill (Menand et al., 2009).

This distance is typically greater than the average thickness of
lithological units, and therefore suggests that in most cases crustal
heterogeneities and the distance between interfaces that are favour-
able to sill intrusions will play a larger role than remote tectonic stress
rotation in determining where in the crust sills form, unless these
favourable interfaces are several hundred meters or more apart.

3.4. Level of neutral buoyancy

As discussed previously, neutral buoyancy alone is not expected to
control sill formation, although it could arrest the vertical propagation
of a rising buoyant dyke (Lister and Kerr, 1991; Pinel and Jaupart,
2004). However, overpressures large enough for sill intrusion could
potentially develop provided high-density dykes manage to propa-
gate far enough into low-density rocks (Taisne and Jaupart, 2009).
Also, because a level of neutral buoyancy corresponds to the crustal
level where a dyke is no longer buoyant and thus does not have any
more internal vertical driving force, a dyke would become even more
sensitive to horizontal compressive stress near its level of neutral
buoyancy. So in principle, levels of magma neutral buoyancy could
assist the formation of stress-controlled sills because, provided
adequate stress conditions, levels of neutral buoyancy would
represent advantageous horizons for sill emplacement.

3.5. Implications

In reviewing the processes that control the emplacement of sills
and the length scales over which these processes operate, it appears
that crustal heterogeneities are likely to play a dominant role.
Heterogeneities can directly induce sill formation through rigidity or
rheology anisotropy, but they can also interact with tectonic stresses
and lead to sill-favourable conditions. The presence of a level of
neutral buoyancy in a horizontal compressive stress field is one
example. Interplay between stress field and heterogeneous crustal
layers is another. Indeed, layered elastic rocks can lead to strong stress
anisotropy, even in the case of isotropic remote stress, which would
thus strengthen some strata relative to others (Gudmundsson, 1986;
Gudmundsson and Brenner, 2001; Menand, 2008).

Better constraints on the geometry of crustal heterogeneities, their
physical and rheological properties as well as the tectonic stresses
that they experience are therefore crucial in order to improve our
understanding of how and where sills form in the crust.

4. Sill amalgamation and the formation of plutons

4.1. Field evidences

Field evidences for pluton formation by sill amalgamation at mid-
crustal levels or in the upper crust are numerous (e.g. John and
Blundy, 1993; Horsman et al., 2005; Morgan et al., 2005; Belcher and
Kisters, 2006; de Saint-Blanquat et al., 2006; Pasquarè and Tibaldi,
2007; Horsman et al., in press; Morgan et al., 2008). Although more
scarce, field evidences of sills or magma pulses amalgamating to form
plutons in the lower crust do also exist (Rutter et al., 1993; Quick et al.,
1994). Additional, indirect evidences come from seismic studies of
magma underplating that reveal an internal layering, suggestive of
sills or sill-like igneous intrusions (Al-Kindi et al., 2003). It has also
been proposed that underplating involving successive episodes of
repeated sill injections and their subsequent cooling could generate
episodes of surface uplift and subsidence, and thus explain the
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occurrence of rapid sea-level rises observed on very short time-scales
(Maclennan and Lovell, 2002).

4.2. A mechanical model

Recently, Menand (2008) proposed a model for the growth of
igneousbodies byvertical stackingof successive sills. This genericmodel
is applicable to bodies of moderate to intermediate size, from sills to
plutons (sensu lato) and including laccoliths. Itwouldnot beappropriate
to larger bodies such as batholiths, however, as they seem to develop
essentially by lateral growth, which would thus require another
mechanism (Cruden and McCaffrey, 2006). This model is based on the
experiments of Kavanagh et al. (2006), which show that in the absence
of external stresses sills form at the interfaces between upper, rigid
layers overlaying lower, weaker layers. From these experimental
observations, it follows that if a sill forms owing to a favourable rigidity
contrast then once this sill has solidified it will necessarily provide
another interfacewith favourable rigidity contrast for the emplacement
of a subsequent sill. Indeed, once solidified this sill will either become
more rigid than the rocks beneath itself or, alternatively, less rigid than
these rocks and thus less rigid than the rocks above itself. In either case,
this solidified sill will provide a favourable site for the emplacement of
another sill either beneath or above itself, respectively. Therefore, this
model provides amechanism for the vertical stacking of successive sills,
and thus the formation and growth of laccoliths, by under- or over-
accretion, or even by mid-accretion if favourable rigidity interfaces
develop between adjacent sills.

The suggestion that laccoliths can develop and grow by the vertical
stacking of individual and successive sills is in agreement with
unequivocal field observations made in the Henry Mountains, Utah,
and in Iceland (Hawkes and Hawkes, 1933; Horsman et al., 2005;
Morgan et al., 2005; de Saint-Blanquat et al., 2006; Pasquarè and
Tibaldi, 2007; Horsman et al., in press; Morgan et al., 2008; Tibaldi and
Pasquarè, 2008). Moreover, it has also been proposed that laccoliths of
different sizes could represent the various stages of pluton formation
as one moves in time from sills to laccolith to larger pluton (Morgan
et al., 2005; Horsman et al., in press), as illustrated in Fig. 4.

4.3. Implications

This mechanical model implies that laccolith formation does not
necessarily requires a single episode of magma injection, with
laccolith only forming by inflation of a single sill when it is able to

lift up the overlying strata (Pollard and Johnson, 1973; Pollard and
Holzhausen, 1979; Fialko et al., 2001). The complementary view is
that laccoliths can also develop out of multiple, vertically-stacked
pulses (Horsman et al., in press). The model could thus explain the
formation of internally-layered laccoliths (Tibaldi and Pasquarè,
2008) and plutons (Benn et al., 1999; Miller et al., this issue), as
well as Christmas-tree laccoliths (Westerman et al., 2004).

This model has also implications for the length scale of large
igneous bodies. The lateral size of plutons growing by amalgamation
of successive pulses or sills would essentially be of the same order of
the length of the pulses that compose them. The pluton thickness, on
the contrary, would be the cumulative thickness of all these pulses.
This is in accord with field observations (Horsman et al., 2005; de
Saint-Blanquat et al., 2006; Horsman et al., in press; Morgan et al.,
2008), and would also explain why and how laccoliths, and to a lesser
extend larger plutons (∼10–100 km of lateral extend), tend to grow
mainly by vertical expansion with comparatively little lateral
propagation (Cruden and McCaffrey, 2006).

Another inference is that the time scale for the growth of laccoliths
and larger plutons ismuch larger than the time scale associatedwith the
successive magma injections. In fact, the time scale of pluton growth
would mainly be the cumulative time that separates the individual
pulses since, comparatively, the time for their emplacement is instan-
taneous (Cruden and McCaffrey, 2001). Therefore, in accord with field
and geochronological data, larger plutons develop over much longer
periods of time than smaller laccoliths and sills (de Saint-Blanquat et al.,
this issue). That the average rate of pluton construction is much smaller
than the flux of individual magma injections is an important con-
sideration for the thermal evolution of plutons (Annen, 2011-this issue).

5. Discussion and challenges

Ourunderstanding of pluton construction has improved, leading to a
better perception of how igneous bodies intrude into the crust. Pluton
formation is now recognised as being an incremental, discontinuous
process. This leads to new challenges for the interpretation of field
observations, as well as fundamental questions about the mechanics of
pluton emplacement and assembly that need to be fully addressed.

5.1. Geometry and structure of plutons

Incremental growth of plutons by amalgamation of repeated small
magma pulses is mechanically more viable than plutons growing by

Fig. 4. Illustration of the evolution through time of an idealized upper crustal pluton, based on field observations in the Henry Mountains, Utah byMorgan et al. (2005) and Horsman
et al. (in press). These intrusions would initiate as sills, then evolve into laccoliths, before becoming punched-laccoliths.
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emplacement of larger magma volumes, and thus alleviates the space
problem associatedwith pluton growth by overall inflation (e.g. Petford
et al., 2000). Also, the growth of laccoliths by incremental stacking of
igneous sheets enables to explain why and how their geometry depart
from that of individual sills (Cruden and McCaffrey, 2006).

However, this also leads to new challenges when interpreting field
observations and relating them to the processes involved during
pluton construction. The relationship between tectonics and pluton
emplacement, and their possible interactions, remain to be clarified
(see for instance Allibon et al., this issue; de Saint-Blanquat et al., this
issue). Another illustration is the recent and controversial view that
stoping might not be a volumetrically significant process during
pluton emplacement (Clarke and Erdmann, 2008; Glazner and
Bartley, 2008a,b; Paterson et al., 2008; Yoshinobu and Barnes,
2008). New challenges arise when interpreting field observations
because plutons growth is a discontinuous process. It involves a
succession of processes, both in space and time, that do not
necessarily operate at the same length- and time-scales. With time,
and depending on the amount of magma that is emplaced and on the
manner in which the host rocks accommodate this emplacement,
these processes tend to overprint each other and become increasingly
more cryptic as pluton volume increases (Glazner et al., 2004;
Horsman et al., in press; Miller et al., this issue).

5.2. Rate of growth and igneous petrogenesis

Incrementally growing plutons reconcile the apparent contradicting
requisites of rapid magma emplacement, to prevent its freezing on its
way from source region to emplacement level, and overall formation
over large periods of time (Petford et al., 2000; Glazner et al., 2004).
This has also implications for the thermal evolution and differentiation
of magmas. Indeed, the incremental injection of magma in a crustal
region leads to a thermal evolution of that system that is fundamentally
different from that associated with the emplacement of a single larger
volume of magma, not only because magma, hence heat, is injected
incrementally through time but also because of the way the pluton will
evolve and grow, e.g. under- versus over-accretion (Annen et al., 2008;
Annen, 2011-this issue), and also because of potential kinetics effects
that could take place in the thinnest increments (Michaut and Jaupart,
2006, this issue).

There are also important implications for the relationship between
plutonism and volcanism. Developing and maintaining a magma
chamber active requires a delicate balance between the rate at which
heat is accumulated within a region of the crust and that at which it is
conducted away, so that a significant portion of the magmatic body
could be eruptible (Gudmundsson, 1990). In fact, recent numerical
simulations show that active magma chambers can only develop over
a rather limited range of emplacement rates (Annen, 2009); lower
rates would prevent magma chambers to develop whereas higher
rates would lead to eruption and drainage of the magma chamber,
which would then accelerate its cooling and solidification. This would
be especially true for developing the large magma chambers needed
to feed super-eruptions. Moreover, these results suggest that the
growth of plutons would be a multi-timescale process with large
magma chambers developing during episodes of highest magma flux,
and that these transient magma chambers would only represent small
portions of the pluton final volume (Annen, 2009). This in turn raises
the issue of the magma fluxes associated with the construction of
plutons (de Saint-Blanquat et al., this issue), and more specifically
how these fluxes can be determined with enough accuracy over the
various time-scales of pluton growth.

5.3. What is the impact on the local stress field?

One consequence of incremental pluton growth is that the local
stress field is likely to change over time as subsequent pulses are

assembled together. Although not yet fully quantified, this is likely to
have an impact on the emplacement of subsequent pulses, with
potentially the exchange of principal stresses and thus on the overall
geometry of the pluton as it grows. Therefore, further studies need to
concentrate on how the local stress field evolves during pluton growth
and how this impacts on pluton development.

5.4. How does pluton growth affect the rheology of both host rocks and
magmas?

Another and related issue that further studies need to address is
that of the rheology of both the host rocks and the magma. As plutons
form, heat accumulates within an increasingly larger crustal zone.
How heat accumulates over time dictates the thermal evolution of
magmas (Michaut and Jaupart, 2006; Annen et al., 2008). Therefore,
this will also affect their rheology, how much magma solidifies and
remains solid within a pluton or instead becomes fluid or forms a
mush. This has strong implications on the manner with which
successive pulses will amalgamate and thus on potential magma
mixing or mingling (Miller et al., this issue).

As magma and heat are stored in a crustal region, the rheological
properties of the host rock will also evolve. These rheological
properties control how host rocks accommodate the deformation
induced by pluton growth, and this response is coupled with the
temperature of the rocks; cold rocks cannot sustain high emplace-
ment rates without fracturing and thus promoting eruptions, whereas
hotter rocks would instead behave in a more viscous manner and thus
accommodate the associated deformation (Jellinek and DePaolo,
2003). Furthermore, the response of rocks will depend on the volume
of the pluton, or the magma chamber, and therefore on how it grows
over time because a given magma emplacement rate will induce
comparatively lower deformation for a larger pluton (Jellinek and
DePaolo, 2003). What remains difficult to assess, however, is how the
rheological behaviour of the host rocks evolves during pluton growth,
from initially being essentially elastic to gradually becoming more
viscous, and how this affects the subsequent amalgamation of magma
pulses (Marko and Yoshinobu, this issue).
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ABSTRACT

We provide detailed observations on the 
shape of dikes from well-exposed fi eld loca-
tions in the Isle of Rum, Scotland, and Helam 
Mine, South Africa. The basaltic Rum dikes 
crop out on a smaller scale than the Helam 
kimberlite dikes and have a smaller length to 
thickness ratio (~100:1 Isle of Rum, ~1000:1 
Helam Mine). We compare the dike thick-
ness fi eld measurements with the geometry 
predicted by elastic theory, fi nding best-fi t 
models to estimate magma overpressure and 
regional stress gradients at the time of dike 
emplacement. Most of the dike shapes fi t 
poorly with elastic theory, being too thick at 
the dike ends and too narrow in the middle. 
Even for dikes where the model fi t is accept-
able, the calculated overpressures and stress 
gradients are very large and much larger 
than independent estimates based on rock 
strength, particularly for the small-scale ba-
saltic dikes on Rum, where calculated over-
pressures average 687 MPa, and calculated 
stress gradients average 622 MPa m–1. The 
Swartruggens dikes have calculated over-
pressures of between 4 and 40 MPa and cal-
culated stress gradients in the range of 15–87 
kPa m–1. Dike shape can be explained by a 
combination of host-rock inelastic defor ma-
tion prior to and coeval with magma em-
placement, and by magma chilling at the 
dike’s tapering edges, which prevented its 
closure as magma pressure declined dur-
ing emplacement; this sequence provides 
the most complete explanation for the mis-
matches between the data and the model. 
The permanent wedging of the dike edges 
due to chilling has implications for crustal 
magma transport and strain response in the 
crust due to dike emplacement.

INTRODUCTION

Dikes are the end result of the fl ow of pressur-
ized magma through fractures, recording a funda-
mental mechanism of magma transport through 
the crust. Dike shapes refl ect the integration of 
complex emplacement and eruption processes, 
where host-rock deformation, magma viscosity, 
magma pressure variations, stress distribution, 
and heat transfer all play a role. Many theoretical 
and experimental studies of dike emplacement 
have emphasized elastic deformation by pres-
surized magma-fi lled fractures (e.g., Gudmunds-
son, 1983; Lister and Kerr, 1991; Kerr and Lister, 
1995; Rubin, 1995; Menand and Tait, 2001, 
2002; Ray et al., 2007; Menand et al., 2010).

The shape of a preserved solidifi ed dike can 
be used to calculate the pressure in the crack 
at the time of solidifi cation, assuming that the 
shape refl ects a simple elastic deformation con-
trol with fi xed overpressure. Previous studies of 
dike shape have involved the measurement of 
dike thicknesses in the fi eld, and the observed 
dike cross-sectional profi les have been com-
pared with elastic models in order to estimate 
the driving pressures and stress gradients at the 
time of emplacement (Pollard and Muller, 1976; 
Delaney and Pollard, 1981; Rubin and Pollard, 
1987; Poland et al., 2008; Geshi et al., 2010; 
Kavanagh and Sparks, 2011). Others have used 
theoretical numerical models to interpret the 
evolution of dike thickness. Buck et al. (2006) 
found that the stopping pressure of a dike (the 
point where the difference between the magma 
pressure and the tectonic stress [the driving 
pressure] at the dike tip becomes too small to 
propagate the dike) is proportional to its thick-
ness. They also found that the propagation dis-
tance is dependent on the initial distribution of 
tectonic stress and that dike intrusions affect 
the tectonic stress distribution, therefore affect-
ing the propagation of subsequent dikes. Gud-
mundsson (2011) suggested that dike arrest is 

dependent on a number of factors, including the 
size of the process zone (a region of highly frac-
tured host rock formed ahead of the propagating 
intrusion; see, for example, White et al., 2011) 
and the fracture toughness of both the host rock 
itself and the interfaces between rock units. As a 
consequence, two dikes with the same overpres-
sure could have quite different thicknesses.

We document the shapes of well-exposed ex-
amples of basaltic dikes from the Isle of Rum, 
Scotland, and kimberlite dikes from Helam 
Mine, South Africa. First, we describe the geo-
logical settings of the dikes and present detailed 
dike thickness data sets. We then summarize the 
theoretical framework used to assess the extent 
to which elastic deformation can describe dike 
shape. We fi nd that the shapes of most of the 
dikes have a poor fi t with that expected from 
elastic theory and propose that the shapes can be 
explained by including the complicating effects 
of magma chilling at the dike’s tapering edges 
and host-rock inelastic deformation.

Our observations have implications for under-
standing the development of dikes as conduits 
and for the effects of dikes on transient stresses 
and crustal strain. Through the permanent 
wedging open of the crust by chilled dike edges, 
a dike can act as a potential conduit for longer, 
increasing the longevity of eruptions. In addi-
tion, the crustal strains implicit in dike emplace-
ment refl ect not only responses to tectonic stress 
but also magma overpressures preserved at the 
dike edges by chilling.

GEOLOGICAL SETTINGS

Basaltic Dikes from the Isle of Rum

Situated off the west coast of Scotland, the 
Isle of Rum represents the eroded remnants of 
a shallow-level igneous complex emplaced into 
Torridonian Precambrian sandstone at ~2–3 km 
depth (e.g., Emeleus, 1997; Nicoll et al., 2009). 
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Rum’s igneous rocks include layered basic and 
ultrabasic intrusions, granophyres, volcanic 
rocks ranging from rhyolite to picrite, and hyp-
abyssal intrusions (Emeleus, 1997). The focus 
of this study is a late stage NW- to NNW-strik-
ing basaltic dike swarm (Emeleus, 1997) dated 
to 60.53 ± 0.08 Ma (Hamilton et al., 1998). The 
Isle of Rum and the dike measurement locations 
are shown in Figures 1A and 1B.

A dike length and thickness data set was com-
piled. The length of each of the dikes selected 
was measured using a tape measure; only dikes 
with crack tips exposed at both ends were se-
lected for measurement. The thickness of the 
dike was then measured at regular intervals. 
For the majority of the dikes, this was done by 
hand in the fi eld. For a few of the largest dikes 
measured , this was done using scaled photo-
graphs. All measured thicknesses were then cor-
rected for the dip angle of the dike to give the 
true thickness. In total, 1068 thickness measure-
ments along the length of 41 dikes are presented; 
some of these are thought to be en echelon seg-
ments of a single dike; for simplicity, we treat 
each segment individually as if they were sepa-
rate dikes, referring to them as dikes rather than 
dike segments. We will address this simplifi ca-
tion later on in the Discussion section. The Isle 
of Rum dikes have a thickness:length ratio rang-
ing from 1:11 to 1:449, with an average of 1:56. 
The measured lengths range between 0.08 and 
47.6 m; the measured thicknesses range between 
0.007 m and 0.62 m, with an average maximum 
thickness of 0.052 m. For most dikes, the thick-
ness measurements are accurate to ~2 mm. The 
largest dikes have thicknesses that are accurate to 
within 5 mm, and lengths that are accurate to the 
nearest 0.05 m. The smallest dikes are likely to 
be part of a segmented dike, or offshoots from a 
larger dike, and are not expected to have traveled 
far. The dikes intruded contact metamorphosed 
Torridonian sandstone. Most dikes show pro-
nounced chilled margins of at least a few milli-
meters perpendicular to the surface of the contact 
(Fig. 2A), and many show internal cooling frac-
tures (Fig. 2B). Many Rum dikes exhibit crack 
tips infi lling with sediment (Fig. 2A), and some 
show branching. Most dikes crosscut preexisting 
bedding and joints, or are themselves affected by 
postemplacement jointing (Fig. 2B). Few dikes 
have joint-controlled orientations (Fig. 2C), and 
those affected by a previous joint set were not 
included in the analysis. Occasional host-rock 
inclusions are seen (Fig. 2B).

Swartruggens Kimberlite Dike Swarm

The Swartruggens kimberlite dike swarm, 
Helam Mine, South Africa, consists of three 
dikes, two kimberlites (Main and Changehouse 

dikes) and a lamprophyre (Muil dike). The dikes 
were intruded at the end of the Jurassic (Allsopp 
and Barrett, 1975; Phillips, 1991; Gurney and 
Kirkley, 1996) and cut a stratigraphy composed 
of dolerite, quartzite, shale, and andesite lava 
from the Proterozoic Pretoria Group, central 
Kaapvaal craton. The estimated magma em-
placement depth is 2–3 km (Brown et al., 2007). 
Mine excavations extend to 750 m deep and 
give a three-dimensional view of the structure 
of the kimberlite dikes. We present a unique data 
set of 683 dike thickness measurements from 
levels  16–21 of John’s dike segment and 704 
dike thickness measurements from levels 19–22 
of Edward’s dike segment. The measurements 
were made by hand using a tape measure by a 
number of geologists systematically since the 
mine has been active. A simplifi ed diagram of 
the fi eld relationships of these dike segments is 
shown in Figures 3A and 3B.

The Main dike consists of a series of anas-
tomosing en echelon segments extending 
7 km (Basson and Viola, 2003). The dike seg-
ments trend approximately east-west with a 
thickness:length ratio of ~1:1000; each seg-
ment strikes ~1 km in length and has a mean 
thickness of 0.64 m (Kavanagh, 2010; Kava-
nagh and Sparks, 2011). The measurements 
made of dike thickness are accurate to the near-
est 0.05 m. The lateral extent of the mined ex-
cavation is used as a proxy for the breadth of the 
dike, as this closely follows the dike geometry; 
the errors associated with this measurement are 
estimated at less than 10 m. Breccia zones up to 
several tens of meters wide occur in the regions 
between dike segments, where centimeter-sized 
angular country rock fragments have formed 
(Brown et al., 2007). These fragments occur as 
inclusions within the kimberlite. Spheroidally 
weathered dolerite is associated with breccia 
zones and centimeter-thick dike-parallel frac-
ture zones that occur in the host rock at the 
dike margins (Brown et al., 2007). The country 
rock away from the dike is unbrecciated, lack-
ing closely spaced fracturing and spheroidal 
weathering.

The Swartruggens dikes are not thought to 
be controlled by preexisting fractures, having 
instead created and intruded their own fractures 
during ascent. The host rock is jointed, shows 
no dominant orientation, and is brecciated, es-
pecially near the fracture tips, and there is evi-
dence for stoping (Brown et al., 2007). Chilled 
margins were not recognized in the Swartrug-
gens dikes; they likely exist but are obscured 
by postemplacement serpentinization. Closely 
spaced host-rock fracturing, predominantly 
subparallel to the dike contact, is pervasive in 
the vicinity (0.1–1 m) of the Swartruggens 
dike margins.

THEORETICAL FRAMEWORK AND 
COMPARISON WITH FIELD DATA

Elasticity theory (e.g., Timoshenko and 
Goodier, 1970; Landau and Lifshitz, 1986) de-
scribes the two-dimensional shape of a fl uid-
fi lled fracture subjected to a stress fi eld in a 
homogeneous and isotropic material (Sneddon, 
1946; Pollard and Muller, 1976):

 
uy = l sinθ

2G
P0 − Sy0( ) 1− ν( )

= l sinθ
2G

P∆( ) 1− ν( )[ ] ≡ Asi ,nθ







 (1)

 
uy = l2 sin2θ

16G
∇P − ∇Sy( ) 1− ν( )

≡ Bsin ,2θ






 (2)

where l and uy are the crack length and dis-
placement, θ is the angular position along the 
slit from the crack center, G is the elastic shear 
modulus, P0 and Sy0 are the magma pressure and 
regional stress normal to the crack, ∆P is the 
excess magma pressure P0 – Sy0, ν is the host 
rock’s Poisson’s ratio, ∇P is the magma pres-
sure gradient along the crack, ∇Sy is the regional 
normal stress gradient along the crack, and A 
and B are constants. Model parameter values 
are given in the caption to Figure 4.

The overall displacement of the margins of 
the fl uid-fi lled crack is the result of a summation 
of both Equations 1 and 2. Equation 1 gives the 
displacement due to the application of a uniform 
internal pressure with no gradient in regional 
stress, while Equation 2 gives the displacement 
as a result of a linear gradient along the dike 
length as the difference between the regional 
stress and magma pressure. Models including a 
constant driving pressure plus a gradient in driv-
ing pressure or regional stress along the dike 
length will create a dike profi le with a teardrop 
shape (Pollard, 1987). Asymmetrical dike pro-
fi les have been attributed to gradients in magma 
pressure or regional stress, with the magnitude 
of asymmetry being controlled by the length of 
fracture, overpressure, and effective stress gra-
dient (Pollard and Muller, 1976).

We analyzed dike thickness measurements 
from the two data sets using the method of Pol-
lard and Muller (1976). Equations 1 and 2 were 
iterated through 10,000 permutations of A and B 
to estimate the best parameter values that mini-
mize the least-squares misfi t between the model 
and the observations. Overpressures and linear 
stress gradients were estimated from the best-
fi t models. The estimated values of overpressure 
and linear stress gradient were then used as a 
reference for comparison with the fi eld data. 
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These equations were then used to generate a 
model to fi t the shape of an observed solidifi ed 
magma-fi lled crack. By interpreting the static 
shape, the assumption has been made that the 
fl uid-fi lled crack had reached a static equilib-
rium and that fl ow effects as solidifi cation oc-
curred can be neglected.

SHAPES AND THICKNESSES 
OF THE DIKES

Figure 4 shows examples of representative 
dike profi les for Rum and Swartruggens as 
horizontal cross-sectional slices. It is assumed 

that the cross-sectional profi le of the dikes at 
each fi eld locality is approximately horizon-
tal. The best-fi tting elastic model is shown as 
the solid black line. Overpressures estimated 
from the models range from 37 to 1990 MPa, 
averaging 678 MPa (R2 = 0.389–0.997, aver-
age = 0.921) for Rum, and from 4 to 40 MPa 
(R2 = 0.50–0.72) for Swartruggens (Table 1). 
Estimated regional stress gradients for the Rum 
dikes estimated from the theory are up to 3 GPa 
m–1, averaging 622 MPa m–1, and range from 
15 to 87 kPa m–1 for Swartruggens (Table 1). 
A comparison of the values of overpressure 
and stress gradient estimated for the Rum and 

Swartruggens dikes with values obtained by 
previous studies is also given in Table 1.

The range of R2 values for the best-fi t mod-
els indicates that many of the dike segments do 
not fi t the elastic model well. In Figure 4, the 
data have been normalized (L*) to the overall 
length of each dike, giving the tips at –0.5 and 
+0.5. This normalization procedure allows us to 
compare the dikes of different length scales, and 
to compare all the data with the elastic model in 
one diagram.

In Figures 5A to 5D, all thickness measure-
ments have been referenced to the model fi t, 
which is plotted as a horizontal line in the nor-
malized coordinates to show departures in dike 
thickness from the model. Figures 5C and 5D 
show the same graphs as Figures 5A and 5B but 
with a larger scale on the y-axis. Negative y-axis 
values indicate a dike that is thicker than pre-
dicted by the model, while positive values show 
a dike that is thinner than predicted. Frequency 
histograms of the difference between the mod-
eled thickness and the measured thickness for 
the Rum and Swartruggens dikes are shown in 
Figures 5E and 5F, respectively. For both locali-
ties, the distribution of the data from the central 
portions of the dikes (L* = –0.3–0.3; gray bars) 
is positively offset from 0 on the x-axis, while 
the distribution of the data from the edge por-
tions of the dikes (L* < –0.3 and > 0.3; black 
bars) is negatively offset from 0 on the x-axis. 
The mean average difference between the 
model and the measured data in the central por-
tion is 0.11 for the Rum data and 0.02 for the 
Swartruggens data, while for the edges, the dif-
ference is –0.10 for the Rum data and –0.29 for 
the Swartruggens data. The Rum and Swartrug-
gens dikes both show, irrespective of goodness 
of fi t, that dikes strongly tend to be thicker than 
expected by the model at their edges and thinner 
than expected in their centers.

Our data show that dike segments are com-
monly asymmetrical about their length mid-
point. In plan view, the Swartruggens dikes 
and many Rum dikes are skewed, so the point 
of maximum thickness is not at the dike center 
(e.g., Fig. 4B). We quantifi ed dike asymmetry 
(δ) by comparing the best-fi t model center with 
the dike’s normalized length midpoint: a δ of 0 
is symmetrical, and 0.5 is maximum possible 
asymmetry. For the Rum dikes, δ ranges from 0 
to 0.47 (average 0.142, standard deviation [s.d.] 
0.110); for the Swartruggens dike, δ ranges 
from 0.087 to 0.203 for John’s segment (average 
0.154, s.d. 0.054), and from 0.179 to 0.242 (av-
erage 0.205, s.d. 0.031) for Edward’s segment. 
The Rum dikes have a broader range of δ val-
ues; some dikes show extreme asymmetry. The 
Swartruggens dikes are more skewed than the 
Rum dikes with less variation in δ. We found no 
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Figure 3. (A) Surface outcrop map of the 
John and Edward kimberlite dike segments, 
Helam Mine, South Africa. (B) Contour plot 
of dike thickness for the John and Edward 
dike segments plotted against depth below 
the current surface and distance easting. 
The shaded area indicates locations where 
data were collected. The approximate stra-
tigraphy and unit contacts (dashed line) 
are shown: quartzite (Qtz), shale (Sh), and 
dolerite (Dol). The map inset indicates the 
location of Helam Mine in southern Africa 
(25.594°S, 26.659°E).

Figure 4. Thickness versus length profi le of 
Rum (Figs. 3A, 3C, and 3D) and Swartrug-
gens (John’s dike segment, 18th level) (Fig. 
3B) dikes. A best-fi t model (line) is plotted 
through the data (diamonds). Both data sets 
show asymmetrical dike thicknesses, with 
fatter edges and thinner middles compared 
to the elastic model. Best-fi t model parameter 
values are: (A), (C), and (D) G = 15.4 GPa 
(Khazanehdari and Sothcott, 2003), ν = 0.215 
(Domenico, 1983), ∆P = 367 MPa, and ∇P = 
48 MPa m–1; (B) G = 40 GPa, ∆P = 34 MPa, 
and ∇P = 65 kPa m–1. L* is the along-dike dis-
tance normalized by the dike length, and T* 
is the half-thickness normalized by the dike 
length.
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correlation between asymmetry and dike size. 
Neighboring segments commonly show asym-
metry in alternating directions, which may be 
the result of compression as one dike segment 
infl uences the next one (e.g., Pollard et al., 
1982; Roman and Cashman, 2006).

DISCUSSION

We fi rst discuss dike segmentation and our 
simplifi ed analysis before discussing the two 
kinds of mismatch we found between the elastic 
theory and the observations: estimated over-

pressure and stress gradient values are implausi-
bly high, and dikes are systematically thicker at 
the edges and thinner in the middle.

Segmented Dikes

Some of the dikes measured on Rum are in-
dividual dikes (4) (Fig. 6A), while others are 
segments of a larger dike (37) (Fig. 6B). The 
Swartruggens dikes are segments of a larger re-
gional intrusion. Previous workers have treated 
segmented dikes as individual intrusions, and 
they have modeled the segments together as 
one intrusion (e.g., Pollard and Muller, 1976; 
Delaney  and Pollard, 1981; Baer, 1991; Poland 
et al., 2008). Dike segmentation commonly 
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Figure 5. (A–D) T is dike thick-
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model fi t to the data. Negative 
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is fatter than the model; posi-
tive y-axis values show a thinner 
dike than the model. Positive 
values are in the downwards 
direction. Both the Rum dikes 
(A and C) and the Swartrug-
gens dikes (John segment, levels 
16–21, and Edward segment, 
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fatter edges and thinner centers 
than is expected from the model 
fi t. C and D are the same as A 
and B, but with the vertical axis 
changed to show the range of 
–2 to 2 in order to more clearly 
see the distribution of the points 
above and below the perfect 
model fi t (gray) line. Note: for 
both fi eld localities, the major-
ity of the points in the central 
region (L* = –0.3 to 0.3) show 
thicknesses that are narrower 
than expected, and at the edges 
(L* <–0.3 and >0.3), the thick-
nesses are larger than expected. 
(E–F) Frequency histograms of 
the difference between the mod-
eled T and the measured T for 
(E) the Rum and (F) Swartrug-
gens dikes showing the distri-
bution of data relative to 0 (the 
perfect model fi t) for the central 
region of each dike (gray) and 
the edges of each dike (black).

TABLE 1. ESTIMATED VALUES FOR DRIVING PRESSURE (P0 – Sy0) AND STRESS GRADIENT (∇P – ∇Sy) 
FOR RUM AND SWARTRUGGENS DIKES (THIS STUDY), NONFEEDER DIKES AT MIYAKEJIMA VOLCANO 

(GESHI ET AL., 2010), SILICIC DIKES AT SUMMER COON VOLCANO (POLAND ET AL., 2008), 
AND WALSEN DIKE AND THEATRE CANYON SILL (POLLARD AND MULLER, 1976)

Intrusive body Number of observations P0 – Sy0 (MPa) ∇P – ∇Sy (kPa m–1)
01×3–00991–73487sekidmuR 6

78–5104–47831sekidsneggurtrawS
–21–788>onaclovamijekayiM

Summer Coon volcano 238 4.6–148.3 0.003–0.133
17.0–ot250.0–8.4–53.0652ekidneslaW

21–ot4.8–05–6.344lliSnoynaCertaehT
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occurs in response to stress fi eld rotation or 
propagation at an angle to the principal stress 
directions, giving a series of en echelon dike 
fi ngers, or segments, with systematic step-overs 
between segments owing to tangential stress 
on the dike walls (Pollard, 1987). Segmenta-
tion may also refl ect dike propagation through 
heterogeneous geological media with local de-
viations of the stress fi eld. The Swartruggens 
dikes and most of the Rum dikes are better 
interpreted with the latter explanation because 
the segments’ step direction is nonsystematic. 
Segmentation implies a more complicated 
local  stress regime than a static elastic theory 
based on a fl uid-fi lled crack, and these com-
plications are not easily quantifi ed. Indeed, the 
correct mathematical treatment of this complex 
problem requires knowledge of the principal 
directions, principal stresses, and magma over-
pressure distribution along the fl uid-fi lled crack 
(Mériaux and Lister, 2002); a priori estimates 
based solely on dike orientations can lead to 
signifi cant errors  in the principal stress values 
(Mériaux and Lister, 2002) and thus the quanti-
fi cation of dike segmentation.

Additionally, we note some diffi culties in 
treating a dike with several segments as a single 
dike. Although in some cases, this can provide a 
better fi t to the thickness data (e.g., Delaney and 
Pollard, 1981; Poland et al., 2008), especially if 
the thickness close to the tips is not measured, 
the quality of the fi t inherently depends on the 

amount of data and their position along each 
segment. Our dike thickness measurements 
have a high frequency, including measurements 
made at the segment tips. As the thickness de-
creases to zero at the tips, this cannot be prop-
erly fi t by a single opening curve for a set of 
segments. In addition, the true lateral extent of a 
segmented dike is rarely known for certain. Yet, 
this information is crucial because it constrains 
the overpressure estimate: all else being equal, 
a larger dike length will provide a lower over-
pressure estimate to explain the observed dike 
thickness.

A simplifi ed static analysis whereby a seg-
mented dike is represented by a series of collin-
ear, identical, and equally spaced segments with 
the same overpressure ∆P allows the opening us 
of the segments along their length 2a to be cal-
culated analytically as a function of their over-
pressure, length, and spacing (Tada et al., 2000; 
Gudmundsson, 2011):

(
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where ν is the host-rock Poisson’s ratio, G is 
its shear modulus, and the tip-to-tip distance d 
between adjacent dike segments is normalized 
to the segment length: s = d/2a. Figure 7 shows 
the extent to which the opening of multiple 
segments differs from that of a single one with 
the same overpressure. Closer dike segments 
have greater openings, but even for dike seg-
ments separated by 1/1000 of their length, this 
opening is increased only by a factor of less 
than fi ve (Fig. 7B). The segment openings are 
proportional to their overpressure, and conse-
quently this simplifi ed analysis suggests that, by 
considering each segment separately, the over-
pressure is overestimated by a factor of about 
fi ve. A more robust analysis would consider the 
relative positions of observed segments, but this 
would require a numerical treatment. However, 
the contribution of segments with larger spac-
ing would be lower and could offset some of the 
closest segments.

To investigate further the effect of analyzing 
dike segments collectively rather than sepa-
rately, we compared this analysis with the pro-
fi le of six en echelon dikes from one locality 
on the Isle of Rum. The dikes at this particular 
locality are thought to be a completely exposed 
segmented dike; at all other localities where 
the dikes were segmented, the complete extent 
of the dike is less certain. These six dike seg-
ments are not truly collinear, however. There is 
always some separation, as measured normal 
to one segment, and they also tend to overlap, 
with both separation and overlap distances vary-
ing signifi cantly from a pair of segments to one 
another. We thus used the collinear, segmented 
dike analysis with a range of tip-to-tip spacing 
between segments, from 1 m down to 0.1 mm. 
As for the previous analysis, Equation 3 was 
iterated through 1000 permutations of ∆P to 
estimate the best overpressure value that mini-
mizes the least-squares misfi t between Equation 
3 and the measured opening for each segment. 
The best overpressure estimates range from 73 
MPa to 1906 MPa, with an averaged estimate 
of 430 MPa. The highest estimate, found for 
only one of the six segments, is an order of 
magnitude higher than the other fi ve estimates; 
adjacent segments belonging to the same dike 
should have similar overpressures. Neglecting 
this highest value gives an average overpressure 
estimate of 135 MPa. Although these values are 
lower than those estimated with Pollard and 
Muller’s analysis, the best overpressure esti-
mates predicted by the segment analysis are still 
much higher than values documented in previ-
ous studies (Table 1). Figure 8 shows the best-fi t 
profi les for both single dike and segmented dike 
analyses for two of the selected segments. Both 
analyses fail to explain the thick edges displayed 
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by the segments (Fig. 8A). Additionally, the seg-
ment analysis only deals with constant stress, 
and so cannot say anything about regional stress 
gradients nor explain the asymmetrical, teardrop 
shape displayed by most segments (Fig. 8B).

Finally, several of the Rum segments over-
lap. We are not aware of any analytical solution 
for estimating overpressures, stress gradients, 
or shape for overlapping segments; this would 
require numerical computations. Considering 
a constant overpressure, Pollard et al. (1982) 
showed that overlapping segmented dikes would 
be fatter than a single one. So by considering 
each segment as an individual dike, one would 
overestimate its overpressure. This overestima-
tion will increase with the number of segments 
that constitute a whole dike, but it will decrease 
for increasingly overlapping segments and 
higher rotation angle between the segment di-
rection and that of the main dike (Pollard et al., 
1982). Overlapping segments will also tend to 

induce segment asymmetry as well as pinching 
or thinning of the edges (Pollard et al., 1982). 
This could potentially explain the extremely 
high stress gradients derived from Pollard and 
Muller’s analysis as well as some of the pinched 
segment profi les. However, this cannot explain 
the overall, general shape pattern displayed by 
both the Rum and Swartruggens dikes: All these 
dikes appear fatter at their edges than predicted 
by both Pollard and Muller’s and the segmented 
analyses, and they would appear even fatter for 
overlapping, pinching segments.

Considering all these limitations and effects 
together, it seems our single dike analysis would 
overestimate overpressures by at most a factor 
of 10, and it appears to be the best analytical 
method for fi tting the measured profi les. There-
fore, treating each segment as an individual dike 
provides a fairer assessment of their overpres-
sure, stress gradient, and shape.

Overpressure and Stress Gradients

The elastic model of Pollard and Muller 
(1976) fi ts the data poorly for most of our stud-
ied dikes. The fi rst mismatch between the data 
and the elastic model is the calculated values of 

overpressure and stress gradient, which are very 
large. This is evident from the comparison with 
the values estimated in previous studies (Table 1; 
Geshi et al., 2010; Poland et al., 2008; Pollard 
and Muller, 1976). The overpressures are espe-
cially large and likely unphysical for the Rum 
dikes, while the Swartruggens dike values are 
large but more plausible. The stress and overpres-
sure gradients calculated are mostly implausible 
for both examples. If the Rum dikes with lengths 
<1 m are neglected, the range of estimated over-
pressure values is unchanged (37–1990 MPa), 
although the average is slightly reduced to 398 
MPa. If the Rum dikes with thicknesses <0.05 m 
are neglected, the estimated values of overpres-
sure are 70–1990 MPa, averaging 710 MPa. 
There appears, therefore, to be no dependence of 
these results on dike size. We could reduce these 
overpressure and stress gradient estimates by up 
to an order of magnitude if we consider each 
dike individually and not as segments from a 
larger dike (see previous section), yet the major-
ity of these estimates remain much higher than 
values reported in previous studies (Table 1).

Very high values of overpressures and stress 
gradients cannot be explained using an elas-
tic model. A rock’s tensile and compressive 
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two segments belonging to the 
same dike from the Isle of Rum 
(diamonds) compared with the 
segmented analysis (Eq. 3; black 
curve) and the analysis of Pol-
lard and Muller (1976; dashed 
curve). (A) Best overpressure 
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curve) and 332 MPa (dashed 
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The segmented analysis cannot 
explain the teardrop shape of 
this segment. Best stress gra-
dient estimated from Pollard 
and Muller’s analysis (dashed 
curve): 136 MPa/m.
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strengths are typically of the order 10 MPa and 
50 MPa, respectively, while magma overpres-
sures have been estimated at <20 MPa (Stasiuk 
et al., 1993; Gudmundsson, 1999). For a 20 
MPa magma source overpressure (the magma 
pressure in excess of the regional, compressive 
tectonic stress), a dike propagating 1 km from 
its source would experience a regional stress 
gradient of ≤20 kPa m–1 (Jaupart and Allègre, 
1991), and this stress gradient estimate would 
decrease as the dike propagates further from its 
source. A dike driven by buoyancy would have 
a driving stress gradient of ∆ρg, where ∆ρ is 
the density difference between the magma and 
the host rocks, and g is the gravitational accel-
eration. A magma-host density difference of 100 
kg m–3 gives a stress gradient of only 1 kPa m–1. 
Stress gradients as high as those estimated for 
the Rum and Swartruggens dikes would there-
fore necessitate magma buoyancies greatly in 
excess of natural values governed by density 
differences between magmas and host rocks.

The fracture toughness of a rock is important 
in terms of the dike opening. According to lin-
ear elastic fracture mechanics, the intrusion of 
magma into a rock requires the concentration 
of stress at the intrusion tip to exceed the frac-
ture toughness (Kc) of that rock (Pollard, 1987). 
This is equivalent to having an overpressure 
greater than ~Kc/(L)1/2, where L is the length 
of the magma-fi lled crack. Rocks with higher 
fracture toughness both require higher magma 
overpressure for the dikes to propagate, and they 
induce greater blunting of the dikes at their tip. 
Laboratory measurements of fracture toughness 
give values on the order of 1–10 MPa m1/2, and 
so kilometer-long dikes would be expected to 
propagate with overpressures of 1 MPa. Larger 
dikes would require even lower overpressures. 
Conversely, our estimated overpressures would 
suggest rock fracture toughness of the order 10–
104 MPa m1/2 and 102–103 MPa m1/2 for the Rum 
and Swartruggens dikes, respectively. These are 
much higher values than those measured in the 
laboratory (e.g., Schmidt and Huddle, 1977), 
but they are similar to other fi eld-based frac-
ture toughness estimates (Delaney and Pollard, 
1981; Delaney et al., 1986; Reches and Fink, 
1988; Gudmundsson, 2009). Such high values 
are either explained by large confi ning pressures 
at the time of dike intrusions or extensive in-
elastic deformation ahead and around the dike 
tip (Delaney et al., 1986; Rubin, 1993; Fialko 
and Rubin, 1997). The former explanation 
would necessitate depths of intrusion greater 
than that of the Rum and Swartruggens dikes, 
while the latter explanation is plausible but re-
quires extensive inelastic deformation.

Various nonelastic explanations could be in-
voked to explain the high estimated overpressure 

and stress gradient values. If the elastic param-
eter values used in the model were too large, 
the overpressures and stress gradients would be 
overestimated. Dikes may form through the di-
lation of preexisting fractures that are suitably 
orientated with regard to principal stress direc-
tions (e.g., Gudmundsson, 1984; Delaney et al., 
1986; Valentine and Krogh, 2006), reducing the 
stress required to fracture the host rock. Once a 
fracture is resealed, the probability of a fracture 
reinitiating in the same location is greater (the 
host rock’s compliance), and the shear modulus 
of the rock can be reduced by a factor of 2 or 
3 (Worthington and Lubbe, 2007; Kavanagh, 
2010), effectively making the crust less rigid. 
For the Rum dikes showing evidence of intrud-
ing host rocks with many preexisting joints, 
the compliance may have been signifi cant. The 
opening of a dike is linearly proportional to its 
overpressure and inversely proportional to the 
shear modulus of the host rocks (e.g., Pollard, 
1987). Therefore, accounting for the compliance 
can only partly explain the large overpressures 
estimated for the Rum dikes; typical changes in 
elastic properties due to compliance would only 
alter the calculated values by about a factor of 3 
in the Rum and Swartruggens cases.

Magma extrusion from a greatly pressurized 
chamber into surrounding rock also provides an 
explanation for high calculated overpressures, 
particularly on Rum. Magma chamber over-
pressure increases during edifi ce growth until 
edifi ce destruction occurs (Pinel and Jaupart, 
2000, 2003, 2004). The Rum dikes may repre-
sent magma extrusion from a chamber during the 
high-overpressure edifi ce-building stage. Typical 
stratovolcanic cones exert a load of ~50 MPa, 
signifi cantly affecting the rock stresses beneath 
the volcanic edifi ce (Pinel and Jaupart, 2003). 
Edifi ce size strongly affects the critical magma 
overpressure required for eruption, which may 
be much larger than the host-rock tensile strength 
(Pinel and Jaupart, 2003). This is a more plausi-
ble model for explaining some of the overpres-
sures calculated for the Rum dikes as a volcanic 
edifi ce was present at the time of diking.

High overpressures may also be partly attrib-
uted to shear failure. Assuming a shear compo-
nent is present while diking occurs, dikes may 
tend to be wider than otherwise expected, lead-
ing to higher calculated overpressures. A shear 
component could be caused along the dike 
length if intrusion occurs in an orientation diver-
gent from σ1, as would be likely when intrud-
ing preexisting joints. This is consistent with 
the offset and overlapping dike segment pattern 
commonly seen on Rum, suggesting propaga-
tion along nonprincipal stress directions.

Both Rum and Swartruggens dikes give very 
high calculated stress gradient values, much 

larger than the values estimated from previous 
studies (Table 1). Assuming constant elastic 
properties and local horizontal magma pressure, 
the calculated stress gradients represent mainly 
horizontal gradients in crustal stress. Taking a 
calculated stress gradient value of 65 kPa m–1 
for a Swartruggens dike, the crustal stress nor-
mal to the dike would change by 65 MPa over a 
1 km region, which is an implausibly large hori-
zontal value in the upper crust. This stress gradi-
ent would require a surface topography change 
of ~3 km, which is unlikely in this region of 
southern Africa. The Rum dikes give calculated 
stress gradients that are two orders of magnitude 
larger; even with very strong lateral stress gradi-
ents, these values are extremely large.

A lateral variation in host-rock properties 
has also been invoked in order to explain stress 
gradient values (e.g., Pollard and Muller, 1976; 
Kavanagh and Sparks, 2011), as well as varia-
tions in dike thickness (e.g., Baer, 1991; Geshi 
et al., 2010). This is unlikely to be the cause 
of the high stress gradients estimated for the 
Rum dikes because these were intruded within 
one rock unit; variations in burial depth along 
their strike would also be too small to have a 
signifi cant effect. Heterogeneities in the sand-
stone layers may add to the variations in dike 
thickness of the Rum dikes. However, the ma-
jority have a small enough scale that even the 
properties of the single rock unit are unlikely to 
have changed signifi cantly. Variable host-rock 
properties are thus unlikely to have caused the 
thickness variations or the stress gradient val-
ues measured on Rum.

The cause of the dike asymmetry is most 
likely due to host-rock inelasticity, small-scale 
lateral host-rock property variations, and, most 
importantly, the interference of dike edges and 
overlapping segments. Successive emplacement 
of neighboring dikes and dike segments will 
alter  the stress distribution in the host rock (e.g., 
Rubin and Pollard, 1987). Overlapping seg-
ments with solidifi ed magma pinning the dike 
edges in position are the likely cause of the ob-
served asymmetry.

Dike Shape

Changes in the elastic parameters in the model 
do not improve the overall fi t because of the mis-
match between the predicted and observed dike 
shape. The modeled dike thickness is overesti-
mated at the center and mostly underestimated 
at the edges (Fig. 5). Most of the dikes measured 
had a fl atter central section than predicted. An 
active dike’s width is determined by the over-
pressure, which usually declines with time as 
the chamber pressure decreases, as evidenced 
by waning fl ow rate in many lava eruptions 
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(Stasiuk et al., 1993), although the thickness can 
also be determined by the dike length for a fi xed 
overpressure. If a dike erupts, this dike and the 
overall, not-yet-solidifi ed, intrusive system will 
experience a reduction in overpressure. How-
ever, the majority of dikes are not thought to 
erupt (e.g., Gudmundsson, 1984; Gudmundsson 
et al., 1999). Arrested dikes can still, however, 
experience a reduction in overpressure during 
intrusion. We were not able to fi nd unequivocal 
fi eld evidence of the magma transport direction 
at either of the studied fi eld localities; these may 
therefore have propagated vertically or later-
ally. For a constant magma volume, provided 
that the crack is not buoyancy driven, the over-
pressure in an intruding crack will decrease as 
the length of the crack increases (McLeod and 
Tait, 1999). Moreover, however the intrusion is 
driven, its overpressure will decrease because of 
the viscous pressure drop it will experience dur-
ing propagation (Lister and Kerr, 1991). We do 
not see direct evidence that the dikes from either 
locality are connected to their paleosurface, and 
therefore we must rely on indirect evidence to 
assess whether or not these dikes were feeders. If 
it can be assumed that at tens of meters depth, a 
dike with a maximum thickness greater than 1 m 
has the potential to act as a feeder dike (Geshi 
et al., 2010), the Swartruggens dike segments 
(which have a maximum thickness of 1.95 m; 
Kavanagh and Sparks, 2011) could potentially 
have acted as feeder dikes. Since the mean thick-
ness of the dikes measured at both fi eld locations 
is less than 1 m, it is assumed that our analysis 
can only be applied to dikes fulfi lling this crite-
rion, and the application of our results to thicker 
dikes will require further investigation.

As magma fl ows through a fracture (Fig. 
9A), chilling of the magma at the dike margins 
prevents it from closing at the tips (Fig. 9B). 
Viscosity increase by preferential cooling at the 
dike edges adds to this effect. As the overpres-
sure wanes, if the position of the edges becomes 
fi xed, and the dike is no longer propagating in 
the direction of the tip, the preserved thickness is 
then determined by the initial overpressure (Fig. 
9C). However, the nonsolid and less viscous 
central parts of the dike can close as the over-
pressure declines; the initial dike injection shape 
is not the shape that is ultimately preserved as 
the solidifi ed dike. We suggest therefore that the 
shape mismatch is principally a result of chilling 
and solidifi cation during dike emplacement.

Inelasticity can also account for some of the 
dike thickness variation. There is strong evi-
dence for inelastic deformation in the zones be-
tween the Swartruggens dike segments, which 
may have reduced the host-rock rigidity and 
shear strength. Mechanical processes such as 
brecciation, stoping, and weathering (preferen-

tially focused at dike termination points, over-
laps, and relay zones) can weaken the rocks 
prior to magma emplacement and produce an 
inelastic host-rock response during emplace-
ment (Brown et al., 2007; Kavanagh, 2010; 
Kavanagh and Sparks, 2011). Similar inelastic 
deformation between adjacent segments has 
been observed by Schofi eld et al. (2010) at the 
Golden Valley Sill, South Africa. Additionally, 
small segments such as those observed on Rum 
are likely to correspond to segments lying close 
to the very tip of their main dike, and so be em-
bedded within the inelastic, damaged region that 
surrounds that main dike tip. Indeed, the size of 
this damage region tends to scale with that of the 
dike that created it (Faulkner et al., 2011), and 
it could reach several meters or tens of meters 
(e.g., Delaney et al., 1986). Inelastic deforma-
tion within the damage zone would contribute to 
blunting of the edges of the segments embedded 
there. Thus, inelastic deformation could explain 
both the apparent high values of rock fracture 
toughness, suggested by our high overpressure 
estimates, and the observations of dike tips that 
are thicker than expected from elastic theory. 
Inelastic deformation in the steps between seg-
ments also provides an explanation for those 
dikes that are markedly asymmetric. Much more 
inelastic deformation at one end of the dike than 
the other will mean a distortion of the shape that 
results in asymmetry. The observation of alter-
nations in the sense of asymmetry of segments 
indicates too that complex inelastic deformation 
in the step-over regions has occurred.

Implications for Eruption Longevity and 
Crustal Strain

The tendency toward thick dike tips and nar-
row centers has broader implications. The wedg-
ing of the dike edges formed at high magma 
overpressures is made permanent by chilling. 
Thus, as the pressure reduces and the eruption 
wanes, the fracture will be prevented from clos-
ing fully, and the dike can continue to act as an 
open conduit for longer than it otherwise would 
have been able to. Dike emplacement can be re-
garded as the accommodation of crustal strain 
as a response to tectonic stresses. However, the 
dimensions of an active dike with magma pres-
sures exceeding tectonic stresses indicate that 
the transient strain can exceed the tectonic strain 
expected. Since the now-chilled edges have pre-
viously been pushed apart under a high magma 
overpressure, the additional strain can be perma-
nently preserved due to the chilled and wedged 
dike edges. For large dikes with prolonged fl ow 
at overpressures exceeding tectonic stresses and 
with substantial solidifi cation along the dike 
edges, the excess strain could be substantial.

CONCLUSIONS

Many of the dikes measured on Rum and at 
Helam Mine are poorly fi t by the classical elastic 
model of Pollard and Muller (1976). There are 
two distinct mismatches between the presented 
data and the elastic model. First, many dike 
shapes are too thin in the middle and too thick 
at the edges to be fi t by an elastic profi le; the 
calculated R2 values range from 0.389 to 0.997, 
and the misfi ts are larger than measurement un-
certainties. Second, even for dikes where the 
model fi t is acceptable, the calculated magma 
driving pressures and linear stress gradients are 
very large, particularly for the small-scale ba-
saltic dikes on Rum. Many explanations have 
been provided to account for the differences. Of 
these, cooling of the dike edges, wedging the 
fracture open, and host-rock inelastic deforma-
tion prior to and during magma emplacement 
provide the most complete explanation for the 
mismatches between the data and the model. 
Care should be taken when extrapolating the 
observations from the dikes measured from the 
Swartruggens swarm and on Rum. Because 
the mean observed dike thickness was less than 
1 m, it should not automatically be assumed that 
the analysis will apply to larger dikes; the ap-
plication of these results to thicker dikes will 
require further investigation.
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Gelatine has often been used as an analogue material to model the propagation of magma-filled fractures in
the Earth's brittle and elastic crust. Despite this, there are few studies of the elastic properties of gelatine and
how these evolve with time. This important information is required to ensure proper scaling of experiments
using gelatine. Gelatine is a viscoelastic material, but at cool temperatures (Tr ~5–10 °C) it is in the solid ‘gel’
state where the elastic behaviour dominates and the viscous component is negligible over short to moderate
timescales. We present results from a series of experiments on up to 30 litres of maximum 30 wt.% pigskin
gelatine mixtures that document in detail how the elastic properties evolve with time, as a function of the
volume used and gel concentration (Cgel). Gelatine's fracture toughness is investigated by measuring the
pressure required to propagate a pre-existing crack. In the gel-state, gelatine's Young's modulus can be
calculated by measuring the deflection to the free-surface caused by an applied load. The load's geometry
can affect the Young's modulus measurement; our results show its diameter needs to be ≲ 10% of both the
container diameter and the gelatine thickness (Hgel) for side-wall and base effects to be ignored. Gelatine's
Young's modulus increases exponentially with time, reaching a plateau (E∞) after several hours curing. E∞ de-
pends linearly on Cgel, while Tr, Hgel and the gelatine's thermal diffusivity control the time required to reach
this value. Gelatine's fracture toughness follows the same relationship as ideal elastic-brittle solids with a
calculated surface energy γs=1.0±0.2 J m−2. Scaling laws for gelatine as a crustal analogue intruded by
magma (dykes or sills) show that mixtures of 2–5 wt.% gelatine cured at ~5–10 °C ensure the experiments
are geometrically, kinematically and dynamically scaled.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Analogue experimentation is an important technique in science
and engineering. In practice, it is the selection of appropriate ana-
logue materials that is often the biggest challenge in developing a
set of experiments that are geometrically, kinematically and dynami-
cally scaled (sensu Hubbert (1937)). Experiments that meet these
criteria can be considered a laboratory-scale version of the natural
counterpart. In this paper we detail a series of experiments carried
out to document the properties of gelatine, a widely used analogue
for the Earth's crust.

Gelatine is an ideal analogue for those modelling homogeneous,
isotropic and elastic materials, for example it has been used bymechan-
ical engineers (e.g. Crisp (1952), Richards & Mark (1966)) and as a bio-
logical tissue analogue in the medical sciences (e.g. Righetti et al.
(2004)). The use of gelatine in geological sciences has taken advantage

of both its elastic and viscous properties, proving especially fruitful in
developing our understanding of magmatic intrusions (dykes and sills)
and volcanic feeder systems and providing constraints on their propaga-
tion dynamics in the Earth's brittle and elastic crust (e.g. Acocella &
Tibaldi (2005), Cañón-Tapia & Merle (2006), Dahm (2000), Fiske &
Jackson (1972), Heimpel & Olson (1994), Hyndman & Alt (1987), Ito &
Martel (2002), Kavanagh et al. (2006), Kervyn et al. (2009), Maaløe
(1987), Maccaferri et al. (2010), Mathieu et al. (2008), McGuire &
Pullen (1989), McLeod & Tait (1999), Menand et al. (2010), Menand &
Tait (2001, 2002), Muller et al. (2001), Pollard (1973), Pollard &
Johnson (1973), Rivalta et al. (2005), Taisne et al. (2011), Taisne & Tait
(2011), Takada (1990, 1994, 1999) Walter & Troll, (2003), Watanabe
et al. (2002)). The photoelastic properties of gelatinehave been of partic-
ular use to experimental geologists (e.g. Taisne & Tait (2011)) and civil
engineers (e.g. Crisp (1952), Farquharson & Hennes (1940), Richards &
Mark (1966), Tan (1947)), where the internal stresses of a deformed
gelatine can be visualised with the aid of polarised light. The prolific
use of gelatine in the food industry has made a wealth of information
available on its rheological properties (e.g. Watase & Nishinari (1980)).
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However, relatively few studies have documented the elastic properties
of gelatine or how these evolvewith time (e.g. Di Giuseppe et al. (2009)).

We present results from a series of experiments that investigate
the elastic properties of gelatine over a range of concentrations and
volumes. Firstly the material properties of gelatine are detailed,
followed by a description of the experimental setup and the theoret-
ical basis for our measurements. The accuracy to which the experi-
mentalist can determine the Young's modulus of the gelatine is
evaluated by considering the uncertainties involved in the measure-
ment, the effect of the properties of the applied load used to make
the measurements and any apparatus side-wall or floor effects. In
particular, our experimental results are focused on how the Young's
modulus of the gelatine evolves with time. We also determined the
gelatine's fracture toughness, a measure of the material's resistance
to the growth of a crack. To aid the application of the results, we pres-
ent some scaling laws that are appropriate for the use of gelatine as
an analogue for the Earth's crust in geological studies focused on
the formation controls and propagation dynamics of magma-filled
fractures.

2. Material properties

Gelatine is a polypeptide formed from the hydrolytic degradation
of collagen (Ross-Murphy, 1992). It is classified as a ‘physical gel’
(e.g. Peyrelasse et al. (1996)), meaning that during gelification Van
der Waals forces lead to the development of a complex and continu-
ously connected three-dimensional network (lattice) of macromole-
cules (Djabourov et al., 1988a). The hydrogen bonds that are formed
in this process are reversible and can be broken by changing temper-
ature or pH (Djabourov et al., 1988b). From the onset, those working
with gelatine have commented on its "fickle" nature (Richards &
Mark, 1966). In order to use this material for quantitative modelling
purposes, control needs to be kept on a range of factors including
temperature, pH and gelatine concentration.

Gelatine is a viscoelastic material so during deformation it can
display both elastic and viscous behaviour. High stresses applied for
a short timescale cause the gelatine to behave elastically, whereas
small stresses applied over a long time period will produce a viscous
response. Viscoelasticity is traditionally modelled with an arrange-
ment of springs and dashpots that can reproduce a measured creep
curve (e.g. Richards & Mark (1966)). The proportion of elastic to
viscous behaviour can be quantified by a phase shift δ angle, also
known as the “loss angle” (Mezger, 2002):

δ ¼ arctan
G}
G′

ð1Þ

whereG″ is the energy loss (viscous-related) and G′ is the energy stored
(elastic-related) for a given strain or strain rate. δ is equal to 0° for an
ideal-elastic material and 90° for an ideal-viscous material. The transi-
tion from viscously dominated to elastically dominated behaviour
(or vice versa) occurs at the ‘gel-point’ (Djabourov et al., 1988b),
which is the condition where elastic and viscous energies are equal
(G″=G′ and δ=45°). Gelatine is in the ‘sol-state’ (fluid) when G
″>G′ and δ>45°, but is in the ‘gel-state’ (solid) when G′>G″ and
δb45° (Mezger, 2002; Nelson & Dealy, 1993; Ross-Murphy, 1992).
For gelatine, this marked change in mechanical properties can be
brought about by changing the extent of deformation (strain) or tem-
perature; the gel-point itself depends on time, temperature and con-
centration (Askeland et al., 2010; Di Giuseppe et al., 2009).

The focus of this paper will be on the ideal-elastic behaviour of gel-
atine. When a 2.5 wt.% gelatine mixture at 10 °C is deformed at low
strain it has G′ two orders of magnitude higher than G″ and δb1°
(Di Giuseppe et al., 2009). At these conditions the material is in the
‘gel-state’ and it is possible to assume an almost ideal-elastic behaviour.
When this is the case, Hooke's Law is obeyed and deformation is

recoverable when high stresses are applied over short timescales: the
applied stress (σ) is proportional to strain (γ) and independent of the
strain rate ( _γ).

The elastic properties of a homogeneous and isotropic solid can be
described fully by a combination of the Young's modulus E (ratio of
tensile stress to tensile strain) and the Poisson's ratio ν (the relative
contractive to expansive response of the deformed material). For gel-
atine, ν≃0.5 (e.g. Crisp (1952), Farquharson & Hennes (1940),
Righetti et al. (2004), Richards & Mark (1966)) and is theoretically in-
compressible such that deformation results in no net volume change.

3. Experimental set-up and data processing

3.1. Young's modulus experiments

A series of twenty-six experiments were carried out to investigate
the effect of time, gelatine concentration, volume, experimental appa-
ratus dimensions and applied load properties on the calculated
Young's modulus of solidified gelatine.

A gelatine solution was prepared by adding a measured quantity
of approximately 80 °C deionised water to the required weight of gel-
atine granules (260 Bloom, 20 Mesh, Pigskin Gelatine supplied by
Gelita UK) to achieve the desired concentration (see Table 1). The
use of deionised water is required to produce a clear and transparent
mixture that hinders bacterial growth, which would otherwise pro-
duce a cloudy appearance to the gelatine solid. This hot mixture
was then poured into a specified container and any bubbles were re-
moved from the surface using a spoon. To prohibit the formation of a
toughened ‘skin’ on the gelatine surface by water evaporation, a thin
layer of vegetable oil was poured on top. The container was then
placed into a temperature-controlled cold room at 5–10 °C (Tr), and
the mixture temperature (T0) and time were recorded. The gelatine
was left in the cold room for several hours until the mixture temper-
ature had equilibrated with its surroundings.

One way of calculating the gelatine's Young's modulus is to mea-
sure the deflection imposed by a load applied to the gelatine's surface
(Timoshenko & Goodier, 1970):

E ¼
MLg 1−ν2

! "

DLw
; ð2Þ

where DL is the diameter (m) of the cylindrical load, ML is its mass
(kg), w is the displacement (m) caused, and g is the gravitational
acceleration.

Measurement of the Young's modulus commenced once the gela-
tine was able to support a load placed on its free surface. The contain-
er was removed from the cold room to make the measurements and
then replaced afterwards. All of the oil was carefully removed from
the surface of the gelatine prior to any measurement being taken,
using a spoon and then paper towel in order to achieve complete con-
tact between the load and the gelatine. The load was applied by care-
fully placing a rigid metallic cylinder of known mass and dimensions
onto the gelatine surface (see Fig. 1 for a schematic sketch of the ex-
perimental setup and Table 2 for experimental load properties). Using
a digital micrometer attached to a fixed reference position, the dis-
placement of the free surface was measured (with an estimated
error of ±0.1 mm) and recorded by hand. The load was applied just
prior to the measurement being made, and the total time in which
it was in contact with the gelatine was approximately 30 seconds
per measurement. E was calculated systematically for the duration
of each experiment; measurements were made using each of the
loads when possible, approximately every one to two hours for up
to 140 hours after the gelatine was prepared (nearly six days). For
each time interval, the gelatine was at ambient room temperature
for an interlude of less than ten minutes before being returned to
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the cold room. No experimental load was applied to the gelatine sur-
face between time steps. The displacement measurement ‘w’ and the
properties of the load were input into Eq. (2) to calculate the Young's
modulus of the gelatine solid.

The experimental series considers gelatine concentration Cgel
(2–30 wt.%), temperature of the cold room Tr (5–10 °C), volume of
gelatine Vgel (0.5 to 30 litres), diameter of the experimental con-
tainer DC (8.6–40.0 cm), thickness of the gelatine Hgel (4.1–
27.0 cm), and applied load (with mass ML of 25.5–2808.5 g and di-
ameter DL 20.0–85.6 mm) (see Tables 1 and 2). These experiments
allowed the characterisation of the evolution of the Young's

modulus of gelatine over a range of conditions, and for the factors
affecting our measurements to be assessed.

3.2. Fracture toughness experiments

The fracture toughness Kc is a measure of a material's resistance to
the growth of a crack. The fracture toughness of gelatine solids was
determined by experimental means, measuring the pressure required
to propagate an existing crack (following the analysis of Sneddon &
Das (1971)). This experimental method for calculating the fracture
toughness of gelatine solid is briefly described by Menand & Tait
(2002). However, the mathematical procedure is not detailed explic-
itly. Therefore, here we present the experimental procedure again
and detail in the Appendix the mathematical method so that other
experimentalists can replicate them.

For these fracture-toughness experiments high-clarity pigskin-
derived gelatine (acid, 200 bloom) was supplied in granular form by
SKW Bio-Systems. The gelatine mixture was prepared by first hydrat-
ing 5 to 8 wt.% gelatine powder in distilled water, and then heating
the solution to 60 °C until the powder was completely dissolved. So-
dium hypochlorite was then added to the solution so that it contained
0.1 wt.% of active chlorine, in order to prevent fungal and bacterial
growth. This amount was kept small to minimise its potential effect
on the gelatine mechanical properties.

The gelatine solution was poured into a cubic acrylic tank (30 cm
wide) and left to solidify for 48 hours at room temperature. A thin
layer of silicon oil was poured on the gelatine surface in order to
avoid evaporation during solidification and prevent the development
of a gradient in gelatine properties. The tank was only filled to two
thirds its height, immersing a metallic blade that was elliptical in
cross-section and had been inserted 5 cm into the gelatine solution.
The blade measured 20 cm in length with a 1 cm thickness at its
base. Once the gelatine had solidified, the blade was carefully removed
thus creating an empty edge-crack in the gelatine solid. Both the crack
and the remaining part of the tank were then filled with water, and the
tank was overturned so that in its final position the crack was oriented
vertically and at the bottom of the gelatine solid (Fig. 2a). An outlet en-
abled water to bleed off any excess pressure in the lower part of the
tank, and so ensured the water pressure balanced precisely with the
weight of the overlying gelatine. Thus there was no excess pressure
within the crack. Moreover, the initial state of stress within the gelatine
solid was hydrostatic. (The gelatine solid adheres to the tank walls and
so there is no horizontal strain, Ex=Ey=0. Using Hooke's law, the rela-
tionship between the three stress components is σ x ¼ σy ¼ ν

1−νð Þσ z;
and given that gelatine has a Poisson's ratio ν=0.5, σx=σy=σz.)

These fracture toughness experiments were carried out at a room
temperature of 19±2 °C. At the beginning of an experiment, the
Young's modulus of the gelatine was measured as described in
Section 1 (using a load with diameter approximately one tenth of
the tank width). The crack excess pressure was then increased by

Table 1
Table of experimental conditions. Cgel=gelatine concentration (wt.%), Mgel=mass of
tested gelatine plus water mixture (kg), Vgel=volume of tested gelatine plus water
mixture (l), Hgel=thickness of gelatine mixture (±0.5 cm), DC=container diameter
(±0.1 cm), Tr=cold room temperature, T0=starting temperature of gelatine mixture
(±0.5 °C). Experimental containers were circular in cross-section, except those indi-
cated by ⁎ which were square (measuring 40 cm×40 cm) and † which was oblong
(measuring 50 cm×30 cm). Hgel was calculated retrospectively from the container sur-
face area and tested volume.

Exp. Cgel Mgel Vgel Hgel DC Tr (°C) T0 (°C)

1 2.5 4 4 17.0 17.3 10 34.5
2 2.5 3 3 12.7 17.3 10 35.0
3 2.5 2 2 8.5 17.3 10 35.5
6 2.5 20 20 12.5 40.0* 10 36.0
7 2.5 30 30 18.8 40.0* 10 38.0
8 2.5 0.5 0.5 4.1 12.5 10 35.5
9 2.5 0.5 0.5 6.4 10.0 10 34.5
10 2.5 0.5 0.5 8.7 8.6 10 34.5
11 2.5 20 20 12.5 40.0* 5 34.0
12 2.5 30 30 18.8 40.0* 5 34.5
13 2 2 2 16.4 12.5 5 37.5
14 2 1 1 8.2 12.5 5 37.5
15 2 3 3 12.7 17.3 5 38.0
16 2 4 4 17.0 17.3 5 38.0
17 2 10 10 19.6 25.5 5 37.0
18 2 20 20 27.0 30.7 5 38.5
19 2 30 30 20.0 30.2† 5 44.5
25 2.5 4 4 17.0 17.3 5 40.5
26 3 4 4 17.0 17.3 5 39.5
27 3.5 4 4 17.0 17.3 5 39.0
28 4 4 4 17.0 17.3 5 38.0
29 5 4 4 17.0 17.3 5 35.0
30 5 4 4 17.0 17.3 5 64.0
31 10 4 4 17.0 17.3 5 60.0
32 20 4 4 17.0 17.3 5 65.0
33 30 4 4 17.0 17.3 5 56.0

ML g

w

DL

E = MLg(1-ν2)
DLw

ν = 0.5
Load

Gelatine Solid

Fig. 1. Schematic illustration of the Young's modulus measurement procedure on a gel-
atine solid able to support an applied load. The deflection caused by a load placed on
the surface of the solidified gelatine is measured, and this information is combined
with the properties of the load to calculate the Young's modulus of the material.

Table 2
Properties of the experimental loads: β=thickness (±0.1 mm), ML=mass of load (±
0.1 g), DL=diameter of load (±0.1 mm). In all cases the data are mean averages of
three measurements. Loads are cylindrical.

Material β (mm) ML (g) DL (mm)

Load 1 Aluminium 27.9 393.8 81.6
Load 2 Aluminium 18.0 255.0 81.6
Load 3 Brass 12.2 50.6 25.1
Load 4 Brass 9.2 37.9 25.1
Load 5 Brass 6.2 25.5 25.0
Load 6 Brass 11.3 35.9 22.6
Load 7 Brass 14.3 37.8 20.0
Load 8 Brass 8.9 48.5 30.0
Load 9 Steel 23.9 130.2 30.0
Load 10 Steel 92.8 2279.3 63.5
Load 11 Steel 62.8 2808.5 85.6
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injecting air using a thin capillary which protruded into the crack
(Fig. 2b). During this injection of air, any excess water bled off ensuring
that only the crack buoyancy increased; the excess pressure in the other
water-filled part of the tank remained nil. Asmore air entered the crack,
its buoyancy increased until it was sufficient to fracture the gelatine at
the tip of the crack (Fig. 2c). The processwas recorded by video camera,
and from this video record the exact amount of air that was present
within the crack just prior to the gelatine fracture was measured. The
Young's modulus of the gelatine was systematically varied between ex-
periments, by changing the concentration of gelatine used during

preparation, and the amount of air needed to propagate the initial
crack was recorded, as summarised in Table 3.

The fracturing of the gelatine solid was analysed within the Linear
Elastic Fracture Mechanics framework, according to which a crack
propagates once the stress intensity factor at its tip KI exceeds the
fracture toughness Kc of the solid host (Griffith, 1921). Measuring
the height of air present in the crack enabled us to calculate the pres-
sure distribution within the crack and thus the stress intensity factor
at its tip following the method of Sneddon & Das (1971) (see Section
4.2 and Appendix). We thus measured the height of air just prior to
the crack propagation, and equated the calculated stress intensity fac-
tor with the gelatine fracture toughness.

3.3. Data processing

Data processing was undertaken in order to identify and quantify
potential sources of uncertainty in the Young's modulus measure-
ments before analysing the results. To account for experimental
uncertainties, both the effect of the dimensions of the applied load
relative to the size of the experimental container and also the effect
of the propagation of errors in the Young's modulus calculation
have been considered. A data weighting procedure has then been car-
ried out before modelling the experimental results.

3.3.1. Effect of applied load and container size
We calculate the Young's modulus of gelatine by measuring by

how much its free surface is deformed by an applied load. In doing
so, we effectively assume that the gelatine solid is semi-infinite.
However, the finite lateral dimensions of the gelatine container and
distance to its base may have an important effect by restricting the
movement of the deformed gelatine.

Fig. 3 shows the relationship between the calculated Young's modu-
lus and the relative size of the applied load diameter and the experiment
container (DL/DC). Data from eight experiments at one time interval are
shown (22 hours curing at 10 °C). These experiments have equal gela-
tine concentration (2.5 wt.%), but a range of volumes (0.5–30 litres),
measured by Loads 1–8 in ten container sizes (see Table 1). Pearson
product–moment correlation coefficients (r) were calculated for each
experiment:

r ¼
Sxyffiffiffiffiffiffiffiffiffiffiffiffi
SxxSyy

q ; ð3Þ

where

Sxx ¼ ∑ x−!xð Þ2 Syy ¼ ∑ y−!yð Þ2 Sxy ¼ ∑ x−!xð Þ y−!yð Þ; ð4Þ

Fig. 2. Three successive photographs taken during a fracture-toughness experiment.
(a) An edge-crack is initially created at the base of a gelatine solid, and filled with
water. The initial reservoir pressure matches exactly the weight of the overlying gela-
tine solid. (b) Air is injected through a capillary and within the crack. Any potential res-
ervoir excess pressure is released, so that only the crack buoyancy increases during air
injection (see text). (c) When the crack buoyancy is high enough, the air-filled crack
fractures the gelatine and propagates vertically.

Table 3
The values of gelatine fracture toughness Kc determined from eight successful experi-
ments. zl is the level of the air-water interface within the crack just prior to its propa-
gation; zl=0 when the crack is full of air. ΔP is the corresponding averaged excess
pressure. The gelatine and water densities, ρg and ρw, were both measured to within
4 kg m−3 and 1 kg m−3, respectively, and the air level zl to within 2.5 mm.
♮ The crack was initially 5.0±0.2 cm high in all experiments, except in experiment 129
where it was 10 cm high.

Exp. ρg (kg m−3) ρw (kg m−3) E (Pa) zl (cm) ΔP (Pa) Kc (Pa m1/2)

123 1062.0 1000.0 1449±14 2.25 89±27 59±18
124 1072.3 1000.0 3969±100 1.25 156±26 93±15
125 1079.3 1000.0 7603±125 1.00 176±26 103±15
126 1063.3 1000.0 1877±36 3.10 54±29 40±21
127 1072.7 1001.0 3906±161 3.15 65±29 48±21
128 1079.3 1000.6 7328±116 0.00 270±25 148±14
129♮ 1025.5 1000.3 10959±354 4.00 189±27 175±25
131 1015.6 999.4 2254±57 2.20 85±27 57±18
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and x and y are experimentally determined variables (in this case E and
DL/DC). The correlation coefficient ranges from −1 to +1; r=+1 indi-
cates a positive linear correlation, r=−1 suggests a negative linear corre-
lation, and r=0 when no correlation is found. In the region DL/DC>10%
the results show a strong positive correlation (r≥0.65), implying interac-
tion between the applied load and containerwalls is producing artificially
high Young's modulus calculations (an exception is experiment 3, where
r=0.38). However, when DL/DCb10% the correlation is poor and in this
region the experimentalist can be confident of avoiding sidewall effects.
Providing this is the case, Eq. (2) holds and can be used to calculate the
Young's modulus of the gelatine. Note that from the experiments
shown, only experiments with a larger volume (20–30 litres) with
Young's modulus measured with loads 3–8 fall into this category.

The Young's modulus measurements may also be affected by the
distance to the base of the experimental container. If we assume the
gelatine is semi-infinite and behaves as a purely elastic solid, we can es-
timate the stresses variationwith depth induced by a load applied to the
surface. The largest stress component induced by a loadσ0 is the vertical
component σz, which can expressed as (Timoshenko & Goodier, 1970):

σ z ¼ σ0 1− 8z3

1þ 4z2
! "3=2

2

64

3

75; ð5Þ

where z has been normalised by the diameter of the load DL. Following
this expression, the stress induced by the load at a depth ten times its
diameter is only 0.4% of that imposed by the load at the surface.

We therefore recommend that both the lateral and vertical dimen-
sions of the container be at least ten times the diameter of the load to
avoid both container sidewall and base effects.

3.3.2. Propagation of errors
The uncertainty associated with the Young's modulus (Eq. (2)) was

calculated according to the principles of the ‘Propagation of Errors’
(Bevington & Robinson, 2003), where the relative error is expressed as:

ΔE
E

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔM
M

$ %2
þ ΔDL

DL

$ %2
þ Δw

w

$ %2
s

; ð6Þ

where:

w ¼ β þ X1−X0: ð7Þ

β is the thickness of the load, X0 is the distance to the unloaded surface
and X1 is the distance to the surface of the applied load (both X1 and X0
aremeasured relative to afixed point of reference). Values ofM,DL,β, X1
and X0 used in the calculation are averages of three separate and succes-
sive measurements. β, X1 and X0 have independent random errors such
that calculated values of w have an absolute error (Δw):

Δw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δβ2 þ ΔX1

2 þ ΔX0
2

q
: ð8Þ

Following this, the ‘compound uncertainty’ associated with each
measurement of w is calculated as±0.3 mm. As the Young's modulus
of the gelatine increases with time, correspondingly the deflection
caused by the applied load decreases. Therefore the magnitude of
w relative to Δw increases with time, as does the compound uncer-
tainty associated with E (ΔE/E). This is illustrated by the increasing
size of the Young's modulus error-bars with time (Fig. 4).

3.3.3. Weighting the data
At each time interval, E was calculated using the deflection caused

by each individual load (an average of three successive measure-
ments). So for example, the complete dataset from experiment 25
(4 litres of 2.5 wt.% gelatine; Fig. 5) comprised 14 time intervals at
which the Young's modulus was measured by loads 3–8 (where pos-
sible). The Young's modulus calculations were thus based on a total of
294 measurements of X0 and X1. In order that all the measurements
for each experiment could be considered in the analysis, a data
weighting process was carried out.

To account for the uncertainties associated with each Young's
modulus measurement, the data were weighted (W) taking into ac-
count both the precision of the measurement and also the applied
load used to take the measurement. Table 4 shows the quantitative
weightings (depending on the uncertainty in E: WΔE) and qualitative
weightings (depending on the applied load used: WΔLoad).

Weighting the Young's modulus data was straightforward, with
high precision data (ΔE/Eb5%) being weighted most highly (WΔE=8).
In comparison, weighting the applied loads could only be done qualita-
tively. Loads 1, 2 and 8–11 had low weightings (WΔLoad=1 or 2) as
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Fig. 3. Young's modulus (E) of 2.5 wt.% gelatine solids, after approximately 22 hours curing at 10 °C, plotted against the diameter of the applied load relative to the diameter of the
container (DL/DC) for loads 1–8 (Table 2) and five container sizes (Table 1). In the region DL/DC>10% (unshaded) each experiment individually shows a positive correlation be-
tween E and DL/DC (see legend for Pearson product–moment correlation coefficients), indicating interaction between the load and container could produce artificially high calcu-
lated Young's moduli. Where DL/DC≲10% (shaded) there appears to be no correlation between E and DL/DC, and here sidewall affects can be neglected. When no error bars can be
seen, the error is smaller than the symbol size.
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these had the highestDL/DC values and so their data weremost likely to
suffer from container sidewall effects (see Fig. 3). Loads 6 and 7 were
also weighted poorly (WΔLoad=2 and 4, respectively), as their relatively
high thicknesses caused stability issues (see Table 2). Load 5 exerted the
lowest pressure and so inflicted only a small deflection to the gelatine
surface; this deflection became increasingly small (and so measured
with higher uncertainty) as the gelatine's Young's modulus increased
during cooling. Therefore, Load 5 was weighted relatively low (W-
ΔLoad=4). Loads 3 and 4 were weighted most highly (WΔLoad=8),
deemed to have the most favourable balance between causing a deflec-
tion of the gelatine surface that could be measured to high precision,
whilst experiencing minimal interaction with the container sidewalls.

The sum of the weights (WΔE+WΔLoad) was used to give an over-
all weighting for each datum. This procedure enabled the ‘best’ data
to have the strongest influence on the modelling results, whilst en-
abling all the data to be included in the analysis process.

4. Results

4.1. Young's modulus of gelatine

By measuring the deflection caused by a load applied to the sur-
face of the solidified gelatine, we have been able to document the
evolution of the gelatine's Young's modulus relative to a number of
parameters. These will now be considered separately.

4.1.1. Effect of time
Fig. 5 shows the Young's modulus evolution with time of a 4-litre,

2.5 wt.% concentrated gelatine mixture kept at 5 °C (Experiment 25).
The results show that, over the range of experimental conditions reported
here, the gelatine is not able to support an applied load until it has a
Young's modulus of approximately 1000 Pa. The Young's modulus then
evolves exponentially with time to reach a plateau maximum value
after which, as long as the experimental conditions are unchanged, the
Young's modulus can be considered approximately constant with time.
This exponential relationship between Young's modulus of the gelatine
and time was documented for all the experiments:

E ¼ E∞ 1−e−
t
τ

! "
; ð9Þ

where E∞ (the Young's modulus plateau; Pa) and τ (hr) are both empiri-
cally based constants determined from the exponential fit, and t is time
(hr). The values of E∞ and τ vary depending on Vgel, Tr and Cgel (see
Table 5). As it is not feasible to wait for E∞ to be reached during the time-
scale of an experiment,we define0.9E∞ as an “effective”Young'smodulus
plateau and t0:9E∞ as the time taken to reach within 10% of E∞. These
values are provided as a guide for the experimentalist in Table 5. The
only effects of decreasing the room temperature from 10 °C to 5 °C
were to accelerate the rate of Young's modulus increase with time and
so decrease t0:9E∞ .

The values of Young's modulus plateau reported on Table 5 were
all measured with loads 3–8, so that in these experiments the height
of gelatine was at least 2.7 times as large as the greatest load diame-
ter. Therefore, according to Eq. (5), the stress at the base of the gela-
tine layer induced by the loads was less than 5% of their value, and the
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Fig. 4. Young's modulus evolution with time of 4 litres of 3 wt.% gelatine stored at 5 °C
(Experiment 26). The Young's modulus was calculated from the deflection caused to
the gelatine surface by Load 3 (see Table 2). Error bars show the uncertainty in E in-
creases with time.
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Fig. 5. Young's modulus evolution with time of 4 litres of 2.5 wt.% gelatine stored at 5 °C
(Experiment 25). The Young's modulus was calculated from the deflection caused to the
gelatine surface by a range of applied loads (loads 3–8; see Table 2). An exponential re-
lationship best fits the data ( E ¼ E∞ 1−e−t

τð Þ), where E∞=7003 Pa and τ=19 hr).
E increases with time to an "effective plateau" (0.9E∞) of 6300 Pa after 44 hours curing
(t0:9E∞ ). The best-fit model (solid line) takes into account all measurements weighted
according to ΔE/E and the load used (see Table 4 ). The outliers at ∼55 hours and
∼98 hours are from Load 7; these data have low weighting on the fitted trend due to
this load having high thickness and small diameter that caused stability issues.

Table 4
Weightings (W) used to quantify the quality of Young's modulus measurement data.
Quantitative-based weightings consider the uncertainty in ΔE/E, whereas the effect of
the load used to take the measurements could only be weighted qualitatively based
on the results from Fig. 2. The combined weightings (WΔE+WΔLoad) are then used in
the subsequent data analysis.

Quantitative W ΔE/E (%) WΔE

b5 8
5–10 7
10–15 6
15–20 5
20–30 4
30–50 3
50–100 2
>100 1

Qualitative W Applied load WΔLoad

Load1 1
Load2 1
Load3 8
Load4 8
Load5 4
Load6 4
Load7 2
Load8 2
Load9 1
Load10 1
Load11 1
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potential effect of the base of the tank on these values of Young's
modulus plateau was neglected.

It should be noted that both the use of deionised water and storing
the gelatine mixtures in a cold room (set at 5–10 °C) led to the
inhibition of bacterial growth in the media. Thorough cleaning of the
experimental container was also vital. Following these methods, our
data shows that once the gelatine mixtures have reached their plateau
in Young's modulus they can maintain this up to 140 hours after the
initiation of the experiment.

4.1.2. Effect of concentration
For low concentrations (≥2 wt.% and b5 wt.%), the Young's mod-

ulus plateau (E∞) of gelatine is linearly correlated with the concentra-
tion of the mixture (with a Coefficient of Determination R2=0.9992),
as shown in Fig. 6 for equal Vgel and Hgel (Experiments 16, 25–28).
Values of E∞ were calculated according to models fit to weighted
Young's modulus data for a range of applied loads (see Section 1). It
is unclear whether or not this linear relationship can be extrapolated
to more highly concentrated gelatine mixtures.

Highly concentrated mixtures of gelatine (≥5 wt.%) proved diffi-
cult to work with, both in terms of preparing the experiments and
then measuring their Young's moduli during the gelification process.
During preparation of the mixtures, difficulties were encountered
dissolving such highly concentrated mixtures and also removing all
bubbles from the highly viscous solution was unachievable so that
creating a homogeneous solid was not possible. Once the mixtures
were in the ‘gel-state’ additional problems arose when attempting
to measure their Young's moduli. When the loads were applied to
these very rigid solids they were insufficient to cause a deflection of
the gelatine surface that could be measured precisely; even the heavi-
est applied loads (Loads 9–11, see Table 2) caused such small deflec-
tions that the calculated Young's modulus value would have very
large errors.

Due to the problems associated with these experiments we pres-
ent only average Young's moduli for each experiment (Experiments
29–33); these were averaged from measurements taken from the
time when the gelatine was deemed to have reached its Young's
modulus plateau, an assumption verified by the lack of correlation be-
tween Young's modulus and time (indicated by a low r; see Table 6).
The results suggest that more strongly concentrated gelatines have a
higher Young's modulus plateau strength, though the associated stan-
dard deviations of the data were so large we were unable to evaluate
whether this relationship continues the linear trend identified in Fig. 6.

The experimental setup and method described here to measure
the Young's modulus of gelatine solids proved unsuitable for highly
concentrated mixtures. In order to quantify the Young's modulus of
highly concentrated gelatine mixtures (≥5 wt.% gelatine mixtures,

where the Young's modulus ≳20,000 Pa), equipment more often
associated with measuring the strength of rocks would be required.
These tests are however beyond the scope of this study.

4.1.3. Effect of volume
Volume appears to have no impact on the Young's modulus pla-

teau (E∞) of the gelatine mixtures, as experiments that used the
same concentration gelatine, stored at the same Tr, evolved to give
the same value of E∞(±500 Pa; Fig. 7). The small discrepancy be-
tween modelled values of E∞ is assumed to be related to errors asso-
ciated with the properties of the applied load and the measuring
technique, as described above (Section 3.3.1). There is a broadly pos-
itive correlation between the volume of gelatine and the time taken
to reach the plateau in Young's modulus (modelled from the weight-
ed data), i.e. larger volumes of gelatine take longer to reach their
Young's modulus plateau.

4.1.4. Effect of layer thickness
The time to reach the Young's modulus plateau value appears to

correlate well with the time needed for the gelatine to cool down to
Tr, and so we can use this correlation to predict the time an experi-
mentalist would have to wait until the gelatine Young's modulus
has reached its plateau value. The thermal diffusivity of gelatine is as-
sumed to be that of its solvent, that is water: κ=1.4x106 m2 s−1. The
different containers used in the Young's modulus experiments were
made of PMP, PP or Perspex (PMMA), and the thermal diffusivity
for these thermoplastic polymers is about 10−7 m2 s–1, one order of
magnitude lower than that of gelatine. Therefore, to a leading order,

Table 5
Model results showing E∞ and τ values (correct to the nearest hour) for an exponential
best-fit model E ¼ E∞ 1−e−t

τð Þ of calculated gelatine Young's moduli against time for a
select group of experiments with the same Tr (5 °C). As E∞ can not be reached within
the timescale of an experiment, we define 0.9 E∞ as an “effective” Young's modulus pla-
teau. t0:9E∞ is the time taken (correct to the nearest hour) to reach within 10% of E∞. See
Table 1 for experiment settings.

Experiment Cgel E∞ (Pa) τ (hr) 0.9E∞ (Pa) t0:9E∞ (hr)

13 2 4431±44 14 3988 34
14 2 4475±58 12 4028 28
15 2 4317±82 15 3885 35
16 2 4172±54 17 3755 38
17 2 3972±36 30 3575 70
18 2 3628±49 22 3265 52
19 2 4106±109 33 3695 75
25 2.5 7003±233 19 6303 44
26 3 10165±284 19 9149 44
27 3.5 12775±548 16 11498 37
28 4 15973±441 16 14376 39
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Fig. 6. Modelled plateau Young's modulus (E∞) of a range of gelatine concentrations
Cgel (Experiments 16, 25–28). Each test volume was 4 litres and was kept at 5 °C (Tr)
in an equivalent container. The best-fit model indicates there is a positive-linear corre-
lation (R2=0.9992) between E∞ and Cgel. More concentrated gelatine mixtures reach a
higher Young's modulus plateau.

Table 6
Average Young'smodulus of highly concentrated (≥5 wt.%) gelatine mixtures. An average
of ‘n’ measurements of the Young's modulus is shown (E , correct to 2 s.f.), measurements
were taken periodically using a range of applied loads for several hours after 16.5 hours
curing at 5 °C. Calculated standard deviations (St. Dev.) indicate a high degree of uncertain-
ty. The low Pierson Product–moment Correlation Coefficients (r) suggests no correlation
between the Young's modulus measurements and time, supporting the assumption that
the measurements were all made when the Young's modulus had plateaued.

Experiment 29 30 31 32 33

wt.% 5 5 10 20 30
E 2.9×104 3.6×104 1.5×105 7.1×105 4.5×105

St. Dev. 1.4×104 2.0×104 1.6×104 1.4×106 5.6×105

r 0.40 0.32 −0.11 0.10 −0.55
n 36 9 12 13 13
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a gelatine solid cools down by conducting its heat through its upper
surface, and the time t needed for thermal equilibrium is:

t ¼
H2

gel

κ
; ð10Þ

where Hgel is the height of the gelatine solid in the container. Fig. 8
compares this cooling time with the time t0:9E∞ taken to reach 90%
of the Young's modulus plateau E∞ for gelatine mixtures of various
concentrations (2 wt.% to 5 wt.%), but all cured at the same tempera-
ture of 5 °C (Experiments 13–19 and 25–28, Table 1). We find reason-
able agreement with a best linear fit:

t0:9E∞≃ 29:0% 8:7ð Þ þ 2:6% 1:2ð Þ
H2

gel

κ
: ð11Þ

Eq. (11) gives experimentalists a first-order estimate of the time
they would need to wait for before a 2 wt.% to 5 wt.% gelatine solid
cured at 5 °C reaches its Young's modulus plateau.

4.2. The fracture toughness of solidified gelatine

The stress intensity factor KI at the tip of a two-dimensional, edge
crack of height h can be expressed as:

K I ¼ α ΔP
ffiffiffiffiffiffi
πh

p
; ð12Þ

where α is a dimensionless factor that accounts for the conditions at the
solid boundary (Lawn, 1993; Menand & Tait, 2002; Sneddon & Das,
1971), and ΔP denotes the averaged excess pressure within the crack:

ΔP ¼ 1
h
∫h
0ΔP zð Þ dz; ð13Þ

where z is the vertical distance with origin at the reservoir-gelatine in-
terface (Fig. 2a). Determining the value of α is a mixed problem, which
simplifieswhen the edge of the elastic solid is a free boundary (Sneddon
& Das, 1971), as was the case in our experiments. We measured the
value of the coefficient α using the method of Sneddon & Das (1971),
summarised in the Appendix.

Griffith (1921) and Irwin (1957) showed that the fracture tough-
ness Kc of an ideal elastic and brittle solid is related to its Young's
modulus E by the following theoretical relationship:

Kc ¼
ffiffiffiffiffiffiffiffiffiffiffi
2γsE

p
; ð14Þ

where γs is the surface energy of the solid. This is the energy required to
create a unit surface area within that solid, and is thought to depend
only on the composition and temperature of the solid (Griffith, 1921).

The calculated values of gelatine fracture toughness are shown in
Fig. 9. Despite some scattering, we find that Eq. (14) fits reasonably
well these values, and that our best fit is:

Kc ¼ 1:4% 0:1ð Þ
ffiffiffi
E

p
: ð15Þ

This equation and Fig. 9 show that provided the viscous behaviour
of gelatine solids is negligible and deformation is essentially elastic,
gelatine solids behave as ideal elastic and brittle solids in that their
fracture toughness Kc and their Young's modulus E follow the theoret-
ical relationship (Eq. (14)) expected for such solids.

We find a best estimate for the gelatine surface energy:

γs ¼ 1:0% 0:2 J m−2
: ð16Þ

Remarkably, this value is similar to the surface energy of brittle
monocrystals such as diamond (γs=6 J m−2), silicon (γs=1.2 J m−2),
silicon carbide (γs=4 J m−2), silica (γs=1 J m−2), sapphire (γs=
4 J m−2), magnesium oxide (γs=1.5 J m−2), or lithium fluoride (γs=
0.3 J m−2) (Lawn, 1993). We note, however, that in principle γs should
depend on the composition and temperature of the solid (Griffith,
1921), and so the exact value of γs may vary from one type of gelatine
to the other. But given the rather small range of values for brittle mono-
crystals,which are also similar to that for gelatine,we believeγs=1.0±
0.2 J m−2 is a fair estimate for acid, pig-skin derived gelatine with
Bloom values between 200 and 260. Experiments carried out at lower
temperatures than reported here will either result in higher Young's
moduli or will take less time to reach their Young's modulus plateau,
but their fracture toughness will scale following Eq. (15).
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tine mixture volume Vgel for 2 wt.% gelatinemixtures cured at 5 °C (Experiments 13–19).
The mean E∞ (dashed line) is shown and is most closely modelled by the 4-litre
experiment (Experiment 16). The Pearson product–moment correlation coefficient (r=
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5. Geological applications

Di Giuseppe et al. (2009) summarise the application of gelatine as an
analogue material for studying tectonic scale processes. They concluded
low concentration gelatinemixtures (~2.5 wt.%) could be an appropriate
analogue for upper crustal deformation experiments. Complementary to
this, we now present scaling laws appropriate for studying magmatic in-
trusion dynamics. The scaling for this case is distinct to that presented by
Di Giuseppe et al. (2009) as the stress and strain relations are different,
and in particular the strain rates for dyke propagation are many order
of magnitude faster than those of tectonic processes.

5.1. Scaling gelatine for experiments on dyke and sill propagation dynamics

An ideal scaled experiment has an analogue material that obeys geo-
metric, kinematic and dynamic similarity with its natural counterpart
(Hubbert, 1937); only then can observations and results of the experi-
ment be used to understand the behaviour of the natural system. Other
workers have presented simple scalings for the use of gelatine in its
elastic-state as a crustal analogue for studying the propagation dynamics
of magma-filled fractures (Acocella & Tibaldi, 2005; Cañón-Tapia &
Merle, 2006). We now expand on these to present a comprehensive
guide for scaling gelatine for this type of geological experiment.

Unlike tectonic processes, which occur on a length scale compara-
ble with the thickness of the crust, dyke propagation is characterised
by a much smaller length scale. This characteristic length scale is the
buoyancy length Lb, as defined by Taisne & Tait (2009), which is the
length over which magma buoyancy driving ascent balances resis-
tance from rock fracture:

L ¼ Lb ¼ Kc
Δρg

$ %2
3

; ð17Þ

where Lb is the length of the buoyant head region of the propagating
dyke, Kc is the fracture toughness of the intruded medium and Δρ is
the density difference between the intruding fluid and its surroundings.
Dyke propagation is determined by a local buoyancy balance in the in-
flated head region of the dyke, independent of the total buoyancy of
the magma column between source and tip (Lister & Kerr, 1991;
Taisne & Tait, 2009). In this case the reduced gravity (g′) is the relevant
parameter for scaling the dyke driving force:

g′ ¼ Δρ
ρsolid

g: ð18Þ

The timescale for the experiments is obtained by combining Lb
(Eq. (17)) and g′ (Eq. (18)):

T ¼

ffiffiffiffiffi
Lb
g′

s

¼ ρ
1
2

solidK
1
3
c Δρgð Þ−

5
6; ð19Þ

and from this the dyke velocity scale follows easily:

U ¼ Lb
T

¼ Δρgð Þ
1
6K

1
3
cρ

−1
2

solid: ð20Þ

This approach provides the appropriate scales (length, time and
velocity) for each experiment, as one parameter or another is varied,
and so provides the appropriate scaling factors L& ¼ Ll

Ln
, T& ¼ T l

Tn
and

U& ¼ Ul
Un
:

L& ¼ K&
c

Δρ&

$ %2
3

; ð21Þ

T& ¼ ρ&1
2

solidK
&1
3
c Δρ&& '−5

6; ð22Þ

U& ¼ Δρ&& '1
6K&1

3
c ρ

&−1
2

solid; ð23Þ

where ∗ refers to the ratio of the parameter values measured at the
laboratory (subscript l) and natural (subscript n) scale.

Finally, the driving buoyancy pressure (Pb) scale for dykes is:

Pb ¼ ΔρgLb; ð24Þ

which leads to deformation of the host medium around the head of the
dyke. The elastic pressure scale (Pe) associatedwith this deformation is:

Pe ¼
E

2 1−ν2& ' ψ
Lb

; ð25Þ

where E and ν are the Young's modulus and Poisson's ratio of the elastic
host, respectively, and ψ is the thickness (i.e. the opening) of the dyke
head. These two stress scales balance each other during dyke propaga-
tion (e.g. (Lister & Kerr, 1991)), which gives:

E ¼ 2 1−ν2
! "

Δρg
L2b
ψ
: ð26Þ

The Poisson's ratio for gelatine solids is ν≃0.5, whereas that of rocks
lies usually between 0.25 and 0.3. As a result, the factor 2(1−ν2) varies
by 15–20% between nature and laboratory experiments, and the
Young's modulus scale factor simplifies as:

E& ¼ Δρ&L&b
Lb
ψ

$ %&
: ð27Þ

Strictly speaking, field measurements made on the geometry of
solidified dykes inform only on the final static state once solidification
has taken place, and not on the geometry of propagating dykes. The
discrepancy between the propagating and the final static geometry
will certainly be important for those dykes that reached the surface
because their thickness will decrease as magma erupts at the surface
and elastic deformation of surrounding rocks is released. However,
because of mass balance the discrepancy should be marginal for the
majority of dykes, which stall in the crust and do not reach the sur-
face; notwithstanding potential volume change due to solidification,
the volume of a propagating dyke should be the same as the volume
of a static dyke. This caveat aside, we can use the geometrical mea-
surements made on solidified dykes as proxies for their geometry
during propagation.

The aspect ratio ψ
Lb
of solidified dykes in nature is typically of the

order of 10−4 to 10−3 (e.g. Gudmundsson (2011), Kavanagh &
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Sparks (2011)), and on the order of 10−2 to 10−1 in gelatine experi-
ments. Taking the following values as representative for natural
dykes: Kc=107 Pa m1

2, Δρ=100 kg m−3, ρsolid=2800 kg m−3, and
for experimental conditions: Kc=100 Pa m 1

2, Δρ=1000 kg m−3

(air) or Δρ=10 kg m−3 (water), ρsolid=1000 kg m−3, one gets:

L& ¼ 10−4 airð Þ or L& ¼ 2' 10−3 waterð Þ; ð28Þ

T& ¼ 2' 10−3 airð Þ or T& ¼ 9' 10−2 waterð Þ; ð29Þ

U& ¼ 5' 10−2 airð Þ or U& ¼ 2' 10−2 waterð Þ; ð30Þ

E& ¼ 10−6−10−5 airð Þ or E& ¼ 2' 10−6−2' 10−5 waterð Þ: ð31Þ

In the experiments, Ll≃5 cmwith air or ≃1 mwith water; this corre-
sponds in nature to Ln≃500 m, which seems reasonable. Likewise, a ve-
locity of a couple of mm/s (water) or cm/s (air) in the experiments
would give dyke velocities on the order of 0.1–0.5 m/s in nature, in
good agreement with estimates of dykes velocities (White et al., 2011).
As for elastic deformation, the Young's modulus of rocks typically lies in
the range En=109−1010 Pa, and so properly scaled experiments should
involve gelatine solids with Young's modulus in the range El=103−105

Pa when air is used as a magma analogue, or El=2×103−2×105 Pa
whenwater is used instead. Both ranges include values that have typical-
ly been used in dyke and sill experiments, and the data presented in this
paper shows that 2–5 wt.% of gelatine is sufficient to reach this range of
Young's modulus plateau (Fig. 6).

These calculations suggest gelatine experiments for magmatic in-
trusion propagation (dykes or sills) carried out at ~5–10 °C and
with gelatine concentrations of 2–5 wt.% are adequately scaled geo-
metrically, kinematically and dynamically.

6. Conclusions

We present results from a series of experiments that quantify the
evolution of the elastic properties of gelatine with time. At 5–10 °C
gelatine is in the ‘gel-state,’ over the range of stresses and strain
rates presented here, and behaves like a solid, with almost
ideal-elastic deformation. The Young's modulus of gelatine evolves
with time, modelled best by an exponential relationship, with E
evolving to a plateau value that would theoretically be achieved
after an infinite amount of time. At low gelatine concentrations
(b5 wt.%) the plateau Young's modulus depends linearly on the con-
centration of gelatine, and different volumes of equally concentrated
gelatine evolve to the same plateau value. The method we use to
measure the Young's modulus of the gelatine requires that the diam-
eter of the load is ≲10% of both the diameter of the experimental con-
tainer and thickness of the gelatine solid in order for side-wall and
base effects to be avoided; larger dimensions relative to the gelatine
solid will affect and lead to artificially high calculated values. Fracture
toughness measurements show the Kc of gelatine follows the same
relationship as ideal elastic-brittle solids: it is proportional to the
square-root of the Young's modulus multiplied by twice its surface
energy, which was calculated experimentally as 1.0±0.2 J m−2.

The transparent nature and photoelastic properties of gelatine
mean deformations can be easily visualised and monitored, giving
the experimental geologist insight into the propagation dynamics of
magmatic intrusions. However, caution needs to be taken when
using gelatine as an analogue for the Earth's elastic crust. These type
of experiments are best carried out at 5–10 °C in order for the viscous
component of gelatine's deformation behaviour to be negligible. At
these temperatures gelatine is a good analogue for magmatic intru-
sion propagation in Earth's elastic crust; using gelatine concentra-
tions from 2 to 5 wt.% will ensure gelatine is adequately scaled
geometrically, kinematically and dynamically.
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Appendix A

In the fracture toughness experiments, the pressure distribution
(ΔP) within the crack just prior to its propagation was:

ΔP zð Þ ¼ ρg−ρw

! "
gz; 0≤z≤zl; ð32Þ

ΔP zð Þ ¼ ρggz−ρwgzl; zl≤z≤h; ð33Þ

where zl is the level of the air-water interface within the crack (zl=
0 when the crack is full of air), ρg and ρw are the density of the
solid gelatine and water, respectively. The density of air ρa is assumed
to be negligible. Following Sneddon & Das (1971), by expressing this
crack excess pressure as ΔP zð Þ ¼ ΔPf zð Þ, the value of α in Eq. (12) is
then determined by calculating the value Λ(1), where Λ is the solution
of the following integral:

Λ zð Þ−∫1
0 Λ uð ÞL z;uð Þ du ¼ 2

π
∫z
0

f sð Þ dsffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2−s2

p ; 0≤z≤1; ð34Þ

where z has been normalised with respect to the crack height h, u and
s are integration variables, and:

L z;uð Þ ¼ 16zu
π2

z2 þ u2

z2−u2
! "3 ln

z
u

! "
− 1

z2−u2
! "2

2

64

3

75; if z≠u; ð35Þ

and:

L z;uð Þ ¼ 4
3π2u

; if z ¼ u: ð36Þ

Eq. (34) was solved using the gaussian quadrature method. This
leads to n linear equations:

Λ xið Þ−
Xn

j¼1

wjL xi; xj
! "

Λ xj
! "

¼ 2
π
∫xi
0

f sð Þ dsffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i −s2

q ; i ¼ 1;2;…;nð Þ; ð37Þ

to be solved in order to determine the values Λ(x1), Λ(x2), …, Λ(xn),
using the values x1, x2,…, xn and their respective weights w1, w2, …,
wn (as listed in Table 52.8 from Abramowitz & Stegun, (1964)). The
value of α is then:

α ¼ Λ 1ð Þ ¼ 2
π
∫1
0

f sð Þ dsffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12−s2

p þ
Xn

j¼1

wjL 1; xj
! "

Λ xj
! "

: ð38Þ

The gelatine fracture toughness Kc was then equated with the
stress intensity factor (12), using the average excess pressure ΔP
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measured just prior to the crack propagation and the corresponding
value of α (Eq. (38)).
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Chapter 5

Prospective Projects

(Potential funding fo the next couple of years: AXA, ANR, and ClerVolc)

Over the next years, I plan to conduct a series of projects related to the trans-
port, storage and degassing of magma in the Earth’s crust. The long-term aim is
to improve our understanding of magma chamber formation, our ability to read
geodetic surface signals related to magmatic activity, existing models for dyke prop-
agation, and the relationship between magma degassing and magma movement
within volcanic plumbing systems.

5.1 Magma storage in the crust

5.1.1 Solidification effects on sills dynamics

Last spring, during two months, Lola Chanceaux, a Master student at the LMV,
carried out analogue experiments to investigate the potential effect on solidification
of the formation of sills. These preliminary experiments involved the injection of
fluid at a constant rate into a two-layer, stratified gelatine solid with an upper, stiffer
elastic layer, an a priori favourable configuration for sill formation (Kavanagh et al.,
2006). The injected fluid was a vegetable oil with a well defined phase transition
at 31 ◦C: it solidifies almost instantaneously below this temperature but is fluid at
lower temperature with a viscosity of ∼ 10−2 Pa s (Galland et al., 2006).

These experiments suggest that contrary to the isothermal case, the range of
conditions for sill formation is much reduced and depends on both the temperature
contrast between injected fluid and solid host, and the injection rate (Fig. 5.1).
Following Taisne and Tait (2011), these can be quantified by a dimensionless tem-
perature Θ = (Ts−T∞)/(Ti−T∞), where Ti is the initial temperature of the injected
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fluid, Ts its solidification temperature, T∞ the far-field temperature of the solid,
and which characterises the strength of the temperature contrast between fluid and
solid; and a dimensionless flux Φdyke, which is the ratio of advected heat by the
incoming fluid in the dyke to that conducted away by the solid, and which for a
buoyant feeder dyke can be expressed as Φdyke ∼ (Q∆ρg)/(Eκ). Θ → 0 when the
fluid is injected at a temperature that is much higher than its solidification temper-
ature, whereas an initial temperature close to the solidification temperature leads
to Θ → 1 and solidification will be expected to affect dyke propagation (Taisne
and Tait, 2011) and potentially sill formation. Likewise, solidification effects will
be expected for low magma influx (Φdyke → 0) and should be negligible for high
magma influx (Φdyke → ∞).

Figure 5.1: Outcomes of preliminary thermal sill experiments as a function of dimension-
less injection rate Φ and initial dimensionless temperature Θ. Dashed lines
represent the experimental range of Θ values. Hatched areas correspond
to expected range of natural conditions: Ti = 1200 ◦C and Ts = 950 ◦C
were taken as representative of basalts, Ti = 800 ◦C and Ts = 775 ◦C as
representative of rhyolites, T∞ = 300 ◦C and T∞ = 500 ◦C at 10 and 15
km depth, respectively, E = 10 GPa, κ = 10−6 m2/s, ∆ρ = 100 kg/m3 and
magma influx in the range 1–100 m3/s.

The results revealed that too high dimensionless temperatures or too low in-
jection rates lead to feeder dykes stopping at the interface between the upper rigid
layer and the lower more compliant layer, but their partial solidification prevented
them to intrude the interface and form sills (Fig. 5.1). Thus the range of con-
ditions for the formation of sills appears reduced compare to the isothermal case:
sills could only form when the dimensionless injection rate Φ was greater than ∼ 2
and when the dimensionless temperature Θ was less than ∼ 0.6. Interestingly, com-
pared to geological conditions, these experiments would suggest that sills would be
extremely difficult to form owing to unfavourable thermal conditions. This might
reflect ill-constrained temperatures as these were only crudely measured in these
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primarily experiments. Thus these results and comparison with natural conditions
need to be clarified.

Additionally, solidification might impede the propagation of sills. Sill dynamics
are controlled by a balance between viscous pressure drop and elastic deformation
of the surrounding host (section 4.3). Furthermore, a constant magma influx
seems a geophysically realist, initial condition for individual intrusion propagation
(Traversa et al., 2010). In this case, and assuming an axisymmetric sill geometry
for simplicity, one can define a dimensionless flux associated with sill propagation

Φsill ∼
1
κ

�
µ(1 − ν2)Q5

EL7

�1/4
, (5.1)

where L is the length of a propagating sill fed by a constant magma influx Q. This
dimensionless flux Φsill decreases as L

−7/4, and so solidification would be expected
to exert a control on sill dynamics and ultimately limit their lateral extent. Equation
(5.1) being dimensionless, it can be directly upscaled to natural conditions, and so
used to test whether syn-propagation magma solidification can indeed limit the size
of sills. As discussed previously, larger igneous bodies such as laccoliths and larger
plutons can grow by vertical accretion of sills (Menand, 2008, 2011, section 4.3),
thus assessing the validity of equation (5.1) is also of importance to understand
what determines the lateral extent of plutons sensu lato.

This hypothesis will be tested with well-constrained thermal sill experiments
(experimental conditions will be better controlled by means of thermocouples both
at the injection point and within the gelatine solids). These will be carried out in
2013, and the conditions for sill formation will be first clarified, before quantifying
the sill dynamics and testing them against equation (5.1).

5.1.2 The formation of magma chambers

Until recently, Santorini volcano, Greece, was understood as a volcano whose
shallow reservoir is regularly recharged with small volumes of mafic magmas dur-
ing extremely short duration (Martin et al., 2008). Crystal diffusion chronometry
applied to erupted feldspars crystals has challenged this view by revealing that a
reactivation of the shallow magma chamber by the injection of silicic magma took
place before the Minoan caldera-forming eruption around 1600 BC (Druitt et al.,
2012). This reactivation was rapid (< 100 years) and at a rate more than 50 times
faster than the long-term average influx of magma that feeds the volcano (> 0.05
km3/yr instead of 10−3 km3/yr on average). Furthermore, this recharge would
have represented a sizable proportion (at least 15 vol.% of the erupted material)
of the shallow magma chamber. This view of the inner workings of Santorini vol-
cano is supported by recent InSAR and GPS measurements of surface deformation
(Parks et al., 2012) which show that since January 2011 the shallow reservoir of
Nea Kameni volcano has been recharged with a similarly large influx of magma,
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∼ 0.01 km3/yr, and that the volume of this recharge would represent 10-50 %
of the volumes of recorded dome-building eruptions that have occurred since AD
1570. Furthermore, that the shallow magma chamber could be recharged by large
volumes of magma and then erupt dome-forming dacitic material with only a mi-
nor volumetric proportion of mafic enclaves strongly suggests a deep origin of the
dacitic recharge. The emerging view of Santorini is thus that of a volcano, whose
shallow reservoir is regularly replenished from deep with high-flux batches of already
differentiated magma, the duration of which is much shorter than that of interven-
ing repose periods (Druitt et al., 2012; Parks et al., 2012). This fits perfectly with
the developing consensus on the generation of evolved magmas in deep crustal hot
zones (Annen et al., 2006) and the incremental emplacement and growth of ig-
neous bodies in the upper crust (Menand et al., 2011). This points to an intimate
relationship between the recharge of volcanoes and their shallow magma chambers
and the growth of now solidified plutons.

In the deep hot zone model (Annen et al., 2006), mafic sills are repeatedly
injected at the base of the lower crust. The first sills solidify completely and trans-
fer heat to the crust. Over time, as more sills are emplaced, the temperature of
the intruded region rises and ultimately reaches the solidus of the mafic material.
Subsequent intrusions do not completely solidify, which leads to the progressive ac-
cumulation of residual melts, the remelting of previously intruded mafic material,
and the partial melting of the surrounding crust. Accordingly, the chemical diver-
sity of arc magmas and granites is generated in these deep hot crustal zones owing
to the coexistence and mixing of both crustal and mantle melts in proportions dic-
tated by the fertility of the intruded crust as well as the geometric distribution and
rate of emplacement of the mafic sills. Comparatively, textural diversity is related
to shallow-level crystallisation in upper parts of the crust. As magmas leave their
hot zones in the form of dykes, the vast majority of them stalls before reaching the
surface, many of them as sills. Numerous geological, geophysical and geochrono-
logical evidence indicate that many sills amalgamate together to form larger igneous
bodies (Menand, 2011). Numerical modelling of pluton growth by this mechanism
suggests that the emplacement of magma bodies is a multi-timescale process, and
that magma chambers are ephemeral. Their development would correspond to the
highest magma fluxes as growing a sizable amount of eruptible magma requires
minimum magma fluxes from deeper source of 10−3 to 10−2 km3/yr, i.e. several
orders of magnitude larger than the long-term-averaged rates estimated form field
studies (Annen, 2009). An incremental growth for plutons is widely accepted, and
the issue is now to identify the processes and quantify the mechanisms what control
the size and frequency of these increments. The latest developments in analytical
U-Pb dating on zircons allow age measurements with a precision down to less than
± 50 kyrs, which in turn enable us to recognise the incremental growth of large plu-
tons with unprecedented details. Spectacular examples include the southern part of
the Adamello batholith, northern Italy (Schaltegger et al., 2009) and the Torres del
Paine laccolith in Chile (Michel et al., 2008; Leuthold et al., 2012). U-Pb dating
extends to large scales the detailed field observations made on smaller plutons in
Utah and Nevada, USA (Horsman et al., 2010; Miller et al., 2011), and thus gives
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additional arguments for a plutons growth by accumulation and amalgamation of
successive magmatic sheets.

Simple thermal considerations provide additional support to the conclusions
that the vast majority of plutons could not have developed from a single episode
of continuous magma injection. Dykes need to propagate fast enough through
the crust to avoid death by solidification. Indeed, flowing magma advects heat
along a propagating dyke whilst heat is conducted away by the colder host rocks.
If advection occurs at a lower rate than conduction then magma will ultimately
solidify completely and dyke propagation will cease. That much is well known, and
it has been shown that a dyke must be wider than a critical minimum width wc so
that magma may ascend through the crust over a distance H without freezing:

wc = 1.5
�

S m

S 2
∞

�3/4 �
µκH

∆ρg

�1/4
, (5.2)

where S m = L/[Cp(T0 − T f )], S∞ = L/[Cp(T f − T∞)], L is the latent heat of the
magma, Cp is its specific heat capacity, T0, T f and T∞ are the initial magmatic
temperature, the magma freezing temperature and the far-field temperature of the
crust, respectively, µ is the viscosity of the flowing magma, κ is its thermal diffu-
sivity, ∆ρ is the difference between the density of the host rocks and that of the
magma, and g is the gravitational acceleration (Petford et al., 1993). Considering
flow as laminar and driven by buoyancy within a dyke of thickness w and hori-
zontal extent B, magma flows with an average velocity u = (∆ρgw

2)/(12µ) and
thus an average volumetric flow rate Q = (∆ρgw

3
B)/(12µ). Combining this latter

expression with equation (5.2) gives a critical minimum magma supply rate

Qc =
9

32

�
S m

S 2
∞

�9/4 �
∆ρgκ3H

3

µ

�1/4
B. (5.3)

This is the minimum influx of magma a buoyant dyke needs in order to propagate
over a distance H without freezing. Therefore, a pluton that grows by a single
and continuous injection of magma would need to be fed with at least this magma
supply rate Qc, otherwise its feeder dyke would freeze before it could reach the
crustal emplacement level of that pluton; Qc can be envisaged as a minimum
pluton filling rate.

Considering magma viscosities in the range of 104 to 108 Pa s, a minimum
supply rate Qc of 0.1 to 10 km3/yr is required to feed plutons that are 5 to 30
km away from their source. Fig. 5.2 compares these minimum magma fluxes with
estimates of the maximum long-term-averaged filling rates for 33 different plutons
as compiled by de Saint-Blanquat et al. (2011). All but four of the reported
plutons had too low a magma supply rate to have formed by a single episode of
continuous magma injection; their feeder dyke would have frozen before reaching
their emplacement level. This finding holds irrespective of the emplacement depth
of the plutons, the composition of their magmas and the tectonic setting. Of the
four remaining plutons, three involve small magma volumes (< 30 km3), but small
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Figure 5.2: Comparison of Qc (grey area) with estimates of the maximum, long-term-
averaged filling rates for 33 different plutons as compiled by de Saint-
Blanquat et al. (2011). The yellow start represents estimates for the volume
(6–9 km3) and rate (0.05 km3/yr) of the magma recharge that preceded
the Minoan eruption that occurred at Santorini volcano around 1600 BC
(Druitt et al., 2012). The current activity at Nea Kameni involves similar
flux but too small a volume (10−2 km3) to appear in the graph.

plutons are precisely those that most convincingly exhibit field evidence of growth by
incremental emplacement of magma sheets (de Saint-Blanquat et al., 2001, 2006;
Horsman et al., 2010; Miller et al., 2011). Thus the formation of large plutons
must involve the injection of successive, discrete magma pulses with a minimum
flux of ∼ 0.1 km3/yr. This flux must also be the minimum flux associated with
the recharge of magma chambers such as that of Santorini volcano. Yet, this is
two to ten times larger than the recharge rates estimated for the Minoan eruption
or the current activity at Nea Kameni (Fig. 5.2). However, these latter rates
are not instantaneous fluxes related to magma intrusions but rather integrate also
intervening repose periods. Instantaneous recharge rates would thus likely be larger
and thus consistent with the minimum flux required for magma migration between
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deep hot zones and shallower reservoirs.

This thermal analysis would thus suggest that volcanoes like Santorini are regu-
larly fed by magmas that originate from a deep source where they can differentiate
prior to recharging its shallow reservoir. This feeding would occur only when the
flux is high enough to prevent magmas from solidifying before reaching the shal-
low reservoir level, that is with a minimum flux of ∼ 0.1 to 10 km3/yr. However,
their shallow reservoir can only develop into a potentially active magma chamber
with a sizeable amount of eruptible magma when the time-averaged feeding flux
exceeds 10−3–10−2 km3/yr (Annen, 2009). For lower average fluxes, the volume
of eruptible magma available at anyone time would be, at best, that of a single
magmatic recharge, hence with a more limited potential for eruption. This model
is not restricted to Santorini and is applicable to other volcanoes.

Pushing and testing this model further require high precision age dating. Diffu-
sion chronometry provides access to timescales that are commensurate with the in-
stantaneous emplacement of magma intrusions such as dykes (Druitt et al., 2012).
Additionally, continuous geodetic measurements of volcano surface deformation
provide a means to calculate and follow the recharge volumes and rates through
time. In principle this should enable us to discriminate between magmatic intru-
sions bound to crystallise because they involve too low magma fluxes from those
recharging a reservoir with fluxes that are high enough to develop a potential for
eruption.

5.1.3 Relating geodetic surface signals to magma accumu-
lation in the crust

(Potential Funding: ClerVolc)

The arguments presented above raise also the question of our ability to read
geodetic surface signals: can we differentiate between surface deformation pro-
duced by an influx of magma bound to form a frozen pluton from one associated
with the recharge of a magma chamber? Perhaps a more useful question would
be: which parameters do we need to properly determine in order to make such a
distinction?

Interferometric Synthetic Aperture Radar (InSAR) provides a remarkable geode-
tic tool for the remote monitoring of volcano surface deformation with high spatial
precision and a repeat time down to a few days (e.g. Prittchard and Simmons,
2002; Froger et al., 2004, 2007). However, if most eruptions are preceded by days
to months, and perhaps even years, of subtle seismic activity caused by the as-
cent of magma and ground uplift due to the pressurisation of magma reservoirs
(e.g. Dzurisin, 2003), the significance of this uplift remains difficult to interpret.
Indeed, there are many observations of edifice inflation without eruptions as well



72 5 Prospective Projects

as eruptions without precursory inflation. For instance, Chaussard and Amelung
(2012) recently used InSAR data gathered between 2006 and 2009 over the entire
west Sunda arc, Indonesia, to show evidence of inflation at six volcanoes with an
average uplift of 3–8 cm/yr. Remarkably, three of these six volcanoes erupted a
few months to two years after the observation period, but whether the other three
volcanic centres will erupt, in relation with observed uplift, remains uncertain.

When surface deformation is interpreted as reflecting magmatic activity, InSAR
data are usually inverted in order to constrain the geometry, depth and volume of
the magmatic source. Perhaps more importantly, InSAR data can also inform
on the recharge rate of the magmatic system (Parks et al., 2012); this is an
important constraint on whether the magmatic system could develop an active
magma chamber with a sizeable amount of eruptible magma (Annen, 2009). The
solutions to the inverse problem are notoriously non unique but they can be tested
and discriminated against one another. It is commonly assumed in these inversions
that the crust behaves elastically, but it sometimes fails to explain the observed
surface deformation or leads to solutions that are physically unrealistic, such as an
implausible geometry or rate of volume change, or a source location too deep that
the assumption of purely elastic deformation becomes invalid (Fialko and Pearse,
2012). When this happens, it is necessary to assume a more realistic rheology for
the crust, for instance viscoelasticity or a power-law rheology. But this usually leads
to the further assumption that the selected rheology applies to a prescribe portion
of the crust or to a finite region around the inferred igneous body only (e.g. Newman
et al., 2001). Instead, the rheology and the region over which it applies should
stem from its thermal history and not be prescribed a priori. These assumptions
currently limit our ability to interpret surface deformation as measured by InSAR. A
telling example is the 2–3 cm/yr surface uplift that has been continuously measured
at the Lastarria - Cordon del Azufre Complex, Chile, over the last decade: we are
still unable to tell the extent to which this uplift truly reflects magma accumulation
within the crust (Remy et al., 2011).

In collaboration with Jean-Luc Froger (LMV) and Catherine Annen (Bristol
University), I intend to develop a numerical model that combines the thermal
evolution of the crust, and its resulting rheology as it is repeatedly intruded by
magma, with a Finite Element Method (FEM) model of crustal deformation. Such
a model would enable us to relate the intrusive history of the crust with the surface
deformation. We intend to use the thermal model of Catherine Annen: for a given
composition of the crust and intruding magma, this model determines the thermal
evolution of the entire system in both time and space. This would then enable the
rheology of the crust and the intruded region to be also determined as a function
of time and space as more magma, hence heat, is accumulated. This time- and
space-dependent rheology could then be input into the FEM Comsol Multiphysics
software available at LMV (and Bristol) to calculate the deformation field around
the intruded region, and more specifically that at surface, through time. The
overall approach will be to test different crustal rheologies and intrusive scenarii
(intrusion geometry and magma influx), and determine whether and under which
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conditions geodetic surface signals associated with pluton formation differ from
those associated with magma chamber recharge. The model outputs would then
be compared to those measured at the Lastarria - Cordon del Azufre Complex as
a first test target, and for which we have an extensive coverage of InSAR data.
In the longer term, by determining the rheology and temperature of the intruded
body itself, such a model should also enable us to conduct the same analysis with
other expected geophysical signals (gravimetry, MT...) and their evolution through
time.

Although this project will focus in the first place on the deformation of volcanic
edifices, it is also relevant to quantifying the mechanisms and timescales for the
long-term accumulation of magma in the crust.

5.2 Magma transport and degassing

5.2.1 Dyke interactions with tectonic faults and their role
on monogenetic basaltic volcanism

(Potential Funding: AXA)

The following proposal has been submitted to the AXA Research Fund for a
two-year post-doctoral grant. Nicolas Le Corvec is the applicant. If successful the
project will start early 2013.

Monogenetic basaltic volcanism is a peculiar type of volcanism, where most
new eruptions lead to the formation of new volcanic centre, ultimately creating
fields of tens to hundreds of volcanic centres. Their formations remain unclear
and pose major concern for densely populated areas or nuclear facilities nearby.
Monogenetic basaltic fields require direct magma ascent from mantle to surface via
dykes and are associated with major fault systems, suggesting an interplay between
dykes and pre-existing faults. Both crustal faults and propagating dykes influence,
independently, their local stress field, and interact with each other. Dyke intrusions
promote or restrict displacement along pre-existing faults (Le Corvec and Walter,
2009), and faults can modify dyke trajectories and be used by dykes as conduits,
thus facilitating magma ascent to the surface and increasing the probability of an
eruption (Le Corvec et al., submitted). The theoretical conditions for dykes to
propagate via pre-existing faults have recently been described, but we still do not
understand why a dyke would interact with a fault nearby, nor what the role of
these interactions is in the development of monogenetic volcanic fields.

Using analogue modelling to understand dyke-fault interaction, Le Corvec et
al. (submitted) show that buoyancy-driven dykes are expected to intersect pre-
existing faults if they are separated by less than ∼ 200 m, and that the ascent
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velocity of dykes whose volume is less than∼ 0.01 km3 would decrease due to the
surrounding faults. Thus, on the one hand, faults could be exploited by dykes and
facilitate magma eruption, but on the other hand, faults could also impede the
dynamics of magma transport and decrease the likelihood of eruptions. Although
these results do not explain the exact mechanism that modifies dyke dynamics or
controls whether a dyke intersects a pre-existing fault, they suggest the ambient
stress field plays a key role. This project proposes to quantify this role using
numerical modelling.

Numerical models allow the detailed computation of strain and stress within an
elastic medium, and enable to control and vary its mechanical parameters, such as
its rigidity, pre-existing faults, their geometry and orientation. Thus numerical mod-
els provide a complementary approach to the analogue experiments of Le Corvec
et al. (submitted) for quantifying interactions between propagating dykes and pre-
existing faults. This will be achieved by using two complementary boundary element
analyses, Poly3D and the model developed by Maccaferri et al. (2010); Poly3D can
account for the presence of faults but not for a moving dyke, whereas the model
of Maccaferri et al. (2010) calculates dyke trajectories but cannot deal with faults.
Boundary element methods are renowned for their computational efficiency. Addi-
tionally, we are in contact with Laurent Maerten (Manager at IGEOSS Europe and
Consultant in Montpellier, France) and his group who developed Poly3D (academic
licence costs 100 euros per annum), and we are also collaborating with Francesco
Maccaferri’s group at the GFZ Potsdam, Germany. Both groups are continuously
developing their model, and so the project could benefit from potential updates.
Both models will be integrated as follows:

1. Poly3D will be used to create a 3D elastic model with a single fault, subject
the model to a remote stress field and analyse how the fault modifies this
stress field. The applied stress field will be either lithostatic or extensional,
and the physical parameters of the model will be systematically varied, in-
cluding the geometry and friction of the fault.

2. The computed modified stress field will be used as input parameter for the
model of Maccaferri et al. (2010). This model will then compute how this
perturbed stress field affects dyke trajectories. It will also reveal the addi-
tional stress induced by the dyke itself, and so help resolve the respective role
of fault-induced and dyke-induced stress perturbations in dyke propagation.

3. More complex models will be designed by including additional pre-existing
faults. These models will be tested against the experimental results of Le
Corvec et al. (submitted), and will provide constraints on the stress-field
evolution in space and time as more dykes and faults are included.

Finally, the models will be applied to the Chaine des Puys, accounting for the
regional topography (the Limagne graben) and the location of major tectonic faults
(the Limagne Fault on the East and the Sillon Houiller on the West). The initial
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dyke conditions will be systematically varied (zone of injection and volume) as well
as the stress field, lithostatic or extensional. The aim is to elucidate the role of the
major faults in the formation and evolution of the Chaine des Puys, and to identify
the conditions that lead to its location on the horst rather than inside the Limagne
graben.

The ultimate goal is to provide a generic model for understanding the role of
crustal faults in the evolution of monogenic volcanic fields, and an additional tool
for assessing their associated volcanic and seismic hazards.

5.2.2 Magma ascent through dykes and degassing
(Potential Funding: ANR)

I am currently taking an active part in the development of a 4-year research
project entitled ”Magma Ascent through Dykes (MAD)” that will be submitted to
ANR in January 2013. The Principal Investigator of this project is Nicole Métrich
from IPGP. The project is based on the close collaboration between four partner lab-
oratories in France: IPG-Paris, LMV-Clermont-Ferrand, ISTerre-Chambéry/Grenoble,
and CRPG-Nancy.

Most eruptions of basaltic volcanoes are fed by magmatic dykes that propagate
to the surface and give rise to lava flows and explosive activity (lava fountains,
Strombolian explosions). These dyke-fed eruptions, occurring at low altitude on a
volcano flank or along simple volcano-tectonic fault systems, are very common and
constitute one major threat to densely inhabited volcanic regions over the world.
Improved understanding and modeling of the processes that govern these eruptions
is thus crucial for hazard assessment. This is the heart of MAD project.

Magma ascent and dyke propagation are complex processes which depend on
various parameters: (i) the magma source depth and pressure, (ii) the magma phys-
ical properties, degassing path and decompression rate, (iii) the physical properties
of country rocks and how these accommodate the pressure induced by magma
intrusion, and (iv) the regional and local stress field. Until now, little efforts have
been done to integrate measurements or assessments of all these parameters into
a numerical and physical modeling of basaltic dyke propagation. The aim of MAD
project is to fill in this gap. By gathering researchers with different areas of ex-
pertise (petrology, geochemistry, structural geology and geophysical modeling) we
plan to build a conceptual model of basaltic magma transfer through dykes, able
to explain the range of observed eruptive phenomena, across the following steps:

1. Measurement/modeling of the pressure-dependent magma volatile content,
degassing path, crystallization, decompression rate and physical properties of
basaltic magmas; equilibrium versus kinetic processes.
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2. Assessment/modeling of the stress state in the volcano and of the stress
perturbations induced by magma dyking, by integrating inversions of both
seismic and geodetic (GPS, InSAR) data.

3. Integration of the results above into new dynamic numerical models of dyke
propagation that have the ability to interpret jointly the temporal evolution
of the recorded geophysical/geochemical signals and to be predictive by pro-
viding dyke path, velocity and eruptive vent location.

MAD project will be primarily focused on Piton de la Fournaise (PdF) basaltic
volcano on Reunion Island, which typically displays recurrent dyke-fed eruptions
and for which we dispose of a large geophysical and observational dataset collected
by the dense local monitoring network. PdF is one most suitable target volcano for
building improved numerical models of basaltic dyke propagation. This project will
provide a fantastic opportunity to relate degassing processes with magma properties
(essentially its viscosity) as well as magma movements and mingling within dykes
and conduit as revealed by texture analyses. This will improve our understanding of
the intimate relationship between magma movement and degassing within volcanic
plumbing system.
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