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 1.1. Introduction 

Nowadays the energy and environment issues have become one of the global concern. Presently, 

the world uses energy sources at a rate of approximately 4.1 × 1020 joules/year, which is equivalent to 

13 terawatts (TW), while energy from the sunlight that strikes the Earth in one hour, is estimated to 4.3 

× 1020 joules/h (a watt (W) is a unit of power in the International System of Units (SI), which corresponds 

to 1 joule per second). In addition, Sun is the main natural power source and the best source of clean 

and abundant energy. The generated energy from the Sun by using solar cell to convert sunlight into 

electricity would be the best solution to save our environment from the pollution of fossil fuel and keep 

the non-renewable energy for the future. Therefore, sunlight represents a highly interesting source of 

energy that can generate electricity.1-3 The solar spectrum irradiance is shown in Figure 1.1, the unit of 

irradiance is joules per second per m2 of surface that is illuminated per 𝜇m of wavelength   

(W m-2 𝜇m-1).4  

 

Figure 1.1. Spectrum of solar radiations received on earth. Data are obtained from ASTM.4  

 

Figure 1.1 shows that the visible light corresponds only to a small part of the solar spectrum 

with wavelengths extending from 400 to 700 nm. In fact, the visible light corresponds to 42% of all the 

solar spectrum. Semiconducting materials with bandgaps between ca. 1.77 eV and 3.10 eV can thus 

absorb the wavelengths from the visible spectrum. 

The term of air mass (AM) is very often used for the measurement of the amount of atmosphere 

the Sun’s rays have to pass through. The amount of electricity produced by photovoltaic solar panels is 

significantly affected by the loss of photons absorbed by ozone, water or carbon dioxide and scattered 

by particles in the atmosphere. The solar spectrum outside the atmosphere is referred to as AM 0 (zero 

atmosphere) and corresponds to an integrated spectral radiance of 1366.1 W m-2.5 AM 1 (one 

atmosphere) corresponds to the incident power of light received on earth when the sun reaches the zenith 
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( = 0°). For a specific  angle that the Sun makes with the vertical line (the zenith angle) perpendicular 

to the horizontal plane (Figure 1.2), AM X is defined as follows: 

 

AM X = AM (
1

𝐶𝑜𝑠𝜃
)                                   

 

Figure 1.2. Illustration of AM 0, AM 1, AM 1.5 and AM 2. 

 

For the Northern hemisphere like Canada, the United States, and Europe countries the sun’s rays 

cross the atmosphere over a greater distance to reach the surface of the Earth, and the air mass 

determined for these regions is AM 1.5, which corresponds to the angle of Sun relative to the equator of 

48.2° associated to an incident light power of 1000 W m-2. In an artificial environment such as in the lab 

(MOLTECH-Anjou), a solar simulator is used to mimic the Sun and is tuned to deliver light in the AM 

1.5 conditions with an incident light power of 100 mW cm-2 to measure the power conversion efficiency 

(PCE) of organic solar cells in standard conditions.  

Solar cells can be produced from different types of semiconducting inorganic, organic or hybrid 

materials. The solar cells performance evolution with time is regularly updated by the National 

Renewable Energy Laboratory (NREL) which shows a graph representing the ‘Best Research-Cell 

Efficiencies’ for research cells for a wide range of photovoltaic technologies (Figure 1.3).6  
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Figure 1.3. Evolution of power conversion efficiencies versus time for different types of solar cells.6 
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Photovoltaic devices can be classified into first, second and third generations (Figure 1.4). The 

first generation (1G) is based on silicon wafers which include mono-crystalline and polycrystalline 

silicon. Today 90% of the photovoltaic market is dominated by crystalline silicon (mono and multi-

crystalline)7 which can reach PCEs up to 26.7% for mono-crystalline and 22.3% for polycrystalline 

silicon in commercial modules.8 The silicon-based solar cells have many advantages however their 

competitiveness is reduced due to their relative high production cost and environmental impact, heavy 

weight, lack of flexibility and difficulties for recycling. 

 

 

Figure 1.4. Classification of the different generations of solar cells.8 

 

Second generation (2G) of photovoltaic cells is based on thin films of amorphous silicon, CdTe 

and CIGS (CuInGaSe2). This technology reduces the amount of active layer material allowing for good 

flexibility. On the other hand, 2G thin film solar cells may contain highly toxic elements (Cd) which 

represent an issue in terms of ecological impact.  

The third generation (3G) is also based on thin films using different emerging technologies and 

materials. All these 3G photovoltaic devices include, more or less, organic materials. They can be 

divided in: i) organic solar cells (OSCs) with photoactive layers derived from conjugated molecules or 

polymers, ii) dye-sensitized solar cells (DSSCs)9-11 based on wide bandgap inorganic semiconductors 

sensitized with organic dyes and iii) hybrid organic-inorganic perovskite solar cells (PSCs).12-14 Organic 

materials present the advantage to be processable in solution hence potentially reducing the costs of 

fabrication. These devices can be flexible, transparent and light and show better indoor efficiency 

compared to silicon. Although their record efficiencies are now nearly competing with amorphous or 

even multicrystalline silicon (ca. 16% for single-junction OSCs,15 ca. 14% for DSSC 16-18 and ca. 23% 

for single junction PSCs),12 they still suffer from shorter lifetimes than the 1G and 2G photovoltaic 
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devices. In addition, in the case of PSCs, the presence of toxic lead (Pb) atoms remains a problematic 

issue for potential industrialization. Research in these directions is underway however some companies, 

such as Armor in France or Heliatek in Germany, have already started, albeit on a small scale, to 

commercialize photovoltaic panels based on the OSC technology. 

Organic photovoltaics (OPV) is a fascinating and promising technology, which can be 

developed in parallel to the silicon technology. For instance, some of their inherent properties such as 

flexibility, lightness, transparency and indoor efficiency can become an advantage for some applications 

for wearable devices or building integration. From 1986, when C. W. Tang developed the first bi-layer 

heterojunction with nearly 1% efficiency (see below), organic solar cells (OSCs) have been the subject 

of considerable efforts recently leading to a certified record PCE of 17.3% for an all-organic tandem 

solar cell.19 

These significant progresses will be briefly summarized in the following paragraphs. This 

chapter also introduces the key concepts of OSCs. Section 1.2 will focus on the development of OPV 

since the beginning highlighting some important breakthroughs. Section 1.3 will present how OSCs are 

characterized and Section 1.4 will introduce the operating principle of OSCs. Different classes of organic 

materials used in OSCs will be described in Section 1.5. Finally, the end of this chapter will be 

specifically devoted to small -conjugated push-pull molecules as electron-donor materials for OPV. 

The main goal of this PhD thesis deals with the characterization of new push-pull molecular systems 

and the optimization of corresponding OSCs using different fabrication conditions and new device 

architectures. 

 

 1.2. Development of OPV 

 On April 25, 1954, the first silicon solar cell was invented in the Bell Laboratories at New 

Jersey by D. Chapin, G. Pearson and C. Fuller, who announced that the world finally had an efficient 

way to turn sunlight into electricity. The power conversion efficiency of this first practical silicon solar 

cell was around 4%.20 Still nowadays, silicon is the most commonly used inorganic semiconducting 

material in photovoltaics. On the other hand, whereas organic materials have been considered as 

isolating materials for a long time, the second part of the 20th century has triggered a considerable interest 

on some specific classes of organic materials which could exhibit fascinating and original properties 

such as strong absorption, electroluminescence, electrical conductivity and finally semiconductivity 

which led to the development of the field of Organic Electronics. As described in the following 

paragraph, this field is related to -conjugated systems.  
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 1.2.1. Organic Semiconductors  

The discovery of conducting polymers by A. J. Heeger, A. G. MacDiarmid and H. Shirakawa 

in the 1970s is considered as a key step in the history of electronic organics. As shown in Figure 1.5, 

they succeeded in synthesizing high quality flexible copper-coloured films of the cis-isomer (1) and 

silvery films of the trans-isomer (2) of polyacetylene in the presence of a Ziegler catalyst, those 

polymers exhibiting high conductivity in their oxidized state (p-doped state).21 Few years later, this 

major result has triggered the development of organic semiconductors based on neutral -conjugated 

systems and their application in organic light-emitting diodes (OLEDs), organic field-effect transistors 

(OFETs) and organic solar cells (OSCs). This earned A. J. Heeger, A. G. MacDiarmid and H. Shirakawa 

the Nobel Prize of Chemistry in 2000.22-24 

 

Figure 1.5. Cis-isomer (1) and trans-isomer (2) of polyacetylene.21 

 

Organic semiconductors are based on molecular or polymeric π-conjugated systems constituted 

by an alternance of  and  bonds. As described in Figure 1.6, the construction of the energetic diagram 

of polyacetylene starts from the simplest Ethylene fragment which contains two sp2 hybridized carbon 

atoms linked together by one  bond and one  bond originating respectively from the overlap of two 

sp2 and two lateral pz orbitals of each carbon. Combination of atomic orbitals of carbon and hydrogen 

atoms leads to several molecular orbitals, with a bonding or antibonding character, filled with or free of 

electrons, respectively. More specifically the two molecular frontier orbitals, namely the Highest 

Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO) play a 

crucial role. Then, further extension of the -conjugated systems by combining increasing number of 

Ethylene segments leads to longer π-conjugated oligomers by overlapping pz orbitals of the carbon 

atoms hence increasing the number of molecular orbitals. Most importantly, the concomitant 

destabilization of the HOMO level and  stabilization of the LUMO level result in a progressive reduction 

of the HOMO-LUMO energy difference from 6.7 eV for Ethylene to 3.1 eV for Octatetraene. 

Due to the monodimensional (linear) character of polyacetylene, a Peierls transition arises 

leading to the localization of  and π bonds within the -conjugated chain producing different lengths 

of carbon-carbon bonds, hence opening of a bandgap of energy Eg close to 1.5 eV.25 Consequently 

polyacetylene is a semiconducting material in its neutral state with, by analogy with inorganic materials, 

a valence-like band and its upper “HOMO” level, and a conduction-like band with its lower “LUMO” 

level.26, 27 
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Figure 1.6. Energy levels of alkene oligomers: from Ethylene to Polyacetylene. 

 

Depending on the structure of the conjugated polymers, organic semiconductors with different 

bandgaps Eg ranging from 1.5 to ca. 3 eV, can be designed. For example, compared to polyacetylene 

(PA), more stable aromatic -conjugated polymers have led to organic semiconductors with various Eg 

values 28, 29 such as polyparaphenylene (PPP, Eg = 3.0 eV),30 polyparaphenylenevinylene (PPV, Eg = 

2.4 eV),31 polypyrrole (PPy, Eg = 2.8 eV),32 polythiophene (PT, Eg = 2.0-2.2 eV) 33-35 or poly(3,4-

ethylenedioxythiophene)  (PEDOT, Eg = 1.6-1.7 eV).36 

 

 

Figure 1.7. Examples of -conjugated polymers. 

 

The bandgap energy of -conjugated systems (typically: 1.5 eV < Eg < 3 eV) corresponds to the 

energy range of the wavelengths of the visible spectrum. Thus the later will be absorbed by -conjugated 

systems hence promoting electronic transitions from the levels of the “valence band” to the free levels 
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of the “conduction band”. On the other hand, electronic excited states will be de-activated via radiative 

transitions to the ground state possibly leading to emission in the visble spectrum. As a result, -

conjugated systems have found applications in OLEDs and OSCs. In addition, these types of devices 

consist of multilayers of organic -conjugated systems that present the advantage to be processed either 

in solution (dip-coating, spin-coating and doctor blade techniques …) or by thermal evaporation. 

Basically, OSCs are based on a photoactive organic semiconducting layer sandwiched between 

a cathode and an anode electrodes. Usually, aluminum or silver are used as opaque cathode while an 

indium tin oxide (ITO) transparent electrode is used as anode allowing the absorption of the light by the 

photoactive layer. Over time, various architectures of OSCs have appeared, some of them will be briefly 

presented and discussed in the following sections. 

 

 1.2.2. Single-layer OSCs 

The first concept of OSCs was developed in 1958 by D. Kearns and M. Calvin from the 

University of California. In their article entitled’’Photovoltaic Effect and Photoconductivity in 

Laminated Organic Systems’’, they prepared single-layer OSCs by deposition of magnesium 

phthalocyanine (MgPc) as active material between two electrodes of air-oxidized tetramethyl p-

phenylenediamine (TMPPD) thin film.37 A single layer OSC consists of only one organic semiconductor 

photoactive layer material sandwiched between two electrodes with different work functions and is often 

referred as a Schottky type device or Schottky diode. In this architecture, photons of the visble light are 

partly absorbed by the organic material which reaches its excited state, generating excitons 

(electron/hole pairs) that can diffuse within the material and dissociate in positive and negative charges 

at the interfaces with the electrodes thus generating a photocurrent (Figure 1.8). 

 

Figure 1.8. Architecture of a single layer organic solar cell (Schottky device). 

 

In 1975, C. W. Tang et al. worked on the natural Chlorophylle-a as photoactive material which 

was sandwiched between chromium and mercury as the electrodes (Cr/Chlorophylle-a/Hg) (Figure 

1.9).38 OSCs based on hydroxyl squarylium as photoactive layer were fabricated by V. Y. Merritt and 
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H. J. Hovel in 1976 with this structure: Ga/hydroxyl squarylium/In2O3.
39 In 1984, the first polymer based 

on thiophene poly(3-methylthiophene) has been used for OPV.40, 41 

 

 

Figure 1.9. Examples of molecules or polymers used in single layer solar cells and their PV performance. 

 

The architecture of single layer OSCs is simple however they present severe limitations in terms 

of photovoltaic (PV) efficiency due to several reasons. Excitons can be quenched close the metal 

electrodes. The photoactive layer is usually thin, limiting absorption, and dissociated charges have to 

pass through the same region to reach the electrodes resulting in high charge recombination. In addition, 

by using a single type of molecule, the absorption of the visible spectrum is limited to a narrow range 

of wavelengths.42 As a consequence, the maximum power conversion efficiency reported with these 

device architectures is very low, less than 0.1% under white light illumination.43 

 

 1.2.3. Planar bi-layer heterojunction OSCs 

In 1986, C. W. Tang et al. achieved a significant breaktrough by 

introducing the concept of donor-acceptor heterojunction solar cells. They 

prepared planar bi-layer OSCs by using a vacuum deposited layer of copper 

phthalocyanine (CuPc) as electron-donor material, and a vacuum-deposited layer 

of an electron-deficient perylene derivative (3,4,9,10-perylenetetracarboxylic-

bisbenzimidazole (PTCBI)). Under simulated AM 2 (75 mW/cm2) illumination, 

they reported an efficiency close to 1 % (Figure 1.10).44 Interestingly, considering 

the actual race for the development of non-fullerene acceptors, both CuPC and PTCBI were already 

shown to participate to the photocurrent. Then PV efficiencies of bi-layer OSCs based on CuPc have 

been improved up to 4.4% in heterojunction devices45 and 5.7% for a tandem cell under standard sun 

simulator AM 1.5 (100 mW/cm2), as reported by Forrest et al.46 Since the discovery of C. W. Tang, 

many new donor and acceptor materials have been investigated. 

Ching W. Tang 
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Figure 1.10. Architecture and operating principle of a bi-layer organic solar cell including a donor (red) and 

acceptor (blue) materials.44 

 

Bi-layer heterojunction OSCs involve two organic materials with different energy levels. After 

absorption of the light by the donor and the acceptor layers, excitons are created and can diffuse to the 

donor/acceptor interface where an internal electric field allows for charge separation resulting in holes 

and electrons that can be transported through the donor or the acceptor layer, respectively, to the 

electrodes hence generating a photocurrent (Figure 1.10). 

Although these solar cells showed better performance than single layer devices, they present 

some inherent limitations. Due to their small diffusion length (typically below 20 nm), excitons can 

recombine through non-radiative or radiative pathway, far away from the donor/acceptor interface if the 

donor or acceptor layer is too thick. Secondly, after charge separation, hole and electron mobilities must 

be sufficiently high to favor an efficient charge transport through the donor and acceptor layers in order 

to be collected to the electrodes. However, organic semiconductors exhibit much lower charge mobilities 

than silicon, for example. Thus, very thin layers are required for bi-layer OSCs to maximize charge 

generation from excitons and charge transport leading, on the other hand, to weak absorption. As a 

result, although they are very useful to investigate the PV potential of new materials, the PV performance 

of bi-layer OSCs are necessarily limited. 

 

 1.2.4. Bulk heterojunction OSCs  

In 1992, A. J. Heeger and his colleagues, discovered the existence of an 

ultrafast (< ps) photoinduced electron transfer from MEH-PPV, after light 

excitation, to the fullerene C60, as described in Figure 1.11.47 Then N. S. 

Sariciftci and A. J. Heeger proposed to mix these two materials. To do so, the 

famous soluble fullerene derivative (PC61BM) reported by F. Wudl was used in 
Alan J. Heeger 
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combinations with different soluble -conjugated polymers as donors. A so-called “bulk heterojunction” 

(BHJ), with interpenetrating networks of donor and acceptor, was created.48    

 

Figure 1.11. Ultrafast photoinduced electron transfer between MEH-PPV and C60 and schematic representation 

of a bulk heterojunction showing interpenetrating networks of a donor and an acceptor.48 

 

 In the mid-1990s, bulk heterojunction organic solar cells (BHJ OSCs) were developed by A. J. 

Heeger.49 In general, BHJ OSCs consist of a photoactive layer obtained by blending one electron donor 

and one electron acceptor. This photoactive layer is generally deposited by solution or thermal co-

evaporation process (Figure 1.12). These BHJ OSCs show considerably better performance because the 

donor/acceptor interface area is much increased hence favoring the exciton dissociation. In addition, the 

donor-acceptor phase separation that occurs in optimized blend leads to separated networks of donor 

and acceptor with nano-domain sizes (< 20 nm) maximizing also the exciton dissociation and charge 

percolation for charge transport to the electrodes. In BHJ OSCs, additional layers such as electron or 

hole blocking layers are also introduced close to the electrodes improving selective charge collection.50-

59  

 

           

Figure 1.12. Representation of bulk heterojunction organic solar cells, operating principle and structure of the 

well-known P3HT/PC61BM couple.  
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As expected, the efficiency of BHJ OSCs is strongly dependent on the thickness and the 

morphology of the photoactive layer which must be optimized e.g. by selecting the good solvent or a 

combination of solvents for deposition, thermal or solvent annealing, using additives and modifying 

molecule structures with different functional groups.60,61,62 The P3HT:PC61BM couple, where P3HT 

stands for regioregular poly(3-hexylthiophene), has been largely investigated and optimized for BHJ 

OSCs.63 For example, thermal annealing of P3HT:PC61BM was found to improve carrier mobility due 

to crystallization of P3HT in the BHJ.64 Of crucial importance, the high regioregularity of P3HT led to 

improved absorption properties and better stacking of P3HT chains hence leading to more efficient BHJ 

OSCs.65 Also optimization of the P3HT:PC61BM ratio 66 and using additives 67 can increase the 

performance as well. 

It is worth noting that many works have been recently devoted to very efficient ternary blends 

BHJ OSCs.68-72 This approach using three compounds instead of two allows for an optimal absorption 

of the visible spectrum by using optically complementary materials, better exciton dissociation and 

energy transfer through cascade processes and, sometimes, to better morphology. 

Compared to the aforementioned single-junction BHJ OSCs, an elegant alternative to absorb 

complementarily the visible spectrum is to distribute a higher number organic materials in multi-junction 

OSCs such as tandem OSCs. 

 

 1.2.5. Tandem OSCs 

Tandem or multi-junction OSCs consist of two or a higher number of sub-cells connected in 

series, each made of organic materials with complementary absorption, leading to improved power 

conversion efficiency.73 Assembling the solar cells in series can produce a large overall Voc 

corresponding to the sum of the open-circuit voltage Voc of each sub-cell while active layers with 

different absorption regions can allow the cell to absorb the light in a broader wavelength range. For 

example (Figure 1.13), conventional tandem OSCs based on two BHJ photoactive layers of 

P3HT:PC61BM (Voc = 0.55 V, PCE = 2.6%) and ZnPc:C60 (Voc = 0.47 V, PCE = 2.2%) and a 1 nm thick 

Au intermediate recombination layer showed an improved Voc of 1.02 V and enhanced spectral 

coverage. However in this case, the resulting short-circuit current Jsc was reduced leading to a PCE of 

2.3% due to a lack of optimization of  the respective thicknesses of the subcells.74 
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Figure 1.13. Current density vs voltage of the ZnPc∕ZnPc:C60∕C60 individual cell, the P3HT:PC61BM diffused 

bilayer individual cell, and the tandem cell (red lie). The inset describes the structure of the tandem cell.74  

 

The later tandem devices were prepared by combining two different deposition techniques, the 

second sub-cell being easier deposited by vacuum-evaporation avoiding any perturbation of the 

previously deposited layer. Thus the elaboration of tandem OSCs is rather difficult from a technological 

point of view since the top layer should not diffuse into the bottom layer. However, it has been possible 

to elaborate tandem OSCs by a full solution process using TiO2/PEDOT:PSS 75 or ZnO/PEDOT:PSS76 

as interlayer (recombination layer) between sub-cells. On the contrary, to avoid any solution process, 

the group of K. Leo in Germany described the all vacuum-process preparation of triple junction OSCs 

exhibiting 24 layers based on evaporable -conjugated molecules leading to PCE beyond 10%.77 

 

 1.2.6. Conventional vs inverted OSCs 

Two types of geometry are encountered for OSCs, namely conventional (or standard) and 

inverted OSCs. They differ from each others by the opposite direction of the hole and electron flows as 

represented in Figure 1.14. In conventional OSCs, the top electrode with a relatively low working 

function, e.g. in aluminium (Wf = - 4.3 eV), is used as a cathode for the extraction of electrons while the 

transparent ITO electrode, with a higher work function (Wf = - 4.7 eV) is used as anode for the collection 

of holes. In the case of inverted OSCs, the ITO electrode is modified usually by depositing an electron 

transporting layer such as zinc oxide (ZnO) with a conduction band edge of ca. - 4.4 eV which allows 

for the selective extraction of electrons whereas the introduction of a hole-transporting material such as 

molybdenium oxide (MoO3) is required before the deposition of the top electrode generally in silver or 

aluminium. 

One advantage of inverted OSCs is, in general, their better stability owing to the possibility to 

use silver as top electrode contrary to aluminum or calcium which are not stable under atmospheric 



Chapter 1: Fundamentals of organic photovoltaic devices 

26 

conditions.78 In addition, it avoids also the use of the weakly stable PEDOT-PSS as hole extracting layer 

in conventional OSCs (see next paragraphs and Chapter 2). 

 

 

Figure 1.14. Conventional (left) and inverted (right) organic solar cells. 

 

Thus inverted OSCs are widely used. For instance, the certified highest OPV efficiency ever 

reported of 17.3% by Y. Chen et al. in 2018, is based on tandem OSCs with an inverted architecture 

(Figure 1.15). The photoactive front sub-cell involves a binary blend of a conjugated polymer PBDB-T 

as donor associated with a molecular non-fullerene acceptor F-M while the rear sub-cell is derived from 

a ternary mixture of one conjugated donor polymer PTB7-Th and two acceptors, namely the fullerene 

derivative PC71BM and a molecular non fullerene compound O6T-4F.19 

 

Figure 1.15. Architecture of the highest efficient OSCs ever reported with a tandem configuration operating in 

an inverted mode.19 
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 1.3. Photovoltaic characterization 

The most common way to characterize a photovoltaic cell is the measurement of their current 

density-voltage (J-V) characteristics which provide information about the behavior of the cell how it’s 

working and photovoltaic parameters allowing us to calculate the power conversion efficiency (PCE) of 

the photovoltaic cells.  

 1.3.1. J-V characteristic 

The J-V characteristic is represented as a curve, and standard parameters used to characterize 

the solar cell performance are described in this section. This J-V curve is measured in the dark or under 

illumination as shown in Figure 1.16. The J-V curve recorded in the dark exhibits the typical behavior 

of a diode characterized by a zero current from negative potentials to a positive threshold potential after 

which the current increases rapidly. 

 

Figure 1.16. J-V characteristics of a photovoltaic cell recorded in the dark and under white light illumination. 

 

The J-V curve under illumination gives the short-current density (Jsc) corresponding to the 

number of charge carriers that has been generated and collected at the electrodes at short circuit 

conditions (V = 0 V). The value of the Jsc parameter is generally increased by using organic materials 

exhibiting a small bandgap, high absorption coefficient and high charge mobility. 

 The open-circuit voltage (Voc) corresponds to the voltage of the device at open circuit conditions 

(J = 0 mA cm-2). The Voc depends on i) the work function of the two different electrodes, ii) the energy 

difference between the HOMO level of the donor and the LUMO level of the acceptor and iii) the 

binding energy of the excitons which will be decribed in section 1.4.4 (Figure 1.17). 
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Figure 1.17. Representation of Voc. 

 

The Fill Factor (FF) defines the shape of the J-V curve compared to an ideal solar cell. FF is 

related to the maximum power output (Pmax), where Pmax is the maximum product of current (Jmax) and 

voltage (Vmax) respectively. FF corresponds to the ratio of the area of the blue rectangle with respect the 

red rectangle shown in Figure 1.16. 

𝑃𝑚𝑎𝑥 =  𝐽𝑚𝑎𝑥 × 𝑉𝑚𝑎𝑥 

𝐹𝐹 =
𝐽𝑚𝑎𝑥𝑉𝑚𝑎𝑥

𝐽𝑠𝑐𝑉𝑜𝑐
 =   

𝑃𝑚𝑎𝑥

𝐽𝑠𝑐𝑉𝑜𝑐
  

 

The power conversion efficiency (PCE) corresponds to the maximum power delivered by the 

solar cell (Pmax) as compared with the power of the incident light Pin: 

 

𝑃𝐶𝐸 =
𝑃𝑚𝑎𝑥

𝑃𝑖𝑛
=

𝐽𝑚𝑎𝑥𝑉𝑚𝑎𝑥

𝑃𝑖𝑛
= 𝐹𝐹

𝐽𝑠𝑐𝑉𝑜𝑐

𝑃𝑖𝑛
        

 

Typically OSCs are characterized under a white light with an incident power density Pin of 100 

mW cm-2 in the AM 1.5 conditions. To achieve maximum PCE, Voc, Jsc and FF, need to be optimized. 

The equivalent electric circuit of an organic solar cell is shown in Figure 1.18.79 This circuit: 1) 

includes a diode with ideality factor n and saturation current I0 in the dark at the reverse bias, 2) shows 

a photocurrent IL generated during illumination, 3) includes a series resistance Rs related to the 

conductivity of the organic semiconductors and electrodes at the interface between each layer, 4) 

includes a shunt resistance Rsh associated to the connectivity of the two different electrodes. Poor values 

of Rsh are typically due to manufacturing defects in the thin films. In order to get performant OPV 

devices, Rs needs to be low and Rsh must be high. 
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Figure 1.18. Equivalent electric circuit of an OPV device. 

 

     The Rsh is related to recombination of charge carriers close to the donor and acceptor 

interface. Rs also includes recombination further away from the donor and acceptor interface near the 

electrode. Rsh can be determined by taking the inverse slope of the tangent of the curve at around 0 V. 

The Rs considers conductivity for example mobility of the specific charge carrier in the respective 

transport medium. Rs is also increased with a longer traveling distance of the charges for example in 

thicker layers. Rs can be estimated from the inverse slope of the tangent of the curve at a positive voltage 

> Voc where the J-V curve become linear. Note that the J-V characteristic of an ideal diode would be 

obtained if Rs = 0 Ω and Rsh = ∞ Ω. 

 

 1.3.2. Quantum efficiency 

The other important characterization of solar cells is the measurement of the External Quantum 

Efficiency (EQE) or also called incident-photon-to-current efficiency. The EQE is defined as the ratio 

between the number of photoinduced charges extracted out of the solar cell (extracted electron-hole 

pair) and the number of incident photons for a given wavelength.  

𝐸𝑄𝐸 =  
𝑁𝑏 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠 𝑜𝑓 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑐𝑖𝑟𝑐𝑢𝑖𝑡

𝑁𝑏 𝑜𝑓 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑝ℎ𝑜𝑡𝑜𝑛𝑠
 

An EQE spectrum is thus recorded, in principle, over all the visible spectrum to determine an 

EQE value for each wavelength. The short-circuit current density Jsc can be estimated from the EQE 

spectrum and the spectral irradiance of the light source by integrating the product of the EQE and the 

photon flux density. 

𝐽𝑠𝑐 =  ∫ 𝑞𝐸𝑄𝐸 (𝜆)
∞

0

 
𝜆

ℎ𝑐
𝐸𝜆

𝐴𝑀 1.5𝑑𝜆 

where 
ℎ𝑐

𝜆
 represents the energy of a photon of wavelength , h being the Plank’s constant, c the 

speed of light and q the elementary charge and 𝐸𝜆
𝐴𝑀 1.5 the spectral irradiance of the AM 1.5 spectrum. 
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 1.4. Operating principle of organic solar cells 

The operating principle of an organic solar cell under sunlight can be briefly described by the 

following four steps (Figure 1.19): 1) generation of excitons (electron-hole pairs) after absorption of 

photons by the donor material (Channel 1), for example; 2) exciton diffusion to the donor/acceptor 

interface; 3) exciton dissociation into free charges at the donor/acceptor interface resulting from an 

electron transfer from the LUMO of the donor to the lower LUMO of the acceptor and 4) charge 

transport and finally charge collection at the two different electrodes to generate a photocurrent. It is 

worth noting that the acceptor can also absorb light (Channel 2) generating excitons and hence a single 

electron transfer can take place spontaneously from the HOMO of the donor to the partially occupied 

HOMO of the acceptor, this different route leading to the same final situation as for the formation of 

excitons from the donor material (Figure 1.20).80 

 

Figure 1.19. PV conversion mechanisms in OSCs: 1) exciton generation upon light absorption; 2) exciton 

diffusion; 3) exciton dissociation at the donor/acceptor interface and 4) charge transport and collection at the 

electrodes. 

 

Each step of this mechanism presents some limitation and must be optimized for efficient power 

generation as explained below. 

 

 1.4.1. Light absorption and exciton generation 

The first step in the PV process consists in the absorption of the photon by one material or both 

donor and acceptor. Although C. W. Tang already demonstrated that both materials can absorb light and 

contribute to the photocurrent,44 the donor material, typically a -conjugated polymer, has long been 

considered to be the main absorbing material as compared to fullerene derivatives used as acceptor 
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counterpart for a long time. Indeed, -conjugated oligomers and polymers exhibit a relatively low 

bandgap (1.5 < Eg < ca. 3 eV) and high absorption coefficients allowing their efficient absorption of the 

visible spectrum. Thus materials with high absorption coefficients on a wide range of wavelengths in 

the visible spectrum are of high interest for OPV. This is particularly true due to the fact that the 

thickness of photoactive layer is generally low, ca. 20-30 nm for each layer for a bi-layer OSCs, thus 

limiting the percentage of the absorption of light. In the case of BHJ OCS, the thickness of the 

photoactive layer can be increased up to 200 nm giving rise to a better absorption process. However, the 

thickness must remain enough small to favor an efficient charge transport and charge collection after 

exciton dissociation. 

 

 1.4.2. Exciton diffusion 

For singlet excitons, diffusion occurs via different energy transfer processes between 

neighbouring molecules or conjugated chains constituting the material. In general, organic 

semiconductors exhibit an exciton diffusion length (LD) smaller than 10-20 nm. This length corresponds 

to the distance that an exciton can travel within a given material before recombination (decay of the 

excited state to the ground state) through a non-radiative pathway or eventually by emission. The small 

values of LD explains why each layer of a bi-layer OSC must be very thin (20-30 nm) to ensure that 

most of the generate excitons can reach the donor/acceptor interface. 

The exciton diffusion length (LD) is described by the following equation81: 

                                            LD= √𝐷 × 𝜏                         

                                                D: diffusion coefficient 

                                                τ: exciton life time 

 
 

 1.4.3. Exciton dissociation 

Contrary to silicon, photoexcitation of organic semiconductors does not lead to instantaneous 

free carrier generation. Owing to the low dielectric constants of organic semiconductors, there is a strong 

Coulomb binding EB of the order of 0.3 eV within the hole-electron pair (exciton)80 which is greater 

than kBT at room temperature. To overcome this exciton binding, heterojunctions have been introduced 

by C. W. Tang 44 by using two differents organic semiconductors, a donor and acceptor with different 

energy levels providing a driving force for the successful dissociation of excitons. 

In the case of channel 1 (Figure 1.20), after exciton generation in the donor material, the 

photoinduced electron transfer (PET) from the “LUMO” level (associated to the electron affinity of the 

donor EAD) to the “LUMO” level of the acceptor (associated to the electron affinity of the acceptor 

EAA) requires a difference EAD-EAA higher than the binding energy of the donor exciton EB
D. On the 
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other hand, for channel 2, a photoinduced hole transfer (PHT) will take place from the acceptor to the 

donor if the difference of the respective ionization potential IPA-IPD becomes higher than EB
A: 

 

EAD-EAA > EB
D (Channel 1) 

IPA-IPD > EB
A (Channel 2) 

 

 

Figure 1.20. Photoinduced electron transfer (PET) for channe1 and photoinduced hole transfer (PHT) for 

channel 2. Adapted from.80 

 

The charge transfer between the donor and acceptor is commonly very fast typically within a 

time range < 100 fs.82 However, if the driving force is lower than ca. 0.2-0.3 eV, the exciton will decay 

without contributing to the photocurrent.83 

 

 1.4.4. Charge transfer state 

After dissociation of the exciton, an electron is transferred to the “LUMO” level of the acceptor 

following Channel 1. Subsequently an intermediate charge transfer (CT) state occurs for which the hole 

and the electron are still close from each other at the donor/acceptor interface and thus still subjected to 

Coulombic attraction (Figure 1.21).84, 85 The binding energy of the CT exciton state (EB
CT) was reported 

in this range of  0.1-0.5 eV.86, 87 At this stage, geminate recombination of hole and electron can arise 

hence decreasing the photocurrent generation. 
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Figure 1.21. Generation of a charge-transfer state. 

 

 1.4.5. Charge transport in the donor and acceptor  

Under the electric field stemming from the difference of work function of the two electrodes of 

the device, hole and electron from the CT exciton state are fully separated and transported in the donor 

and the acceptor materials, respectively, to the electrodes. The driving force is chiefly dependent on the 

gradient of electrons and holes. However bimolecular non-geminate recombination between electrons 

and holes during the transport process can arise at the donor/acceptor interface especially in BHJ OSCs 

for which multiple interfaces are distributing within all the photoactive layer. 

The charge transport occurs by a hopping mechanism.88 The efficiency of the charge carrier 

transport depends on the hole mobility (𝜇h) for the donor material and the electron mobility (𝜇e) for the 

acceptor material and are determined by the electrical conductivity and impedance of organic  

materials.3, 86, 89 

 

 1.4.6. Charge extraction at the electrodes  

Electrons and holes must be extracted at the cathode and the anode, respectively. The use of an 

anode with a high work function close to the “HOMO” of the donor material will facilitate the extraction 

of holes by decreasing the energetic barrier and favoring Ohmic contacts. ITO is an anode of choice 

with its work function of -4.7 eV quite close to the HOMO of many -extended conjugated systems. On 

the other side, the work function of the cathode is generally low, matching with the “LUMO” of 

acceptors.90 If the energy barrier is too high, the extraction rate of charge carriers will be limited 

potentially producing accumulation or recombination of charges resulting in lower fill factors (FF) and 

PV performance. This behaviour can lead also to the existence of J-V curves showing a S-shape.91  

Collection of charges at the wrong electrodes can also arise. To overcome this issue, electron 

and hole transporting layers (ETL and HTL), hole- and electron-blocking layers (HBL and EBL) or 

buffer layers, can be deposited between the active layer and one electrode to select one charge species 

and improve the collection of charges.92-94  
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 1.4.7. Charge transporting and buffer interlayers 

As introduced just above, anode and cathode interlayers can significantly improve the OSCs 

performance by facilitating charges extraction. Electron transporting layer (ETL) and hole transporting 

layer (HTL) could be adapted to the cathode and the anode, respectively. Inorganic interlayer 

engineering with metal oxides, such as ZnO,95, 96 TiOX, 
97 MoO3, 

98 LiF, 99 or Ca 
98 are extremely studied 

and applied in OSCs fabrication. Organic interlayer materials were investigated and gave good results, 

such as bathocuproine (or 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) (BCP), 100 perylene 

derivatives or the poly [(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9–

dioctylfluorene)] (PFN) 101 that improved interfacial contacts. BCP is used close to the cathode as hole-

blocking layer and electron transporting layer leading to improved performance, however it presents 

also some drawbacks such as thermal instability and easy crystallization in the presence of moisture and 

at high temperature.102, 103 The composite conducting polymer poly(3,4-

ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) is also widely used as anode interlayer at 

the ITO electrode because its lower work function of – 5.1 eV compared to that of ITO, favors hole 

extraction. 

Alkali earth metals, for example, Ca, Ba, Mg and and alkali metal compounds like Cs2CO3 and 

LiF can be used as cathode interlayer to favor electron extraction while these interlayers can prevent 

aluminum or silver electrode to diffuse into the organic photoactive layer during the thermal evaporation 

process.104-107 To select the suitable metal oxide, ETL and HTL materials, the energy levels of their 

conduction band or valence band must be considered. HTL materials, for example V2O5, 
108-111 MoO3, 

98 

WO3, 
112-114 and NiO 115-120 can replace PEDOT:PSS. 109 TiOx and ZnO are ETLs which have been used 

for both conventional and inverted OSCs.104 

Charge transporting layers and buffer interlayers used in this PhD work will be described more 

in details in the following chapter. 

 

 1.5. Donor and acceptor materials for OSCs 

The design of new donor and acceptor materials for OPV has significantly contributed to the 

progress of PV efficiency. Absorption properties and frontier orbital energy levels of -conjugated 

systems can be controlled by molecular engineering.121 It is possible by design and synthesis, in 

principle, to optimize PV parameters such as Jsc and Voc, the former being related to optical absorption 

and the later depends on the difference of energy HOMO (D) – LUMO (A).79 It is also crucial to control 

intermolecular -interactions in the solid state to get high charge mobility which can in turn affect Jsc 

and FF as well. 
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In the following paragraphs, some strategies to optimize donor materials based on -conjugated 

polymers and small oligomers, will be briefly described. The most known fullerene derivatives used as 

acceptors in OPV will be depicted and their properties will be compared to the most promising classes 

of non-fullerene acceptors (NFAs). 

 

 1.5.1. Polymeric donor materials for OSCs 

A considerable number of low bandgap conjugated polymers has been developed for OPV 

applications.122 However wide bandgap conjugated polymers (Eg
opt > 1.8 eV) such as P3HT (poly(3-

hexythiophene)) have also significantly contributed to the development of OPV. P3HT is a soluble 

conjugated polymer which shows a p-type semiconducting behavior in the solid state. Thus, P3HT has 

long been used as a reference donor material in combination with the fullerene derivative PC61BM 

(phenyl-C61-butyric acid methyl ester) for solution-processed BHJ OSCs leading to PV efficiencies 

between 3.5-5% (Figure 1.12).63 

 

 

 

Figure 1.22. Regioregular P3HT. 

 

The OPV performance of P3HT depends on its regioregularity and its molecular weight as 

well.123 High molecular weight leads to better PV performance while high regioregularity induces 

absorption at higher wavelengths due to a longer conjugated pathway, and improves hole transport in 

the solid state owing to more ordered intermolecular packing (Figure 1.22).124 Thermal annealing of the 

P3HT/PC61BM as deposited layer is generaly required to favor phase separation and hence good PV 

properties. However this process should be controlled to avoid the formation of too big domains or 

excessive crystallization or phase aggregation of each constituent which could be detrimental for OPV. 

To avoid these issues, the use of less regioregular P3HT (e.g. 86% regioregular) has been 

recommended.125 

The optical bandgap of regioregular P3HT is around 1.9 eV with an onset of absorption at 650 

nm (Figure 1.23). Considering that the emission solar spectrum has a maximum at ca. 1.8 eV (700 nm), 

P3HT is capable to harvest up to 22.4% of the photons from Sun.126-128 In addition, due to its soccer-

ball symmetry which forbiddens lowest energy transitions, PC61BM is relatively inert optically and does 
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not collect much photons from the visible spectrum.129 As a consequence, thin-films of P3HT/PC61BM 

absorb less than ca. 30% of the solar spectrum. 

 

 

Figure 1.23. Absorption spectra of thin-films of P3HT or PC61BM and standard AM 1.5 solar spectrum.130 

 

This result shows that optimization of the bandgap of -conjugated polymers or molecules is 

needed to collect a higher number of photons from the solar spectrum. Various molecular engineering 

strategies have been shown to affect the bandgap of -conjugated systems such as chemical 

rigidification, non-covalent intramolecular interactions, the control of the aromatic character, the 

introduction of substituents with inductive/mesomeric effects, the regioregularity-induced interchain 

coupling and the formation of an intramolecular charge transfer (ICT) by alternating electron-donating 

(eD) and electron-accepting (eA) building blocks leading to (eD–eA)n type conjugated systems.35, 131, 132  

The later approach has been proven to be particularly successful leading to (eD–eA)n based 

conjugated polymers with low bandgaps (Eg
  < 1.8 eV), resulting from a stabilization of the LUMO level 

thanks to the eA units and the destabilization of the HOMO level due to eD units. For instance, the 

thiophene-based polymers including electron-rich platforms such as benzo[1,2-b:4,5-b']dithiophene and 

electron-deficient moieties such as 3-fluorothieno[3,4-b]thiophene, 5,6-

difluorobenzo[c][1,2,5]thiadiazole or benzo[1,2-c:4,5-c']dithiophene-4,8-dione described in Figure 

1.24, have been used as donor materials in combination with different acceptor materials for the 

fabrication of highly performant BHJ OSCs with power conversion efficiencies beyond 10% and up to 

13%.133-140 
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Figure 1.24. Low bandgap -conjugated polymers as donors for BHJ OSCs. 

 

 1.5.2. Molecular donor materials for OSCs 

Efficient and discrete molecular donors have been also widely investigated for OPV.141-147 

Compared to polymers, they exibit a well-defined structure allowing for more accurate structure-

property relationships and they are easier to purify. In addition, they can be processed in solution or by 

vacuum evaporation depending on their molecular weight. 

Among the most performant conjugated molecules for OPV, oligothiophene derivatives 

functionalized by eA groups in ,-terminal positions or inserted in the conjugated spacer, have given 

rise to highly efficient OSCs.147 For example (Figure 1.25), the introduction of two terminal electron-

withdrawing dicyanovinyl (DCV) groups in oligothiophene derivatives DCVnT (n = 2-4) significantly 

reduced their HOMO-LUMO gap, hence improving their absorption in the visible spectrum. This class 

of molecular donors presents the advantage to be vacuum-deposited. P. Bäuerle, K. Leo and co-workers 

demonstrated their great interest for performant single junction planar or BHJ OSCs with PCEs beyond 

5%,148-151 while their use in tandem or multiple-junction OSCs gave even higher efficiencies beyond 

10%.77 Following this strategy, longer and soluble oligomers such as DRCN5T, BTID-2F or 

BDTSTNTTR with other electron-withdrawing groups led to solution-processed BHJ OSCs with 

remarkable efficiences beyond 10% 152 or 11%,153, 154 respectively. 
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Figure 1.25. Low bandgap oligothiophene derivatives as efficient donors for BHJ OSCs. 

 

The choice of the acceptor counterpart is of course of importance to achieve highly performant 

OSCs. As discussed below, while fullerene derivatives have long been considered as essential and still 

represent key acceptors, non fullerene acceptors (NFAs) have emerged few years ago boosting the PV 

efficiency.  

 

 1.5.3. Fullerene and molecular non-fullerene acceptors for OSCs 

Commercially avalaible fullerene derivatives such as C60, C70 and their soluble analogues 

PC61BM and PC71BM represent reference acceptors for OPV (Figure 1.26).155 These compounds exhibit 

relatively good electron-transport properties with electron mobilities μe of 1 cm2.V-1.s-1 for C60 

(measured by OFETs),156-160 3.4 x 10-3 cm2 V-1 s-1 for C70 (OFETs),161 0.21 (OFET) and 2  10-3 cm2.V-

1.s-1 (by SCLC: Space Charge Limited Current method) for PC61BM and 0.1 cm2.V-1.s-1 (OFET) and 6.8 

 10-4 cm2.V-1.s-1 (SCLC) for PC71BM.156, 158-160, 162, 163 

In agreement with their LUMO levels lower than ca. -3.9 eV, these fullerene derivatives have 

been used as acceptor materials. The monofunctionalization of C60 and C70 induces an increase of LUMO 

level associated with a decrease of electron affinity. In this context, the double functionalization of C60 

was also developed leading for example to IC60BA, which showed a even higher LUMO level hence 

affording a higher Voc and better PV performance, in particular when associated with P3HT (PCE = 

6.5%).163 Due to their lower symmetry, the C70 analogues show better absorption properties in the visible 

spectrum than for C60 derivatives (see Chapter 2).161, 164 Thus, although they are much expensive, C70 

derivatives often lead to better PV efficiencies. 
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However, fullerene derivatives present some drawbacks such as relative low absorption in the 

visible, a limited structural tunability of their energy levels, dimerization upon illumination and the 

tendency to lead to a too pronounced phase segregation in the photoactive layer resulting in lower PV 

performance. 

 

 

Figure 1.26. Chemical structures of fullerene acceptor derivatives commonly used in OPV. 

 

Recently non-fullerene acceptors (NFAs) have attracted much considerable attention due to their 

better absorption properties and easier tunable energy levels.165 Compared to fullerene, they boosted the 

PCE of OSCs beyond 11% up to 16-17%. Figure 1.27 describes some relevant examples of NFAs. 

Multimers of perylenebisdiimide (PBI) such as the dimer SdiPBI-S combined with the PBDTS-Se 

polymer led to BHJ OSCs exhibiting a PCE of 8.4%.166 The use of multimers avoids the tendency of 

mono PBI to aggregate and form too high crystalline domain size. 

Another class of NFAs is based on a central extended -conjugated core, containing fused 

aromatic rings, functionalized by two terminal eA groups. This is the case of IT-4F which combined 

with the polymer PBDB-T-2F led to single junction BHJ OSCs with a PCE of 14%.140 More recently, 

the fused molecular structure Y6 was discovered yielding an exceptionally high PCE of 15.7%,15 

triggering futher rapid improvements by side chain engineering (N3, PCE = 16.4%)167 or replacing the 

initial fluorine atoms by chlorine ones (BTP-4Cl, PCE = 16.7%) (Figure 1.27).168 
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Figure 1.27. Chemical structure of efficient non-fullerene acceptors for OPV. 

 

The interest of NFAs relies on the possible tuning of: i) their complementary absorption relative 

to that of the donor material allowing a better coverage of the visible spectrum, ii) their energy levels to 

match those of the donor material in order to reach high Voc and iii) their morphology by using the 

concept of multimers or introduction of side-chains.169 

This non exhaustive overview of the literature has highlighted some of the best donors and 

acceptors used in OPV. Molecular systems which are smaller than polymers present some advantages 

in terms of purification and reproducibility. However, the more efficient molecular donors and NFAs 

still exhibit relatively complex structures whose synthesis in multiple steps represents a challenging 

task. In the context of potential industrialization of the OPV technology, one must take into account the 

accessibility and simplicity of molecules. Small push-pull conjugated molecules are accessible and 

simple while exhibiting easily tunable absorption properties in the visible spectrum. These features are 

a prerequisite for OPV applications. 

 

 1.5.4. Small push-pull molecules as donor materials 

A lot of push–pull conjugated molecules have been developed in the field of non linear optics.170, 

171 This class of D--A conjugated compounds are based on an electron-donating group (eD or D for 

simplicity) linked to an electron-accepting group (eA or A for simplicity) through a -conjugated spacer 

(). Different geometries can be envisaged from linear (D-π-A), quadrupole (D-π-A-D-π or A-π-D-π-

A) to octupolar/tripodal ((D–π)3A or (A–π)3D) systems. In general, D are based on groups with a +M 
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mesomeric effect such as such as NR2, OR, NH2 and OH, heterocyclic moieties such as thiophene172 and 

proaromatic pyran-4-ylidines173, 174 and also some metallocenes.175, 176 Electron-accepting units A with 

−M effect correspond, for instance, to CHO, CN, NO2 and electron deficient heterocyclic compounds 

such as (di)azines,177 benzothiazole178 and imidazole.179  

As shown in Figure 1.28, the UV-vis spectrum of the simple D-π-A system based on para-

nitroaniline shows an intense intramolecular charge-transfer (ICT) band due to electronic intramolecular 

interaction between D (-NH2) and A (-NO2) through the benzene -spacer associated with a perturbation 

of both HOMO and LUMO levels.180 The excitation of the electrons between the new molecular orbitals 

can be achieved using visible light, and hence push–pull molecules are commonly colored and referred 

to as charge-transfer chromophores.181-184 The ICT is also responsible for the polarization of the push–

pull chromophore and generation of a strong molecular dipole in the quinoid form of the push-pull 

system.180 

Figure 1.28 reveals also that this bathochromically shifted ICT band completely disappears for 

mono functionalized benzene while meta-nitroaniline exhibits a weak ICT band as a result of a much 

less conjugating pathway between the amino and nitro groups, as expected. 

 

 

 

 

Figure 1.28. Limit resonance forms and UV-Vis spectra of simple D-π-A systems based on nitroaniline.180 

 

Taking advantage of this class of coloured compounds, a first D-π-A push-pull molecule for 

OPV, namely TPA(-T-DCV)3, was synthesized in our group by J. Roncali and co-workers in 2006 
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(Figure 1.29). Triphenylamine (TPA) was used as central electron-donating block D and functionalized 

with three thiophene (T)-dicyanovinyl (DCV) branches.185, 186 An efficient ICT takes place between the 

electron donating TPA and the electron accepting DCV groups leading to a broad absorption band in 

the visble spectrum. The star-shaped molecule TPA(-T-DCV)3 was tested as donor material in bi-layer 

OSCs with C60 as electron acceptor leading to PCE of 1.85% (at 80 mW under AM 1.5 simulated solar 

irradiation). 

 

 

Figure 1.29. Push-pull molecules based on TPA for OPV. 

 

Many push-pull molecules of different geometries and D-A combination have been designed 

for OPV.132, 187  

For example, when DAD-1 and DADAD-1 push-pull molecules are combined with PC71BM, 

BHJ OSCs with PCEs of 2.10% 187 and 6.13% 187, 188 were obtained, respectively. The improvement of 

PCE for DADAD-1 is due to the π-extension of the conjugated bridge between the two TPA units and 

the insertion of electron-deficient benzothiadiazole blocks.188 The linear push-pull molecule DA-1 

showing good charge transport properties in the solid state, was associated to C60 to give bi-layer OSCs 

with a PCE of 2.67%.189 

In parallel to these OSCs prepared by solution process, push-push molecules have been also 

deposited by vacuum process (Figure 1.30). Small molecules are requested for vacuum evaporation. The 

small merocyanine DA-2 was co-evaporated with C60 to give the following ITO/MoO3/DA-2:C60 
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(9:11)/BCP/Ag BHJ OSCs leading to a very high PCE of 6.1%, considering the size of the molecule.190 

Similarly, by surrounding a co-evaporated DTDCPB:C70 layer by thin-layers of DTDCPB and C70, the 

resulting complexified ITO/MoO3/DTDCPB/DTDCPB:C70 (1:1.6)/C70/BCP/Ag device afforded a PCE 

of 6.8%.191 

 

Figure 1.30. Vacuum-processed push-pull molecules for OPV. 

 

Since the development of TPA(-T-DCV)3 for OPV, our group has developed a large number of 

small linear DA push-pull molecules.192 In particular the reference compound TPA-T-DCV was 

deposited from solution to fabricate a bi-layer device ITO/PEDOT-PSS/TPA-T-DCV/C60/Al showing 

a PCE of 2.53%, higher than the one measured for the more complex star-shaped molecule TPA(-T-

DCV)3.
193, 194 In addition, TPA-T-DCV could be produced in only few steps on the gram scale and 

further optimization by preparing BHJ OSCs by co-evaporation with C60 led to a promising PCE of 

4.0%.195 

Interestingly the replacement of one terminal phenyl ring of TPA-T-DCV by a methyl group, 

giving rise to DPMA-T-DCV (Figure 1.31), strongly affected the molecular organization in the solid 

state undergoing a 50 time increase of hole mobility µh up to 5.0 × 10−4 cm2 V−1 s−1, as compared to that 

of TPA-T-DCV. Moreover, preliminary results showed that improved C60-based bi-layer OSCs, 

fabricated by depositing DPMA-T-DCV by spin-casting or evaporation, were obtained affording PCEs 

of 2.92% and 3.03%, respectively.196 

 

 

Figure 1.31 Structure of TPA-T-DCV and DPMA-T-DCV, DPMA stands for DiPhenylMethylAmine. 
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 1.6. Objectives of the PhD thesis                           

In this chapter, the fundamental of OSCs has been briefly described. An overview of organic 

semiconductors and the history of the development of organic photovoltaics have been provided as well 

as the operating principle of OSCs. Different OSC architectures and their characterization were 

described. Some important photoactive organic donor and acceptor materials for OPV have been 

described. Among them, push-pull molecules can be considered as relatively simple, accessible and 

efficient molecules as donors for OPV. 

In this context, preliminary results have shown that the molecular donor DPMA-T-DCV 

combines good transport properties and promising PV efficiency. One of the objectives of this PhD 

thesis will deal with further exploration of the PV potential of this molecule by optimizing the 

architecture of OSCs (Chapter 2). Chapter 3 will then investigate the properties and the PV performance 

of a new -extended DPMA-T-DCV analogue. A series of carbazole and selenophene analogues of 

DPMA-T-DCV will be also characterize and tested (Chapter 4) while the last chapter will be devoted 

to new push-pull multimers for OPV. 
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 2.1. Introduction 

Small -conjugated D--A push-pull molecules have received a great attention over the last 

decade as molecular donors for photovoltaic applications.1-3 These compounds present the advantage to 

be processed in solution or by vacuum evaporation. A. Mishra, P. Bäuerle and G. D. Sharma and co-

workers have recently described a soluble heteropentacene TPA-SN5-DCV end-capped by an electron-

donating triphenylamine (TPA) unit on one side and a dicyanovinyl (DCV) electron-withdrawing group 

on the other side (Chart 2.1). When this compound was mixed with PC71BM as acceptor, one of the best 

efficiencies for solution-processed BHJ OSCs was reported (PCE = 7.26 %).4 On the other hand, the 

group of K. T. Wong and, more recently, the one of M. Pshenichnikov have developed smaller systems 

for the fabrication of vacuum-processed BHJ OSCs such as DTDCPB, DTDCTB 5, 6 and  

TPA-T-DCV-Ph7 leading to PCEs beyond 5%. Then K. T. Wong and co-workers described efficient 

vacuum-deposited ternary OSCs reaching a PCE of 8.02%, after optimization of the composition and 

the thickness of the photoactive layer prepared by co-evaporation of C70, DTDCTB and DTTz.8  

In parallel, S. R. Forrest and colleagues thoroughly investigated the PV potential of molecules 

described by K. T. Wong, namely DTDCPB and DTDCTB. After preparing a single junction OSC 

based on co-evaporation of DTDCTB and C60 (PCE = 5.3%), further improvement was achieved using 

the photoactive layer DTDCTB:C60 as the front subcell of a tandem cell (PCE = 10.0%) and as the 

middle subcell of a triple junction OSC (PCE = 11.1%).9 Very recently, the same group has reported 

one of the highest PCE for an OSC, namely 15.0% for an organic tandem OSC of 2 mm2 active area, 

combining a vacuum-processed subcell built by co-evaporation of DTDCPB and C70, and a solution-

processed subcell combining the PTB7-Th polymer and a non-fullerene acceptor.10 

 

 

Chart 2.1. Push–pull molecules used as donors in solution or vacuum-processed single junction OSCs. 
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All these literature data show the high interest of push-pull molecules for OPV. Our group has 

been involved at the very beginning of the development of push-pull molecules for OPV.3, 11 The first 

example TPA(-T-DCV)3 reported in 2006 consisted in a central TPA functionalized with three thienyl 

(T)-DCV branches (Chart 2.2).12 Bi-layer OSCs with C60 led to a PCE of 1.85% with an exceptional 

high Voc of 1.15 V. It was shown that push-pull molecules can efficiently absorb the visible light and 

the introduction of electron-withdrawing groups such as DCV increased the oxidation potential of the 

resulting molecule, and hence the Voc of related OSCs. Few years later, the structure of TPA(-T-DCV)3 

has been simplified affording a more accessible molecule, namely TPA-T-DCV which has been initially 

used in bi-layer OSCs with C60 leading to a higher PCE of 2.5%.13, 14 Subsequent improvements were 

achieved by fabricating solution-processed BHJ OSCs with PC61BM (PCE = 3.0 %)15 and vacuum-

processed BHJ OSCs with C60 (PCE = 4.0%).16 However this compound suffered from a low hole 

mobility as measured by the Space Charge Limited Current (SCLC) method (μh = 1  10-5 cm2 V-1 s-1). 

 

 

Chart 2.2. Molecular engineering combining structure simplification and improvement of charge hole properties 

giving rise to DPMA-T-DCV as push-pull donor for OPV. 

 

Several strategies were investigated to improve hole transport properties of TPA-T-DCV. One 

of the external phenyl ring of TPA was replaced by a 2-naphthyl or a 9-anthryl moiety giving rise to 

DP2NA-T-DCV17 or DP9AA-T-DCV18 which were successfully used as donors in bi-layer OSCs 

exhibiting maximum PCEs of 3.4 and 2.3%, respectively. More importantly, introduction of such 

extended -platforms was shown to increase the hole mobility of DP2NA-T-DCV and DP9AA-T-DCV 
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compared to TPA-T-DCV. Following the same approach, introduction of a methyl group in DPMA-T-

DCV produced a hole mobility of 5  10-4 cm2 V-1 s-1, a 50 time higher value than the one of  

TPA-T-DCV. As a result, more performant bi-layer OSCs with C60 were reached using thin-films of 

DPMA-T-DCV prepared either by spin-coating from chloroform solutions (PCE = 2.9%) or vacuum 

evaporation (PCE = 3.3%).19 

Following these preliminary and promising results, this chapter will explore further the potential 

of DPMA-T-DCV as donor material for OPV by combining other fullerene derivatives, optimizing the 

conditions of device fabrication and developing new solar cell architectures. 

 

 2.2. Synthesis and characterization of DPMA-T-DCV 

As described in scheme 2.1, push-pull molecule DPMA-T-DCV has been synthesized using a 

slightly different procedure described in the literature by J. Roncali and C. Cabanetos.19 

 

 

Scheme 2.1. Synthesis of DPMA-T-DCV. 

 

As a first step, 4-bromo-N-phenylaniline was reacted with iodomethane in the presence of 

sodium hydride in anhydrous tetrahydrofuran giving compound 1 in 95% yield, a more straightforward 

reaction with a much higher yield than the one involving N-methylaniline and 1-bromo-4-iodobenzene 

in the presence of t-butoxide and tris(dibenzylidedeeacetone)-dipalladium(0).19 The Stille coupling of 1 

with trimethyl(thiophen-2-yl)stannane in toluene with tetrakis(triphenylphosphine) palladium as the 

catalyst, gave compound 2 in 58% yield. Subsequent Vilsmeier formylation led to carboxaldehyde 3 in 

54% yield. A Knoevenagel condensation between malononitrile and the later carbaldehyde led to the 

target product DPMA-T-DCV in 83% yield after recrystallization. Thus, the push-pull molecule was 

obtained in only four steps synthesis in relatively large scale (ca. 500 mg). 
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 2.2.1. Optical properties 

The optical properties of DPMA-T-DCV were investigated by absorption and emission 

spectroscopy in diluted dichloromethane solutions, ca. 10-5 and 10-6 M, respectively (Figure 2.1a). Thin 

films prepared by spin-casting a solution of DPMA-T-DCV in chloroform (5 mg/mL) on clean glass 

substrate were also investigated (Figure 2.1b). The optical properties data are summarized in Table 2.1. 
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Figure 2.1. a) Absorption and emission spectra of DPMA-T-DCV in dichloromethane solution. b) Absorption 

spectra of a thin film of DPMA-T-DCV on glass as cast (pink solid line, stage 1) and at stages 3, 4 and 5 as 

described in c). c) Evolution of the surface of a thin-film of DPMA-T-DCV studied with a camera or an optical 

microscope. d) AFM pictures of a violet thin film of DPMA-T-DCV deposited on a ITO/PEDOT:PSS substrate. 
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The UV-Vis spectrum of the titled D-π-A molecule in solution shows a broad absorption band 

in the visible spectrum between 400 and 600 nm with a maximum at 498 nm and a high extinction 

coefficient (ε) of ca. 44100 M-1 cm-1. This broad and intense band is related to an internal charge transfer 

(ICT) taking place from the electron-rich D unit to the electron-withdrawing A unit. DPMA-T-DCV 

exhibits emission properties in solution with a single emission band with a maximum at 628 nm 

associated to a quantum fluorescence emission yield (Φf) of 7 %, as measured using Rhodamine B as 

reference. 

Table 2.1. Optical data for DPMA-T-DCV in solution and as thin film and thermal properties. 

a Decomposition temperature corresponding to a 5% weight loss under N2 determined by TGA. b Melting 

temperature determined from DSC. c λexc = 500 nm, Standard: Rhodamine B in Ethanol (f = 0.50). d 

Optical HOMO-LUMO gap estimated from the intercept of the absorption and emission spectra. 

 

As already reported,19 the optical properties of an as-cast thin-film of  DPMA-T-DCV evolves 

with time (Figures 2.1b and 2.1c) at room temperature or upon thermal annealing at 80 °C. Interestingly 

the initial UV-Vis spectrum showing a broad band at max = 515 nm, is subjected to a progressive 

bathochromic shift together with the appearance of a vibrational structure with new bands at 553 and 

610 nm. This evolution leads to a change of colour from pink to violet and stops after 80 min at room 

temperature. As shown by the AFM pictures of Figure 2.1d, this change is associated to a structural 

reorganization of the material leading to the formation of a violet crystalline thin-film. 

Figure 2.2 shows information on the determination of the optical bandgap of thin-films of 

DPMA-T-DCV in their initial and final state (stage 3, Figure 2.1c) leading to values of Eg
opt of 1.98 eV 

(pink curve) and 1.77 eV (violet curve), respectively, corresponding to onsets of absorption at ca. 626 

and 700 nm estimated from the cross point of absorption onset line and corrected baseline. 
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Figure 2.2. Determination of optical band gap of thin films of DPMA-T-DCV. 
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Interestingly, the same change of colour from pink to violet can be obtained faster upon thermal 

annealing at 80 °C for few minutes, however after a prolonged treatment at this temperature, a dewetting 

process occurs leading to a contraction of the material on the glass surface and hence a progressive 

decrease of the intensity of the absorbance of the thin-film (see also Chapter 4). 

 

 2.2.2. Thermal properties 

Prior to fabrication of vacuum-processed OSCs, the thermal stability of DPMA-T-DCV was 

investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) under 

an inert atmosphere of nitrogen (Figure 2.3). The decomposition temperature (Td, ~5% weight loss) 

occurs at 299 °C as observed by TGA. The good thermal stability of this push pull molecule suggests 

the possibility of preparing thin-films by thermal evaporation. 
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Figure 2.3. a) TGA thermogram and b) DSC curve of DPMA-T-DCV measured under N2 at a heating 

rate of 10 °C/min. 

The DSC curve shows one sharp endothermic peak at 207 °C corresponding to the melting 

temperature (Tm) after which the compound starts to decompose at much higher temperature above ca. 

350 °C, which is illustrated by the broad exothermic peak at 372° C in the DSC curve. In the following 

paragraphs, vacuum-processed OSCs have been successfully fabricated by evaporation of DPMA-T-

DCV at ca.119 °C under a pressure of 10-7 mbar, with a deposition rate of ca. 0.5 Å/S 

 

 2.2.3. Electrochemical properties 

The electrochemical properties of the DPMA-T-DCV have been analyzed by cyclic 

voltammetry using dichloromethane in the presence of 0.10 M tetrabutylammonium 

a) b) 
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hexafluorophosphate (Bu4NPF6) as the supporting electrolyte and Pt was used as a working electrode 

(Figure 2.4).  
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Figure 2.4. Cyclic voltammogram of DPMA-T-DCV 1 mM in 0.10 M Bu4NPF6/CH2Cl2, scan rate 100 mV s-1, 

Pt working electrode 

 

The cyclic voltammogram (CV) of DPMA-T-DCV showed one quasi-reversible oxidation 

wave peaking at Epa = 0.59 V vs. the ferrocene/ferrocenium redox couple (Fc/Fc+), associated with the 

formation of a radical cation species. In the negative potentials region, an irreversible reduction wave at 

Epc = -1.57 V was observed, which could be assigned to the reduction of the DCV electron-withdrawing 

group.20 HOMO and LUMO energy levels were calculated from the onset of the first oxidation and 

reduction peaks and data are reported in Table 2.2. 

 

Table 2.2. Cyclic voltammetric data of DPMA-T-DCV with respect to ferrocene/ferrocenium (Fc/Fc+). 

Compd Epc
 

[V] 

Epa
   

[V] 

Eox,onset 

[V] 

Ered,onset 

[V] 

EHOMO
a

 
[eV] 

ELUMO
b

 
[eV] 

 Eelec 

[eV] 

DPMA-T-DCV -1.57 0.59 0.46 -1.46 -5.56 -3.64 1.92 

a EHOMO (eV) = - (Eox,onset vs Fc/Fc+ + 5.1), b ELUMO (eV) = - (Ered,onset vs Fc/Fc+ + 5.1).21 

 

The HOMO and LUMO energies levels were estimated to -5.56 eV and -3.64 eV respectively 

while the electrochemical HOMO-LUMO gap (Eelec) of 1.92 eV was in a relatively good agreement 

with the optical HOMO-LUMO gap of 2.20 eV. In the following paragraph, the ionization potential of 

DPMA-T-DCV has been measured and combined with its optical band gap to draw the energetic 

diagram in the solid state. 
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 2.2.4. Energetic Diagram from PYSA and Eg
opt 

The ionization potential (IP) of thin films of DPMA-T-DCV spun-casted from chloroform 

solutions (ca. 5 mg/mL) on ITO (indium tin oxide) substrates were determined by photoemission yield 

spectroscopy in air (PYSA). The UV excitation energy range extends from 4 to 6.2 eV (Figure 2.5). The 

ionization potential, assimilated to the “HOMO” level, was determined using the intercept between the 

base line and the tangent of the curve at high energy. 

 

  

Figure 2.5. PYSA spectra of films of DPMA-T-DCV on ITO a) as cast (pink film, left) and b) after 

reorganization with time (violet film, right) . 

 

The HOMO energy level of DPMA-T-DCV was found to be -5.63 eV while after thermal 

annealing at 80 °C for 5 minutes or 80 min at room temperature in air, an increase of +0.05 eV of the 

HOMO energy level is observed giving a HOMO value of -5.58 eV. These two values are quite 

comparable suggesting that the difference in optical properties of the pink and violet thin-films is more 

related to a change in the LUMO level. The LUMO energy levels were determined by adding the optical 

band gap of the thin films (Figure 2.2) to their HOMO levels. Thus, the pink film exhibits a LUMO 

level at -3.65 eV whereas the violet one is significantly stabilized down to -3.81 eV. This result 

highlights the effect of the structural organization of thin-films on their electronic properties. 

The HOMO and LUMO levels of the pink and violet films and those of C60, C70, PC61BM and 

PC71BM that will be used as acceptors in organic solar cells, are represented in the energetic diagram of 

Figure 2.6. In fact, different values have been reported in the literature for the fullerene derivatives either 

determined in solution (from cyclic voltammetry) or in the solid state. One article of J. L. Brédas and 

co-workers gathers experimental ionization potentials IPs and electron affinities EAs of C60, C70, 

PC61BM and PC71BM in the solid state, measured under high vacuum by UPS (Ultraviolet Photoelectron 

Spectroscopy) and IEPS (Inverse PhotoEmission Spectroscopy), respectively.22 These values have been 

used for HOMO and LUMO levels as represented in Figure 2.6.  It is important to note that for our 

Energy [eV]

4.0 4.5 5.0 5.5 6.0 6.5

C
o

u
n

ti
n

g
 R

a
te

 [
c
p

s
]

0

2

4

6

8

10

DPMA-T-DCV (pink)

EHOMO = 5.63 eV

Energy [eV]

4.0 4.5 5.0 5.5 6.0 6.5

C
o

u
n

ti
n

g
 R

a
te

 [
c
p

s
]

0

2

4

6

8

10

DPMA-T-DCV (Violet)

EHOMO = 5.58 eV

a) b) 



Chapter 2: Organic solar cells based on DPMA-T-DCV 

61 

molecular donors, the IP (HOMO) was measured using PYSA which is a similar technique as UPS but 

operating in air. In addition, we have estimated their LUMO levels by taking into account their optical 

bandgap Eg
opt. Therefore, it must be kept in mind that the levels of the donors are not strictly comparable 

to those of the fullerene derivatives. 

The LUMO levels of DPMA-T-DCV in its different forms (pink or violet), are relatively higher 

than most of LUMO levels of the different fullerene derivatives making possible a photoinduced electron 

transfer from the former to the acceptors, and their HOMO levels are relatively closer to the PEDOT-

PSS level indicative of possible hole extraction. 

 

 

Figure 2.6. Energy level diagrams of DPMA-T-DCV, C60, C70, PC61BM, PC71BM and electrodes used in OPV 

devices. 

 

 2.3. Charge transporting and buffer layers 

Interfacial engineering represents an efficient approach to achieve OSCs with high PCEs.23-26 

Inorganic or organic interlayers can i) adjust the energy barriers between the photoactive layer and the 

electrodes, ii) select one type of charge carriers and reduce the charge recombination,  iii) introduce 

dipoles close to the electrodes favoring charge extraction and iv) prevent oxygen or moisture penetration 

into the BHJ composite/electrode interface. Buffer layers (interlayers) can be used as hole transporting 

layer (HTL), electron transporting layer (ETL), hole blocking layer (HBL) and electron blocking layer 

(EBL). Metal oxides, ionic and electrolytic molecular or polymeric materials, graphene oxide and 

plasmonic materials represent the most important classes of interfacial materials.  
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a) Anode Interlayer Materials 

Two types of interfacial layer at the anode have been used in this work. The first one, namely 

poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), consists of a composite 

material based on a positively-doped conducting polymer PEDOT blended with a non-conjugated 

anionic water soluble PSS polymer.27 PEDOT:PSS can be replaced by molybdenum trioxide (MoO3) 

which structure is described also in Figure 2.7. 

 

Figure 2.7. Structure of PEDOT:PSS and MoO3 lattice (orthorhombic phase). 

 

PEDOT:PSS is often applied for conventional OSCs and deposited by solution process between 

the transparent ITO electrode and the photoactive layer. This interlayer plays the role of hole 

transporting layer, can smooth the ITO surface to improve the conductivity, can prevent the ITO 

electrode from diffusing into the active layer, and exhibits a higher work function (-5.0/-5.1 eV) than 

ITO (-4.7 eV), hence reducing the energy barriers between ITO and organic materials.28 On the other 

hand, thin films of MoO3 are grown by vacuum process and have been used as hole transporting layer 

in conventional and inverted OSCs. The work function of MoO3 is ca. -6.86 eV, however p-doping 

occurs at the metal oxide/organic interface interfacial leading to apparent work functions often between 

-5.3 and -5.8 eV.24 Note also that the work function of MoO3 can vary from -5.35 eV to -4.24 eV upon 

cesium intercalation showing that MoO3 can become an ETL.25 The OSCs performance depend on the 

thickness of the MoO3 layer, many reports suggesting to use a thickness below 20 nm since higher values 

lead to a decrease of Jsc.
29 The substitution of PEDOT:PSS by MoO3 can be beneficial in OSCs, due to 

the fact that the PEDOT:PSS layer can absorb moisture from air during the spin coating process and that 

PEDOT-PSS becomes more acidic at elevated temperature. In addition MoO3 is cheaper. 
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b) Cathode Interlayer Materials 

Different types of cathode interlayer materials have been used in this thesis. LiF (typically ca. 

1 nm of thickness) was deposited by vacuum process onto the photoactive BHJ layer. LiF generates 

permanent dipole moments at the interface facilitating electron extraction. 

ZnO is a very common n-type metal oxide, with a wide band gap of 3.3 eV and a conduction 

band edge of ca. - 4.4 eV, which has been used for ITO modification in OPV. ZnO layer can improved 

the performance of OSCs due to its high electron mobility (200-300 cm2/Vs) 30 minimizing Ohmic loss 

in devices and its hole blocking ability preventing carrier recombination at the interface with the 

photoactive layer.31 ETLs based on ZnO are synthesized by sol-gel method using a zinc acetate precursor 

that can be deposited on ITO by solution processes followed by a thermal treatment for the fabrication 

of inverted OSCs structures. 

Alcohol/water-soluble polyelectrolytes composed of a -conjugated backbone and surfactant-

like side groups have already been reported as buffer layers between the BHJ layer and the top cathode 

electrode,23-26 showing excellent electron-injection ability and leading to improved PCEs as in the case 

of poly[(9,9-dioctyl-2,7-fluorene)-alt-(9,9-bis(3′-(N,N-dimethylamino)propyl)-2,7-fluorene)] (PFN).32-

34 Typically, the thickness of these cathode interlayers is very thin from 1 to 5 nm. As another example, 

the phosphonium-functionalized poly(3-hexylthiophene) P3HTPMe3,TFSI has been introduced as 

cathode interlayer improving the efficiency of PBDTTPD:PC71BM solar cells by 20% as compared to 

calcium.35 TFSI stands for bis(trifluoromethane)sulfonamide anion. P3HTPMe3,TFSI together with the 

new molecular polyelectrolyte derived from a zinc tetraphenylporphyrin complex, namely 

ZnTPPIm,TFSI, have been provided by Prof. Sébastien Clément (University of Montpellier) and tested 

in this PhD work, as cathode interlayer in OSCs fabricated from D--A push-pull molecules (Figure 

2.8).  

 

 

Figure 2.8. Structures of P3HTPMe3,TFSI and ZnTPPIm,TFSI as cathode interlayers. 

 

The optical properties of P3HTPMe3,TFSI and ZnTPPIm,TFSI in diluted methanol solutions 

(ca. 10-5) and as thin films prepared by spin-casting corresponding solutions (0.5 mg/mL of methanol) 
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on clean glass substrates, were analyzed by UV-Vis spectroscopy (Figure 2.9). Related optical data are 

gathered in Table 2.3. 

 The absorption band observed for P3HTPMe3,TFSI in methanol at max = 444 nm associated to 

the conjugated polymer, is broaden and significantly red-shifted to 485 nm in the solid state. Using the 

conditions of deposition of P3HTPMe3,TFSI for the fabrication of OSCs (0.5 mg/mL of 

P3HTPMe3,TFSI in methanol and a speed rate of 5000 rpm for spin-casting),35 the resulting thin film 

afforded a very low optical density maximum of 0.004. The progressive decrease of speed rate down to 

500 rpm, led to an increase of optical density up to 0.014 however, the corresponding thickness was not 

sufficient to be measured by profilometry suggesting a very small thickness, probably below 5 nm, in 

agreement with the typical thicknesses (1-5 nm) of cathode interlayers reported in the literature.32-34, 36 

As expected in the case of ZnTPPIm,TFSI in methanol, the conjugated porphyrin  macrocycle  

exhibits an intense feature at 422 nm characteristic of the “Soret” band, followed by two weaker  

absorptions (Q  bands) at  higher wavelengths at  556  and  596  nm. Again the passage to the solid state 

led to a slight red-shift of the absorption spectrum. The optical bandgaps of P3HTPMe3,TFSI and 

ZnTPPIm,TFSI determined at the onset of absorption at low energy gave values of 2.10 and 2.00 eV 

which combined with the HOMO levels, -5.50 and -5.72 eV as measured by PYSA, afforded their 

LUMO levels at -3.40 and -3.72 eV, respectively. 

 

Table 2.3. Optical data for P3HTPMe3,TFSI and ZnTPPIm,TFSI in solution and as thin films. 

a HOMO energy levels were determined by PYSA of thin films.b ELUMO = EHOMO + Eg
opt. 
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(nm) 
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(nm) 

Eg
opt   

(eV) 

EHOMO      

[eV]a 

 

ELUMO      

[eV]b 

 P3HTPMe3,TFSI 444 2.34  485 

 

2.10 -5.50 -3.40 

ZnTPPIm,TFSI 596 2.02  603 2.00 -5.72 -3.72 
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Figure 2.9. UV-Vis spectrum of P3HTPMe3,TFSI and ZnTPPIm,TFSI in methanol solution and as thin films on 

glass prepared by spin-casting solutions of 0.5 mg/mL in methanol using different speed rates. 

 

Finally, bathocuproine (BCP) is a wide band gap material (HOMO = - 6.7 eV and LUMO = - 

3.2 eV) (Figure 2.10).37 BCP has been used in this work as HBL or exciton blocking layer when inserted 

between the metal electrode (Al) and the organic photoactive layer of conventional OSCs, the related 

results will be described in section 2.6. 

 

 

Figure 2.10. Structure of bathocuproine (BCP). 
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 2.4. Bi-layer organic solar cells 

DPMA-T-DCV was used as electron-donor material in conventional or inverted bi-layer solar 

cells with fullerene derivatives C60 and C70 (99.5% and 99% purity from Solenne b.v, respectively) as 

electron acceptors. The performance of OSCs have been optimized by modification of the solar cells 

architecture and the thickness of the organic layers, by thermal annealing of the completed device, and 

by introducing buffer layers. 

 

 2.4.1. Conventional solution-processed bi-layer OSCs 

A first layer of PEDOT:PSS was deposited by spin-coating on cleaned commercially available 

ITO substrates. The general conditions of PEDOT:PSS thin film preparation are described in the 

experimental procedure. Then, the donor layer was deposited under atmospheric conditions by spin-

coating a solution of DPMA-T-DCV in chloroform (10 mg/mL) using different speed rates for thickness 

optimization. The samples were transferred inside a glove box under N2, equipped with a mask defining 

a disk of 0.28 cm2 surface and put in a vacuum chamber. Under a vacuum between 10−6 and 10−7 mbar, 

C60 or C70 (30 nm of thickness) was deposited by vacuum evaporation with an evaporation rate of ~1.5 

Å/s and next, an Al electrode of 100 nm thickness was thermally deposited (Figure 2.11). For all OSCs 

of this PhD work, unless otherwise stated, the shape of the devices is displayed in Figure 2.11 and the 

surface of the photoactive disk area is 0.28 cm2. The current density–voltage (J–V) characteristics were 

recorded under AM 1.5 illumination (100 mW cm−2) under a N2 atmosphere within the glove box. 

 

 
 

 

Figure 2.11. General device architecture of bi-layer organic solar cells and picture of the mask used for 

the one-step fabrication of 18 devices on 9 ITO substrates. 

 

Bi-layer OSCs of the following architecture ITO/PEDOT:PSS/DPMA-T-DCV/C60 (30 nm)/Al 

(100 nm) were first prepared and optimized by controlling the thickness of the donor thin-film using 

different speed-rates (2000, 3000 and 4000 rpm) for the deposition by spin-coating. All thicknesses were 

measured by profilometry. Table 2.4 shows the J-V parameters of the best bi-layer OSCs before and 

after thermal treatment of the completed devices at 80 °C. 
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Table 2.4. J-V parameters of ITO/PEDOT:PSS/DPMA-T-DCV (solution-processed)/C60/Al devices. 

Speed rate 

(rpm) 

Thickness 

(nm) 

Conditions Jsc 

(mA cm-2) 

Voc 

(V) 

FF 

(%) 

PCEmax 

(%) 

2000 31±2  

As cast @ 20 °C 

4.96 0.29 27 0.29 

3000 24±2 5.82 0.47 32 0.87 

4000 

 

- 4.09 0.32 28 0.37 

2000 - 20 min @ 80 °C 11.50 0.56 33 2.17 

3000 - 40 min @ 80 °C 13.40 0.59 35 2.78 

4000 - 50 min @ 80 °C 11.43 0.52 32 1.91 

 

The initial power conversion efficiencies of the OSCs (0.3 < PCE < 0.9%) were significantly 

improved after a thermal treatment at 80 °C leading, for instance, to a maximum of PCE of 2.78% for 

bi-layer OSCs prepared with a speed rate of 3000 rpm associated to a thickness of 24 nm, corresponding 

to the best trade-off between absorption, exciton diffusion length and hole transport properties of 

DPMA-T-DCV. The better PV performance obtained upon thermal treatment may result from an inter-

diffusion of the donor and acceptor layers hence increasing their interface and the dissociation of 

excitons, however further experiments would be required to confirm this hypothesis. 

Although the PCE of 2.78% seems in agreement with previously reported results for the same 

OSC architecture fabricated in the same conditions (PCE = 2.92%),19 the higher value of Jsc (13.40 mA 

cm−2) and the lower value of FF (35%) observed in this work are different from the reported ones (Jsc = 

6.34 mA cm−2 and FF = 46%). In fact, as exemplified in the case of bi-layer OSCs with a 24 nm thickness 

of DPMA-T-DCV (Figure 2.12), all devices, whatever the thickness of the donor layer, did not give the 

expected diode-like behavior in the dark. The Ohmic behaviour of the J-V curves in the dark suggests 

the existence of short circuit or leakage current arising from a lack of homogeneity of the donor layer 

which can be subjected to crystallization with time or dewetting with thermal treatment, as described 

above. Of course, other factors can be involved such as the insertion of aluminium within the organic 

D/A thin layer (< 50 nm) during the vacuum deposition of the top electrode. 
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Figure 2.12. J-V curves of ITO/PEDOT:PSS/DPMA-T-DCV (solution-processed at 3000 rpm)/C60/Al 

devices recorded in the dark and under simulated solar illumination (100 mW cm-2) before (dashed lines) and 

after (solid line) treatment at 80 °C for 40 min. 
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As a next step, C60 has been replaced by C70 leading to bi-layer OSCs with the following 

structure: ITO/PEDOT:PSS/DPMA-T-DCV/C70 (30 nm)/Al (100 nm). Indeed, C70 derivatives are 

known to exhibit better absorption properties in the visible spectrum possibly leading to improved PV 

performance. Figure 2.13 shows the absorption properties of thin-films of C60 and C70 (20 nm of 

thickness) deposited by thermal evaporation, in full agreement with literature results,38 and those of thin-

films on glass prepared by spin-coating solutions of PC61BM or PC71BM in chloroform. 
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Figure 2.13. UV-Vis spectra of thin films of fullerene derivatives deposited on glass. 

 

Again the thickness of DPMA-T-DCV layer was varied (500, 1000, 2000 and 3000 rpm). Table 

2.5 summarizes the J-V characteristics before and after thermal annealing at 80 °C for an optimized 

time. Figure 2.14 shows an example of evolution of PV performance with time upon thermal treatment. 
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Figure 2.14. Evolution of J-V parameters vs. thermal annealing time at 80 °C for the best C70-based solution-

processed bi-layer OSCs using a speed-rate of 1000 rpm. 
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Table 2.5. J-V parameters of ITO/PEDOT:PSS/DPMA-T-DCV (solution-processed)/C70/Al devices. 

Speed rate 

(rpm) 

Thickness 

(nm) 

Jsc      

(mA cm-2) 

Voc 

(V) 

FF 

(%) 

PCEmax 

(%) 

Thermal 

treatment 

500 55±3 2.31 0.41 26 0.24  

 

As cast (25 °C) 
1000 

 

33±2 2.64 0.52 24 0.33 

2000 

 

31±2 3.36 0.41 29 0.39 

3000 24±2 3.96 0.58 29 0.66 

500 - 9.71 0.60 

 

38 2.26 50 min@80 °C 

1000 

 

- 9.94 0.61 39 2.40 60 min@80 °C 

2000 

 

- 9.81 0.59 39 2.33 60 min@80 °C 

3000 - 9.20 0.58 39 2.07 60 min@80 °C  

 

 

 

 

 

Surprisingly, as exemplified in Figure 2.15a, all C70-based bi-layer OSCs exhibit a much better 

diode-like behavior in the dark whatever the donor thickness in strong contrast with C60-based OSCs. In 

addition, thermal annealing significantly contributes to improve PCE values and the PV performance 

are homogeneous for all speed rate values (2.07 % < PCE < 2.40%). The best one has been obtained by 

using a speed rate of 1000 rpm corresponding to a 33 nm thick layer of donor leading to a PCE of 2.40% 

with a Voc of 0.61 V, a Jsc of 9.94 mA cm-2 and a FF of 39% after 60 minutes of thermal treatment of the 

device at 80 °C (Figure 2.15). Compared to the already reported C60-based bilayer OSCs (Voc = 0.88 V, 

Jsc = 6.34 mA cm−2, FF = 46% and PCE = 2.92%),19 a higher Jsc value was obtained with C70 in agreement 

with its better absorption in the visible spectrum. 
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Figure 2.15. a) J-V curves of the best bi-layer OSCs using DMPA-T-DCV/C70 as photoactive layer under 

illumination and in the dark and b) corresponding external quantum efficiency spectrum. 

 

The external quantum efficiency (EQE) spectrum of the best C70-based bi-layer OSC shows two 

broad bands centered at ca. 540 nm and 589 nm with maxima of EQE of 46% and 44% corresponding 

to the contribution to the photocurrent of the push pull molecule in its -extended violet form in the 
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solid state (Figure 2.15b). A sharp peak is also observed at 392 nm which may be assigned to the 

contribution of C70 in agreement with its absorption spectrum in the solid state (Figure 2.13). 

Our results showed that it was easier to get bi-layer OSCs with a diode-like behaviour in the 

dark by using C70 instead of C60. The origin of this phenomenon is not clear. In the following paragraph, 

thin-films of DPMA-T-DCV were prepared by vacuum process. 

 

 2.4.2. Conventional vacuum-processed bi-layer OSCs 

In order to assess the impact of the processing conditions of the donor layer, bi-layer OSCs with 

the following architecture ITO/PEDOT:PSS/DPMA-T-DCV/C60 or C70/Al (100 nm) have been 

fabricated by thermal vacuum evaporation of DPMA-T-DCV. 

Thin-films of DPMA-T-DCV with different controlled thicknesses (15, 20 and 25 nm) were 

prepared with a deposition rate of ~ 0.5 Å/s under a pressure of 10-7 mbar at ca. 119 °C. Next, a layer of 

30 nm of C60 was deposited by vacuum evaporation. As before, the time of thermal annealing at 80 °C 

of the completed devices has been optimized for each donor thickness and the PV performance are 

summarized in Table 2.6. Figure 2.16 shows the best J-V curves in the dark and under illumination for 

each donor thickness. Importantly, the J-V curve in the dark evidences an Ohmic behavior for the 

smallest thickness of 15 nm while increasing progressively this value leads to the appearance of a diode-

like behaviour. When a thickness of 25 nm was reached, the OSCs showed a diode behaviour in the dark 

and a PCE of 2.41% was measured after 50 min of thermal annealing at 80 °C, associated to a Jsc of 9.88 

mA cm-2, a Voc of 0.60 V and a FF of 40% (Table 2.6). However the corresponding J-V curve exhibits 

a S shape under illumination similarly to analogue bi-layer OSCs prepared by solution process (Figure 

2.12). 

Although its origin is not always clear, this S-shaped “kink” can be observed under illumination 

of certain types of organic solar cells and may arise from poor charge transport materials, charge 

accumulation at interfaces, misaligned metal work functions and selective blocking contacts producing 

injection barriers, and insulating interfacial layers between the metal and the active layers producing 

extraction barriers. In planar heterojunctions, as in our case, S-kinks can be caused by a strong imbalance 

of charge carrier mobilities (larger than 100).39 This explanation maybe plausible here for DPMA-T-

DCV (μh = 5 x 10-4 cm2 V-1 s-1) and C60 (μe = 1 cm2 V-1 s-1).19, 40 In the case of bulk heterojunction OSCs, 

some reports incriminate the role of hole selective layer with low mobility41 or the poor extraction of 

electrons at the cathode.42  
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Table 2.6. J-V parameters of ITO/PEDOT:PSS/DPMA-T-DCV (vacuum-processed)/C60/Al devices. 

Thickness 

(nm) 

Jsc      

(mA cm-2) 

Voc 

(V) 

FF 

(%) 

PCEmax 

(%) 

Thermal 

annealing time 

(80 °C) 

15 10.50 0.48 31 1.56 40 min 

20 9.63 0.64 44 2.72 30 min 

25 9.88 0.60 40 2.41 

 

50 min 
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 Figure 2.16. Evolution of J–V curves for ITO/PEDOT:PSS/DPMA-T-DCV (vacuum deposited)/C60/Al under 

illumination and in the dark with increasing donor thickness: a) 15 nm, b) 20 nm and c) 25 nm. 

 

The same study was achieved by evaporating C70 instead of C60. Based on the results obtained 

with C60, we choose to use slightly higher thicknesses of donor. Thus vacuum-processed 

ITO/PEDOT:PSS/DPMA-T-DCV (vacuum-deposited)/C70 (30 nm)/Al (100 nm) devices were 

fabricated with thicknesses of 20, 25 and 30 nm. 

 

  Table 2.7. J-V parameters of ITO/PEDOT:PSS/DPMA-T-DCV (vacuum-processed)/C70/Al devices. 

Thickness 

(nm) 

Jsc 

(mA cm-2) 

Voc 

(V) 

FF 

(%) 

PCEmax 

(%) 

Thermal 

annealing time 

(80 °C) 

20 

  

 10.73 0.63 35 2.36 60 min 

25 

  

11.99 0.60 36 2.62 80 min 

30 

  

9.41 0.60 43 2.44 80 min 

 

Again the higher thickness of donor (30 nm), probably limiting short-circuit, provided a better 

J-V curve in the dark. In addition the S shaped curve under illumination is suppressed leading to a PCE 

of 2.44% (Table 2.7 and Figure 2.17). The absence of S kink may be related to the lower electron 

mobility of C70 (μe = 3.4 x 10-3 cm2 V-1 s-1) 38 as compared to C60 which can lead to a more balanced 

charge carrier transport with DPMA-T-DCV. 
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Figure 2.17. Evolution of J–V curves for ITO/PEDOT:PSS/DPMA-T-DCV (vacuum-deposited)/C70/Al devices 

in the dark and under illumination with increasing donor thickness: a) 20 nm, b) 25 nm and c) 30 nm. 

 

To summarize, the preparation of conventional bi-layer OSCs by vacuum deposition of DPMA-

T-DCV requires a minimum of 25-30 nm of donor thickness to provide a correct J-V curve in the dark 

while the use of C60 or C70 (30 nm) has a weak impact on the PV performance since a comparable PCE 

of 2.4% was obtained for each. However, the use of C70 instead of C60 led to the suppression of the S 

kink observed under illumination. 

As a further attempt to improve the PV performance, inverted bi-layer OSCs have been also 

investigated by vacuum deposition of the donor layer avoiding any modification of the first deposited 

acceptor layer. 

 

 2.4.3. Inverted vacuum-processed bi-layer OSCs 

Three different structures of inverted bi-layer solar cells have been investigated as shown in 

Figure 2.18 with the following architecture using C70 as acceptor:  

1) ITO/C70/DPMA-T-DCV/MoO3/Ag, 

2) ITO/ZnO/C70/DPMA-T-DCV/MoO3/Ag, 

3) ITO/ZnO/ZnTPPIm,TFSI/C70/DPMA-T-DCV/MoO3/Ag. 

 

   

Figure 2.18. Illustration of the inverted OSCs devices. 
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In the first case, C70 was directly deposited on ITO and was expected to play the role of both 

acceptor and ETL as already reported for C60 or C70 
38, 43-45 while ZnO was used as well-known 

transparent ETL for inverted OSCs in the two other cases. The insertion of the new molecular 

electrolyte-based layer ZnTPPIm,TFSI between ZnO and C70 was also tested for better electron-

extraction.  

A suspension of ZnO (80 𝜇L) prepared by sol-gel process (see experimental procedure), was 

spun-cast onto a patterned ITO surface at 2000 rpm for 60 s and the resulting substrate was baked at 

180°C for 15 min. The thickness of the ZnO layer was about 28±4 nm as measured by profilometry. In 

device number 3, the zinc porphyrin derivative ZnTPPIm,TFSI was tested for the first time as buffer 

layer to facilitate the electron extraction to the ZnO layer. Typically, the ZnTPPIm,TFSI compound (0.5 

mg) was dissolved in 1 mL of methanol and the solution was allowed to stir for at least 2 h at 40 °C. 

Then 40 𝜇L of this solution was spun-cast at 5000 rpm for 60 s, the speed rate and quantity of solution 

being optimized. As discussed before (section 2.3), the thin layer thickness is about 1 nm. After 

transferring the different substrates in the vacuum chamber within the glove-box, C70 and DPMA-T-

DCV were successively vacuum deposited using thicknesses of 30 and 25 nm, respectively. Finally 7 

nm of MoO3 as hole transporting layer (HTL) and 100 nm of silver (Ag) as a top electrode were 

evaporated through a mask defining two disk cells of 28 mm2 area on each of the nine ITO substrates 

introduced in the vacuum chamber. The resulting inverted bi-layer OSCs have been characterized (Table 

2.8). 

 

Table 2.8. J-V parameters of inverted OSCs based on DPMA-T-DCV (25 nm of thickness) with different ETLs. 

Str. 

nb 

ETL Jsc        

[mA cm-2] 

Voc 

[V] 

FF 

[%] 

PCEmax

[%] 

PCEave 

[%] 

Rs 

[Ω.cm2] 

Rsh 

[Ω.cm2] 

Cell 

nb 

1 C70 0.5 0.05 20 0.002 0.001 - - 6 

2 ZnO/C70 6.47  0.82  52 2.78 2.48±0.18 78.68 893 8 

3 ZnO/ZnTPPIm,TFSI/C70 6.74  0.88  47 2.80 2.51±0.19 116 1022 6 

 

Structure number 1 with direct deposition of C70 on ITO showed a negligible PV effect. The use 

of ZnO as ETL, which exhibits high electron mobility (µe = 155 cm2/Vs) and transparency is essential 

here.46 The best PCE values measured for devices 2 (ZnO/C70) and devices 3 (ZnO/ZnTPPIm,TFSI/C70) 

were comparable giving both a value of ca. 2.8%. Average values of PCE around 2.4-2.5% are very 

homogeneous over 6-8 devices for each structure. Contrary to analogues devices with a conventional 

structure, these PV performance were directly obtained without thermal treatment and no improvement 

were obtained after subsequent thermal treatment. 
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The J−V characteristics of structures 2 (ZnO/C70) and 3 (ZnO/ZnTPPIm,TFSI/C70) are 

represented in Figure 2.19. It can be seen that the addition of the electrolyte ZnTPPIm,TFSI slightly 

improved the J-V curve in the dark leading to an improved diode-like behaviour. 
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Figure 2.19. J-V characteristics of inverted bi-layer OSCs of structures a) 2 (ZnO/C70) and b) 3 

(ZnO/ZnTPPIm,TSFI/C70). 

 

Structures 2 and 3 show a S-shaped J-V curve under illumination which maybe due in part to the 

difference in hole and electron mobilities of DPMA-T-DCV (μh = 5 x 10-4 cm2 V-1 s-1) 19 and C70 (μe = 

3.4 x 10-3 cm2 V-1 s-1)38 respectively. To avoid this S-shape, the thickness of donor has been decreased 

from 25 to 15 nm in order to compensate its lower charge mobility compared to that of C70. As shown 

in Figure 2.20 (a and c), the S-shape of the J-V curves completely disappeared hence validating our 

hypothesis.  

 Table 2.9 shows the J-V characterics of inverted OSCs with ZnO or ZnO/ZnTPPIm,TFSI as 

ETL with a donor layer of 15 nm. The as-prepared OSCs gave a maximum PCE of 2.93% and 2.51% 

for ZnO and ZnO/ZnTPPIm,TFSI as ETL. The stability of the devices was also tested after 9 days of 

storage in the glove-box. Interestingly, the PCE slightly increased up to 3.11% and 3.12% respectively 

(Figure 2.20, b and d) mainly due to an increase of Voc whose origin is not clear. One possible 

explanation could be related to the enhancement of the conductivity of the ZnO layer with time or upon 

UV-illumination which could improved the Omhic contact with ITO, however an increase of Jsc would 

have been expected.47 In this regards the use of more conductive of Al3+ doped ZnO (AZO) as ETL 

would have been interesting. Again, it is worth noting that those performance reported in Table 2.9 were 

obtained without thermal annealing. 
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Table 2.9. J-V parameters of inverted OSCs based on DPMA-T-DCV (15 nm of thickness) with different ETLs. 

a J-V characteristics measurement from the first day and after nine days under inert atmosphere. 

Figure 2.20. J-V characteristics of ITO/ETL/C70/DPMA-T-DCV (15 nm)/MoO3/Ag devices using as ETL: a) 

ZnO (1st day), b) ZnO (9th day), c) ZnO/TTPIM,TFSI (1st day) and d) ZnO/TTPIM,TFSI (9th day). 

 

It is worth noting that all cells show relatively high FF values (> 50%). The series and shunt 

resistances, Rs and Rsh, were calculated according to the inverse of the slope of the corresponding J−V 

curves under illumination at J = 0 and V= 0 respectively. Although the PCEs slightly increase with time, 

the shunt resistances Rsh decrease and the series resistances Rsh increase. 

Str. 

nb 

Time 

(day) a 

ETL Jsc           

[mAcm-2] 

Voc 

[V] 

FF      

[%] 

PCEmax 

[%] 

PCEave 

[%] 

Rs  

[Ω.cm2] 

Rsh 

[Ω.cm2] 

Cell 

nb 

1 1 ZnO 6.73  0.75  58  2.93 2.46±0.26 10.67 1044 6 

1 9 ZnO 6.95  0.82  55  3.11 2.91±0.12 43.11 735 6 

2 1 ZnO/ZnTPPIm 7.21  0.64  54  2.51 1.57±0.61 10.74 1040 6 

2 9 ZnO/ZnTPPIm 7.13  0.78  56  3.12 2.68±0.41 14.71 727 6 
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The external quantum efficiency (EQE) spectra of the best devices (after 9 days) are illustrated 

in Figure 2.21. The EQE spectra of OSCs with ZnO and ZnO/ZnTPPIM,TFSI are similar and indicate 

that both C70 and DPMA-T-DCV contribute to the photocurrent generation. 
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Figure 2.21. External quantum efficiency spectra of inverted bi-layer OSCs ITO/ETL/C70/DPMA-T-DCV (15 

nm)/MoO3/Ag after 9 days of storage using ZnO (black line) and ZnO/TPPIM,TFSI (red line) as ETL. 

 

The calculated Jsc values obtained by integration of the EQE spectra are about 5.72 mA cm-2 and 

5.64 mA cm-2 for ZnO and ZnO/ZnTPPIM,TFSI respectively, in quite good agreement with the values 

obtained from the J-V curves, 6.95 mA cm-2 and 7.13 mA cm-2. 

Our work has shown that inverted bi-layer OSCs of architecture ITO/ETL/C70/DPMA-T-

DCV/MoO3/Ag using ZnO or ZnO covered by an ultra thin films of porphyrin-based electrolyte as ETL 

lead to reproducible diode-like behaviour in the dark. In addition by reducing the thickness of the donor 

layer from 25 to 15 nm, the initial S-shape J-V curves are suppressed due to a more balanced transport 

of holes and electrons at the electrodes. Relatively stable OSCs were obtained exhibiting PCEs higher 

than 3%. On the other hand, the preparation of conventional bi-layer OSCs prepared by solution or 

vacuum deposition of DPMA-T-DCV on PEDOT:PSS, is less reproducible and very often leads to poor 

J-V curves in the dark probably due to the change in homogeneity of the DPMA-T-DCV layer with 

time or thermal annealing. To circumvent this issue and improve the PV performance, DPMA-T-DCV 

has been also used for the first time in BHJ OSCs. 
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 2.5. Solution-processed bulk heterojunction organic solar cells 

Conventional or inverted BHJ OSC architectures with DPMA-T-DCV as donor and soluble 

fullerene derivatives PC61BM and PC71BM as electron acceptors, have been fabricated by solution 

process and compared to the ones prepared from the reference compound TPA-T-DCV in which the 

methyl group of DPMA-T-DCV has been replaced by a phenyl ring. Previous work by our group on 

conventional BHJ OSCs prepared from TPA-T-DCV and PC61BM has been reported.15 Optimization 

of BHJ OSCs was investigated by playing with the thickness of the photoactive layer and the weight-

to-weight (w/w) ratio of donor and acceptor, the architecture of the devices and the use of a buffer layer. 

 

 2.5.1. Conventional BHJ OSCs 

The general architecture of the devices corresponds to ITO/PEDOT:PSS/Push-pull: 

PCxBM/LiF (1 nm)/Al (100 nm). By combining the two donors and two acceptors, four different 

combinations of BHJ OSCs have been investigated as summarized in Figure 2.22. 

  

 

Figure 2.22. Solution-processed BHJ OSCs with four different photoactive blends. 

 

First of all, the PV performance of devices prepared from the couple DPMA-T-DCV:PC71BM 

have been optimized by using different D:A w/w ratio of 1:1, 1:2 and 1:3 in chloroform with a total 

concentration of 10 mg/mL as follows: 

1) DPMA-T-DCV:PC71BM (1:1): 5 mg:5 mg/mL in CHCl3. 

2) DPMA-T-DCV:PC71BM (1:2): 3.33 mg:6.66 mg/mL in CHCl3. 

3) DPMA-T-DCV:PC71BM (1:3): 2.5 mg:7.5 mg/mL in CHCl3. 

After stirring at room temperature for 60 min in a vial, the later was transferred in the glove-box 

and 80 𝜇L of solution was quickly deposited all at once on a ITO/PEDOT:PSS substrate by spin-coating 

just after the maximum rotation speed of 1300 rpm was reached to get more repeatable results (5 s of 
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acceleration ramp to 1300 rpm and further 55 s at this speed rate). Then LiF and Al layers were deposited 

by vacuum evaporation to reach thicknesses of 1 and 100 nm, respectively. 

Table 2.10 gathers the performance of the best devices. The best results were obtained with a 

1:2 D:A w/w ratio leading to a maximum PCE of 2.70% associated with a high Voc of 0.94 V, a Jsc of 

7.66 mA cm-2 and a relatively poor FF of 37%. The measurement of the thickness of the phoactive layer 

by profilometry gave a value of 47±3 nm. The other ratios 1:1 and 1:3 gave slightly lower performance. 

Contrary to bi-layer OSCs, those PV performance were directly obtained after fabrication of the BHJ 

OSCs whereas a further thermal annealing was detrimental. 

 

Table 2.10. Optimization of the DPMA-T-DCV:PC71BM w/w ratio and J-V parameters of related BHJ OSCs. 

D:A (w/w) 

ratio 

Speed 

rate 

(rpm) 

Jsc 

(mA cm
-2

) 

Voc 

(V) 

FF 

(%) 

PCEmax 

(%) 

PCEave
a 

(%) 

1:1 1300 7.06 0.98 36 2.50 2.45±0.05 

1:2 1300 7.66 0.94 37 2.70 2.59±0.11 

1:3 1300 8.35 0.86 32 2.28 2.04±0.28 

a Average PCEs were obtained from 6 cells. 

 

Next, the four types of BHJ OSCs combining DPMA-T-DCV, TPA-T-DCV, PC61BM and 

PC71BM were prepared using a 1:2 D:A w/w ratio and a fixed speed rate of 1300 rpm for deposition by 

spin-coating. Table 2.11 summarises all J-V parameters obtained with these different photoactive layers. 

As described above, the best PV performance have been obtained with the DPMA-T-DCV:PC71BM 

couple (PCE = 2.70%) whereas the replacement of DPMA-T-DCV by TPA-T-DCV leads to a slight 

decrease of PCE down to 2.52%. 

 

Table 2.11. J-V parameters of BHJ OSCs with different photoactive layers. 

D:A 

(w/w) 

ratio 

Photoactive layer 

Thickness 

(nm) 

Jsc        

(mA cm-2) 

Voc 

(V) 

FF   

(%) 

PCE    

(%) 

PCEave
a     

(%) 

1:2 

DPMA-T-DCV:PC61BM 46±3 5.65 0.92 37 1.96 1.84±0.08 

  TPA-T-DCV:PC61BM 42±3 4.07 0.96 39 1.51 1.47±0.05 

DPMA-T-DCV:PC71BM 47±3 7.66 0.94 37 2.70 2.59±0.11 

  TPA-T-DCV:PC71BM 45±2 6.88 1.07 34 2.52 2.47±0.04 

       a Average PCEs were obtained from 6 cells 
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BHJ OSCs using PC61BM gave PCEs of 1.96% and 1.51% respectively for DPMA-T-DCV and 

TPA-T-DCV (Table 2.11). Thus DPMA-T-DCV provided better results due to higher values of Jsc in 

agreement with its higher hole mobility compared to that of DPMA-T-DCV (μh = 1 x 10-5 cm2/Vs).16 

Also, BHJ OSCs based on PC71BM exhibited significantly better efficiency associated to higher Jsc due 

to the better absorption properties of PC71BM. Interestingly, all BHJ OSCs showed very high Voc 

between 0.92 and 1.07 V, much higher values than the ones measured for bilayer OSCs (0.5-0.6 V). 

The J–V characteristics of the four types of BHJ OSCs are displayed in Figure 2.23. Contrary 

to the bilayer OSCs, the conditions used for our BHJ OSCs gave quite good dark current density curves. 
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Figure 2.23. J-V curves of the four types of BHJ OSCs under illumination (red line) and dark (black line). 

  

The EQE spectra of the best BHJ devices are illustrated in Figure 2.24 and show for all of them 

one broad band centered at ca. 519 nm corresponding to the contribution to the photocurrent of the push-

pull molecule in its -extended violet form in the solid state. A sharp peak is also observed for all blends 

at 397 nm which may be assigned to the contribution of PCXBM. As expected, the BHJ OSCs made of 

DPMA-T-DCV and PC71BM exhibit the more intense EQE spectrum in agreement with the highest Jsc 

value measured in the J-V curve under illumination. 
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Figure 2.24. EQE spectra of solution-processed BHJ OSCs. 

 

Then, the impact of a buffer layer in the architecture ITO/PEDOT:PSS/DPMA-T-

DCV:PC71BM (1:2)/Buffer layer/Al, has been investigated (Figure 2.25). LiF has been suppressed or 

replaced by two different polyelectrolytes, one derived from polythiophene (P3HTPMe3,TFSI) and the 

other derived from porphyrin (ZnTPPIm,TFSI) as already used above. 

 

 

Figure 2.25. Structure of BHJ OSCs using DPMA-T-DCV:PC71BM as photoactive layer and various cathode 

buffer layers: 1) none, 2) LiF, 3) P3HTPMe3,TFSI and 4) ZnTPPIM,TFSI. 

 

It is possible to prepare BHJ OSCs without buffer layer at the cathode, the average value of PCE 

calculated from 6 cells reachs 2.14% with a maximum value of 2.84%. However the performance are 

less homogeneous and show relatively low Voc values in comparison with the values obtained in 

presence of LiF, highlighting the role of the latter in extracting electrons. In addition, the J-V curve of 

the best cell in the dark does not show the behavior expected for an ideal diode (Table 2.12, Figure 

2.26). 
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Table 2.12. Photovoltaic parameters of BHJ OSCs prepared without ETL with the following structure 

ITO/PEDOT:PSS/DPMA-T-DCV:PC71BM (1:2 w/w ratio, 1300 rpm speed rate)/Al. 

Device 

nb 

Speed rate 

 (rpm) 

FF 

 (%) 

Jsc  

(mA cm-2) 

Voc  

(V) 

PCE  

(%) 

1 

1300 

27 

28 

11.66 

11.50 

0.59 

0.64 

1.86 

2.05 

2 
27 

32 

7.86 

8.11 

0.58 

0.88 

1.23 

2.30 

3 
27 

29 

11.25 

11.31 

0.85 

0.78 

2.84  

2.56 
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Figure 2.26. J-V curves of the best ITO/PEDOT:PSS/DPMA-T-DCV:PC71BM (1:2 w/w ratio, 1300 

rpm speed rate)/Al prepared without ETL under illumination and in the dark. 

 

For the preparation of the buffer layers based on P3HTPMe3,TFSI and ZnTPPIm,TFSI, 0.5 mg 

of each compound was dissolved in 1 mL of methanol of HPLC grade (an orthogonal solvent for the 

photoactive layer). These solutions were allowed to stir for at least 2 h at 40 °C. Then 40 𝜇L of each 

solution were spun-cast at high a speed rate of 5000 rpm for 60 s on the top of the photoactive layer 

before evaporation of aluminium. The speed rate and the quantity of solution have been optimized. As 

before, the thickness of these buffer layers is estimated to be close to 1 nm. Results for P3HTPMe3,TFSI 

and ZnTPPIm,TFSI are gathered in Table 2.13. Note that when only MeOH without electrolyte was 

spin-coated, the performance of the cells were close to zero. More reproducible BHJ OSCs and more 

homogeneous PCE values have been measured in the presence of a buffer layer.  The best cell efficiency 

reaches 2.91% with a high Voc of 0.90 V, a Jsc of 10.40 mA cm−2 and a FF of 31% in the presence of 

P3HTPMe3,TFSI while the use of the zinc porphyrin electrolyte ZnTPPIm,TFSI leads to relatively close 

performance (PCE = 2.72%, Jsc = 8.35 mA cm-2, Voc = 0.87 V and FF = 44%). 
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Table 2.13. Photovoltaic parameters of BHJ OSCs based on DPMA-T-DCV:PC71BM (1:2 w/w ratio) with LiF, 

P3HTPMe3,TFSI or ZnTPPIm,TFSI as cathode buffer layer. 

Buffer Layer 

(BL) 

Speed 

rate for 

D/A 

(rpm) 

Speed 

rate for 

BL 

(rpm) 

Jsc 

(mA cm-2) 

Voc 

(V) 

FF 

(%) 

PCEmax 

(%) 

PCEave 

(%) 

Cell 

nb 

LiF 1300 - 7.66 0.94 37 2.70 2.59±0.11 6 

P3HTPMe3,TFSI 1300 5000 10.37 0.90 31 2.91 2.52±0.30 8 

ZnTPPIM,TFSI 1300 5000 8.35 0.87 37 2.72 2.24±0.25 8 

 

 

Thus the presence of a buffer layer is beneficial in terms of reproducibility, homogeneity and 

performance, in particular the Voc value becomes significantly higher. In addition, very good dark 

current curves were also obtained in the presence of the charged polythiophene and porphyrin (Figure 

2.27) as well as LiF. 
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Figure 2.27. J-V characteristics of BHJ OSCs based on DPMA-T-DCV:PC71BM (1:2 w/w ratio) using 

P3HTPMe3,TFSI or ZnTPPIM,TFSI as cathode buffer layer. 

 

 

The EQE spectra of the best BHJ OSCs with P3HTPMe3,TFSI or ZnTPPIm,TFSI are quite 

similar and show a broad band centered at ca. 518 nm with a maximum of ~ 44% corresponding to the 

contribution of the push-pull molecule DPMA-T-DCV and a sharp peak at ca. 390 nm which may be 

associated to the contribution of PC71BM (Figure 2.28). It is interesting to note that the EQE spectra 

extend over 700 nm suggesting the co-existence of amorphous and more crystalline domains of DPMA-

T-DCV within the photoactive blend. 
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Figure 2.28. EQE spectra of the best DPMA-T-DCV-based BHJ OSCs with P3HTPMe3,TFSI or 

ZnTPPIm,TFSI.  

 

The calculated Jsc values obtained by integration of the EQE spectra are about 5.80 mA cm-2 

(10.37 mA cm-2 from J-V curve) and 5.66 mA cm-2 (8.35 mA cm-2 from J-V curve) for devices with 

P3HTPMe3,TFSI and ZnTPPIm,TFSI, respectively. 

 

 2.5.2. Inverted BHJ OSCs 

Inverted BHJ OSCs based on DPMA-T-DCV:PC71BM (1:2 w/w) as photoactive layer were also 

investigated using different architectures as shown in Figure 2.29. ZnO was used as ETL and deposited 

on ITO substrates by spin-coating as previously described. In addition, a buffer layer of 

P3HTPMe3,TFSI or ZnTPPIm,TFSI was also coated on top of the ZnO layer. Then, the photoactive 

layer was deposited by spin coating (1300 rpm) followed by the successive thermal evaporations of 

MoO3 (7 nm), as hole transporting layer, and Ag (100 nm) as top electrode. The three types of devices 

are summarized: 

1) ITO/ZnO/ DPMA-T-DCV:PC71BM/MoO3/Ag, 

2) ITO/ZnO/P3HTPMe3,TFSI/DPMA-T-DCV:PC71BM/MoO3/Ag, 

3) ITO/ZnO/ZnTPPIm,TFSI / DPMA-T-DCV:PC71BM/MoO3/Ag. 

 

 
  

Figure 2.29. Inverted BHJ OSCs based on ZnO only (1) or ZnO coated with a buffer layer (2 and 3). 

 

 

1) 2) 3) 
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The J-V curves of the best devices for each architecture are compared in Figure 2.30. 
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Figure 2.30. J-V characteristics of inverted BHJ OSCs of architecture 1 (black), 2 (dark green) and 3 

(blue) under illumination (solid line) and in the dark (dashed line). 

 

The corresponding photovoltaic parameters of these devices (between 4 and 13 devices 

depending on the configuration) are summarized in Table 2.14. 

 

Table 2.14. J-V parameters of inverted BHJ OSCs based on DPMA-T-DCV:PC71BM with different ETLs 

Structure ETL Jsc [mA cm-2] Voc [V] FF [%] PCEmax [%] PCEave [%] Cell 

nb 

1 ZnO 6.71 0.27 38 0.69 0.55±0.12 9 

2 ZnO/P3HTPMe3,TFSI 6.73 0.50 36 1.23 0.94±0.15 13 

3 ZnO/ZnTPPIm,TFSI 6.18 0.82 34 1.74 1.24±0.33 4 

 

Table 2.14 shows that PCE is progressively improving going from structure 1 (ZnO only, PCE 

= 0.69%), 2 (ZnO/P3HTPMe3,TFSI, PCE = 1.23%) to 3 (ZnO/ZnTPPIm,TFSI, PCE = 1.74%). The FF 

and Jsc values are quite comparable whereas the Voc value depends strongly on the architecture of the 

devices. The later has been significantly increased from 0.27 V for ZnO only, 0.50 V for 

ZnO/P3HTPMe3,TFSI to 0.82 V for ZnO/ZnTPPIm,TFSI. The origin of this interfacial effect between 

ZnO and the buffer layer is not understood for the moment although those buffer layers are expected to 

favor electron extraction highlighting the interest of the zinc porphyrin interlayer. By comparison with 

the performance of vacuum-processed inverted bi-layer solar cells (section 2.4.3, PCE = 3.12% using 

ZnO/ZnTPPIm,TFSI)), solution-processed inverted BHJ OSCs remain less performant. 
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Figure 2.31. EQE spectra of inverted BHJ OSCs based on DPMA-T-DCV using different buffer layers. 

 

As expected from the same range of Jsc values measured from the J-V characteristics (Jsc ca. 6.2-

6.7 mA cm-2), the EQE spectrum of the best inverted BHJ OSCS using ZnO modified by 

P3HTPMe3,TFSI or ZnO/ZnTPPIm,TFSI are similar in shape and intensity. They show a broad band 

centered at ca. 518 nm with a maximum of 38%-40% corresponding again to the contribution of the 

push-pull molecule, leading to calculated Jsc values from the integration of the EQE spectra, of about 

5.16 mA cm-2 and 5.28 mA cm-2 respectively (Figure 2.31), values which are comparable but slightly 

lower than the ones obtained from the J-V characteristics. 

 

 2.6. All vacuum-processed BHJ organic solar cells 

Finally, we have fabricated photovoltaic devices by depositing all layers by vacuum 

evaporation. First, it avoids to use PEDOT:PSS which is known to become acidic with time and second, 

all steps are achieved successively under vacuum. A conventional architecture was chosen allowing to 

replace PEDOT:PSS by MoO3 (15 nm) as hole transporting material. The photoactive layer was 

deposited by co-evaporation of DPMA-T-DCV and C60 by adjusting the deposit rate at 0.5 Å/s (~119 

°C) for the donor and 1 Å/s for the acceptor, thus giving a volume ratio of 1:2. The thickness of the 

donor-acceptor bulk heterojunction photoactive layer was optimized using 50, 60, 70, 80, 90 and 100 

nm as monitored by a quartz crystal microbalance. A thin-layer of bathocuproine (BCP, 8 nm) used as 

exciton blocking layer onto the photoactive layer, was deposited with a rate of 0.4 Å/s (~ 104 °C). The 

device was completed by vacuum deposition of a thick layer of aluminum (100 nm) as top electrode 

(Figure 2.32). The general architecture is as follows: ITO/MoO3 (15 nm)/DPMA-T-DCV:C60 (1:2, 

v/v)/BCP (8 nm)/Al (100 nm). Note that the thickness of MoO3 and BCP was fixed and chosen according 

to literature data.48-50 



Chapter 2: Organic solar cells based on DPMA-T-DCV 

86 

 

 

 

 

Figure 2.32. All vacuum-processed conventional BHJ OSCs with a co-evaporated blend of DPMA-T-DCV and 

C60 and corresponding energy level diagram. 

 

The optimal thickness of the photoactive layer will depend on different parameters such as its 

absorption as well as exciton diffusion lengths and carrier recombination rates. Experimentally different 

thicknesses have been tested and corresponding J-V parameters are gathered in Table 2.15. 

 

Table 2.15. Photovoltaic parameters for all vacuum-processed conventional BHJ OSCs with DPMA-T-

DCV:C60 (1:2) as photoactive layer of different thicknesses. 

Device 

nb 

Thickness 

(D:A) 

[nm] 

Jsc [mA cm-2] Voc [V] FF [%] PCE
max

 [%] PCE
ave

 [%] Cell 

nb 

1 50 6.69 0.78 41 2.18 1.22±0.65 14 

2 60 7.47 0.92 49 3.41 3.26±0.13 11 

3 70 15.33 0.76 36 4.24 3.69±0.45 5 

4 80 10.63 0.91 34 3.33 2.98±0.24 12 

5 90 11.13 0.92 34 3.51 3.07±0.28 6 

6 100 7.09 0.90 39 2.47 2.21±0.18 11 

 

Table 2.15 shows that the best performance correspond to device number 3 with a photoactive 

layer thickness of 70 nm. A maximum of PCE of 4.24% was recorded with a Voc of 0.78 V, a very high 

Jsc of 15.33 mA cm-2 and a FF of 36%, while the average PCE value over 5 devices remains quite high 

(PCEave = 3.69%). This all vacuum-processed BHJ OSC architecture provides the best efficiencies as 

compared to all other device structures of this work. Interestingly, the PCE of the best cell only decreases 

down to 3.9% after 11 days of storage in the glovebox indicating a relatively good stability. Figure 2.33 

shows J-V curves and EQE spectrum of the best cell with a photoactive layer of 70 nm of thickness. 
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Figure 2.33. a) J−V characteristics of the best all vacuum-processed conventional BHJ OSCs with DPMA-T-

DCV:C60 (1:2, 70 nm) as photoactive layer. b) Corresponding EQE spectrum. 

 

The EQE spectrum shows a broad band centered at ca. 518 nm with a maximum of 55% 

corresponding to the contribution of the push-pull molecule while the integration of the curve leads to a 

calculated Jsc values of ca. 14.2 mA cm-2 a value in full agreement with the high value of  

15.33 mA cm-2 recorded in the J-V curve under illumination (Figure 2.33). 

 

 Conclusion 

In summary, a small push pull molecule DPMA-T-DCV has been synthesized in relatively large 

quantity (0.5 to 1 g) allowing us to evaluate its photovoltaic (PV) potential as donor material in organic 

solar cells (OSCs) of various architectures and in different conditions. The analysis of its electronic 

properties in solution and as thin-films by absorption spectroscopy, PYSA and cyclic voltammetry 

confirmed its donor character compared to fullerene derivatives as acceptors.  

First, conventional bi-layer OSCs with the following architecture ITO/PEDOT:PSS/DPMA-T-

DCV/C60 or C70/Al were fabricated using a solution- or a vacuum-process for the deposition of the 

DPMA-T-DCV layer, the thickness of the later being optimized. In each case, thermal annealing of the 

completed devices at 80 °C improved the PV performance. For solution-processed bi-layer OSCs, the 

use of C70 instead of C60 led to current density-voltage (J-V) curves with a better diode-like behaviour 

in the dark and maximum PCE of 2.40% for a donor layer thickness of 33 nm. When the donor layer is 

deposited by vacuum evaporation, the J-V curves showed a diode-like behaviour in the dark and a 

maximum PCE of ca. 2.4% whatever the use of C60 or C70. 
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Inverted bi-layer OSCs with the ITO/ZnO/buffer layer/C70/DPMA-T-DCV/MoO3/Ag 

architecture were also elaborated by using a sol-gel process for the formation of the ZnO layer and a 

vacuum-process for the deposition of the donor layer. Whatever the presence or not of a buffer layer, a 

maximum efficiency of ca. 2.8% was obtained for OSCs using a layer of DPMA-T-DCV with 25 nm 

of thickness. However the presence of a very thin layer (ca. 1 nm) of the new zinc porphyrin electrolyte 

ZnTPPIm,TFSI as buffer layer, provided a better diode-like behaviour of the J-V curve in the dark. In 

addition, the J-V curves under illumination showed an S-shape suggesting unbalanced hole and electron 

transport properties between DPMA-T-DCV and C70, respectively. In order to solve this issue, the 

thickness of the donor layer was decreased down to 15 nm to compensate the difference in charge 

transport hence undergoing the suppression of the S-shape of the J-V curves under illumination, an 

increase of the fill factor (FF) beyond 50% and PCE values of 2.9% and 2.5% without or with 

ZnTPPIm,TFSI, respectively. Interestingly, for both cases, the PCE could reach 3.1% efficiency after 

nine days of storage in a glovebox. This work on bi-layer OSCs showed that better and more 

reproducible PV performance were obtained for inverted bi-layer OSCs compared to devices with a 

conventional architecture. 

 Then solution-processed bulk heterojunction (BHJ) OSCs were investigated with the 

conventional architecture ITO/PEDOT:PSS/D:A (ca. 50 nm)/LiF/Al using DPMA-T-DCV or its 

triphenylamine analogue TPA-T-DCV as donor (D) and PC61BM or PC71BM as acceptor (A). After 

optimization of the DPMA-T-DCV:PC71BM couple, a 1:2 D/A w/w ratio was selected and applied to 

the four photoactive layer resulting from the combination of the two donors and two acceptors. To 

summarize, BHJ OSCs exhibited good J-V curves in the dark and the use of DPMA-T-DCV vs  

TPA-T-DCV gave slightly higher PCEs as well as for PC71BM compared to PC61BM. Thus the best 

BHJ OSCs based on the DPMA-T-DCV:PC71BM blend led to a PCE of 2.7%. The cathode buffer layer 

LiF was also replaced by a polymeric electrolyte derived from polythiophene, namely P3HTPMe3,TFSI, 

or the previous zinc porphyrin salt ZnTPPIm,TFSI affording comparable performance or even slightly 

higher in the former case (PCE = 2.9%), showing the interest of these two types of electrolytes as cathode 

buffer layers. 

Solution-processed inverted BHJ OSCs with the structure ITO/ZnO/buffer layer/DPMA-T-

DCV:PC71BM (1:2)/MoO3/Ag were tested in the absence of buffer layer and in the presence of 

P3HTPMe3,TFSI or ZnTPPIm,TFSI, the PCE progressively increasing from 0.69%, to 1.23% and 1.74% 

as a result of a progressive increase of Voc. The PV performance of the latter BHJ OSCs remained lower 

than the ones obtained for the corresponding inverted bi-layer OSCs (PCE = 3.1%). 

Finally, a careful optimization of the thickness of the photoactive layer of all-vacuum processed 

BHJ OSCs with the structure ITO/MoO3/DPMA-T-DCV:C60 (1:2)/BCP/Al, led to a high PCE value of 

4.24% for a photoactive layer of 70 nm thickness. This efficiency was associated with a Voc of 0.78 V, 

a Jsc of 15.33 mA cm-2 and FF of 36%. The very high Jsc value was in good agreement with the one 

determined from the external quantum efficiency spectrum of the OSC (14.2 mA cm-2). 
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To conclude, this work on the evaluation of DPMA-T-DCV as donor in organic photovoltaics 

has revealed that vacuum process represents a deposition technique of choice for this small push-pull 

molecule. In addition, preparation of bulk hetrojunction by co-evaporation of this compound and C60 

could lead to OSCs with PCE beyond 4%. Further improvements are expected with C70 owing to its 

better absorption properties in the visible spectrum. 
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 3.1. Introduction 

As shown previously by our group in the case of push-pull DPMA-T-DCV molecule, the 

introduction of as diphenylmethylamine (DPMA) instead of the triphenylamine (TPA) group represents 

an interesting strategy to achieve p-type organic semiconductors with improved hole transporting 

properties and hence to produce optimized donor materials for efficient bi-layer organic solar cells 

(OSCs).1, 2 

The purpose of chapter 2 was to evaluate more broadly the photovoltaic (PV) potential of 

DPMA-T-DCV by optimizing the conditions of fabrication of the OSCs and developing new 

architectures.  

On these basis, the goal of this chapter deals with the description and the characterization of a 

-extended analogue of DPMA-T-DCV resulting from the insertion of an additional thiophene ring in 

the -spacer. Compared to DPMA-T-DCV, this new compound, namely DPMA-T-T-DCV, is expected 

to show different properties in solution and in the solid state and, in particular better absorption in the 

visible spectrum is expected possibly leading to enhanced PV performance. The impact of the additional 

thiophene ring will be discussed in terms of electrochemical, optical, thermal and structural properties 

as well as PV performance. 

 

 

Chart 3.1. -Extended DPMA-T-T-DCV as push-pull molecular donor for OPV. 

 

 3.2. Synthesis and characterization of DPMA-T-T-DCV 

The push-pull molecule DPMA-T-T-DCV has been synthesized according to Scheme 3.1 by 

Illia Lenko during his Master Internship at MOLTECH-Anjou. The experimental procedures are 

described in the experimental part as well as analytical data on DPMA-T-T-DCV obtained from 1H 

NMR, infrared spectroscopy and mass spectrometry, confirming its structure. 
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Scheme 3.1. Synthesis of DPMA-T-T-DCV 

 

 3.2.1. Crystalline structure of DPMA-T-T-DCV 

Single crystals were grown by slow evaporation of a solution of DPMA-T-T-DCV in a mixture 

of chloroform and methanol. X-ray diffraction analysis was carried out by Magali Allain, engineer at 

MOLTECH-Anjou. The molecular structure of DPMA-T-T-DCV is represented in Figure 3.1. 

 

 

 

Figure 3.1. Molecular structure of DPMA-T-T-DCV obtained from X-ray analysis. 

 

DPMA-T-T-DCV crystallizes in the monoclinic space group P21/c with four independent 

molecules. The -conjugated push-pull system extending from the N-methyl group to the DCV unit 

through the thiophene-based -spacer is almost planar with dihedral angles of 1.49° (C14-C9-C8-C7), 
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3.88° (S2-C5-C4-S2) and 2.42° (S1-C1-C22-C23) between the phenyl and the neighboring thiophene, 

the two thiophene units and the thiophene and the DCV unit, respectively. On the other hand, the 

terminal phenyl ring of the DPMA group is out of the main plane of the molecule as demonstrated by a 

value of 42.96° measured for the C12-N1-C15-C16 dihedral angle. The bithiophene moiety adopts an 

anti conformation while the dicyanovinyl group is in syn conformation relative to the sulfur atom of the 

vicinal thiophene as usually reported in the literature.3-5 

Figure 3.2 shows the molecular packing of DPMA-T-T-DCV and the existence of columns 

where molecules are regularly stacked with a parallel orientation and a head-to-tail arrangement as very 

often observed for D--A dipolar molecules.6 Interestingly, this result differs from the co-facial 

arrangement observed for shorter analogue DPMA-T-DCV with only one thiophene unit.1 Within the 

stack, short distances d1 (3.60 Å) and d2 (3.42 Å) are observed between two consecutive parallel median 

planes containing one molecule suggesting the existence of – stacking. 

 

 

 

 

Figure 3.2. Left: Molecular packing of molecules DPMA-T-T-DCV. Right: Formation of columns of molecules 

with short intermolecular distances (only four molecules have been selected for clarity). 

 3.2.2. Optical properties in solution and as thin films 

The UV-Vis spectrum of DPMA-T-T-DCV was recorded in diluted dichloromethane solution 

(ca. 10-5 M) and as thin films prepared by spin-casting a chloroform solution of DPMA-T-T-DCV on 
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clean glass substrates. The emission spectrum of DPMA-T-T-DCV in diluted dichloromethane (10-6 

M) is also described in Figure 3.3. All optical data are summarized in Table 3.1. 
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Figure 3.3. Left: Normalized absorption (solid red line) and emission (dashed red line) spectra of DPMA-T-T-

DCV in CH2Cl2. Right: Normalized absorption spectra of DPMA-T-T-DCV in CH2Cl2 (solid red line) and as 

thin-film on glass (dashed red line) and reference DPMA-T-DCV (blue line) in CH2Cl2. 

 

The absorption spectrum of DPMA-T-T-DCV in solution exhibits a main broad absorption 

band with a maximum at 516 nm attributed to an internal charge transfer (ICT) band. In solution, this 

compound shows also a broad emission band with a maximum at 734 nm in the red region, giving rise 

to a quite large Stokes shift of 0.71 eV (5726 cm-1) in agreement with a significant change in geometry 

between the ground and excited states. Due to the limitation of the spectrofluorimeter (Shimadzu RF-

6000) that does not allow to record data beyond 830 nm, it has not been possible to determine the 

photoluminescence quantum yield (f) of DPMA-T-T-DCV. However, by integrating the emission 

signal until 830 nm and using rhodamine B as standard (f = 50% in ethanol), a minimum value of ca. 

13% was measured which suggests a slightly higher value compared to the one of DPMA-T-DCV (see 

chapter 2, f = 7%). The HOMO-LUMO gap (Eopt) in solution was estimated to 2.0 eV as calculated 

from the intercept between absorption and emission spectra at 620 nm. 

As expected, the introduction of an additional thiophene unit leads to a bathochromic shift of 

max as compared to DPMA-T-DCV (max = 498 nm) (Figure 3.3, right). Homogeneous thin-films of 

DPMA-T-T-DCV were deposited by solution process on clean glass substrates. The corresponding 

absorption spectrum is broader and 20 nm bathochromically shifted compared to its spectrum in 

solution, suggesting the existence of molecular - interactions in the solid-state. The optical bandgap 

Eg
opt of the thin-film was estimated from the onset of absorption at 702 nm, giving a value of 1.76 eV. 

Importantly, in contrast to DPMA-T-DCV, the absorption spectra of thin films of DPMA-T-T-DCV 

do not evolve with time at 25 °C or after few minutes of thermal annealing at 80 °C. This result indicates 

the absence of reorganization of the materials hence leading to more stable thin films. 
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Table 3.1. Optical data of DPMA-T-T-DCV vs DPMA-T-DCV in solution and as thin film 

 solution  thin film 

Compd λabs (nm) E
opt

 (eV) λem (nm)a Φf (%)  λabs (nm) Eg
opt (eV) 

DPMA-T-T-DCV 516 2.00 734 > 13  536 1.76 

DPMA-T-DCV 498 2.17 628 7  515 (pink) 

610 (violet) 

1.98 

1.77 

 

 3.2.3. Electrochemical properties 

The electrochemical properties of DPMA-T-T-DCV have been analyzed by cyclic voltammetry 

in dichloromethane in the presence of 0.10 M of tetrabutylammonium hexafluorophosphate (Bu4NPF6) 

as the supporting electrolyte and Pt as a working and counter electrodes. The cyclic voltammogram 

(CV) is shown in Figure 3.4 and the electrochemical data of DPMA-T-T-DCV together with those of 

DPMA-T-DCV for comparison, are summarized in Table 3.2. 

 

E (V vs Fc
+
/Fc)

-1.5 -1.0 -0.5 0.0 0.5 1.0

I 
(

A
)

-6

-4

-2

0

2

4

6

8

10

 

Figure 3.4. Cyclic voltammogram of DPMA-T-T-DCV (1 mM) in 0.1 M n-Bu4NPF6/CH2Cl2 using a 

Pt working electrode ( = 1 mm), scan rate 100 mV/s. 

 

The CV of DPMA-T-T-DCV shows two successive fully reversible oxidation waves peaking 

at Epa
1 = 0.42 V and Epa

2 = 0.93 V corresponding to the formation of stable radical cation and dication 

species, respectively. In the negative potentials, an irreversible reduction wave at Epc = -1.54 V was 

observed, which is assigned to the reduction of the DCV group.7 Compared to compound DPMA-T-

DCV (Chapter 2, section 2.2.3), the addition of a thiophene -spacer leads to a significant increase of 

the reversibility of the first oxidation wave associated to a stabilization of the radical cation and a 170 

mV negative shift of the related peak potential. HOMO and LUMO energy levels of this compound 

were calculated from the onset of first oxidation and reduction waves, respectively. As expected for a 
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more -extended system, the HOMO level of DPMA-T-T-DCV is destabilized whereas its LUMO level 

is stabilized affording a reduced electrochemical HOMO-LUMO gap (Eelec = 1.66 eV) compared to 

DPMA-T-DCV (Eelec = 1.92 eV). 

 

Table 3.2. Cyclic voltammetric data of DPMA-T-T-DCV and DPMA-T-DCV, potential values are given vs 

ferrocene/ferrocenium (Fc+/Fc). 

Compd Epc
 

[V] 

Epa
1

   
[V] 

Epa
2   

[V] 

Eox,onset 

[V] 

Ered,onset 

[V] 

EHOMO
a

 
[eV] 

ELUMO
b

 
[eV] 

 Eelec 

[eV] 

DPMA-T-T-DCV -1.54 0.42 0.93 0.29 -1.37 -5.39 -3.73 1.66 

DPMA-T-DCV -1.57 0.59 

irr. 
- 0.46 -1.46 -5.56 -3.64 1.92 

                a EHOMO (eV) = - (Eox,onset vs Fc/Fc+ + 5.1), b ELUMO (eV) = - (Ered,onset vs Fc/Fc+ + 5.1). 

 

 3.2.4. Energetic Diagram from PYSA and Eg
opt 

The ionisation potential (assimilated to the energy the HOMO level) of the push-pull molecule 

DPMA-T-T-DCV in the solid state was determined by using photoemission yield spectroscopy in air 

(PYSA) measurements on thin-films prepared from chloroform solutions spun-casted on ITO substrates. 

The PYSA spectrum was recorded from 4.2 eV to 6.2 eV (Figure 3.5.a).  
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Figure 3.5. a) PYSA of DPMA-T-T-DCV and b) energy level diagram of related OSCs with different fullerene 

acceptors. 

 

 

A value of -5.44 eV was obtained for the HOMO level which, combined with the Eg
opt value, 

gave an energy level of -3.68 eV for the LUMO of DPMA-T-T-DCV. As illustrated on the energetic 

diagram (Figure 3.5.b), the shallowest LUMO level of DPMA-T-T-DCV matches well with those of 

fullerene acceptors which can be used as the complementary accepting material in photovoltaic cells. In 

addition the HOMO level of DPMA-T-T-DCV is relatively close to the level of PEDOT-PSS favoring 

holes extraction. 

 

a) 

b) 
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 3.3. Organic photovoltaic cells 

The photovoltaic potential of DPMA-T-T-DCV has been investigated using different types of 

device architectures such as conventional bi-layer OSCs with C60 or C70 as acceptor and solution or vacuum-

processed BHJ OSCs using the soluble derivatives PC61BM or PC71BM and C60 respectively. These devices 

have been optimized as described in sections 3.2.1, 3.2.2 and 3.2.3. 

 3.3.1 Conventional bi-layer organic solar cells 

As in Chapter 2, bi-layer OSCs with the following conventional architecture 

ITO/PEDOT:PSS/DPMA-T-T-DCV/C60 or C70 (30 nm)/Al (100 nm) have been fabricated and 

optimized by varying the thickness of the DPMA-T-T-DCV layer and making thermal annealing 

treatment of the resulting devices. The ITO substrates coated by a PEDOT:PSS layer were prepared as 

in Chapter 2 (see also experimental procedure) and put inside the glove box. Then a donor layer was 

deposited by spin-casting a solution of DPMA-T-T-DCV (10 mg/mL in CHCl3) with different speed 

rates giving rise to different thicknesses. C60 or C70 was deposited by vacuum evaporation (30 nm of 

thickness) with an evaporation rate of ~1.5 Å/s. Next, an Al (100 nm) electrode was thermally deposited 

on the active layer at a vacuum of 10−7 mbar and then all devices were characterized inside the glove 

box under N2.  

In the case of C60, the PV performance were optimized by controlling the thickness of the donor 

thin-film using speed rates of 2000, 4000 or 6000 rpm. As-prepared OSCs gave very low PCE around 

~ 0.2-0.5% and further thermal treatment of the OSCs, typically for ca. 20-30 min at 80 °C, significantly 

increased the performance leading to better efficiencies. Note that for the optimization of the thermal 

annealing time, J-V measurements of the resulting OSCs were recorded after each 10 min at 80 °C by 

following the evolution of the power conversion efficiency.  

 

Table 3.3. J-V characteristics of ITO/PEDOT:PSS/DPMA-T-T-DCV (solution processed)/C60/Al after 20 min 

of thermal annealing at 80 °C. 

Speed 

rate 

[rpm] 

Photoactive Layer Thickness 

of donor 

[nm] 

Jsc            

[mA cm-2] 

Voc
 

[V]
 

FF 

[%] 

PCEmax
 

[%]
 

PCEave
 

[%] 

Cell 

nb 

2000  

DPMA-T-T-DCV/ C60 

48±2 6.27 0.63 41 1.63 1.50±0.04 4 

4000 41±2 10.27 0.61 38 2.38 2.13±0.06 6 

6000 32±2 7.14 0.59 43 1.85 1.59±0.06 5 

 

The best PV performance were obtained with a speed rate of 4000 rpm and after thermal 

annealing of 20 min at 80 °C leading to the highest PCE of 2.38% associated to a Jsc of 10.27 mA cm-2, 



Chapter 3: OSCs based on DPMA-T-T-DCV, a π-extended push-pull molecule 

103 

a Voc of 0.61 V and a FF of 35% (Table 3.3). By contrast with bi-layer OSCs prepared with  

DPMA-T-DCV, the ones derived from DPMA-T-T-DCV present the advantage to exhibit good J-V 

characteristics in the dark with a diode like behavior (Figure 3.7). This fact is maybe due to the more 

stable morphology of the donor layer of DPMA-T-T-DCV with time and upon thermal annealing which 

gives also more reproducible results. 
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Figure 3.6. External quantum efficiency spectra of DPMA-T-T-DCV/C60 device (4000 rpm). 

 

The external quantum efficiency (EQE) of the bi-layer OSC shows a broad band centered at ca. 

518 nm with a maximum of 42% corresponding to the contribution of the push pull molecule to the 

photocurrent. Another peak is observed at ca. 451 nm which may correspond to the contribution of C60 

as illustrated in Figure 3.6. The integration of the surface area below the EQE curve leads to a value of 

Jsc of 6.57 mA cm-2 that remains inferior to 10.27 mA cm-2, value obtained from the J-V curves under 

illumination. This difference may be partly explained by the fact that the EQE spectrum is recorded 

beyond 360 nm hence neglecting the photocurrent produced from the UV light of the solar spectrum.  

Then bi-layer OSCs of structure ITO/PEDOT:PSS/DPMA-T-T-DCV/C70 (30 nm)/Al (100 nm), 

were also prepared knowing that C70 absorbs better in the visible spectrum. 

 

Table 3.4. J-V characteristics of ITO/PEDOT:PSS/DPMA-T-T-DCV (solution-processed)/C70/Al. 

Speed 

rate 

[rpm] 

Photoactive Layer Thickness 

of donor 

[nm] 

Jsc             

[mA cm-2] 

Voc
 

[V]
 

FF 

[%] 

PCEmax
 

[%]
 

PCEave
 

[%] 

Cell 

nb 

2000  

DPMA-T-T-DCV/C70 

44±2 5.63 0.48 32 0.91 0.83 6 

4000 39±3 7.78 0.49 32 1.24 1.10 6 

6000 32±2 9.18 0.55 34 1.73 1.55 5 
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As shown in Table 3.4, the best PV performance were obtained with a speed rate of 6000 rpm 

for the deposition of the donor layer and after thermal annealing of 30 min at 80 °C leading to a PCE of 

1.73% with a Voc of 0.55 V, Jsc of 9.18 mA cm-2 and FF of 34%. Again, much better J-V curves in the 

dark were obtained as compared to DPMA-T-DCV. Surprisingly, slightly better PV performance were 

obtained with C60 compared to C70 although the latter should give higher Jsc (Figure 3.7). The same 

behaviour has been observed in the case of DPMA-T-DCV.   
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Figure 3.7. J-V curves of the best bi-layer OSCs fabricated from DPMA-T-T-DCV and C60 (blue) or C70 (red) 

under illumination (solid line) and in the dark (dashed line). 

 

 3.3.2. Solution-processed bulk heterojunction organic solar cells 

BHJ OSCs using DPMA-T-T-DCV and soluble fullerene derivatives PC61BM or PC71BM were 

fabricated with the following architecture ITO/PEDOT:PSS/DPMA-T-T-DCV:PCxBM (x = 61 or 71)/ 

LiF (1 nm)/Al (100 nm). For comparison with DPMA-T-DCV, a 1:2 D/A weight-to-weight ratio was 

selected for DPMA-T-T-DCV/PCxBM (3.33 mg:6.66 mg /mL of CHCl3) and a speed rate of 1300 rpm 

for spin-casting. Table 3.5 shows the J-V characteristics of the BHJ OSCs. 

 

Table 3.5. J-V characteristics of BHJ OSCs with DPMA-T-T-DCV:PCXBM (x = 61 or 71). 

 

Photoactive      

Layer 

Speed rate 

[rpm] 

D/A Thickness 

[nm] 

Jsc              

[mA cm-2] 

Voc 

[V] 

FF 

[%] 

PCEmax 

[%] 

PCEave 

[%] 

Cell 

nb 

DPMA-T-T-

DCV:PC61BM 
1300 1:2 

39±2 6.04 0.81 36 1.76 1.64±0.06 6 

DPMA-T-T-

DCV:PC71BM 
50±3 7.48 0.84 40 2.51 2.43±0.05 4 
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The best J-V curves are described in Figure 3.8. Contrary to bi-layer OSCs, the best PV 

performance for BHJ OSCs were obtained with the C70 derivative, namely PC71BM. Thus a PCEmax 

value of 2.51% was reached for BHJ OSCs using PC71BM whereas PC61BM led to 1.76%. This decrease 

results mainly from the lower short-circuit current density Jsc of 6.04 mA cm-2 for PC61MB-based devices 

compared to the ones measured for PC71BM (7.48 mA cm-2). The Voc is not very much affected by the 

nature of the fullerene whereas the fill factor FF is slightly better in the case of PC71BM (40% vs 36%). 

Compared to BHJ OSCs using DPMA-T-DCV/PC71BM (PCEmax = 2.70%) or DPMA-T-DCV/PC61BM 

(PCEmax = 1.96%) as photoactive layer (see Chapter 2), the introduction of an additional thiophene in 

DPMA-T-T-DCV, which was supposed to improve the absorption properties and hence the Jsc values, 

did not lead to enhanced PV performance. On the other hand, it is interesting to mention that a similar 

push-pull molecule as DPMA-T-T-DCV, with a TPA electron-donating group instead of DPMA has 

recently been reported in solution-processed BHJ OSCs of architecture 

ITO/PEDOT:PSS/Donor:PC71BM (1:2)/Ca/Al with a 10.4 mm2 surface area affording a PCE of 1.8%.8 

This value is lower than the one we obtained with DPMA-T-T-DCV (PCE = 2.50%) with a higher 

surface area of 28 mm2 showing also the interest of the DPMA electron-donating group in push-pull 

molecules as donors for OPV. 
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Figure 3.8. J-V curves of the best BHJ OSCs based on DMPA-T-T-DCV and PC61BM (red) or PC71BM (blue) 

under illumination (solid line) and in the dark (dashed line). 

 

The EQE spectra of the best BHJ OSC derived from PC71BM and PC61BM show a broad band 

centered at ca. 540 nm with a maximum of 39% and 32%, respectively, corresponding to the 

contribution of the push pull molecule to the photocurrent (Figure 3.9). A sharp peak is observed at 396 

nm and 421 nm which may correspond to the contribution of PC71BM (black curve) and PC61BM (red 

curve), respectively. The integration of the surface area below the EQE curves leads to a value of Jsc of 

6.13 mA cm-2 for DPMA-T-T-DCV:PC71BM and 4.81 mA cm-2 for DPMA-T-T-DCV:PC61BM that 

remain inferior to the values measured from the J-V curves under illumination, respectively 7.48 mA 

cm-2 and 6.04 mA cm-2. 
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 Figure 3.9. External quantum efficiency spectra of BHJ OSCs with DPMA-T-T-DCV and PC71BM (left) or 

PC61BM (right). 

 

 3.3.3. Vacuum-processed bulk heterojunction organic solar cells 

As in Chapter 2, all vacuum-processed BHJ OSCs were elaborated by co-evaporation of 

DPMA-T-T-DCV and C60 with the following architecture: ITO/MoO3/DPMA-T-T-DCV:C60 (v/v 1:2 

ratio)/BCP/Al (Figure 3.10). The thickness of the photoactive layer was fixed at 70 nm, as in the case 

of the DPMA-T-DCV:C60 layer reported in Chapter 2 for which PV performance were relatively 

constant between 60 and 90 nm. The 70 nm thick photoactive layer corresponds to the concomitant 

deposition of 23 nm of DPMA-T-DCV and 47 nm of C60.  

 

 

Figure 3.10. Architecture of vacuum-processed BHJ OSCs prepared by co-evaporation of DPMA-T-T-DCV 

and C60. 

 

Before vacuum deposition, the thermal properties of DPMA-T-T-DCV have been studied by 

thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) under an inert 

atmosphere of nitrogen (Figure 3.11).  
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Figure 3.11. a) TGA thermogram and b) DSC curve of DPMA-T-T-DCV measured under N2 (10 

°C/min). 

The TGA curve allowed us to determine the decomposition temperature Td (at ~5% weight loss) 

at 351 °C, this high value indicating the good thermal stability of the push-pull molecule. The DSC 

analysis shows one sharp endothermic peak corresponding to the melting temperature (Tm) at 190 °C 

while the push-pull molecule starts to decompose far away from the Tm value above 350 °C as illustrated 

by the presence of an exothermic peak in the DSC curve. All these results suggest that DPMA-T-T-

DCV can be deposited as thin films by thermal vacuum processing. Thus, as confirmed by the integrity 

of the absorption spectrum of the re-dissolved evaporated thin-film, DPMA-T-T-DCV was successfully 

deposited at ~125 °C under the pressure of 10-7 mbar within the thermal evaporator using a deposition 

rate of around 1 Å/s. 

For the OSCs fabrication, cleaned ITO substrates were covered by an evaporated MoO3 layer 

(15 nm) as hole transporting layer (HTL). DPMA-T-T-DCV and C60 were subsequently co-evaporated 

with a 1:2 v/v ratio to reach a 70 nm thickness that was monitored by a quartz crystal microbalance. 

Finaly BCP (8 nm), used as hole blocking layer, was evaporated and deposited onto the photoactive 

layer and, a thick contact layer of Al (100 nm) was used as top electrode (Figure 3.10). The photovoltaic 

parameters of these devices are shown in Table 3.6. 

 

Table 3.6. Photovoltaic parameters of vacuum-processed BHJ OSCs. 

Donor Acceptor 
v/v  

ratio 

Thickness 

[nm] 

Jsc  

[mA cm-2] 

Voc  

[V] 

FF  

[%] 

PCEmax  

[%] 

PCEave  

[%] 

Cell 

nb 

DPMA-T-T-DCV C60 1:2 70 8.39 0.69 52 3.01 2.83±0.10 6 

DPMA-T-DCV C60 1:2 70 15.33 0.76 36 4.24 3.69±0.45 5 

 

As for DPMA-T-DCV, the performance of the OSCs based on DPMA-T-T-DCV have been 

significantly improved by using co-evaporation. In these conditions, a PCEmax value of 3.01% has been 

measured with a Voc of 0. 69 V, a Jsc of 8.39 mA cm-2 and a FF of 52% (Figure 3.12). The relatively low 

a) b) 
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value of Voc compared to that of DPMA-T-DCV is in agreement with the smaller difference HOMO 

(DPMA-T-T-DCV) – LUMO (C60). The use of co-evaporation leads to a higher FF value compared to 

solution process while this value for DPMA-T-T-DCV (52%) is higher than the one obtained for 

DPMA-T-DCV (36%). This higher FF may result from better hole transport properties and hence to a 

better balanced charge mobilities with C60. In addition, the average PCE value of 2.83% calculated from 

6 cells shows a quite good homogeneity of the performance.  
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 Figure 3.12. a) J-V curves of the best vacuum-processed BHJ OSCs based on a co-evaporated DMPA-T-T-

DCV:C60 (1:2, v/v) photoactive layer under illumination and in the dark. b) Corresponding EQE spectrum. 

 

The EQE spectrum shows a broad band centered at ca. 564 nm with a maximum of ca. 44% 

corresponding to the contribution of the push-pull molecule while the integration of the curve leads to a 

calculated Jsc values of ca. 7.25 mA cm-2 a value which is in full agreement with the value of 8.39 mA 

cm-2 recorded on the J-V curve under illumination (Figure 3.12). 

 

 Conclusion 

The new -extended push-pull molecule DPMA-T-T-DCV has been investigated as molecular 

donor in OSCs. This compound has been fully characterized and various device architectures such as 

bi-layer and solution- or vacuum-processed OSCs, have been optimized.  

Compared to DPMA-T-DCV, the addition of one more thiophene unit within the -spacer leads 

to a bathochromic shift of the absorption and emission bands in solution. The absorption spectrum of a 

thin-film of DPMA-T-T-DCV is slightly red-shifted indicative of intermolecular - interactions. 

Interestingly, the X-ray analysis of single crystals of DPMA-T-T-DCV evidences the presence of - 

intermolecular interactions. In strong contrast with DPMA-T-DCV, thin films of DPMA-T-T-DCV are 
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not subject to morphological and optical changes with time at 25 °C or upon thermal annealing at 80 °C. 

Thus these thin-films are more stable allowing for more reproducible results in bilayer-OSCs. The 

performance of the latter were systematically improved after thermal annealing at 80 °C of the 

completed devices, presumably due to an interdifusion of the donor and the acceptor layer leading to a 

BHJ at the donor-acceptor interface, although further analysis are required to confirm this point. 

Conventional bi-layer OSCs based on DPMA-T-T-DCV and C60 or C70 as acceptors led to PCEs of ca. 

2.4% and 1.7%, respectively. 

Finally, vacuum-processed BHJ OSCs prepared by co-evaporation of DPMA-T-T-DCV and 

C60 have led to PCE up to 3% while solution-processed BHJ OSCs gave lower values of ca. 2.5% with 

PC71BM and 1.8% with PC61BM. As perspectives of this work, the fabrication of all vacuum-processed 

BHJ OSCs using C70 instead of C60 could be of high interest. 
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4.1. Introduction 

Minimal structural modifications of DPMA-T-DCV were investigated in this chapter. As 

described in Chart 4.1, the DPMA electron-donating group was first rigidified by a covalent bridge 

leading to the formation of a 9-methylcarbazole moiety (MeCz), affording the new push-pull molecule 

MeCz-T-DCV. Secondly, the thiophene ring of DPMA-T-DCV and MeCz-T-DCV was replaced by a 

selenophene ring. The effect of the rigification and the exchange from Sulphur to Selenium on the 

electronic and structural properties of the three new molecular donors has been analyzed while their PV 

potential has been assessed. 

 

 

Chart 4.1. Rigidification and variation of the nature of the chalcogenophene ring of DPMA-T-DCV. 

 

Carbazole and its derivatives are widely used as hole-transporting materials for DSSCs or hybrid 

perovskite solar cells 1, 2 or as a source for host materials and emitters.3, 4 Carbazole is an excellent hole-

transporter.5 In addition, the HOMO level of a carbazole-based donor is in general slightly lower than 

that of a triphenylamine-based donor,6, 7 thus a higher open-circuit voltage Voc can be expected for 

corresponding OSCs. 

On the other hand, the replacement of thiophene ring(s) by selenophene ones in -conjugated 

oligothiophenes is known to lead to a bathochromic shift of the UV-vis spectrum associated with an 

increased of absorption coefficient.8 Selenophene-based -conjugated systems can also lead to more 

performant OSCs as compared to their thiophene analogues.9 More recently, our group has shown that 

the selenophene analogue of TPA-T-DCV (Chapter 2) was efficiently used as donor in BHJ OSCs with 

PC61BM giving a slightly higher PCE of 3.3% vs. 3.0% for the thiophene derivative.10  
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In this context, the three new carbazole and/or selenophene analogues of DPMA-T-DCV could 

represent promising push-push molecular donors for OPV. 

 

 4.2. Synthesis of the four targeted push-pull molecules 

The three new push-pull derivatives DPMA-Se-DCV, MeCz-T-DCV and MeCz-Se-DCV have 

been synthesized by Dr. Pierre Josse as described in Schemes 4.1 and 4.2.  

 

 4.2.1. Synthesis of DPMA-Se-DCV 

DPMA-Se-DCV has been prepared starting from 4-bromo-N-methyl-N-phenylaniline 1 

following the same strategy developed for the thiophene analogue DPMA-T-DCV as described in 

Chapter 2. A Stille cross-coupling of 1 with the commercially available tributyl(selenophen-2-

yl)stannane in toluene with tetrakis(triphenylphosphine)palladium(0) as catalyst, gave compound 7 in 

50% yield. A Vilsmeier formylation led to the selective formation of carboxaldehyde 8 in 55% yield. 

The target compound DPMA-Se-DCV was finally obtained in 96% yield by Knoevenagel condensation 

between malononitrile and 8. Note that during the course of this project, DPMA-T-DCV has been re-

synthesized through a shorter and cleaner route implying a direct heteroarylation between 1 and 

thiophene-2-carbaldehyde leading to the intermediate 3 subsequently engaged in a Knoevenagel 

condensation with malononitrile. 

 

 

Scheme 4.1. Synthesis of DPMA-based push-pull molecules with thiophene or selenophene π-spacers. 
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 4.2.2. Synthesis of Carbazole derivatives 

The synthesis of carbazole derivatives MeCz-T-DCV and MeCz-Se-DCV has been carried out 

by starting from 3-bromo-9-methyl-9H-carbazole 9. After a Stille cross coupling with 

tributyl(selenophen-2-yl)stannane, compound 11 was obtained in 45% yield and further formylated to 

give aldehyde 12 which was subjected to a Knoevenagel condensation with malononitrile to give MeCz-

Se-DCV in 94% yield. On the other hand, MeCz-T-DCV was obtained in 60% yield after a 

Knoevenagel condensation between malononitrile and the intermediate aldehyde 10 which was prepared 

by direct heteroarylation between the starting material 9 and thiophene-2-carbaldehyde.  

 

 
Scheme 4.2. Synthesis of carbazlole-based push-pull molecules with thiophene or selenophene π-spacers. 

 

 4.2.3. Crystalline structures of carbazole derivatives 

Single crystals were grown by slow evaporation of a solution of MeCz-T-DCV or MeCz-Se-

DCV in toluene and analyzed by X-ray diffraction. The molecular structures of MeCz-T-DCV and 

MeCz-Se-DCV are represented in Figure 4.1. 
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Figure 4.1. Molecular structures of MeCz-T-DCV and MeCz-Se-DCV obtained from X-ray analysis. 

 

Whereas the thiophenic analogue crystallizes in a monoclinic system within a P 21/c space group 

with four independent molecules in the unit cell, the crystalline structure of the selenophene derivative 

belongs to a triclinic system with a P-1 space group and two independent molecules by unit cell. In both 

cases, the DCV unit exhibits a syn conformation relative to the chalcogen atom as in the case of DPMA-

T-DCV.11 MeCz-T-DCV is almost planar with a slight torsion angle between the two planar MeCz and 

T-DCV moieties associated to the following dihedral angles C3-C4-C5-C6 = 8.75°, C3-C4-C5-C10 = 

9.21° and S-C4-C5-C10 = 5.64°. For comparison, MeCz-Se-DCV is less planar with higher dihedral 

angles C3-C4-C5-C6 = 12.44°, C3-C4-C5-C10 = 14.09° and Se-C4-C5-C10 = 12.50°. 

Molecules of MeCz-Se-DCV shows a brickwall packing where two neighbouring carbazole 

moieties adopt a face-to-face arrangement with a shortest intermolecular C-C distance of 3.52 Å (Figure 

4.2, right). In the case of MeCz-T-DCV, molecules stack in the c direction with dipoles oriented in the 

same direction. Within this stack, neighbouring carbazole units are relatively close with a shortest 

intermolecular C-C distance of 3.58 Å (Figure 4.2, left) while contacts are possible between two 

thiophenic carbon atoms of two different stacks, as shown by the existence of a short lateral 

intermolecular C-C distance of 3.45 Å.  
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Figure 4.2. Molecular packing of MeCz-T-DCV (left) and MeCz-Se-DCV (right). 

 

 4.3. Optical and electrochemical properties 

The optical properties of the targeted molecules were examined by UV-Vis spectroscopy in 

solution (CH2Cl2) and as thin films on glass. The electrochemical properties were investigated in 

solution by cyclic voltammetry allowing us to determine the frontier molecular orbital (FMO) energies 

to assess the potential of these materials as donors in OSCs based on fullerene acceptors. 
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 4.3.1. Absorption and emission spectroscopy in solution 

The optical properties of the D--A push-pull molecules were investigated by UV-Vis and 

emission spectroscopy in diluted dichloromethane solutions, ca. 10-5 and 10-6 M, respectively (Figure 

4.3). All optical data are gathered in Table 4.1. 
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Figure 4.3. Normalized absorption (solid line) and emission (dash line) spectra of MeCz-T-DCV (brown), 

MeCz-Se-DCV (green), DPMA-T-DCV (pink) and DPMA-Se-DCV (blue) in CH2Cl2. 

 

 

The normalized absorption spectra of all compounds show a broad absorption band in the visible 

spectrum between 400 and 600 nm. As usually observed for D--A push-pull molecules,12 this intense 

band, with similar molecular extinction coefficients (ε) of ca. 40000 M-1 cm-1 for all compounds, is 

related to an internal charge transfer (ICT) from the electron-rich D unit to the electron-withdrawing A 

unit. Replacement of the DPMA by MeCz, while using the thiophene -spacer for both molecules, leads 

to a hypsochromic shift of λmax from 498 to 467 nm. This result shows that DPMA is a stronger electron-

donating group than the N-methylcarbazole one. On the other hand, the replacement of the thiophene 

spacer by selenophene, while using the same electron-donating group, leads to a higher -conjugation 

as evidenced by the bathochromic shifts of 16 nm and 13 nm observed in the DPMA and MeCz series, 

respectively. 
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Table 4.1. Optical data of titled compounds in CH2Cl2. 

Compound² λmax [nm] λem [nm]a f (%)a ε [M-1 cm-1] Eopt [eV]b 

MeCz-T-DCV 467 576 2 39900 2.37 

MeCz-Se-DCV 480 588 2 40100 2.32 

DPMA-T-DCV 498 628 7 44100 2.20 

DPMA-Se-DCV 514 638 6 40400 2.15 

a λexc = 500 nm, Standard : Rhodamine B in Ethanol (f = 0.50), b Eopt values were 

determined at the intercept between absorption and emission spectra. 

 

All compounds exhibit photoluminescence properties in solution after excitation at 500 nm 

leading to the presence of a broad emission band with maxima close to ca. 580-590 nm and 630-640 nm 

for the carbazole and DPMA derivatives, respectively. The corresponding fluorescence emission 

quantum yields (f) have been measured using Rhodamine B as reference giving values of ca. 2% for 

the carbazole series while a slight increase up to 7% is observed for the DPMA derivatives.     

The HOMO-LUMO gap of the titled molecules has been estimated by measuring the wavelength 

corresponding to the intercept of the absorption and emission spectra which is expected to be close to 

the 0-0 electronic transition and by using the following equation EHOMO-LUMO (eV)  Eopt (eV) = 1240 

/  (nm) for the conversion in eV. Combining the stronger electron-donating effect of DPMA and the 

enhanced -electronic delocalization associated to selenophene, compound DPMA-Se-DCV exhibits 

the highest max value of 514 nm together with the lowest HOMO-LUMO gap estimated to 2.15 eV. 

Thus, considering the good photovoltaic performance of DPMA-T-DCV, DPMA-Se-DCV appears as 

a promising candidate as donor material for OPV.  

   

 4.3.2. Characterization of electrochemical properties in solution 

The electrochemical properties of the four push-pull molecules have been analyzed by cyclic 

voltammetry using 1 mM solution of compound dissolved in dichloromethane in the presence of in 0.10 

M of tetrabutylammonium hexafluorophosphate (Bu4NPF6) as the supporting electrolyte and Pt as a 

working and counter electrodes. The electrochemical data are summarized in Table 4.2. 

 

 

 

 



Chapter 4: Carbazole and selenophene analogues of DPMA-T-DCV for OPV 

120 

Table 4.2. Oxidation and reduction potentials with respect to the ferrocene/ferrocenium couple (Fc/Fc+). 

Compound Epc
 
[V] Epa

   
[V] Eox,onset [V] Ered,onset [V] EHOMO

 
[eV]a ELUMO

 
[eV]b  Eelec [eV] 

MeCz-T-DCV -1.58 0.83 0.70 -1.48 -5.80 -3.62 2.18 

MeCz-Se-DCV -1.55 0.81 0.67 -1.46 -5.77 -3.64 2.13 

DPMA-T-DCV -1.57 0.59 0.46 -1.46 -5.56 -3.64 1.92 

DPMA-Se-DCV -1.52 0.57 0.44 -1.43 -5.54 -3.67 1.87 

a EHOMO (eV) = - (Eox,onset vs Fc/Fc+ + 5.1), b ELUMO (eV) = - (Ered,onset vs Fc/Fc+ + 5.1). 

 

 4.3.2.1. Impact of the bridged MeCz group on electrochemical properties 

In order to assess the impact of the bridged MeCz electron-donating group vs DPMA, Figure 

4.4 compares the first cyclic voltammogram (CV) of DPMA-T-DCV and MeCz-T-DCV, having a 

thiophene -linker on one hand, and DPMA-Se-DCV and MeCz-Se-DCV exhibiting a selenophene 

ring, on the other hand. The first CV trace of all compounds shows a quasi-reversible one-electron 

oxidation wave assigned to the formation of a radical cation. In the case of the thiophene series, the 

corresponding oxidation peak potential (Epa) is observed at 0.59 V and 0.83 V vs Fc/Fc+ for DPMA-T-

DCV and MeCz-T-DCV, respectively. Thus the replacement of DPMA by MeCz leads to a significant 

positive shift of 240 mV of the oxidation wave in agreement with the lesser electron-donating properties 

of the MeCz unit concomitantly leading to a decrease of the HOMO level. The same positive shift is 

observed in the selenophene series for which DPMA-Se-DCV and MeCz-Se-DCV exhibit Epa values 

of 0.57 V and 0.81 V, respectively, confirming the stronger electron-donating properties of DPMA. 

In the negative potentials region, an irreversible reduction wave is observed with very close 

reduction peak potentials Epc at – 1.57 V and – 1.58 V vs Fc/Fc+ for DPMA-T-DCV and MeCz-T-DCV 

suggesting identical LUMO levels and the absence of effect of the electron-donating effect of the D unit 

on the LUMO orbital. As expected, DPMA-Se-DCV and MeCz-Se-DCV exhibit also irreversible 

reduction waves with close Epc values of – 1.52 V and – 1.55 V, respectively. To summarize, the 

replacement of DPMA by MeCz mainly affects the HOMO levels of the resulting push-pull molecules. 

The HOMO and LUMO levels of the push-pull molecules and the resulting electrochemical 

HOMO-LUMO gap (Eelec) have been estimated by using the oxidation (Eox,onset) and reduction (Ered,onset) 

onsets (Table 4.2). In agreement with the aforementioned results, whereas the LUMO levels are not or 

weakly affected, the replacement of DPMA by MeCz induces an increase of the Eelec values of 0.26 

eV for both thiophene and selenophene series, due to a stabilization of the HOMO levels. Thus lower 

HOMO-LUMO electrochemical gaps of 1.92 eV and 1.87 eV are measured for DPMA-T-DCV and 

DPMA-Se-DCV, respectively, while higher values up to 2.18 eV and 2.13 eV are obtained for MeCz-

T-DCV and MeCz-Se-DCV. Note that although the values of electrochemical HOMO-LUMO gaps 
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(Eelec) are slightly lower, they follow the same trend as the corresponding values (Eopt) measured by 

absorption and emission spectroscopy. 
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Figure 4.4. CVs of push-pull molecules highlighting the impact of the nature of the electron-donating group: 1 

mM in 0.10 M Bu4NPF6/CH2Cl2, scan rate 100 mV s-1, Pt working electrodes. 

 

 4.3.2.2. Impact of the selenophene vs thiophene -spacer on electrochemical 

properties 

Figure 4.5 shows the impact of the chalcogen atom of the five-membered ring on the 

electrochemical properties of titled push-pull molecules. In short, the use of a selenophene instead of a 

thiophene ring induces a slight negative shift of the oxidation wave (ca. - 20 mV) and a slight positive 

shift of the reduction wave (ca. 30-50 mV) resulting in an overall reduced HOMO-LUMO gap for 

selenophene-based push-pull molecules. 
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Figure 4.5. CVs of push-pull molecules highlighting the impact of the chalcogen atom: 1 mM in 0.10 M 

Bu4NPF6/CH2Cl2, scan rate 100 mV s-1, Pt working electrodes. 

 

Thus DPMA-Se-DCV with a selenophene -spacer and a strong electron-donating group 

DPMA, shows the highest HOMO level together with the smallest electrochemical HOMO-LUMO gap 

in agreement with optical data. On the contrary, MeCz-T-DCV corresponds to the weakest molecular 

donor among titled compounds with the largest Eelec value. The evolution of the donor strength and the 

HOMO-LUMO gap of the push-pull molecules is represented in Scheme 4.3. 

 

 

Scheme 4.3. Evolution of the donor ability and HOMO-LUMO gap of titled push-molecules. 

 

 4.3.3. Absorption properties of thin films      

Homogeneous thin-films were prepared by spin-casting chloroform solutions of push-pull 

molecules (10 mg/mL, speed rate 1300 rpm during 60 sec.) on clean glass substrates. Figure 4.6 

describes the normalized absorption spectra of the corresponding as-cast thin-films which are broader 

and slightly bathochromically shifted from 7 nm to 19 nm compared to the spectra in solution, 
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suggesting the existence of molecular - interactions in the solid-state. The optical bandgap Eg
opt of 

each thin-film was estimated from the onset of absorption at low energy giving decreasing values from 

2.10 eV, 2.05 eV, 1.98 eV and 1.87 eV for MeCz-T-DCV, MeCz-Se-DCV, DPMA-T-DCV and 

DPMA-Se-DCV respectively, hence following the same trend as observed for the evolution of the 

HOMO-LUMO gap. 
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Figure 4.6. Normalized absorption spectra of thin-films of push pull molecules on glass substrates and related 

optical data. 

 

Contrary to their MeCz push-pull analogues which remain unaffected, the optical properties of 

thin-films of DPMA-Se-DCV are subject to substantial changes upon thermal annealing or simply with 

time at 25 °C, as already reported for it sulfur counterpart DPMA-T-DCV.13 Figure 4.7 shows the 

evolution with time at 25°C of the optical spectrum of a thin-film of DPMA-Se-DCV and that of 

DPMA-T-DCV for comparison. 

For both compounds, the broad absorption band of the as-prepared thin-film (dashed pink curve) 

is progressively subjected to a significant bathochromic shift together with the appearance of a 

vibrational structure with new bands at 553 and 610 nm for DPMA-T-DCV and 567 and 647 nm for 

DPMA-Se-DCV (Table 4.3). This evolution associated with a structural reorganization of the materials, 

stops after 70 min for DPMA-T-DCV and 20 h for DPMA-Se-DCV. As displayed in Figure 4.7, these 

optical changes are accompanied by a color evolution from pink to violet. Interestingly the same result 

can be obtained more rapidly upon thermal annealing at 80 °C for 3 min for each compounds. 
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Figure 4.7. UV-Vis spectra of thin films of a) DPMA-T-DCV and b) DPMA-Se-DCV as prepared (dashed pink 

line) and after evolution with time at 25 °C under atmospheric conditions and pictures of corresponding glass 

substrates. 

 

Table 4.3. Optical data of thin films of DPMA-based push-pull molecules prepared in different 

conditions 

Compound λ
max

 [nm] E
g

opt

 
[eV] 

DPMA-T-DCV
 

(Pink) 515 1.98 

DPMA-T-DCV (Violet) 553, 610 1.77 

DPMA-Se-DCV
 

(Pink) 525 1.87 

DPMA-Se-DCV (Violet) 567, 647 1.70 

 

As a consequence, the optical band-gap of DPMA-T-DCV and DPMA-Se-DCV can vary from 

1.98 and 1.87 eV (pink curves) to 1.77 and 1.70 eV (violet curves) respectively, depending on the 

exposition time in air at room temperature. (Table 4.3). This result is a priori of high importance when 

preparing bi-layer organic solar cells for which the electronic properties of the DPMA derivatives will 

depend on the fabrication conditions. On the other hand, thin-films of DPMA-T-DCV or DPMA-Se-

a) b) 
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DCV mixed with PC61BM or PC71BM for example, are not subjected to changes with time or thermal 

annealing allowing for more reproducible bulk heterojunction organic solar cells. 

 

 4.4. Energetic Diagram from PYSA and Eg
opt 

The ionisation potential (“HOMO” level) of the push-pull molecules in their solid state was 

determined by photoemission yield spectroscopy in air (PYSA) measurements on thin-films prepared 

from chloroform solutions spun-casted on ITO (Indium tin oxide) substrates (Figure 4.8). The energy 

levels of the fullerene derivatives as acceptors and the work functions of the electrodes have been found 

from the literature.14-18 The HOMO energy level of MeCz-T-DCV was found to be -5.83 eV, 0.09 eV 

lower than that of MeCz-Se-DCV (-5.74 eV). Similarly the HOMO energy level of DPMA-T-DCV of 

-5.63 eV, is lower than that of DPMA-Se-DCV (-5.60 eV). In agreement with data obtained in solution, 

the HOMO energy levels in the solid state increase with the donor strength and the insertion of a 

selenophene ring (Figure 4.8) following the trend: MeCz-T-DCV < MeCz-Se-DCV < DPMA-T-DCV 

< DPMA-Se-DCV. It is interesting to note that thermal annealing or exposure with time in air of thin-

films derived from DPMA-T-DCV and DPMA-Se-DCV, leads to a slight increase of the HOMO 

energy levels by ca. 0.05-0.06 eV giving values of –5.58 eV and – 5.56 eV, respectively. This result 

highlights the effect of the structural organization of thin-films on their electronic properties. The 

LUMO energy levels were determined by adding the optical band gap of the thin-films to their HOMO 

level. The HOMO and LUMO levels and the optical bandgap for each compound and those of C60 and 

PC71BM that will be used as acceptors in organic solar cells, are represented in the energetic diagram of 

Figure 4.9. Like in the case of DPMA-T-DCV, the passage from the “pink” state of DPMA-Se-DCV 

to its “violet” state, is mainly accompanied by a stabilization of the LUMO level. 
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Figure 4.8. Photoemission yield spectroscopy in air of thin-films of push-pull molecules spin-casted on ITO 

substrates. 
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Figure 4.9. Energetic diagram of push-pull molecules, C60, PC71BM, buffer layers, and electrodes used in OPV devices. 

 

 MeCz-T-DCV exhibits the deepest HOMO energy level (- 5.83 eV) and hence it is supposed 

to have the largest gap with the LUMO energy level of acceptor materials PC71BM or C60, possibly 

leading to the highest Voc value. In fact although Voc depends on different parameters, it is known to be 

proportional to the difference between the HOMO energy level of  the donor material and the LUMO 

level of the acceptor materials such as fullerene derivatives.19, 20 In addition, the LUMO energy level of 

all push-pull molecules are positioned above that of the acceptor (i.e., PC71BM) by 0.17–0.25 eV ensuring, in 

principle, an efficient photoinduced electron transfer (PET) from the donor in its excited state to the acceptor 

21. Thus, the driving force for electron transfer from the donor excited state to PC71BM is sufficient and larger 

in the case of C60.
22 

 

 4.5. Organic photovoltaic cells   

The photovoltaic potential of titled push-pull molecules has been first tested in conventional bi-layer 

with C60 as acceptor while in a second step, solution-processed bulk heterojunction organic solar cells using 

the soluble PC71BM as acceptors have been fabricated and characterized, emphasizing the relationship 

between molecular structure and properties and device performance. 

 

 4.5.1. Conventional bi-layer organic solar cells  

Bilayer OSCs of the following configuration have been fabricated: ITO/PEDOT:PSS/push-pull 

molecules/C60/Al (Scheme 4.4).  
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Scheme 4.4. Illustration of top and side views of the ITO/PEDOT:PSS/Donor/C60/Al device 

 

A layer of the conducting polymer PEDOT:PSS was deposited by spin-coating on cleaned 

commercially transparent conductive ITO substrates at 5000 rpm for 60 s, and subsequently dried at 130 

°C for 15 min in air to remove water. Then, solutions of donor molecules in CHCl3 (10 mg/mL) were 

deposited by spin-coating to give homogeneous films which thickness was optimized using different 

speed rates (2000, 4000 and 6000 rpm). A 30 nm thick film of C60 was subsequently deposited by 

vacuum evaporation under a pressure of 2×10-7 mbar with a deposition rate of ca. 1.2 Å/s. The top 

electrode in aluminum (100 nm) was also deposited by vacuum evaporation using evaporation rates of 

ca. 0.6 Å/s from 0 to 30 nm and then ca. 2 Å/s from 30 to 100 nm. Except the elaboration of the 

PEDOT:PSS film, all devices fabrication steps were carried out inside a glove box under N2.  

 

 4.5.1.1. Bi-layer organic solar cells optimization and characterization 

The performance of bi-layer OSCs were optimized concomitantly by playing with two 

parameters, the first one being the thickness of the donor materials which was adjusted by using different 

spin rates during the spin-coating process (2000, 4000 and 6000 rpm) and the second parameter being 

the thermal annealing time of the completed OSCs at 80 °C in the glove box. For the optimization of the 

latter parameter, J-V measurements of the resulting OSCs were performed after each 10 min of thermal 

annealing following the evolution of the power conversion efficiency. 

As in Chapter 2, the as-prepared OSCs for all donor materials always gave very low PCE around 

~ 0.2-0.5% and further thermal treatment of the OSCs, typically for ca. 40-50 min, significantly 

increased the performance leading to higher efficiencies. The best photovoltaic performance, after 

optimization of thermal annealing times for different thicknesses of donor, are reported in Table 4.4. 

Except in the case of MeCz-Se-DCV for which the best PCE was obtained with a thicker layer, higher 

speed rates such as 4000 or 6000 rpm for donor deposition gave higher PCEs. Figure 4.10 displays the 

best J-V curves and the corresponding EQE curves for each push-pull molecules. 
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Table 4.4. Photovoltaic parameters of ITO/ PEDOT:PSS/Donor/C60/Al devices. 

Compound 

Speed 

rate 

[rpm] 

Jsc 

[mA cm-2]b 

Jsc 

[mA cm
-2

]c 

Voc 

[V] 

FF 

[%] 

PCEmax 

[%] 

TA time 

[min]d 

PCEave 

[%] 

Cell 

nb 

DPMA-T-DCV 2000 11.50 - 0.56 33 2.17 50 1.99 6 

DPMA-T-DCV 3000 13.40 6.36 0.59 35 2.78 40 2.46  5 

DPMA-T-DCV 4000 11.43 6.36 0.52 35 1.91 30 1.80  5 

DPMA-T-DCV 6000 10.42 - 0.57 38 2.26 20 2.05 8 

DPMA-Se-DCV 2000 2.44 1.90 0.68 53 0.87 50 0.64 7 

DPMA-Se-DCV 4000 7.41 3.70 0.65 38 1.84 30 1.34 8 

DPMA-Se-DCV 6000 4.77 3.67 0.69 50 1.67 30 1.45 8 

MeCz-T-DCV 2000 1.95 1.40 0.56 38 0.41 40 0.38 5 

MeCz-T-DCV 4000 2.68 1.90 0.65 34 0.59 20 0.55 4 

MeCz-T-DCV 6000 3.21 2.35 0.71 37 0.84 40 0.81 2 

MeCz-Se-DCV 2000 6.25 3.04 0.70 33 1.43 50 1.05 7 

MeCz-Se-DCV 4000 3.87 2.61 0.75 42 1.22 50 0.83 7 

MeCz-Se-DCV 6000 4.51 2.10 0.68 35 1.09 20 0.75 2 

a Power incident light of 100 mW/cm2 under AM 1.5 conditions. b Jsc from J-V curve. c Jsc from integration of EQE 

spectra. d Overall time of thermal annealing (TA) corresponding to multiple process of 10 min at 80 °C. 
 

The best photovoltaic performance was obtained for DPMA derivatives in agreement with their 

enhanced -electronic delocalization. However, the thiophenic derivative DPMA-T-DCV exhibited the 

highest PCE of 2.78% associated to a Jsc of 13.40 mA cm-2, a Voc of 0.59 V and a FF of 35% while 

DPMA-Se-DCV showed a Jsc of 7.41 mA cm-2, a Voc of 0.65 V and a FF of 38% resulting in a lower 

PCE of 1.84%. The difference in PCE is essentially due to the much higher short-circuit current density 

Jsc observed for DPMA-T-DCV which cannot be explained by different absorption properties but 

probably to different morphology of the donor thin-films and/or different hole-transport properties. As 

discussed in Chapter 2, another explanation could stem from the poor diode-like behavior recorded for 

bi-layer OSCs derived from DPMA-T-DCV in the dark which may, in turn, affect the J-V characteristic 

under illumination. On the contrary, although the reason remains unclear, the J-V curves in the dark for 

other analogues show a much better diode-like behaviour (Fig. 4.8). The comparison of the EQE spectra 

of OSCS derived from DPMA-T-DCV and DPMA-Se-DCV confirmed the higher photocurrent 

observed for DPMA-T-DCV: although their EQE curve extended similarly from 350 nm to ca. 725 nm, 

the highest maximum of EQE of 45% at 541 nm was found for DPMA-T-DCV whereas DPMA-Se-

DCV revealed a maximum of EQE of 23% at 518 nm, all of them corresponding to the contribution of 

the push-pull molecules to the photocurrent. In addition, an intense band was also observed at ca. 385 

nm due to the contribution of C60. 



Chapter 4: Carbazole and selenophene analogues of DPMA-T-DCV for OPV 

130 

 

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

-20

-15

-10

-5

0

5

10
C

u
rr

e
n
t 

d
e

n
s
it
y
 (

m
A

 c
m

-2
)

Voltage (V)

 DPMA-T-DCV

 DPMA-Se-DCV

 MeCz-T-DCV

 MeCz-Se-DCV

 

400 500 600 700 800 900

0

5

10

15

20

25

30

35

40

45

50

E
x
te

rn
a
l 
Q

u
a
n
tu

m
 E

ff
ic

ie
n
c
y
 (

%
)

Wavelength (nm)

 DPMA-T-DCV

 DPMA-Se-DCV

 MeCz-T-DCV

 MeCz-Se-DCV

 

 

 

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

-10

-8

-6

-4

-2

0

2

4

6

8

10

C
u

rr
e
n

t 
d

e
n

s
it

y
 (

m
A

 c
m

-2
)

Voltage (V)

 Under illumination

 Dark current

PCE = 0.84%

MeCz-T-DCV

 

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

-10

-8

-6

-4

-2

0

2

4

6

8

10

C
u

rr
e

n
t 

d
e

n
s

it
y

 (
m

A
 c

m
-2
)

Voltage (V)

 Under illumination

 Dark current

PCE = 1.43%

MeCz-Se-DCV

 

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

-10

-8

-6

-4

-2

0

2

4

6

8

10

C
u

rr
e
n

t 
d

e
n

s
it

y
 (

m
A

 c
m

-2
)

Voltage (V)

 Under illumination

 Dark current

PCE = 1.84%

DPMA-Se-DCV

 
Figure 4.10. a) J-V curves of the bi-layer OSCs for the four push-pull molecules under illumination, b) EQE 

spectra and c) J-V curves under illumination and in the dark. 

 

The J-V characteristics of MeCz-T-DCV and MeCz-Se-DCV derivatives showed lower PCEs 

of 0.84% and 1.43% in agreement with their lower Jsc of 3.21 and 6.25 mA cm-2due to their larger optical 

bandgap Eg
opt. As a consequence, their EQE spectra are less intense and significantly shifted toward 

lower wavelengths. As expected, MeCz-T-DCV and MeCz-Se-DCV exhibit slightly hiher Voc values 

in agreement with their higher oxidation potentials. 

 

 4.5.1.2. Optical microscope images of push-pull molecules      

The morphology of thin-films of push-pull molecules deposited on glass substrates by spin 

coating (10 mg/mL in CHCl3, 4000 rpm), was studied by optical microscopy before and after thermal 

annealing at 80 °C for 1 h. Pictures obtained with a camera show apparently homogeneous thin-films 

for all molecules before thermal annealing (Figure 4.11). 

a) b) 

c) 
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Figure 4.11.  Images of thin films of a) MeCz-T-DCV, b) MeCz-Se-DCV, c) DPMA-T-DCV and d) DPMA-

Se-DCV deposited on glass substrates (25 mm x 24 mm) by spin-coating. 

 

In fact, as illustrated in Figure 4.12, images obtained with an optical microscope show that thin-

films of MeCz-T-DCV and MeCz-Se-DCV are not homogenous (Figures a and b) exhibiting small dots 

characteristic of nucleation sites on the surface. This observation is more pronounced in the case of 

MeCz-Se-DCV which shows the presence of small crystalline domains as confirmed by the picture 

obtained under polarized light. On the other hand, thin-films of DPMA-T-DCV and DPMA-Se-DCV 

appeared very homogenous (Figure c and d). 

After thermal annealing at 80 °C for 1 h, the morphology of all thin-films was affected leading 

to an enhanced crystallization as demonstrated by the images observed under normal or polarized light. 

In addition, dewetting or retractation process appeared in the case of MeCz-T-DCV, MeCz-Se-DCV 

and DPMA-Se-DCV while the surface of the glass remained covered in the case of DPMA-T-DCV. 
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Figure 4.12. Images from optical microscope before and after thermal annealing of thin-films of a) MeCz-T-

DCV, b) MeCz-Se-DCV, c) DPMA-T-DCV and d) DPMA- Se-DCV on glass. 

 

Since the morphology of layers of the titled push-pull molecules can be affected with time or 

upon thermal treatment, the realization of performant bi-layer OSCs is not trivial. In this context, 

solution-processed BHJ have been investigated in the next paragraph. 

 

 4.5.2. Bulk heterojunction organic solar cells 

BHJ photovoltaic devices were fabricated using a conventional architecture as follows: 

ITO/PEDOT:PSS/Donor:PC71BM/LiF/Al (Schematic 4.5). The photoactive layer was prepared using a 

solution process by mixing each push-pull molecule with PC71BM in CHCl3. A layer of 1 nm thickness 

of LiF was deposited by thermal evaporation under a pressure of 10-7 mbar at an evaporation rate of ca. 

0.4 Å/s, this buffer layer facilitating the extraction of electrons at the cathode. 
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Scheme 4.5. Illustration of the ITO/PEDOT:PSS/Donor:PC71BM/LiF/Al devices. 

 

Note that the spin-coater for the deposition of the active layer and the thermal evaporator were 

located inside a glove box. All the solar cells were tested in the glove box under standardized AM 1.5 

(100 mW/cm2) conditions and the photoactive area of solar cells was 0.28 cm2.     

Based on the optimization of BHJ OSCs derived from DPMA-T-DCV and PC71BM described 

in Chapter 2, a weight-to-weight Donor:Acceptor ratio of 1:2 and a speed rate of 1300 rpm for the 

deposition of the photoactive layer, were chosen in the following study. Typically, a mixture of one 

selected push-pull molecule (3.33 mg) and PC71BM (6.66 mg) was dissolved in 1 mL of CHCl3, the 

resulting solution was stirred for 1 h at 40 °C and then deposited onto ITO substrates pre-coated by 

PEDOT:PSS under rotation at 1300 rpm. Interestingly, the morphology of all photoactive blend becomes 

much more stable than that of neat thin-films of donors. The photovoltaic parameters of the BHJ OSCs 

are summarized in Table 4.5. 

 

Table 4.5. Photovoltaic parameters of ITO/ PEDOT:PSS/Donor:PC71BM/ LiF/Al devices.  

Weight 

ratio 

[w/w] 

Photoactive 

layer 

Thickness 

[nm]a 

Jsc 

[mA cm-2]b 

Jsc 

[mA cm-2]c 

Voc 

[V] 

FF 

[%] 

PCEmax 

[%] 

PCEave 
[%] 

Ce

ll 

nb 

1:2 

MeCz-T-

DCV:PC71BM 
45±3 2.89 1.41 0.85 30 0.72 0.65±0.02 6 

MeCz-Se-

DCV:PC71BM 
46±2 5.35 3.08 0.73 27 1.05 0.96±0.05 2 

DPMA-T-

DCV:PC71BM 
47±3 7.66 6.15 0.94 37 2.70 2.59±0.11 6 

DPMA-Se-

DCV:PC71BM 
53±3 10.49 6.70 0.89 33 3.08 2.75±0.23 6 

a The thickness of the photoactive layer was measured by profilometry. b Jsc determined from J-V curve. c Jsc 

determined by integration of EQE spectra. 

 

The highest PCE value of 3.08% was obtained for BHJ OSCs based on DPMA-Se-DCV 

resulting from a very high Jsc value of 10.49 mA cm-2, a Voc of 0.89 V and a modest FF of 33%. Although 

the sulfur analogue DPMA-T-DCV exhibits a slightly lower efficiency of 2.70%, Table 4.6 clearly 

shows that the photoactive layers based on DPMA derivatives lead to more performant BHJ OSCs as 
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compared with MeCz derivatives, mainly due to their higher Jsc values in agreement with their better 

absorption properties at higher wavelengths. In addition, contrary to what was expected from their higher 

HOMO levels, DPMA derivatives led also to higher Voc values compared to those of MeCz derivatives 

showing that the Voc value is not solely dependent on the LUMO (Acceptor)-HOMO (Donor) difference. 

As in the DPMA series, BHJ OSCs based on the selenophene derivative gave higher efficiency in the 

MeCz series, namely 1.05% for MeCz-Se-DCV vs 0.72% for MeCz-T-DCV. 

Figure 4.13a and b represent the current density-voltage curves and EQE spectra of the best 

devices for each donor materials. Figure 4.13a clearly evidences the increase of Jsc value in the following 

order:  MeCz-T-DCV < MeCz-Se-DCV < DPMA-T-DCV < DPMA-Se-DCV leading to the same 

trend for PCE in agreement with the progressive increase of the  conjugation of the push-pull 

molecules. This is also reflected in the EQE curves for which the generated photocurrent increases in 

the same aforementioned order and becomes progressively significant in the 600-700 nm range for 

DPMA-T-DCV and DPMA-Se-DCV. For instance, DPMA-T-DCV and DPMA-Se-DCV show a 

maximum of EQE of 43% and 48% at 522 nm, respectively, with an onset of EQE up to 750 nm. In the 

case of the more efficient donor DPMA-Se-DCV, the Jsc value extracted by integration of the EQE 

spectrum (6.40 mA cm-2) remains relatively lower than the Jsc values directly measured on the J-V curve 

under illumination. 
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Figure 4.13. a) J-V characteristics in the dark (dash-lines) and under illumination (solid line) and b) EQE spectra 

of BHJ devices. 

 

The EQE spectra of BHJ OSCs derived from MeCz-T-DCV and MeCz-Se-DCV show a broad 

band at ca. 472 nm and 494 nm with a maximum of EQE of 14% and 29% corresponding to the 

contribution of the push-pull molecules in coherence with the UV-Vis spectrum of the blend (Figure 

4.14). These EQE spectra extend only up to 675 nm. The sharp band observed in the EQE spectra of all 

BHJ OSCs at ca. 380-400 nm correspond to the contribution of PC71BM to the photocurrent. 

a) b) 
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Figure 4.14. UV-Vis spectra of thin-films on glass of 1:2 w/w blends (deposition at 1300 rpm) of push-

pull derivatives and PC71BM used for the fabrication of corresponding BHJ OSCs 

 

 4.6. Conclusion  

Following the work on OSCs derived from the push-pull molecule DPMA-T-DCV described in 

Chapter 2, three new analogues have been designed and synthesized by replacing i) the DPMA electron-

donating block by a N-methyl carbazol-3-yl group MeCz or ii) the thiophene -spacer by a selenophene 

one, while keeping the dicyanovinyl (DCV) group constant. The analysis of the electrochemical 

properties of the resulting four molecules in solution showed that the DPMA unit is a stronger electron-

donating group than the MeCz one whereas the replacement of thiophene by a selenophene further 

decreased the oxidation potentials. The examination of the absorption spectra of the titled molecules in 

solution revealed their good absorption properties in the visible spectrum and that the use of DPMA and 

that of the selenophene ring provided an extension of -conjugation. As a consequence, the HOMO level 

increases and the HOMO-LUMO gap decreases successively from MeCz-T-DCV going to MeCz-Se-DCV, 

DMPA-T-DCV and DPMA-Se-DCV. The same trend is also observed in the solid state as confirmed by 

absorption spectroscopy and photoemission yield spectroscopy in air allowing us to estimate the optical band 

gap and the ionization potential respectively, of thin-films derived from the push-pull molecules. The energetic 

diagram of the push-pull molecules confirmed their potential role as donor materials in OSCs in combination 

with fullerene derivatives as acceptors. 

Whereas the performance of bilayer OSCs based on the solution-processed thin-films of push-pull 

molecules and vacuum-evaporated C60 was shown to depend strongly on the morphology and structure of the 

donor layer, the fabrication of solution-processed BHJ OSCs with PC71BM gave more straightforward results. 

In particular, it was shown, thanks to absorption spectroscopy of thin-films, J-V measurements and EQE 

spectra of BHJ OSCs, that the better the -conjugation of the push-pull molecule, the higher PCE of BHJ 
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OSCs is. Thus DPMA-Se-DCV led to the most efficient BHJ OSCs showing the highest PCE of 3.08% 

mainly due to a significant short-circuit current density Jsc of 10.49 mA cm-2 related to the improved absorption 

of the push-pull molecule at longer wavelengths. 

Based on the conclusions of this work and Chapter 2, the fabrication of vacuum-processed BHJ OSCs 

using DPMA-Se-DCV combined with C60 or C70, could provide even higher PV performance.  
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 5.1. Introduction 

Compared to polymers, molecular systems prepared in few steps without batch-to-batch 

variations due to their well-defined chemical structures, appeared to be an appealing option for OPV.1 

In this context, our group has synthesized various classes of simple and synthetically accessible 

arylamine based push–pull materials.2, 3 For example, the reference compound TPA-T-DCV prepared 

in only two steps at the gram scale, showed promising PCEs either in planar and bulk heterojunction 

solar cells.4-6 Few years later, the replacement of one terminal phenyl ring of TPA-T-DCV by a methyl 

group produced improved PV performance mainly due to the higher hole mobility of the resulting 

TPMA-T-DCV.7 

More recently, our group has synthesized an original push-pull tetramer T-1 (Chart 5.1) by 

grafting four triphenylamine (TPA)-based push–pull molecules onto a central cheap and commercially 

available pentaerythritol core.8 This efficient strategy allowed us to prepare original materials which can 

combine the well-defined electronic properties of discrete conjugated systems with the good film-

formation properties of polymers. Only few examples of multimers based on non-conjugated () cores 

have been reported in the literature.9 In addition, a promising power conversion efficiency of 4.5% was 

reached in bulk heterojunction (BHJ) OSCs combining T-1, as donor, and PC71BM. 

 

 

Chart 5.1. Molecular structures of push-pull monomers, dimers and tetramers 
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In this work, one of our objective has consisted in synthesizing, characterizing and assessing the 

photovoltaic (PV) potential of the new tetramer T-2, the analogue of T-1 for which each TPA electron-

donating group of the four push-pull system has been replaced by a diphenylmethylamine (DPMA). 

This latter unit is expected to improve PV performance as in the case of TPMA-T-DCV compared to 

TPA-T-DCV. To further investigate this “push-pull multimer” approach, new simpler and easily 

accessible TPA-based push-push dimers D-1 and D-2 have also been synthesized and tested in OPV. 

 

 5.2. A new push-pull tetramer as donor for OPV 

 5.2.1. Synthesis of the push-pull tetramer 

The new tetramer T-2 was synthesized in 54% yield by a Knœvenagel polycondensation 

between an excess of aldehyde 3 and the pentaerythritol derivative 13 containing four activated 

methylene groups (Scheme 5.1).10 The aldehyde 3 was synthesized according to the procedure described 

in Chapter 2 (section 2.2) while compound 13 has already been described.8  

 

 

Scheme 5.1. Synthesis of tetramer T-2. 

 

The replacement of one external phenyl ring by a methyl group for each push-pull moiety in T-

2 induces a significant decrease of solubility in dichloromethane or chloroform as compared to its 

derivative T-1. However T-2 was successfully characterized by 1H NMR spectroscopy in deuterated 

1,1,2,2-tetrachloroethane, infrared spectroscopy and mass spectrometry (see experimental procedure). 
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 5.2.2. Optical properties in solution and as thin films 

The absorption spectrum of T-2 in CH2Cl2 (ca. 10-5 M) exhibits a main broad absorption band 

with a maximum at 486 nm attributed to an ICT band associated with the four push-pull moieties. 

Compared to the reference DPMA-T-DCV (max = 498 nm, see chapter 2), the hypsochromic shift 

recorded for T-2 results from the replacement of the DCV group of each push-pull moiety by the less 

electron-withdrawing cyanoacrylate ester group. As expected, the molar extinction coefficients ɛ of T-

2 (138000 L mol-1 cm-1) is approximately four times higher than that of DPMA-T-DCV ( = 44100 L 

mol-1 cm-1, see chapter 2). T-2 exhibits also a broad emission band in solution with a maximum at 620 

nm and a photoluminescence quantum yield of 8% measured using rhodamine B as standard ( = 50% 

in ethanol) (Figure 5.1). The optical HOMO-LUMO gap in solution was calculated at the intercept of 

the absorption and emission spectra in solution giving a value of Eopt = 2.23 eV. 
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Figure 5.1. Normalized absorption (ca. 10-5 M) and emission (ca. 10-6 M, exc = 500 nm) spectra of T-2 in 

CH2Cl2 (red lines) and absorption spectrum of a thin-film on glass (black line). 

 

 

Thin-films were prepared by spin-casting a solution of T-2 in a 9:1 mixture of chloroform and 

1,1,2,2-tetrachoroethane on glass substrates (Figure 5.1, black line). The use of small amount of this 

later highly chlorinated (and toxic!) solvent allowed us to form homogenous thin-films for solar cells 

fabrication. Compared to the solution (Figure 5.1, red line), the ICT band of thin-films is broadened and 

its absorption maximum is slightly red-shifted to 493 nm in agreement with the existence of - 

intermolecular interactions in the solid state. The optical bandgap of T-2 was estimated from the onset 

of absorption at low energy (onset = 612 nm) leading to a value Eg
opt of 2.02 eV. The optical data are 

summarized in Table 5.1. 
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Table 5.1. Thermal and optical data of tetramer T-2 in solution and as thin film. 

                                              solution  thin film 

Compd Td 
a Tm

b λabs 

(nm) 

εmax       

(L.mol-1.cm-1) 

Eopt 

(eV) 

λem 

(nm)c 

Φf 

(%)c 

 λabs 

(nm) 

Eg
opt 

(eV) 

T-2 160 204 486 138000 2.23 620 8  493 2.02 

a Decomposition temperature corresponding to 5% weight loss in N2 determined by TGA. b Melting 

temperature determined from DSC .c λexc = 500 nm, Standard : Rhodamine B in Ethanol (f = 0,50). 

 

 5.2.3. Energetic Diagram from PYSA and Eg
opt 

The HOMO level of T-2 was estimated by PYSA on thin-films prepared from solutions spun-

casted on ITO (Figure 5.2a). A relatively high value of – 5.72 eV was obtained for the HOMO level 

which, combined with the Eg
opt value, gave an energy level of – 3.70 eV for the LUMO. As represented 

on the energetic diagram (Figure 5.2b), the HOMO level of T-2 is higher than the one of PC71BM which 

is favorable for a PHT (Channel 2) while their LUMO levels are surprinsingly similar. 
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Figure 5.2. a) PYSA of T-2 and b) energy level diagrams of electrodes, T-2 and PC71BM used in OSCs. 

 

 

 5.2.4. Thermal properties 

The thermal stability of T-2 has been investigated by thermogravimetric analysis (TGA) and 

differential scanning calorimetry (DSC) under an inert atmosphere of nitrogen. The first decomposition 

temperature (Td, ~5% weight loss) occurs at 160 °C and second decomposition temperature was 338 °C 

(Td, ~20% weight loss) as observed by TGA (Figure 5.3a). The relatively low Td value that may be 

associated to the cleavage of ester groups, shows that preparation of thin-films of T-2 by solution process 

will be preferred. 

 

a) b) 
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Figure 5.3. a) TGA and b) DSC curves of T-2 measured under N2 using a heating rate of 10 °C/min. 

The DSC curve exhibits a first endothermic peak probably related to the melting temperature 

(Tm) at 204 °C while the intense exothermic peak at 365 °C shows decomposition (Figure 5.3b). 

 5.2.5. Electrochemical properties 

The electrochemical properties of T-2 have been analyzed by cyclic voltammetry. Unlike 

tetramer T-1 which exhibits a fully reversible oxidation wave assigned to the concomitant oxidation of 

the four independent push-pull units to the radical cation state,8 the first CV trace of T-2 recorded in 0.1 

M n-Bu4NPF6/CH2Cl2 shows an irreversible oxidation wave peaking at Epa
1 = + 0.52 V vs Fc/Fc+. In 

addition, scanning between ca. - 0.2 V and + 0.6 V leads to the efficient and rapid development of two 

new broad oxidation waves peaking at + 0.33 V and + 0.47 V associated with the electropolymerization 

of T-2 on the working platinum electrode (Figure 5.4). The response of poly(T-2) in 0.1 M n-

Bu4NPF6/CH3CN shows an oxidation peak at + 0.36 V vs Fc/Fc+ which is stable upon potential scans 

between - 0.2 V and + 0.6 V. 

E (V vs Fc/Fc
+
)

-0.2 0.0 0.2 0.4 0.6

I 
(

A
)

-20

-10

0

10

20

 

E (V vs Fc/Fc
+
)

-0.2 0.0 0.2 0.4 0.6

I 
(

A
)

-40

-20

0

20

40

 

Figure 5.4. Left: Potentiodynamic electropolymerization of T-2 (0.5 mM) in 0.1 M n-Bu4NPF6/CH2Cl2 using a 

Pt working electrode ( = 1 mm), scan rate 100 mV/s. Right: CV response of poly(T-2) in 0.1 M n-

Bu4NPF6/CH3CN, scan rate 100 mV/s. 

a) b) 
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T-2 was also electropolymerized in potentiostatic conditions at a potential of + 0.52 V (Epa
1) vs 

Fc/Fc+ using 50 mC/cm2 (ie. 0.393 mC). The response of poly(T-2) in 0.1 M n-Bu4NPF6/CH3CN shows 

an oxidation peak at + 0.36 V, the same value obtained by potentiodynamic electropolymerization. The 

electrogenerated polymer is also very stable upon potential scans (Figure 5.5). 
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Figure 5.5. Left: CV response of poly(T-2) in 0.1 M n-Bu4NPF6/CH3CN, scan rate 100 mV/s, grown in 

potentiostatic conditions using 0.5 mM of T-2 in 0.1 M n-Bu4NPF6/CH2Cl2 (E = 0.52 V, 50 mC/cm2). Right: 

structure of the expected electrogenerated polymer. 

 

The structure of the material deposited on the Pt surface presumably corresponds to a redox 

polymer as described in Figure 5.5 and stems from multiple radical cation couplings at the para position 

of the external phenyl ring of each push-pull units. 

 

 

Figure 5.6. CVs of DPMA-T-DCV, 0.5 mM in 0.10 M Bu4NPF6/CH2Cl2, scan rate 100 mV s-1, Pt working 

electrodes (1st and 2nd traces in black and red, respectively). Mechanism of formation of the benzidine product. 
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Indeed, this type of coupling also takes place after the electrochemical oxidation of DPMA-T-

DCV in radical-cation, as demonstrated by the presence of a weakly intense reduction peak at ca. + 0.3 

V during the reduction back scan of the first CV trace (Figure 5. 6). Then the second CV trace evidences 

a new oxidation peak corresponding to the formation of an electroactive -extended benzidine system 

which is enough soluble to diffuse from the working electrode to the electrolyte solution. The synthesis 

of benzidine derivatives endowed with a biphenyl bond upon electrooxidation of arylamine is known 

and the related mechanism formation is represented below.11-16 

 

 5.2.6. Solution-processed BHJ OSCs based on tetramer T-2 

BHJ OSCs were fabricated with T-2 as donor material with the following configuration 

ITO/PEDOT:PSS (40 nm)/T-2:PC71BM/LiF (1 nm)/Al (100 nm). A 1:3 D:A w/w mixture (ca. 11 

mg/mL of total concentration) of T-2 (1.25 mg) and PC71BM (3.75 mg) was dissolved in a 9:1 mixture 

of chloroform and 1,1,2,2-tetrachoroethane (400 μL:40 μL). This solution was then spun cast onto 

ITO/PEDOT:PSS substrates with an optimized speed rate of 2000 rpm. The use of ca. 10% of 1,1,2,2-

tetrachloroethane was necessary for a complete solubilisation of T-2. Finally, devices were completed 

by thermal depositions of LiF (1 nm) and aluminium (100 nm) at a pressure of 10-7 mbar through a 

shadow mask defining two discoidal cells of 28 mm2 for each substrate. Figure 5.7 shows the best J-V 

characteristic recorded over 8 devices under simulated AM 1.5 solar illumination at 100 mW cm-2. This 

J-V curve exhibits an open-circuit voltage Voc of 0.86 V, a short-circuit current density Jsc of 5.43 mA 

cm-2 and a fill-factor FF of 31% leading to a maximum PCE of 1.44% (Table 5.2).  

 

Table 5.2. J-V parameters for BHJ OSCs derived from T-2:PC71BM. 

Weight 

ratio 

(w/w) 

Photoactive layer 

Speed rate 

of D:A 

(rpm) 

Jsc 

(mA cm-2) 

Voc 

(V) 

FF 

(%) 

PCEmax 

(%) 

PCEave
 

(%) 

Cell 

nb 

1:3 T-2:PC71BM 2000 5.43 0.86 33 1.44 1.16±0.28 8 

 

Note that decreasing the speed rate to 1300 rpm for the photoactive layer deposition led to PCE 

lower than 1% while the use of pure chloroform as solvent afforded less homogenous thin-films and a 

maximum PCE of 0.4%. 



Chapter 5: OSCs based on push-pull multimers as donor materials 

148 

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

-6

-4

-2

0

2

4

6

C
u

rr
e

n
t 

d
e

n
s

it
y

 (
m

A
 c

m
-2
)

Voltage (V)

 Under illumination

 Dark current

 Wavelength (nm)

300 400 500 600 700 800

E
Q

E
 (
%

)

0

10

20

30

40

50

A
b
s
o
rb

a
n
c
e

0.00

0.05

0.10

0.15

0.20

0.25

 

Figure 5.7. a) Best current density-voltage characteristic of the BHJ OSC in the dark and under AM 1.5 solar 

simulation (100 mW cm-2). b) EQE spectrum of the BHJ OSC and UV-vis spectrum of the blend T-2:PC71BM 

(1:3 w/w) on glass. 

 

 

The external quantum efficiency (EQE) spectrum of the best BHJ OSC derived from T-2 shows 

two maxima at ca. 420 nm (39%) and 490 nm (38%), the former may be associated to the contribution 

of PC71BM to the photocurrent whereas the latter corresponds to that of T-2 in agreement with the 

absorption spectrum of the photoactive layer on glass (Figure 5.7). 

Compared to tetramer T-1 which led to BHJ OSCs with PCE as high as 4.5%,8 the lower PV 

performance of T-2 are clearly related to its weaker solubility in chloroform requiring to use of 10% of 

1,1,2,2-tetrachoroethane which may affect the morphology of the photoactive layer. 

In order to extend the investigation of the push-pull multimers approach for OPV, smaller push-

pull dimers were synthesized in the following paragraph. TPA groups instead of DPMA were chosen as 

electron-donating groups for solubility purpose. 

 

 5.3. New push-pull dimers as donors for OPV 

 5.3.1. Synthesis of push-pull dimers 

Two new dimers of push-pull molecules D-1 and D-2 have been synthesized by Dr. Pierre Josse 

and Dr. Antoine Labrunie as described in schemes 5.2 and 5.3, respectively. The synthetic procedures 

and analytical data are described in the experimental part. Both dimers exhibit two identical push-pull 

moieties, consisting of a triphenylamine-thienyl-cyanoacrylic ester segment, linked together through an 

ethylene (D-1) or a tetraethyleneglycol (D-2) chain. The later one was expected to increase the solubility 

of the dimer due to its increased length and to induce a different structural organization in the solid-

state. 
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Scheme 5.2. Synthesis of dimer D-1. 

 

 

Scheme 5.3. Synthesis of dimer D-2. 

 

 5.3.2. Optical properties in solution and thin films 

The absorption and emission spectra of D-1 and D-2 were recorded in diluted dichloromethane 

solutions, ca. 10-5 and 10-6 M, respectively. Absorption properties of thin-films prepared by spin-casting 

solutions of these dimers in chloroform solutions on clean glass substrates, have been studied by UV-

Vis spectroscopy. Figure 5.8 describes the normalized absorption and emission spectra in solution and 

as thin films. 
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Figure 5.8. UV-Vis and photoluminescence spectra of a) D-1 (left) and b) D-2 (right) in solution (red line) and 

as thin-films (black line). 

 

Both dimers D-1 and D-2 display an ICT band peaking at 478 and 476 nm with relatively high 

extinction coefficients ε of 66500 L.mol-1.cm-1 and 69700 L.mol-1.cm-1, respectively, due to the presence 

of two push-pull segments per dimer. The dimers D-1 and D-2 show also emission bands at 648 nm and 

645 nm, respectively, with a relatively high fluorescence quantum efficiency of 22%. The HOMO-

LUMO gaps were calculated at the intercept of the absorption and emission spectra in solution giving 

values of ca. 2.20 eV. The absorption spectra in the solid state are broader and slightly bathochromically 

shifted from 5 nm to 11 nm compared to the spectra in solution, suggesting the formation of molecular 

- interactions. The absorption spectra of D-1 and D-2 in the solid state show the same behavior 

suggesting that the oligo(ethylenoxy) chain has no much effect on the structural organization. The 

optical bandgap Eg
opt of each thin-film was estimated from the onset of absorption at 593 nm and 584 

nm, which correspond to optical band gaps of approximately 2.09 eV and 2.12 eV for D-1 and D-2, 

respectively. The optical data of dimers as well as TPA-T-DCV as reference, are summarized in Table 

5.3.17 

Table 5.3. Optical data of dimers in solution and as thin films. 

  solution  thin film 

Compd 
λabs 

(nm) 

εmax          

(L.mol-1.cm-1) 

Eopt 

(eV) 

λem   

(nm)a 

Φf 

(%) 
 

λabs  

(nm) 

Eg
opt    

(eV) 

D-1 478 66500 2.21 648 22  489 2.09 

D-2 476 69700 2.23 645 22  481 2.12 

TPA-T-DCV 501 33900 2.18 651 22  523 1.98 

a λexc = 500 nm, Standard : Rhodamine B in Ethanol (f = 0.50). 
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Compared to TPA-T-DCV (max = 501 nm) with a DCV group, the use of a less electron-

withdrawing cyanoacrylic ester (see paragraph below) in dimers D-1 and D-2 leads to a ca. 25 nm blue 

shift of the absorption maximum. As expected the extinction coefficients  of the dimers are 

approximatively twice than that of TPA-T-DCV. In addition, the dimers and TPA-T-DCV show similar 

emission properties with a ca. 20% fluorescence quantum yield, a significantly higher value than the 

one observed for DPMA derivatives (see Chapter 4), highlighting the role of TPA. 

 

 5.3.3. Electrochemical properties 

The electrochemical properties of the dimer molecules have been analyzed by cyclic 

voltammetry using 1 mM solution of compound dissolved in dichloromethane in the presence of in 0.10 

M of tetrabutylammonium hexafluorophosphate (Bu4NPF6) as the supporting electrolyte and Pt as a 

working and counter electrodes.  
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Figure 5.9. CVs of dimers a) D-1 and b) D-2, 1 mM in 0.10 M Bu4NPF6/CH2Cl2, scan rate 100 mV s-1, Pt 

working electrodes. 

 

These compounds showed one reversible oxidation wave at 0.55 V for D-1 and 0.58 V for D-2, 

indicating the formation of stable radical cations (Figure 5.9). In the negative potential, an irreversible 

reduction wave -1.63 V for D-1 and -1.65 V for D-2 was assigned to the reduction of the acceptor 

group.18 As compared to TPA-T-DCV, the replacement of DCV by the cyanoacrylic ester group has a 

weak impact on the oxidation peak potentials whereas it leads to a significant negative shift of the 

reduction peak potentials demonstrating the stronger electron-withdrawing effect of DCV. Cyclic 

voltammetry was used to calculate the energy levels of the HOMO and LUMO which have been 

estimated from the onsets of oxidation and reduction waves leading to electrochemical energy gaps of 
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1.94 eV for D-1 and 2.02 eV for D-2 (Table 5.4). These later values are slightly smaller than the ones 

obtained from absorption and emission spectroscopy in solution. 

 

Table 5.4. Oxidation and reduction potentials of dimers with respect to the ferrocene/ferrocenium (Fc/Fc+). 

Compd Epc
 
[V] Epa

   
[V] Eox,onset [V] Ered,onset [V] EHOMO

 
[eV]a ELUMO

 
[eV]a 

 E
elec

 [eV] 

D-1 -1.63 0.55 0.45 -1.49 -5.55 -3.61 1.94 

D-2 -1.65 0.58 0.47 -1.55 -5.57 -3.55 2.02 

TPA-T-DCV -1.63 0.61 0.50 -1.33 -5.60 -3.77 1.83 

   a EHOMO (eV) = - (Eox,onset vs Fc/Fc+ + 5.1), b ELUMO (eV) = - (Ered,onset vs Fc/Fc+ + 5.1). 

 

 5.3.4. Energetic Diagram from PYSA and Eg
opt 

The energy of the HOMO level of molecules D-1 and D-2 in their solid state was determined 

by using photoemission yield spectroscopy in air (PYSA) measurements on thin-films prepared from 

chloroform solutions spun-casted on ITO substrates. The LUMO energy levels were determined by 

adding the optical band gap of the thin films to their HOMO level, which leads to the energetic diagram 

are illustrated in Figure 5.10.  

 

Figure 5.10. Energy level diagrams of electrodes, D-1, D-2 and acceptors used in OSCs devices. 

 

The same value of - 5.46 eV was obtained for the HOMO energy levels of D-1 and D-2 hence 

leading to comparable LUMO energy levels of - 3.35 and - 3.37 eV. Thus the energetic diagram shows 

that both dimers can be used in BHJ OSCs as donor materials in combination with PC61BM or PC71BM. 
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 5.3.5. Solution-processed BHJ OSCs based on dimer D-1 

The photovoltaic potential of D-1 has been tested in BHJ OSCs using the soluble PC71BM as 

acceptor and with the following device configuration: ITO/PEDOT:PSS/D-1:PC71BM/LiF/Al (Figure 

5.11).  

 

Figure 5.11. General device architecture of BHJ OSCs based on D-1 push-pull molecule and PC71BM. 

BHJ OSCs have been optimized by using various w/w ratio of D:A and then different 

photoactive layer thicknesses from the best w/w D:A ratio. Blends of D-1:PC71BM with w/w ratio of 

1:2, 1:3, 1:4 and 1:5 were prepared in CHCl3 with a total concentration of 10 mg/mL. Stirring of the 

solutions for 1 h at ca. 40 °C was required to completely solubilize D-1 allowing us, after the solution 

was returned to room temperature, to achieve homogeneously thin films by spin-casting. In fact, the 

solubility of D-1 in CHCl3 has been estimated to be close to 3 mg/mL at 20 °C. The solution mixture 

(80 𝜇L) was deposited on ITO/PEDOT:PSS by spin-coating at once when the maximum rotational speed 

was reached 1300 rpm. Then, LiF (1 nm) and aluminium (100 nm) were deposited by thermal 

evaporation. Table 5.5 summarizes the current density-voltage (J-V) parameters of BHJ OSCs measured 

upon optimization of the D:A weight-to-weight ratio. 

 

Table 5.5. J-V parameters for BHJ OSCs with different D-1:PC71BM w/w ratio. 

Ratio 

(w/w) 

Photoactive 

layer 

Speed rate 

(rpm) 

Jsc       

(mA cm-2) 

Voc    

(V) 

FF 

(%) 

PCEmax 

(%) 

PCEave
 

(%) 

Cell 

nb 

1:2 

D-1:PC71BM 1300 

7.09 0.92 36 2.35 2.29±0.02 6 

1:3 7.62 0.99 33 2.54 2.49±0.02 5 

1:4 8.09 1.00 35 2.81 2.67±0.05 5 

1:5 8.93 0.89 30 2.39 2.28±0.03 5 

 

The optimal D-1:PC71BM w/w ratio was found to be 1:4 (2 mg:8 mg/mL in CHCl3) which is 

consistent with the fact that D-1 contains two push-pull units. This w/w ratio corresponding to a molar 
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ratio of 1:3.5 mmol/mL, gave a maximum PCE of 2.81% with a short circuit current density Jsc of 8.09 

mA cm-2, a high open circuit voltage Voc of 1.00 V and a fill factor FF of 35%. The J-V curve of the best 

BHJ OSCs device (1:4 w/w ratio) is shown in Figure 5.12. 
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Figure 5.12. J-V characteristics of the best BHJ OSCs with 1:4 D-1:PC71BM w/w ratio. 

 

Further optimization was achieved by varying the photoactive layer thickness using different 

speed rates (800, 1300 and 2000 rpm) for the deposition by spin coating while keeping the best 1:4 D:A 

w/w ratio. As reported in Table 5.6, the optimal photoactive layer thickness was obtained using 800 rpm 

which led to a thickness of 68±2 nm, as measured by profilometry. 

 

Table 5.6. J-V parameters for BHJ OSCs with different photoactive layer thicknesses using a 1:4 D-1:PC71BM 

w/w ratio. 

Ratio 

(w/w) 

Photoactive 

layer 

Speed 

rate 

(rpm) 

Thickness 

of D:A 

(nm) 

Jsc       

(mA cm-2) 

Voc    

(V) 

FF  

(%) 

PCEmax 

(%) 

PCEave 

(%) 

Cell 

nb 

1:4 D-1:PC71BM 

800 68±2 12.60 0.88 31 3.43 3.18±0.19 3 

1300 54±1 8.09 1.00 35 2.81 2.67±0.05 5 

2000 42±2 5.57 0.74 38 1.58 1.32±0.04 5 

 

Keeping the 1:4 D-1:PC71BM w/w ratio constant, the decrease of the speed rate of deposition 

from 1300 rpm to 800 rpm successfully produced an increase of PCE from 2.81% up to 3.43%, resulting 

essentially from an increase of Jsc up to 12.60 mA cm-2 whereas Voc and FF slighltly decreased. This 

increase of Jsc can be correlated to the higher thickness of the photoactive layer inducing better 

absorption properties. According to Table 5.6, it is important to note that decreasing the thickness of the 

photoactive layer (from 68 to 42 nm) can lead to a decrease of the Jsc from 12.60 to 5.57 mA.cm-2. On 
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the other hand, it would have been interesting to increase the thickness by decreasing further the speed 

rate however, much less homogeneous layers have been obtained while increasing the concentration in 

CHCl3 was not possible due to solubility limitation. Figure 5.13 (left) depicts the current density-voltage 

characteristics of the best device (1:4 D:A w/w, 800 rpm) under illumination and in the dark showing a 

good diode behavior. 
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Figure 5.13. J-V characteristics (left) and EQE spectrum (right) of the BHJ OSC using a 1:4 w/w D-1:PC71BM 

ratio and a speed rate of 800 rpm for deposition. 

 

The corresponding EQE curve extended from 350 nm to ca. 750 nm and the highest maximum 

of EQE of 51% was found at 471 nm in agreement with the contribution of D-1 to the photocurrent 

(Figure 5.13, right). 

In the course of this study, the D-1 analogue with DPMA electron-donating groups instead of 

TPA, has been synthesized. However its very low solubility in CHCl3 prevented the formation of 

homogeneous thin-films with the expected D:A w/w ratio. On the other hand, we improved the solubility 

of D-1 by introducing a longer oligoethyleneoxy sigma-spacer between the two push-pull moieties. 

 

 5.3.6. Solution-processed OSCs based on dimer D-2 

In the case of dimer D-2, BHJ OSCs of the following architecture ITO/PEDOT:PSS/D-

2:PCXBM (x = 61 or 71)/LiF/Al were fabricated using PC61BM or PC71BM (Figure 5.14). D-2 presents 

a higher solubility in chloroform at 20 °C than the one of D-1 (3 mg/mL). In fact it was possible to 

prepare a solution of D-2 with a concentration of at least 40 mg/mL which easily led to homogeneous 

thin films. 

 



Chapter 5: OSCs based on push-pull multimers as donor materials 

156 

 

Figure 5.14. Architecture of BHJ OSCs based on dimer D-2. 

 

As a first step, a 1:3 w/w D-2:PCxBM (X=61 or 71) ratio was selected and the thickness of the 

photoactive layer was optimized by using the following speed rates for deposition by spin-coating 800, 

1300 and 2000 rpm. The optimal photoactive layer thickness was found to be 2000 rpm for D-2:PC61BM 

and 1300 rpm for D-2:PC71BM which correspond to 42±2 nm and 51±2 nm, respectively, as measured 

by profilometry (Table 5.7). In these conditions, the best PCE values of 2.05% and 2.80% were recorded 

for D-2:PC61BM and D-2:PC71BM, respectively. 

 

Table 5.7. J-V parameters for BHJ OSCs with different photoactive layer thicknesses using a 1:3 D-2:PCxBM 

w/w ratio. 

Ratio 

(w/w) 

Photoactive 

layer 

Speed rate 

(rpm) 

Thickness 

of D:A 

(nm) 

Jsc 

(mA cm-2) 

Voc 

(V) 

FF 

(%) 

PCEmax 

(%) 

PCEave
  

(%) 

Cell 

nb 

1:3 D-2:PC61BM 

800 58±2 4.28 0.92 31 1.22 0.89±0.08 5 

1300 49±3 6.43 0.76 28 1.41 1.21±0.05 5 

2000 42±3 6.68 0.89 35 2.05 1.87±0.12 5 

1:3 D-2:PC71BM 

800 69±3 7.37 0.90 33 2.21 2.16±0.07 5 

1300 51±2 8.71 0.87 37 2.80 2.66±0.12 5 

2000 44±1 8.02 0.78 31 1.94 1.54±0.33 5 

 

 

Then blends of D-2:PC61BM (1:2, 1:3 and 1:4) and D-2:PC71BM (1:1, 1:2, 1:3 and 1:4) with 

different weight ratios were prepared in chloroform with a total concentration of 10 mg/mL. From these 

solutions, 80 𝜇L were spin-coated above the PEDOT:PSS layer at 2000 and 1300 rpm for D-2:PC61BM 

and D-2:PC71BM respectively. Next, LiF (1 nm) and aluminium (100 nm) were successively deposited 

by thermal evaporation. The J-V data are presented in Table 5.8. 
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Table 5.8. J-V parameters for BHJ OSCs with different w/w D:A ratios using a fixed photoactive layer 

of D-2:PCxBM. 

Ratio 

(w/w) 

Photoactive 

layer 

Speed rate 

(rpm)  

Thickness 

of D:A 

(nm) 

Jsc 

(mA cm-2) 

Voc 

(V) 

FF 

(%) 

PCEmax 

(%) 

PCEave
 

(%) 

Cell 

nb 

1:2 

D-2:PC61BM 2000 

44±1 6.04 0.92 34 1.90 1.54±0.23 5 

1:3 42±3 6.68 0.89 35 2.05 1.87±0.12 5 

1:4 44±1 3.43 0.89 36 1.10 1.04±0.08

9 

5 

1:1 

D-2:PC71BM 1300 

49±3 5.80 0.97 30 1.58 1.43±0.06 5 

1:2 49±3 4.68 0.96 37 1.74 1.63±0.05 5 

1:3 51±2 8.71 0.87 37 2.80 2.66±0.12 5 

1:4 49±3 3.84 0.88 37 1.25 1.13±0.06 5 

 

The optimal weight ratio for D-2:PC61BM was found to be 1:3 (2.5 mg : 7.5 mg/mL in CHCl3) 

for which a PCE of 2.05% was measured resulting from a Jsc of 6.68 mA cm-2, and Voc of 0.89 V and 

FF of 35%. The optimal weight ratio for D-2:PC71BM was also found at 1:3, leading to a higher PCE of 

2.80% with a Jsc of 8.71 mA cm-2, a Voc of 0.87 V and a FF of 37%. The main difference between these 

two types of BHJ OSCs is related to the better absorption properties of PC71BM affording a higher Jsc 

value. The corresponding J-V curves are shown in Figure 5.15. 
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Figure 5.15. J-V characteristics of the best BHJ OSCs using a) D-2:PC61BM and b) D-2:PC71BM as photoactive 

layer. 

 

The EQE spectrum of the best BHJ OSC based on D-2 and PC71BM extends to ca. 750 nm with 

maxima of EQE of 48% at 421 nm and 46% at 492 nm in agreement with the contribution of PC71BM 

and D-2 to the photocurrent, respectively (Figure 5.16). The Jsc value of 5.77 mA cm-2 calculated by 

integrating the surface area below the curve is lower than the one deduced from the J/V characteristic 
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under illumination (8.71 mA cm-2) due, in part, to the fact the EQE spectrum did not take into account 

the UV region below 350 nm. 
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 Figure 5.16. a) EQE spectrum of the best BHJ OSCs derived from D-2:PC71BM (1:3 w/w, 1300 rpm) and b) 

UV-Vis spectrum of the photoactive blend. 

 

To summarize, optimizations of BHJ OSCs prepared from the simple dimer of push-pull D-1 in 

combination with PC71BM led to a relatively high PCE of 3.4 % while the more soluble D-2 derivative 

gave rise to slightly lower performance (PCE = 2.8 %). 

  

 Conclusion 

In this chapter, we have investigated further the “push-pull multimer” approach recently 

developed in our group. In particular, we previously showed that tetramer T-1 was able to produce BHJ 

OSCs with PC71BM affording PCE up to 4.5%. As a next step and based on the better PV performance 

of DPMA-T-DCV (Chapter 2), the triphenylamine (TPA) units of T-1 have been herein replaced by 

DPMA groups affording the new target T-2 which has been synthesized during this PhD work. However, 

due to a weaker solubility in chloroform, the processability of T-2 implied the use of a fraction of 

1,1,2,2-tetrachloroethane in chloroform. In these conditions, a maximum PCE of 1.4% was finally 

reached. These lower performance combined with the use of such highly toxic solvent, pushed us to 

study simpler and more soluble push-pull dimers. 

Meanwhile, by contrast with T-1, T-2 has shown a peculiar electrochemical behaviour upon 

oxidation. In fact, the high reactivity of the four radical cation species of T-2 electrogenerated at the 

same oxidation potential, resulted in the straightforward formation of a redox polymer at the surface of 

the working electrode, consisting in multiple benzidine-based push-pull electroactive blocks. 

a) b) 



Chapter 5: OSCs based on push-pull multimers as donor materials 

159 

Then two smaller push-pull dimers namely D-1 and D-2 based on TPA, for a better solubility, 

were investigated. They differ only by the -linker connecting the two push-pull units. Hence, these 

compounds show similar optical and electrochemical properties leading to the same optical band gap 

and HOMO-LUMO energy levels. Dimer D-2 exhibiting a longer and hydrophilic -linker shows a 

much higher solubility in chloroform than D-1 having a short ethylene -linker. However, it has been 

possible for both dimers to fabricate BHJ OSCs with optimum PV performance after optimization of 

the D/A weight-to-weight ratio and the thickness of the photoactive layer. While D-2 in combination 

with PC71BM gave a PCE of 2.8%, a high value of 3.4% was achieved with the synthetically accessible 

dimer D-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5: OSCs based on push-pull multimers as donor materials 

160 

 References: 

1. R. Po and J. Roncali, Journal of Materials Chemistry C, 2016, 4, 3677-3685. 

2. P. Blanchard, C. Malacrida, C. Cabanetos, J. Roncali and S. Ludwigs, Polymer International, 

2019, 68, 589-606. 

3. C. Cabanetos, P. Blanchard and J. Roncali, The Chemical Record, 2019, 19, 1123-1130. 

4. A. Leliege, C. H. Le Regent, M. Allain, P. Blanchard and J. Roncali, Chemical 

Communications, 2012, 48, 8907-8909. 

5. J. W. Choi, C. H. Kim, J. Pison, A. Oyedele, D. Tondelier, A. Leliege, E. Kirchner, P. 

Blanchard, J. Roncali and B. Geffroy, Rsc Advances, 2014, 4, 5236-5242. 

6. A. Labrunie, Y. Jiang, F. Baert, A. Leliege, J. Roncali, C. Cabanetos and P. Blanchard, RSC 

Advances, 2015, 5, 102550-102554. 

7. Y. Jiang, C. Cabanetos, M. Allain, P. Liu and J. Roncali, Journal of Materials Chemistry C, 

2015, 3, 5145-5151. 

8. A. Labrunie, P. Josse, S. Dabos-Seignon, P. Blanchard and C. Cabanetos, Sustainable Energy 

& Fuels, 2017, 1, 1921-1927. 

9. A. Zitzler-Kunkel, M. R. Lenze, K. Meerholz and F. Wurthner, Chemical Science, 2013, 4, 

2071-2075. 

10. C. Malacrida, A. H. Habibi, S. Gámez‐ Valenzuela, I. Lenko, P. S. Marqués, A. Labrunie, J. 

Grolleau, J. T. López Navarrete, M. C. Ruiz Delgado and C. Cabanetos, ChemElectroChem, 

2019, 6, 4215-4228. 

11. H.-J. Yen and G.-S. Liou, Polymer Chemistry, 2018, 9, 3001-3018. 

12. N. Cocherel, P. Leriche, E. Ripaud, N. Gallego-Planas, P. Frère and J. Roncali, New Journal of 

Chemistry, 2009, 33, 801-806. 

13. K. Karon, M. Lapkowski, A. Dabuliene, A. Tomkeviciene, N. Kostiv and J. V. Grazulevicius, 

Electrochimica Acta, 2015, 154, 119-127. 

14. M. Yada, C. Taniguchi, T. Torikai, T. Watari, S. Furuta and H. Katsuki, Advanced Materials, 

2004, 16, 1448-1453. 

15. S.-H. Hsiao and J.-W. Lin, Polymer Chemistry, 2014, 5, 6770-6778. 

16. T.-G. Sun, Z.-J. Li, J.-Y. Shao and Y.-W. Zhong, Polymers, 2019, 11, 73. 

17. A. Leliège, J. Grolleau, M. Allain, P. Blanchard, D. Demeter, T. Rousseau and J. Roncali, 

Chemistry–A European Journal, 2013, 19, 9948-9960. 

18. F. o. Baert, C. m. Cabanetos, M. Allain, V. Silvestre, P. Leriche and P. Blanchard, Organic 

letters, 2016, 18, 1582-1585. 

 

 

 

 

 

 



 

` 

 

 

 

 

 

  

 

  

 

 

 

 

 

 

General conclusion and perspectives  



General conclusion and perspectives 

162 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



General conclusion and perspectives 

163 

In recent years, organic photovoltaic cells have aroused increasing interest as a possible 

alternative to silicon. They can bring significant development in the research of low-cost photovoltaic 

modules and great flexibility for the production of household electricity. The optimization of the power 

conversion efficiency of organic solar cells (OSCs) is based on understanding the performance of the 

photoactive layer, the optimization of their interfaces and the analysis of the cell parameters and the 

related photophysical processes. The photoactive layer of OSCs is mostly prepared by combining one 

electron-donating (D) and one electron acceptor (A) materials. Since more than three decades, the 

enthusiasm of academics for these materials and the associated devices have made it possible to obtain 

high-performance solar cells, which efficiencies now close to 17%. However, those performance are 

usually achieved with organic materials of a growing structural complexity. Thus photovoltaic 

efficiency should not be the only figure of merit for OSCs. The synthetic accessibility and the simplicity 

the structure of organic materials need also to be considered at the early stage of their development. In 

this context, small push-pull -conjugated molecules have shown a great interest as donor materials for 

organic photovoltaics (OPV). 

The first chapter of this PhD thesis has briefly described the fundamentals of OSCs by 

introducing the principle of organic semiconductors, the history of the development of organic 

photovoltaics and the evolution of OSC architectures over time. Among well-known classes of D and A 

materials presented in this manuscript, a specific attention has been paid to small push-pull -conjugated 

molecules for OPV and their molecular engineering. In particular, some strategies to improve hole 

transport properties of these molecules have been discussed. Owing to its relatively good hole mobility 

(μh = 50  10-5 cm2 V-1 s-1) and absorption properties in the visible spectrum, the DPMA-T-DCV push-

pull molecule has recently led to efficient bi-layer OSCs. Based on these preliminary and promising 

results, this PhD work has been devoted to further investigation of the photovoltaic potential of this 

molecule and other new derivatives. 

In chapter 2, it was shown that DPMA-T-DCV could be synthesized in few steps and in a large 

scale (up to 500 mg). This small push-pull molecule could be processed in solution or by vacuum 

evaporation allowing us to test various OSC architectures. Although conventional solution- or vacuum-

processed bi-layer OSCs prepared with C60 led to poor diode-like behavior in the dark, better J-V 

characteristics were obtained with C70 affording PCEs of 2.4% after optimization of the thickness of 

organic layers and thermal annealing of the completed devices. However, this work on bi-layer OSCs 

showed that better and more reproducible PV performance were obtained for inverted bi-layer OSCs 

compared to devices with a conventional architecture. After optimization of the donor thickness to avoid 

the S-shape of J-V curves and introduction of a charged molecular buffer layer based on a zinc porphyrin 

derivative, namely ZnTPPIm,TFSI, inverted bi-layer OSCs using ZnO as electron-transporting layer, 

showed PCEs up to 3.1%. 
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The second part of this chapter was dedicated to solution-processed bulk heterojunction (BHJ) 

OSCs fabricated in conventional and inverted modes. Using a conventional architecture, the donor 

(DPMA-T-DCV) and acceptor (PC71BM) weight-to-weight ratio has been optimized giving best 

efficiency with a 1:2 ratio. PC61BM was also tested however PC71BM gave better results. Different 

buffer layers such as LiF or a polythiophene-based P3HTPMe3,TFSI and a molecular ZnTPPIm,TFSI 

electrolytes, were also introduced close to the aluminium cathode to favour the electron extraction. The 

presence of these charged buffer layers produced more reproducible and homogenous BHJ OSCs 

derived from DPMA-T-DCV and PC71BM, with very good J-V curves in the dark and PCEs of 2.7%, 

2.9% and 2.7% under illumination, respectively. The performance of inverted solution-processed BHJ 

OSCs using ZnO as electron-transporting layer, remained lower. 

More importantly, the last part of chapter 2 showed that efficient conventional all vacuum-

processed BHJ OSCs were successively prepared by co-evaporation of DPMA-T-DCV and C60, 

replacing PEDOT:PSS by MoO3, and introducing a hole-blocking layer such as bathocuproine close to 

the aluminium cathode. After a thorough optimization of the thickness of the photoactive layer, these 

OSCs led to increased performance with a PCE as high as 4.24%, this result underlining the interest of 

small push-pull -conjugated molecules for vacuum-processed BHJ OSCs. 

Chapter 3 deals with the description and the characterization of a -extended analogue of 

DPMA-T-DCV, namely DPMA-T-T-DCV, resulting from the insertion of an additional thiophene ring 

in the -spacer. As expected, this push-pull molecule showed a better absorption in the visible spectrum 

and was tested as donor for OPV. Compared to DPMA-T-DCV, this new -extended molecule provided 

more stable neat thin-films allowing us to easier prepare solution-processed bi-layer OSCs showing 

good J-V curves in the dark with PCEs of 2.4% and 1.7% under illumination with C60 and C70, 

respectively. Vacuum-processed BHJ OSCs prepared by co-evaporation of DPMA-T-T-DCV and C60 

led to higher PCEs up to 3% while solution-processed BHJ OSCs with PC71BM or PC61BM gave lower 

values of ca. 2.5% or 1.8%, respectively.  

In chapter 4, the impact of the replacement of the diphenylmethylamine (DPMA) electron-

donating group of DPMA-T-DCV by the bridged carbazole MeCz group, and that of the thiophene π-

spacer (T) by a selenophene (Se) one, on the electronic properties and PV performance, was investigated. 

Briefly, as demonstrated by cyclic voltammetry, the MeCz group is less electron-donating than the 

DPMA one while, as shown by UV-vis and emission spectroscopy, the use of a selenophene ring leads 

to a bathochromic shift of the absorption and emission spectra relative to the thiophene ring. The 

energetic diagram of the four titled molecules was built from the HOMO levels determined in the solid 

state by photoemission yield spectroscopy in air and from the optical bandgap measured from the absorption 

spectra of related thin-films. These results suggested the use of titled molecules as donors for OPV in 

combination with fullerene acceptors. The new DPMA-Se-DCV push-pull molecule led to the most efficient 

solution-processed BHJ OSCs with PC71BM with a PCE of 3.08%. As perspectives, provided it can be 
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evaporated without degradation, it could be interesting to fabricate all-vacuum processed BHJ OSCs by co-

evaporation of DPMA-Se-DCV and C60 or C70. 

Finally, chapter 5 was dedicated to the investigation of push-pull multimers as donors for OPV. A 

tetramer T-2 with four push-pull moieties with a DPMA electron-donating group has been synthesized. 

A study of T-2 by cyclic voltammetry showed that the electrochemical oxidation of each push-pull 

moieties led to four reactive radical-cation species prone to a coupling hence leading to an 

electropolymerization process resulting in the deposition of a polymer at the working electrode. Owing 

to the low solubility of T-2 in chloroform, addition of a fraction of 1,1,2,2-tetrachloroethane was 

necessary to prepared solution-processed BHJ OSCs with PC71BM leading to a poor efficiency of 1.4% 

as compared to an analogue tetramer bearing triphenylamine (TPA) groups instead of DMPA. On the 

other hand, two smaller push-pull dimers, namely D-1 and D-2 based on TPA, were investigated. The 

dimer D-2 exhibiting a longer and hydrophilic oligoethyleneoxy -linker between the two push-pull 

moieties, showed a much higher solubility in chloroform than D-1 having a short ethylene -linker. 

After optimization of the D/A weight-to-weight ratio and the thickness of the photoactive layer, solution-

processed BHJ OSCs of each dimers with PC71BM gave a PCE of 3.4% for D-1 and 2.8% for D-2. 

Taking into account the ease of synthesis of these multimers and the photovoltaic efficiency of D-1 for 

example, this approach would deserve further developments. 

In conclusion, this work has shown that small push-pull -conjugated molecules combining 

absorption in the visible spectrum and good hole transporting properties such as DPMA-T-DCV, can be 

efficiently used as donors for OPV. In this context, evaluation of hole mobility values of the new donors 

described in this PhD thesis and future materials by the Space Charge Limited Current method would be 

useful to complete this work. Some of the titled molecules are particularly suitable for the fabrication of 

performant all vacuum-processed BHJ OSCs with C60 or C70. Work in this direction should be pursued. Using 

molecular or polymeric non-fullerene acceptors with complementary absorption properties could be also 

another alternative to increase the performance of OSCs derived from push-pull -conjugated 

molecules. 
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 1. General information 

All reagents and chemicals from commercial sources were used without further purification. Solvents 

were dried and purified using standard techniques. Column chromatography was performed with analytical-

grade solvents using Aldrich silica gel (technical grade, pore size 60 Å, 230-400 mesh particle size). Flexible 

plates ALUGRAM® Xtra SIL G UV254 from MACHEREY-NAGEL were used for TLC. Compounds were 

detected by UV irradiation (Bioblock Scientific) or staining with iodine, unless otherwise stated.  

NMR spectra were recorded on a Bruker AVANCE III 300 (1H, 300 MHz; 13C, 75 MHz) or a 

Bruker AVANCE DRX500 (1H, 500 MHz; 13C, 125 MHz). Chemical shifts are given in parts per million 

(ppm) relative to TMS and coupling constants J in Hertz (Hz). Infrared spectra were recorded on a Bruker 

spectrometer Vertex 70. High Resolution Mass Spectrometry (HRMS) was performed with a JEOL JMS-

700 B/E. UV-visible absorption spectra were recorded at room temperature on a Perkin Elmer 950 

spectrometer or a Shimadzu UV-1800 spectrometer. Emission spectra were recorded on a 

spectrofluorimeter from Shimadzu RF-6000. DSC and TGA were performed with TA Instruments Q20 and 

Q500 respectively. 

Electrochemical measurements were performed using a Biologic SP-150 potentiostat with 

positive feedback compensation. Samples were dissolved in dichloromethane HPLC grade, purchased from 

Carlo Erba (HPLC grade). Tetrabutylammonium hexafluorophosphate (0.1 M as supporting electrolyte) was 

purchased from Sigma-Aldrich and recrystallized prior to use. Experiments were carried out under an inert 

atmosphere (Ar), in a one-compartment cell equipped with platinum working microelectrode (Ø = 1 or 2 

mm) and a platinum wire counter electrode. A silver wire immersed in 0.10 M Bu4NPF6/CH2Cl2 was used 

as pseudo-reference electrode and checked against ferrocene/ferrocenium couple (Fc/Fc+) before and after 

each experiment. 

X-Ray Diffraction: Single crystals of the compounds were mounted on glass fibre loops using a 

viscous hydrocarbon oil to coat the crystal and then transferred directly to cold nitrogen stream for data 

collection. Data collection were mostly performed at 150 K on an Agilent Supernova with CuKα (λ = 

1.54184 Å). The structures were solved by direct methods with the SIR97 program and refined against all 

F2 values with the SHELXL-97 program using the WinGX graphical user interface. 

Atomic force microscopy (AFM) experiments were performed using the Nano-Observer device 

from CS Instrument. The topographic images were obtained at room temperature in tapping mode. Images 

were processed with the Gwyddion free SPM data analysis software. 
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 2. Device fabrication techniques 

Organic solar cells (OSCs) have been fabricated by using two different techniques for the deposition 

of thin-films either by spin-coating or by thermal vacuum evaporation. 

 2.1 Spin-coating 

Spin coating is the simple way to prepare thin films of donors or blend of donors and acceptors for 

OSCs. The thickness of thin films can be controlled by selecting the speed rate of the spin coater while the 

thickness can be measured by profilometry.

 

Figure 1: Spin-coating process: 1) acceleration to the maximum speed rate, 2) injection of a precise amount 

of solution and 3) drying of the thin-film under spinning. 

 

The spin-coating process requires three steps. Initially, the ITO substrate is accelerated to the 

maximum speed rate, with an acceleration ramp. In the second step, a specified amount of solution is 

dropped at once on the substrate. The centrifugal force leads to the spreading of the solution to form a film 

on the surface of the substrate. In the third step, the thin film is dried by acceleration. This process was 

always used for the deposition of donor materials, blends of donor and acceptor or buffer materials dissolved 

in a specific solvent. Solution-processed thin-films were prepared in atmospheric conditions (using a spin-

coater from Ossila) or within the glovebox (using a spin-coater provided by MBraun). 

By contrast, PEDOT:PSS films were prepared in atmospheric conditions (spin coater from Ossila) by 

depositing four drops of the commercial PEDOT:PSS suspension on the ITO substrate before starting the 

spinning process.  

 

 2.2 Thermal vacuum deposition 

Thermal vacuum evaporation was used for deposition of thin films of donors, C60 and C70, interlayers 

(MoO3, BCP, LiF) and metallic electrodes (Al, Ag). Source boats made of ceramic were used for thermal 

vacuum evaporation of organic materials whereas deposition of Al, Ag, MoO3 and LiF was achieved using 
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boats of molybdenum. The evaporator chamber (MB-ECOVAP from MBraun) which is installed within one 

of the glovebox of the double glovebox (MBraun), includes shutters and quartz to select the product to be 

evaporated and exactly control the thickness of each deposited thin-films. The organic/inorganic materials 

are loaded in the boats and then a high vacuum of ca. 10-7 mbar is produced within the thermal evaporator 

chamber. The substrate holder is rotating during evaporation to obtain more homogeneous thicknesses. 

 

Table.1 Compound thermal evaporator deposition rate. 

Compound Evaporation speed rate 

(Å/S) 

Thickness (nm) 

LiF ~0.5 1 

Ca ~0.5 15 

MoO3 ~0.7 7-15 

BCP ~0.4 (~104 °C) 8 

DPMA-T-DCV ~0.5 (~119 °C) 15-25 

DPMA-T-T-DCV ~0.5 (~125 °C) 23 

C60/C70 ~1.5 30 

 

 Al/Ag  

First step ~0.8 

Second step ~1.5 

Third step ~2-2.5 

First step 30 

Second step 60 

Third step 100 

 

 

 3. Device characterization 

 3.1. J-V characteristics 

J-V curves were recorded in the dark and under illumination using a Keithley 236 source-measure 

unit and a home-made acquisition program. The light source is an AM1.5 Oriel Sol3ATM class AAA solar 

simulator- Newport equipped with a Xenon lamp, 100 mW.cm-2. The light intensity was measured by a 

broad-band power meter (13PEM001, Melles Griot). All equipments are installed within the glovebox. 

 3.2 External Quantum Efficiency measurements (EQE) 

EQE spectra were measured under an inert atmosphere with a QUESA–1200 (TFSC Instrument) 

using monochromatic wavelengths emitted by LEDs. 
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 3.3 Photoemission yield Spectroscopy in Air (PYSA) 

PYSA spectra were recorded on thin-film on ITO using a Riken AC-2 photoelectron spectrometer to 

measure the HOMO level of organic materials. 

 3.4 Space Charge Limited Current (SCLC) method 

The Space Charge Limited Current (SCLC) method has been used for evaluating the mobility of holes 

and electrons of organic semiconductors. This method is based on the relationship between current density 

J and voltage V. A space-charge limited current occurs when the metal/semiconductor contact is Ohmic, i.e. 

when the metal resistance is negligible compared to that of the semiconductor. The electrode then behaves 

as an infinite load reserve and the current is limited only by the volume of the semiconductor. A space 

charge is formed in the vicinity of the interface which tends to oppose to the flow of the current. With the 

application of a sufficiently large electric field, this space charge is moved towards the electrode and a 

saturation current is established. 

 The mobility μ (in cm2 V-1 s-1) can be estimated from the J (in A cm-2) vs V (in V) curve respect to 

the following equation (Mott-Gurney's law): 

𝐽𝑆𝐶𝐿𝐶 =
9

8

𝜀0𝜖𝑟

𝐿3
𝜇𝑉2 

𝜇 =  
8

9

𝐿3

𝜀0𝜀𝑟

𝐽𝑆𝐶𝐿

𝑉2
≈ 3.35 × 1012. 𝐿3

𝐽𝑆𝐶𝐿𝐶

𝑉2
 

 

Where 𝜀0  is the vacuum permittivity (8.854187  10-14 F cm-1), 𝜀𝑟 is the static dielectric constant of 

the medium (𝜀𝑟 = 3 ; commonly accepted value for organic materials) and L, the thickness of the active layer 

(in cm). 

 

 

Figure 2: J-V characteristic in logarithmic scale of a unipolar device used to evaluate the mobility of charge 

carriers by the SCLC method. 
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 3.4.1 Preparation of devices for evaluation of carrier mobility by the SCLC 

method 

ITO substrates are cleaned following the procedure as described in section 4.1 (see below). PEDOT: 

PSS conducting films were then prepared as in section 4.2 (see below). Then, a solution of the material 

dissolved in chloroform (20 mg/ mL) is deposited by spin-coating at 800 rpm on an ITO/PEDOT:PSS or 

ITO substrate only for the determination of the hole-mobility (μh) or the electron-mobility (μe) value, 

respectively. Finally, the devices are completed by evaporation of gold (150 nm) using a pressure of 10-6 

mbar for "hole only " devices, or LiF (1 nm) and then aluminum (150 nm) using a pressure of 10-7 mbar for 

"electron only" devices, through a mask defining four different surface disk areas (28.26 mm², 12.60 mm², 

3.10 mm² and 0.78 mm²) as represented in Figure 3. 

 

 

Figure 3: Holder for nine ITO substrates with a mask for each defining four different disk surface areas 

(left). Architectures of devices for measurement of hole mobility (middle) and electron mobility (right). 

 

    These devices are characterized in the glovebox under argon. The J-V curves are recorded by 

measuring the product current as a function of the voltage that is applied between the terminals using a 

Keithley 236 unit and an acquisition interface programmed under LabVIEW. 

 

 4. Preparation of substrates and deposition conditions 

 4.1 Preparation of ITO substrates 

Pre-patterned indium-tin oxide (ITO) coated glass slides of 24 x 25 x 1.1 mm with a sheet resistance 

of Rs = 7 Ω.sq-1 were purchased from Visiontek Systems. To remove the contaminants from their surface, 

the ITO substrate were cleaned in ultrasonic baths for at least 15 minutes for each step in the following 
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order: deionized water with detergent (Deconex® 12 PA-x solution, 2 drops), then acetone and finally 

ethanol. Once dried under a steam of air, a UV-ozone plasma treatment (Ossila UV/Ozone cleaner E511) 

was performed for 15 minutes ensuring elimination of residual organic contaminants of the ITO substrates 

which were used rapidly for the next step. 

 4.2. Deposition of PEDOT:PSS 

A filtered aqueous solution of poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) 

(PEDOT:PSS purchased from Ossila, Al 4083) through a 0.45 μm RC membrane (Minisart® RC 15) was 

deposited (four to five drops) on the cleaned ITO substrates and then spun-cast at 5000 rpm for 40 s. The 

edge parts of the conductive polymer film are removed by cotton swabs before being baked at 120 °C for 

30 min. All these previous steps have been done outside the glovebox, however the baked PEDOT:PSS 

films must covered or introduced in the glovebox as soon as possible to avoid any reabsorption of water 

from the atmosphere. The thickness of PEDOT:PSS thin film was measured by profilometer leading to a 

value of around 24 nm. The PEDOT:PSS layer has several functions, first it serves as a hole transporter and 

exciton blocker. Secondly, the deposition of a PEDOT:PSS film on ITO substrates reduces the roughness 

of the surface. In addition, the PEDOT:PSS film protects the active layer from oxygen diffusion from ITO. 

 4.3 Deposition of ZnO 

Zinc acetate dihydrate (196 mg, 1 equiv.) and ethanol amine (54 𝜇L, 1 equiv.) were added into 6 mL 

of absolute ethanol. The solution was stirred at 45°C for 2 hours and was used without any further 

purification. This ZnO solution (80 𝜇L) was then spun-cast onto the patterned ITO surface described above 

at 2000 rpm for 60 s before being baked at 180°C for 15 min.  

 4.4. Deposition of electrodes 

 

Figure 4: Holder for nine ITO substrates with a mask for each defining two cells with disk surface area of 

0.28 cm2. 
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The thermal vacuum deposition aluminium or silver electrodes (100 nm of thickness) was 

performed in the vacuum chamber within the glovebox at a pressure of 10-7 mbar, through a mask 

defining two disk cells per substrate, with an area of 0.28 cm2 (Figure 4). 

 5. Synthetic procedures 

The synthetic part has involved different contributors: 

 I have synthesized compounds 1, 2, 3, DPMA-T-DCV and tetramer T-2, 

 Pierre Josse (PhD) for compounds 7-12, DPMA-Se-DCV, MeCz-T-DCV, MeCz-Se-DCV and 

dimer D-1, 

 Illia Lenko (Master) for compounds 4, 6 and DPMA-T-T-DCV, 

 Antoine Labrunie (PhD) for compounds 16, 17 and dimer D-2. 

Tributyl(selenophen-2-yl)stannane was prepared according to a reported procedure.1 

 

4-Bromo-N-methyl-N-phenylaniline (1): To a suspension of sodium hydride (60% in mineral oil 

; 1.93 g ; 48.36 mmol) in anhydrous THF (50 mL) under an argon atmosphere at 0 

°C was added a solution of 4-bromo-N-phenylaniline (3 g ; 12.09 mmol) in 30 mL 

of anhydrous THF. The mixture was stirred at 50 °C for 1 h and iodomethane 

(10.30 g ; 72.54 mmol) was added dropwise. The reaction mixture was heated 

overnight at 50 °C before being allowed to cool down to room temperature. Cold 

water was added slowly and the product was extracted with dichloromethane. 

Organic layers were washed with water and dried over MgSO4. The solvent was then removed by rotary 

evaporation and the crude was purified by silica gel column chromatography (petroleum 

ether:dichloromethane 4:1 v/v) affording the desired product as a white solid (2.99 g ; 95%). Spectroscopic 

data matched those previously reported.2 

N-Methyl-N-phenyl-4-(thiophen-2-yl)aniline (2): Compound 1 (2.9 g ; 11.06 mmol) and tetrakis-

(triphenylphosphine)palladium(0) (220 mg ; 5% mol) were degassed under 

vacuum in a flame dried Schlenk tube equipped with a stir bar for 30 minutes. 

A solution of 2-(tributylstannyl)thiophene (6.18 g ; 24.28 mmol) in HPLC grade 

toluene (100 mL ; degassed by argon bubbling for 30 minutes) was added to the 

powders and the reaction mixture was heated overnight at 90°C under an argon 

atmosphere. After cooling down to room temperature, dichloromethane was 

added and the organic layer was washed with water and brine. Solvents were removed in vacuo and the 

crude was purified by silica gel column chromatography (petroleum ether:dichloromethane 8:2 v/v) to 

afford the product (1.7 g ; 58%). Spectroscopic data matched those previously reported.2 

5-(4-(Methyl(phenyl)amino)phenyl)thiophene-2-carbaldehyde (3): To a solution of 2 (1 g ; 3.77 

mmol) and DMF (390 mg ; 5.34 mmol) in anhydrous 1,2-dichloroethane 

(50 mL) was added POCl3 (640 mg ; 4.17 mmol) at 0°C. The mixture was 

then heated overnight at 80°C under an argon atmosphere. After cooling, 

the mixture was poured into a 1 M aqueous solution of sodium acetate 

(100 mL) and stirred for 2 h. After separation of the organic phase by 

decantation, the aqueous phase was extracted with dichloromethane. 
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Organic layers were gathered and washed with water, dried over MgSO4 and evaporated in vacuo. The crude 

was purified by silica gel column chromatography using dichloromethane as eluent. The product was 

obtained in a 54% yield (600 mg). Spectroscopic data matched those previously reported.2 1H NMR (300 

MHz, CDCl3) δ 9.86 (s, 1H), 7.71 (d, J = 3.9 Hz, 1H), 7.56 (d, J = 8.7 Hz, 2H), 7.40, (t, J = 7.7 Hz, 2H), 

7.29 (d, J = 3.5 Hz, 1H), 7.22-7.16 (m, 3H), 6.91 (d, J = 8.8 Hz, 2H), 3.39 (s, 3H). 

2-((5-(4-(Methyl(phenyl)amino)phenyl)thiophen-2-yl)methylene)malononitrile (DPMA-T-

DCV): Compound 3 (500 mg ; 1.70 mmol) and malononitrile (225 

mg ; 3.41 mmol) were dissolved in HPLC grade CHCl3 (50 mL). Six 

drops of triethylamine were added and the reaction mixture was 

stirred overnight at room temperature. After evaporation of the 

solvent, the crude was purified two times on silica gel column 

chromatography using a mixture of petroleum ether and 

dichloromethane (2:8 v/v) as eluent leading to a blue-green dark powder (502 mg; 88% yield). The green 

powder was recrystallized from a mixture of CH2Cl2 and pentane to give a dark crystalline product (475 mg; 

83%). Spectroscopic data matched those previously reported.2 

(4-(Methyl(phenyl)amino)phenyl)boronic acid (4): Compound 1 (6 g, 22.89 mmol) was 

dissolved in anhydrous THF (60 mL). Under argon, the mixture was cooled to 

-78 °C and n-Buli (11 mL, 25.18 mmol, 2.5 M in hexanes) was added dropwise. 

After 1 h at -78 °C, triisopropyl borate (11 mL, 45.78 mmol) was added in one 

portion and the mixture was allowed to slowly warm up to rt. After 16 h, the 

mixture was quenched with a 2 M aqueous solution of HCI and the mixture was 

poured into a large amount of water. After extraction with ethyl acetate, the 

organic layer was washed with brine dried over MgSO4, and concentrated in vacuo. The crude was dissolved 

in a minimum amount of CHCl3, and pentane was added to precipitate the compound. The resulting 

precipitate was filtered off and washed thoroughly with pentane affording a white powder (1.5 g ; 29%). 

Spectroscopic data matched those previously reported.3 1H NMR (CDCl3) δ 8.04 (d, J- 8.6 Hz, 2H). 7.43 - 

7.32 (m, 2H), 7.24 -7.11 (m, 3H), 6.93 (d, J = 8.7 Hz, 2H), 3.39 (s, 3H). 

5'-(4-(Methyl(phenyl)amino)phenyl)-[2,2'-bithiophene]-5-carbaldehyde (6): NaHCO3 (504 mg, 

7.21 mmol), 5'-bromo-[2,2'-bithiophene]-5-carbaldehyde (547 mg, 

2 mmol), (4-(methyl(phenyl)amino)phenyl)boronic acid (500 mg, 

2.2 mmol,) and Pd(PPh3)4 (122 mg, 0.1 mmol) was suspended in 

DMF (16 mL) and H2O (10 mL). The mixture was irradiated under 

microwaves (CEM®-Discover) for 20 min at a preselected 

temperature of 150 °C, using a maximum irradiation power of 150 

W. When the solution was cooled down, CH2Cl2 (150 mL) was added and the organic layer was washed 

with brine (30 mL) and water (3 x 30 mL). The crude was purified on silica gel (CH2Cl2) to give an orange 

powder (695 mg, yield: 92%). mp. 149-154 °C. 1H NMR (CDCl3) 9.85 (s, 1H), 7.67 (d, J = 4.0 Hz, 1H), 

7.48 (d, J = 8.8 Hz, 2H), 7.39-7.29 (m, 4H), 7.23 (d, J = 4.0 Hz, 1H), 7.19-7.05 (m, 3H), 6.93 (d, J = 8.8 Hz, 

2H), 3.36 (s, 3H). 13C NMR (CDCl3) δ 182.41, 149.12, 148.25, 146.85, 141.09, 137.53, 133.50, 129.53, 

127.28, 126.68, 124.81, 123.58, 123.40, 123.32, 122.61, 117.76, 40.24. HRMS (EI) calcd for C22HNOS2: 

[M+]: 375.07225, found: 375.0743. 
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2-((5'-(4-(Methyl(phenyl)amino)phenyl)-[2,2'-bithiophenl]-5-yl)methylene)malononitrile 

(DPMA-T-T-DCV): Three drops of triethylamine were added 

to a solution of the aldehyde 6 (200 mg) and malononitrile (70 

mg) in CHCl3 (50 mL). The mixture was stirred overnight at rt 

in the dark. Then the solvent was removed by evaporation and 

the crude was purified by column chromatography on silica gel 

(eluent: CH2Cl2) and precipitation with CHCl3/pentane leading 

to a green powder (192 mg, 85% yield). mp. 184-187 °C. 1H 

NMR (CDCl3) δ 7.73 (s, IH), 7.62 (d, J= 4.2 Hz, IH), 7.48 (d, J 

= 8.8 Hz, 2H), 7.41 7.32 (m, 4H), 7.26 (s, IH), 7.20-7.08 (m, 3H), 6.91 (d. J = 8.8 Hz, 2H), 3.37 (s, 3H). 13C 

NMR (CDCl3) δ 150.07, 149.96, 149.44, 148.56, 148.07 , 140.34 , 132.90, 132.47, 129.60, 128.59, 126.77, 

124.09, 123.90, 123.87, 122.88, 117.16, 113.68, 75.17, 40.24, 30.96. HRMS (EI) calcd for C25H17N3S2: 

[M+]: 423.0864, found: 423.0859. 

5-(4-(Methyl(phenyl)amino)phenyl)thiophene-2-carbaldehyde (3): Compound 1 (500 mg ; 1.91 

mmol), palladium(II) acetate (21 mg ; 5% mol.), pivalic acid (58 mg ; 

30% mol.) and potassium carbonate (395 mg ; 2.86 mmol) were 

degassed under vacuum in a dry Schlenk tube equipped with a stir bar. 

Dry and degassed dimethylacetamide (15 mL, argon bubbling for 30 

min) and thiophene-2-carbaldehyde (235 mg ; 2.10 mmol) were added 

to the powders and the reaction mixture was heated overnight at 80 °C 

under an argon atmosphere. After cooling down to room temperature, dichloromethane was added and the 

organic layer was washed with water and brine. The solvent was removed by rotary evaporation and the 

crude was purified by silica gel column chromatography using dichloromethane as eluent. (130 mg ; 23%). 

Spectroscopic data matched those previously reported.2 

N-Methyl-N-phenyl-4-(selenophen-2-yl)aniline (7): Compound 1 (1 g ; 3.81 mmol) and 

tetrakis(triphenylphosphine) palladium(0) (220 mg ; 5% mol.) were degassed 

under vacuum in a flame dried Schlenk tube equipped with a stir bar for 30 

minutes. A solution of tributyl(selenophen-2-yl)stannane (1.76 mg ; 4.20 mmol) 

in HPLC grade toluene (40 mL ; degassed by argon bubbling for 30 minutes) 

was added to the powders and the reaction mixture was heated overnight at 90 

°C under an argon atmosphere. After cooling down to room temperature, 

dichloromethane was added and the organic layer was washed with water and brine. Solvents were removed 

in vacuo and the crude was purified by silica gel column chromatography (petroleum ether:dichloromethane 

8:2 v/v) affording compound 7 (600 mg ; 50% yield). 1H NMR (300 MHz, CDCl3) δ 7.85 (dd, J = 5.6, 1.1 

Hz, 1H), 7.48 – 7.42 (m, 2H), 7.37 – 7.26 (m, 4H), 7.14 – 7.08 (m, 2H), 7.06 – 7.00 (m, 1H), 6.98 – 6.93 

(m, 2H), 3.35 (s, 3H). 13C NMR (76 MHz, CDCl3) δ 151.13, 148.69, 148.61, 130.70, 129.48, 128.78, 128.67, 

127.31, 123.91, 122.54, 122.16, 119.11, 40.32. HRMS (EI) calculated for C17H15NSe 313.0370, found 

313.0364 ( = 1.8 ppm). 

5-(4-(Methyl(phenyl)amino)phenyl)selenophene-2-carbaldehyde (8): To a solution of 7 (200 mg 

; 640 mol) and DMF (58 mg ; 800 mol) in anhydrous 1,2-

dichloroethane (10 mL) was added POCl3 (122 mg ; 800 mol) at 0°C. 

The mixture was then heated overnight at 80 °C under an argon 

atmosphere. After cooling, the mixture was poured into a 1 M aqueous 

solution of sodium acetate (100 mL) and stirred for 2 h. After separation 
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of the organic phase by decantation, the aqueous phase was extracted with dichloromethane. Organic layers 

were gathered and washed with water, dried over MgSO4 and evaporated in vacuo. The crude was purified 

by silica gel column chromatography using dichloromethane as eluent. The product was obtained in a 55% 

yield (120 mg). 1H NMR (300 MHz, CDCl3) δ 9.71 (s, 1H), 7.93 (d, J = 4.2 Hz, 1H), 7.51 – 7.45 (m, 2H), 

7.43 (d, J = 4.2 Hz, 1H), 7.40 – 7.34 (m, 2H), 7.21 – 7.12 (m, 3H), 6.89 – 6.84 (m, 2H), 3.37 (s, 3H). 13C 

NMR (76 MHz, CDCl3) δ 183.98, 162.34, 150.29, 147.98, 146.28, 141.29, 129.83, 127.79, 125.97, 124.73, 

124.56, 124.20, 116.49, 40.35. HRMS (EI) calculated for C18H15NOSe 341.0319, found 341.0314 ( = 1.4 

ppm). 

2-((5-(4-(Methyl(phenyl)amino)phenyl)selenophen-2-yl)methylene)malononitrile (DPMA-Se-

DCV): Compound 8 (120 mg ; 352 mol) and malononitrile (46 mg 

; 705 mol) were dissolved in HPLC grade CHCl3 (10 mL). One drop 

of triethylamine was added and the reaction mixture was stirred 

overnight at room temperature. After evaporation of the solvent, the 

crude was purified on silica gel column chromatography using 

dichloromethane as eluent. The collected product was concentrated 

in vacuo and precipitated into freshly distilled pentane (50 mL). The 

pure product was obtained after filtration and drying under vacuum overnight (132 mg ; 96%).  1H NMR 

(300 MHz, CDCl3) δ 7.79 (d, J = 4.5 Hz, 1H), 7.77 (s, 1H), 7.52 – 7.47 (m, 2H), 7.44 – 7.37 (m, 3H), 7.21 

(ddt, J = 7.2, 3.1, 1.4 Hz, 3H), 6.84 – 6.79 (m, 2H), 3.38 (s, 3H). 13C NMR (76 MHz, CDCl3) δ 166.20, 

153.28, 151.05, 147.49, 145.15, 136.55, 129.99, 128.17, 125.63, 125.43, 124.53, 123.73, 115.59, 114.96, 

114.42, 74.07, 40.40. HRMS (EI) calculated for C21H15N3Se 389.0431, found 389.0430 ( = 0.3 ppm). 

9-Methyl-3-(selenophen-2-yl)-9H-carbazole (9): 3-Bromo-9-methyl-9H-carbazole (300 mg ; 1.15 

mmol) and tetrakis(triphenylphosphine) palladium(0) (66 mg ; 5% mol.) were 

degassed under vacuum in a flame dried Schlenk tube equipped with a stir bar for 30 

minutes. A solution of tributyl(selenophen-2-yl)stannane (533 mg ; 1.27 mmol) in 

HPLC grade toluene (20 mL ; degassed by argon bubbling for 30 minutes) was added 

to the powders and the reaction mixture was heated overnight at 90 °C under an argon 

atmosphere. After cooling down to room temperature, dichloromethane was added 

and the organic layer was washed with water and brine. Solvents were removed in vacuo and the crude was 

purified by silica gel column chromatography (petroleum ether:dichloromethane 7:3 v/v) to afford the 

product (160 mg ; 45%). 1H NMR (300 MHz, CDCl3) δ 8.28 (d, J = 1.8 Hz, 1H), 8.13 (dt, J = 7.9, 0.9 Hz, 

1H), 7.91 (dd, J = 5.6, 1.2 Hz, 1H), 7.71 (dd, J = 8.5, 1.9 Hz, 1H), 7.54 – 7.47 (m, 2H), 7.43 – 7.33 (m, 3H), 

7.26 (dd, J = 14.8, 1.1 Hz, 1H), 3.87 (s, 3H). 13C NMR (76 MHz, CDCl3) δ 152.41, 141.63, 140.76, 130.79, 

128.83, 127.92, 126.21, 124.90, 124.22, 123.35, 122.85, 120.62, 119.29, 118.40, 108.85, 108.80, 29.36. 

HRMS (FAB+) calculated for C17H13NSe 311.0213, found 311.0206 ( = 2.3 ppm). 

5-(9-Methyl-9H-carbazol-3-yl)thiophene-2-carbaldehyde (10): 3-Bromo-9-methyl-9H-

carbazole (200 mg ; 768 mol), palladium(II) acetate (9 mg ; 5% mol.), 

pivalic acid (23 mg ; 30mol%) and potassium carbonate (159 mg ; 1.15 

mmol) were degassed under vacuum in a dry Schlenk tube equipped with a 

stir bar. Dry and degassed dimethylacetamide (10 mL, argon bubbling for 

30 min) and thiophene-2-carbaldehyde (172 mg ; 1.54 mmol) were added 

to the powders and the reaction mixture was heated overnight at 80 °C 

under an argon atmosphere. After cooling down to room temperature, the crude was dried by rotary 

evaporation before being solubilized in a minimum amount of CHCl3 and flashed through a short plug of 
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silica to remove the catalyst and baseline impurities. Then, to reach a high degree of purity, the resulting 

product dissolved in CHCl3 was injected in a recycling preparative size-exclusion HPLC. The product was 

obtained in 25% yield (57 mg). 1H NMR (300 MHz, CDCl3) δ 9.89 (s, 1H), 8.41 (d, J = 1.7 Hz, 1H), 8.15 

(d, J = 7.7 Hz, 1H), 7.81 (dd, J = 8.5, 1.9 Hz, 1H), 7.77 (d, J = 4.0 Hz, 1H), 7.53 (ddd, J = 8.2, 7.1, 1.2 Hz, 

1H), 7.48 – 7.42 (m, 3H), 7.33 – 7.27 (m, 1H), 3.90 (s, 3H). 13C NMR (76 MHz, CDCl3) δ 182.79, 156.49, 

147.16, 141.73, 141.38, 140.93, 139.81, 138.06, 126.65, 124.61, 123.51, 123.04, 122.69, 120.70, 119.80, 

118.64, 113.23, 109.21, 109.02, 29.45. HRMS (CI+) calculated for C18H13NOS 291.0718, found 292.0798 

( = 0.6 ppm). 

2-((5-(9-Methyl-9H-carbazol-3-yl)thiophen-2-yl)methylene)malononitrile (MeCz-T-DCV): 

Compound 10 (57 mg ; 195 mol) and malononitrile (26 mg ; 391 

mol) were dissolved in HPLC grade CHCl3 (10 mL). One drop of 

trimethylamine was added and the reaction mixture was stirred 

overnight at room temperature. After evaporation of the solvent, the 

crude was solubilized in a minimum amount of CHCl3 and flashed 

through a short plug of silica to remove the catalyst and baseline 

impurities. Then, to reach a high degree of purity, the resulting product 

dissolved in CHCl3 was injected in a recycling preparative size-

exclusion HPLC. The product was obtained in 60% yield (41 mg). 1H NMR (300 MHz, CDCl3) δ 8.43 (d, J 

= 1.8 Hz, 1H), 8.17 (dt, J = 7.7, 1.0 Hz, 1H), 7.83 (dd, J = 8.6, 1.9 Hz, 1H), 7.79 (s, 1H), 7.73 (d, J = 4.1 

Hz, 1H), 7.55 (ddd, J = 8.3, 7.1, 1.2 Hz, 1H), 7.51 (d, J = 4.2 Hz, 1H), 7.45 (d, J = 8.4 Hz, 2H), 7.32 (ddd, 

J = 8.0, 7.1, 1.1 Hz, 1H), 3.90 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 159.19, 150.65, 142.22, 141.80, 

140.88, 133.24, 126.93, 124.79, 123.73, 123.53, 122.64, 120.87, 120.15, 119.09, 114.82, 113.98, 109.43, 

109.17, 74.89, 29.52. HRMS (EI) calculated for C21H13N3S 339.0830, found 339.0832 ( = 0.5 ppm). 

9-Methyl-3-(selenophen-2-yl)-9H-carbazole (11): 3-Bromo-9-methyl-9H-carbazole (300 mg ; 

1.15 mmol) and tetrakis(triphenylphosphine) palladium(0) (66 mg ; 5% mol.) were 

degassed under vacuum in a flame dried Schlenk tube equipped with a stir bar for 

30 min. A solution of tributyl(selenophen-2-yl)stannane (533 mg ; 1.27 mmol) in 

HPLC grade toluene (20 mL ; degassed by argon bubbling for 30 minutes) was 

added to the powders and the reaction mixture was heated overnight at 90 °C under 

an argon atmosphere. After cooling down to room temperature, dichloromethane 

was added and the organic layer was washed with water and brine. Solvents were 

removed in vacuo and the crude was purified by silica gel column chromatography (petroleum 

ether:dichloromethane 7:3 v/v) affording compound 11 (160 mg ; 45%). 1H NMR (300 MHz, CDCl3) δ 8.28 

(d, J = 1.8 Hz, 1H), 8.13 (dt, J = 7.9, 0.9 Hz, 1H), 7.91 (dd, J = 5.6, 1.2 Hz, 1H), 7.71 (dd, J = 8.5, 1.9 Hz, 

1H), 7.54 – 7.47 (m, 2H), 7.43 – 7.33 (m, 3H), 7.26 (dd, J = 14.8, 1.1 Hz, 1H), 3.87 (s, 3H). 13C NMR (76 

MHz, CDCl3) δ 152.41, 141.63, 140.76, 130.79, 128.83, 127.92, 126.21, 124.90, 124.22, 123.35, 122.85, 

120.62, 119.29, 118.40, 108.85, 108.80, 29.36. HRMS (FAB+) calculated for C17H13NSe 311.0213, found 

311.0206 ( = 2.3 ppm). 



Experimental procedures 

 

180 

 

5-(9-Methyl-9H-carbazol-3-yl)selenophene-2-carbaldehyde (12): To a solution of 11 (160 mg ; 

515 mol) and DMF (47 mg ; 644 mol) in anhydrous 1,2-dichloroethane 

(10 mL) was added POCl3 (99 mg ; 644 mol) at 0 °C. The mixture was 

then heated overnight at 80 °C under an argon atmosphere. After cooling, 

the mixture was poured into a 1 M aqueous solution of sodium acetate (100 

mL) and stirred for 2 h. After separation of the organic phase by 

decantation, the aqueous phase was extracted with dichloromethane. 

Organic layers were gathered and washed with water, dried over MgSO4 

and evaporated in vacuo. The crude was purified by silica gel column chromatography using 

dichloromethane as eluent. The product was obtained in 85% yield (150 mg). 1H NMR (300 MHz, CDCl3) 

δ 9.76 (s, 1H), 8.33 (d, J = 1.9 Hz, 1H), 8.14 (d, J = 7.7 Hz, 1H), 8.00 (d, J = 4.2 Hz, 1H), 7.74 (dd, J = 8.5, 

1.8 Hz, 1H), 7.62 (d, J = 4.1 Hz, 1H), 7.56 – 7.49 (m, 1H), 7.41 (t, J = 8.2 Hz, 2H), 7.29 (ddd, J = 8.1, 7.1, 

1.1 Hz, 1H), 3.87 (s, 3H). 13C NMR (76 MHz, CDCl3) δ 184.08, 163.44, 146.90, 141.77, 141.74, 141.29, 

126.66, 124.98, 123.53, 122.69, 120.72, 119.82, 118.87, 109.17, 109.04, 29.44. HRMS (CI+) calculated for 

C18H13NOSe 339.0162, found 340.0238 ( = 0.8 ppm). 

2-((5-(9-Methyl-9H-carbazol-3-yl)selenophen-2-yl)methylene)malononitrile (MeCz-Se-DCV): 

Compound 12 (150 mg ; 443 mol) and malononitrile (58 mg ; 886 

mol) were dissolved in HPLC grade CHCl3 (10 mL). One drop of 

trimethylamine was added and the reaction mixture was stirred 

overnight at room temperature. After evaporation of the solvent, the 

crude was purified on silica gel column chromatography using 

dichloromethane as eluent. The collected product was concentrated in 

vacuo and precipitated into freshly distilled pentane (50 mL). The pure 

product was obtained after filtration and drying under vacuum overnight 

(162 mg ; 94%). 1H NMR (300 MHz, CDCl3) δ 8.37 (d, J = 1.9 Hz, 1H), 8.15 (d, J = 7.8 Hz, 1H), 7.86 (d, 

J = 4.4 Hz, 1H), 7.82 (s, 1H), 7.78 (dd, J = 8.6, 1.9 Hz, 1H), 7.63 (d, J = 4.3 Hz, 1H), 7.55 (ddd, J = 8.2, 

7.1, 1.2 Hz, 1H), 7.43 (dd, J = 8.4, 6.1 Hz, 2H), 7.32 (t, J = 7.4 Hz, 1H), 3.89 (s, 3H). 13C NMR (76 MHz, 

CDCl3) δ 167.15, 153.48, 145.05, 142.31, 141.82, 137.31, 126.96, 125.80, 125.00, 124.62, 123.81, 122.64, 

120.82, 120.21, 119.32, 114.79, 114.34, 109.46, 109.21, 74.79, 29.52. HRMS (CI+) calculated for 

C21H13N3Se 387.0275, found 387.0273 ( = 0.4 ppm). 
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(2E,2'E)-2,2-Bis((((E)-2-cyano-3-(5-(4-(methyl(phenyl)amino)phenyl)thiophen-2-

yl)acryloyl)oxy)methyl)propane-1,3-diyl-bis(2-cyano-3-(5-(4-

(methyl(phenyl)amino)phenyl)thiophen-2-yl)acrylate) (T-2):3 Trimethylamine (5 drops) was added to a 

mixture of aldehyde 3 (250 mg, 0.85 mmol), 2,2-bis((2-

cyanoacetoxy)methyl)propane-1,3-diyl bis(2-cyanoacetate) 

(13)4 (86.14 mg, 0.21 mmol) in CHCl3 (120 mL). This reaction 

mixture was refluxed for 3 days. After purification by 

chromatography on silica gel (CH2Cl2 to CH2Cl2/EtOAc 

9.5/0.5 as eluent), the resulting solid was dissolved in CHCl3/ 

and precipitated with pentane to give T-2 as red solid (172 mg, 

54% yield). mp. 210-212 °C. 1H NMR (C2D2Cl4) δ 8.16 (s, 

4H), 7.63 (d, J = 4.2 Hz, 4H), 7.42 (d, J = 8.7 Hz, 8H), 7.31 

(dd, J = 8.5, 7.1 Hz, 8H), 7.16 (d, J = 4.1 Hz, 4H), 7.15 – 7.06 

(m, 12H), 6.75 (d, J = 8.7 Hz, 8H), 4.48 (s, 8H), 3.28 (s, 12H). 

MS (MALDI) m/z = 1504.4. [M+]. HRMS (FAB) calcd for 

C89H68N8O8S4 [M+]: 1504.4043, found: 1504.4034. IR (neat): 

ν̃ = 2218 cm-1 (C≡N), ν̃ = 1703 cm-1 (C=O). 

 

Ethane-1,2-diyl (2E,2'E)-bis(2-cyano-3-(5-(4-(diphenylamino)phenyl)thiophen-2-yl)acrylate) (D-1): 

5-(4-(Diphenylamino)phenyl)thiophene-2-

carbaldehyde (14)5-7 (1.20 g ; 3.36 mmol, 2.2 eq.) and 

ethane-1,2-diyl bis(2-cyanoacetate) (15) (300 mg ; 

1.53 mmol) were placed in a 250 mL round bottom 

flask and dissolved into 100 mL of HPLC grade 

CHCl3. Two drops of Et3N were added and the reaction mixture was stirred overnight at room temperature. 

The solvent was then removed by rotary evaporation and the crude was directly subjected to silica gel 

chromatography (eluent: CH2Cl2/PE (8:2), CH2Cl2 and then CH2Cl2/EtOAc (98:2)) to afford D-1 (1.08 g ; 

81 %) as a red powder. 1H NMR (300 MHz, CDCl3) δ 8.30 (s, 1H), 7.75 (d, J = 4.2 Hz, 1H), 7.58 – 7.50 

(m, 2H), 7.35 – 7.27 (m, 5H), 7.18 – 7.09 (m, 6H), 7.05 (m, 2H), 4.60 (s, 2H). 13C NMR (76 MHz, CDCl3) 

δ 163.20, 155.80, 149.58, 147.28, 147.01, 140.17, 133.99, 129.67, 127.58, 125.84, 125.45, 124.19, 123.39, 

122.29, 116.15, 96.23, 63.49. HRMS (EI) calculated for C54H38N4O4S2 870.2334, found 870.2338 ( = 0.4 

ppm). 

 

((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-cyanoacetate) (16) and 2-(2-(2-(2-

hydroxyethoxy)ethoxy)ethoxy)ethyl 2-cyanoacetate (17): 

A stirred solution of cyanoacetic acid (3.28 g, 38.61 mmol) and 2,2'-((oxybis(ethane-2,1-

diyl))bis(oxy))bis(ethan-1-ol) (5 g, 25.74 mmol) in anhydrous toluene (40 mL) in the presence of 10 drops 

of conc. H2SO4 was heated under reflux for 4 h under argon atmosphere. Then the reaction mixture was 

cooled to room temperature and quenched with a saturated aqueous solution of NaHCO3 and extracted with 

AcOEt. The organic layer was washed twice with water and brine, dried over MgSO4 and concentrated in 

vacuo. The residue is purified by column chromatography on silica gel (eluent: AcOEt/petroleum ether 

50/50 v/v to 100/0 v/v); TLC stained by KMNO4) to afford compound 17 (3.2 g, 12.25 mmol, 47.6 %) and 

16 (2.14 g, 6.52 mmol, 25.3 %) as pale yellow oils. 



Experimental procedures 

 

182 

 

 
1H NMR (300 MHz, CDCl3): δ 4.38 – 4.32 (m, 2H), 3.75 – 3.68 (m, 4H), 3.65 (bs, 8H), 3.62 – 3.56 (m, 

2H), 3.54 (s, 2H). 13C NMR (76 MHz, CDCl3): δ 163.30, 113.23, 77.58, 77.16, 76.74, 72.58, 70.69, 70.56, 

70.34, 68.60, 65.79, 61.76, 24.81. HRMS (CI+): calculated for C11H19NO6 261.12, found 261.1288 (m/z + 

1) 

 
1H NMR (300 MHz, CDCl3): δ 4.40 – 4.31 (m, 4H), 3.76 – 3.69 (m, 4H), 3.66 – 3.61 (m, 8H), 3.52 (s, 4H). 
13C NMR (76 MHz, CDCl3): δ 163.21, 113.19, 70.76, 70.66, 68.61, 65.87, 24.83. HRMS (CI+): calculated 

for C14H20N2O7 328.13, found 329.1352 (m/z + 1) 

 

((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) (2E,2'E)-bis(2-cyano-3-(5-(4-

(diphenylamino)phenyl)thiophen-2-yl)acrylate) (D-2): To a stirred solution of TPA-T-CHO (14) (170 

mg, 0.478 mmol) and 16 (78 mg, 0.239 

mmol) in CHCl3 (25 mL) were added 4 

drops of Et3N. The reaction mixture was 

refluxed under argon atmosphere for 72 h. 

Then the solvent was removed in vacuo 

and the residue was purified by column 

chromatography on silica gel (eluent: DCM to DCM/AcOEt 8/2 v/v). The resulting oily solid was further 

purified by re-precipitation in DCM with pentane to yield D-2 (175 mg, 0.175 mmol, 73 %) as a flashy red 

solid. 1H NMR (300 MHz, CD2Cl2): δ 8.28 (s, 2H), 7.73 (d, J = 4.1 Hz, 2H), 7.55 (d, J = 8.7 Hz, 4H), 7.36 

– 7.26 (m, 10H), 7.17 – 7.06 (m, 12H), 7.03 (d, J = 8.7 Hz, 4H), 4.45 – 4.37 (m, 4H), 3.81 – 3.75 (m, 4H), 

3.71 – 3.60 (m, 8H). 13C NMR (76 MHz, CD2Cl2): δ 163.47, 155.46, 149.85, 147.37, 146.92, 140.23, 134.34, 

129.93, 127.77, 126.13, 125.79, 124.48, 123.71, 122.44, 116.55, 97.21, 71.23, 71.05, 69.28, 65.87. HRMS 

(FAB): Calculated for C60H50N4O7S2 1002.3121, found 1002.3115. 
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2-((5'-(4-(Methyl(phenyl)amino)phenyl)-[2,2'-bithiophen]-5-yl)methylene)malononitrile 

(DPMA-T-T-DCV) 
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Empirical formula                                                                            C25H17N3S2 

Formula weight                                                                                423.53 

Temperature                                                                                     150.0(1) K 

Wavelength                                                                                      1.54184 A 

Crystal system, space group                                                            Monoclinic,  P 21/c 

Unit cell dimensions                                                                        a = 10.4637(3) A   alpha = 90 deg. 

                                                                                                         b = 17.4651(5) A   beta = 98.417(3) deg.  

                                                                                                         c = 11.3889(4) A   gamma = 90 deg. 

Volume                                                                                            2058.90(11) A^3 

Z, Calculated density                                                                       4, 1.366 Mg/m^3 

Absorption coefficient                                                                     2.471 mm^-1 

F(000)                                                                                              880 

Crystal size                                                                                      0.283 x 0.273 x 0.088 mm 

Theta range for data collection                                                        4.271 to 76.555 deg. 

Limiting indices                                                                              -12<=h<=10, -21<=k<=21, -11<=l<=14 

Reflections collected / unique                                                          8339 / 4151 [R(int) = 0.0936] 

Completeness to theta = 76.000                                                       98.2 % 

Absorption correction                                                                      Semi-empirical from equivalents 

Max. and min. transmission                                                            1.00000 and 0.73009 

Refinement method                                                                         Full-matrix least-squares on F^2 

Data / restraints / parameters                                                           4151 / 0 / 272 

Goodness-of-fit on F^2                                                                    1.061 

Final R indices [I>2sigma(I)]                                                          R1 = 0.0757, wR2 = 0.1868 [3816 Fo] 

R indices (all data)                                                                           R1 = 0.0809, wR2 = 0.1964 

Largest diff. peak and hole                                                              0.583 and -0.745 e.A^-3 
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2-((5-(9-Methyl-9H-carbazol-3-yl)thiophen-2-yl)methylene)malononitrile (MeCz-T-DCV) 
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Empirical formula                                                                            C21H13N3S 

Formula weight                                                                                339.40 

Temperature                                                                                     150.0(1) K 

Wavelength                                                                                      1.54184 A 

Crystal system, space group                                                            Monoclinic,  P 21/c 

Unit cell dimensions                                                                        a = 15.5633(14)  A   alpha = 90 deg. 

                                                                                                         b = 13.3855(19) A   beta = 93.486(10) deg.  

                                                                                                         c = 7.8112(11) A   gamma = 90 deg. 

Volume                                                                                            1624.2(4) A^3 

Z, Calculated density                                                                       4, 1.388 Mg/m^3 

Absorption coefficient                                                                     1.819 mm^-1 

F(000)                                                                                               704  

Crystal size                                                                                       0.111 x 0.041 x 0.023 mm 

Theta range for data collection                                                         2.845 to 75.395 deg. 

Limiting indices                                                                               -18<=h<=18, -15<=k<=15, -8<=l<=9 

Reflections collected / unique                                                          4553 / 4553 [R(int) = ?] 

Completeness to theta = 76.000                                                       90.6 % 

Absorption correction                                                                      Semi-empirical from equivalents 

Max. and min. transmission                                                             1.00000 and 0.80887 

Refinement method                                                                          Full-matrix least-squares on F^2 

Data / restraints / parameters                                                            4553 / 0 / 228 

Goodness-of-fit on F^2                                                                     0.793 

Final R indices [I>2sigma(I)]                                                           R1 = 0.0580, wR2 = 0.1042 [1779 Fo] 

R indices (all data)                                                                            R1 = 0.1567, wR2 = 0.1235 

Largest diff. peak and hole                                                                0.359 and -0.472 e.A^-3 
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2-((5-(9-Methyl-9H-carbazol-3-yl)selenophen-2-yl)methylene)malononitrile (MeCz-Se-DCV) 

 

N2

H15

H16

C20

C15

C16

H17C

H6

Se1
C19

C6

C21

C11

C14

H14

N3

C7

C5C4

C18
C1

C12
C3

C10

C13

C8

C2

H18

H10

H3

C9

H2

N1

H9

H13

C17

H17A

H17B

 

 

Empirical formula                                                                            C21H13N3Se 

Formula weight                                                                                386.30 

Temperature                                                                                     150.0(1) K 

Wavelength                                                                                      1.54184 A 

Crystal system, space group                                                             Triclinic,  P -1 

Unit cell dimensions                                                                         a = 8.5988(3) A   alpha = 67.083(4) deg. 

                                                                                                          b = 9.5021A    beta = 78.813(3)  deg.  

                                                                                                          c = 12.1734(5) A   gamma = 64.937(4) deg. 

Volume                                                                                             829.38(7) A^3 

Z, Calculated density                                                                        2, 1.574 Mg/m^3 

Absorption coefficient                                                                      3.114 mm^-1 

F(000)                                                                                               388  

Crystal size                                                                                       0.136 x 0.097 x 0.035 mm 

Theta range for data collection                                                         3.945 to 76.191 deg. 

Limiting indices                                                                                -10<=h<=10, -11<=k<=11, -10<=l<=14 

Reflections collected / unique                                                          6466 / 3309 [R(int) = 0.0132] 

Completeness to theta = 76.000                                                       98.1 % 

Absorption correction                                                                      Semi-empirical from equivalents 

Max. and min. transmission                                                             1.00000 and 0.87653 

Refinement method                                                                          Full-matrix least-squares on F^2 

Data / restraints / parameters                                                            3309 / 0 / 227 

Goodness-of-fit on F^2                                                                    1.043 

Final R indices [I>2sigma(I)]                                                           R1 = 0.0225, wR2 = 0.0586 [3266 Fo] 

R indices (all data)                                                                            R1 = R1 = 0.0227, wR2 = 0.0588 

Largest diff. peak and hole                                                               0.386 and -0.319 e.A^-3 
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Matériaux donneurs dérivés de petites molécules conjuguées de type push-pull 
pour le photovoltaïque organique : caractérisation et optimisation de cellules 

solaires 

Mots clés : Photovoltaïque organique, Cellules solaires organiques, Cellules bicouche, Cellules à réseaux interpénétrés,  
Systèmes pi-conjugués, Push-pull, Multimères, Fullerènes 

Résumé : Les cellules solaires organiques sont en général 
constituées de deux types de semi-conducteurs 
organiques, un donneur et un accepteur d’électrons. Ce 
travail porte sur l’évaluation de matériaux donneurs 
d’électron dérivés de molécules pi-conjuguées push-pull 
combinés à des dérivés du fullerène comme matériau 
accepteur. 

Cette thèse décrit d’abord la fabrication et l’optimisation 
des cellules photovoltaïques (PV) réalisées à partir du 
DPMA-T-DCV. Cette petite molécule conjuguée push-pull 
facilement accessible, présente de bonnes propriétés de 
transport de trous à l’état solide et est constituée d’un 
groupe électro-donneur diphénylméthylamine (DPMA), 
une unité thiophène (T) comme espaceur pi-conjugué et 
un groupe terminal électro-attracteur dicyanovinyle (DCV). 
Différents dispositifs ont été fabriqués (cellules bicouche 
ou à réseaux interpénétrés de  structure conventionnelle  

ou inverse) puis optimisés en jouant sur l’épaisseur des 
couches, le ratio massique entre la molécule push-pull et 
le dérivé du fullerène sélectionné ainsi que sur le procédé 
de fabrication en solution ou sous vide. Des cellules à 
réseaux interpénétrés de structure conventionnelle avec 
des rendements de conversion PV supérieurs à 4% ont pu 
être élaborées par co-évaporation du DPMA-T-DCV et de 
fullerène C60. 

6De nouvelles molécules dérivées de DPMA-T-DCV, 
présentant un espaceur conjugué plus étendu ou un noyau 
sélénophène à la place de l’unité T et/ou  un analogue 
carbazole plus rigide que le groupe DPMA, ont été 
évaluées en PV. Enfin, des multimères de push-pull ont 
également été testés dans des cellules à réseaux 
interpénétrés en présence de PC61BM ou PC71BM pour 
conduire à des rendements de photo-conversion de 3.4%. 

7 
  

Small Conjugated Push-Pull Molecular Donors for Organic Photovoltaics: 
Characterization and Devices Optimization  

Keywords:  Organic photovoltaics, Organic solar cells, Bi-layer solar cells, pi-Conjugated systems, Push-pull, Multimers, 
Fullerenes 

Abstract: Organic solar cells (OSCs) generally consist of 
two types of organic semiconductors, one electron 
acceptor and one electron donor. This PhD work deals with 
the evaluation of electron donor materials derived from pi-
conjugated push-pull molecules combined with fullerene 
derivatives as acceptor materials. 

This thesis firstly describes the fabrication and optimization 
of photovoltaic (PV) cells made from the small DPMA-T-
DCV push-pull conjugated molecule known for its good 
solid-state hole transport properties and constituted by a 
diphenylmethylamine (DPMA) electron-donating group, a 
thiophene (T) unit as pi-conjugated spacer and a terminal 
dicyanovinyl (DCV) electron-withdrawing group. Different 
devices have been manufactured such as bi-layer or bulk 
heterojunction (BHJ) OSCs with a conventional or  inverted 

structure, and then optimized by adjusting the thickness of 
the layers, the weight ratio between the push-pull molecule 
and the selected fullerene derivative, and by using a 
solution or a vacuum deposition process as well. 
Conventional BHJ OSCs with PV conversion efficiencies 
greater than 4% could be achieved by co-evaporation of 
DPMA-T-DCV and fullerene C60. 

Then, new DPMA-T-DCV derivatives resulting from an 
extension of the pi-conjugated spacer or by replacing the 
T unit with a selenophene ring and/or the DPMA unit with 
its more rigid carbazole analogue, were assessed for PV. 
Finally, push-pull multimers were also tested in BHJ OSCs 
in the presence of PC61BM or PC71BM yielding photo-
conversion efficiencies up to 3.4%. 


