
HAL Id: tel-03102638
https://theses.hal.science/tel-03102638

Submitted on 7 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Knowledge base curation using constraints
Thomas Pellissier-Tanon

To cite this version:
Thomas Pellissier-Tanon. Knowledge base curation using constraints. Databases [cs.DB]. Institut
Polytechnique de Paris, 2020. English. �NNT : 2020IPPAT025�. �tel-03102638�

https://theses.hal.science/tel-03102638
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
0I

P
PA

T0
25 Knowledge Base Curation

using Constraints
Thèse de doctorat de l’Institut Polytechnique de Paris

préparée à Télécom Paris

École doctorale n◦626
École doctorale de l’Institut Polytechnique de Paris (ED IP Paris)

Spécialité de doctorat: Informatique

Thèse présentée et soutenue à Palaiseau, le 7 septembre 2020, par

THOMAS PELLISSIER TANON

Composition du Jury :

Serge Abiteboul
Directeur de recherche émérite, INRIA (DI ENS) Examinateur

Antoine Amarilli
Maître de conférence, Télécom Paris Co-encadrant de thèse

Laure Berti-Equille
Directeur de recherche, IRD Présidente et Rapporteure

Markus Krötzsch
Professeur, TU Dresden Rapporteur

Nathalie Pernelle
Professeur, Université Sorbonne Paris Nord Examinatrice

Simon Razniewski
Senior researcher, Max Planck Institute for Informatics Examinateur

Fabian Suchanek
Professeur, Télécom Paris Directeur de thèse

Danai Symeonidou
Chargé de recherche, INRA Examinatrice

Knowledge Base Curation using Constraints

Thomas Pellissier Tanon

September 7th, 2020

2

Abstract

Knowledge bases are huge collections of primarily encyclopedic facts. They are
widely used in entity recognition, structured search, question answering, and other
tasks. These knowledge bases have to be curated, and this is a crucial but costly
task. In this thesis, we are concerned with curating knowledge bases automatically
using constraints.

Our first contribution aims at discovering constraints automatically. We
improve standard rule mining approaches by using (in-)completeness meta-
information. We show that this information can increase the quality of the learned
rules significantly.

Our second contribution is the creation of a knowledge base, YAGO 4, where
we statically enforce a set of constraints by removing the facts that do not comply
with them.

Our last contribution is a method to correct constraint violations automatically.
Our method uses the edit history of the knowledge base to see how users corrected
violations in the past, in order to propose corrections for the present.

3

4

Remerciements

Tout d’abord, j’aimerais remercier mes directeurs de thèse Fabian Suchanek et
Antoine Amarilli pour leur soutien durant ces trois années de thèse. Ce travail
n’aurait pas été possible sans eux. Merci beaucoup pour m’avoir laissé choisir et
conduire les directions dans lesquelles mener les travaux présentés dans cette thèse,
tout en vous rendant très disponibles pour m’aider et me guider.

Merci tout spécialement à Fabian pour avoir relu et réécrit bon nombre de
mes articles en supportant avec une patience admirable mes bien trop nombreuses
fautes d’anglais.

Merci à mes rapporteurs, Laure Berti-Equille et Markus Krötzsch pour le temps
passé à relire cette thèse. Merci à tous les membres de mon jury pour avoir accepté
d’y participer.

Merci à toutes les personnes avec qui j’ai collaboré sur les travaux présentés
dans cette thèse. Tout spécialement à Gerhard Weikum et Daria Stepanova qui
m’ont accueilli pour un stage au Max Planck Institute for Informatics. Sans oublier
Camille Bourgaux dont l’aide m’a été très précieuse. Mais aussi un grand merci
à Simon Razniewski, Paramita Mirza Thomas Rebele et Lucie-Aimée Kaffee avec
qui j’ai eu le plus grand plaisir à collaborer.

Merci aussi à Denny Vrandečić, Serge Abiteboul, Eddy Caron, Pierre Senellart
et David Montoya pour m’avoir encadré avant cette thèse et permis de mûrir ce
projet.

Merci aux membres de l’équipe DIG pour les bons moments passés ensemble.
Entre autres, à Albert, Armand, Arnaud, Camille, Etienne, Favia, Jacob, Jean-
Benoît, Jean-Louis, Jonathan, Julien, Julien, Louis, Marc, Marie, Maroua, Mauro,
Mikaël, Miy-oung, Mostafa, Nathan, Ned, Oana, Pierre-Alexandre, Quentin, Tho-
mas, Thomas et Ziad.

Merci enfin à ma famille pour tout le soutien qu’elle m’a donné durant ces
trois années. Merci surtout à Mélissa pour son soutien sans faille malgré les trop
nombreuses heures décalées passées à travailler.

5

6

Contents

1 Introduction 11
1.1 Motivation . 11
1.2 Presented Contributions . 12
1.3 Other works . 14

2 Preliminaries 17
2.1 Knowledge bases . 17
2.2 Queries . 21
2.3 Rules and Rule Learning . 22

I Mining Constraints 27

3 Completeness-aware Rule Scoring 29
3.1 Introduction . 29
3.2 Related Work . 31
3.3 Approach . 33
3.4 Evaluation . 38
3.5 Conclusion . 43

4 Increasing the Number of Numerical Statements 45
4.1 Introduction . 45
4.2 Approach . 46
4.3 Evaluation . 47
4.4 Conclusion . 49

II Enforcing Constraints Statically 51

5 YAGO 4: A Reason-able Knowledge Base 53
5.1 Introduction . 53

7

5.2 Related Work . 55
5.3 Design . 57

5.3.1 Concise Taxonomy . 57
5.3.2 Legible Entities and Relations 58
5.3.3 Well-Typed Values . 60
5.3.4 Semantic Constraints . 60
5.3.5 Annotations for Temporal Scope 63

5.4 Knowledge Base . 64
5.4.1 Construction . 64
5.4.2 Data . 65
5.4.3 Access . 66

5.5 Conclusion . 68

III Enforcing Constraints Dynamically 71

6 Learning How to Correct a Knowledge Base from the Edit His-
tory 73
6.1 Introduction . 73
6.2 Related Work . 74
6.3 Constraints . 77
6.4 Corrections . 79
6.5 Extraction of the Relevant Past Corrections 82
6.6 Correction Rule Mining . 85
6.7 Bass . 88

6.7.1 Bass-RL . 89
6.7.2 Bass . 93

6.8 Experiments on Wikidata . 95
6.8.1 Wikidata . 95
6.8.2 Dataset Construction . 96
6.8.3 Implementation of the Approaches 99
6.8.4 Evaluation against the Test Set 102
6.8.5 Bass Ablation Study . 105
6.8.6 User Evaluation . 107

6.9 Conclusion . 108

7 Querying the Edit History of Wikidata 111
7.1 Introduction . 111
7.2 Related Work . 112
7.3 System Overview . 113
7.4 Usage . 115

8

7.5 Conclusion . 116

8 Conclusion 117
8.1 Summary . 117
8.2 Outlook . 118

Bibliography 119

A Résumé en français 131
A.1 Introduction . 131

A.1.1 Motivation . 131
A.1.2 Contenu . 132
A.1.3 Autres travaux . 134

A.2 Préliminaires . 136
A.3 Apprentissage de règles à l’aide de cardinalités 138
A.4 Apprentissage de corrections d’une base de connaissances à partir

de son historique de modifications 141
A.5 Conclusion . 145

A.5.1 Résumé . 145
A.5.2 Perspective . 146

9

10

Chapter 1

Introduction

1.1 Motivation

Knowledge bases (KBs) are sets of machine-readable facts. They contain entities
and relations about them. For example an encyclopedic knowledge base could
contain entities about people like Jean-François Champollion or places like Paris,
and named relations like livedIn(Jean-François_Champollion, Paris) to state
that Jean-François Champollion lived in Paris. Well-known knowledge bases in this
area include Wikidata (Vrandecic and Krötzsch, 2014), YAGO (Suchanek, Kasneci,
and Weikum, 2007), Freebase (Bollacker et al., 2008), DBpedia (Bizer et al., 2009)
or the Google Knowledge Graph. Such knowledge bases are used to display fact
sheets like in Wikipedia or in the Google and Bing search engines. They are also
used to directly answers user questions like in Alexa or Siri. But knowledge bases
are also used for other kinds of contents and use cases. For example, Amazon and
eBay maintain knowledge bases of the products they sell and Uber maintains a
food knowledge base to help its customers choose a restaurant.

Some knowledge bases are very large. For example, Wikidata contains 81M
entities1 and Freebase 39M. Some of these projects use software pipelines to build
the knowledge base automatically from one or multiple existing sources. For ex-
ample, DBpedia is built by a set of extractors from Wikipedia content. Others are
using a crowd of contributors, paid or volunteer, to fill the knowledge base. This
is the case of Wikidata, which has more than 40k different editors per month.

As a consequence, knowledge bases often exhibit quality problems, originating
from edge cases in the conversion pipelines, good-faith mistakes, or vandalism in
the crowd-sourced content. For example Zaveri, Kontokostas, et al., 2013 found
that 12% of the DBpedia triples have some kind of issue. Even crowd-sourced
knowledge bases often rely significantly on automated importation or curation

1As of April 10th, 2020.

11

pipelines. 43% of Wikidata edits in March 2020 have been done using automated
tools.

To fight such problems, many knowledge bases contain a constraint system.
One of the most basic kinds of constraint is stating that the values of a given
property should have a given type. For example, a knowledge base could enforce
that the values of the birthPlace property should be strings representing a date.
Constraints can also be more complex stating e.g., that a person can have at most 2
parents (cardinality restrictions) or that an entity cannot be a person and a place
at the same time (disjunctions). Some of these constraints are enforced by the
knowledge base. For example, the OWL formalism itself requires that properties
whose values are literals (string, dates...) have to be disjoint from the ones whose
values are entities. However, these constraints are often violated in practice. For
example, as of March 20th, 2020, Wikidata has 1M “domain” constraint violations
and 4.4M “single value” constraint violations. Thus, there is a need for tools to
filter out such problems from the knowledge base. There is also a need for tools
that help the knowledge base curators repair these violations in an automated or
semi-automated way.

This thesis provides some new approaches and techniques to improve the state
on the art on this complex task.

1.2 Presented Contributions

The first chapter of this thesis, Chapter 2, presents general preliminaries on knowl-
edge bases and rule mining. The main work is composed of 3 parts.

Part I, presents improvements to the rule mining problem. More precisely,
Chapter 3 presents a novel approach that improves rules mining over incomplete
knowledge bases by making use of cardinality information. This allows mining
rules of higher quality. These can then be used in order to complete the knowl-
edge base or as constraints to flag problems in the data. Our approach works by
introducing a new rule quality estimation measure, the completeness confidence.
The completeness confidence takes into account the number of expected objects
for given subjects and predicates to better assess the quality of the rules. We
show that this measure does not require cardinality information on all the knowl-
edge base entities to be effective. We evaluated this completeness confidence both
on real-world and synthetic datasets, showing that it outperforms existing mea-
sures both with respect to the quality of the mined rules and the predictions they
produce.

Chapter 4 presents an approach to increase the number of available cardinality
metadata, especially to improve the quality of the rules mined using the complete-
ness confidence.

12

The content of these two chapters was published at ISWC 2017 where it was
nominated for the best student paper award. An invited short version of the paper
has been presented at IJCAI 2018:

Thomas Pellissier Tanon, Daria Stepanova, Simon Razniewski, Paramita
Mirza, and Gerhard Weikum. “Completeness-Aware Rule Learning from
Knowledge Graphs”. Full paper at ISWC 2017. https://doi.org/10.
1007/978-3-319-68288-4_30

Thomas Pellissier Tanon, Daria Stepanova, Simon Razniewski, Paramita
Mirza, and Gerhard Weikum. “Completeness-aware Rule Learning from
Knowledge Graphs”. Invited paper at IJCAI 2018. https://doi.org/
10.24963/ijcai.2018/749

Part II of this thesis presents an approach of static constraint enforcement.
More precisely, it presents YAGO 4, a knowledge base is basically a simpler and
cleaner version of Wikidata. We built this knowledge base using a declarative
mapping and constraint enforcement pipeline. YAGO 4 can be seen as an example
of a knowledge base that ensures quality by filtering out constraint violations. This
work has been published as a resource paper at ESWC 2020:

Thomas Pellissier Tanon, Gerhard Weikum, and Fabian M. Suchanek.
“YAGO 4: A Reason-able Knowledge Base”. Resource paper at ESWC
2020. https://doi.org/10.1007/978-3-030-49461-2_34

Part III presents contributions to the task of dynamically learning how to
enforce constraints. Chapter 6 discusses a novel problem: learning how to fix
constraint violations using the edit history of a knowledge base. We present a for-
malism of the problem and an algorithm to extract “past corrections” of constraint
violations from the knowledge base history. To solve this problem, the chapter
suggests two different approaches: one based on rule mining and the other one
using neural networks, the latter providing better accuracy but no explanation of
its predictions. We validated both approaches experimentally on Wikidata, show-
ing substantial improvements over baselines. This work has been presented at
TheWebConf 2019. The neural network approach is currently under review:

Thomas Pellissier Tanon, Camille Bourgaux, and Fabian M. Suchanek.
“Learning How to Correct a Knowledge Base from the Edit History”. Full
paper at WWW 2019. https://doi.org/10.1145/3308558.3313584

13

https://doi.org/10.1007/978-3-319-68288-4_30
https://doi.org/10.1007/978-3-319-68288-4_30
https://doi.org/10.24963/ijcai.2018/749
https://doi.org/10.24963/ijcai.2018/749
https://doi.org/10.1007/978-3-030-49461-2_34
https://doi.org/10.1145/3308558.3313584

Thomas Pellissier Tanon and Fabian M. Suchanek. “Neural Knowledge
Base Repairs”. Under review at ISWC 2020.

Chapter 7 is an annex of the previous chapter. It presents a system we imple-
mented to query the edit history of Wikidata efficiently. It was used to extract
the data used to evaluate the approaches presented in the previous chapter. This
work has been demoed at ESWC 2019:

Thomas Pellissier Tanon and Fabian M. Suchanek. “Querying the Edit
History of Wikidata”. Demo at ESWC 2019. https://doi.org/10.
1007/978-3-030-32327-1_32

1.3 Other works

During my Ph.D., I contributed to some other works that are not presented in this
thesis.

I presented my master thesis at the Linked Data on The Web workshop. This
work was done with David Montoya under the supervision of Serge Abiteboul,
Pierre Senellart, and Fabian M. Suchanek. The master thesis was about building
a knowledge integration platform for personal information. This system is able
to synchronize in both directions from datasources such as emails, calendars, and
contact books. It also aligns and enriches the data. This work was also demoed
at CIKM:

David Montoya, Thomas Pellissier Tanon, Serge Abiteboul, Pierre Senel-
lart, and Fabian M. Suchanek. “A Knowledge Base for Personal Infor-
mation Management”. Paper at the LDOW workshop collocated with
WWW 2018. http://ceur-ws.org/Vol-2073/article-02.pdf

David Montoya, Thomas Pellissier Tanon, Serge Abiteboul, and Fabian
M.Suchanek. “Thymeflow, A Personal Knowledge Base with Spatio-
temporal Data”. Demo at CIKM 2016. https://doi.org/10.1145/
2983323.2983337

I also published an earlier work on using grammatical dependencies for question
answering over knowledge bases. This work was demoed at ESWC and the dataset
to train such systems has been presented as a poster at ISWC:

14

https://doi.org/10.1007/978-3-030-32327-1_32
https://doi.org/10.1007/978-3-030-32327-1_32
http://ceur-ws.org/Vol-2073/article-02.pdf
https://doi.org/10.1145/2983323.2983337
https://doi.org/10.1145/2983323.2983337

Thomas Pellissier Tanon, Marcos Dias de Assunção, Eddy Caron, and
Fabian M. Suchanek. “Demoing Platypus - A Multilingual Question
Answering Platform for Wikidata”. Demo at ESWC 2018. https:
//doi.org/10.1007/978-3-319-98192-5_21

Dennis Diefenbach, Thomas Pellissier Tanon, Kamal Deep Singh, and
Pierre Maret. “Question Answering Benchmarks for Wikidata”. Poster at
ISWC 2017. http://ceur-ws.org/Vol-1963/paper555.pdf

Furthermore, together with Lucie-Aimée Kaffee, we conducted a study of the
stability of the Wikidata schema. We analyzed the stability of the data based on
the changes in the labels of properties in six languages. We found that the schema
is overall stable, making it a reliable resource for external usage. This work was
presented at the WikiWorshop:

Thomas Pellissier Tanon and Lucie-Aimée Kaffee. “Property Label Stabil-
ity in Wikidata: Evolution and Convergence of Schemas in Collaborative
Knowledge Bases”. Short paper at the WikiWorkshop collocated with
WWW 2018. https://doi.org/10.1145/3184558.3191643

I also helped a Ph.D. student in the team, Thomas Rebele, on his work on
evaluating Datalog using Bash shell commands. I formalized the problem and
provided a converter between Datalog and relational algebra. Our method allows
preprocessing large tabular data in Datalog — without indexing the data. The
Datalog query is translated to Unix Bash and can be executed in a shell. Our
experiments have shown that, for the use case of data preprocessing, our approach
is competitive with state-of-the-art systems in terms of scalability and speed, while
at the same time requiring only a Bash shell on a Unix system. This work has
been published at ISWC:

Thomas Rebele, Thomas Pellissier Tanon, and Fabian M. Suchanek.
“Bash Datalog: Answering Datalog Queries with Unix Shell Com-
mands”. Full paper at ISWC 2018. https://doi.org/10.1007/
978-3-030-00671-6_33

15

https://doi.org/10.1007/978-3-319-98192-5_21
https://doi.org/10.1007/978-3-319-98192-5_21
http://ceur-ws.org/Vol-1963/paper555.pdf
https://doi.org/10.1145/3184558.3191643
https://doi.org/10.1007/978-3-030-00671-6_33
https://doi.org/10.1007/978-3-030-00671-6_33

16

Chapter 2

Preliminaries

2.1 Knowledge bases

A knowledge base (KB) is an interlinked collection of factual information. A
knowledge base can be represented as a graph. Nodes represent entities (like
the human Elvis Presley, or the notion of a human) and directed labeled edges
represent facts about these entities. For example, an edge labeled “type” from the
node representing Elvis Presley to the node representing the notion of a human
encodes that Elvis Presley is a human. See Figure 2.1 for a graphical example of a
knowledge base. In this work, we use description logics (DL) (Baader et al., 2003)
as a knowledge base language, and more specifically the ones that fall under the
OWL 2 DL formalism (Motik, Patel-Schneider, and Grau, 2012).

Syntax

We assume a set NC of concept names (unary predicates, also called classes), a
set NR of role names (binary predicates, also called properties), and a set NI of
individuals (also called constants).

Definition 2.1 (ABox). An ABox (dataset) is a set of concept assertions and
role assertions which are respectively of the form A(a) or R(a, b), where A ∈ NC,
R ∈ NR, and a, b ∈ NI.

Definition 2.2 (TBox). A TBox (ontology) is a set of axioms that expresses
relationships between concepts and roles. (e.g., concept or role hierarchies, role
domains and ranges...). Their form depends on the description logic L in question.

We only consider here description logics L that fall under the OWL 2 DL
formalism (Motik, Patel-Schneider, and Grau, 2012).

17

Some commonly found building blocks in description logics formulas are the fol-
lowing:1

• > is the most general concept containing all individuals.

• ⊥ is the empty concept.

• {a1, . . . , an} is the concept containing only the individuals a1, . . . , an.

• ¬A is the complement of the concept A (i.e., all individuals not in A).

• A tB is the concept that contains all individuals in A or B.

• AuB is the concept that contains all individuals that are in both A and B.

• ∃R · B is the concept containing all a such that there exists b with R(a, b)
and B(b).

• R− is the inverse role of R i.e., informally, R(a, b) if, and only if, R−(b, a).

This notation can be used to create axioms like the following:

• A v B states that all individuals in the concept A are also in the concept B.

• A ≡ B states that A and B are equivalent i.e., A v B and B v A.

• P v R states that all facts of a role P are also in a role R.

• P ≡ R states that P and R are equivalent i.e., P v R and R v P .

• (funcR) states that R if functional i.e., informally, for all a, b1 and b2 if
R(a, b1) and R(a, b2) then b1 = b2.

• (transR) states that R if transitive i.e., informally, for all a, b and c if
R(a, b) and R(b, c) then R(a, c).

Definition 2.3 (Knowledge base). A knowledge base K = (T ,A) is a pair of a
TBox T and an ABox A.

The knowledge base can also be written as a set of RDF triples (Cyganiak
et al., 2014) 〈s, p, o〉 where s is the subject, p is the property, and o the object. A
concept assertion A(a) is written as 〈a, rdf:type, A〉, and a role assertion R(a, b)
as 〈a,R, b〉. The TBox can also be written with RDF triples using the mapping
defined in Motik and Patel-Schneider, 2012.

1For brevity we do not recall all OWL 2 DL formulas and axiom elements. They are all
described in Motik, Patel-Schneider, and Parsia, 2012.

18

ZeusChronos Rhea

male female

hasParent hasChild

hasGenderhasGender hasGender

Figure 2.1 – Example knowledge base

Example 2.4. Here is an example of knowledge base about Greek gods:

T = { ∃hasParent v Human,∃hasChild v Human,∃hasGender v Human,

hasParent− ≡ hasChild ,∃hasGender− v {male, female} }
A = { hasGender(Zeus, male), hasGender(Cronos, male),

hasGender(Rhea, female), hasParent(Zeus, Chronos),

hasChild(Rhea, Zeus), }

The TBox states that if you have a parent, a child, or a gender then you are
a human, that hasChild is the inverse property of hasParent, and that the two
possible values for the hasGender relation are male and female. The ABox is
represented graphically in Figure 2.1.

The ABox and the TBox entail the following facts: Human(Zeus), Hu-
man(Chronos), Human(Rhea), hasParent(Zeus, Rhea) and hasChild(Chronos,
Zeus).

Semantics

We recall the standard semantics of description logic knowledge bases (Baader et
al., 2003).

Definition 2.5 (Interpretation). An interpretation has the form I = (∆I , ·I),
where ∆I is a non-empty set and ·I is a function that maps each a ∈ NI to
aI ∈ ∆I , each A ∈ NC to AI ⊆ ∆I , and each R ∈ NR to RI ⊆ ∆I ×∆I .

The function ·I is straightforwardly extended to general concepts and roles.
For example:2

• >I = ∆I

• ⊥I = ∅
2See Motik, Patel-Schneider, and Grau, 2012 for the full semantics of all OWL 2 DL formulas.

19

• {a1, . . . , an}I = {aI1 , . . . , aIn}

• (¬A)I = ∆I \ AI

• (A tB)I = AI ∪BI

• (A uB)I = AI ∩BI

• (∃R ·B)I = {a | ∃b (a, b) ∈ RI , b ∈ BI}

• (R−)I = {(b, a) | (a, b) ∈ RI}

An interpretation I satisfies :3

• A(a) if aI ∈ AI

• R(a, b) if (aI , bI) ∈ RI

• A v B, if AI ⊆ BI

• P v R, if P I ⊆ RI

• (funcR) if ∀a, b1, b2 ∈ ∆I (a, b1) ∈ RI ∧ (a, b2) ∈ RI =⇒ b1 = b2

• (transR) if ∀a, b, c ∈ ∆I (a, b) ∈ RI ∧ (b, c) ∈ RI =⇒ (a, c) ∈ RI

We write I |=L α if I satisfies the description logic axiom α according to the
description logic used L.

Definition 2.6 (Model). An interpretation I is amodel of K = (T ,A) if I satisfies
all axioms in T and all assertions in A according to L.

Definition 2.7 (Consistency). A knowledge base is consistent if it has a model.

Definition 2.8 (Entailment). A knowledge base K entails a description logic
axiom α in L if I |=L α for every model I of K. We write K |=L α in this case.

Definition 2.9 (Unique name assumption). The unique name assumption re-
stricts the set of possible interpretations I = (∆I , ·I) of K to only the ones where
·I is injective on individuals. It means that each individual a ∈ NI has a different
interpretation i.e., each real world entity is represented by at most one individual.

3See Motik, Patel-Schneider, and Grau, 2012 for the semantic of all OWL 2 DL axioms.

20

Ideal knowledge base

Following Darari, Nutt, et al., 2013, we define the the ideal knowledge base Ki,
which contains all correct facts over NC, NR and NI that hold in the real world.

Of course, Ki is an imaginary construct whose content is generally not known.
We will present a method that can deduce instead to which extent the available
knowledge base approximates/lacks information compared to the ideal knowledge
base, as in “Einstein is missing 2 children and Feynman none”.

2.2 Queries

The description logic formalism explained in the previous section allows us to do
entailments on the knowledge base. However, answering queries like “who are the
people who died where they were born” is not possible with the description logic
formalism we described. This is why we now introduce some variations of the
concept of queries.

Conjunctive and disjunctive queries

Definition 2.10 (Conjunctive query). A conjunctive query takes the form q(~x) =
∃~y ψ(~x, ~y), where ψ is a conjunction of atoms of the form A(t) or R(t, t′) or of
equalities t = t′, where t, t′ are individual names from NI or variables from ~x ∪ ~y,
A ∈ NC, and R ∈ NR .

Example 2.11. The query q(x) = Person(x) ∧ birthPlace(x, Paris) returns all
the people born in Paris.

The query q′(x) = ∃yPerson(x)∧ birthPlace(x, y)∧deathPlace(x, y) returns all
the people who died where they were born.

If ~x = ∅, q is a boolean conjunctive query. A boolean conjunctive query q is satisfied
by an interpretation I, written I |= q, if there is a homomorphism π mapping the
variables and individual names of q into ∆I such that: π(a) = aI for every a ∈ NI,
π(t) ∈ AI for every concept atom A(t) in ψ, (π(t), π(t′)) ∈ RI for every role atom
R(t, t′) in ψ, and π(t) = π(t′) for every t = t′ in ψ. We also consider as boolean
conjunctive queries the queries true and false which are respectively always and
never satisfied by an interpretation. A boolean conjunctive query q is entailed by
a knowledge base K, written K |= q, if, and only if, q is satisfied by every model
of K.

A tuple of constants ~a is a (certain) answer to a conjunctive query q(~x) on
a knowledge base K if K |= q(~a) where q(~a) is the boolean conjunctive query
obtained by replacing the variables from ~x by the constants ~a.

21

Definition 2.12 (Union of conjunctive queries). A union of conjunctive queries
is a disjunction of conjunctive queries and has as answers the union of the answers
of the conjunctive queries it contains.

Propositional queries

Definition 2.13 (Propositional query). A propositional query takes the form
q(~x) = ∃~y ψ(~x, ~y) where ψ is a propositional formula. Propositional formulas
are defined inductively as follows:

• A(t), R(t, t′), t = t′, true and false are propositional formulas where t, t′
are individual names from NI or variables from ~x ∪ ~y, A ∈ NC and R ∈ NR.

• x ∧ y, x ∨ y and ¬x are propositional formulas if x and y are propositional
formulas.

Example 2.14. The propositional query q(x) = Person(x) ∧ ¬Dead(x) answers
are all people who are not dead.

Let ~a be a vector of constants. We write I |= q(~a) where q(~x) = ∃~y ψ(~x, ~y) if there
exists a homomorphism π mapping the variables and individual names of q into ∆I

such that π(a) = aI for every a ∈ NI and if we do the following replacements then
the resulting propositional formula can be evaluated to true: (1) Replace A(t) by
the valuation of π(t) ∈ AI for every concept atom A(t) in ψ. (2) Replace R(t, t′)
by the valuation of (π(t), π(t′)) ∈ RI for every role atom R(t, t′) in ψ. (3) Replace
t = t′ by the valuation of π(t) = π(t′) for every t = t′ in ψ.

2.3 Rules and Rule Learning
The previous sections have presented how to answer queries and derive new facts
from the existing ones based on axioms written in description logics. However,
these two methods require queries and axioms as input. In this section, we instead
aim at automatically inferring new rules and facts from the ones already present
in the knowledge base.

Association rule learning concerns the discovery of frequent patterns in a data
set and the subsequent transformation of these patterns into rules. This task has
been popularized by Agrawal, Imielinski, and Swami, 1993. Association rules in
the relational format have been subject to intensive research in inductive logic
programming (see, e.g., Dehaspe and De Raedt, 1997 as the seminal work in this
direction) and more recently in the knowledge base community (see Galárraga,
Teflioudi, et al., 2015 for a prominent work). In the following, we adapt basic
notions in relational association rule mining to our case of interest.

22

Definition 2.15 (Rule). A rule is of the form r(~x) = b(~x)→ h(~x), where b and h
are both conjunctive queries.

We say that a rule r(~x) = b(~x)→ h(~x) is satisfied by an interpretation I if for
any vector ~a of constants, we have I |= b(~a) =⇒ I |= h(~a).

We say that a knowledge base K entails a rule r(~x) = b(~x) → h(~x) if for any
vector ~a of constants, we have K |= b(~a) =⇒ K |= h(~a).

Classical scoring of association rules is based on rule support, body support and
confidence, which are defined as follows:

Definition 2.16 (Query support). As in Dehaspe and De Raedt, 1997, the support
of a conjunctive query q in a knowledge base K is the number of distinct answers
of q on K:

supp(q) := |{~x | K |= q(~x)}|

The rule support metric has been introduced in order to see if a rule applies in a
lot of cases, in order to mine general rules rather than rules applying in only a few
cases:

Definition 2.17 (Rule support). The support of a rule r(~x) : b(~x) → h(~x) is the
number of times a rule applies on K:

supp(r) := supp(b ∧ h) = |{~x | K |= b(~x) ∧ h(~x)}|

The confidence is an often used metric to assess how much a rule applies on a
given knowledge base:

Definition 2.18 (Standard confidence). The standard confidence of a rule r(~x) :
b(~x)→ h(~x) is the proportion of the number of times a rule actually applies with
respect to the number of times it can apply:

conf (r) :=
supp(r)

supp(b)

Note that we always have conf (r) ∈ [0, 1].

Example 2.19. Consider the knowledge base shown in Figure 2.2 with an empty
TBox. Consider the rules r1 and r2:

r1(x, y) : ∃z worksAt(x, z) ∧ educatedAt(y, z)→ hasChild(x, y)

r2(x, z) : ∃y hasFather(x, y) ∧ hasChild(y, z)→ hasSibling(x, z)

The first rule states that workers of certain institutions often have children among
the people educated there. The second rule states that if your father has children,
then they are your siblings.

23

John Mary

Alice Bob Carol

Dave Telecom Paris MPI

worksAt worksAt

educatedAt

hasChild hasChild
hasChild

hasFather

hasChild

hasFather

educatedAt

educatedAt
worksAt

hasFather

hasSibling

hasSibling

worksAt

educatedAt

hasSibling

Figure 2.2 – Example knowledge base

The body of r1 seen as a query, b1(x, y) = ∃z worksAt(x, z)∧ educatedAt(y, z),
has 8 possible answers in K: (Dave, Dave), (Dave, Bob), (John, Dave)... Hence, the
body support of the rule r1 is supp(b1(x, y)) = 8. The only two possible answers
of the query b1(x, y) ∧ hasChild(x, y) are (John, Bob) and (Mary, Bob). Hence
supp(r1) = 2. So, have conf (r1) = 2

8
.

Analogously, for r2, b2(x, z) = ∃yhasFather(x, y)∧hasChild(y, z) has 6 answers
and therefore supp(b2(x, z)) = 6. However, only one of these answers is such that
hasSibling(x, z) holds, so supp(r2) = 1. This leads to conf (r2) = 1

6
.

Support and confidence were originally developed for scoring rules over complete
data. If data is missing, their interpretation is not straightforward and they can
be misleading. For example, in Example 2.19, the rule r1 has a confidence of 1

4

and r2 has a lower confidence of 1
6
, although r1 is clearly wrong.

The reason is that the standard confidence aims first at avoiding wrong asser-
tions in the predictions. It does so by considering as wrong all predicted assertions
that are not already in the knowledge base, even if these assertions might be true
in the real world. Other approaches aim at finding other compromises between
predicting wrong facts and missing true facts. In Galárraga, Teflioudi, et al., 2015,
the confidence under the Partial Completeness Assumption (PCA) has been pro-
posed as a measure. This measure guesses negative facts by assuming that data
is usually added to knowledge bases in batches. For example, if at least one child
of John is known then most probably all of John’s children are present in the
knowledge base.

Definition 2.20 (PCA confidence). The PCA confidence is defined for all rules
of the form r(x, y) : b(x, y) → h(x, y) where x and y are variables and h a role
assertion by:

24

confpca(r) :=
supp(r)

supppca(r)

where

supppca(r) := |{(x, y) | K |= b(x, y) and ∃y′ ∈ NI K |= h(x, y′)}|

Example 2.21. We obtain confpca(r1) = 2
4
. Indeed, since Carol and Dave are not

known to have any children in the knowledge base, four existing body substitutions
are not counted in the denominator. Meanwhile, we have confpca(r2) = 1

6
, since

all people that are predicted to have siblings by r2 already have siblings in the
available knowledge base.

Knowledge base completion

After having mined rules, we want to use them to complete the knowledge base.
That is, we want to add to the knowledge base all the assertions that are generated
by the rules. Formally:

Definition 2.22 (Rule-based knowledge base completion). Let K be a knowledge
base and let r be a rule such that r(~x) = b(~x) → h1(~x) ∧ · · · ∧ hn(~x) where the
hi are concept or role assertions. Then the completion of K = (A, T) by r is a
knowledge base Kr = (Ar, T) such that Ar = A ∪ {h1(~a), . . . , hn(~a) | K |= b(~a)}.
Example 2.23. If we follow Example 2.19, we have Aar1 = A ∪ { hasChild(John,
Dave), hasChild(Carol, Mary), hasChild(Dave, Dave), hasChild(Carol, Carol),
hasChild(Dave, Bob), hasChild(Mary, Dave) }.
Note that the ideal knowledge base Ki introduced in Section 2.1 is the perfect
completion of Ka, i.e., it is supposed to contain all correct facts with entities and
relations from ΣKa that hold in the current state of the world. The goal of rule-
based knowledge base completion is to extract from Ka a set of rules R such that
∪r∈RKar is as close to Ki as possible.

Rule evaluation

To evaluate the predictions of a rule r(~x) : b(~x) → h(~x) against a set of expected
predictions P , we can use the following metrics:

Definition 2.24 (Precision). The precision of a rule is the fraction of the predic-
tions computed by the rule that are in the set of expected predictions P . This
measure aims at computing how many of the rule predictions are expected predic-
tions. Formally:

precision(r) :=
|{~x | K |= b(~x) ∧ P |= h(~x)}|

|{~x | K |= b(~x)}|

25

Definition 2.25 (Recall). The recall is given by the fraction of the predictions
computed by the rule r that are in the set of expected predictions P . This measure
aims at computing how many of the expected predictions are found by the rules.
Formally:

recall(r) :=
|{~x | K |= b(~x) ∧ P |= h(~x)}|

|{~x | P |= h(~x)}|

Definition 2.26 (F1 score). The F1 score is the harmonic mean of precision and
recall:

F1(r) := 2
precision(r) · recall(r)

precision(r) + recall(r)

Example 2.27. Consider the same knowledge base and rules as in Example 2.19.
We evaluate the rule r1 against the expected prediction set:

P = { hasChild(John, Dave), hasChild(John, Alice), hasChild(John, Bob),

hasChild(Mary, Bob), hasChild(Mary, Carole), hasChild(Mary, Dave) }

Like presented in Example 2.19, r1 predicts 8 facts. In these facts 4 are
in P : hasChild(John, Dave), hasChild(John, Bob), hasChild(Mary, Bob), and
hasChild(Mary, Dave).

Hence we have precision(r1) = 4
8

= 0.5 and recall(r1) = 4
6

= 0.66. This gives
us F1(r1) = 2 0.5·0.66

0.5+0.66
= 0.57.

Now that we have the preliminaries in place, we will move to the first contri-
bution of this thesis. This contribution aims at refining the confidence measure
when cardinality information is available in the knowledge base.

26

Part I

Mining Constraints

27

Chapter 3

Completeness-aware Rule Scoring

The work presented in this chapter has been done with Daria Stepanova, Simon
Razniewski, Paramita Mirza and Gerhard Weikum and has been published at
ISWC 2017. It was one of the papers nominated for the best student paper award.
An invited short version of the paper has been published at IJCAI 2018.1

Thomas Pellissier Tanon, Daria Stepanova, Simon Razniewski, Paramita
Mirza, and Gerhard Weikum. “Completeness-Aware Rule Learning from
Knowledge Graphs”. Full paper at ISWC 2017. https://doi.org/10.
1007/978-3-319-68288-4_30

Thomas Pellissier Tanon, Daria Stepanova, Simon Razniewski, Paramita
Mirza, and Gerhard Weikum. “Completeness-aware Rule Learning from
Knowledge Graphs”. Invited paper at IJCAI 2018. https://doi.org/
10.24963/ijcai.2018/749

3.1 Introduction

Motivation

An important task over knowledge bases is rule learning. This task aims at learn-
ing new rules on the knowledge base. For example, the rule r1 : worksAt(x, z) ∧
educatedAt(y, z) → hasChild(x, y) could be mined from the knowledge base dis-
played in Figure 3.1 page 36. This rule states that workers of certain institutions
often have children among the people educated there, as this is frequently the

1Some rule quality measures presented in the ISWC paper are omitted here to focus on my
personal contribution.

29

https://doi.org/10.1007/978-3-319-68288-4_30
https://doi.org/10.1007/978-3-319-68288-4_30
https://doi.org/10.24963/ijcai.2018/749
https://doi.org/10.24963/ijcai.2018/749

case for popular scientists. Rules are relevant for a variety of applications rang-
ing from knowledge base curation, e.g., completion and error detection (Paulheim,
2017; Galárraga, Teflioudi, et al., 2015; Gad-Elrab et al., 2016), to data mining
and semantic culturonomics (Suchanek and Preda, 2014). Section 2.3 Page 22
has formally defined the concept of rules and presented some existing methods to
evaluate them.

However, since such rules are learned from incomplete data, they might be
erroneous and might make incorrect predictions on missing facts. The already
presented rule r1 is clearly not universal and should be ranked lower than the rule
r2 : hasFather(x, y) ∧ hasChild(y, z) → hasSibling(x, z). However, standard rule
measures like confidence (i.e., the conditional probability of the rule’s head given
its body) incorrectly favor r1 over r2 for the given knowledge base.

Recently, efforts have been put into detecting the concrete number of facts
of certain types that hold in the real world (e.g., “Einstein has 3 children”) by
exploiting Web extraction and crowd-sourcing methods (Mirza, Razniewski, and
Nutt, 2016; Prasojo et al., 2016). Such cardinality information provides a lot
of hints about the topology of knowledge bases and reveals parts that should be
especially targeted by rule learning methods. It can also give hints to detect bad
rules. For example, r1 is probably going to create too many facts to comply with
cardinality hints like “a person has at most two parents”. However, surprisingly,
despite its obvious importance, to date, no systematic way of making use of such
information in rule learning exists.

In this chapter, we propose to exploit cardinality information about the ex-
pected number of edges in knowledge bases to better assess the quality of learned
rules. Because knowledge bases are often incomplete in some areas and complete
in others, our intuition is that some cardinality information might help to assess
rules quality, at least by discarding rules which add facts in already complete areas
like suggested earlier.

State of the art and its limitations

Galárraga, Teflioudi, et al., 2013 introduced a completeness-aware rule scoring
based on the partial completeness assumption (PCA). The idea of the partial
completeness assumption is that if at least one object for a given subject and a
predicate is in a knowledge base (e.g., “Eduard is Einstein’s child”), then all objects
for that subject-predicate pair (“Einstein’s children”) are assumed to be known.
This assumption was taken into account in rule scoring, and empirically it turned
out to be indeed valid in real-world knowledge bases for some topics. However, it
does not universally hold and does not correctly handle the case when edges in a
graph are missing in a seeminlgy random fashion. For example, in encyclopedic
knowledge bases like Wikidata, only well-known children are present in the knowl-

30

edge base, and not the less famous ones or the ones who died in their infancy. It is
also the case for relations with no well-defined cardinalities, like “award received”
or “position held”. Often, only the most prominent values are provided for this
relation. Similarly, Doppa et al., 2011 discussed the absence of contradiction as
confirmation for “default” rules, i.e., rules that hold in most cases, leading the few
contradicting facts to be highlighted and better covered in the knowledge base.
Galárraga, Razniewski, et al., 2017 used crowd-sourcing to acquire completeness
data. The acquired statements were then used in a post-processing step of rule
learning to filter out predictions that violate these statements. However, this kind
of filtering does not have any impact on the quality of the mined rules and the
incorrect predictions for instances about which no completeness information exists.

Contributions

This work presents the first proper investigation of how cardinality information,
and more specifically the number of edges that are expected to exist in the real
world for a given subject-predicate pair in a knowledge base, can be used to improve
rule learning. The contributions of our work are as follows:

• We present an approach that accounts for sparse data about the number of
edges that should exist for given subject-predicate pairs in the ranking stage
of rule learning. This is done by introducing a new ranking measure, the
completeness confidence. This confidence generalizes both the standard con-
fidence and the PCA confidence. Specifically, it performs identically to the
two existing confidence measures if the corresponding cardinality metadata
are provided. For example, if the knowledge base is stated to be globally
complete, our completeness confidence will be the same as standard confi-
dence, so it will also have the same performance.

• We implement our new ranking measure and evaluate it both on real-world
and synthetic datasets, showing that they outperform existing measures both
with respect to the quality of the mined rules and the predictions they pro-
duce.

3.2 Related Work
Rule learning

The problem of automatically learning patterns from knowledge bases has gained
a lot of attention in recent years. Some relevant works are Galárraga, Teflioudi,
et al., 2013; Galárraga, Teflioudi, et al., 2015; Zhichun Wang and Li, 2015, which
focus on learning Horn rules and either ignore completeness information or make

31

use of completeness by filtering out predicted facts violating completeness in a
post-processing step. On the contrary, we aim at injecting the statements into the
learning process.

In the association rule mining community, some works focused on finding (in-
teresting) exception rules, which are defined as rules with low support (rare) and
high confidence (e.g., Taniar et al., 2008). Our work differs from this line of re-
search because we do not necessarily look for rare interesting rules, but care about
the quality of their predictions.

Another relevant stream of research is concerned with learning Description
Logic TBoxes or schema (e.g., Lehmann et al., 2011). However, these techniques
focus on learning concept definitions rather than nonmonotonic rules. The main
difference between us and these approaches is that we aim at finding a hypothesis
that consistently predicts unseen data, while DL learners focus more on learning
models that perfectly describe the data.

In the context of inductive and abductive logic programming, learning rules
from incomplete interpretations given as a set of positive facts along with a pos-
sibly incomplete set of negative ones was studied, e.g., in Law, Russo, and Broda,
2014. In contrast to our approach, this work does not exploit knowledge about the
number of missing facts, and neither do the works on terminology induction, e.g.,
Sazonau, Uli Sattler, and Brown, 2015. Learning nonmonotonic rules in the pres-
ence of incompleteness was studied in hybrid settings (Józefowska, Lawrynowicz,
and Lukaszewski, 2010; Lisi, 2010), where a background theory or a hypothesis can
be represented as a combination of an ontology and Horn or nonmonotonic rules.
The main point in these works is the assumption that there might be potentially
missing facts in a given dataset. However, it is not explicitly mentioned which
parts of the data are (in)complete like in our setting. Moreover, the emphasis
of these works is on the complex reasoning interaction between the components,
while we are more concerned with techniques for deriving rules with high predictive
quality from large knowledge bases. The work by d’Amato et al., 2016 ranks rules
using the ratio of correct versus incorrect predictions. These incorrect predictions
are found using ontologies that allow determining incorrect facts. In contrast to
our scenario of interest, in their work, the knowledge about the exact numbers of
missing knowledge base facts has not been exploited. Since the publication of our
original paper, Ho et al., 2018 presented an approach using numerical embeddings
to predict possible missing facts. The authors used these predicted missing facts
to refine the scoring of rules in incomplete areas. Muñoz, Minervini, and Nick-
les, 2019 used cardinality information to refine the learning of entity numerical
embeddings to better predict facts missing in the knowledge base.

There are also many less relevant statistical approaches to completing knowl-
edge bases based on, e.g., low-dimensional embeddings (Zhen Wang et al., 2014)

32

or tensor factorization (Nickel, Tresp, and Kriegel, 2012).

Completeness information

The idea of bridging the open and closed world assumption by using completeness
information was first introduced in the database world in Levy, 1996; Etzioni,
Golden, and Weld, 1997, and later adapted to the Semantic Web in Darari, Nutt,
et al., 2013. For describing such settings, the common approach is to fix the
complete parts (and assume that the rest is potentially incomplete).

Galárraga, Razniewski, et al., 2017 have extended the rule mining system AMIE
to mine rules that predict where a knowledge base is complete or incomplete. The
focus of the work is on learning association rules like “If someone has a date of
birth but no place of birth, then the place of birth is missing.” In contrast, we
reason about the missing edges by trying to estimate the exact number of edges
that should be present in a knowledge base. In Galárraga, Razniewski, et al., 2017
it has also been shown that completeness information can be used to improve the
accuracy of fact prediction, by pruning out in a post-processing step those facts
that are predicted in parts expected to be complete. In the present chapter, we
take a more direct approach and inject completeness information already into the
rule acquisition phase, to also prune away problematic rules, not only individual
wrong predictions.

Our cardinality statements (e.g., “John has 3 children”) encode knowledge
about parts of a knowledge base that are (un)known, and thus should have points
of contact with operators from epistemic logic; we leave the extended discussion
on the matter for future work.

3.3 Approach

In the following we make the unique name assumption, i.e., we assume that each
entity is represented by at most one individual (Definition 2.9 Page 20). We also
use the distinction between ideal knowledge base and available knowledge base
presented in Section 2.1 Page 21.

We use here all the definitions related to knowledge bases and rules presented
in the preliminaries (Chapter 2). We also assume that the rule head contains a
single role assertion h(x, y). This does not introduce a loss of generality compared
to rules with a conjunction of role assertions in the head because rules under the
form b(~x)→ h1(~x) ∧ · · · ∧ hn(~x) could be converted into an equivalent set of rules
b(~x)→ h1(~x), . . . , b(~x)→ hn(~x).

Scoring and ranking rules are core steps in association rule learning. A variety
of measures for ranking rules have been proposed, with prominent ones being

33

confidence (Definition 2.20 Page 24), conviction (Brin et al., 1997), and lift2.
The existing (in-)completeness-aware rule measure in the knowledge base con-

text, the PCA confidence from Galárraga, Teflioudi, et al., 2015, already presented
in Definition 2.20 Page 24, has two apparent shortcomings: First, it only counts as
counterexamples those pairs (x, y) for which at least one h(x, y′) is in the current
available knowledge base Ka for some y′ and a rule’s head predicate h. This means
it may incorrectly give high scores to rules predicting facts for very incomplete
relations, e.g., place of baptism. Second, it is not suited to relations that are not
added in a “none or all” matter. For example, the most important values of an
“awards” relation are often known, while the other values are often unknown or
added to the knowledge base much later.

Thus, in this work, we focus on the improvements of rule scoring functions by
making use of extra cardinality information. Before dwelling into the details of
our approach we discuss the formal representation of such cardinality statements.

Cardinality Statements Overall, one can think of 4 different cardinality tem-
plates obtained by fixing the subject or object in a role assertion or considering
a concept assertion and reporting the number of respective facts that hold in Ki.
E.g., for hasChild(John, Mary) we can count (1) the children of John; (2) the peo-
ple of which Mary is a child of; or (3) the facts over hasChild relation. And for
Person(John) we can count (4) the number of elements in the Person concept.

In practice, numerical statements for templates (1), (2), and (4) can be obtained
using web extraction techniques (Mirza, Razniewski, and Nutt, 2016), from func-
tional properties of relations, from closed concepts, or from crowd-sourcing. For (3)
things get trickier. We leave this issue for future work and focus here only on tem-
plates (1), (2), and (4). We work in the following only on template (1). Indeed, we
can rewrite (2) to (1) provided that inverse relations can be expressed in a knowl-
edge base. For instance, |{s | hasChild(s, john)}| = |{o | hasParent(john, o)}|
for the predicates hasChild and hasParent , which are inverses of one another.
More, it is possible to rewrite (4) to (1) with some notation abuse by writing
hasInstance(C, o) the concept assertion C(o).

We have now a simple way to report (the numerical restriction on) the absolute
number of facts over a certain roles in the ideal knowledge base Ki. To formalize
it, we define the partial function num that takes as input a role p ∈ NR and an
individual s ∈ NI and outputs a natural number corresponding to the number of
facts in Ki over p with s as the first argument:

num(p, s) := |{o | Ki |= p(s, o)}| (3.1)

2The lift of a rule r(~x) = b(~x)→ h(~x) is defined by lift(r) = supp(b∧h)
supp(b)·supp(h) .

34

num is a partial function because most of the time we do not know all cardinalities.
For example, in a knowledge base about some people’s family, the number of
biological parents is always known whereas it might be the case that the number
of children is known for some people only and the number of siblings is never
known.

Naturally, the number of missing facts for a given p and s can be obtained as

miss(p, s) := num(p, s)− |{o | Ka |= p(s, o)}| (3.2)

Example 3.1. Consider the knowledge base in Figure 3.1 (the same one as the
knowledge base presented in the preliminaries) and the following cardinality state-
ments for it:

num(hasChild,John) = 3
num(hasChild, Mary) = 3
num(hasChild, Alice) = 1
num(hasChild, Carol) = 0
num(hasChild, Dave) = 0
num(hasSibling, Bob) = 3
num(hasSibling, Alice) = 2
num(hasSibling, Carol) = 2
num(hasSibling, Dave) = 2

We then have:

miss(hasChild , Mary)=miss(hasChild , John)=miss(hasChild , Alice)=1;
miss(hasChild , Carol)=miss(hasChild , Dave)=0;
miss(hasSibling , Bob)= miss(hasSibling , Carol)=2;
miss(hasSibling , Alice)=miss(hasSibling , Dave)=1.

We are now ready to define the completeness-aware rule scoring problem. Given
a knowledge base and a set of cardinality statements, completeness-aware rule scor-
ing aims to score rules not only by their predictive power on the known knowledge
base like presented in Section 2.3 Page 22, but also with respect to the number
of wrongly predicted facts in complete areas and the number of newly predicted
facts in known incomplete areas.

In this work, we propose to explicitly rely on incompleteness information to
determine whether to consider an assignation as a counterexample for a rule at
hand or not.

To do that, we first define two indicators for a given rule r, reflecting the
number of new predictions made by r in incomplete (npi(r)) and, respectively,
complete (npc(r)) knowledge base parts:

35

John Mary

Alice Bob Carol

Dave Telecom Paris MPI

worksAt worksAt

educatedAt

hasChild hasChild
hasChild

hasFather

hasChild

hasFather

educatedAt

educatedAt
worksAt

hasFather

hasSibling

hasSibling

worksAt

educatedAt

hasSibling

Figure 3.1 – Example knowledge base

Definition 3.2. The Number of Predictions in Incomplete parts of a rule r(x, y) =
b(x, y) → h(x, y) is the number of new predictions of r that add objects in the
places where it is known that values are missing. It is formally defined by:

npi(r) :=
∑

x∈NI and miss(h,x) is defined

min(pred(r, x),miss(h, x))

where pred(r, x) is the number of new predictions of r for a given x:

pred(r, x) := |{y | Ka |= b(x, y) ∧ Ka 6|= h(x, y)}|

Definition 3.3. Similarly, the Number of Predictions in Complete parts of a rule
r(x, y) = b(x, y)→ h(x, y) is the number of new predictions of r that add objects
in the places where it is known that miss(h, x) objects are missing and the rules
already predicted miss(h, x) other objects. It is formally defined by:

npc(r) :=
∑

x∈NI and miss(h,x) is defined

max (pred(r, x)−miss(h, x), 0)

where pred(r, x) is the number of new predictions of r for a given x:

pred(r, x) := |{y | Ka |= b(x, y) ∧ Ka 6|= h(x, y)}

Example 3.4. Consider the knowledge base whose ABox is displayed in Figure 3.1
with an empty TBox, and the cardinality statements described in Example 3.1.

We consider the rules:

r1 : worksAt(x, z) ∧ educatedAt(y, z)→ hasChild(x, y)

36

r2 : hasFather(x, y) ∧ hasChild(y, z)→ hasSibling(x, z)

r1 predicts new hasChild values for Carol, Dave, John, and Mary. Among them,
the expected cardinality is only known for Carole and Dave.

The two predicted assertions for Carol are hasChild(Carol, Carol) and
hasChild(Carol, Mary). Among them, none is already in the knowledge base so
pred(r1, Carol) = 2. With a similar reasoning, we get pred(r1, Dave) = 2.

The two predicted assertions for John are hasChild(John, Dave) and has-
Child(John, Bob). However hasChild(John, Bob) is already in the knowledge base
so pred(r1, John) = 1. In the same way, we get pred(r1, Mary) = 1.

Because miss(hasChild, Carol) = 0, miss(hasChild, Dave) = 0, miss(hasChild,
John) = 1, andmiss(hasChild, Mary) = 1, we have npi(r1) = min(2, 0)+min(2, 0)+
min(1, 1) + min(1, 1) = 2 and npc(r1) = max (2− 0, 0) + max (2− 0, 0) + max (1−
1, 0) + max (1− 1, 0) = 4.

Similarly, we get npi(r2) = 4 and npc(r2) = 1.

Exploiting these additional indicators for r(x, y) : b(x, y)→ h(x, y) we obtain the
following completeness-aware confidence:

Definition 3.5. The completeness-aware confidence confidence is defined by:

confcomp(r) :=
supp(r)

supp(b)− npi(r)

Example 3.6. We consider the same knowledge base and rules as Example 3.4.
Obviously, the rule r2 should be preferred over r1.

The body and rule supports of r1 over the knowledge base are supp(b1) = 8
and supp(r1) = 2 respectively. Hence, we have conf (r1) = 2

8
and conf (r2) = 1

6
.

As discussed before, we obtain confpca(r1) = 2
4
. Indeed, since Carol and Dave

are not known to have any children in the knowledge base, four existing body sub-
stitutions are not counted in the denominator. Meanwhile, we have confpca(r2) = 1

6
,

since all people that are predicted to have siblings by the rule already have siblings
in the available knowledge base Ka.

For our completeness confidence, confcomp(r1) = 2
8−2 = 2

6
and confcomp(r2) =

1
6−4 = 1

2
, resulting in the desired rule ordering, which is not achieved by existing

measures.

Our completeness confidence generalizes both the standard and the PCA con-
fidence. Indeed, under the Closed World Assumption, the knowledge base is sup-
posed to be fully complete, i.e., for all p ∈ NR, s ∈ NI we have miss(p, s) = 0.
Similarly, if we assume the Partial Completeness Assumption, then for all pairs
p, s such that at least one o ∈ NI exists with Ka |= p(s, o), miss(p, s) = 0 and
miss(p, s) = +∞ for the others.

37

Proposition 3.7. For every knowledge base K and rule r it holds that

(i) under the Closed World Assumption (CWA) confcomp(r) = conf (r);

(ii) under the Partial Completeness Assumption (PCA) confcomp(r) = confpca(r).

Proof. (i) Under the Closed World Assumption, it holds that for all p ∈ NR,
s ∈ NI, miss(p, s) = 0. Thus, for all rules r, we have that npi(r) = 0, and hence,
confcomp(r) = conf (r).
(ii) Under the Partial Completeness Assumption, it is assumed that for all p ∈ NR

and s ∈ NI it holds that miss(p, s) = 0 if ∃o Ka |= p(s, o) and miss(p, s) = +∞ if
not. Hence, for all r we have npi(r) =

∑
x predict(r, x), where

predict(r, x) =

{
0, if ∃y Ka |= h(x, y)

pred(r, x), if ∀y′ Ka 6|= h(x, y′)

From this we get

confcomp(r) =
supp(r)

supp(b)−
∑

x such that ∀y′ Ka 6|=h(x,y′) pred(r, x)

The denominator of the latter formula counts all matches of the rule body and
subtracts from them those for which the head h(x, y) is predicted and ∀y′ Ka 6|=
h(x, y′). Hence, we end up counting only body substitutions with Ka |= h(x, y′)
for at least one y′, i.e., |{(x, y) | ∃yKa |= b(x, y)∧∃y′Ka |= h(x, y′)}| = supppca(r).
Hence, confcomp(r) = supp(r)

supppca (r)
= confpca(r).

3.4 Evaluation

We have implemented our completeness-aware rule learning approach into a C++
system prototype CARL3, following a standard relational learning algorithm im-
plementation such as Goethals and Bussche, 2002. While our general methodology
can be applied to mining rules of arbitrary form, in the experimental evaluation to
restrict the rule search space we focus only on rules with two atoms in their body
of the form

p(x, y) ∧ q(y, z)→ r(x, z) (3.3)

Note that here p, q, and r are not allowed to denote inverse property expres-
sions. We aim to compare the predictive quality of the top k rules mined by
our completeness-aware approach with the ones learned by standard rule learning

3The source code and all the data are available at https://github.com/Tpt/CARL.

38

https://github.com/Tpt/CARL

methods: (1) the PCA confidence (Definition 2.20 Page 24) from AMIE (Galár-
raga, Teflioudi, et al., 2015) and (2) the standard confidence (Definition 2.18
Page 23) used e.g., by WarmeR (Goethals and Bussche, 2002).

Because the goal of our new confidence is to provide a better rule quality
evaluation measure, we only compare with other rule quality measures that have
already proved their quality and usefulness, and we do not compare with fact
prediction approaches or with baselines.

Dataset

We used two datasets for the evaluation: (i) WikidataPeople, which is a dataset we
have created from the Wikidata knowledge base, containing 2.4M facts over 9 pred-
icates4 about biographical information and family relationships of people; and (ii)
LUBM, which is a synthetic dataset describing the structure of a university (Guo,
Pan, and Heflin, 2005).

For the WikidataPeople dataset, the approximation of the ideal knowledge
base (Ki) is obtained by exploiting available information about inverse rela-
tions (e.g., hasParent is the inverse of hasChild), functional relations (e.g.,
hasFather , hasMother) as well as manually hand-crafted solid rules from the family
domain like

hasParent(x, z) ∧ hasParent(y, z) ∧ x 6= y → hasSibling(x, y).5

We generated cardinality statements from WikidataPeople Ki by exploiting
properties of functional relations, e.g., hasBirthPlace, hasFather , hasMother must
be uniquely defined. We considered also that everybody with a hasDeathDate has
a hasDeathPlace. For the other relations, the PCA (Galárraga, Teflioudi, et al.,
2015) is used. This resulted in 10M cardinality statements.

LUBM Ki, with 1.2M facts, was constructed by running the LUBM data gen-
erator for 10 universities, removing all rdf:type triples, and introducing inverse
predicates. 464K cardinality statements were obtained by counting the number of
existing objects for each subject-predicate pair after completing the graph using
the provided OWL ontology, i.e., assuming the partial completeness assumption
on the whole dataset.

Experimental Setup

To assess the effect of our proposed measures, we first construct versions of the
available knowledge base (Ka) by removing parts of the data from Ki and introduc-
ing a synthetic bias in the data (i.e., leaving many facts in Ka for some relations

4hasFather , hasMother , hasStepParent , hasSibling , hasSpouse, hasChild , hasBirthPlace,
hasDeathPlace, and hasNationality

5see https://github.com/Tpt/CARL/tree/master/eval/wikidata for details

39

https://github.com/Tpt/CARL/tree/master/eval/wikidata

and few for others). The synthetic bias is needed to simulate our scenario of inter-
est, where some parts of Ka are very incomplete while others are fairly complete,
which is indeed the case in real-world knowledge bases. In Wikidata, for instance,
sibling information is only reported for only 3% of non-living people, while children
data is known for 4%.

For that, we proceed in two steps: First, we define a global ratio, which deter-
mines a uniform percentage of data retained in the available graph. This ra-
tio is useful to check how the different measures perform with respect to the
(in-)completeness of the knowledge base. To further refine this, we then define
a predicate ratio individually for each predicate to simulate the real world discrep-
ancies between fairly complete and very incomplete areas. For the WikidataPeople
knowledge base, this ratio is chosen as (i) 0.8 for hasFather and hasMother ; (ii) 0.5
for hasSpouse, hasStepParent , hasBirthPlace, hasDeathPlace and hasNationality ;
(iii) 0.2 for hasChild ; and (iv) 0.1 for hasSibling . For the LUBM dataset, the
predicate ratio is uniformly defined as 1 for regular predicates and 0.5 for inverse
predicates. Note that this static predicate ratio is here to simulate the complete-
ness gap in the knowledge base between predicates. Hence, the predicate ratio is
fixed as part of the design of the experimental setup, and we do not make it vary
or otherwise study it in our experimental results

For a given predicate, the final ratio of facts in Ka retained from those in Ki
is then computed as min(1, 2 · k · n), where k is the predicate ratio and n is the
global ratio.

Note that, after randomly removing facts, the partial completeness assump-
tion no longer holds on the data. This gives our method a competitive edge over
competing approaches such as AMIE which assume the partial completeness as-
sumption.

The assessment of the rules learned from different versions of the available
knowledge base is performed by comparing rule predictions with the approximation
of Ki. More specifically, every learned rule is assigned a quality score, defined as
the ratio of the number of predictions made by the rule in Ki \Ka over the number
of all predictions outside Ka.

qualityScore(r) =
|Kar ∩ Ki \ Ka|
|Kar \ Ka|

(3.4)

This scoring naturally allows us to control the percentage of rule predictions
that hit our approximation of Ki, similar to standard recall estimation in machine
learning (c.f. Definition 2.25 Page 26).

40

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1K
2K
3K
4K
5K
6K

Global ratio of the available KB

Av
er
ag

e
su
pp

or
t

10

20

30

40

50

N
um

be
r
of

ke
pt

ru
le
s #Rules (WikidataPeople)

#Rules (LUBM)
Avg. support (WikidataPeople)
Avg. support (LUBM)

Figure 3.2 – Number of kept rules and their average support for WikidataPeople and
LUBM datasets

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Global ratio of the available KB

P
ea
rs
on

co
rr
el
at
io
n

WikidataPeople

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Global ratio of the available KB

LUBM

Standard confidence
PCA confidence
Completeness confidence

Figure 3.3 – Evaluation results for WikidataPeople and LUBM datasets

41

Table 3.1 – Example of a good and a bad rule mined from WikidataPeople with
global ratio of 0.5

Rule r conf (r) confpca(r) confcomp(r)

hasSibling(x, y) ∧ hasSibling(y, z)
→ hasSibling(x, z) 0.10 0.10 0.89

hasMother(x, y) ∧ hasSpouse(y, z)
→ hasStepParent(x, z) 0.0015 0.48 0.0015

Results

From every version of the available knowledge base, we have mined all possible
rules with two atoms in their body of the form of Equation 3.3 (page 38). For
that, we search all the possible tuples (p, q, r) such that the conjunctive query
(x, y)∧q(y, z)∧r(x, z) has at least one answer. We kept only rules r with conf (r) ≥
0.001 and supp(r) ≥ 10, whose head coverage6 is greater than 0.001. Figure 3.2
shows the number of kept rules and their average support (Definition 2.17 Page 23)
for each global ratio used for generating Ka.

The evaluation results for WikidataPeople and LUBM datasets are in Fig-
ure 3.3. The horizontal axis displays the global ratio used for generating Ka. We
compared different rule ranking methods as previously discussed. The Pearson
correlation coefficient (vertical axis) between each ranking measure and the qual-
ity score of rules (Equation 3.4) is used to evaluate the measures’ effectiveness.
The Pearson correlation coefficient between two random variables X and Y with
numerical values is defined by ρX,Y = cov(X,Y)

σXσY
with cov being the covariance and

σ the standard deviation. We measured the Pearson correlation coefficient since
apart from the ranking order (as captured by, e.g., Spearman’s rank correlation
coefficient), the absolute values of the measures are also insightful for our setting.

Since facts are randomly missing in the considered versions of Ka, the PCA
confidence performs worse than the standard confidence for given datasets, while
our completeness confidence significantly outperforms both (see Table 3.1 for ex-
amples).

For both knowledge bases, the completeness confidence outperforms the rest of
the measures. It is noteworthy that the standard confidence performs considerably
better on the LUBM knowledge base with a correlation coefficient higher than 0.9
than on the WikidataPeople knowledge base. Still, completeness confidence shows
better results, reaching a nearly perfect correlation of 0.99. We hypothesize that

6Head coverage is the ratio of the number of predicted facts that are in Ka over the number
of facts matching the rule head.

42

this is due to the bias between the different predicates of the LUBM knowledge
base being less strong than in the WikidataPeople knowledge base, where some
predicates are missing a lot of facts, while others just a few.

3.5 Conclusion
We have defined the problem of learning rules from incomplete knowledge bases
enriched with the exact numbers of missing edges of certain types. We proposed a
novel rule ranking measure that effectively makes use of sparse cardinality informa-
tion, the completeness confidence. Our new measure has been injected in the rule
learning prototype CARL and evaluated on real-world and synthetic knowledge
bases, demonstrating significant improvements both with respect to the quality of
mined rules and with respect to the predictions they produce.

For future work, it would interesting to expend the experiments. We could
benchmark our completeness confidence against Galárraga, Razniewski, et al., 2017
to check which method produces the best predictions and which has the best
runtime. We could also adapt the AMIE rule learning algorithm to make it work
with our completeness confidence instead of the PCA confidence.

43

44

Chapter 4

Increasing the Number of Numerical
Statements

The work presented in this chapter has been done with Daria Stepanova, Simon
Razniewski, Paramita Mirza, and Gerhard Weikum and has been published at
ISWC 2017 alongside the previous chapter content.

Thomas Pellissier Tanon, Daria Stepanova, Simon Razniewski, Paramita
Mirza, and Gerhard Weikum (2017). “Completeness-Aware Rule Learning
from Knowledge Graphs”. In: ISWC, pp. 507–525. https://doi.org/
10.1007/978-3-319-68288-4_30

4.1 Introduction

We have shown in the previous chapter that the exploitation of numerical com-
pleteness statements is beneficial for rule quality assessment. A natural question
is where to acquire such statements in real-world settings. Like already men-
tioned in the previous chapter, various works have shown that numerical asser-
tions can be frequently found on the Web (Darari, Nutt, et al., 2013), obtained via
crowd-sourcing (Darari, Razniewski, et al., 2016), text mining (Mirza, Razniewski,
Darari, et al., 2017), or even using Hoeffding’s inequality to find upper bounds (Gi-
acometti, Markhoff, and Soulet, 2019). Other work like Galárraga, Razniewski, et
al., 2017 aims at mining if the knowledge base is complete for a given subject and
predicate, a much more restricting set that mining the actual (in-)completeness
statement. We believe that mining numerical correlations concerning knowledge
base edges and then assembling them into rules is a valuable and a modular ap-
proach to increase the amount of completeness information, which we present in

45

https://doi.org/10.1007/978-3-319-68288-4_30
https://doi.org/10.1007/978-3-319-68288-4_30

what follows. This approach works by mining rules like “If a person has more than
2 siblings, then their parents are likely to have more than 3 children”.

4.2 Approach

In the following we make the unique name assumption, i.e., we assume that each
entity is represented by at most one individual (Definition 2.9 Page 20).

We start with an available knowledge base Ka = (T ,Aa) and some statements
of the form described in the Equation 3.1 from Section 3.3 of the previous chapter,
namely:

num(p, s) := |{o | Ki |= p(s, o)}|

where Ki = (T ,Ai) is the ideal knowledge base.

Step 1 Let p≤k and p≥k where k ∈ N be fresh concepts not present in NC, which
describe bounds on the number of outgoing p-edges for a given constant. For every
cardinality num(p, s) = k, we create the facts p≤k(s) and p≥k(s). For the pairs
p ∈ NR, s ∈ NI with no available cardinality statements we construct the facts
p≥n(s) where n = |{o | Ka |= p(s, o)}|, encoding that there may be outgoing p-
edges that are missing from s, as the graph is believed to be incomplete by default.
We store all constructed facts over pcard in S.

We then complete the domain of each pcard predicate as follows. For every
p≤k(s) ∈ S, if p≤k′(s′) ∈ S for some s′ ∈ NI and k′ > k, we construct the rule
p≤k(x)→ p≤k′(x) Similarly, for every p≥k(s) ∈ S, if p≥k′(s′) ∈ S where k′ < k, we
create p≥k(x)→ p≥k′(x).

The constructed rules are then applied to the facts in S to obtain an extended
set Acard of facts over pcard. The latter step is crucial when using a rule mining
system that is not doing arithmetic inferences (such as “x > 4 implies x > 3”).

Step 2 We then use a standard rule learning system, AMIE (Galárraga,
Teflioudi, et al., 2015), on Aa ∪ Acard to mine rules like:

(1) p′card(x)→ pcard(x)

(2) p′card(x) ∧ p′′card(x)→ pcard(x)

(3) p′card(x) ∧ r(x, y)→ pcard(x)

(4) p′card(x) ∧ r(x, y) ∧ p′′card(y)→ pcard(x)

(5) r(x, y) ∧ p′′card(y)→ pcard(x)

46

We rank the obtained rules based on confidence and select the ones that pass
operator-chosen minimal confidence and minimal support thresholds into the set
R.

Step 3 Finally, in the last step we use the obtained ruleset R to derive further
numerical statements together with weights assigned to them. For that we compute
A′ =

⋃
r∈R{Acard ∪ Aa}r. The weights of the statements are inherited from the

rules that derived them. We then employ two simple heuristics: (i) Given multiple
rules predicting the same fact, the highest weight for it is kept. We then post-
process predictions made by different rules for the same subject-predicate pair as
follows: (ii) If p≤k(s), p≥k′(s) ∈ A′ for k′ > k, we remove from A′ predictions with
the lowest weight thus resolving the conflict on the numerical bounds.

From the obtained graph we reconstruct cardinality statements as follows.

• Given p≤k(s), p≥k(s) ∈ A′ with weights w and w′ we create a cardinality
statement num(p, s) = k with the weight min(w,w′).

• If p≤k(s), p≥k′(s) ∈ A′ for k′ < k, then we set k′ ≤ num(p, s) ≤ k.

• Among two facts p≤k(s), p≤k′(s) (respectively p≥k(s), p≥k′(s)) with k < k′

(respectively k > k′) the first ones are kept and represented using the two
previous reconstructions.

Regular facts inA′ are similarly translated into their numerical representations.

Example 4.1. Consider the knowledge base in Figure 3.1 Page 36 and the follow-
ing cardinality statements for it: num(hasChild, john)=num(hasSibling, bob)=
3.

Among others, Acard contains the facts: hasChild≥3(john), hasSibling≥3(bob),
hasChild≥2(mary), hasChild≥2(john), hasSibling≥2(bob), hasSibling≥1(dave),
and hasSibling≥1(alice).

On the graph Aa∪Acard, the confidence of hasFather(x, y)∧hasChild≥3(y)→
hasSibling≥2(x) is 1

3
and 1 for hasFather(x, y) ∧ hasChild≥3(y) → hasSib-

ling≥1(x).

4.3 Evaluation

To evaluate our method for the automated acquisition of cardinality statements
from a knowledge base, we reused the WikidataPeople dataset described in Sec-
tion 3.4 Page 39. Different from the previous chapter, we do not complete the
dataset with basic rules (like materializing the inverse relations).

47

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

5M

10M
·107

Minimal confidence

G
en
er
at
ed

n
u
m

(p
,s

)

0

0.25

0.5

0.75

1

Sc
or
es

incomplete stmts. Precision
complete stmts. Recall

Figure 4.1 – Number of (in-)complete statements for generated cardinalities
num(p, s), and quality of predicted cardinalities.

Dataset

We have collected around 282K cardinality statements from various sources:

• Wikidata schema, i.e., hasFather, hasMother, hasBirthPlace, and hasDeath-
Place are functional properties and, thus, should have at most one value.

• The 7.5K values of the Wikidata predicate numberOfChildren;

• 663 novalue statements from Wikidata;

• 86K cardinality statements from Mirza, Razniewski, and Nutt, 2016 for the
hasChild predicate of Wikidata;

• 182K cardinality statements are extracted from human-curated and complete
Freebase facts (1.6M). The mapping to Wikidata has been done using tools
from Pellissier Tanon, Vrandečić, et al., 2016.

Experimental Setup

For the sake of simplicity and easy reproducibility, we set aside 20% of the car-
dinality statements, chosen uniformly at random, to build a validation set, while
the rest were incorporated into the WikidataPeople knowledge base following the
previously described approach. We then ran our rule learning algorithm to mine
cardinality rules. We have set the minimal support threshold to 200 and the
minimal confidence threshold to 0.01. Examples of mined rules along with their
standard confidences include

48

• hasSibling(x, y) ∧ hasSibling≥4(y)→ hasSibling≥3(x): 0.97

• hasFather(y, x) ∧ hasSibling≥4(y)→ hasChild≥3(x): 0.90.
The learned rules were then applied to the enriched WikidataPeople knowledge

base to retrieve new exact cardinalities num(p, s) by only keeping (p, s) pairs where
the higher and lower bounds matched. The minimum of the standard confidence
of the best rules used to get the upper and lower bounds was assigned as the final
confidence of each num(p, s).

Results

We aim to evaluate whether we can accurately recover the cardinality statements in
the validation set (which is our gold standard) by utilizing the learned cardinality
rules. For different minimal confidence thresholds, the quality of the predicted
cardinalities is measured with standard precision and recall (c.f. Definitions 2.24
and 2.25, Page 25), which is presented in Figure 4.1.

To our knowledge, this is the first work to mine cardinalities from existing
ones in the knowledge base, so we do not provide here comparisons with other
works. Indeed, Giacometti, Markhoff, and Soulet, 2019 has been published after
the evaluation was conducted and published.

We get a nearly perfect precision and a fair recall (around 40%) for the gen-
erated cardinalities, which amount to 7.5M-10M depending on the threshold.
Around one third of num(p, s) statements indicate completeness of the knowledge
base for some given (p, s) pairs.

The top rules mined often present very relaxed cardinality bounds like
hasFather(x, y)∧ hasChild≥4(y)→ hasSibling≥1(x). Indeed these rules have better
support because of the facts already present in the knowledge base which provide
lower bounds on the cardinalities. A more in-depth study of the mined rules is left
for future work.

4.4 Conclusion
In this chapter we have presented a new approach to increase the number of cardi-
nality metadata in a knowledge base. This approach works by mining rules on the
upper and lower bounds of the number of expected objects for a given subject and
predicate. An evaluation allows us to conclude that our proposed approach is effec-
tive. This approach can be used to improve the performance of the completeness
confidence presented in the previous chapter.

For future work, provided that sufficiently many similar numerical correlations
about edge numbers are extracted, one could attempt to induce more general con-
straints involving arithmetic functions like the “number of siblings of a person is

49

bounded by the number of his parents’ children minus 1” or “the sum of the num-
ber of a person’s brothers and the number of their sisters equals the number of
their siblings”. Similarly, the simple heuristic used to build back cardinality asser-
tions from the mined upper and lower bounds provides room for more advanced
voting/weighting schemes and inconsistency resolution in the case of conflicting
cardinality assertions.

This chapter concludes Part I of this thesis, where we have focused on acquiring
new rule based constraints to complete knowledge bases. In Parts II and III, we
will focus on how to enforce them, especially to repair constraints violations.

50

Part II

Enforcing Constraints Statically

51

Chapter 5

YAGO 4: A Reason-able Knowledge
Base

The work presented in this section has been done with GerhardWeikum and Fabian
Suchanek and has been published as a resource paper at ESWC 2020. Most of the
design and the implementation have been done by the author of this thesis.

Thomas Pellissier Tanon, Gerhard Weikum, and Fabian M. Suchanek.
“YAGO 4: A Reason-able Knowledge Base”. Resource paper at ESWC
2020. https://doi.org/10.1007/978-3-030-49461-2_34

5.1 Introduction

In Part I, we have presented an approach to mine new constraints. In this part,
we aim at enforcing them. This chapter presents an example of knowledge base,
YAGO 4, that statically enforces constraints on the data during its generation
process.

YAGO (Suchanek, Kasneci, and Weikum, 2007; Hoffart et al., 2011; Mahdis-
oltani, Biega, and Suchanek, 2015; Rebele, Suchanek, et al., 2016) was one of the
first academic projects to build a knowledge base automatically. The main idea of
YAGO was to harvest information about entities from the infoboxes and categories
of Wikipedia and to combine this data with an ontological backbone derived from
classes in WordNet (Fellbaum, 1998). Since Wikipedia is an excellent repository
of entities, and WordNet is a widely used lexical resource, the combination proved
useful. YAGO sent each fact through a pipeline of filtering, constraint checking,
and de-duplication steps. This procedure scrutinized noisy input and boosted the
quality of the final knowledge base, to a manually verified accuracy of 95%. This

53

https://doi.org/10.1007/978-3-030-49461-2_34

precision was possible thanks to the tight control that the YAGO creators had
over the extraction process, the filtering process, the ontological type system, the
choice of the relations, and the semantic constraints. However, despite new ver-
sions YAGO 2 and YAGO 3 with substantial jumps in scope and size, the focus
on Wikipedia infoboxes meant that YAGO has not arrived at the same scale as
Freebase or Wikidata.

Meanwhile, Wikidata (Vrandecic and Krötzsch, 2014) has evolved into the
world’s foremost publicly available knowledge base. It is a community effort where
anybody can contribute facts – either by manually adding or curating statements
in the online interface or by bulk-loading data. Wikidata has motivated more than
40,000 people who contribute at least once a month. The result is a public knowl-
edge base with 70M named entities, very good long-tail coverage, and impressive
detail1.

At the same time, Wikidata has been designed by its founders to be a collection
of information, not as a collection of universally agreed-upon knowledge (Vrande-
cic and Krötzsch, 2014). It may intentionally contain contradictory statements,
each with different sources or validity areas. Therefore, Wikidata does not enforce
semantic constraints, such as “each person has exactly one father”. Furthermore,
the large user community has led to a proliferation of relations and classes: Wiki-
data contains 6.7k relations, of which only 2.6k have more than 1000 facts, and it
contains around 2.4M classes2, of which 80% have less than 10 instances. Many
instances (e.g., all cities) are placed in the taxonomy under more than 60 classes.
This complexity is the trade-off that Wikidata has found to accommodate its large
user community. For downstream applications, the convoluted and often confusing
type system of Wikidata makes browsing and question answering tedious. More-
over, there is little hope to run strict classical reasoners (e.g., for OWL 2) in
a meaningful way, as the knowledge base contains many small inconsistencies.
Hence, every possible statement is deducible regardless of whether it is intuitively
correct or false. Some of these issues have been pointed out in the comprehensive
study of knowledge base quality by Zaveri, Rula, et al., 2016.

Example

To illustrate the shortcomings of the verbose and sometimes confusing type hierar-
chy of Wikidata, consider the entities Notre Dame de Paris (http://www.wikidata.
org/entity/Q2981) and Potala Palace (http://www.wikidata.org/entity/Q71229)
both of which are landmarks of two world religions.

1All the numbers given in the chapter about Wikidata are valid as of Feb. 24, 2020.
2Wikidata does not have a strong concept of a “class”; we use this term to denote entities that

have superclasses (i.e., appear as subject of “subclass of” triples).

54

http://www.wikidata.org/entity/Q2981
http://www.wikidata.org/entity/Q2981
http://www.wikidata.org/entity/Q71229

As of November 2019, Notre Dame was an instance of types catholic cathedral
and minor basilicas, with a rich set of superclasses.

The Potala Palace in Lhasa was an instance of palace and tourist attraction.
Interestingly, the latter did not have Notre Dame de Paris as an instance, neither
directly nor indirectly. So a query for tourist attractions would have found the
Potala Palace but not Notre Dame. This problem has been now fixed in Wikidata.
However, one could expect that similar problems exist.

Moreover, the class tourist attraction was a subclass of geographic object which
was an instance of the class geometric concept which, in turn, had superclass math-
ematical concept. As a consequence, a query for mathematical concepts returned
entities like tensor, polynomial, differential equation... and the Potala Palace as
answers.

Contribution

In this chapter, we describe the new YAGO version, YAGO 4, which aims to com-
bine the best of the two worlds: It collects the facts about instances fromWikidata,
but it forces them into a rigorous type hierarchy with semantic constraints. The
complex taxonomy of Wikidata is replaced by the simpler and clean taxonomy of
schema.org (Guha, Brickley, and Macbeth, 2016). The classes are equipped with
SHACL constraints (Knublauch and Kontokostas, 2017) that specify disjointness,
applicable relations, and cardinalities. This way, YAGO 4 transfers the rationale
of the original YAGO from the combination of Wikipedia and WordNet to the
combination of Wikidata and schema.org. The result is a new knowledge base,
which is not just large, but also logically consistent, so that OWL-based reason-
ing is feasible. Hence we call YAGO 4 a “reason-able” knowledge base. The new
resource is available at https://yago-knowledge.org under a permissive license
(Creative Commons Attribution-ShareAlike). YAGO 4 also comes with a browser
and a SPARQL endpoint. Figure 5.1 shows an excerpt from the new YAGO in the
online browser.

5.2 Related Work
The Linked Open Data cloud contains several dozen general-purpose knowledge
bases3. YAGO 4 is not intended to replace these knowledge bases, but rather to
serve as an addition to this ecosystem with unique characteristics that complement
the other players. For example, DBpedia also has a new version that ingests facts
from Wikidata (Ismayilov et al., 2018), with a well-designed pipeline that allows
harvesting of different knowledge sources (Frey et al., 2019). This new DBpedia

3https://www.lod-cloud.net/

55

https://yago-knowledge.org
https://www.lod-cloud.net/

Figure 5.1 – The YAGO 4 Browser. On the website, hovering reveals the full name
of abbreviated items, and all red and blue items are clickable.

56

and YAGO 4 have made different design choices, resulting in different strengths
and limitations. Whereas (Frey et al., 2019) key priority has been data mapping
and integration, our key priority has been to strengthen the logical rigor of the
knowledge base, to support OWL and other reasoners. This is why YAGO 4 builds
on schema.org and adds its own constraint system, which is much more elaborate
than what DBpedia enforces.

5.3 Design
The construction of the YAGO 4 knowledge base is driven by several design de-
cisions, which we explain and motivate next. The overarching point is to center
YAGO 4 around a well-founded notion of classes. For example, a Person is defined
as a subclass of Thing, and has an explicit set of possible relations such as birth-
Date, affiliation, etc. Conversely, other relations such as capitalOf, headquarter or
population are not applicable to instances of the class Person. This overarching
principle of semantic consistency unfolds into several design choices.

5.3.1 Concise Taxonomy

Wikidata contains a very detailed taxonomy to which the community contributes
by adding instanceOf and subclassOf statements. However, the resulting class
hierarchy is so deep and convoluted that it is not easy to grasp and that browsing
it is rather tedious. For example, Paris is an instance of 60 classes, 20 of which
are called using terms like “unit”, “entity”, “subject”, or “object”. Moreover, the
class hierarchy is not stable: any contributor can add or remove subclassOf links
between any two classes. Potentially, this could lead to millions of entities being
classified differently, just by a single edit. On the other hand, schema.org, the
second major input to YAGO 4, has established itself as a reference taxonomy on
the Web, beyond its initial aim at helping search engines to index web pages. It is
stable, well maintained, and changes can only be made by agreement in the W3C
Schema.org Community Group4. At the same time, schema.org does not provide
fine-grained classes such as “electric cars” or “villages” – which only Wikidata has.
Schema.org also does not have any biochemical classes (such as proteins etc.).

We address the latter problem by using Bioschemas (Gray, Goble, and Jimenez,
2017)5. This project extends schema.org in the field of the life sciences – a field
that is not covered in schema.org, and that is very prominent in Wikidata. We
manually merged 6 Bioschemas classes into schema.org, referring to the merged
taxonomy as the “schema.org taxonomy” for simplicity.

4https://www.w3.org/community/schemaorg/
5https://bioschemas.org

57

https://www.w3.org/community/schemaorg/
https://bioschemas.org

To achieve the stability of schema.org while preserving the fine-grained classes
of Wikidata, we found the following solution: The top-level taxonomy of YAGO 4
is taken from the schema.org taxonomy, and the leaf-level classes are taken from
Wikidata. For this purpose, we manually mapped 241 classes of schema.org
to Wikidata classes. Classes of schema.org that could not be mapped, mostly
shopping-related or social-media classes such as schema:LikeAction, were re-
moved. We encode this information in a declarative manner, by using the new
relation yago:fromClass, as shown here:

schema:Person yago:fromClass wd:Q215627

We keep the meaning of the schema.org classes. For example, schema:Person is
defined to cover also fictional people, so we did the same in YAGO 4.

With these inputs, the YAGO 4 taxonomy is then constructed as follows: For
each instance in Wikidata, we consider each possible path in the Wikidata taxon-
omy to classes mapped to schema.org. If the first class on the path has an English
Wikipedia article, we include it in YAGO 4. The rationale is that only classes
with an English Wikipedia article are of sufficient interest for a wider audience
and use cases. We then continue the path to the root in the Wikidata taxonomy,
discarding all classes on the way, until we hit a class that has been mapped to
schema.org. We continue our path to the root (schema:Thing) in the schema.org
taxonomy, adding all classes on the way to YAGO 4.

We discard all Wikidata classes that have less than 10 direct instances. This
threshold serves to ignore classes that have little value in use cases or are rather
exotic. We further remove subclasses of a small list of meta-level Wikidata classes.
Finally, we drop subclasses of pairs of classes for which we enforce disjointness
constraints. These design choices allow us to model villages and cars, while signifi-
cantly reducing the size of the taxonomy. From the 2.4M original Wikidata classes,
we kept only 10k classes, shrinking the taxonomy by 99.6%. We also discard 11M
instances (14%) – two-thirds of which (7.5M) are Wikipedia-specific meta-entities
(disambiguation page, category, wikitext template, etc.). Our strategy capitalizes
on the stable backbone of schema.org while being able to augment YAGO 4 with
new data coming from Wikidata.

5.3.2 Legible Entities and Relations

In the following we use the usual RDF notation for IRI prefixes. For example yago:
stands for http://yago-knowledge.org/resource/ and schema: for http://
schema.org/.

YAGO 4 is stored in the RDF format. Unlike Wikidata, we chose to give
human-readable URIs to all entities, in order to make the knowledge base more
accessible for interactive use. If an entity has a Wikipedia page (which we know

58

http://yago-knowledge.org/resource/
http://schema.org/
http://schema.org/

because Wikidata links it to Wikipedia), we take the Wikipedia title as the entity
name. Otherwise, we concatenate the English label of the entity with its Wikidata
identifier (e.g., Bischmisheim_Q866094). Our previous study, Pellissier Tanon
and Kaffee, 2018, suggests that the Wikidata labels are fairly stable, leading to
fairly stable YAGO URIs. If the entity has no English label, we stay with the
Wikidata identifier. Using languages other than English for fallback would have
made the URIs less stable: this is because the addition of labels in other languages
(especially English) is frequent in Wikidata, and we expect it to be more frequent
than changes in the English labels. We make the necessary changes to arrive at a
valid local IRI name, and add the IRI prefix of YAGO, http://yago-knowledge.
org/resource/. This gives the vast majority of entities human-readable names,
without introducing duplicates or ambiguity. Note that our choices mean that
our URIs may not be fully stable, and may change if Wikidata labels change.
This choice is because we preferred to focus on readability rather than stability:
Wikidata IRIs are better suited to be used as a permanent link target, and we
provide a mapping between Wikidata and YAGO, that can help alleviate any
issues with the instability of our URIs.

Wikidata has a very rich set of relations, but many of these have only very few
facts. Indeed 61% of them have less than 1000 facts and 85% of them less than 10k.
For YAGO 4, we chose to follow the successful model of previous YAGO versions,
which only kept a limited number of possible relations for each class. We chose
the relations from schema.org, which are each attached to a class. While these
relations are conservative in coverage, they have emerged as a useful reference.
We mapped 116 of these relations manually to the relations of Wikidata. We store
this information similarly to the class mapping by using the new relation, yago:
fromProperty, as shown here:

schema:birthPlace yago:fromProperty wdt:P569

The pipeline for knowledge base construction implements these mappings (c.f. Sec-
tion 5.4.1). This process discards around 7k relations from Wikidata, leaving only
the 116 mapped relations. As a by-product, it gives human-readable names to
all relations. Example relations are schema:birthPlace schema:founder, and
schema:containedInPlace. We use RDF and RDFS relations whenever possible,
including rdfs:label and rdfs:comment instead of schema:name and schema:
description. For example, the fact wd:Q42 wdt:P31 wd:Q5 from Wikidata be-
comes

yago:Douglas_Adams rdf:type schema:Person

59

http://yago-knowledge.org/resource/
http://yago-knowledge.org/resource/

5.3.3 Well-Typed Values

YAGO 4 has not just well-typed entities, but also well-typed literals. For this
purpose, we translate the data values of Wikidata to RDF terms. External URIs
are converted into xsd:anyURI literals after normalizing them.6 We chose to keep
external URIs as literals and not as entities, because we do not make any state-
ments about URIs. Time values are converted to xsd:dateTime, xsd:date, xsd:
gYearMonth or xsd:gYear, depending on the time precision. We discard the other
time values whose precision could not be mapped to an XML schema type. Globe
coordinates are mapped to schema:GeoCoordinates resources. Quantities are
mapped to schema:QuantitativeValue resources (keeping the unit and preci-
sion). If there is no unit and an empty precision range, we map to xsd:integer
where possible. If the unit is a duration unit (minutes, seconds...) and the preci-
sion range is empty, we map to xsd:duration. In this way, the vast majority of
values are migrated to standard RDF typed literals.

5.3.4 Semantic Constraints

YAGO 4 has hand-crafted semantic constraints that not just keep the data clean,
but also allow logical reasoning on the data. We model constraints in the W3C
standards SHACL (Knublauch and Kontokostas, 2017) and OWL. SHACL is a
language to validate RDF graphs. It allows expressing constraints on the graph
using shapes. There are two kinds of shapes, node shapes and property shapes.
Node shapes are applied to a set of nodes. For example, the following RDF triples
declare a node shape yago:PersonShape that should be enforced on all instances
of schema:Person:

yago:PersonShape a sh:NodeShape
yago:PersonShape sh:targetClass schema:Person

After declaring node shapes, it is possible to apply shapes on facts using property
shapes. These property shapes are applied to the outgoing edges of the nodes on
which a node shape is enforced. For example, the following RDF triples declare
a property shape yago:birthDateShape which should be enforced on all facts
with a schema:birthDate property and a subject for which yago:PersonShape is
enforced:

yago:PersonShape sh:property yago:birthDateShape
yago:birthDateShape sh:path schema:birthDate

6We follow the normalization suggested by RFC 2986 Section 6.2.

60

It is possible to state various constraints on the property shape (range, cardinal-
ity...). They are going to be described in the following paragraphs.

YAGO 4 currently has the following constraints:

Disjointness

We specify 6 major top-level classes: schema:Event, schema:Organization,
schema:Person, schema:Place, schema:CreativeWork, and bioschemas:Bio-
ChemicalEntity. With the exception of schema:Organization/schema:Place,
these are pairwise disjoint; so that these classes cannot have any instances in
common. We use OWL to express, for example:

schema:Person owl:disjointWith schema:CreativeWork

Note that organizations are not disjoint from places, because many organizations
are also located somewhere.

Domain and Range

Each relation comes with a domain and range constraint, meaning that a re-
lation such as birthPlace can apply only to a person and a place. RDFS can
specify the domain and range of relations by help of the predicates rdfs:domain
and rdfs:range, but our constraints have a different semantics: If a knowledge
base contained the fact 〈London, schema:birthPlace, Paris〉, then the statement
〈schema:birthPlace, rdfs:domain, schema:Person〉 would simply deduce that
London must be a person. In contrast, our constraints would flag the knowledge
base as inconsistent. We use SHACL to express these constraints. For example,
these triples declare that the values of the schema:birthPlace property should
comply with the yago:PlaceShape shape that covers instances of schema:Place:

yago:PersonShape sh:property yago:birthPlaceProperty
yago:birthPlaceShape sh:path schema:birthPlace
yago:birthPlaceShape sh:node yago:PlaceShape
yago:PlaceShape a sh:NodeShape
yago:PlaceShape sh:targetClass schema:Place

The same property can be used to describe entities of different classes. For example
schema:telephone can be used to describe both persons and organizations. In
this case, the same property is going to be in the shapes of several classes. The
domain of the property is then the union of all these classes.

In the same spirit, we also support disjunction in property ranges. For exam-
ple, the range of schema:author is schema:Person union schema:Organization.

61

Following the same argument, the range of the schema:birthDate property is the
union of datatypes xsd:dateTime, xsd:date, xsd:gYearMonth and xsd:gYear to
allow different calendar value precisions. Our range constraints also include the
validation of xsd:string literals via regular expressions, as in this example:

yago:PersonShape sh:property yago:telephoneShape
yago:telephoneShape sh:path schema:telephone
yago:telephoneShape sh:datatype xsd:string
yago:telephoneShape sh:pattern "+\d{1,3} ..."

Functional Constraints

A functional constraint says that a relation can have at most one object for a
subject. Several of our relations are functional, e.g., birthPlace or gender. Again,
we use SHACL:

yago:PersonShape sh:property yago:birthPlaceShape
yago:birthPlaceShape sh:maxCount "1"^^xsd:integer

Cardinality Constraints

Going beyond functional constraints, we can also specify the maximal number of
objects in general. For example, people can have only two parents in YAGO 4.
We use again the SHACL sh:maxCount property.

Enforcement of Constraints

YAGO 4 assumes that, for every class, the only allowed properties are the ones
explicitly allowed by the domain constraints. This amounts to interpreting the
SHACL constraints under a “closed world assumption”. The constraints are au-
tomatically enforced during the construction of the knowledge base (see Sec-
tion 5.4.1), and so the data of YAGO 4 satisfies all constraints. Overall, the
enforcement of constraints leads to the removal of 132M facts from Wikidata (i.e.,
28% of all the facts). Since the constraints are enforced when constructing the
knowledge base, we can then add the deductive rdfs:domain and rdfs:range
facts to YAGO 4 and be sure that they will not be used to deduce new facts that
violate the constraints.

The ontology automatically generated from the constraints declaration uses the
OWL 2 axiomsDisjointClasses, ObjectPropertyDomain, DataPropertyDomain, Ob-
jectPropertyRange, DataPropertyRange, ObjectUnionOf, FunctionalDataProperty,
FunctionalObjectProperty, and falls into the OWL DL flavor. Statistics about the
mapping and constraints are shown in Table 5.1.

62

Table 5.1 – Schema and mapping statistics

Item Number

Schema.org classes 235
Bioschemas.org classes 6
Object properties 100
Datatype properties 41
Node shapes 49
Property shapes 217
Domain constraints 217
Object range constraints 132
Datatype range constraints 57
Regex constraints 21
Disjoint constraints 18

5.3.5 Annotations for Temporal Scope

Following previous YAGO versions, YAGO 4 also attaches temporal information
to its facts. We harvest these from the Wikidata qualifier system, which annotates
facts with their validity time, provenance, and other meta information. We express
the temporal scopes of facts by the relations schema:startDate and schema:
endDate. Instead of relying on a custom format for these annotations, we made
use of the RDF* model proposal (Hartig, 2017), which has received good traction
in recent years. The RDF* model allows RDF triples to be subjects and objects of
other triples. These “inner triples” are often written using the << s p o >> notation.
For example, we state that Douglas Adams lived in Santa Barbara until 2001 as
follows:
<< Douglas_Adams schema:homeLocation Santa_Barbara >> schema:endDate 2001
This asserts that the fact encoded by the triple Douglas_Adams schema:home-
Location Santa_Barbara was true until 2001.

In terms of semantics, a subtle point is that we must distinguish between two
existing semantics of RDF*: the Property Graph (PG) semantics and the Separate
Assertions (SA) mode7. The property graph semantics asserts the inner triples
whereas the separate assertions mode does not. For instance, in the previous
example, the PG semantics would imply that Douglas Adams still lives in Santa
Barbara, which is not what we mean. By contrast, the SA mode would imply that

7These semantics names are taken from ongoing discussions about the formalization of the
RDF* specification: https://lists.w3.org/Archives/Public/public-rdf-star/2019Aug/
0001.html

63

https://lists.w3.org/Archives/Public/public-rdf-star/2019Aug/0001.html
https://lists.w3.org/Archives/Public/public-rdf-star/2019Aug/0001.html

Douglas Adams only lived in Santa Barbara until 2001, without indicating where
he currently lives. For this reason, in the design of YAGO4, we use the SA mode
of RDF* globally.

5.4 Knowledge Base

5.4.1 Construction

We have designed a system that builds YAGO 4 automatically from (1) a Wikidata
dump and (2) the SHACL shape definitions of Section 5.3. We keep only the so-
called “truthy” Wikidata statements8, i.e., for each subject and predicate we keep
only the statements with the “best” rank (a.k.a. “preferred” if a statement with
such rank exists, “normal” if not).

The knowledge base building system constructs the class hierarchy, the entities,
and the facts as outlined in Section 5.3. Its main purpose is then to enforce the
constraints (Section 5.3.4). If a resource is an instance of disjoint classes, we drop
the two rdf:type relations leading to this conflict. We drop all instances that
are not instances of any class. We enforce domain, range, and regular-expression
constraints by pruning all candidate facts that would violate a constraint. Finally,
we check the cardinality constraints, removing all objects if there are too many
for a given subject. For example, if a functional property has multiple values with
the same Wikidata rank, they are all removed from YAGO.

Our system is implemented in the Rust programming language9, using the
Iterator infrastructure to ingest and output data streams. We use the already
existing stream operators, which resemble those of relational algebra (map/project,
filter, flat map, collect/materialize into a hash structure). We also implemented
new operators particularly for YAGO 4 (stream-hash join, stream-hash anti join,
group-by, and transitive closure). For example, the owl:sameAs links between
YAGO 4 and Freebase can be extracted from the values of the Wikidata property
wdt:P646 (“Freebase Id”) by the algebraic operator plan presented in Figure 5.2.
In this figure, π is the projection operator, σ the selection, ./ the inner join,
Wikidata the table of all Wikidata triples (s, p, o), and WikidataToYagoMapping
the mapping between Wikidata and YAGO instances (wd, yago). To avoid reading
the full Wikidata N-Triples dump each time, we first load the Wikidata dump
into the RocksDB key-value store to index its content10. This index allows for
efficiently selecting triples based on a predicate or a (predicate, subject) tuple,

8https://www.mediawiki.org/wiki/Wikibase/Indexing/RDF_Dump_Format#Truthy_
statements

9https://www.rust-lang.org/
10https://rocksdb.org/

64

https://www.mediawiki.org/wiki/Wikibase/Indexing/RDF_Dump_Format#Truthy_statements
https://www.mediawiki.org/wiki/Wikibase/Indexing/RDF_Dump_Format#Truthy_statements
https://www.rust-lang.org/
https://rocksdb.org/

π<yago,owl:sameAs,<http://rdf.freebase.com/ns/+str(o)>>

./s=wd

σmatches(str(o),/m/0([0-9a-z_]{2,7})

σp=wdt:P646

Wikidata

WikidataToYagoMapping

Figure 5.2 – Algebric operator plan generating the owl:sameAs relations between
YAGO and Freebase using the values of the Wikidata property wdt:P646 (“Free-
base Id”).

and getting back a stream of triples from the database.
The advantage of having operator plans in Rust is that our system can specify

the query plan (i.e., the best execution order). We also get benefit from a program-
ming language with a compiler able to carry performance optimizations, generating
highly efficient native code. After having loaded the data into RocksDB, a pro-
cess that takes around a day, our execution plan generates the Wikipedia-flavored
YAGO 4 (see below) in two hours on a commodity server.

We ran our system on a dump of 78M Wikidata items. 8M of these are entities
related to Wikimedia websites, such as categories. From the 474M Wikidata facts
whose properties have been mapped to schema.org, we filtered out 89M of them
because of the domain constraints and 42M more because of the range and regex
constraints. The cardinality constraints lead to the removal of an extra 0.6M
facts.

5.4.2 Data

YAGO 4 is made available in three “flavors”:

• Full: This flavor uses all data from Wikidata, resulting in a very large
knowledge base.

• Wikipedia: This smaller flavor of YAGO 4 contains only the instances that
have a Wikipedia article (in any language).

65

• English Wikipedia: This is an additional restriction of the Wikipedia
flavor, containing only instances that have an English Wikipedia article.

All three flavors of YAGO 4 are built in the same way, and have the same
schema, with 116 properties and the same taxonomy of 140 top-level classes from
schema.org and bioschemas.org, and the same subset of Wikidata classes. Table 5.2
shows statistics for the three YAGO 4 variants, generated from the Wikidata N-
Triples dump of November 25, 2019.
Each flavor of YAGO 4 is split into the following files:

• Taxonomy: The full taxonomy of classes.

• Full-types: All rdf:type relations.

• Simple-types: The rdf:type relations to schema.org classes (i.e., without
the classes generated from Wikidata).

• Labels: All entity labels (rdfs:label, schema:alternateName, and rdfs:
comment).

• Facts: The facts that are not labels.

• Annotations: The fact annotations encoded in RDF* (Hartig, 2017).

• SameAs: The owl:sameAs links to Wikidata, DBpedia, and Freebase and
the schema:sameAs links to all the Wikipedias.

• Schema: The schema.org classes and properties, in OWL 2 DL.

• Shapes: The SHACL constraints used to generate YAGO 4.

Each file is a compressed N-Triples file, so that standard tools can directly ingest
the data.

5.4.3 Access

Web Page. The YAGO 4 knowledge base is available on the website https:
//yago-knowledge.org. The Web page offers an introduction to YAGO, docu-
mentation (“Getting started”), and a list of publications and contributors. The
Web page also has a schema diagram that lists all top-level classes with their
associated relations and constraints.

66

https://yago-knowledge.org
https://yago-knowledge.org

Table 5.2 – Size statistics for YAGO 4 in the flavors Full (F), Wikipedia (W), and
English Wikipedia (E), Wikidata, DBpedia (obtained from the DBPedia SPARQL
server on 2020-03-04) and Yago 3.0.2.

YAGO F YAGO W YAGO E Wikidata DBpedia YAGO 3

Classes 10124 10124 10124 2.4M 484k 475k
Classes from Wikidata 9883 9883 9883 2.4M 222 0
Relations 143 143 143 7k 3k 102
Individuals 67M 15M 5M 78M 5M 5M
Labels 303M 137M 66M 371M 22M 32M
Descriptions 1399M 139M 50M 2146M 12M 69k
Aliases 68M 21M 14M 71M 0 9M
rdf:type 70M 16M 5M 77M 114M 17M
Facts 343M 48M 20M 974M 131M 10M
Avg. # facts per entity 5.1 3.2 4 12.5 26 2
sameAs to Wikidata 67M 15M 5M N.A. 816k 0
sameAs to DBpedia 5M 5M 5M 0 N.A. 4M
sameAs to Freebase 1M 1M 1M 1M 157k 0
sameAs to Wikipedia 43M 43M 26M 66M 13M 5M
Fact annotations 2.5M 2.2M 1.7M 220M 0 3M
Dump size 60GB 7GB 3GB 127GB 99GB 2GB

67

License. The entire YAGO 4 knowledge base, as well as all previous versions
and the logo, can be downloaded from the Web page. YAGO 4 is available under
a Creative Commons Attribution-ShareAlike License. The reason for this choice
is that, while Wikidata is in the public domain, schema.org is under a Creative
Commons Attribution-ShareAlike License.11

Source Code. We have released the source code for constructing YAGO 4 on
GitHub at https://github.com/yago-naga/yago4 under the GNU GPL v3+
license.

SPARQL Endpoint. YAGO 4 comes with a responsive SPARQL endpoint,
which can be used as an API or interactively. The URL of the endpoint is
https://yago-knowledge.org/sparql/query. The YAGO URIs are also all
dereferenceable, thus complying with the Semantic Web best practices.

Browser. YAGO 4 comes with a graphical knowledge base browser, with an
example shown in Figure 5.1. For each entity, the browser visualizes the outgoing
relationships in a star-shape around the entity. Above the entity, the browser
shows the hierarchy of all classes of which the entity is a (transitive) instance,
including those with multiple inheritances. If an entity has more than one object
for a given relation, a relation-specific screen shows all objects of that relation for
the entity. For size reasons, the browser shows only the Wikipedia flavor of YAGO.

Applications. YAGO has already been used in quite many projects (Rebele,
Suchanek, et al., 2016), including question answering, entity recognition, and se-
mantic text analysis. We believe that the new version of YAGO opens up the
door to an entire array of new applications because it is possible to perform logical
reasoning on YAGO 4. Not only is the knowledge base equipped with seman-
tic constraints, but it is also provably consistent. We have checked the “English
Wikipedia” flavor of YAGO 4 with the OWL 2 DL reasoner HermiT (Glimm et al.,
2014), proving its logical consistency.12 This makes it possible to perform advanced
kinds of logical inference on YAGO 4.

5.5 Conclusion
This chapter has presented YAGO 4, the newest version of the YAGO knowledge
base. The unique characteristics of YAGO 4 are to combine the wealth of facts

11https://schema.org/docs/terms.html
12HermiT was unable to load the “Full” flavor due to a memory overflow, but it contains the

same taxonomy and the same constraints as the “English Wikipedia” flavor.

68

https://github.com/yago-naga/yago4
https://yago-knowledge.org/sparql/query
https://schema.org/docs/terms.html

from Wikidata with the clean and human-readable taxonomy from schema.org,
together with semantic constraints that enforce logical consistency. This way, the
resulting knowledge base can be processed with OWL reasoners and is also more
user-friendly for browsing and question answering.

In the future, it would be nice to provide a tool alongside YAGO 4 that would be
able to give the original fact(s) in Wikidata which led to a given YAGO fact. This
tool would allow YAGO 4 users to know which fact to edit in Wikidata, or whether
the conversion pipeline is wrong, in case they found a problem in YAGO. Adding
reasoning capabilities to the public SPARQL endpoint would also be interesting
to make use of the consistency of YAGO 4.

However, the YAGO 4 process of removing all offending facts when fixing se-
mantic constraint violations lead to losing 27% of facts with respect to Wikidata.
Therefore, the next chapter will present a better way to fix these violations.

69

70

Part III

Enforcing Constraints Dynamically

71

Chapter 6

Learning How to Correct a
Knowledge Base from the Edit
History

Most of the work presented in this section has been done with Camille Bourgaux
and Fabian Suchanek and has been published at WWW.1

Thomas Pellissier Tanon, Camille Bourgaux, and Fabian M. Suchanek.
“Learning How to Correct a Knowledge Base from the Edit History”. Full
paper at WWW 2019. https://doi.org/10.1145/3308558.3313584

The neural network approach Bass (Section 6.7) and the evaluation against the
test dataset (Section 6.8) are new and are currently under review at ISWC.

Thomas Pellissier Tanon and Fabian M. Suchanek. “Neural Knowledge
Base Repairs”. Under review at ISWC 2020.

6.1 Introduction
In the previous chapter, we have presented a knowledge base that statically en-
forces constraints. This is done by removing all facts violating these constraints.
However, this method leads to an important amount of fact loss (27%). Therefore,
we now focus on a better way to fix these violations.

1The formalization of constraints in description logics presented in the paper is omitted here
to only focus on my personal contribution. For this reason, some parts of this thesis (in particular
Section 6.3) differ significantly from the conference version of this work.

73

https://doi.org/10.1145/3308558.3313584

In this chapter, we aim at learning how to repair constraint violations. Our
goal is to help a knowledge base editor by suggesting how to clean the data locally
(providing a solution to a particular constraint violation) or globally (providing
rules that can be automatically applied to all constraint violations of a given form
once validated by the editor). To do that, we take advantage of the edit history of
the knowledge base. We propose two approaches to learn correction suggestions.
The first one mines correction rules that express how different kinds of constraint
violations are usually solved. The second one trains a neural network that pre-
dicts constraint violation corrections. To the best of our knowledge, this is the
first work that builds on past user corrections to infer possible new ones. We
validate our framework experimentally on Wikidata, for which the whole edit his-
tory of more than 700 million edits is available. Our experiments show substantial
improvements over baselines. More concretely, our contributions are as follows:

• a formal definition of the problem of correction rule mining,

• a correction rule mining algorithm, together with an implementation for
Wikidata, CorHist,2

• a deep neural network algorithm, together with an implementation for Wiki-
data, Bass,3

• a suggestion tool for users to correct data based on our mined correction
rules,4

• an experimental evaluation based both on the prediction of the corrections
in the history and on user validation of the suggested local corrections.

6.2 Related Work

We start with a brief discussion of works relevant to our problem along three axes:
constraints for knowledge bases, knowledge base cleaning, and rule learning.

Constraints

Constraints have long been used in databases and knowledge bases to express rules
that the data should follow. Databases typically operate under the closed world

2Available at https://github.com/Tpt/corhist.
3This implementation is not publicly available yet because of the double-blind requirement of

the peer-review process of ISWC 2020.
4Available at https://tools.wmflabs.org/wikidata-game/distributed/#game=43.

74

https://github.com/Tpt/corhist
https://tools.wmflabs.org/wikidata-game/distributed/#game=43

assumption, where missing facts are considered to be false. This allows for “com-
pleteness” constraints such as tuple generating dependencies. knowledge bases, in
contrast, operate under the open-world assumption, where missing facts are not
necessarily false. They thus classically have only “correctness” constraints, such
as disjointness or functionality axioms (corresponding to special cases of denial
constraints and equality generating dependencies in databases).

To express also completeness constraints, several works propose to use de-
scription logics, with varying semantics (Motik, Horrocks, and Ulrike Sattler,
2009; Tao et al., 2010). Another possibility is to use queries that should or
should not hold as constraints (see e.g., Kontokostas et al., 2014 for methods
for writing constraint queries in SPARQL). Other approaches define constraint
languages to specify conditions for RDF graph (Cyganiak et al., 2014) validation,
such as SHACL (Knublauch and Kontokostas, 2017) or ShEx (Boneva, Gayo, and
Prud’hommeaux, 2017). It has been argued in Patel-Schneider, 2015 that de-
scription logics under the closed world assumption are also suitable for constraint
checking in RDF, which can then be implemented with SPARQL queries. In our
work, we depart from this path by using association rules as constraints.

Contrary to the above works, we do not aim at expressing constraints, but at
repairing their violations. The correction rules we learn for this purpose are similar
in spirit to active integrity constraints (Flesca, Greco, and Zumpano, 2004), which
specify for each constraint a set of possible repair actions. This type of constraint
has recently been applied to description logic knowledge bases as well (Rantsoudis,
Feuillade, and Herzig, 2017). Conditioned active integrity constraints add condi-
tions for choosing among the possible actions, and we propose, in a similar spirit,
to take into account the context of the constraint violation to correct it. Different
from these existing works, our goal is to mine correction rules automatically from
the edit history of the knowledge base.

Knowledge base cleaning

Several recent approaches have dealt with the interactive cleaning of knowledge
bases. The proposed methods detect when a constraint is violated, compute the
responsible facts, and then interact with the user to find out how to update the
knowledge base. The goal is then to minimize the number of questions the user
has to answer. This is done in various ways, which include taking into account
the dependencies among the facts to check, or the interaction between several
constraint violations to define heuristics to choose the best question to ask the
user (Bergman et al., 2015; Bienvenu, Bourgaux, and Goasdoué, 2016; Assadi,
Milo, and Novgorodov, 2018; Arioua and Bonifati, 2018).

Other approaches to improve the quality of a knowledge base rely on statistics,
clustering, or structural aspects of the knowledge bases. Chen et al., 2020 uses

75

knowledge base embeddings, lexical distance, and constraint-based refinements to
predict corrections. Our work goes beyond the state of the current knowledge base
and learns from the edit history instead. Paulheim and Bizer, 2014 uses statis-
tics to add missing types to the knowledge base and to detect wrong statements.
Liang et al., 2017 exploits the observation that cycles in the knowledge base often
contain wrong “isA” relations. G. d. Melo, 2013 cleans “sameAs” relations based
on the shape of the existing identity facts and on differences in the graph. Lertvit-
tayakumjorn, Kertkeidkachorn, and Ichise, 2017 uses graph and text distances to
look for values for a given subject and predicate. A. Melo and Paulheim, 2017
fixes the subject or object of existing relations based on type relations and string
matching. Again other approaches, like Acosta et al., 2018, use crowdsourcing to
detect Linked Data quality issues. We refer the reader to Section 7.2 of Acosta
et al., 2018 for a recent overview of approaches for data quality assessment.

Our method also exploits knowledge base constraints. However, it differs from
the above in that it learns the corrections automatically from the edit history. It
thus taps a source of knowledge that has so far not been exploited.

Some works in completely different domains also use the idea of learning repairs
from past corrections. For example, Bader et al., 2019 learns how to fix errors in
source code based on previous error corrections.

Rule learning

Mining logical rules by finding correlations in a dataset is a well-established re-
search topic. In particular, learning patterns in the data can be used for completing
knowledge bases as presented in Chapter 3. An algorithm for learning conjunc-
tive patterns from a knowledge base enriched with a set of rules is described in
Józefowska, Lawrynowicz, and Lukaszewski, 2010. Methods similar to association
rule mining have also been used for the induction of new ontological rules from
a knowledge base (Sazonau, Uli Sattler, and Brown, 2015). A more recent trend
is to use embedding-based models for knowledge base completion. A comparison
between these models and usual rule learning approaches is reported in Meilicke
et al., 2018 and significant recent works in this area include Ho et al., 2018; B.
Yang et al., 2014; F. Yang, Z. Yang, and Cohen, 2017.

Graph neural networks

Neural networks are often applied to knowledge base related tasks (Wu et al., 2019).
However, there does not seem to be any work in the literature that uses neural
networks to predict repairs in knowledge bases. Some works use neural networks
to reason on top of knowledge bases (Hohenecker and Lukasiewicz, 2018). Several
other works tackle the knowledge graph completion task by mining rules (Ho et al.,

76

2018) or by link prediction. Our approach takes inspiration from these methods,
but ultimately tackles a different problem: We do not want to predict links, but
the correction of the violation of a constraint. We refer to Wu et al., 2019 for a
detailed survey about graph neural networks.

In this chapter, we use a vanilla rule mining algorithm inspired by Galárraga,
Teflioudi, et al., 2013 and a combination of usual neural network components.
Our contribution is not the rule mining and the neural network per se, but the
application of rule mining and deep learning to the edit history of a knowledge
base to mine correction rules. This avenue has, to the best of our knowledge, never
been investigated.

6.3 Constraints

This section defines the constraints that can be imposed on a knowledge base.
In this chapter we make the unique name assumption, i.e., we assume that each
entity is represented by at most one individual (Definition 2.9 Page 20).

Definition 6.1 (Constraint). A constraint Γ(~x) is a rule under the form b(~x) →
h(~x) where ~x is a sequence of variables, b a propositional query (c.f. Definition 2.13
Page 22) and h a union of conjunctive queries (c.f. Definition 2.12 Page 22).

Example 6.2. As a running example, we consider the following knowledge base
K = (T ,A) and set of constraints C inspired by Wikidata. We assume that the
description logic subset used is the one that covers only concept inclusions.

Our TBox T expresses that human beings and deities are persons. Our ABox
A provides information on several individuals. Our constraints C state that there
are two possible genders, that those who have a mother or are a mother must
be persons or animals, that a mother must have gender female, and that if a has
mother b, then b must have child a.

T = {Human v Person,Deity v Person}

A = { Deity(Zeus), Deity(Rhea), hasGender(Zeus, masculine),

hasGender(Rhea, female), hasMother(Zeus, Rhea),

hasChild(Rhea, Zeus), Human(Spinoza),

hasMother(Spinoza, Marques) }

77

C = {Γ0(x) : ∃y hasGender(y, x)→ x = male ∨ x = female,
Γ1(x) : ∃y hasMother(x, y)→ Person(x) ∨ Animal(x),

Γ2(x) : ∃y hasMother(y, x)→ Person(x) ∨ Animal(x),

Γ3(x) : ∃y hasMother(y, x)→ hasGender(x, female),

Γ4(x, y) : hasMother(x, y)→ hasChild(y, x) }

We say that a knowledge base K satisfies a constraint Γ ∈ C where Γ(~x) : b(~x)→
h(~x) if for all x, K |= b(~x) =⇒ K |= h(~x). Otherwise, K violates Γ.

Example 6.3. In our running example, the knowledge base K satisfies Γ1 since
{x | K |= ∃y hasMother(x, y)} = {Zeus, Spinoza} and K |= Person(Zeus) and
K |= Person(Spinoza). However, it violates Γ2 because K 6|= Person(Marques) ∨
Animal(Marques) while K |= ∃y hasMother(y, Marques).

It also violates Γ3 and Γ4 for similar reasons.
Finally, {hasGender(Zeus, masculine)} violates Γ0 because of the unique name

assumption (which enforces that the interpretation of masculine differs from those
of male and female). By monotonicity, K violates Γ0.

Proposition 6.4. Every constraint Γ ∈ C can be rewritten as a set of rules Γi(~x) :
bi(~x) → hi(~x), i ∈ {1, . . . n, }, where bi(~x) is a conjunctive query and hi(~x) is a
union of conjunctive queries and for every knowledge base K, K satisfies Γ if, and
only if, K satisfies all Γi, i ∈ {1, . . . n, }.

Proof. Let’s assume we have a constraint Γ(~x) : b(~x)→ h(~x) where b is a proposi-
tional query and h a union of conjunctive queries.

It is possible to rewrite b in disjunctive normal form such that b(~x) =
∃~y

∨n
i=1

∧m
j=1 bi,j(~x, ~y) where bi,j is an optionally negated role, concept or equality

assertion. We end up with Γ(~x) :
∨n
i=1 ∃~y

∧m
j=1 bi,j(~x, ~y) → h(~x). This could be

rewritten with an equivalent set of rules Γi(~x) : ∃~yi
∧m
j=1 bi,j(~x, ~yi) → h(~x) with

i ∈ 1, . . . , n. Indeed, Γ is satisfied if, and only if, all Γi are satisfied.
We could then simplify the rules Γi. Γi could be written Γi(~x) : ∃~y b(~x, ~y) ∧

¬bn(~x, ~y) → h(~x) where b(~x, ~y) is a conjunction of roles, concepts or equality
assertions and bn(~x, ~y) a disjunction of them (we have factorized the negation).

We could then define ~x′ to be the concatenation of ~x and ~y and end up with
Γi(~x′) = b(~x′)∧¬bn(~x′)→ h(~x′) that is equivalent to Γi(~x′) : b(~x′)→ h(~x′)∨bn(~x′).

h(~x′)∨ bn(~x′) is a union of conjunctive queries. Hence we found a set of queries
Γi equivalent to Γ and having the expected properties.

Constraint violations. A constraint instance Γ(~a) of a constraint Γ(~x) is ob-
tained by replacing the variables ~x by the individual names ~a in Γ(~x). This notion
allows us to define constraint violations:

78

Definition 6.5. A violation of a constraint Γ(~x) in K is a minimal subset V ⊆ K
such that there exists ~a such that V violates Γ(~a) and K violates Γ(~a).

In this definition, the requirement that K violates Γ(~a) may seem superflu-
ous. Yet, if Γ is Human(x) → ∃y hasGender(x, y), it may be the case that
some V ⊆ K violates Γ(~a) (e.g., {Human(Zeus)}), while K satisfies it (e.g.,
{Human(Zeus), hasGender(Zeus, male)}).

Example 6.6. In our running example, it is easy to see that the subset
V0 = {hasGender(Zeus, masculine)} is a violation of Γ0. Consider now V =
{hasMother(Spinoza, Marques)}. V is a violation of Γ2, Γ3 and Γ4. Indeed, it
violates Γ2(Marques), Γ3(Marques), and Γ4(Spinoza, Marques) and K does not
satisfy any of these constraint instances. However, even if V violates Γ1(Spinoza),
V is not a violation of Γ1 because {Human(Spinoza), Human v Person} ⊆ K
satisfies the head of Γ1(Spinoza).

If a constraint instance Γ(~a) of Γ(~x) : b(~x) → h(~x) is violated, K |= b(~a) and
K 6|= h(~a), so its violations are the minimal subsets of K responsible for K |= b(~a).

Connection to justifications. We conclude the section by pointing out that
our notion of violations is closely related to the notion of justifications introduced
in previous works in the context of explaining why a given axiom is entailed by
an ontology. A justification (also known as an explanation, axiom pinpointing,
or MinAs) for the entailment of a boolean conjunctive query is a minimal subset
of the knowledge base that entails the boolean conjunctive query (Schlobach and
Cornet, 2003; Kalyanpur et al., 2007).

Proposition 6.7. If K violates Γ(~a) : b(~a)→ h(~a), a subset V ⊆ K is a violation
of Γ(~a) if, and only if, V is a justification of K |= b(~a).

Proof. Like we stated earlier, V ⊆ K is a violation of Γ(~a) if, and only if, V is
a smallest subset K responsible for K |= b(~a). This exactly corresponds to the
definition of a justification of K |= b(~a).

6.4 Corrections

We now turn to the correction of constraint violations.

Solutions. We will make use of atomic modifications of the knowledge base to
define solutions to constraint violations.

79

Definition 6.8 (Atomic modification). An atomic modification of a knowledge
base K consists of two sets of triples (M+,M−) such that M+ ∩ K = ∅ and
M− ⊆ K. Furthermore, one of the following must hold:

1. M+ = ∅ and M− consists of an assertion (we say that (M+,M−) is a
deletion), or

2. M− = ∅ and M+ consists of an assertion (we say that (M+,M−) is an
addition), or

3. M− consists of an assertion 〈s, p, o〉 andM+ consists of an assertion 〈s′, p′, o′〉
which differs from 〈s, p, o〉 by only one element (we say that (M+,M−) is a
replacement).

Since the sets M+ and M− contain at most one triple, we slightly abuse the
notation and identify the singletons with their elements (e.g., we will denote the
addition of 〈s, p, o〉 simply by (〈s, p, o〉, ∅)).

During the history of a knowledge base, users can change not just the assertions
of the knowledge base, but also the TBox. However, the TBox is typically much
smaller and more stable than the ABox. Therefore, the edit history of the TBox is
not a rich ground for correction rule mining. It is why we do not consider changes
in the TBox as part of the atomic modification definition.

Note that a replacement is equivalent to a sequence of a deletion and an ad-
dition. We chose to keep it as an atomic modification because it corresponds to
common knowledge base curation tasks, such as correcting an erroneous object for
a given subject and predicate, or fixing a predicate misuse. Atomic modifications
can be used to solve a constraint violation, as follows:

Definition 6.9 (Solution). A solution to a violation V of a constraint instance
Γ(~a) of Γ(~x) : b(~x) → h(~x) in K is an atomic modification (M+,M−) such that
there existsK′ ⊆ K such that (V∪K′∪M+)\M− satisfies Γ(~a). We call (M+,M−)
a solution to V for Γ(~a) in K.

Note that Γ(~a) can still be violated in (K ∪ M+) \ M− if K contains other
violations of Γ(~a) for which (M+,M−) is not a solution. For example, if
Γ(a) : ∃x R(a, x) ∧ A(a) → false, and K = {R(a, b), R(a, c), A(a)}, the dele-
tion of R(a, b) is a solution to the violation {R(a, b), A(a)}, but {R(a, c), A(a)}
still violates Γ(a). Note also that every constraint violation has at least one solu-
tion, which consists of the deletion of any of its elements. Solutions may also be
additions or replacements, as in the following example:

80

Example 6.10. In our running example, the deletion (∅, hasGender(Zeus,
masculine)) and the replacement (hasGender(Zeus, male), hasGender(Zeus,
masculine)) are two possible solutions to V0 for Γ0(masculine).

The deletion (∅, hasMother(Spinoza, Marques)) is a solution to V for the
three constraint instances Γ2(Marques), Γ3(Marques) and Γ4(Spinoza, Marques).
The additions (Human(Marques), ∅), (hasGender(Marques, female), ∅) and
(hasChild(Marques, Spinza), ∅) are solutions to V for respectively Γ2(Marques),
Γ3(Marques) and Γ4(Spinoza, Marques).

Good solutions. Our goal is to find “good” solutions to constraint violations,
i.e., solutions that make the knowledge base as close to the real world as possi-
ble. The basic requirement for a “good” solution is that it deletes only erroneous
facts and that it adds only true facts. We also prefer replacements over deletions
as long as they fulfill this condition. For instance, in our running example,
the replacement (hasGender(Zeus, male), hasGender(Zeus, masculine)) is better
than the deletion (∅, hasGender(Zeus, masculine)), because it corrects erroneous
information instead of simply erasing it.

The main difficulty in finding good solutions to constraint violations is that we
do not have access to an oracle that knows the validity of all facts. This is the
problem that all knowledge base cleaning approaches face (c.f. Section 6.2). Our
idea is to exploit the history of the knowledge base modifications to learn how to
correct constraint violations.

Definition 6.11 (Edit history). The edit history of a knowledge base is a sequence
of knowledge bases (Ki)0≤i≤p = (Ti ∪Ai)0≤i≤p such that Ki+1 = (Ki ∪M+

i) \M−
i ,

where (M+
i ,M−

i) is an atomic modification.

The edit history allows us to pinpoint how constraint violations have been corrected
in the past. In order to avoid learning from vandalism or mistakes, we consider
only those corrections that have not been reversed:

Definition 6.12 (Past correction). Let Kp be the current state of the knowledge
base. A past correction is a solution (M+,M−) to a violation V of a constraint
instance Γ(~a) in Ki such thatM+ ⊆ B,M− ⊆ D where Kp = (Ki ∪ B) \ D with
B ∩ D = ∅.

Intuitively, (B,D) corresponds to the sequence of additions and deletions that leads
from Ki to the current state of the knowledge base Kp, that contains the solution,
and that does not “undo” it.

Relevant past corrections. We are interested in learning solutions that correct
constraint violations in the current knowledge base Kp. We thus consider only

81

those past corrections that would have been corrections also under the current
TBox. For example, assume that the TBox contained C v B. Assume that
C(a) was added to correct a violation of the constraint A(x) → B(x). If, in the
meantime, the inclusion C v B has been removed, we do not want to learn from
this past correction. The following definition formalizes these requirements.

Definition 6.13 (Relevant Past Correction). A relevant past correction (M+,
M−) to a violation V of a constraint instance Γ(~a) in Ki is a past correction such
that (V ∩ Ai) ∪ Tp contains a violation V ′ of Γ(~a) such that (M+,M−) is also a
solution to V ′ in Ai ∪ Tp.

We will now see how we can use the relevant past corrections to mine correction
rules.

6.5 Extraction of the Relevant Past Corrections

In this section, we propose an approach to extract past corrections from the knowl-
edge base history that can be used as ground truth to train constraint correction
predictors.

We assume here that the description logic used allows rewriting a conjunctive
query q(~x) with respect to T into a union of conjunctive queries q′(~x) such that
for every ABox A, answering q(~x) over (T ,A) amounts to answering q′(~x) over
(∅,A). For example, this is the case of the description logics DL-Liter (Calvanese
et al., 2007) and flat QL (Kontchakov and Zakharyaschev, 2014).
Algorithm 1 constructs the set of relevant past corrections from the knowledge
base history. It consists of three main steps. First, it constructs patterns to spot
knowledge base modifications that could be part of a relevant past correction. Then
it uses these patterns to extract atomic modifications that solved some violations
in the past. Finally, the relevant past corrections are obtained by pruning those
that have been reversed.

Let us explain our algorithm with our running example. Consider the constraint
Γ0(x) : ∃y hasGender(y, x) → x = male ∨ x = female. Assume that the triple
〈Zeus, hasGender , masculine〉 was added between K1 and K2, but then replaced
by the triple 〈Zeus, hasGender , male〉 between K100 and K101.

The first goal of the algorithm is to find out that the removal of the triple
〈Zeus, hasGender , masculine〉 between K100 and K101 (as part of the replacement)
may be part of a relevant past correction. We call this deletion a correction seed.
Looking for correction seeds instead of computing the constraint violations for
all constraints on all knowledge base versions has the advantage of significantly
reducing the search space.

82

Algorithm 1 Construction of PCDataset
Input: set of constraints C, current TBox Tp, history (Ki)0≤i≤p
Output: set of relevant past corrections PCDataset

// Construct correction seed patterns
for all Γ ∈ C such that Γ(~x) : b(~x)→ h(~x) do
Patterns(Γ) := {(?, D(~x)) | D(~x) ∈ b′(~x), b′(~x) ∈ rewrite(b(~x), Tp)}
if h 6= false then
Patterns(Γ) = Patterns(Γ) ∪ ({(A(~x), ?) |

A(~x) ∈ h′(~x), h′(~x) ∈ rewrite(h(~x), Tp)})
// Extract past corrections
for 0 ≤ i ≤ p− 1 do
if (M+

i ,M−
i) such that Ki+1 = (Ki ∪M+

i) \M−
i matches

some pattern in Patterns(Γ) then
PCDataset = PCDataset ∪ {〈(M+

i ,M−
i),Γ(~a),V , i〉 |

V ∈ Violations(Ki,Γ(~a)) \ Violations(Ki+1,Γ(~a))}
// Remove reversed past corrections
for 〈(M+

i ,M−
i),Γ(~a),V , i〉 ∈ PCDataset do

if M+
i 6⊆ Kp orM−

i ∩ Kp 6= ∅ then
PCDataset = PCDataset \ {〈(M+

i ,M−
i),Γ(~a),V , i〉}

83

To find such correction seeds efficiently, the first step of the algorithm precom-
putes for each constraint a set of atomic modification patterns that the possible
correction seeds would match. In the example there would be only one pattern: the
deletion pattern (?, 〈?, hasGender, ?〉), where ? can be anything so that it matches
both the deletion of 〈?, hasGender, ?〉 and its replacements. Since we only consider
past corrections that involve assertions and want them to be relevant for the cur-
rent TBox, computing the correction seed patterns can be done via query rewriting
of the conjunctive queries in the body b(~x) and the head h(~x) of the constraint
with respect to Tp. Indeed, we have chosen to restrict ourselves to description
logics that allow this rewriting. Each atom that occurs in the rewriting of the
body of a constraint corresponds to a deletion pattern, and each atom that occurs
in the rewriting of the head of a constraint corresponds to an addition pattern.
We collect the patterns for the constraint Γ in the set Patterns(Γ).

The second step of the algorithm verifies, for each correction seed, whether
it solved some constraint violation in the past – i.e., whether Ki contains some
violations of some constraint instances that are not in Ki+1. If so, the modification
between Ki and Ki+1 is a solution that solved these violations in Ki. In the
example we would have found the violation {〈Zeus, hasGender, masculine〉} of
Γ0(masculine) in K100, which is not in K101. So we would have extracted that
(〈Zeus, hasGender, male〉, 〈Zeus, hasGender, masculine〉) is a solution that solved
the violation {〈Zeus, hasGender, masculine〉} of Γ0(masculine) in K100. We store
this information as a tuple in the relevant past corrections dataset (the PCDataset),
as shown in Example 6.14. Finding the constraint instances violated in Ki or Ki+1

is done via conjunctive query answering (Proposition 6.4), and computing their
violations amounts to computing conjunctive query justifications (Proposition 6.7).

The final step of the algorithm removes corrections that have been reversed.
The result is thus the set of relevant past corrections.

Example 6.14. Here is an example of what a row in the dataset PCDataset of
relevant past corrections extracted for our running example could look like:

• Constraint instance: Γ0(masculine)

• Violation: {〈Zeus, hasGender, masculine〉}

• Relevant past correction:
({〈Zeus, hasGender, male〉}, {〈Zeus, hasGender, masculine〉})

• Knowledge base version index: 100

84

6.6 Correction Rule Mining
In this section, we propose an approach based on rule mining to learn correc-
tion rules for building solutions to constraint violations. We name this approach
CorHist like “Corrections from History”.

Correction rules. The previous algorithm has given us a list of relevant past
corrections (the PCDataset, exemplified in Example 6.14). We now present our
approach to mine correction rules from this dataset and the knowledge base history.

Definition 6.15 (Correction rule). A correction rule is of the form

r : [Γ(~x)] : E(~x, ~y, ~z)→ (M+(~x, ~y),M−(~x, ~y)), where

• Γ(~x) is a constraint that can be partially instantiated, i.e., some of its vari-
ables have been replaced by constants,

• (M+(~x, ~y),M−(~x, ~y)) is an atomic modification where the same partial in-
stantiation of ~x is done,

• E(~x, ~y, ~z) is a set of atoms called the context of the violation such that
M−(~x, ~y) ⊆ E(~x, ~y, ~z) and such that the same partial instantiation of ~x
is done.

A correction rule can be applied to a knowledge base K when there exist tuples
of constants ~a,~b such that K violates Γ(~a) (recall that this can be decided via
conjunctive query answering by Proposition 6.4), ~a is compatible with the par-
tial instentiation of ~x in the rule, and K |= ∃~z E(~a,~b, ~z). The result of the rule
application is then (M+(~a,~b),M−(~a,~b)).

Note that while the variables from E(~x, ~y, ~z) that do not appear in Γ(~x) or in the
head of r can be existentially quantified, those that occur in the head of r have to
be free: they have to be mapped to individuals occurring in the knowledge base
to construct the result.

Example 6.16. In our running example, we would like to learn the following
correction rules:

r1 := [Γ0(masculine)] : {hasGender(y, masculine)}
→ (hasGender(y, male), hasGender(y, masculine))

r2 := [Γ2(x)] : {hasMother(y, x), Human(y)}
→ (Human(x), ∅)

The context of the second rule says that if x is the mother of a human, then x
must also be a human. The rule obtained by replacing Human by Animal would
express how to solve a violation of Γ2 in the context where y is an animal.

85

Mining correction rules. We mine correction rules with Algorithm 2. This
algorithm is an adaptation of the algorithm in Galárraga, Teflioudi, et al., 2013;
Galárraga, Teflioudi, et al., 2015 to our context, where we learn rules, not from a
knowledge base, but from the PCDataset and the knowledge base history. We first
adapt the definitions of the confidence and support already presented in Chapter 2
to our case. The support of the body of a correction rule r for a constraint Γ
is the number of violations of Γ stored in the PCDataset that could have been
corrected by applying r. Such violations are associated with an instance Γ(~a)
of the partially instantiated Γ(~x) that appears in r and with an index i such
that Ki |= ∃~z E(~a,~b, ~z) for some ~b. These two conditions imply that r could be
applied to the knowledge base Ki. Moreover, we need to check that the result
of applying r to Ki actually gives a solution to V . For example, consider the
constraint Γ(x) : ∃y R(x, y)∧A(x)→ false and the PCDataset that contains the
two past corrections (∅, R(a, b)) for Γ(a) at revision i and (∅, R(a, c)) for Γ(a) at
revision j where a, b, c ∈ NI. Both violations count for the support of the body of
[Γ(x)] : ∃y R(x, y) → (∅, R(x, y)) but only the second one counts for the support
of the body of [Γ(x)] : R(x, c)→ (∅, R(x, c)), even in the case where Ki |= R(a, c).

Formally,

supbody(r) = |{V | 〈?,Γ(~a),V , i〉 ∈ PCDataset, ∃~b Ki |= ∃~zE(~a,~b, ~z)

and the result of the application of r to K at revision i is a solution to V}|.

The support of the rule r measures when the past correction is exactly the result
of the application of the rule in the cases where it could be applied. Formally,

suprule(r) = |{V | 〈(M+(~a,~b),M−(~a,~b)),Γ(~a),V , i〉 ∈ PCDataset,

and Ki |= ∃~z E(~a,~b, ~z)}|.

Finally, as usual, the confidence of a correction rule r is conf (r) = suprule(r)
supbody (r)

.
Algorithm 2 shows our mining algorithm. It takes as input the PCDataset com-

puted by Algorithm 1, the knowledge base history, a minimum support threshold
minsup, a minimum confidence threshold minconf, and a regularization threshold
θ. These thresholds are chosen empirically (see Section 6.8.3). The algorithm
produces correction rules (Definition 6.15). For this purpose, it first generates a
trivial rule r0 for each entry of the PCDataset (line 4). This rule has as context
simply the deletion part of the constraint past correction.

This trivial rule is then transformed into several more general rules, which we
call basic rules, each of which is obtained from r0 by replacing some of the constants
by variables (line 5). Formally, the algorithm uses all partial substitutions σ from
constants to distinct fresh variables. It retains only those basic rules that meet
the minimum support and confidence thresholds (line 6).

86

Algorithm 2 Correction rule mining
Input: PCDataset, (Ki)0≤i≤p, minsup, minconf, θ
Output: correction rules

1: // Generate basic rules
2: BasicR := ∅
3: for all 〈(M+(~a,~b),M−(~a,~b)),Γ(~a),V , i〉 ∈ PCDataset do
4: r0 := [Γ(~a)] :M−(~a,~b)→ (M+(~a,~b),M−(~a,~b))

5: BasicR = BasicR ∪ {σ(r0) | C ⊆ ~a ∪~b, σ : C � Var ,
6: suprule(σ(r0)) ≥ minsup, conf (σ(r0)) ≥ minconf}
7: // Refine the context part of the rules
8: q := [], q.enqueueAll(BasicR)
9: while q is not empty do
10: r := q.dequeue()
11: Output r
12: for all operators op do
13: for all r′ ∈ op(r) do
14: if suprule(r

′) ≥ minsup and conf (r′) ≥ conf (r) + θ then
15: q.enqueue(r′)

In the second step, the algorithm incrementally refines each rule by building
up its context part E(~x, ~y, ~z) (lines 8-15). This works similarly to the mining
algorithm of Galárraga, Teflioudi, et al., 2013: Each refinement step adds one
atom built from the knowledge base concept and role names and the variables and
constants that appear in the rule, plus at most one fresh variable (lines 12-13).
The possible operators are:

• Add a new concept for an existing constraint variable of ~x. For example, if x
is bound to Zeus and Person(Zeus) is in the knowledge base, then Person(x)
is going to be returned as possible atom.

• Add a new role for an existing variable of ~x, the other role parameter be-
ing assigned to a fresh variable. For example, if x is bound to Zeus and
hasGender(Zeus, male) and hasChild(Chronos, Zeus) are in the knowledge
base, then hasGender(x, y) and hasChild(y, x) are going to be returned as a
possible atoms where y is a fresh variable.

• Add a new role for an existing variable of ~x, the other role parameter being
assigned to an existing variable. For example, if x is bound to Zeus and
y to Chronos and hasChild(Chronos, Zeus) is in the knowledge base, then
hasChild(y, x) are going to be returned as a possible atom.

87

• Add a new role for an existing variable of ~x, the second role parameter
being assigned to a constant. For example, if x is bound to Zeus and
hasGender(Zeus, male) and hasChild(Chronos, Zeus) are in the knowledge
base, then hasGender(x, male) is going to be returned as a possible atom,
but not hasChild(Chronos, x).

If the resulting rule meets the minimum support threshold and improves the con-
fidence by at least θ (line 14), the rule is retained (line 15).

Applying correction rules. When all rules have been mined, they are sorted
by decreasing confidence, breaking ties with the help of the support (as it is done
in Liu, Hsu, and Ma, 1998 to build classifiers from rules). This set of rules then
forms a program that can be used to fix constraint violations as follows. Given
a violation V of a constraint Γ in K, choose the first rule r in the program that
is relevant for Γ (i.e., that contains [Γ(~x)] where Γ(~x) is a partially instantiated
version of Γ). Then check whether r can be applied to V . The correction is the
result of the rule application.

Example 6.17. Assume we mined the rules r1 and r2 of the preceding exam-
ple with confidence 0.9 and 0.8 respectively, and another rule r3 := [Γ0(x)] :
{hasGender(x, y)} → (∅, hasGender(x, y)) with confidence 0.5. The correction
program is (r1, r2, r3).

To correct a violation of Γ0, i.e., a wrong value for the hasGender property, the
program first checks whether r1 is applicable. If so, it replaces male by masculine.
Otherwise, it falls back to r3 and removes the wrong value. To correct a violation
of Γ2, it ignores r1 that is not related to Γ2 and either applies r2 if the context
matches or does nothing.

6.7 Bass

CorHist suffers from a systematic weakness: it can take into account only triples
that explicitly appear in a correction rule – and not shallow signals from the state of
the knowledge base. To overcome this limitation, we design a new neural network
architecture to implement a correction predictor.

Our predictor takes as input the violated constraint, the violation, and the facts
about the entities that are mentioned in the violation. It predicts as output a triple
to add and/or a triple to delete. At training time, the input and the outputs come
from the edit history of the knowledge base. At prediction time, the input comes
from the current state of the knowledge base. In the following, we first present

88

a “conversion” of CorHist to a neural network called Bass-RL, before adding new
components to improve its performance, leading to our final Bass architecture5.

6.7.1 Bass-RL

The goal of Bass-RL is to build a neural network that mirrors exactly the function-
ing of the CorHist rule mining approach. Figure 6.1 shows the basic architecture
of our network. It is composed of 3 input components, which all feed into the “edit
predictor”. The dimensions of the internal layers are parametrized by a constant
d, which is a hyperparameter of the network. The inputs are:

• The constraint. We give to each constraint a unique integer id and then
we use a trained embedding matrix to create a d-dimensional vector from
the one-hot encoding of the constraint id. This vector is then fed into the
edit predictor. This vector gives the network the information about which
type of constraint we aim to fix.

• The violation. For each of the k triples in the constraint violation, we
encode the predicate and the object with the help of the “term embedding”
component. These encodings are concatenated and fed into the edit predic-
tor. The subject of the violation triple is not used.

• The facts about the entities that appear in the constraint violation.
We encode only the predicates and the objects of these facts because
the subject is already known to the network. For example, if we con-
sider the violation triple 〈JohnDoe, birthP lace, Paris〉, the two entities are
JohnDoe and Paris. We consider all facts having JohnDoe or Paris as
subject, and we embed the pairs of predicates and objects of each of
these facts e.g., {(hasType, Person), (hasGender , Male), . . .} for JohnDoe and
{(hasType, schema:Place), (inCountry, France), . . .} for Paris. There are
2k mentioned entities, 2 for each of the k triples in the constraint violation.
Each fact is embedded using the “entity fact embedding” component. Then
the output vectors are concatenated and fed into the edit predictor.

Let us now describe each component in detail.

Term embedding

We embed RDF terms as follows: predicates are one-hot encoded and then embed-
ded into a space of dimension d using a trained embedding matrix P . We embed

5The “Bass” name derives from “CorHist” because a bass is a singer with a “deep” voice, and
“chorist” is an old English word for “singer”.

89

dense + ReLu

dense + ReLu

dense + σ (x6)

predicted term to add or delete

embedding (E)

object

embedding (P)

predicate

k triples of the violation

embedding

constraint ID

max pooling

dense + ReLu

embedding (P) embedding (E)

predicates objects

2k ·m entity facts

d
1

k

k 1-hots

k · d

k

k 1-hots

k · d

2k ·m

2k ·m

2k ·m 1-hots 2k ·m 1-hots

2k ·m · d

2k ·m · d

2k ·m · d

2k · d

4d

4d

6 · (1 + 3k + ce or p)

term embedding
entity fact embedding

edit predictor

Figure 6.1 – Network architecture of Bass-RL. d is the vector dimension hyperpa-
rameter, k is the max number of triples in the constraint violation, and m is the
max number of facts per entity.

90

similarly the objects using a trained matrix E . These matrices E and P are shared
by all object and predicate embedding operations. This embedding allows the edit
predictor to act on specific predicates and entities in the triples of the constraint
violation.

Entity fact embedding

Similarly to CorHist, we give the neural network the facts about the 2k entities
involved in the constraint violations. A classical approach for this purpose would
be to use entity embeddings, i.e., to embed the entity itself. However, entity em-
beddings have two drawbacks: First, they require expensive pre-training. Second,
and more crucially, they do not work with new entities. Therefore, we embed
not the entity, but the facts that the entity is involved in. While the objects of
these facts will still be encoded using learned embeddings (and thus cannot be
entities that are unknown at training time), the subjects can be entities that have
never been seen at training time. This allows the network to check constraints on
newly-added entities.

We encode the (predicate, object) facts of each entity mentioned in the con-
straint violation as follows: we embed the predicates by reusing the same predi-
cate embedding matrix P described previously. We embed similarly the objects
by reusing the same entity embedding matrix E . Then we combine the predi-
cate and the object using a dense layer6 with a rectified linear unit (ReLU) non
linearity7. Then we merge the obtained embeddings for each (predicate, object)
using a max-pooling layer to get a single vector for the entity. Formally, if we

have the input embedding vectors

x
1
1
...
x1d

 , . . . ,

x
k
1
...
xkd

 we would return the vector

max(x11, . . . , x
k
1)

...
max(x1d, . . . , x

k
d)

.

Edit predictor

The edit predictor takes as input the previous components, i.e., the constraint id
embedding, the embeddings of the k violation triple predicates and objects, and the
embedding of the facts about the 2k entities mentioned in the constraint violation.
We aim here first at combining this input to generate a vector that represents

6A dense layer with non-linearity f is a function X → f(M ·X) where X is a d dimensional
vector and M a matrix of dimensions d× d

7This function is defined as ReLU(x) = max(0, x) applied to each vector term.

91

the violation by meaningfully combining the already listed inputs. We feed the
inputs into a multilayer perceptron i.e., a sequence of dense layers, each followed
by a non-linear function. We use two dense layers of dimension 4d with the ReLU
non-linearity. We use multiple layers to allow the network to do a sequence of
combinations of the weights given by the inputs.

After computing this vector, we now have to “decode” it into an edit prediction.
Our network outputs two triples – one to add and one to delete. Each triple is given
by its three components (subject, predicate, and object). Each output component
could of course just be the one-hot encoding of a predicate or entity. However, then
the network would have to learn each instantiation of a constraint individually (as
in “If the subject of the violation triple is Elvis, then the subject of the addition
triple should be Elvis”, “If the subject is Madonna, then...”). Therefore, we allow
the network to output a code, as in “The subject of the addition triple is the
object of the first constraint violation triple”. To permit nevertheless the output
of constants as well, we combine both approaches. With this, each of the 6 outputs
(2 × 3 triple components) works in the same way, classifying the output term into
one of the following options:

• 1 class to state that the output is not existent (the triple should not be
returned), or unknown. We call it the class 0.

• 3k classes to state that the output term is the same as the subject/predicate
or object of one of the k triples in the constraint violation. For example, the
class 1 corresponds to the subject of the first violation triple, the class 2 to
its predicate, the class 3 to its object, the class 4 to the subject of the second
violation triple, etc.

• cp or ce classes to state that the output is one of the cp predicates (for the
predicate to add or delete outputs) or one of the ce entities (for the other
outputs) from the list of predicates/entities found at least t times in the
expected outputs from the training data (where t is a hyperparameter).

This leads to 1 + 3k + ce possible classes (and so, neurons) for each of the four
subject/object outputs and 1 + 3k + cp for the two predicate outputs. Each of
these outputs are implemented like regular classifiers using a dense layer with a
softmax non-linearity8. The outputs returns a 1 + 3k + ce or p dimensional vector.
The kth vector output is the predicted probability of kth class.

To retrieve the final edit, we consider the output for both the “delete” triple
and the “add” triple. If the three outputs for the subject, predicate, and object

8The softmax function is defined by σ(xi) = exi∑D
j=1 exj

for all i ∈ {1, . . . , D} if there are D
possible classes.

92

of the triple give known values (a known entity or predicate or a known violation
triple term given in the input) we build the triple to add or to delete from these
outputs. If the three outputs give the “not defined” class, we return no triple.
This means that the edit does not contain a triple to add, or a triple to delete,
respectively. If there are only one or two components returning “not defined”, we
assume that the network has not been able to predict a correction.

6.7.2 Bass

We now present our improved repair predictor, Bass. Figure 6.2 shows the archi-
tecture of our network. We designed two improvements over Bass-RL:

RDF literal embedding

We want our predictor to be able to act on RDF literals. We recall that RDF liter-
als are string of unicode characters, optionally annotated with a language tag (e.g.,
"example"@en where example is the literal value and en is the language tag) or
a datatype identifier (e.g., "2020-09-07"^^xsd:date where xsd:date stands for
<http://www.w3.org/2001/XMLSchema#date> to state that 2020-09-07 should
be interpreted as a date). For example, if every book can have at most one ISBN
identifier, and if a given book has two ISBNs, 2-7654-1005-4, and abc, it is easy
to decide that abc should be abandoned, if we allow the network to access the
literals.

For this purpose, we first remove the datatype IRI. This leads to strings like
"Elvis Presley"@en for a language tagged string or "42" for an integer. To split
these strings into components that could be embedded separately, we tokenize the
string with the BERT tokenizer (Devlin et al., 2019) and apply an embedding
matrix on each token. We then apply a max pooling on the embedding sequence
to get another d-dimensional vector. We use the BERT tokenizer to provide better
support for out-of-vocabulary words. It also allows us to better handle complex
values like numbers and dates that would not be properly split by a tokenizer
splitting on whitespaces. It also allows keeping more significant elements than a
simple char based encoding. For example the date literal "2020-09-07" is going to
be tokenized into [CLS], ", 2020, -, 09, -, 07, -, ", [SEP]. And the label "Elvis
Presley"@en into [CLS], ", elvis, pres, ##ley, ", @, en, [SEP]. This input is
not used when the objects are IRIs or blank nodes.

Constraint embedding

Bass-RL, like CorHist, encoded each constraint by an ID. This does not allow the
network to generalize over each constraint, to treat similar constraints similarly, or

93

dense + ReLu

dense + ReLu

dense + σ (x6)

predicted term to add or delete

max pooling

embedding

tokenizer

embedding (E)

object

embedding (P)

predicate

k triples of the violation

max pooling

dense + ReLu

embedding (P) embedding (E)

predicates objects

2k ·m entity facts + m constraint facts

k

k 1-hots

k · d

k

k 1-hots

k · d

k strings

k · t

k · t · d

k · d

(2k + 1) ·m

(2k + 1) ·m

(2k + 1) ·m 1-hots (2k + 1) ·m 1-hots

(2k + 1) ·m · d

(2k + 1) ·m · d

(2k + 1) ·m · d

(2k + 1) · d

4d

4d

6 · (1 + 3k + ce or p)

term embedding
entity fact embedding

edit predictor

Figure 6.2 – Bass network architecture when there is just one violation triple.
d is the vector dimension hyperparameter, k the max number of triples in the
constraint violation, m the max number of facts per entity, and t the max number
of string tokens. Additions compared to Bass-RL (Figure 6.1) are in red.

94

to learn new constraints. To remedy this shortcoming, we encode each constraint
by a set of (predicate, object) pairs and we encode this set using the entity fact
embedding component introduced earlier.

To encode each constraint by a set of (predicate, object) pairs, we rely on
constraint shapes. The constraint shape of a constraint Γ is a constraint Γs where
all constants in Γ have been replaced by fresh variables. For example, the shape
of the constraint Γ1(x) : Person(x) → ∃y hasBirthPlace(x, y) is Γs1(x) : c1(x) →
∃y p1(x, y). Two constraint shapes are equivalent if they have the same components
up to a renaming of variables. With this definition, we encode a constraint Γ(~x) :
b(~x)→ ∃~y

∨
i hi(~x, ~y) by the following set of property value pairs:

• (bass:constraintShape, c) where c is an identifier assigned to the equiva-
lence class of the constraint shape Γs.

• (pi, oi) for each 〈si, pi, oi〉 in b and hi where oi is a constant.

• (p−i , si) for each 〈si, pi, oi〉 in b and hi where si is a constant and p−i is the
inverse property of pi.9

These components give us our new Bass network.

6.8 Experiments on Wikidata

This section presents an experimental evaluation of CorHist and Bass against
Wikidata content.

6.8.1 Wikidata

Wikidata is a generalist collaborative knowledge base. Wikidata has already been
described in the previous chapters. The data about each Wikidata entity is stored
in a versioned JSON blob, and there are more than 700M revisions. Wikidata
encodes facts not in plain RDF triples but in a reified representation, in which each
main 〈s, p, o〉 triple can be annotated with qualifiers and provenance information
(Vrandecic and Krötzsch, 2014).

Wikidata knows the property instanceOf which is similar to rdf:type. It
does not have a formally defined TBox, but knows properties such as subClassOf,
subPropertyOf, and inverseOf. However, only the property subClassOf is used
to flag constraint violations. Therefore, we use only this property in our TBox,
which thus contains only simple concept inclusions.

9Using a new IRI if there is no inverse property of pi already in the knowledge base.

95

We consider the set C of constraints built from ten types of Wikidata prop-
erty constraints (see Table 6.1). They are the top Wikidata property constraints
that can be expressed in rules, covering the majority of the most used constraints,
as well as 71% of Wikidata property constraints. The remaining constraints are
mainly about string format validation with regular expressions (52% of the re-
maining constraints) and qualifiers (31% of them).

6.8.2 Dataset Construction

We stored the RDF version (Erxleben et al., 2014; Hernández, Hogan, and
Krötzsch, 2015) of the Wikidata edit history in an RDF store built for this task.
We used named graphs for the global state of Wikidata after each revision, and the
triple additions and deletions. Our dataset stores 390M annotated triples about
49M items extracted from the July 1st, 2018 full database dump. The storage
system is described in detail in Chapter 7.

We extended Wikidata with facts about the external web pages mentioned
in the knowledge base. These facts are considered by CorHist and Bass im-
plementations just like regular Wikidata facts. However, because they describe
external elements, these additional facts are considered to be always in the knowl-
edge base and so, do not change between Wikidata revisions and could not ap-
pear in the mined corrections. They can only be used as context in the rules
mined by CorHist and Bass. This works as follows: For every URL s that ap-
pears in the violation triples, we add two new facts: The first one is the triple
〈s, history:pageStatusCode, XXX〉, where XXX is the HTTP response code of that
URL. The other is 〈s, history:pageContainsLabel, o〉, where o is the object of a
triple connecting o to s, and one of o’s labels (found with the rdfs:label relation)
appears in the HTML page of s. For example, if we consider the triple

〈DouglasAdams, isSameAs, <https://viaf.org/viaf/113230702>〉

from Wikidata, we fetch the external URL from viaf.org, and we add the two
triples

〈<https://viaf.org/viaf/113230702>, history:pageStatusCode, 200〉

〈<.../113230702>, history:pageContainsLabel, Douglas_Adams〉
because the VIAF website returned a HTTP code 200 for the page and because
the label "Douglas Adams"@en of the entity Douglas_Adams appears on the page.

We extracted the relevant past corrections as explained in Section 6.5. Wiki-
data revisions do not correspond exactly to atomic modifications in our sense. For
example, Wikidata bots can change multiple unrelated facts about the same en-
tity at the same time. Wikidata users also sometimes prefer to delete a statement

96

Table 6.1 – Wikidata property constraints. R is the property for which the con-
straint is given. A constraint has several lines when it uses a property whose set
of values may be specified or not. #constr. is the total number of constraints of
the given type in Wikidata. #triples is the sum for all these constraints of the
numbers of triples with the property R on which they apply. #viol. is the num-
ber of violations for this constraint in Wikidata on July 1st, 2018. #past cor. is
the number of past corrections we extracted from Wikidata history. t.o. indicates
that we were not able to extract all past corrections because of timeout so that
we sample them (we then indicate the number of corrections we extracted). Note
that here R and R′ are not allowed to denote inverse property expressions.

Name Rule form #constr. #triples#viol. #past cor.

Typea ∃yR(x, y)→ A1(x)∨. . .∨An(x) 2575 249M 3465k 16M (t.o.)
Value type ∃yR(y, x)→ A1(x)∨. . .∨An(x) 696 67M 3062k 19M (t.o.)
One-of ∃yR(y, x)→ x = a1 ∨. . .∨x = an 116 4.2M 4k 19k
Item requires ∃yR(x, y)→ R′(x, a1)∨. . .∨R′(x, an) 3102 255M 3710k 15M (t.o.)
statement ∃yR(x, y)→ ∃zR′(x, z)
Value requires ∃yR(y, x)→ R′(x, a1)∨. . .∨R′(x, an) 243 85M 1345k 6M (t.o.)
statement ∃yR(y, x)→ ∃zR′(x, z)
Conflict with ∃yR(x, y) ∧ (R′(x, a1)∨. . .)→ false 781 4543M 68k 449k

∃yzR(x, y) ∧R′(x, z)→ false
Inverseb R(x, y)→ R′(y, x) 152 6M 409k 3M
Single value R(x, y) ∧R(x, z)→ y = z 2909 90M 389k 491k
Distinct valuesR(y, x) ∧R(z, x)→ y = z 2843 78M 322k 16M
a The Wikidata constraint Type can be qualified so that instead of expressing that the subject
of the property belongs to a given class using the property instanceOf, it states that the
subject has to be related to the class by the property subClassOf, or either by instanceOf or
by subClassOf. We ignore these cases, which are marginal: only 5% of Type constraints are
qualified with property subClassOf, and 0.4% with “instanceOf or subClassOf ”. The same
goes analogously for Value type, which concerns the object of the statement.

b Inverse and Symetric are two distinct kinds of constraints in Wikidata but we treat them
together since Symetric is actually a special case of Inverse.

97

then add another one with the same property instead of directly modifying the
value, in order to clear the existing qualifiers and references. Therefore, we arti-
ficially created a replacement modification for every deletion with a neighboring
addition by the same user, which shares at least two components of the triple
(analogously for additions). For example, if the correction seed is the deletion
of 〈Zeus, hasGender, masculine〉, and if this revision or a neighboring one adds
〈Zeus, hasGender, male〉, then we consider this a replacement. However, if the
same revision added the triple 〈Zeus, hasMother, Rhea〉, then we would not con-
sider this a replacement, because it does not share two components with the first
one.

Since the TBox consists of simple concept inclusions and the constraint bodies
contain only roles, the deletion patterns for correction seeds correspond directly to
the atoms of the constraint body. In the same vein, only atoms in the head of the
Type or Value type constraints need to be rewritten. For example, if we consider
the Type constraint ∃y hasGender(x, y)→ Person(x) and if in Wikidata the sub-
classes of Person are Human, FictionalHuman and Deity then we would rewrite
the constraint head to Person(x) to Person(x)∧Human(x)∧FictionalHuman(x)∧
Deity(x). To find the constraint violations solved by a correction seed, we make
use of the fact that the correction seed allows us to know the constraint instance
Γ(~a), and we look for matches of the constraint instance body.

To speed up the execution for the four constraint types which have the highest
numbers of past corrections, Type, Value type, Item requires statement and Value
requires statement, we did not extract all the past corrections but sample them as
follows. We compute only the relevant past corrections that were applied between
Ki and Ki+1 where i is a multiple of s = max(1, N/106) with N the number
of triples with the property R of the constraint at hand. Note that this sampling
might be biased because edits in Wikidata are not evenly distributed on its history.
For instance, imagine that we only process the revisions Ki where i is odd, and
that two automated tools are editing Wikidata at the same time and at the same
speed, with both tools making their edits alternatively. If this happens, then the
proposed sampling method would only detect the changes of one of the tools, and
not of the other. Even with these limitations, this sampling allows us to get a
ground truth with sufficient coverage for rule mining for each constraint. Indeed,
in practice, this extraction limitation only affects 0.9% of Type, 2% of Value type,
0.5% of Item requires statement, and 3% of Value requires statement constraints.
All corrections are extracted for the other constraints.

In the final dataset, we limited the number of past corrections to 200k per
constraint type by doing a random sampling in all the extracted past corrections.
This limitation is made to facilitate the use of the dataset and to allow fetching all
mentioned Web pages in a week. We split the dataset into an 80% training set, a

98

10% cross-validation set, and a 10% test set. To simplify the re-use of our dataset,
we extended it with the facts about the entities mentioned in the violation triples
at the time of the violation correction. This allows CorHist and Bass to be trained
without having to access the edit history.

6.8.3 Implementation of the Approaches

CorHist

The output of CorHist is a set of correction rules that form a program (Section 6.6).
To evaluate such a program, we apply it to each of the constraint violations stored
in the test part of the PCDataset, using the knowledge base state just before the
revision when the correction happened to evaluate the body and the head of the
rule. Then we check whether the correction we compute is the same as the one
associated with the constraint violation in the test part of the PCDataset.

We then report the comparison of the predicted correction with the expected
correction from the PCDataset using the precision, recall and F1 metrics (Defini-
tions 2.24, 2.25, and 2.26 Page 25). CorHist mines rules as explained in Section 6.6.
We trained it on the training part of the PCDataset. In order to decrease the com-
putation time, we only allow three atoms in E(~x, ~y, ~z). We use a minimal support
threshold minsup = 10, a minimal confidence threshold minconf = 0.1, and a
regularization threshold θ = 0.05. These thresholds have been set in order to limit
the computation time of rule learning. After mining the rules with the minimal
confidence threshold of 0.1, the cross-validation part of the PCDataset is used to
determine a refined minimal confidence threshold that maximizes the F1 score of
the obtained program. This allows us to pick the best possible minimal threshold
according to the cross-validation dataset. The test set is used to evaluate the final
program. The CorHist implementation is available on GitHub10.

Example 6.18 (Example of mined rules by CorHist). Here are some examples of
rules mined by CorHist for each of the constraint types:

Type. We consider the constraint Γ(s) : ∃o isAListOf (s, o) → List(s). The
following rule states that if a Wikidata item violates Γ and if the item is an instance
of WikiDisambiguationPage, then the isAListOf facts should be removed:

[Γ(s)] : isAListOf (s, o) ∧WikiDisambiguationPage(s)→ (∅, isAListOf (s, o))

Value type. We consider the constraint Γ(o) : ∃s foundInTaxon(s, o) →
Taxon(o). The following rule states that if the taxon is stated to be found in human

10https://github.com/Tpt/corhist

99

https://github.com/Tpt/corhist

and has parts then the value of foundInTaxon should be replaced by homoSapiens:

[Γ(human)] :foundInTaxon(s, human) ∧ hasPart(s, v)→
(foundInTaxon(s, homoSapiens), foundInTaxon(s, human))

One-of. We consider the constraint Γ(o) : ∃s mannerOfDeath(s, o) → o =
The following rule fixes misuses by stating that if the value of mannerOfDeath is
trafficAccident, then the predicate should be replace by causeOfDeath:

[Γ(trafficAccident)] :mannerOfDeath(s, trafficAccident)→
(causeOfDeath(s, trafficAccident),

mannerOfDeath(s, trafficAccident))

Item requires statement. We consider the constraint Γ(s) : ∃o heritageSta-
tus(s, o) → ∃o country(s, o). The following rule states that if the monument has
for heritage status monumentInFornminnesregistret, then it is located in Swe-
den, completing the knowledge base:

[Γ(s)] :heritageStatus(s, monumentInFornminnesregistret)→
(country(s, Sweden), ∅)

Value requires statement. We consider the constraint Γ(o) : ∃s residence(s, o)
→ ∃o2 country(o, o2). The following rule states that if an entity violates Γ and has
diplomatic relations, then it is a country and so has for country itself:

[Γ(o)] : diplomaticRelation(o, v)→ (country(o, o), ∅)

Conflict. We consider the constraint Γ(s) : ∃o1, o2 filmplID(s, o1)∧ filmplFilm-
ID(s, o2) → false. The following rule states that if the entity has a value for
filmplFilmID, then filmplID should be removed:

[Γ(s)] : filmplID(s, o)→ (∅, filmplID(s, o))

Inverse/Symmetric. We consider the constraint Γ(s, o) : geneticAssocia-
tion(s, o)→ geneticAssociation(o, s). The following rule states that the symmetric
facts should be materialized for geneticAssociation:

[Γ(s, o)] :→ (geneticAssociation(o, s), ∅)

Single value. We consider the constraint Γ(o1, o2) : ∃s sexOrGender(s, o1)∧
sexOrGender (s, o2) → o1 = o2. The following rule states that if someone is
in a sport team and has two values for sexOrGender and one of these values is

100

maleOrganism, then the value maleOrganism for their sexOrGender should be
removed:

[Γ(s)] :sexOrGender(s, maleOrganism) ∧ sportsTeam(s, v)→
(∅, sexOrGender(s, maleOrganism))

Distinct values. We consider the constraint Γ(s1, s2) : ∃s1, s2 ncbiLo-
cusTag(s1, o)∧ ncbiLocusTag(s2, o) → s1 = s2. The following rule states that
there are two entities with the same ncbiLocusTag and one has a value for the
property molecularFunction, then ncbiLocusTag should be removed for this entity:

[Γ(s1, s2)] :ncbiLocusTag(s1, o) ∧molecularFunction(s1, v)→
(∅, ncbiLocusTag(s1, o))

This concludes our presentation of examples of types of rules that we mine
(Example 6.18).

Bass

We implemented Bass with the Keras API (Chollet et al., 2015) of Tensorflow 2
(Abadi et al., 2016). For the BERT tokenization, we use the HuggingFace “tok-
enizers” library (Wolf et al., 2019). With E and P , we embed only the entities
and predicates with at least 100 occurrences. We do the same for the output by
setting t = 100. We choose to set all the embedding sizes to d = 128. We use
the constraint type identifier (“single value”, ”value type”...) to identify the con-
straint shape, and we use the Wikidata statement that encodes the constraint to
generate the (predicate, object) triples that describe the constraint. The Bass im-
plementation is not available publicly yet to comply with the double-blind review
constraints of ISWC 2020.

We trained Bass on the same training set as CorHist. We did so, by training for
all constraint types at the same time, using the sum of categorical cross-entropy
loss11 for the 6 classification outputs and the gradient-descent based Adam opti-
mizer (Kingma and Ba, 2015). We used the validation set to keep the best epoch
according to the loss against the cross-validation dataset. We trained the model
with a mini-batch size of 256. We have chosen a large mini-batch size to compute
the loss function on enough samples in an attempt to have enough samples of
different constraints to make the loss meaningful at each learning step. The best

11The categorical cross-entropy is a distance function between the expected predictions and

the actual predictions defined as CE

t1...
tn

 ,

p1...
pn

 =

n∑
i=0

ti log(pi) where ti ∈ [0, 1] is the

expected prediction for the class i, and pi ∈ [0, 1] is the predicted output for the same class i.

101

model has been found after the 3rd epoch on the full training dataset. After load-
ing the dataset into memory, training took 18min using an Nvidia Quadro P3000
mobile GPU, an Intel Core i7-7700HQ CPU, and 32GB of RAM. We evaluate Bass
predictions using the same metrics as CorHist: precision, recall, and F1 score.

Note that the Bass optimization target is not the same as the F1 score used for
CorHist. Unlike the F1 score, the categorical cross-entropy is a distance function
on the neural network outputs, allowing us to easily apply the gradient descent
algorithm using the loss function associated with this distance. We make the
assumption that this advantage in terms of simplifying the training outweighs the
disadvantage for Bass of being optimized for this metric, instead of the F1 score
that it will be evaluated with. The experimental evaluation will show that, even
with this disadvantage, Bass achieves higher F1 scores than CorHist.

6.8.4 Evaluation against the Test Set

Table 6.2 presents the results of the evaluation of the mined corrections against the
test set. We computed both the micro and macro average of the precision, recall,
and F1 score per constraint for each constraint type. The macro average is an
unweighted average over all constraints, i.e., all constraints are weighted the same.
The micro average is an unweighted average over all violations, amounting to an
average over all constraints weighted by their number of violations. Both numbers
are important: The micro average gives more weight to constraints that have many
violations to fix. It thus measures the overall impact of the applied correction on
the dataset. However, if a few constraints covered most of the violations, then
it would be easier to formulate some violation rules. Our method, in contrast,
can also find ways by itself to solve constraints with fewer violations, but together
contribute a large mass of corrections. To illustrate this, we also report the macro
average: It measures the average performance across different constraints.

We compare our approach with two baselines: The first one, called “delete”, is
the most basic and uses the fact that all Wikidata constraint bodies contain an
atom of the form R(x, y) and the TBox contains only concept inclusions so that
all constraint violations contain an assertion that matches R(x, y). The “delete”
baseline simply deletes this assertion. We define an additional baseline, “add”,
which tries to add a new triple to solve the constraint violation. For Inverse and
Symmetric constraints this baseline adds the missing reverse edge and performs
very well. For Item requires statement, Value requires statement, Type and Value
type, it adds the missing triple only if it is possible to know the set of the possible
expected value from the constraint rule (if there are multiple possible values, it
picks one at uniformly at random for each prediction). For example, for Type
constraints of the form ∃yR(x, y) → A(x) it applies the correction (A(x), ∅). For
Item requires statement constraints of the form ∃yR(x, y) → R′(x, a), the “add”

102

baseline applies (R′(x, a), ∅) (similarly for Value requires statement constraints).
If there are multiple ai, it chooses one randomly for each constraint. The other
constraint types could only be solved by a deletion. Hence, the “add” baseline
is not defined for them. We also included in the aggregated results a variant of
CorHist, called CorHist-min where we do not add context to rules (E(~x, ~y, ~z) is
always empty) without changing the other hyperparameters. To keep the table
legible, we do not report the performance of CorHist-min and Bass-RL for each
individual constraint type.

As shown in Table 6.2, the precision of our approaches strongly outperforms
the two baselines – often by a very high margin. Regarding the recall, we man-
age to keep a reasonable, and sometimes even good, recall (see best F1 scores in
Table 6.2). CorHist-min presents a higher precision than CorHist (+5% in micro
average and +4% in macro average) at the cost of worst recall (-5% in micro av-
erage and -4% in macro average). This suggests that overall adding context to
the rules seems more to help to find new rules that cover constraints violations
that were not already solved by CorHist-min than it allows to refine rules already
mined and kept by CorHist-min.

As shown in the evaluations, Bass slightly outperforms CorHist. The strongest
improvements are seen for the constraint types “Conflict with” and “Single value”,
which both concern the removal of one value between two choices. The simple
move from a rule learning algorithm (CorHist) to a neural network (Bass-RL)
provides a small performance improvement of 1% in micro average F-score and
none in macro average F-score. However, the recall of Bass in macro average is
higher by 4% than the CorHist one, at the cost of a precision lower by 21%. This
shows that Bass-RL attempts to predict an output more often than CorHist but
fails more often at predicting the correct output. This lower recall and higher
accuracy of CorHist may be caused by the support and precision thresholds of the
rule mining approach which forbid predictions in case the rule does not seem to
be significantly useful, a “safety” that Bass does not have. However, this “safety”,
which is useful also for performance reasons, might make CorHist’s recall too low,
and hence harm its performance. If the low CorHist recall is not caused by the
support and precision thresholds, the small win of Bass-RL related to CorHist
in micro average F1 score (1%) might be thanks to the fact that Bass-RL can
take into account all facts about the violation entities, and so can draw holistic
conclusions from the context facts. This comparison suggests that neural networks
are more able to draw predictions on unseen cases, at the cost of precision. Indeed,
the rule mining approach is able to provide a better precision thanks to its support
and precision thresholds.

The addition of textual data and of a structured representation of the con-
straint, which is hard to take into account with a rule mining approach, allows

103

Table 6.2 – Evaluation of the correction rules mined by Bass and CorHist
and comparison with the baselines. Best F scores in bold.

Micro average Macro average
Constraint type Prec. Rec. F Prec. Rec. F

Type add 0.53 0.17 0.26 0.28 0.10 0.14
delete 0.04 0.04 0.04 0.08 0.08 0.08
CorHist 0.86 0.75 0.80 0.89 0.34 0.49
Bass 0.92 0.79 0.85 0.83 0.36 0.50

Value type add 0.20 0.07 0.10 0.35 0.11 0.16
delete 0.01 0.01 0.01 0.04 0.04 0.04
CorHist 0.70 0.63 0.66 0.81 0.43 0.56
Bass 0.78 0.69 0.73 0.70 0.28 0.40

One-of delete 0.27 0.27 0.27 0.43 0.43 0.43
CorHist 0.84 0.72 0.78 0.84 0.34 0.48
Bass 0.86 0.71 0.78 0.77 0.26 0.39

Item requires add 0.99 0.11 0.20 0.92 0.13 0.22
statement delete 0.02 0.02 0.02 0.07 0.07 0.07

CorHist 0.85 0.36 0.51 0.94 0.19 0.32
Bass 0.89 0.35 0.50 0.76 0.17 0.28

Value requires delete 0.02 0.02 0.02 0.09 0.09 0.09
statementa CorHist 0.90 0.69 0.78 0.89 0.39 0.55

Bass 0.98 0.75 0.85 0.72 0.32 0.44
Conflict with delete 0.39 0.39 0.39 0.44 0.44 0.44

CorHist 0.87 0.84 0.86 0.83 0.46 0.59
Bass 0.91 0.86 0.88 0.77 0.71 0.74

Inverse/Sym. add 0.91 0.91 0.91 0.82 0.82 0.82
delete 0.07 0.07 0.07 0.11 0.11 0.11
CorHist 0.94 0.92 0.93 0.90 0.73 0.81
Bass 0.97 0.94 0.95 0.87 0.58 0.69

Single value delete 0.45 0.45 0.45 0.42 0.42 0.42
CorHist 0.55 0.50 0.53 0.74 0.23 0.36
Bass 0.74 0.64 0.69 0.60 0.52 0.56

Distinct values delete 0.55 0.55 0.55 0.45 0.45 0.45
CorHist 0.58 0.57 0.57 0.80 0.26 0.39
Bass 0.59 0.56 0.57 0.48 0.43 0.46

Total add 0.46 0.14 0.22 0.33 0.11 0.16
delete 0.24 0.24 0.24 0.22 0.22 0.22

CorHist-min 0.80 0.59 0.67 0.89 0.26 0.40
CorHist 0.75 0.64 0.69 0.85 0.30 0.44
Bass-RL 0.77 0.65 0.70 0.64 0.34 0.44
Bass 0.80 0.68 0.73 0.69 0.39 0.49

a The “add” baseline was not able to predict anything and is omitted here.

104

Bass to outperform Bass-RL by 5% in macro average F-score and by 3% in mi-
cro average, suggesting that textual data and structured representation of the
constraints help to solve violations of under-represented constraints. However,
CorHist, being based on rules, can explain why a given correction is made of a
constraint violation, whereas Bass is unable to provide such explanations.

6.8.5 Bass Ablation Study

To understand the contribution of each component of Bass, we remove the com-
ponents one by one and measure the performance. This leads to the following
variants of Bass:

• Bass without object literals : The RDF literals embedding component de-
scribed in Section 6.7.2 is removed.

• Bass without entity facts : The embeddings of the facts about the entities
that appear in the violation triples described in Section 6.7.1 is removed.

• Bass without entity facts : The constraint is not given at all to the neural
network. The network only predicts the correction from the violation triples
and the facts about the entities that appear in the violation triples.

• Bass with one hidden layer edit predictor : The perceptron described in Sec-
tion 6.7.1 which combines the various embeddings built by the neural network
is composed of one dense layer instead of two.

We also add another ablation, Bass minimal. This variant removes from Bass-
RL the constraint embedding and the entity fact embedding. This leads to a
network where the edit prediction component receives only the violation triple
predicates and objects, embedded with P and E .

Additionally to the ablation, we investigate some possible variants of Bass:

• Bass with constraint ids : We replace the constraint description input by
the Bass-RL constraint ID encoding. This gives the exact constraint to the
model, without the possibility to generalize from the constraint description.

• Bass with BiLSTM literals : We replace the max-pooling layer in the lit-
eral embeddings by a bidirectional long short-term memory network (BiL-
STM) (Hochreiter and Schmidhuber, 1997). BiLSTMs are commonly used
layers for sequence embeddings and have been used successfully on tasks
like natural language translation, suggesting possible good performance for
literal embeddings.

105

Table 6.3 – Bass ablation study results.

Micro average Macro average
Approach Prec. Rec. F Prec. Rec. F

Bass 0.80 0.68 0.73 0.69 0.39 0.49
Bass-RL 0.77 0.65 0.70 0.64 0.34 0.44
Bass minimal 0.65 0.53 0.58 0.50 0.25 0.33
Bass without object literals 0.77 0.65 0.71 0.66 0.36 0.47
Bass without entity facts 0.70 0.59 0.64 0.54 0.31 0.39
Bass without constraint 0.77 0.65 0.71 0.60 0.35 0.44
Bass with one hidden layer edit predictor 0.79 0.67 0.72 0.69 0.38 0.49
Bass with constraint ids 0.80 0.68 0.73 0.66 0.37 0.47
Bass with BiLSTM literals 0.78 0.66 0.71 0.65 0.37 0.47
Bass with entity facts attention 0.76 0.65 0.70 0.63 0.36 0.46
CorHist 0.75 0.64 0.69 0.85 0.30 0.44
Deletion baseline 0.24 0.24 0.24 0.22 0.22 0.22
Addition baseline 0.46 0.14 0.22 0.33 0.11 0.16

• Bass with entity fact attention: We replace the max-pooling layer that aggre-
gates the embeddings of the (predicate, object) tuples of the involved entities
by an attention layer. This attention layer uses for context the constraint
embedding. This allows the network to change the relative importance of
some entity facts based on the considered constraint.We define the attention
following Luong, Pham, and Manning, 2015 as σ(q · V >) · V , where σ is the
softmax function, q the query vector (here: the context embedding), and V
the value sequence matrix.

Discussion

Using the description of the constraints instead of the constraint ids does not
change the micro average score, but increases the macro average scores. This means
that the change helps for constraints with only a few past corrections, which have
a weaker weight in the micro average. We thus observe a better generalization
with respect to the constraints. Embedding the object literal values brings 2%
of improvement on both F-scores, showing it brings some value on the 13% of
violations where one of the objects is a literal that is not a date or a geographical
coordinate. The addition of a bidirectional LSTM and attention turns out to be
detrimental to the performance of Bass.

106

Table 6.4 – Human evaluation of the suggested corrections.

Constraint type Suggested “Apply” “Wrong” Approval

Type 9908 252 312 0.45
Value type 2374 195 208 0.48
One-of 239 14 47 0.23
Item requires stm. 41 8 32 0.2
Value requires stm. 1024 790 178 0.82
Conflict with 3254 1717 203 0.89
Inverse/Symmetric 28138 20247 1720 0.92
Single value 3264 41 71 0.37
Distinct values 921 8 23 0.26

All 49163 23272 2794 0.89

6.8.6 User Evaluation

To see whether our corrections are accepted by the community, we designed a user
study. We created a tool that suggests our corrections to Wikidata users for valida-
tion (available at https://tools.wmflabs.org/wikidata-game/distributed/
#game=43). The user can choose a constraint type, and the tool then suggests
corrections for random violations of constraints of this type (Figure 6.3). The vio-
lations for which corrections are suggested are provided by query.wikidata.org,
which limits their number for performance reasons. For each proposed correction,
the user has to choose between three options: apply the proposed correction to
Wikidata, tag it as wrong, or get another correction to review. We use a simpler
version of CorHist to predict the constraint violation than the one presented in
this thesis. The version used for this human evaluation is the same as the one pre-
sented in Pellissier Tanon, Bourgaux, and Suchanek, 2019. We ran the experiment
for 3 months and 47 Wikidata users participated.

The results are presented in Table 6.4. The number of corrections reviewed is
highly unbalanced between the kinds of constraints, mainly because a few users
evaluate a lot of suggestions, and have a predilection for some kinds of constraints.
It is thus difficult to conclude those kinds of constraints for which very few cor-
rections have been evaluated. However, we can still make some interesting obser-
vations. In particular, looking at the proposed corrections marked as wrong gives
us insights about possible weaknesses of our approach.

For the constraints which got a significant number of evaluations, our approach
seems to perform well for Inverse and Symmetric, Conflict with and Value requires

107

https://tools.wmflabs.org/wikidata-game/distributed/#game=43
https://tools.wmflabs.org/wikidata-game/distributed/#game=43

Figure 6.3 – Example of a replacement correction suggested by CorHist for a
violation of the constraint Γ(x) = ∃c countryOfCitizenship(x, c)∧ sexOrGender(x,
maleOrg)→ false.

statement constraints, with approval rates above 80%.
The other approval rates are lower. This is partly due to biases in the data.

For example, when gender is missing, our approach proposes the value “male”
by default, because of the over-representation of men in Wikidata (Klein et al.,
2016). This is in line with a common problem with machine learning approaches
that reflects and amplifies the biases contained in the data. For example, see
Zhao et al., 2019, a recent work on trying to remove the bias of word embeddings.
Another issue is the quality of the constraints, which in Wikidata are sometimes
questionable or difficult to understand (e.g., an incomplete set of possible types or
values for completeness or One-of constraints).

Most of the approval rates are lower than the precision reported by the evalua-
tion based on past corrections. We do not know why the results are different, one
hypothesis is that the “easy” constraints violations are solved quickly, sometimes
with the help of bots. Thus, in the current state of Wikidata, it could be the case
that most of the remaining constraint violations are “hard”, in the sense that they
cannot be easily fixed. Investigating this in more detail is left for future work.

However, even lower approval scores do not mean that our approach would be
useless: Psychological research (Funk and Dickson, 2011) shows that people find
it much easier to choose from given options than to come up with an answer by
themselves. The actual time needed to come up with an answer may vary, but if
it takes just 3 times longer to come up with an answer than to accept or reject our
proposed correction, then achieving a precision of 40% is already useful.

6.9 Conclusion

In this chapter, we have introduced the problem of learning how to fix constraint
violations from a knowledge base history. We have presented two methods to
address this problem, one based on rule mining and another on neural networks, the
latter providing better performances but without explainability. Our experimental
evaluation on Wikidata shows significant improvement over static baselines. Our

108

tool is live on Wikidata and has already allowed users to correct more than 23k
constraint violations.

While our evaluation focused on Wikidata for which the whole edit history was
available, our method can be applied in other settings. For example, it might be
interesting to investigate to what extent the approaches presented here could be
used to clean automatically extracted knowledge bases, using as ground truth the
changes done in the knowledge base data sources. It will be also useful to do again
the user evaluation with the latest version of the CorHist algorithm and with the
Bass algorithm to see which one of the two works best with the violations currently
present in Wikidata. Another possible improvement for the user evaluation tool
is to allow the users to validate not only the corrections but the rules themselves,
to apply them directly on all of Wikidata.

To evaluate the methods presented in this chapter we used Wikidata. However,
to apply the past correction extraction algorithm, we needed a system that can
easily and efficiently query Wikidata at any time in its edit history. This led us
to build a database system tailored for this usage. It is described in the next
chapter.

109

110

Chapter 7

Querying the Edit History of
Wikidata

The work presented in this section has been done with Fabian Suchanek and has
been demoed at ESWC 2019.

Thomas Pellissier Tanon and Fabian M. Suchanek. “Querying the Edit
History of Wikidata”. Demo at ESWC 2019. https://doi.org/10.
1007/978-3-030-32327-1_32

7.1 Introduction

To be able to implement our mining approach from Section 6.5, we needed to be
able to evaluate queries at any time of the Wikidata history. Easy access to the
Wikidata edit history is useful also to Wikidata contributors who wish to trace
the progress of Wikidata over time, measure the number of contributions by bots,
or identify areas of vandalism.

However, the only way to access the full historical revisions of Wikidata is to
download a 250GB set of compressed XML dumps, which contain a JSON blob
for each revision. This dump is hard to manipulate and even harder to index.
It would be prohibitively expensive to create one RDF graph for each of the 700
million revisions, each with billions of triples. If one indexes only the differences
between the revisions, one loses the global state at each revision.

In this chapter, we propose a system that smartly indexes the revisions, so that
the full history of Wikidata edits can be made available as a SPARQL endpoint.
Our endpoint can:

111

https://doi.org/10.1007/978-3-030-32327-1_32
https://doi.org/10.1007/978-3-030-32327-1_32

1. Retrieve the diff, i.e., the set of added and/or removed triples, for any Wiki-
data revision.

2. Evaluate any triple pattern against the global state of Wikidata after a given
revision.

3. Retrieve the revisions that have added/removed triples matching a given
triple pattern.

With this, we can answer questions such as “How many cities existed in Wiki-
data across time?”, “How many entities were modified exclusively by bots?”, or
“How were different values for the gender property used across time in Wikidata?”.
All these queries can be asked in standard SPARQL, without any additions to the
language. This model also addresses the requirements of Chapter 6.

7.2 Related Work
SPARQL endpoints for versioned RDF datasets have been proposed by several
authors. Fernández, Polleres, and Umbrich, 2015 first discussed the problem of
querying linked data archives. Fernández, Umbrich, et al., 2016 provides an ex-
tensive discussion of known solutions. Our work is concerned with an actual im-
plementation of such a versioned RDF store for Wikidata. This causes practical
problems of size that have not been considered in previous works.

Several systems allow storing versioned RDF: Quad stores (e.g., Bishop et al.,
2011) and archives (e.g., Fernández, Martínez-Prieto, et al., 2018) could be used
to store each triple annotated with their revision. However, this would mean that
each triple would have to be stored once for every revision in which it appears.
In the case of Wikidata, this would amount to quadrillions of triples to be stored.
Pugliese, Udrea, and Subrahmanian, 2008 presented tgrin system that allows
annotating RDF triples with a timestamp. However, the system does not provide
time range support or, indeed, an available implementation. R&Wbase (Sande
et al., 2013) is a wrapper on top of a SPARQL 1.1 endpoint that provides a git-
like system for RDF graphs. However, it stores only the diff between different
revisions. Therefore, it does not allow efficient querying of the full graph state at a
given point of time. Neumann and Weikum, 2010 presents x-RDF-3X, a SPARQL
database that annotates each triple with the timestamp at which it was added or
removed. It annotates triples with validity ranges, thus permitting queries for any
state of the database. It also provides advanced consistency features. However, by
design, it does not allow loading data with already known timestamps or version
IDs. Thus, it is not usable in our case. The system v-RDFCSA from Cerdeira-Pena
et al., 2016 allows efficient storage and retrieval of versioned triples. However,

112

it does not allow subsequent additions of revisions and does not support revision
ranges. Therefore, the system is hard to use with the huge number of revisions
that Wikidata brings. OSTRICH (Taelman, Sande, and Verborgh, 2018) allows
storing version-annotated triples, as well as querying them based on the version ID.
It uses an HDT file for storing the base version and then stores a changeset with
respect to this initial version. This system is not tailored to the case of Wikidata,
where the base version is empty. Thus, the system would have to store the full
global state for each revision.

7.3 System Overview
Our goal is to provide a SPARQL endpoint that allows querying not just for the
differences between Wikidata revisions, but also for the global state after each
revision. At the same time, we want to use only existing SPARQL features. For
this purpose, we designed the following data model based on RDF 1.1 named
graphs (Cyganiak et al., 2014):

Global State Graph: We will have one named graph per revision, which con-
tains the global state of Wikidata after the revision has been saved.

Addition Graph: For each revision, we will have one graph that contains all the
triples that have been added by this revision.

Deletion Graph: In the same spirit, we will have one graph for each revision
that stores the triples that were removed.

Default Graph: The default graph contains triples that encode metadata about
each revision: the revision author, the revision timestamp, the id of the
modified entity, the previous revision of the same entity, the previous revision
in Wikidata, and the IRIs of the additions, deletions, and global state graphs.

This data model allows us to query both the global state of Wikidata after each
revision and the modifications brought by reach revision – without any change
of the SPARQL 1.1 semantics or syntax (Harris, Seaborne, and Prud’hommeaux,
2013). We use the same schema as the official Wikidata dumps (Erxleben et al.,
2014).

To store our data model, we cannot just load it as-is into a triple store. The
revision graphs alone would occupy exabytes of storage. Indeed, the global state
after each Wikidata revision contains billion of triples, and a naive storage would
mean to duplicate all of the triples for each revision. Therefore, we implemented
our own system. Our system is composed of a storage component able to store
triples annotated with a graph name and query them using triple patterns. Then

113

we have a SPARQL evaluator interacting with the storage component using triple
patterns.

The storage component is based on RocksDB1, which we already used in Chap-
ter 5 for YAGO 4. RocksDB is a scalable key-value store, optimized for a mixed
workload between query and edits. This choice anticipates the possibility of live up-
dates from Wikidata in the future. We create the following indexes into RocksDB:

Dictionary Indexes: Following a well-known practice in RDF storage systems,
we represent every string by an integer id. We use one dictionary index to
map the strings to their ids, and another one to map the ids to the strings.

Content Indexes: Each triple (s, p, o) appears in three content indexes. The
indexes have as keys the permutations spo, pos, and osp, respectively, and
as value a set of revision ranges. Each range is of the form [start, end[, where
start is the id of the revision that introduced the triple, and end is the id of
the revision that removed it (or +∞ if the triple has not been removed).

Revision indexes: We use two revision indexes, which give the set of triples that
have been added or removed by a given revision. Since the Wikidata edits
affect only a single entity and usually only a single statement, the number of
triples added and removed per edit is small. Therefore, we can easily store
all of them in the value part of the key-value store.

Meta indexes: We use several metadata indexes to store, for each revision, its
author, the previous revision, etc.

Thanks to the content indexes, it is easy to retrieve for a given triple pattern when
the triples have been added and, if relevant, when they have been removed. The
indexes can also be used to evaluate a triple pattern against the global state graph,
by filtering the results against the revision ranges. This is efficient because out of
the 4931M triples that have existed in the Wikidata history as of July 1st, 2018,
only 475M has been removed. Therefore, the largest revision contains 90% of the
total number of Wikidata triples that ever existed.

These indexes allow us to evaluate all possible triple patterns, optionally an-
notated with a graph name. If the triple pattern targets revision metadata, we
use the metadata indexes. If it targets the content triples, we proceed with the
following operations on top of the RocksDB indexes:

1. If the graph name is set to an addition graph or a deletion graph, we use the
revision indexes to retrieve all the triples that were added or deleted, and we
evaluate the triple pattern on them.

1https://rocksdb.org/

114

https://rocksdb.org/

2. Otherwise, we do a prefix search in one of the content indexes, building the
prefix from the bound parts of the triple pattern and choosing the index that
allows us to have the longest prefix, and so the highest selectivity.

(a) If the graph name is set and is a global state graph, we filter the triples
that are returned from the prefix search by using the revision range as
a filter.

(b) Otherwise, we iterate through the matching triples and annotate them
with graph names by using, for each triple, the revision range to find the
ids of the addition graphs and the deletion graphs in which the triple
appears. We do not return the ids of the global state graphs, because
a query for the graph identifiers of a single triple pattern could return
hundreds of millions of ids.

This storage system allows us to answer queries for a single triple pattern anno-
tated with a graph name. To answer SPARQL queries, we plug our triple pattern
evaluator into Eclipse RDF4J2. This system evaluates an arbitrary SPARQL 1.1
query by repeated calls to our triple pattern evaluator. It supports a wide range of
query optimizations, including join reordering with handwritten static cardinality
estimations that are based on the structure of the RDF dataset. For example,
every revision has exactly a single author, and the number of triples per Wikidata
entity is usually small.

Due to storage space constraints on the server provided by the Wikimedia
Foundation, the facts annotations (qualifiers and references) are not loaded in our
demo endpoint3. We cover the range from the creation of Wikidata to July 1st,
2018. Our demonstration instance stores more than 700M revisions and 390M
content triples about 49M items. The RocksDB indexes are using 64Go on disk
with the RocksDB gzip compression system, after having compacted the database.

7.4 Usage
Our system allows users to query the entire Wikidata edit history. For example,
Figure 7.1 asks for the 10 most frequent replacements for the value of the “gender”
property. The query retrieves first the set of triples with the gender property
(wdt:P21) (Line 2), annotated with the name of addition graphs. Then, it retrieves
the names of the deletion graphs for each revision that have seen such additions
(Line 3). Finally, it retrieves any deleted triple with the same subject and predicate
(Line 4). After that, it uses the usual SPARQL 1.1 features to compute the final
result (Lines 1 and 5).

2http://rdf4j.org/
3https://wdhqs.wmflabs.org

115

http://rdf4j.org/
https://wdhqs.wmflabs.org

1 SELECT ?genderAdd ?genderDel (COUNT(? revision) AS ?c) WHERE {
2 GRAPH ?addGraph { ?s wdt:P21 ?genderAdd }
3 ?revision hist:additions ?addGraph ; hist:deletions ?delGraph .
4 GRAPH ?delGraph { ?s wdt:P21 ?genderDel }
5 } GROUP BY ?genderAdd ?genderDel ORDER BY DESC(?c) LIMIT 10

Figure 7.1 – Retrieving the most common replacements of a “gender” value.

Such an analysis yields some interesting insights: First, we can observe that
users correct erroneous gender values (such as “man”) by their intended variants
(“male”). Second, a slightly modified variant of the query allows us to quantify
the gender gap in Wikidata over time: while the absolute difference between the
number of men and women in Wikidata keeps increasing over time, the relative
difference decreases. Finally, a similar query allows us to trace the increasing
presence of other sex/gender values, such as “trans-male” or “non-binary” in the
dataset.

7.5 Conclusion
In this chapter, we proposed a system that efficiently indexes the entire Wikidata
edit history, and that allows users to answer arbitrary SPARQL 1.1 queries on
it. Our system allows queries on both the revision diffs and the global state of
Wikidata after each revision. Our system is available online at https://wdhqs.
wmflabs.org. We also provide an extensive help page4, together with a set of
example queries. Between March 2019 and May 2020, it has served more than 2M
queries.

However, our endpoint has still a major limitation: updating its contents re-
quires new full Wikidata revisions dumps. These dumps are only released every
few months. This prevents us to have speedy updates of the endpoint content
and forbids interesting use-cases like vandalism detection and or live suggestions
based on the latest user edits. Hence, our main future work is making our end-
point replicate Wikidata edits in real-time using the live edit stream provided by
Wikidata.

We have successfully used this system for the approaches presented in the
previous chapter to learn how to fix constraint violations. This concludes our
efforts at learning to dynamically enforce constraints on a knowledge base.

4https://www.wikidata.org/wiki/Wikidata:History_Query_Service

116

https://wdhqs.wmflabs.org
https://wdhqs.wmflabs.org
https://www.wikidata.org/wiki/Wikidata:History_Query_Service

Chapter 8

Conclusion

8.1 Summary

In this thesis, we have studied the correction and completion of knowledge bases.
We made three core contributions.

In Part I, we have defined the problem of learning rules from incomplete knowl-
edge bases. We introduced the completeness confidence ranking measure that ef-
fectively makes use of the cardinality information contained in the knowledge base.
Our new measure has been evaluated on real-world and synthetic knowledge bases,
demonstrating significant improvements both with respect to the quality of mined
rules and with respect to the predictions that they produce. We have also pro-
posed a method to automatically increase the coverage of cardinality information.
This method can be used to improve the efficiency of our new measure.

In Part II, we have presented is YAGO 4, a knowledge base that, during its
construction, enforces constraints over the knowledge base by applying simple
static repair strategies. This method allowed us to build a large scale knowledge
base that can be used with regular OWL reasoners.

In Part III, we aimed at avoiding the loss of data that our static repair strategies
induced in YAGO 4. To achieve that, we introduced the problem of learning how
to fix constraint violations from a knowledge base history. We have presented two
methods to this end. One, CorHist, is based on rule mining. Its advantage is
that it can explain its corrections. The other, Bass, is based on neural networks
and offers better accuracy. However, it is not able to explain its predictions.
An experimental evaluation on Wikidata showed that these two approaches are
significantly outperforming static baselines to find the correct correction. We also
provided the system as a tool to the Wikidata community, allowing it to fix more
than 20k constraints violations.

117

8.2 Outlook
In this thesis, we have shown how constraints can be used in practice to clean
knowledge bases. Many research challenges are still open.

The approach used to increase the number of cardinality statements could be
expanded to mine rules on numerical values. For example, it could be used to learn
that if a country is member of the OCDE then its GDP is higher than a certain
threshold, or that all Roman consuls are born before the 10th century.

The work on learning how to correct violations of constraints from past cor-
rections could be extended to textual data. For example, one could try to mine
how to fix common spelling mistakes or improve the formatting of written works
based on the changes previously done. Another application might be to mine from
a source code edit history the common formatting changes and simple bug fixes to
automatically suggest them when a contributor opens a code review request.

We hope that, by opening the door to these challenges, our work can contribute
to making knowledge bases and other contents cleaner, and thus ultimately ever
more useful.

118

Bibliography

Abadi, Martı’n, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Gregory S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian J. Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Józefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Gordon Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul A. Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fer-
nanda B. Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng (2016). “TensorFlow: Large-Scale Ma-
chine Learning on Heterogeneous Distributed Systems”. In: CoRR. url: http:
//arxiv.org/abs/1603.04467 (cit. on p. 101).

Acosta, Maribel, Amrapali Zaveri, Elena Simperl, Dimitris Kontokostas, Fabian
Flöck, and Jens Lehmann (2018). “Detecting Linked Data quality issues via
crowdsourcing: A DBpedia study”. In: Semantic Web 9.3, pp. 303–335. doi:
10.3233/SW-160239 (cit. on pp. 76, 142).

Agrawal, Rakesh, Tomasz Imielinski, and Arun N. Swami (1993). “Mining Associ-
ation Rules between Sets of Items in Large Databases”. In: SIGMOD, pp. 207–
216. doi: 10.1145/170035.170072 (cit. on p. 22).

Arioua, Abdallah and Angela Bonifati (2018). “User-guided Repairing of Incon-
sistent Knowledge Bases”. In: EDBT, pp. 133–144. doi: 10.5441/002/edbt.
2018.13 (cit. on pp. 75, 142).

Assadi, Ahmad, Tova Milo, and Slava Novgorodov (2018). “Cleaning Data
with Constraints and Experts”. In: International Workshop on the Web and
Databases, 1:1–1:6. doi: 10.1145/3201463.3201464 (cit. on pp. 75, 142).

Baader, Franz, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Pe-
ter F. Patel-Schneider, eds. (2003). The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press. isbn: 0-521-
78176-0 (cit. on pp. 17, 19).

Bader, Johannes, Andrew Scott, Michael Pradel, and Satish Chandra (2019).
“Getafix: Learning to Fix Bugs Automatically”. In: Proc. ACM Program. Lang.
159:1–159:27. doi: 10.1145/3360585 (cit. on p. 76).

119

http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1603.04467
https://doi.org/10.3233/SW-160239
https://doi.org/10.1145/170035.170072
https://doi.org/10.5441/002/edbt.2018.13
https://doi.org/10.5441/002/edbt.2018.13
https://doi.org/10.1145/3201463.3201464
https://doi.org/10.1145/3360585

Bergman, Moria, Tova Milo, Slava Novgorodov, and Wang-Chiew Tan (2015).
“QOCO: A Query Oriented Data Cleaning System with Oracles”. In: VLDB
8.12, pp. 1900–1903. doi: 10.14778/2824032.2824096 (cit. on pp. 75, 142).

Bienvenu, Meghyn, Camille Bourgaux, and François Goasdoué (2016). “Query-
Driven Repairing of Inconsistent DL-Lite Knowledge Bases”. In: IJCAI,
pp. 957–964. url: https://www.ijcai.org/Proceedings/16/Papers/
140.pdf (cit. on pp. 75, 142).

Bishop, Barry, Atanas Kiryakov, Damyan Ognyanoff, Ivan Peikov, Zdravko Ta-
shev, and Ruslan Velkov (2011). “OWLIM: A Family of Scalable Semantic
Repositories”. In: Semantic Web 2.1, pp. 33–42. doi: 10.3233/SW-2011-0026
(cit. on p. 112).

Bizer, Christian, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker,
Richard Cyganiak, and Sebastian Hellmann (2009). “DBpedia - A Crystalliza-
tion Point for the Web of Data”. In: Journal of Web Semantics 7.3, pp. 154–
165. doi: 10.1016/j.websem.2009.07.002 (cit. on pp. 11, 131).

Bollacker, Kurt D., Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor
(2008). “Freebase: A Collaboratively Created Graph Database for Structuring
Human Knowledge”. In: SIGMOD, pp. 1247–1250. doi: 10.1145/1376616.
1376746 (cit. on pp. 11, 131).

Boneva, Iovka, José Emilio Labra Gayo, and Eric G. Prud’hommeaux (2017).
“Semantics and Validation of Shapes Schemas for RDF”. In: ISWC, pp. 104–
120. doi: 10.1007/978-3-319-68288-4_7 (cit. on p. 75).

Brin, Sergey, Rajeev Motwani, Jeffrey D. Ullman, and Shalom Tsur (1997). “Dy-
namic Itemset Counting and Implication Rules for Market Basket Data”. In:
SIGMOD, pp. 255–264. doi: 10.1145/253260.253325 (cit. on p. 34).

Calvanese, Diego, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati (2007). “Tractable Reasoning and Efficient Query Answer-
ing in Description Logics: The DL-Lite Family”. In: J. Autom. Reasoning 39.3,
pp. 385–429. doi: 10.1007/s10817-007-9078-x (cit. on p. 82).

Cerdeira-Pena, Ana, Antonio Fariña, Javier D. Fernández, and Miguel A.
Martı’nez-Prieto (2016). “Self-Indexing RDF Archives”. In: DCC, pp. 526–535.
doi: 10.1109/DCC.2016.40 (cit. on p. 112).

Chen, Jiaoyan, Xi Chen, Ian Horrocks, Ernesto Jiménez-Ruiz, and Erik B. Mykle-
bust (2020). “Correcting Knowledge Base Assertions”. In: CoRR. url: https:
//arxiv.org/abs/2001.06917 (cit. on p. 75).

Chollet, François et al. (2015). Keras. url: https://keras.io (cit. on p. 101).
Cyganiak, Richard, David Wood, Markus Lanthaler, Graham Klyne, Jeremy J

Carroll, and Brian McBride (2014). RDF 1.1 concepts and abstract syntax.
W3C Recommendation. World Wide Web Consortium. url: https://www.
w3.org/TR/rdf11-concepts/ (cit. on pp. 18, 75, 113, 136).

120

https://doi.org/10.14778/2824032.2824096
https://www.ijcai.org/Proceedings/16/Papers/140.pdf
https://www.ijcai.org/Proceedings/16/Papers/140.pdf
https://doi.org/10.3233/SW-2011-0026
https://doi.org/10.1016/j.websem.2009.07.002
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1007/978-3-319-68288-4_7
https://doi.org/10.1145/253260.253325
https://doi.org/10.1007/s10817-007-9078-x
https://doi.org/10.1109/DCC.2016.40
https://arxiv.org/abs/2001.06917
https://arxiv.org/abs/2001.06917
https://keras.io
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/

d’Amato, Claudia, Steffen Staab, Andrea GB Tettamanzi, Tran Duc Minh, and
Fabien Gandon (2016). “Ontology Enrichment by Discovering Multi-Relational
Association Rules from Ontological Knowledge Bases”. In: SAC, pp. 333–338.
doi: 10.1145/2851613.2851842 (cit. on p. 32).

Darari, Fariz, Werner Nutt, Giuseppe Pirrò, and Simon Razniewski (2013). “Com-
pleteness Statements about RDF Data Sources and Their Use for Query An-
swering”. In: ISWC, pp. 170–187. doi: 10.1007/978-3-642-41335-3_5 (cit.
on pp. 21, 33, 45, 139).

Darari, Fariz, Simon Razniewski, Radityo Eko Prasojo, and Werner Nutt (2016).
“Enabling Fine-Grained RDF Data Completeness Assessment”. In: ICWE,
pp. 170–187. doi: 10.1007/978-3-319-38791-8_10 (cit. on pp. 45, 139).

Dehaspe, Luc and Luc De Raedt (1997). “Mining Association Rules in Multiple
Relations”. In: ILP, pp. 125–132. doi: 10.1007/3540635149_40 (cit. on pp. 22,
23).

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2019).
“BERT: Pre-training of Deep Bidirectional Transformers for Language Un-
derstanding”. In: NAACL-HLT, pp. 4171–4186. doi: 10.18653/v1/n19-1423
(cit. on p. 93).

Diefenbach, Dennis, Thomas Pellissier Tanon, Kamal Deep Singh, and Pierre
Maret (2017). “Question Answering Benchmarks for Wikidata”. In: ISWC. url:
http://ceur-ws.org/Vol-1963/paper555.pdf.

Doppa, Janardhan Rao, Shahed Sorower, Mohammad Nasr Esfahani, John Walker
Orr, Thomas G. Dietterich, Xiaoli Z. Fern, Prasad Tadepalli, and Jed Irvine
(2011). “Learning Rules from Incomplete Examples via Implicit Mention Mod-
els”. In: ACML, pp. 197–212. url: http://proceedings.mlr.press/v20/
doppa11/doppa11.pdf (cit. on pp. 31, 139).

Erxleben, Fredo, Michael Günther, Markus Krötzsch, Julian Mendez, and Denny
Vrandečić (2014). “Introducing Wikidata to the Linked Data Web”. In: ISWC,
pp. 50–65. doi: 10.1007/978-3-319-11964-9_4 (cit. on pp. 96, 113).

Etzioni, Oren, Keith Golden, and Daniel S. Weld (1997). “Sound and Efficient
Closed-World Reasoning for Planning”. In: Artif. Intell. 89.1-2, pp. 113–148.
doi: 10.1016/S0004-3702(96)00026-4 (cit. on p. 33).

Fellbaum, Christiane, ed. (1998). WordNet: An Electronic Lexical Database. MIT
Press. isbn: 9780262061971. url: https : / / mitpress . mit . edu / books /
wordnet (cit. on p. 53).

Fernández, Javier D., Miguel A. Martínez-Prieto, Axel Polleres, and Julian Rein-
dorf (2018). “HDTQ: Managing RDF Datasets in Compressed Space”. In:
ESWC, pp. 191–208. doi: 10.1007/978-3-319-93417-4_13 (cit. on p. 112).

121

https://doi.org/10.1145/2851613.2851842
https://doi.org/10.1007/978-3-642-41335-3_5
https://doi.org/10.1007/978-3-319-38791-8_10
https://doi.org/10.1007/3540635149_40
https://doi.org/10.18653/v1/n19-1423
http://ceur-ws.org/Vol-1963/paper555.pdf
http://proceedings.mlr.press/v20/doppa11/doppa11.pdf
http://proceedings.mlr.press/v20/doppa11/doppa11.pdf
https://doi.org/10.1007/978-3-319-11964-9_4
https://doi.org/10.1016/S0004-3702(96)00026-4
https://mitpress.mit.edu/books/wordnet
https://mitpress.mit.edu/books/wordnet
https://doi.org/10.1007/978-3-319-93417-4_13

Fernández, Javier D., Axel Polleres, and Jürgen Umbrich (2015). “Towards Efficient
Archiving of Dynamic Linked Open Data”. In: DIACRON @ ESWC, pp. 34–49.
url: http://ceur-ws.org/Vol-1377/paper6.pdf (cit. on p. 112).

Fernández, Javier D., Jürgen Umbrich, Axel Polleres, and Magnus Knuth (2016).
“Evaluating Query and Storage Strategies for RDF Archives”. In: SEMAN-
TICS, pp. 41–48. doi: 10.1145/2993318.2993333 (cit. on p. 112).

Flesca, Sergio, Sergio Greco, and Ester Zumpano (2004). “Active Integrity Con-
straints”. In: PPDP, pp. 98–107. doi: 10.1145/1013963.1013977 (cit. on
p. 75).

Frey, Johannes, Marvin Hofer, Daniel Obraczka, Jens Lehmann, and Sebastian
Hellmann (2019). “DBpedia FlexiFusion the Best of Wikipedia > Wikidata >
Your Data”. In: ISWC, pp. 96–112. doi: 10.1007/978-3-030-30796-7_7
(cit. on pp. 55, 57).

Funk, Steven C. and K. Laurie Dickson (2011). “Multiple-Choice and Short-Answer
Exam Performance in a College Classroom”. In: Teaching of Psychology 38.4,
pp. 273–277. doi: 10.1177/0098628311421329 (cit. on p. 108).

Gad-Elrab, Mohamed H., Daria Stepanova, Jacopo Urbani, and Gerhard Weikum
(2016). “Exception-enriched rule learning from knowledge graphs”. In: ISWC,
pp. 234–251. doi: 10.1007/978-3-319-46523-4_15 (cit. on p. 30).

Galárraga, Luis, Simon Razniewski, Antoine Amarilli, and Fabian M. Suchanek
(2017). “Predicting Completeness in Knowledge Bases”. In: WSDM, pp. 375–
383. doi: 10.1145/3018661.3018739 (cit. on pp. 31, 33, 43, 45, 139).

Galárraga, Luis, Christina Teflioudi, Katja Hose, and Fabian M. Suchanek (2013).
“AMIE: Association Rule Mining under Incomplete Evidence in Ontological
Knowledge Bases”. In: WWW, pp. 413–422. doi: 10.1145/2488388.2488425
(cit. on pp. 30, 31, 77, 86, 87).

— (2015). “Fast Rule Mining in Ontological Knowledge Bases with AMIE+”. In:
VLDB 24.6, pp. 707–730. doi: 10.1007/s00778-015-0394-1 (cit. on pp. 22,
24, 30, 31, 34, 39, 46, 86, 138, 144).

Giacometti, Arnaud, Béatrice Markhoff, and Arnaud Soulet (2019). “Mining Sig-
nificant Maximum Cardinalities in Knowledge Bases”. In: ISWC. Vol. 11778,
pp. 182–199. doi: 10.1007/978-3-030-30793-6_11 (cit. on pp. 45, 49).

Glimm, Birte, Ian Horrocks, Boris Motik, Giorgos Stoilos, and Zhe Wang (2014).
“HermiT: An OWL 2 Reasoner”. In: J. Autom. Reasoning 53.3, pp. 245–269.
doi: 10.1007/s10817-014-9305-1 (cit. on p. 68).

Goethals, Bart and Jan Van den Bussche (2002). “Relational Association Rules:
Getting WARMeR”. In: Pattern Det. and Disc. Workshop, pp. 125–139. doi:
10.1007/3-540-45728-3_10 (cit. on pp. 38, 39).

122

http://ceur-ws.org/Vol-1377/paper6.pdf
https://doi.org/10.1145/2993318.2993333
https://doi.org/10.1145/1013963.1013977
https://doi.org/10.1007/978-3-030-30796-7_7
https://doi.org/10.1177/0098628311421329
https://doi.org/10.1007/978-3-319-46523-4_15
https://doi.org/10.1145/3018661.3018739
https://doi.org/10.1145/2488388.2488425
https://doi.org/10.1007/s00778-015-0394-1
https://doi.org/10.1007/978-3-030-30793-6_11
https://doi.org/10.1007/s10817-014-9305-1
https://doi.org/10.1007/3-540-45728-3_10

Gray, Alasdair J. G., Carole A. Goble, and Rafael Jimenez (2017). “Bioschemas:
From Potato Salad to Protein Annotation”. In: ISWC. url: http://ceur-
ws.org/Vol-1963/paper579.pdf (cit. on p. 57).

Guha, Ramanathan V., Dan Brickley, and Steve Macbeth (2016). “Schema.org:
Evolution of Structured Data on the Web”. In: Commun. ACM 59.2, pp. 44–
51. doi: 10.1145/2844544 (cit. on p. 55).

Guo, Yuanbo, Zhengxiang Pan, and Jeff Heflin (2005). “LUBM: A benchmark for
OWL knowledge base systems”. In: J. Web Semant. 3.2-3, pp. 158–182. doi:
10.1016/j.websem.2005.06.005 (cit. on pp. 39, 141).

Harris, Steve, Andy Seaborne, and Eric Prud’hommeaux (2013). SPARQL 1.1
Query Language. W3C Recommendation. World Wide Web Consortium. url:
https://www.w3.org/TR/sparql11-query/ (cit. on p. 113).

Hartig, Olaf (2017). “Foundations of RDF? and SPARQL? (An Alternative Ap-
proach to Statement-Level Metadata in RDF)”. In: Alberto Mendelzon Work-
shop on Foundations of Data Management and the Web. url: http://ceur-
ws.org/Vol-1912/paper12.pdf (cit. on pp. 63, 66).

Hernández, Daniel, Aidan Hogan, and Markus Krötzsch (2015). “Reifying RDF:
What Works Well With Wikidata?” In: SSWS@ISWC, pp. 32–47. url: http:
//ceur-ws.org/Vol-1457/SSWS2015_paper3.pdf (cit. on p. 96).

Ho, Vinh Thinh, Daria Stepanova, Mohamed H. Gad-Elrab, Evgeny Kharlamov,
and Gerhard Weikum (2018). “Rule Learning from Knowledge Graphs Guided
by Embedding Models”. In: ISWC, pp. 72–90. doi: 10.1007/978- 3-030-
00671-6_5 (cit. on pp. 32, 76).

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long Short-Term Memory”. In:
Neural Computation 9.8, pp. 1735–1780. doi: 10.1162/neco.1997.9.8.1735
(cit. on p. 105).

Hoffart, Johannes, Fabian M. Suchanek, Klaus Berberich, Edwin Lewis-Kelham,
Gerard de Melo, and Gerhard Weikum (2011). “YAGO2: Exploring and Query-
ing World Knowledge in Time, Space, Context, and Many Languages”. In:
WWW, pp. 229–232. doi: 10.1145/1963192.1963296 (cit. on p. 53).

Hohenecker, Patrick and Thomas Lukasiewicz (2018). “Ontology Reasoning with
Deep Neural Networks”. In: CoRR. url: http://arxiv.org/abs/1808.07980
(cit. on p. 76).

Ismayilov, Ali, Dimitris Kontokostas, Sören Auer, Jens Lehmann, and Sebastian
Hellmann (2018). “Wikidata through the Eyes of DBpedia”. In: Semantic Web
9.4, pp. 493–503. doi: 10.3233/SW-170277 (cit. on p. 55).

Józefowska, Joanna, Agnieszka Lawrynowicz, and Tomasz Lukaszewski (2010).
“The Role of Semantics in Mining Frequent Patterns from Knowledge Bases in
Description Logics with Rules”. In: TPLP 10.3, pp. 251–289. doi: 10.1017/
S1471068410000098 (cit. on pp. 32, 76).

123

http://ceur-ws.org/Vol-1963/paper579.pdf
http://ceur-ws.org/Vol-1963/paper579.pdf
https://doi.org/10.1145/2844544
https://doi.org/10.1016/j.websem.2005.06.005
https://www.w3.org/TR/sparql11-query/
http://ceur-ws.org/Vol-1912/paper12.pdf
http://ceur-ws.org/Vol-1912/paper12.pdf
http://ceur-ws.org/Vol-1457/SSWS2015_paper3.pdf
http://ceur-ws.org/Vol-1457/SSWS2015_paper3.pdf
https://doi.org/10.1007/978-3-030-00671-6_5
https://doi.org/10.1007/978-3-030-00671-6_5
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1145/1963192.1963296
http://arxiv.org/abs/1808.07980
https://doi.org/10.3233/SW-170277
https://doi.org/10.1017/S1471068410000098
https://doi.org/10.1017/S1471068410000098

Kalyanpur, Aditya, Bijan Parsia, Matthew Horridge, and Evren Sirin (2007).
“Finding All Justifications of OWL DL Entailments”. In: ISWC, pp. 267–280.
doi: 10.1007/978-3-540-76298-0_20 (cit. on p. 79).

Kingma, Diederik P. and Jimmy Ba (2015). “Adam: A Method for Stochastic
Optimization”. In: ICLR. url: http://arxiv.org/abs/1412.6980 (cit. on
p. 101).

Klein, Maximilian, Harsh Gupta, Vivek Rai, Piotr Konieczny, and Haiyi Zhu
(2016). “Monitoring the Gender Gap withWikidata Human Gender Indicators”.
In: OpenSym, 16:1–16:9. doi: 10.1145/2957792.2957798 (cit. on p. 108).

Knublauch, Holger and Dimitris Kontokostas (2017). Shapes Constraint Language
(SHACL). W3C Recommendation. World Wide Web Consortium. url: https:
//www.w3.org/TR/shacl/ (cit. on pp. 55, 60, 75).

Kontchakov, Roman and Michael Zakharyaschev (2014). “An Introduction to De-
scription Logics and Query Rewriting”. In: Reasoning Web. Reasoning on the
Web in the Big Data Era, pp. 195–244. doi: 10.1007/978-3-319-10587-1_5
(cit. on p. 82).

Kontokostas, Dimitris, Patrick Westphal, Sören Auer, Sebastian Hellmann, Jens
Lehmann, Roland Cornelissen, and Amrapali Zaveri (2014). “Test-Driven Eval-
uation of Linked Data Quality”. In: WWW, pp. 747–758. doi: 10 . 1145 /
2566486.2568002 (cit. on p. 75).

Law, Mark, Alessandra Russo, and Krysia Broda (2014). “Inductive Learning of
Answer Set Programs”. In: JELIA. Vol. 8761, pp. 311–325. doi: 10.1007/978-
3-319-11558-0_22 (cit. on p. 32).

Lehmann, Jens, Sören Auer, Lorenz Bühmann, and Sebastian Tramp (2011). “Class
expression learning for ontology engineering”. In: J. Web Sem. 9.1, pp. 71–81.
doi: 10.1016/j.websem.2011.01.001 (cit. on p. 32).

Lertvittayakumjorn, Piyawat, Natthawut Kertkeidkachorn, and Ryutaro Ichise
(2017). “Correcting Range Violation Errors in DBpedia”. In: ISWC. url: http:
//ceur-ws.org/Vol-1963/paper508.pdf (cit. on p. 76).

Levy, Alon Y. (1996). “Obtaining Complete Answers from Incomplete Databases”.
In: VLDB, pp. 402–412. url: http://www.vldb.org/conf/1996/P402.PDF
(cit. on p. 33).

Liang, Jiaqing, Yanghua Xiao, Yi Zhang, Seung-won Hwang, and Haixun Wang
(2017). “Graph-Based Wrong IsA Relation Detection in a Large-Scale Lexical
Taxonomy”. In: AAAI, pp. 1178–1184. url: http://aaai.org/ocs/index.
php/AAAI/AAAI17/paper/view/14268 (cit. on pp. 76, 142).

Lisi, Francesca A. (2010). “Inductive Logic Programming in Databases: From Dat-
alog to DL+log”. In: Theory Pract. Log. Program. 10.3, pp. 331–359. doi:
10.1017/S1471068410000116 (cit. on p. 32).

124

https://doi.org/10.1007/978-3-540-76298-0_20
http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/2957792.2957798
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/
https://doi.org/10.1007/978-3-319-10587-1_5
https://doi.org/10.1145/2566486.2568002
https://doi.org/10.1145/2566486.2568002
https://doi.org/10.1007/978-3-319-11558-0_22
https://doi.org/10.1007/978-3-319-11558-0_22
https://doi.org/10.1016/j.websem.2011.01.001
http://ceur-ws.org/Vol-1963/paper508.pdf
http://ceur-ws.org/Vol-1963/paper508.pdf
http://www.vldb.org/conf/1996/P402.PDF
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14268
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14268
https://doi.org/10.1017/S1471068410000116

Liu, Bing, Wynne Hsu, and Yiming Ma (1998). “Integrating Classification and
Association Rule Mining”. In: KDD, pp. 80–86. url: http://www.aaai.org/
Library/KDD/1998/kdd98-012.php (cit. on pp. 88, 144).

Luong, Thang, Hieu Pham, and Christopher D. Manning (2015). “Effective
Approaches to Attention-based Neural Machine Translation”. In: EMNLP,
pp. 1412–1421. doi: 10.18653/v1/d15-1166 (cit. on p. 106).

Mahdisoltani, Farzaneh, Joanna Biega, and Fabian M. Suchanek (2015). “YAGO3:
A Knowledge Base from Multilingual Wikipedias”. In: CIDR. url: http://
cidrdb.org/cidr2015/Papers/CIDR15_Paper1.pdf (cit. on p. 53).

Meilicke, Christian, Manuel Fink, Yanjie Wang, Daniel Ruffinelli, Rainer Gemulla,
and Heiner Stuckenschmidt (2018). “Fine-Grained Evaluation of Rule- and
Embedding-Based Systems for Knowledge Graph Completion”. In: ISWC,
pp. 3–20. doi: 10.1007/978-3-030-00671-6_1 (cit. on p. 76).

Melo, André and Heiko Paulheim (2017). “An Approach to Correction of Erroneous
Links in Knowledge Graphs”. In: K-CAP. url: http://ceur-ws.org/Vol-
2065/paper12.pdf (cit. on p. 76).

Melo, Gerard de (2013). “Not Quite the Same: Identity Constraints for the Web of
Linked Data”. In: AAAI. url: http://www.aaai.org/ocs/index.php/AAAI/
AAAI13/paper/view/6491 (cit. on p. 76).

Mirza, Paramita, Simon Razniewski, Fariz Darari, and Gerhard Weikum (2017).
“Cardinal Virtues: Extracting Relation Cardinalities from Text”. In: ACL,
pp. 347–351. doi: 10.18653/v1/P17-2055 (cit. on pp. 45, 139, 140).

Mirza, Paramita, Simon Razniewski, and Werner Nutt (2016). “Expanding Wiki-
data’s Parenthood Information by 178%, or How To Mine Relation Cardinality
Information”. In: ISWC. url: http://ceur-ws.org/Vol-1690/paper4.pdf
(cit. on pp. 30, 34, 48).

Montoya, David, Thomas Pellissier Tanon, Serge Abiteboul, Pierre Senellart, and
Fabian M. Suchanek (2018). “A Knowledge Base for Personal Information
Management”. In: LDOW@WWW. url: http://ceur-ws.org/Vol-2073/
article-02.pdf.

Montoya, David, Thomas Pellissier Tanon, Serge Abiteboul, and Fabian M.
Suchanek (2016). “Thymeflow, A Personal Knowledge Base with Spatio-
temporal Data”. In: CIKM, pp. 2477–2480. doi: 10.1145/2983323.2983337.

Motik, Boris, Ian Horrocks, and Ulrike Sattler (2009). “Bridging the gap between
OWL and relational databases”. In: J. Web Sem. 7.2, pp. 74–89. doi: 10.1016/
j.websem.2009.02.001 (cit. on p. 75).

Motik, Boris and Peter F. Patel-Schneider (2012). OWL 2 Web Ontology Language
Mapping to RDF Graphs. W3C Recommendation. World Wide Web Consor-
tium. url: http://www.w3.org/TR/owl2-mapping-to-rdf/ (cit. on p. 18).

125

http://www.aaai.org/Library/KDD/1998/kdd98-012.php
http://www.aaai.org/Library/KDD/1998/kdd98-012.php
https://doi.org/10.18653/v1/d15-1166
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper1.pdf
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper1.pdf
https://doi.org/10.1007/978-3-030-00671-6_1
http://ceur-ws.org/Vol-2065/paper12.pdf
http://ceur-ws.org/Vol-2065/paper12.pdf
http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6491
http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6491
https://doi.org/10.18653/v1/P17-2055
http://ceur-ws.org/Vol-1690/paper4.pdf
http://ceur-ws.org/Vol-2073/article-02.pdf
http://ceur-ws.org/Vol-2073/article-02.pdf
https://doi.org/10.1145/2983323.2983337
https://doi.org/10.1016/j.websem.2009.02.001
https://doi.org/10.1016/j.websem.2009.02.001
http://www.w3.org/TR/owl2-mapping-to-rdf/

Motik, Boris, Peter F. Patel-Schneider, and Bernardo Cuenca Grau (2012). OWL 2
Web Ontology Language Direct Semantics. W3C Recommendation. World Wide
Web Consortium. url: https://www.w3.org/TR/owl2-direct-semantics/
(cit. on pp. 17, 19, 20).

Motik, Boris, Peter F. Patel-Schneider, and Bijan Parsia (2012). OWL 2 Web
Ontology Language Structural Specification and Functional-Style Syntax. W3C
Recommendation. World Wide Web Consortium. url: http://www.w3.org/
TR/owl2-syntax/ (cit. on p. 18).

Muñoz, Emir, Pasquale Minervini, and Matthias Nickles (2019). “Embedding car-
dinality constraints in neural link predictors”. In: SIGAPP. doi: 10.1145/
3297280.3297502 (cit. on p. 32).

Neumann, Thomas and Gerhard Weikum (2010). “x-RDF-3X: Fast Querying, High
Update Rates, and Consistency for RDF Databases”. In: VLDB 3.1, pp. 256–
263. url: http://www.vldb.org/pvldb/vldb2010/pvldb_vol3/R22.pdf
(cit. on p. 112).

Nickel, Maximilian, Volker Tresp, and Hans-Peter Kriegel (2012). “Factorizing
YAGO: Scalable Machine Learning for Linked Data”. In: WWW, pp. 271–280.
doi: 10.1145/2187836.2187874 (cit. on p. 33).

Patel-Schneider, Peter F. (2015). “Using Description Logics for RDF Constraint
Checking and Closed-World Recognition”. In: AAAI, pp. 247–253. url: http:
//www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9531 (cit. on
p. 75).

Paulheim, Heiko (2017). “Knowledge graph refinement: A survey of approaches
and evaluation methods”. In: SW 8.3, pp. 489–508. doi: 10.3233/SW-160218
(cit. on p. 30).

Paulheim, Heiko and Christian Bizer (2014). “Improving the Quality of Linked
Data Using Statistical Distributions”. In: Int. J. Semantic Web Inf. Syst. 10.2,
pp. 63–86. doi: 10.4018/ijswis.2014040104 (cit. on pp. 76, 142).

Pellissier Tanon, Thomas, Marcos Dias de Assunção, Eddy Caron, and Fabian
M. Suchanek (2018). “Demoing Platypus - A Multilingual Question Answering
Platform for Wikidata”. In: ESWC, pp. 111–116. doi: 10.1007/978-3-319-
98192-5_21.

Pellissier Tanon, Thomas, Camille Bourgaux, and Fabian M. Suchanek (2019).
“Learning How to Correct a Knowledge Base from the Edit History”. In:WWW,
pp. 1465–1475. doi: 10.1145/3308558.331358 (cit. on p. 107).

Pellissier Tanon, Thomas and Lucie-Aimée Kaffee (2018). “Property Label Sta-
bility in Wikidata: Evolution and Convergence of Schemas in Collaborative
Knowledge Bases”. In: WikiWorkshop@WWW, pp. 1801–1803. doi: 10.1145/
3184558.3191643 (cit. on p. 59).

126

https://www.w3.org/TR/owl2-direct-semantics/
http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/owl2-syntax/
https://doi.org/10.1145/3297280.3297502
https://doi.org/10.1145/3297280.3297502
http://www.vldb.org/pvldb/vldb2010/pvldb_vol3/R22.pdf
https://doi.org/10.1145/2187836.2187874
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9531
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9531
https://doi.org/10.3233/SW-160218
https://doi.org/10.4018/ijswis.2014040104
https://doi.org/10.1007/978-3-319-98192-5_21
https://doi.org/10.1007/978-3-319-98192-5_21
https://doi.org/10.1145/3308558.331358
https://doi.org/10.1145/3184558.3191643
https://doi.org/10.1145/3184558.3191643

Pellissier Tanon, Thomas, Daria Stepanova, Simon Razniewski, Paramita Mirza,
and GerhardWeikum (2017). “Completeness-Aware Rule Learning from Knowl-
edge Graphs”. In: ISWC, pp. 507–525. doi: 10.1007/978-3-319-68288-4_30.

— (2018). “Completeness-aware Rule Learning from Knowledge Graphs”. In: IJ-
CAI, pp. 5339–5343. doi: 10.24963/ijcai.2018/749.

Pellissier Tanon, Thomas and Fabian M. Suchanek (2019). “Querying the Edit
History of Wikidata”. In: ESWC, pp. 161–166. doi: 10.1007/978-3-030-
32327-1_32.

Pellissier Tanon, Thomas, Denny Vrandečić, Sebastian Schaffert, Thomas Steiner,
and Lydia Pintscher (2016). “From Freebase to Wikidata: The great migration”.
In: WWW, pp. 1419–1428. doi: 10.1145/2872427.2874809 (cit. on p. 48).

Pellissier Tanon, Thomas, Gerhard Weikum, and Fabian M. Suchanek (2020).
“YAGO 4: A Reason-able Knowledge Base”. In: ESWC, pp. 583–596. doi:
10.1007/978-3-030-49461-2_34.

Prasojo, Radityo Eko, Fariz Darari, Simon Razniewski, and Werner Nutt (2016).
“Managing and Consuming Completeness Information for Wikidata Using
COOL-WD”. In: COLD@ISWC. url: http://ceur- ws.org/Vol- 1666/
paper-02.pdf (cit. on pp. 30, 139).

Pugliese, Andrea, Octavian Udrea, and V. S. Subrahmanian (2008). “Scaling RDF
with Time”. In: WWW, pp. 605–614. doi: 10.1145/1367497.1367579 (cit. on
p. 112).

Rantsoudis, Christos, Guillaume Feuillade, and Andreas Herzig (2017). “Repairing
ABoxes through Active Integrity Constraints”. In: DL. url: http://ceur-
ws.org/Vol-1879/paper41.pdf (cit. on p. 75).

Razniewski, Simon, Fabian M. Suchanek, and Werner Nutt (2016). “But what do
we actually know”. In: AKBC, pp. 40–44 (cit. on p. 139).

Rebele, Thomas, Thomas Pellissier Tanon, and Fabian M. Suchanek (2018). “Bash
Datalog: Answering Datalog Queries with Unix Shell Commands”. In: ISWC,
pp. 566–582. doi: 10.1007/978-3-030-00671-6_33.

Rebele, Thomas, Fabian M. Suchanek, Johannes Hoffart, Joanna Biega, Erdal
Kuzey, and Gerhard Weikum (2016). “YAGO: A Multilingual Knowledge Base
from Wikipedia, Wordnet, and Geonames”. In: ISWC, pp. 177–185. doi: 10.
1007/978-3-319-46547-0_19 (cit. on pp. 53, 68).

Sande, Miel Vander, Pieter Colpaert, Ruben Verborgh, Sam Coppens, Erik Man-
nens, and Rik Van de Walle (2013). “R&Wbase: Git for Triples”. In: LDOW
@ WWW. url: http://ceur-ws.org/Vol-996/papers/ldow2013-paper-
01.pdf (cit. on p. 112).

Sazonau, Viachaslau, Uli Sattler, and Gavin Brown (2015). “General Terminology
Induction in OWL”. In: ISWC, pp. 533–550. doi: 10.1007/978-3-319-25007-
6_31 (cit. on pp. 32, 76).

127

https://doi.org/10.1007/978-3-319-68288-4_30
https://doi.org/10.24963/ijcai.2018/749
https://doi.org/10.1007/978-3-030-32327-1_32
https://doi.org/10.1007/978-3-030-32327-1_32
https://doi.org/10.1145/2872427.2874809
https://doi.org/10.1007/978-3-030-49461-2_34
http://ceur-ws.org/Vol-1666/paper-02.pdf
http://ceur-ws.org/Vol-1666/paper-02.pdf
https://doi.org/10.1145/1367497.1367579
http://ceur-ws.org/Vol-1879/paper41.pdf
http://ceur-ws.org/Vol-1879/paper41.pdf
https://doi.org/10.1007/978-3-030-00671-6_33
https://doi.org/10.1007/978-3-319-46547-0_19
https://doi.org/10.1007/978-3-319-46547-0_19
http://ceur-ws.org/Vol-996/papers/ldow2013-paper-01.pdf
http://ceur-ws.org/Vol-996/papers/ldow2013-paper-01.pdf
https://doi.org/10.1007/978-3-319-25007-6_31
https://doi.org/10.1007/978-3-319-25007-6_31

Schlobach, Stefan and Ronald Cornet (2003). “Non-Standard Reasoning Services
for the Debugging of Description Logic Terminologies”. In: IJCAI, pp. 355–362.
url: http://ijcai.org/Proceedings/03/Papers/053.pdf (cit. on p. 79).

Suchanek, Fabian M., Gjergji Kasneci, and Gerhard Weikum (2007). “Yago: a core
of semantic knowledge”. In: WWW, pp. 697–706. doi: 10.1145/1242572.
1242667 (cit. on pp. 11, 53, 131).

Suchanek, Fabian M. and Nicoleta Preda (2014). “Semantic Culturomics”. In:
VLDB 7.12, pp. 1215–1218. url: http://www.vldb.org/pvldb/vol7/p1215-
suchanek.pdf (cit. on p. 30).

Taelman, Ruben, Miel Vander Sande, and Ruben Verborgh (2018). “OSTRICH:
Versioned Random-Access Triple Store”. In: WWW, pp. 127–130. doi: 10.
1145/3184558.3186960 (cit. on p. 113).

Taniar, David, Wenny Rahayu, Vincent Lee, and Olena Daly (2008). “Exception
rules in association rule mining”. In: Applied Mathematics and Computation
205.2, pp. 735–750. doi: 10.1016/j.amc.2008.05.020 (cit. on p. 32).

Tao, Jiao, Evren Sirin, Jie Bao, and Deborah L. McGuinness (2010). “Integrity
Constraints in OWL”. In: AAAI. url: http://www.aaai.org/ocs/index.
php/AAAI/AAAI10/paper/view/1931 (cit. on p. 75).

Vrandecic, Denny and Markus Krötzsch (2014). “Wikidata: a free collaborative
knowledgebase”. In: Commun. ACM 57.10, pp. 78–85. doi: 10.1145/2629489
(cit. on pp. 11, 54, 95, 131, 141, 145).

Wang, Zhen, Jianwen Zhang, Jianlin Feng, and Zheng Chen (2014). “Knowledge
Graph Embedding by Translating on Hyperplanes”. In: AAAI, pp. 1112–1119.
url: http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/
8531 (cit. on p. 32).

Wang, Zhichun and Juan-Zi Li (2015). “RDF2Rules: Learning Rules from RDF
Knowledge Bases by Mining Frequent Predicate Cycles”. In: CoRR. url: http:
//arxiv.org/abs/1512.07734 (cit. on p. 31).

Wolf, Thomas, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Fun-
towicz, and Jamie Brew (2019). “HuggingFace’s Transformers: State-of-the-art
Natural Language Processing”. In: CoRR. url: http://arxiv.org/abs/1910.
03771 (cit. on p. 101).

Wu, Zonghan, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S. Yu (2019). “A Comprehensive Survey on Graph Neural Networks”.
In: CoRR. url: http://arxiv.org/abs/1901.00596 (cit. on pp. 76, 77).

Yang, Bishan, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng (2014).
“Embedding Entities and Relations for Learning and Inference in Knowledge
Bases”. In: CoRR. url: http://arxiv.org/abs/1412.6575 (cit. on p. 76).

128

http://ijcai.org/Proceedings/03/Papers/053.pdf
https://doi.org/10.1145/1242572.1242667
https://doi.org/10.1145/1242572.1242667
http://www.vldb.org/pvldb/vol7/p1215-suchanek.pdf
http://www.vldb.org/pvldb/vol7/p1215-suchanek.pdf
https://doi.org/10.1145/3184558.3186960
https://doi.org/10.1145/3184558.3186960
https://doi.org/10.1016/j.amc.2008.05.020
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1931
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1931
https://doi.org/10.1145/2629489
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8531
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8531
http://arxiv.org/abs/1512.07734
http://arxiv.org/abs/1512.07734
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1901.00596
http://arxiv.org/abs/1412.6575

Yang, Fan, Zhilin Yang, and William W. Cohen (2017). “Differentiable Learning of
Logical Rules for Knowledge Base Reasoning”. In: NIPS, pp. 2316–2325. url:
http://papers.nips.cc/paper/6826- differentiable- learning- of-
logical-rules-for-knowledge-base-reasoning (cit. on p. 76).

Zaveri, Amrapali, Dimitris Kontokostas, Mohamed Ahmed Sherif, Lorenz Büh-
mann, Mohamed Morsey, Sören Auer, and Jens Lehmann (2013). “User-driven
Quality Evaluation of DBpedia”. In: I-SEMANTICS, pp. 97–104. doi: 10.
1145/2506182.2506195 (cit. on pp. 11, 132).

Zaveri, Amrapali, Anisa Rula, Andrea Maurino, Ricardo Pietrobon, Jens Lehmann,
and Sören Auer (2016). “Quality Assessment for Linked Data: A Survey”. In:
Semantic Web 7.1, pp. 63–93. doi: 10.3233/SW-150175 (cit. on p. 54).

Zhao, Jieyu, Tianlu Wang, Mark Yatskar, Ryan Cotterell, Vicente Ordonez, and
Kai-Wei Chang (2019). “Gender Bias in Contextualized Word Embeddings”.
In: NAACL-HLT, pp. 629–634. doi: 10.18653/v1/n19-1064 (cit. on p. 108).

129

http://papers.nips.cc/paper/6826-differentiable-learning-of-logical-rules-for-knowledge-base-reasoning
http://papers.nips.cc/paper/6826-differentiable-learning-of-logical-rules-for-knowledge-base-reasoning
https://doi.org/10.1145/2506182.2506195
https://doi.org/10.1145/2506182.2506195
https://doi.org/10.3233/SW-150175
https://doi.org/10.18653/v1/n19-1064

130

Annexe A

Résumé en français

A.1 Introduction

A.1.1 Motivation

Les bases de connaissances sont des ensembles de faits lisibles par une
machine. Elles contiennent des entités et des relations décrivant ces
entités. Par exemple, une base de connaissances encyclopédique pour-
rait contenir des entités sur des personnes comme Jean-François Cham-
pollion ou des lieux comme Paris, et des relations nommées comme
〈Jean-François_Champollion, schema:homeLocation, Paris〉 pour indiquer que
Jean-François Champollion a vécu à Paris. Des bases de connaissances bien connues
dans ce domaine sont, entre autres, Wikidata (Vrandecic et Krötzsch, 2014),
YAGO (Suchanek, Kasneci et Weikum, 2007), Freebase (Bollacker et al.,
2008), DBpedia (Bizer et al., 2009) ou encore le Google Knowledge Graph. Ces
bases de connaissances sont utilisées pour afficher des fiches d’information comme
sur Wikipédia ou dans les moteurs de recherche Google et Bing. Elles permettent
également de répondre directement aux questions des utilisateurs comme avec
Alexa ou Siri. Mais les bases de connaissances sont également mises à profit pour
d’autres types de contenus et de cas d’utilisation. Par exemple, Amazon et eBay
maintiennent des bases de connaissances sur les produits qu’ils vendent et Uber
tient une base de connaissances sur les aliments pour aider ses clients à choisir un
restaurant.

Certaines bases de connaissances sont très vastes. Par exemple, Wikidata
contient 81 millions d’entités1 et Freebase 39 millions. Certains de ces projets
utilisent des logiciels pour construire automatiquement la base de connaissances à
partir d’une ou plusieurs sources existantes. Par exemple, DBpedia est construite

1Les chiffres sont à jour en date du 10 avril 2020.

131

par un ensemble d’extracteurs à partir du contenu Wikipédia. D’autres utilisent
des contributeurs, rémunérés ou bénévoles, pour remplir la base de connaissances.
C’est le cas de Wikidata, qui compte plus de 40 000 éditeurs différents par mois.

En conséquence, les bases de connaissances présentent souvent des problèmes
de qualité, qui proviennent de bugs dans les pipelines de conversion, d’erreurs de
bonne foi ou de vandalisme dans les contenus fournis par des contributeurs. Par
exemple, Zaveri, Kontokostas et al., 2013 ont constaté que 12% des triplets
de DBpedia présentent un problème. Même les bases de connaissances provenant
de contributeurs s’appuient souvent de manière significative sur des filières d’im-
portation ou de conservation automatisées. 43% des modifications de Wikidata en
mars 2020 ont été effectuées à l’aide d’outils automatisés.

Pour lutter contre ces problèmes, de nombreuses bases de connaissances
contiennent un système de contraintes. L’un des types de contraintes le plus cou-
rant est d’indiquer que les valeurs d’une propriété donnée doivent avoir un type
donné. Par exemple, une base de connaissances pourrait imposer que les valeurs de
la propriété schema:birthPlace soient des chaînes de caractères représentant une
date. Les contraintes peuvent également être plus complexes comme, par exemple,
une personne peut avoir au maximum deux parents (restrictions de cardinalité),
une entité ne peut pas être une personne et un lieu en même temps (hypothèse de
disjonctions). Certaines de ces contraintes sont maintenues par la base de connais-
sances. Par exemple, le formalisme des logiques de descriptions exige que les pro-
priétés dont les valeurs sont des littéraux (chaîne de caractères, dates...) doivent
être disjointes de celles dont les valeurs sont des entités. Cependant, ces contraintes
sont souvent violées dans la pratique. Par exemple, en date du 20 mars 2020, Wi-
kidata contient 1 million de violations de contraintes de type “domaine” et 4,4
millions de violations de contraintes de type “valeur unique”. Il est donc néces-
saire de disposer d’outils permettant de filtrer ces problèmes dans les bases de
connaissances. Il y a également un besoin d’outils qui aident les personnes mainte-
nant la base de connaissances à réparer ces violations de manière automatisée ou
semi-automatisée.

Cette thèse fournit de nouvelles approches et techniques pour améliorer l’état
de l’art sur cette tâche.

A.1.2 Contenu

Le premier chapitre de cette thèse est consacré aux préliminaires généraux sur les
bases de connaissances et l’extraction de règles. Il est résumé dans la section A.2.
Le cœur de la thèse est composé de trois parties.

La première partie présente les améliorations apportées au problème de l’extrac-
tion de règles. Elle est résumée dans la section A.3. Plus précisément, cette partie
présente une nouvelle approche qui améliore l’extraction de règles sur des bases de

132

connaissances incomplètes en utilisant des informations de cardinalité. L’objectif
de cette tâche est de permettre l’extraction de règles de meilleure qualité. Celles-ci
peuvent ensuite être utilisées pour compléter la base de connaissances ou comme
contraintes pour signaler des problèmes dans les données. Notre approche fonc-
tionne en introduisant une nouvelle mesure d’estimation de la qualité des règles, la
confiance de complétude. La confiance de complétude prend en compte le nombre
d’objets attendus pour des sujets donnés et permet de mieux évaluer la qualité des
règles. Nous montrons que cette mesure ne nécessite pas d’informations de cardi-
nalité sur toutes les entités de la base de connaissances pour être efficace. Nous
avons évalué cette confiance de complétude à la fois sur des ensembles de données
réelles et synthétiques, montrant qu’elle surpasse les mesures existantes à la fois
pour la qualité des règles extraites et pour les prédictions formulées par ces règles.

Cette partie présente aussi une approche visant à augmenter le nombre d’infor-
mations de cardinalité disponibles, notamment pour améliorer la qualité des règles
exploitées en utilisant la confiance de complétude.

Ce travail a été publié à la conférence ISWC 2017 où il a été nominé pour le
prix du meilleur article écrit par un étudiant. Une version abrégée de l’article a
été présentée à IJCAI 2018 :

Thomas Pellissier Tanon, Daria Stepanova, Simon Razniewski, Paramita
Mirza, and Gerhard Weikum. “Completeness-Aware Rule Learning from
Knowledge Graphs”. Article de recherche à ISWC 2017. https://doi.
org/10.1007/978-3-319-68288-4_30

Thomas Pellissier Tanon, Daria Stepanova, Simon Razniewski, Paramita
Mirza, and Gerhard Weikum. “Completeness-aware Rule Learning from
Knowledge Graphs”. Article invité à IJCAI 2018. https://doi.org/10.
24963/ijcai.2018/749

La seconde partie de cette thèse présente une approche basée sur l’applica-
tion statique de contraintes. Plus précisément, elle présente YAGO 4, une base
de connaissances qui est essentiellement une version plus simple et plus propre
de Wikidata. Nous avons construit cette base de connaissances en utilisant une
approche déclarative et un pipeline d’application de contraintes. YAGO 4 peut
être considéré comme un exemple de base de connaissances qui assure sa qualité
en filtrant les violations de contraintes. Cette seconde partie est omise dans ce
résumé. Ce travail a été publié comme ressource à la conférence ESWC 2020 :

Thomas Pellissier Tanon, Gerhard Weikum, and Fabian M. Suchanek.
“YAGO 4 : A Reason-able Knowledge Base”. Article “ressource” à ESWC

133

https://doi.org/10.1007/978-3-319-68288-4_30
https://doi.org/10.1007/978-3-319-68288-4_30
https://doi.org/10.24963/ijcai.2018/749
https://doi.org/10.24963/ijcai.2018/749

2020. https://doi.org/10.1007/978-3-030-49461-2_34

La troisième et dernière partie présente une approche afin d’apprendre de ma-
nière dynamique à faire respecter des contraintes. Elle est résumée dans la sec-
tion A.4. Elle aborde un problème nouveau : apprendre à corriger les violations de
contraintes en utilisant l’historique d’éditions d’une base de connaissances. Nous
présentons une formalisation du problème et un algorithme pour extraire les cor-
rections passées des violations de contraintes de l’historique de la base de connais-
sances. Pour résoudre ce problème, le chapitre propose deux approches différentes :
l’une basée sur l’extraction de règles et l’autre utilisant des réseaux de neurones,
cette dernière fournissant une meilleure précision mais aucune garantie d’explicabi-
lité pour ses prédictions. Nous avons validé les deux approches expérimentalement
sur Wikidata, montrant des améliorations substantielles par rapport aux bases
de référence. Ces travaux ont été présentés à la conférence TheWebConf 2019.
L’approche via un réseau de neurones est actuellement en cours de relecture :

Thomas Pellissier Tanon, Camille Bourgaux, and Fabian M. Suchanek.
“Learning How to Correct a Knowledge Base from the Edit History”. Ar-
ticle de recherche à WWW 2019. https://doi.org/10.1145/3308558.
3313584

Thomas Pellissier Tanon and Fabian M. Suchanek. “Neural Knowledge
Base Repairs”. En cours de relecture à ISWC 2020.

Cette partie propose aussi une annexe omise dans ce résumé. Cette annexe
présente un système que nous avons mis en place pour interroger efficacement
l’historique des modifications de Wikidata. Il a servi à extraire les données utilisées
pour évaluer les approches présentées dans le chapitre précédent. Ce travail a fait
l’objet d’une démonstration à la conférence ESWC 2019 :

Thomas Pellissier Tanon and Fabian M. Suchanek. “Querying the Edit
History of Wikidata”. Démonstration à ESWC 2019. https://doi.org/
10.1007/978-3-030-32327-1_32

A.1.3 Autres travaux

Au cours de mon doctorat, j’ai contribué à d’autres travaux qui ne sont pas pré-
sentés dans cette thèse.

134

https://doi.org/10.1007/978-3-030-49461-2_34
https://doi.org/10.1145/3308558.3313584
https://doi.org/10.1145/3308558.3313584
https://doi.org/10.1007/978-3-030-32327-1_32
https://doi.org/10.1007/978-3-030-32327-1_32

J’ai présenté ma thèse de master lors du workshop Linked Data on The Web.
Ce travail a été réalisé avec David Montoya sous la supervision de Serge Abi-
teboul, Pierre Senellart, et Fabian Suchanek. La thèse de master portait sur la
construction d’une plateforme d’intégration des connaissances pour les informa-
tions personnelles. Ce système est capable de se synchroniser dans les deux sens
à partir de sources de données telles que les courriels, le calendrier et les carnets
d’adresses. Il permet également d’aligner et d’enrichir les données. Ce travail a
également fait l’objet d’une démonstration à la conférence CIKM :

David Montoya, Thomas Pellissier Tanon, Serge Abiteboul, Pierre Senel-
lart, and Fabian M. Suchanek. “A Knowledge Base for Personal Infor-
mation Management”. Article au workshop LDOW qui a eu lieu à l’oc-
casion de la conférence WWW 2018. http://ceur-ws.org/Vol-2073/
article-02.pdf

David Montoya, Thomas Pellissier Tanon, Serge Abiteboul, and Fa-
bian M.Suchanek. “Thymeflow, A Personal Knowledge Base with Spatio-
temporal Data”. Démonstration à CIKM 2016. https://doi.org/10.
1145/2983323.2983337

J’ai également publié un travail antérieur sur l’utilisation des relations gramma-
ticales afin de répondre à des questions en langues naturelles sur des bases de
connaissances. Ce travail a fait l’objet d’une démonstration à la conférence ESWC
et des ensembles des données nécessaires à l’entraînement et l’évaluation de ces
systèmes ont été présentés sous forme de poster à la conférence ISWC :

Thomas Pellissier Tanon, Marcos Dias de Assunção, Eddy Caron et Fa-
bian M. Suchanek. “Demoing Platypus - A Multilingual Question Ans-
wering Platform for Wikidata”. Démonstration à ESWC 2018. https:
//doi.org/10.1007/978-3-319-98192-5_21

Dennis Diefenbach, Thomas Pellissier Tanon, Kamal Deep Singh, and
Pierre Maret. “Question Answering Benchmarks for Wikidata”. Poster à
ISWC 2017. http://ceur-ws.org/Vol-1963/paper555.pdf

De plus, avec Lucie-Aimée Kaffee, nous avons mené une étude sur la stabilité
du schéma de Wikidata. Nous avons effectué cette analyse en nous basant sur
les changements de labels des propriétés dans six langues. Nous avons constaté
que le schéma est globalement stable, ce qui en fait une ressource fiable pour une
utilisation externe. Ce travail a été présenté au WikiWorshop :

135

http://ceur-ws.org/Vol-2073/article-02.pdf
http://ceur-ws.org/Vol-2073/article-02.pdf
https://doi.org/10.1145/2983323.2983337
https://doi.org/10.1145/2983323.2983337
https://doi.org/10.1007/978-3-319-98192-5_21
https://doi.org/10.1007/978-3-319-98192-5_21
http://ceur-ws.org/Vol-1963/paper555.pdf

Thomas Pellissier Tanon et Lucie-Aimée Kaffee. “Property Label Stabi-
lity in Wikidata : Evolution and Convergence of Schemas in Collabora-
tive Knowledge Bases”. Article court lors du WikiWorkshop qui a eu lieu
à l’occasion de la conférence WWW 2018. https://doi.org/10.1145/
3184558.3191643

J’ai également aidé un doctorant de l’équipe, Thomas Rebele, dans son tra-
vail portant sur l’exécution Datalog avec l’interpréteur de commandes Bash. J’ai
formalisé le problème et fourni un convertisseur entre Datalog et l’algèbre rela-
tionnelle. Notre méthode permet d’analyser de grandes données tabulaires avec
Datalog – sans qu’il soit nécessaire d’indexer les données. La requête Datalog est
traduite en Bash Unix et peut être exécutée dans un shell. Nos expérimentations
ont montré que, pour le cas d’utilisation du prétraitement des données, notre ap-
proche est compétitive par rapport aux systèmes de pointe en termes d’évolutivité
et de rapidité, tout en ne nécessitant qu’un terminal Bash sur un système Unix.
Ce travail a été publié durant la conférence ISWC :

Thomas Rebele, Thomas Pellissier Tanon, and Fabian M. Suchanek.
“Bash Datalog : Answering Datalog Queries with Unix Shell Com-
mands”. Article de recherche à ISWC 2018. https://doi.org/10.1007/
978-3-030-00671-6_33

A.2 Préliminaires
Bases de connaissances. Les bases de connaissances représentent l’information
sous forme de graphes. Les sommets encodent des entités comme Jean-François
Champollion ou la ville de Paris, et les arêtes nommées servent à encoder les re-
lations entre les entités. Ces arêtes sont souvent appelées triplets. Un triplet est
composé du sommet de départ, du nom de l’arête et du sommet d’arrivée. Par
exemple, 〈Jean-François_Champollion, schema:birthPlace, Paris〉 encode que
Jean-François Champollion est né à Paris. La figure A.1 propose un exemple gra-
phique de base de connaissances. On utilisera dans la suite le modèle RDF (Cyga-
niak et al., 2014) qui formalise ces notions. Le contenu d’une base de connaissances
K peut être vu comme un ensemble de triplets. La plupart des grosses bases de
connaissances, comme par exemple celles à portée encyclopédique, utilisent l’hypo-
thèse du monde ouvert. Elles supposent que la base de connaissances ne contient
concrètement qu’une partie de ce qu’elle devrait idéalement contenir. Dans ce ré-
sumé nous utilisons la notation RDF usuelle pour les préfixes d’URIs. Par exemple,
schema: est un raccourci pour http://schema.org/.

136

https://doi.org/10.1145/3184558.3191643
https://doi.org/10.1145/3184558.3191643
https://doi.org/10.1007/978-3-030-00671-6_33
https://doi.org/10.1007/978-3-030-00671-6_33
http://schema.org/

Apprentissage de règles. L’apprentissage des règles d’association concerne la
découverte de schémas fréquents dans un ensemble de données et la transformation
ultérieure de ces schémas en règles.

Definition A.1 (Requête conjonctive). Une requête conjonctive q sur K est de
la forme 〈x1, p1, y1〉 ∧ · · · ∧ 〈xm, pm, ym〉, où les xi et yi sont des variables ou des
constantes et les pi sont des identifiants de relation.

La réponse de q sur K est l’ensemble

q(K) := {(ν(x1), . . . , ν(xm), ν(y1), . . . , ν(ym)) | ∀i : 〈ν(xi), pi, ν(yi)〉 ∈ K}

où ν est une fonction qui met en correspondance les variables et les constantes
avec les éléments de K.

Definition A.2 (Règle). Une règle est de la forme r(~x) : b(~x) → h(~x), où b et h
sont des requêtes conjonctives.

Elle exprime que pour tout ~a, si ~a ∈ b(K) alors ~a ∈ h(K).

La manière classique d’évaluer la qualité des règles est basée sur le support d’une
requête, support d’une règle et la confiance. Ces mesures sont définies par :

Definition A.3 (Support d’une requête). Le support d’une requête conjonctive q
dans une base de connaissances K est le nombre de réponses distinctes de q sur
K :

supp(q) := |q(K)|

Definition A.4 (Support d’une règle). Le support d’une règle r(~x) : b(~x)→ h(~x)
est le nombre de fois où une règle s’applique sur K :

supp(r) := supp(b ∧ h) = |{~x | ~x ∈ b(K) ∧ ~x ∈ h(K)}|

Definition A.5 (Confiance standard). La confiance standard d’une règle r(~x) :
b(~x)→ h(~x) est la proportion du nombre de fois où une règle s’applique par rapport
au nombre de fois où elle pourrait s’appliquer :

conf (r) :=
supp(r)

supp(b)

On remarque qu’on a toujours conf (r) ∈ [0, 1].

Exemple A.6. Considérons la base de connaissances K dans la figure A.1 et, en
plus, ces règles qui en sont extraites :

r1(x, y) = 〈x, schema:worksFor, z〉 ∧ 〈y, educated, z〉 → 〈x, schema:children, y〉

137

John Mary

Alice Bob Carol

Dave Télécom Paris MPI

s:worksFor s:worksFor

s:alumniOf

s:children s:children
s:children

s:parent

s:children

s:parent

s:alumniOf

s:alumniOf
s:worksFor

s:parent

:sibling

:sibling

s:worksFor

s:alumniOf

:sibling

Figure A.1 – Exemple de base de connaissances

r2(x, z) = 〈x, schema:parent, y〉 ∧ 〈y, schema:children, z〉 → 〈x, :sibling, z〉

Les supports du corps de la règle r1 et celui de la règle r1 elle-même sur
la base de connaissances sont respectivement supp(〈x, schema:worksFor, z〉 ∧
〈y, educated, z〉) = 8 et supp(r1) = 2 respectivement. Nous avons donc conf (r1) =
2
8
. De la même manière, conf (r2) = 1

6
.

A.3 Apprentissage de règles à l’aide de cardinalités

L’apprentissage des règles est souvent utilisé pour compléter les bases de connais-
sances. Cependant, comme ces règles sont apprises à partir de données incomplètes,
elles peuvent être erronées et peuvent faire des prédictions incorrectes sur des faits
manquants. Par exemple, comme nous l’avons vu dans l’exemple A.6, la règle r1
n’est clairement pas universelle et doit être classée plus bas que la règle r2 même
si la confiance favorise r1 par rapport à r2 pour la base de connaissances donnée.

Dans Galárraga, Teflioudi et al., 2015, la confiance sous l’hypothèse de
complétude partielle, ou confiance PCA, a été proposée comme une amélioration
de la mesure de confiance. Elle devine les faits probablement faux en supposant
que les données sont généralement ajoutées aux bases de connaissances par lots,
c’est-à-dire que si au moins un enfant de Jean est connu, alors très probablement
tous les enfants de Jean sont présents dans la base de connaissances. Formellement,
la confiance PCA pour une règle r(x, y) : b(x, y)→ 〈x, h, y〉 est définie comme

confpca(r) :=
supp(r)

supppca(r)
(A.1)

138

où
supppca(r) := |{(x, y) | (x, y) ∈ b(K) et ∃y′ ∈ NI 〈x, h, y′〉 ∈ K}|

Exemple A.7. On obtient confpca(r1) = 2
4
. En effet, puisque Carol et Dave n’ont

pas d’enfants connus dans la base de connaissances, quatre possibles assignations
du corps de la règle ne sont pas comptées dans le dénominateur. Nous avons aussi
conf pca(r2) = 1

6
, puisque toutes les personnes dont r2 prévoit qu’elles auront des

frères et sœurs ont déjà des frères et sœurs connus dans la base de connaissances.

Cette hypothèse a été prise en compte pour classer les règles apprises, elle s’est
avérée empiriquement valable pour certaines bases de connaissances. Cependant,
la confiance PCA traite de manière inappropriée les cas où les arêtes d’une base de
connaissances sont manquantes de manière aléatoire. Elle pose aussi des problèmes
comme celui présenté dans l’exemple A.7. La question de savoir s’il faut compter
l’absence de contradiction comme confirmation des règles par défaut a été examinée
dans Doppa et al., 2011. Dans Galárraga, Razniewski et al., 2017, où de
nouvelles données sur l’exhaustivité ont été tirées d’une base de connaissances en
prenant comme source les données d’exhaustivité obtenues par crowd-sourcing.
Les déclarations acquises ont été utilisées dans une étape de post-traitement de
l’apprentissage des règles pour filtrer les prédictions non conformes. Cependant, ce
type de filtrage n’a pas d’impact sur la qualité des règles exploitées et n’empêche
pas les prévisions incorrectes pour les cas sur lesquels il n’existe aucune information
d’exhaustivité.

Des efforts ont été déployés pour ajouter des informations sur l’exhaustivité
aux bases de connaissances (Razniewski, Suchanek et Nutt, 2016 ; Darari,
Nutt et al., 2013). Cela pourrait se faire en détectant le nombre concret de faits
de certains types qui existent dans le monde réel (par exemple, “Einstein a 3
enfants”), ceci en faisant de l’extraction automatique sur le Web, ou par le crowd-
sourcing (Prasojo et al., 2016 ; Darari, Razniewski et al., 2016 ; Mirza, Raz-
niewski, Darari et al., 2017). Ces données fournissent de nombreux indices sur
la topologie de la base de connaissances, et révèlent des parties qui devraient
être particulièrement ciblées par les méthodes d’apprentissage des règles. Cepen-
dant, à ce jour, il n’existe aucun moyen systématique d’utiliser ces informations
dans l’apprentissage des règles. Nous nous concentrons donc sur l’amélioration
des fonctions de notation des règles en utilisant les informations supplémentaires
d’(in-)complétude. Avant d’entrer dans les détails de notre approche, nous discu-
tons de la représentation formelle de ces informations.

Déclarations de cardinalités. Nous représentons les informations de complé-
tude en utilisant des déclarations de cardinalité qui indiquent le nombre absolu

139

d’objets pour une certaines relation et un certain sujet dans la base de connais-
sances idéale représentant le monde réel Ki. Plus précisément, nous définissons la
fonction partielle num qui prend comme entrée un prédicat p et une constante s
et qui produit un nombre correspondant au nombre de faits dans Ki sur p avec s
comme premier argument :

num(p, s) := |{o | 〈s, p, o〉 ∈ Ki}| (A.2)

Ces déclarations de cardinalité peuvent être obtenues à l’aide de techniques d’ex-
traction sur le web (Mirza, Razniewski, Darari et al., 2017). Avec ces déclara-
tions, il est également possible d’encoder des cardinalités sur le nombre de sujets
pour un prédicat et un objet donnés, à condition que des relations inverses puissent
être exprimées dans la base de connaissances.

Naturellement, le nombre de faits manquants pour un p et s donné peut être
obtenu par :

miss(p, s) := num(p, s)− |{o | 〈s, p, o〉 ∈ Ka}| (A.3)

Exemple A.8. Considérons la base de connaissances de la figure A.1 et les décla-
rations de cardinalité suivantes pour celle-ci :

num(schema:children,John) = num(schema:children, Mary) = 3
num(schema:children, Alice) = 1
num(schema:children, Carol) = num(schema:children, Dave) = 0
num(:sibling, Bob) = 3
num(:sibling, Alice) = num(:sibling, Carol) = 2
num(:sibling, Dave) = 2

Nous avons alors, par exemple :

miss(schema:children, Mary) = miss(schema:children, John) = 1

Il est possible d’utiliser l’extraction de règles pour compléter l’ensemble des décla-
rations de cardinalité disponibles. Cela peut être fait en créant de nouveaux faits
p≤k(s) et p≥k(s) qui indiquent respectivement que num(p, s) ≤ k et num(p, s) ≥ k.
Cette méthode est présentée de manière plus détaillée dans le chapitre 4.

Confiance de complétude. Nous proposons de nous appuyer explicitement sur
des informations de complétude pour déterminer s’il convient ou non de considérer
une instance comme un contre-exemple pour une règle donnée.

Pour ce faire, nous définissons d’abord un indicateur pour une règle r(x, y) :
b(x, y) → 〈x , h, y〉, reflétant le nombre de nouvelles prédictions faites par r dans
les parties incomplètes de la base de connaissances :

npi(r) :=
∑
x

min(|{y | 〈x, h, y〉 ∈ Kr\K}|,miss(h, x)) (A.4)

140

Notez que Kr est la complétion de K en appliquant la règle r et que la sommation
est faite exactement sur les entités pour lesquelles miss est défini. L’exploitation
de cet indicateur supplémentaire pour r(x, y) : b(x, y)→ 〈x, h, y〉 permet de définir
la confiance de complétude :

confcomp(r) :=
supp(r)

supp(b)− npi(r)
(A.5)

Exemple A.9. La règle r2 correspond davantage au monde réel que r1 et doit
donc être préférée à celle-ci. Pour notre nouvelle confiance de complétude, nous
obtenons confcomp(r1) = 2

6
et confcomp(r2) = 1

2
, ce qui donne l’ordre souhaité entre

les règles, non atteint via les mesures existantes (c.f. les exemple A.6 et A.7).

Dans l’hypothèse du monde fermé conf comp(r) = conf (r) car on a ∀x :
miss(h, x) = 0. De même, dans l’hypothèse PCA conf comp(r) = conf pca(r). Ainsi,
notre confiance dans l’exhaustivité est une mesure plus générale que la confiance
standard et la confiance PCA.

Évaluation. Nous avons expérimenté notre nouvelle confiance de complétude
à la fois sur un ensemble de données du monde réel, un sous-ensemble de Wiki-
data (Vrandecic et Krötzsch, 2014), et un ensemble de données synthétiques,
LUBM (Guo, Pan et Heflin, 2005). Nous les avons complétés, en utilisant des
règles et l’ontologie LUBM OWL, pour obtenir une approximation de la base de
connaissances idéale. Nous avons calculé le facteur de corrélation de Pearson entre
le classement des règles possibles obtenu via la confiance, la confiance PCA et la
confiance de complétude sur la base de connaissances disponible, et le classement
des mêmes règles sur la base de connaissances idéale en utilisant la confiance. Notre
confiance de complétude est nettement supérieure aux deux autres confiances sur
ces deux ensembles de données.

A.4 Apprentissage de corrections d’une base de
connaissances à partir de son historique de
modifications

Un moyen d’éviter ou au moins de détecter certains des problèmes dans les don-
nées des bases de connaissances est d’imposer des contraintes sur la base de
connaissances. Ces contraintes peuvent imposer que certaines informations soient
présentes (par exemple, imposer que chaque être humain ait une date de nais-
sance), ou que certaines déclarations ne soient pas absentes (par exemple, s’assurer
qu’une personne n’est pas aussi une ville). Dans ce qui suit, nous exprimons les

141

contraintes sous forme de règles. Par exemple Γ1(x) : ∃y 〈x, schema:parent, y〉 →
〈x, rdf:type, schema:Person〉 exprime qu’une entité x qui a un parent dans K
doit aussi avoir pour type schema:Person. Une contrainte Γ est violée si le corps
de Γ correspond à K mais pas la tête.

Ici, nous cherchons à apprendre comment réparer les violations de contraintes.
Notre but est d’aider les personnes modifiant les bases de connaissances en sug-
gérant comment nettoyer les données localement (en fournissant une solution à
une violation de contrainte particulière) ou globalement (en fournissant des règles
qui peuvent être automatiquement appliquées à toutes les violations de contraintes
d’une forme donnée une fois validées par l’éditeur). Pour ce faire, nous profitons de
l’historique d’édition de la base de connaissances. Nous l’utilisons pour exploiter
les règles de correction qui expriment comment les différents types de violations
de contraintes sont généralement résolus.

À notre connaissance, il s’agit du premier travail qui s’appuie sur les corrections
passées des utilisateurs afin d’en deviner de nouvelles. En effet, plusieurs approches
récentes ont proposé des méthodes pour détecter le moment où une contrainte est
violée, calculer les faits responsables, puis interagir avec l’utilisateur pour savoir
comment mettre à jour la base de connaissances. L’objectif est alors de minimiser
le nombre de questions auxquelles l’utilisateur doit répondre. Cela se fait de diffé-
rentes manières, qui incluent la prise en compte des dépendances entre les faits à
vérifier ou encore l’interaction entre plusieurs violations de contraintes pour définir
des heuristiques afin de choisir la meilleure question à poser à l’utilisateur (Berg-
man et al., 2015 ; Bienvenu, Bourgaux et Goasdoué, 2016 ; Assadi, Milo
et Novgorodov, 2018 ; Arioua et Bonifati, 2018). D’autres approches visant
à améliorer la qualité d’une base de connaissances reposent sur les statistiques, le
regroupement ou les aspects structurels des bases de connaissances. Paulheim et
Bizer, 2014 utilisent les statistiques pour ajouter les types manquants à la base
de connaissances, et pour détecter les déclarations erronées. Liang et al., 2017
exploitent l’observation que les cycles dans la base de connaissances contiennent
souvent de mauvaises relations rdf:type. Là encore, d’autres approches (Acosta
et al., 2018) utilisent le crowdsourcing pour détecter les problèmes de qualité des
données liées. Mais, contrairement à la nôtre, toutes ces approches ne donnent pas
de valeur aux corrections apportées par les utilisateurs dans le passé.

Une règle de correction est de la forme :

r : Γ(~x), E(~x, ~y, ~z)→ (M+(~x, ~y),M−(~x, ~y)) (A.6)

où

• Γ(~x) est une contrainte qui peut être partiellement instanciée, c’est-à-dire
que certaines de ses variables ont été remplacées par des constantes,

142

• (M+(~x, ~y),M−(~x, ~y)) est la correction elle-même, une paire d’ensembles d’au
plus un triplet oùM+(~x, ~y) est l’ensemble des triplets qui doivent être ajoutés
à la base de connaissances et M−(~x, ~y) l’ensemble des triplets qui doivent
être supprimés,

• E(~x, ~y, ~z) est un ensemble de triplets avec des variables et des constantes
appelé le contexte de la violation.

Une règle de correction peut être appliquée à une base de connaisance K lors-
qu’il existe des n-uplets de constantes ~a,~b tels que K viole la contrainte Γ(~a) et
∃~z E(~a,~b, ~z) ⊆ K. Le résultat de l’application de la règle est alors la correction
(M+(~a,~b),M−(~a,~b)).

Extractions des anciennes corrections. Nous allons maintenant expliquer
notre algorithme d’extraction des anciennes corrections depuis l’historique de
modifications à l’aide d’un exemple : Considérons la contrainte Γ0(x) = ∃y
〈y, schema:genre, x〉 → x = schema:Male ∨ x = schema:Female. Supposons que
〈Zeus, schema:gender, masculin〉 a été ajouté entre K1 et K2, mais a ensuite été
remplacé par 〈Zeus, schema:gender, schema:Male〉 entre la version K100 et la ver-
sion K101.

Le premier objectif de l’algorithme est de découvrir que la suppression de
〈Zeus, schema:gender, masculin〉 entre K100 et K101 (dans le cadre du rempla-
cement) peut faire partie d’une correction passée pertinente. Nous appelons cette
suppression un début de correction. La recherche de débuts de corrections a l’avan-
tage de réduire considérablement l’espace de recherche par rapport au fait de cal-
culer les violations de contraintes pour toutes les contraintes sur toutes les versions
de la base de connaissances.

Pour trouver efficacement ces débuts de correction, la première étape de l’al-
gorithme précalcule pour chaque contrainte un ensemble de motifs de modifi-
cation atomique auxquels les débuts de correction possibles correspondraient.
Dans l’exemple, il n’y aurait qu’un seul motif : le motif de suppression
(?, 〈?, schema:gender, ?〉), où ? peut être n’importe quoi de sorte qu’il corresponde
à la fois à la suppression de 〈?, schema:gender, ?〉 et à ses remplacements.

La deuxième étape de l’algorithme vérifie, pour chaque début de correc-
tion, si elle a résolu une violation de contrainte dans le passé – c’est-à-dire
si Ki contient certaines violations de certaines instances de contraintes
qui ne sont pas dans Ki+1. Si c’est le cas, la modification entre Ki et
Ki+1 est une solution qui a résolu ces violations dans Ki. Dans l’exemple,
nous aurions trouvé la violation 〈Zeus, schema:gender, masculin〉 de
Γ0(masculin) dans K100, qui n’est pas dans K101. Nous aurions donc extrait
que (〈Zeus, schema:gender, schema:Male〉, 〈Zeus, schema:gender, masculin〉)

143

est une solution qui a résolu la violation {〈Zeus, schema:gender, masculin〉}
de Γ0(masculin) en K100. Nous stockons ces informations sous la forme d’un
tuple dans l’ensemble de données des corrections passées pertinentes (l’ensemble
PCDataset).

L’étape finale de l’algorithme supprime les corrections qui ont été inversées. Le
résultat est donc l’ensemble des corrections passées pertinentes.

Recherche de règles de corrections. Nous cherchons des règles de correction
en adaptant l’algorithme de Galárraga, Teflioudi et al., 2015 à notre contexte,
où nous apprenons les règles non pas à partir d’une base de connaissances mais à
partir du PCDataset et de l’historique de la base de connaissances. Nous pouvons
étendre la définition de support et de support du corps de la règle à notre cas en
comptant le nombre de tuples dans le PCDataset correspondant à Γ(~a), et, le cas
échéant, (M+,M−) est tel que E(~x, ~y, ~z) a une réponse sur Ki avec i l’identifiant
de révision qui correspond à la correction passée considérée. Une définition de la
confiance en découle.

Notre algorithme prend en entrée le PCDataset, l’historique de la base de
connaissances, un seuil de support minimum, un seuil de confiance minimum et
un seuil de régularisation θ. Ces seuils sont choisis de manière empirique.

L’algorithme produit des règles de correction. À cette fin, il génère d’abord une
règle triviale r0 pour chaque entrée du PCDataset. Le contexte de cette règle est
simplement la partie suppression de la correction passée de la contrainte.

Cette règle triviale est ensuite transformée en plusieurs règles plus générales,
que nous appelons règles de base, chacune d’entre elles étant obtenue à partir de
r0 en remplaçant certaines des constantes par des variables. Formellement, l’algo-
rithme utilise toutes les substitutions partielles σ des constantes par des variables
fraîches distinctes. Il ne retient que les règles de base qui respectent les seuils de
soutien et de confiance minimums.

Dans la deuxième étape, l’algorithme affine progressivement chaque règle en
construisant sa partie contexte E(~x, ~y, ~z). Cela fonctionne de manière similaire
à l’algorithme d’extraction de Galárraga, Teflioudi et al., 2015 : Chaque
étape d’affinement ajoute un atome construit à partir des triplets de la base de
connaissances, en remplaçant le sujet ou l’objet du triplet par une variable qui
apparaît dans la règle de base et en conservant l’autre élément constant ou en le
remplaçant par une nouvelle variable. Si la règle résultante atteint le seuil minimum
de prise en charge et améliore la confiance d’au moins θ, la règle est retenue.

Application des règles de correction. Lorsque toutes les règles ont été ex-
traites, elles sont triées par ordre de confiance décroissant, et, pour les cas d’égalité,
à l’aide du soutien (comme cela se fait dans Liu, Hsu et Ma, 1998 pour construire

144

des classificateurs à partir des règles). Cet ensemble de règles forme ensuite un
programme qui peut être utilisé pour corriger les violations de contraintes comme
suit. Étant donné une violation V d’une contrainte Γ dans K, choisir la première
règle r dans le programme qui est pertinente pour Γ (i.e., qui contient [Γ(~x)] où
Γ(~x) est une version partiellement instanciée de Γ), puis vérifier si r peut être
appliquée à V . La correction est le résultat de l’application de la règle.

Évaluation. Nous avons mis en place une version légèrement simplifiée de notre
approche sur Wikidata (Vrandecic et Krötzsch, 2014). Nous avons pris en
compte un ensemble de 10 types de contraintes de propriété de Wikidata, cou-
vrant 71% d’entre elles. Notre jeu de données se compose d’un ensemble de 700M
de révisions de Wikidata, sur lequel nous avons miné plus de 75M de corrections
passées. Pour cela, nous avons construit un système de requête pour stocker l’his-
torique des modifications de Wikidata, permettant d’implémenter facilement les
requêtes nécessaires pour extraire les corrections passées et pour exécuter notre
algorithme d’exploration des règles. Ensuite, nous avons exécuté l’algorithme d’ex-
traction de règles sur 80% des corrections passées et utilisé les 20% restants pour
évaluer la précision et le rappel de notre approche. Nous l’avons comparé avec
deux approches de référence. La première supprime un triplet du corps des règles
de contraintes. La seconde ajoute un triplet pour résoudre la violation si les règles
de contrainte ont dans leur tête un seul triplet et que toutes les variables de ce
triplet sont connues (s’il y a plusieurs objet possibles, on en choisit un au hasard
lors de chaque prédiction). Les résultats de l’évaluation montrent que la précision
de notre approche est nettement supérieure aux deux approches de référence.

A.5 Conclusion

A.5.1 Résumé

Dans cette thèse, nous avons étudié la correction et l’enrichissement des bases de
connaissances. Nous avons présenté trois contributions.

Dans la première partie, nous avons défini le problème de l’apprentissage des
règles à partir de bases de connaissances incomplètes. Nous avons introduit la
confiance de complétude qui utilise les informations de cardinalité contenues dans
la base de connaissances afin d’estimer la qualité des règles. Notre nouvelle mesure
a été évaluée sur des bases de connaissances réelles et synthétiques, démontrant des
améliorations significatives tant en ce qui concerne la qualité des règles obtenues
que les prévisions qu’elles produisent. Nous avons également proposé une méthode
pour augmenter automatiquement le nombre de ces informations de cardinalité.

145

Cette méthode peut être utilisée pour améliorer l’efficacité de notre nouvelle me-
sure.

Dans la seconde partie omise dans ce résumé, nous avons présenté YAGO 4,
une base de connaissances qui, pendant sa construction, impose des contraintes à
la base de connaissances en appliquant des stratégies simples de réparation. Cette
méthode nous a permis de construire une base de connaissances à grande échelle
qui peut être utilisée avec les raisonneurs OWL.

Dans la troisième et dernière partie, nous avons cherché à éviter la perte de don-
nées que l’approche statique de réparation causait dans YAGO 4. Pour y parvenir,
nous avons présenté le problème où l’on souhaite apprendre à réparer les viola-
tions de contraintes à partir de l’historique d’une base de connaissances. Nous
avons proposé deux méthodes à cette fin. La première, CorHist, est basée sur l’ex-
ploitation des règles. Son avantage est qu’elle permet d’expliquer les corrections
qu’elle propose. L’autre, Bass, est basée sur un réseau de neurones et offre une
meilleure précision. Cependant, elle n’est pas capable d’expliquer ses prédictions.
Une évaluation expérimentale sur Wikidata a montré que ces deux approches sont
nettement plus performantes que les approches statiques pour trouver la bonne
correction. Nous avons également fourni le système comme outil à la communauté
Wikidata, lui permettant de corriger plus de 20 000 violations de contraintes.

A.5.2 Perspective

Dans cette thèse, nous avons montré comment les contraintes peuvent être utili-
sées en pratique pour nettoyer les bases de connaissances. De nombreux défis de
recherche sont encore ouverts.

L’approche utilisée pour augmenter le nombre de déclarations de cardinalité
pourrait être étendue afin d’apprendre des règles sur les valeurs numériques. Par
exemple, elle pourrait être utilisée pour apprendre que si un pays est membre de
l’OCDE, son PIB est alors supérieur à un certain seuil, ou que tous les consuls
romains sont nés avant le 10e siècle.

Les travaux visant à apprendre comment corriger les violations de contraintes à
partir des corrections passées pourraient être étendus aux données textuelles. Par
exemple, on pourrait essayer d’étudier comment corriger les fautes d’orthographe
courantes ou améliorer la typographie des textes en fonction des modifications ap-
portées précédemment. Une autre application pourrait consister à extraire d’un
historique de modification du code source des corrections de bogues simples pour
les suggérer automatiquement lorsqu’un contributeur ouvre une demande de révi-
sion de code.

Nous espérons qu’en ouvrant la porte à ces défis, ce travail pourra contribuer
à rendre les bases de connaissances et autres contenus plus propres, et donc en fin
de compte toujours plus utiles.

146

Titre: Maintenance des bases de connaissances à l’aide de contraintes

Mots clés: Bases de connaissances, contraintes, règles

Résumé: Les bases de connaissances sont
des ensembles de faits, souvent sur des su-
jets encyclopédiques. Elles sont souvent util-
isées pour la reconnaissance d’entités nom-
mées, la recherche structurée, la réponse
automatique à des questions, etc. Ces
bases de connaissances doivent être main-
tenues, ce qui est une tâche cruciale mais
coûteuse. Le sujet de cette thèse est la
maintenance automatique de bases de con-
naissances à l’aide de contraintes.
La première contribution de cette thèse est
à propos de la découverte automatique de
contraintes. Elle améliore les approches
classiques d’apprentissage de règles en util-
isant des méta-informations de complétude

des données. Elle montre que que ces infor-
mations permettent d’améliorer de manière
significative la qualité des règles trouvées.
La seconde contribution est la création d’une
base de connaissances, YAGO 4, qui assure
le respect d’une série de contraintes en sup-
primant les faits qui n’y correspondent pas.
La troisième contribution est une méthode
pour corriger automatiquement les viola-
tions de contraintes. Cette méthode utilise
l’historique des modifications de la base de
connaissances afin de proposer des correc-
tions, ceci à partir de la manière avec laque-
lle les utilisateurs de la base de connais-
sances ont déjà corrigé des violations simi-
laires.

Title: Knowledge Base Curation using Constraints

Keywords: Knowledge Base, Constraints, Rules

Abstract: Knowledge bases are huge col-
lections of primarily encyclopedic facts. They
are widely used in entity recognition, struc-
tured search, question answering, and other
tasks. These knowledge bases have to be
curated, and this is a crucial but costly task.
In this thesis, we are concerned with curating
knowledge bases automatically using con-
straints.
Our first contribution aims at discover-
ing constraints automatically. We improve
standard rule mining approaches by us-
ing (in-)completeness meta-information. We

show that this information can increase the
quality of the learned rules significantly.
Our second contribution is the creation of a
knowledge base, YAGO 4, where we stati-
cally enforce a set of constraints by removing
the facts that do not comply with them.
Our last contribution is a method to cor-
rect constraint violations automatically. Our
method uses the edit history of the knowl-
edge base to see how users corrected vio-
lations in the past, in order to propose cor-
rections for the present.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Introduction
	Motivation
	Presented Contributions
	Other works

	Preliminaries
	Knowledge bases
	Queries
	Rules and Rule Learning

	I Mining Constraints
	Completeness-aware Rule Scoring
	Introduction
	Related Work
	Approach
	Evaluation
	Conclusion

	Increasing the Number of Numerical Statements
	Introduction
	Approach
	Evaluation
	Conclusion

	II Enforcing Constraints Statically
	YAGO 4: A Reason-able Knowledge Base
	Introduction
	Related Work
	Design
	Concise Taxonomy
	Legible Entities and Relations
	Well-Typed Values
	Semantic Constraints
	Annotations for Temporal Scope

	Knowledge Base
	Construction
	Data
	Access

	Conclusion

	III Enforcing Constraints Dynamically
	Learning How to Correct a Knowledge Base from the Edit History
	Introduction
	Related Work
	Constraints
	Corrections
	Extraction of the Relevant Past Corrections
	Correction Rule Mining
	Bass
	Bass-RL
	Bass

	Experiments on Wikidata
	Wikidata
	Dataset Construction
	Implementation of the Approaches
	Evaluation against the Test Set
	Bass Ablation Study
	User Evaluation

	Conclusion

	Querying the Edit History of Wikidata
	Introduction
	Related Work
	System Overview
	Usage
	Conclusion

	Conclusion
	Summary
	Outlook

	Bibliography
	Résumé en français
	Introduction
	Motivation
	Contenu
	Autres travaux

	Préliminaires
	Apprentissage de règles à l'aide de cardinalités
	Apprentissage de corrections d'une base de connaissances à partir de son historique de modifications
	Conclusion
	Résumé
	Perspective

