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Introduction

Dans ce travail, nous donnons des interprétations homologiques a certains invariants quantiques.
Nous définissons et nous interprétons des représentations quantiques des groupes de tresses
en termes d’homologies de certains revétements d’espaces de configurations de points, nous
étudions la fidélité de ces représentations et de certaines représentations obtenues des “TQFTs
non semi-simples” qui leur sont intimement liées.

Topologie quantique

Les groupes quantiques sont des algebres de Hopf qui proviennent de déformations d’algebres
enveloppantes d’algebres de Lie. Cette notion apparait a l'origine dans la littérature physique
mais fut formalisée mathématiquement indépendamment par V. Drinfel’d et M. Jimbo autour
de 1985. Nous mentionnons [Kas] et [C-P] comme ouvrages de référence sur le sujet, et nous
en introduirons quelques aspects en Section 1.3. La catégorie des modules sur un groupe
quantique donné est monoidale et souvent munie d’'une R-matrice (une famille de solutions
de I’équation de Yang — Baxter), ce qui permet d’obtenir des représentations du groupe des
tresses (Section 1.3). Ce dernier possede plusieurs définitions de nature topologique et ces
représentations quantiques de tresses constituent ainsi le point initial de la topologie quantique.

Les théoremes de Markov et de Lickorish — Wallace et Kirby (Theorem 2.3.7) encouragent
I’émancipation de cette théorie. Si le premier permet de passer des tresses aux noeuds en
cloturant les tresses, le second permet de passer des nceuds aux variétés différentielles de
dimension 3 par la chirurgie de Dehn. Chaque étape a un coiit qui impose une restriction
aux invariants : les relations de Markov dans le premier cas, et celles de Kirby dans le second.
Néanmoins, des représentations du groupe des tresses suffisamment riches peuvent assumer
chacune de ces étapes et atteindre le niveau des invariants de variétés de dimension 3. Cette
stratégie développée avec des représentations quantiques en données initiales fut 1’ceuvre de N.
Reshetikhin et V. Turaev. Dans [R-T], ils construisent le foncteur de Reshetikhin — Turaev RT
qui généralise les représentations quantiques de tresses aux enchevétrements. Dans [RT2], le
foncteur de Reshetikhin — Turaev est généralisé aux variétés de dimension 3. Le foncteur R7T
aboutit finalement a 'obtention d’invariants polynomiaux de nceuds, ainsi qu’a des invariants
de variétés de dimension 3, tous appelés invariants quantiques par extension.

Cette théorie connaitra encore une évolution significative grace a la construction de théories
quantiques des champs topologiques (TQFTs) obtenues a partir de ces invariants quantiques
via la construction universelle de Blanchet — Habegger — Masbaum — Vogel [BHMYV]. Ces
TQFTs permettent de localiser les propriétés des invariants quantiques de variétés, en les



rendant fonctoriels vis a vis du recollement de variétés a bord, voir Section 2.3.2 pour une
définition plus précise.

Le foncteur RT permet entre autre de retrouver le fameux polynéme de Jones, invariant de
neeuds découvert par V. Jones en 1984 et qui possede une propriété nouvelle en comparaison
avec ses prédécesseurs : il permet de différencier un nceud de son image par un miroir. Si
le polynome d’Alexander découvert soixante ans plus tot possede nombre de définitions
topologiques, le contenu topologique de I'invariant de Jones se révele moins clair. Le méme
constat s’applique a tous les invariants quantiques : leur construction repose sur les propriétés
purement algébriques des catégories de modules sur les groupes quantiques si bien que leur
définitions topologiques sont rares. Ainsi, la teneur topologique des invariants quantiques est
le sujet principal de plusieurs conjectures importantes du domaine. Donner des interprétations
homologiques aux invariants quantiques - ce que nous faisons dans ce travail - s’inscrit dans
ce cadre.

Représentations homologiques de tresses

La construction de représentations homologiques du groupe des tresses repose sur le fait
que ce dernier agit par difféotopie sur le disque a pointes. Cette action se généralise coordonnée
par coordonnée aux espaces de configurations de plusieurs points dans le disque a pointes et
devient une représentation linéaire des lors qu’elle est relevée a I’homologie.

C’est R. Lawrence qui développe cette idée autour de 1990 dans sa these, a 1’époque
déja dans 'idée de tenter de lever le mysteére du contenu topologique du polynéme de Jones.
Elle construit une famille graduée de représentations du groupe des tresses sur des groupes
d’homologie a coefficients locaux dans un anneau de polyndémes de Laurent sur ’espace de
configuration de points dans le disque a pointes ([Law]).

C’est a la méme époque que la topologie quantique se développe et quelques liens avec
la théorie homologique de Lawrence semblent émerger. V. Drinfel’d et T. Kohno relient
indépendamment ([Drin] [KO0]) les représentations quantiques de tresses a des représentations
monodromiques provenant de I’équation de Knizhnik — Zamolodchikov (KZ) mettant en jeu une
action topologique des tresses sur des espaces de configuration de points. Nous ferons référence
a ce théoreme comme celui de Drinfel’d — Kohno. Dans [F-W], G. Felder et C. Wieczerkowski
construisent une action du groupe quantique U,sl(2) sur un module engendré par des objets
topologiques du disque a pointes - les r-lacets - ainsi qu'une action naturelle du groupe des
tresses sur ces modules, qui commute a 'action quantique. L’interprétation homologique de
ce module de r-lacets ne reste que conjecturale ([F-W, Conjectures 6.1, 6.2]) tout comme
ses liens avec la théorie homologique de Lawrence. Enfin, dans [S-V], V. Schetchtman et A.
Varchenko obtiennent des représentations de groupes quantiques sur des groupes d’homologie
a coefficients locaux sur des espaces de configuration de points.

Il faudra attendre une décennie avant que les représentations de Lawrence ne gagnent toute
leur notoriété grace aux travaux de D. Krammer et S. Bigelow qui montreront leur fidélité au
deuxiéme niveau de la graduation [Kra] [Big0], celui que nous appellerons représentation BKL.
Ce sont les premieres représentations fideles de dimension finie des groupes de tresses. Pour
faire la preuve de leur fidélité, S. Bigelow introduit des objets homologiques, les fourchettes,



qui lui servent de base pour la représentation ainsi qu’un couplage homologique entre ces
objets. Il se sert de ces outils pour donner une définition homologique du polynéme de Jones
dans [Big3] en reprenant les idées de R. Lawrence. Pour le faire il n’utilise pas le formalisme
quantique mais simplement les relations d’écheveau satisfaites par le polynéome de Jones. En
utilisant la méme stratégie il donnera également une définition homologique au polyndéme
HOMFLY dans [Big4]. Dans [P-P|, L. Paoluzzi et L. Paris montrent que les représentations
BKL ne recouvrent qu’une sous-représentation de la représentation homologique (compléte) a
coefficients dans I’anneau des polyndémes de Laurent.

Dans [J-K], C. Jackson et T. Kerler établissent explicitement un isomorphisme entre
la représentation BKL et celle sur un sous module du produit tensoriel de modules de
Verma sur Uysl(2), a savoir 'action restreinte aux vecteurs de plus haut poids et sous-poids 2.
Inspiré par ces travaux, dans [Kar], 'auteur s’intéresse au cas ou les parametres quantiques
sont des racines de 'unité et étudie la décomposition projective d’'un produit tensoriel de
modules isomorphes aux représentations de Lawrence, il trouve une action fidele du centre
du groupe de tresses. Dans [K2], T. Kohno montre que les représentations de Lawrence sont
isomorphes a celles de monodromie KZ restreintes aux vecteurs de plus hauts poids (théoréme
de Kohno, 2012), elles mémes identiques aux représentations sur les vecteurs de plus haut
poids des produit de modules de Verma de U,s[(2) obtenues via la R-matrice (théoreme de
Drinfel’d — Konho, prouvé vingt ans plus tot). Ceci établit un lien direct et profond entre les
représentations de Lawrence et la R-matrice de U,s1(2) qui est résumé dans [Ito, Theorem 4.5].
Cependant, 'isomorphisme de Kohno est valable pour des parametres génériques (il n’est
pas un morphisme sur I’anneau des polynémes de Laurent, mais sur C lorsque le parametre
quantique est évalué a une valeur “générique”) et ne recouvre pas tout le produit tensoriel
de modules de Verma, mais seulement 'action restreinte aux vecteurs de plus haut poids
dont les bases ne sont pas simples a expliciter ni a utiliser. Dans [Itol],[Ito2][An] les auteurs
utilisent 1'isomorphisme de Kohno pour donner des interprétations homologiques a deux
grandes familles de polyndomes quantiques de nceuds construites a partir des modules de
U,sl(2) : les polynomes de Jones colorés et ceux d’Alexander colorés (aussi appelés invariants
ADO, introduits par Akutsu — Deguchi — Ohtsuki).

Le théoréme de Kohno

Nous résumons les liens antérieurs a ce travail, existant entre représentations quantiques
de tresses et représentations de Lawrence, en fixant des notations. Soit V' le module de Verma
de Uysl(2) (on ne fera pas apparaitre le parametre dont il dépend dans cette introduction, afin
de ne pas alourdir les notations), pour n € N, le module V®™ est muni d’une action quantique
du groupe des tresses B,,. Soit € N, W,,, le sous espace de V®" engendré par les vecteurs
de sous poids 7 et Y, , celui engendré par les vecteurs de plus haut poids de W, ,.. Les espaces
W, et Yy, sont des sous représentations du groupe des tresses, et V& = @TeN Wi Aussi,
Y, est une sous représentations de W), . qui est irréductible sur le corps des fractions ([J-K]).
Toutes ces définitions sont rigoureusement données dans la Section 1.4.17.

Soit. X, 'espace de configuration de r-points dans le disque épointé de n pointes. Notons
H,(X,) les groupes d’homologies absolues sur un certain revétement de X, (ou systéme local),
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dont nous donnons toutes les définitions précises dans la Section 3.2.1. H,(X,) est un module
sur I'anneau des polynomes de Laurent Z [¢F!, t*1] sur lequel agit le groupe des tresses via
la représentation de Lawrence, pour r € N. Une conséquence des théoremes de Drinfel’d —
Kohno et de Kohno est I'existence d’un isomorphisme :

H,(X3) = Yos (1)

de représentations du groupe B,,. Cet isomorphisme est valable pour tout » € N et pour un
ensemble générique de parametres complexes (i.e. seulement en tant que C-espace vectoriels,
apres avoir évalué le parametre quantique a une valeur générique). L’isomorphisme est explicité
dans [Ito, Theorem 4.5] (dans le cas unicolore, i.e. avec plusieurs copies du méme module
de Verma) via la base des multi-fourchettes a gauche et une certaine base de ’espace des
vecteurs de plus haut poids a droite.

Dans ce travail de these, nous étendons les représentations de Lawrence a 1’homologie
relative ce qui nous permet d’étendre le théoreme de Kohno dans plusieurs directions. En
premier lieu, nous travaillons sur ’anneau des polynémes de Laurent et surtout nous obtenons
un isomorphisme de B,,-modules entre ces groupes d’homologie relative et les espaces de poids
W, (au lieu de Y,,,). Tandis que I'action de U,sl(2) sur le produit tensoriel de modules
de Verma n’apparait pas dans le théoreme de Kohno et le Morphisme (1), nous définissons
homologiquement 'action de Uysl(2), ce qui rend l'interprétation homologique du produit
tensoriel de modules de Verma complete du point de vue des actions de Uysl(2) et de B,,.

Le contenu de ce manuscrit

Dans le premier chapitre, nous exposons le cadre mathématiques de ce travail de these.
En Section 1.1 nous définissons les objets topologiques étudiés : les groupes modulaires, et
nous nous attardons sur le cas particulier des groupes de tresses. Dans la Section 1.2 nous
présentons des familles de représentations du groupe des tresses, de nature topologique, tandis
qu’en Section 1.3 nous définissons des représentations quantiques de tresses ce qui nous conduit
a introduire la notion de groupe quantique ainsi que les objets qui s’y rapportent. Dans la
derniere section, Section 1.4, nous portons notre attention sur I’anneau utilisé pour construire
un groupe quantique et son influence sur la théorie des représentations. Cela nous invite a
introduire les versions entiéres de ces algebres quantiques qui permettent de travailler avec
les polynomes de Laurent. La Remarque 1.4.24 montre que les représentations quantiques
du groupe des tresses associées a U,sl[(2) sont graduées par les entiers qui correspondent aux
“poids” des vecteurs, tandis qu’en Section 1.2.3 nous introduisons une famille de représentations
homologiques du groupe des tresses, graduée par les entiers naturels - celles introduites par R.
Lawrence dans [Law| - que nous appellerons représentations de Lawrence.

Dans le deuxieme chapitre, nous nous intéressons aux premiers niveaux de la gradua-
tion des représentations quantiques d’une part et homologiques d’autre part. En Section
2.1 nous prouvons que le premier niveau des représentations quantiques est isomorphe aux
représentations de Gassner qui correspondent au premier niveau des représentations homo-
logiques de Lawrence dans une version “colorée” (i.e. a plusieurs variables, Theorem 2.1.1,
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Section 2.1). Cela explicite le théoreme de Kohno au premier niveau et dans une version
colorée :

Hl(Xl) — Yn,l-

En Section 2.2, nous construisons une version colorée des représentations BKL agissant sur
Hy(X5). L’anneau de ses coefficients est celui des polyndémes de Laurent en n + 1 variables
(au lieu de deux, ce qui justifie la dénomination de “colorée”). Nous donnons des bases de
cette représentation en utilisant du calcul de Fox, et nous calculons les matrices associées
aux générateurs du groupe des tresses a 'aide d’une généralisation (colorée) du couplage
nouilles-fourchettes introduit par Bigelow pour montrer la fidélité de BKL (Proposition 2.2.5).

Dans [CGP2], Costantino — Geer — Patureau construisent des invariants quantiques de
3-variétés a partir d'une catégorie de modules quantiques non semi-simple sur la version
déroulée de U,sl(2), ce qui dénote une nette évolution en comparaison avec ceux construits
plus tét par Reshetikhin — Turaev. Dans [BCGP2|, Blanchet — Costantino — Geer — Patureau
parviennent a adapter la construction universelle ([BHMV]) a ce formalisme non semi-simple,
et obtiennent des TQFTs dites non semi-simples. Ces TQFTs sont naturellement graduées
et la graduation est préservée par 'action du groupe modulaire. Dans la Section 2.3 nous
étudions le premier niveau de la TQFT non semi-simple de la sphére a quatre pointes. Nous
relions la représentation obtenue de son groupe modulaire via la TQFT a une représentation
de nature homologique, ce qui aboutit a la fidélité de la représentation quantique (Theorem 3,
Section 2.3.3). Nous remarquons que les premiers niveaux de la TQFT des spheres a pointes
sont reliés aux représentations quantiques de tresses aux racines de 'unité en Section 2.3.4.

Le dernier chapitre étend les représentations de Lawrence via I'homologie relative, il clarifie
et généralise leurs liens avec les représentations quantiques de tresses obtenues sur le produit
de modules de Verma de U,sl(2) par la R-matrice. En nous inspirant de [F-W], nous étudions
des groupes d’homologie localement finie, relative et a coefficients dans un systeme local
abélien sur des espaces de configurations de r - points dans le disque épointé, que nous notons

H,.(X,, X, ). Nous munissons ces complexes d'une action du groupe quantique Ug s[(2) (une
version entiere de U,s((2) définie Section 1.4.3) via des actions homologiques de ses générateurs
et cela aboutit au résultat suivant.

Theoréme 0.0.1 (Theorem 4, Section 3.2.3.3). Le module sur les polynomes de Laurent
L
H =D,y Hr(Xr, X7) est une représentation de Uy sl(2).
Dans le Lemme 3.2.8, nous montrons que H,(X,, X, ) est un module libre sur 'anneau

des polynomes de Laurent, et qu'une base (dites “entiere”) est donnée par la famille des
multi-arcs définie en Section 3.2.2.2. Cela nous conduit a reconnaitre cette représentation de

L
U s1(2) comme étant un produit tensoriel de modules de Verma, ce que nous résumons dans
I’énoncé suivant.

Theoréme 0.0.2 (Theorem 5, Section 3.2.4.3). Pour tout n € N, il existe un morphisme de
L
Ug sl(2)-modules :
ver 5 1 =P H (X, X))

reN
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tel que la base entiére classique de V®" est envoyée sur la base des multi-arcs (définie au
préalable Section 3.2.2.2) et montrée comme étant une base entiére de toute I’homologie
relative. L’entier n correspond au nombre de pointes du disque D,, utilisé pour définir [’espace
des configurations X,.

Enfin, nous retrouvons une action naturelle du groupe des tresses (par homéomorphismes)
sur ces modules homologiques, et nous montrons qu’il s’agit de la représentation obtenue par
la R-matrice de la catégorie de modules de U,sl(2).

Theoréme 0.0.3 (Theorem 6, Section 3.2.5.2). Pour tout n € N et tout r € N, le morphisme :
Wiy — Hp (X, X))

induit par le théoréme précédent est un isomorphisme de représentations de B,,, si bien que le
morphisme :

Ver — H = P H(X,, X))

reN

du théoréme précédent est un ismorphisme de U,sl(2)-modules et de B,-modules.

Nous exhibons des bases entieres de I'homologie (i.e. des bases en tant que module sur un
anneau entier de polynémes de Laurent). L’action de U,sl(2), ainsi que celle du groupe des
tresses, respectent cette structure, tout comme l’isomorphisme vers le produit tensoriel de
modules de Verma.

Nous montrons que la suite longue de I’homologie relative devient dans ce modele, pour
r € N, une suite courte :

1 — H(X,) = H(X,, X)) = H_1(X,) = 1,

de telle sorte que H,.(X,, X, ) étend les représentations de Lawrence (définies sur les modules
absolus de gauche H,.(X,)). Ce travail permet donc d’étendre le Théoreme de Kohno au dela
des vecteurs de plus haut poids, et de retrouver homologiquement tout le produit de modules
de Verma de U,sl(2). Les représentations de Lawrence en sont une sous-représentation, ainsi le
et deviennent algébriques car tous les isomorphismes conservent la structure entiere des
coefficients, et les liens entre les bases entieres (celle des multi-arcs) et les différentes bases
intervenants dans la littérature sont explicités. Ceci est résumé dans le Corollaire 3.2.76.

Les représentations homologiques obtenues sont une généralisation des représentations de
Lawrence, donc elles sont génériquement fideles. Elles permettent de retrouver homologique-
ment plusieurs propriétés de la catégorie de modules sur U,sl(2).

Nous illustrons la structure de poids du produit tensoriel de modules de Verma dans le
diagramme suivant, au niveau r de la graduation :
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W H.(X,, X))
Bl )F B( )F
Wi Hy1(Xoq1, Xo)

eLir Pl

Les fleches horizontales correspondent aux isomorphismes de représentation de tresses du
Théoreme 0.0.3, tandis que les fleches verticales correspondent aux actions des générateurs
E et F' de Usl(2), quantiques a gauche et homologiques a droite (définition homologique
fruit du présent travail, inspirée par [F-W]), qui régissent la structure de poids des modules
de Verma. La somme directe de tous les espaces alignés verticalement a gauche donne le
produit de modules de Verma V®", tandis que celle des espaces alignés verticalement & droite
correspond au module homologique noté H. L’interprétation homologique des générateurs de
U,sl(2) en découle, ainsi que celles des relations qu’ils vérifient et de la R-matrice construite
a partir de ces générateurs.

Ce modele homologique (pour les représentations quantiques de tresses) est ensuite appliqué
aux neceuds vus comme des clotures de tresses. Avoir une interprétation de tout le produit de
modules de Verma permet d’obtenir une formule des traces (homologiques) pour les polynémes
de Jones colorés, qui s’apparente a une somme pondérée de nombres de Lefschetz abélianisés,
c’est le contenu du Théoreme 7, Section 4.1.4.






Introduction

In this work, we give homological interpretations to a number of quantum invariants. We
define and interpret quantum representations of braid groups, in terms of the homologies
of some covering spaces of configuration spaces of points. We then study the faithfulness of
these representations and the one of some closely related representations arising from “non
semi-simple TQFTs”.

Quantum topology

Quantum groups are Hopf algebras arising from deformations of enveloping algebras of Lie
algebras. While first appearing in works of physics, this notion was formalized independently
by V. Drinfel’d and M. Jimbo in 1985. We mention [Kas| and [C-P] as books of reference on
the subject, and introduce some aspects of it in Section 1.3.

The category of modules on a given quantum group is monoidal and often equipped with
an R-matrix (a family of solutions of the Yang - Baxter equation), which allows representations
of the braid groups to be obtained from it (Section 1.3). The braid groups admit several
topological definitions; these quantum representations of braids thus constitute the starting
point of quantum topology.

The Markov and Lickorish — Wallace and Kirby theorems (Theorem 2.3.7) encourage the
expansion of this theory. The first one enables the transition from braids to knots through
braid closures; the second one enables the transition from knots to dimension 3 differentiable
manifolds through the Dehn surgery. Each step comes at a cost imposing a restriction on
invariants: the Markov relations in the first case, those of Kirby in the second. Nevertheless,
sufficiently rich representations of the braid groups can drive each of these steps and achieve
the level of dimension 3 manifold invariants. This strategy based on quantum representations
as initial data was developed by N. Reshetikhin and V. Turaev. In [R-T], they built the
Reshetikhin — Turaev functor (RT functor) which generalizes the quantum representations
of braids to tangles. In [RT2], the RT functor is generalized to 3 dimensional manifolds.
Finally, the RT functor results in polynomial knot invariants, as well as dimension 3 manifold
invariants, that are all called quantum invariants by extension.

This theory will reach another significative evolution thanks to the construction of topolog-
ical quantum field theories (TQFTs) obtained from these quantum invariants via the universal
construction of Blanchet — Habegger — Masbaum — Vogel [BHMV]. These TQFTs provide a
localization of quantum invariants properties, by making them functorial regarding gluings of
manifolds with boundary, see Section 2.3.2 for a more precise definition.
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The R7T functor allows among other things to recover the famous Jones polynomial, an
invariant of knots discovered by V. Jones in 1984 and which has a new property compared
to its predecessors: it makes it possible to differentiate a knot from its image by a mirror.
If the Alexander polynomial discovered sixty years earlier has many topological definitions,
the topological content of Jones’ invariant is less clear. The same observation applies to all
quantum invariants: their construction is based on the purely algebraic properties of the
module categories on quantum groups, so that their topological definitions are rare. Thus, the
topological content of quantum invariants is the main subject of several important conjectures
in the domain. Giving homological interpretations to quantum invariants - what we do in
this work - fits into this framework.

Homological representations of the braid groups

Building homological representations of braid groups relies on the fact that it acts by
mapping class on the punctured disk. This action generalizes to configuration spaces of several
points in the punctured disk, and becomes linear while lifted to homology.

It’s R. Lawrence who has developed this idea around 1990 in her thesis, by the time it
was already for the purpose of finding topological information in the Jones polynomial. She
builds a family of graded representations of the braid groups over homology groups with local
coefficients in a ring of Laurent polynomials over the configuration space of points inside the
punctured disk ([Law]).

At the same time, the field of quantum topology arised and some links with the homological
theory of Lawrence seem to appear. V. Drinfel’d and T. Kohno relate independently ([Drin]
[KO]) quantum representations of braid groups with monodromy representations coming
from Knizhnik — Zamolodchikov (KZ) equation, involving a topological action of braids on
configuration spaces of points. We will refer to this theorem as Drinfel’d — Kohno’s. In
[F-W], G. Felder and C. Wieczerkowski build an action of the quantum group U,sl(2) on
some module generated by topological objects of the punctured disk - r-loops - together with
a natural action of the braid groups which commutes with the quantum one. The homological
interpretations of this module remain conjectures ([F-W, Conjecture 6.1, 6.2]) as well as its
links with Lawrence’s theory. Finally, in [S-V], V. Schetchtman and A. Varchenko obtain
representations of quantum groups on some local system homology on configuration spaces of
points.

It is only a decade after that Lawrence’s theory obtained all its notoriety thanks to D.
Krammer and S. Bigelow’s works, showing their faithfulness at the second level of the grading
[Kra], [Big0], the one we refer to as BKL representation. This is the first known faithful and
finite dimensional representation of the braid groups. To perform the proof of their faithfulness,
S. Bigelow introduces homological objects, forks, that he uses as a basis for the representation
together with a homological pairing between these objects. He then uses these tools to give a
homological definition of the Jones polynomial in [Big3] taking back R. Lawrence’s ideas. To
do the latter, he does not use quantum formalism but skein relations satisfied by the Jones
polynomial. He follows the same strategy to give a homological definition of the HOMFLY
polynomial in [Big4]. In [P-P], L. Paoluzzi and L. Paris show that the BKL representation
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only recovers a sub-representation of the entire homological representation with coefficient in
the Laurent polynomial ring.

In [J-K], C. Jackson and T. Kerler establish explicitly an isomorphism between the BKL
representation and the one on a sub-module of tensor products of U,sl(2) Verma modules,
namely the restricted action to highest weight vectors and sub-weights 2. Following this, in
[Kar], the author is interested in the case where quantum parameters are roots of unity, he
studies the projective decomposition of a tensor product of modules isomorphic to Lawrence
representations, and he finds a faithful action of the center of the braid groups. In [K2],
T. Kohno shows Lawrence’s representations are isomorphic to those from K7 monodromy
restricted to highest weight vectors (Kohno’s theorem, 2012), themselves already shown to be
isomorphic to the braid representations on highest weight vectors of tensor products of U,s((2)
Verma modules obtained by the R-matrix (Drinfel’d — Kohno’s theorem, proved twenty years
earlier). This establishes a direct and deep relation between Lawrence’s representations and
U,sl(2) R-matrix that is summed up in [Ito, Theorem 4.5]. Yet Kohno’s isomorphism works
for a generic set of parameters (it is not a morphism on Laurent polynomials ring, but on
C when quantum parameters is evaluated at a “generic” value) and does not recover the
whole product of Verma modules, but the restricted action to highest weight vectors for which
basis are not easy to compute nor to use. In [Itol], [Ito2], [An], the authors use Kohno’s
isomorphism to give homological interpretations for two important families of quantum knot
polynomials built from U,s((2) modules: colored Jones polynomials and colored Alexander
polynomials (also known as ADO invariants, first introduced by Akutsu — Deguchi — Ohtsuki).

Kohno’s theorem

We recall links existing - before this work - between quantum representations of braids
and Lawrence’s representations, fixing notations. Let V' be the Verma module of U,sl(2) (we
won’t put the parameter it depends on in notations, so as to simplify them), for n € N, the
module V" is endowed with a quantum action of the braid group B,,. Let r € N, W, be
the sub space of V" generated by vectors of sub weight r and Y,,, be the one generated
by highest weight vectors of W,,,. Spaces W, , and Y, , are sub representations of braid
groups, and V& = @TGN W,». The representation Y, , is known to be an irreducible braid
sub-representation of W, , when working on the fraction field ([J-K]). All these definitions
are rigorously given in Section 1.4.17.

Let X, be the configuration space of r-points taken in the punctured disk with n punctures
D,,. Let H.(X,) be the absolute homology groups on some covering space of X, (or local
system), for which we give all precise definitions in Section 3.2.1. H,(X,) is a module over
the Laurent polynomials ring Z [¢*!,t*!] over which the braid groups act via Lawrence’s
representations, for » € N. The existence of the following morphism is a consequence of
Drinfel’d — Kohno and Kohno’s theorems:

H,(X,) = Yo, (2)

It is a morphism of representations of B,,. This isomorphism holds for all » € N and for
a generic set of complex parameters (i.e. only as C vector spaces after evaluation of the
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quantum parameter to a generic value). The isomorphism is explicitly formulated in [Ito,
Theorem 4.5] (in the unicolored case, i.e. using several copies of the same Verma module
instead of different ones) via the multi-fork basis on the left and some given basis of the
highest weight space on the right.

In this work, we extend Lawrence’s representations to relative homology which allows us to
extend Kohno’s theorem in different directions. First, we work with the Laurent polynomials
ring but moreover we obtain an isomorphism of B,-modules between these relative homology
modules and W, ,. (instead of Y,,,). Although the U,sl(2) action on product of Verma modules
does not appear in Kohno’s theorem and Morphism (2), we define homologically the action
of U,sl(2), which makes the homological interpretation of Verma modules’ tensor products
complete regarding the U,sl(2)-action and the B,-action.

The content of this manuscript

In the first chapter, we present the mathematical framework of this thesis. In Section 1.1
we define topological objects of interest: mapping class groups, and we focus on the special
case of braid groups. In Section 1.2 we introduce families of representations of braid groups,
of topological nature, while in Section 1.3 we define quantum representations of braids which
leads us to the introduction of the notion of quantum group and related objects. In the
last section, Section 1.4, we pay attention to the ring used to build a quantum group and
its influence on the representation theory. Remark 1.4.24 shows quantum representations of
braids associated to U,sl(2) are graded by integers corresponding to “weights” of vectors, while
in Section 1.2.3 we introduce a family of homological representations of braid groups, graded
by integers - those introduced by R. Lawrence in [Law] - that we call Lawrence’s representations.

In the second chapter, we are interested in the first level of the grading of quantum
representations on one hand and homological ones on the other. In Section 2.1 we prove that
the first level of quantum representations is isomorphic to the Gassner representation that
corresponds to the first level of Lawrence’s homological representations in a “colored” version
(i.e. multi-variables, Theorem 2.1.1, Section 2.1). This emphasizes the first level of Kohno’s
theorem in a colored version:

Hl(Xl) — Yn,l-

In Section 2.2, we build a colored version of BKL representations acting upon Hy(X53). Its
ring of coefficients is Laurent polynomials in n + 1 variables (instead of two, which justifies
the “colored” denomination). We give basis for these representations using Fox calculus, and
we compute matrices associated to braid generators using a (colored) generalization of the
fork-noodle pairing introduced by Bigelow to show BKL faithfulness (Proposition 2.2.5).

In [CGP2], Costantino — Geer — Patureau build quantum invariants of 3 manifolds from
a non semi-simple quantum category of modules on the unrolled version of U,sl((2), and
it presents a strong improvement in comparison with those built earlier by Reshetikhin —
Turaev. In [BCGP2|, Blanchet — Costantino — Geer — Patureau succeed in adapting universal
construction ([BHMV]) to this non semi-simple formalism, they obtain non semi-simple
TQFTs. These TQFTs are naturally graded and the grading is preserved by the mapping
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class group action. In Section 2.3 we study the first level of the non semi-simple TQFT of the
sphere with four punctures. We relate the obtained representation of its mapping class group
to a representation of homological flavor, it leads to the faithfulness of the quantum repre-
sentation (Theorem 3, Section 2.3.3). We then remark that first levels of punctured spheres’
TQFTs are related to quantum representations of braid groups at roots of unity in Section 2.3.4.

The last chapter extends Lawrence’s representations via relative homology, it clarifies
and generalizes their links with quantum representations of braid groups obtained on tensor
products of U,s((2) Verma’s by use of the R-matrix. Inspired by [F-W], we study groups
of homology, locally finite, relative and having coefficients in an abelian local system over
configuration spaces of r - points in the punctured disk, which we denote by H,.(X,, X, ). We

L
endow these complexes with an action of the quantum group U, sl(2) (an integral version of
U,sl(2) defined in Section 1.4.3) via homological actions of its generators, that leads to the
following result.

Theorem 0.0.4 (Theorem 4, Section 3.2.3.3). The module H = P

L
Laurent polynomials is a representation of Ug s((2).

H.(X,, X)) over

reN

In Lemma 3.2.8, we show that H,(X,, X,") is a free module on Laurent polynomials ring,
and that a basis (said “integral”) is given by the family of multi-arcs defined in Section 3.2.2.2.
L

This helps us recognizing this U2 s[(2) representation as a tensor product of Verma modules,
what we sum-up in the following statement.
Theorem 0.0.5 (Theorem 5, Section 3.2.4.3). For all n € N, there exists a morphism of
L
Ug s1(2)-modules :
Ve —» H =P H(X,, X))
reN

such that the classical integral basis of V™ is sent to the multi-arcs basis shown to be an
integral basis of the whole relative homology. The integer n corresponds to the number of
punctures of the disk D,, used to define the configuration space X,.

Finally, we find a natural action of braid groups (by homeomorphisms) over these homo-

L
logical modules, and we show that it is the R-matrix representation obtained using U s1(2)
Verma modules.

Theorem 0.0.6 (Theorem 6, Section 3.2.5.2). For alln € N and all r € N, the morphism :
Wy, = H (X, X))

induced by the previous theorem is an isomorphism of B, - representations, so much that the
morphism:

Ve H =P H(X,, X))

reN

L
from previous theorem is a morphism of Ug sl(2)-modules and of B,,-modules.

13



We give integral basis of homology (i.e. basis as module on an integral ring of Laurent

L
polynomials). The Ug sl(2)-action and the B,-action preserve this structure, so does the
isomorphism to the tensor product of Verma modules.
We show that the long exact sequence of relative homology becomes, in this model, a

short one:
1— H.(X,) = H(X,, X,]) = H._1(X,) = 1,

so that H,.(X,, X, ) extend Lawrence’s representations on the left (defined on absolute modules
H,(X,)). This work allows then an extension of Kohno’s theorem beyond highest weight
vectors, and to recover homologically the entire tensor product of Uysl(2) Verma modules.
Lawrence’s representations are sub-representations of it so that Kohno’s theorem is a corollary
of this work. Generic hypothesis are clarified and become algebraic thanks to the fact that all
isomorphisms preserve the integral structure of coefficients, and the links between integral
basis (multi-arcs) and basis one finds in the literature are exposed. All of this is summed-up
in Corollary 3.2.76.

The obtained homological representations are a generalization of Lawrence’s representations
so they are generically faithful. They allow a homological recovering of several properties of
the category of U,sl(2)-modules.

We illustrate the weight structure of tensor product of Verma modules in the following
diagram, at level r of the grading:

H.(X,, X))
el )F AL
Wn,r—l—l HT’+1(X7“+17 Xr_—l—l)

PLlr eLir

Horizontal arrows correspond to isomorphisms of braid representations from Theorem 0.0.6,
while vertical arrows correspond to U,sl(2) generators action £, F: the quantum ones on the
left side and the homological ones (homological definitions inspired by [F-W] are given in this
work) on the right side, that rules the weight structure on Verma modules. The direct sum
of all spaces aligned vertically on the left gives the Verma module V®" | while the one of
all spaces aligned on the right corresponds to the homological module H. The homological
interpretation of U,sl(2) generators follows, together with the ones of relations they satisfy
and the R-matrix built using these generators.

This homological model (for quantum representations of braids) is then applied to knots
seen as braids closures. Having an interpretation of the entire tensor product of Vermas allows
to get a (homological) trace formula for colored Jones polynomials, that looks like a weighted
sum of abelianized Lefschetz numbers, and this is the content of Theorem 7, Section 4.1.4.
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Chapter 1

Background: Topology and Algebra

1.1 Topology: Mapping class groups and braid groups

1.1.1 Mapping class group

In this section we give the different definitions of the mapping class group and related tools
and we define the braid groups. We follow [F-M].

Let S be an oriented surface, we denote by Homeo™ (S,0S) the group of orientation-
preserving homeomophisms that fix the boundary pointwise, endowed by compact-open
topology, and let Homeoy(S,dS) be the connected component of the identity.

Definition 1.1.1 (Mapping Class Group). The Mapping Class Group of S is the group of
isotopy classes of orientation preserving homeomorphisms of S. Namely:

Mod(S) = my(Homeo™(S,08S))
= Homeo™(S,0S5)/ Homeoy(S,0S)

In this definition it is equivalent to consider isotopy instead of homotopy or diffeomorphisms
instead of homeomorphisms, it would result to the same group.

Notations. e The only non-compact surfaces we will deal with will be punctured surfaces.
Thus, the surface will always be topologically the connected sum of g > 0 tori with
b > 0 boundary components (or b removed disks) and n > 0 points removed from the
interior. We will denote such a surface ngn (without b if its boundary is empty).

e When the surface has no boundary component we will use the notation M (g,n) to
designate its mapping class group, where g is its genus and n the number of punctures.

Remark 1.1.2. e [sotopies are fixing the boundary at all time.

e Instead of considering punctures, we can consider homeomorphisms preserving the set
of points, with isotopies fixing each points and homotopies sending unmarked points to
unmarked points.
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e Two differences between punctures and boundary components: the first one is that a
homeomorphism can permute the punctures but has to fix the boundary components
pointwise. The other one is that an isotopy must fix the boundary component, when it
can rotate the neighborhood of a puncture. We will translate this relation in term of
exact sequences later.

e Once the punctures are indexed, there is an natural homomorphism, named perm from
now on, and defined as follows:

perm : Mod(ngn) — 6,

sending a mapping class to the induced permutation of the marked points (using the
“marked points model”). We will often consider that the punctures are indexed, and will
name them py,ps, ..., pa.

Now we give the first examples. Beginning with one boundary component.
Example 1.1.3 (Disk). Two results concerning the two dimensional disk D?:

e The Alexander trick states that any homeomorphism of the disk fixing the boundary is
isotopic to the identity, so that Mod(D?) is trivial.

e Considering a homeomorphism fixing the center of the disk, the same proof shows that
D? with one puncture also has a trivial mapping class group.

The first example with only punctures is the following.

Example 1.1.4 (2 and 3-punctured sphere). The mapping class group of the sphere with 3
points removed, namely A/ (0, 3), is exactly &3, the group of permutation of three elements.
In the case of two punctures one has M (0,2) = Z/2Z.

The first non trivial example for closed surface is the torus, it is a main example as it
inspires the general classification of mapping classes.

Example 1.1.5 (Torus). Let 72 be the torus (genus 1 closed surface). There is a homomor-
phism:
Mod(T?) — SL(2,7)

given by the action of mapping classes on Hy(T?,7Z). By theorem it is in fact an isomorphism,
see [F-M, Theorem 2.5].

The above example gives another crucial way to study mapping class groups, using its
action on homology groups. We call this point of view homological representation of the
mapping class group and recovering these kind of representations of mapping class groups
will be central in this work. In the case of braids it produces a whole family of famous
representation (Burau, Gassner, Lawrence, Bigelow-Krammer...) that we will try to relate to
quantum representations of mapping class groups.

The 4-punctured sphere has a proper and nice way to be studied that gives an easy
way to visualize its mapping class group. This will be used later on to study the quantum
representation of it, so that we give the example here.
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Example 1.1.6 (Sphere with 4 punctures). This example is treated in [F-M, Section 2.2.5],
but we mainly follow [AMU] here which provides matrices for generators that will be useful
to study the representations.

The idea is to study M (0,4) from the torus. Think of the torus as the square with opposite

faces identified, say that the left lower vertex is in <8> . Let ¢ be the w-rotation that fixes the

square and that has four fixed points ((8) , (162> , <1(/)2) , Gg) ), we call it the hyperelliptic
involution . The quotient of the torus by the action of ¢+ is an orbifold that is topogically a
sphere with 4 ramified points. We will use this sphere with this four marked points in order
to use the well known mapping class group of the torus.

Let A € SL(2,7Z) be a matrix, v € (%Z)2 a vector, and ¢4, be the transformation of R?:
x+— Ax + .

This defines a diffeomorphism of 7% = R?/Z? that commutes with « = —Id. We keep the
notation ¢4, to designate the diffeomorphism of the quotient 7%/{+Id}, the 4-punctured
sphere. By Theorem 3.1 of [AMU], this association is surjective. More precisely, all the
braid generators of ) (0,4), from a standard presentation given below, are reached by
diffeomorphisms of the form ¢4,. The study of the kernel is given by the exact sequence of
[AMU, Corollary 3.3]:

1— N — M(0,4) - PSL(2,Z) — 1

where a mapping class coming from some ¢4, is sent to the matrix +A € PSL(2,7Z), and
N =7/27 x Z]2Z.

Moreover, from [F-M, Proposition 2.7], the sequence splits so that A/(0,4) is the semi-direct
product PSL(2,Z) x N.

The latter is done in a more algebraic manner in [Bir| using explicitly the general presen-
tation of the mapping class groups of punctured spheres. From Theorem 1.1.8 stated below,
we get the following presentation for M (0,4). Let oy, 09, 03 be the three generators together
with the following relations:

0103 = 0301 (1.1)
010901 = 090109 (1.2)
030903 = 090309 (1.3)

(010903)* =1 (1.4)
0102030201 =1 (1.5)

Let G be the subgroup of M (0,4) generated by oy and oy, and let N be the subgroup
generated by a = 105" and b = 090,05 '0, "

Lemma 1.1.7 ([Bir, Lemma 5.4.1]). The group M(0,4) is the semi direct product of the
normal subgroup N and the subgroup G.
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Then one gets that G is isomorphic to PSL(2,7Z) under the following association:

11 1 0
O'1<—>A—(0 1) ,O’QHB—(_l 1>

It is easy to check that the elements a and b commutes and are of order 2 by simple
applications of Relations 1.1. This gives that N is isomorphic to Z/2Z x 7./27

For the general case of the sphere with n punctures, there is the following theorem, giving
a general presentation of the mapping class group.

Theorem 1.1.8. If n > 2, then M(0,n) admits a presentation with generators oq,...,0, 1
together with the following defining relations:

0,05 = 004, |Z—]| 22
0i0i+10; = 0441070541
(0102"'Un_1)n =1
oy .gndagilgnﬂ ooy = 1

In the above theorem, o; corresponds to the half Dehn twist along some arc relating p;
and p;y 1, fore =1,...,n— 1. We will sometimes refer to these generators as braid generators,
as they satisfy the braid relations (defined in next section). We define the half Dehn twists
involved in the above theorem.

Definition 1.1.9 (Half Dehn twist). Let « be an arc in a surface M having endpoints in a
subset () C M. By half Dehn twist along o we mean the homeomorphism:

To - (M7Q) — (M7Q>

which is obtained as the result of the isotopy of the identity map Id : M — M rotating « in
M about its midpoint by the angle w in the direction provided by the orientation of M. The
half-twist 7, is the identity outside a small neighborhood of o in M.

1.1.2 Braid Group

In this section we review three equivalent definitions of the braid group. The first definition
is the Artin definition, using a presentation with generators and relations, and it is the one
commonly used to draw braid diagrams. The second one shows that the braid group is a
fundamental group, and the last one that it is a mapping class group. Let n € N, we define
in each context B, the braid group of braids with n strands.

1.1.2.1 Artin braid group

We define the braid group using its Artin system of generators and relations.
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Definition 1.1.10 (Braid Group.). The braid group B, is the group generated by n — 1
generators oy, ...,0,_1 satisfying the so called “braid relations”:

oi0; =00, if |i — j| <2 and,
0;0;4+10; = 0,410,041 fori = ]., e, = 2.

Remark 1.1.11. B, is trivial and B, is the infnite cyclic group with one generator. By
stating x = 010907 and y = 0105, we get the following modified presentation of Bs:

(wy | 2®=y°)
so that one recognizes the fundamental group of the trefoil knot.

Definition 1.1.12. Let &,, be the permutations group of n elements, the morphism perm is

defined as follows:
orm - B, — 6,
pertL: g; SZ:(Z,Z—Fl)

where s;, for some 1 =1,...,n refers to the transposition that permutes i and 1 + 1.

It is easy to see that the morphism perm is well defined and surjective as the s;’s generate
G,.

1.1.2.2 Braid diagrams

Definition 1.1.13 (Geometric braids.). A geometric braid on n strands is a set b C R* x I
formed by n disjoint topological intervals, called strands of b, such that the projection R®xI — I
maps each string homeomorphically onto 1. And so that:

bN (R* x 0) = {(1,0,0),(2,0,0),...,(n,0,0)} and
bN(R? x 1) ={(1,0,1),(2,0,1),...,(n,0,1)}.

Two geometric braids b and 0’ are said isotopic if one can be deformed continuously into
the other staying in the class of braids at each time. The isotopy classes are called braids on
n strands.

Let b; and by be two braids. Their product bibs is defined to be the geometric braid
(z,y,t) € R? x I with (z,y,2t) € by if 0 < ¢ < 1 and (z,y,2t — 1) € by if 3 < ¢ < 1. This
product behaves well with isotopy of braids, so that it defines a product on the braids on n
strands. This product has a neutral element, namely the trivial braid :

{(1,0),...,(n,0)} x € R* x [

For 1 <i <mn —1, we define o; to be the braid that have the following diagram:

y
;
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This braid has o, 1 as an inverse, which correspond to the following diagram:
Then, the morphism:
B, — {braids on n strands}
o; — 0
is an isomorphism. From now on, we use the notation o; to designate both the braid and the

Artin generator, and B,, to talk about the braid group in general.

Remark 1.1.14. The morphism perm : B, — &,, has the following meaning: a braid b is
sent by perm to the permutation that sends each i € {1,...,n} to the only j € {1,...,n}
such that the strand attached to (4,0,0) at the bottom has (7,0,1) as top endpoint.

1.1.2.3 Pure braid group.

The Pure braid group on n strands is made of the braids with all strands having the same
endpoints ((4,0,0) is attached to (¢,0,1) by a string, for all i € {1,...,n}). It is a subgroup
of B,, that we denote PB,,.

Definition 1.1.15 (Pure braid group). Let n € N*, the pure braid group is defined as follows:
PB,, = Ker(perm : B, — &,,).

Proposition 1.1.16 ([Bir, (1.11)]). PB, is generated by elements A;; for 1 <i < j <n
expressed using standard generators of B, as follows:

_ 2 1 —1
Aij=0j_10j_9- - 0i410; Oi41° " 0j1-

Remark 1.1.17. One can notice that these pure generators are conjugated in B,, (but not

in PB,!) using the elements:
Qij = 0j-105-2""*0;
so that we have for 1 <i < j <k <n:
ajrAijas, = Ak, airAijag, = Ajx

for which a drawing is convincing.

There are two important morphisms related with each other: first the injection ¢ of B,, into
B, .1 obtained by adding one straight string having (n + 1,0,0) and (n + 1,0, 1) as endpoints
and not crossing any other strand. The second morphism concerns only the pure braid group,
it is the forgetting morphism f, : PB,, — PB,_1 sending a pure braid b on n strands to the

braid f,,(b) on n — 1 strands obtained by removing the (n + 1)’th strand of b. It is obvious
that:

fn oL = IdPBn,y
Let U, be the kernel of f,, as f,, has a section, we have that PB, = PB,_1 X U,.
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Proposition 1.1.18. The group U, is free on the n — 1 generators {A; n}i—12.. .n-1-
This has the following consequence.

Proposition 1.1.19 ([Bir, (1.12)]). The list of the following relations using the generators
Aij for 1 <1 < j <n completes a presentation of PB,,:

A if s<tori<r<s<jy
A, A AT if s=1

=14 . — rJ 405 g

AT‘,SszjATvS Ar]As]Az]A 1A 1 ’Lf 1=r<s<j
AT]AS]A;AIAA A, AlAl if s<iorr<i<s<y

Proposition 1.1.20. Forn > 3, the center of the braid group Z(B,) = Z(PB,,) is the infinite
cyclic group generated by the element 0, = A2 with:

An = (0102 o 'Un—l)(0102 e 'Un—2) ce (0102)01

A nice way to verify that the element 6, is central consists in the following picture.

L L1 ~|<|_
=8 Ik

% {{C{Y{

1.1.2.4 Fundamental group of configuration spaces

First we recall the definition of configuration spaces. Let M be a topological space, we set
F,.(M) to be the configuration space of ordered n-tuples of points in M.

Fo,(M)={(z1,...,2,) € M" s.t. z; # z; for i # j}
Its fundamental group is called the pure braid group of M on n strands.

Proposition 1.1.21. For M = R? we recover the pure braid group PB, defined above.

Namely:
T (F(M)) = PB,.

To make the identification, we associate to a pure geometric braid b € R? x I the path:
I — F,(R?) defined by: t — (ui(t),...,u,(t)) with the condition that the i’th string of the
braid b meets R? x {t} in (u(t),t) for all i = 1,...,n. This path begins and ends at the point:

a. = ((1,0),...,(n,0))

which we use as basepoint for F,(R?).
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Conversely, if a(t) = (ay(t),...,a,(t)) is a path of F,,(R?), we can define from it the pure
braid:

These two constructions are inverse of each other so that PB,, = m;(F,(R?), g,).

To recover the entire braid group B,, we need the action of &,, over F,,(M) by permutation
of coordinates. From this action we define the quotient C,,(M) to be the configuration space
of unordered n-tuples of points in M :

Co(M)=F,(M)/6&,
Proposition 1.1.22. For M = R?, B, = m(C,(R?), §,) where ¢, is the class of q, under
the &,,-action.
1.1.2.5 Mapping class group of the punctured disk.

Let D,, be the closed disk with n marked points, called “the punctured disk” from now on.

Proposition 1.1.23. Let n € N*, one has:
B, = Mod(D,) = M(0,n) = Mod(L'y,),
using the mapping class group notations defined above.

Let Q, = {(1,0),...,(n,0)} C R? the set of marked points, and D,, a topological disk
containing (), and oriented counterclockwise. For i = 1,... ,n — 1 we set the following
spanning arcs:

a; = [i,i+ 1] x {0} € D,.

The half Dehn twists 7,,, ... Ta, , (see Definition 1.1.9) are well known to satisfy the braid
relations, and the following well defined morphism:

) { B, — Mod(D,)

oi > T,

is an isomorphism.

1.1.3 Exact sequences among mapping class groups
1.1.3.1 Birman exact sequence

If S is a surface, let (S, ) be the surface S with x a marked point. There is a natural map:
Forget : Mod(S,z) — Mod(S)

called the forgetful map.
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Let v be a loop in S based in z. Let a be an isotopy of point, by Proposition 1.11 of [F-M]
it is extendable to an isotopy of the whole surface, we can define ¢, to be the homeomorphism
obtained at the end of the isotopy. This homeomorphism defines a class in Mod(S, z) that
we define to be Push(«). It can be shown to be well defined and to provide the morphism:

Push : m(S,x) — Mod(S, z).

Proposition 1.1.24 ([F-M, Theorem 4.6]). If S has negative Euler characteristic, then the
Birman exact sequence holds:

1 m(S,z) 24 Mod(S,z) 229 Mod(S) — 1.

If S has some marked points, the Birman exact sequence restrict to the pure mapping
class group. If S, ,, refers to the surface of genus g with n marked points, and if PMod(S, )
designates its pure mapping class group, the Birman exact sequence becomes:

1= m1(Syn) 228 PMod(Syni1) —22% PMod(S,,) — 1.

1.1.3.2 Capping the boundary

Let S be a surface with boundary, and S’ be the surface obtained from S by closing
one boundary component with a punctured disk. Set pg to be the puncture of the cap-
ping disk. Let 8 be the loop in S’ corresponding to the boundary component of S. The
group Mod(S,{p1,...,pr}) is the subgroup of Mod(S) consisting of elements that fix the
marked points py,...,pg, where k > 0, while Mod(S’,{po,p1,.-.,px}) is the subgroup
of Mod(S") consisting of elements that fix the marked points pg,pi,...,pr. Then let
Cap : Mod(S,{p1,...,px}) = Mod(S",{po,p1,--.,pr}) be the induced homomorphism de-
fined as follows: let f be a homeomorphism of S fixing S and representing a class of
Mod(S,{p1,.-.,pr}), and f be the homeomorphism of " which coincides with f in S and is
the identity outside. Then C'ap sends the class of f to the one of f which turns out to be in

Mod(S',{po,p1,-- - Pk})-
Proposition 1.1.25 ([F-M, 4.2.5]). The morphism Cap satisfies the following exact sequence:
Ca
1 — (13) = Mod(S,{p1,--..px}) = Mod(S', {po,p1,....0x}) = 1

where T refers to the Dehn twist along 8 and the first injection is the inclusion.

1.2 Topological representations of braid groups

Two different kind of representations are mainly studied in this work, and we try to find
relations between them. The first family, called homological representations are using the
fact that the braid group is the mapping class group of the punctured disk and involves
actions on homology groups of topological spaces built from it. The second family of quantum
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representations uses the generators and the braid relations, and are built from a category
of modules over some quantum group providing an R-matrix that satisfies an equation
corresponding to the braid relation, namely the Yang-Baxter equation.

Definition 1.2.1 (Representation of the braid group). Let n € N*, and C[B,,] be the group
algebra of B,, with coefficient in C. A representation of B,, is an algebra morphism:

C[B,] — End¢(V)
where V' is a complex vector space.

Definition 1.2.2 (Induced representation from the pure braid group). Let r be a representa-
tion of PB,:
r: C[PB,] — Endc(V)

There exists a natural induced representation Ind(r) of B, over the space:

where the action of PB,, is given by product on the left of the tensor product and by r on the
right.

Example 1.2.3. The representation perm of B, over C[&,] is induced from the trivial
representation of PB,,.

1.2.1 Automorphism of the free groups
1.2.1.1 Braid group as a free automorphism sub-group

Let n be an integer, and F,, = (x1,...,x,) be the free group on n generators. The braid
group B, acts on F, by automorphisms. To see this, let’s define ; for i = 1,...,n — 1 as the
following automorphism of F},:

Tht1 if k=1
5z($k> = $k$k,1$lzl ifk=i+1
T otherwise

These G;’s verify the braid relations so that one obtains the representation:

B, — Aut(F,)

o, — 0;

This action is faithful so that B, is a subgroup of Aut(F},). The group F,, is identified with
the fundamental group of the n-times punctured disk, with basepoint d taken in the boundary
of the disk. The generator x; of F},, for : = 1,...,n, is then identified with the loop that goes
from d, passes once clockwise around the puncture p; and going back to d, not encircling any
other puncture. Let f be a self homeomorphism of D,,, as it fixes d, it yields an automorphism
of F,, = m(D,,d) that only depends on the isotopy class of f, so that the action on F, is
well defined on Mod(D,,). One verifies that this action is the one sending the half Dehn twist
0; to the automorphism &; fori =1,...,n.
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1.2.1.2 Magnus representations.

Definition 1.2.4 (Fox free differential calculus). For each j = 1,...,n there is a mapping:
i :4F, — 7F,
6xj

given by:

.
0
T (€1 L) — 5 e pe=1)/2
ox; (xm x#r) = E :Glémuxm Ly ’

J i=1

0 )
du; (Zayg) :Z%a—xj(g), g€F,a¢cl,

where €; = +1, § is the Kronecker symbol, and ZF,, is the the group ring of F,,.

and

Let ® be a homomorphism acting on F,, and Ag be any group of automorphisms of F,
which satisfy:

for each x € F,, and a € Ags.

Definition 1.2.5 (Magnus representation, [Bir, Theorem 3.9]). Let a € Ag and [a]® be the

following n X n matriz:
bl
du; ij .

Ap — M(TL,ZFR)
a +— [a}q)

Then the morphism:

is a well defined group homomorphism, called a Magnus representation.

Let Z, be the free abelian group of rank n with free basis ¢4, ..., ¢, and a be the following
morphism:
FE, — Z,
a

Definition 1.2.6 (Gassner representation of the pure braid group). Let 1 <r < s <n and
A, s € PB,, the corresponding generator of the pure braid group on n strands. Let [A, ;| be

the following matriz:
a 8(147’,5(5751))
o= [a< dz;
i\j

PB, — M (n,Z(Z,))
Ar,s = [Ar,s]u

is a Magnus representation, called the Gassner representation of the pure braid group.

Then the morphism:
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We will present this representation in a more concrete way, giving explicit matrices, in
next section.

Lemma 1.2.7 ([Bir, Lemma 3.11.1]). The Gassner representation is reducible to an (n —
1) x (n — 1) representation.

Sketch of proof. Let g; = 1 ---x; € F,,, this provides a change of generator basis for F,,. The

matrices:
a 8(147’8 (gz>)
dg; iy

correspond to Gassner matrices given in another basis associated to the g;’s. After computation

one remarks that the last rows and columns for all these matrices is (0,...,1) so that it can
be deleted. O
Remark 1.2.8. Let t =t; = --- = t,, then the Gassner representation becomes the Burau

representation. See [Bir, Section 3.3|, or details in next section.

Remark 1.2.9 (Enright representations). One can define inductively higher Fox free deriva-
tives, see [Bir, Equation 3.17]. From this notion, there exists higher representations of
automorphims group of F),, namely the Enright representations, see [Bir, Theorem 3.8]. This
family is graded, the grading is the degree of Fox derivation.

1.2.2 The Gassner representation

In this section, we give a concrete definition of Gassner representation, first defined in
Definition 1.2.6, following the work of [B-N]. In [B-N], the Gassner representation is built as a
“multi-color” Burau one. Let ¢ be a formal variable and U, ;(¢) be the standard Burau matrix
associated to o;, the i’th standard generator of B,,. It consists of an n x n identity matrix
where one replaces the 2 x 2 block obtained with the i’th and 7 4+ 1’th rows and columns by
the standard block:
1—t 1
(" o)

Definition 1.2.10 ([B-N]). Let b = [[_, o;* be a braid written as a product of standard
generators. Let I' be the following product of matrices:

k
L) = [ Unia (ti)*
a=1

where j, is the index of the “passing over” strand at the #«a crossing, and ty,...,t, are set to
be formal variables.

Proposition 1.2.11 ([B-N]). The map:

M (Z[t5])
I'(b)
is well defined.
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The map I is well defined but not multiplicative, i.e. not an algebra morphism. Namely
['(ab) # I'(a)'(b) when a and b are braids in general.

Proposition 1.2.12. The morphism I becomes multiplicative when restricted to the pure
braids, so that it yields a representation of PB,,.

We build an induced representation of B,, over C[&,] ® C". Let (g1,92,...,9,) be the
canonical basis of the involved copy of C", then we define the induced Gassner representation
as follows: morphism

Definition 1.2.13 (Gassner representation of B,). The induced Gassner (see Definition
1.2.2) representation of B,,, denoted Gassner,, is defined using the following endomorphisms
associated to standard generators and extended to all the braids multiplicatively.

Gassnery(o;) : ceec = ClS.] &

namee TRU = (i, + 1) o7 @ Upy(tr-1341))(v)
where o; is, again, the i'" standard generator of B,. It’s a representation over a space of
dimension n! X n.

This representation contains the Gassner representation of pure braids. It also contains the
Burau representation as it was already the case for I', we state this in the following remark.

Remark 1.2.14. e If a is a pure braid, Gassner,(a) is block diagonal and I'(a) is the
first upper left block of Gassner,(a), corresponding to its restriction to C[()] ® C", ()
stands for the identity permutation.

e [f all the variables are set to be equal to one variable, namely ¢ty = --- =t, =t, then I’
is the Burau representation.

The Burau representation is known to be faithful for n = 2, 3, unfaithful for n > 5, and it
remains an open question for n = 4. The natural question coming from the study of Burau is
if the Gassner representation is faithful, as it is richer than Burau. It is in fact still an open
question.

This question is entirely contained in the question whether I' is a faithful representation
of PB, or not. The explication is the following remark:

Remark 1.2.15. The image of C[()] ® C" under the action of a braid a is contained in the
space C[perm(a)] ® C". This ensures that in order to get the identity matrix from Gassner,,
the braid a must be pure.

The latter is a direct consequence of Definition 1.2.2. The faithfulness of the Gassner
representations is reduced to the following open question.

Open Question. Is I' faithful as a representation of PB,, ?
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We end this presentation with a word about faithfulness of Gassner representations. We
recall the Birman exact sequence 1.1.24 in the case of the punctured disk that involves the
pure braid group PB,,:

1—F,_1—>PB, —PB,.1 —1,

and is called the Fadell — Neuwirth exact sequence. Indeed, let D, be the disk with n
punctures, this exact sequence is the Birman exact sequence after remarking that the pure
braid group is the pure mapping class group of D,,, and that the m; of D,,_; is a free group in
n — 1 generators denoted F),_;. Moreover this pure Birman exact sequence splits so that P,
is the semi direct product of PB,,_1 with F,,_;. Let I',, be the Gassner representation of the
pure braid group PB,,, then one can check that the following diagram commutes:

Fm:get

PB, PB,-1

|r. =

L, (PB,) — I'1(PB,-1)

where the lower horizontal arrow consists in setting ¢, to be 1 and deleting last row and
column of the matrix. This old fact allows a treatment of the faithfulness question by recursion
on n. In some sense the Gassner representation commutes with the Forget map so that the
recursion property is reduced to the faithfulness of the induced representation of I',, over F,,_;
([Knu, Section 2.2] for a presentation of these facts). It was used in a series of articles to
refine the kernel of Gassner representations. The theorem giving the finest kernel the author
knows is the following:

Theorem 1.2.16 ([Knu, Theorem 3.4]). The kernel of the action of T',, over F,_; lies in
(C3F,,_1,C?F,,_1] where C*F,_, stands for the terms of the lower central series of F,_.

1.2.3 The Bigelow-Krammer-Lawrence representation
1.2.3.1 Construction

The general concept of Lawrence’s representations, see [Itol], is to make the braid group act
on a homology group of a certain covering of the configuration space of several points.

Definition 1.2.17 (Configuration space of the punctured disk). Let n,m be integers. The
configuration space C,, ,, of m unordered points in D,, is defined as follows:

Com ={(21,...,2m) € D] s.t. z; # z; fori#j}/G,,
where &,,, acts by permutation on the order of coordinates.

Next proposition can be found in [K2] (relation 2.1) for an algebraic description, or in
Proposition 1.3 of [P-P] for a concrete computation using a cell complex.
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Proposition 1.2.18 ([P-P, Proposition 1.3]). The first homology group of this space, namely
Hi(Chm, Z) is isomorphic to Z™ S Z where the first n generators correspond to meridians of the
hyperplans {z, = p;} while the last generator corresponds to a meridian of the discriminantal

arrangment U, <, <, 1z = 2;}-

Definition 1.2.19 (Z*-cover). Let o be the homomorphism:
o 1 (Crn) 5 Hy(Co) = 2" 9L S ZOL = {g) @ (1)

where the second map is defined by C(xq,...,2,,d) = (14 ...+ xp,d) . Let 7 : C’T;n — Chm
be the covering space C/O@Sponding to the kernel of a. By identification of ¢ and t as deck
transformations, H,,(Cn,m,Z) is a free Z[q*', t*]-module.

Since Kerca is invariant under the B, action, B, acts on Hm(%,Z) as Z[q*, t+1)-
module automorphisms. This provides the representations we were looking for. We give a
more concrete definition of this set up in what follows in the case m = 2. In Chapter 3 we
will deal extensively with the case m € N, so that this first step helps becoming familiar with
the framework.

Let m = 2. This is the case known as Bigelow-Krammer-Lawrence representation, and
sometimes called BKL representation in what follows. It provides the first known faithful
representation of the braid groups, the latter is proved in [Big0] and [Kra]. The details of the
construction come from [K-T] and [Big0].

Let C = C,, 2 be the configuration space of unordered pairs of points, d,ds € dD,, and
¢ = {dy,ds} be the base point of C. In the sequel, an unordered pair of distinct points
x,y € D, is denoted {z,y}. A path £ : I — C is a pair of paths £ = {&,&} where
&1,& : I — C. As we are looking to unordered pairs of points, there are two possibilities for a
path & to be a loop:

§1(0) = &(1) and &(0) = &(1)
so that both the &;’s are loops, or:
§1(0) = &(1) and &(0) = & (1),

here &; and & permutes their endpoints (so that they are not loops) but the product &£, is a
loop. We define two numerical invariants of loops in C', namely w and u.
The first one, w, is defined for the two cases of a loop & = {&;,&,} as follows :

e If & and & both are loops, then we define w(&) = w(&;) +w(&) where w(E;) is the total
winding number (meaning around all the punctures) of &;.

e For the other case we define w(§) = w(& &) the total winding number of the loop & &s.

To define the invariant u, we remark that the map:

I — St
s oy a0)-&s

—

€1 (s)=&2(s)]
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sends s = 0,1 to the same points or to opposite ones. Hence, the square of this function
provides a loop of S, u(¢) is the index of it. Note that u(€) is even if the &’s are loops, odd
otherwise. These classic invariants are additive with respect to product of loops and preserved
under homotopy.

Here is an analytic definition of those invariants:

n

w(f) = ﬁZ </§1 zfzpj +/§2 z izpj)

Jj=1

1 dz
U(g - E §2—&1 ?
The map:
¢ & — v O

is a surjective group homomorphism from m;(C) to Z* = Z{q, t).

Let C — C be the covering corresponding to the kernel of ¢, with ¢ and ¢ acting as
commuting deck transformations on C', and we choose once a lift ¢ of the base point c. This
turns H = Hy(C,Z) into a module over R = Z [¢*!, t*!]. In fact the module H is the locally
finite homology or Borel-Moore homology, see definitions in Section 5.1.

Let f be a self-homeomorphism of D,,, it induces a homeomorphism f : C' — C by:

Fzyp) = {f (), f()}

Note that f (c) = ¢ as dy and dy are picked in the boundary of D,,, and we can define the
induced automorphism fy of m(C, ¢).

Lemma 1.2.20. ¢o fu = ¢

Proof. One need to verify that both invariants w and u are preserved by fu.

For w, it comes from the fact that the equality w o fx = w holds for small loops encircling
the punctures, and then for arbitrary loops since it only depends on the homology class in
the first homology group of D,, which is generated by these small loops.

For the second one u, uo fu = u holds because this invariant does not “see” the punctures,
i.e. u factors through the embedding D,, — D?. Forgetting the punctures, all homeomorphisms
are isotopic to the identity, so that wo fu = u. [

_ This lemma implies that f lifts uniquely to a map f : C—C fixing any lift of ¢, and that
f commutes with covering transformations. Therefore it induces an R-linear automorphism
f« of H, the Bigelow-Krammer-Lawrence representation follows:

B, = Mod(D,) — Autr(H)
f — [

Theorem 1.2.21 ([Big0] [Kra]). The Bigelow-Krammer-Lawrence representation is faithful
foralln > 1.

BKL :
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It’s the first known example of a faithful linear representation of the braid groups, while
the Lawrence’s representations are anounced to be faithful in [Z2] for greater values of m.
The case m = 1 is the Burau representation known not to be faithful for n > 5.

To prove the faithfulness, Bigelow used tools named forks and noodles introduced by
Krammer, and a pairing between them. This pairing is also useful to compute matrices of the
representations, so that we introduce this framework here.

1.2.3.2 Forks and Noodles

The following definition will be generalized in Chapter 3, Section 3.2.2.

Definition 1.2.22 (Fork, m = 2). A fork is an embedded tree F' € D,, with four vertices
di, pi,pj, and z such that F N 0D, = {d,}, F intersects the punctures only in p;,p;, and all
three edges have z as a vertex.

The edge containing dy is called the handle of F and denoted H(F).

The union of other two edges is called the tine of F' and denoted T(F').

e The tine is oriented in such a way that it has the handle lying on its right.

For any fork F' we construct an associated surface S in C as follows. First let F” be the
parallel fork of F' with a parallel tine with same endpoints and parallel handle based on d,.
We define the following surface of C"

S(F) ={{z,y} st. 2 € T(F)\{p1,..,pn} sy € T(F')\{p1,...,pu}}

In order to get a surface of C' we need to chose a lift of Y(F). We use the handle to do so.
Let 5 be the lift beginning at ¢ of {81, 52} where By, 5, are respectively the handle of F' and
F’ starting on d; and ds. Let 2(F) be the lift of $(F) which contains 3(1). This will be call
the handle process in the general set-up of Section 3.2.2.2.

Definition 1.2.23 (Noodle). A Noodle is an arc embedded in D,, going from dy to ds.

We construct a surface associated to N as follows:
E(N)={{z,y} € Cs.t. z,y e N},

and then we choose S(NN) to be the lift of S(V) which contains ¢.

1.2.3.3 Pairing between forks and noodles.

Let F be a fork, N be a noodle, ©(F) and 3(N) be the surfaces built from them respectively.

First let’s suppose (w.l.0.g.) that F' and N intersect transversely in some points 21, . .., z,
and F" and N intersect transversely in 2], ..., 2] such that z; and 2] are joint by a short arc
of N not containing any other intersection point. Surfaces $(F) and 2(N) do not intersect
necessarily because of the choice of the lift. But there exists a unique monomial m; ; = ¢®¢b
such that mi,ji(N) intersects $(F) at a point lying over {z;, z;}. Let € ; be the sign of the
intersection.
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Definition 1.2.24. We define the pairing as follows:
o
(N,F) =" cijmij.
i=1 j=1
To compute explicitly m; ; we define a path of C using composition of the following arcs:
e « from d; to the handle of I, oy from dy to the handle of F’,
e (3, from z to z; along T(F), B, from 2’ to z; along T'(F"),
e 71 from 2; to one of the d;’s in such a way that it doesn’t cross 27,

e 7, from zg to one of the d;’s in such a way that it doesn’t cross z;.

Then we define the loop §; ;:
0ij = {ar, aa {1, B2 H{m1, 72}
Let 3” be the lift of ¢; ; beginning at ¢. Then we have (see [Big0]):
mi; = ¢(0i;),
and [Big0, Claim 3.3]:

€i; = —mi;m;im;;(g=11t=1).
Bigelow’s proof of the faithfulness involves the following two lemmas.

Lemma 1.2.25 (Basic Lemma). If [o] lies in the kernel of the Bigelow Krammer-Lawrence
representation, then

(N,F) = (N,o(F))
for any fork F' and noodle N.

Lemma 1.2.26 (Key Lemma). Let N be a noodle and let F be a fork. Then (N, F) =0 if
and only if N and T'(F') do not intersect (up to isotopy).

1.2.3.4 Matrices for the BKL-representation

In order to compute the homology of C , and as we will need to compute it for another covering
of C, we need to deal with m1(C'). We give a presentation of it, according to [Big0].

For j =1,...,n, let (; be the loop based at d; and passing once counterclockwise around
p;. Let x; be the loop {(;,ds} of C. Let 7y be an arc from d; to dy and 7 from ds to d; such
that 77 is a simple closed curve oriented counterclockwise and enclosing no puncture points,
and let y be the loop {7, 72} of C. We define the set G:

G={z1,..., 2y}
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Now we define some relations, for j € {1,...,n}:

i = [, yT5y)

and for 1 < j <k <n:
Tik = [%’j,yiﬂky_l}

where the bracket refers to the commutator, and we define the set R = {r;; for 1 < j <k <

Proposition 1.2.27 ([Big0]). Let K be the Cayley Complex of (G|R). Then C' is homotopi-
cally equivalent to K. It follows that a presentation of m(C) is given by: (G|R).

From this presentation, Bigelow has computed Hg(é ). It leads to matrices of the Bigelow-
Krammer-Lawrence representation.
Theorem 1.2.28 ([Big0, Theorem 4.1]). Hy(C) is a free Z [q*, t*Y]-module of dimension

(Z) There is a basis:

{vjp:1<j<k<n}

on which the standard generator o; of B, acts as follows:

'Uj,k, i%{j—l,j,k,k}—l,k}
qUik +(¢* — Quij+ (1= qujp, i=37—1
Uz'(Ujk) _ Vj+1,ks ) Z :.] 7& k— 1
’ quji + (1 = Qvje +(¢* — Qtvig, i=k—1#]
Vs k+15 1=k
\ —tq*v; 1, 1=7=k—1

We will follow this procedure to build colored BKL-representation in Section 2.2, and to
obtain the matrices as well. We will construct a generalization of these representations in
Chapter 3, for which we will extend largely these objects to bigger m € N*, embedding them
in bigger modules.

1.3 Quantum Algebra and Braid representations
1.3.1 Braid group representation from quasi-triangular Hopf alge-
bras

In this section, we give an idea of how to get braid group representations from a special
algebraic structure, namely the quasi-triangular bialgebras. First we recall notations and
properties needed to define a bialgebra. This section is based on the book [Kas].
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1.3.1.1 Quasi triangular Hopf algebras

Definition 1.3.1 (Bialgebra). A bialgebra is a quintuple (H, pu,n, A, €) where (H, p,n) is an
algebra, (H, A €) is a coalgebra verifying the equivalent conditions:

e 4 and n are coalgebra-morphisms.

e A and e are algebra-morphisms.

Definition 1.3.2 (Hopf algebra). An endomorphism S of H is called an antipode for H if:

S*IdHZIdH*S:nOG.

Where x designates the convolution product, namely the following composition of morphisms:

frg HS5HoH 2 HoH S H

where f and g are endomorphisms of H.
A Hopf algebra is a bialgebra together with an antipode. A morphism of Hopf algebra is a
morphism between the underlying bialgebras commuting with the antipode.

Main examples of Hopf algebras consist in quantum groups. They come from a quantization
of the product of enveloping algebras of Lie algebras. The most famous is the quantization of
the envelloping algebra U(sl(2)). We give a first definition of it.

Definition 1.3.3 (U,s((2)). Let g be a complex parameter. We define U, = U,(sl(2)) as the
C-algebra generated by the four generators E, F, K, K~! together with relations:

KK '=K'K=1
KEK'=¢E, KFK ! =¢%F
K- K1

E,F] = .
£, ] q—qt

This algebra is Noetherian with no zero divisor. The set {E'FVK'}; jeniez is a basis of
U,. We endow U, with a coalgebra structure defining A and € as follows:

AE)=19F+E®K, A(F)=K'9@F+F®1
AK)=K®K, A(KY)Y=K1eK!
e(E)=¢F)=0, ¢(K)=¢K ') =1
and we define an antipode as follows:

S(E)=EK ' S(F)=-KF,S(K)=K ' S(K™') =K.

This Hopf algebra structure is neither commutative nor cocommutative, and quantum groups
constitute a family of nice examples of this kind.

We now state the fundamental result about the category of algebra representation of Uy,
namely the category of U,-module, in the generic case.
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Theorem 1.3.4 ([Kas, Theorem VII.2.2]). If q is not a root of unity, any finite-dimensional
Uy-module is semisimple.

In this section we define U,s!(2) as a C-algebra while in next Section 1.4 we will take care
of the ground ring to refine the algebra properties.

Quantum representations of braid groups are representations coming from inherent objects
of the category of modules over a quantum group. We now describe these objects, starting
with the notion of R-matrix in a general sense.

Definition 1.3.5. Let V' be a vector space. A linear automorphism ¢ of V. ® V is said to be
an R-matriz if it is a solution of the Yang Baxter equation

(C X Idv)(ldv X C)(C X Idv) = (Idv X C) (C X Idv)(IdV X C)
that holds in the automorphism group of VoV @ V.

For any vector space V, the flip 7y € Aut(V ® V) defined by 7(v1 ® v2) = v2 ® v yields
the most trivial R-matrix.

Finaly we reach the notion of quasi-triangular bialgebras that refers to bialgebras providing
R-matrices. The definition follows.

Definition 1.3.6. A bialgebra H is quasi triangular if there exists an invertible element R
of the algebra H ® H, called a universal R-matrix, such that for all x € H we have:

AP(r) = RA(x)R™*
where A? = 1y g o A, and such that the two relations below hold:
(A®Idy)(R) = Ri3Ra3
(Idp ® A)(R) = Ri3Ruy
where we used the following notations, if R =7 .5 ®@t;:

R23:Zl®3i®tiaR13:Zsi®1®ti7R12:ZSi®ti®l-

Such bialgebras produce solutions of the Yang-Baxter equation, using their modules as
follows.

Let V and W be two H-modules. We define what we call a braiding from the element R,
to be the following H-module isomorphism ¢y, between V @ W and W @ V:

cﬁw(v Rw) = Tyw(R(v @ w))

where v € V and w € W. The properties satisfied by R in H ® H imply several properties of
the braiding, one of them being what follows for U, V, W three H-modules:

(ctiw @ Idy)(Idy ® cfi ) (cfy @ Idw) = (Idw @ ) (e ® Idv) (Idy @ ciiyy).
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So that for U = V = W we have a solution of the Yang-Baxter equation.

The Drinfeld - Jimbo construction produces a quantum enveloping algebra which is braided
from any semi-simple Lie algebra. We just give an example coming from U,(sl(2)) in the case
if ¢ is a root of unity of order d odd. More precisely we define Uq to be the quotient of U,
by the ideal generated by the central elements: £, F? K¢ — 1. We get from Drinfled-Jimbo
construction that U, is a quasi-triangular Hopf algebra, with a universal R-matrix having the
following expression:

5 1 (q—q )" k(k—1)/2+2k(i—j)—2ij ok 7 k 1
D D EFK' @ FFK
0<i4,5,k<d—1 [ ]

where we used the quantum factorial defined by [k]! = [k] [k — 1] ---[1] and [k] = qqk:q_l :

1.3.1.2 Braid group and tangles representations

From quasi-triangular Hopf algebras, there is a natural construction of braid group represen-
tations.

Let V' be a vector space, ¢ a linear automorphism of V ® V', with n > 1 an integer. Then
for 1 <i < n —1 we define a linear automorphism ¢; of V" by:

c® Idv®(n—2) if 1=1
Ci = Idv@(ifl) XCc® Idv@(n—i—l) Zf l<i<n-—1
Idv@(n72) X c Zf 1=n

Proposition 1.3.7. Let ¢ € Aut(V ® V') be a solution of the Yang-Bazter equation. Then,
for any n > 0 there exists a unique group morphism p, : B, — Aut(V®") such that pt,(0;) = ¢;
fori=1,...,n—1.

Definition 1.3.8 (Tangles). A tangle with k inputs and | outputs is a finite system of disjoint
smoothly embedded oriented arcs and circles in R* x [0, 1] such that the endpoints of the arcs
are the points (1,0,0),...,(k,0,0) and (1,0,1),...,(1,0,1). The circles lie in R* x (0,1).

A tangle is framed if it is equipped with a non-singular normal vector field equal in the
endpoints of the arcs to the vector (0,—1,0).

Two (framed) (k,l)-tangles Ly and Lo are said to be isotopic if Ly may be smoothly
deformed into Ly staying in the class of (framed) (k,l)-tangles during the deformation.

Remark 1.3.9. Braids are special types of tangles. Namely: a braid of B, is a (n,n)-tangle
with no circle.

Definition 1.3.10 (Category of Tangles). The category of tangles T is the category whose
objects are non negative integers, and a morphism from k to l is a (k,l)-tangle. Let f : k — 1
and g : | — m, the morphism fg is represented by the tangle obtained by attaching f on the

top of g.
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Definition 1.3.11 (Category of colored tangles). Let C' be a category. A C-colored tangle is
a tangle where every component is equipped with an object of C'. More precisely, the category
of C-colored tangle Tc is the category whose objects are finite sequences (Vi,€1), ..., (Vin, €m)),
where Vi, ..., Vy, are objects of C' and €y, ..., €, € {+,—}. A morphism n — n' is an isotopy
type of a C-colored framed tangle such that n (resp. 1) is the sequence of colors and directions
of those tangles which hit the bottom (resp. top) boundary endpoints. (The sign + stands for
the downward direction, while the — the upward.)

This category is monoidal. The tensor product of two sequences n and n' is given by the
concatenation of sequences. The tensor product of two morphisms f and g is obtained by
placing the colored framed tangle representing f to the left of the one representing g.

Theorem 1.3.12 (Reshetikhin-Turaev functor, [R-T]). Let C be the category of U,sl(2)-
modules. There exists a monoidal functor RT between Tc and C.

The above theorem is loosely stated as one must refine the category of U,sl(2)-modules
before applying the construction for it to work. We will see cases of Usl(2)-modules categories
for which the theorem holds. Historically there are two U,sl(2)-modules category (for infinite
versions of U,sl(2)) for which this theorem holds: the semi-simple theory first introduced
in [R-T], and the non semi-simple one introduced for instance in [CGP2]. For a categorical
approach to the non semi-simple construction of a Reshetikhin-Turaev functor, see [DR], while
in this work we are interested in the concrete U,sl(2) case. This functor then also provides
braid representations as braids are a sub-category of tangles.

Proposition 1.3.13. The braid representations coming from the U,sl(2) R-matriz (Proposi-
tion 1.5.7) are restrictions of the functor RT to braids.

We will use the general term of quantum representations or U,sl(2)-representations of the
braid group in what follows to designate the representations built from the R7T-functor, or
equivalently by use of the R-matrix.

Remark 1.3.14 (Restriction to Ker FE and to weight spaces.). The above proposition states
that the braids act over tensor products of U,s((2)-modules as U,sl(2)-module morphisms by
use of the braiding. This has the two following consequences that we will use extensively in
what follows:

(Weight spaces) Let A € C. The restriction of a quantum representation to the U,sl(2)-submodule
defined by Ker(K — Ald) (corresponding to eigenvectors for the action of K and the
eigenvalue \) is a representation of the braid group. The elements of this submodule
will be designated by weight vectors of weight .

ighest weights e restriction ol a quantum representation to the U,sl(2)-submodule defined by Ker
(High ights) Th icti f i he U,s1(2)-submodule defined by Ker E

is a representation of the braid group. The elements of this submodule will be designated
by highest weight vectors.
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1.3.2 Category of Ufs[(Z)-modules: the ADO polynomial set-up

We present now a slightly modified version of the quantum enveloping algebra of s[(2), that
is presented in large details in [CGP1] for instance. From now on, let ¢ be a root of unity of
pair degree: i.e. such that ¢ = 1 for some integer r > 2.

1.3.2.1 The algebra U/sl(2)

Let U/'s[(2) be the C-algebra U, of Definition 1.3.3 improved with one more generator H, so
given by generators E, F, K, K, H and the relations from U, together with relations:

HK = KH, [H,E] =2FE, [H,F] = —2F.

The Hopf algebra structure of Ufs[@) comes from the one of U, extended by:
A(H)=H®1+1®H, e(H) =0, S(H)=—H.
Definition 1.3.15 (Ufﬁ[(?)). Ufs[(Q) is the Hopf algebra U;'sl(2) modulo the relations

Er=Fr=0.

Let V be a finite dimensional Ufﬁ[@)—module. An eigenvalue A € C of the action
H :V — V is called a weight of V' and the associated eigenspace is called a weight space.
We call V' a weight module if V' splits as a direct sum of weight spaces and if K acts as the
exponential of H on V, namely Kv = ¢*v if v is a vector of weight \.

Definition 1.3.16 (Ufs[(Q} braiding, [CGP1, Subsection 2.2]). Let € be the category of

finite dimensional weight Ufs[@)—modules, and let V and W be two elements of this category.
Let R be the R-matrixz defined by Ohtsuki in [Oht] with the expression that can be found in

[CGP1, Equation (5)]. It is not an element of Ufs[(Q) ®Uf§[(2) so it is not a universal
R-matriz, but it yields an operator on V@ W as follows:

H®H {1} nn 1) /2En Fn
Z K ®

®H s described for v and v two weight vectors of weights \ and N

where the action ¢
respectively as follows:

qH®H(U ® U,) — qA)\’U ® U/.
This way, R is a well defined linear map, and gives rise to a braiding:

VeWw — WeVv

VW vew e T(R(v® z))

where T is defined by T(v @ W) = w R v,
The above definition uses the following quantum numbers.

Definition 1.3.17. Forn € N:
{z}=q¢" —q¢ "% and {n}! = {n}{n—-1}---{1}
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1.3.2.2 Simple Ufs[(?)-modules

We focus on a special class of finite dimensional weight modules, the one we will use for
the quantum representations construction below. For each A € C there exists a unique
Ufﬁ[(?)—module V) which is r-dimensional and of highest weight A +r — 1. The module V)
has a basis {€},...,e} ,} whose action is given by

He}l=AN+r—1-2ie}, FE.e = fii = /\}eg\ L Fel=el.
{1y’

The module V), is called typical if A € (C\ Z)UrZ, atypical otherwise If V) is typical then
it is simple, and is generated (as a module) by any of the basis vectors e?. For an eigenvector
for the action of H (the e}’s for instance) we call weight its eigenvalue. One remarks from the
expression of the action that the weights decrease 2 by 2 from ej of weight A +r — 1, to e} ,
of weight A —r + 1 and so on, so that A is the “middle weight” of V.

Let V) be the module of “middle” weight A and of dimension r, for a A € C and
{ey,et,...,er |} its standard basis.

Definition 1.3.18. Let A and p be elements of C. We define the morphism R from V\ ®V,
to V, ® V\ as follows:
R()‘7 M) = CW\,V,,

This operator R used as an R-matrix, provides braid representations. In the following
sections, we focus on some special representations built from it.

1.3.2.3 Sub-space of sub-maximal weights

Let’s fix n to be an integer which will be in the following the number of strands of the braids.
Let A1,..., A\, be elements of C and let WM’ A — Span (f1, fo, .-, fn) be the subspace of
VAL = V,\1 -® V), spanned by {fi, fo, -+, fn}, where the f;’s are defined as follow:

f1—611®e ®603® - ey”

f2—€0 ®61 - Qey”

and so on, with:

fi=el e ®---Qe)---Qep.
These vectors are built as the tensor products of n — 1 maximal weight vectors plus one of
weight (“sub-maximal”) A + r — 3, namely e}, inserted on the i-th position of the tensor
product.
The vectors f;’s all have the same weight (eigenvalue regarding the action of H): > 1" (A +
r — 1) — 2. Then we call W, the subspace of “sub-maximal weight vectors”.

Remark 1.3.19. From Remark 1.3.14, the space W; is a sub-representation of the braid
group. This can be seen also directly from the expression of the R-matrix.
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The following remark describes the action of the R-matrix on the tensor product of two
weight vectors in all the cases we need.

Remark 1.3.20. Since E(eg) =0, if i + 7 < 1, then:
R(e; ®e;) = ¢"™®"21d@1d+ E® Fe; @ ¢;.

The sub-maximal weight vectors fulfill the conditions of this formula.

1.3.2.4 The ADO set-up for braid representations and knot invariants

The category € is a category of U,s[(2) modules for which the R7 functor is shown to work,
see [BCGP2|. Namely let 8 be a braid, and A, ..., A\, be complex parameters.

Remark 1.3.21 (ADO representations of the braid group). The restriction of the Reshetikhin-
Turaev functor to braid associates a morphism of Ufs[(Q)—modules:

RT(B) € Homgr, ) (Vs @+ @ Vi, Voerm@)(0) @+ * @ Voerm(s)(0n))

as typical and atypical modules are objects of %. In particular, it provides a representation
of 'PBn on EHdUH5[(2) (VM Q- V)\n).

Definition 1.3.22 (ADO polynomials, [ADO]). Let €' be the sub-category of € made of
typical modules. A modified version of the Reshetikhin-Turaev functor restricted to €' -colored
knots provides a knot invariants first introduced in [ADO], see [Ito1] for another reference.
This family of invariants is known as colored Alexander polynomials or ADO polynomials.

Remark 1.3.23. Since the braiding is a morphism of Ufs[(Q)—modules, it preserves weights,

see Remark 1.3.14. The latter guarantees that W, is a sub representation of PB,,.

Then, from now on we will study the action of braids over the sub-maximal weight space
Wi. Let’s call the braiding PRep,, (where n is still the number of strands), and briefly expose
this representation over PBy which will give an idea of the standard block of the matrices
associated to the standard generators in the general case.

Example 1.3.24 (Braiding for PB; in the sub-maximal weight basis).

PRepy(f1) = q(A1+r—1)(>\z+r—3)/2{1 —MIA+ q(/\1+r—3)()\2+7a_1)/2f2
= q()x1+r—1)(>\2+r—1)/2(q—(Ag—i-r—l){l _ Al}fl + q_(}\H_T_l)fz)

PR€p2<f2) _ q()\1+r71)()\2+r73)/2f1 _ q()q+r71)()\2+r71)/2q7()\1+r71)fl'

Where we have used the quantum brace defined as: {z} = ¢* — ¢~ *.

Now we can write this action with the basis {fi, fo}, and we get a matrix depending on \;
and Ay which will be the standard block used to construct our representation in the case of n
strands.

_(A1+7‘—1) 1 _)\ —(/\1+r—1)
PRep,({f1, fo}) = q¢WMtr=DQetr=1/2 (q q—(>\2+{r—1) 1} q ) )

= MFrD02+=1/2 Block (A, A)

The matrix named Block will be useful in the sequel.
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As PB,, is less convenient than B, because of its generators which are quite more compli-
cated, we will build the induced representation of the entire B,, in the next section.
1.3.2.5 Braid group representation

Definition 1.3.25. Let quant,, be the induced representation of By, over Ind(W:) = C [B,]®cips,]
W1, see Definition 1.2.2.

Remark 1.3.26. Let 7 € &,,, and W7 be the sub-maximal weight subspace of:
VT =V,

iy @ ® Vo

Then one can check that:

IndWy) = W™ =C[&,] @ Wi

Teen

The second equality is given by the natural isomorphism:
TR fir f]

where: \ \ \
= 607(1) R ® 617(1) R ® GOTW'

In this context, quant,,(o;), is the following morphism:

w - W ‘ '
TRV ((’L,Z + ].) O T) ® [Id®l_1 ® R()\Tfl(i), ATfl(i—i-l)) Y Id®n_1_2]1} '

Let’s look at the action of a generator o; for a certain ¢ over a vector of type 7 ® f; if f; is
different from f; and fi;;. Let’s consider here, to help the reader, the action of oy over a f;
with 7 > 2 so that the beginning of the expression of f; is f; = e) ® g ® - --. As we have:

[R(Ar-101)s A1) @ 1" e, @ g @ - - = g Mt D102 (g o).
The action of oy on the vector 7 ® f; is, by linearity:
quant,,(01)(7 ® f;) = AR (1 9)r @ f).

In order to normalize those actions, so to get entire identity blocks in the matrices, we are
going to modify a bit quant,, and to define the representation we will focus on in the sequel.

Definition 1.3.27. Let o; be the standard generator of B,, we define the representation
Quant,, of B, by defining Quant,(o;) as follows:

w —- W

Qua’ntn(g’b) : —()\7_71(1)4—7‘—1)()\7_,1(2)-1-7’—1)/

TRV — ¢ ? quant,, (0;)(T ® v)
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It is easy to verify that this modification of quant still defines a representation. Indeed,
the two new coefficients appearing, after the modification, in front of the action of o;0,,10;
and 0;,10;0;11 on a vector T ® v are respectively:

g to DOy D2 i e D O e TroD/2
Xq()‘((z‘+1,i+2)(i,i+1)r—1)(i)+T’1)()‘((i+1,i+2)(i,i+1)r—1)(i+1)+7’*1)/2
and
qo‘-r*l(z‘+1)+T—1)(>‘7*1(i+2)+7"_1)/2 X q(/\((¢+1,i+2)-r*1)(z‘)""T_1)()‘((¢+1,¢+2)-r*1)(i+1)+7"_1)/2

X q(A((i,i+1)(z‘+1,i+2)r—1)(z‘+1>‘H"_1)(/\((i,z'+1)<i+1,i+2)r—1>(i+2)+T—1)/2

Which both are equal to:

(/\-r*l(i)+ril)()‘r*1(i+1)+r71)/2 ()\-rfl(i+1)+7‘71)()‘7—*1(i+2)+r71)/2 ()“rfl(i)+r71)()‘7—*1(i+2)+r71)/2'

q q q

This equality guarantees that the modified representation still satisfies the braiding, and that
we still have a representation of B,,.

Remark 1.3.28 (Quadratic normalization and framing). The normalization coefficient applied
in Definition 1.3.26 is a quadratic term in the variables \;’s. It removes all the quadratic
terms in the expression of the matrix associated to a generator. In fact this term is necessary
to get representation of the framed braid group, see Definition 1.3.8. The quadratic terms
can be removed whenever one wants a representation of the unframed braid group B,. This
normalization will be always considered in this work, as we won’t be concerned by the framing.

We give one numerical example to illustrate and to give an idea of how matrices of the
induced representation are organized regarding permutations.

Numerical example. As an example, here is the action of the first generator of Bs. It
is built using SageMath and its given order over Bs. The order over &3 is the following:
0,(2,3),(1,2),(1,2,3),(1,3,2),(1,3) (with () designating the identity permutation), and the
vectors are ordered as follow: fl()7 f2o, f:,E), f1(2’3), ... and so on.

Using this basis, Quants(cy) is the matrix:

—s% +1
—s1

o
|
vl
M
coco

7S§+1 _

V)

|

w

—
[eNoleNoNoNeNoNoNeNoNoNeNoNa N e NoNe)

(el e e o Ne)

w0
(=)
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n
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o
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(Ai—1)

We used the following change of formal variables: s; = ¢~ that will be used in Section

2.1, and the important fact that ¢" = —1.

In Section 2.1 we prove the following theorem, see Theorem 2.1.1.

Theorem 1 (Theorem 2.1.1). This sub-mazimal weight representation of the braid group is
the Gassner representation.

1.3.3 Lawrence representations are contained in the non-semi sim-
ple quantum ones

In [Itol], it is shown that the BKL representation is a sub-representation of the quantum
representation obtained with the category of Ufs [(2)-modules.

Let ¢ be a 2r root of unity, and A a complex number such that {\ — i} # 0 for all i € Z.
Let V) be the corresponding typical module of middle weight A —r + 1 (V] is of maximal
weight \). We let ¢ be the representation of B, using the R-matrix coming with the category
€ of Ufs[(?)—modules.

: o; > ¢(Oz> — Id®(2—1) ® R(}\’ )\) ®Q Id@(n_i_l)‘

Let X} ,, be the sub-representation spanned by {ed @...@¢€} st i+ ... +1i, =m}.
From the previous sections, we remark that the space of sub-maximal weights is X, ;, and
that all the vectors of X, ,, have the same weight, more precisely nA — 2m, i.e. they lie
in Ker (H — (nA—2m)Id). Set Y  to be the space Ker £ N X, ,. Since B, acts by

Ufs[@)-morphism, Y, m is a B,-subrepresentation.

The BKL-like representation used in [Itol] are subrepresentations of Hm(@\; ,Z). The
BKL representations we have studied in detail are actually Hy(C),2,Z), and as we have seen
that forks define classes of this Z [q*!, t51]-module, we can define multiforks corresponding
to classes of Hm(a?/m, Z) in general. Here we used formal variables q and t in order not to
make the confusion with the ¢ and ¢ from the quantum side, and all homology modules are
locally finite chains homologies (Definition 5.1.1).

Definition 1.3.29 (Multi-fork, [Itol]). An m-multifork is an m-tuple of forks (see Definition
1.2.22) such that the set of tines and the set of handles are embedded (without crossing).

Let Enm = {(e1,...,en1) EN"L st e1+...4€,_1 =m}. Foreache in&,,, we associate
a multifork Fe = {F, ..., F,} called a standard multifork, and such that F; corresponds to
e; parallel forks going from the punctures p; and p;y1 directly without encircling any other
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puncture, see Figure 1.0.

(],, (]1 (16)

This definition will be generalized in Chapter 3.

We can associate to multiforks, in the spirit of what we did for forks, homology classes
in HYS (%, Z) (see Section 3.2.2.2 for an exhaustive construction, and Remark 5.1.3 for an
idea of why forks are cycles). If we set H,,,,, to be the subspace generated by all multiforks,
one can show that it generically admits the standard multiforks as a basis (this fact will be
largely detailed in Section 3.2.2.4). As H,, ,,, is invariant under the B,, action, we define it to
be the Lawrence’s representation Ly, ,,. In [Itol], the author defines the truncated Lawrence

representation as follows for the case of ¢ set to be a root of unity.

Suppose that —t is set to be the root of unity (% = e2™V=1I/N for an integer N. Set
Enzfx ={(e1,...,en-1) € Eum s.t. €; > N for some i} and H,{ym to be the subspace of H,,
spanned by {F, s.t. e € 2N}, Finally we set HY,, = Hpm/HLY,,. It is a fact that the
action L, ,,, behaves well with the quotient, so that the truncated Lawrence representation
are defined to be:

o By — GL(HY,,).

*1-module action.

After the specialization of t, what we get is a Z [q

The following theorem states that truncated Lawrence’s representation are of quantum
nature.

Theorem 1.3.30 ([Itol, Theorem 4.2]). For an n braid $ € B,, the following matrices are
equal:

(z)n,m(ﬁ)\Y = lﬁm(ﬁ)\q=C72>‘ , t=—(2

The above theorem is a consequence of [K2|, relating B,, representation over product of
quantum Verma modules (defined in the next section) and Lawrence’s homological represen-
tation. The case m = 2 of the latter theorem is detailed in [J-K], but in a slightly different
fork basis.
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1.4 Quantum algebra: ground ring, specialization and
integral versions

In this section we reconstruct the algebra U,s[(2) keeping track of the algebra structure.
Depending on what kind of ring we need to work with, the structure of the quantum algebra
can deeply change together with its different categories of modules. We will see how the ring
is important in order to specialize the theory to complex numbers for example, what kind
of genericity one has to restrict to by considering a large ring. This should emphasize the
interest to deal with integral versions (in a sense that will be defined) of the algebra, and lead
to different definitions of the latter.

1.4.1 Rational theory and specialization issues
The most generic definition of U,sl(2) is as a vector space over a rational field.

Definition 1.4.1. The algebra U,sl(2) is the algebra over Q(q) generated by elements E, F
and K*', satisfying the following relations:

KK'=K'K=1

KEK'=¢E, KFK'=¢?*F
K- Kt
g—q "
The definition generalizes to any field of characteristic 0 instead of Q, for example C, without
a deeply change of the theory, so that we will use Q or C.

[EvF]:

There is an adapted “Poincaré-Birkhoff- Witt” basis.
Proposition 1.4.2 ([Kas, Proposition IV.1.4]). As a Q(q) algebra, the following family:
{F'K’E“™ ,aeNa+neNbeZ}
is a basis of Uysl(2).
The finite dimensional theory of module is semi-simple.

Theorem 1.4.3 ([Kas]). Let C be the category made of U,sl(2) modules of finite dimension.
Then C is semi-simple. Its simple modules are called Sii for a choice of i+ € N. It is a highest
weight module of highest weight =q*. The latter means that the action of K is diagonalizable
and that there exists an eigenvector for the eigenvalue £q° over which the action of E is 0.

Remark 1.4.4 (Specialization issue). The process of specialization of the parameter ¢ is
algebraically the following. Let & € C be a complex number. By specialization of ¢ to the
parameter £ one considers the morphism:

Q(q

~—

eval :

— C
=

(=)
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and the following complex vector space:
Ue = C ®@cpar Uysl(2).

We make the remark here that the morphism ewval is well defined only if £ is a transcendental
number. This is the first example of issue one encounter while working with Q(¢q) as ground
ring. More precisely, For the purpose of passing from the R7T functor to invariants of 3
dimensional manifolds, one has to deal with ¢ being a root of unity, for which the ground
ring Q(q) is not appropriate.

The above remark justifies the definition of integral versions of U,sl(2), the aim of next
subsection.

1.4.2 Integral versions of U,sl(2)

Definition 1.4.5 (Integral version, [C-P, § 9.2]). Let R = Z[q*!] be the ring of Laurent
polynomials in the single variable g. An integral version of U,sl(2) is an R-subalgebra Ugr of
U,sl(2) such that the natural map:

Ur ®r Q(q) — Uysl(2)

is an isomorphism of Q(q) algebras.
Let £ € C* then the specialization of Ur to & means the following vector space:

U§ =C Reval UR
One can replace C by Q(€) or even Z [€FY] if necessary.

There exists different integral versions of Uysl(2) in the literature that provide highly
different representation theories, and specializations. from now on and until the end of this
section, R = Z[¢*'].

Definition 1.4.6 (Kac - De Concini - Procesi version, [DCP]). Let UX°sl(2) be the R-
subalgebra of U,sl(2) generated by E, F and K*'. It is an integral version of U,sl(2) called
the Kac - De Concini - Procesi version of U,sl(2).

Theorem 1.4.7. The algebra UqKCP5[(2) has the following set as basis over R.:

K—-—K1
(=)
q9—4q a,deEN,beZ

Theorem 1.4.8 ([Bas, Theorem 2.9]). Let & = e*™/? and, Ue be the specialized UX“Fsl(2).
The center of Ug is the following:

Z(Uf) = @(£)<Ep7 P, Kp?Q>

where:
¢ —q 'K

O=FE +
(q—q1)?

is the Casimir element of U,s((2).
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Definition 1.4.9 (Lusztig Version, [Lus2|, [C-P, § 9.3]). Let n € N*, the divided powers of
E and F are the following elements of U,s1(2):

E
EMW = — and F = —
[n]! [n]!

where [n]! = [n]---[1], and [n] = q;__qq:l . Let Ulsl(2) be the R-subalgebra of Uysl(2) generated

by B, F™ for n € N* and K*'. Then, Uqu[(2) is an integral version for U,sl(2) called the
Lusztig version of U,sl(2).

Proposition 1.4.10 ([C-P, Proposition 9.3.3]). The algebra Ulsl(2) admits the following set

as an R-basis:
ULsi(2) =R <F(“)Kb { K, } E(d)>
n a,d,ceN,beZ

where:

|: K,C :| B f[ ch—i-l—s o K—lqs—l—c
" s=1 qS a q*S ‘

Proposition 1.4.11 ([C-P, § 9.3]). Let £ = ¢*™/? and, U be the specialized UFs((2). Then:
o« EP=FP =

o KP? is central, while K*" = 1.

For a classification of finite dimensional modules of UFsl(2) see [BFGT].

Proposition 1.4.12 ([Len]). The unrolled quantum group Ufﬁ[(?) is embedded inside the
Lusztig version Uls((2).

1.4.3 Half-Lusztig version

In this section, we define an integral version for U,s[(2) that will be central in Chapter 3.
This integral version is similiar to the one introduced by Lusztig and presented in Definition
1.4.9. The difference is that we consider only the divided powers of F' as generators, not those
of E. This version is introduced in [Hab| and [J-K] (with subtle differences in the definitions
of divided powers for F'). We follow the one of [J-K], so that we first define their divided
powers, presenting a minor difference from the original ones of Lusztig. Let:

—1\n
[,

be the element of U,s((2). The ring R is still the ring of integral Laurent polynomials in the
variable q.
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L
Definition 1.4.13 (Half Lusztig algebra, [Hab), [J-K]). Let U sl(2) be the R-subalgebra of
U,sl(2) generated by E, K*' and F™ forn € N*. We call it a half-Lusztig version of U,sl(2),
the word half to illustrate that we consider only half of divided powers as generators.

L
Remark 1.4.14 (Relations in Ugsl(2), [J-K, (16) (17)]). The relations among generators
involving divided powers are the following;:

KF(n)K—l _ q—QnF(n)

(B, F0"D] = PO (K — "K ') and F"FM™ = { " Zm } Flm)
q

where { " —;m } = % The other relations are the one from Definition 1.3.3.
q’ q’
q

The coproduct is given by:

AK)=K®K,ANE)=E®K+1®E,

A(FM) = Z g 1N I pU) @ p=),

=0
L
Proposition 1.4.15. The algebra U sl(2) admits the following set as an R-basis:

{K'E"F™. 1 € Z,m,n € N}.

1.4.4 Verma modules and braiding

Now we define a special family of universal objects in the category of U,s[(2)-modules, we

L
express their presentation in the special case of Ugsl(2) and we give a braiding for this
family of modules. Namely, the Verma modules are infinite dimensional modules which have
a universal (among quantum groups) definition. We translate this definition in the case of
L

the integral version Ug s[(2).

Definition 1.4.16 (Universal integral Verma modules, [C-P, § 10.1.A]). Let U be an integral
version of Uysl(2) and s be a variable. The Verma module V* is the infinite U-module defined
as follows:

vi=(Uez[s) /1

where L is the left ideal generated by E and K — sl.

L
In [J-K], the authors give an explicit presentation of the integral Verma-module of Uz s((2).
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L
Definition 1.4.17 (Verma modules for U sl(2), [J-K, (18)]). Let V* be the Verma module of
L
UZsl(2). It is the infinite Z [qF', st1]-module, generated by vectors {vg, vy ...}, and endowed
L

with an action of U2 sl(2), generators acting as follows:

c — eq " 2q). Cs = 1)
K -vj=sq¢ “vj_ and E -v; = vj_4

. n—1
F(")vj = <{ n—;g } H sq F T — slqj+k> Vjtn-

4 k=0
Remark 1.4.18. Some remarks about notations.

e By specializing s = ¢, one recognizes the Verma module of highest weight a often
presented like this in the literature.

e The way of defining the universal Verma module in Definition 1.4.16 is to put the highest
weight inside the ring action, not seeing it as a parameter.

Definition 1.4.19 (R-matrix, [J-K, (21)]). Let s = ¢® , t = ¢*. The operator ¢"®"/? is the
following:

Heomp . VROVH — VS@W/ '

q : v; @ v q(a72z)(a 72]),Ui ® v;

We define the following R-matriz:

R: qH®H/ZZq%E” ® F™

n=0

which will be well defined as an operator on Verma modules, see the following proposition.

L
Proposition 1.4.20 ([J-K, Theorem 7]). Let V* and V* be Verma modules of U s1(2). Let
R be the following operators:

R:¢*/?ToR
L

where T is the twist defined by T'(v @ w) = w @ v. Then R provides a braiding for Ui sl(2)
integral Verma modules.
Remark 1.4.21. Again, we have normalized the action by the factor ¢~**'/2 that corresponds
to a framing information, as we are considering unframed braids, see Remark 1.3.27.

Corollary 1.4.22 ([J-K, Theorem 7]). The morphism:

CiB — End , (V")
Q: CRUZsI(2) ‘
O-’L — 1®’L*1 ® R ®1®n7172

is an R-algebra morphism. It provides a representation of B, such that its action commutes
L
with the one of U s1(2).
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Remark 1.4.23. One can consider a braid action over V*1 ® - - - ® V** so that the morphism
@ is well defined but becomes multiplicative (i.e. algebra morphism) only when restricted
to the pure braid group PB,,. Then one can consider the induced representation of B, see
Definition 1.2.2, or restrict to a representation of the colored braid groupoid.

Remark 1.4.24. Two remarks from Remark 1.3.14:

e Forr € N, the subspace W, , = Ker(K —s"¢ ") of (V*)®" provides a sub-representation
of B,,.

e The subspace Y, , = W, , N Ker E C W,,, provides a sub-representation of B,

Theorem 1.4.25 (Irreducibility of highest weight modules, [J-K, Theorem 21]). The B,,-
representations Y, . are irreducible over the fraction field Q(q, s).
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Chapter 2

Homological and quantum
representations: first strata

The representations of B,, over typical modules of Ufs[@), as well as the one over Verma
modules of U,sl(2), are graded by weight of vectors see Sections 1.3.2 and 1.4.4. Both gradings
have the same first strata that we investigate concretely in this chapter. In Section 2.1 we
show that the Gassner representation is the sub-representation formed by the sub-maximal
weight vectors, while in Section 2.2 we build a colored version of the BKL representation that
corresponds to vectors of sub-sub-maximal weights.

In the non semi-simple TQFT’s built in [BCGP2]|, representations of the mapping class
groups live among the category of graded vector spaces. Again, the representation is graded
so that it is natural to look at the first strata trying to find homological standard construction.
In Section 2.3 we recognize representation of homological nature in the first stratum of the
quantum non semi-simple representation of the mapping class group M (0,4). The latter leads
to the faithfulness of the representation.

2.1 The non semi-simple TQFT’s contain the Gassner
representations.

In this section, we will show that the Gassner representation is contained in the non semi-
simple TQFT’s representation. More precisely, the representation Gassner described in Section
1.2.2 is algebraically the same as the representation Quant built in Section 1.3, for any number
n of strands for B,.

We recall the context of both representations, namely:

e from Section 1.2.2 that Gassner,, is a representation of B,,:

Gassner,, : B, — End (C[&,] ® Vect(g1,...,9n))

involving formal variables 1, ..., %,.
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e from Section 1.3 that Quant,, is a representation of B,,:
Quant,, : B, — End (C[S,]) ® Vect(fi,..., fn) =W)
involving formal variables Ay, ..., \,.

In order to relate the representations Quant and Gassner, we need first to connect variables.
To do so, we use new “colors” si,...,s, which are related to the \;’s and the ¢;’s as follows:

S; = \/t_’z = qi()\iil) ’ Vi.

Then let ® be the following morphism relating both representations :

W = C[&,)®Vect(gr,...,gn)
1 2

T®fi = ()T ey

g=i o1 1()

where we used the basis 7 ® f; for W and 7 ® g; for C[S,] ® C", 7 being a permutation
in G,.

Theorem 2.1.1. Gassner representations are of quantum type, namely the morphism o
conjugates Quant to Gassner, in the sense that for all n € N, for all a € B, and for all
w € W we have the equality:

Gassner,(«) o ®(w) = ¢ o Quant,,(«)(w)

Proof. Let o be a standard generator of B,,, 7 € G,, and f; so that 7 ® f; to be an element
of the basis of W mentioned above.

Remark that if ¢ is different from k£ and £+ 1 then, as Quant and Gassner both act by identity
over T ® f;, the equality is trivial.

e (Case 1: i = k. Let’s compute the two sides of the commutation equality. We begin
with ® o Quant,, (ox) (T ® fi):

Quant,, (o) (T ® fi) = (1 = s7109) (k. k + D)7 @ fi) = s7=1000) (B, b + 1T @ fiei1)

Then, the composition by ® gives:

@0 Quant, (o) @ fi) = @ (1= s2)) (k. + 17 @ fi) = se1gn (B, K+ D)7 @ fir))
= A- (k7k+1)7_®gk+B (kak—i_l)T@gk-‘rl
where: )
1 — S —1
A= (D1 = 52 y)
) Hj:k 87—71(.7‘)
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&2
1 s-r—l(k)

B = —(-1 k+18 -1 T
( ) (k41 zfl(k) | J Sr=1(j)
1—
= (=1)Fs2, i)
T1(k+1) Hj:k S,—1(j

Now we compute Gassner, (o) o ®(7 ® fi):
2

Gassner, (o) o ®(T® fr) = (-ka Gassner, (o) (T ® g)

H?zk;rl(j)

1757__1

= (Vs (1 s (b k4 Dr @ g,
+87 1y (B kE+ )T ® 9k+1>

= & o Quant, (ox)(T ® fr).

The last equality comes from the expression of ® o Quant,(0%)(7 ® fi) obtained above,
and provides the equality we want.

e Case 2: i =k + 1. We begin with the computation of ® o Quant,,(o4)(7T ® fri1):

® o Quant, (04)(T ® fur1) = P (=sr(k, k+ 1T ® fi)
1—s2 1
= (D" Stk k+ )T @ g

g i=k Sr=1(j)
= (—1)k+11—[n‘r7¢(/€, k+ 1)7’ &® gk

j=k+1 57 =1(j)

Now we compute Gassner,(oy) o ®(7 ® fri1):

1—s2
Gassner,(0;) o (7 ® fry1) = Gassner,(o}) ((—1)’”1&7 ® fk>

n
Hj:kJrl Sr=1(4)

1—8271
= ()" g,
( ) | N Sr=1() g

= & o Quant,(0x)(T ® fri1)

The last equality coming from the expression of ® o Quant,,(04)(T ® fr11) obtained
above, and provides the equality we want.

We have proved that for any generator oy of B, its representation by Quant, and by
Gassner,, are conjugated by @, as the equality of the proposition holds for all the basis vectors
of W. As Quant,, and Gassner,, are representations, the theorem is proved for all braids. [

2.2 Colored BKL representations

In this section, we construct BKL-like homological representations of braid groups, called
colored BKL representations. We follow the construction of [K-T] and [Big0] that inspires a
generalization of it. We follow ideas of [Big0] to compute the matrices of these representations.
This construction corresponds to the level » = 2 of the one presented in Chapter 3, Section 3.2.
Although the obtained representations are the same, the following construction is different: it
involves Fox calculus for the computation of the local system, and uses a pairing to compute
matrices.
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2.2.1 Construction and Faithfulness

We recall from Section 1.2.3 that C' designates the configuration space of unordered pairs of
points of D,,, we note {z,y} an element of C' ({z,y} = {y,z}), and ¢ = {d;, d>} a base point
of C' with the d;’s lying in the boundary of D,,. The difference with Section 1.2.3, is that
we keep all n variables corresponding to the meridians {{z1, 22} s.t. z; = p;} (generators of
H,(C)) in the abelianized local system as follows.

Definition 2.2.1. We consider the Hurewicz morphism:

Hurewicz : m(C) = Hi(C)=Z"®Z = (1) @+ (qn) (1),

and we denote by C the covering corresponding to the kernel of this map, namely
the mazximal abelian cover. Now Hy(C) is a Z [qfd, e ffl,til} over which PB, acts as
7 [qfd, R til} -module automorphisms. This action is the so called colored BKL repre-
sentation.

We define invariants w; of homotopy classes of loops in C for all i € {1,...,n} and for
the two cases of a loop £ = {&,&} of C:

o If & and & both are loops, then we define w;(§) = w;(&;) + w;(&2) where w;(&;) is the
winding number around the puncture p; of a loop of D,,.

e For the case where £ and & permute base points we define w;(§) = w;(£1&2) to be the
winding number around the puncture p; of the loop & &.

Let also u be the same invariant as in Section 1.2.3, namely the index (speaking of a loop
of S') of the square of the following application:

I — St
E1(s)—=&a(s)
5 7 G )-60)]

These invariants can equivalently be defined as follows:

1 dz dz

1 dz
u(§) = — —
T Jea—y <

and:

The map:

is a surjective group homomorphism from 7 (C) to the free abelian group with (n + 1)

generators ¢i, . .., qn, t. B
Then C — C' is the covering map corresponding to the kernel of ¢, and H = Héf (C,Z) a
module over R =Z [¢i", ..., ¢F", t*!], once we choose a lift & of the base point c.
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We recall that if f is a self-homeomorphism of D,,, it induces a homeomorphism f C=C
by:
Tz, y}) ={f(@), f(v)} (2.1)

Note that f (c) = c as d; and dy are picked in the boundary of D,,. We define the induced
automorphism fx of m1(C, c). Again, the following holds.

Lemma 2.2.2. Let f be a self-diffeomorphism not permuting punctures. Then ¢ o fu = ¢.

Proof. The proof is the same as Lemma 1.2.20. Here we need that f does not permute
the punctures, which is induced by the condition that the diffeomorphism is the identity in
homology. Otherwise, a small circle encircling a puncture moved by f will count +1 for a
different winding number before and after the application of f.

O

This lemma implies that, in the case where f does not permute punctures, f lifts uniquely to
amap f: C' — C fixing any lift of ¢, and that f commutes with covering deck-transformations.
Therefore it induces an R-linear automorphism f, of H.

Definition 2.2.3 (Colored BKL representation). The colored Bigelow-Krammer-Lawrence
representation 1s:
PB, — A]gt(’H) . 1= [

where PB, refers to the pure mapping class group of the punctured disk, which corresponds
exactly to homeomorphisms that fix the punctures pointwise.

What follows immediately, is that by specializing every variables ¢; to the same variable ¢
we obtain the BKL representation of PB,, as a subgroup of B,, so that the following holds.

Proposition 2.2.4. The colored BKL representation of PB,, is faithful

2.2.2 Pairing between forks and noodles

Using notations of Section 1.2.3, let F be a fork and N a noodle, and let $(F) and S(N) the
associated surfaces of C.

Suppose that T(F) and N intersect transversely in some points z1,..., 2, and T(F")
and N intersect transversely in 21, ..., 2] such that z; and 2] are joint by a short piece of

N not containing any other intersection point. Surfaces i(F ) and i(N ) do not intersect
necessarily because of the choice of the lift, but there exists a unique monomial m,; =

| J P q}:’“(&’j)t“i’f such that mi,ji(N) intersects S(F) at a point lying over {z;, z;}. Let
€;,; be the sign of the intersection. We define the pairing as follows:

(NJFY =) e may. (2.2)

i=1 j=1
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There is again a practical way to compute this pairing. To compute m; ; we stick with the
path ¢; ; defined in Section 1.2.3, and we let d; ; be the lift of 9, ; beginning at ¢. This path

goes first from @ to S(F) then to the lift of {2, i} lying over X(F') Nm; ;% (N), so that it
ends in m; ;¢. It is a path from ¢ to m, ;¢. Then we have:

mi; = ¢(di;),
and
€ij = _(_1)Ui,i+uj,j+ui,j

as the intersection sign is computable in C' (does not depend on which covering one lifts the
surfaces to), it is the same as for BKL representations, see [Big0, Equation (1)].

2.2.3 Matrices for colored BKL representations
Inspired by Part 4 of [Big0] we give explicit matrices for colored BKL representations.
Proposition 2.2.5. H is a free R-module. It has a basis:

{v:1<j<k<n)

The group B, acts on H ® R [S,] by the induced action from PB,. We give the action of the
standard generators o; on H® 1, let 7 = (i,i+ 1).

(Uj,k®7—7 Zg{]_lujakak_luk}
Git1Vip @ T + (¢ — )iy @ T+ (1 — ¢)vjp @ 7, =51
(2 KT i=j#Fk-1
: ) 1) = 7+1.k y ; i
7ilvsk®1) Q10 O T+ (1 = qis)Vjp @ 7 + (¢7y — G )tvip @7, i=k—1#]
Vjk+1 @ T, i=k
| —tqi 0k T, i=j=k—1

Proof. We begin with recalling Proposition 1.2.27, and the Cayley complex K of the presen-
tation (G|R), which is homotopy equivalent to C.

For j =1,...,n, we let z; be the loop {(;,d>} of C' and y be the loop {m72} of C. The
set G was defined as follows:

G={1,..., 2y}
The set of relations was R = {r;; for 1 <j <k <n}, with for j € {1,...,n}:

rig =[5, y259]
and for 1 <j <k <n:
rik = [T, yrry ]
Now we can compute H using the Fox derivatives (see Definition 1.2.4). We let C and Cj

be the free R-modules with basis {e, : g € G} and {f, : r € R} respectively. For any word in
G, we define [w] € Cy according to these rules:
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1] = 0
[gw] = ¢4+ ¢(g) [w]
g7 w] = é(g9) " ([w] —eg)

for g € G. Then Hy(C) is the kernel of the map 0 : Cy — C} defined by 9f, = [r].
The computation gives:
of, { (gt + (X = )[z;] + (¢ = DIyl) if r=ry;
(1= a)lz;] + (1 —aq)(q; — Dyl + (g — Dlw] i r=rjp

If we restrict the morphism to the space Vect(f;;, fix, frx), we get the matrix:

(1 —t)(g;t +1) (1= q) 0
(¢ =Dlgt +1) (T=ar)(g; =1) (g — Dt +1)
0 t(g; = 1) (1—1)(gst +1)

which corresponds to the only non-vanishing blocks of the application 9. Each block has a
rank one kernel generated by the vector:

vig = —(1 = q)(qt + 1) f5; + (1 = t)(qut + 1)(g;t + 1) fjx — t(g5 — 1) (gt + 1) fron

so that we get a basis of Hy(C), namely {v;;: 1 <j <k <n}.

Now a nice way to compute the matrices for the action of oy, is to find forks F}; which
correspond to the vector v;x, and to use the pairing with some noodles to get the expression
of vectors in the fork basis. In what follows we still abusively use I’ to designate both the
fork and the associated homology class of X(F').

Let’s fix d; and ds lying in the lower half plane of the boundary of D,,.

Definition 2.2.6 (Standard fork). For each 1 < j < k < n, let Fj; be the fork that lies
entirely in the lower half of D,, such that the endpoints of T'(F} ) are the punctures p; and py,
we usually call it a standard fork.

Remark 2.2.7. There exists A € R such that for all j,k € {1,...,n}:
Fj,k = >\Uj,k

(in terms of homology classes). The proof of this fact is exactly the same as the one for the
unicolored version, see [Big0] proof of Theorem 4.1. The latter is done remarking that it is
sufficient to consider the homology module restricted to the disk containing F} ;, its endpoints,
and no other puncture.

By Remark 2.2.7, we compute the braid action over standard forks. There are cases where
0;(Fj ) is directly a standard fork, namely:

. Zg{j_lvjvk_lﬂk}
e i=j5#k—1
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o | =Fk

In the case i = j = k — 1, the fork o;(F};) has the same tine edge as Fj; with opposite

orientation:
Dk D
oi(Fjx) =

where in red is represented the handle, and in black the tine. The handle joins the boundary
in d; outside the parenthesis. It follows that it represents the same surface in C' as Fj; with
opposite orientation. Then the classes in C differ by a covering transformation. We get
that o;(vjx) = —tq?vj7k. The precise computation is made in Chapter 3, in Example 3.2.20,
using the handle rule introduced in Remark 3.2.19 that deals with a change of handle. The
remaining cases are ¢t = j — 1 and ¢+ = k — 1 # j. The following claim restricts the linear
combination, and is proved exactly the same way as Claim 4.2 of [Big0]:

Claim 2.2.8 ([Big0, Claim 4.2]). 0;(v;x) is a linear combination of vy with j', k" € {i,i +
L, j,k}

In the case ¢ = j — 1 for instance, this claim implies that there exists A, B,C' € R s.t. :
0i(Fjr) = AF;; + BF;, + CF;,

To get A, B,C we pair with noodles. As it only depends on homological class of the
surface associated to fork, by pairing some appropriate noodles with the studied forks in
one hand and with the standard fork involved in its decomposition on the other, we are able
to compute the coefficients of the linear combination. In Example 2.2.9, we perform this
computation in one of the two remaining cases.

Example 2.2.9. Let I be the fork corresponding to the image of F54 after applying the
homeomorphism corresponding to the generator oy of B,,. Considering the Claim 2.2.8 we can
restrict ourselves to By and the study of D, with only four punctures. This example is enough
to deduce the general expression of the action of o; on the vector v, in the case i = j — 1,
which is one of the two remaining cases not entirely treated in the proof of Proposition 2.2.5.

First we use Claim 2.2.8 to deduce that the class in Hg(é ) associated to F has a linear
decomposition in terms of standard forks F} o, F1 4 and F, 4. We use the following notations:

F=AF 9+ BF, 4+ CFy4

where A, B,C € R are the coefficients we are looking for. We compute A, B, C using the
pairing 2.2.

Remark 2.2.10. In order to compute invariants of loops d; ;’s (see subsection 2.2.2 and
Definition 1.2.24), it is useful to draw both paths (&1, &2) composing it to see immediately the
value of the invariants w; but for the last invariant v the parametrization is crucial, so we
need to think about the movie of the loop. We draw some in Figure 2.2.
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Let N; be the noodle starting at d; and passing once clockwise around the puncture p;
before coming back to ds. We get the easy following computation of the pairing with standard
forks:

Remark 2.2.11.

(N3, Fyp) = lflt—l_t—l-{-l—i—qi ifj<i<k
0 otherwise

Similarly we compute:
(N, F) = —ig
<]V47 F) = q;ltil.

We detail the computation of the pairing of F' with N3 (one can realize that it involves
exactly the same paths that for (N;, F}j ;) above with j < i < k). The situation is depicted in
Figure 2.1.

D4

p1

Figure 2.1 — Intersection of fork F' with noodle Nj.

F and N3 have two intersection points, the pairing involves four terms:
o for 0,1 we get my; = qglt_l so that u;; = —1 and that ¢ ; = 1,

o for (52,2 we get Ma2 = 43 SO that U222 = 0 and that €11 = —1,
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e for 0,5 we get my2 =1 so that u; o = 0 and that )5 = —(—1)"1Tu22tu2 = 1
o for ;5 we get mo; = ¢! so that us; = —1 and that eg; = —(—1)urtuz2tuz: = 1,

Beside 0, that is trivial, we draw 0,1, d22 and d2; in Figure 2.2 from which above
computations are immediate. Finally:

(N3, F) = g5t —t7" + 1+ g5,

Figure 2.2 — 611,022 and a5

Replacing the computations above in the expression:
(N, F) = A(Nj, Fra2) + B(N;, F14) + C(Nj, Foy)

with ¢ = 1 we get the condition:
A+B=¢

and with 7 = 3:
B+C=1.

We need one more condition. We obtain it by pairing with the noodle N, 3 defined as the
noodle starting at d; and running around the punctures ps and ps before coming back to ds
(see Figure 2.3, noodle oriented from left to right).

We get the pairings:

o (Nos, F12) = (qugs) 't 71,
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P4
»7®  \p.® ¢ o

dy dy

Figure 2.3 — Noodle Ny 3.

o <N2,3; F1,4> = (Q2Q3)71t*1 —t7 1 — qogs,
o (Na3, Fou) = —Gags,
o (Nog, F) = g5 't — qot ™ + ¢o — g3 = @2(1 — @3) (g5 't " + 1) .

By identification, we finally obtain:
A=¢@ —q,B=q¢,C=1—q.
O

Proposition 2.2.5 allows computation of matrices. The action described in the proposition
is not multiplicative as the permutation induced by a braid shuffles the punctures and
the corresponding variables in the action. In Chapter 3, Sections 3.2.2.3 and 3.2.2.4, we
give homological tools that simplifies the computation of matrices and recovers the above
proposition.

We end this section by a computational approach to these matrices. Let BK L;(q,t) be
the matrix representing the action of ¢; in the (unicolored) Bigelow-Krammer-Lawrence
representation written in the basis {v;;} using the lexicographic order. See [Big0] Section 4
or Theorem 1.2.28. It has entries in Z [¢*!, tF1].

Then it’s a basic matrix computation that verifies the following remark.

Remark 2.2.12. Let ¢q,...,q, be variables. Then:
BKLZ‘(QHJ, t)BKLj(Qj+1, t) = BKLj((]j+1, t)BKLz(qH_l, t) fOI‘ |Z — ]| Z 2
BKL;it1(¢is1,t)BKLi(¢is2,t) BK Liy1(qiy2,t) = BKLi(Giy2,t) BK Li1(giy2,t) BKLi(giy1,1t).

One can check this by a straightforward matrix computation.
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Now we can define the colored BKL matrix associated to a braid.

Definition 2.2.13. Let « be a braid having the following word decomposition in the standard
generators: o = Hf;zl o;™ where s,, are signs. Let j,, be the index of the “ under ” strand at
the m’th crossing in «, braids read from right to left. Let the matriz cBK L(a) associated to

the braid o be: .

¢BKL(a) := [[ BKLi, (gj,+1.t)" (2.3)

m=1

Remark 2.2.12 shows that cBK L is a well defined map between the braid group and the
matrix group, but it is not multiplicative. For pure braids, cBK L becomes a homomorphism
and what we get is a representation of PB,:

+1 +1
pir. TBn = Gl (Zla- - a1
o — c¢BKL(a).

Remark 2.2.12 is a computational proof that this is a representation, i.e. that it satisfies
braid relations. From Proposition 2.2.5 we remark that it is the colored BKL representation,
corresponding to the initial homological definition (Proposition 2.2.5). This is remarking
that the only variable involved in the action of o; in Proposition 2.2.5 corresponds to the
underpassing strand. Specializing all ¢;’s to a single variable ¢ recovers the unicolored
BKL-representations.

Remark 2.2.14. In Section 1.2.2, we have presented a construction of the Gassner represen-
tation as a generalization of the Burau representation. Namely we used the standard Burau
block of matrix but one has to use the variable t; if the strand ¢ is passing above, i.e. the
coloring follows strands. Here the conclusion is the same: the colored BKL representation
uses the BKL standard block but with formal variables following the index of the strands (it
is clear in Formula 2.3).

2.2.4 Colored BKL in the general framework.

The colored BKL representations of the pure braid group are a colored generalization of
the BKL representation involving n 4+ 1 formal variables instead of two. They are faithful
([Kral], [Big0]) and known to be quantum representations of the braid group over sub-sub-
maximal weight sub-modules from [K1, Theorem 3.1]. In Chapter 3 we will generalize these
representations, recovering them as sub representations of larger homological representations.
We will also recover the property that they are quantum representations. Namely, the colored
BKL representation are sub representations of the homological action of the braid group
over H™ ~ defined in Section 3.2.5, for r = 2. By Theorem 5, they are finite dimensional
sub representations of the product of Uysl(2) Verma modules. We also give conditions for
(generalized) forks to be a basis of the entire homological module in Corollary 3.2.29.
Although they are recovered by the homological representations of Chapter 3, in this
section we had a slightly different approach. We built the local system using a Cayley complex
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homotopically equivalent to the corresponding covering, and we used Fox calculus to find basis
vectors of the homology modules. It is well known that Gassner (and Burau) representations
constitute the first stratum of the Enright representations (Remark 1.2.9), the first stratum
of the Lawrence representation, and the first stratum of a family of quantum representation
(Section 2.1.1). As the colored BKL representations are the second stratum of the quantum
family and of Lawrence’s representations, one would ask if the second stratum of the Enright
representations contains the colored BKL representation.

Open Question. Do Enright representations recover colored BKL representations?

We will generalize this question at the end of Chapter 3, involving all strata of the three
families: namely Enright, homological (Lawrence) and quantum representations. We mention
this question here in the precise case of colored BKL as the Fox calculus approach may
be more convenient to deal with Enright representations that are defined from Fox higher
derivatives.

2.3 Non semi-simple representations of )/(0,4)

In this section, we build the non semi-simple TQFT’s representations of M (0,4) (the mapping
class group of the four times punctured sphere using a precise basis). Then we state how they
contain the hyperelliptic representations of M (0,4) presented in Example 1.1.6. This leads to
the faithfulness of the representation.

2.3.1 Recalls on representation of PSL(2,7)

We consider the three following presentations of groups:
Gy = (a,b | aba = bab , (aba)* =1)
Gy=(s,t]|s*=t>,t"=1)

H={(st|s*=t"=1)

and let f be the following morphism:

G, SL(2,7)

with:

Then f is a homomorphism.
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Fact 2.3.1. o The groups G1 and Gy are isomorphic, up to the following inverse subsitu-
tions:
s=ab,t=aba anda=s't,b=1t"1s

we call it G from now on. Moreover the group G is isomorphic to the quotient of the
braid group Bs by the central subgroup generated by (o10907)%.

e The group H is isomorphic to the quotient of G by the group generated by s* = t2, so
that it is isomorphic to the quotient of Bs by its central subgroup Z(Bs).

We introduce here the following matrices, in order to relate the different presentations to
the matrix representation f:

S:f(s):AB:(_Ol 1) ,T:f(t):ABA:<_01 (1))

We get T? = —1I,, so that f provides a morphism f : H — PSL(2,7Z).

Proposition 2.3.2. The morphisms f : G — SL(2,Z) and f = H — PSL(2,7) are
isomorphisms.

2.3.2 Recalls on non semi-simple TQFT’s

In [BCGP2], the authors construct a TQFT from the non semi-simple category € of Ufs[(Z)
weight modules. We present here a non exhaustive summary of the construction, recalling
first what is a TQFT and what information is included in these theories. This part is here to
give ideas before fixing notations for the precise case of interest (which will be done in next
section).

Definition 2.3.3 (Category of cobordisms). An oriented (n + 1)-manifold M with boundary
decomposed as OM = —31| | Xo, where ¥y, 3o are oriented n-manifolds, and —%; means
Y1 with reversed orientation, is called a cobordism from ¥y to 5. Given a cobordism My,
from ¥y to X, and a cobordism My, from X to ¥, one can glue these together along > to
obtain a cobordism from ¥, to Y¥o. Let the category Cob, 1 be the one whose objects are
the oriented n-manifolds, whose morphisms are equivalence classes of cobordisms, and where
gluing plays the role of composition. Two cobordisms from ¥, to ¥y are called equivalent if
they are isomorphic rel. boundary (i.e. the isomorphism is required to be the identity on %,
and Y ). Taking equivalence classes ensures that composition is associative, and the product
manifold [0, 1] x X plays the role of the identity morphism of X2. Observe that this category has
an involution (given by orientation reversal) and a monoidality structure (given by disjoint
union,).

Remark 2.3.4. This is the basic definition of the category of cobordisms. We usually restrict
it to compact surfaces and allow richer cobordism. “Eztra decorations” of cobordisms can be
of the following types: cobordism containing a banded link, decorated points in the surface,
or cohomology class associated with objects. Then an appropriate generalization of the notion
of isomorphism of cobordism is required.
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Definition 2.3.5 ((2 + 1)-TQFT). Let Cobyyy be the category of 3-dimensional cobordisms,
and k be a commutative ring. A (2+ 1)-TQFT is a functor:

V : Cobay1 — k — modules
satisfying:
(Monoidality) V(31| |X2) = V(31) @ V(Xs).
(Duality) V(=%1) = V(31)* where x stands for the dual module.
(Unit) V(0) = k.

Again this is the initial definition of TQFT, while extra decorated cobordisms need an
adapted definition of a TQFT functor.

Remark 2.3.6 (Mapping class group representations). Let ¥ be a surface, ® a diffeomorphism
of it and V a (2 + 1)-TQFT. The mapping cylinder of ® is the following manifold:

I = (X x [0,1])

with (z,1) ~ z and (x,0) ~ ®(z). The manifold I is a cobordism between ¥ and itself, so
that V (Ig) is an endomorphism of V' (X). The functoriality of V together with the notion of
isomorphism of cobordisms imply that:

Mod(£) — End(V (%))
O s V(D) =V (Is)

is a representation of Mod (X) over V (X). This remark shows that a TQFT functor provides
a representation of the mapping class group for every surfaces.

From certain categories of quantum groups modules, the Reshetikhin — Turaev functor
RT (see Definition 1.3.12) provides invariants of links. The following is well known.

Theorem 2.3.7 (Lickorish — Wallace and Kirby Theorem). Any closed, orientable, connected
3-manifold may be obtained by performing Dehn surgery on a framed link in the 3-sphere
with +1 surgery coefficients. Two framed links give the same manifold if and only if they are
related by a series of Kirby moves.

We don’t give the definitions of Dehn surgery nor Kirby moves, see [BHMV] for instance.
We want to emphasize that the R7 functor gives a quantum invariant of framed link that
has been generalized in [RT2] to 3-manifold invariants, applying the above theorem. We call
such invariants of manifolds quantum invariants by extension. In [RT2] the initial category of
quantum groups modules is semi-simple.

In [BHMV], the authors present a universal construction of TQFT. Namely they suggest
a technique to get a TQFT from a family of quantum invariants of three manifolds, using
a natural pairing. The technique works with the Reshetikhin-Turaev invariants from [RT2]
and gave rise to the semi-simple Reshetikhin-Turaev TQFT’s. In [CGP2| the authors succeed
in constructing a quantum invariant from a non semi-simple category of quantum groups
modules. An adaptation of the universal construction is performed in [BCGP2] and provides
a non semi-simple TQFT.
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Theorem 2.3.8 ([BCGP2, Theorem 1.1}). There exists a monoidal functor V : Cob — GrVect
from the category of decorated surfaces and decorated cobordisms to the category of finite
dimensional Z-graded vector spaces. This functor is built from the non semi-simple category
€ of Ufs[(Q) weight modules. The category € is used to decorate the cobordisms, see the
definition of decorations in [BCGP2, Subsection 3.3].

Moreover the mapping class group representations (Remark 2.3.6) preserve the grading.

The non semi-simplicity of € implies richer topological information than in the case of
the classical Reshetikhin-Turaev TQFTs (semi simple). For instance, the following theorem

about mapping class group representations is a strong improvement compared to the original
Reshetikhin-Turaev TQFT’s.

Theorem 2.3.9 ([BCGP2, Theorem 1.3]). The action of a Dehn twist along a non-separating
curve of a surface X3 has infinite order on V (3).

The latter suggests that the new family of representations of mapping class groups provided
by the non semi-simple TQFTS is richer and one would be interested in the question of their
faithfulness. We investigate a precise case in the following section. We end these recalls by
a far from exhaustive presentation of the universal construction providing non semi-simple

TQFTs from RT-functor.

Remark 2.3.10 (Sketch of non semi simple TQFT construction). We present loosely the
universal construction introduced in [BHMV] and performed in a more sophisticated way in
[BCGP2] giving rise to non semi-simple TQFTs.

Let ¥ be a surface, V(%) be the complex vector space generated by all cobordisms between
() and ¥ and ‘//\1 the one generated by all cobordisms between Y and (). There is a pairing:

Vi(2) x (X)) — C
(C,C") — NCt=C")

where CtyxC" is the closed 3-dim manifold obtained by gluing C' and C” along their common
boundary, and N? is the quantum invariant of closed manifold constructed in [CGP2]. By
making the quotient of V; by the kernel of this pairing, one obtains the TQFT module
associated to X. To deal with details of the pairing and of the quotient in the case of decorated
cobordisms, one should follow [BCGP2]. In what follows we will refer to [BCGP2] notations
to fit with the ¥-decorated formalism.

2.3.3 TQFT-representations of 1/(0,4).

We follow [BCGP2] to give a basis of the vector space associated via the non semi-simple TQFT

functor to the sphere with 4 punctures. The definitions of typical module of Ufs[@) can be
found in Section 1.3.2 while tools as Clebsch-Gordan quantum coefficients and 6j-symbols are
taken from [C-M, CGP2]. From now on, we let Sy be the sphere containing four marked points

D1, P2, P3, P4. In order to compute the TQFT, we shall decorate the punctures using Ufﬁ[(?)
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simple modules parametrized by complex numbers. Let Ay, Ao, A3, Ay be complex parameters
in (C\Z)JrZ, considering ¢ to be a root of unity such that ¢* = 1. We recall from Section

1.3.2 that & designates the category of Ufs[@) weight modules. Let Sy(A1, Ao, Az, Ag) be
Sy decorated by modules V), € € associated to each p;, with i = 1,2,3,4 (to fit with the
decorated formalism [BCGP2, Subsection 3.3]). See Section 1.3.2 for the definition of the
Vy’s. UV = ((Va, +), Vg, +), (Vas, +), (Vay, +)), then Sy(A1, Ao, A3, Ay) refers to the sphere
with four punctures decorated by V', namely SZ using notations from Section 6.1 of [BCGP2].
We only give ideas of the construction.

Proposition 2.3.11 ([BCGP2, Proposition 6.1]). Let V(A1, A2, A3, A1) be the 0-graded vector
space associated to Sy(Ai, Ao, Az, Ay) via the non semi-simple TQFT functor V (from Theorem
2.3.8). Algebraically, the space V (A1, A2, A3, Ag) is isomorphic to Homg (I, F(V')) where F(V) =
Vi, @V, @V, @V, is a module of €, and 1 the identity object of €, namely the one dimensional
Ufﬁ[(Z)—module.

Idea of the proof. The idea of this proposition is that the space V(\1, A2, A3, \y) provided
by the universal construction is generated by cobordisms between the empty set and
Sa(A1, A2, A3, Ay) (Remark 2.3.10). The latter correspond to %-decorated ribbon tangles
embedded inside the 3-dimensional ball having Sy(A1, A2, A3, A\4) as boundary (tangles ending
at punctures). Then the RT-functor fully interprets these ribbon tangles as elements of
Home (I, F(V)). O

To transform a vector v of V(A1 Ay, A3, Ay) under the action of an element of the mapping
class group one must just glue the corresponding mapping cylinder to the Sy(A1, A2, A3, A4) at
the extremity of the vector v (interpreted as a cobordism) so to get a new cobordism between
the empty set and Sy(A1, Ao, A3, A4) defined to be the image of v under the mapping class
action. The latter corresponds to the gluing of a ribbon sphere braid to the ribbon tangle
corresponding to v. The ribbon aspect of the theory forces one to work with arrows instead of
punctures py, ..., P4, as extremities of ribbons are arrows. Then one must consider mapping
classes fixing the arrows at the punctures, which correspond to mapping classes of the sphere
with boundary components instead of punctures, but one can verify the following remark
allowing us to deal with the whole mapping classes of the punctured sphere.

Remark 2.3.12. A simple full Dehn twist around one puncture colored by a Ufs[@) simple
module gives a full twist to the arrow. In terms of morphism of the category %, this
corresponds (through the R7-functor) to a morphism from a simple module to itself. By
Schur’s Lemma, such morphism is diagonal.

Hence, a solution to avoid a restriction of the mapping class group is to consider the
projective representations over the TQFT space V(A1, \a, Az, Ay) associated to Sy(Ai, A2, Az, \g),
keeping simple punctures and forgetting the arrows at punctures. We will stick to this from
now on and until the end of this section. In this framework of projective representations,
it is not necessary to consider ribbons anymore, we simply consider %-colored tangles. We
introduce %-decorated trivalent graphs that will determine a basis of the TQFT later on.
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Definition 2.3.13 (#H and Z graphs). Let H (A1, A2, A3, A4, 3) be the decorated graph on the
left of Figure 2.4 embedded into the 3-dimensional ball having the punctures p;’s as endpoints
in Sy - the boundary of the ball. In this graph, 5 is another complex parameter. A decoration
A € C refers to the module Vy. In Figure 2.4 the graph T(A1, A2, A3, \a,7y) is also represented
on the right, which corresponds to another vector of V(Ai, Ag, A3, A\y) used below. In what
follows, we use a graph G to refer to its image V(G) € Homg (L, F(V')) if no confusion arises
m equations.

b2 b3 D2 b3

y4! P4 y4i P4

Figure 2.4 — Graphs H()\l, /\2, /\3, /\4, 6) and I()\l, )\2, )\3, )\4, ’y)

Remark 2.3.14. As we only consider simple-module coloring of punctures, we can use the
Clebsch-Gordan decomposition of tensor products of simple modules (see [C-M, Section 1.3])
to establish a correspondence between %-tangles and admissible trivalent graphs embedded
in the ball, colored with elements of ¥ and ending at punctures. The word admissible refers
here to the fact that the trivalent graphs must satisfy a relation at each node provided
by the Clebsch-Gordan formula. Indeed, let V, and V, be two typical modules of middle
weights a and b € (C\Z) |JrZ. For a,b € C generic, it holds: V, ® V, = @, _.cpy, Ve with

H,={r—1,r—3,...,—r+ 1}, and and that any Ufs[(2) module map V, - V, ® V} is a
scalar multiple of the inclusion map of V. into V, ® V, given in Theorem 1.7 of [C-M].

From Proposition 2.3.11 and from the construction of the TQFT functor V from [BCGP2]
presented in Theorem 2.3.8, one can check the following fact:

Fact 2.3.15 (H graphs basis). Let V(A1, Ao, A3, A1) be the 0-graded TQFT space associated
to Sy(A1, ..., Ay) by functor V (Theorem 2.3.8). Then V is isomorphic to the vector space
generated by all € -decorated trivalent graphs inside the ball having ends at punctures, modulo
the whole set of Relations (N a—j) of [CGP2, Section 2.2]. Moreover a basis of V is given by
the set of all graphs H(A1, Ao, A3, Ay, B) satisfying the node condition (or admissible condition ),
namely that the sum of parameters arriving to each vertex must be in H,.

Idea of the proof. The first step would be to interpret %¢-decorated tangles embedded in the
ball (decorated cobordisms from the empty set to the sphere) as €-decorated trivalent graphs.
This fact is an inherent tool in the quantum-module category % and is a classical property
of the non semi-simple R7T-functor. It works the same for quantum invariants of manifold
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from [CGP2]. Namely, from the decomposition of tensor products of simple objects given by
the Clebsch-Gordan formula (Remark 2.3.14), one obtains the formula of Proposition 2.3.17
between graphs stated below. This gives a hint to pass from tangles to trivalent graphs. Once
this step is done, one has to show that the family of H-graphs yields a basis of this space of
graphs.

One can check that Relations (N a—j) from [CGP2, Section 2.2] ensure that this family of
graphs generates V(A1, A2, A3, A4) (i.e. that any admissible trivalent graph can be expressed
as a linear combination of the H graphs using these relations).

There is a little more work to get that the family is linearly independent. For instance, in
the proof of [BCGP2, Proposition 6.1], the pairing:

Homg (I, F(V)) x Home (F(V),I) — C

is shown to be non-degenerate (as F'(V') is a projective U,sl(2)-module). The pairing cor-
responds - in terms of cobordisms - to the one (schematically) presented in Remark 2.3.10.
One can compute it using H graphs and their dual graphs corresponding to elements of
Homy (F(V),I) and deduce the linear independence of these families.

This type of proof is performed in [BCGP2, Section 6.3] to give a basis for the TQFT of
empty surfaces. |

Remark 2.3.16 (Z graphs basis). The graphs Z(A1, Aa, A3, A4, 7+ ) correspond to another basis
of V(A1, A2, A3, A\g), with the admissible values for v (see Remark 2.3.20 below for instance).

In our case, the node conditions (“admissible conditions”) are the following ones:

A+ A — B EH, (2.4)

AM+M+pP€H, (2.5)

so a basis of V(A1, A2, A3, Ay) is given by the set {H (A1, A2, A3, A\, B)} with all possible
parameters (8 such that Conditions 2.4 and 2.5 are satisfied.

Notations (0-graded, level 2 TQFT). We suppose from now on that r = 2, then H, =
{—1,+1}. Suppose also that Ay = — (A1 + A2 + A3), then we are left with three free parameters,
namely A, Ao, A3. This set-up corresponds to the 0-graded TQFT in the case r = 2 (often
referred to as the “level 2”7 non semi-simple TQFT), we denote the corresponding 0-graded
space V(A1, ..., \q).

There are two possible graphs given by the two possible values for 3. Let:
ﬁ-ﬁ- = )\1 + )\2 + 1

5,:)\14-)\2—1.

We use the notations H. (A1, Ay, Az, Ay) and H_ (A1, A2, A3, \g) to refer to the graphs
H(A, A2, A3, A, B) with = 6, = M+ X+ 1 and f = - = A\ + Ay — 1 respectively;
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and Z; (A1, A2, A3, Ag) and Z_(Aq, A2, Az, Ay) for the graphs Z(Ay, Ao, Az, Ay, y) with v =, =
M+ A+ 1and v = = A + Ay — 1 respectively. We could have removed A\, from the
arguments, as )4 is fixed, depending on the other arguments. This fact remains true even
when we permute punctures, so that it permutes colors of the graphs, but the last argument
will always be the opposite of the sum of the others, as \; = — Z#i Ajfori=1,2,3,4.

From Relations (N a—j) [CGP2, Section 2.2] and mentioned to define V, we will need three
of them to build the representation that we recall in the three following propositions.

Proposition 2.3.17 ([CGP2, Equation (N i)]). The following equality holds in V(A1, ..., \y):

YyEa+b+H, a b

where graphs are considered to be the same outside the part of the picture drawn in the
small ball considered here.

Proposition 2.3.18 ([CGP2, Equation (N j)|). There is the change of basis formula (between
H and T) that is obtained using what we call 6j-symbols as follows:

A1 A M+ £l

Haiha da Ae) = > dQu+ e+ | A1 T8 T

e==+1

Ie(/\17 >\27 >\37 >\4>

where:

Ji o J2 Js | _ (= 1)1+ Bies {Bsas}! { Bi2s}! Js+r—1 js+1r—1 - y
Ja Js Je {BosH{Bigs}! | Az +1—71

M
% Z (—1)? Ags + 1 Bise + 2 Bags + Baas — = Byss + 2
= JsFz4r Bise Baga

e L o
where Ay, = Hmﬂ# Bay: = J+Jy++r m = maX(va) and M —
min(Byss, Bies)-

Proposition 2.3.19 ([CGP2, Equation (N g)]). The following equality holds in V(A1, ..., \y):

A, e

2224824 (r—1)2
= q 4

8 5
where we suppose that the graphs are the same everywhere outside the small ball drawn here.
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Remark 2.3.20. We have the following equality, given by an obvious symmetry:

D2 2] D4 ' p3
b1 P4 b1 ‘ P2

Using the notations introduced above, we get: H (A1, Ao, A3, A, ) = (A1, Ay, Az, Ay, ).
The last three properties allow us to compute the action in the H basis.

Proposition 2.3.21. The action of standard generators o1, 09,03 of M(0,4) (Example 1.1.6)
over V(A1,...,\y) in the H-basis are given by the following formulas:

—22-23+483 +(r-1)

01(7‘&()\1,)\2,)\3,)\4)) =dq 4 Hi(AQ,M,)\g,M),

2222482 +(r-1)

o3(He(A1, A2, A3, M) = ¢ 1 Hi (A1, A2, A, Ag)

and:
0-2<H:|:()\17 /\27 A37 /\4>> = f2:‘7:+()\17 )\37 )\27 )\4)%+<)\17 )\37 )\27 )\4)+f2:{:—()\17 )\37 )\27 )\4)7-[—<)\17 )\37 )\27 )\4)

where:

RS R haina Gt (D VRPN M X B
= (Ary As, Agy Ag) = d(b,)d — U IR
f2,+( 1, A3, A2, As) W;Jr (b+)d(7)q * Ao =Xy by Ay =\

Aat1

22224424 (1)
f (O A3 A0, M) = | D d(bo)d(v)g 3

=M1+
V|

AA Y At A Ba
/\2 —)\3 b_ )\3 —)\4 Y

Proof. The idea to get the images of half-Dehn twists by the TQFT is to apply the twist to
the graphs Hi (A1, A2, A3, Ay) corresponding to basis vectors.

Remark 2.3.22. Suppose that the twist involves a permutation 7 of the punctures. Let
T(A1, A2, Az, Ag) be (Arq), ..., Ar)) for 7 € 4. We want to express the obtained graph in
terms of the vectors H(7(A1, Az, A2, Ay)) which yield a basis of the TQFT space V(7(A1, A2, Az, \1))
associated to the punctured sphere with permuted punctures.
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This is done using the rules presented above. We use notations of Proposition 1.1.8 for
the generators of M (0,4). As oy refers to the half-Dehn twist along [py, pa], we get that:

~22-22+83 +(r-1)

g1(He (A1, A2, Az, A1) = ¢ 1 Hi (A2, A1y Az, Ag)

with (4 defined above.

In terms of graphs, the latter is illustrated below.

P1 DPs D1 Ps3

22224824 (r—1)2

0-1(7—[()\17)\27)\37)\476)) - =q 4

D2 2 D2 D4

which is straightforward from Proposition 2.3.19.

The same works for o4 so that one obtains:

2222482 +(r-1)

04(Hﬂ:(>\17>\27)\37>\4)) =dq 4 Hi()\la)\QJ)\3J)\4)'

To compute o9 which corresponds to the half Dehn-twist along [ps, ps], there is a little more
work. The shortest way to express oo(Hi (A1, A2, A3, Ag)) in terms of graphs Hi (A1, Az, Ao, Ag)
is to pass through the Z graphs as follows:
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02<H<)\17 )\27 )\37 )\47 6))

Ps3 P2
b1 P4
Y2 D2
A A
- = a5 0
Y=A1+Aa%1 3 4

7>\§7)\§+’y2+(r71)

= > q4d(7)‘

y=A1+ Mgl

A

Ay B
s x

-y

b1 p4

The second equality comes from Proposition 2.3.17 while the last one from Proposition
2.3.19. The last graph must be expressed then back in terms of Hi (A1, A3, A2, Ay) using
Proposition 2.3.18. Finally, we get the following expression for oo(H (A1, A2, Az, A4, 5)):

7>\%7)\§+’y2+(7'71)
) '

Y g

y=A1+MaEl

A
A3

A2
)\

g A1
d(b
S DL VINY
b=\
+A3+1

Ay
—A3 b

We reorganize terms in order to get a more readable formula for the image of both vectors
H. and H_ expressed in the basis we were looking for:

o(H (A1, A2, A3, \p)) =

22224424 (r-1)

— (S a0

2222442+ (r-1)

n (zyzxﬁd(b_)dw)q 4
A1

LY 7 Al
Ay —A3 by A3
Al A v A
Ay —A3 b_ A3

Ay By

Hi (A1, A3, Ao, A
s Alsall| LRCHPS RPN
Ao By

(A1, A3, Ag, A
—A4 ~ ‘)H ( 1y N3y N2 4)

- fQ:":_A,_()\la )\3; )\2; )\4)H+()\17 )\37 )\27 )\4) + fQ:":_()\la )\3; )\2; )\4)7-[—()\17 )\37 )\27 )\4)
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]

Using these descriptions of the action of oy, for i = 1,2,3, over V(\i, Ao, A3, \y) we
associate to it an operator in PGL (V(A1, Ag, A3, A1), V (T(A1, A2, A3, A\g))) with 7 = perm(o;) =
(i,i+ 1) € &4 permuting variables the way o; permutes punctures. As we are not dealing
with endomorphisms, we don’t have a representation of the mapping class group, but a
projective one over V(A1, Ao, Az, \y) ® C[Sy]. The latter is the induced representation of
the pure mapping class group (consisting in the Torelli group made of mapping classes not
permuting punctures), and uses a basis {H(7(A1, A2, A3, A\4)), T € S4} consisting in graphs
H with colors permuted by permutations of &4. This definition of the induced representation
is in the spirit of Definition 1.2.2 for braids.

Definition 2.3.23. We define the following representation:

q),{ M(0,4) — PGL(V(A1, A2, A3, M) @ C[Sy])
' o — D(0y)

where:

<I>(Uz') : Hi(T()‘la A2, A3, )\4) = z‘,i+(7'()‘la A3, Az, )‘4)>H+ ((Z’Z + 1) °T O‘l’ A2, A3, )\4))
+ FE (T Az Aoy M) H- (3, + 1) 0 7 (Mg, Aoy Mg, Aa)) -

Remark 2.3.24 (Normalization). As we are considering a projective action, we are going
to normalize the representation canceling some factors. We will simplify quadratic terms
interpreted as framing information by the R7-functor (Remark 1.3.27) and that we don’t
take into consideration in this work as we did for braids. All the quadratic terms in JA;,
for i = 1,2,3,4, appear as factors of the operators. For instance in the expression of
o1(H (A1, A2, A3, \g, B)), there is only 3% depending on the basis vector, so that the associ-

“A2AZ4(r—1)+ (A +Ag) 241 . .
ated operator has ¢ 2 as factor. For o, we see that in the coefficients
“AZ 224424 (r-1)
g > , there is only 42 that varies with the basis vector. After developing both
. . A2 A2 -+ A2 .
possible expressions for v, we remark that ¢ 2 factors the expression. For
. “AFAGHODHOg A4 - : :

o3, we factorize by ¢ 2 , so that we modify slightly the representation getting
rid of these factor coefficients in the expression of matrices of the corresponding operators.

After the computation of the 6j-symbols, we get matrices at level r = 2, replacing Ay by
—(A1 + A2 + A3). We make the change of variables: A; = ¢*¥ for i = 1,2,3 and we end up

with the following expressions:

VALA 0
My(Ay, Ay, As) = Mat ®(oy) = ( 0 1 > (2.6)
Bay:Ba2 VAIAy
—(1+A3%) —(1+A2%)
A1 Ay A2 A1A
M(Ay, Az, As) = B(yg;) O(02) = (A543 — 1) (AngAgil (A§+1)3A1> (2.7)
? A1A§A3 A2

where B, designates the basis {H4 (7(A1, A2, A3, A1)} for 7 € &4, and Matg g is the block
corresponding to the image of B in B'.
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From now on, we restrict to the unicolored case, with A; = Ay = A3 = A, then
MatBu),B(z,s) P(0y) = Mat3(1)713(3,4) P (03).

We recall the exact sequence giving the homological representation of A/(0,4) presented
in Example 1.1.6 together with the arrows associated to the representations involved here:

11— 7Z/2x7/2+ M(0,4) =G x N -5 PSL(2,Z) ——— 1

| @
PGL(V) (2.8)

where G is the subgroup generated by ¢;,05 and N the one generated by a = o105 and
B = 090105 05", The space V designates the TQFT vector space associated to S, colored
with A\; = Ay = A3 = A, last color still being the opposite of the sum of the others, tensored
with permutations.

The following theorem concerns the restriction of this action to the group G = (01, 09)
which is isomorphic to PSL(2,7Z).

Theorem 2. The representation @\ of G provides a faithful representation of PSL(2,7).

Proof. We recall the notations and framework. The morphism @ is the quantum representation
of M(0,4) built on the sphere with 3 marked points colored by A, the last one by —3\, with
A a generic color of the category %, namely A € (C\Z)|J7Z and A = ¢~}

Let b be a mapping class in GG, we have that perm(b) is contained in the permutations that
stabilized the last point, namely p, colored by —3A. Then ®(b)(V(A\ A, A, —3X) @ C[()]) C
(VM A A, =3X) @ C[()]), if () designates the identity permutation. This shows that for ®|¢
we can restrict ourselves to an action in PGL ((V(A A\, A, —3))) = PGL (V) so that we still
get a representation of G. We end the proof considering this representation.

We are going to work with the s, ¢ generators of PSL(2,7Z), which are the images of o109
and o,0907 respectively under the morphism ¢. Let QS and QT be their images under the
quantum representation:

1 -1 —A?
@5(4) V:Vect(Hig\?A,)\,—&\))( (7102)) A2 — 1 (—(AQA_QD2 +1 A2 )
1 —A —A
T(A) = Mat P = — 2_ )2 )
QTA) = e TG ) B (O1200)) AL&(@71+A A>

These matrices are obtained from the appropriate products of matrices M;(A, A, A) with
1 = 1,2 and after some renormalization making the determinant of )S and QT being equal
to 1, keep using the fact that we are considering projective matrices well defined up to
multiplication by a scalar. We remark that they are well defined for A # 0, £1.

One can verify that QS(A)? = QT (A)? = —1Id so that they are sent to the unit element
of PSL(2,7Z), this guarantees that we have a representation of PSL(2,Z). Let P be the
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following matrix:

0 1
P_(A2 )
A1 —1

It is invertible for a generic choice of A (A # +1,0).
Let’s consider the representation ¥ of GG obtained by conjugation of ® by P, we have the
following:

CS(A):= P'QS(A)P = ( 01 _01) =

1
CT(A):= P 'QT(A)P = ( OA f)

For A =1 we get CT(1) =T and we get that ¥ is the standard representation of PSL(2,7Z),

which is faithful by definition.

For A =1 we are not in the generic case, and ® is not well defined (nor conjugated to V).

Using the fact that the entries of matrices are meromorphic functions in the parameter
A, and the density of possibilities for the choice of A we get that these representations are
generically faithful as follows.

Let g € M(0,4) and G(A) its image under the above representation W. As the entries
are holomorphic in A, let L, be the domain where G(A) # Id. As G(A) = Id corresponds to
zeros of holomorphic functions, it corresponds to isolated values of A so that L, is dense in
C. This is due to the fact that W is faithful for A = 1 which guarantees that the functions
considered are not zero everywhere and that its zeros are isolated. Hence, W is faithful for:

Ae () L,
)

geM (0,4

which is a countable intersection of dense spaces, hence dense by Baire’s theorem. This proves
that the representation W is generically faithful, and since it is generically conjugated to ®,
is also a generically faithful representation of PSL(2,Z). [

Theorem 3. The projective representation ® of M(0,4) is faithful.

Proof. Let h € M(0,4). Suppose h is in the kernel of ®. As }/(0,4) = G x N, there exists
a unique decomposition h = g - a with ¢ € G and a € N. For h to be in the kernel of ®,
perm(h) must be the identity permutation. This comes from the fact that only pure mapping
classes are sent to block diagonal matrices. It implies perm(g) = perm(a)~!. We’ve noticed
at the beginning of the proof of Proposition 2 that perm(g) fixes p4, so that a must also fix
ps. The element a is one of the following: «a, 3, of 1 (o and § are the generators of N
recalled above). One remarks that « sends p, in ps3, 5 sends py in ps and by af3, ps is sent
in p;. This shows that the only possibility for a is 1 (i.e. the only element fixing ps). Then
h =g € G and can’t be in the kernel of ® from Proposition 2. O]

Corollary 2.3.25. Let ® € M (0,4) be a pseudo-Anosov mapping class. The stretching factor
of ® is detected by the TQFT representation V.
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Proof. From Theorem 3, the TQFT representation detects the representation of A7(0,4) in
PSL(2,Z) and from Lemma 3.6 of [AMU] the stretching factor is detected (as an eigenvalue)
in the PSL(2,Z) representation of 1/ (0,4). O

2.3.4 TQFT representations of bigger mapping class groups

First we relate quantum (pure) braid representations with non semi-simple TQFT representa-
tions of the (pure) mapping class groups of punctured spheres. We restrict the study to pure
groups for an easier reading, but everything can be generalized to whole groups by considering
the induced representations (see Definition 1.2.2).

Let ¢ be a 27" root of unity, A\i,...,\, € (C\ Z) UrZ be complex colors, Vy,,... V), be
the associated typical modules of ¢, and set V =V, ®---®V,,. Let 8 € PB,, be a braid and
RT(B) € End(V) its ADO-type representation introduced in Remark 1.3.20 defined using
the functor R7T. Let V be the (0-graded) TQFT vector space associated by V to the sphere
with n 4+ 1 punctures, py,...,p,+1 and such that: p; is decorated by V), and so on until p, is
decorated by V) and p,y; is decorated by V* the dual space of V. We recall the capping
morphism from Proposition 1.1.25 in the case of the disk with n marked points:

Cap : PB,, — PM(0,n+ 1)

where PB,, is the pure braid group on n strands, and PM (0, n) is the pure mapping class
group of the sphere with (n + 1) punctures. Namely, the latter corresponds to the Torelli
group of the punctured sphere and is made of mapping classes that leave the punctures fixed
pointwise. The morphism 7' = V o Cap restricted to V (the O-graded sub-space) provides a
representation of PB,, (V is the TQFT functor).

We recall from [BCGP2, Proposition 6.1] that the (0-graded) TQFT space V is isomorphic
to Homg (L, V @ V*).

Let ¢ be the following injective morphism:

b End(V) — End(Homg(L,V @ V*))
' M —- Ml

Lemma 2.3.26. The following diagram is commutative:

PB, — X End(V

\l¢

End (Homeg (I, V @ V*))

Proof. For a braid g € PB,, we must show that:
T(5) =RT(P) @ Idy-.

By composition by Cap, PB, acts over the (n + 1) punctured sphere by mapping classes
fixing p,+1. The mapping cylinder associated to an element of PB,, is the identity cobordism
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in a small disk containing p,.; as the only puncture. By gluing this cylinder to a cobordism
generating the TQFT interpreted as an element of Home (I, V ® V*), it is easy to see that the
morphism is the identity over the U,s[(2)-module decorating p,1, namely V*, and on the
the n other punctures it is by construction obtained by applying the RT-functor. It proves
the lemma. O

Proposition 2.3.27. If there exists a 2r'" root of unity q and colors Ay, ..., \, € (C\Z)UrZ
such that the representation RT of PB,, is faithful then the representation of PM(0,n + 1)
(suitably decorated as above) provided by V is faithful.

Proof. The proof is a direct consequence of Lemma 2.3.26, of the surjectivity of C'ap and of
the injectivity of ¢. Namely, as for any g € PB,,:

Vo Cap(f) =RT(B) ® Idy-

(previous lemma) and that any element in )/ (0,4) can be written Cap(5) for some 3, if RT
is faithful so is V. []

The latter shows that the question of the faithfulness of punctured sphere mapping class
group TQFT representations is included in the following open question.

Open Question. Are the ADO representations of braid groups introduced in Remark 1.3.20
faithful?

From Section 1.3.3, Kohno’s Theorem [K2] and Theorem 5 of Chapter 3 of this work,
it is well known that quantum representations are recovered by Lawrence’s representations.
In [Big0] and [Kral, it is proved that BKL representations of Section 1.2.3 are generically
faithful, and from [Z2] that the family of Lawrence representations are faithful in general
(except for the Burau level). The word generically stands for a generic set of parameters
(¢, A1, .., \,) € C"1 For instance the faithfulness proof of [Big0] relies on the key lemma
recalled in Lemma 1.2.26. This lemma uses extensively the Laurent polynomial structure
of coefficients, and a study of some coefficient of the noodle-fork pairing defined to be the
maximal coefficient with respect to some lexical order on monomials. This argument crashes
down whenever one wants to specialize the proof for ¢ being a root of unity. In this sense, the
quantum representations are “generically faithful” but the question whether they are faithful
at roots of unity (ADO set-up) is still open, so is the question of the faithfulness of TQFT
representations of the punctured spheres.

The case of the torus was studied in [BCGP2| and led to an analog of Theorem 3.

Theorem 2.3.28 ([BCGP2, Theorem 6.28|). The non semi-simple TQFT projective repre-
sentation of the mapping class group of the torus, provided by the functor 'V, is faithful modulo
its center.

These “small” cases (in terms of genus) are first steps for an answer to the following
general question.

Question ([BCGP2, Question 1.7.(1)]). Let ¥ be a surface. Is the non semi simple TQFT
representation of Mod(X) over V(X) faithful?
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Chapter 3

Homological model for quantum
representations

In this chapter we give a homological framework that recovers some aspects of modules
categories of quantum groups such as the quantum action and the braiding.

In Section 3.1 we define the context with a more general definition of configuration spaces
of points (compared to Definition 1.2.17), together with their associated colored braid groupoid
that allows construction of local system on it. This general framework is here to provide ideas
for generalizations of the results of Section 3.2.

In Section 3.2 we work with the space X, of configurations of r-points inside the n-
punctured disk, which is a special case of the general framework mentioned above. We define
the maximal abelian cover of it and we study the homology modules H:" = with coefficients
in the local system corresponding to the maximal abelian cover. We prove that these modules

L
over some Laurent polynomial ring are endowed by an action of U;?s[(2) (defined in Section
L

1.4.3) in Theorem 4. We recognize more precisely that it is a tensor product of U2 sl(2)

Verma-modules in Theorem 5. The involved homology modules are naturally endowed by a

mapping class action of the braid group. In Theorem 6 we show that this action is the one
L

given by the Ug2 s[(2)-braiding over tensor products of Verma modules, see Subsection 1.4.4.
In Subsection 3.2.6 we give ideas to improve this model such as: recovering more properties

L
of the Ug sl(2)-module category, recovering other quantum algebras, recovering other braid
representations or obtain modules over a non-abelian ring.

In Section 4 we pass from quantum braid representation to the level of quantum knot
invariant. Namely, the colored Jones polynomials are polynomial knot invariants that can be
computed from quantum braid representations. We apply our homological model for quantum
braid representations to obtain homological interpretation of colored Jones invariants. In
Theorem 7 we prove that the colored Jones polynomials can be expressed as a weighted sum
of abelianized Lefschetz numbers.
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3.1 General framework: configuration space and local
systems.

In this section, following [F-W], we define a family of configuration spaces, their associated
notion of colored braid groupoid, together with directions to construct local systems on these
spaces. The aim of this part is to define a general framework of configuration spaces, to
see that their fundamental group is related to braid groups, so that representations of braid
groups provide local systems on configuration spaces.

3.1.1 Configuration space of points and classification of base points.

Definition 3.1.1 (Configuration space). Let X be a connected 2 - dimensional manifold, and
n = (ny,...,n) be a set of k positive integers such that ny + -+ + ny = N. The unordered
configuration space is:

Ca(X) = (XN \(Jfz = zj}) /Gy X - X G,
i<j

where the permutations act on the order of coordinates so that we can think of an element as
a sequence (Z1,...,Z) of pairwise disjoint subsets of X with cardinalities |Z;| = n;.

For the purpose of this work, we deal mainly with X = C or X = D where D is the unit
disk.

3.1.2 Colored Braid Groupoid.

All the background regarding links between fundamental groupoid and topology can be
found in [Br|, where one can find the correspondence between topological coverings and the
fundamental groupoid. First, we recall the categorical definition of a groupoid.

Definition 3.1.2 (Groupoid). A groupoid G is a category inside which every morphism is
invertible.

Example 3.1.3. This notion of groupoid is used in topology to generalize the one of funda-
mental group.

(i) The fundamental groupoid I, (M) of a topological space M is the groupoid whose set of
objects is M and whose morphisms from z to y are the homotopy-classes [y] of continuous
maps v : [0,1] — M with endpoints map to x and y (which the homotopies are required
to fix). Composition is by concatenation (and reparametrization) of representative
maps.

(ii) Let O be a subset of a topological space M, there exists a sub-groupoid of the fundamental
groupoid:
G =] Gacim(m),

ace0
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it consists in the groupoid of paths having endpoints in O.

(ili) When O = {x} is a single point, then the corresponding sub-groupoid is the fundamental
group based in z.

Definition 3.1.4 (Colored braid groupoid). Let N € N*. The colored braid groupoid on N
strands is the groupoid whose set of objects is Gn and morphisms between 11 and 75 € Sy
are braids (8 satisfying:

niperm(f3) =7

where perm is the morphism that sends a braid to its induced permutation.

Remark 3.1.5. The braid group is the fundamental group of a configuration space, for x an
arbitrary base point:

BN = 7T1(CN(C),[I))
see Subsection 1.1.2.4.

Remark 3.1.6. Let 0;,i = 1..., N be the standard generators of By. Then the system:
o+ a — perm(o;)«
of morphisms for a@ € Sy, provides generating morphisms of G.

Remark 3.1.7 (n-colored braid groupoid). Let n € {(ny,...,ng) s.t. ny +---+nx = N}
and C,(X) be the configuration space defined in 3.1.1 with X = C. Let = be a chosen base
point of C,(X), and O, be its orbit under the action of &y so that O, can be thought as the
set:

0, =6y /6, XX &, .

We define B, (X, x) to be the groupoid whose set of objects is O, and morphisms consist in
homotopy classes of paths having endpoints in O,. It is a sub-groupoid of the fundamental
groupoid of C,(C), see Example 3.1.3 (ii). As O, is a quotient of &y, B, (X, ) is called the
n-colored braid groupoid in the spirit of Definition 3.1.4.

3.1.3 Representation of the colored braid groupoid.

Definition 3.1.8 (Representation of a groupoid). A representation of a groupoid G is a
functor from G to the category Vect of vector spaces.

What is called an R-matrix representation of the braid group (see Section 1.3) can be
generalized to the braid groupoid considering a family of labeled R-matrices instead of a
single one.

Definition 3.1.9. Let Ux,A=1,..., N be a family of vector spaces, together with a family
Ry of invertible elements of Hom(Uy,U,), for each pair of indexes A, ji. Let B be the colored
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braid groupoid on N strands defined in Definition 5.1./. An R-matriz representation of B, is
a representation on the following spaces:

Vo = Ua(l) Q@ Ua(N)

for a € Gy, together with the following operators associated to generating morphisms of B
(Remark 3.1.6:

p(of) = PRZZ&S}Q( with P(u®v) = v ® u.

i+1)
The operator PRT:1 stands for PRy, acting on the i'" and j™ factors of the tensor product.

Proposition 3.1.10. Using previous definition’s set up, we get an R-matrix representation
of B if and only if the R-matrices satisfy the following Yang-Baxter equation:

23 513 L2 5l2 pl3 n2.3
Ry Ry Ry, = Ry R R -

Remark 3.1.11. This definition of R-matrix representation of the colored braid groupoid
can be adapted to the n-colored braid groupoid defined in Remark 3.1.7.

We mention two particular families of such representations of colored braid groupoid, that
will be discussed in this chapter.

Example 3.1.12 (1-dimensional representations). Using notations of Definition 3.1.9, we fix
Uy=C,A=1,...,N and a family of complex numbers ¢, ,. Then :

p(07) = Ga@ai+)
defines an R-matrix representation of B, _,, (C).

Example 3.1.13 (Higher dimensional quantum representations). The quantum group U,s((2)
provides examples of such families via its (appropriate) category of modules. For instance,
the category € of Ufﬁ[@)—modules (Section 1.3.2) provides a family of R-matrices that
satisfy the Yang-Baxter equation (Definition 1.3.16). Let V), ..., V), be typical modules
(\;’s are complex parameters), the latter allows one to get a representation of the colored
braid groupoid over:

U Viaw ® @ Vi)

acEBGN
Remark 3.1.14. The representations of Example 3.1.13 are equivalent to the representations
of B,, induced by the ones of PB,, over:
V/\l ®...®V>\N‘

The result of Section 3.2 are obtained from a one-dimensional representation correspond-
ing to the set-up of Example 3.1.12. Example 3.1.13 is introduced to give perspective of
improvement such as constructing a local system with an associated ring of coefficients that
is non-abelian.
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3.1.4 Local systems.

Let X be a topological space, and x a base point. From a representation of 71 (X, x) one can
build a locally trivial fiber bundle with a flat connection (this will be done in this section). On
the other hand, from a locally trivial bundle with flat connection, one obtains a representation
of m (X, z) by monodromy. Hence the notions of representation of (X, x) and of locally
trivial fiber bundle with flat connection are equivalent, and often reunited under the name of
local system.

This has a slight generalization, and one can build a local system from a representation
of some subgroupoid of the fundamental groupoid. Ingredients of such construction are
mentioned in Example 6.10 of [Mac|, but in the general case of Lie groupoids. Here we give
an idea of such a construction in the special case of colored braid groupoid representation.

Definition 3.1.15. Let O be a subset of a topological space M, and G = |J,co Ga C 1 (M)
the groupoid corresponding to paths having endpoints in O. Let p be a representation of G' on
the family (V,)aco of vector spaces. For a € O let M, be the universal cover corresponding
to the base point a, so that G acts on the right of [],co
if Nap € Gap for a, B € O, then nap provides a map:

]\A/[; by composition of paths. Namely,

M, — M,
by pre-composition by n.g. We define the local system associated to p to be the following vector
bundle: N
Ly =[] Mo x Va /~

ac0

with identifications (Ma, Pas(Nag)vp) ~ (Ma - Nap, V), for Nas € Gags.
Remark 3.1.16. Two remarks putting this definition in the general theory of local system.

e Such a local system is the same as a flat vector bundle over M together with a family
of vector spaces V,, and isomorphisms of the fibers over a with V,, such that parallel
transport operators are given by p. Local horizontal sections are continuous sections
which locally can be written as m — (m,v), with constant v.

e When O is a single point then G is the fundamental group based on it. In this case,
the construction is the standard local system one, where one obtains a flat fiber bundle
from a representation of the fundamental group.

Applying this construction to colored braid groupoid representations from Example 3.1.12
or 3.1.13 provides local system over configuration spaces. From example 3.1.13, and this
definition of local system, we see that quantum R-matrices can serve to construct a local
system on configuration spaces.

This construction of local system is informal while in next section we construct a local
system from a based fundamental group representation.
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3.2 A homological model for Usl(2)

In this section we work on a special case of configuration space. We apply Borel-Moore
homology to them, with coefficients in the local system corresponding to the maximal abelian
cover. We present the framework in Subsection 3.2.1. We study the algebraic structure of
Borel-Moore homology modules in Subsection 3.2.2. We construct homological operators

L
in Subsection 3.2.3 and then we prove that they realize an Ugsl(2)-module in Theorem 4.
In Subsection 3.2.4 we compute the action in a particular basis and we recognize a tensor
product of Verma modules in Theorem 5. Finally we construct the mapping class braid action

L
and we recover the Ug sl(2) braiding in Theorem 3.2.5.

3.2.1 Adapted framework for the U,sl(2) case.
3.2.1.1 The configuration space

Using notations from Section 3.1, we define a special topological space out of the configuration
space setting.

Notations. Let r € N, n € N, and D be the unit disk. We define the following fibration:

D { Cr,1,...,1(D) — C1,...,1(D)
POl a2z wn, e wy) o (W, wy).

where the (1,...,1) refers to n coordinates. Let (wy,...,w,) be a point in C;__;(D). We
define the following space of interest:

Xo(wy, ... wy,) = p;}l(wl,...,wn). (3.1)

The points wy, . . ., w, will always be chosen so that they lie in the interior of D. Let py,...,p,
be points in the interior of a disk, say the n first integers inside a disk D’ of radius n + 1, and
consider D,, = D'\ {p1,...,pn}. It is clear that X, (wy,...,w,) and C.(D,,) are homotopically
equivalent.

Remark 3.2.1. Let m € N* one observes that spaces X,,(wy,...,w,) from the above
definition and C,, ,, from Definition 1.2.17 of Chapter 1 are topologically equivalent.

3.2.1.2 The local system

To fit with the set up of Section 3.1, we define first the local system in this context. Let D be
the unit disk, and wy, ..., w, be distinct points in its interior. Let X, (w1, ..., w,) be defined
as in Relation 3.1. Let oy, ..., a, be complex numbers (sometimes referred to as “colors”),
and ¢ € C\ 0. We consider the one dimensional representation, called p, from now on, of
Example 3.1.12 with the following specialization:

R1’1:—Q2 s lej: j’1:q1_>\j forjzl,...,n+1.
This yields a representation of B, . 1(C), and a local system L, over C,.;, . ;(C) and over

Cr1...1(D) by restriction.
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Definition 3.2.2. Let L, (wy, ..., wy) be the restriction of the local system L, to X, (w1, ..., wy).

For the purpose of this work, it is sufficient to work with a local system defined as a
representation of the based fundamental group (instead of a groupoid representation). The
construction will then depend on a lift of this base point. We choose conventions for the base
point in the following notations, fixing them for the rest of the chapter.

Notations (Base point). Let r,n be positive integers, X, be the configuration space of
r-points inside the n-punctured disk D,,, with punctures named wy, ..., w, and lying on the
real line in the interior of the disk. Set wy = —1, and X,” C X, the configurations with one
coordinate in wy.

e Let £ be the chosen base point of X, verifying:

é-r = {flv"'agr}
such that & € 90D,,, Vi and:

d d

d
%(f}):wl—5,%<€r—1):w1—§,...,%(£1):wl—r_{_l

where d = |w; — wp|. We illustrate their position in the following figure.

wo @ [

oD,

& &1 &

In what follows, distances between the &’s may be deformed in drawings but the order
on real parts remains the important fact.

e Let ®" be the following homeomorphism:

X A\Xy = X,
P Z = ZUuwy .
ér — {él)"'ugrawﬂ}

e O induces:

O m(Xo \ X7, €7) = m(X, oy, {€7 wol).
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To change the base point in the latter space to €™, we move wy along 0D,, and all the
points in & through a path " defined as:

o I = X
Yt s o) = {o1(), . on(t), oran ()}

where ¢ goes from wy to &.,1 along 0D,, in the counterclockwise sense, ¢ goes from
&1 to & along D, and so on, ending with ¢, going from &, to & along 0D,,.

e We let then ®" be the composition of the above ®, and the isomorphism induced by
the change of base point through precomposition by ¢".

O m(X,\ X8 = m(X )

This morphism induces a right shift of coordinates of the base point (the new coordinate
arriving at the leftmost).

In what follows we will often omit the indexes r in ", & and ®", to simplify notations when
no confusion is possible.

We present in detail the local system in terms of a representation of the group m(X,,£")
which simplifies computations of next section. First we give a presentation of 71 (X, £") as a
braid sub-group, which can be deduced from the one given in the introduction of [Z1], and
will be explain with drawings.

Remark 3.2.3. The group m(X,,£") is isomorphic to the subgroup of B, , generated by:
<017 R b Br,h R Br,n>

where the o; (i =1,...,r — 1) are standard generators of B, ,, and B, (for k=1,...,n) is
the following pure braid:
B,y =o0,-- 'O'T+k_20'72,+k710';_:k_2 . -ar_l.
To see the correspondence between loops in X, and generators of the above braid sub
group we draw two examples.

Example 3.2.4. Two types of braid generators for 7 (X,,£") are given in Remark 3.2.3,
which correspond to two types of loops generating m (X,,£"). We give examples for both
kind.

e The braid oy corresponds to a loop swapping &, and &,._; letting other base point
coordinates fixed. This can be seen by drawing the movie of the loops in Figure 3.1.

e The braid B, for k € {1,...,n} corresponds to & running once around wy before
going back keeping other base point coordinates fixed. The correspondence in terms of
standard braid generators can be seen by drawing the movie of this loop in Figure 3.2.
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Wo

‘j/

Wo

R I w,
Wo ¢ l
é%\rdl wy ‘y

Figure 3.2 — Generator B,

Using this set up, we define the local system in this context.

Definition 3.2.5 (Local system L,.). The local system L,(wy,...,w,) is defined by the
following algebra morphism:

Zm(X. €] = Zlg=, 7,
Pr - o, — 1
Br,k — qak.

When no confusion is possible we will omit the dependence in (wy,...,w,) in the notations to
simplify them.

Remark 3.2.6. e This local system is equivalent to the one defined in Definition 2.2.1
in the case r = 2. The correspondence between loops is clear.

e As it is a one dimensional local system it is abelian in the sense that:

pr(s151) = pr(s1)pr(s2) = pr(s2)pr(s1)

for s1, 89 € m(X;,&"). Moreover this local system corresponds to the maximal abelian
cover of X,.
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e We've seen (Definition 3.2.2) that it is a system local obtained from a representation of
the family presented in Example 3.1.12, while building a local system from the family
of Example 3.1.13 would lead to a non-abelian local system and a more sophisticated
(non abelian) ring of coefficients.

We will use homology modules with coefficients in this local system, so that we fix notations
from now on.

Notations. Let r € N and R = Z[¢F%, til]i:l,...,n' We let H' designates the homology of
locally finite chains (see Section 5.1), and we use the following notations for homology with
local coefficients:
H = HY (X3 L)
H, = H (XL
He o = W (X, X L)
The last one corresponds to the homology associated to the relative complex of locally finite

chains. We will use the letter C' instead of H to designate the associated locally finite chain
complexes.

Remark 3.2.7. We recall that the representation p, defining the local system L,. is canonically
equivalent to the construction of a covering map over X,. Namely, one can consider the
universal cover X, of X, upon which there is an action of m (X, ). By making the quotient
of )?; by the action of Kerp, € m(X,), one gets a cover )/(\T of X,. The group of deck
transformations is then isomorphic to I'm(p,) = Z"™'. There are three equivalent ways to
build the chain complex with local coefficients in L,:

Co(Xy: L) ~ Co(Xy, Z) @y (x.) R =~ Co(X,).

The first one corresponds to complex with coefficients in a locally trivial bundle. In the
middle one, the action of m;(X,) is the one over the universal cover on the left, and given

by p, on the right. The last one corresponds to singular chain complex of 5(\,, with the deck
transformations action of R. .

We will use L, or p, to designate both the representation of m(X,) or the covering X,
together with the deck transformations group action, depending on what we need.

3.2.2 Computation of the homology with local coefficients
3.2.2.1 Algebraic structure of the homological complex.

In this section we apply Borel-Moore homology to the local system presented in previous
section. Definitions of locally finite and Borel-Moore homology and the link between them
are presented in the Appendix, Chapter 5.

Proposition 3.2.8. For r € N*, the module H'® ~ is a free R-module of dimension (”+:_1).
Moreover, it is the only non vanishing module of the complex Hl,f (X, X5 L)
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Proof. All over the proof, the local ring of coefficients will remain L, so that we omit it in
the notations. Let XX be the set {z1,...,2,} € X, such that zy,...,, lie in the segment
[wo, w,[. Set XFB~ = X®N X~ We use these simpler spaces to compute the homology, thanks
to the following lemma that can be seen as a Bigelow interpretation of the Salvetti retract
complex associated to hyperplanes arrangement from [Sal]. This method is adapted from
Lemma 3.1 of [Bigl].

Lemma 3.2.9 (Bigelow’s trick). The following map:
HY (XFXF75 L) — HY (X, X5 L) (3.2)
induced by inclusion is an isomorphism.

Proof of Lemma 3.2.9. Let € > 0 and A, be the set of {z1,...,2,} € X, such that |z;—x;| > €
and |x; — wy| > € for all distinct ¢, = 1,...,7 and k = 1,...,n. This family of compact sets
yields a basis of compact sets for X, so that it suffices to show that for all sufficiently small e
the map:

Hoe (X7, (XN A) UXST) = He (X, (X, \ A U X))

induced by inclusion is an isomorphism. This is sufficient by means of the inductive limit
over compact sets definition of Borel-Moore homology introduced in Section 5.1.

Let D!, C D, be a closed €/2 neighborhood of the interval [wg,w,[. Let X! be the
configuration space of r points in D!, and X/~ = X N X~ be the ones with a coordinate in
wp. We have the following property.

Lemma 3.2.10 (Compressing trick). The map:
H, (X;, (X \ A) U Xff) — H, (Xr, (X, \ A) U X,,_)
induced by inclusion is an isomorphism.

Proof. To see this, note that the obvious homotopy shrinking X, to X/ is a homotopy of the
pairs involved. In other words, points in X, \ A, corresponding to close points, stay in it
because the homotopy is a contraction. We will refer to this process as the compressing trick
later on. O

Let V' be the set of {z1,...,z,} € X, with either R(z;) = R(z;) for some ¢,5 € {1,...,r}
or R(x;) = wy for some i € {1,...,r} and k € {1,...,n}. Let U = X/ \ V. Note that V is a
closed subset contained in X| \ A, which is the interior of (X \ A.) U X, . This shows that
V satisfies the required hypothesis to perform the excision of the pair (Theorem 5.2.1), so
that the following map:

Ho (U,(U\ A) U (X, NU)) = H, (X, (X]\ A) U X))
induced by inclusion is an isomorphism by the excision theorem.
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Finally there is an obvious vertical line deformation retraction that sends U to XX taking
{z1,..., 2.} to {R(x1),...,R(x,)}. This is again a contraction homotopy so that U \ A, is
preserved and X/ N U is sent to XX ~. This retraction guarantees that the map:

Hoe (X5 (XI\NA)UXST) = Ho (U (U\ AU (X, NU))
induced by inclusion is an isomorphism, and concludes the proof of Lemma 3.2.9. O

To end the proof it remains to compute the complex HJ (XF, X%~ L,). Let A® € XE

be the set of configurations {z1,...,z,} of X¥ such that |z; — z;| > € and |z; — wy| > €
where i,j = 1,...,r and k = 1,...,n. Let AR be AR with the additional condition that
|z; —wo| > € fori=1,...,r. We are going to show that for sufficiently small ¢, the following
complex:

He (X7 (XP\AH VXS L)

is isomorphic to the Borel-Moore one of a disjoint union of open balls. This will end the
computation of HY (XF, X®~; L,) by definition of Borel-Moore homology. To do so, first we
remark that the following spaces are homotopically equivalent:

(XF\ A uxE =

|z, —zj| <efori,j=1,...,r
= {xy,...,x. € XEBst. or |z —wy| <efork=1,...,n

or r; = Wy

|v; —xj| <efori,j=1,...,r
~< {xy,..,x. b € XBst. or |y —wy| <efork=1,....n

or |z; —wy| <€

= X5\ AP,
This shows that the two following complexes are isomorphic:
He (X7 (XF\NAD UXST L) = He (X7 X0\ ADY L)

Then one remarks that X®~ is closed in A% so that we can perform the excision and that
the map:

Ho (XE\ X0, (XN AR\ XET L) = H (X5 XT\ AR L)

induced by inclusion is an isomorphism. Let XX (wy) C X¥ be the space of configurations
without any coordinate in wy. The space XX(wj) is exactly the space of configurations of
r points in |wg, w,[ such that every coordinate is different from wy for & = 0,...,n. For
sufficiently small e, we have shown that the two complexes:

Ho (X7 (XE\NABY UXFT L) ~ He (X (wo), XF(wo) \ AF™; L)
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are isomorphic. Then, as the family of A% is a compact sets basis for X®(wy), we end up
with the complexes:

HY (X5, X%~ L) ~ HY (XE(wo); L)
being isomorphic. To conclude the computation we take Bigelow’s decomposition of the space

of configuration of r points with n 4+ 1 punctures in open balls, defined as follows and as it is
done in [Bigl].

Definition 3.2.11. Let E)) = {(ko,... kn_1) € N" s.t. 3 k; =1} be the set of partitions
of r in n integers.

For k € EJ ., let Uy be the set of all {z1,...,z,} € X, such that x1,...,2, € |wp, wy|
and:
Jj ({xla cee 7377’} N }wiﬂwi-ﬁ-l[) = kl
for ¢ =0,...,n — 1. This is an open r-ball of X,, and one notes that:
XPwo) = | | U
keE] ..

From this disjoint union of open balls, we deduce that HY (Xﬂ%(wo); Lr) is the direct sum of
tES = ("77") copies of R while all other HY (XE(wo); Ly) for k # r vanishes. The complex
HY (XB, XE- Lr) has the same decomposition which concludes the proof.

O

Bigelow’s trick was initially used to show the following in Lemma 3.1 of [Bigl].
Proposition 3.2.12 (Lemma 3.1 [Bigl]). The morphism:
HY (X7 (wo); L) — B (X, (wo); Ly)
induced by inclusion is an isomorphism of complezes.

From this and from the proof of Proposition 3.2.8, one gets the following corollary.

Corollary 3.2.13. o The morphism: HY (X, (wo); L,) — HY (X,, X: L,) induced by
inclusion is an isomorphism.

o The family U = (Ui)yego Yields a basis of H"' ~ as an R-module.
We conclude this part with two remarks about the proof of Proposition 3.2.8.

Remark 3.2.14. e The proof of Proposition 3.2.8 is constructive in the sense that it
provides a process to express homology classes in the U basis. This will be used in next
sections.

e All along the proof of Proposition 3.2.8, the local system does not change, no morphism
of the latter is needed. The proof relies only on topological operations such as excisions
and homotopy equivalences. In some sense the proof is rigid regarding the local ring of
coefficients, and should be adaptable with another one.
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3.2.2.2 Homological families.

We define four families of topological objects that will later correspond to classes in H™
all indexed by E) . (Definition 3.2.11). Let § = {&1,..., &} be the base point of X, chosen so
that all &’s lie in the boundary of D,, and so that R(wg) < R(&,) < --- < R(&) < R(wy). All
the local system construction of homology classes depends on a choice for a lift of £ that we
make here, namely let § be a lift of £ in the cover corresponding to the local system L,. For
a different choice &' of lift, all the classes are multiplied by the same (invertible) monomial

Or (E — €’), namely the local system coefficient of a path joining p,(§) and p,.(§).

Notations. In what follows we draw topological objects inside the punctured disk, without
drawing the boundary of the disk entirely, for an easier reading. The gray color is used to draw
the punctured disk. Red arcs are going from a coordinate of the base point £ of X, lying in
its boundary to a black arc. Dashed black arcs correspond to arcs where several configuration
points are embedded, while a plain arc corresponds to just one configuration point (this will
be important to define the associated homology classes). Black arcs are oriented, from left to
right if nothing is specified and if no confusion arises. Finally, for all the following objects,
the red arcs will end up going like the following picture inside the dashed box, so that all
families of red arcs are attached to the base point {&;,..., &} of X,.

W1 Wo Wp—1 W,

oD,

57' 5," gkfn—l El

Here, 1’ = r — kg is set to simplify the picture. We now list the families of objects of interest.

Multi-Forks. First we recall the definition of (standard) multifork that can be found in [Ito]. For
k € E} . we let F(k, ..., kn_1) be the following picture:

ko k1

W1

kn—l

Wo Wp—1

& &
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Code sequences.

r-Loops.

Here we mean kq black parallel arcs between wy and wq, k; between w; and ws and so
on. These arcs are called tines. Every tine is connected to the boundary by a red arc
that is called a handle. In this standard multifork drawing, all the handles are going
straight to the boundary without any crossings. We call F = (F(ko, ..., kn-1))yxepo
the family of all standard multiforks. ’

We call code sequence an element of U. The definition of these objects comes from

[Bigl]. For k = (ko,...,kn—1) € Ej, we use the following drawing to illustrate
U = Ul(ko, ..., k,—1) introduced in Definition 3.2.8.
Wi W W1 Wy,
Wo @ @ 1@ ® kyq1 @
| oD,
5/‘ e 51

The indexes k;’s are here to illustrate the fact that k; configuration points are embedded
in the corresponding dashed segment. We have attached to an indexed k; dashed arc
what we call a (k;)-handle to the picture. It is represented by a little red tube which is
a simpler representation used for k; parallel fork-handles. As the elements of I/ generate
the homology as an R-module, these handles will be used to specify a generator.

This family was introduced in [F-W]. For k € Ej) . we call L(ko, ..., ky,—1) a (standard)
r-loops, the object corresponding to the following drawing.

ki

Wo
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In the picture, ky arcs are nested into each other around w;, k; around wy and so on.
Forks’ handles are again considered, and going from left to right while black arcs are
going from the inside to the outside. We call £ = (L(ko, ..., kn—1))yxcpo the family of
all standard r-loops. ’

Multi-Arcs. This family of objects is new in the literature. For k € Ej) . we define a multi-arc
A'(ko, ..., k,—1) to be the following picture:

where the k;’s indicate that k; configuration points are embedded in the corresponding
dashed arc. As for code sequences, there is a (k;)-handle arriving to a dashed arc
indexed by k; which corresponds to k; parallel fork handles, this will be used to define
the associated homology class. We call A" = (A'(ko, ..., kn-1))ycpo the family of all
standard multi-arcs. 7

These families are separated into two types: the black parts of forks and r-loops have r
connected components, while the ones of code sequences and arcs have n of them. This fact
leads to two types of construction of homology classes associated to these objects.

orks and r-loops. Let X designates the letter F' or L to treat both cases at the same time. Let k € E?w
and for all e =1,... r, let:

be the embedding of the black arc number i of X (ko,...,k,—1), where I; is a unit
interval. There are r black arcs for the r connected components. Let I = [0, 1] be the
unit interval. There is a natural application:

I'=Lx---x1I, —» X,
(t17"'7t7'> = {¢1<t1)7"‘7¢7‘(t7“)}
which is a singular locally finite r-chain of X, - and moreover a cycle in Borel-Moore

homology (see Remark 5.1.3 for the idea that Borel-Moore homology “does not see
punctures at infinity”). To get a cycle in the local system homology, one has to choose a

Q"
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Codes and Arecs.

lift of the chain to the corresponding cover. The way to do so is using the red fork-handle
of X(ko,...,k,—_1) to which is canonically associated a path:

h={h,....h}:I—>X,

joining the base point £ to the r-chain. At the cover level there is a unique lift hof h
that starts at £&. By choosing the lift of X (ko,...,k,_1) passing by &(1), it defines a
cycle in C*' ~, and we still call X (kg, ..., k,_1) the associated class in H™ ~ as we will
only use this class out of the original object.

Notations. We will refer to the utilization of handles to choose a lift as the handle
Process.

Let X be the letter U or A to treat both cases at the same time. Let k € EJ) . and for
alle=1,...,n, let:

be the embedding of the dashed black arc number i of X (ko, ..., k,_1) indexed by k;_1,

where I; is a unit interval. Let A* be the standard (open) k simplex:
AF={0<t, < <tp <1}

for k € N*. For all 4, we consider the map ¢¥-1:

Aki*l — in_l
(tro. o te,y) = {di(t), ..., di(te,_ )}

that is a singular locally finite k;_;-chain and moreover a cycle in Xy, ,. There is a
cycle associated to each dashed arc, so that by considering the product of maps ¢!
for i =1,...,n with target in X,, one generalizes this fact by associating an r-cycle of
X, to each object X (ko, ..., kn_1).

We use the same handle process as before with (k;)-handles to get a cycle in H**' ~ that
we still call X (ko, ..., kn_1).

(ﬁkifl :

Remark 3.2.15. If ¢; and ¢} are two parametrizations of the dashed arc D*-1, then ¢;
and ¢} are homotopic, so are the associated maps ¢*-1 and ¢’ -1 Then, the homology

classes associated to ¢*-1 and ¢’ i1 are equal and this guarantees that objects are well
defined.

Remark 3.2.16. If ¢*' and ¢*2 corresponds to chains with disjoint supports, there
exists an associated chain [gzﬁkl X gbk?] € Xk thy-

To be able to treat these two kinds of objects at the same time we must define classes
which are a mix of these two. This is what we do in the following definition.

Definition 3.2.17 (Mixed class). Letr € N*. We call an r-mixed class M(D", . .. ,D’;d, P, ..

the following data:
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o d,p,ky,..., kg are positive integers such that k; > 1 fori=1,...,d and Y k; +p=r.

e Fori=1,...,d, Dfi 1s a dashed black embedded arc inside D,, having endpoints in
wj,, wj, for ji,jo € {0,...,n}. The dashed arc is indexed by k;. It also comes with a
red (k;)-handle joining the dashed arc to &4, &1, ..., &k, for some a € {k;, ... r}.

o P,..., B, are plain black arcs joining two different wy’s. They all come with a red
fork-handle joining the black arc to some &, for some a € {1,... r}.
e The union of all handles is embedded inside D, and all &’s are reached, fori=1,...,r.

e The union of all black arcs (dashed and plain) is embedded inside D,,.

Example 3.2.18. We draw an example of an M (D*, P) mixed class.

oD,

b & &

There is again a canonical way to assign a class in H;el ~ to an r-mixed class M(D’fl, e
Following what we did for plain and dashed arcs before, there is a natural application:

. P,).

(Ag, X - X Ay, x IP) = X,

associated to dashed and plain arcs as follows: sending the first k; coordinates to lel, next
ks’s to D’;C2 and so on, and sending the last p coordinates as follows: one in Py, the next one
in P, and so on. This application defines a cycle in C¥(X,, X, Z) and we choose a lift of it
using 1che handle process. We call M(D!, . .. , P,) both the drawing and its associated class
in H," .

3.2.2.3 Local system homology techniques.

In this section we state three properties that will allow us to perform all the homology
computations we need in the next sections. The first property deals with a change of handle
for a fixed mixed class.

Remark 3.2.19 (Handle rule). Let B be a singular locally finite r-cycle of C,.(X,, X", Z).
We've seen a process to choose a lift of B to the homology with local coefficients in L,, using
a handle which is a path joining £ and x € B. Let a and 3 be two different paths joining &
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and B. Let B® and B? be the lifts of B chosen using « and [ respectively. By the handle
rule we have that in H
B* = p.(Ba™)B”?

where p, is the representation of m(X,,£") used to construct L, in Definition 3.2.5. It

expresses how the local system coordinate of a homological class is translated after a change
of handle.

Example 3.2.20. We have the following equality between these 2-forks corresponding to
classes in H5'

w; L '7' 1 w; u '/
i) = ) (Ba '—T—L\(‘
N pr(Ba) 5

with p,(Ba™t) = tq~2%. Indeed, we suppose that the drawing is empty everywhere outside
the parenthesis besides the red handles « and § that join the base point £ in the boundary.
We suppose also that o and 3 follow exactly same paths outside the parenthesis. This allows
us to draw the colored braid Ba~! in Figure 3.3.

W; ¢ y Wj

Wo

¢
: , 0;
a b

Figure 3.3 — The braid fa~!

The figure continues outside of this box, but as the path to the base point is the same for
a and S the path upper box is the inverse of the lower one. As the local system is abelian,
the out box parts of the braid won’t contribute to p.(Sa~!). Considering the definition of p,
one sees that the local system coordinate of the above path is tg=2% so is the one of fa 1.

We reformulate the compressing trick used in the proof of Proposition 3.2.8 in a more
general version.

Proposition 3.2.21 (Compressing trick). Let D, C D,, (and D) C D, respectively) be a
topological punctured disk with punctures wy,, ..., w,, andn; =1,....n fori=1,....p (resp.
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Dg contains also wy). Let X,(D,) (resp. XT(DS)) be the space of configuration of r points
inside D,, (resp Dg). Let D), (resp D'g} be an e-neighborhood of the segment joining the points
Wy, .- - Wy, (Tesp. having an end in wy) and contained in the real avis, with € small enough
to have D, C D,. Then the morphisms:

H, (X.(D,)) = Ho (X:(D,))

and
H, (X,(D'). X,(D')7) = Ha (X,(D}). X, (D})")

induced by inclusion are isomorphisms (the module XT(D’g) stands for configurations with
one point in wy). All the homology modules are Borel-Moore ones (or equivalently of locally
finite chains) and considered with coefficients in the local system L, restricted to the space of
interest, so that we omit it in the notations.

Proof. The proof is exactly the same as the one of Lemma 3.2.10 but performed inside D,
(resp. D). O

Proposition 3.2.22 (Combing process.). Let M = M(D!, ..., ng, Py, ..., P,) be a mized
class from Definition 3.2.17, such that the (ko)-handle reaches DI in x and the handle reaching
Py reaches it in ', Let P, = P Uy P;" and DY = D7 U, DI be subdivisions of arcs following
orientations. Let P (resp. D) be an arc joining ' (resp. ) to some w € {wy,...,w,}, and
such that P and D are disjoint from all the Dfl 's and the P;’s. We have the following (see
Examples 3.2.23 and 3.2.2/):

Plain combing. Let M~ and M™ be the following classes obtained from M and P:
M~ =MD, ... D PrxP Py,...,P)
M* =MD, ... Dk P« PF Py .. P)

where x denotes the concatenation of paths, and the handles are preserved from M.
There is the following homological relation:

M=M +M".
Dashed combing. Let 1 € {0,...,ki}, and M" be the following class obtained from M and P:
M =M ((D; + D) (D7 = D) Dl )

so that the initial arc Dy is divided into two, one indexed by | the other one by ki — [.
Handles are preserved from M, except for the (ki) handle tube that is divided into

two tubes: one (I)-handle joining (Dl_*D)l in x and one (ky — l)-handle joining
k11
((Dfr * D)_1> ' in x. There is the following homological relation:

k1
M = Z M.
=0
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Proof. We separate both cases.

Plain combing.

Dashed combing.

The equality M = M~ + M is straightforward in HY (X,, X7, 7Z) and the lifts agree
with each other as the handles are the same.

Suppose the mixed class M = M (D) is made of only one dashed arc. Let ¢*:

Akl — Xk1
(tl,...,tkl) — {Qb(tz),lzl,,k'l}
be the chain naturally associated with the indexed k; dashed arc of the considered mixed

class, where ¢ is a parametrization of D*'. We subdivide the simplex: for [ € {0,... k;}
let AFul be:

o

AR ={(ty, . ty,) € AF st < ¢ (2) <t}

which image by ¢*' corresponds to configurations for which the handle together with D
arrive between images of ¢; and t;,;. Let ¢! be the restriction of ¢** to AFl. Let:

ht:I—>Dn

be an isotopy (rel. endpoints) sending the arc D* to the right one of Figure 3.4 (arcs
oriented from left to right).

[ J
%
W

Figure 3.4 — The isotopy h;.

For all £ in I, let (bfl be the following map:

k1 . Akl — Xk1
U ) o (o d(t)i= 1, k)

and let (bf ! he the following map:

kil . Akl’l — Xkl
Lo (tl,...,tkl) — {htogb(ti),i:l,...,k}l},

namely the restriction to A*!. Let [ fl} and [ f l’l} be the corresponding simplicial

chains. One remarks that ¢§1’l = ¢Fv! and qﬁ]gl = ¢¥. In terms of chains we have the
following equality holding for all ¢ € I:

ot = 32 [ot].
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this is because {AF! [ = 0,... k} is a subdivision of A*. For ¢ = 0 this chain is
[(bkl} while for ¢t = 1, terms of the sum are Borel-Moore cycles homologous to M!. It
shows that [¢*'] and Y, M' are homotopic so that the relation M = SO, M holds
in HY(X,, X7,7). Then - as before - the lifting process is unchanged as handles are
preserved. It proves the proposition for a mixed class composed by one dashed arc, and
it generalizes to all mixed class as only the first component is involved in the combing.

O
Two examples of combings that will be used many times.

Example 3.2.23 (Breaking a plain arc). By considering a path joining the red handle to w;
one can check the following equality of homology class (all arcs oriented from left to right):

w; W1 Ww; Wi 41 w; Wi4-1
e ) ‘ . ‘
Wo - @ @ Wo E .P o Wo . o o

- +
P P - +
Pl Pl

w;  Wit1 w; Wit
Wo ‘\r. ‘ Wo ‘ e
= +

where drawings are the same outside the boxes. To obtain the second line we have applied
small isotopies not changing the homology class. One remarks that before the small isotopies
are applied, the handle is unchanged.

Example 3.2.24 (Breaking a dashed arc). By considering a path joining the red handle to
w; one can check the following equality of homology class:

) . ). w; k—1 Wit
Wo @, w; @ /. Wy k wWo v ‘@ g

| =]

where drawings are the same outside the boxes.

3.2.2.4 Relations among families of homology classes.

We still call F,U, L, A" the families of elements in H:® ~, and we recall from Corollary
3.2.13 that U is a basis of H:® ~ as an R-module. In this section we will perform homology
computations in H:® .

To pass from forks to codes, we will apply the compressing trick from Proposition 3.2.21
until a fork meets a dashed arc. We will need the following model.
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Notations. Since we work with Borel-Moore homology with local coefficients, we concentrate
on the following complex:

Ho (XT7 (X’/‘ \ AE) U Xr_a Lr)

for a small €, with A, defined as in the proof of Proposition 3.2.8. A dashed arc indexed by
k > 1 corresponds to an embedding of k points (a k-simplex) inside the arc.

As the order of points does not matter - working in X,., one can think of the dashed arc
as in Figure 3.5.

) ). ). k 2 -
u w; w; w;

) L Mo My 1 M
o——-r——o - ® f T o

Figure 3.5 — Dashed arc model.

On the left side we see a standard piece of an element of ¢/ and on the right side, one can
think of this element as the image of one point by the following embedding;:

Ak — ]wi, ’U)j[

where M; is the image of ¢;, the i** coordinate of A¥. The M;’s are represented by gray boxes
to keep in mind that we work relatively to X, \ A.. Every point is lifted to the maximal
abelian covering (L,) using the red handle reaching it. A first diffeomorphism of D,, has been
applied, allowing one to imagine this picture with w; facing w;. This diffeomorphism does
not change homology classes.

We recall definitions of g-analogs that we will use extensively from now on.

Definition 3.2.25. Let i be a positive integer. We define the following elements of Z [t*!] C
R. '
1-t
11—t

()= 14t+- +t71) =

(Cl,t)n = (1 - a)(l — at) ce (1 _ atnfl),

C) N ) A 1))
1), " =000~ GO e

We give crucial homological relations that will relate forks and codes (and later loops and
arcs) and allow one to compute actions in next section.
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Lemma 3.2.26. Let k > 1 be an integer. The following equalities hold in HI® ~:

k+1
=k+1) | G(i‘L). w;
W; 77—(—k7+,%>,,77 w
= (k + ].)tfl v ‘ “ . 7
k+1
=(k+1) ”1‘(1‘_). W
b k4 1)

where we suppose that the classes are the same everywhere outside the parenthesis, red handles
joining same base points following same paths.

Proof. We prove the first equality - last three correspond to symmetric situations so they
are proved similarly. The idea of the proof is an application of the compressing trick of
Proposition 3.2.21, which consists in applying a homotopy compressing the disk until points
cannot approach each other vertically anymore without meeting. Namely, let D be the disk
depicted in the parenthesis. While compressing D to an open §-neighborhood D’ of [w;, w;],
the plain arc from the top will approach the dashed arc. As we work in Borel-Moore homology;,
so relatively to X, \ A, for a small €, at some points, the point lying on the plain arc will
cut the dashed arc to put its e-neighborhood in. As there are k points lying on the dashed
arc, there are k + 1 possibilities of cuts (near Jwo, Mi[, | My, Ms[, ..., |Myg_1, My| or | My, w;[).
The situation may be summed up as the equality of Figure 3.6. In the figure, we distinguish
the point M from the plain arc coming between M;_; and M; in the sum.

Figure 3.6 — Homological relation.

To be more precise, let ¢* be the chain:

Ak—>Xk
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associated to the indexed k dashed arc. And :
I1—-D,
the one associated to the plain one. Then:
U= {p, "} AP x T — X34

is the chain associated to the left object of the equality we are proving. For i =1,... k + 1,
let A; be:
A; = {(tl, .. ,tk,t) € Ak xIst i1 <t< t,}

and W; be the restriction of ¥ to A;. In terms of chains we have the equality:

astheset {A;,i =1,...,k+1}is a subdivision of A¥ x I. Every 4; is naturally homeomorphic
to the standard simplex A*+!. By homotoping the plain arc to the dashed one, one obtains a
homotopy from ¥; to ¢**1 for all i € {1,...,k+ 1}. Then:

k+1

[\If] _ Z [¢k+1] )

i=1

This shows that the relation:

E+1
B k+1
( w; ‘,/,,D. w; > = Z ( w; ‘777(77_7%7,),,,,’ W, )

i=1
holds in H(X,, X, ,Z). This can be seen as Figure 3.6 without handles. (A mixed class
without handles corresponds to an unlifted homology class.)

Now it’s just a matter of reorganizing the handles in the elements of the sum in Figure 3.6
to get a dashed arc model. Using the handle rule, one can check that for i € {1,...,k+ 1}
we have the equality of Figure 3.7 in the local system homology.

M;
My,

M
My M;> M; My, My M;_1
) wj i1 Wi Wi
® “ e e . = t ) oo e . ’
M

Figure 3.7 — Local system relation.

To see this, we draw the colored braid associated to this change of handle, in Figure 3.8, so
that one verifies its local coordinate to be *~! (as (i — 1) red strands are passing successively
in front of the i one).
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|
TP 21 - 2 -
Wy w; I ‘; J J Wy

Figure 3.8 — Handle rule.

Again, in the picture, one has to imagine that the red handles are going back to the base
point before and after this box following same paths so that it does not contribute to the
local system coefficient. This concludes the proof of the first relation provided by the lemma.

O

From this we deduce several corollaries. A first straightforward consequence of Lemma
3.2.26 is the relation between the families F and U.

Corollary 3.2.27. Let k > 1 be an integers, the following equality holds in HI® ~:

d k
vel [t Dew | =@u| T | X

Proof. The proof is made by recursion on k. The recursion property is given by Lemma
3.2.26. O

From this result, the proof of the following is immediate.

Corollary 3.2.28. Let k € E° | there is the following relation between the standards fork

n,r’

and code sequence associated to k.

n—1

Flko, ... kn_1) = (H (ki)t!> Ulko, ... kn_1).

1=0

This recovers the consequences of Kohno’s theorem that can be found in [Ito], stating that
the family of multiforks is generically a basis of H,(X,(wg); L,). We state this precisely in
our context in the following corollary.

Corollary 3.2.29. The family F is a basis of H,(X,(wg), L,) = H™ = whenever one works
over a ring R where all the (i);! are invertible for i an integer lower or equal to r.

Lemma 3.2.26 allows also one to compute the fusion between two dashed arcs.
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Corollary 3.2.30. For integers k,l > 1, there is the following relation between mixed classes:

- (k+1)
w, & | k \:;. w; _ (k + l) W; @ -=----q------ @ W
t

T |

Proof. The two following equalities are direct consequences of previous Corollary 3.2.26.

[ k+1
(K@ | Ok @ = we | e
(k+1)
=(k+0)| & “ ****** e
One concludes using the integral equality:
k+1
et = (Y7
t
and simplification by (k).!({)!. O

Now we prove a proposition relating multi-arcs with code sequences.

Proposition 3.2.31. Let k € E’r?,,r' There is the following relation between the standard
multi-arc and the standard code sequence associated to k.

kn—1 kn—2+ln—1 ki+ly /n—2 ]{7 vl
i+1
A (k()?' B Z Z Z <H ( " >tU(k67k¥7' . 7k;i 27]{;7/1 1))

lp_1=0 1[l,_2=0 11=0 =0 H_l

where ki = ko + i, kl,_y =kn-1 —lp1 and K =k; +lia — 1 fori=1,...,n—2.

Proof. Let k € Eg’r and A’ its associated multi-arcs. We treat one by one the dashed arcs of
A’ starting by the one ending at w,, then the one ending at w,,_; and so on. The first step is
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the following:

, Wn-1 Wn W1 Ky 0
wo @. o @O Wo @. 4 _, Q0@
SR . o1 T
\ \‘—————k‘“’_i/ = E RS R
‘ ln_l:o ‘
, W1 kp_yn
wo @ e @0
kn71 \\ //
o 2 : (an + lnl) ‘Q“:L*fjr l_":l/)//
ln—lzo n—l t {

with &/, = k,—1 — l,,_1. The first equality is a breaking of dashed arc, see Example 3.2.24.
The second equality is a direct application of Corollary 3.2.30. The end of the proof is an
iteration of this process. Next step is the following, with k!,_, = ko + l,,—1:

Wp—2 Wp—1 Wy, Wp—2 Wp—-1 Wy
Wo ‘\\k S Q®:-Q® Wo *k . ot LUET
e h K m-3- - /
. ’ n—2 AN 1 7
~ // - - _/2
| S A = E ¥
‘ ln_2:0 H
Wp_9 Wp_1 W,
1 " ’
N Wo @ { f=r@Fh =1
n—2 k + l kp—g—tln_2
. Z n—3 n—2
1, —9=0 n—2 t

where k! , = kl,_5 —l,—2. A complete iteration of this process gives the formula of the
proposition. ]

By looking at the diagonal terms of the matrix expressing mutli-arcs in the code sequence
basis, one gets the following corollary.

Corollary 3.2.32 (Basis of multi-arcs). The family A’ of multi-arcs is a basis of H'* ™~ as
an R-module.

Proof. Let Egyr being given the lexical order. This yields an order on families A’ and &. One
can see from Proposition 3.2.31 that with this order, the matrix expressing multi-arcs in
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the code sequence basis is upper-triangular. The determinant of this matrix is given by the
product of diagonal terms. The diagonal terms are the binomial in the sum of the formula
of Proposition 3.2.31 corresponding to [; = 0 for all i € {1,...,n — 1}. In these cases, the
binomials are equal to 1 so that the determinant of the matrix is 1. As U is a basis and the
change of basis determinant is invertible, the proof is complete. O

The last proposition of this section relates the r-loops family to the multi-arcs one, which
concludes the total picture of relations between the four standards families indexed by Eg}r
present in the literature.

Proposition 3.2.33. Let k € EQM,. There is the following relation between the standards
multi-arcs and r-loops associated to k.

n—1 ki
Liko, ... kn_1) = <H(/ﬁ-)t! [T q2ait’<)> Al(ko, ... kny).
=0 k=0

Proof.

Remark 3.2.34. First we observe the following equalities between homology classes:

= (k41— g2 (k+ 1)) | " +

=(k+1) (1 — q—2ait_k) Wo +. w;

where everything stands inside a small neighborhood of the picture, without perturbating the
rest of the class contained outside of it. The first equality comes from a breaking of plain arc,
see Example 3.2.23. The second one is a consequence first of the application of a handle rule
to get vertical handles, and then relations of Lemma 3.2.26.

To prove the proposition, one treats separately the loops winding around wy, from those
winding around wy etc. Every case is a straightforward recursion, by the above remark, and
leads to the formula of the proposition. m

This answers Conjecture 6.1 of [F-W]. In fact it is a more precise statement saying exactly
under which conditions the family of r-loops is a basis of the homology.

Corollary 3.2.35 ([F-W, Conjecture 6.1]). If R is a ring in which all the (1 — ¢ 2%t=F)
are invertible for all i = 1,... . n and so are all the (k),! (for k <r), then H'™ ™ is a free
R-module with the family L of r-loops as basis.
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Actually, the lifts of the r-loops chosen in [F-W] are not exactly the same as ours, namely
the handles we’ve chosen do not correspond to their choice of lift. But, as we have seen, a
change of lift corresponds to the multiplication by an invertible monomial of R, so that the
conditions to be a basis are the same.

3.2.3 Homological representation of U,sl(2)

The goal of this section is to define homological operators E, F' and K, acting over €, .. He
and to verify that they realize an algebra representation of Uysl(2). In this section we will
need other quantum numbers.

Definition 3.2.36. Let i be a positive integer. We define the following elements of Z [q*].
4 —q"
i = ——,
i, q—q!

k], =11,

=1

HE=

Remark 3.2.37. Let t = ¢~ 2, so that the following relations hold in Z [¢*!]:

(i) =q' 7" [i],,

—k(k—1)
2

(k+1)!=g¢q [k +1],)
<k+l) _M{kﬂ]
3 q

3.2.3.1 Action of F(, and its divided powers.

We start with FF(!), we are looking for an operator from H:% ~ to H:% . We need to increase

by one the degree of a chain while passing from X, to X, for the topological space.

Remark 3.2.38 (Collar retraction). Let ret be the following continuous map from the left
disk (D,,) with red boundary to the right one (D) consisting in compressing the gray part,
while keeping the interior white part fixed.

There exists a homotopy sending D,, to DI**. One can perform the retraction at the level
of configuration space component by component so that the continuous map:

. X, — X
et {z1,..., 2.} — A{ret(zy),...,ret(x,)}
makes X, and X"® homotopically equivalent. This last fact together with the fact that

ret preserves X, ensures that ret induces the homology endomorphism ret, = Id €
End (Ho(X,, X7, Z)).
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We recall that the base point of X, satisfies R(wg) < R(&a1) < R(E) < ... < R(&) <
R(wy), so that the last (r 4+ 1) base point’s coordinate is on the left side of others.

Definition 3.2.39 (Tines, Handles). Let k > 2 be an integer, F and F®) be the following
cycles in H.:

7/ \
/ \
/ \
1 \
F.owg , B0 wg . <
- v W Wo Wy 1
\ /
\ /
61 5]9 /\\\ /Z//
& ST

Let T(E) : I — D, and T(F®) : I* — D,, embeddings of I and I* in the black arcs (plain
and dashed respectively) of the pictures, namely small deformations (pushing inside D,,) of
the arc running once along the boundary. Let H(F) : I — D,, and H(F®) : I¥ — D, their
red handle and (k)-handle respectively, as in the picture.

We will define the operators by suitably “adding” the classes of the above objects, as
follows. _

Let ¢ be a chain in C* ~ = CY (X,, X7: L,), and ¥ = {31, ...,7,} be a path from ¢ to &,
the base point’s lift. Let ¢ € C (X, X;Z) be the image of ¢ under the covering map p,,
and 7 the image of 4 under the covering map. The chain ¢ is fully determined by the data ¢
and 7.

We define the following morphisms at the level of locally finite chain complex with local

coefficients: " { crel- o
Le=(er) = FQ) = [(ret(c), T(E)), (y U H(E))]
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b { Y
L e=(ey) = F(© = [(ret(c), T(EW)) , (v U H(EW))]
Remark 3.2.40 (Base point). We mention the fact that the path v starts at {&1,...,&}
in the space (X,,&") but, thanks to the right shift of base point, 4 reaches {&,...,&41} in
(X,11,€). As the handle of F is attached to &, all the configuration point of £+ are
reached by (yU H(F)).

Proposition 3.2.41. The morphisms F' and F'® are well defined. Moreover they pass to
homology morphisms:

/. rel — rel — 1(k) . rel — rel —
FroHS ™ = HY and F'P7ors HEE T — HI

Proof. The application of ret to ¢ makes the chain (ret(c),T) and the path (yU H) well
defined in X,, as the configuration coordinates are disjoint. This shows that the chain
morphisms are well defined, see Remark 3.2.16 that deals with product of chains with disjoint
supports. They pass to homology thanks to the fact that we make the product of chains (as
Remark 3.2.16) with T'(F) or T(F®) which are cycles in C¥/(X,, X7, Z) and CV (X, X;, Z)
respectively (as lines going to infinity points, see Remarks 5.1.3). O]

Definition 3.2.42 (Action of F'). Let k > 2 be an integer. We define the following family of
operators:

F(l) = qzzl:1 o c HOHIR (H:el -, H;‘il_) and F(k) = qk(l_k)/quZ?:1 OciFl(k) c HOIHR (H:el -, H:ﬂk—)

One last proposition that justifies the divided powers denomination.

Proposition 3.2.43 (Divided powers of F'). There is the following relation between elements
of Homp (K"~ 1L
(F(l))k — qk(kfl)/2(k)t!F(k)_

Let t = q72, then:
(Myke — (k)

Proof. This is a direct consequence of the following equality of mixed class:

Wo = (k)t‘ Wo

which can be proved as Corollary 3.2.27, and whatever stands inside the circles. This shows
that F'* = (k)/F"® and the first statement is immediate. To get the second equality, for
t = ¢~ 2 one uses directly Remark 3.2.37. O
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3.2.3.2 Actions of F and K

We recall the definition of the isomorphism that adds a configuration point in wy before
shifting it slightly to the right, see Remark 3.2.1.2:

o 771<Xr \ X;’fr) — 7T1(X7"_+176T+1)
Lemma 3.2.44. The morphism ®" lifted to the local system level:
P - L, rXT\Xf_> Lr+1 rX;-&-l
is an isomorphism of local systems.

Proof. Let p, be the representation of (X, &") providing the local system L,. The following
diagram is commutative:

(X, \ X, €) v > (X, €Y

lpr lpr+1

..........

= @ie{l

which proves the lemma. The commutation is easy to verify thinking of the presentation of
T (X, \ X 7,&") given in Remark 3.2.3. The morphism ®" simply adds a straight strands to
the braid, not modifying its image by p,.. O

Remark 3.2.45. This remark is a recall. We have the following equality:
H'r—l(Xr—l \ Xr_—l; L'r’—l) - H’r—l(X'r—l(wO); Lr—l) - Hrel -

r—1

where X, (wy) is the space of configurations of X, with no coordinates in wy. The first equality
is the fact that X, 1\ X, ; and X,_;(wp) are canonically homeomorphic. The second one is
Corollary 3.2.13.

From this identification one is able to define an operator E as in the following definition.

Definition 3.2.46 (Action of F). Let E be the operator defined as follows (we define its
opposite —F ):

(@)

. —— H (X \ X,y L) = HE

~E:H®T = H, (X7 L)
The arrow 0, is the boundary map of the exact sequence of the pair (X,., X, ). The arrow
(@)~ is the inverse of the isomorphism from Lemma 3.2./4 and the last equality is the above
Remark 5.2.45.

The above definition states that E is (the opposite of) the boundary map of the relative
exact sequence of the pair involved, everything else is just isomorphic identifications of
homology modules. It means that E reads the part of the boundary that lives in X ~. We
give a trivial example of computation with a standard code sequence.

111



Example 3.2.47 (Action of F on a code sequence). Let k = (kg,...,k,_1) € E°

g and Uy
its associated standard code sequence. One can check the following property:

E-Uc=Ulko—1,... kn_1).

Consider first U(ko, 0, ...,0) and let ¢*0 be the chain associated to the indexed kq dashed arc.
We recall our definition of the standard simplex:

AFo = {0 <t < <t}

so that its only boundary part sent to configurations with one coordinate in wy is {t; = 0} € AF.
Remarking that ¢* restricted to {t; = 0} is ¢*~1, one sees that the equality holds at the
level of homology over Z. To deal with the handle rule lifting process, we remark that only
the leftmost configuration point embedded in U (ky, ..., k,—1) can join wy. This is saying that
the only part of the boundary of U(ko,...,k,_1) lying in X corresponds to the leftmost
point being in wg. No local coefficient appears while appling (®")~! (Lemma 3.2.44) thanks
to the fact that the handle joining the leftmost configuration point is the leftmost handle,
and it joins &, namely the leftmost base point’s coordinate. Another way to say this is by
remarking that the path following the leftmost handle, then going to wqy along Uy then back
to &, along the boundary can be homotoped to wy without perturbating other handles.

The action of the operator K is a diagonal action encoding the value of r.

Definition 3.2.48 (Action of K). For r € N*, the operator K is the following diagonal
action over HI® ~:
K — qz'z aitTIdH:el—.

We define the operator K=! to be the inverse of K.

3.2.3.3 Homological U,sl(2) representation.

Let H =D, - H' ~, the actions of E, F") and K are endomorphisms of . We have the
following proposition.

Proposition 3.2.49. The operators E, FY) and K satisfy the following relations:

KE = t'EK
KFY = tFpOK
[E,FV] = K-K

Proof. The first two relations are direct consequences of both facts that F") increases r by
one, E decreases it by one, and of the definition of K. It remains to prove the last one. The
proof can be performed without considering basis of H, although we do it here using the basis
of code sequences for an easier reading. Let r € N*, we recall that U = (Uy), po . 1s a basis

of H:' ~ as an R-module. Let k = (ko, ...,k 1) € E} . First we compute the commutation
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between E and F' before renormalizing F' to F(V). The class F’ - (Uy) corresponds to the
following mixed one:

Wp_1 W,

Wo

Sry1 &2 &

Applying —F to this mixed class gives the part of its boundary lying in X, . There are
r + 1 intervals embedded in this mixed class, r of them in the dashed arcs, and the last one in
the plain arc. The part of the boundary lying in X~ is the sum of the leftmost point of the
dashed arc going to wy and of the two boundary part of the plain arc that are in wgy. This
corresponds to the following equality.

where the coefficient C' is the computation of the boundary of the plain arc, T'(F"). One can
check easily that:

using Example 3.2.47. We also mention that this term is zero if kg = 0. This gives:

—[E,F']~U(k:0,...,kn_1):C><U(k;o,...,k:n_l)
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so that it remains to compute the coefficient C'. The coefficient C' is the difference Cy — C4
where C and C} satisfy the following equations:

We compute them using the handle rule. The coefficient C; corresponds to the local system
coefficient of the following colored braid:

LT
N T
\\Mn W1

while Cy corresponds to the colored braid with the red front strand passing in the
back. We remark that in the braid picture we got rid of the parts of red handles that live
outside the parenthesis. Outside the parenthesis, the paths consist in going to the base
point without crossing each other staying in front of the w;’s, so that upper and lower the
box, the contributions to the handle local system coefficient balance each other. Then it is
straightforward to compute the local system coefficient of these braids, we get:

Wo Ko w1 W,y b
|

Cl = tZ::L:_O1 kz — t?’ , 02 — t_'rq_22;'n:1 [e73
so that:
- [E7 F,] ’ U(k(b ) kn—l) = <t_7‘q_22?:1 ¥ — tT) X U(k07 ey kn—l).

We recall that:
[E, F(l)} - ani [E, F’]

which concludes the proof. O
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Theorem 4. Let ¢=2 =t. The infinite module H together with the above described action of

L
E,FY K+ and F%) for k > 2 yields a representation of the integral algebra U} sl(2) (see
Section 1.4.3).

Proof. The algebra Uq%5[(2) is presented in Section 1.4.3, Definition 1.4.13. We use same
notations (from Section 1.4.3) for generators and we recover the same relations. Namely, the
relations between £, F(! and K*' are recovered using Proposition 3.2.49, while the fact
that F*) are the so called divided powers of }Z(l), see Proposition 3.2.43, ensures that the

relations involving them hold. The algebra Ug s[(2) is presented in the literature in [Hab]
and [J-K]. O

Remark 3.2.50. Even if it is not necessary to prove them knowing Proposition 3.2.43 (divided
power property), we can check homologically the relations involving the divided powers of
F®) (relations introduced in Remark 1.4.14). Namely:

[E, F(n+1):| _ F(n) (q—nK . qu—l)
is a simple computation of the relative boundary of a mixed class as in the proof of Proposition
3.2.49. While:

n-+m

is a direct consequence of the homological Corollary 3.2.30.

L
We have a complete homological description of the relations holding in Ug sl(2).

Remark 3.2.51. Using Proposition 3.2.49, one sees that we have a representation of the simply
connected rational version of U,s((2), for which are introduced generators that correspond
to square roots of K and K~'. See [DCP, § 9], Remark 2.2 of [Bas], or [C-P, § 9.1] for
information about this version of U,s((2).

The following corollary will be a key fact to recover T. Kohno’s Theorem from [K1] and
[K2] relating sub-modules of U,sl(2) corresponding to the kernel of the action of E (usually
called highest weight modules) to homology modules.

Corollary 3.2.52. Under the condition q=2 = t, the restriction of the braid represen-

tation to the kernel of the action of E yields a sub-module of H isomorphic to HF =
&P HBM (X, L,).

reN* “or

Proof. For r € N*, the relative long exact sequence of pairs gives this exact sequence of
morphisms:

H.(X i L)) — H(X;:L,) —— H'~ -2 H, (X7 L,) — H,_1(X,; L,)

where we have avoided the notation BM as everything is Borel-Moore homology here. Using
Lemma 3.1 of [Bigl] one gets that H,_1(X,; L,) vanishes while Remark 3.2.45 implies that
H, (X ; L) vanishes. This provides a short exact sequence:

Ho(X, L) —— H~ -2 H, (X2 L,).
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The kernel of the action of E' is exactly the kernel of the map J,. This implies the corollary,
as the kernel of the action of F is isomorphic to the module of absolute homology. O

3.2.4 Computation of the Uysl(2) action

In this section we compute the action of the operators E, F() and K in the basis of multi
arcs, in order to recognize the representation of U,sl(2) obtained over H. First of all we define
a normalized version of the multi-arc basis.

Definition 3.2.53 (Normalized multi-arcs.). Letk € E},
element of HI* ~:

let A(ko, ..., kn_1) be the following

A(k) — qoq(/ﬁ+~“+/€n—1)+042(k2+“-+kn—1)+--~+an_1kn_1A/(k)‘

Let A = (A(K))ycpo  be the corresponding family indexed by EY) .. By convention, A(kg, ..., kn_1)
is defined to be 0 € HI™ = when ever k; = —1 for some i € {0,...,n —1}.

Remark 3.2.54. The family A is obtained from A’ by a diagonal matrix of invertible
coefficients in R so that A is still a basis of H'® ~ as an R-module.

Remark 3.2.55. The same normalization allows one to pass from the r-loops family defined
in [F-W] to the one defined in Section 3.2.2.2 of this work. This fact will allow us to deal
with the homological conjectures of [F-W] using our normalization.

We are going to compute the action of operators in this basis, and will see that it recovers
a well known basis of U,sl(2) Verma-modules.
3.2.4.1 Action of E.

First we need a lemma to reorganize handles.

Lemma 3.2.56. Let A'(ko, ..., kn_1) be the standard multi-arc associated with (ko, ..., k,—1) €
E?w"' Fori=1,...,n, it is subject to the following relation holding in H'* ~:

w; Wy, w; Wy

) | ko ) ] ko
ey e 0 @ W @:-70 @ @

- k=1 P Nl S P
el Z

- - l — thot-tki—o R EE l

777777777

\ &
X
-
\ &
X
-

where, in the right term, only one component of the red tube indexed by k; had been moved
to the extreme left of other red handles. Namely only the leftmost handle composing the
(k;)-handle (tube of k; parallel handles) had been pushed to the left of the (ko)-handle. Down
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the parenthesis, red handles are joining the base point following a usual dashed box, without
crossing with each other. The left class follows this box:

w1 Wo Wp—1 Wy,
wo ‘ o ®e - O [

gr 57”/ gkn,_l 51

while the right one has the leftmost single handle following the leftmost path of the above
dashed bozx. All other handles are right shifted.

Proof. 1t is a straightforward consequence of the handle rule. The braid involved is drawn in
Figure 3.9, so that one sees the local system coefficient (we did not draw the the punctures as
they don’t play any role).

I
u

Wo

Figure 3.9 — Handle rule.

]

Lemma 3.2.57. For any k = (ko,...,k,_1) € EY

nr the action of E over the standard multi
arcs is the following:

n—1
E-Ako, ... ko) =Y oV A (g ki ki = Lk, k).
=0

Proof. Every dashed component of A'(ko, ..., k, 1) has its leftmost component having one
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end in wy. For ¢ =1,...,n — 1 we have from the above lemma:

w; Wy,
1N k(]
Wo - 7‘k1.././. /.
N (R P
w—1

~ -

A,(k07"'7kn—1): S~ - --
— thot-Fki—z -

Using exactly same arguments from Example 3.2.47, we have:

w; Wy w; Wy,

ko o
-0 0 @ wo
~ v

Sk k=1 P ST

where the rest of the terms concerns boundary terms coming from other arcs (different from
the k;_; indexed one). The minus sign is due to the fact that we oriented all the dashed arcs
from left to right. Every dashed arc indexed by k; for i = 0,...,n — 1 can be treated the
same way. The boundary of A(ky,...,k,_1) relative to wy is then the sum of these terms,
and one gets the statement of the lemma. O]

One has the following action over the normalized multi-arcs.
Proposition 3.2.58 (Action of £ over multi-arcs). For any k = (ko, ..., kn_1) € E} ., the
action of E over the (normalized) multi-arc is the following:

n—1

E - A(ko, ceey knfl) = Z qa1+.‘l+aitk0+m+ki71A(ko, .. ,kifl, kl - 1, k’i+17 ey k'nfl).
i=0
Proof. 1t is a simple computation:

n—1
E- A(k)g, RN kn—l) = qal(kl+m+k"71)+m+a”71k"71 Ztko—‘_m—i—ki_lAl(k’o, N e T kn—l)
=0
n—1
= qal+'”+aitk0+m+ki_lA(k’o, ce ,ki—la kz - ]_, ki-l—l? ceey kn—l)'
=0

118



We emphasize the action in the case of one puncture.

Corollary 3.2.59 (n=1). Let n =1, k € N, and A(k) the associated element of H. Then:
E-A(k)=A(k —1).

3.2.4.2 Action of F®),

Let i € {1,...,n}, and S; be the following mixed class:

Namely one recognizes a standard (ko, ..., k,_1)-multi arc to which a plain arc as in the
picture has been added. To compute the action of F") we need the following lemma allowing
us to deal with S; by recursion.

Lemma 3.2.60. Fori € {2,...,n}, the following equality holds in H' ~:
SZ‘ :(kz + 1)t71A/(k,’0, ey kz + 1, ]{Ji+1, e ,I{In_l)
—t Rk + 1) A ko, .o ki + Lk, k)
+ gt S

Proof. By a breaking of a plain arc (see Example 3.2.23), one gets the following decomposition
for S;:

w; Wil Wy
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which follows from the handle rule.

Again, breaking the plain arc, we treat the second term using the following equality:

w; Wiyl Wy

To decompose these two terms in the standard multi-arc basis, one must apply Lemma
3.2.26 to crash a plain arc over a dashed one, after a simple application of the handle rule to
reorganize the handles of the right term. This recovers the lemma. O]

We use this lemma to compute the action of F(!) in the multi-arcs basis.

Lemma 3.2.61. Letk = (k, ..., k,_1) € E° ., the action of FV) over the associated standard

multi arc is the following: ,

n—1
FO . A(k) = Z qZ§i11 % g™ L=tz ST ks (ki + 1)(1 — g~ 2@k A/ (k);
=0

where A'(k); means A'(ko, ..., ki1, ki + 1, kiv1, ... kn1).

Proof. First, we compute the element F’ - A'(kq, ..., k,_1) of H* ~. It corresponds to the
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following mixed class for which we give a decomposition in ’Hﬁel B

This decomposition follows from a breaking of a plain arc (Example 3.2.23). The minus
sign is due to the reverse of the orientation of right term’s plain arc. The first term of the
decomposition is in position to apply Lemma 3.2.26, while after a handle rule one recognizes
Sp—1 in the second term. Finally we get the following formula:

F' Ao, ... kno1) = (kpo1 + 1) A (Ko, .. kepy + 1) — g 278,y

Thank to the recursive property of S, ; the proof is achieved using Lemma 3.2.60, so that
one gets:

FreAk) = S g2 e iy isia b (k4 1),(1 — =20 k) A/ (K),.

By multiplication of the action by ¢>® one obtains the expected action for F") over the
multi arc basis.

[
Proposition 3.2.62 (Action of F) over multi-arcs). Let k = (ko,...,kn_1) € E°,, the

n,r’

action of FY) over the associated standard (normalized) multi-arc is the following
n—1
FU . AK) = Z g~ Zi-iv2 i X5l B g (y + 1),(1 — g~ 201475 A(K),.
=0

Proof. 1t is a straightforward consequence of previous lemma and of the normalization sending
the family A’ to A. O

We emphasize again the case n = 1.

Corollary 3.2.63 (n=1). Let n =1, k € N, and A(k) the associated element of H. Then:
FO L Ak) = ¢ (k+1)(1 — ¢ 2t M) Ak + 1)
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We end this section giving the action of the divided powers F® but only in the case of
one puncture.

Proposition 3.2.64 (Action of FO, n = 1). Let n = 1, k € N, and A(k) the associated
element of H. Let | € N*, then:

FO-A(k) =g 7 ¢ (k . l)
t

[T =g ™A@k +1).

Proof.

The second equality comes from Corollary 3.2.27 and the last one is an iteration of the equality
from Remark 3.2.34. Finally we have:

F'O . Ak) = (k Z l) H(l —q ™M Ak + D).

The proposition is proved after the normalization passing from F'®) to F®, O

3.2.4.3 Recovering monoidality of Verma modules for U,sl(2).

Since in this section n (the number of punctures) is particularly important, we denote by
Hev-9n the module H built from X, (wy, . . ., w,) with coefficients in R = Z [t*1, g1, ..., ¢Fn].

Remark 3.2.65. We recall the action of K. We distinguish the cases whether n is greater
than 1 or not.

(n=1) Let n = 1 so that R = Z [t ¢**1]. Let k € N, and A(k) the associated element of H.
Then:

K- A(k) = ¢*'t*A(k).
(n>1) Let n > 1,k € EY, and A(k) the associated element of H" ~ € #{*+*»_ Then:

K - A(k) = =1 %" A(K).
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L
Proposition 3.2.66. Lett = ¢~2. The module H®' is a Verma module for UZsl(2) of highest
weight ;.

Proof. The presentation of the action over a Verma-module, is given in [J-K] (see relations
(18)) and is recalled in Definition 1.4.17. Using Corollaries 3.2.59 and 3.2.63 and the above
remark in the case n = 1, one recognizes the presentation of the Verma module. Namely, let
t =¢ 2, and let s = ¢°'. Then:

K - A(k) = ¢ t" A(k) = sq~ " A(k)
E-A(k) = A(k —1)
and
FW - A(k) = ¢™ (k+ 1)1 — ¢ >t Ak +1) = [k + 1], (s¢* — s7'¢")A(k + 1).

The last equality uses Remark 3.2.37.

These expressions ensure that the isomorphism of Z [s*!, ¢*!]-modules:
H - Ve
A(k) — v forkeN
L
is U sl(2) equivariant. O

Remark 3.2.67. There is an isomorphism of R-modules:

Hal ,,,,, [e7%% _> Hoq ® Y ® Han
A(kOa"'yk:n—l) = A(ko) ®®A(kn—1)

tens :
Theorem 5 (Monoidality of Verma-modules.). The morphism:
tens : HO M 5 HU Q- @ HO
is an isomorphism of U,sl(2)-modules.
Proof. From Proposition 3.2.62 one remarks that the formulae satisfy:

tens (F(l) . A(k)) — tens <z”_01 q Y2 iy ik g+ (k; +1),(1 — q_2ai+lt_ki)A<k>i>
=300 Alko) ® -+ ® (g (K + 1)y(1 — g~ 21t 0)) A(k; + 1)
®q~ az+2t kz+1A(]€Z+1) R+ ® q—ant—kn—lA(k;n_l)
:Z?:_ol (191@ - @FVQK @ - @K*)A(k) ® - @ A(ky_1)
where the £ in the sum is in the (i +1)* position, one recognizes the expression of A™(F™)).
We do the same for F, from Proposition 3.2.58 we have:

tens (E : A(k’o, . ,kn_l)) = tens (Z?:_Ol qa1+m+aitk0+m+ki71A(/{Zg, e ki—l; kz — 17 ki+1, ce /{Zn_1>)
STV EK®---KQE®1® - ®1)A(ky) @ -+ @ A(kn_1)

which proves that the action of E over H*' " corresponds to the action of A™(E) over the
tensor product. The same proof works for the action of K so that the theorem holds. O
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Remark 3.2.68. The above theorem suggests that their should exist a homological interpre-

tation of the U,sl(2) coproduct. Probably in terms of gluing once punctured disks along arcs

of their boundary. The morphism tens should then be the involved homological operator.
We remark that:

tens(A'(k)) = qa1(k1+~-~+kn71)+a2(k2+~--+kn71)+---+an71kn71A/(ko) Q- @ A (k1)

so that multi-arcs are divided into tensor products of single arcs, with coefficients appearing
from the gluing operation.

3.2.5 Homological braid action

3.2.5.1 Definition of the action.

The braid group B, acts topologically over D,, by mapping class action. The action can
be generalized to X, as homeomorphisms extend to the configuration space coordinate by
coordinate (as in Relation 2.1, Section 2.2). We show that this action passes to homology
with local coefficients in L,, treating separately the unicolored case from the general one. In
the unicolored case, we get a representation of the standard braid group:

Lemma 3.2.69 (Representation of the braid group). Let « = a3 = -+ = «, so that
R = Z[t*!,¢**]. Let B € B, be a braid. The action of 8 by mapping class over X, lifts to
’H:El =, so that it yields a homological representation of the braid group:

R™™ . B, — Endg(H>)

Proof. Let o € B,, be one of the standard braid generator, the lemma is a direct consequence
of the invariance of the local system representation under the braid action. Namely, the
commutativity of the following diagram:

(X E) —— s (X, E)

" lr

72 = Z(q™) ® Z{t) —— Z(¢*) & Z(t)

where B is the homeomorphism of X, associated to 5 and B\* the lift to the fundamental group.
It is easy to see that for [ € {1,...,r — 1} and k € {1,...,n}, the following equalities hold:

Pr (Rhom(a)*(al)) = pr(01) and p, (Rhom(a)*(Br,k)) = pr(Br)
considering generators of 71 (X,,£€") introduced in Remark 3.2.3. [

Remark 3.2.70. The above lemma has already been proved for the case r = 2 in Lemmas
1.2.20 and 2.2.2 (unicolored and general cases). The same proof can be adapted also for the
above general case.

124



To deal with different colors, we need a morphism to follow the change of colors in R.
Definition 3.2.71. Let s € G,, be a permutation. We define the following morphism:

R — R
qai — qas(i)
t — t

W>

Lemma 3.2.72 (Representation of the colored braid groupoid). In the general case, let of be a
generator of the colored braid groupoid By 1(D) (see Definition 3.1.), withi € {1,...,n—1}
and s € S,,. The action of o} by mapping class over X, lifts to homology so that it yields a
homological representation of the colored braid groupoid:

Rhom(O'f) € Homzp (%s(al) QR ® Hs(an)7 Hsn(cn) R ® Hsn(ozn))
where 7, = (i,i 4+ 1) € &,,. This action commutes with the R-structure.

Proof. The proof is almost the same as the one for Lemma 3.2.69. Namely, it is a consequence
of the fact that the following diagram commutes:

Rhom(a‘f)*

Wl(XragT) ? 7T1(XT7§T>

I |-

LA 1)~ T i)

The fact that this diagram commutes comes from the following remark:
Rhom(o'f>* (Br,k> = Br,kJrl

while other generators of m1(X,,£") are not perturbated by the action of ¢ (so that the proof
is unchanged). O

The idea of this construction was originally due to R. Lawrence in [Law]. This is a gener-
alization of her construction as we work in a relative case and obtain a larger representation.

3.2.5.2 Computation of the action.

In the case of two punctures wy, wo, we can perform the computation of the action of the
single braid generator of B, and first we recall classical operators necessary to define the
R-matrix of Uysl(2).

Definition 3.2.73. Let q@ be the following R-linear maps:

HoH HY QH? — HM QH™®
q : Ao‘l(k)®Aa2(k:’) — q(a1—2k)(a2—2k’)/2Aa1(k)®Aa2(k/)

and T the following one:

T H @H*? — H®QHM
Tl A (k) @ A2(K) — A% (K) @ A (k)

where A(K")*', and A(k)** are vectors of H*', and H* respectively.
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Lemma 3.2.74 (Braid action with two punctures). Let k, k' € N, o be the standard generator
of the colored braid groupoid with two strands. Its action can be expressed as follows:

k
oY (¢ e FY) o

=0

tens (R""(o1) (A(K', k)*1?)) = A(K)* @ A(k)*2.

where A(K', k)2 A(K")*, and A(k)** are vectors of H**2, HY | and H*? respectively.
Proof. We have the following equalities concerning homology classes:

Wy Wo

W \\k,/. /,.
S gt
Rhom(gl) (A,<k/, k)al,ag) — Rhom(al) H
| W =t
Wo \\k" e
\\\ i ’/k//

I
E

T
=

The second equality comes from a breaking of a dashed arc (Example 3.2.24), the last one is
a handle rule, for which we draw the corresponding braid in Figure 3.10.

The bands represent a (k — [)-handle, a ({)-handle, and a (k') handle. On the top and on
the bottom of this box there is the part of the path corresponding to the dashed box. Namely
red arcs are going back to & without crossing themselves, and in the front of w; and ws. As
this braid has (k — [) strands passing successively in the back of k" strands, [ strands and
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wo w1 K wy U k=1

%_' |

1

o

Figure 3.10 — Braided handle rule.

finally w,, its local coefficient is ¢t~ (#=O*+0g=2e2  From the local coefficient of this braid we
deduce the coefficient appearing in the last term.

Finally, applying the proof of Proposition 3.2.64 to crash a dashed loop on the indexed k
dashed arc, we get:

k l
/ K +1
hom ag,a2) —(K'+0)(k—=1) ,—2(k—1) _—2a14—m . ag,o
R (o) (A'(K k)™ o2) =t q < z ) [T(1—g 20t ™) A (k1 K)o,

=0 t m=0

So that:
I

/ K +1
R (01) (AK', k)™2) Zt (FH0E=Dg ’“*2”“1q—<’“+”“2( 7) [[—g 2 ™) A(k—1, K )22,

t m=0
Let t = ¢~ 2, passing the above expression to tens, we get for tens (Rhom(ofl) (A(K, k)alm))
the following expression.

k

, / kK +1 l
2(k"+1)( (—k+20) a1 — (k' +1) a2 _ —2014—m a2 / aq
E ( l ) | | (1—qg >t ™Ak -1 AK +1)

=0 L m=0

By use of the expression of the action of F) in Proposition 3.2.64, one recognizes:

k
(Z q2(k’+l)(kfl)+(fk+2l)a17(k’+l)a2El ® F/(l)) A(k)ag ® A(l{}/)al
=0

Finally, passing from F'® to F") (defined in Proposition 3.2.41 and Definition 3.2.42 resp.),
we get:

k
tens (Rhom(Ul) (A(/{J, a1 0‘2 (Z q2 (K'+1)( —(k—l)a1—(k +l)a2ql(l;1) El ® F(l)) A(k)ag ® A(k/)aq
=0

k
_ [ ~oy2 HeH oZ( e F(l)) oT

=0

A(K)™ @ A(k)™
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L
Definition 3.2.75 (R-matrix). the R-matrix of the category of Ui sl(2) modules that was
recalled in Definition 1.4.19 is the folloqing operator:

k
R = qH%H ) Z (ql(lgl) E'® F(l)) € Homg (H™* @ H™).
=0

Theorem 6 (Recovering the R-Matrix of U,sl(2)). The representation of the colored braid
groupoid over H " is isomorphic to the R-matriz representation over the product of

L
Ug sl(2) Verma-modules Vo' @ -+ @ Vo from Corollary 1.4.22.

Proof. From Lemma 3.2.74, the following diagram:

H o102 tens s H Q) HO2

[ |

tens

Homer 10y gy g 3pon

commutes. The action of a braid generator o; over a multi-arc is contained in a disk that
contains the dashed arcs reaching w; and w;;; and no other so that the action does not
perturbate the other arcs. This last fact shows that the proof with two punctures guarantees
the general case, and that the following diagram commutes:

FHOron NS gran L g O

Hrifenan} __tens o grana) g L. ) O

where Q(0;) = 1d*" ¢~ % R oT®1d® !, Moreover all the morphisms involved commute

with the U,sl(2) structure. This proves the theorem. O

3.2.6 Further directions

First we recall remarks about reducibility and faithfulness that replace the model developed
in Section 3.2 in the Lawrence’s representations theory.

3.2.6.1 A word about reducibility and faithfulness

Theorem 6 shows that the representation of the braid group over /Hﬁel ~ is the one over
W, from Remark 1.4.24, notations taken from [J-K]|. Theorem 1.4.25 states that these
representations reduce to the kernel of the action of E, namely to the highest-weight modules
Y, ..

Corollary 3.2.76. The space HE introduced in Corollary 3.2.52 is a graded representation
of the braid group. To every r € N* corresponds a stratum of HE isomorphic to HPM (X,; L,)
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and to Y, ,, and by B, -equivariant isomorphisms so that every stratum is irreducible. Moreover
the setU” = {U(0, k1, ..., kn_1),(0,ky, ..., kn1) € E) .} provides an R-basis of the r-stratum
and the set F¥ = {F(0,ky, ..., kn1),(0,k1, ..., ky_1) € Ej .} is generically a basis, under
generic conditions of Corollary 3.2.29.

Proof. The fact that the r-stratum is isomorphic to the absolute homology module comes
from Corollary 3.2.52 while the fact that it is isomorphic to Y,,, comes from the homological
restriction to the kernel of E. The fact that the set U” is a basis of the kernel of the action of
E is easy to check as elements of U¥ are exactly elements of & not having boundary joining
wp. The same holds for F¥ with generic conditions from Corollary 3.2.29 conserved. O]

Remark 3.2.77. The graded family H¥ of braid representations is the so called family of
Lawrence’s representations, first introduced in [Law]. The fact that it recovers the B,,-modules
Y,,» was known as Kohno’s theorem as it was proved in [K2] and [K1] (and in [J-K] for r = 2).
In [Itol], the basis of multiforks is stated to be generically a basis of the absolute homology
module, and a B,-equivariant morphism between the multiforks basis and a suitable basis of
the the highest weight module is presented in [Ito, Section 4.2]. All of this is recovered by the
above corollary and links between basis are presented in details in Section 3.2.2.4.

Remark 3.2.78. The basis of code sequences and the one of multi-arcs are integral basis
(i.e. as module over the integral Laurent polynomial ring) of H. The basis of code sequences
is a completion of the basis of the kernel of the action of E, while the multi-arcs one is the
one recovering directly a usual basis of the tensor product of Verma-modules that fits with
the monoidality of the U,sl((2) action over it, see Theorem 5.

From the fact that Lawrence’s representations are generically faithful and that they are
sub-representations of the ones over H, the following is immediate.

Corollary 3.2.79. The representations of the braid group over H are generically faithful.

3.2.6.2 Homological interpretation of a natural pairing.

In [F-W, Section 3|, they apply the transformation:

D, — D,
r+iy — —xr+1iy

to the punctured disk and do so for all the construction of a local system over the configuration
space. The same can be performed in our case, and one obtains a braid action over the U,s((2)
module @, . HPM (X,, X, L) where X" stands for configurations with one coordinate in
Woo = +1 and L/ the local system obtained by transport of L, under 6.

Let R be a commutative ring, and M an n-manifold with boundary. Let A € OM be a

closed manifold, there exists a Lefschetz duality:
Dy H* (M, A;R) — H,_, (M, B; R)
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where B = OM — A and for all k. See [Hat, Theorem 3.43] for a less general statement
in the case of compact manifold, the proof can be adapted to the present case considering
Borel-Moore homology. As Xt C 90X, — X and from this Lefschetz duality, there exists a
well defined homological intersection pairing:

P =M (X, X, L) x @ HPM (X, X L) - R

reN* reN*

where R is still the Laurent polynomial ring defined in Subsection 3.2.1.2.

In [F-W, Theorem 4.3|, although they do not provide a homological definition of the
pairing, they suggest that this pairing is the Shapovalov linear form over Verma modules
that is symmetric. They compute it between families of r-loops and get a pairing that is
degenerated when the colors ;s (local system inputs, see Definition 3.2.5) are integers. As
the family of r-loops is not a basis of the homology as an R-module (see Corollary 3.2.33) and
particularly at integral colors, by computing the pairing in the R-basis of multi-arcs based
on wy on the left, and (their symmetric based) on wy, on the right of the pairing, one could
hope to recover the scalar product defined in [Kas, Theorem VII.6.2]. The latter theorem is
stated in the case of the simple finite dimensional modules of U,s((2) but one could easily
generalize it to the infinite Verma modules of U,sl(2).

Such a homological pairing was introduced by Bigelow, see Definition 1.2.24, and used to
prove the faithfulness over the Laurent polynomial ring of BKL representations in [Big0]. Our
integral version of the pairing would be adapted to be evaluated at roots of unity, so to study
the faithfulness of the braid representations at roots of 1, and of the ADO representations,
which is also related to the faithfulness of TQFT representations of punctured spheres, see
Corollary 2.3.27.

3.2.6.3 Improving the local system.

We have defined a family of configuration spaces, to which we have associated a colored braid
groupoid, which is a sub groupoid of the fundamental groupoid. We introduced two ways to
obtain representations of this colored braid groupoid: one dimensional abelian representations
or quantum representations - see Examples 3.1.12 and 3.1.13 - and these representations
provide local systems. All this general framework was introduced in Section 3.1. Then we
made used of this construction in a precise case and we applied to it homology with local
coefficients. We ended up with homology modules naturally acted upon by the braid group.
From this we obtained a homological model for some universal modules of U,sl(2), namely
the Verma modules, together with their natural braiding. The latter was done in Section 3.2.
It is natural to ask the following question.

Question. By considering a different space of configuration points from the family presented
in Section 3.1, and applying homology with local coefficients, does one recover Verma modules
for all quantized semi-simple Lie algebra, or Kac-Moody algebra, together with their natural
braiding?

130



Some work has been done in the direction of this first question. Namely in the article
[S-V], with different types of configuration space of points (fitting with the framework of
Section 3.1) and the corresponding local system, the authors recover Verma modules for
Kac-Moody algebra. To do so, the definition of multiforks introduced in Section 3.2 of this
work, is generalized to different configuration spaces of points, so that one can hope for a
generalization of the work done for U,s[(2) (Section 3.2) to different algebras.

Together with Verma-modules of U,s((2), we recover in Section 3.2.5, the quantum braid
group representations associated to it. From these braid group representations, one is close to
get polynomial invariants of knots such as Alexander and Jones polynomials, see Chapter 4.
These polynomials are known to contain topological classical invariants, more precisely the
Alexander polynomial computes the abelian torsion while it’s a conjecture that the family of
Jones polynomials contains the simplicial volume of the complementary of the knot ([Mu-Mu]).
We give hints in Chapter 4 about how to pass to the level of knots from this homological
construction, and to get homological interpretations of these invariants. Some work has
already been done in this direction in [Big3], [Big4], [Itol], [Ito2], and [An], where the authors
obtained homological interpretations of knot polynomials from homological braid group
representations contained in our model. By giving the general construction in this section, one
sees that it can be improved easily to get a non abelian model using the local system presented
in Example 3.1.13. One could hope that this “non abelian” homological model recovers non
abelian Reidemeister torsions of knots for instance. Again, some work has been done in this
direction in [Z1] where the author constructs a generalization of Lawrence’s representation with
coefficients in Z [B,] the braid group ring, it recovers Lawrence’s homological representation
after some specialization, but no homology identification is made.

It is a natural and open question whether it exists a general model containing together
classical and non-abelian Alexander torsion of knots. These homology modules with local
coefficient system could be an answer to it, while passing from one dimensional representation
of the colored braid groupoid to non-abelian quantum ones improves the model to a non-abelian
one. In [H-L, Lemma 1.3] the authors give a formula to obtain the family of colored Jones
polynomials of a knot from Verma-modules braid representations of U,sl(2). By a deformation
of this method with Verma-modules, they also recover the colored Jones polynomials from a
non-abelian construction and one could guess if this can be obtained from the homological
model presented above in a non abelian version. Finally in their article they also guess what
could be a Kashaev invariant for other Lie algebras, which can be related to the first question
of this section.

3.2.6.4 Framed case.

All along this work we kept on normalizing braid representations, removing quadratic terms
corresponding to framing information, see Remark 1.3.27. The theory should be improvable
to the framed case. A first step has been done in [Ik], where the author constructs homo-
logical representations of the framed braid group in the spirit of Lawrence’s representations
and a family of monodromy representations coming from the KZ-equation. The classical
KZ-representation of the unframed braid group is known to recover the quantum braid repre-

131



sentations from a well known theorem proved in [Drin] and [K0]. The latter encouraged the
author of [Ik] to formulate the conjecture that his Lawrence’s and KZ type of representations
of the framed braid group are related and recover quantum representations of the framed
braid group. The conjecture is formulated in [Tk, Conjecture 1.3].

3.2.6.5 Enright representations.

In this work we deal with two big families of representations of the braid groups: the Lawrence’s
homological representations, and the U,sl(2) quantum representations over Verma modules.
Both are graded, and they have in common that the first stratum of the grading is the
Burau/Gassner representation (depending if you work -in the unicolored or multicolored case).
There exists a third family of representation, namely KZ representations (defined in [Kas,
Chapter XIX]) that is known to be isomorphic to the quantum ones ([K0] , [Drin]). The subtle
point is that the traditional Lawrence’s side recovers the reduced Burau representation. From
Corollary 3.2.76, one sees that the representations over H constructed in Section 3.2 are an
unreduced version of the traditional Lawrence’s representations. The Enright representations
of the braid group introduced in Remark 1.2.9 are graded representations built from the
theory of higher Fox derivatives and recovers the unreduced Burau/Gassner representations.
From our homological representations that correspond to an unreduced version of Lawrence’s
representations, the following natural question arises.

Open Question. Does the graded family of Enright representations is recovered by the
unreduced Lawrence one constructed in Section 3.27

From Theorem 6, we proved that the unreduced Lawrence’s representations are isomorphic
to the unreduced Verma module representations built from U,s[(2). A positive answer to the
above question would be a unification of the four big families of braid representations, namely
KZ, Lawrence, quantum and Enright representations.

The question was introduced earlier in this work, in Section 2.2.4. Colored BKL represen-
tations are the second stratum of Lawrence’s representations, and we’ve built them using a
Fox derivative method that may be a link with Enright representations. In Section 4.1 we
prove that from these homological representations, one can obtain some information about
the Nielsen number associated to a braid. In [FH], the authors suggest a way to compute
these numbers using Fox derivative techniques. This may be a hint.
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Chapter 4

Application to knots

In this section we apply Section 3.2 that provides a homological model for quantum braid
representation to obtain homological interpretations for quantum knot polynomials. The word
quantum stands for polynomials that can be obtained from quantum braid representations.
This homological model leads to Theorem 7 where we prove that colored Jones polynomials
of a braid closure can be expressed as some weighted sum of Lefschetz numbers associated to
the action of the braid over configuration spaces of points in the punctured disk.

4.1 Colored Jones polynomials

In this first section we focus on a first family of quantum polynomials, namely colored Jones
polynomials.

4.1.1 Colored Jones polynomials and Verma-modules

First, we construct finite dimensional U,s[(2)-modules out of the Verma ones endowed by
integral colors. We follow [J-K, Section 5] to do so. This will allow us to compute the colored
Jones polynomial. Let [ € N* be an integer, and consider the specialization ring morphism

L
aug! : Z [s*!, ¢*'] — Z [¢*!] that sends s — ¢'. Let V* be the U s[(2) Verma module defined
in Definition 1.4.17, spanned by vectors {vg, vy, ...}, and:

Vl — Vs ®s:ql 7 [q:tl] ,
be the tensor product provided by morphism aug?.

Remark 4.1.1 (Finite simple modules from Verma modules, [J-K, Section 5]). Let S' € V!
be the submodule spanned by vectors {vy, ..., v}. These submodules ar equipped with an
action of generators F®) that truncates as [J-K, Relation (47)], which is straightforward from
the formula in Definition 1.4.17. Namely:

F®y, =0if k44 > 1. (4.1)
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Let n € N*, from the latter together with Relations (48) and (49) of [J-K], (§})®" c VI*"
is a sub-representation of the braid group B,,, see Definition 1.4.22 for the definition of the
representation. Namely, the braid group representations can be specialized and restricted to
finite dimensional modules. Moreover the obtained representations of the braid group B,, over
(SH)®" are equivalent over Q(g) to the ones obtained from the standard construction for the
(I + 1)-dimensional simple representations of U,sl(2) (precisely defined in Section VIIL.3 of
[Kas]).

Notations. Let [,k € N*, and S,; = @;io Ker (K — ¢"7%1) = EB;”:O W € (VH)® be the
direct sum of the first k weight spaces. The latter is an R-module spanned by the following
set:

Bsnl = {U’Ll ® s ® Uan S.t. Zij S nl}

and is a sub representation of B,, (but not a U,s((2)-submodule), see Remark 1.4.24. Let
St = (8H®" € S,,;. Tt is the R-module spanned by the following set:

Bsi ={vi, ® --- ®v;, € Spy st iy <1, Vk}
and is a sub representation of B,, from previous remark (and a U,sl(2) submodule).

The following lemma is an adaptation of [H-L, Lemma 1.3].

Lemma 4.1.2. Let § € B, be such that its closure is a knot. Let Q(f) be its quantum
L
representation over V' and given by the UF s1(2) R-matriz (see Definition 1.4.22), then:

Te(Q(B)K ™", Sw) = Te(Q(B)K ", ")

where Tr(Q(B), Z) means the trace of the action Q(B) restricted to the B, -subrepresentation
Z.

Proof. Let 8 be a braid and 7 = perm(3). The fact that the closure of /3 is a knot guarantees
that 7 is an n-cycle of &, (it permutes all the punctures). Let (Q(4)K~");""" be the matrix
of Q(B)K~! in the basis B(S,,).

Remark 4.1.3. One has i <[ implies s,) <[ for a term not to be 0.

The latter is due to: F(k)vj = 0 whenever k + j > [, Fv; = v;_; and from the expression
of the R-matrix and of its inverse that can be found in [H-L, Section 1.1.2]. These are the
same reasons why S' is stable under the B,-action. As we want to compute the trace we only
have to concern with entries verifying i, = s.

Suppose one iy, is less than [, then s, ) <[ (Remark 4.1.3), so i) <[ (as we only treat
diagonal terms), so that s.2¢) <! (Remark 4.1.3) and so on. Finally, all the i,m@) for m € N
must be lower than [. As the set {7(1),1 < m < n} is the whole set {1,...,n}, whenever
one iy is lower than [ in a vector v;, ® --- ® v; , all the 4;’s must be lower than [ for the
corresponding diagonal term not to be 0. Similarly whenever one 7 is strictly greater than [
in a vector v;; ® --- ®v;, , all the i;’s must be strictly greater than [ for the corresponding
diagonal term not to be 0.
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It remains two types of vectors for the diagonal term not to be zero. If all the i;’s are
strictly greater than [, then ), ity > n(l+1) > nl and v;, ® - - - ® v;,, is not in S,,;. The only
vectors in S,,; corresponding to non-zero diagonal terms are the ones such that i, <1 for all
k, namely the ones of S'. This concludes the proof. O

The finite dimensional representations S' of the braid group constructed above are the
one used to define the colored Jones polynomial. The following definition is given at the
beginning of Subsection 1.1.4 of [H-L].

Definition 4.1.4 (Colored Jones polynomial). Let n,l € N*. If the closure of an n-strand
braid 3 is the knot K, then the (I + 1)-colored Jones polynomial of K 1is the following:

Tl +1) = "5 gy (QB)K, 8

where w(f) is the writhe of the braid [, namely the sum of crossings’ signs. The function
Tr (Q(B)K’l, Sl) means the trace of the operator Q(B)K ! (see Definition 1.4.22 for Q, while
K is one of the Uysl(2) generator) restricted to S'.

Remark 4.1.5. We gave the definition of the (I 4+ 1)-Jones polynomial to fit with our choice
of 8. Tt differs from [H-L] where their Wy is the N-dimensional finite simple module of
U,s1(2), while our S is the (I 4 1)-dimensional one.

4.1.2 Homological trace formula for colored Jones polynomials

Definition 4.1.6 (Homological trace). Let X be a topological space and R be a commutative
ring of coefficients such that and H = Ho(X, R), the finite homological complex associated to
X with coefficients in R, is a complex of free R-modules. Let f be a continuous self-map of
X. The H-Lefschetz number of f is the following number:

£(f.H) =S (~1)'Tx (f.. B (X.R)) € R

where Tr (f., H; (X, R)) means the trace of the action of f over the i'™™ homology module of H.

We consider the local system L, defined over X, (wy, ..., w,) in Section 3.2 under the
condition ¢ = ¢7*. The coefficients ring is R = Z[¢**,¢*'],_; _, or equivalently R =

4 [ fl, q ] . (setting ¢* = s;). We recall that the braid group B,, acts by R"™ over the

.....

complex Hﬁel (X,):= HBM (X,, X ~; L,) from Lemma 3.2.69.

Proposition 4.1.7 (A homological trace formula for colored Jones). Let I € N. If the closure
of an n-strand braid § is the knot K, then the (I + 1)-colored Jones polynomial satisfies the
following homological formula:

JK(Z + 1) — (qw (l+1) —1 —nl Z Rhom(ﬁ)aH:d_(XTD}ai:l q2r_
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Traces considered in the sum (namely in the Lefschetz numbers) are elements of R, and we
make the specialization o; = 1 (for i = 1,...,n), corresponding to the specialization ring
morphism:

n. Zlstha*] = Z[g*]

aug 5 o g

already introduced at the beginning of this section.
Proof. From Definition 4.1.4, the aim of the proof is to compute:
Tr (QB)K,SY).
From Lemma 4.1.2, we have:
Tr (QA)K ™, 8") = Tr(Q(A) K™, Su).

The following lemma computes Tr(Q(3)K !, S,;) and concludes the proof.

Lemma 4.1.8. There is the following formula:

Te(Q(B)K ™, Su) = 7™ Z L (R"™(8), HI' (X)), @

where the traces considered in the sum are elements of the ring R, and we make the special-
ization a; = [, corresponding to the specialization ring morphism aug™.

Proof. We recall from Proposition 3.2.8 that ’Hid ~ is the only non vanishing module of the
complex HEM (X,, X;7; L,). We also know from Theorem 6 that the R-modules W,,, are
B,.-equivalent to H:* ~. The lemma is an immediate consequence of:

nl
Snl = @ Wn,r
r=0

nl 2r

and the fact that pre-composing by K~! provides a coefficient ¢=¢*", corresponding to the
action of the diagonal operator K ! over W ]

]

The above formula suggests that colored Jones polynomials compute the beginning of
a generating series of Lefschetz numbers indexed by r over first complexes H: ~(X,.). The
latter homology complexes are the ones of X, with local system L, and relative to X,". The
rest of this section is devoted to the interpretation of this homological trace formula in terms
of fixed point theory.
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4.1.3 Nielsen fixed point theory and Lefschetz numbers

We make recalls about the generalized Lefschetz number (first introduced in [Hu]), the
abelianized Nielsen number ([H-J, Section 1.(B)]) and conclude with the mod K Nielsen
numbers (for K a normal subgroup of the fundamental group) ([J, Chapter II1.2] or [RFB,
Part 1]).

We follow [H-J, Section 1] for the definitions concerning generalized and abelianized Nielsen
theories. Let X be a compact connected topological space admitting a universal covering space,
and f be a continuous self-map of X. The fixed point set Fiz(f) ={z € X s.t. f(z) =z}
splits into the union of Nielsen fixed point classes.

Definition 4.1.9. Two fized points x and y of f are in the same Nielsen class if there exists
a path X joining them and such that X is homotopic (rel. endpoints) to its image under f.
Nielsen classes are isolated so that their fived point indexes are well defined.

Suppose f fixes the base point of X so that we can define f, to be the lift of f to m (X)
(otherwise the choice of a path w from z; to its f-image is necessary to define f;).

Definition 4.1.10. We say that o, B € m(X) are in the same f-Reidemeister class if there
exists v € m(X) such that o = fr(v)By~'. We call mg the group of such f-conjugacy classes
and Zwg its group ring.

Let x be a fixed point and ¢ be a path from xg to x. The Reidemeister class of the loop
(f oc)e™t is independent of the choice of ¢ and called the coordinate of x.

Proposition 4.1.11 ([H-J, Section 1.(A)]). Two fized points are in the same Nielsen class
iff they have the same coordinates. The involved Reidemeister class is thus the Nielsen class
coordinate.

Definition 4.1.12. The generalized Lefschetz number of f is defined to be:

ﬁR(f) = Z i[a] [Oz] € Zmg

[o]emr
where [a] is a class in Tr and if the index of the corresponding Nielsen class.

The following fact makes the link with the traditional notions of Lefschetz numbers and
Nielsen numbers and can be taken as definition for the present work.

Fact 4.1.13. The usual Nielsen number and Lefschetz number are the following numbers:

N(f) =t{le] s.t. il # 0}

L(f) = i

[a]

Theorem 4.1.14 ([Hu, Theorem 1.13],[H-J, Section 1.(A)]). Suppose X is a CW complez.
A cellular decomposition of X lifts to cells of X, its universal covering space. These cells
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constitute a Zzl (X) basis of the cellular chain complex of X. Let f be a chain map and ]? be
a lift of f to X (considering a lift of the base point). Then:

Lalf) = (=1 [1e(F. C,(X  Zrn))| € L.

q

where | Tx(f, Cq()z, ZWR))} is the wp-class of the trace of the action of f over the Zmy(X)-
N R
module Cy(X,Zrg).

The proof of the above theorem relies on the lifting property of maps to the universal cover.
See a sketch of proof in [Ha, Theeorem 2.2]. This proof can be adapted to Borel-Moore chain
complexes over punctured manifold if f is a proper map, as Borel-Moore corresponds to an
inductive limit of chain complexes over compact topological spaces. One can also easily adapt
the theory to other covering spaces having the good lifting properties, namely those which
correspond to normal subgroups of the fundamental group. Indeed, the theory of generalized
Lefschetz number corresponds to working at the level of the universal covering space but has
analogs working in other covering spaces. For instance the maximal abelian cover level gives
rise to the notion of abelianized Nielsen number.

Definition 4.1.15 ([H-J, Section 1.(A)]). Two fized points are in the same homological Nielsen
class if there exists a path X\ joining them and such that A is homologous (rel. endpoints)
to its image under f. The abelianized Nielsen number N (f) is the number of homological
Nielsen classes with non-zero indez.

We consider the following morphism:
w: H(X)— H = Coker (1 — f. € End(H,(X))).

The coordinate of a homological Nielsen class is the H-class of the loop (f o ¢)c™! where ¢ is
a path from z, to a fixed point of the class. We recall that if X is the maximal abelian cover
of X, the chain complex Co(X) is endowed with a ZH;(X)-action. Again, there is a trace
formula computing the abelianized Nielsen number.

Proposition 4.1.16 ([H-J, Section 1.(B)]). The abelianized Reidemeister trace Ly (f) is an
element of ZH such that the coefficient of h € H is the index of the homological class with
coordinate h. Thus Ly (f) = Lr(f)® (the generalized Lefschetz number abelianized), and it
satisfies the following trace formula:

Lulf) =Y (1) [Te(f, (X, ZH (X)) | € ZH.

The number of non-zero terms is N(f).

Remark 4.1.17. Although the abelianized Nielsen number is less refined than the Nielsen
number, it is useful for computation. Namely it enjoys the following properties:
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o N(f) < N(f).

o L(f) = > ia), where the terms in the seum are the indexes of homological classes
associated to «.

One could work with a covering space corresponding to a normal subgroup of the m; and
obtain the same kind of result. Namely, the abelianized Nielsen theory corresponds to the the
mod K Nielsen theory ([J, Chapter II1.2]) for K = [m(X), m(X)]. We will precise the group
K of interest to us in the context of the following subsection.

Theorem 4.1.18 ([J, Theorem 2.5]). The Nielsen number, abelianized Nielsen number, and
the mod K Nielsen numbers are homotopy invariants.

4.1.4 Colored Jones polynomials and Lefschetz numbers

For r € N*| we recall that the space X, (wg) € X, consists in configurations with no coordinate
in wy. Let B € B, 5 € H omeo™t (D,), stabilizing w, and such that the isotopy class of B is
represented by 5. We make the remark that B can be chosen to fix wy as half-Dehn twists
corresponding to braid generators can be chosen so to be supported in the interior of the
punctured disk. Let:

or . XT(U)O) — Xj\“( )
{Zla"'azr} = {B( ) (ZT)}
(wo).

be the corresponding self homeomorphism of X,

Theorem 7. Let § € B,,, and | € N*. Then:

Tl +1) = (@5 g Z y [ew (7)) L

Here, Ly (B7) € ZH (the abelianized Lefschetz number of B7) where:
H = Coker (1 — 54 € End(Hy(X,(w))))
is then specialized by the augmentation morphism aug™.

Proof. First we need the specialization ZH — Z[q*!] to be well defined, which is the following
lemma.

Lemma 4.1.19. Let 3 € B, be a braid and 37 5 its associated action on Hy(X,,Z). Then
the augmentation morphism: aug® : ZH\(X,,Z) — Z|q*'] given by ay = --+ = a,, = [
factors through Coker(1 — f} ;). Namely there exists a morphism ZH — Z[q*'] such that
the following diagram commutes:

ZH, < 7.H

~ |
Z [qil
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Proof of Lemma 4.1.19. The proof is immediate from the commutation of the diagram in the
proof of Lemma 3.2.69. O

Then we recall from Proposition 3.2.13 that the complexes HY (X,.(w); L,) and HY (X, X; L,.)
are isomorphic. From Proposition 5.2.2 in the Appendix we know that the alternated sum of
traces over a finite dimensional chain complex is computable at the level of homology. Hence,
in Proposition 4.1.7, the Lefschetz numbers involved correspond to an alternated sum of
traces of homology actions. They are equal to alternated sum of traces of the corresponding
chain complex actions and this fits with Proposition 4.1.16 that introduces the trace formula
for abelianized Lefschetz numbers. O

Remark 4.1.20. These Lefschetz numbers are the abelianized ones but specialized by the
morphism aug. They contain the following information.

e The specialization under aug corresponds to a mod K Lefschetz number ([J, Chap-
ter 111.2]), such that K is the kernel of augoab : 71 (X, (wg)) — Z [¢*!]. This kernel is a
normal subgroup of m (X, (wy)) that corresponds to a lower abelian covering space such
that the covering deck transformations group is Z = Z{g). The number of non-zero
terms corresponds to the number of the corresponding mod K Nielsen number that
we denote by N(f). The latter counts the mod K Nielsen classes, where two fixed
points are in the same class iff there exists a path joining them and which differs from
its f"-image by an element of K.

e From Remark 4.1.17 we conclude that if one succeed in counting non-zero terms in the
weighted expression for the colored Jones polynomials, one would get lower bounds for
some classical Nielsen numbers.

e They may contain a precise evaluation of classical Lefschetz numbers (under the spe-
cialization ¢ — 1).

4.1.5 Further directions.

In Theorem 7, we showed that the colored Jones polynomials are related to abelianized
Lefschetz numbers. One could expect to refine the result and extract topological information
out of it in the following directions.

e There exists a generalized relative Lefschetz theory (see [NO-W]), and one could easily
imagine an abelianized version of it in the spirit of Definition 4.1.16. The relative theory
consists in the computation of homotopical invariants for self-maps of pairs. In Nielsen
fixed point theory one is interested in the following question:

Question. Does there exist a self-map in a chosen isotopy class that realizes the Nielsen
number, namely that has N(f) fized points.
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As we discussed the loss of information while computing lower bounds for N(f), this
question is a minimization problem. It was shown to have a negative answer in general.
One very simple counterexample is due to Jiang ([Sch, Example 1.1]). He proved that
the Nielsen number of some application is 1 while any self map in its class must have
at least 2 fixed points. By consideration of an appropriate relative Nielsen number,
one finds a Nielsen number equal to two and providing a positive answer to the above
question. Then, in the context of the above question, a relative Nielsen number should
be finer than an absolute one.

In Proposition 4.1.7 we see that the colored Jones polynomial computes a homological
trace formula over relative homology modules. In Theorem 7 we used an identification
with absolute homology module to fit with absolute Nielsen theory. As far as we know,
there does not exist a trace formula over relative homology modules computing the
relative Nielsen number. Still, as the generalized relative Nielsen theory exists and the
colored Jones polynomial computes a relative homological trace formula we make the
following conjecture:

Conjecture. The Lefschetz numbers involved in the colored Jones formula of Theorem
7 are specializations of abelianized relative Lefschetz numbers.

One information that we didn’t use is the fact that we get Lefschetz numbers over
configuration spaces of the punctured disk. We make the following immediate remark.

Remark 4.1.21. Let f be a self homeomorphism of the punctured disk Dy, and f the
associated homeomorphism of X,.. If Z = {z1,... 2.} is a fixed point of f, then:

— Z is a set of periodic points of f.

— One could associate a braid to Z and the study of its braid type gives information
about periods, see [Mat, Section 2.7].

There exists a general Lefschetz fixed point theory associated to the study of periodic
points and it constitutes a consequent literature. From the above remark, one could
expect the colored Jones polynomial to compute Lefschetz numbers associated to periodic
point classes over the punctured disk. The author paid attention to the notion of twisted
Lefschetz zeta function, which is by definition (in its abelianized version, see [H-J,

Section 1.(D))]):
Cu(f) = exp (Z i %)

p=0 p

a formal power series in the variable ¢, namely living in ZH [[t]]. If one finds a relation
between the Lefschetz number of a self-homeomorphism f of X, and periodic points of f,
then one may extract information about Lefschetz zeta functions out of the colored Jones
polynomials. This claim relies on the fact that the weighted sum inside the exponential
would present similarities with the weighted sum for colored Jones of Theorem 7. The
zeta functions provide information about the growth rate of periodic points.
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e We mention also [GG1] and [GG2| where the authors relate fixed point theory over
configuration spaces to fixed point theory of multivalued maps.

e In [J-W], a twisted Lefschetz number theory is developed. Namely, by considering a
ring of coefficients twisted by a representation of the fundamental group, the authors
obtained a twisted version of the generalized Lefschetz numbers. By modifying our local
system L, replacing it by a non-abelian one in the spirit of Example 3.1.13, one could
expect to recover twisted Lefschetz numbers.

e In [FH] the authors provide a way to compute generalized Lefschetz numbers over surfaces
from Fox derivatives computation. In Section 3.2.6.5 we asked the question whether
Enright representations of the braid groups defined from higher Fox derivatives could
be recovered by the homological representation defined over H:® ~. The link between
the trace of these representations and the generalized Lefschetz number (Theorem 7)
computable using Fox calculus ([FH]) is a positive sign. A first step was already done in
this direction. Namely, it was shown [Mat, Theorem (3.3)] that Lefschetz numbers are
contained in the trace of Burau/Gassner representations using Fox theory of derivation.
Our result is a generalization of the latter in some sense, as the family of homological
representation we are working on contains Burau and computes Lefschetz numbers.

e [t could be interesting to succeed in re-proving that the colored Joned polynomial is a
knot invariant using the dynamical trace formula. Periodic points can be interpreted in
terms of mapping torus. Indeed, let x be a periodic point of a self-map f and T be
the mapping torus of f. there is a natural flow over f consisting in running around the
torus. By iteration of this flow starting at = one would get a link in T as x is periodic.
Two knots corresponding to two points in the same periodic homological Nielsen class
are then homologous. This remark should be an idea for proving the knot invariance.

e Finally, one would be interested in the Nielsen-Thurston classification of mapping
classes. Namely, there are strong links between fixed point theory and Nielsen-Thurston
classification of homeomorphisms that are encoded in Lefschetz numbers. The latter
could bring information about pseudo-Anosov homeomorphism for instance, from the
computation of colored Jones polynomials.
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Chapter 5

Appendix: Homology features

5.1 A homology adapted to non-compact spaces

All along this work we worked on topological spaces with punctures, that are non-compact
spaces. The good homology theory to work with these kinds of topological spaces is the locally
finite homology isomorphic in our case to the Borel-Moore homology. By “good homology”
theory we mean that many properties holding for singular homology of compact spaces can be
generalized to Borel-Moore’s, as it controls the non-compact phenomena arising at punctures.
We give general ideas and definitions of these homologies in this section. Let X be a locally
compact topological space.

Definition 5.1.1 (Locally finite homology). The locally finite chain complex associated to X
is the chain complex for which we allow infinite sums of singular chains under the condition
that their geometrical realization in X is locally finite (for the topology of X ). The latter
guarantees that the boundary map is well defined.

Let Y C X. The relative to Y locally finite chain complex corresponds to the locally finite
chain complex of X mod out by the one of Y.

The homology of locally finite chains is the homology complex corresponding to these
definition of chain complexes. We use the notation HY(X) to denote the locally finite
homology complez.

Recalls. The homology of locally finite chains is isomorphic to the Borel-Moore homology
that can be defined as follows:

HEY(X) = lim H, (X, X \ A)

where the inverse limit is taken over all compact subsets A of X. The relative case is then
the following:

for Y C 0X.

The above fact that Borel-Moore homology consists in a limit of homology complex over
compact spaces allows generalizations of many compact singular homology properties.
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Remark 5.1.2. All these definitions are identical in the case of homology with local coeffi-
cients.

Locally finite homology have very different properties than the usual ones when the space
is non compact. We emphasize this point in the following remark.

Remark 5.1.3. First property of the Borel-Moore homology that should help the reader
feeling differences.

(Compact space) If X is compact, then the singular and locally finite homology are identical.

(Real line) Any 0-chain is null homologous (so that the 0-homology does not encode connectedness).
Let p be a point, the chain:

o=> [p+ip+i+l)
=0

has p as Borel-Moore boundary (the Borel Moore homology does not see points at
infinity in some sense). While the chain:

> [kEk+1)

—oco<k<o0o

has no boundary and hence is a cycle. The latter shows that HPM(R) = Z if k = 1 and
is 0 otherwise and can be generalized to HPM(R") = Z if k = n and is 0 otherwise.

(Sphere) The latter allows to compute the homology of spheres and balls using HPM(R") =
HPM (S,

(Punctures) Let D,, be the punctured disk, and ¢ be a small circle running once around a puncture
p. Then ¢ is a cycle using same kind of telescopic infinite chain as in the previous point.

(Submanifold) More generally, any closed oriented submanifold defines a class in Borel-Moore homology,
but not in ordinary homology unless the submanifold is compact.

5.2 Some homological algebra

We recall standard homological algebra properties used in this work. First we recall the
excision theorem that is one of the required Eilenberg-Steenrod axioms for a homology theory.

Theorem 5.2.1 (Excision Theorem,[Hat, Theorem 2.20]). Given subspaces Z C A C X such
that the closure of Z is contained in the interior of A, then the inclusion (X — A, A—Z) —
(X, A) induces isomorphism:

Ho(X = Z,A— Z) = Hy(X, A)
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for all n. Equivalently, for subspaces A, B C X whose interiors cover X, the inclusion
(B,AN B) — (X, A) induces isomorphisms:

H,(B,ANB) — H,(X,A)
for all n.

Of course the above theorem applied to relative Borel-Moore homology with local coeffi-
cients. We end this appendix with a well known property of trace formulae.

Proposition 5.2.2 (Hopf trace formula). Suppose C, is a finite chain complex of finitely
generated abelian group and ® is a chain self-map. Then:

D (1)@ Cp — Cp) = Y (—1)"Tx(®y - Hy — Hy).

1€EN €N
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Abstract: We provide homological interpretations for some quantum invariants. We recall
basic notions involved in this work: topological ones on one hand (braids, mapping class
groups, and homological representations of the latter) and algebaic ones on the other hand
(Hopf algebra, quantum groups, categories of modules, braiding).

Then, we study “small cases”: We show that the Gassner representation is contained in
quantum representations of the braid group. We build Bigelow-Krammer-Lawrence represen-
tations in a colored version and we give matrices for the action. Finally we study the non
semi-simple TQFT (built by Blanchet — Costantino — Geer — Patureau) representation of the
mapping class group of the sphere with 4 punctures. We recognize homological representation
inside of it, and this leads to the faithfulness of the representation.

In the last chapter, we study modules of relative and locally finite homology modules with
coefficients in an abelian local system, over configuration spaces of punctured disks. We endow
them with an algebra representation of the quantized algébra of s[(2) in an integral version.
We recognize a tensor product of integral Verma modules. We identify the natural braid
group representation induced on this homology (by mapping class) with the ones obtain by
the braiding of the quantized algebra of sl(2). This work extends Kohno’s theorem (recovered
via a nice homological operation) in several directions:

e it relates homological representations to the entire tensor product of Verma modules
(and not only to the highest weight vectors)

e it includes a homological interpretation for the action of U,sl(2), whose definitions are
inspired by a work of Felder - Wieczerkowski for which the homological aspect remained
conjectural.

e it is an integral version of Kohno’s theorem, namely it preserves the integral structure
on Laurent polynomials, thus exposes conditions of genericity previously required by
Kohno’s theorem.

We finally reach the level of knot invariants: in Chapter 4, this homological model for
quantum braid representations allows us to show that colored Jones polynomials compute
some weighted sum of abelianized Lefschetz numbers.



Résumé : Cette these comporte des interprétations homologiques de certains invariants
quantiques, plus particulierement ceux associés aux groupes de tresses. Le Chapitre 3 étudie
des groupes d’homologie localement finie, relative et a coefficients dans un systeme local
abélien sur des espaces de configurations de points dans le disque épointé. Nous munissons
ces complexes d'une action du groupe quantique U,sl(2) dans une version entiere, et nous
reconnaissons un produit tensoriel de modules de Verma entiers. Enfin, nous retrouvons une
action naturelle du groupe des tresses (par homéomorphisme) sur ces modules homologiques,
et nous montrons qu’il s’agit de la représentation obtenue par la R-matrice de la catégorie
de modules de U,sl(2). Les représentations homologiques obtenues sont une généralisation
des représentations de Lawrence, donc elles sont fideles. Elles permettent de retrouver
homologiquement plusieurs propriétés de la catégorie de modules sur U,sl((2). Nous donnons
des bases entieres de ’homologie (i.e. des bases en tant que module sur un anneau entier de
polynémes de Laurent). L’action de U,sl(2), ainsi que celle du groupe des tresses, respectent
cette structure, tout comme I'isomorphisme vers le produit tensoriel de modules de Verma.
Ce travail étend le théoreme de Kohno (retrouvé via une jolie opération homologique) dans
plusieurs directions :

e il relie les représentations homologiques a tout le produit tensoriel de modules de Verma
(et plus seulement aux vecteurs de plus haut poids)

e il inclue une interprétation homologique de 'action de U,sl(2), dont les définitions sont
inspirées par un travail de Felder — Wieczerkowski dans lequel 'aspect homologique
restait jusqu’ici conjectural.

e il en est une version entiere, c’est a dire qu’il préserve la structure d’anneau entier
sur les polynomes de Laurent, exhibant ainsi précisément les conditions de généricité
précédemment requises par le théoreme de Kohno.

Ce modele homologique (pour les représentations quantiques de tresses) est ensuite appliqué
aux nceuds vus comme des clotures de tresses dans le Chapitre 4, et permet d’obtenir une
formule des traces (homologiques) pour les polynémes de Jones coloriés, qui s’apparente a
une somme pondérée de nombres de Lefschetz abélianisés.

Le manuscrit contient également un chapitre (Chapitre 2) d’étude concrete de “petits
cas” (car les représentations homologiques sont une famille graduée de représentations).
Nous montrons explicitement que les représentations de Gassner du groupe des tresses sont
des représentations quantiques, et nous donnons des matrices pour une version colorée des
représentations de Bigelow—Krammer-Lawrence - construites au préalable. Nous étudions
également le premier niveau de graduation de la représentation du groupe modulaire de la
sphere & quatre pointes obtenue via la TQFT non semi-simple (construite par Blanchet —
Costantino — Geer — Patureau), nous retrouvons une représentation de nature homologique,
ce qui aboutit a la fidélité de cette représentation.



