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Abstract

Nowadays to design photonic devices, it is important to have reliable and efficient simulation
tools. In fact, if exploiting the technological grids of the design parameters is considered
possible for the simple devices, its cost in terms of number of tests becomes an obstacle
to the optimization of the structures. Therefore, it is essential to develop fully vectorial
simulations, with complex or/and real refractive indices materials, to guarantee that all
the propagation modes (guided, radiated and evanescent modes) are taken into account.
The simulations of the structures with high contrast refractive index (Silicon photonics
for example) or structures using metallic layer and generating plasmonic modes or sub-
wavelength structures like metamaterials are a set of examples that requires the use of these
tools. These methods can be differentiated by their used calculation algorithm: calculation
in the frequency domain by finite differences or finite elements, Fourier based methods, or
calculation in the temporal domain with the finite difference method... For example, the
FDTD has become in the recent years a reference tool in the domain of silicon photonics.
However, almost all these methods are not necessarily optimal. They can be distinguishable
by the required numerical resources, particularly in terms of the used memory, the execution
time, the take into account of the boundary conditions, the discretization of the structure,
or their workspace domain (spectral or spatial) ... Over the last fifteen years, the group
involved with the development of electromagnetic tools in the laboratory (IMEP-Lahc),
headed towards the development of RCWA based numerical tools to simulate and design the
optical response of diffractive and guided optic structures. However, this last method as the
FDTD can generate approximations inducing inaccuracies or an increase in the numerical
resources used for certain configurations (memory, execution time...). The objective of this
thesis is to develop a more general tool aiming to reduce these imperfections while retaining
the possibility of using it on a multitude of photonics applications (diffractive optics, guided
optics, etc.). My choice fell on the differential method which is widely used for the study
of diffraction gratings. This method can be more efficient than the RCWA but it also has
limitations especially for the simulation of periodic structures with complex profile in TM
polarization. Since the 2000s, the association of a new module called FFF (Fast Fourier
Factorization) has solved this problem and opened up new possibilities for this method. After
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a general introduction, the differential method associated with the FFF is presented in detail.
Then, a simple and fast solution which makes the use of this method with metals having a
purely real and negative permittivity is proposed and solve the problem of divergence faced
before. Consequently, a complete study of a dielectric diffractive structure visual security
applications is subsequently detailed. Moreover, the developed code of the DM-FFF is
integrated in neural networks algorithm for optimal modeling and design of visual security
structures. Finally, to meet the condition of generalizing the method for the different photonic
structures (guided and diffractive), a coordinate transform inspired from the aperiodic FMM
was implemented in the algorithm of the DM-FFF transforming the last one into an aperiodic
method for the simulation of 2D integrated optical structures for complex, non-isotropic
and non-magnetic materials. The decomposition of the propagation of eigenmode basis can
provide access to information which are not directly provided by the FDTD for example
(guided modes, radiated modes . . . ). More precise, faster and more rigorous results were
obtained compared to a-FMM especially in TM polarization with curvilinear profiles such as
the case of cylindrical structures.
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Chapter 1

General Introduction

1.1 Objectives and Motivation

The study of light has been an important part of science from its beginning. Four generations
have governed the evolution of optics. Starting by the conventional optics introduced by
the ancient Greek, to the micro-optics, then the guided optics and recently the nano-optics
known as nanophotonics. These four groups are considered as the core of optical science and
forming its three branches: 1) the geometrical optics that describes the propagation of light
between different medium as straight rays, and defined by the classical laws of the reflection
and refraction. 2) the physical optics that deals with the light as a series of propagating
electric and magnetic field oscillations. Indeed, It is particularly based on a series of four
equations so called Maxwell’s equations. 3) the quantum optics that studies the effect and
the nature of light as quantized photons at submicroscopic levels. Owing to Maxwell, the
world has witnessed a steady technological advancement in several areas. So, the light can
be treated as an electromagnetic oscillations.

Nowadays, the ability to control and manipulate the optical electromagnetic waves (light)
is one of the leading goals of scientists, researchers and optical engineers. Although, some
natural optical systems have attracted researchers and theorists due to its important optical
effects. Indeed, we live in a world full of colors. For example, if a flower re-emits all the
wavelengths of the visible light, it will be white. In reverse, it is perceived as black, and in
between where it absorbs and reflects some wavelengths it will have a color. However, the
nature produces colors in three ways: through pigments, structural colors or bioluminescence.
Consequently, the structural color has received the attention of scientists. These systems
are often brightly colored, strongly iridescent and distinguished from the obvious structures
and surfaces that are colored by pigmentation or bioluminescence colors. The first trials to
understand the physical origin of those effects had began in the 18th century by Isaac Newton

1



GENERAL INTRODUCTION

and Robert Hook [34, 85]. They firstly observed the iridescent colors of the peacock feathers
and silverfish scales. Accordingly, they correctly predicted that those colors are a result of
physical structures rather pigmentation.
With the introduction of the electron microscope in the 1940’s, the structural color in nature
becomes a subject of study. In this context, the structural colors are categorized as either
iridescent or non-iridescent. The iridescent color are thus defined as the structural colors
that change with the viewing angle. On the other hand, if the color doesn’t change with the
change of the angle of observation, the produced color is called non-iridescent. However,
from scientific point of view, the structural colors are mainly originated from a natural
periodic arrangement that changes the characterizations of the incident light. To elaborate
more, this physical coloration is divided into two types, the iridescent structural colors which
are produced from the interference and the diffraction of light provoked by the irregularity of
the structure, and the non-iridescent structural colors produced from the scattering.
Based on these observations and many other after, new ideas and new photonic structures
have been inspired from the nature. The most interesting natural optical tricks is the ability
of some butterflies, birds and flowers to change their colors. This interaction takes place in
the presence of periodic structures. This periodic arrangement has the ability to modify and
diffract the light to be transmitted, reflected or absorbed by the involved materials. Although,
the size of the periodicity has to be compared to the wavelength under study. For example, a
structure with periodicity of few millimeters or centimeters can control the electromagnetic
wave in the microwave domain. On the other hand, the optical light (that we are interested
in here) can be controlled with periodicity of tens to hundred nanometers. Moreover, the
periodicity of the structure can be defined by the number of dimensions that sustain it. Thus,
the light can be controlled by 1D, 2D or 3D periodic arrangements. The researchers have de-
fined what’s called "the diffraction grating" for the 1D arrangement. In contrast, photonic
crystals are marked for 2D or 3D arrangement.

However, there are already some natural inspired fabrications and products available that
have replicated the surface structure of animals or flowers, such as textiles, anti-counterfeiting
technologies, optical filters, and optical security devices. In all these structures, the light
behavior is ruled by Maxwell’s equations. Moreover, the 1D diffraction gratings are char-
acterized by their wide range of applications. Starting with spectroscopy, to the sensing
applications and the structural color generation and not ending with the astronomy.

In a recent joint report, the European Police Office (EUROPOL) and the Office for
Harmonization in the Internal Market (OHIM) pointed out the disastrous economical (200
billion USD per year) and health-related consequences of goods counterfeit. The dreadful
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(a) (b)

Fig. 1.1 (a) The wings of blue Morpho butterflies like Morpho menelaus show strong blue
iridescence. (b) A TEM image of the cross-section of the Morpho sulkowskyi ground scale
reveal the “Christmas tree” like structure responsible for the famous blue iridescence.

events that have recently happened in Europe made evident that travel and identity documents
such as passports or ID cards are among the most counterfeited products. Counterfeiters
have also benefit of the recent development in fabrication and characterization technologies
that paradoxically, had led, to important advances in the Optical Document Security (ODS)
domain. There is therefore a need for even more innovative optical security devices involving
complex designs and new materials difficult, if not impossible, to fabricate without specialized
laboratory equipment.

At this scale, more rigorous electromagnetic modeling methods depending on Maxwell’s
equations are mandatory for the computation of the interaction between the incident light and
the structure. A wide range of numerical methods has been developed from many decades
for the modelization of photonic structures. These methods have witnessed enormous leaps
in terms of accuracy and their capabilities of modeling photonic structure following the
previous years.

On the other hand, the numerical characterization and modeling of guided wave passive
structures have been an interesting research topics in the last five decades. In the early 1960’s,
the efforts were devoted to the foundations of the waveguide theory. Twenty years later,
dozens of numerical methods have been developed in order to analyze guided structures in
the microwave and optical domains [25]. Nowadays, the integrated optic components are
widely demanded in whispered applications. Moreover, the rapid growth in the domain of
integrated optic has forced researchers and engineers to step up their efforts the development
of more accurate and rigorous electromagnetic computational methods. The photonic guided
structure is an open boundary device, basically composed of a waveguide core sandwiched
between two homogeneous regions (superstrate and substrate). The guided structure is
normally excited by one or more polarized guided mode. Thus, depending on the width of
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the input waveguide and the wavelength under study, the waveguide may be considered as
monomode (only one mode can propagate inside the structure) or multimode (two or more
modes which can be excited).
Practically, when dealing with diffraction gratings, we talk about a plane wave excitation (TM,
TE or linearly polarized waves). Moreover, the periodicity of the structure allows to deal with
the problem using the Floquet-Bloch theory of periodic structures. Nevertheless, the guided
optical structures share multiple commons with the periodic structures. Only two differences
exist: 1) the way of excitation as the guided structure are excited by guided mode instead of
plane wave, 2) the geometry of the structure itself as guided devices are considered as semi-
infinite structures and not periodic arrangements (open boundary problem). Thus, to turn any
electromagnetic computational method from the modelization of periodic structures into the
conception of guided structures the two previous conditions must be fulfilled. Meanwhile,
the first condition can be forwardly respected by changing the plane wave illumination into a
guided wave excitation. In contrast, the second one should satisfy the outgoing conditions of
an open structure. For that, a new concept has been introduced to some numerical methods
dedicated for the modelization of the diffraction grating by associating perfectly matched
layers at the boundary of each unit cell of the periodic structures by suppressing the outgoing
and incoming waves from the neighboring cells [36].

1.2 Overview of the popular electromagnetic methods

Maxwell’s equations are the set of equations that describe the propagation of electromagnetic
waves in different medium. Therefore, the study of the interaction between electromagnetic
waves and complex structures necessitates the use of numerical modeling methods. From
many decades, theorists and researchers spared no effort in the development of efficient
and powerful methods that tackle the problem of nano-scaled diffraction of optical wave
especially when the studied structure is in the order of the incident wavelength. Two well-
known approaches exist to deal with the electromagnetic diffraction problem. In the first one,
Maxwell’s equations are treated in time space and the other approach deals with them as a
matter of spatial frequency so that in Fourier space.

For time domain, the most exploited method is the finite difference time domain method
briefly known as FDTD [123]. It has been introduced by Yee in 1966 and developed over
the years. Its algorithm is based on the discretization of the time and space simultaneously.
Notwithstanding, its implementation is considered straightforward and simple. In contrast,
due to the discretization meshes a large number of variables appears turning the algorithm
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into a time consuming and memory exhausting technique. Moreover, the Finite Element
Method (FEM) is also one of the leading spatial domain methods [112]. Its solution rests on
the description of a global function of a global domain in terms of nodes of sub-functions in
sub-domains recognized as finite element. As the FEM discretizes the domain appropriately,
the advantage of this method compared to the FDTD appears with the minimization of
the geometrical discretization error. Although, the meshing of Maxwell’s equations leads
to an algebraic system where the number of variables is proportional to the number of
discretized meshes. Apparently, the FEM is considered as a powerful method. But, when
complex structures are investigated, giant matrices full of zeros appear with the small meshes.
However, storing this type of system is not an easy job. Consequently, in the temporal regime
of Maxwell’s equations, the matrices must be reorganized appropriately leading to a lack of
execution time and computer memory.
Another drawback of the FEM occurs when handling with diffractive structures. At this
level, the calculated electromagnetic fields suffer from singularities at the boundaries of the
structures and generating the slow convergence of the method.

The other branch of methods dedicated for the study of diffraction of light by periodic
structures is known as Fourier space methods. This family will be the center of the concern
of this manuscript. Their algorithms are based on the projection of the electromagnetic fields
on the modes of the structure. Three basic methods are the backbone of this family, the
Differential Method (DM) [81], the Fourier Modal Method (FMM) also known as Rigorous
Coupled Wave Analysis (RCWA) [48, 73, 75], and the Chandezon Method so-called (C-
Method) [16, 56]. Indeed, the DM and the FMM share multiple common concepts.

Apparently, the study done by Tamir et al. of the interaction of electromagnetic wave
with variable dielectric sinusoidal profiles in transverse electric polarization (TE) was the
first step on the appearance of the FMM at the mid of 1960’s [107]. Simultaneously, the
same problem was addressed by Yeh and al. for the transverse magnetic polarization (TM)
[124]. It appears that Burkhardt was the first theorist that reformulated the FMM in the
form of truncated Eigenvalue matrix problem to study the diffraction of light for both TE
and TM polarization [14]. In 1973, Kaspar has extended the work of Burkhardt to deal
with complex and non-sinusoidal profiles [45]. One of the most published theory of the
FMM is the paper of Peng [91]. He deduced that the FMM might be unworkable on all
types of surface relief gratings. In his study, he mentioned that the regularity of a linear
system doesn’t assure the convergence of an infinite determinant. Therefore, he concluded
that other mathematical solution must be applied for surface relief gratings to determine
the characteristic solutions of the grating region. Without being up-to-date to the result of
Peng, Knop was investigated, in 1978, the use of FMM on surface relief lamellar gratings
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[48]. He extracted an eigenvalue problem for the TM polarization case by coupling two
first-order differential equations. The qualitative leap of this method was in 1981 where
Moharam and Gaylord figured out the volume gratings with inclined surface [73]. Moreover,
they elaborated the use of the representation of an arbitrary structures as a succession of
rectangular step index distribution known as the staircase approximation. Indeed, they also
derived the eigenvalue differential equation for TE and TM polarizations [74]. Consequently,
their work and all the previous other works have turned the Fourier Modal Method into
the most popular tool for the modeling of diffraction gratings. In 2005, Hugonin et al.
have demonstrated that applying a non-linear and complex coordinate transformation to the
propagation equations of the FMM can turn the method into an aperiodic method used for the
modeling of guided optical structures instead of optical periodic gratings [36]. Basically, this
coordinate transformation play the role of Perfectly Matched Layers (PML) that suppress the
incoming waves from the neighboring cells allowing to model artificially periodized guided
structures as an open boundary semi-infinite structure.

At the same time of the appearance of FMM, the development of the Differential Method
was on in full swing. We’re are talking about a more rigorous method aiming to reduce the
number of variables during the integration of the differential form of Maxwell’s equations
by dealing with the problem in the harmonic space. In case of 1D diffraction grating, the
harmonic time dependence and the periodicity along the periodization axis added to the
invariance with respect to a given axis help to treat the system of differential equations
smoothly [15, 92]. Dating to the 70’s, the first application of the DM was realized through
Numerov numerical integration algorithm [80]. This integration allows the modeling of finite
and infinite conductive diffraction gratings in TE and TM polarization. Although, numerical
instabilities have been observed during this process especially when modeling deep grooves
in TM polarization. This weakness has attracted the attention of researchers, involving in
the algorithm of the DM and FMM, along 20 years without any valid interpretation. In
1996, series of papers ,introduced by Granet, Lalanne and Li, was the clue to unblock the
limitations of the differential method [27, 51, 55]. The researchers referred this numerical
instabilities to two reasons. The first error is due to the numerical integration process where
the exponential components of the evanescent Fourier modes grow exponentially imposing
numerical fluctuations. For that, the efforts was devoted to find the best mathematical solution
that suit well with the integration step. Firstly the Schmidtt orthogonality has been used
to tackle this problem, but this method doesn’t show a big impact on the stability of the
method. Another solution rests on the discretized integration has not also shown its well
functionality. Finally, the use of the S-Matrix algorithm has demonstrated that it is the most
effective algorithm to handle this problem [54]. Despite this solution, the divergence of
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1.2 OVERVIEW OF THE POPULAR ELECTROMAGNETIC METHODS

the method weren’t completely treated where another source of instabilities has appeared.
This error is originated from the slow convergence of the Fourier series product describing
the electromagnetic field at the interface of the grating especially in TM polarization. In
other words, the multiplication of two discontinuous periodic functions which must give a
continuous displacement field is not respected in the Fourier domain. For that, Li proposed
to use what is called the ’inverse rule’ [55]. Basically, these errors take place when two
discontinuous periodic functions are multiplied. Therefore, the inverse rule will be applied
for functions with complementary jump discontinuities along the periodization axis. This
case appears, for example, in TM polarization between the incident electric field and the
permittivity distribution at the surface of the modulated zone. Indeed, the same inverse rule
has been applied to FMM as same instabilities was appeared during tests. At the beginning
of the 21th century, a dramatic reformulation of the differential method has been applied by
Popov et al. They introduced the Fast Fourier Factorization (FFF) to the propagation matrix
of the Differential Method [94]. Since then, the efficiency of the method has incredibly
been enhanced especially for non-lamellar gratings illuminated by TM polarized light. This
reformulation allows to correctly describe the evolution of the incident field with respect to
the grating’s profile enabling an accurate and rigorous modeling technique for a wide class
of diffraction problems.

Similarly, the C-Method is a frequency method applied on arbitrary shaped gratings.
Its algorithm is based on the description of the grating’s surface as continuous function
[58]. After applying a coordinate transformation along the propagation axis and the periodic
axis, the coefficients of Maxwell’s equations become spatially dependent. In that case, the
corrugation layer is replaced by a simple layer with a constant thickness and an equivalent
complex permittivity.

Last but not least, the integral theory is another approach to deal with the diffraction
problem. This theory is known as the integral method [70]. In that case, the fields at any point
of the cartesian space is expressed as a set of integral functions. Therefore, the determination
of the fields at any point of the space is reduced to the determination of the unknown functions
following the periodic axis. The first use of the method featured with the perfectly conducting
grating in the 1970’s. At that time, the other electromagnetic methods was not adapted for
such problem. But, this method is considered hard to be implemented and memory and time
exhausting techniques while dealing with multi-layered diffraction gratings constituted by a
stack of different refraction index.

7





Part I

Electromagnetic Numerical Tools for the
diffraction of light by periodic structures
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Chapter 2

Electromagnetism applied to 1D
diffraction gratings

Basically, electromagnetism is the phenomenon of interaction of electric fields with magnetic
fields. This branch of science is the fruit of works of several scientists. In 1861, James
Maxwell assembled these theorems into a concise set of equations and completed their laws
by a consistent and coherent model so-called Maxwell’s equations. This set describes the
distribution of the electric and magnetic fields and their change with respect to time. This
chapter is intended to review the basics of diffraction of light, ruled by Maxwell’s equations,
of ideally 1D infinite periodic structure arrangements known as diffraction gratings.

2.1 The basics of diffraction gratings

’No single tool has contributed more to the progress of modern physics than the diffraction
grating, especially in its reflecting form’ are the opening words of a research article published
in 1949 by the spectroscopist George R. Harrison. A diffraction grating is a set of closely
spaced grooves or periodic arrangement. When a plane wave excites this arrangement, the
diffraction of light by one of this groove interferes constructively or destructively with the
light diffracted from the other grooves. Consequently, the light is split and diffracted into
several plane waves (either transmitted or reflected) traveling in different directions and
known as diffracted orders.

Referring to the grating’s law ( Eq.2.1) the x component part of the wave vector
#»

k
′

issued
from the grating is different from the incident wave vector

#»

k along x. Then, diffraction angle
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Fig. 2.1 Geometrical representation of 1D sinusoidal diffraction grating. An incident plane
wave on a periodic structure induces the diffraction of different transmitted or reflected
orders.

(θR/T ) of each reflected (R) or transmitted (T ) order can accurately be predicted depending
on the angle of incidence θinc and the period of the grating Λ as follows,

k′x = kx +m
2π

Λ

nsup/sub
2π

λ
sin(θr/t) = ninc

2π

λ
sin(θinc) + m

2π

Λ

(2.1)

However, this equation can be expressed in a simplest form as,

nsup/sub sin(θr/t) = ninc sin(θinc) + m
λ

Λ
(2.2)

With, nsup/sub and ninc represent the refractive index of the superstrate layer or the substrate
layer and the refractive index of the incident region respectively, and m ∈ Z is the number of
the diffracted order.
On the other hand, the drop-off of a given order m occurs when the angle of incidence
is chosen in a way that the refracted or transmitted plane wave is excited with grazing
angle, which mathematically expressed as sin(θr/t) =±1. Under this condition, the cut-off
wavelength of the mth diffracted order λm can be calculated as,

λm =
Λ

m

[
±nsup/sub −nincsin(θinc)

]
(2.3)
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Aside the calculated angles and cut-off wavelengths, there is no information brought by
these laws concerning the distribution of energy on each diffracted order. Although, the
transmission and reflection coefficients could be expressed as Rayleigh expansions. But,
calculating the efficiency of each order is not straightforward. These values depend on the
incident angle, the polarization of the plane wave, the opto-geometrical dimensions of the
grating and the different refractive indices of the structure. Accordingly, electromagnetic
numerical methods based on Maxwell’s Equations have to be developed to tackle this
problem.

2.2 Maxwell’s equations formalism: Transient regime

Maxwell’s equations are a set of four equations where each one of them describes a fact.
By combining the four laws proposed by Faraday, Ampère and Gauss and including his
famous term into the Ampère law. J.Maxwell succeeded to describe correctly the interaction
of electric and magnetic field as follows,

1) The Farady-Maxwell’s law:

#»

∇ ∧ #»

E =−∂
#»

B
∂ t

(2.4)

With
#»

E that represents the electric field and
#»

B the magnetic displacement . This equation
implies that the time variation of magnetic field induces a rotation in the electric field.

2) Maxwell-Ampère’s law:

#»

∇ ∧ #»

H =
∂

#»

D
∂ t

+
#»

J (2.5)

With
#»

H the magnetic field,
#»

D the electric displacement, and
#»

J the vector of the electric
current density. This equation stipulates that the rotation of the magnetic field depends on
the time variation of electric field as well to the electric current.

3) Gauss’s law (Electricity) :
#»

∇ · #»

D = ρ (2.6)

With ρ the volume density of the electric charge, this equation tells us that the electric flux
through a closed surface is directly linked to the electric field induced at the surface of a
defined volume. The displacement of the electric field is proportional to the electric charge
density ρ .
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4) Gauss’s law (magnetism) :
#»

∇ · #»

B = 0 (2.7)

This equation indicates that the magnetic flux through a closed surface is null. There is no
magnetic sources equivalent to the electric charges.

2.3 Maxwell’s equations in the harmonics regime

The field time dependence is expressed following exp(− jωt). Therefore, a variable time
dependent function F(r, t) can be expressed with respect to its harmonic function F(r,ω) via
the Fourier transformation as ,

F(r, t) =
∫ +∞

−∞

F(r,ω)e jωtdω (2.8)

Hence, the set of Maxwell’s equations can be expressed in its harmonic form as,


#»

∇ ∧ #»
E = j ω

#»
B

#»

∇ ∧ #»
H = − j ω

#»
D +

#»
J

#»

∇ · #»
D = ρ

#»

∇ · #»
B = 0

(2.9)

Under this situation, all variables are considered as complex functions following the
angular frequency ω and the variable of the r space. As non-electric current sources exist
in case of diffraction gratings and by considering linear, isotropic, homogeneous and non-
magnetic media (

#»
J = 0 and ρ = 0 ), the constitutive equations that characterize this situation

can be expressed as follows,

#»
D = ε

#»
E (2.10)

#»
B = µ

#»
H (2.11)

µ = µ0µr is the magnetic permeability with µr = 1 (in case of non-magnetic materials),
µ0 = 4π ×10−7 H/m. ε = ε0εr where nr =

√
εr represent the medium electric permittivity

and the medium refractive index respectively. In addition, ε0 = 8.854×10−12 F/m is the
permittivity of the free space . However, it is important to mention that ε(ω) is a frequency
dependent parameter which is linked directly to the chromatic dispersion of the involved
medium.
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By bearing in mind that
#»

∇ · (
#»

∇ ∧ #»
F ) = 0 with

#»
F stands either for the electric field

#»
E or

the magnetic field
#»
H , the use of Eq.(2.9), Eq.(2.10), and Eq.(2.11) leads to the simplified

system of Maxwell’s equations as follows,{
#»

∇ ∧ #»
E = j ω µ0

#»
H

#»

∇ ∧ #»
H = − j ω ε

#»
E

(2.12)

The projection of Eq.(2.12) on a cartesian coordinate system leads to a set of six coupled
partial differential equations : 

∂Ez

∂y
−

∂Ey

∂ z
= j ω µ0 Hx

∂Ex

∂ z
− ∂Ez

∂x
= j ω µ0 Hy

∂Ey

∂x
− ∂Ex

∂y
= j ω µ0 Hz

∂Hz

∂y
−

∂Hy

∂ z
=− j ω ε Ex

∂Hx

∂ z
− ∂Hz

∂x
=− j ω ε Ey

∂Hy

∂x
− ∂Hx

∂y
=− j ω ε Ez

(2.13a)

(2.13b)

(2.13c)

(2.13d)

(2.13e)

(2.13f)

2.4 The decomposition into TE and TM polarization

2.4.1 Introduction

In electromagnetic, it is important to introduce the notation of the polarization of the excited
wave (direction of vibration of the EM field in the work plane). In his book, Germain Chartier
has explained that the wave (light) is considered as a transversal and vectorial vibration [17].
In other words, the light is related to a vector which vibrates perpendicularly to the direction
of the propagation vector. This last vector represents the vector of the the plane wave

#»

k .
In optics, the EM fields are usually decomposed into two polarizations : 1) the transverse
electric polarization TE , 2) the transverse magnetic polarization TM. These two notations
are defined following a diopter (a plane surface separating two media with different refractive
indices). For TE polarization, the non-null component of the electric field

#»
E is considered

parallel to the diopter. On the other hand, for TM polarization, the non-null component of
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the magnetic field
#»
H is parallel to the diopter (Fig.2.2). Moreover, these two polarization

states can also be named as s-polarization for TE, and p-polarization for TM.

Fig. 2.2 Representation of the TE and TM polarization

2.4.2 Polarization of the field exciting the diffraction grating

We take into consideration the 1D grating depicted in Fig.2.1. The structure is illuminated
with a monochromatic and polarized plane wave with a wavelength λ in the free space and
an amplitude equal to unity. The angle of incidence of the plane wave is defined as θinc. In
addition, the incident plan corresponds to (oxz), the periodization axis is following x, and the
propagation axis is along z, while along the axis y the structure is considered invariant. This
invariance along y leads to the nullity of the derivative of the electric field and the magnetic
field along y. Therefore, the system of Eq.(2.13) can be reduced as,

−
∂Ey

∂ z
= j ω µ0 Hx

∂Ex

∂ z
− ∂Ez

∂x
= j ω µ0 Hy

∂Ey

∂x
= j ω µ0 Hz

−
∂Hy

∂ z
=− j ω ε Ex

∂Hx

∂ z
− ∂Hz

∂x
=− j ω ε Ey

∂Hy

∂x
=− j ω ε Ez

(2.14a)

(2.14b)

(2.14c)

(2.14d)

(2.14e)

(2.14f)
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(a) (b)

Fig. 2.3 Sinusoidal modulated zone illuminated with a monochromatic and linear polarized
plane wave and the electromagnetic field components respectively for E⃗ and H⃗ in a cartesian
space for (a) TE polarization (b) TM polarization.

Due to this invariance, the previous system can be separated into two independent groups.
The first one corresponds to the transverse electric (TE) or s polarization where the electric
field is parallel to oy (Fig.2.3a), and that depends on Ey, Hx and Hz:

−
∂Ey

∂ z
= j ω µ0 Hx

∂Ey

∂x
= j ω µ0 Hz

∂Hx

∂ z
− ∂Hz

∂x
=− j ω ε Ey

(2.15a)

(2.15b)

(2.15c)

The other group introduces the transverse magnetic (TM) or p polarization, where the
magnetic field is parallel to oy and transverse to the incidence plan (Fig.2.3b). In that case,
the propagation of electromagnetic fields depends on Hy, Ex and Ez:

∂Ex

∂ z
− ∂Ez

∂x
= j ω µ0 Hy

−
∂Hy

∂ z
=− j ω ε Ex

∂Hy

∂x
=− j ω ε Ez

(2.16a)

(2.16b)

(2.16c)

2.5 Fourier expansion of the field

Basically, the DM-FFF and the RCWA belong to the family of Fourier space methods. They
are all characterized by expanding the electromagnetic field

#»
E and

#»
H and the medium
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permitivitty εr into Fourier series. For an arbitrary diffraction grating of period Λ and
periodized following x, the spatial wavenumber can be expressed as σn = n2π

Λ
with n ∈ N.

Consequently, a periodic function f (x) can be described by an infinite number of harmonics.
And the harmonic amplitude Fn linked to a specific wave number n is issued from the
following integral:

Fn =
1
Λ

∫
Λ

0
f (x)e− jσnxdx (2.17)

2.5.1 The general form of the field outside the modulated zone in TE
polarization

In case of homogeneous zone, the wave vector k = 2π

λ
·ninc =

2π

λ
·√εinc is always constant

with ninc the refractive index of the incident homogeneous zone. Therefore, in these regions,
only the phase of the electromagnetic field of the plane wave varies while its norm stays
identical. In that case, the propagation system can be reduced into the Helmholtz’s equation
of homogeneous zones. In TE polarization, the transverse electric and magnetic field
components (Ey and Hx) can be linked to their derivative following the propagation axis z to
form a differential coupled equation system. By incorporating Eq.(2.15b) in Eq.(2.15c), the
obtained system is the following one:


−

∂Ey

∂ z
= j ω µ0 Hx

∂Hx

∂ z
=− j ω ε Ey +

1
jωµ0

∂ 2Ey

∂x2

(2.18a)

(2.18b)

The substitution of Eq.(2.18a) in Eq.(2.18b) leads to the simplified propagation equation of
Helmholtz:

∆Ey(x,z)+ k2Ey(x,z) = 0 (2.19)

Meanwhile, the invariance along y and the periodicity following x that induces the equality
∂

∂x =− jσn allow to write the Helmholtz’s Equation of one harmonic n as,

∂ 2En

∂ z2 +
(
k2 −σ

2
n
)

En = 0 (2.20)

Where En represents the Fourier coefficient in the x direction of the electric field Ey at the
harmonic n. Such type of differential equation of second order can be easily solved in terms
of complex exponential solutions. Therefore, one harmonic of the Fourier transformation of
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the electric field component along z can be expressed in terms of its forward and backward
components as,

En = A+
n exp( jβnz)+A−

n exp(− jβnz)

= E+
n +E−

n

(2.21)

With A+
n and A−

n are the amplitude of the forward and backward components of the field and
βn =

√
k2 −σ2

n the propagation constant along z of the harmonic n.
Indeed, to reconstitute the electric field Ey(x,z) in the cartesian space, an inverse Fourier
transformation can be simply applied,

f (x) = ∑
n

Fne jσnx (2.22)

Practically, the periodicity along x imposes the discretization into the Fourier space
following σn and its complex amplitude Fn. For any incident plane wave, the Fourier space
should be centralized to its spatial frequency σ0 = k sin(θinc) =

2πninc
λ

sin(θinc) to ensure the
phase matching. Thus, σn can be expressed as,

σn = σ0 +n
2π

Λ
(2.23)

Finally, Ey(x,z) can be expressed as,

Ey(x,z) =
+∞

∑
n=−∞

(
A+

n e jβnz+σnx +A−
n e− jβnz+σnx

)
(2.24)

Where A+
n and A−

n are the forward and backward eigen modes field amplitudes. In
that case, the eigen modes are the plane waves of spatial frequency σn following x and
βn =

√
k2 −σ2

n .

2.5.2 TM polarization

In a similar way, the magnetic field outside the modulated zone in case TM polarization
verifies the Helmholtz’s equation of the magnetic field H,

∆Hy(x.z)+ k2Hy(x.z) = 0 (2.25)

After the same discretization following σ , H(x,z) can be expressed as,

H(x,z) =
+∞

∑
n=−∞

(
B+

n e jβnz+σnx +B−
n e− jβnz+σnx

)
(2.26)
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Outside the modulated zone, the eigen modes of the field for
#»
E and

#»
H represent the

plane waves in these regions. On the other hand, inside the modulated zone, the Maxwell’s
equations are projected on their Fourier series. Therefore, the Fourier decomposition enables
the use of electromagnetic numerical methods to handle the propagation of fields inside the
modulated area. These numerical tools transform generally the system into a set of ordinary
differential equations in order to tackle the problem easily.
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Chapter 3

Principles of the Differential Method
associated with Fast Fourier
Factorization

This chapter is devoted to describe the equation used by the DM-FFF for the modeling of
1D diffraction gratings. It allows to study the diffraction of a plane wave by a multi-layered
structure. Besides, it gives access to obtain the intensities of different diffracted orders when
an oblique incident plane wave excites the periodic structure. Noting that the propagation
axis is z, the grating is periodized following x. And finally, the grating and the waves are
invariant along y.

3.1 The differential Theory in TM polarization

3.1.1 The classical Differential method: the transient equations of the
electric and the magnetic fields inside the modulated zone

As the magnetic field component Hy, parallel to the invariant axis y, is always continuous
at each boundary, the electromagnetic propagation equations, that rule the TM polarization,
depend only on Hy, Ex and Ez. By combining Eq.(2.14b) and Eq.(2.14c), and by assuming that
H ′

y = ωµ0Hy, the classical system of differential equations of propagation in TM polarization
can be expressed as,
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FACTORIZATION


∂Ex

∂ z
= jH ′

y + j
∂

∂x

(
1
k2

∂H ′
y

∂x

)
∂H ′

y

∂ z
= jk2Ex

(3.1a)

(3.1b)

We suppose that a monochromatic plane wave (wavelength λ in the free space and an
amplitude equal to unity) is incident under an angle θinc coming from the superstrate. As a
result, the forward propagating wave can be expressed following exp( jβ z).

3.1.2 The harmonic Fields equations inside the modulated zone

Inside the modulated zone, the bloch-Floquet theorem describes the fields as a generalized
Fourier series following the periodicity axis x. However, by discretizing the Fourier space
following σn as mentioned in section (2.5). Eq.(2.22) turns into an infinite system of coupled
differential equations with n ∈]−∞,+∞[. Accordingly, after neglecting the terms of the fields
where the spatial frequency σn is greater than a particular threshold σN , the system of dif-
ferential equations can be truncated into 2N +1 coupled equations following n ∈ [−N,+N],
where N represents the truncation order. Thus, by performing a Fourier transformation
following x, the differential system (3.1) can be expressed in the Fourier regime as a set of
equations where the only variable is following z.
Accordingly, the Floquet-Bloch theorem of periodic structures allows to describe the electro-
magnetic field Ex, and H ′

y in form of generalized Fourier series as,

Ex(x,z) =
+N

∑
n=−N

Ene( jσnx)e jβnz

H ′
y(x,z) =

+N

∑
n=−N

H ′
ne( jσnx)e jβnz

(3.2)

With σn = σ0 + n 2π

Λ
= 2π

λ
nincsin(θinc)+ n 2π

Λ
and βn =

√
k2 −σ2

n is the propagation
constant following the propagation axis z. En and H ′

n are the Fourier coefficients of the
stationary fields Ex and H ′

y respectively of the spatial frequency σn. The harmonic vector
notation can be used to describe the (2N +1) Fourier coefficients [Ex] and [H ′

y] with [Ex] =

[E−N , ...,E0, ...,E+N ], and [H ′
y] = [H ′

−N , ...,H
′
0, ...,H

′
+N ]. On the other hand, the periodicity

following the x-axis induces also a decomposition of the evolution of the permittivity εr
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along x into a Fourier series which can be written as,

εr(x,z) =
+N

∑
n=−N

εn(z)e( jσnx) (3.3)

With εn is the Fourier coefficient at the spatial frequency σn of the relative permittivity of
εr. The harmonic vector of εr is defined as [εr] = [ε−N ,ε−N+1, ....εN−1,εN ]. Under these
conditions, the use of Fourier series can be tricky while incorporating the Fourier vectors
into the differential equations system of propagation. Here, there is a multiplication of two
functions where each one of them is described by its unique Fourier series. For example, this
type of multiplications appears when we need to express the displacement field D which is
given by the multiplication of the relative permittivity εr and the electric field components Ex

or Ez. Thus, the multiplication may be considered as problematic when the two multiplied
functions are discontinuous at the same position x. This discontinuity can be mainly found in
TM polarization.
Ideally, if we are dealing with infinite series there is no problem. But, as the Fourier trans-
formation is truncated, the following multiplication k2Ex and

(
1
k2 ·

∂H ′
y

∂x

)
must be developed.

As mentioned before, this multiplication may be discontinuous at some positions along x
inducing the slow convergence of the method. Indeed, many previous researches have been
conducted to tackle this problem. Lalanne et al. demonstrated that this slow convergence is
due to an inadequate formulation of the conventional eigenproblem [51]. Moreover, Granet
et al. proposed to use a second-order differential operator associated with the scattering
matrix formalism to speed up the convergence of the FMM in TM polarization [27]. In view
thereof, Li proposed a new formulation that respects the continuity of the fields when the
two multiplied functions are discontinuous at the same position or when one of them is con-
sidered discontinuous. This reformulation allows a faster convergence because it uniformly
satisfies the boundary conditions in the grating region [55]. In other words, Li has introduced
three new mathematical theorems related to the Fourier development of the product of two
periodic functions known as Li’s Factorization rules. The Fourier space representation of
the propagation equations in TM polarization which doesn’t respect the Li’s rules can be
expressed as,


∂ [Ex]

∂ z
= j[H ′

y]− jK
s

1
k2

{
K[H ′

y]

∂ [H ′
y]

∂ z
= jJk2K[Ex]

(3.4a)

(3.4b)
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With [A] is the (2N +1) harmonic vector of the truncated Fourier components between
−N and N. JAK is the Toeplitz matrix, (see appendix A), of the element JAKn,m representing
the Fourier component of the spatial frequency σn−m of the vector A, and K is the (2N +

1)× (2N +1) diagonal matrix issued from the spatial frequency σn with the i j element being
Ki j =

[
σ0 +(−N + i)2π

Λ

]
δi j and σ0 =

2π

λ

√
εsupsin(θinc).

Li’s Factorization Rules

In case of the non-truncated Fourier series, the Fourier component hn of the product h(x) of
two periodic functions f (x) and g(x) can be given by using the Laurent’s series as

hn =
+∞

∑
m=−∞

fn−mgm

This formulation is considered valid as long as n ∈ ]−∞,+∞[. Nevertheless, if the Fourier
space is truncated ( n ∈ [−N,+N] ) and in case that f (x) and g(x) are two discontinuous
functions, their Fourier product induces numerical instabilities leading to the slow conver-
gence of the multiplication. Consequently, a high number of truncation order N is needed to
converge correctly and to ensure the stability of the product.

For that, Li proposed a set of factorization rules that tackles the slow convergence of the
truncated Fourier series product in TM polarization. Indeed, Li’s rules take advantage with
the Fourier space methods ( particularly for the RCWA and the Differential Method). Hence,
the three factorization rules are stated as follows,

• The first rule of Li states that the Fourier component hn of the product function h(x)
of two periodic and bounded functions f (x) and g(x) can be ruled by the Laurent’s
rule as long as the two functions don’t suffer from simultaneous discontinuities at the
same point along the periodization axis (x-axis) and can be expressed in term of the
truncated Laurent’s series as,

hn =
+N

∑
m=−N

fn−mgm (3.5)

We define J f K the (2N+1×2N+1) Toeplitz matrix of f (x) defined by J f Kn,m = fn−m

(see Appendix.A) , and the 2N +1 column vector [h] and [g] of the respective Fourier
elements hn and gm. Therefore, the Fourier matrix representation of Eq.(3.5) can be
expressed as,

[h] = [ f ·g] = J f K[g] (3.6)
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• The second important rule of Li mentions that the Fourier component hn of the product
of two periodic and bounded functions f (x) and g(x) having simultaneous jump dis-
continuities at the same point along x and their product h(x) = f (x)g(x) is continuous
at this point, can be factorized by the inverse rule,

hn = [ f g]n =
+N

∑
m=−N

(
J

1
f
K−1
)

n,m
gm (3.7)

In matrix notation, Eq.(3.7) can be expressed as,

[h] = [ f ·g] =
s

1
f

{−1

[g] (3.8)

• The third rule given by Li states that the Fourier product of two truncated functions
f (x) and g(x) having two simultaneous jumps discontinuous at the same point along
x, and their product h = f (x)g(x) is also discontinuous can be factorized neither by
Laurent’s rule nor by the inverse rule.

Now, we will show the impact of applying the Li’s factorization rule on the system of Eq.(3.4).
In this equation, the second rule is not respected.
To elaborate more, we consider two functions f (x) = ε(x) and g(x) = 1/ε(x), with ε(x) is a
step function (Fig.3.1). Fig.3.1.(b) presents the multiplication of f (x) and g(x) in the Fourier
space. As we can see, the two functions are discontinuous at two positions following x. Due
to that, if the Li’s factorization rules are not respected, parasitic oscillations will appear in
the Fourier space. This oscillations induces the slow convergence of the method and some
numerical fluctuations (darkred curve). In contrast, if the inverse rule of Li is respected, the
oscillation disappears and the multiplication of the two Fourier series is well represented
(green curve).

3.1.3 Harmonic propagation equations

The formalism of the differential system by respecting the Li’s rule

The multiplication of k2Ex appearing in the transient propagation equations (3.1), gives rise
to the jump discontinuities conditions explained by Li in the harmonic regime. Therefore,
the harmonic equations of propagation in TM polarization must be reformulated to respect
the Li’s conditions. By respecting the first law of Li, the harmonic multiplication arise the
use of the Toeplitz matrix following the truncated Laurent’s series as depicted in Eq.(3.4).
Although, the second condition of Li must be applied to Eq.(3.4b), where Jk2K must sustain
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(a)

(b)

Fig. 3.1 (a) Distribution of the two functions f (x) and g(x) (b) The multiplication of their
Fourier series with and without respecting the Li’s rules.

the inverse rule. In this case, the Toeplitz matrix of the inverse of the reciprocal wavenumbers
1
k2

{−1

takes the place of the Toeplitz matrix of the wavenumber Jk2K when it is multiplied

by the Fourier vector [Ex]. A much better formulation of the propagation equations in TM
polarization that respect Li’s rules can be rewritten as,

∂ [Ex]

∂ z
= j[H ′

y]− jK
s

1
k2

{
K[H ′

y]

∂ [H ′
y]

∂ z
= j

s
1
k2

{−1

[Ex]

(3.9a)

(3.9b)

This set of equations describes the propagation of the electromagnetic fields in the modulated
zone with TM polarized incident plane wave. Indeed, in the case of Lamellar gratings
(Fig.3.2), the components of the electric field Ex and Ez, are always parallel to x and z
respectively, as well the tangent of the surface

#»
T and its normal

#»
N respectively.

Therefore, Ex and Ez are either parallel or perpendicular to the surface. On the other hand,
when a non-Lamellar structure is considered (Fig.3.3.(a)), the two components of the electric
field becomes discontinuous at the interface of the gratings in TM polarization. At this stage,
Popov reformulated the classical method to take into consideration this evolution where the
components of the electric field can be expressed in terms of their projected vectors on the
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Fig. 3.2 Grating geometry and notations of a lamellar grating illuminated with a TM polarized
plane wave.

profile of the surface [94]. This reformulation so-called Fast Fourier Factorization (FFF)
associated to the differential theory will now be called as DM-FFF.

3.1.4 FFF associated to the differential theory in TM polarization

We aim to derive the equations describing the propagation of electromagnetic fields in an
arbitrary modulated diffraction grating that respects the evolution of the profile in TM polar-
ization. We define the function f (x) = A

2

(
1+ sin2πx

Λ

)
depicted in Fig.3.3.(a). f (x) represents

here the modulated zone of a sinusoidal periodic structure of period Λ with the peak to
peak amplitude A. The Fast Fourier Factorization (FFF) is based on the reformulation of the
classical differential theory (Eq.3.9), by proposing a suitable continuation of the incident
field in the truncated Fourier space. Under this polarization, Ex and Ez are two discontinuous
functions at the boundary of the grating. Therefore, the FFF imposes to express the two
components of the electric field in terms of their tangential and normal component along the
surface (

#»
Et and

# »
En respectively). For that, let us introduce the unit vector

#»
N = Nx

#»u x +Nz
#»u z

the grating’s profile normal at a given point, with Nx and Nz are considered as algebric values.
For example, in Fig.3.3.(b) which corresponds to a zoomed part of the sinusoidal function of
the grating, Nx < 0 and Nz > 0. Consequently, by using those components, we can define the
unit vector of the grating’s profile tangent

#»
T . This vector is a unit vector perpendicular to the

normal of the profile
#»
N . Thus,

#»
N · #»

T = 0 and
#»
N × #»

T =± #»
1 must be verified. Under these

conditions, two possibilities may appear. In our case, we chose
#»
T = Nz

#»u x −Nx
#»u z. Indeed,

the orthogonality between the two vectors may be verified by ensuring that the scalar product
is equal to nullity.
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In case of a sinusoidal profile, the normal vectors on x and z known as Nx and Nz

respectively are equal to,
Nx =−sinθn ; Nz = cosθn

Referring to Fig.3.3.(b), θn is the cross section angle between the z-axis and
#»
N . At this

chosen point of the grating, the sinusoidal function is increasing along x. Thus, θn is positive
and can be defined as,

tan(θn) =
∂ f
∂x

Consequently, Nx and Nz can be expressed in term of the equation of f (x) as,

Nx =− tanθn√
1+ tan2θn

=−
√

1

1+(∂ f/∂x)2
∂ f
∂x

Nz =
1√

1+ tan2θn
=

√
1

1+(∂ f/∂x)2

(3.10a)

(3.10b)

The scalar product of the incident electric field
#»
E with

#»
N and

#»
T allows us to present the

normal and tangential component of the field Enorm and Etang as follows,

#»
E · #»

N =Enorm = NxEx +NzEz
#»
E · #»

T =Etang = NzEx −NxEz

(3.11a)

(3.11b)

Therefore, the electric field components Ex and Ez can be expressed in term of Enorm and
Etang as follows,

Ex = NxEnorm +NzEtang

Ez = NzEnorm −NxEtang

(3.12a)

(3.12b)

Moreover, by referring to Eq.(2.8), we define the harmonic vectors of the [Dx] and [Dz]

which represent the (2N +1) Fourier components of the electric displacements Dx and Dz

respectively. Moreover, [Dx] and [Dz] are proportional to [k2 Ex] and [k2 Ez] respectively since
the evolution of the relative permittivity of the profile εr is represented in k = 2π

λ

√
εr. Thus,

by combining the displacement harmonic vectors with the previous equations (3.11), and by
keeping in mind that N2

x +N2
z = 1, we can write,

[
k2 Ex

]
= Jk2K [NxEnorm]+ Jk2K [NzEtang][

k2 Ez
]
= Jk2K [NzEnorm]− Jk2K [NxEtang]

(3.13a)

(3.13b)
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(a)

(b)

Fig. 3.3 (a) Geometry and notations of a sinusoidal grating (b) Zoomed part of the sinusoidal
grating with the decomposition of the electric field E into its normal and tangential component
with respect to the surface at a given point of the grating.
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Here, the use of a toeplitz matrix for k2 is due to the multiplication of its Fourier series with
the Fourier series of the term [NiE j]. Nevertheless, we can notice that Eq.(3.13) doesn’t
respect the inverse rule of Li. Thus, this situation imposes the study of the continuity of the
field for each term of the two equations. The first right-handed part of Eq.(3.13a) contains
the product of the discontinuous profile permittivity εr and the transverse component of
the electric field Ex. As Ex may be discontinuous at some points of the surface, the jump
discontinuities may appear in that case and the product must sustain the inverse rule of Li.
On the other hand, the multiplication of the permittivity evolution in the left-handed part
of this equation requires the use of Laurent’s rule (first condition of Li) as the tangential
component of the field is always continuous. Following the same analysis, the first product
of the right-handed part of Eq.(3.13b) follows the inverse rule of Li, while the left-handed
part requires Laurent’s factorization to correctly handle the multiplication. As a result, the
set of electric displacement equations that respect Li’s conditions are expressed as,

[
k2 Ex

]
=

s
1
k2

{−1

[NxEnorm]+ Jk2K [NzEtang]

[
k2 Ez

]
=

s
1
k2

{−1

[NzEnorm]− Jk2K [NxEtang]

(3.14a)

(3.14b)

By substituting, Enorm and Etang of Eq.(3.11a) and Eq.(3.11b) in the system (3.14), we obtain:

[
k2 Ex

]
=

s
1
k2

{−1 [
N2

x Ex + NxNzEz
]
+ Jk2K

[
N2

z Ex − NzNxEz
]

[
k2 Ez

]
=

s
1
k2

{−1 [
NzNxEx + N2

z Ez
]
− Jk2K

[
NzNxEx − N2

x Ez
]

(3.15a)

(3.15b)

Nx and Nz are chosen to be always continuous at the discontinuities of the profile evolution
(Fig.3.4). Actually, this is the unique constraint of this method to respect the rigorous
boundary condition. Nevertheless, it is also possible to choose a discontinuous function for
the normal. In this case, the position of the discontinuity must not be common with the
position of the discontinuity of the permittivity tensor. Thus, Laurent’s rule can be applied
while multiplying the normal vectors with k2, and the developed form of system (3.15) can
be expressed as,
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Fig. 3.4 Unit cell of sinusoidal grating profile. f (x) is the function of the profile and Nx,
Nz represent the normal distribution of the profile with respect to the x-axis and the z-axis
respectively.

[
k2 Ex

]
=

(s
1
k2

{−1

JN2
x K+ Jk2KJN2

z K

)
[Ex] +

(s
1
k2

{−1

− Jk2K

)
JNx NzK[Ez]

[
k2 Ez

]
=

(s
1
k2

{−1

− Jk2K

)
JNx NzK[Ex] +

(s
1
k2

{−1

JN2
z K+ Jk2KJN2

x K

)
[Ez]

(3.16a)

(3.16b)

Subsequently, we define the matrix Q that allows the transition from the harmonic vectors
[Ex] and [Ez] into the vectors that incorporate the evolution of the grating’s profile i.e Jk2ExK
and Jk2EzK . [

k2Ex

k2Ez

]
= Q

[
Ex

Ez

]
=

(
Qxx Qxz

Qzx Qzz

)[
Ex

Ez

]
(3.17)

With,

Qxx =

s
1
k2

{−1

JN2
x K+ Jk2KJN2

z K

Qxz = Qzx =

(s
1
k2

{−1

− Jk2K

)
JNx NzK

Qzz =

s
1
k2

{−1

JN2
z K+ Jk2KJN2

x K
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Now, Jk2ExK and Jk2EzK can be incorporated into the Maxwell’s equation of propagation
Eq.(2.14). We have to mention that k2 = ω2µ0ε , ε = ε0εr and [H ′

y] = ωµ0Hy. Thus, the
harmonic form of Maxwell’s equations in TM polarization can be written as,

∂ [Ex]

∂ z
− ∂ [Ez]

∂x
= j[H ′

y]

−
∂ [H ′

y]

∂ z
=−ωµ0 j[k2Ex]1/(ωµ0) =− j[k2Ex]

∂ [H ′
y]

∂x
=−ωµ0 j[k2Ez]1/(ωµ0) =− j[k2Ez]

(3.18a)

(3.18b)

(3.18c)

The combination of Eq.(3.18c) and Eq.(3.16b) allows to reformulate the system of differential
equation in terms of the transverse components. Hence, [Ez] can be written as,

[Ez] = Q−1
zz

(
j
∂ [H ′

y]

∂x
−Qzx[Ex]

)
(3.19)

Moreover, by substituting [Ez] of Eq.(3.19) in Eq.(3.18a), the differential system of the
transverse component can be written as,

∂ [Ex]

∂ z
= j[H ′

y]+
∂

∂x

{
Q−1

zz

(
j
∂ [H ′

y]

∂x
−Qzx[Ex]

)}
∂ [H ′

y]

∂ z
= j[k2Ex]

(3.20a)

(3.20b)

By replacing [k2Ex] with its developed form, and by noticing that in the Fourier regime
∂

∂x = jK, with K is the (4N +2×4N +2) diagonal matrix of σ where the ii component is
equal to σ0 +(−N + i)2π

Λ
) the system can be rewritten as,

∂ [Ex]

∂ z
= j[H ′

y]+ jK
{

Q−1
zz
(
−K[H ′

y]−Qzx[Ex]
)}

∂ [H ′
y]

∂ z
= jQxx[Ex]+ jQxz[Ez]

= jQxx + jQxzQ−1
zz
(
−K[H ′

y]−Qzx[Ex]
)

(3.21a)

(3.21b)

Therefore, the system of differential equations that takes into account the evolution of the
profile and describing the propagation of electromagnetic field in TM polarization can be
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expressed as, 
∂ [Ex]

∂ z
=− jKQ−1

zz Qzx[Ex]+ j
(
Id −KQ−1

zz K
)
[H ′

y]

∂ [H ′
y]

∂ z
=
(

jQxx − jQxzQ−1
zz Qxz

)
[Ex]− jQxzQ−1

zz K[H ′
y]

(3.22a)

(3.22b)

The differential system can be re-written in a compact manor as,

∂

∂ z

[
[Ex]

[H ′
y]

]
= M(z)

[
[Ex]

[H ′
y]

]
(3.23)

The Fourier component [Ex] and [H ′
y] are composed of 2N + 1 harmonics for each vector

following following σn with n between −N and N ⇒ σ−N to σN , where each harmonic
represents the amplitude of the involved component. we introduce the matrix [F ] which
represents the juxtaposition of the two vectors [Ex] and [H ′

y], the differential system can be
re-written as,

∂ [F ]

∂ z
= M(z)[F ] (3.24)

On the other hand, M(z) is defined as the propagation matrix of the electromagnetic wave
inside the modulated zone that takes the evolution of the profile into consideration so-called
FFF,

M(z) = j

[
M11 M12

M21 M22

]
(3.25)

With,
M11 =−KQ−1

zz Qzx

M12 = Id −KQ−1
zz K

M21 = Qxx −QxzQ−1
zz Qxz

M22 = QxzQ−1
zz K

Therefore, the propagating fields, in TM polarization, inside the modulated zone are described
by a system of (4N+2) coupled differential equations, depending on the Fourier components
of [Ex] and [H ′

y].

3.1.5 Fields outside the modulated zone

In the homogeneous zones, the plane waves are described by the eigenvectors of these regions.
Thus, by referring to Eq.(2.24), the transient magnetic field outside the modulated zone ( in
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the superstrate and the substrate) can be expressed as follows,

H ′
y(x,z) =

+N

∑
n=−N

(
B+

n e j(σnx+βnz)+B−
n e j(σnx−βnz)

)
(3.26)

As a result, the (2N +1) Fourier space components of [H ′
y] can be written as,

[H ′
y] = [B+e jβ z]+ [B−e− jβ z] (3.27)

= [H
′+
y ]+ [H

′−
y ] (3.28)

Where [H
′+
y ] and [H

′−
y ] belong to the (2N +1) forward and backward Fourier components of

the magnetic field respectively. Moreover, the electric field Ex can be expressed in terms of
H ′

y as,

Ex(x,z) =− jωµ0

k2
∂Hy

∂ z
=− j

k2

∂H ′
y

∂ z

From this equation, the (2N +1) harmonic vector [Ex] can be expressed as,

[Ex] =
β

k2 [B
+e jβ z]− β

k2 [B
−e− jβ z] (3.29)

=
β

k2 [H
′+
y ]− β

k2 [H
′−
y ] (3.30)

Introducing [V ] which represents the juxtaposition of H
′−
y and H

′+
y ,

[V ] =

[
[H

′−
y ]

[H
′+
y ]

]
(3.31)

As a result, the combination of Eq.(3.29) and Eq.(3.31) allows the transition from the
representation of the stationary wave [F ] into the backward and forward components of the
field [V ], [

[Ex][
H ′

y
]]= Ψ

[[
H ′

y
]−[

H ′
y
]+
]

(3.32)

Finally, Eq.3.32 can be written as,

[F ] =

[
Ψ11 Ψ12

Id Id

]
[V ] (3.33)
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With Id: Identity matrix of (2N +1×2N +1) components, and Ψ11,Ψ12 are two (2N +

1×2N +1) diagonal matrices expressed as,

Ψ11 =


. . . 0

−βn
k2

0 . . .

 , and Ψ12 =


. . . 0

βn
k2

0 . . .

 (3.34)

This set of (4N +2) harmonic equations describes the field in the homogeneous media.
Finally, the existence of a linear link between the homogeneous zones and the modulated
zone allows the use of the shooting method via the Ψ matrix introduced above and the
transmission matrix of the Eq.(3.23) [10].

3.2 Formulation of the differential theory in TE polariza-
tion

3.2.1 Fields inside the modulated zone

In TE polarization, both the the electric and magnetic fields (non magnetic medium), and
its normal derivative are all continuous. Therefore, there is neither discontinuous jump nor
fields discontinuities at the interface that implies the use of FFF. Based on the transient form
of Maxwell’s equations in TE polarization, the system of the differential equations to be
solved can be summarized in the transverse component Hx and Ey as,

−
∂Ey

∂ z
= j ω µ0 Hx = jH ′

x

∂Ey

∂x
= j ω µ0 Hz = jH ′

z

∂H ′
x

∂ z
−

∂H ′
z

∂x
=− j k2 Ey

(3.35a)

(3.35b)

(3.35c)

With H ′
x = ωµ0Hx and H ′

z = ωµ0Hz and k2 = ω2µ0ε .

By substituting Eq.(3.35b) in Eq.(3.35c), the system will be only represented by the
transverse components of the electromagnetic field with respect to the propagation axis z,

∂Ey

∂ z
=− jH ′

x

∂H ′
x

∂ z
=− j k2 Ey − j

∂ 2

∂x2 Ey

(3.36a)

(3.36b)
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The Floquet-Bloch theorem allows to describe the electromagnetic fields, Ey and H
′
x as a

generalized Fourier series,

Ey(x,z) =
+N

∑
n=−N

Ene jσnxe jβnz

H
′
x(x,z) =

+N

∑
n=−N

H
′
ne jσnxe jβnz

(3.37)

With, En and H
′
n are to the Fourier coefficients of the nth harmonic of the electric field

Ey and the magnetic field H
′
x respectively. Moreover, the harmonic vector notation ca be

used to describe (2N + 1) Fourier coefficients [Ey] and [H
′
x] can be represented as [Ey] =

[E−N , ...,E0, ...,E+N ] and [H
′
x] = [H

′
−N , ...,H

′
0, ...,H

′
+N ].

By performing a Fourier transformation, the system of Eq.(3.36) can be expressed in the
harmonic regime following a truncated Fourier series of 2N +1 components for each field.
Therefore, the term ∂/∂x will be substituted by jK (K is a diagonal matrix where the ii
component is equal to σ0 +(−N + i)2π

Λ
) and the harmonic differential equations can be

written as, 
∂ [Ey]

∂ z
=− j[H ′

x]

∂ [H ′
x]

∂ z
= j
(
K2 − Jk2K

)
[Ey]

(3.38a)

(3.38b)

The system of Eq.(3.38) can be written as a system of 4N +2 coupled differential equations
representing the electromagnetic fields propagating in TE polarization inside the modulated
zone of the grating,

∂

∂ z

[
[Ey]

[H ′
x]

]
= M(z)

[
[Ey]

[H ′
x]

]
(3.39)

Where M(z) is a matrix of 4N +2×4N +2 components with n varying from −N to N, and
composed of four blocs with (2N +1)× (2N +1) components for each one,

M(z) = j

[
0 −Id

M21 0

]
(3.40)

with Id is a Identity matrix of 2N + 1× 2N + 1 components and M21 =
(
K2 − Jk2K

)
be-

ing a diagonal matrix of 2N + 1× 2N + 1 components where the ii element is equal to
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[
σ0 +(−N + i)2π

Λ

]
−
[2π

λ
εn
]
. Finally, Eq.(3.39) can be simplified as,

∂ [F ]

∂ z
= M(z)[F ] (3.41)

3.2.2 Field outside the modulated zone

As the wave vector and the refractive index are always constant in the superstrate and the
substrate regions, the field decomposition in Fourier space can follow the Rayleigh expansion
as the solution of Helmholtz’s equation, in that case, rests on the exponential decomposition
of the field into propagating and evanescent plane waves.
By taking into consideration the truncation of the field from −N to +N, Eq.(2.22) can be
reformulated as,

Ey(x,z) =
+N

∑
n=−N

(
A+

n e j(σnx+βnz)+A−
n e j(σnx−βnz)

)
=

+N

∑
n=−N

(
A+

n e jβnz +A−
n e− jβnz

)
e jσnx

=
+N

∑
n=−N

(
E+

n +E−
n
)

e jσnx

(3.42)

Where E+
n and E−

n , the nth Fourier element of the 2N +1 transverse electric field vector
in the Fourier space [Ey]. Thus, we can write,

[Ey] = [A+e jβ z]+ [A−e− jβ z]

= [E+
y ]+ [E−

y ]
(3.43)

Where [E+
y ] and [E−

y ] represents the (2N + 1) forward (traveling following +z) and
backward (following −z) Fourier components of the field. The combination of Eq.(3.35a)
and Eq.(3.43) allows us to write the harmonic vector [H ′

x] of the magnetic field H ′
x as,

[H ′
x] = j

∂ [Ey]

∂ z
=−[βA+e jβ z]+ [βA−e− jβ z]

=−β [E+
y ]+β [E−

y ]

(3.44)

Hence, through the combination of Eq.(3.43) and Eq.(3.44), the matrix that allows the
transition from the backward and forward form of the field into the stationary waves can be

37



PRINCIPLES OF THE DIFFERENTIAL METHOD ASSOCIATED WITH FAST FOURIER

FACTORIZATION

expressed as, [
[H ′

x]

[Ey]

]
= Ψ

[
[E−

y ]

[E+
y ]

]
[F ] = Ψ[V ]

(3.45)

With,

Ψ =

[
Id Id

Ψ21 Ψ22

]
(3.46)

With Id: Identity matrix of 2N + 1× 2N + 1 components, and Ψ21,Ψ22 are two 2N + 1×
2N +1 diagonal matrix expressed as,

Ψ21 =


. . . 0

βn

0 . . .

 , and Ψ22 =


. . . 0

−βn

0 . . .

 (3.47)

Practically, we are concerned with the [V ] representation of the field since it provides the
components of the incident field, the diffracted fields in the reflection zone, and the diffracted
components in the transmission area. However, the [F ] representation which takes place
in Eq.(3.4) describes the stationary fields in this zone. In contrast, the transition matrix Ψ

allows the change-over from the stationary wave representation in Fourier space into the
forward and backward Fourier components of the diffracted plane waves in the homogeneous
zones.

3.3 Numerical integration of the matrix differential system

The differential systems of Eq.(3.41) and Eq.(3.24), for TE and TM polarization respectively,
are considered as a set of first-order coupled differential equations. To solve this kind of sys-
tem, an integration method should be used. Basically, the differential method discretizes the
modulated region into several layers Ls where z0 < Ls < zh, following a constant integration
step Dz (Fig.3.5). The propagation in each layer is described by the differential matrix M(z)
via the differential systems mentioned before. Although, M(z) depends on the position of the
layer following the propagation axis z. For that, the boundary conditions should be respected
between the different discretized sections.
However, to integrate the differential matrix M(z) of each layer, the differential method uses
a combination of the Runge-Kutta integration and the shooting method. Indeed, the shooting
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Fig. 3.5 The modulated zone of a unit cell of a sinusoidal grating. The discretization step is
Dz where each discretized layer is represented by its T-Matrix.

method is used to calculate the transfer matrix (T-matrix) of propagation in a given layer
Ls via the Runge-Kutta integration. For that, initial conditions are necessary to perform the
integration. Thus, the use of the shooting method which define the harmonic matrix one
harmonic after another consequently. Indeed, this calculation can be simplified by initializing
the system as an eye identity matrix.

3.3.1 The Runge-Kutta integration algorithm

Taking into consideration the differential equation depicted below,

∂F(z)
∂ z

= M(z)F(z) (3.48)

This equation describes exactly our differential problem. Furthermore, the Runge-Kutta
algorithm of order 4 is adapted to solve such type of differential equations. In this case, the
function F(z) iterates the 4 consecutive layers step by step, starting from a point where the
initial conditions are defined (M1) to the next layer (M2) and finally till the 4th layer (M4).
The iteration is done using the relationship below,

F(z+Dz) = F(z)+
1
6

M1 +
1
6

M2 +
1
3

M3 +
1
6

M4 (3.49)
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With,
M1 =DzM (z,F(z))

M2 =DzM
(

z+
Dz

2
,F(z)+

M1

2

)
M3 =DzM

(
z+

Dz

2
,F(z)+

M2

2

)
M4 =DzM (z+Dz,F(z)+M3)

(3.50)

Nevertheless, a sufficiently small iteration step must be chosen to ensure the rigorous
development of the integration without any divergence problem.

3.3.2 Runge-Kutta algorithm applied to the Differential theory in Fourier
space

In the case of the differential theory of grating, the matrix form of differential system that
describes the propagation in the layer Ls is described as follows,

∂ [F(z)]
∂ z

= M(z)[F(z)] (3.51)

We aim to integrate this differential system to get the matrix P(z) that links the fields at the
position z and z+Dz,

[F(z+Dz)] = P(z)[F(z)] (3.52)

By considering that the integration step is sufficiently thin to ensure the stability of the
integration, Eq.(3.49) and Eq.(3.54) allow us to integrate the Fourier space differential system
and to write P(z) as,

P(z) = Id +
Dz

6
M1(z)+

Dz

6
M2(z)+

Dz

3
M3(z)+

Dz

6
M4(z) (3.53)

With,
M1(z) =M(z)

M2(z) =M
(

z+
Dz

2

)(
Id +

1
2

M1(z)
)

M3(z) =M
(

z+
Dz

2

)(
Id +

1
2

M2(z)
)

M4(z) =M (z+Dz)(Id +M3(z))

(3.54)

Nevertheless, the propagation in the overall system can be performed by the consecutive
cascade of the propagation matrix P(z) of each discretized layer (layer by layer) by using
the transfer matrix mentioned in the next section. Furthermore, we can gather different
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propagation matrix P in one scattering matrix. Hence, the propagation matrix of the nS layers
can be cascaded gathering ns ∈ N P-matrices in one propagation matrix.
Each layer possesses its own propagation matrix Pz+Dnsn

. We define P1(z), P2(z) ... Pns(z) as
the matrices of the first, second and ns layers. With,
P1(z) = P(z+Dz)

P2(z) = P(z+2Dz)

Pns(z) = P(z+nsDz)

Therefore, to perform the propagation matrix P(z) of gathering ns layers, it is sufficient to
cascade the sub-matrices as follows,

P(z) = Pns(z) · · ·P2(z) ·P1(z) · Id (3.55)

Further, the Runge-Kutta integration is considered more adapted with the continuity of the
profile. Also, it is examined as more accurate than the eigen resolution of the differential
system applied with the FMM [3]. This integration allows us to define the propagation in a
modulated zone where the field is not straightforwardly calculated.

3.4 The linear relation that links the modulated region with
the homogeneous zones

For both TE and TM polarizations, the last step to perform the propagation, in the entire
structure, is to link the calculated field in the modulated zone via the matrix P(z) from
one side, with the fields calculated outside the modulated zones (superstrate and substrate)
from the other side. We defined before Dz as the constant integration step following the
propagation axis z. By discretizing the grating profile by Dz, a given number of layers or
sections Ns that depends on Dz and A the depth of the grating can be defined,

Ns =
A
Dz

Accordingly, the recursion relation between the superstrate, the grating sections, and the
substrate can be reduced into a linear relation that links the fields of the incident region (for
example the superstrate) into the fields of the transmission region (for example the substrate).
In other words, the combination of the different zones gives access to the propagation
vector in the overall structure, and consequently, we can calculate the transmission and
reflection coefficients of the diffracted orders. Thus, by iterating continuously the different
modulated sections, discretized by Dz, and the last section Lh at the position z = h (substrate
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homogeneous region), we can define the overall propagation matrix P that describes the
propagation in the entire periodic structure. In this manner, P links the Fourier coefficients of
the stationary fields of the superstate [E0

x ] and [H
′0
y ] at z = 0 with the stationary field of the

substrate layer [Eh
x ] and [H

′h
y ] at z = h as,

[F(h)] = P[F(0)] (3.56)

With P is the cascade of the propagation matrices of the different sections defined as,

P = Ph · · ·Ps−1 ·Ps ·Ps+1 · · · ·P0

Unfortunately, P deals with the Fourier components of the stationary fields [Ex] and [H ′
y].

Under this situation, the access to the eigenvectors of the forward and backward fields at
the superstrate and the substrate is not provided. To get access to the different diffracted
intensities, a transition from the representation of the stationary field into the forward and
backward field ([E+] and [E−] for TE polarization, and [H

′+] and [H
′−] for TM polarization

should be done. This transition is executed by combining the Runge-Kutta integration that
gives the propagation matrix P and a special algorithm of the shooting method that transforms
P into the scattering Transfer matrix T -matrix. As a result, the T-Matrix links the forward and
backward fields of a given structure of a given layer at the position zs−1 with the forward and
backward fields of the next layer at the position zs. On the other hand, the initial conditions
to initialize the calculation are not found. Here, the other role of the shooting method appears
by defining with a special algorithm the initial conditions that allow the initialization of the
problem and therefore, the application of the Runge-Kutta algorithm.

3.5 Use of the Shooting Method

3.5.1 Defining the initial conditions

The use of Eq.(3.43) and Eq.(3.27) gives arise of the stationary fields, for TE and TM
polarization respectively, outside the modulated zones and at their boundaries. Nevertheless,
the Fourier coefficients of the backward and forward fields in the homogeneous regions are
considered unknown. Consequently, the initial conditions are also considered as unknown
values. Indeed, the Shooting Method is based on the existence of the linear relation ( Eq.3.56)
between [F(0)] and [F(h)] to circumvent the non-existence problem of the initial conditions.
To elaborate more, the algorithm of the method rests on the use of arbitrary initial conditions.
For example, for the [F(0)] matrix of 2(2N + 1) column, we define a harmonic column
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[Fn(0)] of 2N + 1 components where the nth element is equal to unity and all the other
components are null. Therefore, the resolution of the diffraction problem consists of turning
the boundary value problem into an initial value problem.

Under these conditions, as we integrate the system from z = 0 to z = h, the resulting
vector [F(h)] will depends only on the nth column of P. Consequently, at the 0th slice (the
superstrate), we take the 2(2N +1) independent initial column vectors of [F(0)] noted as
F p(0) with F p(0)i = δpi with i ∈ [1,2(2N +1].
Consequently, to fill all the columns of the (2N +1×2N +1) matrix, each vector of [F p(0)]
is iterated. Finally, the propagation vector P can be completely constituted following the
linear relation of Eq.(3.56).

3.5.2 The transition from the stationary fields into the forward and
backward representation of the fields

The second role of the shooting method is to allow the transition from the harmonic rep-
resentation of the stationary field [Ex] and [H ′

y] into the intensities of the backward and
forward plane waves of the magnetic field for TM polarization, and the electric field for TE
polarization. This transition can be done by introducing an infinitely thin homogeneous layer
with a given permittivity between each slice. As the eigenmodes are the plane waves in the
homogeneous layers, the main aim of these infinitely thin layers is to change over from a
description of the total field into the description of the forward and backward fields of each
layer. As a result, we can easily determine the reflection and the transmission coefficients of
each diffracted plane wave.
To elaborate more, let us consider the unit cell of a sinusoidal grating of Fig.3.6. Here,

the modulated zone is bounded between the positions z0 and zh. The forward and backward
waves of the superstrate at z0 are [c+0 ] and [c−0 ] which respectively represent

[
H

′+
y

]
and[

H
′−
y

]
in TM polarization, and

[
E+

y
]

and
[
E−

y
]

in TE polarization at the position z = z0.

Consequently, the forward and backward waves at the substrate (z = zh) are [c+h ] and [c−h ]
respectively.
We proved before that in the homogeneous layers, a transition matrix Ψ can be applied to
ensure the change over from the total field representation into the forward and backward
waves vectors (eigen vectors) for TE and TM polarization.
We know that,

[F(0)] =Ψsup[V (0)],

[F(h)] =P[F(0)],

[V (h)] =Ψ
−1
sub[F(h)]
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Fig. 3.6 A unit cell of periodic sinusoidal grating. The propagation in the homogeneous
layers are calculated via the Ψ matrix and in the modulated zone, the propagation matrix P is
a result of the recursion of the Runge-Kutta integration of the different sections.

Thus, by combining the three previous equations, we can write,

[V (h)] = Ψ
−1
sub PΨsup [V (0)] (3.57)

With,

[V (h)] =

[
[c−h ]
[c+h ]

]
and [V (0)] =

[
[c−0 ]
[c+0 ]

]
(3.58)

Finally, we can write the relation of the transmission matrix T that links the incoming and
the outgoing fields of the superstrate at z0 and the substrate at zh as,

[V (h)] = T [V (0)] (3.59)

The entire transfer matrix T is a result of the recursion of all the discretized layers of the
modulated zone with a thickness of Dz for each one. In other words, each Ps matrix of a
given slice zs is transformed into a T s matrix as,

T s = Ψ
−1
sub Ps

Ψsup

Consequently, the T s matrix gives the relation between the field at the zth
s−1 and the zth

s

layers. Indeed, the recursion of the successive T s matrices gives the total transfer matrix T
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as,
T = T h · ·T s−1 ·T s ·T s+1 · ·T 0..... (3.60)

3.5.3 T-matrix of a given section

Fig. 3.7 Definition of T-matrix of a given section. This algorithm links the amplitude of the
wave of the sth layer with the amplitude of the fields of the s−1th layer.

We take into consideration the layer s bounded between the position zs−1 and zs, as
depicted in Fig.3.7. The infinitely thin layer at each boundary serves the passing from [Es

x]

and [H
′s
y ] into [c−s ] and [c+s ], the backward (following −z) and forward (following +z) Fourier

coefficients at the position zs respectively. In general, T s is the matrix that links the forward
and backward field of the layer at zs with the forward and backward field of zs−1 can be
expressed as, [

[c−s ]
[c+s ]

]
= T s

[
[c−s−1]

[c+s−1]

]
(3.61)

However, T s can be decomposed into four sub-matrices as,

T s =

[
T s

11 T s
12

T s
21 T s

22

]
(3.62)

When the system is truncated between n ∈ [−N,+N], each sub-matrix represents a
(2N +1×2N +1) matrix. With,

• T s
11 is the reflection matrix at the position zs−1.

45



PRINCIPLES OF THE DIFFERENTIAL METHOD ASSOCIATED WITH FAST FOURIER

FACTORIZATION

• T s
12 is the transmission matrix from position zs to the zs−1 position.

• T s
21 is the transmission matrix from position s−1 to s.

• T s
21 is the reflection matrix of the zs position.

Nevertheless, it is well known that the T-matrix presents numerical instabilities in the
calculation due to the growing exponential of the evanescent modes in the integration step
when the dimensions of the matrix are large [54]. Thus, several solutions have been proposed
to tackle this instability. The scattering matrix applied by Li on the Fourier space methods
has shown its effectiveness with this issue turning the Fourier space methods into stable
and efficient tools for the modeling of arbitrarily shaped grating with any groove depth and
permittivity.

3.6 Scattering Matrix algorithm (S-Matrix)

3.6.1 Introduction

To ensure the stability of any electromagnetic numerical method, the conservation of energy
in any diffraction grating must be respected. In other words, the sum of the diffracted and
absorbed energy over the incident energy must always be equal to one. Nevertheless, in
some cases, this ratio shows some numerical instabilities by reaching a level higher than one.
This divergence has mainly appeared in two cases: 1) when modeling deep groove grating
(peak to peak amplitude > λ/10) 2) multi-coated or multi-layered surfaces. The main origin
of this divergence is the exponential term exp(− jβ z) of the evanescent modes in the T11

sub-matrix of the transfer matrix T at a given layer. The imaginary part of β presented with
the evanescent modes grows exponentially with z [84]. At this stage, the T11 matrix contains
growing values that give rise to a weak numerical precision when inverting or cascading the
T-matrices of the layers.

As mentioned before, T is the recursion of the different discretized sections following
z. For example when multiplying the two matrices T s and T s−1 of Eq.(3.60). The result of
the T bloc of the two matrices will be T s ·T s−1. Therefore, when the imaginary part of the
exponential term is greater than zero, this multiplication will induce the loss of precision and
the numerical instability.

To tackle this problem, different propagation algorithms have been proposed. The first
starting point was with the Bremmer series in order to improve the T-matrix algorithm [11].
This method is based on the modal analysis of the Fourier expansion and it has been applied
for arbitrarily shaped gratings in TE polarization. Besides, multiple types of Reflection series
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have been presented to replace the T-Matrix in multi-layered coated gratings. Indeed, this
algorithm has been applied by Li to the RCWA method by using structures with arbitrarily
shaped profile, depth, and permittivity.[83, 89]. The first application of the R-matrix with
the differential method was performed by Nevière et al. for TM polarization [82]. As a
result, this algorithm has eliminated the numerical instabilities problem faced with the DM
for more than twenty years. Finally, Li has shown that the scattering matrix (S-Matrix) used
for the electromagnetic study of the photonic bandgap can be applied with Fourier space
methods under certain conditions [54]. The relevance of this matrix, to the other mentioned
algorithms, is that it fragments the sections into sufficient small sections to prevent the
numerical instabilities while cascading the scattering matrices from a section to the other, so
that the exponentially growing functions disappear from the algorithm.

3.6.2 Definition of the S-Matrix

(a) (b)

Fig. 3.8 (a) Discretized grating structure, where the horizontal lines represent actual material
interfaces. The fields in each layer can be represented as a superposition of upward- and
downward-propagating. (b) Definition of the S-matrix of a given s section. This algorithm
links the amplitude of the incoming fields towards a given layer with the amplitude of the
outgoing fields from this given layer.

As the differential method decomposes the structure into thin horizontal slices to perform
the integration of the differential equations, thus it creates numerical layer interfaces. Between
two consecutive interfaces (zs and zs+1), there is a layer with a thickness Dz relied to a specific
Fourier series that describes the profile evolution of the grating in this layer. The fields in each
layer are defined following a specific Fourier series. On the other hand, the interface gives
access to the amplitudes of the forward and backward modes (plane waves for scattering
study here or eigen modes of a waveguide structure in the transition matrix proposed in the
Chapter.7). For that, a series of parallel straight lines has been taken into consideration.
In Fig.3.8.(a), the upward and downward arrows schematically represent the forward and
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the backward waves respectively. [c+s ] and [c−s ] denote the column vectors whose the 2N +1
elements are the wave amplitudes. Once the forward and backward modes are determined in
each section, the grating problem can be reduced to a problem of determining the amplitude
of each mode.
For any 0 ≤ s ≤ h, it seeks a stack of S-matrices. Indeed, the Ss-matrix of a stack of s slices
(not to be confused with the S-matrix of the sth slice) that links the amplitudes of the forward
waves with the backward amplitudes in zs and medium z0 can be expressed as, [c+s ][

c−0
]
= Ss


[
c+0
]

[c−s ]

 (3.63)

And, Ss is decomposed into four sub-matrices,

Ss =

[
Ss

11 Ss
12

Ss
21 Ss

22

]

In order to perform the T-matrix to S-matrix transformation of the interface (s), that links
the waves of the two adjacent layers at the positions z = s and z = s+1, the sub-matrices
of Eq.(3.62) have to be used. Referring to Ref.[54], the T-to-S transformation for a given
interface (s) can be performed using the following equations,

S(s)11 = T (s)
11 −

[(
T (s)

12 (T (s)
22 )−1

)
T (s)

21

]
S(s)12 = T (s)

12 (T (s)
22 )−1

S(s)21 =−(T (s)
22 )−1T (s)

21

S(s)22 = (T (s)
22 )−1

(3.64)

As a result, the growing exponential of the block T s
11 are attenuated. So, the numerical

fluctuations are suppressed and in that case the numerical errors disappear. Therefore, with
the recursive integration from a layer to another, the matrix Ss (s ∈ [1,h−1]) stays stable.

3.6.3 The total S-matrix of the entire structure

In most of cases, the structure is illuminated from the superstrate at the position z = z0.
The initial conditions of the integration are always generated with the calculation of the
T-matrix of each layer s (Identity matrix used in the Runge-Kutta integration (Eq.3.55)).
Thanks to the T to S-matrix transformation, the S0 matrix of the zeroth layer can be obtained

48



3.6 SCATTERING MATRIX ALGORITHM (S-MATRIX)

from T 0 = Ψ
−1
subP(0)Ψsup by applying the transformation of Eq.(3.64). At the end of the

integration of all the layers, the recursion of the Ss-matrices allows obtaining the S-matrix of
the whole scattering matrix Stot . This last matrix depends only on the profile of the grating
and the optical parameters of the different media. The cascade of the different S-matrices is
performed by the recursion of the consecutive S-matrices using the Redheffer-Star product
[102].
For example, the cascade of a scattering matrix S(A) with a scattering matrix S(B) can be
calculated using the Redheffer-Star product S(AB) = S(A)⊛S(B) as follows,

S(AB) =

[
S(AB)

11 S(AB)
12

S(AB)
21 S(AB)

22

]
(3.65)

With,

S(AB)
11 = S(A)11 +S(A)12

[
I −S(B)11 S(A)22

]−1

S(AB)
12 = S(A)12

[
I −S(B)11 S(A)22

]−1
S(B)12

S(AB)
21 = S(B)21

[
I −S(A)22 S(B)11

]−1
S(A)21

S(AB)
22 = S(B)22 +S(B)21

[
I −S(A)22 S(B)11

]−1
S(A)22 S(B)12

(3.66)

The global S-matrix of the structure Stot is then calculated by the recursion of the different
layers as,

Stot = S(0)⊛ ...S(s−1)⊛S(s)⊛S(s+1)⊛ ...S(h)

With, S(0) and S(h) are the scattering matrix of the superstate and the substrate respectively.
This global matrix links the diffracted field of the substrate layer at the position z = zh and
the superstrate layer at the position z = z0 to the incident field at z0. Thus, the global matrix
Stot can be expressed as, [

[c+h ]
[c−0 ]

]
= Stot

[
[c+inc]

0

]
(3.67)

Once Stot is calculated, the amplitudes of the transmitted diffraction orders [c+h ] in the
transmission zone, and the amplitude of the reflected diffraction orders [c−0 ] in the reflection
zone, the R(n) and T(n) which correspond to the efficiency of the reflected order and the
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transmitted order (n) respectively can be straightforwardly calculated from,[c+h ] = Stot
11 [c

+
inc]

[c−0 ] = Stot
21 [c

+
inc]

(3.68)

As Stot
11 and Stot

21 represent the global sub-matrices of the entire structure, the main advantage
of this algorithm added to its stability, is the physical interpretation given to the element of the
matrix Stot . We can notice, from Eq.(3.68), that the Stot

11 represents the reflection coefficient
of the system. Whereas, Stot

21 represents the transmission coefficient of this same system.

3.7 The intensities of the diffracted order

In case of the periodic structure, the diffraction efficiency EDn of a diffracted order n
(reflected or transmitted) can be defined as the flux of the Poynting vector of this order n at a
surface parallel on the structure, normalized by the flux of the pointing vector of the incident
field at the same position of this surface,

EDn =

∫∫
S PzndS∫∫
S Pz0dS

(3.69)

With, Pzn is the complex Poynting vector associated to the diffracted order n, projected on
the propagation axis z, and expressed as,

Pzn =
1
2

Real (En ∧H∗
n )z (3.70)

In the superstrate and the substrate, the field is expressed in terms of the Rayleigh
expansion. Therefore, the total field is described as the sum of plane waves and the relation
between Ex and H ′

y can be written as,

Ex = j
1
k2

∂H
′
y

∂ z
(3.71)

For TM polarization, after the integration steps and the calculation of S-matrix of the
overall structure, the Fourier coefficients of the forward magnetic field [c+0 ] and the backward
magnetic field [c+0 ] at the superstrate (z= 0), and the Fourier elements of the forward magnetic
field [c+h ] and the backward magnetic field [c+h ] at the substrate (z = h) are calculated. These
coefficients allow the calculation of the different intensities of the diffracted orders depending
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on the diffracted magnetic field H
′
y.

For z = 0, the Fourier series of the reflected magnetic field can be written as,

H
′0
y (x) =

+N

∑
n=−N

c−0,ne j(n 2π

Λ
+σ0)x

On the other hand, at the substrate level the transmitted magnetic field is written as,

H
′h
y (x) =

+N

∑
n=−N

c+h,ne j(n 2π

Λ
+σ0)x

and the incident field

H
′inc
y (x) =

+N

∑
n=−N

c+inc,ne j(n 2π

Λ
+σ0)x

In general, [c+inc] is defined as c+inc,n=0 = 1 and c+inc,n̸=0 = 0. Therefore, the ratio of diffracted
flux over the incident flux can be written as,

EDn = Real
(

nsup

n2
sub

|cq,n|2βn

β0

)
(3.72)

With βn =
√

k2 − (n2π

Λ
+σ0)2, with k = ksup or ksub and cq,n = c−0,n or c+h,n depending on

the calculation position of the reflection or transmission coefficients respectively. β0 =
2π

λinc
·nsupcos(θinc). For TE polarization, if we consider the diffracted electric field as,

Ey(x) =
+N

∑
n=−N

cne j(n 2π

Λ
+σ0)x

and the incident electric field

E inc
y (x) =

+N

∑
n=−N

c+inc,ne j(n 2π

Λ
+σ0)x

The efficiency of a diffracted order n can be written as,

EDn = Real
(

βn|cn|2

β0

)
(3.73)

With EDn = Rn and cn = c−0,n for the reflection coefficient, and EDn = Tn and cn = c+h,n
for the transmission coefficient. Nevertheless, we must be also careful about the choice of
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harmonics. For example, let’s consider the calculation of the transmission coefficient of the
order n so-called T(n). As [c+h ] is a 2N +1 vector, thus the transmission coefficient of the 0th

order is T(0), for the 1st order is T(1) and for the −1st order is T(−1). T0 is defined for n = 0
derived from the N +1 term of [c+h ]. In that case, we can find the same vector projected of
the incidence angle following x, i.e exp( jksupnsupsin(θincx) = exp( jksubnsubsin(θtransx) with
θtrans = θinc is the transmission angle of the order T(0). On the other hand, to get the harmonic
of T(−1), we have to use n = −1. Therefore, the projected wave vector following x must
sustain the Nth harmonic of [c+h ], which is represented as exp( jksupnsupsin(θincx) · exp( j λ

Λ
x).

Similarly, the T(1) order will be calculated with the N +2 harmonic, which corresponds to
the same previous projection but with the opposite sign in the argument part of the second
exponential term.

3.8 RCWA extracted from the differential theory

After introducing the algorithm of the differential method, a special form of the Fourier
modal Method (FMM) also known as Rigorous Coupled Wave Analysis (RCWA) can be
extracted from this theory. Two differences exist between the DM-FFF and the FMM. The
integration technique of the differential systems of Eq.(3.22) and Eq.(3.35), and the profile
is described as a stack of lamellar sections known as staircase approximation. Therefore,
Nx = 1 and Nz = 0. Under this last condition, the system that describes the propagation
polarization of each staircase discretized layer can be expressed in the TM polarization case
as, 

∂ [Ex]

∂ z
= j
(
Id −KJk2K−1K

)
[H ′

y]

∂ [H ′
y]

∂ z
= j

s
1
k2

{−1

[Ex]

(3.74a)

(3.74b)

On the other hand, the TE propagation equations remain invariant and similar to system
(3.35) as the fields in TE are always continuous. Following the same steps of sec.3.2, the
juxtaposition of [Ex] and [H

′
y] gives rise to the matrix M which is independent of z in that

case and described in the TM polarization case as,

M = j

 0 Id −KJk2K−1K
s

1
k2

{−1

0

 (3.75)

For each layer zs, the RCWA uses the staircase approximation along z. The simulated
profile is slightly different from the ideal surface profile. Then, the Eigenvalues ’λe’ and
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Eigenvectors W issued from the matrix of Eq.(3.74) are used to define the propagation in
this same layer. Practically, λe represents the vector of 2N +1 effective refractive indices
propagating in the layer and a column i of the matrix W corresponds to the eigen vector
associated to the eigenvalue λe,i.
Furthermore, with the diagonal matrix λe = Id ∗ [λe], we introduce D = exp(λe ·Dz). Thus,
the propagation matrix P(z) of the propagation matrix of the discretized layer s of thickness
Dz between zs−1 and zs can be written as,

Ps = P(z) =WDW−1

The recursion of all the propagation solution of each layer allows us to define the overall
propagation matrix P as,

P = Ph · ·Ps−1PsPs+1 · ·P0

Thus, the overall relation that describe the propagation in the entire structure and links the
superstate by the substrate can be expressed as,

[F(h)] = P[F(0)] (3.76)

Consequently, the T-matrix of each layer s is obtained by adding the infinitely thin layer at
the border of each structure and the scattering matrix of the layer is calculated similarly as the
procedure of the DM-FFF. Moreover, if we take into consideration the system of Eq.(3.22)
and by applying the eigen integration algorithm instead of the Runge-Kutta algorithm, the
DM-FFF will turn into a modal method associated with FFF. Thus, we will call this method
RCWA-FFF in the next sections.

3.9 Conclusion

Here, a detailed formulation of the differential method associated with Fast Fourier Factor-
ization (DM-FFF) has been presented. The main advantage of this method is that it takes
into consideration the evolution of the profile with respect to both the propagation axis
and the periodic axis. So, the problem of the staircase approximation used by the classical
Fourier Modal Method can be eliminated. Moreover, a Runge-Kutta integration algorithm of
order 4 is used instead of the eigen values and eigen vectors of the FMM. This algorithm is
characterized by its stability and accuracy while dealing with complex profile structures.
Now, the method is ready to be implemented and used to modelize and design complex
shaped diffraction gratings. Both TE or TM polarization can be used and different aspects
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can be modelized. For that, the next chapters of this part are devoted to validate the DM-FFF,
to show its enhanced convergence and accuracy with respect to other electromagnetic compu-
tational methods, and to apply this method for the modelization of a diffraction grating for
visual security applications.

54



Chapter 4

DM-FFF: Validation and comparison
with other electromagnetic
computational methods

This chapter is devoted to validate the implemented code containing the DM-FFF and the
RCWA and the RCWA-FFF extracted from the differential theory in terms of the calculated
efficiencies and the field maps from one side and to present the effectiveness of the DM-FFF
compared to other computational methods from the other side.
The code is implemented by using Python v2.7. This language has been chosen for many
reasons. First of all, it is a free and open source software with a huge number of free libraries
which can be downloaded easily. Moreover, it is faster than Matlab in term of execution time.

4.1 Validation of the methods

4.1.1 Introduction

After the implementation of the code in Python v2.7, the validation of the implemented
code is shown here. This code can easily switch between the DM-FFF, the RCWA-FFF
and the RCWA with its form explained in sec.3.8. This code is devoted at this scale for the
modelization of 1D diffraction grating excited by TE or TM polarized plane waves and with
a given angle of incidence θinc.
In case of Fourier space methods, the accuracy of the chosen method depends essentially
on two principal parameters: the number of harmonics 2N +1 used in the Fourier domain
along the periodization axis x and the spatial discretization Dz along the propagation axis z.
The accuracy of the structure profile simulated is proportional to the increase of N and the
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decrease of Dz. Indeed, dielectric structures are firstly studied. The energy conservation, the
convergence following N and Dz and the spatial field map are going to be checked. Moreover,
metallic core structures with a sinusoidal and trapezoidal profiles are also added to the study.

4.1.2 Numerical validation

Dielectric lamellar structure

Here, the dielectric lamellar structure depicted in Fig.4.1 is taken into consideration. The
structure is illuminated with TM or TE polarized plane wave at normal incidence (θinc = 0◦).
The reference values are calculated by the Reticolo software based on the Fourier Modal
Method (FMM). This method is the most suitable one for the modeling of rectangular
gratings. For that we consider the values calculated through it as reference values. Thus, the
efficiencies of the DM-FFF, the RCWA extracted from the differential theory (sec.3.10), and
the RCWA-FFF have been compared to the reference values for TE and TM polarization.

Fig. 4.1 Unit cell of a dielectric rectangular periodic grating of period Λ = 1 µm. The
structure is illuminated from the superstrate with a monochromatic and TE or TM polarized
plane wave at normal incidence and a wavelength λ = 600nm. The refractive indices of the
superstrate, the modulated zone and the substrate are nsup = 1, nc = nsub = 1.5 respectively.
The wave vector is k = 2π

λ
nsup.

All the values are calculated for a truncated order N = 30. For the three methods (DM-
FFF, RCWA, and RCWA-FFF), the structure is discretized by a constant step Dz = 1nm and
NFFT = 213 = 8192 samples is chosen. This highest value has been considered in order to
correctly calculate the harmonic amplitude of the 2N +1 truncated Fourier transformation
with NFFT >> N. This transformation is used for the DM-FFF, the RCWA and the RCWA-
FFF. On the other hand, the classical FMM modelizes the ideal lamellar section by calculating
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TM polarization
Order FMM DM-FFF RCWA RCWA-FFF ∆R1 ∆R2 ∆R3

T(-1) 0.34025397 0.34025290 0.34025290 0.34025290 1 ·10−7 1 ·10−7 1 ·10−7

T(0) 0.23283470 0.23283680 0.23283680 0.23283680 2 ·10−6 2 ·10−6 2 ·10−6

TE polarization
Order FMM DM-FFF RCWA RCWA-FFF ∆R1 ∆R2 ∆R3

T(-1) 0.32290883 0.32290449 0.32290449 0.32290449 4 ·10−6 4 ·10−6 4 ·10−6

T(0) 0.18062036 0.18062629 0.18062629 0.18062629 6 ·10−6 6 ·10−6 6 ·10−6

Table 4.1 The transmission coefficient R(n) of the diffracted order −1, and 0 of the dielectric
sinusoidal grating for N = 30 with Dz = 1nm and nS = 1 for the S-matrix algorithm. The
coefficients are calculated using the DM-FFF, the RCWA extracted from the differential
theory, and the RCWA-FFF. The reference values are calculated by the classical FMM using
Reticolo. ∆R1, ∆R2, and ∆R3 represent the absolute relative error between the values of
Reticolo from one side and the values of the DM-FFF, the RCWA, and the RCWA-FFF
respectively from the other side

the exact Fourier transformation of a rectangular layer. In that case, Nx = 1 and Nz = 0. So,
the propagation matrix (Eq.(2.65)) falls on the classical matrix without FFF. Table.4.1 shows
the values of the transmission coefficients calculated with the different methods. We can
notice that, for a lamellar structure, the obtained values of the three methods are almost
similar to the values of the classical FMM with an impact on the sixth or seventh digits
supposed to come from the FFT. For both polarizations, a relative errors of 10−6 and 10−7 ,
between the value of Reticolo from one side and the values of the other methods from the
other side, are obtained for both polarizations. Indeed, the values of the DM-FFF, RCWA
extracted from the differential theory and the RCWA-FFF are completely similar as the
used propagation matrices are similar. The execution time of the FMM stays faster than
the methods extracted from the differential theory. Indeed, those methods are based on
the discretization into thin layer to perform the integration (Runge-Kutta for the DM-FFF
and eigen solution of the RCWA and RCWA-FFF), while the classical FMM calculate the
eigenvalues and the eigen vectors of each traversal modulated or homogeneous section
without the need of discretization step. Moreover, a reference plane change is associated to
the algorithm of the FMM to limit the divergence. This divergence is a consequence of the
use of the exponential terms in the propagation matrix while dealing with complex effective
indices.

In addition, the field maps obtained by the DM-FFF have been compared to the ones
executed by Reticolo. Both are calculated for N = 30 and for TE and TM polarization. It is
clear that for both polarizations the distribution of the fields is exactly the same between the
code of the DM-FFF and Reticolo.
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(a)

(b)

Fig. 4.2 The field maps of the dielectric lamellar structure using the DM-FFF and Reticolo
software for (a) TM polarization (b) TE polarization.

As mentioned before, the discretization step Dz is a critical parameter of the DM-FFF. For

Fig. 4.3 Convergence of the relative error of zeroth order of transmission |T0Reticolo −T0DM−FFF |
with T0Reticolo = 0.23283470 for different discretization steps.

that, the convergence of the relative error |T0Reticolo −T0DM−FFF | has been studied following
the truncation order N for different values of Dz (Fig.4.3). We can clearly notice that the
relative error decreases with the decrease of Dz. Indeed, a relative error of 10−3 is reached
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for Dz = 10nm (blue dashed curve with cross), while a value of 10−4 can be obtained for
Dz = 1.5nm (orange dashed curve with solid dots). Finally, for better accuracy, Dz can be
decreased to reach an error rate of 10−5 with Dz = 1nm (purple dashed curve with solid
triangles).

Dielectric sinusoidal grating

To upraise the FFF with a continuous structure profile, the dielectric sinusoidal structure
(Fig.4.4) has been considered. The power of the diffraction efficiencies of the DM-FFF,
the RCWA, and the RCWA-FFF have been compared to those obtained by the Method of
fictitious sources (MFS) which is considered as an accurate method for this specific structure
[108].

Fig. 4.4 Unit cell of a sinusoidal periodic grating of period Λ. The structure is illuminated
from the superstrate by a monochromatic and polarized plane wave k at a wavelength λ . The
refractive indices of the superstrate, the modulated zone and the substrate are nsup, nc and
nsub respectively. The wave vector k = 2π

λ
nsup.

The refractive index of the superstrate is nsup = 1, while nc = nsub =
√

3. The structure
is illuminated with a monochromatic plane wave at λ = 1.0µm from the top. The period
of the unit cell is Λ = 3.9λ , the peak to peak amplitude is H = 0.5λ , while the excitation
angle is θinc = 30◦. In addition, NFFT = 8192 points and Dz = 1 nm have been chosen.
Table 4.2 presents the results of the reflection and transmission coefficients calculated by the
implemented code of the DM-FFF, the RCWA and the RCWA-FFF extracted both from the
differential theory as explained in sec.3.10. We can notice that the three previous methods
respect well the law of the conservation of energy where the sum R+T = 1.

Moreover, the obtained results of the three methods fit well with the reference values
calculated for both TE and TM polarization with a relative error less than 2.3 ·10−4. For TM
polarization, the relative errors of the RCWA are always bigger than the other methods. This
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TE polarization
Order MFS DM-FFF RCWA RCWA-FFF ∆R1 ∆R2 ∆R3

R(-1) 0.01281 0.01277 0.01277 0.01277 3.6 ·10−5 3.4 ·10−5 3.4 ·10−5

R(0) 0.00295 0.00299 0.00298 0.00298 3.5 ·10−5 2.8 ·10−5 2.8 ·10−5

R(+1) 0.05077 0.05076 0.05076 0.05076 8.2 ·10−6 1.3 ·10−5 1.3 ·10−5

R / 0.09660 0.09659 0.09659 / / /
T / 0.90339 0.9034 0.903400 / / /
R+T / 1.0 1.0 1.0 / / /

TM polarization
Order MFS DM-FFF RCWA RCWA-FFF ∆R1 ∆R2 ∆R3

R(1) 0.0087845 0.0087841 0.0087745 0.0087826 4 ·10−7 1 ·10−5 2 ·10−6

R(0) 0.0013163 0.0013180 0.0013082 0.0013182 1.7 ·10−6 8.1 ·10−6 1.9 ·10−6

R(-1) 0.0085778 0.0085769 0.0085984 0.0085743 9 ·10−7 2 ·10−5 3.5 ·10−6

R / 0.04636 0.04635 0.04636 / / /
T / 0.95363 0.95364 0.95363 / / /
R+T / 1.0 1.0 1.0 / / /

Table 4.2 The reflection coefficient R(n) of the diffracted order −1, 0, +1 of a dielectric
sinusoidal grating for N = 30 with Dz = 1nm and nS = 4 for the S-matrix algorithm. The
coefficients are calculated using the DM-FFF, the RCWA extracted from the differential
theory, and the RCWA-FFF. R and T represent the total reflection and the total transmission
of the all reflected orders respectively. ∆R1, ∆R2, and ∆R3 represent the absolute relative
error with respect to the values of the MFS and the values of the DM-FFF, the RCWA, and
the RCWA-FFF respectively.

is a direct effect of the FFF associated with the DM and the RCWA. For the DM-FFF and
the RCWA-FFF, all the calculated values are almost similar. But, due to the accuracy of the
Runge-Kutta integration, the relative errors of the DM-FFF are always smaller. On the other
hand, for TE polarization, all the calculated values give almost the same error as the problem
of discontinuity of the fields is not presented with this polarization. Fig.4.5 shows the impact
of associating the FFF to the differential method and the RCWA. Indeed, the relative error
of the zeroth order of transmission has been calculated with respect to the value obtained
by each method at N = 150 (301 harmonics). It is clear that the RCWA converge slowly
following N, truncation order N = 100 is necessary to reach a relative error of 10−4. On the
other hand, 21 harmonics (N = 10) are sufficient to reach a relative error of 10−5 for the
DM-FFF and the RCWA-FFF. Moreover, an error of 10−7 can be attended for N > 40.
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Fig. 4.5 The relative error of the zeroth order of transmission T0 of the sinusoidal dielectric
structure following N with respect to T0 for N = 150 of each method. With T0N=150 =
0.412428713,0.412673209,0.412406292 for the DM-FFF, the FMM and the RCWA-FFF
respectively. Dz = 1nm and NFFT = 8192 samples.

4.2 The DM-FFF compared to other electromagnetic com-
putational methods

4.2.1 Introduction

As mentioned in Chapter 3, the DM-FFF is an electromagnetic computational method adapted
for complex-shaped diffraction gratings. By taking into consideration the evolution of the
normal and tangential components of the electric field in the algorithm of the method, the
power efficiency of the diffraction orders are now considered more accurate and more rigorous.
To ensure that, we will perform a convergence test to the values of the different diffracted
orders calculated by the DM-FFF, and we will compare them to the values obtained by the
Fourier Modal Method (FMM), the RCWA-FFF and the last one is the Chandezon Method
(C-Method) available with the MC-Grating software. Two structures will be considered. The
first one is a simple metallic sinusoidal grating, and the second one is a metallic trapezoidal
structure. The two profiles have been chosen for several reasons. First of all, in case of
metallic structures, high contrast of refractive indices appears between the incident medium
and the core of the grating. Moreover, the first one is a continuous profile where its normal
varies rapidly following the periodization axis. On the other hand, the trapezoidal profile is a
function mixing continuous zone with discontinuous areas. In that case, the normal varies
following the inclined side of the structure. Indeed, in both cases, the association of the
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FFF will suppress the stack of lamellar layers (staircase approximation) used by the classical
FMM or the RCWA extracted from the differential theory. However, as all the mentioned
methods belong to the family of the modal method which deal with the problem in the Fourier
domain, all the comparisons will be performed following N which represents the truncation
order in the Fourier space.

4.2.2 Sinusoidal Metallic Grating

Convergence Test of the structure

In order to appraise the performance of the FFF, the evolution of the normalized intensities
of the minus first order of reflection (R(−1)) is compared. The C-Method is based on a
non conformal coordinate transformation that alter the corrugated zone into a surface plan
boundary with a specific permittivity tensor [16]. For the sinusoidal profile, this method
needs only one harmonic. All those methods are based on Fourier series development.
Thus, a comparison with respect to the number of harmonic 2N + 1 used in the Fourier
space could be realized. We conducted a convergence test for the case of simple Aluminum

Fig. 4.6 Unit cell of the periodic grating. The structure is illumintated with a TM polarized
plane wave at λ = 673.2nm

sinusoidal grating (Fig.4.6). The structure is illuminated with a TM polarized plane wave at
λ = 632.8nm. The relative error has been studied by taking into acount a reference value
computed with the integral method with R(−1)re f

= 0.8785309971543.
For both RCWA-FFF and DM-FFF, nS = 4. Indeed, to correctly execute the comparison

with the same number of S-Matrices, we considered Dz = 0.25nm for the DM-FFF, the FMM
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and the RCWA-FFF. So that, 200 scattering matrices Si have been cascaded for the modulated
region. Figure 4.7 shows the relative error for the four different methods by taking the result
obtained with the integral method as reference [3].
Only one harmonic is sufficient for the C-Method to remain constant with respect to N.
Consequently, this method is the most suitable for the modeling of 1D sinusoidal profiles as
the relative error stays stable along the evolution of N.

Fig. 4.7 Relative error with respect to the number of harmonics N for the different methods

The 10−3 error induced by this method is probably due to the relative error of the
integral method with respect to the C-Method. Meanwhile, as the RCWA uses the staircase
approximation (Nx = 1 and Nz = 0), and doesn’t take into account the continuity of field at
the dielectric-metal interface of the continuous profile, its error evolution converges slowly
and the method needs a high number of harmonics in order to reach an acceptable relative
error (< 10−2). On the other hand, while associating the FFF with RCWA, the convergence
is significantly enhanced. It can reach less than 10−2 beyond a truncation order N = 20. The
slope of the surface profile set in each section is sufficient to strengthen the convergence
of the method and turn the RCWA into an efficient and rigorous tool in term of accuracy
and execution time. Finally, we can notice that the DM-FFF converges rapidly from N = 18.
After N = 50 , the solid blue dots curve representing the convergence of the DM-FFF follows
closely the C-Method error evolution. The relative error of the DM-FFF oscillates around
the error of the C Method. Moreover, the relative error of the DM-FFF with respect to the
C-Method remains smaller than 2.5×10−4 from N = 50 to N = 200. This oscillation could
be induced by the FFT algorithm. The accuracy increases with the increase of NFFT as
shown in Fig.4.7. This convergence emphasizes our hypothesis concerning the C-method.
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(a) (b)

(c) (d)

Fig. 4.8 Evolution of |Ex| with (a) FMM, (b) RCWA-FFF, (c) DM-FFF and (d) C-Method

Minus First order of Reflection R(−1)
N DM-FFF RCWA-FFF FMM C-Method

10 0.892714 0.892685 0.575684 0.877652
30 0.878587 0.878407 0.776522 0.877652
50 0.878178 0.878042 0.816513 0.877652

100 0.877454 0.877960 0.846460 0.877652

Table 4.3 The minus first order of reflection transmission R(−1) for the metallic sinusoidal
structure at N = 10,30,50,100 using the four modal methods RCWA-FFF, DM-FFF, FMM,
and C-Method

Field Maps

To reveal the problem induced by the continuous profiles on the field representation, the
evolution of |Ex| is studied for the metallic sinusoidal structure with N = 50 truncation (the
number of harmonics is 2N +1). Due to the staircase approximation, parasitic reflections
appear at the dielectric-metal interface with the FMM (Fig.4.8.(a)). When the RCWA
is associated with FFF, the problem is alleviated (Fig.4.8.(b)). While in case of DM-FFF
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(Fig.4.8.(c)), the problem is mostly treated and the field distribution fits with the representation
computed with that of the C-Method (Fig.4.8.(d)).

Comparison of the execution time of the DM-FFF, RCWA-FFF and RCWA

Now, the execution time of the different methods has been compared. With the Intel core
i7 and 8GB RAM computational resources, the three Fourier space methods extracted from
the same code (DM-FFF, RCWA, and RCWA-FFF) have been compared for the sinusoidal
metallic structure with Dz = 0.25nm. In that case, 600 S-matrices are cascaded to obtain the
overall scattering matrix of the structure.

Fig. 4.9 The execution time following the truncation order N for 600 cascaded layers.

Fig.4.9 presents the evolution of the time needed to calculate the efficiency of the
diffracted orders following N. For N < 20, the three methods need almost the same time to
perform the calculation. On the other hand, for higher truncation orders the DM-FFF (red
dashed curve with solid dots) is faster than the RCWA and the RCWA-FFF. Indeed, the time
consumption decreases by 40% with the DM-FFF compared to the two other methods. This
is due to the Runge-Kutta integration algorithm which is faster than the calculation of eigen
values and the eigen vectors used with the RCWA and the RCWA-FFF. For example, for
N = 97, the DM-FFF takes 47.7s to perform the calculation. In contrast, the RCWA and the
RCWA-FFF need 79.4s for the same truncation orders.
In term of accuracy, if we fix a relative error of 1% with respect to the value of the integral
method, so that 10−2 on the Fig.4.7, N = 14 is sufficient for both RCWA-FFF and DM-FFF
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to reach this accuracy. As a result, the DM-FFF needs 2.5s and the RCWA-FFF takes 3s
to finish the calculation. On the other hand and by performing a polynomial fit having the
form of 0.008N2 −0.08N +2.7 to the time evolution and the form of 2.2N−0.87 to the error
evolution of the RCWA, the classical RCWA needs N > 150 to reach the same limit of
accuracy. So that, a calculation time > 190s is required in that case. In term of speed, a
factor of 76 can be achieved if we use the DM-FFF instead of the RCWA.
Now, if the relative error threshold is fixed for 0.1% (10−3), N = 18 is sufficient for the
methods associated with the FFF. The calculation is performed in 3.33s by the DM-FFF, and
4.57s by the RCWA-FFF. By using the same previous fitting, we found that this threshold
is reached for N > 1000 with the RCWA, so that this method needs 8732s to finish the
execution procedures. At this scale, a factor of 2622 in term of speed is reached if we use
the DM-FFF compared to the RCWA. Finally, it is clear that the DM-FFF is irremediably
faster than the RCWA in terms of accuracy and execution time. Indeed , after fixing a given
error threshold so that a given N, the use of the DM-FFF saves a huge calculation time in
case of complex shaped diffraction gratings. Indeed, if a considerable homogeneous layer
must be taken into consideration, the DM-FFF needs to discretize this layer following Dz.
On the other hand, the RCWA simulates this zone as one layer. As a result, the DM becomes
slower. The ideal case is to hybridize the two methods in order to get an optimal trade-off.

The effect of the multi layers nS on the convergence and the speed of the DM-FFF

As mentioned in Section 3.4, the Runge-Kutta algorithm can be also performed by gathering
the P-matrices of nS layers. This combination allows to gather different P matrices into
one propagation matrix. So that, the number of the cascaded S-matrices will be reduced
by the factor nS. In this way, and as the same number of the propagation matrices P is
calculated, the accuracy of the DM-FFF doesn’t change. Using this method, we can only
reduce the execution time of the DM-FFF due to the decrease of the number of cascaded
S-matrices. To elaborate more, if the modulated section with H = 200nm is discretized
following Dz = 0.25nm, we will have 600 propagation matrices P in this zone. If nS = 1,
each P-matrix will produce one S-matrix. Now, if nS = 4, we will calculate 600 propagation
matrices but each 4 P-matrix are finally gathered in one S-matrix. So that, we will have 150
S-matrices to be cascaded. At this scale, the execution time can be reduced as the number of
cascaded S-matrices decreases.

In Fig.4.10.(b), the execution time of the DM-FFF for different nS layers has been studied.
A decrease in term of the consumed time of 11% can be reached if we use nS = 4 for N > 40
(blue dashed curve with solid diamonds) instead of nS = 1 (red dashed curve with solid dots).

66



4.2 THE DM-FFF COMPARED TO OTHER ELECTROMAGNETIC COMPUTATIONAL

METHODS

(a)

(b)

Fig. 4.10 (a) The evolution of the minus first order of reflection following N for different
sub-layers nS (b) The execution time following the truncation order N of the DM-FFF with
Dz = 0.25nm and nS layers.

It is clear that the curve of nS = 10 is very close to the one of nS = 4. At this scale, and
for this structure, 30 S-matrices are cascaded instead of 150. So, we can deduce that the
calculation of the propagation matrix has the highest impact on the execution time. From
Fig.4.10.(a), we can notice that for nS > 10 and for high truncation orders (N > 40), the
DM-FFF can numerically diverge. This is due to the python algorithm where numerical
errors can appear if we use high values in a range > 1015 [88].
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4.2.3 Discontinuous structure: A Trapezoidal metallic grating as an
example

Here, a trapezoidal structure mixing continuous part with discontinuous profile is chosen.
Indeed, the exact normal to the profile is inclined along the internal interface of the structure
and depends on the taper angle α and the angle between the inclined surface and the transverse
one β = π−α

2 . Thus, Nx =∓sin(β ) and Nz = cos(β ).
As mentioned before, the DM-FFF and the RCWA-FFF take into consideration the projection
of the normal

#»
N on the propagation axis z and the periodic axis x in each discretized section.

On the other hand, while using the classical FMM, the trapezoidal sections are considered
as a cascade of rectangular layers. Therefore, the staircase approximation risks to do not
respect the continuation of the field from one side and to do not represent the ideal desired
structure from the other side since Nx = 1 and Nz = 0. Besides, the C-Method transforms
the corrugated zone of the trapezoidal into a plane surface with changed permittivity tensor
nc(x

′
,z

′
). We can notice that, sharped angle can’t be implemented with the C-Method. For

that, all the corners of the trapezoid are rounded by a curvilinear continuation. To elaborate
more, the C-Method describes the periodic structure as a Fourier series following a given
number of harmonic. Thus, it needs a continuous structure in order to implement correctly the
desired structure. The trapezoidal metallic grating depicted in Fig.4.11 has been considered.

(a)
(b)

(c)
(d)

Fig. 4.11 (a) Schematic representation of a trapezoidal unit cell. The normal and the tangent
to the trapezoidal region using the (b) DM-FFF, (c) FMM, (d) C-Method
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To illustrate that, the evolution of the zero order of transmission T(0) has been studied
following the truncation order N. The structure is illuminated with a TM polarized plane
wave at λ = 645nm under normal incidence (θinc = 0◦). The geometrical parameters of
the structure are the following: H = 180nm, G = 65nm, α = 10◦ and Λ = 500nm, while
nsup = nsub = 1.0 and nc = 1.46+ j7.78. The Fourier series transformation of the DM-FFF
and the RCWA-FFF are calculated via the FFT with NFFT = 8192 samples and the structure
is discretized by a step Dz = 1nm.

Fig. 4.12 Relative error with respect to the number of harmonics N for the different methods

Zero order Transmission T(0)
N DM-FFF RCWA-FFF FMM C-Method

10 0.413436 0.413112 0.380388 0.646747
30 0.518331 0.513915 0.459392 1.565636
50 0.517835 0.513608 0.471392 0.189199

100 0.515982 0.514791 0.494124 0.369410
150 0.517107 0.515647 0.501570 0.440184
200 0.517714 0.516010 0.505738 0.461345

Table 4.4 The zero order of transmission T(0) for the metallic trapezoidal structure at N =
10,30,50,100,150, and 200 using the four modal methods RCWA-FFF, DM-FFF, FMM,
and C-Method

Fig.4.12 illustrates the evolution of T(0) with respect to N for the four different methods.
Indeed, the DM-FFF needs N > 40 to correctly converge to the right value and to stabilize
along N (black dotted curve with solid triangles). Nevertheless, the FMM converges slowly
in a monotonic manner (red dashed curve with solid dots). Besides, this method needs
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more than N = 150 to reach the value of the DM-FFF. This slow convergence is a direct
consequence of the staircase approximation and the non-respect of the continuity of the
electric field in TM polarization.
On the other side, when associating the FFF to the RCWA, (the method extracted from the
differential theory), the convergence rate is incredibly enhanced (green dashed curve with
triangle-like markers). A faster and more accurate results are now obtained where the T(0)
stabilizes for N > 50. Meanwhile, it is clear that the values calculated with the RCWA-FFF
and the DM-FFF are indistinguishable and both methods converge very closely with each
other to the same value following N (see Table 4.4). Undoubtedly, this result shows the
effectiveness of associating the FFF with the modal methods turning them into more rigorous
and accurate methods for the modeling of different shaped diffraction grating. Finally, we
can notice that the C-Method (blue dotted curve with solid asterisk) fails to convergence.
Indeed, a truncation order N > 140 is needed to suppress the numerical fluctuations.After
this harmonic the C-method starts to slowly converge in an asymptotic way without reaching
the values of the other methods. Here, we can note that the C-Method completely fails to
converge in case of Lamellar structure (α is close to 0◦).

Fig. 4.13 Relative error with respect to the angle β for the different methods

Finally, the evolution of the relative error of the zeroth order of transmission T(0) has been
evaluated following to β (Fig.4.13). T(0) of each method has been calculated for N = 50 and
the relative error has been calculated with respect to the value of the transmission for N = 100.
Indeed, it is clear that when β increases the relative error of the classical RCWA decreases
(blue dashed curve with solid squares). To elaborate more, when β = 90◦ (lamellar structure),
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XXXXXXXXXXXMethod
Profile Sinusoidal Discontinuous Lamellar Continuous

DM-FFF R HR NR HR
RCWA-FFF R HR NR R
C-Method HR NR NR R
FMM NR NR HR NR

Table 4.5 The recommended modeling method with respect to the grating profile in TM po-
larization with dielectric-metal interface. With HR: Highly recommended, R: recommended,
NR: Not Recommended

the error rate of 1.4×10−3 is equal to the one of the RCWA-FFF and the DM-FFF. On the
other hand, when β = 70◦, this error increases to reach a value of 9.9×10−2. Nevertheless,
the error evolutions of the DM-FFF and the RCWA-FFF are almost stable along the evolution
of β . However, it increases from 1.6× 10−3 to 4.6× 10−3 for β between 50◦ and 87.5◦.
These results shows the impact of the FFF on the calculation of efficiency as the staircase
approximation is suppressed with the FFF.

4.3 Conclusion

In this chapter, the power efficiency using the FFF has been compared with different elec-
tromagnetic computational methods belonging to the Fourier space family. Therefore, the
evolution of the diffraction efficiencies and the error rate can be evaluated following the
harmonic truncation order N.
Different profiles have been evaluated. For that, Table 4.5 summarizes how to choose the
numerical method with respect to the grating profile. In case of lamellar grating, the most
useful and fast method will be the FMM. Although, for sinusoidal profiles, the C-Method
is definitely recommended due to its fast convergence and efficiency. While in case of
the profiles mixing continuous shape with discontinuous geometry (triangular, trapezoidal,
sinusoidal associated with discontinuities, curvilinear structures for examples...) either
RCWA-FFF or DM-FFF are considered powerful methods for the modeling of 1D gratings.
Finally, we had to notice that the C-Method can’t simulate the ideal lamellar profiles.

Indeed, in this chapter, the metals used are considered lossy (Re(nc)>> 0). Nevertheless,
when a metallic core with lossless index is considered, the FMM, DM-FFF and RCWA-FFF
suffer from divergence and instabilities due to the rapid change of the permitivitty at the
dielectric metal interface from a real positive value to a real negative one. Until now, there is
no existing solutions deployed with the differential theory to tackle this problem. For that,
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the next chapter is devoted to explain a straightforward and easy solution for this problem
which doesn’t extremely affect the calculated values and the accuracy of the methods.
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Chapter 5

The differential theory and the lossless
permitivitty metals: Problem and
solution

5.1 Definition of the problem

In the previous chapters, we demonstrated that the DM-FFF showed a more powerful and
more accurate performance while modeling the different profiles of diffraction gratings.
Nevertheless, for metallic core structures, the refractive index is composed of real and
imaginary parts nc =

√
εc = nre + jnim.

At a specific wavelength, near the plasmon resonance, the involved metal can have a real part
nre almost close to zero. The use of the well known modal methods as the FMM and the
analytic modal method (AMM) [9] with metallic core showed that when real part of the metal
is considered quasi-null (nre ≈ 0), some numerical instabilities and field singularities appear
with the Fourier space method [59]. To elaborate more, when nre ≈ 0, then, the permittivity
is considered purely negative real value (near the plasmonic resonance of the metal). In that
case, the risk of the nonconvergence of the method increases. This nonconvergence depends
only on the refractive index of the core, the surrounding material and the shape of the grating.
On the other hand, it is independent from all the other opto-geometrical parameters of the
structure, i.e λ

Λ
ratio, groove depth, etc..

Although, to tackle this problem, many solutions have been proposed by the researchers
involved with the modal methods [31, 32]. Firstly, Li et al. have shown that the physical
origin of this nonconvergence comes from the singularities of the electromagnetic field at
the metal-dielectric interface [57]. In other words, when a structure is illuminated by a TM
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polarized electromagnetic wave, both the transverse component of the electric field Ex and
the longitudinal component Ez may be singular at the edge of the dielectric-metal interface
due to the singular Toeplitz matrix of the permittivity distribution of the profile. Meanwhile,
if a rapid change of permittivity from positive real value (εdielectric) to purely negative value
(εmetal) appears at the boundary of the modulated region, the Li’s factorization rules may not
be respected, and may induce numerical fluctuation and divergence of the method. Thus, it is
complicated to simulate the diffractive structure with such refractive index using the modal
methods.
A solution has been proposed by Li and Granet by defining a threshold value ∆ to predict if a
given structure can numerically diverge or not depending of the refractive index of the metal
nc and the surrounding medium nsup and nsub [59]. Therefore, if ∆ < 0 the modal methods do
not converge. On the other hand, if ∆ > 0 or complex, the modal methods correctly converges
without any numerical fluctuations.

Nevertheless, Popov suggested to replace the highly conducting metallic layer at the
interface by a not-so-highly conducting metal with a thickness equal to the skin depth of
the studied metal (typically 20nm−30nm) [93]. He applied this algorithm to the differential
theory on a lamellar grating. Therefore, he demonstrated that the non-respect of the Li’s
rule by quickly passing from a real positive permitivitty to a pure negative value induces
the singularity of the Toeplitz matrix of ε . As a result, the fast transition of the permitivitty
from positive values to a real negative value can be alleviated and the singularity of the
Toeplitz matrix can be solved. Therefore, the numerical instabilities disappear. Indeed, as the
thickness of the artificial layer is not considered negligible, this proposition suffers from the
lacks of accuracy especially when a thin plasmonic surface is used.

Another solution has been demonstrated by Watanabe [116]. He suggested to discretize
the core of the modulated zone into several small layers to mitigate the growing exponential
functions. Another approaches have been investigated with the FMM, Lyndin et al. used
the filtering principle to suppress the spurious high spatial frequencies modes created by
the plasmon-like Fourier modes [63]. Other solutions based on the use of Adaptive Spatial
Resolution (ASR) and the addition of graded index layers at the metal-dielectric interface
have been recently proposed for the FMM method and C-Method [30, 71, 111, 126]. Indeed,
the ASR works very well if the real non linear coordinate transformation is the same for all
the layers of the profile (lamellar sections).

As far as we know, no previous research investigated this problem with the RCWA-FFF
or the DM-FFF when dealing with non-lamellar structure. Thus, an approach inspired by
Ref.[71] has been applied to the algorithm of the DM-FFF by adding a nanometric Graded
index layer (GIL) at the discontinuous dielectric-metal interface of the structure. For example,
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some metallic diffractive structures with purely real and negative permittivity are needed
to be simulated for optical security or biomedical applications. Our aim is to compromise
between the non-convergence of the method and the accuracy of the obtained results in
order to predict the optical response of the structure by numerically modifying the used
computational method. This numerical modification solves the problem of divergence and
allows to calculate with the minimum loss of accuracy the right response of the structure.
Thus, this improvement showed that just few nanometers (0.2 to 2nm depending on the
thickness of the metal) of linearly varying graded index layer is sufficient to ensure the
stability of the method without the lack of accuracy found in other techniques.

5.2 Implementation of Graded Index Layer (GIL) at the
metal-dielectric interface with pure negative and real
permitivitty metallic gratings

The idea of the GIL rests on the implementation of linearly varying refractive index nanomet-
ric layers at the discontinuous dielectric-metal interfaces. In other words, the GIL works as
intermediate region between the metal core and the dielectric medium. So, the layer at the
discontinuous interface will be replaced by a medium with gradually varying index. As a
result, the irregular field singularities will be removed.
In Fig.5.1.(a), a real negative permittivity metallic core is considered for a trapezoidal struc-
ture. The field singularity may appear at the internal edges of the structures. Thus, the
shadowed regions of the modulated zone of width δ contain the metal-dielectric interface
having the transition of the permitivitty. Therefore, the GIL layer must be implemented
within δ in a manner that within the left and right regions, the real and the imaginary parts of
the complex refractive index nGIL are set to change linearly between the refractive index of
the metal nc and the refractive index of the dielectric region nd .
Indeed, as the structure is discretized into cascaded layers by a constant discretization step
Dz, the linear algorithm is applied on each layer of the core by varying w depending on the
position of the layer following z. Within δ , the real part of nGIL varies linearly from real(nc)
to real(nd) (Fig.5.1.(b)). On the other hand, the imaginary part of the added layer decreases
linearly from Im(nc ) to Im(nd) equal to 0 (Fig.5.1.(c)). Although, for a unit cell between
0 < x < Λ, the equations describing the evolution of the real part of the refractive index of
the GIL in each layer can be expressed as,
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(a)

(b)

(c)

Fig. 5.1 (a) Unit cell of a trapezoidal grating of period Λ associated with the graded index
layer (GIL) of thickness δ . (b) The distribution of the refractive index real part along Λ at a
given position z = zs (c) The distribution of the refractive index imaginary part at a given
position z = zs
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On the other hand, the imaginary part evolution of the refractive index of the GIL can be
written as,

Im(nGIL) =
Im(nc)− Im(nd)

δ
· x+ Im(nc)−

Im(nc)− Im(nd)
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2
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5.3 Application of the GIL on a triangular metallic grating
with quasi-real negative permitivitty

Fig. 5.2 (a) Geometry of the triangular grating: gold core of thickness of 50nm, Λ = 400nm.
The structure is excited from the substrate with nsub = 1.55. (b) Unit cell of the grating with
GIL of thickness δ added at the dielectric-metal interface.

To highlight the problem, triangular grating with lossless Au core has been considered.
This structure is a special case of the trapezoidal structure considered in the previous section
(w = 0 and G = Λ) with Λ = 400nm. This geometry induces specific plasmonic resonances
that produce high concentration of the electric field at the profile’s apexes. It is thus highly
recommended to simulate it accurately. However, in this case, two difficulties arise: firstly
a profile mixing continuous zones and a discontinuous shape and secondly a metal with a
low real part of its complex refractive index. Throughout our numerical simulations, the
structure was illuminated from the substrate with a TM polarized plane wave at λ = 810nm
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and θinc = 15◦. At this wavelength nc = 0.16+ j5.26. As the real part of nc is close to zero,
GIL must be added at the glass-Au interface to avoid the field singularity and therefore the
numerical divergence of the method.
The zero order of reflection R(0) has been evaluated following the number of harmonics
2N +1. The Fourier series of the profile used in the DM-FFF is calculated via a FFT with
NFFT = 8192 samples. Firstly, the Watanabe solution based on the discretization of the
structure with thin discretization steps Dz has been studied without implementing the GIL
[116]. Fig.5.3 shows that even the use of thin descretized layer doesn’t prevent the non-
convergence of the method but shifts the problem into higher truncation order N. Indeed,
for Dz = 1nm and without the implementation of the Graded Index Layer, the divergence
appears for N = 44 (81 harmonics). Moreover, if we decrease Dz from 1.0 to 0.25nm, the
numerical instability is red shifted for N = 50 for Dz = 0.5nm and N = 65 for Dz = 0.25
nm. Therefore, to neutralize the numerical fluctuations, teeny discretization steps are needed,
which implies a very high execution time and a lack of memory.
Nevertheless, if the GIL is implemented with higher discretization steps, the execution time

Fig. 5.3 The evolution of the zeroth order of reflection R(0) following N of the triangular Au
grating for different discretization step Dz

and the involved memory space stay reasonable. However, the accuracy of the calculated
efficiency decreases with the increase of δ . Fig.5.4 shows the same results but with imple-
mented GIL at the internal dielectric metal interface of the triangular grating. The zeroth
order efficiency has been studied by varying δ from 1nm to 10nm. However, we can see
that without the GIL (black dashed curve with solid X), the DM-FFF risks to diverge for
N = 45. On the other hand, for δ = 1nm the method converges quickly from N > 14 and
stabilizes along the evolution of the truncation order N, ensuring the efficiency of the method
and suppressing the numerical instabilities due to the field singularities. In contrast, if δ

increases the accuracy of the method decreases. For example an absolute error of 5.2×10−2
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is obtained between the value with δ = 1nm and δ = 5nm (red dashed curve with solid
square). Besides, this error increases to 1.2×10−1 if δ = 10nm (purple dashed curve with
solid plus).

Fig. 5.4 The evolution of the zeroth order of reflection R(0) following N of the triangular Au
grating modelized via the DM-FFF for Dz = 1nm and different thicknesses δ of the graded
index layer (GIL)

After checking the functionality of the implemented technique, we aim to study the
stability and the accuracy of the DM-FFF with GIL compared to the other numerical modal
methods. For this reason, few comparisons with the RCWA-FFF, the FMM and the C-Method
have been done. We considered the same geometrical parameters of Fig.5.2.(a). Firstly, the
structure is now illuminated with a TM polarized plane wave at λ = 810nm and θinc = 15◦.
The evolution of the zeroth order of reflection R(0) has been evaluated following N. At this
wavelength, the refractive index of the metal is nc = 0.19+ j4.78 and as the real part is close
to zero the DM-FFF, the RCWA-FFF and the FMM risk to diverge at higher harmonics.

Fig.5.5 presents the evolution of R(0) using the four different methods. If the DM-FFF
is used without the add of GIL, the method converges rapidly beyond N = 15. But, it also
suffers from discrete divergence for N = 95 (black dashed curve with solid X). The same
case appears with the FMM and the RCWA-FFF. To overcome this problem a graded index
layer of thickness δ = 1nm has been added at the discontinuous interfaces of the triangle
for the three mentioned methods. Thus, by just setting this layer thickness at δ = 1nm, the
stability is achieved along N for both the DM-FFF , the RCWA-FFF (dashed red curve with
solid square and dashed green curve with solid triangle respectively). The zoomed part
shows that GIL causes a small degradation of the obtained value. Moreover, it shows the
tiny difference between the value of the RCWA-FFF and the DM-FFF. Nevertheless, the
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FMM fails to converge and stays unstable with respect to N due to the sharped apex of the
structure. On the other side, the result obtained with the C-Method (blue curve with solid
dots) shows that a minimum of N = 40 (81 harmonics) is needed to begin the convergence
and after N = 95, this method diverges again due to the complexity of the structure. Indeed,
this result re-affirms the conclusion of the previous section telling us that the DM-FFF is a
powerful method for the modeling of complex shaped diffraction gratings.

Fig. 5.5 Comparison of the evolution of the zeroth order of reflection R(0) following N of
the triangular Au grating between the four different types of modal methods: DM-FFF,
RCWA-FFF, FMM, and C-Method

Another interesting example that illustrates the divergence problem is given in Fig.5.6.
In this figure, the spectrum of the zeroth order of transmission T(0) has been studied at the
same excitation angle and with the same geometrical parameters. A truncation order N = 50
(101 harmonics) is used with all methods. If the DM-FFF is applied with δ = 0nm (blue
dashed curve), some numerical instabilities appear at different positions of the spectrum.
However, a layer of δ = 1.0nm is considered sufficient and solves this problem by making
the spectrum efficient and stable along λ (red dashed curve with solid asterisk). The small
difference between the C-Method and the DM-FFF can be explained by the addition of the
GIL added at the dielectric-metal interface and the non-accuracy of the C-Method with such
type of discontinuous structure.
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Fig. 5.6 Spectrum of the zeroth order of transmission T(0) for the DM-FFF (with and without
GIL) and the C-Method. The values of both methods are calculated for N = 45 and Dz = 1nm
is used with the DM-FFF

5.4 Conclusion

When a metallic core grating with lossless refractive index is used some numerical instabilities
appear inducing the divergence of the method. Indeed, the rapid change in the permittivity
doesn’t respect the Li’s rule. For that, graded refractive index layers (GIL) must be added
at the dielectric metal interface to alleviate this change and ensuring the stability of the
differential method. Moreover, the thickness of these layers are in the scale of 1nm. With the
Fourier Modal Method, adaptive spatial resolution could be added to decrease the thickness
of these layers. But, as the DM-FFF and the RCWA almost deal with non-lamellar structure,
the ASR can’t be easily applied here due to the need of variable function of the ASR from
layer to another. Finally, after solving this problem, the DM-FFF is now ready to be applied to
modelize rigorously and accurately any type of 1D metallic or dielectric diffraction gratings
under TM or TE polarization.
The work presented in Chap.4 and Chap.5 has been published in 1 scientific journal (A2 of
Appendix.D: Springer, Journal of Optical and Quantum Electronics, A.2020, 52(2), p.127.)
and presented in one french national conference (C2 of Appendix.D: JNOG 2018, Toulouse,
France) and one international conference (B3 of Appendix.D: OWTNM 2019, May 2019,
Malaga, Spain).
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Chapter 6

DM-FFF applied to visual security
structures: A full study

6.1 Introduction

One of the most important applications of the diffraction gratings is the color filters. This
type of filters is commonly used for display devices, visual security structures, image sensors
and many other applications. However, the theory of producing colors using diffraction
gratings is explained in details in Ref.[47] and [20]. Moreover, the grating can be constituted
of semiconductors [44, 125], metal [52, 86], polymer [43] or even all dielectric materials
[26, 65, 114]. Practically, both transmittance and reflectance color filters may used.
Nowadays and based on the well-known laws of optical waves (interference and diffrac-
tion), different families of visual security structures have been appeared. Among all of
them the diffractive optically variable devices (DOVIDs) composed of diffraction gratings,
commercially known as security holograms, are playing a predominant role in the market of
authentication and document security.
Basically, the main role of diffraction gratings is to diffract and split the incident light into
several beams propagating in several directions. Moreover, the grating structure can be
composed of all-dielectric material or a metal-dielectric combinations. So, the appeared dips
or peaks depend on many parameters as the polarization of the incident light, the incident
angle, the period of the grating and the involved materials.
Indeed, the physical origins of the reflected or transmitted colors from the hologram be-
long to multi-types of resonances that appear depending on the material and the opto-
geometrical dimensions of the diffraction grating consisting those devices (Rayleigh’s
anomalies [90, 98, 99, 118, 119], Guided Mode Resonance (GMR) [109, 114, 115], or
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the excitation of Surface Plasmon Polariton (SPP) [21, 24, 38, 39, 79, 110]). These reso-
nances induce peaks and dips in the reflection or transmission spectrum of the visible domain
(380nm ≤ λ ≤ 780nm). As a result, a reflected or transmitted color can be seen by the human
eye. In this chapter, the implemented DM-FFF will be used in order to modelize a dielectric
visual security device. Only TM polarization will be studied to upraise the FFF.

6.2 Spectrum to color transformation

The color spaces are like all mathematical representation of physical phenomena which
can be represented in different ways. Some of them are designed to help human to select
color and other are developed to ease data processing of colors in machine. Historically,
many color spaces exist. However, the main goal of any space is to minimize the number of
variables which describe the space and to maximize the range of coverage of colors.

Indeed, three variables in almost all the color space are considered sufficient to describe
the color. For example, in the RGB color space [105], the color is described as an addition
of the three colors Red, Green, and Blue. On the other hand, the L∗a∗b∗ color space is a
space defined by the International commission of illumination (CIE) which describes the
color following three values: 1) L∗ for the lightness from black (0) to white (100). 2) a∗ from
green to red 3) b∗ from blue to yellow [106]. The XYZ is a color space based on how the
human eye perceives the light. It includes all color that are visible to a human-being with an
average vision. However, the XYZ letters of this space are analogous to the actual response
of the cone cell in the human eye. In 1931, the CIE established a set of three color matching
related to the red, green and blue cone cells of the eye [104].

Fig.6.1 illustrates the color matching functions of the eye cone cells. Indeed, the tristimulus
values X , Y , and Z can be described through the following equations as,

X =
1
K

∫
λ

S(λ )D(λ )x̄(λ )dλ

Y =
1
K

∫
λ

S(λ )D(λ )ȳ(λ )dλ

Z =
1
K

∫
λ

S(λ )D(λ )z̄(λ )dλ

(6.1)

Where, K =
∫

λ
D(λ )ȳ(λ )dλ is a normalization factor, S(λ ) represents either the transmit-

tance or the reflectance spectrum. D(λ ) is the standard illuminant defined by the CIE which
represents the D65 standard that matches with the normal daylight. x̄, ȳ, and z̄ are the 2◦ CIE
color matching which describes the cone cells of the human eye.
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6.2 SPECTRUM TO COLOR TRANSFORMATION

Fig. 6.1 CIE 1931 color matching functions

Fig. 6.2 CIE 1931 color space chromaticity diagram known as xy space. The out numerated
boundary is the spectral locus with wavelengths in nm.
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Moreover, the XYZ parameters can be normalized to form the xy space as,

x =
X

X +Y +Z

y =
Y

X +Y +Z

z =
Z

X +Y +Z
= 1− x− y

(6.2)

In this form, only two parameters (x and y) are needed to describe the resulting color from
the transmittance or reflectance spectrum which are represented on the CIE chromaticity
diagram depicted in Fig.6.2.
Further, the conversion of the xy space to the other spaces (RGB, L∗a∗b∗, etc..) requires a
transformation by an appropriate chromaticity matrix.

6.3 All dielectric structures as a reflection visual security
device

6.3.1 Geometry of the structure

The geometry considered throughout this section is depicted in Fig.6.3. It is an all-dielectric
diffractive sinusoidal structure associated to a buffer layer with controlled chromatic response
and compatible with mass production. The profile of the structure is then defined as f (x) =[A

2 +
A
2 cos

(2πx
Λ

)]
+T (Fig.6.3.(b)). A is the peak to peak amplitude of the sinusoidal profile

and T is the thickness of the buffer layer. The incident medium is assumed to be the air
with nsup = 1, and the substrate belongs to a homogeneous lossless dielectric layer of SiO2

with a refractive index nsub = 1.45. The grating region is filled with silicon nitride (Si3N4)
of refractive index nc, where its dispersion depends on the incident wavelength. Then,
the structure is illuminated from the top with TM or TE polarized monochromatic plane
wave with an incident angle θinc. All the chromatic response are calculated following the
recommendation of the CIE in the x− y color space. The DM-FFF with N = 25, Dz = 1nm
and NFFT = 8192 samples are used in all the following calculations. Two major factors will
be studied, firstly the chromaticity of the color and their gamut while changing a desired
opto-geometrical parameter.
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Fig. 6.3 Geometry of the studied structure

6.3.2 The impact of the buffer layer on the chromatic response of the
structure

Spectral response

A structure with a fixed period of Λ = 320 nm is considered. The structure is illuminated
with TM polarized plane wave under normal incidence (θinc = 0◦). Due to the periodicity of
the structure and the presence of an effective refractive index, such structures support two
types of resonances: the rayleigh anomaly and the guided mode resonance (GMR).
In any types of periodic structures, the Rayleigh anomaly occurs at a well-known wavelength
when a pass-off of a spectrum of higher order (order > 0) appears. Indeed, this resonance
depends on the grating period, the incident wavelength and the incident angle. For a pth

order this pass-off wavelength can be calculated depending on the following equation,

λp =
nincΛ

p
(±1+ sin(θinc)) (6.3)

With, ninc is the refractive index of the incident medium, Λ the period of the grating, and θinc

is the incidence angle of the excited plane wave.
On the other hand the GMR effect is based on the diffraction and interference of the electro-
magnetic waves inside the sub-wavelengths structures [100]. In other word, the evanescent
modes of a diffracted order (reflected or transmitted) can excite one or more guided mode
inside the buffer layer. This effect is a result of the reradiated leaky mode of the waveguide
when a constructive or destructive zero interference occurs with a transmitted or reflected
order. Indeed, a phase matching between the leaky mode of the waveguide βx,p and the
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diffracted order must be fulfilled in order to excite the guided mode in the buffer layer,

βx,p = kinc

(
nsupsin(θinc)− p

λ

Λ

)
(6.4)

With βx,p =
2π

λ
ne f f is the propagation constant of the guided mode coupled with the evanes-

cent order p, and ne f f is the effective refractive index of the guided mode. The condition to
excite the guided mode is to have nc > ne f f > nsub > nsup.

With such geometry, the modulated region play the role of a waveguide layer even if
T = 0. Actually, as long as the condition of refractive indices is respected, the modulated
region can be seen as a Bragg grating with a given effective index ne f f . Thus, this layer can
induce a filtering effect due to the phase matching condition of the guided mode resonance.
To see the impact of varying the effective refractive index of the grating and the buffer
layer, the thickness of the buffer layer has been evaluated for different values. For that, A
is considered always constant with A = 200nm. And, the thickness T varies between 0 to
200nm.
Let’s start with a brief study of the structure with T = 0nm. Ideally, Eq.6.3 tells us that the

Fig. 6.4 Spectral calculation as a function of the wavelength for the grating of Λ = 320nm,
A = 200nm and variable T . The DM-FFF has been used for the calculation with N = 25 and
Dz = 1nm.

pass-over of the first order (p = 1) of the transmission occurs for λ = 464nm with normal
incidence. Indeed, the reflectance spectrum of T = 0nm (red pointed curve of Fig.6.4) shows
that the structure supports two types of resonance : 1) The weak jump relies to the famous
Rayleigh’s resonance that occur at λ = 464nm. 2) the wide-band resonance belongs to
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the excitation of the guided mode inside the modulated zone. Under proper illumination
conditions, this guided mode is coupled and out-coupled along the diffraction grating. The
reflectance spectrum presents a maximum at the wavelength that coincides with the guided
mode (phase matching condition of Eq.(6.4) is fulfilled). We can mention that, at normal
incidence just the propagating guided mode can be excited.
Subsequently, when T increases from 0 to 100nm, the effective refractive index increases.
This growth induces a red shift of the peak of resonance due to the phase matching condition.
For example, the peak of resonance of T = 40nm occurs for λ = 503nm (blue dashed curve).
On the other hand, when T = 100nm, this peak appears for λ = 538.5nm. As long as, the
effective thickness of the grating zone supports one mode (monomode), only the fundamental
guided mode can be excited inducing one peak in the reflectance spectrum. In contrast, when
the mean thickness Hmean =

A
2 +

T
2 > 200nm, the modulated region can support two or more

guided modes. Consequently, for T = 200nm (purple dashed curve), and in addition to the
Raleigh’s peak, two resonances appear which belong to the fundamental T M0 mode and the
T M1 guided mode (λ = 583.5nm and λ = 492.5nm respectively).

Chromatic response

Fig. 6.5 Color palette obtained from the numerical simulation of R(0) and T(0) at normal
incidence with Λ = 320nm, A = 200nm and variable T .

With reference to Fig.6.5, we can find that the colorfulness of T(0) is low and the color
gamut is narrower. This happens because the transmission needs multi-resonances or broader
resonances to display high colorfulness colors [22]. In contrast, the numerical evidence
shows that when the thickness of the buffer layer varies from 0 to 200nm, the reflectance
spectrum presents a high colorfulness color especially for T = 0nm and T = 80nm (black
dashed curve). Nevertheless, when the total amplitude of the grating increases, a pale of
the colorfulness appears. This colorless is a result of either the excitation of multi guided
modes (T = 200nm) or the high reflection of the Rayleigh’s anomaly that disturbs the evident
reflected color of the guided mode resonance (T = 40nm and T = 100nm). From here, we
can conclude that the thickness of the buffer layer affect the chromaticity of the reflected
color and not the color gamut as all the reflected colors are between blue and green.
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6.3.3 Impact of the period on the chromatic response of the structure

Practically, two facts matter in an optical security device: 1) the originality of the structural
reflected or transmitted colors. 2) the visible changes of the colors when an opto-geometrical
parameter is changed. Indeed, the period of the grating is considered as the major factor to
produce a desired structural color. This periodicity determines the wavelength of pass-over
of different orders, the phase matching of the guided mode resonance, and the wavelength of
the excitation of the surface plasmon polariton if a metallic core grating is considered. For
that, studying the impact of varying Λ is a major factor on the reflection spectrum. Moreover,
referring to Fig.6.5, the structure with A = 200nm and T = 80nm have been chosen because
it is monomode with visible wavelengths, and due to its original structural color response in
the reflection region.

Spectral response

Fig. 6.6 Spectral calculation of R(0) as a function of the wavelength for A= 200nm, T = 80nm
for different periods Λ.

Always with a TM polarized plane wave exited at normal incidence, Fig.6.6 shows the spectral
response of the dielectric grating for different values of Λ. However, as the periodicity
increases, the structure supports mainly one resonance. To elaborate more, when Λ increases,
the guided modes of the waveguide-like layer are excited and simultaneously decoupled
through the grating. With this situation, the guided mode carries the highest part of the energy
while the reflected energy of the Rayleigh’s anomaly looses its efficiency. Moreover, when Λ

increases, the spectrum and the position of resonances are red shifted. The wavelengths of
resonance can thus be easily calculated by referring to Eq.(6.3) and Eq.(6.4).
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Chromatic response

Fig. 6.7 Color palette obtained from the numerical simulation of R(0) and T(0) at normal
incidence for different values of the period Λ.

Referring to Fig.6.7, the numerical simulations show that the reflected colors cover a large
spectral range that goes from blue to red. Moreover, the generated structural colors presents
a high colorfulness. Indeed, varying the period gives a wide gamut of reflected colors.
So, depending on the prescribed color of the security device or the application, a precised
structural color can be selected by varying Λ. We also choose the structure of Λ = 320nm,
A = 200nm and T = 80nm due to its original and non typical chromatic response (olive
green).

6.3.4 Impact of varying the amplitude of the grating A

Spectral response

In this section, T = 80nm and Λ = 320nm are always considered, while the amplitude A of
the sinusoidal region is variable. Under normal incidence and TM polarized plane wave,
Fig.6.8 shows the spectral response of the structure when varying A from 40nm to 300nm.
Consequently, the variation of A can affect two parameters: 1) the wavelength of excitation
of the guided mode resonance. 2) The full width half maximum (FWHM) of the resonance.
Those two changes are linked to one physical origin. For example, for A = 40nm (red dashed
curve pf Fig.6.8), a single guided mode is excited at λ = 483nm with a FWHM = 3.7nm. In
contrast when, A = 80nm (black dashed curve), the phase matching occurs at λ = 496.5nm
with FWHM = 12.7nm. Moreover, the GMR peaks are red shifted and the FWHM increases
with the increase of A. This shift can be explained by referring on the grating law and the
GMR law where the phase matching occurs since its proportional to the effective refractive
index of the structure. Moreover, when A increases, the diffraction effects increase. Therefore,
the loss of the leaky mode increases which induces a larger resonance. Finally, when a large
A is chosen, another guided mode can be excited at lower wavelengths. This happens, for
example, with A = 300nm (purple dashed curve). In that case, the modulated zone becomes
multimode and can support two or more guided modes. To interpret this variation, the
effective refractive index of the entire zones has been evaluated for the different values of
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Fig. 6.8 Spectral calculation of R(0) as a function of the wavelength for Λ= 320nm, T = 80nm
for different values of A.

A (Fig.6.9). For that, the entire structure can be replaced by a non-corrugated waveguide
of Si3N4 sandwiched between the air and a substrate of nsub = 1.45. Therefor, an effective
width of A

2 +T is considered. Using the a-FMM, the evolution of the effective refractive
index is then studied following the wavelength λ . Accordingly, this figure shows that when

Fig. 6.9 The evolution of the effective refractive index following 1/λ with T = 80nm and
different values of A.

A increases the value of the effective refractive index increases. Indeed, in guided structure,
when ne f f approaches to the refractive index of the core, the guided mode is more confined
and the FWHM is smaller. On the other hand, ne f f is directly proportional to βx,p of the
phase matching equation (Eq.(6.4), thus when ne f f increases the wavelength of resonance is
shifted to the red wavelengths to keep βx,p constant. As mentioned before, when A = 300nm,
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two effective indices appear which refer to the T M0 and T M1 guided modes (purple dashed
curve and purple pointed curve respectively).

Chromatic response

Fig. 6.10 Color palette obtained from the numerical simulation of R(0) at normal incidence
for T = 80nm, Λ = 320nm and different values of A in nm.

Finally, the chromatic response of the reflectance R(0) has been evaluated for different values
of A. As depicted in Fig.6.10, for small values of A, almost there is no reflected color due
to the high reflection all over the spectrum. In contrast, when A ≥ 80nm, colors between
turquoise and white green appear. The amplitude of the grating affects thus the chromaticity
of the color more than the gamut of the reflected color. A high chromaticity and colorfulness
of the green is obtained for 140nm ≤ A ≤ 220nm. Moreover, the amplitude that reflects the
more chromatic green is A = 180nm. For that, we will choose this value in order to finally
study the most important parameter in an optical security device which is the incident angle
θinc.

6.3.5 Impact of the incident angle θinc

The most important parameter in the performance of an optical security device is the incident
angle. Indeed, the originality of a visual security structure is distinguished by its ability
to produce original structural colors under different angles of incidence. Practically, the
periodic structures must diffract (transmit or reflect), two original colors between θ = 0◦ and
30◦ to be considered as good visual security structure. With such structures, when θinc ̸= 0,
the GMR is characterized carrying two modes: 1) the propagating guided mode (following
+x) and the anti-propagating guided mode (following −x). Those two modes are a result of
the propagating effective refractive index +ne f f and the anti-propagating effective refractive
index −ne f f . The equations that describe the wavelengths of excitation of the two modes via
the phase matching with the leaky mode of a given order p are the following,

Λ

λpropa
· sin(θinc)+ p =

Λ

λpropa
· (+ne f f )

Λ

λantipropa
· sin(θinc)+ p =

Λ

λantipropa
· (−ne f f )

93



DM-FFF APPLIED TO VISUAL SECURITY STRUCTURES: A FULL STUDY

To illustrate that, Fig.6.11 shows the spectrum of the zeroth order of reflection R(0). For
normal incidence (red dashed curve), λ(T 0) = 464nm represents the Rayleigh’s resonance of
the evanescent first order of transmission. Moreover, λg0 = 523nm belongs to the excitation
of the fundamental propagating guided mode in the modulated region. On the other hand,
for θinc = 10◦ (blue dashed curve), Eq.6.3 tell us that the pass-over of the evanescent
minus first order of the transmission occurs for λT (−1) = 408nm, λT (1) = 544nm for the first
order of transmission. On the other hand, Referring to Fig.6.9, assuming that the average
effective refractive index ne f f = 1.65 for A = 180nm. Thus, the resonance wavelength of
the propagating guided mode appears for λg1 =

Λ

p (ne f f − sin(θinc)) = 472nm with p = 1.
Moreover, the resonance wavelength of the anti-propagating guided mode appears for λg2 =

−Λ

p · (ne f f + sin(θinc)) = 554nm with p =−1. Following the same ideology, the position of
the resonances can be predicted for the other values of the incident angles. While analyzing

Fig. 6.11 Spectral response of the dielectric structure with T = 80nm, A= 180nm, Λ= 320nm
for different incident angles θinc.

a periodic structure with propagating modes, it is important to present the modal dispersion
of modes in function of the wavelengths for example. For that, what’s called the band
diagram can describe the evolution of the modes, its absorption, reflection or transmission
coefficients with respect to the wavelengths and kz (the projection of the wavevector on the
propagation axis z). Thus, to validate our analysis, the band diagram of the chosen structure
has been presented in Fig.6.12. Three regions can be distinguished in the band diagram: 1)
above the light cone of the superstrate (kz =

2π

λ
nsup) where the propagating modes can be

excited via plane waves (Region of our interest in this chapter), 2) Under the light cone of
the substrate (kz =

2π

λ
nsub) where only the guided modes can be excited, 3) between the two

cones where the propagating modes can be excited via evanescent coupling. Indeed, for
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θ = 0◦, the replication of the first order and the minus first order of transmission produces
a band gap, which can excite the Rayleigh’s anomaly at 1/λ = 2.15µm−1. On the other
hand, the dispersion of the guided mode excited via the plane wave constitute another band
gap for 1/λ = 1.92µm−1 producing the famous guided mode resonance. Moreover, all
the resonances of the different incident angles can be demonstrated by following the same
ideology.

Fig. 6.12 Band diagram of the sinusoidal GMR structure with T = 80nm, A = 180nm and
Λ = 320nm. The colored straight line represents the different incident angles θinc. The left
sided spectrum belongs to the reflection spectrum of the chosen structure with θinc = 0◦.

Chromatic response

Fig. 6.13 Chromatic response of the final chosen structure for different incident angles θinc.

The chromatic response of the dielectric GMR structure is depicted in Fig.6.13. Always,
the spectrum to color conversion of section.7.2. is used to illustrate the color in the xy space.
Indeed, a wide gamut can be covered by this structure in the practical incident angles of a
visual security device (between 0◦ and 30◦). Now, when the structure is illuminated with a
white light source (bulb, sunlight,...), the front end user will perceive a green olive color for
normal incidence. Moreover, when the structure is pulled down to 10◦, a less colorfulness
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green will be seen. The interesting effect happens, when θinc increases to 20◦. At this
stage, a rose purple color will be reflected and seen by the human eye. Moreover, this color
stays in the range of pink red for θinc = 30◦.The transition from olive green to the red color
respects well the prerequisite condition of the slow transition of color with a wide gamut of
color change. Thus, we believe that this structure could represent an interesting reflection
visual security device due to its original reflected colors, the facility of fabrication, and the
complexity of the physical origins of the formed structural colors.

6.4 Use of the DM-FFF for the inverse tailoring of struc-
tural color

Fig. 6.14 Stages of the inversion scheme proposed to retrieve the geometrical parameters of a
desired chromatic response

With a joint work between us and our colleagues in the laboratory of Light, nanomaterials
and nanotechnologies (L2N) in Troyes-France, an all-dielectric structure almost similar to
the previous one has been investigated to tailor the chromatic response of the all-dielectric
grating using inverse problem [26]. This work has been inspired from Ref.[64]. Moreover,
the same grating of Fig.6.3 has been considered. Furthermore, the algorithm of the inversion
scheme is depicted in Fig.6.14.
The first step is the direct problem (dashed red box). Here, the reflectance and transmittance
spectrums of randomly generated opto-geometrical parameters are calculated via the DM-FFF.
After that, the respective tristimulus value of the XYZ space are calculated via Eq.(6.2). The
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next stage is based on the comparison of the calculated color with the one to be reproduced
(blue point-dashed box). Finally, this process is repeated until the minimum/ maximum
difference between the target and the iteratively generated colors has been found. Indeed, to
tailor a desired reproduced color, the color difference ∆E must be calculated. This parameter
belongs to the difference between two colors defined in CIE L∗a∗b∗ space. For that, a
transformation from XY Z space to the L∗a∗b∗ color space must be performed. It is important
to mention that a ∆E < 2.3 is indistinguishable for the human eye [66]. Thus ∆E is given by,

∆E =
√

(∆L)2 +(∆a)2 +(∆b)2 (6.5)

With ∆L = Ltarget −Lcalc, ∆a = atarget −acalc , ∆b = btarget −bcalc of the calculated trans-
mission or reflection spectrum by the DM-FFF. Finally, by using a neural network and the
swarm optimization method (PSO) [46], the prediction of the opto-geometrical parameters
of the structure that reproduces a desired structural color can be automatically done.

Fig. 6.15 Stages of the inversion scheme proposed to retrieve the geometrical parameters of a
desired chromatic response

To illustrate that, the tropical rain forest color depicted in Fig.6.15 has been taken as
an example. In the L∗a∗b∗, this selected color has L = 51, a =−47.9 and b = 26.4. After
searching the optimal solution, the parameters retrieved in Table.6.1 are almost similar to
the ideal ones. Moreover, ∆E = 1.3 has been found which is less than the distinguishable
criterion ∆E < 2.3.
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Parameters Λ (nm) A (nm)
Target 320 300

Retrieved 319.4±6.6 293±12

Table 6.1 Target and Retrieved Geometrical Parameters Related to the Tropical Rain Forest
Depicted in Fig.6.15

6.5 Conclusion

In this chapter, a detailed study of a reflection visual security device has been done. The
structure corresponds to an all dielectric structure which gives interesting visual effect. The
mixing of two physical effects gives a wide range of freedom to manipulate the diffracted
color. Due to all interpretations, we found that the most important parameter to have a wide
gamut under normal incidence is the period Λ. The other parameters (A, T ) can affect the
colorfulness of the reflected color. Moreover, the GMR resonance can be optimized by
changing the thickness of the waveguide layer (buffer layer) by the coupling of one or more
guided modes.
Consequently, more complex diffraction grating may be studied, from metallic gratings
inducing plasmonic effects into the continuous, discontinuous or/and structures mixing
continuous part with discontinuous geometries. However, our industrial collaborator, SURYS,
uses the roll to roll technology for mass production of visual security devices. With this
technique, the change of the thickness of the structure is considered difficult of the same
wafer. Nevertheless, different gratings with different periods Λ can be realized on the same
wafer which can be realized with their platforms.
Due to the code developed in Python and the spectrum to color conversion. I contributed as a
co-author in the work published in one international journal (A3 of Appendix.D: . Applied
optics, 57(14), pp.3959-3967.) and presented in one international European conference (B4
of Appendix.D: EOSAM2018, Oct 2018, Delft, Netherlands.).
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Electromagnetic Numerical Tools for the
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Chapter 7

DM-FFF applied to optical guided
structures: Theoretical interpretation

In this chapter, a reformulation of the differential theory associated with Fast Fourier Fac-
torization used for periodic diffractive structures is presented. This reformulation allows
the rigorous modeling of non-lamellar guided structures by preventing the problem of the
staircase approximation of the aperiodic Fourier Modal Method (a-FMM).

7.1 Introduction

The rapid growth in the domain of integrated optics has compelled researchers and engineers
to step up their efforts in the development of more rigorous and accurate electromagnetic
numerical methods dedicated to the modeling of optical guided structures (microresonators,
optical filters, plasmonic structures,...). A photonic guided structure is often an open structure,
composed of guided layers sandwiched between two semi-infinite half space and homoge-
neous zones so-called the superstrate and the substrate. At this scale, the outgoing wave
conditions in the homogeneous zone must be respected by absorbing the outgoing waves
and preventing their reflections. Indeed, to fulfill these conditions, Perfect matching layer
has been introduced firstly by J-P Berenger [4]. The concept of PML is based on the im-
plementation of absorbing layer around the guided structure. The role of these layers is to
achieve a highly absorbing boundary conditions at the edge of the structure by absorbing
the electromagnetic waves without any reflection. Thus, PML are considered as artificial
absorbing layers for wave equations. It is a commonly used technique to respect the boundary
conditions in guided structures for different electromagnetic numerical methods as the Finite
Element Method (FEM) [28], and the FDTD [78], to modelize problems with open boundary.
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In 2001, this concept has been proposed to the Fourier Modal Method (FMM) allowing the
modelization of an open photonic structure using the grating theory [103]. This concept is
based on the association of complex coordinate transformation playing the role of PML to
the propagation equations of the FMM turning the method into an aperiodic method so-called
aperiodic Fourier Modal Method (a-FMM) [36]. This theory features improvements of the
existing methods in terms of convergence speed and accuracy. But, the a-FMM is considered
accurate as long as lamellar structures are considered (structures with rectangular sections).
For that, the evolution of the core waveguide profile along the propagation axis z is charac-
terized by cascaded rectangular layers describing the overall structure. Indeed, each layer
is defined by a specific refractive index profile of the waveguide following the transverse
axis and the propagation axis. Unfortunately, a photonic device is normally composed of
continuous refractive index evolution. In that case, the a-FMM will discretize the structure
with the lamellar condition which doesn’t rigorously belong to the guided structure. Indeed,
the boundary conditions risk not to be respected specifically in TM polarization case. This
problem is well known in the grating theory for the modelization of continuous refractive
index grating profile [96]. Consequently, under this polarisation the aperiodic FMM can suf-
fer from slow convergence and lack of accuracy especially for high refractive index contrast
structure (dielectric or metallic). By now, the only way to tackle this problem is to use hybrid
method as Finite Element Method (FEM) for continuous section and aperiodic FMM for
lamellar sections[35, 50]. The DM-FFF takes the evolution of the grating profile. Moreover,
this method also prevents the problem of staircase approximation. It demonstrated a faster
convergence and a better accuracy by respecting the boundary condition of each discretized
layers (Chapter 3 and 4). However, by now this method is essentially applied to diffraction
grating problems. So, the input and output layers are composed of homogeneous zones and
driven by plane waves.
The use of the methods based on the harmonic decomposition of respectively the fields
and the permittivity evolution brings many advantages to modelize the integrated optics
structures. Indeed, those methods are bidirectional. Moreover, all modes can be taken into
consideration (guided, evanescent and diffracted). And, a wide range of material can be
chosen by introducing a complex permitivitty or permeability (anisotropic medium, magnetic
material, lossy,...). For that, as the DM-FFF is a Fourier based method that prevents the
staircase approximation of the FMM, the idea was to reformulate the differential theory of
grating to be adapted with the modelization of integrated optic devices. This reformulation is
based on two facts: firstly, a complex coordinate transformation of type Hugonin-Lalanne
playing the role of PML must be associated to the propagation equations of the DM-FFF in
order to neglect the incoming and outgoing waves of the neighboring cell [36]. Secondly, a
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solution must be proposed to replace the plane wave excitation of the homogeneous media
by the guided mode of the input waveguide. This replacement is going to give access to
the calculation of the reflection and the transmission coefficients of the photonic structure.
Moreover, this reformulation will allow to simulate 2D complex-shaped open structure, in all
polarization, with a better accuracy and convergence than the classical aperiodic FMM and
without the need of hybridization of different methods.

7.2 Modelisation of integrated optics structures using the
DM-FFF

7.2.1 Illustration of the problem

We consider the guided structure depicted in Fig.7.1. It is a 2D guided structure sandwiched

Fig. 7.1 Semi-infinite guided structure sandwiched between two infinite spaces (Region I and
Region II) (x ∈ [−∞,+∞])

between two homogeneous layers of refractive index next . We assume that the input waveg-
uide is illuminated from the top (z = z0) by one of the guided mode of the waveguide. The
permittivity depends on the propagation axis z and the transverse axis x, while the structure
remains invariant in the y direction. The structure may be illuminated with TE or TM polar-
ized guided mode and both dielectric or metallic refractive indices may be considered.
In integrated guided optics, the structure is considered as open boundary problem. In other
words, the structure is isolated between two semi-infinite space with x∈ [−∞,+∞]. Therefore,
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in TM polarization, the transient system of Maxwell’s equations has been already described
in the equations (3.1a) and (3.1b). The materials used are always considered isotropic and
non magnetic in this chapter.
Our aim is to solve the previous mentioned equations of propagation while satisfying the
outgoing wave conditions of an open structure in Region I and Region II using the differential
method used in grating theory. To fulfill the outgoing conditions, an analytically continuation
of the fields Ex and H

′
y will be defined in a suitable complex plane so that the incoming wave

in Region I and Region II are strongly attenuated. This fact will be performed by associating
a simple complex coordinate transform to the propagation equations (3.1a) and (3.1b) that
allow one to map this infinite complex plane into a bounded segment of a new real space.
Thus, the complex coordinate transformation play the role of perfectly matched layers (PML)
by suppressing the incoming and outgoing waves of the neighboring cell.

7.2.2 Perfectly Matched Layer as non-linear complex coordinate trans-
formation

Introduction

Generally, PML are described as graded constant to minimize the material contrast reflection
[18, 68]. In their paper [37], Hugonin et al. have demonstrated that by fulfilling the outgoing
wave conditions of the propagation equations in the boundary zone (Region I and Region
II), an infinite complex space can be mapped through a finite plane by applying a complex
coordinate transformation playing the role of PML. In other words, a new complex space X
composed of two semi-infinite complex domains XI and XII and a real space XIII = x, mainly
in the substrate and superstrate zones, will be introduced. Consequently, instead of dealing
with Eq.(3.1).(a) and Eq.(3.1).(b) in x ∈]−∞,+∞[, the propagating fields will be calculated
in the new complex coordinate system X ∈]−∞− j∞,+∞+ j∞[. Thus, the integration of the
differential equations will be conducted in X , which is mapped in a new finite and bounded
space (x

′
) of period Λ, where −Λ

2 ≤ x′ ≤ Λ

2 . It is thus represented by the unit cell of periodic
grating in the artificial periodized space x′.

Cartesian function of the coordinate transformation

To be associated to the differential theory, this transition can be performed by integrating
a non-linear complex coordinate transformation X = F(x′), to the system of the periodic
structure, by artificially periodizing the guided structure as depicted in Fig.7.2. The aim of
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(a)

(b)

Fig. 7.2 Non linear transform for modeling a 2D infinite structure in a bounded finite
space (a) Artificial periodized structure with period Λ bounded in imaginary space (X ∈
[−∞− j∞,+∞+ j∞].) after applying a complex coordinate transformation. (b) Unit cell
of the artificially periodized structure bounded in (x′ ∈ [−Λ

2 ,+
Λ

2 ]). qx′ represents the total
thickness of the PML. e = Λ−qx′ is the thickness not affected by the PML. The structure
is excited with a guided mode. The input and output waveguide core refractive index is ng.
The cylindrical reflector refractive index is nd . The superstrate and the substrate are two
homogeneous zones of refractive index next .

the stretching of the bounded space is to strongly suppress the electromagnetic fields near the
boundaries of the unit cell turning it into an isolated cell instead of periodic cell. An analogy
can be done here between the PML and the anechoic chamber used for the study of antenna
radiations where the boundaries absorb the incident fields without inducing a new reflection
on its surface.
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(a)

(b)

Fig. 7.3 Non-Linear coordinate transformation (a) the complex coordinate transformation
X = F(x′) for γ = 1

1− j (b) its derivative f (x′) with respect to x′.

Generally, for an open boundary problem illuminated by a polarized guided mode, the
outgoing wave condition implies that Hy(x,z) and Ex(x,z) must tend to zero far away from
the guided zone of the structure. Under this condition, the open problem of Fig.8.1 can
be replaced by an artificially periodized guided structure (Fig.7.2.(a)) where the stationary
fields Ex′(x′,z) and Hy(x′,z) are strongly suppressed at the boundaries of each cell due to the
complex coordinate transformation.
Indeed, several coordinate transform can be investigated. The same coordinate transformation
F(x′) proposed in Ref.[37] is used. Other coordinate transformations are available but the
previous one is efficiently enough in terms of accuracy and convergence speed. Moreover,
it is motivated by its easy implementation in Fourier space and has been inspired by a

106



7.2 MODELISATION OF INTEGRATED OPTICS STRUCTURES USING THE DM-FFF

previous work that calculates the bounded modes of rectangular core waveguide [33]. Thus,
to implement the coordinate transformation in the propagation equation, the derivative of the
coordinate transformation functions f (x′) = ∂X/∂x

′
must be defined.

Consequently, it is presented in Fig.7.3 the coordinate transformation F(x′) and its derivative
f (x′) along one period Λ of the new coordinate system x′. Indeed, at the boundary of the
unit cell x′ =±Λ

2 , the real and imaginary part of the coordinate transformation F(x′) tends to
±∞+ j±∞. As a result, the fields at the boundary of each cell are strongly attenuated due
to the stretching following the periodicity axis x′. Nevertheless, the equation describing the
complex coordinate transformation is expressed as follows,

F(x′) =x′ for |x′|< e/2

F(x′) =
x′

|x′|

(
e
2
+

qx′

π(1− γ)

[(
π
|x′|− e/2

qx′

)
− γ√

1− γ
tan
(

π
|x′|− e/2

qx′

)])
,

for e/2 < |x′|< Λ/2

(7.1)

Where, e = Λ−qx′ , qx′ is the total thickness of the PML (qx′/2 from each side) and γ = 1
1− j .

Thus, referring to Eq.7.1, the new coordinate system X = F(x′) can be simply describes as,

F(x′) is real for |x′|< e/2

F(x′)→+∞+ j∞ for x′ =+Λ/2

F(x′)→−∞− j∞ for x′ =−Λ/2

(7.2)

Under the above conditions, the open problem can be replaced by an artificially periodized
structure where the stationary fields H

′
y(x

′,z) → 0 and Ex′(x′,z) → 0 at the boundaries of
each cell. In contrast, far away from the edges of the unit cell, the electromagnetic fields
correspond to their real representations, and exactly follow the desired propagation of an
open boundary structure.
As mentioned before, to express Eq.(7.3) in the new coordinate space, only the derivative
dx′/dX = f (x′) = dF/dx′ is needed. So, this function is given by,

f (x′) = 1 , for |x′|< e/2

f (x′) =
[

1− γ sin2
(

π
|x′|− e/2

qx′

)]
cos2

(
π
|x′|− e/2

qx′

)
,

for e/2 < |x′|< Λ/2
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Thus, in order to express Eq.(3.1a and 3.1b) in the new coordinate system, each ∂/∂x in
Eq.(3.1a and 3.1b) has to be replaced by f (x′)∂/∂x′. Hence, the new propagation differential
system that sustains the complex coordinate transformation can be expressed as,


∂Ex′
∂ z = jH ′

y + j f (x′) ∂

∂x′

(
1
k2 f (x′)

∂H ′
y

∂x′

)
∂H ′

y
∂ z = jk2Ex′

(7.3)

Actually, this approach has been implemented to the Fourier Modal Method by Hugonin
et al. [36]. Nevertheless, the aperiodic FMM (a-FMM) suffers from staircase approximation
while modeling profiles with continuous evolution along the propagation axis, (trapezoidal
tapers, micro-disks, ...) [2, 13]. For that, only lamellar profiles are requested to reach
accurate results with the a-FMM. Thus, the idea was to reformulate the differential theory
associated with Fast Fourier Factorization of Chapter 3, in order to modelize and simulate
more rigorously the non-lamellar photonic waveguide structures, instead of diffractive
gratings, which we call the aperiodic DM-FFF (a-DM-FFF). Furthermore, as long as there
is no growing exponential, the outgoing wave conditions are fulfilled, and electromagnetic
fields very close to zero are expected at the boundaries of each cell when using a sufficient
truncation order N.

7.3 Formulation of the aperidic DM-FFF (a-DM-FFF)

7.3.1 Propagation equation in TM polarization

The aim of this section is to establish a set of equations suitable for the electromagnetic
numerical resolution of 2D arbitrary shaped guided structure. The DM-FFF is a well known
modeling method used in grating theory. But, turning this method into the simulation of
guided structures is not treated before.
As mentioned in Chapter 3, the differential theory belongs to the Fourier base family.
This family is characterized by expending the electromagnetic fields and the permitivitty
distribution into a truncated Fourier series, in the new mapped space x′, following the
truncation order N [10, 73]. However, in the new coordinate system x′, the generalized
Fourier series of the electromagnetic fields Ex′ , H ′

y, and the permitivitty distribution εr
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following the artificial periodization axis x′ can be expressed as,

Ex′(x
′,z) =

n=+N

∑
n=−N

En(z)e jnKx′

H ′
y(x

′,z) =
n=+N

∑
n=−N

H ′
n(z)e

jnKx′

εr(x′,z) =
n=+N

∑
n=−N

εn(z)e jnKx′

(7.4)

With K = 2π

Λ
, and En, H ′

n, εn are the Fourier coefficient of the harmonic n, of the electric fields
Ex′ , the magnetic field H ′

y, and the medium permittivity εr respectively. The harmonic vector
notation can be used to describe the (2N+1) Fourier coefficients [Ex′], [H ′

y], [Ez], and [ε] with
[Ex′] = [E−N , ...,E0, ...,EN ], [H ′

y] = [H ′
−N , ...,H

′
0, ...,H

′
+N ] and [εr] = [ε−N , ...,ε0, ...,ε+N ].

Referring to Eq.(7.3), the Fourier space system of the 4N +2 coupled differential equations
of the a-DM-FFF can be extracted from Eq.3.22. Indeed, this system takes into account
the evolution of the profile, and describes the propagation of electromagnetic field in open
boundary structure in TM polarization,

∂ [Ex]

∂ z
=− jJ f KKQ−1

zz Qzx[Ex]+ j
(
Id − J f KKQ−1

zz J f KK
)
[H ′

y]

∂ [H ′
y]

∂ z
=
(

jQxx − jQxzQ−1
zz Qxz

)
[Ex]− jQxzQ−1

zz J f KK[H ′
y]

(7.5a)

(7.5b)

With, K is a diagonal matrix where Ki j = (−N+ i)2π

Λ
δi j with δi j is 0 for i ̸= j and 1 for i = j.

J f K the Toeplitz matrix of the complex coordinate transformation f (x′) where its Fourier
transformation fn is defined in Appendix.B. The other parameters of the system are defined
in the Eq.(3.22) of Chapter 3. As a result, this last equation can be simplified into a set of
4N +2 first-order differential equations written in two block matrices form:

∂

∂ z

[
[Ex′]

[H ′
y]

]
= j M(z)

[
[Ex′]

[H ′
y]

]
(7.6)

7.3.2 Propagation equation in TE polarization

Following the same methodology of TM polarization, the complex coordinate transformation
can be applied to the propagation equation of each discretized layer s. Thus, each ∂/∂x will
be replaced by f (x′)∂/∂x′. Therefore, in the Fourier space, the system of equations that
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describes the propagation of the transverse electromagnetic fields can be expressed as,
∂ [Ey]

∂ z
=− j[H ′

x]

∂ [H ′
x]

∂ z
= j
(
J f K[K]J f K[K]− Jk2K

)
[Ey]

(7.7a)

(7.7b)

The system of Eq.(7.7) can be written as a system of 2(2N+1) coupled differential equations
representing the electromagnetic fields propagating in TE polarization of the guided photonic
structure,

∂

∂ z

[
[Ey]

[H ′
x]

]
= M(z)

[
[Ey]

[H ′
x]

]
(7.8)

Following the same methodology of the grating theory, the aperiodic DM-FFF discretizes the
artificially periodized structure into s layers by a constant discretization step Dz. As long as
we stay in the medium that sustains this transformation, the cascade of S matrices follows
the same rules as Chapter 3.
Although, in the differential theory of grating, the matrix Ψ of section 3.1.5 allows the
transition from the stationary field to the forward and backward representations of the field
in the different layers from one side (by introducing the infinitely thin layers between the
sections), and describes the propagating fields in the input and output homogeneous layers
(the superstrate and the substrate) from the other side. From this transition matrix, the
propagation matrix Ps = ΨsupT sΨ−1

sub of the layer s can be determined. Nevertheless, in case
of a guided photonic structure, the input and output layers are no longer homogeneous, and
the excited mode is not a plane wave but a guided mode. Therefore, the i/o layers are now
represented by a given evolution of permitivitty following z (input/output waveguides). In
that case, and if the classical Ψ matrices are used two problems arise:

1. The i/o waveguides come out on homogeneous medium. Thus, the guided mode will
suffer from diffraction and reflection at the input and the output of the waveguide. For
example, if silicon waveguides are considered as the input and output waveguides of
Fig.8.1, and the Ψ matrix describes the propagating fields in the air, Fabry-Perot effects
will appear inducing dips and peaks of the transmission or reflection coefficients. This
case is close to the practical real case. But, the access guides are generally longer
which reduces strongly the free spectral interval.

2. The eigen modes of the homogeneous medium surrounded by PMLs are no longer the
plane waves. Indeed, the eigenvectors are slightly different. If we absolutely want to
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use the the plane waves issued from a cell without PML, a coordinate change should
be performed at the input and output interfaces. This transition generally requires a
calculation with an FFT which induces errors.

To tackle this problem, two solutions can be implemented. Thus, we will begin with the first
solution based on the representation of the Ψ matrix in a form where the eigen field of the
guided mode is represented in terms of the eigen distribution of the effective refractive index
of the i/o layers.

7.3.3 Input/Output Ψ as an equivalent guided zone

Formulation of the Ψ matrix in TM polarization

This situation resembles to the one used by the a-FMM except that this latest one gives
directly the access to the Eigen modes of the guided structure in transmission and reflection.
For simplicity reason, two identical waveguides are considered for the input and output zones.
Moreover, the fundamental guided mode is chosen to excite the monomode input waveguide.
Indeed, this eigen mode can be described by a Fourier series, where the harmonic vectors
belong to the guided electric field Eg and the guided magnetic field H ′

g associated to the eigen
value βe f f =

2π

λ
ne f f . In that case, the relation between the forward and backward electric

field and the magnetic field of the harmonic n can be written as,

E+
g,n =

βe f f

k2 H
′+
g,n

E−
g,n =−

βe f f

k2 H
′−
g,n

Ex and H
′
y are always the transverse fields. At this stage, a new transition matrix Ψg is

proposed to be used which represents the eigen mode of the waveguide. As the structure is
reciprocal, Ψ0 = Ψh = Ψg. Moreover, in TM polarization, a multiplication of the Toeplitz
matrix of the permitivitty and the vector that represents the electric field is required. So, the
Li’s factorization rules must also be sustained in the representation of the transition matrix
Ψg. Indeed, the matrices Ψ11 and Ψ12 of setion 3.1.5 become Ψg,11 and Ψg,12 respectively.
Thus, the Ψg matrix can be expressed as,

Ψg =

[
JΨg,11K JΨg,12K

Id Id

]
=

[
−βe f f

k2
0

JεrK−1 βe f f

k2
0

JεrK−1

Id Id

]
(7.9)
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with k0, the propagation constant in the empty space and εr the relative permittivity harmonic
vector of the i/o waveguides (Fig.8.1). Here, the previous propagation coefficient βn is
replaced by the eigenvalue of the eigen mode so that βe f f =

2π

λ
ne f f . Moreover, 1/k2 has

been replaced by 1
k2

0
JεrK−1.

Consequently, the problem of the diffraction and Fabry-Perot effect at the i/o layers has been
solved. Nevertheless, the choice of this matrix imposes that the input and output structures
must tend to a single mode propagation corresponding to the eigen mode chosen in the matrix.
It can be the case if the spatial filtering is enough efficient. In other words, the input and
output waveguides must have a minimum length to reach a specific transmission or reflection
accuracy.

Guided mode excitation

When the coordinate transformation is applied, the eigen modes of the homogeneous layer
are not anymore the plane waves. Thus, to perform the guided mode excitation, the eigen
mode of the input waveguide must be calculated using the eigen vector and eigen values
solution of the differential system M(z) of Eq.(7.6). After selecting the effective refractive
index of the desired guided mode, the 2(2N +1) eigen vector [Wg] that corresponds to this
ne f f is obtained. Moreover, the first 2N +1 components of [Wg] correspond to the transverse
electric field Eg of the guided mode. On the other hand, the last 2N +1 components describe
the transverse magnetic field H

′
g. Therefore, the forward propagating magnetic field H

′+
g

belongs to the excitation vector and can be defined at the position z = z0 as,[
[H

′−
g (0)]

[H
′+
g (0)]

]
= Ψ

−1
g · [Wg] = Ψ

−1
g

[
[Eg(0)]
[H ′

g(0)]

]
(7.10)

The use of this Ψg matrix imposes to have only the guided mode at each end of the waveguide.
To elaborate more, if the right representation of the eigen mode is used only the 2N + 1
components of H

′+
g (0) will exist before propagation, while all the other components are

null. After performing the propagation of the excited guided mode, and by calculating
the T-matrices of the different sections as T s = Ψ

−1
g,hPΨg,0, the same T-matrix to S-matrix

transformation of chapter 3 is performed. Thus, the overall cascaded S-matrix gives access
to the transmitted wave of the input waveguides via the 2N +1 vector [H

′+
h ] and the reflected

waves of the input waveguides via [H
′−
0 ]. For each case, the decomposition of the harmonic

vector of the magnetic field is proportional either to the amplitude of the transmitted guided
mode or the amplitude of the reflected mode. At this scale, tg donates to the transmission
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coefficient and rg to the reflection coefficient. Thus, we can write:

[H
′+
g (h)] =tg[H

′+
g (0)]

[H
′−
g (0)] =rg[H

′+
g (0)]

The Fourier series form of rg and tg can be written as,

n=N

∑
n=−N

a+hne jKnx = tg
n=N

∑
n=−N

a+0ne jKnx

n=N

∑
n=−N

a−hne jKnx = rg

n=N

∑
n=−N

a+0ne jKnx

(7.11)

With a+hn, a−hn and a+0n are the amplitude of the harmonic n of the upward vector [H
′+
g (h)], the

forward vector [H
′−
g (0)] and the excitation vector [H

′+
g (0)] respectively. However, to obtain

the intensity of the transmitted or reflected wave, a projection of the upward and forward
harmonic vectors on the incident harmonic vector must be performed. Using the orthogonal
propriety of the exponential term, the transmission and the reflection can be calculated as
follows:

1
Λ

∫
Λ

n=N
∑

n=−N
a+hne( jKnx)

n=N
∑

n=−N
a∗+0n e(− jKnx)dx =

1
Λ

∫
Λ

tg
n=N
∑

n=−N
a+0ne( jKnx)

n=N
∑

n=−N
a∗+0n e(− jKnx)dx

⇔
n=N
∑

n=−N
a+hna∗+0n = tg

n=N
∑

n=−N
a+0na∗++0n

⇔ tg =
n=N
∑

n=−N
a+hna∗+0n

n=N
∑

n=−N
a+0na∗+0n

Thus, the transmission power Tg of the guided mode can be written as,

Tg = |tg|2 =

∣∣∣∣∣∣∣∣
n=N
∑

n=−N
a+hna∗+0n

n=N
∑

n=−N
a+0na+∗

0n

∣∣∣∣∣∣∣∣
2

Consequently, the reflection coefficient can be derived as,
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1
Λ

∫
Λ

n=N
∑

n=−N
a−0n exp( jKnx)

n=N
∑

n=−N
a∗+0n exp(− jKnx)dx =

1
Λ

∫
Λ

rg
n=N
∑

n=−N
a+0n exp( jKnx)

n=N
∑

n=−N
a∗+0n exp(− jKnx)dx

⇔
n=N
∑

n=−N
a−0na∗+0n = rg

n=N
∑

n=−N
a+0na∗+0n

The reflection efficiency Rg can be then written as,

Rg = |rg|2 =

∣∣∣∣∣∣∣∣
n=N
∑

n=−N
a−0na∗+0n

n=N
∑

n=−N
a+0na∗+0n

∣∣∣∣∣∣∣∣
2

With this technique the reflection and transmission powers of the excited guided mode could
be easily determined. But, there is no information concerning the other modes. Actually, this
solution suffers from two drawbacks: 1) A part of the transmitted power in the propagation
direction is lost. Therefore, the resulting field maps obtained through Ψg are not exactly
correct. Indeed, the projection is done on an incomplete basis. Thus, to obtain exact field
maps, the projection should be performed on all the eigen modes of the input waveguides. For
that, for each mode i, the transition matrix Ψi associated with each βi should be calculated.
2) Due to the special form of mode excitation (excitation by a sum of plane waves), a spatial
filtering must be performed of all modes different from the guided mode which is realized
with a sufficient length of the straight waveguides at the input and output of the structure.
This instability is originated from the use of Ψg.
To highlight this problem, the 2D guided structure of Ref.[103] has been considered. It

consists of an InGaAsP core waveguide, with nc = 3.5, placed on an InP substrate, nsub = 2.9,
and an air superstrate. The input waveguide is 0.3µm deep, and the distance between all the
all the waveguides parts is fixed to 0.15µm (Fig.7.4).
In Fig.7.5.(a), the evolution of the reflection coefficient Rg calculated with the a-DM-FFF by

N Rg (a-FMM) Rg (a-DM-FFF)
20 0.356186 0.355641
50 0.355619 0.355210

150 0.355494 0.355258

Table 7.1 Rg N = 20, 50 and 150 using the a-FMM and the a-DM-FFF of the reference
structure.

varying the input waveguide length H is reported with N = 30. Indeed, a minimum length of
H = 11µm is needed to ensure the filtering and the stability of Rg nearby the third digit with
respect to the reference value calculated in Ref.[103] (Black horizontal dashed line). Thus,
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Fig. 7.4 Unit cell of the lamellar artificially periodized guided structure. The structure
is excited by its fundamental TM polarized guided mode at λ = 0.975µm with a period
Λ = 1.1µm and a total thickness of PML qx′ = λ/2 and γ = 1

1+ j . x′ is the periodization axis,
z is the propagation axis and y is considered invariant.

an input waveguide of length H = 12µm has been chosen for the rest of the calculations.
Moreover, Table.7.1 presents the reflection coefficient Rg of the lamellar dielectric guided

(a) (b)

Fig. 7.5 (a) The evolution of Rg with respect to the length of input waveguide H. The black
dashed line represents the reference value calculated in Ref.[103] with Rre f = 0.3554787 (b)
The execution time of the a-DM-FFF of the reference structure with H = 12µm, Dz = 5nm
and NFFT = 8192 samples following the truncation order N.

structure calculated by the a-FMM and our a-DM-FFF for different truncation orders N.
Indeed, for N = 20, a relative error of 5.45×10−4 with respect to the value of a-FMM can be
obtained by the new method (a-DM-FFF). This error reaches a value of 4×10−4 for N = 50
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and decreases to 2.36×10−4 with N = 150.
Notwithstanding that this formulation gives a relative error in the range of 10−4. But, it is
also considered as time consuming and memory exhausting technique. For example, with
Dz = 5nm and H = 12µm, approximately 3 hours are needed to calculate the reflection and
transmission coefficients for N = 100 with a system of corei7@2.7GHz and 8GB physical
memory (Fig.7.5.(b)).
Here, the center of our attention was devoted on the eigen guided mode of the structure. The
Ψg matrix was used to perform the transition from the stationary fields representation into
the harmonic forward and backward vectors of the field. Due to the disregard of the effect of
the other modes, a spatial filtering is needed to obtain accurate results. Meanwhile, another
solution can be implemented which consider and uses all the eigen mode of the structure.
The next section will be devoted to arise the formulation of this transition technique which
brings many advantages and assets.

7.3.4 The use of a transition matrix that directly links the amplitude
of the eigen modes with the stationary harmonic vectors

Formulation of the transition matrix W

As mentioned before, the algorithm of the differential theory uses a transition matrix that
crossover from the stationary harmonic vector representation into the forward and backward
harmonic vector of the magnetic field in TM polarization and the electric field in TE po-
larization. In case of guided structure, and if the input waveguide is a straight waveguide
(rectangular distribution of the permitivitty), a symmetric distribution of the eigen values
can be obtained which represents the forward and backward refractive indices of the modes
(2N +1 positive real part eigenvalues for the forward modes, and 2N +1 opposite (negative)
real part eigen values for the backward modes). Indeed, this symmetry can be exploited in
order to directly have access to the amplitude of each eigen mode at each interface (input or
output).
As a result, the amplitudes of the transmitted and reflected guided mode become directly
accessible. To demonstrate that, the matrices WI (input waveguide) and WO (output waveg-
uide) have been defined. For simplicity reason, a symmetric structure has been chosen. Thus,
WI =WO.

The truncated differential equations system (7.3) can be solved as an Eigen problem
producing the 4N +2 vector D and (4N +2)× (4N +2) matrix W . In this situation, D is a
vector containing the 4N +2 effective refractive indices of the discretized layer s. Under this
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situation, the positive real values of D represent the effective refractive indices of the forward
modes and the negative ones refer to the backward modes. Those modes are symmetric in
case of rectangular structure, mainly the input and output waveguides, with 2N +1 forward
modes and 2N + 1 backward modes. On the other hand, a column i of W describes the
harmonic representation of the eigen modes for one effective refractive index Di.
Therefore, the matrix W and the vector D are rearranged to associate the first half column of
W to the backward modes and the second part to the forward modes. The excited fundamental
mode is associated to one of this column.
The a-DM-FFF deals with the stationary Fourier components of the fields [Ex′] and [H ′

y] to
solve the propagation system. Thus, a transition matrix is needed to pass into the guided
mode representation [c−] and [c+] of the backward and forward Fourier amplitude of the
field. Hence, by applying the eigen solutions to the propagation T (s) matrix of the first slice
of the structure . We define WI representing the eigen mode of the input waveguide. The
same thing happens for the last slice, where WO represents the eigen modes of the output
waveguide.
Here, we will elaborate the algorithm of the transition from the stationary wave components of
the fields into the eigen forward and backward modes through the transition matrix WI of the
input waveguide. Using the same analogy, the transition matrix of the output waveguide can
be calculated. It is important to mention that the same algorithm of eigenvectors arrangement
can be applied for both TE and TM polarizations.
The transient form of Ex′ and H ′

y can be represented in terms of the eigenvector W of the
input waveguide, and K as follows,

Ex′(x
′,z = 0) = ∑

q

(
c−0,q ∑

p
W−

Eqp
e jKqqx + c+0,q ∑

p
W+

Eqp
e jKqqx

)

H ′
y(x,z = 0) = ∑

q

(
c−0,q ∑

p
W−

H ′
qp

e jKqqx + c+0,q ∑
p

W+
H ′

qp
e jKqqx

)

Where, c+0,q and c−0,q are the Fourier coefficient of the forward and backward eigenmodes
q respectively. WEqp is the harmonic coefficient p of the eigenvector q of the electric field
vector [Ez], and Kqq is the harmonic coefficient q of the eigenvector q from the matrix K.
Therefore, in the Fourier space, the transition matrix WI of the input layer can be expressed
as, [

[Ex′]

[H ′
y]

]
=WI

[
[c−0 ]
[c+0 ]

]
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with:

WI =

[
W−

E W+
E

W−
H ′ W+

H ′

]
Therefore, WI is obtained by organizing the (4N +2)× (4N +2) Eigen-vector matrix of

the first layer in a manner where the first 2N + 1 columns represent the backward modes
(propagating following −z) and the last 2N +1 belong to the forward modes (propagating
following +z). The multiplication of WI and W−1

O with the solution of Eq.(7.6), P, gives
access to the amplitudes of the forward waves and backward waves. Moreover, the same
matrix is used to convert the stationary field harmonic vectors [Ex] and

[
H ′

y
]

vectors into the
harmonic amplitudes of the forward and backward vectors [c−] and [c+] for each s layer at
the position of the infinitely thin layer.

The excitation and the propagation of the guided mode

After calculating the transition matrices WI and WO, the matrix Id is used to initialize the
Runge-Kutta integration by an initial-value problem. Consequently, the T (s) matrix that links
the fields at the position zs and the fields at the position zs+1 can be expressed as,

T (s) =WIP(s)W−1
O (7.12)

The matrix W−1
O is inverted to give the inverse transition (from the vector [c+] and [c−] to

the harmonic vector of the fields). Indeed, the same algorithm of cascade of S-matrices of
the grating theory is used here to link the incoming waves with the outgoing ones. The only
difference is that the amplitude of the eigen mode of the i/o waveguides are now considered
instead of the eigen vectors of the plane waves.
The main advantage of this formulation with respect to the previous one (Ψg) is that all the
eigen modes of the i/o waveguides are now represented. Therefore, all the information of
these modes are accessible. Consequently, in term of calculation, there is no need for spatial
filtering and small input and output waveguides are sufficient to ensure the accuracy and
stability of the method. Indeed, Fig.7.6.(a) shows that the reflection coefficient of the lamellar
reference structure (Fig.7.4) stays stable following the evolution of the input/output length H.
Moreover, the execution time and the memory space are incredibly reduced by a factor of
32 (Fig.7.6.(b)). For example, with the previous transition matrix Ψg, the calculation of the
Rg/Tg coefficients needs approximately 32 minutes for N = 50. On the other hand, 1 minute
is sufficient to get the exact values of Rg and Tg with the new W matrix. Nevertheless, the
representation of each Ψ of each βe f f is also not mandatory, and the field maps are now
rigorously represented without any approximation.
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(a) (b)

Fig. 7.6 (a) Reflection coefficient Rg following the length of the i/o waveguides H (b) the
calculation time using the new transition matrix W

7.4 Validation of the method

All the results of the a-DM-FFF will be validated and calculated in the next parts by using
the new transition matrix W due to its many advantages. For that, the lamellar structure
of Fig.7.4 has been considered as the reference structure. The convergence, following the
truncation order N, has been be evaluated with respect to the values of Rg calculated by the
a-FMM and depicted in Ref.[37]. The structure has been excited by its fundamental, TE
or TM polarized, guided mode, with λ = 975nm. The period of the artificial periodized
structure is Λ = 1.1µm and the thickness of the PML form each side is qx′ =

λ

4 . Moreover,
the structure is discretized with Dz = 5nm while using the a-DM-FFF. This lamellar structure
has been chosen since the a-FMM gives accurate and rigorous results with the structures
composed of rectangular sections. All the Fourier transformation, of the a-DM-FFF, are
performed through a Fast Fourier Transform (FFT) by using NFFT = 8192 samples. The
2N +1 harmonics needed for the modelization are issued from this vector.

7.4.1 TE polarization

Now, the lamellar structure is excited by its fundamental TE polarized guided wave. In
case of non-magnetic materials, the electric field

#»
E and the magnetic field

#»
H are always

continuous in TE polarization. Thus, the inverse rule of Li and the FFF reformulation are
useless with this polarization.

The convergence rate of Rg following N for TE polarization is depicted in Fig.7.7.(a).
It is clear that the results obtained with the new a-DM-FFF (black dashed curve with open
triangles) collides very well with the values of the a-FMM (blue dashed curve with open
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dots). Moreover, to study the convergence rate, the relative error |R−RN=150| has been
evaluated with respect to N for the two previous methods polarization respectively, where
RN=150 represents the value of the reflection coefficient calculated for each method at N =
150 (see Table.7.2).
However, only N = 15 is sufficient to reach a relative error of 10−3. This error decreases

(a)

(b)

Fig. 7.7 Performance of the a-DM-FFF compared to the a-FMM for a lamellar structure
as a reference in TE polarization. (a) Convergence of Rg following N (b) Relative Error
|Rg−RN=150| following N

with the increase of the truncation order N. For N = 100, a relative error of 1.5 ·10−7 can be
reached. The very tiny difference between the two methods can be explained by two facts: 1)
the use of FFT instead of the ideal Fouries series of the lamellar sections used by the a-FMM.
In that case, NFFT may not be considered big enough to reach the same exact value of the
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N Rg (a-FMM) Rg (a-DM-FFF)
10 0.385952 0.391732
20 0.395141 0.395176
30 0.395141 0.395176
50 0.395212 0.395190
60 0.395212 0.395190
80 0.395211 0.395186
100 0.395211 0.395185
150 0.395211 0.395185

Table 7.2 Rg using the a-FMM and the a-DM-FFF of the reference Lamellar structure
in TE polarization.

a-FMM. 2) A small error induced by the Range-Kutta algorithm where a smaller integration
step Dz or higher number of sub-sections nS are needed in the integration process.

7.4.2 TM polarization

In this section, the reference structure is illuminated with the same opto-geometrical pa-
rameters with its fundamental TM polarized guided wave. However, in case of Lamellar
structures, the FFF is useless (Nx′ = 0 and Nz = 1). Therefore, the only main difference
between the a-FMM and the a-DM-FFF is the integration algorithm. Fig.7.8.(a) illustrates
the convergence and the accuracy performance of Rg for the reference structure in TM
polarization. The blue open dots are always obtained using the a-FMM, and the black open
triangles refer to the a-DM-FFF depicted in Eq.7.6.

As same as the TE polarization results, the reflection coefficients calculated by the a-DM-
FFF fits very well with the ones of the a-FMM (Fig.7.8.(a)). The convergence rate of both
methods depicted in Fig.7.8.(b) shows that N = 20 to reach a relative error with respect to the
value calculated for N = 150 (see Table.7.3). Moreover, the errors decrease in a monotonic
way to reach a value of 2 ·10−5 with N = 100.

As a result, our formulations are now validated for both polarizations. Thus, the a-DM-
FFF is now ready to be applied for more complicated structures where the a-FMM suffers
from the staircase approximation. As the electromagnetic fields in TE polarization are always
continuous, the FFF has no impact on the convergence rate. On the other hand, the impact of
the FFF appears for TM polarization only. Therefore, in the next sections all the structures
will be excited by their fundamental T M0 guided mode.
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(a)

(b)

Fig. 7.8 Performance of the a-DM-FFF compared to the a-FMM for a lamellar structure
as a reference in TM polarization. (a) Convergence of Rg following N (b) Relative Error
|Rg−RN=150| following N

7.5 Conclusion

In this chapter a new reformulation of the differential theory used with periodic structure
has been presented. Indeed,the association of a complex coordinate transformation to the
algorithm of the differential method can turn the DM-FFF into an aperiodic method so-called
a-DM-FFF. However, as the DM-FFF takes into consideration the evolution of the profile with
respect to the transverse axis. This method can be used to modelize complex shaped guided
structure by eliminating the staircase approximation of the a-FMM. Our method has been
implemented numerically and validated with respect to a lamellar reference structure. The
obtained results with the a-DM-FFF for both TE and TM polarizations show a large degree

122



7.5 CONCLUSION

N Rg (a-FMM) Rg (a-DM-FFF)
10 0.353410 0.358382
20 0.356186 0.356649
30 0.355725 0.355768
50 0.355619 0.355598
60 0.355560 0.355545
80 0.355536 0.355517
100 0.355525 0.355502
150 0.355494 0.355476

Table 7.3 Rg using the a-FMM and the a-DM-FFF of the reference Lamellar structure
in TM polarization.

of concordance with those calculated with the a-FMM. Indeed, to upraise the performance of
the FFF, non-lamellar structure must be taken into consideration. In that case, the a-FMM
must suffers from slow convergence and inaccuracy especially with high contrast guided
structures (dielectric or metallic).
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Chapter 8

A-DM-FFF compared to the a-FMM:
Application on complex shaped photonic
guided structures

The effect of the staircase approximation of the a-FMM appears with high contrast guided
structures (metallic or dielectric). In this chapter, non lamellar guided structures are con-
sidered. Our aim is to prove the effectiveness of the a-DM-FFF compared to the classical
a-FMM while dealing with complex shaped photonic structures.

8.1 Application of the a-DM-FFF on curvilinear guided re-
flector

8.1.1 Geometry of the structure

To appraise the performance of the FFF, a 2D cylindrical rod is placed at the center of the
structure (Fig.8.1). This case elaborates a complicated geometry for the a-FMM. During the
integration process, the normal components vary rapidly from horizontal to vertical position.
Due to this rapid change, the cylindrical rods are considered the most difficult case to be
computed [94]. Indeed, the FFF handles the situation.
For simplicity reasons, the structure is considered symmetrical. Thus, next = nsup = nsub.

The structure is excited from the top (z = z0) with the fundamental T M0 guided mode at
λ = 1.5µm. The refractive index of the input and output waveguides is ng = 3.5. Moreover,
the input/output waveguides are 0.3µm wide (along x), and the length of the waveguides and
the gap (G) (along z) is fixed to 0.15µm. The refractive index of the cylindrical reflector
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Fig. 8.1 Unit cell of the artificially periodized guided reflector

placed at the center of the structure is nd and its radius is R = 150nm. Furthermore, the
period of the unit cell is 1.1µm, and the thickness of the PML is qx′ = 0.4875µm.
For both, the a-DM-FFF and the a-FMM, the structure is discretized with a constant dis-
cretization step Dz = 5nm, and ns = 4 sub-layers are used in the Runge–Kutta algorithm of
the a-DM-FFF. So that, 60 S-matrices are cascaded in the cylindrical region. All the Fourier
transformations of the a-DM-FFF are performed through a fast Fourier transform (FFT) by
using NFFT = 8192 samples. The 2N +1 harmonics needed for the modelization are issued
from this vector. The formulas of the normal to the profile, Nx′ and Nz, of the 2D cylindrical
pillar are depicted in Appendix.3.

8.1.2 TM polarization: Dielectric high contrast index structure

Now, a dielectric 2D cylinder is considered. To achieve the high refractive index contrast
condition, the guided zone is surrounded by air with next = nsup = nsub = 1. Moreover, the
dielectric cylinder of refractive index nd = 3.5 has been chosen (so that ∆n= |nd−next |= 2.5).
The evolution of the reflection coefficient of the guided structure has been evaluated following
N using the a-DM-FFF and the a-FMM (Fig.8.2.(a)).

As expected, and despite the small discretization step, Dz = 5nm, the a-FMM converges
slowly following N (blue curve with open circles). This is a direct consequence of the
staircase approximation that induces the unadapted continuity of the field at the interface
of the cylinder, and the parasitic points effect that appears with the high refractive index
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(a)

(b)

Fig. 8.2 Convergence of the high refractive index contrast case with a dielectric cylinder
rod reflector of the a-DM-FFF and the a-FMM (a) Rg following N (b) The relative error
|R−RN=150| following N.

contrast structures.
Moreover, the zoomed part in this figure shows that decreasing Dz of the a-FMM from 5nm
to 0.625nm, (so that the cascade of 60 S-matrices to 480 S-matrices), does not enhance
the convergence speed of the method. The same monochromatic evolution is reached,
but it brings out slowly the result at N = 100 to the value of the a-DM-FFF. In contrast,
with Dz = 5nm, the a-DM-FFF (open black triangles) converges rapidly. N = 20 is largely
sufficient to ensure the stability and the convergence of the reflection coefficient following N.
In addition, Fig.8.2.(b) presents the evolution of the error rate of Rg calculated for each
method with respect to the values obtained for N = 150 (see Table.8.1). It is clear that with
the a-DM-FFF, an error rate less than 10−3 can be achieved beyond N = 20. This error
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decreases in a mono-tonic manner with the increases of N to reach a value of 1.29×10−5

for N = 100. On the other hand, with the same discretization step (same number of cascaded
S-matrix), the a-FMM converges very slowly with the evolution of N. Errors of 1.45×10−2,
9× 10−3 and 7.7× 10−3 are achieved for N = 50,100, and 150 respectively with respect
to the value of the a-DM-FFF at N = 150 (see Table.8.1). It is not guaranteed to reach the
same value of the a-DM-FFF while increasing N of the a-FMM. But, the stability of the new
formulation (a-DM-FFF) can be emphasized and taken into account in order to believe that
the value calculated with the a-DM-FFF for N = 150 could be considered as the new exact
reference.

N Rg (a-FMM) Rg (a-DM-FFF)
20 0.439008 0.473137
50 0.459852 0.474339
100 0.465512 0.474418
150 0.466671 0.4744329

Table 8.1 Rg at N = 20,50,100 and 150 of the a-FMM and the a-DM-FFF for the struc-
ture with high refractive index contrast dielectric pillar.

Fig. 8.3 Evolution of the reflection coefficient error |Rg a−DM−FFF −Rg a−FMM| following
∆n. All Rg are calculated for N = 100,50 and 20 with Dz = 5nm for both methods.

To ensure this hypothesis, the error of the difference between Rg of the a-DM-FFF and
Rg of the a-FMM (|Ra−DM−FFF −Ra−FMM| has been studied with respect to ∆n = nd −next ,
by varying next from 1 to 3.4 (Fig.8.3). For N = 100 (blue dashed curve with open dots), we
can notice that the error’s envelop increases with the increase of ∆n. An error of 1.6×10−7

is achieved between the values of the two methods when ∆n = 0.1 (next = 3.4 and nd = 3.5).

128



8.1 APPLICATION OF THE A-DM-FFF ON CURVILINEAR GUIDED REFLECTOR

However, the error acts of the third digit (< 10−3) for ∆n < 1.2. For bigger values of
∆n, the error increases by acting of the second digit and inducing the inaccuracy of the
a-FMM. However, when N decreases to 50 and 20 (black and red dashed curves with
open dots respectively), the error difference slightly increases due to the famous staircase
approximation of the a-FMM. As a result, this figure ensure our hypothesis telling that the
value of the a-DM-FFF can be considered as a reference value. Moreover, the results given
by the a-DM-FFF are interesting for such a difficult problem faced by the a-FMM. This
new method leads to higher accuracy with fewer harmonics and bigger Dz. It induces fewer
S-matrices used to perform the propagation, so that fewer memory and time consumption.

8.1.3 TM polarization: Metallic 2D pillar

The second situation where the a-FMM fails to rapidly converge occurs when this method
deals with metallic structure with non-lamellar profile, despite the refractive index of the
surrounding medium. For that, the same opto-geometrical parameters of the previous sections
have been considered with a 2D metallic pillar of refractive index nd = 1+ j7 and next = 2.9.
In Fig.8.4.(a), the computed evolution of the reflection coefficient Rg shows that the a-FMM

converges slowly in a quasi-monotonic manner as the truncation order N increases. In
contrast, the a-DM-FFF needs N > 30 to converge and stabilize following N. Moreover, we
can notice that at higher harmonics (N = 100), the zoomed part of Fig.8.4.(a) shows that
the a-FMM converges to the value of the a-DM-FFF (see Table. 8.2). In that case, the ∆n
difference modulus is smaller than the dielectric pillar case of the all-dielectric structure
case. The resonance effect due to the metal losses is perhaps weaker, decreasing the field
interaction on the pillar periphery.
Moreover, the evolution of error with respect to the value of Rg calculated for N = 150 has
been presented in Fig.8.4.(b). It is clear that a 10−3 relative error is reached with N > 40
(2N +1 = 81 spectral orders) with the a-DM-FFF and this error decreases to attain a value
of 1.6× 10−4 for N = 100. On the other hand, the convergence of the a-FMM with the
metallic pillar is much more slower than the dielectric case. It needs more than 100 harmonics
(2N+1 = 201 spectral orders) to reach an error < 10−3 threshold, where an error of 3×10−3

is reached with the a-FMM with the same N.

As a result, the dominance of the new method (a-DM-FFF) over the a-FMM is notice-
able. The obtained results demonstrate the potential of the FFF while dealing with guided
non-lamellar structures. The continuity of fields taken into consideration in Eq. (7.6), at the
dielectric–metal or the high refractive index contrast dielectric–dielectric interface, solves the
problem of staircase approximation of the a-FMM especially for TM polarization. Therefore,
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(a)

(b)

Fig. 8.4 Convergence of the guided structure with metallic pillar reflector (a) Rg following N
(b) The relative error |R−RN=150| following N.

the convergence is extremely enhanced, and the coefficient accuracy is boosted.
Moreover, to show the impact of the parisitic point effect induced by the staircase approx-
imation of the a-FMM, the field map of the transverse electric field Ex′ has been plotted
for N = 50 for both methods (Fig.8.5). Firstly, resonant effects appear with the a-FMM at
each corner of stairs inducing interference outside the cylinder. This phenomenon is strongly
reduced with the a-DM-FFF. Secondly, the discontinuity of the field is better defined in the
straight waveguide with the a-DM-FFF. Indeed, the electrical field is directly obtained from
the matrix containing the Q-matrix taking in account the normal evolution. With the a-FMM,
the electrical field is reconstituted from the magnetic field calculation. And a division of the
permittivity is used in the space domain to ensure an optimized repartition as proposed by
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N Rg (a-FMM) Rg (a-DM-FFF)
20 0.201265 0.256375
50 0.239316 0.257063

100 0.255773 0.257324
150 0.258777 0.257292

Table 8.2 Rg at N = 20,50,100 and 150 of the a-FMM and the a-DM-FFF for the struc-
ture with metallic pillar.

Fig. 8.5 Evolution of |Ex′| with TM polarization of the a-DM-FFF and the a-FMM for N = 50.

Jurek et al. So, the matrix of a-DM-FFF is two times the matrix of a-FMM but the repartition
is better and easier to obtain.. Moreover, we can notice that at the border of the unit cell the
field is totally supressed due to the absorption of PML.

8.1.4 TE polarization

As mentioned many times before, the electromagnetic fields in TE polarization are always
continuous. Thus, there is no impact of the FFF on the convergence rate, and the a-FMM
is considered sufficient and rigorous with such structures. But, to ensure the functionality
and the stability of the new a-DM-FFF, the convergence of both metallic and dielectric
structures has been evaluated while exciting the structure with its TE0 fundamental guided
mode (Fig.8.6).
For both structures, we can notice that the reflection coefficients Rg of both the a-DM-FFF and
the a-FMM are exactly identical following the truncation order N. Moreover, the convergence
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(a)

(b)

Fig. 8.6 Convergence of the guided structure excited by the fundamental TE0 guided mode (a)
dielectric structure of sec.8.1.3 with nd = 3.5 and next = 1 (b) metallic structure of sec.8.1.4
with nd = 1+ j7 and next = 2.9.

rate is similar for both methods. Thus, the association of the FFF has no impact and useless
in case of TE polarized guided mode. Physically, it is interested to note that the starcaise
approximation has a first order role in this case. This discretization can slightly change the
mean radius of the cylinder which can explain the small difference between the two methods
on the reflection value calculated.

8.1.5 Conclusion

The convergence tests conducted on different structures have proved that the a-DM-FFF can
incredibly enhance the convergence compared to the a-FMM in the case of high refractive
index contrast and continuous structures (metallic and dielectric) especially when the structure
is illuminated with TM polarized guided wave. For that, this method will open the way to
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modelize complex-shape guided structures. The W matrix definition is also an interesting
way to reach a hybrid method. This formulation opens the way to cascade a-FMM zones with
a-DM-FFF zones. Indeed, the numerical integration can be focused on continuous evolution
in order to optimize the calculation speed.

8.2 Application of the a-DM-FFF on resonant cavities: Mi-
crodisk resonators as examples

8.2.1 Introduction

In the last two decades, huge technological leaps have been performed in the domain of
microphotonics, basically to realize photonic structures using the silicon on insulator (SOI)
technology [7]. Indeed, the mastering of this technology allows now the fabrication and the
realization of novel integrated photonics structures which are considered as the basis elements
of passive photonic structures used in the optical routing [1, 60, 87], in the non-linear optics
for signal modulation [121], and as active devices for the realization of optical sources [120].
However, the microrings and the microdisks are two main backbones of this new technology.
They are considered as structures which respect a cylindrical symmetry. Moreover, their open
periphery stimulates the radiation of the optical signal from the internal surface of the disk to
the external medium. Thus, the novel algorithm of the a-DM-FFF developed in chap.7 can
be now exploited to modelize such types of resonators.
Indeed, the modelization of 2D microdisk rests on the simulation of invariant cylinder
following the y-axis as depicted in Fig.8.7. The refractive index difference between the disk
(nd) and the external medium (next) can be seen as an optical cavity. Under certain conditions,
the resonances inside the disk may appear inducing the filtering effect of cavities. Both TE
and TM polarization may considered and only non-magnetic material are used.

8.2.2 Problem of doublet resonances

Mainly two methods are used to predict the resonances in this type of cavities:

• The forced oscillation regime: it corresponds to a real measurement. It can be an
external source coming from outside sent into the disk and the reflected/transmitted
signals are observed. To ensure the excitation of the resonant mode, the excitation must
be preferentially adapted to the resonant mode. A sweep of different real wavelengths is
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Fig. 8.7 Schematic representation of a microdisk cavity of radius R.

necessary to detect the resonance in the spectral domain. Using a fit with an appropriate
mathematical function, the quality factor and the resonant wavelength can be obtained.

• The free oscillation regime: this is an ideal case. There is no source used. In this
configuration, infinite energy has been radiated by the resonator at an infinite time in
the past. The resonant wavelength in this case is characterize by a complex wavelength.
From its real and imaginary parts, the quality factor and the resonant wavelength can
be obtained.

To elaborate more, both regimes use the S-matrix algorithm that links the ongoing waves (c−s
and c+s−1) with the outgoing waves (c+s and c−s−1) to describe the propagation in the structure
(Fig.3.8.(a)). In the forced oscillation regime, the input signals are fixed to given values (for
example c−s = 0 and c+s−1 = 1). Therefore, the i/o ratios are compared by varying the real
optical wavelength of the source. In contrast, in the free regime, both input signals are null
which imposes that the multiplication of the output signals with the inverse of the S-matrix
(S−1) is equal to zero. This condition is satisfied only if the determinant of S−1 is equal to
nullity. Therefore, the eigen modes that describe the oscillation can be obtained under the
form of complex wavelengths.

In this dissertation, only the first regime will be studied. Mainly, all these structures
are based on the propagation of the Whispering Gallery Mode (WGM) along the periphery
of the disk. Thus, the high contrast of refractive index between the disk and the external
medium can lead to high total quality factor Q = λres

∆λ
(Fig.8.8) within few micrometers of

radius. Indeed, if the conditions of phase-matching and coupling are fulfilled between the
disk and the input wave, power variation can be achieved at the structure output and the
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resonant wavelengths are filtered.

Fig. 8.8 Spectral response of the forced oscillation regime. In this case, the excitation is
a bessel function which corresponds to the wave radiated by the microdisk. The phase
matching in amplitude and phase is ensured [40].

However, when the surface roughness exists another factor may affect the total quality
factor Q. This last one can thus be defined as,

1
Q

=
1
Qi

+
1

Qs
(8.1)

With, Qi is the quality factor of the ideal disk, and Qs is the factor of the roughness. We can
notice that, when Qs increases, the total quality factor approaches to the ideal quality factor
of the disk. Thus, a higher Qs refers to a disk with less surface roughness.
Consequently, in this forced regime, the propagation of light inside the disk is supposed to be
described by the sum of the clockwise and counter clockwise WGM forming a stationary
resonant mode. As the ideal microdisk follows a revolution symmetry, the stationary mode
solutions (even and odd with respect to the vertical symmetry axis passing by the center
of the disk for example) are degenerated, and only one resonance is expected to a given
azimuthal and radial order too. In contrast, experimental investigations on high Q-factor
microdisks have reported the observation of doublet of resonances for a given azimuthal
order [61, 117]. This doublet has been explained by the effect of surface roughness coming
from the realization steps (photolithography and etching process)..
The same type of doublet can be also predicted by numerical simulations by exciting the even
and odd stationary waves. Indeed, numerical simulations use in general a spatial mapping
which discretize the structure in small squares or basic elements. This feature is defined by the
staircase phenomena explained in the previous parts. So, an artificial roughness can appear
with curvilinear or non-rectangular structure and the field projection is also not respected.
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For Fourier methods, the spectral truncation of the series induces a small modification of the
boundary profile. Moreover, the use of lamellar discretization can affect the normal vector
evolution from the ideal case. As mentioned before the DM-FFF is sensitive to the spectral
truncation whereas the both ones modify the response of the FMM. In this case, the symmetry
evolution is not anymore respected. A plane symmetry can be defined. And the even and
odd mode resonant wavelengths are not anymore in this case degenerated. This phenomena
must more be observed with the a-FMM than the a-DM-FFF. It can be interesting to use the
a-DM-FFF in order to see the gain in accuracy for the wavelength resonance calculation of
the CW and anti-CW modes. Actually, the staircase approximation of the a-FMM creates an
added artificial degeneracy of the symmetry especially with high contrast index resonators
which induce a reduction in the analytically calculated Q-factor and the spacing between the
CW and anti-CW modes. Indeed, it can be shown that at a first order the reflection brought
by the roughness is proportional to ∆n2 = n2

d −n2
ext [61].

8.2.3 Microdisk cavities excited by plane waves

(a) (b)

Fig. 8.9 Schematic top view of microdisk resonator (a) Excitation by two in phase plane
waves, at the resonant wavelength clockwise WGM is coupled to the disk (b) Excitation by
two out of phase plane waves, at the resonant wavelength anti-clockwise WGM is coupled to
the disk.

To upraise the performance of the a-DM-FFF, the microdisk of Fig.8.9 has been taken
into consideration. The equation of normal vectors used in the propagation Eq.(7.6) are
detailed in Appendix.B. To simulate the disk as an isolated structure, a total PML of thickness
qx′ = 1µm is considered at the boundary of the unit cell (0.5µm from each side).
Meanwhile, to differentiate the resonant wavelengths of the even mode (sum of the CW and
anti-CW traveling modes) and the odd mode (difference of the CW and anti-CW traveling
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modes) two situations are considered. Indeed, the odd mode can be excited by illuminating
the structure by two symmetrical plane waves with respect to the central vertical axis of
the disk. They are characterized by having the same amplitude and the same phase (in
phase) as the depicted in Fig.8.9.(a). On the other hand, the even mode can be excited by
two symmetrical plane waves with the same amplitude and opposite phase (out of phase)
as depicted in in Fig.8.9.(b). We have to mention that the excitation with plane waves
is not the optimal case with microresonators. But, for simplicity reasons, a general idea
of the problem can be extracted by using it. To numerically present the difference, the
resonant wavelengths of both modes (odd and even) have been numerically computed with
the zeroth order transmission spectrum using both the a-FMM and the a-DM-FFF for isolated
microdisks with different radii from one side and different refractive index from the other
side. Moreover, a truncation order N = 60 has been considered for both methods, Dz = 10nm
and NFFT = 8192 samples have been used.
The optimized wave to excite the microdisk must be a Hankel function [23, 101, 113]. But
due to the method algorithm, it is firstly easier to use plane waves excitation. So, the phase
and amplitude matching is far to be ideal but a small part of the signal emitted is coupled
to the cavity mode. As the optical leaking is radial, a decrease of the transmission order
0 is expected. To optimize the coupling, the incident angle of the plane wave is changed
following the azimuthal order of the WGM. And finally, the effect of the PML is considered
negligible on the transmission analysis.

Microdisk resonator with next = 1 and nd = 2.2

Here, the external medium is air with next = 1 and the refractive index of the disk is nd = 2.2.
As ∆n = nd −next = 1.2, the high Q-factor can be obtained using disk with R in the range
of few microns. In Table.8.3, the analytically calculated values of the resonant wavelength
and the quality factor are given for different radii. Indeed, the ideal structure can be studied
analytically (cylinder without roughness [76]). Disk radii from 1µm to 4µm with 0.5µm
step have been chosen for this study.

Fig.8.10.(a) presents the transmission spectrum while exciting the odd and the even mode
of R = 4µm. As the interface evolution of the microdisk is taken into consideration with the a-
DM-FFF, the resonant wavelengths of both the in phase and out of phase excited plane waves
are almost at the same position. Indeed, λodd = 1.54398256µm and λeven = 1.54398825µm.
Thus, a doublet splitting |λodd −λeven| = 5pm is then obtained. This difference can be a
result of the truncation of the Fourier series of the a-DM-FFF which creates a very small
surface roughness. On the other hand, and due to the staircase approximation, a higher
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(a)

(b)

Fig. 8.10 The zeroth order of transmission response of the excited in phase and out of phase
plane waves of the microdisk with R = 4µm (a) Using the a-DM-FFF (b) Using the a-FMM.
The small subfigures represent the field map of the magnetic field Real(Hy) at the resonant
wavelengths with m = 30 (azimuthal order). The central axis belongs to the radial axis of
symmetry where the in phase or out of phase excitation can be distinguished (optimum in
case of the in phase excitation and zeroth in the out of phase case).

artificial degeneracy of the two modes is generated with the a-FMM. The resonances are thus
excited at λodd = 1.54338415µm and λeven = 1.5436101µm. A doublet splitting of 24pm
can be obtained which correspond to ≈ 5 times more split than the a-DM-FFF result. Three
conclusions can be extracted: 1) the staircase approximation increases the appearance of the
degeneracy of the odd and even modes. In case of the a-FMM of the staircase approximation
and the truncation of the Fourier series are are the two factors of the splitting, while in
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R λa ma Qa λa−DM(even) λa−DM(odd) λa−FMM(even) λa−FMM(odd)
1.0 1.469998 6 8.27 ·101 1.466075 1.465075 1.465075 1.464075
1.5 1.60310 9 1.13 ·103 1.60270 1.60210 1.601950 1.60150
2.0 1.5850384 13 4.38 ·104 1.5846915 1.5846630 1.5840206 1.5838580
2.5 1.58225721 17 1.87 ·106 1.58191746 1.58188889 1.58120482 1.58116346
3.0 1.52148747 22 2.23 ·108 1.52116075 1.52115697 1.52074197 1.52069175
3.5 1.53376472 26 1.08 ·1010 1.53344428 1.53343865 1.53285197 1.53281788
4.0 1.54398412 30 5.41 ·1011 1.54398256 1.54398825 1.54340816 1.54338413

Table 8.3 The resonant wavelengths with respect to the radius of the disk R for odd and
even modes calculated via the a-DM-FFF and the a-FMM. next = 1, nd = 2.2 and all
the values are calculated in µm. λa, ma and Qa represents the analytically calculated
values of the resonant wavelength, the azimuthal order of this wavelength, and the
quality factor of the microdisk at this wavelength respectively.

case of the a-DM-FFF, only the truncation of the Fourier series induces the splitting of the
wavelengths. 2) the staircase approximation induces a higher relative error of the values of
resonant wavelengths with respect to the analytical ones. (Table.8.3). 3) the average values
of the both resonant wavelengths of each method are not the same. So, the staircase modifies
slightly the disk diameter and induces the red shift of the resonance.
Now, let’s define the normalized doublet splitting factor Qb as:

Qb =
λ0

∆λ
(8.2)

With λ0 = λodd+λeven
2 and ∆λ is the wavelength difference between the even and the odd

modes. Fig.8.11 illustrates Qb for each of the measured microdisk radii, where for each
microdisk we chose the nearest azimuthal order which resonates near λ = 1.55µm for the
first radial order as with this last one the field interaction with the disk-edge surface is
maximized.

Eq.(8.2) tell us that when Qb increases the doublet splitting decreases. The red dashed
curve belonging to the a-FMM shows an evolution of Qb between 3×10−4 and 5×104 for R
between 2.5 and 4µm. In contrast, the splitting quality factor increases to reach 2×105 with
the a-DM-FFF for R = 4µm. It is clear that a saturation effect appears for R > 3µm, this
saturation may refer to the limit of the methods due to the truncation order, the FFT or the
other approximations. As a conclusion, a four times less splitting distance can be obtained
with the a-DM-FFF than the a-FMM and a thus a four times higher range of accuracy can be
reached. Finally, it is important to mention that, the resonant wavelengths of the a-DM-FFF
act on the fifth digits compared to the analytical resonant wavelengths whereas the a-FMM
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Fig. 8.11 Normalized doublet splitting quality factor (Qb) versus disk radius for nd = 2.2 and
next = 1.

acts on the fourth ones where a factor of 4 is always brought in terms of accuracy and
precision.

Microdisk resonator with next = 1 and nd = 3.5

R λa ma Qa λa−DM(even) λa−DM(odd) λa−FMM(even) λa−FMM(odd)
0.5 1.48758096 4 5.18 ·102 1.48660 1.486350 1.481970 1.48220
0.6 1.53430586 5 2.81 ·103 1.53353600 1.53361600 1.52776500 1.52725750
0.7 1.57409564 6 1.55 ·104 1.57353840 1.573310 1.5681470 1.5677150
0.8 1.60818887 7 8.65 ·104 1.6075660 1.60750 1.60259250 1.60227550
0.9 1.49714659 9 2.79 ·106 1.49660728 1.49649913 1.49231015 1.492030
1 1.53299473 10 1.61 ·107 1.53243560 1.53237130 1.5283550 1.52815470

1.1 1.56439931 11 9.41 ·107 1.56385524 1.56375904 1.55996492 1.55878497
1.3 1.52224909 14 1.94 ·1010 1.52167620 1.52166768 1.51834933 1.51820608
1.5 1.57312083 16 7.02 ·1011 1.57257480 1.57256526 1.56940881 1.56928430
2 1.54153745 23 2.46 ·1017 1.54100288 1.54099328 1.53853509 1.53841403

Table 8.4 The resonant wavelengths with respect to the radius of the disk R for odd (in
phase) and even (out of phase) modes calculated via the a-DM-FFF and the a-FMM.
next = 1, nd = 3.5 and all the values are calculated in µm. λa, ma and Qa represents the
analytically calculated values of the resonant wavelength, the azimuthal order of this
wavelength, and the quality factor of the microdisk at this wavelength respectively.

As demonstrated in section 8.1.3, the a-FMM suffers from slower convergence, loss
of accuracy and higher impact of the staircase approximation with high contrast refractive
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index. For that, a cylinder of silicon with nd = 3.5 is now considered. The numerical
calculation of the resonant wavelengths reveals that the a-DM-FFF gives more accurate
values of resonant wavelengths especially for R > 0.8µm where the Q-factor of the disk is
higher (see Table.8.4). Moreover, in terms of the splitting degeneracy, the same mechanism
is observed. A difference of even and odd resonant wavelengths that varies between 10−4

and 10−5µm can be achieved with the a-DM-FFF between R = 0.5µm and 2µm respectively.
On the other hand, the a-FMM reveals a doublet splitting difference for all the values of
R in the range of 10−4µm. So that, a predominance splitting reducing factor of 10 can be
achieved with the a-DM-FFF (factor of 4 with nd = 2.2). Following the same methodology
of the previous study, the normalized doublet splitting factor Qb will be illustrated following
the evolution of R (Fig.8.12). When R increases, so that the intirnsec Q-factor increases Qb

dramatically increases with the a-DM-FFF to reach a value of 1.8×105 for R = 1.3µm (blue
dashed curve). In contrast, Qb of the a-FMM increases slowly to reach a value of 1.05×104

for the same R (red pointed curve). After this R, Qb of both methods stabilizes following R
and indicating the limitation of both methods due to the approximation constraints mentioned
before and its evolution following R3/2 [8]. Again, this result reaffirms that the artificial
roughness brought by the approximations of the methods creates the break of symmetry of
the odd and even modes which finally leads to the higher wavelengths splitting of both modes
of the microdisk. From our numerical simulations, we can assume that the accuracy factor
brought by the a-DM-FFF is directly proportional to the contrast of permittivity ∆ε .

Fig. 8.12 Normalized doublet splitting quality factor (Qb) versus disk radius for nd = 3.5 and
next = 1.
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8.2.4 Microdisk-guide coupling

Introduction

Circular high-index contrast microdisk resonator associated with optical waveguide are able
to support highly-confined WGM with high Q-factors. For that, they are widely used as
microlaser cavities [53, 77], channel dropping filters [60], WDM demultiplexers [19], and as
notch and add-drop filters [29, 97]. Indeed, with high contrast refractive index, high quality
factors compact lasers sources can be obtained with few microns of diameters. Nevertheless,
such systems requires the association of optical waveguides in order to correctly operate. In
other words, the waveguides work as intermediate medium that allow the recovering and the
injection of light into the resonator using the evanescent wave coupling [67].

Fig. 8.13 Unit cell of an artificially periodized 2D microdisk resonator associated to a bus
waveguide.

Now, as the evanescent coupling through a waveguide is the most common used method
to excite the WGM in microdisk resonators, the effect of adding a bus waveguide to the
microdisk will be studied using the a-FMM and the a-DM-FFF. Indeed, the association of
the waveguide break more and more the symmetry of the structure and lead to an additional
asymmetry as the disk to guide transition is not necessarily adiabatic.
To bring forward this impact on such structures, the 2D microdisk resonator depicted in
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Fig.8.13 has been taken into account. The opto-geometrical parameters are the following:
nd = 2.2 and next = 1. Moreover, a monomode bus waveguide of width D = 380nm is
selected to ensure that only one mode can propagate in the wavelengths spectrum of 1.4µm
to 1.6µm. Always the fundamental TM mode is chosen to illuminate the input waveguide.

Coupling regimes

Fig. 8.14 Schematic representation of the proportional of the transmission |1−T | with respect
to the disk to guide gap G.

With the evanescent wave coupling, the gap G plays a major role in the coupling and
decoupling efficiency between the guide and the microdisks. In other words, the overlap
between the resonant mode of the disk and the evanescent wave of the guide determines
the amount of light coupled in the resonator. As a result, three regimes can be identified by
manipulating the gap G as depicted in Fig.8.14 and described as:

• Over-coupled: It happens when decreasing the gap G < Gc between the resonator and
the guide. This effect decreases the amount of light coupled to the disk since the light
is scattered by the waveguide.

• Critical coupling: It represents the value where G = Gc. Here, the transmission is
considered perfect T ≈ 0 so that |1−T | ≈ 1. At this point all the light is coupled into
the resonator.

• Under coupling: It happens for G > Gc. In that case, a small amount of the guided
mode overlaps with the resonant disk mode.

When the guide is associated to the microdisk, an additional quality factor Qc which
represents the quality factor of the coupling must be added to the equation of the total
Q-factor. Thus, Eq.(8.1) can be reformulated as,

1
Q

=
1
Qi

+
1

Qs
+

1
Qc

(8.3)
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Indeed, the decreases of the coupling efficiency induces a higher Qc and thus when QcandQs →
∞, Q can reach the quality factor of the ideal resonator.

Analytical fitting equations

In order to facilitate the calculations of the Quality factor Q and the degeneracy difference
∆λ between the odd and even WGM, the resonance in optical resonator is ideally described
following a Lorenrzian function,

F(ω) =
E2

0
4(ω −ω0)2 + γ2

With ω = 2π

λ
(rd/µm) is the angular frequency. E0 is the efficiency of either the transmitted

or the reflected power, and ω0 is the central angular frequency. In the ideal case, and if
ω = ω0, F(ω0) = E2

0/γ2. The frequencies of the bandwidth obtained when the maximal
power in divided by two ∆ω are calculated for F(ω) = F(ω0)/2. Thus, γ = 1

Q = ∆ω

ω0
.

Moreover, with such structures, the transmission spectrum is characterized by a band reject
(notch) filtering effect. Therefore, to fit well with the Lorentzian function, we must consider
F(ω) = |1−T (ω)|.
Practically, the roughness of the periphery of the microdisks arises the presence of reflections.
We know that the propagating wave in a given direction is generated by the sum of two
stationary waves. Nevertheless, this roughness breaks the symmetry of the odd and even
modes of the stationary waves and induces the reflections. In case of ideal resonators, the
two stationary modes are degenerated and resonate at the same wavelength. In contrast, with
the presence of the roughness, a degeneracy of modes appears by arising the appearance
of the doublet. Now, the sum of these two modes results a propagating wave in a given
direction. But, it also generates another anti-propagating mode taking the form of reflections.
The filtering effect is therefore characterized by the presence of doublet. This doublet can
be only identified if the quality factor of the roughness is equivalent to the intrinsic quality
factor of the disk Q. Finally, for G = Gc and if the doublet splitting doesn’t exist, almost null
transmission and reflection coefficients can be obtained at the resonant wavelength (ideal
case) [122]. If the doublet exists, both reflection and transmission may not attain zero. The
Lorentzian fit of the doublet can be described by a sum of two Lorentzian functions shifted
in frequency. Thus, it can be expressed as,

F(ω) =
E2

0
4(ω −ω0)2 + γ2 +

E2
0

4(ω −ω0 +∆ω)2 + γ2
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With, ∆ω is the difference between the resonant wavelengths of the two peaks. For simplicity
reasons, we assumed here that the amplitudes of the peaks are identical which is not nec-
essarily the case. More degree of freedom can be added by adding other constants to the
previous fitting equation. Moreover, as the peaks of doublet are equal and it corresponds to a
sum of two resonances, the quality factor has been calculated for one peak.

Numerical simulation

The Lorentzian equations explained in the previous part will be used to fit the numerical re-
sults obtained by the a-DM-FFF and the a-FMM with N = 60, Dz = 10nm and NFFT = 8192
samples. And therefore, predicts the quality factor Q and the modes degeneracy distance
∆λ (µm). For the structure of Fig.8.13, all the parameters are constant, only the gap G will
be varied. The PML thickness is 0.5µm from each side and the distance from the PML to the
periphery of the disk from the left side, and to the guide from the right side is always 1µm.
The transmission spectrum has been numerically calculated for different values of the gap G.

Numerical results for R = 1.5µm

Firstly, the disk with radius R = 1.5µm has been chosen. The analytical calculated results
of Tab.8.3 tell us that the quality factor of the isolated disk resonator with R= 1.5µm, next = 1
and nd = 2.2 is Q = 1130. We aim to analyse the azimuthal order m = 9. Practically, this
structure is not considered as high quality factor resonator. In that case, the effect of the
roughness of the surface is considered negligible as the respective quality factor associated to
the roughness is higher than the intrinsic quality factor. Therefore, the wavelength splitting
must not appear with such resonators.
Fig.8.15 illustrates the calculated transmission spectrum of the microdisk associated to the

waveguide for different gaps G using the a-DM-FFF and the a-FMM. The spectral response
of both methods is similar with a blue shift of the a-FMM due to the small impact of the dis-
cretization. Indeed, the phase should stays constant in every round inside the disk. Moreover,
it is proportional to both the effective index of the disk and the optical path effected by each
round (i.e ne f f · Round). On the other hand, the phase is inversely proportional to the applied
wavelength. Thus, if the wavelength decreases, the optical path increases and the real part
of the effective refractive index deceases. Hence, the optical mode is more affected by the
surrounded medium (air) than the material of the disk.
As it is expected, the doublet splitting doesn’t appear here. Only one peak of resonance
exists for the different gap and with both methods. The expected critical coupling occurs
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(a)

(b)

Fig. 8.15 Spectral calculations as a function of the wavelength for different gap G between
the cylinder and the guide calculated by using (a) a-DM-FFF (b) a-FMM.

for G = 350nm with both methods. So either the a-FMM or the a-DM-FFF can be used to
modelize low quality factor structures without any impact of the staircase approximation of
the a-FMM on the results.

Furthermore, the evolution of the quality factor has been studied following the gap G
with both methods. The coupled mode theory (CMT) explained in Ref.[41] has been used to
analytically compare the quality factors calculated using the Lorentzian fit (explained in the
previous section)

The respective results are shown in Fig.8.16. The three methods tend toward the value of
a single cylinder quality factor over G = 1000nm where the effect of the waveguide becomes
negligible. The analytic method (CMT) follows the evolution of the two method curves.
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Fig. 8.16 Comparison of the quality factor evolution with the gap between the analytical
method (CMT) and the 2D a-DM-FFF and the 2D a-FMM.

Moreover, the quality factors of the a-FMM follows exactly the a-DM-FFF with the increases
of G.
As a result, with low quality factor resonators, either the a-DM-FFF or the a-FMM can be
used, a small blue shift in resonant wavelegnths is obtained with the a-FMM due to the
staircase approximation. Moreover, the quality factor of the a-DM-FFF is slightly higher
than the factor calculated by the a-FMM (zoomed part of Fig.8.16). So, in the next section
the a-DM-FFF will be tested with higher quality factor.

Numerical results for R = 3.5µm
Analytically, the quality factor of the single microsidk with R = 3.5µm is Q = 1.08×1010.

Using the same optogeometrical parameters of the structures with R = 1.5µm. The reflection
/ transmission spectrum and the quality factor of the microdisk associated with the bus
waveguide will be studied for different gaps G. In Fig.8.17, and for small gaps (G =

550nm to 650nm with the a-DM-FFF and G = 400nm to 450nm with the a-FMM), large
transmissions. In this gap range, the quality factor of the coupling Qc is prominent from
the isolated disk ones Qi and Qb induced by the roughness. It is important to mention that
with the a-DM-FFF the fifth digits of the wavelengths changes while the fourth is affected
with the a-FMM. This large resonance is a direct consequence of the over coupled regime
(G < Gc). Now, when G increases the coupling between the disk and the bus waveguide
decreases (Qc increases) until an equivalent critical coupling is achieved with the a-DM-FFF
for Gc = 730nm and Gc = 500nm with the a-FMM. In this case, the filtering effect is more
efficient but the doublet begins to appear. At this stage, the effect of the break of symmetry
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(a)

(b)

Fig. 8.17 Spectral calculations as a function of the wavelength for different gap G between
the cylinder and the guide calculated by using (a) a-DM-FFF (b) a-FMM.

induced by the bus waveguide and the profile truncation begins to arise. Moreover, a smaller
wavelength difference between the two peaks is obtained with the a-DM-FFF. This effect
can degraded the filtering due to the removing degeneracy. In this domain Qi, Qc and Qs are
close. For this last method, the coupling efficiency decreases for higher G and we enter in the
regime of under coupling. Thereafter, two curves are interesting in Fig.8.14.(a), mainly for
G = 950nm and G = 1000nm. Here, it is clear that the doublets are invisible, we think that
at this stage, the effect of roughness cancels the asymmetry due to the bus waveguide which
only induces one narrow band resonance. For G > 1000nm, the doublets show up again.
The small effect of the roughness of the cylinder is presented and the structure tends to the
isolated disk case. In contrast, with the a-FMM and as the impact of the surface roughness
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is stronger than the effect of the bus waveguide, two resonances which correspond to the
odd an even modes are always obtained. Qs seems to be smaller than Qc without a possible
compensation.
The resulting model of the Lorentzian functions is used to fit the data of Fig.8.17 in order to
facilitate the calculation of the linewidth parameters, the quality factor Q, the central angular
frequency ω0 and the doublet splitting ∆λ .

(a)

(b)

Fig. 8.18 (a) The evolution of the Q-factor calculated by the fitting equation following G
for nd = 2.2 and next = 1. (b) The evolution of the doublet splitting ∆λ following G for the
a-FMM and the a-DM-FFF.

Fig.8.18.(a) illustrates the evolution of the total quality factor Q of one peak following
G which is predicted by the Lorentzian fitting equations. The blue, black and red dashed
curves represent the quality factor analytically calculated by the coupled mode theory. The
red and black curve are saturated with respect to the values of the a-DMM-FFF and the
a-FMM respectively for G = 1500nm (after this gap, the transmission spectrum vanishes
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and the Q-factor can’t be calculated). Indeed, the Q-factor of both methods increases in
monotonic way following the increases of G and fit very closely to the saturated curves of
the CMT. With the a-DM-FFF, Q = 7×104 is reached for G = 450nm and Q = 2×106 is
obtained for G = 1000nm. Nevertheless, for G ≥ 1000nm, the Q-factor of the a-FMM stops
his growing and stabilizes following the evolution of G. This stability is a direct consequence
of the calculation limit of the a-FMM due to the staircase approximation, and in this case, Q
is different than Qs. In the other hand, the Q-factor calculated by the a-DM-FFF continues its
expansion to reach a value of 6×106 for G = 1500nm. A gain ratio of 4 is reached between
the saturation value of the a-DM-FFF and the value of the a-FMM. The truncation of the
Fourier series induces a saturation in the range of 106 while the analytical quality factor is in
the range of 1010 (blue dashed curve). To summarize, the scattering effect at the periphery of
the disk is directly visualized in Fig.8.18.(a). This analysis was difficult to see for the isolated
disk analysis due to the miss-adapted excitation technique. The gain in Q-factor demonstrates
again the performance of our novel method even with not high contrast refractive index
structures.
In addition, Fig.8.18.(b) shows the wavelength splitting in picometers (pm) with respect to
the evolution of the gap. We can notice that both methods follows at a first order the same
evolution. Indeed, this evolution decreases to attain a minimum and then it increases after a
given G. With the a-DM-FFF, the opposition of both effects (surface roughness and guide
asymmetry) compensate to reach a value of zero (no wavelengths splitting). Moreover, we
can notice that, for G> 1000nm (a-DM-FFF) and G> 1200nm (a-FMM), there is a more fluc-
tuating zone delimited by the appearance of the doublet. At this stage, 1/Qi +1/Qs > 1/Qc

(effect of guide coupling decreases). Indeed, the wavelength splitting ∆λ is reduced by a
factor of 10 while using the a-DM-FFF.

Finally, in order to highlight the effect of wavelength splitting with respect to the ideal
case, the minimum of the transmission and the maximum of the reflection for a given
gap G have been illustrated in Fig.8.19 for the a-DM-FFF and the a-FMM. Indeed, in the
ideal case, the transmission must separates the system into the three resonance regimes
described before. At G = Gc, the transmission and the reflection must attain zero. Indeed,
due to the wavelength splitting, the not expected excitation of the anti-CW WGM induces
a non negligible rate of reflections which must attain zero using the temporal perturbation
theory which remains an approximation of the real case [8]. With the a-DM-FFF, the
equivalent critical coupling is reached with G= 730nm where a first minimum of transmission
Tg = −45dB is found. Nevertheless, due to the wavelength splitting, a maximum of the
reflection coefficient Rg =−3.5dB is also obtained. When the two break of symmetry effect
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(a)

(b)

Fig. 8.19 The evolution of the minimum transmission intensity and the maximum reflection
intensity following the gap G for the (a) a-DM-FFF (b)a-FMM. The black bars belongs to
the gap where the doublet clearly appears in the spectrum.

combines destructively (the effect of the roughness of the disk and the bus waveguide),
another minimum of transmission is attained for G = 1000nm where Tg =−30dB. But, as
the doublet is now weak, the power is quasi transmitted to the CW WGM which strongly
reduces the reflection relied to the excitation of the anti-CW WGM. A reflection of −48dB is
reached in this case. After this value, we enter in the under-coupling regime. In this domain
the interaction between the microdisk and the waveguide becomes more and more smaller.
So the transmission tends to 0dB and the reflection tends to −∞dB, the asymptotic case of
the isolated waveguide.
In contrast, when the critical coupling of the a-FMM is reached (G = 500nm), a minimum
of transmission is attained. This drop of tranmission induces a maximum of reflection of
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−0.2dB due to the high effect of the roughness of the surface. Indeed, as the staircase
approximation impact is always predominant on the effect of the guide with the a-FMM,
there is no compensation of effects in that case, the doublet never reach zero and always the
high reflection exists around the critical coupling region.
As a conclusion, in spite of taking the evolution of the profile into consideration with the
a-DM-FFF, the surface roughness always exists due to the truncation of the Fourier series.
Compared to the analytical values calculated by the perturbation theory, this method can
take all the restriction of this last method into consideration especially in TM polarization
where the field is discontinuous at the periphery. Moreover, the comparison of the results
obtained by the a-DM-FFF are totally different to the ones obtained by the a-FMM. This
difference demonstrates the high impact of the artificial roughness of the surface induced
by the staircase approximation on the simulation parameters especially with high Q-factor
microdisks. In addition, the resonant wavelengths of the a-DM-FFF are considered much
closer to the analytical ones than the a-FMM. The only inconvenient of the a-DM-FFF is
the small roughness of the surface brought by the truncation of the Fourier series and which
induces some reflections in specific region and doesn’t allow to clearly specify the effect of
the bus waveguide. So, to totally eliminate the effect of the roughness, some studies of the
same microdisk could be done as perspectives in TE polarization where the field is always
continuous and the effect of the roughness of the surface is much lesser.

8.3 Conclusion

In this chapter, the developed aperiodic DM-FFF has been applied on guided structures with
continuous profiles. The convergence tests, conducted on different types of structures, prove
that the a-DM-FFF can remarkably enhance the convergence compared to the a-FMM in case
of high refractive index contrast and continuous structures (metallic and dielectric). Moreover,
with the microdisk excited by plane waves closer results to the analytical calculated values
are obtained with the a-DM-FFF compared to the a-FMM. Moreover, when associating a bus
waveguide to the microdisk, the design parameters of both methods (a-DM-FFF and a-FMM)
are totally different especially when considering high quality factors resonators (microdisks,
for example, where the misrepresentation of the disk peripheries can induce error and affect
the quality factor of the resonators). The numerical evidence shows the rapid saturation
of the a-FMM where limit of calculating higher Q-factors is achieved. Moreover, this last
method always suffers from the presence of the wavelength splitting with high difference
due to the staircase approximation. In contrast, this difference is much more reduced with
the a-DM-FFF but it is also presented due to the truncation of the Fourier series with a given
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8.3 CONCLUSION

order N.
This totally novel method allows me to write four scientific contributions. The algorithm
of the method, its validation and application on high contrast refractive index and metallic
pillar have been published in the Journal of Optical Society of America (A1 of appendix.D).
Moreover, I presented this work in two international conferences (B1 and B2 of Appendix.D)
and one french national conference (C2 of Appendix.D).
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Part III

Experimental results of Bragg grating
filters
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Chapter 9

Fabrication and Characterization of
Bragg Reflection filters associated with
ion-exchanged waveguides

9.1 Priciples of Bragg grating waveguide used as wavelength
filter

Fig. 9.1 Schematic representation of a Bragg filter. ne f f is the effective refractive index of
the entire structure.

Bragg Grating Filters (BGF) are fundamental components in the optical domain. They
are mainly used in optical communications, in DBR lasers, grating couplers, etc...
If a BGF is associated to a waveguide as the GMR case, a narrowband passband filter can be
obtained in the reflection spectrum. On the other hand, a narrow notch filter is reached in the
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transmission case. So if a large spectral bandwidth input signal is used, a narrow bandwidth
spectrum centered to the Bragg wavelength can be obtained with the reflected signal. This
wavelength depends on the effective index (ne f f ) of the waveguide under the grating , and
the period of the grating as shown in the following expression.

λB = 2Λne f f (9.1)

The common form of Bragg grating filters is the fiber bragg grating (FBG). Moreover, it
can be fabricated using the integrated glass channel waveguides [49]. The technology of
glass ion-exchanged waveguides can also be associated with Bragg grating. This concept has
already been used to realize glass integrated laser [6]. Nevertheless, the set-up used in our
lab can reach a minimum grating period not enough small to filter visible wavelength. In
this case,the grating is etched in the surface glass waveguide directly allowing a sufficient
interaction between the grating and the waveguide.
Ideally, the equation describing the amplitude of the evanescent field of the guided mode in
the superstrate takes the form of exp(−αsupz) with αsup = k0

√
n2

e f f −n2
sup. If we want to

predict the thickness z from which a given percentage (ratio) of the guided mode amplitude
can penetrates the superstrate, the following calculation must be applied:

exp(−αsupz) = ratio

⇔−αsup · z = ln(ratio)

⇔z =− ln(ratio)
αsup

(9.2)

Meanwhile, IMEP-Lahc is a leading laboratory in the fabrication and characterization of ion
exchanged waveguides for different applications [5, 69]. On the other hand, our industrial
collaborator SURYS is a leading group in the world of holograms industry. Thus, the aim here
is to combine the technology of ion exchanged waveguides with the roll by roll technology
of gratings in order to have a hybrid bragg grating filters working in the visible and near
infrared wavelengths. Nevertheless, there are some constraints to study: the thickness of
the layer used by SURYS to realize the grating, the amplitude of the grating, and the optical
proprieties of the layer compared to the glass waveguide
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9.2 Ion Exchanged waveguides principle

9.2.1 Principle of ion exchange

Ion exchanged waveguides have proved to be an efficient, low cost and high performance
technology to realized integrated optical structures. Moreover, the used refractive indices can
highly reduce the Fresnel reflection at the input of the waveguide, and the shape of the optical
waveguide mode can also be similar to the optical fiber mode (similar numerical apertures).
This propriety reduces the coupling losses at the input. And finally, the propagation losses are
very low in the near infrared spectral domain. This technology is also a low cost technology.
Meanwhile, the refractive index of a glass substrate can be locally modified by ion exchange

Fig. 9.2 Schematic representation of ion exchange.

process in order to realize optical waveguides [42]. Therefore, the main purpose of the ion
exchange is to replace specific ions in the glass with another chosen ions. This principle,
described in Fig.9.2, allows a low production cost. In this dissertation, the A+ ion is the
potassium K+ and the B+ ion is the sodium Na+. During the process, the glass substrate
is heated to provide the thermal energy needed to break the ionic bonds and set the new
desired ions. By setting in contact the glass with a well-chosen ions source (ionic melted
salt KNO3 for example), the positive ions of the source (K+) diffuse into the glass while
the modifiers of the glass (Na+) diffuse outside. Thus, the glass properties are modified
and therefore the refractive index is locally modified. Here, we seek to realize waveguides
with the minimum propagation loss in the visible and NIR wavelengths. Thus, the standard
Ag+/Na+ ion exchange can’t ensure this condition due to the presence of the silver particles

159



FABRICATION AND CHARACTERIZATION OF BRAGG REFLECTION FILTERS ASSOCIATED

WITH ION-EXCHANGED WAVEGUIDES

on the surface of the waveguide increasing the losses in the visible wavelengths. In contrast,
this can be reachable by the K+/Na+ exchange.

9.2.2 Description and Fabrication of optical waveguides

Fig. 9.3 Optical waveguide by ion exchange fabrication process.

In Fig.9.3, the fabrication process of optical waveguide by ion exchange is presented. A
GO14 sample of glass developed by Teem PhotonicsT M is used in this process. This type of
glass is optimized to reach the minimal propagation loss in the visible and NIR. It is also
manufactured to have a specific and controlled composition and the same optical properties
from one batch of glasses to another. Moreover, it guarantees to always have the same
properties on a 6cm diameter chip where its surface is polished with great precision to λ/10.
After cleaning the substrate, a 200nm thin film of Aluminum, by vapor phase deposition (see
Appendix.4), is deposited to create a mask on the sample surface. It is then important to etch
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the positions where the waveguides are previewed. This step is known as Photo-lithography.
For that, a positive resin S1805 (which becomes brittler after the UV insolution) is placed
on the surface by overthrowing this resin on the rotating sample (spin coating). After the
spin coating, a chrome mask on quartz substrate is inserted in a Karl Suss MA56 Mask
aligner. The chrome mask interface and the resin sample interface are then come into contact
(void contact) to ensure an optimized reproduction of the mask reference (Test ECH in
Appendix) in the resin layer. Therefore, the aperture of waveguides of width w are defined by
a standard photo-lithography followed by the development of the photoresist in a developer
bath MF26-A which suppress the vulnerable resin. After this step, the sample is placed in
a bath of Al remover which will only etch the exposed Aluminum. For the ion exchange
process, the sample is horizontally immersed in a KNO3 melted salt for a duration of 8 hours
at 380◦C. When this process is finished, the sample is immersed for 30 minutes in a Flash
bath of NaNO3 at 350◦C in order to create a thin Na-doped surface layer. It is important to
notice that the K+ ions are considered much bigger than the exchanged Na+ ions. Due to
that several remarks can be listed:

• Strong mechanical stresses can swell the surface of the glass

• The refractive index of the waveguide is strongly dependent on these mechanical
constraints

• The mask can be weakened which induces a plane waveguide on the surface which is
reduced by the second step of the exchange

• Geometrical roughness may remain on the surface which induces losses, especially if
the superstrate is air.

Due to all the above reasons, the flash of NaNO3 is realized. Finally, the remaining
aluminum layer is removed by Al remover and the sample that contains the confined waveg-
uides is cleaned. It is important to mention that, the K+/Na+ technique creates a maximal
refractive index contrast ∆n = 8×10−2 between the core of the confined waveguide and the
substrate [12].

9.2.3 Characterization of the guides

Three characterization techniques must be performed in order to ensure that the fabrication
process of the waveguides is successfully completed.
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1. The profile of the output waveguide mode in order to check the functionality of the
guides and to identify if the guide is monomode or multimode. This profile is not
directly measured. The diffracted light at the output of the waveguide passing through
an objective lens is measured into a camera.

2. The insertion losses induced by the fiber-waveguide coupling losses, the Fresnel
reflection, and the propagation losses .

3. Spectral analysis to eventually detect the spectral monomode bandwidth and the
evolution of the losses following the wavelength.

Profile of the radiated waveguide output mode

The main purpose of the profile analysis is to see the behavior of the input signal at the
output of the waveguide. The test bench is depicted in Fig.9.4. Meanwhile, the sample

Fig. 9.4 Schematic representation of the test bench of the radiation analysis

contains a set of 4 series, each containing 6 patterns. Each pattern contains 11 waveguides
of 0.5,0.8,1,1.5,2,2.5,3,3.5,4,7,10µm widths (See appendix.4). In this configuration, the
sample is illuminated with a red laser source (centered at λ = 635nm), a SM600 Single
Mode Optical Fiber 633nm is used between the sample and the source to only ensure the
propagation of the fundamental mode. After the sample, a ×20 microscopic objective
(Mitutoyo Apo NIR 20×) is used to focus and magnify the output light of the waveguide.
Finally, this light is directed to an InGaAS GOODRICH SUI camera and visualized via the
SUI image analysis software. Therefore, if a fiber is centered at the middle of the waveguide,
one maximum will appear on the mode profile (Fig.9.5.(a)). On the other hand, two or more
maximum may appear in case of multimode waveguides when input single mode fiber is
slighty moved in the horizontal direction (Fig.9.5.(b)).
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(a) (b)

Fig. 9.5 Radiation analysis using the SUI camera (a) Monomode waveguide with 4µm width
(b) Multimode waveguide with 10µm width. The x and the y axis represent the pixels of the
SUI camera.

Propagation loss measurement

The aim of this process is to measure the insertion loss within the propagation of light inside
the waveguide. The basic principle is to place the sample between an input fiber at the
entrance of the waveguide followed by an output fiber having the same characteristics at
the output of the sample. A power-meter is then placed after this fiber which measure the
transmitted power directly proportional to the input source power (Fig.9.6).

Fig. 9.6 Schematic representation of the test bench of the propagation loss measurement

By measuring the optical power by placing the sample between two fibers and without the
sample (Fiber to fiber case), the insertion loss of the waveguide αins can be straightforwardly
deduced. However, for the i/o fibers, the same Thorlabs 633nm single mode fibers of the
previous section have been chosen for this manipulation. After performing the loss calculation
method. The insertion loss (IL) in the different waveguides with different widths can be
summarized in the following table (Table.9.1). We consider P1 as the fiber-sample-fiber
power in dBm, P2 the fiber to fiber power in dBm, P3 the fiber-objective lens power in
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dBm, and finally P4 as the fiber-sample-objective lens power in dBm. The Fresnel losses are
considered negligible. And, the fiber sample coupling is considered constant. From these
measurements, the different loss parameters can be calculated as:

• Insertion losses (IL) in dB: P2−P1.

• Coupling losses between the fiber and the sample waveguide (CL) in dB: P2−P1−
(P3−P4)

• Attenuation losses (AL) in dB/cm: (IL−2CL)/Length. With Length Sample = 4.1
cm.

Width(µm) P1 P2 P3 P4 IL CL AL
0.8 8.51 1.07 0.04 4.68 7.44 2.80 0.44
1 8.66 1.07 0.04 5.37 7.59 2.26 0.74

1.5 7.95 1.07 0.04 4.43 6.88 2.49 0.46
2 8.72 1.07 0.04 4.55 7.65 3.14 0.33

2.5 8.66 1.07 0.04 4.2 7.59 3.43 0.18
3 8.41 1.07 0.04 4.43 7.34 2.95 0.35

3.5 8.76 1.07 0.04 5.85 7.69 1.88 0.95
4 8.14 1.07 0.04 4.2 7.07 2.91 0.31

Table 9.1 The attenuation loss in dB/cm of the different monomode waveguides with K+/Na+

ion exchange at 380◦C for 8h and with a NaNO3 flash at 350◦C for 30 mins and red laser
source centered at λ = 635nm.

Spectral analysis

The objective of the spectral analysis is to determine the spectral range for which a waveguide
is considered single mode. For that, a white light source is placed at the input of the guide
and a spectrum analyzer at the output. In the configuration of Fig.9.7, Mutilmode fibers in
the visible and the NIR domain have been used at the input and the output of the waveguides
to ensure the coupling of all modes. At the output, an optical spectrum analyzer HP50970A
with spectra range from 900nm to 1700nm is used with a wavelength resolution of 0.5nm
and minimum sensibility of −86dB.

Fig.9.8 shows the spectral response of 4µm width waveguide. Indeed, there is a jump
of the intensity passing through the guide which appears at a wavelength of 1128nm±1nm.
This jump corresponds to the border between the area where the electromagnetic wave is too
wide to be propagated in the guide and the area where it is thin enough to be guided. Indeed,
the waveguide isn’t isotropic with symmetry revolution. Therefore, the cut-off wavelength
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Fig. 9.7 Schematic representation of the test bench of the spectral analysis.

may differ following the TE or TM polarizations. In the monomode zone, the evolution of the
power evolves in a linear way. In contrast, when we are close to the cut-off wavelength, the
power falls down due the increase of the propagation loss and the coupling loss. Practically,
the cut-off wavelength is considered when a decrease of power of 5dB is reached (Fig.9.8).
Moreover, the profile of the modes performed in the red zone shows that the guides with
widths ≤ 4µm are always monomode in this band of wavelengths which ensure the goal of
monomodicity in the red and NIR wavelengths.

Fig. 9.8 Spectral response of the waveguide of 4µm width using the HP 70950A optical
spectrum analyzer.
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Fig. 9.9 The fabrication procedure of the grating associated to the ion exchanged waveguides
sample

9.3 Roll to roll Grating with ion exchanged waveguide: di-
rect interaction

The second important part in any BGF is the surface grating. After checking the functionality
of the waveguides. A way to associate bragg gratings to the waveguide sample that work
in the visible and NIR domains must be found. In that case the buffer layer is the UV54
of refractive index n3 = 1.483. The peak to peak amplitude of the grating is 65nm and the
period is Λ = 240nm. Thus, by applying the calculation of Eq.(9.2), if a field amplitude of
the evanescent mode between 10% and 30% is needed (this percentages are issued from
the field of the non-corrugated mode with the resin as superstrate), minimum thickness z of
the buffer layer between 0.57µm and 1.06µm is required to ensure the evanescent coupling
between the guided mode and the grating in the visible and NIR wavelengths (λ = 729nm is
considered in this calculation).

To ensure this last calculation, the 2D a-FMM has been used to simulate the structure
depicted in Fig.9.10 which represents the side view of the square profile grating used in
the simulation instead of the realized sinusoidal profile. This change can slightly modify
the position of the resonant wavelength but the evanescent field dependence can be close.
Fig.9.11.(a) illustrates the minimum transmission in dB with respect to the transverse length
of the grating L in cm. At the both extremities of the grating, there is a waveguide with
non corrugation. Which means that the mismatch at each side is taken in account in the
simulation. Two aspects appear here, firstly, the transmission decreases with the increase of
the gap thickness. Secondly, the minimum transmission increases with the increase of the
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Fig. 9.10 Bragg grating associated to the simulated waveguide. The ion exchanged waveguide
has been replaced by an equivalent refractive index step waveguide.

grating length L. A transmission of −1.5dB is obtained for L ≈ 1.5cm and a gap = 400nm.
On the other hand, a minimum transmission of −30dB is reached for the same length but
with a gap = 0nm.

In Fig.9.11.(b), the spectral response of the BGF is depicted. The gap thickness represent-
ing the buffer layer is tuned between 0nm and 400nm for a fixed grating length L = 1.57cm.
It is clear that for gap ≥ 400nm, the minimum transmission is closer to 0dB and the bragg
filtering effect vanishes. Thus, the challenge with such structure is to reach a buffer layer
thickness less than 400nm, while the half power beam width HPBW = 0.07nm.
As mentioned before, SURYS uses the roll to roll technology to replicate the gratings on
the surface of the samples. Using this technology, many printing techniques have been
investigated to reach this goal. Firstly, the samples containing the ion exchanged waveguide
have been sent to the gray room of SURYS where the roll to roll printing occur. The first
trial depicted in Fig.9.9 has been done by the following steps.

• a special chemical solution called Memo 1, that works as an adhesive between the
the GO14 substrate and the deposited resin layer, has been dropped to the sample
containing the ion exchanged waveguides. Indeed, this adhesive creates a molecular
surface with molecular thickness (few atoms). For that, its thickness is considered
negligible.

• After a spin coating with 2000rpm to consistently distribute the MEMO on the surface,
2 drops of special resin fabricated by SURYS and called UV54 and having a small

1This solution is prepared by mixing 50ml of isopropanol (CH3CHOHCH3), 1.5ml of acetic acid
(CH3COOH) of concentration 10%, and 0.15ml of 3-(Trimethoxysilyl)propyl methacrylate.
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(a)

(b)

Fig. 9.11 (a) The minimum transmission in dB with respect to the transverse length of the
grating (b) The transmission spectrum of the BGF with L = 1.57cm and for different gaps.

viscosity with respect to the commercial resin are dropped to the roll to roll envelope
of the grating.

• After many trials with the machine pressing. A manually pressing technique of the
envelope has been chosen in order to maximize the pressure on the surface and therefore
minimize the deposited layer.

• UV casting is performed to print the inverse envelope on the surface of the sample.
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• When the roll to roll envelope is removed, a grating layer composed of the resin UV54
is therefore printed on the surface of the waveguides sample.

We will call this sample sample ’Test1’. Moreover, another sample has been fabricated by
using one drop of the UV54 resin instead of 2 in order to thinner the layer. This sample is
then called ’Test2’.
After receiving both samples, we checked firstly the thickness of the buffer+grating layer

Fig. 9.12 The normalized transmission power of the ion exchanged waveguide of width 3µm
associated to a surface grating of period Λ = 240nm.

of the input and the output face of the sample with a CCD camera (HD CCD camera from
Hamamatsu). Fig.9.12 illustrates the thickness of the resin layer (Buffer+grating) which is
manually deposited of the sample Test2. Indeed, a straightforwardly calculation depending
on the camera pixels and the distance between 2 consecutive waveguides (distance guide
to guide = 125µm) reveals that the thickness of the two faces is much greater than 1µm.
An approximate average thickness of 7µm± 1µm has been achieved with the input face
and an average thickness of 19µm± 5µm is obtained for the output waveguide side. So,
the thicknesses are much higher than 400nm. The coupling of the evanescent part of the
waveguide mode with the grating surface can’t be achieved. In all cases and to ensure this
hypothesis, the spectral analysis has been performed for both samples without showing
any significant filtering effect. As a result, the Bragg filtering was not achieved. And, this
methodology has demonstrated its failure.
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9.4 Roll to roll Grating with ion exchanged waveguide: Hy-
bridization by MEMO

9.4.1 Hybridization process

In the previous section, we mentioned that the chemical solution called MEMO creates a
molecular interaction with negligible thickness between the deposited layer and the GO14
substrate. The idea was to exploit this specification in order to realize a direct interaction
without any buffer layer between the grating and the ion exchanged waveguides. For that,
a hybridization method has been proposed in order to reach this goal (Fig.9.13). Using
this method, two samples are needed. The first one must only contains the ion exchanged
waveguides while the surface of the second one must be occupied by the grating of period
Λ = 240nm. In that case, the buffer layer is the air. Thus, Eq.(9.2) tells us that a thickness
230nm ≤ z ≤ 460nm is needed to couple between 10% and 30% of the evanescent field (these
percentages are issued from the field of the non-corrugated mode with the air as superstrate).
The first step is to add some drops of MEMO on the surface of the waveguides samples. By

Fig. 9.13 The fabrication procedures of the grating associated to the ion exchanged waveg-
uides sample with the hybridization method

spin coating, the solution will be harmoniously distributed on the sample’s surface. After
that, the sample of the Bragg grating is directly elaborated, from the side where the grating is
found, on the top of the first sample. By manual pressing both samples will be fixed and the
air gaps will be almost removed. Finally, in order to ensure the hybridization, the structure is
heated inside an oven calibrated at 60◦ for 36h.
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9.4.2 Simulated results

Fig. 9.14 Schematic representation of the hybridized Bragg filter.

Now, the structure depicted in Fig.9.14 represents our hybridized structure. This structure
will be simulated by the 2D a-FMM to reveal its optical response. The study of the trans-
mission with respect to the length of the grating (Fig.9.15.(a)) shows that the transmission
evolution decreases with the increase of the gap. A minimum transmission of −1.8dB
is obtained for L = 1.57cm and a gap = 120nm. In that case, a contact air gap less than
120nm is needed to ensure the filtering effect where the necessity of the MEMO appears. In
Fig.9.15.(b), a grating length of 1.57cm has been fixed, the spectrum for different gap is then
studied. We can see that for a negligible gap of 0nm (black curve) the minimum transmission
attains less than 100dB with a half power beam width HPBW = 0.15nm. With, the increases
of the gap, both the minimum transmission and the HPBW decreases. To be close to zero,
for gaps higher than 120nm. We can notice that for small gaps, a decrease of transmission
appears between 729nm and 729.2nm. This drop in transmission is linked to the appearance
of the leaky waves coupled to a diffraction order in the superstrate and radiated to the exterior
of the structure.

9.4.3 Spectral analysis

For the spectral analysis of the hybrid structure, the same test bench of Fig.9.6 has been
used. Meanwhile, at the input side a Leukos supercontinuum laser source which works for
the visible and NIR wavelengths associated to a Bebop adjustable wavelength and spectral
bandwidth filter. A spectral range between 680nm and 750nm has been chosen. Moreover, a
0.2nm resolution of −84dBm sensitivity has been calibrated for the OSA HP50970A. The
transmitted power spectrum for different waveguides of width w are shown in Fig.9.16.
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(a)

(b)

Fig. 9.15 (a) The minimum transmission in dB with respect to the transverse length of the
grating (b) The transmission spectrum of the BGF with L = 1.57cm and for different gaps.

Ideally, by referring to Eq.(9.1), and by taking Λ = 240nm and ne f f ≈ 1.51, the bragg
reflection wavelength is λB = 729nm. Nevertheless, periodically repeated dips appears in the
transmission spectrum. Maybe they are a results of an interference between the propagating
modes inside the waveguides. Moreover, it can be the effect of Fabry-Pérot cavity between
the fiber and the waveguide or the waveguide and the guide+grating. There is no particular
resonance which may represent a real filtering effect.
However, after the hybridization process, we found that some zones contain the interference
fringes (where the air layer may exists) and other not (Fig.9.17). In the zone of fringes, the
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Fig. 9.16 The measured transmission spectrum of the hybrid structure for different width of
ion exchanged waveguides.

guide-grating contact is ensured. But, the thickness of the air gap is not known. In the other
zones, it is not guaranteed to have a contact between the samples. The waveguides are tested
in the zones of the interference fringes. As a conclusion, we may say that the contact is not
sufficiently efficient (z > 120nm) between the two samples to have the Bragg filtering (none
negligible air gaps, excessive quantity of MEMO with big thickness which is not totally
evaporated). For that more investigations are needed by either hybridizing other clean and
well polished samples, hybridizing smaller samples or controlling the dust rate which is not
optimized for the moment (gray room fabrication + transportation effects).

Fig. 9.17 The fabricated hybridized sample. The blue horizontal lines represent the direction
of the waveguides and the red vertical lines belong to the periodized grating.
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9.5 Conclusion

In this section many fabrication techniques of visible and NIR GBF have been presented.
Indeed, the direct deposition of the grating layer on the top of the ion exchanged samples
shows that the thickness of the deposited layer is not thin enough to carry the evanescent
coupling of the guided mode and result the filtering effect. For that, another technique has
been investigated by hybridizing a sample containing the waveguides with another one which
contains the Bragg grating. Indeed, to ensure the adhesion of the two surfaces, a chemical
adhesive solution known as MEMO has been used. This solution is characterized by creating
a molecular adhesive layer with negligible thickness. First promising mechanical results
have been obtained with this process. Nevertheless, the optical response expected is not still
reached and more investigations and tests are needed.
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Chapter 10

Conclusion and Perspectives

10.1 Conclusion

The differential method (DM) is a Fourier space method for the modeling of diffraction
optics structures. It is mainly based on the expansion of the electromagnetic fields and
the permitivitty evolution into Fourier series . Then, it truncates all the series following a
given truncation order N. Indeed, associating the Fast Fourier Factorization (FFF) to the
algorithm of the method has demonstrated its efficiency and enhancement bringing more
accurate results and fastest convergence rates. This algorithm is specialized by taking into
consideration the evolution of the profile of the desired structure following the propagation
axis and the periodic axis.
In the first part of this dissertation, the algorithm of the DM-FFF has been presented. The
coded algorithm is used for the analysis of the diffraction and diffusion of light for different
complex-shaped periodic structures. The algorithm has been tested on 1D diffraction gratings
which are invariant according to a given dimension with incidence plane waves, in TE and
TM polarizations. Nevertheless, the discontinuities of the electric field in TM polarization
arises the importance of the FFF compared to other electromagnetic modeling methods as the
RCWA which uses the staircase approximation in its algorithm. The C-method can overcome
this problem but it is only dedicated to continuous profile. Indeed, the FFF used with the Li’s
factorization rules, the S-matrix algorithm and the Runge-Kutta integration of order 4 allows
to treat the stack of discretized layers and to reach a better accuracy. Moreover, the use of
the transition matrix Ψ allows the transition from the stationary fields representation into the
forward and backward eigen modes of the structures. This matrix eases thus the access to
the amplitude of the reflected and transmitted orders, and therefore, the calculation of the
diffraction intensity of each diffracted order.
The DM-FFF has been then applied to different profiles of diffraction gratings. The com-
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parison of the convergence rate and accuracy with other Fourier space methods (mainly the
RCWA and the C-method) improved the predominance of this method in almost all types of
periodic structures if the suitable projection of normal are considered. Moreover, during the
simulations, numerical fluctuations of the DM-FFF have been observed mainly while dealing
with pure negative and real permitivitty profiles near the plasmonic resonance of the metal
(Al, Ag, Au,...). Also, these divergences are frequently observed with the FMM. The physical
reason of this problem gets back to the rapid change of the permitivitty from positive real
values to negative and pure real values which do not respect the Li’s factorization rule. To
tackle this problem, we added Gradually varying refractive Index Layers (GIL) at the dielec-
tric metal interfaces of the structure. These layers alleviate the rapid transition of permitivitty
where few nanometers are considered largely sufficient to reach stable and accurate results.
Moreover, the developed code of the DM-FFF has been used to perform a detailed study of
an all-dielectric visual security device. This device is based on the add of buffer layer that
acts on the guided mode resonance (GMR) and the other opto-geometrical parameters to
produce structural reflected colors. Moreover, the code has been incorporated in a neural
network system to easily design diffraction gratings for the visual security applications.
In the second part, a new method so called the aperiodic DM-FFF (a-DM-FFF) dedicated
to the modeling of guided optical structures has been presented. This method is based on
the association of a complex coordinate transformation inspired from Ref.[37] and playing
the role of perfectly matched layers (PML) which suppress the incoming waves from the
neighboring cells. Thus, an artificial periodization is found, but the structure is simulated as
an isolated problem. Moreover, a transition matrix based on the organization of the eigen
vectors has been investigated. This matrix allows the transition from the representation of the
EM fields into the amplitude of the forward and backward guided modes. The association of
both mechanism (PML and transition matrix) allows the appearance of the a-DM-FFF used
for the design and modeling of guided optics problems.
The new method has been firstly validated by taking a rectangular guided structure in TE and
TM polarization and the results obtained fits very well with the reference values. Secondly,
as the importance of the FFF arises in TM polarization and with continuous and non-lamellar
structure. A guided structure with curvilinear evolution has been considered. The comparison
of both metallic and dielectric with high contrast index profiles shows the predominance
of the a-DM-FFF on the a-FMM in terms of accuracy and convergence rate. Finally, the
power of the FFF has been used to study microdisk resonators where more accurate and more
rigorous results have been obtained. These results shows the huge impact of the staircase
approximation on the simulation parameters where the a-DM-FFF can bring more enhance-
ment and facilities to the design of complex shaped guided optical structures.
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The last part of the thesis is devoted to experimentally fabricate integrated optic bragg filters
working in the visible and NIR domains by exploiting the association of the ion-exchange
waveguide technology of IMEP-Lahc with the roll to roll fabricated diffraction grating tech-
nology of SURYS. The first trials with direct deposition reveal big buffer layers at along the
ion exchanged samples which prevent the evanescent coupling of the guided mode with the
top grating. Another technique based on the deposition on a chemical adherent which creates
an atomic thickness layers between the grating and the waveguides has been presented. More
investigation are needed to ensure the functionality of this technique.
Finally, all the work presented in this thesis has allowed me to contribute in 9 scientific
contributions. In total, I was the first author of 2 scientific articles and one of the co-authors
in 1 journal. Moreover, I participated in 6 french national and international conferences (See
Appendix.D).

10.2 Perspectives

This work opens the way to several research topics which can be more developed and
deepened. The accuracy of the DM-FFF used for diffractive optical elements and with the
added graded index layers can be now applied for all types of diffraction gratings for different
applications where more rigorous results can be obtained compared to the other classical
methods. Moreover, the developed aperiodic version of this method opens the way for
researchers and engineers to simulate and model new arbitrary shaped guided structure that
was considered as problematic before. Finally, the W matrix definition is also an interested
way to reach an hybrid method. This formulation opens the way to cascade a-FMM zones
with a-DM-FFF zones. Indeed, the numerical integration can be focused on continuous
evolution in order to optimize the calculation speed. At this scale, with the 2D a-DM-FFF or
the hybrid method (2D a-FMM with the 2D a-DM-FFF), waveguides coupled nanowire as
optical antennas can be more rigorously simulated, especially in TM polarization, since such
structures mainly use metallic and non rectangular nanowires. Moreover, the field response
of guided structures with tapered zones can be more precisely observed by eliminating the
approximations brought by the discretization or the meshing techniques. In addition, artificial
roughness can be numerically added with a large band of freedom and accuracy in order to
predict the impact of manufacturing and photolithography on the results of guided structures.
Last but not least, the physical response of the probes with pointed end or/and metallic walls
can be more accurately analyzed for the Scanning Near Field Optical Microscopy (SNOM)
applications.
Finally, the 3D version of this method can also be deployed to simulate more rigorously 3D

177



CONCLUSION AND PERSPECTIVES

guided structures. For example, the impact of manufacturing roughness which is closer to the
real cases can be added to the algorithm of the method to study the attenuation impact on sub-
wavelength grating (SWG) metamaterials for silicon photonics [62], the attenuation of the SOI
waveguides [72], on the 3D resonators, photovoltaic structures or plasmonic nanoantennas
where the boundary conditions are closer to the real cases. Furthermore, discontinuities or
known corrugations can be considered to play on the mode degeneracy and splitting for
sensors applications (where the wavelengths splitting is sensitive to the corrugation change)
or lasers (impact of an emitter near the resonator for example). Concerning the experimental
part, more investigations are needed. Thus, well polished and cleaner sample can be used.
Moreover, the effect of the gray room manufacturing of the grating can be also controlled in
order to reduce the manufacturing impurities.
Finally, all results may be experimentally confirmed in order to show the improvements
brought by either the DM-FFF and the a-DM-FFF on the diffractive optics domain and the
guided optics domain.
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Appendix A

The multiplication of two Fourier series:
Toeplitz matrix formulation

In the previous studies, we often see the multiplication of two functions described in term of
their Fourier series. This multiplication results what’s called Toeplitz matrix. In this part, the
formulation of the Toeplitz matrix will be presented.

Let’s assume that we have two functions f (x) and g(x) which are described following
their Fourier series as:

f (x) =
p=N

∑
p=−N

fp exp( j2πσ px)

g(x) =
n=N

∑
n=−N

gn exp( j2πσnx)

With σ = 2π/Λ and Λ is the period of the unit cell of the periodic structure. Now, the product
of the two functions is carried out and the result h(x) can be expressed as:

h(x) = f (x).g(x)

=
p=N

∑
p=−N

n=N

∑
n=−N

gn fp exp( j2π(σ p+σn)x)

Assuming that, p = n−m. Thus, m = p+n. Then, we can write:

h = ∑
m−n

∑
n

gn fm−n exp( j2πσ pmx),

h = ∑
m−n

hm exp( j2πσ pmx),

hm = ∑
n

gn fm−n
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THE MULTIPLICATION OF TWO FOURIER SERIES: TOEPLITZ MATRIX FORMULATION

As n and m vary from −N to +N, the harmonics distribution of h can be thus written as:

hm=−N = f0g−N + f−1g−N+1 + f−2g−N+2 + . . .+ f−2N gN

hm=−N+1 = f1g−N + f0g−N+1 + f−1g−N+2 + . . .+ f−2N+1 gN

. . .

hm=N = f2Ng−N + f2N−1g−N+1 + f2N−2g−N+2 + . . .+ f0 gN

This formulation can be simplified by using the notation of the Toeplitz matrix J f K
expressed as:

J f K =



f0 f−1 f−2 . . . . . . f−2N

f1 f0 f−1
. . . . . . f−2N+1

f2 f1 f0
. . . . . . ...

... . . . . . . . . . f0 f−1

f2N . . . . . . f2 f1 f0


Finally, the multiplication of two FOurier series can be expressed as: [h] = J f K[g]. And,

thus the harmonic m of h can be simplified as:

hm =
n=+N

∑
n=−N

fm−ngn
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Appendix B

The normal of the surface for the
different used geometries.

In this dissertation, different geometries have been used. The simulations performed by the
DM-FFF and the a-DM-FFF necessitate the presence of the function that takes the evolution
of the profile into account. This function is described by the projection of the normal to the
surface on the periodization axis x and the propagation axis z. Those last ones are defined by
Nx and Nz respectively.

B.1 Rectangular Profile

For a lamellar (rectangular) profile evolution, the x and y components of the normal of the
surface are always equal to Nz = 0 and Nx = 1.

B.2 Sinusoidal Profile

In case of sinusoidal grating, the evolution of the projected normal on x and z can be written
following x as:

Nx =−
√

1

1+(∂ f/∂x)2
∂ f
∂x

Nz =

√
1

1+(∂ f/∂x)2

With, f (x) is the function describing the evolution of the sinusoidal profile following the
periodicity axis x.
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THE NORMAL OF THE SURFACE FOR THE DIFFERENT USED GEOMETRIES.

B.3 Trapezoidal or triangular Profile

Fig. 2.1 Geometrical profile of the trapezoidal evolution.

In case of the trapezoidal or triangular evolution (Fig.2.1, the components of the normal
of the surface are described following the internal angle β as:

Nx =− sin(β ), forx ∈ [0,
Λ

2
],

=+ sin(β ), forx ∈ [
Λ

2
,Λ]

Nz =cos(β ), forx ∈ [0,Λ]

B.4 Curvilinear profile

The normal Nx and Nz are depicted in Eq.(B5) and B(6) of ref.[95]. For the aim of clarity, we
present the normal to the cylindrical rod used in the reflector structure and the microdisks.

Fig. 2.2 Geometrical parameters of the cylindrical rod.

With r the radius of the cylinder, the normal outside the modulated region is null.
Thereupon, |x|> r, Nz = 0 and Nx = 0.
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B.4 CURVILINEAR PROFILE

Nevertheless, for x ∈ [−r,+r], Nz and Nx, depicted in Fig.2.2, are represented as follows,

Nz =

√
1− x2

r2

Nx =±

√
N2

z
[
1−N2

z
]

Nz
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Appendix C

Test ECH mask datasheet

Description of the photolithography mask “TEST_ECH” 
 
 
The mask is intended for process testing, since it allows cutting the wafer in several pieces 
(normally 4), all containing the same waveguides.  
 
General view of the mask 
 
The mask is divided in 4 series, each containing 6 patterns of 11 waveguides. 
 

The circle corresponds to the 6 cm diameter standard wafer 
size. “Standard” alignment crosses are located on top, 
bottom, left and right of the waveguides. 
 
There are 4 identical series, separated by 100 µm wide 
dicing lines. 
 
1 series is constituted of (from top to bottom): 

• One 100 µm wide dicing line 
• A ruler (graduations every 100 µm, number every 1 

mm) 
• 3 waveguides patterns (see description below) 
• 2 Y junctions (1=>2 and 2=>1), width = 2 µm 
• 3 waveguide patterns. 

 
Description of one waveguide pattern 
 

² 
• A pattern contains 11 waveguides: 0.5 - 0.8 - 1 - 1.5 - 

2 - 2.5 - 3 - 3.5 - 4 - 7 -10 µm apertures. 
 

• The waveguides are separated by 125 µm (center to 
center). They are 42 mm long. 

 
• The aperture width is written on top of each 

waveguide every 4 mm. 
 

• There is a 200 µm spacing between 2 patterns 
 
 
 

 
Conclusion 
 
One series contains 6 patterns of 11 waveguides and 2 Y junctions, so it can be used as an 
individual sample. Thus with one wafer, 4 samples can be realized. One sample is 9.6 mm 
wide. 
 
 

1 pattern 

125 µm 

200 µm 

60 mm 

42 mm 

1 series 9.6 mm 
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Résumé

Introduction

Pour concevoir au mieux des dispositifs photoniques, il est important d’avoir des outils de
modélisation fiables et efficaces. En effet si le quadrillage de paramètres technologiques est
envisageable pour des dispositifs simples, son coût en nombre de tests devient rapidement un
frein à l’optimisation de structures. Il devient donc indispensable de disposer de simulations
totalement vectorielles, avec des matériaux à indices de réfraction complexes, de garantir
la prise en compte de l’ensemble des modes de propagation (modes guidés, rayonnés et
évanescents), bidirectionnelles . . .

La simulation de structures à fort contraste d’indice de réfraction (photonique sur silicium)
ou les structures utilisant des motifs métalliques générant des modes plasmoniques ou des
motifs sub-longueur d’onde comme les métamatériaux . . . est un ensemble d’exemples qui
nécessite l’utilisation de ces outils. Ces derniers se différencient par leur méthode de calcul
utilisée : calcul dans le domaine fréquentiel par différences finies ou éléments finis, méthode
temporelle par la méthode des différences finies . . . Par exemple, la FDTD est devenue
ces dernières années un outil de référence dans le milieu de la photonique sur silicium.
Cependant, ces méthodes ne sont pas forcément optimales. Elles diffèrent par les ressources
numériques nécessaires notamment sur la mémoire utilisée, le temps de calcul, la prise en
compte des conditions de continuité, la discrétisation de la structure qui peut se faire soit
dans le domaine spectral ou spatial . . . Néanmoins, certaine méthode comme la FDTD peut
générer des approximations induisant des imprécisions ou une augmentation des ressources
numériques utilisées dans certaines configurations. Ces quinze dernières années au sein du
laboratoire (IMEP-Lahc), des outils basés sur la RCWA ont été développés pour simuler
des structures très différentes allant de l’optique diffractive à l’optique guidée en essayant
d’optimiser au mieux ces ressources numériques.

L’objectif de cette thèse est de développer un outil plus général dans le but de réduire ces
imperfections tout en gardant la possibilité de l’utiliser sur une multitude d’applications de la
photonique (optique diffractive, optique guidée . . . ). Mon choix s’est porté sur la méthode
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différentielle largement utilisée pour l’étude des réseaux de diffraction. Cette méthode peut
être plus efficace que la RCWA mais peut avoir aussi des limites pour la simulation de
structures à profil complexe notamment en polarisation TM. Depuis les années 2000, l’ajout
d’un nouveau module dénommé FFF (Fast Fourier Factorisation ou Factorisation Rapide
de Fourier), permet de résoudre cette problématique et ouvrir de nouvelles potentialités à
cette méthode. Après une introduction générale, la méthode différentielle associée à la FFF
est présentée en détails. Ensuite, une solution simple et rapide qui permet de résoudre le
problème des divergences numériques dans le cas des métaux ayant une permittivité purement
réelle et négative est proposée. Puis, l’étude complète d’une structure diffractive diélectrique
utilisée pour des applications de sécurité visuelle est proposée. La simulation de la structure
diffractive est associée à un module utilisant un réseau de neurones pour le design et la
modélisation optimale de ces structures. Finalement, pour adapter la méthode aux structures
photoniques guidées, une transformée de coordonnées inspirée par la FMM apériodique a été
implémentée dans l’algorithme de la MD-FFF transformant cette dernière en une méthode
apériodique pour la simulation 2D de structures optiques intégrées utilisant des matériaux à
indice de réfraction complexe, non-isotropes et non-magnétiques. La décomposition de la
propagation sur une base de modes propres peut permettre d’accéder à des informations non
directement accessibles avec la FDTD par exemple. Des résultats plus précis, plus rapides et
plus rigoureux ont été obtenues par rapport à la FMM notamment en polarisation TM avec
des profils curvilignes comme dans le cas des structures cylindriques.

Ce manuscrit est composé de trois grandes parties, après une introduction générale
et la présentation des équations de Maxwell dans le régime temporel et le domaine de
Fourier. La première partie décrit la méthode différentielle associée à la Factorisation
Rapide de Fourier (DM-FFF). Cette méthode est connue depuis les années 2000 dans la
communauté de l’optique diffractive. Elle est notamment utilisée pour la conception et la
modélisation des réseaux diffractifs périodiques complexes. La deuxième partie porte sur
l’association des PML (Perfectly Matched Layers) à l’algorithme de cette méthode. Avec
les modifications apportées (mode d’excitation, matrice spécifique de passage entre sections,
. . . ), j’ai réussi à adpater cette méthode en un outil apériodique pour la modélisation et
la conception de structures optiques guidées. Cette méthode est alors plus rigoureuse que
l’a-FMM (apériodique Fourier Modale Méthode) au niveau des efficacités des résultats et la
convergence en fonction du nombre d’harmoniques utilisées notamment pour des structures
non-rectangulaires. Dans la troisième partie, on propose d’associer deux technologies pour
des applications en optique intégrée. J’ai essayé d’exploiter la combinaison de la technologie
de guides optiques intégrés sur verre de l’IMEP-Lahc avec la technologie de moulage d’un
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partenaire industriel SURYS-Hologram. Le but est de réaliser des filtres de Bragg intégrés
pour des applications dans le domaine des longueurs d’onde visible et proche infra-rouge.

DM-FFF pour la modélisation de structures diffractives ar-
bitraires

Une structure diffractive peut se résumer comme une cascade de 3 zones : une première
zone homogène (milieu où se propage le signal incident et le signal réfléchi), une zone
intermédiaire dite modulée (milieu où se trouve le réseau diffractif) et une dernière zone
homogène (milieu où se propage le signal transmis). On peut prendre comme exemple un
réseau 1D. Dans ce cas, (Ox) représente l’axe de la périodisation du réseau, (Oz) est l’axe de
la propagation et (Oy) est un axe invariant. La diffraction d’un réseau peut être définie par la
résolution d’un système d’équations différentielles couplées issues des équations de Maxwell.
Ce système relie respectivement les composantes transverses du champ électrique Ey et Hx

en polarisation TE et les composantes Hy et Ex en polarisation TM. Ce système peut alors
se résoudre en décomposant les paramètres opto-géométriques de la structure (permittivité,
perméabilité, champs électriques et magnétiques) sur une base de séries de Fourier. On
retrouve alors la représentation simplifiée qui relie la variation du vecteur constitué des
harmoniques des champs électriques et magnétiques transverses suivant z et une matrice
variant selon l’axe de propagation M(z). La propagation ou le passage d’une interface à
l’autre est défini par l’obtention d’une matrice S qui relie les ondes entrantes aux ondes
sortantes de la couche. Ce formalisme est plus stable numériquement que la matrice T qui
relie les ondes d’une interface de la couche aux ondes de l’autre interface. Pour cela, il est
donc nécessaire de déterminer des matrices de conversion permettant de définir à chaque
interface une conversion entre les vecteurs harmoniques précédents et les pondérations des
vecteurs propagatifs ou contra-propagatifs nécessaires pour la mise en cascade des couches.
Dans le cas des couches extérieures homogènes, les vecteurs propres sont des ondes planes.
La pondération précédente est alors reliée à l’amplitude complexe de ces ondes planes. Cette
conversion est alors possible via une matrice de passage Ψ.
Avec la méthode différentielle, la zone modulée est discrétisée en sous-couches j en utilisant
la matrice M(z) dépendante en z. Une méthode numérique du type Runge-Kutta d’ordre
4 dans un format matriciel permet alors de définir l’évolution des champs magnétiques et
électriques dans la zone modulée. L’épaisseur de chaque couche j doit être suffisamment
fine pour que la fonction caractérisant l’évolution des vecteurs harmoniques des champs
électromagnétiques transverses soit proche de son développement limité à l’ordre 4 sur
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l’intervalle du pas d’intégration. Cette méthode peut donc s’appliquer à un nombre plus
important de formes de réseau comparé à la RCWA. Il faut au moins 4 sous couches pour
appliquer la méthode numérique Runge-Kutta. Cet ensemble de 4 sous-couches peut être
simplifié par une couche Mi avec la RCWA. Ce formalisme permet une convergence à priori
plus rapide nécessitant moins d’harmoniques. Mais le nombre de sous-couches est limité.
Pour des valeurs trop grandes on retrouve les problèmes de divergence numérique de la
matrice T . Elle utilise aussi la FFF pour appliquer à chaque sous couche les règles de Li.
La FFF a été introduite par Popov et permet de prendre en compte le profil continu de la
surface. L’objectif est de connaître les composantes tangentielles des champs électromag-
nétiques sur la surface de ce profil continu. Pour cela, on doit déterminer les composantes
de la tangente et de la normale à cette même surface. Il sera alors possible de projeter les
champs électromagnétiques sur ces deux précédents vecteurs. Dans une couche i, on aura
un nombre discret de positions xs définissant la position de la surface du profil continu dans
cette même couche i. Il est important de connaître la tangente et la normale de la surface
seulement à ces positions pour cette couche i située à une position z donnée. A ces positions,
la connaissance des champs électromagnétiques tangents et normaux nous permettra d’utiliser
correctement les règles de Li. Pour x ̸= xs et pour la même position z, le vecteur normal
ou tangent peut être quelconque. Après l’implémentation de l’algorithme en Python, j’ai
comparé mes résultats aux résultats des différentes méthodes à base de Fourier (RCWA, C-
Méthode) pour montrer l’efficacité de la DM-FFF notamment en polarisation TM. En prenant
en compte différents profils du réseau (rectangulaire, sinusoïdale, trapézoïdale, etc. . . ), La
MD-FFF permet d’avoir une convergence plus stable suivant le nombre d’harmoniques N.
En revanche, on peut observer des problèmes de convergence lorsque le métal utilisé a un
indice de réfraction réel proche de 0. La valeur nulle correspond à un métal sans pertes.
Dans ce cas, la permittivité est quasiment réelle et négative. Si on a une discontinuité du
type air métal, on va avoir un saut de permittivité d’une valeur quasi négative à une valeur
positive. Ce type de discontinuité ne respecte pas les règles de Li. Il est donc compliqué
de modéliser des structures diffractives avec cet indice de réfraction. Pour résoudre ce
problème, j’ai proposé d’ajouter une couche nanométrique de gradient d’indice de réfraction
sur la face en contact avec le milieu incident. La partie réelle de l’indice de réfraction passe
linéairement de l’indice de réfraction réel du diélectrique jusqu’à l’indice de réfraction réel
du métal. Il en est de même pour la partie imaginaire. Cette solution nous permet d’éliminer
le problème de divergence et rendre la DM-FFF plus efficace et plus rigoureuse pour une
grande plage de profils de réseau de diffraction que les autres méthodes connues. Finalement,
une étude détaillée d’une structure de sécurité visuelle de réflexion a été étudiée. La structure
correspond à un réseau diélectrique associé à un guide optique qui donne un effet visuel
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intéressant. Les deux effets physiques (effet du réseau et effet du guide) qui sont présents
dans ce type de structure donnent une large gamme de liberté pour manipuler les couleurs
diffractés. Suite aux différentes interprétations, nous avons constaté que le paramètre le
plus important pour changer le couleur sous incidence normale est la période Λ. Les autres
paramètres peuvent affecter le contraste de la couleur réfléchie. De plus, la résonance du
mode guidé peut être optimisée en changeant l’épaisseur du guide d’ondes (couche tampon)
par le couplage d’un ou plusieurs modes guidés. Par conséquent, des réseaux de diffraction
plus complexes peuvent être étudiés. Par exemple, des réseaux métalliques induisant des
effets plasmoniques, des réseaux avec des profils continu, discontinu ou / et des structures
ayant des parties continues et autres discontinues. Cependant, notre collaborateur industriel,
SURYS, utilise la technologie roll to roll pour la production à grande échelle de structures
de sécurité visuelle. Avec cette technique, le changement de l’épaisseur de la structure est
difficile sur le même échantillon. Mais, différents réseaux avec des périodes différentes Λ

peuvent être réalisés sur le même wafer.

Méthode différentielle pour l’analyse de structures guidées

La méthode différentielle présentée est essentiellement appliquée sur les réseaux de diffrac-
tion. On peut utiliser cette méthode et l’associer avec des PMLs (Perfect Matching Layers)
pour simuler des structures guidées comme l’a déjà proposé Lalanne et al. en combinant la
RCWA avec des PMLs. La structure guidée représente une zone guidée entourée de deux
zones homogènes (le substrat et le superstrat) selon l’axe x. La propagation se fait toujours
selon l’axe z. Les parties à gauche et à droite de la partie guidée sont considérées infinies
dans la direction parallèle à l’axe x. On parle de structure ouverte. Il est possible de fixer
une largeur pour ces deux couches et de les terminer par une couche absorbante et non
réfléchissante d’une largeur donnée. Ces couches peuvent être obtenues grâce à des PMLs.
L’empilement de ces couches selon l’axe x peut définir la cellule élémentaire d’un réseau de
diffraction que l’on peut périodiser. L’intérêt des PMLs est multiple : premièrement elles
permettent d’isoler les cellules élémentaires en absorbant le signal rayonné et en éliminant les
réflexions à l’entrée des PMLs. Deuxièmement, elles permettent de convertir une structure
ouverte en une structure périodique. Ainsi, les algorithmes basés sur une expansion de
Fourier peuvent alors être appliqués sur ce type de guides. Les PMLs sont en fait définies à
partir d’une transformée de coordonnées complexes pour simuler le cas précédent. Dans ce
cas, la transformée de coordonnées s’applique toujours sur l’axe x mais elle est ici complexe.
Elle va agir à la fois sur la partie réelle et imaginaire. Elle est identique à celle proposée par
Lalanne et al [36]. Cette transformée de coordonnées est imposée dans toutes les couches.
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Il n’y a donc pas de changement de base à faire entre deux couches. On évite donc cette
projection qui peut apporter des divergences suivant le nombre d’harmoniques utilisé. La
difficulté à implanter ce type de transformée de coordonnées complexes dans la méthode
différentielle avec la FFF réside dans le choix de la matrice de passage pour passer des
vecteurs harmoniques stationnaires aux vecteurs propres du guide droit afin d’accéder aux
ondes propagatives et régressives. Dans ce cas, les zones homogènes utilisées dans le cas du
réseau diffractif sont maintenant des guides d’entrée et de sortie entourant une zone modulée
qui caractérise la zone guidée à modéliser. La propagation dans ces guides d’extrémités
est caractérisée par une pondération de modes propres au lieu d’une pondération d’ondes
planes pour les réseaux diffractifs. Mais, la matrice de vecteurs propres de la structure
doit être convenables réorganisée pour répondre à cette propriété. On nommera par la suite
la méthode l’a-DM-FFF avec la lettre a qui désigne apériodique. On a d’abord validé la
méthode en l’appliquant sur une structure lamellaire où les matrices S issues de l’a-DM-FFF
et de l’a-FMM sont similaires (Fig.7.4). On a ensuite utilisé la structure précédente avec un
pilier central qui va faire apparaître des marches d’escalier ou "stairecase" sur sa surface avec
l’a-FMM. La FFF va permettre de mieux prendre en compte les conditions de continuité
sur l’interface du pilier (Fig.8.1). Une structure avec un pilier diélectrique à fort contraste
d’indice de réfraction et une autre structure avec pilier métallique sont considérées. On
montre alors une convergence plus rapide, et des résultats plus rigoureux que l’a-FMM.
En addition, des comparaisons entre l’a-FMM et notre nouvelle méthode ont été faites sur
des micro résonateurs (micro-disques). On montre qu’avec notre méthode, les résultats
s’approchent des résultats analytiques et on peut atteindre des coefficients de qualité plus
élevés. Également, on peut diminuer l’effet de séparation spectrale des deux modes qui
caractérisent le résonateur par un facteur de 10. Pour conclure, on montre une nouvelle
méthode pour modéliser la propagation de la lumière des structures photoniques en deux
dimensions. Grâce à l’apport de la FFF, on montre que l’on a des résultats qui convergent
plus rapidement en respectant d’une manière plus rigoureuse les conditions de continuité de
la structure idéale que l’on cherche à simuler. On peut avoir des résultats assez similaires
pour un même pas de discrétisation en utilisant la RCWA au lieu de l’algorithme Runge-Kutta
tout en gardant la FFF. Ces résultats ont abouti à deux posters en conférence internationale et
à la publication d’un article dans une revue internationale.
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Fabrication de réseau de Bragg par hybridation de couche
holographiée et des guides surfaces sur substrat de verre

Les filtres à réseaux de Bragg sont des composants importants dans le domaine de l’optique.
Ils sont principalement utilisés dans les domaines des télécommunications ou des capteurs. Si
on associe un réseau de Bragg avec un guide d’onde, un filtre passe-bande à bande étroite est
obtenu en réflexion au niveau du spectre optique du signal. En transmission, on obtiendra au
contraire un filtre réjecteur de bande étroite, le complémentaire du précédent aux pertes près.
Donc si on injecte dans le guide une source large bande, on peut sélectionner ou éliminer une
bande étroite autour d’une longueur d’onde centrale λB. Cette dernière dépend de l’indice
effectif du mode dans la partie corruguée qui peut être approximée à l’indice effectif ne f f du
guide seul et de la période du réseau Λ. Les filtres de Bragg sont très connus dans les fibres
(FBG : Fiber Bragg Grating). On peut obtenir ces filtres sur des guides optiques intégrés
avec différentes technologies (Si, Silice . . . ). On peut les obtenir aussi sur des technologies
d’échange d’ions sur verre. Ce concept a été utilisé pour réaliser des lasers intégrés pour
sélectionner la longueur d’onde du laser. Néanmoins, le montage utilisé dans le laboratoire
ne permet d’atteindre des périodes de réseau suffisamment faibles pour réaliser des filtres en
longueurs d’ondes dans le visible. L’IMEP-Lahc est spécialisé par la technologie des guides
optiques par échange d’ions. Néanmoins, SURYS a une technologie qui permet d’accéder à
des réseaux de surface périodiques sur des polymères transparents déposés initialement sur
un substrat en associant des techniques de moulage et d’holographie. L’idée était d’hybrider
les deux technologies pour avoir des filtres de Bragg dans le domaine visible. Après la
fabrication et la caractérisation des guides par échanges d’ions, j’ai proposé deux solutions
d’hybridation. La première se base sur le moulage d’une couche de polymère déposée par
spin-coating sur les guides de surface (Fig.9.9). Après les simulations et les tests, cette
solution n’est pas favorable et ne donne pas des résultats encourageants suite à l’épaisseur de
la couche tampon entre les guides et le réseau. Cette couche interdit l’interaction évanescente
du mode guidé avec le réseau empêchant un effet de filtrage. La deuxième solution consiste
à hybrider directement la surface des guides avec la surface du réseau périodique en utilisant
un adhérant qui crée une couche atomique entre l’échantillon composé du réseau de surface
avec l’échantillon composé des guides optiques de surface. Les deux plaques sont toujours
solidaires. Mais les mesures faites n’ont pas été fructueuses. Un gap entre les deux structures
est toujours présent.
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