
HAL Id: tel-03099722
https://theses.hal.science/tel-03099722

Submitted on 6 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Structural Information in Distributed Computing
David Ilcinkas

To cite this version:
David Ilcinkas. Structural Information in Distributed Computing. Distributed, Parallel, and Cluster
Computing [cs.DC]. Université de Bordeaux (UB), 2019. �tel-03099722�

https://theses.hal.science/tel-03099722
https://hal.archives-ouvertes.fr

Structural Information in Distributed Computing

David Ilcinkas

Habilitation thesis

Defense date: March 15, 2019

Reviewers

Evangelos Kranakis Full Professor Carleton University, Canada
Laurent Viennot Research Director INRIA, Paris
Peter Widmayer Full Professor ETH Zurich, Switzerland

Jury

Emmanuel Godard Full Professor University of Aix-Marseille
Franck Petit Full Professor Sorbonne University
Laurent Viennot Research Director INRIA, Paris
Pascal Weil Research Director CNRS, Bordeaux
Peter Widmayer Full Professor ETH Zurich, Switzerland

3

Abstract.

This manuscript presents a significant part of my research results in the
past years, in the field of distributed computing in networks. The document
is structured from the point of view of information available to the computing
entities. First, I present my results concerning the advice framework, which
allows to study quantitative questions about the a priori information given to
the computing entities in order to solve a given problem. I address then the
geometric setting, where the computing entities are mobile robots that acquire
information about their environment through vision. The third part concerns
the exploration of dynamic networks by a mobile entity (called agent in this con-
text), and the impact of knowing the future topological changes. The next part
also deals with distributed computing by mobile agents and considers various
problems and the different ways of storing information on the network. Finally,
the last group of presented results focuses on a particular type of information,
the routing one, useful in many contexts to efficiently transfer information in a
network.

Contents

1 Introduction 7

2 The advice framework 11
2.1 Distributed graph coloring . 12
2.2 Broadcasting in radio networks 13

3 Geometric settings 15
3.1 Graph exploration by oblivious robots 15

3.1.1 The model . 16
3.1.2 Obtained results . 18

3.2 Robots in geometric terrains . 19
3.2.1 Exploration . 19
3.2.2 Rendezvous . 20

4 Dynamic graphs 23
4.1 Transportation networks . 23
4.2 Rings and cactuses . 25

5 Marking nodes 27
5.1 Graph searching using whiteboards 27
5.2 Pointers and alike for fast graph exploration 28
5.3 Black hole search with pebbles 30
5.4 Tweeking the local orderings . 31

6 Routing tables 33
6.1 On routing information . 33
6.2 Constructing rooted shortest-path trees 34
6.3 Compact routing . 35

7 Conclusion and perspectives 37

5

Chapter 1

Introduction

Distributed computing concerns environments consisting of multiple autonomous
computing entities that cooperate in order to collectively achieve a common goal.
Contrarily to the parallelism field where the use of multiple computing entities
is a choice, motivated by gains in performance, the presence of several com-
puting entities is rather considered as a constraint or as the inherent nature of
the environment in distributed computing. The goal then is to compute despite
the distributed nature of the environment, and in particular despite the lack of
direct communications between all entities, the asynchrony of the communica-
tions, the presence of faults, or the dynamic nature of the systems.

Distributed systems are nowadays really widespread, in numerous contexts
and under various forms. The most famous example is the Internet but networks
of computers represent only a part of the distributed systems. In fact, even a
single computer is usually a distributed system itself in the sense that processors
are constituted of several cores that must cooperate (via shared memory or
message passing). Also many objects now contain multiple processors, and/or
communicate with each other (the famous Internet of Things).

The research community interested in the foundations of distributed com-
puting has investigated various models and frameworks, motivated by the large
variety of existing distributed systems and architectures, and the numerous chal-
lenges that they pose. One large part of the research effort concerns distributed
systems in which the computing entities, or processes, can directly communi-
cate to each other, either via messages or via a shared memory, but in which
communication is asynchronous and processes are subject to faults, typically
permanent crashes. In these harsh environments, it is in particular not possible
to distinguish a slow process from a crashed one. The main challenges therefore
are usually to determine what is computable and what is not, and to evaluate
the computation power of various communication primitives and assumptions.

Another important field of research in distributed computing concerns envi-
ronments in which communication is only possible between certain entities. The
system is then classically modeled as a graph, in which the nodes represent the
computing entities and in which an edge between two processes represents the
possibility for these two processes to directly communicate between each other
(usually via message passing). Important questions concern how to efficiently
communicate and compute in these networks, even when fault tolerance issues
are set aside.

7

8 CHAPTER 1. INTRODUCTION

Part of the distributed computing community is also interested in distributed
computing by mobile entities, typically in networks. In such a setting, the
communication network is only a support for these mobile computing entities
called agents, that travel from node to node through the edges of the network.
When the mobile entities are operating in continuous environments, like the
plane, they are naturally called robots.

In all the various different aspects of distributed computing (definitely not
all listed above), the difficulty is to deal with uncertainty, caused by the lack of
information about the global configuration. Indeed, by default, the computing
entities only have local information and they have to communicate (and/or to
move for mobile entities) in order to gather sufficient information to solve the
global task at hand.

My research, and this document, concern distributed computing in networks
and distributed computing by mobile entities, with a special focus on the infor-
mation available or not to the computing entities. My work thus participates to
the research effort aiming at determining the minimal information and/or model
assumptions necessary and sufficient to solve distributed computing problems
(possibly with some prescribed performance).

Structure of the document

Chapter 2 concerns the advice framework, in which an external oracle, after
looking at the whole instance, gives a bit string of advice to the computing
entities before the start of the execution. This allows to quantitatively measure
the a priori information on the instance given to the computing entities. The
development of this framework was started during my PhD Thesis (cf. [FIP08,
FIP10]) and continued during my postdoc. These later works contain trade-offs
between the amount of a priori information and the efficiency of the solutions,
for the problems of distributed graph coloring [FGIP09] and of distributed
broadcasting in radio networks [IKP10].

Chapter 3 deals with mobile computing entities, called robots, moving in
continuous or discrete environments, and acquiring information about their en-
vironment through vision. The first part of this chapter concentrates on the
exploration problem by robots with very limited capabilities (except vision),
in discrete environments: the lines [FIPS11], the rings [FIPS13], and the
trees [FIPS10]. The second part of the chapter considers more powerful robots,
operating in continuous environments, having to solve either the exploration
problem [CILP13], or the rendezvous problem [CILP11].

Chapter 4 concerns the exploration of dynamic networks by a mobile entity,
called agent, which is provided with various information about the dynamics
of the network. The first presented paper [IW11] focuses on periodic trans-
portation networks, which are sparse but very regular. The other two papers
presented in this chapter deal with constantly connected networks that are sub-
graphs of rings [IW18] or cactuses [IKW14].

Chapter 5 addresses various mobile agent computing problems. In all the
presented results of this chapter, the agents are marking the network in which
they operate in some ways, in order to (better) solve the problem at hand.
One of the most powerful way of storing information in the network is by
putting a whiteboard at each node, on which the agents can read and write

9

information. This model of communication is typically used in the context of
the graph searching problem [INS09]. A less powerful mark is the pointer,
which points at an incident edge on a node. This type of marking is used in the
rotor router model [BGH+17], which is one way of derandomizing the random
walk [CIKK11]. The weakest way of communicating via marking the nodes is
the pebble, which can be carried by an agent and dropped on or retrieved from
nodes. It turns out that such a simple mechanism can turn useful for the black
hole search problem instead of the more costly whiteboard mechanism [FIS12].
Finally, it is even possible to use the local ordering of the edges to encode some
information which allows very simple agents to explore a network [CDG+12].

Chapter 6 focuses on a particular type of information, the routing one. More
precisely, given a node t, the routing information for node u is a pointer such
that following the pointers in the network leads to node t. The results in this
chapter concern how to route if some pointers are incorrect [HIKN10], how
many incorrect pointers can be created by topological changes [GHI16], how
to construct such pointers in a fault-tolerant way [GHIJ14, DIJ17], and how
to use these pointers to achieve all-to-all routing using limited memory at the
nodes [GGHI13].

10 CHAPTER 1. INTRODUCTION

Chapter 2

The advice framework

In distributed systems, the computing entities usually have access only to local
information. It is however very common that problems are difficult or impos-
sible to solve without providing the computing entities with additional global
information about the instance, see [Lyn89, FR03]. As a consequence, a lot of
algorithmic solutions for various distributed computing problems assume some
initial global knowledge about the instance, such as the number of nodes, the
maximum degree, or the diameter of the network, or the number of participating
agents in mobile agent computing.

For example, the directed graph mapping problem by a single mobile agent
in polynomial time only needs one pebble (node marker) if an upper bound on
the number of nodes is known to the agent, while Θ(log log n) pebbles are nec-
essary otherwise [BFR+02]. Another example could be the wakeup problem in
arbitrary networks, in which a source node must wake up all the other nodes by
broadcasting a special wakeup message. It turns out that the number of mes-
sages necessary and sufficient to solve the problem is a function Θ(n1+Θ(1)/ρ) of
the radius ρ up to which each node initially knows its neighborhood [AGVP90].

With any solution assuming the knowledge of some global parameter comes
the question of the necessity of this knowledge. In some cases, such a knowledge
is in fact not necessary. This is typically the case for a large family of classical
distributed algorithms, as proven in [KSV13]. In many other cases, one can
prove that without this specific knowledge, i.e. without any a priori global
knowledge, the problem cannot be solved. This however does not prove that the
knowledge of another, maybe “simpler”, parameter is not sufficient. One way
of answering such questions is to look at the amount of knowledge necessary to
solve a problem, independently of the type of this knowledge. This is exactly the
purpose of the advice framework, as it allows quantitative rather than qualitative
questions about the initial knowledge of the computing entities.

In the advice framework, an external entity called oracle, after looking at
the whole instance, gives a bit string called piece of advice, or simply advice,
to the computing entities before the start of the execution. These bit strings
may or may not be restricted to be the same for all computing entities, and we
talk accordingly about uniform or customized advice. For example, providing
the total number of nodes to all computing entities is allowed in the uniform
advice framework, while designating a leader by giving advice 1 to a node and
0 to all others is not. The quantity of interest is then the size of advice, which

11

12 CHAPTER 2. THE ADVICE FRAMEWORK

is usually defined as the sum of the lengths of all the pieces of advice given to
the different computing entities. Sometimes, the size of advice is defined as the
maximum of these lengths.

This framework was developed during my PhD studies, both in classical
distributed computing [FIP10] and in mobile agent computing [FIP08]. In
both cases, the goal was to determine the size of advice necessary and suffi-
cient to solve a given problem with a prescribed efficiency. In fact, the advice
framework allows for more complex results, giving general trade-offs between
the size of advice and the efficiency of a solution. This is partially the case
of the two works done during my postdoc on the subject and presented in
this chapter, [FGIP09] and [IKP10]. The literature about the advice frame-
work is now quite rich, both in mobile agent computing [FIP08, NS09, DP12,
DKM12, KKKS15, MP15a, MP15b, GP17a] and in classical distributed com-
puting [FGIP09, FIP10, FKL10, IKP10, FP11, GMP15, FPP16, MP16, GP17b].

Note that the advice framework in distributed computing is closely related to
the advice complexity framework introduced in [DKP09] for online algorithms.
In distributed computing, only local information is available by default and
the advice gives global information. In online computing, only information
about the past and the present is available and the advice gives information
about the future. More information about these two types of advice can be
found in the surveys [DKK+13, Kra14]. The advice framework is also related to
the informative labeling schemes, whose purpose is to give labels to each node
such that queries about a few nodes can be answered efficiently solely based on
the labels of the involved nodes. This includes for example distance labeling
schemes [GPPR04] and ancestry labeling schemes [AAK+06].

2.1 Distributed graph coloring

In the distributed graph coloring problem, each node of the graph must choose
a color in {1, 2, . . . , c} different from its neighbors, given some integer c. We
consider here the LOCAL model [Pel00]. In this model, nodes have unique
identifiers, that we consider here to be from the set {1, 2, . . . , n}, where n is the
number of nodes. The execution proceeds in synchronous rounds in which a
node is able to send an arbitrary message to each of its neighbors, receive the
messages from all its neighbors, and perform some arbitrary local computation.
There are no a priori limitations on the size of the messages or on the length
of the local computations as long as they are finite. In t rounds, a node is thus
able to gather all the information from its neighborhood up to distance t, and
therefore the LOCAL model really captures the locality of the problem.

The distributed graph coloring problem has received a lot of interest in the
past decades, and in particular the coloring in ∆ + 1 colors problem, where ∆
is the maximum degree in the network. We restrict our attention here to the
distributed 3-coloring of the rings and of the trees. Cole and Vishkin [CV86]
proved that 3-coloring of the rings can be solved in O(log∗ n) rounds, where

log∗ n is the smallest integer i such that log(i) n ≤ 2 (where log(i) is the i-th
iterate of the log function). This upper bound is also valid in oriented tree (that
is rooted trees in which each node knows the edge leading to its parent, if any).
Linial [Lin92] proved that these upper bounds are tight. He also showed that
unoriented trees are much more difficult to distributedly color: the d-regular

2.2. BROADCASTING IN RADIO NETWORKS 13

unoriented tree of radius r needs 2
3r rounds to be colored with fewer than 1

2

√
d

colors.
In [FGIP09], we focus on the lower bounds on the size of advice that permits

to beat these lower bounds for rings and oriented and unoriented trees. First,
we prove that, for any constant k, Ω(n/ log(k) n) bits of advice are needed to
beat the Ω(log∗ n) time lower bound to 3-color the rings and oriented trees.
Differently speaking, almost as much a priori information is needed to beat the
Θ(log∗ n) bound than to directly give their colors to the nodes (which would
require Θ(n) bits).

Similarly, we prove the same lower bound of Ω(n/ log(k) n) bits of advice (for
any k) for reaching time Θ(log∗ n) in unoriented trees. Again, almost Ω(n) bits
are needed to accelerate coloring of unoriented trees to the speed achieved for
oriented trees. Note that this implies that orienting a tree (while allowing few
rounds of communication) requires to give almost Ω(n) bits of information to
the nodes (in total).

Finally, let us point out that our lower bounds are not only valid for the
size of advice but also for the number of informed nodes, that is the number of
nodes receiving at least one bit of advice.

2.2 Broadcasting in radio networks

A radio network is modeled as an n-node directed graph, in which the n nodes
represent the radio stations, and an arc (u, v) represents the fact that node v is
in the transmission range of u. We assume that nodes have unique identifiers
(on O(log n) bits) and that communication is synchronous (i.e., organized in
rounds). A node can be either in the transmitting or in the receiving mode.
If a node u transmits a message (in the transmitting mode), then only its out-
neighbors may receive the message, and such an out-neighbor v does so only
if it is in the receiving mode and u is its only in-neighbor transmitting at this
round. If more than one in-neighbors of v transmits at this round, then a
collision occurs, and node v (in the receiving mode) may or may not be aware
of it, depending whether collision detection is assumed or not.

An important subclass of radio networks is the class of geometric radio net-
works. In this subclass, nodes are positioned in the plane and are aware of
their coordinates. Moreover, each node has a transmission range, taken into a
constant-size set of positive reals known to all, and an arc (u, v) exists in the
geometric radio network if and only if the Euclidean distance between u and v
is smaller than the transmission range of u.

In [IKP10], we consider the broadcasting problem in which a designated
source node s has to transmit a message m to all other nodes. We are interested
in the completion time, that is on the time at which all nodes have received the
message m. More precisely, we look at the size of advice which allows one to
broadcast very fast. Our results are the following.

First, we focus on radio networks with constant optimal broadcasting time,
i.e. on radio networks in which broadcasting can be achieved in constant time
provided that all nodes have the full knowledge of the network. Note that
broadcasting in these networks, even restricted to geometric radio networks, can
require time up to Ω(

√
n) when each node knows only its label and coordinates.

We prove that O(n) bits of advice are sufficient, but o(n) are not, to achieve

14 CHAPTER 2. THE ADVICE FRAMEWORK

constant broadcasting time in these networks. In other words, one needs to
provide almost as much information as giving as advice the rounds at which
the node must transmit according to a constant optimal broadcasting schedule.
Furthermore, if we restrict ourselves to geometric radio networks (still with
constant optimal broadcasting time), then only a constant number of bits is
sufficient.

Concerning general n-node radio networks of diameter D, we exhibit a
trade-off between the size of advice and the achieved broadcasting time by pre-
senting an algorithm using q ∈ O(n) bits of advice and broadcasting in time
O(nDq log3 n). Note that all our upper bounds do not use collision detection
while all our lower bounds are also valid with collision detection.

Chapter 3

Geometric settings

In this chapter, we will focus on distributed computing by mobile entities in ge-
ometric settings. In such environments, information can be acquired via vision,
and the mobile entities are usually called robots rather than agents. Indeed,
a natural application concerns the field of robotics, since robots are usually
equipped with vision sensors and are mobile.

The distributed computing community investigates this topic in several com-
plementary directions. A major focus concerns the capabilities of the robots.

Part of the literature concentrates on the minimal capabilities the robots may
have for solving non-trivial problems. This gave rise to the oblivious robots in
the Look-Compute-Move model. In this model, the agents are very weak, except
for their ability to see their environment: they are oblivious (no persistent mem-
ory), anonymous, identical, unable to directly communicate with each others,
and they do not necessarily agree on a common orientation of the space.

Another part of the literature considers stronger and perhaps more natural
models where the robots have better computational capabilities. In particular,
they have persistent memory (in reasonable amount) and the studied questions
are then more concerning the performance than the computability.

Orthogonally, the research community investigates different types of environ-
ments. This goes from discrete environments (modeled as graphs) to continuous
environments. In the latter case, the space can have one, two, three, or possibly
even more dimensions and the environment may, or may not, contain obstacles.

The first section will focus on oblivious robots in the discrete setting, while
the second section will consider stronger models of robots in continuous envi-
ronments.

3.1 Graph exploration by oblivious robots

In this section, we consider weak robots operating under the Look-Compute-
Move paradigm. An activated robot starts first by taking an instantaneous
snapshot of its environment (the Look phase), then it computes whether and
where it wants to move (the Compute phase), and finally it moves to the decided
new position (the Move phase). Robots operating under the Look-Compute-
Move paradigm are classically considered in continuous environments, usually
the plane. The studies on these robots were however recently extended to the

15

16 CHAPTER 3. GEOMETRIC SETTINGS

case of discrete environments, modeled as graphs (see [BD11] and [PBRT11] for
short surveys on the subject). This section focuses on these discrete environ-
ments.

One motivation to consider discrete environments is to get rid of possibly
annoying geometric considerations in order to focus on issues directly related to
the weaknesses of the robots (anonymity, obliviousness, etc.), to the symmetries
of the environment, and to the asynchrony. Another motivation is more practical
and comes from the fact that vision sensors do not have an infinite precision.
Considering discrete environments thus acknowledges the fact that many vision
sensors output digital and thus discrete snapshots of the environment.

We consider in this section the graph exploration problem, in which the
robots have to visit every vertex. More precisely, we focus on terminating ex-
ploration, which requires that, first, each vertex is visited by at least one robot,
and second, that eventually all robots stop moving. Another variant of the
problem, introduced in [BBMR08], is also studied in the literature, the exclu-
sive perpetual exploration, which requires that, first, each robot visits every
vertex of the graph infinitely often, and second, that no two robots traverse
the same edge at the same time nor visit the same vertex at the same time.
Exploring a graph is a fundamental task in mobile robot computing and can be
used, for example, to search for specific information, or to discover and list all
the services provided by the nodes.

3.1.1 The model

The environment and the robots. We model the environment as a simple
undirected connected graph. The graph is assumed to be anonymous: neither
vertices nor edges are labeled (or, equivalently, such labels cannot be seen by
the robots). The robots are all anonymous and identical, i.e. they all execute
the same algorithm. They have no direct means of communication. Also the
robots are assumed to be oblivious: they do not have persistent memory. When
several robots occupy the same vertex, we say that there is a tower on this
vertex.

The Look-Compute-Move cycle. The robots operate by repeatedly exe-
cuting Look-Compute-Move cycles. In the Look phase, a robot takes an in-
stantaneous egocentric snapshot of its environment. This includes the structure
of the graph around it, and the presence of robots on the seen vertices. The
structure of the snapshot will be detailed later. Note however that all robots are
perceived on vertices, not on edges. In the Compute phase, the robot decides
whether to move or not, and in the first case to which neighboring vertex. Since
robots are oblivious, this computation is solely based on the last snapshot. Fi-
nally, in the Move phase, the robot moves to the chosen neighbor, or stays idle
if it decided to do so. Moves are considered instantaneous, which is consistent
with the fact that robots are seen on vertices in the snapshots.

Timing assumptions. Different levels of asynchrony are classically consid-
ered in the literature. In the fully synchronous model FSync, all robots execute
their Look-Compute-Move cycles simultaneously. Differently speaking, at each
round, every robot executes its full Look-Compute-Move cycle. In the semi-
synchronous model SSync, at each round, a non-empty subset of the robots,

3.1. GRAPH EXPLORATION BY OBLIVIOUS ROBOTS 17

chosen by an adversary, execute a full Look-Compute-Move cycle. Finally, in
the asynchronous model ASync, the timing between the different phases of
the Look-Compute-Move cycles performed by the different robots is arbitrary,
with the only constraint that, for each robot, the time between two consecutive
phases is finite (but possibly unbounded). As a consequence, a move can be
performed based on an outdated snapshot in this model.

The snapshot. During the Look phase, a robot perceives the structure of the
graph and the presence of robots around it within a visibility radius ρ given by
the model. More precisely, the snapshot taken by a robot consists of the rooted
subgraph induced by the vertices at distance at most ρ from the vertex occupied
by the robot and, for each seen vertex, of the perceived number of robots on it.
The accuracy of the perceived number of robots is given by another model
parameter called the multiplicity detection. If weak multiplicity detection is
assumed, a robot is only able to distinguish between the presence of “zero”,
“one”, or “more than one” robots on a seen vertex. On the contrary, strong
multiplicity detection assumes that a robot knows the exact number of robots
that are present on a seen vertex. Orthogonally, multiplicity detection can be
either local or global. In the case of local multiplicity detection, a robot only
knows the multiplicity of the vertex it occupies (whether in the weak or the
strong sense), while in the case of global multiplicity detection, a robot knows
the multiplicity of all vertices.

Configurations, Views, and Symmetries. The description of the graph,
together with the indication of the exact number of robots located on each
vertex, constitute a configuration. The view from vertex u is any rooted graph
isomorphic to the subgraph induced by the vertices at distance at most ρ (the
visibility radius) from u, and the corresponding perceived number of robots
on these vertices (depending on the multiplicity detection assumption). In the
Look phase, a robot is given a view from the vertex it is located on. Therefore,
symmetries of the graph are somehow still present in the snapshot. Indeed, for
example in a ring, if a robot lies on an axis of symmetry of the configuration,
then it will not be able to differentiate one direction from the other. Therefore, if
it decides to move to a neighboring vertex, the actual move will be to a neighbor
chosen by the adversary. More generally, we say that v and v′ are similar with
respect to u if v and v′ are indistinguishable for a robot located in u (because
of symmetries and taking into account the visibility radius and the multiplicity
detection). If a robot decides in the Compute phase to move to a vertex v, then
in the Move phase it will actually move to any vertex v′ similar to v with respect
to the robot’s current position, and the choice of v′ is made by the adversary.

Terminating exploration. A team of robots solves the problem of terminat-
ing exploration in a graph family G if, for any graph G ∈ G, for any behavior of
the adversary controlling the asynchrony and the choices between similar neigh-
bors, and starting from any initial configuration without towers, each vertex
of the graph is visited by at least one robot and the robots eventually reach a
configuration in which no robots ever move.

18 CHAPTER 3. GEOMETRIC SETTINGS

3.1.2 Obtained results

In the rings.

In [FIPS13], the first paper considering the exploration problem in this model,
we focus on the case of the rings. We first prove that terminating exploration
of an n-vertex ring is not deterministically solvable by a team of k robots,
even with full visibility, global strong multiplicity detection, and in the FSync
model. This implies that the smallest number of robots able to explore the
n-vertex ring is in Ω(log n), for infinitely many values of n. This in fact remains
true for probabilistic algorithms [DPT13], but only for the asynchronous model
ASync. Indeed, in the semi-synchronous model SSync, a constant number of
robots, namely 4 probabilistic robots, are necessary and sufficient to solve the
terminating exploration problem in any n-vertex ring with n > 4, see [DPT13].

Let us now focus on deterministic algorithms. The lower bound 4 still holds
in SSync (in FSync, only 3 is a clear lower bound for every n, in particu-
lar when n is odd). When n is even, 5 robots are necessary in the SSync
model [LPBT10b]. These values are somehow optimal. Indeed, 4 robots can
explore the rings of odd size in SSync [LPBT10a], and provided that n is not
a multiple of 5, a team of 5 robots can explore the n-vertex ring even in the
ASync model [LPBT10b]. As pointed out, the smallest number of robots that
can explore the n-vertex ring may be logarithmic in n for infinitely many val-
ues of n, but this cannot go worse in the sense that O(log n) robots are always
sufficient. Indeed, for any k ≥ 17 that is co-prime with n, we prove that a team
of k robots can explore the n-vertex ring [FIPS13].

Limited visibility has also been considered, for deterministic algorithms,
when the visibility radius ρ is 1 [DLLP13], or 2 or 3 [DLLP15].

In the trees.

The trees [FIPS10], and the sub-case of the lines [FIPS11], have only been
considered in the deterministic setting and assuming weak multiplicity detec-
tion.

In trees, the absence of port numbers (the anonymous graph assumption)
makes empty leaves having the same parent indistinguishable (they are similar
with respect to the parent). Therefore, in order to explore sibling leaves despite
any choice of the adversary concerning similar vertices, at least one robot must
be sent to each leaf attached to a given parent. If a vertex has more than
two leaves attached to it and all of them are occupied by robots, then at least
two of them are similar, having both either a single robot or a tower. The
adversary can thus make these robots merge if the algorithm decides to move
them. Therefore, one can prove that Ω(n) robots are necessary in some trees (at
least in complete ternary trees) in the SSync model. Note that this lower bound
heavily relies on the weak multiplicity assumption. For trees of maximum degree
3, less robots may be used: we prove that O(log n/ log log n) robots are sufficient
in such trees, even in the ASync model. This number is actually necessary for
some trees because Ω(log n/ log log n) robots are necessary to explore complete
binary trees, even with strong multiplicity detection and in the FSync model.

In lines, symmetries are much more limited, and the solvable cases are fully
characterized. A team of k < n robots can solve terminating exploration in the
n-vertex line if and only if k = 3, or k ≥ 5, or k = 4 and n is odd. The lower

3.2. ROBOTS IN GEOMETRIC TERRAINS 19

bounds are proved in the SSync model while the upper bounds hold even in
the ASync model.

Other results.

The situation for grids [DLP+12] and tori [DLPT15] has later also been inves-
tigated, and resembles the situation for lines and rings, in the sense that grids
are explorable using less robots (3 in the general case) than necessary for the
tori (4 probabilistically and 5 deterministically), which have more symmetries.

The case of arbitrary graphs has been considered in [CFMS10], in the case
of asymmetric configurations and in the presence of port numbers locally dis-
tinguishing the edges.

3.2 Robots in geometric terrains

This section is devoted to the case of continuous environments. More precisely,
we focus on terrains bounded by a polygon, with possibly polygonal obstacles
inside. The polygons are considered part of the terrain, which make it closed in
the topological sense. As a consequence, shortest paths between two points of
the terrain are well defined, although they may not be unique.

3.2.1 Exploration

In [CILP13], we study exploration of a priori unknown bounded terrains with
obstacles by a single robot. We consider two scenarios concerning the capabili-
ties of the robot. In the unlimited vision scenario, a robot visiting (positioned
at) some node p explores (sees) any point q such that the segment pq is included
in the terrain. In the limited vision scenario, we additionally require p and q
to be at distance at most 1. Besides, the robot has persistent memory, that it
can use to record its trajectory and the explored portion of the terrain. The
trajectory of the robot is assumed to be a polygonal line starting from a point
chosen by an adversary, and the cost of exploration, which is the quantity to
be minimized, is defined as the length of its trajectory when all points of the
terrain are explored.

Exploration has been mostly looked at from the competitive ratio point of
view, that is the ratio between the cost of exploration by an algorithm and
the optimal cost when having full knowledge about the terrain. In the gen-
eral case, with unlimited vision, the competitive ratio of any algorithm is at
least in Ω(

√
k) [AKS02], and the best known algorithm has competitive ratio

in O(k) [DKP91]. For specific cases, better competitive ratio can be achieved.
For example, when obstacles are convex and have a constant aspect ratio (i.e.
are not arbitrarily thin), the competitive ratio is in Θ(

√
k) [KP93].

In the considered paper [CILP13], we rather focus on the asymptotic cost
of exploration. For unlimited vision, we present an algorithm with cost in
O(P +D

√
k), where P is the total perimeter (including those of the obstacles),

D is the diameter of the convex hull of the terrain, and k is the number of
obstacles. Note that our algorithm does not a priori know these parameters.
We additionally show that this cost is worst-case optimal by proving a matching
lower bound, holding even when the terrain is known.

20 CHAPTER 3. GEOMETRIC SETTINGS

For limited vision, we show a lower bound in Ω(P + A+
√
Ak), where A is

the area of the terrain, again holding even with the full knowledge of the terrain.
We also exhibit matching upper bounds (via algorithms) in two cases. The first
case concerns arbitrary terrains, but with the knowledge of either A or k. The
second case is restricted to the c-fat terrains, for some constant c. A terrain is
c-fat if we have R/r ≤ c, where R, resp. r, is the radius of the smallest disc
containing the terrain, resp. the largest disc contained in the terrain.

3.2.2 Rendezvous

The last presented result of this chapter [CILP11] is about the asynchronous
rendezvous of two robots in bounded terrains, possibly with obstacles. Two
robots start at different positions chosen by the adversary in a polygonal terrains
and have to meet, i.e. be at the exact same point at the same time. We consider
here the asynchronous variant of the problem where the robots choose their
trajectories but the adversary chooses their speeds, which may vary between
the robots and over time.

The robots are assumed to have persistent memory in sufficient amount,
but no vision capabilities. Sensing the environment is done in a tactile way.
More precisely, the two robots have a unit of length and are equipped with
compasses, which have the same chirality (the same notion of clockwise) but
may differ otherwise. When on the boundary of the terrain, a robot knows the
angle of the polygonal segment(s) it lies on in its own system of coordinates.
The trajectory of a robot is defined step by step. In a given step, the robot
chooses a direction and a distance d (in its system of coordinates), and then the
robot follows this segment for d of its units of distance, unless the segment is
blocked by a boundary or the robot reaches a vertex of a polygon, in which case
the robot stops for this step.

In [CILP11], the worst-case cost of rendezvous, defined as the sum of the
lengths of the trajectories until they meet, is studied in the eight different scenar-
ios formed by the composition of the following three binary factors: (1) obstacles
in the terrain are present, or not, (2) compasses of both robots agree, or not,
(3) robots have or do not have a map of the terrain with their positions marked.
Note that in symmetric terrains for the scenarios with incoherent compasses
and the presence of obstacles, the symmetry cannot be broken if robots start
in symmetric positions. In these two scenarios (and in those only), we assume
that the robots have distinct identifiers. The optimal worst-case asymptotic
complexities are summarized in Table 3.1, where D is the initial distance in the
terrain between the two starting positions of the robots, P is the total perimeter
(including those of the obstacles), x is the largest perimeter of an obstacle, and
l and L are respectively the smaller and the larger labels of the robots.

With incoherent compasses and in the presence of obstacles, rendezvous is
achieved on a cycle, and the labels are used to break the symmetry. Otherwise,
the robots are able to agree on a single point of rendezvous. When no map is
available, the robots need to explore a bit the terrain in order to localize the
rendezvous point, which explains the larger complexity than in the scenarios
where a map is available.

3.2. ROBOTS IN GEOMETRIC TERRAINS 21

Rendezvous with a map Rendezvous without a map
XXXXXXXXXobstacles

compasses
coherent incoherent

XXXXXXXXXobstacles
compasses

coherent incoherent

no
D

D no
Θ(P)

Θ(P)
yes Θ(D|l|) yes Θ(P + x|L|)

Table 3.1: Summary of results about the asynchronous rendezvous in bounded
terrains

22 CHAPTER 3. GEOMETRIC SETTINGS

Chapter 4

Dynamic graphs

This chapter is based on the work done with Ahmed Wade when he was my
PhD student. It concerns the dynamic graphs, which received a lot of attention
recently. There exist many different models, used in various scientific fields,
which were surveyed in [CFQS12] (see also [KO11, Mic16]). In this chapter,
we use the evolving graph model [Fer04], one of the most classical models of
dynamic graphs. An evolving graph is a pair G = (V, E), where V is a static
set of n vertices, and E is a function which maps to every integer t ≥ 0 a set
E(t) of undirected edges on V . The static graph G = (V,

⋃∞
t=0 E(t)) is called the

underlying graph of G. Conversely, the evolving graph G is said to be based on
the static graph G.

The focus of this chapter will be on the dynamic graph exploration problem,
in which a mobile agent has to visit every node of the evolving graph. We assume
that traversing an edge requires one time unit. The first section will deal with
a special case of evolving graphs called the periodically-varying graphs [IW11].
The second section will concern constantly connected evolving graphs based
on the rings [IW18] and on the cactuses [IKW14] (which are trees of rings
basically).

4.1 Transportation networks

We consider a system S = {s1, · · · , sn} of n sites among which k carriers are
moving. Each carrier c has an identifier Id(c) and follows a finite sequence
R(c) = (si1 , . . . , sip(c)) of sites, called its route, in a periodic manner. The
positive integer p(c) is called the period of the carrier c. More precisely, the
carrier c starts at node si1 at time 0 and then proceeds along its route, moving
to the next site at each time unit, in a cyclic manner (that is, when c is at node
sip(c) , it goes back to si1 and follows the route again and again).

A PV-graph (for periodically-varying graph) is a pair (S,C), where S is a set
of sites, and C is a set of carriers operating among these sites. We will usually
denote by n, k and p, respectively, the number of sites, the number of carriers
and the maximum over the periods of the carriers. A PV-graph is said to be
homogeneous if and only if all its carriers have the same period. Finally, a PV-
graph is connected if one can go from any site to any other site, and it is highly-
connected if one can go from any site to any other site without staying on a site.

23

24 CHAPTER 4. DYNAMIC GRAPHS

This models in particular various types of public transportation systems like
bus systems or subway systems for example. It also models low earth orbiting
satellite systems, or security systems composed of security guards making tours
in the place to be secured.

On the PV-graphs is operating a mobile agent, not a priori knowing the PV-
graph, but able to see the carriers present at its current site, and the identifiers
of these carriers. It can board a carrier, move with it, change carrier at a site (if
both are present at the same site at the same time), leave a carrier, or stay at
a site. We do not assume any restriction on the memory of the agent or on its
computational capabilities. The goal of the agent, starting at time 0 in the first
carrier, is to visit all sites and terminate (i.e., enter a specific terminal state).
We are interested in the completion time, and in the number of performed moves
(a move is an edge traversal on a carrier).

The first paper considering exploration of the PV-graphs [FMS13] assumes
a slightly different model. Namely, it assumes that the agent cannot wait on a
site and must always ride a carrier (but it can obviously change carrier when
possible). As a consequence, a PV-graph must be highly-connected to be ex-
plorable. This restriction makes sense when considering satellite systems for
example. The authors prove that some a priori knowledge is necessary for the
problem to be solvable, even if sites have unique identifiers and even in our
stronger model, and that knowing an upper bound on p is sufficient in any case.
To simplify the presentation of the results, we assume that the agent is provided
with a linear upper bound on p.

The time and move complexities obtained in [FMS13] and in our work [IW11]
are summarized in Table 4.1. In each of the four scenarios, the upper part, resp.
lower part, corresponds to the results in [FMS13], resp. in [IW11]. In particu-
lar, in the general case, we prove that waiting at the stations allows the agent to
reduce the worst-case optimal number of moves by a multiplicative factor of at
least Θ(p), while the time complexity is reduced to Θ(n · p). (In any connected
PV-graph, we have n ≤ k · p.) Our lower bounds hold even when sites have
unique identifiers, and our upper bounds are proved by exhibiting algorithms
which do not use site identifiers and that perform mapping (i.e., they actually
output a full map of the PV-graph). Finally, note that these works were some-
how extended to the case of harmful sites which destroy any agent entering
them, see [FKMS12a, FKMS12b].

Connected Highly-connected

General case

Impossible Θ(kp2) moves and
time steps

Θ(min{kp, np, n2}) moves Θ(min{kp, np, n2}) moves
Θ(np) time steps Θ(np) time steps

Homogeneous

Impossible Θ(kp) moves and
time steps

Θ(min{kp, np, n2}) moves Θ(min{kp, np, n2}) moves
Θ(np) time steps O(np) time steps

Table 4.1: Summary of results about the PV-graph exploration

4.2. RINGS AND CACTUSES 25

4.2 Rings and cactuses

In this section, we concentrate on constantly connected evolving graphs, that
is on evolving graphs G = (V, E), where for each t ≥ 0, the static graph
Gt = (V, E(t)) is connected. We also need the notion of T -interval-connectivity,
from [KLO10]: given an integer T ≥ 1, an evolving graph is T -interval-connected
if, for every window of T consecutive time steps, there exists a connected span-
ning subgraph that is stable (always present) during this period. Note that the
definitions of 1-interval-connectivity and constant connectivity are equivalent.

In [IW18], we consider T -interval-connected evolving graphs based on a
ring. Let us first look at the case when the dynamics is not known by the agents.
In general, exploration is impossible, so we assume in this particular case that
the evolving graph is δ-recurrent, i.e., that each edge of the underlying graph
appears at least once every δ time units. We prove that the worst-case time
complexity for the exploration problem is n+ n

max{1,T−1} (δ−1)±Θ(δ) time units,

which corresponds to the trivial algorithm consisting in going in a fixed direction
(say clockwise) until exploration is performed. Exploration by several agents
has been considered in [LDFS16], where the impact that synchrony, anonymity
and topological knowledge have on the computability and complexity of the
problem is studied.

In the rest of [IW18] and in [IKW14], we assume that the agent knows
the dynamics of the graph. In a sense, the exploration problem becomes a cen-
tralized problem in this case. Given an evolving graph and a starting position,
determining the optimal exploration time is NP-hard, since it is already the
case for static graphs, but it is also hard to approximate [EHK15, MS16] in the
general case. This is however not the case for evolving graphs based on rings, for
which the optimal exploration time can be computed in time O(n2) [AKM14].

In fact, even computing the asymptotic worst-case exploration time of a
family of (constantly connected) evolving graphs is difficult, contrarily to the
case of static graphs which are all explorable in time Θ(n). An obvious lower
bound for evolving graphs is Ω(n), while the most straightforward upper bound
is O(n2), from the fact that the temporal diameter (the maximum time needed
to go from one node to another) is at most n. Obtaining better bounds, even
in restricted cases, is a challenging problem.

In [IW18], we prove that evolving graphs based on n-node rings can be
explored in time at most 2n − 3. If these evolving graphs are additionally T -
interval-connected, for 2 ≤ T ≤

⌊
n+1

2

⌋
, the worst-case optimal exploration time

is more precisely 2n− T − 1.
Still assuming constant connectivity, evolving graphs based on trees are sim-

ply static trees, since no edges can be removed without disconnecting the graph.
Besides, static trees can be explored efficiently, traversing each edge at most
once in each direction. One could therefore think that evolving graphs based on
trees of rings, i.e. on the connected graphs in which any two simple cycles have
at most one vertex in common, called cactuses, are also efficiently explorable
in time O(n). Surprisingly, it is still unknown whether such a claim is true.
In [IKW14], we prove this claim for the case of constant-depth or constant-
degree trees of rings. For general underlying cactuses, we are able to prove that
the worst-case optimal exploration time is sub-quadratic by exhibiting an ex-
ploration algorithm performing exploration in time 2O(

√
logn)n. We also show

a corresponding lower bound of 2Ω(
√

logn)n for this specific algorithm.

26 CHAPTER 4. DYNAMIC GRAPHS

Chapter 5

Marking nodes

In classical distributed computing, where nodes are the computing entities,
information is stored on the nodes. In mobile agent computing though, the
memory is naturally placed on the computing entities, that is, on the agents.
However, marking nodes turns out to be a potentially powerful indirect mean
of communication between the agents. Also, marking nodes can be useful to
break symmetry, typically in anonymous networks. This chapter considers the
most common different ways of marking the nodes.

5.1 Graph searching using whiteboards

The graph searching problem consists, for a team of agents often called searchers,
in capturing in a finite graph a fugitive which is invisible, arbitrarily fast, and
knows the strategy of the searchers [Par78]. Equivalently, the graph searching
problem can be seen as the problem of decontaminating a graph from a toxic
gas. Intuitively, the contaminated part of the graph represents the part of the
graph where the fugitive can be.

The entire graph is contaminated at the beginning. An edge is cleared when
it is traversed by a searcher. An edge e is recontaminated as soon as there exists
a contaminated edge e′ in the graph and a path without searchers between e
and e′. The goal is to minimize the number of searchers, called the search
number of the graph in centralized settings, and usually to find a corresponding
search strategy.

Two important properties of search strategies are monotonicity and connect-
edness. A search strategy is monotone when no recontamination ever occurs. A
search strategy is connected if the cleared part of the graph is always connected.
These properties define, by requiring them or not, four search numbers: s(G),
ms(G), cs(G), and mcs(G). Without requiring the connectedness, recontamina-
tion does not help [LaP93], i.e., ms(G) = s(G). This is however not true when
requiring connectedness: there exist graphs for which mcs(G) > cs(G) [YDA09].
Besides, note that computing these search numbers is NP-hard [MHG+88].

Most of the literature (see the survey [FT08]) concentrates on the centralized
setting, in which the search numbers are defined. Differently speaking, s(G)
searchers are sufficient to clear a graph if the searchers know in advance the
graph, compute a search strategy, and then execute it in a synchronous way, but

27

28 CHAPTER 5. MARKING NODES

more searchers may be required otherwise. Here, we consider the distributed
version of the problem in which the searchers all start from a common node
called homebase, move asynchronously and communicate through whiteboards.
A whiteboard is a local memory, present on every node, in which searchers can
read, erase and write in fair mutual exclusion.

Most of the works concerning distributed searching either consider specific
topologies or assume that the searchers have some a priori knowledge, modeled
as advice, about the graph [NS09]. In our paper [INS09], we are interested in
distributed graph searching without any a priori knowledge. In [BFNV08], the
authors propose an algorithm usingmcs(G)+1 searchers that clear any unknown
graph in a connected way. Their proposed search strategy is not monotone and
may use an exponential number of steps.

In [INS09], we are interested in connected search strategies that are also
monotone, which implies a polynomial number of steps. We prove that requiring
a monotone connected distributed search strategy without a priori knowledge
has a cost in terms of the number of searchers. More precisely, we are inter-
ested in finding an algorithm minimizing over all graphs the ratio between the
number of searchers used by the algorithm and the search number mcs(G). We
prove that any algorithm has competitive ratio in Ω(n

logn), even when restrict-
ing ourself to trees with maximum degree 3, and we present an algorithm with
competitive ratio in O(n

logn) using O(n) bits per whiteboard and O(log n) bits
of memory per searcher.

5.2 Pointers and alike for fast graph exploration

The whiteboard is a very powerful way of marking the nodes, allowing any
kind of information to be stored in the nodes. A less powerful node mark is
the pointer, which points at an incident edge, and can thus be simulated by
whiteboards with O(log n) bits in the worst case. It turns out that a pointer is
already a powerful mechanism. Indeed, the pointer is what is used in the rotor
router mechanism, at the basis of approaches in stabilization of distributed
processes [YWB03], load balancing [BKK+15], and graph exploration [GR08].

We will focus here on the latter problem. In this context, the rotor router
mechanism proceeds as follows. Each node has a pointer, and edges are locally
ordered at every node. When an agent arrives at a node, it leaves the node
using the edge indicated by the pointer. Immediately after the agent leaves the
node, the pointer is advanced to the next edge in the local ordering of the node.
Differently speaking, the pointer is always pointing to the edge that will be
used to leave the node by the agent at its next visit. Note that such an agent’s
algorithm does not require agent’s memory.

The whole system (graph, pointers and position of the agent) being finite,
such a process eventually enters a periodic behavior. In particular, the trajec-
tory of the agent becomes periodic, and it happens to be an Eulerian traversal
of the symmetric directed version of the graph (each undirected edge {u, v} is
replaced by two arcs (u, v) and (v, u)), see [PDDK96]. The lock-in time (the
number of steps until the agent gets locked-in in its Eulerian traversal) is at
most 2mD in the worst case [YWB03], where m is the number of edges and D
is the diameter of the graph.

In [BGH+17], we study in more depth the lock-in time. First, we exam-

5.2. POINTERS AND ALIKE FOR FAST GRAPH EXPLORATION 29

ine the influence of the initial configuration of the pointers and of the cyclic
orderings on the lock-in time. This is done via introducing a competition be-
tween a player P intending to lock-in the agent in an Euler tour as quickly as
possible and its adversary A having the counter objective. We show that the
lower bound Ω(mD) on the lock-in time in the worst-case graph from [YWB03]
is in fact valid for any graph if the adversary chooses both the pointers and the
cyclic orderings, and even the starting node. We also show that the most criti-
cal parameter is the choice of the pointers, in the sense that the adversary can
always force a lock-in time in Θ(mD) in some graphs if it chooses the pointers
(cases with A(π), and A-all), whereas if the player chooses the pointers after
the adversary chooses the cycling orderings (case A(�)P(π)), then the lock-in
time is always in Θ(m). The obtained results are summarized in Table 5.1.

Scenario Lock-in time (worst-case graph) Lock-in time (best-case graph)

P-all Θ(m) Θ(m)
A(�)P(π) Θ(m) Θ(m)
P(π)A(�) Θ(m ·min{logm,D}) Θ(m)
A(π)P(�) Θ(m ·D), Θ(m)

P(�)A(π) Θ(m ·D), Θ(m), if D ≤ m1/3

A-all Θ(m ·D), [YWB03] Θ(m+D2), [best starting node]
Θ(m ·D), [worst starting node]

Table 5.1: The worst- and the best-case lock-in times in considered scenarios
for graphs with m edges and diameter D. The asymptotic results hold for any
choice of the starting node in the graph, unless otherwise stated.

Still in [BGH+17], we study the impact of failures and topological changes
on the lock-in time. More precisely, we start with the system in a locked-in
configuration, we introduce pointer faults or topological changes, and we look
at the lock-in time from this new configuration. If k pointers are modified,
then a new Eulerian cycle is established within Θ(m · min{k,D}) steps. If k
edges are added to the graph, then a new Eulerian cycle is established within
Θ(m · min{k,D}) steps. If an edge is deleted from the graph but the graph
remains connected, then a new Eulerian cycle is established within O(γm) steps,
where γ is the length of the smallest cycle in the original graph G which contains
the deleted edge.

To summarize, this exploration method is simple and has many good prop-
erties. Also, it is deterministic and thus can be seen as a derandomization of
the random walk. In particular, the rotor router exploration shares two nice
properties with the random walk. First, exploration is performed in a (small)
polynomial number of steps, and second, exploration is fair regarding the edges
in the sense that the frequencies of visit (in a long run) are equal for all the
edges. Indeed, the random walk has cover time (expected number of steps to
visit all nodes) in O(mD log n), and the expected frequency of visit of any edge
is 1/m.

The rotor router exploration can also be seen as the exploration using the
Oldest-First strategy: at each step, the agent traverses the incident edge for
which the most time has elapsed since its last traversal in this direction. The
rotor router exploration is also a possible execution of a Least-Used-First strat-
egy in which the agent traverses the incident edge that has been traversed the

30 CHAPTER 5. MARKING NODES

least number of times in this direction. One can show that any Least-Used-First
strategy for directed edges has also cover time in O(mD) and is fair regarding
the edges.

In [CIKK11], we study the Oldest-First and Least-Used-First strategies
for undirected edges, that is when the time of last traversal or the number of
traversals so far are considered in any direction. We show that the situation
changes significantly. Indeed, the undirected Oldest-First strategy can have a
cover time in 2Ω(n) in some graphs and there can be an exponentially large
ratio of visits between the most often and the least often visited edges. On the
other hand, any undirected Least-Used-First strategy is efficient, with a cover
time in O(mD), and fair regarding the edges. Moreover, when the exploration
starts from a state with non-zero (corrupted) initial values of traversal counts
on edges, the cover time is bounded by O((n + p)m), where p is the maximal
value of a counter in the initial state.

5.3 Black hole search with pebbles

The black hole search problem consists, for a team of agents starting from a safe
homebase, in locating the black hole(s) located in the network. A black hole is a
harmful node that destroys any agent entering it, without letting any observable
trace. More precisely, at least one agent must survive, and all surviving agents
must terminate knowing the location of the black hole(s). The problem exists
in its asynchronous [DFPS07] and synchronous [CKMP07] versions. In the
synchronous version, the black hole is relatively easy to detect. If two agents
are at node u, neighbor of a node v, then they can determine whether v is a black
hole or not: one agent is sent as a scout to v and should return immediately to
report, and node v is a black hole if and only if the scout does not come back.
In the asynchronous setting, such a trick does not work, because one cannot
distinguish between a very slow node and a black hole.

In the asynchronous setting, we assume that there exists exactly one black
hole, that the network is 2-node-connected, and that the agents know the num-
ber n of nodes. The only way to locate the black hole is then to visit safely
n− 1 nodes. The remaining node must be the black hole. In order to avoid too
many losses of agents in the black hole, the agents need a way to communicate
with each other, typically to indicate that an agent is trying to traverse an edge
which may lead to the black hole, preventing the other agents to also die in the
black hole through the same edge. Because of asynchrony and the presence of
the black hole, the agents cannot wait for each other and meet on a node. They
thus communicate through marking the nodes.

The usual indirect communication model used in asynchronous black hole
search is the whiteboard model. The whiteboards are used to mark an edge
as dangerous before traversing it, and then safe if there wasn’t a black hole at
the other extremity, but also to exchange topological information or to split
the remaining work between the agents. A natural question is to determine the
minimum size of whiteboard which is sufficient to solve the problem. Or perhaps
weaker types of node marking are sufficient. In particular, marking an incident
edge as dangerous could be done by putting a pointer towards this edge.

In fact, several papers consider the black hole search problem using tokens.
A token is a marker that can be used both as a pointer and as a pebble (a simple

5.4. TWEEKING THE LOCAL ORDERINGS 31

node marker). Indeed, a token is a marker that can be carried by an agent, put
on a node (acting as a pebble) or on the port leading to an incident edge (acting
as a pointer), or retrieved by the agent. Using pointers, it was proved that the
black hole search problem can be solved with the optimal (for whiteboard)
number of agents in rings [DKSS06], in unknown arbitrary graphs [DFKS06],
and in hypercubes, tori and complete networks [Shi09]. In the first and third of
these papers, the number of moves is even optimal.

Note that in all cases, the ability of a token to act either as a pointer, or as
a node, is used. Also, in [DKSS06] and [Shi09], several tokens are allowed to be
placed at the same position (node or port), while in [DKSS06] and [DFKS06],
edges are supposed to be FIFO, preventing the agents to overtake each other
on an edge.

In [FIS12], we prove that black hole search can be solved using only pebbles,
that is markers that can be placed only on a node, not on a port leading to
an incident edge. Moreover, this can be done in arbitrary graphs of known
topology, with the optimal number of agents (two), each starting with only one
pebble, and with the optimal number of moves (O(n log n)). Moreover, we do
not assume the links to be FIFO, and any agent or node carries/contains at most
one pebble at any time. Differently speaking, the pebble model is as powerful
as the whiteboard model for the problem of asynchronous black hole search in
arbitrary graphs of known topology.

5.4 Tweeking the local orderings

Anonymous graphs are classically defined by graphs whose nodes have no iden-
tifiers but whose edges are locally distinguished by port numbers. Usually, the
edges incident to a node v of degree d are assigned different port numbers at v
from the set {1, . . . , d}. Choosing the port number assignment rather than con-
sidering any port numbering is also a way of helping mobile agents operating
on the graph.

This is in particular the case for periodic graph exploration by an agent with
constant (or even no) memory, which cannot explore all graphs with worst-case
port numbering. In [DJSS05], the authors prove that, for any n-node graph,
there exists an algorithm assigning the port numbers such that an oblivious
(memoryless) agent can perform periodic exploration of the graph with period
at most 10n.

In [CDG+12], we prove that the minimum period for oblivious agents is at
least 2.8n and at most (4+ 1

3)n−4 in n-node graphs. When the agent is allowed
to have a constant number of memory bits, an even smaller period of at most
3.5n− 2 can be achieved.

32 CHAPTER 5. MARKING NODES

Chapter 6

Routing tables

This chapter focuses on a particular type of information, the routing one. The
purpose of this kind of information is to facilitate the transmission of a message
between two nodes. Instead of flooding the network with copies of the message
to be sure that it arrives quickly, or instead of using a (rather slow) random
walk to propagate the message if one does not want to duplicate the message,
the routing information on the traversed nodes can be used to decide on which
edge to forward the message. This allows one to deliver a message quickly and
without duplicating it.

We will first consider a single destination, and look at a simple type of
routing information, the pointer. Indeed, a pointer that points to a neighbor on
a shortest path is a small information that already allows to deliver a message as
quickly as possible and without flooding the network. In the first section, we will
see how to route despite the presence of incorrect pointers [HIKN10], and then
how many incorrect pointers can be created by topological changes [GHI16].
In the second section, we will look at self-stabilizing algorithms able to construct
such pointers [GHIJ14, DIJ17]. Finally, the third section will consider all-
to-all routing and how to efficiently route while using limited memory at the
nodes [GGHI13]. A significant part of these works was done during the PhD
studies of Christian Glacet, who I co-supervised with Nicolas Hanusse.

6.1 On routing information

Let us assume that there is a specified destination t in the network, and that
each node u different from t has a pointer that should designate a neighbor
lying on a shortest path from u to t. Suppose that exactly k nodes, called
liars, have incorrect pointers, which are thus pointing at neighbors which are
not on shortest paths to t. We are interested in a routing algorithm that allows
a message (or equivalently a mobile agent) to be delivered quickly at t despite
these incorrect pointers.

This model has been introduced in [KK99] under the assumption that each
node may be a liar with a given probability. The model with a fixed number k
of liars has been investigated in [HKK04, HKKK08]. It is known that in some
trees of constant maximum degree, the presence of k liars forces the expected
time to reach a target at distance d to be in Ω(d + 2min{d,k}), when both d

33

34 CHAPTER 6. ROUTING TABLES

and k are logarithmic in the number n of nodes [HKK04]. In the same paper,
the authors prove that much better times can be achieved in other topologies: in
a complete network, a ring, a torus, or an hypercube, the target can be reached
in time polynomial in both d and k. In [HKKK08], simple randomized and
memoryless algorithms are designed for the case of bounded degree graphs: the
agent follows the pointer with some fixed probability p > 1/2, or chooses one
of the remaining incident edges uniformly at random otherwise. The authors
show that the expected time to reach t with such an algorithm is in Θ(d+ rk),
where r = p

1−p .

In [HIKN10], we study strategies that can only choose at each step between
following the pointer, and following a pure unbiased random walk (i.e. choosing
an incident edge uniformly at random). We propose a particular strategy, called
R/A, which makes use of a timer (step counter) to alternate between phases of
following a pure random walk (R) and following the pointers (A) for a certain
number of steps. No knowledge of parameters n, d, or k is required, and the
agent need not know by which edge it entered the node of its current location.
The performance of this strategy is studied for two classes of regular graphs
with extremal values of expansion, namely, for rings and for random ∆-regular
graphs (an important class of expanders). For the ring, R/A is shown to achieve
an expected searching time of 2d + kΘ(1) + o(d) for a worst- case distribution
of liars, which is polynomial in both d and k. For random ∆-regular graphs,
the expected searching time of the R/A strategy is O(k3 log3 n) asymptotically
almost surely.

In [GHI16], we assume that initially all nodes in the network have correct
pointers, and we determine how many liars may be created by some topological
changes. In this paper, we assume that edges are weighted, and that the notion
of shortest path uses these weights. We consider two scenarios. In the strong
adversary model, the initial pointers and the topological changes are chosen by
the adversary in order to maximize the number of liars. In the random adversary
model, the initial pointers and the topological changes are chosen uniformly at
random among the available choices.

We show that in the strong adversary model, for one node or edge deletion (or
addition), the numbers of liars and distance changes can be at least n−D−O(1),
even if the graph remains connected, where n is the number of nodes and D
the initial diameter. In the random adversary model, the expected number
of errors after M edge deletions is bounded by O(nMD/m), where m is the
initial number of edges. We also show that this bound is tight whenM = o(n).
Moreover, for M node deletions, the expected number of errors is in O(MD).

6.2 Constructing rooted shortest-path trees

Rooted shortest-path trees, which are implicitly formed by (correct) pointers at
each node except the destination t, are the basis of many distance-vector routing
protocols. In fault-free environments, such data structures are easy to construct,
for example using the Bellman-Ford algorithm [Bel58, For56], which propagates
the distance to the destination throughout the network. This algorithm (and
others) however does not behave well in the presence of faults or topological
changes and may lead to the count-to-infinity problem [LGW04].

One way of dealing with faults or topological changes is to use the self-

6.3. COMPACT ROUTING 35

stabilization approach [Dij74]. A self-stabilizing system is able to recover in
finite time, called the stabilization time, a correct behavior starting from any
initial configuration (that may be the result of an arbitrary set of transient faults
or topological changes). The stabilization time is usually measured in rounds,
which more or less captures the speed of the slowest process, but recent studies
also consider the move complexity, which counts the number of state changes
of a node, summed over all nodes of the network. This quantity thus measures
the amount of computation done in the network until stabilization.

We consider in this section the Disconnected Components Detection and
rooted Shortest-Path tree Maintenance (DCDSPM) problem. It considers a non-
necessarily connected network, modeled as a simple undirected and weighted
graph, with a distinguished node called the root. The goal is to design a self-
stabilizing algorithm which, in the connected components not containing the
root, detects this fact (the nodes enter a special state) and, in the connected
component containing the root, computes a shortest-path tree rooted at the
root (each node has a pointer to a neighbor on a shortest path to the root).

In [GHIJ14], we present the first algorithm solving the DCDSPM problem
with a linear number of rounds that does not assume any initial knowledge on
the parameters of the network, nor restrict the asynchrony of the system. More
precisely, the presented algorithm runs in at most 2n+D rounds in a network
with n nodes and hop-diameter D, and is silent, that is, it eventually reaches
a configuration in which the states of the processes do not change anymore.
Unfortunately, the move complexity is shown to be exponential in n in the
worst-case.

In [DIJ17], we improve the previous result by presenting an algorithm hav-
ing the same good properties but with a polynomial move complexity. The
round complexity is a bit larger, at most 3n+D, while the move complexity is
in O(Wmaxn

4) in networks with integer edge weights at most Wmax.

6.3 Compact routing

In this section, we consider the full routing problem. The goal is to design a
distributed routing scheme, an algorithm that distributedly constructs, in any
weighted network, routing tables and a corresponding routing algorithm such
that each node can deliver a message to any other node by using the routing
algorithm and the routing tables along the taken route.

We are interested in different performance measures, of theoretical and prac-
tical interest: the time and message complexities of the routing scheme, the
maximum memory space (which includes the routing table) used at each node,
and the stretch of the obtained routing algorithm. The stretch of a routing
algorithm is the maximum ratio, taken over all pairs source-destination, be-
tween the length of the route used by the algorithm between the source and the
destination, and the length of a shortest path between the same nodes.

For centralized routing schemes, there are well-established trade-offs between
the stretch and the memory. In particular, given a positive integer k, achieving
a stretch < 2k+ 1 requires routing tables of Ω((n log n)1/k) bits, see [AGM06a].
Conversely, given routing tables of size O(n1/k · polylog(n)), the best stretch
one can achieve is in Ω(k), see [AGM06b]. For small stretch with sub-linear
routing tables, a space- and stretch-optimal centralized routing scheme has been

36 CHAPTER 6. ROUTING TABLES

proposed in [AGM+08]. It has stretch at most 3 and uses routing tables of
O(
√
n · polylog(n)) bits.

In [GGHI13], we consider distributed routing schemes and we first show
that time Ω(D) (where D is the hop-diameter) is required for any constant
stretch, and that shortest-path routing requires Ω(n2) bit-message complexity
even on sparse graphs of logarithmic diameter. On the positive side, we propose
an asynchronous distributed routing scheme for weighted n-node networks of
hop-diameter D. The stretch is 7 (and the round-trip stretch is 5). The time
complexity is O(D), with a small hidden constant (< 10). Moreover, at any time
during the execution of the algorithm, the working memory space of each node is
O(
√
n·polylog(n)). In particular, the routing tables have size O(

√
n·polylog(n)).

In a synchronous scenario, and in the case of uniform weights, the message com-
plexity is O(m

√
n + n3/2 min{D,

√
n}) up to poly-logarithmic factors. For the

realistic case of weighted sparse networks of poly-logarithmic hop-diameter, the
message complexity is sub-quadratic, in O(n3/2 · polylog(n)). A simple variant
of our algorithm shows that, for this same family of networks, we can achieve
stretch 5 with sub-linear routing tables and sub-quadratic message complexity.

Chapter 7

Conclusion and perspectives

Many of the papers I have published in the last decade are related to the var-
ious information that distributed computing entities can acquire in distributed
computing in networks, the computing entities being either the nodes or some
mobile entities.

This concerns first a priori information, given at the beginning of the exe-
cution. Information can be specific, like the size of the network, or the future
dynamics of the edges (Chapter 4). But information can be also given as pieces
of advice, in order to study quantitative questions about a priori knowledge
(Chapter 2).

This also concerns information that can be acquired throughout the exe-
cution. In distributed computing by mobile entities in particular, there exist
many ways of sensing the environment, like in geometric settings (Chapter 3),
or of interacting with it (Chapter 5). In networks, I specifically studied the
routing information and on how to construct and use it, even in fault-prone
environments (Chapter 6).

Through all these different aspects and points of view, I have contributed
to the important quest of the distributed computing community consisting in
determining the minimal assumptions necessary and sufficient to solve given
problems, possibly with prescribed performance.

Recent developments in distributed computing

More generally, my research fits into the two main tendencies that can be seen in
the research community on distributed computing. The first tendency consists
in formalizing, generalizing, and clarifying the theoretical aspects of distributed
computing. The second tendency consists in getting closer to real life by con-
sidering more realistic models and problems.

In order to better determine what can and cannot be done in distributed
systems, numerous theoretical models were developed, each focusing on differ-
ent aspects of the distributed setting. For example, the LOCAL model focuses
on the locality of a problem, that is on how far a node must collect information
around it in order to solve the problem. It does so by putting aside many of the
limiting factors that may be present in distributed systems: the system is fault-
free and synchronous, the processes have unique identifiers, and no particular

37

38 CHAPTER 7. CONCLUSION AND PERSPECTIVES

constraints concerning their memory or their computational capabilities are as-
sumed. By limiting the size of the messages, one obtain the CONGEST model,
suited for studying the impact of limited bandwidth. Focusing even more on
the communication complexity aspect, there is the congested clique model, in
which any process can directly communicate with any other process, still with
messages of bounded size. An even more extreme model concerning commu-
nication is the beeping model, which can be viewed as a model in which all
messages are identical. For anonymous networks, one of the appropriate models
is the local computation model which allows to concentrate on the symmetry
problems induced by the anonymity of the nodes.

There exist in fact many more models in distributed computing and some ef-
forts have been made to clarify their respective power. One direction of research
consists in exhibiting simulations in which one model is simulated in another.
This may concern the number of faults or processes, like in the BG simulation,
the asynchrony assumptions, via the synchronizers, the types of communication
primitives, or even the types of computing entities (mobile agents versus nodes).
Such a clarification effort has also been made by developing computational com-
plexity theories for distributed computing. For example, concerning the LOCAL
model, different complexity and/or computability classes were introduced to
study, in particular, the power of randomization and non-determinism. Sim-
ilar theories were also developed for other models in distributed computing,
like in mobile agent computing for example. Among my works not covered in
this document, two are concerning these computability/complexity theories in
classical [AFIM14] and mobile agent [BI18] distributed computing.

Besides, the distributed computing community naturally tends also towards
increasing difficulty, trying to better capture the complexity of real life scenarios.
This has been done first by considering more and more performance measures.
For fault-tolerant systems with shared memory for instance, the main concern
gradually switched from the computability to the complexity, by considering the
number of registers or the number of remote memory references for example.
For self-stabilizing algorithms, more general scenarios about the asynchrony
were considered, giving rise to the alternate and complementary move and step
complexities. More generally, space complexity received a lot of interest in the
last decade or so, and it has been one of the main focus in my own work as well.

In parallel to the already mentioned relatively simple models dedicated to
study particular aspects of distributed computing, more realistic and complex
models and frameworks were also developed. In particular, there has been re-
cently a rapidly growing interest into taking into account the dynamic nature of
the distributed systems, and much still needs to be discovered with this respect.
Models and/or algorithms somehow inspired by nature are also developing, rang-
ing from algorithms inspired by animal societies, swarm computing, or even
programmable matter and quantum distributed computing. In mobile agent
computing, the complexity has increased by considering more elaborate tasks,
involving more and more agents, and possibly heterogeneous ones. Among my
works not covered in this document, two in particular concern different variants
of the search problem by heterogeneous mobile agents [BCIK15, BCG+16].

39

On the confidence in distributed computing

These two tendencies, toward a better understanding of the foundations of dis-
tributed computing and toward more realistic models and problems, are both
natural and worthwhile exploring. However, for any real progress to be made,
one needs to be sure that the obtained results are sound and reliable, and I
don’t think this is really the case. Indeed, one particularity of distributed com-
puting is that even algorithms of just a few lines may be tricky to prove. The
main reason is the intrinsic nature of distributed computing, which involves
multiple computing entities, and this phenomenon is exacerbated by the non-
determinism of the executions caused by the asynchrony and/or the faults. On
this subject, Leslie Lamport noted in [Lam12]:

[Concurrent (multiprocess)] algorithms can be quite subtle and hard
to get right; their correctness proofs require a degree of precision and
rigor unknown to most mathematicians (and many computer scien-
tists). A missing hypothesis, such as that a set must be nonempty,
which is a trivial omission in a mathematical theorem, can mean a
serious bug in an algorithm.

In fact, not only algorithms are concerned, but also impossibility results
and lower bounds. In these, it is rather common to argue about what a com-
puting entity does or does not know about the instance, but reasoning about
knowledge and communication tends to be really tricky and prone to incor-
rect arguments. Whether as authors or reviewers, probably most researchers
in distributed computing experienced the difficulty of obtaining proofs without
incorrect arguments or at least without holes. (This is anyway my case.) The
question is then to determine what confidence we can have in all the claimed
results in distributed computing, and more generally in all the distributed sys-
tems used more or less directly in our life. The related question is to figure out
what researchers can do to improve the situation.

One first issue is that proofs in research papers tend to be written in prose,
without always a lot of rigor. Hence, already in the 90s, Leslie Lamport [Lam95]
was advocating for a more rigorous way of writing proofs in mathematics and
computer science. The recommended method is to write very detailed proofs
presented in a hierarchical way in order for the reader to be able to parse them
more easily and to catch the different ideas used in the proof at different levels
of details. As far as I know, this way of writing a proof was not adopted.

However, model checking did develop in distributed computing, especially
for fault-tolerant distributed systems, but non only. Model checking is partic-
ularly useful for finding bugs, by completely verifying the algorithms in rather
small instances. In distributed computing by mobile robots in networks for ex-
ample, two algorithms for two different fundamental problems in the field were
recently proved incorrect using model checking [BLM+16, DBO16, DBO18].
Proving that algorithms or impossibility results are correct is however much
more difficult, because of the combinatorial explosion of the state space or even
undecidability issues. Using some tricks, the problem may still be tractable for
approximate versions, or for limited cases. Keeping the same example, Bérard
et al. [BLM+16] proved correct the main phase of the algorithm from [FIPS13]
presented in Chapter 3, but only for a limited number of nodes (at most 22).

40 CHAPTER 7. CONCLUSION AND PERSPECTIVES

A complementary method for verifying results is to use a proof assistant
like Coq. The certification is not automated anymore, but it is in general not
subject anymore to undecidability or combinatorial explosion issues. Several
projects using Coq are currently under development concerning various parts of
distributed computing. Non exhaustively, the VERDI project considers fault-
tolerant distributed systems [WWP+15], the PADEC project considers self-
stabilizing algorithms [DCA17], the PACTOLE project considers mobile robots
systems [BCR+17], and the LOCO project considers the local computations
model [CF11].

I am convinced that this confidence issue in distributed computing is one
of the main challenge the field will have to face in the next years, because of
the increasingly complex algorithms and results that are and will be developed,
and the growing use of distributed algorithms in potentially critical systems.
I particularly believe in the certification via proof assistants approach, and I
already started and will continue to investigate this aspect in the future.

Bibliography

[AAK+06] S. Abiteboul, S. Alstrup, H. Kaplan, T. Milo, and T. Rauhe. Com-
pact Labeling Scheme for Ancestor Queries. SIAM Journal on
Computing, 35(6):1295–1309, January 2006.

[AFIM14] Heger Arfaoui, Pierre Fraigniaud, David Ilcinkas, and Fabien Math-
ieu. Distributedly Testing Cycle-Freeness. In Dieter Kratsch and
Ioan Todinca, editors, Graph-Theoretic Concepts in Computer Sci-
ence, Lecture Notes in Computer Science, pages 15–28. Springer
International Publishing, 2014.

[AGM06a] Ittai Abraham, Cyril Gavoille, and Dahlia Malkhi. On Space-
stretch Trade-offs: Lower Bounds. In Proceedings of the Eighteenth
Annual ACM Symposium on Parallelism in Algorithms and Archi-
tectures, SPAA ’06, pages 207–216, New York, NY, USA, 2006.
ACM.

[AGM06b] Ittai Abraham, Cyril Gavoille, and Dahlia Malkhi. On Space-
stretch Trade-offs: Upper Bounds. In Proceedings of the Eighteenth
Annual ACM Symposium on Parallelism in Algorithms and Archi-
tectures, SPAA ’06, pages 217–224, New York, NY, USA, 2006.
ACM.

[AGM+08] Ittai Abraham, Cyril Gavoille, Dahlia Malkhi, Noam Nisan, and
Mikkel Thorup. Compact Name-independent Routing with Mini-
mum Stretch. ACM Trans. Algorithms, 4(3):37:1–37:12, July 2008.

[AGVP90] Baruch Awerbuch, Oded Goldreich, Ronen Vainish, and David
Peleg. A Trade-off Between Information and Communication in
Broadcast Protocols. J. ACM, 37(2):238–256, April 1990.

[AKM14] Eric Aaron, Danny Krizanc, and Elliot Meyerson. DMVP: Foremost
Waypoint Coverage of Time-Varying Graphs. In Graph-Theoretic
Concepts in Computer Science, Lecture Notes in Computer Science,
pages 29–41. Springer, Cham, June 2014.

[AKS02] Albers, Kursawe, and Schuierer. Exploring Unknown Environments
with Obstacles. Algorithmica, 32(1):123–143, January 2002.

[BBMR08] Roberto Baldoni, François Bonnet, Alessia Milani, and Michel Ray-
nal. Anonymous graph exploration without collision by mobile
robots. Information Processing Letters, 109(2):98–103, December
2008.

41

42 BIBLIOGRAPHY

[BCG+16] Evangelos Bampas, Jurek Czyzowicz, Leszek Gasieniec, David Il-
cinkas, Ralf Klasing, Tomasz Kociumaka, and Dominik Pajak. Lin-
ear Search by a Pair of Distinct-Speed Robots. In Jukka Suomela,
editor, Structural Information and Communication Complexity,
Lecture Notes in Computer Science, pages 195–211. Springer In-
ternational Publishing, 2016.

[BCIK15] Evangelos Bampas, Jurek Czyzowicz, David Ilcinkas, and Ralf Klas-
ing. Beachcombing on Strips and Islands. In Algorithms for Sen-
sor Systems, Lecture Notes in Computer Science, pages 155–168.
Springer International Publishing, 2015.

[BCR+17] Thibaut Balabonski, Pierre Courtieu, Lionel Rieg, Sébastien
Tixeuil, and Xavier Urbain. Certified Gathering of Oblivious Mo-
bile Robots: Survey of Recent Results and Open Problems. In
Laure Petrucci, Cristina Seceleanu, and Ana Cavalcanti, editors,
Critical Systems: Formal Methods and Automated Verification,
Lecture Notes in Computer Science, pages 165–181. Springer In-
ternational Publishing, 2017.

[BD11] F. Bonnet and X. Defago. Exploration and Surveillance in Multi-
robots Networks. In 2011 Second International Conference on Net-
working and Computing, pages 342–344, November 2011.

[Bel58] Richard Bellman. On a routing problem. Quarterly of Applied
Mathematics, 16(1):87–90, 1958.

[BFNV08] Lélia Blin, Pierre Fraigniaud, Nicolas Nisse, and Sandrine Vial.
Distributed chasing of network intruders. Theoretical Computer
Science, 399(1):12–37, June 2008.

[BFR+02] Michael A. Bender, Antonio Fernández, Dana Ron, Amit Sahai,
and Salil Vadhan. The Power of a Pebble: Exploring and Mapping
Directed Graphs. Information and Computation, 176(1):1–21, July
2002.

[BGH+17] Evangelos Bampas, Leszek Gasieniec, Nicolas Hanusse, David Il-
cinkas, Ralf Klasing, Adrian Kosowski, and Tomasz Radzik. Ro-
bustness of the Rotor–Router Mechanism. Algorithmica, 78(3):869–
895, July 2017.

[BI18] Evangelos Bampas and David Ilcinkas. On mobile agent verifiable
problems. Information and Computation, 260:51–71, June 2018.

[BKK+15] Petra Berenbrink, Ralf Klasing, Adrian Kosowski, Frederik
Mallmann-Trenn, and Przemyslaw Uznanski. Improved Analysis of
Deterministic Load-Balancing Schemes. In Proceedings of the 2015
ACM Symposium on Principles of Distributed Computing, PODC
’15, pages 301–310, New York, NY, USA, 2015. ACM.

[BLM+16] Béatrice Bérard, Pascal Lafourcade, Laure Millet, Maria Potop-
Butucaru, Yann Thierry-Mieg, and Sébastien Tixeuil. Formal verifi-
cation of mobile robot protocols. Distributed Computing, 29(6):459–
487, November 2016.

BIBLIOGRAPHY 43

[CDG+12] Jurek Czyzowicz, Stefan Dobrev, Leszek Gasieniec, David Ilcinkas,
Jesper Jansson, Ralf Klasing, Ioannis Lignos, Russell Martin, Kuni-
hiko Sadakane, and Wing-Kin Sung. More efficient periodic traver-
sal in anonymous undirected graphs. Theoretical Computer Science,
444:60–76, July 2012.

[CF11] Pierre Castéran and Vincent Filou. Tasks, types and tactics for
local computation systems. Stud. Inform. Univ., 9(1):39–86, 2011.

[CFMS10] Jérémie Chalopin, Paola Flocchini, Bernard Mans, and Nicola San-
toro. Network Exploration by Silent and Oblivious Robots. In
Graph Theoretic Concepts in Computer Science, pages 208–219.
Springer, Berlin, Heidelberg, June 2010.

[CFQS12] Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and
Nicola Santoro. Time-varying graphs and dynamic networks. In-
ternational Journal of Parallel, Emergent and Distributed Systems,
27(5):387–408, October 2012.

[CIKK11] Colin Cooper, David Ilcinkas, Ralf Klasing, and Adrian Kosowski.
Derandomizing random walks in undirected graphs using locally
fair exploration strategies. Distributed Computing, 24(2):91, Octo-
ber 2011.

[CILP11] Jurek Czyzowicz, David Ilcinkas, Arnaud Labourel, and Andrzej
Pelc. Asynchronous deterministic rendezvous in bounded terrains.
Theoretical Computer Science, 412(50):6926–6937, November 2011.

[CILP13] Jurek Czyzowicz, David Ilcinkas, Arnaud Labourel, and Andrzej
Pelc. Worst-case optimal exploration of terrains with obstacles.
Information and Computation, 225:16–28, April 2013.

[CKMP07] Jurek Czyzowicz, Dariusz Kowalski, Euripides Markou, and An-
drzej Pelc. Searching for a Black Hole in Synchronous Tree Net-
works. Combinatorics, Probability and Computing, 16(4):595–619,
July 2007.

[CV86] Richard Cole and Uzi Vishkin. Deterministic coin tossing with ap-
plications to optimal parallel list ranking. Information and Control,
70(1):32–53, July 1986.

[DBO16] Ha Thi Thu Doan, François Bonnet, and Kazuhiro Ogata. Model
Checking of a Mobile Robots Perpetual Exploration Algorithm. In
Structured Object-Oriented Formal Language and Method, pages
201–219. Springer, Cham, November 2016.

[DBO18] Ha Thi Thu Doan, François Bonnet, and Kazuhiro Ogata. Model
Checking of Robot Gathering. In James Aspnes, Alysson Bessani,
Pascal Felber, and João Leitão, editors, 21st International Con-
ference on Principles of Distributed Systems (OPODIS 2017),
volume 95 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 12:1–12:16, Dagstuhl, Germany, 2018. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

44 BIBLIOGRAPHY

[DCA17] Stephane Devismes, Pierre Corbineau, and Karine Altisen. A
Framework for Certified Self-Stabilization. Logical Methods in
Computer Science, Volume 13, Issue 4, November 2017.

[DFKS06] Stefan Dobrev, Paola Flocchini, Rastislav Královič, and Nicola San-
toro. Exploring an Unknown Graph to Locate a Black Hole Using
Tokens. In Fourth IFIP International Conference on Theoretical
Computer Science- TCS 2006, IFIP International Federation for In-
formation Processing, pages 131–150. Springer, Boston, MA, 2006.

[DFPS07] Stefan Dobrev, Paola Flocchini, Giuseppe Prencipe, and Nicola
Santoro. Mobile Search for a Black Hole in an Anonymous Ring.
Algorithmica, 48(1):67–90, May 2007.

[Dij74] Edsger W. Dijkstra. Self-stabilizing Systems in Spite of Distributed
Control. Commun. ACM, 17(11):643–644, November 1974.

[DIJ17] Stéphane Devismes, David Ilcinkas, and Colette Johnen. Self-
Stabilizing Disconnected Components Detection and Rooted
Shortest-Path Tree Maintenance in Polynomial Steps. Discrete
Mathematics & Theoretical Computer Science, Vol. 19 no. 3,
November 2017.

[DJSS05] Stefan Dobrev, Jesper Jansson, Kunihiko Sadakane, and Wing-Kin
Sung. Finding Short Right-Hand-on-the-Wall Walks in Graphs. In
Andrzej Pelc and Michel Raynal, editors, Structural Information
and Communication Complexity, Lecture Notes in Computer Sci-
ence, pages 127–139. Springer Berlin Heidelberg, 2005.

[DKK+13] Stefan Dobrev, Rastislav Kralovic, Richard Kralovic, The Dis-
tributed Computing Column, and by P. Fatourou. Computing with
Advice: when Knowledge Helps. Bulletin of EATCS, 2(110), Au-
gust 2013.

[DKM12] Stefan Dobrev, Rastislav Královič, and Euripides Markou. Online
Graph Exploration with Advice. In SpringerLink, pages 267–278.
Springer, Berlin, Heidelberg, June 2012.

[DKP91] X. Deng, T. Kameda, and C. Papadimitriou. How to learn an un-
known environment. In [1991] Proceedings 32nd Annual Symposium
of Foundations of Computer Science, pages 298–303, October 1991.

[DKP09] Stefan Dobrev, Rastislav Kralovic, and Dana Pardubská. Measur-
ing the problem-relevant information in input. RAIRO - Theoretical
Informatics and Applications, 43(3):585–613, July 2009.

[DKSS06] S. Dobrev, R. Královič, N. Santoro, and W. Shi. Black Hole Search
in Asynchronous Rings Using Tokens. In Algorithms and Complex-
ity, Lecture Notes in Computer Science, pages 139–150. Springer,
Berlin, Heidelberg, May 2006.

[DLLP13] A. K. Datta, A. Lamani, L. L. Larmore, and F. Petit. Ring Ex-
ploration by Oblivious Agents with Local Vision. In 2013 IEEE
33rd International Conference on Distributed Computing Systems,
pages 347–356, July 2013.

BIBLIOGRAPHY 45

[DLLP15] A. K. Datta, A. Lamani, L. L. Larmore, and F. Petit. Enabling Ring
Exploration with Myopic Oblivious Robots. In 2015 IEEE Inter-
national Parallel and Distributed Processing Symposium Workshop,
pages 490–499, May 2015.

[DLP+12] Stéphane Devismes, Anissa Lamani, Franck Petit, Pascal Raymond,
and Sébastien Tixeuil. Optimal Grid Exploration by Asynchronous
Oblivious Robots. In Stabilization, Safety, and Security of Dis-
tributed Systems, pages 64–76. Springer, Berlin, Heidelberg, Octo-
ber 2012.

[DLPT15] Stéphane Devismes, Anissa Lamani, Franck Petit, and Sébastien
Tixeuil. Optimal Torus Exploration by Oblivious Robots. In Net-
worked Systems, pages 183–199. Springer, Cham, May 2015.

[DP12] Dariusz Dereniowski and Andrzej Pelc. Drawing maps with ad-
vice. Journal of Parallel and Distributed Computing, 72(2):132–143,
February 2012.

[DPT13] Stéphane Devismes, Franck Petit, and Sébastien Tixeuil. Optimal
probabilistic ring exploration by semi-synchronous oblivious robots.
Theoretical Computer Science, 498:10–27, August 2013.

[EHK15] Thomas Erlebach, Michael Hoffmann, and Frank Kammer. On
Temporal Graph Exploration. In Automata, Languages, and Pro-
gramming, Lecture Notes in Computer Science, pages 444–455.
Springer, Berlin, Heidelberg, July 2015.

[Fer04] A. Ferreira. Building a reference combinatorial model for MANETs.
IEEE Network, 18(5):24–29, September 2004.

[FGIP09] Pierre Fraigniaud, Cyril Gavoille, David Ilcinkas, and Andrzej
Pelc. Distributed computing with advice: information sensitivity
of graph coloring. Distributed Computing, 21(6):395–403, March
2009.

[FIP08] Pierre Fraigniaud, David Ilcinkas, and Andrzej Pelc. Tree explo-
ration with advice. Information and Computation, 206(11):1276–
1287, November 2008.

[FIP10] Pierre Fraigniaud, David Ilcinkas, and Andrzej Pelc. Communi-
cation algorithms with advice. Journal of Computer and System
Sciences, 76(3):222–232, May 2010.

[FIPS10] Paola Flocchini, David Ilcinkas, Andrzej Pelc, and Nicola Santoro.
Remembering without memory: Tree exploration by asynchronous
oblivious robots. Theoretical Computer Science, 411(14):1583–
1598, March 2010.

[FIPS11] Paola Flocchini, David Ilcinkas, Andrzej Pelc, and Nicola Santoro.
How many oblivious robots can explore a line. Information Pro-
cessing Letters, 111(20):1027–1031, October 2011.

46 BIBLIOGRAPHY

[FIPS13] Paola Flocchini, David Ilcinkas, Andrzej Pelc, and Nicola Santoro.
Computing Without Communicating: Ring Exploration by Asyn-
chronous Oblivious Robots. Algorithmica, 65(3):562–583, March
2013.

[FIS12] Paola Flocchini, David Ilcinkas, and Nicola Santoro. Ping Pong
in Dangerous Graphs: Optimal Black Hole Search with Pebbles.
Algorithmica, 62(3-4):1006–1033, April 2012.

[FKL10] Pierre Fraigniaud, Amos Korman, and Emmanuelle Lebhar. Lo-
cal MST Computation with Short Advice. Theory of Computing
Systems, 47(4):920–933, November 2010.

[FKMS12a] Paola Flocchini, Matthew Kellett, Peter C. Mason, and Nicola San-
toro. Finding Good Coffee in Paris. In Fun with Algorithms, Lec-
ture Notes in Computer Science, pages 154–165. Springer, Berlin,
Heidelberg, June 2012.

[FKMS12b] Paola Flocchini, Matthew Kellett, Peter C. Mason, and Nicola San-
toro. Searching for Black Holes in Subways. Theory of Computing
Systems, 50(1):158–184, January 2012.

[FMS13] Paola Flocchini, Bernard Mans, and Nicola Santoro. On the ex-
ploration of time-varying networks. Theoretical Computer Science,
469:53–68, January 2013.

[For56] L.R. Ford. Network Flow Theory. Paper P-923. Rand Corporation,
1956.

[FP11] Emanuele G. Fusco and Andrzej Pelc. Trade-offs Between the
Size of Advice and Broadcasting Time in Trees. Algorithmica,
60(4):719–734, August 2011.

[FPP16] Emanuele G. Fusco, Andrzej Pelc, and Rossella Petreschi. Topology
recognition with advice. Information and Computation, 247:254–
265, April 2016.

[FR03] Faith Fich and Eric Ruppert. Hundreds of impossibility results for
distributed computing. Distributed Computing, 16(2-3):121–163,
September 2003.

[FT08] Fedor V. Fomin and Dimitrios M. Thilikos. An annotated bibliogra-
phy on guaranteed graph searching. Theoretical Computer Science,
399(3):236–245, June 2008.

[GGHI13] Cyril Gavoille, Christian Glacet, Nicolas Hanusse, and David Il-
cinkas. On the Communication Complexity of Distributed Name-
Independent Routing Schemes. In Distributed Computing, Lecture
Notes in Computer Science, pages 418–432. Springer, Berlin, Hei-
delberg, October 2013.

[GHI16] Christian Glacet, Nicolas Hanusse, and David Ilcinkas. The impact
of dynamic events on the number of errors in networks. Theoretical
Computer Science, 627:1–12, May 2016.

BIBLIOGRAPHY 47

[GHIJ14] Christian Glacet, Nicolas Hanusse, David Ilcinkas, and Colette
Johnen. Disconnected Components Detection and Rooted Shortest-
Path Tree Maintenance in Networks. In Stabilization, Safety, and
Security of Distributed Systems, Lecture Notes in Computer Sci-
ence, pages 120–134. Springer, Cham, September 2014.

[GMP15] C. Glacet, A. Miller, and A. Pelc. Time vs. Information Trade-
offs for Leader Election in Anonymous Trees. In Proceedings of the
Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Al-
gorithms, Proceedings, pages 600–609. Society for Industrial and
Applied Mathematics, December 2015.

[GP17a] Barun Gorain and Andrzej Pelc. Deterministic Graph Explo-
ration with Advice. In Ioannis Chatzigiannakis, Piotr Indyk,
Fabian Kuhn, and Anca Muscholl, editors, 44th International
Colloquium on Automata, Languages, and Programming (ICALP
2017), volume 80 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 132:1–132:14, Dagstuhl, Germany, 2017. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[GP17b] Barun Gorain and Andrzej Pelc. Leader Election in Trees with
Customized Advice. arXiv:1702.03534 [cs], February 2017. arXiv:
1702.03534.

[GPPR04] Cyril Gavoille, David Peleg, Stéphane Pérennes, and Ran Raz. Dis-
tance labeling in graphs. Journal of Algorithms, 53(1):85–112, Oc-
tober 2004.

[GR08] Leszek Gasieniec and Tomasz Radzik. Memory Efficient Anony-
mous Graph Exploration. In Graph-Theoretic Concepts in Com-
puter Science, Lecture Notes in Computer Science, pages 14–29.
Springer, Berlin, Heidelberg, June 2008.

[HIKN10] Nicolas Hanusse, David Ilcinkas, Adrian Kosowski, and Nicolas
Nisse. Locating a Target with an Agent Guided by Unreliable Local
Advice: How to Beat the Random Walk when You Have a Clock?
In Proceedings of the 29th ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing, PODC ’10, pages 355–364,
New York, NY, USA, 2010. ACM.

[HKK04] Nicolas Hanusse, Evangelos Kranakis, and Danny Krizanc. Search-
ing with mobile agents in networks with liars. Discrete Applied
Mathematics, 137(1):69–85, February 2004.

[HKKK08] Nicolas Hanusse, Dimitris Kavvadias, Evangelos Kranakis, and
Danny Krizanc. Memoryless search algorithms in a network with
faulty advice. Theoretical Computer Science, 402(2):190–198, Au-
gust 2008.

[IKP10] David Ilcinkas, Dariusz R. Kowalski, and Andrzej Pelc. Fast
radio broadcasting with advice. Theoretical Computer Science,
411(14):1544–1557, March 2010.

48 BIBLIOGRAPHY

[IKW14] David Ilcinkas, Ralf Klasing, and Ahmed Mouhamadou Wade. Ex-
ploration of Constantly Connected Dynamic Graphs Based on Cac-
tuses. In Structural Information and Communication Complex-
ity, Lecture Notes in Computer Science, pages 250–262. Springer,
Cham, July 2014.

[INS09] David Ilcinkas, Nicolas Nisse, and David Soguet. The cost of mono-
tonicity in distributed graph searching. Distributed Computing,
22(2):117–127, October 2009.

[IW11] David Ilcinkas and Ahmed Mouhamadou Wade. On the Power of
Waiting When Exploring Public Transportation Systems. In Prin-
ciples of Distributed Systems, Lecture Notes in Computer Science,
pages 451–464. Springer, Berlin, Heidelberg, December 2011.

[IW18] David Ilcinkas and Ahmed M. Wade. Exploration of the T-
Interval-Connected Dynamic Graphs: the Case of the Ring. Theory
of Computing Systems, 62(5):1144–1160, July 2018.

[KK99] Evangelos Kranakis and Danny Krizanc. Searching with un-
certainty. In Cyril Gavoille, Jean-Claude Bermond, and André
Raspaud, editors, SIROCCO’99, 6th International Colloquium on
Structural Information & Communication Complexity, Lacanau-
Ocean, France, 1-3 July, 1999, pages 194–203. Carleton Scientific,
1999.

[KKKS15] Dennis Komm, Rastislav Královič, Richard Královič, and Jasmin
Smula. Treasure Hunt with Advice. In Structural Information and
Communication Complexity, Lecture Notes in Computer Science,
pages 328–341. Springer, Cham, July 2015.

[KLO10] Fabian Kuhn, Nancy Lynch, and Rotem Oshman. Distributed
Computation in Dynamic Networks. In Proceedings of the Forty-
second ACM Symposium on Theory of Computing, STOC ’10, pages
513–522, New York, NY, USA, 2010. ACM.

[KO11] Fabian Kuhn and Rotem Oshman. Dynamic Networks: Models and
Algorithms. SIGACT News, 42(1):82–96, March 2011.

[KP93] Bala Kalyanasundaram and Kirk Pruhs. A competitive analysis of
algorithms for searching unknown scenes. Computational Geome-
try, 3(3):139–155, August 1993.

[Kra14] Rastislav Kralovic. Advice Complexity: Quantitative Approach
to A-Priori Information. In SOFSEM 2014: Theory and Practice
of Computer Science, Lecture Notes in Computer Science, pages
21–29. Springer, Cham, January 2014.

[KSV13] Amos Korman, Jean-Sébastien Sereni, and Laurent Viennot. To-
ward more localized local algorithms: removing assumptions con-
cerning global knowledge. Distributed Computing, 26(5-6):289–308,
October 2013.

BIBLIOGRAPHY 49

[Lam95] Leslie Lamport. How to write a proof. The American mathematical
monthly, 102(7):600–608, 1995.

[Lam12] Leslie Lamport. How to write a 21 st century proof. Journal of
fixed point theory and applications, 11(1):43–63, 2012.

[LaP93] Andrea S. LaPaugh. Recontamination Does Not Help to Search a
Graph. J. ACM, 40(2):224–245, April 1993.

[LDFS16] G. A. D. Luna, S. Dobrev, P. Flocchini, and N. Santoro. Live Explo-
ration of Dynamic Rings. In 2016 IEEE 36th International Confer-
ence on Distributed Computing Systems (ICDCS), pages 570–579,
June 2016.

[LGW04] Alberto Leon-Garcia and Indra Widjaja. Communication Net-
works. McGraw-Hill, Inc., New York, NY, USA, 2 edition, 2004.

[Lin92] N. Linial. Locality in Distributed Graph Algorithms. SIAM Journal
on Computing, 21(1):193–201, February 1992.

[LPBT10a] Anissa Lamani, Maria Potop-Butucaru, and Sébastien Tixeuil. Op-
timal deterministic ring exploration with oblivious asynchronous
robots. arXiv:0910.0832 [cs], 6058:183–196, 2010. arXiv:
0910.0832.

[LPBT10b] Anissa Lamani, Maria Gradinariu Potop-Butucaru, and Sébastien
Tixeuil. Optimal Deterministic Ring Exploration with Oblivious
Asynchronous Robots. In Structural Information and Communica-
tion Complexity, pages 183–196. Springer, Berlin, Heidelberg, June
2010.

[Lyn89] N. Lynch. A Hundred Impossibility Proofs for Distributed Com-
puting. In Proceedings of the Eighth Annual ACM Symposium on
Principles of Distributed Computing, PODC ’89, pages 1–28, New
York, NY, USA, 1989. ACM.

[MHG+88] N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and C. H.
Papadimitriou. The Complexity of Searching a Graph. J. ACM,
35(1):18–44, January 1988.

[Mic16] Othon Michail. An Introduction to Temporal Graphs: An Algorith-
mic Perspective. Internet Mathematics, 12(4):239–280, July 2016.

[MP15a] Avery Miller and Andrzej Pelc. Fast rendezvous with advice. The-
oretical Computer Science, 608:190–198, December 2015.

[MP15b] Avery Miller and Andrzej Pelc. Tradeoffs between cost and infor-
mation for rendezvous and treasure hunt. Journal of Parallel and
Distributed Computing, 83:159–167, September 2015.

[MP16] Avery Miller and Andrzej Pelc. Election vs. Selection: How Much
Advice is Needed to Find the Largest Node in a Graph? In Pro-
ceedings of the 28th ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA ’16, pages 377–386, New York, NY, USA,
2016. ACM.

50 BIBLIOGRAPHY

[MS16] Othon Michail and Paul G. Spirakis. Traveling salesman problems
in temporal graphs. Theoretical Computer Science, 634:1–23, June
2016.

[NS09] Nicolas Nisse and David Soguet. Graph searching with advice.
Theoretical Computer Science, 410(14):1307–1318, March 2009.

[Par78] T. D. Parsons. Pursuit-evasion in a graph. In Theory and Appli-
cations of Graphs, Lecture Notes in Mathematics, pages 426–441.
Springer, Berlin, Heidelberg, 1978.

[PBRT11] M. Potop-Butucaru, M. Raynal, and S. Tixeuil. Distributed Com-
puting with Mobile Robots: An Introductory Survey. In 2011 14th
International Conference on Network-Based Information Systems,
pages 318–324, September 2011.

[PDDK96] V. B. Priezzhev, Deepak Dhar, Abhishek Dhar, and Supriya Krish-
namurthy. Eulerian Walkers as a Model of Self-Organized Critical-
ity. Physical Review Letters, 77(25):5079–5082, December 1996.

[Pel00] D. Peleg. Distributed Computing: A Locality-Sensitive Approach.
Discrete Mathematics and Applications. Society for Industrial and
Applied Mathematics, January 2000.

[Shi09] Wei Shi. Black Hole Search with Tokens in Interconnected Net-
works. In Stabilization, Safety, and Security of Distributed Sys-
tems, Lecture Notes in Computer Science, pages 670–682. Springer,
Berlin, Heidelberg, November 2009.

[WWP+15] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock,
Xi Wang, Michael D. Ernst, and Thomas Anderson. Verdi: A
Framework for Implementing and Formally Verifying Distributed
Systems. In Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’15,
pages 357–368, New York, NY, USA, 2015. ACM.

[YDA09] Boting Yang, Danny Dyer, and Brian Alspach. Sweeping graphs
with large clique number. Discrete Mathematics, 309(18):5770–
5780, September 2009.

[YWB03] Vladimir Yanovski, Israel A. Wagner, and Alfred M. Bruckstein.
A Distributed Ant Algorithm for\protect Efficiently Patrolling a
Network. Algorithmica, 37(3):165–186, November 2003.

