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Knowledge bases are huge collections of primarily encyclopedic facts. They are widely used in entity recognition, structured search, question answering, and other tasks. These knowledge bases have to be curated, and this is a crucial but costly task. In this thesis, we are concerned with curating knowledge bases automatically using constraints.

Our first contribution aims at discovering constraints automatically. We improve standard rule mining approaches by using (in-)completeness metainformation. We show that this information can increase the quality of the learned rules significantly.

Our second contribution is the creation of a knowledge base, YAGO 4, where we statically enforce a set of constraints by removing the facts that do not comply with them.

Our last contribution is a method to correct constraint violations automatically. Our method uses the edit history of the knowledge base to see how users corrected violations in the past, in order to propose corrections for the present.

Chapter 1 Introduction

Motivation

Knowledge bases (KBs) are sets of machine-readable facts. They contain entities and relations about them. For example an encyclopedic knowledge base could contain entities about people like Jean-François Champollion or places like Paris, and named relations like livedIn(Jean-François_Champollion, Paris) to state that Jean-François Champollion lived in Paris. Well-known knowledge bases in this area include Wikidata [START_REF] Vrandecic | Wikidata: a free collaborative knowledgebase[END_REF], YAGO [START_REF] Suchanek | Yago: a core of semantic knowledge[END_REF], Freebase [START_REF] Bollacker | Freebase: A Collaboratively Created Graph Database for Structuring Human Knowledge[END_REF], DBpedia [START_REF] Bizer | DBpedia -A Crystallization Point for the Web of Data[END_REF] or the Google Knowledge Graph. Such knowledge bases are used to display fact sheets like in Wikipedia or in the Google and Bing search engines. They are also used to directly answers user questions like in Alexa or Siri. But knowledge bases are also used for other kinds of contents and use cases. For example, Amazon and eBay maintain knowledge bases of the products they sell and Uber maintains a food knowledge base to help its customers choose a restaurant. Some knowledge bases are very large. For example, Wikidata contains 81M entities1 and Freebase 39M. Some of these projects use software pipelines to build the knowledge base automatically from one or multiple existing sources. For example, DBpedia is built by a set of extractors from Wikipedia content. Others are using a crowd of contributors, paid or volunteer, to fill the knowledge base. This is the case of Wikidata, which has more than 40k different editors per month.

As a consequence, knowledge bases often exhibit quality problems, originating from edge cases in the conversion pipelines, good-faith mistakes, or vandalism in the crowd-sourced content. For example [START_REF] Zaveri | User-driven Quality Evaluation of DBpedia[END_REF] found that 12% of the DBpedia triples have some kind of issue. Even crowd-sourced knowledge bases often rely significantly on automated importation or curation pipelines. 43% of Wikidata edits in March 2020 have been done using automated tools.

To fight such problems, many knowledge bases contain a constraint system. One of the most basic kinds of constraint is stating that the values of a given property should have a given type. For example, a knowledge base could enforce that the values of the birthPlace property should be strings representing a date. Constraints can also be more complex stating e.g., that a person can have at most 2 parents (cardinality restrictions) or that an entity cannot be a person and a place at the same time (disjunctions). Some of these constraints are enforced by the knowledge base. For example, the OWL formalism itself requires that properties whose values are literals (string, dates...) have to be disjoint from the ones whose values are entities. However, these constraints are often violated in practice. For example, as of March 20th, 2020, Wikidata has 1M "domain" constraint violations and 4.4M "single value" constraint violations. Thus, there is a need for tools to filter out such problems from the knowledge base. There is also a need for tools that help the knowledge base curators repair these violations in an automated or semi-automated way.

This thesis provides some new approaches and techniques to improve the state on the art on this complex task.

Presented Contributions

The first chapter of this thesis, Chapter 2, presents general preliminaries on knowledge bases and rule mining. The main work is composed of 3 parts.

Part I, presents improvements to the rule mining problem. More precisely, Chapter 3 presents a novel approach that improves rules mining over incomplete knowledge bases by making use of cardinality information. This allows mining rules of higher quality. These can then be used in order to complete the knowledge base or as constraints to flag problems in the data. Our approach works by introducing a new rule quality estimation measure, the completeness confidence. The completeness confidence takes into account the number of expected objects for given subjects and predicates to better assess the quality of the rules. We show that this measure does not require cardinality information on all the knowledge base entities to be effective. We evaluated this completeness confidence both on real-world and synthetic datasets, showing that it outperforms existing measures both with respect to the quality of the mined rules and the predictions they produce.

Chapter 4 presents an approach to increase the number of available cardinality metadata, especially to improve the quality of the rules mined using the completeness confidence.

The content of these two chapters was published at ISWC 2017 where it was nominated for the best student paper award. An invited short version of the paper has been presented at IJCAI 2018: Thomas Pellissier Tanon, Daria Stepanova, Simon Razniewski, Paramita Mirza, and Gerhard Weikum. "Completeness-Aware Rule Learning from Knowledge Graphs". Full paper at ISWC 2017. https://doi.org/10. 1007/978-3-319-68288-4_30 Thomas Pellissier Tanon, Daria Stepanova, Simon Razniewski, Paramita Mirza, and Gerhard Weikum. "Completeness-aware Rule Learning from Knowledge Graphs". Invited paper at IJCAI 2018. https://doi.org/ 10.24963/ijcai.2018/749

Part II of this thesis presents an approach of static constraint enforcement. More precisely, it presents YAGO 4, a knowledge base is basically a simpler and cleaner version of Wikidata. We built this knowledge base using a declarative mapping and constraint enforcement pipeline. YAGO 4 can be seen as an example of a knowledge base that ensures quality by filtering out constraint violations. This work has been published as a resource paper at ESWC 2020: Thomas Pellissier Tanon, Gerhard Weikum, and Fabian M. Suchanek. "YAGO 4: A Reason-able Knowledge Base". Resource paper at ESWC 2020. https://doi.org/10.1007/978-3-030-49461-2_34

Part III presents contributions to the task of dynamically learning how to enforce constraints. Chapter 6 discusses a novel problem: learning how to fix constraint violations using the edit history of a knowledge base. We present a formalism of the problem and an algorithm to extract "past corrections" of constraint violations from the knowledge base history. To solve this problem, the chapter suggests two different approaches: one based on rule mining and the other one using neural networks, the latter providing better accuracy but no explanation of its predictions. We validated both approaches experimentally on Wikidata, showing substantial improvements over baselines. This work has been presented at TheWebConf 2019. The neural network approach is currently under review: Thomas Pellissier Tanon, Camille Bourgaux, and Fabian M. Suchanek. "Learning How to Correct a Knowledge Base from the Edit History". Full paper at WWW 2019. https://doi.org/10.1145/3308558.3313584

Thomas Pellissier Tanon and Fabian M. Suchanek. "Neural Knowledge Base Repairs". Under review at ISWC 2020.

Chapter 7 is an annex of the previous chapter. It presents a system we implemented to query the edit history of Wikidata efficiently. It was used to extract the data used to evaluate the approaches presented in the previous chapter. This work has been demoed at ESWC 2019:

Thomas Pellissier Tanon and Fabian M. Suchanek. "Querying the Edit History of Wikidata". Demo at ESWC 2019. https://doi.org/10. 1007/978-3-030-32327-1_32

Other works

During my Ph.D., I contributed to some other works that are not presented in this thesis.

I presented my master thesis at the Linked Data on The Web workshop. This work was done with David Montoya under the supervision of Serge Abiteboul, Pierre Senellart, and Fabian M. Suchanek. The master thesis was about building a knowledge integration platform for personal information. This system is able to synchronize in both directions from datasources such as emails, calendars, and contact books. It also aligns and enriches the data. This work was also demoed at CIKM: David Montoya, Thomas Pellissier Tanon, Serge Abiteboul, Pierre Senellart, and Fabian M. Suchanek. "A Knowledge Base for Personal Information Management". Paper at the LDOW workshop collocated with WWW 2018. http://ceur-ws.org/Vol-2073/article-02.pdf David Montoya, Thomas Pellissier Tanon, Serge Abiteboul, and Fabian M.Suchanek. "Thymeflow, A Personal Knowledge Base with Spatiotemporal Data". Demo at CIKM 2016. https://doi.org/10.1145/ 2983323.2983337 I also published an earlier work on using grammatical dependencies for question answering over knowledge bases. This work was demoed at ESWC and the dataset to train such systems has been presented as a poster at ISWC: Thomas Pellissier Tanon, Marcos Dias de Assunção, Eddy Caron, and Fabian M. Suchanek. "Demoing Platypus -A Multilingual Question Answering Platform for Wikidata". Demo at ESWC 2018. https: //doi.org/10.1007/978-3-319-98192-5_21 Dennis Diefenbach, Thomas Pellissier Tanon, Kamal Deep Singh, and Pierre Maret. "Question Answering Benchmarks for Wikidata". Poster at ISWC 2017. http://ceur-ws.org/Vol-1963/paper555.pdf Furthermore, together with Lucie-Aimée Kaffee, we conducted a study of the stability of the Wikidata schema. We analyzed the stability of the data based on the changes in the labels of properties in six languages. We found that the schema is overall stable, making it a reliable resource for external usage. This work was presented at the WikiWorshop:

Thomas Pellissier Tanon and Lucie-Aimée Kaffee. "Property Label Stability in Wikidata: Evolution and Convergence of Schemas in Collaborative Knowledge Bases". Short paper at the WikiWorkshop collocated with WWW 2018. https://doi.org/10.1145/3184558.3191643 I also helped a Ph.D. student in the team, Thomas Rebele, on his work on evaluating Datalog using Bash shell commands. I formalized the problem and provided a converter between Datalog and relational algebra. Our method allows preprocessing large tabular data in Datalog -without indexing the data. The Datalog query is translated to Unix Bash and can be executed in a shell. Our experiments have shown that, for the use case of data preprocessing, our approach is competitive with state-of-the-art systems in terms of scalability and speed, while at the same time requiring only a Bash shell on a Unix system. This work has been published at ISWC: Thomas Rebele, Thomas Pellissier Tanon, and Fabian M. Suchanek. "Bash Datalog: Answering Datalog Queries with Unix Shell Commands". Full paper at ISWC 2018. https://doi.org/10.1007/ 978-3-030-00671-6_33 15 Chapter 2 Preliminaries

Knowledge bases

A knowledge base (KB) is an interlinked collection of factual information. A knowledge base can be represented as a graph. Nodes represent entities (like the human Elvis Presley, or the notion of a human) and directed labeled edges represent facts about these entities. For example, an edge labeled "type" from the node representing Elvis Presley to the node representing the notion of a human encodes that Elvis Presley is a human. See Figure 2.1 for a graphical example of a knowledge base. In this work, we use description logics (DL) (Baader et al., 2003) as a knowledge base language, and more specifically the ones that fall under the OWL 2 DL formalism [START_REF] Motik | OWL 2 Web Ontology Language Direct Semantics[END_REF].

Syntax

We assume a set N C of concept names (unary predicates, also called classes), a set N R of role names (binary predicates, also called properties), and a set N I of individuals (also called constants).

Definition 2.1 (ABox). An ABox (dataset) is a set of concept assertions and role assertions which are respectively of the form A(a) or R(a, b), where A ∈ N C , R ∈ N R , and a, b ∈ N I . Definition 2.2 (TBox). A TBox (ontology) is a set of axioms that expresses relationships between concepts and roles. (e.g., concept or role hierarchies, role domains and ranges...). Their form depends on the description logic L in question.

We only consider here description logics L that fall under the OWL 2 DL formalism [START_REF] Motik | OWL 2 Web Ontology Language Direct Semantics[END_REF]. Some commonly found building blocks in description logics formulas are the following:1 

•

is the most general concept containing all individuals.

• ⊥ is the empty concept.

• {a 1 , . . . , a n } is the concept containing only the individuals a 1 , . . . , a n .

• ¬A is the complement of the concept A (i.e., all individuals not in A).

• A B is the concept that contains all individuals in A or B.

• A B is the concept that contains all individuals that are in both A and B.

• ∃R • B is the concept containing all a such that there exists b with R(a, b) and B(b).

• R -is the inverse role of R i.e., informally, R(a, b) if, and only if, R -(b, a).

This notation can be used to create axioms like the following:

• A B states that all individuals in the concept A are also in the concept B.

• A ≡ B states that A and B are equivalent i.e., A B and B A.

• P R states that all facts of a role P are also in a role R.

• P ≡ R states that P and R are equivalent i.e., P R and R P .

• (func R) states that R if functional i.e., informally, for all a, b 1 and b 2 if R(a, b 1 ) and R(a, b 2 ) then b 1 = b 2 .

• (trans R) states that R if transitive i.e., informally, for all a, b and c if R(a, b) and R(b, c) then R(a, c).

Definition 2.3 (Knowledge base). A knowledge base K = (T , A) is a pair of a TBox T and an ABox A.

The knowledge base can also be written as a set of RDF triples [START_REF] Cyganiak | RDF 1.1 concepts and abstract syntax[END_REF] s, p, o where s is the subject, p is the property, and o the object. A concept assertion A(a) is written as a, rdf:type, A , and a role assertion R(a, b) as a, R, b . The TBox can also be written with RDF triples using the mapping defined in Motik and Patel-Schneider, 2012. T = { ∃hasParent Human, ∃hasChild Human, ∃hasGender Human, hasParent -≡ hasChild , ∃hasGender -{male, female} } A = { hasGender (Zeus, male), hasGender (Cronos, male), hasGender (Rhea, female), hasParent(Zeus, Chronos), hasChild (Rhea, Zeus), }

Zeus

The TBox states that if you have a parent, a child, or a gender then you are a human, that hasChild is the inverse property of hasParent, and that the two possible values for the hasGender relation are male and female. The ABox is represented graphically in Figure 2.1. The ABox and the TBox entail the following facts: Human(Zeus), Human(Chronos), Human(Rhea), hasParent(Zeus, Rhea) and hasChild (Chronos, Zeus).

Semantics

We recall the standard semantics of description logic knowledge bases (Baader et al., 2003).

Definition 2.5 (Interpretation). An interpretation has the form I = (∆ I , • I ), where ∆ I is a non-empty set and • I is a function that maps each a ∈ N I to a I ∈ ∆ I , each A ∈ N C to A I ⊆ ∆ I , and each R ∈ N R to R I ⊆ ∆ I × ∆ I .

The function • I is straightforwardly extended to general concepts and roles. For example:2 

• I = ∆ I • ⊥ I = ∅ • {a 1 , . . . , a n } I = {a I 1 , . . . , a I n } • (¬A) I = ∆ I \ A I • (A B) I = A I ∪ B I • (A B) I = A I ∩ B I • (∃R • B) I = {a | ∃b (a, b) ∈ R I , b ∈ B I } • (R -) I = {(b, a) | (a, b) ∈ R I }
An interpretation I satisfies:3 

• A(a) if a I ∈ A I • R(a, b) if (a I , b I ) ∈ R I • A B, if A I ⊆ B I • P R, if P I ⊆ R I • (func R) if ∀a, b 1 , b 2 ∈ ∆ I (a, b 1 ) ∈ R I ∧ (a, b 2 ) ∈ R I =⇒ b 1 = b 2 • (trans R) if ∀a, b, c ∈ ∆ I (a, b) ∈ R I ∧ (b, c) ∈ R I =⇒ (a, c) ∈ R I
We write I |= L α if I satisfies the description logic axiom α according to the description logic used L.

Definition 2.6 (Model). An interpretation I is a model of K = (T , A) if I satisfies all axioms in T and all assertions in A according to L.

Definition 2.7 (Consistency). A knowledge base is consistent if it has a model.

Definition 2.8 (Entailment). A knowledge base K entails a description logic axiom α in L if I |= L α for every model I of K. We write K |= L α in this case.

Definition 2.9 (Unique name assumption). The unique name assumption restricts the set of possible interpretations I = (∆ I , • I ) of K to only the ones where • I is injective on individuals. It means that each individual a ∈ N I has a different interpretation i.e., each real world entity is represented by at most one individual.

Ideal knowledge base

Following [START_REF] Darari | Completeness Statements about RDF Data Sources and Their Use for Query Answering[END_REF], we define the the ideal knowledge base K i , which contains all correct facts over N C , N R and N I that hold in the real world. Of course, K i is an imaginary construct whose content is generally not known. We will present a method that can deduce instead to which extent the available knowledge base approximates/lacks information compared to the ideal knowledge base, as in "Einstein is missing 2 children and Feynman none".

Queries

The description logic formalism explained in the previous section allows us to do entailments on the knowledge base. However, answering queries like "who are the people who died where they were born" is not possible with the description logic formalism we described. This is why we now introduce some variations of the concept of queries.

Conjunctive and disjunctive queries

Definition 2.10 (Conjunctive query). A conjunctive query takes the form q( x) = ∃ y ψ( x, y), where ψ is a conjunction of atoms of the form A(t) or R(t, t ) or of equalities t = t , where t, t are individual names from N I or variables from x ∪ y, A ∈ N C , and R ∈ N R .

Example 2.11. The query q(x) = Person(x) ∧ birthPlace(x, Paris) returns all the people born in Paris.

The query q (x) = ∃y Person(x) ∧ birthPlace(x, y) ∧ deathPlace(x, y) returns all the people who died where they were born. If x = ∅, q is a boolean conjunctive query. A boolean conjunctive query q is satisfied by an interpretation I, written I |= q, if there is a homomorphism π mapping the variables and individual names of q into ∆ I such that: π(a) = a I for every a ∈ N I , π(t) ∈ A I for every concept atom A(t) in ψ, (π(t), π(t )) ∈ R I for every role atom R(t, t ) in ψ, and π(t) = π(t ) for every t = t in ψ. We also consider as boolean conjunctive queries the queries true and false which are respectively always and never satisfied by an interpretation. A boolean conjunctive query q is entailed by a knowledge base K, written K |= q, if, and only if, q is satisfied by every model of K.

A tuple of constants a is a (certain) answer to a conjunctive query q( x) on a knowledge base K if K |= q( a) where q( a) is the boolean conjunctive query obtained by replacing the variables from x by the constants a.

Definition 2.12 (Union of conjunctive queries). A union of conjunctive queries is a disjunction of conjunctive queries and has as answers the union of the answers of the conjunctive queries it contains.

Propositional queries Definition 2.13 (Propositional query). A propositional query takes the form q( x) = ∃ y ψ( x, y) where ψ is a propositional formula. Propositional formulas are defined inductively as follows:

• A(t), R(t, t ), t = t , true and false are propositional formulas where t, t are individual names from N I or variables from x ∪ y, A ∈ N C and R ∈ N R .

• x ∧ y, x ∨ y and ¬x are propositional formulas if x and y are propositional formulas.

Example 2.14. The propositional query q(x) = Person(x) ∧ ¬Dead (x) answers are all people who are not dead.

Let a be a vector of constants. We write I |= q( a) where q( x) = ∃ y ψ( x, y) if there exists a homomorphism π mapping the variables and individual names of q into ∆ I such that π(a) = a I for every a ∈ N I and if we do the following replacements then the resulting propositional formula can be evaluated to true: (1) Replace A(t) by the valuation of π(t) ∈ A I for every concept atom A(t) in ψ.

(2) Replace R(t, t ) by the valuation of (π(t), π(t )) ∈ R I for every role atom R(t, t ) in ψ.

(3) Replace t = t by the valuation of π(t) = π(t ) for every t = t in ψ.

Rules and Rule Learning

The previous sections have presented how to answer queries and derive new facts from the existing ones based on axioms written in description logics. However, these two methods require queries and axioms as input. In this section, we instead aim at automatically inferring new rules and facts from the ones already present in the knowledge base. Association rule learning concerns the discovery of frequent patterns in a data set and the subsequent transformation of these patterns into rules. This task has been popularized by [START_REF] Agrawal | Mining Association Rules between Sets of Items in Large Databases[END_REF]. Association rules in the relational format have been subject to intensive research in inductive logic programming (see, e.g., [START_REF] Dehaspe | Mining Association Rules in Multiple Relations[END_REF] as the seminal work in this direction) and more recently in the knowledge base community (see Galárraga, Teflioudi, et al., 2015 for a prominent work). In the following, we adapt basic notions in relational association rule mining to our case of interest.

Definition 2.15 (Rule). A rule is of the form r( x) = b( x) → h( x), where b and h are both conjunctive queries.

We say that a rule r( x) = b( x) → h( x) is satisfied by an interpretation I if for any vector a of constants, we have

I |= b( a) =⇒ I |= h( a).
We say that a knowledge base K entails a rule r( x) = b( x) → h( x) if for any vector a of constants, we have

K |= b( a) =⇒ K |= h( a).
Classical scoring of association rules is based on rule support, body support and confidence, which are defined as follows:

Definition 2.16 (Query support). As in [START_REF] Dehaspe | Mining Association Rules in Multiple Relations[END_REF], the support of a conjunctive query q in a knowledge base K is the number of distinct answers of q on K:

supp(q) := |{ x | K |= q( x)}|
The rule support metric has been introduced in order to see if a rule applies in a lot of cases, in order to mine general rules rather than rules applying in only a few cases:

Definition 2.17 (Rule support). The support of a rule r( x) : b( x) → h( x) is the number of times a rule applies on K:

supp(r) := supp(b ∧ h) = |{ x | K |= b( x) ∧ h( x)}|
The confidence is an often used metric to assess how much a rule applies on a given knowledge base:

Definition 2.18 (Standard confidence). The standard confidence of a rule r( x) : b( x) → h( x) is the proportion of the number of times a rule actually applies with respect to the number of times it can apply:

conf (r) := supp(r) supp(b)
Note that we always have conf (r) ∈ [0, 1].

Example 2.19. Consider the knowledge base shown in Figure 2.2 with an empty TBox. Consider the rules r 1 and r 2 :

r 1 (x, y) : ∃z worksAt(x, z) ∧ educatedAt(y, z) → hasChild (x, y) r 2 (x, z) : ∃y hasFather (x, y) ∧ hasChild (y, z) → hasSibling(x, z)
The first rule states that workers of certain institutions often have children among the people educated there. The second rule states that if your father has children, then they are your siblings. The body of r 1 seen as a query, b 1 (x, y) = ∃z worksAt(x, z) ∧ educatedAt(y, z), has 8 possible answers in K: (Dave, Dave), (Dave, Bob), (John, Dave)... Hence, the body support of the rule r 1 is supp(b 1 (x, y)) = 8. The only two possible answers of the query b 1 (x, y) ∧ hasChild (x, y) are (John, Bob) and (Mary, Bob). Hence supp(r 1 ) = 2. So, have conf (r 1 ) = 2 8 . Analogously, for r 2 , b 2 (x, z) = ∃y hasFather (x, y)∧hasChild (y, z) has 6 answers and therefore supp(b 2 (x, z)) = 6. However, only one of these answers is such that hasSibling(x, z) holds, so supp(r 2 ) = 1. This leads to conf (r 2 ) = 1 6 . Support and confidence were originally developed for scoring rules over complete data. If data is missing, their interpretation is not straightforward and they can be misleading. For example, in Example 2.19, the rule r 1 has a confidence of 1 4 and r 2 has a lower confidence of 1 6 , although r 1 is clearly wrong. The reason is that the standard confidence aims first at avoiding wrong assertions in the predictions. It does so by considering as wrong all predicted assertions that are not already in the knowledge base, even if these assertions might be true in the real world. Other approaches aim at finding other compromises between predicting wrong facts and missing true facts. In Galárraga, Teflioudi, et al., 2015, the confidence under the Partial Completeness Assumption (PCA) has been proposed as a measure. This measure guesses negative facts by assuming that data is usually added to knowledge bases in batches. For example, if at least one child of John is known then most probably all of John's children are present in the knowledge base. Example 2.21. We obtain conf pca (r 1 ) = 2 4 . Indeed, since Carol and Dave are not known to have any children in the knowledge base, four existing body substitutions are not counted in the denominator. Meanwhile, we have conf pca (r 2 ) = 1 6 , since all people that are predicted to have siblings by r 2 already have siblings in the available knowledge base.

John

Knowledge base completion

After having mined rules, we want to use them to complete the knowledge base. That is, we want to add to the knowledge base all the assertions that are generated by the rules. Formally: Definition 2.22 (Rule-based knowledge base completion). Let K be a knowledge base and let r be a rule such that r

( x) = b( x) → h 1 ( x) ∧ • • • ∧ h n ( x)
where the h i are concept or role assertions. Then the Note that the ideal knowledge base K i introduced in Section 2.1 is the perfect completion of K a , i.e., it is supposed to contain all correct facts with entities and relations from Σ K a that hold in the current state of the world. The goal of rulebased knowledge base completion is to extract from K a a set of rules R such that ∪ r∈R K a r is as close to K i as possible.

completion of K = (A, T ) by r is a knowledge base K r = (A r , T ) such that A r = A ∪ {h 1 ( a), . . . , h n ( a) | K |= b( a)}.

Rule evaluation

To evaluate the predictions of a rule r( x) : b( x) → h( x) against a set of expected predictions P, we can use the following metrics:

Definition 2.24 (Precision). The precision of a rule is the fraction of the predictions computed by the rule that are in the set of expected predictions P. This measure aims at computing how many of the rule predictions are expected predictions. Formally:

precision(r) := |{ x | K |= b( x) ∧ P |= h( x)}| |{ x | K |= b( x)}|
Definition 2.25 (Recall). The recall is given by the fraction of the predictions computed by the rule r that are in the set of expected predictions P. This measure aims at computing how many of the expected predictions are found by the rules. Formally:

recall (r) := |{ x | K |= b( x) ∧ P |= h( x)}| |{ x | P |= h( x)}|
Definition 2.26 (F1 score). The F1 score is the harmonic mean of precision and recall:

F 1 (r) := 2 precision(r) • recall (r) precision(r) + recall (r)
Example 2.27. Consider the same knowledge base and rules as in Example 2.19. We evaluate the rule r 1 against the expected prediction set: Hence we have precision(r 1 ) = 4 8 = 0.5 and recall (r 1 ) = 4 6 = 0.66. This gives us F 1 (r 1 ) = 2 0.5•0.66 0.5+0.66 = 0.57. Now that we have the preliminaries in place, we will move to the first contribution of this thesis. This contribution aims at refining the confidence measure when cardinality information is available in the knowledge base.

P = { hasChild (John,

Part I Mining Constraints

Chapter 3

Completeness-aware Rule Scoring

The work presented in this chapter has been done with Daria Stepanova, Simon Razniewski, Paramita Mirza and Gerhard Weikum and has been published at ISWC 2017. It was one of the papers nominated for the best student paper award. An invited short version of the paper has been published at IJCAI 2018. 

Introduction

Motivation

An important task over knowledge bases is rule learning. This task aims at learning new rules on the knowledge base. For example, the rule r 1 : worksAt(x, z) ∧ educatedAt(y, z) → hasChild (x, y) could be mined from the knowledge base displayed in Figure 3.1 page 36. This rule states that workers of certain institutions often have children among the people educated there, as this is frequently the case for popular scientists. Rules are relevant for a variety of applications ranging from knowledge base curation, e.g., completion and error detection [START_REF] Paulheim | Knowledge graph refinement: A survey of approaches and evaluation methods[END_REF]Galárraga, Teflioudi, et al., 2015;[START_REF] Gad-Elrab | Exception-enriched rule learning from knowledge graphs[END_REF], to data mining and semantic culturonomics [START_REF] Suchanek | Semantic Culturomics[END_REF]. Section 2.3 Page 22 has formally defined the concept of rules and presented some existing methods to evaluate them.

However, since such rules are learned from incomplete data, they might be erroneous and might make incorrect predictions on missing facts. The already presented rule r 1 is clearly not universal and should be ranked lower than the rule r 2 : hasFather (x, y) ∧ hasChild (y, z) → hasSibling(x, z). However, standard rule measures like confidence (i.e., the conditional probability of the rule's head given its body) incorrectly favor r 1 over r 2 for the given knowledge base.

Recently, efforts have been put into detecting the concrete number of facts of certain types that hold in the real world (e.g., "Einstein has 3 children") by exploiting Web extraction and crowd-sourcing methods [START_REF] Mirza | Expanding Wikidata's Parenthood Information by 178%, or How To Mine Relation Cardinality Information[END_REF][START_REF] Prasojo | Managing and Consuming Completeness Information for Wikidata Using COOL-WD[END_REF]. Such cardinality information provides a lot of hints about the topology of knowledge bases and reveals parts that should be especially targeted by rule learning methods. It can also give hints to detect bad rules. For example, r 1 is probably going to create too many facts to comply with cardinality hints like "a person has at most two parents". However, surprisingly, despite its obvious importance, to date, no systematic way of making use of such information in rule learning exists.

In this chapter, we propose to exploit cardinality information about the expected number of edges in knowledge bases to better assess the quality of learned rules. Because knowledge bases are often incomplete in some areas and complete in others, our intuition is that some cardinality information might help to assess rules quality, at least by discarding rules which add facts in already complete areas like suggested earlier. [START_REF] Galárraga | AMIE: Association Rule Mining under Incomplete Evidence in Ontological Knowledge Bases[END_REF] introduced a completeness-aware rule scoring based on the partial completeness assumption (PCA). The idea of the partial completeness assumption is that if at least one object for a given subject and a predicate is in a knowledge base (e.g., "Eduard is Einstein's child"), then all objects for that subject-predicate pair ("Einstein's children") are assumed to be known. This assumption was taken into account in rule scoring, and empirically it turned out to be indeed valid in real-world knowledge bases for some topics. However, it does not universally hold and does not correctly handle the case when edges in a graph are missing in a seeminlgy random fashion. For example, in encyclopedic knowledge bases like Wikidata, only well-known children are present in the knowl-edge base, and not the less famous ones or the ones who died in their infancy. It is also the case for relations with no well-defined cardinalities, like "award received" or "position held". Often, only the most prominent values are provided for this relation. Similarly, [START_REF] Doppa | Learning Rules from Incomplete Examples via Implicit Mention Models[END_REF] discussed the absence of contradiction as confirmation for "default" rules, i.e., rules that hold in most cases, leading the few contradicting facts to be highlighted and better covered in the knowledge base. Galárraga, Razniewski, et al., 2017 used crowd-sourcing to acquire completeness data. The acquired statements were then used in a post-processing step of rule learning to filter out predictions that violate these statements. However, this kind of filtering does not have any impact on the quality of the mined rules and the incorrect predictions for instances about which no completeness information exists.

State of the art and its limitations

Galárraga

Contributions

This work presents the first proper investigation of how cardinality information, and more specifically the number of edges that are expected to exist in the real world for a given subject-predicate pair in a knowledge base, can be used to improve rule learning. The contributions of our work are as follows:

• We present an approach that accounts for sparse data about the number of edges that should exist for given subject-predicate pairs in the ranking stage of rule learning. This is done by introducing a new ranking measure, the completeness confidence. This confidence generalizes both the standard confidence and the PCA confidence. Specifically, it performs identically to the two existing confidence measures if the corresponding cardinality metadata are provided. For example, if the knowledge base is stated to be globally complete, our completeness confidence will be the same as standard confidence, so it will also have the same performance.

• We implement our new ranking measure and evaluate it both on real-world and synthetic datasets, showing that they outperform existing measures both with respect to the quality of the mined rules and the predictions they produce.

Related Work

Rule learning

The problem of automatically learning patterns from knowledge bases has gained a lot of attention in recent years. Some relevant works are [START_REF] Galárraga | AMIE: Association Rule Mining under Incomplete Evidence in Ontological Knowledge Bases[END_REF]Galárraga, Teflioudi, et al., 2015;[START_REF] Wang | RDF2Rules: Learning Rules from RDF Knowledge Bases by Mining Frequent Predicate Cycles[END_REF], which focus on learning Horn rules and either ignore completeness information or make use of completeness by filtering out predicted facts violating completeness in a post-processing step. On the contrary, we aim at injecting the statements into the learning process.

In the association rule mining community, some works focused on finding (interesting) exception rules, which are defined as rules with low support (rare) and high confidence (e.g., [START_REF] Taniar | Exception rules in association rule mining[END_REF]. Our work differs from this line of research because we do not necessarily look for rare interesting rules, but care about the quality of their predictions.

Another relevant stream of research is concerned with learning Description Logic TBoxes or schema (e.g., [START_REF] Lehmann | Class expression learning for ontology engineering[END_REF]. However, these techniques focus on learning concept definitions rather than nonmonotonic rules. The main difference between us and these approaches is that we aim at finding a hypothesis that consistently predicts unseen data, while DL learners focus more on learning models that perfectly describe the data.

In the context of inductive and abductive logic programming, learning rules from incomplete interpretations given as a set of positive facts along with a possibly incomplete set of negative ones was studied, e.g., in Law, Russo, and Broda, 2014. In contrast to our approach, this work does not exploit knowledge about the number of missing facts, and neither do the works on terminology induction, e.g., [START_REF] Sazonau | General Terminology Induction in OWL[END_REF] Learning nonmonotonic rules in the presence of incompleteness was studied in hybrid settings [START_REF] Ismayilov | The Role of Semantics in Mining Frequent Patterns from Knowledge Bases in Description Logics with Rules[END_REF][START_REF] Lisi | Inductive Logic Programming in Databases: From Datalog to DL+log[END_REF], where a background theory or a hypothesis can be represented as a combination of an ontology and Horn or nonmonotonic rules. The main point in these works is the assumption that there might be potentially missing facts in a given dataset. However, it is not explicitly mentioned which parts of the data are (in)complete like in our setting. Moreover, the emphasis of these works is on the complex reasoning interaction between the components, while we are more concerned with techniques for deriving rules with high predictive quality from large knowledge bases. The work by d [START_REF] Amato | Ontology Enrichment by Discovering Multi-Relational Association Rules from Ontological Knowledge Bases[END_REF] ranks rules using the ratio of correct versus incorrect predictions. These incorrect predictions are found using ontologies that allow determining incorrect facts. In contrast to our scenario of interest, in their work, the knowledge about the exact numbers of missing knowledge base facts has not been exploited. Since the publication of our original paper, Ho et al., 2018 presented an approach using numerical embeddings to predict possible missing facts. The authors used these predicted missing facts to refine the scoring of rules in incomplete areas. [START_REF] Muñoz | Embedding cardinality constraints in neural link predictors[END_REF] used cardinality information to refine the learning of entity numerical embeddings to better predict facts missing in the knowledge base.

There are also many less relevant statistical approaches to completing knowledge bases based on, e.g., low-dimensional embeddings (Zhen [START_REF] Wang | Knowledge Graph Embedding by Translating on Hyperplanes[END_REF] or tensor factorization [START_REF] Nickel | Factorizing YAGO: Scalable Machine Learning for Linked Data[END_REF].

Completeness information

The idea of bridging the open and closed world assumption by using completeness information was first introduced in the database world in [START_REF] Levy | Obtaining Complete Answers from Incomplete Databases[END_REF][START_REF] Etzioni | Sound and Efficient Closed-World Reasoning for Planning[END_REF], and later adapted to the Semantic Web in [START_REF] Darari | Completeness Statements about RDF Data Sources and Their Use for Query Answering[END_REF]. For describing such settings, the common approach is to fix the complete parts (and assume that the rest is potentially incomplete). [START_REF] Gad-Elrab | Exception-enriched rule learning from knowledge graphs[END_REF] have extended the rule mining system AMIE to mine rules that predict where a knowledge base is complete or incomplete. The focus of the work is on learning association rules like "If someone has a date of birth but no place of birth, then the place of birth is missing." In contrast, we reason about the missing edges by trying to estimate the exact number of edges that should be present in a knowledge base. In [START_REF] Gad-Elrab | Exception-enriched rule learning from knowledge graphs[END_REF] it has also been shown that completeness information can be used to improve the accuracy of fact prediction, by pruning out in a post-processing step those facts that are predicted in parts expected to be complete. In the present chapter, we take a more direct approach and inject completeness information already into the rule acquisition phase, to also prune away problematic rules, not only individual wrong predictions.

Our cardinality statements (e.g., "John has 3 children") encode knowledge about parts of a knowledge base that are (un)known, and thus should have points of contact with operators from epistemic logic; we leave the extended discussion on the matter for future work.

Approach

In the following we make the unique name assumption, i.e., we assume that each entity is represented by at most one individual (Definition 2.9 Page 20). We also use the distinction between ideal knowledge base and available knowledge base presented in Section 2.1 Page 21.

We use here all the definitions related to knowledge bases and rules presented in the preliminaries (Chapter 2). We also assume that the rule head contains a single role assertion h(x, y). This does not introduce a loss of generality compared to rules with a conjunction of role assertions in the head because rules under the form b

( x) → h 1 ( x) ∧ • • • ∧ h n ( x) could be converted into an equivalent set of rules b( x) → h 1 ( x), . . . , b( x) → h n ( x).
Scoring and ranking rules are core steps in association rule learning. A variety of measures for ranking rules have been proposed, with prominent ones being confidence (Definition 2.20 Page 24), conviction [START_REF] Brin | Dynamic Itemset Counting and Implication Rules for Market Basket Data[END_REF], and lift2 .

The existing (in-)completeness-aware rule measure in the knowledge base context, the PCA confidence from Galárraga, Teflioudi, et al., 2015, already presented in Definition 2.20 Page 24, has two apparent shortcomings: First, it only counts as counterexamples those pairs (x, y) for which at least one h(x, y ) is in the current available knowledge base K a for some y and a rule's head predicate h. This means it may incorrectly give high scores to rules predicting facts for very incomplete relations, e.g., place of baptism. Second, it is not suited to relations that are not added in a "none or all" matter. For example, the most important values of an "awards" relation are often known, while the other values are often unknown or added to the knowledge base much later.

Thus, in this work, we focus on the improvements of rule scoring functions by making use of extra cardinality information. Before dwelling into the details of our approach we discuss the formal representation of such cardinality statements.

Cardinality Statements Overall, one can think of 4 different cardinality templates obtained by fixing the subject or object in a role assertion or considering a concept assertion and reporting the number of respective facts that hold in K i . E.g., for hasChild (John, Mary) we can count (1) the children of John;

(2) the people of which Mary is a child of; or (3) the facts over hasChild relation. And for Person(John) we can count (4) the number of elements in the Person concept.

In practice, numerical statements for templates (1), (2), and (4) can be obtained using web extraction techniques [START_REF] Mirza | Expanding Wikidata's Parenthood Information by 178%, or How To Mine Relation Cardinality Information[END_REF], from functional properties of relations, from closed concepts, or from crowd-sourcing. For (3) things get trickier. We leave this issue for future work and focus here only on templates (1), (2), and (4). We work in the following only on template (1). Indeed, we can rewrite (2) to (1) provided that inverse relations can be expressed in a knowledge base. For instance, |{s | hasChild (s, john)}| = |{o | hasParent(john, o)}| for the predicates hasChild and hasParent, which are inverses of one another. More, it is possible to rewrite (4) to (1) with some notation abuse by writing hasInstance(C, o) the concept assertion C(o).

We have now a simple way to report (the numerical restriction on) the absolute number of facts over a certain roles in the ideal knowledge base K i . To formalize it, we define the partial function num that takes as input a role p ∈ N R and an individual s ∈ N I and outputs a natural number corresponding to the number of facts in K i over p with s as the first argument:

num(p, s) := |{o | K i |= p(s, o)}| (3.1)
num is a partial function because most of the time we do not know all cardinalities. For example, in a knowledge base about some people's family, the number of biological parents is always known whereas it might be the case that the number of children is known for some people only and the number of siblings is never known.

Naturally, the number of missing facts for a given p and s can be obtained as

miss(p, s) := num(p, s) -|{o | K a |= p(s, o)}| (3.2)
Example 3.1. Consider the knowledge base in Figure 3.1 (the same one as the knowledge base presented in the preliminaries) and the following cardinality statements for it:

num(hasChild,John) = 3 num(hasChild, Mary) = 3 num(hasChild, Alice) = 1 num(hasChild, Carol) = 0 num(hasChild, Dave) = 0 num(hasSibling, Bob) = 3 num(hasSibling, Alice) = 2 num(hasSibling, Carol) = 2 num(hasSibling, Dave) = 2
We then have: miss(hasChild , Mary) = miss(hasChild , John) = miss(hasChild , Alice) = 1; miss(hasChild , Carol) = miss(hasChild , Dave) = 0; miss(hasSibling, Bob) = miss(hasSibling, Carol) = 2; miss(hasSibling, Alice) = miss(hasSibling, Dave) = 1.

We are now ready to define the completeness-aware rule scoring problem. Given a knowledge base and a set of cardinality statements, completeness-aware rule scoring aims to score rules not only by their predictive power on the known knowledge base like presented in Section 2.3 Page 22, but also with respect to the number of wrongly predicted facts in complete areas and the number of newly predicted facts in known incomplete areas.

In this work, we propose to explicitly rely on incompleteness information to determine whether to consider an assignation as a counterexample for a rule at hand or not.

To do that, we first define two indicators for a given rule r, reflecting the number of new predictions made by r in incomplete (npi(r)) and, respectively, complete (npc(r)) knowledge base parts: where pred (r, x) is the number of new predictions of r for a given x:

pred (r, x) := |{y | K a |= b(x, y) ∧ K a |= h(x, y)}
Example 3.4. Consider the knowledge base whose ABox is displayed in Figure 3.1 with an empty TBox, and the cardinality statements described in Example 3.1. We consider the rules:

r 1 : worksAt(x, z) ∧ educatedAt(y, z) → hasChild (x, y)
r 2 : hasFather (x, y) ∧ hasChild (y, z) → hasSibling(x, z) r 1 predicts new hasChild values for Carol, Dave, John, and Mary. Among them, the expected cardinality is only known for Carole and Dave.

The two predicted assertions for Carol are hasChild (Carol, Carol) and hasChild (Carol, Mary). Among them, none is already in the knowledge base so pred (r 1 , Carol) = 2. With a similar reasoning, we get pred (r 1 , Dave) = 2.

The two predicted assertions for John are hasChild (John, Dave) and has-Child (John, Bob). However hasChild (John, Bob) is already in the knowledge base so pred (r 1 , John) = 1. In the same way, we get pred (r 1 , Mary) = 1.

Because miss(hasChild, Carol) = 0, miss(hasChild, Dave) = 0, miss(hasChild, John) = 1, and miss(hasChild, Mary) = 1, we have npi(r 1 ) = min(2, 0)+min(2, 0)+ min(1, 1) + min(1, 1) = 2 and npc(r

1 ) = max (2 -0, 0) + max (2 -0, 0) + max (1 - 1, 0) + max (1 -1, 0) = 4.
Similarly, we get npi (r 2 ) = 4 and npc(r 2 ) = 1.

Exploiting these additional indicators for r(x, y) : b(x, y) → h(x, y) we obtain the following completeness-aware confidence:

Definition 3.5. The completeness-aware confidence confidence is defined by:

conf comp (r) := supp(r) supp(b) -npi (r)
Example 3.6. We consider the same knowledge base and rules as Example 3.4. Obviously, the rule r 2 should be preferred over r 1 .

The body and rule supports of r 1 over the knowledge base are supp(b 1 ) = 8 and supp(r 1 ) = 2 respectively. Hence, we have conf (r 1 ) = 2 8 and conf (r 2 ) = 1 6 . As discussed before, we obtain conf pca (r 1 ) = 2 4 . Indeed, since Carol and Dave are not known to have any children in the knowledge base, four existing body substitutions are not counted in the denominator. Meanwhile, we have conf pca (r 2 ) = 1 6 , since all people that are predicted to have siblings by the rule already have siblings in the available knowledge base K a .

For our completeness confidence, conf comp (r 1 ) = 2 8-2 = 2 6 and conf comp (r 2 ) = 1 6-4 = 1 2 , resulting in the desired rule ordering, which is not achieved by existing measures.

Our completeness confidence generalizes both the standard and the PCA confidence. Indeed, under the Closed World Assumption, the knowledge base is supposed to be fully complete, i.e., for all p ∈ N R , s ∈ N I we have miss(p, s) = 0. Similarly, if we assume the Partial Completeness Assumption, then for all pairs p, s such that at least one o ∈ N I exists with K a |= p(s, o), miss(p, s) = 0 and miss(p, s) = +∞ for the others.

Proposition 3.7. For every knowledge base K and rule r it holds that (i) under the Closed World Assumption (CWA) conf comp (r) = conf (r);

(ii) under the Partial Completeness Assumption (PCA) conf comp (r) = conf pca (r).

Proof. (i) Under the Closed World Assumption, it holds that for all p ∈ N R , s ∈ N I , miss(p, s) = 0. Thus, for all rules r, we have that npi (r) = 0, and hence, conf comp (r) = conf (r).

(ii) Under the Partial Completeness Assumption, it is assumed that for all p ∈ N R and s ∈ N I it holds that miss(p, s) = 0 if ∃o K a |= p(s, o) and miss(p, s) = +∞ if not. Hence, for all r we have npi (r) = x predict(r, x), where

predict(r, x) = 0, if ∃y K a |= h(x, y) pred (r, x), if ∀y K a |= h(x, y )
From this we get

conf comp (r) = supp(r) supp(b) -x such that ∀y K a |=h(x,y ) pred (r, x)
The denominator of the latter formula counts all matches of the rule body and subtracts from them those for which the head h(x, y) is predicted and ∀y K a |= h(x, y ). Hence, we end up counting only body substitutions with K a |= h(x, y ) for at least one y , i.e., |{(x, y) | ∃y K a |= b(x, y) ∧ ∃y K a |= h(x, y )}| = supp pca (r). Hence, conf comp (r) = supp (r) supppca (r) = conf pca (r).

Evaluation

We have implemented our completeness-aware rule learning approach into a C++ system prototype CARL3 , following a standard relational learning algorithm implementation such as [START_REF] Goethals | Relational Association Rules: Getting WARMeR[END_REF]. While our general methodology can be applied to mining rules of arbitrary form, in the experimental evaluation to restrict the rule search space we focus only on rules with two atoms in their body of the form p(x, y) ∧ q(y, z) → r(x, z)

(3.3)
Note that here p, q, and r are not allowed to denote inverse property expressions. We aim to compare the predictive quality of the top k rules mined by our completeness-aware approach with the ones learned by standard rule learning methods: (1) the PCA confidence (Definition 2.20 Page 24) from AMIE (Galárraga, Teflioudi, et al., 2015) and (2) the standard confidence (Definition 2.18 Page 23) used e.g., by WarmeR [START_REF] Goethals | Relational Association Rules: Getting WARMeR[END_REF].

Because the goal of our new confidence is to provide a better rule quality evaluation measure, we only compare with other rule quality measures that have already proved their quality and usefulness, and we do not compare with fact prediction approaches or with baselines.

Dataset

We used two datasets for the evaluation: (i) WikidataPeople, which is a dataset we have created from the Wikidata knowledge base, containing 2.4M facts over 9 predicates4 about biographical information and family relationships of people; and (ii) LUBM, which is a synthetic dataset describing the structure of a university (Guo, Pan, and Heflin, 2005).

For the WikidataPeople dataset, the approximation of the ideal knowledge base (K i ) is obtained by exploiting available information about inverse relations (e.g., hasParent is the inverse of hasChild ), functional relations (e.g., hasFather , hasMother ) as well as manually hand-crafted solid rules from the family domain like hasParent(x, z) ∧ hasParent(y, z) ∧ x = y → hasSibling(x, y). 5We generated cardinality statements from WikidataPeople K i by exploiting properties of functional relations, e.g., hasBirthPlace, hasFather , hasMother must be uniquely defined. We considered also that everybody with a hasDeathDate has a hasDeathPlace. For the other relations, the PCA (Galárraga, Teflioudi, et al., 2015) is used. This resulted in 10M cardinality statements.

LUBM K i , with 1.2M facts, was constructed by running the LUBM data generator for 10 universities, removing all rdf:type triples, and introducing inverse predicates. 464K cardinality statements were obtained by counting the number of existing objects for each subject-predicate pair after completing the graph using the provided OWL ontology, i.e., assuming the partial completeness assumption on the whole dataset.

Experimental Setup

To assess the effect of our proposed measures, we first construct versions of the available knowledge base (K a ) by removing parts of the data from K i and introducing a synthetic bias in the data (i.e., leaving many facts in K a for some relations and few for others). The synthetic bias is needed to simulate our scenario of interest, where some parts of K a are very incomplete while others are fairly complete, which is indeed the case in real-world knowledge bases. In Wikidata, for instance, sibling information is only reported for only 3% of non-living people, while children data is known for 4%.

For that, we proceed in two steps: First, we define a global ratio, which determines a uniform percentage of data retained in the available graph. This ratio is useful to check how the different measures perform with respect to the (in-)completeness of the knowledge base. To further refine this, we then define a predicate ratio individually for each predicate to simulate the real world discrepancies between fairly complete and very incomplete areas. For the WikidataPeople knowledge base, this ratio is chosen as (i) 0.8 for hasFather and hasMother ; (ii) 0.5 for hasSpouse, hasStepParent, hasBirthPlace, hasDeathPlace and hasNationality; (iii) 0.2 for hasChild ; and (iv) 0.1 for hasSibling. For the LUBM dataset, the predicate ratio is uniformly defined as 1 for regular predicates and 0.5 for inverse predicates. Note that this static predicate ratio is here to simulate the completeness gap in the knowledge base between predicates. Hence, the predicate ratio is fixed as part of the design of the experimental setup, and we do not make it vary or otherwise study it in our experimental results For a given predicate, the final ratio of facts in K a retained from those in

K i is then computed as min(1, 2 • k • n),
where k is the predicate ratio and n is the global ratio.

Note that, after randomly removing facts, the partial completeness assumption no longer holds on the data. This gives our method a competitive edge over competing approaches such as AMIE which assume the partial completeness assumption.

The assessment of the rules learned from different versions of the available knowledge base is performed by comparing rule predictions with the approximation of K i . More specifically, every learned rule is assigned a quality score, defined as the ratio of the number of predictions made by the rule in K i \ K a over the number of all predictions outside K a .

qualityScore(r) = |K a r ∩ K i \ K a | |K a r \ K a | (3.4)
This scoring naturally allows us to control the percentage of rule predictions that hit our approximation of K i , similar to standard recall estimation in machine learning (c.f. Definition 2.25 Page 26). 

Results

From every version of the available knowledge base, we have mined all possible rules with two atoms in their body of the form of Equation 3.3 (page 38). For that, we search all the possible tuples (p, q, r) such that the conjunctive query (x, y)∧q(y, z)∧r(x, z) has at least one answer. We kept only rules r with conf (r) ≥ 0.001 and supp(r) ≥ 10, whose head coverage6 is greater than 0.001. Figure 3.2 shows the number of kept rules and their average support (Definition 2.17 Page 23) for each global ratio used for generating K a . The evaluation results for WikidataPeople and LUBM datasets are in Figure 3.3. The horizontal axis displays the global ratio used for generating K a . We compared different rule ranking methods as previously discussed. The Pearson correlation coefficient (vertical axis) between each ranking measure and the quality score of rules (Equation 3.4) is used to evaluate the measures' effectiveness. The Pearson correlation coefficient between two random variables X and Y with numerical values is defined by ρ X,Y = cov (X,Y ) σ X σ Y with cov being the covariance and σ the standard deviation. We measured the Pearson correlation coefficient since apart from the ranking order (as captured by, e.g., Spearman's rank correlation coefficient), the absolute values of the measures are also insightful for our setting.

Since facts are randomly missing in the considered versions of K a , the PCA confidence performs worse than the standard confidence for given datasets, while our completeness confidence significantly outperforms both (see Table 3.1 for examples).

For both knowledge bases, the completeness confidence outperforms the rest of the measures. It is noteworthy that the standard confidence performs considerably better on the LUBM knowledge base with a correlation coefficient higher than 0.9 than on the WikidataPeople knowledge base. Still, completeness confidence shows better results, reaching a nearly perfect correlation of 0.99. We hypothesize that this is due to the bias between the different predicates of the LUBM knowledge base being less strong than in the WikidataPeople knowledge base, where some predicates are missing a lot of facts, while others just a few.

Conclusion

We have defined the problem of learning rules from incomplete knowledge bases enriched with the exact numbers of missing edges of certain types. We proposed a novel rule ranking measure that effectively makes use of sparse cardinality information, the completeness confidence. Our new measure has been injected in the rule learning prototype CARL and evaluated on real-world and synthetic knowledge bases, demonstrating significant improvements both with respect to the quality of mined rules and with respect to the predictions they produce.

For future work, it would interesting to expend the experiments. We could benchmark our completeness confidence against [START_REF] Gad-Elrab | Exception-enriched rule learning from knowledge graphs[END_REF] to check which method produces the best predictions and which has the best runtime. We could also adapt the AMIE rule learning algorithm to make it work with our completeness confidence instead of the PCA confidence.

Chapter 4 Increasing the Number of Numerical Statements

The work presented in this chapter has been done with Daria Stepanova, Simon Razniewski, Paramita Mirza, and Gerhard Weikum and has been published at ISWC 2017 alongside the previous chapter content.

Thomas [START_REF] Pellissier Tanon | Completeness-Aware Rule Learning from Knowledge Graphs[END_REF]. "Completeness-Aware Rule Learning from Knowledge Graphs". In: ISWC, pp. 507-525. https://doi.org/ 10.1007/978-3-319-68288-4_30

Introduction

We have shown in the previous chapter that the exploitation of numerical completeness statements is beneficial for rule quality assessment. A natural question is where to acquire such statements in real-world settings. Like already mentioned in the previous chapter, various works have shown that numerical assertions can be frequently found on the Web [START_REF] Darari | Completeness Statements about RDF Data Sources and Their Use for Query Answering[END_REF], obtained via crowd-sourcing [START_REF] Darari | Enabling Fine-Grained RDF Data Completeness Assessment[END_REF], text mining [START_REF] Mirza | Cardinal Virtues: Extracting Relation Cardinalities from Text[END_REF], or even using Hoeffding's inequality to find upper bounds [START_REF] Giacometti | Mining Significant Maximum Cardinalities in Knowledge Bases[END_REF]. Other work like [START_REF] Gad-Elrab | Exception-enriched rule learning from knowledge graphs[END_REF] aims at mining if the knowledge base is complete for a given subject and predicate, a much more restricting set that mining the actual (in-)completeness statement. We believe that mining numerical correlations concerning knowledge base edges and then assembling them into rules is a valuable and a modular approach to increase the amount of completeness information, which we present in what follows. This approach works by mining rules like "If a person has more than 2 siblings, then their parents are likely to have more than 3 children".

Approach

In the following we make the unique name assumption, i.e., we assume that each entity is represented by at most one individual (Definition 2.9 Page 20).

We start with an available knowledge base K a = (T , A a ) and some statements of the form described in the Equation 3.1 from Section 3.3 of the previous chapter, namely:

num(p, s)

:= |{o | K i |= p(s, o)}|
where

K i = (T , A i ) is the ideal knowledge base.
Step 1 Let p ≤k and p ≥k where k ∈ N be fresh concepts not present in N C , which describe bounds on the number of outgoing p-edges for a given constant. For every cardinality num(p, s) = k, we create the facts p ≤k (s) and p ≥k (s). For the pairs p ∈ N R , s ∈ N I with no available cardinality statements we construct the facts p ≥n (s) where n = |{o | K a |= p(s, o)}|, encoding that there may be outgoing pedges that are missing from s, as the graph is believed to be incomplete by default. We store all constructed facts over p card in S.

We then complete the domain of each p card predicate as follows. For every p ≤k (s) ∈ S, if p ≤k (s ) ∈ S for some s ∈ N I and k > k, we construct the rule p ≤k (x) → p ≤k (x) Similarly, for every p ≥k (s) ∈ S, if p ≥k (s ) ∈ S where k < k, we create p ≥k (x) → p ≥k (x).

The constructed rules are then applied to the facts in S to obtain an extended set A card of facts over p card . The latter step is crucial when using a rule mining system that is not doing arithmetic inferences (such as "x > 4 implies x > 3").

Step 2 We then use a standard rule learning system, AMIE (Galárraga, Teflioudi, et al., 2015), on A a ∪ A card to mine rules like:

(1) p card (x) → p card (x) (2) p card (x) ∧ p card (x) → p card (x) (3) p card (x) ∧ r(x, y) → p card (x) (4) p card (x) ∧ r(x, y) ∧ p card (y) → p card (x) (5) r(x, y) ∧ p card (y) → p card (x)
We rank the obtained rules based on confidence and select the ones that pass operator-chosen minimal confidence and minimal support thresholds into the set R.

Step 3 Finally, in the last step we use the obtained ruleset R to derive further numerical statements together with weights assigned to them. For that we compute A = r∈R {A card ∪ A a } r . The weights of the statements are inherited from the rules that derived them. We then employ two simple heuristics: (i) Given multiple rules predicting the same fact, the highest weight for it is kept. We then postprocess predictions made by different rules for the same subject-predicate pair as follows: (ii) If p ≤k (s), p ≥k (s) ∈ A for k > k, we remove from A predictions with the lowest weight thus resolving the conflict on the numerical bounds.

From the obtained graph we reconstruct cardinality statements as follows.

• Given p ≤k (s), p ≥k (s) ∈ A with weights w and w we create a cardinality statement num(p, s) = k with the weight min(w, w ).

• If p ≤k (s), p ≥k (s) ∈ A for k < k, then we set k ≤ num(p, s) ≤ k.
• Among two facts p ≤k (s), p ≤k (s) (respectively p ≥k (s), p ≥k (s)) with k < k (respectively k > k ) the first ones are kept and represented using the two previous reconstructions.

Regular facts in A are similarly translated into their numerical representations.

Example 4.1. Consider the knowledge base in Figure 3.1 Page 36 and the following cardinality statements for it: num(hasChild, john) = num(hasSibling, bob) = 3. Among others, A card contains the facts: hasChild ≥3 (john), hasSibling ≥3 (bob), hasChild ≥2 (mary), hasChild ≥2 (john), hasSibling ≥2 (bob), hasSibling ≥1 (dave), and hasSibling ≥1 (alice).

On the graph A a ∪A card , the confidence of hasF ather(x, y)∧hasChild ≥3 (y) → hasSibling ≥2 (x) is 1 3 and 1 for hasF ather(x, y) ∧ hasChild ≥3 (y) → hasSibling ≥1 (x).

Evaluation

To evaluate our method for the automated acquisition of cardinality statements from a knowledge base, we reused the WikidataPeople dataset described in Section 3.4 Page 39. Different from the previous chapter, we do not complete the dataset with basic rules (like materializing the inverse relations).
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Dataset

We have collected around 282K cardinality statements from various sources:

• Wikidata schema, i.e., hasFather, hasMother, hasBirthPlace, and hasDeath-Place are functional properties and, thus, should have at most one value.

• The 7.5K values of the Wikidata predicate numberOfChildren;

• 663 novalue statements from Wikidata;

• 86K cardinality statements from [START_REF] Mirza | Expanding Wikidata's Parenthood Information by 178%, or How To Mine Relation Cardinality Information[END_REF] for the hasChild predicate of Wikidata;

• 182K cardinality statements are extracted from human-curated and complete Freebase facts (1.6M). The mapping to Wikidata has been done using tools from Pellissier [START_REF] Pellissier Tanon | From Freebase to Wikidata: The great migration[END_REF].

Experimental Setup

For the sake of simplicity and easy reproducibility, we set aside 20% of the cardinality statements, chosen uniformly at random, to build a validation set, while the rest were incorporated into the WikidataPeople knowledge base following the previously described approach. We then ran our rule learning algorithm to mine cardinality rules. We have set the minimal support threshold to 200 and the minimal confidence threshold to 0.01. Examples of mined rules along with their standard confidences include

• hasSibling(x, y) ∧ hasSibling ≥4 (y) → hasSibling ≥3 (x): 0.97

• hasF ather(y, x) ∧ hasSibling ≥4 (y) → hasChild ≥3 (x): 0.90.

The learned rules were then applied to the enriched WikidataPeople knowledge base to retrieve new exact cardinalities num(p, s) by only keeping (p, s) pairs where the higher and lower bounds matched. The minimum of the standard confidence of the best rules used to get the upper and lower bounds was assigned as the final confidence of each num(p, s).

Results

We aim to evaluate whether we can accurately recover the cardinality statements in the validation set (which is our gold standard) by utilizing the learned cardinality rules. For different minimal confidence thresholds, the quality of the predicted cardinalities is measured with standard precision and recall (c.f. Definitions 2.24 and 2.25, Page 25), which is presented in Figure 4.1.

To our knowledge, this is the first work to mine cardinalities from existing ones in the knowledge base, so we do not provide here comparisons with other works. Indeed, Giacometti, Markhoff, and Soulet, 2019 has been published after the evaluation was conducted and published.

We get a nearly perfect precision and a fair recall (around 40%) for the generated cardinalities, which amount to 7.5M-10M depending on the threshold. Around one third of num(p, s) statements indicate completeness of the knowledge base for some given (p, s) pairs.

The top rules mined often present very relaxed cardinality bounds like hasFather(x, y) ∧ hasChild ≥4 (y) → hasSibling ≥1 (x). Indeed these rules have better support because of the facts already present in the knowledge base which provide lower bounds on the cardinalities. A more in-depth study of the mined rules is left for future work.

Conclusion

In this chapter we have presented a new approach to increase the number of cardinality metadata in a knowledge base. This approach works by mining rules on the upper and lower bounds of the number of expected objects for a given subject and predicate. An evaluation allows us to conclude that our proposed approach is effective. This approach can be used to improve the performance of the completeness confidence presented in the previous chapter.

For future work, provided that sufficiently many similar numerical correlations about edge numbers are extracted, one could attempt to induce more general constraints involving arithmetic functions like the "number of siblings of a person is bounded by the number of his parents' children minus 1" or "the sum of the number of a person's brothers and the number of their sisters equals the number of their siblings". Similarly, the simple heuristic used to build back cardinality assertions from the mined upper and lower bounds provides room for more advanced voting/weighting schemes and inconsistency resolution in the case of conflicting cardinality assertions.

This chapter concludes Part I of this thesis, where we have focused on acquiring new rule based constraints to complete knowledge bases. In Parts II and III, we will focus on how to enforce them, especially to repair constraints violations.

Part II Enforcing Constraints Statically Chapter 5 YAGO 4: A Reason-able Knowledge Base

The work presented in this section has been done with Gerhard Weikum and Fabian Suchanek and has been published as a resource paper at ESWC 2020. Most of the design and the implementation have been done by the author of this thesis.

Thomas Pellissier Tanon, Gerhard Weikum, and Fabian M. Suchanek. "YAGO 4: A Reason-able Knowledge Base". Resource paper at ESWC 2020. https://doi.org/10.1007/978-3-030-49461-2_34

Introduction

In Part I, we have presented an approach to mine new constraints. In this part, we aim at enforcing them. This chapter presents an example of knowledge base, YAGO 4, that statically enforces constraints on the data during its generation process.

YAGO [START_REF] Suchanek | Yago: a core of semantic knowledge[END_REF][START_REF] Hoffart | YAGO2: Exploring and Querying World Knowledge in Time, Space, Context, and Many Languages[END_REF][START_REF] Mahdisoltani | YAGO3: A Knowledge Base from Multilingual Wikipedias[END_REF][START_REF] Rebele | YAGO: A Multilingual Knowledge Base from Wikipedia, Wordnet, and Geonames[END_REF] was one of the first academic projects to build a knowledge base automatically. The main idea of YAGO was to harvest information about entities from the infoboxes and categories of Wikipedia and to combine this data with an ontological backbone derived from classes in WordNet (Fellbaum, 1998). Since Wikipedia is an excellent repository of entities, and WordNet is a widely used lexical resource, the combination proved useful. YAGO sent each fact through a pipeline of filtering, constraint checking, and de-duplication steps. This procedure scrutinized noisy input and boosted the quality of the final knowledge base, to a manually verified accuracy of 95%. This precision was possible thanks to the tight control that the YAGO creators had over the extraction process, the filtering process, the ontological type system, the choice of the relations, and the semantic constraints. However, despite new versions YAGO 2 and YAGO 3 with substantial jumps in scope and size, the focus on Wikipedia infoboxes meant that YAGO has not arrived at the same scale as Freebase or Wikidata.

Meanwhile, Wikidata [START_REF] Vrandecic | Wikidata: a free collaborative knowledgebase[END_REF] has evolved into the world's foremost publicly available knowledge base. It is a community effort where anybody can contribute facts -either by manually adding or curating statements in the online interface or by bulk-loading data. Wikidata has motivated more than 40,000 people who contribute at least once a month. The result is a public knowledge base with 70M named entities, very good long-tail coverage, and impressive detail1 .

At the same time, Wikidata has been designed by its founders to be a collection of information, not as a collection of universally agreed-upon knowledge [START_REF] Vrandecic | Wikidata: a free collaborative knowledgebase[END_REF]. It may intentionally contain contradictory statements, each with different sources or validity areas. Therefore, Wikidata does not enforce semantic constraints, such as "each person has exactly one father". Furthermore, the large user community has led to a proliferation of relations and classes: Wikidata contains 6.7k relations, of which only 2.6k have more than 1000 facts, and it contains around 2.4M classes 2 , of which 80% have less than 10 instances. Many instances (e.g., all cities) are placed in the taxonomy under more than 60 classes. This complexity is the trade-off that Wikidata has found to accommodate its large user community. For downstream applications, the convoluted and often confusing type system of Wikidata makes browsing and question answering tedious. Moreover, there is little hope to run strict classical reasoners (e.g., for OWL 2) in a meaningful way, as the knowledge base contains many small inconsistencies. Hence, every possible statement is deducible regardless of whether it is intuitively correct or false. Some of these issues have been pointed out in the comprehensive study of knowledge base quality by [START_REF] Zaveri | Gender Bias in Contextualized Word Embeddings[END_REF].

Example

To illustrate the shortcomings of the verbose and sometimes confusing type hierarchy of Wikidata, consider the entities Notre Dame de Paris (http://www.wikidata. org/entity/Q2981) and Potala Palace (http://www.wikidata.org/entity/Q71229) both of which are landmarks of two world religions.

As of November 2019, Notre Dame was an instance of types catholic cathedral and minor basilicas, with a rich set of superclasses.

The Potala Palace in Lhasa was an instance of palace and tourist attraction. Interestingly, the latter did not have Notre Dame de Paris as an instance, neither directly nor indirectly. So a query for tourist attractions would have found the Potala Palace but not Notre Dame. This problem has been now fixed in Wikidata. However, one could expect that similar problems exist.

Moreover, the class tourist attraction was a subclass of geographic object which was an instance of the class geometric concept which, in turn, had superclass mathematical concept. As a consequence, a query for mathematical concepts returned entities like tensor, polynomial, differential equation... and the Potala Palace as answers.

Contribution

In this chapter, we describe the new YAGO version, YAGO 4, which aims to combine the best of the two worlds: It collects the facts about instances from Wikidata, but it forces them into a rigorous type hierarchy with semantic constraints. The complex taxonomy of Wikidata is replaced by the simpler and clean taxonomy of schema.org [START_REF] Guha | Schema.org: Evolution of Structured Data on the Web[END_REF]. The classes are equipped with SHACL constraints [START_REF] Knublauch | Shapes Constraint Language (SHACL). W3C Recommendation[END_REF]) that specify disjointness, applicable relations, and cardinalities. This way, YAGO 4 transfers the rationale of the original YAGO from the combination of Wikipedia and WordNet to the combination of Wikidata and schema.org. The result is a new knowledge base, which is not just large, but also logically consistent, so that OWL-based reasoning is feasible. Hence we call YAGO 4 a "reason-able" knowledge base. The new resource is available at https://yago-knowledge.org under a permissive license (Creative Commons Attribution-ShareAlike). YAGO 4 also comes with a browser and a SPARQL endpoint. Figure 5.1 shows an excerpt from the new YAGO in the online browser.

Related Work

The Linked Open Data cloud contains several dozen general-purpose knowledge bases3 . YAGO 4 is not intended to replace these knowledge bases, but rather to serve as an addition to this ecosystem with unique characteristics that complement the other players. For example, DBpedia also has a new version that ingests facts from Wikidata [START_REF] Ismayilov | The Role of Semantics in Mining Frequent Patterns from Knowledge Bases in Description Logics with Rules[END_REF], with a well-designed pipeline that allows harvesting of different knowledge sources [START_REF] Frey | DBpedia FlexiFusion the Best of Wikipedia > Wikidata > Your Data[END_REF]. This new DBpedia Figure 5.1 -The YAGO 4 Browser. On the website, hovering reveals the full name of abbreviated items, and all red and blue items are clickable.

and YAGO 4 have made different design choices, resulting in different strengths and limitations. Whereas [START_REF] Frey | DBpedia FlexiFusion the Best of Wikipedia > Wikidata > Your Data[END_REF]) key priority has been data mapping and integration, our key priority has been to strengthen the logical rigor of the knowledge base, to support OWL and other reasoners. This is why YAGO 4 builds on schema.org and adds its own constraint system, which is much more elaborate than what DBpedia enforces.

Design

The construction of the YAGO 4 knowledge base is driven by several design decisions, which we explain and motivate next. The overarching point is to center YAGO 4 around a well-founded notion of classes. For example, a Person is defined as a subclass of Thing, and has an explicit set of possible relations such as birth-Date, affiliation, etc. Conversely, other relations such as capitalOf, headquarter or population are not applicable to instances of the class Person. This overarching principle of semantic consistency unfolds into several design choices.

Concise Taxonomy

Wikidata contains a very detailed taxonomy to which the community contributes by adding instanceOf and subclassOf statements. However, the resulting class hierarchy is so deep and convoluted that it is not easy to grasp and that browsing it is rather tedious. For example, Paris is an instance of 60 classes, 20 of which are called using terms like "unit", "entity", "subject", or "object". Moreover, the class hierarchy is not stable: any contributor can add or remove subclassOf links between any two classes. Potentially, this could lead to millions of entities being classified differently, just by a single edit. On the other hand, schema.org, the second major input to YAGO 4, has established itself as a reference taxonomy on the Web, beyond its initial aim at helping search engines to index web pages. It is stable, well maintained, and changes can only be made by agreement in the W3C Schema.org Community Group4 . At the same time, schema.org does not provide fine-grained classes such as "electric cars" or "villages" -which only Wikidata has. Schema.org also does not have any biochemical classes (such as proteins etc.).

We address the latter problem by using Bioschemas (Gray, Goble, and Jimenez, 2017)5 . This project extends schema.org in the field of the life sciences -a field that is not covered in schema.org, and that is very prominent in Wikidata. We manually merged 6 Bioschemas classes into schema.org, referring to the merged taxonomy as the "schema.org taxonomy" for simplicity.

To achieve the stability of schema.org while preserving the fine-grained classes of Wikidata, we found the following solution: The top-level taxonomy of YAGO 4 is taken from the schema.org taxonomy, and the leaf-level classes are taken from Wikidata. For this purpose, we manually mapped 241 classes of schema.org to Wikidata classes. Classes of schema.org that could not be mapped, mostly shopping-related or social-media classes such as schema:LikeAction, were removed. We encode this information in a declarative manner, by using the new relation yago:fromClass, as shown here: schema:Person yago:fromClass wd:Q215627

We keep the meaning of the schema.org classes. For example, schema:Person is defined to cover also fictional people, so we did the same in YAGO 4.

With these inputs, the YAGO 4 taxonomy is then constructed as follows: For each instance in Wikidata, we consider each possible path in the Wikidata taxonomy to classes mapped to schema.org. If the first class on the path has an English Wikipedia article, we include it in YAGO 4. The rationale is that only classes with an English Wikipedia article are of sufficient interest for a wider audience and use cases. We then continue the path to the root in the Wikidata taxonomy, discarding all classes on the way, until we hit a class that has been mapped to schema.org. We continue our path to the root (schema:Thing) in the schema.org taxonomy, adding all classes on the way to YAGO 4.

We discard all Wikidata classes that have less than 10 direct instances. This threshold serves to ignore classes that have little value in use cases or are rather exotic. We further remove subclasses of a small list of meta-level Wikidata classes. Finally, we drop subclasses of pairs of classes for which we enforce disjointness constraints. These design choices allow us to model villages and cars, while significantly reducing the size of the taxonomy. From the 2.4M original Wikidata classes, we kept only 10k classes, shrinking the taxonomy by 99.6%. We also discard 11M instances (14%) -two-thirds of which (7.5M) are Wikipedia-specific meta-entities (disambiguation page, category, wikitext template, etc.). Our strategy capitalizes on the stable backbone of schema.org while being able to augment YAGO 4 with new data coming from Wikidata.

Legible Entities and Relations

In the following we use the usual RDF notation for IRI prefixes. For example yago: stands for http://yago-knowledge.org/resource/ and schema: for http:// schema.org/.

YAGO 4 is stored in the RDF format. Unlike Wikidata, we chose to give human-readable URIs to all entities, in order to make the knowledge base more accessible for interactive use. If an entity has a Wikipedia page (which we know because Wikidata links it to Wikipedia), we take the Wikipedia title as the entity name. Otherwise, we concatenate the English label of the entity with its Wikidata identifier (e.g., Bischmisheim_Q866094). Our previous study, Pellissier [START_REF] Tanon | Property Label Stability in Wikidata: Evolution and Convergence of Schemas in Collaborative Knowledge Bases[END_REF], suggests that the Wikidata labels are fairly stable, leading to fairly stable YAGO URIs. If the entity has no English label, we stay with the Wikidata identifier. Using languages other than English for fallback would have made the URIs less stable: this is because the addition of labels in other languages (especially English) is frequent in Wikidata, and we expect it to be more frequent than changes in the English labels. We make the necessary changes to arrive at a valid local IRI name, and add the IRI prefix of YAGO, http://yago-knowledge. org/resource/. This gives the vast majority of entities human-readable names, without introducing duplicates or ambiguity. Note that our choices mean that our URIs may not be fully stable, and may change if Wikidata labels change. This choice is because we preferred to focus on readability rather than stability: Wikidata IRIs are better suited to be used as a permanent link target, and we provide a mapping between Wikidata and YAGO, that can help alleviate any issues with the instability of our URIs.

Wikidata has a very rich set of relations, but many of these have only very few facts. Indeed 61% of them have less than 1000 facts and 85% of them less than 10k. For YAGO 4, we chose to follow the successful model of previous YAGO versions, which only kept a limited number of possible relations for each class. We chose the relations from schema.org, which are each attached to a class. While these relations are conservative in coverage, they have emerged as a useful reference. We mapped 116 of these relations manually to the relations of Wikidata. We store this information similarly to the class mapping by using the new relation, yago: fromProperty, as shown here: schema:birthPlace yago:fromProperty wdt:P569

The pipeline for knowledge base construction implements these mappings (c.f. Section 5.4.1). This process discards around 7k relations from Wikidata, leaving only the 116 mapped relations. As a by-product, it gives human-readable names to all relations. Example relations are schema:birthPlace schema:founder, and schema:containedInPlace. We use RDF and RDFS relations whenever possible, including rdfs:label and rdfs:comment instead of schema:name and schema: description. For example, the fact wd:Q42 wdt:P31 wd:Q5 from Wikidata becomes yago:Douglas_Adams rdf:type schema:Person

Well-Typed Values

YAGO 4 has not just well-typed entities, but also well-typed literals. For this purpose, we translate the data values of Wikidata to RDF terms. External URIs are converted into xsd:anyURI literals after normalizing them. 6 We chose to keep external URIs as literals and not as entities, because we do not make any statements about URIs. Time values are converted to xsd:dateTime, xsd:date, xsd: gYearMonth or xsd:gYear, depending on the time precision. We discard the other time values whose precision could not be mapped to an XML schema type. Globe coordinates are mapped to schema:GeoCoordinates resources. Quantities are mapped to schema:QuantitativeValue resources (keeping the unit and precision). If there is no unit and an empty precision range, we map to xsd:integer where possible. If the unit is a duration unit (minutes, seconds...) and the precision range is empty, we map to xsd:duration. In this way, the vast majority of values are migrated to standard RDF typed literals.

Semantic Constraints

YAGO 4 has hand-crafted semantic constraints that not just keep the data clean, but also allow logical reasoning on the data. We model constraints in the W3C standards SHACL [START_REF] Knublauch | Shapes Constraint Language (SHACL). W3C Recommendation[END_REF] and OWL. SHACL is a language to validate RDF graphs. It allows expressing constraints on the graph using shapes. There are two kinds of shapes, node shapes and property shapes. Node shapes are applied to a set of nodes. For example, the following RDF triples declare a node shape yago:PersonShape that should be enforced on all instances of schema:Person: yago:PersonShape a sh:NodeShape yago:PersonShape sh:targetClass schema:Person After declaring node shapes, it is possible to apply shapes on facts using property shapes. These property shapes are applied to the outgoing edges of the nodes on which a node shape is enforced. For example, the following RDF triples declare a property shape yago:birthDateShape which should be enforced on all facts with a schema:birthDate property and a subject for which yago:PersonShape is enforced: yago:PersonShape sh:property yago:birthDateShape yago:birthDateShape sh:path schema:birthDate It is possible to state various constraints on the property shape (range, cardinality...). They are going to be described in the following paragraphs.

YAGO 4 currently has the following constraints:

Disjointness

We specify 6 major top-level classes: schema:Event, schema:Organization, schema:Person, schema:Place, schema:CreativeWork, and bioschemas:Bio-ChemicalEntity. With the exception of schema:Organization/schema:Place, these are pairwise disjoint; so that these classes cannot have any instances in common. We use OWL to express, for example:

schema:Person owl:disjointWith schema:CreativeWork Note that organizations are not disjoint from places, because many organizations are also located somewhere.

Domain and Range

Each relation comes with a domain and range constraint, meaning that a relation such as birthPlace can apply only to a person and a place. RDFS can specify the domain and range of relations by help of the predicates rdfs:domain and rdfs:range, but our constraints have a different semantics: If a knowledge base contained the fact London, schema:birthPlace, Paris , then the statement schema:birthPlace, rdfs:domain, schema:Person would simply deduce that London must be a person. In contrast, our constraints would flag the knowledge base as inconsistent. We use SHACL to express these constraints. For example, these triples declare that the values of the schema:birthPlace property should comply with the yago:PlaceShape shape that covers instances of schema:Place: yago:PersonShape sh:property yago:birthPlaceProperty yago:birthPlaceShape sh:path schema:birthPlace yago:birthPlaceShape sh:node yago:PlaceShape yago:PlaceShape a sh:NodeShape yago:PlaceShape sh:targetClass schema:Place

The same property can be used to describe entities of different classes. For example schema:telephone can be used to describe both persons and organizations. In this case, the same property is going to be in the shapes of several classes. The domain of the property is then the union of all these classes. In the same spirit, we also support disjunction in property ranges. For example, the range of schema:author is schema:Person union schema:Organization.

Following the same argument, the range of the schema:birthDate property is the union of datatypes xsd:dateTime, xsd:date, xsd:gYearMonth and xsd:gYear to allow different calendar value precisions. Our range constraints also include the validation of xsd:string literals via regular expressions, as in this example: yago:PersonShape sh:property yago:telephoneShape yago:telephoneShape sh:path schema:telephone yago:telephoneShape sh:datatype xsd:string yago:telephoneShape sh:pattern "+\d{1,3} ..."

Functional Constraints

A functional constraint says that a relation can have at most one object for a subject. Several of our relations are functional, e.g., birthPlace or gender. Again, we use SHACL: yago:PersonShape sh:property yago:birthPlaceShape yago:birthPlaceShape sh:maxCount "1"^^xsd:integer

Cardinality Constraints

Going beyond functional constraints, we can also specify the maximal number of objects in general. For example, people can have only two parents in YAGO 4. We use again the SHACL sh:maxCount property.

Enforcement of Constraints

YAGO 4 assumes that, for every class, the only allowed properties are the ones explicitly allowed by the domain constraints. This amounts to interpreting the SHACL constraints under a "closed world assumption". The constraints are automatically enforced during the construction of the knowledge base (see Section 5.4.1), and so the data of YAGO 4 satisfies all constraints. Overall, the enforcement of constraints leads to the removal of 132M facts from Wikidata (i.e., 28% of all the facts). Since the constraints are enforced when constructing the knowledge base, we can then add the deductive rdfs:domain and rdfs:range facts to YAGO 4 and be sure that they will not be used to deduce new facts that violate the constraints.

The ontology automatically generated from the constraints declaration uses the OWL 2 axioms DisjointClasses, ObjectPropertyDomain, DataPropertyDomain, Ob-jectPropertyRange, DataPropertyRange, ObjectUnionOf, FunctionalDataProperty, FunctionalObjectProperty, and falls into the OWL DL flavor. Statistics about the mapping and constraints are shown in Table 5.1. 

Annotations for Temporal Scope

Following previous YAGO versions, YAGO 4 also attaches temporal information to its facts. We harvest these from the Wikidata qualifier system, which annotates facts with their validity time, provenance, and other meta information. We express the temporal scopes of facts by the relations schema:startDate and schema: endDate. Instead of relying on a custom format for these annotations, we made use of the RDF* model proposal [START_REF] Hartig | Foundations of RDF and SPARQL (An Alternative Approach to Statement-Level Metadata in RDF)[END_REF], which has received good traction in recent years. The RDF* model allows RDF triples to be subjects and objects of other triples. These "inner triples" are often written using the << s p o >> notation.

For example, we state that Douglas Adams lived in Santa Barbara until 2001 as follows:

<< Douglas_Adams schema:homeLocation Santa_Barbara >> schema:endDate 2001

This asserts that the fact encoded by the triple Douglas_Adams schema:home-Location Santa_Barbara was true until 2001.

In terms of semantics, a subtle point is that we must distinguish between two existing semantics of RDF*: the Property Graph (PG) semantics and the Separate Assertions (SA) mode 7 . The property graph semantics asserts the inner triples whereas the separate assertions mode does not. For instance, in the previous example, the PG semantics would imply that Douglas Adams still lives in Santa Barbara, which is not what we mean. By contrast, the SA mode would imply that Douglas Adams only lived in Santa Barbara until 2001, without indicating where he currently lives. For this reason, in the design of YAGO4, we use the SA mode of RDF* globally.

Knowledge Base

Construction

We have designed a system that builds YAGO 4 automatically from (1) a Wikidata dump and (2) the SHACL shape definitions of Section 5.3. We keep only the socalled "truthy" Wikidata statements8 , i.e., for each subject and predicate we keep only the statements with the "best" rank (a.k.a. "preferred" if a statement with such rank exists, "normal" if not).

The knowledge base building system constructs the class hierarchy, the entities, and the facts as outlined in Section 5.3. Its main purpose is then to enforce the constraints (Section 5.3.4). If a resource is an instance of disjoint classes, we drop the two rdf:type relations leading to this conflict. We drop all instances that are not instances of any class. We enforce domain, range, and regular-expression constraints by pruning all candidate facts that would violate a constraint. Finally, we check the cardinality constraints, removing all objects if there are too many for a given subject. For example, if a functional property has multiple values with the same Wikidata rank, they are all removed from YAGO.

Our system is implemented in the Rust programming language9 , using the Iterator infrastructure to ingest and output data streams. We use the already existing stream operators, which resemble those of relational algebra (map/project, filter, flat map, collect/materialize into a hash structure). We also implemented new operators particularly for YAGO 4 (stream-hash join, stream-hash anti join, group-by, and transitive closure). For example, the owl:sameAs links between YAGO 4 and Freebase can be extracted from the values of the Wikidata property wdt:P646 ("Freebase Id") by the algebraic operator plan presented in Figure 5.2. In this figure, π is the projection operator, σ the selection, the inner join, Wikidata the table of all Wikidata triples (s, p, o), and WikidataToYagoMapping the mapping between Wikidata and YAGO instances (wd, yago). To avoid reading the full Wikidata N-Triples dump each time, we first load the Wikidata dump into the RocksDB key-value store to index its content10 . This index allows for efficiently selecting triples based on a predicate or a (predicate, subject) tuple, and getting back a stream of triples from the database.

The advantage of having operator plans in Rust is that our system can specify the query plan (i.e., the best execution order). We also get benefit from a programming language with a compiler able to carry performance optimizations, generating highly efficient native code. After having loaded the data into RocksDB, a process that takes around a day, our execution plan generates the Wikipedia-flavored YAGO 4 (see below) in two hours on a commodity server. We ran our system on a dump of 78M Wikidata items. 8M of these are entities related to Wikimedia websites, such as categories. From the 474M Wikidata facts whose properties have been mapped to schema.org, we filtered out 89M of them because of the domain constraints and 42M more because of the range and regex constraints. The cardinality constraints lead to the removal of an extra 0.6M facts.

Data

YAGO 4 is made available in three "flavors":

• Full: This flavor uses all data from Wikidata, resulting in a very large knowledge base.

• Wikipedia: This smaller flavor of YAGO 4 contains only the instances that have a Wikipedia article (in any language).

• English Wikipedia: This is an additional restriction of the Wikipedia flavor, containing only instances that have an English Wikipedia article.

All three flavors of YAGO 4 are built in the same way, and have the same schema, with 116 properties and the same taxonomy of 140 top-level classes from schema.org and bioschemas.org, and the same subset of Wikidata classes. Table 5.2 shows statistics for the three YAGO 4 variants, generated from the Wikidata N-Triples dump of November 25, 2019. Each flavor of YAGO 4 is split into the following files:

• Taxonomy: The full taxonomy of classes.

• Full-types: All rdf:type relations.

• Simple-types: The rdf:type relations to schema.org classes (i.e., without the classes generated from Wikidata).

• Labels: All entity labels (rdfs:label, schema:alternateName, and rdfs: comment).

• Facts: The facts that are not labels.

• Annotations: The fact annotations encoded in RDF* [START_REF] Hartig | Foundations of RDF and SPARQL (An Alternative Approach to Statement-Level Metadata in RDF)[END_REF].

• SameAs: The owl:sameAs links to Wikidata, DBpedia, and Freebase and the schema:sameAs links to all the Wikipedias.

• Schema: The schema.org classes and properties, in OWL 2 DL.

• Shapes: The SHACL constraints used to generate YAGO 4.

Each file is a compressed N-Triples file, so that standard tools can directly ingest the data.

Access

Web Page. The YAGO 4 knowledge base is available on the website https: //yago-knowledge.org. The Web page offers an introduction to YAGO, documentation ("Getting started"), and a list of publications and contributors. The Web page also has a schema diagram that lists all top-level classes with their associated relations and constraints. Browser. YAGO 4 comes with a graphical knowledge base browser, with an example shown in Figure 5.1. For each entity, the browser visualizes the outgoing relationships in a star-shape around the entity. Above the entity, the browser shows the hierarchy of all classes of which the entity is a (transitive) instance, including those with multiple inheritances. If an entity has more than one object for a given relation, a relation-specific screen shows all objects of that relation for the entity. For size reasons, the browser shows only the Wikipedia flavor of YAGO.

Applications. YAGO has already been used in quite many projects [START_REF] Rebele | YAGO: A Multilingual Knowledge Base from Wikipedia, Wordnet, and Geonames[END_REF], including question answering, entity recognition, and semantic text analysis. We believe that the new version of YAGO opens up the door to an entire array of new applications because it is possible to perform logical reasoning on YAGO 4. Not only is the knowledge base equipped with semantic constraints, but it is also provably consistent. We have checked the "English Wikipedia" flavor of YAGO 4 with the OWL 2 DL reasoner HermiT [START_REF] Glimm | HermiT: An OWL 2 Reasoner[END_REF], proving its logical consistency.12 This makes it possible to perform advanced kinds of logical inference on YAGO 4.

Conclusion

This chapter has presented YAGO 4, the newest version of the YAGO knowledge base. The unique characteristics of YAGO 4 are to combine the wealth of facts from Wikidata with the clean and human-readable taxonomy from schema.org, together with semantic constraints that enforce logical consistency. This way, the resulting knowledge base can be processed with OWL reasoners and is also more user-friendly for browsing and question answering.

In the future, it would be nice to provide a tool alongside YAGO 4 that would be able to give the original fact(s) in Wikidata which led to a given YAGO fact. This tool would allow YAGO 4 users to know which fact to edit in Wikidata, or whether the conversion pipeline is wrong, in case they found a problem in YAGO. Adding reasoning capabilities to the public SPARQL endpoint would also be interesting to make use of the consistency of YAGO 4.

However, the YAGO 4 process of removing all offending facts when fixing semantic constraint violations lead to losing 27% of facts with respect to Wikidata. Therefore, the next chapter will present a better way to fix these violations. The neural network approach Bass (Section 6.7) and the evaluation against the test dataset (Section 6.8) are new and are currently under review at ISWC. Thomas Pellissier Tanon and Fabian M. Suchanek. "Neural Knowledge Base Repairs". Under review at ISWC 2020.

Part III Enforcing Constraints Dynamically

Introduction

In the previous chapter, we have presented a knowledge base that statically enforces constraints. This is done by removing all facts violating these constraints. However, this method leads to an important amount of fact loss (27%). Therefore, we now focus on a better way to fix these violations.

In this chapter, we aim at learning how to repair constraint violations. Our goal is to help a knowledge base editor by suggesting how to clean the data locally (providing a solution to a particular constraint violation) or globally (providing rules that can be automatically applied to all constraint violations of a given form once validated by the editor). To do that, we take advantage of the edit history of the knowledge base. We propose two approaches to learn correction suggestions. The first one mines correction rules that express how different kinds of constraint violations are usually solved. The second one trains a neural network that predicts constraint violation corrections. To the best of our knowledge, this is the first work that builds on past user corrections to infer possible new ones. We validate our framework experimentally on Wikidata, for which the whole edit history of more than 700 million edits is available. Our experiments show substantial improvements over baselines. More concretely, our contributions are as follows:

• a formal definition of the problem of correction rule mining,

• a correction rule mining algorithm, together with an implementation for Wikidata, CorHist,2 

• a deep neural network algorithm, together with an implementation for Wikidata, Bass,3 

• a suggestion tool for users to correct data based on our mined correction rules,4 

• an experimental evaluation based both on the prediction of the corrections in the history and on user validation of the suggested local corrections.

Related Work

We start with a brief discussion of works relevant to our problem along three axes: constraints for knowledge bases, knowledge base cleaning, and rule learning.

Constraints

Constraints have long been used in databases and knowledge bases to express rules that the data should follow. Databases typically operate under the closed world assumption, where missing facts are considered to be false. This allows for "completeness" constraints such as tuple generating dependencies. knowledge bases, in contrast, operate under the open-world assumption, where missing facts are not necessarily false. They thus classically have only "correctness" constraints, such as disjointness or functionality axioms (corresponding to special cases of denial constraints and equality generating dependencies in databases).

To express also completeness constraints, several works propose to use description logics, with varying semantics [START_REF] Motik | Bridging the gap between OWL and relational databases[END_REF][START_REF] Tao | Integrity Constraints in OWL[END_REF]. Another possibility is to use queries that should or should not hold as constraints (see e.g., [START_REF] Kontokostas | Test-Driven Evaluation of Linked Data Quality[END_REF] for methods for writing constraint queries in SPARQL). Other approaches define constraint languages to specify conditions for RDF graph [START_REF] Cyganiak | RDF 1.1 concepts and abstract syntax[END_REF] validation, such as SHACL [START_REF] Knublauch | Shapes Constraint Language (SHACL). W3C Recommendation[END_REF] or ShEx [START_REF] Boneva | Semantics and Validation of Shapes Schemas for RDF[END_REF]. It has been argued in Patel-Schneider, 2015 that description logics under the closed world assumption are also suitable for constraint checking in RDF, which can then be implemented with SPARQL queries. In our work, we depart from this path by using association rules as constraints.

Contrary to the above works, we do not aim at expressing constraints, but at repairing their violations. The correction rules we learn for this purpose are similar in spirit to active integrity constraints [START_REF] Flesca | Active Integrity Constraints[END_REF], which specify for each constraint a set of possible repair actions. This type of constraint has recently been applied to description logic knowledge bases as well [START_REF] Rantsoudis | Repairing ABoxes through Active Integrity Constraints[END_REF]. Conditioned active integrity constraints add conditions for choosing among the possible actions, and we propose, in a similar spirit, to take into account the context of the constraint violation to correct it. Different from these existing works, our goal is to mine correction rules automatically from the edit history of the knowledge base.

Knowledge base cleaning

Several recent approaches have dealt with the interactive cleaning of knowledge bases. The proposed methods detect when a constraint is violated, compute the responsible facts, and then interact with the user to find out how to update the knowledge base. The goal is then to minimize the number of questions the user has to answer. This is done in various ways, which include taking into account the dependencies among the facts to check, or the interaction between several constraint violations to define heuristics to choose the best question to ask the user [START_REF] Bader | QOCO: A Query Oriented Data Cleaning System with Oracles[END_REF][START_REF] Bienvenu | Query-Driven Repairing of Inconsistent DL-Lite Knowledge Bases[END_REF][START_REF] Assadi | Cleaning Data with Constraints and Experts[END_REF][START_REF] Arioua | User-guided Repairing of Inconsistent Knowledge Bases[END_REF].

Other approaches to improve the quality of a knowledge base rely on statistics, clustering, or structural aspects of the knowledge bases. Chen et al., 2020 uses knowledge base embeddings, lexical distance, and constraint-based refinements to predict corrections. Our work goes beyond the state of the current knowledge base and learns from the edit history instead. Paulheim and Bizer, 2014 uses statistics to add missing types to the knowledge base and to detect wrong statements. [START_REF] Liang | Graph-Based Wrong IsA Relation Detection in a Large-Scale Lexical Taxonomy[END_REF] exploits the observation that cycles in the knowledge base often contain wrong "isA" relations. G. d. Melo, 2013 cleans "sameAs" relations based on the shape of the existing identity facts and on differences in the graph. Lertvittayakumjorn, Kertkeidkachorn, and Ichise, 2017 uses graph and text distances to look for values for a given subject and predicate. A. Melo and Paulheim, 2017 fixes the subject or object of existing relations based on type relations and string matching. Again other approaches, like [START_REF] Acosta | Detecting Linked Data quality issues via crowdsourcing: A DBpedia study[END_REF], use crowdsourcing to detect Linked Data quality issues. We refer the reader to Section 7.2 of [START_REF] Acosta | Detecting Linked Data quality issues via crowdsourcing: A DBpedia study[END_REF] for a recent overview of approaches for data quality assessment.

Our method also exploits knowledge base constraints. However, it differs from the above in that it learns the corrections automatically from the edit history. It thus taps a source of knowledge that has so far not been exploited. Some works in completely different domains also use the idea of learning repairs from past corrections. For example, Bader et al., 2019 learns how to fix errors in source code based on previous error corrections.

Rule learning

Mining logical rules by finding correlations in a dataset is a well-established research topic. In particular, learning patterns in the data can be used for completing knowledge bases as presented in Chapter 3. An algorithm for learning conjunctive patterns from a knowledge base enriched with a set of rules is described in Józefowska, Lawrynowicz, and Lukaszewski, 2010. Methods similar to association rule mining have also been used for the induction of new ontological rules from a knowledge base [START_REF] Sazonau | General Terminology Induction in OWL[END_REF]. A more recent trend is to use embedding-based models for knowledge base completion. A comparison between these models and usual rule learning approaches is reported in [START_REF] Meilicke | Fine-Grained Evaluation of Rule-and Embedding-Based Systems for Knowledge Graph Completion[END_REF] and significant recent works in this area include [START_REF] Ho | Rule Learning from Knowledge Graphs Guided by Embedding Models[END_REF]B. Yang et al., 2014;F. Yang, Z. Yang, and Cohen, 2017.

Graph neural networks

Neural networks are often applied to knowledge base related tasks [START_REF] Wu | A Comprehensive Survey on Graph Neural Networks[END_REF]. However, there does not seem to be any work in the literature that uses neural networks to predict repairs in knowledge bases. Some works use neural networks to reason on top of knowledge bases (Hohenecker and Lukasiewicz, 2018). Several other works tackle the knowledge graph completion task by mining rules [START_REF] Ho | Rule Learning from Knowledge Graphs Guided by Embedding Models[END_REF] or by link prediction. Our approach takes inspiration from these methods, but ultimately tackles a different problem: We do not want to predict links, but the correction of the violation of a constraint. We refer to [START_REF] Wu | A Comprehensive Survey on Graph Neural Networks[END_REF] for a detailed survey about graph neural networks.

In this chapter, we use a vanilla rule mining algorithm inspired by [START_REF] Galárraga | AMIE: Association Rule Mining under Incomplete Evidence in Ontological Knowledge Bases[END_REF] and a combination of usual neural network components. Our contribution is not the rule mining and the neural network per se, but the application of rule mining and deep learning to the edit history of a knowledge base to mine correction rules. This avenue has, to the best of our knowledge, never been investigated.

Constraints

This section defines the constraints that can be imposed on a knowledge base. In this chapter we make the unique name assumption, i.e., we assume that each entity is represented by at most one individual (Definition 2.9 Page 20). Definition 6.1 (Constraint). A constraint Γ( x) is a rule under the form b( x) → h( x) where x is a sequence of variables, b a propositional query (c.f. Definition 2.13 Page 22) and h a union of conjunctive queries (c.f. Definition 2.12 Page 22). Example 6.2. As a running example, we consider the following knowledge base K = (T , A) and set of constraints C inspired by Wikidata. We assume that the description logic subset used is the one that covers only concept inclusions.

Our TBox T expresses that human beings and deities are persons. Our ABox A provides information on several individuals. Our constraints C state that there are two possible genders, that those who have a mother or are a mother must be persons or animals, that a mother must have gender female, and that if a has mother b, then b must have child a. It also violates Γ 3 and Γ 4 for similar reasons. Finally, {hasGender (Zeus, masculine)} violates Γ 0 because of the unique name assumption (which enforces that the interpretation of masculine differs from those of male and female). By monotonicity, K violates Γ 0 . Proposition 6.4. Every constraint Γ ∈ C can be rewritten as a set of rules

Γ i ( x) : b i ( x) → h i ( x), i ∈ {1, . . . n, }
, where b i ( x) is a conjunctive query and h i ( x) is a union of conjunctive queries and for every knowledge base K, K satisfies Γ if, and only if, K satisfies all Γ i , i ∈ {1, . . . n, }.

Proof. Let's assume we have a constraint Γ( x) : b( x) → h( x) where b is a propositional query and h a union of conjunctive queries.

It is possible to rewrite b in disjunctive normal form such that b( x) = ∃ y n i=1 m j=1 b i,j ( x, y) where b i,j is an optionally negated role, concept or equality assertion. We end up with Γ( x) : n i=1 ∃ y m j=1 b i,j ( x, y) → h( x). This could be rewritten with an equivalent set of rules Γ i ( x) : ∃ y i m j=1 b i,j ( x, y i ) → h( x) with i ∈ 1, . . . , n. Indeed, Γ is satisfied if, and only if, all Γ i are satisfied.

We could then simplify the rules Γ i . Γ i could be written Γ i ( x) : ∃ y b( x, y) ∧ ¬b n ( x, y) → h( x) where b( x, y) is a conjunction of roles, concepts or equality assertions and b n ( x, y) a disjunction of them (we have factorized the negation).

We could then define x to be the concatenation of x and y and end up with

Γ i ( x ) = b( x ) ∧ ¬b n ( x ) → h( x ) that is equivalent to Γ i ( x ) : b( x ) → h( x ) ∨ b n ( x ). h( x ) ∨ b n ( x )
is a union of conjunctive queries. Hence we found a set of queries Γ i equivalent to Γ and having the expected properties.

Constraint violations. A constraint instance Γ( a) of a constraint Γ( x) is obtained by replacing the variables x by the individual names a in Γ( x). This notion allows us to define constraint violations: Definition 6.5. A violation of a constraint Γ( x) in K is a minimal subset V ⊆ K such that there exists a such that V violates Γ( a) and K violates Γ( a).

In this definition, the requirement that K violates Γ( a) may seem superfluous. Yet, if Γ is Human(x) → ∃y hasGender (x, y), it may be the case that some V ⊆ K violates Γ( a) (e.g., {Human(Zeus)}), while K satisfies it (e.g., {Human(Zeus), hasGender (Zeus, male)}).

Example 6.6. In our running example, it is easy to see that the subset V 0 = {hasGender (Zeus, masculine)} is a violation of Γ 0 . Consider now V = {hasMother (Spinoza, Marques)}. V is a violation of Γ 2 , Γ 3 and Γ 4 . Indeed, it violates Γ 2 (Marques), Γ 3 (Marques), and Γ 4 (Spinoza, Marques) and K does not satisfy any of these constraint instances. However, even if V violates Γ 1 (Spinoza), V is not a violation of Γ 1 because {Human(Spinoza), Human P erson} ⊆ K satisfies the head of Γ 1 (Spinoza).

If a constraint instance Γ( a) of Γ( x) : b( x) → h( x) is violated, K |= b( a) and K |= h( a)
, so its violations are the minimal subsets of K responsible for K |= b( a).

Connection to justifications. We conclude the section by pointing out that our notion of violations is closely related to the notion of justifications introduced in previous works in the context of explaining why a given axiom is entailed by an ontology. A justification (also known as an explanation, axiom pinpointing, or MinAs) for the entailment of a boolean conjunctive query is a minimal subset of the knowledge base that entails the boolean conjunctive query [START_REF] Schlobach | Non-Standard Reasoning Services for the Debugging of Description Logic Terminologies[END_REF][START_REF] Kalyanpur | Finding All Justifications of OWL DL Entailments[END_REF].

Proposition 6.7. If K violates Γ( a) : b( a) → h( a), a subset V ⊆ K is a violation of Γ( a) if, and only if, V is a justification of K |= b( a).
Proof. Like we stated earlier, V ⊆ K is a violation of Γ( a) if, and only if, V is a smallest subset K responsible for K |= b( a). This exactly corresponds to the definition of a justification of K |= b( a).

Corrections

We now turn to the correction of constraint violations.

Solutions. We will make use of atomic modifications of the knowledge base to define solutions to constraint violations. Definition 6.8 (Atomic modification). An atomic modification of a knowledge base K consists of two sets of triples (M + , M -) such that M + ∩ K = ∅ and M -⊆ K. Furthermore, one of the following must hold:

1. M + = ∅ and M -consists of an assertion (we say that (M + , M -) is a deletion), or 2. M -= ∅ and M + consists of an assertion (we say that (M + , M -) is an addition), or 3. M -consists of an assertion s, p, o and M + consists of an assertion s , p , o which differs from s, p, o by only one element (we say that (M + , M -) is a replacement).

Since the sets M + and M -contain at most one triple, we slightly abuse the notation and identify the singletons with their elements (e.g., we will denote the addition of s, p, o simply by ( s, p, o , ∅)).

During the history of a knowledge base, users can change not just the assertions of the knowledge base, but also the TBox. However, the TBox is typically much smaller and more stable than the ABox. Therefore, the edit history of the TBox is not a rich ground for correction rule mining. It is why we do not consider changes in the TBox as part of the atomic modification definition. Note that a replacement is equivalent to a sequence of a deletion and an addition. We chose to keep it as an atomic modification because it corresponds to common knowledge base curation tasks, such as correcting an erroneous object for a given subject and predicate, or fixing a predicate misuse. Atomic modifications can be used to solve a constraint violation, as follows: Definition 6.9 (Solution). A solution to a violation V of a constraint instance Γ( a) of Γ( x) : b( x) → h( x) in K is an atomic modification (M + , M -) such that there exists K ⊆ K such that (V ∪K ∪M + )\M -satisfies Γ( a). We call (M + , M -) a solution to V for Γ( a) in K.

Note that Γ( a) can still be violated in (K ∪ M + ) \ M -if K contains other violations of Γ( a) for which (M + , M -) is not a solution. For example, if Γ(a) : ∃x R(a, x) ∧ A(a) → false, and K = {R(a, b), R(a, c), A(a)}, the deletion of R(a, b) is a solution to the violation {R(a, b), A(a)}, but {R(a, c), A(a)} still violates Γ(a). Note also that every constraint violation has at least one solution, which consists of the deletion of any of its elements. Solutions may also be additions or replacements, as in the following example: Example 6.10. In our running example, the deletion (∅, hasGender (Zeus, masculine)) and the replacement (hasGender(Zeus, male), hasGender (Zeus, masculine)) are two possible solutions to V 0 for Γ 0 (masculine).

The deletion (∅, hasMother (Spinoza, Marques)) is a solution to V for the three constraint instances Γ 2 (Marques), Γ 3 (Marques) and Γ 4 (Spinoza, Marques). The additions (Human(Marques), ∅), (hasGender (Marques, female), ∅) and (hasChild (Marques, Spinza), ∅) are solutions to V for respectively Γ 2 (Marques), Γ 3 (Marques) and Γ 4 (Spinoza, Marques).

Good solutions. Our goal is to find "good" solutions to constraint violations, i.e., solutions that make the knowledge base as close to the real world as possible. The basic requirement for a "good" solution is that it deletes only erroneous facts and that it adds only true facts. We also prefer replacements over deletions as long as they fulfill this condition.

For instance, in our running example, the replacement (hasGender (Zeus, male), hasGender (Zeus, masculine)) is better than the deletion (∅, hasGender (Zeus, masculine)), because it corrects erroneous information instead of simply erasing it.

The main difficulty in finding good solutions to constraint violations is that we do not have access to an oracle that knows the validity of all facts. This is the problem that all knowledge base cleaning approaches face (c.f. Section 6.2). Our idea is to exploit the history of the knowledge base modifications to learn how to correct constraint violations. Definition 6.11 (Edit history). The edit history of a knowledge base is a sequence of knowledge bases

(K i ) 0≤i≤p = (T i ∪ A i ) 0≤i≤p such that K i+1 = (K i ∪ M + i ) \ M - i , where (M + i , M - i ) is an atomic modification.
The edit history allows us to pinpoint how constraint violations have been corrected in the past. In order to avoid learning from vandalism or mistakes, we consider only those corrections that have not been reversed: Definition 6.12 (Past correction). Let K p be the current state of the knowledge base. A past correction is a solution

(M + , M -) to a violation V of a constraint instance Γ( a) in K i such that M + ⊆ B, M -⊆ D where K p = (K i ∪ B) \ D with B ∩ D = ∅.
Intuitively, (B, D) corresponds to the sequence of additions and deletions that leads from K i to the current state of the knowledge base K p , that contains the solution, and that does not "undo" it.

Relevant past corrections. We are interested in learning solutions that correct constraint violations in the current knowledge base K p . We thus consider only those past corrections that would have been corrections also under the current TBox. For example, assume that the TBox contained C B. Assume that C(a) was added to correct a violation of the constraint A(x) → B(x). If, in the meantime, the inclusion C B has been removed, we do not want to learn from this past correction. The following definition formalizes these requirements. Definition 6.13 (Relevant Past Correction). A relevant past correction

(M + , M -) to a violation V of a constraint instance Γ( a) in K i is a past correction such that (V ∩ A i ) ∪ T p contains a violation V of Γ( a) such that (M + , M -) is also a solution to V in A i ∪ T p .
We will now see how we can use the relevant past corrections to mine correction rules.

Extraction of the Relevant Past Corrections

In this section, we propose an approach to extract past corrections from the knowledge base history that can be used as ground truth to train constraint correction predictors.

We assume here that the description logic used allows rewriting a conjunctive query q( x) with respect to T into a union of conjunctive queries q ( x) such that for every ABox A, answering q( x) over (T , A) amounts to answering q ( x) over (∅, A). For example, this is the case of the description logics DL-Lite r [START_REF] Calvanese | Tractable Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Family[END_REF] and flat QL [START_REF] Kontchakov | An Introduction to Description Logics and Query Rewriting[END_REF]. Algorithm 1 constructs the set of relevant past corrections from the knowledge base history. It consists of three main steps. First, it constructs patterns to spot knowledge base modifications that could be part of a relevant past correction. Then it uses these patterns to extract atomic modifications that solved some violations in the past. Finally, the relevant past corrections are obtained by pruning those that have been reversed.

Let us explain our algorithm with our running example. Consider the constraint Γ 0 (x) : ∃y hasGender (y, x) → x = male ∨ x = female. Assume that the triple Zeus, hasGender , masculine was added between K 1 and K 2 , but then replaced by the triple Zeus, hasGender , male between K 100 and K 101 .

The first goal of the algorithm is to find out that the removal of the triple Zeus, hasGender , masculine between K 100 and K 101 (as part of the replacement) may be part of a relevant past correction. We call this deletion a correction seed. Looking for correction seeds instead of computing the constraint violations for all constraints on all knowledge base versions has the advantage of significantly reducing the search space.

To find such correction seeds efficiently, the first step of the algorithm precomputes for each constraint a set of atomic modification patterns that the possible correction seeds would match. In the example there would be only one pattern: the deletion pattern (?, ?, hasGender, ? ), where ? can be anything so that it matches both the deletion of ?, hasGender, ? and its replacements. Since we only consider past corrections that involve assertions and want them to be relevant for the current TBox, computing the correction seed patterns can be done via query rewriting of the conjunctive queries in the body b( x) and the head h( x) of the constraint with respect to T p . Indeed, we have chosen to restrict ourselves to description logics that allow this rewriting. Each atom that occurs in the rewriting of the body of a constraint corresponds to a deletion pattern, and each atom that occurs in the rewriting of the head of a constraint corresponds to an addition pattern. We collect the patterns for the constraint Γ in the set Patterns(Γ).

The second step of the algorithm verifies, for each correction seed, whether it solved some constraint violation in the past -i.e., whether K i contains some violations of some constraint instances that are not in K i+1 . If so, the modification between K i and K i+1 is a solution that solved these violations in K i . In the example we would have found the violation { Zeus, hasGender, masculine } of Γ 0 (masculine) in K 100 , which is not in K 101 . So we would have extracted that ( Zeus, hasGender, male , Zeus, hasGender, masculine ) is a solution that solved the violation { Zeus, hasGender, masculine } of Γ 0 (masculine) in K 100 . We store this information as a tuple in the relevant past corrections dataset (the PCDataset), as shown in Example 6.14. Finding the constraint instances violated in K i or K i+1 is done via conjunctive query answering (Proposition 6.4), and computing their violations amounts to computing conjunctive query justifications (Proposition 6.7).

The final step of the algorithm removes corrections that have been reversed. The result is thus the set of relevant past corrections.

Example 6.14. Here is an example of what a row in the dataset PCDataset of relevant past corrections extracted for our running example could look like:

• Constraint instance: Γ 0 (masculine)

• Violation: { Zeus, hasGender, masculine } • Relevant past correction:

({ Zeus, hasGender, male }, { Zeus, hasGender, masculine })

• Knowledge base version index: 100

Correction Rule Mining

In this section, we propose an approach based on rule mining to learn correction rules for building solutions to constraint violations. We name this approach CorHist like "Cor rections from History".

Correction rules. The previous algorithm has given us a list of relevant past corrections (the PCDataset, exemplified in Example 6.14). We now present our approach to mine correction rules from this dataset and the knowledge base history.

Definition 6.15 (Correction rule). A correction rule is of the form

r : [Γ( x)] : E( x, y, z) → (M + ( x, y), M -( x, y))
, where

• Γ( x) is a constraint that can be partially instantiated, i.e., some of its variables have been replaced by constants,

• (M + ( x, y), M -( x, y)) is an atomic modification where the same partial instantiation of x is done,

• E( x, y, z) is a set of atoms called the context of the violation such that M -( x, y) ⊆ E( x, y, z) and such that the same partial instantiation of x is done.

A correction rule can be applied to a knowledge base K when there exist tuples of constants a, b such that K violates Γ( a) (recall that this can be decided via conjunctive query answering by Proposition 6.4), a is compatible with the partial instentiation of x in the rule, and K |= ∃ z E( a, b, z). The result of the rule application is then (M + ( a, b), M -( a, b)).

Note that while the variables from E( x, y, z) that do not appear in Γ( x) or in the head of r can be existentially quantified, those that occur in the head of r have to be free: they have to be mapped to individuals occurring in the knowledge base to construct the result. Example 6.16. In our running example, we would like to learn the following correction rules:

r 1 := [Γ 0 (masculine)] : {hasGender (y, masculine)}
→ (hasGender (y, male), hasGender (y, masculine))

r 2 := [Γ 2 (x)] : {hasMother (y, x), Human(y)} → (Human(x), ∅)
The context of the second rule says that if x is the mother of a human, then x must also be a human. The rule obtained by replacing Human by Animal would express how to solve a violation of Γ 2 in the context where y is an animal.

Mining correction rules. We mine correction rules with Algorithm 2. This algorithm is an adaptation of the algorithm in [START_REF] Galárraga | AMIE: Association Rule Mining under Incomplete Evidence in Ontological Knowledge Bases[END_REF]Galárraga, Teflioudi, et al., 2015 to our context, where we learn rules, not from a knowledge base, but from the PCDataset and the knowledge base history. We first adapt the definitions of the confidence and support already presented in Chapter 2 to our case. The support of the body of a correction rule r for a constraint Γ is the number of violations of Γ stored in the PCDataset that could have been corrected by applying r. Such violations are associated with an instance Γ( a) of the partially instantiated Γ( x) that appears in r and with an index i such that K i |= ∃ z E( a, b, z) for some b. These two conditions imply that r could be applied to the knowledge base K i . Moreover, we need to check that the result of applying r to K i actually gives a solution to V. For example, consider the constraint Γ(x) : ∃y R(x, y) ∧ A(x) → false and the PCDataset that contains the two past corrections (∅, R(a, b)) for Γ(a) at revision i and (∅, R(a, c)) for Γ(a) at revision j where a, b, c ∈ N I . Both violations count for the support of the body of [Γ(x)] : ∃y R(x, y) → (∅, R(x, y)) but only the second one counts for the support of the body of [Γ(x)] : R(x, c) → (∅, R(x, c)), even in the case where K i |= R(a, c). Formally,

sup body (r) = |{V | ?, Γ( a), V, i ∈ PCDataset, ∃ b K i |= ∃ zE( a, b, z
) and the result of the application of r to K at revision i is a solution to V}|.

The support of the rule r measures when the past correction is exactly the result of the application of the rule in the cases where it could be applied. Formally,

sup rule (r) = |{V | (M + ( a, b), M -( a, b)), Γ( a), V, i ∈ PCDataset, and K i |= ∃ z E( a, b, z)}|.
Finally, as usual, the confidence of a correction rule r is conf (r) = sup rule (r) sup body (r) . Algorithm 2 shows our mining algorithm. It takes as input the PCDataset computed by Algorithm 1, the knowledge base history, a minimum support threshold minsup, a minimum confidence threshold minconf, and a regularization threshold θ. These thresholds are chosen empirically (see Section 6.8.3). The algorithm produces correction rules (Definition 6.15). For this purpose, it first generates a trivial rule r 0 for each entry of the PCDataset (line 4). This rule has as context simply the deletion part of the constraint past correction.

This trivial rule is then transformed into several more general rules, which we call basic rules, each of which is obtained from r 0 by replacing some of the constants by variables (line 5). Formally, the algorithm uses all partial substitutions σ from constants to distinct fresh variables. It retains only those basic rules that meet the minimum support and confidence thresholds (line 6). 

r 0 := [Γ( a)] : M -( a, b) → (M + ( a, b), M -( a, b)) 5: BasicR = BasicR ∪ {σ(r 0 ) | C ⊆ a ∪ b, σ : C Var , 6:
sup rule (σ(r 0 )) ≥ minsup, conf (σ(r 0 )) ≥ minconf} 7: // Refine the context part of the rules 8: q := [], q.enqueueAll(BasicR) 9: while q is not empty do 10:

r := q.dequeue()

11:

Output r

12:

for all operators op do 13:

for all r ∈ op(r) do 14:

if sup rule (r ) ≥ minsup and conf (r ) ≥ conf (r) + θ then 15:

q.enqueue(r )

In the second step, the algorithm incrementally refines each rule by building up its context part E( x, y, z) (lines 8-15). This works similarly to the mining algorithm of [START_REF] Galárraga | AMIE: Association Rule Mining under Incomplete Evidence in Ontological Knowledge Bases[END_REF] Each refinement step adds one atom built from the knowledge base concept and role names and the variables and constants that appear in the rule, plus at most one fresh variable (lines 12-13). The possible operators are:

• Add a new concept for an existing constraint variable of x. For example, if x is bound to Zeus and Person(Zeus) is in the knowledge base, then Person(x) is going to be returned as possible atom.

• Add a new role for an existing variable of x, the other role parameter being assigned to a fresh variable. For example, if x is bound to Zeus and hasGender (Zeus, male) and hasChild (Chronos, Zeus) are in the knowledge base, then hasGender (x, y) and hasChild (y, x) are going to be returned as a possible atoms where y is a fresh variable.

• Add a new role for an existing variable of x, the other role parameter being assigned to an existing variable. For example, if x is bound to Zeus and y to Chronos and hasChild (Chronos, Zeus) is in the knowledge base, then hasChild (y, x) are going to be returned as a possible atom.

• Add a new role for an existing variable of x, the second role parameter being assigned to a constant. For example, if x is bound to Zeus and hasGender (Zeus, male) and hasChild (Chronos, Zeus) are in the knowledge base, then hasGender (x, male) is going to be returned as a possible atom, but not hasChild (Chronos, x).

If the resulting rule meets the minimum support threshold and improves the confidence by at least θ (line 14), the rule is retained (line 15).

Applying correction rules. When all rules have been mined, they are sorted by decreasing confidence, breaking ties with the help of the support (as it is done in Liu, Hsu, and Ma, 1998 to build classifiers from rules). This set of rules then forms a program that can be used to fix constraint violations as follows. Given a violation V of a constraint Γ in K, choose the first rule r in the program that is relevant for Γ (i.e., that contains [Γ( x)] where Γ( x) is a partially instantiated version of Γ). Then check whether r can be applied to V. The correction is the result of the rule application.

Example 6.17. Assume we mined the rules r 1 and r 2 of the preceding example with confidence 0.9 and 0.8 respectively, and another rule r 3 := [Γ 0 (x)] : {hasGender (x, y)} → (∅, hasGender (x, y)) with confidence 0.5. The correction program is (r 1 , r 2 , r 3 ).

To correct a violation of Γ 0 , i.e., a wrong value for the hasGender property, the program first checks whether r 1 is applicable. If so, it replaces male by masculine. Otherwise, it falls back to r 3 and removes the wrong value. To correct a violation of Γ 2 , it ignores r 1 that is not related to Γ 2 and either applies r 2 if the context matches or does nothing.

Bass

CorHist suffers from a systematic weakness: it can take into account only triples that explicitly appear in a correction rule -and not shallow signals from the state of the knowledge base. To overcome this limitation, we design a new neural network architecture to implement a correction predictor.

Our predictor takes as input the violated constraint, the violation, and the facts about the entities that are mentioned in the violation. It predicts as output a triple to add and/or a triple to delete. At training time, the input and the outputs come from the edit history of the knowledge base. At prediction time, the input comes from the current state of the knowledge base. In the following, we first present a "conversion" of CorHist to a neural network called Bass-RL, before adding new components to improve its performance, leading to our final Bass architecture5 .

Bass-RL

The goal of Bass-RL is to build a neural network that mirrors exactly the functioning of the CorHist rule mining approach. Figure 6.1 shows the basic architecture of our network. It is composed of 3 input components, which all feed into the "edit predictor". The dimensions of the internal layers are parametrized by a constant d, which is a hyperparameter of the network. The inputs are:

• The constraint. We give to each constraint a unique integer id and then we use a trained embedding matrix to create a d-dimensional vector from the one-hot encoding of the constraint id. This vector is then fed into the edit predictor. This vector gives the network the information about which type of constraint we aim to fix.

• The violation. For each of the k triples in the constraint violation, we encode the predicate and the object with the help of the "term embedding" component. These encodings are concatenated and fed into the edit predictor. The subject of the violation triple is not used.

• The facts about the entities that appear in the constraint violation. We encode only the predicates and the objects of these facts because the subject is already known to the network. For example, if we consider the violation triple JohnDoe, birthP lace, Paris , the two entities are JohnDoe and Paris. We consider all facts having JohnDoe or Paris as subject, and we embed the pairs of predicates and objects of each of these facts e.g., {(hasType, Person), (hasGender , Male), . . .} for JohnDoe and {(hasT ype, schema:Place), (inCountry, France), . . .} for Paris. There are 2k mentioned entities, 2 for each of the k triples in the constraint violation. Each fact is embedded using the "entity fact embedding" component. Then the output vectors are concatenated and fed into the edit predictor.

Let us now describe each component in detail.

Term embedding

We embed RDF terms as follows: predicates are one-hot encoded and then embedded into a space of dimension d using a trained embedding matrix P. We embed dense + ReLu similarly the objects using a trained matrix E. These matrices E and P are shared by all object and predicate embedding operations. This embedding allows the edit predictor to act on specific predicates and entities in the triples of the constraint violation.

d 1 k k 1-hots k • d k k 1-hots k • d 2k • m 2k • m 2k • m 1-hots 2k • m 1-hots 2k • m • d 2k • m • d 2k • m • d 2k • d

Entity fact embedding

Similarly to CorHist, we give the neural network the facts about the 2k entities involved in the constraint violations. A classical approach for this purpose would be to use entity embeddings, i.e., to embed the entity itself. However, entity embeddings have two drawbacks: First, they require expensive pre-training. Second, and more crucially, they do not work with new entities. Therefore, we embed not the entity, but the facts that the entity is involved in. While the objects of these facts will still be encoded using learned embeddings (and thus cannot be entities that are unknown at training time), the subjects can be entities that have never been seen at training time. This allows the network to check constraints on newly-added entities.

We encode the (predicate, object) facts of each entity mentioned in the constraint violation as follows: we embed the predicates by reusing the same predicate embedding matrix P described previously. We embed similarly the objects by reusing the same entity embedding matrix E. Then we combine the predicate and the object using a dense layer6 with a rectified linear unit (ReLU) non linearity7 . Then we merge the obtained embeddings for each (predicate, object) using a max-pooling layer to get a single vector for the entity. Formally, if we have the input embedding vectors

   x 1 1 . . . x 1 d    , . . . ,    x k 1 . . . x k d    we would return the vector    max(x 1 1 , . . . , x k 1 ) . . . max(x 1 d , . . . , x k d )    .

Edit predictor

The edit predictor takes as input the previous components, i.e., the constraint id embedding, the embeddings of the k violation triple predicates and objects, and the embedding of the facts about the 2k entities mentioned in the constraint violation.

We aim here first at combining this input to generate a vector that represents the violation by meaningfully combining the already listed inputs. We feed the inputs into a multilayer perceptron i.e., a sequence of dense layers, each followed by a non-linear function. We use two dense layers of dimension 4d with the ReLU non-linearity. We use multiple layers to allow the network to do a sequence of combinations of the weights given by the inputs.

After computing this vector, we now have to "decode" it into an edit prediction. Our network outputs two triples -one to add and one to delete. Each triple is given by its three components (subject, predicate, and object). Each output component could of course just be the one-hot encoding of a predicate or entity. However, then the network would have to learn each instantiation of a constraint individually (as in "If the subject of the violation triple is Elvis, then the subject of the addition triple should be Elvis", "If the subject is Madonna, then..."). Therefore, we allow the network to output a code, as in "The subject of the addition triple is the object of the first constraint violation triple". To permit nevertheless the output of constants as well, we combine both approaches. With this, each of the 6 outputs (2 × 3 triple components) works in the same way, classifying the output term into one of the following options:

• 1 class to state that the output is not existent (the triple should not be returned), or unknown. We call it the class 0.

• 3k classes to state that the output term is the same as the subject/predicate or object of one of the k triples in the constraint violation. For example, the class 1 corresponds to the subject of the first violation triple, the class 2 to its predicate, the class 3 to its object, the class 4 to the subject of the second violation triple, etc.

• c p or c e classes to state that the output is one of the c p predicates (for the predicate to add or delete outputs) or one of the c e entities (for the other outputs) from the list of predicates/entities found at least t times in the expected outputs from the training data (where t is a hyperparameter).

This leads to 1 + 3k + c e possible classes (and so, neurons) for each of the four subject/object outputs and 1 + 3k + c p for the two predicate outputs. Each of these outputs are implemented like regular classifiers using a dense layer with a softmax non-linearity8 . The outputs returns a 1 + 3k + c e or p dimensional vector.

The kth vector output is the predicted probability of kth class.

To retrieve the final edit, we consider the output for both the "delete" triple and the "add" triple. If the three outputs for the subject, predicate, and object of the triple give known values (a known entity or predicate or a known violation triple term given in the input) we build the triple to add or to delete from these outputs. If the three outputs give the "not defined" class, we return no triple. This means that the edit does not contain a triple to add, or a triple to delete, respectively. If there are only one or two components returning "not defined", we assume that the network has not been able to predict a correction.

Bass

We now present our improved repair predictor, Bass. Figure 6.2 shows the architecture of our network. We designed two improvements over Bass-RL:

RDF literal embedding

We want our predictor to be able to act on RDF literals. We recall that RDF literals are string of unicode characters, optionally annotated with a language tag (e.g., "example"@en where example is the literal value and en is the language tag) or a datatype identifier (e.g., "2020-09-07"^^xsd:date where xsd:date stands for <http://www.w3.org/2001/XMLSchema#date> to state that 2020-09-07 should be interpreted as a date). For example, if every book can have at most one ISBN identifier, and if a given book has two ISBNs, 2-7654-1005-4, and abc, it is easy to decide that abc should be abandoned, if we allow the network to access the literals.

For this purpose, we first remove the datatype IRI. This leads to strings like "Elvis Presley"@en for a language tagged string or "42" for an integer. To split these strings into components that could be embedded separately, we tokenize the string with the BERT tokenizer [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF] and apply an embedding matrix on each token. We then apply a max pooling on the embedding sequence to get another d-dimensional vector. We use the BERT tokenizer to provide better support for out-of-vocabulary words. It also allows us to better handle complex values like numbers and dates that would not be properly split by a tokenizer splitting on whitespaces. It also allows keeping more significant elements than a simple char based encoding. For example the date literal "2020-09-07" is going to be tokenized into [CLS], ", 2020, -, 09, -, 07, -, ", [SEP]. And the label "Elvis Presley"@en into [CLS], ", elvis, pres, ##ley, ", @, en, [SEP]. This input is not used when the objects are IRIs or blank nodes. to learn new constraints. To remedy this shortcoming, we encode each constraint by a set of (predicate, object) pairs and we encode this set using the entity fact embedding component introduced earlier.

Constraint embedding

Bass

k • d k k 1-hots k • d k strings k • t k • t • d k • d (2k + 1) • m (2k + 1) • m (2k + 1) • m 1-hots (2k + 1) • m 1-hots (2k + 1) • m • d (2k + 1) • m • d (2k + 1) • m • d (2k + 1) • d
To encode each constraint by a set of (predicate, object) pairs, we rely on constraint shapes. The constraint shape of a constraint Γ is a constraint Γ s where all constants in Γ have been replaced by fresh variables. For example, the shape of the constraint Γ 1 (x) : Person(x) → ∃y hasBirthPlace(x, y) is Γ s 1 (x) : c 1 (x) → ∃y p 1 (x, y). Two constraint shapes are equivalent if they have the same components up to a renaming of variables. With this definition, we encode a constraint Γ( x) : b( x) → ∃ y i h i ( x, y) by the following set of property value pairs:

• (bass:constraintShape, c) where c is an identifier assigned to the equivalence class of the constraint shape Γ s .

• (p i , o i ) for each s i , p i , o i in b and h i where o i is a constant.

• (p - i , s i ) for each s i , p i , o i in b and h i where s i is a constant and p - i is the inverse property of p i .9 

These components give us our new Bass network.

Experiments on Wikidata

This section presents an experimental evaluation of CorHist and Bass against Wikidata content.

Wikidata

Wikidata is a generalist collaborative knowledge base. Wikidata has already been described in the previous chapters. The data about each Wikidata entity is stored in a versioned JSON blob, and there are more than 700M revisions. Wikidata encodes facts not in plain RDF triples but in a reified representation, in which each main s, p, o triple can be annotated with qualifiers and provenance information [START_REF] Vrandecic | Wikidata: a free collaborative knowledgebase[END_REF].

Wikidata knows the property instanceOf which is similar to rdf:type. It does not have a formally defined TBox, but knows properties such as subClassOf, subPropertyOf, and inverseOf. However, only the property subClassOf is used to flag constraint violations. Therefore, we use only this property in our TBox, which thus contains only simple concept inclusions.

We consider the set C of constraints built from ten types of Wikidata property constraints (see Table 6.1). They are the top Wikidata property constraints that can be expressed in rules, covering the majority of the most used constraints, as well as 71% of Wikidata property constraints. The remaining constraints are mainly about string format validation with regular expressions (52% of the remaining constraints) and qualifiers (31% of them).

Dataset Construction

We stored the RDF version [START_REF] Erxleben | Introducing Wikidata to the Linked Data Web[END_REF][START_REF] Hernández | Reifying RDF: What Works Well With Wikidata?[END_REF] of the Wikidata edit history in an RDF store built for this task. We used named graphs for the global state of Wikidata after each revision, and the triple additions and deletions. Our dataset stores 390M annotated triples about 49M items extracted from the July 1st, 2018 full database dump. The storage system is described in detail in Chapter 7.

We extended Wikidata with facts about the external web pages mentioned in the knowledge base. These facts are considered by CorHist and Bass implementations just like regular Wikidata facts. However, because they describe external elements, these additional facts are considered to be always in the knowledge base and so, do not change between Wikidata revisions and could not appear in the mined corrections. They can only be used as context in the rules mined by CorHist and Bass. This works as follows: For every URL s that appears in the violation triples, we add two new facts: The first one is the triple s, history:pageStatusCode, XXX , where XXX is the HTTP response code of that URL. because the VIAF website returned a HTTP code 200 for the page and because the label "Douglas Adams"@en of the entity Douglas_Adams appears on the page. We extracted the relevant past corrections as explained in Section 6.5. Wikidata revisions do not correspond exactly to atomic modifications in our sense. For example, Wikidata bots can change multiple unrelated facts about the same entity at the same time. Wikidata users also sometimes prefer to delete a statement Table 6.1 -Wikidata property constraints. R is the property for which the constraint is given. A constraint has several lines when it uses a property whose set of values may be specified or not. #constr. is the total number of constraints of the given type in Wikidata. #triples is the sum for all these constraints of the numbers of triples with the property R on which they apply. #viol. is the number of violations for this constraint in Wikidata on July 1st, 2018. #past cor. is the number of past corrections we extracted from Wikidata history. t.o. indicates that we were not able to extract all past corrections because of timeout so that we sample them (we then indicate the number of corrections we extracted). Note that here R and R are not allowed to denote inverse property expressions.

Name

Rule form #constr. #triples #viol. #past cor.

Type a ∃yR(x, y) → A 1 (x)∨. . .∨A n (x) 2575 249M 3465k 16M (t.o.) Value type ∃yR(y, x) → A 1 (x)∨. . .∨A n (x) 696 67M 3062k 19M (t.o.) One-of ∃yR(y, x) → x = a 1 ∨. . .∨x = a n 116 4.2M 4k 19k Item requires ∃yR(x, y) → R (x, a 1 )∨. . .∨R (x, a n ) 3102 255M 3710k 15M (t.o.) statement ∃yR(x, y) → ∃zR (x, z) Value requires ∃yR(y, x) → R (x, a 1 )∨. . .∨R (x, a n ) 243 85M 1345k 6M (t.o.) statement ∃yR(y, x) → ∃zR (x, z) Conflict with ∃yR(x, y) ∧ (R (x, a 1 )∨. . . ) → false 781 4543M 68k 449k ∃yzR(x, y) ∧ R (x, z) → false Inverse b R(x, y) → R (y, x) 152 6M 409k 3M Single value R(x, y) ∧ R(x, z) → y = z 2909 90M 389k 491k Distinct values R(y, x) ∧ R(z, x) → y = z 2843 78M 322k 16M
a The Wikidata constraint Type can be qualified so that instead of expressing that the subject of the property belongs to a given class using the property instanceOf, it states that the subject has to be related to the class by the property subClassOf, or either by instanceOf or by subClassOf. We ignore these cases, which are marginal: only 5% of Type constraints are qualified with property subClassOf, and 0.4% with "instanceOf or subClassOf ". The same goes analogously for Value type, which concerns the object of the statement. b Inverse and Symetric are two distinct kinds of constraints in Wikidata but we treat them together since Symetric is actually a special case of Inverse.

then add another one with the same property instead of directly modifying the value, in order to clear the existing qualifiers and references. Therefore, we artificially created a replacement modification for every deletion with a neighboring addition by the same user, which shares at least two components of the triple (analogously for additions). For example, if the correction seed is the deletion of Zeus, hasGender, masculine , and if this revision or a neighboring one adds Zeus, hasGender, male , then we consider this a replacement. However, if the same revision added the triple Zeus, hasM other, Rhea , then we would not consider this a replacement, because it does not share two components with the first one.

Since the TBox consists of simple concept inclusions and the constraint bodies contain only roles, the deletion patterns for correction seeds correspond directly to the atoms of the constraint body. In the same vein, only atoms in the head of the Type or Value type constraints need to be rewritten. For example, if we consider the Type constraint ∃y hasGender(x, y) → Person(x) and if in Wikidata the subclasses of Person are Human, FictionalHuman and Deity then we would rewrite the constraint head to Person(x) to Person(x)∧Human(x)∧FictionalHuman(x)∧ Deity(x). To find the constraint violations solved by a correction seed, we make use of the fact that the correction seed allows us to know the constraint instance Γ( a), and we look for matches of the constraint instance body.

To speed up the execution for the four constraint types which have the highest numbers of past corrections, Type, Value type, Item requires statement and Value requires statement, we did not extract all the past corrections but sample them as follows. We compute only the relevant past corrections that were applied between K i and K i+1 where i is a multiple of s = max(1, N/10 6 ) with N the number of triples with the property R of the constraint at hand. Note that this sampling might be biased because edits in Wikidata are not evenly distributed on its history. For instance, imagine that we only process the revisions K i where i is odd, and that two automated tools are editing Wikidata at the same time and at the same speed, with both tools making their edits alternatively. If this happens, then the proposed sampling method would only detect the changes of one of the tools, and not of the other. Even with these limitations, this sampling allows us to get a ground truth with sufficient coverage for rule mining for each constraint. Indeed, in practice, this extraction limitation only affects 0.9% of Type, 2% of Value type, 0.5% of Item requires statement, and 3% of Value requires statement constraints. All corrections are extracted for the other constraints.

In the final dataset, we limited the number of past corrections to 200k per constraint type by doing a random sampling in all the extracted past corrections. This limitation is made to facilitate the use of the dataset and to allow fetching all mentioned Web pages in a week. We split the dataset into an 80% training set, a 10% cross-validation set, and a 10% test set. To simplify the re-use of our dataset, we extended it with the facts about the entities mentioned in the violation triples at the time of the violation correction. This allows CorHist and Bass to be trained without having to access the edit history.

Implementation of the Approaches

CorHist

The output of CorHist is a set of correction rules that form a program (Section 6.6).

To evaluate such a program, we apply it to each of the constraint violations stored in the test part of the PCDataset, using the knowledge base state just before the revision when the correction happened to evaluate the body and the head of the rule. Then we check whether the correction we compute is the same as the one associated with the constraint violation in the test part of the PCDataset.

We then report the comparison of the predicted correction with the expected correction from the PCDataset using the precision, recall and F1 metrics (Definitions 2.24, 2.25, and 2.26 Page 25). CorHist mines rules as explained in Section 6.6. We trained it on the training part of the PCDataset. In order to decrease the computation time, we only allow three atoms in E( x, y, z). We use a minimal support threshold minsup = 10, a minimal confidence threshold minconf = 0.1, and a regularization threshold θ = 0.05. These thresholds have been set in order to limit the computation time of rule learning. After mining the rules with the minimal confidence threshold of 0.1, the cross-validation part of the PCDataset is used to determine a refined minimal confidence threshold that maximizes the F1 score of the obtained program. This allows us to pick the best possible minimal threshold according to the cross-validation dataset. The test set is used to evaluate the final program. The CorHist implementation is available on GitHub10 . Example 6.18 (Example of mined rules by CorHist). Here are some examples of rules mined by CorHist for each of the constraint types:

Type. We consider the constraint Γ(s) : ∃o isAListOf (s, o) → List(s). The following rule states that if a Wikidata item violates Γ and if the item is an instance of WikiDisambiguationPage, then the isAListOf facts should be removed:

[Γ(s)] : isAListOf (s, o) ∧ WikiDisambiguationPage(s) → (∅, isAListOf (s, o))
Value type. We consider the constraint Γ(o) : ∃s foundInTaxon(s, o) → Taxon(o). The following rule states that if the taxon is stated to be found in human and has parts then the value of foundInTaxon should be replaced by homoSapiens:

[Γ(human)] :foundInTaxon(s, human) ∧ hasPart(s, v) → (foundInTaxon(s, homoSapiens), foundInTaxon(s, human))

One-of. We consider the constraint Γ(o) : ∃s mannerOfDeath(s, o) → o = . . . . The following rule fixes misuses by stating that if the value of mannerOfDeath is trafficAccident, then the predicate should be replace by causeOfDeath:

[Γ(trafficAccident)] :mannerOfDeath(s, trafficAccident) → (causeOfDeath(s, trafficAccident), mannerOfDeath(s, trafficAccident))
Item requires statement. We consider the constraint Γ(s) : ∃o heritageStatus(s, o) → ∃o country(s, o). The following rule states that if the monument has for heritage status monumentInFornminnesregistret, then it is located in Sweden, completing the knowledge base:

[Γ(s)] :heritageStatus(s, monumentInFornminnesregistret) → (country(s, Sweden), ∅)
Value requires statement. We consider the constraint Γ(o) : ∃s residence(s, o) → ∃o 2 country(o, o 2 ). The following rule states that if an entity violates Γ and has diplomatic relations, then it is a country and so has for country itself:

[Γ(o)] : diplomaticRelation(o, v) → (country(o, o), ∅)
Conflict. We consider the constraint Γ(s) :

∃o 1 , o 2 filmplID(s, o 1 )∧ filmplFilm- ID(s, o 2 ) → false.
The following rule states that if the entity has a value for filmplFilmID, then filmplID should be removed:

[Γ(s)] : filmplID(s, o) → (∅, filmplID(s, o))
Inverse/Symmetric. We consider the constraint Γ(s, o) : geneticAssociation(s, o) → geneticAssociation(o, s). The following rule states that the symmetric facts should be materialized for geneticAssociation:

[Γ(s, o)] :→ (geneticAssociation(o, s), ∅) Single value. We consider the constraint Γ(o 1 , o 2 ) : ∃s sexOrGender (s, o 1 )∧ sexOrGender (s, o 2 ) → o 1 = o 2 .
The following rule states that if someone is in a sport team and has two values for sexOrGender and one of these values is maleOrganism, then the value maleOrganism for their sexOrGender should be removed:

[Γ(s)] :sexOrGender (s, maleOrganism) ∧ sportsTeam(s, v) → (∅, sexOrGender (s, maleOrganism))
Distinct values.

We consider the constraint Γ(s 1 , s 2 ) :

∃s 1 , s 2 ncbiLo- cusTag(s 1 , o)∧ ncbiLocusTag(s 2 , o) → s 1 = s 2 .
The following rule states that there are two entities with the same ncbiLocusTag and one has a value for the property molecularFunction, then ncbiLocusTag should be removed for this entity:

[Γ(s 1 , s 2 )] :ncbiLocusTag(s 1 , o) ∧ molecularFunction(s 1 , v) → (∅, ncbiLocusTag(s 1 , o))
This concludes our presentation of examples of types of rules that we mine (Example 6.18).

Bass

We implemented Bass with the Keras API [START_REF] Chollet | Keras[END_REF] of Tensorflow 2 [START_REF] Abadi | TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems[END_REF]. For the BERT tokenization, we use the HuggingFace "tokenizers" library [START_REF] Wolf | HuggingFace's Transformers: State-of-the-art Natural Language Processing[END_REF]. With E and P, we embed only the entities and predicates with at least 100 occurrences. We do the same for the output by setting t = 100. We choose to set all the embedding sizes to d = 128. We use the constraint type identifier ("single value", "value type"...) to identify the constraint shape, and we use the Wikidata statement that encodes the constraint to generate the (predicate, object) triples that describe the constraint. The Bass implementation is not available publicly yet to comply with the double-blind review constraints of ISWC 2020.

We trained Bass on the same training set as CorHist. We did so, by training for all constraint types at the same time, using the sum of categorical cross-entropy loss 11 for the 6 classification outputs and the gradient-descent based Adam optimizer [START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF]. We used the validation set to keep the best epoch according to the loss against the cross-validation dataset. We trained the model with a mini-batch size of 256. We have chosen a large mini-batch size to compute the loss function on enough samples in an attempt to have enough samples of different constraints to make the loss meaningful at each learning step. The best 11 The categorical cross-entropy is a distance function between the expected predictions and the actual predictions defined as

CE       t 1 . . . t n    ,    p 1 . . . p n       = n i=0 t i log(p i ) where t i ∈ [0, 1]
is the expected prediction for the class i, and p i ∈ [0, 1] is the predicted output for the same class i.

model has been found after the 3rd epoch on the full training dataset. After loading the dataset into memory, training took 18min using an Nvidia Quadro P3000 mobile GPU, an Intel Core i7-7700HQ CPU, and 32GB of RAM. We evaluate Bass predictions using the same metrics as CorHist: precision, recall, and F1 score. Note that the Bass optimization target is not the same as the F1 score used for CorHist. Unlike the F1 score, the categorical cross-entropy is a distance function on the neural network outputs, allowing us to easily apply the gradient descent algorithm using the loss function associated with this distance. We make the assumption that this advantage in terms of simplifying the training outweighs the disadvantage for Bass of being optimized for this metric, instead of the F1 score that it will be evaluated with. The experimental evaluation will show that, even with this disadvantage, Bass achieves higher F1 scores than CorHist.

Evaluation against the Test Set

Table 6.2 presents the results of the evaluation of the mined corrections against the test set. We computed both the micro and macro average of the precision, recall, and F1 score per constraint for each constraint type. The macro average is an unweighted average over all constraints, i.e., all constraints are weighted the same. The micro average is an unweighted average over all violations, amounting to an average over all constraints weighted by their number of violations. Both numbers are important: The micro average gives more weight to constraints that have many violations to fix. It thus measures the overall impact of the applied correction on the dataset. However, if a few constraints covered most of the violations, then it would be easier to formulate some violation rules. Our method, in contrast, can also find ways by itself to solve constraints with fewer violations, but together contribute a large mass of corrections. To illustrate this, we also report the macro average: It measures the average performance across different constraints.

We compare our approach with two baselines: The first one, called "delete", is the most basic and uses the fact that all Wikidata constraint bodies contain an atom of the form R(x, y) and the TBox contains only concept inclusions so that all constraint violations contain an assertion that matches R(x, y). The "delete" baseline simply deletes this assertion. We define an additional baseline, "add", which tries to add a new triple to solve the constraint violation. For Inverse and Symmetric constraints this baseline adds the missing reverse edge and performs very well. For Item requires statement, Value requires statement, Type and Value type, it adds the missing triple only if it is possible to know the set of the possible expected value from the constraint rule (if there are multiple possible values, it picks one at uniformly at random for each prediction). For example, for Type constraints of the form ∃yR(x, y) → A(x) it applies the correction (A(x), ∅). For Item requires statement constraints of the form ∃yR(x, y) → R (x, a), the "add" baseline applies (R (x, a), ∅) (similarly for Value requires statement constraints). If there are multiple a i , it chooses one randomly for each constraint. The other constraint types could only be solved by a deletion. Hence, the "add" baseline is not defined for them. We also included in the aggregated results a variant of CorHist, called CorHist-min where we do not add context to rules (E( x, y, z) is always empty) without changing the other hyperparameters. To keep the table legible, we do not report the performance of CorHist-min and Bass-RL for each individual constraint type.

As shown in Table 6.2, the precision of our approaches strongly outperforms the two baselines -often by a very high margin. Regarding the recall, we manage to keep a reasonable, and sometimes even good, recall (see best F1 scores in Table 6.2). CorHist-min presents a higher precision than CorHist (+5% in micro average and +4% in macro average) at the cost of worst recall (-5% in micro average and -4% in macro average). This suggests that overall adding context to the rules seems more to help to find new rules that cover constraints violations that were not already solved by CorHist-min than it allows to refine rules already mined and kept by CorHist-min.

As shown in the evaluations, Bass slightly outperforms CorHist. The strongest improvements are seen for the constraint types "Conflict with" and "Single value", which both concern the removal of one value between two choices. The simple move from a rule learning algorithm (CorHist) to a neural network (Bass-RL) provides a small performance improvement of 1% in micro average F-score and none in macro average F-score. However, the recall of Bass in macro average is higher by 4% than the CorHist one, at the cost of a precision lower by 21%. This shows that Bass-RL attempts to predict an output more often than CorHist but fails more often at predicting the correct output. This lower recall and higher accuracy of CorHist may be caused by the support and precision thresholds of the rule mining approach which forbid predictions in case the rule does not seem to be significantly useful, a "safety" that Bass does not have. However, this "safety", which is useful also for performance reasons, might make CorHist's recall too low, and hence harm its performance. If the low CorHist recall is not caused by the support and precision thresholds, the small win of Bass-RL related to CorHist in micro average F1 score (1%) might be thanks to the fact that Bass-RL can take into account all facts about the violation entities, and so can draw holistic conclusions from the context facts. This comparison suggests that neural networks are more able to draw predictions on unseen cases, at the cost of precision. Indeed, the rule mining approach is able to provide a better precision thanks to its support and precision thresholds.

The addition of textual data and of a structured representation of the constraint, which is hard to take into account with a rule mining approach, allows The "add" baseline was not able to predict anything and is omitted here.

Bass to outperform Bass-RL by 5% in macro average F-score and by 3% in micro average, suggesting that textual data and structured representation of the constraints help to solve violations of under-represented constraints. However, CorHist, being based on rules, can explain why a given correction is made of a constraint violation, whereas Bass is unable to provide such explanations.

Bass Ablation Study

To understand the contribution of each component of Bass, we remove the components one by one and measure the performance. This leads to the following variants of Bass:

• Bass without object literals: The RDF literals embedding component described in Section 6.7.2 is removed.

• Bass without entity facts: The embeddings of the facts about the entities that appear in the violation triples described in Section 6.7.1 is removed.

• Bass without entity facts: The constraint is not given at all to the neural network. The network only predicts the correction from the violation triples and the facts about the entities that appear in the violation triples.

• Bass with one hidden layer edit predictor : The perceptron described in Section 6.7.1 which combines the various embeddings built by the neural network is composed of one dense layer instead of two.

We also add another ablation, Bass minimal. This variant removes from Bass-RL the constraint embedding and the entity fact embedding. This leads to a network where the edit prediction component receives only the violation triple predicates and objects, embedded with P and E.

Additionally to the ablation, we investigate some possible variants of Bass:

• Bass with constraint ids: We replace the constraint description input by the Bass-RL constraint ID encoding. This gives the exact constraint to the model, without the possibility to generalize from the constraint description.

• Bass with BiLSTM literals: We replace the max-pooling layer in the literal embeddings by a bidirectional long short-term memory network (BiL-STM) [START_REF] Hochreiter | Long Short-Term Memory[END_REF]. BiLSTMs are commonly used layers for sequence embeddings and have been used successfully on tasks like natural language translation, suggesting possible good performance for literal embeddings. • Bass with entity fact attention: We replace the max-pooling layer that aggregates the embeddings of the (predicate, object) tuples of the involved entities by an attention layer. This attention layer uses for context the constraint embedding. This allows the network to change the relative importance of some entity facts based on the considered constraint.We define the attention following Luong, Pham, and Manning, 2015 as σ(q • V ) • V , where σ is the softmax function, q the query vector (here: the context embedding), and V the value sequence matrix.

Discussion

Using the description of the constraints instead of the constraint ids does not change the micro average score, but increases the macro average scores. This means that the change helps for constraints with only a few past corrections, which have a weaker weight in the micro average. We thus observe a better generalization with respect to the constraints. Embedding the object literal values brings 2% of improvement on both F-scores, showing it brings some value on the 13% of violations where one of the objects is a literal that is not a date or a geographical coordinate. The addition of a bidirectional LSTM and attention turns out to be detrimental to the performance of Bass. 

User Evaluation

To see whether our corrections are accepted by the community, we designed a user study. We created a tool that suggests our corrections to Wikidata users for validation (available at https://tools.wmflabs.org/wikidata-game/distributed/ #game=43). The user can choose a constraint type, and the tool then suggests corrections for random violations of constraints of this type (Figure 6.3). The violations for which corrections are suggested are provided by query.wikidata.org, which limits their number for performance reasons. For each proposed correction, the user has to choose between three options: apply the proposed correction to Wikidata, tag it as wrong, or get another correction to review. We use a simpler version of CorHist to predict the constraint violation than the one presented in this thesis. The version used for this human evaluation is the same as the one presented in Pellissier Tanon, Bourgaux, and Suchanek, 2019. We ran the experiment for 3 months and 47 Wikidata users participated.

The results are presented in Table 6.4. The number of corrections reviewed is highly unbalanced between the kinds of constraints, mainly because a few users evaluate a lot of suggestions, and have a predilection for some kinds of constraints. It is thus difficult to conclude those kinds of constraints for which very few corrections have been evaluated. However, we can still make some interesting observations. In particular, looking at the proposed corrections marked as wrong gives us insights about possible weaknesses of our approach.

For the constraints which got a significant number of evaluations, our approach seems to perform well for Inverse and Symmetric, Conflict with and Value requires statement constraints, with approval rates above 80%.

The other approval rates are lower. This is partly due to biases in the data. For example, when gender is missing, our approach proposes the value "male" by default, because of the over-representation of men in Wikidata [START_REF] Klein | Monitoring the Gender Gap with Wikidata Human Gender Indicators[END_REF]. This is in line with a common problem with machine learning approaches that reflects and amplifies the biases contained in the data. For example, see Zhao et al., 2019, a recent work on trying to remove the bias of word embeddings. Another issue is the quality of the constraints, which in Wikidata are sometimes questionable or difficult to understand (e.g., an incomplete set of possible types or values for completeness or One-of constraints).

Most of the approval rates are lower than the precision reported by the evaluation based on past corrections. We do not know why the results are different, one hypothesis is that the "easy" constraints violations are solved quickly, sometimes with the help of bots. Thus, in the current state of Wikidata, it could be the case that most of the remaining constraint violations are "hard", in the sense that they cannot be easily fixed. Investigating this in more detail is left for future work.

However, even lower approval scores do not mean that our approach would be useless: Psychological research [START_REF] Funk | Multiple-Choice and Short-Answer Exam Performance in a College Classroom[END_REF] shows that people find it much easier to choose from given options than to come up with an answer by themselves. The actual time needed to come up with an answer may vary, but if it takes just 3 times longer to come up with an answer than to accept or reject our proposed correction, then achieving a precision of 40% is already useful.

Conclusion

In this chapter, we have introduced the problem of learning how to fix constraint violations from a knowledge base history. We have presented two methods to address this problem, one based on rule mining and another on neural networks, the latter providing better performances but without explainability. Our experimental evaluation on Wikidata shows significant improvement over static baselines. Our tool is live on Wikidata and has already allowed users to correct more than 23k constraint violations.

While our evaluation focused on Wikidata for which the whole edit history was available, our method can be applied in other settings. For example, it might be interesting to investigate to what extent the approaches presented here could be used to clean automatically extracted knowledge bases, using as ground truth the changes done in the knowledge base data sources. It will be also useful to do again the user evaluation with the latest version of the CorHist algorithm and with the Bass algorithm to see which one of the two works best with the violations currently present in Wikidata. Another possible improvement for the user evaluation tool is to allow the users to validate not only the corrections but the rules themselves, to apply them directly on all of Wikidata.

To evaluate the methods presented in this chapter we used Wikidata. However, to apply the past correction extraction algorithm, we needed a system that can easily and efficiently query Wikidata at any time in its edit history. This led us to build a database system tailored for this usage. It is described in the next chapter.
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Chapter 7

Querying the Edit History of Wikidata

The work presented in this section has been done with Fabian Suchanek and has been demoed at ESWC 2019.

Thomas Pellissier Tanon and Fabian M. Suchanek. "Querying the Edit History of Wikidata". Demo at ESWC 2019. https://doi.org/10. 1007/978-3-030-32327-1_32

Introduction

To be able to implement our mining approach from Section 6.5, we needed to be able to evaluate queries at any time of the Wikidata history. Easy access to the Wikidata edit history is useful also to Wikidata contributors who wish to trace the progress of Wikidata over time, measure the number of contributions by bots, or identify areas of vandalism.

However, the only way to access the full historical revisions of Wikidata is to download a 250GB set of compressed XML dumps, which contain a JSON blob for each revision. This dump is hard to manipulate and even harder to index. It would be prohibitively expensive to create one RDF graph for each of the 700 million revisions, each with billions of triples. If one indexes only the differences between the revisions, one loses the global state at each revision.

In this chapter, we propose a system that smartly indexes the revisions, so that the full history of Wikidata edits can be made available as a SPARQL endpoint. Our endpoint can:

1. Retrieve the diff, i.e., the set of added and/or removed triples, for any Wikidata revision.

2. Evaluate any triple pattern against the global state of Wikidata after a given revision.

3. Retrieve the revisions that have added/removed triples matching a given triple pattern.

With this, we can answer questions such as "How many cities existed in Wikidata across time?", "How many entities were modified exclusively by bots?", or "How were different values for the gender property used across time in Wikidata?". All these queries can be asked in standard SPARQL, without any additions to the language. This model also addresses the requirements of Chapter 6.

Related Work

SPARQL endpoints for versioned RDF datasets have been proposed by several authors. [START_REF] Fernández | Towards Efficient Archiving of Dynamic Linked Open Data[END_REF] first discussed the problem of querying linked data archives. [START_REF] Fernández | Evaluating Query and Storage Strategies for RDF Archives[END_REF] provides an extensive discussion of known solutions. Our work is concerned with an actual implementation of such a versioned RDF store for Wikidata. This causes practical problems of size that have not been considered in previous works.

Several systems allow storing versioned RDF: Quad stores (e.g., [START_REF] Bishop | OWLIM: A Family of Scalable Semantic Repositories[END_REF] and archives (e.g., [START_REF] Fernández | HDTQ: Managing RDF Datasets in Compressed Space[END_REF] could be used to store each triple annotated with their revision. However, this would mean that each triple would have to be stored once for every revision in which it appears. In the case of Wikidata, this would amount to quadrillions of triples to be stored. Pugliese, Udrea, and Subrahmanian, 2008 presented tgrin system that allows annotating RDF triples with a timestamp. However, the system does not provide time range support or, indeed, an available implementation. R&Wbase [START_REF] Sande | R&Wbase: Git for Triples[END_REF] is a wrapper on top of a SPARQL 1.1 endpoint that provides a gitlike system for RDF graphs. However, it stores only the diff between different revisions. Therefore, it does not allow efficient querying of the full graph state at a given point of time. Neumann and Weikum, 2010 presents x-RDF-3X, a SPARQL database that annotates each triple with the timestamp at which it was added or removed. It annotates triples with validity ranges, thus permitting queries for any state of the database. It also provides advanced consistency features. However, by design, it does not allow loading data with already known timestamps or version IDs. Thus, it is not usable in our case. The system v-RDFCSA from Cerdeira-Pena et al., 2016 allows efficient storage and retrieval of versioned triples. However, it does not allow subsequent additions of revisions and does not support revision ranges. Therefore, the system is hard to use with the huge number of revisions that Wikidata brings. OSTRICH [START_REF] Taelman | OSTRICH: Versioned Random-Access Triple Store[END_REF] allows storing version-annotated triples, as well as querying them based on the version ID. It uses an HDT file for storing the base version and then stores a changeset with respect to this initial version. This system is not tailored to the case of Wikidata, where the base version is empty. Thus, the system would have to store the full global state for each revision.

System Overview

Our goal is to provide a SPARQL endpoint that allows querying not just for the differences between Wikidata revisions, but also for the global state after each revision. At the same time, we want to use only existing SPARQL features. For this purpose, we designed the following data model based on RDF 1.1 named graphs [START_REF] Cyganiak | RDF 1.1 concepts and abstract syntax[END_REF]:

Global State Graph: We will have one named graph per revision, which contains the global state of Wikidata after the revision has been saved.

Addition Graph: For each revision, we will have one graph that contains all the triples that have been added by this revision.

Deletion Graph: In the same spirit, we will have one graph for each revision that stores the triples that were removed.

Default Graph: The default graph contains triples that encode metadata about each revision: the revision author, the revision timestamp, the id of the modified entity, the previous revision of the same entity, the previous revision in Wikidata, and the IRIs of the additions, deletions, and global state graphs.

This data model allows us to query both the global state of Wikidata after each revision and the modifications brought by reach revision -without any change of the SPARQL 1.1 semantics or syntax [START_REF] Harris | SPARQL 1.1 Query Language. W3C Recommendation[END_REF]. We use the same schema as the official Wikidata dumps [START_REF] Erxleben | Introducing Wikidata to the Linked Data Web[END_REF].

To store our data model, we cannot just load it as-is into a triple store. The revision graphs alone would occupy exabytes of storage. Indeed, the global state after each Wikidata revision contains billion of triples, and a naive storage would mean to duplicate all of the triples for each revision. Therefore, we implemented our own system. Our system is composed of a storage component able to store triples annotated with a graph name and query them using triple patterns. Then we have a SPARQL evaluator interacting with the storage component using triple patterns.

The storage component is based on RocksDB1 , which we already used in Chapter 5 for YAGO 4. RocksDB is a scalable key-value store, optimized for a mixed workload between query and edits. This choice anticipates the possibility of live updates from Wikidata in the future. We create the following indexes into RocksDB:

Dictionary Indexes: Following a well-known practice in RDF storage systems, we represent every string by an integer id. We use one dictionary index to map the strings to their ids, and another one to map the ids to the strings.

Content Indexes: Each triple (s, p, o) appears in three content indexes. The indexes have as keys the permutations spo, pos, and osp, respectively, and as value a set of revision ranges. Each range is of the form [start, end[, where start is the id of the revision that introduced the triple, and end is the id of the revision that removed it (or +∞ if the triple has not been removed).

Revision indexes: We use two revision indexes, which give the set of triples that have been added or removed by a given revision. Since the Wikidata edits affect only a single entity and usually only a single statement, the number of triples added and removed per edit is small. Therefore, we can easily store all of them in the value part of the key-value store.

Meta indexes: We use several metadata indexes to store, for each revision, its author, the previous revision, etc.

Thanks to the content indexes, it is easy to retrieve for a given triple pattern when the triples have been added and, if relevant, when they have been removed. The indexes can also be used to evaluate a triple pattern against the global state graph, by filtering the results against the revision ranges. This is efficient because out of the 4931M triples that have existed in the Wikidata history as of July 1st, 2018, only 475M has been removed. Therefore, the largest revision contains 90% of the total number of Wikidata triples that ever existed. These indexes allow us to evaluate all possible triple patterns, optionally annotated with a graph name. If the triple pattern targets revision metadata, we use the metadata indexes. If it targets the content triples, we proceed with the following operations on top of the RocksDB indexes:

1. If the graph name is set to an addition graph or a deletion graph, we use the revision indexes to retrieve all the triples that were added or deleted, and we evaluate the triple pattern on them.

2. Otherwise, we do a prefix search in one of the content indexes, building the prefix from the bound parts of the triple pattern and choosing the index that allows us to have the longest prefix, and so the highest selectivity.

(a) If the graph name is set and is a global state graph, we filter the triples that are returned from the prefix search by using the revision range as a filter. (b) Otherwise, we iterate through the matching triples and annotate them with graph names by using, for each triple, the revision range to find the ids of the addition graphs and the deletion graphs in which the triple appears. We do not return the ids of the global state graphs, because a query for the graph identifiers of a single triple pattern could return hundreds of millions of ids.

This storage system allows us to answer queries for a single triple pattern annotated with a graph name. To answer SPARQL queries, we plug our triple pattern evaluator into Eclipse RDF4J2 . This system evaluates an arbitrary SPARQL 1.1 query by repeated calls to our triple pattern evaluator. It supports a wide range of query optimizations, including join reordering with handwritten static cardinality estimations that are based on the structure of the RDF dataset. For example, every revision has exactly a single author, and the number of triples per Wikidata entity is usually small. Due to storage space constraints on the server provided by the Wikimedia Foundation, the facts annotations (qualifiers and references) are not loaded in our demo endpoint3 . We cover the range from the creation of Wikidata to July 1st, 2018. Our demonstration instance stores more than 700M revisions and 390M content triples about 49M items. The RocksDB indexes are using 64Go on disk with the RocksDB gzip compression system, after having compacted the database.

Usage

Our system allows users to query the entire Wikidata edit history. For example, Figure 7.1 asks for the 10 most frequent replacements for the value of the "gender" property. The query retrieves first the set of triples with the gender property (wdt:P21) (Line 2), annotated with the name of addition graphs. Then, it retrieves the names of the deletion graphs for each revision that have seen such additions (Line 3). Finally, it retrieves any deleted triple with the same subject and predicate (Line 4). After that, it uses the usual SPARQL 1.1 features to compute the final result (Lines 1 and 5). Such an analysis yields some interesting insights: First, we can observe that users correct erroneous gender values (such as "man") by their intended variants ("male"). Second, a slightly modified variant of the query allows us to quantify the gender gap in Wikidata over time: while the absolute difference between the number of men and women in Wikidata keeps increasing over time, the relative difference decreases. Finally, a similar query allows us to trace the increasing presence of other sex/gender values, such as "trans-male" or "non-binary" in the dataset.

Conclusion

In this chapter, we proposed a system that efficiently indexes the entire Wikidata edit history, and that allows users to answer arbitrary SPARQL 1.1 queries on it. Our system allows queries on both the revision diffs and the global state of Wikidata after each revision. Our system is available online at https://wdhqs. wmflabs.org. We also provide an extensive help page4 , together with a set of example queries. Between March 2019 and May 2020, it has served more than 2M queries.

However, our endpoint has still a major limitation: updating its contents requires new full Wikidata revisions dumps. These dumps are only released every few months. This prevents us to have speedy updates of the endpoint content and forbids interesting use-cases like vandalism detection and or live suggestions based on the latest user edits. Hence, our main future work is making our endpoint replicate Wikidata edits in real-time using the live edit stream provided by Wikidata.

We have successfully used this system for the approaches presented in the previous chapter to learn how to fix constraint violations. This concludes our efforts at learning to dynamically enforce constraints on a knowledge base.

Chapter 8 Conclusion

Summary

In this thesis, we have studied the correction and completion of knowledge bases. We made three core contributions.

In Part I, we have defined the problem of learning rules from incomplete knowledge bases. We introduced the completeness confidence ranking measure that effectively makes use of the cardinality information contained in the knowledge base. Our new measure has been evaluated on real-world and synthetic knowledge bases, demonstrating significant improvements both with respect to the quality of mined rules and with respect to the predictions that they produce. We have also proposed a method to automatically increase the coverage of cardinality information. This method can be used to improve the efficiency of our new measure.

In Part II, we have presented is YAGO 4, a knowledge base that, during its construction, enforces constraints over the knowledge base by applying simple static repair strategies. This method allowed us to build a large scale knowledge base that can be used with regular OWL reasoners.

In Part III, we aimed at avoiding the loss of data that our static repair strategies induced in YAGO 4. To achieve that, we introduced the problem of learning how to fix constraint violations from a knowledge base history. We have presented two methods to this end. One, CorHist, is based on rule mining. Its advantage is that it can explain its corrections. The other, Bass, is based on neural networks and offers better accuracy. However, it is not able to explain its predictions. An experimental evaluation on Wikidata showed that these two approaches are significantly outperforming static baselines to find the correct correction. We also provided the system as a tool to the Wikidata community, allowing it to fix more than 20k constraints violations.

Outlook

In this thesis, we have shown how constraints can be used in practice to clean knowledge bases. Many research challenges are still open.

The approach used to increase the number of cardinality statements could be expanded to mine rules on numerical values. For example, it could be used to learn that if a country is member of the OCDE then its GDP is higher than a certain threshold, or that all Roman consuls are born before the 10th century.

The work on learning how to correct violations of constraints from past corrections could be extended to textual data. For example, one could try to mine how to fix common spelling mistakes or improve the formatting of written works based on the changes previously done. Another application might be to mine from a source code edit history the common formatting changes and simple bug fixes to automatically suggest them when a contributor opens a code review request.

We hope that, by opening the door to these challenges, our work can contribute to making knowledge bases and other contents cleaner, and thus ultimately ever more useful.

Annexe A Résumé en français

A.1 Introduction

A.1.1 Motivation

Les bases de connaissances sont des ensembles de faits lisibles par une machine. Elles contiennent des entités et des relations décrivant ces entités. Par exemple, une base de connaissances encyclopédique pourrait contenir des entités sur des personnes comme Jean-François Champollion ou des lieux comme Paris, et des relations nommées comme Jean-François_Champollion, schema:homeLocation, Paris pour indiquer que Jean-François Champollion a vécu à Paris. Des bases de connaissances bien connues dans ce domaine sont, entre autres, Wikidata [START_REF] Vrandecic | Wikidata: a free collaborative knowledgebase[END_REF], YAGO [START_REF] Suchanek | Yago: a core of semantic knowledge[END_REF], Freebase [START_REF] Bollacker | Freebase: A Collaboratively Created Graph Database for Structuring Human Knowledge[END_REF], DBpedia [START_REF] Bizer | DBpedia -A Crystallization Point for the Web of Data[END_REF] ou encore le Google Knowledge Graph. Ces bases de connaissances sont utilisées pour afficher des fiches d'information comme sur Wikipédia ou dans les moteurs de recherche Google et Bing. Elles permettent également de répondre directement aux questions des utilisateurs comme avec Alexa ou Siri. Mais les bases de connaissances sont également mises à profit pour d'autres types de contenus et de cas d'utilisation. Par exemple, Amazon et eBay maintiennent des bases de connaissances sur les produits qu'ils vendent et Uber tient une base de connaissances sur les aliments pour aider ses clients à choisir un restaurant.

Certaines bases de connaissances sont très vastes. Par exemple, Wikidata contient 81 millions d'entités 1 et Freebase 39 millions. Certains de ces projets utilisent des logiciels pour construire automatiquement la base de connaissances à partir d'une ou plusieurs sources existantes. Par exemple, DBpedia est construite par un ensemble d'extracteurs à partir du contenu Wikipédia. D'autres utilisent des contributeurs, rémunérés ou bénévoles, pour remplir la base de connaissances. C'est le cas de Wikidata, qui compte plus de 40 000 éditeurs différents par mois.

En conséquence, les bases de connaissances présentent souvent des problèmes de qualité, qui proviennent de bugs dans les pipelines de conversion, d'erreurs de bonne foi ou de vandalisme dans les contenus fournis par des contributeurs. Par exemple, Zaveri, [START_REF] Zaveri | User-driven Quality Evaluation of DBpedia[END_REF] ont constaté que 12% des triplets de DBpedia présentent un problème. Même les bases de connaissances provenant de contributeurs s'appuient souvent de manière significative sur des filières d'importation ou de conservation automatisées. 43% des modifications de Wikidata en mars 2020 ont été effectuées à l'aide d'outils automatisés.

Pour lutter contre ces problèmes, de nombreuses bases de connaissances contiennent un système de contraintes. L'un des types de contraintes le plus courant est d'indiquer que les valeurs d'une propriété donnée doivent avoir un type donné. Par exemple, une base de connaissances pourrait imposer que les valeurs de la propriété schema:birthPlace soient des chaînes de caractères représentant une date. Les contraintes peuvent également être plus complexes comme, par exemple, une personne peut avoir au maximum deux parents (restrictions de cardinalité), une entité ne peut pas être une personne et un lieu en même temps (hypothèse de disjonctions). Certaines de ces contraintes sont maintenues par la base de connaissances. Par exemple, le formalisme des logiques de descriptions exige que les propriétés dont les valeurs sont des littéraux (chaîne de caractères, dates...) doivent être disjointes de celles dont les valeurs sont des entités. Cependant, ces contraintes sont souvent violées dans la pratique. Par exemple, en date du 20 mars 2020, Wikidata contient 1 million de violations de contraintes de type "domaine" et 4,4 millions de violations de contraintes de type "valeur unique". Il est donc nécessaire de disposer d'outils permettant de filtrer ces problèmes dans les bases de connaissances. Il y a également un besoin d'outils qui aident les personnes maintenant la base de connaissances à réparer ces violations de manière automatisée ou semi-automatisée.

Cette thèse fournit de nouvelles approches et techniques pour améliorer l'état de l'art sur cette tâche.

A.1.2 Contenu

Le premier chapitre de cette thèse est consacré aux préliminaires généraux sur les bases de connaissances et l'extraction de règles. Il est résumé dans la section A.2. Le coeur de la thèse est composé de trois parties.

La première partie présente les améliorations apportées au problème de l'extraction de règles. Elle est résumée dans la section A.3. Plus précisément, cette partie présente une nouvelle approche qui améliore l'extraction de règles sur des bases de connaissances incomplètes en utilisant des informations de cardinalité. L'objectif de cette tâche est de permettre l'extraction de règles de meilleure qualité. Celles-ci peuvent ensuite être utilisées pour compléter la base de connaissances ou comme contraintes pour signaler des problèmes dans les données. Notre approche fonctionne en introduisant une nouvelle mesure d'estimation de la qualité des règles, la confiance de complétude. La confiance de complétude prend en compte le nombre d'objets attendus pour des sujets donnés et permet de mieux évaluer la qualité des règles. Nous montrons que cette mesure ne nécessite pas d'informations de cardinalité sur toutes les entités de la base de connaissances pour être efficace. Nous avons évalué cette confiance de complétude à la fois sur des ensembles de données réelles et synthétiques, montrant qu'elle surpasse les mesures existantes à la fois pour la qualité des règles extraites et pour les prédictions formulées par ces règles.

Cette partie présente aussi une approche visant à augmenter le nombre d'informations de cardinalité disponibles, notamment pour améliorer la qualité des règles exploitées en utilisant la confiance de complétude.

Ce Apprentissage de règles. L'apprentissage des règles d'association concerne la découverte de schémas fréquents dans un ensemble de données et la transformation ultérieure de ces schémas en règles.

Definition A.1 (Requête conjonctive). Une requête conjonctive q sur K est de la forme x 1 , p 1 , y 1 ∧ • • • ∧ x m , p m , y m , où les x i et y i sont des variables ou des constantes et les p i sont des identifiants de relation.

La réponse de q sur K est l'ensemble q(K) := {(ν(x 1 ), . . . , ν(x m ), ν(y 1 ), . . . , ν(y m )) | ∀i : ν(x i ), p i , ν(y i ) ∈ K} où ν est une fonction qui met en correspondance les variables et les constantes avec les éléments de K. A.3 Apprentissage de règles à l'aide de cardinalités L'apprentissage des règles est souvent utilisé pour compléter les bases de connaissances. Cependant, comme ces règles sont apprises à partir de données incomplètes, elles peuvent être erronées et peuvent faire des prédictions incorrectes sur des faits manquants. Par exemple, comme nous l'avons vu dans l'exemple A.6, la règle r 1 n'est clairement pas universelle et doit être classée plus bas que la règle r 2 même si la confiance favorise r 1 par rapport à r 2 pour la base de connaissances donnée. Dans Galárraga, Teflioudi et al., 2015, la confiance sous l'hypothèse de complétude partielle, ou confiance PCA, a été proposée comme une amélioration de la mesure de confiance. Elle devine les faits probablement faux en supposant que les données sont généralement ajoutées aux bases de connaissances par lots, c'est-à-dire que si au moins un enfant de Jean est connu, alors très probablement tous les enfants de Jean sont présents dans la base de connaissances. Formellement, la confiance PCA pour une règle r(x, y) : b(x, y) → x, h, y est définie comme Cette hypothèse a été prise en compte pour classer les règles apprises, elle s'est avérée empiriquement valable pour certaines bases de connaissances. Cependant, la confiance PCA traite de manière inappropriée les cas où les arêtes d'une base de connaissances sont manquantes de manière aléatoire. Elle pose aussi des problèmes comme celui présenté dans l'exemple A.7. La question de savoir s'il faut compter l'absence de contradiction comme confirmation des règles par défaut a été examinée dans [START_REF] Doppa | Learning Rules from Incomplete Examples via Implicit Mention Models[END_REF]. Dans Galárraga, Razniewski et al., 2017, où de nouvelles données sur l'exhaustivité ont été tirées d'une base de connaissances en prenant comme source les données d'exhaustivité obtenues par crowd-sourcing. Les déclarations acquises ont été utilisées dans une étape de post-traitement de l'apprentissage des règles pour filtrer les prédictions non conformes. Cependant, ce type de filtrage n'a pas d'impact sur la qualité des règles exploitées et n'empêche pas les prévisions incorrectes pour les cas sur lesquels il n'existe aucune information d'exhaustivité.

Des efforts ont été déployés pour ajouter des informations sur l'exhaustivité aux bases de connaissances [START_REF] Razniewski | But what do we actually know[END_REF][START_REF] Darari | Completeness Statements about RDF Data Sources and Their Use for Query Answering[END_REF]. Cela pourrait se faire en détectant le nombre concret de faits de certains types qui existent dans le monde réel (par exemple, "Einstein a 3 enfants"), ceci en faisant de l'extraction automatique sur le Web, ou par le crowdsourcing [START_REF] Prasojo | Managing and Consuming Completeness Information for Wikidata Using COOL-WD[END_REF][START_REF] Darari | Enabling Fine-Grained RDF Data Completeness Assessment[END_REF][START_REF] Mirza | Cardinal Virtues: Extracting Relation Cardinalities from Text[END_REF]. Ces données fournissent de nombreux indices sur la topologie de la base de connaissances, et révèlent des parties qui devraient être particulièrement ciblées par les méthodes d'apprentissage des règles. Cependant, à ce jour, il n'existe aucun moyen systématique d'utiliser ces informations dans l'apprentissage des règles. Nous nous concentrons donc sur l'amélioration des fonctions de notation des règles en utilisant les informations supplémentaires d'(in-)complétude. Avant d'entrer dans les détails de notre approche, nous discutons de la représentation formelle de ces informations. Exemple A.9. La règle r 2 correspond davantage au monde réel que r 1 et doit donc être préférée à celle-ci. Pour notre nouvelle confiance de complétude, nous obtenons conf comp (r 1 ) = 2 6 et conf comp (r 2 ) = 1 2 , ce qui donne l'ordre souhaité entre les règles, non atteint via les mesures existantes (c.f. les exemple A.6 et A.7).

Dans l'hypothèse du monde fermé conf comp (r) = conf (r) car on a ∀x : miss(h, x) = 0. De même, dans l'hypothèse PCA conf comp (r) = conf pca (r). Ainsi, notre confiance dans l'exhaustivité est une mesure plus générale que la confiance standard et la confiance PCA.

Évaluation. Nous avons expérimenté notre nouvelle confiance de complétude à la fois sur un ensemble de données du monde réel, un sous-ensemble de Wikidata [START_REF] Vrandecic | Wikidata: a free collaborative knowledgebase[END_REF], et un ensemble de données synthétiques, LUBM (Guo, Pan et Heflin, 2005). Nous les avons complétés, en utilisant des règles et l'ontologie LUBM OWL, pour obtenir une approximation de la base de connaissances idéale. Nous avons calculé le facteur de corrélation de Pearson entre le classement des règles possibles obtenu via la confiance, la confiance PCA et la confiance de complétude sur la base de connaissances disponible, et le classement des mêmes règles sur la base de connaissances idéale en utilisant la confiance. Notre confiance de complétude est nettement supérieure aux deux autres confiances sur ces deux ensembles de données.

A.4 Apprentissage de corrections d'une base de connaissances à partir de son historique de modifications

Un moyen d'éviter ou au moins de détecter certains des problèmes dans les données des bases de connaissances est d'imposer des contraintes sur la base de connaissances. Ces contraintes peuvent imposer que certaines informations soient présentes (par exemple, imposer que chaque être humain ait une date de naissance), ou que certaines déclarations ne soient pas absentes (par exemple, s'assurer qu'une personne n'est pas aussi une ville). Dans ce qui suit, nous exprimons les contraintes sous forme de règles. Par exemple Γ 1 (x) : ∃y x, schema:parent, y → x, rdf:type, schema:Person exprime qu'une entité x qui a un parent dans K doit aussi avoir pour type schema:Person. Une contrainte Γ est violée si le corps de Γ correspond à K mais pas la tête. Ici, nous cherchons à apprendre comment réparer les violations de contraintes. Notre but est d'aider les personnes modifiant les bases de connaissances en suggérant comment nettoyer les données localement (en fournissant une solution à une violation de contrainte particulière) ou globalement (en fournissant des règles qui peuvent être automatiquement appliquées à toutes les violations de contraintes d'une forme donnée une fois validées par l'éditeur). Pour ce faire, nous profitons de l'historique d'édition de la base de connaissances. Nous l'utilisons pour exploiter les règles de correction qui expriment comment les différents types de violations de contraintes sont généralement résolus.

À notre connaissance, il s'agit du premier travail qui s'appuie sur les corrections passées des utilisateurs afin d'en deviner de nouvelles. En effet, plusieurs approches récentes ont proposé des méthodes pour détecter le moment où une contrainte est violée, calculer les faits responsables, puis interagir avec l'utilisateur pour savoir comment mettre à jour la base de connaissances. L'objectif est alors de minimiser le nombre de questions auxquelles l'utilisateur doit répondre. Cela se fait de différentes manières, qui incluent la prise en compte des dépendances entre les faits à vérifier ou encore l'interaction entre plusieurs violations de contraintes pour définir des heuristiques afin de choisir la meilleure question à poser à l'utilisateur [START_REF] Bader | QOCO: A Query Oriented Data Cleaning System with Oracles[END_REF][START_REF] Bienvenu | Query-Driven Repairing of Inconsistent DL-Lite Knowledge Bases[END_REF][START_REF] Assadi | Cleaning Data with Constraints and Experts[END_REF][START_REF] Arioua | User-guided Repairing of Inconsistent Knowledge Bases[END_REF]. D'autres approches visant à améliorer la qualité d'une base de connaissances reposent sur les statistiques, le regroupement ou les aspects structurels des bases de connaissances. Paulheim et Bizer, 2014 utilisent les statistiques pour ajouter les types manquants à la base de connaissances, et pour détecter les déclarations erronées. [START_REF] Liang | Graph-Based Wrong IsA Relation Detection in a Large-Scale Lexical Taxonomy[END_REF] exploitent l'observation que les cycles dans la base de connaissances contiennent souvent de mauvaises relations rdf:type. Là encore, d'autres approches [START_REF] Acosta | Detecting Linked Data quality issues via crowdsourcing: A DBpedia study[END_REF] utilisent le crowdsourcing pour détecter les problèmes de qualité des données liées. Mais, contrairement à la nôtre, toutes ces approches ne donnent pas de valeur aux corrections apportées par les utilisateurs dans le passé.

Une règle de correction est de la forme :

r : Γ( x), E( x, y, z) → (M + ( x, y), M -( x, y)) (A.6) où

• Γ( x) est une contrainte qui peut être partiellement instanciée, c'est-à-dire que certaines de ses variables ont été remplacées par des constantes, est une solution qui a résolu la violation { Zeus, schema:gender, masculin } de Γ 0 (masculin) en K 100 . Nous stockons ces informations sous la forme d'un tuple dans l'ensemble de données des corrections passées pertinentes (l'ensemble PCDataset). L'étape finale de l'algorithme supprime les corrections qui ont été inversées. Le résultat est donc l'ensemble des corrections passées pertinentes.

Recherche de règles de corrections. Nous cherchons des règles de correction en adaptant l'algorithme de Galárraga, Teflioudi et al., 2015 à notre contexte, où nous apprenons les règles non pas à partir d'une base de connaissances mais à partir du PCDataset et de l'historique de la base de connaissances. Nous pouvons étendre la définition de support et de support du corps de la règle à notre cas en comptant le nombre de tuples dans le PCDataset correspondant à Γ( a), et, le cas échéant, (M + , M -) est tel que E( x, y, z) a une réponse sur K i avec i l'identifiant de révision qui correspond à la correction passée considérée. Une définition de la confiance en découle.

Notre algorithme prend en entrée le PCDataset, l'historique de la base de connaissances, un seuil de support minimum, un seuil de confiance minimum et un seuil de régularisation θ. Ces seuils sont choisis de manière empirique.

L'algorithme produit des règles de correction. À cette fin, il génère d'abord une règle triviale r 0 pour chaque entrée du PCDataset. Le contexte de cette règle est simplement la partie suppression de la correction passée de la contrainte.

Cette règle triviale est ensuite transformée en plusieurs règles plus générales, que nous appelons règles de base, chacune d'entre elles étant obtenue à partir de r 0 en remplaçant certaines des constantes par des variables. Formellement, l'algorithme utilise toutes les substitutions partielles σ des constantes par des variables fraîches distinctes. Il ne retient que les règles de base qui respectent les seuils de soutien et de confiance minimums.

Dans la deuxième étape, l'algorithme affine progressivement chaque règle en construisant sa partie contexte E( x, y, z). Cela fonctionne de manière similaire à l'algorithme d'extraction de Galárraga, Teflioudi et al., 2015 : Chaque étape d'affinement ajoute un atome construit à partir des triplets de la base de connaissances, en remplaçant le sujet ou l'objet du triplet par une variable qui apparaît dans la règle de base et en conservant l'autre élément constant ou en le remplaçant par une nouvelle variable. Si la règle résultante atteint le seuil minimum de prise en charge et améliore la confiance d'au moins θ, la règle est retenue.

Application des règles de correction. Lorsque toutes les règles ont été extraites, elles sont triées par ordre de confiance décroissant, et, pour les cas d'égalité, à l'aide du soutien (comme cela se fait dans Liu, Hsu et Ma, 1998 pour construire des classificateurs à partir des règles). Cet ensemble de règles forme ensuite un programme qui peut être utilisé pour corriger les violations de contraintes comme suit. Étant donné une violation V d'une contrainte Γ dans K, choisir la première règle r dans le programme qui est pertinente pour Γ (i.e., qui contient [Γ( x)] où Γ( x) est une version partiellement instanciée de Γ), puis vérifier si r peut être appliquée à V. La correction est le résultat de l'application de la règle.

Évaluation. Nous avons mis en place une version légèrement simplifiée de notre approche sur Wikidata [START_REF] Vrandecic | Wikidata: a free collaborative knowledgebase[END_REF]. Nous avons pris en compte un ensemble de 10 types de contraintes de propriété de Wikidata, couvrant 71% d'entre elles. Notre jeu de données se compose d'un ensemble de 700M de révisions de Wikidata, sur lequel nous avons miné plus de 75M de corrections passées. Pour cela, nous avons construit un système de requête pour stocker l'historique des modifications de Wikidata, permettant d'implémenter facilement les requêtes nécessaires pour extraire les corrections passées et pour exécuter notre algorithme d'exploration des règles. Ensuite, nous avons exécuté l'algorithme d'extraction de règles sur 80% des corrections passées et utilisé les 20% restants pour évaluer la précision et le rappel de notre approche. Nous l'avons comparé avec deux approches de référence. La première supprime un triplet du corps des règles de contraintes. La seconde ajoute un triplet pour résoudre la violation si les règles de contrainte ont dans leur tête un seul triplet et que toutes les variables de ce triplet sont connues (s'il y a plusieurs objet possibles, on en choisit un au hasard lors de chaque prédiction). Les résultats de l'évaluation montrent que la précision de notre approche est nettement supérieure aux deux approches de référence.

A.5 Conclusion

A.5.1 Résumé

Dans cette thèse, nous avons étudié la correction et l'enrichissement des bases de connaissances. Nous avons présenté trois contributions.

Dans la première partie, nous avons défini le problème de l'apprentissage des règles à partir de bases de connaissances incomplètes. Nous avons introduit la confiance de complétude qui utilise les informations de cardinalité contenues dans la base de connaissances afin d'estimer la qualité des règles. Notre nouvelle mesure a été évaluée sur des bases de connaissances réelles et synthétiques, démontrant des améliorations significatives tant en ce qui concerne la qualité des règles obtenues que les prévisions qu'elles produisent. Nous avons également proposé une méthode pour augmenter automatiquement le nombre de ces informations de cardinalité.

Cette méthode peut être utilisée pour améliorer l'efficacité de notre nouvelle mesure.

Dans la seconde partie omise dans ce résumé, nous avons présenté YAGO 4, une base de connaissances qui, pendant sa construction, impose des contraintes à la base de connaissances en appliquant des stratégies simples de réparation. Cette méthode nous a permis de construire une base de connaissances à grande échelle qui peut être utilisée avec les raisonneurs OWL.

Dans la troisième et dernière partie, nous avons cherché à éviter la perte de données que l'approche statique de réparation causait dans YAGO 4. Pour y parvenir, nous avons présenté le problème où l'on souhaite apprendre à réparer les violations de contraintes à partir de l'historique d'une base de connaissances. Nous avons proposé deux méthodes à cette fin. La première, CorHist, est basée sur l'exploitation des règles. Son avantage est qu'elle permet d'expliquer les corrections qu'elle propose. L'autre, Bass, est basée sur un réseau de neurones et offre une meilleure précision. Cependant, elle n'est pas capable d'expliquer ses prédictions. Une évaluation expérimentale sur Wikidata a montré que ces deux approches sont nettement plus performantes que les approches statiques pour trouver la bonne correction. Nous avons également fourni le système comme outil à la communauté Wikidata, lui permettant de corriger plus de 20 000 violations de contraintes.

A.5.2 Perspective

Dans cette thèse, nous avons montré comment les contraintes peuvent être utilisées en pratique pour nettoyer les bases de connaissances. De nombreux défis de recherche sont encore ouverts.

L'approche utilisée pour augmenter le nombre de déclarations de cardinalité pourrait être étendue afin d'apprendre des règles sur les valeurs numériques. Par exemple, elle pourrait être utilisée pour apprendre que si un pays est membre de l'OCDE, son PIB est alors supérieur à un certain seuil, ou que tous les consuls romains sont nés avant le 10 e siècle.

Les travaux visant à apprendre comment corriger les violations de contraintes à partir des corrections passées pourraient être étendus aux données textuelles. Par exemple, on pourrait essayer d'étudier comment corriger les fautes d'orthographe courantes ou améliorer la typographie des textes en fonction des modifications apportées précédemment. Une autre application pourrait consister à extraire d'un historique de modification du code source des corrections de bogues simples pour les suggérer automatiquement lorsqu'un contributeur ouvre une demande de révision de code.

Nous espérons qu'en ouvrant la porte à ces défis, ce travail pourra contribuer à rendre les bases de connaissances et autres contenus plus propres, et donc en fin de compte toujours plus utiles. Titre: Maintenance des bases de connaissances à l'aide de contraintes Mots clés: Bases de connaissances, contraintes, règles Résumé: Les bases de connaissances sont des ensembles de faits, souvent sur des sujets encyclopédiques. Elles sont souvent utilisées pour la reconnaissance d'entités nommées, la recherche structurée, la réponse automatique à des questions, etc. Ces bases de connaissances doivent être maintenues, ce qui est une tâche cruciale mais coûteuse. Le sujet de cette thèse est la maintenance automatique de bases de connaissances à l'aide de contraintes. La première contribution de cette thèse est à propos de la découverte automatique de contraintes. Elle améliore les approches classiques d'apprentissage de règles en utilisant des méta-informations de complétude des données. Elle montre que que ces informations permettent d'améliorer de manière significative la qualité des règles trouvées. La seconde contribution est la création d'une base de connaissances, YAGO 4, qui assure le respect d'une série de contraintes en supprimant les faits qui n'y correspondent pas. La troisième contribution est une méthode pour corriger automatiquement les violations de contraintes. Cette méthode utilise l'historique des modifications de la base de connaissances afin de proposer des corrections, ceci à partir de la manière avec laquelle les utilisateurs de la base de connaissances ont déjà corrigé des violations similaires.

Title: Knowledge Base Curation using Constraints Keywords: Knowledge Base, Constraints, Rules Abstract: Knowledge bases are huge collections of primarily encyclopedic facts. They are widely used in entity recognition, structured search, question answering, and other tasks. These knowledge bases have to be curated, and this is a crucial but costly task. In this thesis, we are concerned with curating knowledge bases automatically using constraints. Our first contribution aims at discovering constraints automatically. We improve standard rule mining approaches by using (in-)completeness meta-information. We show that this information can increase the quality of the learned rules significantly. Our second contribution is the creation of a knowledge base, YAGO 4, where we statically enforce a set of constraints by removing the facts that do not comply with them. Our last contribution is a method to correct constraint violations automatically. Our method uses the edit history of the knowledge base to see how users corrected violations in the past, in order to propose corrections for the present.
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  Figure 2.1 -Example knowledge base

  Figure 2.2 -Example knowledge base

  Definition 2.20 (PCA confidence). The PCA confidence is defined for all rules of the form r(x, y) : b(x, y) → h(x, y) where x and y are variables and h a role assertion by: conf pca (r) := supp(r) supp pca (r) where supp pca (r) := |{(x, y) | K |= b(x, y) and ∃y ∈ N I K |= h(x, y )}|

  Example 2.23. If we follow Example 2.19, we have A a r 1 = A ∪ { hasChild (John, Dave), hasChild (Carol, Mary), hasChild (Dave, Dave), hasChild (Carol, Carol), hasChild (Dave, Bob), hasChild (Mary, Dave) }.

  Figure 3.2 -Number of kept rules and their average support for WikidataPeople and LUBM datasets

  Figure 4.1 -Number of (in-)complete statements for generated cardinalities num(p, s), and quality of predicted cardinalities.
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  Figure 5.2 -Algebric operator plan generating the owl:sameAs relations between YAGO and Freebase using the values of the Wikidata property wdt:P646 ("Freebase Id").

  Correct a Knowledge Base from the Edit HistoryMost of the work presented in this section has been done with Camille Bourgaux and Fabian Suchanek and has been published at WWW. 1 Thomas Pellissier Tanon, Camille Bourgaux, and Fabian M. Suchanek. "Learning How to Correct a Knowledge Base from the Edit History". Full paper at WWW 2019. https://doi.org/10.1145/3308558.3313584

T

  = {Human Person, Deity Person} A = { Deity(Zeus), Deity(Rhea), hasGender (Zeus, masculine), hasGender (Rhea, female), hasMother (Zeus, Rhea), hasChild (Rhea, Zeus), Human(Spinoza), hasMother (Spinoza, Marques) } C = { Γ 0 (x) : ∃y hasGender (y, x) → x = male ∨ x = female, Γ 1 (x) : ∃y hasMother (x, y) → Person(x) ∨ Animal (x), Γ 2 (x) : ∃y hasMother (y, x) → Person(x) ∨ Animal (x), Γ 3 (x) : ∃y hasMother (y, x) → hasGender (x, female), Γ 4 (x, y) : hasMother (x, y) → hasChild (y, x) } We say that a knowledge base K satisfies a constraint Γ ∈ C where Γ( x) : b( x) → h( x) if for all x, K |= b( x) =⇒ K |= h( x). Otherwise, K violates Γ. Example 6.3. In our running example, the knowledge base K satisfies Γ 1 since {x | K |= ∃y hasMother (x, y)} = {Zeus, Spinoza} and K |= Person(Zeus) and K |= Person(Spinoza). However, it violates Γ 2 because K |= Person(Marques) ∨ Animal (Marques) while K |= ∃y hasMother (y, Marques).

Algorithm 2

 2 Correction rule mining Input: PCDataset, (K i ) 0≤i≤p , minsup, minconf, θ Output: correction rules 1: // Generate basic rules 2: BasicR := ∅ 3: for all (M + ( a, b), M -( a, b)), Γ( a), V, i ∈ PCDataset do 4:

Figure 6 . 1 -

 61 Figure 6.1 -Network architecture of Bass-RL. d is the vector dimension hyperparameter, k is the max number of triples in the constraint violation, and m is the max number of facts per entity.

  -RL, like CorHist, encoded each constraint by an ID. This does not allow the network to generalize over each constraint, to treat similar constraints similarly,

Figure 6 . 2 -

 62 Figure 6.2 -Bass network architecture when there is just one violation triple. d is the vector dimension hyperparameter, k the max number of triples in the constraint violation, m the max number of facts per entity, and t the max number of string tokens. Additions compared to Bass-RL (Figure 6.1) are in red.

Figure 6

 6 Figure 6.3 -Example of a replacement correction suggested by CorHist for a violation of the constraint Γ(x) = ∃c countryOfCitizenship(x, c) ∧ sexOrGender (x, maleOrg) → false.

Figure 7 . 1 -

 71 Figure 7.1 -Retrieving the most common replacements of a "gender" value.

  Bases de connaissances. Les bases de connaissances représentent l'information sous forme de graphes. Les sommets encodent des entités comme Jean-François Champollion ou la ville de Paris, et les arêtes nommées servent à encoder les relations entre les entités. Ces arêtes sont souvent appelées triplets. Un triplet est composé du sommet de départ, du nom de l'arête et du sommet d'arrivée. Par exemple, Jean-François_Champollion, schema:birthPlace, Paris encode que Jean-François Champollion est né à Paris. La figure A.1 propose un exemple graphique de base de connaissances. On utilisera dans la suite le modèle RDF (Cyganiak et al., 2014) qui formalise ces notions. Le contenu d'une base de connaissances K peut être vu comme un ensemble de triplets. La plupart des grosses bases de connaissances, comme par exemple celles à portée encyclopédique, utilisent l'hypothèse du monde ouvert. Elles supposent que la base de connaissances ne contient concrètement qu'une partie de ce qu'elle devrait idéalement contenir. Dans ce résumé nous utilisons la notation RDF usuelle pour les préfixes d'URIs. Par exemple, schema: est un raccourci pour http://schema.org/.

Figure

  Figure A.1 -Exemple de base de connaissances

  pca (r) := |{(x, y) | (x, y) ∈ b(K) et ∃y ∈ N I x, h, y ∈ K}| Exemple A.7. On obtient conf pca (r 1 ) = 2 4 . En effet, puisque Carol et Dave n'ont pas d'enfants connus dans la base de connaissances, quatre possibles assignations du corps de la règle ne sont pas comptées dans le dénominateur. Nous avons aussi conf pca (r 2 ) = 1 6 , puisque toutes les personnes dont r 2 prévoit qu'elles auront des frères et soeurs ont déjà des frères et soeurs connus dans la base de connaissances.

  Déclarations de cardinalités. Nous représentons les informations de complétude en utilisant des déclarations de cardinalité qui indiquent le nombre absolu d'objets pour une certaines relation et un certain sujet dans la base de connaissances idéale représentant le monde réel K i . Plus précisément, nous définissons la fonction partielle num qui prend comme entrée un prédicat p et une constante s et qui produit un nombre correspondant au nombre de faits dans K i sur p avec s comme premier argument :num(p, s) := |{o | s, p, o ∈ K i }| (A.2)Ces déclarations de cardinalité peuvent être obtenues à l'aide de techniques d'extraction sur le web[START_REF] Mirza | Cardinal Virtues: Extracting Relation Cardinalities from Text[END_REF]. Avec ces déclarations, il est également possible d'encoder des cardinalités sur le nombre de sujets pour un prédicat et un objet donnés, à condition que des relations inverses puissent être exprimées dans la base de connaissances. Naturellement, le nombre de faits manquants pour un p et s donné peut être obtenu par : miss(p, s) := num(p, s) -|{o | s, p, o ∈ K a }| (A.3) Exemple A.8. Considérons la base de connaissances de la figure A.1 et les déclarations de cardinalité suivantes pour celle-ci :num(schema:children,John) = num(schema:children, Mary) = 3 num(schema:children, Alice) = 1 num(schema:children, Carol) = num(schema:children, Dave) = 0 num(:sibling, Bob) = 3 num(:sibling, Alice) = num(:sibling, Carol) = 2 num(:sibling, Dave) = 2 Nous avons alors, par exemple : miss(schema:children, Mary) = miss(schema:children, John) = 1 Il est possible d'utiliser l'extraction de règles pour compléter l'ensemble des déclarations de cardinalité disponibles. Cela peut être fait en créant de nouveaux faits p ≤k (s) et p ≥k (s) qui indiquent respectivement que num(p, s) ≤ k et num(p, s) ≥ k. Cette méthode est présentée de manière plus détaillée dans le chapitre 4. Confiance de complétude. Nous proposons de nous appuyer explicitement sur des informations de complétude pour déterminer s'il convient ou non de considérer une instance comme un contre-exemple pour une règle donnée. Pour ce faire, nous définissons d'abord un indicateur pour une règle r(x, y) : b(x, y) → x , h, y , reflétant le nombre de nouvelles prédictions faites par r dans les parties incomplètes de la base de connaissances : npi (r) := x min(|{y | x, h, y ∈ K r \K}|, miss(h, x)) (A.4) 140 Notez que K r est la complétion de K en appliquant la règle r et que la sommation est faite exactement sur les entités pour lesquelles miss est défini. L'exploitation de cet indicateur supplémentaire pour r(x, y) : b(x, y) → x, h, y permet de définir la confiance de complétude : conf comp (r) := supp(r) supp(b) -npi (r) (A.5)
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Table 3 .

 3 1 -Example of a good and a bad rule mined from WikidataPeople with global ratio of 0.5

	Rule r	conf (r) conf pca (r) conf comp (r)
	hasSibling(x, y) ∧ hasSibling(y, z)			
	→ hasSibling(x, z)	0.10	0.10	0.89
	hasMother (x, y) ∧ hasSpouse(y, z)			
	→ hasStepParent(x, z)	0.0015	0.48	0.0015

Table 5

 5 

	.1 -Schema and mapping statistics
	Item	Number
	Schema.org classes	235
	Bioschemas.org classes	6
	Object properties	100
	Datatype properties	41
	Node shapes	49
	Property shapes	217
	Domain constraints	217
	Object range constraints	132
	Datatype range constraints	57
	Regex constraints	21
	Disjoint constraints	18

Table 5 .

 5 2 -Size statistics for YAGO 4 in the flavors Full (F), Wikipedia (W), and English Wikipedia (E), Wikidata, DBpedia (obtained from the DBPedia SPARQL server on 2020-03-04) and Yago 3.0.2. The entire YAGO 4 knowledge base, as well as all previous versions and the logo, can be downloaded from the Web page. YAGO 4 is available under a Creative Commons Attribution-ShareAlike License. The reason for this choice is that, while Wikidata is in the public domain, schema.org is under a Creative Commons Attribution-ShareAlike License. 11Source Code. We have released the source code for constructing YAGO 4 on GitHub at https://github.com/yago-naga/yago4 under the GNU GPL v3+ license.SPARQL Endpoint. YAGO 4 comes with a responsive SPARQL endpoint, which can be used as an API or interactively. The URL of the endpoint is https://yago-knowledge.org/sparql/query. The YAGO URIs are also all dereferenceable, thus complying with the Semantic Web best practices.

	YAGO F YAGO W YAGO E Wikidata DBpedia YAGO 3
	Classes	10124	10124	10124	2.4M	484k	475k
	Classes from Wikidata	9883	9883	9883	2.4M	222	0
	Relations	143	143	143	7k	3k	102
	Individuals	67M	15M	5M	78M	5M	5M
	Labels	303M	137M	66M	371M	22M	32M
	Descriptions	1399M	139M	50M	2146M	12M	69k
	Aliases	68M	21M	14M	71M	0	9M
	rdf:type	70M	16M	5M	77M	114M	17M
	Facts	343M	48M	20M	974M	131M	10M
	Avg. # facts per entity	5.1	3.2	4	12.5	26	2
	sameAs to Wikidata	67M	15M	5M	N.A.	816k	0
	sameAs to DBpedia	5M	5M	5M	0	N.A.	4M
	sameAs to Freebase	1M	1M	1M	1M	157k	0
	sameAs to Wikipedia	43M	43M	26M	66M	13M	5M
	Fact annotations	2.5M	2.2M	1.7M	220M	0	3M
	Dump size	60GB	7GB	3GB	127GB	99GB	2GB

Table 6 .

 6 2 -Evaluation of the correction rules mined by Bass and CorHist and comparison with the baselines. Best F scores in bold.

			Micro average	Macro average
	Constraint type		Prec. Rec.	F	Prec. Rec.	F
	Type	add	0.53 0.17 0.26 0.28 0.10 0.14
		delete	0.04 0.04 0.04 0.08 0.08 0.08
		CorHist	0.86 0.75 0.80 0.89 0.34 0.49
		Bass	0.92 0.79 0.85 0.83 0.36 0.50
	Value type	add	0.20 0.07 0.10 0.35 0.11 0.16
		delete	0.01 0.01 0.01 0.04 0.04 0.04
		CorHist	0.70 0.63 0.66 0.81 0.43 0.56
		Bass	0.78 0.69 0.73 0.70 0.28 0.40
	One-of	delete	0.27 0.27 0.27 0.43 0.43 0.43
		CorHist	0.84 0.72 0.78 0.84 0.34 0.48
		Bass	0.86 0.71 0.78 0.77 0.26 0.39
	Item requires	add	0.99 0.11 0.20 0.92 0.13 0.22
	statement	delete	0.02 0.02 0.02 0.07 0.07 0.07
		CorHist	0.85 0.36 0.51 0.94 0.19 0.32
		Bass	0.89 0.35 0.50 0.76 0.17 0.28
	Value requires	delete	0.02 0.02 0.02 0.09 0.09 0.09
	statement a	CorHist	0.90 0.69 0.78 0.89 0.39 0.55
		Bass	0.98 0.75 0.85 0.72 0.32 0.44
	Conflict with	delete	0.39 0.39 0.39 0.44 0.44 0.44
		CorHist	0.87 0.84 0.86 0.83 0.46 0.59
		Bass	0.91 0.86 0.88 0.77 0.71 0.74
	Inverse/Sym.	add	0.91 0.91 0.91 0.82 0.82 0.82
		delete	0.07 0.07 0.07 0.11 0.11 0.11
		CorHist	0.94 0.92 0.93 0.90 0.73 0.81
		Bass	0.97 0.94 0.95 0.87 0.58 0.69
	Single value	delete	0.45 0.45 0.45 0.42 0.42 0.42
		CorHist	0.55 0.50 0.53 0.74 0.23 0.36
		Bass	0.74 0.64 0.69 0.60 0.52 0.56
	Distinct values	delete	0.55 0.55 0.55 0.45 0.45 0.45
		CorHist	0.58 0.57 0.57 0.80 0.26 0.39
		Bass	0.59 0.56 0.57 0.48 0.43 0.46
	Total	add	0.46 0.14 0.22 0.33 0.11 0.16
		delete	0.24 0.24 0.24 0.22 0.22 0.22
		CorHist-min 0.80 0.59 0.67 0.89 0.26 0.40
		CorHist	0.75 0.64 0.69 0.85 0.30 0.44
		Bass-RL	0.77 0.65 0.70 0.64 0.34 0.44
		Bass	0.80 0.68 0.73 0.69 0.39 0.49
	a				

Table 6 .

 6 3 -Bass ablation study results.

	Micro average	Macro average

Table 6 .

 6 4 -Human evaluation of the suggested corrections.

	Constraint type	Suggested "Apply" "Wrong" Approval
	Type	9908	252	312	0.45
	Value type	2374	195	208	0.48
	One-of	239	14	47	0.23
	Item requires stm.	41	8	32	0.2
	Value requires stm.	1024	790	178	0.82
	Conflict with	3254	1717	203	0.89
	Inverse/Symmetric	28138	20247	1720	0.92
	Single value	3264	41	71	0.37
	Distinct values	921	8	23	0.26
	All	49163	23272	2794	0.89

  travail a été publié à la conférence ISWC 2017 où il a été nominé pour le prix du meilleur article écrit par un étudiant. Une version abrégée de l'article a été présentée à IJCAI 2018 : Thomas Pellissier Tanon, Daria Stepanova, Simon Razniewski, Paramita Mirza, and Gerhard Weikum. "Completeness-Aware Rule Learning from Knowledge Graphs". Article de recherche à ISWC 2017. https://doi. La seconde partie de cette thèse présente une approche basée sur l'application statique de contraintes. Plus précisément, elle présente YAGO 4, une base de connaissances qui est essentiellement une version plus simple et plus propre de Wikidata. Nous avons construit cette base de connaissances en utilisant une approche déclarative et un pipeline d'application de contraintes. YAGO 4 peut être considéré comme un exemple de base de connaissances qui assure sa qualité en filtrant les violations de contraintes. Cette seconde partie est omise dans ce résumé. Ce travail a été publié comme ressource à la conférence ESWC 2020 : Thomas Pellissier Tanon, Gerhard Weikum, and Fabian M. Suchanek. "YAGO 4 : A Reason-able Knowledge Base". Article "ressource" à ESWC Thomas Pellissier Tanon et Lucie-Aimée Kaffee. "Property Label Stability in Wikidata : Evolution and Convergence of Schemas in Collaborative Knowledge Bases". Article court lors du WikiWorkshop qui a eu lieu à l'occasion de la conférence WWW 2018. https://doi.org/10.1145/ 3184558.3191643 J'ai également aidé un doctorant de l'équipe, Thomas Rebele, dans son travail portant sur l'exécution Datalog avec l'interpréteur de commandes Bash. J'ai formalisé le problème et fourni un convertisseur entre Datalog et l'algèbre relationnelle. Notre méthode permet d'analyser de grandes données tabulaires avec Datalog -sans qu'il soit nécessaire d'indexer les données. La requête Datalog est traduite en Bash Unix et peut être exécutée dans un shell. Nos expérimentations ont montré que, pour le cas d'utilisation du prétraitement des données, notre approche est compétitive par rapport aux systèmes de pointe en termes d'évolutivité et de rapidité, tout en ne nécessitant qu'un terminal Bash sur un système Unix. Ce travail a été publié durant la conférence ISWC : Thomas Rebele, Thomas Pellissier Tanon, and Fabian M. Suchanek. "Bash Datalog : Answering Datalog Queries with Unix Shell Commands". Article de recherche à ISWC 2018. https://doi.org/10.
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As of April 10th,

For brevity we do not recall all OWL

DL formulas and axiom elements. They are all described in[START_REF] Motik | OWL 2 Web Ontology Language Structural Specification and Functional-Style Syntax[END_REF] 

See Motik, Patel-Schneider, and Grau, 2012 for the full semantics of all OWL 2 DL formulas.

See Motik, Patel-Schneider, and Grau, 2012 for the semantic of all OWL 2 DL axioms.

Some rule quality measures presented in the ISWC paper are omitted here to focus on my personal contribution.

The lift of a rule r( x) = b( x) → h( x) is defined by lift(r) = supp(b∧h) supp(b)•supp(h) .

The source code and all the data are available at https://github.com/Tpt/CARL.

hasFather , hasMother , hasStepParent, hasSibling, hasSpouse, hasChild , hasBirthPlace, hasDeathPlace, and hasNationality

see https://github.com/Tpt/CARL/tree/master/eval/wikidata for details

Head coverage is the ratio of the number of predicted facts that are in K a over the number of facts matching the rule head.

All the numbers given in the chapter about Wikidata are valid as of Feb.

24, 2020. 2 Wikidata does not have a strong concept of a "class"; we use this term to denote entities that have superclasses (i.e., appear as subject of "subclass of" triples).

https://www.lod-cloud.net/

https://www.w3.org/community/schemaorg/

https://bioschemas.org

We follow the normalization suggested by RFC 2986 Section 6.2.

These semantics names are taken from ongoing discussions about the formalization of the RDF* specification: https://lists.w3.org/Archives/Public/public-rdf-star/2019Aug/ 0001.html

https://www.mediawiki.org/wiki/Wikibase/Indexing/RDF_Dump_Format#Truthy_ statements

https://www.rust-lang.org/

https://rocksdb.org/

https://schema.org/docs/terms.html

HermiT was unable to load the "Full" flavor due to a memory overflow, but it contains the same taxonomy and the same constraints as the "English Wikipedia" flavor.

The formalization of constraints in description logics presented in the paper is omitted here to only focus on my personal contribution. For this reason, some parts of this thesis (in particular Section 6.3) differ significantly from the conference version of this work.

Available at https://github.com/Tpt/corhist.

This implementation is not publicly available yet because of the double-blind requirement of the peer-review process of ISWC 2020.

Available at https://tools.wmflabs.org/wikidata-game/distributed/#game=43.

The "Bass" name derives from "CorHist" because a bass is a singer with a "deep" voice, and "chorist" is an old English word for "singer".

A dense layer with non-linearity f is a function X → f (M • X) where X is a d dimensional vector and M a matrix of dimensions d × d

This function is defined as ReLU (x) = max(0, x) applied to each vector term.

The softmax function is defined by σ(x i ) = e x i D j=1 e x j for all i ∈ {1, . . . , D} if there are D possible classes.

Using a new IRI if there is no inverse property of p i already in the knowledge base.

https://github.com/Tpt/corhist

https://rocksdb.org/

http://rdf4j.org/

https://wdhqs.wmflabs.org

https://www.wikidata.org/wiki/Wikidata:History_Query_Service

Les chiffres sont à jour en date du 10 avril
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) est la correction elle-même, une paire d'ensembles d'au plus un triplet où M + ( x, y) est l'ensemble des triplets qui doivent être ajoutés à la base de connaissances et M -( x, y) l'ensemble des triplets qui doivent être supprimés,

• E( x, y, z) est un ensemble de triplets avec des variables et des constantes appelé le contexte de la violation.

Une règle de correction peut être appliquée à une base de connaisance K lorsqu'il existe des n-uplets de constantes a, b tels que K viole la contrainte Γ( a) et ∃ z E( a, b, z) ⊆ K. Le résultat de l'application de la règle est alors la correction

Extractions des anciennes corrections. Nous allons maintenant expliquer notre algorithme d'extraction des anciennes corrections depuis l'historique de modifications à l'aide d'un exemple : Considérons la contrainte Γ 0 (x) = ∃y y, schema:genre, x → x = schema:Male ∨ x = schema:Female. Supposons que Zeus, schema:gender, masculin a été ajouté entre K 1 et K 2 , mais a ensuite été remplacé par Zeus, schema:gender, schema:Male entre la version K 100 et la version K 101 .

Le premier objectif de l'algorithme est de découvrir que la suppression de Zeus, schema:gender, masculin entre K 100 et K 101 (dans le cadre du remplacement) peut faire partie d'une correction passée pertinente. Nous appelons cette suppression un début de correction. La recherche de débuts de corrections a l'avantage de réduire considérablement l'espace de recherche par rapport au fait de calculer les violations de contraintes pour toutes les contraintes sur toutes les versions de la base de connaissances.

Pour trouver efficacement ces débuts de correction, la première étape de l'algorithme précalcule pour chaque contrainte un ensemble de motifs de modification atomique auxquels les débuts de correction possibles correspondraient. Dans l'exemple, il n'y aurait qu'un seul motif : le motif de suppression (?, ?, schema:gender, ? ), où ? peut être n'importe quoi de sorte qu'il corresponde à la fois à la suppression de ?, schema:gender, ? et à ses remplacements.

La deuxième étape de l'algorithme vérifie, pour chaque début de correction, si elle a résolu une violation de contrainte dans le passé -c'est-à-dire si K i contient certaines violations de certaines instances de contraintes qui ne sont pas dans K i+1 . Si c'est le cas, la modification entre K i et K i+1 est une solution qui a résolu ces violations dans K i . Dans l'exemple, nous aurions trouvé la violation Zeus, schema:gender, masculin de Γ 0 (masculin) dans K 100 , qui n'est pas dans K 101 . Nous aurions donc extrait que ( Zeus, schema:gender, schema:Male , Zeus, schema:gender, masculin )