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Abstract

This thesis explores the topic of generative modelling of natural images, which is the task of fitting
a data generating distribution. Such models can be used to generate artificial data resembling
true data, or to compress images. We focus on the class of latent variable models which seek to
capture the main factors of variations of an image into a variable that can be manipulated. In
particular we build on two successful latent variable generative models, the generative adversarial
network (GAN) and the variational autoencoder (VAE).

Recently, GAN models significantly improved the quality of images generated by deep
models, obtaining very compelling samples. Unfortunately these models struggle to capture all
the modes of the original distribution, i.e., they do not cover the full variability of the dataset.
Conversely, likelihood based models such as VAEs typically cover the full variety of the data
well and provide an objective measure of coverage. However, these models produce samples of
inferior visual quality that are more easily distinguished from real ones. The work presented in
this thesis strives for the best of both worlds: to obtain compelling samples while modelling the
full support of the distribution. To achieve that, we focus on i) the optimisation problems, and ii)
practical model limitations that hinder performance.

The first contribution of this thesis is a deep generative model that encodes global image
structure into latent variables, built on VAEs, and autoregressively models low level detail. We
propose a training procedure relying on an auxiliary loss function to control what information
is captured by the latent variables and what information is left to an autoregressive decoder.
Unlike previous approaches to such hybrid models, ours does not restrict the capacity of the
autoregressive decoder to prevent degenerate models that ignore the latent variables.

The second contribution builds on the standard GAN model, which trains a discriminator
network to provide feedback to a generative network. The discriminator assesses the quality of
individual samples, which makes it hard to evaluate the variability of the entire set of generated
data. Instead, we propose to feed the discriminator with batches that mix both true and generated
samples, and train it to predict the ratio of true samples in the batch. These batches work as
approximations of the distribution of generated images and allow the discriminator to approximate
statistics of the data distribution. We introduce an architecture that is well suited to solve this
problem efficiently, and show experimentally that our approach reduces mode collapse in GANs
on two synthetic datasets, and obtains good results on the CIFAR10 and CelebA datasets.

The mutual shortcomings of VAEs and GANs can in principle be addressed by training hybrid
models that use both types of objectives. In our third contribution, we show that usual parametric
assumptions made in VAEs induce a conflict between them, leading to lackluster performance
of hybrid models. We propose a solution based on deep invertible transformations, that learns
a feature space in which usual assumptions can be made without weakening performance. Our
approach provides likelihood computations in the image space while being able to take advantage
of adversarial training. It obtains GAN-like samples that are competitive with fully adversarial
models while improving likelihood scores over recent hybrid models.

Keywords: Generative modelling, unsupervised learning, generative adversarial networks,
convolutional neural networks, variational autoencoders, computer vision, machine learning.
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Résumé

Cette thèse explore le sujet des modèles génératifs, appliqués aux images naturelles. Cette tâche
consiste a modéliser la distribution des données observées, et peut permettre de générer des
données artificielles semblables aux données d’origine, où de compresser des images. Nous
nous focalisons sur les modèles à variables latentes, qui cherchent a résumer les principaux
facteurs de variation d’une image en une variable qui peut être manipulée. En particulier, les
contributions proposées sont basées sur deux modèles génératifs a variable latentes: le modèle
génératif adversarial (GAN) et l’ encodeur variationel (VAE).

Récemment, les GAN ont significativement amélioré la qualité des images générées par
des modèles dits ’profonds’, obtenant des images très convaincantes. Malheureusement ces
modèles ont du mal à capturer tous les modes de la distribution d’origine, i.e. ils ne couvrent
pas les données dans toute leur diversité. A l’inverse, les modèles basés sur le maximum de
vraisemblance tels que les VAEs couvrent typiquement toute la variabilité des données; en outre,
ils offrent un moyen objectif de mesurer cela. Malheureusement ces modèles produisent des
échantillons de qualité visuelle inférieure, qui sont plus faciles à distinguer de vraies images. Le
travail présenté dans cette thèse a pour but d’obtenir le meilleur des deux mondes: des échantillons
de bonne qualité tout en modélisant tout le support de la distribution. Pour arriver à cela, nous
nous focalisons sur i) les problèmes d’optimisation et ii) les limitations pratiques des modèles qui
heurtent leur performance.

La première contribution de ce manuscrit est un modèle génératif profond qui encode la
structure globale des images dans une variable latente. Ce modèle est basé sur le VAE, et utilise
un modèle autoregressif pour capturer les détails de bas niveau. Nous proposons une procédure
d’entrainement qui utilise une fonction de cout auxiliaire pour contrôler quelle information
est capturée par la variable latent et quelle information est laissée à un décodeur autoregressif.
Au contraire des précédentes approches pour construire des modèles hybrides de ce genre,
notre modèle de nécessite pas de contraindre la capacité du décodeur autoregressif pour éviter
d’apprendre des modèles dégénérés qui ignorent la variable latente.

La deuxième contribution est bâtie sur le modèle du GAN standard, qui s’appuie un dis-
criminateur pour guider le modèle génératif. Le discriminateur évalue généralement la qualité
d’échantillons individuels, ce qui rend la tache d’évaluer la variabilité des données difficile. A
la place, nous proposons de fournir au discriminateur des ensembles de données, par ’batches’,
qui mélangent des vraies images et des images générées. Nous l’entrainons à prédire le ratio
de vrais et de faux éléments dans l’ensemble. Ces batches servent d’approximation de la vrai
distribution des images générées et permettent au discriminateur d’approximer des statistiques sur
leur distribution. Nous proposons une architecture qui est bien adaptée pour résoudre ce problème
efficacement, et montrons expérimentalement que notre approche réduit l’oubli de mode des
GAN sur deux jeux de données synthétiques et obtient de bons résultats sur les datasets CIFAR10
et CelebA.

Les lacunes mutuelles des VAEs et des GANs peuvent, en principe, être réglées en entrainant
des modèles hybrides qui utilisent les deux types d’objectif. Dans notre troisième contribution,
nous montrons que les hypothèses paramétriques habituelles faites par les VAE produisent un
conflit entre les deux, menant à des performances décevantes pour les modèles hybrides. Nous
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proposons une solution basée sur des modèles profonds inversibles, qui entraine un espace de
features dans lequel les hypothèses habituelles peuvent être faites sans poser problème. Notre
approche fourni des évaluations de vraisemblance dans l’espace des images tout en étant capable
de tirer profit de l’entrainement adversaire. Elle obtient des échantillons de qualité équivalente
au modèle pleinement adversaires tout en obtenant une meilleure vraisemblance, comparé aux
modèles hybrides récents.

Mots-clefs : Modèles génératifs, apprentissage non supervisé, réseaux génératifs adversaires,
réseaux neuronaux convolutionels, vision par ordinateur, autoencoders variationels, apprentissage
automatique.
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Chapter 1

Introduction

Several landmark areas of machine learning have seen remarkable improvement in the last several
years, notably in computer vision with image classification [Krizhevsky et al., 2012, Simonyan
and Zisserman, 2015], and segmentation [Long et al., 2015], in natural language processing
[Bahdanau et al., 2015, Sutskever et al., 2014, Vaswani et al., 2017b] audio processing [van den
Oord et al., 2016a], or game agents [Silver et al., 2016, Vinyals et al., 2019]. A well recognized
catalyst for this progress has been the simultaneous availability of highly expressive models and
huge datasets. The former is largely due to advancements in dedicated hardware and software and
the latter to the internet, which produces vast amounts of data everyday and provides the means
to crowd-source its processing. For instance, more than 300 hours of video are uploaded every
minute, on average, to YouTube alone1.

Similarly to classical computer programs, learning based models should accept instances
from some input domain and (approximately) solve a chosen task relating to those inputs. A
significant difference is that they do not require an algorist to explicitly specify rules to map
the input to the solution. In particular, supervised learning works by observing numerous pairs
of possible inputs and desired outputs, called labels. Mappings between the two are built by
iteratively modifying some internal machinery, e.g. using gradient descent based methods [LeCun
et al., 1998], until the model performs well. This paradigm is a potent tool to solve tasks where: i)
it is impractical for an algorist to explicitly enunciate rules to solve it, such as object recognition
and ii) large amounts of data and labels can be collected.

While the input data is often easy to collect - think images on the internet - training labels
are almost always expensive. For instance, training an image classifier involves asking humans
to manually tag images; see Figure 1.1 for examples of labels required by different supervised
learning tasks. This expensive work limits the scale of the datasets that can be used and constitutes
a prominent performance bottleneck on many computer vision tasks. A natural question arises in
this context: can something useful be learned by observing raw data alone?

1 See Youtube press statistics at https://www.youtube.com/about/press/, accessed 2020-07-08
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Classical supervised-learning tasks on natural images include image classification, object
detection, semantic segmentation and instance segmentation. In that order, the supervision is ranked from
weakest to strongest as each signal can be deduced from the next. These annotations provide high level
summaries of the data, but their necessity limits the scale of the dataset considered. Figure adapted from
Lin et al. [2014b]

1.1 Unsupervised learning

Raw data often contains a lot of information. Images, videos, text or audio clips all live in high
dimensional spaces, are highly structured, and therefore constitute rich and complex signal.
From the point of view of Shannon information theory [Shannon, 1948], natural images contain
thousands of bits of information. In contrast labels often contain only a few bits of information,
for instance in image classification. This motivates the pursuit of models that are able to exploit
the information in unlabelled data. In the words of Yann LeCun:

”Most of human and animal learning is unsupervised learning. If intelligence was
a cake, unsupervised learning would be the cake, supervised learning would be the
icing on the cake, [...]. We know how to make the icing [...], but we don’t know how
to make the cake. We need to solve the unsupervised learning problem before we
can even think of getting to true AI.”

– Yann LeCun, invited talk at NeurIPS 2016.

Intuition suggests it should be possible to learn something about how the data is structured
without labels. For instance observing photographs of an unknown object will allow the reader to
recognize it in future photographs, though not to name it. Because a virtually unlimited amount
of raw data is available for the first time in human history, this is an exciting research area with
many yet unexplored corners. The goal of learning from unlabelled data is, however, an ill-posed
endeavour and turning it into a problem that can be tackled requires specifications. The first is
how to select or improve a model in the absence of objective targets, and the second is in what
sense a model obtained this way can then be useful. The work presented in this manuscript is part
of the rich topic of unsupervised learning, which aims at answering these questions.

While labels contain few bits of information, these bits are critical to defining the supervised
approach. They can be seen as a compressed summary of parts of the input data as perceived
by humans. This high level semantic information about the input provides a target to guide
iterative improvement of the models. This is missing in the context of unsupervised learning, and
it is apriori unclear how to define a useful objective for optimization. A popular approach is to
extract some structure from the raw data, and use it as a target label as in a supervised approach.
This approach is referred to as self-supervised training. For instance, an image can be cut into
pieces, and the right arrangement used as target [Doersch et al., 2015, Noroozi and Favaro, 2016].
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Figure 1.2: The Jigsaw-puzzle task involves cutting images to pieces and asking a model to reorder
them correctly. In the exemplar-CNN task, an original image is transformed into many variants using
data augmentations and a classifier must map all variants to the same target. In both cases, some target
is extracted from the raw data without requiring human annotators. Figures adapted from Doersch et al.
[2015] and Dosovitskiy et al. [2014] respectively.

Another possibility is to obtain many variants of each image using data augmentation and asking
that a model classify all of them together. Both approaches are illustrated in Figure 1.2. They
make seemingly arbitrary choices about the target signal being extracted. It is possible to not
make any such choice by defining the task as "being able to predict the data". This is the high
level idea of generative modelling and is the setting of the work presented in this manuscript.

1.2 Generative modelling

In generative modelling each data point is seen as the realisation of some random experiment.
A simple example is to toss a dice many times, the data being the collection of values obtained.
Similarly, natural images collected over the internet by a web crawler can be seen as realisations
of some more complex random phenomenon. In general, the goal is to learn a probability density
model as similar as possible to the data generating distribution. This kind of model can have direct
applications such as data compression [Huffman, 1952] or data generation. It is also reasonable
to assume that to perform well, such a model needs to build rich, abstract representations of the
data.

The ability to predict the outcome of a random experiment with low uncertainty requires
a form of understanding of it. For instance, a human that has good knowledge of the English
language will be able to predict missing letters from a text with much better accuracy than random
[Shannon, 1951]. This is because high level understanding of English implicitly provides the
reader with a low entropy model. A similar experiment can be to remove a few patches from
an image, and to ask a human to predict their content. An accuracy much better than random
will be achieved, owing to good understanding of how natural images are likely to be structured.
Fitting the data generating distribution requires the model to understand the data, and build
usefull representations of it. These representations can then be used to solve other tasks, for
instance by first training them with huge amounts of unlabelled data, then refining them using
smaller amounts of labelled data. In this case the philosophy is that the abstractions learned by
the generative model should be better representations of the data than its raw representation in
the input space, and it can thus be called representation learning, see e.g. Bengio et al. [2012] for
an overview.

The work presented in this manuscript is focused on modelling natural images. Though most
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Figure 1.3: A simple distribution (depicted on the left by a level set of a unit Gaussian) is reshaped
using a deep network into a more complex density. The generated and target distributions are
then compared to each other, and this loss is used to improve the model.

of the discussion applies to other types of data, examples will be focused on images from now on.
A natural image is composed of the scalar RGB values of many pixels, and the phenomena that
control the relations between them are complex: for instance perspective, lighting or mechanics.
These phenomena are too complex to be specified by hand and the goal is to use machine learning
to model them. The probabilistic approach to this problem is to view the model as a distribution
in image space. That distribution has to specify which combination of scalar values are likely
to happen together in an image and which are not. This works by starting from a much simpler
distribution, called a prior, over some space and using the observed data to learn a mapping that
reshapes the prior into a more complex distribution as illustrated by Figure 1.3.

A model of the raw data can be leveraged in other problems. Many supervised machine
learning problems can be formulated probabilistically as trying to maximize the probability of
observing some target outcome y, given some input data x. Denoting x as the input data and y
the target label, one typically seeks to maximize the probability y given x under some model,
p(y|x). Bayes’ law [Bayes, 1763] can be invoked to see how the predictions p(y|x) relate to
generative modelling:

p(y|x) = p(x|y)p(y)
p(x) . (1.1)

This yields the conditional generative modelling task of fitting p(x|y), using maximum likelihood
estimation and labelled data, and the prior p(y) can also be fitted using the labels. Unlabelled
data can be leveraged by optimising the marginal p(x) e.g. by gradient descent, to train p(x|y).
In terms of implementation, adding some conditioning to an unconditional generative modelling
is typically easy; it can be done, for instance, by giving some extra inputs. To train the condi-
tional model, labels are required. Thus this Bayesian view shows how to train simultaneously on
labelled and unlabelled data, a problem called semi-supervised learning. Interestingly, modern
deep-learning techniques enabled training of very complex priors over types of data that could
not previously be considered.
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Applications of generative models. Direct practical applications include information compres-
sion, which is one of the backbones of telecommunications. The intuition behind compression
algorithms is that very probable events should be associated to short messages, while rare events
should be transmitted with longer messages. Implementing this requires a density model of the
data being transmitted and is thus a prime application of density estimation. Recent developments
allow training of such model on very complex data, and thus hold the promise of compression
gains, which can be very meaningful for telecommunications. Another direct and useful applica-
tion is to generate real looking artificial data, which is possible if the learned generative model
provides a way to sample new data from it. For instance, the goal can be to generate real looking
image data to flesh out a virtual environment, after training on real scenes. This is useful in
cinema and video games, and may become a crucial aspect of virtual worlds. More down to earth,
generative modelling is also a good sandbox research problem for machine learning. Indeed, an
almost infinite amount of low-cost data is available, and because the signal being fitted is rich
and complex, over-fitting is unlikely to be an issue in the foreseeable future. This means that in
this context the bottleneck will lie with model flexibility rather than data acquisition, and this is
ideal for research.

Representation learning. Many self-supervised objectives can be seen as restoring the input
given parts of it, so it is conceptually similar to generative modelling. With self-supervised pretext
tasks, the targets can have far fewer bits of information than in generative modelling. In that
sense, it appears more similar to the final regression tasks, as part of the information in the
input can be discarded and more salient information kept to solve the task. However, because
the pretext task in self-supervised learning is different from the final one, the information being
discarded as irrelevant for the pretext task may be important for the target one. In contrast, the
target of generative modelling is the data itself, and it is thus a very rich target with all the bits
of information available. The model has to fit everything in the data to be optimal, and cannot
discard less salient information. The representations learned may be more generic, and this forms
a motivation for exploring generative modelling as a tool for representation learning. Figure 1.4
provides images samples from an unsupervised generative model that demonstrate the ability of
the model to capture complex dependencies in the data.

1.3 Challenges in generative modelling

Training a model to fit a data distribution requires defining in what sense the model should match
the target. A first guiding principle is that the model should be likely to generate the data that was
actually observed when collecting the dataset. This is our best guess of what the model should
produce and thus constitutes a reasonable target. If the model is likely to generate any point in
the dataset then in some sense the model has captured the phenomenon in its entirety. A second
principle is that the model should be able to generate artificial data that is realistic, but not a copy
of a point in the training set, which shows that the model has learned how the data is structured.
This approach requires defining a measure of quality for a sample, dependent on the observed
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Figure 1.4: The images in the bottom grid are all generated by a generative model trained in an unsuper-
vised manner. Samples can be conditioned on some desired style (skin colour, hair colour, hair texture)
and on high level semantic information (apparent gender, head shape and pose, presence of glasses). The
model is able to learn these complex notions by observing vast amounts of unlabelled data. Figure slightly
adapted from Karras et al. [2019]

data. Both principles have their advantages and drawbacks, and are in some sense complementary.
We now discuss some challenges in generative modelling that will be of core interest to the work
presented in the rest of the manuscript.

Over-generalisation. Natural images are too complex for artificial models to capture their
structure in all its finesse. Therefore training a model to cover all points in the observed data
pushes it to accept wider sets of input than it should, in order to miss nothing. This phenomenon
is illustrated in Figure 1.5. The lack of flexibility can stem from problematic assumptions, in
particular on the loss being used. Given a target image, the model prediction will be imperfect,
so the evaluation requires a notion of distance between images. Intuitively, the most common
distances define concentric spheres around training points, and consider that all points on the
same sphere are equally good approximations – the closer to the center the better. Such a distance
is called isotropic and leads the model to assign probability to unrealistic data points. Note that
autoregressive models sequentially compare pixels in the target and prediction, and thus there is
no need for isotropic distances. These models still over-generalise, because of the incentive from
the training criterion to not miss any data point, but loss design is less problematic in that context.
A core focus of the work presented in this manuscript is to mitigate over-generalisation. This is
achieved by i) foregoing isotropic distances and ii) leveraging other training paradigms.

Mode-dropping. The second principle to train generative models is to optimize the quality
of generated data. It is achieved by sampling data points from the model and comparing these
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Figure 1.5: A model over-generalises if it covers the support of the true data distribution well, but also
covers parts of the space that it should not, as depicted on the left. Conversely, a model that fails to cover
the full support of the data distribution is said to mode-drop, as depicted on the right.

samples to real data. This approach is taken by the Generative Adversarial network model (GAN)
[Goodfellow et al., 2014]. Here the evaluation metric is trickier to design, as there is not a single
candidate to which the sample should be compared. An important aspect is that the variability
in the generated data must also be considered. Indeed otherwise memorising a single image
of high quality solves the problem, but this solution is not desirable. A much studied pitfall of
GANs is that it is hard to obtain a model that fits the full variety of the data, a problem called
mode-dropping.

Posterior collapse. One way to view the mapping from the prior distribution to the generated
one (see Figure 1.3) is to see the variable as "causes" that determine the content of an image, and
the generator as a mapping from causes to results. For tractability, it is beneficial to also have
a model that performs the reverse operation, i.e. that maps an image to a possible explanation,
which is referred to as an encoder. This is the core idea of the successful Variational auto-encoder
model (VAE). A promising solution to tackle over-generalisation is to use an expressive type of
decoder called an autoregressive model. These models do not require isotopic distances, and have
a lot of complementaries with VAEs. However, in practice autoregressive decoders do not work
well in conjunction with encoders. This is due to the fact that latent variables have a cost in terms
of likelihood estimation. In the presence of sufficiently powerful autoregressive decoders it is
easier and potentially even optimal not to use latent variables, a phenomenon known as posterior
collapse.

Hybrid models. The two learning principles presented here, maximizing the probability of
observed data and optimizing sample quality, intertwine and are complementary. Ideally, a model
should simultaneously satisfy both types of evaluation: if a model fits the true distribution well, it
both covers all the variety of the data, and produces high quality samples. In practice, optimizing
both types of objectives together is challenging, and is another focus of our work.
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1.4 Contributions to generative modelling

The contributions presented in this manuscript focus on the problems of over-generalisation,
mode-dropping, posterior collapse, and successful training of hybrid models. These problems
intertwine, and they all relate to the goal of obtaining models that cover the full variety of the
data while producing compelling samples. To put contributions into context, sections 2.1 to 2.8
will introduce several successful approaches in generative modelling. A discussion on some
limitations of these models is then given in Section 2.9. This is followed by refinements on the
basic models in sections 2.10 to 2.11, and a presentation of evaluation procedures in Section 2.12
to conclude the background section.

Variational autoencoders with autoregressive decoders. These models are among the most
successful approaches to generative modelling of natural image collections. These approaches
have complementary strengths as VAEs handle global structure well, while autoregressive models
excel at modelling local image statistics. This motivates hybrid models that encode global image
structure using an encoder while autoregressively modeling low level detail. Naive construc-
tions of this type unfortunately yield models that are unable to use the encoder. In Chapter
3, we propose a training procedure relying on an auxiliary loss function that controls which
information is captured by the encoder and what is left to the autoregressive decoder. Unlike
previous approaches to such hybrid models which restricted the capacity of the autoregressive
decoder, we are able to use arbitrarily expressive decoders. Our approach achieved state-of-the
art quantitative performance among models with latent variables at the time of publication, and
generates qualitatively convincing samples.

Training GANs by assessing batches of data. Generative adversarial networks evaluate the
quality of generated samples using a discriminator network that distinguishes between real and
generated images. In existing models the discriminator assesses individual samples. This prevents
the discriminator from accessing global distributional statistics of generated samples and leads
the generator to mode-drop. In Chapter 4 we propose to use the discriminator to assess batches of
data that mix both true and fake samples. The task of the discriminator becomes to predict the
proportion of real and generated images in the batch. By doing that, variability in the generated
data becomes something that can be explicitly evaluated by the discriminator. We show that our
approach reduces mode collapse in GANs on two synthetic datasets, and obtains good results on
the CIFAR10 and CelebA datasets, both qualitatively and quantitatively.

Adversarial and maximum likelihood hybrid training. In Chapter 5, we show that parametric
assumptions commonly made about the output density of maximum-likelihood based models are
a source of tension with adversarial training, making successful hybrid models non trivial. We
propose using an invertible model to learn an abstract feature space to which targets and predic-
tions are mapped. In that space the distance between them can be computed without hindering
hybrid training. We show that compared to existing hybrid models, our model offers improved
sample quality and likelihood scores.
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1.5 Publications

• Chapter 3 is based on the paper "Auxiliary Guided Autoregressive Variational Autoen-
coder", Thomas Lucas & Jakob Verbeek, European Conference on Machine Learning
(ECML) 2018. See [Lucas and Verbeek, 2018b].

• Chapter 4 is based on the paper "Mixed batches and symmetric discriminators for GAN
training", Thomas Lucas, Corentin Tallec (equal contribution), Jakob Verbeek and Yann
Ollivier, International Conference on Machine Learning (ICML) 2018. See [Lucas et al.,
2018b]

• Chapter 5 is based on the paper "Adaptive Density Estimation for Generative Models",
Thomas Lucas, Konstantin Shmelkov (equal contribution), Karteek Alahari, Cordelia
Schmid, and Jakob Verbeek, conference on Neural Information Processing Systems
(NeurIPS) 2019. See [Lucas et al., 2019].

• A research project initiated during my master internship and completed during the first
semester of this Ph.D, led to the paper "Areas of Attention for Image Captioning", Marco
Pedersoli, Thomas Lucas, Cordelia Schmid and and Jakob Verbeek, International confer-
ence on computer vision (ICCV) – see also [Pedersoli et al., 2017]. It proposes an attention
mechanism for image captioning - the task of describing input images with sentences - that
allows the model to attend relevant parts of the image while describing it. This requires
high level representations of complex image content, as with image generation. However
because the topic differs from the other contributions, we left it out of the main body of the
manuscript and it can be found in Appendix B.
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Chapter 2

A primer on deep generative modelling
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2.11 Lipschitz continuity for generative adversarial networks . . . . . . . . . 38
2.12 Evaluation metrics for generative models . . . . . . . . . . . . . . . . . . 42

In this chapter some background on generative modelling is first recalled, which also serves to
set the notations for the rest of the dissertation. Latent variable generative models are introduced
in sections 2.2 and 2.3, starting from linear models such as the Gaussian Mixture Model. The
extension to deep generative models is presented in Section 2.4, with the main difficulties that
arise when going to the deep regime. The foundations of existing approaches to deep generative
modelling are discussed in sections 2.5 to 2.8. This is sufficient to discuss, in Section 2.9 some
of the challenges that will be presented in the rest of the dissertation. We then go into a more
detailed presentation of existing work in Section 2.10 and Section 2.11. Finally, we discuss the
evaluation of generative models in Section 5.5.

11
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2.1 Introduction to generative modelling

The goal of unconditional density modelling is to learn the distribution p∗ underlying samples
provided in a dataset D = {x1, . . . ,xM} and seen as realisations of a random variable X on
some space X , with density at x equal to p∗(X = x)1. In what follows, the dataset is composed
of N -dimensional real valued vectors, x ∈ RN . Thus, X ⊂ RN and RN is called the ambient
space. In practice, we focus on natural images datasets, and a vector x contains per pixel intensity
values across colour channels. The parametric approach to density estimation is to select a family
of parametric densities, PΘ = {pθ|θ ∈ Θ}, with Θ the set of admissible parameters. Learning
then seeks to select the ’best’ parameter θ∗ in Θ, which requires a measure of performance for θ.
Since the goal is to recover p∗, this measure, or "loss", will typically be, or behave like, a distance
between pθ and p∗, and can be denoted L(pθ, p∗).

There are different approaches to designing the loss L. We will focus on unconditional density
modelling, meaning that the estimator θ̂ for θ∗ is obtained from unlabelled data. Intuitively, there
are two things we expect from a "good" model:

• The model pθ assigns high density to samples taken from the true distribution p∗:

x ∼ p∗(x) =⇒ pθ(x) is "high".

• Samples taken from the model pθ behave similarly to real samples from p∗:

x ∼ pθ(x) =⇒ p∗(x) is "high".

These two properties are closely coupled through the fact that a density model is normalised.
However, focusing on one goal or the other leads to different choices for L(pθ, p∗), and different
behaviours for the model pθ. This distinction coarsely separates existing models. The first type
of objective, which we will refer to as "coverage driven" is more convenient to work with as
it only requires samples from p∗. It is the logic behind most learning algorithms, and notably
leads to maximum-likelihood-estimation (MLE). This class of models is discussed in sections
2.5, 2.6 and 2.8 and is the focus of the work presented in Chapter 3. The second type of objec-
tive, which we will refer to as "quality driven"is less obvious to design, as a straightforward
implementation would require access to p∗. A popular instance of this approach is the Genera-
tive Adversarial Network (GAN), which is presented in Section 2.7. GANs are also the main
object of the work presented in Chapter 4. Complementarities and some conflictual aspects of
coverage driven and quality driven approaches are discussed in Section 2.9.2, and are a key
aspect of the work presented in Chapter 5. As regards practical experiments, this presentation
is focused on modelling natural images, though in theory all models presented can be applied
to other types of data. Modelling of natural images is a good sandbox research problem, as the
data is complex, diverse, and at the same time easy to collect in large amounts. Such genera-
tive models also have interesting applications such as compression or automatic editing of images.

1 Usually there is no ambiguity on the random variable under consideration and we write p(x) instead of p(X = x).
Depending on context, p(x) can be either a discrete or a continuous density.
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Aside from the training objective and procedures, a family of parametric densities has to be
specified. The data lives in a high dimensional space, is highly non-linear and can be very
diverse which makes it challenging to model. Thus, "deep" approaches are very successful: PΘ is
implemented by a very flexible, over-parametrised and non-convex function approximator, and θ̂
is selected by performing gradient descent on the loss. In sections 2.2 to 2.4, deep models and the
challenges they raise are introduced. In sections 2.5 to 2.8, the main successful deep models are
described, followed in Section 2.9 by limitations of these models that motivate the rest of this
dissertation.

2.2 Generative latent variable models

High-dimensional real-valued data such as images are naturally modelled by a joint probability
distribution over scalar values (in the case of images, three scalars per pixel for RGB colours
channels). A popular approach to define that density is to use latent variables. Suppose that
an image x̃ ∈ RN is to be sampled from a model pθ and that we wish to sample all pixels
simultaneously. To obtain an image that is globally coherent, it is clear that the pixels can not be
sampled independently from each other. Indeed once one pixel is sampled, this partly determines
others; if the top-left pixel belongs to a car, neighbouring ones likely belong to a car as well. That
means p(x) cannot simply be decomposed as a product of marginals

∏N
i=1 p(xi), which would

be the naive way of allowing simultaneous sampling.

Latent variables can be seen as a solution to this issue. In latent variable generative models, the
assumption is made that "most" of the variability in the data can be explained by a certain number
of factors of variations. Such factors could be object classes and locations, or the angle taken
for camera projection. When generating an image, a latent representation z is chosen first, and
x̃ is generated given z. It becomes possible to sample all pixels simultaneously, as their global
coherence is controlled by z:

p(x|z) =
N∏
i=1

p(xi|z). (2.1)

This assumption is called conditional independence. With this model, most of the relationship
between the pixels are captured through z, and the rest of the variability in the signal is modelled
as independent per-pixel "noise". This is very different from full independence: in the extreme
case, p(x|z) can tend towards a deterministic function of z, i.e. there exists some f such that
p(x|z) ≈ δ(x− f(z)).

Intuitively, a latent variable generative model pθ is considered representative of the data D if for
all x in D, there are some probable settings of z that are likely to generate x. Formally, assume
latent variable vectors z to be realisations of a random variable Z in a high2 dimensional space
Z , with a probability density p(z) defined over Z , then one can integrate z out to measure p(x):

p(x) =
∫
z∈Z

p(x|z)p(z)dz (2.2)

2 High, but still probably lower than N which is "very" high.
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Given Z and p(z), a deterministic function fθ : Z → RN can be used to specify the relation
between z and x, and obtain a random variable in image space by computing Y = fθ(Z). In
that case pY (x|z) = δ(x − f(z)). Such a construction is hard to use directly in practice as is
unlikely to pass through all points in the dataset exactly. Unless f is already perfect there exists x
such that p(x) = 0 and in turn p(D) = 0. So p(x) cannot be used to train f unless f is already
perfect. We say that fθ(Z) has a degenerate support. Instead, fθ is usually used to parametrize
a density that has non-degenerate support. For instance using fθ(z) as the mean of a standard
Gaussian density:

p(x|z) = N (x|f(z); IN ). (2.3)

Now, a single fixed z is mapped to a density which is strictly greater than 0 in the entire ambient
space RN , as for any fixed (x, z), p(X = x|Z = z) > 0. The Gaussian density is unimodal
and has light tails , so it typically cannot cover the full data-set well3. When integrating z, on the
other hand, a rich mixture of densities, weighted by p(z), is obtained:

p(x) =
∫
z
N (x|f(z); IN )p(z)dz. (2.4)

This shows how to build complex densities over high dimensional vectors using latent variables
and the conditional independence assumption to model the dependencies between each scalar
dimension. An other option to build a density estimator is to drop the requirements that all
scalar values xi be sampled simultaneously. Intuitively, in that case, there is no longer a need
for latent variables: one can sample x1, look at the result, then sample x2 given x1 and continue.
Conditioning on some global information is no longer needed. What this costs is that sampling
will be slow and sequential, and that a (possibly arbitrary) ordering needs to be introduced. This
construction is discussed in Section 2.8.

2.3 Linear latent variable models

A simple case of latent variable generative model is when fθ is a linear function of z. A classical
example is the Gaussian Mixture Model (GMM). In that case the latent variable z is a discrete
one-hot vector that selects a component in a mixture of K component. Denote 1k = (δ1

k, . . . , δ
K
k )

where δji is the Kroenecker symbol, then:

p(z = 1k) = πk, and µk = Wz + µ (2.5)

p(x|z) = N (x;µk, σID). (2.6)

In this case the integration over z is a finite sum: p(x) =
∑
z p(z)p(x|z). It is illustrated in

Figure 2.1, and shows how simple densities can be combined into a more complex one.

A similar recipe can be followed to obtain Probabilistic Principal Component Analysis (Prob-
abilistic PCA Roweis [1997], Tipping and Bishop [1999]). In that case, z is sampled from a

3 The density decreases exponentially with the squared euclidean distance to fθ(z), and most data points x are far
from fθ(z)
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standard Gaussian density, and also linearly transformed:

p(z) = N (z; 0, Id) (2.7)

p(x|z) = N (x;µ+Wz, σID). (2.8)

In that case p(x) =
∫
z p(z)p(x|z) has a closed form solution and is likewise Gaussian with

x ∼ N (x;µ,WW t + σId). (2.9)

The number of columns in W corresponds to the number of principal components that will
be fitted by the model. Note that for both models, the negative log-likelihood gives the `2
“reconstruction” loss of deterministic PCA and k-means:

− ln p(x|fθ(z)) = ||x− fθ(z)||22, (2.10)

with fθ(z) = µ+Wz. Sampling z ∼ p(z) and mapping it to p(x|z) yields samples x̃ ∼ pθ(x).
Note that the mode of p(x|z) is often used as reconstruction rather than taking a sample, es-
pecially with isotropic Gaussian noise or other isotropic densities that cannot capture any structure.

(a) Mixture of Gaussians (b) Probabilistic PCA

Figure 2.1: (a) A Gaussian Mixture Model is a convex combination of Gaussian densities, which
allows for greater flexibility. The parameters of each component can be learned, as well as the
weighting coefficients. This can be seen as a latent variable model, where z selects a component:
p(z = 1k) = πk which is then linearly mapped to µk = Wz + µ. (b) Probabilistic PCA
transforms a standard Gaussian through a linear mapping. Figures adapted from Bishop [2006].

In both cases, the Gaussian noise adds volume around (points on) a linear manifold to make the
support non-degenerate in the data space. This works well for many applications, but natural
images are highly complex and linear manifolds may not be flexible enough to cover their support
well. Therefore a lot of volume must be added, wasting density mass and yielding poor samples
and poor likelihoods. Instead, it is desirable to build more flexible, non-linear manifolds fθ to
better fit complex data. This is illustrated in Figure 2.2, and motivates the next section.
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Figure 2.2: The linear model fθ maps Z to the linear manifold (in brown) that best fits p∗(x) (in
grey). It is necessary to add volume (in red) around fθ(z) to obtain a non-degenerate density
pθ(x|z) that does cover the support of p∗. Because the data manifold is non-linear, the model is
far from the target in some places and a lot of volume must be added, thus wasting probability
mass.

2.4 Deep generative modelling

For highly complex data such as natural images, it is natural to consider models that can learn
non-linear manifold and thus more closely fit the data. The idea remains similar: a simple distri-
bution p(z) on latent variable z, e.g. a standard Gaussian, is transformed through a non-linear
function x = fθ(z) that maps latent variables to data space. For this purpose, a deep neural
network can be used4. It will induce a complex marginal distribution pθ(x) =

∫
z p(z)p(x|fθ(z))

when integrating out z. The non-linear manifold fθ(z) is now arbitrarily flexible and can in
theory approximate any function. If enough data is provided, or if proper regularization is used to
avoid over-fitting the data, very expressive networks can be considered, and closely fit the data.

Using a non-linear fθ also raises a thorny issue: the evaluation of pθ(x) becomes intractable.
Indeed the integral involving non-linear deep net fθ(·) can no longer be computed in closed form.
Various solutions to side-step this problem exist, and lead to different classes of models which we
will introduce in the following sections. The first solution is to use a lower bound that is tractable,
as in Variational Auto-Encoders (VAE), presented in sections 2.5 and 2.10. It is also possible
to constrain the parametric family for fθ so that we can compute pθ(x) for instance using a
flow based method as presented in Section 2.6. Another solution is to train generative models
without using the integral but rather by evaluating sample quality, as in Generative Adversarial
Networks (GAN) (sections 2.7 and 2.11). Finally, it is possible to design models that do not use
latent variables at all but rely on chaining many uni-variate conditional distributions instead, as

4 Manually specified basis expansion is prohibitively expensive in high-dimension. Kernel methods provide well
understood and powerful basis expansions, but decouple learning from feature construction and still require kernel
design.
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discussed in Section 2.8. All of these basic models are used in various parts of this manuscript.

2.5 Variational auto-encoders

Using expressive non-linear classes of functions for fθ holds the promise of more accurate models,
but also makes computations challenging. For latent variable models, one problem made more
complicated by the use of deep functions is the problem of inference. Given an x and a model
pθ(x|z), inference consists in finding a (set of) latent variables z that are "good explanations" for
x, in the sense that they are likely to generate x. Unfortunately, pθ(z|x) is completely intractable
for feed-forward networks in general. We now study how to use of an inference network to
compute and optimise a lower-bound on Equation 2.2.

2.5.1 Deterministic auto-encoders

We have seen in Section 2.3 that PCA can interpreted as a probabilistic model. In PCA, one seeks
matrices V and W that minimize the loss [Baldi and Hornik, 1989]:

min
V,W

1
2N

N∑
n=1
||xn − VWxn||2. (2.11)

The matrix W can be seen as projecting x into a latent space and V tries to reconstruct x from z.
To go to the non-linear regime, V and W can be replaced by deep networks gφ and fθ by stacking
many linear layers with non-linearities in between. The problem then becomes:

min
φ,θ

N∑
n=1
||x− fθ(gφ(x))||2. (2.12)

The first network gφ maps x to a space of lower dimensionality, and is called an encoder. The
second network fθ maps the latent code z = gφ(x) to reconstruction x̃ and is called a decoder.
This construction is referred to as the auto-encoder model. It is a generalization of PCA (PCA is
recovered in the special case of gφ and fθ linear) that tries to capture the main factors of variations
in x in a non-linear way. It does not provide a generative model that can be sampled from, or an
evaluation of likelihood. However, the decoder resembles a generative model: the L2 loss can be
seen as putting isotropic Gaussian noise around fθ, yielding a latent variable model pθ(x|z). The
encoder, on the other hand, tries to infer a latent variable z for a given x i.e. to extract the main
factors of variations in x. This kind of inference network will prove useful in what follows.

It is important to note that some bottleneck is needed on the amount of information about x
that goes into z. This can be achieved by limiting the dimension of z. Otherwise, qφ and pθ
can simply both learn the identity function, which is a trivial solution to Equation 2.12 but does
not learn anything useful. Note that a good inference network learns to approximately invert
fθ, such that fθ ◦ fφ ≈ Id. This is different from having fφ ≈ fθ ≈ Id, which is not useful.
A probabilistic extension can be given to the auto-encoder model, yielding a generative model
called the Variational Auto-Encoder Kingma and Welling [2014a] which we describe below.
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Figure 2.3: If fθ is implemented with a deep network, fθ(z) is distributed on a non-linear manifold.
It can better fit p∗, and less isotropic volume is needed. The encoder qφ takes target data and maps
it to latent space, and the decoder fθ maps latent variables to data space.

2.5.2 Variational auto-encoders

To build a stochastic auto-encoder, the decoder fθ implements pθ(x|z) by mapping a latent code
z to a density over observations x:

pθ(x|z) = N (x; fµθ (z), fσθ (z)) (2.13)

The encoder gφ computes an approximation of the posterior distribution pθ(z|x) as:

qφ(z|x) = N (z; gµφ(x), gσφ(x)). (2.14)

In that context, another type of bottleneck can be used: a prior pθ(z) can be defined, and the
amount of information going into z can be measured as:

DKL(qφ(z|x)||p(z)) =
∫
z
qφ(z|x) log

(
qφ(z|x)
p(z)

)
, (2.15)

whith DKL standing for Kullback-Liebler divergence. Intuitively, the Kullback–Leibler diver-
gence measures the difference in the expected number of bits required to encode z using qφ(z|x)
rather than pθ(z), i.e. how much information (in the sense of Shannon) about z we gain by
looking at x using our inference network. With this bottleneck the dimension bottleneck is
no longer needed, and the model offers a probabilistic interpretation. In particular, z can be
sampled from the prior p(z) and mapped to data space with fθ. This construction is detailed
in what follows. The quantity of interest that we wish to optimise is the marginal likelihood,
pθ(x) =

∫
z p(z)pθ(x|z), also called the “evidence”. Because fθ is now non-linear, this integral

can not be carried out in closed form.

Natural solutions to the intractability of the evidence are numerical approximations and Monte-
Carlo estimation. The later has the benefit of spending computational budget only on likely values
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Figure 2.4: The encoder (in red) yields a distribution qφ(z|x). Using this distribution rather than
the prior (in yellow) pθ(z) to sample z incurs a cost DKL(qφ(z|x)||pθ(z|x)). Given z, a deep
decoder (in blue) defines a distribution pθ(x|z).

of z rather than on a fixed grid covering RN . However, the latent space is typically very high
dimensional, and obtaining an accurate approximation requires a high number of samples per the
curse of dimensionality.

To alleviate this issue, a first step is to use weighted sampling. The intuition is that when computing∫
z pθ(x|z)p(z)dz for a fixed x, most of the latent variables z are very unlikely to generate x,

and most of the mass in the integral is contributed by a small subset of the entire latent space. To
that end, an inference network qφ can be used. For a given x, qφ tries to guess which part of the
latent space is likely to generate x and is used to reweight the integral:

pθ(x) =
∫
z
qφ(z|x)pθ(x|z) p(z)

qφ(z|x)dz. (2.16)

When approximating pθ(x) with an empirical estimator p̂θ(x) by sampling z from qφ(z|x),
one obtains an estimator that has faster convergence and lower variance than when sampling
from p(z), while remaining unbiased. However, we are typically interested in computing
log(pθ(x)). Because log[E(p̂θ(x)))] 6= E[log(p̂θ(x))], the empirical estimator log(p̂θ(x)) is
a biased estimator of log(pθ(x)). This brings Jensen’s inequality to mind: because log is concave,
log(pθ(x)) = log[E(p̂θ(x)))] ≥ E[log(p̂θ(x))]. By replacing the expectation by Monte-Carlo
sampling, we can thus obtain an unbiased empirical estimator of a lower bound on the evidence.

Deriving a variational evidence lower bound. Once again, samples used in the Monte-Carlo
estimation of E[log(pθ(x))] can be taken from qφ(.|x) rather than from pθ(.). This yields a
so-called variational lower bound, that can be derived by combining reweighted sampling (first
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line) with Jensen inequality (second line):

ln(pθ(x)) = ln
(∫

z
qφ(z|x)pθ(x|z) p(z)

qφ(z|x)dz
)

(2.17)

≥
∫
z
qφ(z|x) ln

(
pθ(x|z) p(z)

qφ(z|x)

)
dz (2.18)

= Eqφ(z|x)[ln(pθ(x|z))]−DKL(qφ(z|x)||p(z)). (2.19)

This yields an evidence lower bound (ELBO), denoted Lelboθ,φ . The ELBO offers an auto-encoder
interpretation:

Lelboθ,φ (x) = Eqφ(z|x)ln pθ(x|z)︸ ︷︷ ︸
Reconstruction

−DKL

(
qφ(z|x)||p(z)

)︸ ︷︷ ︸
Regularization

. (2.20)

Sampling z from the learned posterior knowing x, z ∼ qφ(.|x), can be seen as encoding x
into z, while pθ(.|z) seeks to reconstruct x from z. Putting a lot of information about x in z
makes reconstruction trivial, but is heavily penalised by the regularization term. Therefore, the
regularization term acts as an information bottleneck, analogous to the dimension bottleneck in
deterministic auto-encoders, so a balance between both terms must be found.

An other insightful form of the ELBO can be obtained. Using Bayes’ rule, p(z) = p(x)p(z|x)
p(x|z) and

injecting it in Equation 2.19:

Lelboθ,φ (x) = Eqφ ln pθ(x|z)−
∫
z
qφ(z|x) log

(
qφ(z|x)pθ(x|z)
p(z|x)pθ(x)

)
(2.21)

= Eqφ
ln pθ(x|z)pθ(x)

ln pθ(x|z) −DKL

(
qφ(z|x)||p(z|x)

)
(2.22)

= ln pθ(x)−DKL

(
qφ(z|x)||p(z|x)

)
(2.23)

The Kullback-Leibler divergence, DKL is non-negative. Therefore, the second form in Equation
2.23 immediately shows that the ELBO is a lower bound on the log-likelihood. It is also clearly
tight if and only if qφ(z|x) = pθ(z|x). Intuitively, if the approximate posterior qφ(z|x) perfectly
matches the true posterior pθ(z|x), there is no ’approximation cost’ caused by improper selection
of z. This form shows that maximizing Lelboφ,θ (x) can be done by either increasing pθ(x) (training
the generator) or by making the bound tighter (training the inference network).

Important remarks. (i) The second form, Equation 2.23 can not be used to train in practice
as it requires computation of pθ(x) and p(z|x), and both quantities are intractable. In contrast,
Equation 2.19 requires evaluating two deep feed-forward networks, qφ(.|x) and pθ(.|z), which
is both tractable and efficient. (ii) When looking at Equation 2.19, it is tempting to think
that setting DKL(qφ(x|z)||p(z)) to 0 should improve the bound. That is not the case, unlike
for the KL divergence in Equation 2.23. Indeed, it would mean that qφ(x|z) = p(z), so z
becomes independent of x and the model does not use the encoder at all. This will strongly
degrade the reconstruction term, Ez∼qφ(x|z)[ln(pθ(x|z))]. The optimal setting is qφ(z|x) =
pθ(z|x); this incurs a non-zero DKL(qφ(x|z)||p(z)), but in this cost is exactly compensated by
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the improvement of the reconstruction term due to sampling from qφ(z|x) rather than pθ(z).
(iii) In practice the optimal value of DKL(qφ(x|z)||p(z)) in Equation 2.19 is a balance between
its two terms: the network will keep putting more information into z as long as the gain in
reconstruction is greater than the cost of that information. Thus, the optimal amount of information
depends on the quality of both the encoder and the decoder and cannot be predicted in general. In
particular, a model can have poorer reconstructions but better likelihood performance if it uses
very little information to reconstruct x.

2.6 Deep invertible transformations

We have seen how to lower-bound the integral pθ(x) =
∫
z p(x|z)p(z)dz. An other approach is

to restrain the class of functions FΘ that can be used to build pθ in a way that the integral is easy
to compute. To see which properties can be desirable from such a class of functions, we recall
the difficulties that arise when training a VAE. First, it requires an approximate posterior qφ(.|x)
that matches the intractable true posterior pθ(.|x). Mistakes made by qφ have a cost: Equation
2.23, is tight if and only if qφ(z|x) matches pθ(z|x) exactly. Thus, exact inference is a desirable
property.

An other difficulty is that Ez∼qφ(z|x) remains continuous and high dimensional despite the use
qφ. This requires Monte Carlo approximations which trade-off variance of the estimator against
computation efficiency. If the posterior density were to be a Dirac, the integral could be computed
exactly with a single sample. Thus, deterministic inference is a desirable property. To summarize,
we wish to have a function fθ such that qφ(z|x) = pθ(z|x) = δ(z − fθ(x)).

This analysis points to the class of invertible functions. Indeed, an invertible generative model
offers exact inference obtained by computing it’s inverse. It also maps a single input to a single
output so it offers deterministic inference. In the context of natural images, Dinh et al. [2017]
proposed ’Non Volume Preserving’ transformations (NVP). A latent space of the same dimension-
ality as the data space is specified, with a simple prior (e.g. unit GaussianN (On, In)). The simple
distribution is then progressively reshaped into a more complex one by successive invertible
transformations, x = fθ(z) = fθn ◦ fθn−1 ◦ . . . ◦ fθ1(z). Denote Z the random variable obtained
by mapping X through fθ, the density of natural images in the training set under the reshaped
distribution can be estimated using the change of variable formula:

pX(x) = pZ(fθ(x))×
∣∣∣∣det

(
∂fθ(x)
∂x>

)∣∣∣∣ . (2.24)

which provides the training loss of the model. This formula follows from the fact that the probabil-
ity mass contained by a differential area does not depend on our arbitrary parametric choices, i.e.:
|pZ(z)dz| = |pX(x)dx|. To generate new images, latent variable vectors can be samples from
pZ(z), and mapped to image space with the inverse transformation f−1

θ . Figure 2.5 illustrates the
mapping from image space to latent space.
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Figure 2.5: At inference, fθ is used to smoothly and invertibly transform pX(x) into an isotropic
Gaussian pZ(z). At sampling time, f−1

θ is used for the reverse, thus generating image samples
from a simple distribution over latent variables. Notice how the coordinates are transformed in
each cases, as visualized by the grids: to displace the points in the desired manner, the model
distorts the space. Figure adapted from Dinh et al. [2017].

Practical construction: affine coupling layers. In practice, the class of invertible functions
used must be restricted to ensure efficient computations of the quantities involved in Equation
2.24: y = f(x) as well as the determinant

∣∣∣det
(
∂fθ(x)
∂x>

)∣∣∣. One way to ensure tractable and easy
to invert blocks fθi is to partition the dimensions of the variables in two groups, by applying a
permutation σi to x and splitting σi(x) in two such that σi(x) = (σi(x)1,σi(x)2). To simplify
notations, assume the permutation x ← σi(x) has been performed and write x again. One
group is kept unchanged, but is used to transform the other group via translation and scaling, as
illustrated in Figure 2.6. Then fθi(x) = (y1,y2) where:

y1 = x1 (2.25)

y2 = t
(
x1
)

+ x2 � exp
(
s(x1)

)
(2.26)

This transformation is trivial to invert:

x1 = y1 (2.27)

x2 =
(
y2 − t

(
x1
))
� exp

(
−s(x1)

)
(2.28)

The functions s(·) and t(·) can be arbitrarily flexible, and implemented as complex non-invertible
functions, e.g. deep CNNs. There is no need to invert them when computing f−1

θi
as shown in

Equation 2.28.

This construction yields blocks fθi that are easy to invert. Each block is not very expressive,
being limited to an affine transformation of half the variables. To make fθ more flexible, many
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Figure 2.6: During forward propagation, the scalar variables are separated into two groups using
masking schemes. The first group x1 (in red) is used as input to expressive functions s and t that
yield translation and scaling parameters for the second group (in blue), yielding a results that
depends on both groups (in purple). To invert the function, it is not necessary to invert s and t
(as depicted in the centre). To avoid always modifying the same subset of the scalar variables,
checkerboard partitioning patterns are used together with partitioning along the channel axis
(depicted on the right). Figure adapted from Dinh et al. [2017]

.

such blocks are composed, and their log-determinants are summed. The permutation σi is here to
avoid always modifying the same features: because of it, the partitioning scheme changes from
one block to the next. To do this, Dinh et al. [2017] proposes two variable partitioning schemes,
illustrated in Figure 2.6. One uses a checkerboard mask, which is very natural: looking at one pixel
out of two gives a good idea of what the image looks like. The second uses channel-wise masking
and the two masks are used alternatively. This construction also offers efficient computations of
the log-determinant of the Jacobians. Indeed the Jacobian has a triangular structure:

∂fθ(x)
∂x>

=
[

Id Od
∂y2
∂x>1

diag(exp(s(x1)))

]
. (2.29)

Therefore the determinant is given by the product of the diagonal terms of the Jacobian,
ln det

(
∂f(x)
∂x>

)
= 1>s(x1). The log-likelihood of the model is thus also easy and tractable

to compute, and can be optimized by stochastic gradient descent on the negative log-likelihood:

− ln pX(x) = − ln pZ(fθ(x))− 1>s(x1). (2.30)

2.7 Generative adversarial networks

We have presented two classes of deep latent variable generative models built to have tractable
(approximation of) pθ(x). Another approach is to train the model without maximizing pθ(x).
Indeed, while inference can be challenging in latent variable models, computing fθ(z) is simple
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and efficient. Thus given an image quality metric, the model can be trained by assigning scores
to samples x̃ taken from the model. Generative Adversarial Networks (GANs), introduced by
Goodfellow et al. [2014], propose to use a classifier Dφ to evaluate samples. A latent variable
vector z is sampled from a prior p(z), and mapped to image space using a deep network: x =
Gθ(z), inducing an implicit density pθ(x). A second deep network, termed the ’discriminator’
is used to evaluate the quality of sampled images by outputting Dφ(x) ∈ [0, 1], the estimated
probability of x being real. Intuitively, if Dφ is well trained, it is able to identify real looking
images, and it’s score can be used as a reward. The objective of the discriminator is a function of
the parameters of the generator θ and those of the discriminator, φ. It is the expected log-likelihood
of correct classification:

V (φ, θ) = Ex∼p∗(x)[lnDφ(x)] + Ex∼p(z)[ln (1−Dφ(Gθ(z)))]. (2.31)

The discriminator is trained to maximize classification accuracy for a given generator, i.e. φ is
optimized to reach φ∗ = maxφ V (φ, θ). Simultaneously, the generator is trained to degrade the
classification of a given discriminator, i.e. θ is optimized to reach θ∗ = minθ V (φ, θ). Solving
this adversarial problem corresponds to finding φ∗ and θ∗ such that:

V (φ∗, θ∗) = min
θ

max
φ

V (φ, θ). (2.32)

The discriminator can be seen as a trainable loss function that can focus on the mistakes typically
made by the generator. Assume a fixed generator Gθ, the optimal discriminator maximizes

Vθ(φ) =
∫
x

[p∗(x) lnDφ(x) + pθ(x) ln(1−Dφ(x)) ] dx. (2.33)

For any (a, b) ∈ R2 \ {0, 0} the function y 7→ a ln(y) + b ln(1 − y) achieves its maximum in
[0, 1] at y = a/(a+ b) so for a fixed θ, the optimal discriminator Dφ∗(θ) is the Bayes classifier:

Dφ∗(θ)(x) = p∗(x)
p∗(x)+pθ(x) . Now assuming that Dφ is trained to optimality for a given θ, Dφ∗(θ)

can be plugged in V (θ, φ):

V (φ∗(θ), θ) + ln 4 = DKL

(
p∗
∣∣∣∣∣∣p∗ + pθ

2

)
+DKL

(
pθ
∣∣∣∣∣∣p∗ + pθ

2

)
∝ DJS(p∗||pθ). (2.34)

Assume the regime of infinite data, infinite model capacity, and under the assumption that the
optimal discriminator is reached at each training iteration of the generator. In that context, Equa-
tion 2.34 shows, by convexity of DKL

5, that there is a unique global optimum for Gθ, at the
data distribution pθ = p∗, which can be recovered by gradient descent. In practice however, the
ideal assumptions made above are not met. To optimize the networks, the expectation is replaced
with sample average over mini-batches, and parallel stochastic gradient descent is used on φ and θ.

GANs are known to be difficult to train, for several reasons. The mini-max objective formulation
between two networks can lead to oscillations between solutions, because the optimality assump-
tion is not met. It is also necessary to pick “compatible” generator and discriminator architectures,
5 with respect to pθ , not to θ.
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as training is known to fail if the discriminator is too powerful, as explained in Arjovsky et al.
[2017]. The GAN training objective also elicit models that produce good quality images but fail to
capture the full support of the training data, a phenomenon known as mode-collapse and detailed
in Section 2.9.2. If training is successful, however, GANs can produce outstanding samples.

2.8 Autoregressive density estimation

We have presented three approaches to train deep latent-variable generative models. A fourth
important class of model is obtained by dropping the conditional independence requirement.
In that case, latent variables are no longer needed to ensure global coherence of the image, as
explained in Section 2.2. Instead, one can rely on the standard chain rule to factorize pθ(x) into a
joint probability distribution:

p(x1:D) = p(x1)
D∏
i=2

p(xi|x<i), (2.35)

with x<i = (x1, . . . , xi−1). Latent variables are no longer needed to ensure global coherence
in this case: a given pixel xi is modelled after seeing xj<i, so it can adapt to previous pixels to
be coherent with them. Then, following pixels x>i are modelled conditioned on xi, so they can
adapt to xi, and all pixels are coherent.

In the regime of deep auto-regressive models, the idea is to use (deep) neural networks to model
the dependencies in this chain, p(xi|x<i). To implement this with a CNN-like architecture,
masked convolutions can be used. The idea, illustrated in Figure 2.7, is to compute for each scalar
variable xi, features of increasing complexity fi that will be used to parametrise p(xi|xj<i). Thus,
at a given layer l, a feature f li can only depend on xj<i. This can be built recursively like so: at
layer 1, f1

i is computed with a masked kernel that only looks at xj<i as in Figure 2.7, top left.
Given the feature at a layer l, f li i≤N , a new feature f l+1

i can be computed with a masked kernel
convolution as in Figure 2.7 (center top), because these features only depend on x<i. Notice the
central feature is available except at the first layer. This model, introduced in Oord et al. [2016] is
called Pixel-CNN.

This yields tractable exact likelihood computations and does not require complex integral over
latent variables. The main drawback of this method is that it suffers from slow sequential sampling.
An other drawback is that the fact that the model cannot rely on latent variables to couple pixels
makes it harder for it to model global structure, especially given the fact that stacked convolutions
already devote more flexibility to modelling local structure. Finally, the absence of latent variables
makes it unsuitable for representation learning.

2.9 Challenges in generative modelling

We have discussed the main existing families of deep generative models used in the literature.
In this section, we present in greater detail two challenges in generative modelling that will be
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...

Figure 2.7: To predict the red pixel in the first map (top left), the model is allowed to look at the
green pixels. When computing the second feature map (top centre) the yellow feature has been
computed without looking at the red pixel, and therefore becomes observable. This explains why
the first convolutional filter is different from the following ones. The second half of the figure
shows how the receptive field of the central feature evolves through the successive layers.
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central in the rest of this dissertation. The first is elaborated upon in Chapter 3 and the second in
Chapter 4. The two issues, which can intertwine, are tackled together in Chapter 5. Some key
related work also adressing these challenges is presented in Section 2.10 and Section 2.11.

2.9.1 Understanding the conditional independence assumption

In this section, we will take a closer look at the theoretical and practical implications of the condi-
tional independence assumption, which we presented in Section 2.2. Tackling the shortcomings
of this assumption is key to the work presented in Chapter 3 and Chapter 5. We present several
complementary points of view. As we have seen the standard way of defining latent generative
models is to make a conditional independence assumption, which yields a density of the form:

pθ(x|z) =
N∏
i=1

pθ(xi|z). (2.36)

Recall that in Section 2.2, we have seen that mapping a latent variable z from some latent space Z
to an image spaceX using a non-linear function fθ yields an implicit density ρθ(x) = P (fθ(z) =
x). The support of this density belongs to a low dimensional manifold of the ambient space, as
z is of low dimensionality and fθ is deterministic. Therefore ρθ has a degenerate support in the
sense that it (almost surely) puts 0 mass on the observed dataset:

P ({∃x ∈ D|ρθ(x) = 0}) = 1. (2.37)

To measure a density and train our model, it is thus necessary to add volume around this low-
dimensional manifold. This is typically done by using fθ as the mean of a parametric distribution
and adding isotropic noise around it, for instance using a Gaussian density with isotropic variance:

pθ(x) =
∫
z
N (x|fθ(z), σIn)p(z)dz =

∫
z

N∏
i=1
N (xi|fθ(z)i, σ)dz. (2.38)

Because of the isotropic nature of this volume, it cannot be used to model any structure, and all
the structure has to be captured by fθ(z). In what follows, ρθ denotes a density with degenerate
support, and pθ denotes the density obtained by adding isotropic volume to ρθ, which thus has a
non-degenerate support. As fθ becomes more flexible and accurate, less volume is needed, and σ
decreases. At the optimal limit and with infinite data ρθ fits p∗ perfectly, and σ → 0 such that:

pθ(x|z)→ δ(x− fθ(z)) = ρθ(x|z) and ρθ(x) = p∗(x). (2.39)

In practice fθ(z) is not flexible enough, so volume will always be necessary to model what fθ
cannot capture.

Limitations of isotropic noise. To take a look at the practical implications, let us first clarify
what we mean by «[the volume] cannot be used to model any structure». Suppose the mean of the
distribution fθ(z) is a good image, then sampling an image from p∗θ(x|z) means adding ’salt and
pepper’ per-pixel noise around fθ(z), which leads to a poor noisy image. The best we can hope
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Figure 2.8: Interpolating from point x1 to point x2 using the blue arrow requires going through a
region of low density, which illustrates that the Euclidean distance is a bad notion of distance
for points on a non-linear manifold. Instead, the geodesic distance (black arrow) should be used.
Importantly, x3 is in a region of low density and should thus be "far" from any point in the red
area. That is not the case when using the Euclidean distance.

for is that σ is small enough that we can’t notice the difference. In terms of density modelling
performance, we are wasting the probability mass of pθ(x) on unlikely points around fθ(x), i.e
we are over-generalizing and taking samples from x ∼ pθ(x) will yield unrealistic images. This
is particularly problematic if fθ lacks "a lot" of flexibility, as a lot of mass has to be wasted to
compensate. This illustrates that the conditional independence assumption is a poor assumption
for pθ(x).

Considering these limitations, which concern pθ(x), it is reasonable to see ρθ as the real quantity
of interest, as is the case in GANs. In this view, the noise σ is just here to train ρθ and can
be considered as belonging to the training loss rather than to the model. This point of view is
reasonable in the sense that it is consistent: the loss is zero for ρθ(x) = p∗, and ρθ is a universal
density approximator. However this view is also problematic: we care about one density, ρθ, but
optimize and evaluate another density. It is therefore reasonable to ask: what will the impact be
on the training of ρθ?

Impact on the training of ρθ(x). The point of view that ρθ is the object of interest, and σ is
just "here to help", nevertheless has implications on the training loss of ρθ. We can see it in terms
of "reconstruction losses": maximizing the log-likelihood of an isotropic Gaussian with fixed
variance corresponds to minimizing an L2 reconstruction loss,

− log(pθ(x|z)) ∝ ‖x− fθ(z)‖2. (2.40)

Therefore, to measure the distance between an image and a prediction, the Euclidean norm
in pixel space is used. It is sensible in that it is a distance, so it is minimised for x = fθ(z).
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Figure 2.9: If a model is assumed to have isotropic variance, two situations are possible. i) The
model if flexible to fit all points, and will reduce the variance almost to a Dirac, which can lead
to a model that is significantly more complex than it should be, and over-fitting. Indeed in the
exemple on the left, the ground truth has one non-isotropic mode, while the model is significantly
more complex. ii) The model is not flexible enough to fit all points closely, and has to substantially
increase its variance, thus wasting probability mass and yielding unrealistic samples.

However, it is clear that the Euclidean norm is not a good measure of similarity between images.
For instance, take x and translate it by two pixels to obtain x̃. Most humans will state, reasonably,
that the two images are almost identical and yet, the Euclidean norm will be huge. The same
goes for rotations and other low level transformations of x. Conversely, two images at a small L2
distance of each other can seem visually very different.

What would a better distance look like? A reasonable assumption is that images lie (close to) a
low-dimensional, non-linear, manifold of RN . A desirable distance could be the geodesic dis-
tance6 between the projection of x and x̃ on that manifold, dg(proj(x), proj(x̃)). While following
the geodesic to minimize dg, proj(x̃) would move on the manifold, so it’s pixels would change
in a coherent manner, and so dg would better satisfy human judgement. This is illustrated in
Figure 2.8. Unfortunately this manifold is precisely what we are trying to learn, so it is impossible
to leverage the geodesic distance. However, it highlights the shortcomings of the Euclidean norm.

Pathological example. What happens when using the Euclidean distance anyway? Suppose a
subset T ⊂ X in which p∗ is approximately unimodal, and take two samples x1,x2 ∼ p∗(x|x ∈
T ). If pθ(x|z) is assumed isotropic, two cases may happen: either fθ is flexible enough to go
close to both points, and the simple unimodal distribution is replaced by a more complicated
distribution with two modes (and the model overfits), or fθ is not flexible enough and it will fit
both points with a single, blurry mode between the two points and high variance around it, as
illustrated in Figure 2.9.

6 Assuming a smooth manifold structure – a topology and a smooth atlas are given – and a metric, the geodesic
between two points is the path that has the shortest length while staying on the manifold.
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Going beyond the conditional independence assumption. Given the discussion above, it
appears that building models that go beyond the conditional independence assumption is an inter-
esting research direction. It can be seen as building better density models for pθ, or equivalently
better training losses for ρθ. In Chapter 3, we construct such a model by using autoregressive
decoders, presented in Section 2.8, in a VAE model. The decoder is conditioned on some latent
variable z produced by an inference network, and can be written:

pθ(x|z) =
N∏
i=1

pθ(xi|xj<i, z). (2.41)

With this construction, the pixels are sampled sequentially, which is slower at sample time, but an
arbitrarily complex dependencies can be learned around fθ(z). In Chapter 5, a different approach
is taken. An invertible model fψ is used to build an abstract feature space in which the Euclidean
distance is a better measure of similarity. In other words we lift the targets of pθ in a feature
space:

pθ(fψ(x)|z) =
N∏
i=1

pθ(f iψ(x)|z) (2.42)

and use the invertibility of fψ to go back to image space, both for likelihood evaluations and for
sampling.

2.9.2 Understanding mode-dropping in adversarial networks

Adversarial networks have the ability to generate very compelling samples, far beyond the sample
quality of a VAE with an identical computational budget. On the other hand, a known issue
is that they tend to model only a strict subset of the support of the true data distribution p∗,
which is called mode-dropping. Intuitively, this is a direct consequence of the way the model is
trained as we show in the following paragraphs. This issue is made worse by the fact that GANs
do not provide a clear way of measuring this phenomenon. Indeed there is no simple way of
measuring the density of a given real data point x under the model, pθ(x), because the model has
a degenerate support.

There are two types of failure cases for a GAN generator. The first is to produce poor looking
images, i.e. put mass outside of the support of p∗. The second is to produce good quality images
with too little variability, i.e. miss some modes of the support and put too much masss on others.
We now discuss the way the discriminator penalises these two undesirable behaviours. To train
pθ, a sample x̃ is taken from the model, and it is fed to the discriminator which has to distinguish
it from real images x ∼ p∗(x), by computing Dφ(x̃). If a sample is of poor visual quality, the
discriminator can reject it based on that. In other words it has an approximation of p∗, denote
it p̂∗, and can estimate if "p∗(x) is high". Thus it is clear that the discriminator can explicitly
evaluate the quality of the image. What does not happen when training a GAN, is taking an image
from the training set, x ∼ p∗, and explicitly asking if it is well covered by the model pθ, i.e.
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"is pθ(x) high ?". This is what MLE, for instance does. However if only p∗(x) was evaluated,
pθ would always collapse to the mode of p∗, which does not usually happen. Therefore some
mechanism also evaluates variability.

Implicit variability evaluation. Let us discuss the extreme case where the learned density
collapses to a single image. Suppose that the generator learns a Dirac on a single real looking
image x0 from the training set:

pθ(x) = δ(x− x0). (2.43)

The discriminator can not reject the image based on its quality, as it is a real image, i.e. eval-
uating p̂∗(x) will yield a good score. Yet intuitively it can succeed by always predicting fake
when seeing this image. Most of the time it will be correct, and very rarely the image will
come from the dataset and it will be wrong. This is because the discriminator also holds an
approximation of pθ, that we denote p̂θ. If an image is "seen too often", it’s score is degraded,
and the discriminator determines "too often" by comparing p̂θ(x) and p̂∗(x). If pθ(x̃) is "too
high" and the discriminator pushes it down, the mass must go somewhere. Going outside of
the support is heavily penalised, so it should go on the support. Thus, by explicitly evaluat-
ing the mass of samples x̃, the density mass is implicitly pushed towards the training set, due
to the fact that the total mass is fixed. This shows an informal ’consistency’ of adversarial training.

Practical consequences. We have seen that adversarial training explicitly rewards quality, and
implicitly rewards coverage. In practice the consequence is that training is biased towards a
mode-seeking behaviour. To see this, assume that p∗ is more flexible than pθ. To avoid going
into low density regions of the space, pθ has to drop some modes of the distribution. Conversely,
when training with MLE, pθ has to go through regions of low density to cover the full support of
the distribution. This phenomenon is illustrated in Figure 2.10. From this perspective, the fact
that GANs tend to produce good-looking samples but drop part of the support is not surprising.
To build conditional models that produce compelling outputs, used for instance in photo editing
products, this may be fine. But from a density modelling perspective, coverage and quality are
two sides of the same coin: the goal is to learn p∗. This motivates the goal of reducing mode
collapse in GANs.

Reducing mode-collapse in GANs. The discussion above motivates training procedures that
fight mode-collapse by more closely evaluating support coverage. In Chapter 4, a construction to
explicitly evaluate variability is proposed. This idea is as follows: variability is hard to evaluate
from i.i.d samples, because it is evaluated implicitly. Instead, one can consider batches of images,
fake and real, as input to the discriminator. To fool the discriminator, it is necessary to produce a
batch with as much variability as a batch of fake images. Thus, variability becomes a feature that
can be explicitly computed as a batch statistic, rather than implicitly evaluated. In Chapter 5 a
more direct approach is taken, based on the symmetrical properties of adversarial training and
MLE: by combining the two, one is able to explicitly optimize both coverage and quality.
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Figure 2.10: With adversarial training (left), a sample x is taken from the model, which is
penalysed if x has low density under the data distribution. Thus, adversarial training pushes the
model to avoid low density regions, and pθ has to drop modes of p∗ if it is not flexible enough.
With MLE, the reverse happens: the model is penalysed for not assigning mass to samples from
the data.

2.10 Details and refinements on Variational auto-encoders

In sections 2.5 and 2.7, the core of the VAE and GAN models have been presented. These
two models are at the center of this thesis, thus we now present them more thoroughly. We
first discuss additional details on the practical training of VAEs in Section 2.10.1. In sections
2.10.2 to 2.10.4, refinements of the VAE framework that aim at improving the accuracy of the
approximate posterior are discussed. In Section 3.3.2, we present the idea of using flexible
autoregressive decoders. Finally, a variant of the VAE using quantized latent vectors is presented
in Section 2.10.5.

2.10.1 Practical training algorithm

In Section 2.5 we presented the basics of the VAE model. Here we present technicalities and
refinements that are necessary to make it work in practice. Recall the key VAE objective function:

Lelboθ,φ (x) = Eqφ(z|x)[ln(pθ(x|z))]−DKL(qφ(z|x)||p(z)). (2.44)

In practice, parametric families remain to be specified for pθ(z), pθ(x|z) and qφ(z|x). One
usual choice is to assume Gaussianity for p(z) and qφ(z|x), in which case the DKL term can be
computed in closed form: with p(z) = N (z; 0, I) and qφ(z|x) = N (z; gµφ(x), gσφ(x)),

DKL (qφ(z|x)||p(z)) = 1
2
[
1 + ln gσφ(x)− gµφ(x)− gσφ(x)

]
. (2.45)

For the reconstruction term, empirical estimation is typically used: with zs ∼ qφ(z|x),Eqφ ln pθ(x|z) ≈
1
S

∑S
s=1 ln pθ(x|zs). This empirical estimation raises an issue: the estimator becomes non-

differentiable because of the sampling operator. A first solution can be to use the Reinforce
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algorithm: under assumptions compatible with the Leibniz Integral rule,

∇φEz∼qφ(z|x)[ln pθ(x|z)] = Ez∼qφ(z|x)[ln pθ(x|z)∇φ log qφ(z|x)] (2.46)

≈ 1
N

N∑
i=1

ln pθ(x|zi)∇φ log qφ(zi|x), (2.47)

where the first line comes from swapping E and∇φ, and from the log-derivative trick:∇φqφ(z) =
qφ(z)∇φ log qφ(z). Unfortunately, this approach suffers from high variance. Intuitively, it is in
fact too generic: it enables differentiation w.r.t. to any sampling operation. We are in a special
case where we do need to sample, which is inherently non-differentiable, but from a parametric
distribution that is differentiable w.r.t. it’s parameters. This leads to the idea of treating the
randomness as an additional input of the network, sampled from a standard Gaussian, and
learning a transformation that reshapes this standard Gaussian into an other distribution. This
approach is called the re-parametrization trick Kingma and Welling [2014a] and is illustrated in
Figure 2.11. With : ε ∼ q(ε) and z = gφ(ε|x):

∇φEz∼qφ(z|x)[ln pθ(x|z)] = ∇φEε∼q(ε)[ln(pθ(x|gφ(ε|x))] (2.48)

= Eε∼q(ε)[∇φ log(pθ(x|gφ(ε|x))] (2.49)

≈ 1
N

N∑
i=1
∇φ ln pθ(x|gφ(εi|x)). (2.50)

Both methods are unbiased, but this approach offers gradients with lower variance. In prac-
tice, gφ(z|x) is chosen Gaussian still to enable closed form computation of the KL: zs ∼
qφ(z|x) = N (z; gµφ(x), gσφ(x)). With the re-parametrization trick, this is written as: zs =
gµφ(x) + gσφ(x)� εs, with εs ∼ N (εs; 0, I).

In this set-up, the empirical estimator of the ELBO reduces to:

Lθ,φ(x) ≈ 1
S

S∑
s=1

ln pθ
(
x|gµφ(x) + gσφ(x)� εs

)
− 1

2
[
1 + ln gσφ(x)− gµφ(x)− gσφ(x)

]
(2.51)

2.10.2 Top down sampling

When optimizing Lelboθ,φ (x) = Eqφ(z|x)[ln(pθ(x|z))] − DKL(qφ(z|x)||p(z)), the flexibility of
qφ(z|x) is crucial: approximating pθ(z|x) is a difficult task. One limitation of the vanilla VAE
approximate posterior is the Gaussianity restriction with diagonal covariance, commonly referred
to as the mean-field assumption. More precisely, equation Equation 2.23 shows that the optimal
variational distribution verifies qφ(z|x) = pθ(z|x). With restricted density families for q(.) this
is not realizable. One possible solution is to use a hierarchy of latent vectors, rather than a single
one. In the generative model pθ, latent variables z can be split into L groups, each one at a
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Figure 2.11: The re-parametrization trick consists in treating the "randomness" as an input to the
network, denoted ε. This allows differentiation with respect to σ and µ, and reduces the variance
of the estimator compared to sampling z directly. Quantities inside a circle are stochastic, while
those inside a diamond are deterministic functions of their possibly stochastic inputs.

different layer, and the density over z can be written as:

q(z) = q(zL)
L−1∏
i=1

q(zi|zi+1). (2.52)

At depth i, zi−1 can be treated as a standard input feature map, and assume zi|z<i to be Gaussian,
as in the standard construction. Yet non-linear functions of zi−1 can be used to implement the
conditionning. Therefore when integrating over z the posterior is no longer Gaussian:∫

z
pθ(x|z) =

∫
z1
. . .

∫
zn
pθ(x|z)p(zn|zj<n) . . . p(z1) (2.53)

with p(zn|z<n) implemented using a deep functions, for instance p(zn|z<n−1) = N (.|µθn(z<n), σnI)
with µθn the output of a deep network. Additionally, to allow the chain of latent variables to
be sampled in the same order when encoding and when sampling, top-down sampling is used
[Bachman, 2016, Kingma et al., 2016b, Sønderby et al., 2016]. With top-down sampling, the
encoder (symmetric to the decoder) extracts deterministic features hi at different levels as the
image is being encoded, constituting the bottom-up deterministic pass. While decoding the image,
these previously extracted deterministic features hi are used for top-down sampling and help
determining the posterior over latent variables at different depths in the decoder. These posteriors
are also conditioned on the latent variables sampled at lower feature resolutions, using normal
densities as follows:

qφ(z1|x) = N (z1|µ1(x, h1), σ2
1(x), h1), (2.54)

qφ(zi|zi−1) = N (zi|µi(x, zi−1, hi−1), σ2
i (x, zi−1, hi−1)). (2.55)

This constitutes the stochastic top-down pass, and is illustrated in Figure 2.12. We refer the reader
to [Bachman, 2016, Kingma et al., 2016b, Sønderby et al., 2016] for more detail.
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Figure 2.12: With top-down sampling, deterministic information is hierarchically extracted during
the encoding. During decoding, latent variables zi are sampled top-down, using the information
extracted at corresponding layer i during encoding to determine the distribution.

2.10.3 Normalizing Flows for flexible posteriors

There are other solution to go beyond simplistic parametric families and mean-field approxima-
tions. The principle of normalizing flows (Tabak & Turner, 2013; Tabak & VandenEijnden, 2010)
can be used to obtain more flexible posteriors. The key idea is to apply a sequence of invertible
transformations to an initially simple probability density. Applying this sequence yields a valid
probability distribution, and its density can be evaluated exactly by repeatedly applying the change
of variables formula. As the initial density ’flows’ through the sequence it becomes increasingly
flexible. Consider an invertible, smooth mapping f : Rd → Rd, with inverse f−1 = g. Given a
random variable z with distribution q(z), we can use this mapping to transform z into f(z). The
change of variable formula (or inverse function theorem) yields the density of z

′
:

q(z′) = q(z)
∣∣∣∣∣det ∂f

−1

∂z′

∣∣∣∣∣ = q(z)
∣∣∣∣det ∂f

∂z

∣∣∣∣ . (2.56)

Arbitrarily complex densities can be constructed by successively applying Equation 2.56. Af-
ter transforming a random variable z0 with distribution q0 through a chain of K invertible
transformations fk, one obtains:

zK = fK ◦ . . . ◦ f2 ◦ f1(z0) (2.57)

and

ln qK(zK) = ln q0(z0)−
K∑
k=1

ln |det ∂fk
∂zk−1

|. (2.58)

Expectations w.r.t. the transformed density qK can be computed without explicitly knowing qK
as for any function h:

EqK [h(z)] = Eq0 [h(fK ◦ fK−1 ◦ . . . ◦ f1(z0))]. (2.59)
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Note that in the case where h(z) does not depend on qK (which is not the case in maximum-
likelihood estimation), this does not even require computation of the log det-Jacobian terms. The
invertible flows can be interpreted as applying a series of expansions or contractions onto the
initial density function. The map z′ = f(z) can push points towards the interior of a region in Rd,
increasing the density inside the region and decreasing it outside (contraction). It can also pull
the points z away from a region, thus reducing the density in that region (expansion). An initially
simple prior, e.g. factorized Gaussian, can be turned into increasingly flexible and multi-modal
distributions by applying normalizing flows with an increasing number of transformations.

In Kingma et al. [2016b], a type of normalizing flow called inverse autoregressive flow (IAF)
is introduced. The main benefits of this normalizing flow are its scalability to high dimensions,
and its ability to leverage autoregressive neural network, such as those introduced in van den
Oord et al. [2016b]. First, a latent variable vector is sampled using the re-parametrization trick
Kingma and Welling [2014b], z0 = µ0 + σ0ε, with ε ∼ N (0, I). Then, new mean and variance
parameters µ1 and σ1 are computed as functions of z0 using autoregressive models, and a new
latent variable z1 is obtained:

z1 = µ1(z0) + σ1(z0)z0. (2.60)

Since σ1 and µ1 are implemented by autoregressive networks, the Jacobian dz1
dz0

is triangular with
the values of σ1 on the diagonal, and the density under the new latent variable remains efficient
to compute. This transformation can be repeated an arbitrary number of times for increased
flexibility in theory, but in practice a single step is used by Kingma et al. [2016b].

2.10.4 Importance weighted VAE

Overly simplistic assumptions about the posterior can lead to overly simple latent representations,
that do not use the full modelling capacity of the network. Importance weighting can be used to
improve inference by deriving strictly tighter lower bounds on the log-likelihood using several
samples in latent space to approximate the posterior, without otherwise modifying the VAE
framework. This yields increased flexibility to model posteriors that go beyond the standard VAE
modelling assumptions, and can improve likelihood performance, at train or test time.

To present it, we write the ELBO differently:

log pθ(x) = logEqφ(z|x)

[
pθ(x, z)
qφ(z|x)

]
≥ Eqφ(z|x)

[
log pθ(x, z)

qφ(z|x)

]
= Lelboθ,φ (x). (2.61)

The gradients of Lelboθ,φ are obtained using the re-parametrization trick, using z = µ+σε. Because
the distribution on ε does not depend on θ, the differentiation and expectation on ε can be swapped:

∇φLelbo
θ,φ (x) = ∇φEqφ(z|x)

[
log pθ(x, z)

qφ(z|x)

]
= Eε∼N (0,I)

[
∇φ log pθ(x, z(ε, φ))

qφ(z(ε, φ)|x)

]
. (2.62)
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The gradient inside the expectation can be approximated via Monte Carlo estimation, by gener-
ating k samples of ε and using standard back-propagation. Let wθ,φ(x, z) = pθ(x, z)/qφ(z|x),
then

∇φEqφ(z|x)

[
log pθ(x, z)

qφ(z|x)

]
≈ 1
k

k∑
i=1
∇φ logwθ,φ(x, z(εk, φ)). (2.63)

This yields an unbiased estimate of ∇φL(x), with a variance that decreases as k increases. In
the case where k > 1, the additional samples can also be used to construct a tighter lower-bound
using the Jensen inequality:

Lelbok (x, θ, φ) = Ez1,...,zk∼qφ(z|x)

[
ln 1
k

k∑
i=1

wθ,φ(x, zi)
]

(2.64)

≤ lnEz1,...,zk∼qφ(z|x)
1
k

k∑
i=1

w(x, zi) (2.65)

= lnEz∼qφ(z|x)wθ,φ(x, z) (2.66)

= ln pθ(x). (2.67)

In the above expression, the standard VAE lower bound is recovered for k = 1. For all k, the
lower bounds tighten as k increases, i.e. Fk ≤ Fk+1 ≤ ln p(x). Burda et al. [2016] showed that
if the weights are bounded, then Lk → ln p(x) as k → ∞. These tighter bounds can be used
in two ways: i) to improve the training objective, in which case k ≈ 10 is typically used as a
trade-off between tightness and computational efficiency, and ii) only at test time, to define a
more accurate bound on the log-likelihood of an already trained VAE, in which case k≈103 can
be used. The gradients of the importance weighted lower bound can be expressed as:

∇Lelbok (x, θ, φ) = Ez1:k∼qφ(z|x)

k∑
i=1

w̃iθ,φ∇
(

ln p(x, zi)− ln qφ(zi|x)
)
. (2.68)

This update rule is similar to that of the VAE, but the samples weighted w.r.t. the true posterior.
Normalized importance weights are computed as: w̃iθ,φ = wθ,φ(x, zi)/

∑k
j=1wθ,φ(x, zj). This

allows for more accurate models with complex posteriors: poor choices of z will be penalised
proportionally to the importance weights. This is to be contrasted with the mode-seeking behaviour
of the standard ELBO, which will strongly penalyse the model for putting mass in low density
regions of the true posterior rather than in high density ones. Richer approximate posteriors can
be learned owing to this relaxation.

2.10.5 Quantized variational auto-encoders

The VAE model can be used with a discrete latent space rather than a continuous one, as pioneered
by van den Oord et al. [2017] and further extended by Razavi et al. [2019b] and Fauw et al.
[2019]. To do so, a finite number K of latent vectors ei of dimension D are learned by gradient
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descent, constituting a codebook, e = {e1 . . . eK}. Given an input x, the encoder fφ yields fφ(x).
which is then discretized by a nearest neighbour look-up, using the codebook e:

qφ(z = k|x) =
{

1 if k = argminj‖fφ(x)− ej‖2,

0 otherwise
, (2.69)

The discretized encoding is then the input to the decoder, let us denote it zqφ(x) . The embedding
space e is trained together with the parameters of the encoder and decoder. Note that this can be
extended to use more than one element of the codebook per image, for instance by using a latent
vector field with a spatial resolution of H ×H , and with D seen as a channel dimension. In that
case the codebook can yield K(H×H) different combinations of shape (H,H,D).

This formulation does not break the variational interpretation of the auto-encoder, in the sense that
log p(x) is bounded with an ELBO. Indeed qφ(z = k|x) is deterministic, and a uniform prior
over z yields a constant KL divergence, equal to logK, per latent embedding. The likelihood of
the model is

log p(x) = log
∑
k

p(x|zk)p(zk). (2.70)

This can be bounded using Jensen’s inequality: log p(x) ≥ log p(x|zqφ(x))p(zqφ(x)), which is
the bound reported to evaluate the model. Equation 2.69 is not differentiable, so training of the
encoder is done by copying the gradients from the discretized input of the decoder zqφ(x) to the
encoder output fφ(x). This does not provide signal to train the embedding vectors ei. Therefore
an l2 distance measuring the error introduced by the nearest-neighbour lookup is also minimized.
The full loss function is summarized in Equation 2.71 where "sg" stands for the stop-gradient
operator and β is an hyper-parameter to be tuned.

Lvq−vae = log pθ(x|zqφ(x)) + ‖sg[fφ(x)]− e‖22 + β‖fφ(x)− sg[e]‖22, (2.71)

One intersting property of this approach is that because the KL cost of the encoder is constant,
it can be used together with very expressive autoregressive decoders without suffering from
posterior collapse, as shown by Fauw et al. [2019].

Auto-regressive priors. As in standard VAEs, there is a miss-match between the prior and true
posterior. Therefore samples from the prior do not perfectly match samples seen by the decoder
at training time, which degrades sample quality. To improve on this, it is possible to train an
additional prior with the posterior distribution as target, which will hopefully be closer to the
posterior than the constant, uniform prior. Autoregressive models, which perform well on discrete
data, can be used, and Razavi et al. [2019b] has shown this to be beneficial to sample quality.

2.11 Lipschitz continuity for generative adversarial networks

We now make a more in depth presentation of adversarial models, introduced in Section 2.7.
A lot of research has been devoted to developing more stable training procedures, through the
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design of better losses. In Section 2.11, we present a connection of adversarial training with
optimal transport that has led to a now almost ubiquitous variant of GAN regularization, based
on Lipschitz continuity. Generative adversarial networks are notoriously unstable to optimize
and research has been devoted to improving adversarial training procedures. One variation that
has emerged is the use of Lipschitz continuity as a regularizer, which can be motivated with an
interesting connection to optimal transport and the Wasserstein distance. We chose to present this
development in this chapter because it may be, at present, the most widely used GAN variant.

Limitations of the vanilla GAN. One source of difficulty in training GANs is that strong dis-
criminator lead to vanishing gradients of Epz ln(1−Dφ(Gθ(z))) w.r.t. θ [Arjovsky et al., 2017].
This phenomenon is especially prone to happen early in training, when the generator is essentially
random and it is easy for the discriminator to be very accurate This makes it important to tune the
capacity and training regime of the discriminator. To mitigate vanishing gradients early in training,
Goodfellow et al. [2014] proposed to train the generator by minimizing −Epz ln(D(G(z))) to
boost the gradient signal in early training. This loss has the same stable points in the minimax
optimization of V (θ, φ) and helps in early training, but the problem remains: if at some point Dφ

becomes too good, it’s gradients vanish and no signal remains to train Gθ. This is a motivation
for designing better adversarial losses.

Both maximum-likelihood estimation and standard GAN objective rely on Kullback-Liebler
divergence minimization. Indeed recall that the optimal loss approximated by Dφ is the Jensen-
Shannon divergence, composed of two KL divergences. An important property of DKL(p||q) is
that it is infinite if p has a zero in the support of q, which is easy to check from the definition
DKL(p||q) =

∫
x p(x)

[
ln q(x) − ln p(x)

]
dx.. This means it can not be used to train a model

that does not cover the full support of the training set. Because in GANs latent variable vectors z
live in a lower dimensional space than natural images, Gθ(z) is a low-dimensional manifold of
RN , and has degenerate support almost surely Arjovsky et al. [2017]. Therefore, the optimal loss
approximated by Dφ is degenerate. Note that in maximum-likelihood estimation this problem
is handled by adding volume around the low dimensional manifold Gθ(z), for instance with
Gaussian noise, to obtain a density with non-degenerate support, see Section 2.9.1 for detail.

The earth-mover distance as an alternative adversarial loss. Alternative adversarial losses
can be derived using optimal transport. Let us consider a joint distribution γ(x, y) with marginals
p(x) = γ(x) and q(y) = γ(y). The conditional γ(y|x) can be seen as “moving mass” to
transform p(·) into q(·). A notion of cost associated with a given transformation γ can be defined
as:

T (γ) =
∫
x,y

γ(x,y) ||x− y|| =
∫
x
p(x)

∫
y
γ(y|x) ||x− y|| (2.72)

This definition is rather intuitive: if γ(y|x) is high, γ is likely to transform x into y, and thus to
require moving by ||x− y||. T (γ) is thus the cost of transformation using γ. One can then seek
to find a γ that minimizes the cost of transportation. This cost is called the Wasserstein distance
DWS , and is the cost of optimal transportation: DWS(p||q) = infγ∈Γ(p,q) T (γ). Intuitively, it is
based on a notion of distance between p and q, rather than a notion of overlap as is the case for
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Figure 2.13: If p0 is the uniform distribution on the orange line, and pθ is uniform on the blue line,
the optimal transport from p0 to pθ is γ∗ and has cost T (γ∗) = |θ|. The cost can be computed
despite the fact that p0 and pθ are disjoint. Figure adapted from Arjovsky et al. [2017].

DKL, and so is defined between densities that have non-overlapping support.

Consider an example where R2 is the ambient space, with x = (x1, x2). Assume two densities
p0 and pθ with low dimensional support: p0 is uniform on x2 ∈ [0, 1] for x1 = 0, and pθ is
uniform on x2 ∈ [0, 1] for x1 = θ. This is illustrated in Figure 2.13. Let us compare DKL,
DJS and DWS in this special case. If θ = 0, all measures are zero as pθ = p0. For θ 6= 0, we
have DKL(p0||pθ) = ∞ and DJS(p0||pθ) = ln 2. Although DJS(p0||pθ) can be computed, it
can not be used for training: it does not depend on θ, and so can not be used to bring pθ closer.
But the Wasserstein distance, based on a measure of the proximity of supports can be used: in
this case, DWS is easy to compute, and intuitive. Indeed the optimal transport is an horizontal
translation by (0, θ), i.e. γ(x|y) = δ(x− y −

(
θ
0

)
)) with constant cost |θ| for every pair (x,y)

so DWS(p0||pθ) = |θ|.

Dual definition and approximation. In general, the Wasserstein distance is challenging to
compute. For high dimensional data an arbitrary γ can not be integrated out in closed form, so it
is impossible to find the infimum on γ. However, the Kantorovich-Rubinstein duality Theorem
[Villani, 2009] states that DWS can equivalently be defined as:

DWS(p∗||q) = inf
γ∈Γ(p,q)

T (γ) = 1
k

max
||Dφ||L≤k

Ep∗Dφ(x)− EpzDφ(Gθ(z)), (2.73)

In the previous equations, ||.||L denotes the Lipschitz norm. Intuitively, this theorem says that
finding the optimal transport between p and q is the same as finding a Lipschitz function Dφ that
maximally separates the two. This result is similar in spirit to the duality in linear programming.
The constant k can be viewed as a scaling factor and safely set to 1.

This formulation points to approximation schemes for DWS . Suppose taking the supremum over
k-Lipschitz function is intractable. Then, perhaps the supremum can be taken on a strict subset



2.11. LIPSCHITZ CONTINUITY FOR GENERATIVE ADVERSARIAL NETWORKS 41

Fk ⊂ {f | ‖f‖L ≤ k}. If Fk ”covers the full set well” in some sense, then the approximation
should be good. In the context of deep learning, the universal approximation theorem [Cybenko,
1989] can be invoked: with enough flexibility (number of "neurons"), any k-Lipschitz function
can in theory be approximated to arbitrary precision. So in practice, Dφ is restricted to some deep
network architecture, parametrized by φ, such that ||Dφ||L ≤ k, and φ is optimized by gradient
descent to find the supremum.

From theory to practice.
The dual formulation of the loss in Equation 2.73 now looks very similar to the training loss of a
GAN discriminator:

Lwgan = 1
k

max
||Dφ||L≤k

{Ep∗ [D(x)]− Epz [Dφ(Gθ(z))]} (2.74)

Lgan = 1
k

max
Dφ
{Ep∗ [log(Dφ(x))] + Epz [log(1−Dφ(Gθ(z)))]} (2.75)

There are two differences: i) log has disappeared, and ii) the Lipschitz norm of Dφ is con-
strained. Theoretically i) should not matter: the universal approximation theorem states that
exp can be approximated, so the log can be inverted by setting D̃φ = exp ◦Dφ. Nevertheless,
this difference can have a big impact in practice: the squashing effect of the log function can
strongly aggravate the vanishing gradient problem when points are far from the decision boundary.

Constraining the Lipschitz norm is easy in practice. In the case where ReLu [Glorot et al., 2011]
non-linearities are used, they do not modify the Lipschitz norm. It is thus enough to control the
norm of each layer li, and use the bound:

‖Dφ‖L ≤
L∏
i=1
‖li‖L. (2.76)

Without loss of generality, k can be set to 1, so if ‖li‖ ≤ 1 for all i, ‖Dφ‖ ≤ 1. Because each
li is a linear operation, ||li|| is the largest singular value of li, σ(li). So ensuring ‖Dφ‖ ≤ 1 can
be done by bounding σ(li) by 1 for all i. This can be enforced by clipping the weights of the
discriminator, as originally proposed in Arjovsky et al. [2017]. An other option is to add a penalty
on the magnitude of gradients [Gulrajani et al., 2017a]:

Gpen = λEx[(||∇xD(x)||2 − 1)2]. (2.77)

A third possibility is to estimate the largest singular value of each layer li, and normalize:
l̃i ← li/ ˆσ(li). This can be done using the power iteration method, see Miyato et al. [2018b].
Controlling the Lipschitz norm of the discriminator has been shown to be of great help in practice
[Miyato et al., 2018b], and is now common practice.

The use of DWS instead of DKL, which seems crucially different at first, leads to a loss that is
rather similar to the vanilla GAN loss. How relevant is the analysis in Section 2.11 in practice,
and could we simply say that penalizing the Lipschitz norm is a good regularizer? First, it is
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important to note that the analysis in Section 2.11 regards the ideal losses, DKL vs. DWS . In
practice, both are (losely) approximated by similar discriminators, and a property that is true
of the limits of sequences of functions is not necessarily true of the functions themselves. In
particular, note that in the standard GAN, having distributions with non-overlapping supports
does not break Dφ, in the sense that a finite value is computed by the discriminator. This ability to
handle support that don’t overlap is precisely the reason why it is possible to train without adding
volume around the low-dimensional manifold learned by the model, unlike in VAEs where this
breaks likelihood computations. Overall, this analysis guarantees that the optimal solution D∗φ(θ)
is well behaved in the Wasserstein framework, but may be less critical when considering how to
approximate it with a discriminator. However, it does provide an insightful connection to optimal
transport, and has led to the now standard use of Lipschitz regularization.

2.12 Evaluation metrics for generative models

Evaluating generative models applied to complex natural images is still an open research problem.
Several metrics exist, with their complementarities and respective drawback. The classical
evaluation is to report the log-likelihood performance of the model, normalised by the number of
pixel values, which yields the Bits-per-dim metric (BPD). By reporting it on unseen data, one can
detect over-fitting and know how well the model generalises to the full support of p∗. In practice,
image data is discretized, which can complicate log-likelihood evaluations. In sections 2.12.1 and
2.12.2, we present two ways of dealing with it, namely data dequantization and practical discrete
parametric densities, which have an impact on both training and evaluation. One drawback of
BPD is that it favours models with good coverage of the support over models that produce
good looking images but do not cover the full support. Other metrics that better evaluate the
visual quality of samples are therefore also desirable. Several of these have been develloped with
GAN evaluation in mind, because i) GANs do not readily offer log-likelihood evaluations and
ii) this type of metric is more aligned with the training objective of GANs. We present them in
Section 2.12.3.

2.12.1 Data dequantization

In practice, image datasets such as CIFAR10 or ImageNet, are discrete representations of continu-
ous signals that has been quantized (e.g. 8-bits colors). Though it is natural to assume continuous
density models for natural images, fitting such models to discrete data is degenerate. This is
because the probability of a singleton, which is of measure 0, under a continuous model is always
0. Training on discrete data anyway produces a degenerate solution that collapses probability
mass to discrete datapoints, and evaluating pθ(x) will yield very high values, that in theory tend
to +∞. The first solution, called dequantization, is to convert the discrete data distribution into a
continuous distribution. The second is to use discrete output distributions, despite the continuous
nature of real images.

Dequantization can be performed by adding uniform noise to the discrete data. For instance
if x has D dimensions, and each discrete component is encoded with 8-bits, (i.e. takes values
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in {0, 1, . . . , 255}) then the data can be dequantized by applying y = x + u, with u sampled
uniformly from [0, 1)D. This is equivalent to using rectangular approximations of the continuous
density function to integrate it. As shown by Theis et al. [2016], training a continuous pθ on y
can be interpreted as training another, related and discrete, model Pθ on the discrete data x by
maximizing a lower bound on its log-likelihood. Indeed, let

Pθ(x) :=
∫

[0,1)D
pθ(x+ u) du (2.78)

If P ∗ is the true density of the discrete data (i.e. the density obtained by discretizing the true,
continuous, data distribution), and p∗ is the distribution of uniformly dequantized data, Jensen’s
inequality yields

Ey∼p∗ [log pθ(y)] =
∑
x

P ∗(x)
∫

[0,1)D
log pθ(x+ u) du (2.79)

≤
∑
x

P ∗(x) log
∫

[0,1)D
pθ(x+ u) du (2.80)

= Ex∼P ∗ [logPθ(x)] (2.81)

Thus pθ can not collapse onto the discrete data, because its objective is bounded above by the
log-likelihood of a discrete model and so bounded by a finite value. Uniform dequantization
is correct but can be harmfull to performance. Intuitively, the data is corrupted with random
noise from which no signal can be extracted, and the model needs to learn to be invariant to that
noise. Indeed pθ needs to assign uniform density to unit hypercubes x+ [0, 1)D, centered around
the data x. Smooth function approximators are not well suited to that task that requires using
high-frequencies, which is in turn usually discouraged by regularization. Variational inference
can be used instead to perform dequantization, as proposed in Ho et al. [2019]. To build a better
dequantization noise distribution q(u), still with support over u ∈ [0, 1)D, q can be made a
function of x, q(u|x). Then for all q:

Ex∼P ∗ [logPθ(x)] = Ex∼P ∗
[
log

∫
[0,1)D

q(u|x)pθ(x+ u)
q(u|x) du

]
(2.82)

≥ Ex∼P ∗
[∫

[0,1)D
q(u|x) log pθ(x+ u)

q(u|x) du
]

(2.83)

= Ex∼P ∗Eu∼q(·|x)

[
log pθ(x+ u)

q(u|x)

]
(2.84)

Using an expressive q allows pθ to place density in each hypercube x + [0, 1)D according to
flexible distribution q(u|x) which is more natural for pθ. In particular, a uniform distribution on
u is within the family of distributions that can be learned by q. Therefore by taking the optimum
over that family we necessarily get a tighter bound than by using a uniform q. In practice, q
is implemented using a small network and optimized jointly with pθ using gradient descent,
estimating the gradients by monte-carlo approximation.
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2.12.2 Discrete parametric densities

Rather than dequantize the discrete data, it is possible to use discrete parametric densities. One
possiblity, proposed by Oord et al. [2016] is to use a softmax operator: given scores si for each
color class,

psoft(k) = esk∑
i e
si

(2.85)

This has the advantage that no parametric assumptions about the distributions predicted need to
be made: a softmax can be arbitrarily multimodal, skewed, peaked or long tailed. There is also
no need to worry about parts of the distribution mass that may be outside the interval 0, 255. A
drawback is that no prior information is embedded about the relations between the 256 color
categories. The notion that values i and i+ 1 are neighbors is lost and has to be learned by the
model, and small mistakes are penalised as much as big ones.

Another option is model color intensity with a continuous distribution, but taken from a family of
functions that can be discretized exactly. Kingma et al. (2016) use the logistic density which is
parametrised by a location parameter µi, a scale parameter σi, and resembles a Gaussian density.
It integrates to the sigmoid function σ, so it is easy to discretize:

P (xi|π, µ, s) = σ((xi + 0.5− µi)/si)− σ((xi − 0.5− µi)/si) (2.86)

Salimans et al. [2017a], extend this approach using mixtures of logistic distributions, to have
multiple modes as with the softmax. In practice a relatively small number of mixture components
(5 to 10), is enough for natural images datasets.

2.12.3 GAN evaluations

Quantitative evaluation of Generative Adversarial Networks is challenging, in part due to the
absence of log-likelihood but also because GANs are primarily optimised for image quality rather
than support coverage. To measure the quality of samples, the ideal would be to directly evaluate
p∗(x). That is of course impossible, since learning p∗ is precisely the problem we are trying to
solve. A simple solution could be to use the dataset to approximate p∗ by fitting parzen windows
on data points [Goodfellow et al., 2014]. In high dimensions, however, this provides very poor
evaluations [Theis et al., 2016].

It is also important to note that any metric evaluating quality only would be degenerate as an
evaluation for pθ, as collapsing pθ to the mode of the distribution would maximize it. Such a
metric would need to be complemented with an other measure.

The most popular solutions to automate the qualitative evaluation of samples rely on the idea
of relying on a pretrained image classifier to provide the evaluation. Intuitively, we know how
to train classifiers that are very accurate on unseen data, which means that they have some
"understanding" of what real images should look like. For instance, one can consider that a
classifier should assign a low entropy distribution over classes to a good sample, and be confused
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and assign a high-entropy distribution over classes for a poor sample. This is the idea behind the
Inception Score (IS), proposed by Salimans et al. [2016b]. Another possibility is to compare the
behaviour of a classifier when applied to a set of samples vs. a set of real images, which is the
intuitive idea behind the Fréchet Inception distance (FID), proposed in Heusel et al. [2017].

Inception score (IS). The inception score is a statistic of the generated images, based on an
external inception network [Szegedy et al., 2015], trained for classification on ImageNet. The
score is given by:

IS(pθ) = exp(Ex∼pθDKL(p(y|x)||p(y))), (2.87)

where p(y|x) is the conditional class distribution obtained by applying the pre-trained classifi-
cation network to the generated images, and p(y) =

∫
x p(y|x)pθ(x) is the class marginal over

the generated images. To understand this score intuitively, decompose the Kullback–Liebler
divergence in two:

Ex∼pθ [DKL(p(y|x)||p(y))] = Ex∼pθ
[∫
y
p(y|x) log p(y|x)dy −

∫
y
p(y|x) log(p(y))dy

]
.(2.88)

The first term inside the expectation is minus the entropy of the classifier, for a fixed x. This
captures the idea that an image is condidered "good" if it can be well identified as a known object
by the classifier, in which case the distribution over classes has low entropy. When taking the
expectation over x, the average entropy should be low. The second term is the cross-entropy
between y|x and y, and captures the idea that y|x should have as much variability as y and thus
the entropy of averages should be high.

Fréchet Inception distance (FID). The Fréchet Inception distance compares the distributions
of Inception embeddings i.e., activations from the penultimate layer of the Inception network,
of real (pr(x)) and generated (pg(x)) images. Both of these distributions are modelled as multi-
dimensional Gaussians parametrized by their respective mean and covariance. Finally, the score
is computed as the Fréchet distance between the two Gaussian densities, which can be reduced to:

d2((mr,Cr), (mg,Cg)) = ‖mr −mg‖2 + Tr(Cr + Cg − 2(CrCg)
1
2 ), (2.89)

where (mr,Cr), (mg,Cg) denote the mean and covariance of the real and generated image
distributions respectively.

Unlike the Inception Score, the Fréchet Inception distance does compare distributions obtained
with real and fake images, and in that sense is similar to a distance. This more directly captures
a notion of coverage: to be similar, the distributions of both real and fake inception activations
must have the same "coverage". In the case of IS, this is more indirect, and works similarly to
the GAN training loss: images must have variability, so the mass must be spread out. Because
images must also look good, implicitly the mass must spread to the training support. In practice,
however, both metrics are heavily dominated by quality as we now demonstrate.

Practical use of IS and FID. IS and FID correlate predominantly with the quality of samples.
In GAN literature, for instance [Miyato et al., 2018a], they are considered to correlate well with



46 CHAPTER 2. A PRIMER ON DEEP GENERATIVE MODELLING

human judgement of quality. An empirical indicator of that is that state-of-the art likelihood-based
models have very low IS/FID scores despite having good coverage, which shows that the low
quality of their samples dominates. Conversely, state-of-the art adversarial models have high
IS/FID scores, despite suffering from mode dropping (which strongly degrades BPD). So the
score is determined mainly by the high quality of their samples.

Split size IS FID

50k (full) 11.3411 0.00
40k 11.3388 0.13
30k 11.3515 0.35
20k 11.3458 0.79
10k 11.3219 2.10
5k 11.2108 4.82
2.5k 11.0446 10.48

Table 2.1: IS and FID scores obtained by the ground truth when progressively dropping parts of
the CIFAR10 dataset. The metrics are largely insensitive to removing most of the dataset, unlike
BPD. For reference, a reasonable GAN could get around 8 IS and 20 FID.

To obtain a quantitative estimation of how much entropy/coverage impacts the IS and FID mea-
sures, we evaluate the scores obtained by random subsamples of the dataset, such that the quality
is unchanged but coverage progressively degrades (see details of the scores below). Table 2.1
shows that when using the full set of images (50k) the FID is 0 as the distributions are identical.
Notice that as the number of images decreases, IS is very stable (it can even increase, but by
very low increments that fall below statistical significance, with a typical standard deviation of
0.1). This is because the entropy of the distribution is not strongly impacted by sub-sampling,
even though coverage is. FID is more sensitive, as it behaves more like a measure of coverage (it
compares the two distributions). Nonetheless, the variations remain extremely low even when
dropping most of the dataset. For instance, when removing 80 percent of the dataset (i.e., using
10k images), FID is at 2.10, to be compared with typical GAN values that are around 20.

These measurements demonstrate that IS and FID scores are heavily dominated by the quality
of images. From this, we conclude that IS and FID can be used as reasonable proxies to asses
sample quality, even though they are also slightly influenced by coverage. One should bear in
mind, however, that a small increase in these scores may come from better coverage rather than
improved sample quality.
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Successful approaches to generative modelling of high-dimensional data, in particular natural
image collections, include latent variable models as discussed in Section 2.5, and autoregressive
models as discussed in Section 2.8. The complementary strengths of these approaches, to model
global and local image statistics respectively, suggest hybrid models that encode global image
structure into latent variables while autoregressively modeling low level detail. The complemen-
tary strengths of these approaches, suggest hybrid models that encode global image structure into
latent variables while auto-regressively modelling low level detail. However, a naive construc-
tion of this type yields models that ignore the latent variables and only rely on autoregressive
modelling, a phenomenon known as the information preference property. Previous approaches
to such hybrid models [Chen et al., 2017, Gulrajani et al., 2017c] circumvent this problem by
restricting the capacity of the autoregressive decoder to prevent degenerate models. In contrast we
present a training procedure relying on an auxiliary loss function that controls which information
is captured by the latent variables and what is left to the autoregressive decoder. Our approach
can leverage arbitrarily powerful autoregressive decoders, achieves state-of-the art quantitative
performance among models with latent variables, and generates qualitatively convincing samples.
The material presented in this chapter is based on the paper "Auxiliary Guided Autoregressive
Variational Autoencoder", Thomas Lucas & Jakob Verbeek, European Conference on Machine
Learning (ECML) 2018.
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3.1 Introduction

Latent variable approaches can learn disentangled and concise representations of the data [Bengio
et al., 2013], which are useful for compression [Gregor et al., 2016] and semi-supervised learning
[Kingma et al., 2014, Rasmus et al., 2015]. Autoregressive models on the other hand, are very
effective to model low-level image statistics, and obtain state-of-the-art likelihoods on test data.
One interesting property of VAEs is that can learn latent variable representations that abstract
away from low-level details, but model pixels as conditionally independent given the latent
variables. This renders the generative model computationally efficient, but the lack of low-level
structure modeling leads to overly smooth and blurry samples Section 2.9.1. Autoregressive
models, such as pixelCNNs [Oord et al., 2016], on the other hand, estimate complex translation
invariant conditional distributions among pixels. They are effective to model low-level image
statistics, and yield state-of-the-art likelihoods on test data [Salimans et al., 2017a]. This is in line
with the observations of Kolesnikov and Lampert [2017] that low-level image details account for
a large part of the likelihood. These autoregressive models, however, do not learn a latent variable
representations to support, e.g., semi-supervised learning.

The complementary strengths of VAEs and pixelCNNs, modeling global and local image statistics
respectively, suggest hybrid approaches combining the strengths of both. Prior work on such
hybrid models needed to limit the capacity of the autoregressive decoder to prevent degenerate
models that completely ignore the latent variables and rely on autoregressive modeling only [Chen
et al., 2017, Gulrajani et al., 2017c]. In this chapter we describe Auxiliary Guided Autoregressive
Variational autoEncoders (AGAVE), an approach to train such hybrid models using an auxiliary
loss function that controls which information is captured by the latent variables and what is left to
the AR decoder. See Figure 3.1 for a schematic illustration of our approach. Using high-capacity
VAE and autoregressive components allows our models to obtain quantitative results on held-out
data that are on par with the state of the art. Our models generate samples with both global
coherence and low-level details. In Section B.2, related work on generative modelling of natural
images is presented. In Section 3.3.2, the general motivation for using autoregressive decoders
is given, followed by a discussion on why these models, when implemented naively, lead to
posterior collapse, and finally by a presentation of our approach that circumvents this problem.
Section B.4 contains experimental evaluation of the proposed approach, and ablations study to
demonstrate the importance of each components.

3.2 Related work

A variety of approaches leverage deep neural networks to learn complex density models. These
include the variational autoencoders and autoregressive models that form the basis of our work,
but also generative adversarial networks (GANs) [Arjovsky et al., 2017, Goodfellow et al., 2014]
and variable transformation with invertible functions [Dinh et al., 2017]. While GANs produce
visually appealing samples, they suffer from mode dropping and their likelihood-free nature
prevents measuring how well they model held-out test data, see Section 2.9.2. In particular,
GANs can only generate samples on a non-linear manifold in the data space with dimension
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Figure 3.1: Schematic illustration of our auxiliary guided autoregressive variational autoencoder
(AGAVE). The objective function has three components: KL divergence regularization, per-pixel
reconstruction with the VAE decoder, and autoregressive reconstruction with the pixelCNN
decoder.

equal to the number of latent variables. In contrast, this chapter focuses on probabilistic models
that generalize to the entire data space, and provide likelihoods of held-out data that can be
used for compression, and to quantitatively compare different models. To improve the quality of
samples, a structured noise model is proposed, to reduce over-generalization in a MLE setting,
see Section 2.9.1. The non-volume preserving (NVP) transformation approach of Dinh et al.
[2017] chains together invertible transformations to map a basic (e.g. unit Gaussian) prior on the
latent space to a complex distribution on the data space. This method offers tractable likelihood
evaluation and exact inference, but obtains likelihoods on held-out data below the values reported
using state-of-the-art VAE and autoregressive models. Moreover, it is restricted to use latent
representations with the same dimensionality as the input data, and is thus difficult to scale to
model high-resolution images.

Autoregressive density estimation models, such as pixelCNNs [Oord et al., 2016], admit tractable
exact likelihood evaluation, while for variational autoencoders [Kingma and Welling, 2014a,
Rezende et al., 2014] accurate approximations can be obtained using importance sampling [Burda
et al., 2016]. Naively combining powerful pixelCNN decoders in a VAE framework results in
a degenerate model which ignores the VAE latent variable structure, as explained through the
lens of bits-back coding by Chen et al. [2017]. To address this issue, the capacity of the the
autoregressive component can be restricted. This can, for example, be achieved by reducing
its depth and/or field of view, or by giving the pixelCNN only access to grayscale values, i.e.
modeling p(xi|x<i, z) = p(xi|gray(x<i), z) [Chen et al., 2017, Gulrajani et al., 2017c]. This
forces the model to leverage the latent variables z to model part of the dependencies among
the pixels. This approach, however, has two drawbacks. (i) Curbing the capacity of the model
is undesirable in unsupervised settings where training data is abundant and overfitting unlikely,
and is only a partial solution to the problem. (ii) Balancing what is modeled by the VAE and the
pixelCNN by means of architectural design choices requires careful hand-design and tuning of the
architectures. This is a tedious process, and a more reliable principle is desirable. To overcome
these drawbacks, we propose to instead control what is modeled by the VAE and pixelCNN with
an auxiliary loss on the VAE decoder output before it is used to condition the autoregressive
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decoder. This allows us to “plug in” powerful high-capacity VAE and pixelCNN architectures,
and balance what is modeled by each component by means of the auxiliary loss.

In a similar vein, Kolesnikov and Lampert [2017] force pixelCNN models to capture more
high-level image aspects using an auxiliary representation y of the original image x, e.g. a
low-resolution version of the original. They learn a pixelCNN for y, and a conditional pixelCNN
to predict x from y, possibly using several intermediate representations. This approach forces
modeling of more high-level aspects in the intermediate representations, and yields visually more
compelling samples. Reed et al. [2017] similarly learn a series of conditional autoregressive
models to upsample coarser intermediate latent images. By introducing partial conditional
independencies in the model they scale the model to efficiently sample high-resolution images of
up to 512×512 pixels. Gregor et al. [2016] use a recurrent VAE model to produces a sequence of
RGB images with increasing detail derived from latent variables associated with each iteration. In
[Denton et al., 2015], adversarially generated images are progressively refined using a Laplacian
pyramid framework. Like our work, all these models work with intermediate representations in
RGB space to learn accurate generative image models.

3.3 Auxiliary guided autoregressive variational autoencoders

For self-containedness, we give a brief overview of variational autoencoders and relevant limita-
tions in Section 3.3.1, before we present our approach to learning variational autoencoders with
autoregressive decoders in Section 3.3.2.

3.3.1 Variational autoencoders with autoregressive decoders

Variational autoencoders [Kingma and Welling, 2014a, Rezende et al., 2014] learn deep gener-
ative latent variable models using two neural networks. The “decoder” network implements a
conditional distribution pθ(x|z) over observations x given a latent variable z, with parameters θ.
Together with a basic prior on the latent variable z, e.g. a unit Gaussian, the generative model on
x is obtained by marginalizing out the latent variable:

pθ(x) =
∫
p(z)pθ(x|z) dz. (3.1)

The marginal likelihood can, however, not be optimized directly since the non-linear dependencies
in pθ(x|z) render the integral intractable. To overcome this problem, an “encoder” network is used
to compute an approximate posterior distribution qφ(z|x), with parameters φ. The approximate
posterior is used to define a variational bound on the data log-likelihood, by subtracting the
Kullback-Leibler divergence between the true and approximate posterior:

ln pθ(x) ≥ L(θ,φ;x) = ln(pθ(x))−DKL(qφ(z|x)||pθ(z|x)) (3.2)

= IEqφ [ln(pθ(x|z)]︸ ︷︷ ︸
Reconstruction

−DKL(qφ(z|x)||p(z))︸ ︷︷ ︸
Regularization

. (3.3)
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The decomposition in Equation 3.3 interprets the bound as the sum of a reconstruction term and a
regularization term. The first aims to maximize the expected data log-likelihood pθ(x|z) given
the posterior estimate qφ(z|x). The second term prevents qφ(z|x) from collapsing to a single
point, which would be optimal for the first term. See Section 2.5 for a more detailed presentation.

Variational autoencoders typically model the dimensions of x as conditionally independent,

pθ(x|z) =
D∏
i=1

pθ(xi|z), (3.4)

for instance using a factored Gaussian or Bernoulli model, see e.g. Kingma and Welling [2014a],
Kingma et al. [2016a], Yan et al. [2016]. The conditional independence assumption makes
sampling from the VAE efficient: since the decoder network is evaluated only once for a sample
z ∼ p(z) to compute all the conditional distributions pθ(xi|z), the xi can then be sampled in
parallel. This comes at the price of over-generalisation and blurrier samples. Indeed, a result of
relying on the latent variables to account for all pixel dependencies, however, is that all low-level
variability must be modeled by the latent variables. Consider, for instance, a picture of a dog,
and variants of that image shifted by one or a few pixels, or in a slightly different pose, with a
slightly lighter background, or with less saturated colors, etc. If these factors of variability are
modeled using latent variables, then these low-level aspects are confounded with latent variables
relating to the high-level image content. If the corresponding image variability is not modeled
using latent variables, it will be modeled as independent pixel noise. In the latter case, using the
mean of pθ(x|z) as the synthetic image for a given z results in blurry samples, since the mean is
averaged over the low-level variants of the image. Sampling from pθ(x|z) to obtain synthetic
images, on the other hand, results in images with unrealistic independent pixel noise.

3.3.2 Autoregressive decoders in variational autoencoders

Autoregressive density models, see e.g. [Germain et al., 2015, Larochelle and Murray, 2011], rely
on the basic factorization of multi-variate distributions,

pθ(x) =
D∏
i=1

pθ(xi|x<i), (3.5)

with x<i = x1, . . . , xi−1, and model the conditional distributions using a (deep) neural network.
For image data, PixelCNNs [Oord et al., 2016, van den Oord et al., 2016c] use a scanline
pixel ordering, and model the conditional distributions using a convolution neural network. The
convolutional filters are masked so as to ensure that the receptive fields only extend to pixels
x<i when computing the conditional distribution of xi. PixelCNNs can be used as a decoder in
a VAE by conditioning on the latent variable z in addition to the preceding pixels, leading to a
variational bound with a modified reconstruction term:

L(θ,φ;x) = IEqφ

[
D∑
i=1

ln pθ(xi|x<i, z)
]
−DKL(qφ(z|x)||p(z)). (3.6)
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The regularization term can be interpreted as a “cost” of using the latent variables. To effectively
use the latent variables, the approximate posterior qφ(z|x) must differ from the prior p(z), which
increases the KL divergence. In practice, combining a VAE with a flexible decoder (for instance
an autoregressive one) leads to the latent code being ignored. This problem could be attributed
to optimization challenges: at the start of training q(z|x) carries little information about x, the
KL term pushes the model to set it to the prior to avoid any penalty, and training never recovers
from falling into that local minimum. In fact in [Chen et al., 2017, Zhao et al., 2017] extensive
explanations have been proposed, showing that the problem is deeper: for the loss in Equation
3.6 and a decoder with enough capacity, it is optimal to encode no information about x in z by
setting q(z|x) = p(z). This is problematic: as x becomes independent from z, the encoder is
not used at all and meaningful latent representations cannot be learned. This behaviour is often
referred to as the information preference property.

The information preference problem. Intuitively, the information preference property arises
because the miss-match between the approximate posterior and the true, inaccessible, posterior
has a cost given by the KL regularization term in the ELBO. It is worth paying that cost only if
the decoder benefits even more to compensate. In practice autoregressive decoders already predict
x well without using any information from a latent variable z, and using an encoder qφ does not
improve the reconstruction cost enough to compensate the regularization cost of the information
in z. To show this more formally, let us take the expectation over x of the ELBO:

− Ex∼p∗ [Lelboθ,φ (x)] = Ex∼p∗ [− log(pθ(x)) +DKL(qφ(z|x)||pθ(z|x))] . (3.7)

The cross-entropy of pθ is lower-bounded by the Shannon entropy,

H(p∗) = Ex∼p∗ [− log(p∗(x))] (3.8)

so we have:

−Ex∼p∗ [Lelboθ,φ (x)] ≥ H(p∗) + Ex∼p∗ [DKL(qφ(z|x)||pθ(z|x))] . (3.9)

Let FΘ a family of generative models, FΘ = {pθ(x), θ ∈ Θ}. Denote by θ|z any θ ∈ Θ such
that pθ|z uses it’s latent variables, and denote Θ|z the set of such θs, i.e.

θ|z ∈ {θ ∈ Θ|pθ(z|x) 6= p(z)} = Θ|z.

Suppose a given set FΦ of inference networks, FΦ = {qφ(z|x), φ ∈ Φ}, does not have sufficient
capacity to offer perfect inference, such that

∀φ ∈ Φ, DKL(qφ(z|x)||pθ|z(z|x)) > 0.

This yields for any θ ∈ Θ|z so:

H(p∗)︸ ︷︷ ︸
A

< H(p∗) + Ex∼p∗ [DKL(qφ(z|x)||pθ(z|x))]︸ ︷︷ ︸
B

≤ −Ex∼p∗ [Lelboθ,φ (x)]︸ ︷︷ ︸
C

. (3.10)
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This shows that the performance C for θ|z ∈ Θ|z can not be better than B. Now assume Fθ
contains models that do not use their latent variables and with enough capacity to "squeeze"
between A – which is the best value any model can attain – and B. In our context, this model
would typically be autoregressive so let us denote it with subscript θ<j,⊥⊥z . This yields:

H(p∗)︸ ︷︷ ︸
A

≤ Ex∼p∗ [− log(pθ<j,⊥⊥z
(x|xj<i))]︸ ︷︷ ︸

<C

< H(p∗) + Ex∼p∗
[
DKL(qφ(z|x)||pθ|z (z|x))

]︸ ︷︷ ︸
B

(3.11)

≤ −Ex∼p∗ [Lelboθ,φ (x)]︸ ︷︷ ︸
C

(3.12)

Thus, any use of z that any model pθ might do will degrade the optimal performance that can
be attained, and it is better not to use z at all and rely only on the autoregressive component of
the model. If the family FΘ contains sufficiently expressive autoregressive models, these will
always be preferred to the models in FΘ that do use latent variables. This is not just a theoretical
problem, as in practice, using flexibe autoregressive decoders naively systematically leads to
posterior collapse.

3.3.3 Auxiliary Guided Autoregressive Variational Autoencoder

Several attempts have been made to circumvent the information preference property. One success-
ful approach is to restrict the number of layers of the auto-regressive component of the decoder to
a few layers. The receptive field of a given pixel xi is then a strict subset of those in the image.
Any dependence between xi and a pixel outside of the receptive field has to go through z, or the
two will be sampled independently. This is the approach taken by Chen et al. [2017], Gulrajani
et al. [2017c]. The autoregressive component is in charge of modelling low level detail, which it
excels at, while the VAE component models global structure. One drawback is that this is only a
partial solution as it does not enable the use of powerful autoregressive models, since these would
again suffer from the information preference property. Other solutions to force information into z
include Zhao et al. [2017], which compute an estimation of the mutual information between z and
x, and more recently Razavi et al. [2019a] which proposes to constrain the posterior distribution
to be at a minimal distance from the prior. Finally, when using auto-regressive decoders together
with quantized latent variables, the issue of ignored latent variables can be avoided as presented
in Section 2.10.5.

In this section we present our approach relying on an auxiliary reconstruction loss to control
the information that goes into z. To ensure meaningful latent representation learning Chen et al.
[2017] and Gulrajani et al. [2017c] restrict the capacity of the pixelCNN decoder. In our approach,
in contrast, it is always optimal for the autoregressive decoder, regardless of its capacity, to exploit
the information on x carried by z. We rely on two decoders in parallel: the first one reconstructs
an auxiliary image y from an intermediate representation fθ(z) in a non-autoregressive manner.
The auxiliary image can be either simply taken to be the original image (y = x), or a compressed
version of it, e.g. with lower spatial resolution or with a coarser color quantization. The second
decoder is a conditional autoregressive model that predicts x conditioned onfθ(z). Modeling
y in a non-autoregressive manner ensures a meaningful representation z and renders x and z
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(a) (b) (c) (d)

Figure 3.2: Randomly selected samples from unsupervised models trained on 32×32 CIFAR10
images: (a) IAF-VAE Kingma et al. [2016a], (b) pixelCNN++ Salimans et al. [2017a], (c) our
hybrid AGAVE model and (d) real CIFAR10 images for comparison. For our model, we show the
intermediate high-level representation based on latent variables (left), that conditions the final
sample based on the pixelCNN decoder (right).

dependent, inducing a certain non-zero KL “cost” in (3.6). The uncertainty on x is thus reduced
when conditioning on z, and there is no longer an advantage in ignoring the latent variable for
the autoregressive decoder. We provide a more detailed explanation of why our auxiliary loss
ensures a meaningful use of latent variables in powerful decoders in Section 3.3.2. To train the
model we combine both decoders in a single objective function with a shared encoder network:

L(θ,φ;x,y) = IEqφ

[
D∑
i=1

ln pθ(xi|x<i, z)
]

︸ ︷︷ ︸
Primary Reconstruction

+ IEqφ

 E∑
j=1

ln pθ(yj |z)


︸ ︷︷ ︸

Auxiliary Reconstruction

−λ DKL (qφ(z|x)||p(z))︸ ︷︷ ︸
Regularization

.

(3.13)
Treating x and y as two variables that are conditionally independent given a shared underlying
latent vairable z leads to λ = 1. Summing the lower bounds in Eq. (3.3) and Eq. (3.6) of the
marginal log-likelihoods of y and x, and sharing the encoder network, leads to λ = 2. Larger
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values of λ result in valid but less tight lower bounds of the log-likelihoods. Encouraging the
variational posterior to be closer to the prior, this leads to less informative latent variable repre-
sentations.

Sharing the encoder across the two decoders is the key of our approach. The factored auxiliary
VAE decoder can only model pixel dependencies by means of the latent variables, which ensures
that a meaningful representation is learned. Now, given that the VAE encoder output is informative
on the image content, there is no incentive for the autoregressive decoder to ignore the intermediate
representation fθ(z) on which it is conditioned. The choice of the regularization parameter λ and
auxiliary image y provide two levers to control how much and what type of information should
be encoded in the latent variables.

3.3.4 It is optimal for the autoregressive decoder to use the latent variable

Using the auxilliary reconstruction term presented above, it is always optimal for the autoregres-
sive decoder, no matter how expressive, to use the information contained in the latent variable we
now show.
Intuitively, the auxiliary term requires some information to go into the latent variable, which is
then available ’for free’ to the autoregressive decoder. Recall the quantities involved in Equation
3.3.2:

H(p∗)︸ ︷︷ ︸
A

< H(p∗) + Ex∼p∗ [DKL(qφ(z|x)||pθ(z|x))]︸ ︷︷ ︸
B

≤ −Ex∼p∗ [Lelboθ,φ (x)]︸ ︷︷ ︸
C

. (3.14)

To obtain the AGAVE setting, an autoregressive decoder is added. Using again the fact that the
Shannon entropy lower-bounds the cross-entropy between the autoregressive decoder and the
true distribution, we obtain:

C +H(X|Z) ≤ C + Ez∼q(z|x)[−
∑
i

log(p(xi|z,xj<i))] = CAGAVE. (3.15)

The entropy of a random variable decreases when it is conditioned on another, i.e.H(X|Z) ≤
H(X) Therefore, the theoretical lower-bound on the expected code length in our setup is always
better when the autoregressive component takes Z into account, no matter its expressivity. In
the limit case of an infinitely expressive autoregressive decoder, denoted by ∗, the lower bound
is attained and so C∗AGAV E = C +H(X|Z) ≤ C +H(X). In non-degenerate cases, the VAE
is optimized to encode information about X into a meaningful Z, with potentially near perfect
reconstructions, and there exists ε > 0 such thatH(X|Z) < H(X)− ε, making the lower bound
stricly better by a possibly big margin:

C∗AGAVE = C +H(X|Z) < C +H(X). (3.16)

More generally, even if the optimum value C∗AGAVE is not attained, taking the latent variables into
account is the only way for the AGAVE model to squeeze between C +H(X|Z) and C +H(X).
This analysis shows that in our setup it is theoretically always better for the autoregressive model
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Model BPD .|z .|xj<i

NICE [Dinh et al., 2015] 4.48
Conv. DRAW [Gregor et al., 2016] ≤ 3.58
Real NVP [Dinh et al., 2017] 3.49
MatNet [Bachman, 2016] ≤ 3.24
PixelCNN [Oord et al., 2016] 3.14
VAE-IAF [Kingma et al., 2016a] ≤ 3.11
Gated pixelCNN [van den Oord et al., 2016c] 3.03
Pixel-RNN [Oord et al., 2016] 3.00
Aux. pixelCNN [Kolesnikov and Lampert, 2017] 2.98
Lossy VAE [Chen et al., 2017] ≤ 2.95
AGAVE, λ = 12 (this paper) ≤ 2.92
pixCNN++ [Salimans et al., 2017a] 2.92

Table 3.1: Bits per dimension (lower is better) of models on the CIFAR10 test data.

to make use of the latent and auxiliary representation it is conditioned on. That is true no matter
how expressive the model is. It also shows that in theory our model should learn meaningful
latent structure.

3.4 Experimental evaluation

In this section we describe our experimental setup, and present results on the CIFAR10 dataset.

3.4.1 Dataset and implementation

The CIFAR10 dataset [Krizhevsky, 2009] contains 6,000 images of 32×32 pixels for each of
the 10 object categories airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck. The
images are split into 50,000 training images and 10,000 test images. We train all our models in a
completely unsupervised manner, ignoring the class information.

We implemented our model based on existing architectures, in particular we use the VAE
architecture of Kingma et al. [2016a]. To deal with the fact that the data is discrete we use
a logistic distributions over the RGB color values as in Kingma et al. [2016a]. We let the
intermediate representation f(z) output by the VAE decoder be the per-pixel and per-channel
mean values of the logistics, and learn per-channel scale parameters that are used across all
pixels. The cumulative density function (CDF), given by the sigmoid function, is used to compute
probabilities across the 256 discrete color levels, or fewer if a lower quantization level is chosen
in y. Using RGB values yi ∈ [0, 255], we let b denote the number of discrete color levels and
define c = 256/b. The probabilities over the b discrete color levels are computed from the logistic
mean and variance µi and si as

p(yi|µi, si) = σ (c+ cbyi/cc|µi, si)− σ (cbyi/cc|µi, si) . (3.17)
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Figure 3.3: Effect of the regularization parameter λ. Reconstructions (a) and samples (b) of
the VAE decoder (VR and VS, respectively) and corresponding conditional samples from the
pixelCNN (PS).

For the pixelCNN we use the architecture of Salimans et al. [2017a], and modify it to be
conditioned on the VAE decoder output f(z), or possibly an upsampled version if y has a lower
resolution than x. In particular, we apply standard non-masked convolutional layers to the VAE
output, as many as there are pixelCNN layers. We allow each layer of the pixel-CNN to take
additional input using non-masked convolutions from the feature stream based on the VAE output.
This ensures that the conditional pixelCNN remains autoregressive. To speed up training, we
independently pretrain the VAE and pixelCNN in parallel, and then continue training the full
model with both decoders. We use the Adamax optimizer [Kingma and Ba, 2015b] with a learning
rate of 0.002 without learning rate decay.

3.4.2 Quantitative performance evaluation.

Following previous work, we evaluate models on the test images using the bits-per-dimension
(BPD) metric: the negative log-likelihood divided by the number of pixels values (3×32×32). It
can be interpreted as the average number of bits per RGB value in a lossless compression scheme
derived from the model. The comparison in Table B.4 shows that our model performs on par with
the state-of-the-art results of the pixelCNN++ model [Salimans et al., 2017a]. Here we used the
importance sampling-based bound of Burda et al. [2016] with 150 samples to compute the BPD
metric for our model.1 We refer to Figure 3.2 for qualitative comparison of samples from our
model and pixelCNN++, the latter generated using the publicly available code.
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Figure 3.4: Bits per dimension of the VAE and AGAVE model, as well as decomposition in KL
regularization and reconstruction terms.

3.4.3 Effect of KL regularization strength.

In Figure 3.3 we show reconstructions of test images and samples generated by the VAE decoder,
together with their corresponding conditional pixelCNN samples for different values of λ. As
expected, the VAE reconstructions become less accurate for larger values of λ due to the heavier
weighting of the KL term, mainly by lacking details while preserving the global shape of the input.
At the same time, the samples become more appealing for larger λ, suppressing the unrealistic
high-frequency detail in the VAE samples obtained at lower values of λ. Note that the VAE
samples and reconstructions become more similar as λ increases, which makes the input to the
pixelCNN during training and sampling more consistent.

For both reconstructions and samples, the pixelCNN clearly takes into account the output of the
VAE decoder, demonstrating the effectiveness of our auxiliary loss to condition high-capacity
pixelCNN decoders on latent variable representations. Samples from the pixelCNN faithfully
reproduce the global structure of the VAE output, leading to more realistic samples, in particular
for higher values of λ. For λ = 2 the VAE reconstructions are near perfect during training, and
the pixelCNN decoder does not significantly modify the appearance of the VAE output. For larger
values of λ, the pixelCNN clearly adds significant detail to the VAE outputs.

Figure 3.4 traces the BPD metrics of both the VAE and pixelCNN decoder as a function of
λ. We also show the decomposition in regularization and reconstruction terms. By increasing
λ, the KL divergence can be pushed closer to zero. As the KL divergence term drops, the
reconstruction term for the VAE rapidly increases and the VAE model obtains worse BPD values,
stemming from the inability of the VAE to model pixel dependencies other than via the latent
variables. The reconstruction term of the pixelCNN decoder also increases with λ, as the amount

1 The graphs in Figure 3.4 and Figure 3.8 are based on the bound in Eq. (3.13) to reduce the computational effort.
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f(z) Conditional PixelCNN samples

Figure 3.5: The column labeled f(z) displays auxiliary representations, with z sampled from the
unit Gaussian prior p(z), accompanied by ten samples of the conditional pixelCNN.

of information it receives drops. However, in terms of BPD which sums KL divergence and
pixelCNN reconstruction, a substantial gain of 0.2 is observed increasing λ from 1 to 2, after
which smaller but consistent gains are observed.

3.4.4 Role of the auxilliary representation

The auxilliary variables are taken into account Section 3.3.2 shows that in theory it is
always optimal for the autoregressive decoder to take the latent variables into account. Figure 3.5
demonstrates this empirically by displaying auxiliary representations f(z) with z sampled from
the prior f(z) as well as nine different samples from the autoregressive decoder conditioned
on f(z). This qualitatively shows that the low level detail added by the pixelCNN, which is
crucial for log-likelihood performance, always respects the global structure of the image being
conditioned on. The VAE decoder used to generate that figure was trained with λ = 8, and in
that case the KL divergence weighs very little. Yet it controls the global structure of the samples,
which shows that our setup can be used to get the best of both worlds. In Figure 3.6, samples
are obtained by encoding ground truth images, then interpolating the latent variables obtained,
decoding them with the decoder of the V AE and adding low level detail with the pixelCNN. This
demonstrates that the model has learned to use the latent variables z produced by the encoder.

The auxilliary loss is necessary: The fact that the autoregressive decoder ignores the latent
variables could be attributed to optimization challenges, as explained in Section 3.3.2. In that
case, the auxilliary loss could be used as an initialization scheme only, to guide the model
towards a good use of the latent variables. To evaluate this we perform a control experiment
where during training we first optimize our objective function in Eq. (3.13), i.e. including the
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Figure 3.6: The first and last columns contain auxilliary reconstructions, images in between are
obtained from interpolation of the corresponding latent variables. Odd rows contain auxilliary
reconstructions, and even rows contain outputs of the full model.

GT f(z) PS GT f(z) PS GT f(z) PS

f(z) PixCNN samples f(z) PixCNN samples

Figure 3.7: Auxiliary reconstructions obtained after dropping the auxilliary loss. (GT) denotes
ground truth images unseen during training, f(z) is the corresponding intermediate reconstruction,
(PS) denotes pixelCNN samples, conditionned on f(z).

auxiliary reconstruction term, and then switch to optimize the standard objective function of
Eq. (3.6) without the auxiliary term. We proceed by training the full model to convergence
then removing the auxiliary loss and fine-tuning from there. Figure 3.7 displays ground-truth
images, with corresponding auxiliary reconstructions and conditional samples, as well as pure
samples. The reconstructions have become meaningless and independent from the ground truth
images. The samples display the same behavior: for each auxiliary representation four samples
from the autoregressive component are displayed and they are independent from one another.
Quantitatively, the KL cost immediately drops to zero when removing the auxiliary loss, in
approximately two thousand steps of gradient descent. The approximate posterior immediately
collapses to the prior and the pixel CNN samples become independent of the latent variables.
This is the behavior predicted by the analysis of Chen et al. [2017]: the autoregressive decoder is
sufficiently expressive that it suffers from using the latent variables.
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Figure 3.8: Impact of the color quantization in the auxiliary image. (a) Reconstructions of the
VAE decoder for different quantization levels (λ = 8). (b) BPD as a function of the quantization
level.

3.4.5 Effect of different auxiliary images.

We assess the effect of using coarser RGB quantizations, lower spatial resolutions, and grayscale
in the auxiliary image. All three make the VAE reconstruction task easier, and transfer the task
of modelling color nuances and/or spatial detail to the pixelCNN. The VAE reconstructions in
Figure 3.8 (a) obtained using coarser colour quantization carry less detail than reconstructions
based on the original images using 256 colour values, as expected. To understand the relatively
small impact of the quantization level on the reconstruction, recall that the VAE decoder outputs
the continuous means of the logistic distributions regardless of the quantization level. Only the
reconstruction loss is impacted by the quantization level via the computation of the probabilities
over the discrete color levels in Eq. (3.17). In Figure 3.8 (b) we observe small but consistent gains
in the BPD metric as the number of color bins is reduced, showing that it is more effective to
model color nuances using the pixelCNN, rather than the latent variables. We trained models
with auxiliary images down-sampled to 16×16 and 8×8 pixels, which yield 2.94 and 2.93 BPD,
respectively. This is comparable to the 2.92 BPD obtained using our best model at scale 32×32.
We also trained models with 4-bit per pixel grayscale auxiliary images, as in Kolesnikov and
Lampert [2017]. While the grayscale auxiliary images are subjectively the ones that have the best
global structure, the results are still qualitatively inferior to those obtained by Kolesnikov and
Lampert [2017] with a pixelCNN modelling grayscale images. Our model does, however, achieve
better quantitative performance at 2.93 BPD. In Figure 3.9 (a) we show samples obtained using
models trained with 4-bit per pixel grayscale auxiliary images, in Figure 3.9 (b) with 32 color
levels in the auxiliary image, and in Figure 3.9 (c) and (d) with auxiliary images of size 16×16
and 8×8. The samples are qualitatively comparable, showing that in all cases the pixelCNN is
able to compensate the less detailed outputs of the VAE decoder and that our framework can be
used with a variety of intermediate reconstruction losses.
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(a) (b)

(c) (d)

Figure 3.9: Samples from models trained with grayscale auxiliary images with 16 color levels (a),
32×32 auxiliary images with 32 color levels (b), and at reduced resolutions of 16×16 (c) and
8×8 pixels (d) with 256 color levels. For each model the auxilliary representation f(z), with z
sampled from the prior, is displayed above the corresponding conditional pixelCNN sample.
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3.5 Conclusion

We presented a new approach to training generative image models that combine a latent variable
structure with an autoregressive model component. Unlike prior approaches, it does not require
careful architecture design to trade-off how much is modelled by latent variables and the autore-
gressive decoder. Instead, this trade-off can be controlled using a regularization parameter and
choice of auxiliary target images. We obtain quantitative performance on par with the state of
the art on CIFAR10, and samples from our model exhibit globally coherent structure as well as
fine details. The construction proposed goes beyond the conditional independence assumption,
alleviating some of its limitations as presented in Section 2.9.1. It does so at the cost of slow,
sequential sampling and so this construction cannot be used in an adversarial setting. In Chapter
5, another approach to go beyond conditional independence which is compatible with adversarial
training is presented.



64 CHAPTER 3. AUXILIARY GUIDED AUTOREGRESSIVE VAE



Chapter 4

Mixed batches and symmetric
discriminators for GAN training

Contents
4.1 Outline of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 Adversarial learning with permutation-invariant batch features . . . . . 69
4.4 Permutation invariant networks . . . . . . . . . . . . . . . . . . . . . . . 72
4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.7 Optimal discriminator for general beta prior (*) . . . . . . . . . . . . . . 81
4.8 Universal approximation theorem for symmetric functions (*) . . . . . . 85

Generative adversarial networks (GANs) are powerful generative models based on providing
feedback to a generative network via a discriminator network. However, the discriminator usually
assesses individual samples. This prevents the discriminator from accessing global distributional
statistics of generated samples, and often leads the generator to model only part of the target
distribution. This phenomenon is known as mode-dropping.In this chapter, we propose to feed
the discriminator with batches that mix both true and fake samples, and train it to predict the ratio
of true samples in the batch. The latter score does not depend on the order of samples in a batch.
Rather than learning this invariance, we introduce a generic permutation-invariant discriminator
architecture. This architecture is provably a universal approximator of all symmetric functions.
Experimentally, our approach reduces mode collapse in GANs on two synthetic datasets, and
obtains good results on the CIFAR10 and CelebA datasets, both qualitatively and quantitatively.
The material presented in this chapter is based on the paper "Mixed batches and symmetric
discriminators for GAN training", Thomas Lucas, Corentin Tallec, Jakob Verbeek and Yann
Ollivier, International Conference on Machine Learning (ICML) 2018.

65
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4.1 Outline of this chapter

Several approaches relying on latent variables have been proposed to learn flexible density estima-
tors together with efficient sampling such as generative adversarial networks (GANs) [Goodfellow
et al., 2014], variational auto-encoders [Kingma and Welling, 2014a, Rezende et al., 2014], itera-
tive transformation of simple distributions [Sohl-Dickstein et al., 2015], or non-volume preserving
transformations [Dinh et al., 2017]. In this chapter we focus on GANs, currently the generative
model that produces the most convincing natural image samples [Karras et al., 2018]. GANs
consist of a generator and a discriminator network. The generator maps samples from a latent
random variable with a basic prior, such as a multivariate Gaussian, to the observation space.
This defines a probability distribution over the observation space. A discriminator network is
trained to distinguish between generated samples and true samples in the observation space. The
generator, on the other hand, is trained to fool the discriminator. In an idealized setting with
unbounded capacity of both networks and infinite training data, the generator should converge to
the distribution from which the training data has been sampled.

In most adversarial setups, the discriminator classifies individual data samples. Consequently, it
cannot directly detect discrepancies between the distribution of generated samples and global
statistics of the training distribution, such as its moments or quantiles. For instance, if the genera-
tor models a restricted part of the support of the target distribution very well, this can fool the
discriminator at the level of individual samples, a phenomenon known as mode dropping. In such
a case there is little incentive for the generator to model other parts of the support of the target
distribution. A more thorough explanation of this effect is described in Salimans et al. [2016a]
and in Section 2.9.2. In order to access global distributional statistics, imagine a discriminator
that could somehow take full probability distributions as its input. This is impossible in practice.
Still, it is possible to feed large batches of training or generated samples to the discriminator, as
an approximation of the corresponding distributions. The discriminator can compute statistics
on those batches and detect discrepancies between the two distributions. For instance, if a large
batch exhibits only one mode from a multimodal distribution, the discriminator would notice the
discrepancy. Even though a single batch may not encompass all modes of the distribution, it will
still convey more information about missing modes than individual samples.

Training the discriminator to discriminate “pure” batches with only real or only synthetic samples
makes its task too easy, as a single bad sample reveals the whole batch as synthetic. Instead, we
introduce a “mixed” batch discrimination task in which the discriminator needs to predict the
ratio of real samples in a batch. This use of batches differs from traditional minibatch learning.
The batch is not used as a computational trick to increase parallelism, but as an approximate
distribution, on which to compute global statistics. A naive way of doing so would be to con-
catenate the samples in the batch, feeding the discriminator a single tensor containing all the
samples. However, this is parameter-hungry, and the computed statistics are not automatically
invariant to the order of samples in the batch. To compute functions that depend on the samples
only through their distribution, it is necessary to restrict the class of discriminator networks
to permutation-invariant functions of the batch. For this, we adapt and extend the architecture
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Figure 4.1: Graphical representation of our discriminator architecture. Each convolutional layer
of an otherwise classical CNN architecture is modified to include permutation invariant batch
statistics, denoted ρ(x). This is repeated at every layer so that the network gradually builds up
more complex statistics.

of McGregor, also found in Zaheer et al. [2017] in the context of deep learning, to compute
symmetric functions of the input. We show this can be done with minimal modification to existing
architectures, at a negligible computational overhead w.r.t. ordinary batch processing.

Discriminating between distributions at the batch level provides an equally principled alternative
to approaches to GANs based on duality formulas [Arjovsky et al., 2017, Gulrajani et al., 2017b,
Nowozin et al., 2016]. Section B.2 covers related work, followed by a presentation of the proposed
training procedure in Section 4.3. Section 4.4, describes how to build networks that have the
required permutation invariance properties, and experimental results are presented in Section 4.5.
The last two sections of this chapter, Section 4.7 and Section 4.8, contain proofs and technical
details about results used in the rest of the chapter, and the reader can decide to skip them .

In summary, the contributions presented in this chapter are the following:

• Naively training the discriminator to discriminate “pure” batches with only real or only
synthetic samples makes its task way too easy. A discrimination loss based on mixed
batches of true and fake samples, that avoids this pitfall is presented. We also derive the
associated optimal discriminator.

• A principled way of defining neural networks that are permutation-invariant over a batch
of samples is provided. We formally prove that the resulting class of functions comprises
all symmetric continuous functions, and only symmetric functions.

• We apply these insights to GANs, with good experimental results, both qualitatively and
quantitatively.
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4.2 Related work

The training of generative models via distributional rather than pointwise information has been
explored in several recent contributions. Batch discrimination [Salimans et al., 2016a] uses a
specially designed layer to compute batch statistics which are then combined with sample-specific
features to enhance individual sample discrimination. Karras et al. [2018] directly compute the
standard deviation of features and feed it as an additional feature to the last layer of the network.
Both methods use a single layer of handcrafted batch statistics, instead of letting the discriminator
learn arbitrary batch statistics useful for discrimination as in our approach. Moreover, in both
methods the discriminator still assesses single samples, rather than entire batches. Radford et al.
[2016] reported improved results with batch normalization in the discriminator, which may also
be due to reliance on batch statistics.

Other works, such as Li et al. [2015] and Dziugaite et al. [2015], replace the discriminator with a
fixed distributional loss between true and generated samples, the maximum mean discrepancy,
as the criterion to train the generative model. This has the advantage of relieving the inherent
instability of GANs, but lacks the flexibility of an adaptive discriminator. The discriminator we
introduce treats batches as sets of samples. Processing sets prescribes the use of permutation
invariant networks. There has been a large body of work around permutation invariant networks,
e.g McGregor, 2008], Qi et al. [2016], Vaswani et al. [2017a], Zaheer et al. [2017]. Our processing
is inspired by McGregor, 2008] which designs a special kind of layer that provides the desired
invariance property. The network from McGregor is a multi-layer perceptron in which the single
hidden layer performs a batchwise computation that makes the result equivariant by permutation.
Here we show that stacking such hidden layers and reducing the final layer with a permutation
invariant reduction, covers the entire space of continuous permutation invariant functions.

Zaheer et al. [2017] first process each element of the set independently, then aggregate the result-
ing representation using a permutation invariant operation, and finally process the permutation
invariant quantity. Qi et al. [2016] process 3D point cloud data, and interleave layers that process
points independently, and layers that apply equivariant transformations. The output of their
networks are either permutation equivariant for pointcloud segmentation, or permutation invariant
for shape recognition. In our approach we stack permutation equivariant layers that combine
batch information and sample information at every level, and aggregate these in the final layer
using a permutation invariant operation. More complex approaches to permutation invariance
or equivariance appear in [Guttenberg et al.]. We prove, however, that our simpler architecture
already covers the full space of permutation invariant functions.

Improving the training of GANs has received a lot of recent attention. For instance, Arjovsky
et al. [2017], Gulrajani et al. [2017b] and Miyato et al. [2018b] constrain the Lipschitz constant of
the network and show that this stabilizes training and improves performance. Karras et al. [2018]
achieved impressive results by gradually increasing the resolution of the generated images as
training progresses. These research directions, orthogonal to our work, can be adapted to work
with batches of data rather than i.i.d. samples.
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Figure 4.2: Effect of batch smoothing with different γ’s on the generator and discriminator losses.

4.3 Adversarial learning with permutation-invariant batch features

Using a batch of samples rather than individual samples as input to the discriminator can provide
global statistics about the distributions of interest. Such statistics could be useful to avoid
mode dropping. Adversarial learning [Goodfellow et al., 2014] can easily be extended to the
batch discrimination case. For a fixed batch size B, the corresponding two-player optimization
procedure becomes

min
G

max
D

Ex1,...,xB∼D [logD(x1, . . . ,xB)] + Ez1,...,zB∼p(z) [log(1−D(G(z1), . . . , G(zB)))]
(4.1)

with D the empirical distribution over data, p(z) a distribution over the latent variable that is
the input of the generator, G a pointwise generator and D a batch discriminator.1 This leads to
a learning procedure similar to the usual GAN algorithm, except that the loss encourages the
discriminator to output 1 when faced with an entire batch of real data, and 0 when faced with an
entire batch of generated data.

Unfortunately, this basic procedure makes the work of the discriminator too easy. As the discrimi-
nator is only faced with batches that consist of either only training samples or only generated
samples, it can base its prediction on any subset of these samples. For example, a single poorly
generated sample would be enough to reject a batch. To cope with this deficiency, we propose to
sample batches that mix both training and generated data. The discriminator’s task is to predict
the proportion of real images in the batch, which is clearly a permutation invariant quantity.

1 The generator G could also be modified to produce batches of data, which can help to cover more modes per batch,
but this deviates from the objective of learning a density estimator from which we can draw i.i.d. samples.



70 CHAPTER 4. MIXED BATCHES AND SYMMETRIC DISCRIMINATORS FOR GANS

Squares Circles

Gan mixup Gan BGan(γ = 0.3) Gan mixup Gan BGan(γ = 0.3)

Figure 4.3: Comparison between standard, mixup and batch smoothing GANs on a 2D experiment.
From top to bottom: result after training for 10, 100, 1000, 10000 and 20000 iterations.

4.3.1 Batch smoothing as a regularizer

A naive approach to sampling mixed batches would be, for each batch index, to pick a datapoint
from either real or generated images with probability 1

2 . This is necessarily ill behaved: as the
batch size increases, the ratio of training data to generated data in the batch tends to 1

2 by the law
of large numbers. Consequently, a discriminator always predicting 1

2 would achieve very low
error with large batch sizes, and provide no training signal to the generator. Instead, for each batch
we sample a ratio p∗ from a distribution P on [0, 1], and construct a batch by picking real samples
with probability p∗ and generated samples with probability 1− p∗. This forces the discriminator
to predict across an entire range of possible values of p∗.

Formally, suppose we are given a batch of training data x ∈ RB×N and a batch of generated
data x̃ ∈ RB×N . To mix x and x̃, a binary vector β is sampled from B (p)B , a B-dimensional
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Bernoulli distribution with parameter p. The mixed batch with mixing vector β is denoted

mβ(x, x̃) := x� β + x̃� (1− β) (4.2)

where � denotes pointwise multiplication along the batch axis, with β being broadcasted across
the other dimensions. This apparently wastes some samples, but we can reuse the discarded
samples by using 1− β in the next batch.

The discriminator has to predict the ratio of real images, #β
B where #β is the sum of the

components of β. As a loss on the predicted ratio, we use the Kullback–Leibler divergence
between a Bernoulli distribution with the actual ratio of real images, and a Bernoulli distribution
with the predicted ratio. The divergence between Bernoulli distributions with parameters u and v
is

KL(B (u) || B (v)) = u log u
v

+ (1− u) log 1− u
1− v . (4.3)

Formally, the discriminator D will minimize the objective

Ep∗∼P, β∼B(p∗)B KL
(
B
(#β
B

)
|| B (D(mβ(x, x̃)))

)
, (4.4)

where the expectation is over sampling p∗ from a distribution P , typically uniform on [0, 1], then
sampling a mixed minibatch. For clarity, we have omitted the expectation over the sampling of
training and generated samples The generator is trained with the loss

Ep∗∼P, β∼B(p∗)B log(D(mβ(x, x̃))). (4.5)

This loss, which is not the generator loss associated to the min-max optimization problem, is
known to saturate less [Goodfellow et al., 2014].

In some experimental cases, using the discriminator loss of Equation 4.4 with P = U([0, 1])
made discriminator training too difficult. To alleviate some of the difficulty, we sampled the
mixing variable p∗ from a reduced symmetric union of intervals [0, γ] ∪ [1 − γ, 1]. With low
γ, all generated batches are nearly purely taken from either real or fake data. We refer to this
training method as batch smoothing-γ. Batch smoothing-0 corresponds to no mixing, while batch
smoothing-0.5 corresponds to Equation 4.4.

4.3.2 The optimal discriminator for batch smoothing

The optimal discriminator for batch smoothing can be computed explicitly, for p∗ ∼ U([0, 1]),
and covers the usual GAN discriminator when B = 1.

Proposition 1. The optimal discriminator for the loss in Equation 4.4, given a batch y ∈ RB×N ,
is

D∗(y) = 1
2
punbalanced(y)
pbalanced(y) (4.6)
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where the distribution pbalanced and punbalanced on batches are defined as

pbalanced(y) = 1
B + 1

∑
β∈{0,1}B

p1(y)βp2(y)1−β( B
#β
)

punbalanced(y) = 2
B + 1

∑
β∈{0,1}B

p1(y)βp2(y)1−β( B
#β
) #β

B
. (4.7)

in which p1 is the data distribution and p2 the distribution of generated samples, and where
p1(y)β is shorthand for p1(y1)β1 . . . p1(yB)βB .

For non-uniform beta distributions on p, a similar result holds, with different coefficients de-
pending on #β and B in the sum. The proof is technical and is deferred to Section 4.7. These
expressions can be interpreted easily. First, in the case B = 1, the optimal discriminator reduces
to the optimal discriminator for a standard GAN, D∗ = p1(y)

p1(y)+p2(y) . Actually pbalanced(y) is
simply the distribution of batches y under our procedure of sampling p uniformly, then sampling
β ∼ B (p)B . The binomial coefficients put on equal footing contributions with different true/fake
ratios.

The generator loss (4.5), when faced with the optimal discriminator, is the Kullback–Leibler
divergence between pbalanced and punbalanced (up to sign and a constant log(2)). Since punbalanced
puts more weight on batches with higher #β (more true samples), this brings fake samples closer
to true ones. Since pbalanced and punbalanced differ by a factor 2#β/B, the ratio D∗ = 1

2
punbalanced(y)
pbalanced(y)

is simply the expectation of #β/B under a probability distribution on β that is proportional to
p1(y)βp2(y)1−β( B

#β
) . But this is the posterior distribution on β given the batch y and the uniform

prior on the ratio p. Thus, the optimal discriminator is just the posterior mean of the ratio of
true samples, D∗(y) = IEβ|y

[
#β
B

]
. This is standard when minimizing the expected divergence

between Bernoulli distributions and the approach can therefore be extended to non-uniform priors
on p as shown in Section 4.7.

Note on available statistics. A reasonable handcrafted statistic to use for batch discrimination
is the standard deviation. Observe that our discriminator can learn to compute it with with
E[(X − E[X])2], which requires 2 layers of computation. Owing to the convolutional nature of
the architecture, non-pixelwise statistics are also available, (e.g. covariances).

4.4 Permutation invariant networks

Computing statistics of probability distributions from batches of i.i.d. samples requires to compute
quantities that are invariant to permuting the order of samples within the batch. In this section we
propose a permutation equivariant layer that can be used together with a permutation invariant
aggregation operation to build networks that are permutation invariant.
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Figure 4.4: Sample images generated by our best model trained on CIFAR10.

4.4.1 Building a permutation invariant architecture

A naive way of achieving invariance to batch permutations is to consider the batch dimension as
a regular feature dimension, and to randomly reorder the batches at each step. This multiplies the
input dimension by the batch size, and thus greatly increases the number of trainable parameters.
Moreover, this only provides approximate invariance to batch permutation, as the network has to
infer the invariance based on the training data. Instead, we propose to directly build invariance
into the architecture. This method drastically reduces the number of parameters compared to the
naive approach, bringing it back in line with ordinary networks, and ensures strict invariance to
batch permutation.

Let us first formalize the notion of batch permutation invariance and equivariance. A function f
from RB×l to RB×L is batch permutation equivariant if permuting samples in the batch results
in the same permutation of the outputs: for any permutation σ of the inputs,

f(xσ(1), . . . ,xσ(B)) = f(x)σ(1), . . . , f(x)σ(B). (4.8)

For instance, any regular neural network or other function treating the inputs x1, . . . ,xB inde-
pendently in parallel, is batch permutation equivariant.

A function f from RB×l to RL is batch permutation invariant if permuting the inputs in the batch
does not change the output: for any permutation on batch indices σ,

f(xσ(1), . . . ,xσ(B)) = f(x1, . . . ,xB). (4.9)

The mean, the maximum or the standard deviation along the batch axis are all batch permutation
invariant. Permutation equivariant and permutation invariant functions can be obtained by com-
bining ordinary, parallel treatment of batch samples with an additional batch-averaging operation
that performs an average of the activations across the batch direction. In our architecture, this
averaging is the only form of interaction between different elements of the batch. It is one of our
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Figure 4.5: Samples obtained after 66000 iterations on the celebA dataset. From left to right:
(a) Standard GAN (b) BGAN, no batch smoothing. (c) BGAN, batch smoothing γ = 0.5. (d)
M-BGAN, batch smoothing γ = 0.5

main results that such operations are sufficient to recover all invariant functions.

Formally, on a batch of data x ∈ RB×N , our proposed batch permutation invariant network fθ is
defined as

fθ(x) = 1
B

B∑
b=1

(φθp ◦ φθp−1 ◦ . . . ◦ φθ0(x))b (4.10)

where each φθi is a batch permutation equivariant function from RB×li−1 to RB×li , where the
li’s are the layer sizes.

The equivariant layer operation φθ with l input features and L output features comprises an
ordinary weight matrix Λ ∈ Rl×L that treats each data point of the batch independently (“non-
batch-mixing”), a batch-mixing weight matrix Γ ∈ Rl×L, and a bias vector β ∈ RL. As in regular
neural networks, Λ processes each data point in the batch independently. On the other hand, the
weight matrix Γ operates after computing an average across the whole batch. Defining ρ as the
batch average for each feature,

ρ(x1, . . . ,xB) := 1
B

B∑
b=1
xb (4.11)

the permutation-equivariant layer φ is formally defined as

φθ(x)b := µ
(
β + xbΛ + ρ(x)Γ

)
(4.12)

where µ is a non-linearity, b is a batch index, and the parameter of the layer is θ = (β,Λ,Γ).

4.4.2 A universal approximation theorem for permutation invariant functions

The networks constructed above are permutation invariant by construction. However, it is unclear
a priori that all permutation invariant functions can be represented this way: the functions that
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can be approximated to arbitrary precision by those networks could be a strict subset of the set of
permutation invariant functions. The optimal solution for the discriminator could lie outside this
subset, making our construction too restrictive. We now show this is not the case: our architecture
satisfies a universal approximation theorem for permutation-invariant functions.

Theorem 1. The set of networks that can be constructed by stacking as in Eq. (4.10) the layers φ
defined in Eq. (4.12), with sigmoid nonlinearities except on the output layer, is dense in the set of
permutation-invariant functions (for the topology of uniform convergence on compact sets).

The standard universal approximation theorem for neural networks proves the following: for any
continuous function f , we can find a network that given a batch x = (x1, . . . ,xB), computes
(f(x1), . . . , f(xB)). This is insufficient for our purpose as it provides no way of mixing informa-
tion between samples in the batch, and we need extend that theorem. The proof is restricted to
sigmoid nonlinearities here, for simplicity. It can easily be extended to other types of nonlineari-
ties that yield universal function approximators.

To describe the set of functions that can be approximated by our construction, some structure on
that set is needed. For instance, suppose two functions f1 and f2 can be approximated, then can
we approximate f1+f2? Intuitively, ifD1 andD2 are networks that approximate f1 and f2 respec-
tively, then D1 +D2, summed using a linear operator, should approximate f1 + f2. We will then
need similar results for multiplication by a scalar , and for products. More precisely, we will prove
that the set of functions that can be approximated to arbitrary precision by our networks is an alge-
bra, i.e., a vector space stable under products. With this structure, it is possible to go from simple
symmetric functions to complex ones. To show that any symmetric function can be approximated,
we then need to prove that the set of functions we can approximate contains a family of functions
that can be extended, using the algebra structure, to all continuous symmetric functions. Precisely,
we must show that our algebra contains a generative family of the continuous symmetric functions.

While the case of one-dimensional features is relatively simple, the multidimensional case is
more intricate, and the detailed proof is given in Section 4.8. Here we describe the key ideas
underlying the proof, without technical details. To prove that we can compute the sum of two
functions f1 and f2, compute f1 and f2 on different channels (this is possible even if f1 and
f2 require different numbers of layers, by filling in with the identity if necessary). Then sum
across channels, which is possible in (4.12). To compute products, first compute f1 and f2 on
different channels, then apply the universal approximation theorem to turn this into log f1 and
log f2, then add, then take the exponential thanks to the universal approximation theorem again.
Multiplication by a real scalar α is clearly given by linear layers. This gives us stability by scalar
multiplication, sum and product, i.e. the algebra structure.

The key point is then the following: the algebra of all permutation-invariant polynomials over the
components of (x1, . . . ,xB) is generated as an algebra by the averages 1

B (f(x1)+ . . .+f(xB))
when f ranges over all functions of single batch elements. This non-trivial algebraic statement
is proved in Section 4.8. By construction, such functions 1

B (f(x1) + . . .+ f(xB)) are readily
available in our architecture, by computing f as in an ordinary network and then applying the
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batch-averaging operation ρ in the next layer. Further layers provide sums and products of those
thanks to the algebra property. Having obtained the desired result for polynomial symmetric
functions, we can extend it and conclude with a symmetric version of the Stone–Weierstrass
theorem (polynomials are dense in continuous functions).

4.4.3 Practical architecture

In our experiments, we apply the constructions above to standard, deep convolutional neural
networks. In practice, for the linear operations Λ and Γ in (4.12) we use convolutional kernels
(of size 3× 3) acting over xb and ρ(x) respectively. Weight tensors Λ and Γ are also reweighted
like so that at the start of training ρ(x) does not contribute disproportionately compared with
other features: Λ̃ = |B|

|B|+1Λ and Γ̃ = 1
|B|+1Γ where |B| denotes the size of batch B. While

these coefficients could be learned, we have found this explicit initialization to improve training.
Figure 4.1 shows how to modify standard CNN architectures to adapt each layer to our method.

In the first setup, which we refer to as BGAN, a permutation invariant reduction is done at the
end of the discriminator, yielding a single prediction per batch, which is evaluated with the loss
in (4.4). We also introduce a setup, M-BGAN, where we swap the order of averaging and applying
the loss. 2 Namely, letting y be the single target for the batch (in our case, the proportion of real
samples), the BGAN case translates into

L((o1, . . . , oB),y) = `

(
1
B

B∑
i=1

oi,y

)
(4.13)

while M-BGAN translates to

L((o1, . . . , oB),y) = 1
B

B∑
i=1

`(oi,y) (4.14)

where L is the final loss function, ` is the KL loss function used in (4.4), (o1, . . . , ob) is the
output of the last equivariant layer, and y is the target for the whole batch. Both these losses are
permutation invariant. A more detailled explanation of M-BGAN is given in Section 4.5.4.

4.5 Experiments

We now present experimental results obtained using our construction. First, results on a synthetic
2D dataset are provided on which mode-dropping can be assessed. Then results are presented
on the CIFAR10 and STL10 natural images datasets. In terms of Inception score and Fréshet
inception distance, our model was on par withe state of the art at the time of submission on these
datasets.

2 This was initially a bug that worked.
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Figure 4.6: Inception score for various versions of BGAN and for batch discrimination Salimans
et al. [2016a].

4.5.1 Synthetic 2D distributions

The synthetic dataset of Zhang et al. [2017] is explicitly designed to test mode dropping. The data
are sampled from a mixture of concentrated Gaussians in the 2D plane. We compare standard
GAN training, “mixup” training [Zhang et al., 2017], and batch smoothing using the BGAN
from Section 4.4.3. In all cases, the generators and discriminators are three-layer ReLU networks
with 512 units per layer. The latent variables used as input to the generator are sampled from
2-dimensional standard Gaussians. The models are trained on their respective losses using the
Adam [Kingma and Ba, 2015b] optimizer, with default parameters. The discriminator is trained
for five steps for each generator step.

Qualitative results are provided in Figure 4.3. Batch smoothing and mixup have similar effects.
Results for BGAN and M-BGAN are qualitatively similar on this dataset and we only display
results for BGAN. The standard GAN setting quickly diverges, due to its inability to fit several
modes simultaneously, while both batch smoothing and mixup successfully fit the majority of
modes of the distribution.

4.5.2 Experimental results on CIFAR10

Next, we consider image generation on the CIFAR10 dataset. We use the simple architecture from
Miyato et al. [2018b], minimally modified to obtain permutation invariance thanks to Equation
4.12. All other architectural choices are unchanged. The same Adam hyper-parameters from Miy-
ato et al. [2018b] are used for all models: α = 2e−4, β1 = 0.5, β2 = 0.999, and no learning rate
decay. We performed hyper-parameter search for the number of discrimination steps between
each generation step, ndisc, over the range {1, . . . , 5}, and for the batch smoothing parameter
γ over [0.2, 0.5]. All models are trained for 400, 000 iterations, counting both generation and
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Table 4.1: Comparison to the state of the art in terms of inception score (IS) and Fréchet inception
distance (FID) on the CIFAR10 dataset.

Model IS ↑ FID ↓

WGP Miyato et al. [2018b] 6.68± .06 40.2
GP Miyato et al. [2018b] 6.93± .08 37.7
SN Miyato et al. [2018b] 7.42± .08 29.3

Models with batch statistics

Salimans et al. 7.09± .08 35.0
BGAN 7.05± .06 36.5
M-BGAN 7.49± .06 23.7

discrimination steps. We compare smoothed BGAN and M-BGAN, and the same network trained
with spectral normalization Miyato et al. [2018b] (SN), and gradient penalty [Gulrajani et al.,
2017b] on both the Wasserstein [Arjovsky et al., 2017] (WGP) and the standard loss (GP). We
also compare to a model using the batch-discrimination layer of Gulrajani et al. [2017b], adding
a final batch discrimination layer to the architecture of Miyato et al. [2018b]. All models are
evaluated by reporting the Inception Score and the Fréchet Inception Distance Heusel et al. [2017]
and results are summarized in Table B.4. Figure 4.4 displays sample images generated with our
M-BGAN model.

Figure 4.6 highlights the training dynamics of each model3. On this architecture, M-BGAN
heavily outperforms both batch discrimination and our other variants, and yields results similar
to, or slightly better than Miyato et al. [2018b]. The model trained with batch smoothing display
results on par with batch discrimination, and much better than without batch smoothing.

Effect of batch smoothing on the generator and discriminator losses. To check the effect of
the batch smoothing parameter γ on the loss, we plot the discriminator and generator losses of the
network for different γ’s. The smaller the γ, the purer the batches. We would expect discriminator
training to be more difficult with larger γ. In Fig. 4.2) the generator loss –which is the part of the
discriminator loss that evaluates samples – is lower for larger γ, revealing the relative advantage
of the generator on the discriminator. BGAN and M-BGAN behave similarly and we only report
on BGAN in the figure. This suggests to increase γ if the discriminator dominates learning, and
to decrease γ if the discriminator is stuck at a high value in spite of poor generated samples.

4.5.3 Results on celebA and STL10 datasets

Finally, on the celebA face dataset, we adapt the simple architecture of Miyato et al. [2018b] to
the increased resolution by adding a layer to both networks. For optimization we use Adam with
β1 = 0, β2 = 0.9, α = 1e− 4, and ndisc = 1. Fig. 4.5 dislays BGAN samples with pure batches,

3 For readability, a slight smoothing is performed on the curves.
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and BGAN and M-BGAN samples with γ = .5. The visual quality of the samples is reasonable;
we believe that an improvement is visible from pure batches to M-BGAN. We provide results on
the STL-10 dataset, in Figure 4.7 and Table 4.2 where M-BGAN yields numerical results slightly
worse than Spectral Normalization. Except for the adaptation of the network to 48× 48 images,
as done in Miyato et al. [2018b], the experimental set-up is left unchanged.

(a) (b)

Figure 4.7: (a) Sample images generated by our best model trained on STL10. (b) real STL10
images for comparison

Table 4.2: Comparison to the state of the art in terms of inception score (IS) and Fréchet inception
distance (FID) on the STL-10 dataset.

Model IS FID

WGP Miyato et al. [2018b] 8.4 55
M-BGAN 8.7 51
SN Miyato et al. [2018b] 8.7 47.5
SN (Hinge loss) Miyato et al. [2018b] 8.8 43.2

4.5.4 Interpretation of M-BGAN as an ensembling method

The experiments show that M-BGAN can quite significantly improve performance. Intuitively,
the M-BGAN loss performs a simple ensembling of many strongly dependant permutation in-
variant discriminators, at no additional cost. In the general case, ensembling of N independent
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discriminators D1, . . . , DN amounts to training each discriminator independently, and using
the averaged gradient signal to train the generator. Ensembling is expected to alleviate some of
the difficulties of GAN training: as long as one of the discriminators still provides a significant
gradient signal, training of the generator is possible.

With equation (4.14), M-BGAN is an ensemble of B permutation invariant discriminators, with
respective outputs 1-th(o1, . . . , oB), . . . , B-th(o1, . . . , oB), where i-th is the function that returns
the i-th greatest element of a B dimensional vector. Indeed,

1
N

N∑
i=1

l(i-th(o1, . . . , oB), y) = 1
N

N∑
i=1

l(oi, y). (4.15)

which is the M-BGAN loss. The ensembled discriminators of the M-BGAN all share the same
weights. This ensembling effect at least partially explains the improved performance of M-BGAN.

4.6 Conclusion

We have shown how to build neural network architectures that are, assuming sufficient capacity,
dense in the set of all functions invariant to permutations on the batch axis. This means that our
networks can approximate any statistics on the distributions given as input, where "approximate"
comes from i) the finite size of the batch, which induces variance for the estimator of the statistic
and ii) the fact that in practice the density result may require too much computation for a given
statistic.

Because statistics on the distribution can be considered and used to reject a batch, the discrimina-
tor can explicitly evaluate variability of the images in the batch. With a perfect discriminator, a
batch of samples must contain as much variability as a batch of real images, thus mode dropping
is explicitly penalised together with image quality. With a perfect discriminator and an infinite
batch size, the distributions pθ and p∗ must match exactly.

We also observe that in practice, feeding all-fake or all-genuine batches to a discriminator makes
its task too easy, and therefore generalize the approach to mixed batches, without breaking
the optimality results. Experimentally, this provides a new, alternative method to reduce mode
dropping and reach good quantitative scores in GAN training. The vanilla GAN case is trivially
recovered as a special case
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4.7 Optimal discriminator for general beta prior (*)

We now take a closer look at the optimal discriminator, for a given generator. First, we give a
derivation of the optimal discriminator expression when the mixing parameter p is drawn from
Beta(a, b). This extends the result for the uniform distribution given in Eq. (4.7), as Beta(1, 1) =
U([0, 1]). Let us first build an intuition about the result, starting from the vanilla GAN case. Given
pθ and a dataset sampled from p∗, and mixing weights between equal to π1 and 1− π1, one can
build a dataset containing samples from p∗ in proportion π1 and from the model in proportion
1− π1, and an image yi from this (mixed) dataset then has density

pmix(y) = π1p
∗(y) + (1− π1)pθ(y).

Denote B the random variable modelling the class of yi, taking value b = 0 for fake and b = 1
for real. The prior on class B is then p(B = 1) = π1, p(B = 0) = 1− π1. Using Bayes’ rule,
the true posterior on C is

pmix(b|yi) = pmix(yi|b)p(b)
pmix(yi)

= pb(yi)πb
pmix(yi)

.

This gives us a probability for each discrete class c, so values between 0 and 1, that sum to 1,
i.e. "soft" predictions. If we need to to pick a definite answer (classification), we pick the mode
of p, i.e. the most likely class, by looking at which probability is greater than 0.5. This yields
the optimal Bayes classifier. We already knew this result: it is exactly the optimal value of the
discriminator in the standard GAN case. Indeed with π1 = 1/2,

pmix(B = 0|yi) = pθ(yi)
pθ(yi) + p∗(yi)

.

Now, we have a probabilistic interpretation of this result: the optimal discriminator approximates
the Bayes classifier, which is the true posterior. In the i.i.d case with mixed batches this is easy
to apply over a batch rather than a single image: if β = (b1, . . . , bB) is the class predictions for
images (y1, . . . ,yB), then

p(β|y) =
∏
i

pmix(bi|y).

We are interested in extending this to the non-i.i.d vector case, which is the setting of our model.
Looking at the vanilla GAN case, we have the intuition that we can link the optimal discriminator
to pmix(β|y) using Bayes’ rule. It will require p(y|β), p(β) and pmix(y). Knowing β and pθ we
can easily specify p(y|β). Knowing pθ and the dataset provides p(y), so we need the prior on β,
p(β), which we now derive.

Beta prior on batch mixing proportion. Consider mixed batches of samples of size B. The
i-th sample of the batch is a real sample if βi = 1 and a generated sample if βi = 0. Given a
certain mixing proportion p, assuming that samples are sampled independantly according to a
Bernoulli of parameter p, the probability of a certain β is

P(β | p) =
∏
i

pβi(1− p)1−βi . (4.16)



82 CHAPTER 4. MIXED BATCHES AND SYMMETRIC DISCRIMINATORS FOR GANS

Consider a beta prior distribution Beta(a, b) on the mixing parameter p ∈ [0, 1]. Because the
βs are i.i.d, #β

∑
i βi is a sufficient stastic and the posterior distribution #β contains all the

"interesting" information. It is given by the beta-binomial compound distribution:

P(#β) =
∫
p

Beta(p | a, b)P(#β|p)dp (4.17)

=
(
B

#β

)
B(#β + a,B −#β + b)

B(a, b) , (4.18)

where B(·, ·) is the beta function. For a = 1, b = 1, i.e. a uniform distribution on mixing
parameters, the beta-binomial compound distribution reduces to a uniform distribution on β.
Because for a given #β, all vectors β are equally likely and there are

( B
#β
)

of them, it follows
from the expression of P(#β) that

P(β) = B(#β + a,B −#β + b)
B(a, b) . (4.19)

Now that we have an explicit expression for P(β), we need the value of the optimal discriminator.
As in the vanilla case, we can obtain it by differentiating the B-GAN loss.

Optimal discriminator. Let y = mβ(x, x̃) denote a mixed batch of samples. The discrimina-
tor minimizes the KL divergence between D(y) and β, averaged over batches and mixing vectors
β, see Equation 4.4. This reduces to minimizing the expected cross-entropy. For a given batch
and mixing vector β,

L(D(y),#β) = −#β
B

lnD(y)− B −#β
B

ln(1−D(y)).

Averaging over batches and mixing vectors,

IEβ,y[L(D(y),#β)] =
∫
y
P(y)

∑
β

P(β|y)L(D(y),#β)

= −
∫
y
P(y)

[
IEβ|y

[#β
B

]
lnD(y) + IEβ|y

[
B −#β

B

]
ln(1−D(y))

]
From the latter it follows that for any y, the optimal discriminator value D∗(y) is

D∗(y) = IEβ|y

[#β
B

]
, (4.20)

i.e. the posterior expectation of the fraction of training samples in the batch. This expression of
the optimal discriminator is very compact, and reasonable intuitively. However it is too generic:
it is an expression over the vectors β and y and hides the fact that in our case the elements are
generated in a i.i.d. manner. We now express the loss in terms of each element of the batch, to
better understand how the discriminator acts on each yi. This gives more insight on how the
generator is trained because the generator is i.i.d. The expressions become less compact, precisely
because the mapping from elements y to answer β is not factorized, but it will be managable
because of the invariance to permutations. We proceed by applying Bayes’ rule.
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Posterior analysis. Through Bayes rule, the posterior expectation yields

D∗(y) = IEβ|y

[#β
B

]
=
∑
β

#β
B P(y|β)P(β)
P(y) . (4.21)

The marginal on the batch y is

P(y) =
∑
β

P(y | β)P(β) (4.22)

=
∑
β

P(y|β)B(#β + a,B −#β + b)
B(a, b) . (4.23)

The numerator in Eq. (4.21) can be written as a distribution on y,

Q(y) =
∑
β

P(y|β)Q(β) (4.24)

Q(β) = a+ b

a
P(β)#β

B
. (4.25)

The distribution Q(β) sums to 1, as IEP(#β)[#β] = Ba
a+b .

This finally yields

D∗(y) = a

a+ b

Q(y)
P(y) , (4.26)

which for the uniform beta prior with a = b = 1 on p simplifies to

D∗(y) = 1
2
Q(y)
P(y) . (4.27)

Expressing P(y | β). Notice that mβ(x, x̃) = y is equivalent to ∀i ∈ {1, ..., B}, xi = yi and
βi = 1 or x̃i = yi and βi = 0. Denote by p1 (resp. p2) the distribution of real samples (resp.
generated samples).
From the previous observation, it yields that

P(y | β) =
B∏
i=1

p1(yi)βip2(yi)1−βi . (4.28)

From the latter and Eq. (4.27) we obtain the optimal discriminator expression in Equation 4.7.

pbalanced(y) = 1
B + 1

∑
β∈{0,1}B

p1(y)βp2(y)1−β( B
#β
)

punbalanced(y) = 2
B + 1

∑
β∈{0,1}B

p1(y)βp2(y)1−β( B
#β
) #β

B
. (4.29)

The next section provides further analysis of these quantities.



84 CHAPTER 4. MIXED BATCHES AND SYMMETRIC DISCRIMINATORS FOR GANS

4.7.1 pbalanced and punbalanced are well normalized:

We now show that punbalanced is well defined, in the sense that it is normalized. The computation
for pbalanced is almost identical and left to the reader. First, recall that∫

y
punbalanced(y)dy = 2

B + 1
∑

β∈{0,1}B

#β
BC#β

B

∫
y
px(y)βpx̃(y)1−βdy (4.30)

Let us take a close look at the integral
∫
y px(y)βpx̃(y)1−βdy. Recall that px(y)β is a shorthand

for px(y1)β1 . . . px(yB)βB , so∫
y
px(y)βpx̃(y)1−βdy =

∏
i

∫
yi

px(yi)βpx̃(yi)1−βidyi.

Each βi is either 0 or 1 so each term of the product is the integral of either px or px̃ which are
densities. Therefore the integral resolves to 1. We are now ready to solve Equation 4.30:

∫
y
punbalanced(y)dy = 2

B + 1
∑

β∈{0,1}B

#β
BC#β

B

∫
y
px(y)βpx̃(y)1−βdy

= 2
B + 1

B∑
#β=1

C#β
B

#β
BC#β

B

= 2
(B + 1)B

B∑
#β=1

#β

= 2
(B + 1)B

B(B + 1)
2

= 1

Where line two is obtained by remarking that there are C#β
B vectors β of cardinal #β. This shows

that punbalanced is indeed a valid density over y.

Let us now comment on how punbalanced behaves. Suppose a fixed label vector β is given, and we
want to evaluate how well it describes batch x. The term in the sum can be interpreted as a score
for β, computed over the batch. Every time an image in the batch xi looks fake (px(yi) is low)
but βi is a "real" label, the score decreases, or similarly if the image looks "real" but the label is 0.
These per-image scores are multiplied together, so a single mistake, i.e. a single value close to 0,
will strongly impact the product of scores of the fixed β. Therefore when summing over all βs,
most of the mass will be concentrated on values of β that fit all points well.

The extra term in punbalanced, #β
BC#β

B

, is very important: it reweights the scores to penalyse mistakes

in the case where #β is high more, and thus brings fake samples closer to true ones. It is the only
term left inside the posterior expectation in Equation 4.20.
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4.8 Universal approximation theorem for symmetric functions (*)

In what follows, we aim at proving a universal approximation theorem for the class of permutation
invariant neural networks we have defined. To ease readings, products, sums and real function
applications are assumed to be broadcasted when need be. Throughout the paper the batch
dimension n is constant and ommited from set indices. We begin with precise definitions, and
there are then two main steps in the proof. The first is to show that the set of functions that can be
approximated to arbitrary precision on a compact set K is an Algebra for some triplet (+, ·,×),
and then to show that this algebra contains a generative family of the set of permutation invariant
functions.

4.8.1 Definitions

We begin by defining precisely what a symmetric function is, which you can read as "invariant to
permutations on the batch axis". We then define permutation-equivariant functions. Finally, we
define how to build the networks in our construction; we start with equivariant networks, then
reduce them to obtain invariant networks.

Definition 1. (Symmetric functions) A function f : Rn×k 7→ Rl is symmetric if for any per-
mutation of indexes σ and for all x ∈ Rn×k, f(xσ(1), . . . , xσ(n)) = f(x1, . . . , xn). The set of
continuous symmetric functions from Rn×k to Rl is denoted by I lk

Definition 2. (Permutation equivariance) A function f : Rn×k 7→ Rn×l is permutation equivari-
ant if for any permutation of indexes σ and for al x ∈ Rn, f(xσ(1), . . . , xσ(n)) = f(x)σ(1), . . . , f(x)σ(n).

The two previous definitions can be summarized by the following mnemonics: i) symmetric
functions give the same result for any ordering of their inputs; ii) permutation equivariant functions
give the same result, up to re-ordering of their outputs, for any ordering of their inputs. When
symmetric functions and permutation equivariant functions are restricted to a compact K, we
assume that the compact itself is symmetric, i.e.:

(x1, . . . , xn) ∈ K =⇒ ∀σ, (xσ(1), . . . , xσ(n)) ∈ K.

Note that a classical network, which treats a batch of inputs in an i.i.d manner, is a trivial case of
permutation equivariant function: it’s outputs are re-ordered when a permutation is applied to the
batch. Typically, a loss function is then averaged over the batch, such that the final loss becomes
invariant. So classical networks, with classical losses are already invariant. However, they are a
trivial case that we wish to extend. In what follows, we use ρ as a reducing operator on vectors
defined for x ∈ Rn×k by

ρ(x)j = 1
n

n∑
i=1

xi,j . (4.31)

Definition 3. (Recursive definition of equivariant networks) Let the sets Elk be sets that contain
permutation equivariant neural networks from Rn×k to Rn×l, recursively defined thus:

• For all k ∈ N, the identity function on Rn×k belongs to Ekk .
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• For all f ∈ Ekr , Γ ∈ Rl×k, Λ ∈ Rl×k and β ∈ Rl, and for act, a sigmoid activation
function, g defined as

g(x)i,j =
k∑
p=1

Γj,pact(f(x))i,p +
k∑
p=1

Λj,pρ(act(f(x)))p + βj) (4.32)

is in Elr.

The number of layers of the network is defined as the induction depth of the previous construction.
The set of thus constructed permutation equivariant neural networks with number of layers L
is denoted by E(L)lk. Note that this class of function is trivially stable by composition, i.e. if
g1 ∈ El2l1 and g2 ∈ El3l2 , the g2 ◦ g1 ∈ El3l1 .

Definition 4. (Symmetric neural networks) Let I lk be a set containing symmetric neural networks
from Rn×k to Rl defined as

I lk = ρ(Elk). (4.33)

Definition 3 can be thought of as a formal description of how our networks are built. If two sub-
networks that are permutation equivariant are given, they can be combined using our permutation
equivariant layer. The second definition simply says that taking a permutation equivariant network
and reducing it using ρ yields a symmetric network. This is intuitive: an equivariant network
produces the same result up to the order of outputs, and an invariant reduction doesn’t care about
the order of it’s inputs.

4.8.2 Algebraic structure of approximable functions

We have constructed sets I lk, containing permutation invariant networks. We now show that the
way they are constructed is not too restictive, i.e. that any analytical symmetric function can be
approximated with arbitrary precision by a sufficiently expressive network of our construct.

Theorem 2. For all n, k, l and for all compact K, I lk
∣∣∣
K

is dense in I lk
∣∣∣
K

.

We begin by showing that the set of functions that can be approximated to arbitrary precision
(i.e. the closure of I lk

∣∣∣
K

) can be equiped with an algebraic structure using + and × opera-
tors constructed pointwise with the + and × in R, i.e. f + g = x 7→ f(x) +R g(x) and
f × g = x 7→ f(x) ×R g(x). Intuitively, we have shown how to combine networks Elk while
retaining permutation equivariance, and want to "lift" this to the set of functions that can be
approximated as limits of our networks. The first step of the proof is to show that the closure of
I lk

∣∣∣
K

is a ring, i.e. that it is stable by sum, product and that each element has an inverse for +, as
well as a vectorial space, making it an algebra.

The main ’technique’ to prove this is to pick the right δs and εs to obtain uniform convergence
over K. The second step is to prove that this closure contains a generative familly of the set of
all polynomials that operate symmetrically on the batch dimension. Finally, because symmetric
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polynomials are dense in the set of all symmetric functions this will conclude the proof. We wish
to adapt the Stone-Weierstrass theorem, which states that on a compact, any continuous function
of a single variable can be approximated with polynomials. We need an extension to symmetric
functions, as the Stone-Weierstrass theorem works for univariate functions, or in the i.i.d case only.

Stability by composition "◦". We begin by showing that if two equivariant functions can be
approximated, then so can their composition (informally, one can think "lim(f ◦ g) = (lim f) ◦
(lim g)"). Formally, we prove:

Lemma 1. If f1 ∈ El2l1
∣∣∣
K

and f2 ∈ El3l2
∣∣∣
f1(K)

then f2 ◦ f1 ∈ El3l1
∣∣∣
K

.

Proof. Let ε > 0, f2 is continuous on a compact set, thus uniformly continuous, and there exists
an η > 0 such that ‖x − x′‖ < η implies ‖f2(x) − f2(x′)‖ < ε

2 . Now let g1 ∈ El2l1
∣∣∣
K

be such

that ‖g1 − f1‖∞ ≤ η and g2 ∈ El3l2
∣∣∣
K

such that ‖g2 − f2‖∞ ≤ ε
2 , then, for x in K

‖f2 ◦ f1(x)− g2 ◦ g1(x)‖ ≤ ‖f2 ◦ f1(x)− g2 ◦ f1(x)‖+ ‖g2 ◦ f1(x)− g2 ◦ g1(x)‖
≤ ε

Intuitively, this Lemma says: if your approximations of f1 and of f2 are good enough, then
composing them yields a good enough approximation of f1 ◦ f2.

Stability by concatenation "concat". We now show that limits can be concatenated, i.e.
"concat(lim f, lim g) = lim concat(f, g)". Formally:

Lemma 2. For any continuous functions g : Rk 7→ Rl, the restriction of the functionG : Rn×k 7→
Rn×k, defined as G(x) = (g(x1), . . . , g(xn)), to a compact K is in Elk

∣∣
K

. More precisely, for

all L ≥ 2, the restriction of G to K is in E(L)lk
∣∣
K

.

Proof. This is a consequence of the neural network universal approximation theorem, as stated
e.g. in Cybenko [1989].

The previous Lemma is simply the application of the universal approximation theorem to each
component function independantly. Intuitively, this trivial statement will let us use "many approx-
imations in parallel".

Lemma 3. If f1 ∈ El1k
∣∣∣
K

, f2 ∈ El2k
∣∣∣
K

and f1 and f2 have the same number of layers (i.e. they

have the same induction depth), then concat1(f1, f2) ∈ El1,l2k

∣∣∣
K

, with

concat1(x, y)i,j =
{
xi,j if j ≤ l1
yi,j−l1 otherwise

(4.34)

Proof. By induction on the number of layers L,
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• if L = 0, the result is clear.

• if L > 0, let g1, Γ1, Λ1 and β1 as well as g2, Γ2, Λ2 and β2 be the parameters associated to
f1 and f2, then, by induction, concat1(g1, g2) is a permutation equivariant network, and
concat1(f1, f2) is obtained by setting Γ to be the block diagonal matrix obtained with Γ1
and Γ2, Λ, the block diagonal matrix obtained with Λ1 and Λ2, and β the concatenation of
both β’s.

Lemma 4. If f1 ∈ El1k
∣∣∣
K

, f2 ∈ El2k
∣∣∣
K

, then concat1(f1, f2) ∈ El1+l2
k

∣∣∣
K

.

Proof. Let ε > 0, let g1 ∈ El1k
∣∣∣
K

and g2 ∈ El2k
∣∣∣
K

be such that ‖g1−f1‖∞ ≤ ε
4 and ‖g2−f2‖∞ ≤

ε
4 . Denote by L1 and L2 the numbers of layers of g1 and g2. We assume L1 ≥ L2 without

loss of generality. By lemma 2, there exist h1 ∈ El1l1

∣∣∣
K

and h2 ∈ El2l2

∣∣∣
K

with h1 of depth 2
and h2 of depth L1 − L2 + 2 such that ‖h1 − Id‖∞ ≤ ε

4 on g1(K) and ‖h2 − Id‖∞ ≤ ε
4

on g2(K). The networks h1 ◦ g1 and h2 ◦ g2 have the same number of layers, consequently,
concat1(h1 ◦ g1, h2 ◦ g2) ∈ El1,l2k

∣∣∣
K

. Besides,

‖concat1(f1, f2)− concat1(h1 ◦ g1, h2 ◦ g2)‖∞ (4.35)

≤‖f1 − g1‖∞ + ‖h1 ◦ g1 − g1‖∞ + ‖f2 − g2‖∞ + ‖h2 ◦ g2 − g2‖∞ (4.36)

≤ε (4.37)

yielding the result.

Lemma 3 is simply a formal statement that you can concatenate equivariant networks, and that
you get an equivariant network. It is trivial, but very usefull: if we can concatenate functions
f1 and f2 we can then, for instance, sum them using an additional layer. Lemma 4 is more
interesting: concatenating approximations that are "good enough" yields an approximation of the
concatenation.

Stability by sum "+". We now show that we can sum limits, i.e. "lim f + lim g = lim(f + g)".
Formally:

Lemma 5. If f1 and f2 are in Elk
∣∣
K

, then f1 + f2 is too.

Proof. By lemma 3, concat1(f1, f2) is in E2l
k

∣∣
K

. Consider the layer g, with kernels

Γi,j =
{

1 if j = i or j = k + i

0 otherwise

for 1 ≤ i ≤ l, 1 ≤ j ≤ 2l, Λ = 0, β = 0. By lemma 1, as both concat1(f1, f2) and g are
in closures of permutation equivariant networks, their composition is too. This composition is
act(f1 + f2). By the universal approximation theorem act−1 is also in the closure so f1 + f2 is in
the closure.
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Thus closures of permuation equivariant networks is stable by +, where + is defined pointwise
using the + in R. More generally, following similar reasonings and noting that multiplication by
a real scalar α ∈ R is possible with linear layers, closures of permutation equivariant networks
are vectorial spaces on R. It follows that closures of permutation invariant networks are vectorial
spaces too. Thus we have verified the vectorial space structure on R.

Broadcasted functions:. For the following proofs, we will need the ability to broadcast functions
on the batch axis. Intuitively, if f can be approximated, then f copied b times also can.

Lemma 6. If f ∈ I lk
∣∣
K

, then F defined by

F (x)i,j = f(x)j (4.38)

for all i, j, is in Elk
∣∣
K

Proof. By definition, for any ε > 0, there exists a G in Elk
∣∣∣
K

such that f and ρ(G) are at distance

at most ε2 . Let α be a non zero real number such that act−1(αG(x)) is well defined for any x ∈ K.
Consider the equivariant layer

m(x)i,j = α−1ρ(act(x))j . (4.39)

Let η1 be a positive real number, and Lη1 be a compact set that contains both act−1(αG(K)) and
any ball of radius η1 contained in this set. m is uniformly continuous on Lη1 , and consequently
there exists an η2 such that if x and y are at distance at most η2, m(x) and m(y) are at distance
at most ε2 . Now, by composition and the universal approximation theorem, let h ∈ Elk be such
that h and act−1(αG) are at distance at most min(η1, η2). Then m ◦ act−1(αG) and m ◦ h are at
distance at most ε2 , and by triangular inequality, F and m ◦ h are at distance at most ε.

Stability by product "×". We now show that we can multiply limits, i.e. "lim f × lim g =
lim(f ×g)". The ingredients are: (i) the broadcast operation we just defined, for technical reasons.
(ii) the ability to compose with a log, (iii) the ability to sum and to compose with an exp. This
gives us the product, using exp(log(a) + log(b)) = ab.

Lemma 7. If f1 and f2 are in I lk
∣∣
K

, then f1f2 is too.

Proof. Let F1 and F2 be the extensions of f1, f2 as defined in lemma 6. There exists a C ∈ R
such that for all i, j, x ∈ K, F1(x)i,j + C > 0, and similarily for F2. Consequently, by lemma 1,
lemma 2 and lemma 5, exp(log(F1 +C) + log(F2 +C)) = F1F2 +F1C +F2C +C2 ∈ Elk

∣∣
K

.

As this closure is a vectorial space, F1F2 ∈ Elk
∣∣
K

. Consequently, f1f2 = ρ(F1F2) ∈ I lk
∣∣
K

.

We proved that I lk
∣∣
K

is stable by +, and by multiplication by a real scalar α ∈ R, thus I lk
∣∣
K

is a

vector space over R (viewed as a field). We also proved that I lk
∣∣
K

is stable by ×. Because + and

× are defined using +R and ×R, it is clear that × is bilinear. Thus, I lk
∣∣
K

is an algebra.
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4.8.3 The closure contains a generative family of all symmetric functions (**)

We have now shown that I lk
∣∣
K

is an algebra. We are left to prove that it contains a generative
familly of the continuous symmetric functions. Let us first exhibit a familly of continuous symmet-
ric functions that is contained in the set of interest. We will then show that this family generates
all continuous symmetric functions.

The key idea of the proof is that a symmetric function on variables x1, . . . , xn can be seen as an
other function of one variable, evaluated at n different points. Technically speaking, the difficulty
of the proof is to see how to jump from functions of a space X to functions of a space Xn. One
can think about the case of univariate functions (X = R for instance), that we wish to turn into
multivariate functions (if X = R, Xn = Rn), though our proof will be more generic: we care
about batches of vectors, so in practice we use X = Rd (the vectors) and Xn = Rd

⊗nRd (the
batches of vectors). The idea is to use an algebra of functions on X , that we can denote FX (the
algebra structure lets us scale, sum and multiply functions) and use it to construct an algebra of
functions on Xn, that we will denote FXn . We consider FX provided (we can use the universal
approximation theorem to obtain it with neural networks), and we seek to construct FXn . We
begin by establishing "bridges" between the two sets.

Lemma 8. For all f , restriction of a function from Rl to Rk to a compact set K, the symmetric
function F , defined on Kn×l by

F (x) =
n∑
i=1

f(xi) (4.40)

is in I lk.

Proof. By the universal approximation theorem, f is in I lk
∣∣
K

. By lemma 6, there exists a G in

Elk
∣∣
K

that replicates f along the batch axis of an equivariant network. Consequently, ρ(G) = F

is in I lk
∣∣
K

.

This first "bridge" is intuitive: if you have a function f on X , you can turn it into a function
on Xn by evaluating it at several points simultaneously. If you sum the results, you obtain an
invariant function. We are going to prove that this familly of functions generates the set of
all symmetric polynomials. Then, deriving a generalization of Stone Weierstrass theorem to
symmetric functions, we obtain the final result.

We now present a tool to turn a function on Xn into a symmetric function on Xn:

Symmetrization operator. To keep things general, in what follows, X denotes an arbitrary set,
and S is the symmetrization operator on functions of Xn, i.e. for all (x1, . . . , xn) ∈ Xn,

(Sf)(x1, . . . , xn) =
∑
σ

f(xσ(1), . . . , xσ(n)) (4.41)

where the sum is over all permutations of [1, n]. This is well defined: for any function f defined
on Xn, f ◦ σ is also a function of Xn. Since all possible results for all possible permutations
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of the inputs are summed, permuting the order of the inputs of Sf will simply reorder the sum.
Because the + operation in f(Xn) is commutative, the result is invariant to permutations. An
important property of S is that it is linear. Let α ∈ R and g a functions of Xn,

(S(αf + g))(x1, . . . , xn) =
∑
σ

αf(xσ(1), . . . , xσ(n)) + g(xσ(1), . . . , xσ(n)) (4.42)

= α
∑
σ

(f(xσ(1), . . . , xσ(n))) +
∑
σ

g(xσ(1), . . . , xσ(n))(4.43)

= (α(Sf) + (Sg))(x1, . . . , xn). (4.44)

In what follows, we will build multivariate polynomials (in preparation of the use of a density
result). We begin by recalling the definition of a monomial.

Definition 5. Monomials (informal) A monomial is a product of powers of variables (note the
plural) with non-negative integer exponents. In the classical context of univariate polynomials,
it is of the form xn. In the context of multivariate polynomials, it is of the form xayb . . . zc. The
degrees and the number of terms is arbitrary. The point is, there is no +.

Example: For instance, xy+ yz is a multivariate polynomial, because there is a +, but x128y3z29

is a monomial. The polynomial xy + yz is composed of monomials xy and yz.

Polynomials from monomials. Let F an algebra of functions on X (we can sum, multiply, and
scale the functions of F ), and let P be the algebra of functions of Xn generated by the functions
f(xk) : x→ f(xk) for f in F , with a slight abuse of notations.

We are allowed to define P like this: we give P an algebra structure, so it suffices to provide a
family of functions, and the whole set P is generated using composition laws. The definition
is valid: f(xk) takes a value in Xn, and maps it to a constant image. The functions we give
are monomials with one variable. Because of the algebra structure, we have a × and so we
can raise the degree, still obtaining monomials of the form f1(x1) . . . fn(xn). Then, because of
the vector space structure, we can generate polynomials, of the form

∑
i αifi1(xi1) . . . fin(xin).

Then, it remains to determine if the P that we generate this way is interesting. In fact, we will
first symmetrize P (we care about symmetric functions), and then wonder if SP is interesting.

P is linearly generated by the monomials f1(x1) . . . fn(xn) for fk arbitrary functions of F , by
definition.
We are interested in the symmetrization of P , SP . By linearity of S, SP is generated by the
symmetrized monomials,

Sf1(x1) . . . fn(xn) =
∑
σ

n∏
k=1

fk(xσ(k)). (4.45)

Here, this result is based on an interesting transfer of structure between P and SP : because S is
linear, the base of P yields a base of SP through S.
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Now comes the crucial part of the proof: intuitively, because the functions f onXn are symmetric,
you don’t need to know how the polynomials evaluate on all xi, x1 is enough. Note that this is
true of polynomials, not all functions, but the closure remains the same.

Lemma 9. SP is generated as an algebra by Sf(x1) for f ∈ F . Notably, Sf(x1) takes the
special form

Sf(x1) =
∑
σ

f(xσ(1)) = (n− 1)!
n∑
k=1

f(xk). (4.46)

Typically, for our case, X = Rl for l the number of input features, F is an algebra of functions
containing the multivariate polynomials on Rl, and SP thus contains the set of all polynomials
which are symmetric along the batch dimension.

Proof. Call rank of a monomial f1(x1) . . . fn(xn), the number of functions fk such that fk 6= 1.
Let k1, . . . , kr be these indices. Up to renaming fk1 to f1, etc., the monomial can be written as
f1(xk1) . . . fr(xkr).
We will work by induction on r. For r = 1 the claim is trivial.
Since S does not care about permuting the variables, we have

Sf1(xk1) . . . fr(xkr) = Sf1(x1) . . . fr(xr) =
∑
σ∈SK

r∏
i=1

fi(xσ(i)) (4.47)

Intuitively, the magic has already hapenned: x1 will take all positions in the "input batch". The
values σ(r + 1), . . . , σ(n) have no influence so that

Sf1(x1) . . . fn(xn) = (n− r)!
∑

σ∈Injnr

r∏
i=1

fi(xσ(i)) (4.48)

where Injnr is the set of injective functions from r to n. This extra term comes from the fact that
we have n variables but only r usefull ones, and the previous line gets ’rid’ of that by focusing on
usefull variables.

Assume we can generate all symmetric monomials up to rank r. We need to add a variable
(replace one that was "not used" by one that is "used".) By definition we can generate Sfr+1(x1)
for any fr+1 ∈ F (using our construction of P , then SP ). Then using the algebra structure, and
the recurrense hypothesis, we can generate the product:

1
(n− r − 1)!(Sfr+1(x1))

 ∑
σ∈Injnr

r∏
i=1

fi(xσ(i))

 = (
∑
k∈n

fr+1(xk))

 ∑
σ∈Injnr

r∏
i=1

fi(xσ(i))


=

∑
σ∈Injnr

∑
k∈n

fr+1(xk)
r∏
i=1

fi(xσ(i))

Now, for each σ, we can decompose according to whether k ∈ Im σ or k ∈ n \ Im σ, where
Im σ = {σ(1), . . . , σ(r)} is the image of σ. Intuitively, the variable that we added is permuted
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around, and can either i) arrive on a variable slot that was not used before, or on a slot that was
used. We obtain two terms:

. . . =
∑

σ∈Injnr

∑
k∈Imσ

fr+1(xk)
r∏
i=1

fi(xσ(i)) +
∑

σ∈Injnr

∑
k∈n\Imσ

fr+1(xk)
r∏
i=1

fi(xσ(i))

But if k is not in Im σ, then (σ(1), . . . , σ(r), k) is an injective function from r + 1 to n. So
summing over σ then on k ∈ n \ Im σ is exactly equivalent to summing over σ ∈ Injnr+1. So the
second term above is

∑
σ∈Injnr+1

(
r∏
i=1

fi(xσ(i))
)
fr+1(σ(r + 1)) =

∑
σ∈Injnr+1

r+1∏
i=1

fi(xσ(i)) = Sf1(xk1) . . . fr+1(xkr+1)

which is the one we are interested in (it gives us the recurrence hypothesis we want for r + 1).
So if we prove that we can generate the first term, we are done by substracting the first term on
both sides using the algebra strucutre. Let us consider the first term, with k ∈ Im σ. Now, since
k ∈ Im σ, we can decompose over the cases k = σ(1), . . . , k = σ(r). The notations are a bit
heavy, but the idea of the trick is very simple: where there is a collision between the new variable
and the one already used (say, xr+1 = xi) use a new function f̃i = fr+1 × fi. You can do this
because F is an algebra. Let us now do it:

∑
σ∈Injnr

∑
k∈Imσ

fr+1(xk)
r∏
i=1

fi(xσ(i)) =
∑

σ∈Injnr

r∑
j=1

fr+1(xσ(j))
r∏
i=1

fi(xσ(i)) (4.49)

=
r∑
j=1

∑
σ∈Injnr

r∏
i=1

f̃ij(xσ(i)) (4.50)

where

f̃ij :=
{
fi i 6= j

fifr+1 i = j
(4.51)

Now since F is a ring, fifr+1 ∈ F . For each j the term

∑
σ∈Injnr

r∏
i=1

f̃ij(xσ(i)) (4.52)

is equal to Sf̃1j . . . f̃rj up to a factor (n− (r + 1))! that can be inverted (vector space structure).
By our induction hypothesis, each term can be generated, and this ends the proof.

The hard part is done. Now, we just need density results.

Lemma 10. For any compact K, any l ∈ N, the intersection of I1
l with the set of multivariate

polynomials is dense in I1
l for the infinity norm.
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Proof. Let ε > 0, and f be in I1
l . There exists a multivariate polynomials P such that ‖P−f‖∞ ≤

ε. Let us consider the symmetrized polynomial

P̃ (x1, . . . , xn) = 1
n!
∑
σ

P (xσ(1), . . . , xσ(n)). (4.53)

Then P̃ is in the intersection, and, for x ∈ K,

‖P̃ (x)− f(x)‖ = ‖ 1
n!
∑
σ

(P (xσ(1), . . . , xσ(n))− f(xσ(1), . . . , xσ(n)))‖ (4.54)

≤ 1
n!
∑
σ

‖P (xσ(1), . . . , xσ(n))− f(xσ(1), . . . , xσ(n))‖ (4.55)

≤ ε. (4.56)

Intuitively, the infinity norm does not change is we change the variables around for both P and f
at the same time (think about a change of basis).

We now have all the ingredients to end the proof. We just have to plug in the universal approxima-
tion theorem to get our polynomials. For a given compactK of Rl, for any multivariate polynomial

P of Rl, any ε > 0, there exists an element f of I1
k at distance at most ε of x→

n∑
i=1

P (xi). This

means that the closure of the considered set contains all such functions. As this closure is an
algebra (it is both a ring and a vectorial space), by lemma 8, it contains the intersection of I2

l

with the set of multivariate polynomials. By lemma 10, it contains I1
l , which ends the proof.



Chapter 5

Adaptive density estimation for
generative modelling

Contents
5.1 Outline of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3 Preliminaries on MLE and adversarial training . . . . . . . . . . . . . . 99
5.4 Adaptive Density Estimation and hybrid adversarial-likelihood training . 101
5.5 Experimental evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.6 Complementary evaluations . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.7 Qualitative influence of the feature space flexibility . . . . . . . . . . . . . 112
5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Unsupervised learning of generative models has seen tremendous progress over recent years,
in particular due to generative adversarial networks (GANs), variational auto-encoders, and
flow-based models. GANs have dramatically improved sample quality, but suffer from two
drawbacks: (i) they mode-drop, i.e., do not cover the full support of the train data, and (ii) they
do not allow for likelihood evaluations on held-out data. In contrast likelihood-based training
encourages models to cover the full support of the train data, but yields poorer samples. These
mutual shortcomings can in principle be addressed by training generative latent variable models
in a hybrid adversarial-likelihood manner. However, we show that commonly made parametric
assumptions create a conflict between them, making successful hybrid models non trivial. As a
solution, we propose to use deep invertible transformations in the latent variable decoder. This
approach allows for likelihood computations in image space, is more efficient than fully invertible
models, and can take full advantage of adversarial training. We show that our model significantly
improves over existing hybrid models: offering GAN-like samples, IS and FID scores that are
competitive with fully adversarial models and improved likelihood scores. The material presented
in this chapter is based on the paper "Adaptive Density Estimation for Generative Models",
Thomas Lucas, Konstantin Shmelkov, Karteek Alahari, Cordelia Shmid, and Jakob Verbeek,
conference on Neural Information Processing Systems (NeurIPS) 2019.

95
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5.1 Outline of this chapter

Successful recent generative models of natural images can be divided into two broad families,
which are trained in fundamentally different ways. The first is trained using likelihood-based
criteria, which ensure that all training data points are well covered by the model. This cate-
gory includes variational auto-encoders (VAEs) [Kingma and Welling, 2014b, Kingma et al.,
2016b, Rezende and Mohamed, 2015, Rezende et al., 2014], autoregressive models such as
PixelCNNs [Salimans et al., 2017b, van den Oord et al., 2016b], and flow-based models such as
real-NVP [Dinh et al., 2017, Ho et al., 2019, Kingma and Dhariwal, 2018]. The second category
is trained based on a signal that measures to what extent (statistics of) samples from the model
can be distinguished from (statistics of) the training data, i.e., based on the quality of samples
drawn from the model. This is the case for generative adversarial networks (GANs) [Arjovsky
et al., 2017, Goodfellow et al., 2014, Karras et al., 2018], and moment matching methods [Li
et al., 2015].

Despite tremendous recent progress, existing methods exhibit a number of drawbacks. Adversari-
ally trained models such as GANs do not provide a density function, which poses a fundamental
problem as it prevents assessment of how well the model fits held out and training data. Moreover,
adversarial models typically do not allow to infer the latent variables that underlie observed
images. Finally, adversarial models suffer from mode collapse [Arjovsky et al., 2017], i.e., they
do not cover the full support of the training data. Likelihood-based model on the other hand are
trained to put probability mass on all elements of the training set, but over-generalise and produce
samples of substantially inferior quality as compared to adversarial models. The models with the
best likelihood scores on held-out data are autoregressive models [Menick and Kalchbrenner,
2019], which suffer from the additional problem that they are extremely inefficient to sample
from [Ramachandran et al., 2017], since images are generated pixel-by-pixel. The sampling
inefficiency makes adversarial training of such models prohibitively expensive.

In order to overcome these shortcomings, we seek to design a model that (i) generates high-quality
samples typical of adversarial models, (ii) provides a likelihood measure on the entire image
space, and (iii) has a latent variable structure to allow for efficient sampling, that permits adversar-
ial training. Additionally we show that, (iv) a successful hybrid adversarial-likelihood paradigm
requires going beyond simplifying conditional independence assumptions commonly used with
likelihood based latent variable models. These simplifying assumptions on the conditional distri-
bution on data x given latent variables z, p(x|z), include full independence across the dimensions
of x and/or simple parametric forms such as Gaussian [Kingma and Welling, 2014b], as detailed
in Section 2.9.1, or use fully invertible networks [Dinh et al., 2017, Kingma and Dhariwal, 2018].
These assumptions create a conflict between achieving high sample quality and high likelihood
scores on held-out data. Autoregressive models, such as PixelCNNs [Salimans et al., 2017b,
van den Oord et al., 2016b], do not make factorization assumptions, but are extremely inefficient
to sample from. As a solution, we propose learning a non-linear invertible function fψ between
the image space and an abstract feature space as illustrated in Figures 5.1 and 5.2.Training a
model with full support in this feature space induces a model in the image space that does not
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Figure 5.1: An invertible non-linear mapping fψ maps an image x to a vector fψ(x) in feature
space. fψ is trained to adapt to modelling assumptions made by a trained density pθ in feature
space.

Figure 5.2: Variational inference is used to train a latent variable generative model in feature
space. The invertible mapping fψ maps back to image space, where adversarial training can be
performed together with MLE.

make Gaussianity or independence assumptions in the conditional p(x|z). Trained by MLE, fψ
adapts to modelling assumptions made by pθ so we refer to this approach as ”Adaptive density
estimation”.

We experimentally validate our approach on the CIFAR-10 dataset with an ablation study. Our
model significantly improves over existing hybrid models, producing GAN-like samples as shown
in Figure 5.3, and IS and FID scores that are competitive with fully adversarial models. At the
same time, we obtain likelihoods on held-out data comparable to state-of-the-art likelihood-
based methods which requires covering the full support of the dataset. We further confirm these
observations with quantitative and qualitative experimental results on the STL-10, ImageNet and
LSUN datasets.

5.2 Related work

Mode-collapse in GANs has received considerable attention, and stabilizing the training process
as well as improved and bigger architectures have been shown to alleviate this issue [Arjovsky
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Figure 5.3: Our model yields compelling samples while the optimization of likelihood ensures
coverage of all modes in the training support and thus sample diversity, here on LSUN churches
(64× 64).

et al., 2017, Gulrajani et al., 2017b, Miyato et al., 2018a]. Another line of work focuses on
allowing the discriminator to access batch statistics of generated images, as pioneered by Karras
et al. [2018], Salimans et al. [2016b], and further generalized by Lin et al. [2018], Lucas et al.
[2018a]. This enables comparison of distributional statistics by the discriminator rather than only
individual samples. Other approaches to encourage diversity among GAN samples include the
use of maximum mean discrepancy [Arbel et al., 2018], optimal transport [Salimans et al., 2018],
and determinental point processes [Elfeki et al., 2018]. In contrast to our work, these models lack
an inference network, and do not define a explicit density over the full data support.

An other line of research has explored inference mechanisms for GANs. The discriminator of
BiGAN [Donahue et al., 2017] and ALI [Dumoulin et al., 2017a], given pairs (x, z) of images
and latent variables, predict if z was encoded from a real image, or if x was decoded from a
sampled z. In Ulyanov et al. [2018] the encoder and the discriminator are collapsed into one
network that encodes both real images and generated samples, and tries to spread their posteriors
apart. In Chen et al. [2018] a symmetrized KL divergence is approximated in an adversarial
set-up, and uses reconstruction losses to improve the correspondence between reconstructed and
target variables for x and z. Similarly, Rosca et al. [2017] use a discriminator to replace the KL
divergence term in the variational lower bound used to train VAEs with the density ratio trick.
In Makhzani et al. [2016] the KL divergence term in a VAE is replaced with a discriminator
that compares latent variables from the prior and the posterior in a more flexible manner. The
VAE-GAN model [Larsen et al., 2016] uses the intermediate feature maps of a GAN discriminator
as target space for a VAE. This regularization is more flexible than the standard KL divergence.
Unlike ours, these methods do not define a likelihood over the image space.

Likelihood-based models typically make modelling assumptions that conflict with adversarial
training, these include strong factorization and/or Gaussianity. In our work we avoid these
limitations by learning the shape of the conditional density on observed data given latent variables,
pθ(x|z), beyond fully factorized Gaussian models. As in our work, Flow-GAN [Grover et al.,
2018] also builds on invertible transformations to construct a model that can be trained in a
hybrid adversarial-MLE manner, see Figure 5.2.However, Flow-GAN does not use efficient non-
invertible layers we introduce, and instead relies entirely on invertible layers. Other approaches
combine autoregressive decoders with latent variable models to go beyond typical parametric
assumptions in pixel space [Chen et al., 2017, Gulrajani et al., 2017c, Lucas and Verbeek, 2018a].
They, however, are not amenable to adversarial training due to the prohibitively slow sequential
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Figure 5.4: Maximum likelihood training pulls probability mass towards high-density regions of
the data distribution, while adversarial training pushes mass out of low-density regions. (Right)
Independence assumptions become a source of conflict in a joint training setting, making hybrid
training non-trivial.

pixel sampling.

5.3 Preliminaries on MLE and adversarial training

Maximum-likelihood and over-generalization. The de-facto standard approach to train genera-
tive models is maximum-likelihood estimation. It maximizes the probability of data sampled from
an unknown data distribution p∗ under the model pθ w.r.t. the model parameters θ. This is equiva-
lent to minimizing the Kullback-Leibler (KL) divergence, DKL(p∗ || pθ), between p∗ and pθ. This
yields models that tend to cover all the modes of the data, but put mass in spurious regions of the
target space; a phenomenon known as “over-generalization” or “zero-avoiding” [Bishop, 2006],
and manifested by unrealistic samples in the context of generative image models, see Figure 5.4.
Over-generalization is inherent to the optimization of the KL divergence oriented in this manner.
Real images are sampled from p∗, and pθ is explicitly optimized to cover all of them. The training
procedure, however, does not sample from pθ to evaluate the quality of such samples (ideally
using the inaccessible p∗(x) as a score). Therefore pθ may put mass in spurious regions of the
space without being heavily penalized. We refer to this kind of training procedure as “coverage-
driven training” (CDT). This optimizes a loss of the form LC(pθ) =

∫
x p
∗(x)sc(x, pθ) dx, where

sc(x, pθ) = ln pθ(x) evaluates how well a sample x is covered by the model. Any score that
verifies LC(pθ) = 0 ⇐⇒ pθ = p∗ is equivalent to the log-score, in which case it is called
strictly proper (see e.g. Dawid and Musio [2014]), which forms a justification for MLE on which
we focus.

Explicitly evaluating sample quality is redundant in the regime of unlimited model capacity and
training data. Indeed, putting mass on spurious regions takes it away from the support of p∗,
and thus reduces the likelihood of the training data. In practice, however, datasets and model
capacity are finite, and models must put mass outside the finite training set in order to generalize.
The maximum likelihood criterion, by construction, only measures how much mass goes off the
training data, not where it goes. In classic MLE, generalization is controlled in two ways: (i)
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inductive bias, in the form of model architecture, controls where the off-dataset mass goes, and (ii)
regularization controls to which extent this happens. An adversarial loss, by considering samples
of the model pθ, can provide a second handle to evaluate and control where the off-dataset mass
goes. In this sense, and in contrast to model architecture design, an adversarial loss provides a
“trainable” form of inductive bias.

Adversarial models and mode collapse. Adversarially trained models produce samples of
excellent quality. As mentioned, their main drawbacks are their tendency to “mode-drop”, and
the lack of metric to assess mode-dropping, or their performance in general. The reasons for this
are two-fold. First, defining a valid likelihood requires adding volume to the low-dimensional
manifold learned by GANs to define a density under which training and test data have non-zero
density. Second, computing the density of a data point under the defined probability distribution
requires marginalizing out the latent variables, which is not trivial in the absence of an efficient
inference mechanism.

When a human expert subjectively evaluates the quality of generated images, samples from the
model are compared to the expert’s implicit approximation of p∗. This type of objective may
be formalized as LQ(pθ) =

∫
x pθ(x)sq(x, p∗) dx, and we refer to it as “quality-driven training”

(QDT). To see that GANs Goodfellow et al. [2014] use this type of training, recall that the
discriminator is trained with the loss

LGAN =
∫
x
p∗(x) lnD(x) + pθ(x) ln(1−D(x)) dx.

It is easy to show that the optimal discriminator equals D∗(x) = p∗(x)/(p∗(x) + pθ(x)), see
Goodfellow et al. [2014]. Substituting the optimal discriminator,LGAN equals the Jensen-Shannon
divergence,

DJS(p∗||pθ) = 1
2DKL(p∗ || 1

2(pθ + p∗)) + 1
2DKL(pθ ||

1
2(pθ + p∗)), (5.1)

up to additive and multiplicative constants [Goodfellow et al., 2014]. This loss, approximated by
the discriminator, is symmetric and contains two KL divergence terms. Note that DKL(p∗ || 1

2(pθ+
p∗)) is an integral on p∗, so coverage driven. The term that approximates it in LGAN, i.e.,∫
x p
∗(x) lnD(x), is however independent from the generative model, and disappears when

differentiating. Therefore, it cannot be used to perform coverage-driven training, and the generator
is trained to minimize ln(1 −D(G(z))), where G(z) is the deterministic generator that maps
latent variables z to the data space. Assuming D = D∗, this yields∫

z
p(z) ln(1−D∗(G(z))) dz =

∫
x
pθ(x) ln pθ(x)

pθ(x) + p∗(x) dx = DKL(pθ || (pθ + p∗)/2),
(5.2)

which is a quality-driven criterion, favoring sample quality over support coverage. An alterna-
tive training loss for the generator, also proposed in Goodfellow et al. [2014], is to maximize
lnD(G(z)), which does not modify the optimum but improves early training. As remarked by
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Sønderby et al. [2017], it is possible to simultaneously minimize ln(1−D(G(z))) and maximize
lnD(G(z)) by minimizing ∫

z
p(z) ln

(1−D(G(z))
D(G(z))

)
, (5.3)

which under optimality assumption yields DKL(pθ,ψ||p∗).

The complementarities that appear between maximum likelihood and adversarial training motivate
hybrid training of generative models, which is presented in Section 5.4.

5.4 Adaptive Density Estimation and hybrid adversarial-likelihood
training

We present a hybrid training approach with MLE to cover the full support of the training data,
and adversarial training as a trainable inductive bias mechanism to improve sample quality. Using
both these criteria provides a richer training signal, but satisfying both criteria is more challenging
than each in isolation for a given model complexity. In practice, model flexibility is limited by
(i) the number of parameters, layers, and features in the model, and (ii) simplifying modelling
assumptions, usually made for tractability. We show that these simplifying assumptions create
a conflict between the two criteria, making successful joint training non trivial. We introduce
Adaptive Density Estimation as a solution to reconcile them.

Latent variable generative models, defined as pθ(x) =
∫
z pθ(x|z)p(z) dz, typically make sim-

plifying assumptions on pθ(x|z), such as full factorization and/or Gaussianity, see e.g. Dorta
et al. [2018], Kingma and Welling [2014b], Litany et al. [2018]. In particular, assuming full
factorization of pθ(x|z) implies that any correlations not captured by z are treated as indepen-
dent per-pixel noise. This is a poor model for natural images, unless z captures each and every
aspect of the image structure. Crucially, this hypothesis is problematic in the context of hybrid
MLE-adversarial training. If p∗ is too complex for pθ(x|z) to fit it accurately enough, MLE will
lead to a high variance in a factored (Gaussian) pθ(x|z) as illustrated in Figure 5.4 (right).

This leads to unrealistic blurry samples, easily detected by an adversarial discriminator, which
then does not provide a useful training signal. Conversely, adversarial training will try to avoid
these poor samples by dropping modes of the training data, and driving the “noise” level to zero.
This in turn is heavily penalized by maximum likelihood training, and leads to poor likelihoods
on held-out data.

Adaptive density estimation. The point of view of regression hints at a possible solution. For
instance, with isotropic Gaussian densities, p(x|z) = N (x|µ(z), σI)) with fixed variance, solv-
ing the optimization problem θ∗ ∈ maxθ ln(pθ(x)) is similar to solving minθ ||µθ(z) − x||2,
i.e., `2 regression, where µθ(z) is the mean of the decoder pθ(x|z). The Euclidean distance in
RGB space is known to be a poor measure of similarity between images, non-robust to small
translations or other basic transformations Mathieu et al. [2016]. One can instead compute the
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Euclidean distance in a feature space, ||fψ(x1) − fψ(x2)||2, where fψ is chosen so that the
distance is a better measure of similarity. A popular way to obtain fψ is to use a CNN that learns
a non-linear image representation, that allows linear assessment of image similarity. This is the
idea underlying GAN discriminators, the FID evaluation measure [Heusel et al., 2017], and the
reconstruction loss of VAE-GAN Larsen et al. [2016].

Despite their flexibility, such similarity metrics are in general degenerate in the sense that they
may discard information about the data point x. For instance, two different images x and y
can collapse to the same points in feature space, i.e., fψ(x) = fψ(y). This limits the use of
similarity metrics in the context of generative modeling for two reasons: (i) it does not yield a
valid measure of likelihood over inputs, and (ii) points generated in the feature space fψ cannot
easily be mapped to images. To resolve this issue, we chose fψ to be a bijection. Given a model pθ
trained to model fψ(x) in feature space, a density in image space is computed using the change
of variable formula, which yields pθ,ψ(x) = pθ(fψ(x))

∣∣∣det
(
∂fψ(x)/∂x>

)∣∣∣ . Image samples
are obtained by sampling from pθ in feature space, and mapping to the image space through
f−1
ψ . We refer to this construction as Adaptive Denstiy Estimation. If pθ provides efficient log-

likelihood computations, the change of variable formula can be used to train fψ and pθ together
by maximum-likelihood, and if pθ provides fast sampling adversarial training can be performed
efficiently.

MLE with adaptive density estimation. To train a generative latent variable model pθ(x)
which permits efficient sampling, we rely on amortized variational inference. We use an inference
network qφ(z|x) to construct a variational evidence lower-bound (ELBO),

LψELBO(x, θ, φ) = E
qφ(z|x)

[ln(pθ(fψ(x)|z))]−DKL(qφ(z|x) || pθ(z)) ≤ ln pθ(fψ(x)). (5.4)

Using this lower bound together with the change of variable formula, the mapping to the similarity
space fψ and the generative model pθ can be trained jointly with the loss

LC(θ, φ, ψ) = E
x∼p∗

[
−LψELBO(x, θ, φ)− ln

∣∣∣∣det ∂f(x)
∂xT

∣∣∣∣] ≥ − E
x∼p∗

[ln pθ,ψ(x)] . (5.5)

We use gradient descent to train fψ by optimizing LC(θ, φ, ψ) w.r.t. ψ. The LELBO term encourges
the mapping fψ to maximize the density of points in feature space under the model pθ, so that fψ
is trained to match modeling assumptions made in pθ. Simultaneously, the log-determinant term
encourages fψ to maximize the volume of data points in feature space. This guarantees that data
points cannot be collapsed to a single point in the feature space. We use a factored Gaussian form
of the conditional pθ(.|z) for tractability, but since fψ can arbitrarily reshape the corresponding
conditional image space, it still avoids simplifying assumptions in the image space. Therefore,
the (invertible) transformation fψ avoids the conflict between the MLE and adversarial training
mechanisms, and can leverage both.

Adversarial training with adaptive density estimation. To sample the generative model, we
sample latents from the prior, z ∼ pθ(z), which are then mapped to feature space through µθ(z),
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and to image space through f−1
ψ . We train our generator using the modified objective proposed by

[Sønderby et al., 2017], which combines both generator losses considered in [Goodfellow et al.,
2014] (see Equation 5.3) and yields:

LQ(pθ,ψ) = − E
pθ(z)

[
lnD(f−1

ψ (µθ(z)))− ln(1−D(f−1
ψ (µθ(z))))

]
. (5.6)

Assuming the discriminator D is trained to optimality at every step, it is easy to demonstrate
that the generator is trained to optimize DKL(pθ,ψ || p∗). The training procedure, written as an
algorithm in Section A.3, alternates between (i) bringing LQ(pθ,ψ) closer to it’s optimal value
L∗Q(pθ,ψ) = DKL(pθ,ψ || p∗), and (ii) minimizing LC(pθ,ψ) + LQ(pθ,ψ). Assuming that the
discriminator is trained to optimality at every step, the generative model is trained to minimize a
bound on the sum of two symmetric KL divergences:

LC(pθ,ψ) + L∗Q(pθ,ψ) ≥ DKL(p∗ || pθ,ψ) + DKL(pθ,ψ || p∗) +H(p∗), (5.7)

where the entropy of the data generating distribution,H(p∗), is an additive constant independent
of the generative model pθ,ψ. In contrast, MLE and GANs optimize one of these divergences
each.

5.5 Experimental evaluation

We present our evaluation protocol, followed by an ablation study to assess the importance of
the components of our model in sectablation. We then show the quantitative and qualitative
performance of our model, and compare it to the state of the art on the CIFAR-10 dataset in
Section 5.5.3. We present additional results and comparisons on higher resolution datasets in
Section 5.5.4.

5.5.1 Evalutation metrics

We evaluate our models with three complementary metrics. To assess sample quality, we report
the Fréchet inception distance (FID) [Heusel et al., 2017] and the inception score (IS) [Salimans
et al., 2016b], which are the de facto standard metrics to evaluate GANs [Brock et al., 2019,
Zhang et al., 2018]. Although these metrics focus on sample quality, they are also sensitive to
coverage, see Section 2.12.3 for details. To specifically evaluate the coverage of held-out data,
we use the standard bits per dimension (BPD) metric, defined as the negative log-likelihood on
held-out data, averaged across pixels and color channels [Dinh et al., 2017].

Due to their degenerate low-dimensional support, GANs do not define a density in the image
space, which prevents measuring BPD on them. To endow a GAN with a full support and a
likelihood, we train an inference network “around it”, while keeping the weights of the GAN
generator fixed. We also train an isotropic noise parameter σ. For both GANs and VAEs, we use
the inference network to compute a lower bound to approximate the likelihood, i.e., an upper
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bound on BPD.

We conduct an ablation study on the CIFAR-10 dataset with the standard split of 50k/10k train/test
images of 32×32 pixels. We evaluate all metrics using held-out data not used during training,
which improves over common practice in the GAN literature, where training data is often used
for evaluation.

5.5.2 Ablation study and comparison to VAE and GAN baselines

Our GAN baseline uses the non-residual architecture of SNGAN [Miyato et al., 2018a], stable
and quick to train, without spectral normalization. The same convolutional architecture is kept to
build a VAE baseline. 1 It produces the mean of a factorizing Gaussian distribution. To ensure a
valid density model we add a trainable isotropic variance σ. We train the generator for coverage
by optimizing LQ(pθ), for quality by optimizing LC(pθ), and for both by optimizing the sum
LQ(pθ) + LC(pθ). The model using Variational inference with Adaptive Density Estimation
(ADE) is refered to as V-ADE. The addition of adversarial training is denoted AV-ADE, and
hybrid training with a Gaussian decoder as AV-GDE. The bijective function fψ2 increases the
number of weights by approximately 1.4%, which we compensate for with a slight decrease in the
width of the generator for fair comparison. 3 Implementation details can be found in Section A.2.

VAE V-ADE AV-GDE

GAN AV-ADE (Ours)
Figure 5.5: Samples from GAN and VAE baselines, our V-ADE, AV-GDE and AV-ADE models,
all trained on CIFAR-10.

Experimental results in Table 5.1 confirm that the GAN baseline yields better sample quality (IS
and FID) than the VAE baseline, e.g., obtaining inception scores of 6.8 and 2.0, respectively. Con-
versely, VAE achieves better coverage, with a BPD of 4.4, compared to 7.0 for GAN, which is not

1 In the VAE model, some intermediate feature maps are treated as conditional latent variables, allowing for hierarchi-
cal top-down sampling (see Section A.2). Experimentally, we find that similar top-down sampling is not effective for
the GAN model. 2 implemented as a small Real-NVP with 1 scale, 3 residual blocks, 2 layers per block. 3 This
is too small to make a significant difference in experiments.
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fψ Adv. MLE BPD ↓ IS ↑ FID ↓

GAN × × [7.0] 6.8 31.4
VAE × × 4.4 2.0 171.0
V-ADE† × 3.5 3.0 112.0

AV-GDE × 4.4 5.1 58.6
AV-ADE† 3.9 7.1 28.0

Table 5.1: Quantitative results. † : Parameter count decreased by 1.4% to compensate for fψ.
[Square brackets] denote that the value is approximated, see Section 5.5.

far from the 8.0 BPD obtained if using a uniform distribution and suggests heavy mode-dropping.
An identical generator trained for both quality and coverage, AV-GDE, obtains a sample quality
that is in between that of the GAN and the VAE baselines, in line with the analysis in Section 5.4.
Samples from the different models in Figure 5.5 confirm these quantitative results. Using fψ
and training with LC(pθ) only, denoted by V-ADE in the table, leads to improved sample quality
with IS up from 2.0 to 3.0 and FID down from 171 to 112. Note that this quality is still below the
GAN baseline and our AV-GDE model.

When fψ is used with coverage and quality driven training, AV-ADE, we obtain improved IS
and FID scores over the GAN baseline, with IS up from 6.8 to 7.1, and FID down from 31.4 to
28.0. The examples shown in the figure confirm the high quality of the samples generated by our
AV-ADE model. Our model also achieves a better BPD than the VAE baseline. These experiments
demonstrate that our proposed bijective feature space substantially improves the compatibility
of coverage and quality driven training. We obtain improvements over both VAE and GAN in
terms of held-out likelihood, and improve VAE sample quality to, or beyond, that of GAN. We
further evaluate our model using the recent precision and recall approach of [Sajjadi et al., 2018]
an the classification framework of [Shmelkov et al., 2018] in Section 5.6.1. Additional results
showing the impact of the number of layers and scales in the bijective similarity mapping fψ are
presneted in Section 5.7, and reconstructions qualitatively demonstrating the inference abilities
of our AV-ADE model are presented in Section A.2.1.

5.5.3 Refinements and comparison to the state of the art

We now consider further refinements to our model, inspired by recent generative modeling
literature. Four refinements are used: (i) adding residual connections to the discriminator [Gul-
rajani et al., 2017b] (rd), (ii) leveraging more accurate posterior approximations using inverse
auto-regressive flow [Kingma et al., 2016b] (iaf); see Section A.2, (iii) training wider generators
with twice as many channels (wg), and (iv) using a hierarchy of two scales to build fψ (s2); see
Section 5.7. Table 5.2 shows consistent improvements with these additions, in terms of BPD, IS,
FID.

Table 5.3 compares our model to existing hybrid approaches and state-of-the-art generative
models on CIFAR-10. In the category of hybrid models that optimize likelihood, denoted by
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Glow @ 3.35 BPD FlowGan (H) @ 4.21 BPD AV-ADE (iaf, rd) @ 3.7 BPD

Figure 5.6: Samples from models trained on CIFAR-10. Our AV-ADE spills less mass on
unrealistic samples, owing to adversarial training which controls where off-dataset mass goes.

Refinements BPD ↓ IS ↑ FID ↓

GAN [7.0] 6.8 31.4
GAN (rd) [6.9] 7.4 24.0
AV-ADE 3.9 7.1 28.0
AV-ADE (rd) 3.8 7.5 26.0
AV-ADE (wg, rd) 3.8 8.2 17.2
AV-ADE (iaf, rd) 3.7 8.1 18.6
AV-ADE (s2) 3.5 6.9 28.9

Table 5.2: Model refinements. Brackets [] denote that the values have been estimated using an
inference network. (rd) denotes the use of a residual discriminator, (wg) a wide generator, (iaf) the
use of inverse-autoregressive flow, and (s2) the use of a hierarchy of two scales in the invertible
function. These refinments and upgrades yield consistent improvements.

Hybrid (L) in the table, FlowGAN(H) optimizes MLE and an adversarial loss, and FlowGAN(A)
is trained adversarially. The AV-ADE model significantly outperforms these two variants both in
terms of BPD, from 4.2 to between 3.5 and 3.8, and quality, e.g., IS improves from 5.8 to 8.2.
Compared to models that train an inference network adversarially, denoted by Hybrid (A), our
model shows a substantial improvement in IS from 7.0 to 8.2. Note that these models do not
allow likelihood evaluation, thus BPD values are absent.

Compared to adversarial models, which are not optimized for support coverage, AV-ADE obtains
better FID (17.2 down from 21.7) and similar IS (8.2 for both) compared to SNGAN with residual
connections and hinge-loss, despite training on 17% less data than GANs (test split removed).
The improvement in FID is likely due to this measure being more sensitive to support coverage
than IS. Compared to models optimized with MLE only, we obtain a BPD between 3.5 and
3.7, comparable to 3.5 for Real-NVP demonstrating a good coverage of the support of held-out
data. We computed IS and FID scores for MLE based models using publicly released code, with
provided parameters (denoted by † in the table) or trained ourselves (denoted by ‡). Despite being
smaller (for reference Glow has 384 layers VS at most 10 for our deeper generator), our AV-ADE
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Samples from AV-ADE (wg, rd) Real images

Figure 5.7: Samples from our AV-ADE model. Additional samples are given in Section 5.6.2.

model generates better samples, e.g., IS up from 5.5 to 8.2 (samples displayed in Figure 5.6),
owing to quality driven training controling where the off-dataset mass goes.

Hybrid (L) BPD ↓ IS ↑ FID ↓

AV-ADE (wg, rd) 3.8 8.2 17.2
AV-ADE (iaf, rd) 3.7 8.1 18.6
AV-ADE (S2) 3.5 6.9 28.9
FlowGan(A) [Grover et al., 2018] 8.5 5.8
FlowGan(H) [Grover et al., 2018] 4.2 3.9

Hybrid (A) BPD ↓ IS ↑ FID ↓

AGE [Ulyanov et al., 2018] 5.9
ALI [Dumoulin et al., 2017a] 5.3
SVAE [Chen et al., 2018] 6.8
α-GAN [Rosca et al., 2017] 6.8
SVAE-r [Chen et al., 2018] 7.0

Adversarial BPD ↓ IS ↑ FID ↓

mmd-GAN [Arbel et al., 2018] 7.3 25.0
SNGan [Miyato et al., 2018a] 7.4 29.3
BatchGAN [Lucas et al., 2018a] 7.5 23.7
WGAN-GP [Gulrajani et al., 2017a] 7.9
SNGAN(R,H) 8.2 21.7

MLE BPD ↓ IS ↑ FID ↓

NVP [Dinh et al., 2017] 3.5 4.5† 56.8†
VAE-IAF [Kingma et al., 2016b] 3.1 3.8† 73.5†
Pixcnn++ [Salimans et al., 2017b] 2.9 5.5
Flow++ [Ho et al., 2019] 3.1
Glow [Kingma and Dhariwal, 2018] 3.4 5.5‡ 46.8‡

Table 5.3: Performance on CIFAR10, without labels. MLE and Hybrid (L) models discard the
test split.

5.5.4 Results on additional datasets

To further validate our model we evaluate it on STL10 (48 × 48), ImageNet and LSUN (both
64× 64). We use a wide generator to account for the higher resolution, without iaf, a single scale
in fψ, and no residual blocks (see Section 5.5.3).

The architecture and training hyper-parameters are the same as before, besides adding one layer
at resolution 64 × 64, which demonstrates the stability of our approach. Quantitative results
on STL10, and ImageNet are reported in Table 5.4, which shows that our AV-ADE improves
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STL-10 (48× 48) BPD ↓ IS ↑ FID ↓

AV-ADE (wg, wd) 4.4 9.4 44.3
AV-ADE (iaf, wd) 4.0 8.6 52.7
AV-ADE (s2) 3.8 8.6 52.1
NVP 3.7‡ 4.8‡ 103.2‡
BatchGAN 8.7 51
SNGAN (Res-Hinge) 9.1 40.1

ImageNet (64× 64) BPD ↓ IS ↑ FID ↓

AV-ADE (wg, wd) 4.90 8.5 45.5
Real-NVP 3.98
Glow 3.81
Flow++ 3.69
MMD-GAN 10.9 36.6

Table 5.4: Results on the STL-10 and ImageNet datasets. ‡ denotes models trained and evaluated
by us using available source code

Samples from AV-ADE (wg, rd) Real images

Figure 5.8: Samples from our AV-ADE model trained on STL10, compared to real images. See
Figure A.1 for more samples.

inception score over SNGAN, from 9.1 up to 9.4, and is second best in FID, with corresponding
samples displayed in Figure 5.8. Our likelihood performance, between 3.8 and 4.4, and close to
that of NVP at 3.7, demonstrates good coverage of the support of held-out data. On the ImageNet
dataset, maintaining high sample quality, while covering the full support is challenging, due to its
very diverse support. Our AV-ADE model obtains a sample quality behind that of MMD-GAN
with IS/FID scores at 8.5/45.5 vs. 10.9/36.6. However, MMD-GAN is trained purely adversari-
ally and does not provide support guarantees, unlike our approach.

Figure 5.9 shows samples from our generator trained on a single GPU with 11 Gb of memory
on LSUN classes. It yields compelling samples compared to those of the Glow model, despite
having more flexibility (over 500 VS 7 layers) showing that Glow spills more mass outside of
the training support (while our model mode drops more, hence the inferior BPD). Quantitative
performance on the LSUN dataset is reported in Table 5.5. Additional samples and other LSUN
categories are presented in Section 5.6.2.
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Glow [Kingma and Dhariwal, 2018] Ours: AV-ADE (wg, rd)

(C)

(B)

Figure 5.9: Samples from models trained on LSUN Churches (C) and bedrooms (B). Our AV-ADE
model over-generalises less and produces more compelling samples. See Section 5.6.2 for more
classes and samples.
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(a) samples

Figure 5.10: Samples (at resolution 64× 64) and quantitative performance obtained by our model
AV-ADE, on LSUN classes (order of appearance given by the table).
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LSUN Real-NVP Glow Ours

Bedroom (2.72/×) (2.38/208.8†) (3.91, 21.1)
Tower (2.81/×) (2.46/214.5†) (3.95, 15.5)
Church (3.08/×) (2.67/222.3†) (4.3, 13.1)
Classroom × × (4.6, 20.0)
Restaurant × × (4.7, 20.5)

Table 5.5: Quantitative performance mesured by (BPD, FID), on LSUN classes at resolution
64× 64.

5.6 Complementary evaluations

In this section we consider other, less standard evaluations. The first is based on the idea of
training classifiers using generated data, the second using a precision-recall procedure.

5.6.1 Evaluation using samples as training data for a discriminator

We evaluate our approach using the two measures recently proposed by [Shmelkov et al., 2018].
The first measure, GAN-test, is obtained by training a classifier on natural image data and evalu-
ating it on generated samples. It is sensitive to sample quality only. Our AV-ADE model obtain
a slightly higher GAN-test score, evidencing comparable sample quality, which is in line with
the results in Section 5.5.2. The second measure, GAN-train, is obtained by training a classifier
on generated samples and evaluating it on natural images. Having established similar GAN-test
performance, this demonstrates improved sample diversity of the AV-ADE model and shows that
the coverage-driven training improves the support of the learned model.

Using these metrics requires a conditional version of AV-ADE. To address the poor compatibility
of conditional batch-normalization with VAEs, we propose conditional weight normalization
(CWN) (see below for details). Otherwise, the architecture is the same as in Table 5.1. The results
in Table 5.6 show that our model benefits from maximum-likelihood estimation in that it obtains
better coverage, as evidenced by better GAN-train performance.

model GAN-test (%) GAN-train (%)

GAN 71.8 29.7
AV-ADE 76.9 73.4

DCGAN† 58.2 65.0

Table 5.6: Performance of our model using the GAN-train and GAN-test metrics. †performance
of DCGAN, as reported in [Shmelkov et al., 2018], for reference.
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Class conditioning with conditional weight-normalization. To perform this evaluation we
develop a class conditional version of our AV-ADE model. The discriminator is conditioned using
the class conditioning introduced by Miyato and Koyama [2018]. GAN generators are typically
made class-conditional using conditional batch normalization [De Vries et al., 2017, Dumoulin
et al., 2017b], however batch normalization is known to be detrimental in VAEs [Kingma
et al., 2016b], as we verified in practice. To address this issue, we propose conditional weight
normalization (CWN). As in weight normalization [Salimans and Kingma, 2016], we separate
the training of the scale and the direction of the weight matrix. Additionally, the scaling factor
g(y) of the weight matrix v is conditioned on the class label y:

w = g(y)
‖v‖ v, (5.8)

We also make the network biases conditional on the class label. Otherwise, the architecture is the
same one used for the experiments in Table 5.1.

5.6.2 Model evaluation using precision and recall

In this section, we evaluate our models using the precision and recall procedure of [Sajjadi et al.,
2018]. This evaluation is relevant as it seeks to evaluate coverage of the support and the quality
of the samples separately, rather than aggregating them into a single score.

Figure 5.11: Precision-recall curves using the evaluation procedure of [Sajjadi et al., 2018].

Figure 5.11 presents the evaluation of our models in Section 5.5.2, as well as the Glow and NVP
models, using the official code provided online by the authors at https://github.com/
msmsajjadi/precision-recall-distributions. Our AV-ADE model obtains a
better area under curve (AUC) than the GAN baseline, and model refinements improve AUC
further. For comparison, Glow and NVP have lower AUC than both GAN and our models.

5.7 Qualitative influence of the feature space flexibility

We experiment with different architectures to implement the invertible mapping used to build
the feature space as presented in Section 5.4. To assess the impact of the expressiveness of the

https://github.com/msmsajjadi/precision-recall-distributions
https://github.com/msmsajjadi/precision-recall-distributions
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invertible model on the behavior of our framework, we modify various standard parameters
of the architecture. Popular invertible models such as NVP [Dinh et al., 2017] readily offer
the possibility of extracting latent representation at several scales, separating global factors of
variations from low level detail. Thus, we experiment with varying number of scales. An other
way of increasing the flexibility of the model is to change the number of residual blocks used in
each invertible layer. Note that all the models evaluated so far in the main body of the paper are
based on a single scale and two residual blocks, except the one denoted with (s2). In addition to
our AV-ADE models, we also compare with similar models trained with maximum likelihood
estimation (MLE). Models are first trained with maximum-likelihood estimation, then with both
coverage and quality driven criteria.

The results in Table 5.12 (a) show that factoring out features at two scales rather than one is
helpful in terms of BPD. For the AV-ADE models, however, IS and FID deteriorate with more
scales, and so a tradeoff between must be struck. For the V-ADE models, the visual quality
of samples also improves when using multiple scales, as reflected in better IS and FID scores.
Their quality, however, remains far worse than those produced with the coverage and quality
training used for the AV-ADE models. Samples in the maximum-likelihood setting are provided
in Figure 5.12 (c). With three or more scales, models exhibit symptoms of overfitting: train BPD
keeps decreasing while test BPD starts increasing, and IS and FID also degrade.

5.8 Conclusion

We presented a generative model that leverages invertible network layers to relax the conditional
pixel independence assumption commonly made in VAE decoders. It allows for efficient feed-
forward sampling, and can be trained using a maximum likelihood criterion that ensures coverage
of the data generating distribution, as well as an adversarial criterion that ensures high sample
quality. This is a step towards limitting mode-collapse in GANs, because the coverage of the
support is explicitly optimized and can be evaluated. On the other hand adversarial training pushes
the model to produce more compelling samples compared to purely maximum-likelihood based
models, and this is achieved at little expense in terms of bits per dimension.
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Scales Blocks BPD ↓ IS ↑ FID ↓

1 2 3.77 7.9 20.1
2 2 3.48 6.9 27.7
2 4 3.46 6.9 28.9
3 3 3.49 6.5 31.7

(a) AV-ADE models

Scales Blocks BPD ↓ IS ↑ FID ↓

1 2 3.52 3.0 112.0
2 2 3.41 4.5 85.5
3 2 3.45 4.4 78.7
4 1 3.49 4.1 82.4

(b) V-ADE models

No NVP NVP 1 scale

NVP 2 scales NVP 3 scales
(c) samples

Figure 5.12: Evaluation on CIFAR-10 of different architectures of the invertible layers of the
model. In Table (a), adversarial training is used, while models in Table (b) are purely maximum-
likelihood based. In (c), samples displayed were obtained using VAE models trained with MLE
(Table 5.12b), showing qualitative influence of multi-scale feature space. The models include
one without invertible decoder layers, and with NVP layers using one, two and three scales. The
samples illustrate the impact of using invertible NVP layers in these auto-encoders.
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6.1 Summary of contributions

The work presented in this manuscript revolves around two main goals. The first is to develop
models that avoid parametric assumptions, which are ill suited to natural images modelling, while
remaining tractable to train. The second is to obtain generative models that can explicitly evaluate
both sample quality and diversity of the learned distribution. The second goal is approached
from two different angles: one purely adversarial, and one based on hybrid training. We now
summarise our contributions and the extent to which these goals have been attained.

6.1.1 Going beyond conditional independence

We have presented two approaches to training generative image models that go beyond the
usual conditional independence assumption. The first, presented in Chapter 3, combines a latent
variable structure with an autoregressive decoder. Unlike prior approaches to such models,
we use a regularization parameter and auxiliary target images to control what is modelled by
latent variables and what is left to model for the autoregressive decoder. This framework avoids
the information preference property, without constraining the flexibility of the autoregressive
component. We obtained quantitative performance on par with the state of the art on CIFAR10 at
the time of publication, and compelling samples demonstrating globally coherent structure and
fine details.

While this construction goes beyond the conditional independence assumption, it does so
at the cost of slow, sequential sampling which is incompatible with adversarial setting. We also
presented another approach, in Chapter 5, that leverages invertible network layers to relax the
conditional pixel independence assumption. It allows for efficient feed-forward sampling, and
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can thus be trained using an adversarial criterion that ensures high sample quality.

6.1.2 Distributional statistics in adversarial training

In Chapter 4 we have shown how to build adversarial networks architectures that can consider
the samples in a batch together rather than independently. This allows the model to approximate
statistics on the variability of the learned distribution and use them to reject or accept a batch.
The discriminator is thus able to explicitly evaluate the diversity of the samples produced by the
generator. Assuming the discriminator has fit the distribution of batches of real images perfectly,
fooling it requires two things: i) batches of samples must contain as much variability as batches
of real images and ii) each image in a batch has to be of high quality. Our approach thus turns
mode dropping into something that is explicitly penalised, together with image quality.

After observing that the problem is invariant to permutations on the batch axis, we proposed
architectures that are able to model any function invariant to permutations, assuming sufficient
capacity. We also observed that in practice, using pure batches makes the discriminator’s task too
easy, and generalized the approach to mixed batches. Experimentally, we showed our training
method to reduce mode dropping and reach good quantitative scores compared to the GAN
literature.

6.1.3 Hybrid adversarial and maximum-likelihood based training

In Chapter 5 we presented a generative model that can be trained using a maximum likelihood
criterion to optimize coverage of the data generating distribution, and an adversarial criterion to
optimize sample quality. This is a solution to limit mode-collapse in GANs because the coverage
of the support is explicitly optimized and can be evaluated. This approach is orthogonal to
discriminating at the batch level, but pursues the same goal of explicitly evaluating support
coverage.

The key observation to make our hybrid model work was that usual conditional independence
assumptions induce a conflict between the two losses. Learning an abstract feature space in
which to compute the distance between target and prediction allowed us to avoid conditional
independence without incurring slow sampling, and thus to use a hybrid criterion successfully.
Our model is able to generate samples of compelling visual quality, on par with purely adversarial
methods. It also has inference capabilities - real images can be mapped to the latent space -
which is useful for applications such as compression. It also achieves good bits per dimension
performance on unseen data, significantly improved over existing hybrid models, which is a
guarantee that the support of the dataset is well covered.

6.2 Future work

It is reasonable to think that the recent progress in generative modelling makes it ripe to be used
as a building block to solve other problems, and to tackle more challenging types of data. One of
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the next frontiers of generative modelling is that of videos – two topics of particular interest to the
author are video compression and representation learning from videos. The author believes that
in these domains, performance leaps are to be expected in the near future and possible research
directions are presented in sections 6.2.1 and 6.2.2. Other research areas include video generation
[Clark et al., 2019] and world modelling for curiosity-driven reinforcement learning [Pathak
et al., 2017]. There is also still a lot of work to do to scale image models to larger datasets or to
images of higher resolutions. Several applications of existing methods to photo and video editing,
smartphone photo enhancement [Ledig et al., 2017], video games and virtual environments also
have plenty of room for development and improvement.

6.2.1 Video compression - Entropy coding and lossless compression

A natural application of generative models of images is video compression, which is one of
the backbones of the internet. Video represents over 60 % of internet traffic1, thus significant
improvements to video compression can have a high impact. Deep models have been shown
to be well suited to natural images, and could improve on traditional compression codecs, at
least in terms of prediction performance. Two types of compression exist: lossy, and lossless.
The cornerstone of lossless compression is entropy coding; the high-level idea is that frequent
values should be associated to short codes and rare ones to long codes. The optimal transmission
efficiency that can be reached when encoding a message x sampled from a distribution p is the
Shannon Entropy, equal to Ex∼p∗ [− log2 p

∗(x)]. With a model pθ that does not perfectly match
the data generating distribution, the efficiency becomes:

Ex∼p∗ [− log2 pθ(x)]. (6.1)

The better the model pθ, the closer we get to the bound. The recent progress of deep generative
models holds the promise of greatly improved compression performances, as they provide the
tools to get models pθ that fit the real data distribution very well. Scaling and refining work such
as [Lu et al., 2019] in this context is a promising research direction.

If x does not need to be perfectly recovered, one can extract some information about x
into z, send z losslessly as above, and reconstruct x from z. To "extract information" and to
"reconstruct", auto-encoders are natural candidates: x is encoded into z by a deep network gφ
parametrised by weights φ, z is sent to the receiver and decoded into fθ(z). The metric used to
evaluate the model is then a weighted sum between how good the reconstructions are, measured
by L, and how costly it is to send z = gφ(x) (losslessly), using density model Q:

− log2[Q(gφ(x))]︸ ︷︷ ︸
cost of sending z

+βL[fθ(gφ(x)), x]︸ ︷︷ ︸
distortion

. (6.2)

Variational auto-encoders provide a very natural replacement to traditional tools for lossy
compression of natural images and videos. Different choices for Q and for L will lead to different
models. Likelihood based losses such as the L2 loss2 L[fθ(gφ(x)), x] = ‖fθ(gφ(x)) − x‖2
are one form of evaluation. Another possibility is to evaluate the quality of the image using a
1 see the Global Internet Phenomena Report at https://www.sandvine.com/phenomena 2 Recall that minimizing the
L2 loss is equivalent to maximizing the log-likelihood of a normal distribution
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GAN discriminator Dψ, then Ladversarial = −Dψ(fθ(z)). can be added to the weighted sum. The
discriminator can also be used to train the model to compensate the degradation in quality caused
by the lossy compression [Ledig et al., 2017].

Such models can be directly applied to videos (in which case the encoder and decoder may
be recurrent, or be 3D-convolutional networks). A strategic approach may be to decompose the
problem: given a sequence of frames x1, . . . , xn, use an image model to independently compress
all images into z1, . . . , zn. Then, noting that the redundancy between frames is high, a model
that compresses (z1, . . . , zn) into z̃ can be built, for instance using an autoregressive model
[Kalchbrenner et al., 2016]. The compressed representation can be losslessly transmitted, and
each zi decoded independently.

To summarize, this framework is suitable to lossy compression of videos, potentially at
high compression rates. It can leverage many generative modelling concepts – VAEs for lossy
compression, any model with a likelihood for lossless compression, and adversarial models to
restore low level detail – and their interaction is a rich topic that has yet to be explored.

6.2.2 Representation learning

The spirit of self-supervised training is to use the structure naturally present inside raw data
to extract a target signal used for optimisation. In the context of videos, one natural way to do
that is the task of next-frame prediction [Lotter et al., 2017]: given part of a video, the model
has to predict the rest. This problem can be equivalently formulated as a conditional generative
modelling problem. Training this type of models on videos in an unsupervised manner can be
expected to yield a powerful representation learning framework [LeCun, 2019]. Indeed, natural
videos are complex and highly structured, and because there is a vast amount of data, very big
models can be considered.

Given some video frames, multiple futures are usually possible which means that the output
of the model needs to be a multi-modal distribution over possible futures. One approach to achieve
that is to rely on latent variables, as in a VAE. These will be used to transmit information about
which future to choose among possible ones, i.e., which mode of the distribution to select. Using
the Euclidean norm as reconstruction loss and noting y the target, x the observed frames, z the
latent variable and fθ the model, parametrised by θ, the optimisation problem being solved is
then:

min
θ

min
z
||y − fθ(x, z)||22. (6.3)

The latent variable z is here to help predict y. Only part of the signal y can be predicted
from x and the other (unpredictable) part has to go through z. If no constraints are put on z, all
the information contained in y can go through z making the problem trivial. So it is clear that
some bottleneck on z needs to be added. It can be in the form of hard constraints for instance
architectural constraints such as limiting its dimensionality, or a penalty term R(z) can be added,
yielding:

min
θ

min
z
||y − fθ(x, z)||22 +R(z). (6.4)

This research direction is an other potentially impactful application of generative modelling
of images. The right type of architectures and regularization is an open research topic. It can yield
powerful representations of data, or a way to pre-train networks.



Appendix A

Adaptive density estimation: samples
and other results

This appendix contains additional samples from our models as presented in Chapter 5 as well as
architectural details and a detailed training algorithm.
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A.1 Additional Samples

In this section we provide additional qualitative results on CIFAR10, STL10, LSUN (categories:
Bedrooms, Towers, Bridges, Kitchen, Church, Living room, Dining room, Classroom, Conference
room and Restaurant) at resolutions 64× 64 and 128× 128, ImageNet and CelebA. We report
IS/FID scores together with BPD.

A.1.1 Additional samples on CIFAR10 and STL10

Samples from AV-ADE (wg, rd) Real images

Figure A.1: Samples from our AV-ADE (wg, rd) model trained on CIFAR10 compared to real
images. A significant proportion of samples can be reasonably attributed to a CIFAR10 class, even
though the model was trained without labels. Our model is constrained to cover the full support
of the data, which translates to diverse samples, as noted in the qualitative results illustrated here.
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Samples from AV-ADE (wg, rd) Real images

Figure A.2: Additional Cifar Samples.



122APPENDIX A. ADAPTIVE DENSITY ESTIMATION: SAMPLES AND OTHER RESULTS

A.1.2 Samples on all Lsun datasets

Figure A.3: Samples obtained from our AV-ADE (wg, rd) model trained on LSUN bedrooms
(left), compared to training images (right).
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Figure A.4: Samples obtained from our AV-ADE (wg, rd) model trained on LSUN bridges (left),
compared to training images (right).
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Figure A.5: Samples obtained from our AV-ADE (wg, rd) model trained on LSUN churches (left),
compared to training images (right).
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Figure A.6: Samples obtained from our AV-ADE (wg, rd) model trained on LSUN dining rooms
(left), compared to training images (right).
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Figure A.7: Samples obtained from our AV-ADE (wg, rd) model trained on LSUN restaurants
(left), compared to training images (right).

A.2 Implementation details

Architecture and training hyper-parameters. We used Adamax [Kingma and Ba, 2015a] with
learning rate 0.002, β1 = 0.9, β2 = 0.999 for all experiments. All CIFAR-10 experiments
use batch size 64, other experiments in high resolution use batch size 32. To stabilize the
adversarial training we use the gradient penalty [Gulrajani et al., 2017b] with coefficient 100,
and 1 discriminator update per generator update. We experimented with different weighting
coefficients between the two loss components, and found that values in the range 10 to 100 on the
adversarial component work best in practice. No significant influence on the final performance of
the model is observed in this range, though the training dynamics in early training are improved
with higher values. With values significantly smaller than 10, discriminator collapses was observed
in a few isolated cases. All experiments reported here use coefficient 100.

For experiments with hierarchical latent variables, we use 32 of them per layer. In the
generator we use ELU nonlinearity, in discriminator with residual blocks we use ReLU, while in
simple convolutional discriminator we use leaky ReLU with slope 0.2.

Unless stated otherwise we use three NVP layers with a single scale and two residual
blocks that we train only with the likelihood loss. Regardless of the number of scales, the VAE
decoder always outputs a tensor of the same dimension as the target image, which is then fed
to the NVP layers. As in the reference implementations, we use both batch normalization and
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weight normalization in NVP and only weight normalization in IAF. We use the reference
implementations of IAF and NVP released by the authors.

Discriminator
conv 3× 3, 16
ResBlock 32

ResBlock down 64
ResBlock down 128
ResBlock down 256

Average pooling
dense 1

Generator
conv 3× 3, 16
IAF block 32

IAF block down 64
IAF block down 128
IAF block down 256

h ∼ N (0; 1)
IAF block up 256
IAF block up 128
IAF block up 64

IAF block 32
conv 3× 3, 3

Table A.1: Residual architectures for experiments from Table 5.2

A.2.1 Visualisations of reconstructions

We display reconstructions obtained by encoding and then decoding ground truth images with
our models (AV-ADE from sectablation) in Figure A.8. As is typical for expressive variational
autoencoders, real images and their reconstructions cannot be distinguished visually.

Real image AV-ADE reconstruction

Figure A.8: Real images and their reconstructions with the AV-ADE models.
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A.3 Coverage and Quality driven training algorithm

Algorithm 1 Coverage and Quality driven training for our AV-ADE model.
In this section we summarize the training procedure as an algorithm to give an overview of
the differents quantities and steps involved. for number of training steps do
• Sample m real images {x(1), . . . ,x(m)} from p∗, approximated by the dataset.
•Map the real images to feature space {f(x)(1), . . . ,f(x)(m)} using the invertible trans-
formation f .
• Encode the feature space vectors using the VAE encoder and get parameters for the
posterior qφ(z|f(x)).
• Sample m latent variable vectors, {ẑ(1), . . . , ẑ(m)} from the posterior qφ(z|x), and m
latent variable vectors {z̃(1), . . . , z̃(m)} from the VAE prior pθ(z)
• Decode both sets of latent variable vectors using the VAE decoder into the means of
conditional Gaussian distributions, {µ(ẑ)(1), . . . , µ(ẑ)(m)} and {µ(z̃)(1), . . . , µ(z̃)(m)}
• Sample from the Gaussian densities obtained, {N (.|µ(ẑ)(i), σIn)}i≤m and

{N (.|µ(z̃)(i), σIn)}i≤m , which yields reconstructions in feature space {f̂(x)
(i)
}i≤m and

samples in feature space {f̃(x)
(i)
}i≤m

•Map the samples and reconstructions back to image space using the inverse of the invertible
transformation f−1 which yields reconstructions {x̂(i)}i≤m and samples {x̃(i)}i≤m
• Compute LC(pθ) using ground truth images {x(i)}i≤m and their reconstructions
{x̂(i)}i≤m
• Compute LQ(pθ) by feeding the ground truth images {x(i)}i≤m together with the sampled
images {x̃(i)}i≤m to the discriminator
• Optimize the discriminator by gradient descent to bring LQ closer to L∗Q
• Optimize the generator by gradient descent to minimize LQ + LC

end for



Appendix B

Areas of attention for image captioning

Note. The work presented in this appendix, conducted during my research internship and the
first semester of my PhD, is separated from the main body of the manuscript because the subject
differs substantially from the other contributions. It approaches the topic of image captioning
and involves recurrent networks, attention mechanisms and natural language processing. Image
captioning, not unlike image generation, requires high level representations of complex image
content.

We propose “Areas of Attention”, a novel attention-based model for automatic image
captioning. Our approach models the dependencies between image regions, caption words, and
the state of an RNN language model, using three pairwise interactions. In contrast to previous
attention-based approaches that associate image regions only to the RNN state, our method
allows a direct association between caption words and image regions. During training these
associations are inferred from image-level captions, akin to weakly-supervised object detector
training. These associations help to improve captioning by localizing the corresponding regions
during testing. We also propose and compare different ways of generating attention areas: CNN
activation grids, object proposals, and spatial transformers nets applied in a convolutional fashion.
Spatial transformers give the best results. They allow for image specific attention areas, and can
be trained jointly with the rest of the network. Our attention mechanism and spatial transformer
attention areas together yield state-of-the-art results on the MSCOCO dataset.

B.1 Introduction

Image captioning, i.e. automatically generating natural language image descriptions, is useful
for the visually impaired, and for natural language based image search. It is significantly more
challenging than classic vision tasks such as object recognition and image classification for
two reasons. First, the structured output space of well formed natural language sentences is
significantly more challenging to predict over than just a set of class labels. Second, this complex
output space allows a finer interpretation of the visual scene, and therefore also requires a more
detailed visual analysis of the scene to do well at this task. Figure B.1(top) gives an example of a
typical image description that not only refers to objects in the scene, but also the scene type or
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A man is flying a kite on a sandy beach.

activation grid object proposals spatial transformer

Figure B.1: We propose an attention mechanism that jointly predicts the next caption word and
the corresponding region at each time-step given the RNN state (top). Besides implementing our
model using attention areas defined over CNN activation grids or object proposals, as used in
previous work, we also present a end-to-end trainable convolutional spatial transformer approach
to compute image specific attention areas (bottom).

location, object properties, and their interactions.

Neural encoder-decoder based approaches, similar to those used in machine translation
Sutskever et al. [2014], have been found very effective for this task, see e.g. Kiros et al. [2014],
Mao et al. [2015], Vinyals et al. [2015]. These methods use a convolutional neural network
(CNN) to encode the input image into a compact representation. A recurrent neural network
(RNN) is used to decode this representation word-by-word into a natural language description
of the image. While effective, these models are limited in that the image analysis is (i) static,
i.e. does not change over time as the description is produced, and (ii) not spatially localized,
i.e. describes the scene as a whole instead of focousing on local aspects relevant to parts of the
description. Attention mechanisms can address these limitations by dynamically focusing on
different parts of the input as the output sequence is generated. Such mechanisms are effective for
a variety of sequential prediction tasks, including machine translation Bahdanau et al. [2015],
speech recognition Chorowski et al. [2015], image synthesis Gregor et al. [2015], and image
captioning Xu et al. [2015]. For some tasks the definition of parts of the input to attend to are
clear and limited in number: for example the individual words in the source sentence for machine
translation. For other tasks with complex inputs, such as image captioning, the notion of parts
is less clear. In this work we propose a novel attention model and three different ways to select
parts of the image, or areas of attention, for the automatic generation of image captions.

The first contribution of our work is a new attention mechanism that models the interplay
between the RNN state, image region descriptors, and word embedding vectors by means of three
pairwise interactions. Previous attention approaches model either only the interaction between
image regions and RNN state Jin et al. [2015], Xu et al. [2015], or the interaction between
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regions and words but with an external representation that is learned off-line, e.g. pre-trained
object detectors Fang et al. [2015], Wu et al. [2016], You et al. [2016]. In contrast, our attention
representation explicitly considers, in a single end-to-end trainable system, the direct interaction
among caption words, image regions and RNN state. At each time-step, our model jointly predicts
the next caption word and the associated image region. Similar to weakly-supervised object
localization, the associations between image regions and words are inferred during training from
image-level captions. Our experimental results show that our three pair-wise interactions clearly
improve the attention focus and the quality of the generated sentences.

Our second contribution is to integrate a localization sub-network in our model —similar to
spatial transformer networks Jaderberg et al. [2015], but applied in a convolutional fashion— that
regresses a set of attention areas from the image content. Earlier attention-based image captioning
models used the positions in the activation grid of a CNN layer as attention areas, see e.g. Xu et al.
[2015]; such regions are not adaptive to the image content. Others have used object proposals as
attention regions, see e.g. Jin et al. [2015], in which case the regions are obtained by an external
mechanism, such as Edge boxes Zitnick and Dollár [2014], that is not trained jointly with the rest
of the captioning system.

Our third contribution is a systematic experimental study of the effectiveness of these three
different areas of attention using a common attention model, see Figure B.1(bottom). To the best
of our knowledge we are the first to present such a comparison. Our experimental results show
that the use of image-specific areas of attention is important for improved sentence generation.
In particular, our spatial-transformer based approach is a good choice: it outperforms the other
approaches, while using fewer regions and not requiring an external proposal mechanism. Using
our proposed attention mechanism and the spatial transformer attention areas together we obtain
state-of-the-art performance on the MSCOCO dataset.

B.2 Related work

Image captioning with encoder-decoder models has recently been extensively studied, see e.g.
Bengio et al. [2015], Donahue et al. [2015], Karpathy and Fei-Fei [2015], Kiros et al. [2014],
Mao et al. [2015], Ranzato et al. [2016], Vinyals et al. [2015], Xu et al. [2015], Yang et al. [2016].
In its basic form a CNN processes the input image to encode it into a vectorial representation,
which is used as the initial input for an RNN. Given the previous word, the RNN sequentially
predicts the next word in the caption without the need to restrict the temporal dependence to a
fixed order, as in approaches based on n-grams. The CNN image representation can be entered
into the RNN in different manners. While some authors Karpathy and Fei-Fei [2015], Vinyals
et al. [2015] use it only to compute the initial state of the RNN, others enter it in each RNN
iteration Donahue et al. [2015], Mao et al. [2015].

Xu et al. Xu et al. [2015] were the first to propose an attention-based approach for image
captioning, in which the RNN state update includes the visual representation of an image region.
Which image region is attended to is determined based on the previous state of the RNN. They
propose a “soft” variant in which a convex combination of different region descriptors is used,
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and a “hard” variant in which a single region is selected. The latter is found to perform slightly
better, but is more complex to train due to a non-differentiable sampling operator in the state
update. In thier approach the positions in the activation grid of a convolutional CNN layer is the
loci of attention. Each position is described with the corresponding activation column across the
layer’s channels.

Several works build upon the approach of Xu et al. Xu et al. [2015]. You et al. You et al.
[2016] learn a set of attribute detectors, similar to Fang et al. Fang et al. [2015], for each word
of their vocabulary. These detectors are applied to an image, and the strongest object detections
are used as regions for an attention mechanism similar to that of Xu et al. Xu et al. [2015].
In their work the detectors are learned prior and independently from the language model. Wu
et al. Wu et al. [2016] also learn attribute detectors but manually merge word tenses (walking,
walks) and plural/singulars (dog, dogs) to reduce the set of attributes. Jin et al. Jin et al. [2015]
explore the use of selective search object proposals Uijlings et al. [2013] as regions of attention.
They resize the regions to a fixed size and use the VGG16 Simonyan and Zisserman [2015]
penultimate layer to characterize them. Yang et al. Yang et al. [2016] improve the attention based
encoder-decoder model by adding a reviewer module that improves the representation passed to
the decoder. They show improved results for various tasks, including image captioning. Yao et al.
Yao et al. [2015] use a temporal version of the same mechanism to adaptively aggregate visual
representations across video frames per word for video captioning. Yeung et al. Yeung et al. use a
similar temporal attention model for temporal action localization.

Visual grounding of natural language expressions is a related problem Karpathy and Fei-Fei
[2015], Rohrbach et al. [2016], which can be seen as an extension of weakly supervised object
localization Bilen and Vedaldi [2016], Cinbis et al. [2014], Russakovsky et al. [2012]. The goal
is to localize objects referred to by natural language descriptions, while only using image-level
supervision. Since the goal in visual grounding and weakly supervised localization is precise
localization, methods typically rely on object proposal regions which are specifically designed to
align well with object boundaries Uijlings et al. [2013], Zitnick and Dollár [2014]. Instead of
localizing a given textual description, our approach uses image-level supervision to infer a latent
correspondence between the words in the caption and image regions.

Object proposal methods were designed to focus computation of object detectors on a
selective set of image regions likely to contain objects. Recent state-of-the-art detectors, how-
ever, integrate the object proposal generation and recognition into a single network. This is
computationally more efficient and leads to more accurate results Liu et al. [2016], Ren et al.
[2015]. Johnson et al. Johnson et al. [2016] use similar ideas for the task of localized image
captioning, which predicts semantically relevant image regions together with their descriptions.
In each region, they generate descriptions with a basic non-attentive image captioning model
similar to the one used by Vinyals et al. Vinyals et al. [2015]. They train their model from a set
of bounding-boxes with corresponding captions per image. In our work we do not exploit any
bounding-box level supervision, we instead infer the latent associations between caption words
and image regions. We propose a convolutional variant of the spatial transformer network of
Jaderberg et al. Jaderberg et al. [2015], to place the attention areas in an image-adaptive manner.
This module is trained in an integrated end-to-end manner with the rest of our captioning model.
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Figure B.2: In our attention-based model the conditional joint distribution, p(w, r|h), over words
and regions given the current state h is used to generate a word and to pool region descriptors in
a convex combination. Both are then fed back to update the state at the next time-step.

Compared to previous attention models Jin et al. [2015], Xu et al. [2015], Yang et al. [2016],
You et al. [2016], our attention mechanism, consisting of a single interaction layer, is less complex
yet improves performance. Our approach models a joint distribution over image regions and
caption words, generalizing weakly supervised localization methods and RNN language models.
It includes a region-word interaction found in weakly supervised localization, as well as a word-
state interaction found in RNN language models. In addition, our model includes a region-state
interaction which forms a dynamic appearance-based salience mechanism. Our model naturally
handles different types of attention regions (fixed grid, object proposals, and spatial transformers),
and is applicable to all tasks where attention can model joint distributions between parts of the
input data and output symbols. To the best of our knowledge, we propose the first trainable
image-adaptive method to define attention regions, and present the first systematic comparison
among different region types for attention-based image captioning in a single model.

B.3 Attention in encoder-decoder captioning

In Section B.3.1 we describe our baseline encoder-decoder model. We extend this baseline in
Section B.3.2 with our attention mechanism in a way that abstracts away from the underlying
region types. In Section B.3.3 we show how we integrate regions based on CNN activation grids,
object proposals, and spatial transformers networks in our model.

B.3.1 Baseline CNN-RNN encoder-decoder model

Our baseline encoder-decoder model uses a CNN to encode an image I into a vectorial repre-
sentation φ(I) ∈ IRdI , which is extracted from a fully connected layer of the CNN. The image
encoding φ(I) is used to initialize the state of an RNN language model. Let ht denote the RNN
state vector at time t, then h0 = θhiφ(I), where θhi ∈ IRdh×dI linearly maps φ(I) to the RNN
state space of dimension dh.

The distribution over wt, the word at time t, is given by a logistic regression model over the



134 APPENDIX B. AREAS OF ATTENTION FOR IMAGE CAPTIONING

RNN state vector,

p(wt|ht) ∝ exp
(
w>t Wθwhht

)
, (B.1)

where wt ∈ {0, 1}nw is a 1-hot coding over the captioning vocabulary of nw words,W is a matrix
which contains word embedding vectors as rows, and θwh maps the word embedding space to the
RNN state space. For sake of clarity, we omit the dependence on I in Eq. (B.1) and below.

We use an RNN based on gated recurrent units (GRU) Chung et al. [2014], which are simpler
than LSTM units Hochreiter and Schmidhuber [1997], while we found them to be at least as
effective in preliminary experiments. Abstracting away from the GRU internal gating mechanism
(see supplementary material), the state update function is given by a non-linear deterministic
function

ht+1 = g(ht,W>wt). (B.2)

The feedback of wt in the state update makes that wt+1 recursively depends on both φ(I) and the
entire sequence of words, w1:t = (w1, . . . , wt), generated so far.

During training we minimize the sum of losses induced by pairs of images Im with corre-
sponding captions w1:lm ,

∑
m

L(Im, w1:lm , θ) = −
∑
m

lm∑
t=1

ln p(wt|ht, θ), (B.3)

where θ collectively denotes all parameters of the CNN and RNN component. This amounts to
approximate maximum likelihood estimation, due to local minima in the loss.

Once the model is trained, captions for a new image can be generated by sequentially
sampling wt ∼ p(wt|ht), and updating the state ht+1 = g(ht, wt). Since determining the
maximum likelihood sequence is intractable, we resort to beam search if a single high-scoring
caption is required.

B.3.2 Attention for prediction and feedback

In the baseline model the image is used only to initialize the RNN, assuming that the memory
of the recurrent net is sufficient to retain the relevant information of the visual scene. We now
extend the baseline model with a mechanism to attend to different image regions as the caption
is generated word-by-word. Inspired by weakly supervised object localization methods, we
score region-word pairs and aggregate these scores by marginalization to obtain a predictive
distribution over the next word in the caption. The advantage is that this model allows words to
be associated with specific image region appearances instead of global image representations,
which leads to better generalization to recognize familiar scene elements in novel compositions.
Importantly, we maintain the word-state interaction in Eq. (B.1) of the baseline model, to ensure
temporal coherence in the generated word sequence by recursive conditioning on all previous
words. Finally, a region-state interaction term allows the model to highlight and suppress image
regions based on their appearance and the state, implementing a dynamic salience mechanism.
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See Figure B.2 for a schematic illustration of our model.

We define a joint distribution, p(wt, rt|ht), over words wt and image regions rt at time t
given the RNN state ht. The marginal distribution over words, p(wt|ht), is used to predict the
next word at every time-step, while the marginal distribution over regions, p(rt|ht), is used to
provide visual feedback to the RNN state update. Let rt ∈ {0, 1}nr denote a 1-hot coding of the
index of the region attended to among nr regions at time t. We write the state-conditional joint
distribution on words and regions as

p(wt, rt|ht) ∝ exp s(wt, rt, ht), (B.4)

s(wt, rt, ht) = w>t Wθwhht + w>t WθwrR
>rt

+r>t Rθrhht + w>t Wθw + r>t Rθr, (B.5)

where R contains the region descriptors in its rows. The score function s(wt, rt, ht) is composed
of three bi-linear pairwise interactions. The first scores state-word combinations, as in the baseline
model. The second scores the compatibility between words and region appearances, as in weakly
supervised object localization. The third scores region appearances given the current state, and
acts as a dynamic salience term. The last two unary terms implement linear bias terms for words
and regions respectively.

Given the RNN state, the next word in the image caption is predicted using the marginal
word distribution, p(wt|ht) =

∑
rt p(wt, rt|ht), which replaces Eq. (B.1) of the baseline model.

The baseline model is recovered for R = 0.

In addition to using the image regions to extend the state-conditional word prediction
model, we also use them to extend the feedback connections of the RNN state update. We use a
mechanism related to the soft attention model of Xu et al. Xu et al. [2015]. We compute a convex
combination of region descriptors which will enter into the state-update. In contrast to Xu et al.,
we derive the region weights from the joint distribution defined above. In particular, we use the
marginal distribution over regions, p(rt|ht) =

∑
wt p(wt, rt|ht), to pool the region descriptors as

vt =
∑
rt

p(rt|ht)r>t R = p>rhR, (B.6)

where prh ∈ IRnr stacks all region probabilities at time t. This visual representation is concate-
nated to the generated word in the feedback signal of the state update, i.e. we replace the update
of Eq. (B.2) of the baseline model with

ht+1 = g(ht, [w>t W v>t ]>). (B.7)

In Section B.4, we experimentally assess the importance of the different pairwise interactions,
and the use of the attention mechanism in the state update.

B.3.3 Areas of attention

Our attention mechanism presented above is agnostic to the definition of the attention regions. In
this section we describe how to integrate three types of regions in our model.
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Activation grid. For the most basic notion of image regions we follow the approach of Xu
et al. Xu et al. [2015]. In this case the regions of attention correspond to the z = x× y spatial
positions in the activation grid of a CNN layer γ(I) with c channels. The region descriptors in
the rows of R ∈ IRz×c are given by the activations corresponding to each one of the z locations
of the activation grid. In this case, the receptive fields for the regions is the same as all regions
have a fixed shape and size, independent of the image content.

Object proposals. To obtain attention regions that adapt to the image content, we consider
the use of object detection proposals, similar to the approach of Jin et al. Jin et al. [2015]. We
expect such regions to be more effective since they tend to focus on scene elements such as
(groups of) objects, and their parts. In particular we use edge-boxes Zitnick and Dollár [2014],
and max-pool the activations in a CNN layer γ(I) over each object proposal to obtain a set of
fixed-size region descriptors. To ensure a high-enough resolution of the CNN layer which allows
to pool activations for small proposals, we use a separate CNN which processes the input image
at a higher resolution than the one used for the global image representation φ(I). This is similar
to Girshick [2015], He et al. [2014], but we pool to a single cell instead of using a spatial pyramid.
This is more efficient and did not deteriorate performance, as compared to using a pyramid. In
this case the number of proposals is not limited by the number of positions in the activation tensor
of the CNN layer that is accessed for the region descriptors.

Spatial transformers. We propose a third type of attention region that has not been used in
existing attention-based captioning models. It is inspired by recent object detectors and localized
image captioning methods with integrated the region proposal networks Johnson et al. [2016],
Liu et al. [2016], Ren et al. [2015]. In contrast to the latter methods, which rely on bounding-
box annotations to learn the region proposal network, we only use image captions for training.
Therefore, we need a mechanism that allows back-propagation of the gradient of the captioning
loss w.r.t. the region coordinates and the features extracted using them. To this end we use a
bilinear sampling approach as in Jaderberg et al. [2015], Johnson et al. [2016]. In contrast to the
max-pooling we use for proposals, it enables differentiation w.r.t. the region coordinates.

Our approach is illustrated in Figure B.3. Given an activation map γ(I), we use a localiza-
tion network that consists of two convolutional layers to locally regress an affine transformation
A ∈ IR2×3 for each location of the feature map. With each location of the activation map γ(I)
we associate an “anchor box”, which is centered at that position and covers 3 × 3 activations.
The affine transformations, computed at each location in a convolutional fashion, are applied
to the coordinates of the anchor boxes. Locally a 3 × 3 patch is bilinearly interpolated from
γ(I) over the area of the transformed anchor box. A 3 × 3 filter is then applied to the locally
extracted patches to compute the region descriptor, which has the same number of dimensions
as the activation tensor γ(I) has channels. If the local transformations leave the anchor boxes
unchanged, then this reduces to the activation grid approach.

As we have no bounding-box annotations, training the spatial transformer can get stuck at
poor local minima. To alleviate this issue, we initialize the network with a model that was trained
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Figure B.3: For our spatial transformer network attention areas, the localization network regresses
affine transformations for all feature map positions in a convolutional manner, which are applied
to the anchor boxes that are used to re-sample the feature map.

using activation grids. We initialize the transformation layers to produce affine transformations
that scale the anchor boxes to twice their original size, to move away from the local optimum of
the activation grid model.

B.4 Experimental evaluation

We define the experimental setup in Section B.4.1, and present the experimental results in
Section B.4.2.

B.4.1 Experimental setup and implementation details

Dataset and evaluation metrics. For most of our experiments we use the MSCOCO dataset
Lin et al. [2014a]. It consists of around 80K training images and 40K development images. Each
image comes with five descriptive captions, see Figure B.5 for example images. For sake of
brevity we only report the most commonly used metrics, BLEU4, METEOR, and CIDEr-D, in
the main paper. BLEU 1, 2 and 3 metrics can be found in the supplementary material. Similar
to previous work Wu et al. [2016], Xu et al. [2015], Yang et al. [2016] we use 5K development
images to validate the training hyper-parameters based on CIDEr-D and another 5K development
images to measure performance. Finally, we also use the visual entity annotations of Plummer et
al. Plummer et al. [2015] to assess the extent to which the attention model focuses on objects or
their context.

CNN image encoder. We use the penultimate layer of the VGG16 architecture Simonyan
and Zisserman [2015] to extract the global image representation φ(I) that initializes the RNN
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Method B4 Meteor CIDEr

Baseline: θwh 26.4 22.2 78.9
Ours: θwh, θwr 28.0 22.9 83.6
Ours: θwh, θwr, θrh 28.4 23.3 85.5
Ours: conditional feedback 28.7 23.7 86.8
Ours: full model 28.8 23.7 87.4

Table B.1: Evaluation of the baseline and our attention model using activation grid regions,
including variants with certain components omitted, and word-conditional instead of marginal
feedback.

state. The “activation grid” regions are taken from the last convolutional layer. For the “spatial
transformer” regions, we use the penultimate convolutional layer to regress the transformations,
which are then applied to convolve a locally transformed version of the same layer. For the “object
proposal” regions we max-pool features from the last convolutional layer. Similar to Ren et al.
[2015], we re-scale the image so that the smaller image dimension is 300 pixels while keeping
the original aspect-ratio. When fine-tuning we do not share the parameters of the two CNNs.
In all cases, the dimension of the region descriptors is given by the number of channels in the
corresponding CNN layer, i.e. dr = 512.

Captioning vocabulary. We use all 6,325 unique words in the training captions that ap-
pear at least 10 times. Words that appear less frequently are replaced by a special OUT-OF-
VOCABULARY token, and the end of the caption is marked with a special STOP token. The word
embedding vectors of dimension dw = 512 collected in the matrix W are learned along with the
RNN parameters.

Training. We use RNNs with a single layer of dh = 512 GRU units. We found it useful
to train our models in two stages. In the first stage, we use pre-trained CNN weights obtained
from the ImageNet 2010 dataset Deng et al. [2009]. In the second stage, we also update the CNN
parameters. We use the Adam stochastic gradient descend algorithm Kingma and Ba [2015b].
To speed-up training, we sub-sample the 14× 14 convolutional layers to 7× 7 when using the
activation grid and the spatial transformer regions. For proposal regions, each time we process an
image we use 50 randomly selected regions.

B.4.2 Experimental results

In this section we assess the relative importance of different components of our model, the
effectiveness of the different types of attention regions, and the effect of jointly fine-tuning the
CNN and RNN components. Finally, we compare our results to the state of the art.

Attention and visual feedback. In Table B.1 we progressively add components of our
model to the baseline system. Here we use activation grid regions for our attention model. Adding
all components improves the CIDEr score of the baseline, 78.9, by 8.5 points to 87.4. The baseline
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Figure B.4: Image captioning performance in CIDEr-D as a function of the number of regions.
Note the log-scale on the horizontal axis.

RNN uses only word-state interaction terms to predict the next word given the RNN state. Adding
the word-region interaction term (second row) improves the CIDEr metric by 4.7 points to 83.6.
This demonstrates the significance of localized visual input to the RNN. As in weakly-supervised
object detection, the model learns to associate caption terms to local appearances. Adding the
third pairwise interaction term between regions and the RNN state (third row) brings another
improvement of 1.9 points to 85.5 CIDEr. This shows that the RNN is also able to implement
a dynamic salience mechanism that favors certain regions over others at a given time-step by
scoring the compatibility between the RNN state and the region appearance. Finally we add the
visual feedback mechanism to our model (87.4, last row), which drives the CIDEr-D score further
up by 1.9 points. We also experimented with a word-conditional version of the visual feedback
mechanism (86.8, last but one row), which uses p(rt|wt, ht) instead of p(rt|ht) to compute the
visual feedback. Although this also improves the CIDEr-D score, as compared to not using visual
feedback, it is less effective than using the marginal distribution weights. The visualizations in
Figure B.5 suggest that the reason for this is that the marginal distribution already tends to focus
on a single semantically meaningful area.

Comparing areas of attention. In our next set of experiments we compare the effective-
ness of different attention regions in our model. In Figure B.4 we consider the performance
of the three region types as a function of the number of regions that are used when running
the trained model on test images. For activation grids and spatial transformers the number of
regions are regularly sampled from the original 14× 14 resolution using increasing strides. For
instance, using a stride of 2 generates 7× 7 = 49 regions. For object proposals we test a larger
range, from 1 up to 2,000 regions, sorted by their “objectness” score. For all three region types,
performance quickly increases with the number of regions, and then plateaus off. Using four or
less regions yields results below the baseline model, probably because strong sub-sampling at
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Figure B.5: Visualization of the focus of our attention model during sequential word generation
for the three different region types: activation grids, object proposals, and spatial transformers.
The attention areas are drawn with line widths directly proportional to weights p(rt|ht).
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B4 Meteor CIDEr

RNN training only
Baseline 26.4 22.2 78.9
Activation grid 28.8 23.6 87.4
Object proposals 28.9 23.7 89.0
Spatial transformers 30.2 24.2 91.1

CNN-RNN fine-tuning
Baseline 28.7 23.5 87.1
Activation grid 30.3 24.5 92.6
Object proposals 30.1 24.5 93.7
Spatial transformers 30.7 24.5 93.8

Table B.2: Captioning performance of the baseline and our model using different attention regions,
with and without fine tuning.

test-time is sub-optimal for models trained using 7 × 7 or 50 regions. The spatial transformer
regions consistently improve over the activation grid ones, demonstrating the effectiveness of
the region transformation sub-network. As compared to object proposals, the spatial transformer
regions yield better results, while also being computationally more efficient: taking only 18ms to
process an image using 7× 7 regions, as compared to 352ms for 50 proposals which is dominated
by 320ms needed to compute the proposals. At 6ms per image, fixed 7× 7 activation grids are
even more efficient, but come with less accurate results. In the remaining experiments, we report
performance with the optimal number of regions per method: 1,000 for proposals, and 196 for
grids and transformers.

Joint CNN-RNN fine-tuning. We now consider the effect of jointly fine-tuning the CNN
and RNN components. In Table B.2 we report the performance with and without fine-tuning for
each region type, as well as the baseline performance for reference. All models are significantly
improved by the fine-tuning. The baseline improves the most in absolute terms, but its performance
remains substantially behind that of our attention models. The two types of image-dependent
attention regions improve over fixed activation grids, but the differences between them are
reduced after fine-tuning. Spatial transformer regions lead to comparable results as edge-box
object proposals, that were designed to align with object boundaries. Spatial transformer regions,
however, are more appealing from a modeling perspective since the region module is trainable
fully end-to-end and does not rely on an external image processing pipeline, while also being
more efficient to compute.

Visualizing areas of attention. In Figure B.5 we provide a qualitative comparison of the
attentive focus using different regions in our model. A larger selection, including failure cases,
can be found in the supplementary material. We show the attention weights over the image regions
at each point in the generated sentences. For the spatial transformers, we show the transformed
anchor boxes. For the activation grid regions, we show the back-projection of a 3× 3 activation
block, which allows for direct comparison with the spatial transformers. Note that in all cases the
underlying receptive fields are significantly larger than the depicted areas. For object proposals
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Method GT Gen.

Liu et al. Liu et al. [2017] 38.4 52.0
Liu et al. Liu et al. [2017], spatial superv. 43.3 57.9
Areas of Attention, MSCOCO 42.4 68.5
Areas of Attention, Flickr30k 40.2 61.1

Table B.3: Attention correctness for ground truth (GT) and generated (Gen.) sentences on the
Flickr30k test set.

we directly show the edge-box proposals. The images displayed for the object proposals differ
slightly from the others, since the high-resolution network used in that case applies a different
cropping and scaling scheme. Proposals accurately capture objects, e.g. the elephants and the
plane, but in other cases regions for background elements are missing, e.g. for the field and the
sky. The spatial transformers tend to focus quite well on relational terms. For example, “standing”
focuses on the area around the legs of the elephants in the first image, and “low” on the area
between the airplane and the ground in the second image. For the spatial transformers in particular,
the focus of attention tends to be stable across meaningful sub-sequences, such as noun phrases
(e.g. “A couple of elephants”) and verb phrases (e.g. “is flying.”).

Attention correctness. We follow the approach of Liu et al. Liu et al. [2017] to quantita-
tively assess the alignment of attention with image regions corresponding to the generated caption
words. Their approach uses the visual entity annotations on the Flickr30k dataset by Plummer et
al. Plummer et al. [2015]. For caption words that are associated with a ground-truth image region,
they integrate the attention values over that region. See Liu et al. Liu et al. [2017] for more details.
Following the protocol of Liu et al., we measured the attention correctness of our model (based
on spatial transformer regions) on MSCOCO for ground truth and generated sentences. As Liu
et al. reported results with a model trained on Flickr30k, for a fairer comparison, we have also
trained a model on Flickr30k using the same hyper-parameters and architecture as for MSCOCO.
In terms of caption generation the model obtained a CIDEr of 41.3 and a BLEU4 of 22.2. As
shown in Table B.3, when considering the correctness computed on the ground truth sentences,
both our models perform better than Liu et al. using the attention model of Xu et al. Xu et al.
[2015], and come close to their model trained with additional spatial supervision. However, when
evaluating the attention correctness on the generated sentences, our models perform significantly
better than those in Liu et al., including those trained with spatial supervision.

Comparison to the state of the art. We compare our results obtained using the spatial
transformer regions to the state of the art in Table B.4; we refer to our method as “Areas of
Attention”. We obtain state-of-the-art results on par with Wu et al. Wu et al. [2016]. They use
a region-based high-level attribute representation instead of a global CNN image descriptor
to condition the RNN language model. This approach is complementary to ours. For sake of
comparability, we also ensemble our model and compare to ensemble results in the bottom part
of Table B.4. For our ensemble, we trained using 30K additional validation images on top of the
80K training images, and use a random horizontal flip of the images during training. We use the
same 5K validation images and 5K images for reporting as in the other experiments. We obtain
state-of-the-art results, on par with Bengio et al. Bengio et al. [2015]. They used “scheduled
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B4 Meteor CIDEr

Xu et al. Xu et al. [2015], soft 24.3 23.9 —
Xu et al. Xu et al. [2015], hard 25.0 23.0 —
Yang et al. Yang et al. [2016] 29.0 23.7 88.6
Jin et al. Jin et al. [2015] 28.2 23.5 83.8
Donahue et al. Donahue et al. [2015] 30.0 24.2 89.6
Bengio et al. Bengio et al. [2015] 30.6 24.3 92.1
Wu et al. Wu et al. [2016] 31 26 94
Areas of Attention 30.7 24.5 93.8

Ensemble methods
Vinyals et al. Vinyals et al. [2015] 27.7 23.7 85.5
You et al. You et al. [2016] 30.4 24.3 —
Bengio et al. Bengio et al. [2015] 32.3 25.4 98.7
Areas of Attention 31.9 25.2 98.1

Table B.4: Comparison of our results to the state of the art on the MSCOCO dataset.

sampling”, a modified RNN training algorithm that samples from the generated words during
training. With standard training, as for our results, they report 95.7 CIDEr.

B.5 Conclusion

In this paper we made three contributions. (i) We presented a novel attention-based model for
image captioning. Our model builds upon the recent family of encoder-decoder models. It is
based on a score function that consists of three pairwise interactions between the RNN state,
image regions, and caption words. (ii) We presented a novel region proposal network to derive
image-specific areas of attention for our captioning model. Our region proposal network is based
on a convolutional variant of spatial transformer networks, and is trained without bounding-box
supervision. (iii) We evaluated our model with three different region types based on CNN ac-
tivation grids, object proposals, and our region proposal network. Our extensive experimental
evaluation shows the importance of all our model components, as well as the importance of
image-adaptive attention regions. This work is a first step towards weakly-supervised learning
of objects and relations from captions, i.e. short sentences describing the content of an image.
Future work will improve these associations for example by training object and relation detectors
based on them. We release an open source Theano-Lasagne based implementation of our model:
https://github.com/marcopede/AreasOfAttention
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