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Résumé

Les structures tubulaires sont largement utilisées dans diverses industries. Le Contrôle

Non Destructif (CND) de ces structures joue un rôle crucial au cours de leur cycle de

vie. Afin de tester de grandes structures avec une accessibilité limitée, la méthode de

CND utilisant des ondes guidées a été développée comme une solution viable. En raison

de la nature de ces ondes, elles sont capables de se propager sur de grandes distances

sans perdre une grande partie de leur énergie. Cependant, elles sont complexes puisque

leur vitesse dépend de la fréquence, c’est-à-dire qu’elles sont dispersives. Classiquement,

l’étude de ce type d’ondes nécessite des simulations par éléments finis coûteuses. Cette

thèse propose une alternative à de telles simulations avec une méthode rapide et robuste

pour simuler la propagation d’ondes guidées dans des structures tubulaires.

Partant de ces calculs, pour localiser des défauts, l’objectif de ce travail est d’obtenir

des images topologiques 3D de structures tubulaires isotropes multicouches par prop-

agation de ces ondes guidées ultrasonores. Un modèle mathématique est proposé où

l’équation d’onde est convertie en une équation différentielle ordinaire par rapport au

rayon «r» en utilisant les transformées de Fourier et de Laplace pour les variables spa-

tiales et temporelles respectivement. La solution en ondes partielles, exprimée comme une

combinaison des fonctions de Bessel, permet la création d’un algorithme semi-analytique

rapide et robuste pour calculer la fonction de Green de structures tubulaires. Un mod-

èle approché en présence de défauts numériques est ensuite développé. La réponse des

défauts est considérée comme la réponse cumulative des sources secondaires, visant à

annuler le champ de contraintes incident et diffracté présent en son sein. Ensuite, le

modèle numérique est validé par des mesures expérimentales. Enfin, la technique de

l’imagerie topologique est introduite. Cette méthode d’imagerie est basée sur la cor-

rélation entre les champs ultrasonores sans et avec défaut. La polyvalence et la flex-

ibilité de l’outil numérique en conjonction avec cette méthode d’imagerie sont ensuite

démontrées avec succès en localisant et imageant une multitude de défauts numériques

et expérimentaux avec des dimensions aussi faibles que 1/40e de la longueur d’onde.

Mots clés : Ondes Ultrasonores, Contrôle Non Destructif, Imagerie Topologique, Guide

d’ondes, Contrôle de Santé Intégré.
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Abstract

Tubular structures are widely used in a variety of industries. Non Destructive Eval-

uation (NDE) of these structures plays a crucial role during it’s life cycle. In order to

test large structures with limited accessibility, guided wave testing was developed as a

viable solution. Due to the nature of these waves, they are able to propagate over large

distances without losing much of their energy. However, they are also complex in that

their velocity is frequency dependent i.e. they are dispersive. Conventionally, guided

wave testing require costly finite element simulations. This thesis offers an alternative to

such simulations with a quick and robust method to simulate guided wave propagation in

tubular structures.

Based on these calculations, the aim of this work is to obtain the 3d topological image

of multilayered isotropic tubular structures using ultrasonic guided waves to locate defects.

A mathematical model has been proposed where the wave equation is converted to an or-

dinary differential equation with respect to radius ’r’ using the Fourier and Laplace trans-

forms for the spatial and temporal variables respectively. The partial wave solution, ex-

pressed as a combination of Bessel’s functions, allows for the creation of a fast robust semi-

analytical algorithm to compute the Green function in tubular structures. A model to ap-

proximate numerical defects is then developed. The defect response is considered as the cu-

mulative response of secondary sources, aiming to negate the incident and diffracted stress

field present within it. Next, the numerical model is validated with experimental mea-

surements. Finally, the technique of Topological Imaging is introduced. This method of

imaging is based on the idea of performing a correlation between two wave fields for defect

localization. The versatility and flexibility of the numerical tool in conjunction with the

method of imaging is then successfully demonstrated by localising and imaging a multitude

of numerical and experimental defects with dimensions as low as 1=40th of the wavelength.

Key words : Ultrasonic waves, Non Destructive Testing, Topological Imaging, Waveg-

uide, Structural Health Monitoring.
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Introduction

Soon after the culmination of the industrial revolution in the 1860s, oil and natural gas

were used as primary sources of fuel to run different industries and machinery. Over time,

this led to the development of vast networks of pipelines running over 3 million kilometers

worldwide. Due to its ubiquitous presence and the nature of items they transport, it is of

utmost importance to ensure their integrity and health. This required a solution which

came in the form of Non Destructive Testing (NDT) and Structural Health Monitoring

(SHM).

The very first versions of sonic NDT was performed by blacksmiths to determine the

integrity of bells. Listening to it ring, an experienced blacksmith could hammer it into

the right shape or figure out if it was damaged. Developments in the field led to different

methods ranging from X-Ray, Magnetic Particle to Radiography testing. However, most

of these methods require expensive equipment which are generally non portable or are

only able to test small sections of the specimen. Ultrasonic testing emerged in the 1930s

as an idea to detect flaws within structures. This method proved to be useful to test large

structures due to the high penetration power of sound waves through solids. Guided wave

ultrasonic testing technique quickly developed to be used extensively in long range pipeline

testing. Guided waves are waves that propagate in thin structures (thickness in the order

of wavelength) guided by the boundaries of the structure allowing it to propagate over

long distances. These properties of guided waves allow for the detection of inaccessible

and distant flaws in structures with just single fixed probe position.

One of the earliest work done with regard to guided wave propagation in hollow

cylindrical structures was by D.C Gazis in 1959. His papers describe the analytical and

numerical foundations for wave equations in hollow cylinders using Helmoltz potentials

[41, 42]. The earliest mention of numerical simulations of guided waves was by Zemanek

[120] who in 1972 performed the computation and verified them with experimental results.
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A paper by Rose [96] discusses some aspects and applications of guided wave modes. Mohr

and Höller [76] described using longitudinal and torsional modes for defect detection.

To simplify the selection of parameters to be used for ultrasonic guided wave testing,

the program “Disperse” (a software to obtain dispersion curves for a vast variety of

conditions and materials) was developed by Lowe [53] and has been expanded to cylinders

by Pavlakovic [85].

Ensuing work by Demma [20, 21], Alleyne [1], Lowe [70] etc., deal with the interac-

tion and responses of guided waves of various modes with discontinuities. Later works by

Cawley and Alleyne [13] also detail the reasons for using axi-symmetric modes in guided

wave inspection of pipes. This is due to the ease of excitation of a single pure mode,

constant sensitivity in all circumferential positions and to control coherent noise. There

have also been discussions on using helical guided modes by Willey et al. [119] and De-

hghan [19] to improve depth estimation accuracy and to use probablistic based imaging

algorithms.

This PhD deals with the development, verification and implementation of a new

mathematical model to simulate Guided wave propagation in Tubular structures and to

localize numerical and experimental defects with reduced computation times.

The first chapter develops the mathematical model which is based on solving the

problem in the Laplace and Fourier domains. The solutions are given in the form of

modified Bessel’s functions of the first and second order. The implementation of the

model is then discussed.

The second chapter details a method of modelling defects as secondary sources.

These defects are approximated by Gaussian functions and their derivatives and a few

defect studies are performed to understand the behaviour of the model.

The third chapter deals with the experimental verification of the numerical model.

It introduces the experimental setup and a method to normalise the transducers. It

then discusses the parameters of the numerical model that most accurately simulate the

experimental setup. The model is then validated with experimental results using different

modes. Finally the capabilities and limitations of the model are discussed.

The fourth chapter introduces the principle of Topological Imaging. This is a tech-

nique for identifying and localizing defects using the cross correlation of two fields. The
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technique is then applied on numerical and experimental defects. Some studies with nu-

merical defects tie into the second chapter to better understand the functioning of the

defect model. Finally experimental defects are localized using the principles and tech-

niques developed within this thesis.
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Chapter 1

Transient Wave Propagation in a

Stratified Tubular Medium

The complex dynamics of wave propagation has been studied for over a century. One of, if

not the earliest, successful attempts to understand and model this was by Rayleigh [90] in

1885, where he investigated the behaviour of surface waves propagating along semi-infinite

half surfaces. In 1917, Lamb [63] introduced the idea of wave propagation in a single flat

layer of finite thickness. He discussed symmetric (S0) and anti-symmetric (A0) modes in

plates which are now commonly known as Lamb waves. It was later shown by Love [47]

that Shear Horizontal (SH) guided waves could propagate in a medium of finite thickness.

Stoneley [109] in 1924 described the waves propagating along the interface of two elastic

solids. The naming conventions of the equivalent of these modes in hollow cylinders as

described by Silk and Bainton [107] is discussed in a later section 3.3. The next step

was to understand propagation through multilayered media. This was done in a study by

Lindsay [67] in 1939 where the propagation of oblique waves was studied through alternate

layers of fluid and solid where the media as a whole behaves as a low pass filter. Thomson

[111] in 1950 developed the transfer matrix method for multilayer solid media which was

later corrected by Haskell [48] in 1953. The transfer matrix method consists of relating

the amplitudes at a lower interface to that of the uppermost interface and this procedure

is carried down through the multiple layers in the medium. Most of the aforementioned

methods were developed in the context of geophysics and seismology dealing with large

thicknesses and wavelengths. The transfer matrix method had a drawback in that it

was unstable in cases where the thickness was much larger than the wavelength of the
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propagating wave. This was the case where computations were to be performed at high

frequencies and came to be known as the “large fd problem”. This problem was addressed

in the early 1960s by Dunkin [31] and others [30, 104, 103, 60, 59, 61, 56], one of them being

Knopoff [58] who in 1964 introduced the Global Matrix method. This method involved

assembling the responses of all layers as a single large matrix by applying continuity

conditions across the boundaries of the layers. It has the advantage being robust and

reliable for variety of solutions and has been implemented ever since by a number of

authors [89, 14, 101, 102, 75]. A particular disadvantage is that with the addition of

more layers to the system, the matrix becomes bulky and computationally expensive. A

review of the matrix methods by Lowe [69] gives an extensive overview most of the work

done with respect to the Transfer and Global matrix methods since the early stages. The

Global Matrix method has been adopted in this work.

The following sections details the mathematical framework developed to compute

the transient field in multi-layered transversely isotropic tubular structures.

In the approach followed, the spatial and temporal variables of the guided wave

equations in cylinders are expressed in the Fourier and Laplace domains respectively for a

given radial position within a layer of the structure. This follows from the work done by

Mora et al. [77, 78] where the equations have been resolved in the transformed domain

for guided wave propagation in layered plates. In case of the cylinder, the solution of the

equations are expressed as a combination of modified Bessel functions to give six partial

waves for each layer of the structure, considering the layers to be unbounded. The layers

are then assembled using the Global Matrix method taking into account the continuity of

stresses and displacements across the layers. This matrix describes the behaviour of the

propagation of guided waves within the assembly and has been details below.

1.1 Notations and domains for calculation

In the physical domain, the cylindrical coordinates radius r, azimuth θ and axial position z

are defined such that
−−→
OM = r nr +z nz, where the unit vector nr depends on the azimuth

θ as shown in Figure 1.1. Time is denoted as t.

The calculation of the transient field is performed for a given radial position r. This

field is calculated in the (n, k, s) domain. The axial wavenumber k corresponds to the
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Figure 1.1: Cylindrical coordinates system.

variable of the Fourier transform F with respect to the axial position z, given by:

F(u)(k) =

∫ ∞
−∞

u(z) exp(i k z) dz ⇐⇒ u(z) =
1

2π

∫ ∞
−∞
F(u)(k) exp(−i k z) dk. (1.1)

The azimuthal or circumferential wavenumber is an integer n, and corresponds to the

variable of the Fourier series S with respect to the azimuth θ. A Fourier series expansion

is used as the domain is periodic about the circumference and is given by:

S(u)(n) =
1

2 π

∫ π

−π
u(θ) exp(in θ) dθ ⇐⇒ u(θ) =

∞∑
n=−∞

S(u)(n) exp(−in θ). (1.2)

The variable s is the complex variable of the Laplace transform L with respect to time t,

given ∀a > 0 by:

L(u)(s) =

∫ ∞
0

u(t) exp(−s t) dt⇐⇒ u(t) =
exp(a t)

2 π

∫ ∞
−∞
L(u)(a+ iω) exp(iω t) dω︸ ︷︷ ︸

Bromwich-Mellin Formula

.

(1.3)

Performing the computations in the Laplace domain rather than in the Fourier domain

allows to sidestep certain issues caused by aliasing. This aliasing may occur due to the
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presence of slow or extremely dispersive waves in the frequency bandwidth of computation.

These waves may persist beyond the duration of the computation. Using the complex

Laplace variable allows for truncated causal computations which could potentially reduce

the time t required for a stable computation. This behaviour has been detailed by Phinney

[86] where he has described it as an imperfectly trapped mode.

It is to be noted that the modeling of the defect would require for the equations

to be resolved in a mixed domain of real spatial variables with the Laplace temporal

variable. The domains of calculation as well as their respective variables are as described

in Table 1.1.

Time domain t notation Laplace domain s notation
Physical space r, θ, z (r, θ, z, t) u (r, θ, z, s) U

Azimuthal and axial
wavenumbers n, k
Radial position r

(r, n, k, t) ũ (r, n, k, s) Ũ

Azimuthal and axial
wavenumbers n, k
Radial wavenumber κ

(κ, n, k, t) û (κ, n, k, s) Û

Table 1.1: Notations.

1.2 Modelling of wave propagation equations

Consider a multilayered medium of N perfect transversely isotropic cylindrical layers

stacked together as shown in Figure 1.2. A reference layer is named β with the interface

between the layer β and β+ 1 also named β located at a radial position given by rβ. The

structure is assumed to be infinite in the z direction and can have vacuum, isotropic solids

or fluids on the inside and outside. The external force can be located anywhere within

the region of computation.
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Figure 1.2: Multilayered infinite "n" layered cylinder.

1.2.1 Basic equations in the physical space

The mechanical properties, i.e., mass density ρβ and stiffnesses cβijkm are constant in each

layer. With the aforementioned notations the wave equation is written by combining the

principle of causality, Newton’s second law and Hooke’s law.

Newton’s second law is expressed as follows:

ρβ ∂
2
t u−

{[
1

r
+ ∂r

]
σr +

1

r
[T + ∂θ]σθ + ∂zσz

}
= fβ , (1.4)

where u denotes the displacement vector, σr, σθ and σz are the stress vectors in the

radial, azimuthal and axial directions, respectively, the field fβ denotes the force per unit

volume exerted by the part of the source located in layer β, and

T =

 0 −1 0

1 0 0

0 0 0

 .

Hooke’s law expresses the stress σd in direction d (unit vector) with respect to

displacement u as:

σd = (d
β
� ∇)u +

1

r
(d

β
� nθ)Tu , (1.5)
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where ∇ is the gradient operator
(
∂r,

1

r
∂θ, ∂z

)T

and the bilinear product
β
� has been de-

fined by Ducasse in [28] by a three-by-three matrix (a
β
�b) such that (a

β
� b)im = cβijkm aj bk,

following the Einstein summation convention. This operator has the advantage of being

able to concisely represent material properties even for complex cases such as anisotropy.

Consequently, the displacement field u(r, θ, z, t), at any time t and any location

(r, θ, z), satisfies the following wave equation expressed in the β layer:

ρβ ∂
2
t u(r, θ, z, t)−

{[(
5+

1

r
nr

)
β
� 5

]
+

[(
5+

1

r
nr

)
β
� nθ

]
T

r
+

T

r

[
(nθ

β
� 5) + (nθ

β
� nθ)

T

r

]}
u(r, θ, z, t) = fβ(r, θ, z, t),

for t > 0,

u(r, θ, z, t) = 0, for t < 0.

(1.6)

As we will need to write the continuity of displacement and radial stress at each

interface, the radial stress has to be expressed as follows:

σr(r, θ, z, t) =

[
(nr

β
� 5) + (nr

β
� nθ)

T

r

]
u(r, θ, z, t) . (1.7)

The above equations depend on each layer through the values of the elastic constants

cβijkm, i.e. through the operator
β
�.

The stiffness tensor can be represented by a 6-by-6 symmetric matrix, using the

Voigt notation:

1↔ rr | 2↔ θθ | 3↔ zz | 4↔ θz | 5↔ rz | 6↔ rθ .
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For a transversely isotropic medium, the stiffness tensor is:

c11 c11 − 2 c66 c13 0 0 0

c11 c13 0 0 0

c33 0 0 0

(sym) c44 0 0

c44 0

c66


, (1.8)

while for an isotropic medium: c33 = c11, c13 = c11 − 2 c66 and c44 = c66.

Continuity equations at the interface β are given by the following equations: u(r+β , θ, z, t)

σr(r
+
β , θ, z, t)

−
 u(r−β , θ, z, t)

σr(r
−
β , θ, z, t)

 =

 0

pβ(θ, z, t)

 , (1.9)

where r−β and r+β indicate the fact that the field under consideration is calculated in

layers β−1 and β, respectively. The interface source term pβ(θ, z, t) defines the normal

(radial) stress jump at interface β, and corresponds to an applied force per unit area. The

condition pβ = 0 merely expresses the continuity of displacement and normal stress. It is

to be noted that if one of the layers is vacuum (as is the case for the outermost layer of

the cylinder in vacuum), the source term (as described in Section 1.4.3) would represent

a surfacic source that is used to represent a transducer loading at the surface.

The index β is omitted and will be reintroduced only when necessary to avoid

ambiguity. Eq. (1.6) and (1.9) are to be solved using Fourier and Laplace transforms

in the invariant dimensions (θ, z) and (t), respectively. In cases with volumic sources,

Eq. (1.6) is solved separately in each layer containing the source term. This would define

an incident field within each layer, which corresponds to the field that a source radiates

into this layer considering it to be unbounded. However, this thesis only deals with

sources located at interfaces and hence the volumic source terms are set to 0. In case

of the structure placed in vacuum, the outer and inner surfaces are also considered as

interfaces thus allowing for the simulation of surface sources. The refracted field is then

obtained by the contribution of all the interfaces, and is calculated by taking into account

the continuity relationships of Eq. (1.9).
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1.3 Equation to be solved in the (r, n, k, s)-domain

1.3.1 General case

After a Fourier transform with respect to the axial position z, a Fourier series expansion

with respect to the angular position θ, and a Laplace transform with respect to time t, the

wave equation (1.6) becomes the following ordinary differential system in the (r, n, k, s)-

domain (see Table 1.1):

(nr �nr) Ũ′′(r) +{
−i k (nr �nz + nz �nr) +

1

r
[ (nr �nr) −

i ( (nr �nθ) (n I + iT) + (n I + iT) (nθ �nr) ) ]

}
Ũ′(r) −{[

ρ s2 I + k2 (nz �nz)
]

+

k

r
[ i (nr �nz) + (n I + iT) (nθ �nz) + (nz �nθ) (n I + iT) ] +

1

r2
(n I + iT) (nθ �nθ) (n I + iT)

}
Ũ(r) = −F̃(r) ,

(1.10)

where I denotes the 3-by-3 identity matrix.

The radial stress in the (r, n, k, s)-domain is given by:

Σ̃r(r) = (nr �nr) Ũ′(r)− i

[
1

r
(nr �nθ) (n I + iT) + k (nr �nz)

]
Ũ′(r) . (1.11)

Equation (1.10) has no analytic solution for the general case. However, an analytical

solution is known for transversely isotropic medium and is detailed below.
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1.3.2 Transversely isotropic medium

General case Transversely Isotropic General case Transversely Isotropic

(nr �nr)

c11 0 0
0 c66 0
0 0 c44

 (nθ �nz)

 0 0 0
0 0 c13
0 c44 0


(nθ �nθ)

c66 0 0
0 c11 0
0 0 c44

 (nr �nz)

 0 0 c13
0 0 0
c44 0 0


(nz �nz)

c44 0 0
0 c44 0
0 0 c33

 (nr �nθ)

 0 c11−2 c66 0
c66 0 0
0 0 0


Table 1.2: Diamond product of the cylindrical basis vectors, for transversely isotropic
media, where: (b � a) = (a �b)T.

For transversely isotropic media, Equations (1.10) and (1.11) can be simplified by using

the properties summarized in Table 1.2 to obtain the following differential equation:

Ũ′′(r) + C1(r) Ũ′(r)− C0(r) Ũ(r) =



−F̃r(r)
c11

−F̃θ(r)
c66

−F̃z(r)
c44


,

where :

C1(r) =



1

r

−in (c11 − c66)
r c11

−i k (c13 + c44)

c11
−in (c11 − c66)

r c66

1

r
0

−i k (c13 + c44)

c44
0

1

r


and

C0(r) =



ρ s2

c11
+

1

r2

(
1 +

c66
c11

n2

)
+
c44
c11

k2
−in (c11 + c66)

r2 c11
0

in (c11 + c66)

r2 c66

ρ s2

c66
+

1

r2

(
1 +

c11
c66

n2

)
+
c44
c66

k2
n k (c13 + c44)

r c66
i k (c13 + c44)

r c44

n k (c13 + c44)

r c44

ρ s2

c44
+
n2

r2
+
c33
c44

k2


,

(1.12)
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and the radial stress:

Σ̃r(r) =


c11 0 0

0 c66 0

0 0 c44

 Ũ′(r) −

i

1

r


i (c11−2 c66) n (c11−2 c66) 0

n c66 −i c66 0

0 0 0

+ k


0 0 c13

0 0 0

c44 0 0


 Ũ(r) .

(1.13)

As mentioned earlier, the refracted field results from the refraction of incident waves

and emission of sources at interfaces. This thesis discusses the case with surface sources

without any volumic sources for the transversely isotropic case.

The exact solution is given by six partial waves that contain the stress and displace-

ment vectors, three of which are ingoing and three outgoing.

Six partial waves: displacement vectors

The displacement vector Ũj corresponds to six partial waves. The three ingoing waves

are expressed as combinations of modified Bessel functions of the first kind Ii (see e.g.,

[81, §10.25]). The first two ingoing waves contain axial displacements and are given as:

For j = 1, 2 , Ũj(r) =



In−1(ηj r) + In+1(ηj r)

2

−i In−1(ηj r)− In+1(ηj r)

2

i bj In(ηj r)

 =


I ′n(ηj r)

−in
ηj r
In(ηj r)

i bj In(ηj r)

 , (1.14)

where η21 and η22 are the square roots of the following polynomial of the second degree

in X (where we take only the positive real part of ηj for the computation) :

[
c11X −

(
ρ s2 + c44 k

2
)] [

c44X −
(
ρ s2 + c33 k

2
)]

+ (c13 + c44)
2 k2X , (1.15)
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and the coefficient bj satisfies:

bj =
c11 η

2
j − (ρ s2 + c44 k

2)

− (c13 + c44) k ηj
=

(c13 + c44) k ηj
c44 η2j − (ρ s2 + c33 k2)

, (1.16)

while the third ingoing wave contains no axial displacement:

Ũ3(r) =


i
In−1(η3 r)− In+1(η3 r)

2

In−1(η3 r) + In+1(η3 r)

2

0

 =



in

η3 r
In(η3 r)

I ′n(η3 r)

0

 , (1.17)

where

η3 =

√
ρ s2 + c44 k2

c66
. (1.18)

The three outgoing waves are expressed as combinations of modified Bessel functions

of the second kind Ki:

for j = 1, 2 , Ũj+3(r) =



−Kn−1(ηj r)−Kn+1(ηj r)

2

−i −Kn−1(ηj r) +Kn+1(ηj r)

2

i bj Kn(ηj r)

 =


K ′n(ηj r)

−in
ηj r
Kn(ηj r)

i bj Kn(ηj r)

 ,

(1.19)

and

Ũ6(r) =


i
−Kn−1(η3 r) +Kn+1(η3 r)

2

−Kn−1(η3 r)−Kn+1(η3 r)

2

0

 =



in

η3 r
Kn(η3 r)

K ′n(η3 r)

0

 . (1.20)

Note that η1,2,3 are not exactly radial wavenumbers, even if they have the same

unit, because η2j = −κ2, where κ is a radial wavenumber [see dispersion equations (1.15)

and (1.18)].
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Six partial waves: radial stress vectors

The radial stress vectors Σ̃r j correspond to six partial waves and are expressed as follows:

for j = 1, 2 ,

Σ̃r j(r) =


(c11 ηj + c13 bj k) In(ηj r) + c66 ηj

In−2(ηj r)− 2 In(ηj r) + In+2(ηj r)

2

−i c66 ηj
In−2(ηj r)− In+2(ηj r)

2

i c44 (bj ηj − k)
In−1(ηj r) + In+1(ηj r)

2

 ,

(1.21)

Σ̃r 3(r) =


i c66 η3

In−2(η3 r)− In+2(η3 r)

2

c66 η3
In−2(η3 r) + In+2(η3 r)

2

c44 k
In−1(η3 r)− In+1(η3 r)

2

 , (1.22)

represent the three ingoing waves and as is the case of the displacement vectors are

expressed as a combination of the modified Bessel function of the first kind Ii.

Furthermore, the three outgoing waves are represented as a combination of the

modified Bessel function of the second kind Ki given as:

for j = 1, 2 ,

Σ̃r j+3(r) =


(c11 ηj + c13 bj k) Kn(ηj r) + c66 ηj

Kn−2(ηj r)− 2Kn(ηj r) +Kn+2(ηj r)

2

−i c66 ηj
Kn−2(ηj r)−Kn+2(ηj r)

2

i c44 (bj ηj − k)
−Kn−1(ηj r)−Kn+1(ηj r)

2

 ,

(1.23)

Σ̃r 6(r) =


i c66 η3

Kn−2(η3 r)−Kn+2(η3 r)

2

c66 η3
Kn−2(η3 r) +Kn+2(η3 r)

2

c44 k
−Kn−1(η3 r) +Kn+1(η3 r)

2

 . (1.24)
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Computation of dispersion curves

The formulation described above allows for the computation of the dispersion curves. This

could serve as a useful tool for mode selection as well as comparing experimental velocity

measurements with theoretical values.

The dispersion curves can be computed from Equations (1.21 – 1.24) which describe

the radial stress vectors. These stress vectors are assembled after replacing s by iω and

are written as:

Σ̃r(r) =
[

Σ̃r1(r) Σ̃r2(r) Σ̃r3(r) Σ̃r4(r) Σ̃r5(r) Σ̃r6(r)
]

︸ ︷︷ ︸
3-by-6 matrix

a (1.25)

A non-zero six-dimensional vector a is searched such that traction at the outer and

inner radii (rmax and rmin respectively) of the pipe wall are zero, i.e.,

Σ̃r(rmin) = 0 and Σ̃r(rmax) = 0 (1.26)

Finally the standard dispersion equation is given by:

det

 Σ̃r1(rmin) Σ̃r2(rmin) Σ̃r3(rmin) Σ̃r4(rmin) Σ̃r5(rmin) Σ̃r6(rmin)

Σ̃r1(rmax) Σ̃r2(rmax) Σ̃r3(rmax) Σ̃r4(rmax) Σ̃r5(rmax) Σ̃r6(rmax)


︸ ︷︷ ︸

6-by-6 matrix

= 0 (1.27)

1.4 Software implementation of the model

The mathematical model developed in the earlier section is used to create a simulation

tool programmed with Python. First the methodology of discretisation is discussed. This

is then followed by the explanation of the implementation of the multiprocessing model.

Then, the numerical source, used for the entirety of the thesis, is defined. Finally, the

length of the calculation is obtained based on the dimensions of the computation area.

1.4.1 Discrete calculation (creation of grid)

The continuous physical and temporal domain is discretised for the computation which

is performed for a given radial position r. This makes the computation semi-analytic
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[analytic in r and numerical in (z, θ, t)]. Numerically, all computations are made using

the Fast Fourier Transform as described by Cooley and Tukey [15].

For the axial direction, the real domain variables are given as the maximum axial

length zmax, discretisation step size dz and number of discretisation points nz = 2zmax/dz.

The factor 2 is taken so as to account for the positive and negative axial wavenumber

values which is inherent to the Fourier transform, thus leading to a computation for

a real domain extending from −zmax to zmax. In the transformed domain, the axial

wavenumber discretisation step size is given as dkz = π/zmax and the maximum axial

wavenumber is given as kzmax=nz dkz/2. An array of computation points is created as

[0, dk, 2 dk, . . . , kmax,−kmax+dk, . . . ,−dk].

The circumferential wavenumber values are given by discrete integer values due

to the periodicity of this physical domain and are obtained in a similar fashion to the

axial wavenumber variables. The only difference is that the maximum circumferential

wavenumber value is used to obtain the discretisation step size. The array of computation

points are given by [0, 1, 2, . . . , Nmax,−Nmax+1,−Nmax+2, . . . ,−1].

The temporal variable t is transformed to the Laplace variable s corresponding

to frequency space. The sampling frequency fs satisfies the Nyquist-Shannon criterion

(fs > 2 fmax). The discretisation step is dt = 1/fs and the discretised array of s values

is [γ, γ + i dω, . . . , γ+i (π fs − dω), γ+i π fs], where dω = 2 π fs/nt = 2 π/d, the numbers

d and nt denoting the duration and the (even) number of time values, respectively. The

number of frequency values is nt/2+1 (due to the symmetry of the Fourier transform of a

real-valued function) and the positive number γ satisfies exp(−γ d) � 1 (10−5 typically,

see [78]).

1.4.2 Multiprocessing

The equations are formulated in a way that allows for multiple independent computations.

The problem is also computationally heavy due to complex calculations performed for each

value of N, k and s. For these reasons, a Multiprocessing functionality was decided to

be implemented. The computer used for the simulations has an Intel® Xeon® Processor

E5-1650 v4 which consists of 6 cores each capable of running 2 threads. This allows for

the computation to be performed in 12 parallel threads. The computer also has 96 Gb of
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RAM allowing for extremely large computations.

This implementation was done using the multiprocessing package available in Python

that drastically reduced computation times by a factor of 10.

1.4.3 Definition of source

The source in all cases mentioned in this thesis (unless otherwise mentioned) is defined by

a Gaussian function (similar to the one defined in Section 2.2) multiplied by a tone burst

signal. The Gaussian function in 2 dimensions (axial and circumferential) describing the

spatial form of the source is given by:

Gs(z − zs, a− as) = exp[−2/9 (z − zs)2/(δz2)] exp[−2/9 (a− as)2/(δa2)],

where, (zs, as) are the axial and circumferential positions of the source, δz and δa are the

discretisation steps sizes as shown in Figure 2.1. The coefficient 2/9 is chosen arbitrarily

to ensure that the shape extends over atleast 8 points in the grid to satisfy the Nyquist-

Shannon criterion. The tone burst signal of the source is given by:

Ts(t) = (
√

2π/nc) sin(2 π fc t) exp[−2/nc (π t)2],

where nc is the number of cycles and fc is the central frequency of the tone burst.

The source is hence given as,

S(z, a, t) = Gs(z, a) Ts(t)

1.4.4 Determining the length of the calculation

This section deals with identifying the length of the computation which would ensure

that aliasing is avoided due to periodicity of the spatial domain, arising due to intrinsic

periodicity of the Fourier transform.

The cylindrical domain is unwrapped as a rectangle. The upper and lower surfaces

represent adjacent circumferential positions of the cylinder representing −π and π. The

left and right edges represent the −zmax and zmax axial positions.
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Consider an infinitely long tubular structure with a discrete source as defined in

Section 1.4.3 and no damping. In the real case, guided waves generated by this source

would radiate over the extreme axial edges of the domain and continue propagate outward

to infinity. The waves that propagate over the −π edge would appear over the π edge.

In case of an axially finite medium, the waves propagating to the edges would reflect and

continue to echo within the region.

In the case of the computation performed for a finite length of the pipe however,

periodicity of the real domain is observed due to the periodic nature of the wavenumber

domain of the Fourier transform. This periodicity is demonstrated by two simple simu-

lation examples with extreme placement of the source. For these simulations, a domain

with axial length extending from -0.4m to 0.4m is considered. The radius of the pipe is

0.3m with a thickness of 2mm. The axial and circumferential widths of the transducer

source are 20mm and 10mm respectively and the signal is a 5 cycle tone burst with a

central frequency of 100 kHz.

In the first case as seen in Figure 1.3, the source is located close to a circumferential

edge at (zs = 0 m, as = 0.8π). Here, the periodicity of the computation plays to our

advantage as the real domain is circumferentially periodic. Hence, waves propagating

over the lower circumferential edge (a = −π) returns to the domain through the opposite

edge (a = π).
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Figure 1.3: Snapshots over time showing the displacement field radiated by a localized
source to demonstrate circumferential periodicity. The waves radiate from a source located
at z = 0m, θ=0.8π and is visible from the θ = −π edge starting from t = 30µ s.

In the second case, seen in Figure 1.4, the source is located close to an axial edge

at (zs = −0.38 m, as = 0). Here, the axial periodicity does not represent the actual

physics of wave propagation. As seen in the snapshots the field propagates over the left

edge (z = −0.4 m) and immediately appears at the right edge (z = 0.4 m). The periodic

nature of the computation in this case is detrimental to the accuracy of the simulation.
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Figure 1.4: Snapshots over time showing the displacement field radiated by a localized
source to demonstrate axial periodicity. The waves radiate from a source located at
z = −0.38m, θ = 0 and is visible from the z = 0.4m edge starting from t = 25µs.

To better understand this phenomenon, a simulation is performed with a similar

setup where the source is located at the center of the domain (z = 0, θ = 0). Figure 1.5

represents the field propagating at spatial co-ordinates (r = rrmax, θ = 0, z) with respect

to time (represented in the Y axis), i.e. field propagation represented in two dimensions,

where the X axis represents a line from −0.4 m to 0.4 m for a fixed θ position (θ = 0)

and the Y axis represents time. The graphic shows the evolution of two mode packets

of different velocities propagating outward from z = 0 (source position). The region in

blue is the valid region of computation. The region in red contains a corrupted signal

of the faster mode due to the periodicity of the domain inherent to the Fourier domain

computation. This does not correspond to the actual physics of propagation. The second

slower wave packet has not had time to illuminate the entire physical domain before the

faster wave packet traverses the edge of the domain and corrupts the wave field. This

phenomenon is extremely important to consider especially to obtain the Topological Image

of the defect.

23



Figure 1.5: Graphic showing the propagation of two principle wave packets over time (in
the Y axis) over the axial length (centered at 0) for θ = 0 and extending from −zmax to
zmax. The region of valid computation is in blue and corrupted region of computation
signals due to periodicity is in red.

This behaviour determines the minimum axial length of the region of computation.

In the most common cases of Non Destructive Testing of tubular medium, the structure

is illuminated by a principle axi-symmetric mode. Due to the nature of guided waves,

there may also exist other modes generated which provide more information regarding

the illuminated medium. These modes usually have different velocities.

The determination of the axial length for two common cases are described. The

first case describes a situation where it is sufficient to illuminate a part of or the entire

structure to visualize and understand the mechanism of propagation of the modes within

it. In the second case, the interaction of the incident field with a defect and the subsequent

measurement of the diffracted field by receivers may be envisaged.

For both cases, the source is considered to be at the center of the domain (z = 0)

and the incident field is assumed to contain two modes where the velocity of propagation

of the faster mode is vf and that of the slower mode is vs. The region of interest has a

length zmax. The minimum axial length of the domain to avoid aliasing is zcomp. For the

second case, the defect is located at zdef and the emitter transducers are also considered

to be the receivers. These cases have been visualised in Figure 1.6.
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Figure 1.6: Schematic showing the domain of interest, domain to be computed, two modes
with velocities vf and vs and transducer position at z = 0.

Computation of axial length to illuminate a domain

To ensure that the domain is illuminated by the slower mode without aliasing of the faster

mode, the minimum duration tmin (time taken by the slower mode to span the region of

interest) is given by:

tmin = zint/vs.

Hence, the minimum length of the domain is:

zcomp = tmin vf .

Computation of axial length to illuminate and measure a defect

For the case with a defect, it is also necessary to consider the velocity of the slowest useful

mode that may be diffracted by the defect vs_def . The time taken by the slowest mode

of the incident field to reach the defect is,

tmin_inc = zdef/vs,

and the time taken by slowest mode of the diffracted field to propagate back to the

transducers would be:

tmin_dif = zdef/vs_def .

Finally, the minimum required axial length of the computation domain is given as,
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zcomp = (tmin_inc + tmin_dif ) vf .

However, with minute defects, it may be hard to estimate the modes that would be

diffracted. To simplify this, a conservative estimate could be taken where vs_def = 3 × vs,

giving the axial length of the domain as:

zcomp = 4/3 tmin_inc vf ,

ensuring minimal to no aliasing in the medium.

1.5 Summary of model creation

This chapter introduces a new semi-analytical mathematical model used to simulate ul-

trasonic guided wave propagation in tubular structures. The first section introduces the

model which is based on solving the problem in the Fourier domain for the spatial vari-

ables and the Laplace domain for the temporal variable. This spectral method offers a

quicker alternative to FEM simulations mainly due to the simplicity of the domain as

well as the nature of the computation to be performed (wave propagation). It allows for

the problem to be solved as a function of independent spatial and temporal variables,

which in turn allows for the computation to be performed in a distributed fashion. It also

sidesteps the issue of finely discretizing the real domain, leading to shorter computation

times. The section concludes by giving the partial wave solution of the wave propagation

equations expressed as a sum of Bessel’s functions of the first and second kind.

The discretisation domain is first introduced. The axial wavenumber domain is

given by Fourier transform variable, the circumferential wave number domain by a Fourier

series expansion due to its periodicity and the temporal variable by the Laplace transform

variable. The problem is solved analytically with respect to the radial position.

The next section introduced the idea of using a multiprocessing functionality to take

advantage of the independence of the variables of the problem. The definition the source

is then discussed. This definition is used during the entirety of this thesis. The source is

defined as a product of Gaussian shapes in the axial and circumferential directions and

an n cycle toneburst signal.
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Finally, the factors determining the dimensions of the computation are discussed.

First, a limitation of the method related to the intrinsic periodicity of the Fourier and

Laplace domains is considered. This is then followed by methods of calculating the di-

mensions of the domain for two simplified cases.

The model described in this chapter was used to create a fast numerical simulation

tool on Python. This tool is used for all further computations. The validation of this

tool is discussed in a further chapter of this thesis along with the modelling, simulation,

identification and localization of numerical and experimental defects.
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Chapter 2

Diffraction of a Field by a Defect

This chapter discusses the modelling of a numerical defect. The cylinder is modelled as

two layers bonded together and the defect is considered as a 2d delamination, represented

as a localised discontinuity of stresses and displacements at the interface of the two layers.

This defect is at radial position rI and is represented by surface D as shown in Figure

2.1. It can have any shape and has been shown here as a circle. Figure 2.1a shows the

defect at the interface of the two layers. For ease of visualisation, the unwrapped surface

containing the defect within the discrete grid of points has been shown in Figure 2.1b.

The axial dimension has a discretisation step of δz and that of circumferential direction

is δa where δa = rI δθ. This representation of the defect in the grid is used as a reference

for further computations mentioned in this thesis.

The field diffracted by the defect is approximated by a field generated by a secondary

source located at the defect position. This source is modelled as a displacement jump at

the interface r = rI which in turn is modelled as a sum of Gaussian functions and

their derivatives. This secondary source depends on the radial stresses generated by the

incident field on the defect surface D and is determined by the minimization of the total

normal radial stresses on D.

The incident field generated by the transducers (each modelled as shown in Section

1.4.3) represented in Figure 2.2 propagates towards the defect positioned at an arbitrary

axial position z, azimuthal position θ and radial position at the interface rI .
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(a) 3d representation of the layered cylinder and
the defect at the interfacial surface placed on the
grid of discretisation points

(b) Unwrapped view of the cylindrical
domain showing the defect contour and
discretisation points.

Figure 2.1: The 3d and its respective 2d representation of the defect in the grid and its
position at the interface of the two layered cylinder.

Figure 2.2: Defect at axial distance z, circumferential position θ and radial position rI
being radiated by an axisymmetric incident field generated by the transducers.

The diffracted field (modelled as a secondary source) shown in Figure 2.3, is com-

puted by minimizing the radial stresses of the total field on the surface D. This mimics

the discontinuity conditions of a delamination defect such that the sum of the incident

and diffracted field within the surface of the defect D is 0.
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Figure 2.3: Field diffracted by the defect, computed as a secondary source to cancel the
incident field (represented as a radial stress vector) within its contour.

2.1 Equations to solve

Consider a delamination defect at the interface of two layers at radius rI and centered at

axial and circumferential positions z and θ respectively (refer Figure 2.2).

An incident field at the interfacial layer is given as σ[inc]
r (z, θ, r, s). To ensure that

the axial and circumferential variables share the same units (meters instead of radians)

the angular variable θ is written in terms of a circumferential variable a where a = rI θ

and rI represents the radius of the defect interface. It follows that the discretisation step

is δa = rI δθ.

It must be noted that the method described below can also be used to simulate

diffraction by a defect in plates. To equate the derivation for an arbitrary co-ordinate

system, it would suffice to replace the variables (z, a, r) with (x, y, z) and the variables

of the transformed domain (k, n, κ) with (kx, ky, kz). However, to remain within the

pedagogy of the current work, the co-ordinates of the cylindrical system are used.

The secondary source that corresponds to the defect response is described as a

displacement jump at the interface and is written as:

∆u(z, s) = u(z, r+I , s)− u(z, r−I , s), (2.1)
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where r+I and r−I refer to the position just above and below the interface and z denotes

the spatial variable which could represent (z) for the 2d, axisymmetric cases and (z, a)

for the 3d, non-axisymmetric cases. The variable z has been separated from r as the

computations are performed numerically with respect to z and analytically with respect

to r. In the absence of a defect, the value of ∆u would be cancelled, thereby maintaining

continuity between the two layers. This method of modelling a delamination defect is also

valid when the two layers have different material properties.

The radial stress field diffracted by the defect is given by:

σ[dif]
r (z, r, s) =

∫
G(z− ξ, r, s) ∆u(ξ, s) dξ, (2.2)

that represents a convolution in space, and the displacement field diffracted by the defect

is given by:

u[dif](z, r, s) =

∫
H(z− ξ, r, s) ∆u(ξ, s) dξ, (2.3)

where G(z − ξ, r, s) and H(z − ξ, r, s) are the Green tensors of radial stresses and dis-

placement respectively. These Green tensors are the responses of equations 1.11 and 1.10

to a unit vertical displacement jump of a Dirac shape at the interface r = rI , located at

an arbitrary position ξ. Mathematically, this is written as:

∆H(z, s) = δ(z) I3,

where I3 denotes the 3d identity matrix. The vectors Ũ(r), Σ̃r(r) and F̃(r) are replaced

by the matrices G(r), H(r) and δ(z) I respectively.

In its simplest form, the equation to be solved is :

∀z ∈ D , σr(z, s) = σ[inc]
r (z, s) + σ[dif]

r (z, s) = 0, (2.4)

which says that the sum of the incident and diffracted field at the defect D is zero. This

implies the absence of continuity of displacement at that location. Here, σ[inc]
r (z, s) is

computed using the mathematical model introduced in Section 1.2 and σ[dif]
r (z, s) is given

by Equation 2.2.

The key element in this equation is ∆u(ξ, s) which corresponds to the sum of mul-

31



tiple secondary displacement jump sources given as:

∆u(ξ, s) =
∑
i

ci(s) bi(ξ) (2.5)

where, ci(s) are the amplitude coefficients of each of the secondary sources with

shapes bi(ξ). This has further been detailed in Section 2.2.

Numerically however, the function to be minimized by the method of least squares

is given as: ∫
σr(z, s) · σr(z, s)? φ(z) dz, (2.6)

where φ is the function that describes the shape of the defect. This shape function φ is

typically given by:
φ(z) = 1 ; z ∈ D,

φ(z) = 0 ; z /∈ D.

2.1.1 Inner product associated with the defect shape

The minimization of Equation (2.6) requires us to have the values of the radial stress

vectors at any point z. However, the numerical model only has the values at the grid of

points of the discrete spatial domain. This can be resolved by the Shannon’s interpolation

formula giving the field at any position z as:

v(z) =
∑
n

sinc(z− zn) vn, (2.7)

where:
vn = v(zn) ,

sinc(z) = sin
(π z
δz

) δz

π z
(2d) ,

sinc[(z, a)] = sin
(π z
δz

)
sin
(π a
δa

) δz δa

π2 z a
(3d) ,

i.e. the field at a location anywhere on the grid (seen in Figure 2.1b) is given in terms of

the sum of the field at all grid locations zn. The variable a = rI θ.
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Next, an inner product of two discretised fields can be written as:

〈v,w〉 =

∫
v(z) ·w(z)? φ(z) dz

=
∑
n,m

[ ∫
sinc(z− zn) sinc(z− zm)φ(z) dz︸ ︷︷ ︸

an,m

(vn ·w?
m)

]
= V · (AW?) ,

(2.8)

where the real-valued symmetric positive square matrix

A =

[∫
sinc(z− zn) sinc(z− zm)φ(z) dz

]
n,m

,

depends only on the shape of the defect and the grid of calculation. This signifies that the

value of the field at a given location depends on the field at all discrete points on the grid

albeit with magnitudes depending on its distance from the point. It is also important to

notice that the interpolation need not be performed for the fields v and w.

The size of the defect is usually small compared to the size of the grid. As a result,

the dimension of the subspace, where the inner product 〈•, •〉 has a significant effect on

the response of the defect, is small compared to the dimensions of the grid N (number

of grid points). Consequently, the number q of significantly positive eigenvalues of the

square matrix A (i.e. its rank) is small compared to the order N of A.

The diagonalization of A gives q orthogonal unit eigenvectors b` (with respect to the

standard Euclidean inner product), with real-valued components, such that Ab` = λ` b`

(λ` > 0). If we consider the vectors q` =
√
λ` b` stack together to form the q-by-N

matrix Q, we obtain:

A = QT Q , i.e. 〈v,w〉 = (QV) · (QW?) . (2.9)

Finally, the inner product 〈•, •〉 is completely characterized by the Q matrix which

is substantially less expensive to store than the A matrix (q×N against N2 without using

sparse matrix storage).

Thus, the use of the Q matrix ensures that the inner product is positive, while

numerical errors in the computation, due to the avoidance of smaller inner product values

of the A matrix, can generate tiny negative eigenvalues.
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2.1.2 Creation of orthonormal basis: general case

As understood in Equation (2.4), in the ideal case, the function or functions that ap-

proximate the displacement jump to completely cancel the incident stress field within the

contour of the defect is known. In reality however, it is almost impossible to exactly real-

ize these functions. Hence, the functions are approximated by the Gaussian function and

its derivatives. These functions that approximate the displacement jump which in turn

represent the defect, are henceforth referred to as the “functions that approximate the

defect” to maintain conciseness. It is also important to understand that these functions

may not be linearly independent. The method of decomposition using wavelets has been

discussed by multiple authors in different contexts [84, 97, 115].

Due to the approximate nature of the defect modelling, these functions will not

completely cancel the incident field i.e. there is no exact solution for Equation (2.4). The

problem is thus converted to one of minimizing Equation (2.6). This requires for the func-

tions that approximate the defect to be linearly independent. These linearly independent

functions can be achieved using the Gram-Schmidt orthonormalisation process to form

an orthonormal basis and is described below.

Consider a free family of m functions (θα)16α6m (hereby referred to as free func-

tions). These free functions may be linearly dependent on each other. The Gram-Schmidt

process allows us to create a family of orthonormal functions (ψα)16α6m from (θα)16α6m

iteratively and is built as follows:


ψ1 = d1 θ1 ; d1 = 〈θ1,θ1〉−1/2 and

∀α > 1 , ψα = dα

(
θα −

α−1∑
β=1

〈
θα,ψβ

〉
ψβ

)
; dα =

(
〈θα,θα〉 −

α−1∑
β=1

∣∣〈θα,ψβ

〉∣∣2)−1/2 .
(2.10)

The first vector of the orthonormal basis is built starting with a reference free

function θ1 and normalising it by taking its product with d1. The addition of a subsequent

basis function ψα is done by subtracting the projection
∑α−1

β=1

〈
θα,ψβ

〉
ψβ of the newly

added free function θα on the pre-existing basis from the free function itself [refer Equation

(2.10)]. The normalising factor dα is obtained by taking the inverse of the norm of the

rejection of the new free function θα on the pre-existing orthonormal basis. The rejection
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of a vector ~v on vector ~w is given by:

rej~v(~w) = ~v − proj~v(~w) (2.11)

Figure 2.4 shows two cases of the intermediate step of the addition of a third basis

vector ψ3 to a pre-existing orthonormal basis consisting of the two basis functions ψ1 and

ψ2. This newly added basis function is created by first taking the new free function θ3

(in green) and subtracting from it its projection (in red) on the subspace containing the

pre-existing orthonormal basis. This creates a third basis function which is orthogonal to

the pre-existing basis. The next step of normalizing this newly added basis function is

done by taking the inverse of the norm of the rejection (in blue).

Special care must be taken at this step as it is possible that the norm of the rejection

is very small. This would make the new function θα quasi-linearly dependent (Figure 2.4b)

on the pre-existing orthonormal basis (ψ1,ψ2, ...,ψα−1) and would lead to the newly

added basis function, ψα, to have an amplitude that is extremely large. In the real

domain, this manifests as a divergent solution where the amplitude of the diffracted field

is much larger than the incident field. In an ideal case, the newly added basis function

would be linearly independent of the pre-existing basis as seen in Figure 2.4a.

(a) Free function that is linearly independent
of the pre-existing orthonormal basis due to a
large rejection.

(b) Free function that is quasi-linearly depen-
dent on the pre-existing orthonormal basis due
to a small rejection.

Figure 2.4: Representation of dependency conditions of new elements to an orthonormal
basis of dimension α=3.
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The extreme case where the rejection is 0 would mean that the new basis function is

linearly dependent on the pre-existing orthonormal basis. This would signify the addition

of a basis function with an infinite amplitude leading to an infinite amplitude of the field

diffracted by the defect.

Any function v can be projected onto the linear span of the set of orthonormal

functions (ψα)16α6m to obtain:

P(v) =
m∑
α=1

〈v,ψα〉 ψα, (2.12)

where the inner product 〈v,ψα〉 represents the component cα (hereby referred to as coef-

ficient) of v on the ψα basis vector, which then minimizes

〈v − P(v),v − P(v)〉 =

∫
|v(x)− P(v)(x)|2 φ(x) dx, (2.13)

where P(v) represents the sum of the projections of the function v onto the vectors of

the orthonormal basis and φ(x) represents the shape function described earlier in this

section.

2.2 Gaussian secondary source and its derivatives

The numerical defect that this work deals with is equivalent to a delamination between

two layers of identical or different material properties. If the defect D is not too large

compared to the dimensions of the grid (seen as the circle in Figure 2.1b) the secondary

source that generates the diffracted field can be approximated by a Gaussian function,

positioned at the center of the defect, and its derivatives. In 1d, these higher order

defects are represented as shown in Figure 2.5. It is to be noted that increasing the

order of the derivative, increases the spatial resolution of the shape that describes the

secondary source. This property can be used to simulate defects of smaller dimensions.

An important limitation however, is that increasing the order, moves the peaks of the

shape function outside the contour of the defect. Figure 2.6 shows the different functions

which are used together to try and simulate the defect. The peaks of the first and second

orders lie outside the contour of the defect.
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Ideally, a Dirac delta function should be used to describe point size defects. However,

representing a Dirac accurately would require an infinitesimally small step size of the grid

which is impractical in terms of the size of the computation. A Gaussian function and its

derivatives, that approximates a Dirac delta function and its derivatives, is chosen due

to the discrete nature of the problem and to satisfy the Nyquist-Shannon criterion (axial

wavenumber less than π/δz and circumferential wavenumber less than π/δθ, where δz

and δθ denote the axial and circumferential discretization step sizes).

Figure 2.5: 1D representation of the Gaussian function and its derivatives.

Figure 2.6 shows the form of the 2d Gaussian function its derivatives, used to create

the orthonormal basis, overlaid on the grid and defect contour. The Gaussian function

and its family of derivatives correspond to the family of free functions θ as mentioned in

Section 2.1.2. The shape function φ of the defect can also be defined as any arbitrary form

inscribed within the shape of delamination and the minimisation is carried out within the

area described by the contour of the function.

The orthonormal basis of functions is created by the Gram-Schmidt process and

has been described in section 2.1.2. The basis may consist of any number of mutually

orthogonal vectors of functions (ψα) which are constructed using the family of Gaussian

functions and their derivatives (θα) as described by equation 2.10. The maximum number

of basis is limited to the total number of spatial grid points. The projections of the input

function onto the basis corresponds to the independent responses (coefficients) of each of

the members of the family of Gaussians (and their derivatives) as shown in equation 2.12.

37



(a) Gaussian Function (b) First order derivative in z

(c) First order derivative in a (d) Second order derivative in z and a

Figure 2.6: 2d representation of the Gaussian function and its derivatives placed on the
grid. Dashed circular line represents the contour of the defect.

The sum of the negative values of the projections approximates the field diffracted by the

defect.

A visual example has been shown in Figure 2.7 where the defect can be exactly

approximated by a base with two basis vectors. This implies that the ideal subspace

is 2d. Hence, the vector that describes the field diffracted by the defect, lies on the

plane containing the two basis vectors (also the Defect Subspace). The incident field

vector, shown as σinc in the figure, is projected onto the defect subspace. The sum of the

projections onto the different orthonormal basis vectors gives the vector that describes

negative diffracted field −σdif (shown as the light blue vector). The purple vector thus

corresponds to the field diffracted by the defect.

In the ideal case, a perfect basis can be created such that the sum of the incident and

diffracted field within the defect is zero i.e. the total field is orthogonal to the orthonormal

basis. Here, the vector σtotal (shown in dark green) describing the total field is linearly

independent of the basis i.e. perpendicular to the 2d plane containing the defect response.
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In the real case, however, it is not possible to obtain the exact vectors that create

the ideal basis. This leads to an incomplete basis (shown as computed case) where the

sum of the incident and diffracted fields within the defect is non zero. The total field

vector σtotal has an unresolved component in the defect subspace which means that the

total incident field is not completely cancelled within the defect.

Figure 2.7: Visual representation of the ideal and computed cases of the conditions that
define the defect model. Image shows the incident field vector projected onto the complete
(left) and incomplete basis (right) and its components that define the diffracted and total
fields.
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This diffracted field acts as a secondary source with the input as a displacement

jump at the position of the defect given by:

∆u(z, s) =
n∑
i=0

ci(s) ∂
i
zg(z− zd) (2.14)

where for the 2d case:

g(z) = exp[−2 z2/(9 δz2)];

∂iz is the ith-order derivative with respect to z;

ci(s) is a vector which depends on the incident field.

and for the 3d case:

g[(z, a)] = exp[−2 z2/(9 δz2)] exp[−2 a2/(9 δa2)]

∂iz is the ith-order derivatives with respect to z and a:

∂1z =
[
∂z ∂a

]
, ∂2z =

[
∂2z ∂z ∂a ∂2a

]
, . . . ∂iz

∂izis a vector with (i+1) components;

ci(s) is a 3-by-(i+1) matrix which depends on the incident field.

The coefficient 2/9 is arbitrarily chosen to create a Gaussian shape that spans 8 grid

points to satisfy the Nyquist-Shannon criterion.

Equations (2.2) and (2.14) yield the diffracted field (vertical stress) on the interface:

σ[dif]
r (z, s) =

n∑
i=0

[∫
G(z− ξ, rI , s) ∂izg(ξ− zd) dξ

]
ci(s) =

n∑
i=0

∂iz[Gg(z− zd, s)]ci(s)

=
n∑
i=0

{
∂izGg z(z− zd, s) cz i(s) + ∂izGg a(z− zd, s) ca i(s) + ∂izGg r(z− zd, s) cr i(s)

}
,

(2.15)

where Gg z(z−zd, s), Gg a(z−zd, s) and Gg r(z−zd, s) are the responses of the multilayered

structure to a unit displacement step at the interface, of shape g(z − zd), in the axial,

circumferential and radial directions, respectively. These three responses are directly

computed in the (k, r, s)-domain before performing a discrete Fourier transform to return

to the real (z, r, s)-domain.

Consequently, we want to find the three components of ci(s), namely cz i(s), ca i(s)
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and cr i(s), that minimize

〈
σ[inc]
r (•, s) + σ[dif]

r (•, s),σ[inc]
r (•, s) + σ[dif]

r (•, s)
〉

i.e., σ[dif]
r (•, s) is the negative of the sum of the projections of the normal stress σ[inc]

r (•, s)

of the incident field, on the basis
{
∂izGg z(• − zd, s), ∂

i
zGg a(• − zd, s), ∂

i
zGg r(• − zd, s)

}
06i6n

.

2.2.1 Definition of secondary source: Summary

The process of defining a defect given by a secondary source can be summarised as follows.

First, the equation for the total stress to be minimised σr(z, s) has been described simply

by equation 2.4. The secondary source defined as ∆u(ξ, s) is given as a sum of multiple

secondary sources bi(ξ) with their corresponding coefficients ci(s). The aim is to find

the coefficients for this set of secondary source shapes which minimise the total stress

field within the defect D. The method of least square minimisation is then employed to

minimise the total stress within the defect and is described by equation 2.6.

Next, the Shannon interpolation formula is introduced (Equation 2.7). This formula

allows to perform a computation of a continuous space given a set of discrete grid points

hence converting a continuous computation to a discrete one. The development leads to

the creation of the Q matrix that only depends on the shape of defect and the points of

computation i.e. the Q matrix contains the defect properties.

The process of creating an orthonormal basis is then introduced and is shown by

equation 2.10. This process allows for the creation of a family of orthonormal functions

(ψα)16α6m from an arbitrary set of free functions (θα)16α6m. In this thesis, the set of free

functions are selected as the Gaussian function and its derivatives. Finally the coefficients

ci(s) are represented by 〈σinc,ψi〉 (given by equation 2.12) implying that the coefficients

are found by projecting the incident radial stress field on each of the functions of the

orthonormal basis.

2.3 Defect studies based on defect size

In this section, studies are performed to understand the response of the defect based on

its size as well as the order of the derivative of the Gaussian function that approximates
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it. It is to be noted that the Gaussian function (considered to be order 0) exists in the

axial and circumferential directions. Throughout the rest of this work, any mention of

an order includes all the orders that exists below it. For example, order 1 would consist

of the basis (0, 0), (0, 1), (1, 0) for each of the 3 Green tensors, i.e. basis with 9 elements.

A basis consists of a set of vectors such that every element in the basis can be described

uniquely as a linear combination of the vectors. The two indices represent the order of

the partial derivatives of the Gaussian function in the axial and circumferential directions

respectively. The objective of the model is to define secondary sources present in the

vicinity of the defect which work together in a way to minimise the incident stress field

within the contour of the defect.

Consider an isotropic aluminum cylinder of inner and outer radius 28mm and 30mm

respectively. The length of the cylinder (188.5mm) has been chosen to be equal to the

circumference. A circular source of radius 15mm centered at (0, 0) placed on the surface,

exerts a axial force of 5 cycles at 250 kHz. The “delamination” defect is placed at the mid-

plane of this setup at radius 29mm and centered at axial position 47mm and angular

position 90°. This placement was chosen so as to take into account the effect of the axial

and circumferential wave vectors of the computation. The step size in the axial direction

is 2.5mm and in the circumferential direction is 2.35mm (circumferential wavenumber

of 40) to try and maintain a constant scale in the two directions. The coefficient of the

Gaussian shape function is chosen as 2/9 so as to satisfy the Nyquist Shannon criterion.

The spectrum of the input signal has a central frequency of 250 kHz. However, due to the

excitability curve of this setup, the response of the medium is shifted towards the lower

frequencies. This concept has been detailed well in a number of articles [117, 113, 99,

114].

The study is performed for radii of 2mm, 4mm and 6mm and orders ranging be-

tween 0 (Base Gaussian) and 5. Order 0 consists of an orthonormal basis of size 3 (one

for each of the 3 directions (r, θ, z)) and order 6 consists of 63 element basis. In each of

these cases, the total axial stress field (incident + diffracted) at the center of the defect

(red point) has been plotted as a function of frequency. The study aims to understand

the effectiveness of the different order derivatives of the base Gaussian function in can-

celling out the incident stress field within the contour for defects of varying dimensions.

Snapshots of the total field have been shown to visualise the response of the defect to the

42



incident field. The study ends by describing the conditions to model a defect with this

technique.

2.3.1 Case 1: radius of defect 6mm

This section deals with a defect of radius 6mm. The contour of the defect encloses 21

points in the grid as seen in the series of images in Figure 2.8. Due to the dimension of

the defect in comparison to the Gaussian function, higher order derivatives are required

to cover the area within the contour. The images also show the Gaussian function and

its derivatives in relation to the defect contour.

Figure 2.8: Gaussian function and derivatives overlaid on the 6mm defect contour showing
the positions of the peak of the functions in relation to the defect.

The total stress field at the center of the defect has been plotted as a function of

frequency for each of the different derivatives and is shown in Figure 2.9. This is done to

study the effectiveness of the different order derivatives in cancelling out the incident stress

field within the defect. Also overlayed on this plot is the incident stress field obtained at

the same point in a defectless medium as a reference.
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Figure 2.9: The spectrum of the total field measured at the center of the 6mm radius
defect for derivatives of different orders. The dotted line denoting 10 % of the maximum
amplitude below which the defect approximation may be considered effective.

The series of images in Figure 2.10 gives a snapshot of the total field for four different

orders of derivatives for the same time step of 45µs. From Image 2.9, it would seem that

the 4th order derivative may be sufficient to model the defect by minimising the total

field. However, from Figure 2.10c, it is clear that the incident field is not completely

cancelled near the edges of the defect. The total field within the contour for the 5th order

approximation is sufficiently close to zero and could be considered as a suitable condition

for a defect of this dimension.

2.3.2 Case 2: radius of defect 4mm

As in the first case, the images in Figure 2.11 show the defect of radius 4mm placed within

the grid overlaid on the Gaussian function and the different derivatives. The contour of

the defect encloses 9 points in the grid.
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(a) 1st order derivative approximation (b) 2nd order derivative approximation

(c) 4th order derivative approximation (d) 5th order derivative approximation

Figure 2.10: Snapshot at time 45µs showing the axial component of the sum of the
incident field (created by a circular source located at the center) and the diffracted field
by the 6mm radius defect for various order of derivatives.
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Figure 2.11: Gaussian function and derivatives overlaid on the 4mm defect contour show-
ing the positions of the peak of the functions in relation to the defect.

Figure 2.12: The spectrum of the total field measured at the center of the 4mm radius
defect for derivatives of different orders. The dotted line denoting 10 % of the maximum
amplitude below which the defect approximation may be considered effective.

From Figure 2.12 it can be observed that like the earlier case, using the 5th order

derivative is effective in minimising the total field within the contour. However, due to

the smaller radius of the defect, a smaller order of derivative i.e. 4th order would also be

sufficient. This can be verified in the snapshots in Figure 2.11. The 3rd order derivative

is also almost effective but fails to cancel the stress near the contours.
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(a) 1st order derivative approximation (b) 3rd order derivative approximation

(c) 4th order derivative approximation (d) 5th order derivative approximation

Figure 2.13: Snapshot at time 45µs showing the axial component of the sum of the
incident field (created by a circular source located at the center) and the diffracted field
by the 4mm radius defect for various order of derivatives.
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2.3.3 Case 3: radius of defect 2mm

Figure 2.14 shows the defect of radius 2mm within the grid overlaid on the Gaussian

function and its derivatives. The contour of the defect encloses only 1 point in the grid.

Figure 2.14: Gaussian function and derivatives overlaid on the 2mm defect contour show-
ing the positions of the peak of the functions in relation to the defect.

Figure 2.15: The spectrum of the total field measured at the center of the 2mm radius
defect for derivatives of different orders. The dotted line denoting 10 % of the maximum
amplitude below which the defect approximation may be considered effective.

Unlike the two earlier cases discussed in this study, the response of the defect from

order 4 and 5 diverges. This is explained by the fact that the peaks of the higher order

functions are further away from the contour of the defect. To cancel the incident stress field

in the defect, they would need to have a higher amplitude, leading to a divergent solution.

Figure 2.15 shows the total field measured only for the first 3 orders of derivatives. The

response of the 4th and 5th derivatives lie beyond the specified range.
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The images in Figure 2.16 shows the snapshot of the total field for 4 different orders

at the same time step. The 1st order (Figure 2.16b) is effective in cancelling the incident

field within the defect. In case of the 3rd order derivative seen in Figure 2.16c, the

field diffracted by the defect has an amplitude comparable to the incident field. This

signifies that the solution is on the verge of diverging. Additionally, increasing the order

to 4, diverges the solution for reasons mentioned in section 2.1.2. This is seen with the

amplitude of the diffracted field being much larger than the incident field.

(a) 0th order derivative approximation (b) 1st order derivative approximation

(c) 3rd order derivative approximation (d) 4th order derivative approximation

Figure 2.16: Snapshot at time 45µs showing the axial component of the sum of the
incident field (created by a circular source located at the center) and the diffracted field
by the 2mm radius defect for various order of derivatives.
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2.4 Observations and conclusions

The small sample of defect studies performed, give a large variety of results, observations

and conclusions. The most direct observation is that the number of derivatives used to

approximate the defect depends on the size of the defect with respect to the grid. A

larger defect requires higher order derivatives. This can be explained by the shapes of

the functions that are used for the approximation. A higher order derivative not only

covers a larger area but also contains a greater number of peaks. This allows the model

to effectively cancel out incident stress fields with wavelengths of comparable length to

that of the defect size.

There is, however, a mathematical upper limit to the maximum order that can

be used to simulate the defect based on its size. In the case of the 2mm defect, the

solution diverges at the 4th order whereas in the case of the 6mm defect, the solution

stays stable until the 5th order. The diverging solution is due to the method by which

the orthonormal basis is built. As discussed in section 2.1.2, the normalisation of a newly

added basis requires it to be multiplied by the inverse of the norm of the rejection. This

rejection value depends on the shape of the defect as well as the discretisation step length.

A smaller defect size leads to the rejection having a smaller value at lower orders and vice

versa.

There is also a numerical limit to the maximum order of the derivative that can be

used. This limit depends on the discretisation step size as well as the standard deviation of

the Gaussian basis function and arises from the Nyquist-Shannon criterion. If the number

of grid points are not sufficient to accurately describe the curved shape of the function,

aliasing may occur. In the case of the examples above, this limit is reached around the

6th or 7th order. This can be resolved by placing multiple Gaussian functions within the

defect, where each Gaussian function and its derivatives are added to the orthonormal

basis.

From the above studies, certain conclusions can be drawn regarding the conditions

suitable to accurately approximate the field diffracted by sufficiently large circular defects.

The peaks of the Gaussian functions and its derivatives used should lie either within or at

the immediate vicinity of the defect contour and the absolute amplitude of the diffracted

field should remain lesser than or equal to that of the incident field.
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The basis can also be built with a lesser number of derivatives depending on the

shape of the defect and how well it conforms to the shape of the initial Gaussian basis

function. For example, consider an elongated defect (refer Figure 2.17). In such a case,

the 0th order derivative would suffice for the axial direction. It would be necessary to

take multiple derivatives in the circumferential direction so as to have the peaks of the

secondary sources that cover the surface within the contour.

(a) 0th Order (b) 1st Order (c) 2nd Order

Figure 2.17: Images showing all the derivatives required to approximate an elongated
defect to cover the area within the contour.

However, a thorough study needs to be performed to understand the basis require-

ments for these sort of defect shapes which only partially conform to the shape of the

Gaussian basis function function.

The lower limit of the model to approximate small defects depends on the discreti-

sation step and the Gaussian basis functions used to approximate it. Extremely small

defects would be approximated by secondary sources which are considerably further away

from the defect itself. This could be resolved by decreasing the discretisation step size

which comes at the price of a costlier computation. It is also possible that an alternate

basis function is used instead of the Gaussian. A new narrower optimised function has

been developed that would simulate smaller defects more accurately than the Gaussian.

However, this line of work requires further studies to better understand and implement

it.

The contour of the defect also plays a part on the functions used to approximate

it. In the examples discussed above, the contour of the defect is regular and conforms

to the shape of the Gaussian function. However, there may be cases where the defect

is irregularly shaped, as seen in Figure 2.18. In such cases it could also be possible to
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approximate the defect with two or multiple Gaussian functions (seen in Figure 2.18b).

Each of the Gaussian functions and their derivatives would be added as a separate basis

function to the overall orthonormal basis.

(a) Irregularly shaped defect partially ap-
proximated by a Gaussian basis function.

(b) Irregularly shaped defect approximated
better with two Gaussians basis functions.

Figure 2.18: Images showing the placement of the Gaussian basis functions to partially
and more effectively approximate an irregularly shaped.

As a continuation to modelling and approximation of delamination defects, progress

has been made regarding the modelling of defects in the form of surface indentations and

cracks of arbitrary shapes based on an asymptotic model. A communication was made

at the 14th International Conference on Mathematical and Numerical Aspects of Wave

Propagation, Waves 2019 regarding the same [10].

The mathematical model described in this chapter is effective in simulating delam-

ination defects with a large variety of parameters. These defects effectively cancel the

incident stress field within its contour by acting as a secondary displacement source. It

has been approximated by a Gaussian function and its derivatives which form an orthonor-

mal basis. The work presented in this chapter discusses the effect of certain parameters

on the behaviour of the defect model. It also leads to future work where detailed studies

need to be performed regarding other parameters such as the decision of basis functions

(including the new narrower optimised basis function), the order of derivatives and studies

pertaining to other non conventional defect shapes.
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Chapter 3

Experimental Identification of

Parameters for the Numerical Model

The aim of this chapter is to validate the model with experimental results. Firstly,

the experimental setup is discussed; the transducers, their placement around the pipe

and the calibration of the emitter and receiver belts. Next the physical properties of the

material used for the simulations are determined. A study is then performed to obtain the

dimensions of the transducers which would accurately simulate the experiment. Finally,

the physical behaviour of the L(0, 2), F (1, 3) and F (4, 2) modes are compared to the

simulations to validate the numerical model.

3.1 Experimental setup

3.1.1 Details of experiment

The experimental setup consists of a 6m long commercially obtained 2017A Aluminum

pipe (procured from Almet) with inner and outer diameters being 56mm and 60mm

respectively. The exact physical characterisation of the material is discussed in a later

section.

The transducers used to excite the guided modes come from Guided Ultrasonics Ltd.

and are shear polarised as shown in Figure 3.1. The contact surface of the transducer has

dimensions 3mm×13mm. Eight of these transducers are placed equi-angularly around
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the cylinder so as to have the direction of polarisation of the transducers along the axial

direction. Failing to maintain this axial symmetry leads to the generation of unwanted

modes. A ring was designed and 3D printed to maintain the angular separation and to

ensure repeatability. This ring can be slid into position and the transducers slotted into

the pockets. The setup is mounted as shown in Figure 3.2.

Figure 3.1: Direction of transducer polarisa-
tion. Figure 3.2: Transducers placed in the ring to

maintain spacing.

The transducers from the emitter belt are then connected to the multichannel signal

acquisition system (by LeCoeur). The impedance of the transducers and the acquisition

system are not matched leading to poor performance in the pulse echo mode with a very

low signal to noise ratio. As a workaround to this problem, a second belt of transducers is

used in tandem with the first to work in the pitch catch mode. The receivers are connected

to the acquisition system through an impedance adapter to improve the signal to noise

ratio. An advantage of this setup is that the signals can be measured at various distances

from the emitter ring which can then be compared with simulations. Figure 3.3 shows

the schematic of this setup. The acquisition system is run through a Matlab script.
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Figure 3.3: Schematic representation of the experimental test setup.

3.1.2 Normalisation of transducers

The normalisation of the test setup is an important step to ensure the generation of pure

guided modes as well as to have the exact amplitudes at the receivers. As is the case

of maintaining an equi-angular spacing between the transducers, an inconsistency in the

amplitudes in the emitter belt would lead to the generation of unwanted modes.

There is an unavoidable variation of amplitudes applied by each transducer onto the

structure of the structure. This may be attributed to slight differences in manufacturing,

age of transducers or the clamping mechanism. Application of the shear coupling gel may

also lead to a disparity between generated amplitudes. It is thus essential to normalise all

transducers in the emitter ring to ensure identical amplitudes are generated. It is equally

important to normalise the transducers in the receiving ring so as to have measurements

of comparable amplitudes. These measurements are to be used at a later stage for the

localisation of the defects with Topological Imaging.

The normalisation of all transducers is executed by a calibration step performed

before each round of experimental readings. This calibration allows for consistent and

repeatable measurements and is valid when there are an equal number n of emitters and

receivers and when spatial circumferential periodicity is maintained.

After setting up the experiment with an emitter and a receiver ring, each of the

transducers in the emitter ring is excited in turn and their individual response recorded

at each of the receiver locations. The maximum amplitudes received in each of the cases

is then stored in the following square matrix:
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M =



m00 m01 . . . . . . m0(n−1)

m10

. . .

... mij

...
. . .

m(n−1)0 m(n−1)(n−1)


where, i and j refer to the emitter and receiver positions respectively.

Each of the emitters and receivers have gains of ei and rj associated with them.

These coefficients are applied to the respective emitter and receiver to ensure that they

are normalised.

Figure 3.4: Coefficients of emitters (ei), transmission (tk) and receivers (rj) in relation to
their relative positions.

There is also a transmission coefficient tj−i between each emitter receiver pair which

describes the ideal coefficients that exists between them. A visual representation of these

relations is shown in Figure 3.4. In the ideal case it is clear that the transmission coefficient

between the emitter e0 and receiver r0 should be equal to that between e1 and r1 and so

on. In general, the transmission coefficient between emitter ei and receiver rj is given by

tk where k is j − i. This is represented as :

mij = ei tj−i[n] rj.

Taking the natural logarithm of this equation we get:

log(mij) = log(ei) + log(tj−i[n]) + log(rj),
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which is represented simply as:

µij = εi + τj−i[n] + ρj, (3.1)

where τj−i can be represented by a circular matrix as shown below:

Emitter i →

Receiver j

↓

τ0 τ1 · · · τj−1 · · · τn−1

τn−1 τ0 · · · τj−2 · · · τn−2
. . .

. . .
. . .

. . .
. . .

. . .

τn−i+1 τn−i+2 · · · τj−i · · · τn−i
. . .

. . .
. . .

. . .
. . .

. . .

τ1 τ2 · · · τj · · · τ0


.

This equation has an infinite number of solutions. However, we make an assumption

that the product of the amplitudes of all transducers in either the emitter or receiver belts

is unity. This leads to a unique solution and in logarithmic terms, corresponds respectively

to:
n−1∑
i=0

εi = 0 and
n−1∑
j=0

ρj = 0. (3.2)

Summing the equation (3.1) over all i and j values and applying the simplification

as shown in Equations (3.2),

∑
ij

µij = n
∑
ij

τj−i[n] = n
∑
k=1

nτk = n2µ̄,

where µ̄ is the average value of µij

Due to the circularity of the matrix, the vector τk is repeated n times. Hence, the

transmission coefficients can be written as,

τk =
1

n

∑
j

µj+k[n],j (3.3)

i.e. mean of µij over the (i, j) pairs such that i− j ≡ k mod (n).
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Next, a reference amplitude is taken as the average of the entire M matrix and is repre-

sented as µ̄. This would give: ∑
k

τk = nµ̄.

Summing Equation (3.1) for a fixed receiver position j,

∑
i

µij = nµ̄+ nρj ;∀j

gives the coefficients for the receivers as:

ρj =
1

n

∑
i

µij − µ̄ ; ∀j . (3.4)

Similarly, fixing i, the coefficients for the transmitters are given as:

εi =
1

n

∑
j

µij − µ̄ ; ∀i . (3.5)

The equations (3.3), (3.4) and (3.5) are inverted from the log scale to the real scale by

taking their exponential to get the actual coefficients of transmissions and gains to be

applied to the emitters and receivers.

This method ensures that the emitter and receiver belts are normalised to have

amplitudes close to unity with respect to each other. Before the experiments are per-

formed, a calibration step is carried out where the response of each emitter is recorded

at each receiver position. Using the aforementioned method, all transducers in the setup

are normalised before proceeding with the actual experiments. Figure (3.5) below shows

the effect of this calibration. The two images show the combined signals at all 8 receivers

in response to an axi-symmetric source. The first of the two images shows the situation

where the calibration has not been applied. The variation in amplitudes at each receiver

is visible in the inset figure. There are also trailing signals which for our purpose is con-

sidered as noise. The second image shows the signals at the receivers after the calibration

step. Here, the amplitudes at each receiver have the same amplitude with a very neg-

ligible variation. The trailing noise is also eliminated. On the whole, this technique of

calibration is effective in normalising the transmitters and receivers, hence creating a pure

axi-symmetric mode.
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Figure 3.5: Un-calibrated and calibrated signals at 8 receivers at a distance of 4.7m from
the transmitter belt.
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3.1.3 Attenuative influence of multiple transducers on incident

field

The effect of transducer contact on the surface of the cylinder has an attenuative effect on

the generated signal and was been studied here. This effect was studied at the position

of the emitter ring. Figure 3.6 shows the emitter (orange) and receiver (blue) pair placed

at diametrically opposite slots in the transducer ring used in the pitch catch setup. The

series of images also shows the addition of inactive transducers (grey) in progression.

Figure 3.6: Setup to study circumferential attenuation due to the addition of transducers.
The wave propagates from the emitter (orange) to the receiver (blue). The inactive
transducers (grey) are added sequentially to measure their additional impedance at the
surface.

The propagation of the shear waves generated by the emitter can be studied at the

receiver position. A reference 5 cycle 100 kHz toneburst signal with the emitter-receiver

pair was taken. Transducers are then added symmetrically in twos and similar measure-

ments are made. These signals are overlaid onto each other as shown in Figure (3.7).
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Figure 3.7: Signals measured at the receiver showing increased attenuation with the
addition of transducers circumferentially.

The material attenuation of the signal is seen regardless of the number of added

transducers. It is also clear that the addition of multiple transducers reduces the amplitude

of the circumferentially propagating wave. Attenuation due to material and transducers is

not taken into account in the simulations and the significance of this is better understood

in the chapter of Topological Imaging (Chapter 4). There is, however, a possiblity of

including damping in the properties through the diamond product as defined in Section

1.2 and has been described in a paper by Mora et al. [78].
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3.2 Dimensioning of numerical model

3.2.1 Material characterisation

Before running the simulations, it is essential to characterise the material to obtain the

properties for the numerical simulations. The Hydro-static weighing technique, being

one of the most accurate and convenient, was employed to determine the density of the

test specimen. There are, however, various methods to obtain the bulk velocities of a

material. Some of these have been detailed in [105, 52, 38, 57, 45]. Most of these studies

deal with flat plates allowing for through transmission measurements. In this study a

method involving the simplest methods are employed to obtain the material properties.

A small portion of the test specimen is cut out from the pipe. According to the

material sheet, the pipe has an inner diameter of 56mm and an outer diameter of 60mm

giving it a thickness of 2mm. On careful measurement though, the thickness is found to

vary between 1.92mm and 2.02mm. The density of the pipe is obtained by the Hydro-

static weighing technique giving a density of 2703 kg/m3.

Next, high frequency transverse and longitudinal transducers are used to obtain the

bulk longitudinal (CL) and transverse (CT ) velocities of the material. It is imperative to

use high frequencies (5-10MHz) for these measurements to ensure that there are multiple

wavelengths within the thickness of the sample. To obtain the longitudinal velocity, the

transducer placed perpendicularly on the surface was excited with a central frequency of

10MHz with a 5 cycle toneburst signal. The setup for these measurements is shown in

Figure 3.8. The multiple reflections received by this transducer is shown in Figure 3.9.
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Figure 3.8: Measurement
of velocity with multiple
through thickness reflec-
tions.

Figure 3.9: Signal of multiple reflections of the longi-
tudinal bulk wave over the thickness.

Taking the Fourier transform of this signal, we get the frequency spectrum as in

Figure 3.10. This spectrum consists of a number of equidistant peaks (frequency combs)

which contain the information of the time period of oscillation. To obtain the period from

these regularly spaced frequency peaks (∆f), another Fourier transform is performed on

the absolute value of this spectrum (similar to the method in [62, 74]). The result is as

shown in Figure 3.11, where the first peak gives an accurate estimate of the time period

between the multiple reflections. Similar measurements were taken multiple times and

averaged. Taking thickness to be 1.95mm, we get a longitudinal bulk velocity of 6254m/s.

A similar study was performed to obtain the transverse bulk velocity to be 3052m/s.
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Figure 3.10: Frequency spectrum of reflected signal as obtained in Figure 3.9.

Figure 3.11: Spectrum of frequency spectrum (as obtained in Figure 3.10) obtained by
taking a Fourier transform of the absolute value of the spectrum giving the time between
successive reflection.

There are a couple of sources of error for these bulk velocity values. Placing the flat

surface of the transducer exactly normal to the surface of the cylinder is a challenge. In

practice, a conceivable variation of about 5° from the normal would give a difference of
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about ± 0.3% error. To minimize the effect, five separate measurements with 10 averages

for each case were taken. Another source of error is the measurement of the wall thickness.

As mentioned earlier, the thickness varies between 1.92mm to 2.02mm. This gives a

possible error of about ± 2.5% in the velocity value. The test was performed with a

sampling frequency of 40MHz. The peak of the wave packets are measured within an

accuracy of 0.025µs. A total of 8 reflections are used for the estimation of time t with the

final estimate of time being 0.62µs. This in turn causes an error of about ± 0.67%. The

total estimated error is in the order of ± 3.5%. It is necessary to take the final velocity

values with a pinch of salt.

These calculated values of CL and CT seem to be on the lower end of the spectrum

of the bulk velocities in literature, however an article by Turnbull et al. [44] show lower

experimentally calculated bulk velocity values and explains the multitude of reasons this

could be true.

These material properties are fixed for all future studies and listed out in Table 3.1.

Mass density ρ Longitudinal velocity CL Transverse velocity CT

2.703 mg/mm3 6.254 mm/µs 3.052 mm/µs

Table 3.1: Measured mass density and sound velocities of aluminum.

3.2.2 Modelling of source: transducer sizing

A numerical study was performed to understand the variation of the field as a function of

the dimensions of the transducer. The transducer is modeled as a Gaussian distribution

along the circumferential and axial directions (described in Section 1.4.3). The actual

length and width of the transducer contact area are 13mm and 3mm, respectively. To

test the effects of the dimensions of the Gaussian describing the transducer, 3 sizes were

chosen in each of the two directions of the transducer. These sizes were 80 %, 100 %,

120 % of the actual axial length and circumferential width. The dimensions chosen are

listed in Table 3.2 below.
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Percentage Length(mm) Width(mm)
80 % 10.4 2.4
100 % 13.0 3.0
120 % 15.6 3.6

Table 3.2: Dimensions tested for sizing the Gaussian distribution representing the trans-
ducer.

The lower limit of the width was fixed by approaching the limit of the calculation of

the Bessel function. At extremely high circumferential wave numbers, this function leads

to singularities by reaching the limits of the computer beyond which the number is con-

sidered as infinity. This limits the maximum circumferential wave number which in turn

limits the minimum dimension of the circumferential width of the simulated transducer

source. Simulating smaller transducer sizes would require a smaller discretisation step,

thus increasing the number of points of calculation for an already costly computation. It

is thus necessary to balance the accuracy and cost of the computation.

The incident displacement field for the L(0, 2) mode was simulated by taking all

combinations of the lengths and widths. The Z-directional displacement component of

these fields at the surface were measured at a distance of 50 cm from the emitter belt and

at an angular position of θ = 0. Comparison of these fields show their susceptibility to

various dimensions of the transducer. The simulations were run with a 6-cycle Gaussian

window input signal with a central frequency of 100 kHz to match the experiment. At

this frequency, the primary L(0, 2) mode used for this study is only slightly dispersive.

Effect of circumferential width on amplitude and wavefront

Figure 3.12 compares the normalised axial displacement field created by transducers with

a fixed axial length of 15.6mm and varying widths. An important point to note is that the

amplitudes of the wavefronts are directly related to the dimension of the transducer i.e.

doubling any one of the dimensions leads to a doubling of the amplitude. It is clear that

the circumferential width of the transducer has a negligible effect on the wave fronts. The

difference between the normalised wave-fronts can only be found on closer observation of

the second and third packets. The differences in magnitudes of these packets are in the

order of 0.4 %.
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Figure 3.12: Normalised displacement field signal for Gaussian sources of different widths
measured at 50 cm. Figure also shows the packets that represent various modes.

The first packet corresponds to the mode L(0, 2). The second and third packets

correspond to the mode L(0, 1) and F (8, 1) respectively. The appearance of the F (8, 1)

mode could be attributed to an effect of aliasing due to the Nyquist-Shannon criterion not

being satisfied circumferentially due to the utilisation of 8 transducers in the experimental

setup.

This is a useful outcome as the simulation can be performed with a larger transducer

width, reducing the cost of the computation. However, to remain as close as possible to

the experimental case, it was decided that a width of 3.6mm (120 %) to be used for all

further simulations.

67



Effect of axial length on amplitude and wavefront

The variation of the axial length has a substantial impact on the wave-fronts of the second

and third packets. The fields are computed keeping the width as a constant of 3.6mm as

decided in the earlier section and varying the lengths.

On comparing the normalised signals as shown in Figure 3.13, a smaller length of the

transducer has the effect of an increased amplitude of the second and third wave packets.

This is because a smaller transducer has a larger angle of directivity in the circumferential

direction. Intuitively, the mode L(0, 1) being axially symmetric should scale similar to

the L(0, 2) mode. However, this changing behaviour can be attributed to the fact that

the tested lengths of the transducer are comparable to the wavelength of the L(0, 1) mode

and as the length approaches the wavelength, there is a decrease in amplitude. Even

though these modes have a small part to play in future studies, this particular behaviour

is useful in sizing the length of the transducer.

Figure 3.13: Normalised displacement field signal for gaussian sources of different lengths
measured at 50 cm.

Figure 3.13 also contains a normalised experimental signal measured at 50 cm from

the emitter belt with the same conditions as in the simulation. This signal contains
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the information of the L(0, 2) and F (8, 1) modes. The L(0, 1) has a predominant radial

displacement at the surface and the transducers do not seem to be sensitive to this lesser

activated mode. Matching the amplitude of the experiment and the simulation, it is seen

that the transducer of axial length 13mm best simulates reality.

The dimensions of the contact area of the transducer (with size 13mm×3mm) could

be simulated by Gaussian distributions (as detailed in Section 1.4.3) in the axial and

circumferential directions with widths 13mm and 3.6mm respectively. These dimensions

seem to be an ideal balance between accuracy and cost of the computation and are fixed

for all further computations.
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3.3 Generation and comparison of modes : experiment

vs simulation

In this section, the simulation model is validated experimentally by comparing the be-

haviour of three modes, namely the L(0, 2), F (1, 3) and L(4, 2), to experimental results.

The modes are chosen so as to verify purely axi-symmetric as well as flexural behaviours

of lower and higher order circumferential modes.

According to the naming convention of guided wave modes in cylinders as described

by Silk and Bainton in 1979 [107] and Nishino in 2001 [80], the first index refers to

the number of complete wavelengths around the circumference of the cylinder and the

second index determines the mode number. Figures 3.14a and 3.14b show the amplitude

distribution of stress or displacement loads of the N = 0 and N = 4 modes around the

circumference of the cylinder.

(a) Amplitude distribution for N = 0. (b) Amplitude distribution for N = 4.

Figure 3.14: Amplitude distribution of two modes around the circumference of the pipe.
These may represent stress or displacement amplitudes.

The three modes L(0, 2), F (1, 3) and L(4, 2) are generated by axial excitation on

the surface of the cylinder where the amplitudes of the emitters are calculated based on

the cos(N θ) value at that given azimuthal position θ. The axial displacement field of

the simulation measured at 50 and 100 cm from the emitter belt are compared to similar

measurements made in the experimental setup.

As a side note, trying to generate a pure L(0, 2) mode also leads to the generation

of the F (8, 1) and L(0, 1) modes as seen in the earlier section. The F (8, 1) is created as

there are 8 equally spaced emitters around the circumference and the fundamental mode

of the circumferential wavenumber N = 8 has a cut-off frequency lower than the testing
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frequency of 100 kHz. Figure 3.15 shows the fundamental modes of each of the circum-

ferential wavenumbers from 8 − 15. These dispersion curves have been computed using

the method described in Section 1.3.2. The modes with circumferential order 0− 13 have

a cut-off frequency less than 100 kHz and hence using upto 13 transducers all in phase

in an attempt to generate a pure axi-symmetric mode such as L(0, 2) would lead to the

unavoidable generation of one of these modes corresponding to the number of transducers

in the emitter belt. On the other hand, using 14 transducers would generate an extremely

dispersive mode with a group velocity of almost zero, making the signal incoherent. Ide-

ally, for this given system, using 15 or more equiangularly placed transducers activated

in phase would generate a pure L(0, 2) mode. However, the physical width of the trans-

ducers hinders the positioning of more than 14 transducers around the circumference.

The transducers contact each other, leading to insufficient contact with the surface of the

cylinder. This in-turn leads to the generation of other modes which would unnecessarily

complicate the wave field. Figures 3.12 and 3.13 also inadvertently end up validating the

presence and arrival of the F (8, 1) mode.

Figure 3.15: Frequency-axial-wavenumber dispersion curve showing the fundamental
modes from circumferential wavenumber 8 to 15 in relation to 100 kHz central frequency.

The L(0, 1) is generated due to the axi-symmetric nature of excitation as well as

the mode having a small but significant z-directional displacement component at the
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surface. The L(0, 1) and F (8, 1) modes belong to the same family and are similar to the

anti-symmetric(A0) mode in plates. They also have identical variations of stresses and

displacements over the thickness. The major differences are that the F (8, 1) has a slower

group velocity and the amplitude varies with respect to the angular position, consisting of

8 complete wavelengths around the circumference. Figure 3.16 shows the spectrum of the

calculated field in the frequency/axial wavenumber domain. The highlighted regions show

the extent to which the three modes are activated in the simulation and this is overlayed

on the analytical dispersion curves. This explains the two packets that follow the L(0, 2)

mode.

Figure 3.16: Frequency-axial-wavenumber spectrum of the computed field overlaid on rel-
evant dispersion curves showing a good agreement between the calculated and theoretical
solutions.

The numerical tool also closely simulates the response of an undamaged cylindrical

structure. This is verified by comparing the experimental and theoretical signals of various

modes measured by 8 equiangularly spaced transducers positioned at 50 cm and 100 cm

from the transducer belt. Figure 3.17 shows that the axi-symmetric mode L(0, 2) is

exactly replicated by the experiment. Figure 3.18 shows that the tool also simulates the

response of a flexural mode F (1, 3) pretty accurately and Figure 3.19 shows that the tool

can not only simulate extremely dispersive modes (in this case the F (4, 2) mode) but also
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retains the exact group velocity of said dispersive mode. In case of the simulation of the

F (4, 2) mode measured at 50cm, the response of the circumferentially propagating mode

also exists and is seen by the repeating signals after the primary packet of the mode. This

response is not seen in the experiment as there is a strong damping factor due to the

material and interaction of the fields with the emitters at the source location as discussed

in section 3.1.3, both of which are not taken into account in the simulation.

Figure 3.17: Comparison of the computed (orange) and experimentally measured (blue)
group velocities of the axisymmetric (N=0) mode [L(0,2)] measured at 50 and 100 cm.
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Figure 3.18: Comparison of the computed (orange) and experimentally measured (blue)
group velocities of a non axisymmetric (N=1) mode [F(1,3)] measured at 50 and 100 cm.
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Figure 3.19: Comparison of the computed (orange) and experimentally measured (blue)
group velocities of a non axisymmetric (N=4) mode [F(4,2)] measured at 50 and 100 cm.

Overlaying the spectrum of the computed fields on the analytical dispersion curves

(seen in Figures 3.20, 3.21 and 3.22) it is clear that they are in agreement, implying that

experimentally obtained velocities could be compared directly to group velocity dispersion

curves. This confirms the validity of not just the model but also the material properties

of the test specimen.
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Figure 3.20: Spectrum of the axial displacement component of the computed field obtained
by exciting the L(0,2) mode.

Figure 3.21: Spectrum of the axial displacement component of the computed field obtained
by exciting the F(1,3) mode.
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Figure 3.22: Spectrum of the axial displacement component of the computed field obtained
by exciting the F(4,2) mode.

To further strengthen the validation of the model, experiments are performed and the

measured group velocities are overlayed onto analytical group velocity dispersion curves

shown in Figure 3.23. The plot shows that the experiment is repeatable and the material

properties obtained can simulate the undamaged structure well.

An observation can be made regarding the group velocity of the F (4, 2) mode at

80 kHz. When 5-cycle tone burst signals are used as the excitation signal, due to the

dispersive nature of the mode, it is difficult to accurately measure the group velocity.

However, using 10- and 15-cycle signals helps to measure the actual group velocity more

accurately.
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Figure 3.23: Comparison of theoretical group velocities (solid lines) of the three studied
modes [L(0,2), F(1,3) and F(4,2)] with various trials of experimentally obtained group
velocities showing good agreement.

3.4 Capabilities and limitations of the numerical model

Before moving on to the defect detection using the method of Topological Imaging, a

brief summary is discussed regarding the capabilities and limitations of the tool and

experimental setup.

The model allows for a fast and accurate simulation of guided wave propagation in

tubular structures. This arises from the fact that the computation is performed in the

Fourier and Laplace domains, thus avoiding the complexity of solving the problem with

higher order derivatives that exists in the real domain. Using the Laplace variable for the

time domain instead of the Fourier variable also allows for truncated causal computations.

In addition, the independence of the variables allows for the computation to be performed

using multiple processors which further reduces the total computation time. The tool is

also capable of simulating multi-layered structures which could have different material
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properties. This may, for example, be used for simulation of guided wave propagation in

insulated pipes. It can also simulate wave propagation from single or multiple discrete

localized sources hence simulating individual transducers.

The method of computation also allows for the simulation of defects. This thesis

discusses diffraction caused by delamination defects of different sizes at any position in

the medium. Irregularly shaped defects are also approximated well by using multiple

Gaussian functions and their derivatives. Further work is ongoing to simulate volumetric

defects such as indentations and cracks.

The simulation also holds up well in relation to analytical models and experimental

measurements. The frequency wave-number spectrum images show the spectrum of the

simulated fields in line with the analytical dispersion curves. Comparing the simulation

and experimental measurements of various modes shows an accurate reproduction of the

phase, velocity and waveform. This is also true for higher order and dispersive modes.

Notwithstanding the accuracy and validity of the numerical model, there are a couple

of numerical and experimental limitations. One of the numerical limitations is with regard

to the circumferential wavenumber due to the modified Bessel’s function. The simulated

transducer is approximated by a Gaussian distribution that requires a minimum of 8 points

to be well defined. This controls the circumferential discretisation step which in-turn

decides the maximum circumferential wave number value to accurately run the simulation

satisfying the Nyquist-Criterion. The Bessel’s function is unstable at large values of

N . However, as seen in the study regarding the transducer sizing, this circumferential

width of the transducer has a comparatively small effect on the calculated field and the

transducer can be approximated by a Gaussian with a larger width lowering the maximum

circumferential wavenumber value. This limitation also affects the minimum dimension

of the numerical defect. Higher order derivatives of the Gaussian functions have peaks

that lie outside of smaller defect contours leading to an instability in the diffracted field.

Another limitation is with regard to the dimension of the computation region. Due

to the periodic nature of the Fourier domain, care has to be taken to select the physical

dimension and duration of the computation to ensure aliasing does not occur.

There were also some experimental limitations. One such limitation is the upper

limit to the number of transducers which can physically be placed around the pipe without

contacting each other. This in combination with a limit of the transducer central frequency

79



used meant that it was impossible to only generate pure axi-symmetric modes (N = 0)

without also generating the highly dispersive higher order modes (N = 8).

One other issue was the inherrent dissimilarity in the amplitudes generated by each

source due to factors such as transducer strength, channel differences, couplant. This led

to the generation of unwanted trailing signals and was resolved by the normalisation of

the transducers.

On the whole, the versatility of the tool in simulating a vast extent of practically

useful cases has been demonstrated.
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Chapter 4

Topological Imaging

The numerous methods realised to simulate wave propagation go hand in hand with a

multitude of post-processing techniques developed to image defects. There exists a number

of techniques for a vast variety of applications within the fields of NDT, Seismology,

Medicine etc. Most of these techniques are usually cross compatible, hence allowing them

to be adapted to other fields.

One of the earliest and robust methods developed for imaging defects is the Synthetic

Aperture Focusing Technique (SAFT). This method involves the capture of data from

multiple positions and the application of synthetic focusing algorithms to arrive at the

defect location. A review by Busse et al. [12] details the method and it has been effectively

used since then by a number of authors [11, 25, 72, 55, 6, 106, 118, 87, 16, 40]. A study

by Kitze et al. [54] compares SAFT with Time of Flight Diffraction (TOFD) technique.

The TOFD method uses the reflection from the back wall and the direct path signal as a

reference to determine the positions and dimensions of the defects. The SAFT technique

has also been used for defect detection in tubular structures [18]. A review by Davis et

al. [17] summarises and compares some Synthetic Focusing Techniques such as SAFT,

Common Source Method (CSM) (A technique very similar to SAFT which is especially

effective in dealing with tubular structures) [36, 37] and Total Focusing Method (TFM).

The TFM method works with the Full Matrix Capture (FMC) acquisition technique

where all available time traces between transmitters and receivers are stored and processed

for imaging. These techniques were made possible by the development of Phased Array

systems, one of the earliest mentions of which, were by Mahaut et al. [73]. An article

by Holmes [51] summarises some of these FMC techniques concisely with some interest-

81



ing results showing the effectiveness of the TFM. This technique has been successfully

implemented by various authors [50, 82, 110, 29, 23, 66].

Some of the other imaging techniques include probabilistic methods [3, 19, 116],

combination of the TFM and Sign Coherence Factor [68] and Helical Ultrasound Tomog-

raphy [64].

Topological Imaging (TI) has its roots in the field of shape optimisation. The

idea of shape optimisation was first discussed by Eschenauer, Schumacher et al. [32].

The method was then generalised by Sokolowski [108] and extended to heat transfer

and linear elasticity by others [39, 83, 100]. The idea of this method is to study the

point wise sensitivity of a cost function in the presence of holes at those points. Some

of the notable works with regard to imaging defects using this method are by Amstutz

[2], Dominguez [27, 26], Guzina [46], Bellis [4] and Bonnet [8] going by the name of

Topological Sensitivity, Topological Gradient and Topological Derivative interchangably.

The study by Dominguez et al. [27] and Bonnet [7] discusses the Time Domain Topological

Gradient (TDTG) method where the computation of the direct and adjoint problems for

target detection based on the idea of minimising a cost function has been successfully

implemented. These methods are iterative and require multiple computations.

A crucial concept for the functioning of Topological Imaging is the time reversal

technique. This technique for focusing on reflective targets was first mentioned by Fink

et al. [34, 35] named the Time Reversal Mirror (TRM). In essence, this technique shows

that that diverging diffracted signals from a scatterer recorded at multiple positions trans-

mitted back into the medium after time reversal tend to converge at the position of the

scatterer. An extreme case of the reversibility of the wave-fields was proven by Derode

et al. [22] in an experiment with 2000 scatterers where the signal converges back to the

source with the original wave form. In the same year Prada et al. [88] introduced the

Decomposition of the Time Reversal Operator (French abbreviation DORT) to separate

out signatures and selectively focus on two scatterers with the same TRM technique.

Leutenegger et al. [65] later successfully used this method to localise defects by obtaining

the spatio-temporal maxima of the time reversed field. The principle of time reversal

to solve inverse problems in multiple scattering media has also been studied by authors

such as Blomgren [5] and Devaney [24] using the Multiple Signal Classification (MUSIC)

imaging algorithm.
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The Time Domain Topological Energy (TDTE) method was introduced by

Dominguez, Sahuguet and Gibiat [26, 98, 43]. This was soon followed by Rodriguez

et al. [95] who introduced frequency domain topological imaging [Fast Topological Imag-

ing Method (FTIM)]. The latter method works with a small bounded frequency domain

instead of the complete time domain by phase-conjugating the residual signal in the fre-

quency domain. This allows for faster computation of images than the TDTE method.

However, FTIM cannot be used in the context of this thesis due to the fact that the

temporal variable of the computation is in the Laplace domain which contains the expo-

nential decay window. These topological energy methods in simple media were the next

iteration of the TDTG method in that it was possible to localise discontinuities with just

a single computation using a direct and adjoint field instead of having to perform multi-

ple iterations. The method was then used to image defects in bounded media [112, 71],

isotropic waveguides [93], anisotropic waveguides [9, 94, 49] as well as highly dispersive

media [91]. It also proved to to reasonably effective in dealing with defects which did not

have a direct line of sight to the transducer [92] and in cylindrical structures [79].

This chapter deals with the concept of Topological Imaging and presents some in-

teresting experimental and numerical results. The first section introduces and explains

the principle of this imaging technique. The next section illustrates the effectiveness of

the method by imaging various numerical defects as defined in Chapter 2 taking into

account factors such as size, order of the defect, frequency of the excitation signal and

number of transducers. The penultimate section deals with the imaging of a defect using

measurements of the diffracted field from a Finite Element Simulation on CIVA. The

final section demonstrates the potential of the method of Topological Imaging combined

with the numerical model developed within the scope of this thesis, to successfully image

multiple experimental defects to a high degree of precision.

4.1 Principle of the method

Consider a discontinuity at an arbitrary unknown position (r, θ, z) within the structure. A

source consisting of one or more transducers illuminates the structure with certain guided

modes. These waves propagate over the structure and interact with the discontinuity,

causing it to be diffracted in all directions. The reflected diffracted fields measured by the
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receiver contains information regarding the position and dimensions of the defect. This

information used in conjunction with the known incident field can help determine the

position of the defect.

Topological imaging is a method based on the cross-correlation of two wave-fields

to accurately identify and locate these medium discontinuities. This method requires the

computation of two wave-fields, namely the direct (or forward) and the adjoint fields. A

cross correlation of the two fields is performed to localise the defects.

The direct field corresponds to the wave-field propagated in a healthy medium. This

field (as represented in Figure 2.2) is computed by considering the numerical source (com-

bination of transducer dimensions and signal as defined in Section 1.4.3) to be identical

to that of the experimental source used to illuminate the tested medium. This simulation

should accurately mirror the real world experiment (as is the case in Section 3.3) albeit

in a medium without defects. This is also referred to as the incident field.

The adjoint field is computed using the time reversed residual of the experimentally

measured diffracted field (represented in Figure 2.3) as the source for a simulation. The

residual is the difference between the measured diffraction response and the solution of the

direct problem at the receiver locations. In experimental terminology, this corresponds

to baseline subtraction. The residual obtained at each of the transducers is time reversed

and used as a source to create the adjoint field.

Finally, a cross correlation between the time reversed direct field and forward prop-

agating adjoint field as described in Equation (4.1) is performed. This physically corre-

sponds to the adjoint field converging at the positions of discontinuities at the same time

as the reversed direct field passing over it. The series of images below (refer Figure 4.1)

shows method at work. The idea of the adjoint field is the same as the aforementioned time

reversal methods which would require looking for the spatio-temporal maxima. However,

correlating it with the direct field directly reveals the positions of the discontinuity.
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Figure 4.1: Snapshots over time showing the forward propagated adjoint field (top), the
backward propagated direct field (middle) and the topological image of the defect forming
by the correlation of the two aforementioned fields (bottom).

Thus, Topological Imaging is a non-iterative, numerical, post-processing technique

that takes advantage of time reversal without having to look for the spatio-temporal

maxima to localise defects in complex media.

The method of TI used in this thesis can be distilled down to one equation:

I(z, r) =

∣∣∣∣∣∣
T∫

0

u(r, z, t) · v(r, z, T−t) dt

∣∣∣∣∣∣ , (4.1)

where u(r, z, t) corresponds to the adjoint or time reversed residual field and v(r, z, T−t)

to the direct or forward field propagated backward in time (T−t). The integral over

time T corresponds to considering the cumulative effect over all time steps. Taking the

absolute value of the calculated image corresponds to taking the spatial envelope [95]

which removes the oscillation behaviour leading to a smooth continuous image. Figure

4.2 shows the image obtained by taking the correlation between the adjoint field and

time reversed direct field. Figure 4.2a shows the actual computed image that consists of

striations that result from the correlation of the peaks and troughs of the two fields at

the defect position. Figure 4.2b shows the same computed image but with the addition of

having the spatial envelope. This envelope leads to a smoother image, devoid of striations

thus making it easier to identify the patch that signifies the defect.
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(a) Topological image computed without using
the spatial envelope.

(b) Topological image computed with the spatial
envelope.

Figure 4.2: Comparison of the topological images obtained by the cross correlation of the
adjoint and time reversed direct fields to identify the defect (orange contour). The image
on the left is the actual image and that on the right is computed by taking the spatial
envelope of the first image.

The direct field is calculated in a healthy medium devoid of any defects or discon-

tinuities and can have any arbitrary source. However, in testing of tubular structures,

axisymmetric and minimally dispersive modes are usually chosen to ensure uniform illu-

mination over the circumference, to reduce the probability of artifacts and to ensure the

visibility of all defects in the final image.

The source for the adjoint field is the time reversed residual measured at the re-

ceiver positions from the numerical simulation or the experiment. In practice, a belt of

transducers is placed circumferentially around the cylinder and act as both transmitter

and receiver.

4.2 Numerical experiment

This section aims to demonstrate the technique of Topological Imaging to image numer-

ical defects as modelled in Chapter 2. Studies are then performed for various orders of

derivatives, frequencies and number of transducers. This is followed by results of some

unconventional defect forms.

For all studies presented, the physical and material properties of the cylinder are

shown in Table 4.1.

For the first three studies, defects are located at (r , θ, z) = (29 mm, 75°, 450 mm).

The incident source is generated by a circumferentially continuous belt located at z = 0.
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Length 1000mm
Inner radius 28mm
Outer radius 30mm
Density ρ 2.703 mg/mm3

Longitudinal bulk velocity CL 6.254 mm/µs

Transverse bulk velocity CT 3.052 mm/µs

Table 4.1: Cylinder dimensions and material properties.

This setup generates purely axi-symmetric modes and is done to avoid the effects of

highly dispersive (refer Image 3.15), slowly propagating or unwanted modes (which usually

cause artifacts), ensuring that the study only deals with the factors being discussed.

The transducers used for the computation of the adjoint field have been modelled with

diameters of 55mm. This dimension was chosen to allow for a lighter computation due to

the lower circumferential wavenumber requirement. Imaging the numerical defects also

expands the understanding of the mechanism of the defect model.

The first section aims to localise the defects of three different sizes introduced in

Chapter 2. Imaging these defects reveals the method by which the defect model functions

by highlighting the positions of the peaks of the dominant order of the Gaussian that

approximates it. In the second section, a defect has been imaged at different frequencies

to understand its effect on image sharpness. Next, a study is done to identify the minimum

number of transducers to clearly image defects. Following this, two unconventional defects

have been modelled and imaged to further explain the bases as described in Chapter 2.

Finally, a defect defined in the simulation tool CIVA [33] has been imaged using only the

data recorded from the simulation.

4.2.1 Imaging defects of multiple sizes

In this section, the three defects of radii 2mm, 4mm and 6mm as described in the earlier

Chapter 2 have been imaged. The adjoint field is created by measuring the field diffracted

by the defect at 24 equiangular positions around the circumference of the cylinder at

the same axial position (z = 0) as the continuous source belt. These signals are then

temporally inverted and used as the source for the adjoint field. Certain examples have

been specifically chosen so as to provide an insight to the functioning of the defect model.

As mentioned in Section 2.3.3, the defect of radius 2mm seems to be well simulated
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using the 1st order derivative and diverges while using the 4th order.

(a) Topological image of the defect approxi-
mated by the 1st order derivative.

(b) Topological image of the defect approxi-
mated by the 4th order derivative.

Figure 4.3: Topological images of the 2mm defect modelled using different orders of the
base gaussian function.

Figure 4.3a may seem surprising at first due to the two patches on either side of the

defect. On further analysis, these patches are understood to be the one of the principle

secondary sources that approximates the defect i.e. the secondary sources as modelled in

Chapter 2. This secondary source acts to minimise the incident field within the contour

of the defect. In this case, it represents the combination of the first order derivative in

the axial direction and the zeroth order in the circumferential direction. The peaks of

this secondary source lie well beyond the contour of the defect.

Using the 4th order derivative diverges the solution and this is observed in its topo-

logical image as well (Figure 4.3b) where the image of the defect is not coherent.

(a) 1st Order 4 mm (b) 3rd Order 4 mm

(c) 4th Order 4 mm (d) 5th Order 4 mm

Figure 4.4: Topological Images of 4mm defect modelled using 1st, 3rd, 4th and 5th orders.
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In the case of the defect of radius 4mm, the earlier studies show that using orders

3, 4 and 5 maybe optimum to simulate the defect. Figure 4.4a again shows the 1st order

derivative being the dominant secondary source (as in 2mm case). Moving on to the

3rd order derivative (seen in Figure 4.4b), it would seem like a combination of the base

Gaussian function and a second order derivative in the axial directions together minimise

the stress field within the contour and the 1st order derivative is less dominant.

The defect studies also show that the 4th order derivative can effectively approximate

the defect. Figure 4.4c suggests that the dominant secondary source consists of a 4th order

derivative in the circumferential direction with the 0th derivative along z. This makes

the secondary source slimmer in the θ direction. Taking the 5th order derivative (Figure

4.4d), the image clearly shows a secondary source which may be a combination of two

different derivatives. One of these sources is not in the vicinity of the defect contour. This

leads to a grey area in the definition of the new defect model and is discussed further in

the conclusions of this section.

(a) 2nd Order 6 mm (b) 4th Order 6 mm

Figure 4.5: Topological Images of 6mm defect modelled using 2nd and 4th orders.

Using the 2nd order derivatives for the 6mm defect seems to approximate the defect

similar to the 1st order and has an additional secondary source that acts in unison with

the 1st order derivative to further enhance the minimisation of the incident stress. The

4th order derivative behaves similar to the earlier 4mm case and in this case, the source

of this derivative is pronounced.

Studying these cases of topological images of numerical defects approximated by the

gaussian function and its derivatives gives us a brief understanding of the mechanism by

which the defect model works. Considering the cases in Figure 4.4a and 4.3a, we clearly

see the dominant first order derivative of the gaussian behaving as a secondary source. The

crest and trough of this function act as secondary sources to minimize the normal incident
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stress field within the contour of the defect. In these cases the secondary sources of the

defect lie outside the defect contour. In other cases, the secondary source is obtained as a

combination of multiple dominant orders. However, this method of approximating defects

is newly developed and there is still scope for improving and generalising the model based

on picking the right base function, the correct order of derivatives, acceptable distances

of the peaks in relation to the contour etc.

One other interesting aspect to note is that the method of topological imaging is

able to accurately bring out the positions of the secondary sources as well as provide an

insight regarding certain aspects of the defect.

4.2.2 Effect of number of transducers on image

This section deals with understanding the effect of the number of transducers on the

accuracy and sharpness of the Topological Image. The 4mm defect is chosen and approx-

imated by the 3rd order derivative. Unlike the earlier case, the incident field is generated

by the same transducers that would act as receivers effectively simulating a pulse echo

setup. This aides in understanding the advantages and drawbacks for the number of

transducers chosen for the study. In each of these cases, the transducers are positioned

at equal circumferential distances from each other and the field diffracted by the defect is

measured at and back propagated from each of these positions to create the adjoint field.

The images are then constructed, compared and analysed.
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(a) TI formed with 2 transducers showing a lot of artifacts.

(b) TI formed with 4 transducers showing some artifacts around the defect.

(c) TI formed with 6 transducers showing clear defect with minimal artifacts.

(d) TI formed with 8 transducers showing clear defect image.

(e) TI formed with 12 transducers showing clear defect with additional artifacts near transducers.

Figure 4.6: Topological images formed using a number of transducers for adjoint field
computations showing that increasing the number of transducers improves accuracy and
sharpness of the image.
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Figure 4.6 shows the topological images of the defect using a varying number of

transducers in pulse echo mode. Using two transducers (Figure 4.6a) gives an idea of the

position of the defect. In an unbounded medium, three non-dispersive wave packets should

be sufficient to localise the defect. However, due to the periodic nature of the structure

about the circumference, the wave packets of the adjoint field using three transducers

have two ways to propagate towards the location of the defect leading to a few prominent

patches around the position of the defect, one representing the defect and the others being

artifacts. On the whole, this is not an ideal setup for imaging.

The image constructed using four transducers is already accurate in localising the

whereabouts of the defect both axially and circumferentially (Figure 4.6b). The formation

of patches indicates the presence of a discontinuity but it fails in accurately mapping the

approximate form of the defect.

Using six transducers gives an acceptable localisation of the defect (Figure 4.6c)

albeit longer axially and thinner circumferentially. There still are some artifacts around

the actual position of the defect and there maybe certain cases where this could lead to

missing out a defect (For example, a defect present at one of these artifact positions)

Eight transducers seems to be an ideal minimum required to satisfactorily localise a

defect for this test configuration (Figure 4.6d). The intensity of the artifacts are negligible

in comparison to the patch indicating the defect. The patch is also slightly off centered

but this accuracy would be sufficient for most practical purposes at this frequency .

Finally, the image created using twelve transducers is devoid of any visible artifacts

around the defect and would more than suffice for most low frequency guided wave non-

destructive testing (Figure 4.6b).

There are however some evident artifacts in the region close to the transducers.

This is because of the N=12 mode (i.e. 12 wavelengths around the circumference) that

exists due to the number of transducers. As explained in Chapter 3.1, it is generally

unavoidable to generate a mode with a circumferential order that corresponds to the

number of transducers if the cut-off frequency of that mode is near the bandwidth of the

excitation spectrum. This behaviour is also evident in the images with 4 or 6 transducers

and is persistent in the image due to lack of attenuation in the simulation.

On the whole, the sharpness and accuracy of the image improves with increase in

number of transducers.
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4.2.3 Effect of frequency on image

This section studies the effect of frequency on the sharpness of the image. To better

visualise the effect, the spatial discretisation step has been halved compared to the earlier

examples. This leads to the base gaussian function that is proportionally narrower. A

defect of radius 4 mm has been approximated by the gaussian and its first derivative. In

each of the cases, 12 transducers have been used to create the adjoint field and the defect

has been imaged at 100, 150, 200 and 250 kHz.

(a) TI formed at 100 kHz (b) TI formed at 150 kHz

(c) TI formed at 200 kHz (d) TI formed at 250 kHz

Figure 4.7: Series of images showing the topological image of the same defect imaged at
four different frequencies ; 100, 150, 200 and 250 kHz.

The series of images (Figure 4.7) clearly show that the sharpness of the image

improves as the frequency is increased. This is because the resolution of an image depends

on the wavelength of the incident and diffracted field and a smaller wavelength would

allow for more localised imaging. It is also seen that for the incident field at 100 kHz, the

dominant secondary source is the the 1st order derivative. This is because the secondary

source of the defect model depends on the incident field and at 100 kHz, the wavelength

(52mm) is much larger than the diameter of the defect (8mm).
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4.2.4 Alternate defect forms

This section demonstrates the imaging of certain unconventional defect. The examples

are specifically chosen to emphasise certain ideas to keep in mind while deciding the base

functions and derivatives to be used to create an ideal orthonormal basis for a given defect.

The first example is the elongated defect as mentioned in Chapter 2. This defect is

centered at θ=0° and z=0.45 m, having a circumferential length of 100mm and axial width

of 5.6mm. The incident field is a 5 cycle 200 kHz axisymmetric guided wave generated by a

continuous circumferential belt at z=0. The diffracted field is measured at 24 equiangular

positions around the circumference which is then used to create the adjoint field. The

topological image of this defect has been shown in Image 4.8.

Figure 4.8: Topological image of a defect 5.5mm wide axially and 100mm long circum-
ferentially. The orange contour represents the delamination defect.

The defect model currently supports the creation of a defect that is defined by a

single contour. The future work would involve the creation of multiple defects, each with

its own separate contour to describe it. As a temporary workaround, an extremely uncon-

ventional defect contour was created (refer Figure 4.9a) so as to numerically model two

defects separated axially and circumferential. In this example, the contour is continuous

and consists of two triangular regions connected by an extremely narrow section. The

defect is approximated by two Gaussian shapes centered within the triangular sections

that act as separate secondary sources.
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(a) Contour of the defect created
to represent two defects separated
axially and circumferentially.

(b) Topological image of the two separated defects lying
within the same defect contour showing that the method
of modelling the defect can be used to simulate multiple
defects.

Figure 4.9: Figures showing the single contour to describe axially and circumferentially
separated defects (left) and the topological image (right) identification of the two defects.

The simulation is performed with the same specifications as in the case above (5-

cycle, 200 kHz, 24 transducers). The topological image of this setup is shown in Figure

4.9b. This image not only verifies the functioning of the method of TI but also validates

the method of modelling defects.

4.2.5 CIVA

In this final section dealing with numerical defects, a defect has been modelled in the

simulation software CIVA [33]. CIVA is an extensively used analysis and simulation

software in the field of NDT. It has a comprehensive list of functionalities involving bulk

and guided waves, allowing the user to simulate processes such as pulse echo or TOFD,

using a variety of probes (Phased Arrays, EMATS etc.) to simulate a large range of flaws

using techniques frequently used in the NDT world. The numerical tool created during

the course of this thesis would be implemented as a plug-in for the simulation of guided

waves in cylinders in CIVA.

A simulation was performed on CIVA with properties as shown in Table 4.2. The

configuration consists of a steel pipe with inner and outer diameters of 56mm and 60mm,

respectively. A transducer belt with 8 individual elements equally spaced is located at

z=0. A through thickness crack defect spanning 50° is located at a distance of z=750 mm.

The setup along with the defect specifications is given in Figure 4.10.

95



Length 850 mm
Inner radius 28 mm
Outer radius 30 mm
Density ρ 7800 kg/m3

Longitudinal bulk velocity (CL) 5900 m/s
Transverse bulk velocity (CT ) 3230 m/s

Table 4.2: Material properties used for the simulation on CIVA and the numerical tool.

Figure 4.10: Schematic showing the axial and circumferential position as well as the
angular extent of the through-wall defect as defined in the simulation software CIVA. The
rectangles in red show the circumferential positions of the transducers.

The incident field is generated by exciting all eight transducers in phase with a

15-cycle 100 kHz toneburst signal. A snapshot of this field is shown in Figure 4.11. The

advantage of using a large number of cycles is that it limits the frequency bandwidth of

the spectrum, reducing the chances of other modes being generated. The drawback is

that the signal is temporally large which inturn leads to the field stretching to around

400mm spatially.
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Figure 4.11: Snapshot of the incident axial displacement field at the surface of the pipe
at 140µs. The incident field is generated by 8 equiangular transducers exciting a 15-cycle
tone burst signal at 100 kHz.

The diffracted field is collected in CIVA at the eight transducer positions and are

as shown in Image 4.12. These signals are extremely complicated and contain multiple

packets representing the combination of the many modes reflected by the defect. There

are also some extremely dispersive wave packets in the measured signals. The Adjoint

field is computed using these signals, temporally inverted, as the source in the numerical

tool.

Figure 4.12: The signals of the diffracted field received at the 8 transducer positions
measured in CIVA. These signals, temporally inverted are used as the input to create the
adjoint field in the numerical tool.

Performing a correlation between the incident and diffracted field gives the topologi-
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cal image of the structure shown in Figure 4.13. The image shows the accurate localisation

of the defect (marked in orange). The patch is elongated due to the number of cycles in

the signal but has an axial length that is far smaller than that of the incident field.

Figure 4.13: Topological image of the defect modeled in CIVA and localised by the nu-
merical model using only the reflected signals obtained from the CIVA simulation shown
in Figure 4.12.

This shows cross platform validation of the tool that is not only able to accurately

replicate the incident field generated by the simulation tool CIVA, but also use this in-

formation and the residual signals to localise the defect.

4.3 Physical experiment

This section deals with the TI of experimental discontinuities. First, a study is performed

to image defects of various sizes with theoretical residuals. Next, the potential of the

experimental residual is observed by imaging concealed and extremely small defects. The

residual is obtained by taking the difference between signals from a medium with a dis-

continuity and a healthy medium. The signal without defect contains the information

of the healthy medium and is generally numerically computed. The signal with defect

additionally contains information of any discontinuity. The concepts of theoretical and

experimental residuals have been further detailed in Section 4.3.1. Multiple modes are

then used to improve the quality of the TI. Finally, certain limitations of the experimental

setup have been discussed to conclude the chapter.

Throughout the course of the studies that follow, the words defect and discontinuity

have been used interchangeable. This is done due to the way in which the experimental

defects were created. During the course of certain experiments, it was found that a thin foil

of Metglas® (generally used in magnetostriction) affixed onto the surface of the cylinder
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using a shear couplant and kept in place with scotch tape was extremely reflective. This

behaviour worked to our advantage as the “defect” could be cut to the required size and

affixed at different positions without physically damaging the structure. This also allows

for the extraction of pure experimental residuals containing only the signature of the

defect and limited only by the sensitivity of the equipment.

The experimental setup used is as described in Section 3.1. It consists of a transmit-

ter and a receiver belt. The position of the receiver belt is at z = 0 cm. The transmitter

belt is placed behind (in relation to the side containing the defects) located at z = −3 cm.

A 5-cycle toneburst signal with a central frequency of 100 kHz has been used. Unless oth-

erwise specified, the L(0, 2) longitudinal mode has been adopted as the source for defect

localisation. At 100 kHz, the wavelength of the L(0, 2) guided wave is around 52.8 mm.

4.3.1 Effect of baseline subtraction on imaging sensitivity

This study presents the Topological Images obtained using theoretical and experimental

residuals and demonstrates the versatility of the method. Three square defects of sides

5 mm, 10 mm and 15 mm have been studied. Each of these defects are placed at an axial

distance of 81.5 cm from the receiver belt and at an azimuth corresponding to 0°.

Experimental residuals (shown for a single transducer in Figure 4.14) are obtained

by subtracting the response of the damaged medium from that of a healthy medium

(before affixing the defects) measured at the same receiver positions. It is clear that as

the size of the defect increases, so does the amplitude of the reflected signal. It is also clear

that the defect signature is clearly distinguished from the background noise by taking the

experimental residual.
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Figure 4.14: Experimental residuals of signals diffracted from 5 mm (blue), 10 mm (or-
ange) and 15 mm (green) defects measured at a single receiver obtained by experimental
baseline subtraction.

Theoretical residuals (shown in Figure 4.15 for the same transducer) on the other

hand are obtained by subtracting the experimental defect response from a baseline signal

obtained from the accurate simulation of the undamaged medium. However, as discussed

earlier (in Section 3.1.3), the simulation does not take into account attenuation caused

due to the material and the transducers. This leads to a theoretical baseline that does not

exactly match the experiment. As is the case with most experimental setups, there are a

number of uncertainties (Ex: different power generated by each transducer, the amount

of couplant between the transducer and the surface etc.) which also hinders the exact

modelling of the test setup. All these manifest as the coherent noise in the time interval

[0, 320µs] of the signal (in Figure 4.15).
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Figure 4.15: Theoretical residuals of signals diffracted from 5 mm (blue), 10 mm (orange)
and 15 mm (green) defects measured at a single receiver computed with the numerical
simulation.

In theory however, as the principle mode (the minimally dispersive L(0, 2) in our

case) propagates away, there is no deflection of the signal from the mean amplitude

except for those caused due to any discontinuities (defects or back wall). To avoid any

complications due to the reasons mentioned above, the baseline of the theoretical signal

is taken to be zero. This would mean that the theoretical residual is taken to be the

measured experimental signal.

Topological Imaging based on defect size using theoretical residuals

The following topological images are obtained using theoretical residuals. Figure 4.16a

shows the TI of the defect of size 15 mm (around 1/3rd the wavelength). The defect can

be fairly accurately distinguished from the background noise. There is also some coherent

noise present at the beginning of the image. This is due to the interaction between the

circumferentially propagating direct field of the simulation and the backward propagated

adjoint field and is persistent due to the absence of attenuation in the simulation.

Moving on to the image of the defect of length 10 mm (around 1/5th the wavelength)

Figure 4.16b shows that the patch that indicates the defect is still distinguishable from

the background coherent noise. However, the intensity of the patch is slightly diminished

compared to the earlier case of the 15 mm defect. This could be attributed to the fact
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that the smaller defect has a smaller signature within the diffracted signal compared to

the baseline.

Observing the topological image of the 5 mm defect (1/10th the wavelength), it is

clear that we are approaching the lower limit of the defect size that can be imaged using

only the theoretical residual. The defect patch is still visible, however its intensity is

comparable to the noise around it. This is due to the fact that the signature of the defect

has an amplitude very similar to the baseline, almost masking it.

(a) Topological image of the 15mm defect

(b) Topological image of the 10mm defect

(c) Topological image of the 5mm defect

Figure 4.16: Topological images of the 15 mm, 10 mm and 5 mm Metglas® defects showing
the decrease in amplitude of the patch representing the defect, signifying the decrease in
sensitivity based on defect dimensions.

In the examples shown above, the theoretical residual helps locate the defect with

varying degrees of intensities. Regardless of the amplitude of the signal diffracted by

the defect, during the creation of the topological image by the method of correlation of
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the time reversed direct field with the adjoint field, the time reversed residuals emitted

at each transducer, converge at the defect location at the exact moment the direct field

passes over it. It is true that the backward propagating direct field also interacts with

the adjoint field generated by all other wave packets and disturbances. However, the

amplitude of the correlation of the fields at the defect location is far greater than that

around it. This is reminiscent of the spatio-temporal maxima technique used in earlier

Time Reversal methods with the added step of not having to search through the data for

this maxima.

Topological imaging of special defects with experimental residual

In the earlier study, the theoretical residual successfully illuminates the defect in all cases

with little to no hassle. This is simply due to the fact that in subtracting the baseline

from the signal, all that remains is the signature of the defect. In this section, a couple of

examples have been discussed that demonstrates the scope of using experimental residuals

for TI. This technique would fall under the purview of Structural Health Monitoring

(SHM).

This study first explores the imaging of extremely small perturbations that approach

the sensitivity of the equipment. Next, defects that are completely masked are made

visible by utilising the experimental residual.

Imaging of extremely small perturbations

To test the limits of the system, extremely small perturbations were applied in the

form of the tip of a blunt pencil and of a compass. These objects were placed on the

surface and sufficient force was applied so as to avoid slipping. The tip of the pencil was

measured to have a diameter of around 1.37 mm (close to 1/40th the wavelength and that

of the compass had a diameter of around 0.35 mm (close to 1/150th the wavelength).

Figure 4.17 compares the Topological Images of the pencil point defect using the

theoretical and experimental residuals. From Figure 4.17a, it is clear that it is no longer

possible to image perturbations of such small dimensions purely by using the theoretical

residual (as defined for this chapter). The signature of the defect is completely hidden

within the coherent noise of the baseline signal, rendering it effectively invisible in the
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image. On the other hand, using the experimental residual still allows the defect to be

imaged as can be seen in Figure 4.17b.

(a) Topological image of the pencil tip without experimental baseline subtraction (Theoretical
residual).

(b) Topological image of the pencil tip using experimental baseline subtraction (Experimental
residual).

Figure 4.17: Comparison of the topological images of the pencil tip used to mimic a small
defect obtained using the theoretical and experimental residuals.

It should be noted that this sensitivity in imaging may only be realized when there

is very little to practically no change between the measurements of the specimen before

and after the introduction of the discontinuity. This includes the positioning of the trans-

ducers, the strength of couplant, temperature (which can change not just the velocity of

the guided wave but also the viscosity of couplant), equipment used for signal acquisition,

etc. The sensitivity for such an image is so delicate that subsequent topological images

attempting to use the baseline signal data from an earlier date failed to reproduced an

image of the quality as presented in Figure 4.17b. Nevertheless, the result by itself is inter-

esting and goes to show the capabilities of using the experimental residual for topological

imaging.

As a final test of sensitivity of the equipment, Figure 4.18 below shows the topological

image of the compass tip as the perturbation using the experimental residual. As was the

case earlier with the 5 mm square defect (Figure 4.16c) the patch signifying the defect

may be mistaken for noise due to its intensity.
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Figure 4.18: Topological image of a compass tip used as an extremely small diffractor
computed using the experimental residual.

This maybe considered as the lowest limit of defect detection with the equipment,

frequency bandwidth, number of transducers and acquisition system that was used. On

the other hand, this study opens up the possibility of verifying the limits of the method

with other defects such as corrosion, slits, pits, through holes, etc.

Imaging of hidden defects

In the above section, the potential of the experimental residual has been explored.

In this section, an additional use has been examined. In pipeline testing, situations can

be anticipated with obstacles such as support structures or welds. In such cases, the

reflected signal may contain the information of a defect (if present), having an amplitude

far smaller than the reflection from the support or weld. It is also possible that the defect

is masked by the obstacle. Usually, a part of the signal is transmitted and a part reflected.

The transmitted portion of the wave may interact with a defect beyond the obstacle and

get reflected back to the transducer. Due to losses in energy due to material attenuation

and an impedance mismatch, the reflected secondary signal (from the defect) may have

an amplitude comparable to coherent noise. It would suffice to store the signals of the

undamaged structure beforehand to use as the baseline.

One such example has been shown below. A strip of Metglas® is wrapped around

the pipe to simulate such an obstacle. A square patch of Metglas® with side 15 mm has

been affixed 100 mm behind the circumferential strip to simulate the hidden defect.

Figure 4.19 shows the Topological Image of the aforementioned setup using the

baseline of a healthy medium devoid of either the defect or the circumferential strip.

Clearly, the intensity of the continuous strip obscures the defect patch behind it. This is
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Figure 4.19: Topological image of a defect behind a continuous Metglas® belt without
experimental baseline subtraction showing the inability to image the defect.

Figure 4.20: Topological image of a defect behind a continuous Metglas® belt using
experimental baseline subtraction clearly showing defect.

due to the larger amplitude of the reflection of the signal from the strip in relation to the

patch.

To image the hidden defect, the experimental residual can be computed considering

the baseline signal that already contains the signature of the obstacle (circumferential

strip in our case). This baseline could be obtained either from a previous experimental

measurement containing the obstacle or from an accurate numerical computation that

simulates the effect of the obstacle. Figure 4.20 shows the image of the defect obtained

using the experimental residual. The defect is clearly visible and the signature of the belt

has been completely eliminated.

On the whole, using the experimental residual is a powerful tool in revealing ex-

tremely small perturbations as well as defects which may otherwise be hidden by neces-

sary obstacles having much larger signatures. However, it is to be noted that the method

by which the defects were created experimentally allows for an accurate determination of

the experimental residual. Obtaining a perfect experimental residual in real world NDT

applications would be limited.
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4.3.2 Multi-defect imaging with multiple modes

This section aims to demonstrate some techniques to improve clarity of images using

multiple modes, while also presenting certain limitations. The idea of using multiple

modes arises from the fact that each of the modes have unique stress and displacement

distributions not just across the thickness but also about the circumference. For exam-

ple, the L(0, 1) (similar to the anti-symmetric mode in plates) has a radial displacement

component that is constant over the thickness whereas the L(0, 2) mode (similar to the

symmetric mode in plates) has a radial component at the upper and lower surfaces which

are out of phase by π radians. This means that each of the modes illuminate different

sections of the test specimen with different intensities, opening avenues to improving the

accuracy of the images.

In this study, the L(0, 2) and the F (1, 3) modes have been utilised to improve the

clarity of the images of the defects at two critical positions. These modes belong to the

same family with the only exception being that the F (1, 3) mode has an amplitude that

varies as a sinusoid around the circumference. The position of the first defect is fixed at

θ=0° and z=81.5 cm. The second defect is positioned axially at z=91.5 cm. This defect

is located at an azimuth of 0° and −90° for the first and second cases respectively. The

pipe is illuminated by each of the two modes before affixing the defects to obtain the

experimental baseline signal. It should be noted that the direct field for the Topological

Image would be different for each of the two modes.

Case 1: Imaging of defects at azimuth 0°

Here, the two defects are placed at the angular position of 0° separated axially by a

distance of 100 mm. The specimen is then exposed to the two modes in turn and the

reflected signals are used to form the images. Figure 4.21 shows the image obtained using

only the L(0, 2) mode.
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Figure 4.21: Topological image of two defects at an angular position of 0°, separated
axially by 100 mm radiated using the L(0, 2) mode.

The two defects are clearly visible and distinguishable. However, as in all earlier

images, the patches lack clarity which maybe either due to insufficient number of trans-

ducers or inaccurate determination of the material properties (which has been addressed

in an earlier section).

The defects are then imaged using the F (1, 3) mode and the image obtained is as

shown in Figure 4.22. Here the patches that signify the defect are considerable less intense

than seen with the L(0, 2) mode. This is possibly due to lower energy being imparted into

the system by the mode. It is still possible to distinguish the defects from the background

noise.

Figure 4.22: Topological image of two defects at an angular position of 0°, separated
axially by 100 mm radiated using the F (1, 3) mode.

Intuitively, the images could be combined by taking a pointwise product of intensities

of the two images. This leads to an image that contains less noise as only the commonly

highlighted regions of the two images are accentuated while the zeros (or low amplitudes)

of one image, cancels out the noise from the other and can be seen in Figure 4.23. The

patches are sharper and better separated than the image with only the L(0, 2) mode.
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Figure 4.23: Combined image of two defects at an angular position of 0°, separated
axially by 100 mm by taking the pointwise product of the imaged obtained by radiating
the specimen with the L(0, 2) and F (1, 3) modes.

Although, taking the product of the two (or more) images would work in some cases

it may lead to certain unwanted behaviour which is made evident in the second case.

Case 2: Imaging of defects at azimuths 0° and −90°

In this case, the second defect is positioned at an angle of −90°. This has been done

to show the shortcoming of using the product method to improve the image. As in the

earlier case, the image (as seen in Figure 4.24) obtained by the L(0, 2) mode exposes the

two defects and maps out their axial and circumferential positions.

Figure 4.24: Topological image of two defects at angular positions 0° and −90°, separated
axially by 100 mm radiated using the L(0, 2) mode.

On imaging the same setup with the F (1, 3) mode however, the second defect is

rendered invisible (seen in Figure 4.25). This is due to the shape of the wavefront of the

F (1, 3) mode. This mode (and all of the N = 1 modes) have two nodes when viewed

around the circumference. In our case, the nodes are positioned at the 90° and −90°

azimutal positions leading to a lack of illumination at these zones over the entire length
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of the cylinder. This inturn leads to an almost zero reflection from this defect and hence

its signature is not measured at the transducers.

Figure 4.25: Topological image of two defects at angular positions 0° and −90°, separated
axially by 100 mm radiated using the F (1, 3) mode.

Taking the pointwise product of the intensities in such cases would lead to the

creation of a Topological Image that is incomplete as can be seen in Figure 4.26. Here,

there is an improved clarity of the first defect but the second defect is not imaged.

Figure 4.26: Combined image of two defects at angular positions 0° and −90°, separated
axially by 100 mm by taking the pointwise product of the imaged obtained by radiating
the specimen with the L(0, 2) and F (1, 3) modes.

An alternate method to improve the accuracy of the image would be to take the

pointwise mean of the intensities. Figure 4.27 shows the image obtained by takint the

pointwise mean of the images obtained using using the two modes (N = 0 and N = 1).

Evidently, the clarity of the first defect has been slightly improved and the information

of the second defect has not been completely lost. However, this may not be the ideal

method to improve the clarity and of images as taking a mean of multiple images may

lead to such defects being lost within the coherent noise of the images.
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Figure 4.27: Combined image of two defects at angular positions 0° and −90°, separated
axially by 100 mm by taking the pointwise mean of the imaged obtained by radiating the
specimen with the L(0, 2) and F (1, 3) modes.

Further studies maybe carried out to obtain a model of combining the images ob-

tained from multiple modes.

4.4 Summary of Topological Imaging

This chapter discusses the Topological Imaging of various kinds of defects. First, the

principle of TI was introduced and explained. Next, defects created by the modelling

technique as discussed in Section 2.3 were imaged. This also opened up a window into

understanding the method by which the model functions. The chapter goes on to discuss

a couple of studies based on the effect of number of transducer and frequency on the

sharpness of the image concluding that in general a higher frequency and a greater number

of transducers would lead to a sharper and more localised image. Modelling and imaging

of certain alternate numerical defect forms were then explored showing the effectiveness

of the method in obtaining the general shape of the defect as well as to identify multiple

defects.

The next part discusses the imaging of a defect modelled in CIVA, using only the

output of the simulation software (signals at the receiver). The imaging of this defect

showed that the simulation tool and method of TI is cross compatible with external FE

simulation software.

The chapter then examines the imaging of experimental defects. The studies explore

the effect of baseline subtraction on the quality of imaging defects. The first study uses

theoretical residual and shows the sharpness of images based on the dimension of the

defect. Here defects as low as 1/10th the wavelength were successfully imaged. Applying
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experimental baseline pushes the lower limit of imaging of extremely small defects (in

orders down to 1/40th of the wavelength). It also allows for the imaging of masked defects.

Finally a couple of studies show the imaging of multiple defects and improving image

sharpness using multiple modes. In particular, two modes were used for imaging and two

methods of image combination were examined. A reasonable conclusion is that in most

cases, it is probably a safer option to use axi-symmetric modes for imaging with multiple

modes as this allows to cover the entire circumferential extent of the tubular structure.

In all cases discussed, the defects have been successfully localised in the axial and

circumferential extents. Situations could be envisaged where it may be important to know

the radial position of the defect. For example, if a corrosion is at the inner or outer surface

of the structure or a defect is located within the material. This would call for higher order

modes that preferentially illuminate or shadow certain radial positions of the structure.

These studies maybe a part of future work using the models and techniques discussed in

this thesis.

In general, this chapter shows that Topological Imaging is an effective method of

accurately and robustly localising numerical and experimental defects in complex media.
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Conclusions

This thesis deals with the development and implementation of a novel numerical tool for

the simulation of guided wave propagation in tubular structures as well as a new technique

to approximate numerical defects. The method of Topological Imaging is then introduced

and effectively applied for the localisation of numerical and experimental defects.

Chapter 1 establishes a robust mathematical model for the fast simulation of guided

waves in cylindrical structures. This model is based on solving the guided wave propa-

gation equations in layered media in the Fourier and Laplace domains. The layers are

combined using the Global Matrix method. The solutions derived are given in the form

of partial waves containing stress and displacement vectors, written as combinations of

Bessel’s functions of the first and second kind. The software implementation of this model

is then described. The new semi-analytical mathematical model developed allows for a

fast computation of the Green function in tubular structures which could be a viable

alternative for conventional finite element simulations.

Chapter 2 introduces the method of approximating numerical defects in layered

media. These defects are described as a discontinuity between the different layers, sim-

ulating a delamination. The defect is considered as a secondary source that creates a

diffracted field such that the incident field is completely negated within its contour. It

is approximated as the sum of the responses of a Gaussian function and its derivatives.

These functions are used to create an orthonormal basis onto which the incident field is

then projected. The negative sum of components of the field on each of the basis vectors

gives the field diffracted by the defect. Defects studies are performed to understand the

mechanism by which the model functions to help pick the right parameters. This novel

method aids in the modelling and simulation of small defects having dimensions lesser

than the wavelength of computation.

Chapter 3 discusses the experimental setup used to verify the numerical model and
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perform tests with defects. The setup, equipment and configuration are described. A

technique for normalising transducers is then discussed to ensure the generation of pure

modes. Experimental parameters such as material properties and transducer dimensions

to be used in the simulation are then obtained. The numerical model is then compared

and verified with experimental measurements. Finally some limitations and capabilities

of the model are discussed.

Chapter 4 introduces the method of Topological Imaging and its implementation

in the context of this thesis. After introducing the principle of the method, numerical

defects as defined in Chapter 2 are imaged. This section also sheads some light onto the

functioning of the defect model. Next, a defect defined on an external simulation tool is

imaged using only the signals collected at the receivers. Physical experiments are then

done showing the effectiveness of using the theoretical and experimental resides in creating

the image. Defects having dimensions as low as 1/40th of the wavelength of the guided

wave have been imaged. This versatile method of imaging numerical and experimental

discontinuities of various dimensions may also be used with other numerical techniques

regardless of the complexity of the media or propagating wave for fast and accurate defect

localisation.

The mathematical models, methods and techniques described in this thesis offer a

quick and robust way of simulating guided wave propagation in layered isotropic tubular

structures as well as the modelling of numerical delamination defects and localising said

numerical and experimental defects accurately. The techniques also open up possibilities

for interesting future work.

The model can be expanded to simulate guided wave propagation in anisotropic

structures. This would allow it to be used for wave propagation simulation in composite

structures such as airplane fuselages. There is also scope for improving and expanding

the defect model. It was developed during the thesis and has not yet been fully explored.

There are also possibilities of modelling 3d defects such as notches and inclusions and

work has already begun towards the same. One other possibility is to broaden the model

to include structures with liquid within the pipe (Ex: Oil pipeline) or on the outside (Ex:

Pipeline submerged under the sea) taking into account leaky guided waves. There may

also be potential to further the model to include pipe with bends or even structures with

varying cross sections such as wind turbine support structures or blades.
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