
HAL Id: tel-03102749
https://theses.hal.science/tel-03102749v1

Submitted on 7 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A variable precision hardware acceleration for scientific
computing
Andrea Bocco

To cite this version:
Andrea Bocco. A variable precision hardware acceleration for scientific computing. Discrete Mathe-
matics [cs.DM]. Université de Lyon, 2020. English. �NNT : 2020LYSEI065�. �tel-03102749�

https://theses.hal.science/tel-03102749v1
https://hal.archives-ouvertes.fr

N°d’ordre NNT : 2020LYSEI065

THÈSE de DOCTORAT DE L’UNIVERSITÉ DE LYON
Opérée au sein de :

CEA Grenoble

Ecole Doctorale InfoMaths EDA N17° 512
(Informatique Mathématique)

Spécialité de doctorat :Informatique

Soutenue publiquement le 29/07/2020, par :

Andrea Bocco

A variable precision hardware acceleration
for scientific computing

Devant le jury composé de :
Frédéric Pétrot Président et Rapporteur
Professeur des Universités, TIMA, Grenoble, France

Marc Dumas Rapporteur
Professeur des Universités, École Normale Supérieure de Lyon, France

Nathalie Revol Examinatrice
Docteure, École Normale Supérieure de Lyon, France
Fabrizio Ferrandi Examinateur
Professeur associé, Politecnico di Milano, Italie

Florent de Dinechin Directeur de thèse
Professeur des Universités, INSA Lyon, France
Yves Durand Co-directeur de thèse
Docteur, CEA Grenoble, France

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

i

“ Arithmetics is being able to count up to twenty without taking off your shoes. ”

Mickey Mouse

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

iii

INSA-LYON

Abstract
InfoMaths

CEA Grenoble

Doctor of Philosophy

A variable precision hardware acceleration for scientific computing

by Andrea BOCCO

Most of the Floating-Point (FP) hardware units support the formats and the operations speci-
fied in the IEEE 754 standard. These formats have fixed bit-length. They are defined on 16, 32,
64, and 128 bits. However, some applications, such as linear system solvers and computational
geometry, benefit from different formats which can express FP numbers on different sizes and
different tradeoffs among the exponent and the mantissa fields. The class of Variable Precision
(VP) formats meets these requirements.

This research proposes a VP FP computing system based on three computation layers. The
external layer supports legacy IEEE formats for input and output variables. The internal layer
uses variable-length internal registers for inner loop multiply-add. Finally, an intermediate layer
supports loads and stores of intermediate results to cache memory without losing precision,
with a dynamically adjustable VP format. The VP unit exploits the UNUM type I FP format
and proposes solutions to address some of its pitfalls, such as the variable latency of the internal
operation and the variable memory footprint of the intermediate variables. Unlike IEEE 754, in
UNUM type I the size of a number is stored within its representation.

The unit implements a fully pipelined architecture, and it supports up to 512 bits of pre-
cision, internally and in memory, for both interval and scalar computing. The user can con-
figure the storage format and the internal computing precision at 8-bit and 64-bit granularity
This system is integrated as a RISC-V coprocessor. The system has been prototyped on an
FPGA (Field-Programmable Gate Array) platform and also synthesized for a 28nm FDSOI pro-
cess technology. The respective working frequencies of FPGA and ASIC implementations are
50MHz and 600MHz. Synthesis results show that the estimated chip area is 1.5mm2, and the
estimated power consumption is 95mW.

The experiments emulated in an FPGA environment show that the latency and the com-
putation accuracy of this system scale linearly with the memory format length set by the user.
In cases where legacy IEEE-754 formats do not converge, this architecture can achieve up to
130 decimal digits of precision, increasing the chances of obtaining output data with an accu-
racy similar to that of the input data. This high accuracy opens the possibility to use direct
methods, which are more sensitive to computational error, instead of iterative methods, which
always converge. However, their latency is ten times higher than the direct ones. Compared
to low precision FP formats, in iterative methods, the usage of high precision VP formats helps
to drastically reduce the number of iterations required by the iterative algorithm to converge,
reducing the application latency of up to 50%. Compared with the MPFR software library, the
proposed unit achieves speedups between 3.5x and 18x, with comparable accuracy.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

HTTP://WWW.INSA-LYON.FR
http://edinfomaths.universite-lyon.fr
http://www.citi-lab.fr/

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

v

Acknowledgements
To begin with, I would like to thank my tutor from CEA-Grenoble, Engr. Yves Durand, and

my supervisor from INSA-Lyon, Prof. Florent de Dinechin, for the invaluable technical knowl-
edge that they transmitted to me and the motivational support throughout my thesis work. I
also want to remember all colleagues in the LSTA lab in CEA-Grenoble and the wonderful time
spent at the workplace with them. In particular, I want to thank Vincent Mengue and Yvan Miro
for helping me with the synthesis of my designs, to Cesar Fuguet Tortolero, Erich Guthmuller, and
Anthony Philippe for their support in hardware architectures and FPGA design, to Tiago Trevisan
Jost for his active collaboration to this project and for providing me software and compiler sup-
port for this work, and to Simone Bacles-Min and Julie Dumas to have played an active role in
teaching me the French language.

Many thanks to Roman Gauchi, Valentin Egloff, Maxime Montoya, and François Dolique to help
me to come out of several technical problems during my work and with whom I had an excel-
lent collaboration. I want to thank Maxcence Bouvier, Sota Sawaguchi, Adrian Evans, and Pascal
Vivet for helping me review this work and the published papers relating to it. A special thanks
go to Fernando Barrera Cervantes, Gabriele Giachin, Marco Arborio, Giulio Milici, and Davide Pala,
who turned out to be special friends in this adventure away from home. On the same length,
I would like to thank all my friends and colleagues at the LSTA lab and from all CEA for sup-
porting me through these three years and for all the good times spent as colleagues or Ph.D.
students.

I will be forever indebted to my mother Franca, my brother Stefano, all of my family for their
endless patience, encouragement, and love throughout all my life, especially starting from the
beginning of my studies in Turin.

I will never forget my father, Claudio, who has always followed me with love and admira-
tion since I was born, and now he follows me from another place, my heart.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

2 Motivations for the variable precision 5
2.1 Benefits of variable precision in Floating-Point computing 5

2.1.1 Precision versus accuracy . 6
2.1.2 Different notions of variable precision . 6

Fixed-point computing . 7
Mixed-precision . 7
Extended-precision . 7
Arbitrary- (or infinite-) precision . 7
Other exotic alternatives . 7

2.1.3 Numerical problems in floating-point computing 8
Using interval arithmetic to bound the rounding error 8

2.2 Variable precision: improving and tracking applications computational error . . 10
2.2.1 Variable precision to bound the computational error 10

2.3 Variable precision for high-precision scientific applications 11
2.3.1 High precision scientific application domains 11

Computational physic . 11
Computational chemistry . 12

2.3.2 Solving large linear systems . 13
Difference between direct and iterative algorithms 13
Wilkinson-Moler bounds . 13

2.4 Problems in using variable-precision computing 14
2.4.1 Impact of high precision in computing systems 15

Significand sizes for variables involved in scientific computing 15
Memory constraints for variables involved in scientific computing 16

2.4.2 Impact of low precision in computing systems 16

3 State of the Art: what is known for variable precision 19
3.1 Variable-precision FP formats and representations 20

3.1.1 The custom IEEE-like formats . 20
3.1.2 Exponent-harvesting techniques . 21
3.1.3 Exponent-harvesting formats: the UNUM format 22

How to decode the UNUM format . 23
The ubound and the gbound formats . 26
Advantages and disadvantages of using the UNUM format 26

3.1.4 Exponent-harvesting formats: the posit format 27
How to decode the posit format . 27

3.2 Comparison between the variable-precision formats 28

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

viii

3.3 Software and hardware implementations for variable-precision computing 29
3.3.1 Multiple-precision software libraries . 31
3.3.2 Existing floating-point units in the state of the art 32

Data bit-width in modern computing systems 33
3.3.3 Kulisch: eliminate the round-off error using long accumulators 33
3.3.4 Schulte: contain the round-off error extending the mantissa precision . . . 34

4 System architecture for the variable-precision computing unit 37
4.1 Supporting variable precision in hardware . 38

4.1.1 Supporting different variable precision formats 38
4.1.2 Controlling the interval explosion effect in a UNUM computing unit . . . 39

4.2 Optimizing variable-precision floating-point formats for memory 40
4.2.1 Mapping of the UNUM fields in memory 40
4.2.2 Main memory organization of UNUM array elements 41

4.3 The Bounded Memory Format: fitting UNUM in a modern memory hierarchy . . 42
4.3.1 BMF, a memory-friendly version of the UNUM type I format 43
4.3.2 BMF encodings when MBB is larger than the UNUM bit-length 43
4.3.3 BMF encodings when MBB is smaller than the UNUM bit-length 44
4.3.4 Putting all together: The BMF encoding for the UNUM format 45

An alternative BMF encoding . 46
4.4 Issues on supporting variable-precision formats 49

4.4.1 Hardware overhead due to variable-length fields 49
4.4.2 Instruction encoding issues . 50
4.4.3 Data-dependent error bounds . 50
4.4.4 Encoding overhead of variable-precision 50

4.5 Hardware architecture for the variable-precision computing unit 51
4.5.1 Overview of the RISC-V-based system . 51
4.5.2 Architecture of the accelerator . 52
4.5.3 Choice of the variable-precision format of the register file 53
4.5.4 Improving code efficiency through status registers 55

4.6 The programming model for the variable-precision computing unit 57
4.7 The ISA for the variable-precision computing unit 58

4.7.1 Programmer view for the variable-precision computing unit 58
4.7.2 Base instruction formats . 58
4.7.3 Status registers instruction set . 59
4.7.4 Instruction set for load and store operations 62

Load behavior . 62
Store behavior . 62
Load and store instructions . 62

4.7.5 Instruction set for move operations . 64
4.7.6 Instruction set for gbound arithmetic instructions 65
4.7.7 Instruction set for variable-precision conversion operations 67

4.8 Compiler prototype: support variable-precision with a vpfloat datatype 69
4.8.1 Example: how to write a variable-precision program 71

5 Micro-architecture for the variable-precision computing unit 73
5.1 Choice of a macro-pipelined architecture . 76
5.2 Micro-architecture: drawbacks and solutions . 77
5.3 Variable-precision architecture for arithmetic operators 78

5.3.1 Move operator . 79
5.3.2 Adder operator . 79

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

ix

5.3.3 Multiplier operator . 81
5.3.4 Comparator operator . 82
5.3.5 Conversion operator . 83
5.3.6 Load and store unit . 84

The load path . 85
The store path . 86
Memory consistency hardware mechanisms 88

5.4 ASIC synthesis results and FPGA integration . 89
5.4.1 Validation of the units . 89
5.4.2 FPGA integration . 90
5.4.3 ASIC integration: synthesis results . 90

6 Experimentation 93
6.1 Experiment 1: Variable-precision benefits for direct methods 95
6.2 Experiment 2: Variable-precision benefits in iterative methods 101
6.3 Experiment 3: performance benchmark MPFR vs. UNUM 105

7 Conclusions and future works 107
7.1 Conclusions about the UNUM format . 109
7.2 Future works . 110

7.2.1 Hardware optimizations for the variable-precision architecture 110
7.2.2 Importing variable-precision support in existing software programs . . . 112
7.2.3 Future perspectives for variable-precision formats 112

A Source code Experiment 1 113
A.1 The Gauss kernel in conventional IEEE 754 formats 113
A.2 The Gauss kernel for variable precision in pseudocode 114
A.3 The Gauss kernel for variable precision in C and inline assembly 116

B Source code Experiment 2 125
B.1 Complete code for Conjugate Gradient . 125
B.2 C code implementation of the Conjugate Gradient 126

C Exploring other variable-precision formats 139
C.1 A modified UNUM format . 139
C.2 A modified posit format . 140
C.3 A new family of not-continuous variable-precision formats 141
C.4 Formats comparison . 143

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

xi

List of Figures

1.1 IEEE 754 standard formats types on 16, 32, 64, and 128 bits 1
1.2 The Universal NUMber (UNUM) floating-point format 2
1.3 The posit floating-point format . 2

2.1 Different shades of precision in variable-precision formats 6
2.2 Decomposition of relative error for a general iterative solver 14
2.3 Fractional fields sizes for a set of different applications 15

3.1 Subdivision of the existing floating-point formats in state of the art 19
3.2 Custom IEEE 754-like floating-point format . 21
3.4 Exact values (ubit=0) of a UNUM number in a 5-bit encoding 23
3.5 All the possible values of a UNUM number in a 5-bit encoding 25
3.7 Exponent bit-length comparison in the posit and the UNUM formats 28
3.8 Comparison between UNUM and posit formats on different configurations . . . 29
3.9 The decimal floating-point format used in the CADAC architecture 30
3.10 The floating-point format and architecture presented by Schulte 31

4.1 A variable-precision architecture supporting two different formats 38
4.3 Binary encodings for the UNUM and the ubound formats in memory 41
4.4 Alternative memory addressing modes for variable-length numbers 41
4.5 BMF encodings when MBB is larger than the maximum UNUM bit-length 44
4.6 Truncation effects caused by the MBB value in different UNUM settings 45
4.7 BMF binary encoding varying the MBB and the UE parameters 46
4.8 Alternative BMF binary encoding varying the MBB and the UE parameters . . . 49
4.9 High-level overview of the variable-precision computing system 52
4.10 The gbound endpoint (gnumber) binary format 54
4.11 Internal organization of the register file . 55
4.12 Example of usage of the Working G-layer Precision status register 56
4.13 The coprocessor architecture and its programming model 57
4.14 RISC-V Instruction Set Architecture (ISA): instruction format types 59
4.15 The status registers binary encoding . 60

5.2 The internal pipeline of the variable-precision coprocessor 74
5.3 The macro pipeline organization in the coprocessor 76
5.4 The general architecture of a gbound operator . 78
5.5 The architecture of the gbound adder operator . 79
5.6 The architecture of the gbound multiplier operator 81
5.7 The architecture of the gbound comparator operator 83
5.8 The architecture of the coprocessor load and store unit 84
5.9 Worst case scenario of storing a 30 Bytes data . 85
5.10 Load path units of the coprocessor load and store unit 86
5.11 Store path units of the coprocessor load and store unit 87
5.12 Area and power distribution of the synthesis results 90

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

xii

6.1 Stellar hardware platform (with an embedded Virtex-7 FPGA) 95
6.2 Latency and precision for the Gauss kernel on a Hilbert matrix 99
6.3 Worst case scenario of loading (or storing) of a 22 Bytes from (or in) memory . . 100
6.4 Best case scenario of loading (or storing) of a 22 Bytes from (or in) memory . . . 100
6.5 Number of iterations to run the Conjugate Gradient on an SDP matrix 103
6.6 Clock cycle latency to run the Conjugate Gradient algorithm on SPD matrix . . . 104
6.7 Performance comparison between our unit and the MPFR software library 106

C.1 The modified UNUM floating-point format . 140
C.2 The modified posit floating-point format . 140
C.3 The not-continuous posit floating-point format . 141
C.4 Exponent bit-length comparison between the posit, the UNUM, and the modi-

fied posit formats . 143
C.5 Exponent bit-length comparison between the posit, the UNUM, and the not-

continuous posit-like formats . 144

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

xiii

List of Tables

3.1 Mathematical notations for UNUM special values 25

4.1 Status registers instruction set . 60
4.2 Status registers instruction set utilization . 61
4.3 Load and store instructions set . 62
4.4 Load and store instruction set . 63
4.5 Move instruction set . 64
4.6 Move instruction set . 65
4.7 Arithmetic operators instruction set . 65
4.8 Arithmetic operators instruction set utilization . 66
4.9 Formats conversions instruction set . 67
4.10 Formats conversions instruction set utilization . 68

5.1 Possible minimum and maximum values for interval multiplications 81
5.2 Equations to convert an integer exponent in the UNUM exponent encoding . . . 87
5.3 Synthesis results of the variable-precision architecture in 28nm FDSOI 89

C.1 Comparison between the exponent encodings of the posit and the modified posit
formats . 142

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

xv

List of Abbreviations

ALU Arithmetic Logic Unit
ASIC Application-Specific Integrated Circuit
BEZ Branches Equal Zero
BMF Bounded Memory Format
CG Conjugate Gradient
DFT Density Functional Theory
DRAM Dynamic Random Access Memory
DUE Default Unum Environment
FDM Finite Difference Method
FEM Finite Element Method
FF Flip-Flop
FIFO First In First Out
FP Floating Point
FPGA Field Programmable Gate Array
FPU Floating Point Unit
FSM Finite State Machine
GB Guard Bits
GE Gauss Elimination
GPR General-Purpose Register
GPRF General-Purpose Register File
GPU Graphics Processing Units
HLS High-Level Synthesis
HW HardWare
IA Interval Arithmetic
IB Integer Bits
IEEE Institute of Electrical and Electronics Engineers
ISA Instruction Set Architecture
IVP Initial Value Problem
JA JAcobi
KB Kilo Bytes
LSU Load and Store Unit
LUT Look-Up Table
MBB Maximum Byte Budget
MMU Memory Management Unit
ODE Ordinary Differential Equations
PDE Partial Differential Equations
RF Register File
RND RouNDing
RTN Round To Nearest (half away from zero)
RTNE Rounded To the Nearest Even
RAM Random Access Memory
RDD RounD Down
RDU RounD Up

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

xvi

RTI Round To Interval
SDRAM Synchronous Dynamic Random-Access Memory
SM Spectral Method
SPD Symmetric and Positive-Definite
SR Status Register
SUE Secondary Unum Environment
SW SoftWare
TLB Translation Lookaside Buffer
UE Unum Environment
ULP Unit in the Last Place
VP Variable Precision
WGP Working G-layer Precision

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

1

Chapter 1

Introduction

Scientific notation is widely used by mathematicians, physicists, and engineers. Equation 1.1
depicts a possible format to express numbers in scientific notation.

x “ s ¨m ¨ βe (1.1)

A number x, presented in radix β, is made of a sign s, a significand m (also called the mantissa),
and an exponent e. The common name used to identify this format is “Floating-Point” (FP). In
FP, the decimal point divides the integer and the fractional part of the mantissa. Its position in
the real axis changes (floats) according to the value of the exponent value. This variability of
the decimal point in the real axes justifies the word “floating”.

The FP format was standardized in 1985 (and reviewed in 2008) by the Institute of Electrical
and Electronics Engineers (IEEE) committee in the IEEE 754 standard [1]. The introduction
of this standard stopped the compatibility issues introduced by companies while developing
custom FP units (FPUs). The IEEE 754 standard defines arithmetic and interchange formats
(Figure 1.1), rounding rules, operations on arithmetic formats, and rules to handle arithmetic
exceptions.

FP applications have widely different requirements in terms of arithmetic precision. Conse-
quently, choosing the appropriate data format among the ones offered by the IEEE 754 standard
can be difficult.

A wide range of applications shows optimal performance for FP representations that can-
not be encoded through one of the standard formats. For instance, many applications in neural
networks and signal processing require fewer than 16 bits of representation, and using one of
the IEEE-754 formats can be inefficient. Others are sensitive to the accumulation of rounding,
cancellation, and absorption, computational errors. Such accumulations can quickly lead to

5 10
s e f

Half (16-bit)

8 23
s e f

Single (32-bit)

11 52
s e f

Double (64-bit)

15 112
s e f

Quad (128-bit)

Figure 1.1: IEEE 754 standard formats types: definition of floating-point formats on 16, 32, 64, and 128 bits

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

2 Chapter 1. Introduction

s e

exponentsign
f

fraction

u

ubit

es-1
exponent

size

fs-1

fraction
size

es bits fs bits

Figure 1.2: The Universal NUMber (UNUM) floating-point format

s r0r1. . . rm´1 rm e f
loomoon

sign

looooooooooomooooooooooon

regime bits

looomooon

exponent

loooooooooooomoooooooooooon

fraction

1 lzoc 1 es fs
wl

Figure 1.3: The posit floating-point format

entirely inaccurate results. For example, this may happen for linear solvers and experimental-
math applications which may only show stability for formats above 128 bits, beyond the capac-
ity of mainstream IEEE-754 hardware support.

This work aims to improve the stability of numerical computations on one side and aug-
ment their efficiency in memory occupancy and energy cost on the other side while preserv-
ing their stability. The class of Variable-Precision (VP) computing groups the techniques used to
compensate for the problems mentioned above (overkill, cancellation, rounding, numerical sta-
bility, and memory footprint). To reduce the effects of these problems, the precision of variables
in algorithms must vary. For this purpose, this work uses VP computing as the primary tool
to tune variables precision. Tuning the precision of variables is also appropriate for energetic
efficiency because it decreases the data memory footprint, and reduces memory pressure.

VP computing rethinks conventional FP arithmetic in order to adjust the computation pre-
cision to the application requirements. VP lets the user explore the tradeoff between result
precision, computation latency, and data memory footprint. This tradeoff can be explored by
tuning the precision of the data in memory, or by tuning the precision of the computation, in the
VP FPU, or both. The term VP computing covers different paradigms such as Fixed point, Mixed
precision, Extended precision, Arbitrary precision, and Infinite precision, which we detail later. Most
of them require changing the FP memory format, the hardware used, or the software level.
These difficulties give space to explore VP FP formats such as UNUM [2] or Posit [3].

The UNUM type I (Universal NUMber, introduced by John L. Gustafson in his book “THE
END of ERROR - Unum Computing” [2], Figure 1.2), is a VP FP format which provides
variable-length exponent and mantissa fields. For a given FP size, it allows trading exponent
bits for mantissa bits when the exponent is near zero. Exponent and mantissa lengths are
encoded within the same number. This format supports Interval Arithmetic (IA), which guar-
antees that the output interval contains the exact answer. It is meant to improve the accuracy
and convergence of iterative algorithms.

The Posit format [3] is a tapered precision format (like UNUM type I), but it has fixed bit-
length. Differently from UNUM, posit encodes the exponent in magnitude-offset form, and the
exponent field does not have a limit in its size.

This work adopts the UNUM type I format to support all the VP techniques since, with
it, it is possible to exploit the benefits of having exponent and fraction fields of variable size.
The native IA support in UNUM is useful to keep track of the computational error among
FP operations. So far, IA was presented positively, and suddenly, it has several drawbacks.
In iterative applications, intervals are enlarged among iterations. This behavior, also known
as interval explosion, can quickly lead to large meaningless intervals. To avoid it, instead to
compute a given algorithm directly in IA, IA can be used to bound the computational error at

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

Chapter 1. Introduction 3

the end of a given algorithm.
Most modern FP computing systems offer two levels of precision: the one provided by

the memory format and the one provided internally by the FPU. There is also a trend to have
accumulation registers in FPUs that provide more bits than the memory format [4]. These two
levels of precision reduce the effects of the computational errors but only for the so-called fused
operations, which are sequences of high precision operations done on the internal registers of
the FPU. The main limiting factors in modern hardware architectures are memory size and
bandwidth [5], [6]. To control them, the precision of data stored in the main memory becomes
that of the memory format. Data arrays should be kept as compact as possible to optimize
memory bandwidth. These two limiting factors currently restrict applications to 64-bit memory
formats.

However, an iterative linear solver may require to keep vectors with high-precision data
among iterations. The precision required for this is greater than the input-output format. How-
ever, it is smaller than the internal accumulation registers of the FPU, designed to hide the
accumulation of rounding errors.

This thesis aims to improve the balance between numerical stability and data footprint in
memory (in particular, the close memory, i.e., the processor cache). This work proposes an
innovative computing environment that supports a third FP format that can improve results
precision in FP computation. This third format can provide dynamic precision tailored to the
algorithm’s immediate needs while being able to fit into memory (ideally into the cache, close
to the processor). We adopted the UNUM type I format for this purpose.

The impact of varying precision is not of the same nature in all applicative scenarios. For
this reason, this work distinguishes cases where the benefit may be analyzed and quantified in
terms of an error on the result, through numerical analysis.

This work aims to use VP within iterative kernels for numerical applications, to improve the
result accuracy at minimal memory usage cost. Furthermore, it illustrates a VP FP arithmetic
coprocessor architecture based on RISC-V (using a RISC-V-RocketChip generator [7]), that:

• Supports legacy IEEE formats for input and output variables.

• Uses variable-length internal registers (up to 512 mantissa bits) for inner loop multiply-
add.

• Supports loads and stores of intermediate results to cache memory with a dynamically
adjustable precision (up to 512 bits of mantissa).

The system is integrated on FPGA and demonstrated on representative examples.
The work was done in the LISAN laboratory, specialized in multi-core architectures and

low power digital design, in CEA-LETI at Grenoble (France), in collaboration with INSA-Lyon
(France). The remainder of this document is organized as follows:

Chapter 2 introduces to the reader the variable-precision topic. Firstly, it motivates why
Variable-Precision (VP) is needed (and why specific applications may need formats different
from the conventional IEEE 754 ones), secondly it describes the benefits of using VP, the appli-
cation domains, and the impact for applications on high-and low-precision.

Chapter 3 presents the state of the art VP Floating-Point (FP) formats and hardware archi-
tectures. This chapter explains what a FP number is and presents the state of the art VP FP
formats. It introduces the UNUM and the posit formats, showing how they work and high-
lighting their differences from the IEEE 754 standard. After this, it presents state of the art in
VP FP hardware architectures.

Chapter 4 describes the core of this work: the architecture to support VP computing. It
illustrates the motivations of supporting the UNUM type I FP format in main memory, propos-
ing solutions to address some of its pitfalls such as the variable latency of the internal oper-
ation and the variable memory footprint of the intermediate variables. After that, it presents

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

4 Chapter 1. Introduction

the designed hardware architecture passing through the chosen register file organization, the
working model of the unit, the programming model, and how to build compiler support for it.
The last section illustrates how it is possible to modify the BLAS libraries to embed this unit in
existing computation environments.

Chapter 5 details the microarchitecture of the VP FP computing unit. It presents with a
top-down approach the design techniques used to implement the VP coprocessor. It concludes
by showing the ASIC synthesis results, and by listing some possible optimizations for the mi-
croarchitecture.

Chapter 6 shows how the proposed VP architecture is integrated into an FPGA emulation
environment. After that, it illustrates the results obtained out of the VP system from some FP
benchmarks for high precision.

Chapter 7 concludes this thesis by highlighting what was learned and suggesting further
developments for the work done.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

5

Chapter 2

Motivations for the variable precision

The goal of this study is to propose a Variable-Precision (VP) Floating-Point (FP) computing
architecture to improve the balance between numerical stability and data footprint in memory.
VP is a class of techniques that exploit a FP representation for real numbers. The dynamic
range and the precision may be adjusted dynamically according to the computation needs.
This chapter explores the VP concept, introduces the benefits possible to achieve with VP, and
shows the applications that can be improved through VP.

VP can be used to minimize the calculation error of an algorithm to an acceptable level.
It is possible to reformulate this problem in finding, for a given algorithm, the smallest data
format for a set of variables that meets the given error requirement on another set of variables.
This class of problems drives the strategy for a priori or a posteriori precision tuning of the
variables for a target algorithm, which justifies the introduction of a low-granularity VP FP
format in computational systems. Tuning the precision of variables requires evaluating the
tradeoff between memory occupation and computational error, which changes significantly
among application domains.

This work arbitrarily divides VP applications into two sub-categories addressing “high pre-
cision” (e.g., 64 bits or more) and “reduced precision” (e.g., 64 bits or fewer) problems. Nowa-
days, there is no standard for what concerns the threshold between high and low precision
applications. Nevertheless, these two application domains solve different problems by adopt-
ing different solutions.

In this chapter, Section 2.1 shows the benefits of using VP in FP computing. Sections 2.1.1
and 2.1.2 focus on the existing definitions of VP in literature and, Section 2.1.3, focuses on the
numerical problems on standard FP computation. Then, Section 2.2 explains why the VP can
reduce and track applications’ computational error.

This work focuses on scientific computing applications. Thus, Section 2.3 shows repre-
sentative high-precision application domains with different computational physics and com-
putational chemistry characteristics. These applications are based non-linear equations (e.g.,
Newton), but their solutions are based on linear algebra algorithms and require an augmented
precision. The side effect of augmenting variables precision is that it increases the size of their
representation in memory, and therefore it has to be gradual and controlled. This chapter con-
cludes with Section 2.4, which depicts the problems that may arise when a computing system
uses VP.

2.1 Benefits of variable precision in Floating-Point computing

Changing the precision of variables in an algorithm can improve stability, optimize memory oc-
cupation, and reduce the energy cost of numerical calculations. The impact of varying precision
depends on the applications. For example, increasing the precision of variables is meaningful
when algorithm stability is concerned. On the contrary, decreasing variables precision, and by

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

6 Chapter 2. Motivations for the variable precision

Figure 2.1: Different shades of precision: the precision dynamic of a variable-precision format changes among
the used encoding in memory

doing so, reducing their memory footprint, is appropriate to improve the energy efficiency of
the computational system.

2.1.1 Precision versus accuracy

Before digging into the VP details, this section clarifies the difference between precision, com-
putational error, and accuracy. Precision is the resolution of representation; it is often expressed
as a given number of bits or digits. Computational error is the distance between an evaluated
quantity and its actual value. Accuracy is a measure of all the errors among all possible execu-
tions. For instance, it can be expressed in bits or digits by computing the log2 or log10 of the
worst-case computational error.

x “ 227 “ 1. 2893719365
looooomooooon

p“10

˘0. 00001
loomoon

a“5

For example, in the equation above, the precision p of the FP number x is ten decimal digits,
while its accuracy a, the number of significant digits is five decimal digits (due to ˘0.00001).

In the literature, u or ulp [8] (unit in the last place) notes the numbers’ precision, and ε notes
the relative accuracy of a number, the relative error bound. It may be expressed in ulps as it is
a convenient way to see how the precision matches the accuracy [8]. The main challenge is to
determine how to tune the precision in order to improve accuracy.

2.1.2 Different notions of variable precision

Variable Precision (VP) computing rethinks conventional Floating-Point (FP) arithmetic to ad-
just the computation precision to the application requirements, exploring the tradeoffs between
result precision, computation latency, and data memory footprint. In the literature, several def-
initions related to VP are used in several contexts. For example, in scientific computing, several
libraries support multiple-precision [9], which conventionally means “other precisions than the
types provided by IEEE 754 standard”.

The wording of multiple-precision is ambiguous and covers different techniques. Accord-
ing to the literature, VP computing is mainly divided into five computing techniques: fixed-
point, mixed-precision, extended-precision, arbitrary-precision, and infinite-precision. The reader may
find variants as these definitions are frequently interchanged or mixed, for instance, in trans-
precision computing [10].

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

2.1. Benefits of variable precision in Floating-Point computing 7

These techniques (depicted in Figure 2.1) are not straightforward to implement since they
require deep expertise in FP arithmetic and profound modifications in the software tool-chain.
Since there is no hardware support for most of these techniques, they are implemented through
multiple-precision software libraries (e.g., MPFR [9]) whose use is not straightforward. They
use dedicated data types to encode values, and explicit function calls to initialize the declared
objects and call the desired (atomic) operations.

Fixed-point computing

Fixed-point computing can be seen as a VP technique when the programmer uses variables with
different configurations of integer and fractional bits. In the fixed-point encoding, the frontier
between integer and fractional part is static. Thus, fixed-point computing limits the dynamic
range and decimal precision. However, it is based on integer operations, which are simpler
and faster than the FP ones.

Mixed-precision

Mixed-precision [11] is a VP method which uses the FP types provided by the IEEE 754 standard
to adjust the computation precision. It allows controlling, with a lower precision, the round-off
errors (for a subset of operations) within a calculation [12]. The most notable mixed-precision
implementation is the XBLAS [11] library. It exploits the maximum precision natively available
on the host platform or uses a double-double type to represent a value.

Extended-precision

This work defines extended-precision as the methods to extend the accuracy of operations using
standard IEEE 754 FP types. For example, the “compensated sum” uses intermediate opera-
tions to minimize rounding errors and to avoid saturation. It virtually increases the size of the
fractional part of a few bits. Another alternative is to use FP expansions [13].

Arbitrary- (or infinite-) precision

Arbitrary-precision, sometimes called infinite-precision, uses custom number formats with cus-
tom representations or custom sizes for exponent and fraction, that requires custom software
or hardware support. Unlike mixed and extended-precision, arbitrary-precision allows grad-
ual sizes for the fractional part, up to a specific limit, which depends on the implementation
(for instance, the hardware size or the memory capacity). Infinite-precision has the same char-
acteristics of arbitrary-precision, but it is not constrained to implementation [14].

The state of the art on arbitrary-precision integers is GMP [15]. GMP represents numbers
using full words, and it implements basic operations with sophisticated and optimized algo-
rithms in assembly. The state of the art on arbitrary-precision FP is MPFR [9]. It is based on
GMP. The bit-length of MPFR numbers is adjustable with a bit granularity, and it is limited
only by the available memory. Furthermore, it provides the correct rounding of operations.
ARB [16] is a serious contender of MPFR in terms of execution time (but not in the accuracy of
each operation).

Other exotic alternatives

In previous paragraphs, precision is only a matter of exponent and fractional sizes. However,
there are other numerical representations for arithmetic-intensive applications. For example,
signed digit and on-line arithmetic [17] are alternative representations of integers. Others are
the Residue Number System (RNS) arithmetic [18], the Logarithmic Number System (LNS)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

8 Chapter 2. Motivations for the variable precision

arithmetic [19]–[21]. These representations require a complex conversion for translating back
to binary digit IEEE representation, which is another barrier for their use in a computing envi-
ronment. Besides, the complexity of operations in RNS and LNS does not scale linearly with
precision. Therefore, this study does not consider them part of its scope.

2.1.3 Numerical problems in floating-point computing

Most numerical techniques are built upon continuous mathematics without considering the
discrete nature of conventional Floating-Point (FP) formats. However, the implementation of
those algorithms uses finite representation once delivered to a conventional FP unit. It only
approximates the continuous behavior of algorithms, without any guarantee that the approx-
imation is suitable. Such an implementation can raise issues of numerical accuracy (defined in
Section 2.1.1) or numerical stability. The numerical stability is the property that an algorithm
implementation does not amplify errors on its inputs. If the numerical accuracy and stability
are not appropriately evaluated, iterative algorithms may not converge to the correct value.
However, they are not always straightforward to bound.

Augmenting the precision of variables can solve these issues. The main challenge is not
only to improve the accuracy by adjusting the precision but also to control the algorithm’s sta-
bility. Moler [22] and Higham [23] studied the bound of the computational error in iterative
solvers. They were able to distinguish different sources of round-off errors in iterative algo-
rithms. Working with a smaller u usually leads to a better result accuracy in most applications,
but there are cases for which the programmer must be aware that it does not [23] (Chapter 2).
The value of u, which bounds the relative error to the required value, can be computed with
perturbation theory [23] (Chapter 3), divided into two main methods. The first one is forward
error analysis, which considers the input data and examines how each operation magnifies er-
rors. The second one is backward error analysis, which considers the output data and asks the
question, what is the interval of inputs that could lead to this output. So it does not consider
the output error.

Conventionally, algorithms are instrumented after a static analysis of the round-off error,
done with the perturbation theory [23]. Few algorithms accept a closed-form to express the
round-off error. The ones who accept it are quite simple (e.g., square root, division, and linear
matrix operations). For several algorithms, even if these bounds are available, calculating them
is more expensive than the algorithm itself (for example, when it involves an explicit value of
the condition number) or is too pessimistic.

For instance, the solution deployed in linear algebra for iterative solvers is to periodically
evaluate the residual, that is supposed to convey some information about the distance from
the exact solution, after each computation phase. If the norm of the residual is not satisfactory
(i.e., above a threshold fixed a priori), a new computation macro phase is started. These steps
are repeated until the target error bound is met, or the number of iteration overpassed. Finally,
another alternative is to profile a priori the application, which is only possible when the data set
presents reproducible characteristics. However, it is not the case for general-purpose libraries
as the ones used in scientific computing.

Using interval arithmetic to bound the rounding error

Interval Arithmetic (IA) is an alternative to error analysis. With its use, rounding and measure-
ment errors can be bound. In IA, each represented value is an interval. For instance, instead
of rounding a variable to 2.0, IA provides an interval saying that the result is between 1.97 and
2.03. The main objective of IA is to get the inclusion property in results. In IA, the inclusion prop-
erty guarantees that, for every input interval, the result of a specific function always contains
the one of the same function computed with infinite precision. It is possible to implement this

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

2.1. Benefits of variable precision in Floating-Point computing 9

property by guaranteeing that every arithmetic operator (e.g., +, -, ˆ, and ˜) respects it.

@x P Ix,@y P Iy, x` y P Ix`y

The inclusion property is the reason why exact computation can be realized with IA, guarantee-
ing reliable results. The most common use of IA is to keep track of rounding and computational
errors directly during the calculation.

Unfortunately, the quick compounding of errors hinders the use of IA, especially in itera-
tive or convolutional applications, which leads to the well-known problem of interval explosion.
Since IA enlarges the computed results to guarantee the inclusion property, some variables
(e.g., those used as accumulators) may quickly get their interval enlarged at each iteration.
These accumulations lead to having results in intervals so large that they get meaningless,
e.g., p´8;`8q. In other words, the round-to-nearest (round half away from zero) policy, used
in conventional FP computing, compensates somehow the computational error among opera-
tions. On the contrary, IA enlarges the output interval systematically to guarantee the inclusion
property.

Variable Precision (VP) can be used in IA to reduce the interval explosion effect by increas-
ing the precision of intervals endpoints. VP cannot prevent the interval explosion effect. By
augmenting the data precision, VP can help IA to go further in the algorithm, for instance,
in iterative computational geometry applications, without having meaningless results. Under
these circumstances, if the target algorithm is simple enough, the programmer does not need to
rethink the code. It still obtains an interval of confidence in output that respects the inclusion
property. The state of the art for VP IA computing is the MPFI software library [24].

IA can also be used to fix control code constructs in FP algorithms. A typical example of
ambiguity in the control code is a condition that checks the equality of a variable with the value
zero with the ‘==’ operator.

if (op(var1,var2)==0.0) dotrue(); else dofalse();
An error in computing the condition may significantly impact the precision of the final result.
There are some cases when this condition is meaningless since op(var1,var2) may be affected
by the cancellation effect. Thus, its actual value is not zero. In this case, increasing the precision
of the result may not be enough. The solution proposed by this work is to adopt IA as a tool to
avoid this kind of problem.

With IA, the previous problem can be formulated more solidly by checking whether the
result of op(var1,var2) contains the value 0.0, rather than checking if it is precisely equal to
zero. With this formulation, it is possible to instrument the code to ensure that 0 is a possible
value of op(var1,var2). Unlike for scalars, IA does not have simple three-way comparisons.
Other cases, such as “do two intervals contain both the value x?” have to be considered. This
study does not address this problem. For more details about interval comparisons, please refer
to the IEEE 1788-2015 standard for interval arithmetic [25].

Another classic problem of IA is that x ´ x ‰ 0. In IA, this operation outputs an interval
containing zero. Operations among intervals containing zero magnify the interval explosion
effect.

IA can be useful in several applications. As a general rule, the applications which benefit
from using IA, exploiting the inclusion property to gain reliability on the result, are the ones
that do not have a long chain of operations (e.g., non-iterative applications). Among other
applications, this work identified two main categories of such applications. The first relates to
control algorithms, e.g., the control code of a robot which has to guarantee the integrity of the
robot and the people surrounding it. This category requires large intervals that do not require
high precision to check the domain of validity of internal variables. The second category is
related to computational error computation. This category requires small intervals with high
precision to evaluate the computational error of a given algorithm.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

10 Chapter 2. Motivations for the variable precision

2.2 Variable precision: improving and tracking applications compu-
tational error

There are several applications where the numerical stability is a primary concern and where
the memory format used to store intermediate variables drives the computational error. These
applications partially motivate the choice of having multiple Floating-Point (FP) formats in the
IEEE 754 standard. However, these formats have two main limitations justifying the need for a
Variable-Precision (VP) FP memory formats:

1. They have bit-sizes which are limited to powers of two.

2. They cannot have bit-sizes beyond 64 bits (or 128 for the new standard version).

For the first point (1), this choice keeps variables aligned in memory on power-of-two
boundaries. This alignment simplifies the data organization in memory, the hardware, and
compiler design. Despite, increasing to the “next” IEEE 754 FP format (e.g., from 32-bit float
to 64-bit double) doubles the size of the variables, which increases the cache miss rate and
degrades the performance of the executed program. A smaller increase of the fractional part
would be sufficient in many applications and would lead to a smaller memory footprint of FP
variables.

With a VP format, the programmer can tune the memory footprint of FP variables with
finer granularity while having better control over their precision and on the bound of their
computational error. In this way, FP variables have a minimal memory footprint concerning
the IEEE standard. They do not need to be doubled, and they can still be stored on contiguous
addresses in memory. Minimizing the memory footprint of variables maximizes the cache hit
rate and, as a consequence, the system performance. The gain in performance is due to the
reduced memory footprint of variables, including the more compact stack region required by
the compiler to move data among functions.

For the second point (2), every time a computation needs a higher (or different) precision
than the ones provided by the hardware, software libraries (e.g., MPFR [9]) must be used. These
libraries encode the FP data on complex data structures, and library function calls perform
operations between them. Concerning conventional floats, the usage of these libraries makes
the code writing more complex, and the vast memory footprint required by FP data, encoded
as structures, makes the program execution slow. These two points motivate the research on
VP FP formats different from the IEEE 754 standard.

2.2.1 Variable precision to bound the computational error

The capability to bound the computational error in an expression is the essential requirement
for the forward and backward error analysis. These error analysis techniques define the preci-
sion of the variables in FP algorithms. They were used by Higham [23] to bound the computa-
tional error of iterative solvers.

When focusing on iterative solvers, computing the residual with higher precisions allows
us to decrease the algorithm’s computational error [23], [26]. There are several techniques to do
that. The first technique is to increase the computing precision inside the computing unit (like
Kulisch [4]). Unfortunately, it is not sufficient in the cases where the number of variables that
require high precision is greater than the number of extended-precision accumulators available
in the computing unit.

The second technique is to store extended-precision accumulators of the computing unit in
memory. Some VP formats, which are compatible with the memory hierarchy organization,
have to be selected. This work focuses on these formats.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

2.3. Variable precision for high-precision scientific applications 11

2.3 Variable precision for high-precision scientific applications

Nowadays, modeling calculation is often performed on 32-bit (or more commonly on 64-bit)
systems while employing the IEEE 754 Floating-Point (FP) standard. The reason behind this is
mainly the availability of stable hardware and software easy to use and affordable.

However, according to Morrison [27], when complex non-linear dynamic systems have to
be described or solved, “no level of numerical accuracy is always enough”. The meaning of
this expression is twofold. First, the IEEE 754 formats’ precision may not be enough for some
application domains, which brings room for improvements in both algorithms and VP FP rep-
resentation formats. Second, there is a real demand and need from the scientific community
for bigger memories, larger data-paths, or larger FP formats.

Thus, this section presents a non-exhaustive list of application domains that are considered
meaningful for Variable Precision computing (Section 2.3.1). This discussion ends by showing
to the reader that most of the high-precision scientific-applications concerns to linear systems
solving (Section 2.3.2).

2.3.1 High precision scientific application domains

This work defines “high precision scientific applications” as the applications that require higher
precision than the IEEE 754 64-bits FP format. A list of these kind of applications is made by
Bailey in [28]. We choose the 64-bit boundary because it is the most common among modern
high-end computer architectures suitable for scientific computing. This section presents a non-
exhaustive list of applications that require hardware support for high, even variable, precision
FP computing. It mainly focuses on the computation techniques used in computational physic
and computational chemistry since they are excellent representatives of scientific computing.

Computational physic

Computational physics [29] covers topics such as climate model, weather forecast, and astro-
physics, as well as industrial topics such as electromagnetics, fluid mechanics (computational
fluid dynamics), and protein structure prediction. In most cases, the models are translated into
systems of linear equations, or systems of Partial Differential Equations (PDEs), or systems of
Ordinary Differential Equations (ODEs). Scientists extensively use numerical methods to solve
these systems. Those methods approximate the functions of interest by polynomials, which are
translated into systems of linear equations, computers can handle that. From [30], it is possible
to generate three classes of numerical techniques:

• The Finite-Difference Methods (FDM [31]) are numerical methods for solving differential
equations. FDMs are discretization techniques that solve differential equations by ap-
proximating them with finite difference equations. FDMs convert a linear (or non-linear)
ODE system, or PDE system, into systems of linear (or non-linear) equations which can
then be solved by linear algebra techniques.

• The Finite-Element Method (FEM) is a numerical method for solving problems of par-
tial differential equations. The FEM formulation of the problem results in a system of
algebraic equations by approximating the unknown function over the domain. To solve
the problem, it subdivides a complex system into smaller parts called finite elements.
The equations that model these finite elements are then assembled into larger systems of
equations that model the initial problem.

• Spectral Methods (SM), like FDMs and FEMs, can be used to solve problems like ODEs
and PDEs. Spectral methods [32] are a class of techniques used to numerically solve some

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

12 Chapter 2. Motivations for the variable precision

differential equations, potentially involving the fast Fourier transform. SMs and FEMs
are similar. The main difference between them is that SMs use basis functions that are
are global smooth functions (very commonly Fourier series, or orthogonal polynomials
for non-periodic problems), while FEMs use basis functions that are usually polynomials
of fixed degrees with null value outside of the neighborhood grid points. The advan-
tage of spectral methods is that if the problem parameters are analytic functions, their
convergence is exponential in the number of basis vectors. In the presence of discontinu-
ities, their behaviour may become less satisfactory, c.f. the Gibbs phenomenon in Fourier
analysis [33].

The approximation techniques in FDMs, FEMs, and SMs suffer from different error sources:
they generate an intrinsic error, depending on the choice of basis functions and their discretiza-
tion. All three methods go through a linear solving phase, which amplifies this functional error.
Thus, VP FP computing can find a place in the linear solving phase by reducing this error.

Examples of VP applications are all the physics problems that translate the first ODEs set
into a set of coupled first-order differential equations. An algebraic function vector, called
“stepper”, integrates these equations.

The integration method may vary according to the problem. The most common beings
Runge-Kutta, Richardson extrapolation, or multistep [34], chapter 17. In all cases, even for stable
systems, the round-off error is accumulated, but cannot be compensated as in iterative meth-
ods. This accumulation of errors may be related to the precision used in local steps [35]. Thus,
the use of VP in the stepper allows us to trade the global computational error against an in-
crease in computation complexity for a given number of iterations.

Computational chemistry

Computational chemistry is a branch of chemistry, based on computer simulations, widely
used in the design of new drugs and materials. It uses theoretical chemistry methods, incor-
porated into efficient computer programs, to compute both static and dynamic configurations
of molecules and solids. Taking quantum effects into account, it renders the problem more
complicated than classical mechanics [36].

Besides methods based on simplifications of the fundamental atomic interaction laws, more
modern solid-state applications rely on Density Functional Theory (DFT) to reach good accu-
racy with a comparatively low computational cost. Within the vast spectrum of numerical
techniques involved in DFT algorithms, some explicitly require high precision, e.g., the com-
putation of the accumulation of electron density [37]. The complexity and the large size of the
problems require advanced numerical methods:

• Dense or sparse calculation of eigenvalues is a widespread problem, which appears in
the computation of wave functions from a Hamiltonian.

• Spectral element methods solve plane wave formulations [30].

• Finite differences are also used, and they are generally preferred to finite elements for
regular grids.

• Computing minimum potential energy involves non-linear, unconstrained optimization
problems. Therefore, optimization techniques are also considered, such as steepest de-
scent or conjugate gradient.

Since both computational chemistry and physics require solving large linear systems with high
precision, Section 2.3.2 provides a general overview of the techniques and methods that can be
used to solve these systems.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

2.3. Variable precision for high-precision scientific applications 13

2.3.2 Solving large linear systems

Numerical methods’ literature well covers linear algebra because of its very central role in
many scientific applications. The most representative kernel is the linear solver, which com-
putes the solution x of a linear system Ax “ b. In physics and chemical modeling, the typical
problem sizes range from 103 to 106, which has two direct implications:

• Matrix storage becomes a crucial issue, even though the matrices considered are sparse.
Hence, methods working on the full matrix size should be avoided.

• Computing is memory bound. Memory bandwidth optimization is at least as crucial as
arithmetic latency in the system’s overall performance. System design takes both criteria
into account by using composite performance models (e.g., roofline model [38]).

Classical solvers are based on direct methods that compute the solution in one pass. The
LAPACK package [39] collects most of these methods and has been used in scientific applica-
tions. Direct methods are still used for linear systems of “small” size (e.g., in signal processing
for embedded applications). For linear systems whose size is above 103 elements, iterative
techniques are preferred since they require less computation and memory resources1. Vari-
able precision is particularly suitable for such techniques: it reduces error computation while
increasing only the memory footprint of the solution vector.

Difference between direct and iterative algorithms

Direct methods generally offer stable and predictable results for “small” matrix sizes (e.g., with
up to m=103 elements). The memory cost, Opm2q, and processing costs, Opm3q, of direct meth-
ods, limit their scalability.

Algorithm 1 General scheme of an iterative solver that computes the solution x of Ax=b
1: n “ 0
2: compute x0
3: while (n ă max) do
4: rn “ Axn ´ b
5: solve Aˆ dn “ rn Ź It is a simpler solver, it returns only an approximation of dn
6: xn`1 “ xn ` dn
7: n``

Algorithm 1 shows the generic pattern for iterative methods. The “solve” step (line 5) may
return an approximation of dn, used to compensate (for each iteration) the computational error
on xn. Iterative solvers differ from the approximation technique implemented in this step.

The drawback of iterative methods is that they do not always work out of the box. Different
problems do require different iterative solver settings, depending on the nature of the equations
and the data to solve. Moreover, iterations introduce their own round-off error term, which can
contribute to the algorithm’s non-convergence. For this reason, rn should be computed with
higher precision than one of the output results. Wilkinson and Moler cover this point.

Wilkinson-Moler bounds

According to Wilkinson [41] and Moler [22], it is possible to bound the computational error of
iterative solvers while distinguishing different sources of round-off errors. They proposed to
compute the intermediate values of dn with another precision (ε2) concerning one of the input

1 However, for sparse matrices, MUMPS is a counter example [40].

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

14 Chapter 2. Motivations for the variable precision

Figure 2.2: Decomposition of relative error for a general iterative solver

values (ε1). Moler’s equation (Equation 2.1) bounds the computational error of an iterative
solver between its exact theoretical result x and the calculated result xn, at the iteration n,
which includes the round-off error.

}xn ´ x}
}x}

ď pκpAqε1q
n
` µ1ε1 ` µ2NAκpAqε2 (2.1)

In this bound, ε1 is the initial precision of the input data, ε2 is the computation precision
inside the FPU, κpAq is the condition number of the input matrix A, n is the number of iterations
of the iterative algorithm. The coefficients µ1 and µ2 depend on the input matrix, while NA
depends on the ε2 value (for more details, please refer to [22]). Out of this complex notation,
Figure 2.2 depicts how the terms of the relative error bound (Equation 2.1) behave along with
the number of the algorithm iterations:

• The first term pκpAqε1q
n is in Opε1q

n, becomes negligible when the number of iterations
of the algorithm increases (n Ñ8).

• The second term µ1ε1 is in Opε1q, bounds the maximum precision achievable for the out-
put result. There is no sense to have an output precision better than the starting one
(ε1). Thus, this term somehow limits the maximum number of iterations n to achieve the
maximum output precision.

• The third term µ2NAκpAqε2 is inOpε2q, bounds the round-off error introduced during the
computation. By tuning ε2 with a “big enough” precision (smaller ε2), the round-off error,
magnified by the condition number κpAq of the input matrix A, can be compensated.
Variable Precision is useful for this tuning.

2.4 Problems in using variable-precision computing

This section focuses on the problems that may arise when using Variable Precision (VP). First
of all, in an algorithm, the set of variables for which the augmentation of their precision may
improve the algorithm output results changes among applications. For example, considering
ODE (Ordinary Differential Equations) solvers, the precision adjustment may concern only a
subset of the problem variables, or only the intermediate values (as in linear algebra), or all
of them (in chaotic problems). Since this work considers a dynamic adjustment of precision,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

2.4. Problems in using variable-precision computing 15

of precision bits5 2410 53 112 300 3000

(half) (floats) (double) (quad) (100 digits) (1000 digits)

Signal processing

Linear solvers for FEM, FDM

100 digit challenge

Exprerimental math, chriptography

Figure 2.3: Required fractional fields sizes of floating-point variables involved for (a non-exhaustive list of) dif-
ferent applications

which means that the precision of variables changes during the process runtime, it must also
define when the change occurs, and the decision criteria.

The question of dynamic criteria for changing precision is a complex mathematical issue,
and the solutions depend highly on the applicative context. One may use a priori estimations
of the condition number, or dynamic error evaluation when the condition number value is
available and not too computationally demanding, or even interval arithmetic to qualify the
result bounds. In the (extreme) case of chaotic systems, a usual way of judging the validity
of the numerical result is to compare the results obtained by different computation methods
applied to the same problem.

VP is meaningful for complex contexts, where developers and users demand a highly
reusable programming model and are very reluctant to alter their legacy code. Section 4.8
addresses this other subject. Sections 2.4.1 and 2.4.2 describe the impact of importing VP for
high and low precision applications.

2.4.1 Impact of high precision in computing systems

High precision scientific computation involves Floating-Point (FP) numbers with potentially a
large mantissa bit-widths. This section discusses the problems that may arise during computa-
tions among high-precision values in real computing systems. To start this discussion, the first
part of this section illustrates which are the orders of magnitude of the precisions involved for
some application domains. The second and last part of this section discusses the problems that
may arise in high-precision computing due to memory constraints.

Significand sizes for variables involved in scientific computing

Most representations of real numbers are radix-based. The following equation depicts a possi-
ble representation of a number x.

x “ mˆ βe

The symbol m notes the significand (or mantissa) of x, β the radix, and e the exponent. Repre-
senting the number requires to store both significand fraction and exponent in memory. Here-
after, this study adopts the base 2 (β “ 2) to represent numbers in memory. Thus, the e and m
fields are represented in binary format.

Figure 2.3 depicts the number of fractional bits involved in the calculations depending on
the target applications. Depending on the application, the bit size of the significand field of the
FP numbers involved, its precision, may range from a few tenths of bits to several thousand.
For example, some integrals in physics modeling typically require hundreds of bits above the

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

16 Chapter 2. Motivations for the variable precision

usual precision [42], [43]. Recently, a competition proposed ten relevant problems that have to
be solved with 100-digit precision [44].

There are even more extreme cases in quantum physics where very high precision is re-
quired. For example, authors of [45] solve Schrödinger type equation eigenvalue problems
numerically with very high precision (from thousands to a million decimals), to derive the
wave-functions precisely enough to model the behavior of their system. However, this type
of calculation is obtained with Taylor expansions and makes extensive use of specific large
numbers of multiplication methods. Therefore, this case may be out of the scope of this study.

Memory constraints for variables involved in scientific computing

During high precision scientific computation, the programmer has to face physical hardware
systems. Modern systems have 64 bits of internal data-path bit-width. Thus, the programmer
must structure his code in such a way it can exploit the system underneath.

The problems that may arise, in modern computing systems, during high-precision scien-
tific computing, are basically due to the main memory architecture. These problems are:

• The programmer must take care of all the techniques to write code to avoid stack overflow
or page overflow. These issues may arise when passing massive parameters in the stack
among functions, or when allocating massive data structures in memory.

• All high-precision variables need dynamic memory allocation on the heap. System-calls
perform this allocation. However, they complicate the writing of the code and slows
down the overall execution.

• State of the art code for high-precision scientific computing applications leverages soft-
ware libraries [39], [46], and this brings two main problems. Taking MPFR [9] as an
example, the first problem is that the system memory (including the cache) is polluted
in a way that is difficult to predict with intermediate software variables instantiated by
MPFR routines. The second problem is that, for programming reasons, the exponent and
the mantissa of a given value are not contiguous in the main memory. This problem arises
when using large memory structures (e.g., a matrix of high precision FP values): the num-
ber of cache misses due to the bouncing of the code to fetch exponent and mantissa values
from memory may increase. Complex problems slow down system performance.

• Finally, to operate on variables that are not aligned on power-of-two boundaries, or on
variables which have to be elaborated through software libraries, dedicated hardware
support is required.

2.4.2 Impact of low precision in computing systems

Low (or reduced) precision computation involves short Floating-Point (FP) numbers. In this
work, low-precision FP numbers are all the FP numbers with a bit-width smaller or equal than
the system data-path one (e.g., 64 bits). In low-precision Variable-Precision (VP) computing,
the main challenge is to deal with encoding variables on a length, which is not a power of two.

Reducing the bit-width of variables can bring three main challenges:

• As for high-precision variables, dealing with variables not aligned on power-of-two
boundaries.

• Detecting saturation when the exponent range of variables is too small.

• Detecting the non-convergence of algorithms when the precision of the variables is too low.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

2.4. Problems in using variable-precision computing 17

The first point, as for high-precision variables, can be overpassed by providing dedicated
hardware support. This hardware support can mask the potential additional latency needed to
handle misaligned variables in memory.

The second point concerns the saturation problem. It may arise when, without modifying
the algorithm, the length of variables, in particular their exponent dynamics, is reduced. By re-
ducing the exponent dynamics, some operations inside the algorithm may saturate to infinity.
This saturation is easy to detect through elemental software debugging techniques. The pro-
grammer could use saturation to evaluate the minimum exponent dynamics that each variable
can have according to a specific input data set.

The last point concerns the non-convergence problem. It may appear when, without restruc-
turing the algorithm, the precision of variables is reduced. Reducing the precision of variables,
some intermediate variables of the algorithm may diverge (or converge) to wrong values. This
effect is due to the accumulation of errors magnified by the reduction of the precision. The
non-convergence is not always easy to detect since some iterative applications converge to a
wrong solution (a canonical example is the "three-body problem"). The programmer can eval-
uate the minimum required precision that each variable can have according to a specific data
set by using the non-convergence effect.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

19

Chapter 3

State of the Art: what is known for
variable precision

Figure 3.1 depicts the Floating-Point (FP) formats available in state of the art. Modern applica-
tions use the IEEE 754 FP formats 2 defined in the IEEE 754 standard [1]. They are represented
on predefined bit-lengths. According to Chapter 2, because of the discrete nature of fixed-size
FP formats, FP applications are affected by rounding, cancellation, and absorption, computa-
tional errors. The accumulation of these errors can lead quickly to entirely inaccurate results.

As stated in Chapter 2, Variable-Precision (VP) computing can improve the accuracy of the
final result of a problem to be solved by varying the precision of variables in memory. VP
computing has been explored through several programming languages, software dedicated
libraries, and hardware models.

This chapter depicts the state of the art of VP computing. Section 3.1 focuses on the VP for-
mats available in state of the art. It firstly provides a global picture of the existing VP formats,
and then it focuses on some of them in Sections 3.1.3, 3.1.4, and 3.1.1. These VP formats are
compared with each other in Section 3.2.

To conclude this chapter, Section 3.3 covers the software and hardware VP implementations
in state of the art. Section 3.3.1 introduces the existing VP software libraries. Then, Section 3.3.2
shows architecture examples of existing FP units. After that, it presents the two main VP FP
hardware architectures: the Kulisch one, in Section 3.3.3, and the Schulte one, in Section 3.3.4.

Floating-point
formats

Fixed-precision
formats

Kulisch
acc.

1©

IEEE-754
standard

2©

IEEE-754 like

DLFloat, Bfloat16, . . .
3©

Variable-Precision
formats

Arbitrary-precision
formats

Custom
IEEE-like

pMPFR, Schulteq
4©

Dynamic-precision
(exponent-harvesting)

formats

UNUM
5©

posit
6©

. . .

Figure 3.1: Subdivision of the existing floating-point formats in state of the art

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

20 Chapter 3. State of the Art: what is known for variable precision

3.1 Variable-precision FP formats and representations

This section focuses on the existing Floating-Point (FP) formats available in state of the art.
Figure 3.1 divides into categories some of these formats. FP formats can be divided into two
major families: Fixed-precision formats and Variable-precision formats. The first one contains all
FP format with fixed size and fixed length for the exponent and fraction FP fields. The second
one contains all the FP formats with variable size and variable length for the exponent and
fraction fields.

In the fixed-precision family, FP numbers can be represented only with some allowed FP
configurations (with predefined sizes for the exponent and fraction fields). This family is di-
vided into three categories: the formats which implement FP operations employing fixed point
accumulators 1 (e.g., Kulisch [4]), the formats which follow the IEEE-754 standard [1] 2 ,
and the formats which mime the IEEE-754 standard with different 8-bit length configurations
for exponent and mantissa 3 . Examples of the latter are the DLFloat [47] and Bfloat16 from
Google [48]. With fixed-precision formats, the programmer has minimal flexibility in tuning
the precision, and memory footprint, of the target application variables: it is possible only to
change the utilized format. For most applications this is not a limit, and programmers can
benefit of state of the art FP hardware acceleration. However, in the fixed-precision family,
advanced programmers cannot customize the bit-length of FP numbers or the bit-length of the
FP fields.

Thus, the scientific community investigated the second FP formats family: the Variable-
Precision (VP) ones. The VP family hosts FP formats, suitable for VP computing, where the
user can tune (according to some rules) the bit-length of the full number, or the bit-lengths of
the exponent and fraction fields. According to Chapter 2, VP computing allows us to obtain
better computation precision, and therefore, better result accuracy. VP formats are divided into
two subcategories: Arbitrary-precision and Dynamic-precision formats.

Arbitrary-precision formats are all the three-fields (IEEE-754 like) VP FP formats, with cus-
tomizable bit-length (at compile time) for the exponent and fraction fields 4 . Within this
family, the programmer can bound the mantissa and exponent bit-length of FP variables, de-
pending on their maximum required precision and their maximum value in magnitude (like in
MPFR [9] and Schulte [49]). Examples of VP FP formats belonging to this category are the ones
defined in the Marto [50] HLS library.

Dynamic-precision VP-formats, 5 and 6 on figure, follows the idea of “trying to compact
the FP exponent field, for exponent values near zero, to gain precision for the mantissa field”.
These formats leverage different types of exponent encodings to minimize its memory footprint
near the value zero.

Section 3.1.1 covers in detail the custom IEEE-like. Section 3.1.2 illustrates the exponent-
harvesting used in the UNUM and the posit VP FP formats. These two formats are covered in
Sections 3.1.3 and 3.1.4, respectively. This work adopts the UNUM format as memory format
since, at the beginning of this work (2016), only the UNUM format existed as VP FP format.

3.1.1 The custom IEEE-like formats

This section covers the arbitrary precision Floating-Point (FP) formats that mime the IEEE 754
standard and follow some of the rules defined in it. This category of formats contains all the FP
formats based on a three-field encoding and fixed in size. With these formats, the programmer
can tune the lengths of the exponent and fraction fields according to some rules dictated by the
hardware constraints.

Figure 3.2 shows the custom IEEE-like format. It is similar to an IEEE-754 format, but unlike
it, the user can tune the exponent size (es) and the fraction size (fs). The rules to express unique

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

3.1. Variable-precision FP formats and representations 21

s e f

es fs

Figure 3.2: Custom IEEE 754-like floating-point format

values (such as infinite or not-a-number), and the ones for rounding, can be different (or not)
from the ones defined in the IEEE-754 standard.

Equation 3.1 shows a possible absolute value that may be encoded in a custom IEEE-like
format (Figure 3.2). In this equation, some unique encodings for the exponent and fraction
fields define the Not-a-Number (NaN) and infinity (8) values. NaN is used to detect when op-
erations output a non-existing numbers (8 ¨ 0 “ NaN). Infinity can be used to detect overflow
in FP operations (BigNumber1 ` BigNumber2 “ `8, BigNumber

SmallNumber “ `8).

x “

$

’

’

’

’

&

’

’

’

’

%

NaN if e “ emax

˘8 if e “ emax ´ 1 & f “ fmax

p´1qs ¨ 2´p2
es´1´1q ¨ p0` f

2 f s q if e “ 0
p´1qs ¨ 2e´p2es´1´1q ¨ p1` f

2 f s q if e ą 0

(3.1)

3.1.2 Exponent-harvesting techniques

In conventional FP formats, the exponent field is encoded on a fixed amount of bits. With
“exponent-harvesting” encodings, this work denotes all the exponent encodings which try to
harvest some exponent bits for exponent values around zero. These bits can extend the man-
tissa field and increase the precision of the FP number. This work identified two main types of
exponent-harvesting encodings.

es-1 e

ess es

The first one is the exponent encoding used in by the UNUM [2] format 4 . Here, the
exponent is encoded in two distinguished fields: the first to encode the exponent size (es), and
the second to encode the exponent (e). The es-1 field size (es size, ess) is constant, and the e
field size depends on the value encoded in the es-1 field. Negative exponent values (exp) are
encoded with a bias which changes according to the exponent size.

exp “

#

e´ p2es´1 ´ 1q, if e ‰ 0 (normal), where 0 ď e ď p2es´1 ´ 1q
1´ p2es´1 ´ 1q, if e “ 0 (subnormal)

With this representation, the value with minimal footprint is the value one with ess+1 bits (es-
1=0 and e=1). The maximum representable exponent value depends on ess. The larger is ess,
and the higher is the maximum representable exponent value. The es-1 field adds overhead in
the exponent representation of ess bits, compared to a two’s complement representation, or a
biased one (like IEEE 754). This bit-overhead involves a loss on the mantissa representation of
the same amount of bits for exponent values large in magnitude. This overhead is logarithmic
on the maximum supported exponent value of the format.

The second type of exponent encoding is adopted in the posit [3] format 5 . Here the ex-
ponent encoding is not biased and it is encoded on two separated fields: the regime field (r),
which hosts the regime bits, and the exponent field (e).

r0r1. . . rm´1 rm e
looooooooooomooooooooooon

regime bits

lzoc 1 es

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

22 Chapter 3. State of the Art: what is known for variable precision

s e

exponentsign
f

fraction

u

ubit

es-1
exponent

size

fs-1

fraction
size

es bits fs bits

Figure 1.2: The UNUM floating-point format (repeated from page 2)

The exponent field size (es) is constant, while the size of the regime field changes among
the encoded exponent values. The regime field is made of two parts. The most significant one
(r0r1. . . rm´1) is a variable-length sequence of either all zeros or all ones. The second part is
a single bit (rm) used as a termination bit to delimit the first part. This bit is opposite to the
ones unused in the first part. The length of the first part (which can be computed through a
leading-zero-one-counter, lzoc) is used to encode the magnitude and the sign of the exponent
(exp).

exp “

#

`pplzoc´ 1q ¨ 2esq ` e, if r0 “ 1 (positive values)
´plzoc ¨ 2esq ` e, if r0 “ 0 (negative values)

In this encoding, the exponent is not biased anymore. The lzoc and e encode the exponent
value. The exponent values are divided into slots containing 2es exponent values each. The lzoc
value points the slot (or the exponent magnitude), and the e value points the exponent value
within the slot (it works as an offset). If the most significant part of the regime field is zero, the
exponent value is positive; else, it is zero.

With this representation, the exponent values with minimal bit-length are the 2¨2es values
nearby the exponent value zero. They are represented on es+2 bits (lzoc=1). The maximum
representable value for the exponent depends on the available amount of bits to encode the FP
number. If n bits are available, the maximum exponent number representable with this encod-
ing is ((n-2)¨2es)+(2es-1). This exponent encoding can guarantee a more compact representation
nearby zero compared to UNUM. The exponent footprint grows linearly with the exponent
value.

3.1.3 Exponent-harvesting formats: the UNUM format

This section presents the UNUM format introduced by J.Gustafson in [2]. The UNUM Floating-
Point (FP) format (Figure 1.2) is self-descriptive about the exponent size and the fraction size. It
extends the three-field IEEE FP format adding three additional fields (the so-called utag):

• The es-1 and fs-1 fields. They express the bit size (minus one) of the exponent and fraction,
respectively.

• The ubit (uncertainty bit) field. It supports interval arithmetic in the format. It encodes
the exactness (ubit=0) or not (ubit=1) of the FP number.

The UNUM format requires that the minimum length of each field is one bit. Please note
that the exponent size and fraction size fields contain the absolute value of the bit size of the
corresponding fields decremented by 1. Unlike the IEEE-754 standard, the sizes of the exponent
and the fraction fields (es and fs) are dynamic. Their values can be customized based on the
needs of the application and user. According to [2], those fields should be aligned on the right
of the ubit. In this way, all the additional three fields can be stripped away easily if just the float
part of the number is needed.

The size of the es-1 and fs-1 fields, ess (es size) and fss (fs size), define the maximum length
of the UNUM fields. The couple (ess,fss) is named UNUM Environment (UE). In UNUM, the
number of exponent bits ranges from 1 to 2ess, while the number of fraction bits ranges from 1
to 2 f ss. The minimum and the maximum footprint of a UNUM are ess` f ss` 4 and ess` f ss`
2ess ` 2 f ss ` 2, respectively.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

3.1. Variable-precision FP formats and representations 23

Figure 3.4: Exact values (ubit=0) of a UNUM number in a 5-bit encoding [2]

How to decode the UNUM format

The value encoded in the UNUM format, without considering the ubit field, is depicted in
Equation 3.2.

x “ p´1qs2e´p2es´1´1q`p1´Boolereą0sq ¨

ˆ

Boolere ą 0s `
f

2 f s

˙

(3.2)

It expresses the value of a three-field FP number in function of the number of bit used to repre-
sent the exponent and fraction fields (this number is defined by the current UE). Equation 3.2
is not a continuous formula. It depends on the result of the Boolertests function (that returns 1
if the test is true, and 0 if the test is f alse). The fraction f

2 f s is always between 0 included, and
1 not included (fď2 f s-1). Depending on if Boolere ą 0s function returns 1 or 0, the number is
represented in normal or subnormal form respectively. Equation 3.3 rewrites the Equation 3.2. It
shows the differences between normal (e ą 0) and subnormal (e “ 0) numbers representation.

x “

#

p´1qs ¨ 2e´2es´1`2 ¨ p
f

2 f s q if e “ 0, subnormal
p´1qs ¨ 2e´2es´1`1 ¨ p1` f

2 f s q if e ą 0, normal
(3.3)

How to encode infinity UNUM intrinsically supports both normal and subnormal numbers
and embeds them into its format. In FP arithmetic, special FP values like ˘8 and NaN are
essential. This section shows how UNUM encodes the ˘8 values are encoded in UNUM.

The UNUM format dedicates two values to represent infinity (using the sign to determine
`8 or ´8). The encodings chosen to represent these numbers are the two largest numbers (in
modulo) that the UNUM format can represent: the ones with the es-1, fs-1, e, and f fields with
all the bits set at 1. They are mapped as positive and negative infinity (˘8), with the ubit set to
0. Equation 3.4 shows this concept with a mathematical representation.

x “ p´1qs ¨

$

’

&

’

%

2e´2es´1`2 ¨ p
f

2 f s q if e “ 0
8 if e “ emax & f “ fmax

2e´2es´1`1 ¨ p1` f
2 f s q otherwise

(3.4)

Figure 3.4 plots the possible values of Equation 3.4 in a five-bit float example: one bit for
the sign, two bits for the exponent, and two bits for the mantissa. Here, the range of values that a

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

24 Chapter 3. State of the Art: what is known for variable precision

UNUM number can reach (vertical axis) is more extensive than the one defined in an IEEE 754
number (with the same exponent and fraction field sizes). This is because in the UNUM format
all the encodings used to map NaN values in the IEEE-754 standard (NaN|e “ emax,@s,@ f ‰ 0)
are used to represent FP values. According to [2], this allows us to avoid choosing a larger
UNUM environment, which enlarges the bit-lengths of the exponent and fraction fields of a
UNUM number when it is not needed. This argument is valid for numbers defined on few bits
(e.g., 5), but it is negligible for larger numbers (e.g., on 32 bits). Before presenting the encoding
for not-a-number values, the usage of the ubit is presented.

The usage of the “ubit” field This section presents the usage of the ubit (uncertainty bit) flag
in the UNUM format. If it is 0, the UNUM number is an “exact value”. It is possible to obtain
an exact value if the previous operation did not need to round the fraction field. If it is 1, The
UNUM number is a “not-exact value”. It is possible to obtain a not-exact value if the previous
operation did round the fraction field. The not-exact flag signals that, in a number, there are
some non-zero bits after the end of the fraction, but there is no space to store them in the current
UNUM format setting.

The ubit field, if set to 1, indicates a one-ULP worth of error or uncertainty of its value [2].
A ULP (Unit of the Least Precision) is the difference between exact values represented by bit
string that differ by one Unit in the Last Place, or the last bit of the fraction. The ubit encodes
this difference, which embeds interval arithmetic within the UNUM format.

In a chain of rounded FP operations, the error can exceed one ULP. A UNUM operator,
to correctly bound the computational error in UNUM, enlarges the ULP by reducing fraction
size (i.e., it decrements the fs-1 field). The increasing of the ULP width captures the interval
explosion effect in standard UNUM computations, as in conventional interval arithmetic (Sec-
tion 2.1.3).

Almost infinity, NaN and almost zero encodings FP values like ˘8 and NaN are essential
to support FP arithmetic. Out of all the possible intervals encodable in a UNUM, two concepts
deserve particular mention: almost infinity and beyond the infinity.

Almost infinity Setting the ubit of a UNUM transforms the FP number from a scalar value
to an interval. One of them is the possibility to represent the concept of “almost infinity”,
meaning “a finite number that is too big to express”. This number is pretty different from the
mathematical definition of “infinity”: infinity is the conceptual expression of such a “number-
less” number (infinity is the quality or state of endlessness or having no limits in terms of time,
space, or other quantity). This value corresponds to the UNUM number with the higher finite
value that a UNUM format (with fixed es and fs) can express and with the ubit set. It is one
ULP less than the representation of infinity. In the case of “almost infinity” the expressed inter-
val is pmaxreal,`8q or p´8,´maxrealq, depending on how the sign bit is set. Notations `8q
and p´8 express “almost infinity” at the right and left bound of an interval, respectively. The
alternative notation ˘8 . . . can be used instead [2].

Another valuable property is that (with the ubit) it is possible to contain the overflow effect
saturating the result of a UNUM operation to the almost infinity value. Unlike the IEEE-754
standard, all the next operations never receive a number equal to “exact infinity”, that will
propagate an error infinitely large in the next operations of a FP algorithm. Note that, the value
“exact infinity” is used to encode the exact infinity when generated by mathematical constraints
(like number

0 or number ¨ 8).

Beyond the infinity: Not a Numbers In the IEEE-754 standard, it is possible to encode
several Not-a-Number (NaN) values by varying the fractional bits’ encoding. Unfortunately,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

3.1. Variable-precision FP formats and representations 25

UNUM special value Mathematical notation
˘ exact infinity ˘8 Ó

˘ almost infinity ˘8 . . ., or `8q, or p´8
quiet Not-a-Number qNaN

signaling Not-a-Number sNaN

Table 3.1: Mathematical notations for UNUM special values

Figure 3.5: All the possible values of a UNUM number in a 5-bit encoding [2]

the common programming languages do not provide the support to exploit the information of
what is the type of NaN obtained at the end of an arithmetic operation [2]. Due to this lack of
information, the UNUM formats dedicates only two encodings to represent NaN values. The
two available encodings for NaN values are quiet NaN, qNaN, and signaling NaN, sNaN.

In UNUM, the qNaN value allows the computation to continue. However, any operation
with a qNaN as input provides a qNaN as an output. The sNaN value halts the computation
and alerts the computer user. Unfortunately, [2] does not specify in which conditions sNaN
appears.

According to the ubit definition, setting the ubit of a UNUM generates an interval between
the exact number expressed in UNUM and the next exact one that differs by one ULP. Setting
the ubit to the infinity encoding represents an interval between “infinity” and “beyond the in-
finity”. Since these values (positive and negative) are meaningless under a mathematical point
of view, “beyond positive infinity” is used to encode qNaN, and “beyond negative infinity” is
used to encode sNaN. Table 3.1 summarizes the concepts mentioned above with mathematical
notations.

UNUM dynamics on the real axes Figure 3.5 shows, in a five-bit float example (one bit for
the sign field, two bits for the exponent field, one bit for the mantissa field, and one bit for the
ubit), how a FP number with the ubit behaves in the real axes. ‘Dots’ () and ‘rectangles’ ()
represent exact and inexact numbers. Rectangles have rounded borders to remind that the ubit
set defines an open interval between two exact numbers.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

26 Chapter 3. State of the Art: what is known for variable precision

The ubound and the gbound formats

UNUM supports Interval Arithmetic (IA). However, by using only UNUM numbers, it is im-
possible to represent all the possible real intervals: e.g., a UNUM can not represent an interval
containing zero. To support these intervals, UNUM supports the ubound.

The ubound The ubound is a pair of UNUMs representing a mathematical interval in the real
axis. Exact UNUMs represent closed endpoints, and inexact UNUMs represent open endpoints.
Some ubounds can be mapped to a single UNUM.

The ubound data structure extends IA to close, open, and half-open intervals while main-
taining a well-defined behavior for all FP operators. The rounding rule upon ubound opera-
tions respects the inclusion property of IA (Section 2.1.3). If a qNaN (or sNaN) occurs in one
ubound endpoint during computation, both ubound endpoints will be qNaN (or sNaN).

The gbound and the computation layers Gustafson distributes the FP computation on two
domains: the ulayer and the glayer [2]. The ulayer (UNUM layer) belongs to the main memory
and hosts UNUMs and ubounds. In this layer, it is impossible to implement operations between
UNUMs and ubounds because their fields are not aligned. Moreover, extracting these fields
without shift operations is unrealistic.

The glayer (general layer, or scratchpad layer) is the domain that contains the scratchpad for
arithmetics. The FPU performs math operations among scratchpad entries. The scratchpad
format equivalent of a ubound is the gbound (general bound), which the data structure used
in the glayer for temporary calculations. It allows storing intervals with higher precision than
in the UNUM environment. It embeds inside the values of the left and right endpoints of the
interval.

Advantages and disadvantages of using the UNUM format

According to [2], UNUM has two main categories of advantages: its format and computing
environment.

Format-related pros-cons The utag in the UNUM format adds an intrinsic bit overhead inside
the number. Even if the utag adds this overhead, it can help to save memory space dynami-
cally by reducing the overall length of the UNUM number. For example, to express the quad
precision environment in UNUM, we need 4 bit for the exponent size (es), and 7 bit for the
fraction size (fs) to cover the 15 exponent bits and 112 fraction bits that the IEEE 754 standard
mandates. For that environment, UEpess “ 4, f ss “ 7q, the utagsize is equal to 1` 4` 7 “ 12.
The minimum number of bit that we need is the one used to represent 0 is utagsize` 3 “ 15.
So this can bring a theoretical saving of up to 128

15 « 8.5 times of memory footprint for a single
number. This saving up theoretically introduces the following advantages:

• Less memory footprint: the increase of the ratio number of numbers over the number of bits.

• Less power consumption: saved in the data bus between the memory and the computa-
tion unit.

• The running algorithm can be faster: in theory, fewer data words must be load-stored
data from-to the system’s main memory (RAM).

However, these advantages concern only a few FP values, those for which their exponent
value is not too far from zero (near 20 “ 1.0). An IEEE-like exponent encoding is more conve-
nient for all the other exponent values since it has a lower bit-length.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

3.2. Comparison between the variable-precision formats 27

s r0r1. . . rm´1 rm e f
loomoon

sign

looooooooooomooooooooooon

regime bits

looomooon

exponent

loooooooooooomoooooooooooon

fraction

1 lzoc 1 es fs
wl

Figure 1.3: The posit floating-point format (repeated from page 2)

Computational-environment related pro-cons Interval arithmetic provides the inclusion
property in the results of operations. It guarantees the safety of an algorithm. Please note
that the programmer must take care of the “interval explosion”, particularly in iterative appli-
cations, since it may mine the convergence of algorithms (Section 2.1.3).

3.1.4 Exponent-harvesting formats: the posit format

Figure 1.3 depicts the posit [3] Floating-Point (FP) format. Like UNUM, the goal of this format
is to minimize the exponent encoding for small exponent values to increment the mantissa
precision. Posit is different from UNUM in three parts: fixed wl size1(Figure 1.3), no concept of
subnormals, and no support for interval arithmetic.

Posit is made of four different fields: a sign s, an exponent e, a fraction f, and the regime
bits. In the posit format, the exponent field e has fixed size, and this size, es (exponent size), is
a parameter needed to decode the posit format (like ess and fss for UNUM, Section 3.1.3). The
regime bits are made of two parts: a variable-length bit-string r0r1. . . rm´1, made of bits with
the same value, and a special rm bit used as a termination character of the previous bit string.
Thus, it has negated value comparing to the value of the bits in the previous bit-string. The
length of variable-length string, lzoc, obtained with a leading-zero-or-one-counter, is used to
compact the exponent value encoding. The size of the fraction field fs is all the bits remaining
by the other fields: wl-es-lzoc-2.

How to decode the posit format

Equation 3.5 shows the value encoded in the posit format.

x “

$

’

’

’

’

&

’

’

’

’

%

NaR (Not-a-Real), if s “ 1 and r0. . . rm=e= f =0
0, if s “ 0 and r0. . . rm=e= f =0
p´1qs ¨ 2`pplzoc´1q¨2esq`e ¨ p1` f

2 f s q, if r0 “ 1 (positive exponent)
p´1qs ¨ 2´plzoc¨2esq`e ¨ p1` f

2 f s q, if r0 “ 0 (negative exponent)

(3.5)

This equation is valid for all the possible es configurations of the posit number. Posit does
not make a difference between positive infinity, negative infinity, signaling, and quiet not-a-
number. One single encoding named Not-a-Real (NaR) represents all of them. Posit does not
support subnormals. Thus zero is encoded as an exceptional value.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

28 Chapter 3. State of the Art: what is known for variable precision

´120 ´100 ´80 ´60 ´40 ´20 0 20 40 60 80 100 120

´5

0

5

10

15

20

25

Exponent values

N
or

m
al

iz
ed

ex
po

ne
nt

bi
t-

le
ng

th
posit es=2

UNUM ess=3

minimal exponent

Figure 3.7: Exponent bit-length comparison in the posit and the UNUM formats, compared with a normalized
two’s complement 8-bit encoding. The green line corresponds to the minimum theoretical bit-length that an

exponent may have

3.2 Comparison between the variable-precision formats

Figure 3.7 shows the comparison between the exponent encodings used for UNUM and posit
formats, with a normalized two’s complement 8-bit exponent encoding, representing the expo-
nent encoding for a custom IEEE-like format. The horizontal axis shows all the possible expo-
nent values which span between -128 and +127. The vertical axis represents the bit-overhead
of the exponent encoding according to the 8-bit encoding baseline. All the points of the y-axis
below zero are exponent encodings more compact than an 8-bit two’s complement representa-
tion, while the points above zero are those requiring more bits.

The green line depicts the minimal exponent encoding, in two’s complement, for each pos-
sible exponent value. This line represents the minimum theoretical footprint that an exponent
encoding can have. The other two lines show the exponent overhead for the UNUM and posit
encoding, with ess=3 and es=2, respectively. Since both exponent encodings use additional bits
to encode the exponent field length (or where it finishes), reaching the green line is impossible.
This plot depicts the UNUM and the posit formats, with the configurations ess=3 and es=2,
because they share the same minimum encoding footprint.

The posit format performs better than UNUM on the “window of values” where there is a
bit-length advantage for representing exponent values comparing to an 8-bit two’s complement
exponent encoding. On the contrary, for the exponent values outside this window (especially
for small es values in posit), the posit format has an exponent encoding for which its bit-length
is drastically worse than the one used in the UNUM format. For instance, applications, such
as accumulators, that compute on (also few) FP numbers with exponent values large in mag-
nitude, can propagate significant cancellation errors in the overall computation. Therefore the
posit proponents make a Kulisch-like accumulator.

Posit differs from UNUM in the encoding of the exponent field. Instead of encoding the
exponent length and the exponent value, it uses the regime bits to encode the actual used

1 Having fixed size does not prevent posit to enter the “Variable-Precision” format category since multiple posit
instances with arbitrary size can be allocated in memory. In Posit, the mantissa’s precision is variable, although this
precision is fixed by the exponent value only.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

3.3. Software and hardware implementations for variable-precision computing 29

´120 ´100 ´80 ´60 ´40 ´20 0 20 40 60 80 100 120

´5

0

5

10

15

20

25

Exponent values

Ex
po

ne
nt

bi
to

ve
rh

ea
d

posit es=2

posit es=3

posit es=4

UNUM ess=2

UNUM ess=3

UNUM ess=4

Figure 3.8: Comparison between UNUM and posit formats on different configurations

“window” of 2es exponent values, and the exponent field to encode an offset among this win-
dow. This encoding allows us to avoid the redundant exponent representations of UNUM,
minimizing the exponent field footprint for small exponent values.

As side effect, unlike UNUM, the posit exponent encoding grows linearly with the expo-
nent value (UNUM grows logarithmically). The consequences that derive from this property
are two. Firstly, posit suffers a substantial loss of precision for numbers having an exponent
value large in magnitude. Secondly, posit has a reduced exponent dynamic compared to a
conventional two’s complement exponent encoding.

Figure 3.8 compares different UNUM and posit exponent encodings varying the ess and es
global parameters, according to an 8-bit two’s complement encoding. As it is possible to see,
the posit exponent encoding grows linearly among the exponent values, while the UNUM one
has a logarithmic behavior. The increase of the parameter es for posit, and that of the parameter
ess for UNUM, increases the minimum exponent overhead that the encoding of the exponent
can have. This bit-length increase is because both formats add bits to encode the exponent
descriptor.

Unlike UNUM, posit does not have redundant exponent representation. Thanks to this,
the posit format enlarges the “window” of values for which the exponent encoding is more
compact than an 8-bit two’s complement representation.

In conclusion, there is no exponent encoding that behaves better than the others. Each
exponent encoding has a region of values for which it behaves better than another exponent
encoding and some others for which it behaves worse than another exponent encoding. To bet-
ter understand when one VP format performs better than another (and why), different bench-
marks, with different data sets, must be run. As already said before, this work adopts only
the UNUM format as memory format because, at the beginning of this work (2016), only the
UNUM format existed as VP FP format.

3.3 Software and hardware implementations for variable-precision
computing

At the state of the art, there are several multiple-precision software libraries (Chapter 2). For
example, XBLAS [11] and MPFR [9] (based on GMP [15]) provide support for mixed-precision,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

30 Chapter 3. State of the Art: what is known for variable precision

Figure 3.9: The decimal floating-point format used in the CADAC architecture [61]

and multiple- (and unbounded) precision computing, respectively. Section 3.3.1 provides fur-
ther details about these libraries.

Nevertheless, these software solutions are computationally slow, and they are not suitable
for high-speed applications. Such applications typically require high-accuracy in their results.
Hence, the hardware implementation of Variable-Precision (VP) is crucial. In the literature,
several VP architectures designs exist. They differ for the supported number format and the
chosen to compute unit architecture.

The most common hardware architectures for Floating-Point (FP) computing are FP Units
(FPU). Section 3.3.2 provides examples of this architecture. These architectures support
multiple-precision FP computations by giving to the user support to use more than one FP
format, among the ones defined in the IEEE 754 standard [1]. As stated in Chapter 2, a better
result accuracy requires a subtle precision control in the FP formats.

To the best of the authors’ knowledge, Kulisch made the first hardware proposal to sig-
nificantly improve the result accuracy in FP applications [4], [51]. The idea of Kulisch is to
guarantee an exact dot product by using a fixed-point accumulator large enough to contain the
whole exponent dynamic of an FP number. Operations between FP numbers are performed
by iterating on this long accumulator using micro-code instructions. This design paradigm
has inspired several research groups (i.e., [52]–[60]). However, none of them (except posit2[3])
implemented an architecture able to store data in memory with precision higher than conven-
tional FP formats.

The main advantage of the Kulisch architecture is that it guarantees an error-less dot prod-
uct operation thanks to its internal accumulator. As its main drawback, in applications where
more than one accumulator is needed, it may be complex to store the internal accumulator’s
content to make room for the next accumulation. Moreover, the accumulator may have the size
of several tens of thousands of bits.

In the same period as Kulisch, Cohen and Hull [61], [62] have presented an orthogonal
approach for VP computing. Their idea is to have a variable-length (decimal-based) mantissa
(Figure 3.9 shows an example). A descriptor encodes the length of the mantissa as the number
of actually used digits. As for the Kulisch architecture, the hardware architecture is based on a
microprogrammed machine, on a shared multiply-and-accumulate pipeline.

In 2000, Schulte [49] presented a similar approach to Cohen and Hull for VP computing.
He presented a processor architecture that supports VP numbers internally and makes compu-
tation using interval arithmetic. The number format, Figure 3.10a, looks like conventional FP
numbers where each interval endpoint is made of a sign, an exponent, and a mantissa.

Schulte presented a microprogrammed coprocessor, Figure 3.10b, based on an internal
RAM as a register file, and a multiply-shift-add pipeline. Iterating on this pipeline, Schulte
can solve any algorithm by approximating it as a polynomial. In the main memory, he stores
only conventional 32 or 64 bits IEEE-754 FP numbers.

2 The posit computing system requires an internal accumulator named “quire”. The quire is similar to a Kulisch
accumulator. It can be stored in memory as is. However, there are no specifications about how it can be stored in
memory efficiently.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

3.3. Software and hardware implementations for variable-precision computing 31

(a) Schulte floating-point format (b) Schulte micro-architecture

Figure 3.10: The floating-point format and architecture presented by Schulte [49]

In the next decade, other research groups proposed improvements to the Schulte’s work.
The authors of these works present optimizations on computation performances [63] or com-
putation capability, for instance, by supporting trigonometric functions [64], [65]. All these
architectures are microprogrammed, but none of them specify the data structure to store inter-
mediate numbers in the main memory.

Another orthogonal direction is the one taken by the NVIDIA group, synthesized by Oz-
bilen [66]. Here, the concept of VP computing does not focus on augmenting the numbers’
precision, but on downsizing for applications that do not require high-precision calculations.
In [66], like in [67] and [68], each FP operation embeds the operands (in input) precisions and
the result (in output) precision that an operator should have. This information brings the pos-
sibility to exploit the tradeoff between accuracy and execution time as well as the tradeoff
between required power and result precision.

All identified architectures can be mapped into two leading hardware-architecture families:
the ones of Kulisch and Schulte. These two families are described in detail in Sections 3.3.3
and 3.3.4, respectively. Before focusing on these details, Sections 3.3.1 and 3.3.2 provide an
overview of some multiple-precision software libraries and existing FPU architectures.

3.3.1 Multiple-precision software libraries

Several applications use multiple-precision software libraries. For example, some Matlab func-
tions use the LAPACK library [39]. Other examples are XBLAS [11], which extend LAPACK,
and MPACK [69], based on multi-precision BLAS and LAPACK (MBLAS and MLAPACK).
XBLAS routines are a multi-precision version of basic linear algebra routines (BLAS) [70]. Sim-
ilarly, the (arbitrary precision) MPFR [9] library is based on mixed-precision, leveraging the
GMP multiple-precision software library [15].

These libraries are used to emulate Floating-Point (FP) operations when the available hard-
ware does not support the required mantissa precision. They store FP values in a dedicated FP
format, where the exponent and the mantissa are two distinct fields. The lengths of their fields
are customizable according to some rules. For example, MPFR allows the implementation of
FP algorithms with any precision, especially for precisions higher than the system data-path
bit-width (e.g., 64 bits). In MPFR, GMP performs the computation on floating-point mantissa
(e.g., additions, subtractions, and shifts), iterating on the existing hardware operators.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

32 Chapter 3. State of the Art: what is known for variable precision

There are different ways to implement multi-precision FP computing. One way is FP ex-
pansions. Priest developed the FP expansions arithmetic [71]. Shewchuk did the same in a
slightly different way [72]. The main idea is to chain several variables that use the FP formats
available in the hardware, to express FP numbers with higher precision. This work discards
this technique since it puts in question the whole FPU architecture, and it sees this technique
as a software work around to augment data precision.

3.3.2 Existing floating-point units in the state of the art

The Floating-Point Unit (FPU) is part of most modern computing systems, and a vast number
of applications use it to perform computation. Before the publication of the IEEE 754 stan-
dard [1], the FPUs proposed in the market supported custom Floating-Point (FP) formats in
memory. Nowadays, the IEEE 754 standard standardizes the behaviors of FPUs3. Many em-
bedded processors do not have hardware support for FP operations. In this case, software
libraries (e.g., soft-float support in the GCC compiler) perform FP operations. These libraries
are not detailed in this work since the focus is on hardware architectures. This section presents
the three main architectures options available in the state of the art of FPUs.

In a computational system, FPUs can be either tightly coupled or loosely coupled. Like
in the Ariane core [73], the tight coupling option integrates the FPU directly in the main core
pipeline. Thanks to hardware optimizations techniques (like forward or out-of-order execution),
this architecture guarantees a reactive interaction between the FPU and the main core. Without
taking any precaution, the main drawback of this solution is that the FPU can be part of the
system’s critical path, slowing down the system’s working frequency.

The loose coupling option embeds the FPU as a coprocessor of the main core. The copro-
cessor integration allows us to decouple the main core and the FPU in terms of latency and
critical path. Its main drawback is the higher clock-cycle latency due to the synchronization
mechanism between the main core and the FPU.

The third and last option is a hybrid approach, like in Rocketchip [7], which integrates the
FPU in the system as a unit parallel to the main processor, but with a dedicated bus interface.
Thanks to this dedicated bus interface, the overhead latency is reduced due to the synchroniza-
tion mechanism.

FPUs generally compute on a FP Register File (RF). The FP RF hosts FP numbers. They are
loaded either from the main memory or through the RF of the main core. The FP RF can be
updated either by the Load-and-Store-Unit (LSU) or by the FP operators.

Its physical location depends on the type of hardware architecture used. Architectures with
the FPU embedded in the main processor pipeline, have the FP RF in the decode stage of the
pipeline [73], and it is accessed in both decode and write-back stages. Other architectures with
the FPU external to the main core (e.g., Rocketchip [7]) have the FP RF within the FPU.

The size of this RF and the size of the RF entries are architecture-dependent. To optimize
the addressing of the RF, the number of RF entries is a power of two. This number can span
from 8 (in the Intel 8087) to 128 (in the Intel Itanium 9700). The principle is simple: the more
FP registers are available, the less the data stored back in memory. However, a large RF can be
critical in terms of area-footprint and access time.

Depending on the architecture, the bit-width of each FP RF entry may vary. The minimum
bit-size of a RF entry is the bit-size of the largest FP format supported in memory (e.g., double,
64 bits). Additional bits may be added to the RF entries to make explicit some information such
as the hidden bit, or some flags (e.g., NaN and inf).

The bit-length of the RF entries can be enlarged to extend the FP mantissa precision and
reduce the computational error of the results. According to Higham [23], having higher preci-
sion in the RF entries can help to achieve better result precision in computation. Like the FPU

3 FPUs architectures differ in their internal organization, which is also fairly standard.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

3.3. Software and hardware implementations for variable-precision computing 33

of the Intel Itanium 9700, modern FPUs support 80 bits mantissa in the FP RF entries. How-
ever, supporting larger mantissa in the FP RF entails double rounding: the first one during FP
operations and the second during store operations.

The RF of the FPU hosts FP numbers loaded from memory by the FPU LSU. FPUs usu-
ally support more than one FP format. Thus they support mixed-precision computing (Sec-
tion 2.1.1). Please note that also the mixed-precision support implies to perform double round-
ing.

In FPUs, FP operations are handled internally by the hardware FP operators. Since the FP
basic operators require separated data paths (as explained in Muller [8]), they treat exponent
and the mantissa fields separately. Some hardware architectures have been proposed to im-
plement FP operators. The simplest one is based on a shared multiply-shift-add pipeline and
implements FP operators through micro-code [49].

Others FPUs support in hardware as many FP operators as needed [7]. The implementation
of all the FP operators is not mandatory. The minimum set of FP operators needed in hardware
is made of the addition/subtraction and the comparison. The other arithmetic operations, such
as multiplication and division, can be implemented using the existing hardware4. At the cost
of having more area for the silicon chip, implementing other FP operators can speedup ap-
plications execution. The final speedup depends on the application. It must be evaluated by
analyzing the probability of using all the FP operators simultaneously, for instance, by analyz-
ing the frequency of FP operations.

Data bit-width in modern computing systems

The power-of-two lengths of the Floating-Point (FP) formats, supported in modern FP units
(FPU), are due to the memory hierarchy organization. FPUs are fed with data from the main
memory, which comes through one or more layers of cache memories. Cache memories are
designed to reduce the latency of load and store operation. They leverage different memory
hardware technologies and different cache protocols algorithms.

Cache memories are organized in lines. Each line hosts a power-of-two number of words
with a bit-width equal to the one of the system data bus (e.g., 64 bits). Smaller power-of-two
words can be exchanged within the cache. The shorter bit-length usable in the cache memory
is the byte (8 bits). This choice simplifies the address decoding inside cache memories.

To keep data aligned and compact, the IEEE 754 standard defined FP formats with power-
of-two bit-lengths (on 16, 32, 64, and 128 bits). In this way, the FP data can be manipulated
easily during memory operations within the cache, avoiding data fragmentation among cache
lines.

3.3.3 Kulisch: eliminate the round-off error using long accumulators

Previous sections provide an introduction to the existing hardware architecture for mixed-
precision Floating-Point (FP) computing. This section and the next one (Section 3.3.4) present
the two leading hardware architecture families for Variable-Precision (VP) FP computing. This
section focuses on the Kulisch [4], [51] based architectures.

The Kulisch architecture leverages a fixed-point accumulator, large enough to host the
whole exponent dynamic of an FP number. It can improve the result accuracy of FP appli-
cations since the accumulator can map all FP values without precision loss. If the dynamic
range is larger than the dynamic of FP products, this accumulator architecture guarantees an
error-less dot product operation.

All the FP operations are done within this accumulator through exact fixed-point basic op-
erations. The Kulisch architecture loads and stores data in memory using a memory format

4This is also true for additions in some software libraries (e.g., softfloat)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

34 Chapter 3. State of the Art: what is known for variable precision

that follows the IEEE-754 standard (i.e., with a 64-bit double). Thus, the only computational
error source of this architecture comes from the rounding of the data when they have to be
converted in the FP memory format.

Kulisch proposes to implement operations between FP numbers by iterating on sub-
portions of this long accumulator (i.e., on 64 bit). A micro-programmed machine on a shared
multiply-and-accumulate pipeline performs these operations. In this way, the hardware com-
plexity is kept under control, and the system realization in hardware is feasible. However, it is
not possible to generate the outputs within a single clock cycle.

The Kulisch accumulator can be several thousand bits wide. For example, to support the
64-bit IEEE 754 FP format, the accumulator must be 2099 bits (1023 to represent the positive
exponent values, 1022 to represent the negative ones, 53 to represent the mantissa, and 1 for
the hidden bit). This bit-size must be doubled to support exact dot products. Doubling the
bit-size raises two main drawbacks. For the first one, hardware operations on this long accumu-
lator may take several clock cycles. This latency entails operations with high latency and low
throughput. Moreover, the Kulisch accumulator does not support single-cycle accumulations.

For the second drawback, for applications where more than one accumulator is needed, it
may be complex to make room for the next accumulation by storing the internal accumulator’s
content in memory. Every time the content of the accumulator is stored in memory, it is neces-
sary to either use the IEEE-754 format losing all the precision gained inside the accumulator or
store its content at the expense of wasting several KB of memory. Even worse, during a context
switch, the operative system needs to save the machine status in memory to make room for the
next application. If it is not possible to store the accumulator’s content in memory as is, the
programmer has no control over the computation precision because the accumulator content
may be cast into an IEEE-754 format.

3.3.4 Schulte: contain the round-off error extending the mantissa precision

The Schulte architecture [49] takes an orthogonal approach from the Kulisch one. Contrary to
the Kulisch architecture that encodes its internal registers in fixed point, the ones in the Schulte
architecture have a Floating-Point (FP) representation. Instead of zeroing the effect of rounding
errors in FP operations as in Kulisch’s architecture, Schulte’s approach reduces their effect by
enlarging the mantissa precision during FP computation. This architecture works on a Register
File (RF) that can host FP numbers with Variable-Precision (VP) mantissa. All the RF entries
are self-descriptive VP FP numbers: the mantissa precision is encoded within the number.

This architecture can be seen as a hardware version of MPFR [9], with the MPFR code writ-
ten in micro-code. The main differences in the number format comparing to Kulisch are two.
For the first one, the exponent supports large values and is represented in two’s complement
(on 16 bits). For the second one, the mantissa is divided on more words of p bit each. Each
number is variable-length: there is one field (L) which encodes the number of words that the
mantissa has; There are some flags that encodes distinguished values (NaN, 8, 0, normalized,
etc.).

Schulte presents a microprogrammed coprocessor based on an internal RAM as a regis-
ter file. Like Kulisch, the Schulte architecture is based on a micro-programmed machine on a
shared fixed point multiply-shift-accumulate pipeline. FP numbers are stored in memory with
standard 32 or 64 bits FP formats. All the algorithms are implemented on this pipeline through
polynomial approximations. An additional feature of this architecture is that it supports inter-
val computation, which can track the running algorithm’s computational error.

This architecture is potentially faster than the Kulisch one because the number of 64-bit
words involved in the operation is lower than the ones in the Kulisch accumulator. More-
over, more operation on FP entries can run in parallel in the Schulte architecture. This paral-
lelism is not possible in the Kulisch architecture since only one accumulator is available at a

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

3.3. Software and hardware implementations for variable-precision computing 35

time. Neither the Kulisch architecture nor the Schulte one allows storing the content of their
high-precision internal registers or accumulators. However, if they would support the store in
memory of these values, the Schulte architecture would have less impact on memory footprint
(compared to the Kulisch accumulator) while having a small computational error compared
to a conventional IEEE-754 FP unit. This lower impact is proven, for instance, during context
switch if the size of all the FP registers in the Schulte architecture is less than the size of the
Kulisch fixed point accumulator.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

37

Chapter 4

System architecture for the
variable-precision computing unit

This work proposes a general-purpose hardware architecture for VP FP computing support-
ing different programmable variable-length FP data types, in memory, and inside the FP unit.
Introducing VP in existing FP computing architectures opens questions such as:

1. What does it mean to support VP in hardware?

2. Which FP format should be used to encode VP FP numbers in memory?

3. Which hardware architecture should be used to accelerate VP FP computation?

4. How should the VP be exposed to the programmer (C level)?

Section 4.1 answers the first question. It introduces all the issues that may arise in realizing
a hardware unit that fully supports VP computing.

Sections 4.2, 4.3, and 4.4 address the second question. The VP FP format used in memory
is a revisited version of the UNUM type I format [2]. Section 4.2 introduces the constraints
of a modern system and explains the modifications performed on the UNUM format to make
it usable in a real system. Section 4.3 proposes a different encoding for the UNUM format.
However, supporting VP FP formats in hardware may cause several issues. Section 4.4 lists all
these issues.

Sections 4.5, 4.6, and 4.7 covers the third question. Section 4.5 proposes a hardware architec-
ture to accelerate VP FP applications. This architecture is implemented as a RISC-V coprocessor.
Section 4.6 shows how it is possible to program the VP coprocessor, providing also some code
examples. Section 4.7 presents how to program the coprocessor at the assembly level through
an expansion of the RISC-V ISA (Instruction Set Architecture).

This chapter concludes with Section 4.8, which provides the answer to the fourth and last
question, by specifying a new programmable FP data type named vpfloat. This data type
can be customized at compile time on several aspects (e.g., precision, memory footprint, and
memory format). As the main feature, the programmer can set its memory footprint with
byte-granularity at compile time. Thus, the programmer has more accurate control over the
precision of variables, while the compiler, which controls the variables’ memory-footprint, can
efficiently allocate them in the main memory. This work is aware that a hardware unit can sup-
port VP FP variables up to a given size. Above this limit, the compiler can provide VP support
by implementing VP computations through software libraries (i.e., MPFR) and alternating the
computation between hardware and software depending on the operations’ input or output
precision.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

38 Chapter 4. System architecture for the variable-precision computing unit

LSU

FP ALU
RAM

p1’ p1’’
p1’’’

p2’ p2’’
p2’’’

p1 p2RF

…

Memory domainComputing domain

Figure 4.1: A variable-precision architecture supporting two different floating-point formats with different pre-
cision. One to represent numbers in main memory, and one to represent numbers in the internal register file

4.1 Supporting variable precision in hardware

The capability to bound the relative error in an expression (or code segment) is the essential
requirement for the forward and backward error analysis. As seen in Section 2.3.2, it is useful
to have several precisions at our disposal.

4.1.1 Supporting different variable precision formats

However, there are some constraints in embedding all possible precisions in a hardware VP
FPU. This work identified two primary constraints. The first constraint is related to the impos-
sibility of computing data inside a FPU with a precision that can change with a bit granularity.
This constraint is due to the hardware blocks, used to implement the hardware operators of the
FPU, cannot change their bit-length.

A solution to this problem is to fix the size of these hardware blocks to a given size (e.g., 64
bits) and constraining the precision granularity to be modular on the same size. Operations on
mantissa are performed by dividing the mantissa on chunks of the same size (e.g., 64 bits). All
the hardware operators, including the rounding unit, will behave according to the predefined
mantissa precision.

The second constraint is related to the memory subsystem. The memory subsystem is de-
signed to support (almost) all the possible data that a programmer may store. However, data
must pass through a data cache (conventionally) organized with a minimum p-bit granularity.
In most of the caches, for example, the ones developed in a RISC-V environment, work with a
minimum granularity of p=8 bits. This minimum granularity dictates the bit-width granularity
that VP data can have in memory.

The solution to these constraints presented in this work is to support two different VP FP
formats. One format used to represent data in memory (e.g., RAM), and one used to represent
data inside the computing unit (its Register File, RF). Figure 4.1 depicts the high-level overview
of our VP FP architecture. The two formats have two independent precisions, p1 and p2. By
controlling these precisions, the user can have more precise control over the final results’ com-
putational error.

Having these two levels of precision opens the possibility to have tunable latency and pre-
cision during computation while having tunable latency and precision during memory op-
erations. It is possible to exploit these tradeoffs and make exact and high-speed computations
inside the VP FPU while having compact data in memory. This tradeoff can potentially increase
the computation’s precision while minimizing the latency in moving the data in the memory
system.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

4.1. Supporting variable precision in hardware 39

In a computing system, the Load and Store Unit (LSU) is the unit in charge of moving data
between the computing and memory domains. Its internal operations are transparent to the
programmer. For this reason, we decided to use a dedicated LSU to cross the two VP domains.
This dedicated LSU handles the conversion between the two formats. The architecture can
work with different precisions while supporting fused operations internally. Thanks to these
two precisions, in addition to better control of the result computational error, it is possible to
exploit the accuracy-latency tradeoff during computation.

As for drawbacks, the coexistence of two formats with different precisions involves an ad-
ditional rounding operation during store operations in memory. Moreover, the support of data
with lengths that are not a power of two implies to adapt the LSU to support misaligned oper-
ations in memory. A misaligned operation in memory is when the user wants to access (load or
store) data with a length not aligned on the address of the data in memory. In other words, mis-
aligned operations in memory may require to access data on different cache lines. It is possible
to see this problem by looking at Figure 4.1, assuming that the RAM in the figure corresponds
to the SRAM inside an L1 cache, and all the red lines are several cache lines hosting VP FP data.

According to Section 3.1, VP FP formats, such as UNUM [2] or posit [3], are designed to
be as compact as possible to minimize the footprint of variables in memory. They dynamically
compress the exponent field while maximizing the fraction field bit-length. However, they are
not hardware friendly since the positions and the lengths of the exponent and mantissa FP
fields are data-dependent. Section 4.4.1 addresses this point.

4.1.2 Controlling the interval explosion effect in a UNUM computing unit

This work adopts the UNUM format as a memory format. UNUM supports Interval Arithmetic
natively (IA, please refer to Section 2.1.3 for more details). Thus we propose a hardware unit
that supports interval operations internally. However, algorithms implemented with IA may
be affected by the interval explosion effect. To overcome this side effect, Gustafson proposed
to use the guess operator that computes the midpoint of an interval [2]1.

This work supports the guess operator with the result rounded to nearest (half away from
zero, RTN). The first usage of this operator can be to implement RTN by alternating interval
and guess operations. This usage gets rid of intervals while overcoming the interval explosion
issue in IA. Using guess to support RTN is excessive since the rounding could be implemented
directly during operations. For this reason, we decided to support both interval and scalar
computing. The scalar computing supports several rounding modes, including RTN.

Alternatively, the guess operator can be used to compute the midpoint of a midpoint-radius
interval representation. The midpoint-radius interval representation can be more convenient
than the one with two distinguished internal endpoints since it can have less memory footprint.
This because, instead of representing two distinct interval endpoints with high precision, it
is possible to have a vary precise midpoint with a less precise radius representation. A more
compact encoding to represent intervals in memory allows us to increase the average precisions
of the intervals stored in memory and postpone the interval explosion side effect. For this
reason, to compute the radius of a midpoint-radius interval representation, we also decided to
support the radius operator providing the width of an interval2.

In conclusion, the hardware unit presented in this work supports both interval and scalar
computing natively. In addition to the basic IA operators, during interval computing, the hard-
ware unit supports the guess and radius operators to convert intervals in midpoint-radius

1 Please note that the use of guess in the middle of an algorithm based on IA destroys the main IA objective of
bounding the computational error within an interval.

2 Please note that this operator can also be used to observe the accuracy (and computational error) on the ongoing
computation since it evaluates the width of a variable.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

40 Chapter 4. System architecture for the variable-precision computing unit

s e

exponentsign
f

fraction

u

ubit

es-1
exponent

size

fs-1

fraction
size

es bits fs bits

Figure 1.2: The UNUM variable-precision floating-point format (repeated from page 2)

representation. For the scalar computing, the unit, and its hardware operators, support several
rounding modes for scalar computation, including RTN.

4.2 Optimizing variable-precision floating-point formats for mem-
ory

The computing precision in scientific applications may be decided at run time, for example, de-
pending on the algorithm’s computational error (Chapter 2). Thus, this work targets a Floating-
Point (FP) format where the user can tune its size (in particular the sizes of the exponent and
fraction fields). The support of this format leads to create a VP FP-Unit (FPU) that supports VP
FP numbers stored in the main memory with a given representation. This section focuses on
choosing the VP FP format supported in the main memory for the target VP FPU.

This work adopts the UNUM type I format for storing numbers in memory (Figure 1.2,
Section 3.1.3) because the challenge of studying a FP format that is conceived to be a “better”
replacement for the standard IEEE 754 FP formats (claim of Gustafson [2]) was appealing. This
thesis aims to verify if this claim is right and to evaluate the cost of supporting this memory
format in hardware.

This format supports IA natively using the “uncertainty” bit field u. The ubound data
structure (tuple of UNUMs, Section 3.1.3) represents intervals. The lengths of the es-1 and fs-1
fields, ess and fss, define the maximum length of a UNUM. This tuple (ess, fss) is called UNUM
Environment (UE).

The UNUM type I format has two peculiarities that are not hardware-friendly. The first
one (Section 4.2.1) is related to the original order sequence of the UNUM fields. The second
one (Section 4.2.2) is related to the data organization in memory of UNUM array elements.
Section 4.3 proposes a solution for these two points. It proposes a modified version of the
UNUM format, providing a solution that guarantees affine random access to VP FP arrays (in
this case, based on the UNUM format modified).

4.2.1 Mapping of the UNUM fields in memory

The current FP formats available in state of the art are designed to fit within the data-path
bit-width of the architecture (32 or 64 bits). In this way, the data can be moved between mem-
ory and FPU with a single operation with the processor Load and Store Unit (LSU). The VP
FP UNUM format may not have a power-of-two bit-length. This not-power-of-two bit-length
brings two memory-related problems: the number address may be misaligned on its size, and
the number may have a bit-length spanning multiple memory addresses.

For a UNUM-ubound that spans multiple addresses in a little-endian memory system (like
in the RISC-V architecture), it is crucial to have the descriptor fields present in the lower ad-
dresses. The conventional UNUM field organization (Figure 1.2, [2]) is not ideal since the po-
sition of the fixed-length fields (u, es-1 and fs-1) changes according to the bit-width of the
variable-length ones.

Figure 4.3 depicts the field organization chosen for the UNUM (Figure 4.3a) and ubound
(Figure 4.3b) formats. The fields are re-organized in such a way that, for both the interval
endpoints (left and right), the variable-length fields (exponents and fractions) are placed in

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

4.2. Optimizing variable-precision floating-point formats for memory 41

(a) s u es-1 fs-1 e f

LSB MSB

(b)

left right left right left right

s u es-1 fs-1 s u es-1 fs-1 e e f f

Figure 4.3: Binary encodings for the UNUM and the ubound formats in memory

U2_0 U2_1 U2_2

U1_0 U1_1

p p

2p 3p0 p

p

U2 :

U1 :

bit

length

(a) Two VP FP numbers organized in p-bit chunks. p
is the access granularity of the memory subsystem, for

instance, p=8 in RISC-V

@2’:

@1’:

U2_2

U2_1

U2_0

U1_1

U1_0

pFF--FF

00--00

(b) Two VP FP numbers
stored in memory with
the compacted addressing

mode

U2_1

U1_1

U1_0

p

U2_0

U2_2

@2’’:

@1’:

FF--FF

00--00

(c) Two VP FP numbers
stored in memory with
the slot-aligned address-

ing mode

Figure 4.4: Alternative memory addressing modes (4.4b, 4.4c) for variable-length numbers 4.4a

memory after the fields that are fixed-length (u-tags). For ubounds (Figure 4.3b), the affinity
with the left or right interval endpoint is noted above the fields.

With this field organization, during load operations in memory, the position and the lengths
of the UNUM fields can be decoded from the first loaded bytes: it is possible to know the sizes
of the variable-length fields within the first data chunk read from memory. Even when reading
intervals from memory, ubounds, Figure 4.3b, the extraction of the fixed length and exponent
fields can be done within one clock cycle with standard hardware.

This work provides hardware support for VP FP variables with up to 16 and 512 bits of
exponent and mantissa to explore scientific computing algorithms. In UNUM, this choice cor-
responds to fix the maximum supported UNUM Environment (UE) to (ess=4, fss=9).

4.2.2 Main memory organization of UNUM array elements

To preserve the existing software infrastructure (e.g., compilers), the address of a random ele-
ment of an array, in main memory, must be known a priori (e.g., at compile-time). This property
is mandatory to guarantee affine access to random positions in arrays. Without this, the access
time of data in memory is no longer deterministic, and the schedule of operations becomes not
predictable in real-time systems.

Therefore, all the existing memory data types and all the elements of arrays have fixed
memory-footprint, and array elements have all the same bit-length. The UNUM format vio-
lates this rule since, as depicted in Figure 4.4a, each number may have a different bit-lengths
depending on the lengths of the exponent and the mantissa fields. In this study, every VP FP
number in memory is seen as a chain of chunks of p-bits. The memory subsystem fixes the p
granularity (Section 4.1). Since this work targets a RISC-V environment, this work fixes p “ 8
bits.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

42 Chapter 4. System architecture for the variable-precision computing unit

According to the UNUM format (Section 3.1.3), a UNUM may have different lengths de-
pending on the precision needed by the number itself. This variable-length feature may lead
the reader to have, in memory, compact arrays of UNUM with different bit-length elements,
where each element changes its precision depending on its needs. Software applications us-
ing compact UNUM arrays are affected by memory fragmentation and by arrays re-allocation.
Those effects appear if a UNUM-array element changes its bit-length after an operation. Its
bit-length can increase (e.g., after multiplications where the output bit width tends to double)
or (more rarely) decrease (e.g., after subtractions between values with same exponent values, or
after a division when the divisor is a multiple of the dividend). In both cases, array re-allocation
requires expensive system calls.

Figures 4.4b and 4.4c depict the two addressing modes used in this work to address
UNUMs, designed to avoid the system calls usage. The first one (Figure 4.4b) supports compact
arrays in memory. It concatenates array elements in order to minimize the memory slots oc-
cupation. Memory accesses are done sequentially since each array element (@1’) points to the
address of the next one (@2’). This addressing does not support in-place algorithms nor ran-
dom access to arrays, as access to array elements is strictly sequential due to their size, which
can vary. This addressing mode can be used for long-term storage of arrays in memory, without
losing precision on array elements.

The second addressing mode, Figure 4.4c, is more similar to the addressing mode used
for conventional data types and supports random access on data arrays. It aligns the array
elements on slots of a fixed size, which are multiple p bits. In this way, unlike the previous
addressing mode, the array elements addresses (@1’ and @2”) are data-independent and can
be computed at compile time. With the UNUM format, both addressing modes may waste
memory bits (empty boxes m in Figure 4.4), but compact arrays waste less.

This work focuses on iterative algorithms that require high-precision in memory and the
computing unit. These algorithms generally tend to increase the length of their variables.
Therefore, the space initially unused in Figures 4.4b or 4.4c is eventually used. This work
exposes these two addressing modes to the user but, in practice, the one pointed in Figure 4.4c
is more convenient to use in VP FP programs. This addressing mode is used in the experiments
illustrated in Chapter 6.

To maximize the accuracy of a UNUM variable, the user must dedicate a specific number of
p-bit slots large enough to fit the variable’s maximum bit width. If the maximum precision pos-
sible to reach with a given set of a VP variable is not required, this work allows the programmer
to customize the bit-lengths of variables in memory by specifying the number of p-bit slots in
which they are to be stored. Section 4.3 provides further details on how to apply this feature to
the UNUM format.

4.3 The Bounded Memory Format: fitting UNUM in a modern mem-
ory hierarchy

This section introduces an adaptation of the UNUM format to make it usable in memory. This
adaptation is named “Bounded Memory Format” (BMF). BMF is a VP FP format that extends a
self-descriptive VP FP format. The main objective of BMF (unlike UNUM type I) is to provide
the user with a way to preserve affine memory accesses, thus affine access to random positions
in VP FP arrays. To do that, BMF keeps the data in main memory aligned on boundaries
(or frontiers), specified by the programmer (e.g., BMF allows us to define an array of VP FP
numbers of 7 bytes each). These boundaries are guaranteed by re-rounding the data to fit within
the specified boundary width (the rounding mode can be programmed). They are defined by
the programmer defining the MMB environment variable (Definition 1).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

4.3. The Bounded Memory Format: fitting UNUM in a modern memory hierarchy 43

Definition 1 The “Maximum Memory Budget”, or MMB, defines the maximum memory footprint that
a VP FP number (e.g., UNUM type I) may have. The MMB value can be expressed in any form (e.g.,
bit-length, byte-length, ...). MMB can be renamed as “Maximum Byte Budget” (MBB), or “Maximum
Bits Budget” (MbB). It expresses a specific number of bytes, or a specific number of bits, respectively.

Since most common memory subsystems are organized in bytes, this work uses MBB to
align data in memory. Under the software point of view, every VP FP variable is associated
with a MBB value. This value encodes the maximum size that the variable may have during
load operations from the main memory. In particular, during store operations, the MBB value
encodes the bit-length of the memory slot in which the stored number in the main memory
must fit.

If the bit-length of the number to be stored exceeds the MBB value, it must be re-rounded
to fit in MBB. Unique values (e.g., ˘8, NaN , ...) can be encoded as unreachable values (with
respect to MBB) of the length-descriptor fields of the VP FP number (in UNUM es-1 and fs-1).
The introduction of the BMF concept can be seen from three points of view:

• This work introduces BMF as a new VP FP format that extends an existing self-descriptive
VP FP format. This format aligns VP FP data in memory according to boundaries defined
by the user.

• This work introduces a VP FP computing system that automatically casts VP FP numbers
in the main memory according to boundaries defined by the user using the BMF VP FP
extension.

• This work opens the possibility to work with two different precisions for memory (MBB)
and internal operations (ideally higher than memory).

4.3.1 BMF, a memory-friendly version of the UNUM type I format

According to Definition 1, the MBB value defines the maximum memory footprint that a
UNUM data can have in the main memory. From the user perspective, MBB is a global param-
eter that must be defined before memory operations (load or store) that involves the system’s
main memory. Once that the value of MBB is set at the system level (e.g., by setting the cor-
responding system status register), all the posterior memory operations use the MBB value to
properly support the BMF format (until when the MBB value is modified again).

BMF changes the rules to decode or encode a UNUM number from (or to) main memory
(Section 3.1.3). When the bit-length of a UNUM (dictated by its fields and its UNUM Environ-
ment) is larger than MBB, it has to be re-rounded to a value with a bit-length compatible with
MBB. The next sections describe the BMF encoding of UNUMs. In particular, they describe:

• How to apply BMF to the UNUM type I format when the MBB boundary is larger than
the maximum UNUM memory-footprint (Section 4.3.2).

• How to apply BMF to the UNUM type I format when the MBB boundary is smaller than
the maximum UNUM memory-footprint (Section 4.3.3).

• How is the BMF encoding for the UNUM type I format in detail (Section 4.3.4).

4.3.2 BMF encodings when MBB is larger than the UNUM bit-length

Figure 4.5 depicts the UNUM format’s BMF format when the MBB boundary is larger or equal
than the maximum memory footprint of a number encoded with the UNUM type I format,
on its UNUM Environment (UE [2]). The horizontal axis represents the bit-length of a UNUM

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

44 Chapter 4. System architecture for the variable-precision computing unit

s u es-1 fs-1

1) 0 1 1-----1 1-----1

2) 1 1 1-----1 1-----1

3) 0 0 1-----1 1-----1

4) 1 0 1-----1 1-----1

5) 0 1 1-----1 1-----1

6) 1 1 1-----1 1-----1

7) 0 1 es-1 fs-1

8) 1 1 es-1 fs-1

9) s u es-1 fs-1

0 utag size

-∞↓

+∞) right

(-∞ left

x

+∞↓

1--------------1

1------1

1------------1

e

1--------------1

fs_maxes_max

1---------------------------------1

1----------------------1

1------------------------1

f

1---------------------------------1

sNaN

qNaN

1--------------1

1--------------1

1---------------------------------1

1---------------------------------1

+∞) right

(-∞ left

1--------------1

1--------------1

1-------------------------------10

1-------------------------------10

U
N

U
S

E
D

 B
IT

S

fssess bit length

MBB*8

fses

Figure 4.5: BMF binary encodings for the UNUM format, when MBB is larger or equal than the maximum bit-
length of a UNUM in the (ess, fss) UNUM Environment. Unique values follow the notation of Table 3.1

stored in memory. The vertical axis represents the possible combinations of representation that
a UNUM may have (from 1 to 9) in the (ess, fss) UE.

This section focuses on the case where the MBB value is greater or equal than the maximum
bit-length that a UNUM in the (ess, fss) UE may have. The UE is equal for all the representation
cases (1-9, in the vertical axis), and the bit-length that a UNUM has to respect is MBB*8 bits
(since MBB expresses a specific number of bytes).

As introduced in Section 3.1.3, the UNUM format can encode distinguished values (qNaN,
sNaN, ˘8 Ó or ˘8 . . ., lines 1-8) or normal ones (line 9). Lines 1-6 encode the distinguished
values with the maximum length of a UNUM. The distinguished values in lines 5-8 represent
(positive and negative) “almost infinity”, they can be encoded either with the maximum bit-
length (lines 5-6) or not (lines 7-8).

More in details, lines 5-6 show the representations of negative and positive almost-infinity
(˘8 . . ., for the left and right interval endpoints respectively) in case of not-exact endpoints
(u “ 1) that have maximum size endpoint values. While lines 7-8 show the representations of
negative and positive almost-infinity in case of not-exact endpoints that have their sizes shorter
than the maximum length that a UNUM can reach in its UE. Line 9 shows the UNUM encoding
for a standard value.

In Figure 4.5, the horizontal double-arrows and the green-dashed boxes have special mean-
ings. The horizontal double arrows highlight that the exponent and fraction fields’ bit-lengths
can change according to the number descriptor (the utag). The green dashed boxes highlight
the unused bits in the data slot allowed by the MBB (MBB*8 bits). Their value can be any value.
In other words, those boxes highlight the data alignment in memory according to the MBB
value.

4.3.3 BMF encodings when MBB is smaller than the UNUM bit-length

Description: For MBB values smaller than the maximum UNUM bit-length, some UNUM
encoding may be cast, or rounded, to fit in the MBB boundary. Figure 4.6 depicts all the scenar-
ios (lines 1-9) in this situation. The axes, the horizontal double-arrows, and the green-dashed
boxes have the same notation of Section 4.3.2. The orange circles highlight the MBB bound-
ary when it is tighter than the starting UNUM bit-length. Here, the usage of different UNUM
Environments (UE) highlight different truncation scenarios.

Scenarios 1, 2, and 3 share the same UE (ess’, fss’). Scenario 1 depicts when MBB is larger
than the encoded UNUM, it covers what presented in Section 4.3.2. Scenarios 2 and 3 depict the

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

4.3. The Bounded Memory Format: fitting UNUM in a modern memory hierarchy 45

s u es-1 fs-1

1) s u es-1 fs-1

2) s u es-1 fs-1

3) s u es-1 fs-1

4) s u es-1 fs-1

5) s u es-1 fs-1

6) 0 1 1-1 1----------1

7) 1 1 1-1 1----------1

8) 0 0 1-1 1----------1

9) 1 0 1-1 1----------1

0

e

fs

f

e

e

f

f

bit length

MBB*8

fs_maxes_max

e f

-∞↓

+∞↓

1--------------1

1--------------1

1---------------------------------1

1---------------------------------1

sNaN

qNaN

1--------------1

1--------------1

1---------------------------------1

1---------------------------------1

es

fss’’ess’’

fss’ess’

Figure 4.6: Truncation effects caused by the MBB value in different UNUM settings

cases when the MBB boundary truncates the fraction field, or both the exponent and fraction
fields. Both cases may happen during computation.

Scenarios from 4 to 9 (Figure 4.6) depicts the truncation effects of MBB for different UE
settings. The scenarios 4 and 5 show the consequences when the MBB value is “too small”
according to the actual UE. Scenario 4 depicts the case where MBB is the minimum value that
allows us to encode a UNUM. The bits available to encode the exponent and the fraction are
only 2. Thus, only the NaNs and ˘8 values can be encoded. Scenario 5 depicts the case where
MBB is too small: there are not enough bits to represent even the smallest UNUM under a given
UE. Since this scenario is seen as a user programming error, BMF does not support this case.

Scenarios 6, 7, 8 and 9 depict the cases where, for some UEs (e.g., pess2, f ss2q), the MBB
value does not allow to encode qNaN, sNaN and ˘8 Ó. Section 4.3.4 describes alternative
encodings for these values.

Solutions: Figure 4.6 depicts the scenarios when the MBB value leads to cast or round the
UNUM to be stored (lines 2-3 and lines 5-9). In scenario 5, the UNUM is simply not encodable
in BMF: there is no meaning to store a VP FP number with no exponent or mantissa. In scenario
2, the mantissa has to be rounded (toward ˘8) to the maximum footprint allowed by the MBB
value. In scenario 3, there are not enough bits to express the magnitude (exponent) of the
UNUM to be stored. Its value is saturated to “almost infinity” (positive or negative according
to its sign).

BMF provides a not-ambiguous binary encoding to support all the UNUM distinguished
values (lines 6-9). These encodings use unreachable utag encodings in the UNUM number.
Section 4.3.4 provides further details about the BMF encodings.

4.3.4 Putting all together: The BMF encoding for the UNUM format

This section presents the BMF encoding rules designed to support all possible combinations of
MBB and UNUM Environments (UE). As basic rules, under a given UE, it is not allowed to set
MBB values smaller than a minimum size: the size of the utag plus 3 bits.

Figure 4.7 shows the BMF encodings for the UNUM format for all the possible UE and
MBB values. The notations used are the same as Figure 4.5 and 4.6. Encodings 1-9a depict the
cases where the maximum UNUM bit-length, in the pess1, f ss1q UE, does not exceed the MBB
boundary (the ones of Section 4.3.2).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

46 Chapter 4. System architecture for the variable-precision computing unit

s u es-1 fs-1

1a) 0 1 1-----1 1-----1

2a) 1 1 1-----1 1-----1

3a) 0 0 1-----1 1-----1

4a) 1 0 1-----1 1-----1

5a) 0 1 1-----1 1-----1

6a) 1 1 1-----1 1-----1

7a) 0 1 es-1 fs-1

8a) 1 1 es-1 fs-1

9a) s u es-1 fs-1

1b) 0 1 1--------1 1--------1

2b) 1 1 1--------1 1--------1

3b) 0 0 1--------1 1--------1

4b) 1 0 1--------1 1--------1

5b) 0 1 es-1 fs-1

6b) 1 1 es-1 fs-1

7b) s u es-1 fs-1

s u es-1 fs-1

0

-∞↓

+∞) right

(-∞ left

x

+∞↓

1--------------1

1------1

1------------1

e

1--------------1

fs_maxes_max

1---------------------------------1

1----------------------1

1------------------------1

f

1---------------------------------1

sNaN

qNaN

1--------------1

1--------------1

1---------------------------------1

1---------------------------------1

1--------------1

1--------------1

1-------------------------------10

1-------------------------------10

U
N

U
S

E
D

 B
IT

S

fss’’ess’’ bit length

MBB*8

fses

1------1

1------------1

e

1----------------------1

1------------------------1

f

-∞↓

+∞) right

(-∞ left

x

+∞↓

sNaN

qNaN

+∞) right

(-∞ left

fss’ess’

UNUSED BITS

Figure 4.7: BMF binary encoding varying the MBB and the UE parameters

Encodings 1-7b depict the cases where the maximum UNUM bit-length, in the pess2, f ss2q
UE, exceeds the MBB boundary (the ones of Section 4.3.3). For this reason, they have a UE lager
than the UE of cases 1-9a. Encodings 1-4b represent the UNUM distinguished values.

The encodings 1-4b exploit the following property: if the maximum memory-footprint of
the UE pess2, f ss2q is larger than the one imposed by the MBB value, the fields es-1 and fs-1
can not be equal to 2ess2-1 and 2 f ss2-1 (all ones), respectively. With this property, it is possible
to encode the UNUM distinguished values (qNaN, sNaN and ˘8 Ó) setting both the es-1
and fs-1 fields to their maximum value. A dedicated configuration of the sign and ubit fields
differentiates each distinguished value.

Like encodings 7a and 8a, encodings 5b and 6b are used to map the “almost infinity” values.
One of the two is selected depending on the sign of the cast or rounded value. Encodings 5-7b
behave like the encoding 7-9a and reflect the same reading rule of the scenario 7-9 of Figure 4.5
in Section 4.3.2.

Figure 4.7 depicts the BMF encodings supporting the UNUM type I format for all the sup-
ported UEs and for all the legal MBB values (that respects the rules described in these last
sections). This configuration uses as few bits as possible to encode qNaN, sNaN, and ˘8 Ó

for each MBB value. Moreover, it encodes ˘8 . . . with the 5b and 6b encodings (always of Fig-
ure 4.7). Algorithms 2 and 3 show the algorithms in pseudocode that the BMF load and store
hardware block should implement. The leftNotRight input parameter is used to perform correct
rounding, and to handle distinguished values, during interval computation.

An alternative BMF encoding

The BMF encodings presented until now are the ones used in the final demonstrator. How-
ever, other encodings may be used. For example, Figure 4.8 shows an alternative of the BMF
encoding presented in Section 4.3.4. The only difference compared to Figure 4.7 is in encodings

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

4.3. The Bounded Memory Format: fitting UNUM in a modern memory hierarchy 47

Algorithm 2 BMF load
1: function BMFLD(address, UE, MBB, leftNotRight)
2: unum U Ź loaded UNUM
3: utag Ð LDUTAGpMEM[address], UEq Ź get the utag from main memory
4: utagWidth Ð UE.ess + UE.fss +2 Ź get the utag memory footprint
5: eWidth Ð utag.es Ź get the exponent memory footprint
6: fWidth Ð utag.fs Ź get the fraction memory footprint
7: if MAXUSIZEpUEq ă MBBSIZEpMBBq then Ź UNUM max size can fit in the current MBB
8: e Ð LDEXPpMEM[address+utagWidth], eWidthq Ź load the exponent
9: f Ð LDFRACpMEM[address+utagWidth+eWidth], fWidthq Ź load the fraction

10: switch rutag, e, f, leftNotRights do Ź check loaded data
11: case ISSNANputag, e, fq
12: U Ð sNaN
13: case ISQNANputag, e, fq
14: U Ð qNaN
15: case ISEXACTINFputag, e, fq
16: U Ð ˘8 Ó

17: case ISNEXACTINFputag, e, f, leftNotRightq
18: U Ð ˘8 . . .
19: case others
20: U Ð EXTRACTFIELDSUNUMputag, e, f, leftNotRightq Ź according to Figure 4.7
21: else Ź UNUM max size can not fit in the current MBB
22: switch rutags do Ź check loaded utag
23: case ISSNANputagq
24: U Ð sNaN
25: case ISQNANputagq
26: U Ð qNaN
27: case ISEXACTINFputagq
28: U Ð ˘8 Ó

29: case others
30: e Ð LDEXPpMEM[address+utagWidth], eWidthq Ź load the exponent
31: f Ð LDFRACpMEM[address+utagWidth+eWidth], fWidthq Ź load the fraction
32: switch rutag, e, f, leftNotRights do Ź check loaded data
33: case ISNEXACTINFputag, e, f, leftNotRightq
34: U Ð ˘8 . . .
35: case others
36: U Ð EXTRACTFIELDSUNUMputag, e, f, leftNotRightq Ź according to Figure 4.7

return [U]

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

48 Chapter 4. System architecture for the variable-precision computing unit

Algorithm 3 BMF store
1: function BMFST(U, address, UE, MBB, leftNotRight)
2: utagWidth Ð GETUTAGWIDTHpUEq Ź get the utag memory footprint
3: eWidth Ð U.esm1 Ź get the exponent memory footprint
4: if MAXUSIZEpUEq ă MBBSIZEpMBBq then Ź UNUM max size can fit in the current MBB
5: switch rU, leftNotRights do Ź check data to be stored
6: case ISSNANpUq
7: MEM[address] Ð sNaN Ź store full length sNaN
8: case ISQNANpUq
9: MEM[address] Ð qNaN Ź store full length qNaN

10: case ISEXACTINFpUq
11: MEM[address] Ð ˘8 Ó Ź store full length ˘8 Ó
12: case ISNEXACTINFpU, leftNotRightq
13: MEM[address] Ð ˘8 . . . Ź store most compact encoding ˘8 . . .
14: case others
15: Unorm Ð BMFpU, UE, MBBq Ź normalize and round U according to MBB
16: MEM[address] Ð Unorm.utag Ź store the BMF-ized utag
17: MEM[address+utagWidth] Ð Unorm.e Ź store the BMF-ized exponent
18: MEM[address+utagWidth+eWidth] Ð Unorm.f Ź store the BMF-ized fraction
19: else Ź UNUM max size can not fit in the current MBB
20: switch rU, leftNotRights do Ź check data to be stored
21: case ISSNANpUq
22: MEM[address] Ð sNaN’ Ź store compact sNaN
23: case ISQNANpUq
24: MEM[address] Ð qNaN’ Ź store compact qNaN
25: case ISEXACTINFpUq
26: MEM[address] Ð ˘81 Ó Ź store compact ˘8 Ó
27: case ISNEXACTINFpU, leftNotRightq
28: MEM[address] Ð ˘8 . . . Ź store most compact encoding ˘8 . . .
29: case others
30: Unorm Ð BMFpU, UE, MBBq Ź normalize and round U according to MBB
31: MEM[address] Ð Unorm.utag Ź store the BMF-ized utag
32: MEM[address+utagWidth] Ð Unorm.e Ź store the BMF-ized exponent
33: MEM[address+utagWidth+eWidth] Ð Unorm.f Ź store the BMF-ized fraction

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

4.4. Issues on supporting variable-precision formats 49

s u es-1 fs-1

1a) 0 1 1-----1 1-----1

2a) 1 1 1-----1 1-----1

3a) 0 0 1-----1 1-----1

4a) 1 0 1-----1 1-----1

5a) 0 1 1-----1 1-----1

6a) 1 1 1-----1 1-----1

7a) 0 1 es-1 fs-1

8a) 1 1 es-1 fs-1

9a) s u es-1 fs-1

1b) 0 1 1--------1 1--------1

2b) 1 1 1--------1 1--------1

3b) 0 0 1--------1 1--------1

4b) 1 0 1--------1 1--------1

5b) 0 1 1--------1 1--------1

6b) 1 1 1--------1 1--------1

7b) 0 1 es-1 fs-1

8b) 1 1 es-1 fs-1

9b) s u es-1 fs-1

s u es-1 fs-1

0

-∞↓

+∞) right

(-∞ left

x

+∞↓

1--------------1

1------1

1------------1

e

1--------------1

fs_maxes_max

1---------------------------------1

1----------------------1

1------------------------1

f

1---------------------------------1

sNaN

qNaN

1--------------1

1--------------1

1---------------------------------1

1---------------------------------1

+∞) right

(-∞ left

1--------------1

1--------------1

1-------------------------------10

1-------------------------------10

U
N

U
S

E
D

 B
IT

S

fss’’ess’’ bit length

MBB*8

fses

1------1

1------------1

e

1---1

1----------------------1

1------------------------1

f

1---1

1---1

1---1

1---10

1---10

-∞↓

+∞) right

(-∞ left

x

+∞↓

sNaN

qNaN

+∞) right

(-∞ left

fss’ess’

Figure 4.8: Alternative BMF binary encoding varying the MBB and the UE parameters

1-6b. The idea used here is to use some or all the remaining bits (in addition to the utag) to
differentiate distinguished values.

4.4 Issues on supporting variable-precision formats

According to the previous sections, the encoding of Variable-Precision (VP) Floating-Point (FP)
formats is more complicated than conventional floats. This complexity raises several issues
both under the hardware realization and precision perspectives. Sections 4.4.1, 4.4.2, 4.4.3,
and 4.4.4 describe these issues. This section expands Section 2.4 by adding all the issues iden-
tified during the design phase of this work.

4.4.1 Hardware overhead due to variable-length fields

The choice of modifying the UNUM VP FP format in BMF weakens Gustafson’s claims, but it
is a necessary condition for using it in a real computing system. Unlike IEEE 754 numbers, in
VP FP formats, the exponent and fraction fields have variable bit-width, and their position is
not known a priori. FP units (FPU) require fixed-length interfaces, fixed-size hardware internal
operators, and separated exponent and fraction fields for the FP computation. The VP FPU
hardware, to support VP FP formats, needs conversion functions, between the memory interface
and the FPU core, to encode and decode the exponent and fraction fields between the memory
format and the internal one used for computation.

These conversion functions (not needed for the IEEE formats) complicate the VP FPU hard-
ware increasing the circuit area, the latency, and the power (and energy) consumption. At the
cost of reducing the VP FPU throughput, the latency can be masked by adding pipeline stages

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

50 Chapter 4. System architecture for the variable-precision computing unit

(i.e., during load and store operations). Some hardware optimizations can minimize the power
consumption overhead (e.g., register clock gating).

These conversion functions need additional hardware in the VP LSU to convert the FPU
internal registers that, by definition, have a fixed bit-width. This circuit area overhead, due to
these conversion functions, cannot be avoided, it can only be minimized.

4.4.2 Instruction encoding issues

Another hardware-related potential issue is that VP FP numbers require some additional in-
formation needed for the encoding and decoding of numbers in memory. For example, for
UNUMs, the UNUM Environment (UE [2]), and MBB if the BMF is applied. In the hardware
FPU, these types of information must be stored somewhere. They could be stored either within
each instruction of the Instruction Set Architecture (ISA) of the unit or in dedicated status reg-
isters defined by the ISA.

Encoding this information in the instruction implies to increase the number of supported in-
structions significantly. All the instructions regarding load and store of VP FP data in memory
must be re-defined for every supported value of UE and MBB. This redefinition is a poten-
tial problem because there is the possibility of not having enough free opcodes to encode all
the load-store instructions in the ISA. Moreover, this complicates the FPU decode unit and the
compiled assembly.

This work follows the other option that encodes these types of information in status registers
inside the VP FPU. These registers require dedicated instructions (and additional clock cycles)
to be updated. However, the number of instructions added in the ISA is negligible, and the
generated assembly is independent of the data precision. This ISA strategy allows the recycling
of the software code when the data precision must be changed.

4.4.3 Data-dependent error bounds

Variable-Precision (VP) Floating-Point (FP) formats are designed to compact their FP exponent
field for small exponent values. For example, representing the exponent value +1 on 16 bits
is needless: two bits are enough. In this case, the fraction precision of a FP number can be
augmented (ideally) of 14 bits. In other words, for smaller exponent values (in magnitude), the
exponent bits can be “harvested” and used to expand the fraction FP field.

On one side, the exponent “harvesting techniques” used in VP FP formats (Section 3.1)
intuitively make the reader think that it can reduce the computational error at the end of a
computation. On the other side, the non-constant number of mantissa bits can make it chal-
lenging to bound the error of arithmetic operations linearly. This statement is generally valid
for all the VP FP formats known in state of the art: UNUM and posit.

4.4.4 Encoding overhead of variable-precision

Some bits of the VP number must encode somehow the threshold between the exponent and
fraction fields (nor their lengths). This field can have fixed-length (e.g., the exponent size in the
UNUM format [2]) or can have variable length (e.g., the regime bits in posit). In both cases, the
bits used to express this field cannot express the FP fraction. For exponent values of magnitude
above a threshold that depends on the setting of the VP FP format, this brings a systematic
precision loss, expressed in a given number of fractional bits, compared to an IEEE-754-like FP
format of the same size. This encoding overhead behaves worse when the memory subsystem
imposes a granularity larger than the bit.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

4.5. Hardware architecture for the variable-precision computing unit 51

The standard UNUM format [2] is inefficient to support in hardware since affine accesses
in memory cannot be guaranteed (Section 4.3). The modified UNUM format specified in Sec-
tion 4.3.4 guarantees affine memory accesses, and, if the MBB parameter is large enough, a
minimum number of mantissa bits can be guaranteed. However, this number of bits is lower
than the one that could be available in a custom IEEE-like float of the same size (due to the VP
descriptor field). Moreover, the redundant exponent encodings in the UNUM format lower,
even more, this number of mantissa bits. For state of the art on forward and backward analysis
perspective, this potentially requires VP FP numbers on more bits than the IEEE 754-like FP
numbers with custom exponent and fraction sizes.

Posit is not exempt from these issues, it just avoids the redundancy of the exponent encod-
ing, at the cost of sacrificing some bits of precision. It simplifies the conversion functions de-
signing their algorithms around a leading-zero-one-count hardware block. However, for large
exponent values, posit requires more bits than UNUM to encode the same exponent value.
Other posit-related issues are listed in [74].

4.5 Hardware architecture for the variable-precision computing unit

This section hosts this study’s main contribution: the specifications for a VP hardware architec-
ture that handles VP data in memory and inside the VP FP Unit (FPU). The final target of this
work is to have a VP computing system capable of running scientific computing applications
on memory data. Its size can vary from less than ten bits to several hundred. To achieve that,
this work leverages on a hardware architecture based on four main principles:

• VP FP formats are used to express variables in memory with possibly different precisions
than those supported by the IEEE 754 format.

• VP FP variables in memory have a programmable footprint at compile time. Using IEEE
754 FP formats, it is possible to vary the precision of variables by using different memory
formats. With VP FP formats, the memory footprint (and the precision) of VP FP vari-
ables, belonging to the VP FPU, can be programmed by the user, but it must be static
after compile time. If not, the compiler can not allocate VP FP data structure in memory
(e.g., VP FP arrays).

• The representation of VP FP variables in memory and inside the VP FPU is different. The
reason for this is twofold: 1/ the precision used in memory may be different from that
used for internal computation; 2/ the best representation of data in memory is different
from the best representation of data inside the VP unit. For the first point, the program-
mer can use different precision settings for internal computations and memory data. For
the second point, unlike VP memory formats, the VP exponent and fraction fields must
be in a fixed position to be processed. The latter is a hardware constraint.

• The VP FPU must be as close as possible to the main processor, and it must be used
directly by extending the system Instruction Set Architecture (ISA). In this way, the VP
FPU can be used like conventional FPUs, and the control code that involves VP FP values
is executed without slowing down the main core pipeline. The instructions added in the
system ISA must also include conversion instructions between the existing data types
(i.e., float, double) and new ones (i.e., UNUM, ubound).

4.5.1 Overview of the RISC-V-based system

Figure 4.9 depicts the global overview of the computing system implemented in this work.
RISC-V was chosen as the development platform due to its configuration flexibility provided

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

52 Chapter 4. System architecture for the variable-precision computing unit

UNUM

co-proc

RoCC

LSU

RISC-V
Rocket

Chip

FPU

LSU
$

L1

R

A

M

Scratchpad

$

L1

R

A

M

1

2

3

4

5

Figure 4.9: High-level overview of the variable-precision computing system

by the Rocketchip RISC-V generator [7]. This platform can easily integrate new hardware
blocks as RISC-V coprocessors. Thus, the VP FPU will be embedded in the platform as a
coprocessor. The choice to adopt a RISC-V architecture is purely opportunistic because it is
open-source. Other architectures like GPUs or hardware accelerators are not considered since
they do not guarantee a fast interaction with the main core, especially in the control code that
exploits FP computation.

The system platform is made of a RISC-V core 1 connected to its native system: its 64 bits
FPU, its memory hierarchy, and its peripherals. The VP coprocessor 4 has dedicated inter-
faces with the main core and the memory subsystem 5 (L1 cache memory), which guarantees
much flexibility from the design perspective and ensures higher performance during memory
operations (compared to a loosely coupled coprocessor). These interfaces are grouped into the
RoCC interface 2 [75]. The RoCC interface is a hardware interface, provided by the Rocketchip
generator, that provides to the user to embed custom coprocessors in a RISC-V environment.

The design principle embraced in the hardware realization of the VP coprocessor is to have
two different VP FP formats for the numbers in memory and the ones inside the coprocessor
scratchpad (its register file). The VP FP memory format is designed to be as compact as possible
to maximize the precision of variables while minimizing the algorithm’s computational error.
The length of the memory format can be tuned with a byte-granularity. The VP FP format used
inside the coprocessor Register File (RF) is less compact and less flexible. Like conventional
FPUs, the mantissa and exponent fields are kept separate. The exponent has fixed length, and
the mantissa length can be tuned with a 64-bit granularity. In this way, the coprocessor can
work internally on data with fixed-size representations, having standard hardware for internal
hardware operators. For more details about the RF format, please refer to Section 4.5.3.

The conversion between those two formats is handled, during load and store operations,
by a dedicated Load and Store Unit (LSU 3). All the complexity related to the VP FP memory
formats (UNUM and ubound), in particular the positions of the variable-size fields, are sup-
ported by the LSU. This LSU encodes and decodes the supported VP FP memory format(s) to
be processed inside the coprocessor. It supports BMF as an extension of the UNUM type I for-
mat (for details see Section 4.3) with MBB boundaries expressed in a specific number of bytes
(Maximum Byte Budget according to Definition 1). The converted data go into the internal
coprocessor RF. Once the converted data are in the coprocessor RF, its entries are used among
operations.

4.5.2 Architecture of the accelerator

The coprocessor architecture is inspired by Schulte [49] and is pipelined with a fixed 64-bits
internal data-path (comparable with conventional 64 bits FPUs). The mantissa fields of the
coprocessor RF entries are divided into chunks (words [49]) of 64 bit each. Thus, the scratchpad

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

4.5. Hardware architecture for the variable-precision computing unit 53

precision can be tuned with a 64-bit granularity. The 64 bit bound is chosen to keep under
control in terms of the silicon area (required by the synthesized chip) and the clock cycle latency,
of the coprocessor hardware arithmetic logic (e.g., adders, shifters, multipliers). Each pipeline
stage of the coprocessor is based on a stop-and-wait protocol to process the RF mantissa fields.

In order to better support interval VP formats, the coprocessor provides hardware accel-
eration for interval computation. In this way, the programmer can use intervals like scalar
variables without having to write software functions to support Interval Arithmetic (IA) basic
operations. To properly support IA, the coprocessor RF hosts VP FP intervals.

The coprocessor supports the basic FP arithmetic hardware operators. It embeds a com-
parator (to compare RF entries), an adder (to support addition and subtractions between RF
entries), and a multiplier (to support multiplications between RF entries). Division and other
FP operations that implement polynomials are implemented by software routines iterating on
the existing hardware. All the hardware operators support both interval and scalar computa-
tion. For the latter, to save energy and computation time, the arithmetic inside the hardware
operators is simplified by using only one interval endpoint data-paths out of the two available,
and by bypassing all the hardware logic needed to support intervals. Moreover, only one of
the two endpoints of a register-file entry is used.

The design implementation is parametric so that many aspects (for instance, the internal
data-path bit-width, the maximum variables dynamics, and the RF size) can be customized
based on the application. The set of parameters chosen in this article is as follows:

• The internal coprocessor data-path bit-width of is set to 64 bit, as previously exposed.

• The coprocessor RF contains 32 VP FP intervals (ubound). This number of entries matches
the one specified for integer and FP computing in the RISC-V ISA.

• VP FP memory variables use the modified UNUM type I format (with BMF, Section 4.3)
supporting all the UEs from the (1, 1), which corresponds up to 2 bits for exponent and
mantissa, up to the (4, 9) one, which corresponds to a maximum of 16 bits for the exponent
and 512 fractional bits. For efficiency constraints, the hardware designer can tune the
maximum supported length for exponent and mantissa with a power-of-two granularity.

• Each RF interval endpoint can express FP mantissa fields up to 512 of precision. This
number must be large enough to support the maximum supported UE, but its size can
increase with a power-of-two granularity.

All the results reported in the next sections correspond to this set of parameters.
This section is structured as follows: Section 4.5.3 details the format used in the coprocessor

RF and the RF internal hardware organization. Section 4.5.4 explains how to have easy control
of a VP FPU employing status registers.

4.5.3 Choice of the variable-precision format of the register file

On the one hand, the coprocessor has to support data in memory spanning between less than
ten bits up to several hundred. These data use a VP FP format in which the exponent and
mantissa sizes and positions (within the number) are encoded within the number. These data
use a VP FP format in which the number self-encodes (within the number) the exponent and
mantissa sizes and positions. On the other hand, an efficient FP hardware needs to have the
mantissa and exponent fields in two separate fields, with their length known and explicit a
priori. A dedicated Load and Store Unit (LSU) takes in charge of the complexities of re-aligning
the VP FP fields from the memory format into the one of coprocessor scratchpad. This section
specifies the FP format used in the coprocessor scratchpad, its Register File (RF), and its internal
organization.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

54 Chapter 4. System architecture for the variable-precision computing unit

𝑚1

…

𝑚2∆𝑙 −1

𝑚0

expLs

∆𝑙

summ. bits

L

1

2 1.

Figure 4.10: The gbound endpoint (gnumber) binary format

The coprocessor internal data-path bit-width is fixed to 64 bits. With this, the coprocessor
LSU has to extract the mantissa from the VP data in memory and map it into a new mantissa
with a granularity of 64 bits.

This granularity implies to have in the coprocessor RF mantissa fields with different preci-
sions depending on the VP data loaded from memory. Instead of having several ISA instruc-
tions of the same type (e.g., add) that support several input data precisions, this work proposes
one single instruction per operation where the data precision information is the data pointed in
the scratchpad. Thus, the described VP FP coprocessor works with pointer-based computation.
For memory accesses, every access to the RF entries is done through pointers, and the number
self-encodes its mantissa length.

For each VP FP number in the coprocessor RF is divided into two parts: the header 1 and the
mantissa 2 . The header contains all the FP fields that are not the mantissa. It is made of a sign s,
an exponent exp, six summary bits, summ. bits, and the L field. The mantissa field is divided in
chunks (of 64 bits each). According to the maximum UNUM length supported in memory (512
bits of mantissa), this work supports eight chunks of 64-bits each. In this work, all the mantissa
fields are normalized (the hidden bit is always set to 1) to facilitate the computation inside the
VP hardware operators.

Among all the header fields, the L one is the most important. It gives the number of used
mantissa chunks in the VP FP number. In a VP number inside the coprocessor RF, the most
significant chunk is m0, and the least significant one is mL. Thus, the number of chunks that
moved into the coprocessor is minimized according to its precision. For the implementation of
this, its length (∆l) is three bits.

The exp header field hosts the exponent value of the VP number. It is encoded in two’s
complement, and its length is two bits longer than the maximum length that the exponent can
have in memory (16+2 bits). The two additional bits are used to encode the sign of the exponent
and to be able to encode all the subnormal values supported by the VP memory format, having
the mantissa fields expressed in normal form.

The summary bits are flags used to encode particular values. The first one is is_zero, which
is set if the VP number is zero. This bit is needed because, with a normalized mantissa, it is
impossible to represent the value 0. The next three are is_nan_quiet, is_nan_signaling, and
is_inf. They are used to representing Not a Number and infinity (˘8) values, which may
arise during computation.

The last two summary bits are used to provide Interval Arithmetic (IA) support within
the VP coprocessor: they are is_nan_quiet and is_close. The is_nan_quiet flag is used to
represent a value between the maximum representable one and infinity [2]. The is_close flag
is an endpoint termination flag: it is set if the interval endpoint is closed, it is unset if the
interval endpoint is open.

Figure 4.11 depicts a simplified scheme of the internal organization of the coprocessor RF. It
is mainly divided into two separated memories: the one to host the VP numbers headers, and
the one to host the VP numbers mantissa fields. Since the coprocessor supports IA, the header

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

4.5. Hardware architecture for the variable-precision computing unit 55

First
number

Second
number

left right address

register
number

register
offset

M11R1 01

M12R1 10

M13R1 11

M10R1 00

M01R0 01

M02R0 10

M03R0 11

M00R0 00

H1R

H0R

M11L

M12L

M13L

M10L

M01L

M02L

M03L

H1L

H0L M00L

left right
MANTISSA MEMORYHEADER MEMORY

bus width

Figure 4.11: Internal organization of the register file

and the mantissa memories are split in two, to host the two endpoints of the interval (left and
right) for each RF entry. In this work, the VP RF hosts 32 intervals with up to 8 mantissa chunks
per each interval endpoint. For simplicity, this figure represents a RF with only two entries and
four mantissa chunks per interval endpoint.

The RF entries are accessed through an address. This address is made of two parts, one that
points the register number and one that points the register offset. The register number addresses
the entire coprocessor RF. The register offset addresses a specified couple of mantissa chunks
within a RF entry. For a given read-write operation on the RF, the read-modified headers (HxL,
HxR) and mantissa chunks (MxyL, MxyR) are the ones pointed by the register number (x, e.g.,
1) and the register offset (y, e.g., 01) fields of the input address.

Operations on higher precisions than 64 bits are done by iterating on the existing hardware.
The protocol implemented by the RF to handle high-precision data is simple: In a RF read
operation, the first chunk of the RF entry, pointed by the register number bits of the RF address,
is provided to the VP hardware operator. If the L fields of the headers in input to the VP
operator is different from zero, the VP operator has to require the access to the coprocessor RF
and ask for all the missing chunks in the input (one per clock cycle) providing in the RF address
all the missing register offsets.

In interval computation, it is assumed that the VP operators can handle the two endpoints
of the interval in output in parallel. For this reason, the RF provides in output both interval
endpoints. The coprocessor can also work in scalar mode. In this mode, it only uses the left
endpoint.

4.5.4 Improving code efficiency through status registers

One of the main problems in VP computing is writing software code (e.g., C) where the kernel
of the program (the central VP computational part) is unchanged and, at the same time, the
precision of its variables may change. This problem is driven by the fact that software lan-
guages are typed and, depending on the variable datatype, specific (data-dependent) assembly
instructions are generated by the compiler (e.g., ld or lw to load 64 or 32 bits data respectively
on RISC-V). This section proposes to host the information about the configuration of VP for-
mats (in memory and the coprocessor scratchpad), the variables memory-footprint, and the
operation rounding mode, in Status Registers (SR) inside the VP coprocessor.

Having a computing model based on SRs allows generating assembly code independent
of the data type of variables. In other words, the computing precision information inside SRs
allows making assembly operations (e.g., load and store) independent on the type of the vari-
ables in memory (or in the coprocessor RF). The VP coprocessor has five internal SRs: DUE,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

56 Chapter 4. System architecture for the variable-precision computing unit

WGP = 2

gOP

gRF[10]

f e L

64

.1 m0
m1
···

mLmax

f e L

64

.1 m0
m1
···

mLmax

gRF[7]

f e L

64

.1 m0
m1
···

mLmax

f e L

64

.1 m0
m1
···

mLmax

gRF[3]

f e L

64

.1 m0
m1
···

mLmax

f e L

64

.1 m0
m1
···

mLmax

Figure 4.12: Example of usage of the Working G-layer Precision status register

SUE, MBB, WGP, and RND. The first three are related to the memory number representation,
and the last two tune the computation inside the coprocessor.

The Default UNUM Environment (DUE) SR stores the default UNUM Environment (UE,
expressed in the tuple of values ESS and FSS) [2] used during the load-store of UNUM-ubound
operations from-in the main memory.

In the case of UE conversion operations among data, the modification of the DUE status
register for every number would have a significant impact in terms of execution time. To speed
up the UE conversion operations in main memory, the Secondary UNUM Environment (SUE) SR
stores the secondary (optional) UE that can be used for UNUMs-ubounds load-store operations
from-in the main memory. Having two UE SRs (DUE and SUE) allows for faster UE conversion
operations and faster loading and storage between different UEs.

The third status register is the Maximum Byte Budget (MBB) SR. It supports the BMF format
(Section 4.3) that adapts the UNUM type I format for all the possible MBB values. Its content
can vary according to the application needs. It controls (at the granularity of p=8 bits), the
maximum slot size for read-write in main memory.

While DUE, SUE, and MBB SRs configure the format and precision of data in memory, the
Working G-layer Precision (WGP) SR configures the computation precision inside the VP co-
processor. It stores the maximum precision (expressed in a given number of 64-bit mantissa
chunks) that the result of a coprocessor operation can have. Figure 4.12 depicts the WGP us-
age. A VP operator (gOP) bounds the output precision of its output (L) at the value encoded
in the WGP SR (2). With this SR the user can implement fused operations3inside the coproces-
sor by increasing (if higher precision is needed) or reducing (to speed up the operations) the
computation precision. In some applications, incrementing the computation precision in the
computational unit may reduce the precision required by the variables in memory, leading to a
potential speedup of the overall application.

The RouNDing mode (RND) SR hosts the rounding mode that all the VP operators (including
the Load and Store Unit, LSU) must respect. It can have four possible values: Round To Interval
(RTI), Round To the Nearest (half away from zero, RTN), Round-Up (RDU), and Round Down
(RDD). If the RND SR is set to RTI, the interval endpoint data-paths are enabled within the
VP hardware operators. Furthermore, the rounding modes used in both data-paths meet the
interval arithmetic requirements (i.e., enlarge the interval endpoints toward ˘8). If the RND
SR is set to RTN, or RDU, or RDD, the VP coprocessor units work in scalar mode, and the
rounding rule used is congruous on the selected value in the SR.

Those registers can be driven by the compiler depending on the VP FP variable definition or
by the inline assembly. All the SRs values are sampled at instruction fetch. The VP coprocessor
makes sure that every SR modification has an immediate effect on the next fetched instruction.

3 Fused operations are a sequence of operations done within the computing unit without passing through the
memory subsystems. In other words, fused operations are a section of an assembly program that uses only operands
that are coming from the unit register file or the unit scratchpad (e.g., an internal accumulator).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

4.6. The programming model for the variable-precision computing unit 57

Outermost loop

Intermediate loop

Innermost loop

Legend:

RoCC

LSU

FPU

LSU

UNUM
co-proc

Scratchpad

R

A

M

R

A

M

8

$

L1

$

L1

4

6

Rocket tile

01: k = 0

02: while convergence not reached do

03: for i := 1:n do

04: =0

05: for j := 1:n do

06: if j ≠ i then

07: 𝜎 += 𝑎𝑖𝑗𝑥𝑗
(𝑘)

08: end

09: end

10: 𝑥𝑖
(𝑘+1)

=
1

𝑎𝑖𝑖
(𝑏𝑖 − 𝜎)

11: end

12: k=k+1

13: end

RISC-V

1
2

3

5

7

Figure 4.13: The coprocessor architecture and its programming model: structure and variable-length mapping
for an iterative solver kernel

In this way, the VP coprocessor user (the assembly programmer or the compiler) has only to
focus on setting the right precision of the variables needed in a give section of the assembly
code. Section 4.6 provides additional details on the SRs usage.

4.6 The programming model for the variable-precision computing
unit

Writing Variable-Precision (VP) software can be very complicated since, with conventional
hardware support, for every supported precision, a dedicated software function must be as-
sociated. This complexity is because the conventional software languages (e.g., C) are typed,
and for each variable, a precision is implicitly associated. This code structure leads to having
assembly code (generated by the compiler) that contains assembly instructions dependent on
the memory footprint of variables. Section 4.5.4 describes the Status Registers (SR) of the VP
Floating-Point (FP) coprocessor, used to host the configuration parameters of VP variables in
memory. The use of these SRs is necessary for the writing of VP software, where the precision
of variables is not attached to themselves but is stored in status registers.

This section shows how to use the SRs of the VP coprocessor to write software for VP FP
computing applications. Our hardware is best suited for applications that follow a standard
scheme among VP kernels. Figure 4.13 depicts how to use the VP hardware for a canonical
algorithm software example.

To explain the programming model proposed by this work, Figure 4.13 leverages a simpli-
fied Jacobi solver as a model example based on several nested loops. In this model, all the input
and output data are stored in main memory 8 on conventional IEEE 754 FP formats, which
can usually express the input-output data with enough precision. The general idea is to use VP
variables to improve the computation precision in the algorithm innermost part. This model
example is based on several nested loops.

The outermost loop level manages the result convergence: according to some criteria, it may
decide to restart the process increasing the computation precision (DUE-SUE-MBB or WGP).
Every time that the precision must be changed, the VP coprocessor SRs are updated.

We rely on main memory 8 for hosting the data used by the kernel (source data, in IEEE
format, and working set). Passing through the system cache 4 , they are processed in the
coprocessor scratchpad 6 .

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

58 Chapter 4. System architecture for the variable-precision computing unit

The innermost loop is usually processed in the coprocessor RF 6 . It is meant for the accu-
mulation of (possibly) many partial products, e.g., line or column-wise accumulation in linear
algebra, or specific interpolation stepper for ODE solvers. Our ISA allows us to create any arbi-
trary accumulation; the dot product is one example. In our model, this accumulation uses one
of the 32 available VP registers (with up to 512 bits of mantissa). Provided that the compiler
does an excellent job at static scheduling, these accumulations may be interleaved in the RF as
long as space is available. The compiler must maximize the amount of computation in the RF
6 to minimize the precision losses and maximize the performance. However, the spilled vari-

ables can be stored in the processor L1 cache (if appropriately sized) with the UNUM format
(with up to 256 bits of mantissa).

The intermediate loop uses the accumulated intermediate results for updating the interme-
diate vector result. This intermediate vector is usually too large to fit into the coprocessor
scratchpad. Therefore, it is often convenient to use the close memory 4 for storage. Thus, the
cache size is a primary key parameter here. The usage of VP allows safeguarding enough pre-
cision without wasting memory. This process, which may consist of several loops, stops when
some convergence criteria are met.

4.7 The ISA for the variable-precision computing unit

Previous sections show the global overview of the VP hardware architecture (Section 4.5), its
VP Register File (RF) organization (Section 4.5.3), and its programming model (Section 4.6) that
leverages dedicated Status Registers (SR, Section 4.5.4). This section proposes the Instruction
Set Architecture (ISA) to program the VP computing system.

4.7.1 Programmer view for the variable-precision computing unit

Before diving into the ISA details, it is necessary to introduce the RISC-V architecture. RISC-
V provides the user access to 33, XLEN bit wide, integer registers x0-x31, and pc (this work
address XLEN=64). x0 is hardwired to the constant 0. x1-x31 are 31 General-Purpose Registers
(GPR). The pc holds the program counter that contains the address of the current instruction.

The Variable-Precision (VP) coprocessor provides to the user (through assembly instruc-
tions) access to the VP Register File (RF). According to the nomenclature introduced in [2],
since we support intervals in the VP RF, this work defines a gbound as the interval hosted in a
RF entry, and it defined gnumbers as the interval endpoints of one entry. This RF contains 32 en-
tries, named g0-g31, which hold gbound values. This choice simplifies the internal architecture
and the compiler (that have to provide to the high-level programmer the UNUM facilities).

As explained in Section 4.2, the VP coprocessor can work either in interval mode (gbound)
or in scalar (gnumber) mode. The UNUM and ubound VP formats are strictly dedicated to data
storage in the main memory. A Load and Store Unit (LSU) dedicated to the VP coprocessor
handles the conversion between the memory and RF formats. During load operations, the
user loads UNUMs (or ubounds) stored in memory and implicitly converts them in gbounds,
that will be stored in the RF. During store operations, the user implicitly converts a gbound
(or a gnumber) hosted in the RF in the UNUM-ubound format (also controlling its memory
footprint). Once that is converted, it is ready to be stored in the main memory.

4.7.2 Base instruction formats

The VP coprocessor is interfaced with the main RISC-V core through the RoCC interface. This
interface allows the exchange of data between the main RISC-V core, the L1 cache, and the
coprocessor. Figure 4.14 depicts the three main instruction formats allowed by the RISC-V ISA
(I10/I5/R). They are divided into several fields:

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

4.7. The ISA for the variable-precision computing unit 59

0671112131415242531

func7
(7)

#imm10
(rs2+rs1) xd xs

1
xs

2 rd
(5)

opcode
(7)

I10-type

06711121314151920242531

func7
(7)

#imm5
(rs2)

rs1
(5) xd xs

1
xs

2 rd
(5)

opcode
(7)

I5-type

06711121314151920242531

func7
(7)

rs2
(5)

rs1
(5) xd xs

1
xs

2 rd
(5)

opcode
(7)

R-type

Figure 4.14: RISC-V Instruction Set Architecture (ISA): instruction format types

• opcode: This field contains the opcode of the RISC-V instruction. Only four opcodes are
available to identify coprocessors in the system. In this work, only one opcode value (that
this work renames as OP-CUST) is reserved to map the expanded instructions to work
with the VP coprocessor.

• funct7: Contains the instruction code of the coprocessor instruction; its values are a de-
signer choice.

• rs1, rs2, rd: Source (rs1, rs2) and destination (rd) registers.

• xs1, xs2, xd: These three flags, are set if the source (rs1, rs2) or destination (rd) registers
exists. These flags are used to select data from the main processor or provide data to the
coprocessor.

The I5 and I10 types allow encoding the immediate values in the instruction.
The RISC-V ISA provides the possibility to extend its standard instruction set with instruc-

tion set expansions. In particular, the existing RISC-V ISA can be expanded (on 32-bit instruc-
tions) in order to map additional coprocessor instructions. Their encoding must respect the
R-type format depicted in Figure 4.14. For this expansion, out of all the possible instruction
opcode values provided in the RISC-V ISA, four are reserved to expand the already existing
ISA to introduce coprocessor instructions. These four opcodes give the user the possibility to
add to the ISA instructions for up to four different coprocessors. When the running instruction
has one of these opcode values, the RISC-V activates the target coprocessor and provides to the
target coprocessor the instruction and the required data.

When the opcode points a VP coprocessor instruction, this instruction is forwarded up to
the VP coprocessor. Once it reaches the coprocessor, it has to be decoded. The RISC-V ISA keeps
the sources (rs1 and rs2), and destination (rd), registers in the same position in all the formats
to simplify decoding. However, if these fields are not activated by the register selection flags
(xs1, xs2, xd), they can be used for other purposes by the UNUM coprocessor. If one of the
register selection flags (xs1, xs2, xd) is unset, the correspondent register field (rs1, rs2, rd) can
be used from the coprocessor for other purposes. For instance, these unused bits can be used to
encode pointers to a memory inside the coprocessor (e.g., a register file), to encode immediate
values.

4.7.3 Status registers instruction set

This section presents the instructions designed to read and change the Status Registers (SR)
value inside the UNUM coprocessor described in Section 4.5.4. Figure 4.15 depicts how the
status register word (SR word) encodes all the SRs supported by the VP coprocessor. For both the

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

60 Chapter 4. System architecture for the variable-precision computing unit

067910131416172021232425

unused
(38) R

N
D DESS

(3)
DFSS

(4)
SESS

(3)
SFSS

(4)
WGP

(3)
MBB

(7)

Figure 4.15: The status registers binary encoding: this encoding contains all the status registers supported by the
variable-precision coprocessor

31 25 24 20 19 15 14 13 12 11 7 6 0
func7 rs2 rs1 xd xs1 xs2 rd opcode R-type

7 5 5 1 1 1 5 7
1 lusr unused unused 1 0 0 Xd OP-CUST
2 susr unused Xs1 0 1 0 unused OP-CUST
3 ldue unused unused 1 0 0 Xd OP-CUST
4 lsue unused unused 1 0 0 Xd OP-CUST
5 lmbb unused unused 1 0 0 Xd OP-CUST
6 lwgp unused unused 1 0 0 Xd OP-CUST
7 lrnd unused unused 1 0 0 Xd OP-CUST
8 sdue unused Xs1 0 1 0 unused OP-CUST
9 ssue unused Xs1 0 1 0 unused OP-CUST

10 smbb unused Xs1 0 1 0 unused OP-CUST
11 swgp unused Xs1 0 1 0 unused OP-CUST
12 srnd unused Xs1 0 1 0 unused OP-CUST

Table 4.1: Status registers instruction set

DUE and the SUE SRs, three bits encode the ESS UE field, and four bits encode the FSS UE field.
This configuration allows us to support the maximum UE supported by the VP coprocessor:
(ess=4, fss=9). The WGP SR is encoded on three bits. In this way, the WGP SR can tune the
precision of the coprocessor operations with up to 8 mantissa chunks. The WGP SR is encoded
on three bits. To support the UE (4,9) and to be able to store it without losing precision, seven
bits are dedicated to encoding the MBB SR. The four supported rounding modes (Section 4.5.4)
in the coprocessor are encoded on two bits in the RND SR. At the reset of the VP coprocessor,
all these SRs are set to zero. To use the coprocessor, the user must set the values of these SRs
before any coprocessor operation.

Table 4.1 presents the instructions to handle the internal status registers, and Table 4.2 shows
their assembly syntax. lusr 1 is the instruction that loads the content of the SR word that
contains all the coprocessor status registers: DUE, SUE, MBB, WGP, and RND. The values are
stored in the GPR pointed by Xd.

susr 2 is the instruction that updates (set) the content of the SR word: all the DUE, SUE,
MBB, WGP, and RND SRs. The new values of the SRs are passed into the VP coprocessor
through the GPR pointed by Xs1. With these two instructions, the programmer can update
the content of every single SR (or group of SRs) by reading them (LUSR), applying some bit-
masking techniques, and updating them back (S-USR).

This sequence of operations can be excessive to update a single SR. For this reason, the 3 -
12 instructions modify atomically single SRs in the SR word. The modification of one of these
SRs does not imply any automatic update on the other SRs. If the programmer enlarges only
the DUE, the MBB SR (and all the other SRs) keeps its previous value. Thus, if the value of
MBB is lower than the maximum mantissa length that the new DUE can have, the programmer
must expect an output value with a precision corresponding to the maximum one allowed by
the BMF-sized value for the configured DUE and MBB.

All the hardware operators of the VP coprocessor must carry on their pipeline, to guarantee
the program execution, the values of the SRs when the assembly operation involving the hard-
ware operator is fetched. In this way, the hardware operators can finish their execution with
the correct set of the coprocessor SR.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

4.7. The ISA for the variable-precision computing unit 61

Access to the coprocessor status registers values
Assembler: lusr Xd

Action: Xd = [unused, RND, DUE, SUE, WGP, MBB]
Assembler: susr Xs2

Action: [unused, RND, DUE, SUE, WGP, MBB] = Xs1
Assembler: ldue Xd

Action: Xd = [DUE]
Assembler: lsue Xd

Action: Xd = [SUE]
Assembler: lmbb Xd

Action: Xd = [MBB]
Assembler: lwgp Xd

Action: Xd = [WGP]
Assembler: lrnd Xd

Action: Xd = [RND]
Assembler: sdue Xs1

Action: [DUE] = Xs1
Assembler: ssue Xs1

Action: [SUE] = Xs1
Assembler: smbb Xs1

Action: [MBB] = Xs1
Assembler: swgp Xs1

Action: [WGP] = Xs1
Assembler: srnd Xs1

Action: [RND] = Xs1

Table 4.2: Status registers instruction set utilization

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

62 Chapter 4. System architecture for the variable-precision computing unit

31 25 24 20 19 15 14 13 12 11 7 6 0
func7 rs2 rs1 xd xs1 xs2 rd opcode R-type

7 5 5 1 1 1 5 7
1 ldgu/ldub unused Xs1 0 1 0 gRd OP-CUST
2 stul/stur/stub gRs2 Xs1 0 1 0 unused OP-CUST
3 ldgu.next/ldub.next gRs2 Xs1 1 1 0 Xd OP-CUST
4 stul.next/stur.next/stub.next gRs2 Xs1 1 1 0 Xd OP-CUST
5 ldgu.s/ldub.s unused Xs1 0 1 0 gRd OP-CUST
6 stul.s/stur.s/stub.s gRs2 Xs1 0 1 0 unused OP-CUST
7 ldgu.next.s/ldub.next.s gRs2 Xs1 1 1 0 Xd OP-CUST
8 stul.next.s/stur.next.s/stub.next.s gRs2 Xs1 1 1 0 Xd OP-CUST
9 ldg unused Xs1 0 1 0 gRd OP-CUST N/Aa

10 stg gRs2 Xs1 0 1 0 unused OP-CUST N/Aa

Table 4.3: Load and store instructions set

aThis instruction is not supported in the current coprocessor configuration

4.7.4 Instruction set for load and store operations

As aforementioned, UNUMa and ubounds are strictly considered only as memory formats. For
internal operations, the VP coprocessor supports in its RF another FP format: the gbound (Sec-
tion 4.5.3). The VP coprocessor LSU handles the conversions between these two formats during
load and store operations. This section presents the instruction set to program the coproces-
sor LSU. Sections 4.7.4 and 4.7.4 detail the load and store behavior during memory operations.
Section 4.7.4 describes the load and store instructions supported by the VP coprocessor.

The UE and the MBB used during the load operation are hosted in the DUE, SUE, and MBB
coprocessor SRs. Load and store operations do not consider the WGP coprocessor SR: data are
loaded and stored, giving the precedence to the memory format. Store operations may round
the data according to some values combinations of DUE and MBB, or SUE and MBB. The RND
coprocessor SR hosts the rounding mode (Section 4.5.4) implemented by the storage unit.

Load behavior

A load operation loads a UNUM-ubounds from main memory and converts it into internal
gbounds. The U2G sub-unit of the coprocessor LSU does the conversion operation. The con-
verted value is stored into the target register in the RF.

Store behavior

A store operation stores a coprocessor RF entry in main memory on the number of bytes spec-
ified by the MBB SR, on the UE specified in the DUE or SUE coprocessor SR. Store operations
are performed on two steps.

The G2U sub-unit converts the gnumber-gbound coming from the RF into a UNUM-
ubound. The converted result is stored in a buffer internal at the storage unit. The used UE for
the conversion is stored into the DUE or the SUE status register. The interval or scalar infor-
mation for the input-output formats, and the UE selection among the DUE and SUE SRs, are
stored within the instruction.

Before going to memory, the converted UNUM-ubound is bounded (in size) by the BMF
sub-unit. This unit adjusts the memory footprint of the intermediate UNUM-ubound according
to the Maximum Byte Budget defined in the MBB status register. The rounding rule used for
this operation is hosted in the RND coprocessor SR.

Load and store instructions

Table 4.3 presents the load and store instructions supported by the VP coprocessor. Table 4.4
shows the assembly syntax for their usage. The ldgu instruction loads a (scalar) UNUM stored

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

4.7. The ISA for the variable-precision computing unit 63

Load a UNUM from the Xs1 address into the gRs1 gbound
Assembler: ldgu{.s} gRd, Xs1

Action: gRd = U2G(MEM(Xs1), {DUE,SUE}, MBB)
Load a ubound from the Xs1 address into the gRs1 gbound

Assembler: ldub{.s} gRd, Xs1
Action: gRd = U2G(MEM(Xs1), {DUE,SUE}, MBB)

Store a gRS1 gbound endpoint in main memory in UNUM at the address Xs1
Assembler: stu(l,r){.s} gRs1, Xs1

Action: MEM(Xs1) = BMF(G2U(gRs1[L,R], {DUE,SUE}), {DUE,SUE}, MBB)
Store the gRS1 gbound in main memory in ubound at the address Xs1

Assembler: stub{.s} gRs1, Xs1
Action: MEM(Xs1) = BMF(G2U(gRs1, {DUE,SUE}), {DUE,SUE}, MBB)

Xd = next_addr
Load a UNUM from the Xs1 address into the gRs1 gbound,

providing the next address in Xd
Assembler: ldgu{.s}.next Xd, gRs1, Xs1

Action: gRs1 = U2G(MEM(Xs1), {DUE,SUE}, MBB)
Xd = next_addr

Load a ubound from the Xs1 address into the gRs1 gbound,
providing the next address in Xd

Assembler: ldub{.s}.next Xd, gRs1, Xs1
Action: gRs1 = U2G(MEM(Xs1), {DUE,SUE}, MBB)

Xd = next_addr
Store a gRS1 gbound endpoint in main memory in UNUM at the address Xs1,

providing the next address in Xd
Assembler: stu(l,r){.s}.next Xd, gRs1, Xs1

Action: MEM(Xs1) = BMF(G2U(gRs1.[L,R], {DUE,SUE}), {DUE,SUE}, MBB)
Xd = next_addr

Store the gRS1 gbound in main memory in ubound at the address Xs1,
providing the next address in Xd

Assembler: stub{.s}.next Xd, gRs1, Xs1
Action: MEM(Xs1) = BMF(G2U(gRs1, {DUE,SUE}), {DUE,SUE}, MBB)

Xd = next_addr
Load a gbound from memory at the address Xs1 and store it in gRd

Assembler: ldga gRd, Xs1
Action: gRd = MEM(Xs1)

Store the gRs1 gbound in main memory at the address Xs1
Assembler: stga gRs1, Xs1

Action: MEM(Xs1) = gRs1

Table 4.4: Load and store instruction set

aThis instruction is not supported in the current coprocessor configuration

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

64 Chapter 4. System architecture for the variable-precision computing unit

31 25 24 20 19 15 14 13 12 11 7 6 0
func7 #imm5 rs1 xd xs1 xs2 rd opcode I5-type

7 5 5 1 1 1 5 7
1 mov.g.g unused gRs1 0 0 0 gRd OP-CUST
2 movll/movlr unused gRs1 0 0 0 gRd OP-CUST
3 movrl/movrr unused gRs1 0 0 0 gRd OP-CUST
4 mov.x.g #imm5 Xs1 0 1 0 gRd OP-CUST
5 mov.g.x #imm5 gRs1 1 0 0 Xd OP-CUST

Table 4.5: Move instruction set

in main memory at the address pointed by Xs1 and stores the loaded result, converted in
gbound format, in both the endpoints of the gbound pointed by gRd. The ldub instruction
loads the ubound stored in main memory at the address pointed by Xs1 and stores the loaded
result, converted in gbound format, in the gbound pointed by gRd. For both instructions, the
loaded data must be in the BMF format (see Section 4.3), its memory footprint must be stored
in the MBB SR, and its UE must be defined in the DUE SR.

The stul and stur instructions store the left or right interval endpoint of the gbound
pointed by gRs1 in main memory, converted in UNUM-ubound format, at the address pointed
by Xs1. The l and the r characters in the function name indicate that the gbound endpoint
to be stored is respectively the left and the right one. The stub instruction stores the gbound
pointed by gRs1 in main memory, converted in ubound format, at the address pointed by Xs1.
Similarly, for the load operations, for these instructions, the loaded data must be in the BMF
format, its memory footprint must be stored in the MBB SR, and its UE must be defined in the
DUE SR. In the case of re-rounding (for more details, see Section 4.3.3), the rounding policy
will be specified in the RND coprocessor SR.

ldgu.next, ldub.next, stul.next, stur.next, and stub.next implement similar function-
alities of ldgu, ldub, stul, stur, and stub respectively. The only difference is that they return,
through Xd, the address of the first free byte available in the main memory. These instructions
support the “compacted addressing mode” presented in Section 4.2.2 (Figure 4.4b).

The .s instructions, ldgu.s, ldub.s, stul.s, stur.s, stub.s, ldgu.s.next, ldub.s.next,
stul.s.next, stur.s.next, and stub.s.next, implement similar functionalities of ldgu, ldub,
stul, stur, stub, ldgu.next, ldub.next, stul.next, stur.next, and stub.next, respectively.
The only difference is that the memory operations use the UE stored in the SUE coprocessor
SR, instead of using the UE stored in the DUE SR.

The ldg4 and the stg4 are two coprocessor instructions that can be used to spill the copro-
cessor RF entries in memory. The ldg instruction loads a gbound stored in main memory at
the address pointed by Xs1, in the RF entry pointed by gRd. The stg instruction stores gbound
pointed by gRs1 in the main memory at the address pointed by Xs1. In the current coprocessor
configuration, to store a gbound in the main memory, the coprocessor requires a memory slot
of 8*2*64+2*64 = 1152 bits. This memory slot is big enough to host the two gbound interval
endpoints made of one header and height mantissa chunk (for each endpoint).

The ldg and stg instructions are used to support the spill and the refill functions. These
functions make a raw copy of the coprocessor RF in the main memory and vice versa. This copy
is a snapshot of the internal configuration of the coprocessor during a context switch. These
snapshots are used to roll back to previous coprocessor states. However, they are not supported
in this version of the UNUM coprocessor since they can be implemented by a software routine
made of mov.g.x and mov.x.g instructions.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

4.7. The ISA for the variable-precision computing unit 65

Copy a gbound into another one
Assembler: mov.g.g gRd, gRs1

Action: gRd = gRs1
Copy the content of a GPR into a specific gbound chunk
Assembler: mov.x.g gRd{[#imm5]}, Xs1

Action: gRd[#imm5] = Xs1
Copy a gbound chunk into a GPR

Assembler: mov.g.x Xd, gRs1{[#imm5]}
Action: Xd = gRs1[#imm5]

Set a gbound to a predefined constant value

Table 4.6: Move instruction set

31 25 24 20 19 15 14 13 12 11 7 6 0
func7 rs2 rs1 xd xs1 xs2 rd opcode R-type

7 5 5 1 1 1 5 7
1 gcmp gRs2 gRs1 1 0 0 Xd OP-CUST
2 gadd/gsub/gmul gRs2 gRs1 0 0 0 gRd OP-CUST
3 gguess/gradius unused gRs1 0 0 0 gRd OP-CUST
4 gdiv gRs2 gRs1 0 0 0 gRd OP-CUST N/Aa

5 gsqrt/gisqrt unused gRs1 0 0 0 gRd OP-CUST N/Aa

6 gneg/gabs unused gRs1 0 0 0 gRd OP-CUST N/Aa

Table 4.7: Arithmetic operators instruction set

aThis instruction is not supported in the current coprocessor configuration

4.7.5 Instruction set for move operations

This section presents the instructions dedicated to moving data between register from, into,
and within the VP coprocessor. Table 4.5 presents these instructions, and Table 4.6 shows
their assembly syntax. These instructions are presented in Table 4.5 and their assembly syn-
tax is shown in Table 4.6. The mov.g.g 1© instruction, like a standard mov operation, copies the
gbound content pointed by gRs1 in the one pointed by gRd.

The movll, movlr, movrl, and movrr instructions (2© and 3©) copy the content of the gnum-
ber (left for movll and movlr, right for movrl and movrr) pointed by gRs1, in the gnumber (left
for movll and movrl, right for movlr and movrr) pointed by gRd.

The mov.x.g instruction 4© copies the RISC-V GPR pointed by Xs1, in the #imm5-th word
of the gbound pointed by gRd.

The mov.g.x instruction 5© copies of the #imm5-th word of the gbound pointed by gRs1,
into the RISC-V GPR pointed by Xd. For mov.x.g and mov.g.x the #imm5 field is manda-
tory. If its value is 0, the XLEN-bit data pointed by Xs1 contains the gbound header of the
left interval endpoint. If its value is between 8 and 15, the XLEN-bit data pointed by Xs1 con-
tains the ‘(#imm5)-8’-th mantissa chunk of the target gbound. If its value is 16, the XLEN-bit
data pointed by Xs1 contains the gbound header of the right interval endpoint. If its value is
between 24 and 31, the XLEN-bit data pointed by Xs1 contains the ‘(#imm5)-24’-th mantissa
chunk of the target gbound.

4.7.6 Instruction set for gbound arithmetic instructions

This section describes the instructions defined to do computation between coprocessor RF en-
tries (gbounds). Table 4.7 presents these instructions, and Table 4.8 shows their assembly syn-
tax. Depending on if the RND SR is set to RTI or not, the following operations are done by

4This instruction is not supported in the current coprocessor configuration

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

66 Chapter 4. System architecture for the variable-precision computing unit

gbound comparison
Assembler: gcmp Xd, gRs1, gRs2

Action: Xd = CMP(gRs1, gRs2)
gbound addition

Assembler: gadd gRd, gRs1, gRs2
Action: gRd = rnd(gRs1 + gRs2, WGP)

gbound subtraction
Assembler: gsub gRd, gRs1, gRs2

Action: gRd = rnd(gRs1 - gRs2, WGP)
gbound multiplication

Assembler: gmul gRd, gRs1, gRs2
Action: gRd = rnd(gRs1 * gRs2, WGP)

gbound guess
Assembler: gguess gRd, gRs1

Action: gRd = rnd(GUESS(gRs1), WGP)
gbound radius

Assembler: gradius gRd, gRs1
Action: gRd = rnd(RADIUS(gRs1), WGP)

gbound division
Assembler: gdiva gRd, gRs1, gRs2

Action: gRd = rnd(gRs1 / gRs2, WGP)
gbound square root

Assembler: gsqrta gRd, gRs1
Action: gRd = rnd(SQRT(gRs1), WGP)

gbound inverted square root
Assembler: gisqrta gRd, gRs1

Action: gRd = rnd(1/SQRT(gRs1), WGP)
gbound negation

Assembler: gnega gRd, gRs1
Action: gRd = -gRs1

gbound absolute value
Assembler: gabsa gRd, gRs1

Action: gRd = |gRs1|

Table 4.8: Arithmetic operators instruction set utilization

aThis instruction is not supported in the current coprocessor configuration

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

4.7. The ISA for the variable-precision computing unit 67

enabling the interval data-paths in the coprocessor operators or not. In the case that the RND
SR is not set to RTI, the following operations are done in scalar mode using only the left end-
point of the pointed RF entries. In both cases, the implemented rounding during an arithmetic
operation is specified by the RND SR during the instruction fetch.

gcmp compares two gbounds pointed by gRs1 and gRs2 and stores all the comparison flags
in GPRF at the entry pointed by Xd. The flags contained in the returned data are divided into
two groups. The first one is dedicated to comparing intervals: EQual (EQ), Not EQual (NEQ),
Not Nowhere EQual (NNEQ), Greater Than (GT), Lower Than (LT). This solution allows us to
make all the possible combined comparisons (e.g., NNEQ or GT).

The second group is dedicated to comparing the scalar interval endpoint independently:
Left gRs1 endpoint GT Left gRs2 endpoint (LLGT), Left gRs1 endpoint LT Left gRs2 endpoint
(LLLT), Left gRs1 endpoint EQ Left gRs2 endpoint (LLEQ), Left gRs1 endpoint GT Right gRs2
endpoint (LRGT), LRLT, LREQ, RLGT, RLLT, RLEQ, RRGT, RRLT, and RREQ.

In both groups, the checks whether the comparison results are true or not, are done in
the main core, using binary masks and branches equal to zero (BEZ). This ISA expansion also
provides instructions to compare each of these flags individually (e.g., gcmp.eq checks if two
intervals are precisely equal to each other, gcmp.rlgt checks if the right endpoint of gRs1 is
greater than the left endpoint of gRs2). These additional instructions facilitate the coprocessor
compiler to take branches without masking the result of the more generic gcmp instruction.

gadd, gsub, gmul respectively adds, subtracts and multiplies the gbounds pointed by gRs1
and gRs2 together and store the result in the gbound pointed by gRd.

gguess converts the gbound pointed by gRs1 in popmidpointq, opmidpointqq format (both
endpoint RTN: rounded to the nearest half away from zero). It stores the result in the gbound
pointed by gRd.

gradius extract from the gbound pointed by gRs1 the interval width between the left
and right interval endpoint. The interval width (|rright ´ le f ts|) is encoded in the format
pwidth, widthq (one endpoint rounded down and the other rounded up). It stores the result in
the gbound pointed by gRd. For gadd, gsub, gmul, gguess, and gradius operations, the output
rounding precision (of the computed result) is the one defined into the WGP status register.

The following instructions are not implemented in hardware. They are implemented with
software routines using the aforementioned embedded operators5. gdiv6 divides the gbounds
pointed by gRs1 and gRs2 together and store the result in the gbound pointed by gRd. gsqrt6

computes the square root of the gbound pointed by gRs1 and store the result in the gbound
pointed by gRd. gisqrt6 computes the inverse of the square root of the gbound pointed by
gRs1 and store the result in the gbound pointed by gRd. gneg6 negates the gbound pointed by
gRs1 and store the result in the one pointed by gRd. gabs6 computes the absolute value of the
gbound pointed by gRs1 and store the result in the gbound pointed by gRd.

4.7.7 Instruction set for variable-precision conversion operations

This section presents the conversion instructions supported by the VP coprocessor. Table 4.9
presents these instructions, and Table 4.10 shows their assembly syntax.

In this implementation, the VP coprocessor exchanges FP values through GPRs. The main
drawback of this approach is that, at the software level, the user must handle the re-mapping
on floating-point registers. In C, this is not possible to do with simple cast operations. Union
structures must be used.

The mov.d.g 1©, mov.f.g 3©, and mov.h.g 5© instructions convert respectively the double,
the float, the half FP values (binary64, binary32, and binary16 in IEEE-754 parlance) hosted

5For this purpose a LUT is needed to handle also the exceptional cases (0/inf, inf/inf, ...)
6This instruction is not supported in the current coprocessor configuration

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

68 Chapter 4. System architecture for the variable-precision computing unit

31 25 24 20 19 15 14 13 12 11 7 6 0
func7 #imm5 rs1 xd xs1 xs2 rd opcode I5-type

7 5 5 1 1 1 5 7
1 fcvt.d.g #imm5 Xs1 0 1 0 gRd OP-CUST
2 fcvt.gl.d/fcvt.gr.d unused gRs2 1 0 0 Xd OP-CUST
3 fcvt.f.g #imm5 Xs1 0 1 0 gRd OP-CUST
4 fcvt.gl.f/fcvt.gr.f unused gRs2 1 0 0 Xd OP-CUST
5 fcvt.h.g #imm5 Xs1 0 1 0 gRd OP-CUST
6 fcvt.gl.h/fcvt.gr.h unused gRs2 1 0 0 Xd OP-CUST

Table 4.9: Formats conversions instruction set

Convert a double variable hosted in a GPR into gbound
Assembler: fcvt.d.g gRd, Xs1

Action: gRd = (gbound) Xs1
Convert the left endpoint of a gbound into double, storing the value in a GPR

Assembler: fcvt.gl.d Xd, gRs1
Action: Xd = (double) gRs1.left

Convert the right endpoint of a gbound into double, storing the value in a GPR
Assembler: fcvt.gr.d Xd, gRs1

Action: Xd = (double) gRs1.right
Convert a float variable hosted in a GPR into gbound

Assembler: fcvt.f.g gRd, Xs1
Action: gRd = (gbound) Xs1
Convert the left endpoint of a gbound into float, storing the value in a GPR

Assembler: fcvt.gl.f Xd, gRs1
Action: Xd = (float) gRs1.left
Convert the right endpoint of a gbound into float, storing the value in a GPR

Assembler: fcvt.gr.f Xd, gRs1
Action: Xd = (float) gRs1.right

Convert a half float variable hosted in a GPR into gbound
Assembler: fcvt.h.g gRd, Xs1

Action: gRd = (gbound) Xs1
Convert the left endpoint of a gbound into half float, storing the value in a GPR

Assembler: fcvt.gl.h Xd, gRs1
Action: Xd = (half) gRs1.left

Convert the right endpoint of a gbound into half float, storing the value in a GPR
Assembler: fcvt.gr.h Xd, gRs1

Action: Xd = (half) gRs1.right

Table 4.10: Formats conversions instruction set utilization

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

4.8. Compiler prototype: support variable-precision with a vpfloat datatype 69

in the RISC-V GPR pointed by Xs1, in the gbound pointed by gRd. With these instructions,
both gbound endpoints are updated with the converted IEEE FP value.

The mov.gl.d 2©, mov.gl.f 4©, and mov.gl.h 6© instructions convert the left endpoint of the
gbound pointed by gRs1, respectively into a double, float, half FP value in the RISC-V GPR
pointed by Xd. The RND SR hosts the rounding rule in doing this conversion (for more details,
see Section 4.5.4). The mov.gr.d 2©, mov.gr.f 4©, and mov.gr.h 6© instructions implement the
same functionality of the previous three instructions but on the right endpoint of the gbound
pointed by gRs1.

4.8 Compiler prototype: support variable-precision with a vpfloat
datatype

New architectures often require software interfaces and programming models to take advan-
tage of the new hardware functionalities. For example, multi-core and many-core systems often
involve an OpenMP programming interface [76]. Alternatively, CUDA [77] and OpenCL [78]
are widely used for Graphics Processing Units (GPU). Complementary to these programming
models, this work proposes a programming abstraction of the Variable-Precision (VP) hard-
ware architecture. This impact the code at individual thread level (it changes the code only
inside the thread) and it does not impact the compatibility of multi-threading with parallel
programming. This section covers the software support for VP, highlighting the most critical
aspects of the language and compiler extensions. This work is the result of a collaboration with
Tiago Trevisan Jost.

Supporting VP in software can be done in several manners. A first approach can be to
emulate VP computing with software libraries (e.g., MPFR [9]). In this case, the user can have
VP support by using library calls. These libraries rely their calculation on data structures in
main memory that are used to host VP variables. The software library approach does not
require dedicated hardware support but has three main disadvantages.

The first one is that it may saturate the ALU of the processor, preventing other programs
from running. The second one is that, at least in MPFR, the Floating-Point (FP) variables man-
tissa fields are located, with malloc, in different memory regions than the other variables. This
dynamic allocation breaks the principle of data locality for which the cache memories are de-
signed. The third one is that software libraries use several intermediate variables that may
pollute the processor’s cache slowing down the computation performance.

This work proposes to import VP in the C language by defining a new data format to alle-
viate the issues mentioned above. The main idea is to provide to the programmer an explicit
way to tune the memory footprint (and the precision) of FP variables, with byte granularity, in
order to be able to boost the numerical stability of algorithms. This work does not claim to fix
all the numerical stability of algorithms by increasing the variable sizes. However, it provides
new tools to the programmers to investigate new techniques to help users in algorithm error
analysis.

The ideal VP FP data format must:

• Leverage all the existing compiler features (such as automatic memory allocation, stack
handling, code simplification, and constant propagation).

• Exploit at best the cache of the processor by preserving the data locality principle.

In order to expose at best the VP features in this new FP format, this work proposes the vpfloat
data format. The main feature of this format is that it is a programmable data format where its
length is programmable at compile time with byte granularity (which will be kept constant at
execution time). With this property, the programmer has accurate control over the variables’

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

70 Chapter 4. System architecture for the variable-precision computing unit

precision, and the compiler, which controls their memory footprint, can efficiently allocate the
main memory variables. The syntax suggested by this work is showed below:

vpfloat< <‘type’>, <parameters...> > my_variable;
The main idea is to provide a VP FP data type which instructs the compiler about the charac-
teristics of every VP FP variable. By selecting the <‘type’>, the programmer can define the VP
FP format to be used in the main memory. The other fields, <parameters...>, are additional
fields that instruct the format. For example, the following line defines a VP FP variable named
my_var with a custom IEEE (three fields) format on 17 bytes, where 1 bit encodes the sign, 6
bits encode the exponent, and 129 bits encode the mantissa:

vpfloat<‘f’,6,129> my_var;
With this syntax, the programmer assigns the desired precision, and the maximum dynam-
ics, for each variable of the target software application. With this format, the user has a more
accurate precision control on each variable in his program.

The compiler has all the types of information that it needs to handle vpfloat variables: it
knows their size, memory format, and precision. With these types of information, the compiler
can easily set up the VP coprocessor setting its status register and allocate the VP variables
in memory. The main difficulty on the compiler is to carry the variables settings among the
compilation step and to handle VP variables in the stack with different memory footprints.
However, since the variables have a fixed memory footprint at their declaration, the issues
mentioned above can be addressed.

Handling the coprocessor SRs may be a little tricky. For example, the internal coprocessor
precision (WGP) can be chosen: 1/ automatically by the compiler according to the slot size
specified in the variable declaration, always respecting the 64-bit granularity; or 2/ manually
by the user using the susr and swgp assembly instructions. However, it is not impossible to
find a heuristic to set them. For example, WGP can be higher than MBB since the former must
be a multiple of 64, and the latter can be byte-configured always to guarantee the maximum
precision in memory.

Thanks to the type field, the vpfloat data type can support several FP formats. For exam-
ple, the vpfloat data type can also encode other VP formats such as UNUMs [2]:

vpfloat<‘u’,4,8,23> my_unum;
where, 4 and 8 define the ess and fss values of the so-called UNUM Environment (UE, [2]), and
23 defines the maximum size, in bytes, of the variable. The vpfloat data type can also encode
ubounds (interval made of two UNUMs, [2])

vpfloat<‘b’,4,8,23> my_ubound;
or posits [3]:

vpfloat<‘p’,2,23> my_posit;
where the 2 identifies the ES parameter of the posit variable [3] and 23 identifies the variable
memory-footprint (always expressed in bytes).

The compiler can instruct the target hardware unit about the data format characteristics
(memory footprint, memory format, and format parameters) through dedicated instructions or
hardware status registers. Conversion functions must be provided to the compiler to support
VP operations among integers, among conventional IEEE 754 floats and different vpfloat data
type configurations. These conversion functions convert memory formats into an internal VP
representation that can support all the precisions required by all the formats.

This work is aware that a hardware unit can support VP FP variables up to a given limit.
In the case that the precision required by the user is higher than the one provided by the hard-
ware, the compiler can continue to provide VP support by implementing VP computations
with software libraries (i.e., MPFR) and alternating the computation between hardware and
software depending on the operations output precision.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

4.8. Compiler prototype: support variable-precision with a vpfloat datatype 71

1 vpfloat pi(int n) {
2 vpfloat <’u’ ,3,8,42> sum = 0.0;
3 int sign = 1;
4 for (int i = 0; i < n; ++i) {
5 sum += sign /(2.0v*i+1.0v);
6 sign *= -1;
7 }
8 return 4.0* sum;
9 }

Listing 4.1: Usage example of the VP unit: the algorithm calculates π iteratively on 42 bytes using the Taylor

series π “ 4 ¨
řn

i“0
p´1qi

2¨i`1

4.8.1 Example: how to write a variable-precision program

This section shows how the programmer can use the vpfloat primitive to write a Variable-
Precision (VP) Floating-Point (FP) program in a high-level language (i.e., C). Listing 4.1 shows
toy C code to calculate π using an iterative approach based on a Taylor series approximation
with vpfloat type numbers. In line 2, the sum variable is declared as a 42-byte VP FP number
on the UNUM format. The for-loop iteratively calculates π{4 on sum (lines 4 to 7). Notice
that there is no need for casting the i and sign variables to vpfloat since the compiler can
automatically handle type conversions when necessary. A constant suffixed by v represents a
vpfloat to differentiate when the user wants constants with high precision. For constants, if
not explicit (e.g., through casts), the constant precision will be one of the destination variables,
in this case, sum.

Listing 4.2 shows a snippet of the assembly code that the compiler, which supports the ISA
expansion proposed by this work, should generate for Listing 4.1. Coprocessor instructions are
found at lines 8-12, 14-15, 17-18, 24-26 and 30. The code starts by setting up MBB and WGP to
their correct values (lines 2-5). Notice that MBB is set to 42 bytes, which corresponds to variable
slot size. WGP is set to 384 bits (48 bytes) since it must be a multiple of 64 bits. From lines
7-20, the for-loop calculates the pi function through coprocessor instructions. Line 15 calls the
function which implements the VP division. As explained in Section 4.7, the coprocessor can
operate in either intervals or scalars, as it adopts the UNUM format. The presence of gguess
instructions indicates that the unit was configured to work with intervals. A compiler flag
(vpfloat-scalar) configures the system to work with scalars: i.e., it can be used to eliminate the
generation of gguess instructions.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

72 Chapter 4. System architecture for the variable-precision computing unit

1 ...
2 addi a3 , zero , 42 # MBB = 42 Bytes
3 addi a4 , zero , 6 # WGP = 6*64 bits
4 smbb a3
5 swgp a4
6 ...
7 .LBB1_2: sext.w a0 , s0 # %for.body
8 fcvt.x.g gt0 , a0
9 gmul gt0 , gt0 , gs1

10 gguess gt0 , gt0
11 gadd ga1 , gt0 , gs2
12 gguess ga1 , ga1
13 sext.w a0 , s1
14 fcvt.x.g ga0 , a0
15 call vpdiv
16 neg s1 , s1
17 gadd gs0 , gs0 , ga0
18 gguess gs0 , gs0
19 addiw s0, s0 , 1
20 blt s0 , s2, .LBB1_2
21 # %bb.3: # %for.cond.cleanup.loopexit
22 lui a0 , %hi(. LCPI1_4)
23 addi a0 , a0, %lo(. LCPI1_4) # constant 4.0
24 sext.w a0 , a0
25 fcvt.x.g ga0 , a0 # constant 4.0
26 gmul ga0 , gs0 , gt0
27 gguess ga0 , ga0
28 j .LBB1_5
29 .LBB1_4: lui a0, %hi(. LCPI1_0)
30 addi a0 , a0, %lo(. LCPI1_0)
31 ldgu ga0 , (a0)
32 .LBB1_5: # %for.cond.cleanup
33 ...
34 ret

Listing 4.2: The snippet of the assembly code for Listing 4.1: VP instructions are in lines 8-12, 14-15, 17-18,
24-26, and 30.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

73

Chapter 5

Micro-architecture for the
variable-precision computing unit

Chapter 4 describes the system-level architecture for the Variable-Precision (VP) scientific com-
puting unit presented in this work (Figure 4.9). It is made of the main core (RISC-V, 1) con-
nected to its native system: its 64 bits Floating-Point Unit (FPU), its memory hierarchy, and
its peripherals. Section 4.5 describes the motivations for this architecture. The VP computing
unit is implemented as a RISC-V coprocessor 4 . Through the RoCC interface 2 , the VP unit
is connected with the main core and the system L1 cache 5 . The coprocessor accesses the
cache through a dedicated Load and Store Unit, LSU 3 . This chapter focuses on the micro-
architecture of the VP coprocessor system (3 and 4).

Figure 5.2 depicts the VP coprocessor micro-architecture. It is based on a three-stage
pipeline: decode 1 , execute 2 , and write back 3 . Vertical dashed lines ¦denote synchro-
nization barriers between the pipeline stages. The fetch and memory stages are not needed
since the coprocessor is a slave of the central core: the main core does the instruction fetch and
the address generation for memory operations.

The ports of the RoCC interface are 64 bits wide. For this reason, the data-flow inside the
coprocessor is structured on ports 64 bits wide.

As detailed in Section 4.1, the coprocessor supports two different formats: one dedicated
for the coprocessor scratchpad, and one dedicated to the memory. According to Section 4.3,
this coprocessor architecture represents Floating-Point (FP) data in memory using a modified
version of the UNUM and ubound (intervals of UNUMs) formats. Data in the scratchpad are
stored in another format, detailed in Section 4.5.3.

The architecture presented in this work supports interval arithmetic. Thus, the coprocessor
scratchpad is a Register File (RF) which hosts intervals. Like in [2], intervals in the scratch-
pad are named gbound, and interval endpoints are named gnumbers. Conversions between the
scratchpad and memory formats are handled, during load and store operations, by the copro-
cessor Load and Store Unit (LSU, 3 in Figure 4.9, LSU in Figure 5.2).

UNUM

co-proc

RoCC

LSU

RISC-V
Rocket

Chip

FPU

LSU
$

L1

R

A

M

Scratchpad

$

L1

R

A

M

1

2

3

4

5

Figure 4.9: High-level overview of the variable-precision computing system (repeated from page 52)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

74 Chapter 5. Micro-architecture for the variable-precision computing unit

RoCC

interface

Instr.

Data out

Data In

Memory

Interface

(cache L1)

cwControl

Unit

gRF
• 2 read ports

• 1 write port

• 32 VP g-bounds

(64 g-numbers)

d_cw

gALU

gop2

gop1

e_cw

gres

gres_dec

gres_exe

bus arbiter

g
o
p
1
 +

 g
o
p
2

g
re

s

gADD / gSUB

gGUESS / gRADIUS

gMUL

gMOV

gCMP

gLSU

G2U U2G

Cache IF

S

R

Left

…

f e L

DW

m1

mLmax

.1 m0

Right

…

f e L

DW

m1

mLmax

.1 m0

4 5

6

7 8

9

2 31

32

64

64

64

64

64

64

64

64

Figure 5.2: The internal pipeline of the variable-precision coprocessor

The decode stage In the coprocessor’s decode stage, the control unit 5 decodes instructions
in input and generates the control words for the decode and execute stages. The decode stage
hosts the gbound RF 6 (gRF)1 with two read ports and one write port. It hosts 32 Variable-
Precision (VP) gbounds with normalized mantissa fields. The number of entries is justified
by the 5 bits dedicated to addressing registers of the RISC-V 32-bit instruction format (25=32).
Section 4.5.3 provides details on the chosen gnumbers format.

The decode control word in the decode stage selects the gRF content (the input data) that
has to be propagated in the execute stage. The gRF controller 6 keeps track of the running
instructions and their data dependencies. Data dependencies (e.g., read after write) are tracked
by associating a dirty bit for each gRF gbound. Every time that one instruction requires to write
its result in a gRF entry, the dependency tracker sets the corresponding dirty bit.

If one of the required inputs in the decoded coprocessor instruction has its dirty bit set, a
data dependency is triggered. In case of data dependency (in this case, read after write), the
gRF controller enables a busy signal which prevents the main RISC-V core from providing a new
instruction to the VP coprocessor. The busy signal tells the main core whether the coprocessor
is free to receive a new instruction in the next clock cycle.

Mantissa fields in the gRF are divided into chunks of 64 bits each (Section 4.5.3), and the
actual number of used chunks (out of the maximum available) is encoded within the number.
By default, the gRF sends, within one clock cycle, the headers and the first mantissa chunk of
the gRF data pointed by the input’s instruction. If a unit in the execute stage needs more than
one mantissa chunk, the gRF can be forced, through a dedicated port, to provide in the next
clock cycles the missing mantissa chunks. This mechanism guarantees minimum latency for
small numbers (one clock cycle) while minimizing the number of flip-flops involved in moving
data within the coprocessor.

The ISA specified in this work (Section 4.7) decorrelates operations from data precision
using internal status registers (SR). These registers are DUE and SUE (divided in ESS and FSS),
WGP, MBB, and RND (Section 4.5.4). They are located between the decode and the execute
pipeline stages 7 , and they are used to configure the hardware operators in the execute stage.
Depending on their value, the operators in the execute stage react accordingly.

1 The gRF is located inside the coprocessor because the RISC-V architecture, the one generated with Rock-
etchip [7] (with its RoCC interface), does not allow to add custom RFs in the design easily.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

Chapter 5. Micro-architecture for the variable-precision computing unit 75

Their values are accessed through dedicated assembly instructions (e.g., with the susr and
lusr instructions, Section 4.7.3). These SRs are located between the decode and execute stage.
In this way, their values can be updated in one clock cycle, and the consistency of the order of
operations provided in the input is maintained.

The execute stage The execute stage hosts the arithmetic hardware operators of the VP co-
processor 8 that execute the ISA instructions specified in Section 4.7. These operators support
gbound operations. They are pipelined. In this way, independent operations can run parallel
either on different operators or on different operator pipeline stages.

The execute stage hosts six operators that implement the ISA instructions presented in Sec-
tion 4.7. The gCMP operator handles the gcmp instruction. The gMUL operator handles the
gmul instruction. The gADD operator handles the gadd, gsub, gguess, and gradius instruc-
tions. Section 4.7.6 presents these instructions. The gMOV operator handles the mov* instruc-
tions (Section 4.7.5). The gCNVT operator handles the fcvt.* instruction (Section 4.7.7). The
LSU operator handles the ld*-st* instructions (Section 4.7.4), supporting the memory and field
organizations introduced in Section 4.2.

These operators 8 receive operands and output results distributed on 64 bits chunks. The
decode 7 and write back time barriers have buses 64 bits wide. All the operators who have in-
puts or outputs on more than one mantissa chunk have to request the input-output bus control
to retrieve-write all the chunks from-into the gRF.

Those requests are handled by the bus arbiter units that ensure the correct data propaga-
tion among the pipeline and handle the results coming from all the variable-latency operators.
There are two bus arbiters: one to control the decode buses (one for each operand), and one to
control the write-back bus. Both use a stop-and-wait protocol. They receive the bus requests
from the operators in 8 . Depending on whether the buses are free or busy (taken by another
operator), they grant or deny the bus control through some acknowledge signals. Once an
operator takes control of the input (or output) bus, the coprocessor pipeline is stalled (the co-
processor is busy from the RISC-V perspective) until when the operator controlling the bus
revokes the request. When an operator owns a bus, it can require a pair of mantissa chunks per
clock cycle until when the bus request signal is down.

Another alternative could be, in the decode stage, to send to the corresponding operator all
the chunks it needs before accepting the next instruction. This approach can save one pipeline
stage in the arithmetic operators. The same reasoning can be done for the operator output.
Since the implementation of this bus policy alternative requires additional design effort, we
chose the previous one for simplicity.

RISC-V interface Some instructions from the coprocessor ISA require communicating with
the main RISC-V core. Instructions that require data in input from the main core (e.g., susr,
ld*, st*, mov.x.g, and fcvt.*.g) are feed through the “data in” port from the RoCC interface
4 . This input is carried until the execute stage time barrier to be then processed.

Instructions for which their result must go in the main core (e.g., lusr, ld*.next*,
st*.next*, mov.g.x, gcmp, and fcvt.g*) rely on the “data out” port 4 . The result of these
operations is provided either from the decode or the execute coprocessor pipeline stage. For
this purpose, a multiplexer 9 is instantiated to multiplex results from different pipeline stages.
Additional logic is added to handle the case when multiple instructions, from different pipeline
stages, output data simultaneously that have to be returned to the main core.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

76 Chapter 5. Micro-architecture for the variable-precision computing unit

STAGE

i-1

STAGE

i

STAGE

i+1

ready

valid

ready

valid

BUFF

…

f e L

DW

m1

mLmax

. m0IB

GB

BUFF

…

f e L

DW

m1

mLmax

. m0IB

GB

FF-barrierFF-barrier

Figure 5.3: The macro pipeline organization in the coprocessor

5.1 Choice of a macro-pipelined architecture

Floating-Point (FP) operators implement algorithms based on a sequence of fixed-point oper-
ations on the input exponent and mantissa fields. These operations can be shifts, additions,
subtractions, and multiplications. As stated in Section 4.5.3, this work does internal mantissa
computations with a data-path bit-width fixed at 64 bits. This bit-width implies that fixed-point
operations on mantissa fields are done by iterating on mantissa chunks.

Handling these iterations can be complicated, mainly because the number of mantissa
chunks to treat is encoded within the number (in the L field, Section 4.5.3). The most com-
plicated thing is to design the Finite State Machines (FSM), which implement multiple-chunk
fixed-point operations, within the FP operator pipeline. This work proposes to pipeline the
architecture, by storing the mantissa chunks in internal buffers between each fixed-point man-
tissa operation, to simplify the design.

The logic between two mantissa buffers, which iterates on mantissa chunks for a variable
number of clock cycles, is identified as macro-stage. In an architecture pipelined in macro-stages,
every mantissa fixed-point operation requires a macro-stage. The number of macro-stages in
an FP operator pipeline is equal to the number of mantissa operations needed. The clock cycles
latency of a macro-stage, and the unit throughput, are proportional and inversely proportional
to the number of input mantissa chunks.

Figure 5.3 depicts the general scheme for each pipeline macro-stage (STAGE i). Each macro-
stage does an essential operation on mantissa fields (e.g., move, add, shift, leading-zero-count).
Each macro-stage is synchronized with other macro-stages through a ready-valid protocol, and
the external input-output synchronization barriers delimit it.

Synchronization barriers are made of a buffer (BUFF) and a Flip-Flop-barrier (FF-barrier).
FF-barriers host all the input-output information that is not part of a gnumber (e.g., the shift
amount for the fixed-point shift operation). Each buffer hosts a gnumber made of a header, a
memory to store the mantissa, integer bits (IB), and guard bits (GB).

The header contains all the gnumber fields except the mantissa. In particular, it hosts the
length field (L) that contains the number of used chunks (out of the maximum allowed one)
to encode the mantissa. The size of the memory to host the mantissa is the maximum one
supported by the gbound Register File (gRF). IB and GB are two additional fields that add
extra bits to the mantissa to support correct rounding within the FP operator. In particular, GB
extends the last mantissa chunk (pointed by L).

A piece of additional information required by each macro-stage is the maximum output pre-
cision of the result. This information is used to implement fused operations and exploit the
tradeoff between latency and precision (WGP, Section 4.5.4).

With this architecture, the algorithms of FP operators are implemented, in the coprocessor,
through macro-pipelines. The complexity to do operations on multiple mantissa chunks is
pushed inside each pipeline macro stage, which hosts a generic multiple-precision fixed-point
operator. This approach minimizes all the arithmetic units’ debug effort, and it maximizes the

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

5.2. Micro-architecture: drawbacks and solutions 77

component reuse. Since the coprocessor operators support interval arithmetic, and interval
endpoints run in parallel macro-pipelines, synchronization steps must be added to realign the
interval computation in the pipeline.

Contrary to the micro-architecture of Schulte [49], the architecture presented in this work
is pipelined and allows to execute multiple operations at the same time. However, it has some
drawbacks addressed in Section 5.2.

5.2 Micro-architecture: drawbacks and solutions

The presented micro-architecture design paradigm is based on macro-stage pipelines. It may
not be the best architecture to implement Variable-Precision (VP) computing in hardware: it
minimizes the design effort but has several drawbacks that are easy to understand. The first
one impacts the operator clock-cycles latency: for simple operations (e.g., shift amount com-
putation), a full macro-stage is needed2. Every macro-stage increases the clock cycle latency of
the FP operator, and circuits’ required are, due to the additional intermediate buffer inserted in
the macro-pipeline.

For the second drawback, the latency of the macro-stage pipelines can not be equally dis-
tributed among macro-stages because their latency is different. This inequality is due to some
operations, like mantissa multiplication, for which their execution requires more clock cycles
than those required in other operations, like mantissa shift.

The third and last drawback concerns multiple-chunk computation. When multiple-chunks
are involved in computation, only one stage over two is working. The others wait to receive
the input or to have the buffer in output free to be used.

Several solutions can be applied to overcome the issues mentioned above. For example,
a way to overcome the third drawback is to do double buffering. This solution requires the
doubling of the logic required for buffers. For this reason, it was not considered.

Several architectural modifications can reduce the latency and augment the throughput of
arithmetic operators. For example, the system throughput can be improved by modifying the
pipeline macro-stage operators so that the mantissa chunks are elaborated in the same order
they are read. In this way, the throughput is maximized, and only one 64-bit register between
stages is needed. However, there are cases where the full mantissa in the output of an operator
is needed to start the next mantissa computation. For example, during a FP addition, the man-
tissa’s normalization step requires in input to know if the mantissa provided in output from the
addition step overflowed. This information belongs to the most significant chunk of the out-
put mantissa. This dependency of the mantissa chunks brings to have a mixed pipelined and
macro-pipelined architecture where each macro-stage is pipelined internally with a dedicated
control unit to handle all the internal pipeline stages.

A way to reduce the pipeline latency is to exploit the fact that some macro-stages of the
pipeline have positive time slack (the available time in a given data path comparing to the one
available at the circuit frequency). There are some macro-stages for which their logic could be
enlarged while the system frequency stays unvaried. A way to enlarge the macro-stage units
improving the system latency is to enlarge their internal data-path bit-width (e.g., from 64 to
128 bits or more). Enlarging this bit-width reduces the number of clock cycles to provide data
in output while the system frequency keeps the same value.

Alternatively, some macro-stages can be merged to reduce the macro-pipeline depth. For
example, the shift amount and the shift macro-stages can be merged in a single macro-stage.

2 A FP operation implements an algorithm based on the input FP fields. It is made of several steps. In this work,
every step that involves a mantissa operation requires a dedicated macro stage. For instance, in a FP addition,
the input mantissas must be aligned on a common exponent value. This alignment is performed by shifting an
endpoint mantissa. The shift hardware operator requires to have the shift amount at the beginning of the operation.
Thus, an additional macro stage to compute the shift amount is needed.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

78 Chapter 5. Micro-architecture for the variable-precision computing unit

gOP Input multiplexing

gOP unit

left 0
gOP unit

left N

gOP unit

right 0

gOP unit

right N
… …

min max

g-bound

g-bound g-bound

Figure 5.4: The general architecture of a gbound operator

Merging macro-stages reduces the macro-pipeline depth while reducing the amount of instan-
tiated buffers.

In this work, these optimizations are not implemented due to time-related constraints. The
next sections focus on the implementation details of all the arithmetic operators in the copro-
cessor execute stage and all their sub-components.

5.3 Variable-precision architecture for arithmetic operators

This section presents the architecture of all the operators in the coprocessor execute stage. As
already mentioned, like the coprocessor Register File (RF), all the operators support Interval
Arithmetic (IA) by computing in parallel pipelines the resulting interval endpoints. In this
way, there is no difference in latency between computing scalars or intervals.

Figure 5.4 depicts the general macro-architecture for gbound OPerators (gOP). The end-
points of the two input gbounds are used to perform the proper endpoint operations. For some
gOP unit (e.g., for the multiplier), it is not possible to look at the input g-bounds and know in
advance what are the input g-bound endpoints that generate the outermost output endpoints.
Thus, the possible output endpoints are computed, and only the outermost ones are provided
in output through maximum and minimum computing units. These two units select the outer-
most values as endpoints for the output gbound. As it is shown in Section 5.3.3, the number of
possible output endpoints, to be compared in the maximum and minimum computing units,
can be minimized depending on the input signs of the input endpoints.

Before providing the final gbound in output, the operator handles the Not a Number [8]
(NaN) exception. The next sections explain some operator-dependent optimizations on this
architecture. The precision and the rounding mode used during the rounding step are pro-
grammed in the WGP and RND internal status registers, respectively (Section 4.5.4). Results
are rounded with a precision programmable with a granularity of 64 bits (WGP*64) and with
programmable rounding mode (RND). In interval computation, the information regarding the
inclusion or not of the interval endpoint is carried among the coprocessor pipeline with a ded-
icated flag. In scalar computation, only one computing unit is used, and all the values are
treated as exact values.

The endpoint computations in gOP units follow a classical floating-point scheme [8]: First,
the input mantissa fields are aligned to a standard format. If needed, the operation (+,-,*,/)
is computed on the aligned operands. Finally, the result is normalized and rounded, and the
input exceptions [2] are handled.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

5.3. Variable-precision architecture for arithmetic operators 79

Gbound

gADD

Input multiplexing

gADD

Left

gADD

Right

Exception handler

Gbound Gbound

Load G Load G

cmd

synch

synch

synch

Store GStore G

align

shift amount

synch

Phantom mux

Phantom add

normalize

shift amnt

Realign ovf

Round11

1

4

2

5

6

7

8

9

3

10

ctrl
gADD l/r

A
lig

n
m

e
n

t
N

o
rm

g
O

P
c
o

re
R

o
u

n
d

Figure 5.5: The architecture of the gbound adder operator

The next subsections describe the gbound operators’ algorithms. The symbols used are: for
a gOP unit, G1 and G2 for the two input gbounds, and Z for the output gbound. For a gbound
A, A and A note its lower and upper endpoints. It is assumed that A is lower or equal to
A, and, to simplify the design, all the maximum and minimum computing units are designed
under this assumption. For a real x, 5pxq and 4pxq note the rounding of x to the gformat in
the ´8 and `8 directions, respectively.

5.3.1 Move operator

The move operator (gMOV) is the simplest operator in the coprocessor execute stage. It sup-
ports the ISA instructions presented in Section 4.7.5. The gMOV operator has a three-stage
pipeline.

The first and the last stages, load and store data from and to the coprocessor RF, respec-
tively. These stages are instantiated in all the operators since they are needed to drive the input
and output bus arbiters in the coprocessor execute stage. The second stage is in charge of im-
plementing the assembly instructions mentioned above. It copies an interval in input in the
result. With some internal multiplexing, it can also copy (left and right) interval endpoints
from the input to the output and select some specific data chunks.

The latency of this unit is 3*(L+1) clock cycles, where L is the maximum number of mantissa
chunks that the input interval is made.

5.3.2 Adder operator

The gbound signed adder (gADD) is the first arithmetic operator presented in this section. It
supports the gadd, gsub, gguess, and gradius ISA instructions presented in Section 4.7.6. In
the case of signed addition (gadd), if the RND status register (Section 4.5.4) is set to round to
interval (RTI), the operation implemented by the operator is the following.

Z “

$

&

%

Z “ 5
`

G1` G2
˘

Z “ 4
`

G1` G2
˘

For the gADD operator, the input multiplexing unit, the minimum, and maximum end-
point selection units are not needed. This because the gbound input endpoints are connected
directly to the two endpoint computation units, and their output corresponds to the final inter-
val endpoints.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

80 Chapter 5. Micro-architecture for the variable-precision computing unit

Figure 5.5 depicts in detail the adder’s internal micro-architecture. It is based on 11 macro-
stages, and it follows conventional Floating-Point (FP) algorithms for FP addition and FP sub-
traction [8]. Like the gMOV operator, the first 1 and last 11 pipeline macro-stages move the
data from and to the coprocessor RF. Inside each endpoint computation unit (gADD left or
right), the resulting endpoint (left or right) is computed.

The algorithm chosen to sum the two gnumbers is the one shown in [8]. The two input
mantissa fields are aligned to the same exponent value (stages 2 and 3). Then, the aligned
mantissa fields are summed (or subtracted, depending on the input signs) together (stages 4
and 5). The final result is normalized (stages 6 and 7) and rounded (stages 8 and 9).
The last step before storing the computed results in the coprocessor RF is to handle the input
exception values (stage 10).

Inside the macro-stage pipeline, the intermediate data have some additional integer and
guard bits. These bits propagate the eventual overflow or underflow inside the pipeline to
have enough bit for an exact rounding. In the case when the RND status register (Section 4.5.4)
is not set to RTI, only one of the two parallel adder paths is used.

The latency of this unit is (7*(L+1))+(4*(WGP+1) clock cycles, where L is the maximum
number of mantissa chunks that the input interval is made, and WGP is the maximum number
of mantissa chunks stored in the WGP status register. The first term is the latency needed by
the firsts seven macro-stages. The second one is the latency of the last four macro stages. As it
is possible to see, the WGP status register helps to control the precision-latency tradeoff.

The addition core In FP, the resulting mantissa must be positive, since the sign belongs to
a dedicated bit. During a signed addition, the difference between the first and the second
mantissa may be negative. In this case, the addition algorithm requires a two’s complement of
the mantissa and a negation of the output sign. The phantom bit technique can avoid the two’s
complement, which requires two serial additions in the addition core.

This technique takes two fixed-point operands, op1 and op2, and computes two operations
in parallel, op1+not(op2)+1 and not(op1+not(op2)). If the first one overflows (the phantom
bit is set), the second one is output. As shown in Equation 5.1, the first operation computes
op1-op2, while the second operation computes op2-op1. This technique can parallelize the two
serial additions mentioned before keeping the same system silicon area.

op1` op2` 1 “ op1´ op2

op1` op2 “ pop1´ op2´ 1q “ p´op1` op2` 1q ´ 1
“ op2´ op1

(5.1)

The presented hardware architecture implements the phantom bit technique in two macro-
stages. The first one 4 makes the two parallel additions, and the second one 5 checks the
overflow bit and selects one of the two operations. The separation of these operations in two
macro-stages simplifies the architecture design. With some engineering work, these two macro-
stages can be merged in a single one.

Preconditioning of macro-stages To simplify the hardware design, multiple-chunk operators
have all the inputs at enable time. Thus, some multiple-chunk operators may require inputs
that depend on the actual exponent or the actual mantissa. For example, multiple-chunk shift
operations (stages 3 and 7) require the shift amount and the shift direction (left or right)
before their execution. This order requires the insertion of additional macro-stages before shift
operators for the shift amount computation. For instance, stages 2 and 6 compute the shift
amount from the two input exponent values and the leading-zero-count on the mantissa.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

5.3. Variable-precision architecture for arithmetic operators 81

gMUL
Gbound

Input multiplexing

Gbound Gbound

Load G Load G

cmd
(L2,R2)(L1,R1)

2222

2222

synch

Store GStore G

gMUL core

multiply

exception handler

4

2

5

6

7

8

9

3

1

gMUL

P2

gMUL

P1

Pa >? Pb

mux

gMUL

P4

gMUL

P3

Pa >? Pb

mux

10

ctrl

synch

normalize

shift amnt

Realign ovf

Round

N
o
rm

.
R

o
u

n
d

m
a

x

m
in

GMUL

Px

Figure 5.6: The architecture of the gbound multiplier operator

Input characteristic Minimum
xl xh yl yh value

a ě0 - ě0 - xlˆyl
b <0 - - ě0 -((-xl)ˆyh)
c - ě0 <0 - -(xhˆ(-yl))
d - <0 - <0 (-xh)ˆ(-yh)

Input characteristic Maximum
xl xh yl yh value

e <0 - <0 - (-xl)ˆ(-yl)
f ě0 - - <0 -(xlˆ(-yh))
g - <0 ě0 - -((-xh)ˆyl)
h - ě0 - ě0 xhˆyh

Table 5.1: Possible minimum and maxi-
mum values for interval multiplications

Normalization and rounding macro-stages The normalization and rounding steps are com-
mon to all the Floating-Point (FP) arithmetic operators. At the end of a fixed-point operation
(e.g., addition or multiplication), either the resulting mantissa may not be normalized or have
more bits than the available one in the output format. These two problems are avoided by
normalizing (stages 6 and 7) and rounding (stages 8 and 9) the resulting mantissa.

The normalization realigns the mantissa in such a way that it is greater or equal than 1
and less than 2. In the architecture presented in this work uses a special flag of the summary
bits to encode the value 0 (Section 4.5.3). The normalization is defined in two macro-stages.
The first one 6 computes the shift amount of the mantissa (and the shift direction) through a
leading-zero-count operation on the mantissa. The second one 7 shifts the mantissa, realigns
the exponent value, and generates the overflow and underflow (depending on the WGP status
register, Section 4.5.4) internal flags.

The rounding takes the outputs of the normalization steps, and, according to the rounding
rule chosen, it rounds the output mantissa to be compliant with the register file format. The
rounding is defined in two macro-stages as well. The first one 8 rounds the normalized man-
tissa according to the selected rounding rule (in the RND status register, Section 4.5.4) and the
generated internal flags. The second step 9 shifts right the rounded mantissa in the case of
overflow due to the rounding. This step requires to increase the exponent value and eventually
detect the saturation to infinity (positive or negative).

5.3.3 Multiplier operator

The gbound multiplier (gMUL) is the second arithmetic operator instantiated in the coproces-
sor’s execute stage. It computes the multiplication of the two gbounds provided in the input.
Like for the adder, the RND coprocessor status register hosts the rounding mode used for the
operation.

$

&

%

Z “ min
`

5
`

G1G2
˘

,5
`

G1G2
˘

,5
`

G1G2
˘

,5
`

G1G2
˘˘

Z “ max
`

4
`

G1G2
˘

,4
`

G1G2
˘

,4
`

G1G2
˘

,4
`

G1G2
˘˘

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

82 Chapter 5. Micro-architecture for the variable-precision computing unit

Table 5.1 shows the possible endpoint multiplications for the left and right output end-
points. Looking only at the signs of the operands of these endpoint multiplications, and con-
sidering that xh and yh must be greater than xl and yl , respectively, it is possible to eliminate
two inputs (out of four) for both left and right endpoints. For the minimum operator (left end-
point) only b and c can coexist at the same time. The maximum operator (right endpoint)
only e and h can coexist at the same time.

Consequently, with some multiplexing of the inputs’ endpoints, it is enough to instantiate
four endpoint multiplication units: two for both the left and right endpoint computation paths.
Moreover, out of sixteen input endpoint sign combinations, only nine are respecting valid in-
tervals. Out of these nine sign combinations, only one (where the two intervals contain zero)
requires two multiplications per endpoint. All the other sign combinations require only one
multiplication per endpoint. This work exploits these properties to reduce the average power
consumption by minimizing the number of parallel multiplications dynamically at the same
time.

Figure 5.1 depicts in detail the internal micro-architecture of the multiplier. It has a ten
macro-stages pipeline, and the algorithm implemented inside it is a classical FP algorithm for
FP multiplication [8]. As for the adder, the first 1 and the last 10 pipeline macro-stage move
the data from and to the coprocessor RF. Inside each endpoint computation unit (gMUL P1-P4),
the possible values for the left and right result endpoints are computed.

In this case, there is no need to align input mantissa fields: the two operands can be directly
multiplied (macro-stage 2). After that, the intermediate result is normalized (stages 3 and
4) and then rounded (stages 5 and 6). After the input exceptions are handled 7 in all the

four parallel multipliers, the next macro-stages (8 and 9) compute the minimum and maxi-
mum of the four computed values. A possible improvement of the coprocessor architecture is
implementing a bypass around these last two macro-stages when parallel multiplications are
not needed. This bypass reduces the multiplication latency for most of the operations.

Like for the gADD operator, inside the macro-pipeline, the intermediate data have some
additional integer and guard bits. Furthermore, the gMUL operator adopts the same unit for
normalizing and rounding the intermediate results as for the gADD operator.

The minimum and maximum operators are implemented in two separated macro-stages to
minimize the design time. The first one 8 subtracts the two possible values, and, according to
the sign of this difference, the second macro-stage 9 select the outermost one. In the case when
the RND status register (Section 4.5.4) is not set to RTI, only one of the four parallel multiplier
paths is used.

The latency of this unit is (L+1)+((L+1)2+1)+(2*2*(L+1))+(6*(WGP+1)) clock cycles. L and
WGP have the same meaning as the ones for the adder latency. The first term is the latency
needed by the first macro stage. The second term is the latency needed by the multiple-chunks
mantissa multiplier. Since the multiplier iterates on mantissa chunks of 64-bit each, the number
of multiplications required is proportional to L2. The third term is the latency needed by the
result normalizer that has to treat the chunks output from the multiplier. The remaining term
is the latency needed by the remaining six macro-stages.

5.3.4 Comparator operator

On intervals, the comparison A ă B may be true (if A ă B), false (if A ě B), or “I can’t
say” (in the other cases)3. To allow for that, the gbound comparison unit (gCMP) has to com-
pute the six following comparison flags [2]: Lower Than (LT), Greater Than (GT), EQual (EQ),
Nowhere EQual (NEQ), Not Nowhere EQual (NNEQ). To do that, it compares each gbound
input endpoint with the two endpoints of the other input. Depending on how the two input

3 As a side note, all the programming languages must be modified to support this third option to support UNUM.
However, this is out of the scope of this paper.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

5.3. Variable-precision architecture for arithmetic operators 83

gCMP

Flags generation logic

flags_o

Gbound Gbound

Load G Load G

Synch flags

gCMP

L1-R2

gCMP

R1-L2

gCMP

R1-R2

gCMP

L1-L2

nan gteq

flags

1

2

3

(L2,R2)(L1,R1)

nan gteqnan gteqnan gteq

Figure 5.7: The architecture of the gbound comparator operator

gbounds intersect (or not) each other, the four output flags are set or unset, taking care of the
distinguished values (e.g., NaN).

Figure 5.7 depicts the hardware implementation of this function. It is based on three macro-
stages. Like the operators mentioned above, the first stage 1 loads data from the coprocessor
RF. The second macro-stage 2 consists of four parallel comparator operators (gCMP x1-y2).
Each of them is made of two parallel units that check whether the first operand is greater than
the second one or whether the first operand is equal to the second one. The first check is made
by performing a difference between the two inputs. The second check is made by comparing
the two inputs chunk by chunk. The four parallel comparators provide twelve output flags
(greater than, equal, or not-a-number).

These flags are used in the last macro-stage 3 to drive a combinational logic that generates
the six output flags mentioned above. Depending on the input instruction, the gCMP unit can
output only one flag for all the possible endpoint-to-endpoint comparisons.

The latency of this unit is (2*(L+1))+1 clock cycles. L and WGP have the same meaning as
the ones for the latency of previous operators. The first term is the latency needed by the first
two macro stages. The last clock cycle is the latency needed by the last macro stage that needs
only one clock cycle to propagate the output flags in the next pipeline stage.

5.3.5 Conversion operator

The conversion operator (gCNVT) implements all the ISA conversion instructions presented
in Section 4.7.7. It has been introduced in the architecture for debug purposes (to print vari-
ables values on the terminal) and to facilitate the integration of the presented coprocessor in a
conventional FPU. The gCNVT operator is a simple unit divided into two parallel paths.

The first path takes care of the IEEE-754 to gbound conversions instructions. It is made of
two macro-stages: one to convert from IEEE-754 to gbound format, and one to store data in
the coprocessor register file. The second path takes care of the gbound to IEEE-754 conversions
instructions. This path is made of two macro-stages: one to load data from the coprocessor
register file, and one to convert from gbound to IEEE-754 format.

The latency of this unit is two clock cycles. For both conversion operations, they need one
clock cycle to make the conversion and one clock cycle to communicate with the gRF.

Both conversion operations do the conversion within one clock cycle latency since they
have to move only one mantissa chunk (the largest IEEE-754 format supported is the 64-bit
one). IEEE-754 input numbers set the exact summary bit in the output gbound (Section 4.5.3).
The RND coprocessor status register specifies the rounding mode used in the gbound-to-IEEE-
754 conversion operations (Section 4.5.4).

If the RND is set to round-to-nearest (half away from zero, RTN), depending if the target
format is half-float, float, or double, the result is rounded looking the 11th, the 24th, or the 53rd

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

84 Chapter 5. Micro-architecture for the variable-precision computing unit

gOP1

gRES

gLSU

MEM_IF

gSTORE

uSTORE

MEMORY

uLOAD

MEMORY

CTRL UNIT

gLOAD

U2G

U2G

G2U

G2U

MEM ARBITER

u

B

S

Y

N

C

g

B

S

Y

N

C

a

b

c

d

e

f

g

h

Figure 5.8: The architecture of the coprocessor load and store unit

mantissa bit. If the target bit is one, the output mantissa is rounded up. Otherwise, the output
mantissa is truncated. If the RND is set to round-up (RDU), the output mantissa is rounded up
if the output sign is positive, and the part of the mantissa that would be truncated in the output
format is different from zero. The output mantissa is truncated in other cases. If the RND is set
to round-down (RDD), the output mantissa is rounded up if the output sign is negative, and
the part of the mantissa that would be truncated in the output format is different from zero.
The output mantissa is truncated in other cases.

For RTN, there is no necessity to look at the values of the truncated bits. For RDU and
RDD, all the truncated bits have to be taken into account. The rounder unit receives additional
signals to speed up this test. Every signal carries the information if a given chunk is equal to all
zero or equal to all 1. These signals avoid spending extra clock cycles in checking the truncated
mantissa chunks.

5.3.6 Load and store unit

The coprocessor gbound Load and Store Unit (gLSU) is in charge of handling all the coproces-
sor load and store operations in memory specified in the coprocessor ISA (Section 4.7.4). In
this work, the gLSU handles the format conversions between the gbound format of the copro-
cessor register file (Section 4.5.3) and the UNUM and ubound memory formats described in
Section 4.3. The DUE, SUE, and MBB coprocessor status registers encode the configuration of
the format used to load and store data in memory (Section 4.5.4).

The DUE and SUE status registers have two internal fields (ESS and FSS) that describe the
maximum exponent dynamics and precision that a UNUM (or a ubound endpoint) can have.
The MBB value encodes the length, in bytes, of numbers in memory.

Figure 5.8 depicts the gLSU hardware architecture. The internal control unit a drives the
load and the store units according to the input load or store instruction. The gLSU has two
parallel pipeline paths inside: the load path and the store path.

The load path (units b , c , and d) handles all the load memory instructions. The store
path (units e , f , and g) handles all the store memory instructions. Both paths take care of
moving the data between the memory and the coprocessor register file, and it takes care of the
conversion between their two Floating-Point (FP) formats. A memory arbiter h ensures the
correct execution order between load and store instructions. The next subsections describe in
detail the units mentioned above.

This unit subdivision was done in order to support in the future additional Variable-
Precision (VP) FP formats. To support additional FP formats is enough to add parallel format

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

5.3. Variable-precision architecture for arithmetic operators 85

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

sb sh sw sd sd sw sh sb

Figure 5.9: Worst case scenario of storing a 30 Bytes data

conversion functions in the load and store paths. In this way, the user can make computa-
tion using different memory formats, with different precision configurations, by leveraging the
shared gbound coprocessor register file.

Memory data alignment As already mentioned in Section 4.3, unlike conventional sys-
tems, data in memory is aligned on bytes, and they can be expressed on an arbitrary number
of bytes. The MBB status register must contain the length, expressed in bytes, of the data to be
loaded or stored by the gLSU. As specified in Section 4.7.4, the gLSU must be able to load and
store data with any MBB length on every address. Thus, the gLSU must be able to deal with
misaligned addresses.

The RISC-V L1 cache of Rocketchip supports only aligned memory operations. To overcome
this limitation, the coprocessor LSU splits memory operations with misaligned addresses into
several aligned memory operations. For example, as depicted in Figure 5.9, to store in memory
30 bytes, the gLSU may do on the L1 cache (in the worst case) an 8-bit store, a 16-bit store, a
32-bits store, two consecutive 64-bit stores, one 32-bit store, one 16-bit store and one 8-bit store.
The number of required memory operations can be minimized if the L1 cache has an interface
with byte enables.

The load path

The gLSU load path loads UNUMs or ubounds from the main memory, it converts them in the
gbound format, and it stores the converted result in the coprocessor register file. The load path
is divided into three main parts. The first one b loads a UNUM or a ubound from main mem-
ory, in the formats defined in Section 4.2.1, and it extracts all their subfields. The second part
c is made of two parallel units (to support both UNUM and ubound) that convert UNUMs

into gnumbers. Finally, like for the previous arithmetic operators, the last part d stores the
converted data into the coprocessor register file. The gLSU load path macro-pipeline is made
of eight macro-stages.

The latency of this path is (8*(ceil(MBB*8/64)))+ε+γ clock cycles. The first term is the la-
tency of the eight macro-stages of the load pipeline. The latency is a function of the length of the
data in memory. The ε term is the additional clock cycle latency due to the additional memory
requests if the data is not aligned in memory, while γ is the one due to the cache latency.

Figure 5.10a depicts the first part of the gLSU load path, the UNUM load (uLOAD) unit (b
in Figure 5.8), which contains the firsts three macro-stages of the gLSU load path pipeline. The
first macro-stage 1 loads MBB bytes from memory, and it stores them into a buffer. Depending
on MBB and the address alignment, it may generate multiple load operations in order to load
the MBB bytes from memory. It supports misaligned addresses. The following macro-stage 2
extracts the subfields of the UNUM (or ubound) header (s, u, es-1, fs-1, and e) and compute
the shift amount needed to extract the mantissa field. The last macro-stage 3 extracts the
fraction fields by shifting them to the left according to the precomputed shift amount. After this
stage, all the UNUM (or ubound) fields are well separated, and they are ready to be converted
into the coprocessor register file format.

Figure 5.10b depicts the second part of the gLSU load path, the UNUM to gbound endpoint
(U2G ep) conversion unit (one of the two units labeled with c in Figure 5.8). It is made of 4
macro-stages. The first macro-stage 4 triggers possible distinguished value encodings (e.g.,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

86 Chapter 5. Micro-architecture for the variable-precision computing unit

SYNC
Load

MBB

Extract

FractionExtract

Headers
Extract

Fraction

3
1 2

3

(a) UNUM load (uLOAD) unit: it loads UNUMs and ubounds from the
main memory and extract all their fields

U2G

ep

U2G

EP enlarging

Plus 1ULP

exception

synch

normalization

shamnt (lzc) 6

4

7

5

(b) UNUM to gbound endpoint
(U2G ep) conversion unit: it
converts a UNUM into gbound

Figure 5.10: Load path units of the coprocessor load and store unit

NaN, infinity) and decode the exponent from the UNUM encoding to two’s complement one,
like the one of a gnumber. If the UNUM ubit is set, and if the RND status register is set to
RTI (Section 4.5.4), the second macro-stage 5 increments by one ULP the mantissa, to the
outermost value of the corresponding UNUM with the ubit set.

Since gnumbers do not support subnormal representations, the third macro-stage 6 com-
putes, through a leading-zero-count operation on the mantissa, the shift amount needed to
normalize the mantissa. Finally, 7 the mantissa is normalized (as well as the exponent value)
with a shift left. The eighth macro-stage stores back the converted gbound in the coproces-
sor register file (d in Figure 5.8). After this, the loaded gbounds are ready to be input to the
gbound operators (gOP) detailed above.

The store path

The gLSU store path stores gbounds from the coprocessor register file in memory in the UNUM
(or ubound) format. The store path (Figure 5.8) is divided into three main parts. Like the previ-
ous arithmetic operators, the first part e loads a gnumber (or a gbound) from the coprocessor
register file. The second part f converts a gnumber (or a gbound) into a UNUM (or ubound).
It is made of two parallel units to support ubound. The last one g converts the obtained
UNUM (or ubound) into the BMF format (Section 4.3). It compacts the converted fields into a
single bitstream, for then storing it in main memory. The gLSU store path is pipelined in fifteen
macro-stages.

The latency of this path is (3*(L+1))+(7*(ceil(2FSS/64)))+(5*(ceil(MBB*8/64)))+ε+γ clock cy-
cles. The first term is the latency of the firsts three stages of the store pipeline. The latency is
a function of the length of the data to be stored. The second term is a function of the selected
UNUM Environment, in particular FSS. The third element is a function of the length of the
format to be stored, MBB. The last terms, ε and γ, have the same meaning as for the load path.

The first macro-stage belongs to the unit fetches the gnumber (or gbound) that has to be
stored from the coprocessor register file. The following eight macro-stages belong to the G2U
units depicted in Figure 5.11a (e in Figure 5.8). It converts a gnumber (or gbound) into a
standard UNUM (or ubound).

The first step of this conversion rounds the input gnumber delimiting its exponent range
according to the chosen ESS value, and its fraction size according to the FSS set. The data-
type status register (DUE or SUE) stores the ESS and FSS values needed by the used mem-
ory instruction (Section 4.7.4). As for previous operators, this rounding requires four pipeline
macro-stages (stages 2 - 5). After the rounding, the following macro-stage 6 handles all the
distinguished values (e.g., infinity and NaN) that may occur after rounding.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

5.3. Variable-precision architecture for arithmetic operators 87

G2U

ep

G2U

G2U (fsm1 extr)

m. align (shift)

Rounding

Realign ovf (shr)

Round

7

8

4

9UBleft/right (add)

5

Normalization

normalize

shift amnt (lzc)

6except handler

2

3

(a) gbound to UNUM
endpoint (U2G ep) con-
version unit: it converts a

gbound into a UNUM

Store

MBB
Merge

15

Collaps

utag

12

Shift

f

13 14

BMF

incr

11

BMF

ecpt

10

(b) UNUM store (uSTORE) unit: it stores gbounds in main memory in the
UNUM and ubound formats

Figure 5.11: Store path units of the coprocessor load and store unit

Subnormal Normal

es-1=log2p2-EXPq es-1=

#

rlog2p2-EXPqs , if EXP<2 (EXPď1)
rlog2pEXPqs , if EXP>0 (EXPě1)

e=0 e=2es´1+EXP-1
Required conditions

• EXP<2 (EXP<=1)
• 2-EXP=2i, i is integer ě 0

None

Table 5.2: The equations used, and their required input conditions, to convert a two’s complement exponent
number (EXP) into the e and es-1 UNUM exponent encoding

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

88 Chapter 5. Micro-architecture for the variable-precision computing unit

The next two macro-stages convert the rounded gnumber in the UNUM format (Sec-
tion 3.1.3). The first step of this conversion 7 tries to sub-normalize the mantissa (to maximize
the number precision), and it converts the gnumber exponent in the e and es-1 UNUM fields.
Table 5.2 shows the equations (and the required input conditions) used to convert the two’s
complement exponent of the input gnumber (EXP) in the UNUM format representation. In the
UNUM format all the exponent values can be represented in the normal format (e > 0). The
subnormal formats have some restrictions since the e field must be zero. Between normal and
subnormal representations, the presented unit chooses subnormal to maximize the mantissa
precision.

The second step of the G2U unit 8 computes the value of the fs-1 UNUM field, minimiz-
ing the mantissa length according to its trailing zeros. This step cannot be embedded in the
previous macro-stage because the shift of the mantissa must finish before computing the trail-
ing zero count. The last macro-stage of the G2U unit 9 decrements of one ULP the obtained
mantissa when the number is not exact in order to be compliant with the ubit direction (see
ubleft and ubright operators in [2]).

Once the input gnumber (or gbound) is converted into UNUM (or ubound), the converted
data is stored in memory through the store unit (g in Figure 5.8) This unit, depicted in Fig-
ure 5.11b, is made of 6 macro-stages. The first two stages (10 and 11) convert the obtained
UNUM (or ubound) in the BMF format (Section 4.3).

These two stages implement a re-round of the converted UNUM (or ubound) guaranteeing
that the bit-length of converted number fits in the byte budged specified in the MBB coproces-
sor status register (Section 4.5.4). These units principally round the UNUM mantissa to have
a bit-length so that the global UNUM footprint does not overpass MBB bytes. This double
rounding is needed since the final mantissa length depends on the lengths of the e, es-1, and
fs-1 UNUM fields, depending on the overflow that may occur in the UNUM conversion unit
f .

The first BMF step 10 computes the maximum length of the final mantissa and detects if
the input number has some distinguished values (e.g., infinity, NaN) or if the output will be
a distinguished value. The maximum mantissa length is used in the second BMF step 11 . It
re-rounds the mantissa according to the computed maximum length and updates the UNUM
fields according to the rules specified in Section 4.3.

The next three macro-stages (12 , 13 , and 14) format the UNUM (or ubound) in the output
of the BMF units in the chosen format (Section 4.2.1). The first of these three macro-stages 12
starts the output format configuration. It collapses the fixed-length UNUM fields (s, u, es-1,
and fs-1), the exponent ones (e), and it computes the mantissa shift amount according to the
chosen memory format (Section 4.2.1).

The next macro-stage 13 shifts the left and right mantissa fields (in the case of an ubound
store) separately. The last macro-stage 14 merges all the precomputed fields in a single bit-
stream. At this point, the UNUM (or ubound) number fits the MBB boundary, and it is ready
to be stored in the main memory 15 .

Memory consistency hardware mechanisms

Like in all the units which load and store data in the main memory, the coprocessor storage
unit has to face the classical memory consistency issues. For instance, these issues appear when
data that not yet stored are loaded from memory. To avoid these issues, this work leverages
the memory arbiter (MEM ARBITER, h in Figure 5.8) of the coprocessor load and store unit.
The main issue that the memory arbiter has to consider is that both the load and store macro-
pipeline have a not-negligible depth and variable latency.

The memory arbiter adopts a simple memory protocol. It allows pipelined sequences of
either load operations or store operations. If a load operation arrives after a store (or vice versa),

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

5.4. ASIC synthesis results and FPGA integration 89

1 2 Area Total Power
Unit stg (µm2) 3 (µm2 buff) 4 (mW) 5 (mW buff) 6
Rocket_tile - 1553 (100%) n.a. (n.a.) 95.2 (100%) n.a. (n.a.)
–RISC-V - 23.09 (1.5%) n.a. (n.a.) 0.78 (0.8%) n.a. (n.a.)
–64bit_fpu - 53.1 (3.4%) n.a. (n.a.) 1.43 (1.5%) n.a. (n.a.)
–d_cache - 487.6 (31.4%) n.a. (n.a.) 12.72 (13.4%) n.a. (n.a.)
–i_cache - 425.6 (27.4%) n.a. (n.a.) 8.51 (8.9%) n.a. (n.a.)
–if/periph - 102.3 (6.6%) n.a. (n.a.) 3.83 (4.0%) n.a. (n.a.)
–coproc 3 461 (29.7%) 307 (66.5%) 17.0 (17.9%) 4.2 (24.7%)
—s_decode - 131.1 (8.4%) 130.3 (99.3%) 2.29 (2.4%) 2.16 (94.5%)
—–gRF - 130.8 (8.4%) 130.3 (99.6%) 2.27 (2.4%) 2.16 (95.1%)
—s_execute - 327.5 (21.1%) 176.5 (53.9%) 13.6 (14.3%) 2.03 (14.9%)
—–gMOV 1 4.242 (0.3%) 3.061 (72.2%) 0.17 (0.2%) 0.02 (14.1%)
—–gCMP 3 30.73 (2.0%) 24.97 (81.3%) 0.83 (0.9%) 0.25 (29.9%)
—–gADD 11 66.77 (4.3%) 43.61 (65.3%) 2.3 (2.4%) 0.42 (18.3%)
—–gMUL 10 143.4 (9.2%) 60.06 (41.9%) 6.76 (7.1%) 0.98 (14.4%)
—–gLSU 3 81.35 (5.2%) 44.77 (55.0%) 3.5 (3.7%) 0.36 (10.4%)
——LD 3 29.96 (1.9%) 16.95 (56.6%) 1.51 (1.6%) 0.14 (9.3%)
——–load 3 15.47 (1.0%) 9.344 (60.4%) 0.86 (0.9%) 0.08 (9.6%)
——–u2g 4 10.53 (0.7%) 4.579 (43.5%) 0.56 (0.6%) 0.04 (6.6%)
——ST 3 51.03 (3.3%) 27.81 (54.5%) 1.95 (2.0%) 0.22 (11.5%)
——–g2u 8 27.35 (1.8%) 16.96 (62.0%) 1.07 (1.1%) 0.11 (9.8%)
——–store 4 17.29 (1.1%) 10.84 (62.7%) 0.6 (0.6%) 0.09 (14.9%)

Table 5.3: Synthesis results of the variable-precision architecture using a 28nm FDSOI library

it only starts its execution when the store (or the load) finishes. There are more sophisticated
memory consistency protocols in state of the art. However, we did not consider other memory
consistency protocols due to time constraints.

5.4 ASIC synthesis results and FPGA integration

This section shows the techniques used to validate the design, its integration in FPGA, and its
ASIC synthesis results.

5.4.1 Validation of the units

The architecture design is validated at multiple levels starting from the basic components up
to the top unit (Rocket tile). Each subunit is described in VHDL and is validated in simula-
tion (with Questasim) against 50 million pseudo-random generated input vectors varying all
the input parameters. The output values of the units under test are compared with those gen-
erated by executable specifications written in high-level behavioral VHDL code. We used a
Xilinx Virtex 7 FPGA as a final validation test. Since an exhaustive validation on FPGA of the
whole system needs full compiler support for UNUMs, the final validation is based on call-
ing hand-written instructions to check the correct inputs propagations into the coprocessor.
With these validation techniques, no errors or bugs were found during the execution of several
benchmarks, including those presented in Chapter 6.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

90 Chapter 5. Micro-architecture for the variable-precision computing unit

RISC-V
2%

64bit FPU
4%

I cache
27%

D cache
31%

gMUL
9%

gRF
9%

gLSU
5%

gADD
4%

gCMP
2%

others
7%

ASIC AREA [%]

UNUM

coproc:

29,7 %

Rocket

core

+

FPU:

4,9 %

(a) Chip area distribution

RISC-V
1%

64bit FPU
2%
I cache

9%
D cache

13%

gMUL
7%

gLSU
4%
gRF
2%gADD

2%
gCMP

1%

clock tree
50%

others
9%

ASIC POWER [%]

UNUM

coproc:

17,9 %

RISC-V

+

FPU:

2,3 %

(b) Chip power distribution

Figure 5.12: Area (5.12a) and power (5.12b) distribution of the synthesis results shown in Table 5.3

5.4.2 FPGA integration

The integration on FPGA is done through a microblaze system generated with Vivado from
Xilinx. This system is a wrapper for the architecture mentioned above. It connects the RISC-
V system with the DRAM and with a dedicated UART interface, both available on the FPGA
board.

The microblaze system is programmable through another UART interface. At boot, the
microblaze loads the compiled code to be executed, in the RISC-V system, from an SD card into
the DRAM. Once the DRAM contains the executable code for the RISC-V, the microblaze resets
the RISC-V module and then enters into sleep mode.

With the reset, the RISC-V module automatically starts to fetch the execution code from the
DRAM. A terminal connected to the RISC-V UART interface shows the printed outputs pro-
duced from the FPGA emulation. The user can see what is produced inside the RISC-V system
during the FPGA emulation through prints in the terminal attached to the UART interface.

The FPGA system can run at 50MHz. This frequency matches the Rocketchip specifica-
tions [7].

5.4.3 ASIC integration: synthesis results

The architecture described in this work was synthesized, using Design Compiler from Synop-
sys, and targeted to the 28nm FDSOI library from ST-microelectronics (cmos028FDSOI). Regis-
ter re-timing and clock gating optimizations are enabled during synthesis. For simplicity, all
the memory elements are synthesized with flip-flops.

The timing constraint is set at 1ns (1GHz). To take into account connections external to the
chip, a latency corresponding to the 70% of the clock cycle period is added to all the chip inputs-
outputs. The debug inputs of the chip are disabled. The ‘flatten’ option of some subunits is
disabled to be able to report area and power estimations after synthesis. The power estimation
is performed by assuming a random switching activity on the inputs.

The best clock period achieved is 1.697ns (589MHz). The critical path passes in the Floating-
Point (FP) multiplier and adder operator of the RISC-V’s FP unit.

Table 5.3 shows the synthesis results of the synthesized system. The Rocket tile is the name
of the top unit. Column 1 hosts the names of the synthesized components and subcomponents
units. The tabulations in this column denote the component hierarchy. Column 2 indicates
the number of pipeline stages-macro-stages for each unit. Subcomponents that are not showed

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

5.4. ASIC synthesis results and FPGA integration 91

in this table have 1 stage latency. Column 3 indicates the area of the unit4 expressed in µm2.
The percentages refer to the area taken by a unit compared to the one at the top (Rocket_tile).
Column 4 depicts the area taken by mantissa buffers in the macro-pipeline for each unit (Sec-
tion 5.1). The percentages refer to the area taken by the unit buffers (column 4) compared with
the one taken by each unit (column 3). Column 5 shows the power consumption required
for each unit expressed in mW. Like 3 , the percentages refer to the unit power consumption
compared with the one of the top. Column 6 shows the power consumed by the intermediate
buffers of each unit expressed in mW. The percentages refer to the power consumption of the
buffers compared with the one in each unit. Figure 5.12a and Figure 5.12b depict the area and
power distribution for some subunits.

From an area perspective, the Rocket tile requires 1.5mm2 of a silicon surface. The area takes
into account the 50% of unused space for the place and route. The main contributors for the area
footprint are the units that contain memory: instruction and data caches and the RISC-V copro-
cessor. Columns 3 and 4 show that the main area footprint contributors for the coprocessor
are the units that contain memory: the gbound Register files and the macro-pipeline buffers.
These results express the hardware cost of having a pipelined variable-precision coprocessor.

In terms of power consumption, the Rocket tile consumes 95mW. The clock tree consumes
the most significant part of estimated power (47.5mW). The chip components consume the rest
(47.6mW). Like the area, the main contributors for the power consumption are the instruction
and data caches and the RISC-V coprocessor. The unit which consumes more is the RISC-V co-
processor with 17mW. Mantissa buffers consume one-fourth of this power. Logic and standard
flip-flops consume the rest. This high energy consumption is mostly due to the high number
of pipeline stages of internal operators and by the additional logic of the finite state machines
which handle multiple-chunk mantissa computations.

The RISC-V coprocessor is nine times bigger and consumes twelve times more than the
RISC-V FP unit. The next chapter evaluates the performance of this unit (in terms of speed but
also precision) on linear algebra benchmarks.

4 The adder (gADD) requires one pipeline macro-stage more than the multiplier (gMUL). However, its area
is lower than the one of the multiplier. This difference is because the support of interval arithmetic. In fact, the
multiplier hosts four parallel mantissa multipliers while the adder hosts only to mantissa adders.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

93

Chapter 6

Experimentation

The main challenge in modern scientific computing systems is the scaling up of the maximum
problem size that the system can compute. In linear systems, scaling up the problem size corre-
sponds to scale up the maximum size of the matrices in memory that the system can compute.
Increasing the matrices size implies to prefer indirect (iterative) methods instead of direct ones.
Indirect methods iterate to solve a linear system, and, at every iteration, magnify the round-off
error for the internal variables. It is necessary to increase the variables precision and memory
footprint to compensate for the round-off error of the algorithm results. This challenge has to
face the memory wall problem that limits the data throughput and the amount of data possible
to store in memory. This challenge requires to scale up the hardware infrastructure of the com-
puting system. As stated in Chapter 2, Variable-Precision (VP) may help achieve this challenge
for two reasons.

Firstly, the VP can support high-precision and compact formats in memory. These formats
require improving existing hardware architectures in computing precision, allowing them to
store high-precision data in memory while reducing applications computational error. This
property can scale up the hardware infrastructure, and, in a different use case, it can reduce
the computational error of applications. Secondly, the VP can encode numbers with higher
precision than conventional formats with fixed size [1]. This higher precision is thanks to using
a larger mantissa, with possibly a little bonus if bits are harvested from the exponent around
exponent values centered around zero1. The questions2 that we are trying to answer in this
chapter are:

• Can VP formats reduce the memory footprint of applications?

• Can VP scale up the maximum problem size that the system can compute?

This chapter evaluates the benefits of the VP Floating-Point (FP) hardware architecture,
described in Chapters 4 and 5, by testing it on software benchmarks. This architecture can break
the memory wall by supporting compact VP FP data in memory. It differs from conventional
FP architectures on three main points.

Firstly, it supports (simultaneously) several VP FP formats configurations for data in mem-
ory. Secondly, it supports VP memory operations with misaligned addresses. Finally, it is pos-
sible to tune the internal computing precision at run time. This chapter aims to study how these
features can improve the convergence of iterative solvers for scientific computing applications

1 Section 3.1 shows the range of values for which VP formats have higher precision that IEEE-like ones.
2 We consider that reducing the power is a secondary focus of this work. However, supporting VP FP formats

in memory reduces the consumed power of the system. Firstly, having smaller data in memory reduces the power
dissipated in the memory subsystem. Secondly, in applications that distribute the computation of large matrices
in smaller ones, it is possible to reduce significantly the global power budget required for resolving the original
problem. This can be achieved thanks to VP capability of scaling up the maximum problem size that the system is
able to compute. This scale up allows to increase the maximum sub-matrices’ size, reducing the number of the ones
involved in the computation, and then the global power budget.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

94 Chapter 6. Experimentation

while reducing the computational error in the final result while minimizing the memory data
footprint.

Unlike conventional FP architectures, status registers provide information about the pre-
cision of data (introduced in Section 4.5.4). These registers work like “knobs” that tune data
precision and computation latency. There are two major knobs in this VP architecture:

• The first knob controls the memory format by handling the MBB, DUE, and SUE sta-
tus registers. They configure the bit-length (with a byte-level accuracy), the format, the
maximum mantissa precision, and the exponent magnitude of VP data in memory.

• The second knob controls the FP unit computation precision, through the WGP status
register. This register tunes the computation precision with a 64-bit granularity.

The VP load-and-store unit of the VP architecture provides the support for memory operations
with misaligned addresses.

We exploit the following benchmarks to test the VP architecture: a Gauss elimination solver,
a Conjugate gradient solver, and a Jacobi solver. All these algorithms solve the canonical linear
problem Ax=b, where A is a square matrix, and x and b are vectors. In scientific computing
literature, several algorithms solve the same problem exist.

Depending on the nature of the input matrix, its structure, or its conditioning, some algo-
rithms have better output accuracy or convergence latency than others. In particular, some
algorithms do not even converge if the input matrix does not respect some properties. For
example, the Gauss elimination, the Conjugate gradient, and the Jacobi algorithms require dif-
ferent input matrix properties. The Gauss elimination algorithm is the least strict among the
three: it only requires the input matrix to be invertible. The Conjugate gradient algorithm re-
quires the input matrix to be invertible and positive semi-definite, The Jacobi algorithm is even
more restrictive because it requires the input matrix to be invertible and diagonally dominant.

The Gauss solver is a direct algorithm. In other words, the number of operations involved
in a run of this algorithm is fixed and known a priori. The Conjugate gradient3 and the Jacobi
solvers are iterative algorithms. The number of iterations in these algorithms is variable and
depends on the target precision threshold given in input. If this threshold is not achieved, an
additional iteration on the kernel is performed. The Conjugate gradient and the Jacobi algo-
rithms stop iterating either when the target threshold is met, or when the number of iterations
matches a limit, specified in the input.

The next sections benchmark the VP architecture by using the three algorithms mentioned
above. Section 6.1 benchmarks the VP architecture by showing how the VP can improve com-
putations for direct algorithms. Here the Gauss algorithm is used. Section 6.2 shows how
VP can improve computations in iterative methods, focusing on the Conjugate gradient algo-
rithm. Finally, Section 6.3 shows a performance benchmark of the VP architecture presented
above, with the state of the art MPFR software library, on the Gauss, Conjugate gradient, and
Jacobi solvers4.

The last section performs a performance evaluation of the VP architecture using all the three
solvers. This experiment uses the MPFR [9] software library to benchmark the VP architecture.
The choice is because there are no available hardware architectures in the state of the art for
which it is possible to reach similar precisions in memory.

3 The Conjugate Gradient (CG) was originally proposed by Hestenes [79] as a direct (non-iterative) method in
theory and in exact arithmetic. It is supposed to terminate in at most n steps, where n is the size of the problem. But
in practice, due to rounding errors, the CG method can take many more than n steps (or fail). Therefore, CG is now
used as an iterative method, which converges anyway in reasonable number of steps.

4 It would be a legit concern to define the “right” criteria for selecting a VP algorithm for each individual case.
However, this discussion is beyond the scope of this work. Moreover, we did not find any useful usage of the
Interval Arithmetic (IA) support for these algorithms. However, this work demonstrated that supporting IA in
hardware is feasible at the costs shown in Section 5.4.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

6.1. Experiment 1: Variable-precision benefits for direct methods 95

Figure 6.1: Stellar [80] hardware platform (with an embedded Virtex-7 FPGA)

The emulation environment The results of this work are conducted on our full-custom hard-
ware “Stellar” board [80] (Figure 6.1). This board hosts an FPGA chip, a Kintex 7 Ultrascale
programmable component of Xilinx. Additional board components used in this work are 16
GB of SDRAM memory, and an SD card as secondary storage.

The FPGA hosts the system described in Chapter 4. The Rocketchip tile is surrounded by
some standard hardware units from Xilinx that make the system useable in the FPGA. These
units are a UART driver, an SDRAM driver, an SD card driver, and a processor (uBlaze, microb-
laze) core from Xilinx. The UART driver controls the UART interface used to print the RISC-V
terminal during program execution. The SDRAM driver connects the system with the board
SDRAM. The SD card driver interfaces the system with the FPGA SD card slot.

The uBlaze core is used at the reset of the board. It loads the code from the SD card, in-
terfaced with the FPGA board, into the system SDRAM. Afterward, it resets the Rocketchip
RISC-V, then it goes to sleep. With this system, it is possible to emulate bare-metal applications
with a plug-and-play test environment on the FPGA software.

The following experiments were written in assembly, using the instruction set described
in Section 4.7, with the collaboration of Tiago Trevisan Jost. This collaboration was made to
properly drive the development of his compiler, presented in Section 4.8. This compiler will
support custom VP datatype, and it will simplify the coding of software VP FP applications.

6.1 Experiment 1: Variable-precision benefits for direct methods

Algorithm 4 Gauss elimination: general algorithm
1: function GAUSS(A, b, N) Ź Anˆn, b P Rn

2: for i Ð 0 to N ´ 2 do
3: if Ai,i “ 0 then break
4: for j Ð i` 1 to N ´ 1 do
5: ratio Ð Aj,i

Ai,i

6: for k Ð i to N ´ 1 do
7: Aj,k Ð Aj,k ´ pratio ¨ Ai,kq

8: bj Ð bj ´ pratio ¨ biq

9: xn´1 Ð
bn´1

An´1,n´1

10: for i Ð n´ 2 downto 0 do

11: xi Ð
pbi´

řn´1
j“i`1 Ai,j¨bjq

Ai,i
return x Ź x P Rn | Ax “ b

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

96 Chapter 6. Experimentation

The purpose of this experiment is to measure the Gauss Elimination (GE) algorithm on
a VP computing environment in terms of execution time and computational error. The GE
algorithm, depicted in Algorithm 4, is a linear system solver divided into two main steps: the
triangulation of the input matrix, lines 2-8, and the backward propagation of the output vector,
lines 9-11. The discrete representation of real numbers may affect the output computational
error of this algorithm.

Similarly, in the GE solver, the round-off error during operations impacts the output com-
putational error. There is a linear relationship between the condition number of the input ma-
trix and the output computational error. This experiment uses the Hilbert matrix that is well
known for being ill-conditioned, to highlight the capability to reduce the computational error
of the VP FP architecture5. Dealing with Hilbert matrices as a benchmark is a good hint for
estimating if the hardware infrastructure can handle real complex physics problems. The other
input variables (i.e., the input vector b) are randomly generated with values uniformly dis-
tributed between zero and one. We plan to evaluate our computed results by measuring the
resulting residual error (computing ‖ Ax´ b ‖2).

The VP version of the GE algorithm is inspired by the one that uses conventional IEEE
754 formats (Appendix A.1 lists the C code for this kernel). The pseudocode of this algo-
rithm is available in Appendix A.2. Its current C-assembly implementation is available in
Appendix A.3.

6 for(wgp =0; wgp <=(2^ MAX_FSS)/64; wgp++){
7 for(mbb=min_mbb(MAX_ESS ,MAX_ESS); mbb <= max_mbb(MAX_ESS ,MAX_ESS); mbb

++)
8 call_gauss(MAX_ESS , MAX_FSS , mbb , wgp , N);
9 }

Listing 6.1: Gauss precision settings

The GE VP kernel is repeatedly executed, gradually increasing the format memory footprint
for data involved in internal calculations and their computing precision. Latency and com-
putational error are measured varying the memory footprint of VP variables (MBB, from 1 to
68 bytes, Section 4.3) and the computation precision (WGP, from 64 to 512 bits, Section 4.5.4).
Several runs of the GE algorithm, with different sets of the MBB and WGP parameters, were
performed (lines 6 to 9).

The aims of this experiment are two-fold: first, to understand how precision and error
behave varying the variables memory footprint, and second, to characterize the relation be-
tween data footprint in memory and computational precision. In this experiment, we expose
the results regarding the largest UNUM Environment (UE, Section 3.1.3) supported by the VP
architecture: ess=4 and fss=96. This memory format supports up to 16 and 512 bits to repre-
sent exponent and mantissa, respectively. The UE is set to the maximum one so we can further
ignore it and control the precision in memory with MBB and inside the coprocessor with WGP7.

The GE algorithm follows a direct method. Consequently, to get all the precision benefits
from VP computing, all the internal variables must be represented with a VP format.

5 The condition number of a Hilbert matrix of dimension n is O
´

p1`
?

2q4n
?

n

¯

.
6 Looking at Appendix A.3, lines 53-63, the GE kernel is performed on several UEs. We decided to show the re-

sults regarding the largest supported UE since it is the one that shows the most significant results. The experiments
with the other UEs show the same results but saturated to the maximum MBB that the target UE can support. For
small UEs, like for small IEEE 754 formats, the computational error of the result of the GE kernel is so that no one
output binary digit is correct.

7 The UNUM Environment defines the maximum bit length that a number can have in memory. MBB drives the
actual bit length of the number in memory, and WGP defines the computing precision associated with the current
operation.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

6.1. Experiment 1: Variable-precision benefits for direct methods 97

13 void call gauss(unsigned ess , unsigned fss , unsigned mbb , unsigned wgp ,
unsigned n){

14 // declaration of the input -output data
15 vpfloat <unum , ess , fss , mbb > *A //input matrix
16 = (vpfloat <unum , ess , fss , mbb >*) malloc ((n*n)*sizeof(vpfloat <unum ,

ess , fss , mbb >));
17 vpfloat <unum , ess , fss , mbb > *b //input array
18 = (vpfloat <unum , ess , fss , mbb >*) malloc ((n)*sizeof(vpfloat <unum , ess

, fss , mbb >));
19 vpfloat <unum , ess , fss , mbb > *x // result array
20 = (vpfloat <unum , ess , fss , mbb >*) malloc ((n)*sizeof(vpfloat <unum , ess

, fss , mbb >));
21
22 // set_ess_fss_mbb_rnd(ess , fss , mbb , rnd=RTN); // implicit set of the

ESS , FSS , and MBB status registers
23 set_wgp(wgp); // set the WGP status regster
24
25 generate_hilbert(ess , fss , mbb , wgp , A, n);
26 rnd_uniform(ess , fss , mbb , wgp , b, n);
27 gauss(ess , fss , mbb , wgp , A, b, x, n); // call the gauss kernel
28 print_result_and_errors(ess , fss , mbb , wgp , A, b, x, n);
29
30 // free allocated elements
31 free(A); free(b); free(x);
32 return;
33 }

Listing 6.2: Gauss test environment

For each MBB-WGP configuration, the input-output variables are allocated in memory, lines
15-20. The environment status registers are set according to the environment configuration,
lines 22-23, and they are kept constant for all the computation time. Starting from initial data
encoded in an IEEE-754 format, the input matrix A and array b are filled with the current en-
vironment configuration, lines 25-268. After the GE kernel execution, line 27, the computation
error ‖ Ax´ b ‖2 is computed, and the final result x is printed. Before starting a new iteration,
the previously allocated variables are freed, line 31.

The GE kernel follows Algorithm 4. The functions signature is the following:

35 void gauss_vp(
36 unsigned ess , unsigned fss , unsigned mbb , unsigned wgp ,
37 vpfloat <unum , ess , fss , mbb > *A,
38 vpfloat <unum , ess , fss , mbb > *b,
39 vpfloat <unum , ess , fss , mbb > *x,
40 unsigned n
41) {
42 unsigned k, imin , i, j;
43 vpfloat <unum , ess , fss , mbb > valmin , tmp , p, sum; // allocate temporary

VP variables

Listing 6.3: Gauss function signature

As gauss_vp is a driver routine, which means that it may be called directly into the applicative
code, its signature is standard C and only contains regular C types. In particular, the configu-
ration parameters, at line 36, and the VP input-output data structures, at lines 37-39. Inside the
function, the computation uses variable precision temporary variables, line 43.

8 As it is possible to see in Appendix A.3, lines 404-428, for each element of the A matrix (H in this function), its
Hilbert value is computed in double, line 422, then it is converted in UNUM, lines 423-424, and it is written in the
target matrix, line 425.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

98 Chapter 6. Experimentation

The kernel of the algorithm follows Algorithm 4, and it is very similar to a plain C imple-
mentation (Appendix A.1). It triangulates the input matrix with the GE methods (lines 46-78
in Appendix A.2, and lines 120-235 in Appendix A.3), and it does the backward propagation of
the result in the output vector (lines 80-86 in Appendix A.2, and lines 252-288 in Appendix A.3).

All the operations inside the kernel refer to some variables in memory. Thus, each line of
pseudocode shares the same pattern. They are translated in some loads for the input values,
an arithmetic operation between the loaded inputs, and a store for the output value. How-
ever, some cases in which the computation can be kept internally, and some load and store
operations, can be avoided.

72 for(i = k+1; i < n; i++) {
73 p = A[i*n+k]/A[k*n+k]; // the division is implemented in

assembly on wgp*64 bits leveraging only the coprocessor internal
registers

74 for(j = 0; j < n; j++)
75 A[i*n+j] = A[i*n+j] - p*A[k*n+j]; // the MAC operation is

done on WGP*46 bits on internal registers , the result is stored in
memory on MBB bytes

76 b[i] = b[i] - p*b[k]; // the MAC operation is done on WGP*46
bits on internal registers , the result is stored in memory on MBB bytes

77 }
78 }
79 // Solve the triangularized system
80 x[n-1] = b[n-1]/A[(n-1)*n+n-1]; // the division is implemented in

assembly on wgp*64 bits leveraging only the coprocessor internal
registers

81 for(i = n-2; i > -1; i--) {
82 sum = 0; // accumulator variable kept in the internal register , its

content is not stored in memory
83 for(j = n-1; j > i; j--)
84 sum = sum + A[i*n+j]*x[j]; // the MAC operation is done on WGP

*46 bits on internal registers
85 x[i] = (b[i] - sum)/A[i*n+i]; // both subtraction and division

operations are done on WGP *46 bits on internal registers , the result is
stored in memory on MBB bytes

86 }

Listing 6.4: Gauss fused operation examples

Line 73 hosts a division, this division is done by software using the Newton-Raphson method
fully in the coprocessor register. Other examples can be line 75, where the multiply-and-
accumulate operation is fused in internal registers, or in lines 82-84, where the sum variable
is not allocated in memory. The accumulated value is kept in an internal register.

Figures 6.2a-6.2c-6.2e and Figures 6.2b-6.2d-6.2f depict how the latency in clock cycles and
the computational error behave according to the computation precision (WGP) and to the mem-
ory footprint (MBB) used for variables defined in the (ess=4, fss=9) UE. Every color on the
graphs corresponds to a different WGP value, and the x-axis denotes the MBB variation. As an
example, the computation precision using a 64-bit IEEE FP format can be associated with the
resulting point with WGP=0 and MBB=8.

Under the latency performance point of view, with 64-bit precision (WGP=0), the VP unit
runs between 5 and 8 times slower than the RISC-V’s 64-bit FPU. For graphical representation
issues, these points do not appear in the plots. There are three main reasons for this. Firstly, the
pipeline chains inside the VP unit are deep. Secondly, the division is implemented in software.
Thirdly, the (hand-written) assembly code running on the VP unit does not exploit the copro-
cessor’s internal pipelines. However, the extra latency overhead obtained by increasing WGP
is less important than the gained computation precision.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

6.1. Experiment 1: Variable-precision benefits for direct methods 99

0 10 20 30 40 50 60 70
MBB

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

L
at

en
cy

in
cl

oc
k

cy
cl

es
[x

10
6

]

Latency in clock cycles on (ess=4 fss=9) UE

wgp0=64b
wgp1=128b
wgp2=192b
wgp3=256b
wgp4=320b
wgp5=384b
wgp6=448b
wgp7=512b

(a) Performance on Hilbert matrix size of 15.

0 10 20 30 40 50 60 70
MBB

10−139
10−128
10−117
10−106
10−95
10−84
10−73
10−62
10−51
10−40
10−29
10−18
10−7

104

‖A
x-

b‖
2

‖Ax-b‖2 error on (ess=4 fss=9) UE

wgp0=64b
wgp1=128b
wgp2=192b
wgp3=256b
wgp4=320b
wgp5=384b
wgp6=448b
wgp7=512b

(b) Precision on Hilbert matrix size of 15.

0 10 20 30 40 50 60 70
MBB

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

L
at

en
cy

in
cl

oc
k

cy
cl

es
[x

10
7

]

Latency in clock cycles on (ess=4 fss=9) UE

wgp0=64b
wgp1=128b
wgp2=192b
wgp3=256b
wgp4=320b
wgp5=384b
wgp6=448b
wgp7=512b

(c) Performance on Hilbert matrix size of 50.

0 10 20 30 40 50 60 70
MBB

10−135
10−124
10−113
10−102
10−91
10−80
10−69
10−58
10−47
10−36
10−25
10−14
10−3

‖A
x-

b‖
2

‖Ax-b‖2 error on (ess=4 fss=9) UE

wgp0=64b
wgp1=128b
wgp2=192b
wgp3=256b
wgp4=320b
wgp5=384b
wgp6=448b
wgp7=512b

(d) Precision on Hilbert matrix size of 50.

0 10 20 30 40 50 60 70
MBB

0.0

0.5

1.0

1.5

2.0

2.5

3.0

L
at

en
cy

in
cl

oc
k

cy
cl

es
[x

10
9

]

Latency in clock cycles on (ess=4 fss=9) UE

wgp0=64b
wgp1=128b
wgp2=192b
wgp3=256b
wgp4=320b
wgp5=384b
wgp6=448b
wgp7=512b

(e) Performance on Hilbert matrix size of 200.

0 10 20 30 40 50 60 70
MBB

10−130
10−120
10−110
10−100
10−90
10−80
10−70
10−60
10−50
10−40
10−30
10−20
10−10

100

‖A
x-

b‖
2

‖Ax-b‖2 error on (ess=4 fss=9) UE

wgp0=64b
wgp1=128b
wgp2=192b
wgp3=256b
wgp4=320b
wgp5=384b
wgp6=448b
wgp7=512b

(f) Precision on Hilbert matrix size of 200.

Figure 6.2: Latency and precision measurements for the Gauss kernel (lower is better) using the modified UNUM
type I format in the (4, 9) UE, varying the data memory footprint (MBB), the internal computing precision (WGP),

and the input Hilbert matrix size.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

100 Chapter 6. Experimentation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

sb sh sw sd sw sh sb

Figure 6.3: Worst case scenario of loading (or storing) of a 22 Bytes from (or in) memory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

sd sd sw sh

Figure 6.4: Best case scenario of loading (or storing) of a 22 Bytes from (or in) memory

The application latency increases linearly varying the MBB and the WGP values. Even if
the latency of a multiplication increases quadratically on WGP, we still get a linear increase
because most of the clock cycle latency is due to memory operations (load and stores).

The computational error decreases linearly (in logarithmic scale) varying the MBB and the
WGP values. For each WGP value, a flat zone appears when the mantissa precision, corre-
sponding to the chosen MBB value, is greater than the one specified in WGP.

This result shows that there is no gain in storing data in a memory format with greater pre-
cision than the one of the data itself. This experiment shows that, given a target error bound,
it is possible to choose the optimal WGP-MBB tradeoff to reach it where the latency is mini-
mal while preserving the results output precision. This tradeoff takes into consideration the
expected average error to evaluate the results output precision.

This experiment shows that, with our architecture, we can reduce the computational error
in FP scientific applications. Figure 6.2f shows this gain: by using the VP architecture, it is
possible to reach up to 130 exact decimal digits (MBB=68 and WGP=7). With MBB=8 and
WGP=1 precision setting, which corresponds to the precision of the conventional 64-bit IEEE
754 format, the GE algorithm gives a wrong result.

Reaching 130 exact decimal digits with our VP unit is not a significant achievement since
it makes no sense to have output results more accurate than the input data. In the case of the
64-bit IEEE-754 format, they can only represent exactly 15-16 decimal digits. The real interest
of being able to increase the accuracy of the results is to solve big problems with direct meth-
ods (e.g., GE), instead of using iterative methods. Iterative methods, compared to direct ones,
degrades the latency performance with a factor of 10. Thus, the support of VP formats helps
to push forward the limit for which direct methods can be used (instead of iterative methods).
In this case, the latency overhead in using VP formats for direct methods can be lower than
the latency of iterative methods with conventional formats. Moreover, the VP unit capability
to achieve such high-accuracy increases the chances of obtaining output data with an accuracy
similar to that of the input data.

This experience also validates the choice of a Load and Store Units (LSU) that support mis-
aligned memory addresses. The coprocessor LSU can do memory operations in a random
byte-aligned address in memory, for all possible data sizes (MBB) and formats. To do this,
the coprocessor LSU divides misaligned memory operations in smaller aligned memory oper-
ations, one for each sub-portion of the data.

The number of these data sub-portions depends on the data size and the memory address.
For instance, a memory operation for a 22-byte data can be divided into seven sub-portions if
the address of the data is byte-aligned. This scenario (Figure 6.3) generates a sequence of mem-
ory operations on sub-portions of 8, 16, 32, 64, 32, 16, and 8 bits. If the data address is 64-bit
aligned, the same 22-byte data is divided into only four sub-portions. This other scenario (Fig-
ure 6.4) generates a sequence of memory operations on sub-portions of 64, 64, 32, and 16 bits.
Counter-intuitively, the latency plots results show that the overhead of dividing misaligned

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

6.2. Experiment 2: Variable-precision benefits in iterative methods 101

memory accesses in smaller memory operations is not dramatic and does not considerably
impact the execution latency performance.

This low latency impact is due to our optimized LSU that generates the minimum number
of load-store operations depending on each misaligned access value. Furthermore, the reader
can also observe the correlation between memory footprint and computation precision. Vary-
ing WGP and keeping MBB constant it does reduce the computational error, which means that
the programmer must manage the memory footprint and computation precision together. As
expected [22], the round-off error is bounded and behaves linearly according to the problem
size.

Summary In this experiment, we demonstrated that:

• With our Variable-Precision (VP) architecture, we can push further the limit for which it
is still possible to use direct methods, instead of iterative ones.

• The VP unit capability to achieve such high-accuracy (up to 130 decimal digits) increases
the chances of obtaining output data with an accuracy similar to that of the input data.

• The support of misaligned memory addresses in the load and store unit of our VP archi-
tecture does not significantly impact the overall system performance.

6.2 Experiment 2: Variable-precision benefits in iterative methods

The second experiment presented in this work analyzes the efficiency of the Variable-Precision
(VP) architecture when running in iterative methods. This experiment uses the Conjugate Gra-
dient (CG) algorithm. This method solves a system of linear equations for which their matrices
are Symmetric and Positive-Definite (SPD). The iterative version of this algorithm iterates on
a simple kernel. This kernel, starting from a first (guessed) approximation of the final result,
compensates the result computational error of the previous iteration to reduce the distance
from the exact solution of the linear system. If at the end of this kernel, the computational error
is higher than a threshold value provided at the beginning of the algorithm, it performs an
additional iteration.

Algorithm 5 Conjugate gradient: general algorithm
1: function CONJUGATEGRADIENT(A, b, N, x0) Ź Anˆn, b P Rn, x0 P Rn

2: p0 Ð r0 Ð b´ Ax0
3: k Ð 0
4: while iteration count not exceeded do
5: αk Ð

rT
k rk

pT
k Apk

6: xk`1 Ð xk ` αk pk
7: rk`1 Ð rk ´ αk Apk
8: if ‖ rk`1 ‖ď tol then break

9: βk Ð
rT

k`1rk`1

rT
k rk

10: pk`1 Ð rk`1 ` βk pk
11: k Ð k` 1

return xk Ź xk P Rn | Ax “ b

Algorithm 5 shows the pseudocode for this kernel. This algorithm does not involve any
matrix-matrix multiplication, but rather one matrix-vector multiplication, i.e., Aˆpk at lines 5
and 7, and inner products, e.g., rT

kˆrk at lines 5 and 9.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

102 Chapter 6. Experimentation

We have implemented the conjugate gradient algorithm, first in Julia, for reference, and
then in C. We run it on standard examples taken from the MatrixMarket suite (available at [81],
[82]). The code fragments given below show the conjugate gradient code, which is as close as
possible from the pseudocode in Algorithm 5. Appendix B.1 lists the complete pseudocode of
this function. Appendix B.2 shows its C-assembly implementation with which we obtained the
results showed in this section. The function signature is given below:

1 int cg_vp(double *x, double *A, double *b, int m, int n,
2 int precision , double tolerance) {

Listing 6.5: CG function signature

As cg_vp is a driver routine, which means that it may be called directly into the applicative
code, its signature is standard C and only contains regular C types. However, inside the main
loop, the computation uses variable precision arrays. For example, vector x_k is defined as
below:

13 vpfloat <unum , 4, get_fss(precision), get_mbb(precision)> *x_k =
14 (vpfloat <unum , 4, get_fss(precision), get_mbb(precision) >*)malloc(n

*sizeof(vpfloat <unum , 4, get_fss(precision), get_mbb(precision)>));
15 // set_ess_fss_mbb_rnd(ess=4, get_fss(precision), get_mbb(precision), rnd

=RTN); // implicit set of the ESS , FSS , and MBB status registers
16 set_wgp(get_wgp(precision)); // set the WGP status regster

Listing 6.6: Initialisation for vector x_k and implicit status register set

As for the Gauss elimination algorithm (Section 6.1), the coprocessor status registers (DUE,
WGP, MBB, . . .) are implicitly set immediately after the variable instantiation. Unlike Gauss,
not all the variables are stored with a VP format. For instance, the input matrix A and the input
vector b are kept in double format, they are not converted in VP format. This heterogeneity in
the memory formats minimizes the memory footprint of variables while improving the result
precision.

The core of the algorithm is very similar to a plain C implementation: it
calls modified versions of the usual BLAS routines, i.e. vgemvd for matrix-
vector multiplication, vdot for vector-vector dot product and vaxpy for Aˆx+y.
24 for (nbiter = 1; nbiter < m*3000; ++ nbiter) {
25 vgemvd(precision , m, n , 1.0, A, p_k , 0.0, Ap_k);
26 alpha = rs/vdot(precision , n, p_k , Ap_k);
27
28 vaxpy(precision , n, alpha , p_k , x_k); //x = x + alpha*p
29 vaxpy(precision , n, -alpha , Ap_k , r_k); //r = r - alpha *Ap
30 rs_next = vdot(precision , n, r_k , r_k); // rk+1
31
32 if (sqrt((double)rs_next) < tolerance) {
33 copy_vector_d_vp(precision , x, x_k , n);
34 break;
35 }
36 vscal(precision , n, rs_next/rs, p_k);
37 vaxpy(precision , n, 1.0, r_k , p_k);
38 rs_next = rs;
39 }
40
41 free(r_k); free(p_k); free(x_k); // free allocated elements

Listing 6.7: CG core loop

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

6.2. Experiment 2: Variable-precision benefits in iterative methods 103

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

500

1,000

1,500

2,000

2,500

3,000

3,500

MBB

N
um

b.
of

it
er

at
io

ns
¨10´3

MBB

In
ve

rs
e

nu
m

b.
of

it
er

at
io

ns

Numb. iterations double

Numb. iterations UNUM (variable UE)

Numb. iterations UNUM (maximum UE)

Inverse Numb. iterations UNUM (maximum UE)

Figure 6.5: Number of iterations, and the inverse of the number of iterations, to run the Conjugate Gradient
algorithm on a 237ˆ237 SPD matrix, with tolerance: 1.00e-6

This experiment aims to prove that our VP architecture can reduce the number of itera-
tions by augmenting the precision of intermediate variables. As in the previous experiment,
the CG algorithm is slightly adapted to be executed in the VP architecture. As for the Gauss
Elimination experiment, the code is written in assembly using the instructions provided in Sec-
tion 4.7. Unlike direct methods, VP for iterative methods is applied only to the intermediate
data. Thus, the input matrix stays untouched, and only the precision of the intermediate data
is augmented. This different usage of memory formats reduces a lot the memory footprint of
variables in the main memory.

In this experiment, the WGP and DUE (Section 4.5.4) values are minimized depending on
the MBB value set. The minimal ess is obtained by running multiple times the CG algorithm,
decrementing the ess value, up to the point when the algorithm does not converge anymore.
The minimal fss is obtained by subtracting the maximum footprint of the number in memory
(MBB), the ess precomputed size, and the other UNUM fields. The WGP status register is
configured so that the VP unit arithmetic operations are performed with an accuracy of at least
one bit higher than the maximum available in the formats of the variables involved9. With this
modification, a speedup of the application execution is expected, without varying the number
of iterations required to terminate the algorithm.

Figure 6.5 shows the number of iterations required by the CG algorithm, running on the VP
architecture, varying the memory footprint of variables (MBB). In this experiment, a 237ˆ237
SPD matrix10 is used and the tolerance of the algorithm is set to 1.0 ¨ 10´6. This plot shows the
number of iterations required by the CG algorithm to converge with different memory formats.
The blue line shows those that use the conventional 64-bit IEEE floats. The red line shows
those that use the UNUM format varying the DUE and WGP status registers on MBB. The
green one shows those that use the UNUM format fixing the DUE and WGP status registers to
their maximum supported values. This plot also shows the inverse of the number of iterations
required by the CG algorithm to converge (orange), using the UNUM format with maximum
precision (green).

9 The maximum precision of the mantissa of a variable in the UNUM format can be extrapolated by looking at
the values of the MBB, ess, and fss format parameters.

10 The input matrix selected for this experiment is the NOS1 matrix, available in the MatrixMarket website https:
//math.nist.gov/MatrixMarket/data/Harwell-Boeing/lanpro/nos1.html

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

https://math.nist.gov/MatrixMarket/data/Harwell-Boeing/lanpro/nos1.html
https://math.nist.gov/MatrixMarket/data/Harwell-Boeing/lanpro/nos1.html

104 Chapter 6. Experimentation

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

1

2

3

4

5

6
¨1010

MBB

La
te

nc
y

in
cl

oc
k

cy
cl

es
Latency IEEE cc

Latency UNUM (variable UE)

Latency UNUM (maximum UE)

Figure 6.6: Clock cycle latency to run the Conjugate Gradient algorithm on a 237ˆ237 SPD matrix, with tolerance:
1.00e-6

The graph shows that supporting VP Floating-Point (FP) data in memory reduces the num-
ber of iterations for the CG iterative algorithm drastically. This latency gain is thanks to the
gained precision of the FP representation in memory that compensates the round-off error
among iterations. As expected, the inverse of the number of iterations required by the CG
algorithm to converge is linear when varying the precision.

Adapting the algorithm to dynamically vary the settings for the DUE and WGP status reg-
isters, slightly reduces the number of iterations required for low precision (nearby MBB=9,
MBB=17, and MBB=32). This iterations reduction is due to the lower overhead of the utag in
the UNUM number. However, this also highlights that the UNUM utag has a non-negligible
overhead in the number representation: it takes some bits that could encode the mantissa and
improve the number precision.

The number of iterations needed to make the algorithm converge with the IEEE-754 64-bit
representation, and the number needed to make the same algorithm converge with the UNUM
format (Section 4.3) at MBB=8, for both maximum and variable UE, is comparable. Thus, at
least for this application and with this input data set, the utag bit-overhead in the UNUM for-
mat does not increase the number of iterations needed to make the algorithm converge. In
other words, even if some variables in the UNUM format have less precision than the one of
the 64-bit IEEE-754 representation, and the fs-1 field of the UNUM encoding wastes poten-
tial mantissa bits, the number of iterations required by the application to make the algorithm
converge does not increase. This result is fascinating because it leaves room for future research
work on VP FP formats, for instance, by exploring a modified version of the UNUM format
with fixed size and where it has not the fs-1 field.

Figure 6.6 complements Figure 6.5. It shows the latency, in clock cycles, required by the
CG algorithm, on the VP unit, varying the variables memory footprint (MBB). Varying the VP
variable setting depending on MBB can bring almost 50% of savings in the application latency.
Due to the long pipelines in the VP unit and the long conversion functions in the coprocessor
LSU, the latency of the VP unit remains higher than that of an FPU compliant with the IEEE-754
standard, even if we reduce the number of iterations.

In line with the Gauss elimination algorithm, the latency overhead of the VP unit, com-
pared to the latency of a 64-bit IEEE FPU, for the same precision, is between 4ˆ and 7ˆ, for
the dynamic and fixed coprocessor status register settings, respectively. However, unlike the

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

6.3. Experiment 3: performance benchmark MPFR vs. UNUM 105

GE algorithm, the increment of the computation precision reduces application latency. This
speedup highlights the strengths of the VP architecture presented in this work: the capability
of compensating the latency of a classical FPU by improving the computation precision and
reliability of the results, for scientific applications.

In this specific experiment, there is an asymptotic 2ˆ latency overhead. This overhead could
be reduced by simplifying the conversion functions in the coprocessor LSU and by simplifying
VP memory format. These improvements can help to improve the VP unit up to the point that
the application latency can be less than the one of the IEEE FPU.

In this section, the comparison between the two units is biased since the FPU supports only
one fixed 64-bit format while the VP unit can handle several formats of any length ranging from
1 to 68 bytes. The next section does an unbiased latency evaluation of the VP unit. It compares
the VP unit with a software library that can provide the same levels of accuracy.

Summary In this experiment, we demonstrated that:

• Our Variable-Precision (VP) architecture can reduce the number of iterations that an iter-
ative solver requires to converge.

• The number of iterations required by running the experiment with the IEEE-754 double
format and with the UNUM format at 64 bits is almost the same. This similarity indi-
cates that even if the fs-1 UNUM field wastes potential mantissa bits in encoding, the
application performance is not degraded.

• Thanks to the augmented precision of our VP architecture, the application latency for low
data precisions settings (e.g., 64 data) can be reduced of almost 50% if high precision data
are used instead (e.g., 544 bits).

6.3 Experiment 3: performance benchmark MPFR vs. UNUM

Previous experiments benchmark the Variable-Precision (VP) Floating-Point (FP) coprocessor
against a specialized 64-bit FP Unit (FPU) compliant with the IEEE-754 standard. This sec-
tion envisages an unbiased performance evaluation of the VP unit. As a baseline, there is no
hardware solution in state of the art available for comparison. For this reason, this experiment
compares the VP coprocessor against the MPFR software library [9].

For an unbiased comparison between hardware- and software-based solutions, MPFR was
firstly optimized for RISC-V as it already is for other ISAs. The routines used by MPFR use the
GMP library [15]. These routines are written in assembly, and some of them were missing for
the RISC-V instruction set.

For every supported Instruction Set Architecture (ISA), for instance, MIPS, ARM, and X86,
GMP defines different routines that implement the same functionalities and leverage the ISA
of every target platform. For the ISA not supported, the application compiler generates an as-
sembly code not optimized, starting from a high-level description of the GMP routine in the C
language. Many mathematical functions within the MPFR library use the umul_ppm and mul_1
GMP routines extensively. However, there is not an optimized assembly routine in GMP for the
RISC-V ISA. We have re-written these GMP routines to take advantage of the mulhu [83] avail-
able in the RISC-V ISA. With this new RISC-V routine, the number of instructions of umul_ppm
and mul_1 GMP routines was reduced from 25 and 12 to 11 and 3, respectively. Because MPFR
uses GMP routines underneath, the implemented routines help to improve MPFR applications.

To benchmark the VP hardware unit, this experiment uses three matrix-based linear solvers
as case studies for Variable-Precision (VP): the Gauss elimination (GE), the Conjugate Gradi-
ent (CG) and the Jacobi (JA). The Jacobi method is an iterative algorithm for determining the

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

106 Chapter 6. Experimentation

64 128 192 256 320 384 448 512

0

2

4

6

8

10

12

14

16

18

20

Precision

C
o
p

ro
c

v
s.

 M
P

F
R

sp
ee

d
u

p

ge (diag dom) ge (hilbert) ge (random)

cg (diag dom) cg (hilbert) cg (random)

ja (diag dom) ja (hilbert) ja (random)

Figure 6.7: Performance comparison between our variable-precision coprocessor unit and the MPFR software
library: speedups between 3.5ˆ and 18ˆ

solutions of a strictly diagonally dominant system of linear equations. It is selected as a com-
plement to the CG algorithm for iterative methods.

These algorithms execute long chains of multiply-addition operations that tend to accumu-
late errors, so they are suitable for experimentation. We selected three different matrices for per-
formance and error evaluation: a Hilbert 15ˆ15 matrix (Hilbert), a randomly generated 24ˆ24
matrix (random), and a 40ˆ40 dominant diagonal matrix (diag dom). Applications GE and CG
were compiled and run for all three configurations, while JA used only a diagonal-dominant
matrix due to algorithm constraints.

Figure 6.7 shows the performance comparison between our solution and the baseline. For
every type of matrix in input, for every solver, this figure shows the speedup of using our
VP unit over the optimized MPFR software library for several VP settings (MBB). The input
and output data of the linear solvers are encoded in double, while the internal computation is
performed with extended precision by varying the MBB parameter.

Having hardware support for higher-than-standard precisions shows a clear advantage
over a software solution with speedups between 3.5ˆ and 18ˆ. We notice how speedups vary
according to the application and precision used. They depend on the algorithm types, while
matrices sizes and types have little influence over them.

Summary In this experiment, we demonstrated that our Variable-Precision (VP) architecture
is between 3.5 times and 18 times faster than an optimized version of the MPFR [9] software
library.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

107

Chapter 7

Conclusions and future works

Several applications, such as linear system solvers and computational geometry, can benefit
from Floating-Point (FP) formats different than those provided by the IEEE 754 standard. Some
of them do not even converge with the largest FP format provided by the standard. For these
applications, FP formats with different bit-length ratios between exponent and mantissa fields,
or those with augmented mantissa precision, can reduce the output computational error. The
Variable-Precision (VP) category of FP formats groups all these formats. This work explores
VP FP formats and architectures to improve the computation precision of results for scientific
computing applications.

The computational error in iterative solvers can be bounded by increasing the precision
of intermediate variables to a precision higher than the one of the input data. This property
leads either to compute intermediate variables internally on higher precision into the FP Unit
(FPU) or, for conventional IEEE 754 FP formats, to promote some variables to a more precise
representation in memory. This thesis supports both techniques within the same hardware
architecture.

To support this, we propose a VP FP computing system based on three computation layers.
The internal layer, within the VP hardware unit, is dedicated to computing. The external layer,
within the memory, hosts fixed-precision input-output values (e.g., IEEE-754 formats). Finally,
the intermediate layer expands in memory the variables from the internal layer. The latter uses a
VP FP format with bit-width granularity expressed in bytes. To the best of our knowledge, this
thesis is the first work that proposes a multi-layered hardware architecture, which addresses
multi-layered precision, designed to reduce the output computation error of scientific solvers.

Every computation layer leverages a different data representation. The intermediate format
in memory leverages a modified version of the UNUM type I VP FP format, supporting several
Unum Environments (UE), with up to 16 and 512 bits of exponent and mantissa, respectively.
Internally, the VP unit supports a more hardware-friendly format with separated exponent and
fraction fields, and which supports 18 bits of exponent and a normalized mantissa of up to 512
bits. Due to hardware design constraints, internal mantissa fields have a precision granularity
of 64 bits. The conversions between the intermediate and internal formats are handled on-the-
fly by a dedicated Load and Store Unit (LSU). This LSU supports misaligned accesses in the
main memory on byte-aligned VP data. It can compact data in memory while being able to
control their sizes and format configurations.

This unit is designed to speedup VP FP software routines for high precision scientific com-
puting. Its design targets high-performance computing servers. It is implemented as a copro-
cessor of a RISC-V processor. The choice to adopt a RISC-V architecture is purely opportunistic
because it is open-source. Other architectures could be adopted instead, for example, ARM. All
the coprocessor features are exposed to the user expanding the RISC-V Instruction Set Archi-
tecture (ISA).

The VP unit supports Interval Arithmetic (IA) since the UNUM format supports it implic-
itly. Iterative algorithms, or algorithms that compute a long chain of operations, may be af-
fected by interval explosion effects (Section 2.1.3). The main idea is to avoid this effect by using

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

108 Chapter 7. Conclusions and future works

IA only for computing the computational error of the algorithm with an accurate interval of
confidence. For all the other parts of algorithms, we use scalar operations. However, we did
not exploit intervals in experiments due to time constraints.

The VP unit may be seen as an FPU for VP. Unlike conventional FPUs, it hosts numbers
in an internal Register File (gRF), which can contain 32 intervals (gbound) with up to 512 bits
of mantissa per interval endpoint. The gRF entries can be used for internal fused operations
before going to memory with a format with lower precision (ubound). The precisions of the
formats in the gRF and in memory can be different and it can change at run time. Instead of
having dedicated assembly instructions, the settings of the types of format used in memory
and the involved precision during internal calculations are done by configuring internal status
registers.

The VP unit architecture is pipelined with an internal data-path fixed at 64 bits. While
the intermediate format’s memory footprint is programmable with a byte-level resolution, the
internal computation is tuneable with a 64-bit granularity. Those two parameters allow us to
exploit a precision-latency tradeoff.

Compared with a fixed-precision FPU IEEE-754 compliant, our architecture requires several
instructions in the ISA to support all the formats supported by the dedicated LSU, synchro-
nization steps for the interval endpoints, and additional operations steps compared to scalar
FP operations. These functionalities lead to having the LSU of the VP unit with several pipeline
stages to support formats conversions. The number of stages can be reduced by simplifying
the VP FP memory format or by not supporting subnormal encodings. The hardware complex-
ity and overhead are a direct consequence of the decision to support both the UNUM format
and VP in the LSU of the VP unit. Unlike conventional formats, the supports of VP formats in
memory requires an additional rounding step during store operations.

Synthesis results show that the area footprint and the power consumption of the VP unit
are 9 and 12 times higher than those of the RISC-V 64 bits FP unit. The large area footprint
required by the VP unit is due to the extensive usage of internal memory elements (gRF and
pipeline buffers). The VP unit power consumption is dissipated mainly in the mantissa buffers,
and in the internal logic to handle VP mantissa fields. These overheads are kept under control
thanks to the internal data-path bit-width in the VP unit fixed at 64 bits.

Experiments show that this three-layers VP architecture, thanks to higher precision support
both internally and in main memory, gives better accuracy than a conventional FPU based on
IEEE 754 format having a reasonable latency overhead. For direct solvers, the possibility to
achieve precisions in the VP unit much higher than those of a conventional FPU pushes further
the limit for which it is still possible to use direct solvers, instead of iterative ones. This limit
is fundamental since iterative solvers require several operations more than direct ones. For
iterative solvers, the possibility of achieving such high precisions opens the possibility to make
converge solvers that were not converging with a 64-bit double.

In iterative solvers, VP formats help to drastically reduce the number of iterations required
by the iterative algorithm to converge. Although the VP unit is, on average, eight times slower
than a 64-bit fixed-precision FPU, the increase in computational accuracy with VP format sup-
port in memory can reduce application latency by an overhead factor of 2. This speedup high-
lights the strengths of the VP architecture presented in this work: the capability of compensat-
ing the latency of a classical FPU by improving the computation precision and reliability of the
results, for scientific applications. This overhead factor could be reduced by simplifying the
conversion functions in the VP unit LSU and by simplifying VP memory format.

In iterative methods, our VP unit can approach the working precision (i.e., the precision on
which input numbers are defined) close, within a given factor, compensating the bad condition-
ing of the input data set. This compensation is done by increasing the computation precision
(up to 512 bits) in memory and internally the VP unit. The usage of augmented precision may
reduce the application latency of up to 50%. If the input data are considered as exact, for the

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

7.1. Conclusions about the UNUM format 109

conjugate gradient iterative algorithm, increasing the computation precision for the intermedi-
ate data always reduces the number of iterations needed by the algorithm to converge. This
property is valid even for a relatively small problem with an input matrix of 237ˆ 237 elements.

The number of iterations required to run the experiment with the 64-bit IEEE-754 format
and the UNUM format, with the same memory footprint, is almost the same. This similarity
indicates that even though the fs-1 UNUM field wastes potential mantissa bits in the number
encoding, the accuracy of the application does not significantly degrade. A modified UNUM
format that does not have the field fs-1 can improve the accuracy of the output algorithm.
Section C.1 describes this format.

Compared with the MPFR software library, the VP unit achieves speedups between 3.5ˆ
and 18ˆ with comparable accuracy. Additional experiments demonstrate minimal perfor-
mance degradation when operating on misaligned data.

The software paradigm presented in this work keeps under control the memory footprint of
intermediate data, by only storing in main memory intermediate variables that require higher
precision. We measured a flops performance eight times lower than a fixed-precision IEEE-754
FPU, but six times faster than a multiple-precision software library (e.g., MPFR) with the same
output accuracy. Part of this overhead is due to hardware support for interval arithmetic in the
VP unit, which is not exploited for the target applications. Changing the unit to be scalar will
halve the area and power values.

With this thesis, we do not claim that VP formats, or our unit, can be used for all types of
applications. We measure that VP formats are expensive in latency, especially for high preci-
sion applications. This cost is due to the format conversion functions absent in conventional
FPUs compliant with the IEEE-754 standard. However, VP formats can significantly reduce
the computational error in scientific applications. For this reason, we propose the concept of
Adaptive VP: use VP only when it is not possible to converge algorithms with standard IEEE
754 formats.

7.1 Conclusions about the UNUM format

In this thesis, we decided to support the UNUM format, in a hardware computing system, as
is defined in the book of Gustafson [2]. In the design phase, we pointed out several implemen-
tation issues related to the UNUM format. We have defined a workaround to make the UNUM
format hardware friendly and useable in real applications (Section 4.3).

According to Gustafson, if we leave data to choose their size and precision, the computation
can speedup. This can be possible by exploiting the ubit in the UNUM format while computing
with interval arithmetic. In iterative applications, the mantissa reduces its size at every iteration
of the algorithm. Smaller mantissa implies to have smaller data, and smaller data implies to
speed up the algorithm execution. Nevertheless, this speedup cannot be exploited for two main
reasons: either the interval explosion effect arrives before that the algorithm finishes (e.g., in
Gauss also for 15x15 matrices); either the interval explosion effect prevents the algorithm from
converging (e.g., in conjugate gradient). In conclusion, having VP features in real applications
is useful only if the VP formats are kept under the programmer’s control.

Supporting the original UNUM format has several drawbacks. Firstly, the ubit hinders the
control of the interval explosion like it is made in the MPFI [24] software library. Secondly,
the UNUM support requires a significant hardware overhead as well as multiple additional
rounding steps. Thirdly, the latency of load and store operations becomes similar to the one
of an FP operation (e.g., addition). Finally, in the case of scalar computation, the round to
nearest (round half away from zero) policy can be emulated by alternating arithmetic and guess
operations (Section 4.1.2).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

110 Chapter 7. Conclusions and future works

These results suggest that an ideal VP computing system would be a Schulte-based
scalar FPU supporting several parametrizable VP formats in memory, in combination with
a hardware-friendly internal format. The VP formats to be supported can be those proposed
in Appendix C, plus a memory format that uses only the exponent encoding from UNUM (a
UNUM with parametric length and without the ubit and fs-1 fields). However, separating the
VP unit from the main core (e.g., implementing it as a coprocessor), is sub optimal for the over-
all system performance. Implementing the VP unit as a tightly coupled VP FPU to the main
core would improve the overall system performances since there is no need to move interme-
diate data outside the main core.

The operation flow will be the same presented here: arithmetic operations leverage the in-
ternal format, and conversions among this format and the VP ones in memory, are done during
load and store operations. The supported memory formats will be more straightforward than
the UNUM one. In this VP unit, the programmer will have the freedom to choose the set of
formats (with different configurations) which best suits the programming and precision needs.
This investigation is left as future work.

7.2 Future works

The results obtained out of this thesis are not an end in themselves. Results showed that
Variable-Precision (VP) computing could bring significant advantages in computing systems
by improving results precision (Section 6.1), by reducing latency computation (Section 6.3),
and by simplifying the software coding (Section 4.8). Nevertheless, there are still a lot of open
questions, such as:

• How to optimize the existing hardware platform?

• How to integrate this platform into existing software toolchains?

• Are there any Variable-Precision formats not yet available in state of the art?

The next sections answer these questions individually. Section 7.2.1 lists all the hardware
optimizations that could improve the performances on the VP unit. Section 7.2.2 proposes a
solution to port already-existing software libraries in the VP hardware architecture. Finally,
Section 7.2.3 focuses on the future perspectives on VP FP formats.

7.2.1 Hardware optimizations for the variable-precision architecture

Chapter 6 shows the advantages of using the Variable-Precision (VP) Floating-Point (FP) com-
puting unit presented in this work. Unlike FP units (FPU) that use the IEEE 754 formats, exper-
iments show that the VP unit can significantly increase the precision of results and drastically
reduce the number of iterations in iterative solvers. The VP unit is not perfect and requires
several hardware optimizations.

The VP unit requires between 4 and 7 times more latency than a conventional 64-bit FPU
compatible with the IEEE 754 standard. According to Section 5.4, the synthesis results of the
VP unit show that it requires nine times more area surface and twelve times more power con-
sumption than a conventional FPU. These overheads are mainly due to the VP unit interface
with the RISC-V, the long pipelines, the not-negligible number of mantissa buffers, and the
complex finite-state-machines, inside the VP FPU.

Move the Variable-Precision unit inside the main core The interface between the RISC-V
and the VP unit adds latency due to the presence of some queues. A solution to avoid this la-
tency is to change the hardware architecture and to integrate the VP unit in the main processor,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

7.2. Future works 111

like a standard FPU. A VP FPU will have better performance since it is part of the execution
stage of the main core. The overall design is simplified because, having the VP FPU in the
execution stage of the pipeline, the main core does not have to reschedule VP unit operations
depending on the results of software branches.

Remove hardware support for interval arithmetic Interval Arithmetic (IA) cannot be used
to solve scientific computing linear kernels due to interval explosion effects. In high-precision
scientific computing, IA can be used to compute not-iterative algorithms, for instance comput-
ing the computational error at the end of a kernel of an algorithm. Support IA in hardware is
overkill since the evaluation of the computational error is not critical in the overall latency of
the algorithm.

An additional design simplification could be removing the hardware support for intervals
while providing better control for the rounding modes of the VP FPU. With this modifica-
tion, the number of macro-stages, needed for every macro-pipeline, is reduced because all the
macro-stages that accelerate IA operators (e.g., input endpoint multiplexing, Chapter 5) are not
needed anymore. Removing the hardware support for interval arithmetic will improve the area
and power consumption with at least a factor of two. The user can keep performing IA oper-
ations by computing both endpoints separately, at the cost of increasing the execution latency
when performing IA operations.

Maximize performances in the Variable-Precision unit We have to consider several aspects
to reduce the execution latency of our VP unit. The latency of the critical path of the VP unit
drives the frequency of the computing system. This frequency often belongs to the most com-
plex macro-stage operator (e.g., mantissa multiplier or mantissa adder). Consequently, other
macro-stages that require simpler operators (e.g., move or shift) benefit from unnecessary slack
time. A solution to reduce this latency gap could be to augment the data-path bit-width of some
macro-stages. In this way, the number of clock-cycles required from the macro-stage with aug-
mented data path is reduced, as well as the clock-cycle latency of the overall pipeline.

If, after this step, the VP unit still has some timing paths with positive slack, it may be
possible to merge some macro-stages. This merge may be possible for simple macro-stages
like a shift amount computation macro-stage followed by a shift macro-stage. If, after merging
these macro-stages, the critical path is unvaried, the number of macro-stages and the number
of mantissa buffers in the VP unit is minimal. This configuration guarantees the minimum
clock-cycle latency in the VP unit pipeline.

The VP unit can reach a throughput of 1 when computing data with only one chunk of
mantissa precision. However, the current configuration of the VP unit pipelines uses only one
macro-stage over two when performing operations with data on multiple-chunks. Under the
throughput perspective, this utilization ratio halves the maximum throughput of the system. A
solution to maximize the throughput of the system could be to double the mantissa buffers be-
tween macro-stages, at the cost of doubling the chip area. This cost must be analyzed carefully
by evaluating the probability of having two chained operations in the same VP unit macro-
pipeline.

Optimize low-precision computations Another possible optimization that we envisage is to
optimize low-precision computations in the VP unit. When performing low-precision instruc-
tions, most of the data-path remains unused, and most of the hardware gates used to handle
multiple-chunks, toggle without making any useful computation. A possible solution to opti-
mize the execution latency and to reduce the energy consumed during low-precision VP oper-
ations could be to instantiate a fixed-size VP FPU in parallel to the already existing one. This
new FPU is vectorized to maximize the usage of its register file 64-bit bit-width. It supports

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

112 Chapter 7. Conclusions and future works

all the VP FP formats up to 64 bits. It is vectorized so that it can support either 8 VP parallel
operations on data defined in 1 byte, or 4 VP parallel operations on data defined in 2 bytes,
or 2 VP parallel operations on data defined between 3 and 4 bytes, or 1 VP operation on data
defined between 5 and 8 bytes.

This hardware specialized in low-precision operations minimizes the energy-per-operation
involved in VP computing. When performing low-precision operations, the multiple-chunk
high-precision VP FPU becomes dark silicon. Vice versa, when performing high-precision op-
erations, the low-precision VP FPU becomes dark silicon.

7.2.2 Importing variable-precision support in existing software programs

This thesis does not cover how to integrate this architecture in existing software environments.
The main challenge is to integrate this architecture into existing software kernels that may date
decades and may not be maintained.

As stated in Section 4.8, this work proposes the vpfloat FP data type to adapt software pro-
grams that use IEEE 754 FP variables. These programs can be easily modified by changing the
data-types of their variables in vpfloat with the correct setting of parameters. The only diffi-
culty is to tune the precision of each vpfloat variable. In some cases, compilers can automatize
this procedure.

High-precision scientific computing programs are commonly written with specialized tools
such as Matlab or Mathematica. It is difficult to bring at this programming level the notion of
VP formats. These software tools leverage several software libraries underneath that handle
FP data types and basic routines. An example of a software library is BLAS.

The BLAS library implements a set of low-level routines for performing classical linear alge-
bra operations such as vector addition, scalar multiplication, dot products, linear combinations,
and matrix multiplication. These operations are written in the C language, and they target ev-
ery type of architecture (e.g., X86, MIPS, ARM, and RISC-V). We propose to expand the BLAS
library to use VP FP data by declaring vpfloat variables in the code. The main challenge of this
approach is to select the proper precisions and data formats for each declared vpfloat variable.
This challenge is one of the main future focus of this research.

7.2.3 Future perspectives for variable-precision formats

This thesis describes a hardware architecture that supports a modified version of the UNUM
Floating-Point (FP) format (BMF, Section 4.3). This unit should be modified to support multi-
ple VP FP formats in memory. Thus, it is possible to make a proper exploration of Variable-
Precision (VP) FP formats. The minimum set of VP FP formats that the unit should support
are the custom IEEE-like format, the posit FP format, and the BMF format described in Sec-
tions 3.1.1, 3.1.4, and 4.3.

With the experiments ran with the BMF format, we identified several improvements for the
UNUM format and other VP FP formats, such as posit. Appendix C describes the improved
UNUM format, the improved posit formats, a new format that is a tradeoff between the previ-
ous two, and a new family of not-contiguous VP FP formats.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

113

Appendix A

Source code Experiment 1

The GE algorithm is a linear system solver divided into two main steps: the triangulation of
the input matrix, and the backward propagation of the output vector. Section A.1 shows its
implementation with the conventional double format, from the IEEE 754 standard. Section A.2
shows its implementation with the pseudo-type vpfloat format for variable precision. Sec-
tion A.3 shows the C code that implements the same code of Section A.2 but using C and inline
assembly. The latter is an extract of the code used to get the results showed in Section 6.1.

A.1 The Gauss kernel in conventional IEEE 754 formats

1 void gauss(double *A, double *b, double *x, int n) {
2 int k, imin , i, j;
3 double valmin , tmp , p, sum;
4 for(k = 0 ; k < n-1 ; k++) { // for each column
5 /* Research the minimum not -null element (in absolute value
6 * in the k column with index i>=k */
7 valmin = A[k*n+k] ; imin = k ;
8 for(i = k+1 ; i < n ; i++) { // for each line
9 if (valmin != 0) {

10 if (my_abs(A[i*n+k]) < my_abs(valmin) && A[i*n+k] != 0) {
11 valmin = A[i*n+k] ;
12 imin = i ;
13 }
14 } else {
15 valmin = A[i*n+k] ;
16 imin = i ;
17 }
18 }
19 /* Swap the elements of the matrix A and of the array b
20 * between the lines imin and k */
21 for(j = 0 ; j < n ; j++) {
22 tmp = A[imin*n+j] ;
23 A[imin*n+j] = A[k*n+j] ;
24 A[k*n+j] = tmp ;
25 }
26 tmp = b[imin] ;
27 b[imin] = b[k] ;
28 b[k] = tmp ;
29 // Reduce the matrix with the Gauss elimination method
30 for(i = k+1 ; i < n ; i++) {
31 p = A[i*n+k]/A[k*n+k] ;
32 for(j = 0 ; j < n ; j++)
33 A[i*n+j] = A[i*n+j] - p*A[k*n+j] ;
34 b[i] = b[i] - p*b[k] ;
35 }
36 }
37 // Solve the triangularized system

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

114 Appendix A. Source code Experiment 1

38 x[n-1] = b[n-1]/A[(n-1)*n+n-1] ;
39 for(i = n-2 ; i > -1 ; i--) {
40 sum = 0 ;
41 for(j = n-1 ; j > i ; j--)
42 sum = sum + A[i*n+j]*x[j];
43 x[i] = (b[i] - sum)/A[i*n+i];
44 }
45 }

./Chapters/Chapter6_gauss_double.c

A.2 The Gauss kernel for variable precision in pseudocode

1 #define MAX_ESS 4
2 #define MAX_ESS 9
3 #define N 200
4 void main(){
5 unsigned mbb , wgp;
6 for(wgp =0; wgp <=(2^ MAX_FSS)/64; wgp++){
7 for(mbb=min_mbb(MAX_ESS ,MAX_ESS); mbb <= max_mbb(MAX_ESS ,MAX_ESS); mbb

++)
8 call_gauss(MAX_ESS , MAX_FSS , mbb , wgp , N);
9 }

10 return;
11 }
12
13 void call gauss(unsigned ess , unsigned fss , unsigned mbb , unsigned wgp ,

unsigned n){
14 // declaration of the input -output data
15 vpfloat <unum , ess , fss , mbb > *A //input matrix
16 = (vpfloat <unum , ess , fss , mbb >*) malloc ((n*n)*sizeof(vpfloat <unum ,

ess , fss , mbb >));
17 vpfloat <unum , ess , fss , mbb > *b //input array
18 = (vpfloat <unum , ess , fss , mbb >*) malloc ((n)*sizeof(vpfloat <unum , ess

, fss , mbb >));
19 vpfloat <unum , ess , fss , mbb > *x // result array
20 = (vpfloat <unum , ess , fss , mbb >*) malloc ((n)*sizeof(vpfloat <unum , ess

, fss , mbb >));
21
22 // set_ess_fss_mbb_rnd(ess , fss , mbb , rnd=RTN); // implicit set of the

ESS , FSS , and MBB status registers
23 set_wgp(wgp); // set the WGP status regster
24
25 generate_hilbert(ess , fss , mbb , wgp , A, n);
26 rnd_uniform(ess , fss , mbb , wgp , b, n);
27 gauss(ess , fss , mbb , wgp , A, b, x, n); // call the gauss kernel
28 print_result_and_errors(ess , fss , mbb , wgp , A, b, x, n);
29
30 // free allocated elements
31 free(A); free(b); free(x);
32 return;
33 }
34
35 void gauss_vp(
36 unsigned ess , unsigned fss , unsigned mbb , unsigned wgp ,
37 vpfloat <unum , ess , fss , mbb > *A,
38 vpfloat <unum , ess , fss , mbb > *b,
39 vpfloat <unum , ess , fss , mbb > *x,
40 unsigned n

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

A.2. The Gauss kernel for variable precision in pseudocode 115

41) {
42 unsigned k, imin , i, j;
43 vpfloat <unum , ess , fss , mbb > valmin , tmp , p, sum; // allocate temporary

VP variables
44
45 // IMPORTANT: the following operations are done invoving variables in

memory of mbb bytes and inside the coprocessor on wgp*64 bits
46 for(k = 0; k < n-1; k++) { // for each column
47 /* Research the minimum not -null element (in absolute value
48 * in the k column with index i>=k */
49 valmin = A[k*n+k]; imin = k;
50 for(i = k+1; i < n; i++) { // for each line
51 if (valmin != 0) {
52 if (my_abs(A[i*n+k]) < my_abs(valmin) && A[i*n+k] != 0) {
53 valmin = A[i*n+k];
54 imin = i;
55 }
56 } else {
57 valmin = A[i*n+k];
58 imin = i;
59 }
60 }
61 /* Swap the elements of the matrix A and of the array b
62 * between the lines imin and k */
63 for(j = 0; j < n; j++) {
64 tmp = A[imin*n+j];
65 A[imin*n+j] = A[k*n+j];
66 A[k*n+j] = tmp;
67 }
68 tmp = b[imin];
69 b[imin] = b[k];
70 b[k] = tmp;
71 // Reduce the matrix with the Gauss elimination method
72 for(i = k+1; i < n; i++) {
73 p = A[i*n+k]/A[k*n+k]; // the division is implemented in

assembly on wgp*64 bits leveraging only the coprocessor internal
registers

74 for(j = 0; j < n; j++)
75 A[i*n+j] = A[i*n+j] - p*A[k*n+j]; // the MAC operation is

done on WGP*46 bits on internal registers , the result is stored in
memory on MBB bytes

76 b[i] = b[i] - p*b[k]; // the MAC operation is done on WGP*46
bits on internal registers , the result is stored in memory on MBB bytes

77 }
78 }
79 // Solve the triangularized system
80 x[n-1] = b[n-1]/A[(n-1)*n+n-1]; // the division is implemented in

assembly on wgp*64 bits leveraging only the coprocessor internal
registers

81 for(i = n-2; i > -1; i--) {
82 sum = 0; // accumulator variable kept in the internal register , its

content is not stored in memory
83 for(j = n-1; j > i; j--)
84 sum = sum + A[i*n+j]*x[j]; // the MAC operation is done on WGP

*46 bits on internal registers
85 x[i] = (b[i] - sum)/A[i*n+i]; // both subtraction and division

operations are done on WGP *46 bits on internal registers , the result is
stored in memory on MBB bytes

86 }
87 }

./Chapters/Chapter6_gauss_vpfloat.c

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

116 Appendix A. Source code Experiment 1

A.3 The Gauss kernel for variable precision in C and inline assem-
bly

This section presents an extract of the code used to perform the Gauss elimination algorithm
in variable precision. With it, the results showed in Section 6.1 were obtained. Coprocessor
operations are performed by using intrinsics in the code. Other C constructs were used to
support all the code which does not belong to the variable precision coprocessor. Here below,
there are some hints about how to read the listed code.

At line 101 there the code for the Gauss elimination solver begins. The function at line
77 does the configuration of the status registers. The Gauss solver firstly triangulates the in-
put matrix: lines 120-235. Once that the system has been reduced, and a triangular matrix is
obtained, the resolution of the system is very simple and straightforward.

For simplicity, we update variables in memory as soon as a computation step is performed.
The reader can understand which operations are kept in the g-layer by looking to the consecu-
tive operations kept within G-registers. For instance, in lines 266-274, it is possible to see that
G0 implements an accumulator. It corresponds to the sum variable used in lines 82-85 of the
algorithm listed in Section A.2. The content of this accumulator is kept in the g-layer until the
loop at line 275 finishes.

1 #include <stdarg.h>
2 #include <stddef.h>
3
4 #include "printf.h"
5 #include "unum_rocc.h"
6 #include "asm_util.h"
7 #include "unum_basics.h"
8 #include "my_division_gbound.h"
9

10 #define NB_RAN 128
11
12 // parameters to set the type of the matrix
13 #define DHILBERT 1
14
15 #define N_HILBERT 150
16
17 double RAN[NB_RAN] = { ... }; // random values uniformly distributed between

0 and 1
18
19 #define N N_HILBERT
20 double matrix[N*N];
21
22 double b[N];
23
24 unsigned long read_cycles(void); // read clock cycle counter: used to

measure the code’s performances
25
26 void hilbert_unum(ubound_t *H, uint64_t ess , uint64_t fss , uint64_t mbb ,

int n);
27 void choose_unum_array(ubound_t *b, uint64_t ess , uint64_t fss , uint64_t mbb

, int n);
28 void gauss_unum(ubound_t *A, ubound_t *b, ubound_t *x, int n, uint64_t ess ,

uint64_t fss , uint64_t wgp , uint64_t mbb);
29 void MatVecMultSub_unum(int n,ubound_t *x,ubound_t *A, ubound_t *b,

ubound_t *R, uint64_t ess , uint64_t fss , uint64_t mbb);
30
31 double sq_root_double(double x);
32 double norm_res_unum_double(unum_t *res , int n, uint64_t mbb); //sqrt(sum((

abs(res[i]))^2))
33

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

A.3. The Gauss kernel for variable precision in C and inline assembly 117

34 ubound_t ubA [(N*N) * SIZEOF_UBOUND(ESS_MAX , FSS_MAX)] ; // matrice A
35 ubound_t ubb [(N) * SIZEOF_UBOUND(ESS_MAX , FSS_MAX)] ; // vecteur b
36 ubound_t ubx [(N) * SIZEOF_UBOUND(ESS_MAX , FSS_MAX)] ; // vecteur des

inconnues x
37 ubound_t ubres [(N) * SIZEOF_UBOUND(ESS_MAX , FSS_MAX)] ; // residu Ax -b
38 int main()
39 {
40 unsigned long startmain , endmain;
41 // preformance counter ’ values
42 unsigned long startmbb , endmbb , startub , endub;
43 // declare performance arrays
44 unsigned long arr_perf_unum[WGP_MAX +1];
45 int n ; // system size
46 uint64_t ess , fss , wgp , mbb;
47
48 printf("#START OF SIMULATION\n");
49 startmain = read_cycles (); //read counter
50
51 n = N;
52
53 ess=ESS_MAX;
54 for(fss=FSS_MAX; fss >=0; fss --){
55 for(wgp = 0; wgp < (WGP_MAX +1); wgp ++){
56 for(mbb = MBB_MAX(ess ,fss); mbb >= MBB_MIN(ess ,fss); mbb --){
57 startmbb = read_cycles (); //read counter
58 my_gauss_algorithm (&startub , &endub , n, 1, mbb , wgp , ess ,

fss , ubA , ubb , ubx , ubres); // test computation with unum
59 arr_perf_unum[wgp] = (endub -startub);
60 endmbb = read_cycles (); //read counter
61 } //MBB
62 } //WGP
63 } // FSS
64 endmain = read_cycles (); //read counter
65 printf("#END OF SIMULATION\n");
66 return 0;
67 }
68
69 void my_gauss_algorithm(unsigned long *startcnt , unsigned long *endcnt , int

n, uint64_t mbb , uint64_t wgp , uint64_t ess , uint64_t fss , ubound_t *A,
ubound_t *b, ubound_t *x, ubound_t *res) // coprocessor ’s internal
working precision

70 {
71 unsigned long startubin , endubin;
72 unsigned long startub , endub;
73 unsigned long startubout , endubout;
74 double norm_2_res;
75 int i, j ;
76
77 SUSR(get_next_USR(RND_TO_NEAREST ,ess ,fss ,ess ,fss ,wgp ,mbb)); //set

coprocessor ’s status registers
78
79 // SELECT THE INTPUT MATRIX
80 startubin = read_cycles (); //read counter
81 hilbert_unum(A, ess , fss , mbb , n);
82 choose_unum_array(b,ess ,fss ,mbb ,n);
83 endubin = read_cycles (); //read counter
84
85 // COMPUTE THE GAUSS ALGORITHM
86 startub = endubin; //read counter
87 gauss_unum(A,b,x,n,ess ,fss ,wgp ,mbb);
88 endub = read_cycles (); //read counter
89
90 // COMPUTE THE RESIDUAL

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

118 Appendix A. Source code Experiment 1

91 startubout = endub;
92 MatVecMultSub_unum(n,x,A,b,res ,ess ,fss ,mbb);
93 norm_2_res = norm_res_unum_double(res , n, mbb); //sqrt(sum((abs(x[i]))

^2))
94 endubout = read_cycles (); //read counter
95
96 *startcnt = startub;
97 *endcnt = endub;
98 }
99

100 /* Gauss elimination method */
101 void gauss_unum(ubound_t *A, ubound_t *b, ubound_t *x, int n, uint64_t ess ,

uint64_t fss , uint64_t wgp , uint64_t mbb)
102 {
103 typedef union
104 {
105 double f_;
106 uint64_t i_;
107 } DoubleBits;
108 DoubleBits x_val;
109
110 int tmp0 , tmp1 , tmp2; // used for ubounds
111 int i, j, k ;
112 int imin ;
113 ubound_t valmin[mbb];
114 ubound_t abs_a[mbb];
115 ubound_t abs_min[mbb];
116 ubound_t p[mbb];
117
118 GFLOAT_D2G(G30 , 0.0);
119
120 for(k = 0 ; k < n-1 ; k++)
121 {
122 /* First of all , we look for the minimum (non -zero) element */
123 /* in absolute value in the column k with index i greater */
124 /* than or equal to k. */
125
126 // valmin = A[k*n+k] ;
127 LDU(G1, A+((k*n+k)*mbb));
128
129 //*/
130 STUL(valmin , G1);
131 //
132 imin = k ;
133 for(i = k+1 ; i < n ; i++)
134 {
135 //if (valmin != 0)
136 LDU(G1, valmin);
137 GCMP_NEQ(tmp0 , G1, G30);
138 if (tmp0 != 0)
139 {
140 my_abs_unum(abs_a , A+((i*n+k)*mbb));
141 my_abs_unum(abs_min , valmin);
142
143 LDU(G1, abs_a);
144 LDU(G2, abs_min);
145
146 GCMP_LT(tmp1 , G1 , G2);
147 LDU(G3, A+((i*n+k)*mbb));
148 GCMP_NEQ(tmp2 , G3, G30);
149
150 if ((tmp1 !=0) && (tmp2 != 0))
151 {

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

A.3. The Gauss kernel for variable precision in C and inline assembly 119

152 // valmin = A[i*n+k] ;
153 LDU(G4, A+((i*n+k)*mbb));
154 STUL(valmin , G4);
155 imin = i ;
156 }
157 }
158 else
159 {
160 // valmin = A[i*n+k] ;
161 LDU(G4, A+((i*n+k)*mbb));
162 STUL(valmin , G4);
163 imin = i ;
164 }
165 }
166
167 /* If the minimum element is null , we can deduce */
168 /* that the matrix is singular. The pogram is then */
169 /* interrupted. */
170
171 //if (valmin == 0.)
172 LDU(G1, valmin);
173 GCMP_EQ(tmp1 , G30 , G1);
174
175 /* If the matrix is not singular , we invert the */
176 /* elements of the line imax with the elements of */
177 /* the line k. We do the same with the array b */
178
179 for(j = 0 ; j < n ; j++)
180 {
181 //tump1 = A[imin*n+j] ;
182 //A[imin*n+j] = A[k*n+j] ;
183 //A[k*n+j] = tump1 ;
184 LDU(G1, A+((imin*n+j)*mbb));
185 LDU(G2, A+((k*n+j)*mbb));
186 STUL(A+((k*n+j)*mbb), G1);
187 STUL(A+((imin*n+j)*mbb), G2);
188 }
189
190 //tump2 = b[imin] ;
191 //b[imin] = b[k] ;
192 //b[k] = tump2 ;
193 LDU(G2, b+((imin)*mbb));
194 LDU(G3, b+((k)*mbb));
195 STUL(b+((k)*mbb), G2);
196 STUL(b+((imin)*mbb), G3);
197
198 /* The matrix is reduced by the Gauss elimination */
199 /* method. */
200 for(i = k+1 ; i < n ; i++)
201 {
202 //p = A[i*n+k]/A[k*n+k] ;
203 LDU(G5, A+((i*n+k)*mbb));
204 LDU(G6, A+((k*n+k)*mbb));
205
206 /* unum division
207 * It computes G7 = G5 / G6 using the Newton -Raphson

approximation method and using the precision specified by the wgp
parameter

208 * It uses also G0 , G1, G2, G3 , G4 , G5, G6, G7 , G8, G9, G10
209 */
210 my_division_unum (wgp +1);
211
212 STUL(p, G7);

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

120 Appendix A. Source code Experiment 1

213 MOV_G2G(G20 , G7); //p
214
215 for(j = 0 ; j < n ; j++)
216 {
217 //A[i*n+j] = A[i*n+j] - p*A[k*n+j] ;
218 LDU(G22 , A+((k*n+j)*mbb));
219 LDU(G21 , A+((i*n+j)*mbb));
220 GMUL(G23 , G20 , G22); //p*A[k*n+j]
221 GSUB(G24 , G21 , G23); //A[i*n+j] - p*A[k*n+j]
222
223 STUL(A+((i*n+j)*mbb), G24);
224 }
225
226 //b[i] = b[i] - p*b[k] ;
227 LDU(G22 , b+((k)*mbb)); //b[k]
228 LDU(G21 , b+((i)*mbb)); //b[i]
229 GMUL(G23 , G20 , G22); //p*b[k]
230 GSUB(G24 , G21 , G23); //b[i] - p*b[k]
231
232 STUL(b+((i)*mbb), G24);
233
234 }
235 }
236
237 /* We check that the matrix is still not singular. */
238 /* If it is , we interrupt the program. */
239
240 //if (A[(n-1)*n+n-1] == 0)
241 LDU(G1, A+(((n-1)*n+n-1)*mbb));
242 GCMP_EQ(tmp1 , G30 , G1);
243 if (tmp1 == 0.)
244 {
245 printf("\n\n\nWarning! the matrix is singular !\n\n\n") ;
246 }
247
248 /* Once the system has been reduced , a top triangular matrix is */
249 /* obtained and the resolution of the system is very simple. */
250
251 //x[n-1] = b[n-1]/A[(n-1)*n+n-1] ;
252 LDU(G5, b+((n-1)*mbb)); //b[n-1]
253 LDU(G6, A+(((n-1)*n+n-1)*mbb)); //A[(n-1)*n+n-1]
254
255 /* g-bound division
256 * It computes G7 = G5 / G6 using the Newton -Raphson approximation

method and using the precision specified by the wgp parameter
257 * It uses also G0 , G1, G2, G3 , G4 , G5, G6, G7 , G8, G9, G10
258 */
259 my_division_unum (
260 wgp+1 // working g-layer precision (0->64bits ,

1->128 bits , ..., 7->512bits of mantissa)
261);
262 STUL(x+((n-1)*mbb), G7); //x[n-1]
263
264 for(i = n-2 ; i > -1 ; i--)
265 {
266 GFLOAT_D2G(G0, 0.0); //sum = 0 ;
267
268 for(j = n-1 ; j > i ; j--)
269 {
270 //sum = sum + A[i*n+j]*x[j] ;
271 LDU(G1, A+((i*n+j)*mbb)); //A[i*n+j]
272 LDU(G2, x+((j)*mbb)); //x[j]
273 GMUL(G3, G1 , G2);

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

A.3. The Gauss kernel for variable precision in C and inline assembly 121

274 GADD(G0, G0 , G3);
275 }
276 //x[i] = (b[i] - sum)/A[i*n+i] ;
277 LDU(G4, b+((i)*mbb)); //b[i]
278 LDU(G6, A+((i*n+i)*mbb)); //A[i*n+i]
279 GSUB(G5, G4 , G0); //b[i] - sum
280
281 /* g-bound division
282 * It computes G7 = G5 / G6 using the Newton -Raphson approximation

method and using the precision specified by the wgp parameter
283 * It uses also G0 , G1, G2, G3 , G4 , G5, G6, G7 , G8, G9, G10
284 */
285 my_division_unum (wgp+1);
286
287 STUL(x+((i)*mbb), G7); //x[i]
288 }
289 }
290
291 /* Choose the elements of the b array */
292 void choose_unum_array(ubound_t *b, uint64_t ess , uint64_t fss , uint64_t mbb

, int n)
293 {
294 typedef union
295 {
296 double f_;
297 uint64_t i_;
298 } DoubleBits;
299 DoubleBits b_val;
300 int i ;
301
302 for(i = 0 ; i < n ; i++)
303 {
304 //b[i]=RAN[NB_RAN -1-(i%N)];
305 b_val.f_=RAN[NB_RAN -1-(i%NB_RAN)];
306 GFLOAT_D2G(G1, b_val.i_);
307 STUL(b+(i*mbb) , G1);
308 }
309 }
310
311 void my_abs_unum(unum_t *res , unum_t *x){
312 typedef union
313 {
314 double f_;
315 uint64_t i_;
316 } DoubleBits;
317 DoubleBits x_val;
318
319 uint64_t cmp_nan;
320 int l_lt_0;
321
322 LDU(G1, x);
323
324 x_val.f_ = 0.0;
325 GFLOAT_D2G(G0, x_val.i_);
326 GCMP(cmp_nan , G1 , G0);
327 GCMP_LL_LT(l_lt_0 , G1 , G0);
328
329 if ((cmp_nan & MASK_CMP_FLAGS_NAN) != 0){
330 STUL(res , G1);
331 } else {
332 if (l_lt_0 ==0){ //G1 > 0
333 MOV_G2G(G2,G1); // output the input value as it is
334 } else { //left ep <= 0

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

122 Appendix A. Source code Experiment 1

335 GSUB(G2, G0 , G1); // negate G1
336 }
337 STUL(res , G2);
338 }
339 }
340
341 void MatVecMultSub_unum(int n, ubound_t *x, ubound_t *A, ubound_t *b,

ubound_t *R, uint64_t ess , uint64_t fss , uint64_t mbb) {
342 // R=Ax-b
343 // on alloue la taille max
344 int li, col;
345 // ubound_t sum;
346 for (li=0; li <n; li++) {
347 GFLOAT_D2G(G0, 0.0); //sum =0.0;
348 for (col=0; col <n; col ++) {
349 //sum+=A[li*n+col]*x[col];
350 LDU(G1, A+((li*n+col)*mbb)); //A[li*n+col]
351 LDU(G2, x+((col)*mbb)); //x[col]
352 GMUL(G3, G1 , G2); //A[li*n+col]*x[col]
353 GADD(G0, G0 , G3); //sum
354 }
355 //R[li]=sum -b[li];
356 LDU(G4, b+((li)*mbb)); //b[li]
357 GSUB(G5, G0 , G4);
358 STUL(R+((li)*mbb), G5); //R[li]
359 }
360 }
361
362 double sq_root_double(double x) {
363 double rt = 1, ort = 0;
364 if (x>=0 && x==x){ //X is positive and it is not NaN
365 while(ort!=rt)
366 {
367 ort = rt;
368 rt = ((x/rt) + rt) / 2;
369 }
370 return rt;
371 } else { // result is NaN
372 return (0.0/0.0); // NaN
373 }
374 }
375 double norm_res_unum_double(unum_t *res , int n, uint64_t mbb) //sqrt(sum((

abs(res[i]))^2))
376 {
377 // internal variables
378 unsigned i;
379 // accumulator
380 double sum=0;
381 // loaded values
382 typedef union
383 {
384 double f_;
385 uint64_t i_;
386 } DoubleBits;
387 DoubleBits int_var;
388
389 //MBB support
390 uint64_t prev_mbb;
391 LUSR_MBB(prev_mbb);
392 SUSR_MBB(mbb);
393
394 for (i=0; i<n; i++){
395 LDU(G0, res+(i*mbb));

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

A.3. The Gauss kernel for variable precision in C and inline assembly 123

396 GFLOAT_GL2D(int_var.i_ , G0);
397 sum += (int_var.f_ * int_var.f_);
398 }
399 SUSR_MBB(prev_mbb);
400 return(sq_root_double(sum));
401 }
402
403 void hilbert_unum (
404 ubound_t *H, // output matrix
405 uint64_t ess ,
406 uint64_t fss ,
407 uint64_t mbb ,
408 int n // matrix size #rows=# columns=n
409)
410 {
411 typedef union
412 {
413 double f_;
414 uint64_t i_;
415 } DoubleBits;
416 DoubleBits val;
417 double tmp;
418 int i,j;
419 for(i=0;i<n;i++){
420 for(j=0;j<n;j++){
421 tmp = (double)1.0/((i+1)+(j+1) -1);
422 val.f_ = tmp;
423 GFLOAT_D2G(G1, val.i_);
424 STUL(H+((i*n+j)*mbb), G1);
425 }
426 }
427 }
428
429 unsigned long read_cycles(void)
430 {
431 unsigned long cycles;
432 asm volatile ("rdcycle %0" : "=r" (cycles));
433 return cycles;
434 }

./Chapters/Chapter6_gauss_assembly.c

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

125

Appendix B

Source code Experiment 2

B.1 Complete code for Conjugate Gradient

1 int cg_vp(double *x, double *A, double *b, int m, int n,
2 int precision , double tolerance) {
3 vpfloat <unum , 4, get_fss(precision), get_mbb(precision)> *r_k =
4 (vpfloat <unum , 4, get_mbb(precision) >*)malloc(n*sizeof(vpfloat <

unum , 4, get_fss(precision), get_mbb(precision)>));
5 copy_vector_vp_d(precision , r_k , b, n);
6 vpfloat <unum , 4, get_fss(precision), get_mbb(precision)> *p_k =
7 (vpfloat <unum , 4, get_fss(precision), get_mbb(precision) >*)malloc(n

*sizeof(vpfloat <unum , 4, get_fss(precision), get_mbb(precision)>));
8 copy_vector_vp_d(precision , p_k , b, n);
9 vpfloat <unum , 4, get_fss(precision), get_mbb(precision)> *Ap_k =

10 (vpfloat <unum , 4, get_fss(precision), get_mbb(precision) >*)malloc(n
*sizeof(vpfloat <unum , 4, get_fss(precision), get_mbb(precision)>));

11 zeros_vp(precision , Ap_k , n);
12 vpfloat <unum , 4, get_fss(precision), get_mbb(precision)> alpha;
13 vpfloat <unum , 4, get_fss(precision), get_mbb(precision)> *x_k =
14 (vpfloat <unum , 4, get_fss(precision), get_mbb(precision) >*)malloc(n

*sizeof(vpfloat <unum , 4, get_fss(precision), get_mbb(precision)>));
15 // set_ess_fss_mbb_rnd(ess=4, get_fss(precision), get_mbb(precision), rnd

=RTN); // implicit set of the ESS , FSS , and MBB status registers
16 set_wgp(get_wgp(precision)); // set the WGP status regster
17
18 zeros_vp(precision , x_k , n);
19 vpfloat <unum , 4, get_fss(precision), get_mbb(precision)> rs_next = 0.0v

;
20 // rs = rk ’*rk
21 vpfloat <unum , 4, get_fss(precision), get_mbb(precision)> rs = vdot(

precision , n, r_k , r_k);
22 int nbiter;
23
24 for (nbiter = 1; nbiter < m*3000; ++ nbiter) {
25 vgemvd(precision , m, n , 1.0, A, p_k , 0.0, Ap_k);
26 alpha = rs/vdot(precision , n, p_k , Ap_k);
27
28 vaxpy(precision , n, alpha , p_k , x_k); //x = x + alpha*p
29 vaxpy(precision , n, -alpha , Ap_k , r_k); //r = r - alpha *Ap
30 rs_next = vdot(precision , n, r_k , r_k); // rk+1
31
32 if (sqrt((double)rs_next) < tolerance) {
33 copy_vector_d_vp(precision , x, x_k , n);
34 break;
35 }
36 vscal(precision , n, rs_next/rs, p_k);
37 vaxpy(precision , n, 1.0, r_k , p_k);
38 rs_next = rs;
39 }

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

126 Appendix B. Source code Experiment 2

40
41 free(r_k); free(p_k); free(x_k); // free allocated elements
42
43 return nbiter;
44 }

Listing B.1: complete code for conjugate gradient

B.2 C code implementation of the Conjugate Gradient

1 #include <stdarg.h>
2 #include <stddef.h>
3
4 #include "printf.h"
5 #include "unum_rocc.h"
6 #include "asm_util.h"
7 #include "unum_basics.h"
8 #include "my_division_gbound.h"
9

10 #define THRESHOLD_START 1.0e-3
11 #define C_MAX_ITERATIONS 9999
12
13 #define INPUT_IS_MATRIX_MARKET
14
15 #define NB_RAN 128
16 double RAN[NB_RAN] = { ... }; // random values uniformly distributed between

0 and 1
17
18 double error = 0.0;
19 double total_error = 0.0;
20
21 #ifdef __cplusplus
22 extern "C" {
23 #endif
24
25 #define NB_SAMPLES 237
26 double matrix[NB_SAMPLES][NB_SAMPLES];
27 double b[NB_SAMPLES];
28
29 void fill_matrix_market_NOS1(double matrix [237][237] , unsigned size);
30 unsigned long read_cycles(void);
31 void generate_vector(double *b ,int n);
32 double sq_root_double(double x);
33 double norm_res_unum_double(unum_t *res , int n, uint64_t mbb); //sqrt(sum((

abs(res[i]))^2))
34 void matrix_div_scalar(double *matrix_result , double* matrix , double

denominator , unsigned size);
35 void transpose_matrix(double *matrixPrime , double *matrix , unsigned size);
36 void randomSDPMatrix(double *matrix , unsigned size);
37 void zeros(double *matrix , unsigned dim1 , unsigned dim2 = 1);
38 void zeros(unum_t *matrix , unsigned comp_mbb , unsigned dim1 , unsigned dim2 =

1);
39 void copy_matrix_vector(unum_t *new_matrix , unum_t *matrix , unsigned

comp_mbb , unsigned dim1 , unsigned dim2 = 1);
40 template <typename Tdst , typename Tsrc >
41 void copy_matrix_vector(Tdst *new_matrix , Tsrc *matrix , unsigned dim1 ,

unsigned dim2 = 1);
42 void copy_matrix_vector_double(double *new_matrix , double *matrix , unsigned

dim1 , unsigned dim2 = 1);

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

B.2. C code implementation of the Conjugate Gradient 127

43 void copy_matrix_vector_double(double *new_matrix , unum_t *matrix , unsigned
comp_mbb , unsigned dim1 , unsigned dim2 = 1);

44 void vector_addition(unum_t *res , unum_t *a, unum_t *b, unsigned comp_mbb ,
unsigned size);

45 void vector_subtraction(unum_t *res , unum_t *a, unum_t *b, unsigned comp_mbb
, unsigned size);

46 void vector_subtraction_double(unum_t *res , double *a, unum_t *b, unsigned
comp_mbb , unsigned size);

47 void matrix_multiplication(double *matrix_result , double *matrix , double *
matrixPrime , unsigned dim1 , unsigned dim2 , unsigned dim3);

48 void matrix_multiplication(unum_t *matrix_result , unum_t *matrix , unum_t *
matrixPrime , unsigned comp_mbb , unsigned dim1 , unsigned dim2 , unsigned
dim3);

49 void matrix_vector_multiplication (double *vector_result , double* matrix ,
double *vector , unsigned size);

50 void matrix_vector_multiplication (unum_t *vector_result , unum_t* matrix ,
unum_t *vector , unsigned comp_mbb , unsigned size);

51 void matrix_vector_multiplication (unum_t *vector_result , double* matrix ,
unum_t *vector , unsigned comp_mbb , unsigned size) {

52 template <typename T>
53 void matrix_vector_multiplication (T *vector_result , T* matrix , T *vector ,

unsigned size) {
54 void matrix_vector_mult_scalar(double *matrix_result , double* matrix , double

multipler , unsigned dim1 , unsigned dim2);
55 void matrix_vector_mult_scalar(unum_t *matrix_result , unum_t* matrix , unum_t

*multipler , unsigned comp_mbb , unsigned dim1 , unsigned dim2);
56 void matrix_vector_mult_scalar(unum_t *matrix_result , double* matrix , unum_t

*multipler , unsigned comp_mbb , unsigned dim1 , unsigned dim2);
57 void matrix_vector_mult_scalar(double *matrix_result , double* matrix , unum_t

*multipler , unsigned comp_mbb , unsigned dim1 , unsigned dim2);
58 typedef struct {
59 double error;
60 unsigned long latency_cc;
61 unsigned iterations;
62 unsigned ess;
63 unsigned fss;
64 unsigned wgp;
65 } out_experiment_t;
66 out_experiment_t cg_unum(double *A, double *b, unsigned size , unsigned

comp_wgp , unsigned comp_ess , unsigned comp_fss , unsigned comp_mbb ,
double threshold , unsigned max_iterations) {

67 out_experiment_t cg_unum_random_matrix(unsigned size , unsigned comp_wgp ,
unsigned comp_ess , unsigned comp_fss , unsigned comp_mbb , double
threshold , unsigned max_iterations);

68 out_experiment_t cg_unum_tb(unsigned ess , unsigned mbb , double threshold ,
unsigned max_iterations);

69
70 double matrixPrime[NB_SAMPLES][NB_SAMPLES];
71 double matrix_mult[NB_SAMPLES][NB_SAMPLES];
72
73 int main() {
74 unsigned tb_ess=ESS_MAX;
75 out_experiment_t out_exp;
76 double error;
77 double threshold; // = (double)THRESHOLD_START;
78 printf("ENTERING THE MAIN !!!!!!!\n");
79 for (threshold = (double)THRESHOLD_START; threshold >=1e-10; threshold=

threshold /10.0){
80 out_exp.iterations = 0;
81 tb_ess =3;
82 // unsigned tb_mbb=MBB_MAX(ESS_MAX , FSS_MAX);
83 error =0.0;

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

128 Appendix B. Source code Experiment 2

84 for(unsigned tb_mbb=MBB_MAX(ESS_MAX , FSS_MAX); (tb_mbb >= MBB_MIN(
ESS_MAX , 1)) && (error <threshold) && (error ==error) ; tb_mbb --){ //
downto MBB_MIN until the error is met (<th) or is NaN (error!=error)

85
86 fill_matrix_market_NOS1(matrix , NB_SAMPLES);
87 generate_vector(b, NB_SAMPLES);
88 out_exp=cg_unum_tb(tb_ess , tb_mbb , threshold , C_MAX_ITERATIONS);
89 error = out_exp.error;
90 } // for loop MBB
91 } // for loop threshold
92 printf("FINISHING THE MAIN !!!!!!!\n");
93 return 0;
94 }
95
96 out_experiment_t cg_unum_tb(unsigned ess , unsigned mbb , double threshold ,

unsigned max_iterations) {
97 unsigned fss , remaining_bits , wgp;
98 out_experiment_t out_exp;
99

100 // compute FSS min accoring to MBB
101 // get parameters starting from MBB
102 // size - ESS - s - u - e - fss)
103 if (((mbb*8) - ess - 1 - 1 - 1 - 1) <= 2){
104 fss = 1;
105 }
106 // size - ESS - s - u - e - fss)
107 else if (((mbb *8) - ess - 1 - 1 - 1 - 2) <= 4){
108 fss = 2;
109 }
110 // size - ESS - s - u - e - fss)
111 else if (((mbb *8) - ess - 1 - 1 - 1 - 3) <= 8){
112 fss = 3;
113 }
114 // size - ESS - s - u - e - fss)
115 else if (((mbb *8) - ess - 1 - 1 - 1 - 4) <= 16){
116 fss = 4;
117 }
118 // size - ESS - s - u - e - fss)
119 else if (((mbb *8) - ess - 1 - 1 - 1 - 5) <= 32){
120 fss = 5;
121 }
122 // size - ESS - s - u - e - fss)
123 else if (((mbb *8) - ess - 1 - 1 - 1 - 6) <= 64){
124 fss = 6;
125 }
126 // size - ESS - s - u - e - fss)
127 else if (((mbb *8) - ess - 1 - 1 - 1 - 7) <= 128){
128 fss = 7;
129 }
130 // size - ESS - s - u - e - fss)
131 else if (((mbb *8) - ess - 1 - 1 - 1 - 8) <= 256){
132 fss = 8;
133 }
134 // size - ESS - s - u - e - fss)
135 else { //if (((mbb *8) - ess - 1 - 1 - 1 - 9) <= 512)
136 fss = 9;
137 }
138
139 // Compute minimal WGP
140 remaining_bits =(mbb *8) -ess -1 -1 -1 -fss;
141 if (remaining_bits <(1*64)){
142 wgp =0;
143 }else if (remaining_bits >=(1*64) && remaining_bits <(2*64)){

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

B.2. C code implementation of the Conjugate Gradient 129

144 wgp =1;
145 }else if (remaining_bits >=(2*64) && remaining_bits <(3*64)){
146 wgp =2;
147 }else if (remaining_bits >=(3*64) && remaining_bits <(4*64)){
148 wgp =3;
149 }else if (remaining_bits >=(4*64) && remaining_bits <(5*64)){
150 wgp =4;
151 }else if (remaining_bits >=(5*64) && remaining_bits <(6*64)){
152 wgp =5;
153 }else if (remaining_bits >=(6*64) && remaining_bits <(7*64)){
154 wgp =6;
155 }else if (remaining_bits >=(7*64)){
156 wgp =7;
157 }
158
159 SUSR(get_next_USR(RND_TO_NEAREST , ess ,fss ,ess ,fss , wgp , mbb));
160
161 out_exp=cg_unum_random_matrix(NB_SAMPLES , wgp , ess , fss , mbb , threshold ,

max_iterations);
162
163 return out_exp;
164 }
165
166 out_experiment_t cg_unum_random_matrix(unsigned size , unsigned comp_wgp ,

unsigned comp_ess , unsigned comp_fss , unsigned comp_mbb , double
threshold , unsigned max_iterations) {

167
168 unsigned j = 0;
169 total_error = 0.0;
170 out_experiment_t output;
171
172 double m[NB_SAMPLES][NB_SAMPLES];
173 copy_matrix_vector ((double *)m, (double *)matrix , NB_SAMPLES , NB_SAMPLES);
174 randomSDPMatrix ((double *)m, NB_SAMPLES);
175 output= cg_unum ((double *)m, b, NB_SAMPLES , comp_wgp , comp_ess , comp_fss ,

comp_mbb , threshold , max_iterations);
176 return output;
177 }
178
179 out_experiment_t cg_unum(double *A, double *b, unsigned size , unsigned

comp_wgp , unsigned comp_ess , unsigned comp_fss , unsigned comp_mbb ,
double threshold , unsigned max_iterations) {

180 // error computing
181 unsigned iteration;
182 double norm_err =1.0;
183 double x[NB_SAMPLES];
184
185 unum_t bprime[NB_SAMPLES * SIZEOF_UNUM(ESS_MAX , FSS_MAX)];
186 unum_t r_k[NB_SAMPLES * SIZEOF_UNUM(ESS_MAX , FSS_MAX)];
187 unum_t p_k[NB_SAMPLES * SIZEOF_UNUM(ESS_MAX , FSS_MAX)];
188 unum_t tmp[NB_SAMPLES * SIZEOF_UNUM(ESS_MAX , FSS_MAX)];
189 unum_t alpha_beta_k[SIZEOF_UNUM(ESS_MAX , FSS_MAX)];
190 unum_t x_k[NB_SAMPLES * SIZEOF_UNUM(ESS_MAX , FSS_MAX)];
191 unum_t x_next[NB_SAMPLES * SIZEOF_UNUM(ESS_MAX , FSS_MAX)];
192 unum_t r_next[NB_SAMPLES * SIZEOF_UNUM(ESS_MAX , FSS_MAX)];
193 unum_t p_next[NB_SAMPLES * SIZEOF_UNUM(ESS_MAX , FSS_MAX)];
194
195
196 out_experiment_t out_exp;
197 unsigned long start = read_cycles ();
198
199 zeros(x_k , comp_mbb , NB_SAMPLES);
200

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

130 Appendix B. Source code Experiment 2

201 matrix_vector_multiplication ((unum_t *)tmp , A, (unum_t *)x_k , comp_mbb ,
size);

202 vector_subtraction_double ((unum_t *)r_k , b, (unum_t *)tmp , comp_mbb , size)
;

203
204 copy_matrix_vector(p_k , r_k , comp_mbb , size);
205
206 for (iteration = 0; ((iteration < max_iterations) && (norm_err >

threshold)); ++ iteration) {
207 matrix_vector_multiplication ((unum_t *)tmp , A, (unum_t *)p_k , comp_mbb

, size);
208
209 matrix_multiplication ((unum_t *)tmp , (unum_t *)p_k , (unum_t *)tmp ,

comp_mbb , 1, size , 1);
210
211 LDU(G5, (unum_t *)tmp);
212 STUL(alpha_beta_k , G5);
213 matrix_multiplication ((unum_t *)tmp , (unum_t *)r_k , (unum_t *)r_k ,

comp_mbb , 1, size , 1);
214
215 // alpha_beta_k = tmp [0][0]/ alpha_beta_k;
216 LDU(G5, (unum_t *)tmp);
217 LDU(G6, alpha_beta_k);
218 STUL(alpha_beta_k , G7);
219
220 matrix_vector_mult_scalar ((unum_t *)tmp , (unum_t *)p_k , (unum_t *)

alpha_beta_k , comp_mbb , size , 1);
221 vector_addition ((unum_t *)x_next , (unum_t *)x_k , (unum_t *)tmp ,

comp_mbb , size);
222
223 matrix_vector_multiplication ((unum_t *)tmp , A, (unum_t *)p_k , comp_mbb

, size);
224 matrix_vector_mult_scalar ((unum_t *)tmp , (unum_t *)tmp , (unum_t *)

alpha_beta_k , comp_mbb , size , 1);
225
226 vector_subtraction ((unum_t *)r_next , (unum_t *)r_k , (unum_t *)tmp ,

comp_mbb , size);
227
228 matrix_multiplication ((unum_t *)tmp , (unum_t *)(unum_t *)r_k , r_k ,

comp_mbb , 1, size , 1);
229 // alpha_beta_k = tmp [0][0];
230 LDU(G5, (unum_t *)tmp);
231 STUL(alpha_beta_k , G5);
232 matrix_multiplication ((unum_t *)tmp , (unum_t *)(unum_t *)r_next , r_next

, comp_mbb , 1, size , 1);
233 // alpha_beta_k = tmp [0][0]/ alpha_beta_k;
234 LDU(G5, (unum_t *)tmp);
235 LDU(G6, alpha_beta_k);
236 STUL(alpha_beta_k , G7);
237 matrix_vector_mult_scalar ((unum_t *)tmp , (unum_t *)p_k , (unum_t *)

alpha_beta_k , comp_mbb , size , 1);
238 vector_addition ((unum_t *)p_next , (unum_t *)r_next , (unum_t *)tmp ,

comp_mbb , size);
239
240 copy_matrix_vector(p_k , p_next , comp_mbb , size);
241 copy_matrix_vector(r_k , r_next , comp_mbb , size);
242 copy_matrix_vector(x_k , x_next , comp_mbb , size);
243
244 // compute computational error
245 set_coprocessor_wgp(WGP_MAX);
246 matrix_vector_multiplication (bprime , A, x_k , comp_mbb , size);
247 vector_subtraction_double(bprime , b, bprime , comp_mbb , size);

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

B.2. C code implementation of the Conjugate Gradient 131

248 norm_err = norm_res_unum_double(bprime , size , comp_mbb); //sqrt(sum
((abs(res[i]))^2))

249 set_coprocessor_wgp(comp_wgp);
250 }
251
252 copy_matrix_vector_double(x, x_k , comp_mbb , size);
253
254 unsigned long end = read_cycles ();
255 unsigned long diff = end - start;
256
257 out_exp.error = norm_err;
258 out_exp.latency_cc = diff;
259 out_exp.iterations = iteration;
260 out_exp.ess = comp_ess;
261 out_exp.fss = comp_fss;
262 out_exp.wgp = comp_wgp;
263
264 return out_exp;
265 }
266
267 void matrix_vector_multiplication (double *vector_result , double* matrix ,

double *vector , unsigned size) {
268 for(unsigned i = 0; i < size; ++i) {
269 double sum = 0.0;
270 for (unsigned j = 0; j < size; ++j) {
271 sum += matrix[i*size + j]* vector[j];
272 }
273 vector_result[i] = sum;
274 }
275 }
276
277 void matrix_vector_multiplication (unum_t *vector_result , unum_t* matrix ,

unum_t *vector , unsigned comp_mbb , unsigned size) {
278 typedef union
279 {
280 double f_;
281 uint64_t i_;
282 } DoubleBits;
283 DoubleBits x_val;
284 x_val.f_ = 0.0;
285 for(unsigned i = 0; i < size; ++i) {
286 // double sum = 0.0;
287 GFLOAT_D2G(G0, x_val.i_);
288 for (unsigned j = 0; j < size; ++j) {
289 // sum += matrix[i*size + j]* vector[j];
290 LDU(G1, matrix +((i*size + j)*comp_mbb));
291 LDU(G2, vector +(j*comp_mbb));
292 GMUL(G3, G1 , G2);
293 GADD(G0, G0 , G3);
294 }
295 // vector_result[i] = sum;
296 STUL(vector_result + (i*comp_mbb), G0);
297 }
298 }
299
300 void matrix_vector_multiplication (unum_t *vector_result , double* matrix ,

unum_t *vector , unsigned comp_mbb , unsigned size) {
301 typedef union
302 {
303 double f_;
304 uint64_t i_;
305 } DoubleBits;
306 DoubleBits x_val;

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

132 Appendix B. Source code Experiment 2

307 DoubleBits y_val;
308 y_val.f_ = 0.0;
309
310 for(unsigned i = 0; i < size; ++i) {
311 // double sum = 0.0;
312 GFLOAT_D2G(G0, y_val.i_);
313 for (unsigned j = 0; j < size; ++j) {
314 // sum += matrix[i*size + j]* vector[j];
315 x_val.f_ = matrix[i*size + j];
316 GFLOAT_D2G(G1, x_val.i_);
317 LDU(G2, vector +((j)*comp_mbb));
318 GMUL(G3, G1 , G2);
319 GADD(G0, G0 , G3);
320 }
321 // vector_result[i] = sum;
322 STUL(vector_result + (i*comp_mbb), G0);
323 }
324 }
325
326 template <typename T>
327 void matrix_vector_multiplication (T *vector_result , T* matrix , T *vector ,

unsigned size) {
328 for(unsigned i = 0; i < size; ++i) {
329 T sum = 0.0;
330 for (unsigned j = 0; j < size; ++j) {
331 sum += matrix[i*size + j]* vector[j];
332 }
333 vector_result[i] = sum;
334 }
335 }
336
337 void vector_subtraction_double(unum_t *res , double *a, unum_t *b, unsigned

comp_mbb , unsigned size) {
338 typedef union
339 {
340 double f_;
341 uint64_t i_;
342 } DoubleBits;
343 DoubleBits x_val;
344
345 for (unsigned i = 0; i < size; ++i) {
346 x_val.f_= a[i];
347 GFLOAT_D2G(G0, x_val.i_);
348 LDU(G1, b+(i*comp_mbb));
349 GSUB(G2, G0 , G1);
350 STUL(res + (i*comp_mbb), G2);
351 }
352 }
353
354 void matrix_multiplication(double *matrix_result ,
355 double *matrix ,
356 double *matrixPrime ,
357 unsigned dim1 ,
358 unsigned dim2 ,
359 unsigned dim3) {
360 double sum = 0.0;
361 for (unsigned i = 0; i < dim1; ++i) {
362 for (unsigned j = 0; j < dim3; ++j) {
363 for (unsigned k = 0; k < dim2; ++k) {
364 sum = sum + matrix[i*dim2 + k]* matrixPrime[k*dim3 + j];
365 }
366 matrix_result[i*dim3 + j] = sum;
367 sum = 0.0;

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

B.2. C code implementation of the Conjugate Gradient 133

368 }
369 }
370 }
371
372 void matrix_multiplication(unum_t *matrix_result ,
373 unum_t *matrix ,
374 unum_t *matrixPrime ,
375 unsigned comp_mbb ,
376 unsigned dim1 ,
377 unsigned dim2 ,
378 unsigned dim3) {
379 typedef union
380 {
381 double f_;
382 uint64_t i_;
383 } DoubleBits;
384 DoubleBits x_val;
385
386 //sum = 0.0;
387 x_val.f_ = 0.0;
388 GFLOAT_D2G(G0, x_val.i_);
389 for (unsigned i = 0; i < dim1; ++i) {
390 for (unsigned j = 0; j < dim3; ++j) {
391 for (unsigned k = 0; k < dim2; ++k) {
392 //sum = sum + matrix[i*dim2 + k]* matrixPrime[k*dim3 + j];
393 LDU(G1, matrix +((i*dim2 + k)*comp_mbb));
394 LDU(G2, matrixPrime +((k*dim3 + j)*comp_mbb));
395 GMUL(G3, G1 , G2);
396 GADD(G0, G0 , G3);
397 }
398 // matrix_result[i*dim3 + j] = sum;
399 STUL(matrix_result + ((i*dim3 + j)*comp_mbb), G0);
400 //sum = 0.0;
401 GFLOAT_D2G(G0, x_val.i_);
402 }
403 }
404 }
405
406 void matrix_vector_mult_scalar(double *matrix_result , double* matrix , double

multipler , unsigned dim1 , unsigned dim2) {
407 for(unsigned i = 0; i < dim1; ++i) {
408 for (unsigned j = 0; j < dim2; ++j) {
409 matrix_result[i*dim2 + j] = matrix[i*dim2 + j]* multipler;
410 }
411 }
412 }
413
414 void matrix_vector_mult_scalar(unum_t *matrix_result , unum_t* matrix , unum_t

*multipler , unsigned comp_mbb , unsigned dim1 , unsigned dim2) {
415 LDU(G2, multipler);
416 for(unsigned i = 0; i < dim1; ++i) {
417 for (unsigned j = 0; j < dim2; ++j) {
418 // matrix_result[i*dim2 + j] = matrix[i*dim2 + j]* multipler;
419 LDU(G1, matrix +((i*dim2 + j)*comp_mbb));
420 GMUL(G0, G1 , G2);
421 STUL(matrix_result + ((i*dim2 + j)*comp_mbb), G0);
422 }
423 }
424 }
425
426 void matrix_vector_mult_scalar(unum_t *matrix_result , double* matrix , unum_t

*multipler , unsigned comp_mbb , unsigned dim1 , unsigned dim2) {
427 typedef union

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

134 Appendix B. Source code Experiment 2

428 {
429 double f_;
430 uint64_t i_;
431 } DoubleBits;
432 DoubleBits x_val;
433
434 LDU(G2, multipler);
435 for(unsigned i = 0; i < dim1; ++i) {
436 for (unsigned j = 0; j < dim2; ++j) {
437 // matrix_result[i*dim2 + j] = matrix[i*dim2 + j]* multipler;
438 x_val.f_ = matrix[i*dim2 + j];
439 GFLOAT_D2G(G1, x_val.i_);
440 GMUL(G0, G1 , G2);
441 STUL(matrix_result + ((i*dim2 + j)*comp_mbb), G0);
442 }
443 }
444 }
445
446 void matrix_vector_mult_scalar(double *matrix_result , double* matrix , unum_t

*multipler , unsigned comp_mbb , unsigned dim1 , unsigned dim2) {
447 typedef union
448 {
449 double f_;
450 uint64_t i_;
451 } DoubleBits;
452 DoubleBits x_val;
453
454 LDU(G2, multipler);
455 for(unsigned i = 0; i < dim1; ++i) {
456 for (unsigned j = 0; j < dim2; ++j) {
457 // matrix_result[i*dim2 + j] = matrix[i*dim2 + j]* multipler;
458 x_val.f_ = matrix[i*dim2 + j];
459 GFLOAT_D2G(G1, x_val.i_);
460 GMUL(G0, G1 , G2);
461 GFLOAT_GL2D(x_val.i_ , G0);
462 matrix_result[i*dim2 + j] = x_val.f_;
463 }
464 }
465 }
466
467 void vector_addition(unum_t *res , unum_t *a, unum_t *b, unsigned comp_mbb ,

unsigned size) {
468 for (unsigned i = 0; i < size; ++i) {
469 // res[i] = a[i] + b[i];
470 LDU(G0, a+(i*comp_mbb));
471 LDU(G1, b+(i*comp_mbb));
472 GADD(G2, G0 , G1);
473 STUL(res + (i*comp_mbb), G2);
474 }
475 }
476
477 void vector_subtraction(unum_t *res , unum_t *a, unum_t *b, unsigned comp_mbb

, unsigned size) {
478
479 for (unsigned i = 0; i < size; ++i) {
480 LDU(G0, a+(i*comp_mbb));
481 LDU(G1, b+(i*comp_mbb));
482 GSUB(G2, G0 , G1);
483 STUL(res + (i*comp_mbb), G2);
484 }
485 }
486

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

B.2. C code implementation of the Conjugate Gradient 135

487 void copy_matrix_vector(unum_t *new_matrix , unum_t *matrix , unsigned
comp_mbb , unsigned dim1 , unsigned dim2 = 1) {

488 for (unsigned i = 0; i < dim1; ++i)
489 for (unsigned j = 0; j < dim2; ++j) {
490 // new_matrix[i*dim2 + j] = Tdst(matrix[i*dim2 + j]);
491 LDU(G0, matrix +((i*dim2 + j)*comp_mbb));
492 STUL(new_matrix +((i*dim2 + j)*comp_mbb), G0);
493 }
494 }
495
496 template <typename Tdst , typename Tsrc >
497 void copy_matrix_vector(Tdst *new_matrix , Tsrc *matrix , unsigned dim1 ,

unsigned dim2 = 1) {
498 for (unsigned i = 0; i < dim1; ++i)
499 for (unsigned j = 0; j < dim2; ++j)
500 new_matrix[i*dim2 + j] = Tdst(matrix[i*dim2 + j]);
501 }
502
503 double norm_res_unum_double(unum_t *res , int n, uint64_t mbb) //sqrt(sum((

abs(res[i]))^2))
504 {
505 // internal variables
506 unsigned i;
507 // accumulator
508 double sum=0;
509 // loaded values
510 typedef union
511 {
512 double f_;
513 uint64_t i_;
514 } DoubleBits;
515 DoubleBits int_var;
516
517 for (i=0; i<n; i++){
518 LDU(G0, res+(i*mbb));
519 GFLOAT_GL2D(int_var.i_ , G0);
520 sum += (int_var.f_ * int_var.f_);
521 // printf ("\t\tsum(%u)=%le | sqr=%le | elem=%le\n", i, sum , (int_var.

f_ * int_var.f_), int_var.f_);
522 }
523 return(sq_root_double(sum));
524 }
525
526 void copy_matrix_vector_double(double *new_matrix , double *matrix , unsigned

dim1 , unsigned dim2 = 1) {
527
528 for (unsigned i = 0; i < dim1; ++i)
529 for (unsigned j = 0; j < dim2; ++j) {
530 new_matrix[i*dim2 + j] = matrix[i*dim2 + j];
531 }
532 }
533
534 void copy_matrix_vector_double(double *new_matrix , unum_t *matrix , unsigned

comp_mbb , unsigned dim1 , unsigned dim2 = 1) {
535 typedef union
536 {
537 double f_;
538 uint64_t i_;
539 } DoubleBits;
540 DoubleBits x_val;
541
542 for (unsigned i = 0; i < dim1; ++i)
543 for (unsigned j = 0; j < dim2; ++j) {

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

136 Appendix B. Source code Experiment 2

544 // new_matrix[i*dim2 + j] = Tdst(matrix[i*dim2 + j]);
545 LDU(G0, matrix +((i*dim2 + j)*comp_mbb));
546 GFLOAT_GL2D(x_val.i_, G0);
547 new_matrix[i*dim2 + j] = x_val.f_;
548 }
549 }
550
551 /* Choice of the elements of the array B */
552 void generate_vector(double *b ,int n) {
553 for(unsigned i = 0 ; i < n ; i++) {
554 b[i]=RAN[NB_RAN -1-(i%NB_RAN)];
555 }
556 }
557
558 double sq_root_double(double x) {
559 double rt = 1, ort = 0;
560 if (x>=0 && x==x){ //X is positive and it is not NaN
561 if (x!=(double)(1.0 / 0.0)){
562 while(ort!=rt) {
563 ort = rt;
564 rt = ((x/rt) + rt) / 2;
565 }
566 return rt;
567 }else{
568 return x;
569 }
570 } else { // result is NaN
571 return (0.0/0.0); // NaN
572 }
573 }
574
575 void matrix_div_scalar(double *matrix_result , double* matrix , double

denominator , unsigned size) {
576 for(unsigned i = 0; i < size; ++i) {
577 for (unsigned j = 0; j < size; ++j) {
578 matrix_result[i*size + j] = matrix[i*size + j]/ denominator;
579 }
580 }
581 }
582
583 void transpose_matrix(double *matrixPrime , double *matrix , unsigned size) {
584 for (unsigned i = 0; i < size; ++i) {
585 for (unsigned j = 0; j < size; ++j) {
586 matrixPrime[i*size + j] = matrix[j*size + i];
587 }
588 }
589 }
590
591 void randomSDPMatrix(double *matrix , unsigned size) {
592 transpose_matrix ((double *) matrixPrime , matrix , size);
593 matrix_multiplication ((double *) matrix_mult , (double *)matrix , (double *)

matrixPrime , size , size , size);
594 matrix_div_scalar ((double *)matrix , (double *) matrix_mult , double(size),

size);
595 }
596
597 void zeros(double *matrix , unsigned dim1 , unsigned dim2 = 1) {
598 for (unsigned i = 0; i < dim1; ++i)
599 for (unsigned j = 0; j < dim2; ++j) {
600 matrix[i*dim2 + j] = 0.0;
601 }
602 }
603

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

B.2. C code implementation of the Conjugate Gradient 137

604 void zeros(unum_t *matrix , unsigned comp_mbb , unsigned dim1 , unsigned dim2 =
1) {

605 typedef union {
606 double f_;
607 uint64_t i_;
608 } DoubleBits;
609 DoubleBits x_val;
610 x_val.f_ = 0.0;
611 for (unsigned i = 0; i < dim1; ++i)
612 for (unsigned j = 0; j < dim2; ++j) {
613 // matrix[i*dim2 + j] = 0.0;
614 GFLOAT_D2G(G0, x_val.i_);
615 STUL(matrix + ((i*dim2 + j)*comp_mbb), G0);
616 }
617 }
618
619 unsigned long read_cycles(void)
620 {
621 unsigned long cycles;
622 asm volatile ("rdcycle %0" : "=r" (cycles));
623 return cycles;
624 }
625
626 void fill_matrix_market_NOS1(double matrix [237][237] , unsigned size){
627 unsigned i,j;
628 if(size ==237){
629 for(unsigned i=0; i <237; i++){
630 for(unsigned j=0; j <237; j++){
631 matrix[i][j]=0.0;
632 }
633 }
634
635 // Fill the matrix with the not -null elements
636 matrix [1 -1][1 -1] = 1.6000000000000e+05;
637 matrix [1 -1][1 -1] = 1.6000000000000e+05;
638 ...
639
640 }else{
641 printf("\n\n\n\t\t!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ERROR: matrix input

size is wrong !!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n\n\n");
642 }
643 return;
644 }
645
646 #ifdef __cplusplus
647 }
648 #endif

./Chapters/Chapter6_cg.c

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

139

Appendix C

Exploring other variable-precision
formats

The UNUM [2] and posits [3] are the two main Variable-Precision (VP) Floating-Point (FP) for-
mats available in state of the art. This thesis shows that the UNUM format is not perfect, and it
proposes a modified version of the UNUM format to compensate for the deficiencies encoun-
tered during experiments (Section 7.2.3). Compared to UNUM, the posit format provides a
better exponent encoding for small exponent values, but its footprint increases linearly among
the exponent values (Section 3.1.4).

This chapter shows that the VP FP formats available in state of the art are not perfect, and
it shows that other VP FP formats not yet explored still exists. Section C.1 describes a modified
version of the UNUM format. Section C.2 proposes a modified version of the posit format.
Section C.3 depicts a new family of VP FP formats. Finally, Section C.4 makes a comparison
between all these new formats.

C.1 A modified UNUM format

This section describes a modified version of the UNUM format that we plan to support in the
new release of the VP unit.

There are some cases where the modified UNUM format used in the VP unit (BMF) has less
precision than double due to the presence of its descriptor fields (es-1, fs-1, and u). These
fields use some bits to encode the mantissa while gaining computation precision. Even if data
in memory are stored using this format, the experiments of Chapter 6 show that the results
output precisions, compared to the IEEE 754 64-bit double format, do not differ. Thus, for at
least this set of applications, the UNUM memory format does not degrade the output result
accuracy, even if there are some cases where the representation of data in memory has less
precision than double. As a consequence, a format that has more mantissa bits can get only
benefits.

The BMF format uses MBB-byte memory slots for its encoding (Section 4.3). This “limita-
tion” on the original UNUM format [2] makes the fs-1 UNUM field useless. The bits used to
encode this field could be used to increase the mantissa precision. Furthermore, experiments
show that there is no need to have interval arithmetic support directly in the format: we used
interval arithmetic only to evaluate the computational error at the end of each application ker-
nel. Thus, the u-bit (u) field useless as well.

We propose to support the UNUM-like VP FP format depicted in Figure C.1. In this for-
mat, the size is programmable with a byte-granularity. The exponent encoding supported is
the same as conventional UNUMs, and the f field takes all the remaining bits in the slot of
MBB bytes. Unlike the conventional UNUM format, and the BMF format described in Sec-
tion 4.3, this format does not have the fs-1 and u fields since it has a fixed memory footprint
the declaration of the variable, and does not support interval arithmetic.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

140 Appendix C. Exploring other variable-precision formats

s es-1 e f
loomoon

sign

loooomoooon

exponent size

looomooon

exponent

loooooooooooomoooooooooooon

fraction

1 ess es fs
mbb

Figure C.1: The modified UNUM floating-point format

s r0r1. . . rm´1 rm e f
loomoon

sign

looooooooooomooooooooooon

regime bits

loooooooomoooooooon

exponent

loooooooooooooooomoooooooooooooooon

fraction

1 lzoc 1 (s*lzoc)+(k-s)+1 fs
mbb

Figure C.2: The modified posit floating-point format

The exponent encoding is the same as the original UNUM format (Section 3.1). Subnormal
numbers are supported. Distinguished values such as zero, infinity, and not-a-number have
distinguished encodings. Zero is encoded with all the fields set to 0. Negative zero is not
allowed. The encoding for infinity uses the es-1 and e fields with their bits all set to 1, and
the f fields with the less significant bit unset and the others set to 1. In the case that the f
field has only one bit, it is set to 0. The s field differentiates the encodings for positive and
negative infinity. Not-a-number is encoded with the es-1, the e, and the f fields with all their
bits set to 1. The s field differentiates two not-a-number encodings (i.e., signaling and quiet
not-a-number). However, we do not have any application for which these two encodings can
provide any benefit.

The user can support interval arithmetic operations with this scalar format through micro-
code. Since this format does not have the u-bit, we cannot support the concepts of almost-
infinity or almost-zero (details in Section 3.1.3). However, we did not find any applications for
which a dedicated encoding for these concepts can make any difference in the output result.
The operations that receive in input an almost-infinity produce the same output of the opera-
tions that get infinity in the input. Furthermore, operations that receive an almost-zero in input
suffer from cancellation as well as operations that get zero in the input.

C.2 A modified posit format

The main difference of the posit FP format [3] comparing to the UNUM one is its fixed size
and exponent encoding. As explained in Section 3.1, comparing to UNUM, the posit exponent
encoding can have a more compact exponent around zero at the cost of having an exponent
footprint that grows linearly (not logarithmically like in UNUM) with the exponent value. Fig-
ure C.2 shows the modified posit FP format with an exponent memory footprint that is more
compact around zero, like posit, and that its footprint grows logarithmically with the exponent
value, like UNUM.

This format is similar to the posit one (Figure 1.3, Section 3.1.4). It differs on its length
and a slightly different exponent encoding. It has a length defined with a byte granularity. Its
exponent encoding uses the regime bits, like in the posit format [3], to encode the exponent
field length. Please note that, in the posit format, the exponent field has fixed length, and the
regime bits encode the exponent offset from the value zero.

In this format, the k and the s parameters specify the minimal exponent field length and
the exponent increment gap, respectively. Their minimal value is 1. Like the es parameter in

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

C.3. A new family of not-continuous variable-precision formats 141

1 1 lzoc 1 es fs
mbb

1 s 0 r0r1. . . rm´1 rm e f
looooooooooomooooooooooon

regime bits

looomooon

exponent

1 1 es fs

2 s 1 e f
loomoon

sign

loomoon

t-flag

loooooooooooooooomoooooooooooooooon

exponent

loooooooooooooooomoooooooooooooooon

fraction

Figure C.3: The not-continuous posit floating-point format

posit, the higher the k and s values, the lower the bit-length gain around zero and the bit-length
overhead at the maximum exponent value. The equation below shows the equations for the
exponent encoding that we propose for k=1 and s=1.

exp “

$

’

’

’

’

&

’

’

’

’

%

´p
ři“lzoc

i“2 2iq ´ e´ 1, if r0 “ 0 (negative values) and lzoc ą 1
´e´ 1, if r0 “ 0 (negative values) and lzoc “ 1
`e, if r0 “ 1 (positive values) and lzoc “ 1
`p

ři“lzoc
i“2 2iq ` e, if r0 “ 1 (positive values) and lzoc ą 1

Table C.1 shows the comparison between different posit and modified posit exponent en-
codings. This comparison is made for exponent values between -32 and +31 a ; thus, the base-
line encoding is a 6-bit 2’s complement encoding b . Columns c and d represent the exponent
encodings of the posit format with the configuration parameters es=2 and es=3, respectively.
Columns e , f , g , and h represent the exponent encodings of the modified posit exponent
encoding with a different configuration of the k and s parameters. The last bit of the regime bit
field blue to help the reader to distinguish the exponent subfields.

As is possible to see, the exponent encoding of the modified-posit format guarantees expo-
nent representations nearby the exponent value zero with the same bit-length as posit, while
having a logarithmic bit-length increase with the exponent value, like UNUM. The k and s pa-
rameters change the way how the exponent values are encoded. The higher these values are,
the higher is the exponent bit-length nearby the exponent value zero, the lower is the exponent
bit-length for exponent values high in magnitude.

In some cases, posit has a more compact exponent encoding than the modified posit one.
The exponent encoding can be more compact because, unlike posit, the modified posit ex-
ponent encodings grows with a granularity of two bits. On the contrary, the modified posit
encoding has a larger dynamic than the one possible to encode in the posit format.

C.3 A new family of not-continuous variable-precision formats

State of the art for Variable-Precision (VP) Floating-Point (FP) formats focused on finding new
exponent encodings to gain mantissa precision for exponent values around zero. All these
exponent encodings are defined on continuous functions that map every exponent value with
its binary encoding [2], [3]. They compact exponent encodings for values around zero, at the
cost of having larger exponent encodings for values far from zero (Section 3.1). This section
proposes a new category of VP FP formats with a not-continuous exponent encoding to reduce
the average exponent footprint in the format.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

142 Appendix C. Exploring other variable-precision formats

Integer 2’s complement posit posit mod. posit mod. posit mod. posit mod. posit
a b es=2 c es=3 d k=1, s=1 e k=2, s=1 f k=1, s=2 g k=2, s=2 h

-32 100000 00000000100 00001000 0000111100 000111000 0001110100 00101000
-31 100001 00000000101 00001001 0000111101 000111001 0001110101 00101001
-30 100010 00000000110 00001010 0000111110 000111010 0001110110 00101010
-29 100011 00000000111 00001011 0000111111 000111011 0001110111 00101011
-28 100100 0000000100 00001100 00010000 000111100 0001111000 00101100
-27 100101 0000000101 00001101 00010001 000111101 0001111001 00101101
-26 100110 0000000110 00001110 00010010 000111110 0001111010 00101110
-25 100111 0000000111 00001111 00010011 000111111 0001111011 00101111
-24 101000 000000100 0001000 00010100 0010000 0001111100 00110000
-23 101001 000000101 0001001 00010101 0010001 0001111101 00110001
-22 101010 000000110 0001010 00010110 0010010 0001111110 00110010
-21 101011 000000111 0001011 00010111 0010011 0001111111 00110011
-20 101100 00000100 0001100 00011000 0010100 0010000 00110100
-19 101101 00000101 0001101 00011001 0010101 0010001 00110101
-18 101110 00000110 0001110 00011010 0010110 0010010 00110110
-17 101111 00000111 0001111 00011011 0010111 0010011 00110111
-16 110000 0000100 001000 00011100 0011000 0010100 00111000
-15 110001 0000101 001001 00011101 0011001 0010101 00111001
-14 110010 0000110 001010 00011110 0011010 0010110 00111010
-13 110011 0000111 001011 00011111 0011011 0010111 00111011
-12 110100 000100 001100 001000 0011100 0011000 00111100
-11 110101 000101 001101 001001 0011101 0011001 00111101
-10 110110 000110 001110 001010 0011110 0011010 00111110
-9 110111 000111 001111 001011 0011111 0011011 00111111
-8 111000 00100 01000 001100 01000 0011100 01000
-7 111001 00101 01001 001101 01001 0011101 01001
-6 111010 00110 01010 001110 01010 0011110 01010
-5 111011 00111 01011 001111 01011 0011111 01011
-4 111100 0100 01100 0100 01100 0100 01100
-3 111101 0101 01101 0101 01101 0101 01101
-2 111110 0110 01110 0110 01110 0110 01110
-1 111111 0111 01111 0111 01111 0111 01111
0 000000 1000 10000 1000 10000 1000 10000
1 000001 1001 10001 1001 10001 1001 10001
2 000010 1010 10010 1010 10010 1010 10010
3 000011 1011 10011 1011 10011 1011 10011
4 000100 11000 10100 110000 10100 1100000 10100
5 000101 11001 10101 110001 10101 1100001 10101
6 000110 11010 10110 110010 10110 1100010 10110
7 000111 11011 10111 110011 10111 1100011 10111
8 001000 111000 110000 110100 1100000 1100100 11000000
9 001001 111001 110001 110101 1100001 1100101 11000001
10 001010 111010 110010 110110 1100010 1100110 11000010
11 001011 111011 110011 110111 1100011 1100111 11000011
12 001100 1111000 110100 11100000 1100100 1101000 11000100
13 001101 1111001 110101 11100001 1100101 1101001 11000101
14 001110 1111010 110110 11100010 1100110 1101010 11000110
15 001111 1111011 110111 11100011 1100111 1101011 11000111
16 010000 11111000 1110000 11100100 1101000 1101100 11001000
17 010001 11111001 1110001 11100101 1101001 1101101 11001001
18 010010 11111010 1110010 11100110 1101010 1101110 11001010
19 010011 11111011 1110011 11100111 1101011 1101111 11001011
20 010100 111111000 1110100 11101000 1101100 1110000000 11001100
21 010101 111111001 1110101 11101001 1101101 1110000001 11001101
22 010110 111111010 1110110 11101010 1101110 1110000010 11001110
23 010111 111111011 1110111 11101011 1101111 1110000011 11001111
24 011000 1111111000 11110000 11101100 111000000 1110000100 11010000
25 011001 1111111001 11110001 11101101 111000001 1110000101 11010001
26 011010 1111111010 11110010 11101110 111000010 1110000110 11010010
27 011011 1111111011 11110011 11101111 111000011 1110000111 11010011
28 011100 11111111000 11110100 1111000000 111000100 1110001000 11010100
29 011101 11111111001 11110101 1111000001 111000101 1110001001 11010101
30 011110 11111111010 11110110 1111000010 111000110 1110001010 11010110
31 011111 11111111011 11110111 1111000011 111000111 1110001011 11010111

Table C.1: Comparison between the exponent encodings of the posit and the modified posit formats, varying
their configurations parameters

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

C.4. Formats comparison 143

´120 ´100 ´80 ´60 ´40 ´20 0 20 40 60 80 100 120

´5

0

5

10

15

20

25

Exponent values

N
or

m
al

iz
ed

ex
po

ne
nt

bi
t-

le
ng

th
posit es=2

Mod. posit k=1, s=1

UNUM ess=3

minimal exponent

Figure C.4: Exponent bit-length comparison between the posit, the UNUM, and the modified posit formats,
normalized with respect to a two’s complement 8-bit exponent encoding

The idea is straightforward: use VP exponent encodings for values nearby zero and use a
standard encoding, for instance, two’s complement or biased encodings, for values far from
zero. This configuration is worth it when the maximum exponent bit-length does not overpass
the two’s complement encoding. Figure C.3 shows an example of a VP FP format that follows
this idea. This format takes advantage of the posit exponent encoding for exponent values near
zero 1 , and the two’s complement encoding for values far from zero 2 (for large magnitude
exponent values). The threshold flag (t-flag) marks the transition between the two exponent
encodings.

The exponent encoding of this format is 1 bit larger than the posit format around zero. For
FP values nearby zero, the mantissa is 1-bit less precise than the same mantissa in the posit
format. Nevertheless, it bounds the worst-case exponent field bit-length to 1 bit as soon as the
t-flag is activated. This format may be useful in applications with a large exponent variability.
However, its benefits have to be measured in real applications with real hardware.

C.4 Formats comparison

Figure C.4 shows a comparison between the exponent encodings used for UNUM format, posit
format, and the exponent encoding that we propose in the modified posit format (Section C.2).
The horizontal axis shows all the possible exponent values which span from -128 and +127.
The vertical axis represents the bit-overhead of the exponent encoding according to the 8-bit
encoding baseline. This comparison is normalized to an 8-bit two’s complement exponent
encoding, representing the exponent encoding for a custom IEEE-like format. All the points of
the y-axis below zero are exponent encodings more compact than an 8-bit two’s complement
representation, while all the above are those requiring more bits.

The green line depicts the minimal exponent encoding, in two’s complement, for each pos-
sible exponent value. This line represents the minimum theoretical footprint that an exponent
encoding can have (-1, 0, and 1, can be encoded on 2 bits). The other three lines show the
exponent overhead for the UNUM, posit, and the modified posit encodings, with ess=3, es=2
and k=s=1, respectively. The usage of additional bits to encode the length (or the end) of the
exponent field in these encodings hinders the possibility of reaching the green line. This plot

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

144 Appendix C. Exploring other variable-precision formats

´120 ´100 ´80 ´60 ´40 ´20 0 20 40 60 80 100 120

´5

0

5

10

15

20

25

Exponent values

N
or

m
al

iz
ed

ex
po

ne
nt

bi
t-

le
ng

th
posit es=2

Not-cont. posit es=2

UNUM ess=3

minimal exponent

Figure C.5: Exponent bit-length comparison between the posit, the UNUM, and the not-continuous posit-like
formats, normalized with respect to a two’s complement 8-bit exponent encoding

depicts the three exponent encoding formats, with the configurations’ ess=3, es=2, and k=s=1,
because they share the same minimum encoding footprint.

Looking at the “window of values” where an advantage on bit footprint for the exponent
encodings exists, the posit format is better than the UNUM one. On the contrary, for exponent
values outside this window (especially for small es values in posit), the posit format has a dra-
matically worst encoding than the one used in the UNUM format. Having this worst encoding
can be dangerous in applications that use (also few) large values to do computation. They can
propagate significant cancellation errors in the computation.

The exponent encoding we propose is a tradeoff between the two exponent encodings. For
exponent values nearby zero, it behaves like the posit format being more compact than the
UNUM exponent encoding. For exponent values far from zero, it behaves like the UNUM
format being more compact than posit.

Figure C.5 depicts a similar comparison but with the not-continuous posit-like format de-
scribed in Section C.3. On the one hand, as it is possible to see, the posit format is one bit more
precise than the not-continuous format for exponent values nearby zero. This offset is due to
the threshold flag. On the other hand, this encoding is the most compact available in state of
the art for exponent values large in magnitude.

Summary This appendix shows two examples of Variable-Precision (VP) floating-point for-
mat different from state of the art. No format is better than another one in general. Every format
works better in specific exponent values ranges. This keeps the research on VP architectures,
algorithms, and formats is still open for future investigations.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

145

Bibliography

[1] “IEEE standard for floating-point arithmetic”, IEEE Std 754-2008, Aug. 2008. DOI: 10.
1109/IEEESTD.2008.4610935.

[2] J. L. Gustafson, The end of error: Unum computing, C. &.H. C. Science, Ed. Feb. 2015.

[3] J. L. Gustafson and I. Yonemoto, “Beating floating point at its own game: Posit arith-
metic”, Supercomputing Frontiers and Innovations, vol. 4, no. 2, 2017, ISSN: 2313-8734. DOI:
10.14529/jsfi170206.

[4] U. W. Kulisch, Computer arithmetic and validity: Theory, implementation, and applications.
Berlin, Boston: De Gruyter, Oct. 2018.

[5] V. Eijkhout, Introduction to high performance scientific computing. Lulu.com, Oct. 2012, ISBN:
1257992546. DOI: 10.5555/2464807.

[6] D. Zivanovic, M. Pavlovic, M. Radulovic, H. Shin, J. Son, S. A. Mckee, P. M. Carpenter,
P. Radojković, and E. Ayguadé, “Main memory in HPC: Do we need more or could we
live with less?”, ACM Transactions on Architecture and Code Optimization, vol. 14, no. 1,
3:1–3:26, Mar. 2017, ISSN: 1544-3566. DOI: 10.1145/3023362.

[7] “The rocket chip generator”, EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2016-17, Apr. 2016.

[8] J.-M. Muller, N. Brunie, F. de Dinechin, C.-P. Jeannerod, M. Joldes, V. Lefèvre, G.
Melquiond, N. Revol, and S. Torres, Handbook of floating-point arithmetic, 2nd edition.
Birkhäuser Boston, May 2018, p. 632, ISBN: 978-3-319-76525-9.

[9] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann, “MPFR: A multiple-
precision binary floating-point library with correct rounding”, ACM Transactions on Math-
ematical Softhware, vol. 33, no. 2, Jun. 2007, ISSN: 0098-3500. DOI: 10 . 1145 / 1236463 .
1236468.

[10] A. C. I. Malossi, M. Schaffner, A. Molnos, L. Gammaitoni, G. Tagliavini, A. Emerson,
A. Tomás, D. S. Nikolopoulos, E. Flamand, and N. Wehn, “The transprecision comput-
ing paradigm: Concept, design, and applications”, in Design, Automation Test in Europe
Conference Exhibition, Mar. 2018, pp. 1105–1110. DOI: 10.23919/DATE.2018.8342176.

[11] X. S. Li, J. W. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan, S. Y. Kang,
A. Kapur, M. C. Martin, B. J. Thompson, T. Tung, and D. J. Yoo, “Design, implementation
and testing of extended and mixed precision BLAS”, ACM Transactions on Mathematical
Softhware, vol. 28, no. 2, pp. 152–205, Jun. 2002, ISSN: 0098-3500. DOI: 10.1145/567806.
567808.

[12] M. Baboulin, A. Buttari, J. J. Dongarra, J. Kurzak, J. Langou, J. Langou, P. Luszczek, and
S. Tomov, “Accelerating scientific computations with mixed precision algorithms”, Com-
puter Physics Communications, vol. 180, pp. 2526–2533, Dec. 2009. DOI: 10.1016/j.cpc.
2008.11.005.

[13] M. Joldes, O. Marty, J. Muller, and V. Popescu, “Arithmetic algorithms for extended pre-
cision using floating-point expansions”, IEEE Transactions on Computers, vol. 65, no. 4,
pp. 1197–1210, Apr. 2016, ISSN: 0018-9340. DOI: 10.1109/TC.2015.2441714.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.14529/jsfi170206
https://doi.org/10.5555/2464807
https://doi.org/10.1145/3023362
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.23919/DATE.2018.8342176
https://doi.org/10.1145/567806.567808
https://doi.org/10.1145/567806.567808
https://doi.org/10.1016/j.cpc.2008.11.005
https://doi.org/10.1016/j.cpc.2008.11.005
https://doi.org/10.1109/TC.2015.2441714

146 BIBLIOGRAPHY

[14] L. Kettner and S. Näher, “Two computational geometry libraries: LEDA and CGAL”, in
Handbook of Discrete and Computational Geometry, Second Edition. Apr. 2004, pp. 1435–1463.
DOI: 10.1201/9781420035315.

[15] T. Granlund and the GMP development team, GNU MP: The GNU Multiple Precision arith-
metic library, version 5.0.5, 2012. [Online]. Available: https://gmplib.org/.

[16] F. Johansson, J. Davenport, M. Kauers, G. Labahn, and J. Urban, “Numerical integration
in arbitrary-precision ball arithmetic”, in Lecture Notes in Computer Science, vol. 10931,
Springer International Publishing, Jul. 2018, pp. 255–263. DOI: 10.1007/978- 3- 319-
96418-8_30.

[17] M. D. Ercegovac, “On-line arithmetic: An overview”, in 28th Annual Technical Symposium
on Real-Time Signal Processing VII, vol. 0495, SPIE, Nov. 1984. DOI: 10.1117/12.944012.

[18] F. Barsi and P. Maestrini, “Error correcting properties of redundant residue number sys-
tems”, IEEE Transactions on Computers, vol. C-22, no. 3, pp. 307–315, Mar. 1973, ISSN: 0018-
9340. DOI: 10.1109/T-C.1973.223711.

[19] M. G. Arnold, T. A. Bailey, J. R. Cowles, and M. D. Winkel, “Applying features of IEEE 754
to sign/logarithm arithmetic”, IEEE Transactions on Computers, vol. 41, no. 8, pp. 1040–
1050, Aug. 1992, ISSN: 2326-3814. DOI: 10.1109/12.156547.

[20] ——, “Arithmetic co-transformations in the real and complex logarithmic number sys-
tems”, IEEE Transactions on Computers, vol. 47, no. 7, pp. 777–786, Jul. 1998, ISSN: 2326-
3814. DOI: 10.1109/12.709377.

[21] J. Johnson, “Rethinking floating point for deep learning”, Nov. 2018. arXiv: 1811.01721
[cs.NA].

[22] C. B. Moler, “Iterative refinement in floating point”, J. ACM, vol. 14, no. 2, pp. 316–321,
Apr. 1967, ISSN: 0004-5411.

[23] N. J. Higham, Accuracy and stability of numerical algorithms, Second. Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics, Aug. 2002, ISBN: 978-0-89871-521-
7. DOI: 10.1137/1.9780898718027.

[24] N. Revol, “The MPFI library: Towards IEEE 1788–2015 compliance”, in Parallel Processing
and Applied Mathematics, Springer International Publishing, Mar. 2020, pp. 353–363. DOI:
10.1007/978-3-030-43222-5_31.

[25] “IEEE standard for interval arithmetic”, IEEE Std 1788-2015, pp. 1–97, Jun. 2015, ISSN:
null. DOI: 10.1109/IEEESTD.2015.7140721.

[26] E. Carson and N. J. Higham, “Accelerating the solution of linear systems by iterative
refinement in three precisions”, SIAM Journal on Scientific Computing, vol. 40, no. 2, Jan.
2018. DOI: 10.1137/17M1140819.

[27] F. Morrison, “High precision arithmetic for scientific applications”, CoRR, Sep. 2013.
arXiv: 1309.5498.

[28] D. H. Bailey, “High-precision floating-point arithmetic in scientific computation”, Com-
puting in Science Engineering, vol. 7, no. 3, May 2005. DOI: 10.1109/MCSE.2005.52.

[29] J. Thijssen, Computational physics, 2nd ed. Jun. 2007. DOI: 10.1017/CBO9781139171397.

[30] P. Grandclément, “Introduction to spectral methods”, in Stellar Fluid Dynamics and Nu-
merical Simulations: From the Sun to Neutron Stars, EAS Publications Series, Sep. 2006,
pp. 153–180. DOI: 10.1051/eas:2006112.

[31] C. Grossmann, H.-G. Roos, and M. Stynes, Numerical treatment of partial differential equa-
tions. Springer International Publishing, 2007, ISBN: 978-3-540-71582-5. DOI: 10.1007/
978-3-540-71584-9.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

https://doi.org/10.1201/9781420035315
https://gmplib.org/
https://doi.org/10.1007/978-3-319-96418-8_30
https://doi.org/10.1007/978-3-319-96418-8_30
https://doi.org/10.1117/12.944012
https://doi.org/10.1109/T-C.1973.223711
https://doi.org/10.1109/12.156547
https://doi.org/10.1109/12.709377
http://arxiv.org/abs/1811.01721
http://arxiv.org/abs/1811.01721
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1007/978-3-030-43222-5_31
https://doi.org/10.1109/IEEESTD.2015.7140721
https://doi.org/10.1137/17M1140819
http://arxiv.org/abs/1309.5498
https://doi.org/10.1109/MCSE.2005.52
https://doi.org/10.1017/CBO9781139171397
https://doi.org/10.1051/eas:2006112
https://doi.org/10.1007/978-3-540-71584-9
https://doi.org/10.1007/978-3-540-71584-9

BIBLIOGRAPHY 147

[32] D. Gottlieb and S. A. Orszag, “Numerical analysis of spectral methods: Theory and ap-
plications”, vol. 26, Jan. 1977. DOI: 10.1137/1.9781611970425.

[33] E. Hewitt and R. E. Hewitt, “The Gibbs-Wilbraham phenomenon: An episode in Fourier
analysis”, Archive for History of Exact Sciences, vol. 21, no. 2, pp. 129–160, Jun. 1979. DOI:
10.1007/BF00330404.

[34] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in c
(2nd ed.): The art of scientific computing. New York, NY, USA: Cambridge University Press,
Oct. 1992, ISBN: 0-521-43108-5.

[35] S. Boldo, F. Faissole, and A. Chapoutot, “Round-off error analysis of explicit one-step nu-
merical integration methods”, in 24th IEEE Symposium on Computer Arithmetic, London,
United Kingdom, Jul. 2017. DOI: 10.1109/ARITH.2017.22.

[36] Y. Saad, J. R. Chelikowsky, and S. M. Shontz, “Numerical methods for electronic structure
calculations of materials”, SIAM Review, vol. 52, no. 1, pp. 3–54, Feb. 2010, ISSN: 0036-
1445. DOI: 10.1137/060651653.

[37] R. Walker, Electronic structure calculations on graphics processing units: From quantum chem-
istry to condensed matter physics. Feb. 2016. DOI: 10.1002/9781118670712.

[38] G. Ofenbeck, R. Steinmann, V. Caparros, D. G. Spampinato, and M. Püschel, “Apply-
ing the roofline model”, in 2014 IEEE International Symposium on Performance Analysis of
Systems and Software, Mar. 2014, pp. 76–85. DOI: 10.1109/ISPASS.2014.6844463.

[39] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney, J. Du Croz, S. Hammar-
ling, J. Demmel, C. Bischof, and D. Sorensen, “LAPACK: A portable linear algebra li-
brary for high-performance computers”, in Proceedings of the 1990 ACM/IEEE Conference
on Supercomputing, Los Alamitos, CA, USA, Nov. 1990, pp. 2–11, ISBN: 0-89791-412-0. DOI:
10.1109/SUPERC.1990.129995.

[40] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster, “Mumps: A general purpose
distributed memory sparse solver”, in Applied Parallel Computing. New Paradigms for HPC
in Industry and Academia, T. Sørevik, F. Manne, A. H. Gebremedhin, and R. Moe, Eds.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 121–130, ISBN: 978-3-540-70734-
9. DOI: 10.1007/3-540-70734-4_16.

[41] J. Wilkinson, Rounding errors in algebraic processes. Englewood Cliffs, 1964, ISBN: 0-486-
67999-3.

[42] D. H. Bailey, R. Barrio, and J. Borwein, “High-precision computation: Mathematical
physics and dynamics”, Applied Mathematics and Computation, vol. 218, no. 20, pp. 10106
–10 121, Mar. 2012, ISSN: 0096-3003. DOI: 10.1016/j.amc.2012.03.087.

[43] D. H. Bailey and J. M. Borwein, “High-precision numerical integration: Progress and
challenges”, J. Symb. Comput., vol. 46, no. 7, pp. 741–754, Jul. 2011, ISSN: 0747-7171. DOI:
10.1016/j.jsc.2010.08.010.

[44] F. Bornemann, D. Laurie, S. Wagon, and J. Waldvogel, The SIAM 100-digit challenge, a study
in high-accuracy numerical computing, 2004. DOI: 10.1137/1.9780898717969.

[45] A. Mushtaq, A. Noreen, K. Olaussen, and I. Overbo, “Very-high-precision solutions of a
class of Schroedinger type equations”, Computer Physics Communications, vol. 182, no. 9,
pp. 1810 –1813, Sep. 2011, ISSN: 0010-4655. DOI: 10.1016/j.cpc.2010.12.046.

[46] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, “Basic linear algebra sub-
programs for fortran usage”, ACM Transactions on Mathematical Softhware, vol. 5, no. 3,
pp. 308–323, Sep. 1979, ISSN: 0098-3500. DOI: 10.1145/355841.355847.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

https://doi.org/10.1137/1.9781611970425
https://doi.org/10.1007/BF00330404
https://doi.org/10.1109/ARITH.2017.22
https://doi.org/10.1137/060651653
https://doi.org/10.1002/9781118670712
https://doi.org/10.1109/ISPASS.2014.6844463
https://doi.org/10.1109/SUPERC.1990.129995
https://doi.org/10.1007/3-540-70734-4_16
https://doi.org/10.1016/j.amc.2012.03.087
https://doi.org/10.1016/j.jsc.2010.08.010
https://doi.org/10.1137/1.9780898717969
https://doi.org/10.1016/j.cpc.2010.12.046
https://doi.org/10.1145/355841.355847

148 BIBLIOGRAPHY

[47] A. Agrawal, S. M. Mueller, B. M. Fleischer, X. Sun, N. Wang, J. Choi, and K. Gopalakr-
ishnan, “DLFloat: A 16-b floating point format designed for deep learning training and
inference”, in IEEE 26th Symposium on Computer Arithmetic, Jun. 2019, pp. 92–95. DOI:
10.1109/ARITH.2019.00023.

[48] N. Burgess, J. Milanovic, N. Stephens, K. Monachopoulos, and D. Mansell, “Bfloat16 pro-
cessing for neural networks”, in IEEE 26th Symposium on Computer Arithmetic, Jun. 2019,
pp. 88–91. DOI: 10.1109/ARITH.2019.00022.

[49] M. J. Schulte and E. E. Swartzlander, “A family of variable-precision interval arithmetic
processors”, IEEE Transactions on Computers, vol. 49, no. 5, pp. 387–397, May 2000, ISSN:
0018-9340. DOI: 10.1109/12.859535.

[50] Y. Uguen, L. Forget, and F. de Dinechin, “Evaluating the hardware cost of the posit num-
ber system”, in FPL 2019 - 29th International Conference on Field-Programmable Logic and
Applications (FPL), Barcelona, Spain, Sep. 2019, pp. 1–8. DOI: 10.1109/FPL.2019.00026.

[51] R. Kirchner and U. W. Kulisch, “Accurate arithmetic for vector processors”, Journal of
Parallel and Distributed Computing, vol. 5, no. 3, pp. 250–270, Jun. 1988, ISSN: 0743-7315.
DOI: 10.1016/0743-7315(88)90020-2.

[52] R. Kirchner and U. W. Kulisch, “Accurate arithmetic for vector processors”, Journal of
Parallel and Distributed Computing, vol. 5, no. 3, pp. 250–270, Jun. 1988, ISSN: 0743-7315.
DOI: 10.1016/0743-7315(88)90020-2.

[53] A. Knöfel, “Fast hardware units for the computation of accurate dot products”, in Pro-
ceedings 10th IEEE Symposium on Computer Arithmetic, Jun. 1991, pp. 70–74. DOI: 10.1109/
ARITH.1991.145536.

[54] M. Muller, C. Rub, and W. Rulling, “Exact accumulation of floating-point numbers”, in
Proceedings 10th IEEE Symposium on Computer Arithmetic, Jun. 1991, pp. 64–69, ISBN: 0-
8186-9151-4. DOI: 10.1109/ARITH.1991.145535.

[55] P. R. Capello and W. L. Miranker, “Systolic super summation”, IEEE Transactions on Com-
puters, vol. 37, no. 6, pp. 657–677, Jun. 1988, ISSN: 2326-3814. DOI: 10.1109/12.2205.

[56] J. Kernhof, C. Baumhof, B. Hofflinger, U. W. Kulisch, S. Kwee, P. Schramm, M. Selzer, and
T. Teufel, “A CMOS floating-point processing chip for verified exact vector arithmetic”,
in Twientieth European Solid-State Circuits Conference, Sep. 1994, pp. 196–199, ISBN: 2-86332-
160-9.

[57] U. W. Kulisch, “The fifth floating-point operation for top-performance computers
accumulation of floating-point numbers and products in fixed-point arithmetic”, in
Forschungsschwerpunkts Computerarithmetik, Intervall-rechnung und Numerische Algorith-
men mit Ergebnisverifikation, Universität Karls-ruhe, Apr. 1997. DOI: 10.5445/IR/70197.

[58] D. R. Lutz and C. N. Hinds, “High-precision anchored accumulators for reproducible
floating-point summation”, in IEEE 24th Symposium on Computer Arithmetic, Jul. 2017,
pp. 98–105. DOI: 10.1109/ARITH.2017.20.

[59] N. Brunie, “Modified fused multiply and add for exact low precision product accumu-
lation”, in IEEE 24th Symposium on Computer Arithmetic, Jul. 2017, pp. 106–113. DOI: 10.
1109/ARITH.2017.29.

[60] J. Koenig, D. Biancolin, J. Bachrach, and K. Asanovic, “A hardware accelerator for com-
puting an exact dot product”, in IEEE 24th Symposium on Computer Arithmetic, Jul. 2017,
pp. 114–121. DOI: 10.1109/ARITH.2017.38.

[61] M. S. Cohen, T. E. Hull, and V. C. Hamacher, “CADAC: A controlled-precision decimal
arithmetic unit”, IEEE Transactions on Computers, vol. C-32, no. 4, pp. 370–377, Apr. 1983,
ISSN: 0018-9340. DOI: 10.1109/TC.1983.1676238.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

https://doi.org/10.1109/ARITH.2019.00023
https://doi.org/10.1109/ARITH.2019.00022
https://doi.org/10.1109/12.859535
https://doi.org/10.1109/FPL.2019.00026
https://doi.org/10.1016/0743-7315(88)90020-2
https://doi.org/10.1016/0743-7315(88)90020-2
https://doi.org/10.1109/ARITH.1991.145536
https://doi.org/10.1109/ARITH.1991.145536
https://doi.org/10.1109/ARITH.1991.145535
https://doi.org/10.1109/12.2205
https://doi.org/10.5445/IR/70197
https://doi.org/10.1109/ARITH.2017.20
https://doi.org/10.1109/ARITH.2017.29
https://doi.org/10.1109/ARITH.2017.29
https://doi.org/10.1109/ARITH.2017.38
https://doi.org/10.1109/TC.1983.1676238

BIBLIOGRAPHY 149

[62] T. E. Hull, M. S. Cohen, and C. B. Hall, “Specifications for a variable-precision arith-
metic coprocessor”, in Proceedings 10th IEEE Symposium on Computer Arithmetic, Jun. 1991,
pp. 127–131. DOI: 10.1109/ARITH.1991.145548.

[63] N. Anane, H. Bessalah, M. Issad, K. Messaoudi, and M. Anane, “Hardware implemen-
tation of variable precision multiplication on FPGA”, in Design Technology of Integrated
Systems in Nanoscal Era, Apr. 2009, pp. 77–81. DOI: 10.1109/DTIS.2009.4938028.

[64] Y. Lei, Y. Dou, J. Zhou, and S. Wang, “VPFPAP: A special-purpose VLIW processor for
variable-precision floating-point arithmetic”, in Field Programmable Logic and Applications,
Sep. 2011, pp. 252–257. DOI: 10.1109/FPL.2011.51.

[65] Y. Lei, Y. Dou, S. Guo, and J. Zhou, “FPGA implementation of variable-precision floating-
point arithmetic”, in Advanced Parallel Processing Technologies, Springer Berlin Heidelberg,
Sep. 2011, pp. 127–141, ISBN: 978-3-642-24151-2.

[66] M. M. Ozbilen and M. Gok, “A multi-precision floating-point adder”, in Ph.D. Research in
Microelectronics and Electronics, Jun. 2008, pp. 117–120. DOI: 10.1109/RME.2008.4595739.

[67] H. Kaul, M. Anders, S. Mathew, S. Hsu, A. Agarwal, F. Sheikh, R. Krishnamurthy,
and S. Borkar, “A 1.45GHz 52-to-162GFLOPS/W variable-precision floating-point fused
multiply-add unit with certainty tracking in 32nm CMOS”, in IEEE International Solid-
State Circuits Conference, Feb. 2012, pp. 182–184. DOI: 10.1109/ISSCC.2012.6176987.

[68] S. Arish and R. K. Sharma, “Run-time reconfigurable multi-precision floating point mul-
tiplier design for high speed, low-power applications”, in Signal Processing and Integrated
Networks, Feb. 2015, pp. 902–907. DOI: 10.1109/SPIN.2015.7095315.

[69] M. Nakata, “Poster: MPACK 0.7.0: Multiple precision version of BLAS and LAPACK”,
in 2012 SC Companion: High Performance Computing, Networking Storage and Analysis, Nov.
2012, pp. 1353–1353. DOI: 10.1109/SC.Companion.2012.183.

[70] Z. Xianyi, W. Qian, and Z. Chothia, “OpenBLAS”, 2014. [Online]. Available: http://
xianyi.github.io/OpenBLAS.

[71] D. M. Priest, “Algorithms for arbitrary precision floating point arithmetic”, in Proceed-
ings 10th IEEE Symposium on Computer Arithmetic, Jun. 1991, pp. 132–143. DOI: 10.1109/
ARITH.1991.145549.

[72] J. R. Shewchuk, “Adaptive precision floating-point arithmetic and fast robust geometric
predicates”, Discrete & Computational Geometry, vol. 18, no. 3, pp. 305–363, Oct. 1997, ISSN:
1432-0444. DOI: 10.1007/PL00009321.

[73] F. Zaruba and L. Benini, “The cost of application-class processing: Energy and perfor-
mance analysis of a Linux-ready 1.7-GHz 64-bit RISC-V core in 22-nm FDSOI technol-
ogy”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27, no. 11,
pp. 2629–2640, Jul. 2019. DOI: 10.1109/TVLSI.2019.2926114.

[74] F. de Dinechin, L. Forget, J.-M. Muller, and Y. Uguen, “Posits: The good, the bad and the
ugly”, in CoNGA’19, ACM, Mar. 2019, 6:1–6:10, ISBN: 978-1-4503-7139-1. DOI: 10.1145/
3316279.3316285.

[75] A. Rao, “The RoCC doc v2: An introduction to the rocket custom coprocessor interface”,
Tech. Rep.

[76] R. Chandra, L. Dagum, D. Kohr, R. Menon, D. Maydan, and J. McDonald, Parallel pro-
gramming in OpenMP. Morgan kaufmann, Jan. 2001, ISBN: 978-1-55860-671-5. DOI: 10.
5555/355074.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

https://doi.org/10.1109/ARITH.1991.145548
https://doi.org/10.1109/DTIS.2009.4938028
https://doi.org/10.1109/FPL.2011.51
https://doi.org/10.1109/RME.2008.4595739
https://doi.org/10.1109/ISSCC.2012.6176987
https://doi.org/10.1109/SPIN.2015.7095315
https://doi.org/10.1109/SC.Companion.2012.183
http://xianyi.github.io/OpenBLAS
http://xianyi.github.io/OpenBLAS
https://doi.org/10.1109/ARITH.1991.145549
https://doi.org/10.1109/ARITH.1991.145549
https://doi.org/10.1007/PL00009321
https://doi.org/10.1109/TVLSI.2019.2926114
https://doi.org/10.1145/3316279.3316285
https://doi.org/10.1145/3316279.3316285
https://doi.org/10.5555/355074
https://doi.org/10.5555/355074

150 BIBLIOGRAPHY

[77] D. Kirk, “NVIDIA CUDA software and GPU parallel computing architecture”, in Proceed-
ings of the 6th International Symposium on Memory Management, ser. ISMM ’07, New York,
NY, USA: ACM, Oct. 2007, pp. 103–104, ISBN: 978-1-59593-893-0. DOI: 10.1145/1296907.
1296909.

[78] A. Munshi, “The OpenCL specification”, in IEEE Hot Chips 21 Symposium, IEEE, Aug.
2009, pp. 1–314. DOI: 10.1109/HOTCHIPS.2009.7478342.

[79] M. R. Hestenes and E. L. Stiefel, “Methods of conjugate gradients for solving linear sys-
tems”, vol. 49, no. 6, Dec. 1952. DOI: 10.6028/jres.049.044.

[80] P. Vivet, E. Guthmuller, Y. Thonnart, G. Pillonnet, G. Moritz, I. Miro-Panadès, C. Fuguet,
J. Durupt, C. Bernard, D. Varreau, J. Pontes, S. Thuries, D. Coriat, M. Harrand, D. Du-
toit, D. Lattard, L. Arnaud, J. Charbonnier, P. Coudrain, A. Garnier, F. Berger, A. Gueug-
not, A. Greiner, Q. Meunier, A. Farcy, A. Arriordaz, S. Cheramy, and F. Clermidy, “A
220GOPS 96-core processor with 6 chiplets 3D-stacked on an active interposer offering
0.6ns/mm latency, 3Tb/s/mm2 inter-chiplet interconnects and 156mW/mm2 @ 82%-
peak-efficiency DC-DC converters”, in 2019 IEEE International Solid-State Circuits Con-
ference - (ISSCC), Feb. 2020. DOI: 10.1109/ISSCC19947.2020.9062927.

[81] Matrix market repository, Accessed: 2019-11-30, May 2007. [Online]. Available: https://
math.nist.gov/MatrixMarket/.

[82] R. F. Boisvert, R. Pozo, K. Remington, R. F. Barrett, and J. J. Dongarra, “Matrix market:
A web resource for test matrix collections”, in Proceedings of the IFIP TC2/WG2.5 Working
Conference on Quality of Numerical Software: Assessment and Enhancement, London, UK, UK:
Chapman & Hall, Ltd., Jan. 1997, pp. 125–137, ISBN: 978-1-5041-2942-8. DOI: 10.1007/
978-1-5041-2940-4_9.

[83] A. Waterman and K. Asanović, “The RISC-V instruction set manual, volume i: User-level
ISA”, Tech. Rep., version 2.2, May 2017.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI065/these.pdf
© [A. Bocco], [2020], INSA Lyon, tous droits réservés

https://doi.org/10.1145/1296907.1296909
https://doi.org/10.1145/1296907.1296909
https://doi.org/10.1109/HOTCHIPS.2009.7478342
https://doi.org/10.6028/jres.049.044
https://doi.org/10.1109/ISSCC19947.2020.9062927
https://math.nist.gov/MatrixMarket/
https://math.nist.gov/MatrixMarket/
https://doi.org/10.1007/978-1-5041-2940-4_9
https://doi.org/10.1007/978-1-5041-2940-4_9

	Notice XML
	Page de titre
	Contents
	Abstract
	Acknowledgements
	Introduction
	Motivations for the variable precision
	Benefits of variable precision in Floating-Point computing
	Precision versus accuracy
	Different notions of variable precision
	Fixed-point computing
	Mixed-precision
	Extended-precision
	Arbitrary- (or infinite-) precision
	Other exotic alternatives

	Numerical problems in floating-point computing
	Using interval arithmetic to bound the rounding error

	Variable precision: improving and tracking applications computational error
	Variable precision to bound the computational error

	Variable precision for high-precision scientific applications
	High precision scientific application domains
	Computational physic
	Computational chemistry

	Solving large linear systems
	Difference between direct and iterative algorithms
	Wilkinson-Moler bounds

	Problems in using variable-precision computing
	Impact of high precision in computing systems
	Significand sizes for variables involved in scientific computing
	Memory constraints for variables involved in scientific computing

	Impact of low precision in computing systems

	State of the Art: what is known for variable precision
	Variable-precision FP formats and representations
	The custom IEEE-like formats
	Exponent-harvesting techniques
	Exponent-harvesting formats: the UNUM format
	How to decode the UNUM format
	The ubound and the gbound formats
	Advantages and disadvantages of using the UNUM format

	Exponent-harvesting formats: the posit format
	How to decode the posit format

	Comparison between the variable-precision formats
	Software and hardware implementations for variable-precision computing
	Multiple-precision software libraries
	Existing floating-point units in the state of the art
	Data bit-width in modern computing systems

	Kulisch: eliminate the round-off error using long accumulators
	Schulte: contain the round-off error extending the mantissa precision

	System architecture for the variable-precision computing unit
	Supporting variable precision in hardware
	Supporting different variable precision formats
	Controlling the interval explosion effect in a UNUM computing unit

	Optimizing variable-precision floating-point formats for memory
	Mapping of the UNUM fields in memory
	Main memory organization of UNUM array elements

	The Bounded Memory Format: fitting UNUM in a modern memory hierarchy
	BMF, a memory-friendly version of the UNUM type I format
	BMF encodings when MBB is larger than the UNUM bit-length
	BMF encodings when MBB is smaller than the UNUM bit-length
	Putting all together: The BMF encoding for the UNUM format
	An alternative BMF encoding

	Issues on supporting variable-precision formats
	Hardware overhead due to variable-length fields
	Instruction encoding issues
	Data-dependent error bounds
	Encoding overhead of variable-precision

	Hardware architecture for the variable-precision computing unit
	Overview of the RISC-V-based system
	Architecture of the accelerator
	Choice of the variable-precision format of the register file
	Improving code efficiency through status registers

	The programming model for the variable-precision computing unit
	The ISA for the variable-precision computing unit
	Programmer view for the variable-precision computing unit
	Base instruction formats
	Status registers instruction set
	Instruction set for load and store operations
	Load behavior
	Store behavior
	Load and store instructions

	Instruction set for move operations
	Instruction set for gbound arithmetic instructions
	Instruction set for variable-precision conversion operations

	Compiler prototype: support variable-precision with a vpfloat datatype
	Example: how to write a variable-precision program

	Micro-architecture for the variable-precision computing unit
	Choice of a macro-pipelined architecture
	Micro-architecture: drawbacks and solutions
	Variable-precision architecture for arithmetic operators
	Move operator
	Adder operator
	Multiplier operator
	Comparator operator
	Conversion operator
	Load and store unit
	The load path
	The store path
	Memory consistency hardware mechanisms

	ASIC synthesis results and FPGA integration
	Validation of the units
	FPGA integration
	ASIC integration: synthesis results

	Experimentation
	Experiment 1: Variable-precision benefits for direct methods
	Experiment 2: Variable-precision benefits in iterative methods
	Experiment 3: performance benchmark MPFR vs. UNUM

	Conclusions and future works
	Conclusions about the UNUM format
	Future works
	Hardware optimizations for the variable-precision architecture
	Importing variable-precision support in existing software programs
	Future perspectives for variable-precision formats

	Source code Experiment 1
	The Gauss kernel in conventional IEEE 754 formats
	The Gauss kernel for variable precision in pseudocode
	The Gauss kernel for variable precision in C and inline assembly

	Source code Experiment 2
	Complete code for Conjugate Gradient
	C code implementation of the Conjugate Gradient

	Exploring other variable-precision formats
	A modified UNUM format
	A modified posit format
	A new family of not-continuous variable-precision formats
	Formats comparison

	Bibliography

