
HAL Id: tel-03099617
https://theses.hal.science/tel-03099617

Submitted on 6 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization of software license placement in the Cloud
for economical and efficient deployment

Arthur Chevalier

To cite this version:
Arthur Chevalier. Optimization of software license placement in the Cloud for economical and efficient
deployment. Distributed, Parallel, and Cluster Computing [cs.DC]. Université de Lyon, 2020. English.
�NNT : 2020LYSEN071�. �tel-03099617�

https://theses.hal.science/tel-03099617
https://hal.archives-ouvertes.fr

Numéro National de Thèse : 2020LYSEN071

THESE de DOCTORAT DE L’UNIVERSITE DE LYON
opérée par

l’École Normale Supérieure de Lyon

École Doctorale N◦512

École Doctorale en Informatique et Mathématiques de Lyon

Discipline : Informatique

Soutenue publiquement le 24/11/2020, par :

Arthur CHEVALIER

Optimisation du placement des licences logicielles dans le
Cloud pour un déploiement économique et efficient

Devant le jury composé de :

Frédéric DESPREZ Directeur de recherche Inria Rapporteur
Adrien LEBRE Professeur des universités IMT Atlantique Rapporteur
Arnaud LEGRAND Directeur de recherche LIG Rapporteur
Fabienne BOYER Mâıtre de conférences HDR LIG Examinatrice
Eddy CARON Mâıtre de conférences HDR LIP Directeur
Noëlle BAILLON-BACHOC Ingénieure Orange S.A. Co-encadrante

ii

Contents

Remerciements v

Résumé vii

Abstract ix

1 Introduction 1
1.1 Software Asset Management: SAM . 2
1.2 Software Asset Management in the Cloud 7
1.3 State of the Art . 12

2 Metric definition problem 15
2.1 Modelization . 16
2.2 Using the model to compute compliance 28

3 Deployment automatization and optimization 37
3.1 First considerations about SAM for deployment 38
3.2 GreenSAM : a multi-parametric deployment heuristic 43
3.3 Deploying multiple products at the same time 52
3.4 Forecasting . 63

4 Software Asset Management tools 67
4.1 Motivation . 67
4.2 OpTISAM . 69

5 Conclusion and Future works 75
5.1 Conclusion . 75
5.2 Future works . 76

A License Metric Language grammar 79

B Finite-State Machine of LML 83

Bibliography 87

iii

iv

Remerciements

Je voudrais commencer par remercier mes directeurs de thèse, Noëlle Baillon et Eddy
Caron, qui ont toujours été source de nombreux conseils et qui ont su me soutenir (et
me supporter) durant ces trois années de recherche. Je suis très reconnaissant de toute
leur expérience qu’ils m’ont apportée au fil des années.

Je voudrais ensuite remercier ma famille qui m’a apporté leur soutien et qui a su me
ramener sur terre quand c’était nécessaire. Je voudrais tout particulièrement remercier
mes parents qui ont du faire face à de terribles nouvelles, mais qui ont tout de même
trouvé le temps de m’encourager.

Ensuite, je ne peux que remercier mes amis, pour leurs attentions et encouragements
ainsi qu’à toutes ses soirées mémorables. Je remercie chaleureusement aussi toutes les
personnes de l’Inria Bordeaux qui m’ont donné le goût de la recherche et qui m’ont
permis de faire cette thèse.

Par ailleurs, je voudrais remercier mon équipe chez Orange et tout particulièrement
Anne-Lucie et Julien pour toutes les joyeuses discussions, les bons moments et surtout
le mercre-dé qui a su guider parfaitement nos journées.

De plus, je veux remercier toutes les personnes que j’ai rencontré durant ces années
de recherche, aux écoles d’hiver, dans la super équipe des students volunteer, au DIU, et
tant d’autres, pour tous les bons moments passés et les expériences dont je me rappellerai
longtemps.

Je voudrais également grandement remercier Frédéric Desprez, Adrien Lebre et Ar-
naud Legrand, pour l’honneur qu’ils m’ont fait en acceptant d’être rapporteurs de ma
thèse ainsi que mon jury pour le temps qu’ils ont accepté de m’accorder en cette période
difficile.

Enfin, je ne saurai pas te remercier assez, Annah, pour ta patience, ton soutien
quotidien inestimable, tes attentions et encouragements dont tu as fait preuve durant
ces années.

v

vi

Résumé

Cette thèse s’intéresse au Software Asset Management (SAM) qui correspond à la ges-
tion de licences, de droits d’usage, et du bon respect des règles contractuelles. Lorsque
l’on parle de logiciels propriétaires, ces règles sont bien souvent mal interprétées ou to-
talement incomprises. En échange du fait que nous sommes libres de licencier notre
usage comme bon nous semble, dans le respect du contrat, les éditeurs possèdent le droit
d’audit. Ces derniers peuvent vérifier le bon respect des règles et imposer, lorsque ces
dernières ne sont pas respectées, des pénalités bien souvent d’ordre financières. Cela
peut mener à des situations désastreuses comme le procès entre AbInBev et SAP où ce
dernier réclamait 600 millions de dollars de pénalité. L’émergence du Cloud a grande-
ment augmenté la problématique du fait que les droits d’usages des logiciels n’étaient
pas initialement prévus pour ce type d’architecture. Après un historique académique
et industriel du Software Asset Management, des racines aux travaux les plus récents
concernant le Cloud et l’identification logicielle, nous nous intéressons aux méthodes
de licensing des principaux éditeurs comme Oracle, IBM et SAP avant d’introduire
les différents problèmes intrinsèques au SAM. Le manque de standardisation dans les
métriques, des droits d’usages spécifiques, et la différence de paradigme apportée par le
Cloud et prochainement le réseau virtualisé rendent la situation plus compliquée qu’elle
ne l’était déjà. Nos recherches s’orientent vers la modélisation de ces licences et métriques
afin de s’abstraire du côté juridique et flou des contrats. Cette abstraction nous per-
met de développer des algorithmes de placement de logiciels qui assurent le bon respect
des règles contractuelles en tout temps. Ce modèle de licence nous permet également
d’introduire une heuristique de déploiement qui optimise plusieurs critères au moment du
placement du logiciel tels que la performance, l’énergie et le coût des licences. Nous in-
troduisons ensuite les problèmes liés au déploiement de plusieurs logiciels simultanément
en optimisant ces mêmes critères et nous apportons une preuve de la NP-complétude
du problème de décision associé. Afin de répondre à ces critères, nous présentons un
algorithme de placement qui approche l’optimal et utilise l’heuristique ci-dessus. En
parallèle, nous avons développé un logiciel SAM qui utilise ces recherches pour offrir une
gestion automatisée et totalement générique des logiciels dans une architecture Cloud.
Tous ces travaux ont été menés en collaboration avec Orange et testés lors de différentes
preuves de concept avant d’être intégrés totalement dans l’outillage SAM.

vii

viii

Abstract

This thesis takes place in the field of Software Asset Management, license management,
use rights, and compliance with contractual rules. When talking about proprietary soft-
ware, these rules are often misinterpreted or totally misunderstood. In exchange for the
fact that we are free to license our use as we see fit, in compliance with the contract, the
publishers have the right to make audits. They can check that the rules are being fol-
lowed and, if they are not respected, they can impose penalties, often financial penalties.
This can lead to disastrous situations such as the lawsuit between AbInBev and SAP,
where the latter claimed a US$600 million penalty. The emergence of the Cloud has
greatly increased the problem because software usage rights were not originally intended
for this type of architecture. After an academic and industrial history of Software Asset
Management (SAM), from its roots to the most recent work on the Cloud and soft-
ware identification, we look at the licensing methods of major publishers such as Oracle,
IBM and SAP before introducing the various problems inherent in SAM. The lack of
standardization in metrics, specific usage rights, and the difference in paradigm brought
about by the Cloud and soon the virtualized network make the situation more compli-
cated than it already was. Our research is oriented towards modeling these licenses and
metrics in order to abstract from the legal and blurry side of contracts. This abstraction
allows us to develop software placement algorithms that ensure that contractual rules
are respected at all times. This licensing model also allows us to introduce a deploy-
ment heuristic that optimizes several criteria at the time of software placement such as
performance, energy and cost of licenses. We then introduce the problems associated
with deploying multiple software at the same time by optimizing these same criteria and
prove the NP-completeness of the associated decision problem. In order to meet these
criteria, we present a placement algorithm that approaches the optimal and uses the
above heuristic. In parallel, we have developed a SAM tool that uses these researches
to offer an automated and totally generic software management in a Cloud architecture.
All this work has been conducted in collaboration with Orange and tested in different
Proof-Of-Concept before being fully integrated into the SAM tool.

ix

x

Chapter 1

Introduction

Contents

1.1 Software Asset Management: SAM 2

1.2 Software Asset Management in the Cloud 7

1.3 State of the Art . 12

Since 1976, software has been subject to intellectual property law. Its editor, whether
an individual or a legal entity, is the sole owner. It grants licenses for use rights that are
strictly described in general terms and conditions or in specific commercial contracts.
The non-respect of these use rights is a crime: counterfeiting. Up to 1980s, few if
any licensing strategies were used. Software was simply sold, and editors hoped that
it wouldn’t be copied. It wasn’t such an issue as software was shipped on proprietary
format like cassette or tapes and, therefore, were difficult to copy for the mass. The rise
of floppy disk countered this situation, and several techniques were developed to answer
this problem. Early protection was hard-coded key in the medium, but it didn’t prevent
multiple users to share it. Then, some techniques bounded the software to the system it
ran on by using unique identifier (this technique is still in use today for some cases). With
advances in networking, editors shifted to license server organization where the licenses
were not bound to machines anymore but controlled and distributed by a networked
server. This allowed to propose multiple types of licenses like machine bounded or
named licenses where a license was bound to a user. Companies could purchase fewer
licenses by selecting the best type that fit their needs. With digital communications, the
license keys could be exchanged electronically, as well as illegal copies. Then came the
online activation where the software made contact directly with the editor’s servers to
check if a license was available. In one hand, it allowed to be better at countering piracy
but in the other hand editors had sole control over the use of software we contracted.
We arrive in a situation where licenses will become no longer physical or bound to keys
or files. They are becoming purely virtual and the only thing that will matter is that we
need to buy enough licenses to cover our use of the software as we will explain in more
details below.

With the digital boom in today’s world, the speed at which developments are oc-

1

2 CHAPTER 1. INTRODUCTION

curring is becoming too important for companies to keep up with effectively. These
companies need to digitalize themselves to stay competitive, and the management of
their digital footprint and software assets must be rigorous and perfect. Those that can-
not keep up stay on the sidelines and could disappear to the benefit of large companies
capable of making such transitions. The software market is worth more than US$650
billion a year and has seen a steady growth of 6% over the past five years. All areas of
IT are now sold as Software: applications, security, storage, network infrastructure, and
much more meaning that poor management of software is a real problem.

Therefore, to improve the efficiency of its process, its consistency, and its quality, an
enterprise must keep track of its software assets. To do it, some tools exist and a trend
grows more and more within companies: Software Asset Management.

1.1 Software Asset Management: SAM

According to the Information Technology Infrastructure Library (ITIL), SAM is defined
as:

“. . . all the infrastructure and processes necessary for the effective manage-
ment, control and protection of the software assets . . . throughout all stages
of their life cycle.”

(ITIL’s Guide to Software Asset Management)

For some small companies or personal use, it will mean a simple monitoring of soft-
ware, following the installation on employees computers, managing the upgrade to the
latest version and keeping the license keys in a secure place. But it becomes highly
complex as soon as a business grows a little or if it uses more distributed infrastructure.
The more it grows, the more it needs to have an active Software Asset Management
following the whole life cycle of the product, starting from the purchasing process, and
going all the way through the delivery, the deployment, the updates and upgrades, the
migration, the usage and the decommissioning (Figure 1.1).

The life cycle is split in multiple steps in which the software asset manager has to
track different information. During the procurement or the purchasing process, we have
to get information about contractual rights concerning the product called Product Use
Rights (PURs). They are rules to follow when we use the product and are generally
globally defined with additional rules when needed. Some examples of PURs can be the
language of the product, the region where we can install it, the rights to upgrade (or
downgrade), the available options, etc.

As companies get the right to manage their licence stock as they see fit. In return,
publishers may conduct audits. It means, that they trust us to follow the rules we con-
tractualized but in return, at any time, they can come and check if it is the case. If they
find wrongdoing, they will impose a penalty which is, most of the time, an economical
fine. Such penalty can be huge as seen in two recent cases: SAP vs Diageo [1] and SAP
vs AbInBev [2]. The penalties applied in these cases were respectively US$65 millions

1.1. SOFTWARE ASSET MANAGEMENT: SAM 3

Procurement

Instantiation

Delivery

Decommisionning

Migration / Upgrades

Usage

Figure 1.1: Life cycle of a product from buying process to decommissioning.

and US$600 millions, which are colossal amounts for not respecting contractual rights.
Another impact of getting a penalty because of noncompliance is that the company will
suffer in its public image.

Next, during the delivery of the product we have to effectively keep track of what has
been delivered and which contract it is linked to. Most of the time, the delivery is just an
executable file (the installer) so it is important to keep trace of it for the following step:
the instantiation of the product. During this step, it is vital to link the product installed
to our use rights to avoid noncompliant installations as previously seen (Figure 1.2).
No physical link exists between the executable and the contract, so the software asset
manager must keep a record of which executable corresponds to which contract. Some
work have been done to automatize this process and several methods were proposed as
we will discuss in Section 1.3.

During the instantiation step, either it’s an installation on an employee station or a
deployment in the Cloud, it is important to have the details on which product is installed
where and getting the details of the platform this product is installed on. To check the
compliance with the PURs, we will need a variety of information coming from distinct
places like the language of the platform we install on, the options activated or not, the
country where the platform is located and so on. All those data are critical because
they ensure that compliance testing can be carried out. Theoretically, the software asset
manager should oversee instantiation of any product but, in reality, it is not workable
because of the amount of data to check and the number of instantiation to follow.

Same thing happen during any migration, upgrade and use of a product. The software
asset manager have to check every PUR in the contract to see if the company possess
the right to make such a change or use the product. Finally, during the decommissioning
of the product, the software asset manager have to check impacts it can make on other

4 CHAPTER 1. INTRODUCTION

SAM Manager

Buyer

Editor

Employee

Products shelf

Contracts shelf

1. Negotiates and
buys a product 2 . Store the contract

2 . Store the product 3. Take a product for
installation

4. Check the compliance
of the action

Figure 1.2: Process of buying a product before installating it with the assurance from
the software asset manager that it will be compliant.

products as well as if the product was correctly decommissioned. The product ‘Acrobat
Reader’ from Adobe is a good example: We can use an evaluation version to test its
functionalities for free. When the evaluation period expires, if we just let the application
installed but without activating it, even if we don’t use it anymore, it could be considered
as a noncompliant installation of the product. Therefore, the decommissioning step has
been failed, even if it is a free product.

The most important notion we will focus on during this entire document is licensing.
Besides other PURs that describe in which condition we can use our product, we also
have to possess licenses for it. These licenses are obtained through contracts and are
purely virtual. The important rule is:

Compliance rule: “We have to possess enough licenses to cover all
our products when we use them and respect every PURs”

It is important to distinguish between a license key (or a license file) and a license.
The first two are means for the application to make sure we have the corresponding
licenses to be used and if not, will offer little or no functionality. What counts is that we
have enough licenses and respect all the PURs described in our contracts. For example,
getting rid of the Microsoft Windows watermark (“Activate Windows”) by using a valid
product key does NOT mean that we are compliant and that our product is respecting
the Software License Agreement (SLA). Even if Windows itself says that the product is
activated, if we use it only for remote use, we are not respecting one PUR in the terms
and services [3]. Excepting when it is specified in the terms and services that we have

1.1. SOFTWARE ASSET MANAGEMENT: SAM 5

to activate the product, we can just use it without activation and make sure that the
sum of licenses we bought is enough to cover our use.

Most people think that there is a one-one relation between a software and its license,
which is wrong. Except Open-Source Software (OSS) with their specific licenses, we will
need, especially for proprietary software, more than one license to have the right to use it
meaning that for one user and one product we will have to possess multiple licenses (but
maybe one license key to activate the software). To get the number of licenses we need
to possess, there is one important and always present PUR: the metric. The metric is a
description of how to compute the number of licenses. It can say that we need 5 licenses
per user or 10 licenses per hour of use, for example. In addition, there may be several
metrics for a single product, for example, the Oracle Database can be licensed with two
different metrics (Processor metric and Named User Plus metric). For each product,
we have to choose which available metric for this product we want to use as they are
distinct ways of computation. We need to choose between buying x licenses with the
metric processor or y licenses with the metric NUP. Each metric will give a price per
license too, so even if x = y the final prices, Px and Py can be different. On one hand, it
gives the choice to suit the needs. In the other hand, we will have to know every metric
for each product we use, and compare the prices depending on our use of such product.
To better understand this notion, Figure 1.3 is an example with the following definitions
of two metrics of the Oracle Database coming from the license terms and definitions1 of
Oracle [4]:

Processor The number of required licenses shall be determined by multiply-
ing the total number of cores of the processor by a core proces-
sor [5]. All cores on all multicore chips for each licensed program
are to be aggregated before multiplying by the appropriate core
processor licensing factor and all fractions of a number are to be
rounded up to the next whole number.

Named User Plus Requires a minimum of 25 Named User Plus per Processor li-
censes or the total number of actual users, whichever is greater.
When licensing the Oracle Database by Named User Plus, all
users who are using the Oracle Database, as well as all non-
human operated devices that are accessing the Oracle Database
must be licensed. The following licensing rules apply:

� If non-human operated devices such as sensors are connect-
ing to the Oracle Database, then all devices need to be
licensed.

� If human-operated devices such as bar code scanners are
connecting to the Oracle Database, then all humans oper-
ating these devices need to be licensed.

1These definitions are for Enterprise Edition and stripped for better clarity.

6 CHAPTER 1. INTRODUCTION

6 cores server

30 forklifts
operated by 400 employees

15 temperature devices

Figure 1.3: Here a database is used to manage data coming from 15 temperature devices
and 400 employees manipulating 30 forklifts. As the database is hosted on a 6-cores
server, and assuming the corefactor is 1, we would need 6 ’processor’ licenses. The Named
User Plus metric requires the maximum between 25 times the number of processor
licenses or the number of users. With the licensing rules above, we know that the
users are the temperature devices and the employees so the number of ’NUP’ licenses is
max(25× 6, 400 + 15) = 415. Therefore, we have to choose between buying 6 processor
licenses or 415 NUP licenses. With the public prices [6] of US$47,500 per processor
license and US$950 per NUP licenses, it is cheaper to choose the processor license for a
total of US$285,000.

� If non-human operated devices and human-operated de-
vices are connecting to the Oracle Database and are mutu-
ally exclusive, then all non-human devices and all humans
operating devices need to be licensed.

Several problems appear: First, the metrics are defined in the contract and as a result
are written in contractual language that can be blurry or lead to misunderstandings.
For example, a SAP publication from April 2018 [7] defines “use” of its software as
“to activate the processing capabilities of the Software, load, execute, access, employ
the Software, or display information resulting from such capabilities. Use may occur
by way of an interface delivered with or as a part of the Software, a Licensee or third-
party interface, or another intermediary system”. This definition could potentially say
that we are using the SAP product when we make a presentation with one result in a
slide computed with this SAP product. The dangerousness of such definition is clear to
understand. This definition is SAP’s famous indirect-access computation leading to the

1.2. SOFTWARE ASSET MANAGEMENT IN THE CLOUD 7

two previously announced trials ([1] and [2]) where both companies did not understand
correctly and paid full price.

Second, as there is no standard for metrics, editors can invent any kind of formula.
As a result, the metrics are varied and there is potentially hundred per editors, specially
for the main ones. While this number grows constantly, the type of data needed for
these definitions become more and more diversified. They may relate to infrastructure
data (processors, bandwidth capacity, sockets, etc.), companies’ information (turnover,
number of employees), or even more uncanny data like the number of lines on generated
bills or the number of lines resulting a SQL query. This variety of needed information
requires the software asset managers to gather and cross-reference vast amount of data.

In addition, with the rise of the Bring Your Own Device (BYOD) practice where
employees use their personal devices for professional use, the boundary become blurred
for software asset managers between software used in a personal or professional context.
As some editors impose specific versions for professional use, a personal use of a propri-
etary software can lead to noncompliant result of audit becoming a nightmare for SAM
processes. Better practices, like ‘Corporate-Owned, Personally Enabled’ (COPE) where
the company buy and provide to employees the devices, are safer because companies
can enforce strict security policies unlike BYOD seen previously. Being made possible
by these practices, an even good willing employee can install a software breaking some
rights or even a pirated one not knowing the impact it can have on its company. We
can detect such installation with enough tools and processes, but where do we draw the
line between Software Asset Management for company security and a company spying
on its employees?

Finally, all the process of checking the rights, computing the number of licenses,
getting the right prices, collecting inventories of infrastructure information and software
installation is extremely error prone when not automatized. The problem of automati-
zation is that every input of data have to be checked and corrected because a single error
of computation can lead to disastrous situations. This check and correction is actually
mostly made by humans and, by definition, humans are error prone.

All these considerations need to be addressed before going to scale because, as we
will see in the next section, the Cloud further complicates the matter.

1.2 Software Asset Management in the Cloud

Software Asset Management is already not a simple task in traditional architectures.
As we said above, succeeding at ensuring compliance in large firms is complex and with
the growth of Cloud Computing technologies, it becomes harder. Cloud Computing can
be described as the provision of IT services via the Internet to deliver faster, flexible
resources and easy scaling (Figure 1.4). Usually, we only pay for the Cloud services
we use allowing us to manage our infrastructure more efficiently and satisfy our needs
thanks to scaling bringing several benefits:

Cost Cloud Computing remove the cost of having and supporting

8 CHAPTER 1. INTRODUCTION

Company

Cloud Computing provider

Figure 1.4: Here, a Cloud Computing provides computing, analytics and storage services
to a company while the latter has no more infrastructure at all.

infrastructure: physical servers, energy cost, cooling, human
resources.

Speed Most Cloud Computing services are provided on demand.
Huge computation resources can be up to work in minutes
with few clicks.

Worldwide scaling Scaling and localization services offered by Cloud Comput-
ing allow to follow the needs closely (more computing power,
more storage or bandwidth for example).

Productivity Cloud Computing hosts handle the hardware and upgrade the
necessary software themselves, allowing us to remove these
chores for our company.

Reliability and security
Cloud Computing through Service-Level Agreement (SLA)
ensures our backups, restoration and support. In addition,
they ensure our security features with up-to-date technologies
and process.

The technological breakthrough brought by this paradigm is immense, as we can see
in Figure 1.5 and affects many sectors such as SAM. Several types of Cloud Computing
exists: public, private and hybrid. Public Clouds are hosted by third-party service
provider like Microsoft Azure, Amazon Web Services, Google Cloud or Orange Business
Services, to name a few. Private Clouds are companies hosted services for internal use.
It is generally located in companies’ datacenters or can be hosted by third-party but
for the company’s private use only. Hybrid Clouds is when we use both, using internal

1.2. SOFTWARE ASSET MANAGEMENT IN THE CLOUD 9

services we provide and using third-party services because we lack them or because we
want to quickly scale.

Before entering the details about licensing in the Cloud, it is already important to
see the impact of Cloud Computing on Software Asset Management. Like said before,
all digital data are potentially critical to ensure compliance because of PURs, but this
amount of data just became exponentially bigger. The time and processes needed to
collect every bit of information about physical infrastructure around the world is big,
but added to virtualization, it becomes quickly overwhelming. Easy connection between
hardware and software, for example, no longer exists. Our product can move quickly
between different physical servers while being used by more and more people. The life
cycle duration shortened, reaching down to minutes making the detection of installation
harder.

Focusing on the deployment of software in the Cloud, Cloud Computing brings a
lot of complication. The metrics were designed for old architectures and, because of
that, can behave differently in Cloud. The definition of the processor metric for Oracle
Database, for example, states that we have to count all the processors a software can
use. This definition, in the Cloud, become very dangerous due to virtualization. Indeed,
with the possibility of migrating the software all over the Cloud, the number of usable
processors multiply quickly. In Figure 1.6, we can see an example of the impact of
such metric with public prices. The new models, besides bringing fresh metrics based

Yesterday Today

ServicesSoftware, products

Total disconnectionRelation hardware-software

Long life cycle Up to real-time

Understandable usage BYOD, multiplexing

Calculable costs Indirect, hidden costs

Complex licensing rules Even more complex rules

Figure 1.5: Difference between yesterday’s infrastructure and today’s Cloud computing

10 CHAPTER 1. INTRODUCTION

on usage and consumption, raise many questions. The use and licensing of proprietary
software in public Cloud is a troublesome matter. Two methods exist for the licensing
responsibility: Either the third-party host licenses the software and uses a subscription-
based or time based licensing for its offer or the one who brings the software brings with
it the licenses, called the Bring Your Own License (BYOL) concept. With hybrid Cloud,
if a software migrates from one type of Cloud to the other, it can affect the licensing
and, therefore, will require compliance check from the software asset managers.

Another complication is that the information we needed to compute the metrics are
not enough anymore. With the same example of a VMWare virtualized infrastructure
from Figure 1.6, depending on the used version, a Virtual Machine (VM) can go from
one vCenter to another, multiplying again the number of usable processors. Therefore,
we will need information not only on processors but on other software too. Here, a single
upgrade of VMWare from version 5.5 to 6.0, even if we have licenses and are compliant
for this upgrade, can affect the Oracle Database licenses.

Server
16 cores

Cluster
256 cores

vCenter
1024 cores

US$760,000 US$12.160M US$48.640M

Figure 1.6: Here, using a VMWare virtualized infrastructure and with a corefactor of
1 for all processors, we can see that the impact of using a single Oracle Database on
different environments have an immense impact on the bill.

Even the notion of product and software changed because of some alternative mod-
els: Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS) and Infrastructure-as-a-
Service (IaaS) which are described in Figure 1.7. SaaS providers will have to license the
software they provide and indirectly make the user pay with another kind of subscription-
based license. PaaS and IaaS providers, on the contrary, let the user install its own soft-
ware but, the licensing become difficult. As the user may not know the infrastructure
details or the virtualization used, the metric computation is maybe not doable anymore.
Here, a good knowledge of what the provider offers for licensing issue is required and
the latter has to be carefully followed (for example, AWS [8] made a white paper about
Oracle Database licensing).

Some could say that Open-Source Software (OSS) could solve this problem: no more
metric, no more paid licenses. Indeed, OSS can be a solution if we start with it and
stick to it. Problem is, OSS does not have any insurance, meaning that it will not

1.2. SOFTWARE ASSET MANAGEMENT IN THE CLOUD 11

ensure support in the middle of the night because our billing software crashed. If we
need specific features, OSS will be slow to implement it compared to contractualized
company we bought it from. It will take time to implement security patches compared
to an editor offering support services such as RedHat, for example. As soon as we have
to ensure quality, support and performance to our client, we will need the same thing
from our software provider. Besides, if we already use some proprietary software, it will
be difficult to switch. For example, around 2000, Amazon started looking to replace
Oracle Database to open-source alternatives and finally achieved it late 2019 [9]. In
summary, OSS can be an answer, but as it is not the ultimate answer yet, we will focus
on enhancing the situation with proprietary software.

SaaS PaaS IaaSOn-premise

Application

Data

Runtime

Middleware

Operating system

Virtualization

Networking

Storage

Physical servers

Application

Data

Runtime

Middleware

Operating system

Virtualization

Networking

Storage

Physical servers

Application

Data

Runtime

Middleware

Operating system

Virtualization

Networking

Storage

Physical servers

Application

Data

Runtime

Middleware

Operating system

Virtualization

Networking

Storage

Physical servers

We manage Third-party service provider manage

Figure 1.7: Difference between SaaS, PaaS and IaaS: Microsoft Office 365 and Google
Docs are SaaS, Microsoft Azure can provide PaaS services and Amazon Web Services
provide IaaS services.

Modern Software Asset Management is not adapted to such infrastructure firstly
because of the enormous amount of data and computation needed and secondly because
of the compliance checking process actually in place. As the metrics are based on us-
age, the metrics computation is made retroactively (after the use of the software) and,
therefore, a noncompliant situation is detected too late. In addition, the impact of a
single modification on the software park is detected afterwards, making the cancelation
of such change very difficult. We will tackle this problem by proposing some advances in

12 CHAPTER 1. INTRODUCTION

Software Asset Management to ensure compliance before the deployment. After talking
about the State of the Art, we will start by introducing a standard to facilitate the
understanding of contractual metrics and automatizes it. Then, we will present an algo-
rithm which automatizes the metric selection and impact management for any software
installation before proposing a new deployment heuristic for the Cloud. Finally, we will
submit a multi-software deployment algorithm based on the proposed heuristic.

1.3 State of the Art

In the context of this thesis, we will use the International Organization for Standardisa-
tion (ISO) description of a software asset [10]: “all or part of the program which process
or support the processing of digital information and has potential or actual value to an
organization”. As such, we can find executable software (Oracle Database, Microsoft
Windows) and non-executable software (fonts, spell-checker dictionaries). It has been
further described in the literature as “all software objects or artifacts along with pro-
cesses used to define, create, develop, acquire, and evolve or maintain software.” [11]
as well as a “fixed asset that contribute to a company’s productive capacity directly or
indirectly.” [12]. We will also place ourselves in the context of firms using proprietary
software and will not address the open-source case. Such companies can be of very dif-
ferent sizes, from the smallest to a major US insurance company which took 18 months
to produce an inventory of one third of their products [13]. Digitalization of companies
are the key to unlock competitive advantages by doing things better, faster, and cheaper
than the competition. Businesses will use software to promote quality and consistency
to improve the customer relationship [14, 15] and, therefore, are critical to them.

The usual industrial question “Buy or Build” can be easily translated in the digital
world with two kinds of software: Third-Party Software (TPS) or Custom Developed
Software (CDS). A company must choose between making its own custom software that
will fit its needs perfectly or using a third-party software. The second choice is special
because TPS are composed of Open-Source Software (OSS) and Commercial Off-The-
Shelf software (COTS). A benchmark about the security of the different types [16] drew
the conclusion that while companies are using TPS in greater quantities, this kind of
software present the most security risks. It is mainly explained by the fact that companies
trust editors and fail to check software quality before the integration. The problem is
not solved with OSS as explained earlier, as anyone can propose code, the same failure
of quality check leads to IT risks [17] and critical situation like the LeftPad repository
huge chaos [18].

One of the first publications about licensing was devoted to the study of automated
metrics of software, the assessment of CIM repository and management of software as-
sets [19]. Real Software Asset Management considerations started in 1999 when a study
about the model and identification of software was proposed [20]. This study stated that
SAM can mitigate technical, legal, managerial, financial and ethical risks in organiza-
tions. Later, in 2005, the need for a framework for control of software assets throughout
their life-cycle to ensure long-term and efficient management has been showed [11]. In

1.3. STATE OF THE ART 13

2011, a proposition to combine IT, processes and SAM was offered and revolved around
four points:

� Being able to discover software

� Being able to make precise inventories of licenses and the infrastructure

� Implementing contract management

� Producing reports about readiness towards compliance and verification

In 2017, a patent [21] proposed tools for discovering and collecting information on
instances of software used in monitored environment. In the same time, the Cloud was
added in SAM considerations in a review of existing SAM tools and a new SAM model
for Cloud architectures [22].

Despite being a modern key to enable digitalization in companies, IT managers fail to
address SAM issues and ignore the necessity of having a proper framework for compliance
verification and vulnerability analysis [23]. Less than 20 percents of companies effectively
use SAM [24] and while 65% of enterprises are audited yearly (up to 23% of them were
audited three times or more on the same year), only 29% have an automatized monitoring
of their systems and 25% of them have no monitoring at all [25]. Such lack of SAM could
result in huge expenses for companies [11, 26] and can sometimes lead to severe trouble
like the 2000 year problem that leaded to enormous costs to firms that didn’t have
SAM inventory databases [27, 28]. While business, for security purposes, setted up
centralized security policy and denied to their employees the right to install software on
the professional work station, the BYOD paradigm tends to reverse this situation and
let people use as they see fit their devices leading to IT risks [15, 29]. Academic field
showed the heavy financial risks in case of SLA breach [30] and backed up the Flexera
Study [25] by showing the lack of SAM in companies [14, 23, 31].

All this academic history show clearly the need for Software Asset Management
in enterprises. Coupled with the rise of Cloud technologies and their impacts on this
SAM, which is already fragile in most companies, it becomes obvious that we need new
process and above all an automatization of thoses processes to avoid human error and
answer the velocity and size of the data induced by such Clouded platforms. Modern
SAM date back to another era where contracts and definition are defined on papers,
where compliance computations are made thanks to spreadsheets, and where asking a
full inventory of software assets can take up to years. This SAM requires an update to
handle new emerging, fast, data-intensive applications.

14 CHAPTER 1. INTRODUCTION

Chapter 2

Metric definition problem

Contents

2.1 Modelization . 16

2.2 Using the model to compute compliance 28

As showed in the introduction, mostly often-used ‘traditional’ licensing models (such
as a number of cores, CPUs, allocated physical resources) bind software deployments
to physical infrastructures or hardware features (ownership, geographical restrictions,
installations, etc.). This binds between IT environments and software licenses are limit-
ing usage and capacity, especially when migrating from traditional IT models to flexible
Cloud infrastructure. Considering the most commonly used metrics (processor, devices,
user, access), we can summarize some major risks moving these licenses schemes to Cloud
infrastructures. Bound to the processor capacity: these metric, especially in virtualized
environments are often complex, slightly different from one to another depending on the
editor. Keeping track of the proper amount of processor license counts and capacity lev-
els typically requires deployment of advanced monitoring systems. Moving to the Cloud,
monitoring systems to track processors counts and capacity levels in IaaS can be more
challenging because of compatibility, security and network issues. Bound to devices:
software can be accessed and used via multiple devices (virtual/physical); thus, keeping
track of licensable devices can be challenging. Bound to user: usage rights for each user
role are tailored in software license agreements. Access to usage rights can hardly be
technically restricted and are difficult to report and translate into licensed roles when
Cloud demand real-time visibility on user’s usage right assignments. Bound to In-direct
Access : these licensing rules often call for all interactions between software and human
users either directly, through a named account, or indirectly through a shared account
or third-party application account, to be fully licensed.

Effective Software Asset Management (SAM) results in the ability to have accu-
rate and complete view of software assets entitlements that are owned, deployed and
used. It consists first in intercepting all software license sales and purchases. It en-
compasses knowledge on software and its entitlements identification. Then, it consists

15

16 CHAPTER 2. METRIC DEFINITION PROBLEM

in intercepting each software installation bound workflow configuration, usage metrics
and consumed resources workflow. Theses different views have to match. Unless legally
armed, the definition of metrics is a bit at the discretion of publishers, which can be
problematic in many cases. In this chapter, we introduce a modeling of the metric that
will bring some enhancement:

� Automated algorithm can process a structured metric

� It unifies the understanding of the metric

� Affects are clearly visible

This model is a representation of the licensing context of IT environment: it contains
the physical and virtual representation of the Cloud as well as the representation of third-
party data (employees, industrial economic figures, contractual data, etc.). This global
context allows us to apply each metric with the right data and also allows us to verify
our ability to ‘assume’ these same metrics.

2.1 Modelization

The data model present in Figure 2.1 represents the computing environment in the form
of a graph where each node is an important data set. We designed the model to be as
generic as possible to answer any kind of metric.

It is composed of the following nodes:

entity An 〈Entity〉 describes a group of people working on a specific domain (strongly
related to business entities) and is used to identify the membership and re-
sponsibilities related to other nodes. The entity system is hierarchical, which
implies that entities are represented in the form of a tree and therefore one
〈Entity〉 may be related to another. Each 〈Entity〉 can sign contracts (link
to 〈Contract〉). Besides, they are part of a 〈Project〉 and have multiple
relation to the 〈Equipment〉 node: they can use an 〈Equipment〉, host it, or
ensure the support of it.

publisher A 〈Publisher〉 is the seller of the product (not necessarily the developer of
the product). It can be an online platform, a physical reseller or an internal
entity of the company. This node is linked to a 〈Contract〉 because we want
to keep a record of where we have contracted the product.

editor An 〈Editor〉 represents the creator/legal owner of a product such as Oracle
for the database of the same name or Microsoft for Windows. The name of
the editor is the very name of the company to which the software belongs
and not the parent company: for example, for Linux Red Hat the editor
is RedHat and not IBM. It is important for the case of selling and buying
companies, if another company buy RedHat then we have to know which

2.1. MODELIZATION 17

People

Business

Management

Software

Infrastructure

Virtualization clustering

equipment

product

virtualEquipment

component

instance

contract

editorentity

project

publisher

Figure 2.1: Graph model of a metric

products and contracts are impacted, which would be impossible if we tagged
IBM. An 〈Editor〉 is linked to the 〈Product〉 node for obvious reasons.

These three nodes compose the People layer that represent all human data interfering
with the computing environment. This layer is extremely volatile and the data have
higher risk of being outdated or inventoried too late. Therefore, data coming from this
layer have to be overvalued to keep a safe distance from the noncompliance zone.

contract A 〈Contract〉 represents the rights gained at the time of purchase.
A contract can cover distinct types of 〈Products〉 such as a purely
software product, fully assembled equipment, operating system or even
an 〈Equipment〉. This contract specifies what has been contracted on
our physical and virtual IT assets.

project A 〈Project〉 is a high-level representation of a digital needing appli-

18 CHAPTER 2. METRIC DEFINITION PROBLEM

cation like an application composed of multiple software or a fleet
management of autonomous cars for example.

instance The 〈Instance〉 node represents an instance of a project both in envi-
ronment (development, production, test, etc.) and in multi-distribution
(several instances for redundancy, for example). This allows the ma-
chines to be separated by environment or role. Each 〈Instance〉 con-
tribute to a specific 〈Project〉.

product A 〈Product〉 represents any piece of software (executable or not) we
have to follow. This node contains identification attributes such as the
Stock Keeping Unit (SKU) for example but also name, version, edition.
Any 〈Product〉 can contain other 〈Product〉 called ‘options’. Like this,
we can represent enabled options with self version and edition. This
node is the centerpiece of this model.

equipment An 〈Equipment〉 represents any “built” physical material (i.e. exclud-
ing components). It can be a server, a router, a phone or a robot
if, for example, we are managing a warehouse. Each equipment is
composed of different 〈Components〉 and can be layered in several
〈virtualEquipment〉 (such as a Virtual Machine or a Docker for a
server but it can also be a model of a learning machine for exam-
ple). Each 〈Equipment〉 is linked to the 〈Products〉 installed on it
and contributes to one or different 〈Instances〉.

component A 〈Component〉 represents a physical piece that composes 〈Equipment〉
and 〈virtualEquipment〉. These include processors, memory sticks,
network cards, power supplies, and many others. Each 〈Component〉
has its own attributes and identification that are defined in the under-
lying dataset. The difference between 〈Equipment〉 and 〈Component〉
is that this dataset is static, as attributes for a specific processor will
not change for example. We can therefore use the 〈Component〉 as a
library of pieces.

clustering 〈Clustering〉 represents a virtual grouping of several devices such as
the VMware representation of a Cloud (Datacenter, vCenter, Cluster,
Servers) but also any other type of grouping. Like the VMware model,
this clustering is recursive and each node carries information about its
layer of grouping. Obviously the last node is connected to all the
equipment it contains. This representation also allows higher level
clustering nodes to be connected directly to the equipment as if a
datacenter had several vCenters but also a room full of robots. We
should therefore have direct links from the datacenter (higher-level
clustering node) to the robotic equipment in it.

2.1. MODELIZATION 19

vEquipment The 〈virtualEquipment〉 node represents each virtual device that can
be contained in a device. As mentioned above, it can be of any shape
from a simple Docker container to machine learning models or even
a very low level machine virtualization like Enterprise 10000 systems.
This virtual equipment can be connected to several components, be-
cause a virtual machine is assigned one or more CPUs and a quantity
of memory, for example. As an equipment, several products can be in-
stalled on it and an OS if appropriate. Finally, this virtual equipment
contributes to an instance of a project.

Clustering Equipment Product

Server1

Product1

Product2

Product3

Option1

Option2

Server2

Product4

Cluster1

Figure 2.2: Minimal example of relation equipment-product

This model is a flatten view of the bigger graph containing all of our data. The
〈Equipment〉 node represent all nodes representing an equipment and all those subnodes
are connected to 〈Product〉 node. A minimal example is represented in Figure 2.2 and

20 CHAPTER 2. METRIC DEFINITION PROBLEM

a realistic one with only the 〈Equipment〉, 〈vEquipment〉 and 〈Product〉 for 100 servers
in Figure 2.3. The underlying graph will be called the ‘subgraph’ for the rest of this
chapter.

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS
CONTAINS

CONTAINS
CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS
CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS
CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS
CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATESINSTANCIATES

INSTANCIATESINSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATESINSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATESINSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATESINSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATESINSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATESINSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATESINSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATESINSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES INSTANCIATES

INSTANCIATES

INSTANCIATESINSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATESINSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATESINSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATESINSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATESINSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATESINSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES
INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

INSTANCIATES

:Server

_a_renseigner_0000010070

:Server

_a_renseigner_0000010085

:Server

fwm

:Server

ad-sicor2

:Server

_a_renseigner_0000057589
:Server

_a_renseigner_0000057641

:Server

llmas1o

:Server

_a_renseigner_0000085655

:Server

_a_renseigner_0000085657

:Server

_a_renseigner_0000085672

:Server

frftm1

:Server

_a_renseigner_0000010086

:Server

_a_renseigner_0000010093

:Server

_a_renseigner_0000010225

:Server

lymas1o

:Server

h3xxpat1

:Server

h3xxrea1

:Server

_a_renseigner_0000085076

:Server

_a_renseigner_0000085084

:Server

_a_renseigner_0000085086

:Server

_a_renseigner_0000085166

:Server

_a_renseigner_0000085171

:Server

ic310

:Server

_a_renseigner_0000085207

:Server

_a_renseigner_0000085332

:Server

hp1000/exp

:Server

_a_renseigner_0000085926

:Server

_a_renseigner_0000086905

:Server

est-dijon_raines-wr1

:Server

est-mulhouse_europe-wr1

:Server

rms-01.besançon.witbe

:Server

rms-01.lorraine.witbe

:Server

_a_renseigner_0000197486

:Server

_a_renseigner_0000197646

:Server

_a_renseigner_0000197852 :Server

_a_renseigner_0000198025

:Server

_a_renseigner_0000198049

:Server

_a_renseigner_0000198053

:Server

_a_renseigner_0000198057

:Server

_a_renseigner_0000193553

:Server

ft99cdxi

:Server

in99scr0

:Server

_a_renseigner_0000194407

:Server

_a_renseigner_0000194468

:Server

ft-swd8ln68jzov

:Server

ft-hxnhqujosskg

:Server

_a_renseigner_0000194521

:Server

ft-4zca790e5fqi

:Server

_a_renseigner_0000195351

:Server

ivry02proj - ip 10.176.96.53

:Server

ft-vvvqhejr6tp8

:Server

_a_renseigner_0000195383

:Server

_a_renseigner_0000196243

:Server

_a_renseigner_0000196247

:Server

_a_renseigner_0000196249

:Server

_a_renseigner_0000198119

:Server

dingo_old_server

:Server

_a_renseigner_0000216490

:Server

_a_renseigner_0000216851

:Server

_a_renseigner_0000217294

:Server

_a_renseigner_0000238844

:Server

_a_renseigner_0000238883

:Server

_a_renseigner_0000238886

:Server

cws-otms_sp2

:Server

cwsvel4_sp

:Server

bilma1

:Server

0000246036

:Server

_a_renseigner_0000262909

:Server

adsl-nanterre_mansart-wr4

:Server

pimeis038

:Server

_a_renseigner_0000273688

:Server

hmcvel1

:Server

log001

:Server

_a_renseigner_0000290746

:Server

_a_renseigner_0000290747

:Server

_a_renseigner_0000290748

:Server

_a_renseigner_0000290749

:Server

sdquat01

:Server

_a_renseigner_0000313409

:Server

pimeis039

:Server

0000335414

:Server

smtp29-dbl

:Server

_a_renseigner_0000347117

:Server

_a_renseigner_0000347174

:Server

dev-acs-rea2-a

:Server

dev-acs-rea3-a

:Server

dwsmur01

:Server

sdquat06

:Server

i06c03

:Server

0000355628

:Server

ua52ipla

:Server

dfhh1e01

:Server

dfhh1e02
:Server

jumpaub1

:Server

jumpvel1

:Server

aufwmglutarx01

:Server

dingo

:Server

acsls

:Server

adm-dba3-a

:Server

asp-bap1-m

:Server

adm-log4-m

:Server

asp-bap2

:Server

alim-pub1

:Server

adm-bap2

:Server

adm-bap1

:Server

adm-log4

:Server

asp-bap1

:Server

adm-web1

:Server

adm-web2

:Server

id-adm1-a

:Server

au-adm-hpov1

:Server

dev-acs-rea1-a

:Server

acs-sa4-a :Server

acs-sa2-a

:Server

adm-hpov1-a

:Server

acs-adm1-a

:Server

acs-sa3-a

:Server

acs-sa1-a

:Server

acs-admweb1-b

:Server

acs-admweb1-a

:Server

adm-web7

:Server

adm-activcard1-a

:Server

aufwmgtarx02

:Server

fwcposs03

:Server

aufwcpdsi03

:Server

aufwcpdsi01

:Server

aufwcpdsi04

:Server

aufwcpdsi02

:Server

bca

:Server

_a_renseigner_0000364383

:Server

_a_renseigner_0000364384

:Server

adm-dba2

:Server

adm-ntp1-a

:Server

_a_renseigner_0000363782

:Server

0000378345

:Server

_a_renseigner_0000389373

:Server

pimeis408

:Server

pimeib317

:Server

be2-maint.chronos

:Server

0000385184

:Server

dev-acs-rea5-a

:Server

acs-sp-rsyslog301-a

:Server

med7389

:Server

med8389

:Server

masterldap02

:Server

pimeib284

:Server

jumpmts1

:Server

stocklog

:Server

auth-fe.chronos.oleane.net NC

:Server

m1xxrmp1

:Server

mts12-it-at80-pl_42l

:Server

_a_renseigner_0000403729

:Server

_a_renseigner_0000403730

:Server

admin4

:Server

ftp-priv.clb.oleane.net

:Server

build-win

:Server

ft-poc-a2

:Server

ft-poc-a1

:Server

ife-evol

:Server

hmcef2

:Server

hmcef1

:Server

hmcvel7

:Server

admin

:Server

ldap1

:Server

ldap2
:Server

ldap3

:Server

ldap4

:Server

ldap5

:Server

master

:Server

exploit.msr

:Server

_a_renseigner_0000406807

:Server

_a_renseigner_0000406808

:Server

_a_renseigner_0000406809

:Server

dfbp3e00

:Server

_a_renseigner_0000406810

:Server

_a_renseigner_0000406811

:Server

masterweb01.clb

:Server

ftp02

:Server

0000407972

:Server

mastermail01

:Server

mastermail02

:Server

hmcvel3

:Server

masterweb02.clb

:Server

pl2-velizy

:Partition

fwm

:Partition

_a_renseigner_0000010070

:Partition

_a_renseigner_0000010085

:Partition

_a_renseigner_0000010086

:Partition

_a_renseigner_0000010093

:Partition

_a_renseigner_0000010225

:Partition

ad-sicor2

:Partition

_a_renseigner_0000216490 :Partition

_a_renseigner_0000216851

:Partition

_a_renseigner_0000217294

:Partition

_a_renseigner_0000238844

:Partition

_a_renseigner_0000238883

:Partition

_a_renseigner_0000057589:Partition

_a_renseigner_0000057641

:Partition

llmas1o

:Partition

lymas1o

:Partition

h3xxpat1

:Partition

h3xxrea1

:Partition

_a_renseigner_0000085076

:Partition

_a_renseigner_0000085084

:Partition

_a_renseigner_0000085086

:Partition

_a_renseigner_0000085166

:Partition

_a_renseigner_0000085171

:Partition

ic310

:Partition

_a_renseigner_0000085207

:Partition

_a_renseigner_0000085332

:Partition

_a_renseigner_0000085655

:Partition

_a_renseigner_0000085657

:Partition

_a_renseigner_0000085672

:Partition

frftm1

:Partition

_a_renseigner_0000085926

:Partition

_a_renseigner_0000086905

:Partition

est-dijon_raines-wr1

:Partition

hp1000/exp

:Partition

est-mulhouse_europe-wr1

:Partition

est-besancon_russel-wr1

:Partition

est-nancy_vandoeuvre-wr1:Partition

_a_renseigner_0000193553

:Partition

ft99cdxi

:Partition

in99scr0

:Partition

_a_renseigner_0000194407

:Partition

_a_renseigner_0000194468

:Partition

ft-swd8ln68jzov

:Partition

ft-hxnhqujosskg

:Partition

_a_renseigner_0000194521

:Partition

ft-4zca790e5fqi

:Partition

_a_renseigner_0000195351

:Partition

ivry02proj - ip 10.176.96.53

:Partition

ft-vvvqhejr6tp8

:Partition

_a_renseigner_0000195383

:Partition

_a_renseigner_0000196243

:Partition

_a_renseigner_0000196247

:Partition

_a_renseigner_0000196249

:Partition

_a_renseigner_0000197486

:Partition

_a_renseigner_0000197646

:Partition

_a_renseigner_0000197852

:Partition

_a_renseigner_0000198025

:Partition

_a_renseigner_0000198049

:Partition

_a_renseigner_0000198053

:Partition

_a_renseigner_0000198057

:Partition

_a_renseigner_0000198119

:Partition

_a_renseigner_0000347117

:Partition

_a_renseigner_0000347174

:Partition

_a_renseigner_0000238886

:Partition

cws-otms_sp2

:Partition

cwsvel4_sp

:Partition

bilma1

:Partition

dingo_old_server

:Partition

246036

:Partition

_a_renseigner_0000262909

:Partition

adsl-nanterre_mansart-wr4

:Partition

_a_renseigner_0000273688

:Partition

hmcvel1

:Partition

log001

:Partition

_a_renseigner_0000290746

:Partition

_a_renseigner_0000290747

:Partition

_a_renseigner_0000290748

:Partition

_a_renseigner_0000290749

:Partition

_a_renseigner_0000313409

:Partition

inpmsdb21

:Partition

imsxs3-scscf

:Partition

expfwv1 nc

:Partition

aufwmgtarx02

:Partition

fwcposs03

:Partition

aufwcpdsi03

:Partition

aufwcpdsi01

:Partition

i06c03

:Partition

dwsmur01

:Partition

S0000355628

:Partition

adextproto

:Partition

dfhh1e01

:Partition

dfhh1e02

:Partition

jumpaub1

:Partition

jumpvel1

:Partition

asp-bap1-m

:Partition

dingo

:Partition

asp-bap2

:Partition

alim-pub1

:Partition

adm-bap2

:Partition

adm-bap1

:Partition

adm-log4

:Partition

asp-bap1

:Partition

adm-web1

:Partition

adm-web2

:Partition

id-adm1-a

:Partition

au-adm-hpov1

:Partition

dev-acs-rea1-a

:Partition

acs-sa4-a

:Partition

acs-sa2-a

:Partition

adm-hpov1-a

:Partition

acs-adm1-a

:Partition

acs-sa3-a

:Partition

acs-sa1-a

:Partition

adm-dba3-a

:Partition

auth-fe.chronos.oleane.net NC

:Partition

aufwcpdsi04
:Partition

aufwcpdsi02

:Partition

acs-admweb1-a

:Partition

adm-web7

:Partition

bca

:Partition

_a_renseigner_0000363782

:Partition

_a_renseigner_0000364383

:Partition

_a_renseigner_0000364384

:Partition

adm-dba2
:Partition

adm-ntp1-a

:Partition

ancien_qeiaso14

:Partition

S0000378345

:Partition

be2-maint.chronos

:Partition

id385184

:Partition

dev-acs-rea5-a

:Partition

acs-sp-rsyslog301-a

:Partition

_a_renseigner_0000389373

:Partition

_a_renseigner_0000391896

:Partition

_a_renseigner_0000391919

:Partition

jumpmts1

:Partition

masterldap02

:Partition

fai2 nc

:Partition

hmcef1

:Partition

m1xxrmp1

:Partition

_a_renseigner_0000403729

:Partition

_a_renseigner_0000403730

:Partition

admin4

:Partition

build-win

:Partition

ft-poc-a2

:Partition

ft-poc-a1

:Partition

ife-evol

:Partition

hmcef2

:Partition

hmcvel7

:Partition

dfbp3e00

:Partition

admin :Partition

ldap1

:Partition

ldap2

:Partition

ldap3

:Partition

ldap4
:Partition

ldap5:Partition

master

:Partition

exploit.msr

:Partition

_a_renseigner_0000406807

:Partition

_a_renseigner_0000406808

:Partition

_a_renseigner_0000406809

:Partition

_a_renseigner_0000406810

:Partition

_a_renseigner_0000406811

:Partition

hmcvel3

:Partition

masterweb02 NC

:Partition

masterweb01 NC

:Partition

ftp02 nc

:Partition

S0000407972

:Partition

master01.clb nc

:Partition

master02-clb nc

:Partition

ext-pl6450

:Partition

h03k03

:Partition

dfh12e01

:Partition

dr42ldb1

:Partition

iralitde
:Partition

iraleml

:Partition

iralosa

:Partition

iralnml

:Partition

basil2

:Partition

dfbp3e0a

:Partition

acsls

:Partition

adm-log4-m

:Partition

aufwmglutarx01

:Partition

acs-admweb1-b

:Partition

dev-acs-rea2-a

:Partition

dev-acs-rea3-a

:Partition

drpwxdb1

:Partition

ftp-priv.dev.oleane.net

:Partition

adm-activcard1-a

:Partition

bagad

:Partition

dv34sdb01

:Partition

inpmsdb11n

:Partition

blafuji

:Partition

0000933971

:Product

IBM Director Agent

:Product

IBM Director Remote Control Agent

:Product

Platon S3D0 Windows

:Product

Bind

:Product

Oracle Client

:Product

Solaris

:Product

HP Lights Out Drivers and Agents

:Product

OPEN VIEW NNM

:Product

NetBackup Standard Client

:Product

Java 2 SDK

:Product

Rational PurifyPlus

:Product

WebSphere MQ Series Client

:Product

Sentry - KM blackout

:Product

Platon

:Product

AIX

:Product

Weblogic Enterprise Edition

:Product

AIX

:Product

VisualAge C++ for AIX

:Product

IHS - IBM HTTP Server

:Product

HP C-aC++ Compiler

:Product

WebSphere MQ Series Server

:Product

ORACLE SGBD Enterprise

:Product

UniVerse

:Product

NetBackup Standard Client

:Product

AIX

:Product

ORACLE SGBD Enterprise
:Product

Apache HTTP Server

:Product

Java 2 Runtime Environment

:Product

RHM Client

:Product

RHM Client

:Product

Broadcom Advanced Control Suite 2

:Product

MC Service Guard

:Product

Linux Red Hat

:Product

AIX

:Product

Platon

:Product

Tuxedo

:Product

Apache HTTP Server

:Product

Oracle Instant Client

:Product

WebSphere MQ Series Server

:Product

Oracle SGBD Noyau

:Product

Uniface

:Product

Replication Server

:Product

Apache HTTP Server

:Product

PHP

:Product

WebSphere MQ Series Server

:Product

Solaris

:Product

Bind

:Product

VisualAge C++ for AIX

:Product

Java 2 Runtime Environment

:Product

DB2 Client

:Product

AIX

:Product

LFTP

:Product

Platon

:Product

Open SSH

:Product

Open SSL

:Product

ORACLE SGBD Enterprise

:Product

Weblogic Enterprise Edition

:Product

Sybase ASE

:Product

ORACLE SGBD Enterprise

:Product

Apache HTTP Server

:Product

Microsoft .NET Framework

:Product

ServeRaid Manager

:Product

Platon

:Product

RHM Client

:Product

NetBackup Standard Client
:Product

Perl

:Product

Platon

:Product

NetBackup Enterprise Client

:Product

Oracle Instant Client

:Product

Java 2 Runtime Environment

:Product

Open Client Server

:Product

Oracle Internet Directory Client

:Product

Open SSL

:Product

Agent Bladelogic

:Product

Platon

:Product

Patrol Agent

:Product

Navisphere CLI

:Product

Sql Server Client Tools

:Product

Sun Validation Test Suite

:Product

LFTP

:Product

WebSphere MQ Series Server

:Product

WebSphere MQ Client

:Product

ORACLE ASM

:Product

Weblogic Enterprise Edition

:Product

JOLT client

:Product

Open SSH

:Product

Open SSL

:Product

Platon

:Product

TimeNavigator

:Product

ORACLE SGBD Enterprise

:Product

AIX

:Product

Apache HTTP Server

:Product

Python

:Product

Tuxedo

:Product

Solaris

:Product

Open SSL

:Product

Solaris

:Product

Sun Explorer Data Collector

:Product

Perl

:Product

Patrol Agent

:Product

Java 2 Runtime Environment

:Product

Java 2 Runtime Environment

:Product

Oracle Instant Client

:Product

Java 2 Runtime Environment

:Product

VisiBroker for Java

:Product

Java 2 SDK

:Product

Bind

:Product

Avamar Agent

:Product

Java 2 Runtime Environment

:Product

WebSphere MQ Client

:Product

TimeNavigator

:Product

Oracle SGBD Noyau

:Product

Patrol Agent

:Product

ECC EMC

:Product

EMC SOLUTIONS ENABLER

:Product

Sentry - KM sentry

:Product

Java 2 Runtime Environment

:Product

Java 2 Runtime Environment
:Product

Java 2 Runtime Environment

:Product

TimeNavigator

:Product

Open SSL

:Product

EMC SOLUTIONS ENABLER

:Product

AIX

:Product

Java 2 SDK

:Product

Apache Tomcat

:Product

HP System Health Application and Insight Management Agents Package

:Product

TimeNavigator

:Product

Axway XFB - CFT

:Product

Weblogic Standard Edition

:Product

Java 2 Runtime Environment

:Product

MySQL Community Edition

:Product

Java 2 Runtime Environment

:Product

Apache HTTP Server

:Product

Apache HTTP Server

:Product

Axway XFB - CFT

:Product

BPM for dollaru - KM $U

:Product

HP C-aC++ Compiler

:Product

Java 2 Runtime Environment

:Product

Java 2 Runtime Environment

:Product

Java 2 Runtime Environment

:Product

Open SSL

:Product

WebSphere MQ Series Server

:Product

Patrol Agent

:Product

SUN OS

:Product

Apache HTTP Server

:Product

Sybase ASE

:Product

Dollar Uprocs Oracle

:Product

VERITAS Fondation VxVm

:Product

Axway XFB - CFT

:Product

EMC SOLUTIONS ENABLER

:Product

Java 2 Runtime Environment

:Product

Java 2 Runtime Environment

:Product

MC Service Guard

:Product

Open SSL

:Product

BPM for BEA Tuxedo - KM tuxedo

:Product

BPM for databases - KM oracle

:Product

INFORMIX

:Product

Omnivision

:Product

Patrol Agent

:Product

Perl

:Product

Apache HTTP Server

:Product

Java 2 Runtime Environment

:Product

HP C-aC++ Compiler

:Product

Apache Ant

:Product

PostgreSQL

:Product

Open SSH

:Product

Python

:Product

Bind

:Product

PostgreSQL

:Product

Pack SysMon

:Product

Patrol Agent

:Product

Platon

:Product

ActivePerl

:Product

WebSphere MQ Series Server

:Product

WebSphere MQ Client

:Product

Java 2 Runtime Environment

:Product

Open SSL

:Product

Open SSL

:Product

Oracle Internet Directory Client

:Product

Oracle XML Development Kit

:Product

Java 2 Runtime Environment

:Product

Java 2 Runtime Environment

:Product

NetBackUp Client

:Product

Sun Java System Web Server

:Product

Open SSH

:Product

ECC EMC

:Product

Open SSL

:Product

Java 2 Runtime Environment

:Product

LFTP

:Product

PostgreSQL

:Product

Apache HTTP Server

:Product

TeamQuest Performance Software

:Product

Internet Explorer

:Product

HP DDM Inventory Agent

:Product

McAfee VirusScan Enterprise :Product

Apache Tomcat

:Product

Apache Tomcat

:Product

Sentry - KM sentry

:Product

Sybase ASE

:Product

HP DDM Inventory Agent

:Product

Sentry - KM oracle

:Product

Perl

:Product

Omnivision

:Product

Perl

:Product

Perl

:Product

SUN OS

:Product

TimeNavigator

:Product

Open SSL

:Product

Patrol Agent

:Product

Agent Bladelogic

:Product

Omnivision

:Product

HP-UX

:Product

BIND

:Product

Patrol Agent

:Product

TimeNavigator

:Product

NetBackup Standard Client

:Product

Open SSH

:Product

Open SSL

:Product

Open SSL

:Product

TCP Wrappers

:Product

Open SSH

:Product

Axway XFB - CFT

:Product

Open SSH

:Product

NetBackup Standard Client

:Product

Java 2 Runtime Environment

:Product

Linux Red Hat

:Product

Java 2 Runtime Environment

:Product

Java 2 Runtime Environment

:Product

Java 2 Runtime Environment

:Product

Java 2 Runtime Environment

:Product

Perl

:Product

Omnivision

:Product

Patrol Agent

:Product

Sentry - KM webSphere MQ

:Product

Java 2 Runtime Environment

:Product

Axway XFB - CFT

:Product

Omnivision

:Product

VERITAS Fondation VxVm

:Product

Java 2 Runtime Environment

:Product

Omnivision

:Product

Perl

:Product

Perl

:Product

Perl

:Product

Perl

:Product

Open SSH

:Product

Open SSL

:Product

VERITAS Fondation VxVm

:Product

Open SSH

:Product

Open SSL

:Product

Open SSL

:Product

Open SSL

:Product

ORACLE SGBD Enterprise

:Product

Apache HTTP Server

:Product

Apache HTTP Server

:Product

Java 2 Runtime Environment

:Product

Java 2 Runtime Environment

:Product

Java 2 Runtime Environment

:Product

Java 2 Runtime Environment

:Product

Java 2 Runtime Environment

:Product

Java 2 Runtime Environment

:Product

BPM for dollaru - KM $U

:Product

PHP

:Product

HP-UX

:Product

PostgreSQL

:Product

ECC EMC

:Product

Platon S4D0

:Product

WebSphere MQ Series Server

:Product

ECC EMC

:Product

Java 2 Runtime Environment

:Product

Sentry - KM SRDF

:Product

Open SSL

:Product

Omnivision

:Product

EMC SOLUTIONS ENABLER

:Product

Sentry - KM blackout

:Product

Java 2 Runtime Environment

:Product

Sentry - KM $U

:Product

Sentry - KM sentry

:Product

Sentry - KM websphere

:Product

Agent Bladelogic

:Product

Platon

:Product

Python

:Product

Apache HTTP Server

:Product

HP Enterprise Discovery Agent

:Product

Accueil

:Product

Framework IMP

:Product

HP DDM Inventory Client

:Product

Apache Ant

:Product

Sentry - KM blackout

:Product

Sentry - KM sentry

:Product

uCMDB Client

:Product

Java 2 Runtime Environment

:Product

Platon

:Product

Framework IMP

:Product

HP Universal Discovery Agent

:Product

Nagios Addon NRPE

:Product

Java 2 Runtime Environment

:Product

Struts

:Product

Struts

:Product

Struts

:Product

HP Universal Discovery Agent

:Product

McAfee ePolicy Orchestrator Agent

:Product

Apache Ant

:Product

NetBackup Standard Client

:Product

Avamar Agent

:Product

Windows Server

:Product

McAfee ePolicy Orchestrator Agent

:Product

Patrol Agent

:Product

Sentry - KM blackout

:Product

Patrol Agent

:Product

Sentry - KM sentry

:Product

HP Universal Discovery Agent

:Product

Sentry - KM cft

:Product

Sentry - KM blackout

:Product

Python

:Product

Perl

:Product

Apache HTTP Server

:Product

Open SSH

:Product

Open SSL

:Product

BPM for databases - KM oracle

:Product

BPM for databases - KM oracle

:Product

Framework IMP

:Product

Java 2 Runtime Environment

:Product

Sentry - KM FSA

:Product

Sentry - KM oracle

:Product

Open SSL

:Product

AIX

:Product

Perl

:Product

PowerPath

:Product

Dollar U application serveur

:Product

NetBackup Enterprise Client

:Product

Java 2 Runtime Environment

:Product

Java 2 Runtime Environment

:Product

Java 2 Runtime Environment

:Product

Java 2 Runtime Environment

:Product

Omnivision

:Product

Sentry - KM blackout

:Product

Open SSH

:Product

TeamQuest Performance Software

:Product

Agent Bladelogic

:Product

Open SSL

:Product

Platon

:Product

Java 2 Runtime Environment

:Product

Java 2 Runtime Environment

:Product

Framework IMP

:Product

Dollar U application serveur
:Product

Sentry - KM $U

:Product

Sentry - KM sentry

:Product

uCMDB Client

:Product

Pack SysMon

:Product

HP DDM Inventory Client

:Product

Agent Bladelogic

:Product

HP DDM Inventory Agent

:Product

NetBackup Standard Client

:Product

Perl

:Product

Open SSH

:Product

TCP Wrappers

:Product

uCMDB Client

:Product

Apache Ant

:Product

HP DDM Inventory Agent

:Product

Figure 2.3: Relations between 〈Equipment〉, 〈vEquipment〉 and 〈Product〉 for 100
servers.

Additionally, we proposed a simple language to request ‘subgraph’ data through the
data model called License metric Language (LML). This language is used to represent
metric formulas and is applied on the different nodes described above. We can see some
examples of its requests in Figure 2.4. LML is composed of basic operations and is
represented thanks to commonly used tokens:

constants

CONSTANT = 0[xX][a-fA-F0-9]+ | [0-9]+ | [0-9]+[Ee][+-]?[0-9]+

| [0-9]*\.[0-9]+([Ee][+-]?[0-9])?

| [0-9]+\.[0-9]*([Ee][+-]?[0-9])?

STRING_LITERAL = [a-zA-Z_]?\’(\\.|[^\\\’])+\’

| [a-zA-Z_]?"(\\.|[^\\"])*"

2.1. MODELIZATION 21

this/vEquipment/Product.name	==	"Windows"

Path	traversal

Attribute

Comparison

Block	target

this/Equipment[type="Server",model="DELL"]

Path

Node	filtering

Filter

ext:oracle.corefactor(arg1,	arg2)

Calling	external	resource

Resource	name Optional	args

Figure 2.4: Features examples of LML

Comparisons

LE_OP = <=

GE_OP = >=

EQ_OP = ==

NE_OP = !=

AND = &&

OR = \|\|

INF = <

SUP = >

Operators

RIGHT_OP = >>

LEFT_OP = <<

AND_OP = &

OR_OP = \|

NEG = !

SUB = -

22 CHAPTER 2. METRIC DEFINITION PROBLEM

ADD = \+

MUL = *

DIV = //

MOD = %

POW = \^

Assignment and parenthesis

ASSIGN = =

L_PAREN = \(

R_PAREN = \)

The features brought by LML and showed in Figure 2.4 are path traversal, filtering
and external resources. They require specific defined tokens:

L_BRACKET = \[

R_BRACKET = \]

DOT = \.

COMMA = ,

SUBNODE = /

EXT = ext

THIS = this

ID = [a-zA-Z_]([a-zA-Z_]|[0-9])*

For clarity purposes, the full LML tokens and grammar can be found in Appendix.A
(page 79). Each statement of LML is called a request, they allow the user to manipulate
the data to represent any metric. The request is represented with the following grammar:

〈statement〉 ::= 〈mutation〉
| 〈comparison〉
| 〈function〉
| 〈attr〉
| 〈operation〉

The mutation allows to modify data during the computation of the metric by as-
signing the result of an operation or a function to an attribute:

〈mutation〉 ::= 〈attr〉 ASSIGN 〈operation〉
| 〈attr〉 ASSIGN 〈function〉

The operation is defined as the result of the application of one or multiple operators
on values or functions:

2.1. MODELIZATION 23

〈operation〉 ::= 〈operation arg〉 〈op〉 〈operation arg〉

〈operation long〉 ::= 〈operation〉 〈op〉 〈operation arg〉

〈op〉 ::= ADD
| MUL
| DIV
| SUB
| POW
| POW
| LEFT OP
| RIGHT OP
| OR OP
| AND OP
| MOD

〈operation arg〉 ::= 〈attr〉
| 〈val〉
| 〈function〉

〈val〉 ::= STRING LITERAL
| CONSTANT

All externally defined functions are accessed thanks to the EXT token. The function
is then accessed by its ID before inputing all the parameters:

〈function〉 ::= EXT DOT 〈function external long〉
| ID L PAREN 〈func args〉 R PAREN
| ID L PAREN R PAREN

〈function external long〉 ::= 〈function〉
| ID DOT 〈function external long〉

〈func args〉 ::= 〈possible arg〉
| 〈possible arg〉 COMMA 〈func args〉

〈possible arg〉 ::= 〈attr〉
| 〈val〉
| 〈path〉
| 〈function〉

The comparison grammar is based on comparison operators that can be chained:

〈comparison〉 ::= 〈comparison set〉
| 〈comparison set〉 AND 〈comparison〉
| 〈comparison set〉 OR 〈comparison〉

24 CHAPTER 2. METRIC DEFINITION PROBLEM

〈comparison set〉 ::= 〈comparison arg〉 〈comp op〉 〈comparison arg〉

〈comparison arg〉 ::= 〈attr〉
| 〈val〉
| 〈function〉
| 〈operation〉

〈comp op〉 ::= LE OP
| GE OP
| EQ OP
| NE OP
| INF
| SUP

The path traversal and filtering features of LML are defined with the following gram-
mar:

〈attr〉 ::= 〈path〉 DOT ID
| NEG 〈path〉 DOT ID

〈path〉 ::= 〈node〉
| 〈path〉 SUBNODE 〈node〉

〈node〉 ::= ID
| THIS
| THIS 〈filter〉
| ID 〈filter〉

〈filter〉 ::= L BRACKET 〈filter comparison args〉 R BRACKET

〈filter comparison args〉 ::= 〈filter comparison〉
| 〈filter comparison〉 COMMA 〈filter comparison args〉

〈filter comparison〉 ::= 〈filter comparison set〉
| 〈filter comparison set〉 OR 〈filter comparison〉

〈filter comparison set〉 ::= ID 〈comp op filter〉 〈val〉

〈comp op filter〉 ::= 〈comp op〉
| ASSIGN

This allows the user to target a node or an attribute and filter the ‘subgraph’ nodes
based on their data. We can see in Figure 2.5 the finite state machine of the LML
grammar.

2.1. MODELIZATION 25
attr

path

node

filter

filter_com
parison_set

com
parison

com
parison_set

com
parison_arg

operation

operation_arg

m
utation

function

func_arg

D
O
T

ID

N
E
G

C
S
T

C
O
M
P
_O
P

A
S
S
IG
N

ID

O
R

C
O
M
M
A

R
_B
R
A
C
K
E
T

L
_B
R
A
C
K
E
T

T
H
IS

ID

S
U
B
N
O
D
E

ID

C
S
T

F
U
N
C
T
IO
N

A
T
T
R

O
P

C
S
T

F
U
N
C
T
IO
N

A
T
T
R

C
O
M
P
_O
P

O
R

A
N
D

C
O
M
P
A
R
IS
O
N
_A
R
G

A
T
T
R

A
S
S
IG
N

O
P
E
R
A
T
IO
N

C
S
T

P
A
T
H

F
U
N
C
T
IO
N

A
T
T
R

R
_P
A
R
E
N

C
O
M
M
A

ID

E
X
T

L
_P
A
R
E
N

ID
D
O
T

Figure 2.5: Finite-State Machine of LML.

26 CHAPTER 2. METRIC DEFINITION PROBLEM

The principle of the metric model is that we can tag nodes with LML languages. A
tag comprises a specific keyword followed by the LML code. We can see in Figure 2.6
an example of tag on the 〈Equipment〉 node. To describe a metric, it is necessary to
tag each adapted node using the following set of keywords:

People

Business

Management

Software

Infrastructure

Virtualization

Tags

clustering

equipment

product

virtualEquipment

component

instance

contract

editorentity

project

publisher

compute sum(this.nbCores)

Figure 2.6: Basic example of node tagging with LML

filter The filter keyword allows us to filter nodes depending on their data, for example,
to keep only the equipment in production:

this.environment == “Production”

This filter is active throughout the processing of the active block node. This allows
different filters to apply to the same type of node using multiple blocks definitions
in the same model:

Equipment:

filter:

this.environment == ‘Production’

Process filtered nodes in production environment

2.1. MODELIZATION 27

Equipment:

filter:

this.environment == ‘Development’

Process filtered nodes in development environment

stop The keyword stop allows to express an impossibility to calculate the metric thanks
to a logical expression as well. For example, if a metric should only be used in a
student environment, the calculation should be stopped if we are in a professional
context. This allows for example to quickly discover a noncompliance with a metric
during use or before a contractualization.

mutate Mutate allows us to change node attributes by following a calculation formula.
With Oracle’s processor metric, we must multiply the number of cores by a corefac-
tor [5], which is done using the following expression:

this.nbcores = this.nbcores ∗ ext : oracle.corefactor(...)

During a block processing, all modified data are stored in a cache so that the
original data stay untouched.

gatherBy gatherBy is used for aggregation functions targeting a node or entity. For
example, to calculate the number of cores required with Oracle’s processor metric,
it is actually necessary to count all the cores present in a vCenter so in our case
it would be necessary to use the gatherBy keyword targeting the Clustering node
representing a vCenter.

compute compute defines the calculation to be performed to get the required number
of licenses according to the modeled metric. This key must be present in each
model and only once! The block containing the compute keyword will be executed
last.

A metric is therefore defined in blocks describing the processing of underlying data
and the computation needed to get the number of licenses. For example, the Microsoft
Windows ‘per-core’ licensing metric with Datacenter edition [32] is defined as a one block
model:

Equipment:

filter:

- this/vEquipment/OS.name == "Windows"

mutate:

- this.nbLicensedCores = max(

16,

max(8 * this.nbCPUs, this.nbCPUs * this/Component[type="CPU"].nbCores)

)

compute:

sum(this.nbLicensedCores)

28 CHAPTER 2. METRIC DEFINITION PROBLEM

Besides, Figure 2.7 and Figure 2.8 represent the models of the Oracle Database
Processor metric and RedHat Instance metric, respectively.

People

Business

Management

Software

Infrastructure

Virtualization

Tags

clustering

equipment

product

virtualEquipment

component

instance

contract

editorentity

project

publisher

compute sum(this/Component[type="cpu"].nbCores)gatherBy this[type="vCenter"]

mutate this.amount *= ext:oracle.corefactor(...)

Figure 2.7: Model for Oracle Database Processor metric

2.2 Using the model to compute compliance

We can now use this structure metric model to automatize compliance checking and
optimize license consumption across our software park. We developed an algorithm that
compute the number of license from a metric structure. This algorithm is separated in
4 phases:

Phase 1: Filtering This step uses the filter keyword in each node. Each LML formula
must return be a boolean expression and only the underlying nodes where this
expression returns True are kept. Each block is tested independently, and then
we move to the second step. One example of filtering the underlying nodes is
represented in Figure 2.9.

Phase 2: Stopping Here, we will use the keyword stop in the same way as above. If
the result of the Boolean formula is True, then the calculation of the model cannot
be applied. This can be used, for example, if we want to check certain compliance

2.2. USING THE MODEL TO COMPUTE COMPLIANCE 29

People

Business

Management

Software

Infrastructure

Virtualization

Tags

clustering

equipment

product

virtualEquipment

component

instance

contract

editorentity

project

publisher

compute

sum(
 count(this/Product[name="RedHat"]),
 count(this/VirtualEquipment/Product[name="RedHat"])
)

Figure 2.8: Model for RedHat Instance metric

filter

count(this/Product[name="Oracle SGBD"]) > 0

vEquipment

ID type hostname ...

0 virtual machine partition_0 ...

1 virtual machine partition_1 ...

2 virtual machine partition_2 ...

3 virtual machine partition_3 ...

4 virtual machine partition_4 ...

⁞

n virtual machine partition_n ...

Product

ID name version ...

0 Oracle SGBD 11.0 ...

1 Microsoft Word 2016 ...

2 Oracle SGBD 12.0 ...

Figure 2.9: Phase 1: Filtering subgraph nodes

issues and respect PURs. This step is used either before deployment or purchase
to warn users that this metric will place us in a noncompliant state or during the

30 CHAPTER 2. METRIC DEFINITION PROBLEM

life cycle to check which contracts are not respected anymore. Figure 2.10 is an
example of the stopping phase.

stop

this.country == "France"

Equipment

ID type hostname

0 server server_0

1 server server_1

2 server server_2

3 server server_3

4 server server_4

ID datacenter_name country

0 datacenter_0 Australia

1 datacenter_1 France

2 datacenter_2 Great Britain

Figure 2.10: Phase 2: Stopping the computation because of noncompliance. Here the
server 3 is located in France causing a breach with one of the PURs forbidding this loca-
tion. This step make it possible to immediately detect a noncompliance and, therefore,
indicate that this metric is not viable for our use.

Step 3: Mutating This step allows us to change the data of one or more particular
nodes. The formula specifies how and this applies to all previously filtered nodes
in the same block. Figure 2.11 introduces an example corresponding to the IBM
PVU metric.

mutate

this.coresNumber *= ext:IBM.PVU(this.edition, this.family)

ID componentType coresNumber family edition

0 CPU 8 → 560 SPARC T3

1 CPU 8

2 CPU 12

3 CPU 4 → 280 Core i5

4 CPU 8 → 960 Xeon 3400

⁞

n CPU 4 → 200 Xeon 3000

Figure 2.11: Phase 3: Mutating underlying nodes data with IBM PVU example. We
can see that the mutated data are only the ones that has been filtered previously within
the same block of execution.

Step 4: Computing This last step includes several keywords: gatherBy and compute.
An example with the metric IBM PVU too is given in Figure 2.12. There can only

2.2. USING THE MODEL TO COMPUTE COMPLIANCE 31

be one compute keyword per model and the node containing it will be the last to
be executed. During the execution of the compute keyword, only the filtered nodes
are affected.

compute

sum(this.coresNumber)

ID componentType coresNumber family edition

0 CPU 560 SPARC T3

1 CPU 8

2 CPU 12

3 CPU 280 Core i5

4 CPU 960 Xeon 3400

⁞

n CPU 200 Xeon 3000

= 2000

Figure 2.12: Phase 4: Computing the number of licenses

Our implementation uses a graph database to simulate the Cloud environment and
run the computations. We chose to use DGraph [33] because it uses a structured query
language which has similarities with our structure. To go from the metric model to the
computation, we use the automaton (Appendix.B) which transform the model into an
Abstract Syntax Tree (AST) like in Figure 2.13.

For the evaluation we built a platform that allows us to describe models and then use
them on a prototype of a randomly (or not) generated Cloud. This platform allows three
things: model writing, computation and visualization of results for model or computation
method improvements. The first one is a basic storage of model in a database for further
use. The computation generates the Cloud environment and launch the model blocks
commands on it before storing the results. The last step, visualization, allow to compare
results on different Clouds. We can approve the model with Cloud generation as we can
specify exactly the environment and compare with hand computation. We can see in
Figure 2.14 the result of the RedHat metric on a random Cloud.

As we can get the processing time of the metric with this prototype, we compared
several metrics within hundreds of different Clouds to see the impact of Cloud size and
scattering (i.e. more or fewer servers per clusters). We can see in Figure 2.15 and
Figure 2.16 that the time needed to compute the metric on up to a thousand servers
is very low. More importantly, it is linear and does not depend on the data as we
computed the metrics on hundreds on generated Clouds before taking the average time.
This computation have been made on a small laptop equipped with an i3 processor and
4GB of RAM, meaning this calculation doesn’t require huge computation power and that
we can reduce the time or compute on bigger data sets with a more powerful machine.

32 CHAPTER 2. METRIC DEFINITION PROBLEM

COMP

> FUNC VAL

count PATH

PATH FILTERED_NODE

this vEquipment Product FILTER

COMP

== name VAL

"Oracle SGBD"

0

Figure 2.13: Abstract Syntax Tree resulting from the following LML:
‘count(this/vEquipment/Product[name==”Oracle SGBD”]) > 0’

The validity of this metric model comes from the fact that we manage to represent
tens of metrics with greater or lesser difficulty. Therefore, we assume that this model
can represent any present or future metric:

Lemma 1. The combination of LML and environmental graph representing the metric
model presented in this Chapter can represent any present or future metric.

2.2. USING THE MODEL TO COMPUTE COMPLIANCE 33

Figure 2.14: Result of LML computation on RedHat instance metric

In conclusion, we introduced a Cloud environment representation based on graph
coupled with a new language, LML, to model any existing metric. We showed that this
structure can be used to automatize SAM tasks like compliance checking and that the
time needed to compute one model and address a Cloud containing hundreds servers is
expressed in tens of milliseconds on a low-level laptop, therefore, being accessible to any-
one. One problem remains, if a mistake creeps into a structured metric definition then
all following computation will output erroneous results irrevocably leading to noncom-
pliance. The solution is to get this model directly from the editor besides the contract

34 CHAPTER 2. METRIC DEFINITION PROBLEM

200 400 600 800 1000
Number of servers

0.00

0.02

0.04

0.06

0.08
Ti

m
e

to
 c

om
pu

te
 in

 se
co

nd
s

Time to compute metrics depending on number of servers
redhat.instance.standard
oracle.processor.standard
windows.cores.standard

Figure 2.15: Metric model computation time depending on Cloud size

1 2 3 4 5 6 7 8 9
Number of clusters

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Ti
m

e
to

 c
om

pu
te

 in
 se

co
nd

s

Time to compute metrics depending on number of servers
redhat.instance.standard
oracle.processor.standard
windows.cores.standard

Figure 2.16: Metric model computation time depending on Cloud scattering

and product. Therefore, no model could contain errors, or at least not because of the
customer. This can be done in two different ways: First, we can include this model in
the ISO 19770-3 [34] which deals with PURs representation but lacks a deeper model of

2.2. USING THE MODEL TO COMPUTE COMPLIANCE 35

metric. Secondly, we can extend the Open Digital Rights Language [35] (ODRL) which
is a structured language to represent use rights of digital property. This language does
not have any metric representation but could be used in addition to LML as an exchange
standard between editors and customers of license agreements. With such a model, we
can now assume that we have a way to compute a metric automatically on a given
Cloud. These considerations lead to the following Chapter about the automatization
and optimization of product deployment on the Cloud.

36 CHAPTER 2. METRIC DEFINITION PROBLEM

Chapter 3

Deployment automatization and
optimization

Contents

3.1 First considerations about SAM for deployment 38

3.2 GreenSAM : a multi-parametric deployment heuristic 43

3.2.1 Oracle Database Enterprise Edition use case 49

3.2.2 RedHat OpenStack use case . 50

3.3 Deploying multiple products at the same time 52

3.4 Forecasting . 63

Current architectures handle two ways of deploying products: First, someone installs
the product on a platform for further use. This person may or may not have Software
Asset Management (SAM) considerations and therefore will maybe break some agree-
ments. As explained in the introduction, some new methods like BYOD introduce more
and more risks for SAM. Even if the user of the product knew a little bit about SAM,
the amount of data he would have to access is enormous, as well as his job of cross-
checking all contracts to see the impact of such installation of other contracts about
other products. All the while assuming he has access to all this data. The second way
of deploying products is by going through an interface and asking for a product. This
platform will then compute the compliance and will authorize or not the deployment of
the product. This second way already exists for Cloud orchestrators which try to deploy
the product following some rules and optimization like storage, network proximity, and
energy consumption. What an orchestrator doesn’t have is SAM knowledge and access
to all the data needed to ensure compliance. Another problem is the dynamicity of the
environment: What happen if we connect new servers to a Cluster while a product is
installed on it? We will tackle this issue by proposing a multi-parametric optimization
deployment algorithm that ensure compliance, deploy several products at a time.

37

38 CHAPTER 3. DEPLOYMENT AUTOMATIZATION AND OPTIMIZATION

3.1 First considerations about SAM for deployment

First of all, we will demonstrate the impact of a bad deployment of a product. Con-
sidering only SAM perspectives, we want to deploy an Oracle Database somewhere in a
Cloud and see the difference between some placements. This Cloud will be separated in
Clusters and each Clusters will have a specific number of servers and by extension cores.
As we can see in Figure 3.1, we deploy a database on a Cluster with 4 cores leading to
the need for 4 licenses to be compliant (we assume that the corefactor [5] is 1). If we
install new servers to this Cluster, adding 2 more cores, then we are no longer compliant.
Current orchestrators cannot prevent this behaviour so SAM tools have to detect and
fix this issue.

Cluster A Cluster A

Assign	
4	licenses

Cluster A'
deployment

of	a	2-cores
server

Figure 3.1: Problem of the during life-cycle deployment of a new server: After assigning
4 licenses to this cluster to be compliant, the new server added 2 cores to the Cluster.
This become a noncompliant situation until two more licenses are assigned.

While this case is fairly easy to detect and fix, a real case will have to handle hundreds
of different metrics in a much bigger Cloud. Currently, no algorithm is capable of doing
such a thing. Our algorithm is split in three stages: First, before the deployment of a
product, we compute the different metrics available for this product on our Cloud and
choose the best one. The second stage of the algorithm is to check if new resources have
been added to the Cloud and if so, compute the compliance on the new environment.
Finally, the third stage is the optimization of the environment where we try to move the
products on different machines to reduce the overall cost while keeping the compliance.

To show the effect a SAM oriented optimization can have on the price, we will make

3.1. FIRST CONSIDERATIONS ABOUT SAM FOR DEPLOYMENT 39

a first näıve deployment algorithm for Oracle Database and its two metrics. As we have
only two metrics (defined in Section.1.1), we extract the mathematical formula from
them instead of using metric models to create a single formula telling which metric is
the best. Using metric models doesn’t allow us to do that. The two Oracle Database
metrics are therefore defined as:

Processor Let n servers, ci the number of cores of server i, li the Cluster number of
server i, fi the corefactor of the CPU of server i, and pi a boolean stating if there
is Oracle Database on server i. Lp, the required number of licenses for metric
processor to deploy a database on the server j, is:

Lp =
n∑
i=1

(fi × ci)× (¬pi)× (li = lj) (3.1)

With Clj =
∑n

i=1(fi × ci) × (lj = li) as the number of cores in Cluster j, we can
reduce Equation 3.1 as:

Lp =

{
pj = 0, Clj

pj = 1, 0
= (¬pj)× Clj (3.2)

Named User Plus Let Lp the number of licenses with processor metric for the de-
ployment of the database on server j, n the minimum of processor licenses per
user (defined as 25 in the public version of the metric), and U the number of users
that will access the deployed database. The required number of licenses in NUP
metric, Ln is:

Ln = max(n× Lp, U) (3.3)

We can now cross these two formulas to compute the point where one is better than
the other. If we take Pp the price of one processor license and Pn the price of one NUP
license then Cp = Lp × Pp is the price for deploying the database with processor metric
and Cn = Ln × Pn is the price for deploying the database with NUP license. We want
to deploy X databases on the same cluster so On the overall cost of the deployment will
be Cn ×X while Op will be

∑X
i=1Cp = Cp + 0 + 0 + 0 + ... + 0 = Cp because of the pi

variable. Therefore, selecting NUP metric instead of processor metric is defined as:

Cn ×X < Cp (3.4)

Because of the NUP metric definition, two cases appears:

Cn ×X < Cp =

{
n× Lp > U, n× Lp × Pn ×X < Lp × Pp
n× Lp < U,U × Pn ×X < Lp × Pp

(3.5)

In the first case:

n× Lp × Pn ×X < Lp × Pp (3.6)

40 CHAPTER 3. DEPLOYMENT AUTOMATIZATION AND OPTIMIZATION

n× Pn ×X < Pp (3.7)

X <
Pp

n× Pn
(3.8)

In the second case:

U × Pn ×X < Lp × Pp (3.9)

X <
Lp × Pp
U × Pn

(3.10)

With the prices of both licenses [6] we can define the constant α =
Pp

Pn
= 50, therefore:

Cn ×X < Cp =

{
n× Lp > U,X < α

n = 2

n× Lp < U,X <
Lp×α
U

(3.11)

With this equation, we can affirm that if n × Lp > U , the processor metric is
more interesting as soon as we deploy 2 databases or more regardless of the Cloud
environment. Depending on this result, we can define the three steps algorithm that will
show the benefits of crossing mathematical formulas to optimize the deployment. With
the following conventions:

� For a specific Cluster:
cluster.c← Total number of cores for this cluster after application of the corefactor.
cluster.ec← Number of cores remaining (i.e. not used by a database).
cluster.nblp ← Number of processor licenses assigned to this cluster.
cluster.nbln ← Number of NUP licenses assigned to this cluster.
cluster.nbdp ← Number of database installed licensed with processor metric.
cluster.nbdn ← Number of database installed licensed with NUP metric.

� Predefined functions:
SmallestCluster(Clusters) returns the cluster with minimum number of cores
after application of the corefactor.
SmallestNonEmptyCluster(Clusters, Cores) returns the smallest cluster with at
least Cores cores remaining.
DeployDatabase(Cluster,NbCores,Metric) deploys a database on the specified
cluster and remove from the remaining number of cores NbCores. The type of
license used is specified with Metric.
ActualProcessorCluster(Clusters) returns the cluster with a number of processor
licenses above zero and with the greatest number of empty cores. If there is no
cluster matching, returns the smallest cluster.

The first step takes an input composed of the database to deploy and the current
environment. This step outputs the environment after deployment or a warning if the
deployment is not possible. We can see this step in Algorithm 1.

3.1. FIRST CONSIDERATIONS ABOUT SAM FOR DEPLOYMENT 41

Algorithm 1: Step 1: Deployment

input : Clusters: Array of clusters, CPD: Cores Per Database, U: Number of
users

output: Clusters: Array of clusters
cluster ← ActualProcessorCluster(Clusters) ;
if cluster.nblp = 0 then

cluster ← SmallestCluster(Clusters) ;
end
else if cluster.ec > CPD then

DeployDatabase(cluster, CPD,Processor) ;
return Clusters ;

end
if cluster.nblp = 0 and cluster.ec > CPD then

Cp ← cluster.c× Pp ;
Cn ← max(N × cluster.c, U)× Pn ;
if Cp < Cn then

DeployDatabase(cluster, CPD,Processor) ;
else

DeployDatabase(cluster, CPD,NUP) ;
end

else
cluster ← SmallestNonEmptyCluster(Clusters, CPD) ;
if cluster = None then

return ERROR ;
end
Cp ← cluster.c× Pp ;
Cn ← max(N × cluster.c, U)× Pn ;
if Cp < Cn then

DeployDatabase(cluster, CPD,Processor) ;
else

DeployDatabase(cluster, CPD,NUP) ;
end

end
return Clusters

The second step check the compliance with removed/added resources. It will raise
a warning if the Cloud is not compliant anymore. Following the warning, the user that
made the change can either remove/add the resource or assign more licenses. This step
is defined in Algorithm 2.

Last step is to optimize the environment by moving products on other clusters if
it reduce the overall cost of databases installed in our Cloud. This step is defined in
Algorithm 3 using the public data about prices and minimum of processor licenses per

42 CHAPTER 3. DEPLOYMENT AUTOMATIZATION AND OPTIMIZATION

Algorithm 2: Step 2: Cloud compliance check

input : Clusters: Array of clusters with removed/added resources, U: Number
of users

output: Boolean: Compliant situation or not
for all Clusters as cluster do

if cluster.nbdp > 0 and cluster.nblp 6= cluster.c then
return ERROR ;

end
if cluster.nbdn > 0 and cluster.nbln 6= max(N × cluster.c, U) then

return ERROR ;
end

end

user.
We used this algorithm on several Cloud configurations and compared it to other

algorithms to see how it performs. Our Clouds configurations are the following:

� We set 1000 users per database.

� A database will need 4 cores to be installed

� We set the prices for processor and NUP licenses to 50 and 1 respectively to reduce
big numbers but keeping the right magnitude order.

� We set the corefactor to 1 for each processor as it will not impact the simulation.

� We want to deploy up to 32 databases.

� Each Cloud is composed of n clusters containing m cores:

Algorithm 3: Step 3: Database cost optimization

input : Clusters: Array of clusters, U: Number of users
output: Clusters: Array of clusters
Clusters← SortedByTotalNumberOfCores(Clusters) ;
for all Clusters as cluster do

nbApps← cluster.nbdp + cluster.nbdn ;
if (25× cluster.c > U and nbApps > 2) or (25× cluster.c < U and
nbApps > (50× cluster.c/U)) then
ConvertAllToProcessor(cluster) ;

else
ConvertAllToNUP (cluster) ;

end

end

3.2. GREENSAM: A MULTI-PARAMETRIC DEPLOYMENT HEURISTIC 43

– 2 ≤ n ≤ 6

– 32 ≤ m ≤ 256 by step of 32

Different clusters have different m values, leading to
∑6

i=2 Γi8 ≈ 3000 different
Clouds.

We compared our algorithm to four others:

all random This algorithm takes a cluster at random and then randomly chooses the
metric to use for the deployment.

cluster random This algorithm chooses at random a cluster of deployment but chooses
the best metric for this cluster.

load balance This algorithm tries to put the same number of databases in all clusters.

smallest first This algorithm put the databases in the smallest cluster first (in term
of number of cores) before moving to the next smallest one. Each time, it chooses
the best metric to apply.

We can see in Figure 3.2 the results of this experiment. The SAM oriented algorithm
is far better than the other and manages to pay only 9000 licenses in average whereas
the second least expensive algorithm, smallestfirst, pays about 47,000 licenses. This
shows the needs for SAM considerations in software deployment to optimize the software
cost in companies. Here, with only one product, the SAM algorithm manages to reduce
the expenses by about 80% while ensuring compliance at all times.

The conclusion to this experiment is that two choices exist: First, if we have few
products to manage, it is extremely beneficial to develop an optimizing algorithm which
takes all metrics into account and makes the best deployment possible in our Cloud
architecture. On the other hand, if we have a lot of products to manage and the number
of metrics is too large to have an efficient algorithm, we need another kind of deployment
algorithm taking into account the metric model. We propose this kind of algorithm in
the next section all the while introducing multi-parametric optimization.

3.2 GreenSAM : a multi-parametric deployment heuristic

In 2014, datacenters in the U.S. consumed an estimated 70 billion kWh, representing
about 1.8% of total U.S. electricity consumption and datacenters in the world are re-
sponsible for 1% of all electricity. Current studies results show datacenters electricity
consumption increased steadily by about 4% since 2010. Current trends estimate U.S.
datacenters will consume approximately 73 billion kWh late 2020. As many IT services
and tools use the Cloud and are dependent on large infrastructure that can be local or re-
mote [36], more and more questions are being asked about the huge energy consumption
of these infrastructures to supply and cool computing machine [37]. Research has been
conducted to reduce these consumptions [38] and heuristics have been proposed such as

44 CHAPTER 3. DEPLOYMENT AUTOMATIZATION AND OPTIMIZATION

GreenPerf [39] for example which introduce a performance and power consumption ratio
to improve energy efficiency or an energy-efficient framework dedicated to Cloud [40].
One other paper [41] proposed optimization of the placement of virtual machines with
many other parameters including license costs and showed that handling both problems
of mapping virtual machines to physical machines and mapping applications to virtual
machines leads to better results than considering the two problems in isolation. Even
so the problem is well formulated, it lacks modern SAM considerations and uses the
fact that an application uses one license at most and that the number of licenses does
not rely on the underlying architecture with is an unrealistic view of the modern SAM.
Using only SAM considerations like in previous Section is not realistic for a deployment
algorithm. We will, therefore, tackle this issue with a multi-parametric deployment
algorithm which ensure compliance through all the Cloud environment by taking into
account energy consumption and performance of applications.

As energy consumption and product performance are a completely separated aca-
demic domain, we will use variables for energy and performances. The goal is to propose
an algorithm taking into account these parameters without computing them. The fi-

0 5 10 15 20 25 30
Number of databases deployed

0

20000

40000

60000

80000

100000

120000

Co
st

 o
f o

ve
ra

ll
de

pl
oy

m
en

t

Smart Deployed(final: 8676)
Cluster random(final: 128555)
Load balancer(final: 129529)
Smallest first(final: 46887)
All random(final: 82146)

Figure 3.2: Comparison of algorithms for the deployment of 32 Oracle Database on
about 3000 different Clouds

3.2. GREENSAM: A MULTI-PARAMETRIC DEPLOYMENT HEURISTIC 45

nal user will be able to use state-of-the-art estimation algorithms to fill the variables.
Therefore, we consider that we are responsible for the energy consumption of all servers
we put the application on. The first application will consume all the energy of the server
and the following applications installed on the same server will not consume anymore
energy. The performance variable is defined with Performance Indices (PI). We catego-
rize products in several classes and each class has a performance computation algorithm.
For example, a Cloud storage product will require a lot of storage and bandwidth while
a database could require a lot of CPUs resources. We define PI for each product we
want to deploy to better match our performance needs. A product is, therefore, defined
by its metrics and its PI. The behaviour of energy consumption and Performance Indice
are showed in Figure 3.3 and Figure 3.4 respectively.

300W 600W 425W

App 1 App 2 App 3

Figure 3.3: Example of energy consumption computation: Here, App1 will consume
300W when its deployed while App2 will not consume anything. As there is no more
space on the first server, App3 have to go on another server, consuming 425W.

Any optimization problem will have design parameters whose best possible values
from the viewpoint of the objectives are sought to be attained in the optimization process.
The optimization task here is to map a set of software onto available resources, here
servers. The three objective functions are defined with the following variables:

46 CHAPTER 3. DEPLOYMENT AUTOMATIZATION AND OPTIMIZATION

PI	
Cloud	storage

PI	
database

Figure 3.4: Performance Indices of software: Here a database PI is a function that takes
the number of cores in argument while a Cloud storage PI requires storage and network
attributes

.

n The number of servers noted s.

m The number of applications noted a.

As The attributes of a server s.

fa The formula for the metric of the application a that takes into account attributes
of servers.

Es The energy consumed by the server s for the first installation. As stated before,
when we deploy and application a on a server already containing one then Es = 0.

PIa The performance indice of the application a. It is a function waiting for attributes
of a server to give performance score. If the application a is not installed on the
server s then PIa(As) = 0. Besides, to avoid putting all applications on the same
server, another operational constraint states that an application requires 2 cores
not already used. If the application a doesn’t fit on the server s then PIa(As) = 0.
This constraint can be modified to fit any needs.

ET The total energy consumed by the deployment.

3.2. GREENSAM: A MULTI-PARAMETRIC DEPLOYMENT HEURISTIC 47

PT The total performance score of the deployment.

LT The total number of license needed by the deployment.

The first objective function is the minimization of energy consumption: the total
energy consumption ‘ET ’ of our deployment is expressed as:

ET =
n∑
s=1

Es × (¬ (∃a ∈ [1..m]/a ∈ s)) (3.12)

The second objective function is the maximization of performance. The overall per-
formance PT is expressed as:

PT =
n∑
s=1

m∑
a=1

PIa(As) (3.13)

The last objective function is the minimization of software cost: this objective will
stop the process if the metric computation brings a noncompliance state warning. The
total license consumption LT is expressed as:

LT =
n∑
s=1

m∑
a=1

fa(As) (3.14)

In most cases, machines that bring performance will have higher energy consumption,
implying that objectives PT and ET are contradictory - forming the basis for multi-
objective optimization. The variable fa(As) is the computation of the metric model on
a specific server. Each time we want to deploy a product, we compute the three criteria
for each server before using a Pareto front to keep a subset of best servers. We have
to compute the three criteria each time we deploy a new product because the variables
are likely to change like the performance that will decrease if we put a lot of products
on the same server. From the subset of servers, we filter the ones that will put us in a
noncompliant situation. If the subset become empty after this step, it means that the
product we want to deploy will always create a noncompliant state meaning we have to
skip it and warn the user.

We still have to sort the remaining servers, so we implemented the GreenSAM
heurisitc which will give from the three criteria a score to sort the servers. This score
function will divide the normalized performance of the server by the sum of the normal-
ized energy consumption and the normalized license consumption:

Score =

Ps
MP

Es
ME

+ LS
ML

+ 1
(3.15)

with the following variables:

Es Energy consumption of server s.

48 CHAPTER 3. DEPLOYMENT AUTOMATIZATION AND OPTIMIZATION

Ls License consumption of server s.

ME Maximum of energy across the server subset.

ML Maximum of license consumption over the server subset.

MP Maximum of performance over the server subset.

Ps Performance of server s.

Finally, GreenSAM will take the first server of the resulting sorted array and will
place the product on it. For example, given the set of servers defined in Table 3.1,
we obtained the Pareto front represented in Figure 3.5 and, therefore, the subset is
composed of servers 2, 4, 7 and 8.

Table 3.1: Set of servers

id performance energy licenses

1 8 300 16
2 16 300 16
3 4 550 12
4 32 375 12
5 4 550 16
6 8 375 16
7 4 300 8
8 8 400 4
9 8 325 16

10 32 475 16

With this subset we can now compute the scores for each server giving us the result
in Table 3.2 so the product will be deployed on the server 4 before handling the next
one.

Table 3.2: Set of servers

id performance energy licenses Score

2 16 300 16 0.182
4 32 375 12 0.372
7 4 300 8 0.056
8 8 400 4 0.111

Note that as we do local optimization, we will not obtain the optimal deployment
of all products by taking them one by one. If two servers get the same score, we will
randomly choose one but it means that the user should change the PI calculation to get

3.2. GREENSAM: A MULTI-PARAMETRIC DEPLOYMENT HEURISTIC 49

Performance

5 10 15 20 25 30
Energy

300
350

400
450

500
550

Lic
en

se
s

4
6
8
10
12
14
16

Servers
Pareto subset

Figure 3.5: Pareto front on the server set defined in Table 3.1

a finer result or add a parameter to differentiate the servers which have the same scores.
We evaluated this heuristic on two uses cases: Oracle Database Enterprise Edition as we
used its metrics in this document for the examples and RedHat OpenStack to see the
impact of using products with different metrics.

3.2.1 Oracle Database Enterprise Edition use case

For both use cases, we used a server data set coming from the french Orange� company
(first historical French multinational telecommunications corporation) with more than
5000 servers. In this use case we will deploy 10 databases in the Cloud and compare the
GreenSAM heuristic to others. The Performance Indice for the database will be the
following: we must have a minimum of 2 cores to be eligible and the performance score
is the number of cores divided by the number of already installed databases on it. The
heuristics we compare GreenSAM to are the following:

PerfEnergy This algorithm promotes performance first, the, energy meaning that we
will choose the most performant server and if two have the same performance, the
one which consume the less energy.

50 CHAPTER 3. DEPLOYMENT AUTOMATIZATION AND OPTIMIZATION

(a) First deployment (b) Fifth deployment

Figure 3.6: Pareto front of Oracle Database deployment

LicPerf This one focuses on the license consumption before optimizing the performance.

RatLic This algorithm optimize the ratio between performance and energy before op-
timizing license consumption.

We can see in Figure 3.6a the Pareto front of the first Oracle Database deployment
in the Cloud. Only 17 servers (red circles in Figure 3.6a) were part of the subset. This
number went down to 4 (red circles in Figure 3.6b) for the fifth deployment as shown in
Figure 3.6b.

The final results of this deployment is presented in Figure 3.7. We see that in the
end, GreenSAM loses half the performance compared to the best algorithm performance
wise. In return, it manages to lower the energy consumption to a quarter of the energy
consumed by the most energy-intensive algorithm. Besides, it gets good results in the
license consumption criteria. Overall, in this example, GreenSAM sacrifices performance
to enhance its energy and license consumption. In the next example, we will see a more
realistic deployment of multiple products that forms a usable environment.

3.2.2 RedHat OpenStack use case

In this use case, we will deploy a minimal OpenStack platform with the metrics from
the RedHat editor. The purpose of this deployment is to have a lead node (called
director), ten compute nodes and twenty CEPH nodes. Each node has its own metric
and PerformanceIndice defined as follows:

3.2. GREENSAM: A MULTI-PARAMETRIC DEPLOYMENT HEURISTIC 51

0 25 50 75 100 125 150 175 200
0

25

50

75

Pe
rfo

rm
an

ce
 sc

or
e

25 50 75 100 125 150 175 200
0

25

50

75

En
er

gy
 sc

or
e PerfEnergy

LicPerf
RatLic
GreenSAM

25 50 75 100 125 150 175 200
Number of servers

0

250

500

750

Lic
en

se
s n

um
be

r

Figure 3.7: Result of Oracle Database deployment using GreenSAM

Director node It must be located in a cluster with as many servers as possible to
be able to deploy as many compute and CEPH nodes as desired. Therefore, the
number of servers in the parent cluster will be the score.

Compute node It needs a lot of cores and must be deployed on a server without
anything else on it. The score will be the number of cores.

CEPH node It requires a lot of storage. The score will be, therefore, the amount of
storage available. As the compute node, we cannot reuse a server twice.

The licenses are computed as follow: we need one license per director node and
compute node while the CEPH nodes requires 1 license per 500 memory slots. We
can see in Figure 3.8a and Figure 3.8b the Pareto front for the first deployment of the
compute node and CEPH node respectively.

Finally in Figure 3.9, we can see the good results of the GreenSAM heuristic. In
this use case also, GreenSAM manages to have acceptable performance while reducing
energy consumption and licenses. Besides, compared to the other algorithms, GreenSAM
makes a good deployment while ensuring compliance at all time which is not the case of
the other algorithms.

We demonstrated in this section that a SAM oriented deployment heuristic, Green-
SAM , can optimize multiple parameters while ensuring compliance. Even with local
optimizations, this heuristic is better than others and is usable in real case scenario with
Clouds of over 5000 servers. We will enhance this deployment algorithm in the next
section by deploying multiple product in one time to try to reach the global optimal
deployment.

52 CHAPTER 3. DEPLOYMENT AUTOMATIZATION AND OPTIMIZATION

(a) Compute node (b) CEPH node

Figure 3.8: Pareto fronts for RedHat OpenStack deployment

60 80 100 120 140 160 180
120

140

160

180

Pe
rfo

rm
an

ce
 sc

or
e

60 80 100 120 140 160 180
80

100
120
140

En
er

gy
 sc

or
e PerfEnergy

LicPerf
RatLic
GreenSAM

60 80 100 120 140 160 180
Number of servers

400

600

Lic
en

se
s n

um
be

r

Figure 3.9: Result of RedHat Openstack deployment using GreenSAM

3.3 Deploying multiple products at the same time

We will start by proving that deploying multiple products at one time while optimizing
the three above criteria in a Cloud is a NP-complete problem. In order to prove that,
we define a new problem with the following variables:

3.3. DEPLOYING MULTIPLE PRODUCTS AT THE SAME TIME 53

n Number of products to deploy

s Number of servers

αi Cost of license for product i

βj Cost of using one core on server j, energetically speaking

mi,j Number of licenses consumed for product i on server j. If product i is not on j
tthen mi,j = 0

ri Number of cores required by product i

Rj Number of cores available on server j

Definition 1. The optimization problem SAMDeployment is defined by the following
equations:

min
n∑
i=1

 s∑
j=1

mi,j

× αi
 (3.16)

min
∑

server j used

Rj × βj (3.17)

subject to:

∀ j
∑

all deployments i on server j

ri ≤ Rj (3.18)

which is a physical constraint where the cores used from deployment on a single server
cannot exceed the number of cores of that server.

and the associated decision problem:

Definition 2. The decision problem SAMDec is defined as: given two constraints, BE
and BL which are energy budget and license budget respectively, is there a deployment
that fulfill the following equations:

n∑
i=1

 s∑
j=1

mi,j

× αi
 ≤ BL (3.19)

∑
server j used

Rj × βj ≤ BE (3.20)

also subject to Equation.3.18.

We then declare that this decision problem is NP-complete and prove it:

Lemma 2. SAMDec is NP-complete.

54 CHAPTER 3. DEPLOYMENT AUTOMATIZATION AND OPTIMIZATION

Proof.

Definition 3. Let I1 be an arbitrary instance of 2PARTITION − EQUAL with:
2n integers a1, ..., a2n ≤ 1 where

∑2n
i=1 ai = 2S

∃ I subset of {1, ..., 2n} / |I| = n∑
i ∈ I

ai = S

Definition 4. Let I2 be an instance of SAMDec with:
n products to deploy with ri = 1 = mi,j and 2n servers with Rj = 1 hence one product

per server and s = 2n.
With Used declared as the set of used servers (by indices), n = |Used| iff there is a

solution:
Let βj = aj:

∑
server j used

Rj × βj =
∑

server j used

aj = S

Let αi = X − ai:

∑
server j used

 ∑
software i on j

mi,j

× αi
 = n× (X − ai)

= nX − S

Moreover, if I2 has a solution with BE and BL fixed then we have a solution Used
for the following equations:

∑
j ∈ Used

βj ≤ BE∑
j ∈ Used

αj ≤ BL

With the following:

� Size(I1) = 2n+ log
∑2n

i=1 ai

� Size(I2) = 2n+ log
∑2n

i=1 αi + log
∑2n

i=1 βi

We can conclude that I2 has a polynomial-size in I1 and we prove that I1 has a
solution ⇐⇒ I2 has a solution:

3.3. DEPLOYING MULTIPLE PRODUCTS AT THE SAME TIME 55

I1 has a solution I
|I| = n and

∑
i ∈ I ai = S

We take Used = I and have a solution to I2
because: ∑

j ∈ I

βj ×Rj =
∑
j ∈ I

βj = S

∑
j ∈ I

 ∑
metric i on j

mi,j

× αi
 = n× αi

= nX − S

hence a solution to I2.

I2 has a solution Used
|Used| = n
We take I as Used and have a solution to I1 because:

∑
j ∈ Used

βj =
∑

j in Used

aj = S

∑
j ∈ Used

αj = nX −
∑

j ∈ Used

βj = nX − S

altogether with |Used| = n, we have a solution to I1.

This proves that the problem of deploying one product per server and only opti-
mizing energy consumption and license cost is NP-complete. As our problem adds the
performance criteria and allows multiple products per server, it is a sur-class of the
SAMDeployment problem and, therefore, is NP-complete too.

We tackle this NP-completeness by proposing an alternative model of multiple prod-
ucts deployment in Cloud environment coupled to the GreenSAM heuristic. This tree-
shaped model represents all the possibilities of deployment and handles all our con-
straints. Each layer of the tree is the deployment of a product and each node is an
available server to deploy on. The root node is the starting point and the edge between
two nodes represents the deployment of a product on a server. Each node has attributes
which are the criteria, performance, energy, and license. We handle the dynamicity of
criteria by modifying the attributes on different layers: Sons will have their attributes
modified according to the parent server, meaning that if we take a node representing the
server s1 and follow the edge to a node representing the same server, then the son will
have its performance attribute modified. As the deployment of a product on a server

56 CHAPTER 3. DEPLOYMENT AUTOMATIZATION AND OPTIMIZATION

Starting
node

Server 1
E1 P1 L1

Server 2
E2 P2 L2

Server 3
E3 P3 L3

Server 1
E'1 P'1 L'1

Server 2
E2 P2 L'2

Server 3
E3 P3 L'3

Server 1
E1 P1 L'1

Server 2
E'2 P'2 L'2

Server 3
E3 P3 L'3

Server 1
E1 P1 L'1

Server 2
E2 P2 L'2

Server 3
E'3 P'3 L'3

Figure 3.10: Example of deployment model with three servers and 2 products to deploy:
We can see that if we are in the grey node, it means that we deployed the first product
on server 3 and the second product on server 2. Therefore, our final criteria scores will
be: ET = E3 + E2, PT = P3 + P2 and LT = L3 + L2.

can impact other server, the license consumption of all servers have to be computed for
each layer. The Figure 3.10 clearly shows this model with the variations of attributes.

While this model allows to easily represents the deployment of multiple products on
a Cloud, it uses also a lot of space. Figure 3.11 describes the space usage depending on
the number of servers and number of products to deploy. We can see that the memory
usage of the tree explodes quickly with tens of GB for 150 servers and 4 products.

As it is not realistic to go through the entire tree to search for optimal value, we
have to find a heuristic to find this optimal quickly. We will use the GreenSAM heuristic
described in the previous Section and explore the nodes in the order given by it. Each
time we explore a node, we use the heuristic to sort the sons and go through them in
order until reaching a leaf. If the score of the leaf is better than the overall found score
then we store it and continue the search until two possible limits: Either a time limit
where we let the algorithm search for a good value for a specific time, or a memory
size limit where we allow the algorithm to go through a specific number of nodes. This
traversal algorithm is described in Algorithm 4.

With the sheer number of 2,227.33 PB of memory needed for a deployment of 10
products over 50 servers, we evaluated this deployment algorithm to three other algo-
rithms:

Bruteforce This algorithm go through every node in order from left to right. This
solution can be very efficient (if the optimal is right at the beginning) or very
inefficient (in the other case).

3.3. DEPLOYING MULTIPLE PRODUCTS AT THE SAME TIME 57

Number of servers

20 40 60 80100120140 Num
be

r o
f m

etr
ics

1
2

3
4

5
6

7

M
em

or
y

co
ns

um
pt

io
n

4
6
8
10
12
14
16

Memory consumption depending on number of servers and metrics

4

6

8

10

12

14

Figure 3.11: Memory consumption of the tree-shaped model expressed in log10 of bytes

Algorithm 4: Tree model traversal algorithm

Function TreeTraversal(Node n,Global FinalResult) : int is
if return FinalResult ;
then either limit reached

end
if n has no son then

FinalResult← max(n.score, F inalResult) ;
return FinalResult ;

end
subset← ParetoFront(Sonsofn) ;
for Son s in subset do

s.score← GreenSAM(s, subset) ;
end
subset← sort subset by descending score ;
for Son s in subset do

TreeTraversal(s) ;
end

end

MinLicenses This algorithm go through the nodes that consumes the least amount of

58 CHAPTER 3. DEPLOYMENT AUTOMATIZATION AND OPTIMIZATION

licenses first.

Pareto This algorithm uses a Pareto front to create a subset of servers before bruteforce
its way down the tree. Each layer it creates the subset then go through it in order
from left to right.

To be more precise about memory use and scoring, we developed a simulator which
builds the tree and launch algorithms against it. It can be configured with a specific seed
to get the same data set over and over and so give reproducible results. This simulator
takes 44 bytes of memory by node, which explains above memory consumptions. This
could potentially be optimized but will not impact the simulation as we always compare
heuristics on the same ground. We will use the score function from Equation 3.15 to
establish what is a ‘good’ result but compares algorithms by criteria to see how they
behave. Besides, because of the format of the scoring function we can deduce if we are
close or not from the optimal. Inded:

Score =

Ps
MP

Es
ME

+ LS
ML

+ 1

returns a result in the range [0; 1] and if we have the most performance server (so
Ps/MP = 1) and both license consumption and energy consumption are 0 then the result
is a perfect 1. When the result tends to zero, it means that the server we want to deploy
on is terrible. Using that, with a deployment of n servers, the score of deployment will
be in the range [0;n]. Most of the time, the optimal solution will be inferior to n as we
don’t have, in real-world situations, servers that will not consume anything during the
deployment of all products. But we know that the closer we get to n, the closer we get
to the optimal. All evaluations below used the simulator and compute the average of 20
different sets per point.

The two first experiments used the memory limit where we specified a maximum
number of nodes to go through and compared algorithms. The first one compared them
with a data set where we could compute the optimal solution to see how far we are from
it. In Figure 3.12, we can see the results of the deployment of 5 products over 20 servers
with a variable amount of memory allowed.

We then stressed the algorithms by making a huge deployment of 50 products over
1000 servers at one time and compared the results. We fixed very low memory amounts
from 1MB to about 300MB compared to the memory needed to fit the tree which reached
2e+152 bytes. We can see the results in logarithmic scale in Figure 3.13.

The third and fourth evaluations used time limits to see how quickly the algorithms
get good results. Like the first experiment, we started by comparing results to optimal.
We fixed time limits from 500 milliseconds to 3 seconds for the deployment of 5 products
over 50 servers and presented the results in Figure 3.14. The last evaluation uses the
same big sets of the second experiment and the same time limits. We can see the results
in Figure 3.15.

3.3. DEPLOYING MULTIPLE PRODUCTS AT THE SAME TIME 59

0 20 40 60 80 100 120
MB of memory allowed

40

60

80

100

120

140

pe
rfo

rm
an

ce
 o

f e
ac

h
he

ur
ist

ic

Optimal
bruteforce
minlicenses
pareto
greensam

Performance for different heuristics for 5 deployments over 20 servers

0 20 40 60 80 100 120
MB of memory allowed

0

20

40

60

80

100

120

140

en
er

gy
 o

f e
ac

h
he

ur
ist

ic
Optimal
bruteforce
minlicenses
pareto
greensam

Energy for different heuristics for 5 deployments over 20 servers

0 20 40 60 80 100 120
MB of memory allowed

60

80

100

120

140

lic
en

se
 o

f e
ac

h
he

ur
ist

ic

Optimal
bruteforce
minlicenses
pareto
greensam

License for different heuristics for 5 deployments over 20 servers

0 20 40 60 80 100 120
MB of memory allowed

0.5

1.0

1.5

2.0

2.5

3.0

3.5

sc
or

e
of

 e
ac

h
he

ur
ist

ic

Optimal
bruteforce
minlicenses
pareto
greensam

Score for different heuristics for 5 deployments over 20 servers

Figure 3.12: Deployment of 5 products over 20 servers with a memory limit: We can
see that overall, the GreenSAM heuristic obtains the best results on all criteria except
in licenses where obviously, the MinLicenses algorithm is better. While the others
algorithms take times to stabilize, GreenSAM find quickly its best solution and is very
close to the optimal performance.

60 CHAPTER 3. DEPLOYMENT AUTOMATIZATION AND OPTIMIZATION

0

1

Sc
or

e
(lo

g1
0)

0

2

4

Pe
rfo

rm
an

ce
 (l

og
10

)

0

2

4

En
er

gy
 (l

og
10

)

1.1 2.3 4.6 9.2 18.3 36.6 73.2 146.5 293.0
Memory limit in MB

0

2

4

6

Lic
en

se
 (l

og
10

)

1000 servers, 50 metrics to deploy bruteforce
minlicenses
pareto
greensam

Figure 3.13: Deployment of 50 products over 1000 servers with memory limit: The final
score of the GreenSAM heuristic was 43.23 while the others algorithms got 2.6, 0.13
and 10.7. With just 1MB of memory, meaning going through 57,000 nodes over 501000,
GreenSAM finds a very good solution that has the best performance overall and very
few licenses at the cost of energy.

3.3. DEPLOYING MULTIPLE PRODUCTS AT THE SAME TIME 61

500 1000 1500 2000 2500 3000
ms of time allowed

40

60

80

100

120

140

160

pe
rfo

rm
an

ce
 o

f e
ac

h
he

ur
ist

ic

Optimal
bruteforce
minlicenses
pareto
greensam

Performance for different heuristics for 5 deployments over 50 servers

500 1000 1500 2000 2500 3000
ms of time allowed

0

20

40

60

80

Optimal
bruteforce
minlicenses
pareto
greensam

Energy for different heuristics for 5 deployments over 50 servers

500 1000 1500 2000 2500 3000
ms of time allowed

80

100

120

140

160

180

lic
en

se
 o

f e
ac

h
he

ur
ist

ic

Optimal
bruteforce
minlicenses
pareto
greensam

License for different heuristics for 5 deployments over 50 servers

500 1000 1500 2000 2500 3000
ms of time allowed

1.0

1.5

2.0

2.5

3.0

3.5

4.0

sc
or

e
of

 e
ac

h
he

ur
ist

ic

Optimal
bruteforce
minlicenses
pareto
greensam

Score for different heuristics for 5 deployments over 50 servers

Figure 3.14: Deployment of 5 over 50 servers with time limits: We see that GreenSAM
beats the other algorithms in this configuration too. It stabilizes less quickly than
with memory limit but manages to get very good score, performance, and energy while
sacrificing few licenses.

62 CHAPTER 3. DEPLOYMENT AUTOMATIZATION AND OPTIMIZATION

0

1

Sc
or

e
(lo

g1
0)

0

2

4

Pe
rfo

rm
an

ce
 (l

og
10

)

0

2

4

En
er

gy
 (l

og
10

)

500 1000 1500 2000 2500 3000
Time limit in ms

0

2

4

6

Lic
en

se
 (l

og
10

)

1000 servers, 50 metrics to deploy bruteforce
minlicenses
pareto
greensam

Figure 3.15: Deployment of 50 products over 1000 servers with time limits: We can
see that under 1.5 seconds the Pareto algorithm don’t manage to reach a single leaf
because of the amount of computation to do but once it does, it gets good results. The
GreenSAM heuristic is also the best overall in this configuration and reaches the score
of 43.17 with only 500 milliseconds.

3.4. FORECASTING 63

3.4 Forecasting

Following these results, we tried to answer the other part of the problem: what happens
when the Cloud changes, either by adding, removing or modifying resources after de-
ploying products. Even if our algorithms manage to make a very good deployment, they
are based on a snapshot of the Cloud state. If it changes, it can have serious impact on
the required number of licenses and, therefore, on the compliance. These considerations
express the need to have a forecasting tool warning us if, based on the Cloud modifi-
cation, we will soon be in a non-compliant state. This can happen when the required
number of licenses go over our threshold (our license stock). In this section, we present
our work to address this issue.

We tackled this problem with an intern, Irfaane OUSSENY, and compared several
algorithms to see how they compared on license consumption curves. Each algorithm
will warn us when a threshold is about to be exceeded by putting a flag on the time axis.
Each flag in Figure 3.16 represent a different situation. We can see that we are going
over the threshold at the time Td. We will use this time to represent good flags and bad
flags. Obviously, the flag F3, arriving after the exceedance, is a bad flag. Another bad
flag is F1 because it arrives too soon and is considered as a false warning as opposed
to F2 which is a good flag. The difference between F1 and F2 is expressed with the
variable x representing the time limit that separates a false warning from a good flag.
A flag between Td− x and Td is considered a good one.

We used this representation to give a score to flags given by the different algorithms

Figure 3.16: Different flags declared by the forecasting algorithms

64 CHAPTER 3. DEPLOYMENT AUTOMATIZATION AND OPTIMIZATION

to test them. Each flag will have a score depending on its position compared to Td.
Given a penalty P and a time limit x, this score function is expressed as:

S =


Td− f, if Td− x ≤ f < Td

−∞, if f ≥ Td
−P, if f < Td− x

(3.21)

This equation allows to severly punish a late flag and gives a penalty to a false alarm.
The score of a good flag is computed with its position inside the time limit. The farther
it is from Td, the more points he gains. We compared three algorithms: a naive one, the
linear regression and a polynomial regression. The näıve algorithm compute the average
gradient between the last x points. It then computes if the curve, given this average
gradient, will get above the threshold soon. The polynomial regression was tested with
various degrees and we took the best results each time. We then compared these three
algorithms on thirty different license consumption curves. We can see in Figure 3.17 that
the scores are very different from one curve to another. This can be explained by the
fact that licence consumption is very dynamic and subject to many variations caused
by unpredictable actors. Because these simple forecasting techniques produce highly

Figure 3.17: Results of the forecasting algorithms

3.4. FORECASTING 65

variable results, and given the magnitude of the problem, it is necessary to look for new
ways to forecast stock overruns.

In conclusion, we started by proving that creating SAM oriented deployment algo-
rithms can cut software expenses in companies before presenting a deployment algorithm
that ensure compliance while optimizing these license costs savings. We then introduced
a heuristic that optimizes several criteria and manages to get good results with the de-
ployment of one product on the Cloud compared to other heuristics. This heuristic,
GreenSAM , also ensures compliance during the deployment. Following these results, we
addressed the problem of deploying multiple products at once while optimizing the same
criteria and, obviously, keeping the compliance. We proved that the decision problem of
such deployment is NP-complete and proposed an algorithm getting very good results
with little time and low memory limit. Finally, we introduced the forecasting problem
by stating it and showing that simple forecasting algorithms gave very different results.
This showed, given the stakes with compliance, the need of finding new ways to pre-
dict stock overrun accurately. In the next chapter, we will present how our deployment
algorithm can be used effectively in the Cloud thanks to a generic SAM oriented tools
optimized for Cloud architectures.

66 CHAPTER 3. DEPLOYMENT AUTOMATIZATION AND OPTIMIZATION

Chapter 4

Software Asset Management tools

Contents

4.1 Motivation . 67

4.2 OpTISAM . 69

Several Software Asset Management (SAM) tools editors exist on the market. Those
editors have products that will manage our software park and give us reports about
our compliance like SmartTrack from Aspera [42], Snow License Manager from Snow
Software [43] and FlexNet Manager from Flexera [44]. Each tools have strong and weak
points, for example Snow and Flexera both have an integrated discovery and inventory
tool. Flexera, following the acquisition of a security firm, can now warn us about security
vulnerabilities on the products we use. Snow Software have the Software Recognition
Service (SRS) which is able to identify products accurately thanks to a huge database
containing almost 600,000 products signatures from around 98,000 software publishers.
In 2017, Vion [22] made a review of existing tools that showed that this editors were not
ready for the Cloud. The best tool in the market could barely manage 10,000 devices
at the same time, including servers, phones and laptops. With the rise of Software
Defined Network and Virtual Network Functions, this number was not enough for big
companies and, therefore, the need for a new Cloud intensive oriented tool appeared.
Three years later, all the major editors cited before updated their tools to manage Cloud
and optimization of licenses. Based on the result from [45], we introduced the tool called
OpTISAM.

4.1 Motivation

Monitoring the use of our software is very complex when it comes to the Cloud. The
choice of how to follow this usage is a vital step in SAM. The definition of this usage
and the scope of our SAM actions are of equal importance because if we lack data at the
time of contracting, it may be too late to go back. As stated before, traditional license
management mechanisms typically do not match with essential Cloud characteristics

67

68 CHAPTER 4. SOFTWARE ASSET MANAGEMENT TOOLS

such as virtualization, elasticity, self-service and on-demand consumption. Virtualization
brings technical challenges to map physical licenses models to a virtual environment and
adapt the cost models. The on-demand resource allocation in the Cloud complicates any
prediction of software licensing costs. Besides, probability to breach entitlements based
on such usage or equipment characteristics, exponentially increase.

Then comes the problem of data storage. How long is the data storage of the users
data? Given the possible size of a Cloud and its rapid expansion, this question becomes
critical. These data are obviously very sensitive and must be accessible for a few years
without deterioration. These problems are not an issue for Cloud storage experts but
this is an additional cost we have to plan to use our software in compliance with our
license agreements and it becomes very problematic when we didn’t think about it. This
was still possible because of the speed of the audit process. It can take up to months
for editors to check the compliance of major companies but with new algorithms and
technologies, this computation time just dropped to seconds or minutes.

The last issue is the data problem. An effective SAM will need quality and accessible
data for many aspects ranging from simple compliance verification to computations to
optimize our use. This require an aggregation of a lot of data sources (physical and
logical inventories, contracts, project management, etc.) and will create entanglement if
not done correctly.

Theoretically, the data problem is more complex. How do we know when a data
will be useful, should we store it to manage possible future contracts? As such, we
cannot filter any data during the aggregation phase because it could impact a future
contractualization if we do not have the data for the computation of the metric. As a
result, the database must be able to collect a huge amount of new data at every collection
period and also be able to follow a reliable history of events for several years.

Another issue is the data collision. It is possible to have different tools used to
make inventories, and these tools can come from different editors. This result is naming
collision or erroneous data when the same thing have been probed at different times but
come back for the aggregation together and have different values. Even if this case rarely
happens, if it does the compliance of the Cloud is at stake.

No tools addressed Cloud environment and existing SAM tools are licensed to the
number of managed devices which logically explodes if we manage clouded architectures.
Besides, these tools forces us to have pre-processed data and to invest time to modify
our SAM process to input the right data. Finally, as soon as we have a new metric or a
new software, we must wait for the tool update or directly discuss with the tool editor
to input our custom metric if we negotiated it in our contract.

In conclusion, today it is extremely difficult to have a tool that handles of those
problems and manages to do perfect software management that will ensure the com-
pliance at any time because of the above problem. The tool we created, OpTISAM,
tackle this issue and handle the data in a different way of traditional tools to allow us
to manage our assets in an optimized manner all the while knowing when we have a risk
of noncompliance.

4.2. OPTISAM 69

4.2 OpTISAM

OpTISAM is a tool designed for the Cloud nevertheless can be interfaced with standalone
servers. It works by exposing several APIs allowing third-party tools to request the
platform to push or pull information about SAM. These APIs allow the injection of the
data necessary for the proper compliance checking and will be put in the right format
by OpTISAM itself when needed. To handle the above problems about data, OpTISAM
uses generic equipment definitions and aggregate data on-the-fly allowing us to store any
kind of data we possess without modifying our process at all.

OpTISAM

DatabasesData injectors

Exposed

Cloud US

Cloud EU

Figure 4.1: Environment of OpTISAM in the Cloud

The data is integrated via injectors as shown in the Figure 4.1. The raw data
is deposited in a data lake before being used. OpTISAM uses a system of hierarchical
generic equipment to handle actual and future systems. To use equipment in OpTISAM,
we have to describe it via the interface. The description is composed of the name of the
new equipment, its relations with other equipment and its attributes. The link with the
actual data is made through the attributes. Each attribute is a link to a data source,
allowing us to precisely select where do the data come from and in which format without
modifying it. After the description, OpTISAM will pull from the data lake our attributes,

70 CHAPTER 4. SOFTWARE ASSET MANAGEMENT TOOLS

processing them to fit our description and will show them in the inventory page. The
attributes have options to state if we want them to be shown in the equipment page,
or this attribute is the identifier of the equipment. This equipment description process
allow to give ‘meaning’ to unprocessed data coming from inventory tools. It allows also
to check the health of said data by checking if some are missing or if we have duplicated
data. In either case, OpTISAM will warn us that the compliance computation is not
sure and will point us the source of the problem allowing us to take action and correct
them before ensuring the compliance.

Each equipment we describe are showed in an inventory page and thanks to the
relations we expressed, we can navigate from one another like searching in which Cluster
a server is. If we need new attributes for a new metric or if the data collection process
change, we can change the equipment structure in OpTISAM and the latter will properly
restructure the modified equipment. For better clarity, we do an example with a data
source coming from inventory tools and described in Table. 4.1. We can see that the
column’s names are more or less comprehensible for some (hostname, nbCores) and
very difficult for others like TypeC. Understanding this data requires knowledge that
the OpTISAM operator does not necessarily have. During the import of data into
OpTISAM, they will be saved as such to avoid corrupting them when trying to interpret
them.

Table 4.1: Data from physical servers inventory tool: ‘phys’

id hostname nbCores TypeC storage

1 “server1” 8 2 16
2 “h75426-5” 16 2 16
3 “berlin” 4 3 12
4 “moscow” 32 7 12
5 “h4578-5” 4 1 16

During the creation of an equipment, here a server, we will specify which attributes
we want to put in our equipment and where are they in the data source. We can see
in Figure 4.2 that we ignore the last column and will give ‘meaning’ to columns by
specifying a display name inside OpTISAM and their type. With this creation, we can
now see all servers from this data source inside OpTISAM with this specific format. If
later we need to know what storage is linked to the server for a metric, we just have to
modify this equipment description and OpTISAM will adapt the data it pulls and will
display the hostname and the number of cores only.

This feature allows OpTISAM to tackle the problem of metrics using a lot of different
variables. As soon as a new metric use a new kind of resource (possibly every time we
purchase a new contract). We can check in OpTISAM if we have this resource and if
not create either a new equipment or modify one. Because of the generic equipment,
the metric computation has to be generic too. Therefore, with the same system we
have to adapt the metric model by linking the variable it uses to equipment attributes.

4.2. OPTISAM 71

id hostname nbCores TypeC Storage

Data	Lake

Server
equipment

New Equipment type:

Type name: Server

Attributes:

id string

Parent type:
root

From: phys:id
Displayable:

Primary key:

hostname string From: phys:hostname
Displayable:

Primary key:

cores integer From: phys:nbCores
Displayable:

Primary key:

cpu_type integer From: phys:TypeC
Primary key:

Displayable:

phys

OpTISAM

tag:	phys

defines

Server

id:string
hostname:string
cores:integer
cpu_type:integer

Figure 4.2: Creation example of server equipment

72 CHAPTER 4. SOFTWARE ASSET MANAGEMENT TOOLS

OpTISAM will use these attributes during the metric computation and will use fresh
data so our compliance check is as fast as our inventory tools. It is therefore possible to
modulate fast data updates for equipment that requires frequent compliance control. We
can see in Figure 4.3 and Figure 4.4 the OpTISAM representation of the phys dataset.

Figure 4.3: Attributes mapping of server equipment

Figure 4.4: Server equipment from phys dataset.

Combined with the proposed metric model presented in Chapter. 2, we are able to
automate the compliance checking. If the definition of equipment changes, the metric
can be adapted accordingly. We can see in Figure 4.5 the use of a metric model through
OpTISAM to filter servers with equipment data and in Figure 4.6 the compliance com-
putation validating our Adobe product licensing. This report view indicates that we
are spending too much money for our licensing and that we could sell back two of our
licenses.

4.2. OPTISAM 73

People

Business

Management

Software

Infrastructure

Virtualization

Tags

OpTISAM

Data lake

clustering

equipment

product

virtualEquipment

component

instance

contract

editorentity

project

Server

name type link

id string phys:id

hostname string phys:hostname

cores integer phys:nbCores

cpu_type integer phys:TypeC

publisher

filter this[type="Server"].cpu_type == 1

Phys

id hostname nbCores TypeC Storage

1 server1 8 2 16

2 h75426-5 16 2 16

3 berlin 4 3 12

4 moscow 32 7 12

5 h4578-5 4 1 16

Figure 4.5: Metric model example use with OpTISAM

74 CHAPTER 4. SOFTWARE ASSET MANAGEMENT TOOLS

Figure 4.6: Validation of product licensing

With this kind of genericity, both for equipment and metrics, we enhanced the sim-
ulation features from the 2017 prototype to go further in the possibilities of forecasting.
Indeed, we can now, virtually, simulate any change, anywhere and see how it would
affect our compliance but even if we would be able to follow the use, or if it is a good
idea to purchase a specific kind of metric. We also integrated the deployment algorithm
we presented above and, coupled with genericity of equipment and metric that allows to
handle any kind of present or future architecture, we can integrate OpTISAM in Cloud
orchestrators such as Kubernetes [46] or ONAP [47] for virtualized network to use its
deployment simulation feature to get SAM recommendations of placement.

In conclusion, OpTISAM, compared to other tools, possess highly modular handling
of equipment and metrics. This allows to avoid touching the process in place each time
we want to update our SAM with new metric or product. This allows to handle all kind
of software as well as machine learning models or ssl certificates for example. This tool
can manage up to hundreds of thousands of devices and compute their compliance in
minutes compared to months with old ways. While other tools require upgrades every
time a new metric or product appear on the market, OpTISAM requires a change of
configuration in-app without any modification to the install and it will warn us if we
lack data for compliance. Compared to the licensing of other tools which is based on
the number of devices, OpTISAM is totally Open-Source [48] allowing the community
to enhance it and integrate it virtually anywhere.

Chapter 5

Conclusion and Future works

Contents

5.1 Conclusion . 75

5.2 Future works . 76

5.1 Conclusion

In this thesis, we addressed the problem of Software Asset Management in the Cloud,
and especially ensuring the compliance during the deployment of a product. Two of the
main contributions of our work are a model to represent the metric and a deployment
algorithm that allows to deploy multiple products at the same time while optimizing
multiple parameters.

We introduced Software Asset Management domain and presented several problems
arising with new virtualization technologies in Chapter 1. In particular, we addressed
the problem of metric adaption in the Cloud and the lack of automation leading to
problematic and time consuming compliance checks.

In Chapter 2, we proposed the metric model to tackle the lack of automation and
confronted it to several use cases to show its usability and efficiency compared to old
methods.

The main focus of this thesis was on the deployment optimization and compliance
ensurance presented in Chapter 3. We started by showing the impact a good deployment
algorithm could have on SAM considerations. We then introduced a new kind of heuristic
oriented towards SAM aspects that optimizes several parameters during the deployment
of a product on a Cloud.

This algorithm showed promising results and as we wanted to push it further, we
proposed another one that finds a near optimal deployment of multiple products in one
computation. We proved that this decision problem was NP-Complete and showed that
this algorithm obtains really good results with both low memory and low time allocated.

Finally, in Chapter 4, we enhanced an existing tool, OpTISAM, with these new

75

76 CHAPTER 5. CONCLUSION AND FUTURE WORKS

algorithms and models to propose a highly modular and generic tool that can manage
any type of equipment with any kind of metric and optimize the placement of products
on the Cloud it manages.

From an academic point of view, we have advanced the state-of-the-art by bringing
a full automation of the SAM processes and with it new algorithms for multi-parametric
product deployment on Clouded architectures. We proved the NP-completeness of SAM
aware deployment and proposed a near-optimal heuristic that solve this problem.

From an industrial point of view, we solved a rising problem among companies with
SAM needs. The proof of NP-Completeness showed that this problem was not easy and
that without automation, SAM teams could not ensure efficiently their software park.
This automation allows performant and reliable compliance check, removes human error
from the equation and is modular enough to be adapted to future technologies. Besides,
the upgrade of OpTISAM with genericity and a new deployment algorithm allows them
to tackle SAM constraints without problems.

5.2 Future works

Future work concerns a more in-depth analysis of certain discoveries, new proposals to
try different methods or simply curiosity about the behaviour of the SAM in other areas.
There is a lot of ideas that we would have liked to investigate in the end of this Thesis:

First, it would be interesting to see how well the metric model integrate in ISO
19770 [10] norm and ODRL [35]. With this integration, we could be able to change
metric on the fly to another that suits our needs following a deployment for example.
We could even try to integrate this model inside smart contracts to enhance the speed of
automatic detection and optimization of software cost. Coupling the model with ISO or
ODRL will allow us to automate the discussion with editors about SAM considerations
and could bring pre-test of software to see if the proposed metrics are ‘dangerous’ or
not with our current usage. Then, it would be interesting to see how this model behave
with new kind of metrics coming with the rise of SDN/NFV (network virtualization).
For example, SAU: We have to compute the number of devices connected per antennas
and do the average for every hour. Then, for each hour, we have to compute the sum of
all average for that hour. Finally, the number of licenses to possess is the maximum of
the sum computed over 24h. This metric is complicated to compute and, therefore, its
adaptation to the metric model will present some interesting challenges.

In a second step, it would be interesting to add more criteria to the heuristic and,
therefore, enhance the deployment algorithm. We could think of adding network aware
criterion or more industrial criterion like the support level needed for the product to
deploy.

Following these considerations, it would be interesting to find a way to do real energy
and performance variables computation during the deployment to have a very precise
state of each server. Currently, these variables are inputed by algorithm users but could
be computed with state of the art third-party algorithm.

Thirdly, it would be very interesting to enhance the heuristic either by adding metric

5.2. FUTURE WORKS 77

aware formula or simply enhancing the current one. Currently, following some exper-
iments, the performance criteria is more taken into account than the other. Maybe,
modifying the formula could bring even better results that the current ones. The first
option, adding a metric aware formula, is adapting the node traversal computation de-
pending on the current product metric. For example, the Oracle Database Processor
metric will cost 0 licenses if there is already databases on the cluster. This information
used by the first algorithm we presented for deployment lead to significant optimiza-
tion at single product level. Maybe by exploring more metrics optimization, we could
enhance the multiple product deployment by using local optimization when we can.

Concerning OpTISAM, some work could be done concerning the network saturation
induced by the amount of data converging towards the data lake. We could search some
SAM aware filters to avoid storing all data or solve some data problems we mentioned
earlier. Next, the integration of OpTISAM to some orchestrators like ONAP for network
or Kubernetes could be very informative about the current compliance state in near real-
time using the orchetrastor information. In the other way, OpTISAM could bring SAM
considerations to deployment algorithm of such orchestrators.

Another breakthrough could be the addition of usable forecasting in the SAM field.
We introduced the problem at the end of Chapter 3 and by using state of the art data
science and machine learning, we could help forecasting future noncompliance because
of unplanned events like unexpected shutdown with intelligent predictive maintenance.
AI is admittedly difficult to integrate to all SAM processes but could be used in licenses
stock threshold detection.

Finally, a more theoretical thought about SAM in general is that it should inte-
grate software engineering considerations. Indeed, knowing how a product have been
developed or how it behave could bring many optimization about its deployment or
parameters optimization such as energy (some works have been done on energy con-
sumption relation to development). Besides, adding SAM in the process of continuous
integration could allow SAM operators to quickly have the information about software
bugs or security breaches. This could also allow SAM operators to give hints about
product selection for a project. For example, if a software development team should
choose between different proprietary databases, maybe one would be more expensive for
development but, in production, would be cheaper than the other one because of metric
optimization.

78

Appendix A

License Metric Language
grammar

Regex defined tokens:

CONSTANT = 0[xX][a-fA-F0-9]+ | [0-9]+ | [0-9]+[Ee][+-]?[0-9]+

| [0-9]*\.[0-9]+([Ee][+-]?[0-9])? | [0-9]+\.[0-9]*([Ee][+-]?[0-9])?

STRING_LITERAL = [a-zA-Z_]?\’(\\.|[^\\\’])+\’ | [a-zA-Z_]?"(\\.|[^\\"])*"

RIGHT_OP = >>

LEFT_OP = <<

AND_OP = &

OR_OP = \|

LE_OP = <=

GE_OP = >=

EQ_OP = ==

NE_OP = !=

COMMA = ,

ASSIGN = =

L_PAREN = \(

R_PAREN = \)

L_BRACKET = \[

R_BRACKET = \]

DOT = \.

AND = &&

NEG = !

SUB = -

ADD = \+

MUL = *

DIV = //

SUBNODE = /

MOD = %

INF = <

79

80 APPENDIX A. LICENSE METRIC LANGUAGE GRAMMAR

SUP = >

POW = \^

OR = \|\|

EXT = ext

THIS = this

ID = [a-zA-Z_]([a-zA-Z_]|[0-9])*

Grammar:

〈statement〉 ::= 〈mutation〉
| 〈comparison〉
| 〈function〉
| 〈attr〉
| 〈operation〉

〈mutation〉 ::= 〈attr〉 ASSIGN 〈operation〉
| 〈attr〉 ASSIGN 〈function〉

〈operation〉 ::= 〈operation arg〉 〈op〉 〈operation arg〉
| 〈operation〉 〈op〉 〈operation arg〉

〈op〉 ::= ADD
| MUL
| DIV
| SUB
| POW
| POW
| LEFT OP
| RIGHT OP
| OR OP
| AND OP
| MOD

〈operation arg〉 ::= 〈attr〉
| 〈val〉
| 〈function〉

〈function〉 ::= EXT DOT 〈function external long〉
| ID L PAREN 〈func args〉 R PAREN
| ID L PAREN R PAREN

〈function external long〉 ::= 〈function〉
| ID DOT 〈function external long〉

〈func args〉 ::= 〈possible arg〉
| 〈possible arg〉 COMMA 〈func args〉

81

〈possible arg〉 ::= 〈attr〉
| 〈val〉
| 〈path〉
| 〈function〉

〈comparison〉 ::= 〈comparison set〉
| 〈comparison set〉 AND 〈comparison〉
| 〈comparison set〉 OR 〈comparison〉

〈comparison set〉 ::= 〈comparison arg〉 〈comp op〉 〈comparison arg〉

〈comparison arg〉 ::= 〈attr〉
| 〈val〉
| 〈function〉
| 〈operation〉

〈attr〉 ::= 〈path〉 DOT ID
| NEG 〈path〉 DOT ID

〈path〉 ::= 〈node〉
| 〈path〉 SUBNODE 〈node〉

〈node〉 ::= ID
| THIS
| THIS 〈filter〉
| ID 〈filter〉

〈filter〉 ::= L BRACKET 〈filter comparison args〉 R BRACKET

〈filter comparison args〉 ::= 〈filter comparison〉
| 〈filter comparison〉 COMMA 〈filter comparison args〉

〈filter comparison〉 ::= 〈filter comparison set〉
| 〈filter comparison set〉 OR 〈filter comparison〉

〈filter comparison set〉 ::= ID 〈comp op filter〉 〈val〉

〈comp op filter〉 ::= 〈comp op〉
| ASSIGN

〈comp op〉 ::= LE OP
| GE OP
| EQ OP
| NE OP
| INF
| SUP

82 APPENDIX A. LICENSE METRIC LANGUAGE GRAMMAR

〈val〉 ::= STRING LITERAL
| CONSTANT

Appendix B

Finite-State Machine of LML

83

84 APPENDIX B. FINITE-STATE MACHINE OF LML

attr

path

node

filter

filter_com
parison_set

com
parison

com
parison_set

com
parison_arg

operation

operation_arg

m
utation

function

func_arg

D
O
T

ID

N
E
G

C
S
T

C
O
M
P
_O
P

A
S
S
IG
N

ID

O
R

C
O
M
M
A

R
_B
R
A
C
K
E
T

L
_B
R
A
C
K
E
T

T
H
IS

ID

S
U
B
N
O
D
E

ID

C
S
T

F
U
N
C
T
IO
N

A
T
T
R

O
P

C
S
T

F
U
N
C
T
IO
N

A
T
T
R

C
O
M
P
_O
P

O
R

A
N
D

C
O
M
P
A
R
IS
O
N
_A
R
G

A
T
T
R

A
S
S
IG
N

O
P
E
R
A
T
IO
N

C
S
T

P
A
T
H

F
U
N
C
T
IO
N

A
T
T
R

R
_P
A
R
E
N

C
O
M
M
A

ID

E
X
T

L
_P
A
R
E
N

ID
D
O
T

List of Figures

1.1 Life cycle of software . 3

1.2 Procurement process . 4

1.3 Example of licensing with metrics from Oracle Database 6

1.4 Cloud Computing structure . 8

1.5 Difference between yesterday’s infrastructure and today’s Cloud computing 9

1.6 Example of processor metric in the Cloud 10

1.7 Difference between SaaS, PaaS and IaaS 11

2.1 Graph model of a metric . 17

2.2 Minimal example of relation equipment-product 19

2.3 Relations between 〈Equipment〉, 〈vEquipment〉 and 〈Product〉 for 100
servers. 20

2.4 Features examples of LML . 21

2.5 Finite-State Machine of LML . 25

2.6 Basic example of node tagging with LML 26

2.7 Model for Oracle Database Processor metric 28

2.8 Model for RedHat Instance metric . 29

2.9 Phase 1: Filtering subgraph nodes . 29

2.10 Phase 2: Stopping the computation . 30

2.11 Phase 3: Mutating underlying nodes data 30

2.12 Phase 4: Computing the number of licenses 31

2.13 Abstract Syntax Tree from LML . 32

2.14 Result of LML computation on RedHat instance metric 33

2.15 Metric model computation time depending on Cloud size 34

2.16 Metric model computation time depending on Cloud scattering 34

3.1 Problem of the during life-cycle deployment of a new server 38

3.2 Comparison of algorithms for the deployment of 32 Oracle Database on
about 3000 different Clouds . 44

3.3 Example of energy consumption computation 45

3.4 Performance Indices of software . 46

3.5 Pareto front on the server set defined in Table 3.1 49

3.6 Pareto front of Oracle Database deployment 50

85

86 LIST OF FIGURES

3.7 Result of Oracle Database deployment using GreenSAM 51
3.8 Pareto fronts for RedHat OpenStack deployment 52
3.9 Result of RedHat Openstack deployment using GreenSAM 52
3.10 Example of deployment model with three servers and 2 products to deploy 56
3.11 Memory consumption of the tree-shaped model expressed in log10 of bytes 57
3.12 Deployment of 5 products over 20 servers with a memory limit 59
3.13 Deployment of 50 products over 1000 servers with memory limits 60
3.14 Deployment of 5 over 50 servers with time limits 61
3.15 Deployment of 50 products over 1000 servers with time limits 62
3.16 Different flags declared by the forecasting algorithms 63
3.17 Results of the forecasting algorithms . 64

4.1 Environment of OpTISAM in the Cloud 69
4.2 Creation example of server equipment . 71
4.3 Attributes mapping of server equipment 72
4.4 Server equipment from phys dataset. 72
4.5 Metric model example use with OpTISAM 73
4.6 Validation of product licensing . 74

Bibliography

[1] SAP UK Ltd v Diageo Great Britain Ltd [2017] EWHC 189 (TCC). Feb. 2017.
url: http://www.bailii.org/ew/cases/EWHC/TCC/2017/189.html.

[2] Peter Sayer. SAP settles licensing dispute with AB InBev. Mar. 2018. url: https:
//www.itworld.com/article/3264435/sap-settles-licensing-dispute-

with-ab-inbev.html.

[3] Microsoft. Microsoft license terms for Windows operating system (2.c.v). June
2018. url: https://www.microsoft.com/en-us/Useterms/Retail/Windows/
10/UseTerms_Retail_Windows_10_English.htm.

[4] Oracle. Database Licensing. June 2020. url: https://www.oracle.com/assets/
databaselicensing-070584.pdf.

[5] Oracle. Oracle Processor Core Factor Table. Oct. 2019. url: http://www.oracle.
com/us/corporate/contracts/processor-core-factor-table-070634.pdf.

[6] Oracle. Oracle Technology Global Price List. Jan. 2020. url: https : / / www .

oracle.com/assets/technology-price-list-070617.pdf.

[7] SAP SE or an SAP affiliate company. Indirect Access Guide for SAP Installed
Base Customers. Apr. 2018. url: https://news.sap.com/wp-content/blogs.
dir/1/files/Indirect_Access_Guide_for_SAP_Installed_Base.pdf.

[8] Amazon Web Services. Oracle Licensing Considerations. May 2020. url: https:
//docs.aws.amazon.com/whitepapers/latest/oracle-database-aws-best-

practices/oracle-licensing-considerations.html.

[9] Migration Complete – Amazon’s Consumer Business Just Turned off its Final
Oracle Database. Oct. 2019. url: https://aws.amazon.com/fr/blogs/aws/
migration-complete-amazons-consumer-business-just-turned-off-its-

final-oracle-database/.

[10] International Organization for Standardization. ISO/IEC 19770-1:2017(en). 2017.
url: https://www.iso.org/obp/ui/#iso:std:iso-iec:19770:-1:ed-3:v1:
en.

[11] M. Ben-Menachem and G.S. Marliss. “IT Assets—Control by Importance and
Exception: Supporting the ”Paradigm of Change”.” In: IEEE Software 22.4 (July
2005), pp. 94–102. doi: 10.1109/ms.2005.99. url: https://doi.org/10.1109/
ms.2005.99.

87

http://www.bailii.org/ew/cases/EWHC/TCC/2017/189.html
https://www.itworld.com/article/3264435/sap-settles-licensing-dispute-with-ab-inbev.html
https://www.itworld.com/article/3264435/sap-settles-licensing-dispute-with-ab-inbev.html
https://www.itworld.com/article/3264435/sap-settles-licensing-dispute-with-ab-inbev.html
https://www.microsoft.com/en-us/Useterms/Retail/Windows/10/UseTerms_Retail_Windows_10_English.htm
https://www.microsoft.com/en-us/Useterms/Retail/Windows/10/UseTerms_Retail_Windows_10_English.htm
https://www.oracle.com/assets/databaselicensing-070584.pdf
https://www.oracle.com/assets/databaselicensing-070584.pdf
http://www.oracle.com/us/corporate/contracts/processor-core-factor-table-070634.pdf
http://www.oracle.com/us/corporate/contracts/processor-core-factor-table-070634.pdf
https://www.oracle.com/assets/technology-price-list-070617.pdf
https://www.oracle.com/assets/technology-price-list-070617.pdf
https://news.sap.com/wp-content/blogs.dir/1/files/Indirect_Access_Guide_for_SAP_Installed_Base.pdf
https://news.sap.com/wp-content/blogs.dir/1/files/Indirect_Access_Guide_for_SAP_Installed_Base.pdf
https://docs.aws.amazon.com/whitepapers/latest/oracle-database-aws-best-practices/oracle-licensing-considerations.html
https://docs.aws.amazon.com/whitepapers/latest/oracle-database-aws-best-practices/oracle-licensing-considerations.html
https://docs.aws.amazon.com/whitepapers/latest/oracle-database-aws-best-practices/oracle-licensing-considerations.html
https://aws.amazon.com/fr/blogs/aws/migration-complete-amazons-consumer-business-just-turned-off-its-final-oracle-database/
https://aws.amazon.com/fr/blogs/aws/migration-complete-amazons-consumer-business-just-turned-off-its-final-oracle-database/
https://aws.amazon.com/fr/blogs/aws/migration-complete-amazons-consumer-business-just-turned-off-its-final-oracle-database/
https://www.iso.org/obp/ui/#iso:std:iso-iec:19770:-1:ed-3:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:19770:-1:ed-3:v1:en
https://doi.org/10.1109/ms.2005.99
https://doi.org/10.1109/ms.2005.99
https://doi.org/10.1109/ms.2005.99

88 APPENDIX B. BIBLIOGRAPHY

[12] M.F. Bott. “Software as a corporate asset.” In: IEE Proceedings - Software 147.2
(2000), p. 31. doi: 10.1049/ip-sen:20000600. url: https://doi.org/10.1049/
ip-sen:20000600.

[13] M. Ben-Menachem and G.S. Marliss. “Inventorying Information Technology Sys-
tems: Supporting the ”Paradigm of Change”.” In: IEEE Software 21.05 (Sept.
2004), pp. 34–43. doi: 10.1109/ms.2004.1331300. url: https://doi.org/10.
1109/ms.2004.1331300.

[14] Benno E. Albert, Rodrigo P. dos Santos, and Claudia M. Werner. “Software ecosys-
tems governance to enable IT architecture based on software asset management.”
In: 2013 7th IEEE International Conference on Digital Ecosystems and Technolo-
gies (DEST). IEEE, July 2013. doi: 10.1109/dest.2013.6611329. url: https:
//doi.org/10.1109/dest.2013.6611329.

[15] Jody Swartz and Paulius Vysniauskas. “Software Asset Management in Large Scale
Organizations- Exploring the Challenges and Benefits.” MA thesis. University of
Gothenburg, Mar. 2015.

[16] Pete Rotella. “Software security vulnerabilities.” In: Proceedings of the 1st Inter-
national Workshop on Security Awareness from Design to Deployment - SEAD
’18. ACM Press, 2018. doi: 10.1145/3194707.3194708. url: https://doi.org/
10.1145/3194707.3194708.

[17] Jeffrey Voas and George Hurlburt. “Third-Party Software’s Trust Quagmire.” In:
Computer 48.12 (Dec. 2015), pp. 80–87. doi: 10.1109/mc.2015.372. url: https:
//doi.org/10.1109/mc.2015.372.

[18] Chris Williams. How one developer just broke Node, Babel and thousands of projects
in 11 lines of JavaScript. Mar. 2016. url: https://www.theregister.co.uk/
2016/03/23/npm_left_pad_chaos/.

[19] Rajiv D. Banker and Robert J. Kauffman. “Automated Software Metrics, Reposi-
tory Evaluation and Software Asset Management: New Tools and Perspectives for
Managing Integrated Computer Aided Software Engineering (I-Case).” In: Infor-
mation Systems Working Papers Series, Vol (1991).

[20] Neil F. Holsing and Davidc. Yen. “Software Asset Management.” In: Information
Resources Management Journal 12.3 (July 1999), pp. 14–26. doi: 10.4018/irmj.
1999070102. url: https://doi.org/10.4018/irmj.1999070102.

[21] P.K. Gocek et al. Obtaining software asset insight by analyzing collected metrics
using analytic services. US Patent 9,652,812. May 2017. url: https : / / www .

google.com/patents/US9652812.

[22] Noëlle Baillon et al. “Software license optimization and cloud computing.” In:
CLOUD COMPUTING 2017 (2017), p. 125.

[23] Kelley Dempsey et al. Automation Support for Security Control Assessments: Soft-
ware Asset Management. Tech. rep. National Institute of Standards and Technol-
ogy, 2018.

https://doi.org/10.1049/ip-sen:20000600
https://doi.org/10.1049/ip-sen:20000600
https://doi.org/10.1049/ip-sen:20000600
https://doi.org/10.1109/ms.2004.1331300
https://doi.org/10.1109/ms.2004.1331300
https://doi.org/10.1109/ms.2004.1331300
https://doi.org/10.1109/dest.2013.6611329
https://doi.org/10.1109/dest.2013.6611329
https://doi.org/10.1109/dest.2013.6611329
https://doi.org/10.1145/3194707.3194708
https://doi.org/10.1145/3194707.3194708
https://doi.org/10.1145/3194707.3194708
https://doi.org/10.1109/mc.2015.372
https://doi.org/10.1109/mc.2015.372
https://doi.org/10.1109/mc.2015.372
https://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
https://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
https://doi.org/10.4018/irmj.1999070102
https://doi.org/10.4018/irmj.1999070102
https://doi.org/10.4018/irmj.1999070102
https://www.google.com/patents/US9652812
https://www.google.com/patents/US9652812

89

[24] Joseph Elias Mbowe et al. “A Conceptual Framework for Threat Assessment Based
on Organization’s Information Security Policy.” In: Journal of Information Secu-
rity 05.04 (2014), pp. 166–177. doi: 10.4236/jis.2014.54016. url: https:

//doi.org/10.4236/jis.2014.54016.

[25] Flexera. How Security Risks & the Shift to the Cloud Are Transforming SAM.
Tech. rep. 2016. url: https://resources.flexera.com/web/pdf/WhitePaper-
SLO-Security-Risks-Cloud-Transforming-SAM.pdf.

[26] Ana Márcia Quitério Varela, Mirian Picinini Méxas, and Geisa Meirelles Drumond.
“The scenario of software asset management (SAM) in large and midsize compa-
nies.” In: Independent Journal of Management & Production 9.2 (June 2018),
p. 301. doi: 10.14807/ijmp.v9i2.730. url: https://doi.org/10.14807/ijmp.
v9i2.730.

[27] Paul Klint and Chris Verhoef. “Enabling the creation of knowledge about software
assets.” In: Data & Knowledge Engineering 41.2-3 (June 2002), pp. 141–158. doi:
10.1016/s0169-023x(02)00038-1. url: https://doi.org/10.1016/s0169-
023x(02)00038-1.

[28] Mordechai Ben-Menachem. “Towards management of software as assets: A liter-
ature review with additional sources.” In: Information and Software Technology
50.4 (Mar. 2008), pp. 241–258. doi: 10.1016/j.infsof.2007.08.001. url:
https://doi.org/10.1016/j.infsof.2007.08.001.

[29] Martin Jakubička. “Software asset management.” In: 2010 IEEE International
Conference on Software Maintenance. IEEE, Sept. 2010. doi: 10.1109/icsm.

2010.5609662. url: https://doi.org/10.1109/icsm.2010.5609662.

[30] Fedor Dzerzhinskiy. “About Lawyers, Programmers, and Software Assets.” In:
Mar. 2012. doi: 10.13140/RG.2.1.3039.2488. url: https://doi.org/10.
13140/RG.2.1.3039.2488.

[31] Gary Stoneburner, Alice Y. Goguen, and Alexis Feringa. Risk Management Guide
for Information Technology Systems. Tech. rep. National Institute of Standards
and Technology, 2002.

[32] Microsoft. Introduction to Per Core Licensing and Basic Definitions. May 2020.
url: https://download.microsoft.com/download/3/d/4/3d42bdc2-6725-
4b29-b75a-a5b04179958b/percorelicensing_definitions_vlbrief.pdf.

[33] Dgraph database. Apr. 2019. url: https://dgraph.io/.

[34] Technologies de l’information — Gestion de biens de logiciel — Partie 3: Schéma
de droit de logiciel. url: https://www.iso.org/fr/standard/52293.html.

[35] ODRL Information Model 2.2. Feb. 2018. url: https://www.w3.org/TR/odrl-
model/.

https://doi.org/10.4236/jis.2014.54016
https://doi.org/10.4236/jis.2014.54016
https://doi.org/10.4236/jis.2014.54016
https://resources.flexera.com/web/pdf/WhitePaper-SLO-Security-Risks-Cloud-Transforming-SAM.pdf
https://resources.flexera.com/web/pdf/WhitePaper-SLO-Security-Risks-Cloud-Transforming-SAM.pdf
https://doi.org/10.14807/ijmp.v9i2.730
https://doi.org/10.14807/ijmp.v9i2.730
https://doi.org/10.14807/ijmp.v9i2.730
https://doi.org/10.1016/s0169-023x(02)00038-1
https://doi.org/10.1016/s0169-023x(02)00038-1
https://doi.org/10.1016/s0169-023x(02)00038-1
https://doi.org/10.1016/j.infsof.2007.08.001
https://doi.org/10.1016/j.infsof.2007.08.001
https://doi.org/10.1109/icsm.2010.5609662
https://doi.org/10.1109/icsm.2010.5609662
https://doi.org/10.1109/icsm.2010.5609662
https://doi.org/10.13140/RG.2.1.3039.2488
https://doi.org/10.13140/RG.2.1.3039.2488
https://doi.org/10.13140/RG.2.1.3039.2488
https://download.microsoft.com/download/3/d/4/3d42bdc2-6725-4b29-b75a-a5b04179958b/percorelicensing_definitions_vlbrief.pdf
https://download.microsoft.com/download/3/d/4/3d42bdc2-6725-4b29-b75a-a5b04179958b/percorelicensing_definitions_vlbrief.pdf
https://dgraph.io/
https://www.iso.org/fr/standard/52293.html
https://www.w3.org/TR/odrl-model/
https://www.w3.org/TR/odrl-model/

90 APPENDIX B. BIBLIOGRAPHY

[36] Ian Foster and Carl Kesselman. “Computational Grids.” In: Vector and Parallel
Processing — VECPAR 2000. Ed. by José M. L. M. Palma, Jack Dongarra, and
Vicente Hernández. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 3–37.
isbn: 978-3-540-44942-3.

[37] Jack Dongarra et al. “The International Exascale Software Project roadmap.” In:
The International Journal of High Performance Computing Applications 25.1 (Jan.
2011), pp. 3–60. doi: 10.1177/1094342010391989. url: https://doi.org/10.
1177/1094342010391989.

[38] A. Berl et al. “Energy-Efficient Cloud Computing.” In: The Computer Journal
53.7 (Aug. 2009), pp. 1045–1051. doi: 10.1093/comjnl/bxp080. url: https:
//doi.org/10.1093/comjnl/bxp080.

[39] Daniel Balouek-Thomert, Eddy Caron, and Laurent Lefevre. “Energy-Aware Server
Provisioning by Introducing Middleware-Level Dynamic Green Scheduling.” In:
2015 IEEE International Parallel and Distributed Processing Symposium Work-
shop. IEEE, May 2015. doi: 10.1109/ipdpsw.2015.121. url: https://doi.org/
10.1109/ipdpsw.2015.121.

[40] Orgerie Anne-Cécile and Lefèvre Laurent. “When Clouds become Green: the Green
Open Cloud Architecture.” In: Advances in Parallel Computing 19.Parallel Com-
puting: From Multicores and GPU’s to Petascale (2010), pp. 228–237. issn: 0927-
5452. doi: 10.3233/978-1-60750-530-3-228. url: http://doi.org/10.3233/
978-1-60750-530-3-228.

[41] Zoltan Adam Mann. “Resource Optimization Across the Cloud Stack.” In: IEEE
Transactions on Parallel and Distributed Systems 29.1 (Jan. 2018), pp. 169–182.
doi: 10.1109/tpds.2017.2744627. url: https://doi.org/10.1109/tpds.
2017.2744627.

[42] SmartTrack : Gestion des licences logicielles. May 2020. url: https : / / www .

aspera.com/fr/gestion-des-licences/smarttrack/.

[43] Snow License Manager. May 2020. url: https://www.snowsoftware.com/int/
products/snow-license-manager.

[44] FlexNet Manager. May 2020. url: https://www.flexnetmanager.com/.

[45] Anne-Lucie Vion. “Software Asset Management and Cloud Computing. (Gestion
du patrimoine logiciel et Cloud Computing).” PhD thesis. Grenoble Alpes Univer-
sity, France, 2018. url: https://tel.archives-ouvertes.fr/tel-01901991.

[46] Kubernetes. May 2020. url: https://kubernetes.io/.

[47] Open Network Automation Platform. May 2020. url: https://www.onap.org/.

[48] OpTISAM GitHub. May 2020. url: https://github.com/Orange-OpenSource/
optisam-backend.

https://doi.org/10.1177/1094342010391989
https://doi.org/10.1177/1094342010391989
https://doi.org/10.1177/1094342010391989
https://doi.org/10.1093/comjnl/bxp080
https://doi.org/10.1093/comjnl/bxp080
https://doi.org/10.1093/comjnl/bxp080
https://doi.org/10.1109/ipdpsw.2015.121
https://doi.org/10.1109/ipdpsw.2015.121
https://doi.org/10.1109/ipdpsw.2015.121
https://doi.org/10.3233/978-1-60750-530-3-228
http://doi.org/10.3233/978-1-60750-530-3-228
http://doi.org/10.3233/978-1-60750-530-3-228
https://doi.org/10.1109/tpds.2017.2744627
https://doi.org/10.1109/tpds.2017.2744627
https://doi.org/10.1109/tpds.2017.2744627
https://www.aspera.com/fr/gestion-des-licences/smarttrack/
https://www.aspera.com/fr/gestion-des-licences/smarttrack/
https://www.snowsoftware.com/int/products/snow-license-manager
https://www.snowsoftware.com/int/products/snow-license-manager
https://www.flexnetmanager.com/
https://tel.archives-ouvertes.fr/tel-01901991
https://kubernetes.io/
https://www.onap.org/
https://github.com/Orange-OpenSource/optisam-backend
https://github.com/Orange-OpenSource/optisam-backend

	Remerciements
	Résumé
	Abstract
	Introduction
	Software Asset Management: SAM
	Software Asset Management in the Cloud
	State of the Art

	Metric definition problem
	Modelization
	Using the model to compute compliance

	Deployment automatization and optimization
	First considerations about SAM for deployment
	GreenSAM: a multi-parametric deployment heuristic
	Deploying multiple products at the same time
	Forecasting

	Software Asset Management tools
	Motivation
	OpTISAM

	Conclusion and Future works
	Conclusion
	Future works

	License Metric Language grammar
	Finite-State Machine of LML
	Bibliography

