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Abstract

The notion of Laplacian of a graph can be generalized to simplicial com-
plexes and hypergraphs. This notion contains information on the topology
of these structures. Even for a graph, the consideration of associated simpli-
cial complexes can provide information on its shape. Whereas the Laplacian
of a graph has a simple probabilistic interpretation as the generator of a
continuous time Markov chain on the graph, things are not so direct when
considering simplicial complexes. In the first part of this thesis, we define a
new Markov chain on simplicial complexes. For a given degree k of simplices,
the state space is not the k-simplices as in previous papers about this sub-
ject but rather the set of k-chains or k-cochains. This new framework is the
natural generalization on the canonical Markov chains on graphs. We show
that the generator of our Markov chain is related to the upper Laplacian de-
fined in the context of algebraic topology for discrete structure. We establish
several key properties of this new process. We show that when the simplicial
complexes under scrutiny are a sequence of ever refining triangulation of the
flat torus, the Markov chains tend to a differential form valued continuous
process.

In the second part of this thesis, we explore some applications of the ran-
dom walk, i.e., random walk based hole detection and simplicial complexes
kernels. For the random walk based hole detection, we introduce an algo-
rithm to make simulations carried for the cycle-valued random walk (k = 1)
on a simplicial complex with holes. Since the state space of the cycle-valued
random walk consists of all the states in the same homology group, the paths
with minimal lengths are supposed to be the holes of the simplicial complex,
which is the idea of the algorithm. In the case where we do not know the
boundary of the simplicial complex, we need to find the initial state which
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ABSTRACT ii

is in the same homology group as the holes and has an integer value. Thus
we calculate the initial states and propose another algorithm to make sim-
ulations of integer weighted random walk. Simulation results show that we
can always detect the holes of simplicial complexes with boundary (initial
state) known, and approximately with initial state unknown. For the simpli-
cial complexes kernels, we extend the definition of random walk based graph
kernels in order to measure the similarity between two simplicial complexes.
The definition is based on this idea: given a pair of simplicial complexes,
we perform our random walks on both, and count the number of matching
walks. The more matching walks, the more similar these two simplicial com-
plexes are. In order to count the number of matching walks, we perform a
random walk on the direct product simplicial complex of these two simplicial
complexes. We compute the probability of the random walk whose length
is k, and sum them for all k. The result is the kernel of these two simpli-
cial complexes. In order to reduce computational complexity, we rewrite the
sum formula to the inverse of a matrix, and use conjugate gradient methods
instead of direct computation. Simulation results show that graph kernels
are related to the number of vertices and their connectivity, while simplicial
complexes kernels put emphasis on homology properties.



Résumé

La notion de laplacien d’un graphe peut être généralisée aux complexes sim-
pliciaux et aux hypergraphes. Cette notion contient des informations sur la
topologie de ces structures. Même pour un graphe, la prise en compte des
complexes simpliciaux associés peut fournir des informations sur sa forme.
Alors que le laplacien d’un graphe a une interprétation probabiliste simple
comme générateur d’un processus de Markov sur le graphe, les choses ne sont
pas si directes lorsqu’on considère les complexes simpliciaux. Dans la pre-
mière partie de cette thèse, nous définissons une nouvelle chaîne de Markov
sur les complexes simpliciaux. Pour un degré donné k de simplexes, l’espace
d’états n’est pas les k-simplexes comme dans les articles précédents sur ce
sujet mais plutôt l’ensemble des k-chaines ou k-co-chaines. Ce nouveau cadre
est la généralisation naturelle sur les chaînes de Markov canoniques sur des
graphes. Nous montrons que le générateur de notre chaîne de Markov est lié
au Laplacien supérieur défini dans le contexte de la topologie algébrique pour
structure discrète. Nous établissons plusieurs propriétés clés de ce nouveau
procédé. Nous montrons que lorsque les complexes simpliciaux examinés sont
une séquence de triangulation du tore plat, les chaînes de Markov tendent
vers une forme différentielle valorisée processus continu.

Dans la deuxième partie de cette thèse, nous explorons quelques applica-
tions de la marche aléatoire, i.e. la détection de trous basée sur la marche
aléatoire et les noyaux complexes simpliciaux. Pour la détection de trous
basée sur la marche aléatoire, nous introduisons un algorithme pour faire
des simulations effectuées pour la marche aléatoire à valeur cyclique (k = 1)
sur un complexe simplicial avec trous. Puisque l’espace d’états de la marche
aléatoire à valeurs cycliques se compose de tous les états d’un même groupe
d’homologie, les chemins de longueurs minimales sont supposés être les trous
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RÉSUMÉ iv

du complexe simplicial, ce qui est l’idée de l’algorithme. Dans le cas où nous
ne connaissons pas la limite du complexe simplicial, nous devons trouver
l’état initial qui est dans le même groupe d’homologie que les trous et a une
valeur entière. Nous calculons ainsi les états initiaux et proposons un autre
algorithme pour faire des simulations de marche aléatoire pondérée par des
entiers. Les résultats de la simulation montrent que nous pouvons détecter
les trous de complexes simpliciaux dont la frontière (état initial) est connue,
et approximativement avec l’état initial inconnu. Pour les noyaux de com-
plexes simpliciaux, nous étendons la définition des noyaux de graphes basés
sur la marche aléatoire afin de mesurer la similitude entre deux complexes
simpliciaux. La définition est basée sur cette idée : étant donné une paire de
complexes simpliciaux, nous effectuons nos marches aléatoires sur les deux
et comptons le nombre de marches identiques. Plus les marches sont concor-
dantes, plus ces deux complexes simpliciaux sont similaires. Afin de compter
le nombre de marches identiques, nous effectuons une marche aléatoire sur le
complexe simplicial produit direct de ces deux complexes simpliciaux. Nous
calculons la probabilité de la marche aléatoire de longueur k avec les prob-
abilités initiale et d’arrêt, et les additionnons pour tout k. Le résultat est
le noyau de ces deux complexes simpliciaux. Afin de réduire la complex-
ité du calcul, nous réécrivons la formule de somme comme l’inverse d’une
matrice et en utilisant des méthodes de gradient conjugué au lieu du calcul
direct. Les résultats de la simulation montrent que les noyaux de graphes
sont liés au nombre de sommets et à leur connectivité, tandis que les noyaux
de complexes simpliciaux mettent l’accent sur les propriétés d’homologie.
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Chapter 0

Résumé long en français

0.1 Introduction

Explorer et comprendre des structures complexes telles que les graphes aléa-
toires est un problème difficile et riche qui a motivé une littérature abon-
dante dans ces dernières années. La première étape naturelle face à de
grands graphes est de rechercher un cluster ou des structures communau-
taires [22, 42], c’est-à-dire une partition où la connectivité à l’intérieur d’une
classe est supérieure à la connectivité entre les classes. Il y a plusieurs façons
de faire cela, comme le clustering de modularité [38, 11] ou le clustering
spectral [44, 48]. La théorie sous-jacente à cette dernière méthode est par-
ticulièrement populaire car elle établit un lien entre la topologie du graphe
et les marches aléatoires du plus proche voisin sur celui-ci (voir [20, 32] pour
une introduction). Ces marches aléatoires sont des processus de Markov qui
visitent les sommets du graphe en sautant en temps continu de leur posi-
tion courante v à un sommet choisi uniformément parmi les sommets voisins.
Considérons un graphe fini non orienté G = (V,E) constitué des ensembles
(finis) de sommets V et d’arêtes E déterminant les paires de sommets qui
sont connectés. La matrice d’adjacence A de G est définie comme la matrice
dont l’élément à la ligne u et à la colonne v est 1 si et seulement si (u, v) est
une arête de G, ce que nous désignerons u ∼ v. Pour tout u ∈ V et pour
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toute fonction f de V à R, le générateur de la marche aléatoire est

Lf(u) =
∑
v∼u

(
f(v)− f(u)

)
= −

(
D − A

)
f(u), (0.1)

où D est la matrice diagonale contenant les degrés des sommets. Donc,
le générateur de la marche aléatoire est l’opposé du laplacien du graphe,
D−A. Afin de trouver des clusters dans les graphes, les composants presque
déconnectés des graphes sont toujours importants. Il est bien connu que la
dimension du noyau de D−A est égale au nombre de composantes connexes
du graphe, et le clustering spectral vise à considérer de petites valeurs propres
en valeurs absolues, qui correspondent à des composants presque déconnectés.

Bien que les algorithmes existants sont bien adaptés pour étudier la con-
nectivité d’un graphe, ils ne suffisent pas pour étudier la topologie complète
du graphe. Pour résoudre ce problème, les complexes simpliciaux sont les
structures correctes. Un complexe simplicial naturel associé à un graphe est
obtenu en ajoutant au couple (V,E) l’ensemble S2 de tous les triangles dont
les arêtes appartiennent à E, l’ensemble de tous les tétraèdres S3 dont les
triangles appartiennent à S2 etc. Dans le complexe simplicial, le premier et
deuxième nombre de Betti représentent le nombre de trous de 2 et 3 dimen-
sions respectivement. Comme le nombre de Betti d’ordre zéro représente le
nombre de composants connectés, chercher une généralisation des liens entre
les nombres de Betti, les Laplaciens des graphes et les marches aléatoires est
une idée naturelle.

Donc le but de cette thèse est de donner une fondation probabiliste des
graphes Laplaciens et des nombres de Betti par les marches aléatoires. En
sachant que les composantes connectées d’un graphe ne donnent que des
informations limitées sur la connectivité globale du graphe, nous espérons
trouver plus d’information que les nombres de Betti d’un complexe simpli-
cial. Nous espérons également étendre les algorithmes d’analyse de graphes
aux complexes simpliciaux. Comme la plupart des algorithmes d’analyse de
graphes reposent sur les propriétés du spectre du graphe Laplacien ou d’une
marche aléatoire sur un graphe, l’adaptation de ces objets au cas de com-
plexes simpliciaux devrait donner des équivalents aux nombreux algorithmes
d’analyse de graphe pour les complexes simpliciaux.
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0.2 Contexte mathématique

0.2.1 Complexes Simpliciaux

Étant donné un ensemble fini ou dénombrable de sommets V , un k-simplex
est un sous-ensemble non ordonné {v0, v1, . . . , vk} où vi ∈ V et vi 6= vj pour
tout i 6= j. Les faces du k-simplex {v0, v1, . . . , vk} sont définies comme touts
les (k−1)-simplexes de la forme {v0, . . . , vj−1, vj+1, . . . , vk} avec 0 ≤ j ≤ k.
Les co-faces d’un k-simplex τ sont touts les (k+ 1)-simplexes dont τ est une
face. Un complexe simplicial C est une collection de simplexes qui est fermée
par rapport à l’inclusion de faces. On note Sk(C) l’ensemble des k-simplexes
de C. On peut définir une orientation sur les simplexes en définissant un
ordre sur les sommets et avec la convention que :

[v0, . . . , vi, . . . , vj, . . . , vk] = −[ v0, . . . , vj, . . . , vi, . . . , vk],

pour 0 ≤ i, j ≤ k. Chaque simplexe peut apparaître de deux manières
: orienté positivement ou négativement. On note S+

k (respectivement S−k )
l’ensemble des k-simplexes orientés positivement (respectivement négative-
ment). Pour une arête orientée [u, v] (allant de u à v), quand [u, v] ∈ S1,
nous écrirons v ∼ u.

0.2.2 Chaines et co-chaines

Pour chaque entier k, Ck est l’espace vectoriel couvert par l’ensemble S+
k de

k-simplexes de V : un élément τ ∈ Ck est appelé une chaine ou k-chaine et
peut être écrit uniquement comme

τ =
∑
s∈S+k

λs(τ) s, (0.2)

où tous sauf un nombre fini de {λs(τ) ∈ R, s ∈ S+
k } sont non nuls.

Soit Ck le dual de Ck:

Ck =
{
f : Ck → R, linéaire et continue

}
.

Notez que la dimension de Ck est finie, donc toute forme linéaire sur Ck est
continue. Puisque Ck est un espace de Hilbert, il en est de même pour Ck.
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0.2.3 La frontière et co-frontière

Pour tout entier k, la frontière ∂k est la transformation linéaire ∂k : Ck →
Ck−1 qui agit sur les éléments de base [v0, . . . , vk] comme

∂k[v0, . . . , vk] =
k∑
i=0

(−1)i[v0, . . . , vi−1, vi+1, . . . , vk], (0.3)

et ∂0 est la fonction nulle. Si l’on définit

Zk = ker ∂k et Bk = im ∂k+1, (0.4)

alors, le k-ième espace vectoriel d’homologie Hk est défini comme l’espace
vectoriel de quotient,

Hk = Zk/Bk (0.5)

et le k-th Betti nombre de C est défini comme sa dimension :

βk = dimHk = dimZk − dimBk. (0.6)

Comme Ck et Ck sont des espaces de Hilbert, nous pouvons définir la
frontière ∂∗k : Ck−1 −→ Ck comme l’adjoint de ∂k : à savoir pour f ∈ Ck−1,
∂∗kf ∈ Ck est définie par son action sur une chaîne de k par

(∂∗kf)[v0, · · · , vk] =
k∑
i=0

(−1)i〈f, [v0, · · · , vi−1, vi+1, · · · , vk]〉Ck−1,Ck−1

= f
(
∂k[v0, · · · , vk]

)
. (0.7)

Nous définirons par convention ∂∗0 ≡ 0.

0.2.4 Laplacien combinatoire

Une notion cruciale pour ce qui suit est celle de laplacien combinatoire (voir
[21, 34] pour les détails). Nous savons que

Ck+1 Ck Ck−1

Ck+1 Ck Ck−1

∂k+2 ∂k+1 ∂k ∂k−1

∂∗k+2 ∂∗k+1 ∂∗k ∂∗k−1
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où les doubles flèches signifient que nous avons un isomorphisme isométrique
entre les deux espaces Hilbert concernés. Puisque nous avons identifié les
espaces Ck et Ck pour tout k ∈ N, nous pouvons considérer

L↑k := ∂k+1∂
∗
k+1 : Ck

∂∗k+1−−→ Ck+1
∂k+1−−→ Ck (0.8)

et
L↓k := ∂∗k∂k : Ck

∂k−→ Ck−1

∂∗k−→ Ck. (0.9)

Ces derniers opérateurs sont appelés respectivement les Laplaciens supérieur
et inférieur (de l’ordre de k). Le laplacien combinatoire d’ordre k est défini
comme

Lk : Ck −→ Ck
τ 7−→

(
∂k+1∂

∗
k+1 + ∂∗k∂k

)
(τ) = L↑k(τ) + L↓k(τ).

(0.10)

Le théorème combinatoire de Hodge dit que

Théorème 1. Pour tout k ∈ N, nous avons

Ck = im ∂k+1 ⊕ im ∂∗k ⊕ kerLk. (0.11)

Il s’ensuit que
kerLk ' Hk. (0.12)

En particulier, le k-ième nombre de Betti est la dimension de l’espace nul de
Lk :

βk = dim ker(Lk). (0.13)

0.3 La marche aléatoire et ses limites diffusives
continues

0.3.1 Générateur de la marche aléatoire à valeur de
chaîne

Dans ce qui suit, k ≥ 1 est fixé.
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Espace des fonctions de test Considérer D l’espace des fonctions de Ck
à R de la forme

F (τ) = f
(
〈η1, τ〉Ck,Ck , · · · , 〈ηm, τ〉Ck,Ck

)
(0.14)

pour certains m ≥ 1, (η1, · · · , ηm) certains éléments de Ck et f mesurable et
borné de Rm à R.

Noyau de transition Pour une k-chaîne τ 6= 0 et un (k + 1)-simplex
orienté η ∈ Sk+1, on définit le nombre de faces communes entre τ et ∂k+1η

par :
w (τ, ∂k+1η) = 〈(∂k+1η)∗, τ〉+Ck,Ck

où x+ = max(x, 0) for x ∈ R. Pour une autre chaîne τ ′, on dit que τ et τ ′

sont adjacents (dans le sens où la marche aléatoire peut atteindre τ ′ à partir
de l’état τ) et on écrit

τ ∼ τ ′ ⇐⇒ ∃η ∈ Sk+1, w (τ, ∂k+1η) > 0 et τ ′ = τ − ∂k+1η. (0.15)

Enfin, définissons le poids de la transition de τ à τ ′ :

K(τ, τ ′) =


1 si τ = τ ′ = 0

w (τ, τ − τ ′) si τ ∼ τ ′

0 autrement.

(0.16)

Générateur de la marche aléatoire Définissons par (A,D(A)) le généra-
teur de la marche aléatoire en temps continu.

Définition 1. Soit D(A) l’ensemble des fonctions F telles que |
∑

τ ′∼τ

(
F (τ ′)−

F (τ)
)
K(τ, τ ′)| < +∞. Pour F ∈ D(A), on peut définir

AF : Ck −→ R

τ 7−→
∑
τ ′∼τ

(
F (τ ′)− F (τ)

)
K(τ, τ ′).

Théorème 2. Pour F une fonction linéaire de A, nous avons pour chaque
τ ∈ ker ∂k,

AF (τ) = −L↑kF (τ) = −LkF (τ). (0.17)
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0.3.2 Récurrence de la chaîne sur les graphes finis

Pour tout k-simplex τ , laissez d−(τ) être le degré de contiguïté inférieur de
τ donné par

d(τ)− =
∑

τ ′∈Sk,τ ′ 6=τ

|〈
(
∂k(τ)

)∗
, ∂k(τ

′)〉Ck−1,Ck−1
|.

Cette quantité correspond au nombre de faces que τ et τ ′ ont en commun.

Théorème 3. Soit k ∈ N. Soit σ1, . . . , σβk ∈ Ck une base de Hk et soit
(τ1, . . . , τn) ∈ Sk+1 les (k + 1)-simplexes de notre complexe simplicial. Sup-
posons qu’il existe µ1, . . . , µβk ∈ Z et (λτ , τ ∈ Sk+1) ∈ {−1, 0, 1}Sk+1 tel
que

X(0) =

βk∑
i=1

µiσi +
∑

τ∈Sk+1

λτ∂k+1τ.

Si nous avons pour tout τ ∈ Sk+1 que :

d(τ)− ≤ k + 2− |
βk∑
i=1

µi〈
(
∂k+1τ

)∗
, σi〉|, (0.18)

alors X a un espace d’état fini et pour tout t > 0, il existe (λτ (t), τ ∈ Sk+1) ∈
{−1, 0, 1}Sk+1 tel que

Xt =

βk∑
i=1

µiσi +
∑

τ∈Sk+1

λτ (t)∂k+1τ.

0.3.3 Convergence de la marche aléatoire

Nous désignons par T2 := R2/Z2 le tore plat, que nous emboîtons dans R2

comme le carré [0, 1]× [0, 1] où se trouvent les arêtes opposés identifiés. Soit
εn = 1/2n et considérons

Vn = {(2kεn, 2lεn), 0 ≤ k, l ≤ n}
⋃
{((2k + 1)εn, (2l + 1)εn), 0 ≤ k, l ≤ n− 1} ,

l’ensemble des sommets de la triangulation régulière de la maille 2εn.
Soit Φ l’espace de la 1-forme différentielle continue sur le tore. Nous

désignons par Φ(k), l’ensemble de 1-formes k-fois différentiable.
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Définition 2. Pour φ = φ1 dx1+φ2 dx2 ∈ Φ(1), sa dérivée extérieure désignée
par dφ est la fonction (ou 0-forme) :

dφ(x) =
∂φ2

∂x1

(x)− ∂φ1

∂x2

(x).

La transformation Hodge des formes est la transformation linéaire définie par
son l’action sur la base de formes différentielles :

∗1 = dx1 ∧ dx2, ∗ dx1 = dx2, ∗ dx2 = − dx1, ∗( dx1 ∧ dx2) = 1.

Pour φ ∈ Φ(2), l’opérateur Laplace-Beltrami est alors défini par

L = L↑ + L↓ où L↑ = ∗d ∗ d et L↓ = d ∗ d ∗ .

Définition 3. Soit

dom
(

(L↑)∗
)

=
{
p ∈ C1,∃cp, |〈p,L↑φ〉C1,Φ| ≤ cp‖φ‖Φ,∀φ ∈ dom(L↑)

}
.

Notez que P ⊂ dom
(

(L↑)∗
)
. Ensuite, (L↑)∗ est défini par la relation :

〈p, L↑φ〉C1,Φ = 〈(L↑)∗p, φ〉C1,Φ.

.

Corollaire 4. La séquence de générateurs (ε−2
n An, n ≥ 1) tend à (L↑)∗, tout

comme les les semi-groupes correspondants.

0.4 Détection de trous par la marche aléatoire

Nous introduisons un algorithme de recuit simulé pour faire des simulations
effectuées pour la marche aléatoire évaluée par cycle (k = 1) sur un complexe
simplicial avec des trous, et voir où se situent les trous en minimisant la
longueur de notre chaîne.

Le complexe de Rips avec 25 points où β0 = 1 et β1 = 2 est montré dans
la Figure 0.1a. L’état initial comprenant les deux trous est indiqué dans la
Figure 0.1b, et l’état final est indiqué dans la Figure 0.1c.

Nous pouvons voir que notre algorithme de recuit simulé localise précisé-
ment ces deux trous.
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(a) Complexe de Rips (b) État initial (c) État final

Figure 0.1: Marche aléatoire sur un complexe de Rips dont l’état initial est connu,

l’état initial et l’état final sont représentés en ligne rouge

Si nous ne connaissons pas l’état initial à l’avance, nous devons générer un
état initial et nous assurer qu’il se trouve dans le même groupe d’homologie
que les trous de notre complexe simplicial. Dans ce cas, nous calculons le
vecteur propre correspondant à la valeur propre zéro, et nous le fixons comme
notre état initial.

Le complexe de Rips avec 15 points où β0 = 1 et β1 = 1 est montré dans
la Figure 0.2a. La Figure 0.2b représente notre état initial, où l’épaisseur de
chaque arête indique le poids de cette arête. L’état final est illustré par la
Figure 0.2c.

(a) Complexe de Rips (b) État initial (c) État final

Figure 0.2: Marche aléatoire sur un complexe de Rips dont l’état initial est inconnu

Sans connaître l’état initial, il semble que nous ne puissions obtenir les
limites des trous que de manière approximative.
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0.5 Noyaux basés sur la marche aléatoire

Afin de comparer deux structures de données, nous générons d’abord des
graphes ou des complexes simpliciaux pour les structures de données, puis
nous générons des noyaux pour mesurer les similarités. Nous pouvons étendre
la définition des noyaux des graphes ([47]) aux noyaux des complexes simpli-
ciaux comme suit. Tout d’abord, nous introduisons quelques définitions de
base afin de définir les noyaux.

Définition 4. (Produits directs des complexes simpliciaux) Soient C et C ′

sont des complexes simpliciaux abstraits dont on ordonne l’ensemble des som-
mets. Nous définissons le produit direct de C et C ′ comme étant le complexe
simplicial C× avec les propriétés suivantes :

1. Son ensemble de sommets

V× = {(vi, v′r) : vi ∈ V, v′r ∈ V ′},

où V est l’ensemble des sommets de C et V ′ est l’ensemble des sommets
de C ′.

2. Son ensemble de k-simplex

(Sk)× = {[(vi0 , v′r0), . . . , (vik , v
′
rk

)] : [vi0 , . . . , vik ] ∈ Sk, [v′r0 , . . . , v
′
rk

] ∈ S ′k}

où Sk est l’ensemble des k-simplexes de C et S ′k est l’ensemble des k-
simplexes de C ′.

En suivant la définition de K(τ, τ ′) dans (0.16), on peut donner la défi-
nition de la matrice de transition K.

Définition 5 (Matrice de transition). Étant donné un complexe simplicial
C et un état initial τini, nous avons la classe de récurrence R(τini) de τini
dont la dimension est N . Pour tout τi, τj ∈ R(τini), si τi et τj sont étiquetés
comme i et j dans R(τini), la matrice de transition K est définie par

Kij =
K(τi, τj)∑N
k=1 K(τi, τk)

.
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Pour les complexes simpliciaux C et C ′, les dimensions de la matrice de
transition correspondante K et K′ sont N × N et N ′ × N ′, on associe une
matrice de poids W× ∈ RNN ′×NN ′ à C× par W× = K×.

Définition 6. Pour deux complexes simpliciaux C et C ′, le complexe simpli-
cial de produit direct de C et C ′ est C×, et la matrice de poids de C× est W×.
Nous effectuons notre marche aléatoire en chaîne sur C× avec une probabilité
initiale de p× et une probabilité d’arrêt de q×. Le noyau entre C et C ′ est
défini par

k(C, C ′) =
∞∑
k=0

µ(k)q>×W
k
×p×, (0.19)

où µ(k) est un coefficient non négatif pour s’assurer que k(C, C ′) converge.

Pour les résultats des calculs, nous définissons nos trois structures de
données, désignées par (DS)0, (DS)1 et (DS)2 dans la Figure 0.3. (DS)1

et (DS)2 ont tous les points que (DS)0 a, et ils ont leurs propres points de
perturbation, qui sont représentés en rouge dans la Figure 0.3b et la Figure
0.3c. La différence entre deux points de perturbation réside dans le fait que
le point de perturbation dans (DS)1 ne change pas la propriété d’homologie,
mais que le point de perturbation dans (DS)2 le fait.

(a) (DS)0 (b) (DS)1 (c) (DS)2

Figure 0.3: Structures de données (DS)0 avec 7 points, (DS)1 avec 8 points et

(DS)2 avec 8 points, avec différents points entre lui et (DS)0 représenté en rouge

Les résultats de calcul des noyaux des graphes et des noyaux des com-
plexes simpliciaux sont présentés dans le Tableau 0.1a et le Tableau 0.1b.
Par noyaux des graphes, les graphes les plus similaires sont G0 et G2, mais
nous pouvons dire que la version complexe simplicial de G0 a un trou alors
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que la version complexe simplicial de G1 n’a pas de trou. D’autre part, par
les noyaux des complexes simpliciaux, elle trie parfaitement par les propriétés
d’homologie.

Nous avons découvert que les noyaux des graphes sont liés au nombre de
sommets et à leur connectivité, tandis que les noyaux des complexes simpli-
ciaux mettent l’accent sur les propriétés d’homologie.
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λ = 0.01

G0 G1 G2

- 0.01979 0.01981
G0

0.01979 - 0.01737
G1

0.01981 0.01737 -
G2

(a) Les noyaux de graphes avec λ = 0.01

λ = 0.001

C0 C1 C2

- 0.00032 0.00009
C0

0.00032 - 0.00002
C1

0.00009 0.00002 -
C2

(b) Les noyaux complexes simpliciaux avec λ = 0.001

Table 0.1: Les noyaux de graphes et de complexes simpliciaux entre les graphes et

les complexes simpliciaux correspondants



Chapter 1

Introduction

1.1 Motivations

Exploring and understanding complex structures such as random graphs is
a difficult and rich problem that has motivated an abundant literature in
the last years. A first natural step when facing large graphs is to look for
a cluster or community structures [22, 42], that is a partition where the
connectivity inside a class is higher than the connectivity between classes
(this is illustrated in Figure 1.1). There are several ways of doing this, such
as for instance modularity clustering [38, 11] or spectral clustering [44, 48].
The theory underlying this latter method is in particular popular because it
establishes a link between the topology of the graph and nearest neighbor
random walks on it (see [20, 32] for an introduction). These random walks are
Markov processes that visit the vertices of the graph by jumping in contin-
uous time from their current position v to a vertex chosen uniformly among
the neighboring vertices. Consider a finite non-oriented graph G = (V,E)

consisting of the (finite) sets of vertices V and edges E determining the pairs
of vertices that are connected. The adjacency matrix A of G is defined as
the matrix whose entry at line u and column v is 1 if and only if (u, v) is
an edge of G, which we will denote by u ∼ v. For any u ∈ V and for any
function f from V to R, the generator of the random walk is

Lf(u) =
∑
v∼u

(
f(v)− f(u)

)
= −

(
D − A

)
f(u), (1.1)

14
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where D is the diagonal matrix containing the degrees of the vertices. Thus,
the generator of the random walk is the opposite of the Laplacian of the
graph, D −A. In order to find clusters in graphs, almost disconnected com-
ponents of the graphs are always of great importance. It is well-known that
the dimension of the kernel of D − A is equal to the number of connected
components of the graph, and spectral clustering aims at considering small
eigenvalues in absolute values, that correspond to almost disconnected com-
ponents.

woman
bisexual man
heterosexual man

●

●

●

●

●

●

28

5

33

10 15

20

25

2

30

7

35

12

17

22

27

4

32

9

14

19

24

1

29

6

34

11

16

21

26

3

31

8

36

13

18

23

0

●

●

●

MSM group
Other clusters
Mixed group

Figure 1.1: Clustering of the graph of sexual connections among seropositive HIV

individuals in Cuba from [11]

While existing algorithms are well-suited to study the connectivity of a
graph, there does not exist many tools to study the full topology of the graph.
For instance, let us consider a circular-like graph presented in Figure 1.2. As
soon as the cycle in the graph is slightly perturbed, for instance by addi-
tion of a point forming a new cycle as in Figure 1.2, it is not clear how to
highlight the circular structure of the graph automatically. This is not sur-
prising as graphs are not the correct tool to deal with higher order topology
in the data. The correct structures one should use to deal with topology
are simplicial complexes. The definition of simplicial complexes is recalled
later, but a natural simplicial complex associated with a graph is obtained
by adding to the pair (V,E) the set S2 of all triangles whose edges belong
to E, the set of all tetrahedrons S3 whose triangles belong to S2 etc. For
instance, if we add a triangle in the previous example, we recover a circular
structure (see Figure 1.2(c)). This notion of circular structure is formalized
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(a) (b) (c)

Figure 1.2: Example where simplicial complexes are the correct structure to capture

the topology of the data, and in particular detect a circular structure. (a): Data

drawn from a circular structure. (b): Neighborhood graph structure, that reveals

two different circular structures: a triangle and a circle. (c): A simplicial complex

recovers the topology of the data.

by the concepts of homology classes and Betti numbers which we present in
Section 2.2.3. The first and second Betti numbers represent the number of
circular and spherical holes in the complex. Notice that the Betti number
of order zero corresponds to the number of connected components, so it is a
natural idea to look for a generalization of the links between Betti numbers,
graph Laplacians and random walks.

This is the purpose of the paper to give a probabilistic fundation, via ran-
dom walks, of graph Laplacians and Betti numbers. Then, just as knowing
the connected components of a graph only give limited information on the
overall connectivity of the graph, one can expect to be able to go further than
simply knowing the Betti numbers of a simplicial complex. To this end, we
want to extend graph analysis algorithm to simplicial complexes. As most
graph analysis algorithms rely on properties of the spectrum of the graph
Laplacian or on properties of a random walk on a graph, adapting these
objects to the case of simplicial complexes should yield simplicial complex
counterparts of many graph analysis algorithms.
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1.2 Contributions and outline

The thesis is organized as followed. First, we introduce the related works in
the first part of Chapter 2. There are a lot of works on simplicial complexes
in a topological way. We briefly introduce them and propose to explore in a
probabilistic way. In fact, for graphs, the graph Laplacian D−A is equal to
the opposite of the generator of the random walk on the graph. However, for
simplicial complexes, the combinatorial Laplacian, which is the generalization
of graph Laplacian, cannot be transformed into the generator of any random
walk. The representations of the works on graph analysis algorithms and
simplicial complexes give us an insight that we can define a random walk
on a simplicial complex in a different way. In the latter part of Chapter 2,
we introduce the mathematical background. Indeed, we introduce simplicial
complexes, chains and co-chains, boundary maps and co-boundary maps,
the combinatorial Laplacian, and the relationship between the combinatorial
Laplacian of order 0 and the opposite of graph Laplacian. For combinatorial
Laplacian of order k, we divide it into two parts which are related to two
matrices of upper and lower adjacency matrices of the simplicial complex
respectively. Examples and remarks are also given. In the following, our
contributions will be presented in the consecutive chapters.

As we have discussed before, it is difficult to transform the combinatorial
Laplacian into the generator of any random walk. Therefore, we interpret
the generator of random walk in a different way. For random walk from
vertex to vertex, the random walk jumps from the current vertex u to a
uniformly chosen adjacent vertex v. We can interpret the adjacent vertex v
as u + (v − u), and (v − u) is the boundary of edge [uv]. For random walk
from edge to edge, we add the boundary of a triangle to an edge, which gives
a combination of edges, i.e. a 2-chain. Thus, we consider a random walk
that takes its values in chains C2 or more generally Ck. The exact definitions
of random walk and details are described in Chapter 3. We define the space
of test functions and transition kernels in order to define the generator of
our random walk. We have shown that the generator of our random walk A,
−Lk and −L↑k coincide when restricted to ker ∂k. Under the assumption that
the initial state of random walk X(0) is simple and orientable, the random
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walk X is necessarily recurrent if any k-simplex set of our simplicial complex
is finite. Furthermore, we can give an upper bound of the lower adjacency
degree of any k-simplex of our simplicial complex under the same assumption.
We also give some examples of random walk on special simplicial complexes,
such as a triangulation in a torus, a simple triangulation of the sphere. In
addition, we focus on the situation where we have a very regular structure,
and we classify the paths by their lengths. We find that if the simplicial
complex generated by the recurrence class of X(0) is a “regular structure”,
any two chains of the same length have the same stationary probability. In
the last part of Chapter 3, we investigate the continuous diffusive limits of
our random walk. We consider the random walk on Vn, the set of vertices of
the regular triangulation of a torus, and we show that the generator of this
random walk converges to the Laplacian on the torus. Furthermore, we prove
the analogous theorem for the random walk on C1(Vn), where we find that
the generator of the random walk converges to the upper Laplace-Beltrami
operator on differential forms.

Once the random walk has been well defined, we can consider some of
its applications on simplicial complexes. In Chapter 4, we introduce the first
application, that is to detect the location of holes of a certain simplicial com-
plex using our random walk. In this chapter, we consider the random walk
on a simplicial complex with holes. Since the state space of the random walk
consists of all the states in the same homology group, the paths with mini-
mal lengths are supposed to be the holes of the simplicial complex. Thus, we
manage to minimize the length of the paths of our random walk. In order to
make simulations of our random walk, we need to determine the initial state
of random walk. In this chapter, we consider two cases: random walk with
known simple initial state and random walk with unknown initial state. In
the first case, with known initial state, X(0) is simple and the state space is in
fact {−1, 0, 1}Sk . In the second case, it becomes more complicated. Since for
any t > 0, X(t) and X(0) are always in the same homology group, we need to
find the initial state X(0) which is a cycle and in the same homology group
as the holes. By Hodge decomposition, the eigenvectors of Lk corresponding
to all the zero eigenvalues are the representative cycles of all the homology
classes. Therefore, we generate our initial state by computing the eigenvec-
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tors corresponding to zero eigenvalues. Since the initial state is an integer
larger than 1 in practice, the state space is no longer {−1, 0, 1}Sk . Therefore,
we introduce an integer weighted random walk, which is an extension of our
random walk defined in Chapter 3. Whether we know the initial state or
not, we compute the length of the path at each step, and we look for the
path with minimal length. Simulated annealing is a heuristic method to find
an approximation of the global optimum. We propose a simulated annealing
algorithm to minimize the lengths of paths, and we visualize the path with
minimal length in the simplicial complex and see if it detects all the holes
correctly. The language we use is Python 3.7 and we use the GUDHI package
to compute a simplicial complex as a simplex tree, and the complexity of the
algorithm is computed. We also give the convergence rate of the simulated
annealing algorithm by constructing the cycle decomposition in the simu-
lated annealing framework. At last, we randomly generate a Rips complex
with 2 holes and make some simulations on it with and without known initial
states in order to analyze the performances of the algorithm.

For another application of the random walk, we consider the random
walk based kernels in Chapter 5. For higher order topology data, we can
construct simplicial complex to store high order structures, such as triangles,
tetrahedron and so on. In order to compare high order data structures, we
intend to measure the similarity between simplicial complexes by defining
a kernel between them. As we know, graphs are natural data structures
with nodes representing objects and edges the relations between them, and
Vishwanathan [47] has defined the graph kernel based on the random walk
jumping from vertex to vertex. We would like to extend the definition of
graph kernels to simplicial complexes kernels based on the chain-valued ran-
dom walk defined in Chapter 3. The basic idea is that given a pair of data
structures, we generate a pair of simplicial complexes respectively, then we
perform our random walks on both and count the number of matching walks.
The more matching walks, the more similar these two data structures are. In-
stead of counting the matching walks separately, we generate a direct product
simplicial complex, perform our chain-valued random walk on it, and com-
pute the sum of probabilities of our paths for all lengths. We propose an
algorithm to find all the states in the state space of our random walk on the
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direct product simplicial complex, with which we can compute the transition
matrix and the probabilities of our paths at any length. We also discuss the
computational complexity when we compute the sum of probabilities, and we
develop iterative methods such as conjugate gradient method to decrease the
computational complexity. We compute graph kernels and simplicial com-
plexes kernels for a pair of data structures. The performance results of these
computation are presented in the last part of this chapter.

Finally, the Chapter 6 draws the conclusion. Also in this chapter, notable
contributions are reminded, and some possible directions for future works are
discussed.



Chapter 2

Related works and mathematical
background

2.1 Related works

Simplicial complexes generalize the notion of triangulation of a surface and
are constructed by gluing together simplices: points, edges, triangles and
their higher dimensional counterparts. Simplicial complexes can be con-
sidered, at the same time, as continuous objects carrying topological and
geometric information and as combinatorial data structures that can be effi-
ciently implemented. There is a large literature on the subject of simplicial
complexes.

Delaunay complexes are fundamental data structures that have been ex-
tensively studied in computational geometry and used in many application
areas. Boissonnat et al. [6] introduce simplicial complexes which have strong
ties with Delaunay complexes. Edelsbrunner, Kirkpatrick and Seidel [19, 18]
first define the alpha-complex, or α-complex, of a finite set of points, which
is a subcomplex of the Delaunay complex. Alpha-shapes are also widely used
to represent union of balls [16] and to study the structure of macro molecules
and various related problems like the docking of two molecules, see e.g. [17].
Alpha shapes are constructed from the Delaunay complex and are therefore
of high complexity with high dimensions, De Silva [12] obtains smaller com-
plexes by choosing a set of “landmark” points from our data set, and then

21
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constructing a “witness complex” on this set using ideas motivated by the
usual Delaunay complex in Euclidean space. The identity of witness and
Delaunay complexes when the number of witnesses is finite is taken from [7].
In order to compute homology, Kaczyński et al. [27] use reduction of chain
complexes. For witness complexes, De Silva et al. [12] use witness complexes
reduction algorithm, which is a reduction to a chosen number of points, to
compute topological invariant. Apart from the reduction algorithms, Kahle
[30] studies the expected topological properties of Čech and Vietoris–Rips
complexes built on random points in Rd. The author identifies thresholds
for nonvanishing and vanishing of homology groups and also derive asymp-
totic formulas and bounds on expectations of the Betti numbers.

However, the homology invariants, such as Betti numbers, carry very lim-
ited information of the simplicial complexes. For example, even though we
can infer the important features of shapes such as their homology (e.g. the
number of holes in a simplicial complex), we are not able to locate them.
Instead of exploring the topological and geometric information directly from
the simplicial complexes, we are more interested in exploring them in a prob-
abilistic way. It is already known that the graph Laplacian D − A is a
specific instance of the more general combinatorial Laplacian, introduced by
Eckmann [15] and that we define in the following chapters. In a similar way
that the graph Laplacian contains information regarding the connectivity of
the graph, these combinatorial Laplacians describe the structure of the ho-
mology groups of the simplicial complex and are related to higher order Betti
numbers.

In fact, there is no clear way of how to define random walks on simpli-
cial complexes. For graphs, as has been recalled in (1.1), it is known that
the graph Laplacian is equal to the opposite of the generator of the random
walk on the graph. Since, graph Laplacians are generalized by combinatorial
Laplacians, it was proposed in [40, 41] to define random walks on simpli-
cial complexes as random walks with generator equal to the opposite of the
combinatorial Laplacian. However, it is not easy to transform combinatorial
Laplacians into generators of a random walks. In fact, a combinatorial Lapla-
cian can be decomposed into a sum of two operators called up-Laplacian and
down-Laplacian which each corresponds to a different random walk. Since
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we require two different random walks to characterize a single combinato-
rial Laplacian, it is not clear how to generalize graph algorithms based on
random walks.

In this paper, we propose to define a random walk on a simplicial com-
plex in a totally different way. More precisely, we consider a random walk
on the space of chains of the simplicial complex whose transitions are given
by the very definition of homology groups. In particular, similarly to how a
random walk on a graph cannot leave a given connected component, which
is a homology class of dimension 0, our random walk is bound to stay in the
homology class of its initial state. Moreover, the generator of this random
walk can be related to the up-Laplacian of the simplicial complex; we can
thus use our random walk to provide some intuition regarding the relation-
ship between the spectrum of the combinatorial Laplacians and the topology
of the corresponding simplicial complex. For instance, since our random walk
always stays in the homology class of its initial state, one can find the mini-
mal length of the paths of random walk by finding the global optimum of a
cost function using simulated annealing algorithm [31]. Besides, in machine
learning, we are always interested in the relationships between structured
objects for clustering or other purposes. Kernel methods [45] offer a nat-
ural framework to study these questions. The idea of constructing kernels
between graphs was first proposed by Gärtner et al. [23], and extended by
Borgwardt et al. [9]. Vishwanathan et al. [47] present a unified framework
to study random walk graph kernel and present new algorithms for efficiently
computing such kernels. Still, we can extend the graph kernel to simplicial
complexes using our random walk.

Apart from the applications mentioned before, having probabilistic in-
terpretation of topological properties of simplicial complexes is important
since there is a growing literature on the subject in recent years. While
the relations between graphs and simplicial complexes are considered in [14],
papers more focused on the simplicial complexes themselves include for ex-
ample studies of the Betti numbers and volume-like computation for random
clique complexes built over the Erdös-Rényi graphs [28, 29, 39] or Čech and
Vietoris–Rips complexes built over stationary point processes [1, 13, 50], or
computation consideration of convex hulls of simplicial complexes [24].
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2.2 Mathematical background

2.2.1 Simplicial complexes

As explained in the introduction, a natural generalization of graphs requires
to consider simplicial complexes and adopt considerations from the field of
homological and algebraic topology. For further reading on algebraic topol-
ogy, see [2, 25, 37]. Graphs can be generalized to more generic combinatorial
objects known as simplicial complexes. While graphs model binary relations,
simplicial complexes represent higher order relations.
Given a finite or denumerable set of vertices V , a k-simplex is an unordered
subset {v0, v1, . . . , vk} where vi ∈ V and vi 6= vj for all i 6= j. The faces of
the k-simplex {v0, v1, . . . , vk} are defined as all the (k − 1)-simplices of the
form {v0, . . . , vj−1, vj+1, . . . , vk} with 0 ≤ j ≤ k. The cofaces of a k-simplex
τ are all the (k+ 1)-simplices of which τ is a face. A simplicial complex C is
a collection of simplices which is closed with respect to the inclusion of faces,
i.e. if {v0, v1, . . . , vk} is a k-simplex of C, then all its faces are in the set of
(k−1)-simplices of C. We denote by Sk(C) the set of k-simplices of C. In the
sequel, when there is no ambiguity, we will drop the dependency on C and
simply write Sk. By convention, S0 = V consists of all the vertices. S1 of all
the edges {v0, v1} of C linking two vertices v0 and v1 ∈ V , v0 6= v1. S2, S3

are the set of all triangles and tetrahedra of C etc. Then,

C =
⋃
k≥0

Sk.

One can define an orientation on simplices by defining an order on vertices
and with the convention that:

[v0, . . . , vi, . . . , vj, . . . , vk] = −[ v0, . . . , vj, . . . , vi, . . . , vk],

for 0 ≤ i, j ≤ k. Each simplex may thus appear in two ways: positively or
negatively oriented. Let us consider an orienting edge [v0, v1]. We denote by
S+
k (respectively S−k ) the set of positively (respectively negatively) oriented
k-simplices, i.e. which have the orientation deduced from [v0, v1] (resp. the
inverse orientation). Then, Sk is the disjoint union of S+

k and S−k and that
Sk can be viewed as a subset of V k which itself can be embedded in ⊂ Nk.
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For an oriented edge [u, v] (going from u to v), when [u, v] ∈ S1, we will write
v ∼ u.

Example 1 (Čech complex). For V = {vi, i = 1, · · · , n} n points in Rd (or
in a metric space), and R > 0, the Čech complex Čech(V,R) of radius R is
defined as follows: S0 = {vi, i = 1, · · · , n} and [vi0 , vi1 , · · · , vik ] belongs to Sk
whenever

k⋂
m=0

B(vim , R) 6= ∅.

This complex has the property that its topological features, as defined below,
reflect that of the geometric set

⋃
iB(vi, R).

Example 2 (Rips-Vietoris complex). Unfortunately, the construction of the
Čech complex is exponentially hard so it is very common to work with the
Rips-Vietoris complex. The simplicial complex Rips(V,R) has the same ver-
tices V and edges as the Čech complex, but for k ≥ 3, {vi0 , · · · , vik} belongs
to Sk whenever all the possible pairs made by choosing two points among
{vi0 , · · · , vik} belong to the set S1 of edges of Rips(V,R). Otherwise stated,
the Rips-Vietoris is fully determined by the vertices and edges of the Čech
complex. This graph is called the skeleton of the Rips-Vietoris. Though a
priori coarser than the Čech complex, the Rips-Vietoris is not that far since
(see [5])

Rips(V,R) ⊂ Čech(V,R) ⊂ Rips(V, 2R).

2.2.2 Chains and co-chains

For each integer k, Ck is the R-vector space spanned by the set S+
k of k-

simplices of V : an element τ ∈ Ck is called a chain or k-chain and can be
uniquely written as

τ =
∑
s∈S+k

λs(τ) s, (2.1)

where all but a finite number of {λs(τ) ∈ R, s ∈ S+
k } are non null. We define

the support of τ to be:

supp τ = {s ∈ S+
k , λs(τ) > 0}. (2.2)
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The set Ck of k-chains is equipped with the topology of l2(Nk) by defining
the norm as

‖τ‖2
Ck = ‖

∑
s∈S+k

λs(τ) s‖2
Ck =

∑
s∈S+k

|λs(τ)|2.

Equations (2.1) and (2.2) amounts to define a scalar product that makes Ck
a Hilbert space and {τ, τ ∈ S+

k } an orthonormal basis of Ck.

Let Ck be the topological and algebraic dual of Ck:

Ck =
{
f : Ck → R, linear and continuous

}
.

Notice that the dimension of Ck is finite, so every linear form on Ck is con-
tinuous. Because Ck is a Hilbert space, so is Ck. Note that Ck and Ck are
isomorphic and that any element τ ∈ Sk can be viewed either as an element
of Ck or as an element of Ck by identification by the canonical isometries
between an Hilbert space and its dual (see Example 3 below). When it will
be convenient, we will indifferently manipulate chains or cochains in what
follows as it is the most intuitive depending on the situation.
Also, any function from Sk toR can be associated canonically with a function
from Ck to R.

Example 3. To illustrate the two assertion above, let us consider the case
k = 0. We can identify the vertex v ∈ S0 = V ⊂ C0 to the function

v∗ : C0 → R

v 7→ 1

u 6= v 7→ 0.

Then, we can extend any function ϕ : V → R to a function ϕ ∈ C0 by

ϕ
(∑
v∈V

λvv
)

:=
∑
v∈V

λvϕ(v).

2.2.3 Boundary and coboundary maps

For any integer k, the boundary map ∂k is the linear transformation ∂k :

Ck → Ck−1 which acts on basis elements [v0, . . . , vk] as

∂k[v0, . . . , vk] =
k∑
i=0

(−1)i[v0, . . . , vi−1, vi+1, . . . , vk], (2.3)



CHAPTER 2. RELATED WORKS AND MATHEMATICAL BACKGROUND27

and ∂0 is the null function. Examples of such operations are given in Ta-
ble 2.1.

v0

v1

v2 v0

−

v2

+

[v0, v1] + [v1, v2]
∂2−→ [v2]− [v0]

v0

v1

v2 v0

v1

v2

[v0, v1, v2]
∂3−→ [v1, v2]− [v0, v2]

+[v0, v1]

v0

v1

v2
v3

Filled Empty
v0

v1

v2
v3

[v0, v1, v2, v3]
∂4−→

+[v1, v2, v3]

−[v0, v2, v3]

+[v0, v1, v3]

−[v0, v1, v2]

a) b) c)

Table 2.1: Examples of boundary maps. From left to right. An application over

1-simplices. Over a 2-simplex. Over a 3-simplex, turning a filled tetrahedron to an

empty one.

The maps (∂k, k ≥ 1) link the spaces Ck’s as follows:

· · · ∂k+2−→ Ck+1
∂k+1−→ Ck

∂k−→ · · · ∂2−→ C1
∂1−→ C0. (2.4)

It can then easily be checked that for any integer k,

∂k ◦ ∂k+1 = 0. (2.5)

In topology, a sequence of vector spaces and linear transformations satisfying
(2.4) and (2.5) is called a chain complex, for which one can define the k-th
homology vector space Hk as follows. If one defines

Zk = ker ∂k and Bk = im ∂k+1, (2.6)

(2.5) induces that Bk ⊂ Zk. Then, Hk is defined as the quotient vector space,

Hk = Zk/Bk (2.7)

and the k-th Betti number of C is defined as its dimension:

βk = dimHk = dimZk − dimBk. (2.8)

Notice that an element of C1 is a sum of edges. It belongs to ker ∂1

whenever these oriented edges form a cycle, in the sense of graph theory. So
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0 00

Ck

Zk
Bk

Ck+1 Ck−1

∂k+1−→ ∂k−→

Figure 2.1: A chain complex showing the sets Ck, Zk and Bk.

elements of Zk = ker ∂k are called k-cycles.

Figure 2.1 illustrates the chain complex described above.

Example 4. Let us consider the case of k = 0 again to illustrate (2.8). Since
∂0 ≡ 0, we have Z0 = V . Also, we have B0 = im ∂1 = {u − v, [u, v] ∈ S1}.
Hence, H0 = span(V )/{u − v, [u, v] ∈ S1} consists of equivalence classes of
vertices which can be linked by a path in the graph. We thus recover that β0

is the number of connected components of the graph. Recall that the latter
number also corresponds to the number of zeros in the spectrum of the graph
Laplacian (1.1). A natural question is then to wonder whether there is also
a possible probabilistic connection between the other Betti number βk and
random walks on simplicial complexes.

Remark 1. An element of Z1 which is not in B1 is a cycle which cannot be
written as a sum of triangles in S2.
For instance, if

S1 = {[ab], [bc], [cd], [ad]} and S2 = ∅,

then the cycle
[ab] + [bc] + [cd]− [ad]

which corresponds to the edges of a 4-gone, cannot be written as a sum of
triangles since S2 is empty. Thus β1 = 1 in this case.

As Ck and Ck are Hilbert spaces, we can define the coboundary map
∂∗k : Ck−1 −→ Ck as the adjoint of ∂k: namely for f ∈ Ck−1, ∂∗kf ∈ Ck is
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defined by its action over a k-chain by

(∂∗kf)[v0, · · · , vk] =
k∑
i=0

(−1)i〈f, [v0, · · · , vi−1, vi+1, · · · , vk]〉Ck−1,Ck−1

= f
(
∂k[v0, · · · , vk]

)
. (2.9)

We will set by convention ∂∗0 ≡ 0.

Remark 2 (Interpretation of the coboundary map in the case k = 1). Recall
that C0 is generated as a R-vector space by the points v ∈ V . Let us denote
by {v∗, v ∈ V } the corresponding dual basis of C0: v∗(v) = 1 and v∗(w) = 0

for w 6= v. Hence, following (2.9), we have for any function f ∈ C0,

∂∗1f [v0, v1] = f(v1)− f(v0).

In particular, if f = w∗ for w ∈ V ,

(∂∗1w
∗)([v0, v1]) = −〈w∗, v0〉C0,C0 + 〈w∗, v1〉C0,C0 =


0 if w 6= v0, v1

−1 if w = v0

1 if w = v1.

The above computation shows that the coboundary of a vertex w gives a weight
1 (resp. -1) to oriented edges arriving at (resp. departing from) w. The
coboundary map can then be interpreted in terms of fluxes.

Example 5. Let us consider an example with four vertices: a, b, c and d.
Consider that the edge [a, b] belongs to the two triangles [a, b, c] and [a, b, d].
Locally, the matrix representation of ∂2 looks like



[a, b, c] [a, b, d]

[a, b] 1 1

[a, c] −1 0

[a, d] 0 −1

[b, c] 1 0

[b, d] 0 1

.

The matrix representation of ∂∗2 is of course the transposed of the matrix
representing ∂2 and recalling that we have identified C1 (resp. C2) to its dual
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C1 (resp C2),

∂∗2 [a, b] = [a, b, c] + [a, b, d] =
∑
η∈S+2

〈[a, b]∗, ∂2η〉+C1,C1 η. (2.10)

The bracket on the right hand side counts the occurrence of the edge [a, b]

among the faces of η. Otherwise stated, the coboundary of an edge is the sum
of the triangles which contain it, respecting its orientation.

As before, the k-th cohomology vector space, denoted by Hk, is defined
as

Hk = ker ∂∗k/ im ∂∗k−1 (2.11)

and is the dual of Hk.

2.2.4 Combinatorial Laplacian

A crucial notion for the following is that of combinatorial Laplacian (see
[21, 34] for details). We know that

Ck+1 Ck Ck−1

Ck+1 Ck Ck−1

∂k+2 ∂k+1 ∂k ∂k−1

∂∗k+2 ∂∗k+1 ∂∗k ∂∗k−1

where the two tips arrows mean that we have an isometric isomorphism
between the two concerned Hilbert spaces. Since we have identified the spaces
Ck and Ck for any k ∈ N, we may consider

L↑k := ∂k+1∂
∗
k+1 : Ck

∂∗k+1−−→ Ck+1
∂k+1−−→ Ck (2.12)

and
L↓k := ∂∗k∂k : Ck

∂k−→ Ck−1

∂∗k−→ Ck. (2.13)

These latter operators are called respectively the upper and lower Laplacians
(of order k). The combinatorial Laplacian of order k is defined as

Lk : Ck −→ Ck
τ 7−→

(
∂k+1∂

∗
k+1 + ∂∗k∂k

)
(τ) = L↑k(τ) + L↓k(τ).

(2.14)

The combinatorial Hodge theorem says that
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Theorem 3. For any k ∈ N, we have

Ck = im ∂k+1 ⊕ im ∂∗k ⊕ kerLk. (2.15)

It follows that
kerLk ' Hk. (2.16)

In particular, the k-th Betti number is the dimension of the null space of Lk:

βk = dim ker(Lk). (2.17)

Proof. Assume (2.15), implying that dim(kerLk) = dim(Ck)−dim(im ∂k+1)−
dim(im ∂∗k). Because ∂∗k and ∂k are adjoint, dim(im ∂∗k) = dim(im ∂k) =

dim(Ck)− dim(ker ∂k) by the rank-nullity theorem. Thus,

dim(kerLk) = dim(ker ∂k)− dim(im ∂k+1) = dim(Hk) = βk.

This proves (2.17).

Remark 4. The combinatorial Laplacian of order 0 corresponds to the op-
posite of the graph Laplacian (1.1). Since there are no simplex of negative
order, we set C−1 = 0 and ∂0 to be the null map, hence L0 = L↑0 = ∂1∂

∗
1 . The

map ∂1 maps edges to vertices and its matrix representation is exactly the
so-called incidence matrix B of the graph (V,S1): for V = {v0, · · · , vk} and
for (ej) an enumeration of the set of oriented edges S+

1 ,

Bij =


1 if vi is the ego of ej

−1 if vi is the alter of ej

0 otherwise.

Thus, L0 = BBt is such that

(L0)ij =


deg(vi) if i = j,

−1 if vi is adjacent to vj,

0 otherwise.

The map L0 from C0 into itself is characterized for v ∈ V by:

L0v
∗ = −

∑
w∈V :[vw]∈S+1

(w∗ − v∗) =
∑

w∈V :[vw]∈S+1

∂1[vw].
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Thus, for a function f =
∑

v∈V λvv
∗ ∈ C0,

−L0f(u) =
∑
v∈V

λvL0v
∗(u)

=
∑
v∈V

λv
∑

w∈V :[vw]∈S+1

(w∗ − v∗)(u)

=
∑
v∼u

λv − λuCard(w ∼ u)

=
∑
v∼u

(
f(v)− f(u)

)
= Lf(u). (2.18)

Thus as mentioned above, −L0 appears as the generator L of the continuous
time random walk on the graph (V,S1) as defined in (1.1).

To describe Lk, we need to introduce the notion of lower and upper adja-
cency for k-simplices. Two k-simplices are said to be upper-adjacent when-
ever they are two faces of a common k + 1 simplex. Two k-simplices are
said to be lower-adjacent whenever they are cofaces of a common k − 1 sim-
plex. For a simplex τ , its upper degree, deg↑(τ), is the number of simplices
which are upper adjacent to it. Two upper adjacent simplices are said to be
similarly oriented if the orientation they would inherit from their common
higher order simplex coincides with their orientation. They are said to be
dissimilarly oriented otherwise. Two lower adjacent simplices are similarly
oriented whenever they induce the same orientation to their intersection.

Example 6. For instance, two edges are upper adjacent if they are part of
a common triangle and they are lower adjacent if they share a vertex.

The lower and upper adjacency matrix are defined as it can be expected.
For τ and τ ′ ∈ Sk,

A
↑/↓
k (τ, τ ′) =


1 if τ and τ ′ are upper/lower adjacent and similarly oriented,

−1 if τ and τ ′ are upper/lower adjacent and dissimilarly oriented,

0 otherwise.

Consider also Dk the diagonal matrix whose entries are the upper degrees of
each k-simplex.
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We can compute the matrix of the combinatorial Laplacian of order k
(2.14). Then (see [34]),

Lk = L↑k + L↓k =
(
Dk − A↑k

)
+
(

(k + 1) Id +A↓k

)
.

The map L↑k has the features of a generator of a Markov process. Indeed,
considering back the computation in Remark 4, we see that the upper Lapla-
cian can be explained in terms of upper-adjacency. For a vertex u (k = 0), we
consider all the edges that are upper-adjacent to u, choose one with u as ego
and jump to the alter of this edge. This can be generalized for larger orders
k: we consider all the k + 1 simplices that are adjacent to a given k simplex
τ , choose one at random that will determine the next movement (this shall
be precised in the sequel, see (2.14)). Hence, L↑k has the structure of the
generator of a Markov process. Associating to L↑k a Markov chain provides
a probabilistic interpretation to this operator which can help understand it
better. In Parzanchevski and Rosenthal [40], a connection between this ran-
dom walk Y and homology is made by considering the ‘expectation process’
defined for an oriented edge e ∈ S1 by Et(e) = P(Yt = e) − P(Yt = −e).
They show that the latter process converges, when correctly renormalized
and under good conditions, to kerL↑k.

As to the map L↓k, Mukherjee and Steenbergen [36] proposed a similar
random walk exploiting the lower-adjacency and whose generator is related
to L↓k. The generator L↓k does not correspond to the generator of a Markov
process, hence the complexity to define a Markov process whose generator
would be L↓k and these authors introduce killings to deal with this problem.

It is not clear how to deal simultaneously with information coming from
several random walks to obtain results on the combinatorial Laplacian Lk.
However, the following result says that as long as we are concerned with
spectral properties, we can retrieve the information about L↓k by looking at
L↑k−1 (see [51]):

Theorem 5. Let λ > 0 be an eigenvalue and f be an eigenvector of L↑k.
Then, ∂∗kf is a λ-eigenvector of L↓k. Conversely, if g is a λ-eigenvector of
L↓k, then ∂kg is a λ-eigenvector of L↑k.
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Proof. If f satisfies L↑kf = λf , then

L↓k(∂
∗
kf) = ∂∗k∂k∂

∗
kf = ∂∗kL

↑
kf = λ ∂∗kf.

The proof is similar for the converse.

In the next chapter, we propose a new Markov chain that contains in-
formation on the homology of the simplicial complex and exploit the links
between Betti numbers and homology spaces (2.7) to provide probabilistic
interpretation of these quantities.



Chapter 3

Random walk and its continuous
diffusive limits

In this chapter, we will define our chain-valued random walk on simplicial
complexes and explore some properties of our random walk. First of all,
we will introduce the idea and the motivation behind the dynamics of our
random walk, and then we will give the definition of generator of our random
walk and find the link between our generator and the combinatorial Laplacian
introduced in Section 2.2.4. In this way, we can simulate the random walk
corresponding to the combinatorial Laplacian using our random walk. At
last, we study the continuous diffusive limits of the random walk, and prove
the convergence of the generator of the random walk.

3.1 Introduction

The idea behind the dynamics of our random walk is the following. The
usual random walk on a graph goes from vertex to vertex. The generator of
the continuous time random walk on graphs can be written as

Lf(u) =
∑
v∼u

f(v)− f(u) =
∑

v∈V :[uv]∈S1

f(u+ ∂1[uv])− f(u). (3.1)

In the next dimension, we have k = 1, and points are replaced by edges
and edges by triangles. If we follow Parzanchevski and Rosenthal [40, 41], a
natural edge-valued random walk consists in jumping from the current edge

35
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e to a uniformly chosen upper-adjacent edge. Mukherjee and Steenbergen
proposed a similar random walks exploiting the lower-adjacency. But if we
look for an analogue of (3.1), another way is to add the boundary of a
triangle to an edge, which gives a combination of edges, i.e. a 2-chain. It
is thus natural not to restrict to edges, but to consider a random walk that
takes its values in C2 or more generally Ck.

Recall that in (2.7), a natural way to explore the homology classes of
Hk = ker ∂k/ im ∂k+1 is to start with an element of ker ∂k and then have
transitions in im ∂k+1. Proceeding so, the random walk will remain in the
homology class of its initial element, in the same way as the usual random
walk remained in the connected component of its initial state. We propose
a random walk taking its values in ker ∂k. For k = 1, this corresponds to a
cycle-valued random walk. Let us now describe the transitions and generator
of this random walk.

The rest of this chapter is organized as follows. Section 3.2 describes the
definition of random walk, including the generator and orientability of it, re-
currence of the chain on finite graphs, and examples of random walk on some
particular simplicial complexes. In Section 3.3, we discuss the convergence
of random walk, and we give continuous diffusive limits of it.

3.2 Random walk

3.2.1 Generator of the chain-valued random walk

In what follows, k ≥ 1 is fixed.

Space of test functions To define the generator of the random walk, we
first introduce a space of functions on which it will operate.

Consider D the space of functions from Ck to R of the form

F (τ) = f
(
〈η1, τ〉Ck,Ck , · · · , 〈ηm, τ〉Ck,Ck

)
(3.2)

for some m ≥ 1, (η1, · · · , ηm) some elements of Ck and f measurable and
bounded from Rm into R.
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We define the support of F as:

suppF =
m⋃
i=1

supp ηi,

where we recall that supp ηi is defined in (2.2).

Lemma 6. The space D is separating in B(Ck), the Banach space of bounded
measurable functions from Ck to R, equipped with the sup-norm.

Proof. Since Ck can be embedded as a closed subset of l2(Nk), it is a separable
Hilbert space, we can consider a dense sequence (ηn, n ≥ 1) and

Fm = σ{〈ηi, .〉Ck,Ck , i = 1, · · · ,m}.

Since Ck is an Hilbert space, its Borel σ-field is equal to
∨
mFm, hence the

result.

Transition kernel Let us explain the transition of our chain-valued ran-
dom walk. For the sake of simplicity, imagine here that k = 1. Assume that
we are in a state τ ∈ C1 (a cycle for k = 1). Because transitions are in im ∂2,
let us consider an element of this space, say ∂2η for η ∈ S2 (a triangle). ∂2η

defines a possible transition if η is upper-adjacent to τ , i.e. if η and τ share
at least one edge. All the possible transitions from τ are obtained by letting
η vary in S2. The more η and τ have edges in common and the more η will
be likely to define the next step of the random walk and we thus need to
define a weight to account for this.

For a k-chain τ 6= 0 and an oriented (k + 1)-simplex η ∈ Sk+1, define the
number of common faces between τ and ∂k+1η by:

w (τ, ∂k+1η) = 〈(∂k+1η)∗, τ〉+Ck,Ck

where x+ = max(x, 0) for x ∈ R. For another chain τ ′, we say that τ and τ ′

are adjacent (in the sense that the random walk can reach τ ′ from the state
τ) and write

τ ∼ τ ′ ⇐⇒ ∃η ∈ Sk+1, w (τ, ∂k+1η) > 0 and τ ′ = τ − ∂k+1η. (3.3)
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Finally, let us define the weight of the transition from τ to τ ′:

K(τ, τ ′) =


1 if τ = τ ′ = 0

w (τ, τ − τ ′) if τ ∼ τ ′

0 otherwise.

(3.4)

Example 7. In Figure 3.1, we see how a difference of orientations is simply
reflected in the value of the scalar product. Note also that w(τ, τ − τ ′) can
be viewed as a scalar product that counts the number of edges of the triangle
which are adjacent to the chain with the good orientations.

v1 v2

v3

η

v1 v2

v3

η

v1

v3

Figure 3.1: Different cases of orientations: η = [v1v2v3]. Here τ is a 1-chain, not

necessarily a cycle. (a) In this case, τ = [v1v2] + [v2v3] and w(τ, ∂2η) = 2, which

is the number of edges in common between τ and η. (b) Here, τ = [v1v2] − [v2v3]

and w(τ, ∂2η) = 0. So η is never chosen for defining the transition to the next step

here. (c) In the case (a), the next step is τ ′ = [v1v2] + [v2v3]− ∂2η = [v1v3].

Generator of the random walk Let us define by (A,D(A)) the generator
of the continuous-time random walk.

Definition 1. Let D(A) be the set of functions F such that |
∑

τ ′∼τ

(
F (τ ′)−

F (τ)
)
K(τ, τ ′)| < +∞. For F ∈ D(A), we can define

AF : Ck −→ R

τ 7−→
∑
τ ′∼τ

(
F (τ ′)− F (τ)

)
K(τ, τ ′).
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Let L be the space of Lipschitz continuous functions F from Ck to R, i.e.
such that there exists cF > 0 such that for any τ, τ ′ ∈ Ck

|F (τ)− F (τ ′)| ≤ cF

 ∑
η∈S+k+1

|λη(τ)− λη(τ ′)|2
1/2

.

We remark that if τ and τ ′ ∈ Ck,

τ ∼ τ ′ =⇒ K(τ, τ ′) ≤ k + 1,

and thus, K is a bounded kernel. Hence, for F ∈ L,∣∣∣∣∣∑
τ ′∼τ

(
F (τ ′)− F (τ)

)
K(τ, τ ′)

∣∣∣∣∣ ≤ cF (k + 1)

 ∑
η∈S+k+1

|λη(τ)− λη(τ ′)|2
1/2

≤ 2cF (k + 1) (‖τ‖Ck + ‖τ ′‖Ck) < +∞,

from which we deduce that L ⊂ D(A).

Since K is a bounded kernel, it is immediate that we have the following
theorems (see Ethier and Kurtz [20, Chapter 4, Section 2 and Chapter 8,
Section 3]).

Theorem 7. The map A of domain D(A) generates a strong Feller con-
tinuous Markov process X = (X(t))t≥0 on Cb(Ck,R), the set of continuous
bounded functions on Ck. The set A = D ∩ Cb(Ck,R) is a core for X.

Remark that the process X is a continuous-time pure jump process and
admits a representation with a discrete-time Markov chain and exponen-
tially distributed clocks attached with each possible transitions (see e.g. [20,
Chapter 4, Section 2]).

Theorem 8. For any t > 0, X(t) remains in the same homology class as
X(0). Moreover, if X(0) ∈ ker ∂k, then for any t ≥ 0, X(t) belongs to ker ∂k.

Proof. At each change of state, we add to X an element of ∂k+1Sk+1 ⊂ Bk

defined in (2.6). Since ∂k ◦ ∂k+1 = 0, we add only elements of ker ∂k to X(0),
hence X(t) always belongs to ker ∂k and the homology class does not change
along the dynamics of X.
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We can precise the link between A and L↑k. Note that they cannot be
equal since A operates on functions of chains whereas L↑k operates on co-
chains Ck, i.e. linear functions of chains. However we will see that A, −Lk
and −L↑k coincide when restricted to ker ∂k.

Theorem 9. For F a linear function of A, we have for every τ ∈ ker ∂k,

AF (τ) = −L↑kF (τ) = −LkF (τ). (3.5)

Proof. Let us consider a chain τ ∈ Ck and a function ζ ∈ Ck. Then,

Aζ(τ) =
∑
τ ′∼τ

(
ζ(τ ′)− ζ(τ)

)
K(τ, τ ′). (3.6)

By the definitions of the ∼ relation (see (3.3)) and of K (see (3.4)):∑
τ ′∼τ

(
ζ(τ ′)− ζ(τ)

)
K(τ, τ ′) =−

〈
ζ,
∑

η∈Sk+1

∂k+1η〈(∂k+1η)∗, τ〉+Ck,Ck
〉
Ck,Ck

=−
〈
∂∗k+1ζ,

∑
η∈Sk+1

η 〈(∂k+1η)∗, τ〉+Ck,Ck
〉
Ck+1,Ck+1

=− 〈∂∗k+1ζ, ∂
∗
k+1τ〉Ck+1,Ck+1

=− 〈∂k+1 ◦ ∂∗k+1ζ, τ〉Ck+1,Ck+1
= −L↑kζ(τ).

When τ ∈ ker ∂k, L↓k(τ) = 0. This concludes the proof.

3.2.2 Orientability of the random walk

It is natural to wonder about the nature – transience or recurrence – of the
continuous-time Markov chain that we have just introduced. If we start from
an initial condition whose constituting simplices have integer weights, the
state space of the process is a priori the space of chains with integer weights.
Even if the number of vertices is finite, the state space of the process might
be infinite. To study this, let us first introduce some considerations on ori-
entation of the chains.

We say that a chain is orientable if we cannot find two elements τ and
τ ′ of the chain which are lower adjacent with dissimilar orientation. In the
following, we always assume that X(0) is orientable. Note that a cycle, an
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element of ker ∂k and a k-simplex are always orientable.

A chain τ is said to be simple if the weights of the k-simplices in its
support are −1 or 1. We denote by Csk the set of such chains.

Lemma 10. If X(0) is a simple and orientable chain of Csk, then so is X(t)

for any t > 0.

Proof. Because X is a pure-jump process, it is sufficient to prove that after
each jump, the new state of the process is still a simple chain. Assume that
we are currently at a state τ that is a simple orientable k-chain. Recall that
for the transition, we choose a (k + 1)-simplex η which shares faces of same
orientation with the current k-chain, τ (see (3.3)). Then, the transition con-
sists in adding −∂k+1η, whose faces have an orientation contrary to that of
τ . As a result, we always choose for the transition a chain whose orientation
is contrary to that of the current state, which will give the announced result.

More precisely, let us detail the first jump after time 0. Proceeding by
recursion will give the result after any arbitrary number of jumps. Us-
ing (2.1), we can write X(0) =

∑
s∈S+k

λs(X(0)) s, where for all s ∈ S+
k ,

λs(X(0)) ∈ {−1, 0, 1}. Let η ∈ Sk+1. Then w(X(0), ∂k+1η) > 0 if and only if

0 <
〈
(∂k+1η)∗, X(0)

〉
Ck,Ck

=
∑
s∈S+k

λs(X(0))〈(∂k+1η)∗, s〉Ck,Ck .

Because X(0) and η are orientable, all the terms λs(X(0))〈(∂k+1η)∗, s〉, for
s ∈ S+

k , have the same sign. So the transition from X(0) to X(0)− ∂k+1η is
possible if and only if the previous terms are nonnegative and some of them
are positive. Then, the state after the jump is:

X(0)− ∂k+1η =
∑
s∈S+k

λs(X(0)) s−
∑
s∈S+k

〈(∂k+1η)∗, s〉Ck,Ck s

=
∑

s∈S+k :〈(∂k+1η)∗,s〉=0

λs(X(0)) s+
∑

s∈S+k :〈(∂k+1η)∗,s〉6=0

(
λs(X(0))− 〈(∂k+1η)∗, s〉Ck,Ck

)
s.

(3.7)

For an admissible transition −∂k+1η, we have that λs(X(0))〈(∂k+1η)∗, s〉 ≥ 0.
So, for the second sum in the right hand side of (3.7):
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• either λs(X(0))− 〈(∂k+1η)∗, s〉Ck,Ck = 0 whenever λs(X(0)) 6= 0, mean-
ing that the face s does not belong to the simplicial complex X(0) −
∂k+1η any more after the jump,

• or, λs(X(0)) = 0 and after the jump:

λs(X(0)− ∂k+1η) =λs(X(0))− 〈(∂k+1η)∗, s〉Ck,Ck
=− 〈(∂k+1η)∗, s〉Ck,Ck ∈ {−1, 1},

(3.8)

so that at the next step, the move −∂k+1η is no longer possible.

Thus, the states of the process after the first jump are increased or decreased
by 1 but remain in {−1, 0, 1}.
Also, we can check that the chain X(0)− ∂k+1η remains orientable.

Hence, there is no loss of generality to assume for the rest of this section
that:

(H) : X(0) is simple and orientable, implying that the state space is in
fact {−1, 0, 1}S+k .

This remark has two consequences that we develop in the next subsections.

3.2.3 Recurrence of the chain on finite graphs

The first consequence of Lemma 10 deals with the nature (recurrent or tran-
scient) of the random walk X. In the general case, there is no reason why its
state space should be infinite, even when Sk is, since the weights λs in (2.1)
can be unbounded. However, Assumption (H) and Lemma 10 ensure this,
implying that the Markov chain is necessarily recurrent:

Corollary 11. Under Assumption (H) and if Sk is finite, the state space of
X is finite then the Markov chain is recurrent for any initial value.

We can go a little further. For any k-simplex τ , let d−(τ) be the lower
adjacency degree of τ given by

d(τ)− =
∑

τ ′∈Sk,τ ′ 6=τ

|〈
(
∂k(τ)

)∗
, ∂k(τ

′)〉Ck−1,Ck−1
|.



CHAPTER 3. RANDOM WALK AND ITS CONTINUOUS DIFFUSIVE LIMITS43

This quantity corresponds to the number of faces that τ and τ ′ have in
common.

Theorem 12. Let k ∈ N. Let σ1, . . . , σβk ∈ Ck be a basis of Hk and let
(τ1, . . . , τn) ∈ Sk+1 be the (k+1)-simplices of our simplicial complex. Suppose
that there exists µ1, . . . , µβk ∈ Z and (λτ , τ ∈ Sk+1) ∈ {−1, 0, 1}Sk+1 such that

X(0) =

βk∑
i=1

µiσi +
∑

τ∈Sk+1

λτ∂k+1τ.

If we have for all τ ∈ Sk+1 that:

d(τ)− ≤ k + 2− |
βk∑
i=1

µi〈
(
∂k+1τ

)∗
, σi〉|, (3.9)

then X has a finite state space and for any t > 0, there exists (λτ (t), τ ∈
Sk+1) ∈ {−1, 0, 1}Sk+1 such that

Xt =

βk∑
i=1

µiσi +
∑

τ∈Sk+1

λτ (t)∂k+1τ.

Proof. First, let us consider η ∈ Sk+1 such that λη = 1. We have

〈(∂k+1η)∗, X(0)〉Ck,Ck =

βk∑
i=1

µi〈(∂k+1η)∗, σi〉+
∑

τ∈Sk+1

λτ 〈(∂k+1η)∗, ∂k+1τ〉

≥ − |
βk∑
i=1

µi〈(∂k+1η)∗, σi〉|+ (k + 2)

−
∑
τ 6=η

|〈∂k+1(η), ∂k+1(τ)〉|

≥ 0,

by our assumption (3.9).
Now, let T1 the time of the first jump of X. Hence, by the definition of X,

P
(
X(T1) = X(0) + ∂k+1η

)
= w(X0,−∂k+1η) = max

(
0,−〈(∂k+1η)∗, X0〉Ck,Ck

)
= 0. (3.10)
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Thus, λη(T1) must be equal to 0 or to 1.

Proceeding similarly for the simplices η for which λη = −1, we obtain
that λτ (T1) ∈ {−1, 0, 1} for any τ ∈ Sk. The proof is then concluded by
induction with respect to the steps of the embedded discrete time Markov
chain.

Remark 13. Let us comment on the assumption (3.9). If the simplicial
complex is a triangulation on a torus or on Rd, one can pick σ1, . . . , σβk
such that for all i ∈ {1, . . . , βk} and all τ ∈ Sk+1,∣∣ βk∑

i=1

〈(∂k+1τ)∗, σi〉Ck,Ck
∣∣+ d(τ)− ≤ k + 2.

This comes from the fact that any face of a simplex must either belong to
exactly one other simplex or be the boundary of a hole. This is not the case
if the simplicial complex is the triangulation of a torus.

Example 8. The chain is not necessarily irreducible.

5

1
2

6

3
4

Figure 3.2: A double tetrahedron or a simple triangulation of the sphere.

Consider the octaedron of Figure 3.2. There are 6 vertices, 12 edges and
8 triangles (Tj, j = 1, · · · , 8). Let us consider k = 1, i.e. X is the random
walk on cycles. Getting rid of the orientation, we have at time t that

X(t) = X(0) +
8∑
j=1

λj(t)Tj

where λj(t) ∈ {0, 1}. This means that there are at most 28 chains attainable
from X(0) but for the whole tetrahedron, there are 212 such chains.
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Definition 2. For a k-chain τ , we denote R(τ), the recurrence class of τ ,
consisting of all the k-chains which can be attained by X starting from τ.

Remark 14. Under (H), if the chain X start from a state τ belonging to a
finite transient class and leading to the null chain, then the chain is absorbed
by this state in a finite time.

Remark 15. It is well known that for random walks on undirected graphs,
the stationary distribution gives to each vertex a weight proportional to its
degree, i.e. to the number of edges it is adjacent to.

We could guess that the same still holds in the present situation. The
most basic situation of the simplest simplex made by one triangle abc shows
that this does not hold.

If X(0) = [ab], then X oscillates between [ab] and [ac] + [cb]. The transi-
tion rate from [ab] to [ac] + [cb] is 1 and the transition rate from [ac] + [cb]

to [ab] is 2, hence

π([ab]) =
2

3
and π([ac] + [cb]) =

1

3
·

This means that the stationary probability of a path is not proportional to its
degree which counts the number of adjacent triangles with multiplicity.

However, when we have a very regular structure, one may classify the
paths by their lengths.

Definition 3. A group G acts regularly on a simplicial complex S if for any
ζ, ζ ′ two k-simplices of S, there exists one and only one g ∈ G, which maps
ζ to ζ ′.

Theorem 16. Assume that there exists a group G which acts regularly on
the simplicial complex generated by R(X(0)), the recurrence class of X(0).
Then, any two k-chains of the same length which belong to R(X(0)), have
the same stationary probability.

Proof. Let ζ, ζ ′ two such chains. There exists a unique g ∈ G such that
ζ ′ = gζ. The set of (k + 1)-simplices adjacent to ζ ′ is the image by g of the
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set of (k + 1)-simplices adjacent to ζ. If X(0) = ζ, then (gX(t), t ≥ 0) is a
Markov process starting from ζ ′ and for any T > 0,∫ T

0

1X(s)=ζ ds =

∫ T

0

1gX(s)=ζ′ ds,

hence the result by the ergodic theorem.

Example 9. Take X(0) = {1, 2, 3, 4} in the octeadron of Figure 3.2. The
stationary probability is clearly stratified according to the nature of the co-
chains.

0 20 40 60 80 100 120

0

5000

10000

15000

20000

25000

Figure 3.3: The number of passages in each paths for the random walk on the

triangulation of the sphere. The paths are numbered in order of appearance. The

y-axis contains the number of passages to each path during the first 106 steps.

The twelve most visited co-chains are the co-chains of length (i.e. cardi-
nality of their support) 4 which belong to the recurrence class of the initial
state, R({1, 2, 3, 4}). They are adjacent to all triangles. Then come eight
co-chains of length 3, which are adjacent to three triangles, and so on.

Example 10. To get some insights on how the situation can be complex
when the state space is infinite, let us have a look at the random walk on the
triangulation of the plane from which we have removed one triangle. After a
trillion of iterations, we get a graph similar to that of Figure 3.4.
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1

Figure 3.4: A realization of X after 2 trillions steps. The removed triangle is in

red (center of the image). Image by M. Glisse.

The support of the process X is composed of several disconnected compo-
nents, each of them may contain some holes. The isolated components are
going to either die or merge with the component which contains the removed
triangle. Provided that this is meaningful, if we look at the number of trian-
gles which are inside the chain, it can increase or decrease by 1 with equal
probability at each step. This means that it follows the law of a symmetric
random walk and is thus null recurrent. However, when the chain touches the
boundary of the removed triangle, there is a drift only in the positive sense
which ruins this reasoning. The simulation represented on Figure 3.5 shows
that X touches the triangle very often even when it is itself large.
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Figure 3.5: The number of times X touches the triangle each packets of ten thou-

sands steps. Simulation by M. Glisse.

3.3 Convergence of random walk

When dealing with random walks, it is natural to investigate their continuous
diffusive limits. For this, we need to embed our graph into another space and
consider geometric random graphs. [50]

We denote by T2 := R2/Z2 the flat torus, which we embed into R2 as the
square [0, 1] × [0, 1] where the opposite edges are identified. Let εn = 1/2n

and consider

Vn = {(2kεn, 2lεn), 0 ≤ k, l ≤ n}
⋃
{((2k + 1)εn, (2l + 1)εn), 0 ≤ k, l ≤ n− 1} ,

the set of vertices of the regular triangulation of mesh 2εn, see Figure 3.6.
First consider the random walk on Vn. We want to show that the genera-

tor of this random walk converges to the Laplacian on the torus in the sense
of [20, Theorem 6.1] which says the following. For n ≥ 1, Bn, in addition to
B, is a Banach space and πn is a bounded linear transformation from L to
Ln. We suppose that supn ‖πn‖ <∞ and we write fn → f if f ∈ Ln and

lim
n→∞

‖fn − πnf‖Bn = 0. (3.11)
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0 1

24

3

2εn

Figure 3.6: Regular triangulation of the flat torus. 0 := (0, 0), 1 := (2εn, 0), 2 :=

(εn,
√
3εn), 3 := (εn,−

√
3εn), 4 := (−εn,

√
3 εn)

Theorem 17 (Ethier-Kurtz). For n ≥ 1, let Tn and T be strongly continuous
contraction semigroups on Bn and B with generators Ân and A. Let D be a
core for A. Then the following two properties are equivalent:

1. For each f ∈ B,
Tn(t)πnf

n→∞−−−→ T (t)f,

uniformly on bounded intervals,

2. For each f ∈ D, there exists f ∈ D(An) for each n ≥ 1 such that

fn
n→∞−−−→ f and Anfn

n→∞−−−→ Af.

In the present situation, we set Bn to be set of (bounded) functions from
Vn into R and B to be the set of continuous functions from T2 into R,
all equipped with the sup-norm. The map πn is the restriction to Vn. By
construction,

Ânfn(x) =
∑

a∈{−1,1}

(
fn(x+ (2aεn, 0))− fn(x)

)
+

∑
a,b∈{−1,1}

(
fn(x+ (a εn, b

√
3 εn))− fn(x)

)
. (3.12)

Let D be the set of twice continuously differentiable functions from T2 into
R. Since Vn progressively fills in T2, for any f ∈ D, fn = πnf = f|Vn belongs
to Ln and Eqn. (3.11) is trivially satisfied.

Theorem 18. With notations as above, set An = ε−2
n Ân. We have

Anfn
n→∞−−−→ Af := 6

∂2f

∂x2
1

+ 6
∂2f

∂x2
2

·
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This means that the normalized random walk behaves asymptotically as the
process

√
6(W1, W2) whereW1 andW2 are two independent Brownian motion

on the torus.

Proof. By symmetry, the first order terms of the Taylor expansion of the
right-hand-side of (3.12) vanish. Moreover, for the same reason, the crossed
derivatives of the second order term also disappear. The computations in
detail are presented in Appendix 1.1.

Finally, we get,

Anfn(x) = 6ε2n
∂2fn
∂x2

1

(x) + 6ε2n
∂2fn
∂x2

2

(x) + o(ε2n).

Hence the result.

We now turn to the analogous theorem for the random walk on C1(Vn).

Definition 4. Let Φ the space of continuous 1-differential form on the torus.
Such a differential form φ can be written as

φ = φ1 dx1 + φ2 dx2,

where φ1 and φ2 are twice differentiable functions on the torus, i.e. they can
be viewed as the restriction over [0, 1]2 of twice differentiable, (1, 1)-periodic
functions:

φ(x1 + l1, x2 + l2) = φ(x1, x2)

for any pair of integers (l1, l2). We set

‖φ‖Φ = ‖φ1‖∞ + ‖φ2‖∞.

Its topological dual is the set of currents, denoted by C1. It inherits the
Banach norm:

‖p‖C1 = sup
φ∈Φ

|〈p, φ〉Ψ,Φ|
‖φ‖Φ

·

We denote by P, the set of paths; i.e. the piecewise differentiable maps from
[0, 1] into T2. For φ ∈ Φ, the curvilinear integral of φ along an element p ∈ P

is a linear map and ∣∣∣∣∫
p

φ

∣∣∣∣ ≤ ‖φ‖Φ length(p),

hence P can be viewed as a subspace of C1.
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We denote by Φ(k), the set of k-times differentiable 1-forms on T2. Remark
that for any k ≥ 1, Φ(k) is dense in Φ.

Definition 5. For φ = φ1 dx1 +φ2 dx2 ∈ Φ(1), its exterior derivative denoted
by dφ is the function (or 0-form):

dφ(x) =
∂φ2

∂x1

(x)− ∂φ1

∂x2

(x).

The Hodge transform of forms is the linear transformation defined by its
action on a basis of differential forms:

∗1 = dx1 ∧ dx2, ∗ dx1 = dx2, ∗ dx2 = − dx1, ∗( dx1 ∧ dx2) = 1.

For φ ∈ Φ(2), the Laplace-Beltrami operator is then defined by

L = L↑ + L↓ where L↑ = ∗d ∗ d and L↓ = d ∗ d ∗ .

A classical computation shows that

L↑
(
φ1 dx1 + φ2 dx2

)
=
(
φ1

22 − φ2
12

)
dx1 +

(
φ2

11 − φ1
12

)
dx2 (3.13)

where fi is a shortcut for the partial derivative of f with respect to the
variable xi.

Definition 6. On Φ, we define the scalar product:

〈φ1 dx1 + φ2 dx2, ψ
1 dx1 + ψ2 dx2〉 =

∑
j=1,2

∫
T2

φj(x1, x2)ψj(x1, x2) dx1 dx2.

Lemma 19. The map L↑, whose domain is Φ(2), generates a strongly con-
tinuous contraction semi-group on Φ.

Proof. According to [20], we have to prove that L↑ is closable, dissipative
and that there exists λ > 0 such that λ Id−L↑ is one-to-one.

According to (3.13),

〈L↑φ, φ〉 =

∫
T2

∂

∂x2

(
φ1

2 − φ2
1

)
φ1 dx1 dx2 −

∫
T2

∂

∂x1

(
φ1

2 − φ2
1

)
φ2 dx1 dx2.
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By integration by parts, taking into account the periodicity of φ1 and φ2, we
get

〈L↑φ, φ〉 = −
∫
T2

(
φ1

2 − φ2
1

)
φ1

2 dx1 dx2 +

∫
T2

(
φ1

2 − φ2
1

)
φ2

1 dx1 dx2

= −
∫
T2

(
φ1

2 − φ2
1

)2

dx1 dx2.

This means that L↑ is symmetric and negative (hence dissipative). Integrat-
ing by parts a second time yields, for any ψ ∈ Φ(2),

〈L↑φ, ψ〉 = 〈φ, L↑ψ〉.

Hence, if φn → 0 and L↑φn → η, we get 〈η, ψ〉 = 0 for any ψ ∈ Φ(2). By
density, this entails η = 0. Hence, L↑ is closable. We still denote by L↑ its
extension, whose domain dom(L↑) contains at least Φ(2).

Consider the basis of L2(T2,C) given by

en,m(x1, x2) = e2iπnx1e2iπmx2 , n,m ∈ Z.

For i = 1, 2, we have in L2(T2,C),

φi =
∑
n,m∈Z

cin,m en,m.

Furthermore,

φ1
22 − φ2

12 = −4π2
∑
n,m∈Z

(c1
n,mm

2 − c2
n,mmn) en,m,

φ2
11 − φ1

12 = −4π2
∑
n,m∈Z

(c2
n,mn

2 − c1
n,mmn) en,m.

Thus solving L↑φ = −4π2λφ amounts to find the cin,m’s such that

c1
n,m(m2 − λ)− c2

n,mmn = 0,

−c1
n,mmn+ c2

n,m(n2 − λ) = 0.

For λ negative irrational, this system admits the null form as unique solution,
hence for such a λ, L↑ − 4π2λ Id is one-to-one and the third condition is
satisfied.
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See Figure 3.6 for the notations in the following theorems.

Lemma 20. Let H : [0, 1]2 → R be C2. Then, as εn goes to 0,∫
[021]�

H(x1, x2) dx1 dx2 +

∫
[031]	

H(x1, x2) dx1 dx2

= −ε2n
∫ 2εn

0

H2(x1, 0) dx1 +O(ε4n). (3.14)

Proof. Using Fubini’s theorem and taking into account the orientations,

M1 :=

∫
[021]�

H(x1, x2) dx1 dx2

= −
∫ εn

0

∫ x1
√

3

0

H(x1, x2) dx1 dx2 −
∫ 2εn

εn

∫ √3(2εn−x1)

0

H(x1, x2) dx1 dx2,

and

M2 :=

∫
[031]	

H(x1, x2) dx1 dx2

=

∫ εn

0

∫ 0

−x1
√

3

H(x1, x2) dx1 dx2 +

∫ 2εn

εn

∫ 0

−
√

3(2εn−x1)

H(x1, x2) dx1 dx2.

A Taylor expansion gives

H(x1, x2) = H(x1, 0) + x2H2(x1, 0) + x2
2 r(x1, x2)

with supx1,x2∈[0,1]2 r(x1, x2) < ∞. By symmetry, the term with H(x1, 0) dis-
appears and we get

M1+M2 = −3

∫ εn

0

H2(x1, 0)x1
2 dx1−3

∫ 2εn

εn

H2(x1, 0)(2εn−x1)2 dx1+Rn,

where the remainder Rn is bounded (up to an irrelevant constant) by the
integral of x2

2 over the union of the two triangles [021] and [031]. The
detailed computations are presented in Appendix 1.2.

This yields:
Rn = O(ε4n).

With another Taylor expansion, we get

M1 +M2 = −2H2(0, 0)ε3n +O(ε4n).
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Moreover, ∫ 2εn

0

H2(x1, 0) dx1 = 2H2(0, 0)εn +O(ε2n).

The proof is thus complete.

Lemma 21. For a twice differentiable 1-form φ,

sup
n

sup
v∈S1(Vn)

ε−2
n

∣∣∣∣ε−2
n An(

∫
v

φ)−
∫
v

L↑φ

∣∣∣∣ <∞. (3.15)

Proof. Let v be an element of S1(Vn) and φ a C2 1-form. The edge v is
adjacent to two triangles, which we denote by τ+

v and τ−v . Both of them are
oriented so that they contain −v. Thus,

An

(∫
v

φ
)

=
(∫

τ+v +v

φ−
∫
v

φ
)

+
(∫

τ−v +v

φ−
∫
v

φ
)

=
(∫

τ+v +v

φ+

∫
−v
φ
)

+
(∫

τ−v +v

φ+

∫
−v
φ
)

=

∫
τ+v

φ+

∫
τ−v

φ

=

∫
∂∗2v

dφ, (3.16)

according to the Stokes formula. First, we consider the case of the horizontal
edge [01]. According to (3.16), we have

An(

∫
[01]

φ) =

∫
[021]�

dφ+

∫
[031]	

dφ.

Apply Lemma 20 to ∂φj/∂xi for i, j = 1, 2 to get

ε−2
n An(

∫
[01]

φ)−
(∫ 2εn

0

∂2φ1

∂x2
2
(x1, 0) dx1 −

∫ 2εn

0

∂2φ2

∂x1∂x2

(x1, 0) dx1

)
= O(ε2n).

In view of (3.13), this means that

ε−2
n An(

∫
[01]

φ) =

∫
[01]

L↑φ+O(ε2n). (3.17)

The same procedure can be applied to any horizontal edge. For an oblique
edge, we also benefit from the symmetries present in the triangulation. Con-
sider that v = [02]. According to (3.16) (see Figure 3.6 for the location of
point 4),

An

(∫
v

φ
)

=

∫
[042]�

dφ+

∫
[012]	

dφ.
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For any function H,∫
[042]�

H(x1, x2) dx1 dx2 =

∫
[021]�

H ◦Θ2π/3(x1, x2) dx1 dx2

where Θ2π/3 is the affine rotation of angle 2π/3 and center 0. Hence,

∂(H ◦Θ2π/3)

∂x2

(x1, 0) = −
√

3

2
H1(

x1

2
,

√
3x1

2
) +

1

2
H2(

x1

2
,

√
3x1

2
).

The path x1 7→ (x1/2, x1

√
3/2) is a parametrization of [02]. It follows that

for v = [02]

ε−2
n An(

∫
v

φ) =

∫
v

L↑φ+O(ε2n), (3.18)

where O(ε2n) is the same function as in (3.17).
Since every element of S1(Vn) can be attained by a combination of trans-

lation and rotations of [01], we see that (3.18) holds for any v ∈ S1(Vn) with
the same error function, so that (3.15) holds true.

Since C1 is the dual of Φ, we can define the adjoint of L↑ as follows.

Definition 7. Let

dom
(

(L↑)∗
)

=
{
p ∈ C1,∃cp, |〈p,L↑φ〉C1,Φ| ≤ cp‖φ‖Φ,∀φ ∈ dom(L↑)

}
.

Note that P ⊂ dom
(

(L↑)∗
)
. Then, (L↑)∗ is defined by the relation:

〈p, L↑φ〉C1,Φ = 〈(L↑)∗p, φ〉C1,Φ.

It also generates a strongly continuous semi-group of contractions on C1

and Lemma 20 means

Corollary 22. The sequence of generators (ε−2
n An, n ≥ 1) tends to (L↑)∗ in

the sense of Theorem 17, and so do the corresponding semi-groups.



Chapter 4

Random walk based hole
detection

It is natural to wonder whether some k-simplices are more likely to belong to
the Markov processX than others. In this chapter, we introduce an algorithm
to make simulations carried for the cycle-valued random walk (k = 1) on a
simplicial complex with holes, and it tends to show that the random walk is
more likely to go through edges on the boundaries of the holes than other
places. Therefore, we can apply our algorithm on simplicial complexes to
detect the location of holes.

4.1 Introduction

As we have discussed before, a combinatorial Laplacian can be decomposed
into a sum of two operators called up-Laplacian and down-Laplacian which
each correspond to a different random walk. We can compute the matrix of
the combinatorial Laplacian of order k as

Lk = L↑k + L↓k =
(
Dk − A↑k

)
+
(

(k + 1) Id +A↓k

)
.

While L↑k has the structure of the generator of a Markov process, L↓k does
not correspond to the generator of a Markov process, hence it is of great
complexity to define a Markov process whose generator would be L↓k.

56
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If X(0) is simple and a cycle, we have seen that L↑k = Lk, which makes
it possible to make simulations of the random walk whose generator is the
combinatorial Laplacian Lk. Therefore, we focus on the random walk corre-
sponding to L↑k on cycles.

In this chapter, we propose a heuristic algorithm – a simulated annealing
algorithm – to see for a given simplicial complex, whether the random walk
tends to visit some specific simplices more often than others. For a given
Rips complex with two holes, our algorithm finds the minimal cycles around
these two holes and it appears that the random walk is more likely to visit
the edges on the boundaries of the holes.

The rest of this chapter is organized as follows. Section 4.2 introduces
the data structure to represent the simplicial complexes and the definition of
random walk. Section 4.3 describes our algorithm. In Section 4.4, we discuss
the complexity of our algorithm. In Section 4.5, we focus on the convergence
rate of the algorithm. The simulations and results are described in Section
4.6. Finally, we make a conclusion in Section 4.7.

4.2 Definitions and model

4.2.1 Simplex tree

For simplicial complexes, for example the Čech complex and the Rips com-
plex, their grows very rapidly with the dimension of the data set, and their
use in real applications has been quite limited. Boissonnat and Maria [8]
have introduced a data structure to represent the simplicial complexes and
make it easier to implement some basic operations. The data structure is the
so-called simplex tree.

For a simplicial complex C of dimension k, V its vertex set, the vertices are
labeled from 1 to |V | and ordered accordingly. We can associate each simplex
of C to a word on the alphabet 1 · · · |V |. Let a simplex σ = {vl0 , · · · , vlj},
where vli ∈ V, li ∈ {1, . . . , |V |} and l0 < · · · < lj. The simplex σ is repre-
sented by the word [σ] = [l0, · · · , lj]. The last label of the word representation
of a simplex σ will be called the last label of σ and denoted by last(σ).

Definition 8 (Simplex tree). The simplicial complex C can be defined as a
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collection of words on an alphabet of size |V |. To compactly represent the set
of simplices of C, we store the corresponding words in a tree T satisfying the
following properties:

1. The nodes of the simplex tree T are in bijection with the simplices (of
all dimensions) of the complex. The root is associated to the empty
face.

2. Each node of the tree T , except the root, stores the label of a vertex.
Specifically, a node N associated to simplex σ 6= ∅ stores the label of
vertex last(σ).

3. The vertices whose labels are encountered along a path from the root to
a node N , associated to a simplex σ, are the vertices of σ. The labels
are sorted by increasing order along such a path, and each label appears
exactly once.

We call this data structure the Simplex Tree of C. It may be seen as a
digital tree [3] on the words representing the simplices of the complex. The
depth of the root is 0 and the depth of a node is equal to the dimension of
the simplex it represents plus one.

We take an example to clarify the construction of simplex tree. For a Rips
complex C with dimension 2 whose vertex set is denoted by {1, 2, 3, 4, 5, 6}
(see Figure 4.1), first, we start from an empty tree and insert all the vertices
as the children of the root. Then, for each vertex, we start from the root and
find all the edges containing successively the corresponding vertex. That is,
for vertex 1, the edges are [1, 2] and [1, 6], and for vertex 2, the edge is [2, 3].
At last, for an edge [l0, l1], l0 < l1, we append l1 to the node of l0 and repeat
this procedure for all vertices. That is, for node of vertex 1, we add nodes of
vertex 2 and 6. Similarly, for the edge [3, 4], we have the triangle [3, 4, 6] so
we append node of vertex 6 to the path [3, 4], which makes 6 be a leaf node
of our tree.

Nodes which share the same parent will be called sibling nodes. We attach
to each set of sibling nodes a pointer to their parent so that we can access
a parent in constant time. Thus, it is an efficient way for us to store the
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1 22

3

45

6

Rips complex

1 2 3 4 5 6

4 5 6 6 662 3

6 6

Simplex tree

Figure 4.1: Rips complex and its corresponding simplex tree

simplicial complexes as simplex trees and to access the cofaces of a given
simplicial complex in every step of our random walk.

In this paper, we use GUDHI library in which the general simplicial com-
plexes are represented by their simplex trees.

4.2.2 Determination of initial state of random walk

For a given simplicial complex with dimension k, first, we need to find the
initial state of our random walk if we do not know in advance. As we have
discussed, for any t > 0, X the Markov process, X(t) and X(0) are always in
the same homology group. To detect all the holes by random walk, we need
to find a cycle which is in the homology group of these holes. Moreover, if
X(0) is simple and a cycle, we have seen that L↑k = Lk so that

d

dt
w(t) = −L↑kw(t)

is exactly the differential equation investigated by Muhammad and Egerstedt
in [35]. Thus, if X(0) is simple and a cycle, by Hodge decomposition we have

kerLk ' Hk,

in order to compute the homology groups of a simplicial complex, it is enough
to study the null space of the matrix Lk. The eigenvectors of Lk correspond-
ing to the zero eigenvalues are the representative cycles of a particular ho-
mology class. Therefore, we can look at each eigenvector of Lk corresponding
to the zero eigenvalue at a time and set it to be our initial state.
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Due to the procedure in how we determine the initial state, we know that
weights of the initial state are not in {−1, 0, 1} any more, that is to say, X(t)

is not simple. When adding the boundary of a triangle to the chain-valued
random walk, we should be concerned about the weight of the boundary.
Therefore, it is crucial to adjust the weight of transition kernel of our simple
chain-valued random walk to the so-called integer weighted random walk.

Definition 9 (Transition kernel of integer weighted random walk). For a
k-chain τ =

∑
s∈S+k

λs(τ)s, define the minimal weight of τ by:

λmin(τ) = min
s∈S+k

λs(τ).

For a k-chain τ 6= 0 an oriented (k + 1)-simplex η ∈ Sk+1, we define the
number of common faces between τ and ∂k+1η by:

w (τ, ∂k+1η) = 〈(∂k+1η)∗, τ〉+Ck,Ck

where x+ = max(x, 0) for x ∈ R, so the weight of common faces between τ

and ∂k+1η is 〈(λmin(τ)∂k+1η)∗, τ〉+Ck,Ck .
For another chain τ ′, we say that

τ ∼ τ ′ ⇐⇒ ∃η ∈ Sk+1, w (τ, ∂k+1η) > 0 and τ ′ = τ − λmin(τ)∂k+1η. (4.1)

Finally, let

K(τ, τ ′) =


1 if τ = τ ′ = 0

w (τ, τ − τ ′) if τ ∼ τ ′

0 otherwise.

(4.2)

Example 11. In Figure 4.2, we see how the boundary of triangle is added
to a 1-chain τ = 10[v1v2] + 13[v2v3].

4.3 Hole detection algorithm

Consider a Rips complex, we apply our integer weighted random walk with
an initial state (which is a cycle) and minimize the length of X(t). Since
the initial state is in the same homology group with the holes and it will not
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v1 v210

v3

13

τ

v1 v210

v3

13

10

1010 η

τ and λmin(τ)∂k+1η

v2

3

v1

v3

10

τ ′

Figure 4.2: One step of integer weighted random walk from τ to τ ′

leave the homology group, it means that our chain will always include the
holes and always be cycles. In order to see where the holes locate, we can
minimize the length of our chain.

We propose the simulated annealing algorithm to minimize the length of
our chain. Simulated annealing (SA) is a heuristic method for approximating
the global optimum of a given function U , which is called energy function.
The name and inspiration come from annealing process in metal work, a
technique involving heating and controlled cooling of a material to increase
the size of its crystals and reduce their defects. See [4] for more details.

With the initial state computed from the null space of Lk, our SA algo-
rithm finds the global minimal length of our chain by following the cooling
schedule Tm = T0α

m, where T0 is the initial temperature and α is the cooling
factor subject to 0 < α < 1. At each temperature, we apply our random walk
whose generator is L↑k on τ and we obtain τ1, then we compute the length of τ
and τ1 as U(τ) and U(τ1). The difference of power consumption is calculated
by ∆U = U(τ1) − U(τ). If ∆U < 0, the length of our chain decreases, then
we accept this step. If the length increases, we call it an uphill move. If
∆U > 0, the uphill move is accepted with probability exp(−∆U/T ). Thanks
to uphill moves, the process can jump out from a local minimum to search
for the global minimum. At each temperature T , this process is repeated L
times to make the temperature decrease slowly. To set the initial parame-
ters, we need to make sure that the initial temperature T0 is large enough to
make the probability of an uphill move at initial state be close to one. The
number of schedule steps M is chosen large enough to make the probability
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of accepting an uphill move to be near zero at the final temperature T0α
M .

The final configuration of chain τ is our optimal chain with minimal length.
Our algorithm is written as Algorithm 1.

Algorithm 1 Simulated annealing algorithm
Input: τ =

∑
s∈S+k

λs(τ)s the initial state
Output: τopt the chain with minimal length

procedure SA(τ)
for m = 1→M do

T = T0α
m

for l = 1→ L do
compute τ1 = RW (τ)

compute lengths of τ and τ1 as U(τ) and U(τ1)

compute ∆U = U(τ1)− U(τ)

if ∆U < 0 then
P = 1

else
P = exp

(
−∆U

T

)
end if
τ = τ1 with probability P

end for
end for
return τ

end procedure

For the random walk part, the algorithm is summarized in Algorithm
2. We generate a simplicial complex and build the simplex tree T , and
we initiate with a chain τ and the simplex tree T . Firstly, we find all the
cofaces of s in chain τ =

∑
s∈S+k

λs(τ)s, and then we choose one of the
cofaces uniformly, denoted by η. Then, we compute the boundaries of η, and
by (3.3), we add our chain τ with mins∈S+k

λs(τ)∂k+1η. To avoid the case
where our chain disappears after our random walk, we repeat this procedure
if the chain becomes null. Therefore, we get τ1 after one step of our integer
weighted random walk.
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Algorithm 2 Integer weighted random walk
Input: τ =

∑
s∈S+k

λs(τ)s the chain, T the simplex tree
Output: τ1 the chain after one step

function RW(τ , T )
while τ1 is null do

find all the cofaces of s in T
choose one of the cofaces η and compute the boundaries of η as

∂k+1η

τ1 = τ + mins∈S+k
λs(τ)∂k+1η

end while
end function

4.4 Complexity

The random walk based hole detection algorithm requires two main compu-
tations: random walk on simplicial complexes and simulated annealing.

For the random walk on simplicial complexes, if the Rips Complex is built
on dimension d = 2, what we want is to search and locate all cofaces, say
triangles, of a given edge. For a given edge e represented by the word [l0l1],
the cofaces of e are the simplices of C which are represented by words of the
form [?l0 ? l1?], where ? represents an arbitrary word, possibly empty. To
locate all the words of the form [?l0 ? l1?] in the simplex tree, we first find all
the words of the form [?l0 ? l1]. Using the lists Li(l1)(i > 1), we find all the
nodes at depth at least 2 which contain label l1. For each such node Nl1 , we
traverse the tree upwards from Nl1 , looking for a word of the form [?l0 ? l1].
After that, we look for the nodes in the subtree rooted at Nl1 , which are
represented by words of the form [?l0 ? l1?].

We define T >jl to be the number of nodes of T at depth strictly greater
than j that store label l. The complexity of searching and locating the cofaces
of an edge e depends on T >1

last(e) of nodes and the dimension d of C. To traverse
the tree upwards, for each node in the number of T >1

last(e) nodes it takes O(d)

time. For each e, T >1
last(e) is at most (d− 1)|V |. Therefore, the complexity of

searching and locating cofaces is O(d2|V |).
The length of our path is at most the number of edges of the simplicial
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complex C, which is at most |V |(|V | − 1)/2. Since we do not allow neither
our random walk selects an edge which has no neighboring triangles nor our
random walk turns to be null after any step, the complexity of random walk
on simplicial complexes is O(d2|V |5).

For the simulated annealing part, the optimization process is repeated
during the length of each temperature in the cooling schedule. The length
of each temperature is L loops. The temperature is updated by the cooling
schedule, whose size is K steps. So, there are totally KL loops in this
algorithm. In each loop, the random walk is implemented on our path on
simplicial complexes. In this algorithm, the Rips complex is still built on
dimension d = 2. Thus, the complexity of the random walk based hole
detection algorithm is O(KL|V |5).

4.5 Convergence rate

In this section, for simulated annealing algorithms, we introduce the defini-
tion of hierarchical decomposition of the configuration spaces, so as to study
the behavior of these algorithms. Trouvé [46] gave the construction of the
cycle decomposition in the simulated annealing framework, but the definition
of cycle in that paper is different from us. To avoid ambiguity, we refer as
"circulation" in our paper.

As we have known, for a continuous time Markov process X, E its con-
figuration space and q its irreducible Markov kernel, if q(i, j) > 0, we can say
that j can be joined from i. Here we introduce a specific situation where we
can say that j can be joined from i at level h.

Definition 10. Given a simplicial complex C, let h ∈ R and i, j ∈ E, we say
that j can be joined from i at level h if there exists a finite family (il)0≤l≤p of
elements of Sk such that

1. i = i0 and j = ip,

2. q(il, il+1) > 0 for all 0 ≤ l ≤ p,

3. and U(il) ≤ h for all 0 ≤ l ≤ p.
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Definition 11 (Circulation). Let h ∈ R and i, j ∈ E, we define the equiva-
lence relation Rh by iRhj, if either i = j or i can be joined from j at level
h and j can be joined from i at level h. We denote Ch(E) the set of all the
equivalence classes of Rh. Ch(E) is called the circulation at level h.

We define the set C(E) of the circulations in E by

C(E) =
⋃
h∈R

Ch(E).

We categorize the circulations by a level h. By Definition 11, it is im-
mediate to show that two circulations in E are either disjoint sets or have a
full intersection. Hence, they can be placed on a tree whose leaves are the
singletons and whose root is the whole space.

We take an example of our random walk corresponding to L↑2 on a Rips
complex, see Figure 4.3. In the figure, a, b, c, d, e, f, and g are states of our
random walk. We can see that {a, b, c, d, e, f, g} ⊂ C(E). At level 5, we
have aR5b, then {a, b} ⊂ C5(E). At level 6, we have {a, b, c, g} ⊂ C6(E).
At level 7, we have {a, b, c, d, f, g} ⊂ C7(E), and all the states are in
C8(E). Therefore, we can have the decomposition of circulations by level and
the decomposition tree shown in Figure 4.4.

Rips complex a b c

d e f g

Figure 4.3: Example of Rips complex and the states of random walk
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1
2
3
4
5
6
7
8

a
b

c
d

e
f

g

Configuration space

a,b,c,d,e,f,g

a,b,c,d,f,g e

a,b,c,g d f

a,b c g

a b

Decomposition tree

Figure 4.4: Example of decomposition tree

From the decomposition tree, we can see that some of the states are more
"close" than others. To describe the relationship between circulations, we
follow the definitions by Trouvé [46].

Definition 12. Let Π be a circulation in C(E), we define

1. the bottom F (Π) of Π by

F (Π) = {i ∈ Π | U(i) = inf
j∈Π

U(j)},

2. the boundary B(Π) of Π by

B(Π) = {i ∈ E \ Π | ∃i ∈ Π, q(i, j) > 0},

3. the mixing height Hm(Π) of Π by

Hm(Π) = sup
i,j∈Π

(U(j)− U(i)),

4. the exit height He(Π) of Π by

He(Π) = inf
j∈B(Π)

sup
i∈Π

(U(j)− U(i))+,

5. the potential U(Π) of Π by

U(Π) = inf
i∈Π

U(i),
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6. the altitude Ac(Π) of Π by

Ac(Π) = max
i∈Π

U(i).

For the previous example, let Π = {a, b, c, g}, by Definition 12 we have
the bottom F (Π) = {a}, the boundary B(Π) = {d, f}, the mixing height
Hm(Π) = U(g) − U(a) = 2, the exit height He(Π) = (U(d) − U(a))+ = 3,
and the potential U(Π) = U(a) = 3.

If the temperature is low, the probability of accepting an uphill move is
close to zero. In this situation, our random walk goes from circulation to
circulation and tries to find the leaf node of our decomposition tree with
minimal energy. If we fix our temperature as T , for a circulation Π ∈ C(E),
the exit time from Π is of order of eHe(Π)/T .

We look again at our previous example and we can describe the hierarchi-
cal behavior of the random walk when temperature is low in Figure 4.5. For
the configuration space E = {a, b, c, d, e, f, g}, we have Hm(E) = 4, which
means that the random walk visits all the configurations of E in a time of
order of e4/T . Now, if we consider Π = {a, b, c, d, f, g} as the next circulation
our random walk enters, our random walk will visit all the configurations of
Π in a time of order of eHm(Π)/T = e3/T , and the random walk will spend a
time of order of eHe(Π)/T = e4/T before jumping to the point e and coming
back to Π. The behavior within Π can be described clearly if we introduce
the partition of Π in the sub-circulation including {a, b, c, g}, {d} and {f}.
Assume that our random walk enters {a, b, c, g}, it will spend a time of or-
der of e3/T before jumping to either d or f and then returning to {a, b, c, g}.
The behavior in {a, b, c, g} will be described in the next sub-circulation and
so on so forth. In the end, the behavior in {a, b} will be described by in-
troducing the partition {{a}, {b}} at the bottom of the figure. Therefore,
we have a hierarchical description of the trajectory inside E of our random
walk organized by the circulation decomposition and the exit heights of the
circulations.

If we consider a great number of circulations, in order to obtain minimal
energy, we should empty successively all the circulations not containing the
global minimum. By [46], we have the optimal exponent for the convergence
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e4/T
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g
1

a b

e1/T

1

Figure 4.5: Example of hierarchical behavior at low temperature
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rate towards the global minimal set:

αopt = inf
Π∈C(E), Π∩F (E)=∅

U(Π)− U(E)

He(Π)
, (4.3)

where E is the configuration space with all the states.

Theorem 23 (Catoni [10]). We assume that αopt > 0, there exists a constant
Ksuch that for all integer n ≥ 1, there exists a cooling schedule for which we
have

sup
i∈E

P (U(Xn) > minU | X0 = i) ≤ K

nαopt
.

Corollary 24. For a chain-valued integer-weighted random walk X and a
simplicial complex C on dimension 2 with vertex set V , X(0) is a cycle and
is in the homology group including all holes. Energy function U : S2 → N is
the length of chain. The maximal length of chains in this homology group is
L. For all n ≥ 1, there exists a constant K and a cooling schedule for which
we have

sup
i∈E

P (U(Xn) > minU | X0 = i) ≤ K

n1/L
.

Proof. We will focus on the value of αopt. For all Π ∈ C(E), as we know that
U(Π)−minU ≥ 1 under condition that U(Π) > minU , it is crucial to have
an upper bound of He(Π).

Since after one step of our random walk, the energy of the chain will
enlarge at most 2, which means that the chosen coface and the previous
chain have two edges in common, we have

He(Π) = sup
i∈Π

(U(j)− U(i))+ ≤ 2 +Hm(Π).

For all Π ∈ C(E) and Π ∩ F (E) = ∅, indicating that U(Π) > U(E), we
need to find the biggest Π which does not include the elements of F (E) so as
to have an upper bound of Hm(Π). Since L is the maximal length of chains
in the homology group, it is immediate to have Hm(Π) < L for all Π ∈ C(E)

and Π ∩ F (E) = ∅.
By (4.3), we have

αopt ≥ inf
Π∈C(E), U(Π)>minU

1

2 +Hm(Π)

≥ 1

L+ 2
.
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Therefore, there exists a constant K ′ so that K/nαopt ≤ K ′/n
1
L , which com-

pletes the proof.

Remark 25. For the upper bound of Hm(Π), it is immediate to have Hm(Π) <

L. However, for Π ∩ F (E) = ∅, we know that the elements of Π and F (E)

are in the same circulation of level h where h > Ac(Π). In order to have the
biggest Π, we have Ac(Π) ≤ L − 1. Therefore, to be more precise, we have
Hm(Π) ≤ L− 1− U(E).

It is not easy to compute neither the maximal length of chains L nor the
minimal length of chains U(E), but in practice, we can use our random walk
to find the longest path by tracking down the lengths of chains and taking the
maximize of them.

4.6 Simulation results

In this section, we discuss two situations in general. In the first situation,
we assume that we know a cycle which includes all the holes in advance,
and we set it as our initial state. In this case, we do not need to apply the
integer weighted random walk introduced in Section 4.2.2 since the weights
are always in {−1, 0, 1}. In the second situation, we assume that we do
not know any cycle of our Rips complex, so we calculate the initial state by
looking at the eigenvectors of kerLk corresponding to zero eigenvalues and
apply the integer weighted random walk on it.

4.6.1 Random walk with known initial state

First, we draw 25 points randomly in the cube [0, 1] × [0, 1] and choose the
max edge length of Rips complex as 0.3 so that β0 = 1 and β1 = 2. The Rips
complex is shown in Figure 4.6.

In this case, we apply our simulated annealing algorithm with random
walk on this Rips complex. For the parameters, we set α = 0.93, M =

100, and T0 = 100 so that in the end T = T0α
M = 100 × 0.93100 and

the acceptance probability P = exp(−∆U/T ) = exp(−1/(100 × 0.93100)) =
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Figure 4.6: Rips complex with 25 points and the max edge length ε = 0.3

6.94 × 10−7 is close to zero. At each T , we set L = 1000 to make the tem-
perature decrease slowly.

With known initial state which is depicted as the red line in the left hand
side of Figure 4.7, we know that the initial state includes both holes, and
our random walk will not leave the same homology group as the initial state.
The final state after our simulated annealing algorithm is shown in the right
hand side of the figure.

(a) Initial state (b) Final state

Figure 4.7: Rips complex with 25 points and the max edge length ε = 0.3, initial

state and final state is depicted in red line
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We can see that our simulated annealing algorithm locates all these two
holes precisely.

4.6.2 Random walk with unknown initial state

If we do not know the initial state in advance, we should generate an initial
state and make sure that it is in the same homology group with the holes
in our simplicial complex. As we discussed in Section 4.2.2, we can study
the null space of the matrix Lk, which is L2 in our case. The number of
zero eigenvalues equals with the dimension of H2, which is the number of
holes in our simplicial complex. For each zero eigenvalue, we calculate the
corresponding eigenvector and set it to be our initial state. Therefore, for a
simplicial complex with many holes, we can locate them one at a time.

However, in practice we encounter a computational accuracy problem.
Since Python only prints a decimal approximation to the true decimal value
of the binary approximation stored by the machine, the computational error
will become super large after 105 steps of random walk. Therefore, we replace
some of the codes in Python with SAGE since in SAGE, the exact value of
fraction is stored by the machine, and we store all the fractions as integers by
multiplying the least common multiple of the denominators of the fractions.

Therefore, we draw a new Rips complex where we do not know any cycle
containing the hole in advance, see Figure 4.8. In this figure, we have one
hole in the center, and we do not know the initial state in advance. In order
to locate the hole, we should generate our initial state which is in the same
homology group with the hole.

In this case, we calculate the eigenvector corresponding to the zero eigen-
value, and set it as our initial state. Figure 4.9a depicts our initial state,
where the thickness of each edge indicates the weight of this edge.

For the parameters, we set α = 0.9, M = 100, T0 = 100 and L0 = 100.
The result is shown in Figure 4.9. In this figure, after 104 steps of random
walk, the temperature T is close to zero and our state is in Figure 4.9b. We
can see that our random walk goes through the boundaries of hole very often
since the weights of them increase.

In Figure 4.9, we can see that the result is not as good as the random
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Figure 4.8: Rips complex with 15 points and the max edge length ε = 0.265

walk with known initial state, where we got exactly the boundaries of the
holes. Without knowing the initial state, it seems that we can only obtain
the boundaries of holes approximately. This is mainly due to the compu-
tational accuracy problem, since the weights are of order 104, and in order
to minimize the weights, we cannot simply minimize them to a pretty small
number. However, if the simplicial complex is pretty large, we will still have
the boundaries of holes approximately, and in this situation, the boundaries
will be very close to the theoretical result.

4.7 Summary and conclusion

In this chapter, we have introduced the random walk based hole detection
algorithm on simplicial complexes. For a simplicial complex with holes, since
we are not sure whether we can know the cycle which is in the same homology
group with the holes or not, we divide our case into two situations: the
initial state known or unknown. If we know the initial state, we can apply
the random walk on Z2, which we have defined in Chapter 3. If we do not
know the initial state in advance, we should calculate the initial state and
redefine our random walk as the integer weighted random walk. Then, we
introduce our algorithm, which is a simulated annealing algorithm, and we
study the complexity and convergence rate of our algorithm. We find out
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that the convergence rate of our simulated annealing algorithm depends on
the length of the longest cycle in our state space. For the simulation part,
we apply our random walk on a Rips complex with both known initial state
and unknown initial state, and finally we locate where the holes are. With
known initial state, we can locate exactly the boundaries of holes, while with
unknown initial state, we can locate the holes approximately.
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(a) Initial state

(b) Final state

Figure 4.9: Random walk on a Rips complex with unknown initial state



Chapter 5

Random walk based kernels

Machine learning involves the study of relationships between structured ob-
jects in many domains such as bioinformatics, chemoinformatics, drug dis-
covery, web data mining, and social networks. Graphs are natural data
structures to model such structures, with nodes representing objects and
edges the relations between them. We can measure the similarity between
graphs by defining a kernel between them. However, with higher order topol-
ogy data, simplicial complexes are better tools than graphs, since they can
store high order structures, such as triangles, tetrahedron and so on. In this
context, one often encounters two questions: "Can we measure the similarity
between two simplicial complexes by defining a simplicial complexes kernel?"
and "Does the kernel on simplicial complexes include more useful informa-
tion than kernel on graphs?". In this chapter, we introduce the definition of
random walk based kernels and compute the graph and simplicial complexes
kernels on an example of three data structures. It tends to show that the sim-
plicial complexes kernels are quite advantageous in detecting the similarities
in homology.

5.1 Introduction

Roughly speaking, a kernel k(x, x′) is a measure of similarity between objects
x and x′. It must satisfy two mathematical requirements: it must be symmet-
ric, that is, k(x, x′) = k(x′, x), and positive semi-definite (p.s.d.). Comparing

76
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graphs involves constructing a kernel between graphs. Vishwanathan [47] de-
fined a kernel that captures the semantics inherent in the graph structure,
and we would like to extend the definition of graph kernel to kernel on sim-
plicial complexes so as to compare higher order topology data structures.

In order to compare two data structures, we first generate graphs or
simplicial complexes for the data structures, and then we generate kernels
based on this idea: given a pair of graphs or simplicial complexes, we perform
our random walks on both, and count the number of matching walks. The
more matching walks, the more similar these two data structures are.

The rest of this chapter is organized as follows. Section 5.2 introduces
the definitions of kernels on both graphs and simplicial complexes, including
the definitions of direct product graph and direct product simplicial com-
plexes. Section 5.3 describes the algorithm to simulate the state space of
chain-valued random walk, which determines the transition matrix and then
the kernels on simplicial complexes. In Section 5.4, we discuss the compu-
tational complexity and we use conjugate gradient methods to speed up the
computation. The computation settings and results are described in Section
5.5, where we compare the values of kernels on graphs and simplicial com-
plexes on an example of three data structures. Finally, we make a summary
and conclusion in Section 5.6.

5.2 Definitions and model

In this section, we introduce some basic definitions in order to define the
kernel for graphs and simplicial complexes.

5.2.1 Graph kernels

Graphs are a special form of simplicial complexes, where graphs only have
vertices and edges, and simplicial complexes have higher-dimensional topol-
ogy structures. We introduce the direct product of a pair of graphs to link
them as one large graph, and then introduce the definition of kernels over
the large graph, which is the so-called graph kernels defined by S.V.N. Vish-
wanathan and others in [47]. Inspired by the definition of graph kernels, we
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will define the simplicial complexes kernels in Section 5.2.2.
First, we introduce some basic definitions in order to define the graph

kernels.

Definition 13 (Kronecker product). Given real matrices A ∈ Rn×m and
B ∈ Rp×q, the Kronecker product A ⊗ B ∈ Rnp×mq and column-stacking
operator vec(A) ∈ Rnm are defined as

A⊗B =


A11B A12B · · · A1mB

A21B A22B · · · A2mB
...

... . . . ...
An1B An2B · · · AnmB

 , vec(A) =


A∗1

A∗2
...

A∗m

 ,
where A∗j denotes the jth column of A.

Definition 14 (Direct product graphs [47]). Given two graphs G(V,E) and
G′(V ′, E ′), their direct product G× is a graph with vertex set

V× = {(vi, v′r) : vi ∈ V, v′r ∈ V ′},

and edge set

E× = {[(vi, v′r), (vj, v′s)] : [vi, vj] ∈ E and [v′r, v
′
s] ∈ E ′}.

When G is unweighted with n vertices, we define its adjacency matrix as
the n×n matrix Ã with Ãij = 1 if [vi, vj] ∈ E and 0 otherwise. For weighted
graphs, Ãij = wij. The adjacency matrix has a normalized cousin, defined
by A := ÃD−1, which has the property that each of its columns sums to one,
and it can therefore serve as the transition matrix for a stochastic process.
Here, D is a diagonal matrix of node degrees, that is, Dii = di =

∑
j Ãij. A

random walk on G is the traditional random walk jumping from vertex to
vertex subject to P(ik+1|i1, . . . ik) = Aik,ik+1

.
If A and A′ are the respective adjacency matrices of G and G′ , then the

adjacency matrix of G× is Ã× = Ã⊗ Ã′. Similarly, A× = A⊗ A′.
By Imrich and Klav̌zar [26], performing a random walk on the direct

product graph G× is equivalent to performing a simultaneous random walk
on G and G′. If p and p′ denote initial probability distributions over the
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vertices of G and G′, then the corresponding initial probability distribution
on the direct product graph G× is p× := p ⊗ p′. Likewise, if q and q′ are
stopping probabilities (that is, the probability that a random walk ends at a
given vertex), then the stopping probability on the direct product graph G×
is q× := q ⊗ q′.

It is well known that any continuous, symmetric, positive definite kernel
k : X ×X → R has a corresponding Hilbert space H, called the Reproducing
Kernel Hilbert Space, which induces a feature map φ : X → H satisfying
k(x, x′) = 〈φ(x), φ(x′)〉H. The natural extension of this so-called feature
map to matrices is Φ : X n×n′ → Hn×n′ defined [Φ(A)]ij := φ(Aij).

Let |V | =: n and |V ′| =: n′. If G and G′ are edge-labeled, we can associate
a weight matrix W× ∈ Rnn′×nn′ with G× by

W× = Φ(X)⊗ Φ(X ′). (5.1)

In our case, we simply let Φ(X) = A, and then W× = A×.
We perform the random walk jumping from vertex to vertex on G×. In

fact, the ((i− 1)n′+ r, (j− 1)n′+ s)th entry of Ak× represents the probability
of simultaneous length k random walks on G (starting from vertex vj and
ending at vertex vi) and G′ (starting from vertex v′s and ending at vertex
v′r), and so does W×. Given initial and stopping probability distributions p×
and q× one can compute q>×W k

×p×, which is the expected similarity between
simultaneous length k random walks on G and G′. Therefore, following by
[26], we have the graph kernel definition to compute the similarity between
G and G′.

Definition 15 (Graph kernel). For any two graphs G and G′, the direct prod-
uct graph of G and G′ is G×, and the weight matrix of G× isW×. We perform
a random walk on G× with initial probability p× and stopping probability q×.
The kernel between G and G′ is defined by

k(G,G′) =
∞∑
k=0

µ(k)q>×W
k
×p×, (5.2)

where µ(k) is a non-negative coefficient to make sure that k(G,G′) converges.
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5.2.2 Simplicial complexes kernels

Since the definition of simplicial complexes kernels is based on the idea of
graph kernels where we perform a random walk on a pair of graphs, we extend
the definition of graph kernels and perform our chain-valued random walk
on a pair of simplicial complexes. We introduce direct product of simplicial
complexes to link them as one large simplicial complex. Then, we define the
random walk based kernel over the product of simplicial complexes.

Extending the definition of direct product graphs in Definition 14, we
give the definition of direct product simplicial complexes.

Definition 16. (Direct product simplicial complexes) Let C and C ′ be ab-
stract simplicial complexes and choose a linear ordering of the vertices. We
define the direct product of C and C ′ to be the simplicial complex C× with the
following properties:

1. Its vertex set
V× = {(vi, v′r) : vi ∈ V, v′r ∈ V ′},

where V is the vertex set of C and V ′ is the vertex set of C ′.

2. Its k-simplex set

(Sk)× = {[(vi0 , v′r0), . . . , (vik , v
′
rk

)] : [vi0 , . . . , vik ] ∈ Sk, [v′r0 , . . . , v
′
rk

] ∈ S ′k}

where Sk is the k-simplex set of C and S ′k is the k-simplex set of C ′.

As the direct product graph is a graph over pairs of vertices from the
original two graphs, C× is a simplicial complex over pairs of vertices and
simplices from C and C ′. Two vertices are neighbors if and only if the corre-
sponding vertices in C and C ′ are both neighbors, and two edges are upper
(lower) adjacent if and only if the corresponding edges in C and C ′ are both
upper (lower) adjacent.

Here, we give an example to explain our definition. For two Rips com-
plexes R and R′, we have their 0-simplex sets (vertex sets) S0 = {1, 2, 3} and
S ′0 = {1′, 2′, 3′, 4′}. The 1-simplex sets are S1 = {[1, 2], [1, 3], [2, 3]} and S ′1 =

{[1′, 2′], [1′, 3′], [2′, 3′], [2′, 4′], [3′, 4′]}. The 2-simplex sets are S2 = {[1, 2, 3]}
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1 2

3

R

1′

2′
3′

4′

R′

11′ 21′ 31′

12′

22′

32′

13′ 23′ 33′

14′

24′

34′

The direct product simplicial complex R× of R and R′

Figure 5.1: Example of two simplicial complexes R and R′ and their direct product

simplicial complexes R× Each node of the direct product simplicial complex is la-

beled with a pair of nodes, such as 11′, 21′; an edge exists in the direct product if and

only if the corresponding nodes are adjacent in both original simplicial complexes;

a 2-simplex exists in the direct product if and only if the corresponding nodes are

elements of a 2-simplex in both original simplicial complexes. For instance, nodes

12′ and 31′ are adjacent because there is an edge between nodes 1 and 3 in R, and
2′ and 1′ in R′. Similarly, [11′, 22′, 34′] is a 2-simplex in R× because [1, 2, 3] is a

2-simplex in R and [1′, 2′, 4′] is a 2-simplex in R′.

and S ′2 = {[1′, 2′, 4′], [2′, 3′, 4′]}. For k > 2, we have Sk = S ′k = ∅. By
Definition 16, we have (S0)×, (S1)× and (S2)× shown in Figure 5.1.

Since the random walk performed on direct product graphs is the random
walk jumping from vertex to vertex, in order to extend the random walk



CHAPTER 5. RANDOM WALK BASED KERNELS 82

to simplicial complexes, we need our random walk jumping from chains to
chains. Thus, we introduce some basic chain-valued random walk concepts on
simplicial complexes so as to introduce the definition of simplicial complexes
kernels later.

As defined in (3.4), for any k-chain τ and τ ′, we have the transition of
our chain-valued random walk K(τ, τ ′) as

K(τ, τ ′) =


1 if τ = τ ′ = 0

w (τ, τ − τ ′) if τ ∼ τ ′

0 otherwise.

Following the definition of K(τ, τ ′), we can give the definition of transition
matrix K.

Definition 17 (Transition matrix). Given a simplicial complex C and an
initial state τini, we have the recurrence class R(τini) of τini whose dimension
is N . For any τi, τj ∈ R(τini), if τi and τj are labeled as i and j in R(τini),
the transition matrix K is defined by

Kij =
K(τi, τj)∑N
k=1 K(τi, τk)

.

In order to avoid ambiguity, we denote K by the unnormalized matrix
whose entries are K(τi, τj), and we denote K by the transition matrix after
renormalizing by the sum of each rows of K.

A random walk on C is a process generating sequences of chains τi1 , τi2 , τi3 , . . .
according to P(ik+1|i1, . . . , ik) = Kik,ik+1

, that is, the probability at τik of
picking τik+1

next is proportional to the number of common edges τik and
τik+1

share. The tth power of K thus describes t-length walks, that is, (Kt)ij
is the probability of a transition from chain τi to τj via a walk of length t.
If p0 is an initial probability distribution over chains in the same recurrence
class, then the probability distribution pt describing the state of our random
walker at time t is pt = Ktp0. The jth component of pt denotes the probability
of finishing a t-length walk at state τj.

In our case, the random walk does not continue infinitely. So, we associate
every state τik with a stopping probability qik . Our generalized random walk
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kernels then use the overall probability of stopping after t steps, given by
q>pt. As mentioned in [47], like p0, the vector q of stopping probabilities
is a place to embed prior knowledge into the kernel design. Since pt as a
probability distribution sums to one, a uniform vector q (as might be chosen
in the absence of prior knowledge) would yield the same overall stopping
probability for all pt, thus leading to a kernel that is invariant with respect
to the structure it is meant to measure. In this case, the unnormalized
transition K should be used instead of K.

If K and K′ are the respective transition matrices of C and C ′, then the
transition matrix of C× is K× = K ⊗K′. Similarly, K× = K ⊗K ′.

Performing a random walk on the direct product graph is equivalent to
performing a simultaneous random walk on those two graphs [26], and so does
simplicial complexes. If p and p′ denote initial probability distributions over
the chains on C and C ′, then the corresponding initial probability distribution
on the direct product simplicial complex is p× := p ⊗ p′. Likewise, if q and
q′ are stopping probabilities (that is, the probability that a random walk
ends at a given chain), then the stopping probability on the direct product
simplicial complex is q× := q ⊗ q′.

Inspired by Equation (5.1), for simplicial complexes C and C ′, the dimen-
sions of the corresponding transition matrix K and K′ are N×N and N ′×N ′,
we associate a weight matrix W× ∈ RNN ′×NN ′ with C× by W× = K×.

Therefore, we can extend the definition of graph kernels in Definition 15
to simplicial complexes kernels as follows.

Definition 18. For any two simplicial complexes C and C ′, the direct product
simplicial complex of C and C ′ is C×, and the weight matrix of C× is W×. We
perform our chain-valued random walk on C× with initial probability p× and
stopping probability q×. The kernel between C and C ′ is defined by

k(C, C ′) =
∞∑
k=0

µ(k)q>×W
k
×p×, (5.3)

where µ(k) is a non-negative coefficient to make sure that k(C, C ′) converges.
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5.3 Algorithm

In order to compute the simplicial complexes kernels between two simplicial
complexes C and C ′, we need to determine the coefficient µ(k) and the weight
matrix W×.

For the coefficient µ(k), since it is chosen to make sure the kernel con-
verges, we can emphasize or de-emphasize walks of different lengths by choos-
ing it appropriately. Without loss of generality, we set µ(k) = λk where λ
is small enough for the sum in (5.3) to converge. By Taylor expansion, the
kernel between C and C ′ can be rewritten as

k(C, C ′) =
∞∑
k=0

λkq>×W
k
×p× = q>× (I − λW×)−1 p×. (5.4)

For the weight matrix W×, if we focus on graphs, we need to generate the
adjacency matrices A and A′ of graph G and G′, and then apply Kronecker
product on them. However, if we focus on simplicial complexes, the situation
becomes a little complex. Given two simplicial complexes C and C ′we need to
determineK×. SinceK× = K⊗K′, whereK andK′ are the transition matrices
of the random walk starting from τini and τ ′ini on C and C ′ respectively, we
need to determine K and K′.

In order to compute the transition matrix K of simplicial complex C given
the initial state τini, first, we need to find all the states in the state space
of our random walk. In Section 3.2.3, we explained the recurrence of the
chain on simplicial complexes. Due to the nature of our random walk, it
will never be trapped at any state. Therefore, we can find all the states
by simulating our random walk after a large number of steps on the given
simplicial complex. At first, we set our recurrence class R(τini) to be a null
space. Starting from τini, we let our random walk run M steps where M is
large. If the chain we get is not in R(τini), we add the chain to R(τini); if
the chain is already in R(τini), we continue our random walk. AfterM steps,
R(τini) will not enlarge any more and we refer it as our state space. This
procedure is summarized in the Algorithm 3.

Knowing the state space of our random walk initiated with τini, we label
them with the numeric position in R(τini). For example, the first element
added to R(τini) should be τini, which is labeled with 1, and the second
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Algorithm 3 State space of random walk
Input: τini the initial state, C the simplicial complex
Output: R(τini) the recurrence class of τini on C, i.e., state space of

random walk initiated with τini
procedure State space(τini)

Let R(τini) be a null space
Add τini to R(τini)

τ1 = τini

for i = 1→M do
τi+1 = RW (τi) one step of random walk
if τi+1 /∈ R(τini) then

Add τi+1 to R(τini)

end if
end for
return R(τini)

end procedure

element added to R(τini) is denoted by τ2, which is labeled with 2. For the
transition matrix K, the element in the second column of the first row is the
probability at τini of picking τ1 next. If the number of elements in R(τini) is
N , K is a N ×N matrix. For any 1 ≤ i, j ≤ N , we can compute Kij by

Kij =
K(τi, τj)∑N
k=1 K(τi, τk)

.

Thus, we can obtain the transition matrices K and K′ of random walks
on C and C ′ initiated with τini and τ ′ini respectively. Applying Kronecker
product on K and K′, we have K×, which equals to W×, and then we can
compute the simplicial complex kernel k(C, C ′).

5.4 Computational complexity

Computing a geometric random walk kernel with µ(k) = λk amounts to
computing the inverse matrix of (I − λW×). For simplicial complex kernel,
(I−λW×) is an NN ′×NN ′ matrix if R(τini) and R(τ ′ini) have N and N ′ el-
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ements respectively. Since the complexity of inverting a matrix is essentially
cubic in its dimensions, direct computation of (5.4) would require O((NN ′)3)

time. Since exact computation of the full kernel matrix is generally cubic in
their size, we develop iterative methods to decrease the computation com-
plexity.

Given a symmetric and positive-definite matrix M and a vector b, con-
jugate gradient (CG) methods solve the system of equations Mx = b effi-
ciently. The conjugate gradient method is often implemented as an iterative
algorithm, applicable to sparse systems that are too large to be handled by a
direct implementation or other direct methods such as the Cholesky decom-
position. For more details, see [33]. Since our transition matrix is naturaly
symmetric, I − λW× is symmetric and positive-definite. Therefore, we can
use conjugate gradient methods to compute our kernel.

The random walk based kernel (5.2 and 5.4) can be computed by a two-
step procedure:

1. we solve the linear system

(I − λW×)x = p×,

2. and we compute q>×x.

In the first step, we apply conjugate gradient methods to solve the linear
system. The conjugate gradient method can be used as an iterative method as
it provides monotonically improving approximations xk to the exact solution,
which may reach the required tolerance after a relatively small (compared to
the problem size) number of iterations. The improvement is typically linear
and its speed is determined by the condition number κ(A) of the system
matrix A: the larger κ(A), the slower the improvement. By [43], we know
that conjugate gradient method has a time complexity of O(m

√
κ), where m

is the number of non-zero entries in A. Finite difference and finite element
approximations of second-order elliptic boundary value problems posed on
d-dimensional domains often have κ ∈ O(n2/d) if A is an n× n matrix.

Recall thatR(τini) andR(τ ′ini) have N and N ′ elements respectively, then
W× is an NN ′ × NN ′ matrix. Therefore, κ(W×) ∈ O((NN ′)). Moreover,
due to the definition of the transition matrix, we know that the number
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of non-zero entries in each row of K is at most the number of neighboring
triangles of the corresponding state. Thus, the number of non-zeros in W×
is at most O(NN ′). We can conclude that computing the simplicial complex
kernel using conjugate gradient methods has a complexity of O((NN ′)3/2),
which speeds up a lot comparing to the direct computation.

5.5 Computation results

In this section, we intend to study the similarity among three data structures
using both graph kernels and simplicial complex kernels. We are quite inter-
ested in whether simplicial complex kernels could include more information
than graph kernels.

5.5.1 Data structures

First, we define our three data structures, denoted by (DS)0, (DS)1, and
(DS)2 in Figure 5.2. (DS)1 and (DS)2 have all the points (DS)0 has, and
they have their own perturbation points, which are depicted in red in Figure
5.2b and Figure 5.2c. The difference between two perturbation points lies in
the case that the perturbation point in (DS)1 does not change the homology
property but the perturbation point in (DS)2 does. In other words, we reckon
that the perturbation point in (DS)1 is very close to one of the original points
in (DS)0, and it does not make a big difference on the original structure.
However, the perturbation point in (DS)2 is close to more than one of the
original points, and it changes the original data structure.

If we generate the graphs and Rips complexes of these three data struc-
tures, the situation becomes clearer, see Figure 5.3 and Figure 5.4.

5.5.2 Graph kernels and simplicial complexes kernels

We compute the graph kernels k(G0, G1), k(G0, G2) and k(G1, G2) respec-
tively. In the same time, we compute the simplicial complex kernels k(C0, C1),
k(C0, C2) and k(C1, C2).

For graph kernels, we label all the vertices in numerical order and generate
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(a) (DS)0 (b) (DS)1 (c) (DS)2

Figure 5.2: Data structures (DS)0 with 7 points, (DS)1 with 8 points and (DS)2

with 8 points, with different points between itself and (DS)0 depicted in red

(a) G0 (b) G1 (c) G2

Figure 5.3: Graphs G0 with 7 points, G1 with 8 points and G2 with 8 points, with

max edge length ε = 0.7

the adjacency matrices of G0, G1 and G2. We take G0 as an example. The
graph is shown in Figure 5.5. The adjacency matrix A0 of G0 is as followed:

A0 =



0 1 0 0 1 0 1

1 0 1 0 0 1 1

0 1 0 1 0 1 1

0 0 1 0 1 0 0

1 0 0 1 0 0 1

0 1 1 0 0 0 1

1 1 1 0 1 1 0


.

Following the same procedure, we have the adjacency matrices A1 of G1

and A2 of G2. Then we compute the Kronecker products W 01
× = A0 ⊗ A1,

W 02
× = A0 ⊗ A2 and W 12

× = A1 ⊗ A2. We define the initial and stopping
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(a) C0 (b) C1 (c) C2

Figure 5.4: Rips complex C0 with 7 points, C1 with 8 points and C2 with 8 points,

with max edge length ε = 0.7

0

1

2

3

4

5

6

Figure 5.5: G0 with labeled vertices

probabilities of G0, G1, G2 as p0, q0, p1, q1, p2 and q2, which are uniformly
distributed due to the fact that every vertex is equivalent with each other.
Then we compute the Kronecker products p01

× = p0 ⊗ p1, q01
× = q0 ⊗ q1 and

so on so forth. By definition of graph kernels and the two-step procedure in
Section 5.4, we let λ = 0.01 and use conjugate gradient solver to solve the
linear system

(I − λW 01
× )x = p01

× ,

then we get k(G0, G1) = (q01
× )>x. We compute k(G0, G2) and k(G1, G2)

respectively. The results are shown in Table 5.1a.
For simplicial complexes, first, we label all the vertices in numerical order

and we generate the transition matrices of the random walk on C0, C1 and
C2 starting with its corresponding initial state. In our case, the initial states
of the random walk on C1 and C2 are the same with which on C0. The initial
state τini is depicted in red in Figure 5.6.
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Figure 5.6: C0 with labeled vertices and initial state in red

In order to generate the transition matrices of the random walk on C0,
C1 and C2, we simulate the state spaces R(τini)0, R(τini)1 and R(τini)2 by
Algorithm 3, and then generate the transition matrices K0, K1 and K2 by
computing K(τ, τ ′) following (3.4), where τ and τ ′ are the states in the
corresponding state space. As a result, we have K0 a 32× 32 sparse matrix
with 192 stored elements, K1 an 128 × 128 sparse matrix with 1024 stored
elements, and K2 a 511×511 sparse matrix with 5100 stored elements. Then
we compute the Kronecker products W 01

× = K0 ⊗ K1, W 02
× = K0 ⊗ K2 and

W 12
× = K1 ⊗ K2, where W 01

× is a 4096 × 4096 sparse matrix with 196608
stored elements, W 02

× is a 16352 × 16352 sparse matrix with 979200 stored
elements, and W 12

× is a 65408 × 65408 sparse matrix with 5222400 stored
elements. For the initial probabilities, we search for the index i of state
{(0, 1), (0, 4), (1, 2), (2, 3), (3, 4)} (depicted in red in Figure 5.6) in each state
space of random walk respectively, and we set the ith element to be 1 and
other elements to be 0. The stopping probabilities are uniformly distributed
since we do not know any information on the stopping states. Therefore, we
have p0, p1, p2, q0, q1, and q2. Then we compute the Kronecker products
p01
× , p02

× , p12
× , q01

× , q02
× and q12

× and solve the linear system as graph kernels
using conjugate gradient solvers in order to compute k(C0, C1), k(C0, C2) and
k(C1, C2). Due to the size of our sparse matrix, we set λ to be 0.001 so that
(5.4) converges. The results are shown in Table 5.1b.

We can see that by graph kernels, the similarity between graphs sub-
jects to k(G1, G2) < k(G0, G1) < k(G0, G2), and the values of k(G1, G2) and
k(G0, G1) are very close. However, by simplicial complexes kernels, the sim-
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λ = 0.01

G0 G1 G2

- 0.01979 0.01981
G0

0.01979 - 0.01737
G1

0.01981 0.01737 -
G2

(a) Graph kernels with λ = 0.01

λ = 0.001

C0 C1 C2

- 0.00032 0.00009
C0

0.00032 - 0.00002
C1

0.00009 0.00002 -
C2

(b) Simplicial complexes kernels with λ = 0.001

Table 5.1: Graph and simplicial complexes kernels between the corresponding

graphs and simplicial complexes
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ilarity subjects to k(C1, C2) < k(C0, C2) < k(C0, C1). Note that the value of
kernel is a relative concept, which means that we can only compare k(G1, G2)

with k(G0, G1) or k(G0, G2) and it makes no sense of focusing on the value of
k(G1, G2) itself. In fact, k(G0, G1), k(G0, G2) and k(G1, G2) are in the same
magnitude order, so we conclude that the graph kernels do not tell any big
difference between G0, G1 and G2. Moreover, since graphs only consist of
vertices and edges, the graph kernels do not take account of the homology
properties of the data structure.

By graph kernels, the most similar graphs are G0 and G2, but we can tell
from Figure 5.4 that the simplicial complex version of G0 has a hole (β1 = 1)
while the simplicial complex version of G1 does not have any hole (β1 = 0).
On the other hand, by simplicial complexes kernels, it sorts perfectly by the
homology properties. See Table 5.1b, the most similar simplicial complexes
are C0 and C1 by value of k(C0, C1). Algebraically speaking, C0 and C1 has
the same homology properties, whose β0 is 1 and β1 is 1. At the same
time, the value of k(C0, C1) is an order of magnitude higher than the value of
k(C0, C2) while k(C0, C2) and k(C1, C2) are in the same magnitude order, which
agrees with the fact that the similarity between C0 (β0 = 1, β1 = 1) and C1

(β0 = 1, β1 = 1) is far more than the similarity between C0 (β0 = 1, β1 = 1)
and C2 (β0 = 1, β1 = 0). Apart from the similarity in homology properties,
the value order of simplicial complexes kernels is same with graph kernels, and
they both measure the similarities in the number of vertices and properties
of connectivity.

5.6 Summary and conclusion

In this chapter, we have introduced the random walk based kernels on graphs
and simplicial complexes in order to measure the similarity between two data
structures. For a pair of graphs given in advance, we introduce the Kronecker
product to link them as one single graph called the direct product graph.
Then, we apply a random walk from vertex to vertex on the direct product
graph and sum up the probability of length k random walk with a given
initial and stopping probability distribution for all k. The sum represents
the sum of probability of simultaneous k random walk on the pair of graphs
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for all k, and we let it measure the similarity between the pair of graphs.
For a pair of simplicial complexes, we extend the definition of direct product
graph to direct product simplicial complex, and we apply the chain-valued
random walk defined in Chapter 3 on it. For graphs, since the random walk is
from vertex to vertex, the transition matrix of random walk is the adjacency
matrix. While for simplicial complexes, since the random walk defined in
Chapter 3 is chain-valued, we need to generate the state space first and then
generate the transition matrix. We introduce an algorithm to generate the
state space by simulation. After this, we study the computational complexity.
We rewrite the sum formula to the inverse of a matrix, and use conjugate
gradient methods instead of direct computation. Last but not least, we
generate three data structures and compute the graph kernels and simplicial
complexes kernels in practice. We figure out that graph kernels is related
to the number of vertices and their connectivity, while simplicial complexes
kernels put emphasis on homology properties. Therefore, if one is interested
in the similarities between higher order topology data structures, the chain-
valued based simplicial complexes kernels are highly recommended.



Chapter 6

Conclusions and future work

In this chapter, we summarize our main contributions and discuss future
research directions.

6.1 Main contributions

This work aims at defining the random walk on simplicial complexes and
studying some of its applications in homology-based hole detection and sim-
plicial complexes kernels. The main contributions can be summarized as
follows.

• Definition of random walk on simplicial complexes
Different from the random walk jumping from edge to edge on simpli-
cial complexes defined by Rosenthal [41], we define our random walk
valued on chains. Giving the definition of generator of our random
walk, we manage to find the link between the defined generator A and
the combinatorial Laplacian Lk, that is, A, −Lk and −L↑k coincide
when restricted to space ker ∂k. Therefore, we can simulate the ran-
dom walk corresponding to the combinatorial Laplacian by simulating
our random walk whose generator is A when restricted on a particular
space.

Furthermore, we choose the initial state as a simple and orientable
chain, and we precise each step after the initial state. We find out

94
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that the states after the initial state are always simple and orientable,
implying that the Markov chain is necessarily recurrent. In addition,
we prove that any two k-chains of the same length which belong to the
same recurrence group, have the same stationary probability. There-
fore, it is natural to expect some properties of the random walk con-
cerning lengths of chains.

• Random walk based hole detection
Given a simplicial complex with holes, we develop an algorithm to de-
tect the locations of holes using our random walk. If we let our random
walk start as a cycle which is in the same homology group with all the
holes, all the states will stay in the same homology group. Therefore,
given an initial state, we can locate all the holes by minimizing the
length of the paths of our random walk. We propose a simulated an-
nealing algorithm to minimize the lengths of paths, and we visualize the
path with minimal length in the simplicial complex and see if it detects
all the holes correctly. If we do not know the initial state in advance,
we generate the initial state by computing the eigenvectors correspond-
ing to zero eigenvalues, and we introduce the integer weighted random
walk instead. Based on our simulation, we generate a Rips complex
randomly, and we locate exactly the boundaries of holes with known
initial state. For the case where we do not know the initial state in
advance, we locate the holes approximately.

• Random walk based simplicial complexes kernels
For higher order topology data, we can construct simplicial complexes
to store high order structures. In extension of the definition of graph
kernels, we define random walk based simplicial complexes kernels to
measure the similarity between simplicial complexes in order to com-
pare high order data structures. Given a pair of data structures, we
generate a pair of simplicial complexes respectively, then we generate
the direct product of them and perform the random walk on it, which
presents the simultaneous random walks on these two simplicial com-
plexes. We calculate the probability of k-length random walk on the
direct product under the condition of certain initial and stopping prob-
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abilities, and we sum them for all k, which is the expected similarity
between simultaneous random walks at all lengths. We propose an
algorithm to generate the state space of random walk, in order to cal-
culate the probability of random walk jumping from chains to chains.
To sum all the probabilities for all k, we compute the geometric ran-
dom walk kernel and it amounts to computing the inverse matrix of a
sparse matrix. We apply conjugate gradient method to speed up the
computation. For the computation part, we define our three data struc-
tures and we compare the performances of graph kernels and simplicial
complexes kernels on them. We figure out that graph kernels is related
to the number of vertices and their connectivity, while simplicial com-
plexes kernels put emphasis on information on homology properties.

6.2 Future research directions

This work mainly focuses on the definition of chain-valued random walk and
some of its applications. In the future, this work can be continued with
applications of the random walk as follows.

• Commute distance for cycles
In machine learning, a popular tool to analyze the structure of graphs
is the commute distance.

Let G = (V,E) be a graph, we wish to define a distance d between
elements of V . One simple way to do so is to rely on the shortest path
distance between vertices. However, such a distance does not reflect
the whole graph structure. Instead, one can use the commute distance
([49]) between two points where for two vertices x, y ∈ V , the commute
distance between x and y is equal to

d(x, y) = τx,y + τy,x,

where τx,y is the expected number of jumps required for the classical
random walk on the graph to move from the vertex x to the vertex y.

The commute distance has many nice properties. It is a Euclidean
distance function and can be computed in closed form. As opposed to
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the shortest path distance, it takes into account all paths between x

and y, not just the shortest one. As a rule of thumb, the more paths
connect x with y, the smaller their commute distance becomes. Hence
it supposedly satisfies the following: Vertices in the same “cluster” of
the graph have a small commute distance, whereas vertices in different
clusters of the graph have a large commute distance to each other.
Consequently, the commute distance is considered a convenient tool to
encode the cluster structure of the graph.

One can generalize this distance to distance between cycles, that is
elements of Ck for k > 0 by taking

d(σ1, σ2) = τσ1,σ2 + τσ2,σ1 ,

where τσ1,σ2 is the expected number of jumps required for the random
walk on the cycles defined in Chapter 3 to move from the cycle σ1 to
the cycle σ2. We can expect that the commute distances for cycles
provide more information in higher order clustering in networks.

Previously, we compute the simplicial complexes kernels by generating the
transition matrix of random walk. Although the transition matrix is sparse,
the dimension of the matrix is N × N where N is the number of paths in
the homology class, which can be very large when the simplicial complexes
are large. Instead of generating the transition matrix and solving the linear
system

(I − λW×)x = p×,

we can compute the simplicial complexes kernel by making a simulation of
random walk. By (5.4), we have

k(C, C ′) =
∞∑
k=0

λkq>×W
k
×p×.

In absence of prior knowledge, we let p× and q× be uniformly distributed.
We can interpret the formula of simplicial complexes kernels as the sum of
probabilities of k-length random walks from a certain state to a certain state
for all k. Therefore, we can simulate a random walk initiated with c0 so that

ct+1 =

rw(ct) with probability of 1
N

c0 with probability of 1− 1
N
.
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We simulate L random walks which run M steps and make sure L and M

are large enough, and the probability of the final states of these L random
walks should be the simplicial complexes kernels.

What is more, in this work we generate a random Rips complex at first
and let the random walk run on it to get information on the Rips complex.
However, in the real world, sometimes we do not know the whole Rips com-
plex in the first place. Instead, we know more and more points with time
passing by. Therefore, it is more suitable to model the Rips complex “dy-
namically”. We can continue our work in modeling the random walk on a
dynamic-generated simplicial complex in the future.



Appendix A

Computation of convergence of
random walk

1.1 Computation of convergence of random walk
on torus

Here we give the detailed computation of convergence of random walk on
torus in Theorem 18.

For a flat torus T2 := R2/Z2, we follow the notations in Figure 1.1.

0 1

24

3

2εn

Figure 1.1: Regular triangulation of the flat torus. 0 := (0, 0), 1 := (2εn, 0), 2 :=

(εn,
√
3εn), 3 := (εn,−

√
3εn), 4 := (−εn,

√
3 εn)

99
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By Eqn. (3.12), we have

Ânfn(x) =
∑

a∈{−1,1}

(
fn(x+ (2aεn, 0))− fn(x)

)
+

∑
a,b∈{−1,1}

(
fn(x+ (a εn, b

√
3 εn))− fn(x)

)
= : X + Y.

For the first part X, by Taylor expansion of fn at x, we have

X =
∑

a∈{−1,1}

(
2aεn

∂fn
∂x1

(x) + 2a2ε2n
∂2fn
∂x2

1

(x) + o(ε2n)
)

= 4ε2n
∂2fn
∂x2

1

(x) + o(ε2n).

For the second part Y , we have

Y =
∑

a,b∈{−1,1}

(
aεn

∂fn
∂x1

(x) + b
√

3εn
∂fn
∂x2

(x) +
1

2
a2ε2n

∂2fn
∂x2

1

(x)

+
3

2
b2ε2n

∂2fn
∂x2

2

(x) +
√

3abε2n
∂2fn
∂x1∂x2

(x) + o(ε2n)
)

=2ε2n
∂2fn
∂x2

1

(x) + 6ε2n
∂2fn
∂x2

2

(x) + o(ε2n).

Since An = ε−2
n Ân, we can get

Anfn(x) = 6
∂2fn
∂x2

1

(x) + 6
∂2fn
∂x2

2

(x) + o(ε2n).

As a consequence, we have

Anfn
n→∞−−−→ Af := 6

∂2f

∂x2
1

+ 6
∂2f

∂x2
2

·

1.2 Computation of convergence of random walk
in Lemma 20

In order to get the limit of∫
[021]�

H(x1, x2) dx1 dx2 +

∫
[031]	

H(x1, x2) dx1 dx2
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as εn goes to 0, we have

M1 :=

∫
[021]�

H(x1, x2) dx1 dx2

= −
∫ εn

0

∫ x1
√

3

0

H(x1, x2) dx1 dx2 −
∫ 2εn

εn

∫ √3(2εn−x1)

0

H(x1, x2) dx1 dx2,

and

M2 :=

∫
[031]	

H(x1, x2) dx1 dx2

=

∫ εn

0

∫ 0

−x1
√

3

H(x1, x2) dx1 dx2 +

∫ 2εn

εn

∫ 0

−
√

3(2εn−x1)

H(x1, x2) dx1 dx2.

(A.1)
By Taylor expansion of H at (x1, 0), we have

H(x1, x2) = H(x1, 0) + x2H2(x1, 0) + x2
2 r(x1, x2) (A.2)

with supx1,x2∈[0,1]2 r(x1, x2) < ∞. We denote by H2(x1, 0) the first order
derivative with respect to the second variable x2 at (x1, 0).

Substituting A.2 into A.1, we have

M1 +M2 =

∫ εn

0

H2(x1, 0)

(
−
∫ x1

√
3

0

x2 dx2 +

∫ 0

−x1
√

3

x2 dx2

)
dx1

+

∫ 2εn

εn

H2(x1, 0)

(
−
∫ (2εn−x1)

√
3

0

x2 dx2 +

∫ 0

−(2εn−x1)
√

3

x2 dx2

)
dx1 +Rn,

= −3

∫ εn

0

H2(x1, 0)x1
2 dx1 − 3

∫ 2εn

εn

H2(x1, 0)(2εn − x1)2 dx1 +Rn. (A.3)

By Taylor expansion of H2(x1, 0) at (0, 0), we have

H2(x1, 0) = H2(0, 0) + x2r(x1, x2) (A.4)

with supx1,x2∈[0,1]2 r(x1, x2) <∞.
Substituting A.4 into A.3, we have

M1 +M2 = −3H2(0, 0)

∫ εn

0

x2
1 dx1 − 3H2(0, 0)

∫ 2εn

εn

(2εn − x1)2 dx1

= −2H2(0, 0)ε3n +O(ε4n)

= −ε2n
∫ 2εn

0

H2(x1, 0) dx1 +O(ε4n),
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which gives∫
[021]�

H(x1, x2) dx1 dx2 +

∫
[031]	

H(x1, x2) dx1 dx2

= −ε2n
∫ 2εn

0

H2(x1, 0) dx1 +O(ε4n).
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Titre: Marche aléatoire sur des complexes simpliciaux

Mots clés: Complexes simpliciaux, marche aléatoire, homologie simpliciale, Laplacien combi-
natoire

Résumé: La notion de laplacien d’un graphe
peut être généralisée aux complexes simplici-
aux et aux hypergraphes. Cette notion contient
des informations sur la topologie de ces struc-
tures. Dans la première partie de cette thèse,
nous définissons une nouvelle chaîne de Markov
sur les complexes simpliciaux. Pour un degré
donné k de simplexes, l’espace d’états n’est pas
les k-simplexes comme dans les articles précé-
dents sur ce sujet mais plutôt l’ensemble des
k-chaines ou k-co-chaines. Ce nouveau cadre
est la généralisation naturelle sur les chaînes
de Markov canoniques sur des graphes. Nous
montrons que le générateur de notre chaîne de
Markov est lié au Laplacien supérieur défini
dans le contexte de la topologie algébrique pour
structure discrète. Nous établissons plusieurs

propriétés clés de ce nouveau procédé. Nous
montrons que lorsque les complexes simpliciaux
examinés sont une séquence de triangulation du
tore plat, les chaînes de Markov tendent vers une
forme différentielle valorisée processus continu.

Dans la deuxième partie de cette thèse, nous
explorons quelques applications de la marche
aléatoire, i.e. la détection de trous basée sur la
marche aléatoire et les noyaux complexes sim-
pliciaux. Pour la détection de trous basée sur
la marche aléatoire, nous introduisons un algo-
rithme pour faire des simulations effectuées pour
la marche aléatoire à valeur cyclique (k = 1) sur
un complexe simplicial avec trous. Pour les noy-
aux de complexes simpliciaux, nous étendons la
définition des noyaux de graphes basés sur la
marche aléatoire afin de mesurer la similitude
entre deux complexes simpliciaux.

Title: Random walk on simplicial complexes

Keywords: Simplicial complexes, random walk, simplicial homology, combinatorial Laplacian

Abstract: The notion of Laplacian of a
graph can be generalized to simplicial complexes
and hypergraphs. This notion contains informa-
tion on the topology of these structures. In the
first part of this thesis, we define a new Markov
chain on simplicial complexes. For a given de-
gree k of simplices, the state space is not the
k-simplices as in previous papers about this sub-
ject but rather the set of k-chains or k-cochains.
This new framework is the natural generaliza-
tion on the canonical Markov chains on graphs.
We show that the generator of our Markov chain
is related to the upper Laplacian defined in the
context of algebraic topology for discrete struc-
ture. We establish several key properties of this

new process. We show that when the simpli-
cial complexes under scrutiny are a sequence of
ever refining triangulation of the flat torus, the
Markov chains tend to a differential form valued
continuous process.

In the second part of this thesis, we explore
some applications of the random walk, i.e., ran-
dom walk based hole detection and simplicial
complexes kernels. For the random walk based
hole detection, we introduce an algorithm to
make simulations carried for the cycle-valued
random walk (k = 1) on a simplicial complex
with holes. For the simplicial complexes kernels,
we extend the definition of random walk based
graph kernels in order to measure the similarity
between two simplicial complexes.
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