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Abstract 
 

The pursuit of better thermoelectric properties using ZnO has been hampered by the high 

thermal conductivity and low electrical conductivity of this low cost and environmental 

friendly material. The present study focuses on the synthesis and spark plasma sintering of 

zinc oxide composites to improve these thermoelectric properties. Pure and Al (2at %) doped 

ZnO powder were synthesized using co-precipitation followed by calcination. Further, the 

synthesized Al-doped ZnO powder was mixed with low concentrations of polyaniline (PANI) 

powder to reduce the thermal conductivity. The powders were sintered using Dr Sinter 2080 

unit by varying different parameters: temperature (250-900°C), pressure (100-250 MPa), 

sintering atmosphere (air and vacuum), point of pressure application, holding time and current 

isolation. The ceramics were finally annealed at 600°C in air. 

The densification and the microstructure properties of pure ZnO ceramics were studied. It was 

illustrated that SPS can sinter to high densities irrespective of starting powder. The 

characteristics of the ceramics prepared from both synthetic and commercial ZnO powder 

were compared. Both could be fully densified above 99% at a temperature as low as 600°C. 

The sintering atmospheres (air and vacuum) and electric current (with or without) did not 

affect the densification. However, grain size difference of about 8 µm was observed when 

sintering with or without current. A guide for controlling the densification and the grain size 

of ZnO ceramics obtained by spark plasma sintering of dried powders was developed. 

Annealing at 600°C does not have significant effect on the microstructure of ZnO ceramics, 

however, affects the oxygen stoichiometry, and hence modified the electrical behaviour such 

that the resistivity of the pure ZnO ceramics increased by two orders of magnitude. As-

sintered ceramics prepared from synthetic powder show the best thermoelectric performance 

as compared to annealed ceramics with a ZT of 8x10
-3

 at 500°C because of low electrical 

resistivity and high Seebeck Coefficient. This signifies the importance of the synthesis 

process in determining the thermoelectric properties. 

The thermal conductivity and electrical resistivity of ZnO ceramic were improved by doping 

with 2 at% Al. The powder grain size reduced from 177 to 75 nm when Al is present. 

Maximum relative density of 98.9% was achieved at a temperature of 650°C and a pressure of 

250 MPa. The grain size of the sintered ceramics reduced from 5.4 µm to <1 µm. Secondary 

phases, ZnAl2O4 and Al2O3, are formed because of excess Al when the axial pressure was 

applied at room temperature and temperatures above 650°C. Al-doped ZnO ceramics 
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improved in electrical conductivity which caused a decrease in the absolute Seebeck 

Coefficient as a result of increased carrier concentration. The reduction in the grain size lead 

to a decrease in the thermal conductivity due to phonon scattering at the grain boundaries. As 

a result, ZT of 1.5x10
-3

  at 500°C was obtained. 

The influence of dispersed PANI in Al-doped ZnO ceramics was investigated. Using SPS, 

high densification of 98.5% and 97.3 % was achieved at a temperature as low as 250°C for 

5wt% and 9wt% PANI, respectively. As a result, the nanostructure of the ceramics was 

maintained.  Thermal conductivity below 6 W/mK was achieved by incorporating PANI into 

Al-doped ZnO ceramics. The resistivity was also slightly improved and high Seebeck 

Coefficient was kept, due to energy filtering.  Maximum ZT of 0.8x10
-3

 was achieved at 

190°C using 9wt% PANI compared to 0.06x10
-3

 for 0 wt% PANI. This study has opened 

opportunities for development of ZnO based polymer composites at low temperatures using 

spark plasma sintering.    

 

Keywords: ZnO, Spark plasma sintering, Thermoelectricity, Ceramics, Polyaniline, 

Aluminium 
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General introduction  
 

The global warming due to fossil fuels and the escalating worldwide demand for energy is 

driving wide investigation and development of sustainable and alternative energy sources. 

Thermoelectric (TE) devices are considered as an attractive option and are being used for 

direct conversion of heat to electricity. They are being preferred because of the lack of 

moving parts, their robustness in harsh environment and also there is no need for high 

temperature fluids. Currently, the limitations in both heat transfer efficiency and cost of the 

thermoelectric devices has relegated their application especially for large-scale energy-

conversion processes. 

At present, much research is focused on improving and developing new thermoelectric 

materials that are environmentally friendly and inexpensive i.e. containing earth–abundant 

elements. Hence, the use of metal oxide as TE materials has been thoroughly studied over the 

past years as green technology materials. In this study, ZnO was chosen because of its high 

Seebeck Coefficient and carrier mobility which are perfect parameters towards improving 

thermoelectric performance.  However, the main challenge with pure ZnO is the high thermal 

conductivity and resistivity which reduces the thermoelectric efficiency. Hence, the present 

study focuses on improving the thermoelectric properties of ZnO by evaluating the processing 

of ZnO powder and dense ceramics; and also doping and/or incorporation with other materials 

with an aim to address the mentioned shortfalls.  

From literature it was observed that pure ZnO is mostly doped with Group III elements (Al, 

Ga, In, and B) as source of charge carriers to improve its electrical conductivity. Recently, 

hybrid structures and nanocomposites are receiving a lot of attention due to the unique 

properties they possess such as reduction in thermal conductivity. Conducting polymers (such 

as polythionates, polypropylene, polyaniline, polyacetylene, polypyrrole and polyethylene) 

are being merged with inorganic composites to create hybrid thermoelectric materials. 

Polymers have become of interest because they have low thermal conductivity.  

The aim of this study was to investigate the dispersion of polyaniline (PANI) in Al-doped 

ZnO ceramics in order to improve thermoelectric properties of the ceramics prepared through 

spark plasma sintering (SPS). The successful completion of this project will open new 

opportunities and important insights on how to produce promising low temperature power 

generation and cooling systems that can be applied in remote areas. About over a billion 
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people have no access to electricity, hence, the development of off grid solar energy based 

technologies will transform lives and also benefit those who are currently not being supplied 

with adequate electricity.  

To achieve this noble goal, low cost and manufacturability of polymers are required, as they 

can be scalable for large applications. This was work focused on understanding the 

characteristics of synthesized pure and Al-doped ZnO particles and their thermoelectric 

performance. At first a determination of efficient spark plasma sintering parameters for pure 

ZnO, Al-doped ZnO and Al-doped ZnO/PANI ceramics was done. This was in order to 

produce ceramics with preserved nanostructure. Attention was paid on the densification, 

phase transformation and microstructural evolution. The influence of PANI concentration in 

Al-doped ZnO ceramics on thermoelectric properties was evaluated.  

This thesis is made up of six chapters; Chapter One contains theoretical background on 

thermoelectricity and literature review on state-of-the-art thermoelectric materials, 

performance of ZnO based ceramics and hybrid/metal oxide ceramics on their thermoelectric 

properties. The materials and methods used for the experiment are contained in Chapter two. 

Chapter three discusses the influence of spark plasma sintering parameters on pure ZnO. 

The study of ZnO powder quality and spark plasma sintering parameters on thermoelectric 

properties are discussed in Chapter four. Chapter five contains synthesis, sintering and 

thermoelectric properties of Al-doped ZnO. Chapter six focuses on the incorporation of 

polyaniline in the Al-doped ZnO ceramic, the powder preparation, densification and 

thermoelectric properties are discussed. Conclusions drawn from this study and 

recommendations made are presented in the last part. 
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1. Bibliography 

This chapter provides extensive literature review on current status of thermoelectric materials. 

The first section focuses on the basic principles of thermoelectricity and the state-of-the-art of 

thermoelectric materials. Recent progress of promising n-type and p-type metal oxide 

thermoelectric materials is reviewed. This includes compilation of important parameters such 

as resistivity, Seebeck Coefficient and thermal conductivity. In-depth discussion on ZnO 

based thermoelectric materials is presented. The influence of material properties and 

underlying transport mechanisms are highlighted. Then, a review on thermoelectric properties 

of ZnO based polymer composites is discussed. Low temperature sintering mechanism of 

ZnO composites are also discussed in this chapter.  Brief conclusions and outlook for future 

studies are presented.  

1.1 Thermoelectricity fundamentals 

1.1.1 Thermoelectric effects (Seebeck and Peltier effect) 

As highlighted in general introduction, thermoelectricity is a physical phenomenon that 

occurs in a conductor or semiconductor when exposed to temperature difference or when 

current is passed through it. There are three thermoelectric effects that occur in materials: 

Seebeck, Peltier and Thomson effects [1-5]. Thomson effect is the absorption or evolution of 

heat when current is passed through unequally heated conductor. Seebeck effect is the flow of 

current due to temperature gradient between two ends of a material. Peltier effect is an inverse 

of Seebeck effect; it involves heating or cooling of a material on one side when current is 

passed through it. The description of Seebeck (power generation mode) and Peltier effect 

(Refrigeration mode) phenomenon is indicated in Fig.1.1. The thermocouples consist of n-

type and p-type materials for both the power generation and refrigeration mode. When there is 

a heat source a temperature difference occurs between the two semiconducting/conducting 

materials. As a result, an open circuit voltage called Seebeck Voltage is produced that causes 

the bulb to glow (Fig.1.1). Whereas, when current is passed through the 

semiconducting/conducting junctions it is converted into heat on one end of the material while 

the other end gets cooler, this process is known as Peltier effect. Fig. 1.1 illustrates cooling as 

a result of the Peltier effect. There is interdependence between electric current and 

temperature difference between the hot and cold ends.  In this thesis, we will only focus on 

Seebeck effect.  
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Fig. 1.1 Comparison between Seebeck and Peltier effect [5] 

A detailed description of Seebeck effect is given in Fig.1.2. A temperature difference causes 

charge carriers at hot side to become more active and therefore diffuse to the cold side and 

then accumulate there (Fig.1.2. (a)), until an internal electrical field (E) is built up that depress 

further migration (Fig.1.2. (b))[6]. The ratio of the voltage developed to the temperature 

difference (∆V/∆T) is known as Seebeck Coefficient (S) or thermo-power [2, 6, 7]. If the 

dominant charge carriers in the material are electrons, the electric field will be opposite to the 

temperature gradient. Hence, the Seebeck Coefficient will bear a negative sign for electrons 

(n-type). The reverse is true for holes, a positive sign (p-type) is assigned for Seebeck 

coefficient [2, 6, 7].  

 

Fig. 1.2. Illustration of Seebeck effect [6]: Migration of charge carriers from hot to cold side 

on n- and p-type (a) and the building up of internal electric field (b). 
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The Seebeck Coefficient can be explained from the first principles of Boltzmann’s kinetic 

theory that relates it with thermal conductance [8, 9], see Eq. 1.1-1.3.   

𝑆 = −
∆𝑉

∆𝑇
= −

𝐺𝑠

𝐺
     [1.1] 

Where G is intrinsic thermal conductance (S/m) and Gs is thermal contact conductance 

(S/m), ΔV is change in voltage and ΔT is change in temperature 

The conductance can be further expressed as follows: 

  𝐺 = ∫ 𝑑𝐸 [−
𝜕𝑓

𝜕𝑇
] [𝐺(𝐸)]     [1.2] 

  𝐺𝑠 = ∫ 𝑑𝐸 [−
𝜕𝑓

𝜕𝑇
] [𝐺(𝐸)]

𝐸−𝜇

𝑞𝑇
     [1.3] 

Where E is Energy level (eV), f is Fermi function, T is temperature (K), q is 

conductance (S/m) and µ is mobility (m
2
/V.s). 

Eq. 1.3 shows that the magnitude and sign of Seebeck Coefficient relies on the electronic 

structure or Fermi function of material [2]. The Fermi energy can be further expressed in 

terms of effective mass and carrier concentration as shown in Eq. 1.4.  

𝐸 =
ħ2

2𝑚∗
[3𝜋2𝑛]

2

3      [1.4] 

Where h is Planck’s constant (m
2
kg/s), m* is carrier effective mass (kg), n is carrier 

concentration (m
-3

) and π is pi (3.142).  

From the above arguments it follows that a simplified Seebeck Coefficient equation for bulk 

semiconducting materials is expressed in Eq.1.5 [10].   

𝑆𝑏𝑢𝑙𝑘 =
8𝑚∗𝜋2𝑘𝑏

2

3𝑒ℎ2 𝑇 (
𝜋

3𝑛
)

2

3
    [1.5] 

 

Where Sbulk is Seebeck Coefficient of a bulk material, kB is Boltzmann constant (J/K) 

and π is pi (3.142). 

It is evident from Equation 1.5 that for high Seebeck Coefficient a large effective mass is 

required. This explains the high Seebeck Coefficient found in transition metal oxides such as 

ZnO, MnO2 etc. [11-13]. It is also predicted that by manipulating the temperature and carrier 

concentration through doping an optimum Seebeck Coefficient could be obtained.  
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1.1.2 Performance of thermoelectric materials 

Thermoelectric materials are constructed into devices that consist of modules for application 

purposes. The setup is illustrated in figure 1.3; the top part is the thermoelectric device and 

the bottom enlarged part is the thermocouple.  The thermoelectric device is made of 

thermoelectric couples that consist of a pair of n and p-type thermoelectric elements 

connected electrically in series and thermally in parallel. Other parts that make up the device 

are the substrates for heat adsorption and metal interconnects to contact current. In this study 

we will only focus on the performance of n-type materials.  

  

Fig. 1.3 Typical example of thermoelectric module[14] 

The conversion efficiency of a thermoelectric generator is determined from the Carnot 

efficiency: 

     
ΔT

𝑇𝐻
=  (𝑇𝐻 − 𝑇𝐶)/𝑇𝐻)    [1.6] 

And reduction factor that takes into account the materials performance (ZT) [2, 5]. 

𝜂 = [
𝑇𝐻−𝑇𝐶

𝑇𝐻
] [

√1+𝑍𝑇𝑎𝑣𝑒−1

√1+𝑍𝑇𝑎𝑣𝑒−(
𝑇𝐶
𝑇𝐻

)
]    [1.7] 
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Where η is conversion efficiency (%), T is temperature on Hot (H) and Cold side (C) 

(K), and ZTave is average figure of merit from each thermoelectric couple. 

A dimensionless figure of merit (ZT) is a central parameter in characterizing the 

thermoelectric properties of a material; it is determined by the electrical and thermal transport 

properties of a material (see Eq. 1.8) [5]. It is shown in Eq.1.8 that large power factor (S
2
σ or 

S
2
/ρ) is desired for high figure of merit while maintaining minimal thermal conductivity. 

Hence, high figure of merit (ZT) can be attained by materials that exhibit high Seebeck 

Coefficient and electrical conductivity with very low thermal conductivity. It can be seen that 

the parameters are interrelated and that makes the enhancement of ZT difficult to obtain.  

  𝑍𝑇 =
𝑆2𝜎𝑇

𝑘
=

𝑆2𝑇

𝜌𝑘
     [1.8] 

Where k is thermal conductivity (W/m.K), T is temperature (K), S is Seebeck 

Coefficient or thermo-power (V/K), σ is electrical conductivity (S/m) and ρ is resistivity 

(Ω.m).  

Different energy conversion technologies and their power generation efficiencies with 

temperature are given in Fig.1.4. It is presented that improving the ZT value could expand the 

increasing application of thermoelectric materials. Thermoelectric (TE) materials with ZT > 1 

are regarded as high-performance materials with potential to be commercialized [1, 15]. The 

first application of thermoelectricity was in flight space navigation satellites for radioisotope 

thermoelectric generators (RTGs) carried out by Thor-DM21 Able-Star in 1961 [16]. RTGs 

have recently been successfully used in deep-space probes launched by NASA for Cassini 

missions. Nowadays, thermoelectric devices are being installed in vehicles to recover 

automobile exhaust heat into useful electrical energy and thereby improving fuel efficiency 

[1, 17]. Solid state refrigerating devices that uses thermoelectric or Peltier effect have been 

widely used in computers, infrared detectors and optoelectronic devices for cooling [7, 18]. 

Thermoelectric car seat climate control system are being commercialized [17]. Recent 

advances include TE-solar hybrid systems for energy conversion and power generation [15].  
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Fig. 1.4 Power generation efficiency versus temperature  for different energy conversion 

technologies [15] (Note: org-Organic, CSP-concentrated solar power,  PV- photovoltaic, TE- 

thermoelectric, TI-Thermionic) 

Highest ZT recorded to date is from Cu2Se and single crystal SnSe (ZT is  ~2.6) [19, 20], 

though the mission of the thermoelectric community is to reach ZTs values greater than 3 for 

large scale application [15]. Hence processing routes and new materials are being explored to 

improve the performance of thermoelectric materials. However, due to the complexity of 

thermoelectric materials, only few successful researches have been reported, especially for 

semiconducting metal oxides and polymers. Therefore, better understanding of the 

thermoelectric concept is required for altering the parameters.  

The relationship between ZT and thermoelectric parameters with carrier concentration is 

given in Fig 1.5. It is shown that there should be a balance of the carrier concentration with 

Seebeck Coefficient and electrical conductivity to have improved ZT. The trade-off between 

electrical conductivity and Seebeck Coefficient can also be understood from the electronic 

density of states. The electrical conductivity of bulk semiconductors is related to charge 

carrier concentration (n) and mobility (µ) as shown in Eq. 1.9 [5, 10].  There is a clash 

amongst the parameters looking into Eq.1.5 and 1.9; high carrier concentration will result in 

high electrical conductivity whereas a decrease in the Seebeck Coefficient will occur. Also, 

large effective mass is favored for high Seebeck Coefficient while for the electrical 

conductivity is not the case. Therefore, a trade-off needs to be done amongst these parameters 

for increasing the ZT value.  
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𝜎 = 𝑛(𝐸)𝑒𝜇(𝐸) = 𝑛(𝐸)𝑒2 𝜋(𝐸)

𝑚∗    [1.9] 

 

Fig. 1.5 Figure of merit and behavior of thermoelectric parameters at varying carrier 

concentration [21] 

Thermal conductivity also plays an important role when improving thermoelectric 

performance. Based on the previous successful researches a minimal thermal conductivity of 

less than 5 W/m.K is required [20, 22]. Fundamentally, both phonons and electronic charge 

carriers (electrons or holes) are responsible for thermal transport. The corresponding 

contributions of these are lattice (l) and electronic (e) thermal conductivity (Eq.1.10 and 

1.11)[10]. 

𝑘 = 𝑘𝑙 + 𝑘𝑒     [1.10] 

𝑘𝑒 = 𝐿𝑇𝑛𝑒𝜇                [1.11]  

Where L is Lorentz number (2.4 x 10
-8

 WΩ/K
2
) 

At high carrier concentration (n >10
20

 cm
-3

), thermal conductivity is increased whereas high 

electrical conductivity is favored as shown in Fig. 1.5. Several studies have been conducted in 

order to reduce lattice thermal conductivity by phonon scattering through various ways such 

as nano-structuring [14, 23-27], material doping [10, 28-30] and morphology manipulation  

using process techniques such as Spark plasma sintering or microwave sintering etc… [24, 
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31-34].  In addition to the above other methods such as the creation of nanopores [35, 36], the 

elaboration of nanoprecipitates [33, 34, 37] and development of complex structures such as 

skutterudites [38, 39], clathrates[38, 40], half-heusler [38, 41] etc have been reported for 

reducing the lattice thermal conductivity.  Furthermore, Hicks and Dresselhaus [42] proposed 

that quantum confinement of charge carriers could increase the power factor, thus improving 

the ZT. A typical example of how thermal conductivity reduction can enhance the figure of 

merit is illustrated in Fig. 1.6. Thermal conductivities 0.2 W/mK and 0.8 W/m.K are 

compared; it could be seen that reducing the thermal conductivity to 0.2 W/mK improves the 

ZT by two-folds. Reduction in thermal conductivity reduces carrier mobility, as electron 

scattering will be increased, this will result in high Seebeck Coefficient.  

Thus far, nano-structuring has been reported as the most efficient and easier method for 

reducing the lattice thermal conductivity [14, 23, 43]. The effect of grain size on the thermal 

conductivity as a function of temperature is given in Fig.1.7 for nano-grained Ga-ZnO 

ceramics. It is shown that thermal conductivity decreases as the grain size is decreased. Also, 

as the temperature is increased the thermal conductivity is further reduced. A nanostructured 

material reduces the phonon mean free path and also offers different phonon scattering modes 

that could reduce the thermal conductivity. The scattering mechanism that occurs in a 

nanostructured material is illustrated in Fig.1.8. Mid/Long phonon wavelengths are scattered 

at the nanoparticles and grain boundaries whereas the short wavelengths are scattered by the 

atomic defects. At high temperatures the mean free path is decreased due to molecular 

vibrations. In this work, we will explore the reduction of thermal conductivity by addition of 

conducting polymers in a transition metal oxide. 
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Fig. 1.6 Effect of thermal conductivity on the figure of merit [14] 

 

Fig. 1.7 Effect of grain size on thermal conductivity as a function of temperature on nano-

grained Ga-ZnO ceramics [44] 
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Fig. 1.8 Scattering mechanism of phonons within a nanostructured material [27] 

 

1.2  Current state-of-the-art thermoelectric materials 

Previously we have indicated the importance of improving the figure of merit for large scale 

application and the need to optimize thermoelectric parameters. ZT has been improved 

enormously over the past decades through intense experimental procedures [1, 45] and 

theoretical studies on different materials [42, 46, 47]. ZT of different n and p-type 

thermoelectric materials as a function of temperature are given in Fig.1.9. The classical 

materials: Bi2Te3[48, 49], PbTe [50-53] and GeSi [54-56] are well known for room 

temperature (~300K), mid (300-700K) and high temperature (>700K) applications, 

respectively.  Through band engineering and nano-structuring ZT over 2 was achieved for Na 

doped SnSe [57], AgSbTe1.85Se0.15[58], Ge0.89SbIn0.01Te[59], Na-doped PbTe-SrTe [60] and 

PbTe–PbS [61] composites (Fig 1.9 (a,b)). Over the years, new materials with unique 

characteristics (such as the Skutterites (MX3, where M is transition metals and X is 

Phosphorus, Arsenic, Antimony etc..) [62, 63], Clathrate[64], half-heusler [65] etc…) to 

improve ZT value have been proposed and studied (Fig1.9 (c))[38]. The highest reported ZT 

to date for bulk materials is 2.66 at 923K from SnSe single crystal measured along the b axis 

[19, 45] and  recently from indium doped Cu2Se with ZT of 2.6 at 850K [20, 45]. However, 

the setback of these materials is the restriction for large scale application as their compounds 

are made up of rare earth (very expensive) and toxic elements. It is vital to use materials 

which are abundant and environmentally friendly. Hence, metal oxides are the ideal and most 

recently studied materials since they are made up oxygen and earth friendly elements.  
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Fig. 1.9 Recent advances of different thermoelectric materials: n-type materials[22] (a), p-type 

materials [22] (b) and n & p-type of recent thermoelectric materials [66] (c) 

1.3  Metal oxide thermoelectric materials 

Metal oxides are of interest recently as eco-friendly thermoelectric materials because they are 

less toxic, inexpensive and have high thermal stability[13]. Thermoelectric devices made from 

metal oxides are more durable because of their stability in oxidizing environment unlike 

tellurium, antimony and germanium based compounds. Their electrical properties can be 

transitioned from insulator to metallic behavior through manipulation of crystal structure, 

doping/co-doping and chemical compositions [10, 67, 68]. The recent progress on the 

performance of n-type and p-type metal oxides, in terms of figure of merit vs temperature is 

given in Fig.1.10. The most promising thermoelectric metal oxides are the p-type layered 

cobaltite (Ca3Co4O9 and NaxCoO2)[13]. A single crystal Ca3Co4O9+δ was reported to give ZT 

of 0.83 at 973K [69]. Whereas, a dually doped polycrystalline Ca3Co4O9+δ with silver and 
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lutetium gave maximum ZT of 0.61 at 1118K  due to drastically reduced thermal conductivity 

<1.8W/m.K and enhanced thermopower (~240µV/K) induced by Ag nano-inclusions [70, 71]. 

While, undoped NaxCoO2 with Na/Co ratio of 0.85 showed ZT of 0.78 at 950K [72], and after 

doping with silver, the ZT was increased to 0.91 at 950K. Recent advances on the p-type 

metal oxides are focused on BiCuSeO oxyselides [73]; pristine BiCuSeO has high Seebeck 

Coefficient of between 300 and 400µV/K at 300-900K with minimal thermal conductivity 

[29, 68, 73]. As a result, BiCuSeO doped with BaO gave ZT of 1.4 at 900K.  

 

Fig. 1.10 Recent progress on thermoelectric properties of metal oxides. ZT versus temperature 

for (Bi0.875Ba0.125CuSeO[29], Ca2.7Ag0.3CoO9/10wt%Ag [71], Ca2.8Ag0.05Lu0.15Co4O9+δ[70], 

Na1.7Co2O4[72], Na1.7Co2O4/10wt%Ag [72], Ca0.9(Dy,Yb)0.1MnO3 [74], Ca0.9Bi0.1MnO3 [75], 

CaMn0.98Nb0.02O3 [76], In1.9Ga0.1O3 [77], SrNb0.15Ti0.85O3/3wt% KTO [78], 

La0.08Dy0.12Sr0.8TiO3 [79], Zn 0.96Al0.02Ga0.02O[28]) 

The most investigated n-type metal oxides are the perovskite-type such as the strontium 

titanate (SrTiO3 (STO) and calcium manganite (CaMnO3 (CMO))) [10, 13]. The doping 

process of these materials is promoted by creating an oxygen deficient ceramic [68].  An STO 

doped with potassium titanate (KTO) and lanthanum-doped barium titanate has shown 

promising ZT values of about 0.38 at 900K [78, 79]. However, the issue with STO is the easy 

oxidation of Ti
3+

 ions to Ti
4+

 ions above 650K [13, 80]; oxygen easily diffuses causing the 

ceramic to be insulating [81]. Thus, CMO are used for high temperatures greater than 1000K 

due to stability of Mn
3+

 ions at these conditions [82]. Unfortunately, its performance has been 

poor with ZT below 0.2 when doped with bismuth [75] and co-doping with ytterbium and 
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dysprosium [74]. A slight improvement in the ZT  of the CMOs was observed doping  with 

Niobium  on the manganese site [76]. Other reported work on the thermoelectricity of metal 

oxides includes gallium doping in indium oxide ceramics [77]; ZT of 0.37 at 1000K was 

achieved. In this work we will focus on zinc oxide (ZnO), a promising n-type metal oxide 

with better performances at high temperature. Maximum ZT of 0.65 was reported at 1247K 

on a dually doped with aluminum and gallium[28]. This will be discussed in details in section 

1.4.2.  

1.4  ZnO based thermoelectric materials 

1.4.1 Characteristics and challenges of pure ZnO 

Zinc Oxide is an n-type semiconductor with a wide band gap between 3.2 to 3.5eV, hence,  

has broad applications in optoelectronics, piezoelectric, thermoelectricity, gas sensing and 

photovoltaic due to its unique chemical and physical properties [83-89]. It has good photo-

stability, high chemical and thermal stability, high bond energy and broad range of radiation 

absorption capabilities. Zn metal has high electronegativity which results in less polarized Zn-

O bonds. Crystal structures of ZnO are presented in Fig.1.11. At ambient conditions, ZnO 

normally crystallizes into a thermodynamically stable phase, hexagonal wurzite structure, 

space group P63mc (Hermann–Mauguin notation) or C6v
4
 (Schoenflies notation) with lattice 

parameters: a = b=3.2488Å, c = 5.2054 Å  [90]. Depending on the synthesis conditions other 

crystal structures can be formed; this includes cubic zinc-blende (tetrahedral, formed at high 

pressures (>9GPa)) and rocksalt (which is mostly formed at very high pressures)  [91, 92].  

  

Fig. 1.11Crystal structures of ZnO [92] 

Because of the simple crystal structure and light elemental composition, wurzite ZnO 

struggles from high thermal conductivity which can go as high as ~100 W/m.K at room 

temperature [93-95] and ~11W/m.K at 1000K [95].This is a setback for the performance of 

thermoelectric materials. Hence, it is important to find new/upgrade existing processing 
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methods (including powder synthesis and sintering techniques) and explore different dopants 

to reduce the thermal conductivity. Even though ZnO is praised for its high Seebeck 

Coefficient of about 600µV/K at room temperature [95], it struggles from low electrical 

conductivities. Fully annealed sputtered ZnO ceramic with a thickness of 100 nm has 

resistivity of 10
4
 Ω.cm at room temperature [96]. By introducing dopants and manipulating 

the stoichiometry of ZnO the resistivity could be reduced towards a metallic behavior, with 

resistivity ranging between 10
2
-10

-3
 Ω.cm [83, 91, 97]. 

1.4.2 Challenges with preparing nanostructured pure ZnO ceramics 

As alluded earlier numerous research studies have been reported on the nanostructuring of 

thermoelectric materials for improving the ZT by thermal conductivity reduction [23, 26, 27, 

42]. Different powder synthesis and sintering techniques have been considered for the 

reduction of grain size. So, nanometric ZnO powders of varying particle size distribution and 

grain morphology have been synthesized by chemical precipitation, sol gel, emulsion, 

hydrothermal and microwave techniques [83, 89]. Though, the challenge in consolidating 

nanopowder ceramics is obtaining full densification and maintaining the nanostructure. 

Sintering methods such as microwave and spark plasma sintering have been reported for 

densifying materials while maintaining the nanostructure [98-100]. Because of the high 

surface area of nanopowders, grain growth rapidly predominates during sintering due to the 

diffusion of grain boundaries and Ostwald ripening [101-105]. Therefore, it is crucial to be 

cautious about sintering techniques to minimize grain size. Spark plasma sintering (SPS) is a 

recent effective sintering technique for consolidating all kinds of materials. It uses rapid 

heating and high thermal efficiency, and as a result, it contributes to full densification of 

materials within minutes with retained nano/microstructure [100, 106, 107]. 

Retaining the nanostructure of ZnO ceramics can result in lower thermal conductivity to about 

10 W/mK at room temperature [31, 32]. Usually thermal conductivity of about 35-55W/m.K 

is reported at room temperature because of the micrometre grain sizes [32, 108-111].  The 

summary of thermoelectric properties of pure ZnO ceramics at 700 K is presented in 

Table.1.1. Great progress has been done over the past 2 decades in improving the 

thermoelectric properties of ZnO ceramics. Advancement in the processing techniques 

resulted in a decrease in the sintering temperature  to less than 400°C which caused a decrease 

in the grain size from ~30 µm to less than 10 µm [31, 108, 111, 112]. As a result, thermal 

conductivities of about 12 W/m.K were obtained for fully dense ZnO ceramics. Porosity has 

been reported as a way to reduce thermal conductivity, however, it has a huge impact on 

electrical conductivity of ceramics [113]. Virtudazo et al. [32] made a macro/nanoporous ZnO 
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ceramic from nanoporous ZnO powders prepared through double emulsion; lowest thermal 

conductivity of 4 W/m.K was reported at 700 K due to shortening of phonon mean free path 

[114]. Thus, ZT of 0.03 was reported for 0.05  Ω.cm of resistivity and -279 µV/K  in Seebeck 

Coefficient, for ZnO  ceramic obtained by spark plasma sintering at 550°C. When ZnO 

ceramic was spark plasma sintered at 950°C, the highest ZT of 0.06 was obtained when the 

resistivity was 0.002 Ω.cm, and the Seebeck Coefficient of -123 µV/K and thermal 

conductivity was 11 W/mK. Sintering at high temperature resulted in higher concentration of 

oxygen vacancies that improved the electrical conductivity of the ceramic, hence, the higher 

ZT. The theoretical background of ZnO intrinsic defects is discussed in section 1.4.3.  

 

Recently, Cramer et al. [31] reported on the densification of ZnO nanoparticles using 

modified graphite mould using and spark plasma sintering to enhance thermoelectric 

properties through simultaneous improvement of Seebeck Coefficicient, electrical 

conductivity and thermal conductivity through grain size gradation across the ceramic. 

Relative density of 97% was obtained. The SEM micrograph of the functionally graded 

material (FGM) is depicted in Fig. 1.12. The grain sizes decreased from the hot to the cold 

side; 1200 nm to 200 nm. At room temperature the thermal conductivity was 20 W/m.K and 

12W/m.K at 700K. It is noticed that the thermal conductivities are in the same range as that of 

normal sintering at high temperatures. Thermal conductivities of less than 5 W/m.K are 

required for improvement of the ZT value. The absolute Seebeck Coefficient and resistivity 

were 180 µV/K and 0.02 Ω.cm at 700K, respectively, which resulted in a ZT of 0.01.  

 

Lowering the sintering temperature could be used to reduce the thermal conductivity by 

causing little or no grain growth. There have been reports about sintering of ZnO 

nanoparticles at low temperatures, less than 600°C [115-118]. Ceramic grain sizes of about 

200 nm resulted in reduced thermal conductivity of about 10 W/m.K at room temperature. 

Unfortunately, this caused an increase in the resistivity to ~80 Ω.cm because of scattering of 

electrons at the grain boundaries and reduction in crystallinity [31]. ZnO being a non-

stoichiometric semiconductor, it is easily affected by temperature and sintering atmosphere 

which has a huge influence on the resistivity. These last points will be discussed in detail in 

section 1.4.3.   
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Table 1.1 Thermoelectric properties of pure ZnO ceramics at 700K 

 

 

Yr. Technique Sintering conditions Powder 

crystallite size 

Ceramic 

grain size 

RD ρ S k PF ZT Ref. 

   nm µm % Ω.cm µV/K W/m.K 10
-4

W/m.K
2
   

2017 SPS 

Differential sintering, 

73MPa, 773-1173K 

 

18 

(Nanoparticle) 
0.18-1.2 97 0.02 -180 12 1.43 0.01 [31] 

2017 SPS 

3.5kN, Argon 

20 

(Nanoporous) 

       

[32] 
823K <10 78 0.05 -279 4 1.73 0.03 

1023K ~5-25 80 0.006 -195 12 6.79 0.04 

1223K ~5-30 91 0.002 -123 11 9.53 0.06  

2016 SPS 
125MPa, Vacuum, 

1173K 

- 

(Nanoparticle) 

- 

(Annealed) 
>98 3.64 -600 20 0.1 3.5x10

-4
 [95] 

2015 SPS 
Argon 

1173K 

13.8 

(Nanoparticle) 
1-2 93 0.13 -300 12 0.68 3.9x10

-3
 [111] 

2013 SPS 1173K 

~70 
0.1-1 

(Annealed) 
- 

0.3 -374 15 0.47 2.2x10
-3

 

[109] 
~100 

(Nanoparticle) 
- 4 - 6 - - 

2011 Hot press 
Air 

1673K 

28 

(Nanoparticle) 
31 >97 1.25 -280 14 0.06 3.1x10

-4
 [108] 

2005 SPS 
Vacuum 

1273K 

- 

(Nanoparticle) 

 

<10 99 251 -500 11 0.001 6.3x10
-6

 [112] 

1997 Hot press 
Air 

1673K 

- 

(Nanoparticle) 
- 99 0.1 -325 18 1.06 4.1x10

-3
 [110] 
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Fig. 1.12 SEM micrographs of functionally graded ZnO ceramic[31] 

1.4.3 Intrinsic ZnO defects 

Even though ZnO is praised for its high Seebeck Coefficient value ranging between 300-

600µV/K thanks to the use of SPS technique depending on the concentration of charge 

carriers, which are controlled by powder synthesis methods, sintering techniques and 

annealing procedures, it still suffers from low electrical conductivities as highlighted in the 

previous sections [95, 109, 110, 112]. Through doping and manipulation of stoichiometry of 

ZnO ceramics the resistivity could be reduced towards metallic behavior. The defects in 

pristine ZnO play an important role in the electrical properties [91, 119-121]; by controlling 

operating parameters such as the sintering atmosphere, temperature etc… the concentration of 

defects could be tuned. There are different defects which can form within the ZnO bandgap. 

The ionization energy of the defects is shown in Fig. 1.13 [119] : zinc interstitials (Zni) close 

to the conduction band with energies between 0.05-0.15 eV, oxygen vacancies (VO) with 

energies between 0.05-2 eV and zinc vacancies (VZn) close to the valence band with energies 

between 0.8-2.8 eV.  
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Fig. 1.13 Ionisation energy of ZnO point defects at room temperature [119] 

The defects chemistry in ZnO using the Kroger vink notation is presented in Eq. 1.12-1.19, 

based on the Frenkel and Schottky reactions [119].  

Frenkel defect formation reactions: Zinc Interstitials  

𝑍𝑛𝑍𝑛 ↔ 𝑍𝑛𝑖
𝑋 + 𝑉𝑍𝑛

𝑋             [1.12] 

𝑍𝑛𝑖
𝑋 ↔ 𝑍𝑛𝑖

⦁ + 𝑒−             [1.13] 

                                                           𝑍𝑛𝑖
⦁ ↔ 𝑍𝑛𝑖

⦁⦁ + 𝑒−                 [1.14] 

Schottky defect formation reactions: Oxygen vacancies  

𝑂 ↔ 𝑉𝑍𝑛
𝑋 + 𝑉𝑂

𝑋                      [1.15] 

𝑉𝑂
𝑋 ↔ 𝑉𝑂

⦁ + 𝑒−                        [1.16] 

𝑉𝑂
⦁ ↔ 𝑉𝑂

⦁⦁ + 𝑒−                        [1.17]  

                     Zinc vacancies 

 𝑉𝑍𝑛
𝑋 ↔ 𝑉𝑍𝑛

, + ℎ⦁              [1.18] 

𝑉𝑍𝑛
, ↔ 𝑉𝑂

,, + ℎ⦁             [1.19] 

Where i is interstitial site, Zn is zinc, O is oxygen, V is vacancy, e
-
 is electron, h is hole and 

the superscripted are the charges (a prime indicates negative charge, a dot a positive charge 

and cross indicates anion site) 

The zinc interstitials (Zni) always donate 2+
 
charge electrons to the conduction band in a non-

equilibrium n-type ZnO, making them to be shallow donors [122] . The zinc vacancies are 
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partially filled in their energy orbitals, they can accept additional electrons, and are known to 

be deep acceptors because of the high transition levels of 0.18-0.87 eV.  Oxygen vacancies 

(VO) are deep donors with high formation energy, also known to be responsible for the n-type 

conductivity in ZnO. Whereas, the oxygen interstitials (Oi) can be split into two and acts as a 

deep acceptor in n-type ZnO and could react with the lattice to form covalent bonds with host 

oxygen that could be a donor.   

The possibility of a defect to contribute to conductivity is determined through the density of 

defects (Nde) in Eq.1.20 [122]. Nde depends on the enthalpy of defect formation. The 

relationship between enthalpy and atomic radius is that, the bigger the atomic radius the 

higher the enthalpy of defect formation (ΔH) which leads to low Nde based on the relationship 

between ΔH and Nde (Eq. 1.20). Oxygen and zinc have Van der Waals radius of 152 and 142 

pm [123], respectively. Thus, oxygen will have higher ΔH and low Nde, and zinc will have 

low ΔH and higher Nde. This implies that the most vital contributing defects on the 

conductivity of ZnO are the zinc interstitials and vacancies. Since, zinc interstitials have the 

lowest energy level compared to zinc vacancies it is the main contributor giving the n-type 

conductivity in native ZnO.  

                   𝑁𝑑𝑒 ∝  exp
[−

∆𝐻

𝑘𝐵𝑇
]
       [1.20] 

Where Nde is the density of defect, H is the enthalpy of defect formation (J), kB the 

Boltzmann constant (J/K) and T the temperature (K). 

It was previously highlighted that the formation and concentration of ZnO defects depends on 

the operational parameters. ZnO defects are sensitive to processing atmosphere; Fig.1.14 

relates the concentration of ZnO defects with oxygen partial pressure. It is revealed that at 

low partial pressure of oxygen (reducing atmosphere) the concentration of oxygen vacancies 

predominates.  In stoichiometric conditions, the concentration of oxygen vacancies equals 

that of oxygen interstitials which is rare for polycrystalline ZnO. The conductivity could be 

tuned from n-type to p-type depending on the partial pressure of oxygen. 
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Fig. 1.14 Concentration of ZnO defects as a function of oxygen partial pressure at room 

temperature [124] 

On the electrical properties, the influence of the sintering parameters on the resistivity and 

Seebeck Coefficient of pure ZnO ceramics are shown in Table.1. The resistivity and Seebeck 

Coefficient vary between 0.002 to 251 Ω.cm and -123 to 600µV/K, respectively; depending 

on the grain size, relative density and concentration of oxygen vacancies. High power factor 

(σS
2
) of 9.53 x10

-4
 W/m.K

2
 was achieved with low resistivity of 0.002 Ω.cm and Seebeck 

Coefficient of -123µV/K, whereas ceramics with high Seebeck coefficients of -600 µV/K and 

resistivity of 3.64 gave low power factors of about 3.5x10
-4

 W/m.K
2
. Therefore, it is vital to 

have very high electrical conductivities for better performance while maintaining the Seebeck 

Coefficient at moderate level. Several research studies have been done on the addition of 

substitutional dopants on the zinc side to narrow the band gap with the objective to obtain 

higher electrical conductivities [125].  

 

1.4.4 Doped and co-doped ZnO TE properties 

Zinc oxide is usually doped with the group III elements as they have ionic radius close to that 

of Zn
2+ 

ions (0.074 nm) [126, 127]. The ionic radius of aluminium (Al
3+

), indium (In
3+

) and 

gallium (Ga
3+

) ions are 0.054, 0.080 and 0.062 nm respectively. These elements act as 

shallow donors substituting some part of the zinc side giving carrier concentrations higher 

than10
20

 cm
-3

 [83]. The recent progress of ZnO based thermoelectric ceramics are given in 

Fig.1.15. There  are several reports on thermoelectric properties of Al-doped ZnO with ZTs 
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of ~0.17 to 0.47 at 1000K from ceramics prepared through hot press [28, 110, 128, 129], 

microwave [130] and spark plasma sintering [6, 33, 34, 37, 111, 131]. To date, the highest ZT 

value  reported is 0.65 at 1247K from dual doping with Al and Ga [28]. Gallium was found to 

improve the solubility of Al in the ZnO crystal. Another factor that improved the properties is 

the reduced thermal conductivity by nanostructuring. For instance, aluminum hinders grain 

growth.   

Doping with heavy elements like indium (In) leads to promising results because of low 

thermal conductivities of ~3 W/m.K giving a high power factor of 1230 W.m.K
2 

at 1000K 

[132]. Further, doping ZnO ceramics with bismuth (Bi) leads to high Seebeck Coefficient of 

~500µV/k and a decrease in the electrical conductivity was reported due to the segregation of 

Bi ions at the grain boundaries. Theoretical analysis on antimony (Sb) doping in ZnO 

nanowires estimated promising ZT of ~0.25 [133]. Transition metal ions such as cobalt [134], 

nickel [112, 135], zirconium [136], magnesium[137, 138] , silver [139], scandium [140], iron 

[141] etc… were also investigated as grain growth inhibitors. Han et al. [140] developed a 

stable ceramic by dual doping of Sc and Cd; a ZT of ~0.27 was obtained. Recent attempts 

involved doping of anionic ion sulphur through ZnS compound to tune intrinsic defects in 

ZnO [142]. Co-doping of Al with reduced graphene oxide (RGO) showed high electrical 

conductivities of 2000 S/cm at room temperature due to reduced Schottky barriers. 

Unfortunately, there were no reports about Seebeck and thermal conductivity [143]. Other 

advancements concerning  the inclusion of polymer fillers for thermal conductivity 

reduction[135] will be discussed in detail in section 1.4.6.  
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Fig. 1.15 Recent progress on thermoelectric performance of ZnO based ceramics 

(ZnO[95], Zn0.96Al0.02Ga0.02O [28], Zn0.95Ni0.05O/9 wt% PPP[135], 0.25 at% Al[130], 0.5 

at% In [132],ZnSc0.1Cd0.02O1.03 [140]) 

1.4.5 Influence of grain morphology on thermoelectric properties of Al-doped ZnO 

The effects of grain morphology and grain size were highlighted in the previous section on 

pure ZnO ceramics. Ceramics prepared from nanoparticles, rods, platelets and micro/nano 

structure powders are compared based on previous reports by Han et al. [33]  and Zhang et 

al. [34]. The unique morphologies were studied with the aim to minimize thermal 

conductivity and maximize charge carrier mobility for better electrical conductivities. The 

SEM micrographs of the Al (2 at%)-doped ZnO powders and ceramics are given in Fig.1.16. 

The nanoparticles were prepared by hydrolysis whereas the rods, platelets and dual 

micro/nano microstructure were prepared by hydrothermal techniques. The ceramics were 

consolidated by spark plasma sintering; relative densities of 80-90% were determined from 

these ceramics; this is too low for better electrical conductivity. Sintering becomes 

complicated when complex microstructures and nanometric powders are consolidated. The 

rods and platelets ceramics have preferential orientation while the ceramics from nanoparticle 

and micro-nano structured ceramics do not show such behavior. The nanoparticles ceramics 

had finer grains of less than 1µm whereas the micro-nanostructured ceramics had grains of 

about 3µm consisting of small nano-crystallites of about 200 nm.  The rods and platelets 

particles prefer to grow on the miller impedance, <001>, direction while for the nanoparticle 

and micro-nano particles the <001> growth is prohibited.  
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Fig. 1.16 SEM micrographs of Zn0.98Al0.02O powders and ceramics prepared by SPS 

(Nanoparticles, Rods, Platelets [33]; Micro-nano structured [34]) 

The thermoelectric properties of these ceramics are given in Fig.1.17. Ceramics prepared 

from nanoparticles have high resistivity (13 mΩ.cm) because of many grain boundaries, 

electrons gets scattered at the interface causing reduced flow of charge carriers as illustrated 

in Fig 1.16 [23]. At room temperature, resistivity of micro-nano structure, platelet and rod 

ceramic were 0.8, 0.18 and 0.12 mΩ.cm, respectively. The low resistivity was due to 

increased charge carrier mobility when rod and platelet are measured perpendicular to 

sintering pressure. A semiconducting behavior was reported in nanoparticles ceramics due to 

excitation of shallow donors while in rods, platelets and macro-nano structure a metallic 

behavior with temperature was observed. An average Seebeck Coefficient of ~25 µV/K was 

reported for platelets and rods and ~50 µV/K for nanoparticles and micro-nano structured 

ceramics at 400K. Due to the simple structure of rods and platelets the thermal conductivity 

were found to be 35 and 21 W/m.K at 400K, respectively. Both macro-nano structured 

ceramics showed surprisingly reduced thermal conductivity of ~8W/m.K at 400K. As a 

result, maximum ZT of 0.37 at 1000 K was determined in micro-nano structured ceramics. 

The other morphologies did not show significant difference in the ZT.  

 



28 
 

 

Fig. 1.17 Thermoelectric properties Al-doped ZnO prepared by SPS, for different 

morphologies 

 (Nanoparticles, Rods, Platelets [33]; Micro-nano structured [34]) 

Based on these results it is evident that microstructure has an important effect on the 

thermoelectric properties of Al-doped ZnO ceramics. It would be beneficial to use the micro-

nano structured ceramics; however, the synthesis route for these powders is complicated and 

expensive. Nanoparticles are easier to produce by chemical techniques such as co-

precipitation, sol gel etc...  These techniques are cost effective, allows for low temperature 

synthesis and easy manipulation of crystal size. However, the problem with ceramics from 

nanoparticles is the high resistivity that draws back its performance. Since the parameters are 

interconnected it will be difficult to alter one without harming the other. In this manner, it is 

valuable to search for dopants that will keep the electrical conductivity high while the 

Seebeck Coefficient is kept moderately around 100-200 µV/K at minimal thermal 

conductivities of less than 5 W/m.K. Recently, the doping of conducting polymers are being 

investigated as promising dopants for ZnO composites as they could give unique electrical 

properties because of the low thermal conductivities of polymers.  
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1.4.6 Doping of metal oxides with conducting polymers 

Conducting polymers are currently being used for various electrical applications (such as 

optical, thermoelectricity, sensors etc.) [144-147]. This is because they are flexible, easier to 

process, cost effective and most importantly have low thermal conductivities than those of 

inorganic materials. Chemical structure and thermoelectric properties of commonly studied 

conducting polymers are given in Table 1.2 and 1.3. One can mention: polyaniline (PANI), 

polythiophene (PTh), polyacetylene (PA), poly (3.4 ethylene dioxythiophene) (PEDOT), 

polypyrolle (PPy), poly paraphenelyne (PPP) and poly (2.7 carbazolylenevinylene) (PC). 

Intense studies have been done on PEDOT doped with polystyrene sulfonate (PSS) and 

tosylate (Tos) because of their high electrical conductivity, with a maximum ZT of 0.25 

reported  at 300K [148].  PANI, PPy, PEDOT: PSS/Tos and PTh were reported to have ZT of 

3-10
-4

-1.1x10
-2

@ 423K, 2.9x10
-2

@423K , 1x10
-2

-0.25@ 300K and 7.84-10
-4

-3x10
-2

@250K, 

respectively [144]. The difference is caused by different preparation methods such as the 

processing techniques, activation reagents etc. PC is becoming of interest recently because of 

reported high powder factor of 19 μW/mK
2
 at room temperature [149].  

Nowadays, conducting polymers are being incorporated in metal oxide composites to provide 

unique properties especially for facilitating charge carrier transport and lowering thermal 

conductivity [147]. The addition of PPP in titanium oxide [150], iron oxide [30] and zinc 

oxide [135, 139] composites has been investigated.  
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Table 1.2 Chemical structure of few conducting polymers [144] 

 

Material Chemical structure Material Chemical structure 

Polyaniline: 

leucoemeraldine 

(y=1), 

emeraldine 

(y=0.5) and 

Pernigraniline 

(y=0) 

 

Polythiophen

e 

 

Poly (3.4 

ethylene-

dioxythiophene) 

 

Trans-

polyacetylen

e 
 

    

Polypyrrole 

 

Poly(paraphe

nylene) 

 

    

Poly (2.7 

carbazilylenevin

ylene) 

 

Poly(para-

phenylenevin

ylene 

 

  

 

 

Table 1.3 Thermoelectric properties of conducting polymers, re-tabulated from Du et al. 

[144].  

Material T (K) σ S k ZT 

  S/cm µV/K W/m.k  

PANI [151-157] 423 ∼10
−7

-320 ∼-16-225 ∼0.02-0.542 
~3x10

−4
-1.1x10

-

2
 

PTh [158-161] 250 ∼10
−2

-10
3
 ∼10-100 ~ 0.028-0.17 ~2.9x10

−2
 

PEDOT:PSS/Tos 

[148, 152, 162, 

163] 

300 6x10
-4

-945 8-888 ~0.34-0.37 1x10
-2

-0.25 

PPy [164-168] 423 0-340 -1-40 0.2 
7.84x10

-4
-

3x10
−2

 

PA [169-171] 423 
∼1.53x10

−3
-

2.85x10
4
 

∼−0.5-1077 - - 

PC [149, 172] 300 ∼4x10
−5

-5x10
2
 4.9–600 - - 

PPP [147] 300 ~500 - - - 
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The thermoelectric properties of zinc oxide composites doped with PPP are presented in 

Fig.1.18. The addition of the conducting polymer simultaneously improved both resistivity 

and Seebeck Coefficient. The resistivity was reduced about 2 folds at 400K as compared to 

ceramic without polymer; PPP nano-inclusions caused an increase in the carrier concentration 

[135, 139]. The polymer provides an interconnected network within the ZnO matrix as shown 

in TEM micrograph in Fig 1.19 (a). Thus, the conductivity is improved because of higher 

charger carrier mobility due to efficient conduction paths and charge redistribution at the 

junction of doped-ZnO and PPP[173]. Power factors of 11 and 4.5 W/m.K
2
 (900K) were 

determined from Ni and Ag doped ZnO ceramics with 9 wt% and 0.15 wt% PPP, 

respectively. As a result, Ni-doped ZnO, 9 wt% ceramics gave ZT of ~0.27 at 900K and 0.54 

at 1150K.   
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Fig. 1.18 Thermoelectric properties of current ZnO/polymer composites a function of 

temperature: Resistivity (a), Seebeck Coefficient (b), power factor (c), thermal conductivity 

(d) and figure of merit (ZT) (e) 

(Zn0.95Ni0.05O/9 wt% PPP[135], Zn0.9Ag0.1O/0.15 wt% PPP[139] and Zn0.98Al0.02O [33]) 
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Fig. 1.19 TEM micrograph of Zn0.95Ni0.05O/9 wt% PPP ceramic (a), interface 

image of Zn0.95Ni0.05O and 9 wt% PPP (b) and schematic illustration of vibration heat 

conductance (c) [135] 

The improved thermoelectric performance is due to high power factor and reduced thermal 

conductivity of about 7 W/m.K at room temperature caused by mismatch vibrational spectra 

of metal oxide and polymer [174]. An illustration of vibrational heat conductance is indicated 

in Fig 1.19 (c); PPP has lower frequencies as compared to the metal oxide which become 

disturbed at the interface causing overall decrease in the thermal conductivity. Other factors 

that contribute to the reduction in thermal conductivity is the phonon scattering due to nano-

grains and grain boundaries [23, 42, 175].  

 

In this work, an Al-doped ZnO (AZO)/ polyaniline composite was synthesized to minimize 

the scattering of electrons at the grain boundaries due to nanostructuring. Polyaniline is one 

of the most stable conjugated polymers, hence, has received much attention over the years. Its 

electrical conductivity can go as high as 300 S/cm when doped with  camphorsulfonic acid 

(CSA) [176].  Chemically activated polyaniline with 1M HCl lead to a maximum ZT of 3 

x10
-4

 at 423K [151, 157, 177]. Mitra et al. [177] recently reported on thermoelectric 

properties of AZO nanorods doped with polyaniline (5-25wt%). AZO nanorods doped with 

16 wt% polyaniline gave high ZT of 0.0035 at room temperature because of simultaneous 

improvement in electrical conductivity due to enhanced carrier mobility and Seebeck 

Coefficient due to scattering of low energy carriers via the energy-filtering effect [178]. The 

individual performances of the materials are given in Fig.1.20. Polyaniline showed better 

performance at room temperature compared to AZO with ZT of ~ 3x10
-4

 at room temperature 

because of high power factor and low thermal conductivity. However, the problem with this 

polymer is the low degradation temperature of about 300°C [151]. This will make 
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densification of Al-doped ZnO/PANI composites difficult. In this case, Spark plasma 

sintering (SPS) technique could help solve the problem since it is well known for lowering 

the sintering temperature while achieving high densification.  

 

Fig. 1.20 Thermoelectric properties of AZO and PANI at room temperature [177] 

1.4.7 Low temperature sintering of ZnO based ceramics 

Recent research [116, 118, 179-183] is focusing on the consolidation of ZnO based 

nanoparticles at low temperatures (less than 400°C) and high pressures  (300 to 600 MPa) by 

adding solvents (such as water, aqueous acetic acid, polymers etc.…) to enhance 

densification. The summary of the low temperature sintered ZnO composites is given in 

Table 1.4.  Dargatz et al. [116, 179] were able to get a fully dense ZnO ceramic at 400°C by 

controlling the heating rates, water content and electric field using SPS. About 99.9% relative 

density was reported when using 1.6 wt% water, however, anisotropic grain morphology 

were observed due to diffusion of hydrogen and hydroxide ions into the ZnO crystallite. The 

sintering mechanism is illustrated in Fig.1.21 [182, 184]; improved densification at such low 

temperatures is due to the adsorbed water on the surface of the ZnO particles that reduces the 

inter-particles friction allowing better particle rotation and dissolution of Zn
2+

 and O
2-

 ions on 

the grain’s surface. As a result, the grain boundary area has high defect chemistry that forms 

high potential. Thus, the activation energy of atomic diffusion becomes reduced leading to 

full densification at very low temperatures. Gonzalez-Julian et al. [180] recently reported the 

lowest sintering temperature of 250°C using SPS; densification of 97.3% was obtained using 

aqueous acetic acid that lead to enhanced sintering by pH modification [181, 185].  
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Fig. 1.21 Sintering mechanism of ZnO ceramics sintered with water [184] 

Nowadays, most research studies are focusing on the sintering of  ceramic-polymer 

composites as they possess unique properties [186]. Ceramics can be co-sintered with 

polymers to densifications greater than 90% at temperatures between room temperature to 

300°C. Zhao et al. [182] lately reported on the cold sintering of ZnO/Polytetrafluoroethylene 

(PTFE) using hot-press; densification of about 90-95% was obtained sintering at 285°C and 

300 MPa. An illustration of the ZnO/polymer sintering mechanism is shown in Fig.1.22. 

During rearrangement, the PTFE covers the ZnO grains that improves the packing by particle 

sliding to close pores[187]. Depending on the concentration and the type of second 

phase/dopant full densification can be attained just by rearrangement. A decrease in the 

relative density was reported as PTFE concentration was increased from 1 – 40 wt%. Thus, in 

this work an attempt was made to consolidate Al-doped ZnO ceramics with polyaniline 

(PANI). PANI decomposes at different stages depending on the moisture content and dopant 

[188] in the temperature range 400-500°C [188, 189]. Below 400°C, polyaniline glass 

transitions (Tg) to rubber form, hence, aid with particles rearrangement to obtain a fully dense 

ceramic.  
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Fig. 1.22 Illustration of ZnO/polymer densification process 

Table 1.4 Characteristics of ZnO ceramics sintered below 400°C 

Technique Material Additive 
Sintering 

conditions 
RD (%) 

Powder 

grain 

size 

(µm) 

Ceramic 

grain 

size 

(µm) 

Ref. 

Hot press 

(CSP) 
ZnO 

1M acetic 

acid 

<300°C, 

387 MPa, 

1 h 

90-98 - ~3 [185] 

SPS ZnO 
1.6wt% 

H2O 

250°C, 

300 MPa, 

5 min 

92 - <0.2 [184] 

Hot press 

(CSP) 
ZnO/PTFE 

20wt% 

aqueous 

acetic 

acid 

285°C, 

300 MPa, 

1 h 

90-95 - - [182] 

Hot press 

(CSP) 
ZnO/Ti3C2TX 

1.5M 

acetic 

acid 

<300°C, 

250MPa, 1 

h 

92-98 100-900 1-4 [181] 

SPS ZnO 

aqueous 

acetic 

acid 

250°C, 

150 MPa, 

5 min 

98 - <0.5 [184] 

SPS ZnO 
1.6wt% 

H2O 

400°C, 

150 MPa, 

10 min 

100 - - [116] 
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1.5  Summary 

A literature review of thermoelectric principles and properties of different materials has been 

discussed in detail; the focus was on zinc oxide.  The poor ZT in pristine ZnO is as a result of 

high resistivity and thermal conductivity. Powder quality and sintering techniques play a 

crucial role in improving the thermoelectric properties of ZnO based ceramics. Nano-

structuring is beneficial in reducing the thermal conductivity however has a negative effect 

on the resistivity which derails the overall performance. Thus far, dual doping of aluminium 

and gallium has shown high ZT in ZnO ceramics. The interrelated parameters still remains a 

draw back in improving thermoelectric properties of Al-doped ZnO composites especially 

between the resistivity and thermal conductivity. The addition of conducting polymers in 

ZnO composites has shown to simultaneously improve the resistivity and Seebeck 

Coefficient while the thermal conductivity is kept at a minimal point. Sintering aids and 

secondary phases could fully densify ZnO composites at temperatures below 400°C.   

 

In this work, focus was on the powder synthesis characteristics of ZnO and the influence of 

spark plasma sintering parameters (such as temperature, pressure, current insulation, sintering 

atmosphere and pressure) on densification and thermoelectric performance of ceramics. 

Performance indicator, ZT, ranging between 4 x 10
-4

 to 2 x 10
-3

 could be obtained at 700K by 

other researchers. The ZnO powder was also doped with Al to improve its electrical 

properties. The influence of powder synthesis and sintering parameters on thermoelectric 

properties was evaluated. Thermal conductivity of the Al-doped ZnO ceramics was further 

reduced by incorporating polyaniline. Sintering below 300°C by using spark plasma sintering 

technique was investigated. The measurements were done at temperature below the sintering 

temperature. Polymer/ZnO based ceramics could have ZT of about 0.5 at 500 K. Hence, it 

was expected that, would be improved ZT as a result of reduced thermal conductivity.   
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2. Experimental techniques 
This chapter discusses the materials and methods which were used to carry out this research 

study. The synthesis of the pure and doped ZnO powders using co-precipitation technique 

followed by calcination is discussed. Spark plasma sintering technique is explained in detail; 

the parameters which were tested in this study are also indicated. Analytical and electrical 

property techniques are described.  

2.1 Synthesis of pure and Al-doped ZnO powders 

Co-precipitation method followed by calcination was used to synthesize pure and Al-doped 

ZnO particles as it produces high quality powder. Moreover, this technique allows low 

temperature processing and has high manufacturing yield. The specific route employed in this 

work was described by Mory et al. [190] under the thesis work of Guy [191] at the Centre 

Inter-Universitaire de recherche et d’ingénierie des matériaux (CIRIMAT). Already there are 

other published works of using this technique [115]. A schematic illustration of the 

experimental procedure used for the synthesis of the powders is given in Fig.2.1. High purity 

chemicals: zinc nitrate hexahydrate (Zn(NO3)2.6H2O, 98%) (Sigma-Aldrich), Aluminium 

nitrate nonahydrate (Al(NO3).9H2O)(Sigma-Aldrich) and ammonium oxalate monohydrate 

((NH4)2C2O4.H2O, 98%) (Molekula) were used as precursors without any further purification. 

For the synthesis of pure ZnO particles, solutions of 4M zinc nitrate hexahydrate, 0.2M and 

0.38 M ammonium oxalate monohydrate were separately prepared. At ambient temperature 

zinc nitrate hexahydrate solution was mixed with 0.2 M ammonium oxalate monohydrate 

solution to initiate nucleation. At a subsequent time and constant stirring, 0.38 M ammonium 

oxalate monohydrate solution was added into the mixture to promote particle growth. The 

final pH was ensured to be between 6.5 and 7 by adjusting with an ammonia solution. A 

white precipitate was formed which was centrifuged and dried for 22 hrs at 80°C.  The dried 

precipitate was calcined in a furnace to produce ZnO powder. Calcination temperatures 

ranging between 500°C and 700°C were used to obtain the pure ZnO. The synthesized ZnO 

powder was compared with commercial zinc oxide (Com-ZnO) of 99.99% purity and <1µm 

particle size procured from Sigma-Aldrich.  

Similar procedure was followed for the Al-doped ZnO powder, aluminium nitrate was mixed 

with Zinc nitrate at an excess of 10% to ensure final aluminium concentration of 2 mol%. 

The solubility limit of Al into the ZnO crystal is < 2 mol% and thus far, promising 

thermoelectric properties have been reported from this concentration [28, 33].  The powder 
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was calcined using optimum calcination temperature of pure ZnO. Note: All samples were 

dried at 150°C overnight before sintering.  

  

Fig. 2.1 Process block diagram of Al-doped zinc oxide nanoparticles synthesis 

2.2 Preparation of polymer doped ZnO based powders 

Polyaniline was used as a conducting polymer dopant. It was preferred because it is stable 

and one of the promising thermoelectric polymer materials. The proposed use of the polymer 

in this work is to make it as a medium for thermal conductivity reduction by introducing two 

different vibrational thermal conductance and also to create a conduction path for electrons to 

improve mobility. Polyaniline emeraldine base with molecular weight of 50000 g/mol was 

purchased from Sigma-Aldrich. It was converted to a more conducting structure, emeraldine 

salt, by adding HCl at ratio of 1:4. The mixture was ground in a mortar for an hour, thereafter 

washed several times to remove excess HCl and dried at 80°C for 15 min. Concentrations of 

0.75, 5 and 9 wt% were investigated on the sintering and thermoelectric properties of pure 
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and Al-doped ZnO ceramics. The ceramic and polymer powders were pre-mixed in a tubular 

mixer for 15 min and then ballmilled for 4 h 30 min to reduce grain size of polyaniline and to 

ensure homogeneity.   

2.3 Consolidation of ZnO based ceramics  

2.3.1 Background on spark plasma sintering equipment  

The ZnO based composites were densified with Dr. Sinter 2080 unit (SPS Syntex Inc., Japan) 

available at the Plateforme Nationale de Frittage Flash (PNF2) located at the Université 

Toulouse 3 Paul Sabatier (see figure 2.2). The spark plasma sintering equipment is shown in 

Fig.2.2a; it has a mounted computer to monitor and record sintering processes. The control 

panel consists of temperature, pressure, gas flow and intensity controllers. Sintering takes 

place in the SPS chamber; as shown in the enlarged image (see Fig.2.2b). The electrodes 

charge current through the sample and/or the die (depending on the electrical conductivity of 

the sample compare to that of the die) and apply axial pressure; whereas the graphite spacers 

connect the sample to the electrodes through a die. The samples in this work were sintered in 

an 8 and 20 mm inner diameter tungsten carbide and graphite dies. A schematic diagram of 

the SPS chamber setup is indicated in Fig.2.3, the cross-section of the die shows the position 

of the sample and the lining of the mold with 0.2 mm thick graphite foil (PERMA-

FOIL®Toyo Tanso). The principle of the spark plasma sintering technique is that sintering 

occurs through simultaneous application of current and axial pressure on a sample. As shown 

on the enlarged image of the sample, when electric current is passed through there is spark 

discharge amongst the grains [192, 193]. In that manner, Joule heating occurs causing mass 

transport of the grains to form a dense ceramic [106, 107, 192, 193].  
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Fig. 2.2 SPS equipment: Dr. Sinter 2080 unit (SPS Syntex Inc., Japan) 

 

 

Fig. 2.3 SPS chamber setup and sintering process 

2.3.2 Sintering of pure ZnO  

Several parameters were varied during the study with the aim to have fully dense pellets with 

minimal grain growth. The summary of all the parameters altered in this study are given in 

Table 2.1. Sintering pressure (250-850 MPa), temperature (400 to 700°C), atmosphere (Air 

and Vacuum), current isolation and sintering cycle were investigated. The sintering cycles 

(SC) which were compared in this study are shown in Fig.2.4. Sintering cycle 1 (SC1) 

reported in Fig.2.3 (a; b) was used for all the test work. The cycle in Fig.2.4 (a) was used for 

8 mm samples. Uniaxial pressure was applied at room temperature for 2 min followed by 

temperature increase with a ramp of 100°C/min. The holding time at the temperature setpoint 
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has been fixed at 6 minutes. The temperature was cooled down to room temperature at a rate 

of 100°C/min simultaneously with pressure release. For the 20 mm samples the heating rate 

was reduced to 50°C/min when it approached the temperature setpoint to avoid any overshoot 

as shown in Fig. 2.4 (b). The other sintering cycle (SC2) in Fig.2.4 (c) entails applying the 

temperature first and followed by application of axial pressure for 2 min towards the dwell 

time.  

A scheme of the SPS column is illustrated in Fig.2.5. It shows that a part of the total current 

flows through the sample for “Normal” setup (Fig.2.5 (a)) and “current insulated” using 

alumina (Fig.2.5 (b)). About 2 g of alumina powder was put on both sides of a sample as 

shown in Fig. 2.5 (c). It was previously reported that internal current can influence the 

progress of sintering of ZnO ceramics especially on the grain growth [194, 195].   
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Table 2.1 Sintering conditions of ZnO and ZnA/PANI ceramics  

No. 
Temperature 

(°C) 

Pressure 

(MPa) 

Period  

pressure 

applied 

Holding 

time 

(min) 

Atmosphere Insulation 
Sintering 

cycle 

Ceramics prepared from commercial ZnO (CCZ) 

1. 400 250-850 RT 6 Air No SC1 

2. 400-700 250 RT 6 Air No SC1 

3. 900 100 RT 6 Vacuum No SC1 

4. 900 100 RT 6 Vacuum Yes SC1 

5. 900 100 
Holding 

time 
6 Vacuum Yes SC2 

Ceramics prepared from synthetic ZnO (CSZ) 

1. 600-700 250 RT 6 Air No SC1 

2. 900 100 
Holding 

time 
6 Vacuum Yes SC2 

Zn0.98Al0.02O (ZnA) ceramics 

1. 600-650 250-500 
Holding 

time 
6 Air No SC2 

2. 550-700 250 RT 6 Air No SC1 

ZnA/PANI ceramics 

1. 150-250 250-500 

Holding 

time, 

150°C 

10-30 Air No - 
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Fig. 2.4 SPS sintering cycles: (a) SC1 for 8mm die (b) SC1 for 20mm and (c) SC2 

 

Fig. 2.5 Schematic diagram of the SPS column: (a) Normal setup (b) Current isolation using 

alumina (c) Sample preparation with alumina 
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2.3.3 Sintering of aluminium and polyaniline doped ZnO composites 

Al-doped ZnO ceramics were pre-compacted at 25 MPa for 1 min thereafter sintered at 

varying pressure of 250 - 500 MPa and temperatures of between 550 to 700°C to ensure full 

densification and less concentration of secondary phases in ceramics. Detailed information 

about the sintering is given in Table 2.1.  

The polyaniline doped ZnO and Zn0.98Al0.02O ceramics were sintered firstly heated up to 

150°C at a rate of 50°C, then kept there for 10 min to ensure polymer covers grains and 

thereafter applied pressure of 250 - 500 MPa at the last 2 min of the holding time. While 

pressing the temperature was increased to final temperature of 250°C using the same heating 

rate and it was held for10 - 30 min (Table 2.1).  

2.4 Characterization techniques  

2.4.1 X-ray diffractometer 

X-ray diffractometer (XRD Bruker D4) was used to confirm the phase structure in powder 

and dense ceramics by using copper cathode as a radiation source (Kα, wavelength 1.5419Ȧ) 

at 40 kV and 40 mA. The diffraction patterns were recorded with a precision of 0.01° in the 

2Ɵ range of 10 - 80° and step size of 0.02°. EVA software installed with JCPDS 

crystallographic database was used to identify available phase(s). The background of the 

diffraction pattern was evaluated to observe peak-positions and intensities. Alumina powder 

was used to confirm peak shift in the ceramics. Crystallite sizes of < 100 nm were estimated 

using the Scherrer equation assuming that the grains are spherical (Eq. 2.1) [196]. 

𝑑𝑋𝑅𝐷 =
𝐾𝜆

𝛽.𝐶𝑜𝑠𝜃
     [2.1] 

Where K is dimensionless shape factor (0.9), λ is wavelength (nm), β is full width of the 

diffraction peak at half maximum height (FWHM in rads). 

2.4.2 Microscopy analysis 

2.4.2.1 Scanning electron microscopy 

The morphology of the powders and the microstructure of the ceramics were studied by 

Scanning Electron Microscopy (MEB JEOL JSM65 10LV (CIRIMAT), Field Emission Gun 

Scanning Electron Microscopy (FEG-SEM, ZEISS SUPRA 55) (CRISMAT)) and SEM 

Quanta 250 FEI FEG (Faculty of Medicine, Toulouse)).The powders were mounted on 

carbon tape whereas the fractured sections of the dense ceramics were mounted with carbon 

paste; silver layer of about 150 - 300 nm was coated on the samples to prevent charge build-
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up and to have high resolution images. Focused beam of high-energy electrons operating 

between 20 – 30 kV was used to generate variety of signals on the surface of the specimens. 

The signals from the sample-electron interaction revealed information about the sample’s 

morphology, phases and with the aid of Energy dispersive X-ray spectroscopy (EDX) the 

estimated chemical compositions. Data and images were recorded at a working distance of 

about 8-10 mm and magnifications between x 1 to x 40 k. Image J software was used to 

measure the grain sizes. Mendeson stereological factor of 1.56 was used to transform 2D 

average measured length to 3D average grain size [197].   

2.4.2.2 Transmission electron microscopy  

Transmission electron microscopy (HT 7700 Hitachi, 120kV) was used to quantify the phase 

composition of polymer/ZnO ceramics. High energy of 80-100 kV and current of 12 µm was 

used. The samples were ground in a mortar and then put on a grid with a film of carbon with 

a hole. Images were taken at magnification of x 200 – x 200 k.  

2.4.3 Particle size and relative density measuring techniques 

2.4.3.1 Brunauer–Emmett–Teller technique (BET) 

Brunauer–Emmett–Teller technique (BET) (Micromeritics desorb 2300A) was used to 

determine the specific surface area of the starting powders. The powders were filled in test 

tubes which were heated up to 200°C while passing helium gas through it. The surface area 

of the powders was recorded from degassing of the powders with nitrogen. The mass of the 

powders before and after degassing was also recorded. The grain sizes were estimated from 

the specific surface area (BET) equation (Eq.2.2) [198]. This method assumes that the grains 

are spherical without any pores.  

𝑑𝐵𝐸𝑇 =
6

𝜌×𝑆𝐵𝐸𝑇 
     [2.2] 

Where dBET is the crystallite size (m), ρ is the density of the sample (g/m
3
) and SBET is the 

specific surface area (m
2
/g). 

2.4.3.2 Mastersizer 

The mastersizer (Mastersizer 2000 (CRISMAT) and 3000 (CIRIMAT)) were used to study 

the particle size distribution of the initial powders. Liquid analysis mode was used. The 

samples were stirred at the speed of 2500 tr/min.  
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2.4.3.3 Relative density measurement 

The ZnO ceramics were polished by silicon carbide discs (P320 and P600) to remove 

graphite foil. The density of the ceramics was measured by Archimedes method (Kern, ARJ 

220-4M) and the relative density was calculated taking the theoretical density as 5.681g/cm
3
. 

For pellets with relative density of < 92%, geometric density was calculated.   

2.4.4 Thermal analysis (TGA-DSC) 

The thermal behaviours of the powders were studied by Differential Thermal Analysis (DTA) 

and thermogravimetric analysis (TGA) (Setaram TAG16). Samples with and without polymer 

were heated at 400 and 1000°C applying heating rates between 3-10°C/min, respectively.  

2.4.5 Spectroscopy analysis 

2.4.5.1 Inductively coupled plasma-optical/atomic emission spectroscopy (ICP-OES/ICP-

AES) 

Chemical composition of the powders was obtained by inductively coupled plasma atomic 

emission spectroscopy (ICP-AES) (Ultima 2-Horiba) and ICP-optical emission spectroscopy 

(ICP-OES) (JY 2000). The powders were dissolved in an aqueous solution of nitric acid at 

room temperature, until they were fully dissolved.    

2.4.5.2 Fourier Transform-Infrared Spectroscopy (FTIR) 

Fourier Transform-Infrared Spectroscopy (FTIR) (Spectrometry Frontier and Microscope 

Spotlight 400 Series: MIR-NIR) to identify any organic structures in the powders. Ceramic 

sample were powdered.  The recordings were done in the wavelength range of 650–4000 cm
-1

 

2.4.5.3 RAMAN 

Raman Spectrometer (JobinYvon LabRAM HR800) was used to identify chemical structures 

of selected samples. Analysis was done using 633 nm red laser at a grating, accumulation and 

time of 600 tr, 3 and 30 s, respectively. 

2.5 Electrical transport properties 

2.5.1 Resistivity and Seebeck Coefficient measurements 

Seebeck coefficient and resistivity of the dense ceramics were simultaneously measured 

using ZEM-3 (Ulvac-Riko, CRISMAT laboratory, Caen).  The photography of the equipment 

is shown in Fig.2.6; the enlarged section shows the setup of the sample which is illustrated in 

a schematic form in Fig.2.7. The dense ceramics were cut into  9 x 3 x 3 mm bars and coated 
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with gold to ensure electrical ohmic contact. Graphite foil was inserted on both sides of 

heaters to have a good electrical and thermal contact with the sample. Seebeck coefficient 

was determined from ΔV/ΔT as discussed in section 1.1 (Chapter 1). The lower heater on the 

hot side provides differential temperature on the sample. At set temperature T1 and T2, the 

voltage was measured using the electrodes (Thermocouples). The change in voltage was 

measured at ΔT of 10, 20 and 30°C; an average value was taken at each set point 

temperature. Whereas for the resisitivity measurements the sample was heated and held at set 

point temperature. The measurement follows the four point method in which constant current 

is applied on both ends of the sample to measure voltage drop at T1 and T2 by eliminating 

thermo-electromotive force. The ceramics with and without polymer were measured at room 

temperature upto 500°C and 200°C, respectively.   The measurement was done in low 

pressure of helium atmosphere to eliminate oxidation process caused by air.  

 

Fig. 2.6 Photo of ZEM-3 (Ulvac-Riko). 
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Fig. 2.7 Illustration of measurement section 

2.5.2  Thermal conductivity measurement 

The thermal conductivity was determined by measuring thermal diffusivity (α), ceramic 

density (d) (kg/m
3
) and heat capacity (Cp) (J/kg) based on the following equation: 

𝑘 = 𝛼(𝑇)Cp(T)d(T)      [2.3] 

The diffusivity was measured using laser flash apparatus (LFA 457 Microflash, NETZSCH, 

CRISMAT), schematic diagram is shown in Fig. 2.8. The samples were cut at dimensions of 

6 x 6 x 1 mm;  the principle behind the measurement is that the lower surface of the sample is 

heated by short energy laser pulse which causes a change in temperature at the upper surface 

of the sample, see enlarged image.  This change in temperature is measured by the infrared 

detector and recorded as a function of time. Thus, the diffusivity is then calculated from 

sample thickness (x) and half time measurement (t1/2)[199]: 

𝛼 =
0.1388𝑥2

𝑡1/2
     [2.4] 

The diffusivity of the ceramics  with and without polymer were measured at room 

temperature upto 500°C and 200°C, respectively. White samples (Pure ZnO) were coated 

with graphite spray to prevent reflection of laser beam.  
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Fig. 2.8 Schematic diagram of LFA 457 MicroFlash (NETZSCH)[199] 

The heat capacity was measured using thermal analyser thermogravimetric (TGA) and 

differential scanning calorimetry (DSC) (STA 449 F3 Jupiter, NETZSCH, CRISMAT). 

Similary, ceramics  with and without polymer were measured at room temperature upto 

500°C and 200°C, respectively. The measurement was done in two steps, first by measuring 

reference sample sapphire for calibration and then followed by the specimen.  For the 

calibration, sapphire was firstly heated at a rate of 30°C/min upto the setpoint temperature to 

remove moisture and ensure stability. Then for the measurement a heating rate of 10°C/min 

was was used, firstly by measuring the reference sample followed by the specimen. Change 

in temperature (ΔT), mass loss (m) and heat flow (Q) were recorded, thus, heat capacity (Cp) 

was calculated from the heat transfer (Eq. 2.5) [200]. Typical example of Cp measured as a 

function of temperature is indicated in Appendix A. 

𝐶𝑝 =
𝑄

𝑚∆𝑇
     [2.5] 

2.5.3 Hall Effect measurements 

Hall effect measurements were done to determine carrier concentration and hall mobility of 

sintered ceramics. The measurements were done using physical property measurement 

system (Model 7100 AC transport controller, Quantum system). Resistance was measurement 

using the Van der Pauw technique at room temperature and applied magnetic field up to 9 
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tesla. The setup of the sample is indicated in figure Fig. 2.9; the preparation of samples on to 

a sample holding (Fig. 2.9. (a)) and schematic view of how indium contacts were put on the 

samples (Fig. 2.9. (a)). To determine carrier concentration (n), resistance was plotted against 

magnetic field according to Eq. 2.6 [201]:  

𝑛 = −
𝐵𝐼

𝑥𝑉𝑒
     [2.6] 

Where B is magnetic induction (tesla), I is current (A), x is thickness of sample, V is hall 

voltage (V) and e is electronic charge. 

The hall mobility was calculated using the relationship of resistivity and carrier concentration 

(see Eq. 1.8); resistivity was determined from ZEM-3 measurement.  

 

 

Fig. 2.9 Sample preparation for the physical property measurement: (a) Sample holder (b) 

arrangement of indium contacts on sample 

 

2.5.4 Band gap measurements 

The band gap measurements were done using photovoltaic route using Bentham PVE 300 

PV. The equipment is composed of two probe light sources, 75 W Xenon and 100 W Quartz 

to provide illumination from ultraviolet (UV) to near infrared (NIR) with standard 

wavelength range of  300 – 1100 nm. Reflectance mode was used for these measurements 

with ceramics having a diameter and thickness of 2 and 0.5 mm, respectively. The equipment 

was first calibrated and thereafter measured the first spectrum without a sample to determine 
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the baseline. Lastly, the spectrums of the samples were analysed. The band gap (Eg) was 

determined through the Tauc’s power law behaviour [202]: 

           2𝛼𝑡 = ln [
(𝑅𝑚𝑎𝑥−𝑅min)

(𝑅−𝑅min))
]    [2.7] 

Where Rmin and Rmax are the maximum and minimum reflectance in the reflection spectra, R 

is the reflection for any intermediate energy photons, α is absorption coefficient and t is time. 

For direct band gap, the absorption coefficient is given by: 

     𝛼ℎ𝑣 = 𝐴(ℎ𝑣 − 𝐸𝑔)
1/2

   [2.8] 

Where A is a constant which is different for different transitions, hv is the energy of photons 

with frequency v. From equation 2.7 and 2.8 the proportional relation of 𝑙𝑛
(𝑅𝑚𝑎𝑥−𝑅min)

(𝑅−𝑅min))
 and α 

is evident. In the case of absorption spectra a graph of (𝛼ℎ𝑣)2 versus ℎ𝑣 is plotted, then a 

strainline is obtained which gives the direct band gap value. Similarly for reflectance, a graph 

of square of 𝑙𝑛 [ℎ𝑣
(𝑅𝑚𝑎𝑥−𝑅min)

(𝑅−𝑅min))
] versus hv is plotted. Fig. 2.10 illustrates how the band gap is 

estimated. 

 

Fig. 2.10. Typical example of direct band gap estimation using ZnS film [202] 
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3. Influence of processing parameters on the densification and the 

microstructure of pure zinc oxide ceramics prepared by spark 

plasma sintering 
 

3.1 Introduction 
Nowadays, the use of ZnO nanoparticles is mostly in modern electro-ceramic applications, 

because of their large surface areas, unusual adsorptive properties, surface defects and fast 

diffusivities [203]. As a result, the sintering temperature could be lowered and the properties 

of materials improved for the small grain size ceramics. For instance, there have been reports 

about sintering of ZnO nanoparticles at low temperatures, less than 600°C [115-118].This 

causes less grain growth which is beneficial for enhancing photocatalytic activity, nonlinear 

current-voltage characteristics and thermoelectric properties [83, 85, 119].  

To obtain optimal properties of ZnO nanoparticles and enhance their applications, it is 

important to have better control of their crystallinity, particle size and morphology. Since 

1990s, there has been an interest in producing specific nanoparticles with unique properties. 

Their efficiency and specific application highly depend on the particle size distribution and 

grain morphology of the materials [94, 114]. Moreover, various investigations have been 

focused on understanding relevant factors and optimizing the processing parameters for large 

scale synthesis of ZnO powders [204, 205]. Nanopowder synthesis methods such as 

hydrothermal and chemical precipitation have been used to prepare ZnO nanoparticles [83, 

119]. Since hydrothermal technique is energy intensive, most studies have been focussed on 

chemical precipitation method as it is cost efficient.   

One of the most crucial issues with consolidating ceramic nanopowders is obtaining full 

densification. Extensive studies have been done on the conventional sintering (such as hot 

pressing, low pressure sintering and hot isostatic sintering [100, 206] of nanopowder 

materials. Relative density of above 95% is reached at high temperature (800-1200°C) and 

long sintering periods (>2 h) when using these techniques, which causes grain growth due to 

diffusion of grain boundaries and Ostwald ripening [101-105]. A lot of work is currently 

being focused on finding ways to minimize grain growth and improve ceramic properties.   

Spark plasma sintering (SPS) is a recent effective sintering technique for consolidating all 

kind of materials [98]. It uses rapid heating and high thermal efficiency, and as a result, it 

contributes to full densification of materials within minutes with retained nano/microstructure 
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[100, 106, 107, 207, 208]. Despite the effectiveness of SPS technology, only few publications 

are available on SPS of pure ZnO.  

Aimable et al. [101] reported that  60 nm ZnO particles synthesized through a continuous 

Segmented Flow Tubular Reactor (SFTR) could not be fully densified by traditional methods, 

densification of  65%  was obtained sintering at 1100°C for 4 h. Whereas, when the SPS was 

used densification of 99.5% with grain size of 0.2 ± 0.8µm was obtained at 900°C within 5 

min. It is evident that the rapid heating of SPS allows lower sintering temperatures during a 

short period of time. Further, densification of 95.1% with grain size of 1 ± 0.5µm was 

obtained when using 250 nm commercial ZnO particles at SPS conditions of 900°C for 5 

min. This indicates the influence of powder quality on the sintering mechanism of ZnO 

ceramics. Schwarz et al. [118] were able to densify nanocrystralline ZnO up to relative 

density (RD) of 95% at low temperature of 400°C. They also indicated that heating rates 

affects the sintering behaviour of nano-ZnO ceramics, the higher the heating rate the better 

the densification kinetics during heating ramp and holding time. Moreover, the recent reports 

by Virtudazo et al. [32] on sintering of nanoporous  ZnO highlighted the influence of powder 

morphology on the sintering mechanism. The ceramics were only densified to 78 - 91% when 

sintering was performed between 550 - 950°C. Sintering above 750°C resulted in ceramic 

grain sizes of about 10 µm due to high surface area of the starting powder. Zhang et al. [34] 

sintered micro-nanostructured (hybrid) powders using SPS in which they got less dense 

ceramic of 84% at a temperature of 900°C, pressure of 50 MPa and holding time of 5 min. 

Some recent work [116, 118, 179, 180] focused on the SPS sintering of ZnO nanoparticles at 

low temperatures (less than 400°C) by adding solvents (such as water, aqueous acetic acid, 

etc.…) to enhance densification. Dargatz   et al. [116, 179] were able to get a fully dense ZnO 

ceramic at 400°C by controlling the heating rates, water content and electric field. About 

99.9% relative density was reported when using 1.6 wt% water, and morphological 

anisotropy was observed in the presence of bound water. The diffusion of hydrogen and 

hydroxide ions into the ZnO crystallite could modify the grain boundary mobility and lead to 

pronounced grain anisotropy perpendicular to the uniaxial applied load. The improved 

densification at such low temperatures is due to the adsorbed water on the surface of the ZnO 

particles that reduces the inter-particles friction allowing better mobility of the particles and 

dissolution of Zn
2+

 and O
2-

 ions on the grain’s surface during sintering.  Gonzalez-Julian et 

al. recently reported the lowest sintering temperature of 250°C; and densification of 97.3% 

was obtained using aqueous acetic acid [180]. 
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Even though highly densified ZnO has been reported at low temperature using sintering aids, 

it is important to have better understanding on the sintering behaviour of dry and/or undoped 

ZnO ceramics. There are a few reports which mostly focus on the effect of sintering 

temperature on the sintering behaviour of newly synthesized powders. In this work, a 

commercially available ZnO powder was used to perform a systematic study on the 

densification characteristics and the microstructure of ZnO ceramics using spark plasma 

sintering technique. The influence of parameters such as temperature, pressure, current 

insulation, sintering atmosphere and period of pressure application were fully evaluated 

[209].  

3.2 Experimental method and procedure  

The commercial ZnO powder was densified using Spark Plasma Sintering, with 8 and 20 mm 

inner diameter tungsten carbide and graphite dies. The molds were lined with 0.2 mm thick 

graphite foil (PERMA-FOIL®Toyo Tanso). Several parameters were varied during the study 

with the aim to get fully dense pellets. These were namely sintering pressure (250 -850 MPa), 

temperature (400 to 700°C), atmosphere (Air and Vacuum), current isolation, period of 

pressure application and die geometry (8 and 20 mm), all were investigated with one 

objective to achieve minimal grain growth. 

3.3 Results and discussion  

3.3.1 Characterization of the commercial ZnO powder 

SEM analysis of the commercial ZnO powder showed irregular morphology of the grains 

(Fig.3.1 (a)). The grains had elongated and spherical structures due to the low surface energy 

associated with high polar plane (002).The particle size distribution of the powder is given in 

Fig.3.1 (b), it showed that majority of the grain sizes ranges between 100 and 250 nm. A 

mean grain size of 193 nm was determined with a surface area of 5.8 m
2
/g. The XRD analysis 

indicated that the powder has characteristic signature of zinc oxide hexagonal wurzite 

structure (ICPSD No. 01-070-8070, Fig. 3.2). The elemental analysis showed that powder has 

low concentration of impurities (Al, Mg, K, Ta, S, and P), less than 5ppm.  
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Fig. 3.1 SEM micrograph (a) of commercial zinc oxide powder and corresponding particle 

size distribution (b)  

 

Fig. 3.2 XRD patterns of zinc oxide powder 

FTIR spectroscopy has been utilised to identify eventual impurities in the ZnO powders, as 

shown in Fig.3.3 (a). The spectroscopic analysis indicated that the concentration of  nitrates 

(NO3) and hydroxides (O-H)  after drying  reduced from 0.015 to 0.0026 and 0.0125 to 

~0.001, respectively. Further, a broadband around 3500 cm
-1

 in all the ZnO powders shows 

characteristic signature of O-H group stretching vibrations [210]. Since, ZnO nanoparticles 

are known to be good adsorbents for hydrogen [211], this indicates that the powders 

contained adsorbed moisture. The band around 2600 cm
-1

 corresponds to CO2.The small 

amount of CO2 could arise from trapped CO2 in the atmosphere during the FTIR analysis 

[30]. The two bands at 1440 cm
-1

 and 1553 cm
-1

 confirm the presence of nitrate phase [210, 
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212]. It is noticed that drying the powder reduces the concentration of organic components. 

Thermogravimetric analysis of the powder is given in Fig.3.3 (b). It is indicated that whatever 

the sample, mass loss occurs from room temperature till 1000°C. The total mass loss of the 

dried powder reduced from 0.49% to 0.26%. In zone 1 the mass loss is attributed to adsorbed 

moisture. Between 200°C and 300°C, the second zone, was attributed to remaining moisture. 

Finally, the last zone (3) probably corresponds to the evacuation of organic components, i.e. 

CO2 and NO3 groups. It was observed after 500°C the mass of dried sample becomes 

constant with temperature whereas the mass of undried sample continues to decrease with an 

increase in temperature. This implies that the loss of mass (moisture, NO3, CO2) was not 

proportional with the temperature increment for the undried sample, hence, the linear 

decrease in mass with temperature.  

 

Fig. 3.3 Effect of drying ZnO powder: (a) FTIR and (b) Thermo-gravimetric analysis of 

commercial ZnO powder 

The influence of atmosphere on the thermal behaviour of ZnO has been studied; Fig.3.4 

shows the variation of mass as a function of temperature. It was observed that treating the 

ZnO in air could retain the stoichiometry of ZnO up to 1000°C. However, in vacuum 

atmosphere a gradual decrease in mass is observed from room temperature up to 800°C. 

Below 200°C, the mass loss could be due to removal of moisture from powder. Between 200 

- 800°C, it could be due to the removal of remaining moisture and evaporation of oxygen to 

the atmosphere [213]. After 800°C, a sharp drop in mass was observed which could be 

related to the dissipation of oxygen from the ZnO structure.   
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Fig. 3.4 Thermal behaviour of ZnO ceramics in air and vacuum atmospheres 

3.3.2 Spark plasma sintering of ZnO ceramics 

Spark plasma sintering (SPS) of pure ZnO ceramics was explored with the aim to get fully 

dense pellets and fine microstructure. The effect of SPS parameters on the relative density 

and microstructure of ZnO ceramics was extensively explored. A number of parameters were 

varied which are mentioned above.  The summary of the relative density and grain size of the 

different samples are given in Table 3.1.  
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Table 3.1 Relative density and grain size of ceramics prepared from commercial ZnO powder 

for different sintering conditions [Symbols: SC is sintering cycle and RT is room 

temperature] 

 

3.3.2.1 Effect of sintering pressure 

The effect of sintering pressure on the microstructure and densification of zinc oxide 

ceramics was investigated using an 8 mm tungsten carbide die. The pressure was varied 

between 250 – 850 MPa at a fixed temperature of 400°C. It was observed that the relative 

density gradually increases from 77% to 92% as the sintering pressure is increased from 250 

to 850 MPa (Fig.3.5). The improved densification is due the formation of dense nano-grain 

clusters and their hierarchical growth by rotation and sliding, until the closed pores form 

[107, 214]. Dargatz et al. [116, 179] previously reported on the sintering of pure ZnO at 

400°C and 50 MPa in a dry and wet state. Relative densities of 59% and 100% were reported 

for dry and wet state (1.6 wt% water), respectively. To our knowledge, this is the first report 

on high relative density of 92% obtained for pure ZnO in a dry state sintered at 850 MPa at 

temperature as low as 400°C. 

Study
Die 

diameter
Atmosphere

Sintering 

cycle
Insulation Temperature

Pressure &  

when applied

Relative 

density

Grain size 

(Image J)

- mm - - - °C MPa % µm

8 Air SC1 Without 400 250,RT 76,5±2,2 0,38±0,13

8 Air SC1 Without 400 350,RT 76,9±0,7 0,36±0,13

8 Air SC1 Without 400 450,RT 85,2±1,2 0,29±0,13

8 Air SC1 Without 400 550,RT 85±1,7 0,27±0,13

8 Air SC1 Without 400 700,RT 89,7±1,4 0,24±0,13

8 Air SC1 Without 400 850,RT 92,2±1.2 0,22±0,13

20 Air SC1 Without 25 250,RT 64,4±2,2 0,20±0,13

20 Air SC1 Without 400 250,RT 76,5±2,2 0,4±0,1

20 Air SC1 Without 500 250,RT 95,3±0,1 0,5±0,1

20 Air SC1 Without 600 250,RT 99,4±0,4 3,3±1,5

20 Air SC1 Without 700 250,RT 99,1 ±0,5 5,4±2,1

Die geometry 

dimensions
8 Air SC1 Without 700 250,RT 97,8±1,2 5,3±2,3

20 Vacuum SC1 Without 700 250,RT 98,8±,9 4,3±1,9

20 Vacuum SC1 Without 900 100,RT 97,8±0,5 10,3±3,6

Pressure

Temperature

Sintering atmosphere

Current isolation 20 100,RT 98,0±1,3 5,1±1,8

Application of pressure 20 Vacuum SC2 With 900
100, Last 2 min 

of heating stage

Vacuum SC1 With 900

98.7±0,4 3,6±1,3
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Fig. 3.5 Relative density and grain size as a function of pressure for ceramics prepared from 

commercial ZnO powder (T= 400°C) 

The dense ceramics were analysed by XRD to confirm the phase structure. The XRD patterns 

of the sintered ZnO ceramics are given in Fig.3.6; similar characteristic signature as that of 

as-received powder was obtained, i.e. the wurzite structure. No phase change occurs during 

sintering within the range of pressure used in this work.  

The fracture surface of the samples sintered at various pressures was analysed by SEM 

(Fig.3.7). Grain sizes determined through image J are given in Fig.3.5. It was observed that at 

lower pressure of 250 MPa the grain growth is more obvious compared to pressures above 

350 MPa. The grains looked more defined. Increasing the sintering pressure up to 850 MPa 

does not cause much grain growth as quantified by the mean grain sizes (~220 nm) in Fig. 

3.9. A review by Chaim et al. [107] reported on the similar behaviour from cubic zirconia 

[215] and magnesium aluminate spinel [216, 217]. The increase in the pressure affects the 

pore closure during densification. Some visible pores confirm that the ceramics are not fully 

dense. It is the first time reporting on the effect of pressure on pure ZnO sintered by spark 

plasma sintering technique.  
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Fig. 3.6 XRD patterns of ZnO ceramics sintered at varying pressure 

 

Fig. 3.7 SEM micrograph of fractured surface of ceramics prepared from commercial ZnO 

powder at various pressures (T = 400 °C) 
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3.3.2.2 Effect of sintering temperature 

The effect of sintering temperature on the densification of ZnO ceramics was studied under 

air atmosphere, using a 20 mm tungsten carbide die. A sintering pressure of 250 MPa was 

used to avoid deformation of tungsten carbide die at high temperatures. The relative density 

is shown in Fig.3.8, as a function of the sintering temperature. With an increase in sintering 

temperature the relative density of the ceramics was improved from 64% up to 99 ± 0.4% at 

temperature as low as 600°C. Between 600°C and 700°C the relative density did not change 

much, respectively 99.4 and 99.1 %. Gao et al. [24] reported a decrease in the relative density 

of pure ZnO ceramics from 98.5% to 97% when sintering between 550°C to 700°C in 

vacuum was observed. This could have been caused by the creation of pores due to grain 

growth [187]. The rate of grain growth relies on the initial powder quality (grain size, 

porosity); a powder with high specific area would result in faster reaction rates. Hence, it is 

vital to be cautious about preparation methods of starting powders to control the particle size.  

 

Fig. 3.8 Relative density and grain size of ceramics prepared from commercial ZnO as a 

function of temperature (P = 250 MPa) 

The fracture surface micrographs of the ceramics obtained at various temperatures are given 

in Fig. 3.9. The corresponding grain sizes are given in Fig. 3.8, which were determined by 

analysis of SEM micrographs (Image J on ~27 particles). There is an increase in the grain 

size from initial size of 193 nm to 5.5 ± 2.2 µm, when sintering is performed at 700°C, 250 

MPa. According to Aimable et al. [101] such grain growth is controlled by the diffusion rate 
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of zinc ions within the crystal structure [14]. Hence, the neighbouring grains diffuse into each 

other at the grain boundaries causing grain growth during sintering [193]. It is also shown 

that the grains become more defined and sharper at 600°C and 700°C (Fig.3.9).  

 

Fig. 3.9 SEM micrographs of fractured surfaces and pictures of as-sintered ceramics showing 

the effect of sintering temperature 

The pictures of the as-sintered ZnO ceramics are given in Fig.3.9. It was noticed that there is 

a colour change from the initial starting white powder. The ceramics becomes yellow at 

500°C, grey at 600°C and grey-whitish at 700°C.  The phase structure of the as-sintered is 

similar to the one of the raw powder. The structure is the wurzite crystal. Han [6] attributed 

the colour change to oxygen deficiency in dually doped ZnO composites (Al, Cd,Ga, Sc).   In 

the present case, the colour change is due to oxygen deficiency related to the low partial 

pressure of oxygen at high temperatures.  

3.3.2.3 Influence of die diameter  

Two tungsten carbide dies presenting different inner diameters (8 mm and 20 mm) were used 

in order to see if a change in dimensions could affect the microstructure and relative density 

of ceramics prepared from commercial powder.  Sintering at 700°C and 250 MPa (air 

atmosphere) was chosen to ensure full densification of ZnO ceramics due to the changes in 

temperature distribution when a different die size is used. The relative density is 97.8% and 

99.1% for 8 and 20 mm die diameter, respectively. The SEM micrographs in Fig.3.10 (a) 

indicated that the grain size distribution for 8 and 20 mm ceramics looks similar (Fig. 3.10 

(b)). This implies that temperature distribution of the two dies does not vary much when 

sintering ZnO ceramics. However, electro-thermal simulations on alumina sample by finite 

element modelling on 10 and 20 mm inner diameter graphite dies have shown, a difference of 
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about 100°C for the same set point fixed at the surface of the tool [218].  Thus, densification 

characteristics rely on the sintered material, type and diameter of die. In this study, the 

change of die diameter from 8 to 20 mm does not significantly influences the densification of 

pure ZnO, not the grain size.  

 

Fig. 3.10 (a) SEM micrograph of fractured surfaces (b) grain size distribution of ceramics 

prepared from commercial ZnO powder for 8 mm and 20 mm die 

3.3.2.4 Influence of sintering atmosphere 

The influence of sintering atmosphere on the relative density and grain size of ZnO ceramics 

was studied using 20 mm die. Since ZnO is easily reduced, the oxygen partial pressure plays 

a huge role on the densification of ZnO ceramics. Two different sintering atmospheres: air 

and vacuum were used to sinter commercial ZnO powder. These will allow changing the 

oxygen stoichiometry of ZnO ceramics and to evaluate its effects on the morphology and 

relative density. The summary of the samples characteristics for different atmospheres are 

given in Table 3.1. A relative density of 98.7% and 98.8% is obtained when operating in air 

and vacuum; respectively (700°C and 250 MPa).  The SEM micrographs are given in 

Fig.3.13; there is only a small difference of roughly 1.7 µm between the grain sizes of the 

ceramics (Fig.3.11 (b)). Hence, the morphology and relative density are not affected when the 
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sintering is performed in air or vacuum at 700°C and 250 MPa.  

For further comparison, the temperature was increased to 900°C in order to get a more 

oxygen deficient ceramic. In oxygen deficient environment, the first stages of densification of 

ZnO is controlled by the diffusion of oxygen atoms which can be easily influenced by the 

external oxygen partial pressure [219, 220]. In that manner, more zinc interstitials are created 

as shown in the general reduction oxidation reaction:  

𝑍𝑛𝑂 ↔ 𝑍𝑛𝑖 + 𝑒− +
1

2
𝑂2 (𝑔) ↑   [3.2] 

The relative density slightly decreased to 97.8% when the temperature was increased to 

900°C.  Previous studies on the conventional sintering of pure ZnO ceramics indicated that 

higher densification was obtained in oxygen rich atmosphere than in air [104, 221]. Thus, 

sintering occurs by means of oxidation of the excess zinc ions. The SEM micrograph is given 

in Fig.3.12 (un-insulated: 900°C); the grain size increases as the temperature increases: from 

5.3 µm (700°C) to 10.3 µm (900°C). The inserted image showed that there are pores in the 

ceramic sintered at 900°C which could have been caused by grain growth [187]. This justifies 

the decrease in the relative density. It was also observed that the grains have some pits on 

them which could be due to the evaporation of ZnO above 900°C. 

 

Fig. 3.11 (a) SEM micrograph of fractured surfaces (b) grain size distribution (Image J) of 

ceramics prepared from ZnO powder (700°C - 250 MPa) 
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Fig. 3.12 (a) SEM micrograph of fractured surfaces (b) grain size distribution (Image J) of 

ceramics prepared from ZnO powder (900°C - 100 MPa) 

3.3.2.5 Influence of current isolation 

The effect of current on ZnO ceramics was investigated for sintering treatment performed at 

900°C in vacuum. The relative density of pure ZnO ceramics with and without current is 

given in Table 3.1. Whatever the current condition, the relative density does not change 

respectively, 97.8% (without) and 98% (with) . The SEM micrographs are given in Fig.3.12 

(un-insulated: 900°C and insulated: 900°C).  There is a decrease in the grain size to 5 µm 

when the sintering is done without current passing through the sample: contrary to the 

average value of 10.3 µm for the “un-insulated cycle”. The grain growth in the normal setup 

could have been contributed by Joule heating [194, 222]. While for insulated one the 

densification took place by heat radiation from the die surface. Retainment in the 

microstructure with visible grain boundaries was previously reported on sintering pure ZnO 

ceramic with current isolation [194]. While a ceramic sintered with current passing through 

did not show any grain boundaries i.e. neighbouring grains diffused into each other following 

the grain boundary diffusion mechanism [118]. This supports the observed results in this 

work. 

3.3.2.6 Influence of period of pressure application 

The effect of the period at which pressure is applied during sintering was investigated on the 

relative density and morphology of pure ZnO ceramics prepared from commercial powder. 

Two conditions were compared: pressure applied at room temperature (SC1) and the last two 

minutes of heating stage (SC2). The sample was sintered in vacuum with current isolation at 
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a sintering temperature and pressure of 900°C and 100 MPa, respectively. The relative 

density of the ceramics is given in Table 3.1. The relative density slightly improved from 

98% (SC1) to 99% (SC2). The slight improvement in densification is due to easier particle 

sliding or rotation when the pressure is applied at high temperature [107, 192]. The SEM 

micrograph of the ZnO ceramics is given in Fig.3.12. The grain size decreased when SC2 was 

used. Moreover, the grain size distribution is smaller. An average grain size of 3.6 µm was 

obtained which is lesser than SC1 by 2.4 µm. This could have been caused by the difference 

in heat transfer between the grains; SC1 had better contact as compared to SC2.  

3.3.2.7 Summary of SPS parameters influence on pure ZnO ceramics 

The overall view of the influence of SPS parameters on the relative density and grain size of 

pure ZnO ceramics is given in Fig.3.13. High pressure sintering is desirable for maintaining 

the nanostructure, though the difficulty of obtaining a fully dense ceramic. Whereas, 

increasing the temperature from 600 - 900°C results in fully densified ceramics of about 99% 

which shows to have big impact on the grain size. Sintering of pure ZnO without insulation at 

900°C causes bigger grains with size of about 10 µm. The application of pressure during the 

holding time seems to lower the grain size as compared to ceramics pressed during initial 

stage (RT). This figure could play as a guide towards sintering of pure ZnO depending on the 

properties required for the final product.   

 

Fig. 3.13 Influence of SPS parameters on the densification and grain size of ZnO ceramics 

(Note: RT is room temperature and HT is holding temperature) 
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3.4  Conclusions  

The influence of processing parameters on the densification and the microstructure of pure 

zinc oxide ceramics prepared by spark plasma sintering was performed in this work. 

Increasing the pressure improves the relative density of ZnO ceramics due to particle rotation. 

A maximum relative density of 92% was obtained at a temperature as low as 400°C for an 

applied pressure of 850 MPa. In this case the grain size is 220 ± 0.1 nm. The increment of 

temperature up to 600°C with a lower pressure, 250 MPa, lead to a significant increase of the 

relative density and grain size, respectively 99.4% and 3.3 µm.   

The sintering atmospheres (air and vacuum) did not affect the densification and 

microstructure of ZnO ceramics. The impact of the electric current during sintering has been 

evaluated through experiments performed with or without insulation. There is no change in 

relative density but a grain size difference of 7.8 µm was obtained for the two conditions.  

This study could provide a guide for controlling the densification and the grain size of ZnO 

ceramics obtained by spark plasma sintering of dried powders. 
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4. Thermoelectric properties of ZnO ceramics densified through 

spark plasma sintering 
 

4.1  Introduction 

The previous chapter (Chapter 3) focused on the influences of SPS parameters on the 

densification of pure ZnO ceramics. A guide for controlling densification and grain size of 

pure ZnO was determined, which will be beneficial when optimizing thermoelectric 

properties. Extensive research on ZnO ceramics has been performed on single or double 

doping with group 3 elements and transition metals [10, 32, 44, 95, 108, 109, 111, 112]. 

However, there is limited literature that focuses on the thermoelectric properties of pure 

(intrinsic) ZnO ceramics. The performance of ZnO relies mostly on the concentration of 

oxygen vacancies [223]. Therefore, it is vital to have better understanding of the electrical 

properties of intrinsic ZnO.  Other methods which have been conducted to improve 

thermoelectric properties of ZnO ceramics is applying nanostructuring of the material [23, 

26]. This method reduces thermal conductivity through phonon scattering at the grain 

boundaries.  The advancements in sintering techniques from conventional pressing to spark 

plasma sintering have added huge value on the control of grain growth enabling more 

flexibility in material structuring or modifications. However, some reports have indicated that 

even though reducing the grain size could assist in lowering the thermal conductivity, it can 

also lower the electrical conductivity due to the scattering of electrons, and the latter is 

undesirable [23]. 

This chapter narrates the work done on the preparation method for ZnO powder and 

compares its characteristics with those of commercial powder. Microstructural studies of the 

sintered ceramics at various sintering conditions were also investigated. The thermoelectric 

properties of the ZnO ceramics were discussed for both as-sintered and annealed in air to 

have better understanding on the effect of oxygen vacancies.  

4.2  Materials and methods 

4.2.1 Synthesis of ZnO particles 

Co-precipitation method followed by calcination treatment was used to synthesize ZnO 

powders because it produces high quality powders. Moreover this technique allows low 

temperature processing and has high manufacturing yield. The synthesis procedure was taken 

from the previous work of Guy [191] and Beynet et al. [115]. High purity chemicals: zinc 

nitrate hexahydrate (Zn(NO3)2.6H2O, 98%) (Sigma-Aldrich) and ammonium oxalate 
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monohydrate ((NH4)2C2O4.H2O, 98%) (Molekula) were used as precursors without any 

further purification. A detailed experimental procedure is presented in chapter 2. Solutions of 

4 M zinc nitrate hexahydrate and 0.2 M and 0.38 M ammonium oxalate monohydrate were 

prepared separately. At ambient temperature the solutions were mixed at subsequent time and 

constantly stirred. By adjusting with an ammonia solution, caution was observed to ensure 

that the final pH was between 6.5 and 7. A white precipitate was formed which was 

centrifuged and dried for 22 hrs at 80°C.  The dried precipitate was calcined in a furnace in 

the temperature range between 500°C and 700°C to obtain the starting ZnO powder.  The 

characteristics of the synthesized ZnO powder was compared with those of commercial 

available zinc oxide (Com-ZnO) of high purity (99.99%) and submicronic particle size 

procured from Sigma-Aldrich.     

4.2.2 Densification of ZnO by Spark plasma sintering (SPS) 

The commercial and synthesized ZnO powders were densified using SPS already described in 

chapters 2 and 3 using 8 and 20 mm inner diameter tungsten carbide and graphite dies 

(respectively). The moulds were lined with 0.2 mm thick graphite foil (PERMA-FOIL®Toyo 

Tanso). Two sintering parameters i.e. temperature (600-700) and atmosphere (air and 

vacuum) were investigated with the aim to produce fully dense pellets with minimal grain 

growth. Samples sintered in vacuum were current isolated to avoid the influences of electric 

field on the ZnO grains; which can affect the reactivity and diffusion during sintering [194, 

195].  

The uniaxial pressure of up to 250 MPa was applied at room temperature for the samples 

sintered at 700°C, using tungsten carbide tool for 2 min. On the other hand, the conventional 

graphite mould was been used under vacuum. The pressure of 100 MPa was applied for 

samples sintering at 900°C during the last 2 min of heating stage to improve mobility of 

grains. The temperature increase was achieved at ramp rate of 100°C/min, though for samples 

sintered at 900°C the ramp rate was reduced by 50% on the last 2 min of heating stage to 

avoid temperature overshoot. The isothermal time was kept for 6 min. The temperature was 

reduced at a rate of 100°C/min simultaneously with pressure release.   

4.2.3 Electrical measurements 

Seebeck coefficient and resistivity of the dense ceramics were simultaneously measured 

using ZEM-3 (Ulvac-Riko, CRISMAT). The dense ceramics were cut into  9x3x3 mm bars 

and coated with gold to ensure electrical ohmic contact. Graphite foil was inserted on both 

sides of heaters to have a good electrical and thermal contact with the sample. The thermal 
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conductivity was determined by measuring separately  thermal diffusivity (α), ceramic 

density (d) and heat capacity (Cp). And for these measurements the samples were cut to 

dimensions of 6x6x1 mm. The thermal conductivity was then calculated using Eq. 4.1. The 

band gap was determined through the photovoltaic route using Bentham PVE 300 PV.  

𝑘 = 𝛼(𝑇)Cp(T)d(T)      [4.1] 

4.3  Results and discussion 

4.3.1 Characterization of synthetic zinc oxide powders 

The precipitate from the co-precipitation synthesis was analysed by X-ray diffraction (XRD), 

Scanning electron microscopy (SEM) and thermo-analyser. The XRD results given in Fig.4.1 

(a) showed that the phase structure is monoclinic zinc oxalate hydrate (ICSD No. 00-025-

1029) following the given Miller indices. The SEM observations indicate that the grains of 

the zinc oxalate hydrate have platelet-like structures stacked on each other (Fig.4.1 (b)). 

Thermogravimetric analysis of the zinc oxalate hydrate (Fig.4.2) indicated that under thermal 

treatment the oxalate goes through two decomposition reactions respectively at 150 and 

400°C. The decrease in mass at 150°C associated with an endothermic peak could be due to 

removal of water adsorbed at the grain’s surface (Eq.4.2). The drop at 400°C associated with 

an exothermic peak, could result from the decomposition of organic components to form zinc 

oxide. These observations are in agreement with previously reported results (Eq.4.3) [191, 

224, 225].  

 𝑍𝑛𝐶2𝑂4. 2𝐻2𝑂 → 𝑍𝑛𝐶2𝑂4 + 2𝐻2𝑂    [4.2] 

 𝑍𝑛𝐶2𝑂4 → 𝑍𝑛𝑂 + 𝐶𝑂 + 𝐶𝑂2                      [4.3] 
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Fig. 4.1 Characterization of the precipitate (a) XRD patterns and (b) SEM micrographs of 

zinc oxalate hydrate 

 

Fig. 4.2 Differential Thermal and Thermogravimetric Analysis of zinc oxalate hydrate. 

Based on the TGA results, the precipitate was further calcined at temperatures between 

500°C to 700°C to get ZnO phase. XRD analysis of the powder calcined at various 

temperatures (500-700°C) given in Fig.4.3 (a) collaborated the TGA results. These calcined 

zinc oxide samples were observed to have hexagonal wurzite structure (ICPSD No. 01-070-

8070). Increasing the temperature from 500 to 700°C does not change the phase structure. 

The XRD data in Fig.4.3 (b) shows sharpening of the peaks which indicates, not surprisingly 

increasing grain size. The elemental analysis of both commercial and synthetic powder 

showed the presence of very low concentration of impurities (Al, Mg, K, Ta, S, and P), less 

than 5 ppm which is acceptable. The SEM analysis of the calcined powders presented in 
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Fig.4.4 revealed grain growth and agglomeration as the calcination was temperature 

increased. The formation of agglomerates is attributed to the reduction of high surface energy 

of the nanoparticles during thermal treatment [191, 226]. 

 

Fig. 4.3 XRD patterns of commercial zinc oxide powder and synthetic one, heat-treated at 

various temperatures (a) and Zoomed 101 peak (b) 

 

Fig. 4.4 SEM micrographs of synthetic ZnO powders obtained at various calcination 

temperatures  
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The particle size distribution of the calcined powders shown in Fig.4.5 indicated the 

distribution of the grains broadens as the temperature of calcination is increased. The grain 

size varies from 78 nm to 289 nm when the calcination temperature is increased from 500 to 

700°C. The grain size and surface area of the powders are given in Table 4.1. The surface 

area of the powders decreases as the temperature increases, confirming the grain growth 

observed by SEM. The sample calcined at 500°C has the smallest average grain sizes:  73 nm 

(BET) and 78 nm (Image J). Each grain consists roughly of one crystallite.  

Table 4.1 Specific surface area and grain size of synthetic and commercial ZnO powders 

Sample Surface area 

(BET) 

Grain size 

(BET) 

Grain size 

 (SEM-Image J) 

Crystallite size 

(XRD)  

m
2
/g nm nm nm 

500°C 14.5 73 78±19 53 

600°C 5.9 179 177±61 - 

700°C 3.3 320 289±154 - 

Com-ZnO 5.8 182 193±111 - 

 

 

Fig. 4.5 Particle size distribution of ZnO powders (ImageJ) 
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FTIR and thermal analysis  

FTIR spectroscopy was utilised to identify any eventual impurities in the ZnO powders, as 

shown in Fig.4.6 (a). It was observed that the synthesized powders contain characteristic 

signatures similar to those of commercial ZnO (Com-ZnO) as discussed in chapter 3 [209]: 

Some notable  features of the graph are, the O-H group stretching vibrations at 3500cm
-1

, 

CO2 at 2600 cm
-1

 and NO3 phase at 1440 cm
-1

 and 1553cm
-1

. It was observed that increasing 

the calcination temperature reduced the amount of organic components in the powders. The 

Com-ZnO powder contained high concentration of NO3 components as compared to the 

synthetic ZnO powders, the difference could have been due to unique preparation methods. 

 The FTIR results were supported by thermo-gravimetric analysis given in Fig.4.6 (b) which 

revealed that whatever the sample, mass loss occurs from room temperature till 1000°C. The 

amount of mass loss depends on the composition and stability of the sample. In the measured 

temperature range, the powder calcined at 700 °C logically shows lower mass loss (0.15% 

mass loss). Compared with the other samples, three zones can be identified from the thermo-

gravimetric curves. In zone 1, commercial powder and the sample calcined at 700°C showed 

slight decrease in mass, while the powders calcined at 500°C and 600°C loose approximately 

0.2%, attributed to adsorbed H2O species. Between 200°C and 300°C, a second zone, was 

attributed to remaining moisture. Surprisingly, commercial powder shows the highest mass 

loss in this region. It is difficult to give an explanation for this since we do not know the 

preparation conditions of the commercial powder. Finally, the last zone probably corresponds 

to the evacuation of organic components, i.e. CO2 and NO3 groups. The observed mass loss at 

various temperatures clearly supports the bands which were identified by FTIR.   
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Fig. 4.6 FTIR (a) and Thermogravimetric analysis (b) of the different ZnO powders 

4.3.2 Spark plasma sintering of pure ZnO ceramics 

This section discusses the spark plasma sintering and its effects on commercial and synthetic 

ZnO powder. It was decided to investigate the influence of the starting powder characteristics 

on densification of sintering and microstructural evolution of the ZnO ceramics. The effect 

temperature and atmosphere on the sintering process were investigated, the summary of the 

relative density and grain size evolution of the ceramics are presented in Table 4.2. The ZnO 

ceramics prepared from synthetic and commercial powder are abbreviated as CSP and CCP, 

respectively.  

4.3.2.1 Sintering behaviour of commercial and synthetic pure ZnO in air and vacuum 

4.3.2.1.1 Sintering in air atmosphere 

The sintering behaviour of the commercial and synthetic ZnO powders was studied in air up 

to a temperature of 700°C  (the temperature limit of the tungsten carbide tools) while keeping 

a constant axial pressure of 250 MPa, without current isolation. Synthetic powder calcined at 

600°C was used as it has almost the same average grain size as the commercial powder: 

177±61 nm (synthetic powder) and 193±111 nm (commercial powder). The punch 

displacement and displacement ratio, representing respectively the shrinkage and shrinkage 

speed of the powder, are given in Fig.4.7 as a function of sintering time. The displacement 

ratio of both samples showed two peaks: sharp peaks at 100-300s (room temperature) and 

broad peaks at 600-1000s (300-600°C). The first peak could be attributed to the 

rearrangement of grains by rolling due to applied pressure at room temperature [106, 107, 

209]. The second peak could be due to the densification of the ceramics at high temperature, 
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with grains diffusing with neighbouring grains. The influence of sintering temperature on 

ceramics prepared through commercial powder (CCP) has been studied in detail in chapter 3 

[209].  

During the heating stage, the displacement of both samples gradually increases with 

temperature and tend to reach a constant state after 900 s. The ceramics prepared from 

synthetic ZnO powder (CSP) reach higher displacement of about 3 mm as compared to the 

commercial powder (CCP) (2 mm). This could be due to the smaller particles size 

distribution and homogenous morphology, leading to better mobility of grains [105, 187, 

193]. It was also observed that CSP finished sintering earlier than the CCP with a difference 

of ~ 40°C. This indicates the importance of working with nano-sized grains that can be 

sintered at lower temperature. The sintering mechanism of pure ZnO in air could be 

controlled by the lattice and grain boundary diffusion of interstitial Zn ions (Zni) [100, 102, 

104, 221, 227]. ZnO being a non-stoichiometric material, it is sensitive to sintering 

atmosphere, which could affect the densification of the ZnO ceramics. This discussion is 

detailed in section 4.3.2.1.2.  
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Fig. 4.7 Displacement ratio and displacement during heating of pure commercial and 

synthetic ZnO powder in air (700°C) 
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Table 4.2 Relative density and grain size of ceramics prepared from com-ZnO and synthetic 

ZnO powder for different sintering conditions [Symbols: CCP : ceramics prepared from 

commercial ZnO powder, CSP : ceramics prepared from synthetic ZnO powder, SC : 

sintering cycle and RT : room temperature] 

 

The CSP and CCP ceramics were sintered at a dwell time of 6 min. The relative densities are 

given in Table 4.2. No significant difference was observed for both powders sintered at 

700°C, the relative density of CSP and CCP was 100% and 99%, respectively. The SEM 

micrographs of CSP and CCP ceramics are given in Fig.4.8. The same grain size distribution 

for both ceramics is evidenced. The grain size increased from 177 nm to 4.7 µm for CSP and 

from 193 nm to 5.4 µm for CCP, indicating samples had the same growth rate. The grain size 

distribution of both samples appeared to be similar.  XRD patterns indicated no phase change 

after sintering.  

Die 

diameter
Atmosphere

Sintering 

cycle
Insulation Temperature

Pressure &  

when applied

Relative 

density

Grain size 

(Image J)

mm - - - °C MPa % µm

8 Air SC1 Without 600 250,RT 100 2,2±0.6

8 Air SC1 Without 700 250,RT 99.4±0.2 6±2

8 Air SC1 Without 600 250,RT  99.3±0.1 2,4±0.6

8 Air SC1 Without 700 250,RT 99.5±0.2 5,4±1.3

20 Air SC1 Without 700 250,RT 100 5±2

20 Vacuum SC2 With 900
100, Last 2 min 

of heating stage
98.9±0.4 4±2

8 Air  SC1 Normal 600 250,RT 99.3±0.2 3±1

8 Air SC1 Normal 700 250,RT 100 4,2±1,6

8 Air SC1 Without 700 250,RT 97,8±1,2 5,3±2,3

20 Air SC1 Without 700 250,RT 99,1 ±0,5 5,4±2,1

Powder calcined at 500°C (C500)

Powder calcined at 600°C (C600)

Powder calcined at 700°C (C700)

Commercial ZnO (Com-ZnO)

100, Last 2 min 

of heating stage
98.7±0,4 3,6±1,320 Vacuum SC2 With 900
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Fig. 4.8 SEM micrograph of fractured surfaces and grain size distribution (Image J) (a) CSP 

ceramic (b) CCP ceramic (700°C-250 MPa) 

4.3.2.1.2 Sintering in vacuum atmosphere 

Commercial and synthetic ZnO powders were further sintered in vacuum to evaluate the 

sintering behaviour of the ZnO ceramics up to a temperature of 900°C, applying axial 

pressure of 100 MPa during the last 2 min of heating stage, with current isolation. Insulation 

was used in this section to avoid the influence of electric field on the ZnO grains because 

sintering ZnO at high temperature creates more oxygen vacancies which could affect the 

consistency of current flow. The punch displacement and displacement ratio, representing 

respectively the shrinkage and shrinkage speed of the powder, are given in Fig.4.9 as a 

function of sintering time. The displacement ratio of both samples showed two broad peaks at 

400-900s (200-600°C) and 1000-1250s (800-900°C). The first peak could be caused by the 

softening of the grains during the heating stage, as a result the grains easily rearrange [106, 

107, 187]. It was observed that CSP ceramics shrinks at 400°C, 300 s earlier than CCP 

ceramics.  This could have occurred because of differences in particle size distribution and 

morphology in the starting powders. Han et al. [33]  reported about the sintering of  Al-doped 

ZnO ceramics prepared from nanoparticles, rods and platelets powders.  Similar relative 

densities of 90% were reported, though it was observed that the rods and platelets ceramics 
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have preferential orientation on miller impedance, <001>, direction while for the 

nanoparticles it was prohibited. Whereas,  Zhang et al. [34] reported on Al-doped ZnO 

ceramics with  hybrid micro/nano structure powders. In this case, low relative density of 80% 

was achieved with non-preferential grain growth. These findings could support the observed 

unique sintering behavior of CCP and CSP ceramics due to the differences in powder quality.  

The second peak (in Fig 4.9) could be caused by applied pressure. It was observed that during 

the heating stage, the displacement of both samples gradually increases with temperature and 

tend to reach a constant state after 1200 s. The CSP and CCP ceramics reached displacement 

of about 3 and 2.5 mm, respectively. As previously stated, the difference could be due to 

smaller particle size distribution and morphology of CSP powder which leads to higher 

mobility of grains.  

 

Fig. 4.9 Displacement ratio and displacement during heating of pure commercial and 

synthetic ZnO powder in air (900°C) 
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The powders were sintered under dwell period of 6 min and the relative densities are 

presented in Table 4.2. The relative density of CSP slightly decreased to 98.9 % when 

sintering in vacuum at 900°C, this could have resulted from  the presence of pores in the 

ceramic [187]. Similar relative density was achieved for CCP. The microstructure given in 

Fig.4.10 revealed that there is no significant change in the grain size as well between CSP 

and CCP, an average mean grain size of 3.9 µm and 3.6 µm were determined, respectively. 

Comparing the two sintering temperatures (700°C and 900°C), CSP grain size remained at a 

mean of 4 µm when sintering at 700°C and 900°C. While a slight decrease in the grain size 

was observed in CCP, from 5.4 µm (700°C) to 3.6 µm (900°C). Smaller grain sizes were 

obtained at 900°C because of axial pressure was applied during the last minutes of heating 

stage; this delayed the diffusion of grains at the grain boundaries.  

 

Fig. 4.10 SEM micrograph of fractured surfaces and grain size distribution (Image J) (a) CSP 

ceramics (b) CCP ceramic (900°C -100 MPa-SC2) 

The photographs of the ceramics sintered at 900°C were taken to compare colour changes 

and are given in Fig.4.11. The CSP appear greenish and the CCP appear greyish after 

sintering. XRD analysis indicated that the dense ceramics have the same phase structure as 

the starting powders. The ICP analysis indicated that the powders have the same low content 

of impurities such as Al, Mg, K, Ta, S, and P, all less than 5ppm. This may suggest that, the 
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difference in the colour could probably be related to oxygen content which is dependent on 

synthesis method of the powders (unknown for commercial powder).   

 

 

Fig. 4.11 Photographs of (a) CSP ceramic (b) CCP ceramic (900°C -100 MPa-SC2) 

 

4.3.2.2 Effect of sintering temperature on synthetic ZnO powder calcined at different 

temperatures 

Synthetic powders were prepared through the co-precipitation process followed by 

calcination. Then, the calcined samples were sintered 600°C and 700°C using 8 mm die. The 

samples were labelled as C500, C600 and C700 corresponding the calcination temperature. 

The relative densities given in Table 4.2 showed that fully dense ceramics above 99% are 

obtained from the ceramics prepared from synthetic powder. It was noted that the behaviour 

of densification differs for each powder; C500 reach 100% densification at 600°C while 

increasing the temperature to 700°C leads to a decrease of 0.6%. Whereas, increasing the 

temperature from 600°C to 700°C in C700 ceramics resulted in an increase in the relative 

density from 99.3 to 100%. The difference could have been caused by the difference in 

powder surface area; C500 had higher surface area of reaction as compared to C700. Similar 

results were reported by Aimable et al. [101] on comparative study of sintering synthesized 

and commercial powder. The relative density of C600 ceramics did not change much when 

the temperature was increased.     

The XRD analysis of the ceramics presented in Fig.4.12 indicated no change in the phase 

structure with sintering temperature. It is a hexagonal wurzite structure of ZnO as was earlier 

demonstrated; similar characteristic signature was observed for all the parameters. The SEM 

micrographs of the fractured surfaces of the ceramics sintered at 600°C and 700°C are given 

in Fig.4.13. It was observed that, at both temperatures, sintering leads to homogenous 

morphology and an increase in the grain size for C500, C600 and C700 samples. At a 

sintering temperature of 600°C, grain size of 2.2, 2.4 and 3 µm were determined for C500, 

C600 and C700 ceramics, respectively. Further increase in the sintering temperature to 700°C 

caused an increase in the grains to 6, 5.4 and 4.2 µm for C500, C600 and C700 ceramics, 

respectively. The sample C500 sample showed bigger grains as compared to C600 and C700 

samples, probably because of the high surface area of reaction it possess, surrounding grain 
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boundaries easily diffuse with each other [32, 101]. The photographs of the as-sintered 

ceramics are given in Fig.4.14; it was observed that the ceramics becomes grey after sintering 

as indication of oxygen deficiency as discussed in previous section. This might have an 

influence on the electrical properties of the ZnO ceramics as it is sensitive to defects 

concentration as was discussed in chapter 1.  

 

Fig. 4.12 XRD patterns of ZnO ceramics from synthesized powder sintered at 600°C 

 

Fig. 4.13 SEM micrograph of fractured surfaces of ZnO ceramics prepared from synthesized 

powder (P=250 MPa) 

C500 C600 C700

600°C

700°C

5µm 5µm

5µm 5µm

5µm

5µm
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Fig. 4.14 Photos of as-sintered ZnO ceramics prepared from synthesized powder 

 

4.3.3 Influence of annealing treatment on the microstructure of ZnO ceramics 

The ZnO ceramics sintered at 700°C prepared from commercial powder (Com-ZnO) were 

used to study the influence of annealing on the microstructural properties. The as-sintered 

ZnO ceramics were annealed in air to oxidise the ceramic to have stable electrical 

measurements. Annealing in oxygen environment fills the available oxygen vacancies and 

breaks the donor complex, this improves the resistivity measurements [223]. The 

thermogravimetric analysis of the as-sintered ZnO ceramic shown in Fig 4.16 indicated a 

logarithmic increase in mass from 0 to about 0.24 % when the temperature was increased. 

This indicates that the oxygen from the atmosphere reacts with interstitials Zn
2+

 to form 

stable compound ZnO, see Eq 4.4 [219, 220]. The inserted photographs showed that the 

ceramic changes colour from greyish to white when it is annealed in air. Based on the TGA 

results, the ceramics were annealed during 24 h at 600°C in air to stabilize the stoichiometry 

in the ceramics.  The SEM microstructure of the annealed ceramic after 24 h is presented in 

Fig. 4.17; it was observed that grain size difference between the as-sintered and annealed is 

insignificant. This will be beneficial in improving the thermal conductivity as small grain size 

could be quite useful in reducing the thermal conductivity due to phonon scattering at grain 

boundaries.  

                                                    𝑍𝑛2+ +
1

2
𝑂2(𝑔) ↔ 𝑍𝑛𝑂 (𝑠)             [4.4] 
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Fig. 4.15 Thermogravimetric (TGA) analysis of as-sintered CCP ceramic 

 

Fig. 4.16 SEM micrographs of as-sintered and annealed CCP ceramic 
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4.3.4 Thermoelectric properties of pure ZnO ceramics 

The thermoelectric properties of as-sintered and annealed pure ZnO ceramics (both prepared 

from synthetic and Com-ZnO powder) were analysed and the details are given below. 

Ceramics prepared from commercial powder are indicated as CCP and those prepared from 

synthesized powder are indicated as CSP. The samples are further identified according to the 

corresponding sintering temperature (700°C and 900°C) and the atmospheric condition of 

sintering (Air or Vacuum). Additionally, CCP and CSP ceramics sintered at 900°C were 

compared with some experimental data from literature.  The electrical properties were carried 

out from room temperature (RT) to 500°C under a reduced atmosphere. From additional 

electrical measurements (hall measurements), the carrier concentration, carrier mobility and 

bandgap were determined at room temperature (Table 4.3).   

4.3.4.1 Influence of ZnO microstructure and defects on thermoelectric properties 

4.3.4.1.1 Resistivity of ZnO ceramics  

The resistivity results of various ZnO ceramics as a function of temperature are presented in 

Fig.4.17; all samples showed an increase in the resistivity with an increase in temperature 

indicating a typical metallic behaviour. Gautam et al. [111] observed similar electrical 

behaviour on pure ZnO, however, the causes of such behaviour was not reported. Similar 

behaviour was observed for Ni doped ZnO ceramics at temperatures between 250-450°C, the 

behaviour was due to thermally induced disconnection of low ohmic chains of ZnO grains by 

highly resistive NiO phase[228]. In this report the ceramic is pure ZnO, therefore the only 

plausible explanation is that the metallic behaviour could have been caused by the presence 

of ZnO defects formed during sintering and/or grain boundary resistance [229].  
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Fig. 4.17 Resistivity vs Temperature of as-sintered pure ZnO ceramics 

The effect of sintering temperature on CCP ceramics sintered in a vacuum becomes evident 

in the resistivity behaviour. At RT both the 700°C-Vacuum-CCP and 900°C-Vacuum-CCP 

samples have the same resistivity of ~ 0.12 Ω.cm as shown in Fig 4.17. However, when the 

sample temperature is raised to 500°C the resistivity’s begin to deviate  with that of  700°C-

Vacuum-CCP sample showing  a more rapid increase when compared to  900°C-Vacuum-

CCP. This behaviour may be attributed to higher concentration of oxygen vacancies in 

900°C-Vacuum-CCP than in the 700°C-Vacuum-CCP resulting in a slow increase in the 

resistivity in the former. This idea is further supported by the lower carrier mobility for the 

900°C-Vacuum-CCP sample when compared to that of 700°C-Vacuum-CCP sample see 

Table 4.3. From the additional electrical parameters of the ceramics given in Table 4.3 and it 

is shown that there is a difference of 0.7 x 10
17 

in carrier concentrations between 700°C-

Vacuum-CCP and 900°C-Vacuum-CCP, which could be another further explanation for the 

slow increase in the resistivity for 900°C-Vacuum-CCP.  
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Table 4.3  Electrical parameters measured at room temperature of as-sintered ZnO ceramics 

Sample n (cm
-3

) µ (cm/V.s) Bandgap (eV) 

700°C-Air-CCP 4,3x10
17

 116 3.1 

700°C-Vacuum-CCP 4,8x10
17

 90 3.2 

900°C-Vacuum-CCP 5,5x10
17

 83 3.1 

900°C-Vacuum-CSP 7,8x10
17

 62 2.9 

  

From the resistivity measurements, Fig.4.17, the influence of the sintering atmosphere on the 

electrical behaviour on CCP ceramics is not very significant. It is noted however that between 

150
o
C and 400

o
C it is observed that 700°C-Air-CCP undergoes some chemical changes due 

to oxidation resulting in a lower resistivity as compared to the 700°C-Vacuum-CCP. This 

process ceases above 450
o
C probably due to saturation and the resistivities of the two 

samples become comparable.  

The influence of the synthesis process on the electrical behaviour was further evaluated by 

comparing the resistivity behaviour of two samples; commercial CCP and synthetic CSP, 

both sintered at 900°C in vacuum. It was observed that 900°C-Vacuum-CSP was the most 

conducting of all the samples i.e. lower resistivity compared to 900°C-Vacuum-CCP and all 

other samples. Although the sample still showed metallic behaviour with increase in 

temperature like other samples it was however always lower than all samples in resistivity. 

This could be because of the high carrier concentration of 7.8 x 10
17

 cm/Vs and even though 

it has low mobility caused, probably by oxygen vacancies and defects. The reported 

resistivity values for ZnO are higher than the ones reported in literature; this could be because 

of the difference in ceramic preparation conditions [31, 32, 95, 111].  The bandgaps of all the 

samples are in the same range and would not have significant influence on the differences 

observed in the resistivity data in Fig. 4.17.  

4.3.4.1.2  Seebeck Coefficient of ZnO ceramics  

The variation of the Seebeck Coefficient (or thermopower) as a function of temperature is 

given in Fig. 4.18; the negative sign indicated n-type conductivity. High absolute Seebeck 

Coefficient (׀S׀) values of between 550-600 µV/K were obtained for CCP samples at room 

temperature. Whilst for the CSP samples a lower value of ׀S475 =׀ µV/K was obtained at 
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room temperature. Gautum et al [111]  reported even lower ׀S׀ value of 280 µV/K at room 

temperature. The differences in these experimental values are most likely as a result of 

differences in carrier concentrations in the different samples. The Seebeck coefficient is 

related to the carrier concentration in semiconductors as given by Mott’s formula in Eq.4.5 

[10]. It is therefore evident that different material preparation techniques have the ability to 

engineer materials with unique and diverse properties. In this light different sintering 

technique plays a huge role on the electrical properties of ceramics, as was observed in 

difference in values for both Seebeck Coefficient. 

 

Fig. 4.18 Seebeck Coefficient vs Temperature of as-sintered pure ZnO ceramics 

𝑆𝑏𝑢𝑙𝑘 =
8𝑚∗𝜋2𝑘𝑏

2

3𝑒ℎ2 𝑇 (
𝜋

3𝑛
)

2

3
               [4.5] 

From Fig.4.18; it was observed that when the temperature is increased from room 

temperature to 500°C there is a transition in ׀S׀ that occurs at ~325°C for 700°C-Air-CCP and 

700°C-Vacuum-CCP ceramics. The ׀S׀ decreased from ~575 µV/K at room temperature to 

500 µV/K at 325°C, thereafter increased to 575 µV/K at 500°C is purely due to the increase 

in more electrons (i.e. charge carriers) being promoted above the Fermi level into the 

conduction band because of increase in temperature and hence more electrons moving from 

the hot junction to the cold junction. Above 325°C this promotion reaches a saturation point 

and further increase in temperature results in electron scattering instead due to increased 

lattice vibrations and hence an increase in ׀  S׀ back to 575 µV/K again.  The increased 
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scattering was further supported by the increase in resistivity at high temperatures which was 

explained earlier.  

For the 900°C-Vacuum-CCP samples ׀S׀ increased up to 250°C and thereafter remained 

constant with an increase in temperature suggesting that after carrier saturation there is no 

significant scattering to lattice vibrations, any issue which will be explored when thermal 

conductivity is discussed.   

The 900°C-Vacuum-CSP samples did not show significant changes in ׀S׀ with temperature. 

This is somewhat surprising and this requires further experimental work not possible at the 

present moment. Therefore, further studies need to be done to have better understanding on 

the thermoelectric properties of intrinsic ZnO ceramics especially those which are oxygen 

deficiency.  

4.3.4.1.3 Thermal conductivity of ZnO ceramics  

The temperature dependence of thermal conductivity is presented in Fig. 4.19; it is evident 

that the thermal conductivity of all samples decreased with an increase in temperature due to 

phonon-phonon scattering due to increased lattice vibrations [23]. At room temperature, the 

initial thermal conductivity for all samples was ~45 W/m.K and these decreases 

exponentially to ~ 12 W/m.K at 500
o
C. The results are similar to the work reported by 

Gautam et al.[111]. However, these values are too high for improved thermoelectric 

applications and the reason might be due to the relatively large grain sizes of the samples. 

Which are namely 5.3, 5.4, 3.6, 5.4, and 3,9 µm  corresponding to samples 700°C-Air-CCP, 

700°C-Vacuun-CCP, 900°C-Vacuum-CCP,700°C-Air-CSP and 900°C-Air-CSP, 

respectively. As a result, nanostructuring is being considered as an option to reduce the 

thermal conductivity.  
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Fig. 4.19 Thermal conductivity vs Temperature of as-sintered pure ZnO ceramics: (a) 

resistivity (b) Seebeck Coefficient (c) thermal conductivity (d) power factor (e) ZT 

4.3.4.1.4 Thermoelectric performance of ZnO ceramics  

The key thermoelectric performance behaviour of the ceramics as a function of temperature is 

shown in Fig.4.20 in terms of power factor (Fig.4.20 (a)) and figure of merit (Fig. 4.20 (b)). 

The power factor measures the electrical performance of the ceramics by comparing the 

Seebeck Coefficient and resistivity of the ceramics. From Fig. 4.20 (a) it is observed that 

700°C-Air-CCP and 900°C-Vacuum-CSP ceramics gave the highest power factor of about 

2.7x10
-4 

W/m
2
K at room temperature due to the lower electrical resistivity resulting from 

higher carrier concentration and higher mobility. The overall decrease in the power factor 

with temperature could be related to the increase in the resistivity due to phonon scattering 

and possibly additional oxidation of the ceramics.   

The figure of merit (ZT) in Fig. 4.20 (a) shows a general increase in ZT with an increase in 

temperature for all the samples. This evolution can be related to the decrease in the thermal 

conductivity when the temperature is increased and /or alternatively due to an increase in the 

Seebeck coefficient particularly at higher temperatures. A maximum ZT of 8 x10
-3 

at 500°C 

was achieved for 900°C-Vacuum-CSP ceramic this is not very far from that reported by  

Gautam et al. [111] a  ZT of 17 x 10
-3

 at the same temperature. Further improvements the 

thermoelectric properties requires an increase in the carrier concentration of the ZnO 

ceramics maybe through doping with donor elements such as Al, Ga, In etc which will be 

shown in the next chapters.   
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Fig. 4.20 Performance of as-sintered pure ZnO ceramics with temperature: power factor (a) 

ZT (b) 

4.3.4.2 Influence of ZnO microstructure and defects on thermoelectric properties 

Prior to attempts on doping, some work was done to try and understand the effect of 

annealing on the thermoelectric properties of the ZnO ceramics. CSP ZnO ceramic sintered at 

900°C in Vacuum was annealed in air for 24 h at 600°C. The thermoelectric properties of as-

sintered and annealed ceramics are indicated in Fig.4.21. The annealed sample expectedly 

became more resistive, by 4 orders of magnitude at 50°C (Fig. 4.21(a)). This is probably 

because of the decrease in the carrier concentration from 7.8 x 10
17

 to 5.5 x 10
13

 cm
-3

 as a 

result of ZnO oxidation when it thermally heated in air. The annealed sample indicated a 

semiconducting behaviour with an increase in temperature. The difference in the conduction 

mechanism in the samples can be attributed to differences on ZnO defects concentrations. A 

transition at 250°C was observed which may have been due to the non-equilibrium state of 

the sample. Zakutayev et al [230] reported a transition for annealed Ga-doped ZnO thin films 

at 500°C. After 350°C, the resistivity is close to that reported by Liang [95] and Sondergaard 

el al.  [109].  

The evolution of Seebeck Coefficient with temperature is given in Fig 4.21 (b); the ׀S׀ 

increased from 500V/K to ~ 800 V/K at room temperature when annealed because of the 

decrease in the carrier concentration. The absolute value of the Seebeck Coefficient 

decreased with an increase in temperature, similarly to that of as-sintered ceramics. Liang  

[95] reported almost constant the ׀S׀ with temperature whilst Sondergaard et al. [109]  

observed an  increase with temperature as expected by the Mott’s equation. The increase in 
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   .in this study has been explained earlier in section ׀S׀

The thermal conductivity of the ceramics given in Fig.4.21 (c) indicated that the annealing 

conditions used in this study do not bring any significant difference on thermal conductivity. 

Thermal conductivity of 43 W/mK at 75°C was determined for both as-sintered and annealed 

ZnO ceramics, which is  within previously reported values of 33-48 W/mK at 75°C [95, 109]. 

The figure of merit vs temperature data is given in Fig.4.21 (d) it reveals that annealing does 

not improve the performance of the ZnO ceramics probably because of reduced electrical 

conductivity. Maximum ZT of ~2 x 10
-3

 was obtained at 500°C for annealed ZnO ceramics. 

The performance of both the as-sintered and annealed is in the range of other reported ZT 

values in the literature.  

 

Fig. 4.21 Thermoelectric properties of annealed 900°C-Vacuum-CSP ceramic: (a) resistivity 

(b) Seebeck Coefficient (c) thermal conductivity (d) ZT 
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4.4 Conclusions  

ZnO nanoparticles were successfully synthesized through co-precipitation technique followed 

by calcination. Increasing the calcination temperature increases the grain size of ZnO 

powder; calcination temperature of 500°C gave the smallest grain size of 73 nm. The effect 

of sintering atmosphere and temperature on the densification and microstructure evolution on 

ZnO ceramics prepared from commercial and synthesized powder were successfully 

investigated. Ceramics prepared from synthetic powder could be fully densified above 99% at 

temperature as low as 600°C. At temperatures around 700°C the ZnO ceramics indicated to 

be sensitive to the powder’s specific surface area, ceramic’s grain sizes of 6±2 µm and 

4.2±1.6 µm were obtained for surface areas of 14 m
2
/g (C500) and 3.3 m

2
/g (C700), 

respectively. This study has illustrated that SPS can sinter to high densities irrespective of 

starting powder. However, to maintain a nanostructured ceramic it is important to look into 

low temperature sintering and/or modification of starting powder.  

Annealing at 600°C did not show any significant change on the microstructure of ZnO 

ceramics but changed the oxygen stoichiometry. And this had an effect on the electrical 

conduction mechanism as annealed samples became semiconducting while the as-sintered 

ceramics showed metallic behaviour.  

A somewhat unique behaviour was observed on Seebeck Coefficient variation with 

temperature and attempts to explain this unique behaviour was given which however might 

need further work to confirm this behaviour.   

The thermal conductivity of ZnO ceramics was found to be still too high for more efficient 

thermoelectric applications. And as such there is need to look into reducing the thermal 

conductivity by doping with donor elements such as Al, Ga, In etc as shall be shown the 

subsequent chapters. Annealing did not improve thermoelectric properties of the ZnO 

ceramics because it reduced the electrical conductivity significantly.  

In conclusion from this work it became apparent that sample preparation technique is 

important in determining the electrical conductivity and thermoelectric properties of 

materials. Ceramics prepared from synthetic powder showed higher carrier concentration 

than the commercial bought ceramics. As a result, as-sintered ceramics prepared from 

synthetic powder gave the best and highest performance with a ZT of 8 x 10
-3

 which is far 

much better than that from commercial samples.   
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5 Microstructure and thermoelectric properties of Al-doped ZnO 

ceramics prepared through spark plasma sintering 
 

5.1  Introduction 

The previous chapter (Chapter 4) discussed the thermoelectric properties of pure zinc oxide 

(ZnO) and it was found that it is too resistive for the applications envisaged. It was proposed 

in the introduction that doping with group 3 elements (such as aluminium  (Al), gallium (Ga), 

indium (In)) can lead to enhanced electrical properties because dopants can modify the band 

gap of the oxide and furthermore their ionic radius are close to that of Zn
 
(Al

3+
=0.054 nm, 

In
3+

= 0.08 nm, Ga
3+

= 0.062 nm, Zn
2+

= 0.074 nm) [126, 127].    

Thus far, the highest ZT reported for doped ZnO composites is from dual doping of Al and 

Ga; ZT = 0.45@1000 K and ZT = 0.65@1247 K using conventional sintering [28]. Al-doped 

ZnO ceramics were extensively investigated with ZTs of ~ 0.17 to 0.47 at 1000 K from 

ceramics prepared through hot press [28, 110, 128, 129], microwave [130] and spark plasma 

sintering [6, 33, 34, 37, 111, 131]. The substitution of Al on the zinc site of ZnO helps to 

improve thermoelectric properties through enhanced electrical conductivity and reduced 

thermal conductivity caused by nanostructuring. Aluminium is known to be a grain growth 

inhibitor [231, 232]. 

However, these properties can be easily affected by the preparation methods of the powders. 

In most reported work, the authors have prepared solid reactions of ZnO and Al2O3 powders 

which could cause inhomogeneity in the material [233]. The most reliable technique is the 

synthesis of the powders by wet chemical methods that lead to homogenous mixture [115, 

191]. Nowadays, consolidation is being conducted using spark plasma sintering (SPS) 

technique; resulting in full densification which is attained in a short period which minimizes 

grain growth [100, 234]. Smaller grains are effective for reducing thermal conductivity 

through phonon scattering [235].  

In this chapter, 2 mol% Al was doped in pure ZnO powder because of the previously reported 

high ZT of between 0.3 - 38 due to high electrical conductivity and reduced thermal 

conductivity for this precise amount of aluminium [28, 34, 131]. The characterizations of 

Zn0.98Al0.02O powder which was synthesized through co-precipitation followed by calcination 

are discussed in detail in this chapter. The sintering was done using SPS at varying 

temperatures, pressures and periods of pressure application to find suitable microstructure. 
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This discussion includes characterization of the powders and ceramics, densification 

characteristics and thermoelectric properties of the Al-doped ZnO ceramics.   

5.2 Materials and methodology  

5.2.1 Synthesis of Zn0.98Al0.02O powder 

Al-doped ZnO powder was synthesized through co-precipitation techniques followed by 

calcination, similarly to procedures previously done by Guy et al. [236] and Beynet et al. 

[115]. Solutions of 4 M concentration of zinc nitrate hexahydrate and aluminium nitrate, and 

0.2 M and 0.38 M ammonium oxalate monohydrate were prepared. Aluminium nitrate was 

added at an excess of 10 % to ensure final aluminium concentration of 2 mol%. At ambient 

temperature, zinc nitrate hexahydrate/aluminium nitrate solution was mixed with 0.2 M 

ammonium oxalate monohydrate solution to initiate nucleation. At a subsequent time and 

constant stirring, 0.38 M ammonium oxalate monohydrate solution was added into the 

mixture to promote particle growth. The pH was adjusted using ammonia solution to a pH 

around 6.5 - 7. A white precipitate was formed which was centrifuged and dried for 22 hrs at 

80°C, thereafter, calcined in a furnace at 600°C to form Zn0.98Al0.02O powder.   

5.2.2 Spark plasma sintering of the Zn0.98Al0.02O powder  

Al-doped ZnO ceramics were pre-compacted at 25 MPa for 1 min thereafter sintered using 

spark plasma sintering with an 8 and 20 mm inner diameter tungsten carbide dies. The 

influence of sintering temperature (550-700°C), pressure (250-500 MPa) and period of 

pressure application (room temperature (RT) or holding time (HT)) was investigated. The 

sintered ceramics were polished by silicon carbide discs (P320 and P600) to remove graphite 

foil for further analytical analysis.  

5.3 Results and discussion 

5.3.1 Characterization of synthetic Al-doped ZnO powders  

In this report, pure and Al-doped ZnO are represented as 0 at% and 2 at%, respectively. 

Normalized XRD patterns of the precipitate given in Fig.5.1 showed single phase structure of 

zinc oxalate, when doped with Al, which is similar to the patterns of the undoped zinc 

oxalate. However, there was an increment in the intensity of the peaks: 25°, 33°, 42.5° and 

others for 2 at% as compared to 0 at%. The increment of intensity could have been caused by 

the slight presence of Al in the ZnO powder. The SEM image of the precipitates given in 

Fig.5.2 indicated no difference in the morphology between 0 at% and 2 at%. 

Thermogravimetric analysis of zinc oxalate and Al doped zinc oxalate show the same 

behavior (Fig.5.3).   
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Fig. 5.1 XRD patterns of pure and Al-doped ZnO oxalate powder 

 

Fig. 5.2 SEM images of pure and Al-doped ZnO oxalate powder 

 

Fig. 5.3Thermogravimetric analysis of pure and Al-doped ZnO powder 
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The calcined powder was analyzed by ICP (check Chapter 2 for analysis details) to confirm 

the amount of Al in the powder. 2 at% Al were determined, which is in perfect agreement 

with the target value. The XRD patterns of 0 at% and 2 at% powder presented in Fig.5.4 

showed that the 2 at% powder has similar wurzite hexagonal structure as the undoped sample 

(Reference sample, 0 at%). The presence of additional phases was not detected and the lattice 

parameters did not show any considerable changes possibly due to small concentration of Al 

in the powder, indicating homogenous distribution of Al in ZnO powder.   

 

Fig. 5.4 XRD patterns of pure and Al-doped ZnO powder 

The SEM micrographs of the powders given in Fig.5.5 show a decrease in the grain size for 2 

at%. This is not surprising since Al is known to be a grain growth inhibitor. Further, image J 

analysis on the SEM micrographs determined that the powder had aggregate sizes of 

525±169 nm .The particle and crystallite size of the powders given in Table 5.1 showed that 2 

at% has particle sizes of about 75±13 nm with crystallite sizes of about 40 nm. The total 

surface area of the powder increased from 5.9 to 11 m
2
/g when Al was added into ZnO 

structure, supporting the SEM observations. The particle size distribution curve in Fig.5.6 

indicated that the 2 at% has two populations of particles at 1 and 10 µm which could have 

resulted from the agglomeration. These results have indicated the influence of Al doping in 

ZnO powder especially on the morphology that could have later affect the electrical 

properties of the ceramics. 
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Fig. 5.5 SEM micrographs of pure and Al-doped ZnO powder 

Table 5.1Surface area distribution and particle size of pure and Al-doped ZnO powders  

Sample SBET 

m
2
/g 

dBET 

nm 

dSEM 

nm 

dXRD 

nm 

0 at% 5.9 179 177±61 - 

2 at% 11 100 75±13 40 

 

 

Fig. 5.6 Particle size distribution of pure and Al-doped ZnO powder 

 

 



105 
 

5.3.2 Spark plasma sintering of Al-doped ZnO powder  

Al-doped ZnO powder (Zn0.98Al0.02O) was spark plasma sintered in air at various parameters 

such as temperature, pressure and period of pressure application to get a fully dense ceramic. 

The summary of the ceramics characteristics for different sintering conditions are given in 

Table 5.2. 

5.3.2.1 Sintering behavior of Al-doped ZnO ceramics 

The sintering curve of 0 at% and 2 at% are given in Fig. 5.7. The sintering steps of 2 at% Al-

doped ZnO are divided into three segments; the first stage is the rearrangement of the 

nanoparticles due to applied pressure. The displacement of 2 at% was slow, and reached only 

0.7 mm as compared to 1.2 mm for 0 at%, could be related to the aggregates present in the 

powder. The second stage could be related to the neck formations between the particles due 

to localized heating caused by spark discharge [100, 106, 115, 209]. The displacement of the 

2 at% sample gradually increased to the same level as that of 0 at%.  The third stage is the 

pore elimination in which the necks between the particles are gradually developed and there 

is progression of plastic transformation. Both samples finished sintering at 550°C; however, 

the total displacement differed by 0.5mm. The 2 at% sample gave total displacement of 2.5 

mm while 0 at% gave 3 mm. This indicates the influences of grain size on the sintering 

behavior of the ceramics. The high density of grain boundaries could have enhanced the 

diffusion rate of 2at% sample [237], due to the high surface area of 2 at%. As a result, the 

sintering temperature decreased. The reduction in the sintering temperature has been reported 

on the sintering of nanoparticles materials such as ZnO [100, 116]. Reduced temperature 

implies less grain growth which will be beneficial for improving thermoelectric properties.  
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Fig. 5.7Sintering behavior of pure ZnO and Al-doped ZnO using spark plasma sintering 
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Table 5.2 Summary of pure and Al-doped ZnO ceramics characteristics for varied SPS 

parameters (Note: RT-Room temperature, HT- Holding time) 

Ref. 

Temp

eratu

re 

Initial 

Pressur

e 

Final 

Pressure 

Point of 

Pressure 

Application 

Atmosphere RD Grain size 

 °C MPa MPa °C  % µm 

ZnO 

1 600 25 250 RT Air 99.3±0.1 2.4±0.6 

2 700 25 250 RT Air 100 5±2 

Zn0.98Al0.02O 

3 RT 250 250 RT Air 57±0.2 - 

4 550 250 250 RT Air 79.9±0.5 - 

5 600 250 250 RT Air 84.9±0.2 - 

6 650 250 250 RT Air 98.9±0.1 0.46±0.01 

7 700 25 250 RT Air 98.1±0.1 0.76±0.26 

8 600 25 250 HT Air 84.3±0.2 - 

9 650 25 250 HT Air 98.6±0.1 0.09±0.02 

10 600 100 500 HT Air 98.5±0.1 - 

Bibliography [Zn0.98Al0.02O] 

Ma et al. 

[238] 
900 50 50 - Vacuum 99.9 - 

Nam et al. 

[131] 
900 50 50 - Vacuum 94 0.2 

Han et 

al.[33]  
950 50 50 - Vacuum 90 - 
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5.3.2.2 Effect of sintering temperature s 

The influence of the sintering temperature between 550-700°C on the structure, the 

microstructure and the density of Al-doped ZnO ceramics was studied. Relative density 

versus temperature given Fig. 5.8 showed an increase in the relative density with an 

increment in the temperature. Maximum relative density of 98.9% was achieved at 650°C 

from initial relative green density of 57% at room temperature. Beyond 650°C a decrease in 

the relative density was observed which could be due to the presence of pores and/or decrease 

in the ceramic density related to the physical properties such as the density of the individual 

materials [107, 238]. Ma et al. [238] reported a high densification of 99.9%, however, at a 

very high temperature of 900°C. While, Nam et al. [131] and Han et al. [33] found low 

relative densities of 94% and 90% at temperatures of 900°C and 950°C, respectively. Other 

reports includes, relative densities of 99% at temperatures between 800-1200°C and 65-93% 

sintering between 700-900°C for Al-doped ceramics [111, 239]. The results from the present 

study indicated that at a temperature of 650°C and pressure of 250 MPa a relative density of 

98.9% is obtained. The achievement of high relative densities at very low temperatures could 

be due to better rearrangement of the grains at high pressures.    

 

Fig. 5.8 Relative density versus temperature of Al-doped ZnO ceramics 

The XRD analysis of some of the ceramics (Fig.5.9) showed that the main phase for the Al-

doped ZnO ceramics is ZnO hexagonal wurzite structure. It was observed that as the sintering 

temperature was increased the XRD peaks of the ceramics are sharpened which is related to 

the crystallization of the grains. The zoomed inserted image indicated the presence of spinel 

phase (ZnAl2O4) at 37, 35, 32.5 and 31.5°. Other phases in small compositions are alumina 

(Al2O3) at 33.4° and some unknown phase at 30.9°. This implies that Al did not dissolve fully 
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in the ZnO structure because of the solubility limit.  As a result, excess Al reacts with ZnO to 

form ZnAl2O4 and Al2O3. To date, there is not exact value of the solubility limit of Al into 

ZnO, solubility limits of between 0.3-0.5 mol% Al have been reported thus far [240, 241]. It 

is possible that these secondary phases present in higher quantity at higher temperature could 

have contributed to the decrease in the relative density at 700°C due to their physical 

properties, the density of Al2O3 and ZnAl2O4 phases are 3.95 and 4.61 g/cm
3
, respectively, at 

room temperature [242, 243]. Also, more pores could have been formed because ZnAl2O4 

acts an insulator. The localization at ZnO grain boundaries restricts grain growth [6, 33, 37, 

244]. Nunes and Bradt [244] report on conventionally sintered ZnO/Bi2O3/Al2O3 ceramics 

found that the majority of the activation energy (400 kJ/mol) was related to the transport of 

the ZnAl2O4 spinel particles which are most probably controlled by the diffusion of 0
2-

 in the 

ZnAl2O4 spinel structure. It is also observed in Fig. 5.9 that decreasing the temperature below 

650°C reduces the presence of the spinel phase.  

 

Fig. 5.9 XRD patterns of Al-doped ZnO ceramics at varying temperature 

The SEM micrograph of 0 at% and 2 at% ceramics sintered at 700°C are given in Fig.5.10. It 

is shown that there is a decrease in the grain size when 2 at% Al is doped in the ZnO. The 

grains decreased from 5.8 µm for 0 at% to 0.76 µm for 2 at% with nano-precipitates of 104 

nm that can be due to grain growth inhibiting effect as discussed in previous sections. Further 
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studies were done to understand the influence of sintering temperature on the microstructure 

of 2 at% Al doped ZnO, given in Fig. 5.11. It was observed that sintering at 550°C and 600°C 

did not change the grain size of the ceramics. However, at a temperature of 650°C and 700°C 

the grain size increased from initial grain size of 75 nm to 457 nm and 760 nm, respectively. 

EDS analysis on the sample sintered at 700°C indicated that the light phase is Al rich and the 

dark phase is Zn rich. This can be supported by the XRD results because the ZnAl2O4 and 

Al2O3 peaks are Al rich phases.  Therefore, the light phase in the SEM analysis is the spinel 

phase of ZnAl2O4  and Al2O3 as determined by the XRD analysis. This is in conformity with 

the ZnAl2O4 peak observed in XRD results of Jood et al. [130], when fine nanoparticles of 

ZnAl2O4 were dispersed on ZnO grains in the SEM analysis. It was noticed that the spinel 

phase is in homogeneously distributed across the sample. The spinel phase may be beneficial 

or detrimental for the electrical properties  such as resistivity and carrier mobility. Some 

reports indicated that it could lead to a decrease of the thermal conductivity while on the 

other hand it could be a hindrance in improving the electrical conductivity (scatters electrons) 

[33, 110, 111, 130, 131, 233]. EDS analysis of the sample sintered at 650°C did not indicate 

any secondary phases which may be attributed to the low concentration of ZnAl2O4 and 

Al2O3. Further studies were conducted to reduce the concentration of secondary phase in the 

ceramics with full densification.  

 

Fig. 5.10 SEM micrographs of 0 at% and 2 at% Al ZnO ceramic sintered at 700°C 
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Fig. 5.11 SEM micrograph of Al-doped ZnO ceramic at different sintering temperatures 

 

5.3.2.3 Reduction of the amount of spinel phase in Al-doped ZnO ceramics 

In the previous section it was indicated that sintering at temperature above 650°C with a 

pressure of 250 MPa applied at room temperature causes the formation of the secondary 

phases that can be a hindrance in improving thermoelectric properties. It was proposed to 

apply the pressure immediately on the initial stages of holding time and to double the 

pressure while reducing the temperature, to avoid the presence of spinel phase in the sintered 

ceramics. At first the influence of the changes in sintering conditions on the densification was 

determined. As presented in Table 5.2 the relative density is constant at 84% when a pressure 

of 250 MPa is applied at room temperature or at 600°C. An increase in the relative density 

from 84 to 98.5% was observed when the sintering pressure was increased to 500 MPa during 

heating stage at a temperature of 600°C. However, the sintered ceramic cracked at this 

pressure due to distribution of residual stresses during cooling of sintered ceramic [245]. As a 

result, a densification of 98.6% was achieved at 650°C and 250 MPa without cracks. This 

will be beneficial in improving the electrical conductivity and better thermoelectric 

properties.  

The XRD patterns of the ceramics sintered at different temperature, pressure and period of 

pressure application are indicated in Fig.5.12 and Fig. 5.13. For all the samples the major 
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phase structure is hexagonal ZnO structure. It was noted that applying the pressure at room 

temperature (RT) and decreasing the temperature from 650°C to 600°C the presence of 

secondary phases reduced in the ceramic, as they were not visible on the XRD patterns. It is 

possible that the concentration of the secondary phases was below the XRD detection limit. 

Whereas, when the pressure is applied during holding time (HT) for both 600°C and 650°C, 

the secondary phases were not detected as well. Similarly, when the pressure was increased 

from 250 to 500 MPa, the secondary phases were not observed (Fig.5.13).  

 

Fig. 5.12 XRD patterns of Al-doped ZnO ceramics sintered at 600C and 650C with a pressure 

of 250 MPa using RT and HT mode 
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Fig. 5.13 XRD patterns of Al-doped ZnO ceramics sintered at 250 MPa and 500 MPa with a 

temperature of 600°C using HT mode 

The SEM micrograph of the sample sintered at 650°C using HT mode is presented in Fig. 

5.14. It was revealed that the nanostructure of the sample is maintained and there is no 

secondary phase detected in the ceramic. This sample was further annealed in air at 600°C for 

24 h to obtain fully oxidized ceramic in order to ensure stable measurement and 

reproducibility of electrical properties. The influence of the annealing treatment on the 

microstructure of Al-doped ZnO ceramics in Fig.5.15 indicated an increase in the grain size 

from 90 nm to 140 nm. Additionally, the secondary phases were not present possibly because 

the amount is below the detection limit. XRD analysis of the annealed sample did not show 

any secondary phases.  
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Fig. 5.14 SEM micrograph of Al-doped ZnO ceramics sintered at 650°C (HT) and 700°C 

(RT) 

 

Fig. 5.15 SEM micrograph of annealed Al-doped ZnO ceramics sintered at 650°C (HT)  

 

5.3.3 Thermoelectric properties  

The thermoelectric properties were determined for the annealed ceramic sintered at 650°C 

(HT) as it had minimal/no secondary phase and densification of 98.6%. The resistivity as a 

function of temperature is given in Fig. 5.16; for the samples 0 at% and 2 at%.  It is shown 

that addition of Al in ZnO reduces the resistivity especially at low temperature, less than 

200°C. At 50°C the resistivity reduced from ~1960 Ω.cm to ~50 Ω.cm for 0 at% and 2 at%, 

respectively. This could be due to the substitution of Al
3+

 ions on the Zn
2+

 site creating extra 

free electrons [6, 33, 34, 37, 111, 131]. It is observed that the resistivity of both samples 

decreases with an increase in temperature which is significant of a semiconducting behavior. 

At high temperature the valence electrons gain enough energy to reach the conduction band, 

hence, the lowest resistivity of about 1 Ω.cm at 500°C [53]. Sondergaard et al.[109] reported 

the lowest resistivity as compared to our samples for the same Al content, i.e. resistivity 

values of 0.005 and 0.0015 Ω.cm  at room temperature were obtained for samples sintered at 
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850°C and 900°C, respectively. This difference could be due to high carrier concentration 

caused by differences in preparation methods and sintering procedures creating more oxygen 

vacancies.  
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Fig. 5.16 Resistivity versus temperature for annealed pure and Al-doped ZnO ceramics 

sintered at 650°C (HT) 

The Seebeck Coefficient as a function of temperature is given in Fig.5.17. The negative sign 

indicates n-type conductivity. Adding 2 at% Al reduced the Seebeck coefficient value from 

800 to 175 µV/K at 50°C. This decrease could be caused by the increase in the carrier 

concentration. The broadband equation (Eq.5.1) indicates inverse relationship between 

Seebeck coefficient and carrier concentration [10].  

       𝑆𝑏𝑢𝑙𝑘 =
8𝑚∗𝜋2𝑘𝑏

2

3𝑒ℎ2 𝑇 (
𝜋

3𝑛
)

2

3
      [5.1] 

The absolute Seebeck Coefficient, ׀S׀, for the 2 at% sample increases with an increase in 

temperature from 50°C to 500°C; which is related to the scattering of the electrons at high 

temperature. The behaviour is different from pure ZnO which showed a decrease in the ׀S׀ 

with temperature increment. Sondergaard et al.[109] reported similar behaviour to that of 

2at% Al-doped ZnO with ׀S׀ of about 125 µV/K at 50°C for sintering at 850°C and 900°C.    
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Fig. 5.17 Seebeck Coefficient versus temperature for annealed pure and Al-doped ZnO 

ceramics sintered at 650°C (HT) 

The thermal conductivity versus temperature of the sintered ceramic presented in Fig.5.18 

revealed that doping with Al into ZnO ceramic reduces the thermal conductivity from 50 

W/m.K (0at%) to 27 W/m.K (2at%) at 50°C. This was caused by phonon scattering at the 

grain boundaries because of reduced grain size [6, 33, 34, 37, 111, 131]. It is shown that the 

thermal conductivity determined in this present work is almost similar to that reported by 

Sondergaard et al.[109]  that could be due to the close proximity of the grain sizes values. A 

grain size difference of 20 nm was determined between the present study and that of 

Sondergaard et al. [109].   
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Fig. 5.18 Thermal conductivity versus temperature of annealed pure and Al-doped ZnO 

ceramics sintered at 650°C (HT) 

The performance of the ceramics was determined using figure of merit, ZT, given in Fig.5.19. 

An increase in ZT was observed with temperature increment for all samples. It was observed 

that 0 at% performs better than the 2 at% ceramic by a ZT value of 1.5x10
-3

 at a temperature 

of 500°C. The improved performance is because of high Seebeck Coefficient shown by 0 at% 

ceramics. The performance of the 2 at% can be enhanced by improving the solubility of Al in 

ZnO through process manipulations such as sintering temperature increment and operating in 

vacuum to increase the electrical conductivity. Also, new materials could be incorporated 

with the Al-doped ZnO ceramic to enhance the electrical conductivity while maintaining the 

nanostructure of ceramic.   
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Fig.5.19 Figure of merit (ZT) of annealed pure and Al-doped ZnO ceramics sintered at 650°C 

(HT)  

5.4 Conclusions 

The synthesis and spark plasma sintering of Al-doped ZnO powder was studied in this 

chapter. The addition of 2 at% Al in ZnO powder reduces the grain size from 177 to 75 nm. 

The relative density of Al-doped ZnO sintered at a temperature of 650°C reaches high 

relative density of 98.9%. Sintering above 650°C causes an increase in the grain size which 

consequently decreases the relative density due to pores. The addition of Al into the ZnO 

ceramics caused a decrease in the grain size from 5.4 µm (without Al) to <1 µm (with 2 at% 

Al). Sintering above 650°C and applying the axial pressure during room temperature causes 

the presence of spinel phase, ZnAl2O4, which is unwanted for thermoelectric properties. 

Applying the pressure during holding time prevents the formation of spinel phase. Annealing 

increased the grain size of the Al-doped ZnO ceramics by 50 nm. The resistivity of the Al-

doped ZnO ceramics slightly reduces, which causes a decrease in the absolute Seebeck 

Coefficient as a result of increased carrier concentration. The reduction in the grain size leads 

to a decrease in the thermal conductivity due to phonon scattering at the grain boundaries. As 

a result, ZT value of 1.5x10
-3

 at 500°C, smaller than the one of pure ZnO ceramics was 

obtained. The low Seebeck Coefficient and electrical conductivity value of Al-doped ZnO 

ceramic caused the decrease in the performance. Even so, these results revealed the 
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importance of reduced thermal conductivity and low resistivity in improving thermoelectric 

properties of Al-doped ZnO ceramics.   It is advised to do further experiments to optimize the 

amount of Al dopants in ZnO ceramics are required to improve thermoelectric properties 

either by incorporating new materials to develop new composites and/or optimize the 

sintering parameters.  
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6 Spark plasma sintering of polyaniline dispersed in Al-doped 

ZnO ceramics for thermoelectric application 
 

6.1 Introduction 

The previous chapter (Chapter 5) discussed the thermoelectric properties of Al-doped ZnO 

ceramics. It was found that the ceramics were still resistive and have high thermal 

conductivity which affected their efficiency.  The approach in this chapter is to incorporate 

new materials into the Al-doped ZnO ceramics to generate unique properties that could 

enhance the power factor (S
2
σ).  

Nowadays, conducting polymers (such as Polyaniline (PANI), polypyrole, 

Polyethylenedioxythiophene (PEDOT) etc...) have attracted researchers attention as they are 

environmentally friendly, easy to synthesize, simple and reversible doping/dedoping 

chemistry, modifiable electrical conductivity and intrinsically low thermal conductivity [144, 

147, 152, 246]. Among the various organic polymers, PANI is one of the most widely studied 

semiconducting organics that possess chemical stability and exceptional electrical properties 

[151, 153, 156, 157, 177]. Metal oxide/polymer composites are regarded as future candidates 

for thermoelectric application because they are light weight, cheaper and non-toxic [177, 

246]. Metal oxide/polymer implies that the polymer is incorporated into the metal oxide in 

small quantities whereas polymer/metal oxide means that the metal oxide is added into the 

polymer. Composites such as BiCuSeO/PANI [247], Ca3Co4O9/PANI [248], TiO2/polymer 

based [150], Li0.5Ni0.5Fe2O4 /polyparaphenylene (PPP) [30] etc.… have also been 

investigated. The highest ZT of 0.54 at 1200K was obtained for 9wt% PPP/Zn0.95Ni0.05O 

composites prepared through spark plasma sintering [135]. It was because of reduced thermal 

conductivity as a result of drastic mismatch in the vibrational spectra of organic and inorganic 

materials [135, 139]. Also, the simultaneous improvement of Seebeck Coefficient and 

electrical conductivity due to selective scattering of charge carriers with low energy through 

energy filtering contributed to the enhanced ZT [178]. The behaviour of the nano-juctions in 

these composites provides unique properties that cannot be attained in either organic or 

inorganic materials individually.  

At present there is no reported literature on the dispersion of PANI in Al-doped ZnO 

ceramics. Available work reports on the PANI composites explores the incorporation of ZnO 

nanocomposites in the polyaniline matrix, the ZT improved from 0.00075 to 0.0035 at room 
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temperature for pure PANI and 15 wt% Al doped ZnO nanorods [177], respectively. In this 

work, an attempt to understand microstructural and thermoelectric properties of PANI 

dispersed in Al-doped ZnO ceramics was carried out. Al-doped ZnO powder was prepared 

through co-precipitation route and thereafter mixed with activated PANI emeraldine salt. The 

composites were spark plasma sintered at low temperatures to obtain full densification by the 

studying the effect of the parameters: temperature, pressure, holding time and point of 

pressure application.   

6.2 Materials and methodology 

6.2.1 Preparation of Zn0.98Al0.02O /Polyaniline powder 

Al-doped ZnO (Zn0.98Al0.02O) powder was synthesised through co-precipitation technique 

followed by calcination at 600°C for one hour. It was incorporated with activated PANI 

Emeraldine salt prepared from PANI Emeraldine base (Sigma-Aldrich) using 1 M 

hydrochloric acid (HCl). PANI concentrations of 0.75 wt%, 5 wt% and 9 wt% labelled as 

0.75PANI, 5PANI and 9PANI, respectively, were investigated.   

6.2.2 Spark plasma sintering of Zn0.98Al0.02O /Polyaniline powder  

ZnO composites were consolidated using Dr. Sinter 2080 unit (SPS Syntex Inc., Japan) 

available at the Plateforme Nationale de Frittage Flash (PNF2) located at the Université 

Toulouse 3 Paul Sabatier using 8 and 20 mm inner diameter tungsten carbide die. The 

ceramics were sintered at a heating rate of 50°C up to 250°C to avoid degradation of 

polyaniline, at axial pressures of 250-850 MPa and dwell time of 10-30 min.   

6.2.3 Characterization of Zn0.98Al0.02O /Polyaniline powders and ceramics  

The microstructure analysis of the ZnO composites was done using Scanning Electron 

Microscopy (MEB JEOL JSM65 10LV) while an X-ray diffractometer (XRD Bruker D4) 

was used to analyze the phase structure. A combination of Differential Thermal Analysis 

(DTA) and thermogravimetric analysis (DAT GTA) (Setaram TAG16) was used to study the 

thermal behaviour of the powders at a heating rate of 3°C/min up to 1000°C. In addition to 

the above characterizations, Fourier Transform-Infrared Spectroscopy (FTIR) (Spectrometry 

Frontier and Microscope Spotlight 400 Series: MIR-NIR) spectra were recorded at a 

wavelength range of 650–4000 cm
-1

. Raman Spectrometer (JobinYvon LabRAM HR800) 

was used to identify chemical structures of selected samples. Analysis was done using 633 

nm red laser at a grating, accumulation and time of 600 tr, 3 and 30s, respectively.  
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6.2.4 Electrical properties of Zn0.98Al0.02O /Polyaniline ceramics  

Seebeck coefficient and resistivity measurements of the dense ceramics were simultaneously 

performed using ZEM-3 (Ulvac-Riko, CRISMAT). The dense ceramics were cut into  9x3x3 

mm bars and coated  at their extremities with gold to ensure electrical ohmic contacts. 

Graphite foil was inserted on both sides of heaters to have a good electrical and thermal 

contact with the sample. The thermal conductivity (𝑘) (W/m.K) was determined using 

equation 6.1 by measuring thermal diffusivity (α) (m
2
/s), ceramic density (d) (g/cm

3
) and heat 

capacity (Cp) J/K). The samples were cut into dimensions of 6x6x1 mm bars for the thermal 

conductivity measurements. The bandgap of the ceramics were determined using the  

photovoltaic measurements (Bentham PVE 300 PV).  

𝑘 = 𝛼(𝑇)Cp(T)d(T)      [6.1] 

6.3 Results and discussion 

6.3.1 Characterization of mixed powders of Al-doped ZnO and Polyaniline 

As alluded earlier, Polyaniline (PANI) emeraldine base was activated using 1 M hydrochloric 

(HCl) acid to Polyaniline (PANI) emeraldine salt to make it to be more electrically 

conductive [151]. The analysis presented here begins with that of PANI only before adding it 

into the metal oxide. XRD analysis of the polyaniline powders given in Fig.6.1 showed that 

both PANI emeraldine base and salt have two broad peaks which diffracted at 2-theta angles 

of 20° and 24° due to the parallel and perpendicular periodicity of the PANI chains [249-

251].  The partial crystallinity is as a result of the repetitive rings of benzenoid and quinoid in 

the PANI. The addition of HCl in the PANI emeraldine base caused a depreciation of the 

intensity at 20° and sharpening of the peak at 24° which could be related to the crystallization 

of the polymer [252]. The SEM micrographs of the polyaniline emeraldine powders given in 

Fig.6.2 indicated that polyaniline emeraldine base powder has platelet like structures. The 

addition of the HCl solution induces the formation of aggregates with small crystallites 

(Fig.6.2 (b)), confirming the XRD results.  
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.  

Fig. 6.1 XRD patterns of polyaniline emeraldine powder 

 

 

Fig. 6.2 SEM micrographs of polyaniline emeraldine powder before (a) and after (b) addition 

of HCl. 

After phase and morphology analysis, the molecular structure of the polymers was studied 

using FTIR and the results are given in Fig.6.3. It was observed that there is a red-shift of the 

spectrum of PANI emeraldine salt as compared to that of PANI emeraldine base which could 

be as a result of enhanced charge delocalization and formation of conjugation structure [151]. 

The absorption band observed at 1450 cm
-1

 for PANI emeraldine base shifted to a lower 

frequency by ~450 cm
-1

 and became more broadened ascribing to the aromatic C-H-in plane 

bending vibrations of the quinoid structure. This is a characteristic peak for conductive PANI, 

and it is normally considered to be an electronic-like band in which there is a measure of the 



125 
 

degree of delocalised electrons in PANI. These delocalised electrons may account for the 

drop in resistivity by 6 orders of magnitude for PANI salt [151], shown in the table inserted 

inside the Fig. 6.3.   

 

Fig. 6.3 FTIR spectrum of polyaniline powders with inserted table of resistivity at room 

temperature 

Thermal stability studies of the conducting polymer were carried using thermogravimetric 

analysis (TGA). The results from the TGA analysis of the PANI powders are given in 

Fig.6.4. The mass loss of the PANI emeraldine base slightly decreases due to moisture 

content from room temperature to 300°C, thereafter sharply decreases at 400°C as a result of 

degradation of the organic components. It was observed that the PANI emeraldine salt losses 

more mass by 15% as compared to PANI emeraldine base, which could be due to the removal 

of chlorine ions. Similarly to the PANI emeraldine base, sharp decrease was observed at 

400°C. 
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Fig. 6.4 Thermogravimetric analysis of polyaniline powder before and after acid activation 

After the above basic and fundamental characterisation of the activated polyaniline, the salt 

was dispersed in Al-doped ZnO powder at concentrations between 0.75 wt% to 9 wt% to 

investigate its effect on the thermoelectric properties of the doped metal oxide.  Prior to the 

electrical measurements, XRD analysis of the Al-doped ZnO/PANI powders was done and 

the results are given in Fig. 6.5. It was observed that the phase structure did not change and is 

hexagonal ZnO, similarly to reference samples (ZnO and ZnA). However, there were little 

peaks broadening which could be as a result of the amorphous nature of the polymer.  

.  
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Fig. 6.5 XRD patterns of Al-doped ZnO powders and PANI composites. 

Morphology studies (using SEM) of the Al-doped ZnO/PANI powders showed that addition 

of the polyaniline binds the grains together as shown in Fig.6.6.  The increase in the 

concentration from 0.75 wt% to 9 wt% causes increase in the aggregates size.  

 

Fig. 6.6 SEM micrographs of Al-doped ZnO powders doped with polyaniline powder 

FTIR analysis given in Fig.6.7 was done to confirm the presence of polyaniline in the 

powders. Compared to the reference sample, ZnA, it was observed that the powders 

incorporated with PANI have new peaks between 1000 and 1750 cm
-1

, an indication of PANI 
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presence in the powders. The peak 1000 cm
-1

 shifted to the right by 112 cm
-1

, which may be 

related to the changes in the PANI structure due to the presence of Al-doped ZnO 

nanoparticles. The Al-doped ZnO nanoparticles could have enhanced charge delocalization 

and the formation of conjugation structure [151], which are responsible for red shift in 

absorption bands in PANI.   

 

Fig. 6.7 FTIR spectrum of Al-doped ZnO powders doped with polyaniline powder 

As a matter of principle, to check thermal stability of the doped oxide-PANI composite, 

thermogravimetric analysis of Al-ZnO/PANI powder (Fig.6.8) was done. It was observed that 

there was more mass loss in the Al-ZnO/PANI composites as compared to the reference 

sample, ZnA. Mass difference of about 2% at 320°C was observed. ZnA-5PANi and ZnA-

9PANI indicated to have the same decrease in mass from room temperature up to 320°C. 

Between 320 °C and 400 °C, a sharp decrease in mass is observed for both samples. ZnA-

5PANI had total 4% mass loss whilst ZnA-9PANI had 5.5 %. This analysis shows that to 

avoid the loss of polyaniline during sintering, it is advisable to sinter below 300°C.  
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Fig. 6.8 Thermogravimetric analysis Al-doped ZnO powders doped with polyaniline powder 

6.3.2 Characterization of sintered Al-doped ZnO/PANI ceramics  

 

The Al-doped ZnO/PANI powders were sintered using spark plasma sintering at a 

temperature of 250°C to avoid degradation of the polyaniline powder. The amount of 

polyaniline was varied between 0.75 - 9 wt%. A concentration of 9 wt% was used because of 

reported high ZT value of ~0.54 on Zn0.95Ni0.05.O/9wt% Polyparaphenylene ceramics [135]. 

However, it is ideal to start with a lower concentration to have an overview on the effect of 

polyaniline without affecting the properties of Al-doped ZnO. The effect of holding time, 

pressure and point of pressure application were studied on 0.75 wt% PANI. The relative 

density of the ceramics given in Table 6.1 showed that the relative density of ZnA-0.75PANI 

ceramics slightly improved the relative density by 3.9 % when the holding time was 

increased from 10 to 30 min. Further, when the pressure was increased from 500 to 850 MPa 

the relative density increased from 69.9% to 79.6%, respectively. Surprisingly, when the 850 

MPa pressure was applied at room temperature, the relative density was enhanced to 97%. 

However, cracks were observed on the ceramic. The high increase in relative density at room 

temperature could have been caused by the coverage of the polymer around the grains.  
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To obtain high density and un-cracked ceramic, the concentration of PANI was manipulated. 

Previous studies by Wu et al. [135] reported the highest ZT of 0.54 at 1200 K for ZnO/ 

polymer based ceramics using 9 wt% PPP. In the light of this previous work, an attempt to 

improve the relative density was done by using PANI concentration of 9 wt% (ZnA-9PANI). 

For this sample, applying a low pressure of 250 MPa at room temperature allowed to get a 

relative density of 95.4%. Furthermore, applying the pressure during first holding stage using 

8 mm die increased the relative density to 97.3%, and for 20 mm dies relative density of 

95.9% was obtained. The concentration of PANI was decreased to 5 wt% (ZnA-5PANI) to 

improve the densification for 20 mm die; a high relative density of 98.5% was obtained at 

lowest temperature of 250°C and a pressure of 250 MPa. Unlike in the report of Wu et al. 

[139] and Wu et al. [135] who densified at high temperatures of 827°C and 900°C, 

respectively, we were able to obtain full densification at very low temperature of 250°C.  

 

The XRD patterns of the ceramics given in Fig. 6.9 did not show any presence of second 

phase after sintering. Rather, a broadening of ZnA-5PANI and ZnA-9PANI peaks was 

observed as compared to ZnO and ZnA, which could have been caused by the amorphous 

nature of the polymer and/or retained nanostructure of the ceramic. Sintering at low 

temperature decreases grain growth rate [100, 107, 209], as a result the nano-grains are 

retained.  
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Table 6.1 Relative density of sintered Al-doped ZnO/PANI ceramics 

No. Die 

diameter 

Temperature 

 

Initial 

pressure 

 

Initial 

holding 

time 

Final 

pressure 

Final 

Holding 

time 

Relative 

density 

 mm (°C) MPa min MPa min % 

ZnA-0.75PANI 

1. 8 250 - - 500, HT 10 69.9±0.9 

2. 8 250 - - 500, HT 30 73.8±1.8 

3. 8 250 - - 850, HT 10 79.6±0.6 

4. 8 250 - - 850, RT 10 97.4±0.1 

ZnA-5PANI 

5. 20 250 150, RT 10 250, HT 10 98.5±0.1 

ZnA-9PANI 

6. 8 250 - - 250,RT 10 95.4±0.1 

7. 8 250 150, RT 10 250,HT 10 97.3±0.1 

8. 20 250 150, RT 10 250, HT 10 95.9±0.1 
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Fig. 6.9 XRD patterns of pure ZnO, ZnA, ZnA-5PANI and ZnA-ZA9PANI ceramics 

The SEM micrographs in Fig. 6.10 revealed a decrease in the grain sizes from 140 nm of 

annealed ZnA ceramics to 86 nm and 50 nm for ZA5P and ZA9P ceramics, respectively. The 

presence of PANI in the ceramics was confirmed by TEM analysis (Fig. 6.11); the dark shade 

corresponds to ZnA grains while the light shade corresponds to polyaniline. From the TEM 

micrographs it could be suggested that the polyaniline covers the grains of the ZnA which 

could be beneficial in lowering the thermal conductivity by introducing a barrier to the flow 

of phonons [30, 135, 139]. 

 

Fig. 6.10 SEM micrographs of ZnA, ZnA-0,75PANI ZnA-5PANI and ZnA-ZA9PANI 

ceramics 
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Fig. 6.11  TEM micrographs of ZnA-ZA9PANI ceramic 

Raman analysis was conducted on the as-sintered ZnO composite ceramics to confirm the 

presence of PANI after sintering. The Raman spectrum given in Fig. 6.12 showed that a 

reference sample, ZnA, has sharp peak at 430 cm
-1

 which is related to the non-optical phonon 

E2H mode of ZnO due to vibrations of O and Zn sublattice [253, 254]. The weak peak 380 cm
-

1
 is multi-phonons scattering process of E2H-E2L and Al phonons, respectively [253]. The 

peaks 1250 and1300 cm
-1 

on the ZnA spectrum could be due to CO2 from the atmosphere. It 

was noticed that the incorporation of polyaniline into ZnA caused the development of new 

peaks related to the vibrations of the PANI chains. The bands appearing between 1100-1600 

cm
-1

correspond to the stretching modes of PANI structure [255, 256]: 1600 cm
-1

 could be is 

ascribed to C-C stretching vibration of benzene ring, 1470-1590 cm
-1 

could be the 

deformation vibrations of N-H, 1340-1390 cm
-1

 could be telling information about carrier 

vibrations in PANI in C-N
 
polaronic structure. 1220 cm

-1
 could be ascribed to C-N stretching 

mode of polaronic unit. 1180 cm
-1

 may be related to C-H vibrations of aromatic rings. The 

bands between 400 - 1010 cm
-1 

could give information about the deformation vibrations of 

the benzene rings.  The raman analysis has confirmed the presence of PANI in the ceramics 

as observed in the TEM results. The influence of the deformed structure of the PANI on 

thermoelectric properties will be discussed in detail.   
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Fig. 6.12 Raman spectrum of ZnA and ZnA-5PANI ceramics and PANI pellet 

6.3.3 Thermoelectric properties of sintered ceramics  

 

6.3.3.1 Thermal conductivity 

 

The objective of introducing Polyaniline (PANI) was used to reduce the thermal conductivity 

of ZnO ceramics while maintaining high Seebeck Coefficient. We were successful in this 

regard as the thermal conductivity decreased from 25 W/mk in the ceramic with 0 wt% to 6 

W/mk and 3 W/m.k in 5 and 9 wt% samples respectively. These results are shown in Fig 

6.13. The achievement was great in that it was below the target value of 5 W/mk. This value 

was set based on the best performing materials (such as Bi composites, Se composites etc…) 

with thermal conductivities between 2-3 W/m.K [257]. The drastic decrease is most likely 

due to the mismatch in phonon vibrations in PANI and ZnA (see Fig 6.14) [135, 139]. The 

thermal vibrations of PANI and ZnA are different, at the interface there is a clash of phonon 

flow see illustration in Fig 6.14.   It was also observed that the thermal conductivity does not 

change much with temperature increase. The behaviour is different from those reported by 
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Wu et al. [135, 139], they observed expected decrease in the thermal conductivity with an 

increase in temperature. The difference could be related to the material properties (such as 

grain size) and processing procedures (such as type of polymer, sintering technique).  

 

 

Fig. 6.13 Thermal conductivity of ZnO, ZnA, ZnA-5PANI and ZnA-ZA9PANI ceramics 

 

Fig. 6.14 Illustration of thermal vibrations of ZnA-ZA9PANI ceramic at the interface[150] 

6.3.3.2 Resistivity and Seebeck Coefficient  

 

Figure 6.15, shows the resistivity variation of the sintered ceramics as a function of 

temperature. It is evident that incorporating polyaniline into the samples lowered the 

resistivity when compared to the reference samples (ZnA and ZnO). The addition of 

polyaniline caused a decrease in the resistivity from 5.62 Ω.cm (sample ZnA) to 0.78 and 0.67 

Ω.cm for 5 wt% and 9 wt% PANI, respectively, at room temperature. The decrease in the 

resistivity could have been caused by the high mobility of charge carriers determined through 

Hall measurements: 26162 cm
-2

V
-1

s
-1

 and 834 cm
-2

V
-1

s
-1

 for 5wt% and 9wt% PANI, 
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respectively. Wu et al [135, 139] reported resistivity values of 0.008 and 0.006 Ω.cm for 

Zn0.9Ag0.1O-0.15PPP and Zn0.95Ni0.05O-9PPP, respectively. The dissimilarities in resistivity 

could have been caused by the different powder preparation and sintering methods. The 

enlarged image of resistivity vs temperature indicated that there is a transition after120°C, 

this could be due to material instability or phase changes, thermogravimetric analysis showed 

continued decomposition of the material even after 120°C (Fig.6.8). As a result, the electrical 

conduction mechanism changed after 120°C, The Arrhenius plot  for the temperature range 

120°C to 190°C of ZnA-5PANI and ZnA-9PANI is given in Fig. 6.16 and it indicates an 

almost a linear fit.  This proves that the conduction mechanism of the charge carriers is 

thermally driven when charge carriers first acquire certain amount of energy heat energy 

before they move from one point to the other, this is the typical mechanism common in 

semiconductors. This mechanism is different from what happens in the low temperature 

range from 30o C to 100o C, in which the conduction mechanism is typical of a material in 

the insulating regime.   

 

Fig. 6.15 Resistivity of ZnO, ZnA, ZnA-5PANI and ZnA-ZA9PANI ceramics 

Table 6.2 Determined physical properties of Al-doped ZnO/PANI ceramics  

Sample n (cm
-3

) µ (cm
-2

V
-1

s
-1

) bandgap (eV) 

ZnA-5PANI 2.25x10
+15

 26162 ~3 

ZnA-9PANI 9.14x10
+15

 834 ~3 
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Fig. 6.16 Arrhenius plot of ZnA-5PANI and ZnA-9PANI 

The Seebeck Coefficient versus temperature is given in Fig. 6.17; it was observed that for all 

the samples the Seebeck Coefficient values are negative which indicates n-type conductivity 

behaviour. We observed that doping ZnA with PANI caused a decrease in the absolute value 

of Seebeck Coefficient from 175 to 140 µV/K at room temperature for both polymer samples. 

The decrease could have been caused by the large effective mass of the polymers [258]. 

Increasing the concentration of PANI from 5 wt% to 9 wt% gave insignificant change of the 

Seebeck Coefficient of the ceramics, absolute Seebeck Coefficient of 150 µV/K was obtained 

at room temperature. At 40°C, the Seebeck Coefficient was 144 and 149 µV/K for 5 and 9 

wt% PANI, respectively. It was noticed that the Seebeck Coefficient remained almost the 

same with an increase in temperature similar to those reported by Wu  et al. [135, 139] for 

polyparaphenylene doped ZnO based ceramics.  



138 
 

 

Fig. 6.17 Seebeck Coefficient of Al-doped ZnO/PANI ceramics 

6.3.3.3 Performance of Al-doped ZnO/PANI ceramics 

The performance of the ceramics as a function of temperature was evaluated using the power 

factor (PF) and figure of merit (ZT) respectively reported in Fig. 6.18.a and b. As presented 

in Fig. 6.18 (a and b), an increase in the PF and ZT was observed with an increase in 

temperature for all the samples. The power factor of the ceramics given in Fig. 6.18 (a), 

revealed that the addition of PANI into Al-doped ZnO composites improved the electrical 

performance of the ceramics. This may be due to improved electrical conductivity and stable 

Seebeck Coefficient. At 60°C, the power factor for ZnO, ZnA, ZnA-5PANI and ZnA-9PANI 

were 0, 0.022, 0.025, 0.031 W/mK
2
, respectively. Maximum power factor of 0.05 and 0.035 

W/mK
2
 was obtained for 5 and 9 wt% PANI, respectively.  The figure of merit (ZT) 

presented in Fig. 6.18 (b) indicated that the incorporation of PANI into the ceramics 

improved the ZT by 0.004x10
-3 

for every 20°C increment due to reduced thermal 

conductivity. Maximum performance was obtained from ZnA-9PANI with a ZT of 0.8x10
-3

 

at 190°C. Table 6.3 compares the ZT of different materials at 190°C, higher ZT values of 

37x10
-3

 and 39x10
-3

  were reported for Zn0.9Ag0.1O-0.15PPP[139] and Zn0.95Ni0.05O-

9PPP[135], respectively. These materials reported by Wu et al [135, 139] performed better 

than the ones reported in this work because of their higher electrical conductivity they 

possess, which could be influenced by the different methods of ceramic’s preparation 

techniques such as sintering conditions, powder synthesis methods.  



139 
 

 

Fig. 6.18 Performance of Al-doped ZnO/PANI ceramics: (a) Power factor (b) Figure of merit 

Table 6.3 Figure of merit of ZnO based polymer composites at 190°C 

Ref. ZT x10
-3

 

ZnO 0,05 

ZnA 0,06 

ZnA-5PANI 0,34 

ZnA-9PANI 0,81 

Zn0.95Ni0.05O-9PPP[135] 39 

Zn0.9Ag0.1O-0.15PPP[139] 37 
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6.4  Conclusions 

The influence of the incorporation of polyaniline in Al-doped ZnO , sintered by spark plasma 

sintering, was studied  in this chapter. Full densification of 98.5% and 97.3% was achieved 

for ZnA-5PANI and ZnA-9PANI, respectively, at very low temperatures of 250°C.  Because 

of the reduced sintering temperature, the nanometric size (~40nm) of the ceramic grains were 

maintained. As a result, low thermal conductivity below 5 W/mK was achieved with the 

incorporation of PANI into the ZnA. The resistivity was also slightly improved and stable 

high Seebeck Coefficient of ~150 µV/K was determined. A maximum ZT value of 0.8x10
-3

 

was achieved at 190°C using ZnA-9PANI as compared to ZT of 0.05 and 0.06 for pure ZnO 

and ZnA, respectively. Even though the performance is not surpassing the already reported 

ones in the literature, this has opened opportunities for development of ZnO based polymer 

composites at low temperatures using spark plasma sintering.    
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Conclusions and recommendations 

 

Conclusions 
 

The objective of this work was to synthesize and sinter, using spark plasma sintering, pure 

ZnO, Al-doped ZnO and polyaniline incorporated Al-doped ZnO. We show that sample 

preparation and spark plasma sintering technique are core steps towards improving the 

thermoelectric properties of ZnO based ceramics. First-, a guide for the densification and 

grain size of dried ZnO ceramics was developed. It was illustrated that SPS can sinter to high 

densities irrespective of starting powder. Ceramics prepared from both synthetic and 

commercial ZnO powder could be fully densified above 99% at a temperature as low as 

600°C. Annealing at 600°C does not have significant effect on the microstructure of ZnO 

ceramics, however, changes the oxygen stoichiometry, and the resistivity of pure ZnO 

ceramics  of increased by three order of magnitude.  

The addition of 2 at% Al doping reduced the grain size of the ZnO ceramics by 100 nm 

which consequently decreased the thermal conductivity by 18 W/mK at room temperature. 

The technique/procedure used in spark plasma sintering of Al-doped ZnO ceramics was 

found effective for changes in the phase structure.  Application of axial pressure at room 

temperature and sintering above 650°C was found to cause secondary phases such as spinel 

phase (ZnAl2O4) that could affect the resistivity. Aluminum doping resulted in reduced 

Seebeck Coefficient value of the doped ZnO ceramic when compared to the pure ZnO 

ceramics, maximum ZT value of 1.5x10
-3

 at 500°C was achieved. 

Regarding PANI incorporation, full densification at low temperature of 250°C and axial 

pressure of 250 MPa was achieved for 5 and 9 wt% PANI dispersed in the Al-doped ZnO 

ceramics (ZnA). Due to the reduced sintering temperature, the nanostructure of the ceramics 

was maintained, which helped to reduce thermal conductivity to less than 6 W/mK. This is 

probably one of the big milestones from this work.  The Seebeck Coefficient was able to be 

maintained at ~150µV/K with a slight improvement in the resistivity. Improved ZT value of 

0.8 x 10
-3

 was achieved at 190°C using ZnA-9PANI as compared to ZT value of 0.06 x 10
-3

 

for ZnA ceramics. Even though the performance is not surpassing the already reported ones 

in the literature, this has opened opportunities for development of ZnO based polymer 

composites at low temperatures using spark plasma sintering.    
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Recommendations 
 

The thermoelectric properties of pure ZnO ceramics were explored but more work still needs 

to be done to bring them to a level of commercialization. However this work has laid up a 

good framework for additional improvements. It is advisable to do an in-depth study on the 

electronic structure and energy band analysis of pure ZnO dense ceramics, doped and PANI 

incorporated, to have better understanding of their electrical behaviour. One of the main 

problems with the Al-doped ZnO ceramics is the high resistivity in the ceramics.  It is 

recommended to sinter in a reduced atmosphere (vacuum); this will increase the 

concentration of oxygen vacancies as these are known to enhance the electrical conductivity 

by reducing the resistivity. Additionally, it is advised to increase the sintering temperature to 

above 800°C, at high temperature the kinetic energy of particles increases, thus, increasing 

the chances of collision of the grains and rate of reaction of Al in to the ZnO. Hence, higher 

probabilities of Zn
2+

 displacement by Al
3+

 in the ZnO structure. Also, at high temperature the 

grain size will be increased which will improve the mobility of charge carriers to reduce the 

resistivity.  

This study has shown that polymer inclusion in ZnO based ceramics is beneficial in 

improving the thermal conductivity and Seebeck Coefficient; however, the low resistivity in 

the ceramics is affecting its performance. This is an important direction for future work when 

all doping experiments have been optimised. It was noted in this study that the reduction in 

the sintering temperature decreases the presence of the secondary phases, so, it is possible 

sintering at a temperature of 250°C and high concentration of Al the secondary phases could 

be avoided another important consideration for future work.  
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Appendices A : Heat capacity measurements 
 

Instrument: TGA-DSC (STA 449 F3 Jupiter, NETZSCH) 

Conditions: Bulk pure ZnO, heating rate 10°C/min, RT-500°C 

 
Figure A1 : Heat capacity versus temperature of pure ZnO comparig literature and 

experimental measurements 

 

 
Figure A2 : Thermal conductivity versus temperature of pure ZnO comparig literature and 

experimental measurements 
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Résumé étendu 
 

La demande mondiale croissante en énergie et la nécessité de créer des environnements et des 

économies plus écologiques en réduisant l'utilisation de combustibles fossiles entraînent un 

large éventail de recherches et de développement de sources d'énergie durables et 

alternatives. Les dispositifs thermoélectriques (TE) sont une de ces alternatives qui peuvent 

être utilisées pour la conversion directe de la chaleur en électricité. Ils sont préférés en raison 

du manque de pièces mobiles, de leur robustesse dans les environnements rudes et de la non 

nécéssité de fluides à haute température. Actuellement, leurs limites sont dues à l'efficacité du 

transfert de chaleur et au coût, ce qui les relégue au second plan pour leur application aux 

procédés de manipulation morphologique de conversion d'énergie à grande échelle. 

Actuellement, de nombreuses recherches ont été consacrées à l'amélioration et au 

développement de nouveaux matériaux thermoélectriques écologiques, peu coûteux et 

contenant des éléments naturellement abondants. De ce fait, l'utilisation d'oxyde métallique 

comme matériau TE s'est avérée une meilleure option et de nombreuses études ont été 

réalisées au cours des dernières années. Pour cette étude, l’oxyde de zinc ZnO a été choisi en 

raison de son coefficient de Seebeck très élevé et de sa mobilité de porteurs de charges, ce qui 

en fait un matériau idéal pour l’amélioration des performances thermoélectriques. Cependant, 

le principal problème avec le ZnO pur est la conductivité thermique et la résistivité électrique 

élevées qui réduisent le rendement thermoélectrique. Par conséquent, dans cette étude, on 

s’intéresse à l’amélioration des propriétés thermoélectriques du ZnO en optimisant les 

paramètres de synthèse, la température de calcination et le dopage de la poudre de ZnO, , 

ainsi que les paramètres du cycle de frottage par SPS. La thèse se résume comme suit: 

Dans le chapitre 1, une revue de la littérature sur les principes et les propriétés 

thermoélectriques de différents matériaux est discutée en détail. L'accent est mis sur l'oxyde 

de zinc et de ses composites.  L'une des principales conclusions est que le perfectionnement 

des techniques de traitement a permis de réduire la température de frittage à moins de 400°C, 

ce qui a entraîné une diminution de la taille des grains de ~30 µm à moins de 10 µm [1-4]. 

Par conséquent, des conductivités thermiques inférieures à 12 W/m.K ont été obtenues pour 

une céramique de ZnO totalement dense à 700K. Il est connu que la nanostructuration permet 

de diminuer la conductivité thermique Par ailleurs, ZnO étantnon stoechiométrique et semi-

conducteur, ses propriétés électriques sont facilementaffectées par la température et 

l’atmosphère de frittage. Il a donc été noté que la qualité de la poudre et les techniques de 
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frittage jouent un rôle crucial dans l’amélioration des propriétés thermoélectriques des 

céramiques à base de ZnO. Un ZT maximal de 0,06 a été rapporté pour la céramique de ZnO 

pure préparée à partir de particules nanoporeuses frittées à 950°C, avec une résistivité de 

0,002 Ω.cm, un coefficient Seebeck de -123 µV/K et une conductivité thermique de 11 

W/mK [5]. Les matériaux thermoélectriques (TE) avec un ZT> 1 sont considérés comme des 

matériaux à haute performance avec un potentiel de commercialisation [6, 7]. Ainsi, ZnO pur, 

simplement ou doublement dopé avec des éléments du groupe III (Al, Ga, In et B) et des 

métaux de transition (Ni, Co, Cd, Sc, etc.) présente un comportement thermoélectrique 

intéressant [8, 9].  

 

Jusqu'ici, le double dopage de l'aluminium et du gallium a montré un ZT élevé de 0,66 à 

1250K dans les céramiques au ZnO [10]. L'interdépendance des paramètres reste un frein à 

l'amélioration des propriétés thermoélectriques des composites ZnO dopés à l'aluminium, 

notamment entre la résistivité et la conductivité thermique. L’ajout de polymères conducteurs 

(tels que poly (3,4-éthylènedioxythiophène), polythionates, polypropylène, polyaniline, 

polyacétylène, polypyrrole, polyéthylène et polyparaphynélène (PPP)) dans des céramiques à 

base de ZnO a permis d’améliorer simultanément la résistivité et le coefficient de Seebeck 

tout en maintenant la conductivité thermique à son point minimal [9, 11-14]. Un ZT de 0,54 a 

été atteint pour la céramique Zn0.95Ni0.05O incorporée avec 9% en masse de PPP [9]. Les 

auxiliaires de frittage et les phases secondaires pourraient aider à densifier complètement les 

composites de ZnO à des températures inférieures à 400°C, permettant ainsi de produire des 

céramiques dotées de propriétés thermoélectriques uniques. 

 

Dans ce travail, l'accent a été mis sur la synthèse du ZnO en poudre et sur l'influence des 

paramètres de frittage flash (tels que la température, la pression, l'isolation du courant, 

l'atmosphère de frittage et la pression) sur la densification et les performances 

thermoélectriques de la céramique. L’indicateur de performance ZT compris entre 4x10
-4

 et 

2x10
-3

 a pu être obtenu à 700K par d’autres chercheurs. La poudre de ZnO a également été 

dopée à l'Al pour améliorer ses propriétés électriques. L'influence de la synthèse de la poudre 

et des paramètres de frittage sur les propriétés thermoélectriques a été évaluée. La 

conductivité thermique des céramiques ZnO dopées à l'aluminium a encore été réduite par 

l'incorporation de polyaniline. Le frittage en dessous de 300°C, à une température inférieure à 

la température de frittage, en utilisant la technique de frittage flash a été étudié. La céramique 
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à base de ZnO/Polymère présentent un ZT d'environ 0,5 à 500K. On s'attendait donc à une 

amélioration du ZT en raison de la conductivité thermique réduite. 

 

Le chapitre 2 traite du matériel et des méthodes utilisés pour mener à bien cette étude. Des 

poudres de ZnO pur et de ZnO dopé à l'Al ont été synthétisées par la methode de co-

précipitation suivie de la calcination à des températures comprises entre 500 et 700°C. La 

voie de synthèse de la poudre utilisée dans ce travail a été décrite par Mory et al. [15] dans le 

cadre des travaux de thèse de Guy [16] au Centre interuniversitaire de recherche et 

d’ingénierie des matériaux (CIRIMAT). Une composition en aluminium de 2 % atomique a 

été utilisée, car la limite de solubilité de Al dans le cristal de ZnO est <2 mol% et en plus des 

propriétés thermoélectriques prometteuses ont été rapportées pour cette concentration [10, 

17]. Le ZnO dopé Al (ZnA) a été mélangé avec de la poudre de polyaniline activée à des 

concentrations de 0,75, 5 et 9 wt% en masse en utilisant un mélangeur TURBULAe suivi 

d'un broyage à billes pour assurer une homogénéité. 

Les poudres ont été frittées au frittage flash (unité Dr. Sinter 2080 (SPS Syntex Inc., Japon)) 

dans une matrice en carbure de tungstène et graphite de 8 et 20 mm de diametre. La figure 1 

illustre le schéma de principe de la configuration de la chambre SPS. La section transversale 

de la matrice indique la position de l'échantillon et le revêtement du moule avec une feuille 

de graphite de 0,2 mm d'épaisseur (PERMA-FOIL®Toyo Tanso). Le principe de la technique 

de frittage flash est que le frittage a lieu par application simultanée d’un courant éléctrique et 

d'une pression axiale sur un échantillon. Comme le montre l’image agrandie de l’échantillon, 

lorsqu’un courant électrique passe à travers, il y a une décharge par étincelle entre les grains 

[18, 19]. De cette manière, il se produit un chauffage par effet Joule, entraînant le transport de 

masse des grains pour former une céramique dense [18-21]. Pour chaque échantillon 

considéré, la pression de frittage (250-850 MPa), la température (250 à 700°C), l'atmosphère 

(Air et Vide), l'isolation du courant et le cycle de frittage (SC) ont été étudiés. 
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Fig.1. Configuration de la chambre SPS et processus de frittage 

Les céramiques en poudre et denses ont été caractérisées à l'aide de méthodes analytiques 

telles que SEM, XRD, ICP, FTIR, Thermogravimétrie, etc. Le coefficient Seebeck et la 

résistivité des céramiques denses ont été simultanément mesurés en utilisant ZEM-3 (Ulvac-

Riko, CRISMAT). Les céramiques denses ont été découpées en barres de 9x3x3 mm et 

recouvertes d'or pour assurer le contact ohmique. Une feuille de graphite a été insérée des 

deux côtés des éléments chauffants pour assurer un bon contact électrique et thermique avec 

l'échantillon. La conductivité thermique a été déterminée en mesurant séparément la 

diffusivité thermique (α), la densité de la céramique (d) et la capacité thermique (Cp). Et pour 

ces mesures, les échantillons ont été découpés à des dimensions de 6x6x1 mm. La 

conductivité thermique a ensuite été calculée en utilisant Eq. 01. Les mesures par effet Hall 

ont été effectuées à l'aide du système de mesure des propriétés physiques (contrôleur de 

transport modèle 7100, système Quantum). 

𝑘 = 𝛼(𝑇)𝐶𝑝(𝑇)𝑑(𝑇)      [01] 

L’influence des paramètres de traitement sur la densification et la microstructure des 

céramiques à l’oxyde de zinc pur préparées par frittage flash a été étudiée au chapitre 3. La 

densification et la taille des grains de ZnO dans diverses conditions de frittage sont présentées 

à la Fig. 2. Il a été noté que la pression améliore la densité relative des céramiques en ZnO 

grâce à la rotation des particules [22, 23]. Une densité relative maximale de 92% a été 

obtenue à une température aussi basse que 400°C pour une pression appliquée de 850 MPa. 

Dans ce cas, la taille des grains était de 220 ± 0,1 nm. L’augmentation de la température 

jusqu’à 600°C avec une pression plus basse, 250 MPa, conduit à une augmentation 

significative de la densité et de la taille du grain de 99,4% et 3,3 µm, respectivement. 
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Les atmosphères de frittage (air et vide) n’affectent pas la densification et la microstructure 

des céramiques de ZnO. L'impact du courant électrique lors du frittage a été évalué par des 

expériences réalisées avec ou sans isolation. La densité relative n’a pas changé, mais une 

différence de taille de grain de 7,8 µm a été observée dans les deux conditions. Cette étude 

pourrait servir de référence pour le contrôle de la densification et de la taille des grains de 

céramique ZnO obtenue par frittage flash de poudres séches. 

 

Fig.2. Influence des paramètres SPS sur la densification et la granulométrie des céramiques 

au ZnO (Remarque: RT correspond à la température ambiante et HT à la température de 

frittage) 

Le chapitre 4 était consacré à la synthèse de particules de ZnO pur en utilisant la méthode de 

co-précipitation, et à la compréhension des propriétés thermoélectriques des céramiques en 

ZnO pur. Les nanoparticules de ZnO ont été synthétisées avec succès par la méthode de co-

précipitation suivie de la calcination. L'augmentation de la température de calcination conduit 

à une augmentation de la taille des grains de particules de ZnO. La température de calcination 

de 500°C a permis d’obtenir la plus petite taille de grains, 73 nm. L’effet de l’atmosphère et 

de la température de frittage sur la densification et l’évolution de la microstructure sur des 

céramiques de ZnO préparées à partir de poudre commerciale et de poudre synthétisée a été 

étudié avec succès. Les céramiques préparées à partir de poudre synthétisée peuvent être 

entièrement densifiées à plus de 99% à une température aussi basse que 600°C. Aux 

températures voisines de 700°C, les céramiques au ZnO se sont révélées sensibles à la surface 

spécifique de la poudre. Des tailles de grains de céramique de 6 ± 2 µm et 4,2 ± 1,6 µm ont 
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été obtenues pour des surfaces de 14 m
2
/g (C500) et 3,3 m

2
/g (C700), respectivement. La 

taille des grains du C500 était supérieure à celle du C700 en raison de sa grande surface 

spécifique, et donc de la facilité de la diffusion intergranulaire [5, 24].   

Le recuit à 600°C n'a montré aucun changement significatif sur la microstructure des 

céramiques au ZnO, mais a modifié la stoechiométrie de l’oxygène. Et cela a eu un effet sur 

le mécanisme de conduction électrique car les échantillons recuits sont de type semi-

conducteurs tandis que les céramiques obtenues après frittage SPS présentaient un 

comportement métallique (voir la Fig. 3 (a)). Un comportement unique de l’évolution du 

coefficient Seebeck avec l’augmentation  de la température a été observe (voir Fig. 3 (b)). Il 

peut être dû à la variation de la circulation des porteurs de charge le long du niveau de Fermi. 

Cependant des études suplémentaires seraient nécessaires pour confirmer cette hypothèse. 

Une conductivité thermique de 15 W / mK à 500°C a été mesurée pour les céramiques ZnO 

frittées et recuites (voir Fig.3 (c)), qui se sont révélées encore trop élevées pour des 

applications thermoélectriques plus efficaces. Ainsi, il est nécessaire d’envisager de réduire la 

conductivité thermique en dopant avec des éléments donneurs tels que Al, Ga, In, etc. Le 

recuit n'a pas amélioré les propriétés thermoélectriques des céramiques au ZnO car il a 

considérablement réduit la conductivité électrique (voir la figure 3 (a)).  
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Fig.3. Propriétés thermoélectriques de la céramique recuite à 900°C (CSP): (a) résistivité (b) 

coefficient de Seebeck (c) conductivité thermique (d) ZT 

Il est évident que la technique de préparation des échantillons est importante pour déterminer 

la conductivité électrique et les propriétés thermoélectriques des matériaux. Les céramiques 

préparées à partir de poudre synthétisée présentaient une concentration en porteurs supérieure 

à celle des céramiques préparées à partir de poudre commerciale. Par conséquent, les 

céramiques frittées préparées à partir de poudre synthétisée ont donné les  meilleures 

performances avec un ZT de 8x10
-3

, plus élevé que celui des échantillons commerciaux. 

La synthèse et le frittage flash de poudre de ZnO dopée à l'aluminium ont été étudiés dans le 

chapitre 5. L'addition de 2 % atomique dans la poudre de ZnO a réduit la taille de grains de 

177 à 75 nm; Al est connu pour être un inhibiteur de croissance [25, 26]. La densité relative 

du ZnO dopé à l'aluminium est passée d'une densité brute de 57% à une valeur élevée de 

98,9% lors du frittage jusqu'à une température de 650°C. Un frittage au-dessus de 650°C a 

entraîné une augmentation de la taille des grains, ce qui a réduit la densité de 0,8%. L'ajout 

d'Al dans les céramiques au ZnO a entraîné une diminution de la taille des grains de 5,4 µm 

(sans Al) à <1 µm (avec 2 % atomique d'Al), comme indiqué sur les micrographies MEB sur 

la Fig.4. Le frittage au-dessus de 650°C et l'application de la pression axiale à la température 

ambiante provoquent la présence d'une phase secondaire, comme le montre la figure 4. 

L'analyse EDS sur l'échantillon fritté à 700°C a montré que la phase claire est riche en Al et 

la phase sombre en Zn (Fig.4). Ceci a été confirmé par les résultats de DRX car les pics de 

ZnAl2O4 et Al2O3 sont riches en Al. Par conséquent, la phase claire dans l'analyse MEB est la 

phase spinelle ZnAl2O4 et la phase Al2O3, telle que déterminée par l'analyse DRX. Ceci est 

conforme au pic de ZnAl2O4 observé dans les résultats de DRX de Jood et al. [27], lors de 

l’analyse par MEB, lorsque de fines nanoparticules de ZnAl2O4 ont été dispersées sur des 

grains de ZnO. La phase spinelle, ZnAl2O4, est indésirable pour l'amélioration des propriétés 

thermoélectriques. 



174 
 

 

Fig.4. Micrographies au MEB de la céramique de ZnO à 0% et 2% atomique à l'Al frittée à 

700 °C 

Il a été découvert que l'application de la pression pendant le temps de maintien empêche la 

formation de la phase spinelle, une densité de 98,6% et une taille de grain de 90 nm  ont été 

déterminées. Le recuit a augmenté la taille des grains de la céramique ZnO dopée à l'Al de 50 

nm. La résistivité des céramiques ZnO dopées à l'aluminiuma légèrement diminué, ce qui a 

entraîné une diminution du coefficient de Seebeck absolu en raison de la concentration accrue 

de porteurs. La relation entre le coefficient de Seebeck et la concentration de porteurs est de 

nature inverse selon l’équation de Mott [28]. La réduction de la taille des grains a entraîné 

une diminution de la conductivité thermique de moitié à la température ambiante (Fig. 5), en 

raison de la diffusion de phonons aux joints des grains. On obtient ainsi un ZT de 1,5 x 10
-3

 à 

500°C, inférieure à celui des céramiques au ZnO pur. Le faible coefficient de Seebeck et la 

valeur de la conductivité électrique de la céramique de ZnO dopée à l’aluminium ont 

provoqué une diminution des performances. Malgré tout, ces résultats ont révélé l’importance 

d’une conductivité thermique réduite et d’une faible résistivité dans l’amélioration des 

propriétés thermoélectriques des céramiques de ZnO dopé à l’Al. Il est conseillé d’effectuer 

d'autres expériences pour optimiser la quantité de dopants Al dans les céramiques à base de 

ZnO afin d'améliorer les propriétés thermoélectriques: en incorporant de nouveaux éléments 

afin de développer de nouveaux composites et / ou d'optimiser les paramètres de frittage. 
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Fig.5. Conductivité thermique de 0 et 2% atomique de céramique de ZnO dopé Al 

Le chapitre 6 traite de l'incorporation de polyaniline (PANI) dans des céramiques au ZnO 

dopé à l'aluminium préparées par frittage flash. Il a été observé que l'inclusion de polyaniline 

n'affectait pas la structure de la phase ZnO. Cependant, une augmentation de la taille des 

agrégats de poudre a été observée lorsque la concentration en PANI augmente de 0,75%  à 

9% en masse. Des densités maximales de 98,5% et 97,3% ont été obtenues pour des 

concentrations de PANI de 5% en masse (ZnA-5PANI) et de 9% en masse (ZnA-9PANI), 

respectivement, à de très basses températures de 250 °C et à une pression de 250 MPa. En 

raison de la température de frittage réduite, la taille nanométrique des grains de céramique a 

été maintenue. La taille des grains a été réduite de 140 nm (céramique ZnA recuite) à 86 nm 

et 50 nm pour les céramiques ZnA-5PANI et ZnA-9PANI, respectivement. En conséquence, 

de faibles conductivités thermiques de 6 W/mK et de 3 W/mK à température ambiante pour 

des concentrations de PANI de 5%  et de 9% en masse, respectivement, a été déterminée,  

comme indiqué sur l'image agrandie à la Fig. 6. La diminution drastique de conductivité 

thermique est très probablement due au déphasage des vibrations des phonons du PANI et du 

ZnA (voir Fig. 7) [9, 11]. Les vibrations thermiques de PANI et de ZnA sont différentes, il y 

a un choc entre flux de phonons à l'interface, voir illustration sur la Fig.7. 
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Fig.6. Conductivité thermique des céramiques ZnO, ZnA, ZnA-5PANI et ZnA-ZA9PANI 

 

Fig.7. Illustration des vibrations thermiques de la céramique ZnA-ZA9PANI à l'interface [29] 

Une analyse plus approfondie des propriétés électriques a montré que la résistivité était 

également légèrement améliorée avec le maintien d’un coefficient de Seebeck élevé autour de 

~ 150 µV/K. Une valeur ZT maximale de 0,8x10
-3

 a été atteinte à 190°C pour le ZnA-

9PANIcontre 0,05x10
-3

 et de 0,06x10
-3

 pour le ZnO pur et le ZnA, respectivement (voir 

figure 8). 



177 
 

 

Fig.8. Figure of merit of Al-doped ZnO/PANI ceramics 

 

Ce dernier paragraphe propose une conclusion du travail et les recommandations pour 

les travaux futurs. La synthèse et le frittageflash de ZnO pure, de ZnO dopé à l’Al et de 

polyaniline incorporant des céramiques ZnO dopées à l’Al ont été étudiés en détail avec 

succès. Il est devenu évident que la préparation des échantillons et la technique de frittage 

flash sont des étapes essentielles pour l’amélioration des propriétés thermoélectriques des 

céramiques à base de ZnO. Dans ce travail, un procédé de controle de la densification et de la 

granulométrie des céramiques de ZnO séchées a été élaboré. Il a été démontré que le frottage 

par SPS peut conduire à des densités élevées, indépendamment de la qualité de la poudre de 

départ. Les céramiques préparées à partir de poudre de ZnO synthétisée et commerciale 

peuvent être entièrement densifiées à plus de 99% à une température aussi basse que 600°C. 

Le recuit à 600°C n'a pas eu d'effet significatif sur la microstructure des céramiques au ZnO, 

mais a modifié la stoechiométrie de l’oxygène, la résistivité des céramiques au ZnO pur étant 

augmentée de deux ordres de grandeur. 

L’ajout de 2% atomique d’Al a réduit la taille des grains de la céramique ZnO, ce qui a eu 

pour effet la réduction de la conductivité thermique. Une technique / procédure utilisée dans 

le frittage flash de céramiques de ZnO dopé par Al pourrait affecter la structure de la phase. 

En effet l’application de la pression axiale à la température ambiante et le frittage à une 

température supérieure à 650°C font apparaitre des phases secondaires telles que le spinelle 

(ZnAl2O4) pouvant affecter la résistivité. La diminution de la valeur du coefficient Seebeck 

de la céramique de ZnO dopée à l'aluminium s’est traduite par des performances médiocres 



178 
 

par rapport à la céramique de ZnO pure; une valeur ZT maximale de 1,5 x 10
-3

 à 500°C a été 

atteinte. 

Une densification complète à basse température de 250°C et à une pression axiale de 250 

MPa a été obtenue pour 5 et 9% en masse de PANI dispersé dans la céramique ZnO dopée à 

l'aluminium (ZnA). En raison de la température réduite, la nanostructure de la céramique a 

été maintenue et par conséquent, une conductivité thermique inférieure à 6 W/mK a été 

obtenue. Le coefficient Seebeck a pu être maintenu à environ 150 µV/K avec une légère 

amélioration de la résistivité. L’amélioration de la valeur de ZT  (0,8x10
-3

) a été obtenue à 

190 ° C avec du ZnA-9PANI contre 0,06x10
-3

 pour les céramiques au ZnA. Même si la 

performance n’est pas supérieure à celles déjà rapportées dans la littérature, cela a ouvert des 

possibilités de développement de composites polymères à base de ZnO à basse température 

en utilisant le frittage flash.   

Les propriétés thermoélectriques de la céramique de ZnO pure ont été expliquées à notre 

niveau de connaissances; il est conseillé de procéder à une étude approfondie de la structure 

électronique et de l'analyse de la bande d'énergie des céramiques denses en ZnO pur afin de 

mieux comprendre leur comportement électrique. Il est également recommandé de réaliser 

des études d'optimisation sur le recuit de la céramique ZnO dans le but d'améliorer les 

propriétés thermoélectriques. Le problème principal des céramiques au ZnO dopé à l’Al est la 

résistivité électrique élevée de la céramique. Il est recommandé de fritter dans une 

atmosphère réduite (vide) et à haute température au-dessus de 800°C pour améliorer la 

vitesse de réaction; cela pourrait augmenter les probabilités de déplacement de Zn
2+

 par Al
3+

 

dans la structure de ZnO. 

Cette étude a montré que l’inclusion de polymères dans les céramiques à base de ZnO est 

bénéfique pour l’amélioration de la conductivité thermique et du coefficient Seebeck; 

cependant, la faible résistivité de la céramique affecte ses performances. Il est recommandé 

d'augmenter la concentration d'Al dans les particules de ZnO, ce qui fera accroitre la 

concentration des porteurs de charges et, par conséquent, améliorera la conductivité 

électrique nécessaire à la haute performance des céramiques. 

 

 

 



179 
 

References 

[1] Cramer CL, Gonzalez-Julian J, Colasuonno PS, Holland TB. Continuous functionally 

graded material to improve the thermoelectric properties of ZnO.  Journal of the European 

Ceramic Society2017. p. 4693-700. 

[2] Kim KH, Shim SH, Shim KB, Niihara K, Hojo J. Microstructural and thermoelectric 

characteristics of zinc oxide‐based thermoelectric materials fabricated using a spark plasma 

sintering process.  Journal of the American Ceramic Society2005. p. 628-32. 

[3] Colder H, Guilmeau E, Harnois C, Marinel S, Retoux R, Savary E. Preparation of Ni-

doped ZnO ceramics for thermoelectric applications.  Journal of the European Ceramic 

Society2011. p. 2957-63. 

[4] Gautam D, Engenhorst M, Schilling C, Schierning G, Schmechel R, Winterer M. 

Thermoelectric properties of pulsed current sintered nanocrystalline Al-doped ZnO by 

chemical vapour synthesis.  Journal of Materials Chemistry A2015. p. 189-97. 

[5] Virtudazo RVR, Guo Q, Wu R, Takei T, Mori T. An alternative, faster and simpler 

method for the formation of hierarchically porous ZnO particles and their thermoelectric 

performance.  RSC Advances2017. p. 31960-8. 

[6] Zebarjadi M, Esfarjani K, Dresselhaus M, Ren Z, Chen G. Perspectives on 

thermoelectrics: from fundamentals to device applications.  Energy & Environmental 

Science2012. p. 5147-62. 

[7] Zheng X, Liu C, Yan Y, Wang Q. A review of thermoelectrics research–Recent 

developments and potentials for sustainable and renewable energy applications.  Renewable 

and sustainable energy reviews2014. p. 486-503. 

[8] Han L, Christensen DV, Bhowmik A, Simonsen SB, Hung L, Abdellahi E, et al. 

Scandium-doped zinc cadmium oxide as a new stable n-type oxide thermoelectric material.  

Journal of Materials Chemistry A2016. p. 12221-31. 

[9] Wu Z-H, Xie H-Q, Zhai Y-B. Enhanced thermoelectric figure of merit in nanostructured 

ZnO by nanojunction effect.  Applied Physics Letters2013. p. 243901. 

[10] Ohtaki M, Araki K, Yamamoto K. High thermoelectric performance of dually doped 

ZnO ceramics.  Journal of Electronic Materials2009. p. 1234-8. 

[11] Wu Z-H, Hua-Qing X, Yuan-Yuan W, Jiao-Jiao X, Jian-Hui M. Nanojunctions 

Contributing to High Performance Thermoelectric ZnO-Based Inorganic-Organic Hybrids.  

Chinese Physics Letters2015. p. 117303. 



180 
 

[12] Jun L, Lian-meng Z, Li H, Xin-feng T. Synthesis and thermoelectric properties of 

polyaniline.  Journal of Wuhan University of Technology-Mater Sci Ed2003. p. 53-5. 

[13] Lan Y, Wang X, Wang C, Zebarjadi M. Organic/Inorganic Hybrid Nanostructured 

Materials for Thermoelectric Energy Conversion.  Functional Organic and Hybrid 

Nanostructured Materials: Fabrication, Properties, and Applications2018. 

[14] Zhang L, Du W, Nautiyal A, Liu Z, Zhang X. Recent progress on nanostructured 

conducting polymers and composites: synthesis, application and future aspects.  Science 

China Materials2018. p. 1-50. 

[15] Mory J-E, Guy I, Schneider D, Rousset A, Legros R, Peigney A. Poudre d'oxyde de zinc 

dope, procede de fabrication et ceramique obtenue a partir de ladite poudre. In: FRANCE 

PCD, editor. IFI CLAIMS PATENT SERVICES. France: Jean-Eudes MoryIsabelle 

GuyDidier SchneiderAbel RoussetRenee LegrosAlain PeigneyPharmacie Centrale De France 

1993. 

[16] Guy I. Elaboration and characterization of powders and varistors based on zinc oxide 

dope [Doctorate]: Universite Paul Sabatier; 1995. 

[17] Han L, Van Nong N, Zhang W, Hung LT, Holgate T, Tashiro K, et al. Effects of 

morphology on the thermoelectric properties of Al-doped ZnO.  RSC Advances2014. p. 

12353-61. 

[18] Santanach JG, Weibel A, Estournès C, Yang Q, Laurent C, Peigney A. Spark plasma 

sintering of alumina: Study of parameters, formal sintering analysis and hypotheses on the 

mechanism (s) involved in densification and grain growth.  Acta Materialia2011. p. 1400-8. 

[19] Tokita M. Mechanism of spark plasma sintering.  Proceeding of NEDO International 

Symposium on Functionally Graded Materials: Japan; 1999. p. 22. 

[20] Chaim R, Chevallier G, Weibel A, Estournès C. Grain growth during spark plasma and 

flash sintering of ceramic nanoparticles: a review.  Journal of Materials Science2018. p. 

3087-105. 

[21] Chaim R, Marder R, Estournés C, Shen Z. Densification and preservation of ceramic 

nanocrystalline character by spark plasma sintering.  Advances in Applied Ceramics2012. p. 

280-5. 

[22] Chaim R. Grain coalescence by grain rotation in nano-ceramics.  Scripta Materialia2012. 

p. 269-71. 

[23] Chaim R, Levin M, Shlayer A, Estournès C. Sintering and densification of 

nanocrystalline ceramic oxide powders: a review.  Advances in Applied Ceramics2008. p. 

159-69. 



181 
 

[24] Aimable A, Goure Doubi H, Stuer M, Zhao Z, Bowen P. Synthesis and Sintering of ZnO 

Nanopowders.  Technologies2017. p. 28. 

[25] Zhang Y, Wang W, Tan R, Yang Y, Zhang X, Cui P, et al. The Solubility and 

Temperature Dependence of Resistivity for Aluminum‐Doped Zinc Oxide Ceramic.  

International Journal of Applied Ceramic Technology2012. p. 374-81. 

[26] Teranishi T, Mori Y, Hayashi H, Kishimoto A. Thermoelectric Property of 

Polycrystalline Aluminum‐Doped Zinc Oxide Enhanced by Micropore Foaming.  Journal of 

the American Ceramic Society2012. p. 690-5. 

[27] Jood P, Mehta RJ, Zhang Y, Peleckis G, Wang X, Siegel RW, et al. Al-doped zinc oxide 

nanocomposites with enhanced thermoelectric properties.  Nano letters2011. p. 4337-42. 

[28] Walia S, Balendhran S, Nili H, Zhuiykov S, Rosengarten G, Wang QH, et al. Transition 

metal oxides–Thermoelectric properties.  Progress in Materials Science2013. p. 1443-89. 

[29] Wu Z-H, Xie H-Q, Zhai Y-B, Gan L-H, Liu J. Enhanced thermoelectric performance of 

TiO2-based hybrid materials by incorporating conducting polymer.  Chinese Physics B2015. 

p. 034402. 

 

 

 

 

 

 

 

 


