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Preface 

In densely populated Asia, the river systems are under strong influences of 

anthropogenic interferences, such as intensive agricultural activities, urban expansion 

and rapid industrial growth. In addition, influences from the natural environment, such 

as climate variability and climate changes (El Nino, La Nina, typhoon and extreme 

weather), also affect the river basins. The tropical region in Asian (South Asia) has 

been identified as hot spots of many biogeochemical processes, such as riverine 

export of sediment, carbon and nitrogen. Basic and in-depth studies of these 

biogeochemical processes in the regions are necessary and important. However, there 

are many limitations on data access, such as restriction by governments, difficulty in 

monitoring and sampling due to remote places and funding issue, and the accuracy 

and authenticity of the data. The Red River is a river basin integrating above problems 

and issues. 

This research was developed in the framework of the Land-Ocean-aTmosphere 

regional coUpled System study center (LOTUS), an international joint 

Vietnamese/French laboratory funded by the Institut de Recherche pour le 

Développement (IRD). The scientific objective of the LOTUS is to understand and 

monitor the functioning and variability of the transport and fate of water and associated 

matter in the atmosphere-continent-ocean coupled system in coastal regions of 

Vietnam and South East Asia (SEA). Based on that main objective, our specific 

objective is to provide validated high frequency (daily) time series on annual to multi-

annual time scales of the fluxes of water and matter across and at the outlet of the Red 

River basin, in order to study the functioning and variability of those fluxes and to 

provide upper boundary conditions for estuarine and ocean models. 

The Red River is an international river crossing three developing countries (China, 

Vietnam and Laos). Lack of data sharing between countries and difficulty of in-situ 

observations and samplings, make the study through the whole basin difficult. 

Therefore, for studying a large basin with limited data access, modelling would be a 

good tool, but even so, some base dataset for setting up and calibrating the model is 

indispensable (such as meteorology, topography, soil, land cover and in-situ 

observations and sampling). During the first half period of the study, we spent plenty 

of time searching and collecting data. No free access to climate data (temperature and 

rainfall), therefore, satellite data became the priority. Nowadays, satellite data become 

popular and is a practical tool to study geoscience, and more and more precise results 

are produced by satellite data. After investigating and comparing some satellite 

productions, we finally chose CFSR (for temperature) and TRMM (for rainfall) as the 

meteorology inputs for the model. Topography, soil and land cover data were also 

downloaded from satellite data. The first hydrology dataset we could obtain was 

provided by IRD (contacts: Didier Orange). Then, under the cooperation with the 

LOTUS laboratory, we got the dataset from the Vietnam Ministry of Natural Resources 

and Environment (MONRE), which we used for calibrating the model. Dissolved and 
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particulate organic carbon sampling data was provided by the Institute of Natural 

Product Chemistry (INPC, contacts: Thi Phuong Quynh Le), a lab under Vietnam 

Academy of Science and Technology (VAST); also some sampling values could be 

found in the thesis annexes of Thi Ha Dang, 2006. 

In order to better understand the Red River basin, a trip to Hanoi was funded by the 

LOTUS. A meeting was hosted by the LOTUS there, aiming to introduce the project 

and build connections with all the participate researchers. We presented the initial 

results in this meeting. Researchers who had been working there for years took us to 

have a look at the Red River basin around Lao Cai, Hoa Binh and Son Tay and shared 

their knowledge about this basin. These field trips are helpful for me to have an insight 

of the actual characteristics of the Red River basin and in the process of modelling 

steps. 

With these above contexts, this work was able to carry on.  
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Résumé Etendu 

La ressource en eau et sa disponibilité attirent l'attention mondiale. La quantité des 

ressources en eau par habitant est insuffisante en Asie (en particulier dans le sud et 

le sud-est de l'Asie). L'urbanisation rapide et les activités agricoles intensives se 

produisent dans les pays en voie de développement d'Asie du Sud-Est, ce qui accroît 

par conséquent l'utilisation et les prélèvements d'eau. Cependant, les prélèvements 

d'eau abondants pour l'irrigation et l'utilisation urbaine peuvent avoir des impacts sur 

les écosystèmes liés à l'eau. Pour faire face à la demande croissante en eau face à 

des variations climatiques incertaines, des barrages ont été construits dans le monde 

entier pour le stockage de l'eau. Le développement futur de l'hydroélectricité est 

principalement concentré dans les pays en voie de développement et les économies 

émergentes de l'Asie du Sud-Est. 

Le réseau fluvial joue un rôle essentiel dans le cycle hydrologique mondial. C'est un 

lien entre les écosystèmes terrestres et marins, la transformation et le transport des 

sédiments et des nutriments vers les océans. Le débit des rivières est le résultat d'une 

série de processus contribuant au cycle hydrologique. Par conséquent, il est de la plus 

haute importance de comprendre les changements dans le débit des fleuves sous ses 

facteurs d’influence. En Asie, il existe de nombreuses grandes rivières et fleuves parmi 

les plus grands au monde en termes de longueur, de superficie de bassin drainé et de 

volume annuel. Ces grands bassins fluviaux asiatiques présentent certaines 

caractéristiques importantes, telles que l’influence de la mousson, la diminution des 

glaciers dans les têtes de bassin, des barrages intensifs, des méga-deltas densément 

peuplés. Les variations climatiques, notamment les températures et les précipitations, 

ont des effets sur les systèmes fluviaux à court et à long terme, tels que les inondations 

et les sécheresses causées par les typhons et El Nino et La Nina, en particulier sous 

les tropiques. Dans la majeure partie de la zone Asiatique, les précipitations sont 

importantes lors de la mousson. La quantité de précipitation varie considérablement 

d’une année sur l’autre en fonction de la force des moussons et de la quantité de 

vapeur d’eau transportée, ce qui entraîne de grandes fluctuations de débits au cours 

de l’année. Les précipitations ont diminué dans certaines parties de l'Asie méridionale, 

en particulier depuis les années 1970. 

En conséquence, l’effet des barrages couplé à la variabilité climatique ont un impact 

sur le régime hydrologique et sur les flux de matières, principalement de matières en 

suspension. Il a été estimé que plus de 40% du débit mondial des rivières est 

intercepté par les retenues et plus de 50% du piégeage des sédiments. Le transport 

des matières en suspension par les rivières et fleuves est une conséquence des 

processus d'érosion. Le processus de transport des matières en suspension par les 

rivières et fleuves amène également des éléments nutritifs vers les mers et les océans, 

processus essentiel du cycle biogéochimique et de la diversité du milieu marin. Le 

transport associé aux matières en suspension représente plus de 90% du flux total 

d'éléments tels que les nutriments et les métaux transmis par les cours d'eau, et 
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environ 43% du transport total de carbone organique des terres vers les océans par 

les fleuves est sous forme particulaire. Les flux de sédiments fluviaux sont sensibles à 

de nombreuses influences, allant des activités humaines aux facteurs naturels. Les 

perturbations humaines peuvent provenir de l’occupation du sol tels que l'érosion des 

sols suite à la déforestation ou la période d’inter-cultures et pour la partie du chenal de 

la construction de réservoirs, le captage d'eau et l'extraction de sable. Les facteurs 

naturels peuvent provenir du climat tels que la mousson, les typhons et l'intensité des 

précipitations, ainsi que les activités géologiques telles que les tremblements de terre 

et les glissements de terrain. Comprendre comment les facteurs d'influence agissent 

sur différentes sources constitue une base, et un travail important pour l'étude du 

transport de la charge sédimentaire. 

Le carbone organique est important pour les organismes hétérotrophes riverains et 

côtiers. Le carbone organique fluvial provient principalement de trois sources: (1) la 

source allochtone, d’origines terrestres, telles que l’altération des roches, la lixiviation 

du sol et les produits décomposés tels que les tissus des plantes terrestres; (2) la 

source autochtone, provenant de la production primaire au sein même du fleuve, telle 

que les algues et le phytoplancton; (3) les influences anthropiques des activités 

agricoles, domestiques et industrielles peuvent également être considérées comme 

une source allochtone. La teneur en carbone organique du sol est un facteur clé dans 

le contrôle de l'exportation de carbone organique fluvial (Ludwig et Probst, 1996b; 

Zhang et al., 2019). L'érosion et la lixiviation des sols sont d'importantes voies de 

transfert du carbone organique dans le réseau hydrographique. En outre, leurs flux 

sont également affectés par les caractéristiques du cours d’eau (débit et concentration 

des sédiments en suspension) et par la présence des barrages. Le climat tropical 

humide est associé au plus haut flux en carbone et les rivières tropicales sont 

essentielles pour les flux globaux de carbone organique fluvial vers les océans. Il a été 

constaté que les fleuves d’Asie continentale affichent les taux d’exportation spécifiques 

les plus élevés en terme de carbone organique dissous et particulaire (COD et COP). 

Cependant, les constructions du barrage ont modifié leurs exportations. La plupart des 

études sur l'estimation des flux de carbone organique sont basées sur des travaux à 

une échelle mensuelle ou annuelle. Cependant, la plupart des exportations de carbone 

organique ont lieu lors de périodes de crues liées à des variations journalières. 

Pratiquement aucune étude n’a estimé les flux de carbone organique sur un pas de 

temps quotidien. Les COD et les COP exportés par les fleuves tropicaux asiatiques 

correspondent à une grande partie de toutes les exportations de carbone organique 

des fleuves asiatiques. Il serait donc nécessaire d’étudier à l’échelle journalière les flux 

de carbone organique dans cette région afin de mieux comprendre les processus 

dynamiques de transport de ces éléments sous l’impact des barrages et des variations 

climatiques. 

L'objectif principal de cette étude est de caractériser, comprendre et quantifier les flux 

d’eau, des matières en suspension et le carbone organique dans le bassin du Fleuve 

Rouge au pas de temps journalier, en tenant compte des impacts de la variabilité 
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climatique et des barrages. Les objectifs spécifiques sont: (1) de caractériser 

l'hydrologie et de quantifier la concentration en matières en suspension (CSS) et les 

flux (FS) du bassin du Fleuve Rouge à un pas de temps journalier; (2) évaluer les 

effets de la variabilité climatique et de la construction de barrages sur les débits (Q) et 

les sédiments de manière séparée; (3) quantifier à l’échelle journalière le carbone 

organique (OC) particulaire et dissous et évaluer les effets de la variabilité climatique 

et des barrages sur leur transfert et leur exportation vers le delta du fleuve. 

Un modèle hydro-agro-environnemental à base physique, semi-distribué, SWAT, 

combinant des données climatiques satellitaires (température et précipitations), un 

modèle numérique d'élévation de terrain (DEM), une carte des sols, l'utilisation des 

sols et la construction de barrages, a été implémenté. Les données mesurées 

quotidiennement in situ de débit Q et de CSS de 2000 à 2013 ont été utilisées pour 

calibrer le modèle en différents points du bassin versant. Une fois le modèle calibré, il 

a été appliqué pour simuler deux scénarios: les conditions réelles et les conditions 

naturelles sans les barrages dans ce bassin. Les nouveaux barrages étant 

opérationnels depuis 2008, la période a été divisée en deux sous-périodes: 2000-2007 

et 2008-2013, afin de quantifier séparément les impacts de la variabilité climatique et 

des barrages. Ensuite, les sources principales, les processus dynamiques de transfert 

et les flux de Q, FS et OC ont été analysés, ainsi que les impacts de la variabilité 

climatique et des barrages ont été identifiés et quantifiés. 

Les résultats ont montré que dans le bassin du Fleuve Rouge, environ la moitié (47%) 

des précipitations se sont transformées en flux (697 mm). Les eaux souterraines 

constituent la principale composante du débit du fleuve dans le bassin du fleuve Rouge, 

représentant 58% du débit total. Le débit est constitué à 39% de l'écoulement de 

surface et à 3% de l'écoulement latéral, le reste provenant de l’écoulement des nappes. 

L'apport en eau des trois principaux affluents du Fleuve Rouge est de 24 km3 an-1 à la 

station Yen Bai sur le fleuve Thao, 23 km3 an-1 à la station Vu Quang sur la rivière Lo 

et 43 km3 an-1 à la station Hoa Binh sur la rivière Da, à la sortie du bassin, la station 

de Son Tay possède un débit de 95 km3 an-1. 76% de la quantité totale d'eau est 

produite pendant la saison de la mousson du sud-ouest (de mai à octobre). La rivière 

Da est le principal contributeur au volume d'eau en aval du bassin, représentant 45% 

du volume total à Son Tay; les rivières Lo et Thao apportent à peu près le même 

volume d’eau en aval. Le débit moyen annuel (Q) pour la période 2000-2013 est de 

3003 m3 s-1 à Son Tay. Le Q moyen annuel a montré des tendances à la baisse, 

principalement en raison de la variabilité climatique. Les variations de précipitations et 

de températures ont entraîné une diminution de 13% de la quantité d'eau disponible, 

ainsi qu'une diminution de 4% de la teneur en eau du sol dans l'ensemble du bassin, 

ce qui a entraîné une diminution de 9% du Q du bassin (à la station de Son Tay) sur 

la période d’étude. La mise en place des barrages a également entraîné des variations 

sur Q: une réduction de 4% de Q à la station de Son Tay a été montrée. Les différents 

sous-bassins possèdent des réactions différentes à la variabilité climatique et aux 

barrages. En ce qui concerne la variabilité climatique pour la période de 2008-2013 à 
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2000-2007, celle-ci a provoqué la plus forte baisse sur le bassin de la rivière Thao (-

21% à Yen Bai), suivi d’une baisse de 10% sur le bassin du Da (à la station de Hoa 

Binh), tandis qu’elle a entraîné une légère augmentation sur le bassin du Lo (+2% à 

Vu Quang). Cela est lié à la distribution des précipitations dans ce bassin: l'impact est 

plus important dans le sous-bassin qui possède le moins de précipitations. Concernant 

l'impact des barrages, l'impact le plus important a été observé sur la rivière Da (-8%), 

puis sur la rivière Lo (-2%), puis sur le Thao (-0.4% à Lao Cai et -0.3% à Yen Bai). Une 

plus grande capacité de stockage dans le barrage entraîne une diminution plus 

importante de Q. 

La CSS dans les trois tributaires diffère énormément. La CSS annuelle moyenne de 

Lao Cai, de Yen Bai, de Vu Quang, de Hoa Binh et de Son Tay pour la période 2000-

2013 est respectivement de 1057, 1003, 172, 57 et 228 mg L-1. Le fleuve Thao a la 

CSS la plus élevée, suivie par la rivière Lo ; et la rivière Da possède la CSS la plus 

basse à son exutoire. La CSS moyenne annuelle de 2008-2013 est bien inférieure à 

celle de 2000-2007. La construction des barrages en 2008 a retenu les particules les 

plus grossières dans les réservoirs et a modifié la distribution granulométrique en aval; 

les barrages ont également réduit la dynamique du transport des sédiments en 

suspension vers l’aval, entraînant une modification de l'érodibilité du canal. En raison 

des impacts de la variabilité climatique sur le Q et le SSC, les flux de sédiments (SF) 

ont par conséquent présenté des variations. La SF moyenne annuelle pour 2000-2013 

à Lao Cai, à Yen Bai, à Vu Quang, à Hoa Binh et à Son Tay est respectivement de 

30,7, 39,8, 6,6, 3,6, et 33,0 Mt-1 an-1 .90% des exportations annuelles de matières en 

suspension ont eu lieu pendant la période de mousson du sud-ouest (mai-oct). Le 

Thao est le plus gros exportateur de FS vers l’aval, tandis que la rivière Da en fournit 

le moins. Bien que la rivière Da ait un Q supérieur à Hoa Binh par rapport au 

fleuveThao à Yen Bai, la SSC de la rivière Da est beaucoup plus faible que le fleuve 

Thao en raison de la rétention des sédiments par les énormes barrages, ce qui a 

entraîné une exportation moindre de FS sur le Da. Comparativement aux FS de 2000-

20007 par rapport à 2008-2013, les flux sont passés de 49,1 à 11,6 Mt an-1 à Son Tay. 

Les baisses de FS ont significativement été impactées par les barrages (-80%). Une 

plus grande capacité de barrage a entraîné une diminution plus importante des FS. 

L'impact de la variabilité climatique durant la période de 2008-2013 comparée à 2000-

2007 a entraîné une diminution de 10% des FS à Son Tay. Au cours de la période 

2000-2013, sans impact des barrages, le bassin du Fleuve Rouge aurait dû fournir un 

flux spécifique de sédiments de 779 t km-2 an-1, ce qui est supérieur à celui d'autres 

bassins asiatiques avant la construction de barrages (tels que le Yangtze, le Pearl et 

le Mékong). Cependant, avec la mise en place de nouveaux barrages, le flux 

spécifique de matière en suspension de 2008-2013 a diminué jusqu'à 85 t km-2 an-1. 

L'érosion annuelle moyenne des sols dans ce bassin est de 5,5 t ha-1 an-1. Cependant, 

les zones critiques (situées au milieu du bassin du Thao et de la partie inférieure du 

bassin du Da) peuvent provoquer des érosions de sol supérieures à 20 t ha-1 an-1. Les 

précipitations, les pentes et les pratiques agricoles sont les facteurs clés de l'érosion 
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des sols dans le bassin du Fleuve Rouge. Une relation entre Q mensuel et FS a été 

établie à chaque station afin de fournir aux gestionnaires et/ou scientifiques une 

méthode simple pour estimer le SF mensuel sans utiliser le modèle SWAT. 

Les résultats de ces deux scénarios ont ensuite été traités pour calculer à l’échelle 

journalière les concentrations et les flux de COD et de COP. Premièrement, les 

équations mathématiques pour le calcul des concentrations de COD et de COP ont 

été calibrées sur la base des données journalières de Q, CSS et des données discrètes 

de COD et de COP observées de 2003 à 2013. Des simulations de Q et CSS ont 

ensuite été utilisées pour quantifier les flux de COD et de COP dans les conditions 

réelles et naturelles afin d'évaluer les impacts potentiels de la variabilité climatique et 

des barrages sur les exportations de carbone organique. 

Nous avons utilisé des équations simples reliant COD à Q et COP à CSS. Les 

paramètres de ces équations sont liés à la teneur moyenne en carbone organique du 

sol de la zone de drainage (pour COD et COP), au débit Q (pour COD) et à la 

concentration en Chlorophylle-a (pour COP). Les relations entre les paramètres et ces 

variables (la teneur en carbone organique du sol, la concentration en Q et la 

concentration en Chl-a) permettent d’évaluer les paramètres, puis de calculer les 

concentrations de COD et de COP à n’importe quel point de ce bassin. Les 

exportations annuelles moyennes de COD en 2003-2013 sont de 222 kt an-1 à Son 

Tay, ce qui représente 0,26% du transport total de COD des fleuves asiatiques; et 

l'exportation annuelle moyenne de COP entre 2003 et 2013 est de 406 kt an-1 à Son 

Tay, ce qui représente 0,37% des exportations totales de COP par les fleuves 

asiatiques. A Son Tay, 85% des exportations totales de COD et 88% des exportations 

totales de COP ont lieu pendant la saison de la mousson du sud-ouest (de mai à 

octobre). Comparés à d'autres fleuves asiatiques et tropicaux, les flux de COD et de 

COP exportés par le Fleuve Rouge ne sont pas très importants, en particulier pour le 

COP. Cependant, en comparant les flux spécifiques de carbone organique, le bassin 

du Fleuve Rouge possède des valeurs élevées de COD et de COP. Le flux élevé en 

COD provient de la forte lixiviation du sol et des roches, tandis que le flux spécifique 

élevé en COP provient de la forte érosion du sol et de la concentration élevée de 

matières en suspension. 

Dans des conditions naturelles (sans barrages), à la sortie (Son Tay), en raison de la 

variation de Q induite par la variabilité climatique, le flux de COD a augmenté de 1% 

entre 2008 et 2007 par rapport à 2003-2007, et la principale inondation de 2008 est un 

des facteurs importants. Une réduction de 13% des flux de COD est liée aux activités 

des barrages qui régulent les débits pendant les saisons des pluies. Les flux de DOC 

sous les conditions naturelles entre 2003-2007 et 2008-2013 ont peu varié (-2%), ce 

qui indique que la variabilité climatique a peu d'impact sur les flux de COD, tandis que 

la construction de barrages a entraîné une diminution de 85% du flux de COP. À la 

sortie (Son Tay), le flux de COP en 2008 n'est que de 45% comparé à 2007 bien que 

2008 soit une année d'inondation. Une diminution drastique des flux de SSC et de 
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sédiments s’est produite la même année. Le transfert de COP a été affecté en 

conséquence après la construction du barrage. Avec la construction et l'exploitation 

de nouveaux barrages, le rapport de composition du COT a changé, passant de 

dominante COP à dominante COD. En outre, les variations dynamiques du COP/COT 

ont également été modifiées par l’effet des barrages. Avant la construction de 

nouveaux barrages, le rapport COP/COT était bas autour de mars et était élevé en 

saison des pluies. Cependant, après la mise en eau de nouveaux barrages, en juin et 

juillet, ils remplissent des fonctions de contrôle des inondations, de rétention d'eau et 

de SS, de sorte que le rapport COP/COT est devenu faible pendant la saison des 

crues. Vers le mois de mars, les barrages rejettent de l'eau pour l'irrigation, tandis que 

le SS est également libéré, ce qui induit une teneur élevée en COP/COT. 

En résumé, les proportions de débit exporté, des flux de SS et de COP provenant du 

Fleuve Rouge sont faibles par rapport aux autres grands fleuves asiatiques. 

Cependant, ses flux spécifiques sont élevés en comparaison. Le CSS élevé dans le 

fleuve Thao et la forte érosion dans la partie centrale du bassin sont les principaux 

contributeurs au flux spécifique élevé en SS et en COP. La variabilité climatique et la 

construction de barrages ont montré des impacts sur ce bassin, bien que la réponse 

de chaque sous-bassin diffère. Le climat a principalement affecté les débits: la 

diminution des précipitations a eu des impacts plus importants sur les débits du bassin 

supérieur. Les constructions de barrages ont eu des impacts importants 

principalement sur les SS et les COP. Les exportations de SS et de COP dans le delta 

ont donc fortement diminué en raison de la mise en place des nouveaux barrages sur 

le Fleuve Rouge. La diminution des COP a modifié le rapport COP/COT. Ces 

changements de SS et d'OC pourraient avoir un effet sur la fonction biogéochimique 

du delta et des zones côtières en aval. 

Les futures études sur l'azote, le phosphore et les pesticides peuvent être poursuivies 

sur la base de ce modèle. Ce modèle permet également de réaliser des scénarios de 

changements globaux, tels que les changements climatiques, l'utilisation de la terre, 

la mise en place de nouveaux barrages. En outre, ce modèle peut être associé à un 

modèle delta, puis à un modèle marin pour étudier les impacts des changements 

globaux sur la fonction biochimique de la côte. 
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Extended Abstract  

Water resource and its availability attract global attention. The amount of water 

resources per inhabitant is deficient in Asia (especially the South and Southeast Asia), 

and it is the least among the continents. Rapid urbanisation and intensive agricultural 

actives are happing in developing countries in Southeast Asia which consequently will 

increase the water use and withdrawals. However, abundant water withdrawals for 

irrigation and urban use can cause impacts on water-related ecosystems. To face the 

challenge of increasing water demand under uncertain variations of climate, dams 

have been built globally for water storage. Future hydropower development is primarily 

concentrated in developing countries and emerging economies of Southeast Asia. 

River network plays a critical role in the global hydrological cycle. It is a link between 

terrestrial and marine ecosystems, processing and transporting sediments and 

nutrients to oceans. River flow is a result of a suite of processes contributing to the 

hydrological cycle. Therefore, understanding changes in river flow under its influence 

factors is of utmost importance. In Asia, there are many large rivers which are among 

the largest in the world in terms of length, basin area and annual volume. These large 

Asian river basins have some special and important features such as monsoon impacts, 

glacier shrinkage in the headwaters, intensive damming, densely populated mega 

deltas. Climate variations, particularly temperature and precipitation, have effects on 

river systems both at short and long time scales, such as floods and droughts caused 

by typhoons and El Nino and La Nina, especially in the tropics. In much of Asia area, 

the main influence factors affecting river flow is the monsoon precipitation. The amount 

of rainfall varies greatly from year to year depending on the strength of the monsoonal 

flows and the amount of water vapour transported, which leads to large interannual 

river flow fluctuations. Precipitation has decreased in parts of southern Asia, especially 

since the 1970s. 

As a consequence, dams coupled to climate variability have an impact on water regime 

and fluxes of matters, mainly suspended sediment (SS). It was estimated that more 

than 40% of global river discharge is intercepted by the large impoundments, and 

greater than 50% of potential sediment trapping by dams in regulated basins. The SS 

transportation by rivers is a key component of the global denudation system. It can 

measure the rate of denudation of the continents and the erosion processes. The 

transportation process of suspended sediment by rivers also drives nutrients to the 

seas which is an essential process for marine biogeochemical cycle and diversity. 

Sediment-associated transport accounted for more than 90% of the total river-borne 

flux of elements such as nutrients and metals, and around 43% of the total transport 

of organic carbon from the land to the oceans by rivers is in particulate form. River 

sediment fluxes are sensitive to many influences, from human activities to natural 

effects. Human disturbances can come from landscape such as soil erosion, and from 

the channel part such as reservoir construction, water abstraction and sand excavation. 

Natural factors can come from climates such as monsoon, typhoon and rainfall 
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intensity, geological activity such as earthquake and landslide. Understanding how the 

influencing factors effecting on different sources would be a base but important work 

for studying sediment load transportation. 

The organic carbon is important to riverine and coastal heterotrophic organisms. 

Riverine organic carbon mainly comes from three sources: (1) the allochthonous 

source, which is based on terrestrial origins, such as weathering from rocks, leaching 

from soil and the decomposed products like the tissue of plants on land; (2) the 

autochthonous source, which derives from primary production within the river itself, 

such as from algae and phytoplankton; (3) anthropogenic influences from agricultural, 

domestic and industrial activities can also be regarded as an allochthonous source. 

Soil organic carbon content is a key factor controlling the export of riverine organic 

carbon (Ludwig and Probst, 1996b; Zhang et al., 2019), and soil erosion and leaching 

are important pathways for organic carbon entering into the river system. Besides, their 

fluxes are also affected by river conditions (flow and suspended sediment 

concentration) and dams. The humid tropical climate is associated with the highest 

carbon yield and tropical rivers are critical to total global fluvial organic carbon fluxes. 

It was found that rivers in mainland Asia have the highest specific export rates in terms 

of dissolved and particulate organic carbon (DOC and POC). However, the dam 

constructions have altered their exports. Most studies on organic carbon fluxes 

estimation were based on a monthly or an annual scale. However, most organic carbon 

export happens during flood events linked to daily discharge variations. Hardly any 

study estimated organic carbon fluxes on a daily time step. The DOC and POC 

exported by Asian tropical rivers take a large portion of the whole Asian rivers organic 

carbon exports, and it would be necessary to study the organic carbon fluxes in this 

region at a daily time step in order to better understand the transport dynamic 

processes under impacts of dams and water regime variations. 

The main goal of this study was to assess the water regime, suspended sediment and 

organic carbon through the Red River basin based on daily time step, considering the 

impacts of climate variability and dams. Specific objectives are: (1) to characterize the 

hydrology and to quantify the suspended sediment concentration (SSC) and fluxes (SF) 

of the Red River basin at a daily time step; (2) to assess the impacts of climate 

variability and dam constructions on discharge (Q) and sediment in a separate way; (3) 

to quantify DOC and POC fluxes at a daily time step and to assesses the impacts of 

climate variability and dams on their transfer and export to the delta. 

A physical-based hydro-ago-environmental model, the Soil and Water Assessment 

Tool (SWAT), combining with satellite climate data (temperature and rainfall), digital 

elevation model (DEM), soil map, land use and dam implementations, was used to set 

up the model, and in-situ daily measured data of discharge Q and SSC from 2000 to 

2013 were used to calibrate the model. Once the model was calibrated, it was applied 

to simulate two scenarios: actual conditions which presented the real scene that 

happened in the Red River basin; natural conditions which removed the dams within 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/terrestrial-origin
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/primary-production
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this basin. The new dams were operation since 2008, therefore, the period was divided 

into two sub-periods: 2000-2007 and 2008-2013, in order to disentangle and quantify 

the impacts of climate variability and dams. Then the main sources, the transfer 

dynamic processes and fluxes of Q, SF and OC were analysed, and the impacts of 

climate variability and dams were disentangled and quantified. 

The results showed that for the Red River basin, around half (47%) of the rainfall turned 

into the streamflow (697 mm yr-1). The groundwater is the main component for the river 

flow in the Red River basin, accounting for 58% of the total streamflow. 39% of the 

streamflow formed the surface runoff and 3% was the lateral flow. The water yield of 

the three main tributaries of the Red River was 24 km3 yr-1 at Yen Bai station on the 

Thao River, 23 km3 yr-1 at Vu Quang station on the Lo River and 43 km3 yr-1 at Hoa 

Binh station on the Da River, respectively; while the water yield at the outlet of the 

continent basin, Son Tay station, was 95 km3 yr-1. 76% of the total water yielded during 

the southwest monsoon seasons (May to October). The Da tributary was the main 

contributor to the downstream water volume, accounting for 45% of the total volume at 

Son Tay; the Lo and Thao rivers contributed nearly the same water volume to the 

downstream. The annual mean discharge (Q) during 2000-2013 was 3003 m3 s-1 at 

Son Tay. The annual mean Q showed decreasing tendencies mainly due to climate 

variability. The variations of rainfall and temperature resulted in a 13% decrease of 

available water with a 4% decrease of soil water content through the whole basin which 

consequently caused a 9% decrease of the Q for the basin (at Son Tay station). Dams 

regulations also caused variations on Q: a 4% decrease of Q at Son Tay station was 

founded. The different sub-basin had different responses to climate variability and 

dams. For climate variability, compared 2008-2013 to 2000-2007, it caused the largest 

decrease of Q on Thao river basin (-21% at Yen Bai) following by a 10% decrease on 

Da basin (at Hoa Binh station) while it induced a slight increase at Lo basin (+2% at 

Vu Quang). This can relate to the rainfall distribution within this basin: the impact is 

greater in the sub-basin with less rainfall. For the impact of the dams, the largest impact 

was on the Da river (-8%), then the Lo river (-2%), and then the Thao river (-0.4% at 

Lao Cai and -0.3% at Yen Bai). Larger dam capacity caused a larger decrease on Q. 

SSC in the three tributaries differs a lot. The mean annual SSC during 2000-2013 at 

Lao Cai, Yen Bai, Vu Quang, Hoa Binh and Son Tay was 1057, 1003, 172, 57 and 228 

mg L-1 respectively. The Thao River has the highest SSC, following by the Lo River, 

and the Da River has the lowest SSC at its outlet. The annual mean SSC of 2008-2013 

was much lower compared to 2000-2007. Dam construction retained the coarser 

particles in the reservoir and altered the downstream particle size distribution; the 

damming also decreased the dynamics of downstream suspended sediment transport, 

leading to a change in the channel erodibility. Due to the impacts of climate variability 

on Q and SSC, sediment fluxes (SF) consequently showed variations. Mean annual 

SF during 2000-2013 at Lao Cai, Yen Bai, Vu Quang, Hoa Binh and Son Tay was 30.7, 

39.8, 6.6, 3.6, 33.0 Mt yr-1, respectively. 90% of the annual sediment export happened 

during the southwest monsoon period (May-Oct). The Thao River exported the most 
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SF to downstream while the Da River delivered the least SF. Though the Da River has 

a higher Q at Hoa Binh than the Thao River at Yen Bai, the SSC of the Da River was 

much smaller than the Thao River due to the sediment retention by huge dams, 

resulting in a lower SF export on the Da River. Compared SF during 2000-20007 to 

2008-2013, it decreased from 49.1 to 11.6 Mt yr-1 at Son Tay. The decreases in SF 

was significantly contributed by dams (-80%). Larger dam capacity caused a larger 

decrease in SF. A great quantity of sediment retention in the reservoir should be paid 

attention by management. The impact of climate variability caused a 10% decrease at 

Son Tay compared 2008-2013 to 2000-2007. During 2000-2013, without impacts of 

dams, the Red River basin should have yielded 779 t km-2 yr-1 specific sediment yield 

(SSY), which is higher compared to other Asian basins during pre-damming periods 

(such as the Yangtze, Pearl and Mekong). However, with new dams implementations, 

the SSY of 2008-2013 decreased to 85 t km-2 yr-1. The mean annual soil erosion in this 

basin was 5.5 t ha-1 yr-1. However, hot spots (located in the middle of the Thao basin 

and the down part of the Da basin) soil erosion could reach above 20 t ha-1 yr-1. 

Precipitation, slope and agriculture practice are the key factors for soil erosion in the 

Red River basin. A relation between monthly Q and SF was established at each station 

in order to provide the stakeholders with an easy method to estimate the monthly SF 

without using the SWAT model. 

The outputs from these two scenarios were then used to calculate the DOC and POC 

concentration and fluxes on a daily step. First, the equations for calculating the DOC 

and POC concentrations were calibrated based on observed daily Q, SSC and discrete 

DOC and POC data from 2003-2013. Then, simulated Q and SSC were used to 

quantify the DOC and POC fluxes under actual and natural conditions for evaluating 

the potential impacts of climate variability and dams on organic carbon exports. 

We used simple equations that related DOC with Q and POC with SSC. The 

parameters of these equations are linked to the average soil organic carbon content of 

the drainage area (for both DOC and POC), the mean annual Q (for DOC) and the Chl-

a concentration (for POC). The relations between the parameters and those variables 

(the soil organic carbon content, the Q and the Chl-a concentration) allow people to 

evaluate the parameters and then to calculate the DOC and POC concentrations at 

any point within this basin. The mean annual export of DOC during 2003-2013 was 

222 kt yr-1 at Son Tay, which represented 0.26% of the total Asian rivers DOC transport; 

and the mean annual export of POC during 2003-2013 was 406 kt yr-1 at Son Tay 

which accounted for 0.37% of the total POC export by the Asian rivers. At Son Tay 

outlet, 85% of the total export of DOC and 88% of the total export of POC happened 

during the southwest monsoon seasons (from May to October). Compared to some 

other Asian and tropical rivers, the export of DOC and POC fluxes through the Red 

River was not high, especially for POC. However, when comparing the specific organic 

carbon yields, the Red River basin yielded high DOC and POC values. High DOC yield 

of the Red River basin comes from the high leaching from soil and rocks while the high 

POC yield is contributed from high soil erosion and high suspended sediment 
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concentration.  

Under natural conditions (without dams), at the outlet (Son Tay), due to the Q variation 

induced by climate variability, the DOC flux during 2008-2013 increased 1% compared 

to 2003-2007, and the flood year 2008 was the main contributor. A 13% reduction of 

DOC flux was related to dam operations which regulated the discharge during flood 

seasons. POC fluxes under natural conditions between 2003-2007 and 2008-2013 

varied little (-2%) which indicated that climate variability had little impacts on POC 

fluxes, while the dam constructions caused an 85% decrease in POC flux. At the outlet 

(Son Tay), the POC flux in 2008 was only 45% of that in 2007 even though 2008 is a 

flood year. A drastic decrease in SSC and sediment fluxes occurred in the same year. 

The POC transfer was affected consequently after dam constructions. With the 

construction and operation of new dams, the composition ratio of TOC changed, from 

POC-dominating to DOC-dominating. Besides, the dynamic variations of POC/TOC 

were also changed by dam regulation. Before new dam constructions, the POC/TOC 

ratio was low around March and high in flood season. However, after new dams 

impounded, during June and July, the dams fulfil flood-control functions, retaining 

water and SS, therefore the POC/TOC ratio became low during the flood season. And 

around March, dams discharge water for irrigation, SS is released too, which induces 

high POC/TOC. 

The proportions of the export of water volume, SS and POC fluxes from the Red River 

were low compared to other large Asian rivers. However, its specific yields were high. 

High SSC in the Thao river and high erosion in the middle part of the basin are the 

main contributors for the high specific yield of SS and POC. The climate variability and 

dam constructions had shown impacts on this basin, though the response of each sub-

basin differed. Climate mainly affected discharge:  precipitation decrease had larger 

impacts on discharge for the upper basin. Dam constructions showed large impacts 

mainly on SS and POC. SS and POC exported to the delta decreased sharply due to 

the impoundments of the new dams on the Red River. The decreasing of POC altered 

the POC/TOC ratio. These changes of SS and OC might have an effect on the 

biogeochemical function for the downstream delta and coastal areas. 

Future studies of nitrogen, phosphorus and pesticide can be carried on based on this 

model. Also, scenarios of global changes, such as climate changes, land use changes, 

new dam implementations, can be done by this model. Furthermore, this model can 

be coupled with a delta model, and then with sea model to investigate the impacts of 

global changes on the biochemical function in the coast.
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1. CHAPTER Ⅰ: Scientific Context and Objectives 

1.1. Water Regime 

1.1.1. Water resources worldwide 

Water resource and its availability attract global attention. Through the report from the 

Food and Agriculture Organization of the United Nations (FAO, 2003a), it estimated 

that the total water resources in the world were about 43,750 km3 yr-1; at the continental 

level, America has the largest share of the world’s total freshwater resources, account 

for 45%, followed by Asia (28%), Europe (15.5%) and Africa (9%). In terms of 

resources per inhabitant in each continent, America has 24,000 m3 yr-1, Europe 9,300 

m3 yr-1, Africa 5,000 m3 yr-1, and Asia 3,400 m3 yr-1. Figure 1-1 demonstrated internal 

renewable water resources per inhabitant worldwide in 2014. 

 

Figure 1-1 World map of total renewable water resources per inhabitant in 2014 
(http://www.fao.org/nr/water/aquastat/maps/TRWR.Cap_eng.pdf). 

Freshwater scarcity has become a global and local dramatic threat to the sustainable 

development of human society due to the steadily increasing demand (Mekonnen and 

Hoekstra, 2016). The main driving forces for the rising global water demand are 

growing world population, improving living standards, a shift of consumption patterns 

and expansion of irrigated agriculture (Ercin and Hoekstra, 2014). The continuous 

increasing water demand is growing faster than the demographic increase, bringing 

the water crises as the largest global risk in terms of potential impact (World Economic 

Forum, 2015). Water demand and availability spatially and temporally vary greatly, 

leading to water scarcity in several parts of the world during specific times of the year 

(Mekonnen and Hoekstra, 2016). About 66% of the global population, about 4 billion 
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people, lives under severe water scarcity at least 1 month of the year (Mekonnen and 

Hoekstra, 2016). 

Large water consumption relative to water availability results in decreased river flows, 

mostly during the dry period, and declining lake water and groundwater levels, which 

can threaten biodiversity, salinization of soil and groundwater resources (FAO, 2011a). 

1.1.2. Water resources and consumptions in Asia 

From the report of FAO (2003a, 2011b), we can see that the water resources in Asia 

are relatively abundant while Asia represents 16% of the world’s land surface, receives 

22% of its precipitation and produces 27% of its water resources. However, 55% of the 

world’s population is also living in Asia, and population densities in South and 

Southeast Asia are among the highest in the world. The amount of water resources 

per inhabitant is deficient, about half the world average, and it is the least among the 

continents. 

Figure 1-2 showed the total renewable water resources per inhabitant for each Asian 

country in 2011. Though countries like Thailand, Laos, Cambodia and Vietnam have 

the water resource per inhabitant above the average value of the whole Asian, over 

40% of their renewable water resource depends on other countries (FAO, 2003a, 

2011b). The withdrawals in the upstream country can affect significantly the volumes 

of water available to the downstream country. Southeast region is characterized by a 

zone in which shared river basins play a critical role and make the computation of water 

resources relatively complex. Large inconsistencies were noted when comparing the 

flow at borders as recorded by neighbouring countries, e.g. the runoff of the main rivers 

flowing from China to downstream countries (India, Cambodia and Laos). 

 

Figure 1-2 Total renewable water resources per inhabitant in Asia (FAO, 2011b). 
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Water resource distribution in the Southern and Eastern Asia region varies due to the 

large range of climates (uneven distribution of rainfall, Figure 1-3), which results in 

different water use conditions. The hydrology of the region is dominated by the typical 

monsoon climate, which induces large inter-seasonal variations in river flows. Due to 

the southwest monsoon influence, from May to October is the rainy season in the 

Southern and Eastern Asia, abundant annual rainfall occurring, and water is mainly 

produced in this period. Spatial and temporal uneven distribution cause different basins 

suffering from different water issues. Flood control is the main concern in the humid 

areas, such as in the Mekong, Red, Brahmaputra and Ganges basins, while water 

resource assessment is the major problem in the arid areas such as central China. 

Without flow regulation, water resource is abundant during flood seasons when it is 

usually less needed. Around 70-90% of the total annual flow occurs during rainy 

seasons. Therefore, the average annual values of river flows cannot well present the 

available water resources for use. Water resources available for use should include 

figures on low flow. The amount of water readily available for use is between 10-20% 

of the total renewable water resources in the absence of storage (FAO, 2003a). 

Mekonnen and Hoekstra (2016) assessed global water scarcity on a monthly basis, 

and from their results, south-east Asian was facing severe water scarcity from January 

to June when are the irrigation seasons. 

 

Figure 1-3 Average annual precipitation (FAO, 2011b). 

Furthermore, under climate change and variability, impacts on water resource are 

expected to be significant, with projected increases in water stress already pronounced 

by 2050 (FAO, 2011a). In South-East Asia, extreme weather events associated with 

El Niño have been reported to be more frequent and intense in the past years (Bates 
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et al., 2008). Impacts of climate change on seasonality and amount of water flow from 

river systems are expected (Bates et al., 2008). Climate change affects water systems 

by sea-level rise, higher frequency of cyclones (Eastern and Southeast Asia), 

increased the incidence of floods and low flows (FAO, 2011a). Deltas and coastal 

areas will be doubly at risk of flooding from sea-level rise and more variable wet-season 

rainfall. 

1.1.3. Water quality in Asia (especially in China and Vietnam) 

The growing population, industrialization and agricultural development have altered 

water quality in Asia, and water quality issue might be exacerbated by climate change 

in Asia (Park et al., 2010; Evans et al., 2012), though the overall impact of climate 

change on water quality will be marginal compared to socioeconomic changes (Hanjra 

and Qureshi, 2010; Evans et al., 2012). In many developing and underdeveloping 

areas in Asia, inadequate sanitation facilities, sewerage and wastewater treatment 

result in quantities of wastewater reaching water bodies. 40% of the global death toll 

due to unsafe or inadequate supply of water, sanitation, and hygiene occurs in Asia 

(Evans et al., 2012). 

Besides, non-point source pollution is also of concern. South and Southeast Asia is 

predominantly an agrarian society. Agricultural non-point source is considered a 

significant threat to water quality in this region, especially considering the rise in 

agrochemical consumption. Three main forms of agricultural nonpoint sources have 

been identified: sediments; nutrients such as carbon (C), nitrogen (N) and phosphorus 

(P); pesticides (Valcu, 2013). High sediment loads is a common feature in many Asian 

basins due to the pronounced topography of the region, especially the basins 

originating from the Himalayan-Tibetan Plateau, such as the Mekong, the Red, the 

Yangtze and the Yellow rivers (Milliman and Syvitski, 1992; Ludwig and Probst, 1998; 

Evans et al., 2012). 

Nutrients such as C, N and P are key elements in biogeochemical processes, however, 

excessive inputs of these nutrients can significantly accelerate the processes of 

eutrophication, deteriorating water quality. River export of dissolved nutrients to the 

seas increased considerably in China during 1970-2000, and anthropogenic sources 

have become increasingly important, in particular nutrients losses from agriculture: 

more than 50% of the dissolved N and P in Chinese rivers are from agriculture. (Qu 

and Kroeze, 2012). The main rivers of China exported total N and P into coastal waters 

in 2012 was 3.1 and 0.3 Mt yr-1, respectively: the Yangtze River was the largest riverine 

nutrient source for the coastal waters, and its riverine N and P export in 2012 was 2.0 

and 0.2 Mt yr-1, respectively; and the Yellow River exported riverine N and P was 0.02 

and 0.0013 Mt yr-1, respectively; the Pearl River exported riverine N and P was 0.8 and 

0.03 Mt yr-1, respectively (Tong et al., 2015). The total DOC flux exported by the 

Yangtze, Yellow and Pearl rivers into the China Sea to be approximately 2.73 Mt yr-1 

(Shi et al., 2016). In Southeast Asia, the population concentrates mostly in large deltas 

where anthropogenic pressure is very high, leading to N and P pollution by agriculture, 

http://www.globalwaterforum.org/resources/glossary/
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industries, and domestic effluents, most often released with no treatment (Luu et al., 

2012). The riverine delivery total N and total P through the Red River was 0.1-0.2 and 

0.03-0.05 Mt yr-1 (Le et al., 2005; Luu et al., 2012). In China, the food security is a 

national priority due to the big population and lead to the widespread application of 

pesticides on farmland (Ouyang et al., 2016), which makes China one of the largest 

producers and consumers of pesticides in the world today (Grung et al., 2015). Total 

pesticide loss in China was estimated about 4.39×103 t in 2011 (Ouyang et al., 2016). 

However, China has striven to reduce the reliance on its agricultural production on 

toxic pesticides (Evans et al., 2012; Hoi et al., 2016). In Vietnam, due to insufficient 

pesticide management capacity of the government, pesticide types and quantities 

registered and distributed on the market have substantially increased in Vietnam over 

the last 10 years (Hoi et al., 2016). Hence, in order to understand the nutrients and 

pesticide transport, it is necessary to first figure out the suspended sediment transport 

(Boithias et al., 2014). 

Managing the water quality challenges above requires an appropriate monitoring 

programme, however, surface water quality monitoring in some Asia countries is 

insufficient due to the cost, remote location or management. In Laos and Vietnam 

surface water quality monitoring is more limited; besides, in both countries, there are 

many difficulties, in particular, the unclear definition of responsibilities and 

competences among different ministries and agencies at national and provincial scales 

(Evans et al., 2012). Therefore, advanced tools and methods can be applied in these 

regions combining with limited in-situ data to overcome the deficiency of measurement 

data. 

1.2. Hydrologic Cycling 

1.2.1. Global hydrologic cycling 

Earth is a huge system, composed of lithosphere, hydrosphere, atmosphere and 

biosphere. Water plays an important role in this system and makes the 

interdependence among these circles.  And the hydrological cycle is one of the specific 

signs of this close relationship. 

The water form is not only a liquid but also a solid (e.g. hail, snow) and a gas (e.g. 

water vapor). The total amount of water in the world is constant, but water is 

continuously changing from one form to another and is continuously moving at different 

speeds (Shaxson et al., 2003). Driven by solar and atmospheric movements, natural 

water evaporates or transpires into the atmosphere in the form of water vapor, through 

the surface of water (stream, lake, sea), land (soil and rock), and plant stem and leaf. 

Under the appropriate conditions, the water vapor in the atmosphere condenses into 

water droplets which fall under gravity to the ground surface of the earth in the form of 

precipitation. A portion of the precipitation infiltrates or percolates into underground 

under the effect of molecular force, capillary force and gravity; a part forms surface 

runoff under gravity, flows into the streams and lakes, and finally converges into the 
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sea; the rest returns to the atmosphere through evapotranspiration and transpiration. 

The portion that infiltrates into underground becomes soil moisture, and then returns 

to the atmosphere through evapotranspiration; or replenishes aquifers under the 

ground, becoming underground water, and then flows into the streams and lakes. This 

endless and circulatory movement process is called water or hydrologic cycling. Figure 

1-4 is the hydrologic cycling process. 

 

Figure 1-4 Hydrologic cycling process. 

1.2.2. Hydrologic cycling at a basin scale 

The area surrounded by the ground divide (ridgeline) is called the watershed/basin. 

Watershed or regional hydrological cycling is actually the formation of regional runoff 

by rainfall. The rainfall that falls into the basin first meets the requirements of 

interception, sink filling, and infiltration, and the rest forms the surface runoff, flowing 

into the drainage network. River network plays a critical role in the hydrological cycle, 

processing and transporting sediments, nutrients and contaminants to oceans, and 

river discharge is a result of a suite of processes contributing to the hydrological cycle. 

Therefore, understanding changes in river discharge under its influence factors is of 

utmost importance. 

There are many large rivers in Asia which are among the largest in the world in terms 

of length, basin area and annual volume. These large Asian river basins have some 

special and important features such as monsoon impacts, glacier shrinkage in the 

headwaters, densely populated mega deltas, and role of Siberian rivers in climate 

control (Kundzewicz et al., 2009). 

River hydrological cycle and water quality are affected by climate variability and 
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changes, also human disturbance (such as water diversions and withdrawals, and flow 

regulation via dams). Climate variations, particularly temperature and precipitation, 

have effects on river systems both at short and long time scales, such as floods and 

droughts caused by typhoons and El Nino and La Nina, especially in the tropics (Arnell, 

1999; Nijssen et al., 2001; Dang et al., 2018). Kundzewicz et al. (2009) addressed that 

in much of Asia area, the main influence factors affecting river flow is the monsoon 

precipitation. Precipitation plays a critical role in the hydrological cycle and exerts vital 

socio-economic impacts. The discharge from the rivers in the Asian monsoon region 

is sensitive to the seasonal cycle in precipitation. The amount of rainfall varies greatly 

from year to year depending on the strength of the monsoonal flows and the amount 

of water vapour transported, which leads to large interannual water flow fluctuations. 

For years with weaker monsoon rains, water deficits may occur, causing reductions in 

crop yields and major food supply problems in densely populated areas. Precipitation 

has decreased in parts of southern Asia, especially since the 1970s, while the linear 

trend of rainfall decrease in southern Asia region for 1900–2005 was 7.5% (significant 

at 1% level) (Kundzewicz et al., 2009), while at the end of the twenty-first century, the 

annual mean precipitation is projected to increase in southern to eastern Asia (Nohara 

et al., 2006). 

To face the challenge of increasing water demand under uncertain variations of climate, 

dams have been built globally for water storage (Figure 1-5). Globally, at least 45,000 

large dams have been built, and nearly half of the world’s rivers have at least one large 

dam (Dams, 2000). At the continental scale, the greatest number of large reservoirs 

and the greatest summed reservoir capacities are located in Asia (Vörösmarty et al., 

1997). From a Global Reservoir and Dam database, approximate 28% dams are 

located in Asia (Lehner et al., 2011b, 2011a). In addition, future hydropower 

development is primarily concentrated in developing countries and emerging 

economies of Southeast Asia (Zarfl et al., 2015). The hydrological, morphological and 

ecological impact of large dams can be dramatic (Best, 2019). Dams coupled to climate 

variability have an impact on water regime and fluxes of matters, mainly SS 

(Vörösmarty et al., 1997; Manh et al., 2015; Yang et al., 2015). Vörösmarty et al. (1997) 

estimated that more than 40% of global river discharge is intercepted by the large 

impoundments. Dam implementation can cause a significant reduction in SF. 

Vörösmarty et al. (2003) estimated greater than 50% of potential sediment trapping by 

dams in regulated basins. However, reduced sediment transport affects estuarine and 

coastal communities (Syvitski et al., 2005). For example, as a result of reduced 

sediment delivery, many river deltas are sinking, thereby increasing the vulnerability of 

human populations depending on their ecosystem services for survival (Zarfl et al., 

2015). 
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Figure 1-5 The global reservoir and dam distributions, resource from the Socioeconomic Data and 
Applications Center (SEDAC: https://sedac.ciesin.columbia.edu/data/collection/grand-

v1/maps/gallery/search). 

1.3. Sediment Fluxes 

The suspended sediment (SS) transportation by rivers is a key component of the global 

denudation system (Walling and Fang, 2003). It can measure the rate of denudation 

of the continents and the erosion processes. Besides, it is a reflection of land and river 

degradation and the associated reduction in the global soil resource (Walling and Fang, 

2003). A big portion of the sediment transported by rivers represents soil eroded from 

the landscape, such as agricultural land, and the magnitude of this flux therefore also 

provides a measure of land degradation. 

Sediments play a decisive role for diversification and composition and, hence, the 

quality of habitats, especially for the mid- to the long-term development of habitat 

features (Hauer et al., 2018). The transportation process of SS by rivers also drives 

nutrients (like C and P) and contaminant (such as metals and pesticides) to the seas 

which is an essential process for marine biogeochemical cycle and diversity (Lal et al., 

1995; Syvitski et al., 2005; Kunz et al., 2011; Cohen et al., 2013; Boithias et al., 2014; 

Garneau et al., 2017). Sediment-associated transport accounted for more than 90% of 

the total river-borne flux of elements such as nutrients and metals (Martin and Meybeck, 

1979), and around 43% of the total transport of organic carbon from the land to the 

oceans by rivers is in particulate form (Ludwig and Probst, 1996b). 

The SS load transported by a stream or a river will commonly represent a mixture of 
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sediment derived from different locations and from different source types within the 

contributing catchment (Walling, 2005; Hauer et al., 2018). The SS in the rivers mainly 

comes from two sources: erosion and weathering from the landscape, and channel 

degradation and erosion. Figuring out the SS source is important in understanding the 

SS dynamics and the sediment budget of a basin, also is a key precursor to the design 

of effective sediment management and control strategies for basin management; 

besides, it can help to control sediment-associated nutrient and contaminant fluxes 

(Walling, 2005). 

River sediment fluxes are sensitive to many influences, from human activities to natural 

effects (Walling and Fang, 2003). Human disturbances can come from landscape such 

as land clearance, land use change, soil and water conservation measures, and from 

the channel part such as reservoir construction, water abstraction and sand excavation. 

Humans increase the river transport of sediment through soil erosion activities and 

decrease this flux to the coastal zone through sediment retention in reservoirs (Syvitski 

et al., 2005). Natural factors can come from climates such as monsoon, typhoon and 

rainfall intensity, geological activity such as earthquake and landslide.  

From the study of global scale, 50% of the sediment load records showed evidence of 

statistically significant upward or downward trends, with the majority evidencing 

declining loads (Walling and Fang, 2003). Therefore, understanding how the 

influencing factors effecting on different sources would be a base but important work 

for studying SS load transportation. 

1.3.1. Land degradation and soil erosion 

Nowadays, with the growing population, the demand for agriculture production is 

increasing too. Large-scale conversion of forests to agriculture lands is a consequence 

of increased agriculture production demand, leading to increased soil erosion. High 

soil erosion must cause high depositions of sediment in rivers and lakes, and this is 

one of the major reasons for floods and water pollutions (Yang et al., 2003). 

Wilkinson and McElroy (2007) indicated that subaerial erosion as a result of 

human activity, primarily through agricultural practices, had resulted in a sharp 

increase in net rates of continental denudation; and present farmland denudation is 

proceeding at a rate of around 75 Gt yr-1 and is largely confined to the lower elevations 

of Earth’s land surface. Increased soil erosion led to increased sediment fluxes in most 

of the rivers across the globe (Gupta et al., 2012). Syvitski et al. (2005) addressed that 

humans had increased the inland sediment transport by the global rivers through soil 

erosion by 2.3 ± 0.6 Gt yr-1. Yang et al. (2003) pointed out that nearly 33% of the world’s 

arable land was lost to erosion, with loss continuing at a rate of more than 10 million 

ha yr-1.  

Asia probably has suffered more from soil erosion compared to other continents due 

to its geomorphology, climate factors and the human activities (Dregne, 1992; Ananda 
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and Herath, 2003; Lal, 2003; Yang et al., 2003). That natural erosion is primarily 

confined to drainage headwaters, and around 83% of the global river sediment flux is 

derived from the highest 10% of Earth’s surface (Wilkinson and McElroy, 2007). The 

Himalayan-Tibetan Plateau is the birthplace of many important rivers including the 

Indus, the Ganges, the Brahmaputra, the Irrawaddy, the Salween, the Mekong, the 

Red, the Yangtze and the Yellow rivers, and this area has been recognized as a great 

SS contributor (Milliman and Syvitski, 1992; Ludwig and Probst, 1998). From Figure 

1-6 we can see that the Himalayan-Tibetan Plateau is in high erosion. Active tectonic 

movements (such as earthquake, debris flow and landslide), steep slopes, freeze-thaw 

and weathering erosions are the main issues in the riverhead high-elevation areas. 

Active human activities inside these basins (such as deforestation, agriculture, 

urbanization, road construction and mining) accelerate the soil erosion processes. 

 

Figure 1-6 Worldwide predicted soil loss (t ha yr-1) (Nachtergaele et al., 2010). 

Yang et al. (2003) found that Southeast Asia had the most serious soil erosion 

problems and hot spots were close mountainous areas located in the tectonic zones 

and dense croplands of the high population regions where both natural geomorphology 

and human activity are major factors for inducing soil erosion; and there was an 

increasing trend found in Asian, and the regions with the largest increases were in the 

tropic rainforest regions (Southeast Asia), such as Thailand and the lower Mekong 

basin (Yang et al., 2003). In the Mekong River basin, the soil erosion in the 1980s was 

9.6 t ha yr-1 and predicted to reach 13.0 t ha yr-1 in the 2090s (Yang et al., 2003). 

In Vietnam, more than 40% of its steeply sloping lands (62% of the country) suffer 

severe erosion (Dregne, 1992). From previous studies, the annual soil losses in the 

Red River basin in Vietnam’s part ranged from 0.9 to 174 t ha yr-1 (Podwojewski et al., 

2008; Nguyen et al., 2011; Mai et al., 2013; Tuan et al., 2014). In the area of the Red 

River basin in China’s part, Gu (2016) found that the average annual soil erosion was 

18.4 t ha yr-1 (136 Mt yr-1) in 2000 while it was 18.7 t ha yr-1 (138 Mt yr-1) in 2010; severe 
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soil erosion area which was only less than 10% of the total erosion area, however, 

contributed 57% to 65% of the total erosion amount; farmland was the hot spot of soil 

erosion, followed by grassland and forest; slope above 15° and elevation between 

1000-2000 m a.s.l. were the hot spots of erosion. 

1.3.2. Sediment export by rivers 

Global sediment flux to the oceans was estimated from 12.6 to 18.5 Gt yr-1, and Asia 

exported the most sediments (4.8 Gt yr-1) among continents (Syvitski et al., 2005; 

Gordeev, 2006; Syvitski and Kettner, 2011). High sediment loads is a common feature 

in many Asian basins due to the pronounced topography of the region, especially the 

basins originating from the Himalayan-Tibetan Plateau, such as the Mekong, the Red, 

the Yangtze and the Yellow rivers (Milliman and Syvitski, 1992; Ludwig and Probst, 

1998; Evans et al., 2012). 

Investigation of global value and the current trend in sediment exports has some 

constraints and uncertainties (Walling and Fang, 2003; Cohen et al., 2013). Firstly, 

lack of sediment data in many rivers, especially in the rivers in developing and 

underdeveloped countries, can cause an underestimation on the global sediment 

exports. Even the sediment flux data is available, but the measurement only considers 

suspended sediment flux, not the bed load transport. Secondly, analysis of annual 

sediment flux temporal trends requires records of enough length data. Long-term 

sediment monitoring programmes, however, are rare in many areas of the world. 

Dam is a key tool for people to exploit the water resource (water supply, electricity 

generation and flood control) in many areas of the world, especially in the areas with 

intensive population and agricultural activities (Schmutz and Moog, 2018). Lehner et 

al. (2011b) estimated that there were 6862 records of reservoirs and their associated 

dams and about 2.8 million impoundments larger than 0.1 ha worldwide. However, 

dam constructions can induce associated impacts such as interruption of river 

continuity,  siltation of river bed and clogging of interstitial, downstream river bed 

incision and downstream flow and water quality alteration (Figure 1-7) (Schmutz and 

Moog, 2018). 

The evidence afforded by the sample of the world’s rivers indicates that reservoir 

construction is probably the most important influence on land-ocean sediment fluxes 

(Walling and Fang, 2003). Early, Vörösmarty et al. (1997) estimated that more than 

40% of global river discharge was intercepted by the large impoundments and that an 

around 70% proportion of this discharge maintains a theoretical sediment trapping 

efficiency in excess of 50%; for regulated drainage basins the global, discharge-

weighted residence time change was 0.16 years, representing a 30% potential 

sediment trapping. More recently, Vörösmarty et al. (2003) indicated that greater than 

50% of basin-scale sediment flux in regulated basins was potentially trapped in artificial 

impoundments, with a discharge-weighted sediment trapping due to large reservoirs 

(≥ 0.5 km3) of 30%, and an additional contribution of 23% from smaller reservoirs. 
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Syvitski et al. (2005) addressed that fluvial sediment loads, over 100 Gt of sediment, 

including carbon (around 1 to 3%), had been sequestered behind reservoirs. With more 

dam are going to operate, sediment trapping loads and percentage might increase. 

 

 

Figure 1-7 Dam construction interrupts the river continuity (such as fish migration, sediment and nutrient 
transport) and alters the downstream flow and sediment regimes. 

Dam and weir constructions can reduce downstream gravel supply and therefore lead 

to armors, thus increase intensify flushing out heterogeneous sorted sediments. 

(Hauer et al., 2018). As a consequence, the resultant deficits in bed-load transport may 

lead to continuous riverbed incision with the risk of channel avulsion and riverbed 

breakthrough during single flood events. Dam constructions may cause significant 

alterations of the sediment regime (such as grain size distribution) based on the 

storage of water and the capture of sediment by dams which cause profound 

downstream changes in the natural patterns of the hydrologic variation and sediment 

transport (Hauer et al., 2018). Dam constructions not only retain the sediment, 

breaking the sediment continuum, but also alter the dynamics of sediment transport 

processes. Large amounts of retained suspended load in the reservoirs are released 

in a short period of time during flushing, mostly in conjunction with flood events, 

resulting in a surplus of sediments in downstream river sections. Consequently, high 

loads of mostly fine sediments cause high concentrations of turbidity and can be 

responsible for losses and mortality of aquatic organisms (Espa et al., 2015; Hauer et 

al., 2018). 

Asian rivers were estimated to export 4.8 Gt yr-1 sediment to the oceans (Syvitski and 

Kettner, 2011). However, Africa and Asia showed the largest reduction in sediment flux 

to the coast in rivers (such as the Nile, Orange, Niger, and Zambezi in Africa and the 

Yangtze, Indus, and Yellow in Asia), and 31% of the total sediment load retained in 

reservoirs were indicated in Asia and 25% in Africa (Syvitski et al., 2005). 
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Since the 1980s, the sediment load of the Yellow River has dropped markedly to <50% 

of this earlier value in response to reduced precipitation, increased water abstraction 

and improved sediment control practices in the Loess region of the Middle Yellow River 

(Walling and Fang, 2003). Mean sediment flux of the Yangtze River decreased by 71% 

between 1950-1968 and the post-Three Gorge Dam decade, about half of which 

occurred prior to the pre-Three Gorge Dam decade; approximately 30% of the total 

decline and 65% of the decline since 2003 can be attributed to the Three Gorge Dam, 

5% and 14% of these declines to precipitation change, and the remaining to other 

dams and soil conservation within the drainage basin (Yang et al., 2015). During 2007-

2013, the fluvial sediment supply from the Pearl River to the coast showed a massive 

71% decrease compared to period 1954-1979 when the human influences were not 

significant (Ranasinghe et al., 2019). In the Mekong River basin, the sediment trap 

efficiency was predicted to increase to 78-81% with all the planned reservoirs being 

built, and the potential annual sediment trap would be 70-73 Mt (Kummu et al., 2010). 

In the Ren River basin, due to the construction of the biggest dam, Hoa Binh dam, 

sediment flux drastically decreased from 100-160 Mt yr-1 to around 40 Mt yr-1 during 

1997-2004, and the mean annual sediment trapping efficiency of Hoa Binh dam was 

88% (Vinh et al., 2014). The annual sediment flux of the Ganga River was estimated 

from 262 to 390 Mt yr-1 during 2004-2010 (Rice, 2007; Lupker et al., 2011); and the 

annual sediment flux of the Brahmaputra River was 387 Mt yr-1 in 2006 (Rice, 2007), 

however, Rahman et al. (2018) found that these two major river systems were following 

a declining trend, and sediment load was decreasing at a rate of 4-10 Mt yr-1.  

Asian rivers export high sediment fluxes to the oceans especially the Himalayan-

Tibetan Plateau originating rivers (Milliman and Syvitski, 1992; Ludwig and Probst, 

1998; Evans et al., 2012). Most estimations of sediment flux were calculated based on 

a monthly or an annual scale. However, most sediment export happens during flood 

events linked to daily discharge variations. Therefore, it would be necessary to study 

the sediment fluxes in this region on a daily time scale in order to precisely estimate 

the export of suspended sediment and its associated nutrients and contaminants, and 

also to understand the transport response to the flood events. 

1.4. Fluvial Organic Carbon 

Carbon (C) cycling is a cornerstone of ecosystem biogeochemistry as it is a critical 

element for all biota cellular processes (Kroeze et al., 2012). Carbon can be divided 

into inorganic carbon (IC) and organic carbon (OC). The most essential pools for 

carbon in an aquatic environment include dissolved inorganic carbon (DIC), dissolved 

organic carbon (DOC) and particulate organic carbon (POC) (Göltenboth and 

Lehmusluoto, 2006). 

Inorganic carbon (IC) in the form of DIC is available in water in three forms: CO2, HCO3
−, 

CO3
2−, and their availability depends on the pH values of the water (Göltenboth and 

Lehmusluoto, 2006); in the atmosphere, IC is primarily in the form of CO2 (Dodds and 

Whiles, 2010; Cole, 2013). 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/aquatic-environment
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/dissolved-organic-carbon
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/dissolved-organic-carbon
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/particulates


CHAPTER Ⅰ: Scientific Context and Objectives 

 

48 

 

Organic carbon (OC) is the base of organic compounds which contain carbon atoms 

bonded to hydrogen atoms and possibly other elements such as nitrogen or 

phosphorous. OC provides the materials and energy for metabolism within the 

ecosystem. Soluble compounds including soil humic substances, polysaccharides, 

polypeptides and some colloidal materials comprise the DOC; living and dead micro-

organisms and carbon in suspended sediments are isolated as particulate organic 

carbon (POC) (Schlesinger and Melack, 1981). 

The OC transport by rivers to the ocean is important to coastal heterotrophic organisms, 

even though riverine OC represents only a small fraction (0.9%) of net global terrestrial 

primary production (Zhao and Running, 2010; Huang et al., 2012). Before reaching the 

ocean, C from land transit through the continuum formed by soil, groundwater, riparian 

zones, rivers, lakes, estuaries and coastal marine areas, combined with contaminants. 

1.4.1. Sources of organic carbon 

Riverine OC mainly comes from three sources: the allochthonous source, which is 

based on terrestrial origins, such as weathering from rocks, leaching from soil and the 

decomposed products like the tissue of plants on land; the autochthonous source, 

which derives from primary production within the river itself, such as from algae and 

phytoplankton. Anthropogenic influences from agricultural, domestic and industrial 

activities can also be regarded as an allochthonous source (Hope et al., 1994; Huang 

et al., 2012). 

The DOC is a mixture of substances. Besides allochthonous inputs, leaching from the 

soil is the main sources for DOC while the uptake by bacteria is the most important 

output (Le, 2005). The POC is mainly composed of the substances bound in the 

organism and the detritus. The main source for POC is the primary production. POC 

can be transformed by secretion, excretion and autolysis into DOC and be derived from 

DOC by physico-chemical and biological processes (Göltenboth and Lehmusluoto, 

2006). 

Fluvial DOC and POC concentrations are mainly related to the soil organic carbon 

(Aitkenhead and McDowell, 2000; Huang et al., 2012; Li et al., 2017; Fabre et al., 2019). 

Soil organic carbon depends on land management and land use, and it can enter the 

river by washed out by rain and by leaching (Escolano et al., 2018). Soil resources in 

many Asian countries are being overexploited, degraded, and irreversibly lost due to 

inappropriate land management practices, industrial activities, and land use 

changes that lead to soil sealing, erosion, contamination, and loss of organic carbon, 

which subsequently increase the OC exports to the oceans. 

1.4.2. Dissolved and particulate organic carbon exports by rivers 

The riverine OC cycle and budget have been paid attention and studied in recent 

decades. Schlesinger and Melack (1981) used two ways to estimate the global OC flux: 

the first was by an inventory and extrapolation of data on loss of carbon per unit volume 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/terrestrial-origin
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/primary-production
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/primary-production
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/organic-carbon
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/management-practice
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/land-use-change
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/land-use-change
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of river discharge from 12 intermediate and large rivers, and they found an OC export 

of 0.37 Gt yr-1; the second was using measurements of the fluvial loss of organic carbon 

per unit area of land in various ecosystem types, and they found the OC flux was 0.41 

Gt yr-1. Ludwig and Probst (1996) utilized a database of mean annual DOC and POC 

fluxes of 32 rivers, respectively, and other ecological factors to calculate DOC and 

POC fluxes, and found a global annual OC flux of 0.38 Gt yr-1 (DOC of  0.21 Gt yr-1 

and POC of 0.17 Gt yr-1). Aitkenhead and McDowell (2000) examined the relationship 

between DOC flux and soil C:N ratio on a biome basis; and by using their C:N model, 

they estimated the total export of riverine DOC from land to the oceans to be 0.36 Gt 

yr-1. Schlünz and Schneider (2000) re-estimated the modern global riverine OC flux 

and gave the value of 0.43 Gt yr-1, of which 0.18 Gt yr-1 was transported by Asian rivers. 

More recently, Li et al. (2017) re-evaluated the riverine global OC flux to 0.48 Gt yr-1, 

of which 0.24 Gt yr-1 was DOC and 0.24 Gt yr-1 was POC, and Asian rivers exported 

more DOC and POC than other continents. As presented in Section 1.3.2, Himalayan 

rivers export high quantity of sediments to the oceans, and it has also been recognized 

to be a great source of OC (Aucour et al., 2006; Galy et al., 2007). 

The humid tropical climate is associated with the highest carbon yield (Ludwig and 

Probst, 1996b; Aitkenhead and McDowell, 2000; Huang et al., 2012; Carvalhais et al., 

2014). The tropical region (30°N–30°S) covers around 43% of the world’s land but 

contributes 66% of global outflow, 73% of sediment load and over 61% of terrestrial 

net primary production (Milliman and Syvitski, 1992; Syvitski et al., 2005). Therefore, 

tropical rivers are critical to total global fluvial organic carbon flux. Aitkenhead and 

McDowell (2000) found the riverine DOC flux from tropical regions were 0.15-0.23 Gt 

yr-1. Huang et al. (2012) used published and unpublished data, considering 175 tropical 

rivers, estimated the fluvial carbon fluxes and found that these tropical rivers delivered 

approximately 0.27 Gt yr-1 organic carbon to the estuaries, of which 0.14 Gt was DOC 

and 0.13 Gt was POC. They found that rivers in the equatorial region between 3°N and 

6°S produced high DOC; and the type of soil was a main influencing factor: the pattern 

of DOC distribution was similar to the distribution of soil OC density. They also pointed 

out that rivers in mainland Asia have the highest specific export rates in terms of DOC 

and POC. The tropical rivers in Asia exported 0.05 Gt yr-1 of DOC  and 0.06 Mt yr-1 

POC to the oceans (Huang et al., 2012). 

From above we can see that Asian rivers export high OC fluxes to the oceans and the 

tropical region is high-yield of OC. Most estimations were calculated based on a 

monthly or an annual scale. However, most OC export happens during flood events 

linked to daily discharge variations. Hardly any study estimated OC fluxes on a daily 

time step. Therefore, the DOC and POC exported by Asian tropical rivers take a large 

portion of the whole Asian rivers OC exports, and it would be necessary to study the 

OC fluxes in this region at a daily time scale.  

1.4.3. Influence factors 

Riverine DOC concentration and fluxes are mainly influenced by basin soil OC, 
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hydrogeology and climate conditions. Soil OC condition is related to land cover and 

land management. High soil OC and riverine DOC concentration are found in the 

basins with the land cover of the forest, peatland, wetland and agriculture (Schlesinger 

and Melack, 1981; Bishop and Pettersson, 1996; Coynel et al., 2005; Billett et al., 2010; 

Ritson et al., 2019). Forest, peatland and wetland are rich in organic matters and active 

decomposition processes while farmland is with some organic fertilizer and is eroded 

by agricultural practices. Hydrogeology conditions such as drainage intensity and basin 

slopes and climate such as rainfall density can cause different erosion and leaching 

processes which are essential to DOC concentration and fluxes (Ludwig, 1997; Huang 

et al., 2012). 

The main factors that govern riverine POC are suspended sediment (SS), 

phytoplankton, soil OC (Ludwig, 1997; Huang et al., 2012; Fabre et al., 2019). Some 

studies indicate an inverse relationship between %POC (which is the percentage of 

POC concentration in suspended sediment concentration) and the SS (Ludwig, 1997; 

Dang et al., 2013a; Fabre et al., 2019). POC concentration is high when the SS 

concentration is low, and autochthonous OC produced by phytoplankton is the main 

contribution; when POC concentration is low and SS concentration is high, the mineral 

matter, erosion soil and sedimentary rock are a major source (Ludwig, 1997; Dang et 

al., 2013a). 

Besides the factors mentioned above, human interferences and climate changes have 

affected the OC transfer and fluxes (Hope et al., 1994; Seitzinger et al., 2010; Escolano 

et al., 2018). For example, agricultural activities have enhanced the soil erosion which 

consequently has increased POC input (Ludwig and Probst, 1996b; Ciais et al., 2008; 

Huang et al., 2012). Dam constructions have sequestered the suspended sediment 

which consequently decreased POC export, and over 100 Gt of sediment and 1 to 3 

Gt of carbon were sequestered in reservoirs constructed largely within the past 50 

years (Syvitski et al., 2005); and dam regulation on discharge also affect the DOC 

transport dynamic and fluxes (Hope et al., 1994; Seitzinger et al., 2010; Hu et al., 2015; 

Wu et al., 2015; Li and Bush, 2015; Li et al., 2015; Liu et al., 2015, 2019a; Shi et al., 

2016; Xia et al., 2016; Huang et al., 2017; Le et al., 2018; Park et al., 2018). Climate 

variability has been verified to affect OC fluxes (Tian et al., 2013; Wu et al., 2015). Wu 

et al. (2015) indicated that climate change had influences on POC due to the variations 

of discharge and sediment load. Tian et al. (2013) compared the DOC in different 

climate zones in USA and found that temperature was a key variable for DOC export 

and climate warming would have a greater impact on riverine DOC yields in cooler 

climate zones than on those in warmer climate zones.  

The Red River basin is a basin crossing subtropical and tropical climate zones and 

shared among China, Laos and Vietnam, combining different land uses and affected 

by human activities such as intensive agriculture and dam implements. Previous 

studies, both on using sampling data and modelling, have investigated that human 

activities have impacts on hydrology and SS (Le et al., 2007; Lu et al., 2015; Vinh et 
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al., 2014; Wang et al., 2011; Wei et al., 2019, submitted); these studies especially 

found a strong retention of SS caused by dams. Hence, it would be interesting to 

understand the OC processes and quantify OC fluxes in this basin at the interannual 

scale with a daily time step.  

1.5. General Approaches and Tools 

For assessing the hydrological cycle and suspended sediment, the general method 

and tools are in-situ field measurements, empirical and simple equations, remote 

sensing techniques, geographic information systems, and numerical simulations. 

However, field-collecting data at large spatial and temporal scales is expensive, and 

often impracticable in some remote areas and underdeveloped regions. Empirical 

or/and simple equations, such as sediment rating curves are sometimes applied to 

quantify the sediment flux (SF) (Asselman, 2000; Syvitski et al., 2000; Achite and 

Ouillon, 2007; Zhang et al., 2018). However, a sediment rating curve requires 

discharge (Q) as an input, which might not be available for remote and underdeveloped 

regions, and its parameters can vary a lot among a big drainage basin. Therefore, this 

method might neither be the best choice for calculating the SF on a daily scale nor in 

a large basin. 

Numerical models combined with other techniques (such as remote sensing) can fill 

the gap in sediment dynamic measurements (Syvitski et al., 2005; Wilkinson et al., 

2009) and offer insight into future and past trends in response to environmental and 

human changes, such as land use change and climate change. In addition, simulations 

can be carried out at a large spatial scale and at a daily time scale to quantify, analyze 

and forecast water resources and quality. In particular, it can realistically represent the 

spatial variability of the basin, which will provide a global view of the whole basin. Many 

physically-based hydrological models had been used (Daniel et al., 2011; Islam, 2011; 

Devia et al., 2015; Fu et al., 2019), such as MIKESHE (Graham and Butts, 2005), 

HSPF (Bicknell et al., 1997) and Soil and Water Assessment Tool (SWAT) (Arnold et 

al., 1998). Among these models, SWAT has been proved to obtain good hydrological 

predictions with a little direct calibration in many different basins around the world 

(Gassman et al., 2007, 2014; Devia et al., 2015; Fu et al., 2019), and more applications 

can be found in SWAT literature database: https://www.card.iastate.edu/swat_articles/.  

Although SWAT has been applied to many Asian basins, and also to subtropical or/and 

tropical areas, most of them were at a scale of 77 to 105,000 km2 (Gassman et al., 

2007; Bannwarth et al., 2015; Lweendo et al., 2017; Li et al., 2018; Shrestha et al., 

2018; Tan et al., 2019). Tan et al. (2019) summarized that a total of 126 articles related 

to application of SWAT on studying water-related issues (such as climate change, land 

use change, best management practices, water quality and hydropower) in Southeast 

Asia, half of which were in Vietnam and Thailand, and the performances of the SWAT 

model were generally above satisfactory. 

The Red River is a typical Asian river system, combining different land uses, affected 

https://www.card.iastate.edu/swat_articles/
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by human activities such as intensive dam implementations and agriculture (Le et al., 

2007; Nguyen et al., 2011). Recent studies of hydrology and suspended sediment in 

this basin mainly used data from gauge stations or sampling to do statistical analysis 

(He et al., 2007; Dang et al., 2010; Lu et al., 2015; Le et al., 2017a), or use modelling 

to perform simulations at a local scale (Ngo et al., 2015) or in the delta part (Vinh et al., 

2014) at a monthly scale; few studies analyzed fluxes at daily scale, but only on a short 

period (Le et al., 2007), in the delta (Luu et al., 2010). Hiep et al. (2018) used SWAT 

to simulate the discharge at daily scale for four stations (Lao Cai, Yen Bai, Son Tay 

and Hanoi) on the main Red River during 2005-2009, however, they did not simulate 

the Da and Lo rivers, nor the suspended sediment. Both Q and SSC can vary greatly 

from day to day; therefore, it would be more favourable to calculate flux at a daily time 

step. Also, water quality monitoring is usually carried out during some specific days in 

a month, and outputs from a model at daily scale can be practical and useful for further 

studies. In addition, different scenarios of global changes can be considered to help 

researchers or government administrators to compare different possibilities and set up 

long-term management plans. 

Studies of the nutrients associated with discharge and SS, such as riverine OC, has 

also been carried out. Most of these researches analysed the concentrations and 

fluxes of nutrients based on the sampling data (Le et al., 2005, 2010, 2017a; Dang et 

al., 2013a); few used the modelling way (Le et al., 2017b; Nguyen et al., 2018). At the 

local or regional scale, in-situ sampling is a direct and accurate way to quantify the 

riverine C. From sampling data, Le et al. (2017a) estimated that the mean annual TOC 

yield during 2008-2010 was 270 kt yr-1 at Hanoi, of which 142 kt was DOC and 128 kt 

was POC; Dang et al. (2013) quantified the annual POC flux of 243 kt yr-1 at Son Tay 

during 2006-2009. 

However, the same as Q and SS measurement, riverine DOC and POC in-situ field 

sampling at large spatial and temporal scales is expensive and often impracticable in 

some remote areas and underdeveloped regions. Using a modelling approach or/and 

simple equations would overcome these shortages. Le et al. (2017b) and Nguyen et 

al. (2018) used a modelling approach to identify a seasonal OC variation and to 

estimate a TOC export of 324 kt yr-1 at Son Tay (outlet of the continental basin) during 

2013-2014. However, simulation at a seasonal scale might not be precise enough. 

Hope et al. (1994) indicated that riverine C flux was likely to be underestimated. For 

most rivers, the OC concentration varies with discharge and season. Discharge is the 

major factor controlling the output of OC (Hope et al., 1994), and suspended matter 

and sediment are also the main determinants of POC flux (Ludwig and Probst, 1996b; 

Huang et al., 2012). Q and SS can vary largely due to the intensive rainfall and storms. 

Consequently, the concentration of OC may fluctuate greatly. However, sampling is 

usually taken at fortnightly or monthly intervals which might induce underestimation 

when there is a storm or intense rainfall during the intervals. Therefore, it would be 

more precise to assess and calculate OC flux at a daily time step using daily discharge, 

suspended sediment and OC concentrations, and a modelling coupling remote sensing 
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and in-situ measurement data would be a good tool. 

1.6. Objectives of this Study 

With the increasing requirement of fresh water for agriculture, urban and industry, 

water availability becomes an important concern in the 21st century, it is an 

indispensable resource for both the environment and human beings. Understanding of 

the hydrologic cycle, such as water movement processes through the land surface and 

subsurface, water budget and storage, will help us gain sustainable water supplies. 

Rivers play a crucial component of the terrestrial hydrological cycle. The water budget 

of a river will help the administration improve management practices. The sediment 

transport by rivers from land to the ocean is a key pathway within the global 

geochemical cycle. The sediment is a carrier of sediment-associated matters, such as 

nutrients (like C and P), metals and pesticides. Both sediments and these associated 

matters are important for downstream topography and ecosystem. Besides, the 

sediment flux is also an indicator of the global denudation system and provides a 

general measure of the rate of denudation of the continents and of the efficacy of 

erosion processes in lowering the land surface of the globe. Riverine organic carbon 

is a basic and essential matter for river and marine ecosystem and its cycle forms a 

part of the global biogeochemical cycle. 

Therefore, assessing water discharge, suspended sediment and riverine organic 

carbon dynamics and quantifying water budget, sediment and organic carbon fluxes 

can enable us to use and manage wisely and scientifically the precious water resource, 

to provide a measure of land degradation and the associated reduction in the global 

soil resource, to better understand the global biogeochemical cycles and processes. 

The Red River is one of the important river basins in Asia. It passes two climate zones 

(subtropics and tropics) and three countries (China, Vietnam and Laos). The 

agriculture activities and inhabitants develop along the river, making it an important 

river for culture and economics. As other Asian rivers, inside this basin, increasing 

human activities (farming and damming) has changed and degraded the ecosystem 

and aquatic system. Besides, the south-east Asian is influenced by climate variability. 

Hence, the Red River basin would be a good example for researchers to study the 

impacts of human activities and climate variability on hydrological and biogeochemical 

cycles. 

Most of the researches on the Red River basin were implemented by in-situ field work 

or analysis hydrology data from gauge stations. However, these methods are not 

suitable and practicable for researchers to carry on a large basin scale and to 

understand each subbasin. Modelling combined with satellite data and observed data 

is an efficient role to study the hydrologic and biogeochemical cycling at large spatial 

scale and long temporal scale. However, most modellings of dynamics and 

concentrations were carried out at a monthly or annual scale which would not be 

precise enough for understanding the transfer processes and quantifying the exports. 
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Hence, the main objective of this thesis is to apply a new tool (modelling method) in 

the Red River basin to analyze hydrology, suspended sediment and organic carbon 

transport at a daily time step in order to diagnose impacts of the global changes by 

separating the effect of climate variability and anthropogenic influences (damming). 

The specific objectives are: (1) to characterize the hydrology and to quantify the 

suspended sediment concentration and fluxes of the Red River basin at a daily time 

step; (2) to assess the impacts of climate variability and dam constructions on 

discharge and sediment in a separate way; (3) to quantify particulate and dissolved 

organic carbon at a daily time step and to assesses the impacts of climate variability 

and dams.  

The study is focused on the period of 2000-2013 as depending on the data availability 

(both remote sensing data and in-situ measurement data). 
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2. CHAPTER Ⅱ: Materials and Methods 

Global Theme of the Materials and Method 

Figure 2-1 illustrates the materials and methods for this study. 

 

Figure 2-1 Global theme of materials and methods for this study. 

2.1. Study Area 

2.1.1. General information 

The Red River basin located in South-East Asia (Figure 2-2). It is one of the five largest 

river basins (the Yellow, Yangtze, Pearl, Red and Mekong river basins) in East and 

Southeast Asia, and is an important contributor of fluvial matters to the western Pacific 

Ocean (Wang et al., 2011). 

The Red River basin is the second largest river in Vietnam and is from the longitude 

100.00° to 107.17° East and from the latitude 20.00° to 25.50° North. It is a portion of 

the international border among China, Laos and Vietnam. The total area of the Red 

River basin is approximately 159,000 km2 of which 49% lies in China, 0.9% in Laos 

and 50.1% in Vietnam (Le, 2005). Numerous inter-linked rivers, estuaries and coastal 

waters in the Red River basin make it play an important role in economics, culture and 

politics in both China and Vietnam. 

The terrain is generally high in the northwest, dominated by alpine valley regions, and 

low in the southeast (Figure 2-3). Rocks in this basin are mainly sandy shale in the 

north and limestone, metamorphic rock and magmatic rock in the middle and in the 

south. The main soil types are Acrisols, such as latosol, red earth, yellow-brown soil 

and fluvisol (Le, 2005; Bai et al., 2015). 
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Figure 2-2 Hydrological basins of Asia (AQUASTAT, 2011) 

 

Figure 2-3 Digital Elevation Model (DEM, sourced from SRTM: http://www2.jpl.nasa.gov/srtm) and land 
use of the Red River basin. 

The Red River has three main tributaries (Figure 2-4). The upper part of the main river, 

before Son Tay, is called the Thao River which named Yuan Jiang or Hong He in China. 

The tributary on the right bank is the Da River, named Li Xian Jiang in China. The Lo 

River, named Pan Long Jiang in China, joins the main branch from the left bank. These 
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three tributaries converge on the Red River 20 km upstream to the Son Tay gauging 

station. 

The Thao River originates in Dali, Yunnan Province (China) which is at the foot of the 

Himalaya mountains with an elevation of 2650 m. The Red River basin in China is 

mainly in mountainous regions. The drainage area at Yen Bai station is around 48,500 

km2. The total length of the Thao River is 910 km, of which China shares 692 km (Le, 

2005), and the average gradient of the riverbed of this section is 3.9‰ (Zhu et al., 

2012). This sub-basin is rich in latosol and red earth, and is vulnerable to soil erosion, 

therefore, the Thao River is colored into red, which derives the name of the Red River. 

The Da River has its source in the Yunnan Province, near to that of the upstream Red 

River, at an elevation of more than 2000m (Dang et al., 2013b). The Da River basin is 

also dominated by mountainous areas. Its total length is around 1000 km, 480 km of 

which is in China’s territory. The total drainage area of this sub-basin is approximately 

52,780 km2. The Lo River basin is around 470 km with 275 km in Vietnam. The 

drainage area of this basin is around 30,370 km2. 

Due to the accessibility of the data and considering the influence of the tide, our study 

area focused only on the continental basin with a surface of 137,230 km2 that drained 

down to Son Tay which is the outlet of the continental basin and the apex of the delta. 

 

Figure 2-4 The Red River basin: main gauge station (blue point), sampling site (green square) and 
important dams (red triangle). 
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2.1.2. Climatic characteristics 

The Red River basin is located in low-latitude subtropical and tropical monsoon climate 

zones. Generally, the south of the basin is more humid and hot than the north part. 

Mean annual humidity in China’s part is around 67-70% and in Vietnam’s part is from 

82 to 84% (Le, 2005). 

The changes of four seasons are not obvious, however rainy and wet seasons are 

distinctive. Rainy seasons are from May to October due to the southwest monsoon 

while the wet season from November to April. 80% of the total annual rainfall is coming 

from the rainy seasons, and intensive rainfall is mainly concentrated in June to August 

and is unevenly distributed temporally and spatially. The mean annual rainfall is around 

1500 mm (Le, 2005). 

Due to the big altitude differences in the mountainous regions, the vertical distribution 

of temperature was significantly different. The mean annual temperature varies from 

14 to 16 ℃ in the high mountain regions and it rises above to 24-27 ℃ in the lower part 

(Le, 2005; Gu, 2016). 

Potential evapotranspiration (PET) ranges between 880 and 1150 mm yr-1, and its 

mean value was 1040 mm yr-1 (Le et al., 2007). Simons et al. (2016) who used global 

satellite-derived data to calculate actual evapotranspiration in the whole watershed, 

showed values in the range of 860 to 1117 mm yr-1. 

2.1.3. Hydrological characteristics and water resources 

The water volume of the Red River is rich, the annual water volume is around 130 km3, 

among which 48 km3 is coming from China (Le, 2005; Li, 2017). The water yield of the 

whole basin is around 810,000 m3 km-2 yr-1 (Le, 2005). The water yield in China’s part 

is 647,000 m3 km-2 yr-1, which is the second biggest water yield basin in southwest 

China after the Brahmaputra basin and following by the Nujiang (Salween) and 

Lancangjiang (Mekong) basins. 

The runoff in this basin is mainly fed by precipitation which makes the hydrology in this 

region affected by the monsoon climate and results in great inter-seasonal variations 

in river flows (FAO, 2011b; Li et al., 2016; Li et al., 2008). The spatial distribution of 

water resource varies according to the distribution of rainfall. Corresponding with 

temporal precipitation distribution, the runoff is also uneven in intra-annual distribution: 

flood season occurs from May to October during which time the accumulated runoff 

accounts for more than 75% of the total annual runoff; low water seasons occur from 

November to April. The lowest discharge of the upstream in China usually occurs in 

March, and the minimum discharge observed near the boundary was 28.7 m3 s-1 in 

1963 (Ren et al., 2007). The lowest discharge at Son Tay generally showed up in 

March (Li et al., 2016), and from the discharge data we collected, the minimum daily 

discharge at Son Tay during 2000-2015 was 493 m3 s-1 (in February 2010). Peak runoff 

usually occurs in August, and the maximum flood was 8050 m3 s-1 observed at the 
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gauge station near the boundary in China in 1986 (Xie, 2002), while it was 37,800 m3 

s-1 at Son Tay in 1971 (Luu et al., 2010). 

Groundwater is abundant and is an important part of water resource in Vietnam, and 

about 40% of the groundwater resource is north (Le, 2005). The groundwater resource 

in the Red River basin is abundant too, accounting for around 58% of total streamflow 

and is a critical component of river flow during winter and spring (Le, 2005; Li, 2017). 

The hydrology characteristics of the three main tributaries are different (Figure 2-5). 

From the hydrology data that we collected from the Vietnam Ministry of Natural 

Resources and Environment (MONRE) during 2000-2014, the mean annual discharge 

of the Thao River at Yen Bai station is 655 m3 s-1 and the mean annual suspended 

sediment concentration is 762 mg L-1.  At the Vu Quang station on the Lo River, the 

mean annual discharge is 894 m3 s-1 and the mean annual suspended sediment 

concentration is 117 mg L-1. At the outlet of the Da River, the mean annual discharge 

is 1645 m3 s-1 and the mean annual suspended sediment concentration is 45 mg L-1. 

The Thao river is the main contributor of suspended sediment to Son Tay station while 

the Da river is the main contributor of discharge. At Son Tay station, the mean annual 

discharge is 3136 m3 s-1 and the mean annual suspended sediment concentration is 

171 mg L-1. 

Due to the influence of the southwest monsoon (from May to October), 75% of the 

water yield during these seasons, and the maximum discharge and water yield occur 

from July and August (Figure 2-5). The Da River is the main contributor of the 

streamflow to the downstream Son Tay station, around half of the water at Son Tay is 

contributed by the Da River. The Thao and Lo rivers contribute around 21% and 29% 

of the water volume to Son Tay, respectively. 

The average monthly mean SSC from May to October is around 1.6 times higher than 

the annual mean SSC, and 4.3 times higher than the average monthly mean SSC 

during dry seasons (November to Aril). On the contrary to the water volume 

contributions to the Son Tay outlet, the SSC at Lao Cai and Yen Bai stations on the 

Thao River have much higher SSC than the other two stations on the outlet of Lo and 

Da rivers. 

Water resource in this basin is mainly used for agriculture, industry and domestic 

supply. Agriculture consumes 76% and 82% of the total water demand in China and 

Vietnam, respectively; industry use is 12% and 7% in China and Vietnam, respectively; 

domestic accounts for 12% and 3% in China and Vietnam, respectively (Le, 2005; Li, 

2017). The agriculture in this basin in mountain areas is mainly depending on rainfed 

(Vezina et al., 2006; Phan Ha et al., 2012), therefore irrigation water intake is not taken 

into account in our study. 
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Figure 2-5 Monthly mean discharge (Q) and suspended sediment concentration (SSC) during 2000-
2014 at five stations. Data obtained from the Vietnam Ministry of Natural Resources and Environment 

(MONRE). 

2.1.4. Land use and cover 

Due to the population and economic growths, the land use and cover have changed 

within this basin, both in China and Vietnam. Deforestation rate in Southeast Asia has 

been among the highest in the tropics, and the expansion of agricultural land is the 

most pervasive anthropogenic land conversion process in Asia (Zhao et al., 2006; 
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Stibig et al., 2014). By the early 1990s, Vietnam's forest area reached lowest in history, 

but the two decades later experienced a significant increase in the forest area in both 

plantation and natural forests (Tan and Hung, 2015). In the study area of this work, 

during 2000-2010, the land use barely changed: only 6% of the bare land changed to 

agricultural land (Le et al., 2018), therefore, we hypothesize that the impacts of the 

land use change during 2000-2013 on discharge, suspended sediment and organic 

carbon were not significant and were taken into account in this study. 

The forest is the main land cover through the whole basin, accounting for 52% of the 

total area of the basin (Dang, 2006). Forest accounts for different proportions in each 

sub-basin: 54% in the Thao river basin; 74% in the Da river basin and 23% in the Lo 

river basin. In the upper part of the Thao basin (in China’s part), the forest is dominated 

by coniferous forest, and the upper part of the Da basin forest is mainly broad-

leaved forest (Gu, 2016). 

Agriculture shares 20% of the whole basin while industrial plants share 20%. 

Agriculture accounts for more in the Thao (19%) and Da (13%) basin, and less in the 

Lo basin (8%). However, the industrial plants are dominated in the Lo basin, 

accounting 58%, while it accounts for 14% and 3% in the Thao and Da basins, 

respectively. Urban accounts for 1.4%, 0.3% and 0.6% in the Thao, Da and Lo basins, 

respectively and 1.2% for the whole basin. 

Figure 2-6 showed the photos of the land use taken in the Thao (at Sa Pa, near Lao 

Cai station) and Da (near Hoa Binh station) basins. Sa Pa is popular tourist place in 

Vietnam, famous for rice terrace. Contour ploughing is a common cultivate way for 

rainfed rice farming in the mountainous areas in the Thao basin. Near Hoa Binh where 

the slope is flatter compared to upstream, the farmers take some bare land to cultivate 

some industrial plants. 
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Figure 2-6 Land use in the Thao and Da basins. Photos were taken at Sa Pa (a and b) in the Thao basin 
which is famous for rice terrace and at Hoa Binh (c and d) in the Da basin. 

2.1.5. Basin social economy and human activities 

The total population of the Red River basin is estimated at 30 million, and population 

density is low in the upper mountainous region and intensive in the delta part (Le, 2005). 

The population in China’s part is about 15.25 million people, and agricultural 

communities account for more than 80% of the total population (Gu et al., 2018). 
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Upper part in China, it is rich in nonferrous metals, such as Stannum and Copper. This 

area is also an important subtropical and tropical cash crops region. Sugarcane, 

peanut, banana, pineapple, pomegranate, tobacco and rice are the main cash crops. 

Therefore, there are some smelters and sugar refineries (Gu, 2016). Down to Vietnam, 

agriculture structure is similar to China’s part. With the decrease of elevation and slope, 

urban and lowland agriculture are increasing. Important industrial zones are around 

Son Tay, such as the production of drinks, paper and chemicals (Le, 2005). In the 

mountainous region of both China and Vietnam, rural people take advantage of the 

mountains by contour tillage and terrace.  

Besides agriculture and industry, dam constructions are another interference for the 

river systems. Figure 2-7 presented the dams that could be found in the google earth. 

At least 21 dams can be noticed in China and 21 can be noticed in Vietnam. Dams in 

the basin are mainly for generating electricity, flood controlling and irrigation (Le, 2005). 

 

Figure 2-7 The dams that could be found in the Red River basin 

On the Thao river, right now there are only Nansha and Madushan dam operated. 

However, on this tributary, 11-cascade dams are planned including Nansha and 

Madushan dams in China. On the Da river, there are at least 10 dams have been 

operated and 6 dams are going to be built in China, and in Vietnam, there are also 

some dams planned. Hoa Binh and Son La dams are the two biggest dams in Vietnam. 

Figure 2-8 showed the downstream of the Hoa Binh dam. On the Lo river, there are 

also many cascade dams. The biggest dam on the Lo river is Thac Ba dam which was 

built in 1971 and Tuyen Quang dam is also a large-capacity dam which was impounded 

in March 2008. Table 2-1 presented the main dams impounded in the study period. 

These 6 dams with large capacity have caused some impacts on the hydrological 
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system, and more details of the hydrology and suspended sediment transfer will be 

presented in Chapter 3 and 4. 

 

Figure 2-8 The downstream of the Hoa Binh dam. 

 

Table 2-1 Basic characteristics of the dams that are taken into account in this study. 

Name 

(basin) 
Construction Operation 

Capacity 

(× 109 m3) 

Reservoir 

surface 

area 

(km2) 

Mean annual 

discharge 

(m3/s) 

Maximum 

discharge 

(m3/s) 

Nansha 

(Thao) 

Feb 

2006 

Nov 

2007 
0.26 8.7 261 - 

Madushan 

(Thao) 

Dec 

2008 

Dec 

2010 
0.55 - 302 - 

Hoa Binh 

(Da) 
1980 1989 9.50 208 1780 2400 

Son La 

(Da) 

Dec 

2005 

Dec 

2010 
9.26 224 1530 3438 

Thac Ba 

(Lo) 
1965 

Oct 

1971 
2.90 235 190 420 

Tuyen Quang 

(Lo) 

Dec 

2002 

Mar 

2008 
2.24 81.5 318 750 
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2.2. Dataset 

The observed hydrology and biochemistry data used in this study include: 

- daily discharge (Q), daily suspended sediment concentration (SSC) from 2000 

to 2014. 

- discrete dissolved organic carbon (DOC) and particulate organic carbon (POC) 

from 2003 to 2013. 

2.2.1.  Discharge and suspended sediment concentration dataset 

The daily Q and SSC data were provided by the Land-Ocean-aTmosphere regional 

coUpled System study center (LOTUS, http://lotus.usth.edu.vn/), originating from the 

Vietnam Ministry of Natural Resources and Environment (MONRE). The data period is 

from 2000 to 2014. 

Daily Q and SSC data were provided from 2000 to 2014 at 5 gauge stations: Lao Cai 

and Yen Bai on the Thao River; Vu Quang at the outlet of the Lo River; Hoa Binh at 

the outlet of the Da River (Figure 2-4). 

2.2.2. Dissolved and particulate organic carbon dataset 

POC and DOC data gained from two sources. The first one was provided by the 

Laboratory of Environmental Chemistry, Institute of Natural Product Chemistry, 

Vietnam Academy of Science and Technology, detail information of sampling and 

laboratory measurements can be found in Le et al. (2017a). Samplings were taken 

generally one to three times per month during 2003-2004, 2008-2010, 2012-2013 at 

Yen Bai, Vu Quang, Hoa Binh and Son Tay. Due to the sampling difficulties, data 

during some years and some months are absent. The second source was from Dang 

(2006) where POC and DOC concentrations at Yen Bai, Vu Quang, Hoa Binh and Son 

Tay from 2007-2009 can be found. Sampling frequency was generally monthly or 

bimonthly. Sampling sites are presented in Figure 2-4. 

2.3. General Introduction of the Modelling Approach 

2.3.1. SWAT general introduction 

Soil and Water Assessment Tool (SWAT) is a physically-based, semi-distributed 

hydrological model developed by Dr. Jeff Arnold for the USDA Agricultural Research 

Service (ARS) to simulate the quality and quantity of surface and groundwater and 

predict the environmental impact of land use, land management practices, and climate 

change, and it requires specific information such as topography, weather, soil 

properties, land use and land management practices occurring in the basin (Neitsch et 

al., 2009). 

The SWAT model allows us to simulate the water, sediment and agricultural chemical 

yields in large complex watersheds where there might be no monitoring data with over 

long periods of time; it can quantify the relative impact of alternative input data, such 

http://lotus.usth.edu.vn/
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as changes in management practices, climate and land cover, etc, on water regime, 

water quality, suspended sediment, soil erosion and other variables; also, it is a 

continuous-time model which enables users to study long-term impacts from daily to 

annual scale. The SWAT has been applied all over the world from small to large basins 

and performed satisfactorily (Gassman et al., 2007, 2014; Tan et al., 2019). 

For modelling, SWAT firstly divides a basin into a number of sub-basins which will 

enable users to reference different areas of the watershed to one another spatially. 

Then sub-basins are further subdivided into hydrological response units (HRU) with 

homogeneous land use, soil type and slope (Figure 2-9). 

 

Figure 2-9 Sub-basin and hydrological response units (HRU) partitions in SWAT model. 

2.3.2. SWAT application 

SWAT is widely used in assessing soil erosion prevention and control, non-point 

source pollution control and regional management in watersheds. The literature 

database of SWAT applied in different basins and variables can be found in 

https://www.card.iastate.edu/swat_articles/. 

In Asian basins, SWAT has been applied and presented well performance in various 

simulations (Gassman et al., 2007, 2014; Piman et al., 2013; Giang et al., 2014; Ma et 

al., 2015; Shrestha et al., 2018), as well as in some tropical areas (Bannwarth et al., 

2014; Fukunaga et al., 2015; Marhaento et al., 2018; Marques da Silva et al., 2018; 

Rodrigues et al., 2018; Yaduvanshi et al., 2018). In South-East Asia, SWAT was 

commonly applied to Vietnam and Thailand (Tan et al., 2019), such as Mekong river 

basin (Piman et al., 2013, 2016; Shrestha et al., 2018) or some local small-scale basins 

(Vu et al., 2012; Bannwarth et al., 2014; Giang et al., 2014; Le and Sharif, 2015; Ngo 

et al., 2015; Ha et al., 2018; Marhaento et al., 2018; Nguyen-Tien et al., 2018). This 

paper applied the SWAT model in a large-scale basin in tropical South-East Asia. 

2.3.3. Hydrological modelling component in SWAT 

Water balance is the driving force in SWAT regardless of what kind of problems users 

https://www.card.iastate.edu/swat_articles/
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want to deal with. Two major divisions are considered in simulating of the hydrology of 

a watershed: the hydrological cycle over the lands (Figure 2-10), and in the channel 

network. SWAT simulates the hydrologic cycle based on the water balance equation: 

 𝑆𝑊𝑡 = 𝑆𝑊0 + ∑(𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎 − 𝑊𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤)

𝑡

𝑖=1

 (1) 

where SWt is the final soil water content (mm H2O), SW0 is the initial soil water content 

on day i (mm H2O), t is the time (days), Rday is the amount of precipitation on day i (mm 

H2O), Qsurf is the amount of surface runoff on day i (mm H2O), Ea is the amount of 

evapotranspiration on day i (mm H2O), Wseep is the amount of water entering the 

vadose zone from the soil profile on day i (mm H2O), and Qgw is the amount of return 

flow on day i (mm H2O). 

The land phase of the hydrologic cycle controls the amount of water, sediment, nutrient 

and pesticide loadings to the main channel in each sub-basin. Over the lands, SWAT 

simulates surface runoff volumes and peak runoff rates for each HRU using daily or 

sub-daily rainfall amounts. For computing surface runoff volume, a modification of the 

Soil Conservation Service (SCS) curve number method (USDA Soil Conservation 

Service, 1972) is used. Peak runoff rate is predicted with a modification of the rational 

method which calculates the peak runoff rate as a function of the proportion of daily 

precipitation that falls during the sub-basin, the daily surface runoff volume, and the 

sub-basin time of concentration. Lateral flow in the soil profile is calculated 

simultaneously with redistribution. A kinematic storage model is used to predict lateral 

flow in each soil layer. The model accounts for variation in conductivity, slope and soil 

water content. Groundwater is partitioned into two aquifer systems by SWAT: a shallow, 

unconfined aquifer which contributes return flow to streams within the basin; a deep, 

confined aquifer which contributes return flow to streams outside the watershed. 

The instream routing phase of the hydrologic cycle is the movement of water, 

sediments, etc. through the channel network of the basin to the outlet. In the routing 

phase, surface flow is simulated using a variable storage coefficient method developed 

by Williams (1969) or the Muskingum routing method (Cunge, 1969). In this work, the 

SCS curve number method and variable storage coefficient method, along with daily 

climate data, were used for surface runoff and streamflow computations. 

Evapotranspiration includes evaporation from rivers and lakes, bare soil, and 

vegetative surfaces; transpiration from within the leaves of plants; and sublimation from 

ice and snow surfaces. The model computes evaporation from soils and plants 

separately. Potential soil water evaporation is estimated as a function of potential 

evapotranspiration and leaf area index (area of plant leaves relative to the area of the 

HRU). Actual soil water evaporation is estimated by using exponential functions of soil 

depth and water content. Plant transpiration is simulated as a linear function of 

potential evapotranspiration and leaf area index. In this work, the Hargreaves method 
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(Hargreaves et al., 1985), which requires air temperature only, was chosen to calculate 

the potential evapotranspiration (PET). 

 

Figure 2-10 The land phase of the hydrologic cycle in SWAT (Neitsch et al., 2009). 

 

2.3.4. Sediment modelling component in SWAT 

SWAT considers sediment transport both over the landscape component and in the 

channel component (Figure 2-11). 

In the landscape component, sediment comes from erosion, both geologic erosion and 

accelerated erosion (induced by human activities). SWAT model tracks particle size 

distribution of eroded sediments and routes them through ponds, channels, and 

surface water bodies. Erosion caused by rainfall is calculated with the Modified 

Universal Soil Loss Equation (MUSLE) for each HRU (Williams, 1975; Neitsch et al., 

2009). This equation considers the surface runoff volume, peak runoff rate, soil 

erodibility, land cover and management, topographic and coarse fragment factor, as 

following: 

𝑠𝑒𝑑 = 11.8 ∙ (𝑄𝑠𝑢𝑟𝑓 ∙ 𝑞𝑝𝑒𝑎𝑘 ∙ 𝑎𝑟𝑒𝑎ℎ𝑟𝑢)
0.56

∙ 𝐾𝑈𝑆𝐿𝐸 ∙ 𝐶𝑈𝑆𝐿𝐸 ∙ 𝑃𝑈𝑆𝐿𝐸 ∙ 𝐿𝑆𝑈𝑆𝐿𝐸 ∙ 𝐶𝐹𝑅𝐺 (2) 

where sed is the sediment yield on a given day (t), Qsurf is the surface runoff volume 

(mm H2O ha-1), qpeak is the peak runoff rate (m3 s-1), areahru is the area of the HRU (ha), 

KUSLE is the USLE soil erodibility factor, CUSLE is the USLE land cover and management 

factor, PUSLE is the USLE support (agricultural) practice factor, LSUSLE is the USLE 
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topographic factor and CFRG is the coarse fragment factor. 

 

Figure 2-11 Sediment transport in landscape and channel components. 

 

The sediment routing in the channel is a function of two processes: deposition and 

degradation, operating simultaneously in the reach. SWAT will compute deposition and 

degradation using the same channel dimensions for the entire simulation. Each 

subbasin has the main routing reach where sediment from upland subbasins is routed 

and then added to downstream reaches. The Simplified Bagnold equation (1977) is 

used as a default method for the sediment routing in stream channels which 

determines degradation as a function of channel slope and flow velocity. The maximum 

amount of sediment that can be transported is a function of the peak channel velocity, 

as following:    

𝑐𝑜𝑛𝑐𝑠𝑒𝑑,𝑐ℎ,𝑚𝑥 = 𝑐𝑠𝑝 ∙ 𝑣𝑐ℎ,𝑝𝑘
𝑠𝑝𝑒𝑥𝑝 = 𝑐𝑠𝑝 ∙ (

𝑞𝑐ℎ,𝑝𝑘

𝐴𝑐ℎ
)

𝑠𝑝𝑒𝑥𝑝

= 𝑐𝑠𝑝 ∙ (
𝑝𝑟𝑓 ∙ 𝑞𝑐ℎ

𝐴𝑐ℎ
)

𝑠𝑝𝑒𝑥𝑝

 (3) 

where concsed,ch,mx is the maximum concentration of sediment that can be transported 

by the water (t m-3), csp is a coefficient defined by the user, vch,pk is the peak channel 

velocity (m s-1), spexp is an exponent defined by the user, qch,pk is the peak flow rate 

(m3 s-1), Ach is the cross-sectional area of flow in the channel (m2), prf is the peak rate 

adjustment factor, and qch is the average rate of flow (m3 s-1). More details on these 

parameters and their usual ranges are reported in chapter 3. 

The maximum concentration of sediment calculated with Equation 3 is compared to 
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the concentration of sediment in the reach at the beginning of the time step (concsed,ch,i, 

in t m-3). If concsed,ch,i > concsed,ch,mx , deposition is the dominant process in the reach 

segment and the net amount of sediment deposited is calculated as:   

 𝑠𝑒𝑑𝑑𝑒𝑝 = (𝑐𝑜𝑛𝑐𝑠𝑒𝑑,𝑐ℎ,𝑖 − 𝑐𝑜𝑛𝑐𝑠𝑒𝑑,𝑐ℎ,𝑚𝑥) ∙ 𝑉𝑐ℎ (4) 

where seddep is the amount of sediment deposited in the reach segment (t), and Vch is 

the volume of water in the reach segment (m3). 

If concsed,ch,i
 < concsed,ch,mx , the available stream power is used to re-entrain loose and 

deposited material until all of the material is removed. Excess stream power causes 

bed degradation, and the net amount of sediment re-entrained is adjusted for stream 

bed erodibility and cover as following:    

 𝑠𝑒𝑑𝑑𝑒𝑔 = (𝑐𝑜𝑛𝑐𝑠𝑒𝑑,𝑐ℎ,𝑚𝑥 − 𝑐𝑜𝑛𝑐𝑠𝑒𝑑,𝑐ℎ,𝑖) ∙ 𝑉𝑐ℎ ∙ 𝐾𝑐ℎ ∙ 𝐶𝑐ℎ (5) 

where seddeg is the amount of sediment re-entrained in the reach segment (t), Kch is the 

channel erodibility factor, and Cch is the channel cover factor. 

2.4. Modelling Setup for Hydrology and Suspended Sediment 

2.4.1. Modelling inputs for SWAT 

SWAT requires inputs as topography, land cover, soils and meteorological data. 

Resolutions and download links for DEM, land use and soil can be found in Table 2-2. 

Table 2-2 SWAT Inputs Datasets 

Data Type Resolution/Time Scale/Period Source 

Topography 

(DEM) 
1×1 km 

Shuttle Radar Topography Mission 

(SRTM, http://www2.jpl.nasa.gov/srtm) 

Land Cover 1×1 km 

Global Land Cover 2000 database 

(https://forobs.jrc.ec.europa.eu/products/glc2000/glc2000.

php) 

Soil Types 1×1 km 
Harmonized World Soil Database 

(http://webarchive.iiasa.ac.at/Research/LUC) 

Temperature 
daily scale 

Jan-1998 to Jul-2014 

Climate Forecast System Reanalysis: 

Global Weather Data for SWAT 

(https://globalweather.tamu.edu/) 

Precipitation 

daily scale 

0.25̊ × 0.25̊ 

Jan-1998 to Dec-2014 

Tropical Rainfall Measuring Mission 

(TRMM, https://pmm.nasa.gov/TRMM) 

A Digital Elevation Model (DEM) was downloaded from the Shuttle Radar Topography 

Mission (SRTM), which is SRTM is a cooperative project between the National 

Aeronautics and Space Administration (NASA) and the National Imagery and Mapping 

Agency (NIMA) of the U.S. Department of Defense (Farr and Kobrick, 2000). This 

topographic data has been widely used to determine hydrological properties of a 

landscape, including the extraction of drainage networks and upstream catchment 
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areas (Farr and Kobrick, 2000). In our study, the landscape slopes were divided into 5 

classes by SWAT based on the information from DEM (Figure 2-12a). 

 

Figure 2-12 SWAT inputs: (a) slop classes; (b) land use map; (c) soil types 

Land cover (Figure 2-12b)  is from the Global Land Cover 2000 database. The 

dominant lands are forest (27.56%, with 14.65% of evergreen forest (FRSE in SWAT 

model); 12.49% of mixed forest (FRST); 0.42% of deciduous forests (FRSD)), 

agriculture (ARGL, 21.16%), range-grasses (RNGE, 19.94%), wheatgrass (19.57%: 

with 10.03% of western wheatgrass (WWGR); 9.54% of crested wheatgrass (CWGR)). 

Land use code and its common name are in Table 2-3. 

Table 2-3 Code and its related common name for land use and soil map. 

Land Use Soil Type 

Code Common Name Code Common Name Texture 

WWGR Western wheatgrass Af50-3bc-4257 

Ferric Acrisols 

CLAY 

WETN Wetlands-nonforested Af52-3b-4259 CLAY 

WATR Water Af60-1-2a-4260 SANDY_LOAM 

RNGE Range-grasses Af63-3c-4263 CLAY_LOAM 

RNGB Range-brush Ag17-1-2a-4265 Gleyic Acrisols SANDY_LOAM 

PAST Pasture Ao107-2bc-4267 

Orthic Acrisols 

SANDY_CLAY_LOAM 

FRST Forest-mixed Ao13-3bc-4269 CLAY_LOAM 

FRSE Forest-evergreen Ao18-3bc-4270 CLAY_LOAM 

FRSD Forest-deciduous Ao41-2ab-4271 LOAM 

CWGR Crested wheatgrass Ao90-2-3c-4284 CLAY_LOAM 

AGRL Agricultural Land Bc49-3bc-4287 
Chromic Cambisols 

CLAY_LOAM 

  Bc50-2-3a-4288 CLAY_LOAM 

  Ge56-3a-4325 Eutric Gleysols CLAY_LOAM 

  I-Af-3c-4348 

Lithosols 

SANDY_CLAY_LOAM 

  I-Af-Bd-2-4351 LOAM 

  I-Be-2c-4356 LOAM 

  I-Lc-Bk-c-4383 LOAM 

  Jc55-2ab-4391 Calcaric Fluvisols LOAM 

  Je72-2a-4393 Eutric Fluvisols LOAM 

  Lc100-c-4404 Chromic Luvisols LOAM 

  Vp66-3a-4427 Pellic Vertisols CLAY 

The soil map (Figure 2-12c) was downloaded from the Harmonized World Soil 
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Database. 21 soil types are in this study area (Table 2-3), and most of these soils 

belong to Acrisols, such as Ferric Acrisols in the upper part and Orthic Acrisols in the 

lower part. Acrisols are characterized by the accumulation of low activity clays in 

an argic subsurface horizon and by a low base saturation level, and correlate with “Red 

and Yellow Earths”. Most Acrisols have a thin, brown, ochric surface horizon. The 

underlying albic subsurface horizon is normally whitish to yellow and overlies a 

stronger coloured yellow to the red argic subsurface horizon. Acrisols are found on 

acid rocks, mostly of Pleistocene age or older. They are most extensive in Southeast 

Asia, the southern fringes of the Amazon Basin, the southeastern USA and in both 

east and west Africa. Acrisols are easy to degrade and slake to form a hard surface 

under unprotected land, which is vulnerable to devastating surface erosion under 

rainfall. 

In-situ observed climate data was unable to obtain, therefore, in this study, we took 

advantage of the satellite data which have been proved to produce good results on 

hydrology. Daily temperature data were obtained from the Global Weather Data in 

SWAT file format for a given location and time period. These data come from the 

Climate Forecast System Reanalysis (CFSR) of the National Centers for 

Environmental Prediction (NCEP). The CFSR is a reanalysis product. It is a global, 

high resolution, coupled atmosphere-ocean-land surface-sea ice system designed to 

provide the best estimate of the state of these coupled domains over this 

period.  CFSR, combining with hydrology models, has been proved to result in similar 

accuracy results on large river basins (Dile and Srinivasan, 2014; Lauri et al., 2014). 

Therefore, in this study, we used the temperature from CFSR as modelling inputs for 

the climate. Temperature stations covered by CFSR for the Red River basin are 624 

and their locations were presented in Figure 2-13. 

Daily precipitation data was obtained from the Tropical Rainfall Measuring Mission 

(TRMM, product 3B42 V7) which is a research satellite designed to provide needed 

information on rainfall by covering the tropical and sub-tropical regions of the Earth. 

Simons et al. (2016) compared several satellite-based precipitation products (TRMM, 

the Climate Hazards Group InfraRed Precipitation with Station dataset (CHIRPS), the 

global rainfall estimate based on the CPC MORPHing technique (CMORPH)) and 

actual evapotranspiration products in the Red River watershed in order to demonstrate 

that these datasets can be merged to examine hydrological processes before applying 

a numerical simulation model, and they found that TRMM rainfall product could provide 

reliable values in both space and time at this watershed. Rainfall stations covered by 

TRMM for the Red River basin are 208 and their locations were presented in Figure 

2-13. 
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Figure 2-13 Temperature stations (black points) covered by the Climate Forecast System Reanalysis 
(CFSR) for the Red River basin and rainfall stations (green marks) covered by the Tropical Rainfall 
Measuring Mission (TRMM) for the Red River basin. 

2.4.2. Dam implemented in SWAT 

SWAT requires basic information, such as date of impoundment, reservoir surface 

area, emergency volume, principal volume, initial volume. The volume of outflow can 

be calculated by one of the following methods: measured daily outflow, measured 

monthly outflow, average annual release rate, controlled outflow with target release. 

As it is impossible to get the detailed outflow of dams, and in order to avoid the complex 

conditions of release operations, and to make the model able to be applied for future 

hydrology regime prediction, the average annual release rate method which releases 

the water whenever the dam volume exceeds the principal spillway volume was 

selected (Neitsch et al., 2009). A minimum and maximum monthly releases were 

limited for the model according to the Q data we collected and to the release 

information from reference Le et al. (2007). 

As mentioned in Chapter 2.1.5, inside this basin, there are at least 42 dams. Some of 

them were under construction during the simulation period. In our study, we added 6 

important dams into the model, which are with large capacities and whose locations 

are close to the outlet of each sub-basin (Figure 2-4). Two dams are located on the 

mainstream of the Thao River, around 150 km and 100 km upstream of Lao Cai 

respectively; two are on the mainstream of the Da River; the other two are on two 

branches of the Lo River. Details of each dam were in Table 2-1. 
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2.5. Fluvial Organic Carbon Computation 

2.5.1. Dissolved organic carbon 

The equation for calculating the dissolved organic carbon (DOC) was from extracted 

the work of Fabre et al. (2019) who proposed a prediction of the DOC concentration 

([DOC]) with daily discharge (Q). The equation between [DOC] and Q is as followed:

  

 [𝐷𝑂𝐶] =  
𝛼 ∗  𝑄 

𝛽 +  𝑄
 (6) 

with [DOC] in mg L-1, Q in mm d-1. This equation underlines the necessity to well 

simulate Q in order to obtain good results for [DOC]. The parameter α (mg L-1) 

represents a potential of maximum [DOC] at the outlet of each sub-basin, and 

parameter β (mm d-1) is the Q when the DOC concentration is half of α. 

2.5.2. Particulate organic carbon 

The equation for calculating the particulate organic carbon (POC) was proposed by 

Boithias et al. (2014) who generalized the relation between the POC and suspended 

sediment concentration (SSC) as followed: 

 %𝑃𝑂𝐶 =  
9.40

𝑆𝑆𝐶 − 𝑎
+ 𝑏 (7) 

where %POC is the percentage of POC in the suspended sediment, and SSC is in mg 

L-1, parameters a and b are linked to environmental variables related to each sub-basin 

(see details in Chapter 1). The parameter a is the vertical asymptote corresponding to 

the low SSC and the organic matter which is rich in OC, such as phytoplankton and 

residuals, and it is a basin-specific constant, including an anthropogenic impact in the 

basin; the parameter b is the horizontal asymptote representing the suspended matters 

with low POC in SS which nearly equals to soil organic carbon content, and it is also a 

basin-specific constant. (Boithias et al., 2014; Fabre et al., 2019) 

A limit maximum %POC was set to avoid the denominator to be negative, i.e. when 

SSC is smaller than a, %POC is regarded as this maximum value. 

2.6. Calibration processes 

2.6.1. Discharge and Suspended Sediment Concentration calibration 

SWAT2012 and ArcGIS10.4 were used in this study. The whole basin was divided into 

242 sub-basins and then subdivided into 3812 different HRUs. The simulation was 

carried out at three temporal scales (daily, monthly and annually) during an overlapped 

period, from January 2000 to July 2014. 

Data of daily Q and SSC from 2000 to 2014 obtained from the Vietnam Ministry of 
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Natural Resources and Environment (MONRE) at Lao Cai, Yen Bai, Vu Quang, Hoa 

Binh and Son Tay stations were used to calibrate the model. Figure 2-4 shows the 

location of each station. Time series plots and statistical methods were used to 

evaluate the performance of the model in simulating Q and SSC. 

The model was calibrated at daily scale using Q and SSC from January 1998 to July 

2014 with a two-year warm-up. Parameters were mainly calibrated manually, and the 

most sensitive ones were automatically calibrated by using SWAT-CUP (Abbaspour, 

2015). SWAT-CUP is a tool that allows SWAT users to perform automatic calibrations 

(Arnold et al., 2012). Five algorithms are proposed for calibration purpose (Yang et al., 

2008; Abbaspour, 2015). The SUFI-2 (Sequential Uncertainty Fitting 2) algorithm 

(Yang et al., 2008), which can identify appropriate parameters sets in a limited number 

of iterations, was selected in this study. Calibration of water balance and Q were first 

carried out, once they were well calibrated then the calibration of SSC was carried out. 

Values of the calibrated parameters for Q and SSC and their definitions and ranges 

were detailed in Chapter 3.5. 

Sensitive hydrological parameters are chosen by literature reviews (Xu et al., 2009; 

Cibin et al., 2010; Guse et al., 2014; Fukunaga et al., 2015). Relative change of 

parameters was controlled within ±20%, and absolute change was done by referring 

to the aforementioned references and theoretical documents (Arnold et al., 2012; 

Neitsch et al., 2009). Based on actual information from the MONRE and literatures (Le, 

2005; Le et al., 2012), parameters like runoff curve number (CN2), soil evaporation 

compensation factor (ESCO), available water capacity of the soil layer (SOL_AWC), 

parameters related to groundwater (GW_REVAP, REVAPMN, RCHGR_DP, GWQMN, 

GW_DELAY) were calibrated to fit the actual water balance. Compared to the default 

values, ESCO was decreased and GW_REVAP was increased to increase the ET; 

SOL_AWC was increased by 20%, CN2 was decreased by 10%, REVAPMN was 

increased, RCHGR_DP and GWQMN were decreased to decrease the surface flow 

accordingly increase the groundwater flow. Other parameters related to hydrological 

processes were calibrated to fit the baseflow and peaks, and they were interpreted in 

the following sub-section. 

Sensitive parameters of sediment were chosen from Equation 2 to 5, based on how 

the sediment was modelled. The suspended sediment concentrations of these three 

tributaries are very different due to their differences in topography, dams implements 

and agriculture activities. Therefore, parameters related to land erosion such as 

USLE_K, USLE_P and FILTERW, and to in-stream erodibility such as CH_COV1 and 

CH_COV2 were calibrated based on the characteristics of each sub-basin. Dams on 

the streams not only retain the sediment in reservoirs but also alter the distribution of 

the grain size of the sediment downstream. Therefore, the parameter related to 

suspended sediment routing dynamics (SPCON) was changed before and after new 

dams impounded. Detail descriptions and explanations can be found in Chapter 3. 
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2.6.2. Dissolved and particulate organic carbon parameters calibration 

First, the four parameters mentioned in Equation 6 and 7 (α, β, a, b) were manually 

calibrated based on the DOC and POC discrete sampling data and the observed daily 

Q and SSC at each station, in order to evaluate different parameters associated with 

each sub-basin, which would indicate the characteristics of each sub-basin. 

2.7. Simulation Performance 

In this study, simulations were statistically evaluated by the following indicators. 

2.7.1. The coefficient of determination (R2) 

R2 describes the proportion of the variance in measured data explained by the model. 

R2 is calculated as followed: 

 

𝑅2 =
∑ (𝑂𝑖 − 𝑂𝑛

𝑖=1 )(𝑆𝑖 − 𝑆)

√∑ (𝑂𝑖 − 𝑂𝑛
𝑖=1 )2√∑ (𝑆𝑖 − 𝑆)𝑛

𝑖=1

2
 

(8) 

where 𝑂𝑖 and 𝑆𝑖 are the observed and simulated values, n is the total number of values, 

𝑂 is the mean of observed values and 𝑆 is the mean of simulated values. 

R2 ranges from 0 to 1, with higher values indicating less error variance, and typically 

values greater than 0.5 are considered acceptable (Moriasi et al., 2007). 

2.7.2. The Nash–Sutcliffe efficiency (NSE) 

NSE is a normalized statistic that determines the relative magnitude of the residual 

variance compared to the observed data variance (Nash and Sutcliffe, 1970), 

calculated as followed: 

 
𝑁𝑆𝐸 = 1 −

∑ (𝑂𝑖 − 𝑆𝑖)𝑛
𝑖=1

2

∑ (𝑂𝑖 − 𝑂)𝑛
𝑖=1

2  
(9) 

NSE ranges from negative infinity to 1.00, with NSE=1 being the optimal value. A 

negative value indicates that the mean value of the observed time series would have 

been a better predictor than the model (Krause et al., 2005). NSE values between 0.0 

and 1.0 are generally regarded as acceptable levels of performance. Related to the 

guidelines proposed by Moriasi et al. (2007), NSE values above 0.5 are considered as 

satisfactory in hydrological modelling. Performance ratings for statistics of monthly 

scale provided by Moriasi et al. (2007) are reported in Table 2-4.  

2.7.3. The Percent bias (PBIAS) 

PBIAS provides the information of the average tendency of the simulated data to be 

larger or smaller than their observed counterparts. The optimal value is 0.0, with low-

magnitude values indicating accurate model simulation. Positive values and negative 
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values indicate model underestimation bias and overestimation bias respectively. The 

equation is presented: 

 𝑃𝐵𝐼𝐴𝑆 =
∑ (𝑂𝑖 − 𝑆𝑖) × 100𝑛

𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

 (10) 

Table 2-4 General Performance Ratings for NSE and PBIAS of a Monthly Time Scale (Moriasi et al., 
2007) 

Performance Rating NSE 
PBIAS 

Q SSC 

Very good 0.75 < NSE ≤ 1.00 PBIAS < ±10 PBIAS < ±15 

Good 0.65 < NSE ≤ 0.75 ±10 ≤ PBIAS < ±15 ±15 ≤ PBIAS < ±30 

Satisfactory 0.50 < NSE ≤ 0.65 ±15 ≤ PBIAS < ±25 ±30 ≤ PBIAS < ±55 

Unsatisfactory NSE ≤ 0.50 PBIAS ≥ ±25 PBIAS ≥ ±55 

 

2.7.4. Dissolved and particulate organic carbon validation 

Discrete sampling concentration data was used to calculate DOC and POC fluxes 

through the Load Estimator (LOADEST) regression model, which was developed by 

U.S. Geological Survey for estimating constituent loads in rivers (Runkel et al., 2004) 

and was applied to many studies (McClelland et al., 2007; Sickman et al., 2007; Tamm 

et al., 2008; Huntington and Aiken, 2013). LOADEST is calibrated through regression 

based on discrete sampling concentration data and observed daily Q, and the best 

regression model (Approximate Maximum Likelihood Estimator) is used with 

LOADEST to estimate daily DOC and POC fluxes respectively. 

The outputs of LOADEST were used as observation to validate our simulation of DOC 

and POC fluxes. The mean annual DOC and POC fluxes from other references in the 

same basin (Dang, 2006; Le et al., 2017a) were also used as validations. 

2.8. Scenarios and Output analysis 

2.8.1. Scenarios implementations by SWAT 

Two scenarios were simulated (Table 2-5): (1) actual conditions with the existing six 

dams; (2) natural conditions without these six dams in this basin. 

The new dams (Nansha, Madushan, Son La, Tuyen Quang dams) stared to operation 

since 2008. Therefore, the study period was divided into two periods: 2000-2007 and 

2008-2013 in order to be able to quantify the impacts of the dams (old and new). 

Under actual conditions, the parameter related to sediment routing (SPCON) was set 

as 0.008 for the 2000-2007 period and 0.002 for the 2008-2014 period because the 

new dams altered the sediment dynamics and routing. Other parameters than SPCON 

were kept the same for two periods. The variation of SPCON amongst two periods, 

obtained after calibration, is discussed in Chapter 3. The simulation was executed at 

daily, monthly and annual time scales. 
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In order to consider the impacts of climate variability and dams, a scenario of natural 

conditions (without these six dams) in the Red River basin was simulated. This 

simulation was set up with the same parameters as the period 2000-2007, and was 

running from 2000 to 2013 without any dam implementation. Previous studies (Dang 

et al., 2010; Vinh et al., 2014; Lu et al., 2015) estimated the impacts on the sediment 

fluxes from dams before 2011 based on the measurements. Dang et al. (2010) and 

Vinh et al. (2014) mainly focused on the effect of the Hoa Binh dam, and Lu et al. (2015) 

also considered the Thac Ba dam, the Tuyen Quang dam and the Son La dam. We 

extended the time period to 2013 and took also the dams in China and the climate 

variability into account. The model outputs would then be compared with the values 

obtained in these studies as a validation. 

By comparing the period of 2000-2007 and 2008-2013 under natural condition, the 

variation of variables induced by climate variability can be quantified. By comparing 

the differences between the natural and actual conditions in the same period, the 

impacts on variables due to the dams can be quantified. 

Table 2-5 Scenarios setting: actual conditions (AC) and natural conditions (NC), and the two periods 
covered by the scenarios. 

Scenario 

2000-2007 2008-2013 

(river name: dam name) (river name: dam name) 

Actual Conditions (AC) 

 

Da: Hoa Binh 

Lo: Thac Ba 

Thao: Nansha; Madushan 

Da: Hoa Binh; Son La 

Lo: Thac Ba; Tuyen Quang 

Natural Conditions (NC) no dam no dam 

 

2.8.2. Identification of the influencing factors for soil erosion 

As described in Chapter 2.3.4, the SWAT model can calculate both the SS in the 

channel component and the soil erosion in the landscape component. Therefore, the 

output of the soil erosion from SWAT was analyzed in order to figure out its influencing 

factors and its contribution to the sediment fluxes. 

Principal component analysis (PCA) was used in this study to identify the factors 

influencing soil erosion. More detailed explanations of this method can be seen in 

Basilevsky (1994), Wold et al. (1987) and Ringnér (2008). Origin 2018, a scientific 

graphing and data analysis software (https://www.originlab.com/), was used to execute 

PCA by correlation matrix analyzing. Based on the Equation 2, the following variables 

of each sub-basin were added into PCA model: soil erosion (SE), precipitation (P), 

water yield (WY), surface runoff (SR), USLE soil erodibility factor (USLE_K), USLE 

agricultural practice factor (USLE_P), slope, the percentage of sand (Sand%), silt 

(Silt%) and clay (Clay%) in soil. The input data was the mean annual values of each 

variable of 242 sub-basins. 

 

https://www.originlab.com/
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2.8.3. Scenarios outputs for dissolved and particulate organic carbon 

The outputs from the model would then be used to help us quantify and understand 

the transfer and the dynamics of the fluvial organic carbon. Firstly, the simulated Q and 

SSC under actual conditions would be used to assess and quantify the fluvial DOC 

and POC concentrations and fluxes. Then simulated Q and SSC under natural 

condition would be used to help us quantify the impacts of Q and SSC variation due to 

climate variability and dam constructions on DOC and POC fluxes. 

2.8.4. Analysis of the relationships between the parameters for calculating the 

dissolved and particulate organic carbon and the physical characteristic of each 

sub-basin 

After calibrating the parameters in the equations for calculating the dissolved organic 

carbon (DOC, Equation 6) and particulate organic carbon (POC, Equation 7) at 

different stations (Yen Bai, Vu Quang, Hoa Binh and Son Tay), different values of each 

parameter were gained at each station. The relationships between these parameters 

values at different stations and the physical characteristics of each station were 

identified. These relationships allow people to gain the value for each parameter based 

on soil organic carbon content (for DOC and POC equations), mean annual discharger 

(for DOC) and Chl-a (for POC). 
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Chapter 3 
 

 

 

 

Modelling Discharge and 
Suspended Sediment Concentration 

 

 

This chapter was published in the journal Water. The work of this chapter is the base 

of the following works in the following chapters. The aim of this chapter is to apply a 

modelling method in the Red River basin, in order to help us have a better 

understanding of the water regime and suspended sediment concentration (SSC) 

through the whole basin. This chapter is the base work for the following steps to 

simulate and calculate sediment flux and organic carbon. 

 

 

Wei, X.; Sauvage, S.; Le, T.P.Q.; Ouillon, S.; Orange, D.; Vinh, V.D.; Sánchez-Pérez, 

J.-M. A Modeling Approach to Diagnose the Impacts of Global Changes on 

Discharge and Suspended Sediment Concentration within the Red River 

Basin. Water 2019, 11, 958. https://doi.org/10.3390/w11050958 
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3. CHAPTER Ⅲ : Modelling Discharge and Suspended Sediment 

Concentration 

3.1. Scientific Context and Objectives 

The Red River basin is a typical Asian river basin which is under strong nature and 

human influences. It is an international river among China, Vietnam and Laos. However, 

lacking cooperation and information exchanges among these countries set a barrier in 

having a comprehensive understanding of the whole basin. Therefore, we applied a 

model method in this basin, in order to help researchers to be able to: (1) study the 

whole study without the limitation of the discharge and suspended sediment 

concentration data access; (2) figure out natural and anthropogenic impacts on 

hydrology, suspended sediment concentration; (3) apply different scenarios for the 

future studies. 

3.2. Materials and Methods 

In this work, we used the SWAT model to characterize the hydrology and SSC of the 

Red River basin (137,200 km2) on a daily scale. The model requires topography, soil 

map, land cover and meteorology (temperature and rainfall) data as inputs. These 

inputs could be downloaded freely which overcomes the limitation of data access. The 

simulation of discharge (Q) and SSC was carried out at different temporal scales (daily, 

monthly and annually) from January 2000 to July 2014 at Lao Cai, Yen Bai, Vu Quang, 

Hoa Binh and Son Tay stations. Yen Bai, Vu Quang and Hoa Binh stations are at the 

outlet of the Thao, Lo and Da rivers, and Son Tay is the outlet of the continental basin 

and the apex of the delta. Six important dams inside this basin were taken into account 

in the model. The model was calibrated based on in-situ data (daily discharge and 

suspended sediment concentration provided by Vietnam Ministry and Natural 

Resources and Environment) and parameter analysis. The well-calibrated model 

presented the actual conditions of the whole basin. Then, dams in this basin were 

removed, representing the natural conditions, to able us to quantify the impacts of 

dams and climate variability separately by comparing natural and actual conditions. 

3.3. Main Results and Discussions 

After the calibration procedure, the performance of the model was evaluated by 

statistical indicators (R2, NSE and PBIAS) and was satisfactory. 

In this basin, the mean annual rainfall during the study period was 1494mm, 53% of 

the total rainfall was taken away by evapotranspiration and 47% fed the streamflow.  

Water yield of the whole basin was 697 mm, among which the surface runoff accounted 

for 39%, the lateral flow accounted for 3% and the groundwater accounted for 58%. 

The annual water volume of the Thao, Lo and Da tributaries was 24, 23 and 43 km3 

respectively, and was 95 km3 at Son Tay. The Da river is the main volume contributor 

to the Red River, and its volume equals to the sum of the Thao and Lo rivers. 

Q and SSC simulations were acceptable and satisfactory at different temporal scales. 
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Temporal dynamics processes were well presented by the model. SSC showed a 

distinct decrease after 2007 when there were some new dams starting operation. 

Dams not only retain the sediment in the reservoirs but also change the downstream 

sediment grain size distribution. In addition, dams regulate the discharge which 

consequently changes the hydraulics downstream. These alter the dynamic processes 

of the downstream suspended sediment. This was confirmed by the modification of the 

parameter related to in-stream SS transfer and routing. 

By comparing with the Q and SSC under natural conditions, the impacts of dams could 

be noticed on both Q and SSC. However, the impacts of dams on Q is much gentle 

than on SSC. The impacts of dams were mainly on base flow and some peak flows, 

and this is caused by dam water regulation, releasing the water to downstream during 

wet seasons and contain the flood during flood seasons. There were big differences 

between SSC under natural and actual conditions, which indicates the huge impacts 

of dams on suspended sediment transfer. We compared two periods of these two 

conditions, before new dams (2000-2007) and after new dams (2008-2013). By 

comparing the two periods of the natural condition, the impacts of climate variability 

can be quantified. Comparing the natural condition of 2000-2007 with the actual 

condition of 2008-2013, the total impacts due to both the climate and dams can be 

quantified. The impacts of dams are the difference between the total impacts and the 

impacts of climate. The results showed that for Q, the climate affected more than the 

dams, and it caused a 21% decrease on the Thao river, a 4% increase on the Lo river, 

an 18% decrease on the Da river and a 13% decrease at Son Tay, while the dams 

caused a 0.3% decrease, a 2% increase, a 10% decrease and a 9% decrease on the 

Thao, Lo, Da and Red rivers. On the contrary of Q, the climate was not the major 

influence factor that caused the variations on SSC. The total decrease of the SSC at 

Thao, Lo, Da and Son Tay was 68%, 72% 99% and 89% respectively, and the decrease 

caused by dams was 48%, 64%, 90% and 76% on the Thao, Lo, Da and Son Tay 

respectively. 

3.4. Conclusion and Perspectives 

The climate variability during the study period showed that a decreasing tendency on 

rainfall and evapotranspiration and an increasing tendency on temperature, which 

resulted in a decreasing tendency on available water for this basin. This caused a 

decrease of Q on most stations, except Vu Quang. Regional climate variations were 

different, and the sub-basins showed different responses to these variations. The 

different responses of each sub-basin to climate variation, especially to the rainfall, 

caused different impacts on SSC of each tributary. This is because the rainfall variation 

caused different soil erosion of each sub-basin. 

The different impact of dams on Q and SSC of each tributary is related to the capacities 

of dams and their regulation ability. The Hoa Bind and Son La dams on the Da river 

are the biggest two dams. They have retained great amount sediment in the reservoirs. 
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With more dams are going to impound in this basin, sediment retention would 

consequently increase, which would subsequently influence the transport of 

associated matters, such as nutrients, metals and pesticide. Based on this study, future 

studies of transfer of these associated matters can be carried out by using the outputs 

of this model. What is more, more scenarios of global changes, such as land use 

changes and climate changes can be executed, and their impacts on hydrology and 

suspended sediment can be done. 

Based on this part of work, the study on sediment flux and organic carbon in the Red 

River can be carried on. 

3.5. Full Article Published in Water  
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Abstract: The Red River basin is a typical Asian river system affected by climate and 

anthropogenic changes. The purpose of this study is to build a tool to separate the 
effect of climate variability and anthropogenic influences on hydrology and 

suspended sediments. A modeling method combining in situ and climatic satellite 

data was used to analyze the discharge (Q) and suspended sediment concentration 
(SSC) at a daily time scale from 2000 to 2014. Scenarios of natural and actual 

conditions were implemented to quantify the impacts of climate variability and dams. 
The modeling gained satisfactory simulation results of water regime and SSC 

compared to the observations. Under natural conditions, the Q and SSC show 

decreasing tendencies, and climate variability is the main influence factor reducing 
the Q. Under actual conditions, SSC is mainly reduced by dams. At the outlet, annual 

mean Q got reduced by 13% (9% by climate and 4% by dams), and annual mean 
SSC got reduced to 89% (13% due to climate and 76% due to dams) of that under 

natural conditions. The climate tendencies are mainly explained by a decrease of 9% 

on precipitation and 5% on evapotranspiration, which results in a 13% decrease of 
available water for the whole basin.  

Keywords: Red River; SWAT model; hydrology; suspended sediment; dam impacts; 

climate 
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1. Introduction 

Nowadays, the freshwater scarcity has become a global and local dramatic threat for 

the sustainable development of the human society [1]. The continuous increasing 

water demand is growing faster than the demographic increase, bringing the water 

crises as a major world risk [2]. River network plays a critical role in hydrological cycle, 

and also in processing and transporting sediments and nutrients to oceans. The 

suspended sediment (SS) transportation by rivers can be a reflection of land and river 

degradation, and it drives nutrients to the seas which is an essential process for marine 

biogeochemical cycle and diversity [3,4].  

Hydrological cycle and water quality are affected by climate variability and human 

disturbance. Climate variations, particularly temperature and precipitation, have effects 

on river systems both at short and long time scales, such as floods and droughts 

caused by typhoons and El Nino and La Nina, especially in the tropics [5–7]. In addition, 

under the disturbance of human activities (such as industrial and agricultural water 

consumption and dam constructions), water ecosystems are facing severe challenge, 

like the increase of soil erosion, pollutants and nutrient loads, and changes of 

hydrology regime and sediment fluxes (SF) [8–13].  

To face the challenge of increasing water demand under uncertain variations of climate, 

dams have been built globally for water storage. Globally, at least 45,000 large dams 

have been built, and nearly half of the world’s rivers have at least one large dam [14]. 

From a Global Reservoir and Dam database, approximate 28% dams are located in 

Asia [15]. In addition, future hydropower development is primarily concentrated in 

developing countries and emerging economies of Southeast Asia [16]. As a 

consequence, dams coupled to climate variability have an impact on water regime and 

fluxes of matters, mainly SS [17]. Dam implementation can cause a significant 

reduction of SF; Vörösmarty et al. (2003) [18] estimated greater than 50% of potential 

sediment trapping by dams in regulated basins. However, reduced sediment transport 

affects estuarine and coastal communities [19]. For example, as a result of reduced 

sediment delivery, many river deltas are sinking, thereby increasing the vulnerability of 

human populations depending on their ecosystem services for survival [15].  

Therefore, understanding and quantifying hydrology, soil and biogeochemical 

processes, and budgets are essential in managing water resource, in controlling and 

mitigating soil and pollutant loads. For achieving this, appropriate methods and tools 

are necessary, such as in-situ field measurements, empirical and simple equations, 

remote sensing techniques, geographic information systems, and numerical 

simulations. However, field-collecting data at large spatial and temporal scales is 

expensive, and often impracticable in some remote areas and underdeveloped regions. 

Empirical or/and simple equations, such as sediment rating curves are sometimes 

applied to quantify the SF [20–23]. However, a sediment rating curve requires 

discharge (Q) as an input, which might not be available for remote and underdeveloped 

regions, and its parameters can vary a lot among a big drainage basin. Therefore, this 
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method might neither be the best choice for calculating the SF at a daily basis nor in a 

large basin. Modeling is a good tool, combined with other techniques (such as remote 

sensing), to compensate the above shortages. Simulations can be carried out at a 

large spatial scale and at a daily time scale to quantify, analyze and forecast water 

resources and quality. In particular, it can realistically represent the spatial variability 

of the basin, which will provide a global view of the whole basin. Many physically based 

hydrological models had been used [24–27], such as MIKESHE [28], HSPF [29] and 

Soil and Water Assessment Tool (SWAT) [30]. Among these models, SWAT has been 

proved to obtain good hydrological predictions with a little direct calibration in many 

different basins around the world [26,27,31], and more applications can be found in 

SWAT literature database: https://www.card.iastate.edu/swat_articles/.  

Although SWAT has been applied to many Asian basins, and also to subtropical or/and 

tropical areas, most of them were at a scale of 77 to 105,000 km2 [31–35]. The Red 

River is a typical Asian river system, combining different land uses, affected by human 

activities such as intensive dam implementations and agriculture [36,37]. Recent 

studies of hydrology and suspended sediment in this basin mainly used data from 

gauge stations or sampling to do statistical analysis [38–41], or use modeling to 

perform simulations at a local scale [42] or in the delta part [43] at a monthly scale; few 

studies analyzed fluxes at daily scale, but only on a short period [37], in the delta [44] 

or only for discharge or suspended sediment [45]. Both Q and SSC can vary greatly 

from day to day; therefore, it would be more favourable to calculate flux at a daily scale. 

Also, water quality monitoring is usually carried out during some specific days in a 

month, and outputs from a model at daily scale can be practical and useful for further 

studies. In addition, different scenarios of global changes can be considered to help 

researchers or government administrators to compare different possibilities and set up 

long-term management plans.  

Hence, the objective of this paper is to apply a new tool in the Red River basin to 

analyze hydrology and suspended sediment transport in order to diagnose impacts of 

the global changes by separating the effect of climate variability and anthropogenic 

influences. The model was applied: (1) to characterize the hydrology of the basin at 

daily scale; (2) to quantify the SSC in time and space; (3) to assess the impacts of 

climate variability and dams in a separate way.  

2. Materials and Methods  

2.1. Study Area  

2.1.1. General Characteristics  

The Red River basin, located in Southeastern Asia, is a portion of the international 

border among China, Laos and Vietnam. Of the total area, 49% lies in China, 0.9% in 

Laos and 50.1% in Vietnam. The Red River originates in Dali, Yunnan Province (China), 

which is a mountainous region, at an elevation of 2650 m a.s.l. [46]. Due to the 
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accessibility of the data and considering the influence of the tide, our study area 

focused only on the continental basin with a surface of 137,200 km2 that drained down 

to Son Tay, which is the outlet of the continental basin and the entrance of the delta 

(Figure 1).  

The upper part of the main river, before Son Tay, is called the Thao River. It receives 

two main tributaries: the Da River from the right bank, and the Lo River from the left 

bank. These two tributaries join the Red River just 20 km upstream to the Son Tay 

gauging station.  

  

Figure 1. Map of the Red River basin: geographical location of study area in Asia; hydrological gauge 
stations and dams.  

Rapid increase of population and intensive agriculture activities inside the Red River 

basin require more water supplies for urban, industry and agriculture use, and more 

and more dams and irrigation channels are built to meet these demands both in China 

and Vietnam. In the upstream of the Thao River in China, twelve cascade hydropower 

stations are under construction. The Nansha Dam and the Madushan Dam started 

impoundment on November 2007 and December 2010, respectively, on the Thao River. 

On the Da River, the biggest dam named Hoa Binh was put into use in 1989. The Hoa 

Binh dam has trapped a mass of solid materials, and sedimentation in the reservoir 

reduces the dam’s efficient capacity and life [39]. Therefore, in order to mitigate the 

siltation of the Hoa Binh dam and to meet the need of economic growth, the Son La 

dam (upstream) was built and put into use on December 2010. On the Lo River, the 

Thac Ba dam was implemented in 1972 and the Tuyen Quang dam was carried out on 

March 2008. More details of these dams can be found in Table 1.  
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Table 1. Basic Characteristics of the Dams [41].  

Name  

(Basin)  
Construction  Operation  

Capacity   

(× 109 m3)  

Mean Water  

Level   

(m)  

Mean Annual  

Discharge  

(m3/s)  

Maximum  

Discharge   

(m3/s)  

Nansha 

(Thao)  

February  

2006  

November  

2007  
0.26  267  261  –  

Madushan 

(Thao)  

December  

2008  

December  

2010  
0.55  217  302  –  

Hoa Binh 

(Da)  
1980  1989  9.50  115  1780  2400  

Son La  

(Da)  

December  

2005  

December  

2010  
9.26  215  1530  3438  

Thac Ba  

(Lo)  
1965  

October  

1971  
2.90  58  190  420  

Tuyen  

Quang   

(Lo)  

December  

2002  

March  

2008  
2.24  120  318  750  

The upstream part in China is dominated by tectonically active montane areas with 

steep slopes, usually above 25° [47]. Intensive rainfall and prominent contradiction 

between human and land make this area vulnerable to high erosion with steep slopes 

[38,48,49]. The main soil types are Acrisols, such as latosol, red earth, yellow brown 

soil and fluvisol [48,50]. Therefore, high erosion plus the character of soil types colour 

the water of the Thao River and the Da River into “red” [50]. In Vietnam, the same 

Acrisols dominate on the slopes, and grey or alluvial soils dominate in the valleys [41]. 

Land use in China is mainly forest, accounting for 62% of the area, followed by 

grassland and cultivated land, accounting for 19% and 18%, respectively [1] (Li et al., 

2016). Land use varies in Vietnam in different sub-basins: in the main stream basin 

(Thao basin), forest is the dominant land use, accounting for 54.2%, followed by rice 

paddy fields (18.7%) and industrial crops (mainly coffee, rubber, tobacco, etc.) (12.8%); 

the Lo basin and the Da basin dominate industrial crops (58.1%) and forests (74.4%), 

respectively [37].  

2.1.2. Meteorological and Hydrological General Characteristics  

The whole Red River basin passes across two climate zones, from sub-tropical humid 

monsoon in the upstream basin to tropical humid monsoon in the downstream part. 

Both zones are marked by a strong seasonality, and controlled by monsoon intensity. 

The rainy seasons occur from May to October, with precipitation accounting for over 

85–90% of the whole year [37,51]. The spatial distribution of precipitation is uneven—

in China, it ranges from 700 to 3000 mm year−1, averagely around 1000 to 1600 mm 

year−1, and the general trend of regional precipitation distribution increases from 

upstream to downstream [52,53]; and in the part of basin in Vietnam, the precipitation 

ranges from 1328 to 2255 mm year−1 [37]. The precipitation input used for the model, 

a product from the Tropical Rainfall Measuring Mission (TRMM), presents a mean 

value of 1507 mm year−1, which is in the range of the precipitation observed in whole 

basin. More explanations and details about TRMM is presented in Section 2.3.2.  
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Temperature changes follow a classic orographic pattern: the mean annual 

temperature upstream in China varies from 15 to 21 °C [52], while in Vietnam it ranges 

from 14 to 27 °C [50]. Temperature is lower in valley areas.  

Potential evapotranspiration (PET) ranges from 880 to 1150 mm year−1, and its mean 

value was 1040 mm year−1 [37]. Simons et al. [54] who used global satellite-derived 

data to calculate actual evapotranspiration in the whole basin showed values in the 

range of 860 to 1117 mm year−1.  

The hydrology in this region is affected by the monsoon climate and the runoff is mainly 

recharged by precipitation, which led to large inter-seasonal variations in river flows 

[51,53,55]. From the hydrology data that we collected, the mean annual discharge in 

Son Tay during 2000–2015 was 3082 m3 s−1. Corresponding to temporal precipitation 

distribution, the runoff is also uneven in intra-annual distribution: flood season occurs 

from June to November during which time the accumulated runoff accounts for more 

than 80% of the total annual runoff; low water seasons occur from December to May. 

The lowest discharge of the upstream Thao River in China usually occurs in March, 

and the minimum discharge of the Thao River observed near the border between 

China and Vietnam was 28.7 m3 s−1 in 1963 [56]. The lowest discharge at Son Tay 

generally showed up in March, and from the discharge data we collected, the minimum 

daily discharge at Son Tay during 2000–2015 was 493 m3 s−1 (in February 2010). Peak 

runoff usually occurs in August, and the maximum flood was 8050 m3 s−1 observed at 

the gauge station near the boundary in China in 1986 [52], while it was 37,800 m3 s−1 

at Son Tay in 1971 [44].  

2.2. Modeling Approach  

2.2.1. The SWAT Model  

The Soil and Water Assessment Tool (SWAT) is a physically based, semi-distributed 

hydrological model, which requires topography, weather, soil, land use and land 

management practices, to simulate the water, sediment and agricultural chemical 

yields in large complex basins where there might be no monitoring data with over long 

periods of time [57]. For modeling, a basin will be firstly partitioned into sub-basins, or 

sub-basins which are then further subdivided into hydrological response units (HRU) 

with homogeneous land use, soil type and slope.  

SWAT has been applied in Asian basin and performed well in various simulations 

[35,58–60], and also in tropical areas [61–66]. In South East Asia, SWAT was 

commonly applied to Mekong river basin [35,60,67] or some local small-scale basins 

[42,58,61,65,68–71]. This paper applied the SWAT model in a large-scale basin in the 

tropical South East Asia.  

2.2.2. Hydrological Modeling Component in SWAT  

Water balance is the driving force in SWAT regardless of what kind of problems people 
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want to deal with. Two major divisions are considered in simulating the hydrology of a 

basin: the hydrological cycle over the lands, and in the channel network.  

Over the lands, SWAT simulates surface runoff volumes and peak runoff rates for each 

HRU using daily or sub-daily rainfall amounts. For computing surface runoff volume, a 

modification of the Soil Conservation Service (SCS) curve number method [72] is used. 

Peak runoff rate is predicted based on the water transient time in the sub-basin 

according to a flood event. In routing phase, surface flow is simulated using a variable 

storage coefficient method developed by Williams (1969) [73] or the Muskingum 

routing method [74]. In this work, SCS curve number method and variable storage 

coefficient method, along with daily climate data, were used for surface runoff and 

streamflow computations.  

The Hargreaves method [75], which required air temperature alone, was chosen to 

calculate the potential evapotranspiration (PET).  

2.2.3. Suspended Sediment Modeling Component in SWAT  

SWAT considers sediment transport both over the landscape component and in the 

channel component.  

In landscape component, the model tracks particle size distribution of eroded 

sediments and routes them through ponds, channels and surface water bodies. 

Erosion and sediment yield are calculated with the Modified Universal Soil Loss 

Equation (MUSLE) for each HRU [57,76]. This equation considers the surface runoff 

volume, peak runoff rate, soil erodibility, land cover and management and topographic 

and coarse fragment factor as follows:  

𝑠𝑒𝑑 = 11.8 ∙ (𝑄𝑠𝑢𝑟𝑓 ∙ 𝑞𝑝𝑒𝑎𝑘 ∙ 𝑎𝑟𝑒𝑎ℎ𝑟𝑢)
0.56

∙ 𝐾𝑈𝑆𝐿𝐸 ∙ 𝐶𝑈𝑆𝐿𝐸 ∙ 𝑃𝑈𝑆𝐿𝐸 ∙ 𝐿𝑆𝑈𝑆𝐿𝐸 ∙ 𝐶𝐹𝑅𝐺              (1)  

where sed is the sediment yield on a given day (t), Qsurf is the surface runoff volume (mm 

H2O ha−1), qpeak is the peak runoff rate (m3 s−1), areahru is the area of the HRU (ha), KUSLE 

is the USLE soil erodibility factor (0.013 t m2 h m−3 t−1 cm−1), CUSLE is the USLE land cover 

and management factor (dimensionless), PUSLE is the USLE support (agricultural) 

practice factor (dimensionless), LSUSLE is the USLE topographic factor (dimensionless) 

and CFRG is the coarse fragment factor (dimensionless). The sources of data used to 

determine each parameter are reported in Section 3.3.1.  

The sediment routing in the channel is a function of two processes: deposition and 

degradation, operating simultaneously in the reach. The Simplified Bagnold equation 

(1977) [77] is used as a default method for the sediment routing in stream channels, 

which determines degradation as a function of channel slope and flow velocity. The 

maximum amount of sediment that can be transported is a function of the peak channel 

velocity, as follows: 

𝑐𝑜𝑛𝑐𝑠𝑒𝑑,𝑐ℎ,𝑚𝑥 = 𝑐𝑠𝑝 ∙ 𝑣𝑐ℎ,𝑝𝑘
𝑠𝑝𝑒𝑥𝑝 = 𝑐𝑠𝑝 ∙ (

𝑞𝑐ℎ,𝑝𝑘

𝐴𝑐ℎ
)

𝑠𝑝𝑒𝑥𝑝
= 𝑐𝑠𝑝 ∙ (

𝑝𝑟𝑓∙𝑞𝑐ℎ

𝐴𝑐ℎ
)

𝑠𝑝𝑒𝑥𝑝
               (2)  
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where concsed,ch,mx is the maximum concentration of sediment that can be transported by 

the water (t m−3), csp is a coefficient defined by the user (dimensionless), vch,pk is the 

peak channel velocity (m s−1), spexp is an exponent defined by the user (dimensionless), 

qch,pk is the peak flow rate (m3 s−1), Ach is the cross-sectional area of flow in the channel 

(m2), prf is the peak rate adjustment factor, and qch is the average rate of flow (m3 s−1). 

More details on these parameters and their usual ranges are reported in Section 3.3.1.  

The maximum concentration of sediment calculated with Equation (2) is compared to 

the concentration of sediment in the reach at the beginning of the time step (concsed,ch,i, 

in t m−3). If concsed,ch,i > concsed,ch,mx , deposition is the dominant process in the reach 

segment and the net amount of sediment deposited is calculated as:  

𝑠𝑒𝑑𝑑𝑒𝑝 = (𝑐𝑜𝑛𝑐𝑠𝑒𝑑,𝑐ℎ,𝑖 − 𝑐𝑜𝑛𝑐𝑠𝑒𝑑,𝑐ℎ,𝑚𝑥) ∙ 𝑉𝑐ℎ                     (3) 

where seddep is the amount of sediment deposited in the reach segment (t), and Vch is 

the volume of water in the reach segment (m3).  

If concsed,ch,i
  < concsed,ch,mx, the available stream power is used to re-entrain loose and 

deposited material until all of the material is removed. Excess stream power causes 

bed degradation, and the net amount of sediment re-entrained is adjusted for stream 

bed erodibility and cover as follow: 

𝑠𝑒𝑑𝑑𝑒𝑔 = (𝑐𝑜𝑛𝑐𝑠𝑒𝑑,𝑐ℎ,𝑚𝑥 − 𝑐𝑜𝑛𝑐𝑠𝑒𝑑,𝑐ℎ,𝑖) ∙ 𝑉𝑐ℎ ∙ 𝐾𝑐ℎ ∙ 𝐶𝑐ℎ         (4)  

where seddeg is the amount of sediment re-entrained in the reach segment (t), Kch is the 

channel erodibility factor and Cch is the channel cover factor.  

2.3. SWAT Data Inputs  

SWAT requires inputs as topography, land cover, soils and meteorological data. All the 

inputs used in this study are listed in Table 2.  

2.3.1. Topography, Land Use and Soil  

The landscape slopes were divided into 5 classes by SWAT based on the information 

from DEM (details are shown in Figure 2a). The dominant lands are forest (27.56%, 

with 14.65% of evergreen forest (FRSE in SWAT model), 12.49% of mixed forest 

(FRST) and 0.42% of deciduous forests (FRSD)); agriculture (ARGL, 21.16%); range-

grasses (RNGE, 19.94%); wheatgrass (19.57%, with 10.03% of western wheatgrass 

(WWGR) and 9.54% of crested wheatgrass (CWGR)) (Figure 2b).  

There are 21 specific soils in study area (Figure 2c); however, most of them are 

Acrisols [78]. Resolutions and download links can be found in Table 2.  
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           (a)                           (b)              (c) 

Figure 2. (a) Slop classes; (b) land use map; (c) soil types.  

2.3.2. Meteorological Data  

Daily temperature data were obtained from the Global Weather Data in SWAT file 

format for a given location and time period. These data come from the daily Climate 

Forecast System Reanalysis (CFSR).  

Daily precipitation data was obtained from the Tropical Rainfall Measuring Mission 

(TRMM, product 3B42 V7), which is a research satellite designed to provide needed 

information on rainfall by covering the tropical and sub-tropical regions of the Earth. 

Simons et al. [54] compared several satellite-based precipitation and actual 

evapotranspiration products in the Red River basin in order to demonstrate that these 

datasets can be merged to examine hydrological processes before applying a 

numerical simulation model, and they found that TRMM rainfall product could provide 

reliable values in both space and time at this basin.  

Table 2. SWAT Inputs and Hydrology Datasets.  

Data Type 
Resolution/Time 

Scale/Period 
Source 

Topography (DEM) 1 × 1 km 
Shuttle Radar Topography Mission 

(SRTM30 30 arc-sec, http://www2.jpl.nasa.gov/srtm) 

Land cover 1 × 1 km 

Global Land Cover 2000 database 

(https://forobs.jrc.ec.europa.eu/products/glc2000/glc20 

00.php) 

Soil types 1 × 1 km 
Harmonized World Soil Database 

(http://webarchive.iiasa.ac.at/Research/LUC) 

Temperature 
daily scale 

Jane 1998 to July 2014 

Climate Forecast System Reanalysis: 

Global Weather Data for SWAT 

(https://globalweather.tamu.edu/) 

Precipitation 

daily scale 

0.25° × 0.25° 

Jane 1998 to December 

2014 

Tropical Rainfall Measuring Mission (TRMM, 

https://pmm.nasa.gov/TRMM) 

Discharge and 

suspended 

sediment 

concentration 

5 stations: Lao Cai, Yen 

Bai, Vu Quang, Hoa 

Binh, Son Tay daily scale 

Jane 2000 to December 

2014 

Vietnam Ministry of Natural Resources and Environment 

(MONRE) 
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2.3.3. Dam Implementations  

SWAT requires basic information, such as date of impoundment, reservoir surface 

area, emergency volume, principal volume and initial volume. The volume of outflow 

can be calculated by one of the following methods: measured daily outflow, measured 

monthly outflow, average annual release rate and controlled outflow with target release. 

As it is impossible to get the detailed outflow of dams, and in order to avoid the complex 

conditions of release operations and to enable the model to be applied for future 

hydrology regime prediction, the average annual release rate method that releases the 

water whenever the dam volume exceeds the principal spillway volume [57] was 

selected. A minimum and a maximum average daily releases for the month were 

limited for the model according to the Q data we collected and to the release 

information from reference [37].  

The six dams localized in Figure 1 were taken into account in the model. Two dams 

are located on the main stream of the Thao River, around 150 km and 100 km 

upstream of Lao Cai, respectively; two are on the Da River; and the other two are on 

the Lo River. However, inside this basin, there are more dams that were put into use 

[79], or are under construction during simulation period; and these dams are located 

more in the upper regions and most are with less capacities. Here, the model only took 

these six dams with large capacity into account, and also they are located closer to the 

outlet of each tributary, see Table 1.  

2.4. Model Set Up  

SWAT2012 and ArcGIS10.4 were used. The whole basin was divided into 242 sub-

basins and then subdivided into 3812 different HRUs.  

Two scenarios were simulated: (1) actual situation and (2) natural situation. Simulation 

was carried out at three temporal scale (daily, monthly and annually) during an 

overlapped period, from January 2000 to July 2014.   

2.5. Calibration and Validation Process  

The model was calibrated at a daily scale using Q and SSC from 1 January 1998 to 31 

July 2014 with a two-year warm-up. Parameters were mainly calibrated manually, and 

some were automatically calibrated by using SWAT-CUP [80]. SWAT-CUP is a tool 

that allows SWAT users to perform automatic calibrations [81]. Five algorithms are 

proposed for calibration purpose [80,82]. The SUFI-2 (Sequential Uncertainty Fitting 2) 

algorithm [82], which can identify appropriate parameters sets in a limited number of 

iterations, was selected in this study. Calibration of Q was first carried out, followed by 

SSC.  

Observed data of daily Q and SS concentration from 2000 to 2014, obtained from the 

Vietnam Ministry of Natural Resources and Environment (MONRE) at Lao Cai, Yen 

Bai, Vu Quang, Hoa Binh and Son Tay stations, were used to calibrate the model. 
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Figure 1 shows the location of each gauge station. Time series plots and statistical 

methods were used to evaluate the performance of model in simulating Q and SSC.  

Values from other references [37,39,43,50,51,53,83–85] are used to be validations of 

the water regime and SSC.  

2.6. Model Evaluation  

2.6.1. The Coefficient of Determination (R2)  

R2 describes the proportion of the variance in measured data explained by the model. 

R2 is calculated as follows:  

𝑅2 =
∑ (𝑂𝑖−𝑂𝑛

𝑖=1 )(𝑆𝑖−𝑆)

√∑ (𝑂𝑖−𝑂𝑛
𝑖=1 )2√∑ (𝑆𝑖−𝑆)𝑛

𝑖=1

2
                                       (5)  

where 𝑂 and 𝑆 are the observed and simulated values, n is the total number of values, 

𝑂 is the mean of observed values and 𝑆 is the mean of simulated values.  

R2 ranges from 0 to 1, with higher values indicating less error variance, and typically 

values greater than 0.5 are considered acceptable [86].  

2.6.2. The Nash–Sutcliffe Efficiency (NSE)  

NSE is a normalized statistic that determines the relative magnitude of the residual 

variance compared to the observed data variance [87], calculated as follows: 

  NSE = 1 −
∑ (𝑂𝑖−𝑆𝑖)𝑛

𝑖=1
2

∑ (𝑂𝑖−𝑂)𝑛
𝑖=1

2                                                  (6)  

NSE ranges from negative infinity to 1.00, with NSE=1 being the optimal value. A 

negative value indicates that the mean value of the observed time series would have 

been a better predictor than the model [88]. NSE values between 0.0 and 1.0 are 

generally regarded as acceptable levels of performance. Related to the guidelines 

proposed by Moriasi et al. [86], NSE values above 0.5 are considered as satisfactory 

in hydrological modeling. Performance ratings for statistics of monthly scale provided 

by Moriasi et al. [86] are reported in Table 3.  

2.6.3. The Percent Bias (PBIAS)  

PBIAS provides the information of average tendency of the simulated data to be larger 

or smaller than their observed counterparts. The optimal value is 0.0, with low-

magnitude values indicating accurate model simulation. Positive and negative values 

indicate model underestimation bias and overestimation bias, respectively. Equation is 

presented as follows:  

PBIAS =
∑ (𝑂𝑖−𝑆𝑖)×100𝑛

𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

                                           (7)  
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Table 3. General Performance Ratings for NSE and PBIAS of a Monthly Time Scale [86].  

Performance Rating NSE 
PBIAS 

Q SSC 

Very good 0.75 < NSE ≤ 1.00 PBIAS < ±10 PBIAS < ±15 

Good 0.65 < NSE ≤ 0.75 ±10 ≤ PBIAS < ±15 ±15 ≤ PBIAS < ±30 

Satisfactory 0.50 < NSE ≤ 0.65 ±15 ≤ PBIAS < ±25 ±30 ≤ PBIAS < ±55 

Unsatisfactory NSE ≤ 0.50 PBIAS ≥ ±25 PBIAS ≥ ±55 

According to Moriasi et al. [86], these guidelines should be adjusted based on the 

quality and quantity of measured data, model calibration procedure and evaluation time 

step.  

3. Results  

3.1. Q Simulation and Hydrological Assessment  

3.1.1. Hydrological Parameters  

Table 4 presents the calibrated parameters for Q and SSC, and their definitions and 

ranges. Sensitive hydrological parameters are chosen by literature reviews [64,89–

91]. Relative change of parameters was controlled within ±20%, and absolute change 

was done by referring to the aforementioned literatures and theoretical documents 

[57,81,91,92]. Based on actual information from the MONRE and literatures [50,83], 

parameters like runoff curve number (CN2), soil evaporation compensation factor 

(ESCO), available water capacity of the soil layer (SOL_AWC) and parameters related 

to groundwater (GW_REVAP, REVAPMN, RCHGR_DP, GWQMN, GW_DELAY) were 

calibrated to fit the actual water balance. Compared to the default values, ESCO was 

decreased and GW_REVAP was increased to increase the ET; SOL_AWC was 

increased by 20%; CN2 was decreased by 10%; REVAPMN was increased; and 

RCHGR_DP and GWQMN were decreased to decrease the surface flow, which 

accordingly increased the groundwater flow. Other parameters related to hydrological 

processes were calibrated to fit the baseflow and peaks, and they were interpreted in 

the following sub-section. 
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Table 4. Parameters Used to Calibrate Flow and Suspended Sediment Concentration for Different 
Basins. 

Parameter  
(Name in 

Equations) 
Input File Definition Range Calibrated Value 

OV_N .hru 
Manning’s “n” value for overland 

flow 
0.01–30 0.4 

SLSUBBSN .hru Average slope length (m) 10–150 
×1.2 

(relative change) 
HRU_SLP .hru Average slope steepness (m/m) – ×0.8 

ESCO .hru 
Soil evaporation compensation 

factor 
0–1 0.7 

PRF 
(prf) 

.BSN 
Peak rate adjustment factor for 
sediment routing in the main 

channel 
0–2 1 

SPCON 
(Csp) 

.BSN 

Linear parameter for calculating 
the maximum amount of 
sediment that can be re-
entrained during channel 

sediment routing 

0.0001–0.01 

0.008 
(Period 2000–2007) 

0.002 
(Period 2008–2014) 

SPEXP 
(spexp) 

BSN 
Exponent parameter for 

calculating sediment re-entrained 
in channel sediment routing 

1–2 2 

ALPHA_BF .gw Baseflow alpha factor 0–1 0.02 
GW_REVAP .gw Groundwater “revap” coefficient 0.02–0.20 0.03 

REVAPMN .gw 

Threshold depth of water in the 
shallow aquifer for “revap” or 

percolation to the deep aquifer to 
occur 

0–1000 800 

RCHGR_DP .gw Deep aquifer percolation fraction 0.0–1.0 0 

GWQMN .gw 
Threshold depth of water in the 

shallow aquifer required for 
return flow to occur 

0–5000 600 

GW_DELAY .gw Groundwater delay time 0–500 16 

SOL_AWC .sol 
Available water capacity of the 

soil layer 
0–1 ×1.2 

USLE_K 
(KUSLE) 

.sol 
USLE equation soil erodibility (K) 

factor 
0–0.65 

Thao River basin 0.3 
Lo River basin 0.2 
Da River basin 0.3 

CH_COV1 
(Kch) 

.rte The channel erodibility factor −0.05–0.6 

Thao River basin: 
upstream Yen Bai: 

0.23; 
Yen Bai-Son Tay: 0.013 

Lo River basin 0.013 
Da River basin 0.026 

CH_COV2 
(Cch) 

.rte Channel cover factor −0.001–1 1 

CH_N2 .rte 
Manning’s “n” value for the main 

channel 
−0.01–0.3 0.05 

USLE_P 
(PUSLE) 

.mgt 
USLE equation agricultural 

practice factor 
0–1 

Thao River basin 
0.7(agriculture) 
Lo River basin 
0.4(agriculture) 
Da River basin 
0.7(agriculture) 

FILTERW .mgt Width of edge-of-field filter strip 0–100 
Thao River basin 0 
Lo River basin 25 
Da River basin 0 

CN2 .mgt Initial SCS runoff curve number 35–98 
×0.9 

(Relative change) 

CH_N1 .sub 
Manning’s “n” value for the 

tributary channels 
0.01–30 1 

3.1.2. Q simulations  

Daily and monthly evaluation statistics are presented in Table 5. According to the NSE 

of daily scale Q simulations, results are acceptable (as NSE > 0) for the stations on 

the Thao, Lo and Da rivers, and is satisfactory (NSE > 0.5) for Son Tay. At monthly 

scale, the performance of the model is good, except at Vu Quang station where it is 

satisfactory. PBIAS values indicate that the model underestimated the discharge for 
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majority stations except for Yen Bai. The absolute values of PBIAS were within 21.3, 

which is satisfactory. Hence, according to the statistic evaluations, the model 

performed well simulating Q at both daily and monthly scales.  

Table 5. Evaluation Statistics of Observed and Simulated Discharge (Q), Suspended Sediment 
Concentration (SSC) and Sediment Flux (SF) on Different Time Scales for Each Station.  

Constituent Scale Statistics 
Lao 

Cai 

Yen 

Bai 

Vu 

Quang 

Hoa 

Binh 

Son 

Tay 

Q 

(m3/s) 

Daily 

NSE 0.44 0.35 0.38 0.49 0.61 

R2 0.57 0.52 0.45 0.53 0.64 

PBIAS 2.8 −11.2 21.2 18.1 6.0 

p-value <0.01 <0.01 <0.01 <0.01 <0.01 

Monthly 

NSE 0.78 0.78 0.58 0.70 0.85 

R2 0.82 0.88 0.65 0.77 0.86 

PBIAS 2.8 −11.0 21.3 17.9 5.9 

p-value <0.01 <0.01 <0.01 <0.01 <0.01 

SSC 

(mg/L) 

Daily 

NSE 0.31 0.23 0.02 0.10 0.19 

R2 0.34 0.30 0.29 0.36 0.34 

PBIAS −21.4 −28.7 −46.5 −26.3 −28.0 

p-value <0.01 <0.01 <0.01 <0.01 <0.01 

Monthly 

NSE 0.70 0.64 0.24 0.59 0.52 

R2 0.73 0.71 0.55 0.67 0.70 

PBIAS −21.5 −27.3 −46.8 −26.5 −29.5 

p-value <0.01 <0.01 <0.01 <0.01 <0.01 

Figure 3 illustrates the observed and simulated Q comparisons at daily and monthly 

scale for five stations. Simulated Q shows the same trends as observed Q. At daily 

scale, the model underestimated base Q at Vu Quang station; and simulated peak Q 

was underestimated during some floods, especially at Vu Quang and Hoa Binh stations. 

At Son Tay, at the confluence of the Thao, the Lo and the Da rivers, the simulated Q 

shows a better agreement with both the base Q and peak Q. At monthly scale, peaks 

fit well on the Thao River (Lao Cai and Yen Bai) and at Son Tay, while they were 

underestimated on the Lo (Vu Quang) and the Da River (Hoa Binh); and 

underestimation on baseflow are only largely noticeable at Vu Quang on a monthly 

scale.  
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               (a)                                                          (b) 

Figure 3. Observed (black dot) and actual simulated (red solid line) daily (a) and monthly (b) 
discharge (Q) at five stations from January 2000 to July 2014. Blue solid line represents the scenario 
simulation of Q under natural conditions.  
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3.2. SSC Simulation  

3.2.1. Calibration of SSC  

As shown in Section 2.2.3, two groups of parameters were considered, and their 

calibrated values are shown in Table 4.  

A first group of parameters related to landscape processes are involved in Equation 

(1). Among these parameters, USLE_K and USLE_P are sensitive to soil erosion. Due 

to the soil characteristics (poor stability and erosion resistance), the Thao and Da 

basins are more vulnerable to soil erosion [47]. Therefore, USLE_K of the Thao and 

Da basins (0.3) were higher than that of the Lo basin (0.2). The agricultural practice 

factor, USLE_P, is defined as the ratio of soil loss with a specific agricultural practice 

(such as contour tillage, strip cropping on the contour and terrace systems) to the 

corresponding loss with up-and-down slope culture [57]. In the Thao and Da basins, 

contour tillage and terrace are common in mountainous regions, such as in Yuanyang 

County in China and Sa Pa in Vietnam. In the Lo basin, industrial crops and rice paddy 

are common because of its lower slope. Therefore, referring to the values in 

accordance with different slopes, 0.7 was set for USLE_P for the agriculture land use 

in Thao and Da basins and 0.4 for the agriculture land use in the Lo basin. Sediment 

yield from landscape can be lagged and trapped routed through grassed waterway and 

vegetative filter strips before reaching the stream channel. In the Lo basin, edge-of-

field filter strips, which could be cultivated lands, grass and bush, are widely distributed 

along the river, while in the other two sub-basins, there are no such filter strips due to 

the steep valley. From measurements on Google Earth views, the width can range 

from 20 m to more than 300 m. Combining filed investigation, expertise from local 

researchers and calibrations from model, a width edge-of-field filter strips of 25 m was 

set for FILTERW in the Lo basin, which is considered as an average and approached 

value.  

A second group of parameters, relating to in-stream SS process (deposition and 

aggradation), is required for Equation (2), which is more familiar with a power function 

sediment rating curve as:  

 SSC = α𝑄β  (8)  

where α and β are regression coefficients.  

SPCON, SPEXP and PRF are the key parameters that control the maximum 

concentration of sediment that can be transported by the flow. SPCON corresponds 

to α and it is a proxy to express the river bed erodibility; the PRF parameter modulates 

the SPCON behavior, and the default value of PRF often equals 1. SPEXP 

corresponds to β to express the erosive power of the river [39]. According to Asselman 

[22], a low α-value coupled to a high β-value are characteristic of river sections with 

little sediment transport at low discharge. During the study period (2000–2014), the 

Red River basin encompassed large ranges of measured SSC values: 6.9–18,300 
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mg/L in the Thao River; 0.6–3350 mg/L in the Lo River; 0.4–481 mg/L in the Da River; 

and 2.1–4100 mg/L in the Red River at Son Tay. The Red River transports little 

sediment at low discharge, and a low α-value and a high βvalue should be set for this 

basin. Therefore, SPEXP was set to 2, and SPCON was calibrated after PRF and 

SPEXP were fixed. A value of 0.008 was set to SPCON before dam implementations, 

from 2000 to 2007. After dam implementations, the coarser particles were retained by 

dams, and the particle size distribution was affected downstream, leading to a change 

in the channel erodibility. Then, the dynamics of downstream suspended sediment 

transport decreased. Due to the complexity of dam implementations over the study 

period, we assume that the hydrodynamics of SS transport by the rivers in the Red 

River changed after 2007. Indeed, the Nansha dam is operational since 2008, and the 

Madushan dam construction started by the end of 2008; then Tuyen Quang is 

operational since 2008. Therefore, a lower value of SPCON (0.002) was set for the 

period from 2008. In Equation (4), two parameters are related to degradation process: 

CH_COV1 is the channel erodibility factor, and CH_COV2 is the channel cover factor 

channel. CH_COV1 is a function of properties of the bed or bank materials, and is 

conceptually similar to the soil erodibility factor used in the USLE equation [57]. 

CH_COV2 was set to 1, which means there is no vegetative cover on channel.  

3.2.2. SSC Simulations  

Statistics evaluation of SSC simulations at daily and monthly scales are shown in Table 

5. According to the general evaluation of NSE and R2, SSC simulations at these 5 

stations are acceptable (NSE > 0, R2 > 0). From the general performance ratings at 

monthly scale recommended by Moriasi et al. [86], Lao Cai, Yen Bai, Hoa Binh, and 

Son Tay stations presented satisfactory and good performance; and for the Vu Quang 

station, though the NSE is not satisfactory, PBIAS is within the satisfactory range. 

PBIAS values indicate that the model overestimated SSC for all stations. Maximum 

absolute values of PBIAS were 46.8%, which is still satisfactory following the Moriasi 

criteria (Table 5). Therefore, according to the statistic evaluations, the model simulated 

SSC at a satisfactory range.  

The simulated SSC is in the range of the observed SSC during the simulation period, 

and showed similar trends to observations at the five stations (Figure 4). However, the 

magnitude of simulated SSC peaks was either underestimated or overestimated during 

some periods. For example, daily simulated SSC peaks were generally 

underestimated before 2009 at Lao Cai, Yen Bai, Hoa Binh, and Son Tay, but monthly 

SSC peaks fit well with observed monthly peaks. Conversely, some monthly simulated 

SSC peaks were overestimated, such as in 2011–2014 at Lao Cai, 2012–2014 at Yen 

Bai, 2006–2007 at Vu Quang, 2005 at Hoa Binh, and 2003–2006 at Son Tay.  
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                   (a)                                                            (b) 

Figure 4. Observed (black dot) and actual simulated (red solid line) daily (a) and monthly (b) 
suspended sediment concentration (SSC) at five stations from January 2000 to July 2014. Blue solid 
line represents the scenario simulation of SSC under natural conditions.  

3.3. Impacts of Climate Variability and Dams  

In order to identify and separate the impacts of climate variability and dams, analysis 

was carried out based on the annual mean Q and SSC of natural conditions (without 

dams) and actual conditions.  

3.3.1. Impacts on Q  

Table 6 presents the annual mean Q in each year and the variation tendency of each 

station under different scenarios.  

For the whole study period, under natural conditions, the biggest decreasing tendency 

of Q is at Son Tay station, followed by Yen Bai station, and least decreasing tendency 

is at Vu Quang station; under actual conditions, the annual mean Q decreased at 

almost the same degree at most stations compared with those under natural conditions, 

except at Hoa Binh station and consequently at Son Tay. During 2008–2013, the 

natural annual mean Q showed bigger decreasing tendencies compared to 2000–2013; 

actual annual mean Q decreased faster on the Thao River and Da River.  

Decreasing rate was calculated from comparison between 2000–2007 and 2008–2013. 

The actual annual mean Q during 2008–2013 at Son Tay reduced to 13% of that during 

2000–2007 under natural conditions; among them 9% was reduced by the climate 

variability, and 4% was caused by the dams upstream. Among the three tributaries, 

the Thao River shows little impacts of dams; the Vu Quang station on the Lo River 

actually shows positive impacts of climate and dams; the Hoa Binh on the Da River 

shows almost equal impacts of climate and dams.  
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Table 6. Annual mean discharge (Q) from 2000 to 2013 and the multi-year annual mean Q of 

2000– 2007 (before new dams’ constructions) and 2008–2013 (after new dams’ constructions). 
Variation tendency of annual mean Q from 2000–2013 and 2008–2013. Impact percentages of 
climate variability and dams.  

Q (m3 s−1) 
Lao Cai Yen Bai Vu Quang Hoa Binh Son Tay 

NC* AC* NC* AC* NC* AC* NC* AC* NC* AC* 

2000 551 551 757 757 694 694 1318 1370 2910 2963 

2001 778 778 1013 1013 803 803 1645 1613 3656 3624 

2002 741 741 971 971 733 733 1687 1688 3489 3491 

2003 796 796 1029 1029 794 794 1677 1619 3696 3637 

2004 520 520 745 745 670 670 1373 1364 2936 2928 

2005 405 405 644 644 717 717 1217 1198 2713 2694 

2006 476 476 666 666 651 651 1455 1456 2920 2921 

2007 605 605 793 793 675 675 1521 1523 3123 3125 

2008 693 693 995 995 975 1006 1810 1774 4019 4015 

2009 406 406 623 623 722 763 1240 1391 2736 2928 

2010 348 348 516 516 567 567 1110 849 2304 2043 

2011 365 349 574 557 654 656 1221 1034 2603 2401 

2012 351 352 566 568 723 717 1203 1093 2669 2556 

2013 420 420 646 645 763 760 1452 1101 3066 2712 

2000–2007 609 609 827 827 717 717 1487 1479 3180 3173 

2008–2013 430 428 653 651 734 745 1339 1207 2900 2776 

Tendency 

2000–2013 

(m3 s−1 year−1) 

(related R**) 

−27.4 

(0.70) 

−27.7 

(0.70) 

−28.5 

(0.66) 

−28.8 

(0.66) 

−2.7 

(0.12) 

−2.2 

(0.09) 

−22.2 

(0.43) 

−40.8 

(0.62) 

−51.5 

(0.44) 

−69.9 

(0.54) 

Tendency 

2008–2013 

(m3 s−1 year−1) 

(related R**) 

−43.1 

(0.61) 

−43.5 

(0.61) 

−53.1 

(0.57) 

−53.5 

(0.57) 

−27.7 

(0.38) 

−36.6 

(0.46) 

−51.1 

(0.37) 

−116.3 

(0.66) 

−133.3 

(0.42) 

−207.8 

(0.57) 

Impacts of 

climate and dams 
-30% -21% +4% -18% -13% 

Impacts of climate -29% -21% +2% -10% -9% 

Impacts of dams -0.4% -0.3% +2% -8% -4% 

*NC, natural conditions; AC, actual conditions; R**, linear regression. 

  

3.3.2. Impacts on SSC  

Table 7 presented the annual mean SSC in each year and the variation tendency of 

each station under different scenarios.  

For the whole study period, the SSC under natural conditions showed a biggest 

decreasing tendency in the Thao River, followed by the Da River, and least decreasing 

tendency was in the Lo River; under actual conditions, the annual mean SSC 

decreased more severely at most stations than under natural conditions, except at Hoa 

Binh station. During 2008–2013, the natural annual mean SSC showed bigger 

decreasing tendencies compared to 2000–2013; actual annual mean SSC decreased 

faster on the Thao River, then on the Lo and Da River.  

The actual annual mean SSC during 2008–2013 at Son Tay reduced to 89% of that 

during 2000– 2007 under natural conditions; among the 89%, 13% was reduced 

because of the climate variability, and 76% was caused by the dams upstream. Among 
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the three tributaries, Hoa Binh and Vu Quang are influenced more by the dams while 

the Thao River basin is influenced more by the climate variability.  

Table 7. Annual mean suspended sediment concentration (SSC) from 2000 to 2013 and the 

multi-year annual mean SSC of 2000–2007 (before new dams’ constructions) and 2008–2013 
(after new dams’ constructions). Variation tendency of annual mean SSC from 2000 to 2013 
and 2008 to 2013. Impact percentages of climate variability and dams.  

SSC 

(mg/L) 

Lao Cai Yen Bai Vu Quang Hoa Binh Son Tay 

NC* AC* NC* AC* NC* AC* NC* AC* NC* AC* 

2000 1435 1435 1281 1294 241 238 1549 80 682 321 

2001 1860 1860 1660 1671 279 276 1809 90 830 396 

2002 1815 1815 1669 1686 287 283 1836 88 780 362 

2003 1915 1915 1714 1726 277 273 1852 90 848 400 

2004 1383 1383 1244 1257 221 216 1586 76 684 307 

2005 1196 1196 1141 1166 236 231 1446 71 624 296 

2006 1308 1308 1151 1167 225 222 1636 80 679 289 

2007 1498 1498 1338 1347 246 244 1717 84 731 320 

2008 1727 511 1512 576 286 94 1916 33 800 107 

2009 1206 360 1068 438 224 67 1486 22 626 77 

2010 1018 342 983 385 208 65 1394 19 554 77 

2011 1166 388 1028 428 208 64 1455 18 612 75 

2012 1085 381 1005 429 240 69 1384 20 592 78 

2013 1243 409 1140 471 227 66 1597 22 655 83 

2000–2007 1551 1551 1400 1414 251 248 1679 83 732 336 

2008–2013 1241 398 1122 455 232 71 1539 23 640 83 

Tendency 

2000–2013 

(mg L−1 year−1) 

(related R**) 

−48.9 

(0.68) 

−132.9 

(0.89) 

−42.9 

(0.69) 

−111.5 

(0.89) 

−3.5 

(0.53) 

−19.9 

(0.90) 

−21.3 

(0.49) 

−6.7 

(0.89) 

−13.7 

(0.62) 

−28.9 

(0.90) 

Tendency 

2008–2013 

(mg L−1 year−1) 

(related R**] 

−75.3 

(0.56) 

−11.5 

(0.36) 

−57.2 

(0.54) 

−14.5 

(0.41) 

−7.0 

(0.45) 

−3.7 

(0.62) 

−52.6 

(0.49) 

−1.7 

(0.58) 

−22.1 

(0.48) 

−3.5 

(0.53) 

Impacts of 

climate and dams 
-74% -68% -72% -99% -89% 

Impacts of climate -20% -20% -8% -8% -13% 

Impacts of dams -54% -48% -64% -90% -76% 

*NC, natural conditions; AC, actual conditions; R**, linear regression. 

4. Discussion  

4.1. Uncertainties  

4.1.1. Uncertainties of Hydrology Modeling  

Base flow alpha factor (ALPHA_BF), which was sensitive for baseflow, was suggested 

by the Baseflow Filter Program [93,94] to 0.02. Other parameters associated with 

groundwater and baseflow in Table 4 were calibrated by SWAT-CUP under the range 

recommended by SWAT theoretical documentation [57]. Hydrological parameters 

were calibrated at the whole basin, while these three sub-basins are different in 

hydrogeology, soil and land use. This might cause the deviations on the baseflow 

estimation at Vu Quang in the Lo sub-basin. In addition, downstream of the Red River 

system, especially in the Lo River sub-basin, agriculture activities are active and 

intensive, and there are many complex irrigation systems. Water is extracted for 

irrigation from the main stream and delivered to ditch and canal, or water can be taken 

from one river and drainage to another river. This might contribute to uncertainties for 

the baseflow at the Lo River sub-basin.  

The simulation of the peak Q on the Thao River is more satisfactory than on the Lo 
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and Da Rivers. The underestimation during flood season most probably results from 

the errors in either precipitation estimates or uncertainties in observed flow. Le et al. 

[95] indicated that due to the coarse resolution, TRMM rainfall products cannot 

adequately capture extreme rainfall values. The scatter plots of precipitation from rain 

gauge stations versus TRMM products from the study of Liu et al. [96] and Simons et 

al. [54] also showed that high and intensive rainfall is underestimated by TRMM. 

Discharge of high floods is usually extrapolated by rating curve, which can cause 

uncertainties.  

As shown in Table 1, two dams (the Thac Bac dam and the Hoa Binh dam) were 

implemented before the beginning of the simulation period (2000), and other dams 

started to operate since 2008. Upstream of Lao Cai, China has been building cascade 

power stations, and the first one named Nansha dam started to be built on February 

2006 and to work on November 2007, and the second one named Madushan dam 

began to be constructed downstream in December 2008 and started to work in 

December 2010. Upstream of the Lo River, the Tuyen Quang dam has been put into 

function since March 2008. Furthermore, there are at least 10 more smaller dams that 

can be found on Google Earth in Vietnam; however, when these dams were operated 

is difficult to figure out. Upstream of Hoa Binh station, the Son La dam was 

implemented on December 2010, and at least 8 more dams can be seen on Google 

Earth in Vietnam. Certainly, many dams can be also found in Chinese part for both the 

Lo and Da River on Google Earth. Liu et al. [97] pointed that hydrological forecasting 

effectiveness and accuracy would be affected greatly by the construction and operation 

of the cascade reservoirs. It is difficult for the model to precisely simulate the complex 

operation of dam discharge, which depends on the arriving water volume, on the 

downstream water regime, and also on the variation of irrigation storage. Complexities 

can be seen in the base Q from 2010 to 2014 at Hoa Binh station. Besides, as 

mentioned before, there are many small dams and irrigation systems that were not 

taken into account in this model; this also contributed to deviations in simulations. 

These uncertainties of anthropogenic influences, especially the dams, caused 

deviation on calibrations, such as the base Q of 2010–2014 at Vu Quang station. 

Nevertheless, monthly simulated Q at Vu Quang is still satisfactory with NSE of 0.58, 

R2 of 0.65, and PBIAS of 21.3.  

4.1.2. Uncertainties of Suspended Sediment Modeling  

From the daily simulation, we can notice that deviations mainly occur during large 

floods. Some studies [89,98] showed that modeling might underestimate SSC during 

high and intensive rainfall. This underestimation can come from the landscape 

component when using a runoff factor instead of rainfall energy factor, or/and from the 

channel component where particle-size elements are neither tracked nor considered 

in the physical processes in floodplains. As already explained, uncertainties can also 

be related to satellite rainfall estimations from TRMM, or/and from data measurement 

and sampling strategy.  
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The SWAT model used a simplified version of Bagnold [77] stream power equation to 

calculate the maximum amount of sediment that could be transported in a stream 

segment. However, this algorithm does not keep track of particle size distribution of 

elements that pass through the channel, and all are assumed to be of silt size. Further, 

the channel erosion is not partitioned between stream bank and stream bed, and 

deposition is assumed to occur only in the main channel; flood plain sediment 

deposition is also not modeled separately [57]. Therefore, this simplification can cause 

deviations for sediment routing.  

4.2. Water Balance and Yield  

The average annual rainfall during the simulation period, using the TRMM data of 

precipitation, was 1493.6 mm, of which 53% (787.7 mm) was taken away through 

evapotranspiration (ET) and 47% fed the stream flow. The average potential 

evapotranspiration (ETP) predicted by the model was 1293 mm. Le et al. [83] used 

different methods to predict the ETP of this basin, and gave a range from 960 to 1289 

mm for the period 1964–2008, while the actual evapotranspiration (ETA) was 

estimated from 771 to 1186 mm. For streamflow, the model estimated a water yield of 

696.8 mm, which is close to the real water yield, 669 mm, calculated from the data 

collected from the Vietnam Ministry of Natural Resources and Environment (MONRE) 

during the same period. Among the simulated water yield, surface runoff accounted for 

39% while the lateral flow accounted for 3% and the groundwater accounted for 58%. 

This result is in agreement with Le [50] and Bui et al. [84]. Le [50] indicated that the 

groundwater resource in Vietnam is abundant, accounting for around 58% of total 

streamflow, and is a critical component river flow during the dry season. Bui et al. [84] 

underlined on a typical small steep basin of Northern Vietnam that the deep infiltration 

is a key factor of the hydrological pattern in spite of the strong slope gradient above 

30%. Therefore, the model provided a credible simulation for each component.  

Simulated mean annual Q during study period at Lao Cai, Yen Bai, Vu Quang, Hoa 

Binh, and Son Tay are 16.7, 23.7, 23.0, 43.0 and 94.7 km3, respectively, suggesting 

that the Thao River and the Lo River account for nearly 54.6% of the total volume of 

Son Tay, while the Da River accounts for 45.4%. According to the references and data 

we collected from the MONRE, the mean annual runoff volume upstream in China from 

1956–2000 was 14.6 km3, ranging from 8.4 km3 in 1980 to 24.6 km3 in 1971 [53], and 

the simulation at Lao Cai is within this range; and at Son Tay from 1960 to 2010, the 

mean annual runoff was 105.7 km3, with a minimum value of 80.2 km3 in 2010, and a 

maximum of 158.4 km3 in 1971. Other studies indicated that the Da River is the main 

flow contribution to the Son Tay, accounting for 50–57% of the total discharge 

[37,39,85]. Simulations are thus in good agreement with other studies and with the 

observed data.  

Hence, combining with the satellite date, the model performed well at both water 

balance and yield.  
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4.3. Natural Conditions Effects  

In order to find out the driving factors that decrease Q under natural conditions, we 

analyzed the tendency of the annual mean rainfall, evapotranspiration (ET), and 

temperature of the whole basin. From Figure 5, we can see that the annual mean 

rainfall shows decreasing tendencies while temperature shows a contrary tendency. 

ET can come from the water body, the plants and the soil, and it can be influenced by 

many factors, such as geomorphology, climate, soil water content, vegetation cover, 

etc. Ignoring the possible changes of geomorphology and vegetation cover, we 

checked the variation of soil water content and found that it showed a decreasing 

tendency though its decreasing rate is smaller than the one of ET (Figure 5b). Not 

taking into account the runoff loses, the available water yield should theoretically equal 

the difference between rainfall and ET. We can find in Figure 5a that the difference 

between rainfall and ET shows a decreasing trend, which might indicate that the 

average annual water yield decreases. During the study period, the annual mean 

rainfall reduces by 9%, ET reduces by 5%, and temperature increases by 1%. These 

changes result a 13% decrease of available water with a 4% decrease of soil water 

content.  

Table 6 shows that the main impact factor is not the same in different sub-basins. This 

can relate to the regional climate characteristics. From the study of Le et al. [37], 

among these three sub-basins, the mean annual rainfall was highest for the Thao sub-

basin, followed by the Da sub-basin, and then the Lo sub-basin. Therefore, the different 

Q variation rates of each sub-basin can relate to the distribution of rainfall, and the 

decrease of the rainfall might affect the Thao basin most, resulting a biggest Q 

decreasing rate among the three tributaries.  

Different SSC decreasing rates relate to the different soil erosion rates under different 

rainfall intensity of each sub-basin. As described in Section 3.2.1, the Thao and the Da 

basin are more vulnerable to soil erosion; the possible decrease in rainfall might have 

much less impacts on soil erosion in these two sub-basins than in the Lo basin.  

In our study, it is impossible and difficult for us to get all the information of all the dams 

in this large-scale basin, and take all of them into account in this model. Therefore, this 

model cannot strictly represent the natural conditions. However, some of the dams 

locate quite upstream of the Da and Lo tributaries and are with smaller capacities, and 

these reasons can make them have much less impact on the SSC at the outlet of each 

tributary. Hence, removing the 6 dams that we considered in the model might 

maximally reflect the natural conditions.  

Land use changes were not taken into account. However, land use changes have been 

proved to have effects on soil erosion [99]. Therefore, it would be interesting to take 

the land use changes into account in the future.  
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           (a)                                                             (b) 

Figure 5. (a) Annual rainfall (black solid line), actual evapotranspiration (ET) (gray solid line) 

and temperature (red solid line) of the whole Red River basin from 2000 to 2013. Blue solid 
line is the difference between rainfall and ET, which theoretically equals to available water. 
Black, gray, blue and red dash lines are the trendlines of rainfall, ET, the difference between 
rainfall and ET, and temperature, respectively. Formulas in the black, gray, blue and red 
rectangles are the linear fit equations of rainfall, ET, the difference between rainfall and ET, 
and temperature, respectively. (b) Mean annual soil water content (brown solid line) of the 

whole Red River basin from 2000 to 2013. Brown dash line is the trendline of soil water content, 
and formula in the black the linear fit equation of soil water content.  

4.4. Impacts of Dams  

Dams show different degrees of impacts on both Q and SSC. Due to the big capacity 

of Hoa Binh dam, it shows bigger regulating effect on downstream flow than other 

dams. Liu et al. [97] addressed that the impact of the dam on runoff increased with the 

dam capacity. However, even though the Hoa Binh dam has a big capacity, its impact 

on Q is small. This result is in agreement with the study from Dang et al. [39] who found 

that there was little or no change of Q before and after the Hoa Binh dam.  

Previous studies [39,40,43] estimated the impacts on SS from dams before 2011 

based on the measurements. Dang et al. [39] and Vinh et al. [43] mainly focused on 

the effect of the Hoa Binh dam, and Lu et al. [40] also considered the Thac Ba dam, 

the Tuyen Quang dam, and the Son La dam. We extended the time period to 2013 and 

also took the dams in China into account. After 2008, at Lao Cao and Yen Bai station, 

the actual annual mean SSC reduced to 74% and 68% of that during 2000– 2007, 

among which 54% and 48% are due to the dam effects, respectively. With the 

accumulation impacts from old dams and new dams, at Vu Quang and Hoa Binh, the 

actual annual mean SSC reduced to 72% and 99% of that during 2000–2007, among 

which 64% and 90% are due to the dam effects, respectively. At Son Tay station, the 

outlet of the continental basin, the annual mean SSC reduced to 89% of that under 

natural conditions during 2000–2007, and 76% of this 89% was caused by the dams 

upstream. With more dams to be put into use, the SSC at Son Tay might continue to 

decrease, and this might influence the downstream water system.   
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5. Conclusions  

This is the first study trying to use a modeling approach to analyze hydrology regime 

and suspended sediment concentration at a daily scale for a long period in the Red 

River basin, including considering the successive implementations of dams all along 

the period. The SWAT model provided some insights on discharge and suspended 

sediment concentration at daily and monthly scales, respectively, in such a large basin. 

This study allowed us to understand, characterize, and quantify the discharge and 

suspended sediment concentration with spatial and temporal variations. What is more, 

using a modeling approach helped us to separate the impacts from climate variability 

and anthropogenic impacts. However, some improvements are needed, such as dam 

information and management, observed rainfall data, discharge and suspended 

sediment dataset of more stations and longer period, high frequency dataset, to gain 

a better estimation and understanding of the impacts of climate variability and human 

interferences.  

Under the impacts of both climate variability and dams, the Q and SSC show a 

decreasing trend. However, climate variability and dams have different influence 

degrees in different sub-basins. The decrease of Q is more related to climate variability 

while the decrease of SSC is more related to impacts of dams. The annual mean 

rainfall of the whole basin decreased 9%, evapotranspiration decreased 5%, and 

temperature increased 1%; which consequently resulted a 4% decrease on soil water 

content and a 13% decrease of available water for the whole basin. With the 

accumulated impacts from three tributaries, at the outlet, Son Tay, from 2008 to 2013, 

the Q decreased to 13% of that under natural conditions of 2000–2007, and climate 

variability caused 9% decrease and dams caused 4%; SSC decreased to 89% of that 

under natural conditions of 2000–2007, and 13% came from the impacts of climate 

and 76% was decreased by the dams.  

With more dams to be implemented in this basin both in Chinese and Vietnamese part, 

sediment retention would consequently increase, which could subsequently influence 

the transport of associated matters, such as nutrients, metals, and pesticide, and also 

the habitats downstream. Based on this study, future studies of nutrients, metal, and 

pesticide transports and quantification can be carried out by using this new tool. In 

addition, more scenarios of the global changes, such as land use changes and climate 

changes in the future and their impacts on hydrology and suspended sediment could 

be quantified by using the model implemented.  
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Chapter 4 
 

 

 

 

Assessing the Sediment Fluxes 
and Soil Erosion 

 

 

This chapter was submitted to journal Hydrological Processes and is under review. 

The work of this chapter was extended from the previous chapter. The purpose of this 

chapter is to characterize and quantify the sediment flux over the basin considering the 

impacts from climate variability and dam constructions at a daily scale. 
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4. CHAPTER Ⅳ: Assessing the Sediment Fluxes and Soil Erosion 

4.1. Scientific Context and Objectives 

Asian rivers contribute a large portion of sediment delivering to the seas. However, 

these river basins in these Asian developing countries are facing severe anthropogenic 

disturbances, such as intensive farming casing high erosion while intensive damming 

retaining sediment in reservoir. The Red River is a typical tropical Asian river system 

under global changes. It plays an important role in agriculture and economy due to its 

numerous inter-linked rivers, estuaries and coastal waters in this basin. It can be a 

good representative of the Asian river system and it would be a good example for 

researchers to study the sediment transfer and fluxes under the natural and 

anthropogenic impacts. The previous studies on the sediment flux (SF) were mainly 

focused on the impact of Hoa Bind or/and Thac Ba dams and the exports of the three 

tributaries based on monthly or annual scale calculations. The purpose of this study is 

to calculate SF at a daily time step and to diagnose the impacts of climate variability 

and dam constructions (including new dams). The specific objectives of this work are 

to: (1) to quantify SF of the Red River basin based on daily Q and SSC; (2) to quantify 

dam impacts on SF and to identify SF answer to climate variability; (3) to identify the 

hot spots of soil erosion and SF transfer, and the key parameters that control SF at the 

scale of the whole basin; (4) to provide rating curves for estimating the SF at the outlets 

of each sub-basin and of the continental basin, and discuss the variability of their 

parameters under the influences of climate and anthropogenic changes. 

4.2. Materials and Methods 

Calibrated SWAT model from previous work was used to calculate the SF at daily scale 

from 2000 to 2013 at Lao Cai, Yen Bai, Vu Quang, Hoa Binh and Son Tay stations. 

Two scenarios were carried out: natural condition without dams in this basin; actual 

condition with six important dams function in this basin. Due to the new dams’ operation 

time, the study period was divided into two periods: before new dams’ impoundment 

(2000-20007) and after new dams’ impoundment (2008-2013), to assess the impacts 

of dams and climate variability. We compared two periods of these two conditions, 

before new dams (2000-2007) and after new dams (2008-2013). By comparing the two 

periods of the natural condition, the impacts of climate variability can be quantified. 

Comparing the natural condition of 2000-2007 with the actual condition of 2008-2013, 

the total impacts due to both the climate and dams can be quantified. The impacts of 

dams are the difference between the total impacts and the impacts of climate. 

Discharge (Q) and SF simple relations were provided to help researchers have easy 

access to estimate the monthly mean SF. Rating curves of monthly mean Q and SF 

for these 5 stations were gained from simulated monthly mean Q and SF, and were 

evaluated based on the output of the modelling and then validated by the observed 

dataset.  

Hot spots of landscape soil erosion were identified according to the model outputs by 
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using principal component analysis (PCA), and the main influent factors were figured 

out through the correlations between them and SF. 

4.3. Main Results and Discussions 

The monthly and annual SF calculated from daily mean SF gained a satisfactory 

performance. During the simulation period, the seasonal SF varied from 0.0005 to 34.4 

Mt at Lao Cai, from 0.0007 to 39.6 Mt at Yen Bai, from 0.0006 to 4.7 Mt at Vu Quang, 

from 0.0003 to 3.0 Mt at Hoa Binh, and from 0.0014 to 25.2 Mt at Son Tay. 87-91% of 

the annual total SF was produced during flood seasons (June to November). Annual 

SF ranged from 6.8 to 73.6 Mt yr-1 at Lao Cai, 11.7 to 85.9 Mt yr-1 at Yen Bai, 2.0 to 

12.5 Mt yr-1 at Vu Quang, and 0.8 to 7.1 Mt yr-1 at Hoa Binh. As the confluence of these 

tributaries, the Red River yields an annual SF at the range of 8.0-69.2 Mt yr-1, with an 

average specific sediment yield (SSY) of 241 t km-2 yr-1.  

By comparing the differences between natural and actual conditions at the outlet of the 

basin, we found a 90% decrease of annual SF during 2008-2013, of which 10% was 

decreased by climate and 80% was due to the dam retention. 

We compared the annual SF and SSY under natural condition of Asian big river basins, 

and found that though the Red River basin exported less SF than the Yellow River, the 

Yangtze River and the Mekong River, but its SSY (779 t km-2 yr-1) was higher than the 

Mekong, Pearl River, Yangtze, and was the half of the Yellow River. 

The model indicates that the mean annual soil erosion in the whole basin ranged from 

0.01 to 43.4 t ha-1, with a mean of 5.5 t ha-1 for the whole basin. High erosion areas are 

identified in the middle part of the Thao River and the downstream of the Da River. 

Besides, with high precipitation and surface runoff, Lai Chau, Lao Cai, Ha Giang and 

Son La provinces are the most vulnerable to soil erosion, and their mean annual 

erosion rate during the study period can be above 20 t ha-1. Precipitation, slope and 

USLE agricultural practice factor are key influence factors for soil yield in the Red River 

basin. The soil texture is also a significant factor. Related soil conservation 

management can be carried out in these hot spots by considering the main influence 

factors. 

The relations of monthly Q and SF resulted from the output of the modelling fit well 

with the observations of both periods (2000-2007 and 2008-2013). The parameters in 

the simple Q-SF equation are according to the real sub-basin characteristics. These 

simple Q-SF equations can be used for the people to estimate the monthly SF without 

using the SWAT model. 

4.4. Conclusion and Perspectives 

This study quantified the impacts of climate and dam construction on SF transfer and 

fluxes separately and found a significant reduction of SF due to the dams. With more 

dams are going to impound in this basin, the future sediment export might continue to 
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be reduced. Related sediment regulation in the reservoirs should be executed in order 

to export enough sediment for downstream ecosystem and delta. Soil conservation 

management should pay attention in the middle part of the basin. The high advantage 

of the model is not only that different scenarios can be carried out, but also once it has 

been calibrated with data from hydrological stations, is that he can serve to estimate 

and map each term involved in the sediment transport process – including local erosion, 

local deposition, in-stream sediment discharge – and that it can be used to infer local 

SF-Q rating curves at any virtual station within the basin from the model simulations, 

even where there is no true station. This point is of major interest both for scientific 

applications (e.g., studying spatial variations of SF) and for management purpose, with 

provinces and other stakeholders. 

4.5. Full Article Submitted to Hydrological Processes 
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Abstract: 

The Red River is an Asian river system strongly affected by global changes. This paper 

aims to characterize and quantify the suspended sediment flux (SF) over the basin 

under the influences of climate variability and dam constructions. SF was evaluated at 

the outlets of three main tributaries and along the main course of the Red River from 

2000 to 2013 based on daily simulations from a modelling study. Two scenarios under 

actual and natural (without dams) conditions were carried out to disentangle the 

impacts of climate and dams. Under natural conditions, the basin would generate 106.9 

Mt yr-1 of SF to the downstream delta during study period, with a specific sediment 

yield (SSY) of 778.8 t km-2 yr-1. However, under the impacts of climate variability and 

dams, the mean annual SSY decreased to 84.5 t km-2 yr-1. In flood years, without dams, 

the basin would produce 1.5 times higher SF than in drought years. At the outlet of the 

basin, the annual mean SF of 2008-2013 (after new dam constructions) got reduced 

by 90% (10% related to climate and 80% to dam constructions) compared to natural 

conditions during 2000-2007. The Thao River is the most sensitive to climate variability 

mailto:xi.wei_fr@hotmail.com
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while the Da River is mostly affected by the huge-capacity dams. Mean annual 

retentions of sediment by dams ranged from 7.1 to 111.0 Mt yr-1. Simple rating curves 

between monthly mean Q and SF were established for estimating SF at the outlet of 

the tributaries and the Red River. High soil erosion (above 2000 t km-2 yr-1) occurred in 

the middle Thao and the lower Da rivers. Precipitation, slope and agriculture practices 

are the key influence factors for soil erosion in the basin. Future studies, such as 

projections under global changes scenarios will be carried out based on this study. 

Keywords: Asian river, Red River, modelling, SWAT, scenario, suspended sediment, 

climate variability, dam, soil erosion. 

1. INTRODUCTION 

The suspended sediment (SS) transport from continents to oceans by rivers is a crucial 

process of sediment cycle in the Earth systems: this process drives associated 

elements to the seas which is essential for marine biogeochemical cycle and diversity; 

also, it is a reflection of land and river degradation; besides, this process is of great 

importance in geomorphology, such as downstream delta formation (Lal et al., 1995; 

Dai et al., 2009; Kunz et al., 2011). Rivers contribute to 95% of the sediment fluxes 

(SF) to the oceans (Syvitski et al., 2003), which ranged from 15 to 20 billion t yr-1 

(Milliman and Meade, 1983; Ludwig and Probst, 1996b; Vörösmarty et al., 2003; 

Beusen et al., 2015; Ouillon, 2018). In particular, Asian rivers such as the Yellow River 

and the Mekong River contribute to a large part of sediment delivery to the seas (Cohen 

et al., 2014; Dang et al., 2018). However, climate variability and anthropogenic 

activities have altered the SF (Dai et al., 2009; Jiang et al., 2009; Dang et al., 2018). 

Under anthropogenic disturbances such as intensive agriculture and damming, water 

ecosystems are facing severe challenges, like the increase of soil erosion, and 

changes of hydrology regime and SF (IPCC, 2000; Valentin et al., 2008; Zimmerman 

et al., 2008; FAO, 2011a; Chen et al., 2016). Dam construction is the factor with the 

strongest influence on land-ocean SF (Walling and Fang, 2003). According to the 

World Commission on Dams (2000), at least 45,000 large dams have been built 

globally, and nearly half of the world’s rivers have one large dam at least. Lehner et al., 

(2011) found that around 28% dams are located in Asia. Besides, future hydropower 

development is primarily concentrated in developing countries and emerging 

economies of Southeast Asia (Zarfl et al., 2015). Dams cause a significant reduction 

in SF. Vörösmarty et al. (2003) estimated that the potential sediment trapping by dams 

in regulated basins was higher than 50%. In some basins, such as the Colorado and 

Nile, sediment is completely trapped due to the large size of reservoirs and to the flow 

velocity decreases which weakens the sediment transport ability (Vörösmarty et al., 

2003; Walling and Fang, 2003). Reduced sediment transport can induce river deltas 

sinking, therefore affecting estuarine and coastal human communities (Syvitski et al., 

2005; Hauer et al., 2018), and increasing their vulnerability (Lehner et al., 2011b). 

Asian rivers constitute good indicators of the strong influence of anthropogenic 

activities on sediment transport (Furuichi et al., 2009; Dang et al., 2010; Arias et al., 
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2014). 

The Red River is a typical Asian river system under the influences of global changes 

and is the second largest river in Vietnam. It gathers numerous inter-linked rivers, 

estuaries and coastal waters and plays an important role in agriculture and economy 

in this basin, which is a major agricultural productions region. Understanding and 

quantifying the water and soil processes and budgets of this river basin will help to 

manage soil loads and also to study other Asian rivers. Hence, the objective of this 

paper is to assess the SS regime in a large Asian basin under the influences of global 

changes, especially under the impacts of dams. Moreover, it would be more precise to 

calculate SF at a daily time step as discharge (Q) and suspended sediment 

concentration (SSC) can vary greatly from day to day. However, few studies analysed 

fluxes at daily scale in the Red River basin, focusing either on a short period (Le et al., 

2007), or only on the delta (Luu et al., 2010), or only on Q or SS (Hiep et al., 2018). 

Assessing SS regime at a daily time step in the Red River basin will, therefore, 

contribute to improving our knowledge of the SF across this basin. 

For achieving this objective, a modelling approach, combining remote sensing and in-

situ data, was used. The hydrology and SSC calibration and validation were described 

in Wei et al. (2019). The specific objective of the present paper is: 1) to quantify SF of 

the Red River basin based on daily Q and SSC; 2) to quantify dam impacts on SF and 

to identify SF answer to climate variability; 3) to identify the hot spots of soil erosion 

and SF transfer, and the key parameters that control SF at the scale of the whole basin; 

4) to provide rating curves for estimating the SF at the outlets of each sub-basin and 

of the continental basin, and discuss the variability of their parameters under the 

influences of climate and anthropogenic changes. 

2. MATERIALS AND METHODS 

2.1 Study area 

The study area focuses on the Red River continental basin with a surface of 137,200 

km2 which drains down to Son Tay, the outlet of the continental basin and the entrance 

of the delta (Figure 4-1). 

2.2.1 General characteristics 

The Red River basin is located in Southeast Asia, from 20.00° to 25.50° North and 

from 100.00° to 107.17° East. China occupies 49% of the whole basin, while Vietnam 

and Laos occupy 50.1% and 0.9% respectively. 

Son Tay is a confluence of three main tributaries: the Lo River (named Panlong Jiang 

in China) on the left bank, the Thao River (named Yuan Jiang in China) upstream of 

the main river, and the Da River (named Lixian Jiang in China) on the right bank. They 

join the Red River 20 km upstream to the Son Tay gauging station.  
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Figure 4-1 The geographical location of the Red River basin in Asia, and locations of the dams and the 
hydrological gauge stations in the Red River basin. 

The part upstream of Lao Cai is mainly formed by tectonically active mountainous 

areas, with steep slopes, usually above 25° (Zhang et al., 2017) which are vulnerable 

to soil erosion due to the intensive precipitation and land use changes (Barton et al., 

2004; He et al., 2007; Bai et al., 2015). The soil types are mainly Acrisols, such as red 

earth, yellow-brown soil and fluvisol (Le, 2005; Bai et al., 2015). High erosion plus the 

character of soil types color the water of the Thao River into “red” (Le, 2005). In 

Vietnam, the same Acrisols dominate on the slopes while grey or alluvial soils 

dominate in the valleys (Le et al., 2017a). 

In China’s part, the main land cover is forest (62%), followed by grassland (19%) and 

cultivated land (18%), respectively (Li et al., 2016). In Vietnam’s part, in the Thao basin, 

forest is dominating, accounting for 54.2%, followed by rice paddy fields (19%) and 

industrial crops (13%); the Lo and Da basins are dominated by industrial crops (58%) 

and forests (74%), respectively (Le et al., 2007). 

2.1.2 Meteorological characteristics 

The whole Red River basin encompasses two different climate zones: humid 

subtropical climate in the upper part and humid tropical climate in the lower part, and 

a strong seasonal variability related to the Southeast Asia monsoon system, which 

alternates between the cold and dry southwestward winter monsoon from November 

to April and the hot and humid northeastward summer monsoon from May to October. 

Rainfall during flood seasons contributes to 85-90% of the whole year average (Le et 

al., 2007; Li et al., 2016). The general trend of regional precipitation distribution 
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increases from upstream (1000 to 1600 mm yr-1 in China) to downstream (1328 to 2255 

mm yr-1 in Vietnam) (Xie, 2002; Le et al., 2007; Li et al., 2008). 

Temperature variations follow a typical orographic pattern. The mean annual 

temperature varies from 15 to 21 °C in China (Xie, 2002) and from 14 to 27 °C in 

Vietnam (Le, 2005). 

2.1.3 Hydrological characteristics 

Runoff is mainly recharged by precipitation which leads to big seasonal variations in 

river flows (FAO, 2011b; Li et al., 2016; Li et al., 2008). The mean annual discharge 

during 2000-2015 at Son Tay was 3082 m3 s-1 (Wei et al., 2019a). Corresponding to 

the distribution of rainfall, the runoff is also unevenly distributed. June to November is 

the rainy season, and more than 80% of the total annual runoff is produced during 

these seasons; runoff peaks usually occur in August, and the maximum flood reached 

8050 m3 s-1 in 1986 near the bounder in China (Xie, 2002), and 37,800 m3 s-1 at Son 

Tay in 1971 (Luu et al., 2010). December to May is the dry season, and the minimum 

discharge occurs in March. The minimum discharge observed near the boundary in 

China was 28.7 m3 s-1 in 1963 (Ren et al., 2007), and the minimum daily discharge at 

Son Tay during 2000-2013 was 493 m3 s-1 (Wei et al., 2019a). 

2.1.4 Dams implementation  

In recent years, both in China and Vietnam, more hydraulic systems, such as irrigation 

channels and dams, have been built to meet the water demand according to the rapid 

increase of population and intensive agriculture activities. In this study, we only took 

into account the dams with big capacity and located on the downstream part, i.e. close 

to the outlets of each tributary. 

On the Thao River, twelve cascade reservoirs were built or are under constructions in 

China’s territory. The impoundment of the first two dams, the Nansha and the 

Madushan dams, located around 150 km and 100 km upstream of Lao Cai respectively, 

started on November 2007 and December 2010, respectively. 

On the Da River, the biggest dam in Vietnam named Hoa Binh was put into use in 

1989. A mass of solid materials has been trapped by this dam, which consequently 

reduces the dam’s efficient capacity and lifetime (Dang et al., 2010). In order to mitigate 

the siltation of the Hoa Binh dam and to meet the need for economic growth, the Son 

La dam was built and put into operation in January 2011. On the Lo River, the Thac 

Ba dam was implemented in 1972 and the Tuyen Quang dam in March 2008 (Table 

4-1 and Figure 4-1).  
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Table 4-1 Basic characteristics of the main dams in the Red River basin (Le et al., 2017a; Wei et al., 
2019a) 

Dam Basin Construction began Impoundment Capacity (km3) 

Nansha Thao Feb-06 Nov-07 0.26 

Madushan Thao Dec-08 Dec-10 0.55 

Hoa Binh Da 1980 1989 9.50 

Son La Da Dec-05 Dec-10 9.26 

Thac Ba Lo 1965 Oct-71 2.90 

Tuyen Quang Lo Dec-02 Mar-08 2.24 

 

2.2 Data collection 

Data of daily Q and SSC from 2000 to 2013 obtained from the Vietnam Ministry of 

Natural Resources and Environment (MONRE) at Lao Cai, Yen Bai, Vu Quang, Hoa 

Binh and Son Tay stations. Daily SF, calculated from daily Q and SSC, was used to 

evaluate the model. Gauge station locations can be found in Figure 4-1.  

2.3 Modelling approach 

This study expands the work of Wei et al. (2019) where detailed descriptions of the 

modelling set up and the calibration and validation processes can be found. Here we 

only present some essential information. 

2.3.1 The SWAT model 

The Soil and Water Assessment Tool (SWAT) is a physically based, semi-distributed 

hydrological model. It considers soils, land use and management conditions to predict 

the impact of land management practices on water and sediment within large complex 

basins where there might be no monitoring data over long periods of time (Neitsch et 

al., 2009). 

Both hydrological and sediment dynamics in SWAT are simulated in two components: 

over the land, and in the channel network. More information about SWAT hydrological 

and sediment modelling can be found in Arnold et al. (1998) and Neitsch et al. (2009). 

2.3.2 SWAT data inputs 

The topography, land cover and soils maps for the model are presented here to give a 

better understanding of the characteristic of the Red River basin (Figure 2-12, Wei et 

al., 2019).  
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(a)                                                         (b) 

 

(c)                                                            (d) 

Figure 4-2 (a) digital elevation model (DEM); (b) slop classes: slopes were divided into 5 classes by 
SWAT based on the (DEM); (c) land use map; (d) soil types. Input data sources can be found in Wei et 
al. (2019). 

2.3.3 Model set up 

The whole basin was divided into 242 sub-basins and then subdivided into 3812 

different hydrological response units (HRUs) with homogeneous land use, soil type 

and slope. The daily simulation was carried out and analyzed at different temporal 
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scales (daily, monthly and annual) from 2000 to 2013. 

In order to quantify the impacts of the dams, two scenarios were simulated (Table 4-2): 

(a) actual conditions with the existing dams; (b) natural conditions without any dams. 

Parameters were kept the same for actual and natural conditions; the difference 

between these two scenarios was the dams implementations. New dams mainly 

started to operate in 2008, therefore, the study period was separated into two periods 

(2000-2007 and 2008-2013) to evaluate the impact of dams. More detailed 

descriptions and settings of these two scenarios can be found in Wei et al. (2019). 

Table 4-2 Scenarios setting: actual conditions (AC) and natural conditions (NC), and the two periods 
covered by the scenarios. 

Scenario 
2000-2007 2008-2013 

(river name: dam name) (river name: dam name) 

Actual Conditions (AC) 

 

Da: Hoa Binh 

Lo: Thac Ba 

Thao: Nansha; Madushan 

Da: Hoa Binh; Son La 

Lo: Thac Ba; Tuyen Quang 

Natural Conditions (NC) no dam no dam 

 

2.3.4 Model evaluation and validation 

Based on the daily-scale simulation, simulated monthly and annual SF were extracted 

to compare with observed data for checking the performance of the model. Following 

the recommendations by Moriasi et al. (2007), coefficient of determination (R2), Nash–

Sutcliffe Efficiency (NSE), and Percent Bias (PBIAS) were used to evaluate the 

simulations. 

2.4 Estimating the impacts of climate variability and dams on SF 

By comparing the mean annual SF under natural conditions between 2000-2007 and 

2008-2013, the impacts of climate variability can be quantified. By comparing the mean 

annual SF during 2008-2013 between natural and actual conditions, the impacts of 

dams can be quantified. 

In this study, we hypothesized that the impact of the land use changes during our study 

period was not significant. Some researchers used a modelling approach to examine 

the impacts of land use changes on SF in Vietnam and found that an 11-16% decrease 

in forest land was likely to increase 3.0-3.9% SF (Phan et al., 2010; Khoi and Suetsugi, 

2014). In the Red River basin, between 2010 and 2000, the forest percentage stayed 

the same, and the farmland increased by 8% from bare land (Le et al., 2018), which 

might cause less than 2% increase of SF according to Khoi & Suetsugi, (2014) and 

Phan, Wu, & Hsieh, (2010). Therefore, we did not take into account the impacts of land 

use changes on SF during the study period. 
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2.5 Q-SF simple relations 

The rating curves between monthly mean Q and SF for the 5 gauge stations were 

established from simulated monthly mean Q and SF, evaluated based on the output of 

the numerical simulation, and validated through comparison with observed data. 

Results are presented in Section 3.3. 

2.6 Identifying the influencing factors of soil erosion from landscape 

Hot spots of land soil erosion were identified according to the model outputs, and the 

main triggering factors were determined from the correlations between them and SF 

according to the principal component analysis (PCA) method described below. 

PCA was used in this study to identify the factors influencing soil erosion (SE) in this 

basin. More detailed explanations of this method can be seen in Basilevsky (1994), 

Lever, Krzywinski, & Altman (2017), Ringnér (2008) and Wold, Esbensen, & Geladi 

(1987). Based on the parameters analysis in the study of Wei et al. (2019), the following 

variables of each sub-basin were added into the PCA model to identify the main factor 

involved in SE in the basing: soil erosion (SE), precipitation (P), water yield (WY), 

surface runoff (SR), USLE soil erodibility factor (USLE_K), USLE agricultural practice 

factor (USLE_P), slope, and the percentages of sand (Sand%), silt (Silt%) and clay 

(Clay%) in soil. The input data to the PCA was the mean annual values of each variable 

of 242 sub-basins. Results about soil erosion hot spots and triggering factors are 

presented in Section 3.4. 

3. RESULTS 

3.1 SF under actual conditions 

3.1.3 Monthly variations of actual SF 

Monthly and annual SF simulations and observations were plotted in Figure 4-3 and 

Figure 4-4, and their related statistics evaluations were reported in Table 4-3. From the 

general performance ratings at monthly scale recommended by Moriasi et al. (2007), 

Lao Cai, Yen Bai, Hoa Binh and Son Tay stations gained good performance; Vu Quang 

station gained satisfactory performance. PBIAS values indicate that the model slightly 

overestimated SF at most stations, and underestimated SF at Hoa Binh station. 

Table 4-3 Evaluation statistics of sediment flux (SF) on different time scales for each station from 2000 
to 2013 

Sediment Flux 
(Mt) 

Statistics 
Stations 

Lao Cai Yen Bai Vu Quang Hoa Binh Son Tay 

Monthly 
Scale 

NSE 0.67 0.66 0.62 0.72 0.71 

R2 0.68 0.69 0.62 0.75 0.79 

PBIAS -1.8 -8.7 -0.9 4.6 -24.5 

Annual 
Scale 

NSE 0.78 0.60 0.55 0.73 0.54 

R2 0.78 0.73 0.55 0.77 0.86 

PBIAS -5.2 -22.6 -0.8 8.6 -24.7 



CHAPTER Ⅳ: Assessing the Sediment Fluxes and Soil Erosion 

 

133 

 

Thanks to the satisfactory calibration of Q and SSC presented in Wei et al. (2019), 

simulated SF shows similar trends as observed SF and can be considered as 

satisfactory results (Figure 4-3). Base flow of simulated monthly SF fits well with 

observations at all stations. 

SF show great seasonal variations, especially in the Thao River (see stations of Lao 

Cai and Yen Bai in Figure 4-3). Maximum flux usually occurs during July to September, 

and minimum flux generally happens during February and March. 87-91% of the 

annual total SF was produced during the flood season (June to November). The mean 

SF for flood season at Lao Cai, Yen Bai, Vu Quang, Hoa Binh and Son Tay were 4.6, 

5.9, 1.1, 0.5 and 4.5 Mt month-1, respectively; the mean SF for dry season (December 

to May) at Lao Cai, Yen Bai, Vu Quang, Hoa Binh and Son Tay were 0.5, 0.7, 0.1, 0.1 

and 0.5 Mt month-1, respectively. During the simulation period, the seasonal simulated 

SF varied from 0.0005 to 34.4 Mt month-1 at Lao Cai, from 0.0007 to 39.6 Mt month-1 

at Yen Bai, from 0.0006 to 4.7 Mt month-1 at Vu Quang, from 0.0003 to 3.0 Mt month-1 

at Hoa Binh, and from 0.0014 to 25.2 Mt month-1 at Son Tay. 
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Figure 4-3 Observed (black dot) and simulated (gray solid line) monthly sediment flux, and simulated 
sediment flux under natural conditions without dams (gray dash line) at five stations from 2000 to 2013. 

3.1.2 Annual variations of actual SF 

The annual SF exhibits different temporal and spatial variations among the 5 stations 

(Figure 4-4). For the Thao River, the simulated annual SF ranges from 6.8 to 73.6 Mt 

yr-1 at Lao Cai (with 30.7 Mt yr-1 on average during 2000-2013, Table 4-4), and from 

11.7 to 85.9 Mt yr-1 at Yen Bai (39.8 Mt yr-1 on average). The Lo River at Vu Quang is 

predicted to produce SF ranging from 2.0 to 12.5 Mt yr-1 (with 6.6 Mt yr-1 on average). 

On the Da River at Hoa Binh station, the minimum annual SF is 0.8 Mt yr-1 and the 
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maximum is 7.1 Mt yr-1 (with 3.6 Mt yr-1 on average). Amongst these three tributaries, 

the Thao River produces the highest SF, followed by the Lo River, and the Da River 

generates the lowest SF. The Thao River shows higher SF than the other two 

tributaries due to its high SSC (the annual mean SSC during 2000-2013 at Lao Cai 

and Yen Bai were 1057 and 1003 mg L-1, respectively, Wei et al., 2019). Even though 

SSC at Hoa Binh station on the Da River (the annual mean SSC during 2000-2013 

was 57 mg L-1, Wei et al., 2019) is much smaller than at Vu Quang on the Lo River 

(the annual mean SSC during 2000-2013 was 172 mg L-1, Wei et al., 2019), the SF of 

these two rivers are in the same range. The Da River has a larger runoff (the annual 

mean Q during 2000-2013 was 1362 m3 s-1, Wei et al., 2019) with low SSC induced by 

dam retention, while the Lo River has a lower runoff (the annual mean Q during 2000-

2013 was 729 mg/L, Wei et al., 2019) with a higher SSC. As the confluence of these 

tributaries, the Red River (at Son Tay station) yields an annual SF at the range of 8.0-

69.2 Mt yr-1, with an average specific sediment yield (SSY) of 240.5 t km-2 yr-1. 
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Figure 4-4 Annual sediment flux (SF) from observations (black dot), natural conditions simulations 
(without dams, gray hollow bar), and actual conditions simulations (gray solid bar) at five stations from 
2000 to 2013. Light and dark gray solid lines are the simulated mean annual SF from 2000-2007 of 
natural and actual conditions, respectively; light and dark gray dash lines are the simulated mean annual 
SF from 2008-2013 of natural and actual conditions, respectively. The blue bar shows the annual 
precipitation over the whole basin; blue dash line is the mean annual precipitation of 2000-2013. Black 
arrow line displays the total SF decrease (caused by both climate variability and dams) which is the 
difference between the mean annual SF during 2000-2007 under natural conditions and the mean 
annual SF during 2008-2013 under actual conditions; light gray arrow line displays the difference 
caused by climate variability which is the differences of the mean annual SF under natural conditions 
between 2000-2007 and 2008-2013; dark gray arrow line displays the difference caused by dams which 
is the differences between black arrow and light gray arrow (or between the light and dark dashed lines). 
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The values of mean annual SF during the study period and sub-periods from 

references are displayed in Table 4-4. For the whole study period, simulated mean 

annual SF shows a good match with in-situ data, though slight overestimation at Yen 

Bai and Son Tay stations. By comparing the mean annual SF of 2008-2013 between 

natural and actual conditions, the mean annual sediment trapped by the dams during 

this period range from 7.1 Mt yr-1 (Lo River) to 111.0 Mt yr-1 (Da River). 
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Table 4-4 Simulated sediment flux (Mt yr-1) under actual and natural conditions (over the whole period, 2000-2007 period and 2008-2013 period) compared with other studies 
and in-situ data; values of trapped sediment (calculated as the difference between average values over 2008-2013 in the natural and actual simulations); impacts of climate 

variability and dams. 

Station 
(River) 

1960-1972 1960-1979 1960-1970 2000-2013 2000-2007 2008-2013 Impact 

(Lu et al., 
2015) 

(Vinh et al., 
2014) 

(Dang et al., 
2010) 

Observed AC† NC‡ Observed AC† NC‡ Observed AC† NC‡ 
Trapped 
sediment 

Total 
Climate 

Variability 
Dams 

Lao Cai 
(Thao) 

- - - 29.2 30.7 40.5 45.7 46.0 46.0 7.1 10.3 33.3 23.0 -78% -28% -50% 

Yen Bai 
(Thao) 

44.8 43.4 - 32.5 39.8 51.4 43.9 56.5 56.5 17.2 17.6 44.6 27.0 -69% -21% -48% 

Vu 
Quang 

(Lo) 
10.1 9.2 - 6.6 6.6 9.7 8.8 9.6 9.5 3.6 2.7 9.8 7.1 -72% 2% -74% 

Hoa 
Binh 
(Da) 

71.8 65.0 - 4.0 3.6 119.5 5.8 5.3 124.9 1.5 1.3 112.3 111.0 -99% -10% -89% 

Son Tay 
(Red) 

120.8 119.3 111.6 26.5 33.0 106.9 36.5 49.1 111.6 13.2 11.6 100.6 89.0 -90% -10% -80% 

AC†: Actual Conditions 
NC‡: Natural Conditions (without dams)
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3.2 SF under natural conditions (without any dams) 

3.2.1 Inter-annual variations 

Like the actual SF (Figure 4-4), interannual SF under natural conditions exhibits high 

variations. During the study period, results from the simulation under natural conditions 

suggest that annual SF at Lao Cai, Yen Bai, Vu Quang and Hoa Binh stations should 

have been from 21.3 to 73.6 Mt yr-1, 29.6 to 90.7 Mt yr-1, 6.9 to 15.8 Mt yr-1, 81.5 to 

191.0 Mt yr-1, respectively, thus with a factor of 3 between the highest and the lowest 

values in the Thao River, and a factor of 2.3 in the Lo and Da rivers. According to the 

results at the outlet (Son Tay station) the Red River basin should have exported 69.6 

to 170.7 Mt yr-1 of sediment, with an average SSY of 778.8 t km-2 yr-1. 

3.2.2 Mean annual SF 

Annual SF under natural conditions was compared with observed data from references 

(Dang et al., 2010; Lu, Oeurng, Le, & Thuy, 2015; Vinh, Ouillon, Thanh, & Chu, 2014, 

Table 4-4) that covered periods preceding the dams constructions, i.e. before 1979. 

Despite different time periods, the simulation without dams is close to those in-situ data, 

though simulations without dams are slightly higher at Yen Bai (~15%) and higher at 

Hoa Binh (~70%). At Son Tay, the simulation without dams is slightly lower (~10%) 

than the three reference data. These comparisons show that the model produces a 

realistic simulation of SF under natural conditions. 

3.2.3 SF during flood and drought years 

Annual SF at each station in flood and drought years under natural conditions were 

reported in Table 4-5. During the simulation period, flood years (2001, 2002 and 2008) 

produce SF 100% higher in the Thao river and 50% higher at Hoa Binh, Vu Quang and 

Son Tay than drought years (2003-2006 and 2009-2013). 

Table 4-5 Sediment fluxes (Mt yr-1) at each station in flood and drought years in the simulation under 
natural conditions 

Station 
(River) 

Flood Years Drought Years 

2001 2002 2008 Average 2003-2006 2009-2013 Average 

Lao Cai 
(Thao) 

69.5 73.6 71.3 71.5 34.3 25.7 30.0 

Yen Bai 
(Thao) 

81.0 85.9 90.7 85.9 45.1 35.4 40.3 

Vu Quang 
(Lo) 

12.6 11.4 15.8 13.3 8.6 8.6 8.6 

Hoa Binh 
(Da) 

148.0 158.4 191.0 165.8 112.4 96.5 104.5 

Son Tay 
(Red) 

149.1 131.6 170.7 150.5 98.7 86.6 92.7 
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3.3 Simple relation of monthly Q and SF under actual conditions 

For both the 2000-07 and 2008-13 periods, monthly simulated SF from the simulation 

under actual conditions showed a positive power-law relation with monthly simulated 

Q for the 5 gauge stations as shown by fitted curves in Figure 4-5, with R2 above 0.95. 

These 5 stations exported less SF after 2008, which highlights the changes caused by 

climate variability and by sediment retention of dams. We, therefore, established 

separately power-law relationships between simulated Q and SF for both periods 

before and after 2008. 
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Figure 4-5 Correlation and relations between simulated monthly mean discharge (Q) and simulated 

monthly mean sediment fluxes (SF) at 5 stations in the simulation under actual conditions. Gray solid 

squares are of the period 2000-2007; gray hollow squares are of the period 2008-2013. Black solid and 

dash lines are the fitting curves of period 2000-2007 and 2008-2013, respectively. 

The equations established from the monthly simulated Q and SF values were then 

compared with in-situ observations to be validated (Figure 4-6). For both periods 

(2000-2007 and 2008-2013), the curves present a good fit with observations, 

especially when Q is low, with R2 values generally higher than 0.8. At Vu Quang and 

Son Tay stations, the points deviations are larger and the values of R2 of period 2008-

2013 (0.73 and 0.75, respectively) are smaller compared with other stations (>0.8), 

however, the p-value is smaller than 0.001 which indicates that the values obtained 

from the equation are significantly related to the observations. 
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          (a)                                         (b)                                        (c) 

Figure 4-6 (a) Observed data fit with the curve determined from outputs of the simulation under actual 

conditions. Black solid and dash lines are the rating curves of simulated discharge (Q) and sediment flux 

(SF) during 2000-2007 and 2008-2013, respectively. Gray dots are the observed data during 2000-2007; 

gray circles are the observed data during 2008-2013. (b) Comparisons between observed and simulated 

SF obtained from the Q-SF rating curve of 2000-2007. (c) Comparisons between observed and simulated 

SF obtained from the Q-SF rating curve of 2008-2013. 
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3.4 Hot spots of soil erosions 

The SWAT model can not only be used to simulate, study and assess the in-stream 

SF, but also the sediment yield from the land component. Then, based on these 

simulated mean annual sediment fluxes and soil erosion, hot spots of erosion were 

identified and presented in Figure 4-7. 

The model results indicate that the mean annual soil erosion in the whole basin ranged 

from 0.01 to 43.4 t ha-1 yr-1, with a mean of 5.5 t ha-1 yr-1 for the whole basin(Figure 

4-7c). High erosion areas are identified in the middle part of the Thao River and the 

downstream of the Da River: with high precipitation (>1500 mm yr-1, Figure 4-7a) and 

surface runoff (>450 mm yr-1, Figure 4-7b), Lai Chau (sub-basin 173), Lao Cai (sub-

basin 116, 117, 135, 148, 149, 157), Ha Giang (sub-basin 119) and Son La (sub-basin 

218, 232, 234, 237, 240, 241) provinces are the most vulnerable to soil erosion, and 

their mean annual erosion rate during the study period can be above 20 t ha-1. 

Figure 4-7d presents the in-stream SF spatial variations. High SF can reach locally 

above 80 t yr-1, with hot spots of high values identified upstream of the Hoa Binh dam, 

which corresponds with the annual SF values before Hoa Binh dam construction (Table 

4-4). 
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Figure 4-7 Mean annual value of (a) Precipitation distribution (mm yr-1), (b) Surface Runoff (mm yr-1), (c) 

Soil Erosion (ton ha-1 yr-1), (d) In-stream Sediment Flux (ton yr-1) within 242 sub-basins, derived from the 

actual conditions simulation over the period 2000-2013. 

Principal component analysis (PCA) was applied to identify the factors influencing soil 

erosion (Table 4-6). The PCA results based on the correlation matrix analysis with 

Varimax rotation produce 3 principal components (PCs) with eigenvalues greater than 

1.00, corresponding to an overall cumulative variance of 78.3%, moreover, the 2 first 

PCs represent a cumulated variance of 67.5%. 

Table 4-6 The principal component (PC) loading 

Factor 
Eigenvectors (percentage of variances %) 

PC1 (41.6%) PC2 (25.9%) PC3 (10.8%) 

Soil Erosion (SE)† 0.177 0.399 0.163 

Precipitation (P)‡ 0.430 0.244 0.101 

Water Yield (WY)‡ 0.416 0.262 0.095 

Surface Runoff (SR)‡ 0.446 0.184 -0.033 

Slope† -0.067 0.491 0.125 

Clay%† -0.389 0.117 0.277 

Silt%† 0.019 0.243 -0.877 

Sand%† 0.346 -0.280 0.256 

USLE_P† -0.246 0.414 0.158 

USLE_K† -0.275 0.340 0.050 

†: the simulation from the model 

‡: the observation and input data 

Notes: underlined values correspond to the first three highest factor loadings in the PC. 
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4. DISCUSSION 

4.1 Uncertainties 

Differences between simulations and observations are large on some peaks of SF flow: 

during these peaks, the SF can be underestimated by a factor >2 (Figure 4-3). 

Uncertainties can come from three factors: uncertainties associated with rainfall 

satellite input data; errors due to the numerical simulation approximations; 

uncertainties associated with in-situ measurement errors on Q and SSC. 

The input of a satellite rainfall dataset can cause discrepancy on Q simulation (Wei et 

al., 2019a). Modelling errors can come from the simplification of algorithms, primarily 

on SSC simulation. More detailed explanations for uncertainties from the rainfall 

satellite data and the modelling part are reported in the work of Wei et al. (2019). 

In-situ measurements and sampling strategy can also cause errors. For example, a 

high sampling frequency enables to diminish errors in the estimation of annual SF 

(Dang et al., 2010). Q and SSC measurements during flood events are usually 

extrapolated by rating curve. However, the fact that those rating curves may have been 

established based on non-exceptional conditions might cause deviations on both Q 

and SSC, and consequently on SF. 

4.2 The natural evolution of SF 

4.2.1 SF variations caused by climate variability 

Comparing the annual SF under natural conditions in 2008-2013 and 2000-2007 

shows that climate variability has different impacts on these tributaries, though it 

induces a decrease at most stations, except at Vu Quang (Table 4-4 and Figure 4-4). 

The biggest impacts are observed at the two stations on the Thao River (Lao Cai and 

Yen Bai), causing an average 25% decrease of SF, followed by the Da River (Hoa 

Binh, ~-10%), with a resulting ~10% decrease on the Red River (Son Tay). On the 

contrary, at Vu Quang station, the mean annual SF very slightly increased by 2%, in 

accordance with a similar Q change (2%, Wei et al., 2019). 

Our previous study (Wei et al., 2019a) revealed that climate variability had an effect on 

both Q and SSC in this basin: the rainfall and available water (the difference between 

rainfall and evapotranspiration) showed decreasing tendencies during the study period, 

though the decreasing tendencies were not statistically significant through Mann-

Kendall method (Mann, 1945; Kendall, 1948), which resulted in a decrease on both Q 

and SSC. This effect of climate variability on Q and SSC consequently influenced SF. 

Moreover, the mean annual SF under the natural conditions of the drought years 2009-

2013 (86.6 Mt yr-1 at Son Tay) is smaller than during the drought years 2003-2006 

(98.7 Mt yr-1 at Son Tay), except at Vu Quang, as can be seen in Figure 4-4. This might 

indicate that the annual SF shows a declining tendency under the hydrological regime 

changes related to climate variability. Previous observations studies indeed suggested 



CHAPTER Ⅳ: Assessing the Sediment Fluxes and Soil Erosion 

 

146 

 

a decrease of rainfall mean and extremes over the last decades over Southeast Asia 

(Manton et al., 2001). However, longer periods of study are needed to verify this 

hypothesis and conclude on climate trends and variability. The SF trend of the Red 

River under the influence of long-term climate variability and hydrology changes will 

be carried out in future studies. 

The annual SF variation caused by climate variability is in fact linked with the Q and 

SSC variations. The Thao sub-basin is the most sensitive sub-basin to the hydrological 

regime and to the SSC changes by climate variability (Wei et al., 2019a), likely due to 

its geomorphology and meteorological characteristics. Li et al. (2016) indicated that 

hydrological droughts in the Red River basin are much more driven by meteorology 

than by human activities. Low rainfall induces less landscape soil erosion and less 

channel erosion than high rainfall. The Thao River basin is sensitive to both landscape 

erosion and channel erosion due to its steep landscape and channel slopes.  

4.2.2 Comparison with other basins 

To compare our results with SF and specific sediment yield (SSY) under natural 

conditions obtained for other Asian rivers, the values provided by Milliman and Syvitski 

(1992) were considered since they were obtained before 1992 and are less impacted 

by dams than more recent estimates provided by the literature. From our simulation 

under natural conditions, the Red River yields an annual SF of 107 Mt yr-1, 

corresponding to a SSY of 780 t km-2 yr-1 (Table 4-4). The Yellow River produced 1100 

Mt yr-1 SF with a SSY of 1400 t km-2 yr-1; the Yangtze River caused 480 Mt yr-1 SF with 

a SSY of 250 t km-2 yr-1; the Pearl River generated 69 Mt yr-1 SF with a SSY of 160 t 

km-2 yr-1; the Mekong River yielded 160 Mt yr-1 SF with a SSY of 200 t km-2 yr-1 (Milliman 

and Syvitski, 1992). The Red River basin under natural conditions thus exported less 

SF than the Yellow River (-90%), the Yangtze River (-78%) and the Mekong River (-

33%), and 55% more than the Pearl River. However, its SSY was higher than the 

Mekong (+290%), Pearl River (+388%), Yangtze (+212%), and nearly half of the 

Yellow River (-44%). When compared to an equivalent surface watershed such as the 

upper Danube (132,000 km2), the Red River basin produced almost 3 times higher 

SSY than that of 265 t km-2 yr-1 generated by the upper Danube; besides, the upper 

Danube basin only exported 21.2 t km-2 yr-1 to the downstream part (Vigiak et al., 2015). 

These results show that under natural conditions, the Red River basin, though having 

a smaller surface than other basins in the world, is a very large source of SF from the 

watershed to the sea. 

4.3 Impacts of dams 

4.3.1 The reduction caused by dams 

Among the three tributaries, dams’ impact on the outlet of the Da River (Hoa Binh 

station) is the most severe, followed by the Lo River; and the dams are less affected 

on the Thao River (Table 4-4). Two new dams in China caused around 48% reduction 
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of SF on the Thao River. More cascade dams are under constructions in China, so this 

value can provide a reference for future studies. The dams on the Lo River reduced 

around 74% of the annual SF. The large dams on the Da River show an enormous 

impact on SF, and the trap efficiency is 89% compared to 86-91% from other studies 

which did not estimate the specific impacts of climate variations of different periods 

(Dang et al., 2010; Vinh et al., 2014). At the outlet of the Red River basin, the dams 

upstream caused an 80% decrease of annual SF. 

The Son La and Hoa Binh dams on the Da River have large capacities and are located 

quite downstream to the outlet of the river compared with the dams on the other two 

tributaries, explaining their higher relative impact. The capacities of the Thac Ba and 

Tuyen Quang dams are also larger than the two dams on the Thao River. The two 

dams (Nansha and Madushan) on the Thao River are above 100 km upstream of the 

Yen Bai station, and along the reach between the dams and Yen Bai station, the 

impacts of dams on sediment transport are mitigated by the degradation and the soil 

erosion from the land component. Therefore, the dams show larger impact at the outlet 

of the Lo River than the Thao River. 

Previous studies (Dang et al., 2010; Vinh et al., 2014; Lu et al., 2015) used long-term 

observed Q and SSC data to analyse the impact of dams on SF. Dang et al. (2010) 

analysed the observed Q and SSC from 1960-2008, but only at Son Tay station, did 

not study the Lo and the Da rivers; Vinh et al. (2014) analysed the observed data from 

1960-2010 at four stations (not in Lao Cai) and focused the analysis on the impact of 

the Hoa Binh dam; Lu et al. (2015) also used the observed data from 1960-2010 to 

assess the impact of a sequence of dams but without considering the dams upstream 

in China. The present study revisits the impacts of dams by taking into account more 

dams recently built in the Red River basin. With more dams implemented after 2013 

or planned at short/mid-term on these three tributaries, the sediment trap efficiency 

might still increase and the SF decreases at the outlet of each tributary, consequently 

at the outlet of the Red River. 

4.3.2 Impacts on dynamic processes 

From the seasonal variation of SF (Figure 4-3), it can be noticed that the dynamic 

processes of natural and actual conditions are similar; the impacts of dams are 

significant on SF peak flow during flood seasons, and dams have much fewer impacts 

on the base flow of SF.  

However, the impacts on the dynamic processes at each station can be different. For 

example, in 2008, the simulation under natural conditions without dams seems to fit 

the observations better at Yen Bai and Vu Quang than at other stations. This suggests 

that, on the same river (Thao), the Nansha dam had weaker impacts at Yen Bai 

(located more downstream, Figure 4-1) than at Lao Cai for the first year of dam 

operation, and can be related to the sediment degradation processes between Lao Cai 

and Yen Bai; also, the Tuyen Quang dam only slightly impacted SF at Vu Quang for 
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the first year of implementation, presumably because the Lo River has much less SS 

than the other two tributaries and the sediment retention caused by the new dam at 

the first year can be relatively lighter. Besides, the Tuyen Quang dam is located on 

one tributary of the Lo River, whereas the other dams are located directly in the main 

branch of the Thao and Da rivers. Therefore, the Tuyen Quang dam on the Lo River 

has fewer impacts on sediment transport.  

4.4 Soil erosion 

The PCA results identified the factor loadings of each component (Table 4-6): PC1 

(consisted of precipitation (P), water yield (WY) and surface runoff (SR)) has the 

highest weighted variable (41.6%), followed by PC2 (25.9%) which is consisted of soil 

erosion (SE), slope and USLE agricultural practice factor (USLE_P), and PC3 (10.8%, 

the percentage of sand (Sand%), silt (Silt%) and clay (Clay%) in soil, i.e. the soil 

texture). Therefore, precipitation (as water yield and surface runoff are fractions of 

precipitation), slope and USLE agricultural practice factor (USLE_P) are key influence 

factors for soil erosion in the Red River basin. The soil texture is also a significant 

factor. Our results are in agreement with Ranzi et al. (2012) who highlighted the major 

role of rainfall in soil erosion in the Lo basin; Yang et al. (2003) found that the hot spots 

of soil erosion in Southeast Asia were close mountainous areas located in the tectonic 

zones and dense croplands regions where both natural geomorphology and human 

activity are major factors for inducing soil erosion. 

Tuan et al. (2014) found annual soil losses from 1.8 to 174 t ha-1 yr-1 from plot-scale 

experiment near Son La. Podwojewski et al. (2008) found a soil erosion from 0.86 to 

13.5 t ha-1 yr-1 also in Hoa Binh province on steep slopes, and Phan Ha et al. (2012) 

demonstrated that the soil loss can be reduced to 0.103 to 1.185 t ha-1 yr-1 with fodder 

management. Based on a RUSLE model, Nguyen et al. (2011) simulated a continuous 

increase of the soil erosion from 1970 to the recent decade 2000, from 4.9 to 5.9 t ha-

1 yr-1. Mai et al. (2013) found a 1.63 to 17.22 t ha-1 yr-1 erosion rare near Son Tay. Our 

simulation is in the range of these references: from 0.01 to 43.4 t ha-1 yr-1, with a mean 

of 5.5 t ha-1 yr-1 over the whole basin. The soil of the high erosion areas - the middle 

part of the Thao River and the downstream of the Da River (Figure 4-7c) - is mainly 

composed of Orthic Acrisols (Ao90-2-3c-4284, Figure 2-12c). This type of soil is acid 

with sandy-loamy surface soil, and prone to slaking, crusting and erosion. Acrisols form 

the tropical red soils and red earths, and after eluviation they are subjected to erosion 

(FAO, 2003b). This result is in agreement with the above conclusion obtained from 

PCA. 

Estimates of annual SF shows that Yen Bai produces more SF than Lao Cai (~30% 

over the whole period, both under actual and natural conditions, Figure 4-4). This 

indicates that the soil erosion or/and resuspension likely happens in the part of the 

basin between Lao Cai and Yen Bai. This can be confirmed by the spatial identification 

of soil erosion (Figure 4-7c) which also indicates that Lao Cai province is a hot spot of 

soil erosion. 
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Before the construction of Hoa Binh dam, sediment input to the Red River mainly 

originated from the Da River (~120 Mt yr-1 in the natural conditions simulations, i.e. 

more than twice the values estimated for the other tributaries, Table 4-4). The high in-

stream SF of the Da River results from both land erosion and channel degradation. 

Complex dam regulation can cause complex hydraulics compared to the natural 

channel. Comparison of the natural and actual conditions simulations over the period 

2008-2013 suggests a 111 Mt yr-1 value of trapped sediment at the Hoa Binh dam. 

Such a big quantity of sediment from upstream of Hoa Binh should catch the attention 

of the management because big sedimentation in the reservoir would reduce the 

capacity and performance of the dam. As explained in Section 2.1.4, this is also a 

reason why the Son La dam was built. 

4.5 Interpretation of Q-SF simple relations 

From Figure 4-5 and Figure 4-6, we can see that the relation between monthly Q and 

SF is a power-law relation of the form: 

                                     SF = a𝑄𝑏      (1) 

where SF is the monthly mean sediment flux (t day-1), Q is monthly mean water 

discharge (m3 s-1), a and b are regression coefficients.  

Equation (1) is formally in accordance with a general sediment rating curve (Asselman, 

2000; Syvitski et al., 2000): 

                                                 SSC = 𝑎′𝑄𝑏′
                  (2) 

where SSC is the suspended sediment concentration (mg L-1), a’ and b’ being the 

regression coefficients. The coefficient a’ represents the erodibility of the soil, and is 

equal to SSC when Q is 1 m3 s-1; a sub-basin with intensively weathered materials 

which can be eroded and transported easily usually shows a high value of the 

coefficient a’. The coefficient b’ represents the erosive power of the river and the 

transport capacity; it is also affected by the grain size distribution of the material 

available for transport: rivers with sand-sized sediments have higher b’ values than 

rivers with silt and clay-sized sediments. 

As discussed before, among the three sub-basins, the Thao and Da sub-basins 

present steep slopes and are vulnerable to soil erosion, therefore their a-coefficient 

should be high. The two stations on the Thao River have the highest a values (2.58 

and 2.43 for Lao Cai and Yen Bai, respectively, over the 2000-2007 period, Figure 4-5); 

however, the Hoa Binh station on the Da River has the lowest a value (0.02 over 2000-

2007) among these three tributaries because the eroded soil was retained in the Hoa 

Binh and Son La dams. For each station, the a-value decreased between 2000-2007 

and 2008-2013 (Figure 4-5): dams retain the SS from upstream soil erosion which 

induces a decrease of a value downstream of the dam. 

The average values of the median diameter D50 of surface sediment are 0.16, 0.35, 
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0.175 and 0.2 mm in the Thao, Da , Lo rivers and the reach between the confluence 

of the Da and Thao rivers at Son Tay, respectively (Vinh et al., 2014), which result in 

high b values at Hoa Binh and Son Tay stations. The b values of Lao Cai and Yen Bai 

on the Thao river and of Vu Quang on the Lo river are similar during 2000-2007 (from 

1.61 to 1.65, Figure 4-5) but not during 2008-2013 (1.59 at Vu Quang vs. 1.79 at Lao 

Cai and Yen Bai). This can indicate that the dams on these two tributaries might 

change the grain size distributions and transport capacity at these stations. 

The relations between monthly Q and SF in Figure 4-5 fit well with the observations of 

both periods (2000-2007 and 2008-2013, Figure 4-6). The coefficients a and b in the 

simple Q-SF equation are in agreement with the real sub-basin characteristics. The 

curves of two periods also illustrate the differences of the sediment regimes during 

these two periods: curves of 2008-2013 are more gentle than of 2000-2007 (Figure 

4-6), i.e. under the same Q, the SF is lower compared to 2000-2007, which is due to a 

combined impact of climate and dams. Hence, these simple Q-SF equations can be 

used by stakeholders to estimate the monthly SF without using the SWAT model. 

5. CONCLUSIONS 

This study aimed to characterize the suspended sediment flux and the soil erosion of 

the Red River basin by using the output of a numerical model and in-situ data. 

Suspended sediment flux was quantified based on daily simulations of discharge and 

suspended sediment concentration during a long period, taking into account the 

successive implementations of dams and the climate variability during this period. 

Furthermore, by implementing a scenario of natural condition without dams in this 

basin, this study allowed to disentangle the impacts of climate variability and dam 

constructions at the outlets of each main tributary as well as at the outlet of the 

continental basin. This provides a reference for future studies on dams’ functions and 

water resource management. 

Under the influence of both climate variability and damming, the suspended sediment 

fluxes showed a drastic decrease during 2008-2013 compared to 2000-2007. These 

two influencing factors had different effects on each sub-basin. Due to the different 

climatic and topographical characteristics, such as precipitation distribution and river 

bed slope, the Thao River is more sensitive to climate variability than the other two 

tributaries. Conversely, the Da River is the most affected by constructions of huge-

capacity dams. At the outlet of the Red River basin, the mean annual sediment fluxes 

decreased by 90% compared to the value estimated for natural conditions during 2000-

2007, of which 10% was due to climate variability and 80% to the dams. A power-law 

relation between monthly mean discharge and sediment flux was provided at each 

outlet of the main tributaries and the Red River for stakeholders and decision-makers 

to have an easy tool to estimate the sediment flux. 

The high advantage of the model, once it has been calibrated with data from 

hydrological stations, is that he can serve to estimate and map each term involved in 
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the sediment transport process – including local erosion, local deposition, in-stream 

sediment discharge, etc. – and that it can be used to infer local SF-Q rating curves at 

any virtual station within the basin from the model simulations, even where there is no 

true station. This point is of major interest both for scientific applications (e.g., studying 

spatial variations of SF) and for management purpose, with provinces and other 

stakeholders. 

Land management should pay attention on the high soil erosion areas located in the 

middle part of the Thao sub-basin and the lower part of the Da sub-basin due to the 

precipitation distribution, topography and soil texture, and river management should 

notice the sediment retained in the dams on the Da River. 

Some improvements can be done in future research. This study did not take into 

account the impacts of land use changes on soil erosion and sediment flux. A more 

precise and higher-frequency in-situ dataset would be useful, such as longer and high-

frequency hydrological and meteorological data at more stations, and more information 

about dam management, in order to have a better estimation and understanding of the 

impacts of climate variability and human interferences. 

With on-going and future climate change and dams constructions in this basin, it would 

be necessary to pursue further research about the sediment flux variation and its 

associated contaminant fluxes as well as carbon transfer in order to better manage 

this basin and protect the downstream coastal areas. In addition, running numerical 

simulations under scenarios of global changes, such as land use changes and 

urbanization, would allow to estimate the impacts of these changes on hydrology and 

suspended sediment fluxes. 
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Chapter 5 
 

 

 

 

Assessing Fluvial Organic Carbon 

Concentration and Fluxes 

 

 

This chapter is preparing to submit. The work of this chapter was to characterize and 

quantify the dissolved organic carbon (DOC) and particulate organic carbon (POC) 

over the basin considering the impacts from climate variability and dam constructions 

by calculating the DOC and POC at a daily time step. 
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5. CHAPTER Ⅴ: Assessing Fluvial Organic Carbon Concentration and 

Fluxes 

5.1. Scientific Context and Objectives 

Tropical humid ecosystems are hot spots of terrestrial organic carbon storage and 

tropical rivers are critical to total global fluvial organic carbon fluxes. Tropical rivers 

were estimated to export almost half of the global organic carbon fluxes to the oceans. 

Asian river basins have also been recognized to produce high organic carbon and 

export significant organic carbon fluxes to the oceans. Southeast Asian regions are 

vulnerable to climate changes. Besides, human activities and interferences are strong 

in developing Asian countries. Therefore, it would be important and interesting to 

understand the DOC and POC transport dynamics and quantifying DOC and POC 

fluxes through the tropical Asian river basins at a daily time scale in order to capture 

the flood events and estimate the organic carbon fluxes preciously. The Red River 

basin, passing through from subtropical to tropical zone, shared by China, Vietnam 

and Laos, influenced by strong human activities, would be a great study example. The 

specific objectives of this paper are: (1) to quantify daily, monthly and annual DOC and 

POC fluxes through the basin during a long-term period (2003-2013); (2) to quantify 

the influence of climate variability and dams on DOC and POC transport and fluxes; 

(3) to propose a new approach to evaluate DOC and POC in different point in the basin 

without using the SWAT model. 

5.2. Materials and Methods 

Based on the calibrated daily discharge (Q) and suspended sediment concentration 

(SSC) from the SWAT model, DOC and POC were calculated through simple 

equations. First, the equations for calculating the DOC and POC concentrations were 

calibrated based on DOC and POC discrete sampling data and observed daily Q and 

SSC data from 2003 to 2013 at Yen Bai, Vu Quang, Hoa Binh and Son Tay stations. 

Then the outputs of modelled Q and SSC data from previous work were used to 

calculate the DOC and POC concentrations and then fluxes at a daily time step. 

Benefitting from the model scenario: actual conditions and natural conditions (without 

dams), the impacts of the Q due to climate variability and the impacts of dam 

constructions were able to be quantified. 

5.3. Main Results and Discussions 

The parameters related to DOC and POC equations well represented the characters 

of each sub-basin. We found the parameters have relationships with the average soil 

organic carbon content of the drainage area, the mean annual Q and the Chl-a 

concentration in the river. Therefore, people are able to use these relationships to 

evaluate the parameters and then to calculate the DOC and POC concentrations at 

any point within this basin. 

The mean annual export of DOC during 2003-2013 was 222 kt yr-1 at Son Tay, which 

represented 0.26% of the total Asian rivers DOC transport; and the mean annual export 
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of POC during 2003-2013 was 406 kt yr-1 at Son Tay which accounted for 0.37% of the 

total POC export by the Asian rivers. Compared to some other Asian and tropical rivers, 

the export of DOC and POC fluxes through the Red River was not high, especially for 

POC. However, when comparing the specific yields, the Red River basin yielded high 

DOC and POC values, which is in agreement with some previous studies that indicated 

that the rivers in mainland Asia have the highest specific export rates worldwide in 

terms of DOC and POC. High DOC yield of the Red River basin comes from the high 

leaching from soil and rocks while the high POC yield is contributed from high soil 

erosion and high suspended sediment concentration. 

Under natural conditions (without dams), at the outlet (Son Tay), due to the Q variation 

induced by climate variability, the DOC flux during 2008-2013 increased 1% compared 

to 2003-2007, and the flood year 2008 was the main contributor. A 13% reduction of 

DOC flux was related to dam operations which regulated the discharge during flood 

seasons. POC fluxes under natural conditions between 2003-2007 and 2008-2013 

varied little (-2%) which indicated that climate variability had little impacts on POC 

fluxes, while the dam constructions caused an 85% decrease in POC flux. At the outlet 

(Son Tay), the POC flux in 2008 was only 45% of that in 2007 even though 2008 is a 

flood year. A drastic decrease in SSC and sediment fluxes occurred in the same year. 

The POC transfer was affected consequently after dam constructions. 

At the outlet during 2003-2007, the POC flux accounts averagely 74% of TOC flux, but 

during 2008-2013, it only accounts 47%. Due to the drop of POC flux, the TOC 

decreased by 31% at the outlet in 2008 compared to the previous year. With the 

construction and operation of new dams, the composition ratio of TOC changed, from 

POC-dominating to DOC-dominating. Besides, the dynamic variations of POC/TOC 

were also changed by dam regulation. Before new dam constructions, the POC/TOC 

ratio was low around March and high in flood season. However, after new dams 

impounded, during June and July, the dams fulfil flood-control functions, retaining 

water and SS, therefore the POC/TOC ratio became low during the flood season. And 

around March, dams discharge water for irrigation, SS is released too, which induces 

high POC/TOC. 

5.4. Conclusion and Perspectives 

Based on a hydrological model already set up, calibrated and validated over the Red 

River basin, and on dissolved and particulate organic carbon measurements, a model 

of organic carbon dynamics was calibrated and validated at a daily time step during a 

10-year period (2003-2013) in a large tropical river basin. Intra-annual and inter-annual 

variations are very difficult to assess from discrete samplings, and only at the 

hydrometric stations. This method overcomes the shortage of in-situ measurement and 

allows future studies on different scenarios such as land use and climate changes. 

This approach could be applied to other basins worldwide and to characterize their 

corresponding parameters. More intensive sampling during flood season will help to 

result in more precise parameters. Future studies can keep attention on the fluvial 
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organic carbon flux and specific yield variations under global changes in order to 

understand their long-term impacts. Besides discharge and suspended sediment, soil 

organic carbon content, soil leaching and erosion are the key factors influencing the 

organic carbon concentration in the Red River basin. Therefore, the link between soil 

conservation and organic carbon transport can also be carried out. 

5.5. Full Article 
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A Modelling Approach to Assess Fluvial Organic Carbon Flux and its 

Response to Climate Variability and Damming on A Large-scale Asian 

River Basin: Case of the Red River (China and Vietnam) 

Xi Wei1, Sabine Sauvage1, Thi Phuong Quynh Le2, Clement Fabre1, Sylvain Ouillon3,4, 

Didier Orange5, Marine Herrmann3,4, José-Miguel Sánchez-Pérez1 
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2 Institute of Natural Product Chemistry (INPC), Vietnam Academy of Science and 

Technology (VAST), Hanoi, Vietnam. 
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Abstract: 

Fluvial organic carbon (OC) transfer is part of the global carbon cycle and is an 

important resource for downstream ecosystems. However, its transfer process is 

affected by climate variability and damming. This study chose the Red River basin as 

a study case, which is located in Southeast Asia and facing the above impacts. This 

study aims to quantify OC concentrations and fluxes at a daily time step and the 

impacts of climate variability and damming on OC spatiotemporal transfer processes 

at a large basin scale for a long time period (2003-2013) by using a new approach 

based on modelling outputs. Empirical equations for calculating dissolved (DOC) and 

particulate organic carbon (POC) concentrations were calibrated based on discrete in-

situ sampling data. Then simulated daily discharge from the modelling was used to 

quantify the daily OC fluxes. Results show that the corresponding parameters of the 

DOC and POC equations well represent the characteristics of each sub-basin, 

underlining the effects of soil OC content, mean annual discharge and Chlorophyll a. 

During 2003-2013, at the basin outlet, the exports of DOC and POC were 222 and 406 

kt yr-1 respectively, accounting for 0.38% of the total OC (TOC) export by Asian rivers. 

However, the specific yields of DOC (1.62 t km-2 yr-1) and POC (2.96 t km-2 yr-1) of 

the Red River basin were ~1.5 times those of other Asian basins. By comparing to a 

reference scenario (without dams) to actual conditions, we estimated a 12% and 88% 

decrease in DOC and POC fluxes between 2008-2013 and 2003-2007, respectively, 

mainly due to damming. Less than 2% of the variations was explained by climate 

variability. The percentage of POC in TOC decreased from 86% (without dams) to 74% 

until 2007 then to 47% with new dams. Damming induced a great decrease in POC 

due to sediment retention, which consequently altered the TOC export and the 

DOC/POC ratio. This study enables the stakeholders to estimate the OC 

concentrations with easy-obtained environmental parameters at any point within this 

basin where sampling is not executable, and the approach used in this basin can be 

applied over the other basins. 
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1. Introduction 

Rivers play an essential role in the global transport of suspended sediment (SS) and 

associated elements, such as carbon (C), nitrogen and phosphorus. They are a key 

connection between terrestrial and marine ecosystems. Riverine organic carbon (OC) 

can be classified into two forms: dissolved organic carbon (DOC) and particulate 

organic carbon (POC), and is regarded as an indicator of water quality. Moreover, 

metal ions and pesticides can be adsorbed onto OC and then be carried to the oceans 

(Boithias et al., 2014; Garneau, 2014). Measuring, quantifying and studying the fate of 

fluvial OC allows to comprehensively evaluate the degree of organic contamination in 

water bodies. Riverine OC is mainly derived from the following three pools: 1) an 

autochthonous pool derived from in-situ biological production, such as phytoplankton, 

metabolite of animals and plants in rivers; 2) an allochthonous pool derived from 

terrestrial organic matter, such as soil leaching and erosion; 3) an anthropogenic pool 

derived from agricultural, industrial and domestic release (Hope et al., 1994; 

Rizinjirabake et al., 2018). 

Long term changes at the basin scale such as climate variability, land use changes 

and increase damming have altered biogeochemical cycles, including C cycle (Hope 

et al., 1994; Seitzinger et al., 2010). Therefore, understanding the biogeochemical and 

dynamical processes involved in riverine OC, and quantifying OC fluxes and their 

answer to those influence factors are essential to further assess the balance between 

continental and oceanic fluxes and the impact of those changes. 

Riverine C export to the oceans was estimated at 0.9 Gt yr-1 (Hope et al., 1994; Cole 

et al., 2007), of which about 0.38 Gt yr-1 was exported as OC (Ludwig and Probst, 

1996b). A more recent study from Li et al. (2017) estimated that annual C exported to 

oceans was approximately 1.06 Gt, including 0.48 Gt of OC. Tropical humid 

ecosystems are hot spots of terrestrial C storage and tropical rivers strongly contribute 

to the total global fluvial C flux (Huang et al., 2012; Carvalhais et al., 2014). Ludwig 

and Probst (1996) indicated that about 45% of the OC exported to the oceans 

originated from tropical wet areas. The study of Huang et al. (2012) focused on the 

tropical rivers and indicated that they delivered 0.28 Gt yr-1 of OC to the estuaries. 

The global annual fluvial flux of DOC to the ocean was from 0.21 to 0.25 Gt yr-1, while 

Asian rivers contributed by 0.09 to 0.14 Gt yr-1 (Ludwig and Probst, 1996b; Huang et 

al., 2012; Carlson and Hansell, 2015; Li et al., 2017, 2019). The global rivers export of 

POC was estimated from 0.17 to 0.24 Gt yr-1, and Asia is the major source region, 

accounting about 50% (0.13 Gt yr-1) (Ludwig and Probst, 1996b; Beusen et al., 2005; 

Huang et al., 2012; Li et al., 2017). Previous studies also pointed out that the rivers in 

mainland Asia have the highest specific export rates in terms of DOC and POC (Huang 

et al., 2012; Li et al., 2019). Most estimations were calculated on a monthly or an 
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annual scale, and hardly any study estimated OC fluxes on a daily time scale. 

Sampling and modelling are indeed usually performed at fortnightly or monthly 

intervals, which might induce underestimation when there is a storm or intense rainfall 

during the intervals since most OC export happens during flood events. For most rivers, 

the OC concentration varies with discharge and season (Coynel et al., 2005). 

Discharge (Q) is the major factor controlling the output of OC (Hope et al., 1994), and 

suspended sediment concentration (SSC) is also the main determinant of POC flux 

(Ludwig and Probst, 1996b; Huang et al., 2012). Q and SS can vary largely depending 

on the seasons but also due to intensive daily rainfall and storms, inducing strong 

variability of OC concentration and fluxes at the seasonal but also daily scales. 

Tropical Asian river basins are key contributors to the OC fluxes export to the oceans, 

submitted to a wide range of changes. It is therefore essential to develop methods to 

quantify OC fluxes and their variability in these basins from the interannual to the daily 

time scales. The Red River basin is an international tropical basin shared among China, 

Laos and Vietnam, combining different land uses and affected by human activities such 

as intensive agriculture and dam implementations. Previous studies, based on both in-

situ sampling data and modelling, have investigated impacts of human activities on 

hydrology and SS (Le et al., 2007; Dang et al., 2010; Wang et al., 2011; Vinh et al., 

2014; Lu et al., 2015; Wei et al., 2019b); these studies especially found a strong 

retention of SS (~90% decrease) caused by dams. 

Studies about nutrients associated with discharge and SS, such as C, nitrogen, 

phosphorus, have also been carried out. Most of these researches analysed the 

concentrations and fluxes of nutrients based on the sampling data (Le et al., 2005, 

2010, 2017a; Dang et al., 2013a); few used the numerical modelling (Le et al., 2017b; 

Nguyen et al., 2018). At the local or regional scale, in-situ sampling is a direct and 

accurate way to quantify the riverine C. From sampling data, Le et al. (2017a) 

estimated that the mean annual TOC yield during 2008-2010 was 270 kt yr-1 at Hanoi, 

of which 142 kt was DOC and 128 kt was POC; Dang et al. (2013) quantified the annual 

POC flux of 243 kt yr-1 at Son Tay during 2006-2009. 

However, in-situ field sampling at large spatial and temporal scales is expensive and 

often impracticable in some remote areas and underdeveloped regions. Using a 

numerical modelling approach, combined with available in-situ data, allows to 

overcome these shortages. Le et al. (2017b) and Nguyen et al. (2018) used a 

modelling approach to identify a seasonal OC variation and to estimate a TOC export 

of 324 kt yr-1 at Son Tay during 2013-2014. However, as explained above, such 

simulations at a seasonal scale do not represent the whole range of OC fluxes 

variability, and Hope et al. (1994) indicated that riverine C flux was likely to be 

underestimated when studied only based on seasonal data. Therefore, it would be 

more precise to assess and calculate OC flux at a daily time step using daily Q, SSC 

and OC concentrations. Also, it is important to analyse DOC and POC concentrations 

and dynamics separately. 
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This work aims at understanding the DOC and POC transport dynamics and 

quantifying DOC and POC fluxes and their variability through the whole Red River 

basin. The specific objectives of this paper are: (1) to quantify daily, monthly and 

annual DOC and POC fluxes through the basin during a long-term period (2003-2013); 

(2) to quantify the influence of climate variability and dams on DOC and POC transport 

and fluxes; (3) to propose a new approach to evaluate DOC and POC at different points 

in the basin. 

2. Materials and Methods 

2.1 Study area 

2.1.2 Geographical characteristics 

The Red River basin covers a total area of approximately 159,000 km2 shared by China 

(49%), Vietnam (50.1%) and Laos (0.9%). Our study area focuses on the continental 

drainage catchment at Son Tay which is also the apex of the delta, with a surface of 

137,200 km2 (Figure 5-1). 

The Red River is comprised of three main tributaries: the upper part of the main river 

before the confluence, 20 km upstream to the Son Tay station, is called the Thao River, 

and it is now the main sediment load contributor (~80%) to Son Tay (Le et al., 2007; 

Wei et al., submitted); the Da River, on the right river bank, contributes to 50-57% of 

total discharge at Son Tay (Le et al., 2007; Li et al., 2016a); the Lo River is on the left 

riverbank, and its annual mean Q and SSC at its outlet are between the Thao and the 

Da rivers (Lu et al., 2015; Wei et al., 2019a). 

The topography within this basin varies greatly, from an elevation of around 3000 to 

2000 m in the headwater region in China to 20 m in the delta near the outlet. Most 

areas are mainly mountainous with slopes mainly above 6%. The Thao and Da sub-

basins are much steeper than the Lo sub-basin (Wei et al., 2019a). The upper part of 

the Red River basin before Yen Bai (Figure 5-1) is formed by tectonically active 

mountains vulnerable to high erosion with intensive rainfall (Barton et al., 2004; He et 

al., 2007; Bai et al., 2015; Wei et al., 2019a). The main soil types in the upper part are 

red earth, yellow-brown soils and fluvisols also known as acrisols (Le, 2005; Bai et al., 

2015). The origin of the name of the Red River is due to the soil characteristics and 

the high erosion, which make the river muddy and red (Le, 2005). 
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Figure 5-1 The Red River watershed (red outline), with its three main tributaries (the Thao River, the Da 

River and the Lo River), and sampling sites and gauge stations (blue points). Six large dams were built 

in this basin (red triangles). 

2.1.2 Meteorological characteristics 

The whole Red River basin is influenced by the monsoon system, from the subtropical 

humid monsoon in the upstream basin to tropical humid monsoon in the downstream 

part, and associated with strong seasonality. The mean annual rainfall was 1590 mm 

in the whole Red River basin, and over 85-90% of the whole year rainfall happens in 

the rainy season (May to October) (Le et al., 2007; Li et al., 2016a). The rainfall is also 

unevenly spatial distributed, and the general trend of regional precipitation distribution 

increases from upstream to downstream (Xie, 2002; Li et al., 2008). Temperatures 

differ from the upper mountain region to the lower part through the basin, and the mean 

annual temperature ranges from 15 to 24 °C (Xie, 2002; Le, 2005). 

2.1.3 Hydrological characteristics 

The runoff shows high inter-seasonal variations as it is mainly fed by rainfall (Li et al., 

2008, 2016a; FAO, 2011b). The flood season occurs from June to November and 

produces more than 80% of the total annual runoff. 

From the discharge data covering the 2003-2013 period and obtained from the 

Vietnam Ministry of Natural Resources and Environment (MONRE), the mean annual 

discharge at Son Tay during this period was 3052 m3 s-1; the lowest daily discharge 
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observed was 493 m3 s-1 in February 2010, and the maximum daily flood reached 

14,800 m3 s-1 in August 2012. Annual water volume at Yen Bai, Vu Quang, Hoa Binh 

and Son Tay stations were 20.7, 28.2, 51.9 and 99.0 km3 yr-1, respectively. 

2.1.4 Suspended sediment 

The sediment fluxes were strongly affected by the constructions of dams in this basin 

(Le et al., 2007; Lu et al., 2015; Vinh et al., 2014; Wei et al., 2019, submitted). Inside 

this basin, there are six important dams with large capacity (Figure 5-1). Two dams are 

located on the Thao River, the Nansha and Madushan dams, which started operating 

in 2008 and 2011, respectively. The Thac Ba and Tuyen Quang dams on the Lo River 

were impounded in 1972 and 2008, respectively. Two largest dams, the Hoa Binh and 

Son La dams on the Da River, started to operate in 1989 and 2011, respectively. More 

details about these dams can be found in Wei et al. (2019). After new dams 

impoundment since 2008, the mean annual sediment flux during 2008-2013 was 17.2 

Mt yr-1 at Yen Bai station (Thao River), 3.6 Mt yr-1 at Vu Quang station (Lo River), 1.3 

Mt yr-1 at Hoa Binh station (Da River) and 13.2 Mt yr-1 while at Son Tay station at the 

Red River delta apex (Wei et al., submitted). 

2.1.5 Land use and population 

In the Chinese part of the basin, forest accounts for 62%, followed by grassland and 

cultivated land, accounting for 19% and 18% respectively (Li et al., 2016). In the 

Vietnamese part, land use varies from different sub-basins, however forest and 

agriculture account for the larger portion of the land use in the Red River basin: in the 

Thao basin, forest is the dominant land use, accounting for 54.2%, followed by 

cultivated land (31.5%); in the Lo and Da basins dominate cultivated land (58.1%) and 

forests (74.4%), respectively (Le et al., 2007).  

The total population of the basin was about 42 million in 2012 of which 11 million was 

in China and 31 million in Vietnam (Li et al., 2016). Gu et al. (2018) recently revised 

this number to 15.25 million inhabitants in China’s part. The population density in the 

different sub-basins varies significantly with 101, 132 and 150 inhabitants km-2 in the 

Da, Lo and Thao sub-basins, respectively, and with the densest part around Son Tay 

(Le et al., 2007). The rural population accounts for 70 to 80% of the whole population  

(Le et al., 2017a; Gu et al., 2018). 

2.2 Data sources 

Daily discharge (Q) and suspended sediment concentration (SSC) data were obtained 

from the Vietnam Ministry of Natural Resources and Environment (MONRE) at Yen 

Bai, Vu Quang, Hoa Binh and Son Tay stations from 2003 to 2013 (see Figure 5-1). 

Yen Bai, Vu Quang and Hoa Binh stations are the outlets of the Thao, Lo and Da rivers, 

respectively. 

Inputs such as topography (digital elevation model), land use, soil map, rainfall and 

temperature were used to simulate daily Q and SSC using the SWAT model (Neitsch 
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et al., 2009), as detailed in the previous work of Wei et al. (2019). Soil map is presented 

in Figure 5-2. 

POC and DOC data were obtained from two sources. The first one was provided by 

the Laboratory of Environmental Chemistry, Institute of Natural Product Chemistry, 

Vietnam Academy of Science and Technology. Detail information about these 

sampling and laboratory measurements can be found in Le et al. (2017a). Samplings 

were taken generally one to three times per month from 2003-2004, 2008-2010, 2012-

2013 at Yen Bai, Vu Quang, Hoa Binh and Son Tay. Due to the sampling difficulties, 

data are missing for some years or months. The second source was from Dang (2006) 

who provided POC and DOC concentrations at Yen Bai, Vu Quang, Hoa Binh and Son 

Tay during 2008-2009, with sampling frequency generally monthly or bimonthly. 

 

Figure 5-2 Soil map of the Red River basin (Wei et al., 2019a). 

2.3 Organic carbon calculation 

2.3.1 DOC equation 

The equation for calculating the DOC concentration [DOC] from daily Q was taken from 

the work of Fabre et al. (2019):   

[DOC] =  
α ∗ Q 

β + Q
       (1) 

where [DOC] is in mg L-1, Q in mm d-1; the parameter α (mg L-1) represents a potential 

of maximum [DOC] at the outlet of each sub-basin, and the parameter β (mm d-1) is 

the Q when [DOC] is half of α. 
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2.3.2 POC equation 

The equation for calculating the POC concentration was proposed by Boithias et al. 

(2014) who generalized the relation between the POC and suspended sediment 

concentration (SSC) as followed: 

%𝑃𝑂𝐶 =  
9.40

SSC−𝑎
+ 𝑏 (if SSC > a) 

%𝑃𝑂𝐶 = %𝑃𝑂𝐶𝑚𝑎𝑥 (if SSC ≤ a)                                                (2) 

where %POC is the percentage of POC in the suspended sediment, %POCmax is the 

maximum value over the basin, SSC is in mg L-1, and parameters a and b are linked 

to environmental variables related to each sub-basin (see details in Section 3.1.4). The 

parameter a (in mg L-1) is the vertical asymptote corresponding to a low SSC with 

organic matter rich in OC, such as phytoplankton and residuals; this basin-specific 

constant includes an anthropogenic impact over the basin. The parameter b (in %) is 

the horizontal asymptote representing the SSC with low POC, nearly equals to soil 

organic carbon content, and it is also a basin-specific constant (Boithias et al., 2014; 

Fabre et al., 2019). When SSC is smaller than a, %POC is equal to as its maximum 

value, %POCmax. 

2.4 Modelling strategy 

2.4.1 Parameters calibration for DOC and POC 

The five parameters (α, β, a, b) in Equation 1 and 2 were manually calibrated based 

on the OC sampling data and the observed daily Q and SSC at each station. This 

allowed to determine values of specific parameters associated with each sub-basin, 

which are representative of the characteristics of each sub-basin. The values of each 

parameter were calibrated separately in order to obtain simulation as close as possible 

to the observed values. The maximum value of %POC was set by considering covering 

99.9% of the dataset. 

2.4.2 Scenarios settings 

The SWAT is a physically-based model used to simulate the quality and quantity of Q, 

SSC and nutrients over river basin, and to predict the environmental impacts of human 

activities and climate variability (Neitsch et al., 2009). However, the SWAT model 

cannot compute the DOC and POC concentrations. Wei et al. (2019) applied the 

SWAT model on the Red River, obtaining simulated daily Q and SSC from 2000 to 

2013 in good agreement with in-situ measurements (scenario of actual conditions, with 

dams). A reference scenario (without dams) was also implemented in their study to 

assess separately the impacts of climate variability and dams on Q and SSC, 

respectively. Actual conditions and reference scenario settings are presented in Error! 

Reference source not found.. More detailed information on simulated Q and SSC 

can be found in Wei et al. (2019).  
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The idea of this study is to apply the simulated daily Q and SSC of actual conditions 

and reference scenario from modelling to Equation 1 and 2 to calculate the simulated 

DOC and POC concentrations and fluxes under those two conditions (Figure 5-3). 

 

Figure 5-3 The setting for Actual Conditions and Reference Scenario: gray triangles are the old dams 

impounded before the study period and black triangles are the new dams impounded since 2008. By 

comparing actual conditions to reference scenario during 2008-2013, the impacts of these dams can be 

quantified; by comparing the period 2008-2013 to 2003-2007 under reference scenario, the impacts of 

climate variability can be quantified. 

2.5 Model evaluation and validation for DOC and POC 

Discrete sampling was first used to calculate OC fluxes from observed data through 

the Load Estimator (LOADEST) regression model, which was developed by U.S. 

Geological Survey for estimating constituent loads in rivers (Runkel et al., 2004) and 

had been applied to many studies (McClelland et al., 2007; Sickman et al., 2007; 

Tamm et al., 2008; Huntington and Aiken, 2013): LOADEST model is calibrated 

through regression analysis based on discrete sampling data of OC and observed daily 

Q, and the best regression model (Approximate Maximum Likelihood Estimator) is 

used with LOADEST to estimate daily DOC and POC fluxes respectively. The outputs 

of LOADEST were then used as a reference to validate our calculations. The mean 

annual DOC and POC fluxes from other studies in the same basin (Dang, 2006; Le et 

al., 2017a) were also used as references for validations. 

The coefficient of determination (R2) and the Nash–Sutcliffe efficiency (NSE) were 

used as statistical tests to evaluate the quality of our calculation by comparing the 

results from LOADEST with ours (Nash and Sutcliffe, 1970; Moriasi et al., 2007). R2 

values greater than 0.5 are considered acceptable; NSE values greater than 0 are 

generally regarded as acceptable levels of performance (Moriasi et al., 2007). 
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3. Results 

3.1 DOC and POC concentrations 

3.1.1 DOC equation application 

The parameters α and β in Equation 1 obtained for each station and the number of 

measured DOC values between 2003 and 2013 used to infer them are listed in Table 

5-1. The values of parameter α vary from 4.5 to 5.5; parameter β varies from 0.7 to 2.5, 

geographically increasing from the upstream to the downstream. 

Table 5-1 Values of the parameters α and β for dissolved organic carbon (DOC, Equation 1) and of the 

parameters a, b and %POCmax for particulate organic carbon (POC, Equation 2) at different stations, and 

number (N) of sampling data (DOC and POC) used to calibrate the parameters. 

 Variables Parameter  Yen Bai Vu Quang Hoa Binh Son Tay 

DOC 

N (DOC) 94 94 96 73 

α 4.5 5.0 5.5 5.0 

β 0.7 0.8 1.7 2.5 

POC 

N (POC) 63 58 54 49 

a 40.0 7.0 5.0 20.0 

b 1.0 1.5 1.7 1.5 

%POCmax 10 15 40 15 

 

3.1.2 DOC concentrations temporal variations 

The daily variations of observed and simulated DOC concentrations at four stations 

from 2000 to 2013 are presented in Figure 5-4. The observed DOC concentrations 

were measured over some short periods and did not show clear seasonal variations. 

The simulated DOC concentrations are in the range of the observations (values of the 

range are presented in the following sub-section), with most sampling points captured 

by our calculations. Generally, simulated DOC concentration varies in accordance with 

Q variations, increasing from May to July, staying high during the highest floods in 

August and September, and decreasing from October to April. 

Simulated mean annual DOC concentrations increase in the following order: Yen Bai 

(1.39 mg L-1) < Vu Quang (1.50 mg L-1) < Hoa Binh (1.60 mg L-1) < Son Tay (1.81 mg 

L-1). 
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Figure 5-4 Daily variations of dissolved organic carbon (DOC) concentration (mg L-1) at four stations from 

2003 to 2013. Observation 1 (black dot) shows the DOC measured by Le et al. (2017a); observation 2 

(white dot) shows the DOC measured by Dang (2006); calculations from Equation 1 based on the 

simulated discharge (Q, m3 s-1) from Wei et al. (2019) with the values of the parameters given in Table 2 

are the gray solid line. 

3.1.3 DOC concentrations ranges and spatial variations 

Simulated DOC concentrations at four stations varied slightly (Figure 5-5a). At Yen Bai 

station, DOC concentration was from 0.01 to 4.13 mg L-1 with an average of 1.25 mg 

L-1 (observations from 0.20 to 5.90 mg L-1); at Vu Quang, DOC was in the range of 0.03 

to 4.01 mg L-1 with an average of 1.50 mg L-1 (observations from 0.33 to 5.70 mg L-1); 

at Hoa Binh, DOC concentration varied from 0.05 to 4.05 mg L-1 with an average of 

1.60 mg L-1 (observations from 0.12 to 5.65 mg L-1); at Son Tay, DOC shifted from 0.05 

to 4.11 mg L-1 with an average of 1.81 mg L-1 (observations from 0.36 to 6.00 mg L-1). 
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Figure 5-5 Box plot of daily simulated dissolved organic carbon (DOC) and daily particulate organic carbon 

(POC) concentration (mg L-1) at four stations during 2003-2013 in the Red River basin. IQR represents 

the interquartile range. 

3.1.4 POC equation application 

Figure 5-6 shows the percentage of POC in suspended sediment (%POC) against the 

suspended sediment concentration (SSC) computed from available measurements in 

the period 2003-2013. %POC shows a significant and negative relationship with SSC, 

following well Equation 2. 

We obtained different values of parameters a, b, and %POCmax for the four stations 

(Table 5-1). The values of parameter a vary largely, with a maximum value of 40.0 mg 

L-1 at Yen Bai and a minimum of 5.0 mg L-1 at Hoa Binh. Parameter b varies from 1.0 

to 1.7%, with a maximum at Hoa Binh and a minimum at Yen Bai. The maximum value 

of %POC was set by considering covering 99.9% of the dataset. %POCmax varies 

strongly with a minimum of 10 mg L-1 at Yen Bai and a maximum of 40 mg L-1 at Hoa 

Binh. 
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Figure 5-6 Relationship between the percentage of POC concentration (%POC) in the suspended 

sediment concentration (SSC, mg L-1) and observed SSC (mg L-1). Observation 1 (black dot) corresponds 

to the measurements from Le et al. (2017a); observation 2 (white dot) corresponds to the measurements 

from Dang (2006); gray solid dots were the calculations from Equation 2 based on the observed SSC data 

collected from the Vietnam Ministry of Natural Resources and Environment (MONRE). %POCmax, the 

maximum limit of %POC, was set as 10%, 15%, 40% and 15% for Yen Bai, Vu Quang, Hoa Binh and Son 

Tay, respectively. 

3.1.5 POC concentrations temporal variations 

Figure 5-7 illustrates the daily variations of simulated and observed POC 

concentrations at four stations from 2003 to 2013. POC concentrations showed great 

seasonal and inter-annual variations. POC peak flows occurred from May to October. 

Seasonal variations strongly weakened during more recent years (2008-2013), and 

the POC peak flows decreased. For Yen Bai, Vu Quang, Hoa Binh and Son Tay 

stations, the standard deviation is 10.11, 2.75, 0.84, 3.55 mg L-1 respectively over 

2003-2007, and 3.76, 0.83, 0.53, 0.96 mg L-1 respectively over 2008-2013; and the 

maximum POC concentration is 82.77, 18.86, 7.91, 22.72 mg L-1 respectively during 

2003-2007, 30.12, 9.50, 12.31, 6.52 mg L-1 respectively during 2008-2013. 
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Calculations are in the same range as discrete samplings (values of the range are 

presented in the following sub-section) and produced acceptable results. Comparing 

the simulated POC concentrations to the observations, simulated POC peaks can be 

underestimated for some years. Simulated POC base values are generally in good 

agreement with in-situ observations. 

 

 

Figure 5-7 Daily variation of particulate organic carbon (POC) concentration (mg L-1) at four stations from 

2003 to 2013. Observation 1 (black dot) was observed POC from Le et al. (2017a); observation 2 (white 

dot) was the observed POC from Dang (2006); simulation (gray solid line) was simulated from Equation 

2 based on the simulated suspended sediment concentration (SSC, mg L-1) from Wei et al. (2019). 

3.1.6 POC concentration ranges and spatial variations 

Figure 5-5b presents the POC concentrations ranges at the four stations. From the 

calculations, POC concentrations vary from 0.85 to 82.77 mg L-1 with an average of 

8.35 mg L-1 at Yen Bai (observations from 0.14 to 67.20 mg L-1), from 0.40 to 18.86 mg 

L-1 with an average of 2.30 mg L-1 at Vu Quang (observations from 0.20 to 5.17 mg L-

1), from 0.36 to 12.31 mg L-1 with an average of 0.96 mg L-1 at Hoa Binh (observations 

from 0.18 to 3.27 mg L-1) and from 0.43 to 22.72 mg L-1 with an average of 3.03 mg L-

1 at Son Tay (observations from 0.20 to 23.78 mg L-1). Our calculations have larger 
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ranges compared to observations because our calculations period covers the years 

before when the POC concentrations were high. The POC low concentrations at these 

four stations do not differ much, but significant differences occur at POC peak fluxes. 

3.2 Fluxes of DOC and POC 

3.2.1 DOC flux variations 

Daily variations of DOC fluxes at four stations are presented in Figure 5-8a. Simulated 

DOC fluxes fit well with the observations during low flow periods. Daily calculations 

represent realistically the DOC flux fluctuations during flood seasons. 

As described in Section 2.5, the results from the LOADEST model are used as 

references to validate our calculations, and Figure 5-8b shows the DOC fluxes from 

LOADEST and our calculations at a monthly scale. Compared to the results from 

LOADEST, the simulated base DOC flux is lower and the peak DOC flux was higher 

for some years; the R2 at these four stations varied from 0.65 to 0.74 and the NSE is 

in the range of 0.02-0.56, which indicates that our calculations of DOC fluxes at 

monthly scale are acceptable. 
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   (a)                                                               (b) 

Figure 5-8 (a)Mean daily variation of dissolved organic carbon (DOC) fluxes (kt day-1) at four stations from 

2003 to 2013. Observation 1 (black dot) was calculated from the measured DOC concentration from Le 

et al. (2017a); observation 2 (white dot) was calculated from the measured DOC concentration from Dang 

(2006); the gray solid line was the simulated DOC fluxes (kt day-1) calculated based on the DOC 

concentrations from Equation 1 and the Q from SWAT model. (b) Mean monthly DOC fluxes (kt month-1) 

comparison between results from LOADEST and our calculations. 

Annual DOC fluxes variations are presented in Figure 5-9. The mean annual DOC flux 

during the study period at Yen Bai, Vu Quang, Hoa Binh and Son Tay stations are 44, 

53, 88 and 222 kt yr-1, respectively. Spatially, annual DOC flux increased in the 

following order: Yen Bai < Vu Quang < Hoa Binh < Son Tay. The maximum annual 

DOC flux occurs in 2008 which is the maximum flood year during the study period and 

minimum annual DOC flux occurred in 2010 which is the maximum dry year during the 

study period. 
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Figure 5-9 Simulated annual dissolved organic carbon (DOC) fluxes (kt yr-1) at four stations from 2003 to 

2013. 

3.2.2 POC flux variations 

Figure 5-10a illustrates the daily variations of POC fluxes at four stations. Like for daily 

DOC fluxes, simulated POC fluxes are in the range of the observations. 

The observed data were sampled after 2007, and some dams (the Nansha, Madushan, 

Tuyen Quang and Son La dams) were under constructions during the 2003-2007 

period and operating since 2008. The POC conditions before and after 2008 were 

hence different because of the impacts of dam constructions on suspended sediment. 

The POC sampling concentrations before are few. Here we thus only compared the 

POC fluxes from LOADEST and from our simulation over the 2008-2013 period, and 

our calculation results during 2003-2007 were plotted to provide an insight of POC 

fluxes during this period (Figure 5-10b). Generally, the results from LOADEST and our 

simulation fit well on both POC peak and base fluxes: R2 is in the range of 0.50-0.59 

while the NSE varies from 0.34 to 0.56, indicating an acceptable performance. 
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                     (a)                                          (b) 

Figure 5-10 (a) Mean daily variation of particulate organic carbon (POC) flux (kt day-1) at four stations 

from 2003 to 2013. Observation 1 (black dot) was calculated from the measured POC concentration from 

Le et al. (2017a); observation 2 (white dot) was calculated from the measured POC concentration from 

Dang (2006); the gray solid line was the simulated POC flux (kt day-1) based on the POC concentrations 

from Equation 2 and the Q from SWAT model. (b) Mean monthly POC flux (kt month-1) comparison 

between results from LOADEST and our calculations during 2008-2013. 
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Figure 5-11 shows the calculated annual POC flux variations for the four stations 

between 2003-2013. The mean annual POC fluxes of Yen Bai, Vu Quang, Hoa Binh 

and Son Tay stations are 318, 83, 55 and 406 kt yr-1, respectively. Among the three 

tributaries, the Thao River exported the highest POC loads, followed by the Lo River. 

The contrary to what obtained for the DOC export, the Da River exported the smallest 

POC flux. The POC flux was the highest at the confluence (Son Tay station). The 

maximum annual POC flux generally occurred in 2007 while the minimum annual POC 

flux occurred in 2011. 

 

Figure 5-11 Simulated annual particulate organic carbon (POC) fluxes (kt yr-1)  at four stations from 

2003 to 2013. 

3.2.3 TOC flux variations 

Annual TOC fluxes showed great inter-annual variations (Figure 5-12). The mean 

annual TOC flux for the whole study period were 350, 136, 143 and 628 kt yr-1 at Yen 

Bai, Vu Quang, Hoa Binh and Son Tay stations, respectively. Comparing the TOC 

export among the three tributaries, TOC fluxes exported by the Lo and Da rivers were 

of the same order, and the Thao River exported around 2.5 times higher TOC than the 

Lo and Da rivers. The highest TOC fluxes were generated in 2007 and the lowest in 

2010. 

 

Figure 5-12 Simulated annual total organic carbon flux (kt yr-1)  at four stations from 2003 to 2013. 
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3.3 TOC fluxes variations under natural condition 

Figure 5-13(a) presents simulated monthly TOC fluxes variations under natural and 

actual conditions at Son Tay station. The differences between under natural and actual 

conditions for monthly DOC fluxes are small (p=0.5) while for monthly POC fluxes are 

significant (p<0.001). The differences in the dynamic processes between natural and 

actual conditions occur during the flood seasons, and are much larger for POC than 

DOC: the average monthly fluxes during June and August under natural and actual 

conditions for DOC are 42.0 and 40.3 kt month-1, respectively, and for POC are 271.5 

and 72.4 kt month-1, respectively. 

The annual fluxes of POC under natural and actual conditions also differ a lot 

compared to the DOC fluxes (Figure 5-13b). When comparing the period after new 

dams (2008-2013) to the previous period (2003-2007), the annual DOC flux under 

actual conditions got reduced by 12%: 1% increased due to Q change induced by 

climate variability and 13% decreased due to dam constructions; the annual POC flux 

decreased by 87%, of which 2% was due to Q variation caused by climate variability 

and 85% due to dam constructions. 

 

 
         (a)                       (b) 

Figure 5-13 Simulated dissolved organic carbon (DOC) and particulate organic carbon (POC) fluxes at 
Son Tay station under reference scenario and actual conditions: (a) Monthly variations; (b) Annual 
budgets. The black solid arrow displays the total decrease caused by climate variability and dams between 
2003-2007 and 2008-2013; the gray dash arrow displays the decrease related to climate variability and 
the black dash arrow displays the decreased caused by dams. 
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The variations of POC resulted in the variations of POC percentage in TOC (POC/TOC) 

at Son Tay station (Figure 5-14). 

The POC/TOC ratio under natural conditions is higher (from 81 to 89% with an 

averaged value of 85%, standard deviation=1.7%) than that under actual conditions 

(from 33 to 90% with an averaged value of 58%, standard deviation=13.6%); moreover 

the POC/TOC ratio under natural conditions show a weaker seasonal variability than 

under actual conditions (Figure 5-14a). 

The ratio POC/TOC under actual condition decreased after 2007 and its seasonal 

variability also changed afterwards (Figure 5-14a). During 2003-2007, the maximum 

POC/TOC generally occurred in September and October whereas the minimum 

POC/TOC showed up during February and March. During 2008-2013, the maximum 

POC/TOC showed up generally in February and March and the minimum in December, 

January or June. 

There is a clear negative shift of POC/TOC ratio in 2008 under actual conditions 

(Figure 5-14). The mean annual POC/TOC ratio under natural conditions stayed the 

same (86%) during 2003-2007 and 2008-2013, while under actual conditions it 

decreased from 74% during 2003-2007 to 47% during 2008-2013. 

 

   (a)                      (b) 

Figure 5-14 Simulated particulate organic carbon (POC) percentage in total organic carbon (TOC) during 

2003-2013 under natural and actual conditions: (a) mean monthly variations; (b) mean annual values. 

4. Discussion 

4.1 Parameter analysis 

4.1.1 Parameters of DOC 

The parameter α is the potential maximum riverine DOC concentration at each station, 

and it can be related to its sources. Previous studies indicated that DOC increased 

with increasing soil carbon content (Manninen et al., 2018), and the soil organic matter 

through soil erosion and leaching were the main source for fluvial DOC (Dang, 2006; 
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Lloret et al., 2016; Le et al., 2017a). Figure 5-15 presents the soil organic carbon 

content and soil erosion through the Red River basin. The average soil organic carbon 

contents (% soil weight) of the drainage area of Yen Bai, Vu Quang, Hoa Binh and Son 

Tay are 1.60%, 1.79%, 1.92% and 1.77%, respectively. Figure 5-15 shows that the 

relationship between the parameter α and the average soil organic carbon content of 

the drainage area of each station is significant, showing a positive correlation. The 

increasing order of mean annual DOC concentration during 2003-2013 at the outlet of 

each river is consistent with the increasing order of the average soil organic carbon 

content: Yen Bai < Son Tay< Vu Quang < Hoa Binh. 

The parameter β corresponds to the discharge Q when the DOC concentration is half 

of α, so it is linked to α. In addition, β increases in the following order: Yen Bai < Vu 

Quang < Hoa Binh < Son Tay (Table 5-1), and the annual mean Q for these four 

stations (Yen Bai: 608 m3 s-1, Vu Quang: 848 m3 s-1, Hoa Binh: 1529 m3 s-1, Son Tay: 

3052 m3 s-1) increase in the same order. We assume that within the same basin the 

parameter β can be positively correlated with Q, however, this needs to be further 

studied and confirmed from other basins worldwide. 

Equation 1 was also applied at the outlet of the Yenisei River basin, located in the 

Arctic region with a watershed surface of 2,540,000 km2, and the parameter α and β 

were 15.0 and 1.29, respectively (Fabre et al., 2019). The α at the outlet of the Yenisei 

River basin is higher than at the outlet of the Red River basin due to the high soil OC 

of the permafrost in the Yenisei basin. This is in agreement with the relationship we 

found between parameter α and soil organic carbon content (% soil weight). 

 

(a)                  (b) 
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     (c)                                                             (d) 

 

 (d)                          (e) 

Figure 5-15 (a) Soil organic carbon content (% soil weight) within each sub-basin; (b) annual soil erosion 

of the Red River basin (ton ha-1 yr-1) (Wei et al., 2019a); (c) relation between the parameter α in DOC 

equation (Equation 1) and the average soil organic carbon content of the drainage area of each station; 

(d) relation between the parameter β in DOC equation (Equation 1) and the mean annual discharge (Q) 

of each station; (e) relation between the parameter a in POC equation (Equation 2) and Chl-a (μg L-1) (Le 

et al., 2017a); (f) relation between the parameter b in POC equation (Equation 2) and the average soil 

organic carbon content of the drainage area of each station. 

4.1.2 Parameters of POC 

The maximum of %POC decreases in the following order (Table 5-1): Hoa Binh (40) >= 

Son Tay and Vu Quang (15) > Yen Bai (10). The SSC at Hoa Binh station was the 

lowest (annual mean during 2003-2013 is 34 mg L-1) compared to other stations 

(annual mean SSC for Yen Bai, Vu Quang and Son Tay is 631, 99 and 137 mg L-1, 

respectively) due to the retention by the dams, especially by the Hoa Binh dam (Dang 

et al., 2010; Wei et al., 2019a). Besides, algae and phytoplankton in the reservoir can 

contribute to high particulate organic carbon. Therefore, these two factors induce a 

high maximum %POC at Hoa Binh station. On the contrary, at Yen Bai station, the 

SSC is the highest with low autochthonous organic production compared to other 
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stations (Dang, 2006; Dang et al., 2010; Nguyen et al., 2018), therefore, the 

maximum %POC is small. 

The parameter a is a basin-specific constant which includes anthropogenic impacts 

and corresponds to low SSC values and organic matter that is rich in OC, such as 

phytoplankton and residuals. Comparing the minimum SSC values of the three 

tributaries, the Thao River presents the highest one (15.2 mg L-1) while at Hoa Binh 

station on the Da River the lowest one (0.6 mg L-1) is observed, which explains the 

corresponding values of a - high at Yen Bai (40, Table 5-1) and low at Hoa Binh (5). 

Besides, thanks to the constructions of the Nansha and Madushan dams, local 

villagers have entered into extensive fish farming (Rousseau, 2014). The fish feed and 

fish feces are rich in organic matters (Beristain, 2005). Moreover, near the Nansha 

dam, there is a sugarcane processing plant that often releases chemicals and wastes 

into the Red River (Rousseau, 2014). These factors make the water quality 

downstream of the Madushan dam very bad (Rousseau, 2014), which contributes to 

explain the high parameter a value at Yen Bai. In addition, the concentrations of Chl-a 

of these three tributaries from large to small was in the following order: Yen Bai (1.9 

μg L-1) > Vu Quang (1.3 μg L-1) > Hoa Binh (1.1 μg L-1) (no data for Son Tay in Le et 

al., 2017a), which is in the same order as the values of parameter a (Figure 5-15d). 

Therefore, the parameter a accurately expresses the characteristics of each tributary 

in this study. 

As described in Section 2.3.2, the parameter b is the horizontal asymptote representing 

the suspended matters with low OC concentration which is near soil content. From 

Figure 5-15e we can see that the parameter b shows a positive and significant 

correlation with the average soil organic carbon content of the drainage area of each 

station. Hence, the values of the parameter b well represent the actual characteristics 

of each sub-basin. 

The parameters a and b were set to 5 mg L-1 and 2.1%, respectively, in an agricultural 

basin in south-east France (Boithias et al., 2014); and to 0.95 mg L-1 and 3.9%, 

respectively in an Arctic basin (Fabre et al., 2019). The minimum SSC observed in the 

study river of Boithias et al. (2014) is 5 mg L-1 while it is around 1 mg L-1 of Fabre et al. 

(2019) hence, they set the parameter a to 5 mg L-1 and 0.95 mg L-1. In our study, the 

parameter a is higher than the minimum SSC observed at each station, which indicates 

the contributions from phytoplankton and residuals in the Red River that were not 

observed in the study rivers of Boithias et al. (2014) and Fabre et al. (2019). In the 

study area of Boithias et al. (2014), the top soil organic matter content is about 2%, 

which is higher than our basin (1.6-1.9%). In the study case of Fabre et al. (2019), the 

permafrost stores abundant soil OC, thus, the parameter b is high in that basin. 

Therefore, the parameter b from their studies are higher than from ours (from 1.0% to 

1.7%). From the above, the parameters a and b obtained from Boithias et al. (2014), 

Fabre et al. (2019) and this study seem to represent well the specific characteristics of 

each basin worldwide. 
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4.1.3 Application: a new method to evaluate the DOC and POC concentrations 

Our results also enable us to propose a new method to evaluate the DOC and POC 

concentrations at any point within the Red River basin. If one knows the values of 

average soil organic carbon content of the drainage area, mean annual discharge and 

the Chl-a concentration in the river, using the relationships in Figure 5-15 indeed allows 

to determine α, β, a and b; Equation 1 and 2 can then be used to evaluate the DOC 

and POC concentrations. 

4.2 Comparison of the OC contents 

4.2.1 Comparison with other studies for the Red River 

We first compared our simulations with results from other studies based on sampling 

in the Red River basin (Table 5-2). To make things comparable, we perform our 

comparison over the common 2008-2009 period. 

For the mean annual DOC concentration, our simulated results are slightly lower 

(averagely -17%) compared to the other two studies (Dang, 2006; Le et al., 2017a). In 

both studies, discrete samplings were just taken once or twice per month and at dry 

seasons the frequency was even lower, while our results were calculated based on a 

daily time step simulation. Those different temporal scales can induce differences in 

the estimations of mean annual DOC concentration. The mean annual DOC flux of 

2008-2009 at Vu Quang and Hoa Binh stations estimated by Dang (2006) is around 

60% higher than that from Le et al. (2017a). Note that results from the LOADEST are 

close to the ones of Le et al. (2017a) (Table 5-2) as a large proportion of sampling data 

used by the LOADEST comes from their dataset. Comparing our results to the 

LOADEST, the DOC fluxes are 17-28% higher at the three tributaries, and 3% higher 

at the outlet Son Tay station. Hope et al. (1994) indicated that low-frequency sampling 

led to an underestimation of the riverine C flux due to the under-representation of storm 

flow conditions. Finally, our study produces an estimation of 222 kt yr-1 of DOC flux at 

Son Tay (Table 5-2) over 2003-2013, which accounts for 0.26% of the total DOC export 

by Asian rivers to the seas, estimated to 85.45 Mt yr-1 by Li et al. (2019). 

Significant differences in mean annual POC concentration during 2008-2009 can be 

found between Dang (2006) and Le et al. (2017a): POC concentrations from Le et al. 

(2017a) is only averagely 31% of that from Dang (2006); our results are between theirs 

(Table 5-2). POC concentration is strongly linked to SSC which can vary greatly from 

sampling location and time. The POC fluxes estimated by Le et al. (2017a) are 

averagely 59% of the values estimated by Dang (2006), especially at Yen Bai station 

where the SSC is very high. Comparing our results to the LOADEST, our estimations 

are 10-31% lower on the three tributaries and 34% lower at Son Tay. Since POC fluxes 

transported by the Asian rivers are 76.90 Mt yr-1 (Li et al., 2017), the export of POC at 

Son Tay (406 kt yr-1 over 2003-2013 in our study) accounts for 0.37% of the total POC 

export by the Asian rivers. 
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The estimated TOC flux during 2003-2013 at Son Tay is equal to 628 kt yr-1. 

Regardless of the time period, the mean annual TOC at Son Tay was estimated from 

324 to 506 kt yr-1 (Dang, 2006; Nguyen et al., 2018), and our calculation is higher than 

theirs (94% higher than Nguyen et al. (2018) and 24% higher than Dang (2006), again 

due to the difference of calculation time step: our calculations at a daily time step take 

all flood events into consideration. Finally, our results suggested that the Red River 

exported 628 kt yr-1 of TOC over 2003-2013, i.e. contributed approximately 0.38% of 

TOC exported by the Asian rivers (164 Mt yr-1, Li et al., 2017). 
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Table 5-2 Comparisons of organic carbon concentrations and fluxes between the present study and other studies in the Red River and in other rivers 

River Station 
Drain Area 
(103 km2) 

Period 
DOC POC 

Reference Concentration 
(mg L-1) 

Flux 
(kt yr-1) 

Specific Yield 
(kg km2 yr-1) 

Concentration 
(mg L-1) 

Flux 
(kt yr-1) 

Specific Yield 
(kg km2 yr-1) 

Red 

Yen Bai 48.50 
2008-2009 

1.9 47 969 24.7 274 5649 Dang, 2006 

2.2 44 866 2.6 59 1258 Le et al., 2017a 

- 46 - - 197 - LOADEST (this study) 

1.51 59 1216 5.21 253 5216 This study 

2003-2013 1.39 44 907 8.35 318 6557 This study 

Vu Quang 30.37 
2008-2009 

2.4 78 2568 1.8 84 2766 Dang, 2006 

1.9 49 1613 0.8 47 1218 Le et al., 2017a 

- 59 - - 50 - LOADEST(this study) 

1.77 69 2272 1.33 55 1811 This study 

2003-2013 1.50 53 1745 2.30 83 2733 This study 

Hoa Binh 52.78 
2008-2009 

2.3 131 2482 1.3 55 1042 Dang, 2006 

1.7 82 1497 0.5 54 758 Le et al., 2017a 

- 98 - - 58 - LOADEST(this study) 

1.84 119 2255 0.62 40 758 This study 

2003-2013 1.60 88 1667 0.96 55 1042 This study 

Son Tay 137.23 
2008-2009 

2.5 263 1916 3.95 243 1771 Dang, 2006 

- 286 - - 259 - LOADEST(this study) 

2.03 296 2157 1.66 255 1858 This study 

2003-2013 1.81 222 1618 3.03 406 2959 This study 

Mekong 
  My Thuan (DOC) 

Phnom Penh (POC) 
795 

1972-1998 (DOC) 
2006 (POC) 

n.a. 2200 2767 2.01 1670 2100 
Li et al., 2013 

Ellis et al., 2012 

Pearl n.a. 452 2005-2006 1.7 380 840 1.5 540 1195 Ni et al., 2008 

Yangtze Datong 1830 2009 2.03 1580 863 n.a. 1520 831 Wang et al., 2012 

Godavari Rajahmundry 313 2003-2005 1.24 130 415 n.a. 756 2414 Balakrishna et al., 2006 

Yellow Lijin 752 2008-2012 3.3 60 80 1.39 410 545 Ran et al., 2013 

Amazon Obidos 6000 1994-2000 7.18 26900 4483 0.85 5800 967 Moreira-Turcq et al., 2003 

Congo Kinshasa-Brazzaville 3700 2009-2010 9.2 12480 3373 1.46 1960 530 Spencer et al., 2016 
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4.2.2 Comparison with other rivers 

Compared with some other Asian and tropical rivers, the export of DOC and POC 

fluxes through the Red River is not that large, especially for POC (Table 5-2). However, 

when comparing specific yields, the Red River basin yields high DOC and POC values, 

in agreement with some previous studies which indicated that the rivers in mainland 

Asia have the highest specific export rates worldwide in terms of DOC and POC 

(Huang et al., 2012; Li et al., 2019). 

The DOC flux of the Red River is 58% and 10% of that of the Pearl and Mekong rivers 

respectively, which are geographically close to the Red River; 14%, 171% and 370% 

of that of the Yangtze, Godavari and Yellow rivers; around 1% and 2% of that of the 

Amazon and Congo rivers (Table 5-2). However, the DOC yield of the Red River basin 

(1618 kg km-2 yr-1) is about twice of those of the Pearl and Yangtze basins and is 

around half of those of the Mekong and Congo basins. Though the DOC flux of the 

Red River is smaller than those of Pearl and Yangtze rivers, its specific DOC yield is 

higher than theirs. The high DOC yield of the Red River basin comes from the high 

leaching from soil and rocks. Previous studies pointed out that the main source of DOC 

in the Red River basin is from the allochthonous origin, such as diffuse sources 

(leaching from the soil) during rainy seasons and point sources (industrial and 

domestic wastewater) during dry seasons (Dang, 2006; Le et al., 2017a). Infiltration is 

a key factor of the hydrological pattern in this basin (Bui et al., 2014), which accelerates 

leaching processes. Wei et al. (submitted) found a high erosion, with a mean of 5.5 t 

ha-1 yr-1 and hot spots above 20 t ha-1 yr-1, in the Red River basin due to the 

precipitation, slope, agricultural practice and soil texture. These features accelerate 

the loss of soil organic carbon from land to river. 

Though the POC flux of the Red River is quite low compared to other Asian rivers (from 

-1% for the Yellow River to -76% for the Mekong River, Table 5-2), its specific yield 

(2959 kg km-2 yr-1) is quite high compared to the Mekong (41%) and the Pearl River 

(+148%) basins which are two basins close by. Le et al. (2017a) emphasized that the 

main source of the POC was the soil leaching and erosion, not the phytoplankton. The 

soil erosion in this basin is high, especially in the middle part (Wei et al., submitted). 

Besides, POC is related to SSC, and the SSC in the Thao River is very high, with an 

annual mean of 631 mg L-1 at Yen Bai station during 2003 to 2013, and 137 mg L-1 at 

Son Tay station. 

4.3 Controls and influences on OC fluxes 

Figure 5-9, Figure 5-11 and Figure 5-12 show the annual evolution of simulated DOC, 

POC and TOC fluxes at four stations. The interannual variability of DOC flux is 

significant but not huge (standard deviations equal to 14, 11, 26, 55 kt yr-1 for Yen Bai, 

Vu Quang, Hoa Binh and Son Tay respectively). The DOC flux was the highest in 2008 

(Figure 5-9) which is the flood year and was quite low during 2010-2013 ( averagely 

33, 49, 61 and 176 kt yr-1 for Yen Bai, Vu Quang, Hoa Binh and Son Tay respectively) 
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which are the drought years. Comparing DOC fluxes under natural and actual 

conditions allows quantifying the impacts of Q variations associated with climate 

variability and dam constructions, respectively (Figure 5-13). Under natural conditions, 

due to the Q variation associated with climate variability, the DOC flux during 2008-

2013 only increased by 1% compared to 2003-2007, and the flood year 2008 was the 

main contributor. Under actual conditions, a 13% reduction of DOC flux was induced 

by dams which allowed regulation of peak flow during flood seasons. Previous studies 

also revealed that climate variability and dam constructions within the Red River basin 

had impacts on Q, however, they showed that Q was more influenced by climate 

variability than dams (Wei et al., 2019a): they found that at the Son Tay outlet, the 

annual mean Q was reduced by 13% from 2000-2007 to 2008-2013, with 9% due to 

climate variability and 4% due to the dams. 

A distinct decrease of POC flux can be noticed after 2007 at all four stations (Figure 

5-11) when some new dams started to operate. At the outlet (Son Tay), the POC flux 

in 2008 was only 45% of that in 2007 even though 2008 is a flood year, and the average 

POC fluxes decreased by 88% in 208-2013 compared to 2003-2007. These dams have 

trapped the suspended sediment and changed the grain size distribution of 

downstream sediment (Wei et al., 2019a), which consequently affected the POC 

transfer. In 2008, a drastic decrease of SSC and sediment fluxes indeed occurred: the 

SSC at Son Tay decreased by 67% and the sediment flux decreased by 58% in 2008 

compared to 2007 (Wei et al., 2019, submitted). Similarly, to DOC fluxes, POC fluxes 

under natural conditions varied little (2%) between 2003-2007 and 2008-2013. Dams 

caused an 85% decrease in POC flux. Our study reveals that in the Red River basin, 

dams induced severe sequestration of POC fluxes due to suspended sediment 

retention. 

Dams in this basin have therefore different degrees of influence on DOC and POC 

fluxes. Our conclusions are in agreement with other studies in other basins, showing 

that: the water-sediment regulation of dams had no significant influence on DOC fluxes 

(Xia et al., 2016), but a significant impact on the POC fluxes (Li et al., 2015; Xia et al., 

2016).  

Due to the drop of POC flux, the TOC flux decreased by 31% at the outlet in 2008 

compared to the previous year (Figure 5-12). At Son Tay outlet, the POC flux 

accounted for 74% of the TOC flux during 2003-2007, while it only accounted for 47% 

during 2008-2013 with the main part of organic carbon in the dissolved phase. Previous 

studies indicated that the Asian rivers draining erosion-prone mountainous terrain 

deliver more POC than DOC, particularly during the rainy seasons (Ludwig and Probst, 

1996b; Park et al., 2018). However, with the construction and operation of new dams, 

the composition ratio of TOC changed, from POC-dominating to DOC-dominating 

(Table 5-3). Besides, the dynamic variations of POC/TOC were also modified by dam 

regulation (Figure 5-14a). Before new dam constructions, the POC/TOC ratio was low 

around March and high in flood season. However, after impoundment of new dams, 

the dams fulfil flood-control functions during June and July, retaining water and SS, 
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therefore the POC/TOC ratio became also low during the flood season. And around 

March, dams discharge water for irrigation, also releasing SS, which induces high 

POC/TOC. 

A fundamental change of POC/TOC was observed in 2008. Two new dams (Nansha 

on the Thao river and Tuyen Quang on the Lo river) started operation in 2008 and two 

new dams (Madushan on the Thao river and Son La on the Da river) impounded in 

2011. Compared to the other two tributaries, the POC/TOC ratio at Yen Bai on the 

Thao River did not decrease that sharply (Table 5-3). The Madushan and Nansha 

dams are located around 230 km upstream to Yen Bai station, therefore, the 

suspended sediment and POC over this distance can be regulated by the terrestrial 

inputs as well as the river bed degradation. At Hoa Binh station, before the new Son 

La dam became operational, the POC/TOC percentage was already low because of 

the Hoa Binh dam which was impounded in 1989. Therefore, the biggest impact on the 

POC/TOC ratio at Son Tay is due to the change of the POC/TOC from the Lo river, i.e. 

Tuyen Quang dam contributes most to the decrease of POC/TOC at Son Tay. 

Table 5-3 The percentage of particulate organic carbon (POC) in total organic carbon (TOC) in two 
periods (before and after the new dam constructions) at each station 

Variables Period Yen Bai Vu Quang Hoa Binh Son Tay 

POC/TOC 
2003-2007 91% 72% 47% 74% 

2008-2013 81% 44% 26% 47% 

 

4.4 Errors and uncertainties in the estimation 

Parameters in Equation 1 and 2 were calculated based on discrete sampling data, 

however, sampling is impossible to be carried out when discharge was very high. 

Therefore, sampling DOC and POC concentrations at high discharge were lacking. 

More intensive sampling during flood season helps to obtain more precise parameters. 

During low discharge periods, some DOC sampling data can be scattered due to the 

uncertainty source such as industrial and urban discharge. Along the Red River, the 

inhabitants are mainly farmers and villagers who might discharge the waste into the 

river. Moreover, %POC can vary greatly even on the same day due to the 

instantaneous suspended sediment concentration. Hence, the data from Le et al. 

(2017a) and Dang (2006) can be different even under a similar SSC concentration. 

Errors in estimating OC concentration and flux can also come from the simulated Q 

and SSC. However, the errors of simulated Q and SSC are within acceptable limits 

(Wei et al., 2019a). Moreover LOADEST was used as a validation for our simulation, 

however, it was found to produce high biases when calculating long term loading 

(Stenback et al., 2011; Hirsch, 2014). 

As mentioned in Section 3.1.5, POC parameters calibration was based on the data 

sampled since 2008 when new dams started operating. Therefore, the POC 

concentration and flux before 2008 were an insight to roughly estimate the potential 
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retention of POC in the reservoirs. According to Wei et al. (2019, submitted), the 

dynamic transfer processes and fluxes of SS before and after new dam constructions 

were different. Therefore, POC dynamic transfer processes and fluxes would be 

different before and after the new dam constructions. Hence, the parameter b related 

to POC (Equation 2) should be different before 2008. 

5. Conclusions 

Based on a hydrological model already set up, calibrated and validated over the Red 

River basin, and on dissolved and particulate organic carbon in-situ measurements, a 

model of organic carbon dynamics was calibrated and validated at a daily time step 

during a 10-year period (2003-2013) in the large tropical Red River basin. Intra-annual 

and inter-annual variations are very difficult to assess from discrete in-situ samplings 

and only possible at the hydrometric stations. Based on the daily simulated organic 

concentration, discharge and suspended sediment from a modelling study, daily 

organic carbon fluxes were able to be simulated considering all short term events not 

only at hydrometric stations but also anywhere within the basin. This allows for 

understanding the spatio-temporal variations of organic carbon in this basin. 

Discharge and suspended sediment are crucial factors for fluvial organic carbon fluxes. 

However, the organic carbon fluxes and specific yield have been altered by climate 

variability and intensive human activities in this basin. Especially, dam impoundments 

had a clear effect on trapping particulate organic carbon, inducing a decrease in total 

organic carbon export and a different organic carbon composition ratio.  

This study demonstrates the advantages of using a calibrated model in combination 

with available discrete in-situ data when continuous field measurements are not 

available. It reveals that during 2003-2013, at the outlet of the Red River basin, the 

export of dissolved and particulate organic carbon were 222 and 406 kt yr-1 respectively, 

accounting for 0.38% of the total organic carbon export by Asian rivers. However, the 

specific yields of dissolved organic carbon (1618 kg km2 yr-1) and particulate organic 

carbon (2959 kg km2 yr-1) of the Red River basin were high (more than double) 

compared to other Asian basins such as the Yellow, Yangtze and Pearl. By comparing 

the scenario of natural conditions (without dams) to actual conditions, we found a 12% 

and an 88% decrease in dissolved and particulate organic carbon fluxes, respectively, 

mainly due to dams regulations (less than 2% of variations was explained by climate 

variability). The percentage of particulate organic carbon in total organic carbon 

decreased from 86% to 74% until 2007 then to 47% with new dams. Dam constructions 

altered the total organic carbon yield and its constituent ratio. 

The corresponding parameters of  dissolved and particulate organic carbon equations 

well represented the characteristics of each sub-basin, showing the effect of soil OC 

and Chlorophyll a. Hence, once people have the values of average soil organic carbon 

content of the drainage area and the Chl-a concentration, they can evaluate the 

dissolved and particulate organic carbon at any point within the Red River basin. 
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This study allows future studies on different scenarios such as land use and climate 

changes. This approach could be applied to other basins worldwide to characterize 

their corresponding parameters. Future studies should focus on the fluvial organic 

carbon flux and specific yield variations under global changes in order to understand 

their long-term evolutions. Besides discharge and suspended sediment, soil organic 

carbon content, soil leaching and erosion are the key factors influencing the organic 

carbon concentration in the Red River basin. Therefore, the link between soil 

conservation and organic carbon transport can also be carried out. 
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6. CHAPTER Ⅵ: General Discussion 

6.1. Water Regime 

6.1.1. Hydrological cycle and water yield 

In the Red River basin, the mean annual rainfall from TRMM was 1494 mm yr-1 from 

2000 to 2013 (Table 6-1), of which 53% was consumed by evapotranspiration and 47% 

by streamflow. Rainfall is an important determinant of the fluxes and states of the land 

surface hydrological system, and its spatial and temporal patterns, intensity and 

duration of significantly affect the hydrological cycles (Nijssen, 2004; Yang et al., 2015; 

Wang et al., 2016). The Mekong and Pearl river basins are geographically located 

close to the Red River (Figure 2-2), and these three rivers originate from Himalayan-

Tibetan Plateau. The mean annual rainfall for the Mekong and Pearl river basins is 

1470 (during 1983-2016 period) and 1525 (during 1960-2005 period) mm yr-1, 

respectively (Zhang et al., 2012; Chen et al., 2019), and the annual rainfall of the Red 

River basin is around theirs. The Red River basin has a higher annual rainfall 

compared to the Yangtze (1086 mm yr-1 during 1980-2015, Cui et al., 2017) and Yellow 

(466 mm during 1981-2013, Wu et al., 2016) river basins. In Asia, the annual rainfall 

of the tropical river basins is higher than others in the subtropical and temperate zones. 

Compared to other large tropical river basins, the mean annual rainfall of the Red River 

basin is 29% lower than Amazon (2095 mm yr-1 during 1973-2013, Almeida et al., 

2017), and is slightly lower (4%) than the Congo (1560 mm yr-1 during 1951-1989, 

Alsdorf et al., 2016). 

Table 6-1 Mean annual values of rainfall and hydrology for some big Asian and tropical rivers. 

River 
Basin Area 

(103 km2) 

Rainfall Hydrology 

Reference 
Period 

rainfall 

(mm yr-1) 
Period 

Yield 

(km3 yr-1) 

Discharge 

(m3 s-1) 

Depth 

(mm yr-1) 

Red 137 2000-2013 1494 2000-2013 95 3003 697 This study 

Mekong 795 1983-2016 1470 2009-2016 400 12684 503 Dang et al., 2018 

Pearl 452 2000-2009 1650 2000-2009 268 8498 593 Wu et al., 2012 

Yangtze 1830 1980-2015 1086 2003-2013 838 26573 466 Yang et al., 2015 

Yellow 752 1981-2013 466 n.a. 58 1839 77 Wu et al., 2016 

Irrawaddy 413 n.a. n.a. 1991-2012 380 12054 1057 Sirisena er al., 2018 

Congo 3500 1951-1989 1560 2000-2010 1282 40662 347 Alsdorf et al., 2016 

Amazon 5960 1973-2013 2095 n.a. 6591 209000 1099 Moreira-Turcq et al., 2003 

 

For streamflow, the model estimated a mean annual water yield of 95 km3 yr-1 (with a 

mean annual water depth of 697 mm yr-1 and mean annual discharge of 3003 m3 s-1, 

Table 6-1), of which 58% was the groundwater, 39% was surface runoff accounted 

and 3% was the lateral flow. The groundwater is the main component for the river flow 

in the Red River basin, especially during the dry season. The mean water yield of the 

Mekong, Pearl, Yangtze, Yellow and Irrawaddy rivers is 400 km3 yr-1 (with a mean 

annual water depth of 503 mm yr-1 and mean annual discharge of 12,684 m3 s-1 during 

2009-2016, Dang et al., 2018),  268 km3 yr-1 (with a mean annual water depth of 593 
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mm yr-1 and mean annual discharge of 8498 m3 s-1 during 2000-2009, Wu et al., 2012), 

838 km3 yr-1 (with a mean annual water depth of 466 mm yr-1 and mean annual 

discharge of 26,573 m3 s-1 during 2003-2012, Yang et al., 2015), 58 km3 yr-1 (with a 

mean annual water depth of 77 mm yr-1 and mean annual discharge of 1839 m3 s-1, 

period not mentioned in Wu et al., 2016), 380 km3 yr-1 (with a mean annual water depth 

of 1057 mm yr-1 and mean annual discharge of 12,054 m3 s-1 during 1991-2010, 

Sirisena et al., 2018), respectively; and the mean annual water yield for the Congo and 

Amazon river is 1282 km3 yr-1 (with a mean annual water depth of 347 mm yr-1 and 

mean annual discharge of 40,662 m3 s-1 during 2000-2010, Alsdorf et al., 2016) and 

6591 km3 yr-1 (with a mean annual water depth of 1099 mm yr-1 and mean annual 

discharge of 209,000 m3 s-1, period not mentioned in Moreira-Turcq et al., 2003). 

Though the annual water discharge and yield of the Red River basin are lower than 

the Mekong, Pearl, Yangtze and Congo, its annual water depth is the highest among 

these rivers. According to the ratio of the annual water depth to the annual rainfall of 

each basin, the Amazon and Red River basins have the highest ratio values with 52% 

and 47%, respectively, compared to the the Mekong (34%), Pearl (36%), Yangtze 

(43%) and Congo (22%), i.e. rainfall of the Red River and Amazon basin produces the 

most streamflow per unit area. 

The groundwater accounts for a big portion of the annual water yield in the Red River 

basin. This can be contributed by the Karst landform (also known as carbonate rock) 

in this basin. The water-yielding properties of carbonate rocks vary widely; some yield 

almost no water and are considered to be confining units, whereas others are among 

the most productive aquifers known (Ford and Williams, 2007; Carbonate-rock aquifers, 

2016). Most karst rocks are fissured because of the presence of joints, faults and 

bedding planes, and these interconnected fissures provide routes for water flow (Ford 

and Williams, 2007). The joints in Yunnan province (the part of the Red River in China) 

are wide and aquifers in this area are mainly associated with fractures, and strong 

leaching from carbonate rocks is discovered (Ford and Williams, 2007; Le et al., 2018). 

Groundwater is mainly recharged by vertical infiltration from precipitation and during 

the flood time and wet season by the lateral flow from rivers. The groundwater of the 

nearby Pearl River basin is also abundant (Hou et al., 2018). 
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Figure 6-1 Distribution of the Karst regions, resource from World Map of Carbonate Rock Outcrops v3.0 
(https://www.fos.auckland.ac.nz/our_research/karst/) 

6.1.2. Impacts of dams on discharge 

Vörösmarty et al. (1997) estimated that more than 40% of global river discharge is 

intercepted by the large impoundments. In the Red River, with the new dams 

implementations after 2008, the cumulative impacts of dams (comparison between 

2008-2013 and 2000-2007, i.e. pre-new-dams and post-new-dams) on Q at Lao Cai, 

Yen Bai, Vu Quang, Hoa Binh and Son Tay is -0.4% (p=0.97), -0.3% (p=0.98), -2% 

(p=0.90) and -8% (p=0.45), respectively, and at Son Tay is -4% (p=0.74).  

The impacts of dams on Q at different sub-basins are different: the impacts on the Da 

basin (-8%) is greater than the other two sub-basins (the Thao -0.3% and Lo 2%). The 

different impacts are mainly influenced by the capacity and location of dams. The two 

dams located on the Da river have bigger capacities (>9 km3, Table 1 in Chapter 4) 

than the others on the Thao (~0.5 km3) and Lo (~2.9 km3) rivers. Dams with bigger 

capacity have larger effects on discharger regulation: weakening the flood peaks 

during flood seasons and replenishing the runoff for irrigation during dry seasons (Liu 

et al., 2019b). Besides, the Hoa Binh dam is located downstream close to the Hoa Binh 

gauge station (outlet of the Da River), without the mitigation or regulation from the 

rainfall in the area between the dam and the gauge station. 

Though the dams on the Red River showed impacts on annual mean Q, the impacts 

are less than 8% and are not significant. Our results are in agreement with Dang et al. 

(2010) who found that there was no significant difference in the Q before and after Hoa 

Binh dam construction. By comparing the mean annual discharge of the pre- (1993-
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2002) and post- (2003-2012) the Three Gorges Dam decades, Yang et al. (2015) found 

a 13% decrease in the mean annual discharge among which the relative impacts of 

dams was 8%.  Along the Mekong River, no significant changes between pre-dam and 

post-dam periods were observed in annual mean discharge (Lu and Siew, 2006; Lu et 

al., 2014). The anthropogenic impact (the construction of dams) in the Pearl Basin had 

little influence on water discharge, i.e. has therefore been insignificant (Zhang et al., 

2008; Wu et al., 2012). For the above Asian rivers, dams mainly regulate the seasonal 

Q and have no significant influence on annual mean Q, which is in agreement with 

Biemans et al. (2011) who demonstrated that dams would not necessarily significantly 

reduce water discharge at a yearly time scale. 

6.1.3. Impacts of climate variability on discharge 

Compared to the impacts of dam constructions on annual mean Q of the Asian rivers, 

the impacts of climate variability (precipitation, evapotranspiration and temperature) is 

larger (Wang et al., 2006; Zhang et al., 2008; Lu et al., 2014; Yang et al., 2015). Li et 

al. (2016) indicated that hydrological droughts in the Red River basin are much more 

driven by meteorology than by human activities. 

In the Red River basin, the impacts of climate variability on different sub-basins varied 

from +2% (at the Lo basin, p=0.76) to -29% (at the Lao Cai station in the Thao basin, 

p=0.04; the other station in the Thao river showed a decrease of 21% with p=0.07); 

the impacts of climate variability at Hoa Bind (in the Da river) and Son Tay stations 

was -10% (p=0.23) and -9% (p=0.30). The decrease caused by climate variability is 

only significant at Lai Cai station, which might indicate that the upper part of Lao Cai 

station, i.e. the part in China, might be more sensitive and susceptible to the climate 

variability than the basin in Vietnamese part. Regional climate variations induced 

different impacts. Among these three sub-basins, the mean annual rainfall was highest 

for the Thao sub-basin, followed by the Da and then the Lo (Le et al., 2007). Therefore, 

the different Q variation rates of each sub-basin can relate to the distribution of rainfall, 

and the decrease of the rainfall might affect the Thao basin most, resulting in the 

biggest Q decreasing rate among the three tributaries. Precipitation and 

evapotranspiration (as reflected by temperature change) are the most obvious natural 

changes to the environment (Yang et al., 2015). For the entire basin, during the study 

period (2000-2013), the annual mean rainfall reduces by 9% (p>0.05), 

evapotranspiration reduces by 5% (p>0.05), and temperature increases by 1% 

(p>0.05). These changes result in a 13% decrease in available water (p>0.05) with a 

4% (p>0.05) decrease in soil water content. 

Over the past 50 years (1950-2000), due to the regional precipitation variations (~10% 

decrease) in the Yellow River basin induced by global El Niño/Southern Oscillation 

(ENSO) events, the water discharge to the sea decreased by approximately 51% 

(Wang et al., 2006). In the Yangtze River basin, the rainfall during 2003-2012 was 6% 

lower than during 1993-2002, which contributed to 61% of the Q decrease between 

these two periods (Yang et al., 2015). Wu et al. (2012) found that between 1994 and 
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2009, the precipitation in the Pearl River basin decreased by 18% (p=0.03) and water 

discharge decreased by 32% (p<0.01), and indicated that inter-annual fluctuations of 

water discharge were governed by changes in climate than the anthropogenic impacts. 

Studies on the Mekong River basin found that the annual total precipitation in this basin 

fluctuated along the years (1983-2016) with a non-significant trend (p > 0.05) (Chen et 

al., 2019), but there were significant associations (p < 0.01) between water discharge 

and rainfall in the upper Mekong Basin (upstream of the Chiang Saen station), 

indicating predominant controls of precipitation in the upper basin on water discharge 

(Lu et al., 2014). 

However, the effects of climate variability and change on global hydrological cycles are 

complex and rely on the context of individual river basins, rather than being simply a 

function of changing precipitation (Immerzeel et al., 2010; Best, 2019). The complexity 

of such feedbacks between climate and river flow is exemplified in considerations of 

the great rivers that flow from the mountains of Asia which rely on both monsoonal 

rainfall and snowmelt (Bookhagen and Burbank, 2010; Immerzeel et al., 2010; Best, 

2019). Immerzeel et al. (2010) demonstrated that snow and glacial melt were important 

hydrologic processes for the rivers fed from the Tibetan plateau, however, this area 

was threatened by climate change, which subsequently affected the meltwater and 

then streamflow and water availability; the effects in the Indus and Brahmaputra basins 

were likely to be severe owing to the high dependence on meltwater while the effects 

in the Yellow River basin might be positive as the low dependence on meltwater and 

a projected increased upstream precipitation. 

From our results and the above studies we can see that even the climate variability 

(especially the precipitation) might not be significant, it did have impacts on water 

discharge. Dam constructions in someway can mitigate the impacts of climate 

variability by regulating and storing water from flood seasons to dry seasons for 

irrigation. 

6.2. Suspended Sediment 

6.2.1. Sediment export 

The Red River basin exported 33.0 Mt yr-1 (with a specific yield of 240 t km-2 yr-1) 

sediments to the downstream delta part during 2000-2013, accounting for 0.7% of the 

total Asian river sediment (4740 Mt yr-1) delivery to the seas (Syvitski et al., 2005). At 

Son Tay outlet, 90% of the total sediment export happened during the southwest 

monsoon seasons (from May to October). There is a big difference in the mean annual 

sediment fluxes (SF) between 2000-2007 (pre-new-dams) and 2008-2013 (post-new-

dams): the SF before new dams implementations was 49.1 Mt yr-1 (with a specific yield 

of 358 t km-2 yr-1) and decreased to 11.6 Mt yr-1 (with a specific yield of 84 t km-2 yr-1).  

Global sediment flux to the oceans was estimated from 12.6 to 18.5 Gt yr-1, and Asia 

exported the most sediments (4.7 Gt yr-1) among continents (Syvitski et al., 2005; 

Gordeev, 2006; Syvitski and Kettner, 2011). Warm temperate regions have the highest 
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sediment yield as compared with other climates (Syvitski et al., 2005). The Yangtze 

River exported 145 Mt yr-1 (with a specific yield of 79 t km-2 yr-1) during 2003-2012 

(Yang et al., 2015). The Yellow River transported 143 Mt yr-1 (with a specific yield of 

190 t km-2 yr-1) downstream to the sea during 2000-2008 (Miao et al., 2011). The SF 

of the Pear River during 2000-2009 is 36 Mt yr-1 with a specific yield of 80 t km-2 yr-1 

(Wu et al., 2012). The Mekong River exported around 37.5 Mt yr-1 with a specific yield 

of 47 t km-2 yr-1 to the sea during 2009-2016 (Dang et al., 2018). The Congo River 

delivered 30.7 Mt yr-1 with a specific yield of 8.8 t km-2 yr-1 during 1990-1993 (Coynel 

et al., 2005). The Amazon River during 1995-2016 exported 60 Mt yr-1 (with a specific 

yield of 8.8 t km-2 yr-1) to the Atlantic Ocean (Montanher et al., 2018). Though the 

sediment export of the Red River is only around 33% of the Mekong, Pearl and Congo 

rivers, 20% of the Amazon river and 8% of the Yellow and Yangtze rivers, however, 

the specific yield of the Red River basin is around 8 times higher than the Congo and 

Amazon basins, double of the Mekong basin, in the same order with the Pearl and 

Yangtze basins, and half of the Yellow basin. 

Under natural conditions (without any dams), the Red River should have yielded an 

annual SF of 107 Mt yr-1 during 2000-2013, corresponding to a specific yield of 780 t 

km-2 yr-1. For comparing the SF and specific yield under natural conditions of the Red 

River basin with other basins, the values provided by Milliman and Syvitski (1992) were 

considered since those data were obtained before 1992 and are less impacted by 

dams than more recent estimations. The Yellow River produced 1100 Mt yr-1 SF with 

a specific yield of 1400 t km-2 yr-1; the Yangtze River caused 480 Mt yr-1 SF with a 

specific yield of 250 t km-2 yr-1; the Pearl River generated 69 Mt yr-1 SF with a specific 

yield of 160 t km-2 yr-1; the Mekong River yielded 160 Mt yr-1 SF with a specific yield of 

200 t km-2 yr-1 (Milliman and Syvitski, 1992). The Red River basin under natural 

conditions thus exported less SF than the Yellow River (-90%), the Yangtze River (-

78%) and the Mekong River (-33%), and 55% more than the Pearl River. However, its 

specific yield was higher than the Mekong (+290%), Pearl River (+388%), Yangtze 

(+212%), and nearly half of the Yellow River (-44%). When compared to an equivalent 

surface watershed such as the upper Danube (132,000 km2), the Red River basin 

produced almost 3 times higher specific yield than that of 265 t km-2 yr-1 generated by 

the upper Danube; besides, the upper Danube basin only exported 21.2 t km-2 yr-1 to 

the downstream part (Vigiak et al., 2015). These results show that under natural 

conditions, the Red River basin, though having a smaller surface than other basins in 

the world, is a very large source of SF from the watershed to the sea. 

From above we can see that under both actual and natural conditions, though with the 

dams continuously implementations in the Red River basin, its specific sediment yield 

is high among those Asian river basins. This is due to its soil erosion within the basin.  

6.2.2. Soil erosion 

Riverine sediment fluxes can come from the landscape (soil erosion) and in-stream 

process (river degradation and resuspension). The mean annual soil erosion in the 
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Red River basin ranged from 1 to 4340 t km-2 yr-1, with a mean of 550 t km-2 yr-1 for the 

whole basin. In Vietnam, more than 40% of its steeply sloping lands (62% of the 

country) suffer severe erosion (Dregne, 1992). From previous studies, the annual soil 

losses in the Red River basin in Vietnam’s part ranged from 90 to 17,400 t km-2 yr-1 

(Podwojewski et al., 2008; Nguyen et al., 2011; Mai et al., 2013; Tuan et al., 2014). In 

the area of the Red River basin in China’s part, Gu (2016) found that the average 

annual soil erosion was 1840 t km-2 yr-1 (136 Mt yr-1) in 2000 while it was 1870 t km-2 

yr-1 (138 Mt yr-1) in 2010; severe soil erosion area which was only less than 10% of the 

total erosion area, however, contributed 57% to 65% of the total erosion amount; 

farmland was the hot spot of soil erosion, followed by grassland and forest; slope 

above 15° and elevation between 1000-2000 m a.s.l. were the hot spots of erosion. 

High erosion areas are identified in the middle part of the Thao River and the 

downstream of the Da River (Figure 4-7): with high precipitation (>1500 mm yr-1) and 

surface runoff (>450 mm yr-1), Lai Chau (sub-basin 173), Lao Cai (sub-basin 116, 117, 

135, 148, 149, 157), Ha Giang (sub-basin 119) and Son La (sub-basin 218, 232, 234, 

237, 240, 241) provinces are the most vulnerable to soil erosion, and their mean annual 

erosion rate during the study period can be above 2000 t km-2 yr-1. Precipitation, slope 

and agricultural practice are key influence factors for soil erosion in the Red River basin. 

Our results are in agreement with Ranzi et al. (2012) who highlighted the major role of 

rainfall in soil erosion in the Lo basin; Yang et al. (2003) found that the hot spots of soil 

erosion in Southeast Asia were close mountainous areas located in the tectonic zones 

and dense croplands of the high population regions where both natural geomorphology 

and human activity are major factors for inducing soil erosion. 

Southeast Asia had the most serious soil erosion problems and hot spots were close 

mountainous areas located in the tectonic zones and dense croplands of the high 

population regions where both natural geomorphology and human activity are major 

factors for inducing soil erosion; and there was an increasing trend found in Asian, and 

the regions with the largest increases were in the tropic rainforest regions (Southeast 

Asia), such as Thailand and the lower Mekong basin (Yang et al., 2003). In the Mekong 

River basin, the soil erosion in the 1980s was 9.6 t ha yr-1 and predicted to reach 13.0 

t ha yr-1 in the 2090s (Yang et al., 2003). 

Asia probably has suffered more from human-induced soil erosion than any other 

continent (Dregne, 1992), and Southeast Asia has the most serious soil erosion 

problems (Yang et al., 2003). The mean erosion rate of Asia was estimated to 1220 t 

km-2 yr-1 in the 1980s and was predicted to be 1440 t km-2 yr-1 in the 2090s (Yang et 

al., 2003). The hot spots of erosion (Figure 1-6) including the Himalayan–Tibetan 

ecosystem in South Asia and the Loess Plateau in China;  active tectonic movements 

(such as earthquake, debris flow and landslide), steep slopes, freeze-thaw and 

weathering erosions are the main issues in the riverhead high-elevation 

areas.(Milliman and Syvitski, 1992; Ludwig and Probst, 1998; Lal, 2003). Yang et al. 

(2003) found that there was an increasing trend of soil erosion in Asian, and the regions 
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with the largest increases were in the tropic rainforest regions (Southeast Asia), such 

as Thailand and the lower Mekong basin. 

In the middle of the Yellow River basin is the Loess Plateau region from where a large 

amount of sediments is eroded (Ni et al., 2008b), and the range of soil erosions are 

4176-7772 t km-2 yr-1 in 2000 and 1318-6833 t km-2 yr-1 in 2010 (Yan et al., 2018). In 

the upstream part of the Yellow River, the soil erosion in 2000, 2003, 2006 is 728, 110 

and 803 t km-2 yr-1, respectively (Ouyang et al., 2010). The mean annual soil erosion 

for the Yellow basin is estimated from 750 t km-2 yr-1 (in the 1980s, Yang et al., 2003) 

to 1138 t km-2 yr-1 (during 2010-2012, Wang et al., 2019). The mean annual soil erosion 

of the Yangze River basin is 3080 Mt in 2000, with a soil erosion rate at 1683 t km-2 yr-

1 (Kong et al., 2018), and is 776 t km-2 yr-1 during 2010-2012 (Wang et al., 2019). In 

the Pearl River basin, the mean annual soil erosion is 845 t km-2 yr-1 during 2010-2012 

(Wang et al., 2019). The mean annual soil erosion during 1987-2000 ranged from 0 to 

3220 t km-2 yr-1 in the Mekong River Basin; the soil erosion range of 0-440 t km-2 yr-1 

occupied 60% of the whole basin (Suif et al., 2016). 

6.2.3. Impacts of climate variability on suspended sediment 

Changes in rainfall can affect the rate of soil erosion and the sediment transport 

capacity of a river, which influences the sediment flux in that river (Piman and Shrestha, 

2017). In the Red River basin, comparing 2008-2013 to 2000-2007, the impacts of 

climate variability on suspended sediment concentration (SSC) was from -8% (on the 

Da and Lo basins, with p=0.16 and 0.22, respectively) to -20% (on the Thao basin, p= 

0.04), and was -13% (p=0.06) at Son Tay. The impacts of climate variability on 

sediment fluxes (SF) was -28% (p=0.22) at Lao Cai and -21% (p=0.30) at Yen Bai on 

the Thao river, 2% (p=0.93) at Vu Quang on the Lo river, -10% (p=0.48) at Hoa Binh 

on the Da river and -10% (p=0.50) at the outlet of the continental basin (Son Tay). The 

responses to climate variability are different for each sub-basin, even though these 

variations are not significant. The Thao sub-basin is more susceptible to climate 

variability than other sub-basins, and this is related to its Q which is also more sensitive 

to climate variability than other sub-basins; another reason is that the Thao River basin 

is vulnerable to both landscape erosion and channel erosion due to its steep landscape 

and channel slopes. 

In the Mekong River basin, interannual hydrological variation plays an important role 

in sediment supply to the ocean (Dang et al., 2018); Lu et al. (2014) found a significant 

associations between water discharge and rainfall in the upper Mekong Basin (p < 

0.01), indicating predominant controls of precipitation in the upper basin on water 

discharge; Piman and Shrestha (2017) found that in the Mekong River basin the 

potential impact of climate change on sediment yield is greater than on streamflow. 

During 1994-2009 in the Pearl River basin, the sediment load decreased by 83% of 

which 20% was due to climate change (an 18% decrease of the rainfall, Wu et al., 

2012). In the Yellow River basin, Miao et al. (2011) found that the impact of climate on 

sediment load was -46% during 1970-2008. Yang et al. (2015) found that the sediment 



CHAPTER Ⅵ: General Discussion 

 

201 
 

flux of the Yangtze River decrease from 320 Mt yr-1 during 1993-2002 to 145 Mt yr-1 

during 2003-2012 (decreased by 55%), and 14% of this decline was attributed to 

precipitation change. For the Red, Pearl, Yangtze rivers, the impact of climate 

variability on sediment fluxes is within 20% (despite the different study periods), while 

it is higher for the Yellow basin. 

6.2.4. Impacts of dams on suspended sediment 

Dam constructions not only retain the sediments coming from the upstream but also 

change the sediment size distribution and the discharge dynamics downstream, which 

consequently change the in-stream transfer dynamics of SS. Yu et al. (2013) 

demonstrated that after dam implementations on the Yellow River the sediment 

entering the lower reach showed a different transportation pattern in both spatial and 

temporal scales during 2000-2010 due to a majority of those coarser sediments are 

temporally sequestrated within reservoirs. After dam implementations, the coarser 

particles are retained by dams, and the particle size distribution is affected downstream, 

leading to a change in the channel erodibility. Then, the dynamics of downstream 

suspended sediment transport decrease. In our study during the calibration process, 

we found that keeping the same parameter value of SPCON (the sediment transport 

coefficient, presenting the maximum amount of sediment that can be transported from 

a reach segment) with 0.008 (for the period before new dam constructions, see Section 

3.5) for sediment routing, it was not possible to simulate the suspended sediment 

concentrations downstream of the dams for the period after new dam constructions. 

The sediment routing indeed was changed by dam constructions. Therefore, a lower 

value of SPCON (0.002) was set for the period after new dam operations. However, 

the SPCON needs to be modified manually after dam operations and it is only allowed 

to be modified at an entire basin scale, which means it can not be adjusted on a reach 

scale. This might need to be improved in the SWAT model. 

Compared SF during 2000-20007 to 2008-2013, it decreased from 46.0 to 10.3 Mt yr-

1 at Lao Cai, from 56.5 to 17.6 Mt yr-1 at Yen Bai, from 9.6 to 2.7 Mt yr-1 at Vu Quang, 

from 5.3 to 1.3 Mt yr-1 at Hoa Binh and from 49.1 to 11.6 Mt yr-1 at Son Tay. The 

decreases on SF was significantly contributed by dams: -50% at Lao Cai (p=0.02), -

48% at Yen Bai (p=0.03), -74% at Vu Quang (p<0.01), -89% at Hoa Binh (p<0.01) and 

-80% at Son Tay (p<0.01). Among the three tributaries, dams on the Lo and Da rivers 

show larger impacts than the Thao river. There are two main reasons induced the 

different responses: first, the dams on the Thao river are located quite upstream to Lao 

Cai and Yen Bai stations (>100 km upstream of Lao Cao), which allows the reach over 

this distance to mitigate the impacts of dam through riverbed degradation and soil 

erosion from the sub-basin between dams and gauge stations; second, the capacities 

of the dams on the Thao river (a cumulative capacity < 0.9 km3) are smaller than the 

ones on the other two tributaries (a cumulative capacity of 5.1 and 18.8 km3 on the Lo 

and Da rivers). 

In Asia, the 2000s decade exhibits a decreasing trend in suspended sediment flux 
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(Cohen et al., 2014). The SF of the Pearl River decreased by 83% from 1994 to 2009, 

and 80% of the decrease in SF was due to anthropogenic impacts (mainly dam 

constructions) (Wu et al., 2012). The SF of the Yellow River decreased from 398 Mt 

yr-1 during 1986-1999 to 151 Mt yr-1 during 2000-2007 (-62%), and dams contributed 

30% to this reduction (Peng et al., 2010). The SF of the Yangtze River decreased by 

55% between 1993-2002 (320 Mt yr-1) and 2003-2012 (145 Mt yr-1), of which 75% was 

related to the dams (Yang et al., 2015). For the Mekong River, the SF decreased from 

pre-dam period (1962-1992) 133 Mt yr-1 to post-dam period (1993-2002) 106 Mt yr-1  

(Kummu and Varis, 2007). Though the SF observed at lower Mekong River only 

decreased by 20% between pre- and post-dam period, the SF observed at the upper 

Mekong decreased by 56% (Kummu and Varis, 2007).  

6.3. Organic Carbon 

6.3.1. Dissolved organic carbon export 

Based on the daily-step calculation, the mean annual export of DOC during 2003-2013 

was 222 kt yr-1 at Son Tay, which accounts for 0.26% of the total DOC export by Asian 

rivers to the seas, estimated to 85.45 Mt yr-1 by Li et al. (2019). 

The DOC flux of the Red River is 58% and 10% of that of the Pearl (380 kt yr-1, Ni et 

al., 2008) and Mekong (2200 kt yr-1, Li et al., 2013) rivers respectively, which are 

geographically close to the Red River; 14%, 171% and 370% of that of the Yangtze 

(1580 kt yr-1, Wang et al., 2012), Godavari (130 kt yr-1, Balakrishna et al., 2006) and 

Yellow (60 kt yr-1, Ran et al., 2013) rivers; around 1% and 2% of that of the Amazon 

(26900 kt yr-1, Moreira-Turcq et al., 2003) and Congo (12480 kt yr-1, Spencer et al., 

2016) rivers (Table 5-2). Compared with some other Asian and tropical rivers, the 

export of DOC fluxes through the Red River is not that large, however, the DOC yield 

of the Red River basin (1618 kg km-2 yr-1) is about twice of those of the Pearl (840 kg 

km-2 yr-1) and Yangtze (863 kg km-2 yr-1) basins and is around half of those of the 

Mekong (2767 kg km-2 yr-1) and Congo (3373 kg km-2 yr-1) basins. Though the DOC 

flux of the Red River is smaller than those of Pearl and Yangtze rivers, its specific DOC 

yield is higher than theirs. The high DOC yield of the Red River basin comes from the 

high leaching from soil and rocks. Previous studies pointed out that the main source of 

DOC in the Red River basin is from the allochthonous origin, such as diffuse sources 

(leaching from the soil) during rainy seasons and point sources (industrial and 

domestic wastewater) during dry seasons (Dang, 2006; Le et al., 2017a). Infiltration is 

a key factor of the hydrological pattern in this basin (Bui et al., 2014), which accelerates 

leaching processes. Wei et al. (submitted) found a high erosion, with a mean of 5.5 t 

ha-1 yr-1 and hot spots above 20 t ha-1 yr-1, in the Red River basin due to the 

precipitation, slope, agricultural practice and soil texture. These features accelerate 

the loss of soil organic carbon from land to river. 

Comparing DOC fluxes under natural and actual conditions allows quantifying the 

impacts of Q variations associated with climate variability and dam constructions, 
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respectively (Figure 5-13). Under natural conditions, due to the Q variation associated 

with climate variability, the DOC flux during 2008-2013 only increased by 1% compared 

to 2003-2007, and the flood year 2008 was the main contributor. Under actual 

conditions, a 13% reduction of DOC flux was induced by dams which allowed 

regulation of peak flow during flood seasons. Previous studies also revealed that 

climate variability and dam constructions within the Red River basin had impacts on Q, 

however, they showed that Q was more influenced by climate variability than dams 

(Wei et al., 2019a): they found that at the Son Tay outlet, the annual mean Q was 

reduced by 13% from 2000-2007 to 2008-2013, with 9% due to climate variability and 

4% due to the dams. 

The studies on other Asian river basins, such as the Yangtze, Yellow and Pearl, also 

found correlations between DOC concentration, flux and precipitation (Shi et al., 2016). 

In South-east Asia, increases in the frequency and intensity of extreme precipitation 

events had been observed (Min et al., 2011), and Park et al. (2018) indicated that 

potential changes in monsoon rainfall regimes as a consequence of climate change 

would amplify seasonal and interannual variations in the transport of carbon. Soil 

organic carbon is the main source for riverine DOC, and soil erosion and leaching 

induced by rainfall have a strong impact on the global carbon cycle (Lal, 2003). The 

impact of dam construction on DOC transport mainly due to water regulation, however, 

this impact is not significant in our study. In the study of Xia et al. (2016) who observed 

that though the DOC flux in 2013 had decreased by 45 % compared to the period 

before Xiaolangdi dam operation on the Yellow River, the impact of both water and 

sediment regulation on DOC concentration was insignificant. 

6.3.2. Particulate organic carbon export 

The mean annual export of POC during 2003-2013 was 406 kt yr-1 at Son Tay which 

accounted for 0.37% of the total POC export by the Asian rivers (76.9 Mt yr-1, Li et al., 

2017). 

Though the POC flux of the Red River is quite low compared to other Asian rivers (from 

-1% for the Yellow River to -76% for the Mekong River, Table 5-2), its specific yield 

(2959 kg km-2 yr-1) is quite high compared to the Mekong (41%) and the Pearl River 

(+148%) basins which are two basins close by. Le et al. (2017a) emphasized that the 

main source of the POC was the soil leaching and erosion in the Red River basin, not 

the phytoplankton. The soil erosion in this basin is high, especially in the middle part 

(Wei et al., submitted). Besides, POC is related to SSC, and the SSC in the Thao River 

is very high, with an annual mean of 631 mg L-1 at Yen Bai station during 2003 to 2013, 

and 137 mg L-1 at Son Tay station. 

A distinct decrease of POC flux can be noticed after 2007 at all four stations (Figure 

5-11) when some new dams started to operate. At the Son Tay outlet, the POC flux in 

2008 was only 45% of that in 2007 even though 2008 is a flood year, and the average 

POC fluxes decreased by 88% in 208-2013 compared to 2003-2007. These dams have 
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trapped the suspended sediment and changed the grain size distribution of 

downstream sediment (Wei et al., 2019a), which consequently affected the POC 

transfer. In 2008, a drastic decrease of SSC and sediment fluxes indeed occurred: the 

SSC at Son Tay decreased by 67% and the sediment flux decreased by 58% in 2008 

compared to 2007 (Wei et al., 2019, submitted). Similarly to DOC fluxes, POC fluxes 

under natural conditions varied little (2%) between 2003-2007 and 2008-2013. Dams 

caused an 85% decrease in POC flux. Our study reveals that in the Red River basin, 

dams induced severe sequestration of POC fluxes due to suspended sediment 

retention. 

Studies on POC in other Asian rivers also underlined the significant impacts of dams 

on POC transport. The annual POC trapping in the dams on the Yellow River can 

amount to 3.3-4.3 Mt yr-1, which is similar in magnitude to the TOC export to the Bohai 

Sea (Zhang et al., 2013; Ran et al., 2014). The dams on the Yangtze River affected 

both the seasonal and interannual variability of terrigenous POC fluxes (Li et al., 2015; 

Wu et al., 2015): high preservation of POC was observed in reservoirs on the Yangtze 

River and dam buildings had sequestered around 5 Mt yr-1 biospheric POC since 2003, 

approximately 10% of the global riverine POC burial flux to the oceans. In the late 

1990s, the decrease of POC was observed due to the interception of large amounts of 

sediment load and suspended particulate matter caused by the extensive construction 

of dams in the Pearl River basin (Guo et al., 2015). Dam constructions, on the one 

hand, retain the sediment in the reservoir, affecting the POC flux; on the other hand, 

dam increases water temperature and retention time, which stimulate phytoplankton 

(a great source of the organic matter) growing in the impounded water (Park et al., 

2018). For example, Li et al. (2013a) found that a great increase in the abundance of 

the phytoplankton assemblages in 1997 after the first dam began operation on the 

upper Mekong River, and then after the cascading dams began operations in 2011, 

the abundance of the phytoplankton assemblages sharply increased in reservoir 

impoundment areas. However, in the rivers with high sediment concentrations, the 

contribution from phytoplankton in the reservoirs to POC are limited. For example, the 

phytoplankton growth is limited due to the high sediment concentration that reduces 

the light for algae on the Thao and Da rivers, tributaries of the Red River (Dang, 2006; 

Le et al., 2017a).  

6.3.3. Total organic carbon export and evolution 

The Red River exported 628 kt yr-1 of TOC over 2003-2013, i.e. contributed 

approximately 0.38% of TOC exported by the Asian rivers (164 Mt yr-1, Li et al., 2017). 

Due to the drop of POC flux, the TOC flux decreased by 31% at the outlet in 2008 

compared to the previous year (Figure 5-12). At Son Tay outlet, the POC flux 

accounted for 74% of the TOC flux during 2003-2007, while it only accounted for 47% 

during 2008-2013 with the main part of organic carbon in the dissolved phase. Previous 

studies indicated that the Asian rivers draining erosion-prone mountainous terrain 

deliver more POC than DOC, particularly during the rainy seasons (Ludwig and Probst, 

1996b; Park et al., 2018). However, with the construction and operation of new dams, 
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the composition ratio of TOC changed, from POC-dominating to DOC-dominating 

(Table 5-3). Zhang et al. (2009) found the similar results for a tributary of the Pearl 

River and indicated that the dominance of DOC flux over POC flux was expected 

because of the decreasing sediment flux in the recent decade due to reforestation and 

reservoir construction. Besides, the dynamic variations of POC/TOC were also 

modified by dam regulation (Figure 5-14a). Before new dam constructions, the 

POC/TOC ratio was low around March and high in flood season. However, after 

impoundment of new dams, the dams fulfil flood-control functions during June and July, 

retaining water and SS, therefore the POC/TOC ratio became also low during the flood 

season. And around March, dams discharge water for irrigation, also releasing SS, 

which induces high POC/TOC. 

A fundamental change of POC/TOC was observed in 2008. Two new dams (Nansha 

on the Thao river and Tuyen Quang on the Lo river) started operation in 2008 and two 

new dams (Madushan on the Thao river and Son La on the Da river) impounded in 

2011. Compared to the other two tributaries, the POC/TOC ratio at Yen Bai on the 

Thao River did not decrease that sharply (Table 5-3). The Madushan and Nansha 

dams are located around 230 km upstream to Yen Bai station, therefore, the 

suspended sediment and POC over this distance can be regulated by the terrestrial 

inputs as well as the river bed degradation. At Hoa Binh station, before the new Son 

La dam became operational, the POC/TOC percentage was already low because of 

the Hoa Binh dam which was impounded in 1989. Therefore, the biggest impact on the 

POC/TOC ratio at Son Tay is due to the change of the POC/TOC from the Lo river, i.e. 

Tuyen Quang dam contributes most to the decrease of POC/TOC at Son Tay.  
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7. CHAPTER Ⅶ: Conclusions and Perspectives 

7.1.  General Conclusions 

This study on hydrology, suspended sediment and organic carbon transport in an 

Asian tropical basin under global changes provides the understanding of the transport 

dynamics processes and its key influencing factors. This work confirmed the significant 

impacts of dam constructions on suspended sediment and organic carbon transport.  

7.1.1. Water regime 

The rainfall (1494 mm yr-1 during 2000-2013 from TRMM) was abundant in the Red 

River basin among other Asian basins. 47% of the rainfall was fed into the streamflow, 

which was a high utilization ratio of rainfall compared to other Asian rivers. Though the 

annual mean discharge of the Red River (3003 m3 s-1) was low (24% of the Mekong 

River and 11% of the Yangtze River), its specific water yield was high (697 mm yr-1). 

The water yield during the southwest monsoon period (from May to October) 

accounted for 76% of the total water yield in a year. 

The impacts of dam constructions on the discharge of the Red River during the study 

period was insignificant and was -4% at the Son Tay outlet. Dams mainly regulated 

the discharge at seasonal scale (weakened the flood peaks and increased the flow 

during dry seasons) but had no significant influence on annual mean discharge. 

Climate variability had a larger impact on this basin, and the impact for the whole basin 

was -9%, ranging from -29% for Lao Cai on the Thao river to +2% for Vu Quang on the 

Lo river. The annual rainfall for the whole basin during the study period showed a 

decreasing trend though it was not significant. The impact of climate variability was 

severer on the upper basin with lower mean annual rainfall. 

7.1.2. Suspended sediment 

The sediment fluxes of the Red River during 2000-2013 was 33 Mt yr-1 based on daily-

scale model calculation, accounting for 0.7% of the total Asian river sediment (4740 Mt 

yr-1) delivery to the seas (Syvitski et al., 2005). Around 90% of the annual sediment 

flux was exported during monsoon seasons (May-October). The sediment export of 

the Red River was in the same range as the Mekong and Pearl rivers and was around 

23% of the Yangtze River, however, the specific sediment yield of the Red River basin 

was at least 3 times higher than above basins. High suspended sediment 

concentration (~1500 mg L-1) of the Thao River and high erosion (hot spots above 20 

t ha-1 yr-1) in the middle basin were the main contributors. Precipitation, slope and 

agricultural practice are the key influence factors for soil erosion in the Red River basin. 

Since 2008, new dams started operating continuously, the sediment export decreased 

from 49 Mt yr-1 during 2000-2007 to 12 Mt yr-1 during 2008-2013. Dam constructions 

were the main factor reducing the sediment export, contributing an 80% decrease on 

sediment flux. On the contrary, the impact of climate variability was -13%. 
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7.1.3. Organic carbon 

Based on the daily time-step calculation, during 2003-2013, the mean annual export 

of DOC and POC at Son Tay was 222 and 406 kt yr-1, respectively, which represented 

0.26% and 0.37% of the total Asian rivers DOC and POC transport, respectively. 

During a year, 85% of the total DOC and 88% of the total POC were exported to the 

delta during the southwest monsoon seasons (May to October). Compared to some 

other Asian and tropical rivers, the export of DOC and POC fluxes through the Red 

River was not high. However, its specific DOC and POC yields were high, which is in 

agreement with some previous studies that indicated that the rivers in mainland Asia 

have the highest specific export rates worldwide in terms of DOC and POC.  

At the Son Tay outlet, due to the Q variation induced by climate variability, the DOC 

flux during 2008-2013 increased 1% compared to 2003-2007, and the flood year 2008 

was the main contributor for the DOC flux during 2008-2013. A 13% reduction of DOC 

flux was related to dam operations which regulated the discharge during flood seasons. 

POC fluxes during 2008-2013 decreased by 88% compared to 2003-2007: climate 

variability had little impacts on POC fluxes (-2%), while the dam constructions caused 

an 85% decrease. POC transfer was affected consequently after dam constructions. 

At the outlet during 2003-2007, the POC flux accounted for averagely 74% of total 

organic carbon (TOC) flux, but during 2008-2013, it only accounted for 47%. With the 

constructions and operations of new dams, the POC/TOC ratio changed, from POC-

dominating to DOC-dominating. Besides, the dynamic variations of POC/TOC were 

also changed by dam regulation. Before new dam constructions, the POC/TOC ratio 

was low around March and high in flood season. However, after new dams impounded, 

during June and July, the dams fulfil flood-control functions, retaining water and 

sediment, therefore the POC/TOC ratio became low during the flood season. And 

around March, dams discharge water for irrigation, suspended sediment is released 

too, which induces high POC/TOC. 

7.1.4. Simple relationships proposed from this study 

Firstly, simple relationships between monthly discharge and sediment fluxes at five 

stations in the Red River basin were established based on the outputs of the modelling, 

which allows the people to estimate the sediment flux with only monthly discharge data 

and without using complex models. Second, simple relationships related the 

parameters in Equation 6 and 7 to the soil organic carbon content (for calculating both 

DOC and POC), the mean annual discharge (for DOC) and the Chl-a concentration 

(for POC) enable people to calculate the DOC and POC concentrations within the Red 

River basin. 

7.2. Perspectives 

From the above results, we can see that during a decade year (2000-2013) the Red 

River had changed due to the natural and anthropogenic influences.  
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For better understanding the effects of climate variability and changes on water 

balance and availability in this basin, longer time-series data (hydrology and climate) 

on some key points (such as before and after the important dams, the border between 

China and Vietnam, and the outlets of the big tributaries) are necessary. This will help 

decision-makers to optimize the water intake and distribution, especially for intensive 

irrigation in the delta part of the Red River basin. Besides, climate variability showed 

some impacts on this basin, especially on the area with low average rainfall (the Thao 

basin). With longer time-series data on both climate and hydrology will help us have a 

deeper understanding of the climate effects. 

The Red River exported large SS and POC to the downstream delta part. However, 

with the successive dam constructions in this basin, both SS and POC showed sharp 

declines by retained in the reservoir. On the one hand, dam management should pay 

great attention to the sedimentation in the reservoirs in order to guarantee their 

capacity of the reservoirs and economic effectiveness, especially to the dams on the 

high SSC rivers (the Thao and Da rivers). Also, for the downstream biogeochemical 

requirements (nutrients supply and delta form), dam management should release 

enough discharge in order the water can carry enough sediment and associated 

nutrients to the downstream. On the other hand, sediment from the landscape should 

be controlled. Soil erosion in the middle part of the basin and in the low part of the Da 

sub-basin are high. Appropriate and scientific soil conservation practices should be 

implemented in these areas, such as terrace and contour strip intercropping can 

reduce the slopes, afforestation can help protect the land from high and intensive 

rainfall erosion. 

Due to the retention of SS by dams, the POC decreased a lot too. Even though, the 

specific yield of DOC and POC in the Red River basin are high among Asian river 

basins. High organic carbon in this basin is mainly coming from soil erosion and 

leaching. Therefore, for controlling the concentration of organic carbon, soil 

conservation should be carried out.  

For improving the modelling to gain more precise simulations, more dam regulation 

and management information, more hydrology data from more stations and longer and 

high-frequency dataset, longer time-series data will be helpful. The Q, SSC and 

organic carbon sampling data were only gained from Vietnam part. it would be also 

good to have some data from upstream China's part. Also, the sediment routing 

parameters in the model (PRF, SPCON and SPEXP) now can only be applied to the 

whole basin scale, however, each tributary might have different sediment routing 

conditions. Such sensitive parameters should be applied at a sub-basin or reach scale. 

In this study, land use during this decade was not taken into account. Some human 

activities, such as mining and sand excavation were not able to be added into the 

model. We did not have the dataset for the POC before 2008 when the new dams 

started to operate, therefore, the impacts of dams on POC was an insight for a possible 

impact.  
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Future studies of nitrogen, phosphorus and pesticide can be carried on based on this 

model. Also, scenarios of global changes, such as climate changes, land use changes, 

new dam implementations, can be done by this model. Furthermore, this model can 

be coupled with a delta model, and then with sea model to investigate the impacts of 

global changes on the biochemical function in the coast.
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Conclusions Générales et Perspectives 

Cette étude sur l'hydrologie, les matières en suspension et le transport de carbone 

organique dans un bassin tropical asiatique soumis à des changements globaux 

permet de comprendre les processus dynamiques du transport et ses facteurs 

déterminants. Ces travaux ont confirmé les impacts importants des constructions de 

barrages sur le transport de matières en suspension et de carbone organique associé 

ainsi que les tendances sur l’impact climatique. 

Régime de l'hydrologique 

Les précipitations (1494 mm an-1 entre 2000 et 2013 provenant du TRMM) ont été 

abondantes dans le bassin du Fleuve Rouge en comparaison avec les autres bassins 

asiatiques. 47% des précipitations correspondent au débit, ce qui représente une 

fraction élevée de la pluie par rapport aux autres fleuves asiatiques. Bien que le débit 

moyen annuel du Fleuve Rouge (3003 m3 s-1) soit faible (24% du Mékong et 11% du 

Yangtsé), son apport spécifique en flux d’eau reste élevé (697 mm an-1). Le débit au 

cours de la mousson du sud-ouest (de mai à octobre) représente 76% du débit total 

au cours d'une année. 

Les impacts de la construction de barrages sur le débit du Fleuve Rouge au cours de 

la période d'étude sont quasi négligeables et s'élèvent à -4% du débit à Son Tay. Les 

barrages régulent principalement les débits à l’échelle saisonnière (atténuent les pics 

de crue et augmentent le débit pendant les saisons sèches) mais n’ont pas d’influence 

significative sur les débits moyens annuels. La variabilité climatique a un impact plus 

important sur ce bassin, et l'impact pour l'ensemble du bassin est de -9%, allant de -

29% pour Lao Cai sur la rivière Thao à + 2% pour le Vu Quang sur la rivière Lo durant 

la période d’étude. Les précipitations annuelles pour l'ensemble du bassin au cours de 

la période d'étude ont montré une tendance à la baisse, même si elle n’est pas 

significative. L'impact de la variabilité climatique a été plus sévère sur le haut bassin 

avec des précipitations annuelles moyennes plus faibles. 

Les sédiments en suspension 

Les flux sédimentaires du Fleuve Rouge en 2000-2013 sont de 33 Mt-1 sur la base 

d’une simulation journalière, représentant 0,7% du total des matières en suspension 

des fleuves d'Asie (4740 Mt-1) vers l’Océan (Syvitski et al., 2005). Environ 90% du flux 

annuel de matières en suspension a été exporté pendant la saison de la mousson (mai 

à octobre). L'exportation de matières en suspension du Fleuve Rouge se site dans la 

même gamme que les fleuves du Mékong et du Pearl et représente environ 23% de 

celle du Yangtze; toutefois, le flux spécifique du Fleuve Rouge est au moins trois fois 

supérieur à celui des bassins supérieurs. La concentration élevée de matières en 

suspension (~1500 mg L-1) dans le fleuve Thao et une érosion importante (supérieure 

à 20 t ha-1 an-1) dans le bassin central sont les principaux contributeurs. Les 

précipitations, la pente et les pratiques agricoles sont les principaux facteurs 
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d'influence de l'érosion des sols dans le bassin du Fleuve Rouge. 

Depuis 2008, de nouveaux barrages ont été mis en service de manière continue. Les 

exportations de matières en suspension ont diminué, passant de 49 Mt-1 en 2000-2007 

à 12 Mt-1 en 2008-2013 à Son Tay. La construction de barrages a été le principal 

facteur de réduction des exportations de matières en suspension, contribuant à une 

réduction de 80% du flux. A l’inverse, l'impact de la variabilité climatique est de -13% 

à Son Tay. 

Le carbone organique 

Sur la base des simulations au pas de temps journalier, entre 2003 et 2013, les 

exportations annuelles moyennes de COD et de COP à Son Tay sont respectivement 

de 222 et de 406 kt.an-1, ce qui représente 0,26% et 0,37% du total des fleuves 

asiatiques pour le transfert de COD et du COP, respectivement. Au cours d'une année, 

85% du COD total et 88% du COP total sont exportés vers le delta pendant la saison 

de la mousson du sud-ouest (de mai à octobre). Comparés à d'autres fleuves 

asiatiques et tropicaux, les flux de COD et de COP exportés par le Fleuve Rouge sont 

plus faibles. Cependant, les flux spécifiques de COD et de COP sont plus élevés, ce 

qui est en accord avec certaines études antérieures indiquant que les fleuves d’Asie 

continentale présentent les taux d’exportation spécifiques les plus élevés au monde 

en termes de COD et de COP. 

À Son Tay, en raison de la variation de Q induite par la variabilité climatique, le flux de 

COD, entre 2008 et 2013 a augmenté de 1% par rapport à 2003-2007, et l’année très 

pluvieuse de 2008 a été la principale contributrice au flux de COD sur la période de 

2008 à 2013. Une réduction de 13% des flux de COD est liée aux activités des 

barrages qui régulent les flux vers l’aval pendant les saisons des pluies. Les flux de 

COP ont diminué de 88% en 2008-2013 par rapport à 2003-2007 à Son Tay: la 

variabilité du climat n’a eu que peu d’impacts sur les flux de COP (-2%), tandis que la 

construction de barrages a entraîné une diminution de 85%. Le transfert de COP a été 

affecté de manière importante en conséquence après la construction des barrages. 

Pendant la période de 2003-2007, le flux de COP représente en moyenne 74% du flux 

de carbone organique total (COT), mais en 2008-2013, il ne représente que 47%. Avec 

la construction et l'exploitation de nouveaux barrages, le rapport COP/COT a été 

modifié, passant de dominante COP à dominante COD. En outre, les variations 

dynamiques du COP/COT ont également été modifiées par la mise en place des 

barrages. Le rapport COP/COT a diminué pendant la saison des crues. Aux alentours 

du mois de Mars, les barrages rejettent de l'eau pour l'irrigation, des matières en 

suspension sont également rejetés, ce qui induit une teneur élevée en COP/COT. 

Relations simples proposées à partir de cette étude 

Premièrement, des relations simples entre les débits mensuels et les flux de sédiments 

à cinq stations du bassin du Fleuve Rouge ont été établies sur la base des résultats 
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des simulations, ce qui permet aux gestionnaires et/ou scientifiques d’estimer le flux 

de matières en suspension avec seulement des données de débits mensuels et sans 

utiliser de modèles complexes. Deuxièmement, des relations simples reliant les 

paramètres des équations précédentes à la teneur en carbone organique du sol (pour 

calculer à la fois le COD et le COP), le débit annuel moyen (pour le COD) et la 

concentration en Chlorophylle-a (pour le COP) permettent de simuler de manière 

simple et directe la concentration de COD et de COP dans le bassin du Fleuve Rouge 

en différents points. 

Perspectives 

Enfin, cette étude ouvre un certain nombre de perspectives. Ce travail pose tout 

d’abord les bases sur des études futures sur les transferts de contaminants tels que 

les métaux et les pesticides. L’outil de modélisation tel que mis en place peut d’ores 

et déjà être utilisé pour simuler des scénarios de changement d’occupation du sol, 

d’implémentation de nouveaux barrages et des scénarios de changement climatique. 

Ce modèle peut aussi d’ores et déjà être couplé de manière externe à un modèle de 

circulation marine incluant le delta du Fleuve Rouge pour permettre de comprendre 

l’impact d’un fonctionnement amont-aval dans les dynamiques côtières. 



 

 

216 
 



 

 

217 
 

 
 
 
 
 
 
 
 

References



 

 

218 
 

 



References 

 

219 
 

References: 

Abbaspour KC. 2015. SWAT-CUP: SWAT Calibration and Uncertainty Programs – A 
User Manual DOI: 10.1007/s00402-009-1032-4 

Achite M, Ouillon S. 2007. Suspended sediment transport in a semiarid watershed, 
Wadi Abd, Algeria (1973–1995). Journal of Hydrology 343 (3–4): 187–202 DOI: 
10.1016/j.jhydrol.2007.06.026 

Aitkenhead JA, McDowell WH. 2000. Soil C:N ratio as a predictor of annual riverine 
DOC flux at local and global scales. Global Biogeochemical Cycles 14 (1): 127–
138 DOI: 10.1029/1999GB900083 

Almeida CT, Oliveira-Júnior JF, Delgado RC, Cubo P, Ramos MC. 2017. 
Spatiotemporal rainfall and temperature trends throughout the Brazilian Legal 
Amazon, 1973-2013. International Journal of Climatology 37 (4): 2013–2026 DOI: 
10.1002/joc.4831 

Alsdorf D, Beighley E, Laraque A, Lee H, Tshimanga R, O’Loughlin F, Mahé G, Dinga 
B, Moukandi G, Spencer RGM. 2016. Opportunities for hydrologic research in the 
Congo Basin. Reviews of Geophysics 54 (2): 378–409 DOI: 
10.1002/2016RG000517 

Ananda J, Herath G. 2003. Soil erosion in developing countries: a socio-economic 
appraisal. Journal of Environmental Management 68 (4): 343–353 DOI: 
10.1016/S0301-4797(03)00082-3 

AQUASTAT. 2011. Hydrological Basins of Asia. Food and Agriculture Organization of 
the United Nations (FAO) Available at: 
http://www.fao.org/nr/water/aquastat/maps/print1.stm 

Arias ME, Cochrane TA, Kummu M, Lauri H, Holtgrieve GW, Koponen J, Piman T. 
2014. Impacts of hydropower and climate change on drivers of ecological 
productivity of Southeast Asia’s most important wetland. Ecological Modelling 272: 
252–263 DOI: 10.1016/j.ecolmodel.2013.10.015 

Arnell NW. 1999. Climate change and global water resources. Global Environmental 
Change 9: S31–S49 DOI: https://doi.org/10.1016/S0959-3780(99)00017-5 

Arnold JG, Kiniry JR, Srinivasan R, Williams JR, Haney EB, Neitsch SL. 2012a. Soil & 
Water Assessment Tool Input/Output Documentation Version 2012. Springer US. 

Arnold JG, Moriasi DN, Gassman PW, Abbaspour KC, White MJ, Srinivasan R, Santhi 
C, Harmel RD, Griensven A van, Van Liew MW, et al. 2012b. SWAT: MODEL 
USE, CALIBRATION, AND VALIDATION. ASABE 55: 1491–1508 DOI: 
10.13031/2013.42256 

Arnold JG, Srinivasan R, Muttiah RS, Williams JR. 1998. Large area hydrologic 
modeling and assesment Part I: Model development. JAWRA Journal of the 
American Water Resources Association 34 (1): 73–89 DOI: 10.1111/j.1752-
1688.1998.tb05961.x 

Asselman NE. 2000. Fitting and interpretation of sediment rating curves. Journal of 
Hydrology 234 (3–4): 228–248 DOI: 10.1016/S0022-1694(00)00253-5 

Aucour A-M, France-Lanord C, Pedoja K, Pierson-Wickmann A-C, Sheppard SMF. 
2006. Fluxes and sources of particulate organic carbon in the Ganga-



References 

 

220 
 

Brahmaputra river system. Global Biogeochemical Cycles 20 (2): 12 DOI: 
10.1029/2004GB002324 

Bagnold RA. 1977. Bed load transport by natural rivers. Water Resources Research 
13 (2): 303–312 DOI: 10.1029/WR013i002p00303 

Bai Z, Feng D, Ding J, Duan X. 2015. A study on the variations of soil physico-chemical 
properties and its environmental impact factors in the Red River watershed (in 
Chinese). Yunnan Geographic Environment Research 27 (4): 81–90 DOI: 
10.13277/j.cnki.jcwu.2015.04.013 

Balakrishna K, Kumar IA, Srinikethan G, Mugeraya G. 2006. Natural and 
Anthropogenic Factors Controlling the Dissolved Organic Carbon Concentrations 
and Fluxes in a Large Tropical River, India. Environmental Monitoring and 
Assessment 122 (1–3): 355–364 DOI: 10.1007/s10661-006-9188-7 

Bannwarth MA, Hugenschmidt C, Sangchan W, Lamers M, Ingwersen J, Ziegler AD, 
Streck T. 2015. Simulation of stream flow components in a mountainous 
catchment in northern Thailand with SWAT, using the ANSELM calibration 
approach. Hydrological Processes 29 (6): 1340–1352 DOI: 10.1002/hyp.10268 

Bannwarth MA, Sangchan W, Hugenschmidt C, Lamers M, Ingwersen J, Ziegler AD, 
Streck T. 2014. Pesticide transport simulation in a tropical catchment by SWAT. 
Environmental Pollution 191: 70–79 DOI: 10.1016/j.envpol.2014.04.011 

Barton AP, Fullen MA, Mitchell DJ, Hocking TJ, Liu L, Wu Bo Z, Zheng Y, Xia Z. 2004. 
Effects of soil conservation measures on erosion rates and crop productivity on 
subtropical Ultisols in Yunnan Province, China. Agriculture, Ecosystems & 
Environment 104 (2): 343–357 DOI: 10.1016/j.agee.2004.01.034 

Basilevsky A. 1994. Statistical Factor Analysis and Related Methods-Capter 3: The 
Ordinary Principal Components Model. John Wiley & Sons, Inc.: Hoboken, NJ, 
USA. DOI: 10.1002/9780470316894 

Bates BC, Kundzewicz ZW, Wu S, Palutikof JP. 2008. Climate Change and Water. 
IPCC Secretariat, Geneva. DOI: 10.1016/j.jmb.2010.08.039 

Beristain BT. 2005. Organic matter decomposition in simulated aquaculture 
ponds.Wageningen University, Netherlands. 

Best J. 2019. Anthropogenic stresses on the world’s big rivers. Nature Geoscience 12 
(1): 7–21 DOI: 10.1038/s41561-018-0262-x 

Beusen AHW, Van Beek LPH, Bouwman AF, Mogollón JM, Middelburg JJ. 2015. 
Coupling global models for hydrology and nutrient loading to simulate nitrogen 
and phosphorus retention in surface water - Description of IMAGE-GNM and 
analysis of performance. Geoscientific Model Development 8 (12): 4045–4067 
DOI: 10.5194/gmd-8-4045-2015 

Beusen AHW, Dekkers ALM, Bouwman AF, Ludwig W, Harrison J. 2005. Estimation 
of global river transport of sediments and associated particulate C, N, and P. 
Global Biogeochemical Cycles 19 (4) DOI: 10.1029/2005GB002453 

Bicknell BR, Imhoff JC, Kittle JLJ, Anthony S. Donigian J, Johanson RC. 1997. 
Hydrological Simulation Program--FORTRAN: User ’ s Manual for Version 11 

Biemans H, Haddeland I, Kabat P, Ludwig F, Hutjes RWA, Heinke J, Von Bloh W, 
Gerten D. 2011. Impact of reservoirs on river discharge and irrigation water supply 



References 

 

221 
 

during the 20th century. Water Resources Research 47 (3) DOI: 
10.1029/2009WR008929 

Billett M, Charman D, Clark J, Evans C, Evans M, Ostle N, Worrall F, Burden A, 
Dinsmore K, Jones T, et al. 2010. Carbon balance of UK peatlands: current state 
of knowledge and future research challenges. Climate Research 45 (1): 13–29 
DOI: 10.3354/cr00903 

Bishop K, Pettersson C. 1996. Organic carbon in the boreal spring flood from adjacent 
subcatchments. Environment International 22 (5): 535–540 DOI: 10.1016/0160-
4120(96)00036-0 

Boithias L, Sauvage S, Merlina G, Jean S, Probst JL, Sánchez Pérez JM. 2014. New 
insight into pesticide partition coefficient Kdfor modelling pesticide fluvial transport: 
Application to an agricultural catchment in south-western France. Chemosphere 
99: 134–142 DOI: 10.1016/j.chemosphere.2013.10.050 

Bookhagen B, Burbank DW. 2010. Toward a complete Himalayan hydrological budget: 
Spatiotemporal distribution of snowmelt and rainfall and their impact on river 
discharge. Journal of Geophysical Research 115 (F3): F03019 DOI: 
10.1029/2009JF001426 

Bui YT, Orange D, Visser SM, Hoanh CT, Laissus M, Poortinga A, Tran DT, 
Stroosnijder L. 2014. Lumped surface and sub-surface runoff for erosion 
modeling within a small hilly watershed in northern Vietnam. Hydrological 
Processes 28: 2961–2974 DOI: 10.1002/hyp.9860 

Carbonate-rock aquifers. 2016. U.S. Geological Survey Available at: 
https://water.usgs.gov/ogw/aquiferbasics/carbrock.html 

Carlson CA, Hansell DA. 2015. Biogeochemistry of Marine Dissolved Organic Matter 
(DA Hansell and CA Carlson, eds). Academic Press: San Diego, California, USA. 
DOI: 10.1016/C2012-0-02714-7 

Carvalhais N, Forkel M, Khomik M, Bellarby J, Jung M, Migliavacca M, Μu M, Saatchi 
S, Santoro M, Thurner M, et al. 2014. Global covariation of carbon turnover times 
with climate in terrestrial ecosystems. Nature 514 (7521): 213–217 DOI: 
10.1038/nature13731 

Chen A, Ho C-H, Chen D, Azorin-Molina C. 2019. Tropical cyclone rainfall in the 
Mekong River Basin for 1983–2016. Atmospheric Research 226: 66–75 DOI: 
10.1016/j.atmosres.2019.04.012 

Chen J, Shi H, Sivakumar B, Peart MR. 2016. Population, water, food, energy and 
dams. Renewable and Sustainable Energy Reviews 56: 18–28 DOI: 
10.1016/j.rser.2015.11.043 

Ciais P, Borges A V., Abril G, Meybeck M, Folberth G, Hauglustaine D, Janssens IA. 
2008. The impact of lateral carbon fluxes on the European carbon balance. 
Biogeosciences 5 (5): 1259–1271 DOI: 10.5194/bg-5-1259-2008 

Cibin R, Sudheer KP, Chaubey I. 2010. Sensitivity and identifiability of stream flow 
generation parameters of the SWAT model. Hydrological Processes 24 (9): 1133–
1148 DOI: 10.1002/hyp.7568 

Cohen S, Kettner AJ, Syvitski JPM. 2014. Global suspended sediment and water 
discharge dynamics between 1960 and 2010: Continental trends and intra-basin 



References 

 

222 
 

sensitivity. Global and Planetary Change 115: 44–58 DOI: 
10.1016/j.gloplacha.2014.01.011 

Cohen S, Kettner AJ, Syvitski JPM, Fekete BM. 2013. WBMsed, a distributed global-
scale riverine sediment flux model: Model description and validation. Computers 
and Geosciences 53: 80–93 DOI: 10.1016/j.cageo.2011.08.011 

Cole JJ. 2013. The Carbon Cycle. In Fundamentals of Ecosystem ScienceElsevier; 
109–135. DOI: 10.1016/B978-0-08-091680-4.00006-8 

Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, 
Kortelainen P, Downing JA, Middelburg JJ, et al. 2007. Plumbing the global 
carbon cycle: Integrating inland waters into the terrestrial carbon budget. 
Ecosystems 10 (1): 171–184 DOI: 10.1007/s10021-006-9013-8 

Coynel A, Seyler P, Etcheber H, Meybeck M, Orange D. 2005. Spatial and seasonal 
dynamics of total suspended sediment and organic carbon species in the Congo 
River. Global Biogeochemical Cycles 19 (4): n/a-n/a DOI: 
10.1029/2004GB002335 

Cui L, Wang L, Lai Z, Tian Q, Liu W, Li J. 2017. Innovative trend analysis of annual 
and seasonal air temperature and rainfall in the Yangtze River Basin, China 
during 1960–2015. Journal of Atmospheric and Solar-Terrestrial Physics 164: 48–
59 DOI: 10.1016/j.jastp.2017.08.001 

Cunge JA. 1969. On the subject of a flood propagation computation method 
(musklngum method). Journal of Hydraulic Research 7 (2): 205–230 DOI: 
10.1080/00221686909500264 

Dai SB, Yang SL, Li M. 2009. The sharp decrease in suspended sediment supply from 
China’s rivers to the sea: Anthropogenic and natural causes. Hydrological 
Sciences Journal 54 (1): 135–146 DOI: 10.1623/hysj.54.1.135 

Dams WC on. 2000. Dams and Development: A new framework for decision-making. 
The Report of the World Commission on Dams 23 (November): 58–63 DOI: 
10.1097/GCO.0b013e3283432017 

Dang TH. 2006. Erosion et transferts de Matières En Suspension, carbone et métaux 
dans le bassin versant du fleuve Rouge depuis la frontière sino-vietnamienne 
jusqu’à l’entrée du delta.L’Universite Bordeaux 1, France. 

Dang TH, Coynel A, Etcheber H, Orange D, Ngoc P, Tu A, Company D. 2013a. 
Seasonal Variability of Particulate Organic Carbon ( Poc ) in a Large Asian 
Tropical River : the Red River ( China / Vietnam ). Journal of Science and 
Technology 51 (3): 315–326 DOI: 10.15625/0866-708X/51/3/9592 

Dang TH, Coynel A, Etcheber H, Orange D, Pham NAT. 2013b. Seasonal Variability 
of Particulate Organic Carbon ( Poc ) in a Large Asian Tropical River : the Red 
River ( China / Vietnam ). Vietnam Academy of Science and Technology 51 (3): 
315–326 DOI: 10.15625/0866-708X/51/3/9592 

Dang TH, Coynel A, Orange D, Blanc G, Etcheber H, Le LA. 2010. Long-term 
monitoring (1960-2008) of the river-sediment transport in the Red River 
Watershed (Vietnam): Temporal variability and dam-reservoir impact. Science of 
the Total Environment 408 (20): 4654–4664 DOI: 
10.1016/j.scitotenv.2010.07.007 



References 

 

223 
 

Dang TH, Ouillon S, Van Vinh G. 2018. Water and Suspended Sediment Budgets in 
the Lower Mekong from High-Frequency Measurements (2009–2016). Water 10 
(7): 846 DOI: 10.3390/w10070846 

Daniel EB, Camp J V., LeBoeuf EJ, Penrod JR, Dobbins JP, Abkowitz MD. 2011. 
Watershed Modeling and its Applications: A State-of-the-Art Review. The Open 
Hydrology Journal 5 (1): 26–50 DOI: 10.2174/1874378101105010026 

Devia GK, Ganasri BP, Dwarakish GS. 2015. A Review on Hydrological Models. 
Aquatic Procedia 4 (Icwrcoe): 1001–1007 DOI: 10.1016/j.aqpro.2015.02.126 

Dile YT, Srinivasan R. 2014. Evaluation of CFSR climate data for hydrologic prediction 
in data-scarce watersheds: an application in the Blue Nile River Basin. JAWRA 
Journal of the American Water Resources Association 50 (5): 1226–1241 DOI: 
10.1111/jawr.12182 

Dodds WK, Whiles MR. 2010. Chapter 13 - Carbon. In Freshwater Ecology (Second 
Edition), Dodds WK, , Whiles MR (eds).Academic Press: London; 323–343. DOI: 
https://doi.org/10.1016/B978-0-12-374724-2.00013-1 

Dregne HE. 1992. Erosion and soil productivity in Asia. Journal of Soil & Water 
Conservation 47 (1): 8–13 

Ellis EE, Keil RG, Ingalls AE, Richey JE, Alin SR. 2012. Seasonal variability in the 
sources of particulate organic matter of the Mekong River as discerned by 
elemental and lignin analyses. Journal of Geophysical Research: Biogeosciences 
117 (G1) DOI: 10.1029/2011JG001816 

Ercin AE, Hoekstra AY. 2014. Water footprint scenarios for 2050: A global analysis. 
Environment International 64: 71–82 DOI: 10.1016/j.envint.2013.11.019 

Escolano JJ, Pedreño JN, Lucas IG, Almendro Candel MB, Zorpas AA. 2018. 
Decreased Organic Carbon Associated With Land Management in Mediterranean 
Environments. In Soil Management and Climate ChangeElsevier; 1–13. DOI: 
10.1016/B978-0-12-812128-3.00001-X 

Espa P, Crosa G, Gentili G, Quadroni S, Petts G. 2015. Downstream Ecological 
Impacts of Controlled Sediment Flushing in an Alpine Valley River: A Case Study. 
River Research and Applications 31 (8): 931–942 DOI: 10.1002/rra.2788 

Evans AE V., Hanjra MA, Jiang Y, Qadir M, Drechsel P. 2012. Water Quality: 
Assessment of the Current Situation in Asia. International Journal of Water 
Resources Development 28 (2): 195–216 DOI: 10.1080/07900627.2012.669520 

Fabre C, Sauvage S, Tananaev N, Noël GE, Teisserenc R, Probst JL, Sánchez-Pérez 
JM. 2019. Assessment of sediment and organic carbon exports into the Arctic 
ocean: The case of the Yenisei River basin. Water Research 158: 118–135 DOI: 
10.1016/j.watres.2019.04.018 

FAO. 2003a. Review of world water resources by country. Rome, Italy. Available at: 
http://www.fao.org/tempref/agl/AGLW/ESPIM/CD-ROM/documents/5C_e.pdf 

FAO. 2003b. Multilingual Thesaurus on Land Tenure (Chinese version) Available at: 
http://www.fao.org/docrep/005/x2038e/x2038e00.htm 

FAO. 2011a. The state of the world’s land and water resources for food and agriculture 
(SOLAW) – Managing systems at risk. Food and Agriculture Organization of the 
United Nations, Rome and Earthscan, London. 



References 

 

224 
 

FAO. 2011b. Irrigation in Southern and Eastern Asia in figures Available at: 
http://www.fao.org/docrep/016/i2809e/i2809e.pdf 

Farr TG, Kobrick M. 2000. Shuttle radar topography mission produces a wealth of data. 
Eos, Transactions American Geophysical Union 81 (48): 583 DOI: 
10.1029/EO081i048p00583 

Ford D, Williams P. 2007. Karst Hydrogeology and Geomorphology. John Wiley & 
Sons Ltd,.: West Sussex, England. DOI: 10.1002/9781118684986 

Fu B, Merritt WS, Croke BFW, Weber TR, Jakeman AJ. 2019. A review of catchment-
scale water quality and erosion models and a synthesis of future prospects. 
Environmental Modelling & Software 114: 75–97 DOI: 
10.1016/j.envsoft.2018.12.008 

Fukunaga DC, Cecílio RA, Zanetti SS, Oliveira LT, Caiado MAC. 2015. Application of 
the SWAT hydrologic model to a tropical watershed at Brazil. CATENA 125: 206–
213 DOI: 10.1016/j.catena.2014.10.032 

Furuichi T, Win Z, Wasson RJ. 2009. Discharge and suspended sediment transport in 
the Ayeyarwady River, Myanmar: centennial and decadal changes. Hydrological 
Processes 23 (11): 1631–1641 DOI: 10.1002/hyp.7295 

Galy V, Bouchez J, France-Lanord C. 2007. Determination of Total Organic Carbon 
Content and δ 13 C in Carbonate-Rich Detrital Sediments. Geostandards and 
Geoanalytical Research 31 (3): 199–207 DOI: 10.1111/j.1751-
908X.2007.00864.x 

Garneau C. 2014. Modélisation du transfert des éléments traces métalliques dans les 
eaux de surface.Univercite Toulouse III Paul Sabatier, France. Available at: 
http://thesesups.ups-tlse.fr/2711/ 

Garneau C, Sauvage S, Sánchez-Pérez J-M, Lofts S, Brito D, Neves R, Probst A. 2017. 
Modelling trace metal transfer in large rivers under dynamic hydrology: A coupled 
hydrodynamic and chemical equilibrium model. Environmental Modelling & 
Software 89: 77–96 DOI: 10.1016/j.envsoft.2016.11.018 

Gassman PW, Reyes MR, Green CH, Arnold JG. 2007. The Soil and Water 
Assessment Tool : historical development, applications, and future research 
directions. Transactions of the ASAE 50 (4): 1211–1250 DOI: 10.1.1.88.6554 

Gassman PW, Sadeghi AM, Srinivasan R. 2014. Applications of the SWAT Model 
Special Section: Overview and Insights. Journal of Environment Quality 43 (1): 1 
DOI: 10.2134/jeq2013.11.0466 

Giang PQ, Toshiki K, Sakata M, Kunikane S, Vinh TQ. 2014. Modelling climate change 
impacts on the seasonality of water resources in the upper Ca river watershed in 
Southeast Asia. Scientific World Journal 2014 DOI: 10.1155/2014/279135 

Göltenboth F, Lehmusluoto P. 2006. LAKES. In Ecology of Insular Southeast Asia, 
Göltenboth F, , Timotius KH, , Milan PP, , Margraf J (eds).Elsevier: Amsterdam, 
Netherlands; 95–138. DOI: 10.1016/B978-044452739-4/50008-5 

Gordeev VV. 2006. Fluvial sediment flux to the Arctic Ocean. Geomorphology 80 (1–
2): 94–104 DOI: 10.1016/j.geomorph.2005.09.008 

Graham DN, Butts MB. 2005. Flexible, integrated watershed modelling with MIKE SHE 
in Watershed Models (DKF V.P. Singh, ed.). DOI: 10.1201/9781420037432.ch10 



References 

 

225 
 

Grung M, Lin Y, Zhang H, Steen AO, Huang J, Zhang G, Larssen T. 2015. Pesticide 
levels and environmental risk in aquatic environments in China — A review. 
Environment International 81: 87–97 DOI: 10.1016/j.envint.2015.04.013 

Gu Z. 2016. Spatiotemporal Variation of Soil Erosion in Red River Bain, China (in 
Chinese).Yunnan University, China. 

Gu Z, Duan X, Shi Y, Li Y, Pan X. 2018. Spatiotemporal variation in vegetation 
coverage and its response to climatic factors in the Red River Basin, China. 
Ecological Indicators 93 (November 2017): 54–64 DOI: 
10.1016/j.ecolind.2018.04.033 

Guo W, Ye F, Xu S, Jia G. 2015. Seasonal variation in sources and processing of 
particulate organic carbon in the Pearl River estuary, South China. Estuarine, 
Coastal and Shelf Science 167: 540–548 DOI: 10.1016/j.ecss.2015.11.004 

Gupta H, Kao S-J, Dai M. 2012. The role of mega dams in reducing sediment fluxes: 
A case study of large Asian rivers. Journal of Hydrology 464–465: 447–458 DOI: 
10.1016/j.jhydrol.2012.07.038 

Guse B, Reusser DE, Fohrer N. 2014. How to improve the representation of 
hydrological processes in SWAT for a lowland catchment - temporal analysis of 
parameter sensitivity and model performance. Hydrological Processes 28 (4): 
2651–2670 DOI: 10.1002/hyp.9777 

Ha LT, Bastiaanssen WGM, van Griensven A, van Dijk AIJM, Senay GB. 2018. 
Calibration of spatially distributed hydrological processes and model parameters 
in SWAT using remote sensing data and an auto-calibration procedure: A case 
study in a Vietnamese river basin. Water (Switzerland) 10 (2) DOI: 
10.3390/w10020212 

Hanjra MA, Qureshi ME. 2010. Global water crisis and future food security in an era of 
climate change. Food Policy 35 (5): 365–377 DOI: 10.1016/j.foodpol.2010.05.006 

Hargreaves GL, Hargreaves GH, Riley JP. 1985. Agricultural Benefits for Senegal 
River Basin. Journal of Irrigation and Drainage Engineering 111 (2): 113–124 DOI: 
10.1061/(ASCE)0733-9437(1985)111:2(113) 

Hauer C, Leitner P, Unfer G, Pulg U, Habersack H, Graf W. 2018. The Role of 
Sediment and Sediment Dynamics in the Aquatic Environment. In Riverine 
Ecosystem ManagementSpringer International Publishing: Cham; 151–169. DOI: 
10.1007/978-3-319-73250-3_8 

He D, Ren J, Fu K, Li Y. 2007. Sediment change under climate changes and human 
activities in the Yuanjiang-Red River Basin. Chinese Science Bulletin 52 (S2): 
164–171 DOI: 10.1007/s11434-007-7010-8 

Hiep NH, Luong ND, Viet Nga TT, Hieu BT, Thuy Ha UT, Du Duong B, Long VD, 
Hossain F, Lee H. 2018. Hydrological model using ground- and satellite-based 
data for river flow simulation towards supporting water resource management in 
the Red River Basin, Vietnam. Journal of Environmental Management 217: 346–
355 DOI: https://doi.org/10.1016/j.jenvman.2018.03.100 

Hirsch RM. 2014. Large Biases in Regression-Based Constituent Flux Estimates: 
Causes and Diagnostic Tools. JAWRA Journal of the American Water Resources 
Association 50 (6): 1401–1424 DOI: 10.1111/jawr.12195 



References 

 

226 
 

Hoi P V., Mol APJ, Oosterveer P, van den Brink PJ, Huong PTM. 2016. Pesticide use 
in Vietnamese vegetable production: a 10-year study. International Journal of 
Agricultural Sustainability 14 (3): 325–338 DOI: 
10.1080/14735903.2015.1134395 

Hope D, Billett MF, Cresser MS. 1994. A review of the export of carbon in river water: 
Fluxes and processes. Environmental Pollution 84 (3): 301–324 DOI: 
10.1016/0269-7491(94)90142-2 

Hou Q, Sun J, Jing J, Liu C, Zhang Y, Liu J, Hua M. 2018. A Regional Scale 
Investigation on Groundwater Arsenic in Different Types of Aquifers in the Pearl 
River Delta, China. Geofluids 2018: 1–9 DOI: 10.1155/2018/3471295 

Hu B, Li J, Bi N, Wang H, Wei H, Zhao J, Xie L, Zou L, Cui R, Li S, et al. 2015. Effect 
of human-controlled hydrological regime on the source, transport, and flux of 
particulate organic carbon from the lower Huanghe (Yellow River). Earth Surface 
Processes and Landforms 40 (8): 1029–1042 DOI: 10.1002/esp.3702 

Huang TH, Chen CTA, Tseng HC, Lou JY, Wang SL, Yang L, Kandasamy S, Gao X, 
Wang JT, Aldrian E, et al. 2017. Riverine carbon fluxes to the South China Sea. 
Journal of Geophysical Research: Biogeosciences 122 (5): 1239–1259 DOI: 
10.1002/2016JG003701 

Huang TH, Fu YH, Pan PY, Chen CTA. 2012. Fluvial carbon fluxes in tropical rivers. 
Current Opinion in Environmental Sustainability 4 (2): 162–169 DOI: 
10.1016/j.cosust.2012.02.004 

Huntington TG, Aiken GR. 2013. Export of dissolved organic carbon from the 
Penobscot River basin in north-central Maine. Journal of Hydrology 476: 244–256 
DOI: 10.1016/j.jhydrol.2012.10.039 

Immerzeel WW, van Beek LPH, Bierkens MFP. 2010. Climate Change Will Affect the 
Asian Water Towers. Science 328 (5984): 1382–1385 DOI: 
10.1126/science.1183188 

IPCC. 2000. the Intergovernmental Panel on Climate Change: Land Use, Land-Use 
Change, and Forestry DOI: DOI: 10.2277/0521800838 

Islam Z. 2011. A Review on Physically Based Hydrologic Modeling. Alberta, Canada. 
DOI: 10.13140/2.1.4544.5924 

Jiang T, Fischer T, Lu X. 2009. Larger Asian rivers: Climate change, river flow, and 
watershed management. Quaternary International 208: 1–3 DOI: 
10.1016/j.quaint.2010.06.011 

Jimmy R. Williams. 1969. Flood Routing With Variable Travel Time or Variable Storage 
Coefficients. Transactions of the ASAE 12 (1): 0100–0103 DOI: 
10.13031/2013.38772 

Kendall MG. 1948. Rank correlation methods. Oxford, England: Griffin. 

Khoi DN, Suetsugi T. 2014. The responses of hydrological processes and sediment 
yield to land-use and climate change in the Be River Catchment, Vietnam. 
Hydrological Processes 28 (3): 640–652 DOI: 10.1002/hyp.9620 

Kong L, Zheng H, Rao E, Xiao Y, Ouyang Z, Li C. 2018. Evaluating indirect and direct 
effects of eco-restoration policy on soil conservation service in Yangtze River 
Basin. Science of The Total Environment 631–632: 887–894 DOI: 



References 

 

227 
 

10.1016/j.scitotenv.2018.03.117 

Krause P, Boyle DP, Bäse F. 2005. Comparison of different efficiency criteria for 
hydrological model assessment. Advances in Geosciences 5: 89–97 DOI: 
10.5194/adgeo-5-89-2005 

Kroeze C, Bouwman L, Seitzinger S. 2012. Modeling global nutrient export from 
watersheds. Current Opinion in Environmental Sustainability 4 (2): 195–202 DOI: 
10.1016/j.cosust.2012.01.009 

Kummu M, Varis O. 2007. Sediment-related impacts due to upstream reservoir 
trapping, the Lower Mekong River. Geomorphology 85 (3–4): 275–293 DOI: 
10.1016/j.geomorph.2006.03.024 

Kummu M, Lu XX, Wang JJ, Varis O. 2010. Basin-wide sediment trapping efficiency 
of emerging reservoirs along the Mekong. Geomorphology 119 (3–4): 181–197 
DOI: 10.1016/j.geomorph.2010.03.018 

Kundzewicz ZW, Nohara D, Tong J, Oki T, Buda S, Takeuchi K. 2009. Discharge of 
large Asian rivers – Observations and projections. Quaternary International 208 
(1–2): 4–10 DOI: 10.1016/j.quaint.2009.01.011 

Kunz MJ, Wüest A, Wehrli B, Landert J, Senn DB. 2011. Impact of a large tropical 
reservoir on riverine transport of sediment, carbon, and nutrients to downstream 
wetlands. Water Resources Research 47 (12) DOI: 10.1029/2011WR010996 

Lal R. 2003. Soil erosion and the global carbon budget. Environment International 29 
(4): 437–450 DOI: 10.1016/S0160-4120(02)00192-7 

Lal R, Kimble J, Levine E, Stewart BA. 1995. Soils and global change. CRC Press: 
Boca Raton, USA. Available at: https://books.google.fr/books?hl=zh-
CN&lr=&id=cQxGGN3vBCAC&oi=fnd&pg=PA131&dq=carbon+transport+to+oce
an+by+sediment&ots=i_sclKpAjW&sig=zd6gwiB05VU1M6ksWJEv3aB9krQ#v=o
nepage&q=carbon transport to ocean by sediment&f=false [Accessed 7 January 
2019] 

Lauri H, Räsänen TA, Kummu M. 2014. Using Reanalysis and Remotely Sensed 
Temperature and Precipitation Data for Hydrological Modeling in Monsoon 
Climate: Mekong River Case Study. Journal of Hydrometeorology 15 (4): 1532–
1545 DOI: 10.1175/JHM-D-13-084.1 

Le T, Sharif H. 2015. Modeling the Projected Changes of River Flow in Central Vietnam 
under Different Climate Change Scenarios. Water 7 (12): 3579–3598 DOI: 
10.3390/w7073579 

Le TPQ. 2005. Biogeochemical Functioning of the Red River (North Vietnam): Budgets 
and Modelling.Université Paris VI- Pierre et Marie Curie. 

Le TPQ, Billen G, Garnier J, Théry S, Fézard C, Chau M Van. 2005. Nutrient (N, P) 
budgets for the Red River basin (Vietnam and China). Global Biogeochemical 
Cycles 19 (2): 1–16 DOI: 10.1029/2004GB002405 

Le TPQ, Dao VN, Rochelle-Newall E, Garnier J, Lu X, Billen G, Duong TT, Ho CT, 
Etcheber H, Nguyen TMH, et al. 2017a. Total organic carbon fluxes of the Red 
River system (Vietnam). Earth Surface Processes and Landforms 42 (9): 1329–
1341 DOI: 10.1002/esp.4107 

Le TPQ, Garnier J, Billen G, Nguyen TMH, Rochelle-Newall E, Lu X, Duong TT, Ho 



References 

 

228 
 

CT, Le N Da, Tran TBN, et al. 2017b. Riverine carbon flux from the Red River 
system (Viet Nam and China): a modelling approach. APN Science Bulletin 7 (1): 
35–41 DOI: 10.30852/sb.2017.53 

Le TPQ, Garnier J, Gilles B, Sylvain T, Van Minh C. 2007. The changing flow regime 
and sediment load of the Red River, Viet Nam. Journal of Hydrology 334 (1–2): 
199–214 DOI: 10.1016/j.jhydrol.2006.10.020 

Le TPQ, Gilles B, Garnier J, Sylvain T, Denis R, Anh NX, Minh C Van. 2010. Nutrient 
(N, P, Si) transfers in the subtropical Red River system (China and Vietnam): 
Modelling and budget of nutrient sources and sinks. Journal of Asian Earth 
Sciences 37 (3): 259–274 DOI: 10.1016/j.jseaes.2009.08.010 

Le TPQ, Le N Da, Dao VN, Rochelle-Newall E, Nguyen TMH, Marchand C, Duong TT, 
Phung TXB. 2018. Change in carbon flux (1960–2015) of the Red River (Vietnam). 
Environmental Earth Sciences 77 (18): 658 DOI: 10.1007/s12665-018-7851-2 

Le TPQ, Seidler C, Kändler M, Tran TBN. 2012. Proposed methods for potential 
evapotranspiration calculation of the Red River basin (North Vietnam). 
Hydrological Processes 26 (18): 2782–2790 DOI: 10.1002/hyp.8315 

Lehner B, Liermann CR, Revenga C, Vörösmarty C, Fekete B, Crouzet P, Döll P, 
Endejan M, Frenken K. 2011a. Global Reservoir and Dam ( GRanD ) database 
DOI: 10.1128/JCM.01792-10 

Lehner B, Liermann CR, Revenga C, Vörösmarty C, Fekete B, Crouzet P, Döll P, 
Endejan M, Frenken K, Magome J, et al. 2011b. High-resolution mapping of the 
world’s reservoirs and dams for sustainable river-flow management. Frontiers in 
Ecology and the Environment 9 (9): 494–502 DOI: 10.1890/100125 

Lever J, Krzywinski M, Altman N. 2017. Principal component analysis. Nature Methods 
14 (7): 641–642 DOI: 10.1038/nmeth.4346 

Li D, Christakos G, Ding X, Wu J. 2018. Adequacy of TRMM satellite rainfall data in 
driving the SWAT modeling of Tiaoxi catchment (Taihu lake basin, China). Journal 
of Hydrology 556: 1139–1152 DOI: 10.1016/j.jhydrol.2017.01.006 

Li G, Wang XT, Yang Z, Mao C, West AJ, Ji J. 2015. Dam-triggered organic carbon 
sequestration makes the Changjiang (Yangtze) river basin (China) a significant 
carbon sink. Journal of Geophysical Research: Biogeosciences 120 (1): 39–53 
DOI: 10.1002/2014JG002646 

Li J, Dong S, Liu S, Yang Z, Peng M, Zhao C. 2013a. Effects of cascading hydropower 
dams on the composition, biomass and biological integrity of phytoplankton 
assemblages in the middle Lancang-Mekong River. Ecological Engineering 60: 
316–324 DOI: 10.1016/j.ecoleng.2013.07.029 

Li M, Peng C, Wang M, Xue W, Zhang K, Wang K, Shi G, Zhu Q. 2017. The carbon 
flux of global rivers: A re-evaluation of amount and spatial patterns. Ecological 
Indicators 80 (February): 40–51 DOI: 10.1016/j.ecolind.2017.04.049 

Li M, Peng C, Zhou X, Yang Y, Guo Y, Shi G, Zhu Q. 2019. Modeling Global Riverine 
DOC Flux Dynamics From 1951 to 2015. Journal of Advances in Modeling Earth 
Systems 11 (2): 514–530 DOI: 10.1029/2018MS001363 

Li S, Bush RT. 2015. Changing fluxes of carbon and other solutes from the Mekong 
River. Scientific Reports 5 (1): 16005 DOI: 10.1038/srep16005 



References 

 

229 
 

Li S, Lu XX, Bush RT. 2013b. CO2 partial pressure and CO2 emission in the Lower 
Mekong River. Journal of Hydrology 504: 40–56 DOI: 
10.1016/j.jhydrol.2013.09.024 

Li X. 2017. Response of runoff to climate change and adaptation strategies in the 
Yuanjiang River Basin (in Chinese).Yunnan University. 

Li X, Li Y, He J, Luo X. 2016a. Analysis of variation in runoff and impacts factors in the 
Yuanjiang-Red River Basin from 1956 to 2013. Resources Science (in Chinese) 
38 (6): 1149–1159 DOI: 10.18402/resci.2016.06.14 

Li Y, He J, Li X. 2016b. Hydrological and meteorological droughts in the Red River 
Basin of Yunnan Province based on SPEI and SDI Indices (In Chinese). Progress 
In Geography 35 (6): 758–767 Available at: 
http://www.progressingeography.com/article/2016/1007-6301/1007-6301-35-6-
758.shtml 

Li Y, He D, Ye C. 2008. Spatial and temporal variation of runoff of red river basin in 
Yunnan. Journal of Geographical Sciences 18 (3): 308–318 DOI: 
10.1007/s11442-008-0308-x 

Liu D, Bai Y, He X, Tao B, Pan D, Chen C-TTA, Zhang L, Xu Y, Gong C, Li T, et al. 
2019a. Satellite-derived particulate organic carbon flux in the Changjiang River 
through different stages of the Three Gorges Dam. Remote Sensing of 
Environment 223 (January): 154–165 DOI: 10.1016/j.rse.2019.01.012 

Liu D, Pan D, Bai Y, He X, Wang D, Zhang L. 2015. Variation of dissolved organic 
carbon transported by two Chinese rivers: The Changjiang River and Yellow River. 
Marine Pollution Bulletin 100 (1): 60–69 DOI: 10.1016/j.marpolbul.2015.09.029 

Liu X, Yang M, Meng X, Wen F, Sun G. 2019b. Assessing the Impact of Reservoir 
Parameters on Runoff in the Yalong River Basin using the SWAT Model. Water 
11 (4): 643 DOI: 10.3390/w11040643 

Lloret E, Dessert C, Buss HL, Chaduteau C, Huon S, Alberic P, Benedetti MF. 2016. 
Sources of dissolved organic carbon in small volcanic mountainous tropical rivers, 
examples from Guadeloupe (French West Indies). Geoderma 282: 129–138 DOI: 
10.1016/j.geoderma.2016.07.014 

Lu XX, Siew RY. 2006. Water discharge and sediment flux changes over the past 
decades in the Lower Mekong River: Possible impacts of the Chinese dams. 
Hydrology and Earth System Sciences 10 (2): 181–195 DOI: 10.5194/hess-10-
181-2006 

Lu XX, Li S, Kummu M, Padawangi R, Wang JJ. 2014. Observed changes in the water 
flow at Chiang Saen in the lower Mekong: Impacts of Chinese dams? Quaternary 
International 336: 145–157 DOI: 10.1016/j.quaint.2014.02.006 

Lu XX, Oeurng C, Le TPQ, Thuy DT. 2015. Sediment budget as affected by 
construction of a sequence of dams in the lower Red River, Viet Nam. 
Geomorphology 248: 125–133 DOI: 10.1016/j.geomorph.2015.06.044 

Ludwig W. 1997. Continental erosion and river transport of organic carbon to the 
world’s oceans.l’Université Louis Pasteur, Strasbourg, France. Available at: 
https://www.persee.fr/docAsPDF/sgeol_0302-
2684_1997_mon_98_1_2368.pdf%0Ahttps://www.persee.fr/doc/sgeol_0302-
2684_1997_mon_98_1 



References 

 

230 
 

Ludwig W, Probst J-L. 1996a. Predicing the oceanic input of organic carbon by 
continental erosion. Global Biogeochemical Cycles 10 (1): 23–41 

Ludwig W, Probst JL. 1996b. Predicting the oceanic input of organic carbon by 
continental erosion. Global Biogeochemical Cycles 10 (1): 23–41 DOI: 
10.1029/95GB02925 

Ludwig W, Probst JL. 1998. River sediment discharge to the oceans: Present-day 
controls and global budgets. American Journal of Science 298 (4): 265–295 DOI: 
10.2475/ajs.298.4.265 

Lupker M, France-Lanord C, Lavé J, Bouchez J, Galy V, Métivier F, Gaillardet J, 
Lartiges B, Mugnier JL. 2011. A Rouse-based method to integrate the chemical 
composition of river sediments: Application to the Ganga basin. Journal of 
Geophysical Research: Earth Surface 116 (4): F04012 DOI: 
10.1029/2010JF001947 

Luu TNM, Garnier J, Billen G, Le TPQ, Nemery J, Orange D, Le LA. 2012. N, P, Si 
budgets for the Red River Delta (northern Vietnam): How the delta affects river 
nutrient delivery to the sea. Biogeochemistry 107 (1–3): 241–259 DOI: 
10.1007/s10533-010-9549-8 

Luu TNM, Garnier J, Billen G, Orange D, Némery J, Le TPQ, Tran HT, Le LA. 2010. 
Hydrological regime and water budget of the Red River Delta (Northern Vietnam). 
Journal of Asian Earth Sciences 37 (3): 219–228 DOI: 
10.1016/j.jseaes.2009.08.004 

Lweendo MK, Lu B, Wang M, Zhang H, Xu W. 2017. Characterization of droughts in 
humid subtropical region, upper kafue river basin (Southern Africa). Water 
(Switzerland) 9 (4): 242 DOI: 10.3390/w9040242 

Ma C, Sun L, Liu S, Shao M, Luo Y. 2015. Impact of climate change on the streamflow 
in the glacierized Chu River Basin, Central Asia. Journal of Arid Land 7 (4): 501–
513 DOI: 10.1007/s40333-015-0041-0 

Mai VT, van Keulen H, Hessel R, Ritsema C, Roetter R, Phien T. 2013. Influence of 
paddy rice terraces on soil erosion of a small watershed in a hilly area of Northern 
Vietnam. Paddy and Water Environment 11 (1–4): 285–298 DOI: 
10.1007/s10333-012-0318-2 

Manh N Van, Dung NV, Hung NN, Kummu M, Merz B, Apel H. 2015. Future sediment 
dynamics in the Mekong Delta floodplains: Impacts of hydropower development, 
climate change and sea level rise. Global and Planetary Change 127: 22–33 DOI: 
10.1016/j.gloplacha.2015.01.001 

Mann HB. 1945. Nonparametric tests against trend. Econometrica 13 (3): 245–259 
Available at: https://www.jstor.org/stable/1907187 

Manninen N, Soinne H, Lemola R, Hoikkala L, Turtola E. 2018. Effects of agricultural 
land use on dissolved organic carbon and nitrogen in surface runoff and 
subsurface drainage. Science of the Total Environment 618: 1519–1528 DOI: 
10.1016/j.scitotenv.2017.09.319 

Manton MJ, Della-Marta PM, Haylock MR, Hennessy KJ, Nicholls N, Chambers LE, 
Collins DA, Daw G, Finet A, Gunawan D, et al. 2001. Trends in extreme daily 
rainfall and temperature in Southeast Asia and the South Pacific: 1961-1998. 
International Journal of Climatology 21 (3): 269–284 DOI: 10.1002/joc.610 



References 

 

231 
 

Marhaento H, Booij MJ, Hoekstra AY. 2018. Hydrological response to future land-use 
change and climate change in a tropical catchment. Hydrological Sciences 
Journal 63 (9): 1368–1385 DOI: 10.1080/02626667.2018.1511054 

Marques da Silva R, Dantas JC, Beltrão J de A, Santos CAG. 2018. Hydrological 
simulation in a tropical humid basin in the Cerrado biome using the SWAT model. 
Hydrology Research 49 (3): 908–923 DOI: 10.2166/nh.2018.222 

Martin J, Meybeck M. 1979. Elemental mass-balance of material carried by major world 
rivers. Marine Chemistry 7 (3): 173–206 DOI: 10.1016/0304-4203(79)90039-2 

McClelland JW, Stieglitz M, Pan F, Holmes RM, Peterson BJ. 2007. Recent changes 
in nitrate and dissolved organic carbon export from the upper Kuparuk River, 
North Slope, Alaska. Journal of Geophysical Research: Biogeosciences 112 (G4): 
n/a-n/a DOI: 10.1029/2006JG000371 

Mekonnen MM, Hoekstra AY. 2016. Four billion people facing severe water scarcity. 
Science Advances 2 (2): e1500323 DOI: 10.1126/sciadv.1500323 

Miao C, Ni J, Borthwick AGL, Yang L. 2011. A preliminary estimate of human and 
natural contributions to the changes in water discharge and sediment load in the 
Yellow River. Global and Planetary Change 76 (3–4): 196–205 DOI: 
10.1016/j.gloplacha.2011.01.008 

Milliman JD, Meade RH. 1983. World-wide delivery of river sediment to the oceans. 
journal of geology 91 (1) DOI: 10.1086/628741 

Milliman JD, Syvitski JPM. 1992. Geomorphic/Tectonic Control of Sediment Discharge 
to the Ocean: The Importance of Small Mountainous Rivers. The Journal of 
Geology 100 (5): 525–544 DOI: 10.1086/629606 

Min SK, Zhang X, Zwiers FW, Hegerl GC. 2011. Human contribution to more-intense 
precipitation extremes. Nature 470 (7334): 378–381 DOI: 10.1038/nature09763 

Montanher OC, Novo EML de M, Souza Filho EE de. 2018. Temporal trend of the 
suspended sediment transport of the Amazon River (1984–2016). Hydrological 
Sciences Journal 63 (13–14): 1901–1912 DOI: 10.1080/02626667.2018.1546387 

Moreira-Turcq P, Seyler P, Guyot JL, Etcheber H. 2003. Exportation of organic carbon 
from the Amazon River and its main tributaries. Hydrological Processes 17 (7): 
1329–1344 DOI: 10.1002/hyp.1287 

Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL. 2007. Model 
Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed 
Simulations. Transactions of the ASABE 50 (3): 885–900 DOI: 
10.13031/2013.23153 

Nachtergaele F, Petri M, Biancalani R, Van Lynden G, Van Velthuizen H, Bloise M. 
2010. Global land degradation information system (GLADIS). Beta version. An 
information database for land degradation assessment at global level. Available 
at: http://www.fao.org/soils-portal/soil-degradation-restoration/global-soil-health-
indicators-and-assessment/soil-heath-physical/en/ 

Nash JE, Sutcliffe J V. 1970. River Flow Forecasting Through Conceptual Models Part 
I-a Discussion of Principles*. Journal of Hydrology 10: 282–290 DOI: 
10.1016/0022-1694(70)90255-6 

Neitsch S., Arnold J., Kiniry J., Williams J. 2009. Soil and Water Assessment Tool 



References 

 

232 
 

Theoretical Documentation Version 2009. Texas Water Resources Institute: 1–
647 DOI: 10.1016/j.scitotenv.2015.11.063 

Ngo TS, Nguyen DB, Rajendra PS. 2015. Effect of land use change on runoff and 
sediment yield in Da River Basin of Hoa Binh province, Northwest Vietnam. 
Journal of Mountain Science 12 (4): 1051–1064 DOI: 10.1007/s11629-013-2925-
9 

Nguyen-Tien V, Elliott RJR, Strobl EA. 2018. Hydropower generation, flood control and 
dam cascades: A national assessment for Vietnam. Journal of Hydrology 560: 
109–126 DOI: 10.1016/j.jhydrol.2018.02.063 

Nguyen HTM, Billen G, Garnier J, Le TPQ, Pham QL, Huon S, Rochelle-Newall E. 
2018. Organic carbon transfers in the subtropical Red River system (Viet Nam): 
insights on CO2 sources and sinks. Biogeochemistry 138 (3): 277–295 DOI: 
10.1007/s10533-018-0446-x 

Nguyen VT, Orange D, Laffly D, Pham VC. 2011. Consequences of large hydropower 
dams on erosion budget within hilly agricultural catchments in Northern Vietnam 
by RUSLE modeling. In International Conference Sediment Transport Modeling 
in Hydrological Watersheds and RiversIstanbul. Available at: 
http://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers13-
06/010058374.pdf 

Ni H, Lu F, Luo X, Tian H, Zeng EY. 2008a. Riverine inputs of total organic carbon and 
suspended particulate matter from the Pearl River Delta to the coastal ocean off 
South China. Marine Pollution Bulletin 56 (6): 1150–1157 DOI: 
10.1016/j.marpolbul.2008.02.030 

Ni J-R, Li X-X, Borthwick AGL. 2008b. Soil erosion assessment based on minimum 
polygons in the Yellow River basin, China. Geomorphology 93 (3–4): 233–252 
DOI: 10.1016/j.geomorph.2007.02.015 

Nijssen B. 2004. Effect of precipitation sampling error on simulated hydrological fluxes 
and states: Anticipating the Global Precipitation Measurement satellites. Journal 
of Geophysical Research 109 (D2): D02103 DOI: 10.1029/2003JD003497 

Nijssen B, O’donnell GM, Hamlet AF, Lettenmaier DP. 2001. Hydrologic sensitivity of 
global rivers to climate change. Climatic Change 50 (1–2): 143–175 DOI: 
10.1023/A:1010616428763 

Nohara D, Kitoh A, Hosaka M, Oki T. 2006. Impact of Climate Change on River 
Discharge Projected by Multimodel Ensemble. Journal of Hydrometeorology 7 (5): 
1076–1089 DOI: 10.1175/JHM531.1 

Ouillon S. 2018. Why and how do we study sediment transport? Focus on coastal 
zones and ongoing methods. Water (Switzerland) 10 (4) DOI: 
10.3390/w10040390 

Ouyang W, Cai G, Huang W, Hao F. 2016. Temporal–spatial loss of diffuse pesticide 
and potential risks for water quality in China. Science of The Total Environment 
541: 551–558 DOI: 10.1016/j.scitotenv.2015.09.120 

Ouyang W, Hao F, Skidmore AK, Toxopeus AG. 2010. Soil erosion and sediment yield 
and their relationships with vegetation cover in upper stream of the Yellow River. 
Science of The Total Environment 409 (2): 396–403 DOI: 
10.1016/j.scitotenv.2010.10.020 



References 

 

233 
 

Park J-H, Nayna OK, Begum MS, Chea E, Hartmann J, Keil RG, Kumar S, Lu X, Ran 
L, Richey JE, et al. 2018. Reviews and syntheses: Anthropogenic perturbations 
to carbon fluxes in Asian river systems – concepts, emerging trends, and research 
challenges. Biogeosciences 15 (9): 3049–3069 DOI: 10.5194/bg-15-3049-2018 

Park JH, Duan L, Kim B, Mitchell MJ, Shibata H. 2010. Potential effects of climate 
change and variability on watershed biogeochemical processes and water quality 
in Northeast Asia. Environment International 36 (2): 212–225 DOI: 
10.1016/j.envint.2009.10.008 

Peng J, Chen S, Dong P. 2010. Temporal variation of sediment load in the Yellow 
River basin, China, and its impacts on the lower reaches and the river delta. 
CATENA 83 (2–3): 135–147 DOI: 10.1016/j.catena.2010.08.006 

Phan DB, Wu CC, Hsieh SC. 2010. Land Use Change Effects on Discharge and 
Sediment Yield of Song Cau Catchment in Northern Vietnam. Journal of 
Environmental Science & Engineering 5: 92–101 Available at: 
http://search.proquest.com/docview/876309039?accountid=28676 
http://sfxeu11.hosted.exlibrisgroup.com/sfxslub?url_ver=Z39.88-
2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&genre=article&sid=ProQ:ProQ:pq
dienvsci&atitle=Land+Use+Change+Effects+on+Discharge+an 

Phan Ha HA, Huon S, Henry des Tureaux T, Orange D, Jouquet P, Valentin C, De 
Rouw A, Tran Duc T. 2012. Impact of fodder cover on runoff and soil erosion at 
plot scale in a cultivated catchment of North Vietnam. Geoderma 177–178: 8–17 
DOI: 10.1016/j.geoderma.2012.01.031 

Piman T, Shrestha M. 2017. Case study on sediment in the Mekong River Basin: 
Current state and future trends: 49 

Piman T, Cochrane TA, Arias ME. 2016. Effect of Proposed Large Dams on Water 
Flows and Hydropower Production in the Sekong, Sesan and Srepok Rivers of 
the Mekong Basin. River Research and Applications 32 (10): 2095–2108 DOI: 
10.1002/rra.3045 

Piman T, Cochrane TA, Arias ME, Green A, Dat ND. 2013. Assessment of Flow 
Changes from Hydropower Development and Operations in Sekong, Sesan, and 
Srepok Rivers of the Mekong Basin. Journal of Water Resources Planning and 
Management 139 (6): 723–732 DOI: 10.1061/(ASCE)WR.1943-5452.0000286 

Podwojewski P, Orange D, Jouquet P, Valentin C, Nguyen VT, Janeau JL, Tran DT. 
2008. Land-use impacts on surface runoff and soil detachment within agricultural 
sloping lands in Northern Vietnam. Catena 74 (2): 109–118 DOI: 
10.1016/j.catena.2008.03.013 

Qu HJ, Kroeze C. 2012. Nutrient export by rivers to the coastal waters of China: 
management strategies and future trends. Regional Environmental Change 12 
(1): 153–167 DOI: 10.1007/s10113-011-0248-3 

Rahman M, Dustegir M, Karim R, Haque A, Nicholls RJ, Darby SE, Nakagawa H, 
Hossain M, Dunn FE, Akter M. 2018. Recent sediment flux to the Ganges-
Brahmaputra-Meghna delta system. Science of The Total Environment 643: 
1054–1064 DOI: 10.1016/j.scitotenv.2018.06.147 

Ran L, Lu XX, Sun H, Han J, Li R, Zhang J. 2013. Spatial and seasonal variability of 
organic carbon transport in the Yellow River, China. Journal of Hydrology 498: 
76–88 DOI: 10.1016/j.jhydrol.2013.06.018 



References 

 

234 
 

Ran L, Lu XX, Xin Z. 2014. Erosion-induced massive organic carbon burial and carbon 
emission in the Yellow River basin, China. Biogeosciences 11 (4): 945–959 DOI: 
10.5194/bg-11-945-2014 

Ranasinghe R, Wu CS, Conallin J, Duong TM, Anthony EJ. 2019. Disentangling the 
relative impacts of climate change and human activities on fluvial sediment supply 
to the coast by the world’s large rivers: Pearl River Basin, China. Scientific 
Reports 9 (1): 9236 DOI: 10.1038/s41598-019-45442-2 

Ranzi R, Le TH, Rulli MC. 2012. A RUSLE approach to model suspended sediment 
load in the Lo river (Vietnam): Effects of reservoirs and land use changes. Journal 
of Hydrology 422–423: 17–29 DOI: 10.1016/j.jhydrol.2011.12.009 

Ren J, He D, Fu K, Li Y. 2007. Sediment variation in the Yuanjiang (the Red River 
Basin) driven by climate change and human activities (in Chinese). Chinese 
Science Bulletin 52 (Z2): 142–147 DOI: https://doi.org/10.1360/csb2007-52-zkII-
142 

Rice SK. 2007. Suspended Sediment Transport in the Ganges-Brahmaputra River 
System, Bangladesh.Texas A&M University, USA. Available at: 
https://oaktrust.library.tamu.edu/handle/1969.1/ETD-TAMU-1588 

Ringnér M. 2008. What is principal component analysis? Nature Publishing Group. 
DOI: · 10.1038/nbt0308-303 

Ritson JP, Croft JK, Clark JM, Brazier RE, Templeton MR, Smith D, Graham NJD. 
2019. Sources of dissolved organic carbon (DOC) in a mixed land use catchment 
(Exe, UK). Science of The Total Environment 666: 165–175 DOI: 
10.1016/j.scitotenv.2019.02.228 

Rizinjirabake F, Abdi AM, Tenenbaum DE, Pilesjö P. 2018. Riverine dissolved organic 
carbon in Rukarara River Watershed, Rwanda. Science of The Total Environment 
643: 793–806 DOI: 10.1016/j.scitotenv.2018.06.194 

Rodrigues V de P, Tavares M, Singh VP, Pereira E, Campos C, Morat R, Silveira R, 
Salviano FA, Rodrigues AC. 2018. Simulation of stream flow and hydrological 
response to land-cover changes in a tropical river basin. Catena 162 (November 
2017): 166–176 DOI: 10.1016/j.catena.2017.11.024 

Rousseau J-F. 2014. Green Energies the Socialist Way: Hydropower, Energy Crops 
and Handai Livelihoods along the Red River, Yunnan Province, China.McGill 
University, Canada. Available at: 
http://digitool.library.mcgill.ca/webclient/StreamGate?folder_id=0&dvs=1557823
421120~210 

Runkel RL, Crawford CG, Conh TA. 2004. Load Estimator (LOADEST): A FORTRAN 
Program for Estimating Constituent Loads in Streams and Rivers. In Techniques 
and Methods Book 4, Chapter A5U.S. Geological Survey: Reston, Virginia; 69. 

Schlesinger WH, Melack JM. 1981. Transport of organic carbon in the world’s rivers. 
Tellus 33 (2): 172–187 DOI: 10.3402/tellusa.v33i2.10706 

Schlünz B, Schneider RR. 2000. Transport of terrestrial organic carbon to the oceans 
by rivers: Re-estimating flux- and burial rates. International Journal of Earth 
Sciences 88 (4): 599–606 DOI: 10.1007/s005310050290 

Schmutz S, Moog O. 2018. Dams: Ecological Impacts and Management. In Riverine 



References 

 

235 
 

Ecosystem ManagementSpringer International Publishing: Cham; 111–127. DOI: 
10.1007/978-3-319-73250-3_6 

Seitzinger SP, Mayorga E, Bouwman AF, Kroeze C, Beusen AHW, Billen G, Van 
Drecht G, Dumont E, Fekete BM, Garnier J, et al. 2010. Global river nutrient 
export: A scenario analysis of past and future trends. Global Biogeochemical 
Cycles 24 (2) DOI: 10.1029/2009GB003587 

Shaxson TF, Barber RG, Food and Agriculture Organization of the United Nations. 
2003. Optimizing soil moisture for plant production : the significance of soil 
porosity. 

Shi G, Peng C, Wang M, Shi S, Yang Y, Chu J, Zhang J, Lin G, Shen Y, Zhu Q. 2016. 
The Spatial and Temporal Distribution of Dissolved Organic Carbon Exported 
from Three Chinese Rivers to the China Sea (J Mao, ed.). PLOS ONE 11 (10): 
e0165039 DOI: 10.1371/journal.pone.0165039 

Shrestha B, Cochrane TA, Caruso BS, Arias ME. 2018. Land use change uncertainty 
impacts on streamflow and sediment projections in areas undergoing rapid 
development: A case study in the Mekong Basin. Land Degradation & 
Development 29 (3): 835–848 DOI: 10.1002/ldr.2831 

Sickman JO, Zanoli MJ, Mann HL. 2007. Effects of Urbanization on Organic Carbon 
Loads in the Sacramento River, California. Water Resources Research 43 (11) 
DOI: 10.1029/2007WR005954 

Simons G, Bastiaanssen W, Ngô L, Hain C, Anderson M, Senay G. 2016. Integrating 
Global Satellite-Derived Data Products as a Pre-Analysis for Hydrological 
Modelling Studies: A Case Study for the Red River Basin. Remote Sensing 8 (4): 
279 DOI: 10.3390/rs8040279 

Sirisena TAJG, Maskey S, Ranasinghe R, Babel MS. 2018. Effects of different 
precipitation inputs on streamflow simulation in the Irrawaddy River Basin, 
Myanmar. Journal of Hydrology: Regional Studies 19: 265–278 DOI: 
10.1016/j.ejrh.2018.10.005 

Spencer RGM, Hernes PJ, Dinga B, Wabakanghanzi JN, Drake TW, Six J. 2016. 
Origins, seasonality, and fluxes of organic matter in the Congo River. Global 
Biogeochemical Cycles 30 (7): 1105–1121 DOI: 10.1002/2016GB005427 

Stenback GA, Crumpton WG, Schilling KE, Helmers MJ. 2011. Rating curve estimation 
of nutrient loads in Iowa rivers. Journal of Hydrology 396 (1–2): 158–169 DOI: 
10.1016/j.jhydrol.2010.11.006 

Stibig H-J, Achard F, Carboni S, Raši R, Miettinen J. 2014. Change in tropical forest 
cover of Southeast Asia from 1990 to 2010. Biogeosciences 11 (2): 247–258 DOI: 
10.5194/bg-11-247-2014 

Suif Z, Fleifle A, Yoshimura C, Saavedra O. 2016. Spatio-temporal patterns of soil 
erosion and suspended sediment dynamics in the Mekong River Basin. Science 
of The Total Environment 568: 933–945 DOI: 10.1016/j.scitotenv.2015.12.134 

Syvitski JP, Morehead MD, Bahr DB, Mulder T. 2000. Estimating fluvial sediment 
transport: The rating parameters. Water Resources Research 36 (9): 2747–2760 
DOI: 10.1029/2000WR900133 

Syvitski JPM, Kettner A. 2011. Sediment flux and the Anthropocene. Philosophical 



References 

 

236 
 

Transactions of the Royal Society A: Mathematical, Physical and Engineering 
Sciences 369 (1938): 957–975 DOI: 10.1098/rsta.2010.0329 

Syvitski JPM, Peckham SD, Hilberman R, Mulder T. 2003. Predicting the terrestrial flux 
of sediment to the global ocean: A planetary perspective. Sedimentary Geology 
162 (1–2): 5–24 DOI: 10.1016/S0037-0738(03)00232-X 

Syvitski JPM, Vorosmarty CJ, Kettner AJ, Green P. 2005. Impact of Humans on the 
Flux of Terrestrial Sediment to the Global Coastal Ocean. Science 308 (5720): 
376–380 DOI: 10.1126/science.1109454 

Tamm T, Nõges T, Järvet A, Bouraoui F. 2008. Contributions of DOC from surface and 
groundflow into Lake Võrtsjärv (Estonia). Hydrobiologia 599 (1): 213–220 DOI: 
10.1007/s10750-007-9189-8 

Tan ML, Gassman PW, Srinivasan R, Arnold JG, Yang X. 2019. A Review of SWAT 
Studies in Southeast Asia: Applications, Challenges and Future Directions. Water 
11 (5): 914 DOI: 10.3390/w11050914 

Tan NQ, Hung LQ. 2015. Viet Nam Case Study Prepared for FAO as part of the State 
of the World ’ s Forests 2016 ( SOFO ). Hanoi. 

the World Commission on Dams. 2000. Dams and Development: A New Framework 
for Decision-Making Available at: http://www.dams.org 

Thiet N Van, Didier O, Dominique L, Cu P Van. 2012. Consequences of large 
hydropower dams on erosion budget within hilly agricultural catchments in 
Northern Vietnam by RUSLE modeling. In International Conference Sediment 
Transport Modeling in Hydrological Watersheds and RiversIstanbul, Turkey; 14–
16. Available at: http://www.documentation.ird.fr/hor/fdi:010058374 

Tian YQ, Yu Q, Feig AD, Ye C, Blunden A. 2013. Effects of climate and land-surface 
processes on terrestrial dissolved organic carbon export to major U.S. coastal 
rivers. Ecological Engineering 54: 192–201 DOI: 10.1016/j.ecoleng.2013.01.028 

Tong Y, Zhao Y, Zhen G, Chi J, Liu X, Lu Y, Wang X, Yao R, Chen J, Zhang W. 2015. 
Nutrient Loads Flowing into Coastal Waters from the Main Rivers of China (2006–
2012). Scientific Reports 5 (1): 16678 DOI: 10.1038/srep16678 

Tuan VD, Hilger T, MacDonald L, Clemens G, Shiraishi E, Vien TD, Stahr K, Cadisch 
G. 2014. Mitigation potential of soil conservation in maize cropping on steep 
slopes. Field Crops Research 156: 91–102 DOI: 10.1016/j.fcr.2013.11.002 

USDA Soil Conservation Service. 1972. National Engineering Handbook-Part 630 
Hydrology, Chapter 4-10. 

Valcu AM. 2013. Agricultural Nonpoint Source Pollution and Water Quality Trading: 
Empirical Analysis under Imperfect Cost Information and Measurement 
Error.Iowa State University, USA. Available at: https://lib.dr.iastate.edu/etd/13444 

Valentin C, Agus F, Alamban R, Boosaner A, Bricquet JP, Chaplot V, de Guzman T, 
de Rouw A, Janeau JL, Orange D, et al. 2008. Runoff and sediment losses from 
27 upland catchments in Southeast Asia: Impact of rapid land use changes and 
conservation practices. Agriculture, Ecosystems and Environment 128 (4): 225–
238 DOI: 10.1016/j.agee.2008.06.004 

Vezina K, Bonn F, Van CP. 2006. Agricultural land-use patterns and soil erosion 
vulnerability of watershed units in Vietnam’s northern highlands. Landscape 



References 

 

237 
 

Ecology 21 (8): 1311–1325 DOI: 10.1007/s10980-006-0023-x 

Vigiak O, Malagó A, Bouraoui F, Vanmaercke M, Poesen J. 2015. Adapting SWAT 
hillslope erosion model to predict sediment concentrations and yields in large 
Basins. Science of the Total Environment 538: 855–875 DOI: 
10.1016/j.scitotenv.2015.08.095 

Vinh VD, Ouillon S, Thanh TD, Chu L V. 2014. Impact of the Hoa Binh dam (Vietnam) 
on water and sediment budgets in the Red River basin and delta. Hydrology and 
Earth System Sciences 18 (10): 3987–4005 DOI: 10.5194/hess-18-3987-2014 

Vörösmarty CJ, Meybeck M, Fekete B, Sharma K. 1997. The potential impact of neo-
Castorization on sediment transport by the global network of rivers. Human 
Impact on Erosion and Sedimentation 245: 261–273 

Vörösmarty CJ, Meybeck M, Fekete B, Sharma K, Green P, Syvitski JPM. 2003. 
Anthropogenic sediment retention: Major global impact from registered river 
impoundments. Global and Planetary Change 39 (1–2): 169–190 DOI: 
10.1016/S0921-8181(03)00023-7 

Vu MT, Raghavan S V., Liong SY. 2012. SWAT use of gridded observations for 
simulating runoff - A Vietnam river basin study. Hydrology and Earth System 
Sciences 16 (8): 2801–2811 DOI: 10.5194/hess-16-2801-2012 

Walling DE. 2005. Tracing suspended sediment sources in catchments and river 
systems. Science of The Total Environment 344 (1–3): 159–184 DOI: 
10.1016/j.scitotenv.2005.02.011 

Walling DE, Fang D. 2003. Recent trends in the suspended sediment loads of the 
world’s rivers. Global and Planetary Change 39 (1–2): 111–126 DOI: 
10.1016/S0921-8181(03)00020-1 

Wang H, Saito Y, Zhang Y, Bi N, Sun X, Yang Z. 2011. Recent changes of sediment 
flux to the western Pacific Ocean from major rivers in East and Southeast Asia. 
Earth-Science Reviews 102 (1–2): 80–100 DOI: 
https://doi.org/10.1016/j.earscirev.2011.06.003 

Wang H, Yang Z, Saito Y, Liu JP, Sun X. 2006. Interannual and seasonal variation of 
the Huanghe (Yellow River) water discharge over the past 50 years: Connections 
to impacts from ENSO events and dams. Global and Planetary Change 50 (3–4): 
212–225 DOI: 10.1016/j.gloplacha.2006.01.005 

Wang W, Lu H, Yang D, Sothea K, Jiao Y, Gao B, Peng X, Pang Z. 2016. Modelling 
Hydrologic Processes in the Mekong River Basin Using a Distributed Model 
Driven by Satellite Precipitation and Rain Gauge Observations (GJ-P Schumann, 
ed.). PLOS ONE 11 (3): e0152229 DOI: 10.1371/journal.pone.0152229 

Wang X, Ma H, Li R, Song Z, Wu J. 2012. Seasonal fluxes and source variation of 
organic carbon transported by two major Chinese Rivers: The Yellow River and 
Changjiang (Yangtze) River. Global Biogeochemical Cycles 26 (2) DOI: 
10.1029/2011GB004130 

Wang X, Quine TA, Zhang H, Tian G, Yuan W. 2019. Redistribution of Soil Organic 
Carbon Induced by Soil Erosion in the Nine River Basins of China. Journal of 
Geophysical Research: Biogeosciences 124 (4): 1018–1031 DOI: 
10.1029/2018JG004781 



References 

 

238 
 

Wei X, Sauvage S, Le TPQ, Ouillon S, Orange D, Vinh VD, Sanchez-Perez JM. 2019a. 
A Modeling Approach to Diagnose the Impacts of Global Changes on Discharge 
and Suspended Sediment Concentration within the Red River Basin. Water 11 
(5): 958 DOI: 10.3390/w11050958 

Wei X, Sauvage S, Ouillon S, Le TPQ, Orange D, Hermann M, Sanchez-Perez JM. 
2019b. A drastic decrease of suspended sediment fluxes in the Red River related 
to climate variability and dam constructions. Hydrological Processes submitted 

Wilkinson BH, McElroy BJ. 2007. The impact of humans on continental erosion and 
sedimentation. Geological Society of America Bulletin 119 (1–2): 140–156 DOI: 
10.1130/B25899.1 

Wilkinson SN, Prosser IP, Rustomji P, Read AM. 2009. Modelling and testing spatially 
distributed sediment budgets to relate erosion processes to sediment yields. 
Environmental Modelling & Software 24 (4): 489–501 DOI: 
10.1016/j.envsoft.2008.09.006 

Williams JR. 1975. Sediment Routing for Agricultural Watersheds. JAWRA Journal of 
the American Water Resources Association 11 (5): 965–974 DOI: 10.1111/j.1752-
1688.1975.tb01817.x 

Wold S, Esbensen K, Geladi P. 1987. Principal component analysis. Chemometrics 
and Intelligent Laboratory Systems 2 (1–3): 37–52 DOI: 10.1016/0169-
7439(87)80084-9 

World Economic Forum. 2015. Global Risks 2015, 10th Edition. Geneva. Available at: 
http://www3.weforum.org/docs/WEF_Global_Risks_2015_Report15.pdf 

Wu CS, Yang SL, Lei Y. 2012. Quantifying the anthropogenic and climatic impacts on 
water discharge and sediment load in the Pearl River (Zhujiang), China (1954–
2009). Journal of Hydrology 452–453: 190–204 DOI: 
10.1016/j.jhydrol.2012.05.064 

Wu L, Liu X, Ma X. 2016. Spatio-temporal evolutions of precipitation in the Yellow River 
basin of China from 1981 to 2013. Water Science and Technology: Water Supply 
16 (5): 1441–1450 DOI: 10.2166/ws.2016.072 

Wu Y, Bao H, Yu H, Zhang J, Kattner G. 2015. Temporal variability of particulate 
organic carbon in the lower Changjiang (Yangtze River) in the post-Three Gorges 
Dam period: Links to anthropogenic and climate impacts. Journal of Geophysical 
Research: Biogeosciences 120 (11): 2194–2211 DOI: 10.1002/2015JG002927 

Xia X, Dong J, Wang M, Xie H, Xia N, Li H, Zhang X, Mou X, Wen J, Bao Y. 2016. 
Effect of water-sediment regulation of the Xiaolangdi reservoir on the 
concentrations, characteristics, and fluxes of suspended sediment and organic 
carbon in the Yellow River. Science of The Total Environment 571: 487–497 DOI: 
10.1016/j.scitotenv.2016.07.015 

Xie S. 2002. The Hydrological Characteristics of the Red River Basin. Hydrology (in 
Chinese) 22 (4): 57–63 DOI: 10.3969/j.issn.1000-0852.2002.04.017 

Xu ZX, Pang JP, Liu CM, Li JY. 2009. Assessment of runoff and sediment yield in the 
Miyun Reservoir catchment by using SWAT model. Hydrological Processes 23 
(25): 3619–3630 DOI: 10.1002/hyp.7475 

Yaduvanshi A, Sharma RK, Kar SC, Sinha AK. 2018. Rainfall–runoff simulations of 



References 

 

239 
 

extreme monsoon rainfall events in a tropical river basin of India. Natural Hazards 
90 (2): 843–861 DOI: 10.1007/s11069-017-3075-0 

Yan R, Zhang X, Yan S, Chen H. 2018. Estimating soil erosion response to land 
use/cover change in a catchment of the Loess Plateau, China. International Soil 
and Water Conservation Research 6 (1): 13–22 DOI: 
10.1016/j.iswcr.2017.12.002 

Yang D, Kanae S, Oki T, Koike T, Musiake K. 2003. Global potential soil erosion with 
reference to land use and climate changes. Hydrological Processes 17 (14): 
2913–2928 DOI: 10.1002/hyp.1441 

Yang J, Reichert P, Abbaspour KC, Xia J, Yang H. 2008. Comparing uncertainty 
analysis techniques for a SWAT application to the Chaohe Basin in China. Journal 
of Hydrology 358 (1–2): 1–23 DOI: 10.1016/j.jhydrol.2008.05.012 

Yang SL, Xu KH, Milliman JD, Yang HF, Wu CS. 2015. Decline of Yangtze River water 
and sediment discharge: Impact from natural and anthropogenic changes. 
Scientific Reports 5 (1): 12581 DOI: 10.1038/srep12581 

Yu Y, Wang H, Shi X, Ran X, Cui T, Qiao S, Liu Y. 2013. New discharge regime of the 
Huanghe (Yellow River): Causes and implications. Continental Shelf Research 
69: 62–72 DOI: 10.1016/j.csr.2013.09.013 

Zarfl C, Lumsdon AE, Berlekamp J, Tydecks L, Tockner K. 2015. A global boom in 
hydropower dam construction. Aquatic Sciences 77 (1): 161–170 DOI: 
10.1007/s00027-014-0377-0 

Zhang LJ, Wang L, Cai W-J, Liu DM, Yu ZG. 2013. Impact of human activities on 
organic carbon transport in the Yellow River. Biogeosciences 10 (4): 2513–2524 
DOI: 10.5194/bg-10-2513-2013 

Zhang Q, Tao Z, Ma Z, Gao Q, Deng H, Xu P, Ding J, Wang Z, Lin Y. 2019. Hydro-
ecological controls on riverine organic carbon dynamics in the tropical monsoon 
region. Scientific Reports 9 (1): 11871 DOI: 10.1038/s41598-019-48208-y 

Zhang Q, Xiao M, Singh VP, Li J. 2012. Regionalization and spatial changing 
properties of droughts across the Pearl River basin, China. Journal of Hydrology 
472–473: 355–366 DOI: 10.1016/j.jhydrol.2012.09.054 

Zhang S, Chen D, Li F, He L, Yan M, Yan Y. 2018. Evaluating spatial variation of 
suspended sediment ratingcurves in the middle Yellow River basin, China. 
Hydrological Processes 32 (11): 1616–1624 DOI: 
https://doi.org/10.1002/hyp.11514 

Zhang S, Lu XX, Higgitt DL, Chen CTA, Han J, Sun H. 2008. Recent changes of water 
discharge and sediment load in the Zhujiang (Pearl River) Basin, China. Global 
and Planetary Change 60 (3–4): 365–380 DOI: 10.1016/j.gloplacha.2007.04.003 

Zhang S, Lu XX, Sun H, Han J, Higgitt DL. 2009. Geochemical characteristics and 
fluxes of organic carbon in a human-disturbed mountainous river (the 
Luodingjiang River) of the Zhujiang (Pearl River), China. Science of The Total 
Environment 407 (2): 815–825 DOI: 10.1016/j.scitotenv.2008.09.022 

Zhang W, Zhao Z, Tan S, Li Y, Wang A. 2017. Study on the soil erosion in the 
Yuanjiang - Honghe boundary river areas (in Chinese). Geological Survey of 
China 4 (3): 64–69 DOI: 10.19388 /j.zgdzdc.2017. 03.10 



References 

 

240 
 

Zhao M, Running SW. 2010. Drought-Induced Reduction in Global Terrestrial Net 
Primary Production from 2000 Through 2009. Science 329 (5994): 940–943 DOI: 
10.1126/science.1192666 

Zhao S, Peng C, Jiang H, Tian D, Lei X, Zhou X. 2006. Land use change in Asia and 
the ecological consequences. Ecological Research 21 (6): 890–896 DOI: 
10.1007/s11284-006-0048-2 

Zhu Y, Chen C, Jiang H. 2012. Preliminary study on water resources protection in the 
Yuanjiang dry-hot valley of the Honghe river basin (In Chinese). Pearl River 1: 
15–17 DOI: 10.3969/j.issn.1001-9235.2012.01.005 

Zimmerman JB, Mihelcic JR, Smith J. 2008. Global stressors on water quality and 
quantity DOI: 10.1021/es0871457 

 

 

  



 

 

241 
 



 

 

 
 

Abstract: 

The Asian river basins are great contributors to sediments and organic carbon to the seas. However, these river basins 
are subject to the influence of climate variability and human activities, which alters the transport and fate of water and 
associated matter in rivers, and then modifies the coastal biochemical processes. The Red River is a representative 
Asian river basin and plays an important role in the economy and agriculture in China and Vietnam. However, lack of 
data sharing between countries and difficulty in in-situ observations and samplings, make the study through the whole 
basin difficult both spatially and temporally. In order to overcome these issues and better understand the water 
resources and matters transfer dynamics, interactive use of in-situ measurements, remote sensing observations and 
numerical modellings are necessary. 
This work proposed a modelling approach to simulate the transfer dynamics of water, suspended sediment (SS) and 
organic carbon at a daily scale in the Red River, and to understand and quantify their responses to the impacts of 
climate variability and dam constructions. The physical-based SWAT model, combining the remote sensing data, was 
used in this study to simulate the water regime and suspended sediment. Six dams (two were operated before the 
study period and the other four started operation since 2008) were implemented in this model. The model was calibrated 
based on observed discharge (Q) and suspended sediment concentration (SSC) data from 2000 to 2013 at five gauge 
stations (the outlets of the main tributaries and of the continent basin) at a daily time step. After Q and SSC calibrated 
under actual conditions, a scenario of natural conditions (without any dams inside the basin) was modelled to 
disentangle and quantify the impacts of climate variability and dams on Q and sediment fluxes (SF). Dissolved and 
particulate organic carbon (DOC, POC) were calibrated based on observed Q, SSC and in-situ organic carbon sampling 
data. According to these relationships, the organic carbon concentrations and fluxes under actual and natural 
conditions are calculated, in order to further quantify the impacts of climate variability and dams on DOC and POC 
transfer. 
This study highlighted the strong impacts of dams on sediment fluxes (-80%) and organic carbon (POC, -85%; DOC, -
13%), and the impacts of climate variability on Q (-9%). Without dams, the Red River basin would have a high specific 
sediment yield (779 t km-2 yr-1) compared to other Asian river basins, though its sediment export was low compared to 
them. The high soil erosion due to precipitation, slope and agricultural practice in the middle part of the basin is the 
main factor contributing to the specific sediment yield. The specific yields of DOC (1.62 t km2 yr-1) and POC (2.96 t km2 
yr-1) of the Red River basin were more than twice those of other Asian basins. Soil organic carbon content and high 
soil erosion and leaching were the main influencing factors. The percentage of POC in total organic carbon (TOC) 
decreased from 86% to 74% until 2007 then to 47% with new dams. Dam constructions altered the TOC yield and 
POC/TOC ratio. Furthermore, simple rating curves between monthly mean Q and SF were established in this study for 
estimating SF at the outlet of the tributaries and the Red River, which enables stakeholders to estimate the monthly SF 
without using the SWAT model. Future studies on other nutrients and contaminants transfer and global changes can 
be carried on based on this modelling. 

Résumé: 

Les bassins fluviaux asiatiques sont un important contributeur de matières en suspension et de carbone organique 
vers les océans. Cependant, ces bassins sont soumis à la variabilité climatique et aux activités humaines, modifiant le 
transport et le devenir de l'eau et des matières associées dans les fleuves, ainsi que les processus biochimiques côtiers. 
Le Fleuve Rouge est un bassin fluvial représentatif des fleuves asiatiques et joue un rôle important dans l'économie et 
l'agriculture en Chine et au Vietnam. Cependant, le manque de partage de données entre les pays et la difficulté des 
observations et des échantillonnages in situ rendent l’étude difficile pour l’ensemble du bassin, à la fois spatialement 
et temporellement. Afin de surmonter ces problèmes et de mieux comprendre la dynamique de transfert des ressources 
en eau et des matières et proposer des outils aux gestionnaires de l’eau, une utilisation interactive des mesures in situ, 
des observations de télédétection et des modélisations numériques est nécessaire. 
Ce travail propose de simuler la dynamique de transfert de l'eau, des sédiments en suspension (SS) et du carbone 
organique à l'échelle journalière dans le Fleuve Rouge, pour comprendre et quantifier leurs réponses aux impacts de 
la variabilité climatique et de la construction de barrages. Le modèle hydro-agro-environnemental à base physique 
SWAT, combinant les données de télédétection pour les variables climatiques, a été appliqué dans cette étude pour 
simuler les débits et les sédiments en suspension. Six barrages (dont quatre mis en service depuis 2008) ont été 
implémentés. Le modèle a été calibré sur la base des données de débit observées (Q) et de concentration de matières 
en suspension (CSC) de 2000 à 2013 au niveau de cinq stations de mesure à un pas de temps journalier. Un scénario 
simulant les impacts de la variabilité climatique et des barrages sur Q et SS a été simulé. Les concentrations et les flux 
de carbone organique pour ces mêmes conditions, ont été calibrés puis simulés via le même scénario afin de quantifier 
séparément les impacts de la variabilité climatique et des barrages sur le transfert de COD et de COP. 
Cette étude a mis en évidence les impacts importants des barrages sur les flux de sédiments (-80%) et sur le carbone 
organique (COP, -85%; COD, -13%) ainsi que les impacts de la variabilité climatique sur Q (-9%). Sans barrages, le 
bassin du Fleuve Rouge aurait un flux spécifique élevé en matières en suspension (779 t km-² an-1) par rapport aux 
autres bassins asiatiques, bien que son exportation en flux soit faible en comparaison. L'érosion du sol due aux 
précipitations, à la pente et aux pratiques agricoles dans la zone centrale du bassin est le principal facteur contribuant 
au flux spécifique. Les flux spécifiques en COD (1.62 t km² an-1) et en COP (2.96 t km² an-1) du bassin du Fleuve 
Rouge sont plus de deux fois supérieurs à ceux des autres bassins asiatiques. Le contenu en carbone organique des 
sols, l’érosion et le lessivage sont les facteurs les plus influents. Le pourcentage de POC dans le Carbonne Organique 
Total (COT) a diminué de 86% à 74% jusqu'en 2007 puis à 47% après les nouveaux barrages. La construction de 
barrages a aussi modifié le rapport COP / COT. De simples relations entre la moyenne mensuelle Q et SF ont été 
établies dans cette étude pour estimer la SF à la sortie des affluents et du Fleuve Rouge, ce qui permet aux parties 
prenantes d’estimer la SF mensuelle sans utiliser le modèle SWAT. Les futures études sur le transfert d'autres 
éléments nutritifs et contaminants ainsi que l’impact des changements globaux peuvent être poursuivies sur la base 
de ce projet de modélisation. 


