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Rules and responsibilities: these are the ties that bind us. We
do what we do, because of who we are. If we did otherwise, we
would not be ourselves. I will do what I have to do. And I will
do what I must.

Neil Gaiman, The Sandman: Book of Dreams, 1996

Sometimes scientists change their minds. New developments
cause a rethink. If this bothers you, consider how much
damage is being done to the world by people for whom new
developments do not cause a rethink.

Terry Pratchett, The Science Of Discworld, 1999
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Chapter 1

Introduction

1.1 Motivation

The original Web of documents [12] is based on three key pillars. The first is the
Unique Resource Identifier (URI) which associates each resource on the Web to
unique identifiers. The most common form of an URI is a Uniform Resource Locator
(URL), e.g., https://www.univ-nantes.fr is the URL of the welcome page of the
University of Nantes website. The second pillar is the Hypertext Transfer Protocol
(HTTP), which allows accessing a URL, and either the document identified by the
URI, or an error code. For example, the famous 404 error code indicates that the
requested resource does not exist. The third and final fundamental notion is the
Hypertext Markup Language (HTML), a hypertext format used to describe the
content of web pages.

However, conventional HTML documents are not expressive enough to unam-
biguously describe entities and their properties across the World Wide Web [15].
To this end, the Semantic Web [13] extends the classic Web of documents to create
a Web of Data, where text documents are replaced by structured data that can be
automatically processed by computers. It re-uses the first two fundamental notions
(URLs and the HTTP protocol) from the Web of documents, but replaces the use
of HTML documents by Resource Description Framework (RDF) documents [18].
The core structure of the RDF data model [18] is a set of RDF triples. A triple is
composed of a subject, a predicate, and an object, and asserts facts about entites.
Figure 1.1 shows some RDF triples extracted from DBpedia that asserts facts about
the entity Neil Gaiman [74]: he is an author, he is named “Neil Gaiman” and he
wrote the books Amercian Gods and Good Omens.

Tim Berners-Lee [11] proposed four principles to publish RDF documents so
that they become part of a single global data space: the Linked Open Data (LOD).
These principles are as follows:
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1. Introduction

@prefix foaf: <http://xmlns.com/foaf/0.1/>
@prefix dbo: <http://dbpedia.org/ontology/>
@prefix dbr: <http://dbpedia.org/resource/>
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
@prefix wikidata: <https://www.wikidata.org/entity/Q210059>

dbr:Neil_Gaiman rdf:type dbo:Person .
dbr:Neil_Gaiman foaf:name "Neil Gaiman" .
dbr:Neil_Gaiman owl:sameAs wikidata:Q210059 .

dbr:American_Gods dbo:author dbr:Neil_Gaiman .

dbr:Good_Omens dbo:author dbr:Neil_Gaiman .

Figure 1.1: Turtle representation of RDF data about Neil Gaiman, retrieved from
DBpedia [9].

1. Use URI to identify things.
2. Use HTTP URIs so that people can look up those names.
3. When someone looks up a URI, provide useful information, using standards.
4. Include links to other URIs, so that they can discover more things.
Following these principles, data providers published billions of RDF documents

over the Web [15, 61]. Most of them are hosted as static RDF files and can be
accessed by dereferencing the URI of entities. For example, by dereferencing the
URI http://dbpedia.org/resource/Neil_Gaiman, we can access the RDF docu-
ment that describes all the facts asserted about Neil Gaiman in DBpedia 1. These
documents are linked using predicates, to associate entities across distinct RDF docu-
ments. For example, in Figure 1.1, the http://www.w3.org/2002/07/owl#sameAs
predicate connects two entities (dbo:Neil_Gaiman and wikidata:Q1052459) that
both represent the same information (the author Neil Gaiman), but distributed
across two distinct RDF documents (DBpedia and Wikidata 2). This interlinked
Web of Data constitutes a global space of Linked Data documents called the Linked
Open Data cloud (LOD cloud). Figure 1.2 shows the state of the LOD cloud as a
diagram 3. As of March 2020, it contains 1255 datasets with 16174 links.

However, hosting public RDF files does not allow data consumers to easily
answer complex questions using the LOD. For example, if you want to list all

1https://wiki.dbpedia.org
2https://www.wikidata.org
3The LOD cloud diagram is maintained by John P. McCrae for the Insight Centre for Data

Analytics, and can be consulted at https://lod-cloud.net
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1.1. Motivation

Figure 1.2: The LOD cloud diagram, as of March 2019.
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PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?author ?book WHERE {
?author rdf:type dbo:Person .
?author foaf:name ?name .
?book dbo:author ?author .

}

Figure 1.3: A SPARQL query that finds all authors and their books in the DBpedia
dataset.

actors and their movies, you need to crawl the LOD to download every document
that contains relevant informations, which is very costly considering the current
size of the LOD. Alternatively, a collection of RDF documents can be hosted in a
dedicated database and exposed using a SPARQL endpoint. A SPARQL endpoint
follows the SPARQL protocol 4, which “describes a means for conveying SPARQL
queries and updates to a SPARQL processing service and returning the results
via HTTP to the entity that requested them”. Hence, users can send SPARQL
queries to the endpoint, which are SQL-like queries that allow users to query RDF
documents with an expressive query language. For example, the DBpedia SPARQL
endpoint 5 enables data consumers to execute queries on the DBpedia dataset,
composed of billions of facts retrieved from Wikipedia [9]. Figure 1.3 shows a
SPARQL query that finds all authors and their books in the DBpedia dataset.

Formally, the SPARQL protocol defines a SPARQL query execution model with
two actors: 1) A client (a human or a software) which wants to execute a SPARQL
query. 2) A SPARQL endpoint, which is an HTTP server that evaluates SPARQL
queries over an RDF dataset. To execute a SPARQL query, a web client sends
a SPARQL query to the server through an HTTP GET or POST request. The
SPARQL endpoint will evaluate it against a default RDF Graph, whose URI is set
by the client, and then returns the SPARQL query results to the client.

Public SPARQL query servers, like SPARQL endpoints, are very important
for the Web of Data, as they enable Web developers to write applications that
re-use the billions of RDF triples available in the LOD cloud. For example, both
the DBpedia [9] and Wikidata [73] SPARQL endpoints are used as backends by
multilingual question answering platforms [22, 69] and chatbots [8]. However,

4https://www.w3.org/TR/2013/REC-sparql11-protocol-20130321
5http://dbpedia.org/sparql
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1.1. Motivation

providing a public service that allows anyone to execute any SPARQL query at
any time is still an open issue [6]. As public SPARQL query services can suffer
from an unpredictable load of arbitrary SPARQL queries, the challenge is to ensure
that the service remains available despite variation in terms of the arrival rate of
requests and resources required to process queries. Providers often refer to this
challenge as “maintaining a fair usage policy”.

To achieve a fair usage policy, most SPARQL endpoints configure quotas on
their servers to prevent the convoy effect and ensure a fair sharing of resources
among end-users. If a SPARQL query exceeds one of these quotas, the server
rejects it, and the web client receives an error. There exists many type of quotas,
almost one set per data provider. Most commonly, data providers restrict: 1) The
execution time of SPARQL queries, 2) The number of results sent per query, and
3) The arrival rate of queries per IP. For example, the DBpedia SPARQL endpoint
does not allow queries to run for more than 120 seconds or return more than
10000 results 6. Additionally, it only allows 50 parallel connections and 100 HTTP
requests per second per IP address. The Wikidata SPARQL endpoint enforces
even harder limitations, as it restricts SPARQL query execution time to 60 seconds
with only one connection allowed per IP address 7.

Some of these quotas are not disturbing for web clients, e.g., if the arrival
rate is restricted, then clients only need to try again later. However, limiting the
execution time of SPARQL queries causes some queries to deliver only partial
results. To illustrate, consider the execution of the SPARQL query of Figure 1.3.
When executed with a local SPARQL endpoint without any quotas nor limitations,
the total number of results for this query is 35 215. However, when executed against
the public DBpedia SPARQL endpoint, we found only 10 000 results out of 35
215 8, because the query exceeded the maximum number of results to send per
query. Delivering partial results is a severe limitation for a public SPARQL service,
as it prevents users from building Web applications based on SPARQL endpoints,
especially in the domain of Life Sciences [58].

However, without a quota policy, SPARQL endpoints can suffer from convoy
effect [16], because they execute queries using a First-Come First-Served (FCFS)
execution policy [25]: queries are executed in their order of arrival at the endpoint.
Thus, one long-running query can occupy the server resources and prevents others
from executing. Convoy effects can severely deteriorate query execution performance
in terms of 1) average waiting time: the average time spent by queries in the server’s
waiting queue, 2) average time for first results : the average time between sending
the query and receiving the first bytes of query results, and 3) average query

6http://wiki.dbpedia.org/public-sparql-endpoint
7https://www.mediawiki.org/wiki/Wikidata_Query_Service/User_Manual#Query_

limits
8All results were obtained on DBpedia version 2016-04.
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1. Introduction

completion time: the average time between sending the query to the server and
receiving the last bytes of query results.

In the current state of the LOD, we face a dilemma. On one hand, we can build
a responsive public SPARQL query server using a quota policy, but it can provide
incomplete results. On the other hand, we can build a server that always delivers
complete results, but can become unresponsive due to convoy effects. Neither
solution is suitable for developping Web applications over the Web of data, as web
developers need responsive SPARQL query servers that always deliver complete
results.

1.2 Research outline and contributions

In this thesis, we choose to tackle the issue of building public SPARQL query
servers that allow any data consumer to execute any SPARQL query
with complete results. Existing approaches address this issue by decomposing
SPARQL queries into subqueries that can be run under the quotas and produce
complete results [7]. Finding such decomposition is hard in the general case, as
quotas can be different from one server to another, both in terms of values and
nature [7]. The Linked Data Fragments (LDF) approach [38, 72] tackles this issue
by restricting the SPARQL operators supported by the server. For example, in the
Triple Pattern Fragments (TPF) approach [72], a TPF server only evaluates triple
patterns. However, current LDF approaches produce a large number of subqueries
and substantial data transfer.

In this work, we choose to follow a different path from the state of the art,
as we believe that the issue related to quotas is not interrupting a query but the
impossibility for the client to resume the query execution afterward. In consequence,
we propose Web Preemption, a new execution model for public SPARQL query
servers, inspired by the works on time-sharing [5]. Web preemption is the capacity
of a Web server to suspend a running query after a time quantum with the intention
to resume it later. When suspended, the state Si of the query is returned to the
Web client. Then, the client can resume query execution by sending Si back to
the Web server. Compared to existing query execution models, Web Preemption
ensures a fair allocation of Web server resources across queries, a better average
query completion time per query, and a better time for first results.

However, our new model adds an overhead for the Web server to suspend
the running query and resume the next waiting query. Consequently, the next
scientific challenge here is to keep this overhead marginal, whatever the running
SPARQL queries, to ensure top query execution performance. At this end, we
propose SaGe, a preemptive SPARQL query engine that implements the Web
Preemption model. We define a set of preemptable query operators for which

6
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we bound the complexity of suspending and resuming of these operations, both in
time and space. They allow us to build a preemptive Web server that supports a
large fragment of the SPARQL query language. As not all SPARQL operations
exhibit a low preemption overhead, we split the SaGe query engine into two
components. First, a SaGe SPARQL query server uses our set of preemptable
operators for executing a large fragment of the SPARQL query language under
the Web Preemption model. Second, a SaGe Smart Web Client, executes the
remaining SPARQL operations client-side and applies optimizations to reduce the
data transfer. By combining the two components, we allow any user to evaluate
any SPARQL 1.1 query under the Web Preemption model.

Finally, we provide a complete experimental study of the SaGe SPARQL query
engine, client and server, compared to existing approaches used for hosting public
SPARQL services. Experimental results demonstrate that SaGe outperforms
existing approaches by several orders of magnitude in terms of the average total
query execution time and the time for the first results.

1.3 Thesis overview

This thesis is constructed as follows.
Chapter 2 presents the background notions and the related work of this

thesis. It provides background on the RDF data model, the formal semantics of
the SPARQL query language, the main techniques for storing RDF data and the
various methods for processing SPARQL query over RDF datasets hosted in a
centralized database. It also provides related work on convoy effects, quotas policy
and techniques to circumvent them.

Chapter 3 presents and motivates the Web preemption model, our first contri-
bution of this thesis. It formalizes the Web Preemption model and presents the
challenge related to its implementation.

Chapter 4 presents the SaGe preemptive SPARQL query engine, our second
contribution of this thesis. It defines a set of preemptable physical SPARQL
operators, used to evaluate SPARQL queries under the Web Preemption model.
For each preemptable operator, we prove its space and time complexity. We also
introduce the SaGe Smart Web Client, which comes with its own set of challenges
regarding query performance, and presents the experimental study that compares
SaGe to state of the art public SPARQL query servers.

Chapter 5 concludes this thesis and outlines perspective works.
Annex A provides a summary of this thesis in French.
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1. Introduction

1.4 Publications

This thesis is primarily based on the following publication.

SaGe: Web Preemption for Public SPARQL Query services, by
Thomas Minier, Hala Skaf-Molli and Pascal Molli. In Proceedings of the 2019
World Wide Web Conference (WWW’19), San Francisco, United States, May
13-17 (2019).
Abstract: To provide stable and responsive public SPARQL query services,
data providers enforce quotas on server usage. Queries which exceed these
quotas are interrupted and deliver partial results. Such interruption is not an
issue if it is possible to resume queries execution afterward. Unfortunately,
there is no preemption model for the Web that allows for suspending and
resuming SPARQL queries. In this paper, we propose SaGe: a SPARQL
query engine based on Web preemption. SaGe allows SPARQL queries to
be suspended by the Web server after a fixed time quantum and resumed
upon client request. Web preemption is tractable only if its cost in time is
negligible compared to the time quantum. The challenge is to support the
full SPARQL query language while keeping the cost of preemption negligible.
Experimental results demonstrate that SaGe outperforms existing SPARQL
query processing approaches by several orders of magnitude in term of the
average total query execution time and the time for first results.

During my thesis, I have also contributed to the following publications that do
not directly relate to its core topic, presented in reverse chronological order follows.

1. Processing SPARQL Aggregates Queries with Web Preemption,
by Arnaud Grall, Thomas Minier, Hala Skaf-Molli and Pascal Molli. In
Proceedings of the 17th European Semantic Web Conference (ESWC 2020),
Heraklion, Greece (2020).
Abstract: Executing aggregate queries on the web of data allows to compute
useful statistics ranging from the number of properties per class in a dataset
to the average life of famous scientists per country. However, processing
aggregate queries on public SPARQL endpoints is challenging, mainly due to
quotas enforcement that prevents queries to deliver complete results. Existing
distributed query engines allow to go beyond quota limitations, but their data
transfer and execution times are clearly prohibitive when processing aggregate
queries. Following the web preemption model, we define a new preemptable
aggregation operator that allows to suspend and resume aggregate queries.
Web preemption allows to continue query execution beyond quota limits and
server-side aggregation drastically reduces data transfer and execution time
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1.4. Publications

of aggregate queries. Experimental results demonstrate that our approach
outperforms existing approaches by several orders of magnitude in terms of
execution time and the amount of transferred data.

2. Intelligent clients for replicated Triple Pattern Fragments, by Thomas
Minier, Hala Skaf-Molli, Pascal Molli and Maria-Esther Vidal. In Proceedings
of the 15th European Semantic Web Conference (ESWC 2018), 400-414,
Heraklion, Greece (2018).
Abstract: Following the Triple Pattern Fragments (TPF) approach, in-
telligent clients are able to improve the availability of the Linked Data.
However, data availability is still limited by the availability of TPF servers.
Although some existing TPF servers belonging to different organizations
already replicate the same datasets, existing intelligent clients are not able to
take advantage of replicated data to provide fault tolerance and load-balancing.
In this paper, we propose Ulysses, an intelligent TPF client that takes ad-
vantage of replicated datasets to provide fault tolerance and load-balancing.
By reducing the load on a server, Ulysses improves the overall Linked Data
availability and reduces data hosting cost for organizations. Ulysses relies on
an adaptive client-side load-balancer and a cost-model to distribute the load
among heterogeneous replicated TPF servers. Experimentations demonstrate
that Ulysses reduces the load of TPF servers, tolerates failures and improves
queries execution time in case of heavy loads on servers.

3. Ulysses: an Intelligent client for replicated Triple Pattern Frag-
ments, by Thomas Minier, Hala Skaf-Molli, Pascal Molli and Maria-Esther
Vidal. In The Semantic Web: ESWC 2018 Satellite Events, Heraklion, Greece
(2018).
Abstract: Ulysses is an intelligent TPF client that takes advantage of
replicated datasets to distribute the load of SPARQL query processing and
provides fault-tolerance. By reducing the load on a TPF server, Ulysses
improves the Linked Data availability and distributes the financial costs
of queries execution among data providers. This demonstration presents
the Ulysses web client and shows how users can run SPARQL queries in
their browsers against TPF servers hosting replicated data. It also provides
various visualizations that show in real-time how Ulysses performs the actual
load distribution and adapts to network conditions during SPARQL query
processing.

4. Parallelizing Federated SPARQL Queries in Presence of Replicated
Data, by Thomas Minier, Gabriela Montoya, Hala Skaf-Molli and Pascal
Molli. In ESWC 2017 - Revised Selected Papers. Springer, Cham, 2017. p.
181-196 (2017).
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1. Introduction

Abstract: Federated query engines have been enhanced to exploit new data
localities created by replicated data, e.g., Fedra. However, existing replication
aware federated query engines mainly focus on pruning sources during the
source selection and query decomposition in order to reduce intermediate
results thanks to data locality. In this paper, we implement a replication-aware
parallel join operator: Pen. This operator can be used to exploit replicated
data during query execution. For existing replication-aware federated query
engines, this operator exploits replicated data to parallelize the execution of
joins and reduce execution time. For Triple Pattern Fragment (TPF) clients,
this operator exploits the availability of several TPF servers exposing the
same dataset to share the load among the servers. We implemented Pen in the
federated query engine FedX with the replicated-aware source selection Fedra
and in the reference TPF client. We empirically evaluated the performance of
engines extended with the Pen operator and the experimental results suggest
that our extensions outperform the existing approaches in terms of execution
time and balance of load among the servers, respectively.

5. PeNeLoop: Parallelizing federated SPARQL queries in presence of
replicated fragments, by Thomas Minier, Gabriela Montoya, Hala Skaf-
Molli and Pascal Molli. In Querying the Web of Data (QuWeDa 2017)
Workshop, co-located with 14th ESWC 2017 (Vol. 1870, pp. 37-50) (2017).
Abstract: Replicating data fragments in Linked Data improves data availabil-
ity and performances of federated query engines. Existing replication aware
federated query engines mainly focus on source selection and query decompo-
sition in order to prune redundant sources and reduce intermediate results
thanks to data locality. In this paper, we extend replication-aware federated
query engines with a replication-aware parallel join operator: PeNeLoop.
PeNeLoop exploits redundant sources to parallelize the join operator and
reduce execution time. We implemented PeNeLoop in the federated query
engine FedX with the replicated-aware source selection Fedra and we empiri-
cally evaluated the performance of FedX+Fedra+PeNeLoop. Experimental
results suggest that FedX+Fedra+PeNeLoop outperforms FedX+Fedra in
terms of execution time while preserving answer completeness.
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Chapter 2

Background and Related Works

In this chapter, we first present basic notions on the RDF data model and the
SPARQL query language. Then, we review background on data management
techniques for storing and querying RDF data under centralized approaches, i.e.,
data are stored in a single database system and queried using the SPARQL query
language. Finally, we present related works on the thesis scientific challenge.
We review techniques for circumventing quotas on public SPARQL endpoints,
alternatives to SPARQL endpoints for hosting RDF data and we elaborate on the
convoy effect and its roots in the Operating System community.

2.1 Background

2.1.1 The RDF data model

The core structure of the RDF data model [18] is a set of RDF triples, each
composed of a subject, a predicate, and an object. A collection of such triples is
called an RDF graph, and a set of RDF graphs is called an RDF dataset. Within
such a dataset, each graph is identified by a URI (except for the default graph),
hence talk about named RDF graph. In a way, an RDF graph is a directed and
labeled multi-graph of nodes, where each RDF triple corresponds to a directed
edge where the predicate is the label, the subject is the source node, and the object
is the target node. There are three types of nodes in a graph: URIs, literals, and
blank nodes. A URI or a Literal denotes that a specific resource, or entity, exists in
the Web of Data: the resource indicated by a URI is called its referent, and the
resource denoted by a literal is called its literal value. Unlike URIs and literals,
blank nodes do not identify specific resources. Statements involving blank nodes
say that something with the given relationships exists, without explicitly naming
it.

11



2. Background and Related Works

@prefix foaf: <http://xmlns.com/foaf/0.1/>
@prefix dbo: <http://dbpedia.org/ontology/>
@prefix dbr: <http://dbpedia.org/resource/>
@prefix owl: <http://www.w3.org/2002/07/owl#>
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
@prefix wikidata: <https://www.wikidata.org/entity/Q210059>

dbr:Neil_Gaiman rdf:type dbo:Person .
dbr:Neil_Gaiman foaf:name "Neil Gaiman" .
dbr:Neil_Gaiman dbo:author dbr:American_Gods .
dbr:Neil_Gaiman dbo:author dbr:Good_Omens .
dbr:Neil_Gaiman owl:sameAs wikidata:Q210059 .

dbr:American_Gods dbo:author dbr:Neil_Gaiman .
dbr:American_Gods rdfs:label "American Gods"@en .

dbr:Good_Omens dbo:author dbr:Neil_Gaiman .
dbr:Good_Omens dbo:author dbr:Terry_Pratchett .
dbr:Good_Omens rdfs:label "Good Omens"@en .

Figure 2.1: Turtle representation of RDF data about Neil Gaiman and the book
Good Omens and American Gods, retrieved from DBpedia.

<http://dbpedia.org/resource/Neil_Gaiman> # Subject
<http://dbpedia.org/ontology/author> # Predicate
<http://dbpedia.org/resource/Good_Omens> # Object

Asserting an RDF triple indicates that a relation, shown by the predicate, holds
between the resources denoted by the subject and object. For example, the above
RDF triple represents the fact that Neil Gaiman wrote the book Good Omens.
By dereferencing the URI http://dbpedia.org/resource/Neil_Gaiman, we can
access the RDF document that describes all the facts asserted about Neil Gaiman
in the DBpedia dataset 1. Figure 2.1 shows an extract of this document in Turtle
notation. Figure 2.2 shows the same data but represented as a directed, labeled
RDF graph.

1https://wiki.dbpedia.org/
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dbr:Neil_Gaiman

dbo:Person

"Neil Gaiman"

dbr:American_Gods "American Gods"@en

dbr:Good_Omens "Good Omens"@endbr:Terry_Pratchett

wikidata:Q210059

DBpedia

Wikidata rdf:type

foaf:name

owl:sameAs

rdfs:label

dbo:author rdfs:label

dbo:author dbo:author

dbo:authordbo:author

Figure 2.2: Graph representation of the facts about Neil Gaiman and the books
Good Omens and American Gods.

PREFIX foaf: <http://xmlns.com/foaf/0.1/> .
PREFIX dbo: <http://dbpedia.org/ontology/> .
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

SELECT ?author ?book_title WHERE {
?author rdf:type dbo:Person .
?author dbo:author ?book .
?book rdfs:label ?book_title .

}

Figure 2.3: A SPARQL query that finds all authors with their names and the titles
of their books.

2.1.2 The SPARQL query language

The SPARQL query language [32] allows data consumers to query RDF docu-
ments using more complex logic, similar to SQL queries for relational databases.
The SPARQL query Q1 from Figure 2.3 finds all authors with their names and the
titles of their books. If we execute Q1 on the set of RDF triples shown in Figure
2.1, we obtain the following results.

?author ?book_title
<http://dbpedia.org/resource/Neil_Gaiman> "American Gods"@en
<http://dbpedia.org/resource/Neil_Gaiman> "Good Omens"@en

The semantic of the SPARQL query language was formalized by Perez et al. in
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[56], and further extended by Schmidt et al. in [62]. Let U,V,L be disjoint infinite
sets of URIs, SPARQL variables, and literals, respectively. A SPARQL query is
composed of SPARQL Graph patterns expressions, defined recursively as follows:

• A triple pattern tp ∈ (U ∪ V)× (U ∪ V)× (U ∪ L ∪ V) is a graph pattern.

• If P1 and P2 are graph patterns, then the expressions P1 AND P2, P1 UNION P2

and P1 OPT P2 are graph patterns.

• If P is a graph pattern and R is a SPARQL built-in conditions, then
P FILTER R is a graph pattern.

An expression P1 AND P2 AND . . . AND PN is often called a Basic Graph
Pattern (BGP), i.e., a conjunctive query between several graph patterns. A
SPARQL built-in condition is constructed using elements of the set U ∪ L ∪ V
and constants, logical connectives (6=,∧,∨), inequality symbols (<,≤, >,≥), the
equality symbol (=) and unary predicates 2.

The evaluation of a SPARQL graph pattern P against an RDF dataset D,
denoted JP KD, produces a set of solution mappings. A solution mapping µ is a
partial function that maps a set of variables to an RDF term. The domain of µ,
denoted dom(µ), is the set of variables on which µ is defined. Two mappings µ
and µ′ are compatible, denoted µ ∼ µ′, if ∀x ∈ dom(µ) ∩ dom(µ′), µ(x) = µ′(x).
Furthermore, var(tp) denotes all variables in a triple pattern tp and µ(tp) denotes
the RDF triple obtained by replacing the variables in tp according to µ.

Definition 1 gives the algebra of the SPARQL query language and Definition 2
gives the evaluation semantic of SPARQL graph patterns expressions.

Definition 1 (SPARQL algebra [56, 62]). Let Ω1,Ω2 be sets of solutions mappings,
R a filter condition, and V a finite set of variables. The expressions of the SPARQL
algebra are defined as follows:

Ω1 ./ Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2, µ1 ∼ µ2}
Ω1 ∪ Ω2 = {µ | µ ∈ Ω1 or µ ∈ Ω2}
Ω1 \ Ω2 = {µ1 | µ1 ∈ Ω1, µ2 ∈ Ω2, µ1 � µ2}

Ω1 ./ Ω2 = (Ω1 ./ Ω2) ∪ (Ω1 \ Ω2)

σR(Ω1) = {µ | µ ∈ Ω1, µ |= R}
πV (Ω1) = {µ | ∃µ′ : µ ∪ µ′ ∈ Ω1 ∧ dom(µ) ⊆ V

∧ dom(µ′) ∩ V = ∅}

where |= refers to built-in boolean functions defined in [56].
2https://www.w3.org/TR/sparql11-query/#SparqlOps
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Definition 2 (SPARQL semantics [56, 62]). Let D be an RDF dataset, tp a triple
pattern, R a FILTER expression, V a finite set of variables, and P1, P2 SPARQL
graphs patterns. The evaluation of a graph pattern over D, denoted J·KD, is defined
recursively as follows:

JtpKD = {µ | dom(µ) = var(tp) ∧ µ(tp) ∈ D}
JP1 AND P2KD = JP1KD ./ JP2KD

JP1 UNION P2KD = JP1KD ∪ JP2KD
JP1 OPT P2KD = JP1KD ./ JP2KD

JP1 FILTER RKD = σR(JP1KD)

J SELECT V WHERE P KD = πV (JP KD)

To illustrate, consider again the SPARQL query from Figure 2.3. In the formal
SPARQL semantic, the query is composed of a projection and a Basic Graph
Pattern with the following four triple patterns:

tp1 = ?author rdf:type dbo:Person
tp2 = ?author dbo:author ?book
tp3 = ?book rdf:type dbo:Book
tp4 = ?book rdfs:label ?book_title

So, according to Definition 2, the SPARQL query is formally expressed as

Q = SELECT {?author, ?book_title} WHERE {tp1 AND tp2 AND tp3 AND tp4}
= π?author,?book_title(tp1 ./ tp2 ./ tp3 ./ tp4)

2.1.3 Linked Data Management

From a conceptual point of view, we can distinguish two distinct approaches for
storing RDF data. The relational-based approach, which views the RDF dataset
as a set of RDF triples and considers it as a particular case of the relational data
model. The main advantage of this approach is that one can re-use all techniques
for indexing, storing, and querying data developed for relational databases [26, 27].
This approach also highlights the similarities between SPARQL and SQL query
languages. On the other hand, the graph-based approach considers an RDF graph
through its graph-based representation and leverages graph-based algorithms to
perform query processing. However, they are widely adopted for building public
SPARQL endpoints. Consequently, in this thesis, we focus on the relational-
based approach because they allow building SPARQL query servers with complete
SPARQL query processing capabilities. We now review the main approaches for
storing RDF data under the relational-bases approach.
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Subject Predicate Object
dbr:American_Gods dbo:author dbr:Neil_Gaiman
dbr:American_Gods rdfs:label "American Gods"@en
dbr:Good_Omens dbo:author dbr:Neil_Gaiman
dbr:Good_Omens dbo:author dbr:Terry_Pratchett
dbr:Good_Omens rdfs:label "Good Omens"@en
dbr:Neil_Gaiman dbo:author dbr:American_Gods
dbr:Neil_Gaiman dbo:author dbr:Good_Omens
dbr:Neil_Gaiman foaf:name "Neil Gaiman"
dbr:Neil_Gaiman rdf:type dbo:Person
dbr:Neil_Gaiman owl:sameAs wikidata:Q210059

(a) SPO Index

Predicate Object Subject
dbo:author dbr:American_Gods dbr:Neil_Gaiman
dbo:author dbr:Good_Omens dbr:Neil_Gaiman
dbo:author dbr:Neil_Gaiman dbr:American_Gods
dbo:author dbr:Neil_Gaiman dbr:Good_Omens
dbo:author dbr:Terry_Pratchett dbr:Good_Omens
foaf:name "Neil Gaiman" dbr:Neil_Gaiman
owl:sameAs wikidata:Q210059 dbr:Neil_Gaiman
rdf:type dbo:Person dbr:Neil_Gaiman

rdfs:label "American Gods"@en dbr:American_Gods
rdfs:label "Good Omens"@en dbr:Good_Omens

(b) POS Index

Object Subject Predicate
"American Gods"@en dbr:American_Gods rdfs:label

dbo:Person dbr:Neil_Gaiman rdf:type
dbr:American_Gods dbr:Neil_Gaiman dbo:author
dbr:Good_Omens dbr:Neil_Gaiman dbo:author
dbr:Neil_Gaiman dbr:American_Gods dbo:author
dbr:Neil_Gaiman dbr:Good_Omens dbo:author

dbr:Terry_Pratchett dbr:Good_Omens dbo:author
"Good Omens"@en dbr:Good_Omens rdfs:label
"Neil Gaiman" dbr:Neil_Gaiman foaf:name

wikidata:Q210059 dbr:Neil_Gaiman owl:sameAs

(c) OSP Index

Figure 2.4: Storing RDF data from Figure 2.1 using a triple-store with three
clustered indexes: SPO, POS and OSP.

Triple stores [23, 30, 34, 53, 75] put all RDF triples into a single table with three
attributes: subject, predicate, and object. An optional fourth column, graph, can be
used to record the named RDF graph that contains each triple of the dataset.

As in classical relational databases, query processing over a triple store can
speed up drastically by defining indexes over the table attributes. Thus, many triple
stores use a set of indexes on several combinations of the subject (S), predicate (P)
and object (O) attributes. One of the first approaches [48] rely on the following
fives distinct B+-trees [17]: 1) one of each attribute S, P and O, 2) a joint index on
S and P, 3) a joint index on S and P and a separate index on O, 4) a joint index
on P and O, 5) a joint index on S, P, and O. This indexing schema proved to be
very efficient for executing simple lookup queries, i.e., scanning for a triple pattern,
and queries with few joins.

To further speed up query processing, many approaches rely on clustered indexes,
i.e., indexes that store multiples copies of the same data but in different orders. Such
indexes allow us to look for random triple patterns in the RDF Graph efficiently
and to use fast merge joins for executing queries with a large number of joins.
Hexastore [75] relies on six B+-trees on all possible permutations of S, P, and O:
SPO, SOP, POS, PSO, OSP, and OPS. Figure 2.4 shows how Hexastore stores the
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RDF data from Figure 2.1. For the sake of simplicity, we only show the SPO, POS,
and OSP indexes. To evaluate a triple pattern tp against such indexes, Hexastore
looks at the position of variables in tp, selects the appropriate index, and starts
an Index Scan [26, 27] over the index. For example, for scanning a triple pattern
tp = ?s rdf:type ?o, Hexastore selects either the index POS or PSO, locates
the record with key p = rdf:type and iterates over all matching RDF triples.
Additionally, as Hexastore stores RDF triples in every possible order, the query
engine can use very fast merge joins [26, 27] to resolve joins between triple patterns.
The theoretical upper bound on space consumption in Hexastore is equals to five
times the size of the triple table, and much lower in practice, due to the skewed
nature of RDF graphs.

RDF-3X [53] follows a similar aggressive indexing technique with the same
indexes as Hexastore. Additionally, it also indexes all subsets of the (S, P, O) set,
adding nine new partial indexes called aggregated indexes. These indexes associate
the parts of RDF triples with their number of occurrences in the RDF dataset,
which allows the query engine to estimate the cardinality of triple patterns. For
example, the aggregated index SP stores, for each key 〈s, p〉, the number of RDF
triples whose subject is s and predicate is p (|{s | ∀〈s, p, o′〉 ∈ G}|). The drawback
of such aggressive indexing techniques is a significant space overhead, as clustered
indexes stores multiples copies of the original data. To mitigate this overhead,
RDF-3X relies on a delta compression of RDF triples in the B+-trees leaves. Since
two adjacent triples are likely to share the same prefix, then only the difference
(delta) between triples are stored, instead of the full triples.

Hexastore and RDF-3X are RDF databases that employ very aggressive indexing
schemes. On the opposite, Virtuoso [23] uses a partial indexing scheme, with only
two full indexes on PSOG and POGS, where G is the URI of the graph to which
the triple belongs. Besides, Virtuoso also stores three partial indexes SP, OP, and
GS, which allows it to evaluate any triple pattern by combining partial indexes.

Property tables rely on the vertical partitioning technique [1]. They group
RDF triples per predicate value, and all triples within the same group are stored
in a separate table, named after the predicate. Each table contains two attributes:
subject and predicate, where at least the subject attribute is indexed using a
(un)clustered B+-tree. The kind of approach can be implemented very efficiently in
column-based stores [43, 64]. Figure 2.5 shows how the RDF data from Figure 2.1
are stored using property tables.

Clustered-property tables [31, 65, 76] extend the concept of property tables
and groups RDF triples into classes based on the co-occurrence of sets of predicates
in the dataset. Each table stores the triple that corresponds to a class, with
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Subject Object
dbr:American_Gods dbr:Neil_Gaiman
dbr:Good_Omens dbr:Neil_Gaiman
dbr:Good_Omens dbr:Terry_Pratchett
dbr:Neil_Gaiman dbr:American_Gods
dbr:Neil_Gaiman dbr:Good_Omens

(a) Predicate dbo:author

Subject Object
dbr:Neil_Gaiman "Neil Gaiman"

(b) Predicate foaf:name

Subject Object
dbr:Neil_Gaiman wikidata:Q210059

(c) Predicate owl:sameAs

Subject Object
dbr:Neil_Gaiman dbo:Person

(d) Predicate rdf:type

Subject Object
dbr:American_Gods "American Gods"@en
dbr:Good_Omens "Good Omens"@en

(e) Predicate rdfs:label

Figure 2.5: Storing RDF data from Figure 2.1 using property tables.

attributes named after the predicates. The classes are usually computed using a
clustering algorithm or by an expert.

A major drawback of both property tables and clustered-property tables is
that they offer poor performance when executing SPARQL queries that contain
unbounded predicates. In this case, the query engine must scan all tables in the
database to find matches, and then all results need to be re-combined using joins
or unions. Additionally, each time we add a new predicate to the dataset, the RDF
database needs to recompute the classes and the data partitions, as the content of
some classes might evolve, which is very expensive for large RDF datasets. Due
to these hard limitations, property tables and clustered-property tables have not
become popular in RDF databases. Consequently, in this thesis, we focus on Linked
Data Management using Triple stores.

2.1.4 SPARQL query processing in Triple Stores

Execution of SPARQL queries over RDF data is a process called SPARQL query
processing, with a vast literature. A good survey on the whole field is in [33]. In
this thesis, we focus on SPARQL query processing over Triple stores, as they are
the most dominant RDF database systems for public SPARQL query servers.

Given a SPARQL query, a SPARQL query engine constructs a query execution
plan and executes it on the RDF database to produce the query results. This
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SPARQL Query

Query decomposition

Logical SPARQL
query execution plan

Query optimization

Optimized logical plan

Plan compilation

Physical SPARQL
query execution plan

Query execution

SPARQL query results

Figure 2.6: Overview of SPARQL query processing

process is called the optimize-then-execute paradigm [27]. It allows the query engine
to translates a program written in a high-level specification (the SPARQL query
language) into an optimized low-level computer program (the query execution
plan), and the execution of this program produces the query results. Figure 2.6
summarizes the overall process of SPARQL query processing.

2.1.4.1 Query decomposition

The first layer of SPARQL query processing parses the query and decomposes it
into an intermediate representation. First, the query is parsed and normalized
into an Abstract Syntax Tree (AST), more suitable for manipulation by the query
engine. The AST is semantically analyzed so that incorrect queries are detected
and rejected as early as possible.

Next, the query engine translates the AST into a representation called a join
query graph [67], where each Basic Graph pattern is expanded into a set of triple
patterns. The triple patterns are then turned into the edge of the join query graph,
where two nodes of the graph are connected with an edge if the corresponding triple
patterns share at least one SPARQL variable. This representation corresponds
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tp1 : (?author, rdf:type, dbo:Person)

tp2 : (?author, dbo:author, ?book)

tp3 : (?book, rdf:type, dbo:Book) tp4 : (?book, rdfs:label, ?book_title)

(a) Join query graph

Π?author,?book_title

./3

./2

./1

tp1 tp2

tp3

tp4

(b) Logical SPARQL query
execution plan

Figure 2.7: Join query graph and logical query execution plan of SPARQL query
Q1 from Figure 2.3.

to the traditional conjunctive query graph from the relational query optimization
model, where nodes are relations and edges are join predicates. Figure 2.7a shows
the join query graph corresponding to the SPARQL query from Figure 2.3.

Next, given the join query graph, the SPARQL query engine constructs its
algebraic representation [56], called a join tree, composed of logical scan and join
operators. The join tree is a binary tree whose leaves are the triple patterns, and
inner nodes are joins. We distinguish two important class of join tree: 1) left-deep
(linear) tree, where every join has one of its triple patterns has input, and 2) bushy
trees, where no restriction applies.

Finally, the query engine completes the join tree with the other operators from
the SPARQL query, e.g., OPTIONAL, UNION, or aggregations. These disjunctive
parts of the query are treated as nested SPARQL subqueries, in that there inner
basic graph patterns are translated and optimized separately. Then, the query
engine combines these sub-parts with the join tree, producing a logical SPARQL
query execution plan. Figure 2.7b shows the logical execution plan generated for
the SPARQL query from Figure 2.3.

2.1.4.2 Query optimization

The goal of the second layer of SPARQL query processing is to find an execution
strategy for the SPARQL query which is close to optimal [37, 62], as finding the
optimal execution plan is computationally intractable. Query optimization consists
of finding the “best” ordering of operators in the query plan to minimize a cost
function. This function, often defined in terms of time units, refers to computing
resources such as disk space, disk I/Os, buffer space, CPU cost, etc. The most
simple optimization techniques are based on SPARQL normal forms [62]. For
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example, the join distribution technique allows creating bushy trees from joins
between UNION clauses. The FILTER push-down technique consists of splitting
FILTER conditions into the conjunction of conditions and pushing these conditions
as deep as possible towards the leaves of the join tree. These techniques are easy
to apply, as they are syntactic: they are based on rules that transform the plan
based on its shape, so they can be used by any SPARQL query engine.

One of the most critical optimizations done by the SPARQL query engine
is called join ordering [53, 67]. It consists of re-ordering the join sequence of
triple patterns in each join tree to minimize the selectivity of each join operator.
The cardinality of a triple pattern is the number of RDF triples that matches
this pattern. Let c1, c2 be the cardinality of two triple patterns tp1, tp2, then the

selectivity of the join tp1 ./ tp2 is defined as S(tp1 ./ tp2) =
|tp1 ./ tp2|
c1 × c2

. Typically,

selectivities are estimated by the query optimizer using precomputed statistics [52,
67]. These selectivities provide a way to optimize the cardinality of intermediate
results generated by a join tree. The state of the art techniques that solves this
problem are based on dynamic programming algorithms [50, 53].

2.1.4.3 Building the physical SPARQL query execution plan

Once the optimized logical SPARQL query execution plan is produced, the SPARQL
query optimizer invokes the last layer of SPARQL query processing to compile
the logical plan into a physical SPARQL query execution plan. This plan is quite
literally the software that needs to be executed to produce query results.

To produce this plan, the query engine performs a tree-traversal of the logical
plan and, for each logical operation, selects a physical query operator to implement
it. While the logical algebra used in the logical plan is the same for all SPARQL
queries, the physical algebra is system-specific: different databases may implement
the same logical operators using different physical operators [27]. For example, a
triple store can evaluate triple patterns using scan operators on the available indexes.
In contrast, a database that relies on vertical partitioning will use operators specific
to its partition layout.

As several physical operators can implement the same logical operator, the
query engine relies on a cost-model to select the most efficient implementation for
each operator. For example, the Merge join algorithm is more performant if both
join inputs produce results sorted on the join variable. Figure 2.8 shows a SPARQL
physical query execution plan compiled from the logical plan of Figure 2.7b. In
this plan, triple patterns are evaluated using Index Scans, which scans B+-trees
indexes to produces solutions mappings from relevant RDF triples. A Merge join
implements the first join in the plan, as the solutions mappings produced by both
its inputs are sorted on the ?author join variable. Remaining joins are done using
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Projection(?author, ?book_title)

IndexLoopJoin

IndexLoopJoin

MergeJoin

IndexScan(tp1) IndexScan(tp2)

tp3

tp4

Figure 2.8: Physical query execution compiled from the logical plan of Figure 2.7b.

Iterator Open() GetNext() Close()
Scan Get a pointer to the

first matching RDF
triple

Read the next match-
ing RDF triple

Release the
pointer

Filter Open input Read items from
the input until one
matches the SPARQL
expression

Close input

Sort Read all items from
the input, materialize
them into a table and
sort the table

Read the next item
from the sorted table

Cleanup the
sorted table and
close input

Table 2.1: Examples of Iterators for SPARQL query processing

Index Loop joins [21], a variant of the well-known loop join algorithm that leverages
the indexes of our triple store to speed-up query processing. Finally, a Projection
operator executes the logical π?author,?book_title operation and produce the
query solutions for the SPARQL query Q1.

Another choice made by the query engine during the plan compilation phase
is how physical operators communicate between them. For example, given a query
with two joins in sequence, how do the results of the first join are passed to
the second one? The simplest method is to rely on temporary files to exchange
intermediate results between operators. However, for queries with a large number
of intermediate results, this method adds significant overhead in terms of data
storage during query execution [27]. Alternatively, many query engines follow the
iterator model [28], where operators are connected as a pipeline and communicate
in sequence. Each time an operator needs to produce some value, it pulls solutions
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from its predecessor(s) in the pipeline, computes the value, and then forward it
to the next operator in the pipeline. Operators implemented with this model are
called iterators and formalized in Definition 3. Table 2.1 shows some examples of
physical operators implemented as iterators.

Definition 3 (Iterator). A physical operator that implements the iterator model
supports the following operations:

• Open() which initialize the datastrucures used by the operator.
• GetNext() which produce an intermediate result.
• Close() which cleanup any datastrucure used by the operator.

Implementing physical operators as a pipeline of iterators provide several
properties for query execution: 1) operators are implemented as individual units,
independent of each other, 2) the whole query execution is executed by a single
process in a coroutine-fashion, 3) operators produce one item at a time upon request,
4) intermediate results are passed directly between operators without the need for
intermediate files, which makes this model very efficient in terms of memory costs,
and 5) a pipeline of iterators naturally implements any shape of query plan.

However, a pipeline of iterators is quite inefficient in terms of CPU consumption,
because GetNext functions will be called recursively for producing every single
solution mappings. As each call to GetNext will cause a jump in the heap memory,
queries with a large number of intermediate results can cause many round-trips
in the CPU, deteriorating performance and generating poor code locality, which
reduces optimizations from modern CPUs [51]. Nonetheless, this approach remains
the most used implementation for physical query execution in most databases.

2.2 Related Works

2.2.1 Decomposing SPARQL queries to avoid quotas

A first approach to circumvent quotas is to decompose a SPARQL query that is
interrupted by some quotas into a set of subqueries whose execution completes
under the same quotas. In [7], Buil Aranda et al. study such type of evaluation
strategies for federated SPARQL queries, but they can be generalized to non-
federated queries. The authors identify six distinct rewriting strategies, ranging
from simple pagination to more complex query rewriting techniques.

Pagination (SYMHASHP) The most straightforward technique to circum-
vent the limitations imposed by quotas is to paginate the query results using the
LIMIT, OFFSET, and ORDER BY solution modifiers. We first sort all query results
and then retrieve them by batches of fixed sizes. The union of the solutions of all
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PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?actor ?name WHERE {

{
SERVICE <http://dbpedia.org/sparql> {

SELECT ?actor ?name WHERE {
?actor a dbo:Actor. ?actor rdfs:label ?name.

} ORDER BY ?actor ?name LIMIT 10000
}

} UNION {
SERVICE <http://dbpedia.org/sparql> {

SELECT ?actor ?name WHERE {
?actor a dbo:Actor. ?actor rdfs:label ?name.

} ORDER BY ?actor ?name OFFSET 10000 LIMIT 10000
}

}
}

Figure 2.9: A paginated SPARQL query

subqueries yields the final query results. The sorting phase is mandatory, because
the SPARQL endpoint may not produce the results in the same order between
each query. Figure 2.9 shows an example of a SPARQL query paginated with the
SYMHASHP strategy, where we fetch query results per page of 10 000 results.
However, while this approach is feasible, it is not applicable in general, as executing
several consecutive ORDER BY queries might actually be quite expensive on the
remote server and could trigger resource limits nonetheless. For example, the
Virtuoso SPARQL endpoint [23], used as the backend for the DBpedia SPARQL
endpoint, limits the amount of memory per query when sorting results. We can
avoid such limitations if the endpoint already delivers sorted results, but it makes
the approach very dependent on the actual server implementation.

Symmetric Hash Join (SYMHASH) This strategy is applicable only for
the evaluation of Basic Graph patterns, i.e., joins of triple/graph patterns. To
evaluate a SPARQL query Q = P1 ./ P2, the client executes P1 and P2 on the
server using two distinct requests, stores their results into two hash tables (one per
subquery), and then joins the results using the Symmetric Hash Join algorithm [77].
This strategy can be generalized for joining an arbitrary number of graph patterns.
However, this join algorithm is expensive if the intermediate result sets are much
larger then the join result size [77] (|JP1KD| + |JP2KD| > |JP1 ./ P2KD|), and thus
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PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?actor ?name WHERE {

?actor rdfs:label ?name.
VALUES ?actor { dbp:David_Tennant dbp:Michael_Sheen }

}

Figure 2.10: A SPARQL query that "ships" solution bindings to perform a join
server-side, following the VALUES, FILTER and UNION strategies [7].

may deteriorate query processing performance. This strategy also requires that the
evaluations of both P1 and P2 deliver complete results under quotas, or the join
results will be incomplete.

Nested Loop Join (NESTED) Similar to SYMHASH, the join between two
graph patterns is done on the client-side using the Nested Loop Join algorithm [26].
Given a query P = P1 ./ P2, the client evaluates P1, and then for each µ ∈ JP1KD,
the client evaluates µ(P2) using the server and produces the final join results.
However, this approach faces three significant issues. First, the Nested Loop join
algorithm is efficient only if the selectivity of the left join input is less than the
selectivity of the right input [27] (|JP1KD| < |JP2KD|). So, like the SYMHASH
strategy, it can deteriorate query performance if the algorithm inputs do not meet
these requirements. Second, this strategy sends an HTTP request to the server
for each solution binding of P1. If P1 has a high number of solutions, then the
NESTED strategy can lead to denial of service attacks or trigger quotas on request-
rate. For example, the DBpedia SPARQL endpoint does not allow more than 100
requests per second per IP address, with an initial burst of 120 requests. Finally,
only a subclass of SPARQL queries called strongly bounded SPARQL queries are
guaranteed to produce complete results with this technique, as shown in [7].

VALUES, FILTER, and UNION strategies The last three techniques improve on
the NESTED strategy to reduce the data transferred between client and server.
Instead of sending one HTTP request per solution of JP1KD, the client "ships" a
set of solutions, using the VALUES operator, to perform the join between P1 and P2

server-side. A similar technique, called Bound join, is used by the FedX federated
SPARQL query engine [63]. Given P = P1 ./ P2, the client sends a SPARQL query
to the server to compute Ω = JP1KD, and then sends a second query P2 VALUES Ω
to perform the join server-side. Figure 2.10 shows a SPARQL query that performs
data shipping. It computes the join between P2 = ?actor rdfs:label ?name
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and the set of solutions Ω = {{?actor 7→ dbp:David_Tennant}, {?actor 7→
dbp:Michael_Sheen}} to finds the label of the actors David Tennant and Michael
Sheen. As the VALUES operator is not widely available on current public SPARQL
endpoints [6], the authors propose equivalent strategies using the FILTER and UNION
SPARQL operators. However, as before, this strategy requires that both queries
sent to the server produce complete results under quotas.

Synthesis In summary, all of these strategies suffer from the same significant
drawbacks. First, they need to know the server configuration in terms of quotas.
This information might be unavailable, as data providers may not wish to publish
their server’s configuration. Second, they can require significant data transfer,
which deteriorates SPARQL query processing performance. Finally, they can only
be applied to the class of strongly bounded SPARQL queries to ensure complete
and correct evaluation results.

2.2.2 Linked Data Fragments

Linked Data Fragments (LDF) [38, 72] restrict the server interface to a fragment of
the SPARQL algebra, to reduce the complexity of queries evaluated by the server
and increase its availability. LDF servers are no longer compliant with the W3C
SPARQL protocol, and SPARQL query processing is distributed between an LDF
server and a smart client. The latter acts as a SPARQL query engine hosted on
the client-side. It decomposes the input SPARQL query to evaluate the fragment
supported by the server and handles the remaining operations client-side.

Hartig et al. [38] formalized this approach using the Linked Data Fragment
machines (LDFM). An LFDM captures possible client-server systems that execute
user queries, issued at the client-side, over a server-side RDF dataset. The client
communicates with the server using a server language LS which represents the
SPARQL operations supported by the server interface. Then, the client builds
final query results from the server responses using a client response-combination
language LC , which is an algebra over the server responses. Thus, an LDFM M
is a tuple M = 〈LS,LC〉. Notice that, if an LDFM wants to allow execution of
any SPARQL queries, then it must hold that LS ∪ LC = CoreSPARQL, where
CoreSPARQL is the full SPARQL query language [56].

The Triple Pattern Fragments (TPF) approach [72] is one implementation of
LDF where the server only evaluates paginated triple pattern queries. Formally, a
TPF client-server is an LDFMMTPF where LS = {tp} and LC = CoreSPARQL\
LS. To evaluate Basic Graph Patterns, the TPF client follows an approach
similar to the NESTED strategy from [7], illustrated in Figure 2.11. For a BGP
P = {tp1, tp2}, the client first evaluates tp1 using the paginated server interface,
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dbp:David_Tennant a dbo:Actor

dbp:Michael_Sheen a dbo:Actor
. . .

dbp:David_Tennant rdfs:label "David Tennant"

dbp:Michael_Sheen rdfs:label "Michael Sheen"

µ1 ={{?actor 7→ dbp:David_Tennant},
{?name 7→ "David Tennant"}}

µ2 ={{?actor 7→ dbp:Michael_Sheen},
{?name 7→ "Michael Sheen"}}?actor a dbo:Actor

dbp:David_Tennant rdfs:label ?name

dbp:Michael_Sheen rdfs:label ?name

SELECT * WHERE { ?actor a dbo:Actor . ?actor rdfs:label ?name . }

Figure 2.11: Basic Graph Pattern evaluation using the TPF Smart client [72]

retrieves pages of relevant RDF triples, and converts them into solution mappings
for tp1. Then, for each mapping µ ∈ Jtp1KD, it evaluates the subquery µ(tp2) using
the server interface, and for each µ′ ∈ Jµ(tp2)KD, it produces µ ∪ µ′ as a set of join
results. For evaluating a Basic Graph Pattern of more than two triple patterns,
the TPF client takes advantage of the metadata published by the TPF server to
perform a client-side join ordering and always evaluates the most selective triple
pattern. As paginated triple pattern queries can be evaluated in bounded time
[42], the server does not suffer from the convoy effect. But, as the client computes
joins locally, the transfer of intermediate results leads to poor query execution
performance. For example, the evaluation of the query Q1, from Figure 1.3, which
finds all actors and their birth places in the DBpedia knowledge graph, using the
TPF approach sends 507156 subqueries and transfers 2GB of intermediate results
in more than two hours.

Other LDF approaches have introduced different trade-offs, compared to the
original TPF approach, to reduce the overhead in data transferred. The Bindings-
Restricted Triple Pattern Fragments (BrTPF) approach [35] improves the TPF
approach by using the bind-join algorithm [29] to reduce transferred data. While
the extended server interface is resilient to convoy effects, the client still executes
joins locally. In [2], Acosta et al. propose to use networks of Linked Data Eddies
to allow the TPF client to switch between several join strategies. The smart client
uses adaptive query processing techniques [10, 20] to dynamically adapt query
execution to adjust to changes in runtime execution and data availability. In
scenarios with unpredictable transfer delays and data distributions, Linked Data
Eddies outperform the existing LDF approach. However, the restricted server
interface still leads to significant data transfers.

Synthesis While the LDF approaches remain limited by the high data transfer
rates, they demonstrate that one can publish RDF data using a less expressive
SPARQL query server but still allows the execution of the complete SPARQL query
language. As hinted in [38], a more efficient LFDM is a one that will enable for
server-side processing of Basic Graph Patterns without generating convoy effects.
To the best of our knowledge, none of the existing LDF approaches achieve that.
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FCFS execution

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Q1 Executing

Q2 Waiting Executing

Q3 Waiting Executing

Q1 completed Q2 completed Q3 completed

Figure 2.12: Execution of three SPARQL queries using the First-Come First-Served
(FCFS) execution policy [25]

2.2.3 Scheduling policies and Preemption

Operating systems have heavily studied First-Come First-Served (FCFS) scheduling
policies and the convoy effect [16]. In a system where the duration of tasks varies,
a long-running task can block all others, deteriorating the average completion time
for all tasks and creating a convoy effect.

To illustrate, consider the execution scenario from Figure 2.12. Three distinct
web clients want to execute one SPARQL query each, Q1, Q2, and Q3, using the
same SPARQL endpoint. Q1, Q2, Q3 execution times are respectively 20 seconds, 5
seconds, and 5 seconds. We also consider that the server only offers one worker
thread, so it can only execute one query at a time. In this scenario, Q1 arrives first
at the server at t1 and runs for 20 seconds. At t3, the server receives Q2, but has
to wait for execution has the only worker is still busy with Q1. Similarly, Q3 is
received at t4 and must wait. At t20, Q1 execution completes, and the first client
receives its results. Then, the server starts the execution of Q2, while Q3 is still
in the waiting queue. At t25, Q2 execution completes, and the server begins the
evaluation of Q3, which finishes at t30. In the end, the first web client has received
its query results after 20 seconds, i.e., the execution time of Q1, while the two other
clients have received their results after 25 seconds and 30 seconds, respectively.
Hence, the execution of Q2 and Q3 have been delayed by the evaluation of Q1

because the FCFS execution policy created a convoy effect. In terms of query
execution performance, we have an average waiting time of 0+17+22

3
= 13 seconds,

an average query completion time of 20+25+30
3

= 25 seconds and an average time
for first results of also 25 seconds.

To avoid convoy effects while preserving scheduling performance, researchers
designed various families of scheduling algorithms, also called scheduling policies.
In particular, the Round-Robin (RR) scheduling algorithm [46] provides a fair
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Round Robin execution

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Q1 Executing Waiting CS Executing

Q2 Waiting CS Executing

Q3 Waiting CS Executing

Q1 completedQ2 completed Q3 completed

Figure 2.13: Execution of the three SPARQL queries from Figure 2.12 using the
Round Robin scheduling policy.

allocation of CPU between tasks, avoids convoy effect, reduces the waiting time,
and provides excellent responsiveness. RR runs a job for a given time quantum,
then suspends it and switches to the next task. It repeatedly does so until all tasks
are finished. This action of suspending a task to resume it later is called preemption.
Figure 2.13 shows the execution scenario from Figure 2.12 executed under a RR
scheduling policy. Jobs run for a time quantum of 10 seconds, after which the
scheduler triggers a context switch (CS) operation to suspend the current task and
resume the next one. In our example, context switching takes about two seconds.
In the RR algorithm, the value of this time quantum is critical for its performance.
If it is too high, RR behaves like FCFS with the same issues, and when it is too
low, the overhead of context switching dominates the overall performance.

Scheduling algorithms to organise query execution at SPARQL endpoints [49,
70] has been considered to reduce the impact of convoy effects. However, all of these
approaches require to know the cost of incoming SPARQL queries, e.g., the query
execution time or the CPU and memory used. For a public SPARQL query server,
this cost is hard to estimate as it can accept any type of query [40]. Furthermore,
these approaches only consider the scheduling issue at the scope of operating
systems, i.e., only between running tasks, excluding those waiting in the
server’s queue. So, while the operating systems may use the RR algorithm, or
any equivalent scheduling policy, the whole SPARQL query execution model still
follows the FCFS policy. If we want to build a fully preemptive Web server, we
need to “zoom-out” and consider the queries sent to the server as the tasks
and the Web server as the resource that tasks competed to get access.
Currently, no SPARQL query server provides such preemption.
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Chapter 3

Web preemption for public SPARQL
Query Servers

As stated before, quotas are an essential part of the Web ecosystem, as they allow
data providers to regulate how users consume their services. In this thesis, we
hypothesize that the issue with time quotas is not that they interrupt queries, but
the impossibility for the client to resume the query execution afterward. Inspired
by the work on time-sharing scheduling policies, we propose a new query execution
model for SPARQL query servers, called Web Preemption.

We define Web preemption as the capacity of a Web server to suspend a running
query after a fixed quantum of time and resume the next waiting query. When the
server suspends a query, it returns the query’s partial results and suspended state
Si to the Web client, which can then resume query execution by sending Si back
to the Web server. Compared to an FCFS scheduling policy, our results show that
Web preemption provides a fair allocation of Web server resources across queries,
a better average query completion time per query, and a better time for first results
[5].

3.1 The Web preemption execution model

3.1.1 Model definition

We now formally define the Web preemption execution model. We consider a
preemptive Web server, which hosts a read-only RDF dataset, and a smart Web
client, that evaluates SPARQL queries using the server. The server has a pool of
server workers parameterized with a fixed time quantum. Workers are in charge
of query execution. The server also has a waiting queue to store incoming queries
when all workers are busy. We consider an infinite population of clients, a finite
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New
querystart

Waiting
in queue

Ready to
execute

Running for
a quantumSuspendedSavedSaved state Si

received

Execution
completed

Preemptive Web ServerSmart Web Client

Q sent to server Worker available

Resume
execution

Execution completed

Quantum
exhausted

Save the
execution

plan

Server
sends Si

Clien
t send

s Si

Figure 3.1: Possible states of query execution in a preemptive Web Server.

server queue, and a finite number of server workers.
A preemptive Web server supports three operations: Execute, Resume, and

Suspend. The Execute operation is used by the server to execute a query Q
for a time quantum q. It takes as input a running query Qi represented by its
physical query execution plan, denoted PQi

, and executes it for the duration q.
Then, it produces a set of solution mappings ωi and the execution plan P ′Qi

, which
is the state of PQi

after the execution (Execute(PQi
) = 〈ωi, P

′
Qi
〉). The Suspend

operation, which saves the query execution state, is applied to PQi
and produces a

saved state Si (Suspend(PQi
) = Si). The Resume operation, which resumes query

execution from a saved state, is the inverse operation: it takes Si as a parameter
and restores the physical query execution plan (Resume(Si) = PQi

).
Figure 3.1 presents possible states of a query. The transitions are executed either

by the Web server or by the client. The Web server accepts, in its waiting queue,
Web requests containing either SPARQL queries or suspended queries. If a worker
is available, it picks a query from the waiting queue. For a query Qi, the worker
produces a physical query execution plan PQi

using the optimize-then-execute
paradigm [27] and starts its execution for a time quantum. For a saved state Si,
the server resumes the execution of the corresponding query Qi using the Resume
operation. The time to resume the physical query execution plan for a query is not
deducted from the quantum.

If a query completes before the time quantum, then the server returns the results
to the Web client, and the query execution is complete. If the time quantum is
exhausted and the query is still running, then the server uses the Suspend operation
to suspend execution and produce a saved state Si. The time to suspend and save
the query is not deducted from the quantum. Next, the server returns a page of
results pi to the client, which is a tuple pi = 〈ωi, Si〉 where ωi is the set of solution
mappings produced during the time quantum qi, and Si is the saved plan obtained
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when suspending the running query at the end of qi. The Web client is then free to
continue the query execution by sending Si back to the Web server.

Consequently, the evaluation of a SPARQL query using a preemptive Web server
create a partition of solution mappings over time, where the Smart client retrieves
partial set of solution mappings ω1, . . . , ωn over the duration of query execution.
Given a RDF Dataset D and a preemptive Web Server with time quantum q. The
correct evaluation of a SPARQL query Q over D using the server produces a finite
set of pages P = {p1, . . . , pn} which have the following properties:

1. JQKD =
⋃
〈ωi,Si〉∈P ωi.

2. It holds that, for pn = 〈ωn, Sn〉, Sn = nil.
3. For every pair of two distinct pages pi = 〈ωi, Si〉 ∈ P , pj = 〈ωj, Sj〉 ∈ P, it

holds that Si 6= Sj.
4. There exists a strict total order ≺ on P such as, ∀pi = 〈ωi, Si〉 ∈ P , ∃pj =
〈ωj, Sj〉 ∈ P, where pj is the direct successor of pi according to ≺, it holds
that Execute(Resume(Si)) = 〈ωj, x〉 and Suspend(x) = Sj.

Property 1 states that the client receives all query solutions (JQKD) after the
last page is produced. Property 2 asserts that the last page produced does not
contains any saved state: query execution has completed and the server cannot
resume it past this point. Properties 3 and 4 states that query execution progresses
over time: all saved states are distinct and produced linearly in time.

3.1.2 Illustration

To illustrate our model, consider the execution scenario from Figure 3.2, which
extends the one from Figure 2.12. Recall that we have three distinct web clients
who want to execute one SPARQL query each, Q1, Q2, and Q3, and their execution
times are respectively 20 seconds, 5 seconds, and 5 seconds. We also consider that
the server only offers one worker thread, so it can only execute one query at a time.
In this scenario, Q1 arrives first at the server, then Q2 and Q3 arrive at t3 and t4,
respectively. We have seen in Chapter 1 that, if the server follows a First-Come
First-Served scheduling policy, we have an average waiting time of 0+17+22

3
= 13

seconds, an average query completion time of 20+25+30
3

= 25 seconds and an average
time for the first results of also 25 seconds.

Now, we review the same execution scenario, but under the Web Preemption
execution model, with a time quantum of 10 seconds. In this case, the server
suspends the execution of Q1 after 10 seconds, saves the execution state, and
returns it to the client. Then, the server executes Q2 and Q3 in sequence, and
both queries complete under the time quantum. At t19, the server has received the
saved state of Q1, but Q3 is still running, so the server put the saved state in the
waiting queue. At t23, the server resumes the execution of Q1 from its saved state,
and the query runs for the remaining 10 seconds. For this scenario, we have an
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FCFS execution

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Q1 Executing

Q2 Waiting Executing

Q3 Waiting Executing

Q1 completed Q2 completed Q3 completed

Web Preemption execution

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Q1 Executing Suspend on client-side Waiting Resume Executing

Q2 Waiting Executing

Q3 Waiting Executing

Q1 completedQ2 completed Q3 completed

Figure 3.2: First-Come First-Served (FCFS) policy compared to Web Preemption
(time quantum of 10s and overhead of 3s).

average waiting time of 4+10+14
3

= 9.3 seconds, an average query completion time of
35+16+19

3
= 23.3 seconds, and an average time for the first results of 12+16+19

3
= 15.6

seconds. So, compared to the FCFS scenario, Web Preemption reduces the average
waiting time of 4 seconds (≈ 30%), the average query completion time of 2 seconds,
and the average time for the first results of 10 seconds (≈ 40%).

Notice that, in this scenario, suspending and resuming a query takes about 3
seconds. This duration is called the overhead of Web Preemption and significantly
impacts query execution performance. Consequently, the main challenges with Web
preemption are to bound the preemption overhead in time and space and determine
the time quantum required to amortize the overhead.

3.2 Challenges of implementing the Web
preemption model

The Web Preemption execution model presents several challenges when it comes to
its implementation, which all relate to the minimization of the preemption overhead.
We now review these challenges and will propose their solutions in the next chapter.
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3.2.1 Minimizing the preemption overhead

As said before, the main bottleneck of the Web Preemption model is its overhead.
So, we need to bound the time and space complexities of the Suspend and Resume
operations to the smallest complexity possible. Informally, these complexities
correspond to the following:

• The time complexity of Suspend is the complexity of interrupting and then
saving a physical query execution plan.

• The time complexity of Resume is the complexity of resuming a physical
query execution plan from a saved state.

• The space complexity of Suspend is the size of the saved state produced after
saving a physical query execution plan.

Ideally, we want these complexities to only depends on the query evaluated,
and not on the size of the RDF dataset. Otherwise, the preemption overhead will
grow with the size of the data, which is intractable in the context of the Web
of Data, where the data volume is always increasing [58, 60]. So, we want our
complexities to near a complexity of O(|Qi|), where |Qi| is the number of operators
in the physical query execution plan used to execute Qi. It requires to suspend,
save, or resume the state of all physical query operators in any possible physical
query execution plan in near-constant time, i.e., O(1).

However, some physical SPARQL query operators need to materialize data
in their internal states, i.e., build collections of mappings collected from other
operators to perform their actions. To illustrate, recall the Sort iterator from Table
2.1, used to evaluate the ORDER BY SPARQL operator. This physical operator
first needs to store all input solution mappings in a table before producing any
results. If the SPARQL query has n solution mappings, then the time complexity of
suspending and saving the internal state of the Sort iterator is in O(n). Additionally,
if we consider a stateful Web Preemption, we would need to ship these n results
between the client and the server each time preemption occurs. This situation could
generate significant data transfer and deteriorate query execution performance. For
resuming physical operators, similar reasoning holds.

Consequently, we distinguish two categories of physical SPARQL query op-
erators: mapping-at-a-time and full-mapping operators, formalized in Definition
4. Database systems made a similar distinction between tuple-at-a-time and
full-relation operators [26] (see Chapter 15.2).

Definition 4 (Types of physical query operators). A physical SPARQL query
operator OP is a mapping-at-a-time operator if, at any time, it stores at most one
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set of solution mappings in its internal state. Otherwise, OP is a full-mappings
operator.

From Definition 4, we have the intuition that full-mapping operators are going
to be more expensive to suspend and resume than mapping-at-a-time operators.
Thus, the first challenge of implementing the Web preemption model is to suspend
and resume any kind of operators efficiently, to achieve the lowest bound on time
and space complexities.

3.2.2 Choosing between stateless and stateful preemption

In the Web Preemption model, there are two possible modes for producing and
storing saved states: stateless or stateful. In stateless mode, the server directly
returns saved states to the client, alongside query results. This strategy, widely
used for building public Web APIs, provides several properties:

• Fault-tolerance: As saved states are saved client-side, any client can resume
query execution even if the server has restarted due to a crash.

• Scaling: The data provider can replicate the server to scale dynamically
under the load without having to copy saved states across replicas.

• Load balancing: All preemptive Web servers that host the same RDF
dataset can resume the same saved state. Thus, the data provider can
balance the load of query processing across several replicated servers.

However, the stateless mode exhibits two main flaws. First, the server must send
all saved states through the HTTP protocol, so the preemptive Web server needs
to encode them in a compatible format. This serialization phase increases the time
complexity of the Suspend and Resume operations, as more compressed formats
are more expensive to encode and decode. Second, the size of saved states increases
the data transfers between the client and the server. So, the preemptive Web server
works under even stringent constraints on the space complexity of the Suspend
operation, which further restricts the space of physical query operators available
for SPARQL query processing. As an example, the Sort iterator, from Figure 2.1,
can increase a lot the preemption overhead in stateless mode, as it needs to store
all query results in its internal state. Hence, it might be excluded by the SPARQL
query engine when evaluating an ORDER BY operator.

At the opposite, in stateful mode, all saved states are stored server-side, and
the clients receive only references. For example, saved states can be assigned
unique identifiers and stored in a fast-access in-memory database. The clients
then only receive these identifiers as saved states, and when they sends them
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back to the server, it accesses the in-memory database to get the associated saved
plans. Stateful mode allows the preemptive Web server to use cheaper serialization
strategy for saved states, as they never need to be transmitted over the network. It
effectively removes the increased preemption overhead that occurs in stateless mode,
and increase the space of physical query operators available to the server. However,
in stateful mode, we lose the fault-tolerance, scaling, and load balancing properties
compared to the stateless mode. As saved states are stored on the server-side,
replication becomes more complex. We need to either replicate saved states or
store them in a centralized location. In the case of server crashes, saved states can
be lost, which forces the clients to restart their queries from the beginning.

Stateless and stateful modes present different tradeoffs when it comes to saving
query execution plans and saving their saved states. So, an implementation of the
Web Preemption model must choose between stateless preemption, and favor fault-
tolerance and scaling over query processing performance, or a stateful preemption,
and choose the opposite tradeoff.

3.2.3 Communication between physical query operators

When the server saves the sate of a physical query execution plan, we also need
to save the intermediate results exchanged between operators in the plan. So, the
implementation chosen by the SPARQL query engine for communication inside the
plan has a direct impact on the space complexity of the Suspend operation. If the
query engine wants to use temporary files to store intermediate results, then we
also need to save these files when preemption occurs, and in the case of stateless
web preemption, we need to send them to the client.

Communication between operators has no direct relationship with the use of full
mappings operators, as a plan entirely composed of mapping-at-a-time operators can
create significant inter-operator communication. For example, under the Vectorized
processing model [78], mapping-at-a-time operators can exchange large vectors of
intermediate results while only saving a single set of solution mappings in their
internal state. Thus, an implementation of the Web Preemption model has to care
with how it handles inter-operator communication, as it impacts the preemption
overhead.

3.2.4 Saving consistent states of the physical query
execution plan

When suspending a physical query execution plan, the SPARQL query engine has to
visit each operator in the plan and interrupt it a consistent state from which it can
be resumed later. However, physical query operators may contain non-interruptible
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sections : query execution cannot be interrupted until exiting those sections. This
concept is similar to the notion of kernel sections in operating systems [5], which
are sections of code that cannot be interrupted by the scheduler.

Non-interruptible sections can occur in any physical query operator. For
example, an operator that reads data from the disk will want to consider the retrieval
of each data item as a non-interruptible operation. Otherwise, the operator could
be interrupted while reading bytes from the disk, which can result in a corrupted
state or cancel the operation indefinitely. In a sense, non-interruptible sections
help to provide progression to the query execution, as they define atomic units of
progress in physical query operator.

However, the usage of these sections can have an unexpected side-effect on the
preemption overhead. Indeed, when preemption occurs, if a physical query operator
is in such a section, then the query engine must wait for the operator to exit the
section before interrupting it. Thus, the time complexity of the non-interruptible
sections impacts the time complexity of the Suspend operation: the longer these
sections are, the longer it will take to suspend the running query. In the worst
case, they can re-introduce convoy effects. In [16], Blasgen et al. observe this effect
when the usage of locks in concurrency control adds unwanted waiting time in
query processing. Thus, an implementation of Web Preemption must minimize
the duration of non-interruptible sections, at the risk of increasing the preemption
overhead.
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Chapter 4

SaGe: A preemptive SPARQL
query engine

The Web preemption model allows data providers to build SPARQL query servers
that are not subject to convoy effects and always deliver complete results for any
SPARQL queries. However, as seen at the end of the previous chapter, we are
left with a significant issue related to the implementation of this model: Given a
SPARQL query Q, we need to minimize the time and space complexities of the
Suspend and Resume operations when applied to Q.

In this chapter, we propose SaGe, a SPARQL query engine that implements
the Web Preemption model and solves the issue above. Our objective is to bound
these complexities such that they depend only on the number of operations in the
query plan. Consequently, the problem is to determine which physical query plans
PQ has a preemption overhead bounded in O(|Q|), where |Q| denotes the number
of operators in the expression tree of PQ.

4.1 Implementing the Web Preemption model
In the previous chapter, we have observed that the preemption overhead for
full mappings physical operators is likely to exceed our target bound of O(|Q|).
To overcome this issue, we propose and motivate a serie of design choices for
implementing the Web Preemption model, in order to minimize the preemption
overhead. Bear in mind that we propose here one feasible implementation of the
Web Preemption model, but no the only one.

First, to reduce the preemption overhead of full-mappings operators, we choose
to distribute operators between a SaGe server and a SaGe Smart Web client as
follows.

• Mapping-at-a-time operators are suitable for Web preemption, so they are
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PREFIX schema: <http://schema.org/contentSize/>
PREFIX gr: <http://purl.org/goodrelations/>
SELECT DISTINCT ?vo ?v1 WHERE {
?v0 gr:includes ?v1. # tp1
?v1 schema:contentSize ?v3. # tp2

}

Figure 4.1: SPARQL query Q3, from the WatDiv benchmark [4].

supported by the SaGe server. They are a subset of CoreSPARQL [38],
composed of Triple Patterns, Basic Graph Patterns, UNION, FILTER, and
SELECT operations. We explain how to implement them in Section 4.2.

• Full-mappings operators are not suitable for Web preemption, so they are
implemented in the SaGe Smart Web client. They are physical operators used
to implement OPTIONAL, SERVICE, ORDER BY, GROUP BY, DISTINCT, MINUS,
FILTER EXIST, and aggregations operations(COUNT, AVG, SUM, MIN, MAX). We
explain how to implement them in Section 4.3.

As proposed in LDF [38, 72], the collaboration of the SaGe client and the
SaGe server allows to execute full SPARQL queries. Hence, SaGe is an LDFM
MSaGe where LS ∪ LC = CoreSPARQL.

Regarding the communication between operators, we choose to follow the iterator
model [27, 28] to avoid the materialization of intermediate results between physical
operators. To support preemption, we extend standard iterators to preemptable
iterators, formalized in Definition 5. As we connect iterators in a pipeline, we
consider that each iterator is also responsible for recursively stopping, saving and
resuming its predecessors.

Definition 5 (Preemptable iterator). A preemptable iterator is an iterator that
supports, in addition to the classic Open, GetNext, and Close methods [28], the
following methods:

• Stop waits for all non-interruptible sections to complete, and then it interrupts
the iterator and its predecessor(s).

• Save serializes the current state of the iterator and its predecessor(s) to
produce a saved state.

• Load reloads the iterator and its predecessor(s) from a saved state.

Finally, we choose to implement the SaGe preemptive SPARQL query server
under the stateless mode and return the saved pipeline of iterators to the client.
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A SaGe page

Mappings Saved state
π?v0, ?v1

µc = { ?v0 7→ wm:Offer81505,
?v1 7→ wm:Product11,

?v3 7→ "4355" }

Index Loop join
µc = { ?v1 7→ wm:Product12, ?v3 7→ "4356" }

Index Scan Jtp2KD
ti = 224

sou
rce

Index Scan Jµc(tp1)KD
ti = 2

inner

?v0 7→ wm:Offer79386
?v1 7→ wm:Product10014

?v0 7→ wm:Offer81506
?v1 7→ wm:Product10066

µ1

µ2

...

Figure 4.2: A tree representation of a page returned by the SaGe server when
executing SPARQL query Q3 with the saved plan passed by value.

Algorithm 1: Implementation of the Suspend and Resume functions
following the iterator model
Require: I: pipeline of iterators, S: serialized pipeline state (as

generated by Suspend)
1 Function Suspend(I):
2 let root←first iterator in I
3 Call root.Stop()
4 return root.Save()

5 Function Resume(I, S):
6 let root←first iterator in I
7 Call root.Load(S)
8 return I

To illustrate, consider Figure 4.2, which shows a results page as returned by the
SaGe server when executing the SPARQL query Q3 from Figure 4.1. Thus, we
favour a fault-tolerant implementation of Web preemption. The state of the Scan
operator contains the id of the last triple read ti, and the state of the Index Loop
Join operator contains mappings pulled from the previous operator and the state
of the inner scan of tp1.

4.2 The SaGe preemptive SPARQL Query Server

The SaGe server supports the evaluation of SELECT, Triple Patterns, Basic Graph
Patterns, UNION, and FILTER operations. The logical and physical query plans are
built following the optimize-then-execute [27] paradigm.

Algorithm 1 presents the implementation of the Suspend and Resume operations
for a pipeline of preemptable query iterators. Suspend simply stops and saves
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Preemptable Space complexity of Time complexity of
iterator Suspend Suspend Resume
Projection O(|V |+ | dom(P )|) O(|V |+ SP ) O(RP )
πV (P ) Proposition 1 Proposition 2 Proposition 3

Index Scan O(|tp|+ |t|) O(logb |D|) O(logb |D|)
IScan(tp) Proposition 4 Proposition 5 Proposition 6
Merge Join O(| dom(P1)|+ | dom(P2)|) O(SP1 + SP2) O(RP1 +RP2)

MJoin(P1, P2) Proposition 7 Proposition 8 Proposition 9
Index Loop Join O(| dom(P )|+ |tp|+ |t|) O(SP + logb |D|) O(RP + logb |D|)
IJoin(P, tp) Proposition 10 Proposition 11 Proposition 12

Multi-set Union O(| dom(P1)|+ | dom(P2)|) O(SP1 + SP2) O(RP1 +RP2)
MUnion(P1, P2) Proposition 13 Proposition 14 Proposition 15

Filter O(| dom(P )|+ |R|) O(SP ) O(RP )
Filter(P,R) Proposition 16 Proposition 17 Proposition 18
Physical plan O(| dom(Q)|+ |Q| × |t|) O(|Q| × logb |D|) O(|Q| × logb |D|)

PQ Theorem 1 Theorem 2 Theorem 3

Table 4.1: Complexities of preemption for preemptable iterators.

each iterator recursively in the pipeline, and Resume reloads the pipeline in the
suspended state using a saved state. To illustrate, consider the SaGe page shown
previously in Figure 4.2. This page contains the plan that evaluates the SPARQL
query Q2 with |Q2| = 4 operators. A preemptable projection operator implements
the SELECT operator, a preemptable Index Scan implements the evaluation of the
evaluation tp2, and a preemptable Index loop join implements the join between tp2
and tp1. In this saved state, the evaluation of tp2 has been suspended after scanning
224 relevant triples, while the Index Loop join with tp1 has been suspended after
scanning two triples from the inner loop.

In the following, we review SPARQL operators implemented by the SaGe server
as preemptable iterators. We modify the regular implementations of these operators
to include a non-interruptible section when needed. Operations left unchanged
are not detailed. Notably, this includes the Stop operation, as its algorithm is
the same for every preemptable iterator: it waits for all non-interruptible sections
to complete and then suspends the operator. Table 4.1 resumes the complexities
related to the preemption of server operators, where SP and RP denote the time
complexity for suspending and resuming the iterator P , respectively, |Q| denotes
the number of operators in a plan, and |t| and |tp| denote the size of encoding an
RDF triple and a triple pattern, respectively.
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4.2.1 SPARQL query forms

The SPARQL language defines four query forms 1, which use the set of solutions
mappings produced by the evaluation of the WHERE clause of the query to query
results of various types. These query forms are:

• SELECT Returns a subset of the variables bound in a query group pattern
[56]. It is similar to the projection operator in relational databases [26].

• CONSTRUCT Returns an RDF graph constructed by substituting variables
in a set of triple templates [47].

• ASK Returns a boolean indicating whether a query pattern matches or not,
i.e., if the evaluation of the query produces at least one result.

• DESCRIBE Returns an RDF graph that describes the resources found.

Algorithm 2: A Preemptable Projection Iterator πV (P )

Require: V : set of projection variables, I: predecessor in the pipeline
Data: µ: set of solution mappings

1 Function Open():
2 I.Open()
3 µ← nil

4 Function GetNext():
5 if µ = nil then
6 µ← I.GetNext()

7 non interruptible
8 let µ′ ← Projection(µ, V )
9 return µ′

10 Function Close():
11 I.Close()

12 Function Save():
13 s← I.Save()
14 return 〈s, µ〉
15 Function Load(s′, µ′):
16 I.Load(s′)
17 µ← µ′

The SaGe query server evaluates SELECT queries using the preemptable
projection operator πV (P ) [62]. It performs the projection of mappings obtained
from its predecessor P according to a set of projection variables V = {v1, . . . , vk}.
Algorithm 2 gives the implementation of this iterator. In this algorithm, we need
to ensure that, when preemption occurs, the operator does not discard mappings
without applying projection to them. When the GetNext() is called, the operator
checks if the local variable µ has a value. If not, it pulls a set of solution mappings
from its predecessor in the pipeline and stores it in µ Then, at Lines 7-9, it uses a

1https://www.w3.org/TR/rdf-sparql-query/#QueryForms
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non-interruptible section to save the projection results in a temporary variable µ′,
then it discards the last µ read from the pipeline, and returns µ′ as a new query
result. Thus, when preemption occurs during the execution of GetNext(), only
two cases can arise: 1) µ has no value, so the iterator will restart by pulling a new
value from the pipeline, and 2) µ has a value, so the iterator resume the projection
operation.

The Save() and Load() method are simple for this operator: the first saves
the current value of µ, and the latter reloads this value from the saved state.
Propositions 1, 2, and 3 give the preemption overhead for the preemptable projection
iterator. As the proofs of these propositions use the same structure as the other
proofs in this chapter, we write them in detail, and we will simplify for the others.

Proposition 1. The space complexity of suspending a preemptable projection
iterator πV (P ) is in O(|V |+ | dom(P )|), where dom(P ) is the set of variables bound
in solution mappings produced by the predecessor iterator P .

Proof. The Save() function in Algorithm 2 saves the set of variables V and the
current value of the local variable µ, which can either be nil or a set of solution
mappings read from the predecessor iterator P . The space complexity of a set of
solution mappings µ is in O(|dom (µ)|). So if we consider dom(P ) as the set of
variables bound in solution mappings produced P , the space complexity of the
Suspend() operation in Algorithm 2 is in O(|V |+ | dom(P )|).

Proposition 2. The time complexity of the Suspend operation applied on a pre-
emptable projection iterator πV (P ) is in O(|V |+SP ), where SP is the time complexity
for suspending the iterator P .

Proof. To compute the time complexity of the Suspend applied to a preemptable
iterator, we need to compute bounds on: 1) the duration of the iterator’s non-
interruptible sections, 2) the time complexity of the iterator’s Save function.

In Algorithm 2, there is only one non-interruptible section from Line 7 to 9. It
contains three operations: a projection operation, an assignment, and a function
return call. The first one selects a subset of the variables bound in a set of solution
mappings (O(|V |)), while the other one performs an assignment to a variable (′(1)).
So, the complexity of the projection predominates, and the non-interruptible section
from Line 7 to 9 is bounded in O(|V |).

Next, for the Save function, its time complexity is dominated by the operation
of saving the predecessor iterator P . So, if SP is the time complexity for suspending
the iterator P , the time complexity of Save is bounded in O(SP ).

Consequently, the time complexity of suspending and saving a preemptable
projection iterator πV (P ) is in O(|V |+ SP ).
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Algorithm 3: A Preemptable Index Scan Iterator, evaluating a triple
pattern tp using a clustered index over the RDF dataset
Require: tp: triple pattern, D: RDF dataset, Itp: clustered index over tp
Data: t: last matching RDF triple read

1 Function GetNext():
2 non interruptible
3 t← next RDF triple matching tp in D
4 let µ← set of solutions mappings such as µ(t) = tp
5 return µ

6 Function Save():
7 return 〈tp, t〉
8 Function Load(tp′, t′):
9 tp← tp′

10 t← Itp.Locate(t′) // Locate the last triple read

Proposition 3. The time complexity of resuming a preemptable projection iterator
πV (P ) is in O(RP ), where RP is the time complexity for resuming the iterator P .

Proof. The operation of resuming the predecessor iterator P dominates the time
complexity of the Load() function in Algorithm 2. So, if RP is the time complexity
for resuming the iterator P , then the time complexity of resuming the preemptable
projection iterator πV (P ) is in O(RP ).

For evaluating CONSTRUCT, ASK, and DESCRIBE queries, we do not need
dedicated physical query operators. Indeed, the SaGe Smart Web client can execute
them using a single SPARQL SELECT query, followed by some lightweight client-
side computation. Given a CONSTRUCT query Qc = CONSTRUCT H WHERE P ,
where H is a set of triple patterns and P is a graph pattern, the answers of Qc are
JQcKD = {µ(tp) | ∀µ ∈ JP KD,∀tp ∈ H,µ(tp) is well-formed} [47]. Thus, to evaluate
Qc, the Smart Web client needs to send a SPARQL query Q′c = SELECT * WHERE P
to the server, and then computes the answers of Qc locally from those of Q′c.
Evaluating an ASK query requires to find at least one solution mappings that
satisfy the query group pattern. So, the client can simply send an equivalent
SELECT query with a modifier LIMIT 1, and output True if it receives results.
For DESCRIBE queries, the Smart Web client can rewrite them into equivalent
CONSTRUCT queries and evaluate the rewritten queries as described before.
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4.2.2 Triple Pattern evaluation

The evaluation of a triple pattern tp requires sequentially reading an RDF dataset
D, locate all matching RDF triples, and produce the corresponding set of solutions
mappings. Suspending and resuming this process can be done by saving the last
matching RDF triple read before preemption occurs and resume scanning from this
triple, respectively. To do this, we choose to implement the SaGe server as an
RDF triple store and rely on clustered indexes to locate RDF triples efficiently
using index scans. For clustered indexes, we rely on B+-trees [17], as they offer
excellent performance for index scans. We use three indexes SPO, OSP, and POS,
to achieve optimal coverage for index scans with minimal space overhead [34].

Algorithm 3 gives the implementation of a preemptable index scan for evaluating
a triple pattern. The GetNext() function scans through RDF triples matching
the triple pattern using the clustered index. At each call, it locates the next
matching triple, and produces solutions mappings from it. The whole process is a
non-interruptible section, as it represents the smallest unit of progression for this
iterator. The Save() function stores the triple pattern tp and the last RDF triple t
read. Using the indexes, the Load() function locates the last matching RDF triple
read t. Propositions 5, 4, and 6 give the preemption overhead for the preemptable
Index Scan iterator.

Proposition 4. The space complexity of suspending a preemptable index scan
iterator IScan(tp) is in O(|tp|+ |t|), where |tp| and |t| denote the size of encoding
a triple pattern and a RDF triple, respectively.

Proof. The Save() function of Algorithm 3 saves the triple pattern evaluated, and
the last RDF triple read before preemption occurs. Thus, its space complexity is
in O(|tp|+ |t|).

Proposition 5. The time complexity of suspending a preemptable index scan
iterator IScan(tp) is in O(logb(|D|)), where b is the B+-tree order and D is the
RDF dataset queried.

Proof. The only non-interruptible section of Algorithm 3 is from Line 2 to 5. The
operation that predominates the time complexity of this section is the production
of the next matching RDF triple. Since we use three clustered indexes in our triple
store, we always scan matching RDF triples as continuous sequences. Thus, when
preemption occurs, we can distinguish two cases: 1) The iterator is locating the
first matching RDF triple, and 2) The iterator is reading the next matching RDF
triple. In the first case, the iterator uses a lookup in the appropriate B+-tree,
which is in O(logb(|D|)) [17]. In the second case, the iterator jumps to the adjacent
triple in the index, which is in O(1). So, in the worst case, preemption occurs when
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the iterator is locating the first matches, so the time complexity of suspending a
call to GetNext() in Algorithm 3 is in O(logb(|D|)).

Proposition 6. The time complexity of resuming a preemptable index scan iterator
IScan(tp) is in O(logb(|D|)), where b is the B+-tree order and D is the RDF
dataset queried.

Proof. The Load() function of Algorithm 3 resumes triple pattern evaluation by
locating the last RDF triple read before preemption occurs. As seen in the proof
of Proposition 5, such lookup is in O(logb(|D|)).

From Proposition 5 and 6, we observe that the time complexity of suspending
and resuming a preemptable index scan iterator depends on a logarithm of the size
of the RDF dataset queried. As triple pattern evaluation is the basic building block
of any physical SPARQL query execution plan, we conclude that we cannot meet
our bound of O(|Q|) on the preemption overhead. Consequently, we propose
a new target lower bound, in O(|Q| × logb(|D|)). It means that the preemption
overhead must mostly depend on the number of operators required to evaluate the
query Q, rather than the size of the RDF dataset.

4.2.3 Basic Graph pattern evaluation

The evaluation of a Basic Graph pattern corresponds to the evaluation of the
natural join of a set of triple patterns. Physical join operators fall into three
categories [26]:

• Hash-based joins, which store data in hash tables to join results (Symmetric
Hash join [77], XJoin [71]).

• Sort-based joins, which take advantage of ordered relations (Merge join,
ZigZag Merge join [26, 27]).

• Loop-based joins, which iterates over the inner relation in a loop fashion
(Nested Loop join, Index Loop join [26, 27]).

Hash-based joins [27, 71, 77] operators are not suitable for preemption. As
they build an in-memory hash table on one or more inputs to evaluate the join,
they are full-mappings operators. However, the sort-based joins and loop joins
are mapping-at-a-time operators, as they need to store only one set of solution
mappings at a time in their internal state. Consequently, they are preemptible
with low overhead. For sort-based joins, we can only consider merge joins, where
joins inputs are already sorted on the join attribute. Otherwise, this will require to
perform an in-memory sort on the inputs. In the following, we present algorithms
for building preemptable Merge join and preemptable Index Loop join iterators.
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Algorithm 4: A Preemptable Merge Join Iterator MJoin, joining the
output of two iterators Ileft and Iright.
Require: v: join variable, Ileft: outer join input, Iright: inner join input.
Data: µl: last element read from Ileft, µr: last element read from Iright.

1 Function Open():
2 µl ← nil
3 µr ← nil

4 Function Close():
5 Ileft.Close()
6 Iright.Close()

7 Function Stop():
8 Ileft.Stop()
9 Iright.Stop()

10 Function Save():
11 let sl ← Ileft.Save()
12 let sr ← Iright.Save()
13 return 〈sl, sr, µl, µr〉
14 Function Load(sl, sr, µ′l, µ′r):
15 Ileft.Load(sl)
16 Iright.Load(sr)
17 µl ← µ′l
18 µr ← µ′r

19 Function GetNext():
20 while Ileft.HasNext() ∧ Iright.HasNext() do
21 if µl = nil then
22 µl ← Ileft.GetNext()

23 if µr = nil then
24 µr ← Iright.GetNext()

25 if µl[v] = µr[v] then
26 non interruptible
27 r ← µl ∪ µr

28 µl ← nil
29 µr ← nil
30 return r

31 else if µl[v] < µr[v] then
32 non interruptible
33 µl ← nil

34 else
35 non interruptible
36 µr ← nil

37 return nil

Preemptable Merge join The Merge join algorithm merges the solutions map-
pings from two join inputs, i.e., other operators that produce results sorted on the
join attribute. SaGe extends the classic merge join [27] to the Preemptable Merge
join iterator, as shown in Algorithm 4. The GetNext() function is very similar to
its non-preemptible version [27]: the main idea is to scan both join inputs until
we found a match. We use two internal variables µl and µr to save the last set of
solution mappings read from the inputs Ileft and Iright, respectively. When the iter-
ator needs to read new values from the inputs, we reset the values of µl and/or µr,
which triggers recursive calls to Ileft.GetNext() and Iright.GetNext(), respectively
(Lines 21-24). This way, we do not wrap these calls into non-interruptible sections;
otherwise, we will have to wait for their completion when preemption occurs.

The Stop, Save, and Load functions recursively stop, save or load the joins
inputs, respectively. Thus, the only internal data structures hold by the join
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operator are the two inputs and the last sets of solution mappings read from them.
Propositions 7, 8, and 9 give the preemption overhead for this iterator.

Proposition 7. The space complexity of suspending a preemptable merge join
operator MJ(P1, P2) is in O(| dom(P1)|+ | dom(P2)|), where dom(Pi) is the set of
variables bound in solution mappings produced by the predecessor iterator Pi.

Proof. The Save() function of Algorithm 4 saves the state of both join inputs, and
the last sets of solution mappings read from them. So, it space complexity is in
O(| dom(P1)|+ | dom(P2)|).

Proposition 8. The time complexity of suspending a preemptable merge join
operator MJ(P1, P2) is in O(SP1 + SP2), where SPi

is the time complexity of
suspending the iterator Pi.

Proof. The non-interruptible sections of Algorithm 4 only contain assignments to
local variables, so their duration is negligible. So, the time complexity of suspending
the join inputs dominates the time complexity of suspending the iterator, i.e.,
O(SP1 + SP2).

Proposition 9. The time complexity of resuming a preemptable merge join operator
MJ(P1, P2) is in O(RP1 +RP2), where RPi

is the time complexity of resuming the
iterator Pi.

Proof. The time complexity of resuming the join inputs dominates the time com-
plexity of the Load() function from Algorithm 4, i.e., O(RP1 +RP2).

Preemptable Index Loop join The Index Loop join algorithm [27] exploits
indexes on the inner triple pattern for efficient join processing. This algorithm
has already been used for evaluating BGPs in [36]. SaGe extends the classic
Index Loop joins to a Preemptable Index join Iterator (PIJ-Iterator) presented in
Algorithm 5. When executing, the iterator performs the same steps repeatedly until
all solutions are produced: (1) It pulls solutions mappings µc from its predecessor.
(2) It applies µc to tpi to generate a bound pattern b = µc(tpi). (3) If b has no
solution mappings in D, it tries to read again from its predecessor (jump back
to Step 1). (4) Otherwise, it reads RDF triples matching b in D, produces the
associated set of solution mappings, and then goes back to Step 1.

A PIJ-Iterator supports preemption through the Stop, Save, and Load functions.
The non-interruptible section of GetNext() only concerns a scan in the dataset.
To save a PIJ Iterator, we keep the last set of solution mappings read from its
predecessor and the state of the iterator used to scan the inner loop. And to
resume such iterator, we resume the iterator of the inner loop where it was left
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Algorithm 5: A Preemptable Index Join Iterator Ii: a preemptable join
operator used by SaGe for BGP evaluation
Require: Ileft: iterator responsible for the evaluation of the outer join

input, tpr: inner join input, D: RDF dataset.
Data: µc: last set of solutions read from Ileft, Ifind: Preemptable Index

Scan Iterator.
1 Function Open():
2 Ileft.Open()
3 µc ← nil
4 Ifind ← Preemptable Index Scan Iterator over ∅
5 Function Close():
6 Ileft.Close()
7 Ifind.Close()

8 Function GetNext():
9 while ¬Ifind.HasNext() do

10 µc ← Ileft.GetNext()
11 if µc = nil then
12 return nil

13 Ifind ← Preemptable Index Scan Iterator over Jµc(tpr)KD
14 non interruptible
15 let µ← Ifind.GetNext()
16 return µ ∪ µc

17 Function Stop():
18 Ileft.Stop()
19 Ifind.Stop()

20 Function Save():
21 let s← Ileft.Save()
22 let t← Ifind.Save()
23 return 〈s, tpr, µc, t〉
24 Function Load(s, tp′, µ′, t):
25 Ileft.Load(s)
26 tpr ← tp′

27 if µ′ 6= nil then
28 µc ← µ′

29 Ifind ← Preemptable Index Scan Iterator over Jµc(tpi)KD
30 Ifind.Load(t)
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reading when preemption occurred. Propositions 11, 10, and 12 give the preemption
overhead for the preemptable Index Loop join iterator.

Proposition 10. The space complexity of suspending a preemptable Index Loop
join iterator IJoin(P, tp) is in O(| dom(P )|+ |tp|+ |t|), where dom(P ) is the set of
variables bound in solution mappings produced by the predecessor iterator P , and |t|
and |tp| denote the size of encoding a RDF triple and a triple pattern, respectively.

Proof. The Save() function of Algorithm 5 saves the last set µc of solutions
mappings read from the predecessor, the triple pattern tp to join with, and the
saved state of the preemptable Index Scan iterator Ileft. According to Proposition
4, the latter has a space complexity of O(|tp|+ |t|). Thus, the space complexity of
suspending a preemptable Index Loop join operator is inO(| dom(P )|+|tp|+|t|).

Proposition 11. The time complexity of suspending a preemptable Index Loop
join iterator IJoin(P, tp) is in O(SP + logb |D|), where SP is the time complexity
of suspending the iterator P .

Proof. The non-interruptible section of the GetNext() function in Algorithm 5
contains a call to the GetNext() function of a preemptable Index scan iterator.
According to Proposition 5, the duration of this section is bounded in O(logb |D|).
Next, the Save() method of Algorithm 5 saves the last RDF triple read by the
inner loop, which is in constant time, and the predecessor P in the pipeline. So, if
SP is the time complexity of suspending P , then the time complexity of suspending
a preemptable Index Loop join iterator is in O(SP + logb |D|).

Proposition 12. The time complexity of resuming a preemptable Index Loop join
iterator IJoin(P, tp) is in O(RP + logb |D|), where RP is the time complexity of
resuming the iterator P .

Proof. The Load() method of Algorithm 5 has to resume the predecessor iterator
P and resume the preemptable Index Scan iterator used to evaluate the inner loop.
According to Proposition 6, the time complexity of the latter is in O(logb |D|. So,
if RP is the time complexity for resuming P , then the time complexity of resuming
a preemptable Index Loop join iterator is in O(RP + logb |D|).

4.2.4 UNION evaluation

A UNION operation is the union of solution mappings from two graph patterns.
We consider a multi-set union semantic, as set unions require saving intermediate
results and remove duplicates, and thus cannot be implemented as mapping-at-a-
time operators. The set semantics can be restored by the Smart Web client using
the DISTINCT modifier on the client-side.
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Algorithm 6: A Preemptable Multi-Set Union Iterator MUnion(I1, I2),
merging the outputs of two iterators I1 and I2.
Require: v: join variable, I1: left input, I2: right input.
Data: µ1: last element read from I1, µ2: last element read from I2.

1 Function Open():
2 µ1 ← nil
3 µ2 ← nil

4 Function Close():
5 I1.Close()
6 I2.Close()

7 Function Stop():
8 I1.Stop()
9 I2.Stop()

10 Function Save():
11 let s1 ← I1.Save()
12 let s2 ← I2.Save()
13 return 〈s1, s2, µ1, µ2〉
14 Function Load(s1, s1, µ′1, µ′2):
15 I1.Load(s1)
16 I2.Load(s2)
17 µ1 ← µ′1
18 µ2 ← µ′2

19 Function GetNext():
20 if µ1 = nil ∧ I1.HasNext() then
21 µ1 ← I1.GetNext()
22 else if µ2 = nil ∧ I2.HasNext() then
23 µ2 ← I2.GetNext()

24 non interruptible
25 µ← nil
26 if µ1 6= nil then
27 µ← µ1

28 µ1 ← nil

29 else if µ2 6= nil then
30 µ← µ2

31 µ2 ← nil

32 return µ

Evaluating a multi-set union is equivalent to the sequential evaluation of all graph
patterns in the union. Algorithm 6 gives the implementation of the Preemptable
Multi-set Union iterator, which merges the output of two preemptable iterators
under a multi-set semantic. It works similarly to the preemptable Merge join
iterator. The GetNext() method sequentially produces all results from the first
input I1, and then switches to the second input I2. As before, we use flags to
notify that new sets of solution mappings must be pulled from the inputs, to avoid
unnecessary non-interruptible sections. When preemption occurs, the iterator saves
the state of its two inputs, and the last set of solution mappings read from them.
When the iterator needs to be resumed, it reloads this information from the saved
state. Propositions 14, 13, and 15 give the preemption overhead for this iterator.

Proposition 13. The space complexity of suspending a preemptable multi-set union
iterator MUnion(P1, P2) is in O(| dom(P1)| + | dom(P2)|), where dom(Pi) is the
set of variables bound in solution mappings produced by the predecessor iterator Pi.
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Proof. A preemptable multi-set union iterator saves the same information as a
preemptable merge join iterator (Algorithm 4). Hence, following the proof of
Proposition 7, the space complexity of suspending a multi-set union iterator is in
O(| dom(P1)|+ | dom(P2)|).

Proposition 14. The time complexity of suspending a preemptable multi-set union
iterator MUnion(P1, P2) is in O(SP1 + SP2), where SPi

is the time complexity of
suspending the iterator Pi.

Proof. The single non-interruptible section of Algorithm 6 (Lines 24 to 32) contains
assignments to local variables, so its time complexity is negligible. Next, the Save()
function only needs to save the union inputs. So, if SPi

is the time complexity of
suspending the iterator Pi, then the time complexity of suspending a preemptable
multi-set union iterator MUnion(P1, P2) is in O(SP1 + SP2).

Proposition 15. The time complexity of resuming a preemptable union iterator
MUnion(P1, P2) is in O(RP1 +RP2), where RPi

is the time complexity of resuming
the iterator Pi.

Proof. The time complexity of resuming the union inputs dominates the time
complexity of the Load() function from Algorithm 4, i.e., O(RP1 + SP2).

4.2.5 FILTER evaluation

Algorithm 7: A Preemptable Filter Iterator F (I,R)

Require: R: logical expression, I: predecessor in the pipeline
Data: µ: set of solution mappings

1 Function Open():
2 I.Open()
3 µ← nil

4 Function Close():
5 I.Close()

6 Function Save():
7 s← I.Save()
8 return 〈s,R, µ〉
9 Function Load(s′,R′, µ′):

10 I.Load(s′)
11 R ← R′
12 µ← µ′

13 Function GetNext():
14 while I.HasNext() do
15 if µ 6= nil ∧ µ � R then
16 non interruptible
17 let µ′ ← µ
18 µ← nil
19 return µ′

20 else
21 µ← I.GetNext()
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A SPARQL FILTER is denoted F = σR(P ), where P is a graph pattern, and
R is a built-in filter condition. The evaluation of F yields the solutions mappings
of P that verify R. The evaluation of some filter conditions requires to collect
mappings, like the EXISTS filter, which involves the execution of a graph pattern.
Consequently, we limit the filter condition to pure logical expressions (=, <,≥,∧,
etc) as defined in [56, 62].

Algorithm 7 shows the implementation of a preemptable Filter operator, which
is very similar to the preemptable projection iterator. It pulls a set of solutions
mappings from its predecessor in the pipeline and forwards to the next iterator
in the pipeline all sets of solutions that satisfy the logical expression R, denoted
µ � R [56]. When preemption occurs, we save the predecessor, the last set of
solutions read and the logical expression. Propositions 17, 16, and 18 give the
preemption overhead for the preemptable filter iterator.

Proposition 16. The space complexity of suspending a preemptable filter operator
F (P,R) is in O(| dom(P )|+ |R|), where dom(P ) is the set of variables bound in
solution mappings produced by the iterator P and |R| denotes the size of encoding
the logical expression R.

Proof. A preemptable filter operator saves the last set of solution mappings read
from P and the logical expression evaluated by the iterator, so its space complexity
is in O(| dom(P )|+ |R|).

Proposition 17. The time complexity of suspending a preemptable filter operator
F (P,R) is in O(SP ), where SP is the time complexity of suspending the iterator P .

Proof. The single non-interruptible section of Algorithm 7 (Lines 16 to 19) only
contains assignments to local variables, so its time complexity is negligible. Next,
the Save() function only needs to save its input, the set of solution mappings µ,
and the logical expression R. The last two can both be saved in constant time. So,
if SP is the time complexity of suspending the iterator P , then the time complexity
of suspending a preemptable filter iterator F (P,R) is in O(SP ).

Proposition 18. The time complexity of resuming a preemptable filter operator
F (P,R) is in O(RP ), where RP is the time complexity of resuming the iterator P .

Proof. The time complexity of resuming the iterator input dominates the time
complexity of the Load() function from Algorithm 7, i.e., O(RP ).

4.2.6 Summary

Table 4.1 summarizes the time and space complexities of the Suspend and Resume
operations for all preemptable iterators. We now compute the worst-case bounds on
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these operations when applied to a pipeline of preemptable iterators, i.e., a physical
SPARQL query execution plan. We observe from Table 4.1 that preemptable
Index Scans are the most costly preemptable iterators in regards to the preemption
overhead. So, we deduce that the worst-case query for preemption is a query
composed of a high number of index scans, which corresponds to a conjunctive
SPARQL query evaluated using preemptable Index Loop joins.

Theorems 1, 2, and 3 give the preemption overhead for these worst-case queries.
Overall, the complexity of Web preemption is higher than the initial O(|Q|) stated
in Section 3.1. However, we demonstrate empirically in Section 4.4 that time and
space complexity can be kept under a few milliseconds and kilobytes, respectively.

Theorem 1. The space complexity of suspending a preemptable physical query
execution plan is in O(| dom(Q)|+ |Q| × |tp|), where dom(Q) is the set of variables
bound in solution mappings produced by the evaluation of Q, |Q| denotes the number
of operators in the plan and |tp| denotes the size of encoding a triple pattern.

Proof. A worst-case query Q is a SELECT query with a single Basic Graph
Pattern B = {tp1, . . . , tpn}, where n = |Q|. To evaluate such query, we build
a pipeline I of preemptable Index Loop join and Index Scans iterators such as
I = IJoinn−1(tpn, IJoinn−2(tpn−1, . . . , IJoin1(tp2, IScan(tp1)))). Thus, according
to Propositions 4 and 10, the space complexity of suspending I is in

O(| dom(IJoinn−1))|+ |tpn|+ · · ·+ | dom(IJoin1))|+ |tp2|+ |tp1|)

But we know that, as we progress in the pipeline of join iterators, the number of
bound variables increases, i.e., dom(P1 ./ P2) = dom(P1) ∪ dom(P2). So, we have
| dom(IJoin1))| > | dom(IJoin2))| > · · · > | dom(IJoinn−1)|, which allows us to
simplify the complexity as

O(| dom(IJoinn−1)|+ |tpn|+ |tpn−1|+ · · ·+ |tp1|) = O(| dom(Q)|+ |Q| × |tp|)

Theorem 2. The time complexity of suspending a preemptable physical query
execution plan is in O(|Q| × logb |D|), where |Q| denotes the number of operators
in the plan, b is the order of the B+-trees used and D is the RDF dataset queried.

Proof. As with the previous proof, we consider a pipeline I of preemptable Index
Loop join and Index Scans iterators for evaluating the worst-case query. According
to Propositions 5 and 11, the time complexity of suspending I is in

O(logb |D|+SIJoin1 + · · ·+ SIJoinn−1) = O(logb |D|+ logb |D|+ · · ·+ logb |D|)
= O(|Q| × logb |D|)
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Theorem 3. The time complexity of resuming a preemptable physical query execu-
tion plan is in O(|Q| × logb |D|), where |Q| denotes the number of operators in the
plan, b is the order of the B+-trees used and D is the RDF dataset queried.

Proof. As with the previous proofs, we consider a pipeline I of preemptable Index
Loop join and Index Scans iterators for evaluating the worst-case query. According
to Propositions 6 and 12, the time complexity of resuming I is in

O(logb |D|+RIJoin1 + · · ·+RIJoinn−1) = O(logb |D|+ logb |D|+ · · ·+ logb |D|)
= O(|Q| × logb |D|)

4.3 The SaGe Smart Web client
The SaGe approach requires a Smart Web client for processing SPARQL queries for
two reasons. First, the client must be able to continue query execution after receiving
a saved plan from the server. Second, as the preemptable server only implements a
fragment of SPARQL, the smart Web client has to implement the missing operators
to support full SPARQL queries. It includes SERVICE, ORDER BY, GROUP BY,
DISTINCT, MINUS, FILTER EXIST, and aggregations (COUNT, AVG, SUM,
MIN, MAX), but also ./,∪, ./ and π to be able to recombine results obtained from
the SaGe server. Consequently, the SaGe smart client is a SPARQL query engine
that accesses RDF datasets through the SaGe server. Given a SPARQL query,
the SaGe client parses it into a logical query execution plan, optimizes it and then
builds its own physical query execution. The leafs of the plan must correspond to
subqueries evaluable by a SaGe server. Figure 4.4 shows the execution plan build
by the SaGe client for executing query Q3, from Figure 4.3.

Compared to a SPARQL endpoint, processing SPARQL queries with the SaGe
smart client has an overhead in terms of the number of requests sent to the server
and transferred data2. With a SPARQL endpoint, a web client executes a query
by sending a single web request and receives only query results. The smart client
overhead for executing the same query is the additional number of requests and
data transferred to obtain the same results. Consequently, the client overhead has
two components:

• The number of requests: To execute a SPARQL query, a SaGe client
needs n ≥ 1 requests. We distinguish two cases: 1) The SaGe server supports
the evaluation of the query, so n is equal to the number of time quantum
required to process the query. Notice that the client needs to pay the network

2The client overhead should not be confused with the server overhead.
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PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX dbo: <http://dbpedia.org/ontology/>
SELECT ?name ?place WHERE {
?actor a dbo:Actor . # tp1
?actor rdfs:label ?name . # tp2
OPTIONAL {

?actor dbo:birthPlace ?place . # tp3
}

}

Figure 4.3: SPARQL query Q3: finds all actors with their names and their birth
places, if they exist.

π?name, ?place

BindLeftJoin

tp1 ./ tp2 tp3

SaGe client

SaGe server

Figure 4.4: Physical query execution plan used by the SaGe smart Web client for
executing query Q3.

latency twice per request. 2) The SaGe server does not support the evaluation
of the query. Then, the client decomposes the query into a set of subqueries
supported by the server, evaluate each subquery as in the first case, and
recombine intermediate results to produce query results.

• Data transfer: We also distinguish two cases: 1) If the SaGe server supports
the evaluation of the query, the only overhead is the size of the saved plan
Si multiplied by the number of requests. Notice that the saved plan Si can
be returned by reference or by value, i.e., saved server-side or client-side.
2) Otherwise, the client decomposes the query and recombines the results of
subqueries. Among these results, some are intermediate results and part of
the client overhead.

Consequently, the challenge for the smart client is to minimize the overhead in
terms of the number of requests and transferred data. Of course, the data transfer
can be reduced by using a stateful Web Preemption, but, as stated earlier, we
choose a stateless implementation to preserve the scalability and fault-tolerance
properties.
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Algorithm 8: The OptJoin algorithm, which evaluates JP1 ./ P2KD.
Require: P1, P2: SPARQL graph patterns, D: RDF dataset, S: URL of a

SaGe server.
Data: ΩP1 ← ∅, ΩP1./P2 ← ∅

1 Function EvaluateOptJoin(P1, P2, S):
2 let Q← J(P1 ./ P2) ∪ P1KD
3 let Ω← Execute Q at server S
4 for µ ∈ Q do
5 if dom (µ) ⊆ var(P1 ./ P2) then
6 ΩP1./P2 ← ΩP1./P2 ∪ {µ}
7 else
8 ΩP1 ← ΩP1 ∪ {µ}

9 return ΩP1./P2 ∪
(
ΩP1 \ πvar(P1) (ΩP1./P2)

)

We observe that the primary source of client overhead comes from the decompo-
sition made to support full SPARQL queries, as these queries increase the number
of requests sent to the server. Some decompositions are more costly than others.
To illustrate, consider the evaluation of (P1 OPTIONAL P2) where P1 and P2 are
expressions supported by the SaGe server. A possible approach is to evaluate
JP1KD and JP2KD on the server, and then perform the left outer join on the client.
This strategy generates only two subqueries but materializes JP2KD on client. If
there are no join results, JP2KD are just useless intermediate results.

Another approach is to rely on a nested loop join approach: evaluates JP1KD
and for each µ1 ∈ JP1KD, if µ2 ∈ Jµ1(P2)KD then {µ1∪µ2} are solutions to P1 ./P2.
Otherwise, only µ1 is a solution to the left-join. This approach sends at least as
many subqueries to the server than there are solutions to JP1KD.

To reduce the communication, the SaGe client implements BindJoins to
process local join in a block fashion, by sending unions of BGPs to the server.
This technique is already used in federated SPARQL query processing [63] with
bound joins and in BrTPF [35]. Consequently, this approach reduces the number
of requests sent to the SaGe server by a factor equivalent to the size of a block of
mappings. However, the number of requests sent still depends on the cardinality of
P1.

Consequently, we propose a new technique, called OptJoin, for optimizing
the evaluation of a subclass of left-joins, i.e., SPARQL queries with OPTIONAL
clauses. The approach relies on the fact that:

JP1 ./ P2KD = JP1 ./ P2KD ∪
(
JP1KD \ Jπvar(P1) (P1 ./ P2)KD

)
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So we can deduce that: JP1 ./ P2KD ⊆ J(P1 ./ P2) ∪ P1KD.

Algorithm 8 presents the OptJoin algorithm. If both P1 and P2 are evaluable
by the SaGe server, then the left-join is computed as follows. First, it sends the
query (P1 ./ P2) ∪ P1 to the server (Line 3). Then, for each mapping µ received,
it builds local materialized views for JP1 ./ P2KD and JP1KD (Lines 4 to 8). The
client knows that µ ∈ JP1 ./ P2KD if dom (µ) ⊆ var (P1 ./ P2) (Line 5), otherwise
µ ∈ JP1KD. Finally, the client uses the views to process the left-join locally (Line
9). With this technique, the client only uses one subquery to evaluate the left-join
and, in the worst case, it transfers JP1 ./ P2KD as additional intermediate results.

To illustrate, consider query Q3 from Figure 4.3. Q3, with 88334 solutions. The
cardinality of tp1 ./ tp2 is also of 88334, as every actor has a birthplace. It is the
worse case for a BindLeftJoin, which will require 88334

Block size additional requests to
evaluate the left join. However, with an OptJoin, the client executes Q3 using
approximately 500 requests.

We implement both BindLeftJoin and OptJoin as physical operators to eval-
uate OPTIONALs, depending on the query. We also implement regular BindJoin
for processing SERVICE queries.

4.4 Experimental study

We want to empirically answer the following questions: What is the overhead of
Web preemption in time and space? Does Web preemption improve the average
workload completion time? Does Web preemption enhance the time for the first
results? What are the client overheads in terms of numbers of requests and data
transfer? We use Virtuoso as the baseline for comparing with SPARQL endpoints,
with TPF and BrTPF as the baselines for the LDF approach.

We implemented the SaGe client in Java, using Apache Jena3. As an extension
of Jena, SaGe is just as compliant with SPARQL 1.1. The SaGe server is
implemented as a Python Web service and uses HDT [24] (v1.3.2) for storing data.
Note that the current implementation of HDT cannot ensure logb(n) access time for
all triple patterns, like (?s p ?o). This impacts the performance of SaGe negatively
when resuming some queries. The code and the experimental setup are available
on the companion website4.
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Figure 4.5: Distribution of query execution time.

4.4.1 Experimental setup

Dataset and Queries: We use the Waterloo SPARQL Diversity Benchmark
(WatDiv5) [4]. We re-use the RDF dataset and the SPARQL queries from the
BrTPF [35] experimental study6. The dataset contains 107 triples, and we arrange
queries in 50 workloads of 193 queries each. They are SPARQL conjunctive queries
with STAR, PATH, and SNOWFLAKE shapes. They vary in complexity, up to 10
joins per query with very high and very low selectivity. 20% of queries are executed
in more than ≈ 30s to be executed using the Virtuoso server. All workloads follow
nearly the same distribution of query execution times, as presented in Figure 4.5,
where we measured the query execution times for one workload of 193 queries with
SaGe and an infinite time quantum.

Approaches: We compare the following approaches:

• SaGe: We run the SaGe query engine with various time quantums: 75ms
and 1s, denoted SaGe-75ms and SaGe-1s, respectively. HDT indexes are
loaded in memory while HDT data is stored on disk.

• Virtuoso: We run the Virtuoso SPARQL endpoint [23] (v7.2.4), without any
quotas or limitations.

• TPF: We run the standard TPF client (v2.0.5) and TPF server (v2.2.3) with
HDT files as backend (same settings as SaGe).

3https://jena.apache.org/
4https://github.com/sage-org/sage-experiments
5http://dsg.uwaterloo.ca/watdiv/
6http://olafhartig.de/brTPF-ODBASE2016
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• BrTPF: We run the BrTPF client and server used in [35], with HDT files as
backend (same settings as SaGe). BrTPF is currently the LDF approach
with the lowest data transfer [35].

Servers configurations: We run all the servers on a machine with Intel(R)
Xeon(R) CPU E7-8870@2.10GHz and 1.5TB RAM.

Clients configurations: To generate load over servers, we rely on 50 clients,
each one executing a different workload of queries. All clients start executing their
workload simultaneously. The clients access servers through HTTP proxies to
ensure that client-server latency is around 50ms.

Evaluation Metrics: Presented results correspond to the average obtained of
three successive execution of the queries workloads.

• Workload completion time (WCT): is the total time taken by a client to
evaluate a set of SPARQL queries, measured as the time between the first
query starting and the last query completing.

• Time for first results (TFR) for a sage:query: is the time between the query
starting and the production of the first query’s results.

• Time preemption overhead : is the total time taken by the server’s Suspend
and Resume operations.

• The number of HTTP requests : is the total number of HTTP requests sent
by a client to a server when executing a SPARQL query.

• The data transfer : is the quantity of transferred bytes when executing a
SPARQL query.

4.4.2 Experimental results

We first ensure that the SaGe approach yields complete results. We run both
Virtuoso and SaGe and verify that, for each query, SaGe delivers complete results
using Virtuoso results as ground truth.

What is the overhead in time of Web preemption? The overhead in time
of Web preemption is the time spent by the Web server for suspending a running
query and the time spent for resuming the next waiting query. To measure the
overhead, we run one workload of queries using SaGe-75ms and measure time
elapsed for the Suspend and Resume operations. Figure 4.6 shows the overhead in
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Figure 4.6: Average preemption overhead.

Mean Min Max Standard deviation
1.716 kb 0.276 kb 6.212 kb 1.337 kb

Table 4.2: Space of saved physical query execution plans.

time for SaGe Suspend and Resume operations using different sizes of the WatDiv
dataset. Generally, the size of the dataset does not impact the overhead, which
is around 1ms for Suspend and 1.5ms for Resume. As expected, the overhead is
greater for the Resume operation than the Suspend operation, due to the cost of
resuming Index scans in the plan. With a quantum of 75ms, the overhead is ≈ 3%
of the quantum, which is negligible.

What is the overhead in space of Web preemption? The overhead in space
of the Web preemption is the size of saved plans produced by the Suspend operation.
According to Section 4.2, we determined that the SaGe physical query plans can
be saved in O(|Q|). To measure the overhead, we run a workload of queries using
SaGe-75ms and measure the size of saved plans. We compress saved plans using
Google Protocol Buffers7. Table 4.2 shows the overhead in space for SaGe. As we
can see the size of a saved plan remains very small, with no more than 6 kb for a
query with ten joins. Hence, this space is indeed proportional to the size of the
plan suspended.

Does Web preemption improve the average workload completion time?
The SaGe server has a restricted choice of physical query operators, so physical
query execution plans generated by the SaGe server should be less performant than
those produced by Virtuoso. This tradeoff only makes sense if the Web preemption
compensates for the loss in performance. Compensation is possible only if the
workload alternates long-running and short running queries. In the setup, each

7https://developers.google.com/protocol-buffers/
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Figure 4.7: Average workload completion time per client, with up to 50 concurrent
clients (logarithmic scale).

0 10 20 30 40 50
Number of clients

104

A
vg

.
w

or
kl

oa
d

co
m

pl
et

io
n

ti
m

e
(s

)

Virtuoso 1 worker

Virtuoso 4 workers

SaGe-75ms 1 worker

SaGe-75ms 4 workers

Figure 4.8: Average workload completion time per client, with 4 workers (logarithmic
scale).
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Figure 4.9: Average time for first results (over all queries), with up to 50 concurrent
clients (linear scale).

client runs a different workload of 193 queries that vary from 30s to 0.22s, following
an exponential distribution. All clients execute their workload concurrently and
start simultaneously. We experiment up to 50 concurrent clients by step of 5 clients.
As there is only one worker on the Web server and queries execution times vary,
this setup is the worst case for Virtuoso.

Figure 4.7 shows the average workload completion time obtained for all ap-
proaches, with a logarithmic scale. As expected, the convoy effect significantly
impacts Virtuoso, and it delivers the worse WTC after 20 concurrent clients. TPF
and BrTPF avoid the convoy and behave similarly. BrTPF is more performant
thanks to its bind-join technique that group requests to the server. SaGe-75ms
and SaGe-1s avoid the convoy effect and delivers better WTC than TPF and
BrTPF. As expected, increasing the time quantum also increases the probability of
convoy effect, and, globally, SaGe-75ms offers the best WTC. We rerun the same
experiment with four workers for SaGe-75ms and Virtuoso. Figure 4.8 shows the
average workload completion time obtained for both approaches. As we can see,
both approaches benefit from the four workers. However, Virtuoso still suffers from
the convoy effect.

Does Web preemption improve the time for the first results? The Time
for first results (TFR) for a query is the time between the query starting and the
production of the first query’s results. Web preemption should provide better a
time for the first results. Avoiding the convoy effect allows us to start queries earlier
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Dataset Virtuoso SaGe-1s SaGe-75ms BrTPF TPF
WatDiv 107 193 645 4 082 9, 2 · 104 2, 55 · 105

FEASIBLE 166 1 822 3 305 2, 95 · 104 1, 86 · 105

Table 4.3: Average number of HTTP requests sent to server with WatDiv and
FEASIBLE-DBpedia datasets.

and then get results earlier. We rerun the same setup as in the previous section
and measure the time for the first results (TFR). Figure 4.9 shows the results with
a linear scale. As expected, Virtuoso suffers from the convoy effect that degrades
the TFR significantly when the concurrency increases. TPF and BrTPF do not
suffer from the convoy effect, and TFR is stable over concurrency. The main reason
is that delivering a page of result for a single triple pattern takes ≈ 5ms in our
experiment, so the waiting time on the TPF server grows very slowly. BrTPF is
better than TPF due to its bind-join technique. The TFR for SaGe-75ms and
SaGe-1s increases with the number of clients and the slope seems proportional to
the quantum, because the waiting time on the server increases with the number of
clients, as seen previously. Reducing the quantum improves the TFR, but increases
the number of requests and thus deteriorates the WTC.

What are the client overheads in terms of the number of requests and
data transfer? The client overhead in requests is the number of requests that
the smart client sent to the server to get complete results minus one, as Virtuoso
executes all queries in one request. As WatDiv queries are pure conjunctive queries
and supported by the SaGe server, the number of requests to the server is the
number of time quantum required to evaluate the whole workload. We measure the
number of requests sent to servers with one workload for all approaches, with results
shown in Table 4.3. As expected, Virtuoso just sends 193 requests to the server.
SaGe-75ms sends 4082 requests to the server, while TPF sends 2.55× 105 requests
to the TPF server. We can see also that increasing the time quantum significantly
reduces the number of requests; SaGe-1s sends only 645 requests. However, this
seriously deteriorates the average WCT and TFR, as presented before. To compute
the overhead in data transfer of SaGe, we just need to multiply the number of
requests by the average size of saved plans; for SaGe-75ms, the client overhead in
data transfer is 4082× 1, 3 kb = 5.45 Mo. As the total size of the results is 51Mo,
the client overhead in data transfer is ≈ 10%. For TPF, the average size of a page
is 7ko; 2.5 · 105 × 7k = 1.78 Go, so the data transfer overhead is ≈ 340% for TPF.

What are the client overheads in terms of numbers of requests and
data transfer for more complex queries? The WatDiv benchmark does not
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Time quantum SaGe+BindLeftJoin SaGe+OptJoin
75ms 72 489 5 656
1s 70 964 511

Table 4.4: Comparison of the average number of HTTP requests sent to server
when using the BindLeftJoin and OptJoin operators

generate queries with OPTIONAL or FILTER operators. If the SaGe server
supports some filters, the OPTIONAL operator and other filters impact the number
of requests sent to the SaGe server, as explained in Section 4.3. First, we run
an experiment to measure the number of requests for queries with OPTIONAL.
We generate new WatDiv queries from one set of 193 queries, using the following
protocol. For each query Q = {tp1, . . . , tpn}, we select tpk ∈ Q with the highest
cardinality, then we generate Q′ = tpk ./(Q\tpk). Such queries verify conditions for
using BindLeftJoin and OptJoin. They are challenging for the BindLeftJoin
as they generate many mappings; they are also challenging for the OptJoin as all
joins yield results. Table 4.4 shows the results when evaluating OPTIONAL queries
with OptJoin and BindLeftJoin approaches. We observe that, in general,
OptJoin outperforms BindLeftJoin. Furthermore, OptJoin is improved when
using a higher quantum, as the single subquery sent is evaluated more quickly. It
is not the case for BindLeftJoin, as the number of requests still depends on the
number of intermediate results.

Finally, we re-use 166 SELECT queries from Feasible [59] with the DBpedia
3.5.1 dataset, generated from real-users queries. We excluded queries that time-out,
identified in [59], and measure the number of requests sent to the server. Table 4.3
shows the results. Of course, Virtuoso just send 166 requests to the server. We
observe that the ratio of requests between SaGe-75 and TPF is nearly the same
as the previous experiment. However, the marge between SaGe-1s and SaGe-
75ms decrease, because most requests sent are produced by the decomposition of
OPTIONAL and FILTER and not by the evaluation of BGPs.

66



Chapter 5

Conclusion

5.1 Summary of contributions

In this thesis, we choose to tackle the issue of building public SPARQL query servers
that allows any data consumers to execute any SPARQL query with complete
results while remaining available. Existing approaches ensure availability using a
quota policy that restricts query execution. By following an approach based on
time-sharing, similar to those used in operating systems, we made the following
hypothesis

We hypothesize that the issue related to quotas is not interrupting a
query, but the impossibility for the client to resume the query execution
afterward.

Based on this, we proposed a new query execution model called Web Preemption.
Web preemption is the capacity of a Web server to suspend a running query after
a time quantum with the intention to resume it later. When suspended, the server
sends the saved state Si of the query to the Web client. Then, the client can resume
query execution by sending Si back to the Web server. Compared to existing
query execution models, Web Preemption ensures a fair allocation of Web server
resources across queries, a better average query completion time per query, and a
better time for first results.

This approach is original, as no other approach tackles the issue of time-sharing
at the scale of SPARQL queries running in a public server. However, our new
model adds an overhead for the Web server to suspend the running query and
resume the next waiting query. Consequently, the next scientific challenge is to
keep this overhead marginal, whatever the running SPARQL queries, to ensure
good query execution performance.
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5. Conclusion

SaGe is a SPARQL query engine that implements the Web Preemption model.
To minimize the preemption overhead, SaGe distributes SPARQL query execution
between a preemptive SPARQL query server and a smart Web client. The first
supports the evaluation of all operators that can be suspended and resumed with a
low preemption overhead, while the second supports the evaluation of all remaining
operators. This way, SaGe supports allows for the execution of any SPARQL 1.1
query. Compared to SPARQL endpoint approaches without quotas, SaGe avoids
the convoy effect and is a winning bet as soon as the queries of the workload vary
in execution time. Compared to LDF approaches [35, 72], SaGe offers a more
expressive server interface with join, union, and filter evaluated on the server side.
Consequently, it considerably reduces data transfer and the communication cost,
improving the execution time of SPARQL queries.

5.2 Perspective works
This section details the perspective works following the contributions of this thesis.

5.2.1 Updating Knowledge Graphs under the Web
preemption model

A public SPARQL query server can receive two types of queries: read-only queries
sent by data consumers to query the RDF dataset, and read-write queries sent
by the data provider to update the hosted RDF data. In SaGe, we made the
hypothesis that the server only receives read-only queries, but we could extend our
model to supports the concurrent evaluation of both types of SPARQL queries. In
database systems, the concurrent execution of read-only and read-write queries
can lead to data consistency issues: if two queries are updating the same RDF
triples, what happens? It is the goal of the database’s concurrency control system
[14] to handle these issues, by imposing a set of constraints, called consistency
criteria, that dictate how concurrent queries are executed [57]. A query whose
execution violates these constraints generates a conflict and is often aborted and
rescheduled for execution. The most common consistency criterion is serializability
[14, 55], implemented using database transactions. Each query is wrapped inside
a transaction, and while it is executing, its results are not available to other
concurrent queries. When a transaction completes, the concurrency control system
invokes an algorithm called atomic commitment to ensure that all operations made
by the transaction can be applied as a single unit of computation to the data.

In the context of Web Preemption, concurrency control is a challenging issue
because it is impossible to suspend the atomic commitment algorithm.
Indeed, this algorithm must run as a non-interruptible section, as it acquires locks on
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5.2. Perspective works

each data item that will be updated by the transaction. While the lock granularity
can be very small [44, 54], a transaction always needs to acquire locks, and it will
only release them when it completes. So, locks cannot be released when preemption
occurs, which generates convoy effects for long-running transactions, as reported
by Blasgen et al. in [16].

We think that this issue can be solved by performing two modifications to the
Web preemption model. First, we think that using two distinct pool of workers,
one for each type of query, can remove convoy effects between read-write and
read-only queries. Next, we need to ensure that read-only queries can always read
a consistent snapshot of the database. However, a concurrent query might delete
the information required to resume preemptable iterators. We think that a new
multi-version concurrency control algorithm [14, 54] can be developed, to ensure
consistent reads under the Web preemption model.

5.2.2 Web Preemption for Web-querying languages

In this work, we implemented the Web Preemption model for the evaluation of
SPARQL queries. But we could consider the execution of queries in other languages
under the same model. GraphQL [39] is a recently proposed, and increasingly
adopted, framework for providing a new type of data access interface on the Web. A
core component of the GraphQL framework is a query language for expressing the
data retrieval requests issued to GraphQL-aware Web servers, as in a graph-oriented
database. However, as reported in [39], GraphQL query servers also face the issue
of convoy effects and solve it using quotas. For example, Github enforces severe
limitations on its GraphQL API 1 and does not allow for complex queries or more
than 5 000 authenticated requests per hour. We think that a preemptive GraphQL
server could solve these issues like SaGe did for SPARQL queries. The challenges
are the same as in SaGe: build preemptive GraphQL physical query operators to
minimize the preemption overhead. Since most operators of the GraphQL language
have SPARQL equivalents [68], we think that we can obtain results close to those
of SaGe.

5.2.3 Optimize client-side query processing for Smart Web
clients

The SaGe Smart Web Client acts as a client-side SPARQL query engine that
distributes query processing between the server and the client. In this thesis, we
do not look at some unusual challenges regarding this execution workflow. First,
we could extend the SPARQL optimizer used by the client to compute the optimal

1https://developer.github.com/v4
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5. Conclusion

distribution of query processing between the client and the server, i.e., which sub-
plans to ship to the SaGe server to minimize data transfers and SPARQL query
execution times. It is a challenging issue because the client does not have access to
the same statistics as the SaGe server. So, it will have to download histograms
from the server, which increases the data transferred. To solve it, we could rely on
adaptive query processing techniques [10, 20] for client-side SPARQL processing.
Federated SPARQL query processing [3] and smart LDF clients [2] successfully
applied similar methods to perform on-the-fly query optimization without having
to download too much statistics from the server.

Next, we could propose new rewriting techniques, like the OptJoin technique,
to optimize the evaluation of full-mappings SPARQL operators. Aggregations
operators (GROUP BY, COUNT, AVG, . . . ) are good candidates, as they are crucial
to compute statistics over the Linked Data using SPARQL queries [41, 66]. We
think that an approach similar to Map-Reduce [19, 45] is feasible to compute
SPARQL aggregations more efficiently. The SaGe server will only compute partial
aggregations over solutions mappings produced during a quantum. Then the smart
client will merge partial results using client-side reducing functions to produce the
final query results. This approach could drastically reduce the data transferred and
the number of HTTP requests, speeding up the overall SPARQL query execution.
However, distinct aggregations might create issues in terms of data transfer, as they
need to deduplicate data beforehand, which requires to materialize the complete
query results.
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Appendix A

Résumé en langue française

A.1 Introduction

A.1.1 Motivations

Le Web des Documents [12] est basé sur trois principes fondateurs. Le premier
est l’URI, qui associe un identifiant unique à chaque ressource du Web. La forme
la plus commune d’URI est l’URL, e.g., https://www.univ-nantes.fr est l’URL
de la page d’accueil du site web de l’Université de Nantes. Le deuxième principe
est le protocole HTTP, qui permet à tout utilisateur d’accéder à une URL et d’y
télécharger le document associé, ou alors d’obtenir un code d’erreur. Le troisième
et dernier principe est le langage HTML, un format hypertexte utilisé pour décrire
le contenu des pages Web.

Cependant, les documents HTML classiques ne sont pas suffisamment expressifs
pour permetre de décrire des entités et leurs propriétés sans aucune ambiguité [15].
Pour ce faire, le Web sémantique [13] étend le Web des documents pour créer un Web
des données, où les documents texte sont remplacés par des données structurées
qui peuvent être automatiquement analysés par des ordinateurs. Ce nouveau
Web ré-utilise les deux premiers principes fondateurs du Web des documents (les
URLs et le protocole HTTP), mais remplace l’usage de documents HTML par des
documents RDF [18]. La structure du modèle de données RDF [18] est basée sur
des triplets RDF. Un triplet est composé d’un sujet, d’un prédicat et d’un objet : il
énonce un fait à propos d’une entité du Web. En suivant les principes du Linked
Open Data (LOD), proposés en 2006 par Tim Berners-Lee [11], les fournisseurs
de données ont publié des milliards de documents RDF sur le Web [15, 61]. La
plupart sont hébergés sous la forme de simples fichiers RDF, qui peuvent être
téléchargés via leurs URIs. L’URI http://dbpedia.org/resource/Neil_Gaiman
permet d’accéder à l’ensemble des triplets RDF sur l’auteur Neil Gaiman.

Cependant, l’hébergement de fichiers RDF réduit grandement la capacité des
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A. Résumé en langue française

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?author ?book WHERE {
?author rdf:type dbo:Person .
?author foaf:name ?name .
?book dbo:author ?author .

}

Figure A.1: Une requête SPARQL qui cherche tous les auteurs et leurs livres dans
le jeu de données DBpedia.

utilisateurs à répondre à des questions complexes en utilisant le Web des données.
Par exemple, si nous voulons obtenir la liste de tous les acteurs de cinéma, nous
devons télécharger l’ensemble des documents RDF qui contiennent des triplets
intéressants, ce qui est une opération complexe et très coûteuse en temps. Pour
pallier à ce problème, une collection de documents RDF peut également être
hébergée par un SPARQL endpoint, un système de bases de données spécialisé qui
permet d’exécuter des requêtes complexes sur des triplets RDF. Les utilisateurs
peuvent envoyer, via le protocole HTTP, des requêtes SPARQL, qui sont des
requêtes type SQL qui permettent à l’utilisateur d’interroger des documents RDF
via un langage de requête structuré. Par exemple, le DBpedia SPARQL endpoint 1

permet à n’importe qui d’exécuter des requêtes sur le jeu de données DBpedia, qui
contient des milliards de faits récupérés depuis Wikipedia [9]. La figure A.1 montre
une requête SPARQL qui trouve tous les auteurs et leurs livres dans DBpedia.

Les services publics d’évaluations de requêtes SPARQL, comme les SPARQL
endpoints, sont très importants pout le Web des données, car ils permettent de
développer des applications qui ré-utilisent les milliards de triplets RDF disponibles
dans le LOD. Par exemple, les SPARQL endpoints de DBpedia [9] et Wikidata [73]
sont tous les deux utilisés comme bases de connaissances par des systèmes questions-
réponses multilingues [22, 69] et des agents conversationnels [8]. Cependant, fournir
un service public qui permet à n’importe quel utilisateur d’exécuter n’importe quelle
requête SPARQL est encore un problème ouvert [6]. Étant donné que ces services
sont soumis à une charge imprévisible de requêtes SPARQL, le défi est d’assurer
qu’ils restent disponibles malgré des variations dans les taux d’arrivée des requêtes
et des ressources à leur disposition. Les fournisseurs de données se réfèrent souvent
à ce défi comme la mise en place d’une politique d’accès équitable.

1http://dbpedia.org/sparql
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Pour mettre en place ce type de politique d’accès, la plupart des SPARQL
endpoints sont configurés avec des politiques de quotas qui garantissent un partage
équitable des ressources entre les utilisateurs. Si une requête SPARQL dépasse
l’un de ces quotas, elle est interrompue par le serveur et l’utilisateur qui l’a émise
reçoit une erreur. Il existe de nombreux types de quotas, mais les restrictions
les plus communes concernent: 1) Le temps d’exécution des requêtes SPARQL,
2) Le nombre de résultats obtenus par requête, et 3) Le taux d’envoi de requêtes
par adresse IP. Par exemple, le SPARQL endpoint de DBpedia ne permet pas
d’exécuter des requêtes pendant plus de 120 secondes ou qui obtiennent plus de
10000 résultats 2. De plus, il ne permet pas plus de 50 connexions parallèles et plus
de 100 requêtes HTTP par seconde par adresse IP.

Certains de ces quotas ne sont pas perturbants pour les utilisateurs, e.g., si
le taux d’arrivée des requête est restreint, alors il suffit de réessayer plus tard.
Cependant, les limites sur les temps d’exécution ou le nombre de résultats obtenus
conduisent les services d’évaluation de requêtes à ne délivrer que des résultats
partiels. Il s’agit d’une limite importante à l’utilisation de ces services, car il
devient alors impossible de développer des applications basées dessus [58].

Cependant, sans ces politiques de quotas, les SPARQL endpoints deviennent
sujet à un phénomène appelé effet convoi [16] car ils exécutent les requêtes entrantes
en suivant une politique First-Come First-Served (FCFS) [25]. Commes les requêtes
sont exécutées dans leur ordre d’arrivée au serveur, une requête longue peut occuper
l’intégralité des ressources du serveur et empêcher les autres requêtes, même courtes,
de s’exécuter.

Dans l’état actuel du LOD, nous somme donc face à un dilemne. D’un côté,
nous pouvons construire un service d’évaluation de requêtes SPARQL performant
grâce aux politiques de quotas, mais il peut fournir des résultats incomplets aux
utilisateurs. De l’autre, nous pouvons construire un service qui fournit toujours
des résultats complets, mais dont la disponibilité n’est pas garantie du fait des
effets convois. Aucune de ces deux solutions n’est acceptable pour développer des
applications basées sur le Web des données, car les développeurs ont besoin de
services à la fois disponibles et qui délivrent toujours des résultats complets.

A.1.2 Contributions et contenu de cette thèse

Dans cette thèse, nous proposons de résoudre le problème relatif à la construction des
services publics d’évaluation de requêtes SPARQL qui permettent à n’importe quel
utilisateur d’exécuter n’importe quelle requête SPARQL en obtenant des résultats
complets. Pour ce faire, nous proposons deux contributions. La première est un
nouveau modèle d’exécution pour les requêtes SPARQL, dénommé la préemption

2http://wiki.dbpedia.org/public-sparql-endpoint
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Web, qui s’inspire des travaux sur les processeurs à temps partagé [5]. La préemption
Web est la capacité d’un serveur Web à suspendre l’exécution d’une requête SPARQL
après un temps donné, avec l’intention d’en reprendre l’exécution ultérieurement.
Une fois suspendu, l’état Si de l’exécution est renvoyé au client qui a émis la requête,
et il pourra en reprendre l’exécution en renvoyant Si au serveur. Comparée aux
modèles existants, la préemption Web permet de garantir une allocation équitable
des ressources du serveur entre les utilisateurs, un meilleur temps moyen d’exécution
des requêtes et un meilleur temps d’obtention des premiers résultats.

Cependant, notre nouveau modèle d’exécution ajoute un surcoût au Web serveur,
pour suspendre une requête en cours d’exécution et reprendre l’exécution de la
suivante. Donc, le défi scientifique est de maintenir ce surcoût au minimum, pour
garantir les meilleurs performances d’exécution des requêtes SPARQL. A ces fins,
nous proposons SaGe, un moteur préemptif d’évaluation de requêtes SPARQL
qui implémente le modèle de la préemption Web. Nous définissons un ensemble
d’opérateurs interruptibles, utilisés pour évaluer les requêtes SPARQL, pour lesquels
nous bornons le surcoût de préemption. Ces opérateurs permettent de construire
un serveur Web préemptif qui supporte l’exécution d’une grande partie du langage
de requête SPARQL. Étant donné que tous les opérateurs n’ont pas un surcoût
de préemption raisonnable, nous divisons le moteur SaGe en deux composants
: un serveur SPARQL préemptif, qui utilise nos opérateurs interruptibles pour
exécuter des requêtes SPARQL selon le modèle de la préemption Web, et un client
intelligent, qui exécute côté client les opérations non supportées par le serveur. En
combinant ces deux composants, nous permettons l’évaluation de l’ensemble du
langage de requête SPARQL selon notre nouveau modèle d’exécution.

Enfin, nous proposons une étude expérimentale complète du moteur SaGe
(client et serveur), pour le comparer aux approches existantes utilisées pour constru-
ire des services publics d’évaluation de requêtes SPARQL. Nos résultats expérimen-
taux démontrent que SaGe est plus performant que les approches existantes, aussi
bien en termes de temps moyen d’exécution des requêtes que de temps d’obtention
des premiers résultats.

A.2 Le modèle d’exécution de la Préemption Web

Le modèle d’exécution de la préemtpion Web se définit formellement comme suit.
Nous considérons un serveur Web préemptif, qui héberge un jeu de données RDF
en lecture seule, et un client Web intelligent, qui évalue des requêtes SPARQL en
utilisant le serveur. Ce dernier possède un ensemble de workers, tous paramétrés
avec un même quantum de temps, qui sont chargés d’exécuter les requêtes. Le
serveur possède également une file d’attente qui enregistre les requêtes entrantes
lors tous les workers sont occupés. Nous considérons une population infinie de
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Figure A.2: États possibles de l’exécution d’une requête avec la préemption Web.

clients, une file d’attente de taille finie et un nombre fini de workers.
Un serveur Web préemptif supporte trois opérations: Execute, Resume, and

Suspend. L’opération Execute est utilisée pour exécuter une requête Q pour un
quantum de temps q. Elle prend en entrée une requête, représentée par son plan
d’exécution denoté PQi

, et l’exécute pour une durée égale à q. Ensuite, elle produit
un ensemble de solutions ωi et le plan d’exécution P ′Qi

, qui est l’état de PQi
après la

fin de l’exécution (Execute(PQi
) = 〈ωi, P

′
Qi
〉). L’opération Suspend, qui sauvegarde

l’état d’exécution d’une requête, est appliqué sur PQi
et produit un état sauvegardé

Si (Suspend(PQi
) = Si). L’opération Resume, qui reprend l’exécution d’une requête

depuis un état sauvegardé, est l’action inverse : elle s’applique sur Si et restaure le
plan d’exécution (Resume(Si) = PQi

).
La figure A.2 présente les différents états d’exécution possible d’une requête

dans ce modèle. Les transitions sont effectuées par le serveur Web ou par le
client intelligent. Le serveur accepte dans sa file d’attente des requêtes Web
qui contiennent des requêtes SPARQL ou des états sauvegardés. Si un worker
est disponible, alors il récupère une requête depuis la file d’attente. S’il s’agit
d’une requête SPARQL Qi, il produit un plan d’exécution PQi

, selon le paradigme
“optimize-then-execute” [27], puis l’exécute pour un quantum de temps. S’il s’agit
d’un état sauvegardé Si, le worker reprend l’exécution de la requête correspondante
en utilisant l’opération Resume. Le temps nécessaire pour reprendre une requête
n’est pas déduit du quantum.

Lorsque l’exécution d’une requête est terminée avant la fin du quantum, le
serveur renvoie les résultats produits au client, pusi l’exécution est terminée. En
revanche, si le quantum est épuisé mais que l’exécution n’est pas achevée, alors
le serveur utilise l’opération Suspend pour interrompre l’exécution et produire un
état sauvegardé Si. Le temps nécessaire pour cette interruption n’est pas déduit du
quantum. Ensuite, le serveur envoie une page de résultats pi au client, qui est un
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tuple pi = 〈ωi, Si〉 où ωi est l’ensemble des solutions produites durant le quantum
q. Le client intelligent est alors libre de continuer l’exécution de sa requête en
envoyant Si au serveur Web.

En conséquence, l’évaluation d’une requête SPARQL avec un serveur Web
préemptif créée une partition des résultats de la requête dans le temps, car le client
Web récupère des ensembles partiels de résultats ω1, . . . , ωn durant l’exécution de la
requête. Étant donné un jeu de données RDF D et un serveur Web préemptif avec
un quantum de temps q, l’évaluation correcte d’une requête SPARQL Q avec D en
utilisant le serveur produit un ensemble de pages P = {p1, . . . , pn} qui respecte les
propriétés suivantes:

1. JQKD =
⋃
〈ωi,Si〉∈P ωi.

2. Il se vérifie que, pour pn = 〈ωn, Sn〉, Sn = nil.
3. Pour toute paire de deux pages distinctes pi = 〈ωi, Si〉 ∈ P , pj = 〈ωj, Sj〉 ∈ P ,

il se vérifie que Si 6= Sj.
4. Il existe un ordre total strict ≺ sur P tel que, ∀pi = 〈ωi, Si〉 ∈ P ,∃pj =
〈ωj, Sj〉 ∈ P, où pj est le successeur direct de pi selon ≺, il se vérifie que
Execute(Resume(Si)) = 〈ωj, x〉 et Suspend(x) = Sj.

La première propriété vérifie qu’un client reçoit bien l’ensemble des solutions
de sa requête (JQKD) une fois que la dernière page a été produite. La deuxième
propriété vérifie que la dernière page produite ne contient aucun état sauvegardé :
l’exécution de la requête est terminée et ne peut être reprise. Les deux dernières
propriétés vérifient que l’exécution de la requête progresse au fil du temps : tous les
états sauvegardés sont distincts et produits linéairement dans le temps.

A.3 SaGe: Un moteur préemptif d’évaluation de
requêtes SPARQL

Le modèle de la préemption Web permet aux fournisseurs de données de construire
des services d’évaluation de requêtes SPARQL qui ne sont pas sensibles aux
effets convois et délivrent des résultats complets pour n’importe quelle requête.
En revanche, il introduit un surcoût non négligeable durant l’exécution, lors de
l’interruption et de la reprise des requêtes. Pour éviter que ce surcoût ne détériore les
performances d’exécution, il nous faut le minimiser, c.a.d., minimiser les complexités
en temps et en espace des opérations Suspend et Resume.

Pour ce faire, nous proposons SaGe, un moteur préemptif d’évaluation de
requêtes SPARQL qui implémente le modèle de la préemption Web et qui maintient
un surcoût minimal. Notre objectif est de borner les complexités citées précédem-
ment de manière à ce qu’elles dépendent uniquement du nombre d’opérations
dans un plan d’exécution. En d’autres termes, le problème est de déterminer
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A.3. SaGe: Un moteur préemptif d’évaluation de requêtes SPARQL

Itérateur Complexité en espace Complexité en temps de
interruptible de Suspend Suspend Resume
Projection O(|V |+ | dom(P )|) O(|V |+ SP ) O(RP )
πV (P ) Proposition 1 Proposition 2 Proposition 3

Index Scan O(|tp|+ |t|) O(logb |D|) O(logb |D|)
IScan(tp) Proposition 4 Proposition 5 Proposition 6
Merge Join O(| dom(P1)|+ | dom(P2)|) O(SP1 + SP2) O(RP1 +RP2)

MJoin(P1, P2) Proposition 7 Proposition 8 Proposition 9
Index Loop Join O(| dom(P )|+ |tp|+ |t|) O(SP + logb |D|) O(RP + logb |D|)
IJoin(P, tp) Proposition 10 Proposition 11 Proposition 12

Multi-set Union O(1) O(SP1 + SP2) O(RP1 +RP2)
MUnion(P1, P2) Proposition 13 Proposition 14 Proposition 15

Filter O(| dom(P )|+ |R|) O(SP ) O(RP )
Filter(P,R) Proposition 16 Proposition 17 Proposition 18
Physical plan O(| dom(Q)|+ |Q| × |t|) O(|Q| × logb |D|) O(|Q| × logb |D|)

PQ Théorème 1 Théorème 2 Théorème 3

Table A.1: Complexités de préemption pour les itérateurs interruptibles.

quels plans d’exécutions PQ ont un surcoût de préemption borné en O(|Q|), où |Q|
est le nombre d’opérateurs dans le plan PQ. Nous observons que pour certains
opérateurs physiques, leur surcoût de préemption dépasse très largement notre
borne de O(|Q|). Pour résoudre ce problème, nous proposons avec SaGe une série
de choix d’implémentation pour le modèle de la préemption Web, afin de miniser
le surcoût de préemption 3.

Pour réduire le surcoût de préemption de certains opérateurs physiques, nous
choisissons de les répartir entre un serveur SaGe et un client intelligent SaGe.
Comme proposé dans l’approche LDF [38, 72], la combinaison du serveur et du client
intelligent permet l’exécution n’importe quelle requête SPARQL. La répartition
des opérateurs est la suivante :

• Les opérateurs de type “mapping-at-a-time” ont un surcoût relativement
faible, ils sont donc supportés par le serveur SaGe. Ces opérateurs forment
un sous-ensemble de CoreSPARQL [38], composé des opérateurs Triple
Patterns, Basic Graph Pattern UNION, FILTER et SELECT.

• Les opérateurs de type “full-mappings” ont un surcoût trop élevés en moyenne,
ils sont donc implementé dans le client intelligent SaGe. Il s’agit des opéra-
teurs OPTIONAL, SERVICE, ORDER BY, GROUP BY, DISTINCT, MINUS, FILTER
EXIST, ainsi que les opérateurs d’aggrégation (COUNT, AVG, SUM, MIN, MAX).

3Le lecteur notera que l’implémentation proposée dans ce manuscrit est une implémentation
possible, mais pas la seule.
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A. Résumé en langue française

La table A.1 résume les complexités en temps et en espace des opérations
Suspend et Resume pour tous les opérateurs. Nous observons que les opérateurs
interruptibles Index Scans sont les plus coûteux vis à vis de la préemption Web.
De manière générale, les complexité en temps et espace sont supérieures à notre
cible initiale en O(|Q|). Néanmoins, nos résultats expérimentaux (Section 4.4)
démontrent qu’en pratique, le surcoût en temps est inférieur à quelques millisecondes
et celui en espace à quelques kilobytes.

Comparé aux SPARQL endpoints qui utilisent des politiques de quotas, SaGe
évite les effets convois et c’est un pari gagnant dès le moment où les temps
d’exécutions des requêtes SPARQL varient significativement. Comparé à des
approches LDF [35, 72], SaGe offre une interface serveur plus expressive, avec
le support de jointures, unions et filtres évalués côté serveur. En conséquence, il
réduit considérablement le transfert de données entre client et serveur, ainsi que le
coût de communication, améliorant le temps d’exécution des requêtes SPARQL.
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La Préemption Web pour interroger le Web des Données
Mots-clés : Web sémantique · Gestion des données liées · Serveurs SPARQL publics

Résumé : en suivant les principes du Linked
Open Data, les fournisseurs de données ont pub-
lié des milliards de documents RDF via des ser-
vices publics d’évaluation de requêtes SPARQL.
Pour garantir la disponibilité et la stabilité de
ces services, ils appliquent des politiques de quo-
tas sur l’utilisation des serveurs. Les requêtes
qui excèdent ces quotas sont interrompues et ne
renvoient que des résultats partiels. Cette inter-
ruption n’est pas un problème s’il est possible
de reprendre l’exécution des requêtes ultérieure-
ment, mais il n’existe aucun modèle de préemp-
tion le permettant. Dans cette thèse, nous
proposons de résoudre le problème relatif à
la construction des services qui permettent à

n’importe quel utilisateur d’exécuter n’importe
quelle requête SPARQL en obtenant des résul-
tats complets. Nous proposons la préemption
Web, un nouveau modèle d’exécution qui per-
met l’interruption de requêtes SPARQL après
un quantum de temps, ainsi que leur reprise
sur demande des clients. Nous proposons égale-
ment SaGe, un moteur d’évaluation de requêtes
SPARQL qui implémente la préemption Web
tout en garantissant un surcoût de préemption
minimal. Nos résultats expérimentaux démon-
trent que SaGe est plus performant que les ap-
proches existantes, en termes de temps moyen
d’exécution des requêtes et d’obtention des pre-
miers résultats.

Web Preemption for Querying the Linked Open Data
Keywords : Semantic Web · Linked Data Management · Public SPARQL servers

Abstract: Following the Linked Open Data
principles, data providers have published bil-
lions of RDF documents using public SPARQL
query services. To ensure these services remains
stable and responsive, they enforce quotas on
server usage. Queries which exceed these quotas
are interrupted and deliver partial results. Such
interruption is not an issue if it is possible to
resume queries execution afterward. Unfortu-
nately, there is no preemption model for the
Web that allows for suspending and resuming
SPARQL queries. In this thesis, we propose
to tackle the issue of building public SPARQL
query servers that allow any data consumer
to execute any SPARQL query with complete

results. First, we propose a new query exe-
cution model called Web Preemption. It al-
lows SPARQL queries to be suspended by the
Web server after a fixed time quantum and re-
sumed upon client request. Web preemption is
tractable only if its cost in time is negligible com-
pared to the time quantum. Thus, we propose
SaGe: a SPARQL query engine that imple-
ments Web Preemption with minimal overhead.
Experimental results demonstrate that SaGe
outperforms existing SPARQL query processing
approaches by several orders of magnitude in
term of the average total query execution time
and the time for first results.
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