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Abstract

Adult skeletal muscle is capable of complete regeneration after an acute injury. The main parameter studied to
assess muscle regeneration efficacy is the cross-sectional area (CSA) of the myofibers as myofiber size correlates
with muscle force. CSA analysis can be time-consuming and may trigger variability in the results when performed
manually. This is why programs were developed to completely automate the analysis of the CSA, such as SMASH,
MyoVision, or MuscleJ softwares. Although these softwares are efficient to measure CSA on normal or hypertrophic/
atrophic muscle, they fail to efficiently measure CSA on regenerating muscles. We developed Open-CSAM, an
ImageJ macro, to perform a high throughput semi-automated analysis of CSA on skeletal muscle from various
experimental conditions. The macro allows the experimenter to adjust the analysis and correct the mistakes done
by the automation, which is not possible with fully automated programs. We showed that Open-CSAM was more
accurate to measure CSA in regenerating and dystrophic muscles as compared with SMASH, MyoVision, and
MuscleJ softwares and that the inter-experimenter variability was negligible. We also showed that, to obtain a
representative CSA measurement, it was necessary to analyze the whole muscle section and not randomly selected
pictures, a process that was easily and accurately be performed using Open-CSAM. To conclude, we show here an
easy and experimenter-controlled tool to measure CSA in muscles from any experimental condition, including
regenerating muscle.

Background
Skeletal muscle is capable of complete regeneration after
an acute injury [1]. Skeletal muscle integrity is usually
assessed by histological analyses, consisting of staining
and/or immunofluorescent labeling of various cellular or
molecular structural components of the tissue. Among
these analyses, myofiber cross-sectional area (CSA) is
widely used because it reflects the regenerative capacity
of the muscle, i.e., the formation of new myofibers from
the activation, proliferation, differentiation, and fusion of
muscle stem cells [1]. CSA measurement is usually per-
formed after immunofluorescent staining of laminin, a

component of the basal lamina surrounding each myofi-
ber, or of dystrophin that is located at the inside face of
the sarcolemma.
Analysis methods range from manual quantification to

programs showing various levels of automation. Manual
quantification is potentially the most accurate method as
the experimenter keeps total control over the myofibers
being analyzed. However, the manual procedure is highly
time-consuming and may present variability between
experimenters. This is why automated programs were
developed to limit the experimenter input and save time
[2–7]. For example, SMASH [7] is a semi-automated
open source MATLAB script allowing the assessment of
several parameters, including CSA. MyoVision, a Win-
dows program [2], was developed to fully automate the
quantification process. This program combines several
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algorithms that were previously used separately in other
programs, thus reducing the errors in the fiber identifi-
cation and leading to a more accurate CSA measure-
ment compared to SMASH on uninjured muscle [2].
Recently, MuscleJ, a fully automated plug-in in ImageJ
described the fully automated quantification of various
skeletal muscle parameters, including CSA [8].
Most of the automated softwares were tested on nor-

mal muscle or under conditions triggering atrophy/
hypertrophy. In this context, the shape of the myofibers
keeps polygonal and angular, myofibers keeping their
contact with each other. On the contrary, regenerating
muscle is characterized by the presence of round-shaped
regenerating myofibers of highly variable size that, for
the smallest ones, do not regularly contact surrounding
fibers. Thus, variable myofiber shape, size, and extrafiber
space characterize the regenerating muscle, rendering
the automated quantification more difficult.
Here, we present a semi-automated CSA quantifica-

tion method for skeletal muscle images applicable on
any type of muscle and under any condition, including
early and late regenerating muscle and dystrophic
muscle. This method, named Open-CSAM (for Open
[free]-Cross Sectional Area Measurement), is based on
an ImageJ macro designed to automatically quantify
CSA on immunofluorescent picture of the whole skeletal
muscle section. It also includes some level of flexibility
for the experimenter, allowing manual correction of the
mistakes made by the automation. Moreover, it allows
the analysis of the size of the myofibers on the whole
muscle section, which we show here to be necessary to
obtain an accurate measurement.

Methods
Animals and tissue preparation
C57BL/6 and mdx mice were used according to the
French legislation. All experiments were performed on
mice between 8- and 12-week-old, except for old mice,
which were 2-year-old. In injury experiments, Tibialis
Anterior (TA) muscles were injected with 50 μl of cardi-
otoxin (Latoxan) at 12 μM as previously described [9].
Fibrotic dystrophic mice (Fib-mdx) were generated as
previously described [10] and mice were analyzed
1 week after the last injuries. TA muscles were
mounted on pieces of cork and fixed with tragacanth
gum. Then, they were frozen in isopentane cooled by
liquid nitrogen and further stored at − 80 °C. TA mus-
cles were sectioned thanks to a cryomicrotome
(CM3050s, Leica), and the thickness of cryosection was
8 to 10 μm. The slides were then stored at − 80 °C until
immunostaining. TA muscles showing more than 15%
of uninjured area (i.e., without centrally located nuclei),
indicating that CTX did not spread into the entire
muscle, were excluded from the study.

Immunofluorescence
Slides were dried for 10 min at room temperature.
Muscle cryosections were encircled with a hydrophobic
pen (Dako) and were incubated with PBS containing
Triton 0.5% for 10 min and then washed three times
with PBS. They were incubated with BSA 2% for 1 h at
room temperature and then incubated overnight with a
rabbit anti-laminin antibody (1:200, L9393, Sigma-Al-
drich) at 4 °C in a moist chamber. Slides were washed
three times with PBS and incubated with FITC-conju-
gated donkey anti-rabbit secondary antibody (1:200;
711–095-152, Jackson Laboratories) at 37 °C for 45 min.
Sections were soaked for 10 s in Hoechst solution H
33342 (1:1000, B2261, Sigma-Aldrich) and were washed
once with PBS before mounting with antifading Fluoro-
mount G medium (FP-483331, Interchim). Slides were
stored at 4 °C protected from light until picture
acquisition.

Image acquisition and quantification
As much as possible, the various conditions to be
compared (e.g., WT vs. KO, normal vs. dystrophic
muscle) should be recorded in similar conditions (micro-
scope, magnification, exposure time, binning). For
Open-CSAM validation and comparison with other
softwares, at least 10 images were acquired manually at
× 20 of magnification on an Axio Imager.Z1 microscope
(Zeiss) connected to a CoolSNAP MYO CCD camera
(photometrics) using MetaMorph Software (molecular
devices). For whole cryosection analysis, slides were
automatically scanned at × 10 of magnification using an
Axio Observer.Z1 (Zeiss) connected to a CoolSNAP
HQ2 CCD Camera (photometrics). The image of the
whole cryosection was automatically reconstituted in
MetaMorph Software. Open-CSAM was able to analyze
images up to 110 Mo in 8 bit or 220 Mo in 16 bit. In
case the final picture was too big to be analyzed at once
because of limitation of ImageJ capacities, the picture
was split into several parts (two to four) for the auto-
mated analysis. Between 2000 and 4000 fibers were
analyzed in a few seconds. Open-CSAM workflow is
presented in Fig. 1. The detailed macro code and expla-
nations of the various functions are given in
Additional file 1: Figure S1. If necessary, at the end of
the automated measurement, manual correction is
performed using ImageJ. The selection tools in the ROI
Manager were used to remove “false” myofibers created
by the automation, and the “Freehand selections” tool
was used for hand-drawing “lacking” myofibers missed
by the automation. These tools were used for full
manual quantification. A tutorial is provided in
Additional file 2: Figure S2.
MyoVision and MuscleJ analyses were performed as

described [2, 8]. SMASH analysis was implemented with

Desgeorges et al. Skeletal Muscle _#####################_ Page 2 of 12



a segmentation filter set to 11 [7]. This was empirically
determined by testing values between 5 and 12 and visu-
ally inspecting the results. For MuscleAnalyzer analysis,
the TIFF pipeline was tested following recommendations
provided in the tutorial video [11]. Several threshold
values were tested from 1 to 0.955 with no difference on
the results. In all analyses, the applied size filter was the
same as the one used for Open-CSAM (Table 1).

Statistical analyses
All images were acquired from at least two independent
TA muscles per experimental condition and at least five
randomly selected images per muscle were analyzed.

Fig. 1 Open-CSAM workflow. Step 1: When the macro starts, a window automatically opens to select the image to be analyzed (here muscle
cryosections immunostained for laminin). Step 2: Open-CSAM applies the ImageJ threshold “Huang” on the image. Huang threshold was chosen
by empiric assays. Threshold application allows image binarization. Step 3: open function allows to adjust the myofiber contours. Myofibers are
filled by the function “fill holes.” Step 4: Only the entire myofibers are selected to be analyzed. Other selected parameters as circularity and the
size are used to avoid the inclusion of too many false myofibers. Step 5: The area of the selected myofibers is measured. Step 6: At the end of
the measurement, all the region of interests (ROI, here the myofibers) are automatically superimposed for visual checking. It is then possible to
manually delete or add new myofibers. Bars = 25 μm

Table 1 Recommended size and circularity thresholds

Muscle type Size threshold Circularity threshold

D0 (young and old) 200 μm2* 0.4

D8 50 μm2 then adjust* 0.4

D14 100 μm2 then adjust* 0.4

D28 (young and old) 150 μm2 then adjust* 0.4

Fib-mdx 50 μm2 0.4
*If too many small myofibers are missed, progressively decrease the size
threshold by testing on 2–3 representative pictures

Desgeorges et al. Skeletal Muscle _#####################_ Page 3 of 12



The Student t test, two-way ANOVA, or Spearman cor-
relation test were used for statistical analyses. P < 0.05
was considered significant.

Results
Open-CSAM is more accurate than previously described
softwares
In order to test the accuracy of Open-CSAM, its
performance was compared with a fully manual
quantification, a semi-automated software (SMASH),
as well as two fully automated softwares: MyoVision
and MuscleJ (Fig. 2). We analyzed TA muscle from
various conditions, including uninjured muscle,
regenerating muscle at several time points after
acute injury (D8 and D14) in young and old mice,
and a model of fibrotic dystrophy (Fib-mdx). Quanti-
fication was performed on cryosections immuno-
fluorescently labeled with anti-laminin antibody,
which labels the myofiber basal lamina. Immunola-
beling against dystrophin or sarcolemal proteins was
not used as this precludes the analysis in dystrophies
where these proteins are lacking or altered. As previ-
ously described [2], MyoVision produced significantly
higher mean CSA values as compared with manual
quantification (Fig. 2a, between 4.3 and 47.7%
increase depending on the experimental condition).
Mean CSA values obtained with MuscleJ were simi-
lar to the manual quantification for uninjured young
as well as 14 and 28 days post-injury muscles.
However, it gave higher mean CSA values in 8 days
post-injury regenerating muscles, old muscles (unin-
jured and 28 days post-injury), and dystrophic
muscles (Fig. 2a, between 3.2 and 19.4% increase).
Mean CSA values obtained with SMASH were very
close to the manual quantification in uninjured old
and young 8- and 28-days post-injury muscles.
However, SMASH produced higher mean CSA values
in uninjured muscles (young and old) (+ 3 and + 1%,
respectively), and lower mean CSA values in 14 days
post-injury muscles (− 4%) (Fig. 2a). On the other
hand, Open-CSAM without manual correction gave
mean CSA values close to those obtained manually,
with a slight underestimation (between 2 and 7.3%
decrease as compared with manual quantification),
except in Fib-mdx muscles where it was slightly
overestimated (+ 4.4%) (Fig. 2a). This was explained
by the fact that Open-CSAM measured the area
inside the basal lamina staining, which corresponds
to the true area of the myofiber. With manual quan-
tification, the experimenter tends to draw the limits
of the myofibers more on the laminin staining, thus
including a small part of the basal lamina, therefore
slightly overestimating the myofiber area (Fig. 2a). In
the case of Fib-mdx muscle, the overestimation by

Open-CSAM was explained by an oversight of small myofi-
bers (see below). During the revision process of this manu-
script, MuscleAnalyzer, a customized pipeline within the
CellProfiler program allowing fully automated CSA meas-
urement, was released [11]. We tested this pipeline on the
same samples as above (Additional file 3: Figure S3). As it
strongly overestimated mean CSA as compared with man-
ual quantification (between 38.4% and 254.8% increase
depending on the condition), this software was not consid-
ered for further analysis.
Despite an increased CSA value obtained using

MyoVision, the correlation between MyoVision and
manual quantification for each picture was strong in
uninjured muscles (young and old mice), as well as
14 and 28 days post-injury regenerating muscles
(Fig. 2b and Additional file 4: Figure S4A, R2 > 0.95),
suggesting that in these conditions, CSA overesti-
mation by MyoVision was similar on all the pictures
and did not introduce a specific bias. On the contrary,
the correlation was much lower on muscles at 8 days
post-injury, 28 days post-injury in old mice and in fibrotic
muscles (Fig. 2b and Additional file 4: Figure S4A, R2 < 0.89),
which represent conditions exhibiting smaller myofi-
bers and/or defects in regeneration. Similarly, overall
correlation between MuscleJ and manual quantifica-
tion was very strong in uninjured muscles (young and
old mice, Fig. 2b and Additional file 4: Figure S4A,
R2 > 0.97). Although this correlation was lower on
young 8 days and old 28 days post-injury as well as
on fibrotic muscles, it was better than MyoVision. Fi-
nally, correlation was lower with MuscleJ than with
MyoVision for the 14 and 28 days post-injury condi-
tions. Correlation between SMASH and manual quan-
tification was strong in uninjured young muscles
(Fig. 2b, R2 = 0.97). However, correlation was less
good when compared with MyoVision and MuscleJ in
28 days post-injury muscles (young and old mice,
Additional file 4: Figure S4A, R2 = 0.8352 for young
and 0.9278 for old). For all other conditions, SMASH
accuracy compared with manual quantification was
intermediate between that of MyoVision and of
MuscleJ (Additional file 4: Figure S4A, 0.8489 < R2 <
0.9364). These data indicate that the differences
observed between manual quantification and MyoVi-
sion, MuscleJ, or SMASH are condition-dependent,
thus introducing a bias. We then used Open-CSAM,
first without applying any manual correction. The
correlation between Open-CSAM and manual quanti-
fication was better or equivalent to that of MyoVision,
MuscleJ, or SMASH in all the analyzed experimental
conditions (Fig. 2b and Additional file 4: Figure S4A,
R2 > 0.9454). This suggests that Open-CSAM perform-
ance was more consistent through the various experi-
mental conditions.
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Fig. 2 Open-CSAM comparison with MyoVision, MuscleJ, and SMASH softwares. The same pictures were analyzed either by manual measurement
or using Open-CSAM (with or without manual correction), MyoVision, MuscleJ, or SMASH softwares. a Mean cross-section area (CSA) obtained on
various Tibialis Anterior (TA) muscles. Muscles were isolated from 8- to 12-week-old mice uninjured (D0) or 8 days (D8), 14 days (D14), and 28 days
(D28) post-cardiotoxin (CTX) injury, from 2-year-old mice uninjured (D0 old) or 28 days post-CTX injury (D28 old) and from dystrophic fibrotic
mice (Fib-mdx). Results are mean ± SEM of 10 images from 2 muscles (Fib-mdx), 20 images from 2 muscles (D0 and D0 old), 30 images from 3
muscles (D28 and D28 old), 40 images from 4 muscles (D8), and 45 images from 4 muscles (D14). b Correlation between manual measurement (X
axis) and Open-CSAM (without manual correction), MyoVision, MuscleJ, or SMASH (Y axis) measurements performed on the same images used in
a. Each dot represents a picture. The dotted line represents the identity line. c Representative images measured manually, by Open-CSAM (before
and after correction), MyoVision, MuscleJ, or SMASH softwares. Red fibers were false myofibers identified by the softwares, and green fibers were
myofibers not considered by the Open-CSAM software and manually drawn. Lacking myofibers using MyoVision, MuscleJ, or SMASH softwares are
shown by red asterisks. d Distribution of the CSA obtained with the six methods using the Fib-mdx samples used in a. Results are mean ± SEM of
10 images from 2 muscles (Fib-mdx). White bar = 25 μm. *p < 0.05, **p < 0.01, and ***p < 0.001 as compared with manual quantification
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Manual correction is necessary for best accuracy
Figure 2c shows two examples of quantification per-
formed on a single image from an uninjured muscle (left
panel) and a dystrophic fibrotic muscle (right panel). In
the uninjured muscle picture, Open-CSAM and MuscleJ
identified two false myofibers (red lines), which were
manually removed with Open-CSAM (Open-CSAM cor-
rected). On the other hand, MyoVision missed two myo-
fibers (red asterisks) while SMASH both identified three
false myofibers and missed two myofibers. However, as
the myofiber size was quite homogeneous in this picture,
this did not really impact the calculated CSA value. In
the fibrotic muscle picture (Fig. 2c, right panel),
Open-CSAM identified 7 false myofibers (red lines) and
missed 16 myofibers that were manually corrected after-
wards (green lines). MyoVision missed 33 myofibers (red
asterisks) and identified 1 false fiber, which could be
excluded by size filter in MyoVision software (red line),
inducing a 29% artificial increase in CSA, as compared
with manual quantification. Similarly, MuscleJ identified 7
false myofibers (red lines) and missed 14 fibers (red aster-
isks), leading to a 12.3% increase as compared with man-
ual quantification. Finally, SMASH missed 14 myofibers
and misidentified 9 fibers, leading to an 8.2% decrease of
mean CSA compared to manual quantification. The distri-
bution of the myofiber CSA in Fib-mdx muscles (same
samples as in Fig. 2a) clearly showed that MyoVision and
MuscleJ, and to a lower extent, Open-CSAM, preferen-
tially missed the small myofibers (< 500 μm2) (Fig. 2d),
thus artificially overestimating the mean CSA. On the
contrary, SMASH overestimated the proportion of small
myofibers. Taken together, these results show that Open-
CSAM accuracy is more consistent as compared with
other softwares through various experimental conditions.
However, despite its performance, manual correction is
necessary for best accuracy. Open-CSAM was designed to
enable easy manual correction, allowing the user to directly
draw missing fibers and delete the false ones at the same
time in ImageJ (Additional file 2: Figure S2). As shown in
Additional file 4: Figure S4B, manual correction applied to
Open-CSAM improved the measurement accuracy in all
conditions (R2 > 0.97) except in old mice 28 days post-in-
jury (R2 = 0.9665 before and 0.962 after correction). In
Fib-mdx muscle, this was associated with a conver-
gence of the overall myofiber size distribution towards
the distribution obtained with manual quantification
(Fig. 2d), notably with a better consideration of small
myofibers (< 500 μm2).

Whole section analysis is necessary for best accuracy
CSA analysis is usually performed on a subset of images
randomly taken throughout the muscle section. Depending
on the experimenter, the number of images and thus the
number of analyzed myofibers can be variable. Moreover,

within the same muscle, myofiber size can be quite hetero-
geneous and a bias can be introduced depending on the
choice of the pictures. Figure 3a shows an example of an
entire reconstituted muscle picture. We measured CSA on
individual images, calculated the mean CSA on several
subsets of images, and compared the results with the CSA
obtained on the whole section. When the measurement
was made only using a subset of pictures, the myofiber
CSA differed from 5 to 28% to that measured on the whole
muscle (Fig. 3b). We particularly observed that CSA was
overestimated when the left half of the muscle was mea-
sured, that corresponded in this example to the peripheral
part of the muscle where regeneration is ended. Inversely,
measuring the right part of the muscle, here corresponding
to smaller regenerating myofibers localized at the center of
the muscle, underestimated CSA value. Thus, because TA
regeneration after a toxic injury is a centripetal process that
ends first at the periphery of the muscle, the whole muscle
section should be analyzed when measuring CSA of regen-
erating muscle in order to obtain an unbiased picture of
the process. Moreover, as in diseased muscle, foci of fiber
damage or remodeling can occur anywhere, analyzing the
whole section also insures an accurate measurement in this
context.

Use of Open-CSAM is robust among users
In a whole muscle section, the number of manual correc-
tions can be variable depending on the quality of the
muscle section and of the immunostaining. Considering a
high quality of both, we found that the amount of false
plus lacking fibers, which needed to be manually removed
or re-drawn, ranged from 5% in non-damaged muscles to
10 to 25% in damaged muscles (Fig. 4a). As the manual
corrections after Open-CSAM analysis can represent up
to 25% of the myofibers, thus potentially introducing vari-
ability among users, we tested the robustness of this
method. To do so, three independent experimenters ana-
lyzed the same image taken from an adult TA muscle 28
days post-CTX injury, where the majority of the muscle
has fully regenerated and some central areas are still
regenerating (Fig. 4b, c). This muscle was chosen because
of the high number of required manual corrections. Using
a 100 μm2 size filter and a 0.4 circularity threshold (see
Additional file 1: Figure S1 and Table 1), Open-CSAM
identified 3757 fibers (Fig. 4c, left images), resulting in a
CSA of 1566.8 μm2 (Fig. 4b, left). As shown in Fig. 4c, two
areas showed a large number of fibers missed by Open-
CSAM. The first area (blue box) was composed of fibers
showing a high variability in size where Open-CSAM
missed mainly very small fibers. The second area (red box)
was composed of medium- to large-sized fibers but with a
lower laminin staining intensity. In this area, Open-CSAM
failed to identify most of the fibers. Depending on the user,
50 to 145 false fibers were deleted and 860 to 1019 fibers
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were manually added (Fig. 4b, right). Despite this variability
in the number of manual corrections performed by each
user, the corrected CSA reached 1454, 1437, and 1456 μm2,
meaning that variability between users was below 1%.
Altogether, these results show that despite the manual cor-
rections required by Open-CSAM, there is no bias intro-
duced by the experimenter.

Open-CSAM is an accurate tool for whole muscle CSA
analysis in regenerating muscle
As we showed that CSA quantification with Open-CSAM
was highly accurate on individual images in various

experimental conditions and that whole muscle analysis
was necessary, we tested its performance on several whole
muscle images and compared it to fully automated quanti-
fication by MyoVision and MuscleJ, as well as to SMASH.
We analyzed whole muscle images from young uninjured,
8 days post-injury and 28 days post-injury mice (Fig. 5 and
Additional file 5: Figure S5). As we showed for × 20
individual pictures in uninjured muscle (Fig. 2), MyoVi-
sion, MuscleJ, and SMASH modestly overestimated the
CSA as compared with corrected Open-CSAM (Fig. 5a, +
11.7%, + 16.5%, and + 13.9%, respectively) (Fig. 5a). On the
same muscle, manual correction had negligible impact on

A

B

Fig. 3 Whole muscle analysis by Open-CSAM. a Whole reconstitution of a laminin-stained cryosection of a TA muscle 28 days post-CTX injury (30
pictures were automatically recorded and assembled by MetaMorph software). The position of each individual image is highlighted by the red
lines. White bar = 250 μm. b Mean cross-section area obtained after various subsettings of pictures in a
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CSA obtained by Open-CSAM, highlighting its high
performance on uninjured whole muscle section
(Fig. 5a, − 1.1% before correction). Corroborating
this observation, CSA distribution was identical for

Open-CSAM before and after correction (Fig. 5d).
On the contrary, MyoVision, MuscleJ, and SMASH
overlooked small fibers (< 1000 μm2) and overesti-
mated bigger fibers (> 3000 μm2). In the D8

Fig. 4 Manual corrections after Open-CSAM analysis. a Percentage of false myofibers detected (black histograms) and missed myofibers (white
histograms) by Open-CSAM that needed manual correction for TA muscles from young and old uninjured mice as well as from 3 muscles analyzed 14
days post-CTX injury. b, c Open-CSAM analysis of a TA muscle 28 days post-CTX injury. b CSA (left graph) and number of fibers manually corrected (right
graph) after analysis by Open-CSAM by three different users (each color represents a single user). cWhole image of the TA muscle analyzed in b showing
myofibers (yellow) detected by Open-CSAM before (left panel) and after (right panel) manual correction. Blue and red boxes represent zoom-in examples
of two specific areas that needed extensive manual correction. White bar = 250 μm
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condition, where small fibers represent an important
part of the whole muscle section area and the D28
condition, where small myofibers are still concentrated
in specific areas (see Fig. 4), MyoVision (+ 24 and +
32.1%, respectively), MuscleJ (+ 71.2 and + 92.3%, re-
spectively), and SMASH (+ 22 and 26.8%, respectively)
accounted for a much higher CSA than Open-CSAM.
This is mainly due to the non-detection of the small
myofibers (Fig. 5d) and, in the case of MuscleJ, to the
merging of several myofibers into one (Additional file 5:
Figure S5B, Fig. 5b). Again, correction in Open-CSAM
induced a negligible change in CSA measurement on
day 8 post-injury muscle (Fig. 5a, + 0.3% before correc-
tion). Finally, manual correction of Open-CSAM in
day 28 post-injury muscle corrected a slight underesti-
mation of small fibers (Fig. 5d), leading to an artificial
increase in CSA (Fig. 5a, + 7.8% before correction).

The main defect of Open-CSAM is the time of ex-
perimenter that is required for the complete imple-
mentation of CSA measurement. Although running
Open-CSAM macro in ImageJ took less than 1 min
(even for the whole muscle pictures), which was fas-
ter compared to other softwares (4 to 10 min for
MuscleJ, 5 to 17 min for SMASH, and 166 to 340 min
for MyoVision), the post-automation manual correc-
tions lasted between 10 and 60 min in the examples
provided (Fig. 5c, Additional file 5: Figure S5). How-
ever, those corrections are required for achieving a
full analysis of the whole muscle in order to provide
an accurate CSA value. Taken together, these results
show that Open-CSAM is a highly accurate tool to
measure myofiber CSA on whole muscle section im-
ages from different experimental conditions, including
regenerating muscle.

Fig. 5 Comparison of Open-CSAM, MyoVision, MuscleJ, and SMASH CSA quantification on whole muscle sections. CSA was measured using
Open-CSAM (with or without manual correction), MyoVision, MuscleJ, or SMASH on whole TA muscle images obtained from uninjured (D0) or 8
days (D8) and 28 days (D28) post-CTX injury. a Mean CSA measured by the different softwares. b Number of fibers identified by the softwares. c
Total analysis time required by the softwares. d Distribution of CSA obtained by the five methods on D0 (top graph), D8 (middle graph), and D28
(bottom graph) whole muscles
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Discussion
Histology is the gold standard technique to assess some
characteristics of skeletal muscle. Measurement of myofi-
ber CSA is classically used as a parameter of normal and
pathological skeletal muscle regeneration after labeling
with anti-laminin or anti-dystrophin antibodies. However,
there are various strategies to analyze images and CSA
measurement that can give highly heterogeneous results.
On the one hand, manual quantification, consisting in
manually drawing the myofiber contour to measure the
area, is extremely time-consuming and potentially variable
between experimenters as it is meticulousness-dependent.
According to our experience, it takes about 1 h to draw
1000 fibers. On the other hand, automated programs that
were developed to reduce the impact of the experimenter,
and to save time, give satisfactory results in uninjured
muscle [2–8] but fail to be accurate in regenerating
muscle.
Among the recent described softwares are SMASH,

MyoVision, and MuscleJ. SMASH is a MATLAB applica-
tion which is also available as a free Windows program
(SMASH Stand Alone). MyoVision is a program operating
in Windows environment whereas MuscleJ is a macro
working in ImageJ program (Table 2). They were devel-
oped to automate, with various levels of flexibility, the
quantification of several muscle parameters including fiber
number, CSA, myonuclei number and fiber type distribu-
tion. As previously described [2], MyoVision showed a
significant CSA overestimation as compared with manual
quantification. This could be explained by the stronger
overlapping of MyoVision outlines with the laminin stain-
ing (Fig. 2c), thus integrating a part of the basal lamina
into the myofiber area. Despite this overestimation of the
mean CSA as compared with manual quantification,
MyoVision performed accurately on isolated images from

uninjured muscles. However, regenerating, old and dys-
trophic muscles are characterized by high myofiber size
heterogeneity. In this context, MyoVision measurement
was still good at day 14 and 28 after injury, i.e. at time
points when regenerating myofibers are already formed. On
the contrary, correlation with manual estimation was much
lower in muscles at 8 days post-injury in young mice, at 28
days post-injury in old mice and in muscles of dystrophic
fibrotic mice. These three conditions are characterized by a
lower mean CSA and the presence of high numbers of very
small myofibers, which are not considered by MyoVision,
thus overestimating the mean CSA. MuscleJ software was
efficient in measuring mean CSA in individual × 20 pictures
from uninjured young as well as 14 and 28 days post-injury
muscles. However, it measured higher mean CSA values in
8 days post-injury regenerating muscles, old muscles (unin-
jured and 28 days post-injury) and dystrophic muscles, even
though the values were closer to manual quantification
than that calculated by MyoVision. Here again, this was
due to an oversight of small myofibers. Finally, SMASH
showed high accuracy in uninjured young muscles. For the
other conditions, even though mean CSA was relatively
close to manual quantification, the accuracy was very vari-
able between images, leading to overestimation of small
myofibers in Fib-mdx (Fig. 2d) and oversight of these same
small fibers in regenerating muscles (Fig. 5d), making it not
reliable to analyze and compare various conditions.
In order to provide a tool usable in various biological

conditions, we developed Open-CSAM, an ImageJ macro
allowing the automatic measurement of CSA with the
possibility for the experimenter to apply manual correc-
tions afterwards. CSA values obtained with Open-CSAM
were very close to the values obtained manually in all
tested conditions. Generally, Open-CSAM omitted only
few myofibers in muscles containing small fibers

Table 2 Comparison of software characteristics

Program Software base OS Minimal configuration tested Manual correction

PC MAC

Open-CSAM ImageJ
plugin

Mac OS/
Windows

Windows 10-Intel core i3 CPU
550 3.2 GHz-4 Go RAM

Mac OS 10.12/Intel core
i3–3.2 GHz/12 Go RAM

Yes—during the analysis
➔ Draw/delete ImageJ tools

MyoVision Windows
application

Windows Windows 10-Intel core i3 CPU
550 3.2 GHz-4 Go RAM (single
image analysis)/Windows 7-Intel
core i5 vpro 3.1 GHz/16 Go RAM
(whole muscle analysis)

Not applicable No

MuscleJ ImageJ
plugin

Mac OS/
Windows

Windows 10-Intel core i3 CPU
550 3.2 GHz-4 Go RAM

Mac OS 10.13/Intel core
i5–2.7 GHz/16 Go RAM

Yes—after the analysis
➔ Open picture
➔ Import ROI file on the picture
➔ Draw/delete ImageJ tools

SMASH
Stand
Alone

Windows
application

Windows Windows 10-Intel core i3 CPU
550 3.2 GHz-4 Go RAM

Not applicable Yes—during the analysis
➔ Step 1 draw—validate
➔ Step 2 delete—validate
(cumbersome: small screen, no back
and forth allowed between steps 1 and 2)
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(regenerating muscle, old muscle, dystrophic muscles).
Then, lacking myofibers are easily manually drawn and
incorporated into the analysis using ImageJ, which is not
possible using the fully automated softwares. The main
drawback of Open-CSAM is that it identifies some false
myofibers in the interstitial space between myofibers, not-
ably when this space is large in early regenerating and
fibrotic muscles. This issue can be overcome by increasing
the size and the circularity thresholds but this also
increases the risk of omitting real myofibers. Because it is
faster to delete false myofibers than manually drawing
lacking myofibers, we recommend to keep thresholds as
low as possible to reduce the number of lacking myofibers.
We therefore provided starting thresholds for the different
conditions we have tested, that have to be adjusted
depending on the specific experiment (Table 1). According
to our experience, the false fibers identified by Open-
CSAM represented less than 5% of the total fibers in all
the muscles we have analyzed so far.
CSA measurement is usually performed on a subset of

images randomly taken throughout the muscle section.
However, myofiber size is quite heterogeneous within
the same muscle, and we showed that considering only a
part of the muscle section led to the introduction of bias
depending on the image selection, potentially hiding a
relevant phenotype or artificially creating a non-relevant
one. Of note, image acquisition and reconstitution of the
whole muscle section is automatically performed, saving
time, as compared with manually recording random
pictures. Then, Open-CSAM is capable of measuring the
myofiber CSA on the whole section in a few seconds.
Depending on the size of the image, it may be necessary
to split it in two or four parts. This may be also useful
when the laminin labeling intensity is not homogenous
on the entire section since Open-CSAM may omit faint
labeled areas.
When measuring CSA on whole muscle section pictures,

using uninjured or 8-day and 28-day regenerating muscles,
we found that Open-CSAM (including the manual
post-automation corrections) was the most accurate way to
measure myofiber CSA. MuscleJ program was efficient at
implementing CSA from uninjured muscle (still with over-
estimated values) but failed to accurately measure myofiber
CSA of regenerating muscle, due to failure to detect small
fibers and to merging of several myofibers into one. Even
though MuscleJ was built as a ready-to-use toolbox to avoid
experimenter intervention, post-automation corrections are
possible. Indeed, the user may generate a file containing the
ROIs analyzed that can be imported back into ImageJ to
perform manual corrections in a similar way as Open-
CSAM. However, given its poor performance on whole
regenerating muscle section as compared with Open-
CSAM, the amount of manual corrections and thus the
time spent would be not competitive towards Open-CSAM

measurement. SMASH and MyoVision gave similar results,
as they moderately overestimated mean CSA in uninjured
muscle, an overestimation that was amplified in 8-day and
28-day regenerating muscles which contain a higher pro-
portion of small rounded-shape myofibers. MyoVision was
very slow in implementing the analysis of the whole muscle
images (between 166 and 340min), making it not competi-
tive towards manual measurement. Moreover, it does not
allow manual correction. SMASH was faster (between 5
and 17min), and it was designed to allow the user to per-
form manual corrections during the analysis. However, the
correction process has several drawbacks. First, the applica-
tion cannot be displayed into full screen, which makes in-
convenient to easily detect the myofiber delimitations.
Second, after the segmentation, the correction process is
composed of 2 sequential steps. The first step allows to
manually split merged fibers or draw the missed ones.
After validation of the drawing, the second step allows
manual deletion of the false fibers identified by the pro-
gram. Unfortunately, at this point, it is not possible any-
more to come back to correct merged or missed fibers
that would have appeared after the second step. Given this
lack of flexibility, performing manual correction in
Open-CSAM is much easier and faster.
According to our experience with Open-CSAM, the

amount of manual corrections required after the automatic
measurement depends on the status of the muscle, the
quality of the cryosection, and the quality of the immunola-
beling. We recommend performing a new cryosection and/
or labeling rather than trying to analyze poor quality im-
ages. Typically, if we consider a high-quality image, the ana-
lysis of an uninjured TA lasts less than 15min to process
2000 to 3000 myofibers. In the worst condition we experi-
enced, processing of a regenerating TA can last from 15
min to 1 h for the experimenter to obtain an accurate
measurement of myofiber CSA (as compared with 1 h per
1000 fibers in the case of a full manual quantification, thus
2–3 h per muscle). Moreover, we showed that despite the
relatively high level of manual correction required for some
muscles, the difference in corrected CSA obtained by inde-
pendent experimenters was negligible (less than 1%),
highlighting the robustness of this method.

Conclusion
The use of Open-CSAM program on whole muscle
sections is a powerful strategy to measure myofiber CSA of
muscles from various experimental conditions in an easy,
highly accurate, and reproducible way, providing values
very close to the absolute values. This user-friendly (tutorial
in Additional file 2: Figure S2) method is semi-automated
and therefore requires the commitment of the experi-
menter (who is still the best expert to define what a myofi-
ber is), allowing the most accurate CSA measurement of
regenerating muscle so far.
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Additional files

Additional file 1: Figure S1. Macro to be run for the implementation
of Open-CSAM program (left) and related explanations of the functions
(right column). (PDF 31 kb)

Additional file 2: Figure S2. Tutorial for the use of Open-CSAM.
(PDF 785 kb)

Additional file 3: Figure S3. The same pictures as in Fig. 2 were analyzed
either by manual measurement or using MuscleAnalyzer. The mean CSA
obtained with the two methods is shown. ***p < 0.001 as compared with
manual quantification by two-way ANOVA analysis. (PDF 80 kb)

Additional file 4: Figure S4. Mean CSA was measured manually and
with Open-CSAM, MyoVision, MuscleJ, or SMASH softwares on the same
samples as described in Fig. 2a. Muscles were isolated from 8- to 12-
week-old mice 8 days (D8), 14 days (D14), and 28 days (D28) post-CTX
injury, from uninjured (D0 old) or 28 days post-CTX injury (D28 old) 2-
year-old mice. A The correlation between manual measurement (X axis)
and Open-CSAM (without manual correction), MyoVision, MuscleJ, or
SMASH (Y axis) measurements is presented. B Correlation between
manual measurement (X axis) and Open-CSAM (Y axis) before and after
manual correction. Each dot represents a picture. The dotted line
represents the identity line. (PDF 833 kb)

Additional file 5: Figure S5. CSA was measured using Open-CSAM,
MyoVision, MuscleJ, or SMASH softwares on whole TA muscle images
obtained from uninjured (D0) or 8 days (D8) and 28 days (D28) post-CTX
injury. A Pictures showing the myofibers (yellow shapes except for
SMASH which is in gray) detected by Open-CSAM, MyoVision, SMASH,
and MuscleJ. The white dotted lines show where the images were split
for Open-CSAM and MyoVision analysis. B Red boxes represent zoom-in
examples of specific areas obtained by MuscleJ. Red asterisks show
examples of group of myofibers that are merged. White bar = 250 μm.
(PDF 12792 kb)
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ROI: Region of interest; TA: Tibialis anterior
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