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Introduction (in English)

Malliavin’s tree

Malliavin calculus is at the heart of our work. Or rather, it is the trunk of the tree by which
we choose to draw the outlines of this thesis. The anatomy of Malliavin’s tree is described in
the following sections; the ground on which it flourishes is made of analysis and probability
theories. Malliavin calculus takes its roots in processes characterized by (semi/normal) mar-
tingales, sample-paths and/or independence of increments properties. Its formalism sits on
what embodies its basement /cornerstone: the integration by parts formula. The meeting
with other branches of analysis or probability has produced much fruit: the applications of
Malliavin calculus.

Roots and basement: Malliavin’s framework and integration by parts

Historically, its initial development was not really to provide an infinite-dimensional differ-
ential calculus on the Wiener space, but rather to elaborate a probabilistic toolbox from an
application perspective. The first ones were to prove the ellipticity of Hormander operators
and to rule on the existence and regularity of the density function of random vectors. The
criterions stated by Paul Malliavin (see [85]) in both cases were based on what would become
the cornerstone of his eponymous calculus: the integration by parts formula. Many works
leaning on the seminal paper of Paul Malliavin were led around the hypoellipticity of second
order degenerate elliptic differential operators; see for instance that of Jean-Michel Bismut
[19], Hiroshi Kunita [77], Daniel W. Stroock [133| or Shinzo Watanabe [138]. In the same
time, other probabilists focused on another perspective that it suggested: the possibility to
formalize a differentiation on the Wiener space # and to connect it with the preexisting
integration notion.

Two main approaches lead to Malliavin calculus on the classical Wiener space supported by
the Banach space C°(T; R) (where T = [0,7] or T = R) and equipped with the Wiener
measure P.

A possible variational approach consists in coupling the Wiener space with a separable Hilbert
space § = L2(T, B, \), where ) is the Lebesgue measure on T. As explained in the reference
books of David Nualart [98] or Svante Janson [71], there exists thus a Gaussian random
measure {W(A), A € B, A(A) < o} independent on any family of disjoint subsets of T, such
that W (A) has variance A\(A), and that the paths of the Brownian motion can be reconstructed
via the Centsov representation:

B; = W([0,t]) = W(1[g4) ; t€T.

9
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In fact, W(h) coincides with the Wiener integral of the function h € §) with respect to B. The
Wiener space is thus entirely characterized by the so-called associated isonormal Gaussian
process {W(h), h € $}. Even if the Wiener integral naturally connects the Wiener space and
a notion of integration, the challenge remains to construct a differentiation operator applicable
to a wide class of Wiener functionals. A definition as a Fréchet derivative, if it seems natural
at first, is not relevant: usual Wiener functionals such as Wiener integrals or solutions of
stochastic differential equations with smooth coefficients are not even continuous with respect
to the norm of the Wiener space. The suitable definition of a directional derivative on LP(P)
derives from the Cameron-Martin theorem that indicates - implicitly - that it makes sense only
if the increases generating the derivative are performed in the directions of the eponymous
vector space. The derivative operator D is thus defined on the space S of cylindrical random
variables composed of smooth random variables F of the form

F= f(W(hl)a 7W(hn)) ; hla"‘ 7hn €ﬁ7 (001)

where f belongs to the Schwartz space .#(R™). It is then extended to its domain D!?2, by
density of the class § in the space of square integrable Wiener functionals. The adjoint of the
operator D, called divergence and denoted by 4, coincides with the Wiener (resp. Skorohod)
integral when applied to adapted (resp. non-adapted) processes. The operators D and § are
connected by the relationship:

E[(DF,U)y] = E[F6U] ; Fe D"? Ue Dom 6.

As detailed for instance in the books of Paul-André Meyer [89] or Nobuaki Obata [107], an
alternative approach, lying on the Wiener-Ité chaotic representation property, can also lead
to Malliavin calculus. It is based on the development of an infinite dimensional analogue
of the Schwartz theory where the Gaussian measure g on the dual E* of a nuclear space
E = “(R) would supersede the Lebesgue measure on R™. The space & (resp. €*) of test
(resp. generalized) white noise functionals is constructed by a continuous and dense embedding
in L2(E*, ) (vesp. by duality):
¢ c L2(E*, u) c &*.

The space L2(E*, i) is in fact canonically isomorphic to the Fock space over L2(R) through
the Wiener-It6-Sega isomorphism. Thus, any square integrable Wiener functionals admits a
unique expansion in terms of multiple Wiener integrals. The so-called chaotic decomposition
characterizes this alternative approach. In the general context of a Fock space the operators
D and § coincide respectively with the annihilation operator and the creation operator met
in quantum probability and satisfy a generalized canonical commutation relation. The equiv-
alence of the approaches lies on the intrinsic relation between the standard Brownian motion
and Hermite polynomials. Paul-André Meyer stated in [88] the equivalence of the norms as-
sociated to the different Sobolev spaces thus defined.

Even if the Malliavin calculus was associated with the Wiener space in a first place, it has since
been extended to other classes of processes; to name just a few, Gaussian processes in general
(see Nualart [98],Nourdin and Peccati [94]), Poisson processes (see Bichteler et al. [18] for a
variational approach, Nualart and Vives [103] or Privault [116] for a chaotic approach), Lévy
processes (see Nualart and Schoutens [102]) and Rademacher processes (see Privault [117]).

The terminology of classical differential calculus in Banach spaces can be declined in the
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paradigm of Malliavin calculus: the paths of the canonical process replace vectors, the func-
tionals operating on the space of the paths take the place of functions, while the two key
operators are called by the same names of gradient and divergence. The fundamental relation-
ship between these latter appears as the basement of this calculus and conceptualizes the
notion of integration by parts in Malliavin’s sense:

E [(DF, U] = E [F U], (0.0.2)

where (€2, .4, P) is the canonical probability space and fR is a generic Hilbert space seen as the
perturbations space when DF is interpreted as a directional derivative (for instance R is the
Cameron-Martin’s space for Brownian motion).

During the preparation of this thesis work, we found two frameworks equipped with a Malli-
avin structure and of particular interest: the Poisson space and the Rademacher space. Their
Malliavin formalism will be described and compared to our contributions later.

Branches and fruits: applications of Mallavin calculus

The use of Malliavin’s powerful toolbox in other branches of analysis or probability has been
particularly fruitful for years.

Partial /Stochastic differential equations and anticipative calculus

Having in mind the results of the seminal work of Paul Malliavin many authors re-used the
non-degeneracy condition to study the regularity of solutions of partial differential equations
and stochastic differential equations. This led to many applications reviewed for instance
by Martha Sanz-Solé in [128| (resp. by Hu, Huang, Lé, Nualart and Tindel [65]) for partial
differential equations driven by coloured noises (resp. by a white noise in time/rough noise
in space with Hurst index H € (1/4,1/2)). We can cite the works of Vlad Bally and Denis
Talay [13], Yaozhong Hu, David Nualart and Jian Song [66], or Shigeo Kusuoka and Daniel
W. Stroock [78] for stochastic differential equations driven by a Brownian motion and that of
David Nualart and Bruno Sausserau [101] for SDEs driven by a fractional Brownian motion
with Hurst index H € (1/2,1).

Malliavin calculus results were also exploited to tackle with non-causal stochastic differential
equations formulated in terms of anticipating stochastic integrals. Indeed the divergence
operator allows to define an extension of It6’s stochastic integral to anticipating integrands in
Brownian motion case (see Skorohod [131]). An anticipating formula is presented by David
Nualart and Pardoux in [99] or in its earlier (and very unknown) version by Masayuki Hitsuda
in [64]. Elisa Alos and David Nualart improved it in [4]. An anticipative calculus was thus
first designed through this approach for Brownian motion (see Berger [17] or the chapter
3 of Nualart [98]) and has since been extended to Poisson processes (see Decreusefond and
Savy [40], Nualart and Vives [103|) and Lévy processes (see [3],[105]). Elisa Alos, Olivier
Mazet and David Nualart used also Malliavin calculus (in particular the divergence) to give a
sense to stochastic integrals with respect to the fractional Brownian motion with Hurst index
H € (0,1/2) and then to design a stochastic calculus in that framework.
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Statistics

A wide range of Malliavin tools were also used for statistical purposes. We give a quick
overview through some examples. For instance, Ciprian A. Tudor and Frederi G. Viens [135]
used the chaotic decomposition to provide an estimator of the self-similarity parameter H
of the Rosenblatt process. Fabienne Comte and Nicolas Marie [29] showed that Skorohod’s
integral (defined from the divergence) was the only suitable extension of Itd’s integral to study
nonparametric estimation in SDEs driven by a fractional Brownian motion of Hurst index
H € (1/2,1). José M. Corcuera and Arturo Kohatsu-Higa [31] wielded Malliavin integration
by parts to study asymptotic inference of stochastic (jump) processes. Nicolas Privault and
Anthony Réveillac also used it with another aim: to provide estimators of Stein-type estimators
of the drift of some Gaussian processes [118|.

Finance

A wide range of the fruits born of the intersection of Malliavin calculus and finance can be
found in the monograph of Paul Malliavin and Anton Thalmaier (see [86]). Among them,
three have sparked special interest throughout our work: the calculation of Greeks, portfolios
hedging and insider’s trading.

In order to frame our point in the vast universe of financial mathematics, we restrict first
our frame to a simple financial market model composed of two assets: one risk-free asset
A = (A4)ier and one risky asset S = (S¢)er. We assume that A is defined by an interest
rate and that S satisfies a stochastic differential equation (in the Black-Scholes model for
instance) or an equation in differences (in discrete models) on the trading interval T. The
derivatives, namely the financial products which value derives from the performance of S, we
are focused on are called wvanilla options. An option is a contract which gives the buyer (the
owner or holder of the option) the right, but not the obligation, to buy or sell the risky asset
at a specified strike price K and at a specified date T. The value of an option at expiry, i.e.
what the holder will receive, is called payoff; this is given for a vanilla option by a random
variable ®(S7). On this market act buyers and sellers who are considered as regular agents
(resp. insiders) if decisions as to the composition of their portfolio (with both types of assets
at their disposal) are made based on public information (resp. with extra information).

The Greeks, so-called in reminiscence of the Greek letters by which they are denoted, designate
the sensitivities of the price of an option with respect to a change in the underlying parameters
on which its value depends. They are of capital use for the trader giving him the power to
control his risk exposure. For instance, Delta and Rho are the first-order Greeks measuring
respectively the sensitivity to the underlying asset price and to the interest rate whereas
Gamma designates the second-order Greek quantifying the rate of change in the Delta with
respect to changes in the underlying price. For a long time, these computations were the only
prerogative of analysts who were treating them with finite difference methods in a Monte-
Carlo frame. Without precisely introducing the formalism (that will be done in chapter 4)
consider an option of payoff K = ®(S7) where (S;) e is the price of a risky asset defined by
the Black-Scholes model:

t t
Sp =1+ f 7Sy du + f 0SudB,, teT, (0.0.3)
0 0

where the parameters r and o stand respectively for the risk-free interest rate and the volatility
of returns of S. The value of the option is given by V; at time ¢t € T. Delta can be expressed
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(in the Black-Scholes model) as

A-No_ e TEq [(I)’(ST) (0.0.4)

Vo oSt
TS0 ’

Sy

where Q denotes the risk-neutral probability measure. Generally, the function ® is not deriv-
able; for instance the payoff of a european call is ®(St) = (S — K)4. Therefore, it would
be wise to write A = e"TEq [®(Sr) 7], where the weight 7 does not depend of the pay-
off. The basic idea introduced first by Eric Fournié, Jean-Michel Lasry, Jérome Lebuchoux,
Pierre-Louis Lions and Nizar Touzi in [54] and |55] making use of the integration by parts and
the chain rule formulas leads to

A =e"TEq[®(Sr)d(u)],

so that the weight can be expressed as the Skorohod integral of a generator w, here deter-
ministic and constant equal to (¢7)~!. Eric Benamou gave in [16] necessary and sufficient
conditions on wu so that it generates a weight for the Greeks simulation. The pioneer work
[54] was restated and transposed to financial jump models driven by Poisson processes by
Nicolas Privault et al. (see [50],[121]) and by Lévy processes by (in particular) Marie-Pierre
Bavouzet-Morel and Marouen Messaoud in [15].

Strongly connected to the semi-martingales theory, the valuation of options and in particular
hedging problems have also benefited from the contributions of Malliavin calculus. Hedging
is crucial since it gives an understanding of how sellers or buyers can manage dynamically
and compose their portfolio to replicate the payoff of the option, i.e. to attain its value at
maturity. Mathematically, this boils down to determine a R?-valued process 1 satisfying the
self-financing condition (see chapter 4 for its expression in the Black-Scholes and the Cox-
Ross-Rubinstein models) such that

Vr(y) = (S7).

In discrete time models, the additional condition
Vt(1/’) = 07 3 Vt € NT, P - a.s.,

is required. In complete markets, where all claims are reachable, and in which the underlying
model is equipped with a Malliavin structure, the process 1 can be elegantly described in
terms of Malliavin derivative; this was suggested by the contemporary works (both published
in 1991) of loannis Karatzas and Daniel Ocone [73] on the one hand and with Jinlu Li [108§]
on the other hand. The so-called Karatzas-Ocone hedging formula is actually derived from
the Clark-Ocone one. Analogue formulas were provided for Poisson processes by Giinter Last
and Matthew Penrose [81] and for Lévy processes by Giulia Di Nunno [104].

Insider trading is a related topic to portfolio optimization. The frame is that of a financial
market where trade two agents with different levels of information: an ordinary agent whose
decisions are made in light of public flow and an insider enjoying an additional information
from the start of the trading period. Two questions arise: how to quantify insider’s additional
expected utility? Does the additional information produce an arbitrage? This latter can be
traduced by an enrichment of the filtration on which the insider can base his portfolio decisions
and leads then to the theory of enlargement of filtrations. Following the pioneer work of Igor
Pikovsky and loannis Karatzas [115|, Jirgen Amendinger et al. [7],[6],[5], Axel Grorud and
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Monique Pontier [61] precised criterions for optimization and computed the additional utility
of the insider in their respective works. Peter Imkeller connected it to Malliavin calculus in
[68] by expressing the information drift as the logarithmic Malliavin trace of a conditional
density characterizing insider’s advantage. Jorge A. Leon, Reyla Navarro and David Nualart
use in [83] some techniques of Malliavin calculus to analyze the properties the forward integral
(introduced by Russo and Vallois in [127]) and to maximize the expected logarithmic utility
of the insider.

In some extensions of the Black-Scholes model allowing the volatility to be a stochastic process
(see for instance Hull and White[67], or Heston [63]), in particular in some stochastic volatil-
ity diffusion models, where the volatility also follows a diffusion process, it can be observed
that the implied volatility (forward-looking measure to estimate the future fluctuations of the
underlying asset) behaves roughly at any reasonable timescale. Malliavin’s toolbox whose ef-
fectiveness in anticipative calculus was mentioned, is also efficient to analyze future volatilities,
which are non-adapted processes. In [2], Elisa Alos, Jorge Ledn and Josep Vives, on a seminal
work on the nowadays named rough volatilities, give an expression for the short-time behavior
of the implied volatility in a jump-diffusion models in terms of the Malliavin derivative of it.

Stein’s method

In a seminal paper ([132]), Charles Stein described a process to quantify the errors in the
Normal approximation by sums of random variables having a stationary dependence struc-
ture. By the same, he laid the foundations of a very powerful method whose perspectives of
application very quickly exceeded the framework of its birth; Stein’s method notably stood
out as one (not to say the one) efficient way to compute distance between two probability
measures of the form

i

disty (P*, Q) = sup U hdP* —J hdQ
heH |JF T

where P* stands for the target measure (to approximate) and Q the initial measure, both de-
fined on the same metric space (§,c) and H is a set of test functions. Even if Stein’s method
keeps a special bond with the Normal approximation for which it was born (refer to the ref-
erence book of Louis H.Y. Chen, Larry Goldstein and Qi-Man Shao [27]), its principles could
be to transposed to other target distributions. It first gave birth to Stein-Chen method for
Poisson convergence (see Chen [26]). Many approximation criterions of more general random
variables by varied distributions followed: Gamma (Arras and Swan [8], Dobler and Peccati
[44], Pekoz, Rollin and Ross [114]), Exponential (Chatterjee, Fulman and Réllin [25], Pekoz
and Rollin [112]), Geometric (Pekoz, Rollin and Ross [113])... Besides, in the Section Tazon-
omy of the webpage Stein’s method he has dedicated to it, Yvik Swan reviews all distributions
which approximation can be quantified through this method. Many surveys were published to
teach the proselyte and initiate the layman with the effectiveness of the concept. If it remains
impossible to give an exhaustive list, we recommend the reference and pedagogical works of
Benjamin Arras and Yvik Swan, [8], Andrew D. Barbour [14] or Nathan Ross [125].

Stein’s method seems to be split in two stages; the first one consists in converting the prob-
lem of bounding the error in the approximation of the measure P* by Q into a problem of
bounding an expression of the form

Eq [Lo(X)] = E [Lip(X)] + E [Lop(X)], (0.0.5)


https://sites.google.com/site/steinsmethod/home
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where L (resp. the class of ¢) is determined to characterize the target measure P* (resp.
P* and #H), and X is a random variable of law Q. The second component of Stein’s method
gathers techniques to bound (0.0.13); by taking into account how X is defined this consists
into transforming L;¢(X) into —Lay(X) + remainder. This remainder is what gives the bound
of the distance and in a problem of convergence, provides its rate. To make the transformation
of L1p(X), several approaches appeared along the years. One of the most popular approach
(see for instance Barbour and Chen [14]) is to use exchangeable pairs. Alternative to it,
are the size-biased (see Chen, Goldstein and Shao [27]) or zero biased (see Goldstein and
Reinert [58]) couplings, which again conveniently transform Lip. In a path-breaking work,
Ivan Nourdin and Giovanni Peccati (see [93],[94]) showed that the transformation step can be
advantageously made simple using integration by parts in the sense of Malliavin calculus, and
by the same gave an intersection to the two theories. This approach is efficient provided there
exists a Malliavin gradient on the space on which X is defined. It was in particular applied to
functionals of Rademacher (see Nourdin, Peccati and Reinert [96], Zheng [143], Poisson (see
for instance Decreusefond, Schulte and Théle 41|, Lachi¢ze-Rey and Peccati [79], Peccati,
Solé, Taqqu and Utzet [111]) or Gaussian random variables (see Nualart and Peccati [100]) or
processes (see Coutin and Decreusefond [32, 33|). A review of the works resulting from the
Malliavin-Stein approach can be retrieved in the webpage designed by Ivan Nourdin.

Dirichlet forms

Parallel to its connection with Stein’s method, Malliavin calculus meets profitably Dirichlet
forms in the frame of error calculus (see Bouleau and Hirsch [23]). The related topics have
generated considerable interest (among the analyst community before probabilists take it)
since the beginning of XX-th century. The use of Dirichlet forms is particularly efficient to
perform those computations when errors are supposed to be infinitesimal and probabilistic. If
Y stands for a scalar erroneous quantity, the error propagates by the function f according to
the formulas:

bias of error on f(Y) = (bias of error on'Y) f/(Y) + & (var of error on Y) f”(Y) (Eqy)
var of error on f(Y) = (var of error on Y) f"2(Y) (E2)

where, if the variance is of the same order of magnitude as the bias or if the bias is negligible
with respect to the variance, the calculus has to be
e for the bias of error: a second order differential equation with variance and bias (E;),

e for the variance of error: a first order differential equation for the calculus of the variance
which does not involve the bias (Ez).

By considering up to now a quantity F = F(X4) (A < N*) function of the erroneous quantities
{Xk, k € A} (supposed to be known, small and independent) the potential quadratic error to
expect on F denoted O'% can be written as:

o = L(F?) — 2F L(F), (0.0.6)
where L is the differential operator

1 02
LZ*ZJI% 2
245 "X}


https://sites.google.com/site/malliavinstein/home
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and {07, k € A} is the family of quadratic errors on {Xy, k € A}. Actually, the quadratic error

can be expressed as
ok =I(F) =(F.F),

where I' is the carré du champ operator defined by
1
L(F,G) = 3 (L(FG) ~ GLF - FLG). (0.0.7)

The use of these tools makes most sense when tackling with the estimation of the convergence
rate of a sequence (X,)pen* towards a random variable X, all assumed to be defined on a
probability space (2, A, P). Indeed, if the form T is closed, the error calculus theory deploys in
this context by lying on the following principle: if the sequence of pairs (X,,, error on X,,) con-
verges suitably, it converges necessarily to a pair (X, error on X). When the underlying space
is provided with a Malliavin structure the operator L appearing in (0.0.15) coincides with the
Laplacian /number operator L = —§D. This key fact will be explained in Section 1.3.2 and il-
lustrated in the case of the Wiener space in Example 1.3.6. This suggests that Dirichlet forms
implicitly operate in the Stein-Malliavin combination to lead to a Stein-Dirichlet-Malliavin
method (see Decreusefond [36]). Besides, Ehsan Azmoodeh, Simon Campese and Guillaume
Poly exploited the connection between the three theories to revisit the fourth moment theorem
in [11].

We conclude this state of the art by drawing Malliavin’s tree.
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Contributions

By grabbing the tree metaphor again, we could sum up the contributions of this thesis to
the addition of two roots: the construction of a Malliavin calculus for independent random
variables on the one hand, and for compound geometric processes on the other one. The fruits
resulting from these two formalisms are displayed in colour in the above figure: in purple
for those relating to independent random variables framework, in blue for those relating to
compound geometric processes framework.

Malliavin calculus and Dirichlet structures for independent random variables

The motivation to develop a Malliavin calculus for independent random variables was twofold.
As mentioned above, after some years of development, the Malliavin calculus has reached a
certain maturity. The most complete and fruitful theories are for Wiener (see for instance Nu-
alart [98]) and Poisson point processes (see for instance Albeverio, Kondratiev and Réckner [1],
Privault|[117]). The only Malliavin’s foray in discrete settings had been so far for Rademacher
processes (see Privault [117]); our initial aim was to generalize it. Malliavin calculus can be
constructed in the three aforementioned frameworks (Gaussian, Poisson, Rademacher) via a
chaotic approach. In those, the existence of normal martingales as solutions of structure equa-
tions (see Emery [51], Privault, Solé and Vives [120] for the continuous time, Privault [117] for
Rademacher processes) entails directly a chaotic decomposition by induction of the martingale
representation property (see Emery [51]). The existence of structure equations is not necessary
to state a chaotic decomposition (see for instance Dasgupt and Kallianpur [35], Eddhabi and
Vives [49] for chaotic decomposition and Clark formula for the fractional Brownian motion
with index H € (1/2,1)); but it considerably facilitates it. The independence and stationarity
of increments seems to play a major role in the resolution of the so-called structure equations
and thus in the effectiveness of the concepts. This motivated to investigate and explore what
we can inherit in the simplest situation of all with independence (without requiring stationar-
ity): that of a family of independent, non necessarily identically distributed, random variables.
The closest situation to our investigations is that of the Rademacher space, namely {—1, 1}V,
equipped with the product probability ®genpr where uy is a Bernoulli probability on {—1,1}.
The chaotic approach that leads to a Malliavin calculus on it is intrinsically linked to the
existence of a normal martingale or novation (in Emery’s terminology [52]) coupled with the
canonical process X. The existence of a normal martingale in a discrete setting also requires
that the law of the random variables be only supported by two points (see Emery [51],[52],
Privault and Schoutens [119]). This is also reflected in the very definition of the gradient (see
Nourdin, Peccati and Reinert [96] or Privault [117]), usually defined as

DiF(X1,- -+, Xy)

—P(Xp = DF(Xp, o, 41 oo X)) = P(Xp = —1)F(Xy, -, —1 ,--.X
( k ) ( 1, oL, ) TL) (k ) ( 1, ) ) s n)7
k—th k—th

and that implies to be meaningful, either that the random variables are real valued or that
they only have two possible outcomes. Our initial aim was to provide any countable product
of probability spaces with a Malliavin structure; it must be clear that in the present work all
the random variables may leave on different spaces, which are then only supposed to be Polish
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spaces. That means that in the definition of the gradient, we can not use any algebraic prop-
erty of the underlying spaces. Although some of our applications do concern random variables
with finite number of outcomes, it did not seem straightforward to devise what should be the
weights, replacing P(X; = 1) and —P(X; = —1). In that respect, we introduce a discrete
gradient D as a difference operator which can be interpreted as the measure of the "influence"
of the k-th component of the process X on F. The definition of the divergence operator 4,
as the adjoint of D, satisfies a discrete version of integration by parts formula (1.3.1). Last
the introduction of the operator number L = —4D, also generator of a Markovian semi-group
(Pt)ter,, , completes the definition of the modicum of Malliavin operators. We bring kind of
legitimacy to our formalism from several perspectives. We connect our formalism to its elder,
the Rademacher framework; not with the gradient but with the number operator. Indeed,
many applications, notably those revolving around functional identities, rely not directly on
the gradient D but rather on the operator number L. It turns out that for the Rademacher
space, the operators L = —0D defined according to (0.0.8) and L defined in our construction
do coincide. Besides, we attach our construction to preexisting continuous time theories. Ac-
tually, we bring to light that the usual Poisson and Brownian Dirichlet structures associated to
their respective gradient, could be retrieved as limits of the structures induced by our formal-
ism. We obtained versions of almost all the classical functional inequalities in discrete settings,
and revisit some of them to which we give a new point of view. To mention just a few, we
show that the Efron-Stein inequality can be interpreted as a Poincaré inequality or that the
Hoeffding decomposition of U-statistics can be viewed as an avatar of the Clark representation
formula. We transpose the classical covariance identity, log-Sobolev inequality, and deviation
inequality in our framework. Then our formalism finds its place within Malliavin’s landscape;
it fully generalizes what is known about Rademacher spaces, and connects with Brownian and
Poisson frameworks with both limit procedure and similar functional identities.

The second main motivation of our first work came from a branch of the tree with which
such formalism would be likely to combine advantageously: Stein’s method. We provide here
a "Stein-Malliavin criterion" analogue to the eponymous results in the Gaussian and Pois-
son cases (see Nourdin and Peccati [93], Peccati, Solé, Taqqu and Utzet [111]), or in the
Rademacher space (see Nourdin, Peccati and Reinert [96]) giving a "Berry-Esseen" general
bound for the Kolmogorov-Rubinstein distance between the law of a functional of indepen-
dent random variables (without any additional hypothesis on the initial laws) and the Normal
distribution, and this in terms of Malliavin operators. We establish a similar criterion for the
Gamma approximation. Applied to the particular case of degenerate U-statistics of order two,
it allows to provide a de Jong type estimate in the Gamma approximation of those U-statistics
(see Dobler and Peccati [48]). To the best of our knowledge, there does not yet exist a Stein
criterion for Gaussian or Gamma approximation which does not rely on exchangeable pairs
or any other sort of coupling. Our results appear as a natural continuation of those stated
by Ivan Nourdin, Giovanni Peccati and Gesine Reinert [96] for Rademacher functionals; we
generalize thus the use of the Nourdin-Peccati approach (Nourdin and Peccati [94]) to general
discrete settings.

For all these reasons, it seems that our Dirichlet-Malliavin structure gives a unified framework
for many results scattered in the literature so that we hope to bring new insights on why these
apparently disjoint results (Efron-Stein, exchangeable pairs, etc.) are in fact multiple sides of
the same coin... with the "effigy" of the integration by parts formula.
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Malliavin calculus for compound geometric processes and insider trading in a
ternary model

The initial aim of the second work was not to design a stochastic calculus for geometric com-
pound processes but rather to use our discrete Malliavin calculus to address insider’s trading
issues. This is also the reason why the title of the thesis does not mention it. Indeed, we
first tried to deploy our artillery to hit an identified target: the computation of the additional
logarithmic expected utility of an insider in the trinomial model. This problem is of partic-
ular interest in several respects; first, and as mentioned above, financial mathematics is the
flagship scope of Malliavin calculus. If option hedging has already been studied in the Cox-
Ross-Rubinstein model (see chapter 1 in Privault [117]) using the Malliavin equipment in the
Rademacher space, no similar project has been carried out so far in the framework of multino-
mial trees (with at least three branches at each stage). Moreover, while many works deal with
enlargement of filtrations and insider issues in continuous time (see the works of Amendinger,
Imkeller and Schweizer (|7]), very few were carried on discrete settings. Some results already
exist for the enlargement of filtrations in discrete time. Catherine Blanchet-Scalliet, Monique
Jeanblanc and Roméo Romo Romero showed in [20] that the results known in continuous
time extend immediately in a discrete time setting. Most of them are easily obtained as a
result of Doob’s decomposition. In this respect, we wanted to discuss the possibility to inter-
pret the increasing predictable process of Doob’s decomposition as the information drift and
to express it in terms of Malliavin derivative, as done by Peter Imkeller in continuous time [69].

The results of our investigations follow; while our formalism lends itself very well to the compu-
tation of Greeks in the trinomial model, it turns out to be impossible to state a Karatzas-Ocone
hedging formula in this context. This is a direct consequence of the absence of a martingale
representation theorem which requires that the law of the random variables be only supported
by two points (see Emery [52]). Without completely losing sight of our original goal, we chose
thus to substitute what we have called a ternary model to the trinomial one. Equivalent in law
to the initial one, it is supported by a compound geometric process. This is based on a jump
structure as the compound Poisson process, and thereby inherits number of properties from
this latter. In particular, the definition of the measurable space (£2,.4) on which it is defined is
a crucial point to characterize the compound geometric process. Following the frame designed
by Laurent Decreusefond and Nicolas Savy for filtered Poisson processes [40], we describe € as
the set composed of the couple (¢, k) where ¢ stands for the jump time and k the height of the
corresponding jump. This definition plays a major role in the effectiveness of the concepts;
the so-called ternary model lying on this new structure, yet equivalent in law to the trinomial
model, best suits for hedging problems. As expected, it remains impossible to state a chaotic
decomposition from a normal martingale (for the reasons evoked above); nevertheless this new
paradigm enables to establish a modified chaotic decomposition in terms of multiple integrals
with respect to an non-orthogonal family of random variables. The gradient is thus introduced
as the annihilation operator acting on this pseudo-chaotic decomposition and such that the
stochastic integral defined appears - up to a linear transformation - as the "inverse" operation
of it and as its adjoint. These latters are linked via an integration by parts formula so that
we equip compound geometric processes with a Malliavin calculus. Besides, the gradient co-
incides with a difference operator more prone to state functional identities from which derives
the expected Clark-Ocone-Karatzas formula.
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The second part of the work consists in making use of this new formalism to compute the
additional utility of an insider in the new ternary model. The insider benefits from an extra
information hidden in a I'-valued random variable G. The insider’s filtration G does not coin-
cide with the initial one, so that we need to use the techniques of enlargement of filtrations in
a discrete setting. Using the toolbox of Catherine Blanchet-Scalliet, Monique Jeanblanc and
Roméo Romo Romero [20], we define an analogue of the information drift. We express it by
means of the Malliavin gradient (for compound geometric processes) applied to the conditional
density processes p° (¢ € T'). Besides, we focus on a particular process 1/pG from wich we
define the martingale preserving measure (Qq)ier. Following the method of Freddy Delbaen
et Walter Schachermayer [42], we compute and express the insider’s optimal portfolio in terms
of the G-martingale (Q¢)wer. We show that the insider’s additional expected logarithmic util-
ity can be expressed as the relative entropy of the initial measure P with respect to Q;; we
retrieve exactly the result of Jirgen Amendinger, Peter Imkeller and Martin Schweizer |7]
stated in the continuous case. We end the work by doing explicit computations in the specific
case where the insider gets an extra information on the terminal value of the risky asset.

Manuscript

The manuscript is organized as follows; it consists of two parts, each of which refers to one
of the above-mentioned works. The first one, entitled Malliavin and Dirichlet structures for
independent random wvariables is a collaboration with Laurent Decreusefond and was pub-
lished in Stochastic Processes and their Applications in 2019 (see [38]). The second one will
be submitted soon. Both parts are deployed according to the same scheme; they start with
an introductory chapter where is giving the state of the art and presenting the formalism that
need to be developed to respond to an identified problematic. The necessary tools are built in
the chapters immediatly following them whereas the fruits are harvested in the last chapter
of each part, as the response provided to the initial problem.

Before ending this introduction, let me mention that any new contribution (original definition
or result) is flagged with a symbol (%). Despite my poor English (I apologize for that), I
really enjoyed preparing this manuscript; I wish you a pleasant reading!
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Introduction (en frangais)

L’arbre de Malliavin

Au coeur de notre travail, se situe le calcul de Malliavin. Ou plutdt, il constitue le tronc
de 'arbre par lequel nous avons choisi de dessiner les contours de cette thése. L’anatomie
de cet arbre de Malliavin se décline au travers des sections suivantes ; la composition du
sol sur lequel il s’érige a en héritage les théories analytique et probabiliste. Il prend ses
racines dans les familles de processus caractérisés par des propriétés de (semi/normales)
martingales, trajectorielles ou d’indépendance des incréments. Son formalisme repose sur
un(e) pierre angulaire/socle qu’incarne la formule d’intégration par parties. Enfin, sa
rencontre avec d’autres branches de ’analyse ou des probabilités a donné de nombreux fruits,
les applications du calcul de Malliavin.

Racines et socle : le cadre du calcul de Malliavin et la formule d’intégration
par parties

Historiquement, le développement du calcul de Malliavin était davantage motivé par la con-
ception d’outils probabilistes & des fins applicatives que par ’élaboration - & proprement parler
- d’un calcul différentiel en dimension infinie sur 'espace de Wiener. Dans cette perspective
d’applications, les premiers résultats de Malliavin furent utilisés pour fournir une preuve prob-
abiliste du théoréme de Hormander et statuer sur I’existence et la régularité de la densité de
vecteurs aléatoires. Les critéres établis par Paul Malliavin (voir [85]) dans le cadre de ces deux
études reposaient sur ce qui deviendrait la pierre angulaire de sa théorie éponyme : la formule
d’intégration par parties. Ce travail pionner de Paul Malliavin inspira peu aprés de nombreux
travaux autour de I'hypoellipticité d’opérateurs différentiels elliptiques dégénérés d’ordre 2 ;
on peut notamment citer les travaux de Jean-Michel Bismut Jean-Michel Bismut [19], Hi-
roshi Kunita [77], Daniel W. Stroock [133] or Shinzo Watanabe [138]|. En paralléle, d’autres
probabilistes s’intéressérent alors & ce qu’impliquait notamment ce nouveau formalisme : la
possibilité de construire une différentiation sur 'espace de Wiener # et de la connecter avec
la précédente notion d’intégration.

Deux approches principales menant au calcul de Malliavin classique sur I'espace de Wiener
(supporté par I'espace de Banach C°(T; R) avec T = [0,7] ou T = R, et équipé de la
mesure de Wiener P) peuvent étre identifiées.

Une premiére approche, dite variationnelle, consiste & coupler 'espace de Wiener a un espace
de Hilbert séparable du type $ = L2(T, B, \), oil A est la mesure de Lebesgue sur T. Comme

23



24 CONTENTS

expliqué dans les ouvrages de référence de David Nualart [98] ou Svante Janson |71], il existe
alors une mesure Gaussienne {W(A), A € B, A(A) < oo} indépendante sur toute famille de
sous-ensembles disjoints de T, telle que la variance de W(A) est égale & A(A) et que les tra-
jectoires du mouvement brownien peuvent étre reconstruites via la formule de représentation
de Centsov :

B = W([O,t]) = W(1[07t]) M AS T.

En fait, W(h) coincide avec 'intégrale de Wiener de la fonction h € $) relativement a B.
L’espace de Wiener est donc entiérement caractérisé par le processus isonormal Gaussien
{W(h), h € 9} qui peut lui étre associé. Meéme si 'intégrale de Wiener lie naturellement
I’espace de Wiener a une notion d’intégration dans le sens qui vient d’étre défini, la possibilité
de définir un opérateur de différentiation pour une large classe de fonctionnelles de Wiener
est restée longtemps obscure. En effet, la définition en tant que dérivée de Fréchet, aussi
naturelle qu’elle puisse paraitre au premier abord, n’est pas pertinente : les fonctionnelles
de Wiener usuelles comme les intégrales de Wiener ou les solutions d’équations différentielles
stochastiques avec des coefficients réguliers ne sont méme pas continues pour la norme de
I'espace de Wiener. La définition appropriée d’une dérivée directionnelle dans LP(P) provient
du théoréme de Cameron-Martin qui indique - implicitement - qu’elle n’a de sens que si les
accroissements générant la dérivée sont réalisés dans les directions de l'espace vectoriel du
méme nom. L’opérateur D est alors défini sur I'espace S variables aléatoires cylindriques de
la forme

F=f(W(hy), - ,W(hy)); hi,--- ,hp €9, (0.0.9)

ou f appartient a l'espace de Schwartz .(R"™). Par densité de 'espace S dans l'espace des
fonctionnelles de Wiener intégrables, cette définition peut étre étendue au domaine de D, noté
D!2. L’adjoint de I'opérateur D, appelé divergence et noté J, coincide avec l'intégrale de
Wiener (resp. de Skorohod) pour des processus adaptés (resp. non-adaptés). Les opérateurs
D et § sont liés par 'identité fondamentale :

E[(DF,U)s] = E[F6U] ; Fe D'? U e Dom 6.

Comme cela est détaillé notamment dans les ouvrages de Paul-André Meyer [89] ou Nobuaki
Obata [107], il existe une approche alternative menant au calcul de Malliavin et reposant sur
la représentation chaotique de Wiener-1to. Elle est basée sur le développement de ce qui serait
I'analogue (en dimension infinie) de la théorie de Schwartz ot la mesure Gaussienne p sur le
dual E* d’un espace nucléaire E = .7(R) se substituerait a la mesure de Lebesgue sur R".
L’espace & (resp. €*) des fonctionnelles de bruit blanc test (resp. généralisées) est construit
par un plongement dense et continu dans L2(E*, 1) (resp. par dualité) :

¢ c L2(E*, pu) c &*.

L’espace L2(E*, 1) est en fait canoniquement isomorphe & 1’espace de Fock sur L2(R) a travers
I'isomorphisme de Wiener-It6-Sega. Ainsi toute fonctionnelle de Wiener de carré intégrable
admet une unique décomposition en termes d’'intégrales de Wiener, de sorte a ce que cette
décomposition chaotique caractérise cette approche alternative. Dans le contexte général des
espaces de Fock, D et § coincident respectivement avec ['opérateur d’annihilation et 'opérateur
de création que l'on rencontre en théorie des probabilités quantique et satisfont une relation
canonique de commutation généralisée. L’équivalence de ces deux approches repose sur la
relation intrinséque entre le mouvement Brownien standard et les polynémes de Hermite.
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Paul-André Meyer met en lumiére dans [88] I’équivalence des normes associées aux différents
espaces de Sobolev ainsi définis.

Si le formalisme de Malliavin était circonscrit a I’espace Wiener a ses débuts il fut par la suite
étendu a d’autres types de processus ; pour n’en citer que quelques uns, les processus Gaussiens
en général (voir Nualart [98], Nourdin et Peccati [94]), les processus de Poisson (voir Bichteler
et al. [18] pour un point de vue variationnel, Nualart and Vives [103| ou Privault [116] dans
le cadre d’une approche chaotique), les processus de Lévy (voir Nualart and Schoutens [102])
et les processus de Rademacher (voir Privault [117]).

La multiplicité des approches et la variété des espaces canoniques sur lesquels il opére donc,
semblent dissuader ’éventuel projet d’un travail unificateur. Si la formalisation d’une con-
struction universelle parait donc compromise, il demeure envisageable d’identifier un dénom-
inateur commun & tous ces formalismes. Celui-ci serait plutdt & chercher du coété de la ter-
minologie du calcul de Malliavin qui peut étre introduite par analogie avec celle du calcul
différentiel classique dans les espaces de Banach : aux vecteurs se substituent les trajectoires
(indexées par le temps ou un espace de Hilbert) du processus canonique, aux fonctions les
fonctionnelles opérant sur l'espace des trajectoires, tandis qu’on désigne volontiers par les ter-
mes gradient et divergence, les deux opérateurs phares de cette théorie : la dérivée au sens de
Malliavin et son adjoint. Le semi-groupe d’Ornstein-Uhlenbeck et son générateur complétent
la famille des opérateurs de Malliavin. L’existence d’une relation fondamentale liant gradient
et divergence parachéve la description du champ lexical du calcul Malliavin et apparait comme
sa pierre angulaire : la formule d’intégration par parties au sens de Malliavin,

E [(DF, U)n] = E[F §U], (0.0.10)

ou (2, A, P) est 'espace de probabilité canonique et SR est un espace de Hilbert générique a
voir comme [’espace des perturbations lorsque DF est interprété comme une dérivée direction-
nelle (par exemple R est 'espace de Cameron-Martin pour le mouvement Brownien).

Au cours de la préparation de cette thése, deux espaces munis d’une structure de Malliavin
suscitérent spécialement notre intérét : l'espace de Poisson et l'espace de Rademacher. Le
formalisme de Malliavin développé dans ces deux cadres sera décrit puis comparé a nos con-
tributions & la fin de cette introduction.

Branches et fruits : les applications du calcul de Malliavin

La rencontre détonante du calcul de Malliavin avec d’autres branches des probabilités ou de
I’analyse a fait entrevoir la puissance de cet outil et I’étendue des applications dont il est
garant des bases théoriques. Nombreux sont les champs dans lesquels le calcul de Malliavin
a trouvé sa place ; a titre d’exemple on peut citer 1’étude des opérateurs de Hormander
(qui est I'application « historique »), plus généralement ’étude de la régularité des lois de
probabilité de solutions ’EDS/EDPs, la finance, la méthode de Stein, le calcul d’erreur, le
calcul anticipatif et plus récemment 'inférence statistique.

Equations differentilles sotchatiques, équations aux dérivées partielles et calcul
anticipatif

Gardant a D’esprit les résultats du papier pionner de Paul Malliavin, de nombreux auteurs ré-
utilisérent la condition de non-dégénérescence pour étudier la régularité des solutions d’équations
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aux dérivées partielles et d’équations différentielles stochastiques. Cela donna lieu & de nom-
breuses applications passées en revue notamment par Martha Sanz-Solé dans [128] (resp. par
Hu, Huang, Lé, Nualart and Tindel [65]) pour les EDP dirigées par un bruit coloré (resp. par
un bruit blanc en temps /bruit rugueux en espace avec un indice de Hurst H € (1/4,1/2)).
On peut également citer les travaux de Vlad Bally et Denis Talay [13], Yaozhong Hu, David
Nualart et Jian Song [66], ou Shigeo Kusuoka et Daniel W. Stroock [78| pour des équations
différentielles stochastiques dirigées par le mouvement Brownien et ceux de David Nualart et
Bruno Sausserau [101] pour les EDS dirigées par un mouvement Brownien fractionnaire avec
un indice de Hurst H € (1/2,1).

Les résultats du calcul de Malliavin furent également exploités pour étudier des équations
différentielles stochastiques non-causales formulées en termes d’intégrales stochastiques an-
ticipatives. En effet 'opérateur divergence permet de définir une extension de l'intégrale
stochastique d’It6 & des intégrandes anticipatifs dans le cas du mouvement Brownien (voir
Skorohod [131]). Une formule d’anticipation est donnée dans Nualart et Pardoux [99] ou dans
une version antérieure (et méconnue) par Masayuki Hitsuda [64] qu’Elisa Alos et David Nu-
alart améliorérent dans [4]. Un calcul anticipatif d’abord développé selon cette approche pour
le mouvement Brownien (voir Berger [17] ou dans le chapitre 3 de Nualart [98]) a depuis été
étendu aux processus de Poisson (voir Decreusefond and Savy [40], Nualart et Vives [103])
et aux processus de Lévy (voir [3],[105]). Elisa Alos, Olivier Mazet et David Nualart util-
isérent également le calcul de Malliavin (en particulier la divergence) pour donner un sens a
Iintégrale stochastique par rapport au mouvement Brownien fractionnaire avec un indice de
Hurst H € (0,1/2) et construire un calcul stochastique dans ce contexte.

Statistique

Un large éventail d’outils issus du calcul de Malliavin trouvérent leur place dans des travaux
en statistique ; nous en donnons un bref apergu dans ce paragraphe. Par exemple, Ciprian A.
Tudor et Frederi G. Viens [135] utilisérent la décomposition chaotique pour proposer un adap-
tateur pour le paramétre d’auto-similarité H du processus de Rosenblatt. Fabienne Comte et
Nicolas Marie [29] montrérent que l'intégrale de Skorohod (définie a partir de la divergence)
est I'unique extension de 'intégrale d’It6 valable pour I'estimation non-paramétrique dans des
EDS dirigées par un mouvement Brownien fractionnaire d’indice de Hurst H € (1/2,1). José
M. Corcuera et Arturo Kohatsu-Higa [31] tirérent profit de la formule d’intégration par par-
ties pour étudier I'inférence asymptotique d’un processus (& sauts) stochastique, tandis que
Nicolas Privault et Anthony Réveillac 'utilisérent & une autre fin : celle de d’estimer le drift
de processus Gaussiens a l'aide d’estimateurs de type Stein [118].

Finance

Une grande variété des fruits nés de la rencontre du calcul de Malliavin et de la finance
sont décrits la monographie de Paul Malliavin et Anton Thalmaier (voir [86]). Trois de ces
applications ont particuliérement éveillé notre intérét : le calcul de Grecques, la gestion de
portefeuille, et le délit d’initié.

Afin de placer ces points d’intérét dans le vaste univers des mathématiques financiéres, re-
streignons d’abord le cadre d’étude & celui d’un marché composé simplement de deux actifs :
un actif sans risque modélisé par une suite déterministe A = (A;)er et un actif risqué dont
la suite des cours est donnée par S = (S;)we. Supposons d’abord que A est défini par une
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suite (r¢)wer de taux d’intérét et que S satisfait une équation différentielle stochastique (dans
le cadre du modeéle de Black-Scholes par exemple) ou une équation aux différences (dans le
cadre de modeéles discrets) sur 'intervalle de trading T. Nous nous intéressons a certains pro-
duits dérivés particuliers, dont la valeur dérive donc des performances de S, appelés options
(vanille). Une option est un contrat qui donne a l’acheteur (le propriétaire ou détenteur) le
droit mais non l'obligation, d’acheter ou de vendre un actif risqué & un prix fixé d’avance K et
a une date spécifique T'. La valeur d’une option & échéance, correspondant & ce qui est finale-
ment percu par l'acheteur, est appelée payoff ; pour une option, cette valeur est modélisée
par une variable aléatoire ®(S7). Enfin, on considére que sur ce marché agissent des vendeurs
et acheteurs considérés comme des investisseurs ordinaires (resp. des initiés) si les décisions
relatives a la composition de leur portefeuille (avec les deux types d’actifs a leur disposition)
sont prises sur la base d’informations publiques (resp. en bénéficiant d’informations supplé-
mentaires).

Les Grecques, ainsi dénommées par allusion aux lettres grecques par lesquelles elles sont
désignées, sont des instruments de calcul de sensibilité du prix d’un actif relativement a la
modification de parameétres sous-jacents dont sa valeur dépend. Elles sont d’une utilité capi-
tale pour 'agent car elle lui conférent des éléments de controle de son exposition aux risques.
Par exemple, Delta et Rho sont les Grecques mesurant respectivement la sensibilité au prix de
I’actif sous-jacent et au taux d’intérét alors que Gamma désigne un indicateur du second ordre
quantifiant la variation du Delta relativement a une variation du prix sous-jacent. Pendant
longtemps, le calcul de ces indicateurs a été la seule prérogative des analystes qui s’y employ-
aient par des méthodes de différences finies dans le cadre de la méthode de Monte-Carlo. Sans
introduire précisément le formalisme (ce qui sera fait au chapitre 4) considérons une option de
payoff K = ®(St) et dont la dynamique de la suite de prix de Pactif risqué sous-jacent (S;)er
est donnée par le modéle de Black-Scholes :

¢ ¢

S; = 1~|—f rSudu~|—j 0S,dBy, te T, (0.0.11)
0 0

ol les parameétres r et o représentent respectivement le taux d’intérét sans risque et la volatilité

des profits générés par l'actif risqué. La valeur de 'option & un instant donné ¢ € T est notée

Vi . Le Delta s’exprime (dans le modéle Black-Scholes) par

_ Mo _ e "TEq {(I)’(ST)(?ST] : (0.0.12)

A=75, 25,

ou Q correspond a la mesure de probabilité risque neutre. En général, la fonction ® n’est pas
dérivable ; par exemple, le payoff d'un call européen (option d’achat & une date déterminée)
est ®(S7) = (Sp — K)4+. Il serait donc accommodant de pouvoir réécrire A sous la forme
A = e "TEQ [®(Sr) 7], ott le poids 7 ne dépendrait pas du payoff. L’idée de base fut d’abord
introduite par Eric Fournié, Jean-Michel Lasry, Jérome Lebuchoux, Pierre-Louis Lions et Nizar
Touzi dans |54] et [55] qui, tirant avantage de la formule d’intégration par parties d’une part,
de la chain rule ("régle de dérivation en chaine") d’autre part, ont prouvé que

A = eiTTEQ [®(ST) d(u)],

de telle sorte que le poids s’exprime comme 'intégrale de Skorohod de générateur w, ici déter-
ministe et constant égal & (¢7)~!. Eric Benamou ajouta dans [16] des conditions nécessaires
et suffisantes sur u permettant d’automatiser la génération d’un poids dans la perspective
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de simuler les Grecques. Le travail pionner de Fournier et al. [54] a été transposé pour les
modeles a sauts (en finance) dirigés par des processus de Poisson par Nicolas Privault et al.
(voir [50[,[121]) et par des processus de Lévy (notamment) par Marie-Pierre Bavouzet-Morel
et Marouen Messaoud dans [15].

Fortement connectée a la théorie des semi-martingales, ’évaluation des options et en partic-
ulier les problémes de couverture ont également tiré bénéfice des contributions du calcul de
Malliavin. La réponse a la question de hedging ("couverture") est cruciale dans la mesure o
elle donne des éléments de compréhension aux acheteurs ou vendeurs pour composer et ajuster
de facon dynamique leur portefeuille dans le but de répliquer cette option, i.e. atteindre sa
valeur a échéance. Mathématiquement, cela revient & déterminer un processus ¥ a valeurs
dans R? satisfaisant une condition d’auto-financement (voir le chapitre 4 du manuscrit pour
son expression dans les modeéles de Black-Scholes et de Cox-Ross-Rubinstein)

Vr(y) = (S7).

A noter que dans les modéles a temps discret ’hypothése supplémentaire,
Vi(y) =0, ; Vte Np, P —as.,

est requise. Dans les marchés complets ol toutes les options sont réplicables, et dans lesquels
I’espace probabilisé sous-jacent est muni d’une structure de Malliavin, le processus v s’exprime
élégamment & I’aide de la dérivée de Malliavin ; cela fut suggéré dans les deux travaux indépen-
dants et contemporains (tous deux publiés en 1991) de Ioannis Karatzas et Daniel Ocone [73]
d’une part et avec Jinlu Li [108] d’autre part. La formule de couverture de Karatzas-Ocone
hedging est en effet dérivée de celle de Clark-Ocone. Des formules analogues furent établies
pour les processus de Poisson par Giinter Last et Matthew Penrose [81] et pour les processus
de Lévy par Giulia Di Nunno [104].

Le délit d’initié est un sujet intrinséquement lié & I'optimisation de portefeuille. Le cadre est
celui d’un marché financier ot deux agents ayant des niveaux différents d’information coexis-
tent : un agent ordinaire dont les décisions sont prises & la lumiére des informations publiques
et un initié bénéficiant d’un surplus d’information (confidentielle) dés le début de la période
d’échanges. Deux questions se posent naturellement : comment quantifier I’utilité supplémen-
taire espérée par I'initié 7 L’information additionnelle dont il bénéficie produit-elle un arbitrage
7 Ce surplus d’information peut se traduire mathématiquement par un élargissement de la
filtration sur lequel I'initié fonde ses décisions de gestion de portefeuille et conduit donc alors
a la théorie de grossissement de filtrations. Suite aux travaux pionniers d’Igor Pikovsky et de
Ioannis Karatzas [115] dans le domaine, Jiirgen Amendinger et al. |7],[6],[5], Axel Grorud et
Monique Pontier [61] précisérent les critéres pour 'optimisation de portefeuille et calculérent
I'utilité additionnelle de 'initié dans leur travaux respectifs. Peter Imkeller connecta cette
utilité au calcul de Malliavin dans [68] en exprimant le drift d’information comme la trace de
Malliavin logarithmique de densités conditionelles caractérisant le bénéfice de l'initié. Jorge
A. Leon, Reyla Navarro et David Nualart utilisérent dans [83] certaines techniques du calcul
de Malliavin pour analyser les propriétés de l'intégrale anticipative (introduite par Russo et
Vallois dans [127]) et pour maximiser 1'utilité logarithmique espérée de I'initié.

Dans certaines extensions du modéle de Black-Scholes ou la volatilité peut étre un processus
stochastique (voir par exemple Hull et White[67], ou Heston [63]), en particulier dans certains
modéles de diffusion & volatilité stochastique, ou la volatilité suit également un processus de
diffusion, on peut observer que le wvolatilité implicite (mesure prospective pour estimer les
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fluctuations futures de l'actif sous-jacent) se comporte rugueusement a toute échelle de temps
raisonnable. La boite & outils de Malliavin, dont 'efficacité en matiére de calcul anticipatif
a déja été mentionnée, est alors également efficace pour analyser les volatilités futures, qui
sont des processus non adaptés. Dans un travail précurseur sur les volatilités rugueuses |2],
Elisa Alos, Jorge Leoén et Josep Vives, donnent une expression pour le comportement a court
terme de la volatilité implicite dans un modéle de diffusion & sauts en fonction de sa dérivée
de Malliavin.

La méthode de Stein

Dans son article fondateur ([132]), Charles Stein décrivit une procédure visant & quantifier les
erreurs commises dans l'approximation Normale par des sommes de variables aléatoires ayant
une structure de dépendance stationnaire. Par la méme, il posa les bases d’'une méthode trés
puissante dont les perspectives d’application dépassérent rapidement le cadre de sa naissance
; la méthode de Stein est devenue I'une des (pour ne pas dire la) fagons les plus efficaces de
calculer la distance entre deux mesures de probabilité s’écrivant sous la forme :

Lth* - Lth‘,

ou P* représente la mesure cible (& approximer) et Q la mesure initiale, toutes deux étant
définies sur le méme espace métrique (§, ¢) et H est un ensemble de fonctions test. Méme si la
méthode de Stein conserve un lien particulier avec les questions d’approximation Normale qui
ont motivé son développement (se référer au livre de référence de Louis H.Y. Chen, Larry Gold-
stein et Qi-Man Shao [27]), ses principes ont pu étre transposés a d’autres distributions cibles.
En particulier, la méthode de Stein-Chen a été congue pour traiter les cas d’approximation de
la loi Poisson (voir Chen [26]). De nombreux critéres d’approximation plus généraux d’autres
lois de variables aléatoires par des distributions variées ont suivi : Gamma (Arras et Swan
[8], Dobler et Peccati [44], Pekoz, Rollin et Ross [114]), Exponentiel (Chatterjee, Fulman et
Rollin [25], Pekoz et Rollin [112]), Géométrique (Pekoz, Rollin et Ross [113]) ... En outre,
dans la section Tazonomie de la page web Malliavin-Stein approach qu’il lui a consacré, Yvik
Swan passe en revue toutes les distributions dont I'approximation peut étre quantifiée par
cette méthode. De nombreuses études ont été publiées pour enseigner au prosélyte et initier le
profane a l'efficacité du concept. S’il reste impossible d’en donner une liste exhaustive, nous
recommandons les ouvrages de référence et particuliérement pédagogiques de Benjamin Arras
et Yvik Swan, [8], Andrew D. Barbour [14| ou Nathan Ross [125].

La méthode de Stein semble se déployer en deux étapes ; la premiére consiste a convertir le
probléme initial (difficile) de borne de l'erreur dans I’approximation de la mesure P* par Q
en celui du contole d’une expression de la forme :

disty (P*, Q) = sup
heH

Eq [Le(X)] = E [Lip(X)] + E [L2p(X)] , (0.0.13)

ou L (resp. la classe d’appartenance de @) est déterminé par un procédé de caractérisation
de P* (resp. P* et H), et X est une variable aléatoire de loi Q. La seconde composante de
la méthode de Stein regroupe des techniques permettant de borner (0.0.13) ; se basant sur la
définition méme de X, cela revient a transformer L;p(X) en —Lop(X) + reste. Cest ce reste
qui donne une borne pour la distance entre lois et dans le cas d’un probléme de convergence,
en fournit la vitesse. Plusieurs approches ont émergé au fil des années pour indiquer comment
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effectuer la transformation de L1 (X). L’une des approches les plus populaires (voir par exem-
ple Barbour et Chen [14]) consiste & utiliser des paires échangeables. Des solutions cousines,
appelées size-biased (coupling) (voir Chen, Goldstein et Shao [27]) ou zero-biased (coupling)
(voir Chen, Goldstein et Shao [27]) basées également sur des couplages tirent bénéfice des
propriétés de la mesure initiale (voir Goldstein et Reinert [58|), pour, la encore, transformer
commodément Lip. Dans un travail inédit, Ivan Nourdin et Giovanni Peccati (voir [93],[94]
ont montré que 'étape de transformation pouvait étre avantageusement simplifiée en util-
isant 'intégration par parties au sens de Malliavin ; ils ont donné par la méme occasion une
intersection aux deux théories. Cette approche est efficace sous couvert de l'existence d’un
gradient de Malliavin sur I’espace sur lequel X est défini. Elle a notamment été appliquée aux
fonctionnelles de Rademacher (voir Nourdin, Peccati and Reinert [96], Zheng [143], Poisson
(voir par exemple Decreusefond, Schulte et Théle [41], Lachiéze-Rey et Peccati [79], Peccati,
Solé, Taqqu et Utzet [111]) ou Gaussienne variables aléatoires (voir Nualart et Peccati [100])
ou processus (voir Coutin et Decreusefond [32, 33]). Une liste des travaux se rapportant a 1’
approche de Stein-Malliavin est disponible sur la page web entretenue par Ivan Nourdin.

Les formes de Dirichlet

En paralléle de sa connexion avec la méthode de Stein, le langage du calcul Malliavin se méle
avantageusement a celui des formes de Dirichlet le cadre du calcul d’erreur (voir Bouleau et
Hirsch [23]). Les sujets connexes ont généré un intérét croissant (au sein de la communauté
des analystes avant que les probabilistes ne s’en emparent) depuis le début du XXe siécle.
L’utilisation des formes Dirichlet s’avére particulierement efficace pour effectuer des calculs
d’erreurs lorsque celles-ci sont supposées étre infinitésimales et probabilistes. Si Y représente
une quantité scalaire erronée, la propagation de I’erreur par la fonction f est caractérisée par
les formules :

biais de 'erreur sur f(Y)
var de erreur sur f(Y) = (var delerreur sur Y) f2(Y)

qui deviennent, si la variance est de méme ordre de magnitude que le biais ou si le biais est
négligeable par rapport a la variance :
e pour le biais de I’erreur : une équation différentielle du second ordre avec biais et variance
(E1)7
e pour la variance de l'erreur : une équation différentielle du premier ordre pour la variance
n’incluant pour de terme de biais (Eo).

Considérant F = F(Xa) (A < N*) fonction de quantités erronées {Xy, k € A} (supposées
connues, petites et indépendantes) l'erreur quadratique potentielle a espérer sur F notée a%
peut étre écrite comme suit :

ot = L(F?) — 2F L(F), (0.0.14)
ou L est 'opérateur différentiel
1 0?
L-iy 22
24 0Xy

et {02, k € A} est la famille des erreurs quadratiques sur {Xy, k € A}. En fait, l'erreur
quadratique peut s’exprimer
of =T(F) = T'(F,F),

(biais de V'erreur sur Y) f/(Y) + 3 (var de lerreur sur Y) f”(Y)

(E1)
(E2) 7
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ou I' est I” opérateur carré du champ défini par
1
L(F,G) = 3 (L(FG) — GLF - FLG). (0.0.15)

L’utilisation de ces outils est plus pertinente lorsqu’il s’agit d’estimer la vitesse de convergence
d’une suite de variables aléatoires (Xp,),en* vers une variable aléatoire X, toutes supposées
étre définies sur un espace de probabilité (22,4, P). En effet, si la forme I' est fermée, la
théorie du calcul d’erreur se déploie en s’appuyant sur le principe suivant : si la suite de
couples (X, erreur sur X,,) converge convenablement, elle converge nécessairement vers un
couple (X, erreur sur X). Lorsque 'espace sous-jacent est muni d’une structure de Malliavin,
Popérateur L apparaissant dans (0.0.15) coincide avec 'opérateur Laplacien /nombre L = —§D.
Ce point clef sera expliqué dans la section 1.3.2 et illustré dans le cas de ’espace Wiener a
travers ’exemple 1.3.6. Cette relation suggére en fait que les formes de Dirichlet s’insérent
implicitement dans la combinaison Stein-Malliavin pour aboutir & une méthode de Stein-
Dirichlet-Malliavin (voir Decreusefond [36]). En outre, Ehsan Azmoodeh, Simon Campese
et Guillaume Poly ont exploité le lien entre les trois théories pour revisiter le théoréme du
moment d’ordre 4 dans [11].

La version dessinée de cet état de I’ar-bre se trouve page 17 et conclut cette partie.

En reprenant cette métaphore, nous pouvons résumer les contributions de cette thése a
I’addition de deux racines & cet arbre : la construction d’un calcul de Malliavin pour les
suites de variables aléatoires indépendantes d’une part, et pour les processus géométriques
composés d’autre part. Au deld de l'intérét propre que chaque construction a pu susciter,
notre choix de développer un formalisme dans ces deux cas a été tout ou partie motivé par
les perspectives d’applications qu’il laissait entrevoir. Aussi, les fruits résultant de ces deux
formalismes sont représentés en couleur dans la figure page 17 : couleur pourpre pour ceux
relatifs au cadre des variables aléatoires indépendantes, et en bleu pour ceux relatifs au cadre
des processus géométriques composés.

Calcul de Malliavin et structures de Dirichlet pour des variables aléatoires in-
dépendentes

La motivation d’élaborer un calcul de Malliavin pour des variables aléatoires indépendantes
était double ; d’une part, pour lui-méme et pour généraliser ce qui avait été exploré jusqu’alors
dans un cadre discret, et d’autre part pour les applications potentielles au controle des suites
de variables aléatoires indépendantes auxquelles son élaboration pourrait conduire.

Jusqu’ici I'incursion du calcul de Malliavin dans un contexte discret était circonscrite a 1’espace
de Rademacher. L’approche chaotique par laquelle est développé un calcul de Malliavin dans
cet espace s’appuie sur lexistence de martingales normales ou novations (pour reprendre la
terminologie de Emery) associées au processus canonique. L’existence de novations requiert
que les lois des variables aléatoires ne soient supportées que par deux points. L’expression
du gradient (0.0.8) de Rademacher n’a d’ailleurs de sens que si les variables aléatoires sont
réelles ou que leur espace d’état est réduit & deux points. Dans le cas général que nous avons
choisi d’investiguer, celui de suites de variables aléatoires sur lesquelles une simple hypothése
d’indépendance est émise, il convient de préciser que les espaces d’états sous-jacents peuvent
étre différents (simplement supposés Polonais). Devant l'impossibilité de définir 'opérateur



32 CONTENTS

gradient comme opérateur d’annihilation opérant sur un espace décomposable en chaos, nous
définissions le gradient discret comme un opérateur différence dont la k-éme coordonnée traduit
I'idée de mesure de 'influence de la k-éme composante du processus initial sur la fonction qui
s’y applique. S’en suit la définition de son adjoint, appelé divergence (s’exprime comme
somme des dérivées partielles) et qui satisfait une formule d’intégration par parties discréte.
La définition de opérateur nombre (appelé Laplacien dans le cas Gaussien), qui est égale-
ment générateur d’un semi-groupe de Markov, compléte alors la définition des opérateurs de
Malliavin.

Nous justifions notre construction & plusieurs égards et lui conférons ainsi une forme de légitim-
ité. Tout d’abord, en la connectant a son ainée sur l'espace de Rademacher. Bien que les
deéfinitions de gradient soient distinctes (pour les raisons précédemment évoquées), il apparait
que les opérateurs nombre définis dans les deux contextes coincident. L’opérateur nombre joue
par ailleurs au role prépondérant dans ’établissement d’inégalités fonctionnelles. C’est donc
par cette correspondance que nous pouvons en revisiter certaines.

D’autre part, notre formalisme se raccorde aux théories préexistantes en temps continu par les
structures de Dirichlet. De telles structures sont de facto définies sur tout espace canonique
muni d’un calcul de Malliavin formalisant ainsi le concept de structure de Dirichlet-Malliavin.
En effet, les structures de Dirichlet Poissonienne et Brownienne usuelles associées a leur gra-
dient respectif s’écrivent comme limites des structures induites par notre formalisme.

Enfin, nous dérivons de notre construction nombre d’identités fonctionnelles. Nous trans-
posons ainsi l'identité de covariance, I'inégalité de log-Sobolev et I'inégalité de déviation clas-
siques dans notre contexte. Nous revisitons d’autres auxquelles nous donnons une nouvelle
interprétation. Par exemple, nous montrons que I'inégalité d’Efron-Stein peut étre interprétée
comme une inégalité de Poincaré ou que la décomposition de Hoeffding des U-statistiques peut
étre vue comme un avatar de la formule de représentation de Clark. Ainsi, notre formalisme
trouve sa place dans le paysage du calcul de Malliavin ; il généralise ce qui avait été théorisé
dans le cas Rademacher et se connecte avec les contextes Brownien et Poissonien par approx-
imation des structures de Dirichlet induites d’une part, et par la ressemblances des identités
fonctionnelles (comme la formule de Clark, inégalité de Poincaré...) obtenues dans les trois
cas d’autre part.

La seconde motivation pour élaborer cette construction provenait de la méthode de Stein,
avec qui, comme évoqué précédemment, branche des un tel formalisme serait susceptible de
se combiner avantageusement. Nous donnons une borne générale de type "Berry-Esseen"
pour la distance de Wasserstein entre la loi de fonctionnelles de variables aléatoires indépen-
dantes et la loi Normale ; et par la méme d’établir un critére de "Stein-Malliavin" analogue
a celui rencontré dans les cas Gaussien et Poisson. Nous formulons un critére similaire pour
I’approximation de la loi Gamma que nous appliquons au cas particulier de U-statistiques
d’ordre 2 et en obtenons une estimation de type de Jong.

Pour toutes ces raisons, il semble que notre structure de Dirichlet-Malliavin donne un cadre
unificateur & de nombreux résultats disséminés dans la littérature et suggére que des résultats
sans lien apparent (Efron-Stein, paires échangeables etc.) sont en réalité les faces d’'une méme
piéce... a "l'effigie" de la formule d’intégration par parties.
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Calcul de Malliavin pour des processus géométriques composés et délit d’initié
dans un modéle ternaire

L’objectif initial du second travail n’était pas de concevoir un calcul stochastique pour les
processus composés géométriques mais plutdt d’utiliser notre calcul discret de Malliavin pour
traiter des problémes de délit d’initié. C’est également la raison pour laquelle le titre de la thése
n’en fait pas mention. En effet, nous avons d’abord essayé de déployer notre artillerie pour at-
teindre une cible identifiée : le calcul de la valeur logarithmique additionnelle attendue 1'utilité
d’un initié dans le modeéle trinomial. Ce probléme présente un intérét particulier & plusieurs
égards ; tout d’abord, et comme mentionné plus haut, les mathématiques financiéres sont le
champ d’application phare du calcul de Malliavin. Si la couverture d’options avait déja été
étudiée dans le modele Cox-Ross-Rubinstein (voir le chapitre 1 dans Privault [117]) en utilisant
la structure de Malliavin dont est équipé ’espace Rademacher, aucun projet similaire n’avait
été réalisé jusqu’alors dans le cadre des arbres multinomiaux (avec au moins trois branches
a chaque étape). En outre, si de nombreux travaux traitent de I’élargissement de filtrations
et des questions de délit d’initié en temps continu (voir les travaux d’Amendinger, Imkeller
et Schweizer (|7]), trés peu ont été réalisés dans des modeéles discrets. Certains résultats ex-
istent déja pour I’élargissement de filtrations en temps discret. Catherine Blanchet-Scalliet,
Monique Jeanblanc et Roméo Romo Romero ont montré dans [20] que les résultats connus
en temps continu s’étendent immédiatement dans un contexte discret. La plupart d’entre eux
sont facilement obtenus grace a la décomposition de Doob. A cet égard, nous souhaitions
discuter de la possibilité d’interpréter le processus prévisible croissant apparaissant dans la
décomposition de Doob comme le drift d’information associé a l'initié et I'exprimer & ’aide
de la dérivée de Malliavin, a 'instar du travail de Peter Imkeller en temps continu [69].

Si notre formalisme se préte bien au calcul de Grecques dans le modéle trinomial, il demeure
en effet impossible d’en dériver une formule de Karatzas-Ocone pour la stratégie couverture
et donc d’en tirer avantage pour ’évaluation d’options. Celle-ci est une conséquence directe
du théoréme de représentation de martingale qui ne peut étre statué quand les lois des vari-
ables aléatoires (discrétes) sont portées par au moins trois points. Ce constat a motivé le
développement d’'un calcul de Malliavin pour les processus géométriques composés (dont les
variables i.i.d. correspondantes sont a valeurs dans {—1,0,1}), sur lesquels baser un modéle
ternaire équivalent en loi au modéle trinomial.

De par la structure de saut qui les sous-tend, les processus géométriques héritent de nom-
breuses propriétés des processus de Poisson, source d’inspiration pour élaborer un calcul de
Malliavin. S’il demeure, comme attendu, impossible d’établir une décomposition en chaos a
partir de martingales normales, (le carré des variables aléatoires i.i.d. étant constant), il ex-
iste une décomposition en pseudo-chaos au moyen d’intégrales multiples relatives a une famille
non-orthogonale (mais orthogonalisable) de variables aléatoires. Le gradient géométrique est
alors défini comme 1'opérateur d’annihilation agissant sur cette pseudo-décomposition chao-
tique et tel que l'intégration stochastique (définie par rapport a la famille orthogonalisable)
apparait - & une transformation linéaire prés - comme l'opération "inverse". En outre, cet
opérateur coincide avec un opérateur différence dont ’expression est plus propice & statuer
des identités fonctionnelles comme la formule de représentation martingale, la formule d’It6,
et la formule de Ocone-Karatzas espérée.

Nous appliquons alors ce formalisme au calcul de 'utilité additionnelle d’un initié dans un
modéle ternaire construit sur la dynamique d’un processus géométrique composé. Reprenant
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les outils développés pour I’élargissement de filtration en temps discret par Catherine Blanchet-
Scalliett, Monique Jeanblanc et Roméo Romo Romero, nous définissons I'analogue du drift
d’information dont nous donnons une expression en termes de gradient géométrique. Nous
montrons alors que 'utilité logarithmique espérée additionnelle de 'initié au temps ¢ peut
étre exprimée comme [’entropie relative de la mesure initiale par rapport a la mesure préser-
vant les martingales sur [0,¢]. Nous retrouvons ainsi exactement le résultat établi par Jirgen
Amendinger, Peter Imkeller et Martin Schweizer dans le cas continu. Nous illustrons ce ré-
sultat et achevons ce travail en effectuant des calculs explicites dans le cas précis ot 'initié
obtient une information supplémentaire sur la valeur finale de 'actif risqué.

Manuscrit

Le manuscrit est organisé comme suit ; il se compose de deux parties, chacune d’entre elles se
référant a 'un des travaux mentionnés ci-dessus. La premiére, intitulée Structures de Malliavin
et Dirichlet pour les variables aléatoires indépendantes renvoit & un travail mené en collabo-
ration avec Laurent Decreusefond et publié dans Stochastic Processes and their Applications
en 2019 (voir [38]). La deuxiéme sera soumise prochainement. Les deux parties se déploient
selon le méme schéma ; elles commencent par un chapitre ol est présenté 1’état de 'art et
ou l'on identifie le formalisme a développer pour répondre & une problématique donnée. Les
outils nécessaires sont construits dans les chapitres qui suivent immeédiatement alors que les
fruits sont récoltés dans le dernier chapitre de chaque partie, comme la réponse apportée au
probléme initial.

Avant de clore cette introduction, je signale que toute nouvelle contribution (définition ou
résultat original) sera signalée dans le manuscrit par le symbole (k). Malgré la piétre qualité
de l’anglais dont souffre la rédaction (et pour laquelle je présent par avance mes excuses aux
lecteurs), j’ai beaucoup apprécié la préparation de ce manuscrit de thése et vous en souhaite
une agréable lecture !
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Chapter 1

From Stein’s to
Stein-Dirichlet-Malliavin method

Stein’s method, initially developed to quantify the rate of convergence in the Central Limit
Theorem [132] and then for Poisson convergence [26], has become a very popular not to say
the most famous procedure to assess distances between two probability measures. Associated
to a collection of probability metrics, it seems to deploy by two main stages: the first one
consists in converting the initial problem into a more tractable expression before developping
in the second one tools to derive from it the bound on the distance.

As announced by the title of the chapter, we are to start from Stein’s method to get to the
Stein-Dirichlet-Malliavin structure. The chapter is organized as follows; the first leg of our
journey, by stating the principle of Stein’s method, will be an opportunity to underscore its
two identified main steps. We stop at Dirichlet theory in the second section and explain why
the conversion of the initial problem means the existence of an underlying Dirichlet structure
on both initial and target spaces. In the third section, we make a detour via Malliavin calculus.
We show then its relevance to tract the second step in Stein’s method (fourth section). The
last section is devoted to detail one of the abundant results stated by following this path: a
Stein-Malliavin criterion on the Gaussian space.

1.1 Stein’s method principle

This first section is charged with bringing to light the efficiency of Stein’s method in the
estimation of distances between two probability measures.

1.1.1 Taxonomy on probability metrics

In order to provide a mathematical sense to the notion "of proximity" between two probability
measures, we give in this first part some elements of classification of probability metrics. The
framework is that of two probability measures P* and Q, respectively the target and the initial
measures, defined on a same metric space (g, ¢). The associated Borel o-field is denoted B(F).
It appears that we can basically pigeonhole the numerous existing metrics between probability
measures in three classes.

37
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The first distance we introduce, which is capital since its associated topology is precisely the
one of the convergence in distribution is called Prokhorov distance:

distpro(P*,Q) = inf{e > 0 : P*(A) < Q(A®) + e and Q(A) < P*(A®) + &, VA e B(F)},

where A¢ stands for the e-neighborhood of A and is defined by A = {y e §F : Iz € A, d(z,y) <
e}. The set M (F) of probability measures on § is usually equipped with the weak convergence
generated by the semi-norms

I

pr(P*) = U@ fdap*

for any function f bounded and continuous from § to R. The separability of § enables to
find a countable family of bounded continuous functions {f,, n € N*} which generates the
Borel o-field on § and the topology of the weak convergence is metrizable by considering the
distance:

,O(P*, Q) = 2 27" w(pfn (P* - Q)) = diStPro(P*a Q)»
n=1

where the function v is defined on R by ¢(z) = x/(1 + ). This definition is not prone to
calculations in practice such that the possibility to propose alternatives has been investigated.

The second category of probability metrics are expressed as u—divergences which definition
follows:

Definition 1.1.1. Let u be a convex function on R such that u(1) = 0, and P* and Q be
two measures defined on the same Polish space §. The u-divergence of Q with respect to P*

is defined by:
dpP*
U dQ if Pr«Q,
Jg < dQ )

0 otherwise.

2U(PQ) =

Total variation between absolutely continuous measures is obtained when u : z — |z — 1],
whereas by letting u : x — zlog(x) we get the Kullback-Leibler distance which is of key
importance in information theory. Besides, we will meet once more the latter distance when
estimating the additional utility of an insider who holds extra... information (see part II).

The last class we deal with is related to the optimal transportation theory. The Monge-
Kantorovitch problem between P and Q translates into the determination of

inf c(z,y)dvy(zx,y), 1.1.1
T fm< y) dy(z,y) (1.1.1)

where I'(P*, Q) denotes the space of probability measures on § x § with first marginal P*
and second marginal Q, and ¢ is a cost function, semi-continuous from § x § to R4 u {oo}.
To connect it with the notion of probabilistic metric, we introduce, by letting ¢ = ¢, where ¢
is a distance on § and p a positive real number, the p-th Wasserstein distance distw, between
the measures P* and Q by

1/p
distw, (P*,Q) = inf cP(x,y)dy(x, .
w, (P*,Q) (V€F(P*7Q) s (@, y) dv( y))
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By taking p = 1, the underlying metric ¢ on space § can be viewed through the optimal
transportation problem as a cost function, which argument of the minimum is realized by the
best "coupling" between the measures P* and Q or, from this point of view, their distance.
The compactness of (§,c) ensures, via the duality theorem of Kantorovitch and Rubinstein
(1958), or more precisely its extension to separable metric spaces by Dudley (see [45]) that

distw, (P*,Q) = inf fgxgc(x,y)d'y(x,y) = sup {’ fgth* - fg th’} ,

vel'(P*,Q) heLip,

where Lip, is the set Lip; = {he R¥ : |h(z) — h(y)| < c(z,y), V(z,y) € §*}. That makes
the 1-Wasserstein distance the dual representation of (1.1.1). Besides Theorem 11.3.1 of [45]
states that the distances distw, and p yield the same topology, and legitimizes the choice to
retain this definition. In the case where § = R, for technical reasons, it is often assumed
that the test functions are more regular than simply Lipschitz continuous and we are led to

compute
f hdP* — J hdQ
§ §

where Lip,, is a space included in Lip; like the set of k-times differentiable functions with
derivatives up to order k bounded by 1. Note that 9; coincides with the 1-Wasserstein distance.
More broadly, we can define many other probabilistic metrics in the similar fashion as to say

by letting
f hdP* — f hdQ
$ §

where H is a class of real-valued test functions which is separating, in the sense that SS hdP* =
Sgth for all h € H if and only if Q = P*. To recite nobody else but them : if the set
H = {1a, A € B(J)}, disty is the total-variation distance, if § = Rand H = {1(_ .}, 2 € R},
disty coincides with the Kolmogorov distance.

ak(P*vQ) = sup
heLipy,

)

disty (P*, Q) = sup
heH

, (1.1.2)

1.1.2 Stein’s method principle

Stein’s method turns out to be particularly suitable to give upper bounds to distances between
probability measures of the form (1.1.2). In particular, when § = R, it is one efficient way to
compute the distance between a real-valued measure and the Gaussian distribution.

In addition to the objects introduced above, we may consider two random variables W and Z
respectively distributed by Q and P*. When specified, the measure P* could designate the
normal distribution on R. Basically, we can identify two main steps through which Stein’s
method seems to deploy:

1. The conversion of the difficult initial problem (1.1.2) of the approximation of a target
measure P* by another one Q into a simpler one with a more tractable expression.

2. The development of tools to derive an upper-bound from the control of the new expres-
sion.
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1.2 The Stein-Dirichlet structure

1.2.1 Conversion of the initial problem

In its very essence, Stein’s method carries the idea that the laws of two random variables
are close if they verify similar identities. The firts step, which aims at the conversion of the
initial problem is based on this idea. It comes in three stages : the characterization of the
target distribution, the resolution of the so-called Stein’s equation, and the reduction of the
expression (1.1.2).

By identities we mean functional identities characterizing the target laws. For instance it is
well-known that the random variable Z is a standard Gaussian on R if and only if E [Zh(Z)] =
E [h/(Z)], for any function h of a class of real-valued test functions H. By this, we introduce
the operator L, the so-called Stein’s operator which acts on H. For the standard Normal
distribution, Stein’s lemma yields such an operator:

Lh(z) = Lh(z) = zh(z) — W' (x) ; Vx € R.

In order to avoid any future confusion, when it designates the operator associated to the
standard Gaussian law on R, the Stein operator will be noted L. In other cases, we keep the
notation L.
The underlying idea is the following: if the laws of the variables Y and Z are "near" each
other, the quantity

E[n(Y)] - E[h(Z)]

may be small for a wide range of functions h. Then, if Z ~ NV (0, 1), we can expect the quantity
E[YA(Y) = K(Y)] = E[Lh(Y)]

to be small. We come then to solve the Stein equation. i.e. to rule on the existence and the
regularity of the functions ¢ satisfying :

Lo(y) = h(y) —E[1(Z)] ; Vy €. (1.2.1)
The class of test functions solutions of (1.2.1) satisfying
heH << peT,

is called the Stein class. For instance, the Stein class associated to the Normal distribution
and for the Wasserstein distance, denoted by Ty, is the class of twice differentiable functions,
whose first derivative is bounded by 1 and whose second derivative is bounded by 2.

By integrating then equation (1.2.1) with respect to Q and taking the supremum over the
class T we get:

sup U hdP* —J th’ = sup |E [Lp(Y)] ‘ where Y ~ Q. (1.2.2)
heH |JF g weT

Thus, the initial problem of approximation of a target measure by an initial one has been
converted into a simpler expression: that of the expectation of a certain functional on the

initial space. This is in fact easier to handle ; various identities and couplings can be applied
advantageously.
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1.2.2 The Dirichlet structure point of view

Actually, we can address the problem from a distinct point of view. The computation of
dist(P*, Q) can be interpreted as the measure of the error made by approximating P* by Q.
It turns out that the difficult steps of the functional characterization of P* and the resolution
of the Stein equation can be got around by following a smart-paths approach. In fact, the
target measure P* can be viewed as the stationary ditribution of a Markovian semi-group
(P¢)ter, and of generator L.

Language elements of Dirichlet structures

We give some elements of terminology of Dirichlet structures by introducing some basic notions
on Markov semigroups. A substantiated presentation on the subject can be find in the books
of Bouleau and Hirsch [23] or Fukushima, Oshima and Takeda [56]. In the first part of this
subsection, we successively provide the definitions of Markov semi-group, Markov process and
infinitesimal generator before focusing on the fundamental relations that connect them to
each other. Consider a measurable space (E,A). Let (P;),cr, be the family of operators
defined on some set of real-valued measurable functions on (E, .A) and satisfying the following
conditions:

1. For any t € R, Py is a linear operator; it sends bounded measurable functions on (E, .A)
to bounded measurable real functions.

2. Py = Id where Id is the identity operator (initial condition).
3. For every s,t € Ry Py = Py o Py (semi-group property).

4. For any t € Ry, Py conserves the mass and preserves positivity (Markov property):
P4(1) = 1 and, for any positive function f, P;f is positive.

Definition 1.2.1 (Invariant measure). Let a familly (P;)er, of operators defined on (E,.A)
and satisfying the properties (1)-(4). A positive o-finite measure p on (E, A) is invariant for
(Pt)ter, , if for every bounded positive measurable function F : E - R and t € R4,

f P:Fdu :f Fdu.
E E

Definition 1.2.2 (Markov semi-group). A family (P¢)er, of operators defined on the set of
bounded measurable functions on (E,.A) with invariant positive o-finite measure p satisfying
the properties (1)-(4) as well as the continuity property:

5. For any F € L?(u) = L2(E, i), P;F converges to F in L2(E) as ¢ tends to 0 (continuity
property).

The semi-group is symmetric with respect to the invariant measure p, if for all F, G elements
of Eand te R,
E E

Remark 1.2.3. Thus defined, the Markov semi-group (P¢)«cr, is a semi-group of contractions
on L2(2) (for more details on the subject refer to the Hille-Yosida theory) and satisfies the
property of contraction and strong continuity:

IP¢Flr2¢u) < [F|r2(, (contraction) and %E,% P,F = F (strong continuity).
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Up to now, consider a probability space (Q, F,P*). Let E = L2(Q, P*) and p = P*.

Definition 1.2.4 (Markov process). Consider a measurable process (X¥).er, on (2, F,P*)
starting from x € E at time ¢ = 0. Denote by (F*)icr, the filtration generated by the process
(X¥)ter, - The process (X¥)wer, is a Markov process if it sastifies the Markov property: for
any (s,t) € (Ry)? such that ¢ > s, the lew of X¥ given FX is the same as the law of X7 given
X7 as well as the law of X¥__ given X§.

In view of remark 1.2.3, the Markov semi-group (P¢)t«cr, can be seen as a contraction semi-
goup; so that its infinitesimal generator can be introduced in the setting of Hille-Yosida theory.

Definition 1.2.5 (Infinitesimal generator). The generator of a contraction semi-group (P¢)er.,
on L2(Q) is defined by

P;F - F P,F-F
Dy = {F : %ir%% exists} and LF = PI%% ; VF € Dy,

and such that Dy, is dense in L2(2).

Remark 1.2.6. There exists a correspondence between the Markov semi-group (Py)wer N (def-
inition 1.2.2), the Markov process (X7 )wcr, (definition 1.2.4) and the infinitesimal generator
(definition 1.2.5) in the sense that the knowledge of one of (Py)iwer,, (X¥)ier, or L implies
the existence and gives the expression of the two others.

dP:F
PP=B[F(X,) | X=] LE=G5]
—_—
(Xy)ter (Pt)ter,, L
-
X?P=(Pt)*u PthetL

In fact, by duality the semi-goup (P¢)er, acts on the set of measures v on A via the formula

JE P, Fdv = J Fd((Py)*v),

E

so that if v denotes the law of Xg, (P¢)*v is the law of the variable X;.

In order to introduce the carré du champ operator as well as the Dirichlet forms, assume the
existence of a vector subspace K of Dy, such that for any (F,G) € K x K, the product FG is
an element of Dr,.

Definition 1.2.7 (Carré du champ operator). The bilinear map defined on Dp = K x K by
1
L(F,G) = 3 (L(FG) ~ GLF - FLG),

is the carré du champ operator associated to the Markov generator L.

We can now transpose all this framework into the Dirichlet forms language. Consider a Markov
semi-group (Py)ser ., , symmetric with respect to a finite o-measure p = P*, with inifinitesimal
generator L and carré du champ operator I
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Definition 1.2.8. Under previous assumptions, the energy function £(F) is defined for any
random variable F € L2(u1) such that the limit

1
fim s | F(F — P,F) du

exists; that shapes the domain Dg of £. The Dirichlet form £ (similarly denoted for the

purposes of notation) is the bilinear symmetric operator on D¢ defined by

E(F,F) = £(F) and &(F,G) :f I'(F,G)dy ; ¥(F,G) € D¢ x Dg. (1.2.3)
E

Remark 1.2.9. The possibility to define £ in the fashion (1.2.3) is consequent of the integra-
tion by parts formula satisfied for any (F,G) € Dp x Dr by

JF(F,G)duzf F(—LG)du:J (—LF) G dp. (1.2.4)
E E E

and the relations connecting the Markov semi-group (P;);er, and its generator L (see remark
1.2.6). Nevertheless, the domain of the Dirichlet form £ is bigger than Dp. The identity
E(F) = E(F,F) ensures that £ can be defined on a set D¢ such that Dr ¢ Dy, € D¢ <
L2(Q) =E.

Within this definition, we can verify that £ thus defined is a non-negative definite symmetric
form on L2(Q) which domain D¢ is dense in L2(2). It is moreover closed in the sense that
D¢ equipped with the norm

1
2

Floe = (IFIZ20) +E))
is a Hilbert space.
Theorem 1.2.10. The generator of a closed form £ is defined by
Dy = {FeDg : 3Ge L*(Q), VHe D¢, E(F,H) = —(G,H)12(q)} and LF = G.
Moreover, if L is a negative self-adjoint operator and Dg = D /=, then
E(F) = |[V=LF|{s(q ; VF € Dg. (1.2.5)

Remark 1.2.11. There is a one-to-one correspondence between the family of closed symmetric
forms on L2(£2) and the family of non-positive definite self-adjoint operators on L?(E) and
which is determined through Theorem 1.2.10.

Definition 1.2.12 (Dirichlet form and Dirichlet structure). A Dirichlet form on (2, F,P) is
a symmetric closed form £, Markovian in the following sense :

FeDe=FAleDg and EF ALF AL <EFF).

The quintuplet (2, F,P, D¢, E) is a Dirichlet structure.
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Example 1.2.13. The quintuplet (R, B(R),P,Dg¢, ) where P denotes the standard Gaus-
sian measure on R,

De = {uel?*(Q) : v, e L*(Q)} and &(F)=E[|F|?],

(ul, stands for the derivative taken in the sense of distributions) defines the 1-dimensional

Ornstein-Uhlenbeck structure.

Definition 1.2.14 (Carré du champ operator). Let (P;),er, a symmetric semi-group of
generator L and £ a Dirichlet form defined as in (1.2.5). The carré du champ operator T
associated to £ is defined on D¢ x D¢ by

I(F,G) - %(L(FG) _GLF - FLG).

The quintuplet (2, F,P, D¢, T") is an error structure.
Example 1.2.15. Within the notations of example (1.2.13), I'(F, G) = F'G’.

Dirichlet structures: a solution to the initial problem

We can now address the initial problem in terms of Dirichlet structures. As evokated above,
there exists a strong ergodic Markov process (X} )er, of invariant measure P* and generator
L. These ones are connected by the relations

Lofa) = TED| and Pp(e) = B (X)X = a]. (1.2.6)

Example 1.2.16 (Gaussian measure on R). Let p denote the standard Gaussian on E = R,
then X = (Xy)wer, is the Ornstein-Uhlenbeck process defined by

dX; = -X; +v2dB; and X = =,

where (B¢)i,er, is a standard one-dimensional Brownian motion. It can be shown, via the
Mehler representation formula, that the semi-group (P;),er ., is defined by

Pp(z) = f @ (e_t:v +V1- e*%y) dp(y)- (1.2.7)
R
Its generator, the operator L, satifies the reminding relation: for ¢ € CE(R; R),
Lo(z) = a¢(2) — ¢"(2) ; Vo € R.

In the general case, using (1.2.6) and noting that Py = Ep«[p], Pop = ¢, and taking the
expectation with respect to Q of the two members of the equality

“ dP,

Paop() ~ Pogle) = | et ar

we can state the so-called Stein representation formula or smart-path formula

Ep-[¢] - Eq [¢] = fg | " L(Pyp)dtdQ (1.28)
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It turns out that the reduction of the problem in the fashion of (1.2.2) which implies to
characterize the target measure through a functional identity and to solve the Stein equation
can be done here without all this work. In fact we are to bound

ee}
Eq [J L(Pyp) dt] . (1.2.9)
0

In other words, this "smart-path"-like method gives another interpretation to the computa-
tion of distances between measures via Stein’s method: that of the estimation of the distance
between the underlying ergodic Markov process to its stationary measure. This will be illus-
trated in Subsection 1.3.2 through the example of the Normal approximation by a Poisson
distribution (in dimension 1).

Remark 1.2.17. By reminiscence of Dirichlet forms vocabulary, we can interperate Py, —
Pop as the error made in the approximation of the measure P* by Q. In this same setting
(see Bouleau and Hirsch [23]) the carré du champ operator I' (resp. the symmetric operator
L) represents the variance (resp. the bias) of the error. Thus, some convergence results proved
by Stein’s method can be interpreted in the language of error calculus. As the matter of fact,
one of the exisiting proofs of the famous Fourth Moment Theorem stated by David Nualart
and Giovanni Peccati (see [100]) lies on the existence of a deterministic constant ¢ such that

var(T'(F)) < ¢(E [FY] - 3E [F?]%),

where I' is the carré du champ operator associated with the generator of the Ornstein-
Uhlenbeck semi-group and F a random variable in a Wiener chaos. The use of the Stein-
Malliavin method (see Nourdin and Peccati [93]) yields another proof ot the theorem and
provides a estimation in the total variation distance w.r.t. the Normal distribution P*

distry (F, P*) < —— /B [F4] — 3

is , < — - 3.
TV \/3

The reader can refer to the work of Louis H.Y. Chen and Guillaume Poly (see [28]) for
a statement of the links between Stein’s method, Dirichlet forms and Malliavin’s calculus
through the Fourth Moment theorem.
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1.3 Dirichlet-Malliavin structures

1.3.1 Some words about Malliavin calculus

As recalled in the introduction, the Malliavin calculus is a finite-dimensional stochastic vari-
ational calculus initially developped on the Wiener space.

One way to introduce the tools of Malliavin calculus is to transpose the terminology of classical
differential calculus in Banach spaces to Malliavin’s one. We choose to give the analogues for
three processes families for which the theories are the most complete: the standard Brownian
motion (By)e[o,1]; the standard Poisson process (N¢)er, and a Rademacher process (X )nen -
In any case, we assume the existence of a probability space (€2, .4, P) on which each process is
defined. We denote the Hilbert space $§ = L?(T) where T is the parameter space: [0, 1] for the
Brownian motion B, R for the Poisson point process N and N* for the Rademacher process X.

Differential Calculus Malliavin Calculus on
on (R", (")) /Poisson/Rademacher spaces
Vectors Paths of the process (w € )
1
, U Ni(w), n— Xp (w)
L,
Functions defined on R"™ Random variables = Functionals of the paths
Gradient Malliavin derivative
af
61‘1
V=1 : D;F(N) = F(N + ¢;) — F(N)
af DiF(X1, -+, Xn) = \/Prqr %
Oxn, F(X1,..,+1,.,Xn) — F(Xq,..,—1, .., X,)
Integration by parts Malliavin IBP
| @ngdz =~ | wrvo B[P U] = B[(DF, U]
—i—J a—f gdo where ¢ is the adjoint of D
oD on

We briefly present the main facts about Malliavin calculus on the Wiener space before giving
some complementary elements in the more general case of Gaussian spaces. A more detailed
discussion can be found in Nualart [98], or Ustiinel and Zakai [137]. We hold the construction of
Malliavin calculus for the jump processes in the second part of the manuscript as a motivation
for our second work.
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The historical Malliavin calculus: the Wiener space case

As mentioned in the introduction, two approaches were developped to lead to a differential
calculus on the Wiener space: a variationnal approach and a chaotic approach. In the first
one, the derivative is defined for a class of smooth variables and then extended to the space
of square integrable Wiener functionals by density. This can be interpreted as a directional
derivative but only in certain directions: that of Cameron-Martin’s space. In an alternative
construction, the Malliavin derivative is obtained as an annihilation operator acting on square
integrable random variables, for which a preliminary chaotic decomposition has been stated.
The operators defined through these two different approaches coincide in the Gaussian space;
this equivalence is due in particular to the intrinsec relation between the standard Brownian
motion and the Hermite polynomials.

Consider the classical Wiener space supported by the Banach space #5 = C°([0,1]; R) and
equipped with the Wiener measure P. Let B = (Bt)te[o,l] the standard Brownian motion
defined on the probability space (#3, A, P). Consider the family

& = {t/\ s te [071]}a

such that the closure with respect to the norm || - |51 induced by the scalar product
<f7 g>f31 = <f7 g>L2(T)7

is a Hilbert space, called the Cameron-Martin space defined by

. t . .
H' = {f :[0,1] - R, 3f € L*(T) with f(t) = JO f(S)dS} and | flg: = |flrz(r).  (1.3.1)

Define the mapping
& — W
W L.
h +— f h(s)dBs
0

Within W, the mapping 19, — B: naturally extend to an isometry between $' and the
space L2(#4,P). In particular we can retrieve the canonical process as the Wiener integral

B(t)=W(tna-);teT. (1.3.2)
The process (W(h))pes defined by
W(h) = W(h); hen',

is an isonormal Gaussian process associated with the Hilbert space $'.
The aim is to define the derivative VF of a square integrable random variable F : #3 — R.
A natural idea is to explore the possibility to define it as a Fréchet derivative

/ —
lim F(w+ ew’) F(w)
e—0 g

Consider the stochastic differential equation defined for any t € [0,T] by

t

X, =a+ ft b(X,)ds + J o(X,)dBs, (1.3.3)
0 0
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where b, 0 € C°(R), and x € R. The application I: R x C°(R?,R) x  — C°([0,T], R) which
associates (z, (b, 0),w) with - if it exists - the unique solution X of (1.3.3) is called the It6 map.
This is not continuous on #3 and a fortiori not Fréchet differentiable. The Cameron-Martin
theorem which states that for two random variables F,G: Q2 — R

F=Gas. = FB+h)=CG(B+h); VheH,

is prone to explore the possibility to narrow the set of admissible differentiation directions
to a smaller one, the Cameron-Martin’s space $'. Let S denote the class of smooth random
variables F of the form

F=f(W(h), -, W(ha))
where f belongs to the Schwartz space .#(T™) and hy,--- ,h, are elements of §'. The
derivative of F is the element of $' defined by

VF = i oL Wk, Whn)) b (1.3.4)

which can be interpreted as a directional derivative:

f(W(hl) + €<h1, h>5~31, v ,W(hn) + €<hn, h>5§1) — f(W(hl), <o ,W(hn))
g

(VE, hyg1 = lim

The map V is closable from L2(#3) to L2(#&; 1) = L2(#3 x T). Thus, it is meaningful to
define D]13’2 as the closure of cylindrical functions for the norm

M=

IF

2 2
12 = (IF 2 + I9F 2200
The derivative operator satisfies the useful chain rule.

Theorem 1.3.1 (Chain rule). Let ¢ € (R"), and a random vector F = (Fq,--- ,Fy,) which
components belong to DY for some q € N*. Then o(F) belongs to D% and

"9
V(eF) = Y] afDFi. (1.3.5)
i=1 """

In the same way, it is possible to define for p > 1, F € S, the p-th Malliavin derivative of F as
the element of L2(#5; (H1)®P) (($H1)®P is the p-th symmetric tensor product of $') defined
by
» rf
VPE= Y ——— (W), , W(ha)) hiy ® - ® i,
(7’17'“ 7ZP)e[n]p P

where [n] = {1,--- ,n}. For any ¢ € [1,00) and p € N*, the set D}? denotes the closure of S
with respect to the norm

1

[Flpg = (EIFI7) + E[[VF|Lags)] + - + B[ IVFl, 0o | )

Theorem 1.3.2 (Integration by parts formula). For any cylindrical random variable F and
h element of H1,
E[(VF, h)s1] = E[FW(h)] (1.3.6)
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The second operator in stake called divergence operator is defined as the adjoint of the deriva-
tive operator.

Definition 1.3.3. The adjoint of the derivative operator V, denoted ¢ is the unbounded oper-
ator on LQ(WB ; 1) which domain is the set of $Hl-valued square integrable random variables
u such that

|EVF, we]| < cul Fllre ),

for all F element of DIIB’Q. For any u € Dom &, §(u) is the element of L2(#3) characterized by
E[Fd(u)] = E[(VF,u)¢] ; VF € Dg>. (1.3.7)

Remark 1.3.4. The divergence operator coincides with the Wiener integral on $' as high-
lighted in (1.3.6). Moreover, the special feature of Malliavin integration by parts is to include
the adjoint of the derivative operator.

The Malliavin calculus on the Wiener space can be elaborated in a different but equivalent
way; as a reminder, the family of Hermite polynomials {H,, ,n € N} is such that the associated
polynomial functions satisfy

Hy=1 and H] =nH,, neN*

The so-called Wiener chaos are designed in the following fashion; Hj is the set of constants
and for any n > 1, the n-th Wiener chaos, denoted #,, linear subspace of L?(#%, A, P)
generated by the random variables {H,,(W(h)),h € $'} such that the remarkable chaotic
decomposition can be stated:

0
L*(#5, A, P) = P Ha
n=0

Note in particular that H; = {W(h), h € '} = W. Consequence of this decomposition, any
random variable F € L2(#4), admits an unique expansion of the form

F=E[F]+ ) Ju(fa), (1.3.8)
nelN

where f, € L2(T", B", u®") (equal to (n!) 'E[V™F] if F € D™?) and the multiple stochastic
integral of a function f € L2(T", B", u®") of the form

f = Z a/il'”in]-AilX'--XAin(tl"“ 7tn)7
(ilv"' 7in)€[m]n
with Ay, Ag, -+, A, pairwise-disjoint sets belonging to By, and the coefficients a;, ...;, are zero
if any two of the indices i1, - - - , i, are equal, is defined by
Ta(f) = X @i, WAL - W(A;,)

(7"17"' ,in)E[m]"

The derivative operator V coincides on S with the annihilation operator (in reference to its

~

usual name in the Fock space theory met in quantum probability) V such that

%t Jn(fn) = an—l(fn(*v t))?

for any f,, element of L2([0,1])°" and ¢ € [0, 1]. Its adjoint &, called creation operator is such
that
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Remark 1.3.5. The very close connection between the standard Brownian motion and the
Hermite polynomials is at the heart of the equivalence of variational and chaotic approaches.
Indeed, the Wiener chaos are intrinsically produced by Hermite polynomials; on the other
hand, the first Hermite polynomial subtly appears in the Cameron-Martin theorem

BIF(B + th)] = B [Fe™ 0405 ] - g [tV -3¢0, ]

and gives rise to the integration by parts formula.

The Malliavin calculus on infinite-dimensional Gaussian fields

A Malliavin calculus can be constructed in the same fashion on infinite-dimensional Gaussian
fields i.e. for families Y = {Y,, t € T} (T is a parameter set ) of real random variables de-
fined on a probability space (2,4, P) such that any linear combination of the variables is a
centered Gaussian variable. To encrypt the properties of a given Gaussian field Y, we con-
sider its associated Gaussian subspace $ < L2(Q, A, P) generated by the equivalence classes
of Y. Then, Kolmogorov’s theorem ensures the existence of an isonormal Gaussian pro-
cess over §), denoted X; that is a centered Gaussian family X = {X(h), h € $} defined on
(©, A, P) and which covariance structure is encoded by the inner product of §) via the identity
E[X(h)X(g9)] =<9, h)gp, (g,h € H). We set F = 0(X) and assume that A = F.

In this framework, the space S of cylindrical random variables is composed of the variables F

of the form
F = f(X(h1),---, X(hn)),

where f belongs to the Schwartz space . (R"™) and hq,--- , h, are elements of $). The space
S is dense in L(Q) for any ¢ € N*.

For any p € N* and F element of S, the p-th Malliavin derivative of F (with respect to X) is
the element of L2(Q, HOP) (HP is the p-th symmetric tensor product of §) defined by

DPF = > L(X(’h),m X (ha))hiy ® -+ ® hy,.

(i1, et O 0Ty

For any ¢ € [1,00) and p € N*, the set DP? denotes the closure of S with respect to the norm

1
[Flpg = (E[FI*) + E[[DF|4] + - + B[ ID'F|4g, ] )

The analogues of the Wiener chaos in this setting are designed in the following fashion; Hg is
the set of constants and for any n € N*, the n-th Wiener chaos, denoted H,, linear subspace of
L2(Q, A, P) generated by the random variables { H,,(X(h)) , h € $}. Thus any random variable
F e L?(Q2) can be expanded in a unique way

F =E[F] + ). Projy, (F),

n=1

where Projy, (F) designates the projection of F on the n-th chaos. If additionally F e Dr2
for some p € N*, this can be equivalently written as (via Stroock’s formula)

F=E[F]+ ) %5" (B[V™F]).

n=1
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1.3.2 Malliavin calculus and Dirichlet structures: an intrisic connection

Due to the existence of an underlying Markovian frame, on which they both rest, Malliavin
calculus and Dirichlet structures appear to be the two sides of the same coin. By construc-
tion, a Dirichlet structure is naturally induced when we are provided by a Malliavin frame. It
becomes possible to express the integration by parts formula by means of the carré du champ
operator associated in the coupled Dirichlet structure.

Let a probability space (2, A, P) supposed to be endowed by a Malliavin structure on a Hilbert
space (9, (-, -)) that is, a gradient operator D, a divergence operator 4, an Ornstein-Uhlenbeck
operator satisfying L = —0D and a integration by parts formula including 6 (1.3.1). Let

D' = {Fe L*(Q) : |Fli2 = [Flrz(q) + IDFli20.0)

be the closure of cylindrical functions for the norm |- | 2. Then the quintuplet (Q2, A, P, D¢, &)
where

D¢ = D" and &(F,G) = E[(DF,DG)y] ; F,G e D¢ (1.3.9)
is a Dirichlet structure. The associated carré du champ operator is defined on D¢ by
I'(F,G) = (DF,DG)y,
The integration by parts formula is retrieved through
E[['(F,G)] = E[(DF,DG)s] = E[F§(DG)] = —E[FLG] ; VF,G e D2

The "reverse" construction as to say the elaboration of a Malliavin calculus from a given
Dirichlet structure (2, A, P, D¢, &) is due to Gabriel Mokobodzki (see [90]).

Example 1.3.6. (Dirichlet structure on the Wiener space) We now consider P as the Wiener
measure on #p = Cp([0,1];R). The aim is to construct a Dirichlet structure of the form
(#5, A, P, D¢, E) . As a remainder (see Subsection 1.3.1), for any F € S of the form

F=f(W(h), -, W(hn)), (1.3.10)
where f belongs to the Schwartz space S(R") and hq, - , h, belong to $?,

20
VF = 3 LW, W)
k=1

and D113,2 as the closure of cylindrical functions for the norm
IFl12 = FllLzor) + IVElL2rg:0,)-
The Wiener space is endowed with the Dirichlet structure

S = (#, A, P, D¢, £).

It is constructed as the infinite product ]_[flozl S™; for any n € N* where S™ is the product struc-

ture [ i, S; = (R, B(R"),®"_,P;, D%, £") and S, is the Dirichlet form (R, B(R),P;, Dg;, &)
with P; the standard Gaussian measure on R,
2]

o

Zi

af
al‘i

D¢, = {FeS,feS(R”) : eLz(R)} and &(F)=E
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Then we can define for F of the form (1.3.10)

— Zrk(F,F) = Z Z ai <Uaavk>L2 ([0,1;R)
i=1 Jj=lk=1

and for any (F,G) € D]13’2 by a limit procedure,
I'F,G) = VF.VG and &(F,G) =E[VF.VG]

In order to manifest the intimate link between Malliavin calculus and Dirichlet forms, we
introduce the definition of Dirichlet-Malliavin structure.

Definition 1.3.7 (% Dirichlet-Malliavin structure). Consider a probability space (Q2,.A, P)
endowed by a Malliavin framework, i.e. the modicum of operators derivative D, diver-
gence ¢, Laplacian L, Markov semi-group (P;);cr, defined and connected to each other
by (1.3.1), (1.3.2). Define a Dirichlet form satisfying on (2,4, P) (1.3.9). The quintuplet
(D,4,L, (P¢)ter, ,€) thus defined is a Dirichlet-Malliavin structure.

Example 1.3.8 (Dirichlet-Malliavin structure on the Wiener space). On the one hand, con-
sider the Malliavin frame on the Wiener space described by the operators Malliavin derivative
V (2.3.1), divergence § (see Definition 1.3.3), Laplacian L and the relationships that bind them
to each other, as to say the integration by parts formula (1.3.6) and the identity L = —6D. On
the other hand, consider the functional operator L as the infinitesimal generator of a Marko-
vian semi-group (P¢)er, (the Ornstein-Uhlenbeck one) and define the Dirichlet form (from a
potentialist point of view) (Dg, E) by

De = Dg® and &(F,G) = E[I(F,G)] = E[-LFG] ; F,G e D5,

where I' is the associated carré du champ operator. Thus, the association of a Malliavin
apparatus and a Dirichlet structure provides what we call a Dirichlet-Malliavin structure on
the Wiener space described by the quintuplet (D, d,L, (P¢)«r, ,€) and which the operator L
and the integration by parts are the keystones via the identity

E(F,G) = E[-LFG] = E[VFV(G] ; F,G e D”.

Last, note in this frame, that the semi-group (P¢)«er, satifies the usual commutation property:
for any F € D]13’2,
VP,F = ¢ 'P,VF. (1.3.11)

1.3.3 Examples and applications of Dirichlet-Malliavin structures

This close connection of construction is found at the level of the applications which it generates.
In other words, most probability theorems have their analogues in terms of Dirichlet structures.
In particular we can revisit some results initially established using Malliavin calculus tools,
from a Dirichlet structures point of view. Pick two examples as an illustration. The first one
(example 1.3.3), is due to Paul Malliavin and remains the famous result of his seminal paper. It
provides a criteria for the absolute continuity of a random vector defined on a Gaussian space.
The second one illustrates the combination of Stein’s method and Dirichlet-Malliavin calculus
in the (one-dimensional) example of the Normal approximation by a Poisson distribution.
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Absolute continuity of a random vector

Consider a random vector F = (F!, ... | FN) measurable with respect to an underlying isonor-
mal Gaussian process {W(h), h € H}.

Theorem 1.3.9 (Malliavin). Assume that F belongs to Dllo’(l: componentwise and satisfies the
following conditions:

1. FieDi;g foralli=1,--- N, for somep >0,

2. The Malliavin covariance matriz yp = (<Fi’Fj>5)1<¢,j<N is invertible a.s.

Then, the law of F is absolutely continuous with respect to the Lebesque measure.

The analogue of theorem 1.3.9 in terms of Dirichlet structures lies on the notion of admissible
elements; by definition an element & € Q is admissible if £ # 0 and, for any t € R, (7¢)*P, the
pullback measure of P by the translation application 7¢ : w + w + § is equivalent to P. The
element w is additionally said to be strictly admissible, if ¢ is admissible and, for almost every
w € €, the function t — k¢(w + t&), where k¢ denotes a strictly positive Borel representative
of the density of the measure (74¢)*P with respect to P, is locally integrable on R for the
Lebesgue measure. It is thus possible to define (see Bouleau and Hirsch section 4.2 chapter II
for more details) the Fréchet derivative V¢F for certain functions F defined on €2 and to set,
given a sequence (&,)n>0 such that

Ve, D 1))

n=0
the Dirichlet form (Dg, &) and its associated carré du champ operator I' by
5 DIV Fltaq) and T(F,G)= 3 (Ve,F)(Ve,Q); ¥(F,G)e D} (13.12)
n>0 n=0

Within those assumptions we get an absolute continuity criterion expressible in terms of
Malliavin derivative (see [23]):

Theorem 1.3.10 (Bouleau, Hirsch). Let (Dg, &) a Dirichlet form which associated carré du
champ operator I' is of the form (1.3.12). Then, for all F € D?, the measure

F*[(detT(F,F"))P]

is absolutely continuous with respect to the Lebesque measure on RN.

Stein’s method and Malliavin integration by parts: a perfect match

As seen in the subsequent sections, the conversion of the initial problem leads to deal with

sup [E [Le(Y)]| where Y ~ Q,
peT

Q0
or E[J L(Pio(Y)) dt] by addressing the problem in terms of Dirichlet structures. In both

0
cases, we can write

sup |E [Lp(Y)] | = sup |[E[L1p(Y)] + E [Lap(Y)] |,
peT weT
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where L; and Lo are two operators acting on § and such that L = Ly + Lo. For instance, if
the target distribution is the Gaussian law on R,

Lip(x) = Lip(z) = 2¢'(z) and Lop(z) = Lop(z) = —¢"(2).

In the next step, we have to take into account how Y is defined and transform L;p(Y) such
that it can be written as —Lag@(Y) + remainder. This remainder is what gives the rate of
convergence. To make the transformation of Lip(Y), several approaches appeared along the
years. One of the most popular approach (see for instance [14]) is to use exchangeable pairs:
construct a copy Y’ of Y with good properties which gives another expression of Lip(Y),
suitable to a comparison with Lap(Y). To be more specific, for the proof of the CLT, it is
necessary to create an exchangeable pair (S,S") with S = 3" | Y;. This is usually done by first,
choosing uniformly an index I € {1,---,n} and then, replacing Y; with Y’ an independent
copy of Xy, so that the couple (S, S' =S —Y; +Y’) is an exchangeable pair. This means that

E[F(S)|I=a; Yy, b=a] =E[F(S)| Yy, b=aq]. (1.3.13)

Actually, it is the right-hand-side of (1.3.13) which gave us some clue on how to proceed when
dealing with functionals more general than the sum of random variables. An alternative to ex-
changeable pairs, is the size-biased [27| or zero biased [58] couplings, which again conveniently
transform Lip(Y) = L£1¢(Y). For Gaussian approximation, it amounts to find a distribution
Y* such that

E[L10(Y)] = E[¢"(Y")].

Note that for S as above, one can choose S* = S'. If the distribution of W* is absolutely
continuous with respect to that of #, with Radon derivative A, we obtain

E[L1p(Y)] =E[¢"(Y)A(Y)],

which means that we are reduced to estimate how far A is from the constant random variable
equal to 1. This kind of identity, where the second order derivative is multiplied by a weight
factor, is reminiscent to what can be obtained via integration by parts. Actually, Nourdin and
Peccati (see [94]) showed that the transformation step can be advantageously made simple
using integration by parts in the sense of Malliavin calculus. This works well only if there exists
a Malliavin gradient on the space on which W is defined (see for instance [41]). That is to say,
that up to now, this approach is restricted to functionals of Rademacher [96], Poisson [41, 111]
or Gaussian random variables [100] or processes [32, 33|. Then, strangely enough, the first
example of applications of the Stein’s method which was the CLT, cannot be handled through
this approach. On the one hand, exchangeable pairs or size-biased coupling have the main
drawback to have to be adapted to each particular version of Y. On the other hand, Malliavin
integration by parts are in some sense more automatic but we need to be provided with a
Malliavin structure.

The setting in which we need to compute a KR distance is very often the situation in which
we have another Polish space € with a probability measure Q and a random variable T with
value in §. The objective is then to compare some measure P* on § and T*Q the distribution
of T, i.e. the push-forward of Q by the application T. This means that we have to compute

LsoonQ—LsodP* : (1.3.14)

sup
peT
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As suggested by the figure below, the map T moves space € to § so that (1.3.14) can be
rewritten in an equivalent way as

supU apdT*QJ gadP*‘ = supU ¢dQ~J‘ pdP*
§ s 5 5

weT peT

)

i.e. a problem of computation of distance between two measures defined on the same Polish
space, prone to be solved by Stein’s method.

Initial space Target space

(&, P*)

(3, T*Q)

Example. We choose to illustrate this with an example; that of estimation of the rate of

convergence of
5 Z)\ - A law

)\ EEmm——
\/X A—00
where Z) is a Poisson random variable of parameter A. We confront here with the situation
where the target measure P* is defined on R whereas the initial one Q is integer valued. As
highlighted by the figure, it is possible to get around the problem by defining a map T moving
the initial space to the target one. It seems natural to set
T:-N — R
n—A
VA
so that the image of Zy by the map T is ix, and we areat the point to evaluate the distance
between the measures T*Q and P* both defined on R. As described above, the problem
is then reduced to the transformation of E [Elgo(z\)] into E [£2¢(2A)] + remainder. From

N(0,1), (1.3.15)

n

the definition of the Stein operator associated to the standard Gaussian on R, we are led to
compute:

E [2/\ ‘P(ZA)] :
The trick consists in writing Z) = (0D)Z, in order to make use of Malliavin integration by

parts formula. Remember that the gradient D (resp. its adjoint 0) for a Poisson measure on
N of parameter A is given for F (resp. G) function defined on N by

DF(z) = F(z + 1) — F(z) (resp.dG(x) = %G(m —1) - G(x))
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ILP.P.

B(Zyo(2y)] "B E[6DZy) ¢ ()]

DT(Zx) D(p o T)(Z»)]
(Zx+1) = (po T)(Zy)]

("2 (0]
~ 1 ~
= E [90/@)\) + O( 1 )] =E [5290(2)\)] + remainder.
We conclude that the rate of convergence in (1.3.15) is of order (v/A)~L.

It is possible to retrieve by using the smart-path formula (1.2.8). With the notations of
Example 1.2.16, as explained in [36], we get

aser(@P) = swle| [ 2P () - Py ) |
- Vasple | [Py (2+ J5) - e @) - e @) at|
= \/}Zlelg)’E {LOO Ll(l —7)(Pyp)®) <2>\ + \/1X> drdt] ,

where we use the integration by parts formula in the second line, and the Taylor expansion of
Pip which is thrice differentiable for any ¢t > 0 by the regularizing properties of P;. Then by
choosing

T=1{peC?: ol <1},

and using the Mehler formula representation (1.2.7) of P, the commutation property, we get
for any t € Ry,

e

t

3) e *
i), < = | 1laP*@
so that

. o LS
dist7(Q,P*) < N

Last, note that the ditance can be expressed in the language of Dirichlet forms

oe]

dist7(Q, P*) = L E [LP;y] dt

1.4 As a conclusion: Stein-Malliavin criterion on a Gaussian
space

As an illustration of the path taken from Stein’s method to Malliavin calculus we choose to
present in the last section of this chapter one significant and particularly inspiring infinite-
dimensional result: a Stein-Malliavin criterion on a Gaussian space. It provides a "Berry-
Esseen" general bound for the Wasserstein distance between the law of a functional of indepen-
dent random variables (without any hypothesis on the laws of the sequence of initial variables)
and the Normal distribution, and this in terms of Malliavin operators (see Nourdin and Pec-
cati [93]). Throuhghout this section, we consider a Gaussian field embedded in an isonormal
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process X = {X(h), h € H} where § c L2(, A, P) is its associated Gaussian subspace. We
assume that A = o(X) and denote Q its distribution. The elaboration of Malliavin calculus
within this framework is detailed in subsection 1.3.1 and we keep the notations introduced
there.

Theorem 1.4.1 (Nourdin, Peccati - 2009). Let P* denote the standard Gaussian distribution
on R. For any F € D% such that E[F] = 0,

2, (F*Q, P*) < \/E [|1 —(VF, —VL*1F>5§|2]. (1.4.1)

A look to the proof allows to extract the ingredients to gather to establish the result. As
explained in the section devoted to Stein’s method, the reduction of problem leads to tackle
with

E[Lip(F)] = E[Fe(F)],
that we want to transform into —E [L2¢(F)] + remainder. Using the relations between the
main Malliavin-type operators D, § and L, we get:

E[Fo(F)] = E[L(L7'F)p(F)] = E[-6(DL™'F) o(F)]
= E[(Dp(F), -DL™'F)g] (IPP formula)
=E[¢/(F)XDF, -DL'F)s| (chain rule)
—Lap(F) remainder

— -~ ~
= B[ ¥/(F) ~¢'(F)(1+(DF, -DL™'F)s) |

The last step which consists in using Cauchy-Schwarz inequality and requires that F € D4
to use the regularizing property of the semi-group (Py)wr., , i-e.

4

|

As suggested in blue, the statement of this result requires to gather the following ingredients:

E[[DL7'F[§] = E

Q0
H J e 'P,DF dt
0

<E[|DF[§].

e A characterization of P in terms of 15*-order differential operators.
e An underlying Dirichlet-Malliavin structure (D, 6, L, (P¢)¢>0,&).
e An integration by parts formula including §.

One of the challenges of the next chapter is to develop the aforementioned tools to state an
analogue of the Stein-Malliavin criterion in any countable product of probability spaces.
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Chapter 2

Malliavin calculus and Dirichlet
structures for independent random
variables

In the first chapter we notably investigated the possibility to derive probabilistic approxi-
mations by regular functionals of processes for which there exists a Malliavin calculus. This
means exploiting the underlying Dirichlet-Malliavin structure. The motivation of this second
chapter is to shape the suitable tools to be able - in the third one - to provide an analogue of
the "Stein-Malliavin criterion" for functionals of independent random variables. As suggested
earlier, we need to define a modicum of Malliavin-type operators - such as derivative, diver-
gence and Ornstein-Uhlenbeck operators - and the yielded Dirichlet strucure in the general
discrete context we choose to investigate: that of a family of independent, non necessarily
identically distributed, random variables.

The design of our stochastic calculus of variations on any countable product of probability
spaces enables to generalize to a certain extent what is known about Rademacher spaces
(see Privault [117]), i.e. {—1,1}N endowed by the probability product ®enpr where py is a
Bernoulli distribution on {—1,1}. Despite apparent similarities in their patterns (countable
product of probability spaces in either case), the two approaches of constructing a Malliavin
calculus nevertheless remain very different from each other. The Rademacher space, as prod-
uct of two-components state spaces, shows a good range of algebraic specifical properties which
enable to define a normal martingale (Y, )nen satisfying a structure equation of the form

Y2 =14 ¢,Y,. (2.0.1)

where (¢n)nen is F-predictable process. This one satisfies a "discrete" predictable represen-
tation property such that any square integrable Rademacher functional can be expanded into
chaos. The gradient operator expression comes thus from the definition of the annihilation
operator as it is introduced. The gradient on the Rademacher space (see Nourdin, Peccati
and Reinert [96], Privault [117]) is usually defined as

DiF(Xy, -, Xn) = E[X, F(Xq, -, Xn) | Xp, £ # K] (2.0.2)
:P(Xk = 1)F(X17 o 7+17 e 7Xn) - P(Xk = _1)F(X17 o 7_17 o 7X7l)7

where the +1 are put in the k-th coordinate. It requires, for its very definition to be meaningful,
either that the random variables are real valued or that they only have two possible outcomes.

99
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Moreover, as highlighted by Privault and Schoutens there exists a discrete structure equation
if and only if the law of X}, is supported by two points (see proposition 3 in Privault and
Schoutens [119]). This leads, in a general context of unspecified Polish spaces, to the obvious
impossibility of stating a chaotic decomposition and drives us to define an ad hoc gradient,
which does not coincide with the usual one on the Rademacher space (2.0.2).

We proceed as follows. In Section 2.1, we define the gradient D and its adjoint §, which we call
divergence as it appears as the sum of the partial derivatives, as in R™. It is defined thanks
to what may arise as the Malliavin calculus cornerstone: the integration by parts formula.
The following section is devoted to the exploitation of this new formalism to the statement of
representation formulas and functional identities. We establish a Clark representation formula
of square integrable random variables and an Helmholtz decomposition of vector fields. We
establish a log-Sobolev inequality, strongly reminding that obtained for Poisson processes
(see [140]), together with a concentration inequality. Then, we define the number operator
L = —6D. It coincides with the generator of a Markov process whose stationary distribution
is the tensor probability we started with. We show in Section 2.3 that we can retrieve the
classical Dirichlet-Malliavin structures for Poisson processes and Brownian motion as limits of
our structures. In that respect, our theory seems to find its place in the pre-existing Malliavin’s
landscape.

2.1 Malliavin calculus for independent random variables

Let A be an at most countable set equipped with the counting measure :

L2(A) = {u : A >R, Z lug|? < oo} and (u, v)r2(pa) = Z UgVq.-

acA acA

Let (Eq,a € A) be a family of Polish spaces. For any a € A, let &, and P, be respectively
a o-field and a probability measure defined on E,. We consider the probability space Ep =
[1,ea Ea equipped with the product o-field €4 = \/Aé'a and the tensor product measure
ae
P=Q®P,.
aceA
The coordinate random variables are denoted by (X,,a € A). For any B < A, Xp denotes

the random vector (X4,a € B), defined on Eg = [][ _g E, equipped with the probability
Py - @P,.

aceB

For any a € A, let G, and F, be the o-files defined by

aeB

Go =0(Xp, b #a), Fo=0(Xp, b<a),

and assume that E4 = (Fy)qeA-

A process U is a measurable random variable defined on (Ex x A, P(A) ® Ea).
We denote by L2(Ex x A) the Hilbert space of processes which are square integrable with
respect to the measure ), , o ® Pao (where ¢, is the Dirac measure at point a) :

[UI22 i, ) = D, E[Us] and (U, V)rag,xa) = Y, E[UaVa].
acA acA

Our presentation follows closely the usual construction of Malliavin calculus from the class of
cylindrical functionals, denoted in the following by S.
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Definition 2.1.1. A random variable F is said to be cylindrical if there exist a finite subset
B c A and a function Fp : Eg — L2(A) such that F = Fp o rg, where rp is the restriction
operator :

rg : EA —> EB
(zq,a € A) —> (z4,a € B).

This means that F only depends on the finite set of random variables (X,, a € B). It is clear
that S is dense in L2(Ej).

The very first tool to be considered is the discrete gradient, whose form is motivated by
what follows ; throughout this work, it must be made clear that all the random variables
may leave on different spaces, which are only supposed to be Polish spaces. That means
that in the definition of the gradient, we cannot use any algebraic property of the underlying
spaces. Though some of our applications does concern random variables with finite number of
outcomes, it does not seem obvious to exhibit what should be the weights, replacing P(X; = 1)
and —P(Xj = —1) appearing in (2.0.2). We offer an alternative definition.

We first define the gradient of cylindrical functionals, for there is no question of integrability
and then extend the domain of the gradient to a larger set of functionals by a limit procedure.
In functional analysis terminology, we need to verify the closability of the gradient : If a
sequence of functionals converges to 0 and the sequence of their gradients converges, then it
should also converges to 0. This is the only way to guarantee in the limit procedure that the
limit does not depend on the chosen sequence.

Definition 2.1.2 (% Discrete gradient). For F € S, DF is the process of L?(Ex x A) defined
by one of the following equivalent formulations : for all a € A,

DoF(Xa) = F(Xa) — E[F(XA) [ Ga]

= F(XA) - f F(XA\mXa)dPa(Xa)

a

= F(XA) —E [F(XA\aa X:z)] s
where X/ is an independent copy of X,.

Remark 2.1.3. During the preparation of this work, we found strong reminiscences of our
gradient with the map A, introduced by Stéphane Boucheron, Gabor Lugosi and Pascal Mas-
sart in [21], or WanSoo T. Rhee and Michel Talagrand in [124] for the proof of the Efron-Stein
inequality, defined by

ARF(Xy, X)) = E[F| Xy, Xe] = BF| Xp, -+ X 1]

Actually, our point of view diverges from that of these works as we do not focus on a particular
inequality but rather on the intrinsic properties of our newly defined gradient. Its expression
an be interpreted as the measure of the "influence" of the a-th component of the process X
on F.

Remark 2.1.4. A straightforward calculation shows that for any F,G € S, any a € A, we
have

Do(FG) = FD,G + GD,F — D,FD,G — E[FG |Go] + E[F | G.]E[G|Ga] .
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This formula has to be compared with the formula D(FG) = F (DG) + G (DF) for the Gaussian
Malliavin gradient (see (2.3.1) below) and D(FG) = F (DG) + G (DF) + (DF) (DG) for the
Poisson gradient (see (2.3.3) below).

For F € S, there exists a finite subset B < A such that F = Fg o rg. Thus, for every a ¢ B, F
is G,-measurable and then D F = 0. This implies that

E|) [DJFP| =

acA
hence (D,F,a € A) defines an element of L?(Ep x A).

Definition 2.1.5. The set of simple processes, denoted by So(¢?(A)) is the set of random
variables defined on Ex x A of the form

U= > UL,

aeB

for B a finite subset of A and such that U, belongs to S for any a € B.

E| Y [D.FP

aeB

IDF 2 (k) =

The key formula for the sequel is the so-called integration by parts. It amounts to compute
the adjoint of D in L2(Ex x A).

Theorem 2.1.6 (% Integration by parts). Let F € S. For every simple process U,

F > D,U ] (2.1.1)

acA

(DF, Ud12(5, xA)

Thanks to the latter formula, we are now in position to prove the closability of D: for (F,,)en
a sequence of cylindrical functionals,

(F 2%, 0 and DF, 77>:>77=O.
L2(A) LQ(EAXA)

Corollary 2.1.7 (). The operator D is closable from L2(A) into L2(Ex x A).

We denote the domain of D in L2(A) by D, the closure of the class of cylindrical functions
with respect to the norm

N|=

[Flh,2 = (IF122(a) + IDF (e, <))

We could as well define p-norms corresponding to LP integrability. However, for the current
applications, the case p = 2 is sufficient and the apparent lack of hypercontractivity of the
Ornstein-Uhlenbeck semi-group (see below Section 2.1.2) lessens the probable usage of other
integrability order.

Since D is defined as a closure, it is often useful to have a general criterion to ensure that a
functional F, which is not cylindrical, belongs to D. The following criterion exists as is in the
settings of Wiener and Poisson spaces.

Lemma 2.1.8 (k). If there exists a sequence (Fp,)nens of elements of D such that
1. F,, converges to F in L2(E,),
2. sup,, |DF,|p is finite,

then F belongs to D and DF = lim,,_,,, DF,, in D.
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2.1.1 Divergence

We can now introduce the adjoint of D, often called the divergence as for the Lebesgue measure
on R”, the usual divergence is the adjoint of the usual gradient.

Definition 2.1.9 (% Divergence). Let
Dom § = {U eL2(Ex x A):3¢>0,VF e D, [(DF, Uz, xa)| < c||F\|L2(A)}.

For any U belonging to Dom 6, §U is the element of L?(A) characterized by the following
identity
(DF, U125, xa) = E[F U], for all F € D.

The integration by parts formula (2.1.1) entails that for every U € Dom 4,
0U = > D,U,.
aceA

The expression of §, as the sum of the partial derivatives, as in R", allows to legitimize the
name of divergence we give it.

In the setting of Malliavin calculus for Brownian motion, the divergence of adapted processes
coincides with the It6 integral and the square moment of JU is then given by the Itd isometry
formula. We now see how this extends to our situation.

Definition 2.1.10 (%). The Hilbert space D(¢?(A)) is the closure of So(¢2(A)) with respect

to the norm
DU | +E [Z DD Uy

acA acA beA

[UlBe2ay = E

In particular, this means that the map DU = (D,Uy, a,b € A) is Hilbert-Schmidt as a map
from L2(Ex x A) into itself. As a consequence, for two such maps DU and DV, the map
DU o DV is trace-class (see Yosida [142]) with

trace(DUoDV) = > (D,Us) (DyVa).
a,be A

The next formula is the counterpart of the Itd isometry formula for the Brownian motion,
sometimes called the Weitzenbock formula (see Privault [117, Eqn. (4.3.3)]) in the Poisson
settings.

Theorem 2.1.11 (%). The space D(£2(A)) is included in Dom 6. For any U, V belonging to
D((*(A)),
E[6U 0V] = E [trace(DU o DV)]. (2.1.2)

Remark 2.1.12. It must be noted that compared to the analogue identity for the Brownian
and the Poisson settings, the present formula is slightly different. For both processes, with
corresponding notations, we have

[6UIE2(a) = [U[F2(, x ) + trace(DU o DU).

The absence of the term [[U|2(o) gives to our formula a much stronger resemblance to the
analogue equation for the Lebesgue measure. As in this latter case, we do have here §1 = 0
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whereas for the Brownian motion, it yields the It6 integral of the constant function equal to
one. If A = N, let F,, = 0{X, k£ < n} and assume that U is adapted, i.e. for all n > 1,
U, € F,,. Then, D,,U; = 0 as soon as n > k, hence

i (Un _E[U, !fn_l]f] ,

i.e. E[(0U)?] is the L*(N x En)-norm of the innovation process associated to U, which appears
in filtering theory.

E[(5U] - B

2.1.2 Ornstein-Uhlenbeck semi-group and generator

Having defined a gradient and a divergence, one may consider the Laplacian-like operator
defined by L = —éD, which is also called the number operator in the settings of Gaussian
Malliavin calculus.

Definition 2.1.13 (). The number operator, denoted by L, is defined on its domain

Dom L = {F eL%(A): E [Z |DaF]2] < oo}

aceA

by
LF = —6DF = — ) D,F. (2.1.3)

aeA
The map L can be viewed as the generator of a symmetric Markov process X, which is ergodic,
whose stationary probability is Ps. Assume first that A is finite. Consider (Z;);er, a Poisson
process on the half-line of rate |A|, and the process Xy = (X1, -+, Xny¢, ¢ = 0) which evolves
according to the following rule: At a jump time of Z,

e Choose randomly (with equiprobability) an index a € A,

e Replace X, by an independent random variable X/, distributed according to P,.

For every x € Ep, a € A, set 7% = (21, -+, g1, Tat+1, * xw). The generator of the

Markov process X is clearly given by

1 -
A Y o f (B, a) ~ F(2))dPy(a}) = — 3 DoF(x). (2.1.4)
acA Eq acA
The factor |A| is due to the intensity of the Poisson process Z which jumps at rate |A|, the
factor |A|~! is due to the uniform random choice of an index a € A. Thus, for a finite set A,
L coincides with the generator of X.

Remark 2.1.14. This result is in fact transposable in terms of a regular Markov process of
parameters (v, Q) where v is a probability measure on a state space E and Q a transition
matrix.The Markov process is contructed in a trajectorial way (see for instance Decreusefond
and Moyal [39]). Let E = Ea, Xp be a random variable with law v and define the matrix

Q = (q(x, (xﬁa7z)7 ($, (.%ﬁa’z)) € Eap x EXQ X Ea) as follows :

q(l‘,&?) = |A|

dP,
q(:v, (xﬁaa Z)) = ’A(‘Z)a z€E,
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that is well defined since » 5 ZzeEa q(m, (x™, z)) = 1.
As a reminder, the generator of a regular Markov process X of parameters (v, Q) is given for
f e L¥(Ea) by

AQF(z,y) = g(z,x) Y, (F(y)-F(2))a(z,y) = qlz,z) ), >, (Fz7*2)~F(2))qg(, (27 2))

yeEL”® a€A eEZ e
so that we retrieve (2.1.4).
Denote by P = (Py)«cr, the semi-group of X ; for any x € E, for any bounded f : Ex — R,
PF(z) = E[F(Xy) | Xo = z].

Then, (P, t > 0) is a strong Feller semi-group on L*(E4). This result still holds when Ej is
countable.

Theorem 2.1.15 (%). For any countable set A, L defined as in (2.1.3) generates a strong
Feller continuous semi-group (Py)i=0 on L®(Ex).

As a consequence, there exists a Markov process X whose generator is L as defined in (2.1.3).
It admits as a core (a dense subset of its domain) the set of cylindrical functions.

From the sample-path construction of X, the next result is straightforward for A finite and
can be obtained by a limit procedure for A countable.

Theorem 2.1.16 (% Mehler formula). For a € A, z, € E, and t > 0, let Xg"t the random
variable defined by

za _ ) Ta  with probability et
ot X! with probability 1 — et

where X!, is a Py-distributed random variable independent from everything else. In other
words, if Pg4 denotes the distribution of Xg4, Pg% is a convex combination of 6, and P, :

Poy = ey, +(1—e HP,.

For any x € Ea, any t > 0,

PF@) = | FO) © dPii).
A a

It follows easily that (Pt)i=o is ergodic and stationary :

t—00

lim P, F(z) = f FdP and Xo &P — X, ' P.
Ea

We then retrieve the classical formula (in the sense that it holds as is for Brownian motion
and Poisson process) of commutation between D and the Ornstein-Uhlenbeck semi-group.

Theorem 2.1.17 (). Let F € L2(Ep). For everya€ A, x € Eq,

D,P/F(z) = P,D,F(z). (2.1.5)
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2.2 Functional identities

This section is devoted to several functional identities which constitute the crux of the matter
if we want to do some computations with our new tools. These can be associated to two areas
of interest, which are also linked in our context: representation theorems and concentration
inequalities.

The first part of this section is devoted to the statement of a representation identity, the ana-
log to the Clark-Ocone formula and its corollaries (for original functional identities see Bakry
Gentil and Ledoux|12], Ledoux [82], Talagrand [134]): Poincaré’s inequality and a covariance
identity. The Clark formula is also the initial point to lead to a log-Sobolev inequality, strongly
reminding that obtained for Poisson processes (see Wu [140]), together with a concentration
inequality.

It is classical that the notion of adaptability is linked to the support of the gradient.

Lemma 2.2.1 (k). Assume that A = N and let F,, = 0{Xy, k < n}. For any F e D, F is
Fr-measurable if and only if D,F = 0 for any n > k. As a consequence, DF = 0 if and only
if F =E|[F].

It is also well known that, in the Brownian and Poisson settings, D and conditional expectation
commute.

Lemma 2.2.2 (x). For any F € D, for any k > 1, we have
Dy E[F|F] = E[DyF | Fil. (2.2.1)

The Brownian martingale representation theorem says that a martingale adapted to the fil-
tration of a Brownian motion is in fact a stochastic integral. The Clark formula gives the
expression of the integrand of this stochastic integral in terms of the Malliavin gradient of the
terminal value of the martingale. We here have the analogue formula.

Theorem 2.2.3 (% Clark formula). For A =N and F € D,
2 Dy E[F| .

Since Malliavin calculus is agnostic to any time reference, we do not even assume that we have
an order on the product space. It is not a major feature since a countable set A is by definition
one-to-one with the set of natural integers and thus inherits of at least one order structure.
However, this added degree of freedom appears to be useful (see the Clark decomposition
of the number of fixed points of a random permutations in Section 3.1) and bears strong
resemblance with the different filtrations which can be put on an abstract Wiener space, via
the notion of resolution of the identity (see Ustiinel and Zakai[136]).

Corollary 2.2.4 (k). Within the assumptions of theorem 2.2.3 ; if A is finite and if there is
no privileged order on A, we can write

Al
F=E[F]+ ) <B> |B|2Db [F|Xg].

BcA beB
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Remark 2.2.5. The chaos decomposition is usually deduced from Clark formula by iteration.
If we apply Clark formula to E [F | F], we get

DE[F| ] = ZDkDEF|]:JAk] . =D,E[F| Fil,

and we get back to our starting point, since j > k implies D;E[F|F,] = 0 in view of
Lemma 2.2.1. Furthermore, the same holds when k£ > j since it is easily seen that D;D; =
DyD;. For j = k, simply remark that D;D;, = Dj. Hence, it seems that we cannot go further
this way to find a potential chaos decomposition.

As mentioned in the Introduction, it may be useful to reverse the time arrow. Choose an order
on A so that A can be seen as N. Then, let

Fn = 0{Xp, k > n}.
and for any n € {0,--- ;N — 1},
f}jzﬁnﬂfl\f and .févzf():{@7 EA}fOI'kZN

Note that FN = JFn and as in Lemma 2.2.1, F is .?Ek-measurable if and only if D, F = 0 for
any n < k.

Theorem 2.2.6 (). For every F in D,
w N
+ Z Dy, E[F ’ ./T"kfl].

In the present context, the next result is a Poincaré type inequality as it gives a bound for the
variance of F' in terms of the oscillations of F. In other context, it turns out to be called the
Efron-Stein inequality (see Boucheron, Lugosi and Massart [21]). It can be noted that both
the statement and the proof are similar in the Brownian and Poisson settings.

Corollary 2.2.7 (% Poincaré or Efron-Stein inequality). For any F € D,
Var(F) < [DF[f2g, «a)-
Another corollary of the Clark formula is the following covariance identity.

Theorem 2.2.8 (% Covariance identity). For any F,G e D,

cov(F,G) = E| Y DLE[F | Fi] DG

keA

(2.2.2)

As for the other versions of the Malliavin calculus (Brownian, Poisson and Rademacher), from
(2.1.5), can be deduced another covariance identity.

Theorem 2.2.9 (k). For any F,Ge D,

cov(F, G)

E|) DkFJ “'P,E DG | Fi] dt] . (2.2.3)
keA
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Then, using the so-called Herbst principle, we can derive a concentration inequality, in its
large deviation formulation, which, as usual, requires an L™ bound on the derivative of the
functional to be valid.

Theorem 2.2.10 (% Concentration inequality). Let F for which there exists an order on A
with

0
M = sup Y [DyF(X)|E[|DiF(X)|| Fi] < 0.
XEEA k=1

Then, for any r = 0, we have

2

x

PF—E[F]>z)<exp|——=— -
(F-~EIF] > ) <o 5y

In the Gaussian case, the concentration inequality is deduced from the logarithmic Sobolev
inequality. This does not seem to be feasible in the present context because D is not a
derivation, i.e. does not satisfy D(FG) = F DG + G DF. There is so some interest to study an
inequality such as

(2.2.4)

F2
Ent,[F] < CEu[|D | ],

F

that can be stated if, for instance, p is the Bernoulli measure on {0, 1} or the Poisson measure
on N and D the associated usual discrete gradient in each case. We still have an LSI identity
comparable to (2.2.4). For the proof of it, we follow closely the proofs of Nicolas Privault [116]
and Liming Wu [140]. They are based on two ingredients: the It6 formula and the martingale
representation theorem. We get an ersatz of the former but the latter seems inaccessible as
we do not impose the random variables to live in the same probability space and to be real
valued. Should it be the case, to the best of our knowledge, the martingale representation
formula is known only for the Rademacher space (see Williams [139, Section 15.1]), which
is exactly the framework of Nicolas Privault [116]. This lack of a predictable representation
explains the conditioning in the denominator of (2.2.5).

Theorem 2.2.11 (% Logarithmic Sobolev inequality). Let a positive random variable G €
LlogL(Eya). Then,

(o) — o 7‘DkG‘2
E [GlogG] — E[G]logE [G] <];AE{E[G’%]]. (2.2.5)

In the usual vector calculus on R?, the Helhmoltz decomposition stands that a sufficiently
smooth vector field can be resolved in the sum of a curl-free vector field and a divergence-free
vector field. We have here the exact counterpart with our definition of gradient.

Theorem 2.2.12 (% Helhmoltz decomposition). Let U € D(¢2(A)). There exists a unique
couple (p, V) where p € L2(Ep) and V € L2(Ex x A) such that E[¢] =0, 6V = 0 and

Uy = Doy + Vg,

for any a € A.
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We choose to highlight the similarities and differences of the classical functional inequalities
obtained in the Gaussian and Poisson settings and their analogues in our discrete framework
through the following summary table. The identities relating to "Gaussian space", held on
any Gaussian fields (we keep the notations used on subsection 1.3.1) except from the Clark
formula stated here with respect to the standard Brownian motion. Those relating to "Poisson
space" are true in any Poisson space constructed on an underlying measurable space (X, u)
where p is a o-finite measure, apart from the Clark formula, given here for (N;);cr, a Poisson
point process on R} with intensity 1. Most of the identites stated in Gaussian spaces can
be retrieved in Bakry, Gentil and Ledoux [12],Ledoux [82], Nourdin and Peccati [94] and for
Poisson spaces in Last and Penrose [80], Peccati and Reinert [110], Wu [140]. The logarithmic
Sobolev inequality for differentiable Wiener functionals F,

Ent[F?] < 2E [|VF[], (2.2.6)

initially stated by Leonard Gross in [62] can be retrieved via the application of the Clark
formula. It does not exist in its original form (2.2.6) due to the absence of chain rule formula
for discrete gradients. This also explains the lack of hypercontractivity property in Poisson
and discrete settings, actually equivalent to (2.2.6). Ivan Nourdin, Giovanni Peccati and
Xiaochuan Yang nevertheless ruled on an restricted hypercontractivity in the Poisson space
in a recent work [91].

In the table below we review the identities established above, and compare them to their
analogues in the Gaussian/Brownian and Poisson cases.

Table 2.1: Functional identities - Similarities and differences

Gaussian space Poisson space IR variables
Chaos F=E[F] + Z i6"(E Vg ) F=E[F] + Z Lon (E[D(")FD No decomposition
n! n!
n=1 n=1
decomposition
00 00 o0
Clark F:E[F]+J E[D,F| 7] dB, F:E[F]Jrf E[DF|F] (N, —dt) | F=E[F] + Y. D E[F|F].
o o ot
formula
Isometry 18UllL2) = 1UIF2(q) + E[tr(VU o VU] | [8U[}2q) = [UI2(q) + E[tr(DU DU)] | U2 = E[tr(DU o DU)]
formula
: S g [ _[DsFI°
Modified log-Sobolev Ent(F) < E[(VF,VlogF)g] Ent(F) < E{f min(F~!|D,F?, Ent(F) < Z E |: }
: ZPEF[G]
inequality D,F D, log F)du(z)
restricted hypercontractivity
Hypercontractivity [P:F|lyse2e(p1) < [Flp [PF[ 1 4et o1y < [Fllp No regularizing property
(F e L3(Q)) (F >0, DF < 0 on X)
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2.3 Dirichlet structures

Despite apparent dissimilarities of structures, such as the lack of chaotic decomposition in
our construction (see remark 2.2.5), we nevertheless succeeded in connecting our elaboration
to the preexiting theories for Brownian motion and Poisson processes; this through Dirich-
let structures. Inspirated by the binding identities between Malliavin calculus and Dirichlet
forms, we provide to any countable product of probability spaces a Dirichlet structure natu-
rally induced by our construction. In the two following subsections, we state that the usual
Poisson and Brownian Dirichlet structures (see Bouleau and Hirsch [23]), associated to their
respective gradient, can be retrieved as limits of the structures induced by our formalism. We
borrow for that the idea of convergence of Dirichlet structures to Bouleau [22].

On (Ea,Pa), we have already implicitly built a Dirichlet structure, i.e. a Markov process X,
a semi-group P and a generator L (see subsection 2.1.2). It remains to define the Dirichlet
form £4 such that £o(F) = E [F LF] for any sufficiently regular functional F.

Definition 2.3.1 (k). For F € D, define

EA(F) =E [Z |DaF|2] = HDF”%P(EAXA)‘
acA

The integration by parts formula means that this form is closed. Since we do not assume any
property on E, for any a € A and since we do not seem to have a product rule formula for the
gradient, we cannot assert more properties for £4. However, following [22|, we now show that
we can reconstruct the usual gradient structures on Poisson and Wiener spaces as well chosen
limits of our construction. For these two situations, we have a Polish space %', equipped
with B its Borelean o-field and a probability measure P. There also exists a Dirichlet form £
defined on a set of functionals D. Let (En, An) be a sequence of Polish spaces, all equipped
with a probability measure Py and their own Dirichlet form &y, defined on Dy. Consider
maps Uy from Ey into # such that (Ux)«Px, the pullback measure of Py by Uy, converges
in distribution to P. We assume that for any F € D, the map F o Uy belongs to Dn. The
image Dirichlet structure is defined as follows. For any F € D,

EUVN(F) = Ex(F o Un).
We adapt the following definition from Bouleau [22].

Definition 2.3.2. With the previous notations, we say that ((Un)«Pn, N € N*) converges
as a Dirichlet distribution whenever for any F € Lip nD,

lim EVN(F) = £(F).

N—oo

2.3.1 Brownian motion

We now consider P as the Wiener measure on #3 = Cyp([0,1]; R). Denote T = [0,1]. Let
(hi, k € N*) be an orthonormal basis of the Cameron-Martin space ! (defined by (1.3.1)).
For any function F : #5 — R cylindrical of the form

F= f(W(g1), tee 7W(gn>)7
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where W(g) coincides with the Wiener integral of g and f belongs to the Schwartz space
S(R™). As a reminder, for t € Ry,

W (10,4) = B(#),

where B stands for the standard Brownian motion on R and for h € $T,
VhF = Z 7((5]31)1, ce ,(5]31),1) hk. (2.3.1)
= O

The map V is closable from L2(#3) to L2(#5;$'). Thus, it is meaningful to define D113,2 as
the closure of cylindrical functions for the norm

1
Fliz = (IF 1220 + IVF Rargisn) -
Definition 2.3.3. A function F : # — R is said to be H-C! if
e for almost all w € #i, h —> F(w + h) is a continuous function on H*,

o for almost all w € #3, h — F(w + h) is continuously Fréchet differentiable and this
Fréchet derivative is continuous from $' into R ® $H'.

We still denote by VF the element of $! such that

(%_F(w + Th) = (VF(w), h)g1.
7=0

For N € N*, let
t
() = VN 1yp_iy. (1) and AN (1) = L eN(s)ds.

The family (hY, k = 1,---,N) is then orthonormal in $'. For (My, k = 1,--- ,N) a se-
quence of independent identically distributed random variables, centered with unit variance,
the random walk

N
wN(t) = Z My, hY(t), for all t € [0, 1],
k=1

is known to converge in distribution in #3 to P. Let Exy = RN equipped with the product
measure Py = ®1,j:1V where v is the standard Gaussian measure on R. We define the map
Un as follows:

Un : EN — 73

N
m = (my, - ,mn) — kahllj
k=1

It follows from our definition that:
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Lemma 2.3.4 (%). For any F € L?(#3; R),

N 2
eNF) =Y E {(F(wN) B[l + M hY) ) ]
k=1

where w%\]i) = wN — M, hg and M}, is an independent copy of My. The expectation is taken on

the product space RN equipped with the measure Py @ v.
The definition of Lipschitz function we use here is the following;:

Definition 2.3.5. A function F : # — R is said to be Lipschitz if it is H-C' and for almost
all we #3, '
KVF(w), byl < |[Afp:-

In particular since eg > 0, this implies that

1
VF(w), WD < h¥1) = hrY(0)= —; k=1,--- ,N
K (W) k>\ k() % (0) VN
For F € Dg n H-C!, we have
F(w+h) — F(w) = (VF(w), Byg1 + |l e(w, h), (2.3.2)

where (w, h) is bounded and goes to 0 in L2, uniformly with as |[2];1 tends to 0.

Theorem 2.3.6 (x). For any F € Dg n H-C!,
EN(F) 25 E[|VF|2,] = £(F).

Remark 2.3.7. The error caculus theory is provided by the following principle: the variance
of the error on a random variable X, represented by I'(X), is thus attached to it. Then if the
sequence of pairs (X,,I'(X,,)) converges suitably, it converges necessarily to a pair (X, '(X)).
We can interpret the result of Theorem 2.3.6 in this perspective: the approximation of the
Brownian motion by a random walk is validated by the convergence of the associated error
structures.

2.3.2 Poisson point process

Let Y be a compact Polish space and 91y be the set of weighted configurations, i.e. the set
of integer valued, locally finite measures on Y. Such a measure is of the form

0
W= Pntc,
n=1

where ((,)nen* 18 a set of distinct points in Y with no accumulation point, (p,)pen* any
sequence of positive integers. The topology on My is defined by the semi-norms

prlw) =

)

> pn £(Gn)
n=1
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when f runs through the set of continuous functions on Y. It is known (see for instance [72])
that 9y is then a Polish space for this topology. For some finite measure M on Y, we put on
Ny, the probability measure P such that the canonical process is a Poisson point process of
control measure M, which we consider without loss of generality, to have total mass M(Y) = 1.

On Ny, it is customary to consider the difference gradient (see [37, 103, 117]): For any z € Y,
any w € Ny,
D,F(w) = F(w +&;) — F(w). (2.3.3)

Set
Dp = {F : My — R such that E [f |DxF\2dM(x)} < oo} ,
Y

and for any F € Dp,

E(F) :EU |DxF|2dM(x)]. (2.3.4)
Y
L . o v o anononoooil
Figure 1 Figure 2 Figure 3

To see the Poisson point process as a Dirichlet limit, the idea is to partition the set Y into N
parts, CY, -+, CY such that M(C') = p" (Figure 1) and then for each k € {1,--- N}, take a
point C,SI into CE (Figure 2) so that the Poisson point process w on Y with intensity measure

M is approximated by
N

wN = Z w(CY) EcN-
k=1

We denote by Py the distribution of w™N. Repeat the procedure for N each time bigger (Figure
3). By computing its Laplace transform, it is clear that Py converges in distribution to P.
It remains to see this convergence holds in the Dirichlet sense for the sequence of Dirichlet
structures induced by our approach for independent random variables.

Let (C}j, k=1,---,N) (respectively (pg, k=1,---,N)) be a triangular array of points in Y

(respectively of non-negative numbers) such that the following two properties hold:
1) the p}’s tends to 0 uniformly:

1
pN = suppg =0 (—) : (2.3.5)
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2) the (}j’s are sufficiently well spread so that we have convergence of Riemann sums : For
any continuous and M-integrable function f : Y — R, we have

N
Z Moo, Jf )dM (z (2.3.6)

Take f =1 implies that ), p}j tends to 1 as N goes to infinity.

For any N € N* and any k € {1,--- ,N}, let NE be the Poisson distribution on N, of parameter
pf. In this situation, let Ey = NN with N = ®§:1,u1,j. That means we have independent
random variables Mll\I, e ,M%, where ME follows a Poisson distribution of parameter p}j for
any k € {1,--- ,N}. We turn these independent random variables into a point process by the
map Uy defined as

Uy : N¥ — 9y
N
k=1

Lemma 2.3.8 (x). For any F € Dp,
N o 0 2
ENE) = > D E (Z( Wiy T leen) — F(wiiy +TEC%))M,NH(T)> N0, (2.3.7)
m=1/¢=0 7=0

where w = Do MY RECN-

Proof. According its very definition,

N 0 2
ENE) = > E ( )+ Mheen) — D Fwhy + meey) Mgﬁm)
m=1 7=0
The result follows by conditioning with respect to MY | whose law is ul . O

Since the vague topology on 9y is metrizable, one could define Lipschitz functions with
respect to this distance. However, this turns out to be not sufficient for the convergence to

hold.

Definition 2.3.9. A function F : 9ty — R is said to be TV — Lip if F is continuous for the
vague topology and if for any w, n € My,

|F(w) — F(n)| < distry(w, 1),

where distry represents the distance in total variation between two point measures, i.e. the
number of distinct points counted with multiplicity.

Theorem 2.3.10 (). For any F € TV — Lip n Dp, with the notations of Lemma [2.5.8]
and (2.3.4),

EN(F) X225, g(m).



2.4. PROOFS OF CHAPTER 2 75

2.4 Proofs of chapter 2

2.4.1 Proofs of Section 2.1

Proof of Theorem 2.1.6. The process trace(DU) = (D,U,)qep belongs to L2(Ex x A): using
the Jensen inequality, we have:

I tI'aCe(DU)H%Q(EAXA) =B

D |DaUa|2] <2) E[UZ] <. (2.4.1)

aeB aeB

Moreover,

(DF, U1z, xa) = E

2, (F—E[F|G.]) Ua]
aeA

=E Z(F_E[F|ga])Ua =E FZ(Ua_E[Ua‘ga]) )
aeB aeB
since the conditional expectation is a projection in L2(Ey). O

Proof of corollary 2.1.7. Let (Fp,)nen+ be a sequence of random variables defined on S such
that F,, converges to 0 in L2(E,) and the sequence DF,, converges to n in L?(Ex x A). Let U
be a simple process. From the integration by parts formula (2.1.1)

Z D.F,, Ua] =E

acA

E Fp, Y Dol

agA

where Z D,U, € L%(E,) in view of (2.4.1). Then,
acA

F, 2 D, U,
acA

W, Ura(g,xa) = lim B =0,

for any simple process U. It follows that = 0 and then the operator D is closable from
L2(EA) to L2(Ex x A). O

Proof of Lemma 2.1.8. Since sup,, |DF,,|p is finite, there exists a subsequence which we still
denote by (DF,,n > 1) weakly convergent in L?(Ep x A) to some limit denoted by 7. For
k > 0, let ny be such that |F,, — F|p2 < 1/k for m > nj. The Mazur’s Theorem implies that
there exists a convex combination of elements of (DF,,, m > ny) such that

< 1/k.

M,

k

o; DFp, — 1
’; v L2(Ea xA)

Moreover, since the af are positive and sums to 1,

Mg

k

33 fFH < 1/k.
‘;az mi LQ(E /
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We have thus constructed a sequence
My,
F" =) af F,
i=1

such that F¥ tends to F in L? and DF* converges in L2(EA x A) to a limit. By the construction
of D, this means that F belongs to D and that DF = 7. O

Proof of Lemma 2.1.11. For U and V in Sg(¢£2(A)), from the integration by parts formula,
E[6U 6V] =(Dé(U), V)re(m, xa)

=E | ) Du(U)V,
| acA

—E| > VaDi(DyUp)
(a,b)eA?

—E| D VoDyDuUp)
(a,b)EA2

=E| > (DyVa)(DeUp) | = E[trace(DU o DV)].
(a,b)eA?

It follows that E [6U?]| < HUH%(@Q(A)). Then, by density, D(¢?(A)) € Dom § and Eqn. (2.1.2)
holds for U and V in Dom §. O

Proof of Theorem 2.1.15. To prove the existence of (P¢)er, for a countable set, we apply the
Hille-Yosida theorem:

Theorem 2.4.1 (Hille-Yosida). A linear operator L on L2(Ea) is the generator of a strongly
continuous contraction semigroup on L2(EA) if and only if

1. Dom L is dense in L2(Ex).

2. L s dissipative i.e. for any A > 0,F € Dom L,

IAF — LF[r2m,) = AF[L20m,)-

3. Im(AId — L) is dense in L2(Ey).

We know that S = Dom L and that S is dense in L2(E,), then so does Dom L.

Let (Ap)pen+ an increasing sequence of subsets of A such that | J,-; A, = A. For F € L?(E,),
let F,, = E[F|Fa,]. Since (F,)nen+ is a square integrable F-martingale, F,, converges to F
both almost-surely and in L?(Es). For any n € N*, F,, depends only on X4, . Abusing the
notation, we still denote by F,, its restriction to E4, so that we can consider L, F,, where L, is



2.4. PROOFS OF CHAPTER 2 7

defined as above on Ea,,. Moreover, according to Lemma 2.2.2, D,F,, = E[D,F | Fa, ], hence

2
NIFalfe, < IAFn = LoFalf2m, )= E (AFn + ] DaFn>

acA
2
acA

Therefore, point (2) is satisfied.

Since A,, is finite, there exists G,, € L?(E,,,) such that

Fp, = (AId = Lp,)Gn(Xa,) = AGn(Xa,) + Y. DaGn(Xa,)
acA,
= AGn(Xa) + Y. DaGn(Xa) = AGn(Xa) + D, DaGn(Xa),
acA, acA

where G,,(Xa) = G, (X4, ) depends only on the components whose index belongs to A,,. This
means that F,, belongs to the range of A\Id — L and we already know it converges in L?(E,)
to F. ]

Proof of Theorem 2.1.17. For A finite, a € A, let G, ¢ := U(Xg,bv b # a) so that
DaPtF(fB) = PtF(x) -E [PtF(x) | ga,t]
= E[F(X;)[Xo = 2] - E[E[F(X) | Xo = 2] | Ga]
= E[F(X:)[Xo = 2] - E[E[F(Xy)[Ga:] [Xo = 2]
— P,D,F(z).

For A infinite, let (A,,),en+ an increasing sequence of finite subsets of A such that Un>1 A, =
A. For F € L2(Ea), let F,, = E[F|Fa,]. Since P is a contraction semi-group, for any t,
P,F,, tends to P,F in L2(EA) as n goes to infinity. From the Mehler formula, we known that
P.F, = P?F,, where P" is the semi-group associated to P, hence

D,P:F,, = D,PI'F, = PI'D,F,,. (2.4.2)

Moreover,

E

> E[|PDaFn[]

acA,

3 E[|DJF,

acAn

> E[[E[DF|Fa,] ]

acA,

2, B[IDaE’]

acA,,

|DF5.

> |DaPtFn|2]

acA,

N

N

N

According to Lemma [2.1.8], this means that P;F belongs to D. Let n go to infinity in (2.4.2)
yields (2.1.5).
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Remark 2.4.2. An alternative proof consists in using the identity P;F = e *“F and then the
equivalent expression of P; as

P,F =) —L”F (2.4.3)
neN

Moreover, as follows from D,D, = D, and DD, = D,D;, for any a,b € A that
LD,F =D,D,F Y D,D,F=D, (DaF _ DbF) — D,LF,
beA,b#a beEA b#a

we get by induction that
L"D, = L"D,

on §. We conclude by plotting this in (2.4.3) and using a density argument.

2.4.2 Proofs of Section 2.2

Proof of Lemma 2.2.1. Let k € A. Assume that F € F;. Then, for every n > k, F is G-
measurable and D,,F = 0.

Let F € D such that D,F = 0 for every n > k. Then F is G,,-measurable for any n > k. From
the equality Fi = () Gn, it follows that F is Fi-measurable. O

n>k
Proof of Lemma 2.2.2. For any k € N*, Fi. n G, = Fr_1, hence
DyE [F|Fy] = E[F|Fy] — E[F | Fi—1] = E [DyF | Fi].
The proof is thus complete. O

Proof of Theorem 2.2.3. Let F a F,-measurable random variable. It is clear that

n

- 3 ®IFI7 - BIF| 7 1)) = 3 DiE[F| .
k=1 k=1

For F € D, apply this identity to F,, = E[F|F,] to obtain
F,—E[F] = ) D;E[F|F].
k=1
Remark that for £ > k, in view of Lemma 2.2.1,
E[DE[F|F] D E[F|F]] = E[DD E[F|F]E[F|F]] =0, (2.4.4)
since Dy, E [F | Fi] is Fi-measurable. Hence, we get
E[[F-E[F]’] >E[|F, - E =) E [DkEF|fk]]-
k=1

Thus, the sequence (DyE[F|Fi], k € N*) belongs to £2(N) and the result follows by a limit
procedure. O
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Proof of Corollary 2.2.4. We now analyze the non-ordered situation. If A is finite, each bijec-
tion between A and {1,--- ,n} defines an order on A. Hence, there are |A|! possible filtrations.
Each term of the form

D E[F|Xi, -, Xi,]
appears (k — 1)! (|A| — k)! times since the order of X; , -+ ,X;,
tioning. The result follows by summation then renormalization of the identities obtained for
each filtration. O

is irrelevant to the condi-

Proof of Theorem 2.2.6. Remark that
DE[F| A, | =E[P|EY | -E[F| AL n G| —E[F|FY, | -E[F| Y],
For F € Fy, since the successive terms collapse, we get
F-E[F] = E[F| 7| - B[F|A| = Y D:E[FIFY, ]| = Y DeB[F| A,
k=1 k=1
by the very definition of the gradient map. As in (2.4.4), we can show that for any N,
E[DyB[F| 7| DeE[F|FY]] =0, for ke

Consider Fx = E [F | Fx] and proceed as in the proof of Lemma 2.2.3 to conclude. O
Proof of Corollary 2.2.7. According to (2.4.4) and (2.2.1), we have

2

Var(F) = E || ). DyE[F| Fi]

keA

—E Z‘DkE[F\}"k]‘Q

LkeA i
2
=E Z ‘E[DkF|fk]‘ ]
LkeA
<E Z E[|DkF\2|fk]] =E Z IDLF? |,
LkeA keA
where the inequality follows from then Jensen inequality. O

Proof of Theorem 2.2.8. Let F, G € D, the Clark formula entails
cov(F,G) = E[(F - E[F])(G - E[G])]

—E| ) D:E[F|F] DE[G|F]
_k,éeA

=E| Y. DiE[F| 7] DiE[G|F]
| keA

—E|) DiF D4E[G] }"k]]
| keA
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where we have used (2.4.4) in the third equality and the identity DyDj = Dy in the last
one. B

Proof of Theorem 2.2.9. Let F,G € L2(E,).

cov(F,G) = E | Y (DLE[F|F])(DE [G|F])

keA

=E I;ADkE[FU-"k] (—L LP,E [G|F] dt>]
- LOOE > DyE [F|Fx] (Z D/P,E [G|F%] dt)]

keA leA

0
= J e 'E
0

when we have used the orthogonality of the sum, (2.1.5) and the Fj-measurability of P;D;E [G|F]
to get the last equality. O

> (DyF) (PDLE [G|FL])
keA

Proof of Theorem 2.2.10. Assume with no loss of generality that F is centered. Apply (2.2.2)
to OF and €% (0 e RY),

0B [FeT|| =0 E [Z DyF DiE [ | 7| ”
keA
<0 Y E[IDF| DB [ 7 |||
keA

Recall that
D[] < B[ 7 2] [0 1
_E [E’ [60F _ e@F(Xﬁk,Xﬁg)] ’}-k]

—E [T B [1-e 7] | 7]

where AF = F — F(X_j, X)) so that DyF = E' [ALF].
Since (x — 1 —e™7) is concave, we get

DLE [eeF | }'k] <E [e"F(l ) |}"k] <OE [eﬁF ID,F| |}"k] .

Thus,

‘E [FeeF” <OE

0
¢ ) |DyF|E[|D4F| |}"k]] <MOE [eGF] .
k=1

By Gronwall lemma, this implies that

E [eeF] < exp <922 M> .
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Hence,
02
P(F —E[F] > z) = P(/F~ElFD) > ¢97) < exp (—037 5 V).

Optimize with respect to 6 gives Oop; = /M, hence the result. O

Proof of Theorem 2.2.11. We follow closely the proof of [140] for Poisson process. Let G €
L2(EA) be a positive random variable such that DG € L?(E5 x A). For any non-zero integer
n, define G,, = min(max(, G),n), for any k, Ly = E[G,|7;] and Ly = E[G,,]. We have,
n—1
LylogLy — LologLo = ) Lgy1log ety — Ly log L
k=0

n—1 n—1
= Z log L (Lg 41 — L) + Z Lyy1(log Lgy1 —log Lg).
k=0 k=0

Note that (log Ly (Lpt1 — L”))ne and (Ln+1 — Ln)ne are (F,)nen-martingales, hence

N N

E[L, logL, — LologLo]

[n—1
=E Z Lgt1log Lgyy — Lgyq log L — Lgg1 + Lk]
[ k=0

[n—1
=E Z Lypy1log g1 — L log Ly — (log Ly 4 1) (Lgy 1 — Lk)]
[ k=0
[n—1

=E E:e(LkaLk+1—‘Lk) :
k=0

where the function ¢ is defined on © = {(x,y) e R*: 2 > 0,2 + y > 0} by
lz,y) = (x + y)log(x + y) —xlogz — (logx + 1)y.

Since ¢ is convex on O, it comes from the Jensen inequality for conditional expectations that

n—1 n—1
D IE[U(Lk, Ly — i) = ). B[UE [Gn| Fi] ,DiirE[G | Frsa])]
k=0 =0

E[((E[Gy, | Fr1], E[DrGy | Fi])]

Il
M=

T
)

)
1=

E [E[((E Gy |Gr], DiGy) | Fill

b
Il
—

Il
M=

E[((E[G,|Gk],DrGn)]

b
Il
—

E[{(E[Gy|Gr] , DiGy)] .

I
RE

x>
Il
—_
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We know from [140] that for any non-zero integer k, ¢(E [G,, | G|, DixG,,) converges increas-
ingly to {(E[G|Gk],DxG) P-a.s., hence by Fatou Lemma,

E[GlogG] — E[G]logE[G] < ) E[({(E[G|G,] , DiG)].

The proof is thus complete. O

Proof of Theorem 2.2.12. We first prove the uniqueness. Let (¢, V) and (¢’, V) two conve-
nient couples. We have Dy (¢ — ¢') = VI, =V, for any a € A and Y _, Da(V, — V,) = 0,
hence

=E

0=E|(p—¢) ) Da(Vy— Vo)
aceA

D Dalep — ) (Vi = Va)
acA

—E [Z(V; —Vo)?
aceA

This implies that V = V' and D(¢ — ¢’) = 0. The Clark formula (Theorem 2.2.3) entails that
0=E[p—¢]=p—-¢.
We now prove the existence. Since E[Dgp|Ga] = 0, we can choose

Va:E[Ua|ga]7

which implies Dy = D,U,, and guarantees 0V = 0. Choose any ordering of the elements of
A and remark that, in view of (2.4.4),

8

2 o6}
DE [Ug !ﬂ]) ] < Z E [|DyU%] < HUHJQD(EQ(A))’
=1

hence

Q0
o= E[DUk| Fil,
h=1

defines a square integrable random variable of null expectation, which satisfies the required
property. O

Proofs of Section 2.3
Proof of Theorem 2.3.6. For F € D n H-C!, in view of (2.3.2), we have

M, — M/
F(WN) = Flwgy + Mg hY) = (Mg — Mp) (VE(wiyy), hisr + Wk e(Wiky hi)-
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Hence,
i [( E’[F(w%JrM;hlzf)])Q]
k=1
N / 2
:,;E <Mk<VF< o) hist + B [w 5(“5“>’h1’§)]>]
k=1
and

N
Rem < IST’;E [a(w%, hl,j)Q] =2y,

by the Césaro theorem. It follows that £YN(F) has the same limit as

i E [(VF(l), i3]

As N goes to infinity, we add more and more terms to the random walk, so that the influence
of one particular term becomes negligible. The following result is well known (see Bouleau,
Proposition 3 in [22]): for any k € {1,...,N}, for any bounded ¢ and ¢,

N—>
E [(Mp)p(w™)] === E[Y(Mp)]E [p(w)].
Since |VF| g1 belongs to L® and Y|l tends to 0, this entails that for any ,

Nni%OE[WF( Dy 2, ] — lim E[(VF@Y), i)3:] = lim B[|rv, VF(N)2.],

where 7y, is the orthogonal projection in $! onto span{h}j, k=1,--- ,N}. We conclude by
dominated convergence. O

Proof of Theorem 2.3.10. Starting from (2.3.7), the terms with 7 = 0 can be decomposed as

o 2P Z {( ) Feey) — F(w%\fn))Y] pm (1) + Rg -

Since F belongs to TV — Lip,

where the ¢; and ¢y are irrelevant constants. As NpN is bounded, RN goes to 0 as N grows to
infinity. For the very same reasons, the sum of the terms of (2.3.7) with 7 > 1 converge to 0,
thus
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Consider now the space ‘ﬁg{ = Ny x {C}C\I, k = 1,--- N} with the product topology and
probability measure Py = Py ® Zk pg EeN- Let

YNy x (N, k=1,--- N} —E
(. Q) (Pl — (@(Q) ~ D) ~ Bl — w(Q)ec)) -

Then, we can write

N
m=1

E [(F(w?fn) +eay) - F(W?ln))ﬂ P = JmC ¥(w, Q)dPN(w, ).

Under Py, the random variables w and ¢ are independent. Equation (2.3.6) means that the
marginal distribution of ¢ tends to M (assumed to be a probability measure at the very
beginning of this construction). Moreover, we already know that Py converges in distribution
to P. Hence, Py tends to PQM as N goes to infinity. Since F is in TV — Lip, % is continuous
and bounded, hence the result. O



Chapter 3

Applications : representation
formulas, convergence theorems,
finance

The last chapter is a patchwork which pieces are made of the applications inherited from our
construction. The diversity of these comes from the variety of the fields explored. The first
subsection deals with the declination of Clark formula for U-statistics, such that we show
that the Hoeffding decomposition can be interpreted as an avatar of. The second one is
motivated by the statement of a discrete analogue of the Stein-Malliavin criterion (1.4.1). In
that perspective, we follow the footsteps of the path "from Stein’s method to Stein-Dirichlet-
Malliavin structures" described in the first chapter. In the last part we challenge our formalism
with an application in finance : the computation of the greek Rho in the trinomial model.

3.1 Representations
We now show that our Clark formula yields an interesting decomposition of random variables.
For U-statistics, it boils down to the Hoeffding decomposition.

Definition 3.1.1. For m,n € N*, let h: R™ — R be a symmetric function, and Xy, - , X,
n random variables supposed to be independent and identically distributed. The U-statistics
of degree m and kernel h is defined, for any n = m by

-1
U, =UXy, -, Xp) = (;) N h(Xa)
Ae([n],m)

where ([n], m) denotes the set of ordered subsets A c [n] = {1,---,n}, of cardinality m.
More generally, for a set A < [n], (A, m) denotes the set of subsets of A with m elements.

If E[|h(Xy, - ,Xy)|] is finite, we define hy,, = h and for 1 <k <m — 1,
hi (X1, Xg) = E[R(Xy, -+, Xop) [ X, 0, X
Let 6 = E[h(Xy, -+ ,X,)], consider g1(X1) = h1(X1) — 6, and

k—1
ge(X1, o Xp) = hie(Xp, o X)) = 0= >0 > g;(Xa),
.j:l BE([k]rj)

85
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for any 1 < k < m. Since the variables X, - - - , X,, are independent and identically distributed,
and the function A is symmetric, the equality

E[h(XauB) [ XB] = E[h(XouB) | X8],
holds for any subsets A and C of [n]\B, of cardinality n — k.

Theorem 3.1.2 (% Hoeffding decomposition of U-statistics, [76]). For any integer n, we have

U, =06+ ) HY (3.1.1)
k=1

where Hﬁf) is the U-statistics based on kernel gy, i.e. defined by

H{F) = (Z) B > gr(Xa).
Bc

([n].k)

As mentioned above, reversing the natural order of A, provided that it exists, can be very
fruitful. We illustrate this idea by the decomposition of the number of fixed points of a random
permutation under Ewens distribution. It could be applied to more complex functionals of
permutations but to the price of increasingly complex computations. For every integer N,
denote by Gy the space of permutations on {1, -- ,N}. We always identify Sy as the subgroup
of Gny1 stabilizing the element N + 1. For every k € {1,--- N}, define J; = {1,--- ,k} and

T=T xJ2x-xIN.

The coordinate map from J to Jj is denoted by [I. Following the construction designed by
Serguei Kerov [74], we have:

Theorem 3.1.3 (k). There ezists a natural bijection I' between J and Sy.

Proof. To a sequence (i1, - ,iN) where it € Jj, we associate the permutation
F(il, e ,iN) = (N, iN) o (N - 1, ’L'Nfl) ...0 (2, ig).

where (i,j) denotes the transposition between the two elements i and j. To an element
oN € Gy, we associate iy = on(N). Then, N is a fixed point of on_1 = (N, ix) o on, hence
it can be identified as an element on_1 of Sx_1. Then, ixn_1 = onx—1(N — 1) and so on for
decreasing indices. It is then clear that I' is one-to-one and onto. O

In Kerov [74], T is described by the following rule: start with permutation oy = (1), if at
the N-th step of the algorithm, we have iy = N then the current permutation is extended by
leaving N fixed, otherwise, N is inserted in on_1 just before ix in the cycle of this element.
This construction is reminiscent of the Chinese restaurant process (see Arratia, Barbour and
Tavaré [9]) where iy is placed immediately after N. An alternative construction of permuta-
tions is known as the Feller coupling (see Arratia, Barbour and Tavaré |9]). In our notations,
it is given by
o1 =(1); ox = on-10 (o ,(in), N).
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Definition 3.1.4 (Ewens distribution). For some ¢t € R™, for any k € {1,--- ,N}, consider
the measure Py, defined on Jj by

1 e
A
Py ({j}) =
t
——— forj=k.
t+k—1 orJ

Under the distribution P = ®;Py, the random variables (I, k = 1,--- ,N) are independent
with law given by P (I = j) = Pr({j}), for any k. The Ewens distribution of parameter ¢ on
Sy, denoted by P!, is the push-forward of P by the map T

A moment of thought shows that a new cycle begins in the first construction for each index
where i, = k. Moreover, it can be shown that:

Theorem 3.1.5 (see Kerov [74]). For any o € 6,
teye(o)
P! =
o) = s x xGaN=1)’

where cyc(o) is the number of cycles of o.

For any F, a measurable function on Gy, we have the following diagram

(*77 ®E:1Pk)
F| NT FoTl
(&, PY) R

We denote by i = (i1,--- ,in) a generic element of J and by o = I'(i). Let C;(o) denote
the number of fixed points of the permutation o and (le = CyoI. For any k € Jn, the
random variable Uy (o) is the indicator of the event (k is a fixed point of o) and let INJE =
Uy oI'. The Clark formula with reverse filtration shows that we can write INJE as a sum of
centered orthogonal random variables as in the Hoeffding decomposition of U-statistics (see
Theorem 3.1.2).

Theorem 3.1.6 (x). For any ke {1,--- N},

Uk = (5, =) L (10 2k, mefkt1, N})- (3.1.2)
and under Pt, [Nﬂlg is Bernoulli distributed with parameter tpyoy, where for any k € {1,--- N},
N .
P = ——— and o} = H < - .
t+k—1 e tti-1

Moreover,

N
Ug = tprog + <1(Ik:k) - tpk) H 1(Im;ék)
m=k+1

NEL i k—1

N—k
— tpk Z m <1([k+j=k)_pk+j) H L1y o#k)-
j=1 l=j+1
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Since
~ N ~
Ci = > U},
k=1
we retrieve the result of [10]:
~ tN
B0 -
R Bl

and the following decomposition of C1 can be easily deduced from the previous theorem.

Theorem 3.1.7 (k). We can write

N t—1 N /—1 N
Cl:t(l_N+t—1>+ZDU€+Zt+E 2 f( Hl(fm#))
/=1 k=1m={(
N N
t—1 t
:t<1 >+Z =) = 775—7) | Lo
N+t-1 = o t+0-1 it
/—1
_Zt+€ 2Z<1(I‘f=) t+€ > H Ltnzn)-

=0+1

Remark 3.1.8. Note that such a decomposition with the natural order on N would be infea-
sible since the basic blocks of the definition of C1, namely the Uy, are anticipative (following
the vocabulary of Gaussian Malliavin calculus), i.e. Ui € 0(Ig4p, £ =0,--- ;N — k).

This decomposition can be used to compute the variance of C1. To the best of our knowledge,
this is the first explicit, i.e. not asymptotic, expression of it.

Theorem 3.1.9. For any t € R, we get

~ N 281
Var[Cy] = ! ( ! —|—1—2i )

t+N-1\t+N—-1 N Zittk-1

We retrieve
Var[C1] —— ¢,

N—oo

as can be expected from the Poisson limit.

3.2 Stein-Malliavin criterion for Normal and Gamma approxi-
mations

In this section we confront our model to the Stein-Dirichlet-Malliavin method in order to
provide in particular a discrete analogue of the Stein-Malliavin criterions for Normal and
Gamma approximations. Such approximation results derived from this method for functionals
of Rademacher (see for instance Nourdin, Peccati and Reinert [96], Zheng [143]), Poisson (see
for instance Decreusefond, Schulte and Théle [41] Lachi¢ze-Rey and Peccati [79], Peccati et

[111]) or Gaussian random variables (see Nualart and Peccati [100]) or processes (see
Coutin and Decreusefond [32, 33]). Our results take place among them; however, to the best
of our knowledge, when Q is the distribution of a family of independent random variables,



3.2. DISCRETE STEIN-MALLIAVIN CRITERION 89

the distance dist(F*Q,P) (where dist = 93,02 or distke as the case may be) is evaluated
through exchangeable pairs or couplings, which means to construct an ad-hoc structure for
each situation at hand. We intend to give here an exact analogue of (1.4.1) in this situation
using only our newly defined operator D, that makes our approach original.

Remark 3.2.1. In what follows, we deal with functions F defined on E4, that means that F
is a function of XA and as such, we should use the notation F(X4). For the sake of notations,
we identify F and F(X,). The distribution of F is denoted Pp = F*Py.

Theorem 3.2.2 (). Let P denote the standard Gaussian distribution on R. For any F :
Ea — R such that E[F] =0 and F € Dom D. Then,

3% (P,Pp) <E||1- ) D,F (-D,L™)F

acA
+ > E U (F _F(XAﬂan)>2dPa($) !DaL_lF\] -

acA

The proof of this version follows exactly the lines of the proof of Theorem 3.1 in Nourdin and
Peccati [93], Peccati, Solé, Tagqu and Utzet [111] but we can do slightly better by changing
a detail in the Taylor expansion.

Theorem 3.2.3 (k). Let P denote the standard Gaussian distribution on R. For any F :
Ea — R such that E[F] =0 and F € Dom D. Then,

— > (F( JF(=DyL~ )F]

acA

+2E U ( F(Xai0) @Pula) [DLIF|, (3:21)

acA

0;(P,Pp) < sup E
1heLipy

where X, = Xa-q U {X/}.

Remark 3.2.4. This theorem provides a Berry-Essen type bound in the Wasserstein distance
for the Normal approximation by any functional of random variables and generalises in the
certain sense that got by Sourav Chatterjee ([24]). Raphaél Lachiéze-Rey and Giovanni Peccati
stated a remarkable bound in the Kolmogorov distance for the same approximation in terms
of another difference operator A.; this is defined for any ordered subset C of [[1,N] by

AcF(Xa, X)) = F(Xa) — FO(X4, X)),
and contructed by iteration of the operator

A{a}F(XAvxlA) = F(XA) - F( /17 ) :;—hthXa-i-la U vxi\f)
Remark 3.2.5. We can point out however that, for lack of chaos decomposition, we could
not rule the equivalent of the fourth order moment theorem (see [100], [95]), appearing in the
normal approximations of number of nonlinear functionalities acting on random fields, such
as Poisson ones (see [47]) or relative to fractional Brownian motion (see [97]) to mention but
two examples.
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This formulation may seem cumbersome, but it easily gives a close to the usual bound in the
Lyapounov central limit theorem, with a non optimal constant (see [57]).

Corollary 3.2.6 (% Lyapounov). Let (X,)nens be a sequence of thrice integrable, independent
random variables. Denote

n 1 n
= Var(X,), s2 = Z O'JZ- and Y, = . Z (X —
=1 n

j=1
Then,
2(v2+1) ¢
0 (P,Py,) < =5 — ME[X; -E[X;][].
n j=1

Remark 3.2.7. If we use Theorem 3.2.2, we get
n 2
Z J

52
j=1 Sn

and the quadratic term is easily bounded only if the X;’s are such that E [Xgl] is finite, which
in view of Corollary 3.2.6 is a too stringent condition.

n

Z E[|X; —-E[X;] ],

n j=1

9 (P,Py,) <

The functional which appears in the central limit theorem is the basic example of U-statistics
or homogeneous sums. If we want to go further and address the problem of convergence of
more general U-statistics (or homogeneous sums), we need to develop a similar apparatus
for the Gamma distribution. Recall that the Gamma distribution of parameters » and A has
density

)\’I"
I'(r)
Let Y, ¢ ~ I'(r, £), it has mean r/¢ and variance r/¢2. Denote by Y, =Y,;—7/l. As described
in Graczyk et al. [60], Z ~ Y, = Y, —r/C if and only if E[L, ,f(Z)] = 0 for any f once

differentiable, where

2" le ™ 1g4 ().

fr,é(x) =

Leef) = 5 (v+ 5) 7/0) ~ v (o).

The Stein equation

Lref(y) = 9(y) —E[g(Yr0)] (3.2.2)

has a solution f, which satisfies

1
ol < ' 1l < 2ma (1.3 I
A
and | £/ < 2\ (max < ) 9]0 + g |Oo)  (323)

1
noting that f, is solution of (3.2.2) if and only if hy : x — Xf(x — %) solves

zh(x) + (r = Azx)h(z) = g(x) — Eg(Y, )],

studied in (8, 44].
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Theorem 3.2.8 (k). Let F is the set of twice differentiable functions with first and second
derivative bounded by 1. There exists ¢ > 0 such that for any F € Dom D with E [F] = 0,

|

+¢ Y E U( ) — F(XAﬁa;x)fdPa(x) ]DaL_lF\] (3.2.4)

acA

1

01(Pr, Py ) <cE||SF+ 45 — Y D,F(-D,LF

aeA

This theorem reads exactly as Theorem 1.5 in [44] for Poisson functionals and is proved in a
similar fashion.

Remark 3.2.9. The generalization of this result to multivariate Gamma distribution could
be considered in a forthcoming paper. The difficulty lies in the regularity estimates of the
solution of the Stein equation associated to multivariate Gamma distribution, which require
lengthy calculations.

An homogeneous sum of order d is a functional of independent identically distributed random
variables (Xy,- -+, X\, ), of the form

Fn(Xla" : 7XNn) = Z fn(ila' o 7id) Xil .. -Xid

1<iy, - ig<Np

where (N,,,n > 1) is a sequence of integers which tends to infinity as n does and the functions
fn are symmetric on {1,---,N,}¢ and vanish on the diagonal. The asymptotics of these sums
have been widely investigated and depend on the properties of the function f,. For d = 2, see
for instance Gotze and Tikhomirov [59]. In Nourdin, Peccati and Reinert [96], the case of any
value of d is investigated through the prism of universality: roughly speaking (see Theorem
4.1), if F,(Gy,- -+ ,Gy,,) converges in distribution when Gy, --- , Gy, are standard Gaussian
random variables then F,,(Xy, -+, Xy, ) converges to the same limit whenever the X;’s are
centered with unit variance and finite third order moment and such that

/. - . n—o0
max Z foiyig, - ig) —— 0.
1<ig,,ig<Ny,

For Gaussian random variables, the functional F,, belongs to the d-th Wiener chaos. Combin-
ing the algebraic rules of multiplication of iterated Gaussian integrals and the Stein-Malliavin
method, it is proved in Nourdin and Peccati [92] that F,,(G1,- - , Gy, ) converges in distribu-
tion to a chi-square distribution of parameter v if and only if

E[F2] =5 2v and E[F}| — 12E [F3] — 1207 + 480 = 0.

We obtain here a related result for d = 2 (for the sake of simplicity though the method is
applicable for any value of d) and a general distribution without resorting to universality.
Let A = {1,--- ,n}. For f,g : A? —» R, symmetric functions vanishing on the diagonal, define
the two contractions by

(f *1 9)(,5) = Y. (i, k)g(j. k

keA

(f *59)(0) = > f(i,§)g(i, 5). (3.2.5)

JeEA
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Theorem 3.2.10 (k). Let Xpo = {X;, 1 < i < n} be a collection of centered independent
random variables with unit variance and finite moment of order 4. Define

F(Xa)= D, fli,))XiX;

(i,7)eA”

where (i,j) € A* means that we enumerate all the couples (i,7) in A? with distinct components
and [ is a symmetric function which vanishes on the diagonal. Let v = Z(i ) f2(i, ). Then,
there exists ¢, > 0 such that

2
Dg(PF’ PYV/2,1/2) <ok [Xﬂ

x| D0 FHEa) + 1 fIRagay + 1 = f o1 FlRzaz |- (32.6)

(i,a)EAZ

We now introduce Inf,(f), called the influence of the variable a, by

Inf,(f) = ). f*(i,a).

€A

Remark that

DA a) < Y G a) Y, 3 a)

1€A acA i J
= > ) (i, a) Infa(f)
aeA i
< v max Inf,(f).
aeA
The same kind of computations can be made for | f *} f\\ig(A). As a consequence, we get the
following corollary.

Corollary 3.2.11 (%). With the same notations as above,

2
%(Pr. Py ) < oE[X]] nghﬂ4ﬁ+ﬁf—f*iﬂéwa}

The supremum of the influence is the quantity which governs the distance between the distri-
butions of F,,(G1,---,Gn,,) and F,(Xy, -+, Xy, ) in Nourdin, Peccati and Reinert [96], thus
it is not surprising that it still appears here.

Remark 3.2.12. It may be interesting to compare the result of Theorem 3.2.10 with Theorem
4.3 (by taking a dimension d = 2) of Nguyen Tien Dung [46], which led to a publication
slightly subsequent to ours. Similar assumptions are done on the "contractions" (without
being explicitely mentioned in [46]) of the components of matrix (f (4, j)); ; but more regularity
on test functions that must be three differentiable is needed in [46] whereas we request twice
differentiability in our statement. This multivariate CLT for quadratic forms is in fact studied
as an application of a general work on multivariate CLT for nonlinear statistics, which Nguyen
Tien Dung gives explicit bounds in Theorems 3.1 and 3.2. These are obtained using Stein’s
method and by means of a difference operator which definition coincides with our discrete
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gradient (see Definition 2.1.2), reminiscent also of the works of G. Lugosi, P. Massart, C.
Houdré, N. Privault, or S. Chatterjee. Without constructing a discrete Malliavin calculus
as in our formalism, Nguyen Tien Dung stated a covariance formula and an approximate
chain rule on which are based his results. The use of the Slepian’s interpolation method
cleverly allows to bypass the computational difficulties involved in upper dimension, and its
combination with Stein’s method is advantageous.

Theorem 3.2.13. The moments of F (up to the fourth one) are linked by the relation:

E[F'] - RE[F] - 127 +48v = 3 FEAHEXT +6 ) LENLGEHEXY
(3,5)eA” (i,5,k)EA

TRE[X Y PEN SR FRD) — Y )

(i,5,k)eA* (i.)eA*

—483 > f NG R (R G) = 0 =120 Y ).
(4,4,k)eA” (i,j)eA#
(3.2.7)

Remark 3.2.14. The Cauchy-Schwarz inequality entails that the properties
E[Fi] — 12E[F3] — 1207 + 480 =5 0

and
n—0o0 0

az(PF’ P?u/2,1/2)

share the same sufficient condition:
D) FHa) 1 F#g fIRaeay + 1F = F L FIf2gaz) =2 0.
(i,a)eA*

However, we cannot go further and state a fourth moment theorem as we know, that for
Benoulli random variables, F,, may converge to Y, 5/ while the RHS of (3.2.6) does not
converge to 0.

As another corollary of Theorem 3.2.10, we obtain the KR distance between a degenerate U-
statistics of order 2 and a Gamma distribution. Compared to the more general result stated
by Christian Débler and Giovanni Peccati (Theorem 1.1 in [44]), the computations are here
greatly simplified by the absence of exchangeable pairs.

Theorem 3.2.15 (k). Let A = {1,--- ,n} and (X;,i € A) a family of independent and
identically distributed real-valued random variables such that

E[Xi] =0, E[X}] =0 and E[X{] < o.

Consider the random variable

2

F=— 2 X X;.
(i.7)eA”

Then, there exists ¢ > 0, independent of n, such that

2

g 4
2 (PF’ P71/2,1/2a2> S ¢ NG B[] (3:28)
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Proof. Take f,,(i,7) = 2/(n — 1) and apply Theorem 3.2.10. O

Remark 3.2.16. The proof of Theorem 3.2.10 is rich of insights. In Gaussian, Poisson or
Rademacher contexts, the computation of L™'F is easily done when there exists a chaos
decomposition since L operates as a dilation on each chaos (see [93, 94, 111]). In Lemma 3.4
of [123], Matthias Schulte and Matthias Reitzner provide a formula for the operator L~! of
Poisson driven U-statistics, not resorting to the chaos decomposition. It is based on the fact
that L applied to a U-statistics F of order k yields kF plus a U-statistics of order (k — 1).
Then, the construction of an inverse formula can be made by induction. In our framework,
the action of L on a U-statistics yields kF plus a U-statistics of order k so that no induction
seems possible. However, for an order k U-statistics which is degenerate of order (k — 1), we
have LF = kF. For k = 2, this hypothesis of degeneracy is exactly the sufficient condition to
have a convergence towards a Gamma distribution.

3.3 Finance and Malliavin calculus

The first one is the computation of one of the Greeks, so named with reference to the Greek
letters by which they are denoted. In the framework of a financial market, these quantities
simulate the sensitivity of the price of derivatives - such as options - to a change in underlying
parameters of the model. Their computation is performed by the use of the Malliavin integra-
tion by parts formula; in the framework of Black-Scholes model, see for instance Nualart [98§],
Montero and Kohatsu-Higa [75]. The idea is to rewrite Rho (the one that interests us here)

)= N’(ST) _ Eq {WST)]

(3.3.1)

where Q denotes the risk-neutral probability measure and f : R, — R is a function, as
Eq [f(St) ], where the weight m does not depend of the payoff. The transformation step can
be advantageously made simple using integration by parts in the sense of Malliavin calculus
as shown first by Eric Fournié, Jean-Michel Lasry, Jérome Lebuchoux, Pierre-Louis Lions and
Nizar Touzi in [54] and [55].

The application of our formalism to the computation of Rho takes shape in the trinomial
model described as follows ; given 7' € N*, denote N7 = N n [0,7] and consider the state
space ET = H?LTI E¢, where the E; are the 3-elements sets E; = {—1,0,1} (d = 1), equipped
with the product & p; where

teNT

m({1}) =p, w({-1})=¢ and w({0})=1-p—gq
The distribution of the canonical process (X¢)wen, is given by
PXy=1)=p, PXy=-1)=¢q and P(Xy =0)=1—p—gq.

The trinomial model, is, within this frame, a simplified discrete market model consisting of
two assets:

e a riskless asset (Ay)eNg,

e arisky asset (S¢)eN,
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where (A¢)ien, modelises the riskless asset with deterministic initial value Ag = ag and is

defined by
A, =ap(1+1)", (3.3.2)

whereas the stock price (S¢)ien, with (deterministic) initial value Sp = 1 is given by
1+b)Sy if X, =1

S, = S, if X;=0 (P
(1 + Q)Stfl if X =-1

with a and b real such that —1 <a <7r <b.
Define the sequence (S¢)ien, of discounted stock prices by

= 1

St:mSt, (O<T’<b)

Assume in this section that P verifies the risk-neutral condition i.e.

bp+aq=r, (3.3.3)

which ensures that the sequence (S¢)ien, is a (P, F)-martingale.

The aim of this subsection is to compute, in the frame of trinomial model, the greek called p,
i.e. the sensitivity of the price with respect to the parameter r that is

d 1
SBLA(SK()] = lim o (BLF(Sx(r + )] ~ BLf(Sx()]),
by considering the price as a function of r. The other ones, with respect to which it could
have been interesting to study the variations, such as the initial value sg (if Sg = s¢) or the
volatility o are fixed here.

To this end, consider P the reference probability under which corresponds to the undisturbed
evolution of the price and P}, the probability corresponding to a h-pertubation. Denote by E
and Ej the expectations respectively taken with respect to P and Py,.

This leads thus to compute, for a given functional F,

lim %(Eh [F]— E[F]). (3.3.4)

Considering a small enough variation h, the existence of a random variable Lj, nonnegative
P-p.s. such that
dP;, = L,dP,

dLy,
E [F dh‘h—o] '

and so that (3.3.4) is equal to

We can thus establish:
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Theorem 3.3.1 (k). Let the process (St)o<t<Npi whose evolution is given by (PT). For any
bounded functional f € Fn,

d dLy,
e IENO A ENGIE- N
dLy, ,
where the expression of A 1s provided by
dL k(r) — g(r g(r t—1
h‘h 0 Z {( )1(Ut nt Ml(m:— )~ ()1(Uk—0)> [ Lt
q 5 (=1
(3.3.5)

where k and g are the functions defined on Ry by

~ AWON0) = N(O)(1 + Atg?)
2)3(0)o '

A3(0)o

3.4 Proofs of chapter 3

3.4.1 Proofs of Section 3.1

Proof of Theorem 3.1.2. Take care that in the argument of h, all the sets are considered as
ordered : when we write B u C, we implicitly reorder its elements, for instance

(X1 3y012y) = (X1, X2, X3).

Apply the Clark formula,

DE X X
§A<|B|> |B|b§ vE[(Xa) | Xs]

N
M/ Ae(nl,m) B

-1
];2 S DyE[R(Xa)| Xs]

>_ ]; 3 3 DyE [h(Xpoc) | Xp] -

beB Ce([n]\B, m—|B|)

- <;:L>_1B [Z <\B\> Z 2 DyE [(XBuc) | XB]. (3.4.1)

c[n],[Bl<sm bEB Ce([n]\B, m—|B|)
for any integer n. For n = 1, it is straightforward that

g1(X1) = h(X1) — 0 = D1E [A(X1)[X4].
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Assume the existence of an integer n such that (3.4.1) holds for any set of cardinality n. In
particular, for any [ € [n + 1]

m -1
m n
2 </€>HX€2 B <m> 2 <|B|> 1B| 2 2 DyE [2(XBuc) | XB],
k=t Be[A]|Bl<m beB Ce([Ac]\B,m—[B|)

where Ay = [n + 1]\{¢}. Let m such that m < n. Then,

—1 n+1
) s, mew

= IBE Ae

A S S0, Z, 00
) -1y 1 b <:1> R X [ Z (|B|> Z Z DyE [h(XBouc) | XB]

Bc[Ag]|Aglsm bEB Ce([Ae]\B, m—|B|)

) B () WE B, PR

c[n+1],|Blsm beB Ce([n+1]\B, m—|B|)

:<n;1>_1xB[Z <‘B) BSOS DBk X,

cn+1],|Bl<m | i Ce([n+1]\B, m—|B|)

I
gk
Y
> 3
N——
Y

3
=+

:

where we have used in the first line that each subset B of [n + 1] of cardinality k appears in
n+1—k different subsets A, (for [ € [n+ 1]\B), and in the same way, in the penultimate line,
that each subset B U C of [n + 1] of cardinality m appears in n + 1 — m different subsets Ay
(for £ € [n + 1]\B u C). Eventually, the case m = n + 1 follows from

n+1

> 2 9k (XB) = h(Xppi1)) — 0

k=1 Be([n+1],
= > <|B|) |B|ZDbE Xpn+1)) | X8],

Bc[n+1 beB
by applying the Clark formula to h. O

Proof of Theorem 3.1.6. By the previous construction, for

N

i= (i1, ix)eTe=k)n () Tm#k),

m=k+1

the permutation o = I'(7) admits k as a fixed point. Hence,

N
{(Ikzk)m N (Im;ék)} c (TN =1).

m=k+1
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As both events have cardinality (N — 1)!, they do coincide. The values of p; and «y are
easily computed since the random variables (I,,,, K < m < N) are independent. According to
Theorem 2.2.6,

OF = B[OX] + 3 Dl 0417 ] = B[0Y] + Y B [ON 1B - B[OX 7).
/=1 /=1

Since INJE € fk,l, D/,E [ﬁk | .7-\?,1] =0 for / < k. For ¢ = k, we get

N N
E ll(Ik—k) IT 1mem [ Te Trar, - YVomiy || Lmew) | Terts Teras - ]
m=k+1 m=k+1
N
= (1(1k:k) —Pk({k})) H 11, 2k)-
m=k+1
For ¢ =k + 1,
N N
E|[1¢,-x H k) Hkr1s Tpgo, - | — E ll(lk—k) H L1, k) | ir2s Trys, ]
m=k+1 m=k+1
m= k+2
= —lpg (1(1,”1:1@) Pri1({k}) ) H L1, 2k)-
m=k+2
The subsequent terms are handled similarly and the result follows. O
Proof of Theorem 3.1.7. By the very definition of 61, we have
G =E [cl] + Y NI DE [U}j ‘]:g_l] . (3.4.2)

k=1/¢=k

For k=/{ E [[NJE |.7f"g,1] = [NJE and for £ > k,

¢ 1 1 N
NiE T - 1
E[Uk’”‘l]_wk—l(l t+k>"'<1 t+€—2>m_€1“m¢’“)

N

t
aieEr | AU
m=£{

It is straightforward that ¢ > k,

N
D, (H 1(Im¢k)> = (1(&#) -(1- t+€— . ) H L(1,,2k)
m=/{

=(+1
=—<1<u=k) Hﬁ ) 1_[ L1, 2k)-
=(+1

The result then follows by direct computations. O
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Proof of Theorem 3.1.9. Recall that for j # [, D/E UN Fi_1| and D;E Fi_1| are or-
m J—

thogonal in L2. In view of (3.4.2), according to the integration by parts formula, we have

Var[al]Zi
:ii} i E[DZE[UHH 1]DeE[ I Fo 1”
zgi i iE[UNDgE[ N Fo- 1“+EL§§: U EE[U”H 1]]

=k+14=m

2 E [DE |0 | Fot | DB O | 5|

N
t
- _mE [1(1kk) H 11,2k <1(Ig=m) T iaio 1) 1_[ 1, ;ém)]

p=k+1 =(+1
tPr({k}) 5
= _M< (({m}) — > [ H L(1,2k) ] E[ I ]-(Ipaé{knn})]
p=k+1 p=L+1
=0,
since, for any [ = m > k
E[11—mlan] = B[11-m] = P{m}) = Hl%l

Furthermore, for ¢ > k,

E [fﬂ,j D/E [fﬂ,j | .7\5@_1]]

N
t
= iy _aF llmm [T a0 (1(Ie—k) t+g_1> H 1 Ip;ék]

p=k+1 p={+1

t
S G i— D =g B [Hlfﬁ’“]

p=k+1
t2
T At L—2)(t+N=1)

as HpN:kH 1(7,2k)L(1,=k) = 0, for £ > k. Finally, for £ = k, we get

E [ﬁf D/E [ﬁﬁ |fz_1]] E [1 (L= H L(1,2k) < L=k~ 5 k - 1) H L(1, k) ]

pk+1 =k+1
t t2 t+k—1
- <t+k:1_(t+k1)2)t+N1
t(k —1)

T (t+k—1)E+N—1)
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It follows that

N N N t o= k-1
Var[Ci] = ————— 2 Z + 2
t—I—N 1k=1£=k+1 (t+¢—1)( t—|—€—2) t+N—1k=1t+k—1
Nt 1
= N -2t — .
1E+N—1<t+N—1+ kz_]lt—l—k—1>
The proof is thus complete. O

3.4.2 Proofs of Section 3.2

Proof of Theorem 3.2.3. We have to compute

sup E [¢/(F) — Fo(F)],
weT

where T is the set of twice differentiable functions with second order derivative bounded by
2. Since F is centered,

E[Fe(F)] =E[LL'Fo(F)] = ) B[ DE Dap(F)] .
aeA

The trick is to use the Taylor expansion taking the reference point to be X’ instead of Xj.
This yields

Dup(F) = E' [p(F(Xa)) — ¢(F(X.4, X3))] = ¢'(F(X,))DoF +R,

where

R - ;f E [cp” (FF(XC) + (1= )P (Xa) ) (F(Xa) - F(xga>>2] do.

0

E[¢'(F) ~Fp(F)| =E [w’(F) - Y P(F(XL) DaF(_DaLl)F]

acA
+ Y E[R (-D,L7HF].
aeA

The rightmost term of the the latter equation easily yields the rightmost of (3.2.1). Since
l¢” o < 2, it is clear that ¢ belongs to Lipy hence the formulation of the distance with a
supremum. O

Proof of Corollary 3.2.6. Without loss of generality, we can assume that X; is centered for
any ¢ > 1. Remark that
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Hence LY, = Y, and Y,, = L7'Y,,. According to Theorem 3.2.3,
X; — X!
g X (rln -0 )
" jeA Sn
1 2
+—= > E U (X; — z)"dP;(x) \Xi\] :
Sn Ea

Jj=1

0 (P,Py,) < sup E
1eLipy

By independence, since 1 is 2-Lipschitz continuous,

gl (p(n- TR )6

n4eA
52202E[ w<F(YnXi_X;)>H

S
€A n

<2 Namlx-x] <22 3o
TL

€A o jeA

Moreover,

E UE (Xi — x)QdPi(x) |Xi|] =E[[X:’] + ’E[X|] < E[|X;]*] + 0® <2E[|Xi)],

according to the Holder inequality. Hence the result. O

Proof of Theorem 3.2.8. According to the principle of Stein’s method, we have to estimate

1
E [A ((p(F) + %) - F@'(F)] , (3.4.3)
where ¢ and its derivatives satisfy (3.2.3). For any a € A, thanks to the Taylor expansion,
— Dap(F) = E' [o(F(X7,X;)) — 9(F(X))] = —¢'(F)D.F + R, (3.4.4)

where

R = ;Ll(l _9) x E/ {go"((l —O)F(X) + OF (X, X;)) (F(X) _F(X 7, X;))g] 9. (3.4.5)

According to (2.1.1) and to the definition of L,
E[Fp(F)] = E[LL 'Fo(F)] = E[-6(DL™'F)p(F)]
= E [(Dp(F), =DL™'F)12(4)] . (3.4.6)

Plug (3.4.4) into (3.4.6):

E [(Dp(F), ~DL™'F)r2(a)] = = D E [Dag(F) Do(L7'F)]
acA
= — Y E[¢/(F) DoF Dy( + Y E[RD,(L™'F)]
acA acA

= E [¢/(F)DF, —DL*1F>L2(A)] +E[R, —DL ™ 'F)rz2(a)] -
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Then,

r

B[ fw s Do) - ram)|
<[ [#B) (37 + ) - P -DL Brusn) || + B[R -DL Brgzga)]
= By + Bs.

Since ¢’ is bounded, we get
1 r _
B < I¢/JE || (F + §) ~ DF. DL E)paqn|

and from (3.4.5), we deduce that

By < |¢"|0 Y, E[DaF[*[D, L]
acA

The proof follows from (3.4.3) and (3.2.3). O

Proof of Theorem 3.2.10. For any a € A,

Xan ifa=1
Da(Xin) =<X;X, ifa=j
0 otherwise.
Then,
D.F = Z f(Za a) X Xq + Z f(a,j) Xan =2 Z f(z’ a) XiXq,
(i,a)eA# (j,a)eA7é (’L’,a)EA#
so that .
LF = — > D,F = —2F and L7'F=—.
2
acA

With our notations, the first term of the right-hand-side of (3.2.4) becomes

E|2F+20-2) > f(i,a)f(j,a) XoXiX;| | < )] A, (3.4.7)
acA (i,5)eA2 i=1
where

a=2E|| Y Peocixi-1)l|,
(i,a)eA?

Ay =2E ||F = > > f(i,a)f(j.a) XoX/X;

agA (i,j)EA*
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We first control A;. According to the Cauchy-Schwarz inequality,
E| D Po)f G oXiX: - XS —1) | <4(An + Ap),
(i,a)eA? (j,c)eA?

where

(i,a)e A2

Ay —E [ S a) (X322 - 1>2] ,
A= E Z Z f2i,a)f%(5,a) (XoXF — 1)(X2X? -1,
acA (i,j)eA#

by orthogonality of the X;’s. On the one hand,

A < Z fA(i,a) [(XgXl2 - 1)2} = (E| Z i, a). (3.4.8)

(i,a)eA2? (i,a)eA?

On the other hand,

A =E [ D 2 PG a) P a)(XEXE - 1) (XX - 1)]
(4.7

i,j)7€A2 acA

IN

Y 2 PGB [(XXF - DXEXE - 1)]

(i j)*€A2 acA

E[X{]-1) > f(i,a) ), f*(.a)

(i,a)eA2 J#i

< (B[XI] =1) If f“iQ(A)' (3.4.9)

In a similar way, As < A9 + Ago, where

Ay =2E || ) fGHXX;— ) Zf(i,a)f(j,a)xixj},

| | (.7)eA” (3,7)EA* aeA

Ay =2E 2 2 f(i,a)f(5,a)XiX; (Xg —E [X?I]) ] :

(i,j)EA# acA

As above,

2
A%@E[( > (f(i,j)Zf(i,a)f(j,a))Xz-Xj)] =4|f = f*1fl3 (34.10)
(4,

,j)EAT acA
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Furthermore, according to Cauchy-Schwarz inequality and by independence, we have

Agp <2 Z

(i,)eA”

1/2
B {( > Y fa)fGa)X - 1>)2]

(3,§)EA* acA

XX, 3 £ a)f G ><X2—1>]]

acA

1,j)EAF aeA

1/2
2 ( D1 Fa)’f (G a)E [Xg1])
(
2(B[XI] = 1) | £ b Flrzga). (3.4.11)

The remainder term is given by

- LB [IRCERELEE) RN p.7F).

acA

Once again, using the orthogonality, we have
2
Ga(Xa) = f (F(Xa) = F(Xa-ai2) ) dPq(2)
Ea

—AF [( D fla)XiXa = Y (G, a)Xz'XZ)Z

€A €A

_E [(Xa XD )’

€A
_4<ZfzaXZ) [(Xa — X,)?]
€A
~4(Y f(i,a)Xi)Q (X2 +1).
€A
Thus,
E|) Gu(Xa)’| = 16E Z(Zfza ) (X2 + )2]
acA acA i€eA
=16 (E[X{]+3)E[X}] D)) f(ia

aeA ieA

+96 (B[X1]+3) D) D1 f2(i,a)f*(j, a)

aeA (i,j)eA#*

<16 (B[X{] +3)° 3 2 F4(ia) + 96 (B[XI] + 3)1f o flFaqa) (3:4.12)
aeA ieA
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Moreover,
1
1132 2
2, E[IDLTF?] = 7 X E[IDaF ]
acA acA
2
- > E D fia) XX,
acA (i,a)eA*
> Flia) =v. (3.4.13)
(i,a)eA*
Combine (3.4.8)—(3.4.13) to obtain (3.2.6). O

3.4.3 Proofs of Section 3.3

Proof of Theorem 8.3.1. As to constuct the mesure Ly, define the measure of probability Py,
on ET by P, = iﬁ P/ where

PHU; = 1) = p* = p+App, PHU; = 1) = ¢* = ¢+ Apg, and PP}(U; =0) = s* = s+ Ays

where s = 1 — p — ¢ and with

App = N( o (VAEA(O)[A(O) — 0N (0)] + 2[AtOA(0) — N (0)(1 + At8*)]) b = [k(r) + g(r)]h
Y 2
LA —  AOA(0) Aé((ee)L(HAte ), — g(r)h
Apg = 2A3() (=VAINO)[NO) — ON ()] + 2[AtON(O) — N (0)(1 + At6®)]) h = [—k(r) + g(r)]h,

since App + Aps + Apg = 0.

Define thus Ly, = [[4 LP(Uy), where L] is the random variable defined on E; by

Ly (Uy) = ?1{Ut:1} + El{Uz:—l} + ?1{Ut:0}’ (3.4.14)
and such that the expectation under Py, is defined by
Nt
E, [F] = B[f(Ur, ..., Uny)Ls] = E [f(Ul, s Un) [ LU |
t=1

for any functional F.

Noting that E [Ly] = 1, it follows from the Clark formula (2.2.3)

Nr

Lp—1= Z E [DyL,(U)|F]
t=1

—Z{LtUt ) —1) ﬁLgU@}

/=1
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since, for any r € Np,

NT NT
E[DLy(U)IF] = E | [ [LA(U) ~ B [La(U)] x [ LEU)|F
(=1 0=10#t
t—1

= (Lo —1) TTuawo.

=1
Note thus that for any t € N,
Ahp Ahq A S
LUy — 1 = 71(Ut:1) + Tl(Ut:—l) + ?hl(ut:o)
_ [k(r) +9(n)]n [k(r) —g(r)]h, g(r)h
= » (Ui=1) T . twe=n T L=,

to state (3.3.5). Hence the result. O



Part 11

Malliavin calculus and enlargement of
filtrations in discrete time: additional
utility of an insider in a ternary model
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The starting point for our second work arises in a discrete incomplete market, where we
consider two agents with different information levels; the first one, called insider, possesses
from the beginning extra information whereas the second one, the ordinary agent, bases his
investment decisions on the public information flow. We ask the question, as the common
thread of this second part:

How to quantify the additional utility of an insider in a incomplete discrete market model?

(3.4.15)
The framework in which lies the insider problem is that of a financial market embodied by
a probability space (2,F,P). Its mathematical traduction boils down to the quantitative
comparison of a regular agent whose information coincides with the natural filtration F and
an insider who possesses some extra information hidden in a random variable G from the
beginning ot the trading interval Ny = [0,7] n N. Two main approaches were developped
to deal with this problem. Jorge A Leon, Reyla Navarro and David Nualart [84] stated that
insider’s portfolio satisfied an anticipative stochastic equation and used the tools of anticipat-
ing stochastic calculus to determine its maximal utility. The alternative approach, that we
have chosen to follow is to address the problem from the point of view of martingale theory,
as first envisaged by Karatzas and Pikovsky [115]. They made the insider evolve in a parallel
probability space (€2, G, P) where G is an enrichment of the initial filtration F and encom-
passes the additional information which benefits him. They converted the initial problem into
that of a grossissement de filtrations one (see Jacod [70]), Yor ([141]) in which they exploited
the powerful techniques. In the 90’s the question of enlargement of filtrations aroused great
interest and generated many works. Plenty applications in finance resulted from the related
theories; to name but a few, the questions of arbitrage or indifference pricing can be addressed
in terms of initial enlargement, whereas credit risk, or insurance issues can be modelised by a
progressive enlargement situation.

In a continuous setting, the Jacod’s condition indicates that the absolutely continuity of the
conditional laws of G with respect to its law is a sufficient criterion to the preservation of semi-
martingales. Transposing these works in the referred financial context, Imkeller highlighted
the crucial role played by the information drift, i.e. the drift to eliminate in order to preserve
the martingale property, and remarkably described it by the logarithmic Malliavin trace of
the conditional laws of G with respect ot F. In discrete time, the question of elargement of
filtration seems easier. Indeed, Jacod’s hypothesis is de facto satisfied in a discrete setting
and we are directly provided with a "bridge formula" thanks to Doob’s decomposition (see
Blanchet-Scalliet, Jeanblanc and Romero [20]). This brings us to the question: can we provide
an analogue of the information drift in a discrete context and express it in terms of Malliavin
derivative?

In the very beginning we tried to fit our formalism to address the insider’s problem in a
the underlying trinomial model (see its definition in section 3.3). The difficulty came to our
Clark-Ocone formula (2.2.3) from which we cannot derive a Karatzas-Ocone hedging formula.
Indeed, the Fi-measurability of the term DiE [F|F] appearing in (2.2.3) prevented us from
defining for the F-predictable drift process we searched for. This observation was prone to
replace the trinomial model with what we called a ternary model, equally distributed to the
first one, but enjoying the properties of the jump processes on which it lies proved to be more
conducive to state a predictable representation formula.
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The second part consists of three chapters; the first one is an overview of enlargement of
filtrations techniques and insider relative topics in familiar contexts. The new results are
included in the two following chapters. The second chapter is devoted to the construction of
Malliavin calculus for compound geometric processes. In the last one, we address the problem
of insider trading in the so-called ternary market and apply our new formalism to provide a
response to the problem 3.4.15.



Chapter 4

From a discrete insider model to
Malliavin calculus for compound
geometric processes

The chapter is organized as follows; in the first section we set up the question of insider’s trad-
ing in a continuous setting and give some elements about enlargement of filtrations techniques.
The second section is devoted to the problems of hedging and optimization of portfolios. In
the following one, as to install our theory among what has be done, we introduce Malliavin
calculus for jump processes. Last, we gather in the conclusion all the ingredients we need to
solve the problem 3.4.15 we have chosen to investigate.

Troughout this chapter, we consider a simple financial market embodied by the couple of
R -valued processes, called assets, (A¢, S¢)ter defined on the same probability space (2, F, P)
where | = (F¢)er is a filtration (generally that generated by the canonical process) and such
that :

e the process (Ay)er is deterministic and modelises the risk-free asset,

e the process (S;)eT is F-adapted and modelises the risky asset, associated to its price Sy
at time t e T.

The sequence of discounted prices (S¢)ser is defined by S; = A7'S; (t € T). On this market,
operate different agents so that T is called the trading interval; in a continuous setting it is
equal to [0,7] (T'e R) and to Ny = N n [0, 7] (T € N*) in a discrete one.

4.1 Insider’s trading in a continuous setting and initial enlarge-
ment

Consider the market model described below, and assume in this section only that the sequence
of discounted prices (S¢)iweT is a (F,P)-martingale. The underlying question of risk-neutral
measure will be addressed in the forthcoming section.

Until we transpose the problem into a discrete setting and that we mention it, let T = [0,T]
and consider the Wiener space (€2, A, [, P) equipped with the canonical process (B¢)¢eT, where
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Q is the set of continuous functions on T starting at 0, A the o-algebra of Borel sets with
respect to the uniform convergence of compact subsets of T, F = (F; ) the natural filtration
generated by (By)er (assume A = F) and P the Wiener measure. The financial market lying
on (2, F,P) is defined through the couple of progressively measurable processes (r, o), where r
stands for the mean rate of return and o the volatility and satisfy the integrability conditions:

T T
f iyl dt < oo and f oy2dt <0, P —as.
0 0

The evolution of the stock process (S¢)er is given by:

¢ t
S; = 1+j ruSudu—kJ 0uSydBy, te T, (4.1.1)
0 0

When the processes r et o are deterministic and constant, the dynamics (4.1.1) of the un-
derlying is a geometric Brownian motion and defines the so-called Black-Scholes model. Two
agents act on the trading interval T: the ordinary agent whose information level corresponds
to the filtration F i.e. whose knowledge at time ¢ is given by F; and the insider who enjoys
an information overload encoded by a Fr or possibly Fr.-measurable (for some small € > 0)
random variable G with values in a Polish space (I',%). Thus, the insider disposes at time ¢
an information given by the o-algebra G; defined by

gtzftva(G).

We denote G = (Gy)ier (and G° = (Gy)eo,r)) the insider’s filtration. This depicts the easier
case of enlargement of filtration called initial enlargement. The problem of progressive en-
largement where Gy = F; v .7?t and F = (.7? )teT is an another filtration distinct of F sounds to
be more difficult, and won’t be treated here.

The ordinary agent manages a F-portfolio determined by the proportion of the wealth invested
in stocks. It is encoded by a F-progressively measurable process v called strategy such that

T T
f |4re|dt < oo and f [re?dt < oo, (P,F) — a.s,
0 0

which value V(1) satisfies the differential equation:

dv ds

WVi(¥) _ Yi—2 te[0,T). (4.1.2)
V() St

The maximal logarithmic utility of the ordinary agent whose initial wealth is x is defined via

the maximization problem:

(@)= max  Blog(Vi(¥)]. (4.1.3)

The insider’s portfolio process, value and maximal logarithmic utility are analogously defined
by systematically replacing F by G. Then, the additional expected logarithmic of the insider
with initial wealth x is defined by:

U(x) = 0%(z) — o (2) (4.1.4)
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where
d° = max E[log(Vi(¥®)]. 4.1.5

weG—po)r(tfolio [ g( t (/(/} )] ( )
Introduce now the notion of arbitrage. From an economic point of view, an arbitrage designates
a portfolio (i.e. the strategy it refers to) such that even if its initial value is zero, its terminal
value is strictly positive, in other words, an "always winning strategy" called free lunch. Thus
there exists an arbitrage opportunity in a financial market when making a profit without risk
and without net investment of capital is possible. Mathematically, that translates as follows:

Definition 4.1.1. Given a filtration F, consider a F-semimartingale S. The model (S,[F)
has no arbitrage if there exists a positive F-martingale L with Ly = 1 such that LS is a
F-martingale.

A financial market with no arbitrage opportunities is said to be arbitrage free. Two questions
naturally arise: how to estimate the additional maximal logarithmic utility of the insider?
Does the additional benefiting the insider provides him with an arbitrage opportunity?

For a given of F-portfolio 1, the solution of (4.1.2) expressed as

L t 1 [t t
Vi = Vgexp <f Ps0,dBg — ZJ wzagds + J wsrsds>
0 0 0

such that the solution of (4.1.3) from the ordinary agent’s point of view is provided by Merton’s

formula
T 2
r
f 32] ds,
0 Os

which proof lies on the local martingale property of the stochastic integral S(t) 1s0sdBs. Since

¥ (z) = %E [

the process (B¢)weT is not a G-martingale, the stochastic integral Sé Ys0sdBs is not a G-
martingale any more, so that the previous computations no longer hold. This led to the
conservation of martingale properties face to an enlargement of filtrations.

Main instigator of these questions, Jacod showed (Jacod Théoréme 2.1 [70]) that every con-
tinuous local F-martingale is a G’-martingale under the so-called Jacod’s hypothesis
Assumption. The regular conditional law of G given F; is absolutely continuous with respect
to the the law of G, P almost everywhere, for all t € [0,T).

Its reinforcement, assuming of equivalence of the involved distributions (instead of simple
absolute continuity) enables to define the Radon-Nikodym density process of the conditional
laws of G with respect to its law by

ey dP(G e |F)(w)

pi(w) = PG e ) (¢); ceT,weQ, (4.1.6)

that will be of relevance, and prone to exploit the techniques of Malliavin calculus. Provided
Jacod’s condition (4.1.6) holds, let the (8 )tefo,r) be the G- progressively mesurable process
defined by

%@t(‘» c), By

G _
Y P
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that we suppose to satisfy the additional integrability condition

T
J 88| dt < o0, P — aus.
0

Then the process
B=DB+ J 188 ds
0

is a G-semimartingale with a G-Brownian motion B. The maximal logarithmic utility of the
insider whose initial wealth is x defined by (4.1.4) can be expressed as

UziE[LT(BSGfds},

so that the knowledge in advance of the information contained in the random variable G is
quantifiable in terms of energy of the so-called information drift 3S. Extending the Clark-
Ocone formula to measure valued martingales in order to apply it to the conditional laws of

G,

¢
i =D, + J D,p; dB,
0
P. Imkeller made clear the relationship between the random variable G and the information

drift 8 that he identified - via the remarkable formula -

c¢ _ Dipe(t,0)
/Bt - pt(.’c)

with a logarithmic Malliavin derivative trace of the conditional density.

’ch = Dt(lnpt('vc))‘FG’

Until the end of the section, consider a discrete setting which consists of a probability space
(9, F,P) where F = (F;)ien,- The evolution of the discounted stock process (S;)ien,. initially
defined by Sp = 1 is didacted by (r¢)ten, through the equation :

AS

git = ft(O{t,Xt, AXt)a te NT

t

where AS; =S; —S; 1 (t e N%), (X¢)ten, is a F-adapted process and f; a function defined on
Ry x X¢(Q) x AXy(€). For instance, in the so-called Coz-Ross-Rubinstein model, (X¢)eN,
is a Rademacher process and

1
ft(’l”t,Xt, AXt) = m (bl{thl} + al{thfl} - 1) (417)

In other words, the dynamics of the stock price (S?in)tGNT satisfying the recurrent relation

goin _ [ (1+ by if Xy =1
t (1+a)Shin if X, =-1

The ordinary agent manages a F-portfolio determined by the proportion of the wealth invested
in stocks encoded by a F-progressively measurable process ¢ value V() (and discounted value
V(3)) satisfies the self-financed condition given here by an equation in differences:
AV, AS
Vil¥) _ P =", t € N9. (4.1.8)
Vi(y) St
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The difficulties inherent with the preservation of semimartingales are directly lifted as a con-
sequence of Doob’s decomposition. Indeed it is clear (see Blanchet-Scalliet, Jeanblanc and
Romero [20]) that any integrable process is a special semimartingale in any filtration with
respect to which it is adapted.

The specific case where the Fpr-measurable G takes its values in a countable set ' arouses in-
terest since the enlargement of filtrations can be also interpreted in terms of drift information.
Within this framework, define for any ¢ € I', the F-martingale p¢ by

p; =P(G=c|F)
Then the process §G defined by
t E[ASApS | Fs_1]

iG — —
Sy =Si— >, 5 =G (4.1.9)
s=1 p871

is a G-martingale. We identify thus a drift information which one of the challenges of Chapter
3 will be to provide an expression in terms of Malliavin calculus (for a discrete setting to be
precised).

Theorem 4.1.2. If the random wvariable G is not Fy-measurable, the model (S,G) is not
arbitrage free.

4.2 Hedging and portfolio’s optimization in incomplete markets

Along with the computation of the maximal utilities of the two traders (the ordinary agent and
the insider) as indicated in the previous section, the determination of the financial strategy
to follow in order to realize the maximum is of interest; starting with that of the traders
themselves. In other words, assuming that ®%(z) is known (for the ordinary agent), we
wonder how to determine a F-predictable process 1) which value V(1) satisfying (4.1.2) and
such that (if T = N7 in a discrete setting)

Vo(¥) ==z, Vr) =& (z) and V(1) >0,

for any t € Np. This turns out to estimate the quantities of the risk-free and risky assets with
which the agent must compose his portfolio to maximize his utility. This leads us to tackle
with the question of hedging. A hedge is basically an investment that protects the finances of
a trading agent. Mathematically, this is the response to the problem: given a claim F, i.e. a
Fr-measurable random variable F, is there a F-predictable process ¢ such that (if T = Np
in a discrete setting)

T
Vr(¥) = Vo(@) + D 9 AS; =F and  Vy(1)) >0 for any te Ny ? (4.2.1)
t=1

The section consists of two parts; in the first one, we indicate how a martingale approach (via
martingale representation theorem) performs advantageously to solve the problem of hedg-
ing in complete markets. Focusing on incomplete markets in the following one, we drop this
approach for technical reasons (as it will be explained) and tackle the problem from the stand-
point of optimization issues.
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The financial market is complete if all claims are reachable i.e. the answer to the question 4.2.1
is always positive. This is the case of the Black-Scholes model (see (4.1.1)) in a continuous
paradigm or the Cox-Ross-Rubinstein (see (4.1.7)) model in a discrete setting. The Funda-
mental Theorem of Asset Pricing holds in both frameworks; we implicitely evokated when we
assumed in section 4.1 that the sequence of discounted prices (S;);er was a (P, F)-martingale.
In its most basic form it reads as follows:

Theorem 4.2.1 (Fundamental Theorem of Asset Pricing). The financial market lying on
(Q,F,P) is arbitrage-free if and only if there exits a probability measure P*, equivalent to
P, and such that the sequence (St)ieny, is a (P*,F)-martingale. The measure P* is a risk-
neutral measure. If the market is further assumed to be complete, there is a unique risk-neutral
measure.

The set of measures with respect to which the sequence of discounted prices (S;)er is a (-, F)-
martingale will be called the set of martingale measures and denoted by €T. The subset of
¢" composed of the martingale measures equivalent to P is denoted .#Z¥. The Theorem 4.2.1
ensures that in a complete market, the set .#" is reduced to the singleton {P*}.
The result is of key importance to tackle with the problems of pricing or hedging. Indeed, by
systematically reason under risk-neutral measure(s) we benefit from all tools the martingale
theory is provided with.
In the Black-Scholes model, the value of the portfolio ¥ = («, ) denoted by the process V(1))
is given at time ¢t € T by

Vt(¢> = oy At + @1 Sy, (422)

where oy and ¢ stand respectively for the amount of the riskless asset A; and the amount
of risky asset S; composing the portfolio at time ¢. The self-financing condition(4.1.8) can be
rewritten as

oy dA; + ©vt dS;=0; teT. (423)

In the Black-Scholes model lying a the Wiener space, the hedging formula is thus directly
provided by the Clark formula under the unique neutral-risk probability measure P* (see
prop 1.14.4 of chapter 1 in Privault [117]).

Theorem 4.2.2 (Hedging formula in the Black-Scholes model). Let a claim depicted by a
random variable F € L2(Q). Let the F-adapted processes a and ¢ defined by
(e "(""UE* [D(F | 7] and = e "TDE* [D,F | Fi] — ¢St

g St At

for any t € Np. The strategy ¢ = («, ) satisfies the self-financing (4.2.3) assumption and
simulates F.

Yt =

In the Cox-Ross-Rubinstein which underlying Rademacher space is also equipped with a Malli-
avin calculus (2.0.2). The value of the portfolio process V(v) is defined by (4.2.2) with the
discrete time corresponding notations, and the self-financing assumption (4.1.8) boils down
to: for any t € Np_1q,

At(atﬂ — Odt) + St(QOtJrl — got) = 0. (4.2.4)

In discrete time models, a strategy v is admissible if it the self-financing (4.2.4) assumption
and satisifes for any t € N,

Vi(y) = 0.
Again, the hedging formula comes out by the application of the Clark fomula to the claim F.
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Theorem 4.2.3 (Hedging formula in the Cox-Ross-Rubinstein model). Let a claim depicted

by a random variable F € L2(2). Let the F-predictable processes o and ¢ defined by ag =

(1+r)""E" [F],

(1 +r)T=OE* [D,F | Fi_1]
VP (b—a)Si—

for any t € Np. The strategy ¥ = (o, ) is admissible and simulates F.

t
0 = and o4 = Z A;}l (Ss—l(@s - 908—1))
s=1

Up to now, let T = N7 and consider the simple discrete financial market described in section
4.1. When the market is incomplete, additional difficulties arise. All claims are no longer
simulable. The hedging approach using Clark formula in the complete Cox-Ross-Rubinstein
model for instance (Theorem 4.2.3), does not stand anymore.

The initial problem (4.1.5) can be addressed in terms of portfolio’s optimization, and leads
our steps towards the duality approach. A very substantiated expression and comprehensive
look at arbitrage-related issues can be found in the book of Freddy Delbaen and Walter
Schachermayer [42]; our work is greatly inspired by it. We yield thereafter some of the key
points of the proof they used to deal with the optimization problem (4.1.3) in the trinomial
model (see the definition (6.1.1)). This is a textbook case of incomplete models.

As explained by Wolfang Runggaldier in [126] the trinomial model modelises an incomplete
market, where the risk-neutral probability measure, with respect to which the sequence of
discounted prices is a (-, F)-martingale, is not unique. Let be a probability measure P’,
equivalent to P and, for any t € Np_; define

p1 =P (X1 =14b|F), qu1 =P Xpy1=1+a|F) and s =P X1 =1|F).

The measure P’ is a F-martingale measure if and only if the triplet (ps11,git1, S¢+1) satisfies

) - { (@4 Dpes + (L @i+ (se0) JSe = (140080 o
Pnt1 + qnt1 + Spt1 =1

The system (P) admits infinitely many solutions (pt,qt,st) such that any triplet

TeNT_4
(pt, G, st) forms a convex ¥ set (here a segment) characterized by its extremal points (in-
dependent of t), i.e. the measures

. —a b— , b
pY — pOTri (T @ o= 0) and P! =Pl = (f 0 J) (4.2.5)

b—a' b—a’ b’ b
which are not equivalent to P but such that any convex combination

P’y _ ,}/PO,Tri + (1 . ’Y)Pl’Tri,

is. Note that the extremal measures P? and P}, are independent of ¢ and J, so that, if N = 2
and w = (wy,ws) € Q,

P'(w,wj) = P'(w)) P’ (wilwi) = P'(w}) P’ (w))
and by induction

t
Pt ) = [Pl
s=1
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Then we can show that for any ¢ € Ny, the set F-martingale measures is described by a
polyhedron which the J; = 2¢ vertices depict the extremal measure P (j € J;) that be can be
written as ) ]
; s Y|
Pg _ ® (PO,TI"I)’YS (Pl,Trl)l 'ys,
SENt

where (72)sen, € {0,1}* .
As a reminder, the problem to solve is: given an economic agent disposing of z euros at
date t = 0 (initial budget constraint), determine the optimal admissible strategy allowing to
maximize the value of the portfolio at time ¢t € Np_;. That is mathematically traduced by:

(I)(I') - weﬂ-_rji)%)r(tfolioE [u(vx,t(w)] (426)

where, for any ¢t € Np_y1, V(1)) stands for the discounted value at time ¢ of a F-portfolio
corresponding to the strategy ¢ = (ay, ¢¢)ten, , and starting at z € R (the initial wealth),
and u to an utility real function defined on R% or R striclty increasing and strictly concave.
Here consider the utility function

u: zeRY —loguz,

denote I = (u’)~!its "inverse" function and u* its Legendre-Fenchel tranform , i.e. the convex
function defined by
u*(r) = sup {u(s) — sr}. (4.2.7)
seRf‘;
Let .#% (resp. .#}) the set of F-predictable self-financing strategies on N, (resp. on NY).
For x e RY, let
Apy = {V e st V= Vi(¥) and Vo = 93}

As seen above, the trinomial market is not complete and there exists a convex set ,///t[F of [F-
martingales measures on NY with a finite number J; of extremal values (P7, j € J;). Denote
%} the convex subset of .Z formed by the F-martingale measures equivalent to P. Note in
particular that for any strategy ¥ = («a, ) with initial value x is written by

Voi() =z + ), 95 AS,,

and satisfies _
Ep;[Vei(¥)] =05 j € Ji. (4.2.8)

As precisely developped by Freddy Delbaen and Walter Schachermayer in [42], this optimiza-
tion problem can be solved by a duality approach decomposable in the following steps :

1. Rewrite (4.2.6) as a maximization problem under a finite number of linear constraints
(4.2.9), called primal problem

Jnax E[u(V)] under the constraints Ep,[V] <z ; Vje Ji, (4.2.9)
ENg t t
where
Mgy = {Ve ST EpVI<u,Vje Jt}.
The equivalence of the problems (4.2.6) and (4.2.9) lies on the identities (4.2.8).
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2. Determine its associated dual problem (4.2.10)

sup ®(V), (4.2.10)
VEAxyt

i.e. the optimization problem satisfied by the Lagrangian associated to the primal prob-
lem defined here by

A.I,t X RJt — R+

& L
LV da) = B+ 3 (B V] - o)
]:
3. Solve (4.2.10) by minimizing the value function
dM
= inf E|u*|y— 4.2.11
P(y) vl s [u <y P >} ( )
where y = >,/ Aj.

Thus, it can be stated that:

Theorem 4.2.4 (Delbaen, Schachermayer [42]). There exists unique optimizers \A/x,t and
M;, ; of the problems (4.2.6) and (4.2.11) such that My, ; € ¢} and

N ~ d]'\/Z[f/\m,t
Va},t =1 Yz dP .

4.3 Malliavin calculus for jump processes

The impossibility to state a martingale representation theorem for any sequence of independent
random variables as explained in the introduction of the part II, and thus to provide an
hedging formula for the trinomial model within our formalism, enhanced us to investigate the
option of an alternative financial model. This "model quest" led us to design a ternary model
equivalent in distribution to the Cox-Ross-Rubinstein’s (see Remark 6.1.1). This new model
lying on what we have called a geometric compound process suggests to focus on jump models
to understand its behavior. These models are additionally worthy of interest ; contrary to the
Black-Scholes model, they integrate the possibility of the occurrence of rare events (sudden
change in the international environment for instance, market crashes, gaps or opening jumps).
For more details on the subject, see for instance the Chapter 1 of the book Rama Cont and
Peter Tankov [30].

Up to know, consider a probability sapce (2,4, P) where are defined a standard Brownian
motion (By)«r, , a Poisson process (Ny) R, of intensity A and a sequence of i.i.d. (=1, +0)-
valued random variables V. = (Vy)r,. The o-algebras generated by these three processes
are supposed to be independent of each other. The filtration F = (F;)er ., is defined by

Fi =0 (Bs, N, V.lpen,y), s < t)).

The riskless asset (A;)er, is defined as in the Black-Scholes model (see 0.0.11) whereas
the price of risky asset (S¢)t«er, is occasionally disjoint with significant jumps which values
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and occurrences are respectively given by (Vy)wer, and (T¢)ter, (namely the times process
associated to (Ny)ier +) and follows the Black-Scholes model between two jump times. Its
dynamics characterizing a jump-diffusion process is provided in its differential form by:

ds; = Stf(’l"dt + o dB; + dZt) ;te Ry,
where Z = (Z¢)er, defined by

N¢
Zi = Z Vs, (4.3.1)
s=1
is a compound Poisson process.

When V is a derministic constant process, Z coincides with the standard Poisson process
on R;. Dean of the family of the jump processes, the latter is equipped with an extensive
Malliavin theory, born shortly after that on Wiener space. Indeed, its associated compensated
process is in fact a normal martingale so that most of fundamental properties such as martin-
gale representation theorem, decomposition in chaos, Itd formula are immediatly provided and
make the theory powerful. For more details on Malliavin calculus for Poisson processes, see
for instance chaos expansion (Last and Penrose [81|, Privault [116]) for anticipative calculus
(Nualart and Vives [103]).

When V denotes in a more general case an independent sequence of square-integrable random
variables identically distributed with a probability distribution v defined on R, Z belongs to
the family of compound Poisson processes, for which a stochastic calculus has already been
designed. Extending what has been done before for the standard Poisson process, it is less rich
in applications since the compound process does not enjoy all the properties of its illustrious
elder. If the independence of increments they share makes possible a characterization in terms
of Laplace’s transform and to define stochastic integrals satisfying an [t6 isometry property,
it is however impossible to state a predictable representation property for compound Poisson
processes in general. As suggested in the in the remark below, the associated compensated
compound process (Y¢)eRr . does not satisfy a structure equation when the process V is not
deterministic constant.

Remark 4.3.1. As explained in the last item the remark p. 95 in Privault [117], the quadratic
variation of the compensated compound F-martingale (Y;);cr, defined by

7. _ Y, — ME[V{]
 VAVarv,

satisfies

A/ )\Va,r Vl Z ’
_ J [Vien, |? % E[Vi] (% [Vien,_|?
\/AVar [Vl] o VN, \/\W VN,

If this last expression does not allow find a square integrable F-adapted process (¢¢)weRr,
satisfying the structure equation

ds.

t
[ 7?]1? =t+ J;] (z)s d?& (4.3.2)
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in the general case, it seems to remain possible to state a kind of modified structure equation

Ny t
o 1 _
Y, Yli=— ) 1=¢ +J ¢sdYs, 4.3.3
¥ Fh= 5 1=t | (4.33)
in the particular case where (|V|];)ter, is deterministic constant equal to 1
2
AY; = % + (?) + ¢ At

(or under restrictive conditions |Vy| =1 and E[V;] =0 for any t € R} ).

Despite of this intrinsic absence of predictable representation property, a Malliavin calculus
can be elaborated for compound Poisson processes seen as a particular case a the larger class
of Lévy processes to wich it belongs (see chapter 6 in [117], [109], [106]). The formalism
thus conceived gives in particular birth to an analogue Clark-Ocone formula, inescapable tool
to address hedging and portfolios optimization problems in jump-diffusion models. See for
instance the works of Elisa Alos, Jorge A. Leon, and Josep Vives [3], Ioannis Karatzas and
Daniel Ocone [108|.

4.4 Conclusion

In the same spirit as the conclusion of chapter 1, we close this one by listing what we need to
answer the question: how can we quantify the additional utility of the insider trading on a a
financial market bore by a ternary model? The challenge is threefold: we have to understand
the mechanics of the underlying compound geometric process, tanspose one of the methods
usually used for the optimization of dynamic portfolios to our framework, and transfer all
these tools to an insider’s point of view. In other words, we need to be equipped with:

e A Malliavin calculus for compound geometric processes and derived functional identities:
martingale representation formula, Clark-Ocone type formula...

e A method for portfolio optimization in the incomplete market designed by a ternary
model.

e A technique of enlargement of filtrations in this particular discrete setting.

If the chapter 5 will be charged the elaboration of a stochastic variational calculus for com-
poung geometric process, the questions of enlargement of filtrations and portefolio optimiza-
tion will be tackled in the last one to lead to the answer to question 3.4.15 of the second
part.
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Chapter 5

Malliavin calculus for compound
geometric processes

As one of the different ways to construct it, we choose to developp a Malliavin calculus for
geometric compound process by deriving it from a modified chaotic decomposition of square
integrable functionals of that process.

5.1 Compound geometric processes

The general framework is that of a probability space (€2, F, P) described in this first subsection.
We borrow the notations and presentation from the framework introduced for filtered Poisson
processes ([40]).

Let (\,p) € (0,1)2, E = {—1,1}, T € N*. Denote N; = N n [1,¢] and N? = N; U {0} for any
t € Np. We consider (X, T,v) the measured space defined by X = Np x E, T = P(X) and

v((t k) = D, A0:({t) ® (por({k}) + (1 = p)o-1({k})),
s=1
for any (¢,k) € Ny x {—1,1}, v(0,-) = 0 and 7 its marginal distribution with respect to the
time variable

n(t) = 6o({t}) + D Ads({t}) ; te Nr.

s=1
For any n € N* the tensor measure v®" is defined by:

n

VO (b, Kn) = Ir, ((bn, kn)) | | (i, i), (5.1.1)
=1

where (t,, k) = ((tl,kl), coo kn)) € (N7 x E)™ and
r, = {((tl,k‘l), s ,(tn,kn)) € (NT X E)n) cVi# gt # tj}
The space of simple, integer-valued, locally finite measures on X is denoted by Q.

Remark 5.1.1. The definition of the probability space (2, F,P) from the measured space
(X, T,v) as described above is of key importance; it is through this underlying jump struc-
ture that we can afford to state a Karatzas-Ocone hedging formula for compound geometric

123
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processes (6.3.5), and thus to circumvent the impossibility to do that for general independent
random variables.

Let Vo =0, Tg = 0, and for any t € N, let T; denote the time of the t-th jump, V; the t-th
mark, & the ¢-th inter-arrival and (Nt)teNOT the geometric process defined by Ny = 0 and

t e¢)
To=0, Ti=) &, Ni=> lir.<y,
s=1 s=1

where (V¢)ten, and (& )ten, are sequences of independent and identically distributed variables,
and such that V; is a {—1, 1}-Bernoulli variable of parameter p, whereas & is a geometric
random variable of parameter A\. The canonical process w can be thus expressed by w(0, k) = 0
and

wit,k) = Y Serovytk) = > dw.)(s, k)5 (tk) € Np x E,

SENT SENT

where, for any ¢ € N7, the random variable W; is defined by

Dkl (w(t k) i t<T
Wi(w) = { keE
o if t>T

and o stands for a point at infinity. Note that any variable V, (¢ € Np) is independent of the
underlying jump process (Nt)teN% . Define also the sequence of increments (ANy)en, by

1 (w(t, k if t<T
AN (w) = N(w) — Ny_(w) = ’;E (p(w(t, k)

w if t>T

The variables AN; and W thus defined play a major part and we will often refer to them.
Indeed, ANy indicates wether there is a jump at time ¢, and, if so, the variable W; gives its
value (+1 or —1) i.e indicates if the process goes up or down.

Remark 5.1.2. To slighten the notations, we omit some parenthesis; w(t, k) and 4.(¢, k) stand
respectively for w((t,k)) and 0.((¢, k)).

From now on we consider geometric functionals F of the form

o0 1 n
F = folgwm—o) + . 1 fn(tn Kn) [ [ wtm-1 (5.1.2)
n=1 " i=1

with f, € L}(X",v®") and (tn,ky) = ((¢1,k1),-- , (tn, kn)) € (N7 x E)™=, where for any
B e P(Nr), we denote

B™= = {(tl,”- 7tn) t;eBiieNrand1 <t <--- <tn}. (513)
and for A=BxEeT,

(B X E)n’< = {((tl,kl),-'- ,(tn,k}n>) : (ti,k‘i) € B x E,i € NT and h<- - < tn}.
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For instance, if we consider the functional defined as
F(w) =w(A x E),

for a given A = (t,,k,) € (N7 x E)™=< we have
Fltn,Kn) = D 1a((si, ki)
i=1

The canonical filtration F' = (F3),eno, is the o-field generated by the functionals of the form
(5.1.2) and can be rewritten as

t

Fo={{0},9} and F=0{ > > w(tn, k) b . (5.1.4)

n=0 (ty ,kpn)e(Np xE)"<

The compound geometric process Y of parameters (A, p) is defined by
Yi= ) Vilir,<y (5.1.5)
SENT

Remark 5.1.3. The compound geometric process is the discrete analogue of the compound
Poisson process. The underlying jump strucutre modelised by a Poisson process in this latter
is replaced in our framework by a binomial/geometric process.

It is possible to define the space of square integrable functionals of the compound geometric
process.

Lemma 5.1.4 (%). The space L2(Q) is made of the functions F : Q — R such that fFZ dw <

oo where

f F2dw(t, k) =1+ i > FA)v(A).
X

n=1 Ae(NpxE)n:<

The set of simple processes, denoted by Sy is the set of random variables of the form

u = Z Z ungl(s’k).

seNT keE

5.2 Stochastic integrals

Throughout this subsection, assume the existence of a family {AR;y,t € Ny, k € E} of
random variables satisfying the following hypotheses:

( Z Z ARS’k>teNT

seN¢ keE

1. The process

is a F-martingale,

2. The family R = {ARyj, t € N7, k € E} is orthogonal for the scalar product (X,Y) €
L?(2) — E[XY] and we denote E [(ARy)?| = . for any (¢, k) € Ny x E.
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We draw our inspiration from the construction of Malliavin calculus for Gaussian fields, by
embedding them in isonormal Gaussian processes. Similarly, and in order to encode the
properties of family {AR;, t € Np, k € E}, we introduce an Hilbert space %, whose inner
product is reproduced by the covariance structure of the family of random variables. Consider
thus 7 the space composed of R2-valued processes u = (u.j, k € E) such that u is F-

predictable and
T
Z Z KR |us7k\2] .

keE s=0

lul% = E

Endowed with the scalar product

lu, vy p = E

T
Z Z RE Us kUsk | »

keE s=0

the space (7, (-, -)) is hilbertian. The second Hilbert space is the set (of equivalence classes)
of square-integrable F-martingales over N% endowed by the scalar product

(M,L) .z = E[(Mr, L7 )g]

so that the space (A&,| - |.x) is hilbertian. The Hilbert subspace of .# consisting of the
0-mean martingales of .Z is denoted .#.

The simple stochastic integral can be defined with respect to this latter F-martingale:

Definition 5.2.1 (%). For any function f € ¢>(Ny x E), the stochastic integral .J;(f) is
defined by

J(f) = D) D F(s,k) ARy

seNr keE

In particular, J; satisfies the identity:

Jl(l(tjq)) = ARU{; 5 (t, k) e N7 x E.

The isometry property verified by J; enables to extend its definition to .22

Theorem 5.2.2 (k). The stochastic integral defined as the application

Jl . e%o E— %0
u — Ji(u) = ZSENT Diker Usk ARs

s an isometry. In other words,
E |Ji(u) Ji(v) | = (w0 w0 € .

The stochastic integral J!(f) of u € J is defined as

JH(u) = Ji(ulpoyy),

and satisifies the following lemma:
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Lemma 5.2.3 (x). Forue J,
E |Ji(u)] F| = Ji(w).

In order to define multiple stochastic integrals of random variables of the form (5.1.2), we can
work in a space of symmetrical functions; indeed the occurrence of the jumps does not affect
the value of F. Our construction follows closely that depicted by Nicolas Privault (see chapter
6 in [117]); in a certain sense we transpose it in our context. The space 2(Np x E)°¥ is by
convention identified to R; let thus for any f € £2(N7 x E)°0,

Jo(fo) = fo.

Definition 5.2.4 (x). For n € N, let /(N7 x E)°" denote the subspace of 2(Np x E)®" =
2(Nt x E)" composed of the functions f,, : (N7 x E)” — R symmetric in their n variables,
i.e. such that for any permutation 7 of {1,--- ,n},

fn((tr(l)v kT(l))u ) (tr(n)a kT(n))) = fn((tla k’l), ) (tTH kn))a

for any (t1,k1), -+, (tn, kn) € N7 x E. The space £2(N7 x E)°" is endowed by the scalar
product

<fn7 gn>é2(NT><E)O” = n! f fn(tna kn) gn(tn7 kn) dV@n(tny kn)
(NTXE)n

~ nl 3 Pty kn) gn(tn; Ken) | | ik,

(tn kn)e(Np xE)n:< i=1

where we denote (t,,ky) = ((t1,k1), -+, (tn, kn))-
Theorem 5.2.5 (% Multiple stochastic integral). The multiple stochastic integral J,(fn) of
fn € (N7 x E)°" is defined as
Jn(fn) = n! > Fa(tr, k1), (o Bn)) [ [ AR k- (5.2.1)
i=1

(tn,kn)e(Np xXE)™:<

It satisfies the recurrence relation

jn(fn) =n Z jn—l(ﬂ'zkfn) ARy j, (5.2.2)
(t,k‘)GNT xE

where the function my, is defined on 2(Np x E)°" by

(7t e fu] ((E1 k1), (b1 k1)) = fu((B1, K1), s (bt Bne1), (6, K)) Lo gn—t (B, -+ 5 1)

Remark 5.2.6. The description of N7 by (5.1.3) implies that the definition of the multiple
stochastic integral J,(fy) holds if n € Nyp.
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Moreover, the application J, satisfies an isometry property which enables to extend it to
%" the Hilbert space of (R?)"-valued and F-predictable processes u®" where u®v denotes
the element of L2(2 x Q, P ® P) defined by

(u® )t k(w,w) = g (w) vep (W),
and endowed with the scalar product
(u,v) pon = nl B [W, 0™ p 5y xpyon ] -
Theorem 5.2.7 (k). The stochastic integral defined as the application
Jn 1 HE — H,

T
u@” — u@” = 2 Z u%@g 1 ARt,k
t=1keE

satisfies the isometry formula

E [jn(u)jn(v)] = (u, V) ypon ; Yu,ve A",

5.3 Modified chaos representation
Let Ho = R and for n € N*, H,, be the subspace of L?(Q2) made of integrals of order n > 1:
Ho = {Jufu) s fu € (NG x B}

and called modified chaos of order n. Let & denote the linear space spanned by multiple

stochastic integrals i.e.
T
S=Span{U’Hn}.

The completion of S in L%(Q) is denoted by the sum

T
D Ha
n=0

Lemma 5.3.1 (k). Forte Nr,
LY, F) = (Ho® - @ H) [ | LA, F) (5.3.1)

As a direct consequence of lemma 5.3.1, any random variable F € LY(£, ;) can be expressed
as

t
Z In (falfoqe)

As the sequence of jump times is bounded by T and the space L?(f2) is characterized by
Lemma 5.1.4, the chaotic decomposition naturally extends to L%(2) without any recourse to
a limit procedure or a density argument.
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Theorem 5.3.2 (). The space L2(SY) is provided with the modified chaos decomposition
property

L2(Q) = é Hon. (5.3.2)
n=0

In other words, any random variable F € L2(2) can be expanded as

T
F=E[F]+ ) Ju(fa) (5.3.3)
n=1

In this subsection we aim at providing a decomposition of any square integrable random
variable in terms of iterated integrals with respect to the family Z = {AZ;; (¢t,k) € Ny x E}
defined by

AZy 1, = sgn(k) (Lg,) (ANg, Vi) — Api) = sgn(k) (1ge, k) (AN, W) — Apk)-
The definition of Z is quite natural since

Y, = 2 2 AZg (5.3.4)

can be interpreted as the compensated F-martingale associated to the compound geometric
process Y. The family Z is not orthogonal. The finite dimension of the relative spanned

space, being equal to
d T
1 2° =37

we can derive from it an orthogonal family through the Gram-Schmidt process. The derived
orthogonal family R = {AR¢x; (¢,k) € Ny x E} is defined by

A
RO = 1, ARl’l = Azl,l and ARl,fl = AZL,l - 1 _q)\pAzl,l-
By induction, we have also for any t € Np\{1},
A
ARyy=AZy  and  ARyoy=AZg -5 _q)\pAzt,l (5.3.5)

by noting that for any s € Ny_1,
E[AR,; AZi1] = E[ARGE[AZ 1| Fs]] =0  and  E[ARy1 AZ; 1] = Mpg,
and where the first identity comes from the independence of AN; and Fy for s € Ny_1.

Remark 5.3.3. Consider here the worthy of interest situations when the parameters A and
p take the extremal values A = 1 or p = 1. Note that the cases A\ = 0 or ¢ = 1 are sort of the
negatives of the latter cases and thus left to the reader.

When A is equal to 1, we retrieve the definition of the structure equation solution sequence
(Yi)ten defined by Nicolas Privault (chapter 1 - 1.4.6 in [117]). Up to a constant of normal-
ization, the variable Y; can be expressed with respect to the variables AZ; . by

Yt = 2\/]Tq (AZM + AZty,l),
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so that our underlying jump process coincides with a Rademacher sequence.

When p is equal to 1, the process (Y¢)ien, defined by (5.3.4) boils down to a single compen-
sated geometric process which properties could be soundly compared to these of a Poisson
process on R of intensity .

In what follows, we frequently refer to the Rademacher sequence (resp. the Poisson process
on R} of intensity A\) as a "guarantor" of our construction, and which we hope to retrieve the
properties when letting A equal to 1 (resp. p equal to 1).

The (multiple) stochastic integral with respect to Z defined for any g, € £2(Nt x E)°" by

Jn(gn) =n! Z gn((tla kl)? ) (tm kn)) H AZti,ki
i=1

(tn,kn)e(Np xE)™:<
inherites of the properties of .J,, by isomorphism between Span R and Span Z.
Remark 5.3.4. Let the application

(N x E)»< — {0,1}

1= :
(tmkn) — l(tn,kn)

We retrieve the remarkable and usual identity
n

‘]"(1(<tn,kn)) = HAZ%;% : ne N¥,
i=1

where (t,,k,) = ((tl, ki), -, (tn, kn)) This is of key importance; it basically means that we
can recontruct the signal Y (which connection with the family R will be precised in section
5.3) by the means of the stochastic integral of elementary functions defined on (N7 x E)™. In
particular for n = 1,

J1(L ) = AZyy,

appears as a reminiscence of (1.3.2).
We can thus state that:

Theorem 5.3.5 (x). Any random variable F € L2(Q) can be expressed as

T
F= E[F] + Z Jn(gn)

n=1
where

gtn. kn) = > [ 1P ey £((ta, —Ka), (tpapas Kppa))

m=1 Ac[n]™ < i€A

where (tn,k,) = ((t1,k1), -+, (tn, kn)), [n] = {1,--- ,n} and the functions f, are the ones

defined through (5.3.3) and by letting p = —1)\7(])\,
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Remark 5.3.6. The latter representation formula can be put in perspective compared to
remark 4.3.1. Our framework is close to that of a compound Poisson process where the
process | V| is constant equal to one. It is thus possible to state a modified structure equation
which interpretation (via Theorem 5.3.5) can be tranposed in our context by: if it remains
impossible to supply our compound geometric process with an usual chaotic decomposition for
functionals of the form (5.1.2) (as for Brownian motion or in Poisson space), we can establish
a modified decomposition in chaos in terms of multiple stochastic integrals of functions g,
where are the images of functions f,, (appearing in (5.1.2)), via a Gram-Schmidt process. The
existence of this shift seems to be directly attributed to the presence of ¢, in place of t in
(4.3.2).

We introduce the Malliavin derivative as the annihilation operator acting on the space L2()
seen in terms of its chaotic expansion (5.3.2).

Definition 5.3.7. Let the linear, unbounded, closable operator
D : L*(Q) — L*(Q x N4, P)
defined for any element J,(f,) of H, by
Di e n(fr) = ndn1 (fa(*, (6, k)11 t1gn=<)- (5.3.6)

where the notation * will be used to indicate the first k—1 variables ((tl, k1), (tn-1, k:n,l))
Of fn((tb k1)7 R (tn—lv kn—l)a (ta k))

Let the application

Q —

Q
Tt w ZZw(s,k)

s#t keE

i.e. the restriction of w to G;. The applications defined on € x (Nt X E), and expressed for
(w, (t,k)) € @ x (N; x E) by

w m(w) v (t k) and w— m(w), (5.3.7)

can be interpreted as the applications acting on w respectively by forcing a jump of height k
at time ¢ or forbiddening any jump at time ¢.

Remark 5.3.8. In particular, the applications defined by (??) satisfy the remarkable identi-
ties:

o Wy(m(w) v (t,k)) = k1 (t) + Ws(w)1ge(t) and W(m(w)) = Ws(w)1ge(s),

L] ANS(Wt(w) U (t, k)) = 1{t}(3) + ANt(w)l{t}c(s) and ANS(m(w)) = ANt((,U)]_{t}c(S).
We deduce that, for any (¢, k) € Ny x E that on the one hand,

AZy j(m(w) U (t, k) — AZy (i (w)) = sgn(k)
and, on the other hand
AZy p(me(w) U (t, —k)) — AZy (T (w)) = Lian,wo)=(1,k) (Te(w) U (t, —k)) — Apy
— [Lgan, w =1,k (me(w)) — Apk] =0,

This entails in particular the remarkable identity:

ARy (i (w) U (t, k) — ARy (1 (w)) = sgn(k).
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The above remark gives the tools to provide a more tractable expression of the Malliavin
derivative, in terms of difference operator acting on L?(12).

Theorem 5.3.9 (%). For any F € L(Q),

Dy = sgn(k) [F(m(w) U (¢ k) = F(m(w))]

Remark 5.3.10. By definition, given k € E, the random variables m(w) U (¢, k) and m(w)
are Gi-measurable; so does Dy i F.

Remark 5.3.11. We can retrieve one of the specific identities exisitng in the Gaussian and
Poisson spaces: for any process u € 52,

Dy pJi(u) = u(t, k).

The application of the definition of Dy, to F = Jy(u) gives

Dy 1 (u) = sgn(k [ 3 Su(s, £) AR o(mlw) U (8 ER) = Y. D u(s, 0) ARS,g(m(w))]

seNT leE seNT (eE
u(t, k) ARy g (mi(w) v (&, k) + u(t, =k) ARy . (m(w) v (¢, k)
—u(t, k) ARy (m(w)) — u(t, —k) ARy k(1 (w))
= sgn(k)” u(t, k) = u(t, k),

so that we get the desired result.

5.4 Functional identities

We provide our construction with the analogues of 1t6 formula, Clark formula, martingale
representation theorem and Girsanov theorem.

The compound process (Y¢)iwen, defined by (5.1.5) is equipped with the pathwise Ité formula
provided by the following theorem:

Theorem 5.4.1 (% It formula). Let (Y;)ien, be the compound Poisson process defined by
(5.1.5) and f be a R-valued function defined on N. Then, for any t € N,

FOY0) = £(0) + D0 (F(Ye) = f(Yeo1)) Zn, AY, (5.4.1)

The face to face of theorems 5.4.2 and 5.4.5 highlights clearly their connection to each other (as
for Brownian motion): while the latter one means that a martingale adapted to the compound
geometric process filtration is in fact a stochastic integral, the first one gives the expression
of the integrand of this stochastic integral in terms of the Malliavin derivative of the terminal
value of the martingale.

Theorem 5.4.2 (% Clark formula). For any F € L3(Q),

F=E[F]+ Y, Y E[DiF|Fi1] ARy (5.4.2)
teNr keE
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As a direct consequence of Lemma 5.2.3 and Clark formula (5.4.2) we get:

Corollary 5.4.3 (x). For anyt € Ny and F element of L2(Q2),

T
F=E [F‘Ft] = Z 2 E [Ds,kF | ]:5—1] ARs,k (5'4'3>
s=t+1 keE

Remark 5.4.4. The transposition of the Clark formula with respect to he family Z is written:
for any F e L2(€),

T
F=E[F|F] = Z]E:@mEﬁkﬁﬂﬂqj+%4EU%%FUQJ)A&k
s=t+1 keE

where the family {bx ¢, (k,¢) € E?} defined by

A
bii=1, b 1= —7(17 b-11=0 and by _1=1
’ I 1_Ap El El

as provided by (5.3.5).

From Corollary 5.4.3 we derive a predictable representation formula for geometric discrete-time
martingales.

Theorem 5.4.5 (% Martingale representation theorem). Let (Xi)wen, be a F-martingale.
There ezists a F-predictable process u = (u., k € E) such that

t
X;=Xo+ Y, > sk ARgp ; t€ Ny, (5.4.4)
s=1keE

In particular, for any (t,k) € Np x E,
Utk = E [Dt,kXt | ]:t—l]

Theorem 5.4.6 (% Girsanov theorem). Let (X, p) € (0,1)2 and let the function ¢ defined on
{—1,1} such that

M1 =N Pl +G1,_
SOZA( pp{n Q{H_L (5.4.5)
AML=Nplay+qliy

Then, under the probability measure

the process
N¢

Y= >V,

s=1

is a compound geometric process of parameters (5\,]5).
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The probability measure Pg 5 can be equivalently expressed by

~\t ¢
: ~X
dPS\,p‘ = (14\) H(l + ¢(AN85W8)) dp,

s=1

where % is the function defined on N x E such that
QZJ(ANt, Wt) = ANt (,O(Vt)

Remark 5.4.7. Note that for any ¢t € Np,

M1-=Np M1=XN)g
ANG W) = ANy [ 2222 ownean + 2299w — 1
Y(ANg, Wy) t(A(l_)\)p ((AN;,W¢)=(1,1)} Y (AN, Wi)=(1,—1)}
S ) )
=M(pAzt,1—qut,1+A>.
TSRV g

Remark 5.4.8. As in the Poisson case, we retrieve that the shift space appearing in Gaussian
analysis (Cameron-Martin space for the Brownian motion in particular) is replaced here by a
perturbation on what characterizes the jumps: their occurrence and their height, respectively
parameterized by A and p.

5.5 Link with the Malliavin calculus in Rademacher and in
Poisson spaces

In the same vein as the remark 5.3.3, we devote this subsection to the comparison of our for-
malism to the Malliavin calculus in the Rademacher space (resp. the Poisson and Rademacher
spaces) which we retrieve the structure when letting A be equal to 1 (resp. p equal to 1).

Let first A = 1. Basically, that means that the underlying geometric process jumps every time
step. A Rademacher process (Xt)teNOT can be defined by letting X; = V; and the variables Y,
by
% AZtJ + AZt7_1 Xt —p+q
t = —3
V2pq V2pq

so that we can verifiy that (Y¢),eno defines a F-normal martingale. If we let D the derivative

T T

DiF (X1, Xr) = DiaG( ) Y AZx) = Dia G 3 D) AZy )

s=1keE s=1keE

where F and G as defined to satisty F(Xy,--- ,X7) = G(ZST:1 D keE AZM), we get

2 2 A
= ——1(s) =4/ — DY
Vapg pg "
i.e. - up to a constant - the expression of the gradient D defined on the Rademacher space
(2.0.2). All identities and formulas, such as the Clark formula and the predictable represen-
tation (see Privault chapter 1), are inherited by construction.

515 Ys
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Consider now the case p = 1. From a first point of view, that means that all variables
{Vi, t € Np} are deterministic (w.l.o.g. supposed equal to 1), and that the process (Y¢)ieN,
defined by (5.3.4) matches with a single compensated geometric process. The construction
developped still holds and, as expected, enables to state stronger identities that are reminiscent
of these holding for Poisson point processes on the real line. To take notice of it, consider
the following framework: #F designates the Hilbert space of R-valued and F-predictable

processes u such that
T
Z |Ut\2]

[l =

Consider thus the space of simple, locally finite on Np integer-valued measures still denoted
by QF. In particular, the family Z¥ = {AZ!; t € N7} defined by

AZ{ = 1ian,—1) — A,

is orthogonal for the canonical product on QF so that the stochastic integral defined as the
application

1Y ///(})
u — Ii(u) = Z uy AZY

tENT
is an isometry. We can establish that for any F e L2(QF),

F=E[F]+ ) E[D{F|F_] AZ}
teN9,

where

DI'F = F(w 5 {t}) — F(w = {t}) (5.5.1)

which is - up to a constant - a reminiscent of the gradient used by Laurent Decreusefond and
Ian Flint [37] on the Poisson space

V,F = F(w U {t}) — F(w\{t}).

From another point of view, consider the family of {—1,1}-random variables {X;, ¢ € Nr}
such that
X; =2AZF +2) —1=2AN, — 1

so that A = P({X; = 1}) = P({AN; = 1}). Define the random walk (S¢),eno by So = 0 and

t
Xs
=) P2 Ny teNg
s=1
The application of D to N = (N¢)eno gives

[ mN. U {t} (ﬂtN.)]l[[t,T]]()
=F(S. + L=y ey () — F(S. = Lix, =1y 1y (),

by noting that {AN; = 1} = {X; = 1} and {AN; = 0} = {X; = —1}. We retrieve - up to a
constant - the expression of Malliavin derivative D defined on the Rademacher space (2.0.2)



136 CHAPTER 5. GEOMETRIC MALLIAVIN CALCULUS

(by taking py = A in Corollary 1.6.3. in Privault [117]) applied to a functional F of the form
F=fXy, - ,Xr)=9(S7r), f: {~1,1}7 - R and g : R — R smooth functions. Besides,
the Clark formula (5.5.1) is exactly the same of the eponymous one on the Rademacher space
(se Proposition 1.7.1. in Privault [117]) noting that the definition of the process (AZ} )N,
coincides with this of normal martingales through structure equations. All results arise from
these definitions.

5.6 Proofs of chapter 5
5.6.1 Proofs of Section 5.2
Proof of Proposition 5.2.2. For any (u,v) € 72,

E [j1(u) jl(“)] = Z Z ut Vs e BE[ARy p AR (]
(t,k)eENT XE (s,)eENT xE

= Z Z Utk Vt e E [ARt,k ARt,é]
teNT (k,£)eE2

= Z Z R Utk VUt k

teNT keE

where we have conditioning with respect to Fi.s to get the second line and we use the orthog-
onality of AR and ARy, (with £ # k) in the last one. O

Proof of Lemma 5.2.3. For any u € 7€,

E [jn(u) \]—"t] — nl 3 (b, k)

(tn,kn)e(NpxE)™<

(tnvkn)G(Nt xE)n,<
= jn(ul[[07t]])
since the independence of the centered variables {ARy, y,, (ti, ki) € T, i € Ny} implies that

E [H?—l ARy, k;

H ARy, i,
]_[ ARy, 1, | F

ft} = 0 if there exists ig € Np such that ¢;, > ¢. O

Proof of Proposition 5.2.5. For any f, € /2(Np x E)°"

In(fn) = n! > Fa((t1 k), s (tny o) HARM

(tnykn)e(NT XE)"’<

n—1
=n! Z Z fn((tla kl)) R (tnfla knfl)a (ta k;)) ARt,k‘ H ARti,ki
(t,k) (tnfl,knfl)e(NTXE)"*< =1
=n Z jnfl('ﬂzkfn) ARy
(t,k‘)ENT xE

Hence the result. O
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Proof of Proposition 5.2.7. Assume with no loss of generality that n > m.

For any (tn,sm) € (Np)™< x (Ng)"™<, there exists ig € N, such that ¢;, € t,\s,. By
independence of the random variable ARtl ki with respect to the o-algebra Ftig—1, for any
(u,v) € SO x O™

E [jn(u®") jm@@m)] — nlm! 3 3 W (£, k) 0O (S, L)

(tn,kn)E(NT XE)™< (sim,lm)e(Np xE)™ <
x E [1—[ [ | AR, 1, AR,
i=1j=1

— nlm! > > u®" (t, k) VO (S, L)

(tn,kn)E(NTXE)™< (8p,lm )e(Np xE)™ <

io—1i9—1
% E|ARy, i, | B H HlARt ARy, 0| Fr 1 11 1_[1 ARy, 1, AR, 4,
7 = i J
i#ig

=0,

and for m = n,

E | Jo(u®")Ju (v2") | = (n1)? 3 3 U (6, ) V" (81, 1)

(tn,kn)e(NT XE)™< (sn,ln)e(Np xE)™<

H ARti,ki AR’S]',ZJ'

il
= (n!)? > Fo(tn, kn) gn H ARy, 1, ARy, 4,
(tn,kn)e(NT xE)™:< i,j=1
1peEM <
= n!{u,v) ypen,
since E [ARyx ARy ] = rr 1y (¢). Hence the result. O

5.6.2 Proofs of Section 5.3

Proof of Lemma 5.5.1. Tt suffices to note that Hs n L°(Q, F;) is generated by the orthogonal
basis

{1} u {H ARg ), 1<t1 <o <t <s, (ki,--- ,ky) € ET} (5.6.1)
i=1

Indeed it appears that the family can be expressed in terms of multiple integrals as
H ARy, g, = Jn < (b kr). <ts,k:s>}>’

t
and moreover, by equality of the dimensions of the two spaces at stake is equal to 2( . We
s

conclude by remarking that the dimensions of the two spaces appearing in (5.3.1) are both
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equal to

The proof is thus complete. O

Proof of Theorem 5.3.5. By induction on n ; in what follows [n] denotes the set {1,---,n}.
For n =1 there exists f : {1} x E — R such that

F=E[F]+ > f((1,k)) ARy
keE

Since AZl,k = ARl,k and AR—l,k = Az—l,k + pAZLk, we get,
9((1,1)) = f((1,1)) + pf((1,-1)) and g((1,-1)) = f((1,-1))

Assume there is n € N7 such that

n T
F=E[F]+ 2 Jm(gm)+ Z jm(fm)7
m=1 m=n+1

and where for m € N,

= Z H Lig=1y f((ta, —Ka), (bpmpas Kpnpa))-
/=1 A m €A

By definition, and applying induction hypothesis
Tn(f)=n > Ina(mfifa) ARep =n > Juo1(7Phgn) Ae

(tk)eNT xE (tk)eNT xE
Then
n—1
(77 1y I (b, kn)) = g((bn, Kep) "0 Z Z [ 1P 1 hm1y £ (64, =KA), (b as Kpnp-na))
(=1 ﬁJ < €A

Noting that

gn((tn—lakn—l)a(t]7 )) fn(( n— 1> )?(tjal)) +pfn((tn—17kn—1)v(tj?_l))a
where [n] ™7 = [n]\{j}, we get

i
L

In((tn—1,kn—1) "R (2;,1)) = Do TP ey £((6a, —Ka, (85, 1)), (bpg-nas Kpnp-ia))
(=1 Ae([n]7)0< i€A
1

+ Z Hpe+11{ki:1} f((tAa —ka), (t[n]ﬂj\Av k[n]ﬂj\A’ (tj’ _1)))
=1 A —i)6< ieA
n—1

= Z [ TP ey £ (64, KA, (£5,1), (b= A Kpng-1a))
=1 A 179)6< i€eA
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and
n—1

In((tn—1, kn—l)ﬁ(tjkj)? (tjv _1>) = Z 2 szl{ki:l} f((tAv —ka, (tj7 _1))7 (t[n]“j\A7 k[n]“j\A))'
t=1 Ae([n]~

e([n j)57< €A

Last write

gn(tm kn) = gn(<tn—17 kn—l)ﬁ(tﬁkj)v (tjv 1))1(kj:1) + gn((tn—la kn—l)ﬁ(t%kj)v (tj’ _1))1(kj:—1)

> Z [ [P L=y f (64, —Kas (bupas Kppa)
/=1 A

n])6< €A

to complete the proof. O

Proof of Theorem 5.3.9. For any (t, k) € Ny x E, consider

ViiF = sgn(k)[F(m(w) v (t, k) — F(Wt(w))]

vt,kjn(fn) = n! Z fn((tb kl)v B (t”’ k”)) H vt,k ARtiuki

(tn kn)e(Np x E)n:< i=1
=n! Z fn((tlvkl)a'” s (@ E), s (s kn) H ARy, k,
(b Kk )e(Np xE)n =< oy
=nl! 2 fn((tn 1,k HARI‘@J%
(tn_l,kn_l)E(N;th)n’< Z’:#

=n jn—l (fn(*a (t7 k))lAﬁ)
where we have used in the second line the remark 5.3.8 stating that
Vik AR e = Ly ((s,0))

so that

g <H ARtu&) (Z (e (i ki ) [ ARy
i=1 =1
t;#t

Thus, for any F € S, Dy xF = sgn(k)[F(m(w) U (¢, k)) — F(m(w))]. By a limit procedure we
extend this result to L2(Q). O
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5.6.3 Proofs of Section 5.4

Proof of Theorem 5.4.1. The proof follows closely that of (see Proposition 19.12 in Privault
[122]) For any t € Np

N¢
fYo)=f0)+ > f(YT,) = f(YT,_,)
n=1
N¢
= f(O) + f(YTn71 + Vn) - f(YTn—l)
n=1
N¢
=f0)+ > f(Yr,_, +VNng, ) — f(YT,,)
n=1
t
= f(0) + > (f(Yeu1 + VN,) = f(Yeo1)) AN,
s=1
t
= £(0) + D (F(Ys) = f(Ye1)) AN,
s=1
t
= (0)+ > (F(Ys) = f(Ys-1)) VN, AY,
s=1
by noting that Vy, AY, = VQNSANS = AN,. Hence the result. O

Proof of Theorem 5.4.2. Let F € S ; follows from the chaotic decomposition of F together
with the definition of the operator gradient that

F=E [F] + Z jn(fn]-N"’<)

n=1

=E [F] tn Z Z jnfl (fn(*a (t7 k))l[[O,tfl]]"*lK) ARt,k‘
nz1 (t,k)eNp xE

—BFl+nY, Y E[Ja(fule (4B)[F | AR

n>1 (t,k)eNg xE

=E[F]+ > E[D;,F|F_1] ARy,
(t,k)eENT xE

where we have used lemma 5.2.3 to get the third line. Hence the result. The result to any
random variable F € L2((2) is extended by noting that

E > ut k) EDF | Fa] || < IFlre)luliz@xx
(t,k)ENTXE
and using the continuity of the operator E [Dy ;(-)|Fi—1]. O

Proof of Theorem 5.4.4. Let (X¢)ien, be a F-martingale. Follows from Corollaries 5.3.9 and
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5.4.3 applied to t = s — 1 and F = X that

Xs =E [Xs|f571] + Z E [D57kXt|f571]
keE

= Xoo1 + ) B [DypXo| Ford]
keE
Then by letting
Us k. = E [Ds,sz‘Fs—l] )

we get
t t
Xy =Xo+ > Xg=Xo1 = Xo+ ), D) g kAR g

s=1 s=1keE
Hence the result. O

Proof of Theorem 5.4.6. The proof follows closely the proof of Theorem 19.16. in Privault

[122] for compound Poisson processes. Let ¢ and P;\ﬁ as defined in the theorem. For any
s € R,

ST+ eVi)|Ne =n
k=1

) (1 - i>o (i) N'(1L=N)"TE Lﬁ“ +o(Vi)sVEN, = n]
(

P(Nt = n)

[l
—
|
PN
N
S o+
N~
—
[ ]| >
>
N~
3
VR
> | >
—~ |
[
[
> >~
S— | —
S~
3
N\
I3
3
+
e
[
=
—_
w | |
=
N~

Hence the result. O
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Chapter 6

The insider problem in the ternary
model

6.1 Framework: the ternary model

In the perspective of exploiting our theorical results to focus on the question of the additional
utility of an insider in what we call the ternary model, we adopt now the following notations;
our model is driven by an underlying compound geometric pocess Z = (Z¢)en, (N7 =
N n [0,7]) defined by

N¢
Zi = Z V. (6.1.1)
s=1

As a reminder (see Section 5.1 for more details), (Nt)teN% is the geometric process defined by
No = 0 and

t 00
To=0, Ti=> & Ne=D> L.y,
s=1 s=1

where T = 0, (&)ten, is a sequence of independent geometric random variables of parameter
A and (Vi)en, is a sequence of independent {—1, 1}-Bernoulli variables of parameter p € (0, 1).
The canonical process w can be thus expressed by w(0, k) = 0 and

wit,k) = Y Seruvytk) = > dw.)(s,k); (tk) € Np x E,
seNp seNT
where, for any ¢t € N7, the random variables AN; and W, are defined by
D igyw(t, k) if t<T

ANt(W) = keE
w if t>T

and
Dkl (w(t k) i t<T
Wt(w) = keE
o if t>T

The financial market lying on the probability space denoted (€2, F,P) is the one defined in
4.1. The riskless asset (A;)en, with initial value Ag = ag is defined by

A =ap(1+ 1), (6.1.2)

143
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whereas the stock price (S¢)ten, with (deterministic) initial value So = 1 satisfies the equation:
ASt =Mt St—l ANt, (613)

where 7, = blw,—1} + al{w,—_1}, @ and b are real numbers such that —1 <a <r <b. The
two assets evolute on a given finite time period N%. The sequence (gt)teNT of discounted
stock prices is given by

1
——S¢, ; te Ny
(1 T T)t ty T
Remark 6.1.1. The price process defined in our ternary model is identically distributed with
the one of a well-chosen trinomial model. As a reminder, stock price (T)ien, is defined in
this latter model by Ty = 1 and verifies the recurrent relation:

S =

1+b)Ty if X,=1
Tt = Tt—l if Xt =0 ’
1+a)Ty if X, =-1

where the process (X¢)wen, is distributed according to the measure P such that:
PX;=1)=p, PXy=-1)=q and P(X =0) =1—-p—

q.
with (p,q) € (0,1)?. Let p=Apand § = A(1 —p)such that 1 —p—g=1— \.
E {sstsil} =E [smANtH]

="+ 2N —p) + s(1— N)
= st p 4 stTags(1 - N)

T
= E |:8Ttt1:| ,

and Sg = Ty. Thus the trinomial and the ternary models are equivalent in law. The second
one, based on a jump process, lends itself more easily to the statement of an hedging formula,
directly derived from Clark-Ocone formula (5.4.2). This motivated us to substitute it to the
trinomial model for our further investigations.

Remark 6.1.2. It could be interesting to extend this ternary model to a "stochastic volatility-
type" ternary model by allowing the up and down factors (1 +b) and (1 + a) to be stochastic.
We could thus imagine to define the processes (by/n, b =1, ,n) and (age/m, k = 1,--- ,n) as
well-defined functions of the (stochastic volatility) Cox-Ingersoll-Ross process ()N, defined
by

¢ ¢

v = 1 +J ﬁ(@—us)ds—l—f o/vsdBY, teT,

0 0
and so that, by letting n go to infinity, the "stochastic volatility ternary" model tends (at
time t) to the classical Heston model lying on the stochastic process H

t t
Ht—1+j rHsderj VvsHgdBY teT,
0 0

where 7 is the rate of return asset, x denotes the speed of reversion, o is the volatility of the
volatility, and BY, BH are Wiener processes with covariance pdt.
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6.1.1 Martingales measures in the ternary market model

Before exhibiting an hedging strategy for any for any simulating claim, we wonder about
the completeness of the market. As explained by Runggaldier in Portfolio optimization in
discrete time, like the trinomial model, our ternary model is an incomplete market. Indeed,
the measure with respect to which the sequence of discounted prices is a F-martingale, is not
unique. Given the process (St)wen, defined by (6.1.3) is identically distributed to the one of
the trinomial model, we expect to reach the same incompletness result. By writing for any
te Np_,

a St_ (1+7’)St_1
AS, —
& (1+7)t
_ MeSi—1 ANy — 754
(14 r)
(01w, =1} + alqw,——13] ANy —r

- (1+r) X Si-1,

it appears that the discounted prices sequence is a F-martingale if the condition

A (bpy + ag) —r =0,
holds for any t € N7. As expected, the system
{ Abp: + aqr) =
prt+q = 1

admits infinitely many solutions (A¢,ps, q¢) € (0,1)3 such that any triplet (A, pr, ;) forms a
convex .#" set (here a segment) characterized by its extremal points (independent of t), i.e.
the measures

—a b—r T
P} P’ = (1,7 — ) and P} =P'—(3,1,0) 6.1.4
t ’ b o CL’ b —a an t b7 ) ) ( )

which are not equivalent to P but such that any convex combination
P7 = ~P% + (1 — )P, (6.1.5)

is. Any measure defined on  and with respect to which the sequence S is a F-martingale is
called a F-martingale measure.

Note that the extremal measures PY and P} are independent of ¢ and F, so that, if T = 2
and w = (wy,ws) € Q,

P (wi,wh) = P7(w})P7 (whlwi) = P7(w))P7(w))
and by induction

n
Pw(wil,-" ,w;") — Hpv(w;j)‘
k=1

If J; = 2! denotes the number of extremal points Pg of the polyhedron of F-martingale
measures, for any j € J; there exists (77 )ren, € {0, 1} such that

P/ = ® (PO (P (6.1.6)
SENt
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For any t € Ny, .4} denotes the set of F-martingales measures on NY, whereas the set €}
composed of the convex combinations of extremal measures (6.1.6) matches with the convex
subset of .#} formed by the F-martingale measures equivalent to P.

Remark 6.1.3. We can give interpetation to the definitions of the measures P® = (\°, p°, ¢%)
and P! = (A}, p!, ¢!) introduced above. These stand for the "limit models". Actually when
the probability parameters tend towards extreme values, we fall back on well-known models
and complete markets.

Under P9, the process (AN¢)ten, is deterministic, constant equal to one. In other words,
the process S jumps at each time so that it coicindes with the price process defined in the
Cox-Ross-Rubinstein model (4.1.7). To make sure, keep the parameters a, b, r and define the
underlying Rademacher process XP* by Xbin — 1¢x 20y X.. We can check this is well-defined
since:

PX;=1)=p", PX;=-1)=¢" andP(X;=0)=1-p"—¢°

so that the equalities P(XP = 1) + P(XP® = —1) = 1 and P(X; = 0) = 0 hold for any
t € Ny. The definition of (p°,¢") = ((r —a)/(b—a), (b —r)/(b — a)) corresponds exactly to
the risk-neutral measure in the binomial model.

Under P!, the process (V)N is deterministic, constant equal to one, so that the compound
process (Z:)wieN, coincides with a single geometric process of intensity A. Once again, the
resulting market is complete and the risk-neutral measure is obtained by letting \ = r/b.

6.2 Enlargement of filtration

As mentioned in chapter 4, trying to quantify the additional information provided by the
known in advance of a Fpr-measurable random variable G leads to tackle with an enlargement
of the initial filtration. In a discrete setting, it seems to boil down to the exploitation of the
Doob decomposition (see Section 4.1 and [20])

In what follows, the random variable G is supposed to take its values in a measurable space
(T',¥¢) where I is a countable set. We define a particular process p& which is of key impor-
tance in many ways. First, it naturally appears in the Doob decomposition and enables to
connect the eponymous information drift (as reminiscence with the continuous case) with the
variable G. Besides, to study the martingales with respect to the enlarged filtration, since,
as it will be proved, the t-th term of the process 1/p© preserves the martingale property of
any (I, P)-martingale on NY. As such, optimizing the insider’s portfolio (see subsection 6.4.1)
requires to determine the crucial set of G-martingale measures on NY equivalent to P.

Up to now, let [V (resp. G°) be the filtrations [V = (‘Ft)teNOT (resp. G¥ = (gt)teN%), where the
o-algebras (]:t)teNOT are defined in (5.1.4) (resp. G; = F; v G) and which distribution given F;
for some t € N7 is given by a family of F;-measurable random variables {P(G =c|F),cel }

6.2.1 The information drift process

As the set T' is countable, the absolute continuity of law type condition (inescapable in the
continuous case) is de facto verified in our discrete context. Indeed, any set C € ¢ is of the
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form C = J..c{G = c} and, for any t € NY._,,

P(G =c|F
P(GeCIF) - PGl 5) = 3 T PG - o) - Blsf].
ceC ceC

where the random variable p{* is defined by

P(Ge |F)(w)

G _ c _
i (w) = PGe) such that pf(w) PG=0) (6.2.1)
for any w € Q,c € I'. Define also the process (VtG)teNT by
v =P(Ge |F) =P(Ge )pd (6.2.2)

The combination of (6.2.2) and (4.1.9) (see section 2.2 in [20]) applied to the (P, F)-martingale
(Y)ien, ensures that the process (Y?)teNT defined by

t C
-G B <Y’pt>8| -
Yt =Y — Z TCG =Y, — /L? (623)
s=1 s—1

is a (P,G)-martingale. The process u® thus defined is called the information drift, namely
the drift to absorb in passing to the insider paradigm in order to preserve the martingale
property of the initial compound geometric process. As designed by Peter Imkeller in [68], we
can traduct its connection to the random variable G thanks to the Malliavin derivative.

Theorem 6.2.1 (%). The information drift u® defined in (6.2.3) can be written as

18— Z Z CLME[DM]%] le=a

keE (eE P
for any t € Np, where the family {ay¢, (k,€) € E*} is defined by ag o = E[AZ ) ARy ), i.e
Ag(1— X
a11 = Ap(L=Ap), ai—1=0, ay1= Npg  and @-1,-1= ql(—)\p)

The following result is incomplete. We chose to present it anyway for the interest it could
arouse in possible future investigations. Actually, it would seem possible to interpret pC
terms of drift on the initial process X at the cost of an additional assumption:
Assumption. For any c € I', assume the existence of a couple (A¢,5¢) € (0,1)? such that

c_ AP
by = dP 7
that is, satisfying: }
s 1) ( A— A
1+ AN;, W 4 ) 6.2.4
o T (AN, W) = (6.2.4)

Then by Girsanov’s theorem 5.4.6, the process X defined by
Ny
- 2 V,
s=1

is geometric compound process of parameters (S\G, ﬁG) under the probability measure P 5
Recall moreover (see [20]):
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Theorem 6.2.2 (Blanchet-Scalliet, Jeanblanc, Roméro). Let (X)en, be a (P, F)-martingale
and Q a probability measure supposed to be equivalent to P on F; for any t € Nrp.

Let Ly = 3(3 . Then the process XQ defined by

t
AX, L
X? — Xt o Z < Y >S
s=1 -
is a (Q, F)-martingale.
The application of Theorem 6.2.2 to L = p& provides:

Theorem 6.2.3 (k). Assume Assumption 6.2.4 holds. Let X be a geometric compound process
of parameters (\,p). Then the process X

ALK, p©)s|
ps 1

t
Z TN /S e=G

s=1

is a geometric compound process of parameters (A\G, pG) where p¢ is defined by (6.2.3) for any

cel.

Remark 6.2.4. This result sounds interesting because it does the counterpart with the Brow-
nian case. However, it remains incomplete in its current form; indeed we still don’t know what
meaning to give to a compound geometric process of random parameters (A%, p&). We could
imagine associating to the process X a sequence of parameters ()\tG , ptG )ten, defined in terms
of conditional probabilities P(G € -|F;) and in a Markov chain-like way... To be continued !

6.2.2 The martingale preserving measure

In this section, we focus on the F-adapted process 1/pG, of key importance afterwards. This
is well defined; indeed, resulting from the countability of T, for any (¢,¢) € NOT_1 x I', the
random variable p{ is not null P-a.s.

Note that for any ¢t € Np, the o-algebra G; is generated by the set

{A(\B; AEJ:t,BEg}.
Theorem 6.2.5 (%). 1. The process 1/p% is a (P, G%) martingale.

2. Forte N%, the o-algebras Fy and o(G) are independent under the probability measure
defined for any A € G; by

aw-s[ju]

3. For anyte NT 1, the probability measure Q; coincides with P on F;.

Remark 6.2.6. The process (Qt)teN% thus defined is called the martingale preserving mea-
sure.

It is thus possible to establish the following result.

Theorem 6.2.7 (x). For fitedt € NY._ |, any (P, F)-martingale on NY is a (Qq, G)-martingale
and also a (Qq, F)-martingale on NY.

Remark 6.2.8. The process 1/p& defines a probability measure, which density is absolutely
continuous with respect to P.
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6.3 Hedging formula in a ternary model

The value of the portfolio at time t € N(% is given by the random variable
Vi =t Ay + 91 Sy,

where (o, ¢t)en, is a couple of predictable processes modeling respectively the amounts of
riskless and risky assets held in the portfolio, and its discounted value by Vo = Vg and

t
[ — 1
sS=

The aim of this subsection is to exhibit an hedging formula, i.e. given a nonnegative Fp-
measurable random variable F (called claim), to determine a portfolio modelised by (a, ¢¢)eno,
such that

Vo>0, V; =0 (t € NT—1)7 and Vp = F.

In an incomplete market, all claims are not reachable; they have an intrisic risk. Face to the
impossibility to perform a perfect hedge in the general case, we can only hope to reduce the
a priori risk to this minimal component. The question of hedging in an incomplete market
has been widely investigated for years (see for instance [34],[53] in continuous time, [130] in
discrete time). The ternary model, as the trinomial one, is not complete; we choose to deal
with the optimization problem

in E[(F-z-V 4, 6.3.1
LI [(F — 2 —Vr(p))*] (6.3.1)

where z is the initial capital and .#F is the set of F-predictable admissible strategies. The
mean-variance tradeoff process (K:)ien, is defined by

L (E[(AS,) ] Fei])?

K, =
¢ ; var[ASg | Fs—1]

;tENT.

Define also the discrete analogue of the minimal martingale measure (see Follmer and Schweizer
[53]), i.e. the signed measure P defined on (€2, F) such that

A~ NT
dP 1 —0:AS;
— = 6.3.2
dpP E 1—60,E[AS|Fe-1]’ ( )
where, for any ¢t € N,
0, E [AS; | Fi-1]

E[(AS)? | Fi-1]
Last, consider the Kunita-Watanabe decomposition of F (see Metivier [87] or Schweizer [130])
i.e. the unique couple of processes (&F, L) where ¥ is a square-integrable admissible strategy
and LY a F-martingale , strongly orthogonal to S, with null intial value such that

F=Fo+ > &AS +LL P-as
tENT

Within previous notations, Martin Schweizer gives an expression of the quadratic-loss mini-
mizing strategy.
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Theorem 6.3.1 (Schweizer, 1992). Provided (K¢)wen, ts deterministic, the solution of (6.3.1)
s given by

E[AS; | Fi-1]
E[(AS:)? | Fi]

o =B[F] and ¢f =& + (E[F|F] = 2* = Viei(9™)) (6.3.3)

and P is the minimal martingale measure defined by (6.3.2). Moreover, the quota of the
riskless asset (Ay)eny is given by ag = (1 + 1) TE[F]/So and for any t € N,

(= p1-1)Si1
A '

Qi = 01

Remark 6.3.2. If the contingent claim F is reachable, then ¢* = ¢, The term ¢F in (6.3.3)
can be interpreted as a pure hedging demand, whereas the second one can be viewed as a
demand for mean-variance purposes (see Schweizer [129)]).

We slot these results to our formalism to solve (6.3.3) in the ternary model.
Lemma 6.3.3. The mean-variance tradeoff process of the ternary model is deterministic.

Proof. For any t € N,

(E[AS; | Fi-1] )2 ~ (B0 +n ANy Fa])® - (L+A2p—1))?

var[AS; | Fr—1]  var[l + ;AN Foq] A= A2(2p—1)2

is a deterministic constant. O

Lemma 6.3.4 ((%) Kunita-Watanabe decomposition in ternary model). For any claim F €
L2(Q) there exist a square-integrable admissible strategy £¥ and a F-martingale LY, strongly
orthogonal to S, with null intial value such that

F=Fo+ Y &AS+LL P-as.
tENT

Moreover, for any t € N,

fF _ DkeE Ckﬁ [Dix F | Fi-1]
T =

lel3 ’
and R
L = > a(B[DiF|Fa] - &),
keE
where ¢ = (c1,c_1) € R? with
c1=(b+ap)k1 and ¢ = —ak_1.

Define the minimal martingale measure P

dp ﬁ 1 —AAS,

& 3.4
dP 1 — 0E [AS|Fi1]’ (6.34)

t=1

where 0 = (1 + A(bp — aq))/| c|3.



6.4. ADDITIONAL UTILITY OF THE INSIDER IN A TERNARY MODEL 151

Theorem 6.3.5 (% Loss quadratic minimizing strategy in ternary model). Let P be the
minimal martingale measure defined by (6.3.4) and let a claim F € L2(Q),F). The quadratic
loss minimizing hedge (x*,¢*) is given by

o* = E[F] and o} = & +0(B[F|F] —2* — Vi1(p*)
where ¥ € © is given by the Kunita- Watanabe decomposition

Proof. Since the mean-variance process is deterministic by Lemma 6.3.3, it suffices to incor-
porate the result of Lemma 6.3.4 to Theorem 6.3.1. The process (ou)ien, is defined by the
self-financing condition (6.5.1). O

6.4 Additional utility of the insider in a ternary model

6.4.1 Theorical results

Given an economic agent (resp. an insider) disposing of = (x > 0) euros at date ¢ = 0
(initial budget constraint), we want to determine the optimal admissible strategy allowing to
maximize his portfolio value at time £ € Np. This leads to consider the optimization problem
from the agent’s point of view:

Of(x) = max  Eu(Vau®))]. (6.4.1)

and respectively from the insider’s one:

O(a) = max  Efu(Veo(®)) (642

where u = log.

Utility of the economic agent and the insider before the deadline T

In this subsection we tackle problems (6.4.1) and (6.4.2) when t € Np_; (T € N*). Based on
the equivalence in law of the trinomial model and ours (see remark 6.1.1), there is a bijection
between .#", the convex set of F-martingale measures equivalent to P in our model, and the
one existing in the trinomial. Indeed, for T' = 1, the measures P? = (\,,p,,¢,) (defined by
6.1.5) and P11 = (p?i,q;m,s;m) (v € [0,1]) are equivalent by letting Ay = p;m + q;m and
Py = Ay 1p,?"i. For a given T' e N*, the set .#F is the polyhedron characterized by its extremal
points; these are constructed by tensorization of the measures (independent of t)

—a b—
P?=P0=<1,T ¢ ’") and P}=P1:<f,1,o).

b—a'b—a b

By induction, the convex set of F-martingale measures equivalent to P in our model, and the
one existing in the trinomial are equivalent. The following portfolio optimization result is
directly deduced. Its proof which turns out to be the rewrite of that of [42] for the trinomial
model (see more details in section 4.2) and won’t be detailed.

Theorem 6.4.1 (x). There exists unique optimizers \A/E’t and 1/\\/[§z7t of the problems (4.2.6)
and (4.2.11) such that 1\7[@35 e ¢l and

o _ dM;,
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Remark 6.4.2. Some of the computatlons rely on the following Theorem 3.2.1 in [42]: Wlthln
the previous notations, the optimizers V +and l\/I , exist and are unique. The measure MAI
belongs to €} and satisfies the remarkable relatlon.

dM; 1,4 ~
dfy’w = g—xu’(\/m) where g, = (93%)().
Further computations will rely on. Denote by {); j € J;} the coordinates family of 1/\\/1th ie.
such that

My, = >, NPl (6.4.3)
JjeJt

The optimization problem from the insider point of view (6.4.2) seems to be solved by trans-
posing that of the agent to the enriched filtration G. That lies on the possibility to rewrite
(6.4.2) as a primal problem as in (4.2.9). With this edict in mind, we have to identify the
set of measures which respect to which the sequence (S;)sen, is a (-, G)-martingale, namely
the G-martingale measures. Denote thus by .#ZC and €C (t € N7), respectively the set of
G-martingale measures on N?, and the convex subset of .#ZC formed by the G-martingale
measures equivalent to P on NY.

In the first subsection we established that for any ¢ € N%_,, any (P,F%)-martingale on NY is
a (Qq, GY)-martingale where Q; is the measure defined by

Qt(A) = — dP A S gt
A Pt
For the sake of simplicity let Q = Qp. The aim of this subsection is to describe ///tG, the set
of G-martingale measures on NY. As seen in subsection 4.2, the set of F-martingale measures
on NY consists of the convex combinations of {P], j € Ji}. For any j € J;, define the sequence
of measures (Q])weN,_, by
QJ(A) = —dP . AeGy,
A pt
where we let P/ = Pj Furthermore, follows from theorem 6.2.7 that a (P7,[F)-martingale

on .Ng is a (Qg,@) martingale on NY. In particular, the discounted prices process S is a
(Q}, G)-martingale on NY ; so does (on NY) VS,(@/}) viewed as the G-martingale transform

—:13+Z<,06AS

where 1) = (o, ©®) belongs to .#®, the set of G-predictable admissible strategies. Note besides
that

Eq, VS, ()] =z je T, (6.4.4)

so that we can address the optimization problem as a constrainted one. Define for (x,t) €
R% x NY._,,
AG

xt—{VGyG:E V]éa?,VjeJt}.

ail
As a consequence once again of the surreplication theorem, (6.4.2) can be rewritten as the

constrained optimization problem

max E [w(V)] under the constraints E
A

x,t

Q@VI<z:Vje . (6.4.5)
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Theorem 6.4.3 (%). There exists unique optimizers \A/ft and K\/Ig@t of the problems (4.2.6)
and (4.2.11) such that 1\//\Ig©t e €P and

. dMS
V;?t =1 373 Gl :
' dP
Moreover, . '
Me, = ), Q. (6.4.6)
jedi

and {\;, j € Ji} is exactly the family defined by (6.4.3).

Additional utility before the deadline

The insider’s additional expected logarithmic utility up to time ¢ € Np_1 is defined by

Uo) = max  Blu(Veiy)] - max = Blu(Ve(¥)].
Given two probablities measures defined on the same space (2, F), © #(P||Q) designates the
relative entropy of P with respect to Q on F and is defined by

E [log (gg)‘f] if P«QonF,

400 otherwise.

27(PllQ) =

Theorem 6.4.4 (k). The insider’s additional expected logarithmic utility up to time t € Np_q
is given by
Uy = Dg, (Pl|Qr).

Remark 6.4.5. From a philosophical point of view, it is not very surprising to see the entropy
appear when quantifying an additional... information.

Remark 6.4.6. Thus we recover the result already established by Jirgen Amendinger, Peter
Imkeller and Martin Schweizer ([7]) in the continuous case; the additional expected logarithmic
utility of the insider can be expressed in terms of relative entropy. They get more: by letting
t go to T, they underscore that the result still holds at the deadline T'. Obviously we cannot
transpose this in a discrete setting. Since there is absolutely no reason why (P, F)-martingale
NY? should be a (Q,G")-martingale, we need to address the problem at the deadline T' from
another perspective. We chose to dedicate the next section to this case.

Utility of the insider at expiry

In order to remove the difficulty previously evokated (see remark 6.4.6), we link the optimal
strategy utility final value with this at the instant just before.

Lemma 6.4.7 (%). For any x € R define ®5(x) by considering (6.4.2) at the deadline T.
Then, . .
QIHS — E Z — @1115 ~, ,
P = s Bu(Vai )] = #°(2)

where & = O | (z).
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6.4.2 Comparison with the binomial and the Black-Scholes models

As mentioned in Remark 6.4.6, the formula giving the additional utility of the insider before
the deadline is exactly the same in the continuous case (Black-Scholes model) and in the
discrete ones (binomial, trinomial or our ternary model). As a matter of fact, this lies on
the enlargement of filtrations tools that are comparable in continuous and discrete time. The
study of the insider problem from the additional expected utility point of view is similar in
all frameworks.

The substantial difference we have met between our model and the classical ones (Black-Scholes
and binomial one) concern the computation of the argmax admissible strategy appearing in
(6.4.2). This is not strictly speaking linked with the insider matter, but rather with the
impossibility to perform perfect hedges, because of the incompleteness of our ternary model.

6.4.3 Computations in the case G = 1ig,¢[0,3.]}

In this last subsection we chose to investigate a specific case: G = 1(g,¢[0,5,]}- Morally, this
means the insider knows wether the stock price will have increased or not at the end of the
trading period. Let z € R% be the initial budget. As described in subsection 6.4.1 to cover
all cases we need to compute:

e O%(z) and ®I"S(x),
o O3%(z) (for T > 2),
[ Z/[t(.’B) for any te NT—1~

Remark 6.4.8. In fact the computation of ®7%(z) does not require to invoke Lemma 6.4.7
and can be done directly.

Computations of ®{%(z) and ®I*(x)

We provide a method to compute explicitely = @ilns(a;), namely to solve the optimization
problem when 7' = 1. As evokated in subsection 6.1.1, the set .#/ of F-martingale measures
equivalent to P consists of the convex combination of the form

P7 =+P" + (1 )P,

where the two extremal measures are defined by (6.1.4). In other terms,

P (L—)r (r—a) y(b—r)
v _ Y a _
(’Y + b 1=+ b " ) (1 =Xy, Aypys Ay(1 pw))

In that specific case, it seems easier to directly solve the primal problem, i.e. to compute:

Jnax E[log(V)] wunder the constraints Ep;[V] < x; Vje {0,1},
ENg 1

where
V=2+9AS; =2+ p(bLlyan, w)=1) + alian, w)=a,1}):

and ¢ is a Fp-measurable random variable (since T = 1). The ternary model described in
subsection 6.1 can be thus treated as a stochastic volatility model: the closer A, is to 1 the
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more volatile is the model. In the extreme case (when \, is equal to one), the model coincides
with the Cox-Ross-Rubinstein one for which there exists an unique optimizer (see proposition
3.3.2. in [42]). On the other hand, when A, is near to zero, the choice of the strategy ¢ has
little influence on ¢ AS; and thus on the computation of E [log(V)]. This leads us to speculate
that the optimal strategy in the ternary model coincides with that of the binomial model. To
be convinced that the maxima are realized for the same strategy, note that

B, | log(V())| = \Eo| log(Vi™(2))| + (1 = X, log (), (6.4.7)

where Eg designates the expectation under Py, namely the unique risk-neutral probability
measure in the Cox-Ross-Rubinstein model, and Vlfin(go) designates the value of the strategy
@ at time 1 i.e.

VP™(p) = & + @ ASP™.
The sequence of prices (SP");en,. is defined in the "associated" binomial model (by letting
A=1) by:

(Sbin) S?J?nl = (1+0) S'toi'n with probability p
SPin = (14 a)SP™ with probability 1—p

In the latter one, picking up the results established by Freddy Delbaen et Walter Schacher-
mayer ([42] example 3.3.2.) to solve the optimization problem from the agent’s point of view,
we can state:

Theorem 6.4.9 (). Consider the ternary model with T = 1 and let the numbers p*, q* €
(0,1) be equal to:
. T—a « b—rT
= d = .
b b—a and 4 b—a

The maximal expected utility of the ordinary agent is given by

O} (x) = log(x) + A, |plog (;) + qlog (;) |

and realized by the strategy

SOag _ l‘(l -l-T’) « pq* _qp*.
b—a p*q*

The corresponding optimal investment is given by
p xq
Ve = #lian=o) + pr HEN W)=y AN w=,-n)-

Corollary 6.4.10 (). The optimal couple (@\x,l\//\lgz) e R x € defined in Theorem 6.4.7 are
such that

1 —~ r—aXy, bAy—7
Je=— and My =[1-\ T =
Vo= O Y < T b—a’ b—a)

Remark 6.4.11. Considering the specific case p = g = % and A = 1, we exactly retrieve the

result stated by Freddy Delbaen et Walter Schachermayer (see example 3.3.2. in [42]):

_ rp(b—r)—i—q(a—r):1(1+r)(b+a—2r)
=T T e T2 bene—a)
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We can get the result using a variational argument:

Theorem 6.4.12 (k). The mazimal expected logarithmic utility of the agent is given at ma-
turity by
P8 (z) =log(Vo) + E[log ([r + 7* (bAZ1 — aAZy1)])],

where, for any t € N,
s _ LT pg" —ap”
b—a prq*

™

The mazimal logarithmic of the agent is performed when following the strategy 1°¢ = (a®, ©1®)
with

*

el +7)  pg"—aqp and o2 — £ =50
1 ag

b—a prq* 2

018 = z1* =

Remark 6.4.13. As expected, the strategy 1) which components are Fy-measurable, does not
depend of the expression of G.

The situation is different from the point of view of the insider who knows wether the stock
price will have increased or not at the end of the trading period T = 1. In other words, he
knows from the start wether it is worth investing in the "risky" asset; this appears in fact as
a riskless one for him since he knows the outcome. One of two things must be true: either
G = 1 namely the stock price does not increase and it may be better to invest the entire
capital in the asset A, or G = 0 and investing in S is more profitable. As a reminder the
budget constraint can be written as

z = Vo(¥) = ag® + @5 So,
and be transposed at time T = 1 to ol + p!"S; = x, by readjusting the portfolio under the
self-financing condition. We get clearly:
ins __ 1 d ins 31
ap = xl{g=13; and ¢} = S {G=0}-
Computation of ®7%(z), T > 2

As suggested in the Example 3.3.5. depicted by Freddy Delbaen and Walter Schachermayer
in [42], the case T' € N* can be treated by extending the previous results via the principle
of dynamic programming. In a certain sense, we make of "a multiplicative concatenation" of
what has been done in the case T = 1. The choice of this procedure can be justified by the
independence of increments of the underlying jump process (N¢)en,. Conserving the previous

notations, define
T
U (m—i— Z @SASS) ’]—}]

s=t+1

0;%(z) = sup E
1 eH¢—portfolio

where H; = (Fs)i<s<r and ¢ = (a, ¢). From the i.i.d. property of the variables {AS;, t € Nz}
we infer that
0% (x) = ©;*(x),
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so that we can state its expression by the following induction system :

o(x) = log(a)

P8 (z) = sup E [07%(z + pAS;)]
1 eHy —portfolio

Indeed, for t =T — 1,

q)aTg—1($) = @;’g_1($) = sup E [U (x + or AST) ’}—Tﬂ]

1 eHp_1 —portfolio

= sup E[u(Z + ¢1 ASy)] !
1 eHy —portfolio

(F=z+@7_1 AST_1)
with and so on by downward induction. The iteration of (6.5.2) provides :
dLM(z) = log(x) + T kP
where kP = —plog(p*) — qlog(q*) + plog(p) + qlog(q) and then,
D2 () = A, (log(x) + TAY™) + (1 — A,) log ().

We have also ®{%(z) = A, (log(z) + tk"™) + (1 — \,)log(z) for any ¢t € Npy_;. Moreover,
Yot = (@?g)/(:v) = 1/x and

(6.4.8)

r—aly bAy—7 ®t
b—a B b—a '

M = <1 - Ay,
Indeed, 1/\\/131 is an equivalent measure to P|z, such that Eg, [St —Si—1| Fi—1] = 0. From the
Yz

i.i.d. property of the variables {AS;, t € N7}, we deduce that 1\//\It§z| Fq = 1/\\/11171 where 1\7[%1 is
solution of (SM).

Computation of U;(x), t e Npy_y (T = 2)

Consider first the general case where G is a discrete random variable in values in I'. In what
follows, Ent(G) designates the entropy of G namely the quantity

Ent(G) = — > log (P(G = ¢)) P(G = ¢),

cel’

and Ent(G | ;) the conditional entropy
Ent(G | F) = log (P(G = ¢| F)) P(G = c| Fy).
Recalling the definition of the process 1/p©,
U(r) = E [1082(17?)]

= E | ) 1log(p)) P(G = c| F)

| cel”
~E|Ylog (P(G = ¢| 7)) P(C = C|Ft)] — 2 log (P(G = ))E[E [1(a—q) | F]]
cel

| cel’

=E Z log (P(G =c¢|F))P(G = c]—"t)] — Z log (P(G =¢))P(G =¢)

| cel cel

— Ent(G) — Ent(G | F).
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where we get the second line by conditioning on ;. In particular, for G = 1(g,¢[0,5,]}

P(G =1|Fr) = 1ig=1} = L{35e[0,80]}

and for any t € N%_l,

P(G =1[F) =P(Sr € [0,50] | F¢)
:P(gix&e()%‘fg
-p(Lelo ] A)

-p(tree[o2]|7)

c=S;

where we have used in the last line the variable S7/S; has the same law as Sp_; and Tp_; by
equivalence of our model and the trinomial model (see remark 6.1.1). The distribution of T}
is given by

t! n m —(n—m
P(T;=c) = Z Tl dl (Ap)" (Ag)™ (1 — A= (ntm)
(n,m,0)eN? T

n+m+L=t,n—m=c

for any ¢ € S().

6.5 Proofs of chapter 6

6.5.1 Proofs of Section 6.2

Proof of Theorem 6.2.1. The corollary 5.4.3 applied to p& at time s = t — 1 gives

Apf = Z E [Dt,thG | Fi1] ARy,
keE

Then we get, for any c € T,

AN, p% =E | Y AZy > B [Dyypf|Fi1] ARy
keE leE

DD E[E Dy pf|Fi1] E[AZ; 1 ARy f]]
keE (eE

= Z Z ap B [Dy o pf],

keE (eE

where we have got the second line by conditioning with respect to F;_1 and by defining the
family {au, (k,g) € Ez} by au =FE [AZMARM], 1.e

Ag(1—N)

= \p(1—Ap), 1=0, a_j1=2\ d a1 =
aig = Ap(l=Ap), a1 a-11 = Apgand aog o = =

Hence the result. O
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Proof of Theorem 6.2.5. The proof follows closely the one of Proposition 2.3 (|7]). For any
AtEJ%,BEEg,
A

1 1
E [1Am{GeB}G] =E [1AtE |:1{GGB}G
P Y2
E[15,]P(GeB)
P(A,)P(G € B),

ft}= > ! pf(w) - P(G = ¢) = P(G € B).

where we used: E [I{GEB}IG
P pf(w)
cel'nB

This yields
Q:(A; n{GeB}) =P(GeB)P(Ay),

for any t € NY._,. Taking A; = €2, then B = I provides

Q:(Ar 0 {G e B}) = Qi(G € B)Q:(A),

and enables to establish 2. and 3. Let A = A; n {G € B} an element of G5 and t > s. By
noting that Ag € F; and using what preceedes,

E [1A;G] — P(A,)P(CeB)

= Qs(As n {GeB})
sl

so that the process 1/p% is a (P, G%)-martingale. O]

Proof of Theorem 6.2.7. Let L = (Ls)1<s<t @ (P, F)-martingale on Ny. For r < ¢ and s €
[r+1,t] let A=A, n{G e B} an element of G,. Let Eq, denote the expectation taken with
respect to Q.

Eq,[1a Ls] = Eq,[1a,Ls] Eq.[1{cen)]
= E[14,L] Eq,[1{cen)]
= E[14,E[L;|F.]] Eq,[1(gen;]
= E[14,L;] Eq,[1(gen}]
= Eq,[1a,L;| Eq,[1(ceny]
= Eq,[1aL/],

where we have used that the o-algebras F; and o(G) are independent under Q; in the first line,
that P coincide with Q; on F; in the second one, and that (Ls)i1<s<: is a (P, F)-martingale
on N; in the third one. O
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6.5.2 Proofs of Section 6.3
Proof of Lemma 6.3.4. The Kunita-Watanabe decomposition (see [43], theorem VIII.51.) yields

E[E[F|F]AS | Fii]

“ = TR[(AS)2 A

t
MY E [E [DesF|Fe 1] ARq s (b + ap)ARyy — aARy,_4) |]—“t_1]
_ s=1keE

lel3

Z Ckﬁ [Dt,kF’}—t—l]
_ keE

Y

lel3

where we applied the Clark decomposition to F in the second line, and by letting ¢ = (¢1,c-1),
=(b+ap)k1 and c_; = —ak_;.

Hence the result. O

Proof of Theorem 6.3.5. As a reminder, the strategy ¢ = (a, ) is self-financed and only if
for any t € N,

At (a1 — o) = St (r41 — 1), (6.5.1)

so that Vi_1(¢0) = ayAv—1 + ©1Si—1. Let ¢p = 0. Assume the existence of an admissible
strategy («, ¢) which final value satisfies

VT(w) = Qar AT + o1 ST.

0t St—1
Vi—1()

Let 7w be the F-predictable process such that m; = for any t € Np. By definition,

Avt(ﬂ)) = OétAAt + (ptASt

o AA
= Vi1 () {V:_m;) +m <b1{(ANt,Wt):(1,1)} + al{(ANt,wn—(l,l)})]

— V1 (¥) (m #m(b A%y —aAZy 1 +1))
= Vt_1(¢) ( (1 — 7Tt) + Wt(bAZt 1—alAZy 1+ ’I”))

oy A
where we used in the third line that =1y m = 1. Then,
Vi1(¥)
— Vt_l(w) Tt a)\q
A = b— A ARy _
Vi(¥) Ttr 1 )\p) Ry + aARy

so that

—1+ Z Vi 11+ - <<b - 1“_A§p) ARy + aAR,H)
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by assuming (even if it means dividing by Vj), Vo = 1. We get the equal expression

Vr(y) = tlj [1 + 17j:r ((b — 1a—>\(>1\p>ARt’1 + aARt7_1)]

The application of the derivative in both directions gives

Di1 V() = V' () (b + I‘L_Aip)m

and

Dy V(¥) = —am Vi (1),

by using D¢ ;AZ; , = sgn(k). This entails

A _ . _ _
ara )mvt_l(w) and E[Dy_1Vr|Fi1] = —amVi1(v)

E [DHVT ’th—l] = (b + 1= p

so that

B [D1a Vo) + Deca Vo) | Fia] = (b= a4 {20 ) Via(w)

Then, by letting on the one hand ¢y = 0 and

~

i1 2k B[Deg F'| Fia]

alq
b—a+ T—p

1 2k E [De V() | Fe]

alq
b—a+ T—\p

or =V ()m = (1+r) =(1+r)

)

and, on the other one, ag = (1 + 1) TE[F] /Sy and for any t € Ny,

(<Pt - <Pt—1)St—1
Ay

Qp = Q1 —

we get a couple of F-predictable processes 1 = (a, ) such that satisfies the self-financing
condition and of terminal value F. O

6.5.3 Proofs of Section 6.4

Proof of Theorem 6.4.3. Transposing the result of Theorem 6.4.1 to solve the problem (6.4.5)

we get
%) = Blu(VE) | = 2(V,, 55, M),

x>

where £ is the Lagrangian associated to the primal problem 6.4.5, K\/I‘;t is the element of (5,56
unique minimiser of the value function (for y = >, ;, n; fixed)

W(y) s Me AP = ( sup (B[u(V)] - yBulV -~} ).
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We get 8 = 1/z and 1\//\155 ¢ = Qe (nj/g’jf)Qi where (1;)jes, € [0,1]7 is a Ji-uplet summoned
to one. Thus, for any j € J;,

oG ~G dl/\\/Ig@
g, |0
t | dMG,
| Yz
g, | P 4%
Q _ng dMS;

It is thus possible to compare the logarithmic utilities up to time ¢ of the two agents and

to quantify the insider’s

additional one. As for the economic agent, the sequence (7;);es, is

determined thanks to the initial budget constraints, as to say

z=E 7in ]
72]‘6(/} 7;dQy
[ 1,dQi ]
Sjes, 1iled Q]
dpJ
_ZjeJt Wde{

- E

=E

The sequence (7;) je, is solution of the system satisfied by the sequence () es,; by uniqueness
of the solutions, for any j € J;, n; = A;. Thus,

U =E

=E

=E

| dpP dP
B ZjGJt )\] dPt ZjEJt >\.7 th
IOg (Zje]t AJ in

)

Zje]t )\.7 dP‘Z )
ZjEJt Lt)\]dPg

e | 5 ap

| ZjGJt Aj dPy

= E [log(Ly)] = Dg,(P||Q:)

where we have used that L = 1/p% is a (P, G°)-martingale.

O

Proof of Lemma 6.4.7. Consider a G-predictable admissible strategy 6. By definition of @,
®ins (z) > E[u(Vy-1(0))]. Transposing once again the result of Theorem 3.2.1. of [42] to

our model, we get (@?S)/(m) > 0. In particular for 7' = 1 and with 2y = E [u(V7_1(0))], we

get

P (T) > P (x9).



6.5. PROOFS OF CHAPTER 6 163

This holds for any G-predictable admissible strategy ¢. Assume moreover the existence of a
G-predictable admissible strategy € such that

E |u(Ver(0)| = @),
and let x5 = E [u(VT,l(é))]. Then,

() = BuVar(0)] < | Blu(Vay. ()] < 91°(2).

= 1) eG—portfolio
Then, (%) < ®I5(x). The result follows. O

Proof of 6.4.9. By transposing the results established by (example 3.3.2 in [42]) for the bino-
mial model to our "associated" one (SP™), we get the optimal strategy

SDag _ .7}(1 + ’I“) % pq* _qp*

b—a p*q*
where .
. T—a " -7
= and =
P b—a 9 b—a

define the well-known risk-neutral probability measure in the Cox-Ross-Rubinstein model.
The corresponding optimal investment from the agent’s point of view (in the ternary model)
is thus

z(b— a) z(b—a)

yHenmwy=a g gy Hanw)=a.-n)

V3 =1 -+ —-+F
x,1 {AN;=0} p(T‘ 4

xrp xq
= AN, =0} + ptl{(ANl,w1>=<1,1>} + qtl{(ANl,w1>=(1,—1>}

We get thus
o7 (z) = log(x) + K (6.5.2)

where kP = —plog(p*) — qlog(q*) + plog(p) + qlog(q). Follows from (6.4.7) that,
log() + k% = X\, (log(z) + k"™) + (1 — \,) log()
that is k% = )\ﬁ,kbi. Thus, from
8 (x) = A\, OV (2) + (1 — \,) log(x)
so that
P8 (z) = log(z) + Ay [p log (;) + qlog (;i) ]
Hence the result. 0

Proof. The optimal couple (¥, 1\//\1371) € R x 4} defined in Theorem 6.4.7 is such that

~ 1 x
Yr = — and M@z=<1—)\7,

T

r—aly bAy—7
b—a B b—a
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Indeed, we have

—~~

dMﬂz _ /o1 / ag _
T(0) = (3) 7 x o (VER(0)) = 1.
so that e
—~ dM;,
M;, (0) = dff’ (0) x P(0) =1—\,.

Since 1/\\/Ig1 is an equivalent measure to P such that Eg; [S1 — So] = 0 we have
Y

N _ M;, (0) = 1—2A,
(SM) 4 BMy, (w(1,1)) + oMy, (w(1,-1)) =
7 +

o~ o~

My, (w(1,-1)) + Mg (0) = 1

and thus \
1\A/1Am(w(1,1)):’"b__aa7 and M, (w(1,-1)) =

bA\y —
b—a

In other words,
bA, — TPO N r(1—2Xy)
b—r b—r

Hence the result. O

M: = \Po+ \P; =

b = P, (6.5.3)
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Résumé en francais

Le calcul de Malliavin est un calcul des variations stochastiques en dimension infinie
initialement élaboré sur I'espace de Wiener et étendu par la suite a d’autres familles de
processus tels que les processus de Poisson, de Rademacher, de Lévy. La multiplicité des
approches et la variété des espaces canoniques sur lesquels il opére semblent dissuader
I’éventuel projet d’un travail unificateur. Il demeure néanmoins possible d’identifier
une terminologie commune a tous ces formalismes autour des notions d’opérateurs de
Malliavin (gradient, divergence, semi-groupe d’Ornstein-Uhlenbeck) et de la relation
fondamentale liant 'opérateur gradient et la divergence (défini comme adjoint du gra-
dient) : la formule d’intégration par parties.

On élabore dans cette thése un calcul de Malliavin pour deux classes de processus dis-
crets : les suites de variables aléatoires indépendantes (non nécessairement de méme
loi) et les processus géométriques composés.

Dans le premier cadre, on équipe tout produit dénombrable d’espaces de probabilité
d’une structure de Dirichlet-Malliavin discréte échafaudée sur une famille d’opérateurs
de Malliavin (gradient discret, divergence, opérateur nombre), une formule d’intégration
par parties, et les formes de Dirichlet naturellement induites dans ce contexte. On
obtient les analogues discrets des principales identités fonctionnelles (formule de Clark-
Ocone, identité de covariance, inégalité de log-Sobolev, de déviation...) établies pour
les processus Brownien et de Poisson et dont on retrouve par ailleurs les structures de
Dirichlet usuelles comme limites de celles induites par notre formalisme.

En exploitant la combinaison de la formule d’intégration par parties et de la méthode
de Stein, comme 'ont conceptualisée I. Nourdin et G. Peccati, on établit des critéres
de Stein-Malliavin pour les approximations Normale et Gamma par toute fonctionnelle
de variables aléatoires indépendantes. Ce calcul de Malliavin discret généralise ce qui
avait été théorisé dans le cas Rademacher et donne un cadre unificateur a de nombreux
résultats disséminés dans la littérature suggérant également que des résultats sans lien
apparent (Efron-Stein, paires échangeables etc.) sont en réalité les faces d’'une méme
piece.

La motivation du second travail provient de I'impossibilité constatée d’établir (via le
précédent formalisme) une formule de Ocone-Karatzas pour le modéle trinomial. On lui
substitue un modéle ternaire, sous-tendu par un processus géométrique composé (défini
par une famille de variables i.i.d. & valeurs dans {—1,0,1}) et qui lui est équivalent
en loi. Pour des raisons techniques énoncées par M. Emery, il n’existe pas de décom-
position chaotique. On en donne une version modifiée au moyen d’intégrales multiples
relatives & une famille orthogonalisable de variables aléatoires. Les opérateurs gradi-
ent et divergence sont alors définis comme les opérateurs d’annihilation et de création
agissant sur cette décomposition et vérifient une formule d’intégration par parties. Des
analogues géométriques a la formule d’Ito, au théoréme de Girsanov, et a la formule de
représentation de martingale, et la formule de Ocone-Karatzas sont établis.

Ce formalisme est appliqué au calcul d’utilité dans un modéle ternaire ot agissent un
agent ordinaire et un initié disposant d’un surplus d’information deés le début de la péri-
ode de trading. En incorporant les techniques d’élargissement de filtration en temps
discret développées par C. Blanchet-Scalliett, M. Jeanblanc et R. Romero & notre con-
struction, on définit I’équivalent du drift d’information dans ce cadre et on montre
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alors que l'utilité logarithmique espérée additionnelle de 'initié au temps t peut étre
exprimée comme ’entropie relative de la mesure initiale par rapport a la mesure préser-
vant les martingales sur [[0,¢]]. On retrouve ainsi 'exact analogue du résultat établi
par J. Amendinger, P. Imkeller et M. Schweizer dans le cas continu.

Summary in english

Malliavin calculus is an infinite-dimensional variational calculus initially developed on
the Wiener space. Further extended to other classes of processes, such as Poisson,
Rademacher, or Lévy processes, it has reached a certain maturity. Cause of the mul-
tiplicity of approaches and the variety of canonical spaces, it seems to be difficult to
propose a unifying work. We can nevertheless identify a terminology common to all
these formalisms; this lies around the notions of Malliavin operators (gradient, diver-
gence, Ornstein-Uhlenbeck semi-group) and the fundamental relationship between the
operator gradient and the divergence (defined as the adjoint of the gradient): the inte-
gration by parts formula.

In this thesis work, we propose to develop a Malliavin calculus for two classes of dis-
crete processes: sequences of independent random variables (not necessarily identically
distributed) and compound geometric processes. Both are wholly or partly motivated
from an application perspective.

In the first mentioned framework, we equip any countable product of probability spaces
with a discrete Dirichlet-Malliavin structure. This lies on a family of Malliavin opera-
tors (discrete gradient, divergence, number operator), an integration by parts formula,
and the induced Dirichlet forms. We obtain the discrete analogues of the classical
functional identities (Clark-Ocone formula, covariance identity, deviation inequality. . . )
established for Brownian and Poisson processes. Besides, we retrieve the usual Pois-
son and Brownian Dirichlet structures associated to their respective gradient, as limits
of the structures induced by our formalism. Re-using the combination of Malliavin
calculus and Stein’s method designed by I. Nourdin and G. Peccati, we provide Stein-
Malliavin criterions for the Normal and the Gamma approximations by functionals of
independent random variables.

This discrete Dirichlet-Malliavin structure seems to give a unified framework for many
results scattered in the literature so that we hope to bring new insights on why these
apparently disjoint results (Efron-Stein, exchangeable pairs, etc.) are in fact multiple
sides of the same coin.

Faced with the impossibility to state (via the discrete Malliavin calculation) an Ocone-
Karatzas formula for the trinomial model, we replace it by a ternary model ; equiva-
lent in law to the initial one, it is supported by a compound geometric process (with
{—1,0,1} valued i.i.d. random variables). For technical reasons outlined by M. Emery,
there is no chaotic decomposition. We state a modified decomposition in terms of
multiple integrals with respect to an orthogonalisable family of random variables.The
gradient and divergence operators are then defined as the annihilation and creation
operators acting on this decomposition and verify an integration formula by parts. Our
approach is close to the one developed for (compound) Poisson processes, with which
the (compound) geometric process shares many properties (as a jump process). We give
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the analogues of [t6’s formula, Girsanov’s theorem, martingale representation formula,
and Ocone-Karatzas formula for compound geometric processes.

Then, we make use of this new formalism to compute the additional utility of an insider
in the new ternary model. The insider benefits from an extra information hidden in a
random variable from the start of trading period. Using the toolbox of C. Blanchet-
Scalliet, M. Jeanblanc and R. Romero as for the enlargement of filtrations in discrete
settings, we define an analogue of the information drift and express it in terms of our
geometric gradient. We show that the insider’s additional expected logarithmic utility
at time t can be expressed as the relative entropy of the initial measure with respect
to the martingale preserving measure on [[0,t]. We retrieve exactly the result of J.
Amendinger, P. Imkeller and M. Schweizer stated in the continuous case.
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