
HAL Id: tel-03102396
https://theses.hal.science/tel-03102396

Submitted on 7 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Misbehavior detection for cooperative intelligent
transport systems (C-ITS)

Joseph Kamel

To cite this version:
Joseph Kamel. Misbehavior detection for cooperative intelligent transport systems (C-ITS). Artificial
Intelligence [cs.AI]. Institut Polytechnique de Paris, 2020. English. �NNT : 2020IPPAT024�. �tel-
03102396�

https://theses.hal.science/tel-03102396
https://hal.archives-ouvertes.fr


.

N
N

T
:2

02
0I

P
PA

T0
24 Misbehavior Detection for Cooperative

Intelligent Transport Systems (C-ITS)
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Chapter 1

Introduction

Road transportation is the most used mode of travel in the world. However, the resulting road accidents remain a

major issue causing huge economic and human losses. According to the National Highway Traffic Safety Admin-

istration (NHTSA) and the Directorate-General for Mobility and Transport (DGMT), more than three million people

are injured each year due to traffic accidents in the United States and the European Union [1] [2]. To combat this

problem, manufacturers are adding more safety features in their vehicles.

Modern safety features are often technologically advanced embedded electronic systems. For instance, blind

spot monitor increases the drivers’ awareness by issuing a warning when a vehicle approaches the driver’s sides

or rear. An area notoriously tricky to check using traditional side mirrors. Lane keep assist systems prevent over-

steering and helps keep the vehicle centered. It works by alerting the driver when needed and could even take

automatic measures to keep the vehicle in the lane. Collision avoidance systems aims to prevent or reduce the

severity of a collision. These systems rely on sensors like radars, lasers and cameras to detect dangerous situations

in the surrounding environment. They warn the driver of incoming threats or act automatically on the vehicle with

actions like emergency braking or swerving.

The outcomes of these vehicular safety systems, from timely alerts to swift measures, are often life saving for the

driver and passengers of a vehicle. To quantify their added value, Haus et al. [3] estimated the benefits of automated

emergency braking in the United States. Their results show a decreased fatality risk between 84% and 87% and

injury risk between 83% and 87%. Given their great advantage on high-stakes use cases, that involve human lives,

safety systems are becoming less of a commodity and more of a necessity. However, because of their critical use-

case, the cyber-security mechanisms that ensures the functionality of these safety systems need to be on par with

the high risk in case of failure. After all, these safety systems could assume control of the vehicle. Sensors could fail

and embedded electronics of a vehicle could malfunction. Moreover, malicious actors could target safety systems

with cyber-attacks which would have catastrophic results on unsecured vehicles.

Koscher et al. [4] were the first to demonstrate a cyber-attack on the embedded system of commercial vehicles.
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They use the integrated controller area network or CAN bus to modify the vehicle’s displays, control the breaks

or even stop the engine completely. Checkoway et al. [5], working with the same research group, were able to

prove that some of these cyber-attacks could be done over-the-air without the need for a wired connection. Miller et

al. [6] demonstrated to journalists some of these cyber-attacks on a 2014 Jeep Cherokee. A story that went viral on

social and traditional media outlets. The journalists were surprised and frightened when the attackers were able to

remotely kill the engine while the vehicle was cruising on the highway.

In this thesis, our goal is to ensure the cyber-security of a new vehicular safety system. Cooperative Intelligent

Transport Systems (ITS) (C–ITS) is a new technology that aims to reduce traffic accidents and improve road safety

in general. The technology is based on inter-vehicle communications in the form of safety messages. These

messages can contain information about the vehicle like the position and the current speed or various warnings

about the current traffic condition. This exchanged information could prove critical for the vehicle to insure the safety

of the passengers or surrounding pedestrians. For instance, safety applications can use the received data to warn

the driver about upcoming road works or about the need for an imminent emergency brake. Furthermore, C–ITS

could be used to improve the overall traffic conditions through applications like the cooperative adaptive cruise

control. C–ITS could even reduce traffic jams and contribute to shockwave damping on the highway by providing

the driver with speed advice.

Safety mechanisms in C–ITS are cooperative in nature. Therefore, it is essential to establish interoperability be-

tween different vehicle manufacturers. For instance, vehicles from different brand should use the same communica-

tion technologies and communication formats to ensure the largest possible benefits. Likewise, safety applications

like cooperative adaptive cruise control require a common protocol to function properly. Standardization bodies

could provide a common solution to this problem. The European Telecommunications Standards Institute (ETSI) in

Europe and the Institute of Electrical and Electronics Engineers (IEEE) in the US are pushing unified standards for

common communication protocols and formats. These formats include the type of transmitted messages and their

general modes of operation. Currently, the ETSI and IEEE provide different standards in Europe and the US. Even

though the formats are different, interoperability between the two platform is still possible in the future.

For instance, the ETSI published the Cooperative Awareness Message (CAM) [7] to enable vehicles to share

kinematic information and the Decentralized Environmental Notification Message (DENM) [8] to share warnings.

Whilst the IEEE published the Basic Safety Message (BSM) [9] providing similar functionalities to users. Both these

systems are currently being tested through pre-deployment projects in Europe and the US. As a result, users could

start to benefit soon from C–ITS functionalities.
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1.1 Problem statement

The reliable operation of the C–ITS-based safety applications require secure Vehicle–to–Everything (V2X) mes-

sages. To this end, the IEEE and the ETSI created and standardized the Vehicular Public Key Infrastructure

(PKI) [10] [11]. The PKI issues digital certificates to the different actors of the C–ITS system, called ITS Stations

(ITS–Ss). The certificates are used by the ITS–S to sign each transmitted message thus ensuring its authenticity,

integrity and non-repudiation. Furthermore, the adoption of such systems requires, especially in our current global

environment, the protection of the users’ privacy. For this reason, the ITS–S are allowed to regularly change their

signatures using temporary digital certificates. These temporary certificates are called pseudonyms and they would

allow the user to avoid being tracked [12].

Nevertheless, despite the protections provided by the PKI infrastructure, security challenges still exist in the

current C–ITS system. In particular, digital signatures do not ensure the accuracy and validity of a message. For

instance, a malicious vehicle with a valid certificate could send inaccurate or false data over the V2X network.

Consequently, a misbehavior detection mechanism is needed to protect the system and mitigate the effects of these

malicious or otherwise faulty ITS–Ss. Although Misbehavior Detection is a well-researched topic and despite the

large number of published studies, many research challenges still exist in the misbehavior detection domain. C–ITS

is an ever evolving system with different developing components both on the technical and regulatory side. In this

thesis, our goal is to identify the remaining challenges that need to be addressed and propose solutions to the

various components of the misbehavior detection system.

1.2 Contributions

In this section we cite and summarize all the contributions of this thesis. We start with a state of the art evaluation

section. Then the following contributions are divided into sections corresponding to the misbehavior detection

process: local, reporting and global detection. Finally, we also add a general section for contributions spanning the

entire detection process.

1.2.1 State of the art evaluation

Feasibility Study [13]: We started our work with a feasibility study of the different misbehavior detection mecha-

nisms in C–ITS. In this study, we extract and classify the mechanisms used in the published works on misbehavior

detection. We then analyze the feasibility of such mechanisms in the current European ETSI and American IEEE

ecosystems. Then, we discuss the remaining challenges that need to be addressed by the community. Some of

these challenges were addressed in the course of the thesis.
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1.2.2 Contributions to the local misbehavior detection

CaTch Detectors [14]: This contribution to the local detection component concerns the plausibility and consis-

tency checks. We notice that both the ETSI CAM and the IEEE BSM messages integrate a field called confidence

range for each mobility parameter. This field is included based on the fact that sensor measurements could be

inaccurate due to physical limitations or environmental characteristics. However, this information was not taken

into consideration during the misbehavior detection checks computation. This may result in a high number of false

positives in a realistic scenario. Therefore, we created CaTch (Confidence range Tolerant misbehavior detection

approach), a misbehavior detection library which takes into consideration the confidence range. We implement the

CaTch detectors in a simulator and show that taking into consideration the sensors’ inaccuracy during the checks

computation process increases the detection quality.

Fusion Applications Comparative [15]: This contribution to the local detection component concerns the fusion

application of the plausibility checks. We notice that many fusion application proposals already exist in the literature.

However, the various published detection results are often difficult to compare since it’s done on different data

and with different scenarios. To this end, we re-implement the complete detection process along with the different

detection applications in an extension of the Vehicles in Network Simulation (VEINS) simulator [16]. Our comparative

results show a trade-off between the accuracy of the detection mechanisms and the calculation latency.

VeReMi Dataset Extension [17]: This contribution concerns the complete local detection process. A large num-

ber of studies are aimed at providing local misbehavior detection solutions. However, the results of these studies

are still difficult to compare, reproduce and validate. This is due to the lack of a common reference dataset. For

this reason, the original Vehicular Reference Misbehavior Dataset (VeReMi) was created. The goal of VeReMi is to

allow for comparable evaluation of misbehavior detection in C–ITS. It is the first public misbehavior detection dataset

allowing anyone to reproduce and compare different results. VeReMi is used in a number of studies and is currently

the only dataset in its field. We extend the dataset by adding realistic a sensor error model, a new set of attacks and

larger number of data points. Additionally, we provide benchmark detection metrics using a set of local detectors

and a simple misbehavior detection mechanism.

1.2.3 Contributions to the misbehavior reporting

Misbehavior Reporting Protocol [18]: Despite the consensus on a need for a unified communication protocol

between the ITS–S and the Misbehavior Authority (MA), a misbehavior reporting protocol is still missing. In this

work, we propose a Misbehavior Report (MBR) message format and identify the relevant information that the report

should include. For each detected misbehavior type we propose the corresponding proofs to be included in the
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report as well as an assigned confidence level. The latter is an indication that enables to differentiate non-forged

proofs and self-forged proofs (i.e. if a proof could be forged by the reporting entity).

Misbehavior Reports Dataset [19]: Following our misbehavior reports proposal, we need to propose a simple

method for researchers to use this protocol within their systems. To this end, we publish a dataset of misbehavior

reports derived from the local embedded detection of misbehaving entities. This dataset can be used to further

develop and evaluate the MA detection component. The sets include different road topology, varying attacker rates

and attack scenarios.

1.2.4 Contributions to the global misbehavior detection

Machine Learning Based MA [20]: The MA is responsible for protecting the ITS system by mitigating the effects

of an attack. Accordingly, the MA must first identify the type of attack. We believe that the MA will benefit from using

Artificial Intelligence (AI) solutions such as Machine Learning (ML) to perform this task. To this end, we implement

the complete misbehavior detection process in an extension of VEINS simulator [16]. Then we evaluate different

ML approaches for the MA. Our results show that the use of ML enables the MA to precisely classify the reported

ITS–S and identify the different types of misbehavior.

Global Sybil Attack Detection [21]: We believe that an attacker performing a Sybil attack (i.e. using multiple fake

identities) is better detected at the global level. Therefore, we propose a misbehavior detection process at the MA,

which is able to identify and detect both Sybil and other types of attacks. It is based on advanced ML algorithms. In

addition, we evaluate our solution by integrating it in both ETSI and IEEE C–ITS standard architecture.

Release of an Open Source Framework for Misbehavior Detection (F2MD) [22]: In order to test all our pre-

viously proposed solutions, we implemented F2MD. It is a complete misbehavior detection solution that includes a

real time simulation of the whole misbehavior detection process from local to global detection. F2MD is a VEINS

module. VEINS is a well-known an open source framework for running vehicular network simulations [23]. VEINS is

based on the Objective Modular Network Testbed in C++ (OMNeT++) [24] for network simulation and the Simulation

of Urban MObility (SUMO) [25] for road traffic simulation. F2MD is also open source and could be found and used

freely on GitHub [26].

Transfer to ETSI standardization body [27]: Because of its cooperative nature, interoperability is essential for

the correct functionality of the C–ITS systems. Therefore, the ETSI and IEEE standardization bodies have already

standardized large functions of the system. Misbehavior detection is a security layer for C–ITS. As a result, some

standard functionalities are required. Specifically, the operation of the cloud component, the connection between
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the MA and the PKI and the misbehavior reporting process. To this end, throughout the course of this thesis, we

participated in the ETSI ITS-W5 and contributed to the TR-103-460: Pre-standardization Study on Misbehavior

Detection.

1.3 Work environment

This research work has been carried out in the Secure Cooperative Autonomous systems (SCA) Project in the

Technological Research Institute SystemX. SCA is research project with both industrial and academic partners. The

industrial partners include vehicle manufacturers, automotive suppliers and cybersecurity services providers: Atos

(IDnomic), Oppida, Groupe PSA, Groupe Renault, Transdev, Trialog, Valeo and YoGoKo. The academic partner

is the Institut Mines-Télécom, specifically Télécom Paris, amongst the top public higher education and research

engineering establishments in France.

In addition to the work in SCA, this thesis included a research visiting hosted by the Institute of Distributed

Systems at Ulm University. The visiting was under the supervision of Professor Frank Kargl and focused mainly

on misbehavior detection in Cooperative Adaptive Cruise Control (CACC). However, with the help of their privacy

experts, we were additionally able to analyze the privacy aspect of the CAMs within the current ETSI C–ITS system.

Finally, we also jointly published the extension to the VeReMi dataset.
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Chapter 2

State of The Art

This chapter includes a state of the art description of the various systems related to misbehavior detection, that are

referred to in this thesis. First, we present the C–ITS model and current security architecture. Next, we discuss

some of the current C–ITS pre-deployment projects. Then, we detail the insider attacker model that is common in

this domain. After that, we cite and describe the published related works. Last, we end this section with a feasibility

study on the different misbehavior detection mechanisms in C–ITS.

2.1 C-ITS model

Figure 2.1 shows the current C–ITS system structure. In C–ITS vehicles should exchange safety messages with a

cost-efficient and low-latency communication system. However, this communication system is not yet agreed upon

and two possible technologies currently exist:

• IEEE 802.11p is an amendment to the IEEE 802.11 (the common Wi-Fi standard) that enables wireless

communications in a vehicular environment [28]. The IEEE 802.11p is the base technology for the European

ITS-G5 and the American WAVE. ITS-G5 stands for Intelligent Transport Systems operating at the 5.9 GHz

frequency band. It is specified in the ETSI EN 302 571 and the ITS Directive 2010/40/EU [29]. WAVE stands

for Wireless Access in Vehicular Environments. It is specified in IEEE 1609 family of standards [30]. WAVE

enables the Dedicated Short-Range Communications (DSRC) standards and its family of safety applications.

Both ITS-G5 and WAVE have been tested in pre-deployment projects in the US and Europe.

• 3GPP Release 14 introduced cellular LTE support for V2X services [31]. In this standard, the 3rd Generation

Partnership Project (3GPP) also introduced an optimized LTE Direct technology for automotive applications. It

is commonly referred to as Cellular-V2X or C-V2X. Additionally, 3GPP Release 15 introduces 5G support for

C-V2X. In C-V2X, two modes of operations are available: (1) in range communication or mode 3 where the
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Figure 2.1: C–ITS model

transmission is assisted by a base station (eNodeB) on the LTE-Uu interface, (2) out of range communication

or mode 4 where direct Device to Device (D2D) transmission occurs without edge or back-end interference

over the PC5 or Sidelink interface. C-V2X is also being tested in various pre-deployment projects.

In April 2019, the European Commission proposed the Delegated Act on C-ITS that would push to the adoption

of ITS-G5 in the European member states. However, the European Parliament voted against this proposal, adopting

a technology neutral approach instead. Regardless of the communication technology however, the C–ITS safety

protocols have been well developed and standards have already been released.

In Europe, the ETSI ITS Working Groups proposed and published several safety messages formats. Coop-

erative Awareness Message (CAM) is a periodically transmitted beacon message [7]. The CAM contains status

and attribute information about the ITS–S. The status includes information like the position, motion state, time and

activated systems. The attribute includes information like the dimensions, vehicle type and role in the road traffic.

Decentralized Environmental Notification Message (DENM) is another type of message that contains information

and warnings related to the current traffic and road conditions. This information is then presented to the driver of the

receiving ITS–S who is able to react and potentially avoid dangerous situations. In the US, the IEEE also published

safety messages formats. The Basic Safety Message (BSM) is the IEEE periodic beacon equivalent to the CAM

message. However, unlike the ETSI system, warnings could also be appended to BSMs. Therefore, the BSM also

replicates the functionalities of the DENMs without the need for a different specific message.

Similarly to the exchange messages formats, the standardization bodies are also working on proposals for
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several safety applications. Even though most safety applications are currently still in the pre-standardization phase

and not readily available, a lot of progress has already been made. As a result, some road-safety and traffic-

efficiency applications are well developed. Here are some examples:

• Road safety applications:

– Collision Avoidance Systems [32] [33] [34]: These systems are considered primary road safety applica-

tions. The C–ITS CAM and DENM services are utilized to broadcast specific warnings to neighboring

ITS–Ss to prevent collisions. These warning include Intersection Collision Risk Warning (ICRW), Road

Hazard Signaling (RHS) and Longitudinal Collision Risk Warning (LCRW).

– Collective Perception Service (CPS) [35] [36]: CPS enables different ITS–Ss to share data of their sur-

rounding environment. This data is acquired by physical sensors such as radars, lidars and cameras.

CPS also defines a specific type of message called the Collective Perception Message (CPM). CPMs in-

clude specific containers that allows a ITS–S to efficiently encode perceived objects that could be quickly

and securely transmitted and decoded by neighboring ITS–Ss.

• Traffic efficiency applications:

– Cooperative Adaptive Cruise Control (CACC) [37]: CACC is an extension of the in-vehicle Adaptive

Cruise Control (ACC) system. CACC uses the Vehicle–to–Vehicle communication (V2V), specifically

a CAM container, to broadcast specific information such as the target speed, acceleration control and

breaking capacity. This information allows for safer and more efficient cruising with a shorter time gap

with respect to the preceding vehicle.

– Platooning [38]: Platooning is a similar application to CACC with more advanced functionalities. Specifi-

cally, platooning considers lateral and longitudinal control of the vehicle, whereas only longitudinal control

is considered with CACC.

– Electronic Payment Applications [39]: Electronic payment is a C–ITS application that allows payment

over V2X messages. This application enables seamless Electronic Toll Collection (ETC) for highways

and Electronic Fee Collection (EFC) for parking spaces or access to city centers.

2.2 Pre-deployment projects

Various V2X pre-deployment projects are planned, ongoing or have been completed in the United States and Eu-

rope. Pre-deployment projects for connected vehicles started as early as 2012. In this section, we discuss some of

these projects.
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Safety Pilot Model Deployment (SPMD) - 2012 Is an early pilot program started by the U.S. Department of Trans-

portation (USDOT) National Highway Traffic Safety Administration (NHTSA) and is conducted by the University of

Michigan Transportation Research Institute (UMTRI). Its main objective was to demonstrate connected vehicle tech-

nologies in a real-world environment. The deployment took place in Ann Arbor, Michigan and spanned over 100

kilometers. It included approximately 2800 vehicles including 2305 cars, 60 trucks and 85 transit buses as well as

29 Road–Side Units (RSUs). The deployment was based on the DSRC technology and the exchange of BSM mes-

sages. It included the following safety applications: Forward Collision Warning (FCW), Lane Change Warning/Blind

Spot Warning (LCW/BSW), Emergency Electric Brake Light Warning (EEBL) and Intersection Movement Assist

(IMA). The deployment also included Signal phase and timing (SPaT) information on 21 different intersections.

Cooperative Mobility Pilot on Safety and Sustainability Services for Deployment (COMPASS4D) - 2013 Is

an early deployment project funded by the European Union. It included a total of 31 partners from 10 countries and

was coordinated by the European Road Transport Telematics Implementation Coordination (ERTICO). It took place

in many European cites: Bordeaux (France), Copenhagen (Denmark), Helmond (Netherlands), Newcastle (UK),

Verona (Italy), Vigo (Spain) and Thessaloniki (Greece). This deployment included 344 equipped vehicles and 111

RSUs. The deployment was based on ITS-G5 and included the following safety applications: Red Light Violation

Warning (RLVW) service, Road Hazard Warning (RHW) service and Energy Efficient Intersection (EEI) service.

Tampa Hillsborough Expressway Authority (THEA) - 2016 is pilot program that assembles a large implemen-

tation team including the University of South Florida Center for Urban Transportation Research and Siemens. The

project also has a number of key partners including the Florida Department of Transportation and the Hillsborough

Area Regional Transit Authority. This project includes more than 1000 privately owned vehicles, 10 buses, 8 trolleys

equipped with On–Board Units (OBUs) as well as 47 RSUs. It provides various V2V and Vehicle–to–Infrastructure

communication (V2I) based safety features including: Emergency Electronic Brake Lights (EEBL), Forward Collision

Warning (FCW), End of Ramp Deceleration Warning (ERDW), Wrong Way Entry (WWE), Intelligent Traffic Signal

System (I-SIG) and Vehicle Turning Right in Front of a Transit Vehicle (VTRFTV).

Système COOpérative Pilote En France (SCOOP@F) - 2016 is a pilot project for the deployment of C–ITS

systems in France and is co-funded by the European Commission. IT involves 19 partners including road operators

(SANEF, LD38), car manufacturers (Renault, PSA), research institutes (CEREMA, FSTTAR, LAB, ITS Bretagne) and

security and telecommunication experts (IDnomic, Orange). The project aimed to include 3000 vehicles and RSUs

over 2000 km of roads with five test sites in: Ile-de-France, Paris-Strasbourg highway, Isère, Bordeaux and Bretagne.

This project successfully tested the PKI access verification and the ETSI Plugtests. It was based on a combination

of wireless access technologies ITS-G5, Cellular (3G, 4G) and Bluetooth. It includes the ETSI standard CAM and
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DENM messages that are signed with pseudonyms delivered from the PKI. It provides various alert services like the

road works warning, information about current interventions, slippery road or emergency brakes.

Many more V2X projects are currently being deployed or are planned for the future. For instance, the European

Union is putting in place a Connected Roads (C-Roads) Platform for the deployment of harmonized and interopera-

ble C–ITS services in Europe. Additionally, on the US side, a large C-V2X deployment supported by Qualcomm is

planned on the roads of Colorado by Ford and in Virginia by Audi.

2.3 Communications architecture

In this section, we describe the communications architecture of the ITS station. As an example, we follow the ETSI

architecture of communications in ITS (ITSC) described in detail the ETSI EN 302 665 [40]. Figure 2.2 shows the

ITS station reference architecture. It is an extended version of the Open Systems Interconnection (OSI) model [41]

with included ITS applications.

Figure 2.2: ETSI ITS station reference architecture

Here is a brief description of the functionalities of each ITSC block:

• Applications: This block contains the classes of applications described in section 2.1. Different classes of ap-

plication have different requirements depending on their reliance on the communication. These requirements

could vary with respect to reliability, latency and security.
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• Management: This block contains all the management entities necessary for the ITS functionalities like the

regulatory information management, cross layer management, station management and application manage-

ment. It is common to the all the protocol stack layers.

• ITSC OSI protocol stack: In the current ITSC ITS architecture, multiple layers of the OSI communication

protocol stack are combined into one block:

– Access: The ITSC access block includes the functionality of the OSI physical and datalink layers, usually

separated into layers 1 and 2. This block contains the communication technologies described in section

2.1, the IEEE 802.11p and 3GPP PC5 interface.

– Networking: The ITSC Networking & Transport are combined into one layer whilst they are depicted by

layers 3 and 4 in the OSI representation. The Networking protocols includes the IPv6 and GeoNetworking

[42]. The Transport protocols include UDP/TCP and other dedicated ITSC protocols.

– Facilities: The ITSC Facilities layer combines the OSI session, presentation and application layers,

usually layers 5, 6 and 7. This layer includes generic functions and requirements which could be shared

between different ITS applications. For instance, this layer manages the services like the cooperative

awareness which could be used by various safety applications.

• Security: This block contains the functionalities relating to the communication security. It includes the fire-

wall and intrusion management, authentication and profile management as well as crypto key and certificate

management. These functionalities are used in the vehicular PKI system described in section 2.4.1.

2.4 C-ITS security

In the current C–ITS system, ITS Stations (ITS–Ss) like vehicles and RSUs cooperate by exchanging messages.

These messages are used a in large number of security applications (see Section 2.1). Therefore, any errors in

these messages could cause the safety applications to malfunction, which in turn could lead to catastrophic results.

Consequently, the messages and their contents must be secured. As a result, the ETSI and IEEE created and stan-

dardized the vehicular PKI. However, the PKI is not enough to protect the system, specifically from internal attackers.

The scientific community proposed misbehavior detection as a mitigation technique against these types of attacks.

Currently, misbehavior detection is starting to be integrated in the latest ETSI and IEEE security architectures.

2.4.1 Vehicular PKI system

In this section, we describe the vehicular PKI system. The PKI is a form of asymmetric or public-key cryptography

where every user owns at least one pair of keys, one public and one private. It is based on the mathematical one-way

20



Figure 2.3: ETSI Vehicular PKI system

functions. The private key is used to encrypt data which could only be decrypted using the public key and vice-versa.

Basically speaking, the sender encrypts the hashed message using his private key, this is called the signature. The

receiver then uses the sender public key to decrypted the signature, then checks if it matches the hash of the

received message. This enables the receiver to verify that the message was not altered during transmission. The

vehicular PKI mainly updates the traditional PKI system with privacy protection and key distribution mechanisms.

As an example, we describe the ETSI Security Credential Management System (SCMS) for V2X communica-

tions. The ETSI SCMS implements a PKI published in three technical specification standards. The ETSI TS 102

940 [11] includes a high level description of the security requirements and adopted architecture. The ETSI TS 102

941 [43] includes a more detailed description of the protocol and the exchanged messages. The ETSI TS 103

097 [44] contains the Abstract Syntax Notation One (ASN.1) description of the certificates and messages formats.

For the purpose of this thesis, we provide a brief general description of the functionalities the ETSI PKI illustrated

in Figure 2.3. It includes four main components:

Authorization Authority (AA): The AA is the only security management entity with a direct communication with

the enrolled ITS–S. The role of this entity is to issue and monitor the use of Authorization Tickets (ATs). An AT

enables an ITS–S to send authentic V2X and to use specific C–ITS services.

Enrolment Authority (EA): The EA has only one direct contact with the ITS–S upon enrolment. The role of this

entity is to manages the Enrolment Credentials (ECs) of ITS–S. The ECs are not used to sign messages sent to

neighboring ITS–Ss. Instead, they enable the vehicle to request more ATs.

Root Certificate Authority (RCA): The RCA is the highest authority in the security management hierarchy. The

role of this entity is to provide the EA and the AA with the certificates needed to be trusted by the ITS–S. These

certificates allow then to issue valid ECs and ATs.
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Distribution Center (DC): The DC provides the Certificate Trust List (CTL) and the Certificate Revocation List

(CRL) to the local ITS–Ss. These lists enable the ITS–Ss verify the legitimacy of the certificate authorities.

In short, a new ITS–S should first find the address of an EA included in the CTL and verify that its certificate is

signed by a valid RCA. Then, the ITS–S proceeds to request one EC, also called the long term identity, from the

EA. This step is generally carried out in the factory. The ITS–S then acquires the address of an AA from the CTL

and verifies its certificate. The ITS–S sends a request to this AA including the public key of the EC that is encrypted

with the public key of the EA. Upon receiving this request, the AA will send the encrypted EC to the EA, which is

able to decrypt it and verify that the vehicle is indeed enrolled. If so, the AA will issue new a AT to the ITS–S. These

ATs, also called Pseudonyms, are used to sign V2X messages. An ITS–S station should regularly change its used

Pseudonyms to hide its identity and avoid tracking by passive attackers.

The ETSI PKI enables local ITS–S to verify the authenticity and integrity, authorization of incoming messages

from legitimate users. The certificates could also include different levels of authentication. For instance, an ambu-

lance or a police vehicle could obtain a higher road priority. Additionally, the PKI protects the users’ privacy. The

users’ privacy is protected on the local level through the use of Pseudonyms. The privacy is also protected on the

global level. This is due to the mechanism used to request ATs. The EA and the AA are unable to track the real

identities of ITS–Ss without cooperating. Finally, the PKI has been thoroughly tested by researchers for performance

evaluation [45] [46] and for scalability [47]. These studies concluded that current state the ETSI PKI is feasible in a

realistic environment.

Similarly to the ETSI version, the IEEE ITS–S acquire a long term identity equivalent to the EC and pseudonym

identities equivalent to the ATs. Even though the IEEE version of the SCMS is not described here, it provides similar

privacy and authenticity benefits to the ETSI version.

2.4.2 Misbehavior in C-ITS

Currently, neither the IEEE nor the ETSI versions of the SCMS provide protections that ensure the validity of the

contents of a V2X message. An ITS–S with a valid set of ATs could send erroneous messages, all while having

a valid signature. These errors are due to sensor fault, on-board unit malfunctions or even hacking. The physical

sensors responsible for acquiring environmental data (e.g. GPS, Radar, etc. . . ) could return incorrect information.

The connection between the sensor and the on-board unit could be unreliable, leading to a number of bad readings.

The on-board unit of a vehicle responsible for the transmission of V2X messages may contain bugs in its software.

Even if we design a secure system where we minimize the possibility of the former issues, an on-board unit could

still be hacked by a user with malicious intentions.

A hacker with control of an on-board unit is able to send V2X messages containing strategic information to serve

a selfish purpose. For instance, an attacker could fake a traffic congestion warning on a specific road segment
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to deter other vehicle from choosing it. An attacker could also fake an emergency break warning to cause other

vehicles to needlessly decelerate. An attacker could even manipulate information to cause multiple vehicles to

crash in a platoon. Furthermore, an attacker could use the multiple ATs in his collection to simulate the existence

of multiple fake vehicles on the road. These fake vehicles could be cleverly used to take advantage of the V2X

services. For instance, an attacker could fake the existence of a large number of vehicles waiting on a smart traffic

light in order to gain priority at an intersection. Finally, the privacy protections provided by the vehicular PKI would

make a malicious ITS–S less detectable. The attacker could perform an attack and then change his AT to regain the

trust of his neighboring ITS–S. This type of potential abuse of the C–ITS services renders a misbehavior detection

protocol essential to the system deployment.

2.4.3 Misbehavior detection protocol

Figure 2.4: Misbehavior detection process

In this section, we describe the misbehavior detection process shown in figure 2.4. This process is divided into

four steps:

Local detection: The local misbehavior detection is performed by the embedded component in every ITS–S (i.e.

RSUs and Vehicle’s OBUs). The misbehavior detection system is a security layer on top of the cryptography PKI

component. Upon the reception of a new message and the verification of its signature, the ITS–S relays the message

to the local misbehavior detection process. The message should then pass a set of simple and fast security checks

to estimate the plausibility and consistency of the received data. The results of these checks are then fused using a

local fusion application. The fusion application should then decide if an ITS–S is misbehaving and if a misbehavior

report should be issued.

Misbehavior reporting: The misbehavior reporting process begins when the local fusion application determines

that a misbehavior report should be issued. This process consists of building a Misbehavior Report (MBR) message

with a set of relevant information confirming the misbehavior of the reported vehicle. More precisely, vehicles are
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required to provide evidences proving the type of the detected misbehavior to the MA. This evidence consists mostly

of the messages used in the detection process. After collecting enough evidence, the MBR is then sent to the global

MA. The report could be transmitted to the MA via a trusted RSU or by direct cellular communication.

Global Misbehavior detection: The global misbehavior detection process begins by collecting the received

MBRs. This operation is performed by the MA which is localized in the back-end security management system.

Using the evidence in the MBRs, the MA should be able to recreate the local events to verify, if possible, the validity

of the report. The MA then proceeds to analyze the collected MBRs to identify if a misbehavior has occurred and

then precisely define the type of this misbehavior. The severity and the type of misbehavior determines the suitable

reaction required to protect the system.

Misbehavior reaction: Once the detection results are obtained, the MA informs the authority in charge of enforc-

ing the appropriate misbehavior reaction. Currently, the only discussed reaction type is the certificate revocation

enforced by the PKI. In figure 2.4, we just provide an example where the PKI is in charge of proceeding to the

appropriate reaction. As this is not yet standardized, the revocation and reaction procedure is still not well defined

and other authorities may be in charge of the misbehavior reaction in the future.

2.4.4 General security architecture

Figure 2.5: C-ITS security architecture
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In this section, we recap the overall system architecture in the case of a presence of an attacker as illustrated in

figure 2.5. We describe what occurs in different sections of the system.

• Vehicular Network consist of communicating ITS–Ss. Vehicles with valid certificates exchange signed mes-

sages that serve various purposes in ensuring road safety. For instance, a vehicle could send beacon mes-

sages, such as CAMs or BSMs, which contains kinematic information (position, heading, velocity etc...) to

inform other vehicles of its presence on the road. However, an attacker could send these messages with fake

information. The attack could be performed by one or multiple collaborating vehicles. Many use cases of

attacks exist with different motivations and capabilities.

• Access Network is the layer used to relay local information to the back-end system in the cloud. This informa-

tion includes certificate requests to the PKI and misbehavior reports to the MA. The communication could be

done over a cellular connectivity (eNodeB) or the ITS-G5 (RSU).

• Back-end Security System is currently composed of the Public Key Infrastructure (PKI) and the Misbehavior

Authority (MA). The PKI delivers digital certificates to the vehicles. The MA collects the MBRs form local

vehicles then investigates and issues the suitable reaction.

2.5 Attacker model

In this research domain, we consider misbehavior in the use of the C–ITS communication infrastructure. A misbe-

havior could be the result of a faulty on-board system or physical sensors or a result of malicious intentions. The

misbehaving ITS–S transmits signed messages with a modified payload. Generally, the attacker model has the

following characteristics:

1. Insider: The attacker has the required cryptographic credentials to communicate on the C–ITS network. The

attacker possesses a valid set of ECs and is able to request valid ATs from the AA. These ATs are used to

sign the misbehaving messages.

2. Active: The attacker actively participates in the C–ITS communication and sends bogus data over the V2X

network. Unlike the passive attacker whose main role is data collection and who therefore operates without

transmitting any messages.

3. Message payload modification: The attacker can modify any field in its outgoing V2X messages. This is

possible if an attacker has complete access to his vehicle’s CAN bus. The attacker could also have changed

the software of his vehicle’s OBU. The attacker could also mount a man-in-the-middle attack and modify any

sensor data. For instance, this should allow the attacker to modify location data received from a GPS module.
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It should also allow the attacker to modify speed and acceleration information from a Telematics Control Unit

(TCU). As the vehicle’s OBU (V2X Unit) is connected to the CAN bus, it would consider this data genuine.

4. Transmission rate modification: We assume that the attacker can modify the transmission rate of his OBU.

The attacker can alter the OBU in his vehicle, allowing faster or slower transmission rate depending on the

type of the attack. For instance, the attacker could greatly increase his transmission rate to perform a Denial-

of-Service (DoS) attack. The attacker could also double his transmission rate to pretend to be two vehicles,

thus creating a ghost vehicle.

5. Pseudonym certificates access: The attacker has complete access over the usage of his previously acquired

pseudonym certificates. We use the same premise as above, that the attacker has modified his OBU. This

modification should give the attacker an unrestricted usage of his pseudonym certificates. This would enable

the mounting of Sybil attacks. For example, to create four other ghost vehicles in addition to his own, the

attacker would use five simultaneous certificates and increase the transmission frequency by five times. The

attacker would be able to transmit signed beacons for all four Sybil ghost vehicles and his own, all while

honoring required standard transmission rate.

2.6 Related works

Misbehavior Detection is a well-researched topic with studies spanning the last two decades. Golle et al. first

published in 2004 a paper on detecting and correcting malicious data in the vehicular networks [48]. Their work

is regarded as one of the first to introduce the research axis. They highlight the possibility of vehicles transmitting

fraudulent data such as a road congestion or an erroneous vehicle position. They also emphasize the damaging

effects of such attacks. Since then, this topic has been studied in much further detail. Van der Heijden et al.

published in 2019 a well written and complete recent survey on the different misbehavior detection studies [49].

The survey includes a large number of well-known works and detection mechanisms. They classify the studies into

two families of detection mechanisms: data-centric and node-centric. A study could make use of a combination

of mechanisms but every mechanism fits under one of these families. Data-centric mechanisms rely purely on the

contents of the message to estimate its plausibility and consistency. Node-centric mechanisms rely on the behavior

of a node and generally assign a trust value to every neighboring ITS–S.

In this section, we examine the published studies related to all the contributions of this thesis. The studies will

be sorted by the detected attack and by the family of detection mechanism.
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2.6.1 Detection of Sybil attacks

With the current ETSI and IEEE C–ITS model, the PKI infrastructure provides the vehicle with multiple valid certifi-

cates. The vehicle proceeds to regularly change its identity in order to prevent easy remote tracking. An attacker

could take advantage of this system to launch a Sybil attack. Sybil attacks were first introduced by Douceur in [50].

In V2X networks, a sybil attack occurs when an ITS–S actively uses multiple pseudonyms at the same time to sim-

ulate one or several ghost vehicles. Due to the important damages it may cause in C–ITS systems, researchers

introduced several approaches for Sybil detection.

Pouyan et al. [51] propose three methods for local Sybil attack detection. The resource testing method assumes

that a radio network entity cannot send and receive on the same channel at the same time. This detection method

is not valid in the current state of vehicular networks because attackers may have multiple channels to send and

receive messages. The Position verification method assumes that a vehicle can be localized at only one position at

the same time. This method proposes the use of physical signal properties (i.e. Received Signal Strength Indicator

(RSSI), Time Of Arrival (TOA) and Time Difference Of Arrival (TDOA)) to verify the true position. The feasibility of

this method in a real scenario remains to be assessed. Last, they propose the encryption and authentication based

methods, which assume that using a PKI is enough to detect Sybil attack. In the current C–ITS system, a vehicle

could obtain multiple pseudonym identities at the same time. Therefore, a legitimate entity with valid key materials

can still perform a Sybil attack.

Chen et al. [52] and Park et al. [53] both propose Sybil detection mechanisms where a vehicle with an OBU

collects signed time stamps from RSUs. The theory is that these stamps act as proof that a vehicle had passed by

a certain RSU. Each vehicle is required to broadcast collected stamps. Since a Sybil attacker can only have one

physical path, a group of vehicle with a similar collection of stamps is considered a suspect of a Sybil attack. Chang

et al. [54] propose a similar mechanism they call Footprint. Footprint works similarly to the previous mechanisms as

vehicles also collects signatures from RSUs. However, their model uses cryptography mechanisms to hide the real

vehicles trajectories. Therefore, this model is more privacy friendly. Nevertheless, all these detection mechanisms

assume a Sybil attacker is moving through the system and is not performing a localized attack (i.e. fake congestion).

Additionally, a Sybil attacker that refrains from broadcasting the collected time stamps would have a similar status

to an ITS–Ss that had just started a new trip.

Hao et al. [55] propose a protocol that detects Sybil nodes in a cooperative way by examining the consistency

between the vehicles positions and those of their neighbors. The idea is based on detecting the sudden appearance

of a vehicle or of multiple vehicles as well as on evaluating the number of neighbors. When a vehicle locally

detects that a neighbor is potentially malicious, it broadcasts a warning message to have the confirmation of other

neighbors that an attack is occurring. When the number of vehicles that confirm that an attack is occurring is greater

than a predefined threshold, the identified vehicle may be quarantined for a certain period of time or reported to
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the authority. We believe that cooperative detection systems are not reliable because the attacker takes part of the

community and could distort the detection procedure. Moreover, it requires an honest majority to work properly. Xiao

et al. [56] propose a similar protocol that also relies on vehicles broadcasting a list of neighbors. The broadcasted list

should include unique identifiers for neighbors such as the hash of the last beacon. Additionally, the neighbors list

should include the RSSI. Afterwards, specific calculation determines the legitimacy of each node according to the

neighbors list and the range of each vehicle. Sybil attackers could then be reported or excluded from the network.

Zhou et al. [57] introduced Privacy-Preserving Detection of Abuses of Pseudonyms (P2DAP), a method which

enables the ITS–S to verify its neighbors’ pseudonym identities through edge computing. In P2DAP, they consider

edge computing through the use of RSUs, however this functionality could also be attributed to an eNodeB. In their

system, the RSUs are considered a trusted entity. Accordingly, the RSU has the ability to link different pseudonyms.

This linkage is done by pseudonyms which hash a common value. Linking pseudonyms would enable the detection

of a Sybil attacker using the certificates issued for the same vehicle. In the current C–ITS system, the linkability of

pseudonyms is not available even at the PKI level without the cooperation of the AA and the EA. Similarly, Lee et

al. [58] propose Detection Technique against a Sybil Attack (DTSA), a method that is also enabled through the edge

computation. DTSA suggest a different kind of pseudonyms where vehicles obtain a session key from a Vehicular

Ad hoc NETwork (VANET) server to use within a limited time frame. Afterwards, each vehicle verifies the identity of

neighboring vehicles with the help of the same VANET server.

Granted that the Sybil attack is ultimately a special kind of bogus information attack, it could also be detected by

some types of methods designed for bogus information detection. In particular, those based on physical-layer and

data-centric false beacon information detection mechanisms. This is addressed in detail in the following section.

2.6.2 Detection of bogus information attacks

Broadcasting bogus information sent on the V2X network is at the essence of misbehavior in C–ITS. Bogus in-

formation could have different implications varying from minor issues, like deteriorating the quality of infotainment

services, to dramatic problems like causing accidents and potentially victims. In this section, we describe some of

the bogus information detection methods that have been proposed in the literature.

2.6.2.1 Bogus beacon messages detection mechanisms

Vora et al. [59] propose a method of verification of the position in the broadcasted beacons. Their method is edge-

assisted and based on a total coverage of an area by RSUs or eNodeBs. They assume a broadcasted message is

received by multiple RSUs. The RSUs then uses the received signal strength to estimate the distance. Using the

distance from multiple RSUs, the misbehavior detection system is able to approximate an area where the message

was generated. The position included in this message should coincide within this area. Hubaux et al. [60] propose

another location verification scheme for broadcasted beacons. They discuss two mechanisms: tamper-proof Global
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Positioning System (GPS) and verifiable multilateration. They argue that tamper-proof GPS is not an adequate

solution. They state that tamper-resistant hardware has well known weaknesses and GPS in general is vulnerable

to attacks such as spoofing and jamming. Therefore, they then argue that verifiable multilateration is the more robust

method to achieve position verification. Verifiable multilateration is an edge assisted method that requires the total

coverage of an area by base stations (e.g. RSUs). It uses distance bounding to verify that the messages could be

physically received by a certain station. Afterwards, a back-end system verifies that the claimed position is within

the intersection area of all the base stations.

Sun et al. [61] proposed several physical layer features to verify a vehicle’s location and mobility. In their attacker

model, the attacker transmits false positions inside the beacon messages. This attacker can be independent or can

collude with other attackers who will corroborate the false data. The authors consider a straight highway scenario

with at least one honest vehicle in the communication range of the ego vehicle. They verify the attacker’s location and

mobility information using Angle of Arrival (AoA) estimation, Doppler Speed (DS) measurement, extended Kalman

filter (EKF) and input from neighboring vehicles.

Schmidt at al. [62] propose VEhicle Behavior Analysis and Evaluation Scheme (VEBAS). Their mechanism uses

the semantics of the messages to determine its authenticity. This includes the use of multiple data-centric mech-

anisms such as: Acceptance Range Threshold (ART), Minimum Distance Moved (MDM), Map-Proofed Position

(MPP) and Sudden Appearance Warning (SAW). ART is based on the fact that the transmission range is physically

limited. MDM supposes that a stationary vehicle should not transmit messages in order to prevent a roadside at-

tacker. MPP is the verification that a vehicle is moving with valid trajectory with respect to the road. SAW is the

monitoring of newly appearing vehicles, specifically targeting ghost vehicles. Finally, results of all these methods

are combined using an Exponentially Weighted Moving Average (EWMA). Bißmeyer et al. [63], propose a method

that combines the data-centric mechanism of VEBAS and a plausibility model to check for position intersections

between multiple vehicles.

Leinmüller et al. [64] propose a detection scheme that combines mechanisms from VEBAS with a new data

exchange based detector. They introduce a node-centric detector called Pro-Active Neighbor Exchange. This

detector is based on the vehicles broadcasting a table of their neighbors. The vehicles use this information to cross-

check the general claimed positions of the neighbors. Van der Heijden et al. [65] propose a subjective logic based

fusion of multiple misbehavior detection schemes. They propose an improved version of the ART detector that

they call enhanced Acceptance Range Threshold (eART). eART improves on the ART by setting the acceptance

transmission range to a Gaussian curve instead of a fixed threshold. They claim the Gaussian approach is better for

combining eART with other mechanisms. Additionally, they use the Pro-Active Neighbor Exchange detector. Finally,

they combine both detectors using subjective logic. Subjective logic [66] a probabilistic approach that takes into

account the uncertainty and the trust in the source of the information.

Zaidi et al. [67] propose a collaborative detection mechanism based on the information broadcasted by neigh-
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bors. In this model the vehicle broadcasts a flow parameter for their vehicles in their neighboring region. The flow

parameter is calculated based on the density and speed of vehicles in a fixed range. Therefore, the flow for neigh-

boring vehicles has to be within a certain threshold. Consequently, using a statistical model, vehicles could calculate

the plausibility of the neighbors’ information and detect misbehaving vehicles.

2.6.2.2 Bogus warning messages detection mechanisms

Ruj et al. [68] propose a data-centric scheme of misbehavior detection in vehicular networks. Similarly to the

previously discussed studies, they use an edge assisted mechanism for position verification. Their method relies

on distance bounding, but additionally on the speed of light and the message timestamp to verify the distance from

the source of the transmitted signal. Furthermore, they propose a data-centric verification scheme for warning

messages. Their method for warning verification relies on the assumption that a vehicle emitting a warning event

should behave accordingly. Ghosh et al. [69] also propose a similar scheme for the detection of fake warning

messages. Their method is based on integrated root-cause analysis. For example, a vehicle issuing a blocked road

warning needs to be on a proximity of the event and needs to change its path accordingly to avoid the obstacle. A

vehicle issuing a warning event is thus monitored by the neighboring vehicles to determine the message authenticity

and therefore the validity of the warning.

Cao et al. [70] propose a voting based validation scheme for warning messages. The validation of an event

depends on the number of signatures it receives from neighboring vehicles. In this work, they created an efficient

and secure protocol to collect and distribute signatures. Their protocol relies on growth codes introduced by Kamra

et al. [71]. Growth codes are initially introduced to enhance efficiency and data persistence in an unreliable or failing

sensor networks. They are used here to ensure that transmitted signatures arrive to their respective destinations.

Hsiao et al. [72] propose a similar voting based warning validation. They consider a system where an event becomes

valid if the number of witnesses exceeds a certain threshold, then proceeds to evaluate multiple threshold-based

event validation algorithms.

2.6.2.3 Trust based detection mechanisms

Kim et al. [73] propose a misbehavior detection mechanism based on a Certainty of Event (CoE) curve. The CoE

is calculated using a combination of six different sources: Cryptographic Authentication, Source Location, Local

Sensors, Responses from Other Vehicles, Infrastructure Validation and Reputation. Cryptographic Authentication is

the validation of the PKI certificates and the message signature. They consider that this authentication is enough

to prevent Sybil attacks, which is no longer true in the presence of pseudonyms. Source Location is check if a

vehicle geographic location is in the area of relevance of the event. Local Sensors is an on-board validation when

the recipient vehicle is in direct line of sight of the event. Responses from Other Vehicles is a voting based integrity

check that relies on the support or contradiction of neighbors of a certain event. Infrastructure Validation is based on
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the validation of RSUs equipped with the right equipment and with direct line of sight to the event. Finally, Reputation

is a local trust based on the behavioral history of a certain node. A vehicle’s trust increases if it reports a true alert

and decreases otherwise. It is worth noting that although the combination of different mechanisms increases the

efficiency of the method, however it inherits all the feasibility challenges.

Raya et al. [74] propose Local Eviction of Attackers by Voting Evaluators (LEAVE). LEAVE allows for the local

eviction of an accused by neighboring vehicles. They argue that this system is the temporary step to protect the C–

ITS before the global revocation phase by the PKI. Their local eviction is a cooperative system based on an honest

majority of vehicles performing local misbehavior detection checks. Their local misbehavior detection is based on

detecting known attacks by monitoring specific parameters and data anomalies with plausibility and consistency

checks. Zhuo et al. [75] propose Suicide-based Local Eviction Protocol (SLEP) and Permanent Revocation Protocol

(PRP). SLEP is another mechanism for local of an accused vehicle. However, in SLEP only one accusation is

enough to revoked a vehicle. The catch is that both the accuser and the accused are revoked. Neighboring vehicles

would then transmit all accusations to a cloud entity. The cloud entity would then decide on which vehicle to

permanently revoke using the PRP and would allow the other to rejoin the system. This mechanism is in place

specifically to reduce the number of fake accusations.

Leinmüller et al. [76] propose a method a cooperative position verification method to defend against the roadside

attacker. In their work, vehicles build local trust in their neighbors using data-centric mechanisms (like the MDM).

This local trust is then broadcasted to other vehicles. Finally, vehicles combine their local trust and the trust values

received by the neighbors to create the global trust. A vehicle is considered an attacker if it fails its global trust falls

below a determined threshold.

Kerrache et al. [77] introduce a novel Trust architecture for Vehicular Networks using the standardized messaging

services of ETSI ITS (T-VNets). T-VNets aims to detect false ETSI CAMs and DENMs type messages. Their

method proposes building trust using a combination of different mechanisms: data-centric, event-based, watchdog

and RSU-based. Data-centric mechanisms evaluate the quality of received messages. Event-based mechanisms

evaluate the effectiveness of issued warning events. Watchdog is a mechanism where vehicles share positive of

negative recommendations or neighbors. Finally, RSUs broadcast a trust value for vehicles based on current and

historical behaviors evaluations. All their mechanisms are then combined to compute a global trust evaluation for

every neighbor. The trust level is shared between nodes using CAMs and regularly updated.

Raya et al. [78] propose a data-centric trust establishment mechanism. Their method calculated trust without us-

ing cooperation between vehicles. This approach would reduce the risk of a Sybil attacks especially in the presence

of pseudonyms. The trust evaluation is based on four indicators. The vehicle specific trust, different types of vehicles

would have a different initial trust value, i.e. police vehicle, emergency vehicle. The event-specific trustworthiness

which is the trust based on the relation of the event to the emitting vehicle. The dynamic trustworthiness which is

based on the revocation status. Finally, the time and location indicators such as the proximity to the event. These
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indicators are combined in a global trust value which should remain above a certain threshold.

Jaeger et al. [79] proposed a Kalman filter based method to verify beacon messages. Kalman filters allow for

fast and robust trajectory prediction even in the presence of sensor errors. They enable accurate vehicle tracking

and consequently comparison between the Kalman predicted and the beacon claimed position. This would enable

the tracking of the vehicle even whilst changing pseudonyms. Therefore, Kalman filters could achieve an implicit

linkability between pseudonyms. Consequently, it could be a useful tool to defend against Sybil attacks by increasing

the integrity of honest nodes. Xu et al. [80] also propose a mechanism to circumvent the issue of pseudonymity

for the trust establishing mechanisms. They propose the use of wireless fingerprinting for vehicle identification in

the case of an identity change. They implement their proposal in a simulation environment. The result of these

simulations claims a high success rate in the detection of sybil attacks.

2.6.2.4 Machine learning based detection mechanisms

Van der Heijden et al. [81] introduced VeReMi. VeReMi is a misbehavior detection dataset created by simulating

the LuST network scenario. They used VEINS. Their simulation is based on VEINS a co-simulator of SUMO and

OMNET++. The dataset consists of message logs for every vehicle in the simulation. The log contains information

such as the vehicle position, speed and the message RSSI. Many other parameters are also provided such as

the number of vehicles, the number of attackers, as well as the variation of attacker rates. VeReMi also contains

four types of misbehavior: Fixed Position, Fixed Position Offset, Random Position, Random Position Offset and an

Eventual stop. Many published studies discussed later use the VeReMi dataset, specifically to evaluate different

machine learning algorithms.

Grover et al. [82] propose a machine learning based approach to detect misbehavior in C–ITS. For this purpose,

they experiment with different classifiers implemented in the Waikato Environment for Knowledge Analysis (WEKA)

toolset. Their experiments include: Naive Bayes, Instance based learner (IBK), Decision Tree (J-48), Random Forest

(RF) and AdaBoost. They conduct a comprehensive comparison and show that RF and J-48 classifiers perform best.

In a subsequent paper [83], they improve the detection performance by replacing the single classification algorithm

with several classification algorithms. They then use a majority voting ensemble-based scheme to aggregate the

results of the previously mentioned classifiers into a single stronger classifier. They show that the ensemble-based

model is more robust and efficient in classifying multiple misbehaviors present in C–ITS and could achieve a better

result in comparison to each individual base learner.

Ghaleb et al. [84] also propose a machine-learning misbehavior detection model to detect the location forging

attacks they introduced in [85]. They create and extract multiple features from the data model including historical

values and several plausibility and consistency checks. In total, their network takes 7 features as input. These

features include checks for overlapping positions, maximum transmission range, Kalman filter mobility validation

as well as cooperative reports from the neighboring vehicles. They use these features to train a feed forward
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neural network over the Next Generation Simulation (NGSIM) [86] dataset. NGSIM contains real-world traffic data

and vehicle trajectories recorded using digital video cameras every one-tenth of a second. However, the authors

synthetically introduced the attacks in this dataset. Although, their model has a 99% detection rate, their analysis

was performed on a static set of vehicles in the NGSIM dataset. Additionally, since the attacks were introduced

synthetically, there exists a possibility of bias in these attacks.

So et al. [87] propose a machine learning based framework to detect location spoofing. They scored their lo-

cation plausibility, movement plausibility and other quantitative features to feed into the machine learning models.

They evaluated the performance of these models in terms of their classification accuracy and precision-recall char-

acteristics. They used the VeReMi [81] dataset for the training and testing purposes. Consequent, they considered

location spoofing attacks from the VeReMi dataset. Their study aimed to create a baseline ML solution using the

K-Nearest Neighbors (K-NN) and Support Vector Machine (SVM) classifiers. Both algorithms performed similarly

with SVM having a slight edge. In order to improve on this model, So et al. [88] propose three novel physical-layer

plausibility checks, The First-BSM (FBSM), Majority-BSM (MBSM) and Weighted-BSM (WBSM) all based on the

RSSI. They show that these checks outperform recently proposed machine learning based schemes operating at

the application-layer.

Singh et al. [89] proposed another machine learning solution using the VeReMi dataset. The study tested SVM

and Logistic regression. However, their features consist of the positions of the sender and the difference between the

sender and the receiver. These features are not adapted for the detection of any attack. They obtain unreasonably

high detection accuracy. According to our tries to recreate their results, it’s likely that their system is over-fitting.

Singh et al. also proposed a deep learning based solution [90]. In this study, the detection is done within an RSU

where an attacker attempts to create a fake traffic jam. Additionally, they use a completely different set of features.

The new features consist of the mean amount of time vehicles spent in a road segment and the number of vehicles

currently in the road segment. They create their own relatively small simulation scenario. They trained and tested

an MLP and an LSTM. In their model, LSTM is the better performer although at the cost of more computational time.

Zhang et al. [91] propose a misbehavior detection mechanism based on SVM and the Dempster-Shafer Theory

(DST) of evidence to detect false message injection. One SVM-based classifier is used to detect false messages

based on message content and vehicle attributes. Another SVM-based classifier is used to evaluate whether the

vehicle is credible based on its behavior in terms of message propagation. Every vehicle would then transmit their

trust assessment reports to a back end system. The back-end system would use the DST to aggregates multiple

trust assessment reports about the same vehicle and derives a comprehensive trust value for each vehicle.

Gyawali et al. [92] propose a machine learning based scheme to detect two categories of attacks: false alert

attack in which the malicious vehicle broadcasts false warning messages and position falsification attack where the

attacker alters the location information in the beacon. The false alert attack consists of a fake congestion where the

attacker lowers its speed and the segment flow value. They are generated using the VEINS simulator. The position
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falsification messages are extracted from the VeReMi dataset. They use different features for the detection of the

two categories of attacks. For the alerts, they use a specific broadcasted flow value for a specific road segment. For

the position falsification detection, they use feature such as the position and speed change and the RSSI. In this

study, they train multiple machine learning models including Logistic Regression, k-nearest neighbors, Decision Tree

and Random Forest. They claim that the proposed scheme is more effective to detect internal attacks as compared

to the detectors proposed in VeReMi.

2.7 Feasibility study

In this section, we assess the feasibility of existing misbehavior detection mechanisms within the current C–ITS

ecosystem. We contribute to the state of the art by providing a new classification and understanding of the works

on misbehavior detection. We focus on the logic behind the detection mechanisms instead of the details of every

detection method. Finally, we discuss remaining challenges that have to be addressed by the community.

Feasibility is assessed on multiple levels. Currently, standardization bodies such as the ETSI and IEEE made

significant progress in designing the C–ITS architecture. We believe that misbehavior detection mechanisms should

be in line with the current standards to ensure a much needed fast and easy deployment. Furthermore, misbe-

havior detection mechanisms face challenges caused by the constant conflict between security and privacy. This

conflict often appears in the form of regulations or legal complications (e.g. violation of the General Data Protec-

tion Regulation (GDPR) [93]). Finally, there is feasibility challenges in term of the required equipment necessary

for the functionality of a detection mechanism. The equipment required for a detection mechanism may be too

costly to include in each station. Additionally, the entire system may not yet have reached the maturity a mechanism

requires. In this section, we will illustrate standard incompatibilities with a circle (○), legal and regulation conflicts

with a square (□) and required equipment with a triangle (△).

2.7.1 Feasibility of detection mechanisms for Sybil attacks

Using the multiple studies that have targeted the detection and mitigation of the Sybil attack discussed in section

2.6.1, we extract three prominent methodologies used specifically for Sybil detection:

Path history detection mechanisms: This mechanism is based on the fact that one physical vehicle has one

physical path. Therefore, requiring vehicles to collect and broadcast signed time stamps from RSUs would theoreti-

cally prevent Sybil attackers. It is proposed by Chang et al. in [54], Chen et al. in [52] and Park et al. in [53].

The current state of the standard requires a vehicle to change all of its identifiers when using a new certificate,

in order to prevent linkability between pseudonyms [11]. However, beaconing a footprint history would negate this

effect and facilitate the linkability of pseudonyms (○). Additionally, a new protocol has to be implemented to enable:

34



the RSUs to issue signed timestamps and the OBUs to beacon these timestamps (○). Although the current ETSI

CAM messages include an optional path history field, this variable consists of a list of GPS coordinates and is

not compatible with the signed timestamps proposed in this method [7]. Furthermore, it is unclear if requiring a

broadcast of the path history is friendly to the current privacy protection laws (□). Although in [53] and [54] the

privacy issue of direct traceability is addressed, this would not negate the pseudonyms linkability problem. Finally,

this approach relies on a wide coverage RSUs in the C–ITS network (△).

Pseudonym Linkability based mechanisms This mechanism relies on a system where in some way pseudonyms

have to be linked. Linking pseudonyms would enable the detection of a Sybil attacker using the certificates issued

for the same vehicle. It is proposed by Zhou et al. in [57] and Lee et al. in [58].

Enabling pseudonym linking at the RSU level is not compliant with the privacy requirements of C–ITS. Cur-

rently, the vehicular PKI system is designed in such a way that not even the AA and the EA have the ability to link

pseudonyms without cooperating [43] (□). At the present time, the ETSI standard does not specify any linkage

authority and the IEEE designed linkage authority is only available to the misbehavior authority [94] (○). Moreover,

it’s unclear how scalable this approach is when an RSU has to link pseudonyms of a great number of vehicles (△).

Neighbor List Exchange This mechanism relies on vehicles broadcasting a list of neighbors including unique

identifiers. Using this list, vehicles are able to calculate legitimate nodes and Sybil attackers could then be reported

or excluded from the network. It is proposed by Hao et al. in [55] and Xiao et al. in [56]

Exchanging the neighbor lists is a distributed and simple approach. However, its efficiency could be greatly

affected by the rate of the pseudonym change [95] (○). Furthermore, data protection acts could oppose broadcasting

the information about other vehicles (□).

Since a Sybil attack is ultimately a special kind of bogus information attack, it could also be detected by some

methods designed for bogus information detection. In particular, we note physical-layer and data-centric false

beacon information detection mechanisms, which we address in detail in the next section.

2.7.2 Feasibility of detection mechanisms for bogus information attacks

A large number of studies in the literature have targeted the detection and mitigation of the bogus information

attacks. In this section, we extract the specific detection mechanisms behind studies discussed in the section

2.6.2. We organize our evaluation into three sections: detection methods for false position information (the main

component of the beacon message), detection methods for warning messages and detection methods that evaluate

a node and thus all the messages it broadcasts.
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2.7.2.1 False beacon information

RSU triangulation This mechanism relies on a total coverage of an area by RSUs. A message received by

multiple RSUs would be limited to a general area therefore verifying its physical location. It is used by Vora et al.

in [59] and Hubaux et al. in [60].

The triangulation technique requires a total RSU coverage of the area (△). Additionally, it requires a specific

communication protocol between the RSUs to share achieve this triangulation (○). Finally, the automatic back-end

information sharing of vehicle locations could be opposed by the privacy protection regulations (□).

Physical layer detection This mechanism relies on the physical aspects of the signal for the message location

verification. These physical aspects include the Received Signal Strength Indicator (RSSI), Time Of Arrival (TOA),

Angle of Arrival (AoA) and Doppler Speed (DS). It is used by Pouyan et al. in [51], Xiao et al. in [56], Sun et al.

in [61], So et al. in [88] and Gyawali et al. in [92].

Physical detection methods are generally compatible with the standard and the corresponding laws. However,

they may require specific on-board sensors (△).

Data-centric detection This mechanism uses the semantics of the messages to determine its authenticity. Specif-

ically, this mechanism targets the plausibility and consistency of the information in the message. It is used by

Schmidt at al. in [62], Bißmeyer et al. in [63], Leinmüller et al. in [64] and Van der Heijden et al. in [65].

Generally, local data-centric mechanisms don’t present major feasibility issues. These mechanisms do not

require any additional equipment nor changes to the standard nor present any legal challenges.

Machine learning based detection This mechanism analyzes various features of the messages with a machine

learning algorithm. The features can be issued from the raw message data or can be derived from the physical

signal proprieties or the data-centric checks. It is used by Grover et al. in [82, 83], Ghaleb et al. in [84], So et al.

in [87], Singh et al. in [89, 90], Zhang et al. in [91] and Gyawali et al. in [92].

Similarly to data-centric mechanisms, machine learning doesn’t require any changes to the standard or present

any legal challenges. However, using machine-learning requires significant on board processing power (△).

Neighbors information exchange This mechanism is based on the exchange of some additional information

between neighboring vehicles. This information is then used by vehicles to detect misbehaving beacon data. It is

used by Leinmüller et al. in [64], Van der Heijden et al. in [65], Zaidi et al. in [67] and Ghaleb et al. in [84].

For this mechanism to work, a new protocol for exchanging additional information between neighbors has to be

standardized and implemented [7] (○). Additionally, the legality of sharing certain additional data between neighbors

has to be investigated (□).
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2.7.2.2 False warning messages

Data-centric detection This mechanism relies on the assumption that a vehicle emitting a warning event should

behave accordingly. Neighboring vehicles monitor the behavior of the emitting vehicle to determine the authenticity

of a certain event. This mechanism requires a vehicle’s pseudonym to remain the same after emitting the warning.

It is used by Ruj et al. in [68] and Ghosh et al. in [69].

A block on the pseudonym change after generating a warning message is currently planned to be included in the

standard [32]. Therefore, this method is compatible with the standard, presents no legal challenges, and does not

require any special equipment. However, it is worth noting that this approach assumes that the malicious vehicle

is only deceptive about the warning messages. Otherwise beacons its correct location information. Therefore, this

method has to be bundled with a position verification technique.

Voting based detection This mechanism is based on voting or cooperative validation of an event in order to

ensure its integrity. This mechanism is generally effective in a densely populated network with an honest majority. It

is used by Cao et al. in [70], Kim et al. in [73] and Hsiao et al. in [72].

Similarly to other mechanisms, voting schemes requires a new protocol and messages architecture [7] [8] (○).

Nevertheless, this protocol could be more challenging to integrate due to the effect of pseudonymity on the voting

integrity (○). This effect is amplified with a higher frequency of pseudonym change [95].

2.7.2.3 General node trust evaluation

In this section, we evaluate detection methods that estimates the general trust in the vehicle instead of estimating

the correctness of messages separately. Therefore, all messages from a corresponding node will be evaluated

according to its trust level. It is worth noting that all methods that evaluate node trust are eventually affected by

pseudonym change. This severity of this issue varies depending on the change frequency (○).

Cooperative trust establishment This mechanism is based on establishing cooperative trust through voting or

through a consensus. It is used by Raya et al. in [74], Zhuo et al. in [75], Leinmüller et al. in [76], Kim et al. in [73]

and Kerrache et al. in [77].

Similarly to all node-centric approaches, compatibility with pseudonyms is always a challenge (○). Additionally,

cooperative trust establishment requires the modification of the current communications architecture whether to

include voting or for consensus mechanisms [7] [8] (○). Last, revocation of a node from the network entails a denial

of security application to the node. Legally, it is unclear if nodes of the same clearance level could deny other nodes

from access to safety applications (□).
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Data centric trust evaluation These mechanisms evaluate trust without a cooperation between vehicles. It is

used by Raya et al. in [78].

Data-centric methods are generally compatible with the laws and the standard. However, the node-centric ap-

proach also adopted by these methods may have a conflict with the pseudonymity ensured in the standard (○).

Pseudonym linking These mechanisms are used to circumvent the pseudonymity issue for trust establishing

mechanisms. These solutions aim to achieve an implicit linkability between pseudonyms. It is used by Jaeger et al.

in [79] and by Xu et al. in [80].

Although the implicit linking of pseudonyms benefits greatly all node-based mechanisms, privacy protection

regulations may oppose these types of methods to ensure that linkability is only feasible by a trusted authority.

Otherwise, the whole concept of pseudonyms may as well be questioned (□).

2.7.3 Feasibility discussion

Table 2.1 summarizes the feasibility evaluation of Section 2.7. The first observation is that mechanisms designed to

detect false beacon messages or warning messages separately, are globally feasible. Interestingly, these methods

could be combined to form a global misbehavior detection framework. On the other hand, mechanisms based

on node-trust face more feasibility challenges. However, the feasibility is not the only factor to consider. The

performance of a mechanism should also be evaluated [49]. Some problems could be overcome if there is a big

enough incentive. A system that requires changes in the regulations, in existing standards, or requires specific

equipment should justify a clear major benefit to have a chance to be adopted.

A system with incompatibilities with the standard could be considered if the advantages it presents are signifi-

cant. For example, several solutions [55][56][63][64][65] are based on a neighbor’s information sharing mechanism.

In simulation, this mechanism shows promising results [65] and does not imply major changes in standardized

protocols to add the relevant fields on exchanged messages. For these reasons, we classify this method among

those that have a good balance between ”costs” and benefits. On the other hand, reputation-based mechanisms

that requires the C–ITS to have a stable identity, are harder to integrate. Requiring a stable vehicle identity would

directly oppose the pseudonymity both practically and in principle. Therefore, the addition of a reputation protocol

requires rethinking major parts of the current system and is unlikely to be adopted.

Systems that present legal issues are difficult to adopt because they need a change in the regulations. Legal

issues (usually privacy violations) itself can prevent a systems’ deployment despite the advantages it could presents.

For instance, detection methods that rely on broadcasting a path history pose a major legal concern related to

privacy. Similarly, methods that are based on the implicit local linkability of pseudonyms break the mechanisms

meant to ensure the protection users’ privacy. In our opinion, privacy threatening methods such as those that rely

on path history broadcasting and local pseudonym linking are unlikely to be deployed, especially in the presence of
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Table 2.1: Summary of the feasibility challenges.

4: Compatible, :: Requires Adjustment/Study, 6: Incompatible

Detection
Method

Used
Studies

Current feasibility

Standard Legal Equipment
○ □ △

Sybil
Path History [52] [53] [54] 6 6 :

Pseudo linkability [57] [58] : : :

Neighbor List [55] [56] : : 4

Sybil &
Bogus
Info

Beacon Messages
RSU triangulation [59] [60] 4 4 :

Signal Properties
[51] [56] [61]
[88] [92] 4 4 4

Data-Centric
[62] [63] [64]
[65] 4 4 4

Machine-Learning
[82] [83] [84]
[87] [89] [90]
[91] [92]

4 4 :

Info Exchange
[64] [65] [67]
[84] : : 4

Bogus
Info

Warning Messages
Data-Centric [68] [69] 4 4 4

Voting-Based [70] [72] [73] : 4 4

Node-Trust

Cooperative
[73][74] [75]
[76] [77] 6 : 4

Data-Centric [78] 6 4 4

Pseudonym Linking [79] [80] 4 6 4

alternative, more privacy friendly methods.

Lastly, methods that require specific equipment face the simple trade off of costs and benefits. For a method

to be eligible for deployment, in some way, the benefits have to outweigh the costs. With this in mind, we take

the example of the RSU triangulation technique for location verification. Currently, RSU coverage is limited and

thus the cost of a total RSU coverage is high compared to the benefits. Moreover, other less demanding methods

exist. However, in a later stage of the connected C–ITS network, with a wider and more secure RSU coverage, the

triangulation check could be easier to justify and subsequently integrated.

In essence, this study doesn’t aim to evaluate the detection methods based on their current compatibility status.

Instead, the goal is to evaluate the compatibility status itself. C–ITS systems are reaching the deployment stages.

A misbehavior detection system, based on the current state of the art needs to be implemented and deployed in

parallel to the deployment of C–ITS. The need for a robust and seamlessly compatible detection method is imminent.

Moving forward, the gap between the regulations and the scientific methods needs to be bridged. The regulations
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need to be adapted to accommodate for some detection mechanisms. Correspondingly, future studies need to

consider the feasibility challenges while innovating new misbehavior detection mechanisms.
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Chapter 3

Framework for Misbehavior Detection

Simulation and Evaluation

In this chapter, we present a misbehavior detection simulation framework that enables the research community to

develop, test, and compare detection algorithms. We also demonstrate its capabilities by running example scenarios

and discuss their results. Framework for Misbehavior Detection (F2MD) is open source and available for free on our

GitHub [26].

3.1 Motivations

Misbehavior Detection in C–ITS is an active field of research that concentrates on developing mechanisms to detect

anomalous behavior pertaining to vehicle movement, transmission, etc. Detection algorithms could be on physical

sensors and on V2X messages. In this work, we concentrate on V2X-based Misbehavior Detection. In order to

perform substantial research, these techniques have to be implemented on a large scale, in different scenarios, with

a variety of vehicle densities and many other variations. Currently, there are only a few widespread deployments of

connected vehicles (see section 2.2). A variety of problems still exist with these deployments such as the limited

number of use cases and the strict regulations on the generated data. Obtaining raw, untouched data is difficult

due to regulations that require anonymization and stripping of information that may be helpful in designing detection

algorithms. Also, finding a suitable subset of data for analysis warrants spending huge amounts of time that could

be used in actually designing detection algorithms. Hence, there is a crucial need to simulate vehicular networks

and evaluate misbehavior detection algorithms in those simulations.

Simulators such as VEINS [23] provide a platform for the development of misbehavior detection algorithm. We

propose F2MD, a singular framework with which one can:
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• Evaluate effectiveness of attacks (we provide 6 attacks and 9 faulty behaviors with our framework),

• Assess performance of detection algorithms (we provide 15 algorithms with our framework), using 8 metrics,

• Implement a set of new V2X attacks,

• Implement several detection algorithms for easy comparison,

• Visualize in real-time the detection algorithms performance,

• Generate dataset format to feed the common attack dataset VeReMi [81],

• Evaluate multiple misbehavior report formats and global Misbehavior Detection algorithms.

The remainder of this chapter is structured as follows. In section 3.2, we discuss the related works. In section 3.3,

we explain our proposed framework in detail. In section 3.4, we run multiple examples with our framework to

demonstrate the extent of results one can get from it. Finally, in section 3.5, we present our conclusion.

3.2 Related works

The current state of C–ITS infrastructure is far behind for conducting comprehensive research on misbehavior

detection. This warrants implementing custom V2V simulators or retrofitting network simulators for this purpose.

Therefore, it is safe to assume that simulations are a crucial part of evaluation of detection algorithms. For V2V

simulations, a simulator should consist of network and mobility models that simulate real-world V2V scenarios.

Simulators such as Network Simulator 3 (NS-3) and OMNeT++ provide feature-rich environments for network sim-

ulations. However, these simulators do not simulate a crucial aspect of V2X networks, a vehicle’s mobility model.

Likewise, MATLAB could also be used to perform simulations like in the work of Sun et al. [61] and Ghaleb et al. [84].

However, MATLAB simulation require a readily available dataset on which misbehavior detection algorithms can be

run for conducting evaluations.

In C–ITS research, one commonly used network and mobility simulator is VEINS [23]. VEINS is a well-known

and open source framework for running vehicular network simulations [23]. It is based on the OMNeT++ [24] for

network simulation and the SUMO [25] for road traffic simulation. VEINS provides APIs to create custom applications

that run locally on a vehicle. These applications can react on receiving a beacon from another vehicle and/or on

changing its own position among other features. VEINS also provides the capability to generate custom datasets for

different road networks. However, it does not include misbehavior detection algorithms or the capability to evaluate

them.

To the best of our knowledge, there is only one simulation module that allows the simulation of misbehavior

mechanisms in C–ITS, namely VeReMi [81]. VeReMi is a dataset, but the publication also offers a VEINS extension
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which includes five position-based attacks and four basic detection checks. However, the purpose of this VEINS

extension is mainly to feed the VeReMi dataset and is not suitable for real time detection and evaluation. In our

framework, we offer a different take on the VEINS extension focusing mainly on a real time simulation. We also offer

more attacks on the V2X network, advanced detection algorithms and common evaluation metrics. Note that we

later also work closely with the team behind VeReMi to the extend the dataset using the F2MD framework for the

benefit of the scientific community (see section 4.3).

3.3 Framework features

In this section, we describe the different components of F2MD. All parts of the framework that are described in the

following section are also available for download in open source format [26].

3.3.1 General framework characteristics

This framework provides a complete solution for real time simulation and evaluation of a misbehavior detection

system. It extends VEINS with a large panel of detection, evaluation and other general C–ITS modules. One of

the main characteristics of F2MD is its modularity. The architecture is organized in several functional levels: input

data, local detection, local visual output, report data output and global detection. According to the misbehavior

evaluation level, the complexity of the scenario, the attacks and the detection method may be chosen. We adopted

this approach to facilitate the testing of different state of the art solutions in different modules of the framework.

Additionally, F2MD is extensible. Besides the implemented detection mechanisms and attacks, it offers the

possibility to extend the framework with additional modules through the existing API. A key characteristic of our

framework is its integration with non-simulated modules such as external Machine Learning modules for advanced

detection and external packet reports logging. Figures 3.1 and 3.2 summarize this idea while showing the different

modules of the architecture. These modules are detailed in Sections 3.3.2 to 3.3.9.

Furthermore, to create a state of the art like environment, multiple other support modules should exist. These

modules are either used by the detection methods (e.g. storage mechanisms) or are expected in the current C–ITS

(e.g. pseudonym change policies . . . ). Figure 3.2 provides a visual index for these different modules. A detailed

explanation is available in sections 3.3.3 and 3.3.7.

3.3.2 Framework input data

The first input required for the framework is a SUMO scenario. We do provide three scenarios out-of-the-box. The

scenarios include various network topologies with a downtown area, residential roads and main arterial roads linked

to highways.
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Figure 3.1: F2MD diagram representation of the main modules
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Figure 3.2: F2MD diagram representation of the secondary modules

The first scenario is from the Paris-Saclay area (see figure 3.3). This network combines some suburban-like

grid and some organic network properties. It is a relatively small network with randomly generated vehicle traces.

Therefore, the vehicle density is somewhat stable. The network size is 1.11 km2 and of density varying around 17.1

Vehicle/km2. In total, this scenario contains 12,542 vehicles with 8,475,371 exchanged V2X messages. We usually

use it as our test bench for calibration and fine tuning since it provides fast and predictable results.

(a) Network (b) Vehicle Density

Figure 3.3: F2MD Paris-Saclay scenario

The second scenario is the Luxembourg SUMO Traffic (LuST) [96] (see figure 3.4). This scenario is a SUMO

network based on population census data and real traffic information of Luxembourg. Therefore, the vehicle density

is somewhat realistic with morning and evening peaks. This scenario is provided in a Small and a Large version.

45



This would enable the user to choose the most suitable network size for his use case. In addition, both versions

would constitute excellent training and test sets to be used in the evaluation of machine learning models.

The small LuST network has an area of 1.61 km2 with a variable density peaking at 67.4 Vehicle/km2. In total,

this small scenario contains 24,663 vehicles with 17,097,930 exchanged V2X messages. The large LuST scenario

has a network size of 6.51 km
2 and a peak density of 104.5 Vehicle/km2. The large scenario contains 82,146

vehicles with 301,082,858 exchanged V2X messages.

(a) Small Network (b) Small Vehicle Density

(c) Large Network (d) Large Vehicle Density

Figure 3.4: F2MD Luxembourg scenarios

In addition to the SUMO scenario, the VEINS simulation requires an OMNeT++ configuration. The OMNeT++

configuration includes beacon parameters such as the header bit length and the beacon interval. It also includes

the Network Interface Card (NIC) settings such as the txPower, bitrate, Recall and thermalNoise. We strongly
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recommend leaving these settings as the VEINS defaults. The values could be found in the OMNeT++ configuration

file on our github. Finally, our framework requires specific inputs like the attack types, the attacker density, the report

format and the Pseudonym Change Policies (PCP). This list is not exhaustive but gives a general idea of what types

of input is expected. Some inputs are even specific to the type of attack or the PCP. For example, if we choose a

periodical pseudonym change, then we have to set the mean change period. These inputs could also be modified

in the OMNeT++ configuration file. A full list of inputs is included in our Github repository [26].

3.3.3 Misbehavior mechanisms

In order to assess the quality of different detection methods, we need to introduce misbehavior into the system. For

this reason, we implemented two categories of misbehavior: Faulty behavior and Attacks. Faulty behavior are errors

on the sensor data, and Attacks are more elaborate and intentional schemes. The framework injects a predefined

percentage of misbehaving vehicles. These vehicles could all present one type of misbehavior or could mix multiple

types. Details of all the implemented misbehavior mechanisms are presented below.

3.3.3.1 Faulty behaviors

Each vehicle should include an on-board treatment of the data to ensure their plausibility before transmission.

However, this preventive system could possibly lack some use cases and is prone to failure, especially in the case of

budget vehicles. Here, we consider the case where such an on-board data pre-treatment system fails. We extracted

from the literature a set of possible faulty behaviors [97]. The following set was implemented in the framework:

• Fixed Position: The ITS–S broadcasts a faulty fixed position (X,Y )

• Fixed Position Offset: The ITS–S broadcasts its real position with a fixed offset (∆X,∆Y )

• Random Position: The ITS–S broadcasts a faulty limited random position (rand(Xmin ↦ Xmax), rand(Ymin ↦

Ymax))

• Random Position Offset: The ITS–S broadcasts its real position with a limited random offset (∆(0 ↦

Xmax),∆(0 ↦ Ymax)

• Fixed Speed: The ITS–S broadcasts the same faulty fixed speed (Vx)

• Fixed Speed Offset: The ITS–S broadcasts its speed with a fixed offset (∆VX )

• Random Speed: The ITS–S broadcasts a faulty limited random speed (∆(0 ↦ Vmax))

• Random Speed Offset: The ITS–S broadcasts its real speed with a limited random offset (∆(0 ↦ Vmax))

• Delayed Messages: The ITS–S broadcasts its information delayed from reality (∆t)
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3.3.3.2 Attacks

Our attack schemes vary in complexity. The following list details what is currently implemented in our framework:

• DoS: The ITS–S sends V2X messages at a higher frequency than what is defined in the standard. The

frequency increase inflicts an overhead on the broadcasting channel. This may render the channel unusable

by other vehicles.

• DoS Random: The ITS–S performs a DoS attack while simultaneously randomizing all the V2X messages

data.

• DoS Random Sybil: The ITS–S performs a DoS attack while simultaneously randomizing all the V2X mes-

sages data.

• Disruptive: The ITS–S records the data broadcasted by neighbor ITS–Ss. The attacker then proceeds to

broadcast V2X messages with data derived from previously received beacons. Given that the falsely broad-

casted data is initially generated by genuine vehicles, it is plausible on some levels. The intention of this

attacker is to flood the network with these type of messages thus deteriorating the quality of the C–ITS

• DoS Disruptive: This ITS–S performs a simultaneous DoS and Disruptive attacks

• DoS Disruptive Sybil: This ITS–S performs a Dos Disruptive attack while simultaneously changing its

pseudonym on each send V2X message

• Data Replay: The ITS–S chooses a target and replays its data instantly with a certain minor prediction ep-

silons added. Consequently, for an observer it would seem that there are two vehicles in the same space-time

dimension

• Data Replay Sybil: This ITS–S performs a Data Replay attack while simultaneously changing its pseudonym

while changing the target vehicle. This mechanism the ITS–S avoid detection

• Eventual Stop: The ITS–S suddenly starts broadcasting a fixed positions and a null speed thus simulating a

sudden stop

• Traffic Congestion Sybil: The ITS–S uses the previously acquired and stored pseudonyms simultaneously

to generate a set of ghost-vehicles. The ghost vehicles data is calculated somewhat intelligently in a grid like

matter while avoiding implausibility to simulate a realistic traffic congestion. To this end, the following actions

are performed:

– The position, speed and heading of the ghost vehicles are calculated according to the data of the attacking

vehicle or a chosen target vehicle.

48



– A list of pseudonyms is generated and maintained, one pseudonym per ghost vehicle.

– The beaconing frequency of the attacker is increased according to the number of ghost vehicles.

– The ghost vehicles beacons are multiplexed such that every vehicle is sending one beacon per cycle.

This attack demonstrates the ability to use the framework to (i) manipulate pseudonyms, (ii) increase the

beacon frequency on-the-fly and (iii) intelligently calculate the data to serve a specific objective.

• MA Stress: This attack does not target local vehicles. Instead, it targets the global entity (i.e. the MA)

by sending a large number of fake reports. The reports contain the identities of the attacker’s neighboring

vehicles. The attacker could choose to change its identity for every report. The attacker could also increase

the frequency by which the reports are sent to the MA.

3.3.4 Framework local detection

In this framework, we provide a rich module for local misbehavior detection. This module provides simple methods

to customize and test different algorithms using a simple methodology. The local detection logic goes as follows.

The system runs basic plausibility and consistency checks on every received message. The results are transmitted

to the local misbehavior application installed in each vehicle that decides whether or not to send a report to the MA.

Therefore, the local detection could be customized in two locations: the basic plausibility (often called detectors) and

the more intelligent detection application (often referred to as data fusion). For this reason, we have implemented

multiple versions of the basic checks and multiple misbehavior applications. We also provide a method for real-time

machine learning based detection applications.

3.3.4.1 Plausibility checks

Inspired by the literature, we extracted a set of basic misbehavior detection checks. The following checks or detec-

tors were implemented in their legacy version and in an Error Tolerant version we call CaTch. The legacy version

is much faster to compute the plausibility checks and returns a binary output to show whether a certain aspect

of the message is plausible or not. The CaTch version is generally slower to compute the plausibility checks but

returns an uncertainty factor that reflects the scale of the message implausibility. The CaTch detectors is one of our

contributions and will be discussed in more detail in section 4.1.

Here is the list of all the local plausibility checks that are implemented:

• Range plausibility: Check if the position of the sending ITS–S is inside of the ego ITS–S maximum range

(predefined value mapped on the ego ITS–S maximum radio coverage).

• Position plausibility: Check if the position of the sending ITS–S is at a plausible place (e.g. on a road, no

overlaps with physical obstacles, etc.).
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• Speed plausibility: Check if the speed advertised by the sending ITS–S is less than a predefined threshold.

• Position consistency: Check if two consecutive beacons coming from a same ITS–S have plausible sepa-

rating distance.

• Speed consistency: Check if two consecutive beacons coming from a same ITS–S have plausible accelera-

tion or deceleration.

• Position speed consistency: Check if two consecutive beacons coming from a same ITS–S have consistent

speed and separating distance.

• Beacon frequency: Check if the beacon frequency of a sending ITS–S is compliant with the standards.

• Position heading consistency: Check if the positions in two consecutive beacons coming from a same

ITS–S correspond to the heading advertised by that ITS–S.

• Intersection check: Check if no two beacons coming from two different ITS–S have overlapping locations

(i.e. both ITS–S overlap each others).

• Sudden appearance: Check if no ITS–S suddenly appeared within a certain range.

• Kalman filter tracking: Check if the ITS–S advertised information is within a plausible range of the Kalman

filter predicted values [98]. This calculation is proposed in [79]. We propose to use this Kalman calculation to

extract the following detector values:

- Kalman Position Speed Consistency (kPSC*),

- Kalman Position Consistency (kPC),

- Kalman Position Acceleration Consistency (kPAC),

- Kalman Speed Consistency (kSC).

3.3.4.2 Fusion applications

The misbehavior detection applications are the decision making part of the detection logic. They are also referred

to as fusion applications since the decision is often based on fusion of multiple factors (the results of the plausibility

checks, the node history, etc.). We implemented multiple simple examples. Some of them use a deterministic

algorithms and others are based on artificial intelligence. The deterministic algorithms were implemented directly

into VEINS while the learning applications are external to the simulation and were implemented in python and

accessed through a specific API. We start by detailing the applications based on deterministic algorithms.
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Threshold Based App: This is our simple baseline application. An ITS–S is considered misbehaving if a certain

message fails at least one of the plausibility checks. A fail is determined if the result of the check falls below a

certain threshold (see algorithm 1).

Algorithm 1: Threshold Based Solution

cx: Check Value, θ: Threshold;

for c0 . . . cn do

if ci < cmin then
cmin = ci

end

end

if cmin < θ then

Misbehaving

else
Genuine

end

Aggregation Based App: This application is based on the node history. The result of the plausibility checks of a

certain message are aggregated with the results of the last tn time-steps. An ITS–S is considered misbehaving if

the aggregated results falls below a certain threshold. The goal of this application is to reduce false positives with

respect to the baseline solution. However, this application is still too simple for real deployment. It is used here also

as a bench-marking tool.

Algorithm 2: Aggregation Based Solution

cx: Check Value, θ: Threshold;

for c0 . . . cn do

csum =
∑tn
t=1 ci
tn

if csum < cmin then
cmin = csum

end

end

if cmin < θ then

Misbehaving

else
Genuine

end

Non-Cooperative Trust Based App: This application is based on the gravity of the misbehavior event. According

to the gravity of the misbehavior, the node is put in timeout. That means all its data is collected and then reported
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to the MA. The gravity is characterized by a level of trust in the received V2X messages from a certain ITS–S. A

similar approach to the logic used in [62] and in [63]. The trust is derived from the long-term trust level combined

with the current calculated plausibility factors. The trust has a negatively exponential relationship with the plausibility

factor (see equation 3.1 , figure 3.5). This negative exponential relationship was found by interpolating the trust plot

that lead to the best accuracy on a large pre-collected data sample. Finally, a message is considered misbehaving

if the cumulative global trust level falls below a certain value (see algorithm 3). Note that when a vehicle behaves

correctly its trust level automatically begin rising again, albeit at a slow rate.

-1.2

-0.9

-0.6

-0.3

	0
	0 	0.2 	0.4 	0.6 	0.8 	1

Tr
us
t	L

ev
el

Plausibility	Value

Distrust

Trust(x) = −e
(10×(1−x)) + 1

2 × 104
(3.1)

Figure 3.5: The exponential variation of the trust level function of the plausibility value

Algorithm 3: Non-Cooperative Trust Based Solution

cx: Check Value, θ: Threshold, TL: Long-Term Trust;

for c0 . . . cn do

if ci < cmin then
cmin = ci

end

end

TS = −
e
(10×(1−cmin))+1

2×104

if TS > −ε and TL < 0 then

TL = TL + 0.1

else
TL = TL + TS

end

if TL < θ then

Misbehaving

else
Genuine

end

Cooperative Trust Based App: This application is based on the cooperation of ITS–Ss. The goal of this solution

is to cooperatively evaluate the behavior of a node to determine a shared level of trust in this node. This approach
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is similar to the one used in [76] and in [77]. The trust is calculated identically to the case of Non-Cooperative Trust

Based. However, the global trust levels are shared between all the ITS–Ss of the network.

Machine Learning Based Apps: This application is based on the use of a machine learning model. The goal of

this solution is to train an algorithm to detect if a V2X message is misbehaving.

One of the most used programming ecosystems for Machine Learning and Deep Learning is Python. We de-

signed this part of the framework such that anyone could extend the framework with their own Machine Learning

models. We have developed an interface between Python and C++ parts of our framework. This interface allows

any developer to implement their Machine Learning models in Python and let the core framework calls their models

during simulations.

The Python-C++ interface is designed around a typical machine learning model development process. It is

divided into offline and online phases. All files are represented as separate modules in the figure. This means that

an ML model is divided into two files. One file for each phase. In the offline phase, a developer can design, train and

save her ML model. We support scikit-learn [99], keras [100] and Tensorflow [101] for machine learning modeling.

The joblib library [102] is then used for saving the trained models. Joblib is much more efficient in saving models

that use NumPy [103] than Python’s built-in module pickle.

In the online phase, the ML model runs inside an HTTP server listening on a user-defined port. The simulation

core (written in C++) calls the ML model (written in Python). The simulation core sends data to be tested against

the ML model in an HTTP request. The server calls the ML prediction script which performs operations as follows:

• Load the data from HTTP request that needs to be processed for prediction.

• Load the model saved during offline phase. We use joblib to load the model.

• Respond to the HTTP request with prediction from the trained model.

• Optionally, the prediction script could update the model and save it back to the loaded model. Models that use

back-propagation may need such functionality.

Finally, simulation core reads the prediction output from the HTTP response to perform further investigation.

Based on the previous interface, we implemented a simple example with the plausibility checks as input features

similarly to [87], and a simple Genuine or Misbehaving classification as output. We also included the following

example learning techniques:

• SVM Classifier: We used the scikit-learn library to add an example of the C-Support Vector Classification

(SVC) model. The SVC implementation is based on LibSVM, A Library for Support Vector Machines [104].

• MLP Classifier: We used the keras library to implement a simple Sequential model with three hidden Dense

layers and a Rectified Linear Unit (ReLU) activation. We fitted this model with a learning rate limiter.
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• LSTM Classifier: We used the TensorFlow library to implement a Bidirectional LSTM model that could be

trained with variable time step. We also included a fit generator and train generator for the input data.

These examples should help researchers get started with any model weather they would like to use the scikit-

learn, keras or TensorFlow library.

3.3.5 Reporting Protocol

One important goal of the local detection is to send a report to a central MA for post-processing. In this framework,

the fusion algorithm could decide to generate a misbehavior report. The reports are pushed to a global MA via

HTTP connection. Additionally, the reports can be collected in JavaScript Object Notation (JSON) or Extensible

Markup Language (XML) format in a local folder.

We propose a misbehavior report format inspired by the protocol described in section 5.1. The report is com-

posed of three containers: Header Container, Source Container and Evidence Container. The Header Container

contains the basic information that should be included in every report: generation time, sender id, reported id and

report type. The Source Container consists of the results of the plausibility and consistency checks on the reported

beacon, granted that a vehicle is reported only after a received beacon has shown some implausibility. The Ev-

idence Container should help the MA in its investigation and to support its conclusion. The Evidence Container

can be composed of messages from the reported or the reporter or any neighboring vehicles if deemed helpful. It

could also include some other data like a Local Dynamic Map (LDM), or direct sensor data from the reporter. The

Evidence required by the MA is further detailed in [18].

The report format is however not yet standardized and is still a subject of discussion. For this reason, we have

found it useful to provide several formats of misbehavior reports to facilitate further investigation and testing. The

following versions are implemented in the framework:

• Base Report: This format includes only the Header Container and the Source Container with no evidence.

• Beacon Report: This version includes a base report and the reported beacon in the Evidence Container.

• Evidence Report: This version contains a more complete Evidence Container depending on the type of

plausibility checks failure. For example, if the vehicle failed the Speed Consistency check, we include both

inconsistent beacons as evidence.

In the previous three formats, every message flagged as misbehaving is reported. However, not every message

should be reported individually. This would generate a significant network overhead especially when the vehicle

is misbehaving because of a faulty component in its system. Consequently, the report format allows for omitted

reports, which means that the vehicle is not constantly reported for the same behavior. This is why we propose the

Protocol Report.
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• Protocol Report: This version also contains a complete Evidence Container. However, in this version vehicles

follow the reporting protocol proposed in section 5.1. The vehicle sends an initial report the instant it detects

a certain misbehavior. Then it refrains from reporting the same behavior after a certain time while collecting

evidence. The evidence is then sent to the MA in a single follow-up report. This protocol assumes an intelligent

MA that prioritizes the content of the received reports instead of their number.

3.3.6 Global misbehavior detection

The Misbehavior Authority (MA) is the global entity that receives the reports sent by the ITS–Ss. The MA should

then decide on the suitable reaction to make. We define three main components of the MA:

• Collection and Format: The collected report is added to a database. This action would enable the fast

access to relevant reports using a certain criterion. For example, we can get all the reports accusing a certain

pseudonym or all the reports from a certain region. Those queries are helpful in the analysis phase. We also

have a filtering system, that if enabled could aggregate all reports signaling the same implausibly (e.g. sets of

two messages with a speed inconsistency).

• Analysis and Decision: The MA analyzes the reports and outputs the correct level of reaction. We have

implemented a simple method that has a threshold on the number of reports for every reaction level. The

number of reports required to reach every level is modifiable. We set the output as levels so it would be

compatible with our reaction mechanism. However, other outputs could be developed. Please note that this

component will evolve into a more complex element in future versions of the framework.

• Reaction: The misbehavior reaction is still a widely debated subject. We propose a level-based solution with

5 levels of reaction:

– level 0: no reaction

– level 1: a warning message is sent to the vehicle

– level 2: a warning point is deducted from the vehicle’s score

– level 3: passive revocation where the vehicle cannot request more certificates

– level 4: active revocation where the current certificates of the vehicle are revoked.

Currently, the reactions do not cause a change in the behavior of the vehicle, however we expect to have a

more intelligent system where the vehicle would change its behavior according to the reaction level (e.g. a

vehicle with a faulty sensor would re-calibrate upon a warning from the MA).

Please note that this global solution for misbehavior detection that is included in this framework is only a draft

proposal. We included the code of this proposal with the simulator to help the scientific community get started with

research in this domain using our simulator. Our contribution to this research field are discussed in chapter 6.1.
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3.3.7 Privacy

The use of pseudonyms has been included in the IEEE and ETSI standards [10, 11, 95]. However, when and how

a pseudonym change happens is still a research challenge. Scientific studies have suggested multiple methods to

determine the location and rate of change of pseudonyms [12].

Node-centric detection mechanisms rely on a consistent identity of the treated vehicles. This approach is greatly

affected by privacy-preserving mechanisms based on pseudonyms. For this reason, we have implemented the

following Pseudonym Change Policies (PCP) in our framework:

• Periodical: The vehicle changes its pseudonym after a predefined period of time.

• Distance: The vehicle changes its pseudonym after predefined number of kilometers.

• Disposable: The pseudonym is used for a fixed number of messages (including beacons and warnings).

• Random: The pseudonym has predefined chance of change at every sent message.

• Car2car: The first pseudonym change happens between 800 and 1500 meters after ignition. Afterwards,

each 800 meters will trigger a change in 2 to 6 minutes. A version of this policy was initially proposed in the

CAR 2 CAR Communication Consortium Basic System Profile [105]. However, it is no longer included in the

subsequent versions of this document.

3.3.8 Evaluation metrics

In a given scenario, a vehicle transmitting messages could be misbehaving or genuine, and a local detection mech-

anism could classify messages as misbehaving or genuine. Therefore, as illustrated in Table 3.1, the evaluation

of detection mechanisms could be partitioned into four groups: True Positives (TP), True Negatives (TN), False

Positives (FP) and False Negatives (PN) (see Table 3.1). Using this partition, we are able to calculate the follow-

ing performance metrics for classification problems usually used in the evaluations of machine learning applications:

Accuracy, Precision, Recall, F1score, Bookmaker Informedness, Markedness, Matthews Correlation Coefficient and

Cohen’s kappa.

Table 3.1: Detection output partition

Genuine Misbehaving

Detected FP TP

Not Detected TN FN

The Accuracy (ACC) (3.2) is the rate of positive agreement, which in our case refers to the ratio of true detection

in the system. It does not constitute a good detection metric in the case of an unbalanced data, i.e. more genuine

nodes exist than attackers.
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Accuracy(ACC) = TP + TN
TP + FP + TN + FN

(3.2)

The Precision (3.3) measures the proportion of messages correctly flagged as misbehaving out of all flagged

messages. It indicates the classifiers ability to distinguish between misbehaving and genuine nodes, for example a

low precision means the system is yielding a lot of false positives.

Precision =
TP

TP + FP
(3.3)

The Recall (3.4) measures the proportion of correctly identified misbehaving messages out of all received mis-

behaving messages. It marks the classifiers ability to detect a misbehaving node, i.e. a low recall means an attack

is difficult to detect.

Recall =
TP

TP + FN
(3.4)

The F1score (3.5) is the harmonic mean of Recall and Precision. It could be used as a single metric to evaluate

the system’s performance if we attribute the same importance to the Recall and Precision. If needed, we can

attribute more weight to one metric by calculating an Fβscore. This metric could be interesting since one could

argue that Recall is more important than Precision in some cases.

F1score = 2 ×
Recall × Precision
Recall + Precision

(3.5)

The Bookmaker Informedness (BM) (3.6) characterizes the probability of an informed decision. It shows how

much the decision of this system is better than a random guess.

BM =
TP

TP + FN
+

TN

TN + FP
− 1 (3.6)

The Markedness (MK) (3.7) is the probability that the detection is ascertained by the classification as opposed

to by chance.

MK =
TP

TP + FP
+

TN

TN + FN
− 1 (3.7)

The Matthews Correlation Coefficient (MCC) (3.6) is the geometric mean of the Informedness and the Marked-

ness. It is especially useful when the measured classes are of very different sizes, which is often the case with

C–ITS attackers.
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MCC =
TP × TN + FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(3.8)

Cohen’s kappa (K) (3.9) is a measure of the positive agreement, similar to the Accuracy, but where we subtract

the agreement by chance.

K =

ACC −
(TP + FP ) × (TP + TN) + (TN + FP ) × (TN + FN)

(TN + TP + FP + FN)2

1 −
(TP + FP ) × (TP + TN) + (TN + FP ) × (TN + FN)

(TN + TP + FP + FN)2
(3.9)

3.3.9 Visualization

One of the goals of our framework is to facilitate the evaluation of any detection mechanisms or any changes that

could affect the detection rate. In order to achieve that, the simulator writes a snapshot of the current state of the

running mechanisms at every time interval. Then, a script parses the data, calculates, and plots the aforementioned

evaluation metrics in real-time. To further facilitate the evaluation and comparison of mechanisms, the simulator

and the script support running two simultaneous mechanisms on the same system. Figure 3.6 shows a real-time

comparison between two different detection applications running on top of a different set of checks.

However, the visualization is not limited to the detection results. The attacks and detection system are also

visualized in SUMO’s GUI. The simulator uses SUMO’s Traffic Control Interface (TraCI) [106] to color the vehicles

according to the intended role as specified in Figure 3.7.

Finally, since the MA is implemented as an HTTP server, we provide a web interface. The web interface runs in

real time and serves as a display of different metrics and evaluations on the current state of the MA (Figure 3.8).

We currently display three metrics:

• Cumulative and instantaneous prediction accuracy.

• Number of received reports per pseudonym for some of the most relevant identifiers.

• Radar chart of the cumulative percentage of the issued reactions.

3.4 Examples

In order to demonstrate the capabilities of the framework, we run multiple example scenarios. Each example is

based on showcasing the capabilities of a different module of the framework. In the following scenarios we use our

58



Figure 3.6: F2MD GUI: Real-Time Evaluation Metrics Plots (Data Points, TP, FP, Density, Recall, Precision, Accuracy,
F1score, BM, MK, MCC, K)
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Figure 3.7: F2MD GUI: Vehicle Color Profiles with SUMO

Figure 3.8: F2MD GUI: MA web interface
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benchmarking Paris-Saclay scenario network described in Section 3.3.2. We introduce misbehaving entities with a

density of 5%. Each misbehaving vehicle introduced to the system randomly chooses its type of attack as detailed

in Section 3.3.3. The following results are reproducible using the implementation and scenarios provided on our

Github [26].

3.4.1 Plausibility detectors example

As discussed earlier, we implemented two versions of the detectors. The legacy version outputs a binary value while

the CaTch version assigns a factor in uncertain scenarios. The plausibility factor is a score assigned to the each

plausibility check done on the message. This score is calculated using the value and the error range advertised for

each field in a certain message. The score varying between completely implausible (0) and definitely plausible (1).

To better understand the effect of this value, we run both versions of the detectors simultaneously coupled with

a threshold-based detection application. We vary the threshold between 0.1 and 0.9. As shown in Figure 3.9, we
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Rec Pre F1s Acc BM MK MCC K
CaTch 0.1 0.7713 0.9995 0.8707 0.9830 0.7712 0.9814 0.8700 0.7603
CaTch 0.2 0.8023 0.9974 0.8893 0.9852 0.8021 0.9818 0.8874 0.7902
CaTch 0.3 0.8290 0.9913 0.9029 0.9868 0.8284 0.9778 0.9000 0.8121
CaTch 0.4 0.8466 0.9728 0.9053 0.9869 0.8447 0.9606 0.9008 0.8130
CaTch 0.5 0.8644 0.7885 0.8248 0.9727 0.8459 0.7776 0.8110 0.6127
CaTch 0.6 0.8815 0.5710 0.6931 0.9420 0.8284 0.5611 0.6817 0.1991
CaTch 0.7 0.9098 0.1781 0.2978 0.6815 0.5730 0.1673 0.3096 -0.9083
CaTch 0.8 0.9520 0.0774 0.1431 0.1537 0.0417 0.0362 0.0388 -0.0858
CaTch 0.9 0.9787 0.0735 0.1368 0.0829 -0.0103 -0.0607 -0.0250 -0.0110
Binary 0.8598 0.8398 0.8497 0.9774 0.8467 0.8285 0.8376 0.6788

Figure 3.9: F2MD results: variable checks threshold evaluation plot
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can see a clear trade-off between precision and recall for the CaTch version of the detectors. This validates our

hypothesis that the uncertainty factor quantifies the plausibility of a certain message. The plausibility factor therefore

provides a more informative view of the implausible scenario. This could prove useful to an intelligent application

trying to detect an attack. More insights and results on the CaTch detectors could be found in section 4.1.

3.4.2 Local fusion application example
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Rec Pre F1s Acc BM MK MCC K
LinearReg 0.72004 0.96014 0.82294 0.97701 0.71765 0.93815 0.82052 0.67778
Threshold 0.83332 0.99020 0.90501 0.98687 0.83265 0.97684 0.90187 0.81545
Aggrigation 0.84187 0.99941 0.91390 0.98809 0.84183 0.98673 0.91141 0.83246
MLP 0.89379 0.99359 0.94105 0.99169 0.89333 0.98515 0.93811 0.88097

Figure 3.10: F2MD results: local fusion application evaluation plot

Next, we demonstrate the capabilities of the fusion applications module. We tested some of the fusion applica-

tions available with our framework. We tested the Threshold and Aggregation approach as well as some machine

learning models, the MLP and a simple Linear Regression. The results of the plausibility checks are used as the

input features for the learning models.

Figure 3.10 shows the evaluation metrics of the different detection scenarios. These metrics are collected from

plots of the GUI described in Section 3.3.9. One interesting note about the results is that not all machine learning

algorithms outperform the fixed ones. The algorithm should be carefully chosen to be adapted to the application

and Linear Regression is not suitable for our use case. More insights and results on the fusion applications could

be found in section 4.2.
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3.4.3 Attacks example

Until now, our evaluations were based on an even mix of misbehavior types. However, the detection rate is strongly

dependent on the type of misbehavior. To demonstrate this fact, we tested the ability our benchmark fusion appli-

cation, the simple threshold, to detect individual attacks. Figure 3.11 shows that the traffic Sybil and the delayed

messages misbehavior types are somewhat harder to detect with our detectors. This result is in line with our ex-

pectations since the messages transmitted here are have a high plausibility. For instance, the delayed message

contains information that was correct just few seconds earlier. Therefore, the delayed messages do not have many

implausible features. One should note that the SAE J2945/1 [107] specifies that BSM generated 30 seconds in

the past (and in the future) pass time relevance check. On the other hand, we see that the Disruptive attack is the

easiest to detect. This type of attack replays a mass of messages without data consistency. Consequently, there is

a large amount of implausible features that were easily detectable with our plausibility checks.
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Rec Pre F1s Acc BM MK MCC K
TrafficSybil 0.6054 0.9949 0.7527 0.9569 0.6050 0.9491 0.7578 0.5858
DelayedMessages 0.6305 0.9966 0.7724 0.9810 0.6304 0.9771 0.7848 0.6207
DataReplay 0.8918 0.9327 0.9118 0.9912 0.8883 0.9269 0.9074 0.8202
ConstPosOffset 0.8367 0.9990 0.9107 0.9916 0.8367 0.9903 0.9103 0.8298
ConstSpeed 0.8892 0.9993 0.9410 0.9943 0.8892 0.9934 0.9398 0.8839
Disruptive 0.9775 0.9797 0.9786 0.9978 0.9764 0.9785 0.9775 0.9551

Figure 3.11: F2MD results: detection evaluation by attack
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3.4.4 Reporting and global detection example

Finally, we demonstrate the reporting and the global detection of the framework. We start by examining the different

type of reports. Our different report formats have different containers and should vary in size. Using the same

scenario as in Section 3.4.3, we measure the size of the reports transmitted to the MA in JSON. This measurement

is done for each of the formats described in Section 3.3.5. Table 3.2 shows the average sizes of the different

reports. We can see that the sizes are consistent with the reports format, and the differences are smaller when the

information is compressed. Please note that the sizes are only used for comparison purposes, however, these are

not to scale with a real eventual report. All C–ITS messages of ETSI and IEEE have a security header a signature

and multiple other layer that are not included here [107] [44].

Table 3.2: Average report size comparison

Report
Type

Report Size (Bytes)
Uncompressed lzma Compressed

Base 512.45 313.27
Beacon 1090.00 479.73
Evidence 1979.84 545.89
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Figure 3.12: F2MD results: average number of reports by pseudonym received by the MA for different pseudonym
change period

For the global detection, our current simple MA is still based only on the number of received reports for a certain

pseudonym. Consequently, a PCP would dramatically affect the result. To show this effect, we enable a periodical

PCP. We then simulate the same scenario with multiple pseudonym change periods. Figure 3.12 shows the average

number of reports received by the MA for genuine and misbehaving nodes per pseudonym. We can see that the
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number of reports is significantly affected by more frequent pseudonym change. Indeed, the MA does not receive

enough reports with the same reported ID, certainly affecting the detection quality.

In order to mitigate this effect, the MA can analyze the contents of the report. A report with Evidence Container

is advantageous for this process. Additionally, currently proposed reporting protocols do not send a report for each

message. Instead, to reduce overhead, the vehicle collects evidence and then sends a more complete report. This

process would make the global detection based on the number of reports obsolete. The need for an intelligent MA

is therefore paramount. More details on the reporting protocol and format could be found in section 5.1.

3.5 Conclusion

Cooperative Intelligent Transport Systems are susceptible to false data injection attacks that could jeopardize road

users’ safety. In this chapter, we proposed a simulation framework and source code called F2MD, which enables

the research community to develop, test, and compare misbehavior detection algorithms. We implemented in the

framework (i) a comprehensive list of attacks, (ii) an extensive set of basic and advanced detection algorithms, (iii)

a Python/C++ bridge to allow import of artificial intelligence algorithms, (iv) basic Pseudonym Change Policies, (v)

a visualization tool to analyze real-time performance of the misbehavior detection system, and (vi) a Misbehavior

Authority and Misbehavior Report formats. This framework is used to evaluate the solutions and contributions that

we propose throughout this thesis.
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Chapter 4

Local Misbehavior Detection

This chapter includes the contributions to the local component of the misbehavior detection model described in

section 2.4.3. In section 4.1, we introduce a new set of error tolerant local detectors. These detectors integrate

the confidence range of embedded sensors to improve the detection quality. In section 4.2, we extract misbehavior

fusion application from the state of the art. We re-implement the solutions on our F2MD simulator and we compare

their performance on a common scenario. In section 4.3, we introduce improvements to VeReMi, a dataset of V2X

messages that could be used by researchers to evaluate and compare their local detection solutions.

4.1 CaTch detectors

The standard ETSI CAM [7] and IEEE BSM [9] messages integrate a field called confidence range for each mobility

parameter. This field is included based on the fact that sensor measurements could be inaccurate due to physical

limitations or environmental characteristics. However, to the best of our knowledge, so far this information is not

taken into consideration during the misbehavior detection checks computation.

We introduce CaTch (Confidence range Tolerant misbehavior detection approach), a misbehavior detection li-

brary which takes into consideration the confidence range. Then we show through extensive simulations, that taking

into consideration sensors inaccuracy during the checks computation increases the detection quality of the system.

4.1.1 Local detectors and mobility data uncertainty

4.1.1.1 The local misbehavior detectors

In this work, we consider plausibility and consistency verification of the content of the received beacon message.

Note that a plausibility check requires only one received message whereas a consistency check requires two suc-

cessive messages coming from the same source. For instance, when performing a plausibility check on the radio
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transmission range, a vehicle would judge that a neighbor which sends a position that is not in its communication

range is suspicious. A typical example of consistency checks is when a vehicle receives two beacons from its

neighbor at different times indicating speed information which are conflicting with the travelled distance information.

A complete set of plausibility detectors for CAM is detailed in Table 5.3. Additionally, the implemented checks

are detailed in section 3.3.4.1. However, in this work we only consider the following checks: Range plausibility, Po-

sition plausibility, Speed plausibility, Position consistency, Speed consistency, Position speed consistency, Position

heading consistency, Intersection check and Sudden appearance.

4.1.1.2 Misbehavior detectors uncertainty integration

In this work, we propose a novel solution, CaTch, which takes into consideration the mobility information uncertainty

while performing the basic misbehavior checks. In the following sections, we detail how we integrate the confidence

range of the beacon message contents in the basic checks calculation.

For each plausibility and consistency test, we compare our calculation (CaTch version) with the state-of-the-art

one (legacy version). We calculate the uncertainty factor f for each of the misbehavior checks. The uncertainty

factor f is a real number between 0 and 1, with 0 being certainly malicious and 1 having no signs of misbehavior. We

assign a value of f to the nodes whose data are partially implausible. Notice that the confidence range is illustrated

by green for the plausible section and red for the implausible one. We use the following common notations as

depicted in Table 4.1.

Table 4.1: Common Notations

Rx ≜ Position confidence range in beacon x
Vx ≜ Claimed speed in beacon x
Cx ≜ Speed confidence range in beacon x
Dx ≜ Claimed heading in beacon x
∆tij ≜ Time separating beacons i and j
dij ≜ Distance separating beacons i and j
Ax = πR

2
x

4.1.1.2.1 Range plausibility check

We assume that the communication range is based on a disk model. The initial method to detect an out of trans-

mission range node is done by simply checking if the distance between the sender and the receiver is less than the

maximum plausible range as illustrated in figure 4.1a. In our approach, we take into consideration the confidence

range of the sender’s position broadcasted in the beacon Rs and the confidence range assessed internally by the

receiver Rr. We calculate first the position confidence range area of the sender and the receiver, respectively As

and Ar. We consider Tmax as the maximum diameter in which the sender and the receiver could communicate.

Tmax coincides with the transmission range of the sender and the receiver. Accordingly, ATmax
, is the area of the
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(a) Legacy Version (b) CaTch Version

Figure 4.1: Local check: range plausibility

circle formed by Tmax. Notice that any node which is within ATmax
could communicate with both the sender and

the receiver. Second, we calculate the intersection area as and ar for the sender and the receiver respectively with

ATmax
(the green shaded zone as illustrated in figure 4.1b). Finally, we compute the uncertainty factor of this check

as follows:

f =
(ar + as)
(Ar +As)

Tmax ≜ Communication Diameter

ATmax
=

πT
2
max

4

ar = ATmax
∩Ar

as = ATmax
∩As

4.1.1.2.2 Position plausibility check

(a) Legacy Version (b) CaTch Version

Figure 4.2: Local check: position plausibility

The position plausibility is determined using a straightforward check between the claimed position and the geo-

graphic map of the environment. For instance, in figure 4.2a, Carb broadcasts a position that is overlapping with a

building. This makes its position definitely non-plausible. In CaTch, the position plausibility is calculated for multiple
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points that are within the position confidence ranges, Ra and Rb of Cara and Carb respectively, as depicted in figure

4.2b. Every segment is separated by an angle α and every point is separated by a distance x. These points are

plotted on multiple segments along the radius of the confidence range. The green points in the figure are the possi-

ble plausible positions for both Cara and Carb and the red points are the non-plausible ones. Let n be the number

of green points in the figure and let N be the total number of the considered points.

The uncertainty factor of this check is computed as follows:

f =
n

N

n ≜ Plausible Tested Points

N ≜ All Tested Points

Note that if a vehicle is positioned outside of a road and its advertised velocity is zero, the check does not fail

(i,e., we consider the car as parked). However, if the advertised velocity is different from zero, the test fails.

4.1.1.2.3 Speed plausibility check

(a) Legacy Version (b) CaTch Version

Figure 4.3: Local check: speed plausibility

The speed plausibility is obtained by comparing the claimed speed V0 with the maximum predefined speed Vmax

as shown in figure 4.3a. To integrate the speed confidence range C0 into the calculation, the CaTch version checks

for the plausible partition of the claimed speed confidence range compared to the maximum speed (fig 4.3b). The

uncertainty factor f of this check is computed as follows:

f =
(Vmax − V0 + C0)

2C0
Vmax ≜ Max Plausible Speed

4.1.1.2.4 Position consistency check

The position consistency is computed by comparing the distance between two consecutive broadcasted positions

d01 with the maximum plausible Euclidean distance dmax calculated taking into account the time of the reception of

the 1
st beacon and the time of the reception of the 2

nd beacon on the road as illustrated in figure 4.4a. The maxi-

mum plausible distance is computed based on the position, speed and heading information received in the beacon0

message. CaTch integrates the position confidence range of two successive received beacons, respectively R0
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(a) Legacy Version (b) CaTch Version

Figure 4.4: Local check: position consistency

and R1 by calculating the position consistency similarly to the range plausibility check. CaTch uses the intersection

between the area Admax
whose diameter is the maximum possible distance dmax (figure 4.4b) and the areas A0 and

A1 which are respectively the areas of the of the position confidence of the 1
st received beacon and the 2

st received

beacon. The uncertainty factor f of this check is computed as follows:

f =
(a0 + a1)
(A0 +A1)

dmax ≜ Maximum plausible distance

Admax
≜ Area of the maximum plausible distance

an = dmax ∩Rn

4.1.1.2.5 Speed consistency check

(a) Legacy Version (b) CaTch Version

Figure 4.5: Local check: speed consistency

The speed consistency is obtained by checking if the speeds V0 and V1 from two consecutive beacons are

consistent with the maximum possible acceleration or deceleration, as illustrated in figure 4.5a. Instead of a direct

comparison, CaTch takes into account the confidence range C0 and C1 of the speeds of the consecutive beacons

as illustrated in figure 4.5b. The uncertainty factor f is calculated as the overlap of the maximum speed Vmax and

the minimum speed Vmin with the broadcasted speeds ranges. The uncertainty factor if thus calculated as follows:
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fmax =
Vmax − V1 + C0

4C0
+
Vmax − V1 + C1

4C1

fmin =
V1 − Vmin + C0

4C0
+
V1 − Vmin + C1

4C1

f =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

fmin, when V1 ≤ V0

fmax, when V1 > V0

⎫⎪⎪⎪⎬⎪⎪⎪⎭

Vmin ≜ Minimum plausible speed when decelerating

Vmax ≜ Maximum plausible speed when accelerating

4.1.1.2.6 Position-speed consistency check

The time and distance separating two beacons result in a theoretical speed Vth (computed by considering the

Euclidean distance). The claimed speed is consistent with the distance separating two beacons if it falls within a

range denoted here as Tr+ and Tr− around this theoretical speed as depicted in figure 4.6a. This check becomes

tricky if we consider the confidence ranges on both the position and the speed. To this end, we calculate a new

theoretical rangeGx formed with a combination of the speed and the position confidence. Next we find the maximum

and minimum between the speed of the first and the second beacon. We then check the plausibility of the claimed

speed and the tolerance range with respect of this theoretical confidence range (fig 4.6b). The calculation of the

uncertainty factor is as follows:

fmax =
2 ∫Gmax1

lbmax

√
G2
max1 − x

2dx + 2 ∫−lbmax

−Gmax0

√
G2
max0 − x

2dx

A0 +A1

fmin =
2 ∫Gmin0

lbmin

√
G2
min0 − x

2dx + 2 ∫−lbmin

−Gmin1

√
G2
min1 − x

2dx

A0 +A1

f =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

fmin, when fmin > fmax

fmax, when fmin ≤ fmax

⎫⎪⎪⎪⎬⎪⎪⎪⎭

Vth ≜
Theoretical speed based on the

separating distance

Vmin ≜ Min speed of the 1
st & 2

nd beacon

Vmax ≜ Max speed of the 1
st & 2

nd beacon

Tr+ ≜ Tolerance range on excess speed

Tr− ≜ Tolerance range on dearth speed

∆t ≜ Time separating 1
st & 2

nd beacon

Gmin0 = Cmin +R0/∆t

Gmin1 = Cmin +R1/∆t

Gmax0 = Cmax +R0/∆t

Gmax1 = Cmax +R1/∆t

lbmin = Vth/2 − Vmin/2 − Tt−

lbmax = −Vth/2 + Vmax/2 − Tt+
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(a) Legacy Version (b) CaTch Version

Figure 4.6: Local check: position-speed consistency

4.1.1.2.7 Position-heading consistency check

(a) Legacy Version (b) CaTch Version

Figure 4.7: Local check: position heading consistency

To check the consistency of the heading, we calculate the angle between the advertised heading vector D⃗0 and

the real heading in the next position. This angle should be less than a predefined threshold. We set this threshold

to π/2 assuming that this is a universal limit, non-dependent on vehicle specific characteristics (figure 4.7a). R0 and

R1 are respectively the position confidence range of the 1
st and 2

nd beacon. The confidence range however could

heavily affect this angle. CaTch calculates the plausible portions of the confidence range on both the 1
st and 2

nd

beacon (the shaded green area in figure 4.7b). A position of a beacon is considered plausible if it forms an angle

less than π/2 with the center of the other beacon. Thus, the calculation of the uncertainty factor goes as follows:

f =
2 ∫R0

d01 cosα

√
R2

0 − x
2dx + 2 ∫−d01 cosα

−R1

√
R2

1 − x
2dx

A0 +A1

D⃗01 ≜
Vector formed between the center of

the positions of the 1
st & 2

nd beacons

α ≜ Angle between D⃗0 & D⃗01
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4.1.1.2.8 Intersection check

(a) Legacy Version (b) CaTch Version

Figure 4.8: Local check: intersection

The usual intersection check, models each vehicle as a rectangle. It uses the broadcasted length and width of

the vehicle in the beacons as illustrated in figure 4.8a. CaTch models each vehicle as an ellipse with an increased

width and length according to the confidence range of the position (fig 4.8b). To calculate the uncertainty factor, first

the intersection area between the two ellipses is calculated (fig 4.8b). However, this factor alone is not enough since

the severity of the intersection depends greatly on the location it occurred and the rotation of the affected vehicles.

For example, an intersection on the peripherals is less important than an intersection on the center even for the

same intersection area factor. This phenomenon is numerically added to the equation using an importance factor

as calculated below:

fa =
Aeab

(Aea +Aeb −Aeab)

fi =
olab

(Ia + Ib − olab)

f = fafi

Ln ≜ Carn length

Wn ≜ Carn width

Aen = π(Rn + Ln)(Rn +Wn)

En ≜
x
2

(Rn + Ln)2
+

y
2

(Rn +Wn)2
= 0

Aeab = Ea ∩ Eb

dab ≜ Distance between the centers of Cara & Carb

D⃗ab ≜ Vector formed by the centers of Cara & Carb

αa ≜ Angle between D⃗ab & D⃗a

αb ≜ Angle between D⃗ab & D⃗b

Ia = (Ra + La) sinαa + (Ra +Wa) cosαa

Ib = (Rb + Lb) sinαb + (Rb +Wb) cosαb

olab = max(0,min(Ia/2, Iab + Ib/2) −max(Ia, Iab − Ib/2))
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(a) Legacy Version (b) CaTch Version

Figure 4.9: Local check: sudden appearance

4.1.1.2.9 Sudden appearance check

The sudden appearance flag is triggered when a vehicle appears inside a minimum range Tmin. Accordingly, ATmin
,

is the area of the circle formed by Tmin. The idea is that a new vehicle detected in this range Tmin is not entering

the edge of our reception range and is thus suddenly appearing. In order to integrate the error range, CaTch uses

the inverse of the method used for the range plausibility (see 4.1.1.2.1). The system finds the impossible positions

by calculating the intersection of ATmin
with the confidence range of each vehicle. Therefore, the plausibility factor

is calculated as follows:

f =
(Rr +Rs − ar − as)

(Rr +Rs)

Tmin ≜ Minimum acceptable range for sudden appearance

ATmin
=

πT
2
min

4

ar = ATmin
∩Rr

as = ATmin
∩Rs

4.1.2 Misbehavior fusion applications

CaTch generates results that are contentious instead of binary, thus contains more information. Providing more

information should translate into at least similar or better detection results, depending on the detection application.

In order to evaluate the impact of CaTch results, we run two local misbehavior detection applications:

• Simple App The simple app is threshold based and is described in section 3.3.4.2. This application consists of

a simple threshold. Using this application, all messages with uncertainty factor f less than 0.5 for any detector

are reported. This application does not take advantage of the additional information provided by CaTch and

theoretically both binary and contentious versions of the detectors should perform similarly.

• Advanced App This application is machine learning based and is described in section 3.3.4.2. Using data

from the simulation output, we trained a neural network based on Multilayer Perceptrons (MLPs). The choice
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of MLPs was done because it was the simplest to train and hyper-tune at the time. The output values of the

detectors are placed in an array and used as the MLPs features. The training is done for both versions of the

detectors (i.e., with and without CaTch), then tested using new simulation data. The simulation scenarios of

this data is detailed in section 4.1.3. Theoretically, this application should perform better than the threshold

based app as it uses the additional information provided by CaTch.

Figure 4.10: CaTch example: illustrating its advantage

To illustrate how CaTch impacts misbehavior detection, we present the simple example depicted in figure 4.10.

A beacon message is received. Both detectors check the beacon data (in this example, an arbitrary value of

6 checks is used). The legacy detector outputs binary values only. Here, all the 6 checks output the value ’1’.

CaTch detector outputs real values between 0 and 1 (uncertainty factor f ). For checks 1, 3 and 5, CaTch outputs

the value ’1’ like the legacy detector. However, for the remaining checks, CaTch does not attribute categorical values

(i.e. 0 or 1) as the legacy one and rather, provides floating values.

The detection applications then use these results to decide whether or not a misbehavior report has to be sent.

In this example, as the legacy detector generates only ’1’ values for each check, none of the detection applications

trigger the emission of a misbehavior report (remember that the value ’1’ means the check passed whereas the value

’0’ means the check failed). However, using the CaTch results, the advanced application triggers a misbehavior

report whereas the simple application does not as no CaTch checks are below the threshold value of 0.5.
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4.1.3 Evaluation

In this section, we show the impact of the measurements uncertainty on the detection results. We evaluate the

performance of the legacy basic checks and we compare them with CaTch using multiple detection applications.

4.1.3.1 Experimental setup

Both versions of the detectors are implemented in the F2MD framework (see section 3.3.4.1). For the network, we

used the test bench scenario of Paris-Saclay (see section 3.3.2). A network that combines a suburban-like grid and

some organic network properties. Furthermore, all the vehicles introduced in the simulation are running all of the

detectors in both the legacy and the CaTch version. Every time a vehicle receives a message, it is checked for

implausibility. The results of these checks are then analyzed by a local misbehavior fusion application to determine

whether or not to report the subject node.

4.1.3.2 Considered attacks

We chose to evaluate two types of misbehavior previously described in section 3.3.3: Constant Position Offset and

Traffic Sybil Attack. The attacker density was set to 10%. In addition, given the nature of the simulator, measure-

ments were not initially included. In order to simulate measurements uncertainty, we implemented and used the

sensor error model described in section 4.3.2.2.

4.1.3.3 Results

Table 4.2 shows the results of the previously described simulated scenarios. The evaluation metrics used here are

explained in section 3.3.8. The scenarios consist of detecting both the Position Offset faulty behavior and the Sybil

attack using the simple threshold app and the more advanced Machine Learning app. We run both versions of

the detectors simultaneously within each scenario to avoid distorting the results due to randomness. We kept the

simulations running until the point of heuristic equilibrium, where the cumulative evaluation metrics stabilized.

The first observation we make is that the detection results depend greatly on the type of misbehavior. The

detection results of the Constant Offset scenario are better than that of the Sybil Attack. Therefore, in our scenarios,

a Sybil Attack is much harder to detect than a Constant Offset. This is an expected result since that the former have

much more plausible features than the latter.

This leads us to our next point: because the claimed positions are far from being plausible, the MLP app did

not find any use for CaTch’s uncertainty factor for the detection of faulty nodes. Instead the MLP model used

CaTch here to better characterize a genuine node. Consequently, the amount of False Positives decreases which

lead to a higher Precision (+21.0%). However, this comes at the cost of some of the True Positives and consequently

a lower Recall (-3.8%). We notice that all the other evaluation metrics fluctuate accordingly. This constitutes a trade-
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Table 4.2: Simulation Results

Scenario Evaluation MetricsFusion App Detectors

Threshold

Recall Prec Accu F1s BM MK MCC K
Legacy 0.8822 0.8879 0.9768 0.8850 0.8696 0.8746 0.8721 0.7515
CaTch 0.8798 0.9148 0.9795 0.8970 0.8706 0.9013 0.8858 0.7809

∆-0.3% ∆3.0% ∆0.3% ∆1.4% ∆0.1% ∆3.1% ∆1.6% ∆3.9%

Machine
Learning

Recall Prec Accu F1s BM MK MCC K
Legacy 0.8806 0.8207 0.9684 0.8496 0.8589 0.8072 0.8326 0.6630
CaTch 0.8469 0.9931 0.9839 0.9142 0.8462 0.9761 0.9088 0.8285

∆-3.8% ∆21.0% ∆1.6% ∆7.6% ∆-1.5% ∆20.9% ∆9.2% ∆25.0%

(a) Constant Offset Scenario

Scenario Evaluation MetricsFusion App Detectors

Threshold

Recall Prec Accu F1s BM MK MCC K
Legacy 0.6475 0.9288 0.9186 0.7631 0.6349 0.8457 0.7328 0.5608
CaTch 0.6511 0.9419 0.9213 0.7700 0.6409 0.8598 0.7424 0.5746

∆0.6% ∆1.4% ∆0.3% ∆0.9% ∆0.9% ∆1.7% ∆1.3% ∆2.5%

Machine
Learning

Recall Prec Accu F1s BM MK MCC K
Legacy 0.6483 0.9961 0.9286 0.7854 0.6476 0.9145 0.7696 0.6130
CaTch 0.7903 0.9749 0.9536 0.8729 0.7852 0.9244 0.8519 0.7368

∆21.9% ∆-2.1% ∆2.7% ∆11.1% ∆21.2% ∆1.1% ∆10.7% ∆20.2%

(b) Sybil Attack Scenario

off between Recall and Precision and we don’t find using CaTch in this scenario definitely beneficial. For the case

of faulty nodes detection, the Legacy detectors could be sufficient.

However, this is not the case for the Sybil Attack scenario. Since the messages are more plausible, and the

implausibilities are more elusive, the MLP app finds a major advantage by using CaTch’s additional information.

The extra edge given by CaTch’s uncertainty factor enables the MLP app to increase the Recall (+21.9%) with a

small loss in terms of precision (-2.1%). Accordingly, The F1Score, the BM and the MCC all increase by more than

10%. Therefore, we find that using CaTch in this scenario definitely increases the quality of the detection. Given

these points we conclude that the main benefit of CaTch is to detect attacks that are subtler where the attacker is

intelligent and tries to remain within the plausible range. In fact, using CaTch we can train a system to extract a kind

of a ”fingerprint” of an attack, which is not possible to elaborate when using the binary detectors.

Nevertheless, this improvement comes at the cost of higher processing time. In fact, the binary detectors are 3

times faster than their CaTch counterparts as shown in Table 4.3.

Table 4.3: Mean processing time of the Binary and CaTch detectors

Detector Version Binary CaTch
Time (µs) 34.561 110.994
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4.1.3.4 Discussion

It is worth noting that the model we chose for the machine learning App is not optimal. It was implemented this

way to give a more comprehensive and fairer comparison and to remain consistent with the illustrative example.

However, by adding only a notion of node history to the machine learning model, using only the last few messages

of a node instead of only one, we were able to significantly increase the detection quality. In particular, the false

positives ceases being much of an issue. Additionally, we found that the fingerprinting of attacks with CaTch over

multiple sequential messages could be much more elaborated and complex. This is discussed in more detail in

section 4.2.

Additionally, one could assume that an attacker could manipulate the CaTch uncertainty factor to avoid detection.

This is in fact possible and is a scenario that should be taken into account when designing the detection application.

For example, an application should consider a plausible maximum value for the confidence range depending on the

environment. However, CaTch is supposed to be replacing the legacy detectors. Additionally, it is worth noting that

it is much easier for an attacker to just manipulate the sensor value to remain within the legacy detectors limits than

to manipulate the value and the confidence range to do the same for CaTch.

4.1.4 Summary

In this work, we focused on embedded misbehavior detection mechanisms in C–ITS. More precisely, we evaluate the

impact of physical measure uncertainty on the plausibility detectors performance. We notice that such uncertainty

information is included in the standard V2X messages. We theorize that utilizing it may lead to improving the

misbehavior detection process.

To benefit from this available information, we propose CaTch, an enhanced version of plausibility detectors

that takes into account the physical measure uncertainty. We showed that CaTch provides for each plausibility

detector an uncertainty factor that indicates the levels of implausibility. We showed through extensive simulations

that CaTch performs better or in the worst case similar to the current misbehavior detectors. In particular, the

uncertainty information can be used by intelligent misbehavior detection applications to improve the detection quality

in the decision making process.
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4.2 Evaluation of local detection mechanisms

After introducing a new set of local plausibility and consistency checks, we direct our interest to the next step in the

local misbehavior detection process: the fusion application. The results of plausibility checks are analyzed by the

local fusion application to classify the received V2X message as misbehaving or genuine. Our goal is to evaluate

different approaches for local fusion applications. Although many researchers have published fusion mechanisms,

the results are often difficult to compare since the tests are done on different data and with different implementations.

To this end, we use our F2MD simulator described in chapter 3. We re-implement the different fusion mechanisms

and test then while running the same scenario. Our comparative results show a clear trade-off between the accuracy

of the detection mechanisms and the calculation latency.

4.2.1 Attacker model

A misbehaving entity in C–ITS is any ITS–S sending inaccurate or fake V2X messages. Misbehaving entities could

be divided into two categories: Faulty and Attackers. A Faulty behavior is any inaccurate V2X message data coming

from a broken vehicle sensor. An attack is an intentional modification of the V2X message data. The implemented

set of possible misbehavior types is inspired from the literature [49] [85] (see section 3.3.3). Please note that every

new attacker sets the attack parameters randomly within a certain range. This is done to render the detection more

difficult specifically for the Machine Learning based solutions.

4.2.2 Detection mechanisms

In this part we extract the base logic behind some related works described in section 2.6. We also detail our

implementation of the extracted detection logics. We put forward solutions based on a deterministic approach and

machine learning based mechanisms.

4.2.2.1 Deterministic approaches

The deterministic fusion mechanisms are described in detail in section 3.3.4.2.

Threshold Based: a purely data-centric baseline solution. If any detector fails, the message is misbehaving.

Non-Cooperative Trust Based (N-CTB): a node-centric trust evaluation using data-centric mechanisms. This is

a similar approach to the logic used by Schmidt et al. in [62] and Bißmeyer et al. in [63].

Cooperative Trust Based (CTB): a solution with a form of information sharing between the ITS–Ss. This ap-

proach is similar to the one used in Leinmüller et al. [76] and Kerrache et al. in [77].
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4.2.2.2 Machine learning based

The goal of this solution is to train a machine learning algorithm to detect if a V2X message is misbehaving. Many

algorithms exist for this purpose, however we revert to testing SVM proposed by Boser et al. in [108], XGBoost

proposed by Chen et al. in [109], MLP proposed by Van Der Malsburg et al. in [110] and LSTM as proposed by

Hochreiter et al. in [111]. We detail below the models and parameters trained and tested in this study. All the

hyper-parameters of the proposed model are tuned using a grid search based on 5-fold cross validation.

Common Features: For every received V2X message a set of features is created. These features are important

indications used by the tested ML algorithm to evaluate the plausibility of a message. We propose two features sets

suitable for different ML algorithms.

• Checks Feature Set: The local detection checks done on V2X messages described in section 3.3.4.1. Note

that the CaTch version of the checks are used here.

• Kinematic Feature Set: The Position, Speed, Accel, Heading and Time of the last beacon. The ∆Position,

∆Speed, ∆Acceleration, ∆Heading and ∆Time between the last 2 beacons.

XGBoost: eXtreme Gradient Boosting (XGBoost) is a relatively new algorithm and currently arguably the most

performing of the tree-based models. The model is given a set of V2X messages with the Checks Feature Set.

The messages are given independently of each other. This entails an assumption that no time dependency exists

between the data. All messages are treated as independent entities similarly to the case of the Threshold based

solution. Consequently, some valuable information is lost from the base data due to this assumption. However, this

model is useful to evaluate and better understand the treated data.

SVM: As proposed by So et al. in [87] we use SVM as our baseline ML solution. This model is also trained with

the Checks Feature Set. Multiple implementations exist for the SVM classification. The default SVM implementa-

tion (C-Support Vector Classification (SVC)), is not designed for large data sets. The SVC training times exhibit

quadratic growth with the increase of the number of samples. Therefore, we are able to train SVC with only 10%

of our original training data-set. Alternatively, we tested the Linear Support Vector Classification (LinearSVC), a

similar implementation that could scale better with a large numbers of samples. However, LinearSVC performed

significantly worse than SVC even when trained on the full data-set.

MLP: MLP is feedforward backpropagation Artificial Neural Network (ANN). It is the algorithm used by Singh et al.

in [90]. We tested two implementations for this model. The first implementation (MLP-T1) makes use of the same

features Checks Feature Set as the previous models. The proposed MLP-T1 model has 1 Dense layer with 18
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nodes. The second implementation (MLP-T10) takes as input the previous 10 time-steps. The feature set consists

of the Minimum and the Average of the Checks Feature Set. The proposed MLP-T10 model has 1 Dense layer with

36 nodes.

LSTM: LSTM is also an algorithm of choice used by Singh et al. in [90]. Moreover, is a well suited algorithm for

our problem due the temporal based relation between the successive V2X messages. LSTM is part of the Recurrent

Neural Network (RNN) family of ML algorithms specifically designed to treat time dependent data. Therefore, the

LSTM was additionally given the Kinematic Feature Set as input. The proposed model contains a single bidirectional

LSTM layer with 20 nodes. A dropout and batch-normalization were added to combat over-fitting.

For more technical details, the implementation of these models is open-source and shared on GitHub [26].

4.2.3 Evaluation results

4.2.3.1 Simulation settings and scenarios

We used F2MD as a base to implement the previously described solutions (see section 3). In order to correctly

evaluate the ML algorithms, we used a different scenario for the training and the testing. The small LuST scenario

is used for training. The Paris-Saclay scenario is used to generate the test set. Both scenarios include a mix of the

attacks described in section 3.3.3. The attacker rate is set at 25% for the train scenario and 5% for the test scenario.

This scenario is described in detail in section 3.3.2. For further details, the raw data, the source code and all the

configuration details of the scenarios are published on GitHub [26].

Provided our relatively large data-set, high performance computing is needed for the prepossessing and training

of our models. The SVM and XGBoost training is done on CPU server with a 176 core Intel(R) Xeon(R) CPU

E7-8880 v4 @ 2.20GHz and 2TBs of RAM. The MLP and LSTM training is done on a GPU server with a couple of

NVIDIA Tesla P100s. All the algorithms are tested on a local workstation with an 8 core Intel(R) Xeon(R) W-2123

CPU @ 3.60GHz and 32GBs of RAM.

4.2.3.2 Data evaluation

Figure 4.11 shows a t-Distributed Stochastic Neighbor Embedding (t-SNE) visualization of the train and test data-

sets. t-SNE is a dimensional reduction technique used to reduce multiple features into a two dimensional space [112].

We observe that the two classes are not perfectly separated into clusters. Some of the genuine and misbehaving

data points are mixed. Therefore, we suspect that a linear model is not suitable for this classification. A non-linear

kernel or a deep-learning model might perform better in our scenario.

Figure 4.12 shows the feature importance by weight as calculated by the XGBoost module. We can see that not

all the features are equally important. A relative correlation is apparent between the complexity of the calculated
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(a) Train Data (b) Test Data

Figure 4.11: Local detection: t-SNE: Genuine (Gray) and Misbehaving (Red)

Figure 4.12: Local detection: XGBoost feature importance
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check and the importance with respect to the XGBoost classification. Specifically, the Kalman-Filter based check

is especially important. All the Kalman Filter extracted checks rank high on the feature importance scale. Future

studies treating ML in local misbehavior detection should consider adding it to their feature sets. Ultimately, it is as

important to consider the checks calculated as the ML algorithms used for the classification.

4.2.3.3 Results analysis

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

Recall Precision F1Score Accuracy BM MK MCC K

XGBoost
LinearSVC

Threshold
N-CTB

MLP-T1
SVM-SVC

CTB
MLP-T10

LSTM

Detection
Solution

Evaluation Metrics MPT (µs)

Recall Precis F1s Acc BM MK MCC K C++(∗) Python(◦)
Threshold 0.8401 0.9262 0.8811 0.9827 0.8346 0.9131 0.8730 0.7604 0.00010 (∗)
N-CTB 0.8509 0.9864 0.9137 0.9880 0.8500 0.9745 0.9101 0.8300 0.00019 (∗)
CTB 0.9131 0.9599 0.9359 0.9904 0.9100 0.9527 0.9311 0.8664 0.00023 (∗)
XGBoost 0.8892 0.8578 0.8732 0.9808 0.8774 0.8489 0.8630 0.7262 745.01 (◦)
LinearSVC 0.8406 0.9216 0.8792 0.9828 0.8349 0.9088 0.8711 0.7564 7089.6 (◦)
SVM-SVC 0.8626 0.9887 0.9213 0.9891 0.8618 0.9778 0.9180 0.8441 115.14 (◦)
MLP-T1 0.8611 0.9804 0.9169 0.9884 0.8598 0.9694 0.9129 0.8348 1358.6 (◦)
MLP-T10 0.9018 0.9787 0.9387 0.9912 0.9002 0.9708 0.9349 0.8746 0.176 (∗) 1562.6 (◦)
LSTM 0.9312 0.9603 0.9455 0.9920 0.9281 0.9547 0.9413 0.8852 0.614 (∗) 8298.9 (◦)

Figure 4.13: Local detection: evaluation metrics by tested fusion application

Figure 4.13 shows the evaluation metric results of the models classification of the test data-set. The considered

evaluation metrics are: Recall, Precision, F1score, Accuracy, Bookmaker Informedness (BM), Markedness (MK),

Matthews Correlation Coefficient (MCC) and Cohen’s kappa (κ). The evaluation metrics are detailed in section

3.3.8. The Mean Processing Time (MPT) is also measured for every considered detection application.

First thing we notice is that all the detection mechanisms are within a small accuracy range. In fact, all the
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detection mechanisms score more that 98% accuracy. This is due to the mechanisms relatively high precision and

the unbalanced test data-set of 5% attacker rate. Consequently, accuracy is not a suitable detection metric for our

use case. For comparison purposes we rely on Cohen’s kappa, MCC or the F1score which all have the same

ranking for the considered mechanisms.

Second thing we notice is the LinearSVC performed significantly worse than the SVC with respect to all the eval-

uation metrics. In fact, LinearSVC even performed nearly identically to the simple Threshold application. This result

is in line with our previous analysis of the t-SNE plot in section 4.2.3.2. To emphasize, a simple LinearRegression is

also tested with similarly performing results.

Moving on to the MPT, we have two platforms of execution. The deterministic models are executed in C++

within the simulation. The ML-based solutions are executed on Keras in Python. Keras is not optimized for single

predictions, instead it performs much better with batch predictions, which is not the case in out model. Consequently,

the Python and the C++ executions are unsuitable for processing time comparison. To this end, we re-implement

the MLP-T10 and the LSTM models in C++ using the previously trained weights. Nevertheless, even with the

C++ optimization, the deterministic models calculates around 800 times faster than their ML-based counterparts.

However, the ML-based solutions do not entirely outperform the deterministic solutions. We notice three clusters

within the results. The metrics of the Threshold solution is comparable to the LinearSVC and the XGBoost. The

N-CTB is comparable to the MLP-T1 and the SVC. The CTB is closer to the MLP-T10 and the LSTM. Accordingly,

there is no positive correlation between the processing time and the detection quality.

On the other hand, some solutions have their own drawbacks. The CTB application relies on the authenticity of

the neighboring vehicles to determine the level of trust. Therefore, it is vulnerable to Sybil attacks. Additionally, the

system could completely fall apart in sub-environments where a definite honest majority of vehicles is not assured.

In contrast, all ML-based solutions are venerable to adversarial attacks. Moreover, a large and reliable training

set is required for the models to function adequately. Therefore, the ML-based solutions could not protect against

zero-day vulnerability, i.e. in the early stages of deployment we do not have enough data to train a ML-based

detection system. Furthermore, the deploy-ability and certification of these ML-based solution for an embedded

implementation is relatively complex. Finally, the detection of new types of previously unknown attacks might require

the re-training of the model.

We believe that a robust set of well calibrated detectors coupled with a non-cooperative deterministic application,

like the N-CTB, could be the more suitable solution for this stage of local detection. It has a fast processing time

and easy deploy-ability. It is not vulnerable to Sybil or adversarial attacks. It is agnostic to new types of attacks.

And it requires no training data so it could be implemented immediately with the first deployment. Nevertheless, this

result is not conclusive as the local detection is not an independent system. Even though, the global MA should be

designed to withstand a number of False Positive reports and a number of missed reports. The effect of the local

detection quality on the global MA should also be evaluated for a more rigorous analysis.
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4.2.4 Summary

In this work, we evaluate different local fusion solutions. To achieve this, we extract the detection logic from published

studies. Then we describe our implementation of the different extracted solutions. We show through testing results

that some Machine Learning solutions outperforms the deterministic algorithms but only by a small margin. We put

in question the need for Machine Learning solutions in this use case. We argue that Non-Cooperative Trust Based

could be a suitable solution for this application.
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4.3 VeReMi dataset extension

In the previous section, we re-implemented all the fusion models that we wanted to compare. Nevertheless, there is

an easier method for researchers to produce verifiable and comparable results: using a reference dataset. To this

end, the original VeReMi was created as the first public dataset for vehicular misbehavior detection [81]. VeReMi

has proven to be very useful for researchers in this domain, being applied in multiple studies [87] [89] [92] [88].

However, the VeReMi dataset still has room for improvement, especially considering the small number of attacks

and the lacking physical error model.

In this work, we upgrade VeReMi by treating these issues. Accordingly, we devise and implement a realistic

sensor error model on the vehicle’s physical layer. Moreover, we implement a larger more complex set of attacks.

The new attacks enable the manipulation of the message frequency and the digital certificates as well as the

manipulation of the message contents. Finally, we describe and implement a set of local plausibility detectors and a

simple fusion detection mechanism. The dataset is then tested against this misbehavior fusion mechanism and the

results are provided as a benchmark for future researchers.

4.3.1 Related works

Multiple studies used the original VeReMi dataset to test and validate their various misbehavior detection mecha-

nisms.

Steven et al. [87] analyzed the dataset with the K-Nearest Neighbors (K-NN) and Support Vector Machine (SVM)

Machine Learning (ML) classification algorithm with positive results. In their experiment, they only made minor

adjustments to the labeling of the data in order to help with the classification, but the attacker types and messages

were left unmodified. In their discussion, they pointed to a small weakness of VeReMi. The vehicles performing an

EventualStop are constantly labeled as attackers, though they may behave normally for a certain time before the

start of their malicious behavior. They suggest that the vehicle should be labeled as an attacker only when the attack

is ongoing. This suggestion is retained and this issue is now resolved in this new VeReMi version. Attacker nodes

are only labeled as such when actively performing a certain attack, otherwise their behavior is labeled as normal.

Singh et al. [89] used VeReMi to perform feature engineering for a ML misbehavior detection solution. They

tested various feature selections and scored different results in accuracy. They performed their experiments with

Logistic Regression and an SVM. Their best feature set was achieved with an SVM and contained the position,

the speed and the difference between the position and speed of the sender and receiver. In the current version of

VeReMi, the acceleration and heading are added as new features to the dataset. This could enable more feature

combinations and a better feature selection in future studies.

Gyawali et al. [92] also used the dataset for an ML application using a Feed Forward Neural Network (FFNN)

and an SVM. They calculated their solution’s detection metrics including the accuracy, precision, recall and F1Score.
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They then compared these metrics to the ones included in the original version of VeReMi. This type of comparison

is still possible in the latest version of VeReMi as these detection metrics were calculated for each newly added

scenario.

4.3.2 Dataset

4.3.2.1 Simulation platform

In order to generate our dataset, we make use of F2MD. We use the vehicle traces provided by the LuST scenario

created by Codeca et al. [96]. For our dataset, we use the subsection of the LuST network with a size 1.61km
2 and

a peak density of 67.4 V eh/km2 described in section 3.3.2.

4.3.2.2 Sensor error models

In this version of VeReMi, we aim to render the provided data more realistic and in line with real world field tests.

Accordingly, we add sensor error models to the four main data fields: Position, Velocity, Acceleration and Heading.

4.3.2.2.1 Position error

Several positioning systems exist with different levels of precision. These levels also differ by region, i.e. the GPS

precision is limited to about 3 to 5 m in open sky environments and up to 20 m in urban areas [63]. However, we

consider an internal correction system on-board every vehicle [113]. Consequently, the position error model is as

follows:

EP0 = U([−5, 5])

µ =
EP0 + EPt−1

2
σ = 0.03EP0

EPt = N (µ, σ2)
P

E
t = Pt + EPt

Pt ≜ Real Position at time t

P
E
t ≜ Broadcasted Position at time t

EPt ≜ Position Error at time t

U ≜ Uniform Distribution

N ≜ Normal Distribution

4.3.2.2.2 Velocity error

The majority of vehicles estimate velocity from the wheel spin with an average error around 0.05m/s [114]. The

error is also proportional to the velocity. As a result, the speed error model is as follows:

µ = 0 σ = 0.00016

EV0 = N (µ, σ2)
V

E
t = Vt + Vt ∗ EV0

Vt ≜ Real Velocity at time t

V
E
t ≜ Broadcasted Velocity at time t

EVt ≜ Velocity Error at time t
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4.3.2.2.3 Acceleration error

In our model, the acceleration error is inferred from the velocity error. Therefore, the acceleration error model is as

follows:

A
E
t = At +

EV
t −E

V
t−1

δt

At ≜ Real Acceleration at time t

A
E
t ≜ Broadcasted Acceleration at time t

4.3.2.2.4 Heading error

The vehicle heading could be calculated using a magnetic compass or inferred from successive positions. The ac-

curacy of a magnetic compass is dependent on the device quality. A study by Hölzl et al. found that the probability

of having an error below 20
◦ is around 85% for most mobile devices [115]. Whereas Deelertpaiboon et al. success-

fully equipped a vehicle with a magnetic compass with a 0.1
◦ accuracy [116]. Additionally, accuracy of the heading

derived from successive positions is dependent on the vehicle velocity. At a high velocity the position heading is

more probable to have higher accuracy than the compass heading, whereas the opposite is true at lower speeds or

when a vehicle is stationary. For our solution, we propose the following heading error model:

EH0 = U([−20, 20])
EHt = EH0 ∗ e−0.1∗Vt

H
E
t = Ht + EHt

Ht ≜ Real Heading at time t

H
E
t ≜ Broadcasted Heading at time t

4.3.2.3 Misbehavior models

In this study, we also aim to expand the VeReMi attacks library with a set of new attacks aggregated from the models

used in the literature [49]. We make the distinction between malfunctions and attacks. The former constitutes non-

malicious behaviors that results from a malfunctioning OBU or vehicle sensors while the latter is malicious behavior

of vehicles intentionally sending wrong information. The misbehavior models are defined in section 3.3.3.

4.3.2.4 Generated datasets

Table 4.4 shows a brief description of the newly generated datasets parameters. The data is encoded in JSON

following the same format as the original VeReMi datset:

{"type":Z[0,20],

"rcvTime":R[0,+∞],

"sendTime":R[0,+∞],
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"sender":Z[0,+∞],

"senderPseudo":Z[0,+∞],

"messageID":Z[0,+∞],

"pos":[R[−∞,+∞],R[−∞,+∞],R[−∞,+∞]],

"pos_noise":[R[0,+∞],R[0,+∞],R[0,+∞]],

"spd":[R[−∞,+∞],R[−∞,+∞],R[−∞,+∞]],

"spd_noise":[R[0,+∞],R[0,+∞],R[0,+∞]],

"acl":[R[−∞,+∞],R[−∞,+∞],R[−∞,+∞]],

"acl_noise":[R[0,+∞],R[0,+∞],R[0,+∞]],

"hed":[R[−∞,+∞],R[−∞,+∞],R[−∞,+∞]],

"hed_noise":[R[0,+∞],R[0,+∞],R[0,+∞]]}

In the updated VeReMi dataset, two subsets are created for each type of misbehavior described in section

4.3.2.3. One subset in rush hour time (7h-9h) and another in low traffic time (14h-16h) (see Fig. 3.4). Every

subset includes a file for the ground truth and a list of files containing the received message data. Additionally, one

test-bench subset is created with a mix of all the previously described misbehavior attacks spanned on the whole

simulation day (0h-24h). All the subsets are a result of the simulation of the Luxembourg network described in

section 4.3.2.1. The misbehavior attacker penetration rate is set at 30% for all the simulations. All the 39 resulting

datasets are published and could be found on our Cloud Drive [117]. Additionally, replicating this dataset or creating

new scenarios is possible using F2MD.

Table 4.4: datasets information per described scenario

Dataset Id
Attack 0709 Attack 1415 MixAll 0024

Scenario
Time 07h-09h 14h-16h 00h-24h
Density 37.03 V /km2 16.36 V /km2 23.29 V /km2

Attacker
Vehicles 1,220 505 7,399
Messages 924,251 249,612 7,505,418

Genuine
Vehicles 2,846 1,179 17,264
Messages 2,221,825 569,723 11,951,021

Average
Size

Plain 1.92 GBs 0.59 GBs 0.91 GBs
Gzipped 0.40 GBs 0.12 GBs 0.19 GBs

Total
Size

Plain 40.51 GBs 11.92 GBs 10.90 GBs
Gzipped 8.41 GBs 2.42 GBs 2.25 GBs
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Table 4.5: Testing results

Id Results
Accuracy Precision Recall F1Score

DoSRandom 1416 0.9994 0.9993 0.9996 0.9995

DoSRandom 0709 0.9994 0.9994 0.9995 0.9994

RandomPos 1416 0.9991 0.9981 0.9989 0.9985

RandomPos 0709 0.999 0.9979 0.9987 0.9983

ConstPos 0709 0.9958 0.9979 0.9878 0.9928

ConstPos 1416 0.9954 0.998 0.9869 0.9924

DoS 1416 0.9876 0.9993 0.9788 0.9889

DoSRandomSybil 0709 0.9898 0.999 0.9784 0.9886

DoSRandomSybil 1416 0.989 0.9991 0.9773 0.9881

DoSDisruptive 1416 0.9862 0.9857 0.9896 0.9876

DoSDisruptive 0709 0.9861 0.9864 0.9887 0.9876

DoS 0709 0.9859 0.9993 0.9752 0.9871

RandomPosOffset 1416 0.9877 0.9979 0.9614 0.9794

RandomPosOffset 0709 0.9865 0.9973 0.9566 0.9765

Disruptive 1416 0.9827 0.9805 0.9622 0.9713

Disruptive 0709 0.9829 0.9777 0.9638 0.9707

RandomSpeed 1416 0.981 0.998 0.9394 0.9678

RandomSpeed 0709 0.9787 0.998 0.9294 0.9625

ConstPosOffset 0709 0.9665 0.9979 0.8879 0.9397

ConstPosOffset 1416 0.9606 0.9979 0.8726 0.9311

DelayedMessages 0709 0.9512 0.9971 0.8362 0.9096

ConstSpeed 1416 0.9441 0.9974 0.8187 0.8992

MixAll 0024 0.9293 0.9912 0.8228 0.8992

DataReplay 0709 0.9393 0.9372 0.8503 0.8916

DelayedMessages 1416 0.9402 0.998 0.8052 0.8913

ConstSpeed 0709 0.939 0.9976 0.7942 0.8843

DataReplay 1416 0.9307 0.9318 0.8333 0.8798

RandomSpeedOffset 1416 0.8928 0.9972 0.65 0.787

RandomSpeedOffset 0709 0.895 0.997 0.6444 0.7828

TrafficSybil 0709 0.8204 0.9973 0.5902 0.7415

TrafficSybil 1416 0.8001 0.9972 0.5842 0.7367

EventualStop 1416 0.8827 0.9952 0.5301 0.6918

DoSDisruptiveSybil 1416 0.7787 0.988 0.5318 0.6914

EventualStop 0709 0.8856 0.9942 0.5163 0.6796

DoSDisruptiveSybil 0709 0.7699 0.9822 0.5014 0.6639

ConstSpeedOffset 0709 0.8263 0.9953 0.4107 0.5814

ConstSpeedOffset 1416 0.8157 0.9957 0.3969 0.5676

DataReplaySybil 1416 0.7948 0.892 0.3705 0.5235

DataReplaySybil 0709 0.8011 0.92 0.3527 0.5099
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4.3.3 Results

In this section we run a simple detection algorithm on the previously described dataset. The detection is based on

a set of plausibility and consistency checks on the received message data. These checks are done on the Position,

Speed, Heading and Acceleration fields. The tests include: (1) Absolute plausibility, (2) Temporal consistency,

(3) Relative consistency of a field with respect to another, (4) Consistency with respect to a Kalman Filter, (5) Overlap

of two vehicles, (6) Beacon frequency compliance, (7) Sudden appearance plausibility, (8) Transmission range

plausibility. For a more detailed description of the used checks please refer to section 3.3.4. Additionally, the

implementation is open source and available on GitHub [26].

The plausibility checks are calculated then passed through a threshold mechanism. If the threshold is reached

for a certain check, the vehicle message is considered misbehaving. The output of the detection mechanism is

partitioned into four groups: True Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives

(PN) and evaluated as described in section 3.3.8.

Table 4.5 shows the results of our basic detection algorithm for each subset of our dataset. The first thing we

notice is that the detection quality is largely dependent on the type of misbehavior. The F1score almost doubles

when comparing between the least and the most detected attack. We also notice that this is mainly due to a lower

Recall than a lower Precision. This means that our detection solution has a tendency to reduce the False Positives

at the expense of some missed detections. We also notice that the time of day and consequently the general

vehicle density does not greatly affect the detection quality. For each attack, both the peak time scenario (07h - 09h)

and the low density scenario (14h - 16h) are within the same detection range. This effect could be specific to our

benchmarking detection solution. Future research with more advanced solutions, especially cooperative detection

schemes, could be more revealing in this regard. Last thing we notice is that the Precision is generally lower for the

attacks that contains replaying other vehicle’s data. This means these attacks are successfully tricking the detection

system into flagging the target genuine vehicles as misbehaving. Future detection solutions should consider the

effects of this new attack vector and find mechanisms that are resistant to this category of disruptive nodes.

4.3.4 Summary

In this paper we provide an extension to the VeReMi dataset for misbehavior detection in VANETs. This extension

includes a new set of more elaborate attacks, a realistic physical error model and a larger collection of data. This

study also includes the detection results of a simple misbehavior detection mechanisms as an initial benchmark.

Our dataset will enable other researchers to further improve their detection mechanisms, create new mechanisms

for the newly provided attack vectors and compare their results to our benchmark.
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4.3.5 Conclusion

This section concludes our work on the local misbehavior detection. In the first section, we present our work on the

use of the confidence range in the misbehavior detectors. This work lead us to conclude that the confidence range is

important for the detection process and local misbehavior studies should take this data field into consideration in the

future. In the second section, we analyse the results of a comparison between different local fusion mechanisms.

This comparison shows that future work on the evaluation of fusion detectors should take into consideration the

response time as well as the detection accuracy. Finally, our work on the VeReMi dataset shows the importance of

a comparable evaluation of different mechanisms. The VeReMi dataset also shows the differences in the detection

rate of various attacks. These attacks on the ITS system should be better anticipated by researchers in order to

more effectively defend against issues that might be encountered during deployment.
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Chapter 5

Misbehavior Reporting

In this chapter, we focus on the reporting process of Misbehavior Detection. In section 5.1, we propose a misbe-

havior report message format that enables an entity to report a detected misbehaving entity. We explain first the

functional requirements of a misbehavior reporting mechanism. Then, we detail the data information that are inte-

grated in the reports in order to provide reliable evidences to the misbehavior authority. In section 5.2, we create a

set of misbehavior reports based on the format and according to the protocol we propose. We publish the resulting

dataset for the research community. It can be used to evaluate the global component of misbehavior detection

systems.

5.1 Misbehavior reporting protocol

Misbehavior detection is a set of mechanisms that rely on monitoring C–ITS communications to detect and report

potentially misbehaving entities. The system is based on four steps: Local detection, reporting, Global detection and

reaction (see section 2.4.3). Although many works on misbehavior detection exist in the literature, to the best of our

knowledge, most of them focus only on the first step. In this section, we focus mainly on the second step. We believe

that the reporting process is as important as the local detection process because it allows the MA to collect massive

amounts of information about potential a misbehavior in the C–ITS system. Consequently, this leads the MA to build

a centralized view of the misbehavior situations and to generate reliable misbehavior detection results. The choice

of the data integrated to the misbehavior report is a key point that may impact the centralized misbehavior detection

process in the MA.

Actually, only few works define the needed data of the Misbehavior Report (MBR) [118] [119]. These works

agreed on the fact that evidences should be included in MBRs as a proof of what is reported. Not including this

evidence would make forging a report a trivially easy action. However, none of the studies discuss and specify what

actually should be these proofs. In this work, we propose a MBR, message format and detail relevant information
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that should be included in it. Also, for each detected misbehavior type we propose the corresponding proofs to be

included in the MBR as well as a related confidence level. The latter is an indication that enables to differentiate

non-forged proofs and self-forged proofs (i.e. if a proof could be forged by the reporting entity).

5.1.1 Misbehavior reporting scenario and requirements

A typical misbehavior reporting scenario occurs when a genuine vehicle detects a suspicious behavior generated

by another vehicle sending fake beacons or warnings on the vehicular network. The genuine vehicle reports this

misbehavior to the MA located in the back-end security system (see Figure 2.5).

The detection is based on a set of plausibility and consistency checks shown in Table 5.3. These set of checks

are performed by a vehicle when receiving a V2X message such as a CAM or DENM. When a vehicle detects a

misbehavior, it generates a MBR and sends it to the MA. Notice that the reporting is not a real time process. The

report is sent to the MA when a connectivity is available via the cellular network or directly through the ITS-G5

network. The MA should proceed extensive data analysis to investigate whether a misbehavior has occurred or not

in the network. Thus, a vehicle does not wait for a decision response about the reported node from the MA. Instead,

it should be able to take appropriate decision locally such as blocking packet reception from the suspicious node.

The misbehavior reporting process should fit to the following requirements:

• Privacy protection: The MA should not be able to link the short term and the long term identity of the reported

and the reporter entities. The reporter uses its pseudonym to communicate with the MA.

• Efficiency and minimum resource consumption: The MBRs should not overload the communication channel.

The reporting process should avoid sending repetitive and redundant information about the same misbehavior.

• Reliability and proof-based: The reporter should integrate the required proofs of the misbehavior: using the

input data from the reporter, the MA should be able to re-compute the same misbehavior checks and get the

same reported results.

• Flexibility: The MBR should be extensible in order to integrate new misbehavior checks and new data proofs if

needed in the future.

5.1.2 Proposed misbehavior reporting approach

5.1.2.1 Misbehavior message

The proposed report format is provided in Annex 9.1 in ASN.1. This format includes several key features detailed in

this section:

• Reducing overhead by relating messages
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• Verifying the identities with a pseudonym certificate

• Specifying the type of misbehavior

• Specifying the evidence required by misbehavior type

Reducing overhead by relating messages: In our system, the ITS entity should refrain from reporting a misbe-

having station that is continuously misbehaving. Instead, the station should send an initial report then wait whilst

collecting evidences. After a certain period of time the entity sends a new report that includes the relatedReport-

Container. This container specifies the ID of the initial report and the number of omitted reports along with the

collected evidences. However, if in the meantime the reporter changes its pseudonym, the report should not include

the initial report ID. This protocol would indeed prevent the linkability of the reporter pseudonyms by the MA thus

ensuring the reporter privacy.

Verifying the identities with a pseudonym certificate: For a report to be valid, the report should be signed

with the pseudonym certificate issued by the PKI. This signature is not visible in the report ASN.1. It is included

in the security header that encapsulates this message. Additionally, the report format requires at least one valid

pseudonym certificate of the reported entity in the reportedMessageContainer to be valid.

Specifying the type of misbehavior: The detection type is specified in the misbehaviorTypeContainer. It could

be on a security or semantic level. Security layer are done on a message as soon as it is received. If the message

passes the security checks, it goes to the facilities layer where the semantic checks are applied. In this analysis,

we focus mainly on the CAM message, the base message for C–ITS services. However similar approaches for the

misbehavior evidence can be applied for other type of messages [68] [69].

In case of a fail on the security level, an OCTET STRING should specify the error code (Table 5.1). Every bit set

to one infers a failed security test. This variable should include bits for all the security tests specified in the ETSI

Technical Specifications [44] and [120]. In case of a fail on the semantic level, the error code would depend on the

type of the message included in reportedMessageContainer. In the case of a CAM, the fail is linked to one or more

data fields as shown in Table 5.3. Therefore, the OCTET STRING should point to the relevant data fields (Table 5.2).

The error code of the semanticDetectionReferenceCAM is coupled with a detection level. Several types of checks

can be performed on the CAM, with different types of data necessary to execute them. This is why we propose the

following approach: we define 4 level of checks which corresponds to the levels of data we need to perform a check.

The levels are defined as follows:

• Level 1: Implausibility within a single message.

• Level 2: Inconsistencies between successive messages.
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• Level 3: Inconsistencies with the local environment.

• Level 4: Inconsistencies with respect to on-board sensors.

Table 5.1: securityDetectionErrorCode Description

Octet
ID

Bit
ID Security Reference

Verification of the certificate:
0 0 The certificate is an AT
0 1 The parent certificate is known
0 2 The parent certificate is an AA
0 3 Certificate validity period
... ... ...

Verification of the CAM security profile:
1 0 signer info, generation time and its aid are not duplicated
1 1 Ascending order of hearder fields
1 2 No Forbiden header fields for CAM
1 3 The payload is present and its length is not nul
... ... ...

Table 5.2: semanticDetectionErrorCodeCAM Description

Octet
ID

Bit
ID Data Field

0 0 ReferencePosition
0 1 Heading
0 2 Speed
0 3 DriveDirection
0 4 VehicleLength
0 5 VehicleWidth
0 6 LongitudinalAcceleration
0 7 Curvature
1 0 YawRate
... ... ...

Specifying the evidence required by misbehavior type: Table 5.3 provide a set of checks for the data fields

of the CAM message classed by detection level. The table also includes the required evidence to recreate the

misbehavior checks defined by detection level. This evidence is the same data used by the ITS–S to initially detect

the misbehavior. This approach allows us to determine what evidence should be included in the evidenceContainer

based on the error code and the detection level. Here are the data required for the execution of these checks for

each level:

• Level 1: The CAM of the reported vehicle.

• Level 2: A history of 2 or more successive CAMs of the reported vehicle.

• Level 3: Level 2 evidence with additional environmental data (eg. LDM).
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Table 5.3: Misbehavior Detectors For Cooperative Awareness Messages (CAMs)
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• Level 4: Level 2 evidence with additional local sensor data which could be encapsulated in a Collective

Perception Message (CPM) [35].

For each of these levels, we associate a value of trust. Indeed, levels 1 and 2 are reliable because the proofs

consist only of the received CAMs, which are signed by the sender. Whereas levels 3 and 4 require environmental

or internal data to the reporter vehicle that it could have forged himself in order to report an innocent vehicle.

Confidence is therefore lower in an MBR of level 3 or 4. Nevertheless, we consider that it is more useful to send a

MBR to the MA than not to send any at all, even with unverifiable evidence. It will be up to the MA to identify, with

the global vision it has via the MBRs received from other vehicles, whether the MBRs should be taken into account

or not.

5.1.2.2 Misbehavior report protocol

Start Reporting Process

Send Initial Report Report

Evidence Collection Phase

Send Follow-Up Report Report

Vehicle
In Range

Misbehavior
Detected

End Reporting Process

yes

no

yes

no

Figure 5.1: Reporting protocol: flowchart description

The misbehavior reporting protocol is designed to include the necessary information for the back-end detection

while simultaneously reducing network overhead (see Fig. 5.1). Basically speaking, a vehicle performs the following

actions upon detection of a malicious node:

i. Send an initial report including the necessary information described in Section 5.1.2.1.
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ii. Collect evidence for a predefined time period.

iii. Send a follow-up report with all the evidence collected in the previous step.

iv. According to the current status, if:

(a) A new anomalous behavior is detected while collecting evidence: go back to step ii.

(b) The reported vehicle is out of range: End reporting process

(c) No misbehavior is detected: End reporting process

5.1.3 Conclusion

In this section, we proposed a detailed misbehavior reporting protocol which provides a set of misbehavior proofs

to the central misbehavior authority. This allows the misbehavior authority to reproduce the reported misbehavior

detection results and to combine them with other received reports. We defined precisely the report format in ASN.1

and describe the functionalities of each field of the message. We based this analysis on the CAM message, but we

plan on extending this work for all the types of messages.
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5.2 Misbehavior reports dataset

After introducing a misbehavior reporting format, we wanted to facilitate the use of this format by researchers. For

this reason, we created and published the DAtaset of REports (DARE). DARE consists of reports of misbehaving

entities collected from individual ITS–S performing simple plausibility checks. It includes multiple scenarios and

parameters that could help researchers evaluate their solutions for different use cases. The dataset was also used

in our work on global detection, where we propose solutions for the MA architecture (see section 6.1 and section

6.2). The free publication of this dataset in open source format will enable researchers to better reproduce and

evaluate our global detection systems as well as improve and adequately compare future proposals.

5.2.1 Related works

Numerous misbehavior detection systems are available in the literature. However, relative effectiveness of a certain

solution compared to other is seldom correctly evaluated. To this end, researchers require an adequate dataset for

comparable evaluations. Multiple types of datasets exist in the literature as described in [86]. They can be divided

into the following two categories:

• Real-world datasets: these datasets collected using digital video cameras or deployment projects are partic-

ularly valuable due to the unprecedented level of detail and accuracy. Their limitation however is the difficulty

to capture cases of misbehavior detection. E.g. it is difficult legally to deploy real misbehaving entities on the

road.

• Core simulation datasets: these datasets rely on software implementations of mathematical models that repli-

cate fundamental driver behavior logic. For example, SUMO and VEINS are well developed simulation soft-

ware often used to test vehicular solutions.

Gozálvez et al. presents a field test campaign as part of the iTETRIS European research project [121]. Their

work is an example of a deployment project dataset. The project aims at testing the quality of IEEE 802.11p Vehicle

to Infrastructure communications. Their dataset includes 22 different RSU broadcast messages to a vehicle moving

in an urban environment. Additionally, it contains the local positioning information and the Received Signal Strength

Information (RSSI) of the received messages for different positions of the deployed vehicles. However, this dataset

includes only normal behavior without any attacker data, which is restrictive for misbehavior detection evaluation.

In our proposed dataset, we have normal and misbehaving entities, which can be used to evaluate misbehavior

schemes.

Van der Heijden et al. propose a VeReMi for local misbehavior detection validation [81]. Their work is an

example of a simulation dataset. They used VEINS, a co-simulation of SUMO and OMNET++. The dataset consists

of message logs for every vehicle in the simulation (vehicle position and speed and the message RSSI). The number
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of vehicles, the number of attackers, as well as the attacker rates, and many other parameters are also provided.

VeReMi was specific for local misbehavior detection component and is not as useful for studies targeting the global

detection component.

Accordingly, we create a new dataset tailored for testing the global detection component. The dataset includes

multiple scenarios, attacker percentage and vehicle densities. This work can help other researchers working on this

topic to test their global misbehavior detection solutions and compare their contributions to ours.

5.2.2 System model

5.2.2.1 Simulation scenarios

In order to create this dataset, we use our F2MD simulator. We use the networks provided in F2MD described in

section 3.3.2. Specifically, we use the large 6.51km
2 LuST scenario as the main base for the dataset, but we also

include a set of the 1.11km
2 Paris-Saclay scenarios as a test bench.

5.2.2.2 Attacker model

In this study we consider the attacker as insider, i.e. the attacker is an authenticated vehicle with a set of valid

certificates. We also consider that the attacker has full unrestricted access on his previously acquired certificates

and could change it at will. Our dataset includes the types of misbehavior described in section 3.3.3.

5.2.2.3 Local detection

Local misbehavior detection is based on simple and fast checks on the data that are fused within a detection

application. The local checks consist mostly of verifying the plausibility and consistency of V2X message data. In

this study, 18 selected checks are executed simultaneously on every message. These checks are described in

section 3.3.4.1 and span levels 1, 2 and 3 described in section 5.1.2.1.

The local detection application is a layer used to evaluate the previously calculated checks and determine if

a report to the global MA is required. For the generation of this dataset we use a non-cooperative trust based

approach. This approach is described in section 3.3.4.2.

5.2.3 Proposed dataset description

5.2.3.1 Dataset format

Our proposed dataset includes the initial reports and follow-up reports as described in section 5.1.2. Both types of

reports are encoded in JSON, a lightweight data-interchange format. The format has the following description:
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{"Report":{

"Metadata":{

"senderId":Z[0,+∞],

"reportedId":Z[0,+∞],

"generationTime":R[0,+∞],

"senderRealId":Z[0,+∞],

"reportedRealId":Z[0,+∞],

"attackType":"String"

},

"Messages":[

{

"CreationTime":R[0,+∞],

"Pos":[R[−∞,+∞],R[−∞,+∞],R[−∞,+∞]],

"Speed":[R[−∞,+∞],R[−∞,+∞],R[−∞,+∞]],

"Accel":[R[−∞,+∞],R[−∞,+∞],R[−∞,+∞]],

...

},

...

]

"Checks":[

{

"rangePlausibility":R[−∞,+1],

"posPlausibility":R[−∞,+1],

"posConsistency":R[−∞,+1],

"speedPlausibility":R[−∞,+1],

...

},

...

]

}}
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5.2.3.2 Dataset categories

Annex 9.2 shows all the subsets categories available in our dataset. In this dataset the evidence collection phase

of the reporting protocol is set to 10 seconds. We mainly altered four variables: the vehicle traces, time of day,

attacker rate and attacker type. The vehicle traces change between the Luxembourg and the Paris-Saclay network.

We generally use the Paris network as our Test-Bench. The changes in the time of day entails a change in the

general vehicle density as shown in Figure 3.4d. The attacker rate is stated for every scenario. The attack launcher

is designed to inject a new attacker when the rate drops below the set value. All the listed datasets could be

downloaded individually from our Cloud Drive [122].

5.2.3.3 Local detection results

Table 5.4: Dataset scenarios local detection

Id Local Detection Metrics
Accuracy F1Score C’s Kappa

Lust-0024-25S 0.91379 0.86995 0.65324

Lust-0611-15M 0.98191 0.93798 0.86432

Lust-0611-15A 0.90524 0.82466 0.55098

Lust-1115-25A 0.89421 0.86547 0.61923

Lust-1115-05M 0.99183 0.91278 0.82463

Lust-1521-25M 0.97060 0.93797 0.85216

Lust-1521-05A 0.96135 0.79448 0.54616

Paris-0024-05S 0.98840 0.91767 0.83622

Table 5.4 shows the local detection metrics for some scenarios. The list of all the local detection results with

more detection metrics is included with the dataset. The detection quality is based on the detection checks and

applications described in section 5.2.2.3. To evaluate the detection quality, we used the Accuracy, F1Score and

Cohen’s kappa. These detection metrics are described in section 3.3.8.

These results show that the attacker rate and type alteration affect the local detection quality. Consequently, it

also affects the number and quality of collected misbehavior reports. We strongly believe that there is a relation

between these variables and the global detection results. Accordingly, these metrics should be considered when

analyzing results extracted from this dataset.

5.2.3.4 Dataset parser

We provide a specific parser designed to read and store this type of data. This parser is provided in order to facilitate

the treatment and study of the proposed datasets. This parser is implemented in python to enable easy machine
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learning applications. The data is sorted automatically by reported pseudonym. A simple threshold application

example is provided along with evaluation metrics and graph plotting mechanisms. This parser can also be found in

open source format on our GitHub [26]

5.2.4 Conclusion

Global Misbehavior detection in C–ITS is still a developing topic. The demand for robust and concrete detection

solution is rising especially in ITS standardization working groups of the ETSI and IEEE. We provide a large dataset

of misbehavior reports for comparative evaluation of global detection solutions. This dataset is aimed at facilitating

and catalyzing the currently in demand work on the global side. Now that we have defined the report, in the next

chapter we work on the design of the MA which receives and processes these MBRs.
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Chapter 6

Global Misbehavior Detection

Global misbehavior detection in C–ITS is carried out by a central entity called the Misbehavior Authority (MA). The

global detection is based on the Misbehavior Reports (MBRs) sent by Vehicle’s OBUs and by RSUs. By analyzing

these reports, the MA is able to compute various misbehavior detection information. In section 6.1, we propose and

evaluate different Machine Learning (ML) based solutions for the internal detection process of the MA. In section

6.2, we extend the ML-based MA with a mechanism to detect Sybil attacks.

6.1 Machine learning based misbehavior authority

The first step in the global misbehavior detection is the collection of reports coming from the local vehicles. The

MA receives a large quantity of data in these reports. This data need to be analyzed to detect different patterns

of misbehavior. Due to the large amount of expected data, we believe that the MA will benefit from using Artificial

Intelligence (AI) solutions such as Machine Learning (ML) to perform this task.

In our model, the goal of the MA is to classify the reported ITS–S as:

1. Misbehaving (and what kind of attack it does),

2. Faulty (e.g. the ITS–S has a broken sensor),

3. Genuine (false positive).

We cast this problem as a multi-class classification problem. We are given a series of observations (x1, x2, ..xn)

and the task is to train a classifier that generates predictions ŷ of the true labels y. In our context, the data we are

dealing with is sequential. Within the same ITS–S, all the data sent to the MA are time-dependent. To elaborate,

data of more recent MBRs depends on data of previously received MBRs. Therefore, a predictive system that can

learn and model these types of dependencies is highly recommended.
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In this work, we propose and evaluate different ML-based solutions for the internal detection process of the MA.

We use the F2MD simulator (see section 3) and show through extensive simulation and several detection metrics

the ability of these solutions to precisely identify different misbehavior types.

6.1.1 Simulation settings and scenarios

In order to evaluate any machine learning model, we first need a set of data. We use the DARE Dataset described

in section 5.2. We use different simulation scenarios provided in F2MD for the training part and testing part of our

algorithms (see section 3.3.2). We use the 24h LuST scenario vehicle traces [96] for the training of our models (see

entry Lust-0024-25S in Annex 9.2). As for the testing, we used the Paris Saclay network (see entry Paris-0024-05S

in Annex 9.2). The choice of this test scenario has a purpose of having a significantly different train and test set. We

use a mix of all the attacks introduced in section 3.3.3, except the Sybil attacks which are treated in section 6.2.

6.1.2 Model Development

In this section we describe the step by step process we followed in the development of our machine learning model.

During this development we followed an iterative process. In this process, we define three key elements of our

model: the features, the algorithm and the hyper-parameters. We first start by defining and improving the quality of

the ML features.

6.1.2.1 Feature selection

A feature is any attribute that can be used to characterize the data. They are individual independent variables that

serve as inputs to a ML system. The quality and quantity of the features can highly affect the results we are trying

to achieve. Thus, selecting a good set of features is of paramount importance. In this step, we use the gradient

boosting trees algorithm eXtreme Gradient Boosting (XGBoost) proposed by Chen et al. in [109]. Our choice of

XGBoost is based on two main reasons:

1. Kaggle performance: Kaggle is a Google owned web platform for organizing data science competitions [123].

On this platform, companies offer problems in data science and offer a price to the best performing system.

XGBoost is consistently amongst the best performing algorithms in various use cases.

2. CPU intensive learning: During this thesis we had access to a High Performance Computing (HPC) unit

with four Intel(R) Xeon(R) CPU E7-8880 v4 @ 2.20GHz resulting in 88 CPU cores and 176 CPU threads.

Since XGBoost learning is done on CPU threads, our setup enables us to quickly run multiple instances of the

algorithm with different hyper-parameters. Using model selection tools like the grid search by scikit learn [99]

and the hyperopt python library [124] we are able to easily hyper-optimize and cross-validate our algorithm.
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This parameter hyper-optimization would enable us to more confidently compare different models and attribute

the difference in performance to the input features.

Before selecting any features, we first start by calculating a weighted random predictor on the test data. This

predictor helps us determine that a certain result is caused by a trained model and not simply attributed to chance.

In other words, the result of this predictor will enable us to attribute any higher accuracy classification to the selected

features instead of the unbalanced nature of the test data set. Table 6.1 shows the prediction evaluation metrics

averaged on 100 runs.

Table 6.1: Prediction results for the weighted random predictor

Evaluation Metrics Precision Recall F1score Accuracy

Macro average 0.0624 0.0624 0.0624 0.0680Weighted average 0.0680 0.0680 0.0680

6.1.2.1.1 Feature set: single check

The first and most obvious feature set we tested are the plausibility checks done on the messages previously

developed for the local detection (see section 3.3.4.1). We wanted to quantify the usefulness of this information

in determining the type of misbehavior. We extracted the plausibility checks from each report and used them as

individual features to the XGBoost model. Table 6.2 shows the results of the hyper-optimized and 5 fold cross

validated model compared to a weighted random predictor. These results show a large and clear improvement with

respect to the weighted random model. This result validates our hypothesis that the checks could be used to identify

the type of misbehavior.

Table 6.2: Prediction results for the single check feature set

Evaluation Metrics Precision Recall F1score Accuracy

Macro average 0.8360 0.8298 0.8249 0.8334Weighted average 0.8511 0.8334 0.8379

To make our results easily reproducible, we include the following XGBoost hyper-optimized parameters: (a) Learn-

ing rate: 0.5, (b) Maximum depth of a tree: 9, (c) Learning objective: binary:logistic, (d) Minimum sum of instance

weight needed in a child: 0, (e) Subsample ratio of the training instances: 0.9, (f) Subsample ratio of columns when

constructing each tree: 1.0, (g) All other parameters were set to their default value. The explanation behind each

value could be found in [109].
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Table 6.3: Prediction results for the checks average feature set

Evaluation Metrics Precision Recall F1score Accuracy

Macro average 0.9757 0.9687 0.9714 0.9715Weighted average 0.9731 0.9715 0.9716

6.1.2.1.2 Feature set: Checks average

The previous test shows that a single independent set of checks does contain information that is useful to identify

a type of misbehavior. However, while treating the data one useful part of the information was lost: the relation

between reports. Multiple reports are received from multiple ITS–Ss signaling the same misbehaving station. The

plausibility checks in these reports could be treated together to give a more accurate description of the misbehavior.

To fuse the checks in these related reports, we simply opt to calculate these four functions: (1) the mean value,

(2) the minimum value, (3) the maximum value, (4) the standard deviation. Using the merged features as input,

we re-trained a new XGBoost model. Table 6.3 shows the results of the hyper-optimized and 5 fold cross validated

model. This result shows that the relation between reports contains valuable information in the detection of the

misbehavior type.

To make our results easily reproducible, we include the following XGBoost hyper-optimized parameters: (a) Learn-

ing rate: 0.1, (b) Maximum depth of a tree: 4, (c) Learning objective: binary:logistic, (d) Minimum sum of instance

weight needed in a child: 5, (e) Subsample ratio of the training instances: 1.0, (f) Subsample ratio of columns when

constructing each tree: 0.7, (g) All other parameters were set to their default value.

6.1.2.1.3 Feature set: Beacon data

Previously, we focused on the features based on the plausibility checks done on the data. However, the reports

also include the raw data of the beacons such as: (1) the position, (2) the position confidence, (3) the velocity,

(4) the velocity confidence, (5) the acceleration, (6) the acceleration confidence, (7) the heading, (8) the heading

confidence, (9) the dimensions. Using this data, we calculate the absolute difference between the values of two

consecutive beacons emitted by the same ITS–S. Finally, we combine the raw data and the absolute difference and

we calculate (1) the mean value, (2) the minimum value, (3) the maximum value, (4) the standard deviation. We

use the output of these function as input features for a new XGBoost model. Table 6.4 shows the results of the

hyper-optimized and 5 fold cross validated model. These results show that the information contained in the raw data

that is untreated with the plausibility checks is still valuable with respect to detection of the misbehavior type.

To make our results easily reproducible, we include the following XGBoost hyper-optimized parameters: (a) Learn-

ing rate: 0.3, (b) Maximum depth of a tree: 3, (c) Learning objective: binary:logistic, (d) Minimum sum of instance

weight needed in a child: 0, (e) Subsample ratio of the training instances: 1.0, (f) Subsample ratio of columns when
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Table 6.4: Prediction results for the beacon data feature set

Evaluation Metrics Precision Recall F1score Accuracy

Macro average 0.9314 0.8998 0.8926 0.9043Weighted average 0.9203 0.9043 0.8920

constructing each tree: 0.8, (g) All other parameters were set to their default value.

6.1.2.1.4 Feature set: Combined data

Previously, we treated the data and the plausibility checks independently. In combining both these feature sets, we

should provide the XGBoost algorithm with more information to predict the misbehavior type. Table 6.5 shows the

results of the hyper-optimized and 5 fold cross validated model. The results are slightly better than both the previous

models. We consider this set of features as a baseline for the algorithm optimization.

Table 6.5: Prediction results for the combined data feature set

Evaluation Metrics Precision Recall F1score Accuracy

Macro average 0.9860 0.9786 0.9819 0.9814Weighted average 0.9818 0.9814 0.9812

To make our results easily reproducible, we include the following XGBoost hyper-optimized parameters: (a) Learn-

ing rate: 0.5, (b) Maximum depth of a tree: 1, (c) Learning objective: binary:logistic, (d) Minimum sum of instance

weight needed in a child: 0, (e) Subsample ratio of the training instances: 0.8, (f) Subsample ratio of columns when

constructing each tree: 0.8, (g) All other parameters were set to their default value.

6.1.2.2 Algorithm selection

After selecting the relevant features towards detecting the misbehavior type, we now focus on finding the optimal al-

gorithm to take advantage of these features. Until now, we have used XGBoost for all of our training and predictions.

Even though XGBoost is amongst the best classifiers in the literature, the performance of a classification algorithm

is use case dependent. Therefore, for our use case, we evaluate three additional ML algorithms: Random Forests

(RF), Multi-Layer Perceptron (MLP) and Long Short-Term Memory (LSTM).

6.1.2.2.1 Random Forests (RF):

RF and XGBoost are both tree-based models. The difference between the two lies in the way the trees are con-

structed: the order and the combination methods of different branches. Table 6.6 shows the results of the hyper-

optimized and 5 fold cross validated RF model. The RF model results are slightly worse than the XGBoost ones.
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This is expected and in line with other use cases of the state of the art where XGBoost generally has better perfor-

mance than RFs.

Table 6.6: Prediction results for the RF

Evaluation Metrics Precision Recall F1score Accuracy

Macro average 0.9843 0.9548 0.9616 0.9601Weighted average 0.9645 0.9601 0.9542

To make our results easily reproducible, we include the following RF hyper-optimized parameters: (a) The maxi-

mum depth of the tree: 12, (b) The minimum number of samples required to be at a leaf node: 2, (c) The minimum

number of samples required to split an internal node: 5, (d) All other parameters were set to their default value.

6.1.2.2.2 Multi-Layer Perceptron (MLP):

MLP is a type of artificial neural network organized in several layers within which information flows only in one

direction: from the input layer to the output layer. Therefore, it is a feed-forward network. Each layer is made up of

a variable number of neurons, the neurons of the last layer being the outputs of the global system. Table 6.7 shows

the results of the hyper-optimized and 5 fold cross validated MLP model. The MLP performs slightly worse than the

XGBoost model. This could be due to the relatively low size of the data compared to a real world use case. Deep

learning would be more beneficial while using a larger sample of collected data. The results could also be due to

the heterogeneous nature of the input features.

Table 6.7: Prediction results for the MLP

Evaluation Metrics Precision Recall F1score Accuracy

Macro average 0.9536 0.9615 0.9559 0.9676Weighted average 0.9706 0.9676 0.9684

6.1.2.2.3 Long Short-Term Memory (LSTM):

A LSTM is a type of Recurrent Neural Network (RNN) with short-term and long term memory. An RNN is a network

of artificial neurons with recurrent connections. A recurrent neural network is made up of interconnected neurons

interacting non-linearly and for which there is at least one cycle in the structure. The units are connected by weighted

synapses. The output of a neuron is a non-linear combination of its inputs.

The LSTM model is able to take as input a time series of observation. This means this algorithm could handle the

series of features, from beacon data to plausibility checks, without the need to combine them with an average. This

means it could represent and benefit from the relation between successive observation to increase the detection
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quality. Table 6.8 shows the results of the hyper-optimized and 5 fold cross validated LSTM model. The LSTM model

has a similar performance to the XGBoost. However, according to the literature, we suspect that this model would

scale better with larger data samples.

Table 6.8: Prediction results for the LSTM

Evaluation Metrics Precision Recall F1score Accuracy

Macro average 0.9760 0.9788 0.9771 0.9816Weighted average 0.9823 0.9816 0.9817

6.1.3 Summary

In this work, we focus on global misbehavior detection in C–ITS. Specifically, we explore ML solutions for global

misbehavior type classification. To achieve this goal, we extract features from the local ITS–Ss detector checks and

engineer additional features from the raw beacon data. We evaluate the effects of these features on the detection

quality. Last, we propose and test various ML algorithms and analyze their results. These tests are supposed to

serve as an indication or a starting point for implementing an ML based MA. However, a better algorithm selection

should be done on real data collected from a large-scale deployment.
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6.2 Misbehavior authority for Sybil attack detection

This work extends the solution proposed in section 6.1. Here, we focus on Sybil attacks. A Sybil attack takes

place when an ITS–S takes advantage of its available pool of pseudonyms and uses them simultaneously to disturb

the system: it periodically broadcasts V2X messages and signs them with different pseudonyms. The pseudonyms

used for the Sybil attack are valid which complicates the MA detection. We propose a misbehavior detection process

at the MA level which is able to identify and detect both Sybil and other types of attacks. It is based on advanced ML

algorithms. In addition, we evaluate our solution by integrating it in both ETSI and IEEE C–ITS standard architecture.

6.2.1 The Sybil attack

In the current C–ITS system, each vehicle should use a single pseudonym certificate for a certain time period to

sign its generated V2X message. However, it is important to ensure the ability of vehicles to continuously send

V2X messages even without connection to the PKI. Therefore, it is necessary that the vehicle possesses a pool of

several valid pseudonyms simultaneously. The European Commission published a Security Policy where it recom-

mends the use of a maximum pool of 100 valid pseudonym certificates [125]. Even with this pool of pseudonyms,

vehicles should not use more than one pseudonym certificate during a certain period of time to sign their messages.

However, a misbehaving vehicle may intentionally use multiple valid pseudonym certificates at the same time, which

results in a Sybil attack.

In section 3.3.3.2 we propose different types of Sybil attacks in the V2X network. In this section, we expand this

definition with a more in-depth description:

1. S1 Traffic Congestion Sybil: As shown in figure 6.1, the attacker uses valid pseudonyms to simulate multiple

ghost vehicles. Vehicles within the communication range of the malicious vehicle receive the fake messages

and conclude that a congestion occurs on the road. The attacker intelligently calculates the kinematic data for

the ghost vehicles such that the fake messages have plausible and coherent contents.

Figure 6.1: Sybil attack: Traffic congestion

2. S2 Data replay Sybil: This attack consists on reporting legitimate vehicle as malicious. The attacker chooses

a victim vehicle and creates messages containing positions broadcasted by the victim vehicle. As shown in

figure 6.2, the attacker sends at time t=1 a message containing the same position (X1) as the victim vehicle.
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One of the hardest challenge of the detection system is to know which node is the real one (the victim) and

which one is the ghost one. In this case, there is a good probability that the victim vehicle is reported as

attacker.

Figure 6.2: Sybil attack: Data replay

3. S3 Dos Random Sybil: As shown in figure 6.3, the attacker creates messages with random data (e.g., the

position is not on the road). The attacker uses a different pseudonym for every sent message. The motivation

behind such attack could be to overwhelm the misbehavior detection algorithms of neighboring ITS–S.

Figure 6.3: Sybil attack: DoS Random

4. S4 Dos Disruptive Sybil: This attack is a combination between S3 and S2. As shown in figure 6.4, the attacker

uses a different pseudonym for each message but does not fill them with random data. Instead, the transmitted

data is based on the ones received from the neighboring vehicles. The difference between S4 and S2 is that

S4 does not follow one victim, the attacker is trying to disturb the system with sudden appearance of vehicles.

For example, the attacker sends at time t=1 a message containing a position (pos=X1), and at time t=2 a

message containing another position (pos=X2) which is the position of another vehicle. The motivation of the

attacker could be the degradation of the safety system quality thus decreasing the reliability of the exchanged

information.

Figure 6.4: Sybil attack: DoS disruptive
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6.2.2 Misbehavior authority investigation process

We propose a MA system architecture (see figure 6.5). The proposed architecture consists of three main phases:

General Misbehavior Type Detection, Pseudonym Linkage and Sybil Type Detection. The MA system takes a MBR

as input and returns the predicted attack type as output. In the first phase we start by detecting misbehavior

types related to one single pseudonym identity. This phase is explored in detail in section 6.1. This detection is

effective against misbehavior types that are non-Sybil, since all reports related to the attack will also be linked by

the attacker’s pseudonym. However, this detection fails against attacks that makes use of multiple pseudonyms.

To address this problem, we propose the pseudonym linking schemes. In the second phase, we attempt to link

the pseudonyms related to the same physical reported ITS–S. If no link is found the process is complete and the

misbehavior type is returned. If a link is found, then a Sybil attack is suspected and the linked pseudonyms are

candidates for Sybil attack type detection in phase three. In this third phase, the linked pseudonyms are treated as

one and the evidences collected from all the reports of linked pseudonyms is used in a specific Sybil type detection

process. The predicted Sybil misbehavior type is returned and the process is complete.

6.2.2.1 Phase 1: General misbehavior type detection

The goal of this phase is to detect as accurately as possible the type of misbehavior related to one pseudonym.

This evaluation of this phase is described in more detail in section 6.1. It is accomplished using the following steps:

1. Pre-processing:

• Database Storage: We start by adding the reports to a spatial database. This enable us to do fast and

efficient geographic queries.

• Filter Similarities: We aggregate similar data from multiple reports (e.g. several ITS–S detecting the

same implausibility and sending the same evidences). We found this filtering to significantly improves the

detection speed and quality.

• Feature Generation: We extract key information from the collected evidence in our database. These

information, also called features, are then used by the ML-based detection algorithm to determine the

type of misbehavior. The quality of the extracted features is crucial to the robustness and accuracy of the

detection. We evaluated different sets of features through cross validation on our relatively large data-set

and verified a set of 30 features:

– The local detection checks done on V2X messages described in section 3.3.4.1.

– The Position, Speed, Acceleration, Heading and Time of the last beacon.

– The ∆Position, ∆Speed, ∆Acceleration, ∆Heading and ∆Time between the last 2 beacons.

– The ∆Time between the last 2 received reports.
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Figure 6.5: Sybil attack: global detection system architecture
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– The number of time this evidence has been received (e.g. the number of filtered reports data).

2. Prediction:

• Autoencoder: An autoencoder is a ML tool used to reduce the dimensions of data. We use it compress

the previously created features. Although this step may not be important for the detection of a non-Sybil

attack, the result is useful for the pseudonym linkage Phase.

• RNN: We provide the previously calculated and compressed features by the auto-encoder to an RNN.

The choice of an RNN was made due to the temporal relation between the received reports. We tested

different simple models and determined that the LSTM has a good performance in our use case. Hence,

for our testing purposes we use an LSTM. However, additional experimenting is needed to explore the

efficiency of different models, thus more complex and elaborate models could be proposed in the future.

6.2.2.2 Phase 2: Pseudonym linking

The goal in this phase is to link the pseudonyms coming from the same vehicle as accurately as possible. However,

in order to be compliant with both US and European C-ITS Systems, we explore two options for pseudonym linking.

1. Pre Processing:

• Space-Time selection: In this step we use the spatial database to recall all the reports within a range and

time of the reporter node. We propose this for processing efficiency reason, e.g. it prevents having to

test all the previously received pseudonyms and limits the detection to the target region.

• Prediction Filter: We use the output prediction of the RNN to filter reports with diverging predictions. If

the RNN detects the same type of attack for two different pseudonyms in the same region and type, we

consider them candidates for the linking test. Otherwise, the pseudonyms are discarded.

• Autoencoder Distance Filter: We use the output prediction of the autoencoder to filter reports with diverg-

ing compressed features. We calculate distances between the compressed features of the recalled and

the current pseudonym. We exclude the pseudonyms with compressed features far from the current one.

• Linkage Features Generation: Similarly to the first feature generation step, we need to extract the relevant

information form the selected pair of pseudonyms. These features are used by the ML algorithm to

determine if the reported pseudonyms are linked or not. Therefore, from each pair of reports we extract

and similarly validate the following set of features:

– The difference between all the previously calculated features of the two latest received report of each

pseudonym.

– The Euclidean distances between the reporter ITS–S position and broadcasted position of the re-

ported pseudonym for both selected pseudonyms.
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– The Euclidean distances between the reporter ITS–S position of one pseudonym and the broad-

casted position of the other reported pseudonym.

– The absolute difference between the two latest RNN predictions of the selected pseudonyms.

2. Linking:

• Linkage Authority (Option 1): The US architecture supports a Linkage Authority (LA). The LA is able to

cooperate with the PKI to link several pseudonyms that belong to the same vehicle. This enables us to

do straightforward linking between the selected pseudonyms. No ML-based prediction is needed.

• ML-based linking (Option 2): The European architecture lacks a LA. To cope with this issue we propose

using a ML-based solution. The goal of this solution is to determine, using the previously calculated

features, if two reported pseudonyms are generated by the same physical ITS–S. For testing purposes

we use an MLP, which is the classical type of neural networks. However, more rigorous experimenting is

needed to propose more complex solutions.

6.2.2.3 Phase 3: Sybil type detection

This algorithm is activated if a link is found in the previous phase. The goal is to detect the type of Sybil attack

related to the number of linked pseudonyms in the previous phase.

1. Sybil Algorithm Pre-Processing:

• Merge Multiple Linked Pseudonyms: In this step we prepare a new database entry where we merge the

evidence data of the multiple linked pseudonyms.

• Filter Similarities: Similarly to the previous filter, we aggregate similar data from the new database entry.

This also improves the prediction performance.

• Sybil Features Generation: We extract from the new and filtered database entry the key detection infor-

mation. These features are the indications used by the ML algorithm to determine the type of Sybil attack.

We create the same features used by the general algorithm described in the first phase. Additionally, we

add two specific feature to the Sybil type detection:

– The number of linked pseudonyms.

– The number of reports in the new database entry.

2. Prediction:

• Recurrent Neural Network: Similarly to the general prediction algorithm, we provide the previously calcu-

lated features to an RNN. We also use the LSTM for testing purposes. The Model and the ML algorithms

and hyper-parameters should be investigated further.
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Finally, the output of the MA algorithm will be the Sybil Attack Type if a pseudonym link is found and the General

Misbehavior Type otherwise.

6.2.3 Simulation settings and scenarios

In order to evaluate our proposed solution, we use the F2MD framework (see section 3). We use the LuST scenario

for the vehicle traces proposed in F2MD (see section 3.3.2). We use different sections of the scenario for the

training part and testing part of our ML algorithms. We use the Large LuST scenario for training and the Small one

for testing. Both scenarios have an attacker rate of 5%. We use the reporting protocol proposed in section 5.1 to

transmit the reports. This results in 5,209,072 MBRs for training and 294,160 MBRs for testing.

In both scenarios we implement the attacks described in section 6.2.1. Additionally, we include a set of other

types of misbehavior in order to increase the complexity of the classification. These types proposed and described

in F2MD (see section 3.3.3): Fixed Position Offset, Random Position Offset, Fixed Speed, Fixed Speed Offset and

Random Speed Offset.

6.2.4 Results and analysis

Figure 6.6: Sybil attack: detection accuracy by type of linkage

Figure 6.6 shows the results of detection accuracy of the Sybil attacks by linkage type. The detection accuracy

is the ratio of the true classified reported vehicles over all the reported vehicles. The first result we notice is that

the total detection for Sybil attacks types using a LA is at 94.97%, whereas it’s only at 88.83% using the Linkage AI

model. This is an expected result as the AI prediction is uncertain compared to the absolute information provided

by the LA. We also notice that the detection accuracy difference between the two linkage types is proportional to
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the general detection accuracy for each type of Sybil attack. This is due to the prediction output of the first phase.

Attacks that are difficult to classify, are less likely to be linked by the AI Linkage. Especially since the classification

output of the first phase is used as an input feature for the AI model. This problem however is not present using the

LA.

Table 6.9: AI Linkage Evaluation Results

Precision Recall Accuracy Fallout Specificity F1Score

95,6% 89,6% 96,4% 1,3% 98.7% 92.5%

Table 6.9 shows the Evaluation Results of the AI Linkage Mechanism. The evaluation metrics are detailed in our

previous publication [14]. As this system is replacing the LA, a high confidence in a perceived linkage is needed

before it is considered. This shows clearly in the results as the Precision is significantly higher than the Recall.

Consequently, the lower Recall (with respect to the LA) results in the lower detection accuracy perceived in Figure

6.6.

Figure 6.7: Sybil attack: detection accuracy by number of received reports

Figure 6.7 shows the detection accuracy of the attacks by the number of the received reports. In other words, it

shows the number of reports needed for an accurate detection.

First, we notice that the detection accuracy for the Data Replay Sybil and Dos Disruptive Sybil attacks require

more reports to converge than for the Traffic Congestion Sybil and Dos Random Sybil. The reasoning for that is both
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the former attacks cause the local vehicles to simultaneously report other genuine vehicles alongside the attacker.

These false positive reports add a significant amount of noise to the data. Therefore, more data is required to sort

the genuine pseudonyms from the attacker pseudonyms. We also notice that the Data Replay Sybil attack requires

more information than the Dos Disruptive Sybil to converge. This is a consequence of the former intelligently

generating a realistic path instead of just replaying data incoherently.

Additionally, we notice that Traffic Congestion Sybil has a relatively low detection rate with one report. However,

even though the attacker tries to intelligently remain within the plausible range, the detection then quickly converges.

This is due to the lack of the simultaneously falsely reported genuine vehicles. The information is clean from false

positives thus multiple reports are analyzed much more efficiently.

Finally, the Dos Random Sybil attack does not cause false positives neither is it within the plausible ranges. As

a result, it is easily detected even with evidence from only one report.

6.2.5 Conclusion

Sybil attacks are a dangerous threat that can significantly deteriorate the C–ITS system quality and lead to catas-

trophic road accidents. In this work, we propose a global misbehavior detection mechanism for C–ITS. More pre-

cisely, we proposed an MA architecture specifically robust against Sybil attacks. This is achieved using machine

learning analysis on the Misbehavior Report and pseudonym linking on the global level. We propose an implicit

Machine Learning (ML) based linking or direct linking using the IEEE Linkage Authority. We show through extensive

simulations that overall detection rate for various types of Sybil attacks is relatively high.
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Chapter 7

Conclusion

7.1 Summary

In this thesis, we start by studying the current state of misbehavior detection in the ITS system. This study shows

how misbehavior detection integrates into the C–ITS model. In chapter 2, we explore the related works already

published on this subject. We then extract the detection mechanisms used in these works and we evaluate their

feasibly with respect to the current standardized C–ITS.

In chapter 3, we describe our simulation framework for misbehavior detection in vehicular networks. A frame-

work that includes a V2X communication network along with pre-implemented attacks as well as different detection

mechanisms and evaluation metrics. Our goal with this framework is to enable the research community to easily

develop, test, and compare detection algorithms.

In chapter 4, we focus on local misbehavior detection. First, we propose to integrate the confidence range of

sensors in the detection checks calculation. The confidence range field is included in the standard V2X messages.

Our results show that taking into account this field enabled a more reliable and fine-tuned detection of implausibility

and inconsistencies on the V2X network. Then, we show a comparison of different local detection fusion applica-

tions. We extract mechanisms used in the literature and re-implement them over the same simulation scenario.

These mechanisms include machine learning, cooperative and trust based mechanisms. The results include the

detection quality and the processing time of each detection mechanism. Finally, as our last contribution on local

misbehavior detection, we propose some improvements to VeReMi, a popular dataset for misbehavior detection.

We update the dataset with a realistic sensor error model and implement a new set of mechanisms of misbehavior.

We also provide different scenarios on different networks with various configurations. We publish this dataset in

open source format for the research community.

In chapter 5, target the misbehavior reporting process. First, we propose a misbehavior reporting protocol.

We define the information to be added in the misbehavior report. This information ensures that the MA is able
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to verify the sender and the reported identities. The MA is also able to verify to a certain extent the occurring

misbehavior through included evidence. We also propose a reporting protocol that reduces the network overhead.

Then, we create a new misbehavior REports DAtaset called DARE. This dataset includes reports in the format and

the protocol that we previously created. It includes different detection and attacker configurations as well as various

network scenarios. We publish this dataset to encourage further research on global misbehavior detection.

In chapter 6, we research the global misbehavior detection. We start by evaluating the use of machine learning in

the misbehavior authority detection process. We define different features needed in the detection process. We then

test various machine learning and deep learning algorithms. Finally, we propose a deep learning model adapted

for the use case of global misbehavior detection at the level of the misbehavior authority. Last, we improve the

detection system of the misbehavior authority against Sybil attacks. We define a three steps detection process

where we enable the linkage of different pseudonyms as well as the detection of specific types of Sybil attacks.

7.2 Perspectives

In this thesis, we explored multiple solutions in the various links of the misbehavior detection chain: local detec-

tion, misbehavior reporting and global detection. In our final analysis, we discovered multiple gaps that could be

addressed in the future.

First, we think that current works focus mostly on the general aspects of the V2X safety messages like the

position or event forging. Instead, studies should focus on safety application specific misbehavior detection. This

misbehavior could have more precise attacker intentions with direct implications. This type of detection could be

more useful if deployed alongside applications to ensure their correct functionality. This type of misbehavior de-

tection was more difficult to achieve in the past since V2X applications were not yet well defined. However, with

the current ongoing work on the specifications of various safety applications, we are seeing new studies that target

specific applications. For instance, Allig et al. explore misbehavior within Collective Perception in [126] and Van der

Heijden et al. and Iorio et al. within the context of Cooperative Adaptive Cruise Control (CACC) in [127] [128].

Another aspect of misbehavior detection that requires more study is the Misbehavior Authority. The MA detection

process is not based on the V2X messages but on the received misbehavior reports. This gives the MA a limited

view on the reality depending of the quantity and quality of the received reports. The MA then has to analyze the

situation using this limited view and issue the correct reaction to protect the system. We think this is a complicated

issue and more studies and resources should be devoted to finding specific detection and reaction mechanisms to

adequately protect the C–ITS system.

Finally, the misbehavior reaction is the most ill-defined link in the misbehavior detection chain. The only reaction

mechanism that is currently discussed is the revocation of a misbehaving user certificates. However, a vehicle

that detects a misbehavior in its vicinity, after reporting it to the MA, should be able to take measures to protect
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its safety mechanisms. A real time immediate reaction against certain known attacks should be defined. We think

that a coherent misbehavior reaction strategy across local and global systems, in real-time and for the long-term, is

needed for effective C–ITS attack mitigation system.

7.3 Lessons learned

During the course of this research, I gained a great deal of knowledge about a plethora of new domains. In this

section, I share the three lessons that I think could benefit the scientific community the most.

The first lesson that I learned is about the scientific contributions in the midst of a moving technological medium. I

come from an engineering background, so when I started researching the ITS domain, I immediately started reading

the most up to date standards and specifications. I envisioned any solution created should fit within the confines of

the ITS spec sheets. However, after participating in the process of creating technical requirements and directives, I

now see things differently. Scientific contributions are not chained to the current technical specifications; they should

be one step ahead. These contributions are driving force behind the new standards.

The second lesson is about the use of machine learning technologies. Before I started this thesis, I had already

been exposed to artificial intelligence mechanisms during various previous projects. During my research into the

related works, I found a number of studies applying machine learning to the misbehavior detection problem. This

lead me to further develop my machine learning skills and to apply it to various parts of the misbehavior detection

process. However, I also discovered that much of the related studies into machine learning, especially in misbehavior

detection, suffered from a common issue. The detection algorithms resulting from the machine learning training

were not always adequately evaluated. For instance, while using a strongly time-dependent data like the beacon

messages, one should not use a random split for the train and test data. A random split in this case would lead to

over-fitting. This is a common issue for studies using the VeReMi dataset. The lesson here is that it is important to

be prudent while using a complicated technology, I personally was lucky enough to receive help in my studies form

a machine learning expert.

Finally, the third lesson is specific to the cyber-security domain. While reviewing the related works I discovered

that the proposed misbehavior attacks were somewhat weak and hasn’t been updated in a long time. This is due to

the fact that the C–ITS solutions are not yet deployed and therefore the attacks were mostly created by researchers.

I too dedicated a strong effort into coming up with new types of attacks in order to test my detection mechanisms.

However, up until the deployment of this system, we cannot predict which attacks or even classes of attacks we

missed. However, I noticed during my work that often the most valuable insights into new attack mechanisms comes

from new researchers into the domain or from complete outsiders. Therefore, in order to minimize our chances of

missing preventable attacks, I would recommend dedicating white hat researchers into finding new and optimized

C–ITS attacks. Specifically, attacks targeting the implementations of C–ITS safety applications.
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Chapter 9

Annex

9.1 Annex 1: Misbehavior Report in ASN.1 Format

I t s −Report DEFINITIONS AUTOMATIC TAGS : : =

BEGIN

IMPORTS
TimestampIts , Stat ionType , ReferencePosi t ion , Heading , Speed ,
Dr i veD i rec t i on , VehicleLength , VehicleWidth , Curvature ,
Long i t ud ina lAcce le ra t i on , CurvatureCalculat ionMode ,
YawRate , PerceivedObjectContainer ,
Sensor In format ionConta iner FROM ITS−Container {

i t u − t ( 0 ) i d e n t i f i e d −o rgan i za t i on ( 4 ) e t s i ( 0 ) i tsDomain ( 5 )
wg1 ( 1 ) t s (102894) cdd ( 2 ) vers ion ( 1 )

}
EtsiTs103097Data , E ts iTs103097Cer t i f i ca te FROM EtsiTs103097Module {

i t u − t ( 0 ) i d e n t i f i e d −o rgan i za t i on ( 4 ) e t s i ( 0 ) i tsDomain ( 5 )
wg5 ( 5 ) t s (103097) v1 ( 0 )

}

Version FROM EtsiTs102941BaseTypes {
i t u − t ( 0 ) i d e n t i f i e d −o rgan i za t i on ( 4 ) e t s i ( 0 ) i tsDomain ( 5 )
wg5 ( 5 ) t s (102941) baseTypes ( 3 ) vers ion2 ( 2 )

} ;

−− The roo t data frame f o r r e p o r t messages
MisbehaviorReport : : = SEQUENCE {

vers ion Version ,
repor tMetadataConta iner ReportMetadataContainer ,
repor tCon ta ine r ReportContainer

}

ReportMetadataContainer : : = SEQUENCE {
repo r t ID IA5St r ing ,
generat ionTime TimestampIts ,
re la tedRepor tConta iner RelatedReportContainer OPTIONAL

}

RelatedReportContainer : : = SEQUENCE {
re la tedRepor t ID IA5St r ing ,
omitedReportsNumber OmitedReportsNumber

}
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ReportContainer : : = SEQUENCE {
reportedMessageContainer ReportedMessageContainer ,
misbehaviorTypeContainer MisbehaviorTypeContainer ,
evidenceContainer EvidenceContainer OPTIONAL

}

ReportedMessageContainer : : = CHOICE {
c e r t i f i c a t e I n c l u d e d C o n t a i n e r Ce r t i f i c a te In c l ud ed Co n t a i ne r ,
ce r t i f i ca teAddedCon ta ine r Cer t i f i ca teAddedConta ine r

}

C e r t i f i c a t e I n c l u d e d C o n t a i n e r : : = SEQUENCE{
reportedMessage EtsiTs103097Data

}

Cer t i f i ca teAddedConta ine r : : = SEQUENCE{
reportedMessage EtsiTs103097Data ,
r e p o r t e d C e r t i f i c a t e E ts iTs103097Cer t i f i ca te

}

MisbehaviorTypeContainer : : = CHOICE {
s e c u r i t y D e t e c t i o n Secur i t yDetec t ion ,
semant icDetect ion Semant icDetect ion
. . .

}

Secur i t yDe tec t i on : : = SEQUENCE {
secur i t yDetec t ionEr ro rCode OCTET STRING ( SIZE ( 0 . . 4 ) ) ,
. . .

}

Semant icDetect ion : : = CHOICE {
semanticDetectionReferenceCAM DetectionReferenceCAM ,
semanticDetectionReferenceDENM DetectionReferenceDENM ,
semanticDetectionReferenceCPM DetectionReferenceCPM ,
semanticDetectionReferenceSPAT DetectionReferenceSPAT ,
semanticDetectionReferenceMAP DetectionReferenceMAP ,
. . .

}

DetectionReferenceCAM : : = SEQUENCE{
detectionLevelCAM Detect ionLevel ,
semanticDetectionErrorCodeCAM OCTET STRING ( SIZE ( 0 . . 2 ) )

}

EvidenceContainer : : = SEQUENCE {
reportedMessageContainer MessageEvidenceContainer OPTIONAL ,
neighbourMessageContainer MessageEvidenceContainer OPTIONAL ,
sender In foConta iner Sender InfoConta iner OPTIONAL ,
senderSensorContainer SenderSensorContainer OPTIONAL

}

MessageEvidenceContainer : : = SEQUENCE OF EtsiTs103097Data

Sender InfoConta iner : : = SEQUENCE {
s ta t ionType Stat ionType ,
re fe rencePos i t i on ReferencePosi t ion ,
heading Heading ,
speed Speed ,
d r i v e D i r e c t i o n Dr i veD i rec t i on ,
veh ic leLength VehicleLength ,
veh ic leWid th VehicleWidth ,
l o n g i t u d i n a l A c c e l e r a t i o n Long i t ud ina lAcce le ra t i on ,
curva tu re Curvature ,
yawRate YawRate
. . .

}
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SenderSensorContainer : : = SEQUENCE OF SenderSensorChoice

SenderSensorChoice : : = CHOICE{
f i e l do fV iewCon ta ine r F ie ldofV iewConta iner ,
perce ivedObjectConta iner PerceivedObjectConta iner

}

Detec t ionLeve l : : = INTEGER { l e v e l ( 1 ) } ( 1 . . 4 )
OmitedReportsNumber : : = INTEGER { oneReport ( 1 ) } ( 0 . . 1 0 2 4 )

END
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9.2 Annex 2: DARE dataset specifications by scenario
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Titre: Détection d’anomalies comportementales pour les systèmes de transport intelligents et coopératifs
(STI-C)
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Résumé: Les systèmes de transport intelligents
coopératifs (STI-C) est une technologie qui changera
notre expérience de conduite. Dans ce système, les
véhicules coopèrent en échangeant des messages
de communication Vehicle-to-X (V2X) sur le réseau
véhiculaire. Les applications de sécurité routière
utilisent les données de ces messages pour détecter
et éviter à temps les situations dangereuses. Par
conséquent, il est crucial que les données des mes-
sages V2X soient sécurisées et précises. Dans le
système STI-C actuel, les messages sont signés
avec des clés digitales pour garantir leur authen-
ticité. Cependant, l’authentification ne garantit pas
l’exactitude des données. Un véhicule authentifié
pourrait avoir un capteur défectueux et donc en-
voyer des informations inexactes. Un attaquant pour-
rait également obtenir des clés légitimes en piratant
l’unité embarquée de son véhicule et donc transmet-
tre des messages malveillants signés. La détection
des mauvais comportements dans les STI-C est un
sujet de recherche visant à garantir l’exactitude des
messages V2X échangés. Il consiste à surveiller la

sémantique des données des messages échangés
pour détecter et identifier des entités à comporte-
ment suspect. Le processus de détection est divisé
en plusieurs étapes. La détection locale consiste à
effectuer d’abord des vérifications de plausibilité et
de cohérence sur les messages V2X reçus. Les
résultats de ces vérifications sont ensuite fusionnés à
l’aide d’une application de fusion locale. L’application
est capable d’identifier diverses anomalies V2X. Si
une anomalie est détectée, le véhicule collectera les
preuves nécessaires et créera un rapport de mauvais
comportement. Ce rapport est ensuite envoyé à une
autorité cloud de mauvais comportement. Cette au-
torité a pour objectif d’assurer le bon fonctionnement
du système C-ITS et d’atténuer les effets des at-
taques. Elle recueillera d’abord les rapports des
véhicules, puis enquêtera sur l’événement et décidera
de la réaction appropriée. Dans cette thèse, nous
évaluons et contribuons aux différents composants du
processus de détection des comportements malveil-
lants : la détection locale, le reporting et la détection
globale.

Title: Misbehavior Detection for Cooperative Intelligent Transport Systems (C-ITS)

Keywords: Cybersecurity, C–ITS, V2X, Machine Learning, Anomaly Detection

Abstract: Cooperative Intelligent Transport Systems
(C-ITS) is an upcoming technology that will change
our driving experience in the near future. In such sys-
tems, vehicles cooperate by exchanging Vehicle-to-
X communication (V2X) messages over the vehicu-
lar network. Safety applications use the data in these
messages to detect and avoid dangerous situations
on time. Therefore, it is crucial that the data in V2X
messages is secure and accurate. In the current C-
ITS system, the messages are signed with digital keys
to ensure authenticity. However, authentication does
not ensure the correctness of the data. A genuine ve-
hicle could have a faulty sensor and therefore send
inaccurate information. An attacker could also obtain
legitimate keys by hacking into the on-board unit of his
vehicle and therefore transmit signed malicious mes-
sages. Misbehavior Detection in C-ITS is an active
research topic aimed at ensuring the correctness of
the exchanged V2X messages. It consists of moni-

toring data semantics of the exchanged messages to
detect and identify potential misbehaving entities. The
detection process is divided into multiple steps. Local
detection consists of first performing plausibility and
consistency checks on the received V2X messages.
The results of these checks are then fused using a
local detection application. The application is able
to identify various V2X anomalies. If an anomaly is
detected, the vehicle will collect the needed evidence
and create a misbehavior report. This report is then
sent to a cloud based misbehavior authority. This au-
thority has a goal of ensuring the correct operation of
the C-ITS system and mitigating the effects of attacks.
It will first collect the misbehavior reports from vehi-
cles and would then investigate the event and decide
on the suitable reaction. In this thesis, we evaluate
and contribute to the local, reporting and global steps
of the misbehavior detection process.
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