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Résumé

Cette thèse comporte deux parties dans lesquelles nous traitons la quantification vectorielle
gloutonne avec des applications financières.

Dans la première partie, nous nous concentrons sur la quantification vectorielle gloutonne.
Nous commençons par présenter de nouvelles approches théorique et numérique de la quantifi-
cation gloutonne. Nous établissons de nouveaux résultats d’optimalité du taux de convergence
pour une classe plus large de distributions, et nous réalisons une étude numérique approfondie
apportant de nombreuses améliorations dans le domaine de l’intégration numérique basé sur
la quantification gloutonne. Parmi ces études, nous présentons des propriétés numériques in-
téressantes des suites de quantification gloutonne leur permettant de constituer un adversaire
avantageux vis-à-vis les suites utilisées dans d’autres méthodes d’intégration numérique, comme
les suites à discrépance faible dans la méthode quasi-Monte Carlo par exemple. De plus, nous
montrons que, lorsqu’une suite de quantification gloutonne Lr-optimale est dilatée ou contractée
de manière appropriée, elle reste à taux de convergence Ls-optimal. Ceci est parfois conditionné
par une hypothèse de moment sur la loi de probabilité sous-jacente.

La deuxième partie de ce manuscrit est consacrée à l’approximation d’une équation différen-
tielle stochastique rétrograde réfléchie par quantification vectorielle. Nous établissons d’abord
des bornes supérieures de l’erreur dans Lp, p ∈ (1, 2 + d), induite par la quantification récursive
d’une chaîne de Markov générale d’une part, et par une sorte de quantification récursive “hy-
bride”, méthode introduite dans cette thèse, d’autre part. Ensuite, nous établissons des bornes
d’erreur dans Lp, p ∈ (1, 2 + d), pour le schéma de discrétisation spatiale basé sur la quantifica-
tion et correspondant à l’équation différentielle stochastique rétrograde réfléchie. Cette méthode
est utilisée pour évaluer les options financières, principalement les options américaines, et illus-
trée dans plusieurs exemples où nous comparons le comportement de la quantification récursive
à celui de la quantification gloutonne en termes de précision et de coût en temps. Nous utilisons
également cette technique de discrétisation pour l’évaluation du prix des options barrière.

Mots-clés: Quantification optimale- Quantification gloutonne - Quantification récursive - Dis-
crépance - Equations différentielles stochastiques rétrogrades réfléchies - Intégration numérique
- Taux de convergence optimal - Évaluation des prix d’options - Algorithme de Lloyd.

i





Abstract

This thesis contains two parts in which we treat greedy vector quantization with some finan-
cial applications.

In the first part, we focus on greedy vector quantization. We start by presenting new the-
oretical and numerical approaches of greedy quantization. We establish new rate optimality
results for a larger class of distributions, and carry out an extensive numerical study bringing
many improvements in the greedy quantization-based numerical integration field. Among these
studies, we present interesting numerical properties of greedy quantization sequences allowing
them to become an advantageous component compared to sequences used in other numerical
integration methods, like the low discrepancy sequences in the quasi-Monte Carlo method for ex-
ample. Furthermore, we show that, when an Lr-optimal greedy quantization sequence is dilated
or contracted in an appropriate way, it remains Ls-rate optimal. This is sometimes conditioned
by a certain moment assumption on the underlying probability distribution.

The second part of this manuscript is devoted to the approximation of a reflected Backward
Stochastic Differential Equation by vector quantization. First, we establish upper bounds for the
Lp-error, p ∈ (1, 2+d), induced by recursive quantization of a general Markov chain one the one
hand, and by a kind of “hybrid” recursive quantization, a method introduced in this thesis, on the
other hand. Then, we establish Lp-error bounds, p ∈ (1, 2 +d), for the quantization-based space
discretization scheme corresponding to the reflected Backward Stochastic Differential Equation.
This is used for pricing financial options, mainly American options, and illustrated in several
examples where we compare the behavior of recursive quantization versus greedy quantization in
terms of precision and time cost. We use this discretization technique for the pricing of Barrier
options as well.

Keywords: Optimal quantization - Greedy quantization - Recursive quantization - Discrep-
ancy - Reflected Backward Stochastic Differential Equations - Numerical integration - Rate
optimality - Option pricing - Lloyd’s algorithm.

iii





Contents

1 Introduction-Français 1
1.1 Quantification optimale: principe, définitons et principaux résultats . . . . . . . 1

1.1.1 Construction des quantifieurs optimaux . . . . . . . . . . . . . . . . . . . 4
1.2 Quantification gloutonne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Principe et résultats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Contributions et nouveaux résultats . . . . . . . . . . . . . . . . . . . . . 9

1.3 Quantification récursive et application aux E.D.S. rétrogrades réfléchies . . . . . 15
1.3.1 Principe et résultats existants . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.2 Contributions de cette thèse . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.3 Application à la discrétisation des Equations Différentielles Stochastiques

Rétrogrades Réfléchies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Introduction 22
2.1 Optimal quantization: Principle, definitions and main results . . . . . . . . . . . 22

2.1.1 Construction of optimal quantizers . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Greedy quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Principle and existing results . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 Contributions and new results . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Recursive quantization and application to reflected BSDEs . . . . . . . . . . . . . 35
2.3.1 Principle and existing results . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.2 Contributions of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.3 Application to the discretization of Reflected Backward Stochastic Differ-

ential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 New approach to greedy vector quantization 43
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Rate optimality: Universal non-asymptotic bounds . . . . . . . . . . . . . . . . . 46
3.3 Distortion mismatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4 Algorithmics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.1 Optimization of the algorithm and the numerical integration in the 1-
dimensional case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.2 Product greedy quantization (d > 1) . . . . . . . . . . . . . . . . . . . . . 59
3.5 Numerical applications and examples . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.1 Greedy quantization of N (0, Id) via Box-Müller . . . . . . . . . . . . . . . 61
3.5.2 Pricing of a 3-dimensional basket of European call options . . . . . . . . 62

v



3.6 Further properties and numerical remarks . . . . . . . . . . . . . . . . . . . . . . 63
3.6.1 Sub-optimality of greedy quantization sequences . . . . . . . . . . . . . . 63
3.6.2 Convergence of standard and weighted empirical measures . . . . . . . . . 64
3.6.3 Stationarity and ρ-quasistationarity . . . . . . . . . . . . . . . . . . . . . 65
3.6.4 Discrepancy of greedy sequences . . . . . . . . . . . . . . . . . . . . . . . 66

4 Greedy vector quantization: Detailed numerical studies 69
4.1 Algorithms of computation of greedy sequences . . . . . . . . . . . . . . . . . . . 69

4.1.1 One-dimensional case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.1.2 Multi-dimensional case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Deterministic algorithm in the two-dimensional case . . . . . . . . . . . . . . . . 78
4.3 Low discrepancy sequences viewed as quantization sequences . . . . . . . . . . . 82
4.4 To what extent are greedy quantization sequences optimal? . . . . . . . . . . . . 85
4.5 Quasi-stationarity and ρ-quasi stationarity . . . . . . . . . . . . . . . . . . . . . . 86
4.6 Construction of sequences with minimal L∗-discrepancy . . . . . . . . . . . . . . 97

4.6.1 One point-sequence with minimal L∗1 discrepancy for d ≥ 1 . . . . . . . . 98
4.6.2 Two points-sequence with minimal L∗ discrepancy for d = 2 . . . . . . . . 101
4.6.3 4 points sequence with minimal L∗ discrepancy for d = 2 . . . . . . . . . 104

5 Ls-rate optimality of dilated/contracted Lr-optimal and greedy quantization
sequences 107
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2 Main tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.3 Upper estimates for greedy quantizers . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.3.2 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.3.3 Example of distributions with finite polynomial moments up to a finite

order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.4 Upper estimates for Lr-optimal quantizers . . . . . . . . . . . . . . . . . . . . . . 123

5.4.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.4.2 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.5 More examples and a dilatation optimization . . . . . . . . . . . . . . . . . . . . 126
5.5.1 The multivariate Gaussian distribution . . . . . . . . . . . . . . . . . . . . 128
5.5.2 Hyper-exponential distributions . . . . . . . . . . . . . . . . . . . . . . . . 130
5.5.3 Hyper-Gamma distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.5.4 Numerical observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.6 Application to numerical integration . . . . . . . . . . . . . . . . . . . . . . . . . 135

6 Quantization-based approximation of reflected BSDEs with extended upper
bounds for recursive quantization 138
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.2 Recursive Quantization: background, Lp-error bounds and hybrid schemes. . . . 142

6.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.2.2 Lp-error bounds for recursive quantization . . . . . . . . . . . . . . . . . 143
6.2.3 Hybrid recursive quantization . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.3 Time discretization of the RBSDE . . . . . . . . . . . . . . . . . . . . . . . . . . 152

vi



6.4 Space discretization of the RBSDE . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.5 Algorithmics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.5.1 Computation of the recursive quantizers . . . . . . . . . . . . . . . . . . . 158
6.5.2 Computation of the quantized solution of the RBSDE . . . . . . . . . . . 159

6.6 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.6.1 Various quantization methods . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.6.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.7.1 Appendix A: The proof of Lemma 6.2.3 . . . . . . . . . . . . . . . . . . . 169
6.7.2 Appendix B: Proof of Theorem 6.3.1 . . . . . . . . . . . . . . . . . . . . . 169

7 Barrier options and details on recursive quantization 176
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
7.2 Numerical implementation of specific models . . . . . . . . . . . . . . . . . . . . 176

7.2.1 Black-Scholes model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.2.2 CEV model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.3 Optimal quantization of a Brownian motion . . . . . . . . . . . . . . . . . . . . . 179
7.4 Further numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.4.1 American put options under the historical probability . . . . . . . . . . . 181
7.4.2 American put options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.4.3 Two-dimensional American put options . . . . . . . . . . . . . . . . . . . 186
7.4.4 Multi-dimensional example . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.5 Application to Barrier options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
7.5.1 Theoretical approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
7.5.2 Algorithmics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
7.5.3 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

vii



List of Figures

1.1 Exemple de diagramme de Voronoï dans R2 muni de la norme euclidienne. . . . . 2
1.2 Graphe de ai 7→ pni où a(n) est une suite de quantification gloutonne L2-optimale

de Laplace(0, 1) et (pni )1≤i≤n sont les poids des cellules de Voronoï correspondants
pour n = 100 (gauche) et n = 511 (droite). . . . . . . . . . . . . . . . . . . . . . 8

1.3 Suite de quantification gloutonne de N (0, I2) obtenue par un algorithme de Lloyd
déterministe de tailles n = 6, 7, 11, 16, 18, 24, 28, 32, 39, 51, 86, 100 (à partir du
haut à gauche). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Graphes de xki 7→ pki où (xki )1≤i≤Nk est la grille de quantification récursive, pour
tout k ∈ {1, . . . , n}, dans un modèle de Black-Scholes (* correspond à k = 2 et ◦
correspond à k = n = 30). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 Example of a Voronoï diagram in R2 w.r.t. the Euclidean norm. . . . . . . . . . . 23
2.2 Graph of ai 7→ pni where a(n) is an L2-greedy quantization sequence of Laplace(0, 1)

and (pni )1≤i≤n are the weights of the Voronoï cells for n = 100 (left) and n = 511
(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Greedy quantization sequence of N (0, I2) obtained by a deterministic Lloyd’s
algorithm of sizes n = 6, 7, 11, 16, 18, 24, 28, 32, 39, 51, 86, 100 (starting from the
upper left corner). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Representation of xki 7→ pki where (xki )1≤i≤Nk is the recursive quantization grid,
for every k ∈ {1, . . . , n}, in a Black-Scholes model (* corresponds to k = 2 and ◦
corresponds to k = n = 30). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 Greedy quantization sequences of the distribution N (0, I3) of size N = 153 de-
signed by Box Müller method (left) and greedy product quantization (right). . . 61

3.2 Representation of ai 7→ pni where (pni )1≤i≤n denote the Voronoï weights of the
greedy quantization sequence of N (0, 1) for n = 255 (left), n = 400 (right). . . . 64

3.3 Comparison of the exact Voronoï weights (blue) and the limit weights (red) for
the exponential distribution E(1) for n = 645 (left) and n = 1 379 (right). . . . . 65

3.4 Comparisons of the star discrepancy of the Niederreiter sequence to a greedy
product quantization sequence of the Uniform distribution U([0, 1]2) (left) and to
a pure greedy quantization sequence (right) for d = 2. . . . . . . . . . . . . . . . 67

3.5 Price of a European call in a Black-Scholes model via a usual QMC method (blue),
greedy quantization-based quadrature formula (red) and quadrature formula us-
ing VdC sequence with non-uniform weights (logarithmic scale). . . . . . . . . . . 68

4.1 Quadratic greedy quantization error n 7−→ ne2(a(n), X) associated to the Gaus-
sian distribution N (0, 1) for n = 2, . . . , 20 000. . . . . . . . . . . . . . . . . . . . . 73

viii



4.2 Quadratic greedy quantization error corresponding to the Uniform distribution
U([0, 1]) for n = 1, . . . , 10 000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Quadratic greedy quantization error n 7→ ne2(a(n), X) of the exponential distri-
bution E(1) for n = 4, . . . , 10 000 points. . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Quadratic greedy quantization error n 7→ ne2(a(n), X) of the Laplace distribution
with parameters 0 and 1 for n = 1, . . . , 10 000 points. . . . . . . . . . . . . . . . . 76

4.5 Representation of the Voronoï weights associated to the greedy product quantiza-
tion sequence of the Normal distributionN (0, I2) obtained using two 1-dimensional
grids of size n = 127 (left) and n = 170 (right). . . . . . . . . . . . . . . . . . . . 78

4.6 Decomposition of T` in the center in order to compute the local inter-point inertia. 80
4.7 Decomposition of T` at the edge in order to compute the local inter-point inertia. 80
4.8 Decomposition of a Voronoï cell Wi(a(n)) with s = 6 vertices. . . . . . . . . . . . 81
4.9 Greedy quantization sequences of N (0, I2) obtained by a deterministic Lloyd’s

algorithm of sizes n = 6, 7, 11, 16, 18, 24, 28, 32, 39, 51, 86, 100 (starting from the
upper left corner). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.10 Quadratic quantization error of the Van der Corput sequence viewed as a quan-
tization sequence (logarithmic scale). . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.11 Quadratic quantization error of the two-dimensional Niederreiter sequence viewed
as a quantization sequence for the U([0, 1]2) distribution. (logarithmic scale). . . 85

4.12 Price of a European Best-of-Call Vanilla option in a Black-Scholes model via a
usual QMC method (blue), greedy quantization-based quadrature formula (red)
and quadrature formula using 2-dimensional Niederreiter sequence with non-
uniform weights (logarithmic scale). . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.13 The errors ‖X̂a(n)−E(X|X̂a(n))‖2 and ‖X̂a(n)−E(X|X̂a(n))‖1 induced by a greedy
quantization sequence a(n) corresponding to the distribution U([0, 1]) for n =
1, . . . , 1 000 (logarithmic scale). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.14 The error ‖X̂
a(n)−E(X|X̂a(n) )‖2

‖X̂a(n)−X‖2
2

with a(n) a greedy sequence of the N (0, 1) distribu-
tion for n = 1, . . . , 1 000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.15 The ratios R1,1 et R2,1 where a(n) is a greedy quantization sequence of the N (0, 1)
distribution for n = 1, . . . , 1 000 (logarithmic scale). . . . . . . . . . . . . . . . . . 93

4.16 The ratios R1,2 et R2,1 where a(n) is a greedy quantization sequence of the E(1)
distribution for n = 1, . . . , 1 000 (logarithmic scale). . . . . . . . . . . . . . . . . . 93

4.17 The ratios R1,2 et R2,2 where a(n) is a greedy quantization sequence of the U([0, 1])
distribution for n = 1, . . . , 1 000 (logarithmic scale). . . . . . . . . . . . . . . . . . 94

4.18 The behavior of R1, 1
4
for a greedy quantization sequence of the Gaussian distri-

bution N (0, 1) of size n = 400. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.19 The behavior of R2, 2

3
for a greedy quantization sequence of the Uniform distribu-

tion U([0, 1]) of size n = 1 000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.20 The behavior of R1, 1

2
for a greedy quantization sequence of the exponential dis-

tribution E(1) of size n = 1 000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1 Errors of the approximation of Ef(X), where f(x) = x4 + sin(x), by quadra-
ture formulas based on L2 quantizers (blue) and dilated L2 quantizers (red) for
different sizes n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

ix



6.1 Convergence rate of the error induced by the approximation of the Bid-ask spread
Call option in a Black-Scholes model discretized by recursive quantization for
different sizes N = 10, . . . , 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.1 Representation of xki 7→ pki where (xki )1≤i≤Nk is the recursive quantization grid,
for every k ∈ {1, . . . , n}, in a Black-Scholes model (* corresponds to k = 2 and ◦
corresponds to k = n = 30). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.2 Representation of xki 7→ pki where (xki )1≤i≤Nk is the recursive quantization grid, for
every k ∈ {1, . . . , n}, in a CEV model (* corresponds to k = 2 and ◦ corresponds
to k = n = 20). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.3 Convergence rate of the quantization error for the American put under historical
probability in a Black-Scholes model for different sizes N = 10, . . . , 100. . . . . . 182

x



List of Tables

3.1 Approximation of a 3-dimensional basket of call options in a BS model by Box-
Müller with quadrature formula (BM), greedy product quantization with quadra-
ture formula (GPQ) and with recursive formula (GPI). . . . . . . . . . . . . . . . 63

3.2 Values of optimal ρl for different distributions and for r ∈ {1; 2}. . . . . . . . . . 66

4.1 Optimal values ρl for which different probability distributions satisfy the ρ-quasi-
stationarity criterion for p ∈ {1; 2}. . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1 Regression coefficients of the optimally L2-dilated greedy sequence on the L3-
optimal greedy sequence for N (0, 1), E(1) and P = f.λd with f(x) = x2e−x

2 . . . 134

6.1 Pricing of an American call option in a market with bid-ask spread for inter-
est rates in a Black-Scholes model by recursive (RQ), greedy recursive (GRQ),
optimal (OQ) and greedy (GQ) quantization. . . . . . . . . . . . . . . . . . . . . 166

6.2 Pricing of an American call option in a market with bid-ask spread for interest
rates in a CEV model by recursive (RQ), greedy recursive (GRQ), optimal (OQ)
and greedy (GQ) quantization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.3 Pricing of an American exchange option for d = 2 in a BS model by hybrid
recursive (HRQ), optimal (OQ) and greedy product quantization (GPQ). . . . . 168

7.1 Pricing of an American put option under the historical probability in a Black-
Scholes model discretized according to an Euler scheme and recursive (RQ),
greedy recursive (GRQ), optimal (OQ) and greedy (GQ) quantization for dif-
ferent values of K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.2 Pricing of an American put option under the historical probability in a CEVmodel
discretized according to an Euler scheme and recursive (RQ), greedy recursive
(GRQ), optimal (OQ) and greedy (GQ) quantization for different values of K. . 183

7.3 Pricing of an American put option in a Black-Scholes model discretized according
to an Euler scheme and recursive (RQ), greedy recursive (GRQ) and optimal
(OQ) quantization for different values of X0. . . . . . . . . . . . . . . . . . . . . 184

7.4 Errors induced by the pricing of an American put option in a Black-Scholes model
discretized according to an Euler scheme and optimal quantization with transition
weights computed exactly and approximately for different values of X0. . . . . . 185

7.5 Pricing of an American put option in a CEV model discretized according to a
Milstein scheme and recursive (RQ), greedy recursive (GRQ) and optimal (OQ)
quantization compared to a Romberg extrapolation method for different values
of K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

xi



7.6 Pricing of a two-dimensional American put option in a BS model discretized
according to an Euler scheme and hybrid recursive (HRQ) and optimal (OQ)
quantization for different values of K. . . . . . . . . . . . . . . . . . . . . . . . . 187

7.7 Values of Y0 in the two-dimensional framework based on optimal (OQ) and hybrid
recursive quantization (HRQ) for different value of NX and Nε. . . . . . . . . . . 188

7.8 Values of Y0 in the three-dimensional framework based on optimal (OQ) and
hybrid recursive quantization (HRQ) for different value of NX and Nε. . . . . . . 188

7.9 Pricing of a Down-and-Out call option in a Black-Scholes model discretized ac-
cording to an Euler scheme and recursive (RQ), greedy recursive (GRQ), optimal
(OQ) quantization and Monte Carlo with control Variate (MC-VC) for different
values of L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7.10 Pricing of a Down-and-Out Call option in a Black-Scholes model by optimal
quantization with transition weights computed exactly and approximately for
different values of L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7.11 Pricing of an Up-and-Out Call option in a CEV model discretized according
to an Euler scheme and recursive (RQ), greedy recursive (GRQ), optimal (OQ)
quantization and Monte Carlo with control Variate (MC-VC) for different values
of L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

xii





Chapter 1

Introduction-Français

Cette thèse est divisée en deux parties principales. La première partie contient les chapitres
3, 4 et 5 où nous présentons de nouveaux résultats et aspects théoriques de la quantification
gloutonne, ainsi que quelques études numériques intéressantes. En résumé, nous adoptons une
nouvelle approche pour étendre les résultats d’optimalité du taux de convergence de l’erreur
de quantification gloutonne à une classe plus large de distributions et établir des résultats de
Ls-optimalité du taux de convergence pour des suites de quantification gloutonne Lr-optimales
dilatées ou contractées. Numériquement, nous réalisons quelques expériences et mettons en
évidence certaines propriétés de la quantification gloutonne qui la rendent avantageuse face à
d’autres méthodes d’approximation (principalement la méthode de quasi Monte Carlo). Dans la
deuxième partie, composée des chapitres 6 et 7, nous établissons d’abord des bornes supérieures
de l’erreur de quantification récursive dans Lp d’une chaîne de Markov d-dimensionnelle pour
p ∈ (1, 2 + d) et, ensuite, nous étendons les bornes d’erreur dans Lp induite par les schémas
de discrétisation, basés sur la quantification récursive, des équations différentielles stochastiques
rétrogrades réfléchies.

1.1 Quantification optimale: principe, définitons et principaux
résultats

La quantification vectorielle optimale est une technique qui remonte aux années 1950 (voir [30])
lorsqu’elle a été conçue pour la première fois dans le domaine du traitement du signal afin de
discrétiser les signaux continus pour leur transmission. Elle a ensuite été étendue à de nombreux
domaines tels que la théorie de l’information, l’analyse de classification non supervisée, etc., et
puis introduite comme outil mathématique dans les années 1990. Elle a d’abord été utilisée
comme formule de quadrature dans le domaine de l’intégration numérique pour le calcul des
espérances (voir [54]), puis, au début des années 2000, pour l’approximation des espérancess
conditionnelles en vue d’applications financières, principalement l’évaluation des prix d’options
américaines (voir [3, 4, 5]), des problèmes de filtrage non linéaire (voir [58]) et la simulation
d’équations différentielles stochastiques (voir [3, 67]), etc.

Le problème mathématique de la quantification optimale consiste à trouver la meilleure ap-
proximation, dans un sens à préciser plus tard, d’une distribution de probabilité (éventuellement)
continue par une distribution de probabilité discrète dont le support est de cardinal fini, ou, en
d’autres termes, la meilleure approximation d’une variable aléatoire multidimensionnelle X par

1



Figure 1.1: Exemple de diagramme de Voronoï dans R2 muni de la norme euclidienne.

une variable aléatoire Y prenant un nombre fini n de valeurs. Soit d ≥ 1 et X une variable aléa-
toire d-dimensionnelle définie sur l’espace de probabilité (Ω,A,P) telle que X ∈ Lr(P), r > 0,
c’est-à-dire E|X|r < +∞ où |.| désigne à priori toute norme sur Rd. On note P = PX la
distribution de probabilité de X. Le but est d’approcher X par q(X), où q est une fonction
Borélienne définie sur Rd à valeurs dans une grille d-dimensionnelle Γ = {x1, . . . , xn} de taille n.
Le meilleur choix pour q, Γ étant fixé, est clairement toute projection Borélienne du plus proche
voisin πΓ : Rd → Γ définie par πΓ(ξ) =

∑n
i=1 xi1Ci(Γ)(ξ), où

Ci(Γ) ⊂ {ξ ∈ Rd : |ξ − xi| ≤ min
j 6=i
|ξ − xj |}, i = 1, . . . , n, (1.1)

est une partition Borélienne de Rd appelée diagramme de Voronoï induit par Γ. Les ensembles
boréliens Ci(Γ) constituent les cellules de Voronoï de la partition induite par Γ. Un exemple de
diagramme de Voronoï dans R2 muni de la norme euclidienne est présenté dans la figure 1.1.
Ainsi, la quantification de Voronoï de X est la composition de πΓ et X:

X̂Γ = πΓ(X) :=
n∑
i=1

xi1Ci(Γ)(X).

Sa distribution est caractérisée par la grille Γ = {x1, . . . , xn} et les poids des cellules de Voronoï
correspondantes donnés, pour chaque i ∈ {1, . . . , n}, par

pni = P (X̂Γ = xi) = P
(
X ∈ Ci(Γ)

)
.

Nous noterons souvent, X̂ au lieu de X̂Γ pour alléger les notations. L’erreur de quantification
Lr associée à une grille Γ est définie, pour chaque r ∈ (0,+∞), par

er(Γ, X) = ‖X − πΓ(X)‖r = ‖X − X̂Γ‖r = ‖dist(X,Γ)‖r (1.2)

où ‖Y ‖r =
(
E|Y |r

) 1
r désigne la norme Lr(P) d’un vecteur aléatoire Y (ou quasi-norme si 0 <

r < 1). Nous définissons également la fonction de Lr-distorsion Grn sur (Rd)n par

Grn(x1, . . . , xn) = er
(
{x1, . . . , xn}, X

)r
. (1.3)
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Cette fonction est différentiable si les (xi)1≤i≤n sont deux-à-deux distincts ou, de manière équiv-
alente, si Γ = {x1, . . . , xn} est de taille n, et si les frontières du diagramme de Voronoï sont
négligeables par rapport à la distribution P de X. Ceci dépend aussi de la différentiabilité de
la norme sous-jacente elle-même. Son gradient est donné par

∇Grn(x1, . . . , xn) = r

(
E
[
1X∈Ci(Γ)

(xi −X)
|xi −X|

|xi −X|r−2
])

1≤i≤n
.

Le problème de quantification optimale consiste à trouver une grille Γ qui minimise l’erreur
de quantification (1.2), c’est-à-dire qui résout le problème de minimisation suivant

er,n(X) = inf
Γ, card(Γ)≤n

er(Γ, X). (1.4)

Si X ∈ LrRd(P), ce problème admet toujours au moins une solution Γ appelée quantifieur op-
timal, ou grille de quantification optimale, de taille n de X ou P , et l’erreur de quantification
correspondante converge vers 0 lorsque la taille n tend vers l’infini. Pour une preuve, nous nous
référons entre autres à [32, 56, 57]. Le taux de convergence de l’erreur de quantification Lr vers
0 est donné par deux résultats bien connus exposés dans le théorème suivant. Le premier est un
résultat asymptotique et le second est universel et non asymptotique.

Theorem 1.1.1. (a) Théorème de Zador (voir [75]) : Soit r > 0 et X ∈ Lr+ηRd (P), η > 0,
de distribution P tel que dP (ξ) = ϕ(ξ)dλd(ξ) + dν(ξ) où λd est la mesure de Lebesgue sur
(Rd,B(Rd)). Alors,

lim
n→+∞

n
1
d er,n(X) = J̃r,d‖ϕ‖

1
r

L
r
r+d (λd)

(1.5)

où J̃r,d = inf
n≥1

n
1
d er,n(U([0, 1]d)) ∈ (0,+∞).

(b) Lemme de Pierce étendu (voir [44]): Soit r, η > 0. Il existe une constante κd,r,η ∈ (0,+∞)
tel que, pour toute variable aléatoire X : (Ω,A,P)→ Rd,

∀n ≥ 1, er,n(X) ≤ κd,r,ησr+η(X)n−
1
d (1.6)

où, pour p ∈ (0,+∞), σp(X) = inf
a∈Rd

‖X − a‖p < +∞.

Une propriété importante des quantifieurs quadratiques optimaux (dans L2) est la station-
narité. Une grille de quantification Γ est dite stationnaire si les frontières des cellules de Voronoï
sont P -négligeables et

X̂Γ = E
(
X | X̂Γ). (1.7)

En effet, tout quantifieur quadratique optimal (par rapport à la norme euclidienne) a des fron-
tières P -négligeables (voir la proposition 4.2 dans [32]). Cette propriété est très importante dans
la plupart des applications, notamment parce que la plupart des algorithmes conçus pour con-
struire les quantifieurs optimaux sont basés sur cette propriété de stationnarité, même si tous les
quantifieurs stationnaires ne sont pas optimaux. Son importance est également soulignée dans
le domaine de l’intégration numérique basé sur la quantification, ce sujet est expliqué en détails
dans ce qui suit.

3



Les quantifieurs optimaux sont utilisés dans le domaine de l’intégration numérique pour
approcher les espérances de la forme Ef(X) pour une variable aléatoire X et une fonction
continue f . Puisque l’erreur de quantification ‖X − X̂Γ‖r converge vers 0, alors X̂Γ converge
vers X dans Lr et donc en loi. On obtient donc une approximation de Ef(X) par

Ef(X̂Γ) =
n∑
i=1

pni f(xi)

où pni = P(X ∈ Ci(Γ)), i = 1, . . . , n, sont les poids des cellules de Voronoï correspondants au
quantifieur optimal Γ = {x1, . . . , xn} de taille n de X. Des bornes supérieures de l’erreur induite
par ce type d’approximation ont été établies pour des quantifieurs optimaux stationnaires, en
fonction de la régularité de la fonction f (voir [42, 56, 57]). Par exemple, si f est une fonction
continue Lipschitzienne de coefficient de Lipschitz [f ]Lip et Γ est une grille quelconque, alors∣∣Ef(X)− Ef(X̂Γ)

∣∣ ≤ [f ]Lip‖X − X̂Γ‖1 ≤ [f ]Lip e1(X,Γ) ≤ [f ]Lip e2(X,Γ).

Si, en outre, Γ est un quantifieur stationnaire pour X ou P , alors, si f est différentiable avec un
gradient ∇f α-Hölderien, on a (voir [57] par exemple)

∣∣Ef(X)− Ef(X̂Γ)
∣∣ ≤ 1

1 + α
[∇f ]α‖X − X̂Γ‖1+α

1+α.

En particulier, si ∇f est continu Lipschitzien, alors

∣∣Ef(X)− Ef(X̂Γ)
∣∣ ≤ 1

2[∇f ]Lip‖X − X̂Γ‖22.

1.1.1 Construction des quantifieurs optimaux

Soit P une loi de probabilité définie sur (Rd,B(Rd)) et soit X une variable aléatoire de loi P .
La plupart des algorithmes conçus pour construire des quantifieurs optimaux (quadratiques) de
X ou de sa distribution P sont basés sur la différentiabilité de la fonction de distorsion et sur
la propriété de stationnarité (1.7). En fait, la proposition suivante constitue le point de départ
des méthodes numériques pour calculer les quantifieurs optimaux dans le cas quadratique.

Proposition 1.1.2. Soit X ∈ L2(P ) une variable aléatoire telle que card(supp(P)) ≥ n. Toute
grille Γ minimisant la fonction de distorsion quadratique G2

n associée à X est un quantifieur
stationnaire de X.

En outre, il a été prouvé, dans [39, 73], que si d = 1 et si la fonction de densité de probabilité
de X est log-concave, alors il existe un quantifieur stationnaire unique de X et ce quantifieur
est un minimum global de la fonction de distorsion.

Algorithme de Newton-Raphson Il s’agit d’une procédure déterministe utilisée lorsque la
distribution de probabilité est connue explicitement. Supposons que la distribution P de X
est absolument continue par rapport à la mesure de Lebesgue avec une densité continue ϕ. Le
quantifieur Lr-optimal est obtenu comme suit : En notant x = (x1, . . . , xn) la grille à construire,
on a

x[l+1] = x[l] −
(
∇2Grn(x[l])

)−1
∇Grn(x[l])
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partant de x[0] appartenant à l’enveloppe convexe du support de X, où ∇2Grn(x) est la matrice
Hessienne de Grn. Ceci peut être amélioré en utilisant l’algorithme de Levenberg-Marquardt

x[l+1] = x[l] −
(
∇2Grn(x[l]) + λlId

)−1
∇Grn(x[l])

pour un choix approprié des coefficients d’“amortissement” λl.

Competitive Learning Vector Quantization (CLVQ) Il s’agit d’un algorithme de de-
scente de gradient stochastique utilisé pour le calcul de quantifieurs d-dimensionnels, d ≥ 1,
également connu sous le nom d’algorithme k-means. En dimension supérieure (toujours dans le
cas quadratique), on profite de la représentation de G2

n sous forme d’espérance et on présente
l’algorithme CLVQ défini par la récursion suivante

x[l+1] = x[l] − γl+1
(
1X∈Ci(x([l])(x

[l]
i −X)

)
1≤i≤n

partant de x[0] appartenant à l’enveloppe convexe du support de X, où (γl)l≥1 est une suite de
paramètres satisfaisant

∑
l≥1 γl = +∞ et

∑
l≥1 γ

2
l < +∞.

Algorithme de Lloyd Il s’agit d’une recherche de point fixe basée directement sur la propriété
de stationnarité. Dans le cas unidimensionnel, il s’agit d’une procédure déterministe utilisée
lorsque la distribution de probabilité est connue explicitement et définie par

x
[l+1]
i =

E
(
X1X∈Ci(x[l])

)
P
(
X ∈ Ci(x[l])

) .
à partir de x[0] appartenant à l’enveloppe convexe du support de X.

Algorithme randomisé de Lloyd En dimension supérieure, la procédure ci-dessus devient
non-enviseagable, on passe donc à l’algorithme aléatoire de Lloyd. Les espérances et les proba-
bilités sont calculées par une simulation Monte Carlo de taille M comme suit

x
[l+1]
i =

∑M
m=1X

m1Xm∈Ci(x[l])

card
(
Xm ; Xm ∈ Ci(x[l])

) (1.8)

partant de x[0] appartenant à l’enveloppe convexe du support de X, où (Xm)1≤m≤M sont M
copies i.i.d. de X.

Pour plus de détails sur les procédures ci-dessus, nous renvoyons à [56, 57]. Notez que des
grilles de quantification trés précises de la loi N (0; Iq) pour des dimensions d = 1 à 10 et de
tailles régulièrement échantillonnées de N = 1 à 1 000 peuvent être téléchargées sur le site de
quantification www.quantize.maths-fi.com (à des fins non commerciales).

Pour quelques distributions de probabilité uni-dimensionnelles, il existe des formules fermées
ou semi-fermées pour des grilles de quantification optimales. Par exemple, le quantifieur optimal
Γn de taille n de la loi Uniforme U([0, 1]) est donné par

Γn =
{2i− 1

2n , i = 1, . . . , n
}
,

5
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et les formules semi-fermées sont données dans [29, 32] pour les lois exponentielle, puissance,
puissance inverse et Laplace.

Dans le cadre bidimensionnel, une approche déterministe pour optimiser les quantifieurs
quadratiques est développée dans [52]. Elle repose sur l’approximation d’intégrales bidimension-
nelles sur des polygones convexes par des formules de quadrature très efficaces.

Pour les dimensions supérieures, les procédures d’optimisation stochastique peuvent devenir
trop coûteuses et trop exigeantes en termes de calcul. Lorsque la loi cible est un produit ten-
soriel de ses lois marginales indépendantes, on peut s’appuyer sur la quantification produit au
lieu des procédures multidimensionnelles standards. Ceci consiste à obtenir des quantifieurs
multidimensionnels grâce au produit tensoriel des suites unidimensionnelles, déjà calculées par
l’un des algorithmes cités ci-dessus.

1.2 Quantification gloutonne
Lorsque la dimension d augmente, la recherche d’une solution au problème de quantification (1.4)
devient plus compliquée et plus exigeante en terme de calcul. D’où la nécessité d’ introduire une
solution sous-optimale plus facile à calculer, dont le taux de convergence reste similaire à celui
des quantifieurs optimaux. Cette solution est fournie par la quantification vectorielle gloutonne.

1.2.1 Principe et résultats

Soit X une variable aléatoire de loi P définie sur
(
Rd,B(Rd)

)
. La quantification vectorielle

gloutonne a d’abord été introduite et étudiée dans [12] pour des distributions P à support
compact (dans un cadre L1) comme modèle de planification d’expériences à court terme par
rapport à la planification d’expériences à long terme représentée par la quantification régulière
dans L1 à un niveau donné n. Elle a ensuite été réintroduite indépendemment et étudiée
de manière approfondie dans [45] pour plusieurs classes de lois de probabilité à support non
nécessairement borné. Dans les deux cas, elle consiste à déterminer, pour un vecteur (ou une
distribution) aléatoire de moment d’ordre r fini, une suite (an)n≥1 dans Rd qui soit récursivement
Lr-optimale étape par étape. En d’autres termes, ayant déjà calculé les n premiers points de la
suite a(n) = {a1, . . . , an}, on ajoute le (n + 1)-ième point de la suite comme étant une solution
à

an+1 ∈ argminξ∈Rd er(a(n) ∪ {ξ}, X), (1.9)

avec a(0) = ∅. Notez que a1 est une/la Lr-médiane de la loi P de X. Une solution à ce problème
existe toujours et s’appelle une suite de quantification gloutonne Lr-optimale pour X ou sa loi
P . Cependant, cette solution n’est pas nécessairement unique même si la Lr-médiane a1 l’est.
Ceci est dû à la dépendance de la quantification gloutonne de la symétrie de la loi P . Cette
existence a été établie en toute généralité dans [45] où les auteurs ont également montré que
l’erreur de quantification Lr correspondante est décroissante en fonction du nombre de points n
de la suite et qu’elle converge vers 0 lorsque n tend vers l’infini. Le taux optimal de convergence
n−

1
d de l’erreur de quantification a également été montré dans [45]. Il repose sur l’intégrabilité

de la fonction b-maximale associée à la suite de quantification gloutonne Lr-optimale (an)n≥1
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définie, pour b ∈ (0, 1
2) et ξ ∈ Rd, par

Ψb(ξ) = sup
n∈N

λd
(
B(ξ, bdist(ξ, a(n)))

)
P
(
B(ξ, bdist(ξ, a(n)))

) . (1.10)

Le théorème ci-dessous traite l’optimalité du taux de convergence de l’erreur de quantification
gloutonne dans Lr.

Theorem 1.2.1. Soit X ∈ Lr(P ), r ∈ (0,+∞) et (an)n≥1 une suite de quantification gloutonne
Lr-optimale de X. S’il existe b ∈ (0, 1

2) tel que la fonction b-maximale Ψb ∈ L
r
r+d (P ), alors

lim sup
n

n
1
d er(a(n), X) < +∞.

La fonction b-maximale Ψb est également utilisée pour montrer que les suites de quantification
gloutonnes satisfont le problème de mismatch de distorsion, c’est-à-dire la propriété que le taux
optimal des quantifieurs Lr détient pour les quantifieurs Ls pour s > r. Ce problème a déjà
été étudié pour les quantifieurs optimaux dans [33] et ensuite dans [65]. Pour les suites de
quantification gloutonnes, le théorème suivant, établi dans [45], résout le problème.

Theorem 1.2.2. Soit s ∈ (r,+∞), X ∈ Lr(P ) et (an)n≥1 une suite de quantification gloutonne
Lr-optimale de X. Supposons que Ψb ∈ L

s
r+d (P ) pour b ∈ (0, 1

2). Alors, X ∈ Ls(P ) et

lim sup
n

n
1
d es(a(n), X) < +∞.

Construction des suites de quantification gloutonne

Les suites de quantification gloutonnes sont construites par des variantes d’algorithmes habituels
de construction des quantifieurs optimaux, tels l’algorithme de Lloyd ou l’algorithme CLVQ, mais
de manière récursive. Cela signifie qu’à chaque itération de l’algorithme, on ajoute un seul point
aux points de la suite déjà calculés, puis on met en œuvre une procédure d’optimisation en gelant
les autres points calculés précédemment. Nous donnons une brève idée sur cette procédure dans
le cas quadratique lorsque d = 1 et d ≥ 2.

Cadre unidimensionnel Lorsque d = 1 et la distribution de X est absolument continue
avec une fonction de densité positive et continue ϕ, on peut mettre en œuvre des procédures
déterministes basées sur la connaissance de la fonction de répartition FX et de la fonction de
moment de premier ordre KX de la loi de X. L’idée est la suivante : à la n-ième itération, nous
gelons les n − 1 points a(n−1) = {a1, . . . , an−1} de la suite (an)n≥1 qui ont déjà été calculés et
nous les trions par ordre croissant

a
(n−1)
1 < . . . < a

(n−1)
n−1 .

Ensuite, nous calculons les inerties locales inter-points données par

σ2
i :=

∫ a
(n−1)
i+ 1

2

a
(n−1)
i

|a(n−1)
i − ξ|2µ(dξ) +

∫ a
(n−1)
i+1

a
(n−1)
i+ 1

2

|a(n−1)
i+1 − ξ|2µ(dξ), i = 0, . . . , n− 1,
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Figure 1.2: Graphe de ai 7→ pni où a(n) est une suite de quantification gloutonne L2-optimale de
Laplace(0, 1) et (pni )1≤i≤n sont les poids des cellules de Voronoï correspondants pour n = 100
(gauche) et n = 511 (droite).

où a(n−1)
0 = −∞, a(n−1)

n = +∞ et a(n−1)
i+ 1

2
est le milieu du segment [a(n−1)

i , a
(n−1)
i+1 ] :

a
(n−1)
1
2

= −∞, a
(n−1)
i+ 1

2
=
a

(n−1)
i + a

(n−1)
i+1

2 , a
(n−1)
n−1

2
= +∞.

Nous ajoutons un point aléatoire ā0 dans la zone interpoint d’inertie locale maximale (a(n−1)
i0

, a
(n−1)
i0+1 )

où i0 est l’indice tel que
σ2
i0 = max

0≤i≤n−1
σ2
i .

Ce point ā0 est le point de départ de la procédure d’optimisation considérée, qui converge vers
le n-ième point an de la suite. Plusieurs procédures sont détaillées dans la première partie du
chapitre 4 telles que l’algorithme de Lloyd et l’algorithme CLVQ, et des suites de quantification
gloutonnes de plusieurs lois de probabilité unidimensionnelles sont construites par l’algorithme
de Lloyd. Par exemple, la figure 1.2 représente les poids des cellules de Voronoï des n premiers
points (n = 100, n = 511) d’une suite de quantification gloutonne quadratique de la loi de
Laplace de paramètres 0 et 1.

Cadre bidimensionnel Nous étendons la variante déterministe des algorithmes gloutons au
cas bidimensionnel dans le chapitre 4. Nous suivons la même procédure que pour les lois unidi-
mensionnelles et nous nous appuyons sur une formule de quadrature très efficace pour calculer
numériquement les intégrales nécessaires à la construction des suites de quantification glou-
tonnes. Dans la figure 1.3, nous observons une suite de quantification gloutonne quadratique
déterministe de la loi Gaussienne standard N (0, I2).
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Figure 1.3: Suite de quantification gloutonne de N (0, I2) obtenue par un algorithme de Lloyd
déterministe de tailles n = 6, 7, 11, 16, 18, 24, 28, 32, 39, 51, 86, 100 (à partir du haut à gauche).

Cadre mutlidimensionnel En dimension d > 2, les procédures déterministes deviennent
trop exigeantes, on passe donc à des procédures stochastiques où le calcul des intégrales est
remplacé par des simulations de Monte Carlo couplées de recherches du plus proche voisin. Les
versions gloutonnes de l’algorithme stochastique de Lloyd et de l’algorithme multidimensionnel
CLVQ sont expliquées en détail dans le chapitre 4.
Ces procédures peuvent être très coûteuses en raison des nombreuses intégrales à calculer. Bien
que nous expliquons, dans le chapitre 3, comment la quantification gloutonne permet une réduc-
tion du nombre de calculs à chaque étape, cela ne rend toujours pas les procédures d’optimisation
stochastique faciles à mettre en œuvre. Une alternative est la quantification gloutonne produit
où l’on s’appuie sur des suites de quantification gloutonne unidimensionnelles pour calculer des
suites multidimensionnelles lorsque la loi de probabilité s’écrit comme un produit tensoriel de ses
lois marginales. La suite multidimensionnelle est obtenue comme résultat du produit tensoriel
de plusieurs suites unidimensionnelles. Ceci est expliqué en détail dans les chapitres 3 et 4.

1.2.2 Contributions et nouveaux résultats

La première contribution de cette thèse, dans le chapitre 3, est consacrée à l’extension de certains
résultats théoriques de la quantification gloutonne d’une loi de probabilité P de moment d’ordre
r fini à une classe plus large de distributions, principalement des résultats d’optimalité du taux
de convergence et de mismatch de distorsion. Une étude numérique approfondie est également
menée pour mettre en évidence les avantages des suites de quantification gloutonne, comparées
principalement aux méthodes de Monte Carlo et de quasi-Monte Carlo. Dans le chapitre 5,
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des résultats d’optimalité du taux de convergence dans Ls des suites dilatées de quantification
gloutonnes Lr-optimales sont établis, inspirés par des résultats similaires pour les quantifieurs
optimaux dilatés dans [71].

Optimalité du taux de convergence de l’erreur de quantification (chapitre 3)

Comme déjà mentionné dans la section 1.2.1, des résultats sur le taux de convergence de l’erreur
de quantification gloutonne et le problème de mismatch de distorsion sont établis dans [45]. Ils
sont basés sur l’intégrabilité de la fonction b-maximale Ψb définie par (1.10). Dans le chapitre 3,
basé sur l’article soumis [24], nous étendons ces résultats à une classe de distributions beaucoup
plus large.

Soit X une variable aléatoire de loi P définie sur
(
Rd,B(Rd)

)
. Le principal outil de notre

étude est de considérer des distributions de probabilité auxiliaires ν satisfaisant le contrôle
suivant sur les boules par rapport à une Lr-médiane a1 de P : Supposons qu’il existe ε0 ∈ (0, 1]
tel que, pour tout ε ∈ (0, ε0), il existe une fonction Borélienne gε : Rd → [0,+∞] satisfaisant,
pour tout x ∈ supp(P ) et tout t ∈ [0, ε‖x− a1‖],

ν(B(x, t)) ≥ gε(x)Vd td. (1.11)

Cette classe de distributions auxiliaires sera l’outil principal pour diverses études théoriques des
suites de quantification gloutonnes. En notant que la Lr-méediane a1 de P appartient à a(n)

pour tout n ≥ 1 (par construction de la suite de quantification gloutonne), on obtient une borne
supérieure de la forme

∀n ≥ 2, er(a(n), P ) ≤ ϕr(ε)−
1
dV
− 1
d

d

(
r

d

) 1
d
(∫

g
− r
d

ε dP

) 1
r

(n− 1)−
1
d (1.12)

où Vd est le volume de la boule unité et ϕr(u) =
(

1
3r − u

r
)
ud. La preuve de ce résultat repose

sur une nouvelle micro-macro inégalité impliquant les distributions auxiliaires ν.

L’une des principales contributions présentées dans le chapitre 3 est l’extension des résultats
universels non-asymptotiques de type Pierce (1.6) pour le taux de convergence de l’erreur de
quantification Lr-gloutonne. Ceci est obtenu en spécifiant la mesure ν et la fonction gε, satis-
faisant (1.11), dans la borne supérieure (1.12). Par exemple, on cite la borne supérieure suivante
pour l’erreur de quantification dans Lr : Si

∫
|x|r+δdP (x) < +∞ pour δ > 0, alors pour tout

n ≥ 2,
er(a(n), P ) ≤ κGreedy,Pierce

d,δ,r σr+δ(P )(n− 1)−
1
d ,

où κGreedy, Pierce
d,δ,r est une constante finie définie dans le théorème 3.2.4, qui repose sur la mesure

ν(dx) = γr,δ(x)λd(dx) où

γr,δ(x) = Kδ,r

(1 ∨ |x− a1|)d(1+ δ
r

)
et Kδ,r =

(∫
dx

(1 ∨ |x|)d(1+ δ
r

)

)−1

< +∞,

et la fonction
gε(x) = Kδ,r

(1 ∨ [(1 + ε)|x− a1|])d(1+ δ
r

)
, ε ∈

(
0, 1

3
)
.
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Un résultat plus précis, mais moins explicite en termes de constantes, est ensuite énoncé (voir le
théorème 3.2.4) en se basant sur des lois de probabilités vérifiant une propriété de log-intégrabilité
de la forme

∫
Rd |x|r(log+|x|)

r
d

+δdP (x) < +∞.

Enfin, un résultat hybride Zador-Pierce est démontré pour des densités radiales, c’est-à-dire
une borne supérieure non asymptotique (de type Pierce (1.6)) dépendant de ‖h‖ d

d+r
comme dans

le théorème de Zador (1.5). En d’autres termes, nous établissons une borne supérieure de la
forme

er(a(n), P ) ≤ C‖h‖ d
d+r

n−
1
d

pour une constante réelle C où h est la densité de la composante absolument continue de P ,
censée être radiale. Une fonction f : Rd → R+ est dite radiale non croissante sur un ensemble
A, telle que supp(P ) ⊂ A ⊂ Rd, par rapport à a ∈ A (voir définition 3.2.6), s’il existe une norme
‖ · ‖0 sur Rd et une constante réelle M ∈ (0, 1] telle que

f(y) ≥Mf(x) pour tout x, y∈ A \ {a} tels que ‖y − a‖0 ≤ ‖x− a‖0.

Le résultat est obtenu en considérant

ν = h
d
d+r∫

h
d
d+r dλd

.λd

et en se basant sur une borne inférieure de ν(B(x, t)), où B(x, t) est la boule de centre x ∈ Rd
et de rayon t > 0, établie dans le Lemme 3.2.10 du chapitre 3.

Le problème de mismatch de distorsion pour cette classe plus large de lois de probabilités
est également résolu en considérant les mêmes distributions auxiliaires définies par (1.11). Les
résultats sont donnés dans la Section 3.3 et on cite l’erreur suivante pour s ∈ (r, d+ r).

es
(
a(n), P

)
≤ κGreedy

d,r,ε

(∫
g
− s
d+r−s

ε dP

) d+r−s
s(d+r)

(∫
g
− r
d

ε dP

) 1
d+r

(n− 2)−
1
d

pour n ≥ 3 et une constante positive finie κGreedy
d,r,ε définie plus tard dans le théorème 3.3.1.

Algorithmes et observations numériques

Dans la deuxième partie du chapitre 3 et dans le chapitre 4, plusieurs expériences numériques
sont réalisées afin de mettre en évidence certaines propriétés intéressantes des suites de quantifi-
cation gloutonnes unidimensionnelles. Entre autres, nous concluons numériquement que, même
si les suites gloutonnes dans Lr ne sont pas optimales à chaque niveau n, elles peuvent néan-
moins être sous-optimales dans le sens où il existe des sous-suites de a(n) qui sont elles-mêmes
Lr-optimales. Cela a été déduit en observant les graphiques représentant les poids des cellules
de Voronoï de ces suites. Nous spécifions ces sous-suites pour les lois N (0, 1) et U

(
[0, 1]

)
et

concluons par une conjecture concernant les densités unimodales symétriques par rapport à leur
médiane.

D’un autre point de vue, lorsque l’on travaille sur le cube unité, il est naturel de comparer des
suites de quantification gloutonnes à des suites à discrépance faible utilisées dans les méthodes
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quasi-Monte Carlo (QMC). En fait, avec l’intégration numérique basée sur la quantification, on
approche des espérances de la forme Ef(X), pour une fonction continue Lipschitzienne f et une
variable aléatoire X, avec un taux de convergence de O(n−

1
d ). Alors que l’approximation par la

méthode quasi-Monte Carlo donne un taux de convergence de O
(

logn
n

1
d

)
, ceci est dû au théorème

de Proïnov (voir [70] ou théorème 3.4.1 au chapitre 3). Le prix à payer pour l’absence du facteur
(logn) avec la quantification gloutonne est le fait que les poids des cellules de Voronoï correspon-
dants à la suite gloutonne a(n) ne sont pas uniformes (c’est-à-dire égal à 1

n) ce qui induit une
plus grande complexité lors de la mise en œuvre “naïve” des formules de quadrature résultantes.
Nous montrons, dans la deuxième partie du chapitre 3, que la récursivité de la quantification
gloutonne permet de réduire le nombre de calculs afin que la quantification gloutonne et QMC
deviennent comparables en termes de complexité. De plus, ce caractère permet de conserver
l’atout d’une suite qui est une formule récursive pour les cubatures, faisant ainsi de la quantifi-
cation gloutonne une composante avantageuse face aux méthodes Quasi-Monte Carlo.

Pour être plus précis, lors de la procédure de construction de la suite gloutonne, on remarque
qu’à chaque itération, on ajoute un seul point à la suite alors que les autres restent gelés. Ainsi,
les cellules de Voronoï, qui sont loin du nouveau point ajouté, restent intactes et inchangées. Cela
signifie que leurs poids, ainsi que l’inertie locale inter-points correspondante, n’ont pas besoin
d’être calculés à chaque itération. Cette remarque permet d’éviter un grand nombre de calculs
inutiles à chaque itération de l’algorithme. Outre la réduction importante du coût de calcul,
ce caractère récursif de la quantification gloutonne nous amène à déduire une formule itérative
récursive pour la cubature dans les cadres unidimensionnels et multidimensionnels. Lorsque
d = 1, nous approchons Ef(X) par In(f) donné par

In(f) = In−1(f)− pn−
(
f(a(n)

i0−1)− f(a(n)
i0

)
)
− pn+

(
f(a(n)

i0+1)− f(a(n)
i0

)
)
,

où a
(n)
i0

est le point ajouté à la suite gloutonne à l’itération n, a(n)
i0−1 et a(n)

i0+1 sont les points
inférieur et supérieur à a(n)

i0
et

pn− = P
([
a

(n)
i0− 1

2
, a

(n)
mil
])

et pn+ = P
([
a

(n)
mil, a

(n)
i0+ 1

2

])

où a(n)
i0± 1

2
=

a
(n)
i0

+a(n)
i0±1

2 et a(n)
mil =

a
(n)
i0+1 + a

(n)
i0−1

2 , avec a0 = −∞ et an = +∞.
Cette formule est généralisée au cadre multidimensionnel (voir (3.20)) lorsque l’on considère des
suites gloutonnes “produit”, comme expliqué dans le chapitre 3.

Par ailleurs, on note qu’il existe une relation entre la discrépance d’une suite Ξ et l’erreur
de quantification induite par cette suite par rapport à la loi Uniforme. Basée sur le théorème
de Proïnov (voir [70] et théorème 3.4.1 dans le chapitre 3), elle est donnée par

e1
(
Ξ,U([0, 1]d)

)
≤ D∗n(Ξ)

1
d

où D∗n(Ξ) est la discrépance à l’origine de la suite Ξ = (ξi)1≤i≤n d’ordre n définie par

D∗n(Ξ) = sup
u∈[0,1]d

∣∣∣ 1
n

n∑
i=1

1ξi∈[0,u]d − λd([0, u]d)
∣∣∣.
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Cela nous conduit à réaliser une étude en vue d’une comparaison entre les suites de quantification
gloutonnes et les suites à discrépance faible. Deux approches principales sont considérées:

• Calculer la discrépance des suites gloutonnes et la comparer à celles des suites à discrépance
faible,

• Traiter les suites à discrépance faible comme des suites de quantification (sous-optimales),
c’est-à-dire leur attribuer un diagramme de Voronoï et des poids non uniformes, afin de
comparer leurs performances avec des suites de quantification gloutonnes.

Plusieurs simulations numériques sont effectuées et certaines conclusions sont tirées et détaillées
à la fin du chapitre 3 et dans le chapitre 4. Disons en bref que, lorsque d = 1, les suites de
quantification gloutonnes peuvent être utilisées comme suites à discrépance faible, et, elles sont
plus performantes que les suites à discrépance faible traitées comme des suites de quantification.
Cependant, lorsque d ≥ 2, nous n’avons pas des résultats aussi optimistes pour les suites de
quantification gloutonnes standard en termes de discrépance faible.

Taux de convergence Ls-optimal des suites de quantification gloutonne Lr-optimales
dilatées/contractées

Dans le chapitre 5, nous étudions l’optimalité du taux de convergence dans Ls des suites di-
latées/contractées de quantification gloutonne dans Lr. Cette étude s’inspire de résultats sim-
ilaires obtenus pour les quantifieurs Lr-optimaux dans [71], où les quantifieurs Lr-optimaux,
une fois dilatés ou contractés de manière appropriée, s’avèrent avoir un taux de convergence Ls-
optimal, c’est-à-dire de O(n−

1
d ), pour s > r. Cela a des conséquences importantes en pratique

puisque, généralement, on n’a accès qu’à des quantifieurs quadratiques optimaux (comme pour
la loi N (0, Id), d = 1, . . . , 10, sur le site web de quantification www.quantize.maths-fi.com ou
pour d’autres lois (1D) pour lesquelles des formules semi-fermées sont disponibles (voir [29, 32]
par exemple)). On peut citer, d’une part, le domaine de l’intégration numérique où les bornes
d’erreur des formules de cubature basées sur la quantification impliquent souvent l’erreur Ls de
quantification induite par les quantifieurs Lr-optimaux, s > r, qui doit être traitée. D’autre
part, les quantifieurs Lr-optimaux dilatés sont de bons candidats pour l’initialisation des algo-
rithmes de conception des suites de quantification Ls-optimales (voir [71] pour plus de détails
sur ce sujet).

Le but du chapitre 5 est d’établir des résultats similaires pour les suites de quantification
gloutonnes Lr-optimales. Pour cela, nous nous appuyons sur des distributions auxiliaires, véri-
fiant un critère similaire à celui donné par (1.11). Également, nous généralisons les résultats
séminaux de [71] en s’appuyant sur notre nouvelle approche basée sur des fonctions auxiliaires.
Soyons plus précis.

Soit X une variable aléatoire de loi P définie sur
(
Rd,B(Rd)

)
et soit a(n) une suite de quan-

tification gloutonne Lr-optimale de taille n, r ≥ 1. La suite dilatée ou contractée correspondante
est notée a(n)

θ,µ et définie, pour tout θ > 0 et µ ∈ Rd, par a(n)
θ,µ = {µ + θ(ai − µ), ; ai ∈ a(n)}.

De même, fθ,µ désigne la fonction fθ,µ(x) = f(µ + θ(x − µ)). Et, si X ∼ P = f.λd, alors Pθ,µ
désigne la loi de la variable aléatoire X−µ

θ + µ et dPθ,µ = θdfθ,µ.dλd. Nous nous appuyons sur
une inégalité micro-macro impliquant des distributions auxiliaires satisfaisant le contrôle (1.11)
sur les boules pour obtenir deux principaux résultats non asymptotiques d’optimalité du taux

13

http://www.quantize.maths-fi.com


de convergence dans Ls en fonction de s.
• Soit s ∈ (r, d+ r) et P une loi ayant des moments polynomiaux finis de tout ordre. Supposons

∫
{f>0}

(
fθ,µ
f

) (d+r)(r+δ−η)
(d+r−s)(r+δ−η)−ds

fdλd < +∞. (1.13)

Alors, pour toute fonction Borélienne gε, ε ∈ (0, 1
3), vérifiant (1.11) et tout n ≥ 3,

es(a(n)
θ,µ, P ) ≤ θ1+ d

sκGreedy,Pierce
θ,µ

∫
{f>0}

(
fθ,µ
f

) (d+r)(r+δ−η)
(d+r−s)(r+δ−η)−ds

fdλd

 1
|q|q′(d+r)

σr+δ(P )(n− 2)−
1
d .

(1.14)
où q = −s

d+r−s , q
′ = r+δ−η

r+δ−η−d|q| , p
′ = q′

q′−1 , er+δ(a
(1), P ) = σr+δ(P ) < +∞ et

κGreedy,Pierce
θ,µ = 2

1
d

+ r+δ
r+d (1+ 1

|q|p′ )V
− 1
d

d

(r
d

) r
d(d+r) min

ε∈(0, 1
3 )

[
(1 + ε)ϕr(ε)−

1
d

] (∫
(1 ∨ |x|)

r+δ
r+δ−η dx

) 1
d

.

• Soit s < r. Supposons ∫
f−

s
r−s f

r
r−s
θ,µ dλd < +∞.

Alors, pour toute distribution ν et toute fonction gε satisfaisant (1.11) et tout n ≥ 3,

es(a(n)
θ,µ, P ) ≤ κ̃Greedy,Pierce

θ,µ θ1+ d
s

(∫
{f>0}

f−
s
r−s f

r
r−s
θ,µ dλd

) r−s
sr

σr+δ(P )(n− 2)−
1
d (1.15)

où er+δ(a(1), P ) = σr+δ(P ) < +∞ et

κ̃Greedy,Pierce
θ,µ = 21+ 1

d
+ δ
rV
− 1
d

d

(r
d

) r
d(d+r) min

ε∈(0, 1
3 )

[
(1 + ε)ϕr(ε)−

1
d

] (∫
(1 ∨ |x|)−d(1+ δ

r
)dx

)− 1
d

.

Les résultats ci-dessus sont des avatars du Lemme de Pierce (1.6). Une étude particulière pour
des densités radiales donne des résultats similaires sous une hypothèse de moment sur P .

Après avoir montré qu’une suite dilatée ou contractée de quantification gloutonne Lr-optimale
a

(n)
θ,µ a un taux de convergence optimal dans Ls sous l’une des conditions mentionnées ci-dessus,

en fonction des valeurs de s, nous déterminons l’ensemble des paramètres (θ, µ) qui satisfait ces
conditions. En général, la valeur optimale pour µ∗ est la Lr-médiane de la loi P . Quant à θ,
le problème dépend entièrement de la loi P . Nous menons cette étude pour plusieurs lois de
probabilité et déterminons, pour chacune d’entre elles, les valeurs de θ pour lesquelles la suite
dilatée a un taux de convergence optimal dans Ls. De plus, dans certains cas, nous montrons
que la suite α(n)

θ∗,µ satisfait le “théorème de la mesure empirique” pour une valeur particulière θ∗
de θ qui sera déterminée. Cette valeur particulière θ∗ permet à la borne inférieure (5.6) induite
par α(n)

θ∗,µ d’atteindre la constante du théorème de Zador.

Pour la loi Normale d-dimensionnelle N (m,Σd), cette valeur est θ∗ =
√

s+d
r+d , pour les lois

hyper exponentielles de paramètres α et λ, on obtient θ∗ =
(
s+d
r+d

) 1
α et, pour la loi hyper gamma

de paramètres α, β et λ, la suitee dilatée/contractée satisfait le théorème de la mesure empirique

pour θ∗ =
(
s+d
r+

) 1
α , uniquement lorsque β = d+r

d(d+s) .
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1.3 Quantification récursive et application aux E.D.S. rétro-
grades réfléchies

1.3.1 Principe et résultats existants

La quantification markovienne et la quantification récursive ont été initialement introduites dans
[59] et [63] pour produire des schémas de discrétisation spatiale des chaînes de Markov, typique-
ment des schémas de discrétisation temporelle de processus stochastiques comme les processus
de diffusion. La quantification récursive est une version de la quantification markovienne qui
permet en dimension 1, mais aussi en dimensions moyennes, une “optimisation déterministe”
rapide des grilles de quantification impliquées dans ces schémas numériques. Elle a d’abord été
étudiée en profondeur dans [63] pour la discrétisation d’un schéma d’Euler à valeurs dans Rd
d’un processus de diffusion où les auteurs ont proposé un algorithme rapide pour construire,
de manière déterministe, l’arbre de quantification dans un cadre unidimensionnel. Dans [51], la
quantification récursive a été étendue à des schémas d’ordre supérieur, toujours dans le cadre
unidimensionnel. Pour les problèmes en dimension supérieure, la quantification récursive pro-
duit a été introduite et utilisée dans [15, 28] entre autres.

Considérons un processus de diffusion Brownien (Xt)t≥0 à valeurs dans Rd et solution de

Xt = X0 +
∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs , X0 = x0 ∈ Rd, (1.16)

où b : [0, T ] × Rd → Rd est le coefficient de dérive, σ : [0, T ] × Rd → M(d, q) est le coefficient
de la matrice de diffusion et (Wt)t≥0 est un mouvement Brownien q-dimensionnel défini sur
l’espace de probabilité (Ω,A,P) équipé de sa filtration naturelle augmentée (Ft)t≥0 où Ft =
σ(Ws, s ≤ t, NP), NP désigne la classe de tous les ensembles P-négligeables de A. Le schéma
d’Euler associé au processus (Xt)t∈[0,T ], de maillage uniforme tk = k∆, k ∈ {0, . . . , n} et de pas
de temps ∆ = T

n , est défini récursivement par

X̄n
tk+1 = X̄n

tk
+ ∆b(tk, X̄n

tk
) + σ(tk, X̄n

tk
)
(
Wtk+1 −Wtk

)
, X̄n

t0 = X0 = x0 ∈ Rd. (1.17)

La quantification récursive consiste à construire une chaîne de Markov à valeurs dans une
grille (ou quantifieur) Γk de taille Nk du schéma d’Euler discret X̄tk au temps tk. Notre objectif
est donc d’optimiser les grilles Γk de manière récursive, de sorte que cette optimisation est
effectuée “pas à pas” à partir du temps t0 = 0 jusqu’au temps tn = T . Premièrement, nous
indiquons par

Fk(x, εk+1) = x+ ∆b(tk, x) +
√

∆σ(tk, x)εk+1

l’opérateur d’Euler de pas de temps ∆, où (εk)0≤k≤n est une suite de variables aléatoires i.i.d.
de loi N (0, Iq), en d’autres termes, εk =

√
n
T

(
Wtk+1 −Wtk

)
. Notez que ce processus est de loi

Normale
Fk(x, εk+1) ∼ N (mk,Σk)

où mk = x + ∆b(tk, x) et Σk =
√

∆σ(tk, x). La quantification récursive (X̂Γk
tk

)0≤k≤n de
(X̄tk)0≤k≤n est effectuée par la récursion suivante : A partir de X̂t0 = X̄t0 = x0, X̃tk = Fk−1(X̂Γk−1

tk−1
, εk),

X̂Γk
tk

= ProjΓk(X̃tk), ∀k = 1, . . . , n (1.18)
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où Γk est un quantifieur optimal de X̃tk de taille Nk pour tout k ∈ {1, . . . , n}.

Des bornes supérieures de l’erreur de quantification induite par l’approximation de X̄tk par
X̂Γk
tk

sont établies dans [63] dans le cadre quadratique où les auteurs ont montré que, sous
certaines hypothèses de continuité Lipschitzienne (en x, uniformément en t ∈ [0, 1]) sur b et σ,
on a, pour chaque k ∈ {0, . . . , n},

∥∥X̄tk − X̂
Γk
tk

∥∥
2 ≤ K

k∑
l=1

clN
− 1
d

l

pour des constantes positives finies K et cl. Par souci de simplicité, on note X̂tk au lieu de X̂Γk
tk

.

La construction de quantifieurs récursifs X̂tk de X̄tk est principalement réduite au calcul des
grilles de quantification optimales Γk de X̃tk de taille Nk. Dans le cadre quadratique, ceci est
effectué par des algorithmes déterministes standards, tels l’algorithme de Lloyd ou le CLVQ.
Dans cette thèse, nous utiliserons principalement l’algorithme de Lloyd pour calculer les grilles
(Γk)1≤k≤n de manière récursive. En effet, à l’instant tk+1, la grille Γk+1 = {xk+1

1 , . . . , xk+1
Nk+1
} est

construite en fonction de la grille Γk = {xk1, . . . , xkNk} déjà obtenue à l’instant tk.

Le principal avantage de cette approche est la préservation de la propriété de Markov. La loi
de la chaîne de Markov (X̂tk)0≤k≤n est entièrement caractérisée par la loi initiale et les matrices
de transition Pk = (pkij)i,j , pour tout k ∈ {1, . . . , n}, qui constituent un outil très important
dans plusieurs applications. La probabilité de transition de (X̂tk)0≤k≤n de xki à xk+1

j entre les
temps tk et tk+1 est donnée par

pkij = P
(
X̃tk+1 ∈ Cj(Γk+1) | X̃tk ∈ Ci(Γk)

)
= P

(
Fk(xki , εk+1) ∈ Cj(Γk+1)

)
où
(
Ci(Γk)

)
1≤i≤Nk

est le diagramme de Voronoï associé au quantifieur Γk à l’instant tk. Les poids
des cellules de Voronoï (pk+1

j )1≤j≤Nk+1 sont obtenus par l’équation de Kolmogorov classique
(temps discret). Pour tout j ∈ {1, . . . , Nk+1}, on a

pk+1
j = P

(
X̃tk+1 ∈ Cj(Γk+1)

)
=

Nk∑
i=1

pki P
(
Fk(xki , εk+1) ∈ Cj(Γk+1)

)
.

Dans le cadre unidimensionnel, le calcul des poids de transition pkij est basé sur la fonction de
répartition de la loi Gaussienne. Lorsque la dimension d augmente, on s’appuie sur les simula-
tions de Monte Carlo pour ces calculs.

Dans le chapitre 7, nous donnons des détails sur le calcul des suites de quantification récursive
de modèles spécifiques dans le cas unidimensionnel, comme le modèle de Black-Scholes et le
modèle CEV, discrétisés selon un schéma d’Euler ou un schéma de Milstein. Dans la figure
1.4, on illustre les fonctions xki 7→ pki , k = 1, . . . , n, où (xki )1≤i≤Nk est la grille de quantification
récursive d’un processus de diffusion suivant un modèle de Black-Scholes et discrétisé suivant
un schéma d’Euler, c’est-à-dire

X̄tk+1 = X̄tk + r∆X̄tk + σ
√

∆X̄tk εk+1 := Fk(X̄tk , εk+1)

16



8 9 10 11 12 13 14 15
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

grille de quantification récursive

p
o

id
s 

d
e

s 
ce

llu
le

s 
d

e
 V

o
ro

n
o

i

Figure 1.4: Graphes de xki 7→ pki où (xki )1≤i≤Nk est la grille de quantification récursive, pour
tout k ∈ {1, . . . , n}, dans un modèle de Black-Scholes (* correspond à k = 2 et ◦ correspond à
k = n = 30).

On considère n = 30 pas de temps et contruit des grilles de taille Nk = 50, pour tout k ∈
{1, . . . , n}. On considère

T = 1, X0 = 100, r = 0.006, σ = 0.2.

1.3.2 Contributions de cette thèse

Dans le chapitre 6, nous établissons des bornes supérieures de l’erreur Lp de quantification récur-
sive d’un modèle de Markov général de la forme Xk+1 = Fk(Xk, εk+1), (εk)1≤k≤n étant une suite
de variables aléatoires i.i.d. de loi Normale. Nous étendons les résultats obtenus dans un cadre
L2 dans [63] et estimons des erreurs dans Lp pour p ∈ (1, 2+d). Nous considérons que les grilles
Γk, dans (1.18), sont des quantifieurs quadratiques optimaux de X̃tk . Ceci est important car
la propriété de stationnarité (1.7) satisfaite par les quantificateurs quadratiques optimaux sera
nécessaire pour notre étude.

Puisque nous estimons des bornes supérieures de l’erreur Lp de quantification récursive en
utilisant des quantifieurs L2-optimaux de X̃tk , nous nous trouvons dans une position où nous
devons traiter l’erreur de quantification Lp d’un quantifieur L2-optimal. Pour cela, nous nous
appuyons sur les résultats du problème de mismatch de distorsion, aussi connu sous le nom de
problème (Lr - Ls), rappelé dans le théorème 6.2.2. De plus, nous montrons et utilisons un
lemme technique qui permet de contrôler l’espérance de la forme E|a + A

√
hZ|r pour r ≥ 2,

a ∈ Rd, h > 0, A ∈ M(d, q,R) et Z ∈ LrRq(P) une variable aléatoire à valeurs dans Rq tel que
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E[Z] = 0, plus précisemment

E|a+A
√
hZ|r ≤ |a|r

(
1 + 2(r−3)+(r − 1)(r − 2)h

)
+ 2(r−3)+(r − 1)h‖A‖rE|Z|r

(
1 + r

2h
r
2−1

)
.

Cette inégalité sera très utile pour établir plusieurs résultats théoriques permettant d’aboutir à
des bornes d’erreur.

Avec tous les outils nécessaires, nous montrons que l’erreur de quantification récursive dans
Lp du schéma d’Euler est bornée par

∀k ∈ {0, . . . , n} ‖X̄tk − X̂tk‖p ≤ K
k∑
l=1

Cl‖X̂tl − X̃tl‖p ≤ K
′
k∑
l=1

ClN
− 1
d

l (1.19)

où Nl est la taille du quantifieur Γl de X̃tl et K,K ′ et Cl sont des constantes finies positives à
préciser ultérieurement dans le théorème 6.2.1 dépendant de p, d, b, σ et εk.

Lorsque la dimension d augmente, une technique de substitution intéressante est la quantifi-
cation récursive produit qui, cependant, devient très exigeante pour les dimensions très élevées.
Dans le chapitre 6, nous présentons et étudions une alternative, la quantification récursive hy-
bride qui consiste en la quantification du bruit Gaussien dans (1.18) de sorte que la quantification
hybride récursive de X̄tk est donnée par le schéma récursif suivant{

X̃tk = Fk−1(X̂tk−1 , ε̂k),
X̂tk = ProjΓk(X̃tk), ∀k = 1, . . . , n.

où (ε̂k)k est maintenant une suite de quantifieurs optimaux de la loi Normale N (0, Iq), qui sont
déjà calculés et stockés off-line. En se basant sur les mêmes outils utilisés pour établir des bornes
supérieures pour la quantification récursive standard, nous établissons des borness d’erreur dans
Lp pour la quantification récursive hybride pour p ∈ (1, 2 + d), comme suit

‖X̄tk − X̂tk‖p ≤ K
k∑
l=1

CX(NX
l )−

1
d +K

k∑
l=1

Cε(N ε
l )−

1
d

où NX
l est la taille du quantifieur optimal de X̃tl , N ε

l est la taille des quantifieurs optimaux du
vecteur aléatoire Gaussien etK,CX , Cε sont des constantes positives finies. En pratique, puisque
les εk sont des variables aléatoires i.i.d., nous construisons des quantifieurs correspondants ε̂k de
la même taille N ε

k = N ε pour tout k ∈ {1, . . . , n}.

1.3.3 Application à la discrétisation des Equations Différentielles Stochas-
tiques Rétrogrades Réfléchies

La quantification récursive est une technique de discrétisation spatiale utilisée dans les applica-
tions financières. On peut citer le pricing d’options dans un modèle de volatilité stochastique
(voir [15]) et le pricing d’un panier d’options (voir [28]). Dans le chapitre 6, nous nous appuyons
sur la quantification récursive pour la discrétisation spatiale de la solution d’une Equation Dif-
férentielle Stochastique Rétrograde Réfléchie (RBSDE). Des approximations de telles équations
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ont déjà été établies par plusieurs méthodes. Par exemple, on peut citer les méthodes de régres-
sion avec des simulations de Monte Carlo (voir [9]), les itérations de Picard combinées avec une
décomposition dans le chaos de Wiener (voir [17]) et la quantification optimale (voir [3, 4, 37]).

On considère la RBSDE de maturité T

Yt = g(XT ) +
∫ T

t
f(s,Xs, Ys, Zs)ds+KT −Kt −

∫ T

t
Zs.dWs , t ∈ [0, T ], (1.20)

Yt ≥ h(t,Xt) and
∫ T

0

(
Ys − h(s,Xs)

)
dKs = 0.

où le processus (Xt)t∈[0,T ] est une diffusion donnée par (1.16) et f, g et h sont des fonctions
continues Lipschitziennes. La solution de cette équation est un triplet (Yt, Zt,Kt) et une telle
solution existe et est unique comme établi dans [25] sous des hypothèses de Lipschitz appropriées.
Toutefois, cette solution n’admet pas une forme fermée en général. Il faut donc l’approcher par
des schémas de discrétisation spatio-temporelle. Le schéma de discrétisation temporelle (Ȳ n

t , ζ̄
n
t )

associé à (Yt, Zt) est basé sur le schéma d’Euler du processus (Xt)t∈[0,T ]. Plusieurs choix sont
possibles (voir [3, 9, 48]). Notre choix dans ce travail est d’insérer l’espérance conditionnelle
dans le driver f comme suit

Ȳ n
T = g(X̄n

T )
Ỹ n
tk

= E(Ȳ n
tk+1 |Ftk) + ∆f

(
tk, X̄

n
tk
,E(Ȳ n

tk+1 |Ftk), ζ̄ntk
)
, k = 0, . . . , n− 1,

ζ̄ntk = 1
∆E

(
Ȳ n
tk+1(Wtk+1 −Wtk) | Ftk

)
, k = 0, . . . , n− 1,

Ȳ n
tk

= Ỹ n
tk
∨ h(tk, X̄n

tk
) , k = 0, . . . , n− 1.

De tels schémas ont été envisagés pour des BSDE (sans réflexion) dans [65] ou pour les BSDE à
double réflexion dans [37], alors que dans la plupart de la littérature, l’espérance est généralement
appliquée en dehors de la fonction f . Dans certains articles motivés par les options américaines,
f ne dépend pas du processus Zt.

Ce schéma ne peut pas être simulé à cause des espérances conditionnelles, nous sommes donc
amenés, comme nos prédécesseurs, à effectuer une discrétisation spatiale supplémentaire basée
ici sur la quantification récursive du processus X̄tk . Le schéma résultant est le suivant

Ŷ n
T = g(X̂T )

ζ̂ntk = 1
∆E

(
Ŷ n
tk+1(Wtk+1 −Wtk) | Ftk

)
, k = 0, . . . , n− 1,

Ŷ n
tk

= max
(
hk(X̂tk) , E

(
Ŷ n
tk+1 | Ftk

)
+ ∆f

(
tk, X̂tk ,E

(
Ŷ n
tk+1 | Ftk

)
, ζ̂ntk

))
, k = 0, . . . , n− 1,

On établit des bornes supérieures pour les erreurs induites par les discrétisations temporelle
et spatiale mentionnées ci-dessus.

Discrétisation temporelle Pour l’erreur de discrétisation en temps, nous établissons des
bornes supérieures de l’erreur dans L2. A cette fin, nous introduisons un processus continu en
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temps qui étend Ȳtk , en se basant sur le théorème de représentation de martingale. Cela conduit
à définir un processus càdlàg Ỹt sur [tk, tk+1) et un processus làdcàg Ȳt sur (tk, tk+1], par

Ỹt = Ȳt = Ȳtk+1 − (tk+1 − t)fk
(
X̄tk ,E(Ȳtk+1 | Ftk), ζ̄tk

)
−
∫ tk+1

t
Z̄sdWs, (1.21)

conduisant à la représentation suivante

Ỹt = ȲT +
∫ T

t
f(s, X̄s,E(Ȳs̄ | Fs), ζ̄s) ds−

∫ tk+1

t
Z̄sdWs + K̄T − K̄t

où s = tk et s̄ = tk+1 si s ∈ (tk, tk+1), Z̄t est un processus tel que E sup[0,T ] |Z̄s|2 < +∞ et K̄tk

est un processus càdlàg croissant, nul au temps 0, défini par

K̄tk =
k∑
j=0

(
hj(X̄tj )− Ỹtk

)
+

et tel que K̄t = K̄tk pour tout t ∈ (tk, tk+1). Cela conduit à la borne supérieure suivante pour
l’erreur de discrétisation temporelle, pour tout k ∈ {1, . . . , n},

E|Ytk − Ȳtk |
2 ≤ Cb,σ,f,h,T

(
∆ +

∫ T

0
E|Zs − Zs|2ds

)

où Cb,σ,f,h,T est une constante réelle positive. Cela montre classiquement que le taux de conver-
gence du schéma de discrétisation temporelle est régi par la régularité du processus (Zt)t∈[0,T ]
(qui peut être analysé par les méthodes PDE lorsque b et σ sont suffisamment régulières).

Discrétisation spatiale En ce qui concerne la discrétisation spatiale, on établit des bornes
d’erreur dans Lp pour p ∈ (1, 2 + d) et k ∈ {1, . . . , n}, comme suit

‖Ȳtk − Ŷtk‖p ≤ K‖ max
k≤l≤n

∣∣X̄tl − X̂tl |
∥∥
p

où K est une constante finie positive définie ultérieurement dans le chapitre 6. Les normes∥∥X̄tl − X̂tl

∥∥
p
sont des erreurs de quantification récursive déjà contrôlées par (1.19).

De point de vue algorithmique, one montre par récurrence rétrograde qu’il existe des fonc-
tions ŷk : Γk 7→ R, k ∈ {0, . . . , n}, telles que Ŷk = ŷk(X̂k), pour tout k ∈ {0, . . . , n}, définies
récursivement par le principe de programmation dynamique rétrograde (BDPP) suivant{

ŷn = hn

ŷk = max
(
hk, P̂kŷk+1 + ∆fk

(
., P̂kŷk+1, Q̂kŷk+1

))
, k = 0, . . . , n− 1,

où

P̂kŷk+1(X̂k) = E
(
ŷk+1(X̂k+1) | Ftk

)
et Q̂kŷk+1(X̂k) = 1√

∆
E
(
ŷk+1(X̂k+1)εk+1 | Ftk

)
.

De même, il existe des fonctions ẑk telles que ζ̂k = ẑk(X̂k), définies par

ẑk = Q̂kŷk+1.
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En s’appuyant sur ces BDPP et sur la quantification récursive X̂Γk
tk

de X̄tk , Γk = {xk1, . . . , xkNk},
on approche la solution Y0 de la RBSDE à l’instant 0 par la valeur initale ŷ0 du schéma{

ŷn(xni ) = hn(xni ) , i = 1, . . . , Nn,

ŷk(xki ) = max
(
hk(xki ), α̂k(xki ) + ∆fk

(
xki , α̂k(xki ), β̂k(xki )

))
, i = 1, . . . , Nk,

où

α̂k(xki ) =
Nk+1∑
j=1

ŷk+1(xk+1
j )pkij et β̂k(xki ) = 1

∆

Nk+1∑
j=1

ŷk+1(xk+1
j )πkij

avec
πkij =

√
∆
pki

E
(
εk+11{X̂k+1=xk+1

j , X̂k=xki }

)
=
√

∆E
(
εk+11{Fk(xki ,εk+1)∈Cj(Γk+1)}

)
.

Nous illustrons cette approximation par plusieurs exemples numériques unidimensionnels et
multidimensionnels à la fin du chapitre 6 et dans le chapitre 7. Dans le cadre unidimensionnel,
nous considérons le prix d’une option d’achat américaine sur un marché avec un écart acheteur-
vendeur sur les taux d’intérêt et le prix d’une option de vente américaine sous la probabilité
historique, les deux exemples sont considérés à la fois dans un modèle Black-Scholes et un modèle
CEV. En ce qui concerne le cadre multidimensionnel, nous évaluons le prix d’une option de
change américaine bidimensionnelle dans un modèle de Black-Scholes et considérons un exemple
multidimensionnel dû à J.F. Chassagneux.
En outre, nous considérons l’évaluation du prix des options de vente américaines pour d = 1 et
d = 2. Nous montrons que les estimations des bornes d’erreur Lp induites par la discrétisation
spatiale correspondante peuvent être obtenues directement. En fait, puisque (X̄tk)0≤k≤n et
(X̂tk)0≤k≤n sont des chaînes de Markov, Ȳtk et Ŷtk s’écrivent sous forme d’enveloppes de Snell
comme suit: pour tout k ∈ {1, . . . , n},

Ȳtk = P-esssup
{
E (hτ (X̄τ ) | Fτ ), τ ∈ {tk, . . . , T}Fτ -temps d’arrêt

}
et

Ŷtk = P-esssup
{
E (hτ (X̂τ ) | Fτ ), τ ∈ {tk, . . . , T}Fτ -temps d’arrêt

}
où h(x) = max(K − x, 0). Par conséquent, on obtient, pour tout k ∈ {1, . . . , n},

‖Ȳtk − Ŷtk‖p ≤ [h]Lip
∥∥max
l≥k
|X̄tl − X̂tl |

∥∥
p
.

Dans tous les exemples, nous comparons les résultats obtenus par quantification récursive à
ceux obtenus par d’autres types de quantification. Si d = 1, nous comparons la quantification
récursive à la quantification optimale, gloutonne et récursive gloutonne. Et, si d > 1, one
adopte la quantification récursive hybride, au lieu de la quantification récursive standard, et
on compare les résultats à ceux obtenus par quantification optimale et gloutonne. Toutes les
méthodes mentionnées sont détaillées dans les chapitres 6 et 7.
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Chapter 2

Introduction

This thesis is divided into two main parts. The first part contains Chapters 3, 4 and 5 where
we present new theoretical results and aspects of greedy quantization, as well as some numerical
studies. Briefly, we adopt a new approach to extend rate optimality and distortion mismatch
results for greedy quantization to a wider class of distributions and establish Ls-rate optimality
results for Lr-dilated or contracted greedy quantization sequences. Numerically, we carry out
some experiments and emphasize some properties of greedy quantization that make it advanta-
geous in face of other approximation methods (mainly quasi Monte Carlo). In the second part
consisting of Chapters 6 and 7, we establish, first, Lp-error bounds for recursive quantization of
a general d-dimensional Markov model for p ∈ (1, 2 + d) and, then, extend error bounds for the
recursive quantization-based discretization schemes of reflected Backward Stochastic Differential
Equations to the Lp-framework .

2.1 Optimal quantization: Principle, definitions and main re-
sults

Optimal vector quantization is a technique going back to the 1950’s (see [30]) when it was first
devised in the signal processing field to discretize continuous signals for their transmission. It
was then extended to many domains such as Information theory, cluster analysis, etc., until it
was introduced as a mathematical tool in the 1990’s. It was first used as a quadrature formula
in the numerical integration field for the computation of expectations (see [54]), and then, in the
early 2000’s, for the approximation of conditional expectations in view of financial applications,
mainly pricing of American options (see [3, 4, 5]), of non-linear filtering problems (see [58]) and
simulation of Stochastic Differential Equations (see [3, 67]), etc.

The mathematical problem of optimal quantization consists in finding the best approxima-
tion, in a sense to be specified, of a (possibly) continuous probability distribution by a discrete
probability distribution whose support is of finite cardinal, or, in other words, the best approxi-
mation of a multidimensional random variable X by a random variable Y taking a finite number
n of values. Let d ≥ 1 and X be a d-dimensional random variable defined on the probability
space (Ω,A,P) such that X ∈ Lr(P), r > 0 i.e. E|X|r < +∞ where |.| denotes a priori any norm
on Rd. We denote P = PX the probability distribution of X. The goal is to approximate X
by q(X), where q is a Borel function defined on Rd and having values in a d-dimensional grid
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Figure 2.1: Example of a Voronoï diagram in R2 w.r.t. the Euclidean norm.

Γ = {x1, . . . , xn} of size n. The best choice for q, Γ being fixed, is clearly any Borel nearest
neighbor projection πΓ : Rd → Γ defined by πΓ(ξ) =

∑n
i=1 xi1Ci(Γ)(ξ), where

Ci(Γ) ⊂ {ξ ∈ Rd : |ξ − xi| ≤ min
j 6=i
|ξ − xj |}, i = 1, . . . , n, (2.1)

is a Borel partition of Rd called the Voronoï diagram induced by Γ. The Borel sets Ci(Γ) are
called the Voronoï cells of the partition induced by Γ. An example of a Voronoï diagram in R2

equipped with the Euclidean norm is presented in Figure 2.1.
Then, the Voronoï quantization of X is the composition of πΓ and X:

X̂Γ = πΓ(X) :=
n∑
i=1

xi1Ci(Γ)(X).

Its distribution is characterized by the grid Γ = {x1, . . . , xn} and the weights of the corresponding
Voronoï cells given, for every i ∈ {1, . . . , n}, by

pni = P (X̂Γ = xi) = P
(
X ∈ Ci(Γ)

)
.

We will often denote, X̂ instead of X̂Γ to alleviate notations. The Lr-quantization error associ-
ated to a grid Γ is defined, for every r ∈ (0,+∞), by

er(Γ, X) = ‖X − πΓ(X)‖r = ‖X − X̂Γ‖r = ‖dist(X,Γ)‖r (2.2)

where ‖Y ‖r =
(
E|Y |r

) 1
r denotes the Lr(P)-norm of a random vector Y (or quasi-norm if 0 <

r < 1). We also define the Lr-distortion function Grn on (Rd)n by

Grn(x1, . . . , xn) = er
(
{x1, . . . , xn}, X

)r
. (2.3)

This function is differentiable if the (xi)1≤i≤n are pairwise distinct or, equivalently, Γ = {x1, . . . , xn}
has full size n, and the boundaries of the Voronoï diagram are negligible w.r.t. the distribution
P of X, it depends also on the differentiability of the underlying norm itself. Its gradient is
given by

∇Grn(x1, . . . , xn) = r

(
E
[
1X∈Ci(Γ)

(xi −X)
|xi −X|

|xi −X|r−2
])

1≤i≤n
.
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Optimal quantization problem consists in finding a grid Γ that minimizes the quantization
error (2.2), i.e. solves the following minimization problem

er,n(X) = inf
Γ, card(Γ)≤n

er(Γ, X). (2.4)

If X ∈ LrRd(P), this problem always admits at least one solution Γ called optimal quantizer of
size n of X or P , and the corresponding quantization error converges to 0 when the size n goes
to +∞. For a proof, we refer to [32, 56, 57] among others. The rate of convergence of the
Lr-quantization error to 0 is given by two well known results exposed in the following theorem.
The first one is a sharp asymptotic result and the second one is universal and non-asymptotic.

Theorem 2.1.1. (a) Zador’s Theorem (see [75]) : Let r > 0 and let X ∈ Lr+ηRd (P) for some
η > 0, with distribution P such that dP (ξ) = ϕ(ξ)dλd(ξ) + dν(ξ) where λd denotes the Lebesgue
measure on (Rd,B(Rd)). Then,

lim
n→+∞

n
1
d er,n(X) = J̃r,d‖ϕ‖

1
r

L
r
r+d (λd)

(2.5)

where J̃r,d = inf
n≥1

n
1
d er,n(U([0, 1]d)) ∈ (0,+∞).

(b) Extended Pierce’s Lemma (see [44]): Let r, η > 0. There exists a constant κd,r,η ∈ (0,+∞)
such that, for any random vector X : (Ω,A,P)→ Rd,

∀n ≥ 1, er,n(X) ≤ κd,r,ησr+η(X)n−
1
d (2.6)

where, for every p ∈ (0,+∞), σp(X) = inf
a∈Rd

‖X − a‖p is the Lp-standard deviation of X.

An important property shared by quadratic L2-optimal quantizers is stationarity. A quanti-
zation grid Γ is said to be stationary iff the boundaries of the Voronoï partitions are P -negligible
and

X̂Γ = E
(
X | X̂Γ). (2.7)

In fact, any quadratic optimal quantizer (w.r.t. the Euclidean norm) has P -negligible boundaries
(see Proposition 4.2 in [32]). This property is very important in most applications, especially
because most algorithms devised to compute optimal quantizers are based on this stationarity
property, even if not all stationary quantizers are optimal. Its importance is also emphasized
in the quantization-based numerical integration, this topic is explained in details in the following.

Optimal quantizers are used in numerical integration to approximate expectations of the
form Ef(X) for a random variable X and a continuous function f . Since the Lr-quantization
error ‖X − X̂Γ‖r converges to 0, then X̂Γ converges to X in Lr and hence in distribution. So,
one approximates Ef(X) by

Ef(X̂Γ) =
n∑
i=1

pni f(xi)

where pni = P(X ∈ Ci(Γ)), i = 1, . . . , n, are the weights of the Voronoï cells corresponding to
the optimal quantizer Γ = {x1, . . . , xn} of size n of X. Upper bounds for the error induced by
this type of approximation have been established for stationary optimal quantizers, depending
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on the regularity of the function f (see [42, 56, 57]). For example, if f is a Lipschitz continuous
function with Lipschitz coefficient [f ]Lip and Γ is any grid, then∣∣Ef(X)− Ef(X̂Γ)

∣∣ ≤ [f ]Lip‖X − X̂Γ‖1 ≤ [f ]Lip e1(X,Γ) ≤ [f ]Lip e2(X,Γ).

If, furthermore, Γ is a stationary quantizer for X or P , then, if f is differentiable with an
α-Hölder gradient ∇f , one has (see [57] for example)

∣∣Ef(X)− Ef(X̂Γ)
∣∣ ≤ 1

1 + α
[∇f ]α‖X − X̂Γ‖1+α

1+α.

In particular, if ∇f is Lipschitz continuous, then

∣∣Ef(X)− Ef(X̂Γ)
∣∣ ≤ 1

2[∇f ]Lip‖X − X̂Γ‖22.

2.1.1 Construction of optimal quantizers

Let P be a probability defined on (Rd,B(Rd)) and let X be a random variable with distribution
P . Most devised algorithms for designing (quadratic) optimal quantizers of X or its distribution
P are based on the differentiability of the distortion function and on the stationarity property
(2.7). In fact, the following Proposition makes up the starting point of the numerical methods
to compute optimal quantizers in the quadratic case.

Proposition 2.1.2. Let X ∈ L2(P ) be a random variable such that card(supp(P)) ≥ n. Any
grid Γ minimizing the quadratic distortion function G2

n associated to X is a stationary quantizer
of X.

Furthermore, it has been proved, in [39, 73], that if d = 1 and the probability density function
of X is log-concave, then there exists a unique stationary quantizer of X and this quantizer is
a global minimum of the distortion function.

Newton-Raphson zero search algorithm This is a deterministic procedure used if the
probability distribution is known explicitly. Assume that the distribution P of X is absolutely
continuous with respect to the Lebesgue measure with continuous density ϕ. The Lr-optimal
quantizer is obtained as follows: Denoting x = (x1, . . . , xn) the grid to build, one has

x[l+1] = x[l] −
(
∇2Grn(x[l])

)−1
∇Grn(x[l])

starting at x[0] belonging to the convex hull of the support of X, where ∇2Grn(x) is the Hessian
matrix of Grn. This can be improved by using the Levenberg-Marquardt algorithm

x[l+1] = x[l] −
(
∇2Grn(x[l]) + λlId

)−1
∇Grn(x[l])

for an appropriate choice of the “damping” coefficients λl.
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Competitive Learning Vector Quantization (CLVQ) This is a stochastic gradient de-
scent algorithm used for the computation of d-dimensional quantizers for d ≥ 1, also known
as k-means algorithm. In higher dimensions in the quadratic case, one takes advantage of the
representation of G2

n as an expectation and switches to the CLVQ algorithm defined by the
following recursion

x[l+1] = x[l] − γl+1
(
1X∈Ci(x([l])(x

[l]
i −X)

)
1≤i≤n

starting at x[0] belonging to the convex hull of the support of X, where (γl)l≥1 is a sequence of
step parameters satisfying

∑
l≥1 γl = +∞ and

∑
l≥1 γ

2
l < +∞.

Lloyd’s algorithm This is a fixed-point search based directly on the stationarity property.
In the one-dimensional case, it is a deterministic procedure used if the probability distribution
is known explicitly and defined by

x
[l+1]
i =

E
(
X1X∈Ci(x[l])

)
P
(
X ∈ Ci(x[l])

) .
starting at x[0] belonging to the convex hull of the support of X.

Randomized Lloyd’s algorithm In higher dimensions, the procedure above becomes in-
tractable so one switches to the randomized Lloyd’s algorithm. The expectations and probabil-
ities are computed by a Monte Carlo simulation of size M as follows

x
[l+1]
i =

∑M
m=1X

m1Xm∈Ci(x[l])

card
(
Xm ; Xm ∈ Ci(x[l])

) (2.8)

starting at x[0] belonging to the convex hull of the support of X, where (Xm)1≤m≤M areM i.i.d.
copies of X.

For further details on the above procedures, we refer to [56, 57]. Note that highly ac-
curate quantization grids of N (0; Iq) distributions for dimensions d = 1 up to 10 and regu-
larly sampled sizes from N = 1 to 1 000 can be downloaded from the quantization website
www.quantize.maths-fi.com (for non-commercial purposes).

For some few scalar probability distributions, there exists closed or semi-closed forms for
optimal quantization grids. For example, the optimal quantizer Γn of size n of the Uniform
distribution U([0, 1]) is given by

Γn =
{2i− 1

2n , i = 1, . . . , n
}
,

and semi-closed forms were given in [29, 32] for the exponential, power, inverse power and
Laplace distributions.

In the two-dimensional framework, a deterministic approach to optimize quadratic quantiz-
ers is developed in [52]. It relies on the approximation of two-dimensional integrals over convex
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polygons by very effective numerical quadrature formulas.

For higher dimensions, stochastic optimization procedures may become too expensive and
computationally too demanding. When the target law is a tensor product of its independent
marginal laws, one can rely on product quantization instead of standard multi-dimensional
procedures. It consists in obtaining multi-dimensional quantizers as a result of the tensor product
of one-dimensional sequences, already computed by one of the algorithms cited above.

2.2 Greedy quantization
When the dimension d increases, the search of a solution to the quantization problem (2.4) be-
comes more complicated and computationally too demanding. Therefore, one needs to introduce
a sub-optimal solution which is easier to compute, as long as the rate of convergence remains
similar to that of optimal quantizers. This solution is provided by greedy vector quantization.

2.2.1 Principle and existing results

Let X be a random variable with probability P defined on
(
Rd,B(Rd)

)
. Greedy vector quanti-

zation has first been introduced and investigated in [12] for compactly supported distributions
P (in a L1 sense) as a model of short term experiment planning versus long term experiment
planning represented by regular L1-quantization at a given level n. It has been then reintroduced
independently and studied extensively in [45] for various classes of distributions with possibly un-
bounded support. In both cases, it consists in determining, for a random vector (or distribution)
with finite r-th moment, a sequence (an)n≥1 in Rd which is recursively Lr-optimal step by step.
In other words, having already computed the first n points of the sequence a(n) = {a1, . . . , an},
one adds the (n+ 1)-the point of the sequence as a solution to

an+1 ∈ argminξ∈Rd er(a(n) ∪ {ξ}, X), (2.9)

with a(0) = ∅. Note that a1 is an/the Lr-median of the distribution P of X. A solution
to this problem always exists and is called an Lr-optimal greedy quantization sequence for X
or its distribution P . However, this solution may not be unique even if the Lr-median a1 is.
This is due to the dependency of greedy quantization on the symmetry of the distribution P .
This existence has been proved in full generality in [45] where the authors also showed that the
corresponding Lr-quantization error is decreasing w.r.t. the number n of points of the sequence
and it converges to 0 as n goes to infinity. The optimal n−

1
d -rate of convergence has also been

proved in [45]. It relies on the integrability of the b-maximal function associated to the Lr-
optimal greedy quantization sequence (an)n≥1 defined, for every b ∈ (0, 1

2) and every ξ ∈ Rd, by

Ψb(ξ) = sup
n∈N

λd
(
B(ξ, bdist(ξ, a(n)))

)
P
(
B(ξ, bdist(ξ, a(n)))

) . (2.10)

The theorem below deals with the Lr-rate optimality of greedy quantization sequences.

Theorem 2.2.1. Let X ∈ Lr(P ), r ∈ (0,+∞) and let (an)n≥1 be an Lr-greedy quantization
sequence of X. If there exists b ∈ (0, 1

2) such that the b-maximal function Ψb ∈ L
r
r+d (P ), then

lim sup
n

n
1
d er(a(n), X) < +∞.

27



The b-maximal function Ψb is also used to show that greedy quantization sequences satisfy
the distortion mismatch problem, i.e. the property that the optimal rate of Lr-quantizers holds
for Ls-quantizers for s > r. This problem was already investigated for optimal quantizers in [33]
and then in [65]. For greedy quantization sequences, the following theorem, established in [45],
solves the problem.

Theorem 2.2.2. Let s ∈ (r,+∞), X ∈ Lr(P ) and (an)n≥1 an Lr-optimal greedy quantization
sequence of X. Assume that Ψb ∈ L

s
r+d (P ) for some b ∈ (0, 1

2). Then, X ∈ Ls(P ) and

lim sup
n

n
1
d es(a(n), X) < +∞.

How to obtain greedy quantization sequences

Greedy quantization sequences are computed by implementing variants of usual algorithms of
computing optimal quantizers, such as Lloyd’s algorithm or CLVQ algorithm, but in a recursive
way. This means that at each iteration of the algorithm, one adds only one point to the previously
computed points of the sequence, then one implements an optimization procedure keeping in
mind that all the previously computed points are frozen. We give a brief idea on how to build
such greedy sequences in the quadratic case when d = 1 and when d ≥ 2.

One-dimensional setting When d = 1 and the distribution of X is absolutely continuous
with a continuous positive density ϕ, one can implement deterministic procedures based on the
knowledge of the cumulative distribution function FX and the first moment function KX of the
distribution of X. The implementation is as follows: at the n-th iteration, we freeze the n − 1
points of a(n−1) = {a1, . . . , an−1} of the sequence (an)n≥1 which have been already computed
and we sort them in an increasing order

a
(n−1)
1 < . . . < a

(n−1)
n−1 .

Then, we compute the inter-point local inertia given by

σ2
i :=

∫ a
(n−1)
i+ 1

2

a
(n−1)
i

|a(n−1)
i − ξ|2µ(dξ) +

∫ a
(n−1)
i+1

a
(n−1)
i+ 1

2

|a(n−1)
i+1 − ξ|2µ(dξ), i = 0, . . . , n− 1,

where a(n−1)
0 = −∞, a(n−1)

n = +∞ and a(n−1)
i+ 1

2
is the mid-point of [a(n−1)

i , a
(n−1)
i+1 ] :

a
(n−1)
1
2

= −∞, a
(n−1)
i+ 1

2
=
a

(n−1)
i + a

(n−1)
i+1

2 , a
(n−1)
n−1

2
= +∞.

We add a random point ā0 in the inter-point zone with the maximal local inertia (a(n−1)
i0

, a
(n−1)
i0+1 )

where i0 is the index such that
σ2
i0 = max

0≤i≤n−1
σ2
i .

This point ā0 is the starting point of the optimization procedure considered, which converges to
the n-th point an of the sequence. Several procedures are detailed in the first part of Chapter
4 such as Lloyd’s algorithm and CLVQ algorithm, and greedy quantization sequences of several
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Figure 2.2: Graph of ai 7→ pni where a(n) is an L2-greedy quantization sequence of Laplace(0, 1)
and (pni )1≤i≤n are the weights of the Voronoï cells for n = 100 (left) and n = 511 (right).

scalar probability distributions are computed by Lloyd’s algorithm. For an example, Figure 2.2
depicts the graph representing the weights of the Voronoï cells of the first n terms (n = 100, n =
511) of an L2-greedy quantization sequence of the Laplace distribution with parameters 0 and
1.

Two-dimensional setting We extend the deterministic variant of greedy algorithms to the
two-dimensional case in Chapter 4. We follow the same procedure as for the scalar distributions
and rely on highly effective quadrature formula to numerically compute the integrals necessary
for the construction of greedy quantization sequences. In Figure 2.3, we observe a deterministic
L2-greedy quantization sequence of the standard Gaussian distribution N (0, I2).

Multi-dimensional case In higher dimensions, deterministic procedures become too demand-
ing so one switches to stochastic procedures where the computation of the integrals is replaced
by large Monte Carlo simulations coupled with a nearest neighbor search. Randomized greedy
Lloyd’s algorithm and multi-dimensional CLVQ algorithm are explained in detail in Chapter 4.
However, these procedures can be very demanding due to the several integrals that need to be
computed. Although we explain, in Chapter 3, how greedy quantization allows a reduction of
the number of computations at each step, this still does not make the stochastic optimization
procedures easy to implement. An alternative is greedy product quantization where one relies on
one-dimensional greedy quantization sequences to compute multi-dimensional sequences when
the probability distribution can be written as a tensor product of its marginal laws. The multi-
dimensional sequence is obtained as a result of the tensor product of multiple one-dimensional
sequences. This is explained deeply in Chapters 3 and 4.
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Figure 2.3: Greedy quantization sequence of N (0, I2) obtained by a deterministic Lloyd’s algo-
rithm of sizes n = 6, 7, 11, 16, 18, 24, 28, 32, 39, 51, 86, 100 (starting from the upper left corner).

2.2.2 Contributions and new results

The first contribution of this thesis, in Chapter 3, is devoted to extending some theoretical
results of Lr-greedy quantization of a distribution P with finite r-th moment to a wider class of
distributions, mainly rate optimality and distortion mismatch results. An extensive numerical
study is also carried out to highlight the advantages of greedy quantization sequences, compared
mostly to the Monte Carlo and quasi-Monte Carlo methods. In Chapter 5, Ls-rate optimality
results of Lr-dilated greedy quantization sequences are established, inspired by similar results
for dilated optimal quantizers in [71].

Rate optimality and distortion mismatch (Chapter 3)

As already mentioned in Section 2.2.1, results on the rate of convergence of the greedy quan-
tization error and the distortion mismatch problem have been established in [45]. They were
based on the integrability of the b-maximal function Ψb defined by (2.10). In Chapter 3, based
on the submitted paper [24], we extend these results to a much larger class of distributions.

Let X be a random variable with probability P defined on
(
Rd,B(Rd)

)
. The key in our

study is to consider auxiliary probability distributions ν satisfying the following control on balls
with respect to an Lr-median a1 of P : we assume the existence of ε0 ∈ (0, 1] such that for every
ε ∈ (0, ε0), there exists a Borel function gε : Rd → [0,+∞) satisfying, for every x ∈ supp(P )

30



and every t ∈ [0, ε‖x− a1‖],
ν(B(x, t)) ≥ gε(x)Vd td. (2.11)

This class of auxiliary distributions will be the key tool for various theoretical studies of greedy
quantization sequences. Noting that the Lr-median a1 of P belongs to a(n) for every n ≥ 1 by
construction of the greedy quantization sequence, we obtain an upper bound of the form

∀n ≥ 2, er(a(n), P ) ≤ ϕr(ε)−
1
dV
− 1
d

d

(
r

d

) 1
d
(∫

g
− r
d

ε dP

) 1
r

(n− 1)−
1
d (2.12)

where Vd is the volume of the hyper-unit cube and ϕr(u) =
(

1
3r −u

r
)
ud. The proof of this result

relies on a new micro-macro inequality involving the auxiliary distributions ν.

One of the main contributions presented in Chapter 3 is the extension of the non-asymptotic
universal Pierce type results (2.6) for the rate of convergence of the Lr-greedy quantization
error to 0. This is achieved by specifying the measure ν and the function gε, satisfying (2.11),
in the general upper bound (2.12). For example, we can cite the following upper bound for the
Lr-quantization error: If

∫
|x|r+δdP (x) < +∞ for some δ > 0, then for every n ≥ 2,

er(a(n), P ) ≤ κGreedy,Pierce
d,δ,r σr+δ(P )(n− 1)−

1
d ,

for a finite constant κGreedy, Pierce
d,δ,r to be specified in Theorem 3.2.4, which relies on the measure

ν(dx) = γr,δ(x)λd(dx) where

γr,δ(x) = Kδ,r

(1 ∨ |x− a1|)d(1+ δ
r

)
and Kδ,r =

(∫
dx

(1 ∨ |x|)d(1+ δ
r

)

)−1

< +∞,

and the function
gε(x) = Kδ,r

(1 ∨ [(1 + ε)|x− a1|])d(1+ δ
r

)
, ε ∈

(
0, 1

3
)
.

A sharper result, but less explicit in terms of constants, is then stated (see Theorem 3.2.4) based
on distributions satisfying a “log”-integrability property of the form

∫
Rd |x|r(log+|x|)

r
d

+δdP (x) <
+∞.

Finally, a hybrid Zador-Pierce result is proved for almost radial non-increasing densities, i.e.
an upper bound that is non-asymptotic (Pierce-type (2.6)) with a controlling bound relying on
‖h‖ d

d+r
as in Zador’s Theorem (2.5). In other words, we establish an upper bound of the form

er(a(n), P ) ≤ C‖h‖ d
d+r

n−
1
d

for some real constant C where h is the density of the absolutely continuous component of P ,
supposed to be radial non-increasing. A function f : Rd → R+ is said to be almost radial non-
increasing on a set A, such that supp(P ) ⊂ A ⊂ Rd, w.r.t. some a ∈ A (see definition 3.2.6), if
there exists a norm ‖ · ‖0 on Rd and a real constant M ∈ (0, 1] such that

f(y) ≥Mf(x) for all x, y∈ A \ {a} for which ‖y − a‖0 ≤ ‖x− a‖0.
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For this purpose, we consider

ν = h
d
d+r∫

h
d
d+r dλd

.λd

and rely on a lower bound of ν(B(x, t)), where B(x, t) is the ball with center x ∈ Rd and radius
t > 0, established in Lemma 3.2.10 of Chapter 3.

The distortion mismatch problem for this larger class of probability distributions is solved
also by considering the same auxiliary distributions defined in (2.11). The results are given in
Section 3.3 and we cite the following error bound for s ∈ (r, d+ r)

es
(
a(n), P

)
≤ κGreedy

d,r,ε

(∫
g
− s
d+r−s

ε dP

) d+r−s
s(d+r)

(∫
g
− r
d

ε dP

) 1
d+r

(n− 2)−
1
d

for every n ≥ 3 and a finite positive constant κGreedy
d,r,ε defined later in Theorem 3.3.1.

Algorithmics and numerical observations

In the second part of Chapter 3 and in Chapter 4, several numerical experiments are carried out
in order to emphasize some interesting properties of one-dimensional greedy quantization se-
quences. Among others, we conclude numerically that, even though Lr-greedy sequences cannot
be optimal at each level n, they can still be sub-optimal in the sense that there exist sub-
sequences of a(n) which are Lr-optimal themselves. This was deduced by observing the graphs
representing the weights of the Voronoï cells of these sequences. We specify these sub-sequences
for the N (0, 1) and the U

(
[0, 1]

)
distributions and conclude with a conjecture concerning uni-

modal densities symmetric w.r.t. their Lr-median.

From another point of view, when working on the unit cube, it is natural to compare greedy
quantization sequences to sequences with low discrepancy commonly used in quasi-Monte Carlo
(QMC) methods. In fact, with quantization-based numerical integration, one approximates ex-
pectations of the form Ef(X), for a Lipschitz continuous function f and a random variable X,
with an O(n−

1
d ) rate of convergence to 0. While the approximation by the quasi-Monte Carlo

method yields an O
(

logn
n

1
d

)
rate of convergence, this is due to Proïnov’s Theorem (see [70] or

Theorem 3.4.1 in Chapter 3). The price to pay for the absence of the (logn)-factor with greedy
quantization is the fact that the weights of the Voronoï cells corresponding to the greedy se-
quence a(n) are not uniform (i.e. equal to 1

n) which induces a higher complexity when naïvely
implementing the resulting quadrature formulas. We show, in the second part of Chapter 3,
how the recursivity of greedy quantization allows to reduce the number of computations so that
greedy quantization sequence and QMC become equivalent in terms of complexity. Moreover,
this character allows us to keep the asset of a sequence which is a recursive formula for cubatures,
hence making of greedy quantization an advantageous component in the face of Quasi-Monte
Carlo methods, since the error bounds are lower by a log(n) factor.

To be more precise, during the procedure of building the greedy sequence, we notice that,
at each iteration, one adds a single point to the sequence while the rest remain frozen. So, the
Voronoï cells, which are far from the new added point, remain untouched and unchanged. This
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means that their weights, as well as the corresponding inter-point local inertia, do not need
to be computed at each iteration. This remark allows to avoid a huge number of unnecessary
computations at each iteration of the algorithm. Besides the dramatic reduction in the com-
putational cost, this recursive character of greedy quantization leads us to deduce an iterative
recursive formula for cubature in the one and multi-dimensional frameworks. When d = 1, we
approximate Ef(X) by In(f) given by

In(f) = In−1(f)− pn−
(
f(a(n)

i0−1)− f(a(n)
i0

)
)
− pn+

(
f(a(n)

i0+1)− f(a(n)
i0

)
)
,

where a(n)
i0

is the point added to the greedy sequence at the n-th iteration, a(n)
i0−1 and a(n)

i0+1 are
the points lower and greater than a(n)

i0
and

pn− = P
([
a

(n)
i0− 1

2
, a

(n)
mil
])

and pn+ = P
([
a

(n)
mil, a

(n)
i0+ 1

2

])

where a(n)
i0± 1

2
=

a
(n)
i0

+a(n)
i0±1

2 and a(n)
mil =

a
(n)
i0+1 + a

(n)
i0−1

2 , with a0 = −∞ and an = +∞.
This formula can be generalized to the multidimensional framework (see (3.20)) when consider-
ing “product” greedy sequences, as explained in Chapter 3.

Moreover, note that there exists a relation between the discrepancy of a sequence Ξ and the
quantization error induced by this sequence with respect to the Uniform distribution. Based on
Proïnov’s Theorem (see [70] and Theorem 3.4.1 in Chapter 3), it is given by

e1
(
Ξ,U([0, 1]d)

)
≤ D∗n(Ξ)

1
d

where D∗n(Ξ) is the star-discrepancy of the sequence Ξ = (ξi)1≤i≤n at order n defined by

D∗n(Ξ) = sup
u∈[0,1]d

∣∣∣ 1
n

n∑
i=1

1ξi∈[0,u]d − λd([0, u]d)
∣∣∣.

This led us to carry out a study in view of comparison between greedy quantization sequences
and sequences with low discrepancy. Two major directions are followed:

• Computing the discrepancy of greedy sequences and comparing it to that of low dicrepancy
sequences,

• Treating low discrepancy sequences as (sub-optimal) quantization sequences, i.e. assigning
to them a Voronoï diagram and non-uniform weights, in order to compare their perfor-
mance with greedy quantization sequences.

Various numerical simulations are made and some conclusions are drown and detailed in the
end of Chapter 3 and in Chapter 4. Let us say in short that, when d = 1, greedy quantization
sequences can be used as low discrepancy sequences, and, they are better performing than low
discrepancy sequences treated as quantization sequences. However, when d ≥ 2, we don’t have
such optimistic results for standard greedy quantization sequences in terms of low discrepancy.
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Ls-rate optimality of dilated/contracted Lr-greedy quantization sequences

In Chapter 5, we investigate the Ls-rate optimality of dilated/contracted Lr-greedy quantiza-
tion sequences. This study is inspired by similar results obtained for Lr-optimal quantizers in
[71], where Lr-optimal quantizers, once dilated or contracted in an appropriate way, turn out
to remain Ls-rate optimal, i.e. having an O(n−

1
d ) rate of decay, for s > r. This may have

important consequences for practical application since, usually, one has only access to quadratic
optimal quantizers (like for the N (0, Id) distribution, d = 1, . . . , 10, on the quantization website
www.quantize.maths-fi.com or for other (1D) distributions for which semi-closed forms are avail-
able (see [29, 32] for example)). One can cite, on one hand, the numerical integration field where
the error bounds of quantization-based cubature formulas often involve the Ls-quantization er-
ror induced by Lr-optimal quantizers, s > r, which needs to be handled. On the other hand,
the dilated Lr-optimal quantizers turn out to be good candidates for the initialization of the
algorithms of designing Ls-quantization sequences (see [71] for further details on this topic).

The purpose of Chapter 5 is to establish similar results for Lr greedy quantization sequences.
To do so, we rely on auxiliary distributions, satisfying a similar criteria to (2.11). On our way,
we also generalize the seminal results from [71] taking advantage of our approach based on aux-
iliary functions. Let us be more precise.

Let X be a random variable with probability P defined on
(
Rd,B(Rd)

)
and let a(n) be a

corresponding Lr-optimal greedy quantization sequence of size n, r ≥ 1. The Lr-dilated or
contracted greedy quantization sequence is denoted by a(n)

θ,µ defined, for every θ > 0 and µ ∈ Rd,
by a(n)

θ,µ = {µ+θ(ai−µ), ai ∈ a(n)}. Likewise, fθ,µ denotes the function fθ,µ(x) = f(µ+θ(x−µ)).
And, if X ∼ P = f.λd, then Pθ,µ denotes the probability distribution of the random variable
X−µ
θ + µ and dPθ,µ = θdfθ,µ.dλd. We rely on a micro-macro inequality involving some auxiliary

distributions and consider auxiliary distributions satisfying the control on balls (2.11) to obtain
two main non-asymptotic Ls-rate optimality results depending on the value of s.
• Let s ∈ (r, d+ r) and P be with finite polynomial order at any order. Assume∫

{f>0}

(
fθ,µ
f

) (d+r)(r+δ−η)
(d+r−s)(r+δ−η)−ds

fdλd < +∞. (2.13)

Then, for every Borel function gε, ε ∈ (0, 1
3), satisfying (2.11) and every n ≥ 3,

es(a(n)
θ,µ, P ) ≤ θ1+ d

sκGreedy,Pierce
θ,µ

∫
{f>0}

(
fθ,µ
f

) (d+r)(r+δ−η)
(d+r−s)(r+δ−η)−ds

fdλd

 1
|q|q′(d+r)

σr+δ(P )(n− 2)−
1
d .

(2.14)
where q = −s

d+r−s , q
′ = r+δ−η

r+δ−η−d|q| , p
′ = q′

q′−1 , er+δ(a
(1), P ) = σr+δ(P ) < +∞ denotes the

Lr+δ-standard deviation of P and

κGreedy,Pierce
θ,µ = 2

1
d

+ r+δ
r+d (1+ 1

|q|p′ )V
− 1
d

d

(r
d

) r
d(d+r) min

ε∈(0, 1
3 )

[
(1 + ε)ϕr(ε)−

1
d

] (∫
(1 ∨ |x|)

r+δ
r+δ−η dx

) 1
d

.

• Let s < r. Assume ∫
f−

s
r−s f

r
r−s
θ,µ dλd < +∞.
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Then, for every distribution ν, every function gε satisfying (2.11) and every n ≥ 3,

es(a(n)
θ,µ, P ) ≤ κ̃Greedy,Pierce

θ,µ θ1+ d
s

(∫
{f>0}

f−
s
r−s f

r
r−s
θ,µ dλd

) r−s
sr

σr+δ(P )(n− 2)−
1
d (2.15)

where er+δ(a(1), P ) = σr+δ(P ) < +∞ and

κ̃Greedy,Pierce
θ,µ = 21+ 1

d
+ δ
rV
− 1
d

d

(r
d

) r
d(d+r) min

ε∈(0, 1
3 )

[
(1 + ε)ϕr(ε)−

1
d

] (∫
(1 ∨ |x|)−d(1+ δ

r
)dx

)− 1
d

.

The above results are avatars of Pierce’s Lemma (2.6). A particular study for almost radial
non-increasing densities yields similar results under a particular moment assumption on P .

After showing that an Lr-dilated or contracted greedy quantization sequence a(n)
θ,µ is Ls-rate

optimal under one of the conditions mentioned above, depending on the values of s, we deter-
mine the set of parameters (θ, µ) that satisfies these conditions. In general, the optimal value
for µ∗ is the Lr-median of the distribution P . As for θ, this problem depends entirely on the
distribution P . We lead this study for several particular density distributions and determine,
for each one, the values of θ for which the dilated sequence is Ls-rate optimal. Moreover, in
some cases, we show that the sequence α(n)

θ∗,µ satisfies the so-called “empirical measure Theorem”
for a particular value θ∗ of θ that will be determined. This particular value θ∗ allows the lower
bound (5.6) induced by α(n)

θ∗,µ to attain the sharp constant in Zador’s Theorem.

For the multivariate Normal distribution N (m, Id), this value is θ∗ =
√

s+d
r+d , for the hyper

exponential distributions with parameters α and λ, we obtain θ∗ =
(
s+d
r+d

) 1
α and, for the hyper

gamma distribution with parameters α, β and λ, the dilated/contracted sequence satisfies the

empirical measure Theorem for θ∗ =
(
s+d
r+

) 1
α , only when β = d+r

d(d+s) .

2.3 Recursive quantization and application to reflected BSDEs

2.3.1 Principle and existing results

Markovian quantization and recursive quantization have been originally introduced in [59] and
[63] to produce spatial discretization schemes of Markov chains, typically time discretization
schemes of stochastic processes like diffusion processes. Recursive quantization is a version of
Markovian quantization which allows in dimension 1, but also in medium dimensions, a fast
“embedded deterministic optimization” of the quantization grids involved in these numerical
schemes. It has been first studied deeply in [63] for the discretization of an Rd-valued Eu-
ler scheme of a diffusion process where the authors proposed a fast algorithm for building, in
a deterministic way, the quantization tree in a one-dimensional framework. In [51], recursive
quantization was extended to higher order schemes, always in the one-dimensional framework.
For problems in higher dimensions, product recursive quantization has been introduced and used
in [15, 28] among others.
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Let us consider a Brownian diffusion process (Xt)t≥0 taking values in Rd and solution to

Xt = X0 +
∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs , X0 = x0 ∈ Rd, (2.16)

where b : [0, T ]×Rd → Rd is the drift coefficient, σ : [0, T ]×Rd →M(d, q) is the matrix diffusion
coefficient and (Wt)t≥0 is a q-dimensional Brownian motion defined on the probability space
(Ω,A,P) equipped with its augmented natural filtration (Ft)t≥0 where Ft = σ(Ws, s ≤ t, NP),
NP denotes the class of all P-negligible sets of A. The Euler scheme associated to the process
(Xt)t∈[0,T ], with the uniform mesh tk = k∆, k ∈ {0, . . . , n} and timestep ∆ = T

n , is recursively
defined by

X̄n
tk+1 = X̄n

tk
+ ∆b(tk, X̄n

tk
) + σ(tk, X̄n

tk
)
(
Wtk+1 −Wtk

)
, X̄n

t0 = X0 = x0 ∈ Rd. (2.17)

Recursive quantization (as a Markovian quantization) consists in building a Markov chain
having values into a grid (or quantizer) Γk of size Nk of the discrete Euler scheme X̄tk at time tk.
So, our goal is to optimize the grids Γk in a recursive way as a kind of “embedded” procedure.
By “embedded” we mean that this optimization is performed “step by step” starting from time
t0 = 0 to time tn = T . First, we denote by

Fk(x, εk+1) = x+ ∆b(tk, x) +
√

∆σ(tk, x)εk+1

the Euler operator with step ∆, where (εk)0≤k≤n is an i.i.d. sequence of random variables with
distribution N (0, Iq), in other words, εk =

√
n
T

(
Wtk+1 −Wtk

)
. Note that this operator is with

Normal distribution
Fk(x, εk+1) ∼ N (mk,Σk)

where mk = x + ∆b(tk, x) and Σk =
√

∆σ(tk, x). The recursive quantization (X̂Γk
tk

)0≤k≤n of
(X̄tk)0≤k≤n is performed via the following recursion: Starting at X̂t0 = X̄t0 = x0, X̃tk = Fk−1(X̂Γk−1

tk−1
, εk),

X̂Γk
tk

= ProjΓk(X̃tk), ∀k = 1, . . . , n (2.18)

where Γk is an optimal quantizer of X̃tk of size Nk for every k ∈ {1, . . . , n}.

Upper bounds for the quantization error induced by the approximation of X̄tk by X̂Γk
tk

have
been established in [63] in the quadratic framework where the authors showed that, under some
Lipschitz assumptions (in x, uniformly in t ∈ [0, 1]) on b and σ, one has, for every k ∈ {0, . . . , n},

∥∥X̄tk − X̂
Γk
tk

∥∥
2 ≤ K

k∑
l=1

clN
− 1
d

l

for finite positive constants K and cl. For simplicity, we denote X̂tk instead of X̂Γk
tk

.

The construction of recursive quantizers X̂tk of X̄tk is mainly reduced to the computation
of optimal quantization grids Γk of X̃tk of size Nk. In the quadratic framework, it is performed
by standard deterministic algorithms, such as Lloyd’s algorithm or CLVQ. In this thesis, we
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will mainly use the Lloyd algorithm to compute the grids (Γk)1≤k≤n in a recursive way. In
fact, at time tk+1, the grid Γk+1 = {xk+1

1 , . . . , xk+1
Nk+1
} is computed as a function of the grid

Γk = {xk1, . . . , xkNk} already computed at the previous time tk.

The main advantage of this approach is the preservation of the Markov property. The
distribution of the Markov chain (X̂tk)0≤k≤n is entirely characterized by the initial distribution
and the transition matrices Pk = (pkij)i,j , for every k ∈ {1, . . . , n}, which constitute a very
important tool in various applications. The transition probability of (X̂tk)0≤k≤n from xki to
xk+1
j between times tk and tk+1 is given by

pkij = P
(
X̃tk+1 ∈ Cj(Γk+1) | X̃tk ∈ Ci(Γk)

)
= P

(
Fk(xki , εk+1) ∈ Cj(Γk+1)

)
where

(
Ci(Γk)

)
1≤i≤Nk

is a Voronoï partition associated to the quantizer Γk at time tk. The
weights of the Voronoï cells (pk+1

j )1≤j≤Nk+1 are obtained via the classical (discrete time) forward
Kolmogorov equation. For every j ∈ {1, . . . , Nk+1}, one has

pk+1
j = P

(
X̃tk+1 ∈ Cj(Γk+1)

)
=

Nk∑
i=1

pki P
(
Fk(xki , εk+1) ∈ Cj(Γk+1)

)
.

In the one-dimensional setting, the transition weights pkij are computed based on the cumulative
distribution function of the Gaussian distribution. When the dimension d grows, one relies on
Monte Carlo simulations for these computations.

In Chapter 7, we give details on how to compute the recursive quantization of specific
models in the one-dimensional case, like the Black-Scholes model and the CEV model, discretized
following either an Euler scheme or a Milstein scheme. In Figure 2.4, we present the functions
xki 7→ pki , k = 1, . . . , n, where (xki )1≤i≤Nk is the recursive quantization grid of a diffusion process
following a Black Scholes model and discretized following an Euler scheme, i.e.

X̄tk+1 = X̄tk + r∆X̄tk + σ
√

∆X̄tk εk+1 := Fk(X̄tk , εk+1)

We consider n = 30 time steps and design grids of size Nk = 50, for every k ∈ {1, . . . , n}. We
consider

T = 1, X0 = 100, r = 0.006, σ = 0.2.

2.3.2 Contributions of this thesis

In Chapter 6, we establish Lp-error bounds for recursive quantization for a general Markov
model of the form Xk+1 = Fk(Xk, εk+1), (εk)1≤k≤n being a sequence of i.i.d. random variables.
We extend the results obtained in a L2-framework in [63] and estimate Lp-error bounds for
p ∈ (1, 2 + d). We consider that the grids Γk, in (2.18), are quadratic optimal quantizers of
X̃tk . This is important because the stationarity property (2.7) satisfied by quadratic optimal
quantizers will be necessary in our study.
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Figure 2.4: Representation of xki 7→ pki where (xki )1≤i≤Nk is the recursive quantization grid, for
every k ∈ {1, . . . , n}, in a Black-Scholes model (* corresponds to k = 2 and ◦ corresponds to
k = n = 30).

Since we are estimating Lp-upper bounds for recursive quantization using L2-optimal quan-
tizers of X̃tk , we find ourselves in a position where we need to handle Lp-quantization error
of an L2-optimal quantizer. For this, we rely on results on the distortion mismatch problem,
also known as the (Lr - Ls) problem, recalled in Theorem 6.2.2. Moreover, we prove and use a
technical lemma which makes possible to control the expectation of the form E|a+A

√
hZ|r for

some r ≥ 2, a ∈ Rd, h > 0, A ∈ M(d, q,R) and Z ∈ LrRq(P) an Rq-valued random vector such
that E[Z] = 0, namely

E|a+A
√
hZ|r ≤ |a|r

(
1 + 2(r−3)+(r − 1)(r − 2)h

)
+ 2(r−3)+(r − 1)h‖A‖rE|Z|r

(
1 + r

2h
r
2−1

)
.

This inequality will be of great use in proving several theoretical results to establish error bounds.

Having all the necessary tools, we show that the Lp-recursive quantization error of the Euler
scheme is bounded by

∀k ∈ {0, . . . , n} ‖X̄tk − X̂tk‖p ≤ K
k∑
l=1

Cl‖X̂tl − X̃tl‖p ≤ K
′
k∑
l=1

ClN
− 1
d

l (2.19)

where Nl is the size of the quantizer Γl of X̃tl and K,K ′ and Cl are positive finite constants to
be precised later in Theorem 6.2.1 depending on p, d, b, σ and εk.

When the dimension d increases, an interesting substituting technique is product recursive
quantization. However, it still becomes very demanding for very high dimensions. We present
and investigate an alternative, in the first part of Chapter 6, which is the hybrid recursive
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quantization. It consists in the quantization of the white Gaussian noise in (2.18) so that the
hybrid recursive quantization of X̄tk is given by the following recursive scheme{

X̃tk = Fk−1(X̂tk−1 , ε̂k),
X̂tk = ProjΓk(X̃tk), ∀k = 1, . . . , n.

where (ε̂k)k is now a sequence of optimal quantizers of the Normal distribution N (0, Iq), which
are already computed and kept off line. Based on the same tools used to establish upper bounds
for the standard recursive quantization, we establish Lp-error bounds for the hybrid recursive
quantization for p ∈ (1, 2 + d), namely

‖X̄tk − X̂tk‖p ≤ K
k∑
l=1

CX(NX
l )−

1
d +K

k∑
l=1

Cε(N ε
l )−

1
d

where NX
l is the size of the optimal quantizer of X̃tl , N ε

l is the size of the optimal quantizers
of the Gaussian random vector and K,CX , Cε some finite positive constants. In practice, since
the εk are i.i.d., we build corresponding quantizers ε̂k of the same size N ε

k = N ε for every
k ∈ {1, . . . , n}.

2.3.3 Application to the discretization of Reflected Backward Stochastic Dif-
ferential equations

Recursive quantization is a space discretization technique used in financial applications. We can
cite the pricing in a Stochastic volatility model (see [15]) and the pricing of a Basket of options
(see [28]). In Chapter 6, we rely on recursive quantization for the space discretization of the
solution of a reflected Backward Stochastic Differential Equation (RBSDE). Approximations of
these equations have already been established by several methods. For example, we can cite
the regression methods with Monte Carlo simulations (see [9]), Picard iterates combined with a
decomposition in Wiener chaos (see [17]) and optimal quantization (see [3, 4, 37]).

We consider the RBSDE with maturity T

Yt = g(XT ) +
∫ T

t
f(s,Xs, Ys, Zs)ds+KT −Kt −

∫ T

t
Zs.dWs , t ∈ [0, T ], (2.20)

Yt ≥ h(t,Xt) and
∫ T

0

(
Ys − h(s,Xs)

)
dKs = 0.

where the forward process (Xt)t∈[0,T ] is a diffusion given by (2.16) and f, g and h are Lipschitz
continuous functions. The solution of this equation is a triplet (Yt, Zt,Kt) and such a solution
exists and is unique as established in [25] under some appropriate Lipschitz assumptions. How-
ever, this solution does not admit a closed form in general. So, one needs to approximate it by
time-space discretization schemes. The time discretization scheme (Ȳ n

t , ζ̄
n
t ) associated to (Yt, Zt)

is based on the Euler scheme associated to the forward process (Xt)t∈[0,T ]. Several choices are
possible (see [3, 9, 48]). Our choice in this work is to plug the conditional expectation inside the
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driver f as follows

Ȳ n
T = g(X̄n

T )
Ỹ n
tk

= E(Ȳ n
tk+1 |Ftk) + ∆f

(
tk, X̄

n
tk
,E(Ȳ n

tk+1 |Ftk), ζ̄ntk
)
, k = 0, . . . , n− 1,

ζ̄ntk = 1
∆E

(
Ȳ n
tk+1(Wtk+1 −Wtk) | Ftk

)
, k = 0, . . . , n− 1,

Ȳ n
tk

= Ỹ n
tk
∨ h(tk, X̄n

tk
) , k = 0, . . . , n− 1.

Such schemes were considered for BSDE (without reflection) in [65] or for doubly reflected BSDE
in [37], whereas in most papers in the literature, the expectation is usually applied outside the
driver f . In some seminal papers motivated by American options, the driver f does not depend
on the process Zt.

This scheme cannot be simulated due to the presence of conditional expectations, so we are
led, like our predecessors, to perform an additional space discretization based here on a recursive
quantization of the forward process X̄tk . The fully discretized resulting scheme reads

Ŷ n
T = g(X̂T )

ζ̂ntk = 1
∆E

(
Ŷ n
tk+1(Wtk+1 −Wtk) | Ftk

)
, k = 0, . . . , n− 1,

Ŷ n
tk

= max
(
hk(X̂tk) , E

(
Ŷ n
tk+1 | Ftk

)
+ ∆f

(
tk, X̂tk ,E

(
Ŷ n
tk+1 | Ftk

)
, ζ̂ntk

))
, k = 0, . . . , n− 1,

We establish upper bounds for the error induced by both time and space discretizations
mentioned above.

Time discretization For the time discretization error, we establish L2-upper bounds. To
this end, we introduce a time continuous process which extends Ȳtk , based on the martingale
representation Theorem. This leads to defining a càdlàg process Ỹt on [tk, tk+1) and a làdcàg
process Ȳt on (tk, tk+1], by

Ỹt = Ȳt = Ȳtk+1 − (tk+1 − t)fk
(
X̄tk ,E(Ȳtk+1 | Ftk), ζ̄tk

)
−
∫ tk+1

t
Z̄sdWs, (2.21)

leading to the following representation

Ỹt = ȲT +
∫ T

t
f(s, X̄s,E(Ȳs̄ | Fs), ζ̄s) ds−

∫ tk+1

t
Z̄sdWs + K̄T − K̄t

where s = tk and s̄ = tk+1 if s ∈ (tk, tk+1), Z̄t is a process such that E sup[0,T ] |Z̄s|2 < +∞ and
K̄tk is an increasing càdlàg process, null at time 0, defined by

K̄tk =
k∑
j=0

(
hj(X̄tj )− Ỹtk

)
+

and such that K̄t = K̄tk for every t ∈ (tk, tk+1). This leads to the following upper bound for the
time discretization error, for every k ∈ {1, . . . , n},

E|Ytk − Ȳtk |
2 ≤ Cb,σ,f,h,T

(
∆ +

∫ T

0
E|Zs − Zs|2ds

)
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where Cb,σ,f,h,T is a positive real constant. This shows classically that the convergence rate
of the time discretization scheme is ruled by the pathwise regularity of the process (Zt)t∈[0,T ]
(which can be analyzed by PDE methods when b and σ are smooth enough).

Space discretization As concerns space discretization, we establish Lp-error bounds for p ∈
(1, 2 + d). It is given, for every k ∈ {1, . . . , n}, by

‖Ȳtk − Ŷtk‖p ≤ K‖ max
k≤l≤n

∣∣X̄tl − X̂tl |
∥∥
p

for a positive finite constant K defined later in Chapter 6. The quantities
∥∥X̄tl − X̂tl

∥∥
p
are

recursive quantization errors already upper-bounded in (2.19).

From an algorithmic point of view, one shows by a backward induction that there exists
functions ŷk : Γk 7→ R, k ∈ {0, . . . , n}, such that Ŷk = ŷk(X̂k), for every k ∈ {0, . . . , n},
recursively defined by the following Backward Dynamic Programming Principle (BDPP){

ŷn = hn

ŷk = max
(
hk, P̂kŷk+1 + ∆fk

(
., P̂kŷk+1, Q̂kŷk+1

))
, k = 0, . . . , n− 1,

where

P̂kŷk+1(X̂k) = E
(
ŷk+1(X̂k+1) | Ftk

)
and Q̂kŷk+1(X̂k) = 1√

∆
E
(
ŷk+1(X̂k+1)εk+1 | Ftk

)
.

Likewise, there exists functions ẑk such that ζ̂k = ẑk(X̂k), defined by

ẑk = Q̂kŷk+1.

Relying on this BDPP and on the recursive quantization X̂Γk
tk

of X̄tk , Γk = {xk1, . . . , xkNk},
we approximate the solution Y0 of the RBSDE at time 0 by the initial value ŷ0 of the scheme{

ŷn(xni ) = hn(xni ) , i = 1, . . . , Nn,

ŷk(xki ) = max
(
hk(xki ), α̂k(xki ) + ∆fk

(
xki , α̂k(xki ), β̂k(xki )

))
, i = 1, . . . , Nk,

where

α̂k(xki ) =
Nk+1∑
j=1

ŷk+1(xk+1
j )pkij and β̂k(xki ) = 1

∆

Nk+1∑
j=1

ŷk+1(xk+1
j )πkij

with
πkij =

√
∆
pki

E
(
εk+11{X̂k+1=xk+1

j , X̂k=xki }

)
=
√

∆E
(
εk+11{Fk(xki ,εk+1)∈Cj(Γk+1)}

)
.

We illustrate this with several one-dimensional and multi-dimensional numerical examples at
the end of Chapter 6 and in Chapter 7. In the one-dimensional setting, we consider the pricing of
an American call option in a market with bid-ask spread on interest rates and of an American put
option under the historical probability, both examples are considered in both a Black-Scholes
model and a CEV model. As for the multi-dimensional setting, we price a two-dimensional
American exchange option in a Black-Scholes model and consider a multi-dimensional example
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due to J.F. Chassagneux.
Moreover, we consider the pricing of American put options for d = 1 and d = 2. We show
that estimates of the Lp-error bounds induced by the corresponding space discretization can be
obtained directly. In fact, since both (X̄tk)0≤k≤n and (X̂tk)0≤k≤n are Markov chains, Ȳtk and
Ŷtk can be written as the Snell envelopes: for every k ∈ {1, . . . , n},

Ȳtk = P-esssup
{
E (hτ (X̄τ ) | Fτ ), τ ∈ {tk, . . . , T}Fτ -stopping time

}
and

Ŷtk = P-esssup
{
E (hτ (X̂τ ) | Fτ ), τ ∈ {tk, . . . , T}Fτ -stopping time

}
where h(x) = max(K − x, 0). Consequently, one has, for every k ∈ {1, . . . , n},

‖Ȳtk − Ŷtk‖p ≤ [h]Lip
∥∥max
l≥k
|X̄tl − X̂tl |

∥∥
p
.

In all the examples, we compare the results obtained by recursive quantization with others
types of quantization. If d = 1, we compare recursive quantization to optimal, greedy and
greedy recursive quantization. And, if d > 1, we rely on hybrid recursive quantization, instead
of standard recursive quantization, and compare the results to those obtained by optimal and
greedy product quantization. All the mentioned methods are detailed in Chapters 6 and 7.
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Chapter 3

New approach to greedy vector
quantization

This chapter corresponds to the paper “New approach to greedy vector quantization” submitted
to Bernoulli journal and accessible on arXiv (http://arxiv.org/abs/2003.14145). It is a joint
work with Harald Luschgy and Gilles Pagès.

Abstract We extend some rate of convergence results of greedy quantization sequences already
investigated in 2015. We show, for a more general class of distributions satisfying a certain
control, that the quantization error of these sequences have an optimal rate of convergence and
that the distortion mismatch property is satisfied. We will give some non-asymptotic Pierce type
estimates. The recursive character of greedy vector quantization allows some improvements to
the algorithm of computation of these sequences and the implementation of a recursive formula
to quantization-based numerical integration. Furthermore, we establish further properties of
sub-optimality of greedy quantization sequences.

3.1 Introduction
Let d ≥ 1, r ∈ (0,+∞) and LrRd(P) (or simply Lr(P)) the set of d-dimensional random variables
X defined on the probability space (Ω,A,P) such that E‖X‖r < +∞ where ‖.‖ denotes any norm
on Rd. We denote P = PX the probability distribution of X. Optimal vector quantization is a
technique derived from signal processing, initially devised to optimally discretize a continuous
(stationary) signal for its transmission. Originally developed in the 1950s (see [30]), it was
introduced as a cubature formula for numerical integration in the early 1990s (see [54]) and
for approximation of conditional expectations in the early 2000s for financial applications (see
[4, 5]). Its goal is to find the best approximation of a continuous probability distribution by a
discrete one, or in other words, the best approximation of a multidimensional random vector X
by a random variable Y taking at most a finite number n of values.
Let Γ = {x1, . . . , xn} be a d-dimensional grid of size n. The idea is to approximate X by q(X),
where q is a Borel function defined on Rd and having values in Γ. If we consider, for q, the
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nearest neighbor projection πΓ : Rd → Γ defined by πΓ(ξ) =
n∑
i=1

xi1Wi(Γ)(ξ), where

Wi(Γ) ⊂ {ξ ∈ Rd : ‖ξ − xi‖ ≤ min
j 6=i
‖ξ − xj‖}, i = 1, . . . , n, (3.1)

is the Voronoï partition induced by Γ, then the Voronoï quantization of X is defined by

X̂Γ = πΓ(X) :=
n∑
i=1

xi1Wi(Γ)(X).

We will denote, most of the times, X̂ instead of X̂Γ when there is no need for specifications.
The Lr-quantization error associated to the grid Γ is defined, for every r ∈ (0,+∞), by

er(Γ, X) = ‖X − πΓ(X)‖r = ‖X − X̂Γ‖r =
∥∥∥ min

1≤i≤n
|X − xi|

∥∥∥
r

(3.2)

where ‖.‖r denotes the Lr(P)-norm (or quasi-norm if 0 < r < 1). Consequently, the optimal
quantization problem comes down to finding the grid Γ that minimizes this error. It has been
shown (see [32, 56, 57]) that this problem admits a solution and that the quantization error
converges to 0 when the size n goes to +∞. The rate of convergence is given by two well known
results exposed in the following theorem.

Theorem 3.1.1. (a) Zador’s Theorem (see [75]) : Let X ∈ Lr+ηRd (P), η > 0, with distribution
P such that dP (ξ) = ϕ(ξ)dλd(ξ) + dν(ξ). Then,

lim
n→+∞

n
1
d er,n(X) = J̃r,d‖ϕ‖

1
r

L
r
r+d (λd)

where J̃r,d = inf
n≥1

n
1
d er,n(U([0, 1]d)) ∈ (0,+∞).

(b) Extended Pierce’s Lemma (see [44]): Let r, η > 0. There exists a constant κd,r,η ∈ (0,+∞)
such that,

∀n ≥ 1, er,n(X) ≤ κd,r,ησr+η(X)n−
1
d

where, for every r ∈ (0,+∞), σr(X) = inf
a∈Rd

‖X − a‖r is the Lr-standard deviation of X.

However, the numerical implementation of multidimensional optimal quantizers requires the
computation of grids of size N × d which becomes too expensive when N or d increase. Hence,
there is a need to provide a sub-optimal solution to the quantization problem which is easier to
handle and whose convergence rate remains similar (or comparable) to that induced by optimal
quantizers. A so-called greedy version of optimal vector quantization has been developed in [45].
It consists this time in building a sequence of points (an)n≥1 in Rd which is recursively optimal
step by step, in the sense that it minimizes the Lr-quantization error at each iteration. This
means that, having the first n points a(n) = {a1, . . . , an} for n ≥ 1, we add, at the (n + 1)-th
step, the point an+1 solution to

an+1 ∈ argminξ∈Rd er(a(n) ∪ {ξ}, X), (3.3)

noting that a(0) = ∅, so that a1 is simply an/the Lr-median of the distribution P of X. The
sequence (an)n≥1 is called an Lr-optimal greedy quantization sequence for X or its distribution
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P . The idea to design such an optimal sequence, which will hopefully produce quantizers
with a rate-optimal behavior as n goes to infnity, is very natural and may be compared to
sequences with low discrepancy in Quasi-Monte Carlo methods when working on the unit cube
[0, 1]d. In fact, such sequences have already been developed and investigated in an L1-setting
for compactly supported distributions P as a model of short term experiment planning versus
long term experiment planning (see [12]). In [45], the authors investigated independently a
greedy version of vector quantization for Lr-random vectors taking values in Rd, for numerical
integration purposes. They showed that the problem (6.64) admits at least one solution (an)n≥1
when X is an Rd-valued random vector (the existence of such sequences can be proved in
Banach spaces but, in this chapter, we only focus on Rd). This sequence may not be unique
since greedy quantization depends on the symmetry of the distribution (consider for example
the N (0, 1) distribution). However, note that, if the norm ‖.‖ is strictly convex and r > 1,
then the Lr-median is unique. They also showed that the Lr-quantization error converges to
0 when n goes to infinity and, if supp(P ) contains at least n elements, then the sequence
a(n) lies in the convex hull of supp(P ), er(a(k), X) is decreasing w.r.t. k ∈ {1, . . . , n} and
P
(
{ξ ∈ Rd : ‖ξ − an‖ < min1≤i≤n ‖ξ − ai‖}

)
> 0. Moreover, the authors showed that these

sequences have an optimal rate of convergence to zero, compared to optimal quantizers, and
that they satisfy the distortion mismatch problem, i.e. the property that the optimal rate of
Lr-quantizers holds for Ls-quantizers for s > r. The proofs were based on the integrability
of the b-maximal functions associated to an Lr-optimal greedy quantization sequence (an)n≥1
given by

∀ξ ∈ Rd, Ψb(ξ) = sup
n∈N

λd
(
B(ξ, bdist(ξ, a(n)))

)
P
(
B(ξ, bdist(ξ, a(n)))

) . (3.4)

In this chapter, we extend those rate of convergence and distortion mismatch results to a much
larger class of functions. Instead of maximal functions, we will rely on a new micro-macro in-
equality involving an auxiliary probability distribution ν on Rd. When ν satisfies an appropriate
control on balls, defined later in section 3.2, we show that the rate of convergence of the Lr-
quantization error of greedy sequences is O(n−

1
d ), just like the optimal quantizers. Furthermore,

considering appropriate auxiliary distributions ν satisfying this control allows us to obtain Pierce
type, and hybrid Zador-Pierce type, Lr-rate optimality results of the error quantization, instead
of only Zador type results as given in [45].

A very important field of applications is to use these greedy sequences instead of n-optimal
quantizers in quantization-based numerical integration schemes. In fact, the size of the grids
used in these procedures is large in a way that the RAM storing of the quantization tree may
exceed the storage capacity of the computing device. So, using greedy quantization sequences
will dramatically reduce this drawback, especially since we will show that they behave similarly
to optimal quantizers in terms of convergence rate. One demanding application that we can cite
is the approximation of the solutions of Reflected Backward Stochastic Differential Equations
(RBSDEs), including the pricing of American options, in [23], where greedy quantization proves
itself to be quite performing compared to other types of quantization and more generally, to other
usual numerical methods. The computation of greedy quantizers is performed by algorithms,
detailed in [46], allowing also the computation of the weights (pni )1≤i≤n of the Voronoï cells of
the sequence a(n). These quantities are mandatory for the greedy quantization-based numerical
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integration to approximate an integral I of a function f on Rd by the cubature formula

I(f) ≈
n∑
i=1

pni f
(
a

(n)
i

)
.

Compared to other methods of numerical approximation, such as quasi-Monte Carlo methods
(QMC), the quantization-based methods present an advantage in terms of convergence rate,
since QMC, for example, is known to induce an O

(
log(n+1)
n

1
d

)
convergence rate when integrat-

ing Lipschitz functions (see [70]) while quantization -based numerical integration produces an
O
(
n−

1
d
)
rate (see [57]). However, it seems to have a drawback which is the computation of

the non-uniform weights (pni )1≤i≤n, unlike the uniform weights in QMC (equal to 1
n). In this

chapter, we expose how the recursive character of greedy quantization provides several improve-
ments to the algorithm, making it more advantageous. Moreover, this character induces the
implementation of a recursive formula for numerical integration, that can replace the usual cu-
bature formula, reducing the time and cost of the computations. This recursive formula will be
introduced first in the one-dimensional case, and then extended to the multi-dimensional case
for product greedy quantization sequences, computed from one-dimensional sequences, used to
reduce the cost of implementations while always preserving the recursive character.

The chapter is organized as follows. We first show that greedy quantization sequences are rate
optimal in section 3.2 where we extend the results presented in [45]. The distortion mismatch
problem will be solved and extended in section 3.3. In section 3.4, we present the improve-
ments applied to the algorithm of designing the greedy sequences, as well as the new approach
for greedy quantization-based numerical integration. Numerical examples will illustrate the ad-
vantages brought by this new approach in section 3.5. Finally, section 3.6 is devoted to some
numerical conclusions about further properties of greedy quantization sequences such as the
sub-optimality, the convergence of empirical measures, the stationarity (or quasi-stationarity)
and the discrepancy, to see to what extent greedy sequences can be close to optimality.

3.2 Rate optimality: Universal non-asymptotic bounds
In [45], the authors presented the rate optimality of Lr-greedy quantizers in the sense of Zador’s
Theorem based on the integrability of the b-maximal function Ψb(ξ) defined by (3.4). Here, we
present Pierce type non-asymptotic estimates relying on micro-macro inequalities applied to a
certain class of auxiliary probability distributions ν. Different specifications of ν lead to various
versions of Pierce’s Lemma.
In all this section, we denote Vd = λd

(
B(0, 1)

)
w.r.t. the norm ‖ · ‖. We recall, first, a micro-

macro inequality that will be be used to prove the first result.

Proposition 3.2.1. Assume
∫
‖x‖rdP (x) < +∞. Then, for every probability distribution ν on

(Rd,B(Rd)), every c ∈ (0, 1
2) and every n ≥ 1

er(a(n), P )r − er(a(n+1), P )r ≥ (1− c)r − cr

(c+ 1)r
∫
ν
(
B
(
x, c

c+1d
(
x, a(n)))) d(x, a(n))rdP (x).

Proof. Step 1: Micro-macro inequality
Let Γ ⊂ Rd be a finite quantizer of a random variable X with distribution P and Γ1 = Γ ∪ {y},
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y ∈ Rd. For every c ∈ (0, 1
2), we have B(y, cd(y,Γ)) ⊂Wy(Γ1), where Wy(Γ1) is the Voronoï cell

associated centroid y form a Voronoi partition induced by Γ1, as defined by (6.11). Hence, for
every x ∈ B(y, cd(y,Γ)), d(x,Γ) ≥ d(y,Γ)− ‖x− y‖ ≥ (1− c)d(y,Γ). Consequently,

er(Γ, P )r − er(Γ ∪ {y}, P )r =
∫
Rd

(d(x,Γ)r − d(x,Γ1)r) dP (x)

≥
∫
Wy(Γ1)

(d(x,Γ)r − ‖x− y‖r) dP (x)

≥
∫
B(y,cd(y,Γ))

((1− c)r − cr)d(y,Γ)rdP (x).

Finally, we obtain the micro-macro inequality

er(Γ, P )r − er(Γ ∪ {y}, P )r ≥ ((1− c)r − cr)P (B (y, cd (y,Γ))) d (y,Γ)r . (3.5)

Step 2: We apply the micro-macro inequality (3.5) to the greedy quantization sequence a(n) and
notice that er(a(n+1), P ) ≤ er(a(n) ∪ {y}, P ) for every y ∈ Rd. This yields, for every c ∈

(
0, 1

2

)
and every y ∈ Rd,

er(a(n), P )r − er(a(n+1), P )r ≥ ((1− c)r − cr)P
(
B
(
y, cd(y, a(n))

))
d(y, a(n))r.

We integrate this inequality with respect to ν to obtain

er(a(n), P )r − er(a(n+1), P )r ≥ ((1− c)r − cr)
∫
P
(
B
(
y, cd(y, a(n))

))
d(y, a(n))rdν(y).

Now, we consider the closed sets F1 =
{
(x, y) ∈ (Rd)2 : ‖x−y‖ ≤ cd(y, a(n))

}
and F2 =

{
(x, y) ∈

(Rd)2 : ‖x− y‖ ≤ c
c+1d(x, a(n))

}
, and notice that

F2 ⊂ F1 ∩
{
(x, y) ∈ (Rd)2 : d(y, a(n)) ≥ 1

c+ 1d(x, a(n))
}
,

In fact, for (x, y) ∈ F2,

d(y, a(n)) ≥ d(x, a(n))− ‖x− y‖ ≥ d(x, a(n))− c

c+ 1d(x, a(n)) ≥ 1
c+ 1d(x, a(n))

and ‖x− y‖ ≤ c
c+1d(x, a(n)) ≤ cd(y, a(n)). Then,∫

P (B(y, cd(y, a(n))))d(y, a(n))rdν(y) =
∫ ∫

1F1(x, y)d(y, a(n))rdν(y)dP (x)

≥ 1
(c+ 1)r

∫ ∫
1F2(x, y)d(x, a(n))rdν(y)dP (x)

= 1
(c+ 1)r

∫
ν
(
B
(
x, c

c+1d
(
x, a(n))))d(x, a(n))rdP.

In order to prove the rate optimality of the greedy quantization sequences and obtain a non-
asymptotic Pierce type result, we will consider auxiliary probability distributions ν satisfying
the following control on balls with respect to an Lr-median a1 of P : for every ε ∈ (0, ε0), for
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some ε0∈ (0, 1], there exists a Borel function gε : Rd → [0,+∞) such that, for every x ∈ supp(P )
and every t ∈ [0, ε‖x− a1‖],

ν(B(x, t)) ≥ gε(x)Vdtd. (3.6)

Of course, this condition is of interest only if the set {gε > 0} is sufficiently large. Note that
a1 ∈ a(n) for every n ≥ 1 by construction of the greedy quantization sequence. We begin by a
technical lemma which will be used in the proof of the next proposition.

Lemme 3.2.2. Let C, ρ ∈ (0,+∞) be some real constants and (xn)n≥1 be a non-negative se-
quence satisfying, for every n ≥ 1, xn+1 ≤ xn − Cx1+ρ

n . Then for every n ≥ 1,

(n− 1)
1
ρxn ≤

( 1
Cρ

) 1
ρ

.

Proof. We rely on the following Bernoulli inequalities, for every x ≥ −1,

(1 + x)ρ ≥ 1 + ρx, if ρ ≥ 1, and (1 + x)ρ ≤ 1 + ρx, if 0 < ρ < 1.

These inequalities can be obtained by studying the function f defined for every x ∈ (−1,+∞)
by f(x) = (1 + x)ρ − (1 + ρx). Assuming that (xn)n≥1 is non-increasing and that xn > 0 for
every n ≥ 1, it follows from the assumption made on (xn)n≥1 that

1
xρn+1

≥ 1
xρn(1− C xρn)ρ ≥

1
xρn

(1 + C xρn)ρ.

If ρ ≥ 1, the Bernoulli inequalities imply 1
xρn+1

≥ 1
xρn

(1 + C ρxρn) = 1
xρn

+ Cρ. By induction, one
obtains

1
xρn
≥ 1
xρ1

+ (n− 1)Cρ ≥ (n− 1)Cρ

to deduce the result easily. If 0 < ρ < 1, then −Cρxρn ≥ −1 for every n ≥ 1, and the result is
deduced by using the Bernoulli inequality and then reasoning by induction.

Proposition 3.2.3. Let P be such that
∫
Rd ‖x‖rdP (x) < +∞. For any distribution ν and Borel

function gε : Rd → R+, ε ∈ (0, 1
3), satisfying (3.6),

∀n ≥ 2, er(a(n), P ) ≤ ϕr(ε)−
1
dV
− 1
d

d

(
r

d

) 1
d
(∫

g
− r
d

ε dP

) 1
r

(n− 1)−
1
d (3.7)

where ϕr(u) =
(

1
3r − u

r
)
ud.

Proof. We may assume that
∫
g
− r
d

ε dP < +∞. Assume c ∈ (0, ε
1−ε ] ∩ (0, 1

2) so that c
c+1 ≤ ε.

Moreover d(x, a(n)) ≤ d(x, a1) since a1 ∈ a(n). Consequently, for any such c, c

c+ 1 d(x, a(n)) ≤
ε‖x− a1‖ so that, by (3.6), there exists a function gε such that

ν
(
B
(
x, c

c+1 d
(
x, a(n)))) ≥ Vd ( c

c+1

)d
d(x, a(n))d gε(x).

Then, noting that (1−c)r−cr
(1+c)r ≥ 1

3r −
(

c
c+1
)r

> 0, since c ∈ (0, 1
2), Proposition 3.2.1 implies that

er(a(n), P )r − er(a(n+1), P )r ≥ Vd ϕr
(

c
c+1

) ∫
gε(x)d(x, a(n))d+rdP (x) (3.8)
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where ϕr(u) =
(

1
3r − u

r
)
ud, u ∈ (0, 1

3). Applying the reverse Hölder inequality with the
conjugate Hölder exponents p = − r

d and q = r
r+d yields

er(a(n), P )r − er(a(n+1), P )r ≥ Vd ϕr
(

c
c+1

)( ∫
gε(x)−

r
ddP (x)

)− d
r (
er(a(n), P )r

)1+ d
r .

Then, applying lemma 3.2.2 to the sequence xn = er(a(n), P )r with C = Vd ϕr
(

c
c+1

) (∫
gε(x)−

r
ddP (x)

)− d
r

and ρ = d
r , one obtains, for every c ∈ (0, 1

2),

er(a(n),P) ≤ V −
1
d

d

(
r

d

) 1
d

ϕr
(

c
c+1

)− 1
d

(∫
g
− r
d

ε dP

) 1
r

(n− 1)−
1
d .

Since in most applications ε 7→
( ∫

g
− r
d

ε dP
) 1
r is increasing on (0, 1/3), we are led to study

ϕr
(

c
c+1
)− 1

d subject to the constraint c ∈
(
0, ε

1−ε
]
∩
(
0, 1

2
)
. ϕr is increasing in the neighborhood of

0 and ϕr(0) = 0, so, one has, for every ε ∈ (0, 1
3) small enough, ϕr

(
c
c+1
)
≤ ϕr(ε), for c ∈ (0, ε

1−ε ].
This leads to specify c as c = ε

1−ε , so that c
c+1 = ε, to finally deduce the result.

By specifying the measure ν and the function gε, we will obtain two first natural versions of
the Pierce Lemma.

Theorem 3.2.4 (Pierce’s Lemma). (a) Assume
∫
Rd ‖x‖rdP (x) < +∞. Let δ > 0. Then

er(a1, P ) = σr(P ) and

∀n ≥ 2, er(a(n), P ) ≤ κG,P
d,δ,rσr+δ(P )(n− 1)−

1
d

where κG, P
d,δ,r ≤ V

− 1
d

d

(
r

d

) 1
d δ

r

(
1 + r

δ

)1+ δ
r

(∫
Rd

(‖x‖ ∨ 1)−d−
dδ
r dx

) 1
d

min
ε∈(0,13 )

(1 + ε)ϕr(ε)−
1
d .

(b) Assume
∫
Rd ‖x‖rdP (x) < +∞. Let δ > 0. Then

∀n ≥ 2, er(a(n), P ) ≤ κG
d,r,δ

( ∫
(‖x− a1‖ ∨ 1)r (log(‖x− a1‖ ∨ e))

r
d

+δ dP (x)
) 1
r (n− 1)−

1
d

where κG
d,r,δ ≤

(
r
dVd

) 1
d minε∈(0, 1

3 )(1 + ε)ε
1
d

+ δ
rϕr(ε)−

1
d

( ∫ (
1 ∨ ‖x‖

)−d( log(‖x‖ ∨ e)
)−1− dδ

r

) 1
d
.

In particular, if
∫
Rd ‖x‖r(log+‖x‖)

r
d

+δdP (x) < +∞, then

lim sup
n
n

1
d sup{er(a(n), P ) : (an)Lr-optimal greedy sequence for P} < +∞.

Proof. (a) Let δ > 0 be fixed. We set ν(dx) = γr,δ(x)λd(dx) where

γr,δ(x) = Kδ,r

(1 ∨ ‖x− a1‖)d(1+ δ
r

)
with Kδ,r =

(∫
dx

(1 ∨ ‖x‖)d(1+ δ
r

)

)−1

< +∞

is a probability density with respect to the Lebesgue measure on Rd.
Let ε ∈ (0, 1) and t > 0. For every x ∈ Rd such that ε‖x − a1‖ ≥ t and every y ∈ B(x, t),
‖y − a1‖ ≤ ‖y − x‖+ ‖x− a1‖ ≤ (1 + ε)‖x− a1‖ so that

ν(B(x, t)) ≥ Kδ,rVd t
d

(1 ∨ [(1 + ε)‖x− a1‖])d(1+ δ
r

)
.

49



Hence, (3.6) is verified with gε(x) = Kδ,r

(1∨[(1+ε)‖x−a1‖])d(1+ δ
r )
, so we can apply Proposition 3.2.3.

We have ∫
gε(x)−

r
ddP (x) ≤ K−

r
d

δ,r

∫
(1 ∨ (1 + ε)‖x− a1‖)r+δ dP (x)

so that, applying Lr+δ-Minkowski inequality, one obtains(∫
gε(x)−

r
ddP (x)

) 1
r

≤ K−
1
d

δ,r (1 + (1 + ε)σr+δ)1+ δ
r .

Consequently, by Proposition 3.2.3, for ε∈ (0, 1/3),

er(a(n), P ) ≤ V −
1
d

d

(
r

d

) 1
d

K
− 1
d

δ,r (1 + (1 + ε)σr+δ)1+ δ
r ϕr(ε)−

1
d (n− 1)−

1
d (3.9)

Now, we introduce an equivariance argument. For λ > 0, let Xλ := λ(X − a1) + a1 and
(aλ,n)n≥1 := (λ(an − a1) + a1)n≥1. It is clear that (aλ,n)n≥1 is an Lr-optimal greedy sequence
for Xλ and er(a(n), X) = 1

λer(a
(n)
λ , Xλ). Plugging this in inequality (3.9) yields

er(a(n), P ) ≤V −
1
d

d

(
r

d

) 1
d

K
− 1
d

δ,r

1
λ

(1 + (1 + ε)λσr+δ)1+ δ
r ϕr(ε)−

1
d (n− 1)−

1
d

≤V −
1
d

d

(
r

d

) 1
d

K
− 1
d

δ,r

(
λ−

r
δ+r + (1 + ε)λ

δ
δ+r σr+δ

)1+ δ
r
ϕr(ε)−

1
d (n− 1)−

1
d .

Finally, one deduces the result by setting λ = r

δ

1
(1 + ε)σr+δ

.

(b) Let δ > 0 be fixed. We set ν(dx) = γr,δ(x)λd(dx) where

γr,δ(x) = Kδ,r

(1 ∨ ‖x− a1‖)d (log(‖x− a1‖ ∨ e))1+ dδ
r

, (3.10)

with Kδ,r =
(∫ dx

(1∨‖x‖)d(log(‖x‖∨e))1+ dδ
r

)−1
< +∞, is a probability density with respect to the

Lebesgue measure on Rd.
Let ε ∈ (0, 1) and t > 0. For every x ∈ Rd such that ε‖x − a1‖ ≥ t and every y ∈ B(x, t),
‖y − a1‖ ≤ ‖y − x‖+ ‖x− a1‖ ≤ (1 + ε)‖x− a1‖ so that

ν(B(x, t)) ≥ Kδ,rVdt
d

(1 ∨ (1 + ε)‖x− a1‖)d (log((1 + ε)‖x− a1‖ ∨ e))1+ dδ
r

≥ Kδ,rVdt
d

(1 + ε)d ε1+ dδ
r (1 ∨ ‖x− a1‖)d (log(‖x− a1‖ ∨ e))1+ dδ

r

since log(1 + ε) ≤ ε. Hence, (3.6) is verified with

gε(x) = Kδ,r

(1 + ε)d ε1+ dδ
r (1 ∨ ‖x− a1‖)d (log(‖x− a1‖ ∨ e))1+ dδ

r

,
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so we can apply proposition 3.2.3. We have

( ∫
gε(x)−

r
ddP (x)

) 1
r ≤ (1 + ε)ε

1
d

+ δ
r

K
1
d
δ,r

( ∫
(1 ∨ ‖x− a1‖)r (log(‖x− a1‖ ∨ e))δ+

r
d dP (x)

) 1
r
.

Consequently, one applies Proposition 3.2.3 to deduce the first part. For the second part of the
proposition, we start by noticing that

(1 ∨ ‖x− a1‖)r ≤ (1 + ‖x‖+ ‖a1‖)r ≤ 2(r−1)+ (‖x‖r + (1 + ‖a1‖)r)

and
log(‖x− a1‖ ∨ e) ≤ log(‖x‖ ∨ e) + ‖a1‖ ∨ e

‖x‖ ∨ e
≤ log+ ‖x‖+ 1 + ‖a1‖ ∨ e

e

where log+ u = log u1u≥1, so that

(1 ∨ ‖x− a1‖)r (log(‖x− a1‖ ∨ e))δ+
r
d ≤ 2(r−1)++( r

d
+δ−1)+

(
‖x‖r log+ ‖x‖

r
d

+δ +A2‖x‖r

+A1 log+ ‖x‖
r
d

+δ +A1A2
)

where A1 = (1 + ‖a1‖)r and A2 =
(
1 + ‖a1‖∨e

e

) r
d

+δ
. Since log ‖x‖

r
d

+δ = 1
r

(
r
d + δ

)
log ‖x‖r, then

log+ ‖x‖
r
d

+δ = 1
r

(
r
d + δ

)
log+ ‖x‖r. Moreover, log+ ‖x‖r ≤ ‖x‖r − 1 if ‖x‖r ≥ 1 and equal to

zero otherwise so

log+ ‖x‖
r
d

+δ ≤ 1
r

(
r

d
+ δ

)
(‖x‖r − 1)+ ≤

1
r

(
r

d
+ δ

)
(1 + ‖x‖r).

Consequently,

(1 ∨ ‖x− a1‖)r (log(‖x− a1‖ ∨ e))δ+
r
d ≤ 2β

(
‖x‖r log+ ‖x‖

r
d

+δ +A′1‖x‖r +A′2

)
where β = (r − 1)+ + ( rd + δ − 1)+, A′1 = A2 + 1

r

(
r
d + δ

)
A2 and A′2 = 1

r

(
r
d + δ

)
A1 + A1A2.

The result is deduced from the fact that sup{‖a1‖ : a1∈ argminξ∈Rder({ξ}, P ) < +∞ (see [32,
Lemma 2.2]) and κd,r,δ does not depend on a1.

Remark 3.2.5. One checks that ϕr attains its maximum at 1
3

(
d
d+r

) 1
r on (0, 1

3), so one concludes

that minε∈(0, 1
3 )(1 + ε)ϕr (ε)−

1
d ≤

(
1 + 1

3
(

d
d+r

) 1
r

)
3
r
d

+1
(
1 + d

r

) 1
d (1 + r

d

) 1
r and

minε∈(0, 1
3 )(1 + ε)ε

1
d

+ δ
rϕr (ε)−

1
d ≤

(
1 + 1

3
(

d
d+r

) 1
r

)
31+ r−1

d
− δ
r

(
1 + d

r

) 1
d
− 1
r (1 + r

d

) 1
r .

At this stage, one can wonder if it is possible to have a kind of hybrid Zador-Pierce result
where, if P = h.λd, one has

er(a(n), P ) ≤ C‖h‖ d
d+r

n
1
d

for some real constant C. To this end, we have to consider

ν = h
d
d+r∫

h
d
d+r dλd

.λd.

This is related to the following local growth control condition of densities.
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Definition 3.2.6. Let A ⊂ Rd. A function f : Rd → R+ is said to be almost radial non-
increasing on A w.r.t. a ∈ A if there exists a norm ‖.‖0 on Rd and real constant M ∈ (0, 1] such
that

∀x∈ A \ {a}, f|B‖.‖0 (a,‖x−a‖0)∩(A\{a}) ≥Mf(x). (3.11)

If (3.11) holds for M = 1, then f is called radial non-increasing on A w.r.t. a.
Remark 3.2.7. (a) (3.11) reads f(y) ≥Mf(x) for all x, y∈ A\{a} for which ‖y−a‖0 ≤ ‖x−a‖0.
(b) If f is radial non-increasing on Rd w.r.t. a ∈ Rd with parameter ‖.‖0, then there exists a
non-increasing measurable function g : (0,+∞) → R+ satisfying f(x) = g(‖x − a‖0) for every
x 6= a.
(c) From a practical point of view, many classes of distributions satisfy (3.11), e.g. the d-
dimensional normal distribution N (m,σd) for h(y) = (2π)−

d
2 det(σd)−

1
2 e−

y2
2 and density f(x) =

h(‖x−m‖0) where ‖x‖0 = ‖σ−
1
2

d x‖, and the family of distributions defined by f(x) ∝ ‖x‖ce−a‖x‖b,
for every x ∈ Rd, a, b > 0 and c > −d, for which one considers h(u) = uce−au

b. In the one
dimensional case, we can mention the Gamma distribution, the Weibull distributions, the Pareto
distributions and the log-normal distributions.

Theorem 3.2.8. Assume P = h.λd with h ∈ L
d
d+r (λd) and

∫
Rd ‖x‖rdP (x) < +∞. Let a1 denote

the Lr-median of P . Assume that supp(P ) ⊂ A and a1 ∈ A for some A star-shaped and peakless
with respect to a1 in the sense that

p(A, ‖.− a1‖) := inf
{
λd(B(x, t) ∩A)
λd(B(x, t)) ;x ∈ A, 0 < t ≤ ‖x− a1‖

}
> 0. (3.12)

Assume h is almost radial non-increasing on A with respect to a1 in the sense of (3.11). Then,

∀n ≥ 2, er(a(n), P ) ≤ κG,Z,P
d,r,M,C0,p(A,‖.−a1‖) ‖h‖

1
r

L
d
d+r (λd)

(n− 1)−
1
d ,

where κG,Z,P
d,r,M,C0,p(A,‖.−a1‖) ≤

2C2
0 r

1
d

d
1
dMd+rV

1
d
d

p(A,‖.−a1‖)
1
d

minε∈(0, 1
3 ) ϕr(ε)

− 1
d .

Remark 3.2.9. (a) If A = Rd, then p(A, ‖.− a‖) = 1 for every a ∈ Rd.
(b) The most typical unbounded sets satisfying (3.12) are convex cones that is cones K ⊂ Rd of
vertex 0 with 0 ∈ K (K 6= ∅) and such that λx ∈ K for every x ∈ K and λ ≥ 0. For such
convex cones K with λd(K) > 0, we even have that the lower bound

p(K) := inf
{
λd(B(x, t) ∩K)
λd(B(x, t)) ;x∈ K, t > 0

}
=
λd
(
B(0, 1) ∩K)

)
Vd

> 0.

Thus if K = Rd+, then p(K) = 2−d.
The proof of Theorem 3.2.8 is based on the following lemma.
Lemme 3.2.10. Let ν = f.λd be a probability measure on Rd where f is almost radial non-
increasing on A∈ B(Rd) w.r.t. a1∈ A, A being star-shaped relative to a1 and satisfying (3.12).
Then, for every x∈ A and positive t∈ (0, ‖x− a1‖],

ν(B(x, t)) ≥Mp(A, ‖.− a1‖)(2C2
0 )−dVdf(x)td

where C0 ∈ [1,+∞) satisfies, for every x ∈ Rd, 1
C0
‖x‖0 ≤ ‖x‖ ≤ C0‖x‖0.
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Proof. For every x ∈ A and t > 0,

ν(B(x, t)) ≥
∫
B(x,t)∩A∩{f≥Mf(x)}

fdλd ≥ Mf(x)λd
(
B(x, t) ∩A ∩ {f ≥Mf(x)}

)
and B(x, t) ∩ (A \ {a1}) ∩ B‖.‖0(a1, ‖x − a1‖0) ⊂ B(x, t) ∩ A ∩ {f ≥ Mf(x)}. Now, assume
0 < t ≤ ‖x− a1‖ ≤ C0‖x− 1‖0. Setting x′ :=

(
1− t

2C0‖x−a1‖0

)
x+ t

2C0‖x−a1‖0
a1 ∈ A (since A is

star-shaped with respect to a1), we notice that, for y ∈ B
(
x′, t

2C2
0

)
⊂ B‖.‖0

(
x′, t

2C0

)
,

‖y − x‖ ≤ ‖y − x′‖+ C0‖x′ − x‖0 ≤
t

2C2
0

+ C0

∥∥∥∥ t

2C0‖x− a1‖0
(x− a1)

∥∥∥∥
0

= t

2C2
0

+ t

2 ≤ t

and ‖y − a1‖0 ≤ ‖y − x′‖0 + ‖x′ − a1‖0 ≤ t
2C0

+
∥∥∥(1− t

2C0‖x−a1‖0

)
(x− a1)

∥∥∥
0

= ‖x − a1‖0, so

that, B
(
x′, t

2C2
0

)
⊂ B(x, t) ∩B‖.‖0(a1, ‖x− a1‖0). Consequently,

ν(B(x, t)) ≥Mf(x)λd
(
B

(
x′,

t

2C2
0

)
∩A

)
.

Moreover, t
2C2

0
≤ t

2 ≤
1
2‖x− a1‖ ≤ ‖x′ − a1‖. Hence, we have

λd
(
B
(
x′, t

2C2
0

)
∩A

)
≥ p(A, ‖.− a1‖)λd

(
B
(
x′, t

2C2
0

))
= p(A, ‖.− a1‖)(2C2

0 )−dtdλd(B(0, 1)).

Proof of theorem 3.2.8. Consider ν = hr.λd := h
d
d+r∫

h
d
d+r dλd

.λd. Notice that hr is alsmost radial

non-increasing on A w.r.t. a1 with parameterM
d
d+r so that Lemma 3.2.10 yields for every x∈ A

and t∈ [0, ‖x− a1‖]

ν
(
B(x, t)

)
≥M

d
d+r p(A, ‖ · −a1‖)(2C2

0 )−dVdhr(x)td.

Consequently, using the fact that
∫
Rd h

− r
d

r dP = ‖h‖
L

d
d+r (λd)

, the assertion follows from Proposi-
tion 3.2.3. �

Remark 3.2.11. Note that, by applying Hölder inequality with the conjugate exponents p = 1+ r
d

and q = 1 + d
r , one has

∫
Rd
h(ξ)

d
d+r dξ ≤

(∫
Rd
h(ξ)(1 ∨ |ξ|)r+δdξ

) d
d+r

(∫
Rd

dξ

(1 ∨ |ξ|)d(1+ δ
r

)

) r
d+r

.

Consequently, since
∫
Rd

dξ

(1 ∨ |ξ|)d(1+ δ
r

)
< +∞, one deduces that ‖h‖

1
r
d
d+r
� σ1+ δ

r
r+δ .

We note that Zador Theorem implies lim infn n
1
d er(a(n), P ) ≥ lim infn n

1
d er,n(P,Rd) ≥ Qr(P )

1
r .

The next proposition may appear as a refinement of Pierce’s Lemma and Theorem 3.2.8 in the
sense that it gives a lower convergence rate for the discrete derivative of the quantization error,
that is its increment.
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Proposition 3.2.12. Assume
∫
Rd ‖x‖rdP (x) < +∞. Then,

lim inf
n

n1+ r
d min

1≤i≤n

(
er(a(i), P )r − er(a(i+1), P )r

)
> 0.

Proof. We start by choosing N > 0 such that P (B(0, N)) > 0. Proposition 3.2.1 yields, for
every probability measure ν on Rd, for every n ≥ n0 and c ∈

(
0, 1

2

)
,

er(a(n), P )r − er(a(n+1), P )r

≥ (1− c)r − cr

(c+ 1)r
∫
B(0,N)∩supp(P )

ν
(
B
(
x, c

c+1d
(
x, a(n)))) d(x, a(n))rdP.

We choose ν = U(B(0, N)). Then, for every x ∈ B(0, N), t ≤ N and x′ =
(
1− t

2N
)
x, one has

B
(
x′, t2

)
⊂ B(x, t) ∩B(0, N) since, for every y ∈ B

(
x′, t2

)
,

‖y − x‖ ≤ ‖y − x′‖+ ‖x′ − x‖ ≤ t

2 + t

2N ‖x‖ ≤ t

and
‖y‖ ≤ ‖y − x′‖+ ‖x′‖ ≤ t

2 +
(

1− t

2N

)
‖x‖ ≤ t

2 +
(

1− t

2N

)
N ≤ N.

Consequently,

ν(B(x, t)) ≥
λd(B(x′, t2))
λd(B(0, N)) = (2N)−dtd.

Moreover, we denote C := supn≥1 maxx∈B(0,N)∩supp(P ) d(x, a(n)) which is finite because a(n) ∈
conv(supp(P )). Consequently, for every c ∈

(
0, 1

2
)
such that c

c+1C ≤ N and every n ≥ n0,

er(a(n), P )r − er(a(n+1), P )r ≥ (1− c)r − cr

(c+ 1)r
(

c
c+1

)d
(2N)−d

∫
B(0,N)

d(x, a(n))d+rdP (x)

≥ ϕ
(

c
c+1
)
(2N)−dP (B(0, N))ed+r

d+r(a
(n), P (.|B(0, N))).

Finally, one deduces the result using that
(
ed+r
d+r

(
a(n), P (.|B(0, N))

))
n≥1

is nonincreasing and
relying on Zador’s Theorem.

Remark 3.2.13. For every m,n ∈ N, if we denote Wb(a(n)) the Voronoï cell associated to the
sequence a(n) of centroid b ∈ a(n) and use the fact that er(a(n+1), X) ≤ er(a(n) ∪ {b}, X) for
every b ∈ Rd, we deduce

er(a(n), X)r − er(a(n+m), X)r =
∑
b∈a(n)

∫
Wb(a(n+m))

(
d(x, a(n))r − ‖x− b‖r

)
dP

+
∑

b∈a(n+m)\a(n)

∫
Wb(a(n+m))

(
d(x, a(n))r − ‖x− b‖r

)
dP

=
∑

b∈a(n+m)\a(n)

∫
Wb(a(n+m))

(
d(x, a(n))r − d(x, a(n) ∪ {b})r

)
dP

≤ m
(
er(a(n), X)r − er(a(n+1), X)r

)
.

Consequently, since l→ er(a(l), X) is non-increasing, one considers n = i and deduces

min
1≤i≤n

(
er(a(i), X)r − er(a(i+1), X)r

)
≥ 1
m

(
er(a(n), X)r − er(a(m), X)r

)
.
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3.3 Distortion mismatch
We address now the problem of distortion mismatch, i.e. the property that the rate optimal
decay property of Lr-quantizers remains true for Ls(P )-quantization error for s ∈ (0,+∞). This
problem was originally investigated in [33] for optimal quantizers. If s ≤ r, the monotonicity
of the Ls-norm as a function of s ensures that any Lr-optimal greedy sequence remains Ls-rate
optimal for the Ls-norm. The challenge is when s is larger than r. The problem is solved
in [45] for s ∈ (0,+∞) relying on an integrability assumption of the b-maximal function Ψb.
Here, we give an additional nonasymptotic result for s ∈ (r, d + r), in the same settings as for
Theorem 3.2.3, considering auxiliary probability distributions ν satisfying (3.6).
Theorem 3.3.1. Let P be such that

∫
Rd ‖x‖rdP (x) < +∞. Let s ∈ (r, d + r). Let (an) be an

Lr-optimal greedy sequence for P . For any distribution ν and Borel function gε : Rd → R+,
ε ∈ (0, 1

3), satisfying (3.6), for every n ≥ 3,

es
(
a(n), P

)
≤ κGreedy

d,r,ε

(∫
g
− s
d+r−s

ε dP

) d+r−s
s(d+r)

(∫
g
− r
d

ε dP

) 1
d+r

(n− 2)−
1
d

where κGreedy
d,r,ε = 2

1
d
(
r
d

) r
d(d+r) V

− 1
d

d ϕr(ε)−
1
d .

Proof. We assume 1
gε
∈ L

s
d+r−s (P ) so that 1

gε
∈ L

r
d (P ) since s

d+r−s ≥
s
d ≥

r
d . Inequality (3.8)

from the proof of Proposition 3.2.3 still holds, i.e.

er(a(n), P )r − er(a(n+1), P )r ≥ C
∫
gε(x)d

(
x, a(n)

)d+r
dP (x).

with, for every c∈ (0, ε
1−ε ]∩ (0, 1/2), C = Vd ϕr

(
c
c+1

)
where ϕr(u) =

(
1
3r − u

r
)
ud. The reverse

Hölder inequality applied with p = s
d+r ∈ (0, 1) and q = − s

d+r−s ∈ (−∞, 0) yields that

er(a(n), P )r − er(a(n+1), P )r ≥ C1es
(
a(n), P

)d+r

where C1 = C
( ∫

g
− s
d+r−s

ε dP
)− d+r−s

s . Hence, knowing that k 7→ es
(
a(k), P

)
is non-increasing and

summing between n and 2n− 1, we obtain for n ≥ 1

n es(a(2n−1), P )d+r ≤
2n−1∑
k=n

es(a(k), P )d+r ≤ 1
C1

2n−1∑
k=n

er(a(k), P )r − er(a(k+1), P )r ≤ 1
C1
er(a(n), P )r.

Finally, since 2
⌈
n
2
⌉
− 1 ≤ n, we have es

(
a(n), P

)
≤ es

(
a2dn2 e−1, P

)
and we derive that

n

2 es
(
a(n), P

)d+r ≤
⌈
n

2

⌉
es
(
a(n), P

)d+r ≤
⌈
n

2

⌉
es
(
a2dn2 e−1, P

)d+r
≤ 1
C1
er
(
ad

n
2 e, P

)r
.

Consequently, plugging in C1,

es
(
a(n), P

)
≤ 2

1
d+rV

− 1
d+r

d ϕr

(
c

c+ 1

)− 1
d+r

(∫
g
− s
d+r−s

ε dP

) d+r−s
s(d+r)

n−
1
d+r er

(
ad

n
2 e, P

) r
d+r

.

Consequently, one can deduce from Proposition 3.2.3, for n ≥ 3,

es
(
a(n), P

)
≤ 2

1
d r

r
d(d+r)

V
1
d
d d

r
d(d+r)

(∫
g
− s
d+r−s

ε dP

) d+r−s
s(d+r)

(∫
g
− r
d

ε dP

) 1
d+r

ϕr
(

c
c+1
)− 1

d (n− 2)−
1
d .

Hence, the result is owed to the fact that ϕr
(

c
c+1
)
≤ ϕr (ε) for c ∈ (0, ε

1−ε ].
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Corollary 3.3.2. Let s ∈ (r, d + r). Assume that
∫
‖x‖

ds
d+r−s (log+‖x‖)

s
d+r−s+δdP (x) < +∞ ,

for δ > 0, then

lim sup
n
n

1
d sup

{
es
(
a(n), P

)
: (an)Lr-optimal greedy sequence for P

}
< +∞.

Proof. The proof is divided in two steps.
Step 1: Let δ > 0 be fixed and β = 1 + (d+r−s)δ

s . We consider ν(dx) = γr,δ(x)λd(dx) where
γr,δ(x) is a probability density with respect to the Lebesgue measure on Rd defined by (3.10) in
the proof of Theorem 3.2.4(b). The density γr,δ is radial non-increasing on the whole Rd w.r.t.
a1 (and ‖ · ‖0 = ‖ · ‖) so that p(‖ · −a1‖) = 1 by Remark 3.2.9(a) and, in turn, Lemma 3.2.10
yields for every x∈ Rd and t ≤ ‖x− a1‖

ν
(
B(x, t)

)
≥ 2−dVdγr,δ((x)td.

Consequently, Theorem 3.3.1 yields, for n ≥ 3,

es
(
a(n), P

)
≤ Cd,r,δ

(∫
(1 ∨ ‖x− a1‖)r (log(‖x− a1‖ ∨ e))β

r
d dP (x)

) 1
d+r

×
(∫

(1 ∨ ‖x− a1‖)
sd

d+r−s (log(‖x− a1‖ ∨ e))δ+
s

d+r−s dP (x)
) d+r−s
s(d+r)

(n− 2)−
1
d

where Cd,r,δ ≤ 21+ 1
dV
− 1
d

d

(
r
d

) r
d(d+r) K

− 1
d

δ,r minε∈(0, 1
3 )(1 + ε)dε

β
dϕr(ε)−

1
d .

Step 2: Just as in the proof of Theorem 3.2.4(b), we have

(1 ∨ ‖x− a1‖)r (log(‖x− a1‖ ∨ e))β
r
d ≤ 2(r−1)++(β rd−1)+

(
‖x‖r log+ ‖x‖β

r
d +A1‖x‖r +A2

)
and, denoting β′ = δ + s

d+r−s ,

(1 ∨ ‖x− a1‖)
sd

d+r−s (log(‖x− a1‖ ∨ e))β
′
≤ 2( ds

d+r−s−1)++(β′−1)+

×
(
‖x‖

ds
d+r−s log+ ‖x‖β

′ +B1‖x‖r +B2
)

where A1, A2, B1 and B2 are constants depending only on r, d, s, δ and a1. Since, s
d+r−s ≥

r
d ,

one has ds
d+r−s > r and δ + s

d+r−s ≥ β rd , so that the two above quantities are finite (by the
assumption made in the theorem).The result is deduced from the fact that sup

{
‖a1‖ : a1 ∈

argminξ∈Rder({ξ}, P )
}
<∞.

3.4 Algorithmics
An important application of quantization is numerical integration. Let us consider the quadratic
case r = 2 and an L2-optimal greedy quantization sequence a(n) for a random variable X with
distribution PX = P . Since we know that e2(a(n), X) = ‖X − a(n)‖2 converges to 0 when n goes
to infinity, this means that a(n) converges towards X in L2 and hence in distribution. So, one
can approximate E[f(X)], for every continuous function f : Rd → R, by the following cubature
formula

I(f) := E[f(X)] ≈
n∑
i=1

pni f(a(n)
i ) (3.13)
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where, for every i ∈ {1, . . . , n}, pni = P
(
X ∈ Wi(a(n))

)
represents the weight of the ith Voronoï

cell corresponding to the greedy quantization sequence a(n) = {a(n)
1 , . . . , a

(n)
n }. When the func-

tion f satisfies certain regularities, one establishes error bounds for this quantization-based
cubature formula and obtains an O(n−

1
d ) rate of convergence, we refer to [57] for details.

When working on the unit cube [0, 1]d, it is natural to compare an optimal greedy sequence
of the Uniform distribution U([0, 1]d) and a uniformly distributed sequence with low discrepancy
used in the quasi-Monte Carlo method (QMC). A [0, 1]d-valued sequence ξ = (ξn)n≥1 is uniformly
distributed if µn = 1

n

∑n
k=1 δξk converges weakly to λd|[0,1]d

(where λd denotes the Lebesgue
measure on (Rd,B(Rd))). It is well known (see [40] for example) that (ξn)n≥1 is uniformly
distributed if and only if

D∗n(ξ) = sup
u∈[0,1]d

∣∣∣ 1
n

n∑
i=1

1ξi∈[0,u]d − λd([0, u]d)
∣∣∣ → 0 as n→ +∞. (3.14)

The above modulus is known as the star-discrepancy of ξ at order n and can be defined, for
fixed n ∈ N, for any n-tuple (ξ1, . . . , ξn) whose components ξk lie in [0, 1]d. There exists many
sequences (Halton, Kakutani, Faure, Niederreiter, Sobol’, see [6, 57] for example) achieving
a O

(
(log(n+1))d

n

)
rate of decay for their star-discrepancy and it is a commonly shared con-

jecture that this rate is optimal, such sequences are called sequences with low discrepancy.
By a standard so-called Hammersley argument, one shows that if a [0, 1]d−1-valued sequence
ζ = (ζn)n≥1 has low discrepancy i.e. there exists a real constant C(ζ) ∈ (0,+∞) such that

D∗n(ζ) ≤ C(ζ)
(

log(n+1)
)d

n , for every n ≥ 1, then, for every n ≥ 1, the [0, 1]d-valued n-tuple(
(ζk, kn)

)
1≤k≤n

satisfies

D∗n

((
(ζk, kn)

)
1≤k≤n

)
≤ C(ζ)

(
log(n+ 1)

)d−1

n
.

The QMC method finds its gain in the following error bound for numerical integration. Let
(ξ1, . . . , ξn) be a fixed n-tuple in ([0, 1]d)n, then, for every f : [0, 1]d → R with finite variation
(in the Hardy and Krause sense, see [53] or in the measure sense see [6, 57]),∣∣∣ 1

n

n∑
i=1

f(ξk)−
∫

[0,1]d
f(u)du

∣∣∣ ≤ V (f)D∗n(ξ1, . . . , ξn). (3.15)

where V (f) denotes the (finite) variation of f . So a O
(

(log(n+1))d
n

)
or O

(
(log(n+1))d−1

n

)
rate of

convergence can be achieved, for this class of functions, depending on the composition of the
sequence. However, the class of functions with finite variation becomes sparser in the space of
functions defined from [0, 1]d to R and it seems natural to evaluate the performance of the low-
discrepancy sequences or n-tuples on a more natural space of test functions like the Lipschitz
functions. This is the purpose of Proïnov’s Theorem reproduced below.
Theorem 3.4.1. (Proinov, see [70]) Let (Rd, ‖.‖∞). Let ξ = (ξ1, . . . , ξn) a sequence of [0, 1]d.
For every continuous function f : [0, 1]d → (R, |.|∞), we define the uniform continuity modulus of
f by w(f, δ) = supξ,ξ′∈[0,1]d,|ξ−ξ′ |∞≤δ |f(ξ)−f(ξ′)| where |u|∞ = max1≤i≤d |ui| if u = (u1, . . . , ud).
Then, for every n ≥ 1, ∣∣∣∣∣ 1n

n∑
i=1

f(ξi)−
∫

[0,1]d
f(x)dx

∣∣∣∣∣ ≤ Cdw(f,D∗n(ξ)
1
d ),
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where Cd is a constant lower than 4 and depending only on the dimension d.
In particular, if f is [f ]Lip−Lipschitz and ξ has low discrepancy, one has∣∣∣∣∣ 1n

n∑
i=1

f(ξi)−
∫

[0,1]d
f(x)dx

∣∣∣∣∣ ≤ Cd [f ]LipD
∗
n(ξ)

1
d ≤ Cd [f ]Lip

log (n+ 1)
n

1
d

.

This suggests that, at least for a commonly encountered class of regular functions, the
curse of dimensionality is more severe with QMC than with quantization due to the extra
(log(n+ 1))1− 1

d factor in QMC. This is the price paid by QMC for considering uniform weights
pi = 1

n , i = 1, . . . , n.
With greedy quantization sequences, we will show that it is possible to keep the n−

1
d rate

of decay for numerical integration but also keep the asset of a sequence which is a recursive
formula for cubatures.

3.4.1 Optimization of the algorithm and the numerical integration in the
1-dimensional case

Quadratic optimal greedy quantization sequences are obtained by implementing algorithms such
as Lloyd’s I algorithm, also known as k-means algorithm, or the Competitive Learning Vector
Quantization (CLVQ) algorithm, which is a stochastic gradient descent algorithm associated
to the distortion function. We refer to [46] (an extended version of [45] on ArXiv) where
greedy variants of these procedures are explained in detail. According to Lloyd’s algorithm, the
construction of the sequences is recursive in the sense that, at the iteration n, we add one point
an to {a1, . . . , an−1}, and we denote {a(n)

1 , . . . , a
(n)
n } an increasing reordering of {a1, . . . , an}

where the new added point is denoted by a(n)
i0

. Since the other points are frozen, we can notice
that the local inter-point inertia σ2

i defined by

σ2
i :=

∫ a
(n−1)
i+ 1

2

a
(n−1)
i

|a(n−1)
i − ξ|2P (dξ) +

∫ a
(n−1)
i+1

a
(n−1)
i+ 1

2

|a(n)−1
i+1 − ξ|2P (dξ), i = 0, . . . , n− 1 (3.16)

(where a(n−1)
i+ 1

2
= a

(n−1)
i +a(n−1)

i+1
2 with a

(n−1)
1
2

= a
(n−1)
0 = −∞ and a

(n−1)
n− 1

2
a

(n−1)
n = +∞) remains

untouched for every i ∈ {0, . . . , n − 1} except σ2
i0 (the inertia between the point a(n)

i0
added at

the n-th iteration and the following point) and σ2
i0−1 (the inertia between a(n)

i0
and the preceding

point). Thus, at each iteration, the computation of n inertia can be reduced to the computation
of only 2, thereby reducing the cost of the procedure. Likewise, the weights pni = P (Wi(a(n)))
of the Voronoï cells remain mostly unaffected. The only cells that change from one step to
another are the cell Wi0(a(n)) having for centroid the new point a(n)

i0
and the two neighboring

cells Wi0−1(a(n)) and Wi0+1(a(n)). Thus, the online computation of cell weights just needs 3
calculations instead of n (or 2 in case the added point is the first or last point in the reordered
sequence). The utility of the weights of the Voronoï cells is featured in the approximation of
E[f(X)] for f : Rd → R by the quadrature formula (3.13) using the reordered sequence a(n).
Thus, based on the fact that only 3 Voronoï cells are modified at each iteration, one can deduce
an iterative formula for the approximation of I(f) by In(f), requiring the storage of only 2
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weights and 2 indices, as follows

In(f) = In−1(f)− pn−f(a(n)
i0−1)− pn+f(a(n)

i0+1) +
(
pn+ + pn−

)
f(a(n)

i0
)

= In−1(f)− pn−
(
f(a(n)

i0−1)− f(a(n)
i0

)
)
− pn+

(
f(a(n)

i0+1)− f(a(n)
i0

)
)
, (3.17)

where
• a(n)

i0
is the point added to the greedy sequence at the n-th iteration, in other words, it is the

point an,
• a(n)

i0−1 and a(n)
i0+1 are the points lower and greater than a(n)

i0
, i.e. a(n)

i0−1 < a
(n)
i0

< a
(n)
i0+1,

•
pn− = P

([
a

(n)
i0− 1

2
, a

(n)
mil
])

and pn+ = P
([
a

(n)
mil, a

(n)
i0+ 1

2

])
. (3.18)

where a(n)
i0± 1

2
=

a
(n)
i0

+a(n)
i0±1

2 and a(n)
mil =

a
(n)
i0+1 + a

(n)
i0−1

2 , with a0 = −∞ and an = +∞.
Practically, this numerical iterative method can be applied without storing the whole ordered
greedy quantization sequence nor computing the weights of the Voronoï cells, which could appear
as significant drawbacks for quantization. Instead, it requires the possession of 2 indices of 2
particular points of the non-ordered greedy quantization sequence and 2 weights. In fact, one
can start by determining the indices of the points preceding and following an in the ordered
sequence, in other words, the indices of the points in the non-ordered sequence corresponding
to a(n)

i0−1 and a(n)
i0+1. Then, it becomes possible to compute the weights pn− et pn+.

3.4.2 Product greedy quantization (d > 1)
In higher dimensions, greedy quantization has always the recursive properties, so it gets inter-
esting to apply the same numerical improvements as in the one-dimensional case. However, the
construction of multidimensional greedy quantization sequences is complex and expensive since
it relies on complicated stochastic optimization algorithms. As an alternative, one can use one-
dimensional greedy quantization grids as tools to obtain multidimensional greedy quantization
sequences in some cases.

How to build multi-dimensional greedy product grids

Multidimensional greedy quantization sequences can be obtained as a result of the tensor prod-
uct of one-dimensional sequences, when the target law is a tensor product of its independent
marginal laws. These grids are, of course, not optimal nor asymptotically optimal but they allow
to approach the multidimensional law.
Let X1, . . . , Xd be d independent L2-random variables taking values in R with respective dis-
tributions µ1, . . . , µd and a1,(n1), . . . , ad,(nd) the corresponding greedy quantization sequences.
By computing the tensor product of these d one-dimensional greedy sequences, we obtain the
d-dimensional greedy quantization grid a1,(n1)⊗ . . .⊗ad,(nd) of the product law µ = µ1⊗ . . .⊗µd,
given by

(
a

(n)
j

)
1≤j≤n =

(
a

1,(n1)
j1

, . . . , a
d,(nd)
jd

)
1≤j1≤n1,...,1≤jd≤nd

of size n =
∏d
i=1 ni. The corre-

sponding quantization error is given by

er(a1,(n1) ⊗ . . .⊗ ad,(nd), X1 ⊗ . . .⊗Xd)r =
d∑

k=1
er(ak,(nk), Xk)r. (3.19)
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The weights p(n)
j of the d-dimensional Voronoï cells

(
Wj
(
a(n)))

1≤j≤n are deduced from the one-

dimensional Voronoï weights (pk,nkj )1≤j≤nd , k = 1, . . . , d, corresponding to the one-dimensional
greedy sequences, via

pj = p1,n1
j1
× . . .× pd,ndjd

∀jk ∈ {1, . . . , nk}, ∀k ∈ {1, . . . , d}, ∀j ∈ {1, . . . , n}.

The implementation of d-dimensional grids is not a point-by-point implementation. In fact,
at each iteration n, having the d one-dimensional sequences, one must add a point to one
one-dimensional sequence, generating this way several points of the multidimensional sequence.
One must choose between d possibilities: add one point to only one sequence ak,(nk) among
the d marginal sequences to obtain a(n1×...×nk−1×(nk+1)×nk+1×...×nd). These d cases are not
similar since each one produces a different error quantization. So, the implementation is not a
random procedure. To make the right decision, one must compute in each case, using (3.19),
the quantization error Ek obtained if we add a point to ak,(nk) for a k ∈ {1, . . . , d}. In other
words, we compute, for k = 1, . . . , d

Ek = er(ak,(nk+1), µk)r +
∑

l∈{1,...,d}\{k}
er(al,(nl), µl)r.

Then, one chooses the index i such that Ei = min1≤k≤dEk, adds a point to the sequence
ai,(ni) and obtains the grid a(n1×...×ni−1×(ni+1)×ni+1×...×nd). We note that if the marginal laws
µ1, . . . , µd are identical, this step is not necessary and the choice of the sequence to which a
point is added, at each iteration, is systematically done in a periodic manner.

Numerical integration

Similarly to the 1-dimensional case, the majority of the Voronoï cells do not change while passing
from an iteration n to an iteration n+1. At the n-th iteration, having n1× . . .×nd points in the
sequence, one adds a new point to a(i,ni). Hence, we will have n1× . . .×ni−1×ni+1× . . .×nd new
created cells having for centroids the new points added to the d-dimensional sequence a(n), and
another 2(n1 × . . .× ni−1 × ni+1 × . . .× nd) modified cells, corresponding to all the neighboring
cells of the new added cells. In total, there is 3(n1 × . . .× ni−1 × ni+1 × . . .× nd) new Voronoï
cells, while the rest remains unchanged. This leads to an iterative formula for quantization-based
numerical integration (where the same principle as in the one dimensional case is applied) as
follows: we denote, for the sake of simplicity fi0 = f

(
a

1,(n1)
j1

, . . . , a
i,(ni+1)
i0

, . . . , a
d,(nd)
jd

)
, fi0−1 =

f
(
a

1,(n1)
j1

, . . . , a
i,(ni+1)
i0−1 , . . . , a

d,(nd)
jd

)
and fi0+1 = f

(
a

1,(n1)
j1

, . . . , a
i,(ni+1)
i0+1 , . . . , a

d,(nd)
jd

)
In+1(f) = In(f)− pi,ni+1

−

nk∑
jk=1

k∈{1,...,d}\{i}

∏
k=1,...,d
k 6=i

p
k,(nk)
jk

(fi0−1 − fi0)

− pi,ni+1
+

nk∑
jk=1

k∈{1,...,d}\{i}

∏
k=1,...,d
k 6=i

p
k,(nk)
jk

(fi0+1 − fi0) (3.20)

Note that in the d-dimensional case, the weights pk,(nk), k ∈ {1, . . . , d} \ {i} of the Voronoï cells
of the other marginal sequences obtained at the previous iteration are needed, as well as the
ordered one-dimensional greedy sequences ak,(nk).
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Figure 3.1: Greedy quantization sequences of the distribution N (0, I3) of size N = 153 designed
by Box Müller method (left) and greedy product quantization (right).

3.5 Numerical applications and examples

3.5.1 Greedy quantization of N (0, Id) via Box-Müller

The Box-Müller method allows to generate a random vector with normal distribution N (0, I2),
actually two independent one-dimensional random variables Z1 and Z2 with distribution N (0, 1)
by considering two independent random variables E and U with respective distributions E(1)
and U([0, 1]). Then, 2E ∼ E(1

2) and 2πU ∼ U([0, 2π]), so, the two variables

Z1 =
√

2E cos(2πU) et Z2 =
√

2E sin(2πU)

are independent and with normal distribution N (0, 1).
We use greedy quantization sequences ε(n1) and u(n2) of respective distributions E(1) and U [0, 1]
to design two N (0, 1)-distributed independent sequences z(n)

1 et z(n)
2 , of size n = n1 × n2, via

the previous formulas so we can get a greedy sequence z(n) of the two-dimensional normal
distribution N (0, I2). The procedure is implemented as described in section 3.4.2. At each
iteration, we must choose the one-dimensional distribution to which we should add a point.
Thus, we compute the error induced if we add a point to u(n2)

Eu = e2
(
u(n2+1),U [0, 2π]

)2 + e2
(
ε(n1), E

(1
2
))2 = 4π2e2

(
u(n2+1),U [0, 1]

)2 + 4e2
(
ε(n1), E(1)

)2
and the error induces if we add a point to ε(n1)

Eε = e2
(
u(n2),U [0, 2π]

)2 + e2
(
ε(n1+1), E

(1
2
))2 = 4π2e2

(
u(n2),U [0, 1]

)2 + 4e2
(
ε(n1+1), E(1)

)2
and we add a point to u(n2) if Eu < Eε and a point to ε(n1) if Eε < Eu.

To design sequences in dimension d > 2, one uses several couples (Ei, Ui) to get several pairs
(Zi, Zj) and uses the wanted number of (Zk)k to obtain multidimensional sequences. In Figure
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3.1, we compare two greedy quantization sequences of the distribution N (0, I3) of size N =
153, one is obtained using the Box-Müller method based on two greedy exponential sequences
E(1) and two greedy uniform sequences U([0, 1]), and the other obtained by greedy product
quantization based on 3 one-dimensional Gaussian greedy sequences. The weights of the Voronoï
cells in both cases are represented by a color scale (growing from blue to red). Note that, even
if the greedy product quantization of a Normal distribution takes the shape of a cube (which is
unusual for such distribution), the low values of the Voronoï weights at the edges of this cube
allow to consider such a sequence as a valid approximation of the Gaussian distribution.

3.5.2 Pricing of a 3-dimensional basket of European call options

We consider a Call option on a basket of 3 positive risky assets, with strike price K and maturity
T , with payoff hT =

(∑3
i=1wiXi −K

)
+
where (X1, X2, X3) represent the prices of the 3 traded

assets of the market and wi are positive weights such that
∑3
i=1wi = 1. We consider a 3-

dimensional correlated Black-Scholes model where the prices of the assets are given,for every
i ∈ {1, 2, 3}, by

Xi = X0,i exp
(
(r − σ2

i
2 )t+

q∑
j=1

σijWj,t

)
, t ∈ [0, T ]

where r is the interest rate, σi the volatility of Xi and(Wi)i represent a correlated 3-dimensional
Brownian motion, i.e. (Wi,Wj) = ρijt with ρ1,1 = ρ1,2 = ρ1,3 = 0.5 and all the others ρi,j ’s are
equal to 0. First, we compute V0 = e−rTE [hT (X1, X2, X3)] by a quadrature formula, according
to (3.13), using a 3-dimensional greedy quantization sequences of N (0, I3) obtained, on one
hand, by the Box-Müller algorithm explained in the previous section and, on the other hand,
by greedy product quantization of 3 one-dimensional sequences. Then, we estimate V0 by the
recursive formula (3.20) for d = 3 using the greedy product quantization sequence. We build
sequences of size 32 000 and consider the following parameters

r = 0.1 , σi = 0.3 , Xi,0 = 100 , T = 1 and K = 100.

The reference price is given by a large Monte Carlo simulation with control variate of size
M = 2.107. We consider the control variate

kT =
(
e
∑3

i=1 wi log(Xi) −K
)

+

which is positive and lower than hT (owing to the convexity of the exponential). Since e−rTEkt
has a normal distribution with mean (r − 1

2
∑3
i=1wiσ

2
i )T and variance wtσσtwT , it admits a

closed form given by

e−rTEkt = CallBS

( 3∏
i=1

Xwi
i,0e
− 1

2T (
∑3

i=1 wiσ
2
i−w

tσσtw),K, r,
√
wtσσtw, T

)
.

We compare the three methods in Table 3.1 where we expose the errors obtained by each method
for particular number of points. We deduce that the recursive numerical integration gives the
same results as the quadrature formula-based numerical integration making quantization-based
numerical integration less expensive and more advantageous by reducing the cost in time and
storage. Moreover, one notices that the Box-Müller algorithm is more accurate than the greedy
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Table 3.1: Approximation of a 3-dimensional basket of call options in a BS model by Box-Müller
with quadrature formula (BM), greedy product quantization with quadrature formula (GPQ)
and with recursive formula (GPI).

n BM GPQ GPI
100 1.72 1.68 1.84
1 000 0.07 0.42 0.42
8 000 0.04 0.08 0.08
15 000 0.07 0.08 0.08

product quantization, this can be explained by the fact that Box-Müller sequences fill the space
in a way that resembles more to the normal distribution, we can notice a kind of ball different
than the cube observed when implementing greedy product sequences (see Figure 3.1).

3.6 Further properties and numerical remarks
In this section, we present, based on numerical experiments, some properties of the one-dimensional
quadratic greedy quantization sequences. We recall that a(n) = {a(n)

1 , . . . , a
(n)
n } denotes the re-

ordered greedy sequence of the n first elements {a1, . . . , an} of (an)n≥1.

3.6.1 Sub-optimality of greedy quantization sequences

The implementation of a greedy quantization sequence (an)n≥1 of a distribution P and the
computation of the corresponding weights pni of the Voronoï cells Wi(a(n)) for i ∈ {1, . . . , n}
defined by (3.1) is, in general, not optimal. However, numerical implementations and graphs
representing ai 7→ pni = P (X ∈ Wi(a(n))) for different number of points n show that, for
certain distributions, the weights of the Voronoï cells converge towards the density curve of the
corresponding distribution when the greedy sequence has a certain number of points.
For the normal distribution, this is observed when n = 2k − 1, for every integer k ≥ 1. So, we
can say that the greedy quantization sequence is sub-optimal since the subsequence

α(n) = α(2k−1) t.q. n = 2k − 1, k ∈ N∗ (3.21)

is itself optimal. Regarding the Uniform distribution on [0, 1], we can check that there exist two
sub-optimal sequences of the greedy sequence α(n) = a(ki) for values of ki defined by

k0 = 3,
ki = 2ki−1 + 1 if i ≡ 1 (mod 3),
ki = 2(ki−1 − 2) + 1 if i ≡ 2 (mod 3),
ki = 2(ki−1 + 2) + 1 if i ≡ 0 (mod 3).


k0 = 11,
ki = 2ki−1 + 1 if i ≡ 1 (mod 3),
ki = 2(ki−1 − 2) + 1 if i ≡ 2 (mod 3),
ki = 2(ki−1 + 2) + 1 if i ≡ 0 (mod 3).

Some results for the normal distribution are represented in Figure 3.2 where we observe the
unimodal weights for n = 255 = 28 − 1 and non-unimodal weights for n = 400. Similarly, the
greedy quantization sequence of the Laplace distribution L(0, 1) admits optimal subsequences
of the form a(2k−1), k ∈ N∗. These observations allow to conjecture the sub-optimality of such
subsequences for symmetrical distributions around 0.
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Figure 3.2: Representation of ai 7→ pni where (pni )1≤i≤n denote the Voronoï weights of the greedy
quantization sequence of N (0, 1) for n = 255 (left), n = 400 (right).

3.6.2 Convergence of standard and weighted empirical measures

Sequences of asymptotically optimal n-quantizers (Γn)n≥1 of P satisfy some empirical measure
convergence theorems established in [32] (see Theorem 7.5 p. 96) and [19] and recalled below,
where

P̂n = 1
n

n∑
i=1

δxni and P̃n =
n∑
i=1

P (Wi(Γn))δxni

designate, respectively, the empirical standard measure and the empirical weighted measure
associated to Γn = {xn1 , . . . , xnn}.

Theorem 3.6.1. Assume P is absolutely continuous w.r.t the Lebesgue measure on Rd with den-
sity f . Let Γn be an asymptotically optimal n-quantizer of P . Then, denoting C =

( ∫
R f

d
d+p (u)du

)−1,
one has

P̃n ⇒
n→+∞

P and P̂n ⇒
n→+∞

C f
d
p+d (u)du. (3.22)

Due to the existence of suboptimal greedy quantization sequences, detailed previously, we
hope to obtain such results for greedy sequences or, at least, for sub-optimal greedy sequences
defined in the previous section. To this end, we “divide” the two limits mentioned in (3.22),
along the sequence (Wi(a(n)))1≤i≤n and we obtain that, for every i ∈ {1, . . . , n}, the limiting
measure of the Voronoï cells of the greedy sequence is given by

Pl(Wi(a(n))) ' f
p
d+p (a(n)

i )
Cn

(3.23)

In other words, if the greedy sequences satisfy the convergence of the empirical measures, then
the weights of the Voronoï cells, computed using the c.d.f of P , must converge to the limit
weights Pl(Wi(a(N))) given in (3.23).

Numerical experiments were established for the one-dimensional standard Normal, Uniform,
Exponential and Laplace distribution. We observe that the exact weights of the Voronoï cells
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Figure 3.3: Comparison of the exact Voronoï weights (blue) and the limit weights (red) for the
exponential distribution E(1) for n = 645 (left) and n = 1 379 (right).

computed online get closer to the limit weights Pl when n increases. For the Gaussian distribu-
tion, we observe a more important convergence for the subsequences a(2k−1) (as predicted). We
present, in Figure 3.3 the obtained results for the exponential distribution where we compare
the exact weights (blue) and the limit weights (3.23) (red) for different number of points n.

3.6.3 Stationarity and ρ-quasistationarity

An interesting question is to see if the greedy sequences are stationary i.e. satisfy

a
(n)
i = E(X|X ∈Wi(a(n))), i = 1, . . . , n,

or can be close to stationarity, a property shared by quadratic optimal quantizers. Numerical
experiments conducted for several probability distributions yield that, unfortunately, greedy
sequences are not stationary in this sense. In fact, one can prove that the greedy quantization
sequence a(n) of a symmetric unimodal distribution is not stationary, expect for n ∈ {1; 3}. A
proof is available in Chapter 4.

However, further different numerical observations show that most greedy quantization se-
quences satisfy a certain criteria that we call ρ-quasi-stationarity, approaching the stationary
property and defined, for r ∈ {1, 2} and ρ ∈ [0, 1], by

‖X̂a(n) − E(X|X̂a(n))‖r = o(‖X̂a(n) −X‖1+ρ
1+ρ), or ‖X̂a(n) − E(X|X̂a(n))‖r

‖X̂a(n) −X‖1+ρ
1+ρ

−→
n→+∞

0. (3.24)

It is satisfied by greedy sequences for ρ lower than certain optimal values ρl depending on r
and the distribution P . We expose, in Table 3.2, these values of ρl for r ∈ {1; 2} for the
Normal, Uniform and exponential distribution. This property is important because it brings
improvements to quantization-based numerical integration. In fact, if f is C1 with ρ-hölder
gradient with coefficient [∇f ]ρ, the classical error bound is given by (see [56])

|Ef(X)− Ef(X̂a(n))| ≤ [∇f ]ρ‖X − X̂a(n)‖1+ρ
1+ρ.
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Table 3.2: Values of optimal ρl for different distributions and for r ∈ {1; 2}.
N (0, 1) U([0, 1]) E(1)

r = 1 ρl = 0.92 ρl = 3
4 ρl = 2

3
r = 2 ρl = 0.47 ρl = 3

8 ρl = 1
3

However, one has

Ef(X)− Ef(X̂a(n)) ≤E
(
∇f(X̂a(n))|X − X̂a(n))

+ E
[∫ 1

0

(
∇f
(
X̂a(n) + t(X − X̂a(n))

)
−∇f(X̂a(n))|X − X̂a(n))

dt

]
where the second expectation in the right term of the above inequality is bounded by [∇f ]ρE|X−
X̂a(n) |1+ρ ∫ 1

0 t
1+ρdt and

E(∇f(X̂a(n))|X − X̂a(n)) = E(∇f(X̂a(n))|X)− E(∇f(X̂a(n))|X̂a(n))

= E
(
∇f(X̂a(n))|E(X|X̂a(n))− X̂a(n))

.

So, if (3.24) is satisfied, then one obtains

|Ef(X)− Ef(X̂a(n))| ≤‖∇f(X̂a(n))‖2‖E(X|X̂a(n))− X̂a(n)‖2 + 1
1+ρ [∇f ]ρ‖X − X̂a(n)‖1+ρ

1+ρ

≤ 1
1 + ρ

[∇f ]ρ‖X − X̂a(n)‖1+ρ
1+ρ.

3.6.4 Discrepancy of greedy sequences

The comparison established, in the beginning of section 3.4, between greedy quantization-based
numerical integration and quasi-Monte Carlo methods, showing a gain of log(n)-factor with
greedy quantization in terms of convergence rate, drives us to build a relation, based on Proïnov’s
Theorem 3.4.1, between the error quantization and the discrepancy. In fact, for every n-tuple
Ξ = (ξ1, . . . , ξn) ∈ [0, 1]n, noticing that a Lipschitz function f has always a finite variation and
considering the function f : u→ min1≤i≤n |u−ξi| which is 1-Lipschitz (since |mini ai −mini bi| ≤

maxi |ai − bi|) and satisfies f(ξi) = 0 for every i ∈ {1, . . . , n} and
∫ 1

0
f(u)du = e1(X,U([0, 1])),

one applies the Koksma-Hlawka inequality (3.15) to f to deduce that

e1(Ξ,U([0, 1])) ≤ D∗n(Ξ). (3.25)

This motivates us to study the discrepancy of greedy sequences hoping that they can be compa-
rable to low discrepancy sequences. We compute this quantity for d ∈ {1, 2, 3}, using formulas
given in [20] and deduce that, in the one-dimensional case, greedy sequences can be used as a low
discrepancy sequence. But, when d becomes larger than 1, the situation becomes less convinc-
ing: The discrepancy of pure greedy sequences, designed by implementing Lloyd’s algorithm,
and that of low discrepancy sequences (Niederreiter sequences for example) are comparable, but
the problem that arises is the complexity of the computations making greedy sequences less
practical. On the other hand, if we build greedy product sequences, the computations will be
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Figure 3.4: Comparisons of the star discrepancy of the Niederreiter sequence to a greedy prod-
uct quantization sequence of the Uniform distribution U([0, 1]2) (left) and to a pure greedy
quantization sequence (right) for d = 2.

less expensive but there is no gain in terms of discrepancy. Figure 3.4 shows a comparison of the
discrepancy of a Niederreiter sequence in dimension 2 to that of a product greedy quantization
sequence of U([0, 1]2) on the one hand, and to that of pure greedy quantization sequence of
U([0, 1]2) on the other hand.

The positive results obtained for d = 1 encourage us to try and manipulate low discrep-
ancy sequences, such as Van der Corput sequences, in order to be able to use them as greedy
quantization sequences. In other words, we will assign to them a Voronoï diagram, compute the
weights of the corresponding Voronoï cells instead of considering uniform weights and observe
the impact this brings to numerical integration. To this end, we consider a basic example where
we compute the price of a European call C0 = E[(XT −K)+] for a maturity T and a strike price
K where the price of the asset Xt at a time t is given by

Xt = x0 exp
(
(r − σ2

2 )t+ σ
√
tZt
)

where r is the interest rate, σ the volatility and (Zt)0≤t≤T is an i.i.d. sequence of random
variables with distribution N (0, 1). We consider

T = 1, K = 9, x0 = 10, µ = 0.06, σ = 0.1.

The exact price is given by a closed formula known in the Black-Scholes case and is approximately
equal to 1.5429. We compute the price C0 first via a classical quadrature formula using the new
weights pni assigned to the VdC sequence, then by a classical quasi-Monte Carlo simulation
(using uniform weights of a VdC sequence) and finally by a quantization-based quadrature
formula based on a greedy quantization sequence of U([0, 1]). We compare the errors induced by
these three methods in Figure 3.5 and deduce that the procedure using the greedy quantization
sequence converges faster than the ones using the Van der Corput sequence. Consequently, one
can say that greedy sequences are more advantageous than low discrepancy sequences, even if
we assign to them non-uniform weights.
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Chapter 4

Greedy vector quantization:
Detailed numerical studies

Let X be a random variable with probability P defined on (Rd,B(Rd)). In Chapter 3, we
studied theoretical aspects of greedy vector quantization first developed extensively in [45] and
consisting in building a sequence of points (an)n≥1 in Rd which is recursively optimal step by
step, in the sense that it minimizes the Lr-quantization error at each iteration. In other words,
at each iteration of the implementation, one adds a point an+1 solution to

an+1 ∈ argminξ∈Rd er(a(n) ∪ {ξ}, X). (4.1)

We also presented a new numerical approach and established a new iterative formula for quantization-
based numerical integration, based on the fact that, at each iteration, while adding a new point
to the greedy sequence, most of the Voronoï cells remain untouched.
Furthermore, to study to what extent greedy sequences can be close to optimality, we exposed
some numerical experiments that led us to extend some properties to greedy sequences. Our
interest in this chapter will be to develop what was briefly presented in the first chapter. We
will explain the algorithms that allow to obtain greedy quantization sequences and give further
details and new experimental results related to the properties already deduced in Chapter 3.

Throughout this chapter, we consider a random variable X with distribution P and a(n)

a corresponding greedy quantization sequence and we assume that Rd is equipped with the
canonical Euclidean norm and that p = 2 (except when mentioned otherwise).

4.1 Algorithms of computation of greedy sequences
Practical computation of an optimal greedy quantization sequence relies on variants of usual al-
gorithms such as CLVQ and Lloyd’s algorithm used for building sequences of optimal quantizers.
For greedy quantization, the implementation is recursive, in the sense that, in order to switch
from the (n− 1)-th to the n-th iteration, one adds, in a way to be specified, a n-th point to the
existing (n− 1)-tuple (a1, . . . , an−1) computed during the first n− 1 iterations of the algorithm.
This way, one possesses the starting n-tuple for the modified CLVQ or Lloyd procedure. One im-
plements these optimization procedures keeping in mind that all formerly computed components
(ai)1≤i≤n−1 are kept frozen, and only the new added point is moved following the standard rules
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of the algorithm. In other words, the new point added at each iteration of the greedy procedure
is the only centroïd updated during the algorithms. Note that the first point of the sequence is
the Lp-median of the distribution P , i.e. a1 = E[X].

4.1.1 One-dimensional case

In the one-dimensional case, when the distribution is absolutely continuous with a continuous
positive probability density ϕ, deterministic Lloyd and CLVQ algorithms can easily be extended
to greedy versions. We present the details in the following.

Greedy Lloyd’s algorithm As already mentioned, the computation of greedy sequences is
recursive. So, we assume that the first n − 1 points a1, . . . , an−1 have been computed and we
compute the nth point an according to the following steps.
• Sort the first n− 1 points of the sequence a1, . . . , an−1 in an increasing order:

a
(n−1)
1 < · · · < a

(n−1)
n−1 .

• Compute the n inter-point local inertia given by

σ2
i :=

∫ a
(n−1)
i+ 1

2

a
(n−1)
i

|a(n−1)
i − ξ|2P (dξ) +

∫ a
(n−1)
i+1

a
(n−1)
i+ 1

2

|a(n−1)
i+1 − ξ|2P (dξ), i = 0, . . . , n− 1 (4.2)

where a(n−1)
0 = −∞, a(n−1)

n = +∞ and a(n−1)
i+ 1

2
is the mid-point of [a(n−1)

i , a
(n−1)
i+1 ] :

a
(n−1)
1
2

= −∞, a
(n−1)
i+ 1

2
=
a

(n−1)
i + a

(n−1)
i+1

2 , a
(n−1)
n−1

2
= +∞.

• Determine the index i0 = i0(n− 1) corresponding to the maximal local inertia, i.e. such that
σ2
i0 = max

0≤i≤n−1
σ2
i , and choose a random point ā0 ∈ (a(n−1)

i0
, a

(n−1)
i0+1 ).

• Define a recursive sequence a[l] = an,[l] starting at an,0 = ā0 by

a[l+1] = E(X|X ∈Wn,l) =
KX

(a(n−1)
i0+1 +a[l]

2

)
−KX

(a(n−1)
i0

+a[l]
2

)
FX
(a(n−1)

i0+1 +a[l]
2

)
− FX

(a(n−1)
i0

+a[l]
2

) , l ≥ 0, (4.3)

where FX(x) = P ((−∞, x]) is the cumulative distribution function of the distribution P of X,
KX is its cumulative first moment function defined by KX(x) =

∫
(−∞,x] ξdP (ξ), x ∈ R and

Wn,l is the Voronoï cell of centroid an,[l] corresponding to the sequence a(n−1) ∪ {an,[l]}. One
can easily check that, at each iteration, an,[l] ∈ (a(n−1)

i0
, a

(n−1)
i0+1 ) which makes the procedure well

defined.

Relying on classical arguments called upon in the proofs of the convergence of the standard
Lloyd I procedure (see [11, 39]), one can show that if P = ϕ.λ1 where ϕ : R→ R is a log-concave
function, the sequence an,[l] converges towards the unique solution an,∞ ∈

(
a

(n−1)
i0

, a
(n−1)
i0+1

)
of the

fixed-point equation
an = E (X|X ∈Wn)
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where Wn is the closed Voronoï cell of centroid an in the Voronoï diagram corresponding to
a(n−1) ∪ {an}.

Remark 4.1.1. • The integrals involved in the algorithm can be computed using higher order
quadrature formulas, or, for example for the standard Normal distribution, using the closed form

for
∫ x
−∞ ξe

− ξ
2
2 dξ√

2π = − e−
x2
2√

2π .
• The log-concave assumption, which implies the uniqueness of the fixed point for equation
(4.3), is satisfied by many families of distributions like the Gaussian distributions N (m,σ2), the
exponential and Laplace distributions, the γ(α, β)-distributions, α ≥ 1, β > 0 which are strongly
unimodal.

Greedy CLVQ algorithm Assume P = ϕ.λd. This is a gradient descent algorithm, also
known as k-means algorithm, defined by the following recursion

a[l+1] = a[l] −
(
γl+1 ∧

1
ρ(a[l])

) ∫ a
(n−1)
i0+1 +a[l]

2
a

(n−1)
i0

+a[l]
2

(
a[l] − ξ

)
P (dξ) (4.4)

where γl+1 is a (0, 1)-valued sequence that goes to 0 when l goes to +∞ and such that
∑
l γl =

+∞, and ρ(a) > 0 is the second derivative of the function a 7→ E
(

min |X−ai|2∧|X−a|2
)
given

by

ρ(a) = P
([a(n−1)

i0
+ a

2 ,
a

(n−1)
i0+1 + a

2
])

+
a− a(n−1)

i0

2 ϕ
(a+ a

(n−1)
i0

2
)

+
a

(n−1)
i0+1 − a

2 ϕ
(a+ a

(n−1)
i0+1

2
)
.

This recursion is well defined and consistent since it lives in the interval
(
a

(n−1)
i0

, a
(n−1)
i0+1

)
, this

is due to the fact that γl+1 ∈ (0, 1). Similarly to the Lloyd’s algorithm, the computation of
integrals involved can be performed by higher order quadrature formulas and closed forms of
certain integrals in some cases.
In case P is not absolutely continuous, one has only to replace the term involving the second
derivative with a step γl satisfying the standard decreasing step assumption that is

∑
l γl = +∞

and
∑
l γ

2
l < +∞, provided one can compute the P -integrals of interest.

Greedy quantization of the N (0, 1) distribution The symmetry of the one-dimensional
standard Gaussian distribution allows to simplify, in a certain way, the computation of its
quadratic optimal greedy sequence. In other terms, we consider the distribution P̃ = P|R+
(which is clearly strongly unimodal) and we compute its quadratic optimal greedy sequence
(ãn)n≥1 by the greedy Lloyd’s procedure starting at ã1 = 0. Consequently, the sequence given
by

a0 = 0, a2n−1 = ãn, a2n = −ãn, n ≥ 1,

is a quadratic optimal greedy sequence for the Gaussian distribution.

In order to proceed with the computation of the greedy sequence, note that the integrals
involved in the algorithms explained above are computed using the following functions

FX(x) = P
(
(−∞, x]

)
, KX(x) =

∫
(−∞,x]

ξdP (ξ) = −e
−x

2
2

√
2π
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and the cumulative second moment function

LX(x) =
∫

]−∞,x]
ξ2P (dξ) = FX(x) + xKX(x).

At the n-th iteration of the algorithm, the inter-point inertia are given as follows, where we
replace a(n−1)

i by ai for simplicity,

σ2
0 = (a2

1 + 1)FX(a1) + a1
e−

a2
1

2
√

2π
,

σ2
i = FX(ai+1)(1 + a2

i+1) + FX(ai+ 1
2
)(a2

i − a2
i+1)− FX(ai)(1 + a2

i )

+ ai+1
e−

a2
i+1
2

√
2π
− ai

e−
a2
i

2
√

2π
+ 2(ai − ai+1)e

−
a2
i+ 1

2
2

√
2π

, 1 ≤ i ≤ n− 2,

σ2
n−1 = (1− FX(an−1))(1 + a2

n−1)− an−1
e−

a2
n−1

2
√

2π
.

The Voronoï diagram corresponding to this sequence is given by Wi(a(n)) =
(
a

(n)
i− 1

2
, a

(n)
i+ 1

2

)
, i ∈

{1, . . . , n} and the corresponding Voronoï weights are given by

pni = P (X ∈Wi(a(n))) = FX(a(n)
i+ 1

2
)− FX(a(n)

i− 1
2
).

We study the convergence of the quadratic quantization error e2(a(n), X) induced by the
greedy quantization of the distribution N (0, 1). This error is given by

e2(a(n), X)2 =
∫
Rd

min
1≤i≤n

|a(n)
i − ξ|

2dP (ξ) =
n∑
i=1

∫
Wi(a(n))

|a(n)
i − ξ|

2dP (ξ) =
n∑
i=1

σ2
i ,

where σ2
i , i = 0, . . . , n − 1 are the inter-point local inertia already computed. We reproduce in

Figure 4.1 the graph representing n 7→ n e2(a(n), P ), n = 4, . . . , 20 000, for P = N (0, 1) and
observe that

lim inf
n

ne2
(
a(n),N (0, 1)

)
≈ 1.6534 · · · >

√
3
2 π

1
4 = lim

n
ne2,n

(
N (0, 1)

)
and that

lim sup
n

ne2
(
a(n),N (0, 1)

)
≈ 1.8921 < 2×

√
3
2 π

1
4 ≈ 3.2611.

The real constant in the right hand side of the inequality easily follows from Zador’s Theorem.

Here, we can highlight the fact that the quantization error attains its lowest values when
n = 2k−1, k ≥ 1. This can be explained by the existence, emphasized by numerical experiments
in Section 3.6.1 of Chapter 3, of sub-optimal sequences of the greedy quantization grids of the
standard Gaussian distribution. In fact, the graphs representing the weights of the Voronoï cells
of a greedy quantization sequence a(n) of N (0, 1) appeared to be uni-modal when the number of
points is n = 2k−1, k ≥ 1, which led us to conjecture that the sequences a(2k−1) are sub-optimal
and thus, produce the lowest values of the quantization error.
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Figure 4.1: Quadratic greedy quantization error n 7−→ ne2(a(n), X) associated to the Gaussian
distribution N (0, 1) for n = 2, . . . , 20 000.

Greedy quantization of the U([0, 1]) distribution The computation of a greedy quan-
tization sequence of the Uniform distribution U([0, 1]) is implemented via the greedy Lloyd’s
algorithm starting at a1 = 1

2 . Then, considering that, at the nth-iteration, the n− 1 first points
a

(n−1)
1 , . . . , a

(n−1)
n−1 are already computed and reordered increasingly, we compute the n− 1 inter-

point inertia given by the following (where we replace a(n−1)
i by ai for every i ∈ {1, . . . ,+∞}

for simplicity)

σ2
0 = a3

1
3 ,

σ2
i =

(ai+1 − ai+ 1
2
)3

3 −
(ai − ai+ 1

2
)3

3 , i = 1, . . . , n− 2,

σ2
n−1 = (1− an−1)3

3 .

Then, the algorithm is implemented as described previously, having in mind that we consider
a0 = −∞ and an+1 = +∞ even if the support of P is [0, 1]. The Voronoï cells are given by

W1(a(n)) = (0, a1+ 1
2
), Wn(a(n)) = (an− 1

2
, 1) and Wi(a(n)) = (ai− 1

2
, ai+ 1

2
), i = 2, . . . , n−1.

The weights of the Voronoï cells are computed easily using the cumulative distribution function
FX . Figure 4.2 represents the graph of the quadratic quantization error n 7−→ ne2(a(n), X)
where we observe that

lim inf
n

ne2(a(n), X) ≈ 0.295 > lim
n
ne2,n(X),

and
lim sup

n
ne2(a(n), X) ≈ 0.32 < 2 lim

n
ne2,n(X).

Just as in the Gaussian distribution case, we notice that the quantization error induced by the
approximation of the Uniform distribution attains its lowest values for two sub-sequences. As
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Figure 4.2: Quadratic greedy quantization error corresponding to the Uniform distribution
U([0, 1]) for n = 1, . . . , 10 000.

mentioned in Section 3.6.1 of Chapter 3, there exists two optimal sub-sequences for which the
weights of the Voronoï cells approach well the distribution curve and thus allowing to obtain the
lowest values of the quantization error.

Greedy quantization of the E(1) distribution Let X be a random variable with expo-
nential distribution P = E(1). The same procedure as previously is adopted to compute a
greedy quantization sequence a(n) of X. The integrals can be computed relying on the functions
FX(x) = P

(
]−∞, x]

)
and KX(x) = 1− e−x − xe−x. We start the algorithm at a1 = E(X) = 1

and, at the n-th iteration, we compute the n inter-point inertia as follows (where we replace
a

(n−1)
i by ai for every i ∈ {1, . . . ,+∞} for simplicity)

σ2
0 = 2− 2a1 − 2e−a1 + a2

1,

σ2
i = e

−a
i− 1

2 (ai − ai+ 1
2
)(2− ai + ai+ 1

2
) + 2(e−ai − e−ai+1)− e

−a
i+ 1

2 (ai+1 − ai+ 1
2
)(2− ai+1 − ai+ 1

2
),

1 ≤ i ≤ n− 1
σ2
n−1 = 2e−an−1 .

We observe, in Figure 4.3, the quadratic error n 7→ ne2(a(n), X) induced by the greedy
quantization of the exponential distribution E(1) for n = 4, . . . , 10 000 points.

Greedy quantization of the Laplace distribution with parameters α = 0 and β = 1
Let X be a random variable with a Laplace distribution with parameters 0 and 1. The

computation of a greedy quantization sequence a(n) of X is implemented via Lloyd’s algorithm
starting at a1 = E[X] = 0 and in which the local inter-point inertia at the n-th iteration are
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Figure 4.3: Quadratic greedy quantization error n 7→ ne2(a(n), X) of the exponential distribution
E(1) for n = 4, . . . , 10 000 points.

given by

σ2
0 = ea1

2 ,

σ2
i =


e
−a

i+ 1
2 (ai − ai+ 1

2
)
(
1− 1

2(ai − ai+ 1
2
)
)

+ e
−a

i+ 1
2 (ai+1 − ai+ 1

2
)
(

1
2(ai+1 − ai+ 1

2
)− 1

)
+e−ai − e−ai+1 if ai+1 < 0
e
a
i+ 1

2 (ai − ai+ 1
2
)
(
1 + 1

2(ai − ai+ 1
2
)
)
− e

a
i+ 1

2 (ai+1 − ai+ 1
2
)
(

1
2(ai+1 − ai+ 1

2
) + 1

)
+eai+1 − eai if ai+1 > 0,

i = 1, . . . , n− 2,
σ2
n−1 = e−an−1 .

The quantization error thus obtained is illustrated in Figure 4.4 where we represent n 7→
ne2(a(n), X) for n = 1, . . . , 10 000.

4.1.2 Multi-dimensional case

When the dimension becomes higher (d ≥ 2), deterministic greedy Lloyd’s and greedy CLVQ
algorithms become too demanding due to several computations of integrals over the Voronoï
cells of the quantization sequence. So, it becomes necessary to switch to stochastic optimiza-
tion procedures which are adaptations of the stochastic procedures introduced to compute op-
timal n-quantizers. The convergence results of these procedures remain partial, especially if
the distribution P is not compactly supported. For more details about these original stochas-
tic optimization procedures, mostly devised in the 1950’s, we refer e.g. to [8, 62] for CLV Q
and [21, 39, 68] for (randomized) Lloyd’s I procedure or more applied textbooks like [22]. In
practice, the computation of integrals on the Voronoï cells is replaced, in both procedures, by
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Figure 4.4: Quadratic greedy quantization error n 7→ ne2(a(n), X) of the Laplace distribution
with parameters 0 and 1 for n = 1, . . . , 10 000 points.

repeated nearest neighbor searches among the components of the current n-quantizers. We
present in the following their greedy variants.

Multi-dimensional greedy randomized Lloyd’s procedure

Just as in the one-dimensional case, the greedy Lloyd’s I procedure to compute an, assuming
that a(n−1) is already known, is defined, in the quadratic case, by the following recursion

an,[l+1] = E
(
X |X∈Wn,[l]

)
, an,[0]∈ Rd\ {a(n−1)}, (4.5)

where Wn,[l] is the closed Voronoï cell of an,[l] with respect to the quantizer a(n−1) ∪ {an,[l]}.

From a practical point of view, the conditional expectations are computed by a Monte Carlo
simulation (provided X can be simulated at a reasonable cost). In other words, by the Strong
Law of Large Numbers

an,[l+1] = lim
M→+∞

∑M
m=1X

m1{Xm∈Wn,[l]}∑M
m=1 1{Xm∈Wn,[l]}

P-a.s.

where (Xm)m≥1 is an i.i.d. sequence of copies of X (with distribution P ) defined on a probability
space (Ω,A,P).
The existence of the above limit is given in the proposition below, at least for absolutely con-
tinuous distributions with convex support.

Proposition 4.1.2. Assume the distribution P of X is strongly continuous with a convex sup-
port. Then the sequence (an,[l])l≥0 is bounded and there exists ` ∈

[
e2
(
a(n), P

)
, e2

(
a(n−1) ∪

{a[0]}, P
)]

such that the set A∞(a[0]) of its limiting points is a connected compact subset of the
set Λ` of `-stationary points defined by

Λ` =
{
a∈ Rd | e2,n

(
a(n−1) ∪ {a}

)
= ` and a = E

(
X |X∈Wn,a

)}
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where Wn,a denotes the closed Voronoï cell of centroid a induced by the n-quantizer a(n−1)∪{a}.
In particular, e2

(
a(n−1) ∪ {a[l]}, X

)
→ ` as l→ +∞.

Furthermore, if the `-stationary set Λ` is locally finite (i.e. with a finite trace on compact
sets of Rd), then an,[l] a.s. converges to some point in Λ`.

In higher dimensions, the equilibrium point is not unique. So, in theory, this limit may be
just a local minimizer and not the solution to our greedy optimization problem. However, in
practice, the results turn out to be satisfying.

Multidimensional Competitive Learning Vector Quantization procedure

This stochastic gradient descent algorithm (zero search algorithm) is defined by the following
recursion

an,[l+1] = an,[l] − γl+11{|Xl+1−an,[l]|<min
a∈a(n−1) |Xl+1−a|

}(an,[l] −X l+1), al,[0]∈ Rd.

where (γl)l≥1 is a sequence of (0, 1)-valued step parameters satisfying the so-called decreasing
step assumption, namely

∑
l

γl = +∞ and
∑
l γ

2
l < +∞.

Numerical experiments show that liml→+∞ an,[l] = an, at least for distributions with compact
convex support. Furthermore, one can speed up the convergence of the procedure by applying
the so-called Ruppert-Polyak principle which consists in choosing a slowly decreasing step of the
form γl = c

c+lα ,
1
2 < α < 1, and averaging the procedure by setting

ān,[l] = 1
l

(
a[n,0] + · · ·+ a[n,l−1]

)
, l ≥ 1,

In other words, it will satisfy a Central Limit Theorem at rate
√
n with the lowest possible

asymptotic variance (see e.g. [43, 57] for details).

However, these procedures are very demanding. There is so many integrals that intervene
especially in the computation of the local inter-point inertia needed to decide in which cell we
should add the new point. The improvements applied to the algorithm, as explained in Chapter
3, allow a reduction in the cost of the implementations, but the remaining computations are still
too demanding and expensive. That is why we presented, in Chapter 3, what is called greedy
product quantization consisting in obtaining multi-dimensional greedy sequences by computing
the tensor product of several one-dimensional sequences, when the target law is a tensor product
of its independent marginal laws. We give, in this chapter, one further example of this technique
and compute the greedy product quantization sequence of the Normal distribution P = N (0, I2).
Noting that P = P1 ⊗ P2 where P1 = P2 = N (0, 1), we use two identical copies of the one-
dimensional greedy quantization sequence a(n) of N (0, 1) of same size n (already computed and
stocked) and build the two-dimensional sequence x(n2) of N (0, I2). In Figure 4.5, we expose the
weights of the Voronoï cells of the sequence x(n2) for n = 170 and n = 127 = 27 − 1, where
we clearly observe the bell curve in the case of n = 127, hence highlighting the existence of
optimal sub-sequences of the form x(n2) for n = 2k − 1, k ∈ N∗, even when we design product
sequences. This means that, for these sequences, the empirical weighted measure

∑n2
i=1 p

(n2)
i δ

x
(n2)
i

approximates best the distribution N (0, I2).
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Figure 4.5: Representation of the Voronoï weights associated to the greedy product quantization
sequence of the Normal distribution N (0, I2) obtained using two 1-dimensional grids of size
n = 127 (left) and n = 170 (right).

4.2 Deterministic algorithm in the two-dimensional case
We consider a random variable X taking values in R2, with absolutely continuous distribution
P with density ϕ and we work in a quadratic framework. Deterministic variants of greedy
Lloyd and greedy CLVQ can be extended to the two-dimensional framework. When d = 1, the
key to having deterministic procedures is that the Voronoï cells corresponding to the greedy
quantization sequence and the domains over which we need to integrate specific functions are
intervals of R of the form [a, b] which allowed the exact computation of the expectations and
probabilities, in the expression of the local inertias and the recurrence of the algorithm. When
d = 2, the corresponding Voronoï cells and the domains over which we need to integrate are
convex polygonial sets. Integrals over these sets cannot be computed exactly but there exist
numerical techniques able to approach them in a very effective and deterministic way. The idea
is to decompose each (polygonial) domain into several triangles and use quadrature formulas to
integrate the desired functions over these triangles.

The steps to follow for the greedy procedures when d = 2 are the same as in the one-
dimensional case. Starting at a0 = E[X] and assuming that a(n) = {a1, . . . , an} is already
computed, we add the (n + 1)-th point while the others remain frozen. The procedure is de-
tailed below where we denote by T = (x, y, z) the triangle whose vertices are the three points
x, y and z of R2.

First note that if the support of X is not compact, we start by truncating it into a bounded
domain. Take, for example, the Gaussian distribution N (0, I2) whose support is R2 but satisfies,
for a certain L > 0 large enough, P

(
X/∈[−L,L] × [−L,L]

)
≈ 0, so it is natural to truncate the

support and consider the square [−L,L]× [−L,L] as a workspace.

Computation of the local inter-point inertias

Consider three neighboring points ai, aj and ak of the sequence a(n) and let T` = (ai, aj , ak) be
a triangle whose vertices are these three points. The local interpoint inertia between them is
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given by

σ2
` =

∫
Wi(a(n))∩T`

(ai−ξ)2ϕ(ξ)dξ+
∫
Wj(a(n))∩T`

(aj−ξ)2ϕ(ξ)dξ+
∫
Wk(a(n))∩T`

(ak−ξ)2ϕ(ξ)dξ. (4.6)

To compute these inertias, one needs to handle the computation of integrals of the form
∫
D f(ξ)dξ

where D is the intersection between T` and the Voronoï cell and takes the form of a convex
quadrilater. Such a problem is solved as follows: Let vm be the vertice common to the three
cells Wi(a(n)), Wj(a(n)) and Wk(a(n)), i.e.

vm = Wi(a(n)) ∩Wj(a(n)) ∩Wk(a(n)).

We denote

vm+1 = Wi(a(n)) ∩Wj(a(n)) \ {vm}
vm+2 = Wi(a(n)) ∩Wk(a(n)) \ {vm}
vm+3 = Wj(a(n)) ∩Wk(a(n)) \ {vm}.

Furthermore, we denote cm+1 = (aiaj) ∩ (vmvm+1) the intersection between the line formed by
ai and aj and the line formed by vm and vm+1, and cm+2 = (aiak) ∩ (vmvm+2) the intersection
between the line formed by ai and ak and the line formed by vm and vm+2, and cm+3 =
(aiak)∩ (vmvm+3) the intersection between the line formed by ai and ak and the line formed by
vm and vm+3 (see Figure 4.6).
We start by decomposing each quadrilater D, over which we want to integrate, into 2 triangles
D = tm1 ∪ tm2 , which means that the triangle T` is itself divided in a total of 6 triangles
t1, . . . , t6. For example, D = Wi(a(n)) ∩ T` is divided into 2 triangles t1 =

(
ai, vm, cm+1

)
and

t6 =
(
ai, vm, cm+2

)
, as showed in Figure 4.6.

This way, the integral over D will be of the form∫
D
f(ξ)dξ =

∫
tm1

f(ξ)dξ +
∫
tm2

f(ξ)dξ

and the local inter-point inertia is given by the sum of 6 integrals (not necessarily of the same
function), each over a triangle tm,m ∈ {1, . . . , 6}, which are approximated by

∫
tm
f(ξ)dξ ≈ Atm

K∑
k=1

ωkf(xk) (4.7)

where Atm
is the area of the triangle tm and the points xk and the weights ωk are given by the

quadrature formulas over triangles as provided in [69].

When working close to the sides of the square [−L,L]× [−L,L], the vertices of the triangle
T` are no longer three neighboring points of the sequence. Instead, T` takes one of the two
following forms: The first possibility is T` = (ai, aj , vm) where ai and aj are two neighboring
centroids at the edge and vm = Wi(a(n)) ∩Wj(a(n)) ∩ [−L,L]2 (see Figure 4.7 (left)). In this
case, the inertia is given by

σ2
` =

∫
Wi(a(n))∩T`

(ai − ξ)2ϕ(ξ)dξ +
∫
Wj(a(n))∩T`

(aj − ξ)2ϕ(ξ)dξ (4.8)
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Figure 4.6: Decomposition of T` in the center in order to compute the local inter-point inertia.

Figure 4.7: Decomposition of T` at the edge in order to compute the local inter-point inertia.

and the domain D = Wi ∩ T` over which we need to integrate is a triangle so there is no need
to divide it. It suffices to denote T` = tm1 ∪ tm2 and apply (4.7) twice.
The second possibility is T` = (ai, vm, vm+1) where {vm, vm+1} = Wi(a(n))∩ [−L,L]2 (see Figure
4.7 (right)). In this case,

σ2
` =

∫
T`

(ai − ξ)2ϕ(ξ)dξ (4.9)

and the integral over the triangle T` is performed via (4.7).

Addition of a new point

After computing the local inertias, we proceed by choosing the triangle T`0 having the maximal
inter-point inertia among all the triangles T`. Then, we add a new point a0 to the greedy
quantization sequence as the barycenter of T`0 w.r.t. the underlying probability distribution P ,
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Figure 4.8: Decomposition of a Voronoï cell Wi(a(n)) with s = 6 vertices.

i.e.

a0 =
E
(
X1X∈T`0

)
P
(
X ∈ T`0

) =

∫
T`0

ξϕ(ξ)dξ∫
T`0

ϕ(ξ)dξ
. (4.10)

To compute these integrals, we decompose T`0 in the same way as explained for the computation
of the local inertia and apply (4.7).

Lloyd’s algorithm

The point added in the previous step is the starting point of a fixed-point search defined by the
following recursion: a[0] = a0 given by (4.10) and, for every l ≥ 1,

a[l] =
E
(
X1X∈W[l]

)
P
(
X ∈W[l]

) =

∫
W[l]

ξϕ(ξ)dξ∫
W[l]

ϕ(ξ)dξ

where W[l] is the Voronoï cell of centoid a[l] in the Voronoï diagram corresponding to the se-
quence a(n) ∪{a[l]}. This recurrence converges well to the solution a[∞] of the fixed-point search
problem allowing us to obtain the (n+ 1)-th point an+1 of the greedy quantization sequence.

Since W[l](a(n)) is a convex polygon with s vertices v1, . . . , vs, s ≥ 3, we proceed as before
to compute the above integrals. We start by dividing the cell W[l](a(n)) into s triangles tm =
(a[l], vm, vm+1), m ∈ {1, . . . , s}, as shown in Figure 4.8 so that∫

W[l](a(n))
f(ξ)dξ =

s∑
m=1

∫
tm
f(ξ)dξ

and the integrals over the triangles tm are computed by (4.7).

In Figure 4.9, we observe the Voronoï diagram of a greedy quantization sequence a(n) of
the Normal distribution N (0, I2) designed by a deterministic Lloyd’s algorithm. We expose the
sequences obtained at several steps of the algorithm, i.e. sequences of different sizes n between
n = 6 and n = 100 to emphasize the recursive dynamic of greedy quatization. The represented
sizes are n = 6, 7, 11, 16, 18, 24, 28, 32, 39, 51, 86, 100.
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Figure 4.9: Greedy quantization sequences of N (0, I2) obtained by a deterministic Lloyd’s algo-
rithm of sizes n = 6, 7, 11, 16, 18, 24, 28, 32, 39, 51, 86, 100 (starting from the upper left corner).

4.3 Low discrepancy sequences viewed as quantization sequences
In Section 3.6.4 of Chapter 3, we explain the interest in comparing greedy quantization sequences
to low discrepancy sequences. The most important advantage of quantization is the gain of
a log(n)-factor in the rate of convergence of quantization-based numerical integration error.
Furthermore, based on Proïnov’s Theorem (3.4.1), we were motivated to notice a link between
the discrepancy of a sequence Ξ and the quantization error induced by this sequence with respect
to the Uniform distribution given by

e1(Ξ,U([0, 1]d)) ≤ D∗n(Ξ)
1
d .

This led us to study the discrepancy of greedy quantization sequences which gave non-drastic
but also non-reliable results (see Section 3.6.4 of Chapter 3). That pushed us to tackle the
opposite problem which is trying to manipulate low discrepancy sequences, such as Van der
Corput, Halton sequences, Niederreiter and others, in order to be able to use them as greedy
quantization sequences. In other words, we assign to these particular sequences a Voronoï
diagram, give weights to the corresponding Voronoï cells, compute the quantization error hence
obtained and observe their behavior. We expose here further details of this study.
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Van der Corput sequence We consider the dyadic Van der Corput (VdC) sequence Ξ =
(ξn)n defined by

ξn =
r∑

k=0

ak
2k+1 where n = ar2r + · · ·+ a0, ai∈ {0, 1}, i = 1, . . . , r.

When d = 1, the Voronoï diagram is trivial and given by (Wi)1≤i≤n where

W1(Ξ) =
[
0, ξ1+ 1

2

)
Wn(Ξ) =

[
ξn− 1

2
, 1
]

Wi(Ξ) =
[
ξi− 1

2
, ξi+ 1

2

]
, 1 < i < n

where ξi+ 1
2

= ξi+ξi+1
2 , i ∈ {1, . . . , n − 1}. We manipulate this sequence as a quantization se-

quence of the Uniform distribution U([0, 1]) and start by studying the corresponding quadratic
quantization error

e2
2(X,U([0, 1])) =

∫ 1

0
min

1≤i≤n
|ξi − u|2du =

n∑
i=1

∫ ξ
i+ 1

2

ξ
i− 1

2

|ξi − u|2du

We observe, in Figure 4.10, the graph representing n→ ne2(Ξ,U([0, 1])) where we notice that

lim inf
n

ne2
(
Ξ,U([0, 1])

)
= 1

2
√

3
= J̃2,1 and lim sup

n
ne2

(
Ξ,U([0, 1])

)
= 3
√

5
4 × J̃2,1

keeping in mind that J̃2,1 = limn ne2,n(U([0, 1])) = infn ne2,n(U([0, 1])) is the sharp limiting
constant in Zador’s Theorem (1.5). The convergence rate of this error towards 0 is of O(n−1),
similar to that of a real greedy quantization sequence.

The same phenomenons are observed in the L1-case where

lim inf
n

ne1
(
Ξ,U([0, 1])

)
= 1

4 = J̃1,1 and lim sup
n

ne1
(
Ξ,U([0, 1])

)
= 9

32 = 9
8 J̃1,1

where J̃1,1 is as well the constant given by Zador Theorem for p = d = 1. This lim inf is achieved
by sub-sequences of Ξ of size 2k−1, k ≥ 1, and the lim sup achieved by sub-sequences of Ξ of
size 3

2 .2
k = 3.2k−1, k ≥ 1. This leads us to claim that there exist rate optimal sequences, i.e.

whose corresponding quantizaton error ocnverges to 0 with an O(n−
1
d )-rate of decay, which are

not solutions to the greedy problem (4.1).

From another point of view, we consider, instead of uniform Voronoï weights equal to 1
n , new

weights (easy to compute) given, for every i ∈ {1, . . . , n}, by

pni =
∫
Wi(Ξ)

dP = P
(
Wi(Ξ)

)
.

Numerical implementations show that, when the size of the sequence is equal to 2k, k ≥ 1,
the weights of the Voronoï cells induced by the VdC sequence are uniform. For comparison
purposes, an example was established in Chapter 3 to study the difference brought by the use of
such weights instead of uniform weights where we consider a basic example of pricing a european
call C0 = E[(XT −K)+] for a maturity T and a strike price K where the price of the asset Xt

at a time t evolves following a Black-Scholes model.
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Figure 4.10: Quadratic quantization error of the Van der Corput sequence viewed as a quanti-
zation sequence (logarithmic scale).

Niederreiter sequence in dimension 2 We consider a two-dimensional Niederreiter se-
quence Ξ = (ξi)1≤i≤n and we aim to apply the same study already established for the Van der
Corput sequence previously. When d = 2, the corresponding Voronoï cells are harder to define
thus the computation of the quantization error corresponding to Ξ becomes more complicated
and a deterministic computation seems to be impossible, this is due to the integrals appear-
ing in this case. To this end, one needs to do a stochastic computation based on large Monte
Carlo simulations coupled with a nearest neighbor search procedure. We compute the quadratic
quantization error e2(Ξ,U([0, 1]2) and expose it in Figure 4.11 in a logarithmic scale where we
observe an O(n−1)-rate of convergence.

Furthermore, we assign non-uniform weights for the cells of the Voronoï diagram induced by
the 2-dimensional Niederreiter sequence, via Monte carlo simulations. To study the utility of
such non-uniform weights, we consider the example of a European Best-of-Call Vanilla option
of maturity T and strike price K given by

V0 = e−rTE[
(

max(X1
T , X

2
T )−K

)
+]

where r is the interest rate and X1
T and X2

T are 2 risky assets in a 2-dimensional Black-Scholes
model given as follows

X1
0 = X2

0 = e−rT , Xi
t = Xi

0 exp
(
(r − σ2

i

2 )t+ σiW
i
t

)
, i = 1, 2,

where(W 1
t ,W

2
t ) is a correlated Brownian motion, i.e. W 2

t = ρW 1
t +

√
1− ρ2 W̃ 2

t where (W 1
t , W̃

2
t )

is a standard Brownian motion. We consider

T = 1 , K = 100 , X1
0 = X2

0 = 100 , ρ = 0.5 , σ1 = σ2 = 0.2 , r = 0.1

and we compute the price of V0 via a classical quadrature formula using the new weights pni
assigned to the Niederreiter sequence instead of uniform weights. The benchmark is given in
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Figure 4.11: Quadratic quantization error of the two-dimensional Niederreiter sequence viewed
as a quantization sequence for the U([0, 1]2) distribution. (logarithmic scale).

[57].
We compare, in Figure 4.12, the error induced by this approximation to the one obtained by a
classical quasi-Monte Carlo method (i.e. where we use the uniform weights of the Niederreiter
sequence) and to the one obtained by a quantization-based numerical integration quadrature
formula using a greedy quantization sequence of the U([0, 1])-distribution. We conclude with
the same observations as in the one-dimensional case (see Chapter 3), the convergence of greedy
quantization-based procedures is more important than Niederreiter-based procedures.

4.4 To what extent are greedy quantization sequences optimal?
Based on the studies established so far in this chapter, one wonders if there is a method to
produce, for any distribution P , a rate optimal sequence for Lp-quantization. In fact, one checks
that it is possible by concatenating Lp-optimal grids of size 2`. We consider a sequence (bn)n≥1

made up with (Lp, P )-optimal quantizers at level 2`, ` ≥ 0 i.e. in a way that
{
b2` , . . . , b2`+1−1

}
is an (Lp, P )-optimal quantizer at level 2`. For every n ≥ 1, let k = k(n) be such that 2k − 1 ≤
n ≤ 2k+1 so that, by monotony of the Lp-quantization error, one has, for every k ≥ 1,

ep(b(n), P ) ≤ ep(b(2
k−1), P ) ≤ ep({b2k−1 , . . . , b2k−1}) = ep,2k−1(P )

so that

lim sup
n

n
1
d ep(b(n), P ) ≤ lim sup

n

(
n

2k(n)

) 1
d

lim
n
n

1
d ep,n(P ) = 2

1
d lim

n
n

1
d ep,n(P ).

Numerical observations
• If P = U([0, 1]) and p = 1, one checks by induction that the dyadic VdC sequence can be
obtained as a reordered sequence (bn)n≥1 from the Lp-optimal quantizers at level n given by
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Figure 4.12: Price of a European Best-of-Call Vanilla option in a Black-Scholes model via a
usual QMC method (blue), greedy quantization-based quadrature formula (red) and quadrature
formula using 2-dimensional Niederreiter sequence with non-uniform weights (logarithmic scale).

{
2k−1

2n , 1 ≤ k ≤ n
}
when n = 2`, ` ≥ 0. In this situation, as seen in the previous section, the

factor 2
1
d = 2 is replaced by 9

8 = 1.125 and the L1-optimal greedy quantization sequence keeps
the lead, since we have already seen that

lim sup
n

e1(a(n),1, P )
e1,n(P ) ≈ 1.09 < 9

8 ≈ 1.125

• If P = U([0, 1]) and p = 2, once again, the quadratic optimal greedy quantization sequence
keeps the lead, since

lim sup
n

e2(a(n),2, P )
e2,n(P ) ≈ 1.13401 < 3

√
5

4 ≈ 1.67706 < 2.

• If P = N (0, I2) and d = p = 2, numerical experiments suggest for the third time that a
quadratic optimal greedy quantization sequence (or, actually, the sub-optimal sequences) has a
lower constant than 2

1
d × limn n

1
2 e2,n(N (0; I2)).

These experiments lead us to wonder if optimal greedy quantization sequences produce the

lowest value for lim sup
n

n
1
d ep,n

(
a(n), P

)
or if the strict inequality lim sup

N

ep
(
a(N),p, P

)
ep,N (P ) < 2

1
d is

always satisfied.

4.5 Quasi-stationarity and ρ-quasi stationarity
Quadratic optimal quantizers share a property called stationarity that is very important in
most applications, especially since most algorithms devised to compute optimal n-quantizers are
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based on this stationarity property. Moreover, its importance is emphasized in the quantization-
based numerical integration. In fact, if X̂Γn is an optimal quantizer of X induced by the grid
Γn = {xn1 , . . . , xnn}, then it is already known that

‖X − X̂Γn‖p = ep(Γn, X) −→
n→+∞

0.

then, we have the convergence of X̂Γn towards X in Lp(P) when n → +∞ and consequently
the convergence in distribution. In particular, if f : Rd → R is a continuous bounded function,
then one deduces that Ef(X̂Γn) → Ef(X) when n → +∞. Consequently, using the weights
(pni )1≤i≤n of the Voronoï cells corresponding to Γn, one approaches Ef(X) by

Ef(X̂Γn) =
n∑
i=1

pni f(xni ). (4.11)

Error bounds induced by this approximation are established for various classes of functions f
and, in most cases, it is mainly due to the stationarity property shared by optimal quadratic
quantizers. For more details, we refer to [56].

It was mentioned in the first chapter that we tried to extend this property to greedy quan-
tizaton sequences, i.e. to see if

a
(n)
i = E(X|X ∈Wi(a(n))), i = 1, . . . , n.

Unfortunately, numerical experiments computing the error ‖X̂a(n) − E(X|X̂a(n))‖1 under the
standard empirical measure P̂n = 1

n

∑n
i=1 δa(n)

i

gave negative results. In fact, we show below
that when the distribution is symmetrical and unimodal, the corresponding greedy quantization
sequence cannot be stationary except for n ∈ {1; 3}. For the proof, we rely on a result given in
[39].

Theorem 4.5.1. (J.C. Kieffer) Let d = 1 and P a probability distribution with log-concave
density. Then, there exists a unique stationary quantizer of P .

Proposition 4.5.2. Let X be a random variable with distribution P which is symmetric and
unimodal (log-concave density) and a(n) a corresponding greedy quantization sequence. Then,
for every n ∈ N \ {1, 3}, the sequence a(n) is not stationary.

Proof. We suppose that E[X] = 0 (symmetric around 0). If it is not the case, a translation
gives the same results. We will detail the proof in 3 cases
� For n = 3: Since E[X] = 0, the first point is a1 = 0. A second point is given by

a2 = argmina∈REX2 ∧ (X − a)2 =
{
∇a2 EX2 ∧ (X − a2)2 =

∫
W2(a(i))

(ξ − a2)dP (ξ) = 0
}
.

Hence, a2 =
∫
W2(a(n)) ξdP (ξ)

P (W2(a(n))) is stationary. The third point is a3 = −a2 by symmetry of P so a3

is also stationary. Finally, a1 = 0 is also stationary since
∫ a3/2
a2/2 ξdP (ξ) =

∫−a2/2
a2/2 ξdP (ξ) = 0.

Consequently, the sequence a(3) = {−a2; a1; a2} is stationary.
� For n = 2k even: Since P is unimodal, the stationary quantizer is unique, let x(n) be
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this quantizer, which is the n-optimal quantizer of P because we know it is stationary. The
symmetry of P lets us know that the quantizer (x(n)

n+1−l)1≤l≤n of P is also stationary, so, for
every l ∈ {1, . . . , n}, x(n)

l + x
(n)
n+1−l = 0. Since n = 2k is even, we have, in particular,

x
(n)
k = −x(n)

n+1−k = −x(n)
n+1−n2

= −x(n)
k+1,

so, x(n)
k < 0 < x

(n)
k+1 and, since, x(n)

k et x(n)
k+1 are two consecutive terms of the grid, we deduce

that 0 is not an element of x(n), and hence can not be a point of a stationary quantizer. Conse-
quently, the greedy sequence starting at a1 = 0 can not be stationary.
� For n = 2k + 1 odd: First, notice that, in the greedy non-stationary sequence a(2k), there
exists, at least, two non-stationary Voronoï cells, a first non-stationary cell Wi(a(2k)) and its
symmetric cell W2k+1−i(a(2k)) which is also non-stationary due to the symmetry of P . To build
the sequence a(2k+1), we add a new point in one of the Voronoï cells without modifying the
others. If the new point is added in one of the non-stationary cells, we know that the second one
will remain untouched, having, at least, one non-stationary cell in a(2k+1). And, if the new point
is not in these cells, then they will remain untouched and there will be, at least, 2 non-stationary
cells in a(2k+1). �

However, we indicated that greedy quantization sequences satisfy a ρ-quasi-stationarity prop-
erty approaching the stationary property and defined, for r ∈ {1, 2} and ρ ∈ [0, 1], by

‖X̂a(n) − E(X|X̂a(n))‖r = o(‖X̂a(n) −X‖1+ρ
1+ρ), or ‖X̂a(n) − E(X|X̂a(n))‖r

‖X̂a(n) −X‖1+ρ
1+ρ

−→
n→+∞

0. (4.12)

We detail in the following the study that allowed us to conclude with this conjecture.

We start by evaluating the error between X̂a(n) and E(X|X̂a(n)) under the weighted empirical
measure P̃n =

∑n
i=1 p

n
i δa(n)

i

, hoping that a change of measures will induce positive results. We
compute the quadratic L2(R)-error

‖X̂a(n) − E(X|X̂a(n))‖2 =
(

n∑
i=1

p
(n)
i

∣∣∣a(n)
i − E(X|X ∈Wi(a(n)))

∣∣∣2) 1
2

(4.13)

and the L1(R)-error

‖X̂a(n) − E(X|X̂a(n))‖1 =
n∑
i=1

p
(n)
i

∣∣∣a(n)
i − E(X|X ∈Wi(a(n)))

∣∣∣ (4.14)

for the one-dimensional Gaussian N (0, 1), Uniform U([0, 1]) and Exponential E(1) distributions.

First numerical observation The conducted experiments allow us to deduce that both
errors (4.13) and (4.14) converge to 0 when n goes to infinity, for the 3 mentioned probability
distributions. This can be explained by the convergence of the quadratic greedy quantization
error towards 0 (that is already a well known result) and by the fact that

‖X̂a(n) − E(X|X̂a(n))‖1 ≤ ‖X̂a(n) − E(X|X̂a(n))‖2 = ‖E(X̂a(n) −X|X̂a(n))‖2 ≤ ‖X̂a(n) −X‖2.
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Figure 4.13: The errors ‖X̂a(n) −E(X|X̂a(n))‖2 and ‖X̂a(n) −E(X|X̂a(n))‖1 induced by a greedy
quantization sequence a(n) corresponding to the distribution U([0, 1]) for n = 1, . . . , 1 000 (loga-
rithmic scale).

We expose, in Figure 4.13, the convergence of the errors (4.13) and (4.14) induced by the greedy
quantization sequence of the Uniform distribution of size n varying between 1 and 1 000, where we
observe a faster convergence for the optimal sub-sequences of the greedy quantization sequence
of U([0, 1]), given in Section 3.6.1 of the previous chapter, than for the greedy quantization
sequence itself.

Based on the above results, one wonders if this convergence affects, in some way, the
quantization-based numerical integration errors, or if maybe one needs to study some differ-
ent (but in a way related) property than (4.13) and (4.14), to achieve improvements. Our
motivation is the following.

Motivation If f : Rd → R is a function with a Lipschitz gradient and [∇f ]Lip its Lipschitz
coefficient, then, using the same notations as previously and noting (.|.) a scalar product, one
has

f(X)− f(X̂a(n))−
(
∇f(X̂a(n))|X − X̂a(n)) =

∫ 1

0

(
∇f
(
X̂a(n) + t(X − X̂a(n))

)
−∇f(X̂a(n))|X − X̂a(n))

dt.

Taking the expectation yields

Ef(X)− Ef(X̂a(n))− E
(
∇f(X̂a(n))|X − X̂a(n))

= E
[∫ 1

0

(
∇f

(
X̂a(n) + t(X − X̂a(n))

)
−∇f(X̂a(n))|X − X̂a(n))

dt

]
.

Since

E(∇f(X̂a(n))|X − X̂a(n)) = E(∇f(X̂a(n))|X)− E(∇f(X̂a(n))|X̂a(n)) = E
(
∇f(X̂a(n))|E(X|X̂a(n))− X̂a(n))

,

(4.15)
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and∫ 1

0

(
∇f

(
X̂a(n) + t(X − X̂a(n))

)
−∇f(X̂a(n))|X − X̂a(n))

dt ≤ [∇f ]LipE|X − X̂a(n) |2
∫ 1

0
tdt,

then, owing to Minkowski and Cauchy-Schwarz inequalities, one obtains

|Ef(X)− Ef(X̂a(n))| ≤ ‖∇f(X̂a(n))‖2‖E(X|X̂a(n))− X̂a(n)‖2 + 1
2[∇f ]Lip‖X − X̂a(n)‖22. (4.16)

At this stage, one note that, since ∇f is lipschitz, then

‖∇ f(X̂a(n))‖2 ≤ [∇ f ]Lip‖X̂a(n)‖2 + |∇ f(0)|,

and, since a(n) is a greedy quantization sequence, then

‖X̂a(n)‖2 ≤ ‖X − X̂a(n)‖2 + ‖X‖2 = ‖ min
1≤i≤n

|X − a(n)
i |‖2 + ‖X‖2 ≤ ‖X − a(n)

1 ‖2 + ‖X‖2,

so that
‖∇ f(X̂a(n))‖2 ≤ [∇ f ]Lip(‖X − a(n)

1 ‖2 + ‖X‖2) + |∇ f(0)| < +∞.

Hence, we can hope that, if

‖X̂a(n) − E(X|X̂a(n))‖2 = o(‖X̂a(n) −X‖22), (4.17)

then

lim sup
n

|Ef(X)− Ef(X̂a(n))|
‖X − X̂a(n)‖22

≤ 1
2[∇f ]Lip.

This result provides an upper bound of the greedy quantization-based numerical integration error
better than the one adopted till now. But this is true only if the sequence a(n) is asymptotically
L2-quasi stationary, i.e. satisfies (4.17).

Remark 4.5.3. It is clear that the sequence a(n) satisfies (4.17) if, and only if,

‖X̂a(n) − E(X|X̂a(n))‖2 = o(‖X − E(X|X̂a(n))‖22). (4.18)

In fact, for every n ≥ 1, one has

‖X̂a(n) −X‖22 = ‖X − E(X|X̂a(n)) + E(X|X̂a(n))− X̂a(n)‖22.

Noting that
(
X̂a(n) − E(X|X̂a(n))

)
∈ L2(Ω, σ(X̂a(n)), P ) and by definition of the conditional

expectation E(.|X̂a(n)) as the orthogonal projection in the space generated by the variable X̂a(n),
pythagoras Theorem yields

‖X̂a(n) −X‖22 = ‖X − E(X|X̂a(n))‖22 + ‖E(X|X̂a(n))− X̂a(n)‖22,

So, condition (4.17) can also be read as

‖X̂a(n) − E(X|X̂a(n))‖2 = o
(
‖X − E(X|X̂a(n)‖22

)
+ o

(
‖E(X|X̂a(n))− X̂a(n)‖2

)
which yields (4.18).
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Figure 4.14: The error ‖X̂
a(n)−E(X|X̂a(n) )‖2

‖X̂a(n)−X‖2
2

with a(n) a greedy sequence of the N (0, 1) distribution
for n = 1, . . . , 1 000.

Likewise, one notes that if ∇f is simply bounded, then equation (4.16) becomes

|Ef(X)− Ef(X̂a(n))| ≤ ‖∇f(X̂a(n))‖∞‖E(X|X̂a(n))− X̂a(n)‖1 + 1
2[∇f ]Lip‖X − X̂a(n)‖22, (4.19)

where we can replace ‖∇f(X̂a(n))‖∞ = [∇f ]Lip since ∇f is bounded. Then, the same arguments
as previously lead us to hope that

‖X̂a(n) − E(X|X̂a(n))‖1 = o(‖X̂a(n) −X‖22), (4.20)

in order to obtain the upper bound

lim sup
n

|Ef(X)− Ef(X̂a(n))|
‖X − X̂a(n)‖22

≤ 1
2[∇f ]Lip.

Second numerical observation To test if a greedy quantization sequence is asymptotically
Lp-quasi-stationary for p ∈ {1; 2}, i.e. if it satisfies (4.17) for p = 2 and (4.20) for p = 1, we
compute the ratio

Rp,2 = ‖X̂
a(n) − E(X|X̂a(n))‖p
‖X̂a(n) −X‖22

, p = 1; 2

for the probability distributions studied in this section, and we observe its behavior with respect
to the size n of the sequence. The results show that the ratio does not converge towards 0.
A divergence to +∞ is observed for the whole greedy quantization sequence a(n) and for the
optimal sub-sequences as well. Figure 4.14 depicts the behaviour ofR2,2 for a greedy quantization
sequence a(n) of the Gaussian standard distribution of size n varying between 1 and 1 000.
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Motivation Since the previous required result is not achieved, another motivation (different
but somehow similar to the previous one) leads us to set another definition of an asymptotically
quasi-stationary sequence, in the hopes of winning in terms of convergence of quantization-
based numerical integration errors. Let f : Rd → R be a function with a continuous gradient.
A Taylor-Young formula yields

f(X)− f(X̂a(n))− (∇f(X̂a(n))|X − X̂a(n)) = (X − X̂a(n))ε(X − X̂a(n))

where ε(X − X̂a(n)) is a function that converges to 0 when X̂a(n) converges to X. Taking the
expectation, one has

Ef(X)− Ef(X̂a(n))− E(∇f(X̂a(n))|X − X̂a(n)) = E[(X − X̂a(n))ε(X − X̂a(n))]

Since, ε(X − X̂a(n)) converges to 0, then there exists a small constant c > 0 such that ε(X −
X̂a(n)) < c. Consequently, using (4.15), one has

|Ef(X)− Ef(X̂a(n))| ≤ ‖∇f(X̂a(n))‖2‖E(X|X̂a(n))− X̂a(n)‖2 + c‖X − X̂a(n)‖1. (4.21)

Moreover, if ∇ f is bounded, then (4.21) can also be written as

|Ef(X)− Ef(X̂a(n))| ≤ ‖∇f(X̂a(n))‖∞‖E(X|X̂a(n))− X̂a(n)‖1 + c‖X − X̂a(n)‖1. (4.22)

Hence, a similar reasoning to the one established in the previous motivation pushes us to hope
that

‖X̂a(n) − E(X|X̂a(n))‖p = o(‖X̂a(n) −X‖1), (4.23)

for p ∈ {1; 2}, in order to obtain the following upper error bound

lim sup
n

|Ef(X)− Ef(X̂a(n))|
‖X − X̂a(n)‖1

≤ c.

Remark 4.5.4. Before we move on to the numerical results, let us note that the constant c in the
upper bound is not controlled. Thus, even if (4.23) is verified, the gain in numerical integration
is not very remarkable, but it would be interesting to study this case to get an additional idea.

Third numerical observation We are interested in the study of the convergence of the ratio

Rp,1 = ‖X̂
a(n) − E(X|X̂a(n))‖p
‖X̂a(n) −X‖1

, for p, q ∈ {1; 2}.

Numerical experiments conducted for different distributions give interesting results. When con-
sidering Gaussian and Exponential distributions, the ratio Rp,1 converges to 0 with an O(n−

1
2 )-

rate of decay when p = 2 and an O(n−1)-rate of decay when p = 1. However, for the Uniform
distribution, similar observations are made only with optimal sub-sequences of the greedy se-
quence. Figures 4.15, 4.16 and 4.17 present some graphs showing the behaviour of Rp,q with
respect to the size of the greedy quantization sequence a(n), in a logarithmic scale, for different
probability distributions.
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Figure 4.15: The ratios R1,1 et R2,1 where a(n) is a greedy quantization sequence of the N (0, 1)
distribution for n = 1, . . . , 1 000 (logarithmic scale).
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Figure 4.16: The ratios R1,2 et R2,1 where a(n) is a greedy quantization sequence of the E(1)
distribution for n = 1, . . . , 1 000 (logarithmic scale).
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Figure 4.17: The ratios R1,2 et R2,2 where a(n) is a greedy quantization sequence of the U([0, 1])
distribution for n = 1, . . . , 1 000 (logarithmic scale).

After comparing the various observations presented so far, we wish to put a general definition
of quasi-stationarity satisfied by the majority of the probability distributions. Therefore, we are
now interested in the behaviour of the ratio

Rp,ρ = ‖E(X|X̂a(n))− X̂a(n)‖p
‖X − X̂a(n)‖1+ρ

1+ρ
(4.24)

for p ∈ {1; 2} and ρ ∈ [0, 1], to check whether or not

‖E(X|X̂a(N))− X̂a(N)‖p = o(‖X − X̂a(N)‖1+ρ
1+ρ). (4.25)

We have already seen that, for ρ = 0, the ratio converges to 0 when the number of points n
increases (see the third numerical observation), while for ρ = 1, we get the contrary (see the
second numerical observation). Consequently, one wonders if there exists a limit value ρl ∈ ]0, 1[,
such that, for ρ ≤ ρl, Rp,ρ satisfies the requested criteria, and for ρ > ρl, it does not.

The convergence of the ratio Rp,ρ to 0 will cause improvements in the quantization-based
numerical integration, in this case, for ρ-Hölder functions. In fact, if ρ ∈ [0, 1] and f is a
continuous function with ρ-Hölder gradient with Hölder coefficient [∇f ]ρ, one has

f(X)− f(X̂a(n)) ≤ (∇f(X̂a(n))|X − X̂a(n))

+
∫ 1

0

(
∇f

(
X̂a(n) + t(X − X̂a(n))

)
−∇f(X̂a(n))|X − X̂a(n))

dt.

Taking the expectation yields

Ef(X)− Ef(X̂a(n)) ≤E
(
∇f(X̂a(n))|X − X̂a(n))

+ E
[∫ 1

0

(
∇f

(
X̂a(n) + t(X − X̂a(n))

)
−∇f(X̂a(n))|X − X̂a(n))

dt

]
.
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N (0, 1) U([0, 1]) E(1)
p = 1 ρl = 0.92 ρl = 3

4 ρl = 2
3

p = 2 ρl = 0.47 ρl = 3
8 ρl = 1

3

Table 4.1: Optimal values ρl for which different probability distributions satisfy the ρ-quasi-
stationarity criterion for p ∈ {1; 2}.

At this stage, one notices that∫ 1

0

(
∇f

(
X̂a(n) + t(X − X̂a(n))

)
−∇f(X̂a(n))|X − X̂a(n))

dt ≤ [∇f ]ρE|X − X̂a(n) |1+ρ
∫ 1

0
t1+ρdt,

and uses (4.15) to obtain

|Ef(X)− Ef(X̂a(n))| ≤ ‖∇f(X̂a(n))‖2‖E(X|X̂a(n))− X̂a(n)‖2 + 1
1 + ρ

[∇f ]ρ‖X − X̂a(n)‖1+ρ
1+ρ.

Moreover, if ∇ f is bounded, then the above equation can be rewritten as

|Ef(X)− Ef(X̂a(n))| ≤ ‖∇f(X̂a(n))‖∞‖E(X|X̂a(n))− X̂a(n)‖1 + 1
1 + ρ

[∇f ]ρ‖X − X̂a(n)‖1+ρ
1+ρ.

Hence, if (4.25) is satisfied, then, in both cases, on can conclude with a new upper bound to the
error induced by the approximation of E[f(X)] by E[f(X̂a(n))] given by

lim sup
n

|Ef(X)− Ef(X̂a(n))|
‖X − X̂a(n)‖1+ρ

1+ρ
≤ 1

1 + ρ
[∇f ]ρ. (4.26)

We study numerically the behavior of the Rp,ρ defined by (4.24) and hope to observe a con-
vergence towards 0, at least for certain values of ρ. The conducted experiments yield different
results depending on the underlying probability distribution. Let us give some details: For the
Gaussian distribution, Rp,ρ converges to 0 for the optimal sub-sequences a(2k−1), k ∈ N∗, seen
in Section 3.6.1 of the previous Chapter 3, for certain values of ρ. In the case of the Uniform
distribution, we observe a convergence of Rp,ρ for the optimal sub-sequences, given in Section
3.6.1 of Chapter 3, up to a particular ρ depending on whether p = 1 or p = 2. The ratio Rp,ρ
remains bounded for the whole greedy sequence for ρ < 0.1. Finally, the convergence is not very
clear in the case of the exponential distribution, this can be explained by the fact that we did
not find sub-optimal sequences. However, Rp,ρ remains bounded for certain values of ρ.

These particular values are exposed in the two-entries Table 4.1. Moreover, Figure 4.18
represents the convergence of R1, 1

4
for a greedy quantization sequence of N (0, 1) of size n = 400

(ρ = 1
4 < ρl = 0.92). Figure 4.19 shows the divergence of R2, 2

3
for a greedy sequence of U([0, 1])

of size n = 1 000. Finally, we observe consistent results with Table 4.1 in Figure 4.20 where we
illustrate the behaviour of R1, 1

2
for a greedy sequence of E(1) of size n = 1 000.

These observations allow us to propose the following definition of a ρ-quasi stationary se-
quence, that is satisfied by greedy quantization sequences for certain values ρl given in Table
4.1.
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Figure 4.18: The behavior of R1, 1
4
for a greedy quantization sequence of the Gaussian distribution

N (0, 1) of size n = 400.
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Figure 4.19: The behavior of R2, 2
3
for a greedy quantization sequence of the Uniform distribution

U([0, 1]) of size n = 1 000.
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Figure 4.20: The behavior of R1, 1
2
for a greedy quantization sequence of the exponential distri-

bution E(1) of size n = 1 000.

Definition 4.5.5. Let p ∈ {1; 2}, ρ ∈ [0, 1]. A greedy quantization sequence a(n) of a random
variable X is ρ-quasi-stationary if

‖X̂a(n) − E(X|X̂a(n))‖p = o(‖X̂a(n) −X‖1+ρ
1+ρ),

or, in other words,
‖X̂a(n) − E(X|X̂a(n))‖p
‖X̂a(n) −X‖1+ρ

1+ρ
−→

n→+∞
0.

Remark 4.5.6. (a)Definition 4.5.5 can clearly be extended to greedy quantization sub-sequences.
(b)Although it is interesting to find an optimal value of ρ common to all the distributions, nu-
merical experiments show that this would not be possible.
(c) The particular case of ρ-Hölder functions is not very practical since this class of functions
is not very frequent. Nevertheless, the positive numerical results obtained are interesting and
should not be overlooked.

4.6 Construction of sequences with minimal L∗-discrepancy
In Section 3.6.4 of Chapter 3 and Section 4.3 of this chapter, we studied a relation between greedy
quantization sequences and low discrepancy sequences such as Van der Corput or Niederreiter
sequences. These sequences are known to have a low discrepancy because they present an
O
( (log(n))d

n

)
-rate of convergence of their star discrepancy D∗n defined by (3.14) as the L∞-norm

of the Uniform distribution of a sequence Ξ = (ξi)1≤i≤N of size N on the unit cube [0, 1]d.
By replacing the L∞-norm by the L2-norm, one obtains another modulus, known as the L∗-
discrepancy at the origin defined by

L∗N (Ξ) =
[∫

[0,1]d

(
A(E,Ξ)
N

− λd(E)
)2
du

] 1
2

=

∫
[0,1]d

(
1
N

N∑
i=1

1ξi≤u − u1 . . . ud

)2

du


1
2

,
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where A(E,Ξ) = card{i; ξi ∈ E}, E =
∏d
i=1[0, ui) and u = (u1, . . . , ud).

In this section, we are interested in searching for sequences with minimal L∗-discrepancy.
This study is motivated by the fact that the manipulation of the L∗-discrepancy is somehow
simple due to its definition. We start by finding a one point sequence for any dimension d, then
a two points sequence when d = 2 and finally switch the study to a sequence of size larger than
2.

4.6.1 One point-sequence with minimal L∗1 discrepancy for d ≥ 1
In this paragraph, the goal is to find a sequence consisting of a single point in any dimension d
that admits the lowest L∗1-discrepancy. Clearly, a minimization problem is a problem of resolving
derivatives. Let us denote Ξ = (ξ1, . . . , ξd) the point we are looking for and start by studying
the continuity of L∗N .

Proposition 4.6.1. If d = 1, the discrepancy L∗N at the origin is a continuous function.

Proof. We consider two sequences Ξ = (ξk)k≥1 and Ξ′ = (ξ′k)k≥1 of the same size N .

|L∗N (Ξ)− L∗N (Ξ′)| =
∣∣∣∣∣
∥∥∥∥A(E, ξ)

N
− λd(E)

∥∥∥∥
2
−
∥∥∥∥∥A(E, ξ′)

N
− λd(E)

∥∥∥∥∥
2

∣∣∣∣∣
≤
∥∥∥∥∥A(E, ξ)

N
− λd(E)− A(E, ξ′)

N
+ λd(E)

∥∥∥∥∥
2

≤ 1
N

∥∥∥∥∥
∣∣∣∣∣
N∑
k=1

1ξk≤u −
N∑
k=1

1
ξ
′
k
≤u

∣∣∣∣∣
∥∥∥∥∥

2

≤ 1
N

∥∥∥∥∥
N∑
k=1

∣∣∣1ξk≤u − 1ξ′
k
≤u

∣∣∣∥∥∥∥∥
2

.

One easily checks that 1ξk≤u − 1ξ′
k
≤u = 1

ξk≤u≤ξ
′
k
so that

|L∗N (Ξ)− L∗N (Ξ′)| ≤ 1
N

∥∥∥∥∥
N∑
k=1

1
ξk≤u≤ξ

′
k

∥∥∥∥∥
2

≤ 1
N

∫
[0,1]d

(
N∑
k=1

1
ξk≤u≤ξ

′
k

)2

du


1
2

≤ 1
N

∫
[0,1]d

 N∑
k=1

1[ξk,ξ
′
k
](u)2 + 2

N∑
j,k=1

1[ξk,ξ
′
k
](u)1[ξj ,ξ

′
j ]

(u)

 du
 1

2

.

Noticing that 1[ξk,ξ
′
k
](u)1[ξj ,ξ

′
j ]

(u) = 1[max(ξk,ξj),min(ξ′
k
,ξ
′
j)]

(u), one obtains

|L∗N (Ξ)− L∗N (Ξ′)| ≤ 1
N

∫
[0,1]d

 N∑
k=1

1[ξk,ξ
′
k
](u) + 2

N∑
j,k=1

1[max(ξk,ξj),min(ξ′
k
,ξ
′
j)]

(u)

 du
 1

2

.
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At this stage, one assumes that there exists u ∈ [0, 1]d for which the previous indicator functions
are equal to 1 and deduces that

|L∗N (Ξ)− L∗N (Ξ′)| ≤ 1
N

(
N∑
k=1
|ξk − ξ

′
k|+ 2|ξk − ξ

′
k|du

) 1
2

≤
√

3
N

∥∥∥Ξ− Ξ′
∥∥∥ 1

2

1
.

Consequently, the L∗N -discrepancy at the origin is a 1
2 -Hölder function and, thus, a continuous

function. �

Now that we know that the function is continuous, we proceed to its minimzation. First, we
denote L2

1 the square of the L∗1-discrepancy at the origin of a 1 point sequence ξ = (ξ1, . . . , ξd)
and we write it explicitly.

L2
1(ξ) =

∫
[0,1]d

|1ξ≤u1 . . .1ξd≤ud − u1 . . . ud|2 du1 . . . dud

=
d∏
i=1

(1− ξi)− 2
n∏
i=1

∫ 1

ξi

uidui +
(∫ 1

0
u2
i du1

)2

=
d∏
i=1

(1− ξi)− 2
n∏
i=1

1− ξ2
i

2 + 1
3d .

� When d = 1, the square of the discrepancy is given by

L2
1(ξ) = ξ2 − ξ + 1

3

and admits a minimum at ξ = 1
2 . The L

∗-discrepancy at this point is equal to
√

1
12 .

� When d = 2, the square of the discrepancy is given by

L2
1(ξ1, ξ2) = (1− ξ1)(1− ξ2)

(
1− (1 + ξ1)(1 + ξ2)

2

)
+ 1

9 .

Its derivative with respect to ξ1 is given by

∂

∂ξ1
L2

1(ξ1, ξ2) = −(1− ξ2) (1− ξ1(1 + ξ2))

and is equal to zero if ξ2 = 1 or ξ1(1 + ξ2) = 1. In symmetry, the derivative with respect to ξ2
is equal to 0 for ξ1 = 0 or ξ2(1 + ξ1) = 1. So, on denotes ξ = ξ1 = ξ2 and concludes with the
following condition

ξ(1 + ξ) = 1 ⇔ ξ2 + ξ − 1 = 0

that is satisfied for ξ = −1 +
√

5
2 .

Consequently, the L∗1-discrepancy reaches its lowest value at ξ =
(
−1 +

√
5

2 ,
−1 +

√
5

2

)
and is

equal to
√

103−45
√

5
36 .

99



� When d > 2, the derivative of L2
1 with respect to ξi, i ∈ {1, . . . , d} is given by

∂

∂ξi
= −

d∏
j 6=i

(1− ξj) + 2ξi

 d∏
j 6=i

1− ξ2
j

2

 =
d∏
j 6=i

(1− ξj)

1− 2ξi

 d∏
j 6=i

1 + ξj
2

 .
This derivative is equal to 0 if ξj = 1 or 2 ξi

d∏
j 6=i

1 + ξj
2 = 1. So, the point minimizing the

discrepancy is solution to

2ξi

 d∏
j 6=i

1 + ξj
2

 = 1 ⇔ 2ξi

 d∏
j=1

1 + ξj
2

 = 1 + ξi
2 , ∀1 ≤ i ≤ d. (4.27)

Setting zi = 1+ξi
2 , the previous equation takes the form

2(2zi − 1)
d∏
i=1

zi = zi ⇔ 2(2zi − 1)C = zi

where C =
d∏
i=1

zi. So, (4.27) becomes zi(4C − 1) = 2C which is equivalent to

zi = 2C
4C − 1 , ∀i ∈ {1, . . . , d}.

Then,

C =
( 2C

4C − 1

)d
(4.28)

which yields
ξi = 2

( 2C
4C − 1

)
− 1 = 1

4C − 1 .

It is clear that C ≥ 1
2 and decreases towards 1

2 . Now, if we denote K = 4C − 1, we have that

ξi = 1
K

where K satisfies, by (4.28),

Kd
(
K + 1

4

)
=
(
K + 1

2

)d
⇔ K = 1

2d−2

(
1 + 1

K

)d−1
. (4.29)

At this stage, we try to estimate the value of K or find an explicit form of it. We rely on (4.29)
and we proceed as follows: If d = 1, it is clear that K = 2 and ξ = 1

2 . Otherwise, as soon as

d becomes larger than 1, the function K 7−→
(
1 + 1

K

)d−1
is decreasing from +∞ to 1, which

means (4.29) admits a single solution Kd.
Assume that Kd ≤ 1, then 1 + 1

Kd
≥ 2 so that Kd ≥

1
2d−2 2d−1 = 2, which is absurd and,

consequently, we can assert that Kd > 1. Now, we assume that there exists an extracted
sub-sequence Kd′ such that Kd′ ≥ 1 + η with η > 0. Then,

Kd′ <
1

2d−2

(
1 + 1

1 + η

)d−1
= 2

(
ρ(η)

2

)d−1
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where ρ(η) = 1 + 1
1 + η

∈ ]1; 2[ , so that Kd′ → 0 which constitutes a contradiction. Con-
sequently, Kd converges to 1 when d grows to infinity. Furthermore, one checks that, when
d→ +∞, Kd can be written as follows

Kd = 1 + 2 log 2
d

+ o(1
d

). (4.30)

And the solution to our problem is given by

ξd ≈
(

1− 2 log 2
d

)
+ o(1

d
). (4.31)

In conclusion, when the dimension d increases, the point with the lowest L∗-discrepancy at the
origin converges to 1. A Newton algorithm applied to the function K 7−→ K − 1

2d−2

(
1 + 1

K

)d−1

was implemented to find the numerical solution to (4.29) and has given results that are in
accordance with the theoretical results obtained in (4.30) and (4.31).

4.6.2 Two points-sequence with minimal L∗ discrepancy for d = 2
In this section, our aim is to find the 2 points-sequence having the lowest L∗2-discrepancy when
the dimension d is equal to 2. We denote Ξ = (ξ1, ξ2) this sequence where, for i ∈ {1, 2}, ξi
is written (ξ(1)

i , ξ
(2)
i ) with ξ(1)

i the abscissa of the point ξi and ξ(2)
i its ordinate. We derive the

corresponding discrepancy and find the points at which it is equal to 0. The square of the L∗
discrepancy of a 2 points sequence for d = 2 is denoted by L2

2 and given by

L2
2(ξ1, ξ2) =

∫
[0,1]2

∣∣∣∣∣12
2∑

k=1
1
ξ

(i)
k
≤u(i),i=1,2 − u

(1)u(2)
∣∣∣∣∣
2

du(1)du(2)

= 1
4

2∑
k,l=1

(
1− ξ(1)

k ∨ ξ
(1)
l

) (
1− ξ(2)

k ∨ ξ
(2)
l

)
− 1

4

2∑
k=1

(
1−

(
ξ

(1)
k

)2
)(

1−
(
ξ

(2)
k

)2
)

+ 1
9

(4.32)

We consider several cases depending on the position of the 2 points in the square [0, 1]2.

Case 1: The points are on the first bisector (ξ(1)
1 = ξ

(2)
1 and ξ

(1)
2 = ξ

(2)
2 )

In this case, we denote ξ1 := ξ
(1)
1 = ξ

(2)
1 and ξ2 := ξ

(1)
2 = ξ

(2)
2 . The discrepancy is given by

L2
2(Ξ) = 1

4

[
(1− ξ1)2 + (1− ξ2)2 + 2(1− ξ1 ∨ ξ2)2 −

(
1− (ξ1)2

)2 (
1− (ξ2)2

)2
]

+ 1
9 . (4.33)

Deriving this quantity with respect to each of the components yields

∂L2
2

∂ξ1
= (1− ξ1)

[
−1

2 + ξ1(1 + ξ1)− 1ξ1>ξ2

]
,

∂L2
2

∂ξ2
= (1− ξ2)

[
−1

2 + ξ2(1 + ξ2)− 1ξ2>ξ1

]
.
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At this stage, we assume ξ1 > ξ2 (the second possibility is the same, we simply change the
indices) and that ξ1 and ξ2 are different than 0 and 1 so that they are inside the square [0, 1]2.
Hence, the problem is reduced to finding the solution of the following system{

ξ2
1 + ξ1 − 3

2 = 0
ξ2

2 + ξ2 − 1
2 = 0.

It is clear that the eligible solution is

ξ1 = −1 +
√

7
2 and ξ2 = −1 +

√
3

2

and the corresponding discrepancy is approximately equal to 0.147.

Case 2: ξ(1)
1 6= ξ

(2)
1 and ξ

(1)
2 6= ξ

(2)
2

The square of the discrepancy is given by

L2
2(Ξ) =1

9 + 1
4
[(

1− ξ(1)
1

) (
1− ξ(2)

1

)
+ 2

(
1− ξ(1)

1 ∨ ξ(1)
2

) (
1− ξ(2)

1 ∨ ξ(2)
2

)
+
(
1− ξ(1)

2

) (
1− ξ(2)

2

)
−
(

1−
(
ξ

(1)
1

)2
)(

1−
(
ξ

(2)
1

)2
)
−
(

1−
(
ξ

(1)
2

)2
)(

1−
(
ξ

(2)
2

)2
)]

The partial derivatives with respect to each of the 4 components are as follows

∂L2
2

∂ξ
(1)
1

= 1
4

[
−
(
1− ξ(2)

1

)
− 2

(
1− ξ(2)

1 ∨ ξ(2)
2

)
1
ξ

(1)
1 >ξ

(1)
2

+ 2ξ(1)
1

(
1−

(
ξ

(2)
1

)2
)]

,

∂L2
2

∂ξ
(2)
1

= 1
4

[
−
(
1− ξ(1)

1

)
− 2

(
1− ξ(1)

1 ∨ ξ(1)
2

)
1
ξ

(2)
1 >ξ

(2)
2

+ 2ξ(2)
1

(
1−

(
ξ

(1)
1

)2
)]

,

∂L2
2

∂ξ
(1)
2

= 1
4

[
−
(
1− ξ(2)

2

)
− 2

(
1− ξ(2)

1 ∨ ξ(2)
2

)
1
ξ

(1)
2 >ξ

(1)
1

+ 2ξ(1)
2

(
1−

(
ξ

(2)
2

)2
)]

,

∂L2
2

∂ξ
(2)
2

= 1
4

[
−
(
1− ξ(1)

2

)
− 2

(
1− ξ(1)

1 ∨ ξ(1)
2

)
1
ξ

(2)
2 >ξ

(2)
1

+ 2ξ(2)
2

(
1−

(
ξ

(1)
2

)2
)]

.

We consider several sub-cases to study all the possibilities induced by Case 2. In all these
situations, we assume that the coordinates are in ]0, 1[.

• If ξ(1)
1 > ξ

(1)
2 and ξ

(2)
2 > ξ

(2)
1 : The problem is finding the solutions of

−
(
1− ξ(2)

1

)
− 2

(
1− ξ(2)

2

)
+ 2ξ(1)

1

(
1−

(
ξ

(2)
1

)2
)

= 0 (4.34)

−
(
1− ξ(1)

1

)
+ 2ξ(2)

1

(
1−

(
ξ

(1)
1

)2
)

= 0 (4.35)

−
(
1− ξ(2)

2

)
+ 2ξ(1)

2

(
1−

(
ξ

(2)
2

)2
)

= 0 (4.36)

−
(
1− ξ(1)

2

)
− 2

(
1− ξ(1)

1

)
+ 2ξ(2)

2

(
1−

(
ξ

(1)
2

)2
)

= 0 (4.37)
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To simplify the notations in the following, we denote

a = ξ
(1)
1 b = ξ

(2)
1 c = ξ

(1)
2 d = ξ

(2)
2 .

(4.35) yields b = 1
2(1+a) and (4.36) gives c = 1

2(1+d) . We merge both equality in (4.34) and (4.37)
respectively to obtain

−3 + 2d+ 2a+ 1
2(1 + a)2 = 0. (4.38)

and
−3 + 2a+ 2d+ 1

2(1 + d)2 = 0. (4.39)

This yields a = d so b = c as well. Now, (4.38) gives a = d =
√

2
2 and (4.35) gives b = c = 1−

√
2

2 .
Consequently, the eligible solution is

ξ1 =
(√

2
2 ; 1−

√
2

2

)
and ξ2 =

(
1−
√

2
2 ;
√

2
2

)
, (4.40)

and the L∗2-discrepancy is approximately equal to 0.1703.

• If ξ(1)
1 < ξ

(1)
2 and ξ

(2)
2 > ξ

(2)
1 : The goal is to solve the following system

−
(
1− ξ(2)

1

)
+ 2ξ(1)

1

(
1−

(
ξ

(2)
1

)2
)

= 0 (4.41)

−
(
1− ξ(1)

1

)
+ 2ξ(2)

1

(
1−

(
ξ

(1)
1

)2
)

= 0 (4.42)

−3
(
1− ξ(2)

2

)
+ 2ξ(1)

2

(
1−

(
ξ

(2)
2

)2
)

= 0 (4.43)

−3
(
1− ξ(1)

2

)
+ 2ξ(2)

2

(
1−

(
ξ

(1)
2

)2
)

= 0 (4.44)

With the same notations as the previous case, we get, by equation (4.41),

a = 1
2(1 + b) (4.45)

and, by equation (4.42),
b = 1

2(1 + a) (4.46)

Merging (4.45) with (4.42), one obtains a = b = −1 +
√

3
2 . The same reasoning with equations

(4.43) and (4.44) yields c = d = −1 +
√

7
2 . Consequently, the 2 points sequence is given by

ξ1 =
(
−1 +

√
7

2 ,
−1 +

√
7

2

)
and ξ2 =

(
−1 +

√
3

2 ,
−1 +

√
3

2

)
. (4.47)

and its L∗2-discrepancy is given by 0.147.
• In all the other situations, we get the same result as in the two detailed situations above.

In conclusion, the 2 points sequence with minimal L∗2-discrepancy in [0, 1]2 is given by (4.47)
and its discrepancy is equal to 0.147.
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4.6.3 4 points sequence with minimal L∗ discrepancy for d = 2
In order to find a sequence Ξ = (ξ1, ξ2, ξ3, ξ4) in [0, 1]2 which has the minimal L∗4-discrepancy,
we start by writing the square of this discrepancy as follows

L2
4(Ξ) = 1

16

4∑
k,l=1

(
1− ξ(1)

k ∨ ξ
(1)
l

) (
1− ξ(2)

k ∨ ξ
(2)
l

)
− 1

8

4∑
k=1

(
1−

(
ξ

(1)
k

)2
)(

1−
(
ξ

(2)
k

)2
)

+ 1
9 .

(4.48)
The partial derivatives with respect to the 8 components of the discrepancy are given, for

every i ∈ {1, 2, 3, 4} by

∂L2
4

∂ξ
(1)
i

= − 2
42

4∑
k=1

(
1− ξ(2)

k ∨ ξ
(2)
i

)
1
ξ

(1)
i ≥ξ

(1)
k

+ 1
4ξ

(1)
i

(
1−

(
ξ

(2)
i

)2
)

+ 1
42

(
1− ξ(2)

i

)
, (4.49)

and
∂L2

4

∂ξ
(2)
i

= − 2
42

4∑
k=1

(
1− ξ(1)

k ∨ ξ
(1)
i

)
1
ξ

(2)
i ≥ξ

(2)
k

+ 1
4ξ

(2)
i

(
1−

(
ξ

(1)
i

)2
)

+ 1
42

(
1− ξ(1)

i

)
. (4.50)

A first intuition is to partition the unit square into 4 sub-squares (Ci)1≤i≤4 such that C1 = [0, 1
2 ]2

and the others are translations of C1. Then, we predict that, for every, i ∈ {1, 2, 3, 4}, ξi ∈ Ci.
Hence, there is 8 conditions to take into consideration:

ξ
(2)
1 < ξ

(2)
3 ,

ξ
(2)
1 < ξ

(2)
4 ,

ξ
(2)
2 < ξ

(2)
3 ,

ξ
(2)
2 < ξ

(2)
4 ,

ξ
(1)
1 < ξ

(1)
2 ,

ξ
(1)
1 < ξ

(1)
4 ,

ξ
(1)
3 < ξ

(1)
2 ,

ξ
(1)
3 < ξ

(1)
4 .

Under these conditions, the points for which the partial derivatives are equal to 0 satisfy the
following system(

1− ξ(2)
1

) [
−1

4 + ξ
(1)
1

(
1 + ξ

(2)
1

)]
− 1

2
(
1− ξ(2)

3

)
1
ξ

(1)
1 >ξ

(1)
3

= 0(
1− ξ(2)

2

) [
−1

4 + ξ
(1)
2

(
1 + ξ

(2)
2

)]
− 1

2
(
1− ξ(2)

3

)
− 1

2
(
1− ξ(2)

2 ∨ ξ(2)
1

)
− 1

2
(
1− ξ(2)

4

)
1
ξ

(1)
2 >ξ

(1)
4

= 0

1
2 + 1

ξ
(1)
3 >ξ

(1)
1
− ξ(1)

3

(
1 + ξ

(2)
3

)
= 0(

1− ξ(2)
4

) [
−3

4 + ξ
(1)
4

(
1 + ξ

(2)
4

)
− 1

21ξ(1)
4 >ξ

(1)
2

]
− 1

2
(
1− ξ(2)

3 ∨ ξ(2)
4

)
= 0(

1− ξ(1)
1

) [
−1

4 + ξ
(2)
1

(
1 + ξ

(1)
1

)]
− 1

2
(
1− ξ(1)

2

)
1
ξ

(2)
1 >ξ

(2)
2

= 0

1
2 + 1

ξ
(2)
2 >ξ

(2)
1
− ξ(2)

2

(
1 + ξ

(1)
2

)
= 0(

1− ξ(1)
3

) [
−1

4 + ξ
(2)
3

(
1 + ξ

(1)
3

)]
− 1

2
(
1− ξ(1)

2

)
− 1

2
(
1− ξ(1)

3 ∨ ξ(1)
1

)
− 1

2
(
1− ξ(1)

4

)
1
ξ

(2)
3 >ξ

(2)
4

= 0(
1− ξ(1)

4

) [
−3

4 + ξ
(2)
4

(
1 + ξ

(1)
4

)
− 1

21ξ(2)
4 >ξ

(2)
3

]
− 1

2
(
1− ξ(1)

2 ∨ ξ(1)
4

)
= 0

Solving this system requires taking a large number of particular cases to try to cover all
the possibilities satisfying the 8 conditions taken at the beginning of this study. Among those
cases, a few admit no solution while the others are very complicated. Solving this system by
direct closed formulae does not yield promising results, that’s why one tends to try and find a
numerical solution to this problem.
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Gradient descent algorithm

A gradient descent algorithm is implemented in order to minimize the L∗4-discrepancy in the two-
dimensional case. The algorithm was tested for different number of points N in the sequence.
The derivatives of L2

N (ξ1, . . . , ξN ) are given, by generalizing the derivatives (4.49) and (4.50)
when N = 4, as follows

∂L2
N

∂ξ
(1)
i

= − 2
N2

N∑
k=1

(
1− ξ(2)

k ∨ ξ
(2)
i

)
1
ξ

(1)
i ≥ξ

(1)
k

+ 1
N
ξ

(1)
i

(
1−

(
ξ

(2)
i

)2
)

+ 1
N2

(
1− ξ(2)

i

)
, (4.51)

and

∂L2
N

∂ξ
(2)
i

= − 2
N2

n∑
k=1

(
1− ξ(1)

k ∨ ξ
(1)
i

)
1
ξ

(2)
i ≥ξ

(2)
k

+ 1
N
ξ

(2)
i

(
1−

(
ξ

(1)
i

)2
)

+ 1
N2

(
1− ξ(1)

i

)
. (4.52)

We consider a sequence of steps γt = 10−3+10−2

t
+
(

1− 1
t

) 1
t

3
4
and, after obtaining the sequence,

we compute the corresponding discrepancy via the formulas given above. When N = 1 or 2, the
numerical results are identical to the theoretical results already given. However, when N = 4,
complexities appear in the numerical procedure (just like in the theoretical procedure). In
fact, the algorithm gives us only a local minimum of the discrepancy (depending on the initial
sequence starting the algorithm). To find the global minimum, one needs to consider all the
different cases, which is illogical, especially that we will never be able to know if we have really
reached the global minimum. We present some particular cases.
• If we consider

ξ
(1)
1 < ξ

(1)
3 , ξ

(1)
2 < ξ

(1)
4 , ξ

(2)
1 < ξ

(2)
2 , ξ

(2)
3 < ξ

(2)
4 ,

the sequence with minimal discrepancy is given by

ξ1 =
(
−1+

√
2

2 , −1+
√

2
2

)
,

ξ2 =
(
−1
2 +

√
2, −1

2 +
√

2
)
,

ξ3 = (0, 7, 0, 44) ,
ξ4 = (0, 44, 0, 7) ,

and its discrepancy is approximately equal to 0, 2315.
• If we consider

ξ
(1)
3 < ξ

(1)
1 , ξ

(1)
4 < ξ

(1)
2 , ξ

(2)
2 < ξ

(2)
1 , ξ

(2)
4 < ξ

(2)
3 ,

We obtain a minimal discrepancy L2
4 equal to 0, 2435.

• If we rely on the 1 point-sequence with minimal discrepancy and consider, for starting point,
its equivalent in each sub-square Ci, i.e. the equivalent of (1− log(2), 1− log(2)), which is

(0, 3, 0, 3) (0, 8, 0, 3) (0, 3, 0, 8) (0, 8, 0, 8) ,

the minimal discrepancy is approximately equal to 0, 2405.

Remark 4.6.2. Minimization algorithms without derivatives have been implemented to try to
minimize the discrepancy, we can name Generalised Pattern Search, Nelder Mead Simplex, the
Coordiante Search and others. However, these algorithms are not effective because even if one
gets a result when the algorithm stops, it is not necessarily the global minimum desired.
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In conclusion, taking every possible case to find the sequence with the minimal discrepancy is
not really interesting. Thus, constructing such a 4-point sequence is almost impossible. Similarly,
it would be more difficult to find sequences with more than 4 points because of the additional
conditions one has to take.
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Chapter 5

Ls-rate optimality of
dilated/contracted Lr-optimal and
greedy quantization sequences

Abstract We investigate some Ls-rate optimality properties of dilated/contracted Lr-optimal
quantizers and Lr-greedy quantization sequences (αn)n≥1 of a random variable X. We establish,
for different values of s, Ls-rate optimality results for Lr-optimally dilated/contracted greedy
quantization sequences (αnθ,µ)n≥1 defined by αnθ,µ = {µ+θ(αi−µ), αi ∈ α(n)}. We lead a specific
study for Lr-optimal greedy quantization sequences of radial density distributions and show
that they are Ls-rate optimal for s ∈ (r, r + d) under some moment assumption. Based on the
results established in [71] for Lr-optimal quantizers, we show, for a larger class of distributions,
that the dilatation (αnθ,µ)n≥1 of an Lr-optimal quantizer is Ls-rate optimal for s < r + d.
We show, for various probability distributions, that there exists a parameter θ∗ for which the
dilated quantization sequence satisfy the so-called Ls-empirical measure Theorem and present
an application of this approach to numerical integration.

5.1 Introduction
The aim of this chapter is, on the one hand, to extend some “robustness” results of optimal
quantizers to a much wider class of distributions and, on the other hand, to establish similar
results for greedy quantization sequences introduced in [45] and developed in [24]. Let LrRd(P)
(or simply Lr(P)), r ∈ (0,+∞), denote the set of d-dimensional random vectors X defined on
the probability space (Ω,A,P) with distribution P = PX and such that E|X|r < +∞ (for any
norm | · | on Rd). Optimal vector quantization consists in finding the best approximation of
a multidimensional random vector X by a random variable Y taking at most a finite number
n of values. Consider Γ = {x1, . . . , xn} a d-dimensional grid of size n. The principle is to
approximate X by πΓ(X) where πΓ : Rd → Γ is a nearest neighbor projection defined by

πΓ(ξ) =
n∑
i=1

xi1Wi(Γ)(ξ)
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where
(
Wi(Γ)

)
1≤i≤n is a so-called Voronoï partition of Rd induced by Γ i.e. a Borel partition

satisfying
Wi(Γ) ⊂

{
ξ ∈ Rd : |ξ − xi| ≤ min

j 6=i
|ξ − xj |

}
, i = 1, . . . , n. (5.1)

Then,

X̂Γ = πΓ(X) :=
n∑
i=1

xi1Wi(Γ)(X) (5.2)

is called the Voronoï quantization of X. The Lr-quantization error induced when replacing X
by its quantization X̂Γ is naturally defined by

er(Γ, X) = ‖X − πΓ(X)‖r = ‖X − X̂Γ‖r =
∥∥∥∥ min

1≤i≤n
|X − xi|

∥∥∥∥
r

(5.3)

where ‖.‖r denotes the Lr(P)-norm (or quasi-norm if 0 < r < 1). Consequently, the optimal
quantization problem at level n boils down to finding the grid Γn of size n that minimizes this
error, i.e.

er,n(X) = inf
Γ, card(Γ)≤n

er(Γ, X). (5.4)

where card(Γ) denotes the cardinality of Γ. The existence of a solution to this problem and the
convergence of er,n(X) to 0 at an O(n−

1
d )-rate of convergence when the level (or size) n goes

to +∞ have been shown (see [32, 56, 57] for example). The convergence to 0 of such an error
induced by a sequence (Γn)n≥1 of Lr-optimal quantizers of (the distribution of) X is an easy
consequence of the separability of Rd. Its rate of convergence to 0 is a much more challenging
problem that has been solved in several steps over between 1950’s and the early 2000’s and the
main results in their final form are summed up in Section 5.2.

However, numerical implementation of multidimensional Lr-optimal quantizers requires to
optimize grids of size n×d which becomes computationally too costly when n or d increase. So,
a greedy version of optimal vector quantization (which is easier to handle) has been introduced
in [45] as a sub-optimal solution to the quantization problem. It consists in building a sequence
of points (an)n≥1 in Rd which is recursively Lr-optimized level by level, in the sense that it
minimizes the Lr-quantization error at each iteration in a greedy way. This means that, having
the first n points a(n) = {a1, . . . , an} for n ≥ 1, we add, at the (n + 1)-th step, the point an+1
solution to

an+1 ∈ argminξ∈Rd er(a(n) ∪ {ξ}, X), (5.5)

noting that a(0) = ∅, so that a1 is simply an/the Lr-median of the distribution P of X. The
sequence (an)n≥1 is called an Lr-optimal greedy quantization sequence for X or its distribution
P . It is proved in [45] that the problem (5.5) admits, as soon as X lies in LRd(P), a solution
(an)n≥1 which may be not unique due to the dependence of greedy quantization on the sym-
metry of the distribution P . The corresponding Lr-quantization error er(a(n), X) is decreasing
w.r.t n and converges to 0 when n goes to +∞. Greedy quantization sequences have an optimal
convergence rate to 0 compared to optimal quantizers, in the sense that the grids {a1, . . . , an}
are Lr-rate optimal, i.e. the corresponding quantization error converges with an O(n−

1
d )-rate of

convergence. This was established first in [45] for a rather wide family of absolutely continuous
distribution using some maximal functions approximating the density f of P . Then, it has been
extended in [24] to a much larger class of probability density functions where the authors relied
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on an exogenous auxiliary probability distribution ν on (Rd,Bor(Rd)) satisfying a certain control
on balls, the result is recalled in Section 5.2.

A very important field of applications is quantization-based numerical integration where we
approximate an expectation Eh(X) of a function h on Rd by some cubature formulas. The error
bounds induced by such numerical schemes always involve the Ls-quantization error induced by
the approximation of X by its (optimal or greedy) quantization usually with s ≥ r. This prob-
lem also appears when we use optimal quantization as a space discretization scheme of ARCH
models, namely the Euler scheme of a diffusion devised to solve stochastic control, optimal
stopping or filtering problems (see [59, 60] for example) where, in order to estimate the upper
error bounds induced by such approximation schemes, one needs to evaluate Ls-quantization
errors induced by Lr-optimal (or asymptotically optimal) quantizers for s ≥ r. So, one needs
to see whether such quantizers sharing Lr-optimality properties preserve their performances in
Ls, this is called the distortion mismatch problem and was deeply studied in [33] for sequences
of optimal quantizers. As for greedy quantization sequences, it was first investigated in [45] and
extended later in [24] as already mentioned.

Another approach to this problem was considered in [71] where the author was interested in
the fact that an appropriate dilatation or contraction of a (sequence of) Lr-optimal quantizer(s)
(Γn)n≥1 remains Ls-rate optimal. This study was also motivated by its application to the al-
gorithms of designing Ls-optimal quantizers for s 6= 2. In fact, several stochastic procedures,
like Lloyd’s algorithm or the Competitive Learning Vector Quantization algorithm (CLVQ), are
based on the stationarity property satisfied by optimal quadratic quantizers and designed for
s = 2. However, when s > 2, these procedures become unstable and difficult and their conver-
gence is very dependent on the initialization. So, in order to design Ls-optimal quantizers, s > 2,
one can use the L2-dilated quantizers to initialize the algorithms and speed their convergence.

In this chapter, based on the same motivations, we are interested in establishing Ls-rate op-
timality results of dilatations/contractions of Lr-optimal greedy quantization sequences. More-
over, we extend the original results established for Lr-optimal quantizers in [71] to a larger class
of distributions taking advantage of new tools developed in [24] to analyze quantization errors.
These tools are based on auxiliary probability distributions with a certain property of control
on balls. In other words, if (αn)n≥1 is a sequence of Lr-optimal quantizers or an Lr-optimal
greedy quantization sequence, then the sequence (αnθ,µ)n≥1 defined, for every θ > 0 and µ ∈ Rd,
by αnθ,µ = {µ + θ(ai − µ), ai ∈ αn}, is Ls-rate optimal for s 6= r. A lower bound of the Ls-
quantization error es(αnθ,µ, P ) was given in [71] for Lr-optimal quantizers and it also holds for
greedy quantization sequences: If P = f.λd, then for every θ > 0, µ ∈ Rd and n ≥ 1,

lim inf
n→+∞

n
1
d es(αnθ,µ, P ) ≥ QInf

r,s(P, θ) (5.6)

where

QInf
r,s(P, θ) = θ1+ d

s J̃s,d

(∫
Rd
f

d
d+r dλd

) 1
d

(∫
{f>0}

fθ,µf
− s
d+r dλd

) 1
s

= θJ̃s,d

(∫
Rd
f

d
d+r dλd

) 1
d

(∫
{f>0}

f−
s
d+r dPθ,µ

) 1
s

(5.7)
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where J̃s,d = inf
n≥1

n
1
d es,n(U([0, 1]d)) ∈ (0,+∞) is the constant given in Zador’s Theorem (see

(5.8)) and fθ,µ denotes the function fθ,µ(x) = f(µ+ θ(x− µ)). Likewise, if X ∼ P = f.λd, then
Pθ,µ denotes the probability distribution of the random variable X−µ

θ +µ and dPθ,µ = θdfθ,µ.dλd.
Our goal is then to estimate upper bounds of this error. For the Lr-dilated/contracted greedy
quantization sequences, we rely on auxiliary probability distributions satisfying a certain control
criterion on balls and establish upper estimates depending on the values of s. We obtain Pierce
type universal non-asymptotic results of Ls-rate optimality of a greedy quantization sequence
(αnθ,µ)n≥1 of a distribution P having finite polynomial moments at any order. On another hand,
we lead an interesting study for a particular class of distributions, the radial density probability
distributions, showing that the corresponding Lr-greedy quantization sequences are Ls-rate op-
timal for s ∈ (r, d+r) under some moment assumption on P and we investigate a particular case,
the Hyper-Cauchy distribution, where the distribution P has finite polynomial moments up to a
finite order. As for the Lr-dilated/contracted optimal quantizers, two results are already given
in [71]: one showing that an asymptotically Lr-optimal sequence of quantizers is Ls-rate optimal
and another restricted to a sequence of (exactly) Lr-optimal quantizers and showing that it is
Ls-rate optimal for s ∈ (0,+∞). In this chapter, we change the approach and use auxiliary
probability distributions satisfying a control criterion on balls to extend these results to a larger
class of distributions for Lr-optimal quantizers. At this stage, one wonders if the Lr-dilated
sequence satisfy the so-called Ls-empirical measure Theorem or if there exists a particular set
of parameters (θ∗, µ∗) for which it is satisfied, leading to wonder whether the sequence is Ls-
asymptotically optimal. This prompts us to consider several particular probability distributions
and establish this study for each distribution. Finally, the application of this study to numerical
integration, introduced in [71], is detailed and illustrated, by numerical examples, for optimal
and greedy quantization.

This chapter will be organized as follows: We start, in Section 5.2, with some results and
tools, mostly from [24], that will be useful in the whole chapter. In Section 5.3, we give upper
bounds for dilated/contracted sequences of Lr-greedy quantization sequences of a distribution P
having finite polynomial moments at any order, investigate an example of a not so general case
and lead a specific study for greedy quantization sequences of radial density distributions. Such
error bounds are given for optimal quantizers in Section 5.4. In Section 5.5, we present several
studies concerning the convergence of the empirical measure and the Ls-asymptotic optimality
of the Lr-dilated/contracted sequence of particular probability distributions. Finally, Section
5.6 is devoted to an application to numerical integration.

5.2 Main tools
In this section, we present some useful results and inequalities which constitute essential tools
needed to achieve desired results in the rest of the chapter. Let X be an Rd-valued random
variable with distribution P such that E|X|r < +∞ for r > 0 and a norm | · | on Rd. Let
(Γn)n≥0 be a sequence of Lr-optimal quantizers of X and (an)n≥0 be a corresponding greedy
quantization sequence. We start by giving the result concerning the rate of convergence to 0 of
a sequence of Lr-optimal quantizers. The first part of the following theorem is an asymptotic
result and the second part is universal non-asymptotic.
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Theorem 5.2.1. (a) Zador’s Theorem (see [75]) : Let X ∈ Lr+ηRd (P), η > 0, with distribution
P such that dP (ξ) = ϕ(ξ)dλd(ξ) + dν(ξ). Then,

lim
n→+∞

n
1
d er,n(X) = Qr(P ) = J̃r,d‖ϕ‖

1
r

L
r
r+d (λd)

(5.8)

where J̃r,d = inf
n≥1

n
1
d er,n(U([0, 1]d)) ∈ (0,+∞).

(b) Extended Pierce’s Lemma (see [44, 57]): Let r, η > 0. There exists a constant κd,r,η ∈ (0,+∞)
such that, for any random vector X : (Ω,A,P)→ Rd,

∀n ≥ 1, er,n(X) ≤ κd,r,ησr+η(X)n−
1
d (5.9)

where, for every r ∈ (0,+∞), σr(X) = inf
a∈Rd

‖X − a‖r ≤ +∞.

Note that a sequence of n-quantizers (Γn)n≥1 is said to be asymptotically Lr-optimal if

lim
n
n

1
d er(Γn, X) = Qr(P )

and Lr-rate optimal if

lim sup
n→+∞

n
1
d er(Γn, X) < +∞ or equivalently ∀n ≥ 1, er(Γn, X) ≤ C1n

− 1
d (5.10)

where C1 is a constant not depending on n.

The Lr-rate optimality of greedy quantization sequences has been recently extended in [24].
The authors relied on auxiliary probability distributions ν on (Rd,B(Rd)) satisfying the following
control on balls, with respect to an Lr-median a1 of P : Assume there exists ε0∈ (0, 1] such that
for every ε ∈ (0, ε0), there exists a Borel function gε : Rd → [0,+∞) such that, for every
x ∈ supp(P ) and every t ∈ [0, ε|x− a1|],

ν(B(x, t)) ≥ gε(x)Vdtd (5.11)

where Vd denotes the volume of the hyper unit ball. Of course, this condition is of interest only
if the set {gε > 0} is sufficiently large with respect to {f > 0} (where f is the density of P ).

Theorem 5.2.2. (see [24]) Let P be such that
∫
Rd |x|rdP (x) < +∞. For any distribution ν and

any Borel function gε : Rd → R+, ε ∈ (0, 1
3), satisfying (5.11),

∀n ≥ 2, er(a(n), P ) ≤ ϕr(ε)−
1
dV
− 1
d

d

(
r

d

) 1
d
(∫

g
− r
d

ε dP

) 1
r

(n− 1)−
1
d (5.12)

where ϕr(u) =
( 1

3r − u
r
)
ud.

Considering appropriate auxiliary distributions ν and “companion” functions gε satisfying (5.11)
yields a Pierce type and a hybrid Zador-Pierce type Lr-rate optimality results as established in
[24] (Zador type results are established in [45]).
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Now, we give a micro-macro inequality established in [33] (see proof of Theorem 2) to estimate
the increments er(Γn, P )r − er(Γn+1, P )r, where (Γn)n≥1 is a sequence of Lr-optimal quantizers
of P . For every n ≥ 1,

er(Γn, P )r − er(Γn+1, P )r ≤ 4(2r − 1)er(Γn+1, P )r

n+ 1 + 4.2rCr2n−
r
d

n+ 1 (5.13)

where C2 is a finite constant independent of n.

The following Proposition provides a micro-macro inequality established in [24] for any quan-
tizer Γ of X with distribution P .
Proposition 5.2.3. Assume

∫
|x|rdP (x) < +∞. Let y ∈ Rd and Γ ⊂ Rd be a finite quantizer

of a random variable X with distribution P such that card(Γ) ≥ 1. Then, for every probability
distribution ν on (Rd,B(Rd)), every c ∈ (0, 1

2)

er(Γ, P )r − er(Γ ∪ {y}, P )r ≥ (1− c)r − cr

(c+ 1)r
∫
ν

(
B
(
x,

c

c+ 1d (x,Γ)
))

d (x,Γ)r dP (x).

From this Proposition, one concludes the following either for Lr-optimal quantizers or for greedy
sequences:
� Since any sequence of Lr-optimal quantizers (Γn)n≥1 clearly satisfies er(Γn+1, P ) ≤ er(Γn ∪
{y}, P ) for every y ∈ Rd, then

er(Γn, P )r − er(Γn+1, P )r ≥er(Γn, P )r − er(Γn ∪ {y}, P )r

≥(1− c)r − cr

(c+ 1)r
∫
ν

(
B

(
x,

c

c+ 1d (x,Γn)
))

d (x,Γn)r dP (x). (5.14)

� Likewise, since the greedy quantization sequence (an)n≥1 satisfies er(a(n+1), P ) ≤ er(a(n) ∪
{y}, P ) for every y ∈ Rd, then

er(a(n), P )r − er(a(n+1), P )r ≥ (1− c)r − cr

(c+ 1)r
∫
ν

(
B

(
x,

c

c+ 1d
(
x, a(n)

)))
d
(
x, a(n)

)r
dP (x).

(5.15)

5.3 Upper estimates for greedy quantizers
This is the main part of this chapter. Let r, s > 0 and let (an)n≥1 be an Lr(Rd)-optimal greedy
quantization sequence of a random variable X with probability distribution P . We denote
a(n) = {a1, . . . , an} the first n terms of this sequence. For every µ ∈ Rd and θ > 0, we denote
a

(n)
θ,µ = µ+ θ(a(n) − µ) = {µ+ θ(ai − µ), 1 ≤ i ≤ n}. In this section, we study the Ls-optimality

of the sequence a(n)
θ,µ.

For this, we consider auxiliary probability distributions ν satisfying the following control on
balls with respect to an Lr-median a1 of P : for every ε ∈ (0, 1), there exists a Borel function
gε : Rd → (0,+∞) such that, for every x ∈ supp(P) and every t ∈ [0, ε|x− a1|],

ν(B(x, t)) ≥ gε(x)Vdtd. (5.16)

Note that a1 ∈ a(n) for every n ≥ 1 by construction of the greedy quantization sequence so that
d(x, a(n)) ≤ d(x, a1) for every x ∈ Rd.
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5.3.1 Main results

The following result is an avatar of Pierce’s Lemma for the Ls-error es(a(n)
θ,µ, P ).

Theorem 5.3.1. Let s ∈ [r, d+ r) and 1− q = d+r
d+r−s . Let (an)n≥1 be an Lr(Rd)-optimal greedy

quantization sequence of an Rd-valued random variable X with distribution P = f.λd such that
E|X|r+δ < +∞ for some δ > 0 such that r + δ > sd

d+r−s . Let η ∈
(
0, r + δ − sd

d+r−s
)
and let

p′ = r+δ−η
d|q| , q′ = r+δ−η

r+δ−η−d|q| > 1 be two conjugate coefficients larger than 1. Assume

∫
{f>0}

(
fθ,µ
f

)(1−q)q′

fdλd < +∞. (5.17)

Then, for every n ≥ 3,

es(a(n)
θ,µ, P ) ≤ θ1+ d

sκGreedy,Pierce
θ,µ

(∫
{f>0}

(
fθ,µ
f

)(1−q)q′

fdλd

) 1
q′|q|(d+r)

σr+δ(P )(n− 2)−
1
d . (5.18)

where er+δ(a(1), P ) = σr+δ(P ) < +∞ denotes the Lr+δ-standard deviation of P and

κGreedy,Pierce
θ,µ = 2

1
d

+ r+δ
r+d (1+ 1

|q|p′ )V
− 1
d

d

(r
d

) r
d(d+r) min

ε∈(0, 1
3 )

[
(1 + ε)ϕr(ε)−

1
d

] (∫
(1 ∨ |x|)

r+δ
r+δ−η dx

) 1
d

.

When s ∈ (0, r], notice that

es(a(n)
θ,µ, P ) ≤ er(a(n)

θ,µ, P )

where er(a(n)
θ,µ, P ) is upper bounded as in Theorem 5.3.1. However, we are still interested in

establishing a specific study for s ∈ (0, r) and giving an upper bound for the Ls-error in the
following theorem.

Theorem 5.3.2. Let s < r and X be a random variable in Rd with distribution P = f.λd such
that E|X|r+δ < +∞ for some δ > 0. Assume∫

{f>0}
f−

s
r−s f

r
r−s
θ,µ dλd < +∞.

Then, for every n ≥ 3,

es(a(n)
θ,µ, P ) ≤ κ̃Greedy,Pierce

θ,µ θ1+ d
s

(∫
{f>0}

f−
s
r−s f

r
r−s
θ,µ dλd

) r−s
sr

σr+δ(P )(n− 2)−
1
d (5.19)

where er+δ(a(1), P ) = σr+δ(P ) < +∞ and

κ̃Greedy,Pierce
θ,µ = 21+ 1

d
+ δ
rV
− 1
d

d

(r
d

) r
d(d+r) min

ε∈(0, 1
3 )

[
(1 + ε)ϕr(ε)−

1
d

] (∫
(1 ∨ |x|)−d(1+ δ

r
)dx

)− 1
d

.
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Application to radial densities

In this section, we consider probability distributions with radial densities. In other words, if the
random variable X has distribution P = f.λd, we consider the auxiliary distribution

ν = fa∫
fadλd

.λd := fa.λd

for a ∈ (0, 1) where the density function f is radial with non-increasing tails w.r.t. a1 ∈ A who
is peakless w.r.t. a1. These two terms are defined as follows

Definition 5.3.3. (a) Let A ⊂ Rd. A function f : Rd → R+ is said to be almost radial non-
increasing on A w.r.t. a ∈ A if there exists a norm ‖.‖0 on Rd and real constant M ∈ (0, 1] such
that

∀x ∈ A \ {a}, f|B‖.‖0 (a,‖x−a‖0) ≥Mf(x). (5.20)

If (5.20) holds for M = 1, then f is called radial non-increasing on A w.r.t. a.
(b) A set A is said to be star-shaped and peakless with respect to a1 if

p(A, | · −a1|) := inf
{
λd(B(x, t) ∩A)
λd(B(x, t)) ;x ∈ A, 0 < t < |x− a1|

}
> 0 (5.21)

for any norm | · | on Rd.

Remark 5.3.4. (a) (5.20) reads f(y) ≥Mf(x) for all x, y∈ A\{a} for which ‖y−a‖0 ≤ ‖x−a‖0.
(b) If f is radial non-increasing on Rd w.r.t. a ∈ Rd with parameter ‖.‖0, then there exists a
non-increasing measurable function g : (0,+∞) → R+ satisfying f(x) = g(‖x − a‖0) for every
x 6= a.
(c) From a practical point of view, many classes of distributions satisfy (5.20), e.g. the d-
dimensional Normal distribution N (m,σd) for which one considers h(y) = 1

(2π)
d
2 det(σd)

1
2
e−

y2
2

and density f(x) = h(‖x −m‖0) where ‖x‖0 = |σ−
1
2

d x|, and the family of distributions defined
by f(x) ∝ |x|ce−a|x|b, for every x ∈ Rd, a, b > 0 and c > −d, for which one considers h(u) =
uce−au

b. In the one dimensional case, we can mention the Gamma distribution, the Weibull
distributions, the Pareto distributions and the log-Normal distributions.
(d) If A = Rd, then p(A, | · −a|) = 1 for every a ∈ Rd.

(e) The most typical unbounded sets satisfying (5.21) are convex cones that is cones K ⊂ Rd of
vertex 0 with 0 ∈ K (K 6= ∅) and such that λx ∈ K for every x ∈ K and λ ≥ 0. For such
convex cones K with λd(K) > 0, we even have that the lower bound

p(K) := inf
{
λd(B(x, t) ∩K)
λd(B(x, t)) ;x∈ K, t > 0

}
=
λd
(
B(0, 1) ∩K)

)
Vd

> 0.

Thus if K = Rd+, then p(K) = 2−d.

Theorem 5.3.5. Let s ∈ [r, d + r) and 1 − q = d+r
d+r−s . Assume that P = f.λd has finite

polynomial moments of order (1−a)(d+ε)
a for some a ∈ (0, 1) and ε > 0. Let a1 denote the Lr-

median of P and assume that supp(P ) ⊂ A and a1 ∈ A for some A star-shaped and peakless
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with respect to a1 and that f is almost radial non-increasing with respect to a1 in the sense of
(5.20). Assume ∫

{f>0}
f
−s(1+a)
d+r−s f

d+r
d+r−s
θ,µ dλd < +∞. (5.22)

Then, for every n ≥ 3,

es(a(n)
θ,µ, P ) ≤ κG,Z,P

θ,µ θ1+ d
s ‖f‖

1
d+r
d
d+r
‖f‖

a
d+r
a

(∫
{f>0}

f
−s(1+a)
d+r−s f

d+r
d+r−s
θ,µ dλd

) 1
|q|(d+r)

(n− 2)−
1
d ,

where κG,Z,P
θ,µ ≤ 21+ 1

dC2
0 r

1
d

d
1
dM

1
d V

1
d
d

p(A,|·−a1|)
1
d

minε∈(0, 1
3 )

[
ϕr(ε)−

1
d

]
.

Remark 5.3.6. Note that the condition (5.22) is more restrictive than the condition (5.17) in
a sense that the set of values of θ for which (5.22) is satisfied is smaller than the set for which
(5.17) is satisfied. This will be made precise and clear in Section 5.5 for particular distributions.
However, if P has finite polynomial moments of any order r > 0, i.e. the parameter a in
Theorem 5.3.5 being as small as possible (a → 0+), then the condition (5.22) yield the same
interval as (5.17).

5.3.2 Proofs

General results

We first state two rather theoretical results based on the auxiliary distribution ν and its com-
panion function gε satisfying (5.16). More operating criterions based on moments of P and/or
the radial structure of its densities will appear as consequences of these theorems by specifying
the distribution ν (and gε).

Theorem 5.3.7. Let s ∈ [r, d+ r) and 1− q = d+r
d+r−s . Let (an)n≥1 be an Lr(Rd)-optimal greedy

quantization sequence of an Rd-valued random variable X with distribution P = f.λd such that
E|X|r+δ < +∞ for some δ > 0. Assume there exists an auxiliary distribution ν and a Borel
function gε satisfying (5.16) for ε ∈ (0, 1

3) such that

∫
{f>0}

(
fθ,µ
f gε

)|q|
dPθ,µ(x) < +∞.

Then, for every n ≥ 3,

es(a(n)
θ,µ, P ) ≤ θ1+ d

d+r κgreedyθ,µ

(∫
g
− r
d

ε dP

) 1
d+r

(∫
{f>0}

(
fθ,µ
f gε

)|q|
dPθ,µ(x)

) 1
|q|(d+r)

(n−2)−
1
d (5.23)

where κgreedyθ,µ = 2
1
dV
− 1
d

d

(
r
d

) r
d(d+r) minε∈(0, 1

3 )

[
ϕr(ε)−

1
d

]
.

Proof. We start by noticing that, for every n ≥ 1,

es(a(n)
θ,µ, P )s =

∫
Rd
d(z, a(n)

θ,µ)sf(z)dλd(z) =
∫
Rd

min
xi∈a(n),1≤i≤n

∣∣z − µ+ θ(µ− xi)
∣∣sf(z)dλd(z).
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Then, by applying the change of variables x = z−µ
θ + µ, one obtains

es(a(n)
θ,µ, P )s =θs+d

∫
Rd
d(x, a(n))sf(µ+ θ(x− µ))dλd(x)

=θs
∫
Rd
d(x, a(n))sdPθ,µ(x)

=θses(a(n), Pθ,µ)s. (5.24)

Now, let us study es(a(n), Pθ,µ). Consider c ∈ (0, ε
1−ε ] ∩ (0, 1

2) so that c
c+1 ≤ ε. Hence, for any

such c, c

c+ 1 d(x, a(n)) ≤ ε|x − a1| since a1 ∈ a(n). Consequently, criteria (5.16) is satisfied, so
there exists a function gε such that

ν

(
B

(
x,

c

c+ 1 d
(
x, a(n)))) ≥ Vd ( c

c+ 1

)d
d(x, a(n))d gε(x).

Then, noticing that (1−c)r−cr
(1+c)r ≥ 1

3r −
(

c
c+1
)r

> 0, since c ∈ (0, 1
2), (5.15) yields

er(a(n), P )r − er(a(n+1), P )r ≥ Vd ϕr
(

c

c+ 1

)∫
gε(x)d(x, a(n))d+rdP (x) (5.25)

where ϕr(u) =
( 1

3r − u
r
)
ud, u ∈ (0, 1

3). Consequently,

er(a(n), P )r − er(a(n+1), P )r ≥ Vd ϕr
(

c

c+ 1

)
θ−d

∫
Rd
gε(x)d(x, a(n))d+rf(x)f−1

θ,µ(x)dPθ,µ(x).

Now, applying the reverse Hölder inequality with conjugate exponents p = s
d+r ∈ (0, 1) and

q = −s
d+r−s < 0 yields

er(a(n), P )r − er(a(n+1), P )r ≥Vd ϕr
(

c

c+ 1

)
θ−d

(∫
{f>0}

(
gε(x)f(x)f−1

θ,µ(x)
)q
dPθ,µ(x)

) 1
q

×
(∫

Rd
d(x, a(n))sdPθ,µ(x)

) 1
p

≥Vd ϕr
(

c

c+ 1

)
θ−d

(∫
{f>0}

(
fθ,µ
f gε

)|q|
(x)dPθ,µ(x)

) 1
q

es(a(n), Pθ,µ)d+r.

(5.26)

Consequently, denoting C1 = Vd ϕr

(
c

c+ 1

)
θ−d

(∫
{f>0}

(
fθ,µ
f gε

)|q|
(x)dPθ,µ(x)

) 1
q

, one obtains

er(a(n), P )r − er(a(n+1), P )r ≥ C1es(a(n), Pθ,µ)d+r. (5.27)

At this stage, we know that er(a(k), P ) is decreasing w.r.t k and it is clear that it is the same
for es(a(k), Pθ,µ), since

es(a(k), Pθ,µ) = E
[

min
1≤i≤k

|ai −
X − µ
θ
− µ|s

] 1
s

≥ E
[

min
1≤i≤k+1

|ai −
X − µ
θ
− µ|s

] 1
s

= es(a(k+1), Pθ,µ),
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so, one has

n es(a(2n−1), Pθ,µ)d+r ≤
2n−1∑
k=n

es(a(k), Pθ,µ)d+r ≤ 1
C1

2n−1∑
k=n

er(a(k), P )r − er(a(k+1), P )r ≤ 1
C1
er(a(n), P )r.

and, since 2
⌈
n

2

⌉
− 1 ≤ n,

n

2 es(a
(n), Pθ,µ)d+r ≤

⌈
n

2

⌉
es(a(n), Pθ,µ)d+r ≤

⌈
n

2

⌉
es
(
a2dn2 e−1, Pθ,µ

)d+r
≤ 1
C1
er
(
ad

n
2 e, P

)r
.

Consequently, using the result of Theorem 5.2.2

es(a(n), Pθ,µ) ≤
( 2
C1

) 1
d+r

n−
1
d+r er

(
ad

n
2 e, P

) r
d+r

≤ 2
1
dV
− 1
d

d

(r
d

) r
d(d+r)ϕr

(
c

c+ 1

)− 1
d

θ
d
d+r

(∫
Rd
g
− r
d

ε dP

) 1
d+r

×
(∫
{f>0}

(
fθ,µ
f gε

)|q|
(x)dPθ,µ(x)

) 1
|q|(d+r)

(n− 2)−
1
d .

We are led to study ϕr
(

c
c+1

)− 1
d subject to the constraint c ∈

(
0, ε

1−ε
]
∩
(
0, 1

2
)
. ϕr is increasing

in the neighborhood of 0 and ϕr(0), so, one has, for every ε ∈ (0, 1
3) small enough, ϕr

(
c
c+1

)
≤

ϕr(ε), for c ∈ (0, ε
1−ε ]. This leads to specify c as c = ε

1−ε , so that c
c+1 = ε which means that one

can use

ϕr

(
c

c+ 1

)− 1
d+r
≤ min

ε∈(0,13 )

[
ϕr(ε)−

1
d+r
]

(5.28)

which yields

es(a(n), Pθ,µ) ≤ 2
1
dV
− 1
d

d

(r
d

) r
d(d+r) min

ε∈(0, 1
3 )

[
ϕr(ε)−

1
d
]
θ

d
d+r

(∫
Rd
g
− r
d

ε dP

) 1
d+r

×
(∫
{f>0}

(
fθ,µ
f gε

)|q|
(x)dPθ,µ(x)

) 1
|q|(d+r)

(n− 2)−
1
d . (5.29)

Finally, one concludes by merging this with (5.24). �

Theorem 5.3.8. Let s < r and X a random variable in Rd with distribution P = f.λd and
such that E|X|r+δ < +∞ for some δ > 0. Assume there exists an auxiliary distribution ν and a
Borel function gε satisfying (5.16) for every ε ∈ (0, 1

3) such that∫
Rd
g
− r
d

ε dP < +∞ and
∫
{f>0}

f−
s
r−s f

r
r−s
θ,µ dλd < +∞.
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Then, for every n ≥ 3,

es(a(n)
θ,µ, P ) ≤ θ1+ d

sκGreedy
θ,µ

(∫
Rd
g
− r
d

ε dP

) 1
r

(∫
{f>0}

f−
s
r−s f

r
r−s
θ,µ dλd

) r−s
sr

(n− 2)−
1
d (5.30)

where κGreedy
θ,µ = 21+ 1

dV
− 1
d

d

(
r
d

) r
d(d+r) minε∈(0, 1

3 )
[
ϕr(ε)−

1
d
]
.

Proof. We start from Equation (5.27) in the proof of Theorem 5.3.7 recalled below

er(a(n), P )r − er(a(n+1), P )r ≥ C1es(a(n), Pθ,µ)d+r

where C1 = ϕr

(
c

c+ 1

)
θ
−d+ d

q

(∫
{f>0}

gqε(x)f q(x)f1−q
θ,µ (x)dλd(x)

) 1
q

and q = − s
d+r−s < 0 so that

1− q = d+r
d+r−s . At this stage, follow the lines of the proof of Theorem 5.3.7 to get, for n ≥ 3,

es(a(n), Pθ,µ) ≤
( 2
C1

) 1
d+r

(n− 1)−
1
d+r er

(
ad

n
2 e, P

) r
d+r

≤κGreedy
θ,µ θ

d
s

(∫
Rd
g
− r
d

ε dP

) 1
d+r

(∫
{f>0}

gqεf
qf1−q
θ,µ dλd

) 1
|q|(d+r)

(n− 2)−
1
d .

where κGreedy
θ,µ = 21+ 1

dV
− 1
d

d

(
r
d

) r
d(d+r) minε∈(0, 1

3 )
[
ϕr(ε)−

1
d
]
.

Now, since s < r, one can apply Hölder inequality with the conjugate exponents p′ = r(d+r−s)
r(d+r−s)−ds >

1 and q′ = r
d|q| = r(d+r−s)

ds > 1 which yields

∫
{f>0}

gqεf
qf1−q
θ,µ dλd =

∫
{f>0}

gqεf
q−1f1−q

θ,µ dP ≤
(∫

Rd
g
− r
d

ε dP

) 1
q′
(∫
{f>0}

f
r
s−r+1f

r
r−s
θ,µ dλd

) 1
p′

so (∫
{f>0}

gqεf
qf1−q
θ,µ dλd

)− 1
q(d+r)

≤
(∫

Rd
g
− r
d

ε dP

) d
r(d+r)

(∫
{f>0}

f
s
s−r f

r
r−s
θ,µ dλd

) r−s
rs

and

es(a(n), Pθ,µ) ≤ κGreedy
θ,µ θ

d
s

(∫
Rd
g
− r
d

ε dP

) 1
r

(∫
{f>0}

f−
s
r−s f

r
r−s
θ,µ dλd

) r−s
sr

(n− 2)−
1
d .

and one deduces the result just as in the proof of Theorem 5.3.7. �

Proofs of main results

Proof of Theorem 5.3.1. We consider ν(dx) = γr,δ(x)λd(dx) where

γr,δ(x) = Kδ,r

(1 ∨ |x− a1|)d
r+δ

r+δ−η
with Kδ,r =

∫ dx

(1 ∨ |x|)
r+δ

r+δ−η

−1

< +∞
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is a probability density with respect to the Lebesgue measure on Rd. For every x ∈ Rd such
that ε|x− a1| ≥ t and every y ∈ B(x, t), one has |y − a1| ≤ |y − x|+ |x− a1| ≤ (1 + ε)|x− a1|
so that

ν(B(x, t)) ≥ Kδ,rVd t
d(

1 ∨ (1 + ε)|x− a1|
)d r+δ

r+δ−η
.

Hence, (5.16) is satisfied with

gε(x) = Kδ,r(
1 ∨ (1 + ε)|x− a1|

) r+δ
r+δ−η

so we apply Theorem 5.3.7 where one has to handle the term(∫
{f>0}

(
fθ,µ
f gε

)|q|
(x)dPθ,µ(x)

) 1
|q|(d+r)

= θ
d

|q|(d+r)

(∫
{f>0}

gqε

(
fθ,µ
f

)1−q
dP (x)

) 1
|q|(d+r)

where q = −s
d+r−s < 0 so that 1 − q = d+r

d+r−s . To do this, we apply Hölder inequality with
the conjugate coefficients p′ = r+δ−η

d|q| > 1 (due to the moment assumption on P ) and q′ =
r+δ−η

r+δ−η−d|q| > 1. This yields

(∫
{f>0}

gqε

(
fθ,µ
f

)1−q
dP

) 1
|q|(d+r)

≤
(∫

Rd
gqp
′

ε dP

) 1
p′|q|(d+r)

(∫
{f>0}

(
fθ,µ
f

)(1−q)q′

dP

) 1
q′|q|(d+r)

≤
(∫

Rd
gqp
′

ε dP

) 1
p′|q|(d+r)

(∫
{f>0}

(
fθ,µ
f

)(1−q)q′

fdλd

) 1
q′|q|(d+r)

so that(∫
{f>0}

(
gε(x)f(x)f−1

θ,µ(x)
)q
dPθ,µ(x)

) 1
|q|(d+r)

≤ θ
d

|q|(d+r)

(∫
Rd
gqp
′

ε dP

) 1
p′|q|(d+r)

×
(∫
{f>0}

(
fθ,µ
f

)(1−q)q′

fdλd

) 1
q′|q|(d+r)

. (5.31)

Consequently,

es(a(n)
θ,µ, P ) ≤ θ1+ d

sκGreedy
θ,µ

(∫
{f>0}

(
fθ,µ
f

)(1−q)q′

fdλd

) 1
q′|q|(d+r) (∫

Rd
g
− r
d

ε dP

) 1
d+r

×
(∫

Rd
gqp
′

ε dP

) 1
p′|q|(d+r)

(n− 2)−
1
d

By our choice of gε,(∫
Rd
g
− r
d

ε dP

) 1
d+r
≤
(∫

Rd

(
1 ∨ (1 + ε)‖x− a1‖

) r(r+δ)
d(r+δ−η)dP

) 1
d+r

and (∫
Rd
gqp
′

ε dP

) 1
p′|q|(d+r)

≤
(∫

Rd

(
1 ∨ (1 + ε)‖x− a1‖

)r+δ
dP

) 1
p′|q|(d+r)

.
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At this stage, notice that r(r + δ)
d(r + δ − η) < r + δ since r + δ − η > sd

d+r−s >
r
d . So,∫

Rd

(
1 ∨ (1 + ε)‖x− a1‖

) r(r+δ)
d(r+δ−η)dP <

∫
Rd

(
1 ∨ (1 + ε)‖x− a1‖

)r+δ
dP

since the function x 7→ ax is increasing w.r.t x for a > 1. Moreover, owing to Lr+δ-Minkowski
inequality,(∫

Rd

(
1 ∨ (1 + ε)‖x− a1‖

)r+δ
dP

) 1
d+r

(
1+ 1
|q|p′

)
≤
(
1 + (1 + ε)σr+δ(P )

) r+δ
r+d

(
1+ 1
|q|p′

)
where σr+δ(P ) = infa ‖X − a‖r+δ is the Lr+δ-standard deviation of P . Consequently,

es(a(n)
θ,µ, P ) ≤θ1+ d

s

κGreedy
θ,µ

K
1
d
δ,r

(∫
{f>0}

(
fθ,µ
f

)(1−q)q′

fdλd

) 1
q′|q|(d+r) (

1 + (1 + ε)σr+δ(P )
) (r+δ)(1+|q|p′)
|q|p′(r+d) (n− 2)−

1
d .

Now, we introduce an equivariance argument. For λ > 0, let Xλ := λ(X − a1) + a1 and
(αλ,n)n≥1 := (λ(αn− a1) + a1)n≥1. It is clear that er(α(n), X) = 1

λer(α
(n)
λ , Xλ). Plugging this in

the previous inequality yields

es(a(n)
θ,µ, P ) ≤ θ1+ d

sκGreedy
θ,µ K

− 1
d

δ,r

(∫
{f>0}

(
fθ,µ
f

)(1−q)q′

fdλd

) 1
q′|q|(d+r)

× 1
λ

(
1 + (1 + ε)λσr+δ(P )

) (r+δ)(1+|q|p′)
|q|p′(r+d) (n− 2)−

1
d .

Finally, one deduces the result by setting λ = 1
(1 + ε)σr+δ

. �

Proof of Theorem 5.3.2. We consider the function gε defined by

gε(x) = Kδ,r(
1 ∨ (1 + ε)|x− a1|

)d(1+ δ
r

)

where Kδ,r =
(∫

dx

(1 ∨ |x|)d(1+ δ
r

)

)−1

< +∞. One has

(∫
Rd
g
− r
d

ε (x)dP
) 1
r

≤ K−
1
d

δ,r

(∫ (
1 ∨ (1 + ε)|x− a1|

)r+δ
dP

) 1
r

so that, applying the Lr+δ-Minkowski inequality, one obtains(∫
gε(x)−

r
ddP (x)

) 1
r

≤ K−
1
d

δ,r (1 + (1 + ε)σr+δ)1+ δ
r .

Then, applying Theorem 5.3.8 yields , for every n ≥ 3,

es(a(n)
θ,µ, P ) ≤ θ1+ d

sκGreedy
θ,µ K

− 1
d

δ,r (1 + (1 + ε)σr+δ)1+ δ
r

(∫
{f>0}

f−
s
r−s f

r
r−s
θ,µ dλd

) r−s
sr

(n− 2)−
1
d

(5.32)
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Finally, using the equivariance argument introduced in the proof of Theorem 5.3.1, one deduces,
in the same spirit, the result by considering λ = 1

(1+ε)σr+δ(P ) . �

For the proof of Theorem 5.3.5, we use the following technical lemma (established in [24]).

Lemme 5.3.9. Let ν = f.λd be a probability measure on Rd where f is almost radial non-
increasing on A ∈ B(Rd) w.r.t. a1 ∈ A, A being star-shaped relative to a1 and satisfying (5.21).
Then, for every x ∈ A and t ∈ (0, |x− a1|),

ν(B(x, t)) ≥Mp(A, | · −a1|)(2C2
0 )−dVdf(x)td

where C0 ∈ [1,+∞) is such that, for every x ∈ Rd, 1
C0
‖x‖0 ≤ |x| ≤ C0‖x‖0.

Proof of theorem 5.3.5. We consider ν = fadλd for a ∈ (0, 1) where

fa = Ka f
a with Ka =

(∫
fadλd

)−1
.

Note that
∫
fadλd < +∞. In fact, if we denote fa = fa(1+|x|)b(1+|x|)−b where b = (1−a)(d+ε),

ε > 0, then, applying Hölder’s inequality with the conjugate coefficients 1
a and 1

1−a yields∫
fa(x)dλd(x) ≤

(∫
f(x) (1 + |x|)

1−a
a

(d+ε)dλd(x)
)a (∫

(1 + |x|)−(d+ε)dλd(x)
)1−a

where the first factor is finite due to the moment assumption made on P and the second factor
is finite for ε > 0.

Let c ∈ (0, 1
2). Since c

c+1 < 1 and a1 ∈ a(n) then, for every x ∈ Rd, c
c+1d(x, a(n)) ≤

d(x, a(n)) ≤ |x− a1|. Moreover, notice that fa is radial non-increasing with parameter Ma. So,
merging (5.15) with Lemma 5.3.9, one obtains

er(a(n), P )r−er(a(n+1), P )r ≥ ϕr
(

c

c+ 1

)
Map(A, | ·−a1|)(2C2

0 )−dVd
∫
fa(x)d(x, a(n))d+rdP (x).

Now, denoting C = ϕr
(

c
c+1

)
Map(A, | · −a1|)(2C2

0 )−dVd and having in mind that dP = f.dλd

and dPθ,µ = θdfθ,µ.dλd, yields

er(a(n), P )r − er(a(n+1), P )r ≥ Cθ−d
∫
{f>0}

fa(x)f(x)f−1
θ,µ(x)d(x, a(n))d+rdPθ,µ(x)

≥ Cθ−dKa

∫
{f>0}

f(x)1+af−1
θ,µ(x)d(x, a(n))d+rdPθ,µ(x).

Applying the reverse Hölder inequality with the conjugate exponents p = s
d+r ∈ (0, 1) and

q = −s
d+r−s < 0 yields

er(a(n), P )r − er(a(n+1), P )r ≥ Cθ−dKa

(∫
{f>0}

f(x)−|q|(1+a)f
|q|
θ,µ(x)dPθ,µ(x)

) 1
q (∫

Rd
d(x, a(n))sdPθ,µ(x)

) d+r
s

≥ Cθ−d+ d
qKa

(∫
{f>0}

f(x)−|q|(1+a)f1−q
θ,µ (x)dλd(x)

) 1
q

es(a(n), Pθ,µ)d+r.
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At this stage, we denote C1 = Cθ
−d+ d

qKa

(∫
{f>0} f(x)−|q|(1+a)f1−q

θ,µ (x)dλd(x)
) 1
q , follow the same

steps as in the proof of Theorem 5.3.7 and use the result of Theorem 2.2.8 in [24] to obtain

es(a(n), Pθ,µ) ≤
( 2
C1

) 1
d+r

(n− 2)−
1
d+r er

(
ad

n
2 e, P

) r
d+r

≤ 21+ 1
dC2

0 r
1
d

d
1
dM

1
dV

1
d
d p(A, | · −a1|)

1
d

min
ε∈(0, 1

3 )

[
ϕr(ε)−

1
d
]
θ
d
s

(∫
{f>0}

f(x)−|q|(1+a)f
d+r
d+r−s
θ,µ (x)dλd(x)

) 1
|q|(d+r)

× ‖f‖
1
d+r
d
d+r
‖f‖

a
d+r
a (n− 2)−

1
d .

The result is deduced using the same arguments as in the end of the proof of Theorem 5.3.7. �

5.3.3 Example of distributions with finite polynomial moments up to a finite
order

Theorem 5.3.1 treats the case of a distribution P that has finite polynomial moments at any
order. However, this condition is not always satisfied. The goal of this example is to see what
happens if the distribution P has finite moments up to a finite order r+ δ i.e when there exists
a finite number M such that E|X|r+δ < +∞ for r + δ < M . For this, let us consider the
hyper-Cauchy distribution P = f.λd where

f(x) = Cm

(1 + |x|2)m

for a finite constant C > 0 and m > d
2 , this ensures the integrability of f w.r.t. the Lebesgue

measure λd. This probability distribution has finite moments of order r + δ < 2m − d, i.e.
E|X|r+δ < +∞ if r + δ < 2m− d.
In order to obtain Pierce type results, one proceeds as in the proof of Theorem 5.3.1. Criterion
(5.16) is verified with

gε(x) = Kδ,r(
1 ∨ (1 + ε)|x− a1|

)d r+δ
r+δ−η

and the reasoning is the same until inequality (5.31). At this stage, since P does not have finite
moments of any order, one wonders if the above inequality makes sense, i.e. if the integrals in
the right side are finite. First, it is clear that

∫
{f>0}

(
fθ,µ
f

)(1−q)q′

fdλd =
∫ ( 1 + |x|2

1 + θ2|x|2

)m(1−q)q′
Cm

(1 + |x|2)mdλd < +∞ (5.33)

where 1 − q = d+r
d+r−s and q′, p′ are two conjugate coefficients larger than 1, since 1+|x|2

1+θ2|x|2 is
bounded for θ > 0 and Cm

(1+|x|2)m ∈ L
1(λd) as mentioned previously. Secondly, one notices that,

since r+δ
r+δ−η > 1, then |q|p′d r+δ

r+δ−η = |q|dp′ + η′ for some η′ > 0. Hence, one can write

∫
Rd
gqp
′

ε dP < +∞ ⇔
∫
Rd

|x||q|dp′+η′

(1 + |x|2)mdλd(x) < +∞ ⇔
∫ +∞

0

|y||q|dp′+η′+d−1

(1 + |y|2)m dy < +∞.
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This is equivalent to

2m−
(
d|q|p′ + η′ + d− 1

)
> 1 ⇔ p′ <

1
d|q|

(2m− d− η′) < 2m− d
d|q|

.

At this stage, we note that one can choose p′ as close to 1 as possible, since its conjugate q′ can
be chosen as large as possible without affecting (5.33). Hence, the above condition boils down
to d|q| < 2m− d ⇔ s

d+r−s <
2m−d
d . Consequently, in order for this study to have sense, one

must have
s <

(
1− d

2m
)
(d+ r)

which is more restrictive than the condition s < d + r in the case of distributions with finite
moments of any order.

5.4 Upper estimates for Lr-optimal quantizers
Let r, s > 0 and (Γn)n≥1 a sequence of Lr(Rd)-optimal quantizers of a random vector X with
probability distribution P . For every µ ∈ Rd and θ > 0, we denote Γnθ,µ = µ + θ(Γn − µ) =
{µ+ θ(xi − µ), xi ∈ Γn, 1 ≤ i ≤ n}.

In [71], the Ls-optimality of the sequence (Γnθ,µ)n≥1 was studied. The author provided some
conditions for the Ls-rate optimality of this sequence depending on whether Γn is an asymptot-
ically Lr-optimal quantizer (study done for s < r) or exactly Lr-optimal (for s < r + d). This
study was based on the integrability of the b-maximal functions associated to an Lr-optimal
sequence of quantizers (Γn)n≥1 defined by

∀ξ ∈ Rd, Ψb(ξ) = sup
n∈N

λd (B(ξ, bdist(ξ,Γn)))
P (B(ξ, bdist(ξ,Γn))) . (5.34)

Throughout this section, we focus on the case where Γn is exactly Lr-optimal and 0 < s < r+ d
and extend the results established in [71] to a larger class of distributions using tools that
appeared meanwhile in [24]. Instead of maximal functions, our study relies on micro-macro
inequalities using auxiliary probability distributions ν satisfying the following control on balls
with respect to an a1 ∈ Γn: for every ε ∈ (0, 1), there exists a Borel function gε : Rd → (0,+∞)
such that, for every x ∈ supp(P) and every t ∈ [0, ε|x− a1|],

ν(B(x, t)) ≥ gε(x)Vdtd. (5.35)

where Vd denotes the volume of the hyper unit ball.

5.4.1 Main results

The case where r < s and (Γn)n≥0 is a sequence of Lr-asymptotically optimal quantizers of P
has been studied in [71] without the use of maximal functions but requiring the couple (θ, µ) to
be P -admissible, i.e. such that

{f > 0} ⊂ µ(1− θ) + θ{f > 0}.

Note that if supp(P ) = Rd, then every couple (θ, µ) is P -admissible. This condition is not
needed to establish upper error bounds in this chapter but will be considered in the studies for
s < r in Section 5.5.
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Theorem 5.4.1. Let s ∈ [r, d + r) and 1 − q = d+r
d+r−s . Let X be an Rd-valued random vector

with distribution P = f.λd such that E|X|r+δ < +∞ for some δ > 0 such that r + δ > sd
d+r−s .

Let η ∈
(
0, r + δ − sd

d+r−s
)
, p′ = r+δ−η

d|q| and q′ = r+δ−η
r+δ−η−d|q| and let (Γn)n≥1 be a sequence of

Lr(Rd)-optimal quantizers of X. Assume∫
{f>0}

(
fθ,µ
f

)(1−q)q′

fdλd < +∞.

Then, for every n ≥ 1,

es(Γnθ,µ, P ) ≤ κ̃Optimal
θ,µ θ1+ d

sσr+δ(P )
(∫
{f>0}

(
fθ,µ
f

)(1−q)q′

fdλd

) 1
|q|q′(d+r)

n−
1
d

where σr+δ(P ) = infa ‖X − a‖r+δ is the Lr+δ-standard deviation of P and

κ̃Optimal
θ,µ = 2

2qp′−1
qp′(d+r)

((2r − 1)Cr1 + 2rCr2
Vd

) 1
d+r

min
ε∈(0,13 )

[
(1 + ε)ϕr(ε)−

1
d+r
]( ∫

Rd
(1 ∨ |x|)−d

r+δ
r+δ−η dx

) 1
d+r

with C1 and C2 are finite constants not depending on n, θ and µ and ϕr : u→
(

1
3r − u

r
)
ud, u ∈

(0, 1
3).

Remark 5.4.2. One checks that ϕr attains its maximum at 1
3

(
d
d+r

) 1
r on (0, 1

3).

Note that, like for greedy quantizeration sequences, the case s < r can be easily treated by
remarking that es(Γnθ,µ, P ) ≤ er(Γnθ,µ, P ) which is upper bounded in Theorem 5.4.1.

5.4.2 Proof

We start with a general theoretical result based on the auxiliary distribution ν and its companion
function gε satisfying (5.35).

Theorem 5.4.3. Let s ∈ (0, d+r) and 1−q = d+r
d+r−s . Let X be an Rd-valued random vector with

distribution P = f.λd such that E|X|r+δ < +∞ for some δ > 0 and let (Γn)n≥1 be a sequence of
Lr(Rd)-optimal quantizers of X such that Γn = {x1, . . . , xn}. Assume there exist a distribution
ν and a function gε satisfying (5.35), for ε ∈ (0, 1

3), such that

∫
{f>0}

(
fθ,µ
f gε

)|q|
dPθ,µ < +∞.

Then, for every n ≥ 1,

es(Γnθ,µ, P ) ≤ κOptimal
θ,µ θ1+ d

d+r

(∫
{f>0}

(
fθ,µ
f gε

)|q|
(x)dPθ,µ(x)

) 1
|q|(d+r)

n−
1
d

where κOptimal
θ,µ =

(
4(2r− 1)Cr1 + 4.2rCr2

) 1
d+r

V
− 1
d+r

d min
ε∈(0,13 )

[
ϕr(ε)−

1
d+r
]
with C1 and C2 finite

constants not depending on n, θ and µ and ϕr : u→
(

1
3r − u

r
)
ud, u ∈ (0, 1

3).
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Proof. First, as in the proof of Theorem 5.3.7, we have for every n ≥ 1,

es(Γnθ,µ, P )s = θses(Γn, Pθ,µ)s. (5.36)

Then, assume that c ∈ (0, ε
1−ε ] ∩ (0, 1

2) so that c
c+1 ≤ ε. Moreover, d(x,Γn) ≤ |x − a1| for an

a1 ∈ Γn. So, c
c+1d(x,Γn) ≤ ε|x−a1| and, hence, ν satisfies (5.35) w.r.t. a1. Consequently, there

exists a Borel function gε : Rd → (0,+∞) such that

ν

(
B

(
x,

c

c+ 1 d
(
x,Γn

)))
≥ Vd

(
c

c+ 1

)d
d(x,Γn)d gε(x).

Then, noticing that (1−c)r−cr
(1+c)r ≥ 1

3r −
(

c
c+1
)r

> 0 in (5.14), since c ∈ (0, 1
2), yields

er(Γn, P )r − er(Γn+1, P )r ≥ Vd ϕr
(

c

c+ 1

)∫
gε(x)d(x,Γn)d+rdP (x)

where ϕr(u) =
( 1

3r − u
r
)
ud, u ∈ (0, 1

3). This inequality is the version of (5.25) for optimal
quantizers so we follow the same steps as in the proof of Theorem 5.3.7 until we obtain

er(Γn, P )r − er(Γn+1, P )r ≥ Ces(Γn, Pθ,µ)d+r

where C = Vd ϕr

(
c

c+ 1

)
θ−d

(∫
{f>0}

(
fθ,µ
f gε

)|q|
dPθ,µ(x)

) 1
q

. At this stage, since (Γn)n≥1 is a

sequence of Lr-optimal quantizers, we use (5.13) to obtain the following upper bound

es(Γn, Pθ,µ) ≤C−
1
d+r

(
4(2r − 1)er(Γn+1, P )r

n+ 1 + 4.2rCr2n−
r
d

n+ 1

) 1
d+r

≤
(

4(2r − 1)er(Γn+1, P )r

n+ 1 + 4.2rCr2n−
r
d

n+ 1

) 1
d+r

V
− 1
d+r

d ϕr

(
c

c+ 1

)− 1
d+r

θ
d
d+r

×
(∫
{f>0}

(
fθ,µ
f gε

)|q|
dPθ,µ(x)

) 1
|q|(d+r)

≤
(
4(2r − 1)Cr1 + 4.2rCr2

) 1
d+r

n−
1
dV
− 1
d+r

d ϕr

(
c

c+ 1

)− 1
d+r

θ
d
d+r

×
(∫
{f>0}

(
fθ,µ
f gε

)|q|
dPθ,µ(x)

) 1
|q|(d+r)

(5.37)

where we used, in the last inequality, the definition of an Lr-optimal quantizer given by (5.10).
Now, we use (5.28) to obtain

es(Γn, Pθ,µ) ≤
(
4(2r − 1)Cr1 + 4.2rCr2

) 1
d+r

n−
1
dV
− 1
d+r

d θ
d
d+r min

ε∈(0,13 )

[
ϕr(ε)−

1
d+r
]

×
(∫
{f>0}

(
fθ,µ
f gε

)|q|
dPθ,µ(x)

) 1
|q|(d+r)

.

Finally, one deduces the result by injecting this last inequality in (5.36). �
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By specifying the function gε in Theorem 5.4.3, we obtain a universal non asymptotic bound
for the error es(Γnθ,µ, P ) given in Theorem 5.4.1 which proof is the following.

Proof of Theorem 5.4.1. We consider ν(dx) = γr,δ(x)λd(dx) where

γr,δ(x) = Kδ,r

(1 ∨ |x− a1|)d
r+δ

r+δ−η
with Kδ,r =

∫ dx

(1 ∨ |x|)d
r+δ

r+δ−η

−1

< +∞

is a probability density with respect to the Lebesgue measure on Rd and | · | denotes any norm
on Rd. Similarly as in the proof of Theorem 5.3.1, (5.35) is verified with

gε(x) = Kδ,r(
1 ∨ (1 + ε)|x− a1|

)d r+δ
r+δ−η

.

So, we apply Theorem 5.4.3 and use (5.31) to obtain

es(Γnθ,µ, P ) ≤ κOptimal
θ,µ θ1+ d

sK
− 1
d+r

δ,r

(∫
Rd
gqp
′

ε dP

) 1
|q|p′(d+r)

(∫
{f>0}

(
fθ,µ
f

)(1−q)q′

fdλd

) 1
|q|q′(d+r)

n−
1
d

where q = −s
d+r−s so that 1− q = d+r

d+r−s and p′ and q′ are two conjugate coefficients larger than
1. By our choice of gε and the Lr+δ Minkowski inequality,(∫

Rd
gqp
′

ε dP

) 1
|q|p′(d+r)

≤ K
− 1
d+r

δ,r

(
1 + (1 + ε)σr+δ(P )

) 1
|q|p′(d+r)

.

where σr+δ(P ) = infa ‖X − a‖r+δ is the Lr+δ-standard deviation of P . Consequently, one has

es(Γnθ,µ, P ) ≤ κOptimal
θ,µ θ1+ d

sK
− 1
d+r

δ,r

(
1 + (1 + ε)σr+δ(P )

) 1
|q|p′(d+r)

(∫
{f>0}

(
fθ,µ
f

)(1−q)q′

fdλd

) 1
|q|q′(d+r)

n−
1
d

Now, we introduce an equivariance argument. For λ > 0, let Xλ := λ(X − a1) + a1 and
(αλ,n)n≥1 := (λ(αn− a1) + a1)n≥1. It is clear that er(α(n), X) = 1

λer(α
(n)
λ , Xλ). Plugging this in

the previous inequality yields

es(Γnθ,µ, P ) ≤
κOptimal
θ,µ

K
1
d+r
δ,r

θ1+ d
s

1
λ

(
1 + (1 + ε)λσr+δ(P )

) 1
|q|p′(d+r)

(∫
{f>0}

(
fθ,µ
f

)(1−q)q′

fdλd

) 1
|q|q′(d+r)

n−
1
d

Finally, one deduces the result by setting λ = 1
(1+ε)σr+δ(P ) . �

5.5 More examples and a dilatation optimization
Let X be a random variable with distribution P = f.λd. The upper bounds established in
Sections 5.3 and 5.4, induce that the quantizers Γnθ,µ and a(n)

θ,µ are Ls(P )-rate optimal under one
of the following necessary and sufficient conditions depending on the value of s, as follows
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� If s < r and (θ, µ) is P -admissible, then a(n)
θ,µ is Ls(P )-rate optimal iff P has finite moments

of order r + δ for δ > 0 and ∫
f−

s
r−s f

r
r−s
θ,µ dλd < +∞. (5.38)

Note that it is the same condition for Γnθ,µ but this case is fully treated in [71].
� If s < r + d, then the Lr-dilated greedy sequence a(n)

θ,µ and the Lr-dilated optimal sequence
Γnθ,µ are Ls(P )-rate optimal iff P has finite moments of order r + δ for δ > 0 and

∫
{f>0}

(
fθ,µ
f

) (d+r)(r+δ−η)
(d+r−s)(r+δ−η)−ds

fdλd < +∞ (5.39)

where η ∈
(
0, r + δ − sd

d+r−s
)
. In particular, when f is a radial non-increasing density, the Lr-

dilated greedy sequence a(n)
θ,µ is Ls(P )-rate optimal iff P has finite moments of order 1−a

a (d+ ε),
ε > 0, and ∫

f(x)
−s(1+a)
d+r−s f

d+r
d+r−s
θ,µ (x)dλd(x) < +∞ (5.40)

where a ∈ (0, 1).

This leads to determining the values of (θ, µ) for which these conditions are satisfied and
hence obtain an interval IP (θ, µ) of the parameters for which the Lr-dilated sequence is Ls-
optimal. Let us denote, for the sake of simplicity, α(n)

θ,µ both sequences (Γnθ,µ)n≥1 and (a(n)
θ,µ)n≥1.

Generally, µ is chosen to be equal to E[X] in order to ensure that the distribution Pθ,µ lies in
the same family of distributions of P , and the values of θ for which the above conditions are
satisfied depend entirely on the density f of P . So, the problem is to determine the interval
IP (θ) depending on the distribution P . This way, based on Lr-optimal or greedy sequences α(n),
we obtain sequences α(n)

θ,µ that are Ls-rate optimal, but not optimal nor even Ls-asymptotically
optimal. We will carry out the study for specified families of distributions, like the multivariate
Normal distribution N (m,Σ), the hyper-exponential, hyper-Gamma and hyper-Cauchy distri-
butions. For each case, we determine the interval IP (θ) and show that the dilated/contracted
sequence does not satisfy the Ls-empirical measure Theorem for every θ ∈ IP (θ). However, the
computations established allow us to determine, for some probability distributions, a particular
value θ∗ ∈ IP (θ) for which the sequence α(n)

θ∗,µ satisfies the theorem. Let us first recall this
Theorem.

Theorem 5.5.1 (Empirical measure Theorem). Let P be a Lr-Zador distribution, absolutely
continuous w.r.t the Lebesgue measure on Rd with density f . Let Γn be an asymptotically optimal
n-quantizer of P . Then, denoting Cf,r =

∫
Rd
f

d
d+r dλd, one has

1
n

∑
xi∈Γn

δxi ⇒
n→+∞

Pr = 1
Cf,r

∫
f

d
r+ddλd, (5.41)

or, in other words, for every a, b ∈ Rd,

1
n

card
{
xi ∈ Γn ∩ [a, b]

}
→ 1

Cf,r

∫
[a,b]

f
d
r+ddλd.
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Moreover, for some distributions, the particular value θ∗ mentioned above allows the lower
bound (5.6) induced by α(n)

θ∗,µ to attain the sharp constant in Zador’s Theorem. This leads to
wonder whether this sequence is Ls-asymptotically optimal.

Before proceeding with the particular studies, let us precise that, if θ > 1, the sequence α(n)
θ,µ

is called a dilatation of α(n) with scaling parameter θ and translating number µ. Likewise, if
θ < 1, the sequence α(n)

θ,µ is called a contraction of α(n) with scaling parameter θ and translating
number µ.

5.5.1 The multivariate Gaussian distribution

Let P = N (m,Σ). We consider µ = m so that the distribution Pθ,µ lies in the same family of
distributions as P . Since supp(P ) = Rd, then every couple (θ, µ) is P -admissible.
� If s < r, the sequence αnθ,m is Ls-rate optimal iff θ ∈ IP (θ) =

(√
s
r ,+∞

)
. These computations

are carried out in [71] for optimal quantizers and are the same for greedy quantizers.
� If r ≤ s < d+ r, we lead two studies, relying first on condition (5.39) and then on condition
(5.40)for radial densities and see what link we can make between both of them. Let us start
with the general case, i.e. condition (5.39). For q = −s

d+r−s and every q′ > 1, one has∫
{f>0}

(
fθ,m
f

)(1−q)q′

fdλ =
(
(2π)d|Σ|

)− 1
2

∫
e−

1
2

(
(1−q)q′θ2+(q−1)q′+1

)
(x−m)2|Σ|−2

dx.

So, the sequence α(n)
θ,m is Ls-rate optimal iff

(1− q)q′θ2 + (q − 1)q′ + 1 > 0 ⇔ θ2 > 1− 1
q′(1− q)

and this for every q′ > 1. So, one can consider q′ as close to 1 as possible and deduce that (5.39)
is satisfied iff

IP (θ) =
(√ s

d+ r
,+∞

)
.

Now, since the Normal distribution is a radial density distribution, it is interesting to see what
the condition (5.40) yields. For every a ∈ (0, 1), one has∫

{f>0}
f q(1−a)f1−q

θ,m dλd =
(
(2π)d|Σ|

)− 1
2

∫
e−

1
2

(
q(1+a)+θ2(1−q)

)
(x−m)2|Σ|−2

dλd.

So, α(n)
θ,m is Ls-rate optimal iff

(1− q)θ2 + q(1 + a) > 0 ⇔ θ2 >
s

d+ r
(1 + a)

and this for every a ∈ (0, 1). At this stage, note that the Normal distribution has finite r-th
moment for every r > 0 so the moment assumption made in Theorem 5.3.5 allows us to choose
a as small as possible in a way that, even if (1−a)(d+ε)

a goes to infinity, we can still apply the
theorem. Hence, one chooses a → 0+ and the condition made on θ reads θ2 > s

d+r and the
interval IP (θ) becomes

IP (θ) =
(√ s

d+ r
,+∞

)
coinciding with the interval deduced from condition (5.39) as explained in Remark 5.3.6.
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Remark 5.5.2. One should note that choosing a scalar θ∗ is optimal in the case of radial density
probability distributions but, in the general case, it would be more precise if θ∗ is a matrix.

Empirical measure Theorem This study relies on the fact that the Lr-quantizers them-
selves satisfy the Lr-empirical measure Theorem so it is conducted only for Lr-dilated optimal
quantizers Γnθ,m since greedy quantizers do not satisfy this theorem. In order to conclude whether
the sequence Γnθ,m satisfies the empirical measure Theorem, we start by determining the “limit
measure” of the empirical measure, i.e. determine the limit of 1

n card
{
xi ∈ Γnθ,m ∩ [a, b]

}
. For

every n ≥ 1, it is clear that{
xi ∈ Γnθ,m ∩ [a, b]

}
=
{
xi ∈ Γn ∩

[a
θ
,
b

θ

]}
.

So, since Γn satisfies the Lr-empirical measure Theorem,

1
n
card{xi ∈ Γnθ,m ∩ [a, b]} → 1

Cf,r

∫[
a
θ
, b
θ

] f d
r+ddλd = 1

Cf,r
θ−d

∫
[a,b]

f
(x−m

θ
+m

) d
r+d

dλd

where Cf,r =
∫
Rd f

d
d+r dλd. For every θ ∈ IP (θ), one has∫

[a,b]
f
(x−m

θ
+m

) d
r+d

dλd =
(
(2π)d|Σ|

) −d
2(d+r)

∫
[a,b]

e−
1
2

d
d+r θ

−2(x−m)2|Σ|−2
dλd

and ∫
Rd
f

d
d+r dλd =

(
(2π)d|Σ|

) r
2(d+r)

(
d+ r

d

) d
2
.

So, the limit of the empirical measure is given by

1
n
card{xi ∈ Γnθ,m ∩ [a, b]} →

(d+ r

dθ2

) d
2 ((2π)d|Σ|

)− 1
2 + 1

2
d

(d+r)θ2
∫

[a,b]
f

d
(d+r)θ2 dλd

= 1∫
Rd f

d
(d+r)θ2 dλd

∫
[a,b]

f
d

(d+r)θ2 dλd.

With this limit, one clearly does not find the limit needed to satisfy the empirical measure
Theorem for every θ ∈ IP (θ). Instead, one can notice that it is possible for a particular value
θ∗ given by

d

d+ r
θ∗−2 = d

d+ s
⇔ θ∗ =

√
d+ s

d+ r
.

This leads to the following Proposition.

Proposition 5.5.3. Let r, s > 0 and P = N (m,Σ) be a multivariate Normal distribution.
Assume Γn is an asymptotically Lr-optimal quantizer of P . Consider

θ∗ =

√
d+ s

d+ r
,

then the sequence Γnθ∗,m satisfies the Ls-empirical measure Theorem, i.e.

1
n

card
{
xi ∈ Γnθ∗,m ∩ [a, b]

}
→ 1

Cf,s

∫
[a,b]

f
d
s+ddλd.
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This has been shown in [71] in addition to the fact that this particular θ∗ minimizes the upper
bound of the Ls-quantization error es(Γ(n)

θ,µ, P ) induced by the Lr-dilated optimal quantizer of
the Normal distribution. Moreover, the author has showed that, even if the lower bound (5.6)
coincide with the sharp limiting constant in Zador’s Theorem for this value of θ∗, the sequence
Γ(n)
θ∗,m is still not Ls-asymptotically optimal.

5.5.2 Hyper-exponential distributions

Let X ∼ P = f.λd where f(x) = e−λ|x|
α for α, λ > 0 and |.| denotes a norm on Rd. We consider

µ = 0 so that the distribution Pθ,µ lies in the same family of distributions as P . Note that if one
considers the density function f(x) = e−λ|x−m|

α for m ∈ R, the study will be the same since the
quantities considered are invariant by translation. In other words, if Γ is an optimal quantizer
of X, then Γ−m(1, . . . , 1) is an optimal quantizer for X −m. Moreover, it is clear that every
couple (θ, µ) is P -admissible.
� If s < r, one has∫

f−
s
r−s (x)f

r
r−s
θ,0 (x)dx =

∫
e−

sλ|x|α
s−r e−

rλ|θx|α
r−s =

∫
e−λ(

s
s−r+ r

r−s θ
α)|x|α

So αnθ,0 is Ls-optimal iff (5.38) is satisfied which is clearly equivalent to θα > s
r . Hence, the

interval IP (θ) is equal to

IP (θ) =
((

s

r

) 1
α

,+∞
)
.

� For s ∈ (r, d + r), the idea is as follows. Just as for the Normal distribution, the hyper-
Exponential distribution has finite moments of order r for every r > 0 so the moment assumption
made in Theorem 5.3.5 allows us to choose a as small as possible and the condition (5.40)
coincides with condition (5.39) as explained in Remark 5.3.6. Consequently, we will lead the
study relying on (5.39). One has, for q = −s

d+r−s and every q′ > 1, that∫ (
fθ,0
f

)(1−q)q′

fdλd =
∫
e−λ

(
(1−q)q′θα+(q−1)q′+1

)
|x|αdλd.

So αnθ,0 is Ls-optimal iff (5.39) is satisfied which is clearly equivalent to

(1− q)q′θα + (q − 1)q′ + 1 > 0 ⇔ θα > 1− 1
q′(1− q)

and this for every q′ > 1. Hence, one can choose q′ as small as possible, for example q′ → 1+,
yielding

IP (θ) =
(( s

d+ r

) 1
α
,+∞

)
.

Empirical measure Theorem As explained in the previous example, this study is conducted
for Lr-dilated optimal quantizers. As previously, we start by determining the limit of the
empirical measure

1
n
card{xi ∈ Γnθ ∩ [a, b]} → 1

Cf,r

∫[
a
θ
, b
θ

] f d
r+ddλd = 1

Cf,r
θ−d

∫
[a,b]

f
(x
θ

) d
r+d

dλd
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where Cf,r =
∫
Rd f

d
d+r dλd. For every θ ∈ IP (θ),∫

[a,b]
f(θ−1x)

d
r+ddλd =

∫
[a,b]

e−λ
d
d+r θ

−α|x|α =
∫

[a,b]
f(x)

d
(d+r)θα dλd.

Moreover, one uses the fact that∫
Rd
f(|x|)dx = Vd

∫ +∞

0
f(r)rd−1dr and

∫ +∞

0
xne−ax

b
dx =

Γ
(
n+1
b

)
ba(n+1)/b , (5.42)

where Vd = V (Bd) is the volume of the hyper-unit ball on Rd and Γ is the Gamma function, to
obtain ∫

Rd
f

d
d+r dλd =

∫
Rd
e−λ

d
d+r |x|

α

dλd = Vd
Γ( dα)
α

(
λ

d

d+ r

)− d
α

.

By the same arguments, one deduces that∫
Rd
f(x)

d
(d+r)θα dλ = 1

θdCf,r

so that the limiting measure is
1
n
card{xi ∈ Γnθ,m ∩ [a, b]} → 1∫

Rd f
d

(d+r)θα dλd

∫
[a,b]

f
d

(d+r)θα dλd.

Consequently, we deduce that the sequence Γ(n)
θ,0 does not satisfy the empirical measure Theorem

for every θ ∈ IP (θ) except for a particular value θ∗ given by

d

d+ r
θ∗−α = d

d+ s
⇔ θ∗ =

(
d+ s

d+ r

) 1
α

hence leading to the following Proposition

Proposition 5.5.4. Let r, s > 0 and P = f.λd where f(x) = e−λ|x|
α for α, λ > 0. Assume Γn

is an asymptotically Lr-optimal quantizer of P . Consider

θ∗ =
(
d+ s

d+ r

) 1
α

,

then the sequence Γnθ∗,0 satisfies the Ls-empirical measure Theorem, i.e.

1
n

card
{
xi ∈ Γnθ∗,0 ∩ [a, b]

}
→ 1

Cf,s

∫
[a,b]

f
d
s+ddλd.

Note that θ∗ does not depend on the parameter λ of the distribution, only on α. In the next
proposition, we show that the sequence αnθ∗,0 satisfies the lower bound (5.6).

Proposition 5.5.5. Let r, s > 0 and P = f.λd where f(x) = e−λ|x|
α for α, λ > 0. Then, the

asymptotic lower bound of the Ls-error of the sequence αnθ∗,0 with θ∗ =
(
d+s
d+r

) 1
α satisfies

QInf
r,s (P, θ∗) = Qs(P )

where QInf
r,s (P, θ∗) = (θ∗)s+dJ̃s,d

(∫
f

d
d+r dλd

) s
d
∫
f−

s
d+r (x)fθ∗,0(x)dx.

131



Proof. Elementary computations based on (5.42) show that∫
f−

s
d+r (x)fθ∗,0(x)dx = Vd

Γ( dα)
αλ−

d
α

(
d

r + d

)− d
α

and
∫
f

d
d+r dλd = Vd

Γ( dα)
αλ−

d
α

(
d

r + d

)− d
α

so that

(θ∗)s+d
(∫

f
d
d+r dλd

) s
d
∫
f−

s
d+r (x)fθ∗,0(x)dx =

(
Vd

Γ( dα)
α

λ−
d
α

)1+ d
s (s+ d

d

) s+d
α

=
(∫

f
d
d+sdλd

) d+s
d

and hence the result. �

It is interesting to see whether Γ(n)
θ∗,0 for θ∗ =

(
s+d
r+d

) 1
α is Ls-asymptotically optimal. For this,

we compute the upper bound of the Ls-quantization error es(Γnθ∗,0, P ) given in in Corollary 5.4.1
and see if it reaches the sharp constant in Zador’s Theorem for the different values of s. Note
that if α(n) is a greedy quantization sequence, one cannot make any interesting conclusions since
it is clear that the sharp Zador constant cannot be attained by our upper bounds.
Let r, s > 0 and Γn an Lr-optimal quantizer of P . Elementary computations based on (5.42)

show that the upper bounds of the quantization error of P induced by Γnθ∗,0, for θ∗ =
(
s+d
r+d

) 1
α ,

are given by

Qsup,θ∗
r,s =


J̃

1
r
r,d

(∫
f

d
d+sdλd

) d+s
ds if s < r,

κ̃Optimal
θ∗,m

(
VdΓ( d

α
)

αλ
d
α

) 1
s (

s+d
d

) d
sα
(
s+d
r+d

) 1
α if r < s < d+ r.

One can easily notice that, for the different values of s, Qs(P ) ≤ Qsup,θ∗
r,s . Consequently, no con-

clusions can be made on the Ls-asymptotically optimality of the sequence (Γnθ∗,0)n≥0. However,

if we have J̃
1
s
s,d instead of J̃

1
r
r,d, then one can reach Zador’s sharp constant for r < s and gets

closer to it for s ∈ (r, d+ r).

5.5.3 Hyper-Gamma distributions

Let X ∼ P = f.λd where f(x) = |x|βe−λ|x|α for α, λ > 0 and β > −d and | · | denotes any norm
on Rd. We consider µ = 0 so that Pθ,µ lies in the same family of distributions as P . In this case,
every couple (θ, µ) is P -admissible since supp(P ) = Rd.
� If s < r, one has ∫

f−
s
r−s (x)f

r
r−s
θ,0 (x)dx = θ

rβ
r−s

∫
|x|βe−λ(

s
s−r+ r

r−s θ
α)|x|α

So αnθ,0 is Ls-optimal iff (5.38) is satisfied which is clearly equivalent to θα > s
r . Consequently,

IP (θ) =
((

s

r

) 1
α

,+∞
)
.

� If s < d + r, the conditions (5.39) and (5.40) yield the same result as explained in Remark
5.3.6. For q = −s

d+r−s and every q′ > 1, one has∫ (
fθ,0
f

)(1−q)q′

f(x)dλd =
∫
|x|βe−λ

(
(1−q)q′θα+(q−1)q′+1

)
|x|αdλd.
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So αnθ,0 is Ls-optimal iff

(1− q)q′θα + (q − 1)q′ + 1 > 0 ⇔ θα > 1− 1
q′(1− q)

and this for every q′ > 1. Hence, one can choose q′ as small as possible, for example q′ → 1+,
yielding

IP (θ) =
(( s

d+ r

) 1
α
,+∞

)
.

Empirical measure Theorem As explained in the previous examples, this study is con-
ducted for Lr-dilated optimal quantizers. First, we compute the limit

1
n
card{xi ∈ Γnθ,0 ∩ [a, b]} → 1

Cf,r

∫[
a
θ
, b
θ

] f d
r+ddλd = 1

Cf,r
θ−d

∫
[a,b]

f
(x
θ

) d
r+d

dλd

where Cf,r =
∫
Rd f

d
d+r dλd. For every θ ∈ IP (θ),∫

[a,b]
f(θ−1x)

d
r+ddλd = θ−

dβ
d+r

∫
[a,b]
|x|

dβ
d+r e−λ

d
d+r

1
θα
|x|αdλd.

Moreover, using (5.42) yields

∫
Rd
f

d
d+r dλd =

∫
Rd
|x|

dβ
d+r e−λ

d
d+r |x|

α

dλd = Vd
Γ(d+ dβ

d+r
α )
α

(
λ

d

d+ r

)− 1
α

(
d+ dβ

d+R

)
.

Likewise, one obtains ∫
Rd
|x|

βd(θα−1)
θα(d+r) f(x)

d
(d+r)θα dλ = Cf,rθ

d+ dβ
d+r .

Consequently, the limiting measure is

1
n
card{xi ∈ Γnθ,m ∩ [a, b]} → 1∫

Rd |x|
βd(θα−1)
θα(d+r) f

d
(d+r)θα dλd

∫
[a,b]
|x|

βd(θα−1)
θα(d+r) f

d
(d+r)θα dλd.

Hence, in order for the sequence Γ(n)
θ,0 to satisfy the empirical measure Theorem, there are two

conditions to fulfill
d

(d+ r)θα = d

d+ s
and βd(θα − 1)

θα(d+ r) = 0.

This is true for

β∗ = d+ r

d(d+ s) and θ∗ =
(
d+ s

d+ r

) 1
α

.

So, one can deduce with the following proposition.

Proposition 5.5.6. Let r, s > 0 and P = f.λd where f(x) = |x|βe−λ|x|α for α, λ > 0 and
β > −d and | · | is any norm on Rd. Assume Γn is an asymptotically Lr-optimal quantizer of P .
Consider

β = d+ r

d(d+ s) and θ∗ =
(
d+ s

d+ r

) 1
α

,
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Normal Distribution Exponential distribution P = f.λd with f(x) = x2e−x
2

n Regression coefficient n Regression coefficient n Regression coefficient
255 0.9818 373 0.981 255 0.9399
511 0.9855 745 0.988 511 0.9405

1 023 0.9945 1 489 0.990 1 023 0.9406

Table 5.1: Regression coefficients of the optimally L2-dilated greedy sequence on the L3-optimal
greedy sequence for N (0, 1), E(1) and P = f.λd with f(x) = x2e−x

2 .

then the sequence Γnθ∗,0 satisfies the Ls-empirical measure Theorem, i.e.

1
n

card
{
xi ∈ Γnθ∗,0 ∩ [a, b]

}
→ 1

Cf,s

∫
[a,b]

f
d
s+ddλd.

Note that one obtains the same results for the distribution with density |x −m|βe−λ|x−m|α

since it is invariant by translation.

Elementary computations, similar to those established previously, show that one cannot
make any conclusions on the Ls-optimality of the Lr-dilated sequence considering the values of
β and θ∗ deduced in the previous proposition. In other words, one cannot know whether the
lower and upper bound of the Ls-quantization error induced by αnθ∗,0 are equal or comparable
to the sharp limiting constant Qs(P ) in Zador’s Theorem.

5.5.4 Numerical observations

We just showed that, for a particular value θ∗, the sequence α(n)
θ∗,µ satisfies the Ls-empirical mea-

sure Theorem and that the lower bound of the Ls-quantization error induced by this sequence
attains the sharp constant in Zador’s Theorem, the upper bound only getting close. This pushes
to conjecture that the optimally Lr-dilated sequence (αnθ∗,µ) is asymptotically Ls-optimal. Nu-
merical experiments were established in [71] to prove this conjecture numerically for optimal
quantizers. In this section, we implement similar experiments to come to this type of conclu-
sion for optimally Lr-dilated greedy quantization sequences. We denote ar,(n) the Lr-greedy
quantization sequence.

Normal distribution We start with the Normal distribution N (0, 1) and compute the cor-
responding L3-optimal greedy quantization sequence a3,(n) by a standard Newton Raphson al-
gorithm on one hand, and the optimally L2-dilated greedy quantization sequence a2,(n)

θ∗,µ with
θ∗ =

√
s+d
r+d =

√
4
3 and µ = 0, on the other hand. We make a linear regression of the two

resulting sequences for different values of the size n and expose, in table 5.1, the corresponding
regression coefficients.

Exponential distribution We consider the exponential distribution E(1) with parameter
λ = 1. In other words, it is the distribution studied in Example 5.5.2 for d = 1 and α = 1. We
compute the L3-optimal greedy quantization sequence a3,(n) by a Newton Raphson algorithm and
the optimally L2-dilated greedy quantization sequence a2,(n)

θ∗,µ with θ∗ =
(
s+d
r+d

) 1
α = 4

3 and µ = 0.
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The L2-optimal greedy quantization sequence is obtained by a standard Lloyd’s algorithm. We
expose, in table 5.1, the regression coefficients obtained by regressing the L2-dilated sequences
on the L3 greedy sequences.

Hyper-Gamma distribution Let d = 1. We consider the Hyper-Gamma probability distri-
bution with parameters λ = 1 and α = β = 2 so the density is given by

f(x) = x2e−x
2
.

In example 5.5.3, we showed that the hyper-Gamma distribution satisfy the Ls-empirical mea-
sure for a particular parameter β and a particular θ∗ ∈ IP (θ). However, we conduct here the
experiment for different values and see if one always have the same convergence of the regression
coefficients to 1. We compute the L3-optimal greedy quantization sequence a3,(n) by a Newton
Raphson algorithm and the L2-optimal greedy quantization sequence a2,(n) by a Lloyd’s algo-
rithm. The optimally L2-dilated greedy sequence is given by α2,(n)

θ∗,µ with θ∗ =
(
s+d
r+d

) 1
α =

√
4
3

and µ = 0. Table 5.1 shows the regression coefficients obtained by regressing the L2-dilated
sequences on the L3 greedy sequences where we observe a slower convergence, even a divergence
of the coefficients to 1, hence deducing that this sequence cannot be Ls-asymptotically optimal.

Conjecture For the Normal and exponential distributions, the regression coefficient converges
to 1 for specific values of n. This leads us to conjecture that there exists a sub-sequence of the
greedy quantization sequence for which the regression coefficient converges to 1, i.e. for which
the sequence is asymptotically Ls-optimal.
In fact, this “subsequence” topic has already been investigated in [24] where it has been shown
(numerically) that there exist sub-optimal greedy quantization sequences, in the sense that the
graphs representing the weights of the Voronoï cells converge towards the density curve of the
distribution for certain sizes n of the sequence. For example, the greedy quantization sequence
of N (0, 1), and more generally of symmetrical distributions around 0, is sub-optimal and the
optimal sub-sequence is of the form a(n) = a(2k−1) for k ∈ N∗.
Hence, it is natural to conjecture that the optimally Lr-dilated sub-sequences of the same size
are asymptotically Ls-optimal.

5.6 Application to numerical integration
Optimal quantizers and greedy quantization sequences are used in numerical probability where
one relies on cubature formulas to approximate the exact value of Ef(X), for a continuous
bounded function f and a random variable X with distribution P , by

Ef(X) ≈ Ef(X̂α(n)) =
n∑
i=1

pni f(αni ) (5.43)

where α(n) designates the optimal or greedy quantization sequence of the random variable X
and pni = P

(
X ∈ Wi(α(n))

)
represents the weight of the ith Voronoï cell corresponding to α(n)

for every i ∈ {1, . . . , n}. A new iterative formula for the approximation of Ef(X) using greedy
quantization sequences is given in [24], based on the recursive character of greedy quantization.
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Upper error bounds of these approximations have been investigated repeatedly in the literature,
in [24, 56, 57] for example.

In this section, we present what advantages the dilated quantization sequences bring to the
numerical integration field. This application was first introduced in [71] by A. Sagna for optimal
quantizers. Here, we briefly recall his idea and emphasize that it also works with dilated greedy
quantization sequences as well.

Let X ∈ Lβ, β ∈ (2,+∞) and let f be a locally Lipschitz function, in the sense that, there
exists a bounded constant C > 0 such that

|f(x)− f(y)| ≤ C|x− y|
(
1 + |x|β−1 + |y|β−1). (5.44)

For every quantizer α(n) (not necessarily stationary), one has, by applying Hölder’s inequality
with the conjugate exponents r and r′ = r

r−1 , that∣∣Ef(X)− Ef(X̂α(n))
∣∣ ≤ E

∣∣f(X)− f(X̂α(n))
∣∣ ≤ C E

(∣∣X − X̂α(n)∣∣ (1 + |X|β−1 + |X̂α(n) |β−1))
≤ C

∥∥X − X̂α(n)∥∥
r

(
1 + ‖X‖β−1

(β−1)r′ + ‖X̂
α(n)‖β−1

(β−1)r′
)
.

(5.45)

In order for this upper bound to make sense, one should have

(β − 1)r′ = (β − 1)r
r − 1 ≤ β ⇐⇒ r ≥ β > 2. (5.46)

In practice, since most algorithms to optimize quantization (of n-tuples of greedy sequences)
are much easier to implement in the quadratic case, it is more convenient to use such quadratic
optimal or greedy quantizers in this type of applications to approximate expectations of the form
Ef(X). However, if we use L2-quantizers α(n) in our case, we obtain upper bounds involving
an Lr-quantization error for r > 2 (see (5.46)) which is not really optimal since the quantizer
used is not Lr-optimal for r > 2. So, an idea is to use L2-dilated quantizers α(n)

θ,µ which is itself
Lr-rate optimal for given values of θ and µ depending on the probability distribution P . For
example, if X ∼ N (m, Id), then one chooses µ = m and θ =

√
r+d
2+d .

Hence, one approximates Ef(X) by Ef(X̂α
(n)
θ,µ) rather than Ef(X̂α(n)) via

Ef(X̂α
(n)
θ,µ) =

n∑
i=1

pθ,µi f(αθ,µi )

with pθ,µi being the weight of the ith Voronoï cell corresponding to the quantization sequence
α

(n)
θ∗,µ given by

P
(
X ∈Wi(α(n)

θ∗,µ)
)

=
∫
Wi(α(n)

θ∗,µ)
f(x)dλd(x) = θd

∫
Wi(α(n))

fθ∗,µ(z)dλd(z) = P
(
X̂
α

(n)
θ∗,µ ∈Wi(α(n))

)
(5.47)
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Figure 5.1: Errors of the approximation of Ef(X), where f(x) = x4 + sin(x), by quadrature
formulas based on L2 quantizers (blue) and dilated L2 quantizers (red) for different sizes n.

where we applied the change of variables z = µ + x−µ
θ . Then, since ‖X − X̂α

(n)
θ,µ‖r converges

faster to 0 than ‖X − X̂α(n)‖r for r > 2 if we consider an L2-quantizer α(n), one may expect to
observe that ∣∣Ef(X)− Ef(X̂α

(n)
θ,µ)
∣∣ ≤ ∣∣Ef(X)− Ef(X̂α(n))

∣∣.
To illustrate this numerically, we consider a one-dimensional example and approximate

Ef(X), where X is a random variable with Normal distribution N (0, 1) and f is defined on
R by f(x) = x4 + sin(x) and satisfies (5.44) with β = 5. To satisfy (5.46), we choose r = 5 and
implement the approximation by quadrature formulas based, on the one hand, on L2-optimal
and greedy sequences α(n) and, on the other hand, on the L2-dilated optimal and greedy quan-
tizer α(n)

θ∗,0, with θ∗ =
√

r+d
2+d =

√
2, which is Lr-rate optimal. The exact value of Ef(X) is 3.

In Figure 5.1, we illustrate the errors induced by these approximations and we observe that, for
a same size n of the quantization sequence, the L2-dilated quantizers α(n)

θ∗,0 give more precise
results than the standard sequences α(n) themselves.
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Chapter 6

Quantization-based approximation of
reflected BSDEs with extended
upper bounds for recursive
quantization

Abstract We establish upper bounds for the Lp-quantization error, p ∈ (1, 2 + d), induced by the
recursive Markovian quantization of a d-dimensional diffusion discretized via the Euler scheme. We
introduce a hybrid recursive quantization scheme, easier to implement in the high-dimensional framework,
and establish upper bounds of the corresponding Lp-quantization error. To take advantage of these
extensions, we propose a time discretization scheme and a recursive quantization-based discretization
scheme associated to a Reflected Backward Stochastic Differential Equation and estimate Lp-error bounds
induced by the space approximation. We explain how to numerically compute the solution of the reflected
BSDE relying on recursive quantization and compare it to others types of quantization.

6.1 Introduction
We are interested in the discretization and the computation of the solution of the following reflected
backward stochastic differential equation RBSDE with maturity T

Yt = g(XT ) +
∫ T

t

f(s,Xs, Ys, Zs)ds+KT −Kt −
∫ T

t

Zs.dWs , t ∈ [0, T ], (6.1)

Yt ≥ h(t,Xt) and
∫ T

0

(
Ys − h(s,Xs)

)
dKs = 0. (6.2)

(Xt)t≥0 is a Brownian diffusion process taking values in Rd and solution to the SDE

Xt = X0 +
∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs , X0 = x0 ∈ Rd, (6.3)

where the drift coefficient b : [0, T ]×Rd → Rd and the matrix diffusion coefficient σ : [0, T ]×Rd →M(d, q)
are Lipschitz continuous in (t, x) so that b(., 0) and σ(., 0) are bounded on [0, T ] and satisfy the linear
growth condition ∥∥σ(., x)

∥∥+
∥∥b(., x)

∥∥ ≤ Lb,σ(1 + ‖x‖)
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with Lb,σ = max
(
[b]Lip, [σ]Lip,

∥∥b(., 0)
∥∥

sup,
∥∥σ(., 0)

∥∥
sup

)
and ‖ · ‖ denoting any norm on Rd. (Wt)t≥0 is a

q-dimensional Brownian motion defined on the probability space (Ω,A,P) equipped with its augmented
natural filtration (Ft)t≥0 where Ft = σ(Ws, s ≤ t, NP), NP denotes the class of all P-negligible sets of A.
The solution of this equation is defined as a R × Rd × R+-valued triplet (Yt, Zt,Kt) of Ft-progressively
measurable square integrable processes. Kt is continuous, non-decreasing, such that K0 = 0 and grows
exclusively on {t : Yt = h(t,Xt)}. The driver f(t, x, y, z) : [0, T ] × Rd × R × Rd → R is [f ]Lip-Lipschitz
continuous with respect to (t, x, y, z), g(XT ) is the terminal condition where g : Rd → R is [g]Lip-Lipschitz
continuous and h : [0, T ]×Rd → R is [h]Lip-Lipschitz continuous such that g ≥ h for every t and x. Under
these assumptions on b, σ, h, g and f , the RBSDE (6.1) and the SDE (6.3) admit both a unique solution.
The existence of a process (Yt, Zt,Kt), solution of (6.1), was established in [25] where the authors also
showed that this solution satisfies the following property∥∥∥ sup

t∈[0,T ]
|Yt|
∥∥∥

2p
∨ ‖KT ‖2p ∨

∥∥∥∫ T

0
|Zt|2dt

∥∥∥
p
< γ0 (6.4)

for a finite constant γ0 (see also [3]). In general, these solutions admit no closed form. Approxima-
tion schemes are needed to approximate them. In the literature, many authors studied different types
of RBSDEs, for example, in [3, 18, 25, 48, 49] and many approximation schemes were investigated:
Feynman-Kac type representation formula were given in [48] for the solutions of RBSDEs, a four step
algorithm was developed in [50] to solve FBSDEs, a random time scheme in [2] and many more. In this
chapter, we start by a time discretization scheme of the forward process (Xt)t∈[0,T ], the Euler scheme,
with the uniform mesh tk = k∆, k ∈ {0, . . . , n}, with ∆ = T

n . The discrete time Euler scheme (X̄tk)0≤k≤n
associated to the process (Xt)t∈[0,T ] is recursively defined by

X̄n
tk+1

= X̄n
tk

+ ∆b(tk, X̄n
tk

) + σ(tk, X̄n
tk

)∆Wtk+1 , X̄n
t0 = X0 = x0 ∈ Rd, (6.5)

where ∆Wtk+1 = Wtk+1 −Wtk , for every k ∈ {0. . . . , n−1}. This leads to consider the time discretization
scheme (Ȳ nt , ζ̄nt ) associated to (Yt, Zt) given by the following backward recursion

Ȳ nT = g(X̄n
T ) (6.6)

Ỹ ntk = E(Ȳ ntk+1
|Ftk) + ∆f

(
tk, X̄

n
tk
,E(Ȳ ntk+1

|Ftk), ζ̄ntk
)
, k = 0, . . . , n− 1, (6.7)

ζ̄ntk = 1
∆E

(
Ȳ ntk+1

(Wtk+1 −Wtk) | Ftk
)
, k = 0, . . . , n− 1, (6.8)

Ȳ ntk = Ỹ ntk ∨ h(tk, X̄n
tk

) , k = 0, . . . , n− 1. (6.9)

It is important to notice that, in this scheme, the conditional expectation is applied directly to Ȳ ntk+1

inside the driver function f depending itself on the process Zt (or ζ̄ntk). This is slightly different of what
have been already introduced and investigated in the literature. In fact, such schemes were considered
for BSDE (without reflection) in [65] and for doubly reflected BSDE in [37], whereas in most chapters
in the literature, the expectation is usually applied to the driver f from the outside. In some of these
chapters devoted to time(-space) discretization of RBSDE, the driver does not depend on the process Zt,
(see [3, 4, 9, 48] for example).

After the time discretization, the solution of the scheme (6.6) − (6.7) − (6.8) − (6.9) still admits
no closed form since it involves the computation of conditional expectations which cannot be obtained
analytically. Therefore, we are led to devise a space discretization scheme to approximate it. In the
literature, we can find various approaches: one can cite, among others, regression methods with Monte
Carlo simulations (see [9]), the multi-step schemes methods (see [7]), a hybrid approach combining Pi-
card iterates with a decomposition in Wiener chaos (see [13]), a connection with the semi-linear PDE
associated to the BSDE (see [34]) and Monte Carlo simulations with Malliavin calculus (see [9, 17, 35]).
Another approach is the optimal quantization introduced for RBSDEs in [5] and then developed in a
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series of chapters ([3, 4, 37, 65] for example). In this chapter, we will rely on the recursive quantization
of the time-discretized Euler scheme (X̄n

tk
)0≤k≤n. This method, originally introduced in [59] and then

studied deeply in [51] and [63] for one-dimensional diffusions, consists in building a Markov chain having
values into a grid (or quantizer) Γk of the discrete Euler scheme X̄tk at time tk. The grids Γk can be
optimized in a recursive way as a kind of embedded procedure.

In order to explain the principle of this recursive Markovian quantization, let us first recall briefly
what optimal quantization is. Assume that Rd is equipped with a norm ‖ · ‖ (usually the canonical
Euclidean norm for our purpose). Let X ∈ LpRd(Ω,A,P) and let N ≥ 1 be a quantization level. The
aim of Lp-optimal quantization is to find the best approximation of X in Lp(P) by a random vector Y
defined on (Ω,A,P) taking at most N values. As a first step, we may consider the grid (or quantization
grid) ΓN = Y (Ω) = {x1, . . . , xN } (with possibly repeated elements). One easily checks that, ΓN being
fixed, the best possible choice is given by a (Borel) nearest neighbor projection of X on ΓN . It is called
a Voronoï quantization of X defined by

X̂ΓN = ProjΓN (X) :=
N∑
i=1

xi1Ci(ΓN )(X) (6.10)

where
(
Ci(ΓN )

)
1≤i≤N is a Borel partition of Rd satisfying

Ci(ΓN ) ⊂ {ξ ∈ Rd : ‖ξ − xi‖ ≤ min
j 6=i
‖ξ − xj‖}, i = 1, . . . , N. (6.11)

The N -tuple
(
Ci(ΓN )

)
1≤i≤N is called the Voronoï partition induced by ΓN . The induced Lp-quantization

error associated to the grid ΓN is defined by

ep(ΓN , X) = ‖X − X̂ΓN ‖p (6.12)

where ‖.‖p denotes the Lp(P)-norm. The optimal quantization problem boils down to finding the grid
ΓN that minimizes this error i.e. solving the problem

ep,N (X) := inf
Γ,|Γ|≤N

ep(Γ, X).

where |Γ| denotes the cardinality of the grid Γ. A solution to this problem exists, as established in
[32, 56, 57] for example, and is called an Lp-optimal quantization grid of (the distribution of) X. The
corresponding quantization error converges to 0 as N goes to +∞ and its rate of convergence is given by
two well known results exposed in the following theorem.

Theorem 6.1.1. (a) Zador’s Theorem (see [75]): Let X ∈ Lp+ηRd (P), η > 0, with distribution P such that
dP (ξ) = ϕ(ξ)dλd(ξ) + dν(ξ) where λd denotes the Lebesgue measure on (Rd,Bor(Rd)). Then,

lim
N→+∞

N
1
d ep,N (X) = J̃p,d‖ϕ‖

1
p

L
p
p+d (λd)

(6.13)

where J̃p,d = inf
N≥1

N
1
d ep,N (U([0, 1]d)) ∈ (0,+∞).

(b) Extended Pierce’s Lemma (see [44, 57]): Let p, η > 0. There exists a constant κd,p,η ∈ (0,+∞) such
that, for any random vector X : (Ω,A,P)→ Rd,

∀N ≥ 1, ep,N (X) ≤ κd,p,ησp+η(X)N− 1
d (6.14)

where, for every p ∈ (0,+∞), σp(X) = inf
a∈Rd

‖X − a‖p is the Lp-(pseudo-)standard deviation of X.
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An important property, shared by quadratic optimal quantizers, is the stationarity property: an L2-
optimal quantizer ΓN is said to be stationary if

E(X|X̂ΓN ) = X̂ΓN . (6.15)

Let us now explain what recursive quantization is. If we define the Euler operator with step ∆ by

Ek(x, εk+1) = x+ ∆b(tk, x) +
√

∆σ(tk, x)εk+1

where (εk)0≤k≤n is an i.i.d. sequence of random variables with distribution N (0, Iq), then the recursive
quantization (X̂tk)0≤k≤n of (X̄n

tk
)0≤k≤n is defined by X̂t0 = X̄n

t0 = x0 and{
X̃tk = Ek−1(X̂Γk−1

tk−1
, εk),

X̂Γk
tk

= ProjΓk(X̃tk), ∀k = 1, . . . , n (6.16)

where (Γk)0≤k≤n is a sequence of optimal quantizers of (X̃tk)0≤k≤n of size Nk, k = 0, . . . , n. The opti-
mal quantizers (Γk)1≤k≤n can be either quadratic or Lp-optimal quantizers, we will detail the difference
between these two frameworks later in the chapter. The main advantage of this method is that it pre-
serves the Markov property of the Euler scheme with respect to the filtration (Ftk)0≤k≤n, the process
X̂tk is Ftk -measurable for every k ∈ {0, . . . , n}. In fact, the transition matrices (pkij)1≤i,j≤Nk where
pkij = P

(
X̂tk+1 ∈ Cj(Γk+1) | X̂tk ∈ Ci(Γk)

)
and the initial distribution characterize the distribution of the

Markov chain (X̂tk)k≥0, which was not the case with the optimal quantization in [63] for example. This
Markov property will bring much help to carry on computations of the weights pki of the Voronoï cells
and the transition weights pkij , as well as with the quantized scheme of the RBSDE itself.

Going back to our problem, we consider, in this chapter, the recursive quantization scheme associated
to (6.6)-(6.7)-(6.8)-(6.9) based on the recursive quantization (X̂tk)0≤k≤n of the Euler scheme (X̄n

tk
)0≤k≤n.

It is defined recursively in a backward way as follows:

Ŷ nT = g(X̂T ) (6.17)

ζ̂ntk = 1
∆E

(
Ŷ ntk+1

(Wtk+1 −Wtk) | Ftk
)
, k = 0, . . . , n− 1, (6.18)

Ŷ ntk = max
(
hk(X̂tk) , E

(
Ŷ ntk+1

| Ftk
)

+ ∆f
(
tk, X̂tk ,E

(
Ŷ ntk+1

| Ftk
)
, ζ̂ntk

))
, k = 0, . . . , n− 1, (6.19)

where (X̂tk)0≤k≤n is the recursively quantized Euler scheme associated to (X̄n
tk

)0≤k≤n given by (6.16).
As a preliminary step, we are interested in estimating the Lp-quantization error ‖X̂tk − X̄n

tk
‖p, not only

for p = 2 like in [63] but for any p ∈ (1, 2+d). The fact that we are limited to p < 2+d will become clear
later in the chapter, as well as the type of optimal quantizers Γk of X̃tk needed to obtain satisfactory
upper bounds for the Lp-quantization error. Note that in the quadratic case p = 2, the proof was based
on a Pythagoras property which cannot be applied in a general framework. Furthermore, we introduce
a kind of hybrid recursive quantization where the white noise (εk)0≤k≤n is replaced by its (already com-
puted) quantized version (ε̂k)0≤k≤n.

In a second part, we will proceed with the time and space discretization of the RBSDE (6.1), as
explained briefly before, and give more details about these schemes. We establish a priori estimates for
the time discretization error ‖Ytk − Ȳ ntk‖2 in a quadratic case. Although time discretization have already
been studied in the literature (see [3, 9, 48, 65, 76]), our approach is still different mostly because of
the combination of the reflection in the backward SDE and the conditional expectation applied directly
to Ȳ ntk and Ŷ ntk inside the driver f depending itself on the process Zt (or its approximations). Likewise,
estimates for the space discretization error ‖Ȳ ntk − Ŷ

n
tk
‖p in Lp for p ∈ (1, 2 + d) will be established. To

illustrate these theoretical results, we detail the numerical techniques available to compute the recursive
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quantization X̂n
tk

of X̄n
tk
, for every k ∈ {1, . . . , . . . n}, their distributions and the corresponding transition

weight matrices. Moreover, we will explain how to compute numerically the solution of the discretized
scheme (6.17)-(6.18)-(6.19) associated to the RBSDE (6.1). These computations will be useful to carry
on numerical tests and experiments illustrating the above error bounds. One of the most important
applications of these quantization-based discretizations is the pricing of American options for which the
driver f is equal to 0, among other examples (with a non-zero driver) that will be presented at the end
of this chapter. This link between BSDEs and the pricing of financial options have been first introduced
in [26].

Throughout this chapter, we will replace, for convenience, the indices tk by k for k ∈ {0, . . . , n}, i.e.
we will use, for example, X̂k instead of X̂tk . Also, we will replace f(tk, x, y, z) by Ek(x, y, z), b(tk, .) by
bk(.) and σ(tk, .) = σk(.). And, we will omit the n in Ȳ nk+1, X̄

n
k+1, etc.

This chapter is organized as follows: In section 6.2, we provide some short background on recursive
quantization and establish the new Lp-error bounds for p ∈ (1, 2 + d), of the recursive quantization error
as well as those of the hybrid recursive quantization error. Section 6.3 is devoted to the time discretization
of the RBSDE and to the estimation of the corresponding error. The space disretization of the RBSDE
will be treated in Section 6.4. In Section 6.5, we will present the numerical techniques to compute the
recursive quantizers and the solution of the RBSDE. Finally, Section 6.6 is devoted to several numerical
examples.

6.2 Recursive Quantization: background, Lp-error bounds and
hybrid schemes.

In this section, we study the discretization of the forward process (Xt)t≥0. It is a Brownian diffusion
process taking values in Rd, solution to the SDE (6.3) given in the introduction and recalled below

Xt = X0 +
∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs , X0 = x0 ∈ Rd.

First, we start by the time discretization and we present the Euler scheme (X̄tk)0≤k≤n, with uniform
mesh tk = k∆ for k ∈ {0, . . . , n} and ∆ = T

n , associated to the process (Xt)t∈[0,T ] which is recursively
given by

X̄tk+1 = X̄tk + ∆bk(X̄tk) + σk(X̄tk)(Wtk+1 −Wtk), X̄0 = X0 = x0, (6.20)

where Wtk+1 −Wtk =
√

∆εk+1, for every k ∈ {0, . . . , n− 1} and (εk)0≤k≤n is a sequence of i.i.d. random
variables with distribution N (0, Iq). Its continuous counterpart, the genuine Euler scheme, is given by

dX̄t = b(t, X̄t)dt+ σ(t, X̄t)dWt (6.21)

where t = tk when t ∈ [tk, tk+1). This process satisfies for every p ∈ (0,+∞) and every n ≥ 1, (see [10])∥∥∥ sup
t∈[0,T ]

Xt

∥∥∥
p

+ sup
n≥1

∥∥∥ sup
t∈[0,T ]

X̄t

∥∥∥
p
≤ Cb,T,σ(1 + |x0|) and

∥∥∥ sup
t∈[0,T ]

|Xt− X̄t|
∥∥∥
p
≤ Cb,T,σ

√
∆(1 + |x0|)

where Cb,T,σ is a positive constant depending on p, T, b and σ.

After the time discretization, one must proceed with space discterization schemes. As introduced, we
consider in this chapter the approximation of the Euler scheme (X̄tk)0≤k≤n by recursive quantization.
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6.2.1 Background
Our aim is to design, for k ∈ {0, . . . , n}, optimal quantizers Γk of size Nk of a function of the discrete
Euler scheme (X̄k)0≤k≤n. So, the problem is to find the grid Γk that minimizes the Lp-distortion function
Gpk(Γ) = E

[
dist

(
Ek−1(X̄k−1, εk),Γ

)p] corresponding to Ek−1(X̄k−1, εk) where

Ek−1(x, εk) = x+ ∆bk(x) +
√

∆σk(x)εk

and (εk)k is an i.i.d. sequence of N (0, Iq)-distributed random vectors independent from X0.

SinceX0 = X̄0 = x0 is fixed, its quantizer is given by Γ0 = {x0}. Then, we compute X̃1 = F0(X̂Γ0
0 , ε1)

and we build an optimal quantization grid Γ1 of size N1 that minimizes Gp1(X̃1,Γ) on the set of grids Γ of
size N1 (see Section 6.5). Doing so, we are able to define the quantization of X̄1 by X̂Γ1

1 = ProjΓ1(X̃1).
Repeating this procedure, we define a(n optimized) recursive quantization of (X̄k)0≤k≤n by the following
recursion: X̂0 = X̄0 = x0 and{

X̃k = Ek−1(X̂Γk−1
k−1 , εk),

X̂Γk
k = ProjΓk(X̃k), ∀k = 1, . . . , n. (6.22)

In practice, we ask the grids Γk to share some optimality properties, typically to be Lp-optimal or in
higher dimension to be a product grid with optimal marginals, etc. For that purpose, the following
identities play a crucial role: the Lp-distortion function associated to Γk = (xk1 , . . . , xkNk) is approximated
by

Gpk(xk1 , . . . , xkNk) = E[dist(X̃k, {xk1 , . . . , xkNk})
p] =

Nk∑
i=1

E[dist(Ek−1(xk−1
i , εk), xki )p]P

(
X̂Γk
k ∈ Ci(Γk)

)
(6.23)

where P
(
X̂Γk
k ∈ Ci(Γk)

)
is the weight of the Voronoï cell of centroïd xki ∈ Γk. Note that one can write the

distortion function as a function of the grid Γk but writing it as a function of an Nk-tuple is needed to be
able to talk of its differentiability. In fact, if the Nk-tuple (xk1 , . . . , xkNk) has pairwise distinct components
and the boundaries of the Voronoï diagram

(
∂Ci(Γk)

)
1≤i≤Nk

are negligible w.r.t. the distribution of X̃k,
then the gradient of the differentiable Lp-distortion function is given by

∇Gpk(xk1 , . . . , xkNk) = p
(
E
[
1
X̃k∈Ci(Γk)(x

k
i − X̃k)p−1])

1≤i≤Nk
.

Note that since the grid Γk has pairwise distinct components for every k ∈ {0, . . . , n}, the distribution of
X̃k exists as soon as σσ∗ is invertible. From now on, we denote X̂k instead X̂Γk

k for simplicity.

6.2.2 Lp-error bounds for recursive quantization
Our aim is to establish Lp-upper bounds for the recursive quantization error ‖X̄tk−X̂tk‖p for p ∈ (1, 2+d)
and k ∈ {0, . . . , n}. As explained, the recursive quantization schemes of X̄tk are based on optimal
quantization sequences of X̃tk which can be either quadratic or Lp-quantization sequences, p 6= 2. The
more interesting case is when we rely on L2-optimal quantization because, from an algorithmic point of
view, one has direct access to optimal quadratic quantizers since they are stationary and the algorithms
used to produce optimal quantizers are either directly based on the stationarity property or easier to
manage in a quadratic framework. Nevertheless, establishing an upper bound for the error ‖X̄tk − X̂tk‖p
where X̂tk is itself an Lp-optimal quantizer of X̃tk still seems a natural track to consider.

L2-optimal quantization
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We consider the case where, for every k ∈ {1, . . . , n}, X̂tk is a quadratic optimal quantization of X̃tk , hence
it is stationary in the sense of (6.15) (see [57]). In the following, we assume that ∆ ∈ [0,∆max), ∆max > 0.
Note that for the Euler scheme, one can have ∆max = T

n0
if we consider schemes with step ∆ = T

n and a
number of steps n > n0 for some n0 > 0.

Theorem 6.2.1. Let p ∈ (1, 2 + d), (X̄k)0≤k≤n defined by (6.20) and (X̂k)0≤k≤n the corresponding re-
cursive quantization sequence defined by (6.22). Assume that, for every k ∈ {0, . . . , n}, X̂k is a stationary
quadratic optimal quantization of X̃k of size Nk in the sense of (6.15), with X̂0 = X̄0 = x0 ∈ Rd. For
every k ∈ {1, . . . , n} and every δ ∈ (0, 1],

‖X̄k − X̂k‖p ≤
(
K̃d,2,2+δ,p ∨ κd,2,δ

) k∑
l=1

[Ek]k−lLipC2+δ,b,σ,T (l)
1

2+δN
− 1
d

l

where κd,2,δ is the constant from Pierce’s Lemma 6.1.1(b),

K̃d,2,2+δ,p ≤ 2
p(2+δ)

(2+d)2−dpV
− 1

2+d
d κ

1
2+d
X,2 min

ε∈(0, 13 )

[
(1 + ε)ϕ2(ε)−

1
d+2

](∫
Rd

(
1 ∨ ‖x‖

)− (d+2−p)(2+δ)
p dx

) 1
2+d

with κX,r a finite positive constant independent from N , Vd the volume of the hyper-unit ball and ϕ2(u) =( 1
32 − u2)ud,

[Ek]Lip =

 e
∆
(
s[b]Lip+c(1)

s +c(3)
s,∆max,εk+1

[σ]sLip

)
/p if p ∈ (1, 2)

e
∆
(
p[b]Lip+c(1)

p +c(3)
p,∆max,εk+1

[σ]pLip

)
/p if p ∈ [2, 2 + d)

with s = p+ 1 > 2, c(1)
p = 2(p−3)+ (p−1)(p−2)

2 and c(3)
p,∆max,εk+1

= 2(p−3)+(p− 1)E|εk+1|p
(
1 + p

2 ∆
p
2−1
max

)
and

C2+δ,b,σ,T (l) = etk(C1+C2)|x0|2+δ + C3

C1 + C2

(
etk−1(C1+C2) − 1

)
where C1, C2 and C3 are defined in Lemma 6.2.4.

Before sharing the proof, we need to present some a priori useful results, mainly the distortion
mismatch problem and two lemmas. We reconsider the notations where we replace the indices tk by k to
alleviate notations.

(Lr, Ls)-problem or distortion mismatch problem
Let r, s ∈ (0,+∞), the (Lr, Ls)-problem, also called distortion mismatch problem, consists in determining
whether the optimal rate of Lr-optimal quantizers holds for Ls-quantizers for s 6= r, i.e. whether an Lr-
optimal quantizer ΓN of size N of a random vector X has an Ls-optimal convergence rate for s 6= r.
For s < r, it is clear that an Lr-optimal quantizer is Ls-rate optimal due to the monotony of r → ‖.‖r.
When s becomes higher than r, we do not have such direct results. This problem was first introduced
and treated in [32, 33] for radial density distributions on Rd and then generalized in [65] for all random
vectors satisfying a certain moment condition. In the following theorem, we sum up this result and give
a universal non-asymptotic Pierce type optimality result (in the sense of (6.14)).

Theorem 6.2.2 (Extended Pierce’s Lemma). (a) Let r > 0 and X be an Rd-valued random vector
such that E|X|r′ < +∞ for some r′ > r. Assume that its distribution PX has a non-zero absolutely
continuous component and let (ΓN )N≥1 be a sequence of Lr-optimal quantizers of X. Then, for every
s∈
(

0, (d+r)r′
d+r′

)
,

es(X̂ΓN , X) ≤ K̃d,r,r′,s σr′(X)N− 1
d (6.24)
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where σr′(X) = infa∈Rd ‖X − a‖r′ is the Lr′-standard deviation of X and

K̃d,r,r′,s ≤ 2
sr′

(r+d)2−dsV
− 1
r+d

d κ
1
r+d
X,r min

ε∈(0, 13 )
Ψr(ε)

(∫ (
1 ∨ ‖x‖

)− (d+r−s)r′
s dx

) 1
r+d

with κX,r a finite positive constant independent from N , Vd the volume of the hyper-unit ball and Ψr(u) =
(1 + u)

( 1
3r − u

r
)− 1

d+r u−
d
d+r .

(b) In particular if X has finite polynomial moments at any order, then (6.24) is satisfied for every
s ∈ (r, d+ r) and r′ > sd

d+r−s .

The following lemma is a technical one used repeatedly in the proofs in this chapter. Its proof will
be postponed to the appendix.

Lemme 6.2.3. Let r∈ [2,+∞) and h0 > 0. Let Z∈ LrRq (P) with EZ = 0 and let a∈ Rd, A∈M(d, q,R).
Then for every h∈ (0, h0),

E
∣∣a+

√
hAZ

∣∣r ≤ |a|r(1 + c(1)
r h) + c

(2)
r,h0

h‖A‖rE |Z|r (6.25)

where c(1)
r = 2(r−3)+ (r−1)(r−2)

2 , c(2)
r,h0

= 2(r−3)+(r − 1)
(
1 + r

2h
r
2−1
0

)
and ‖A‖ is the operator norm.

The following lemma is important for the proof of Theorem 6.2.1.

Lemme 6.2.4. Consider (X̄k)0≤k≤n defined by (6.20) and (X̂k)0≤k≤n its recursive quantization sequence
defined by (6.22). Assume that, for every k ∈ {0, . . . , n}, X̂k is a stationary quadratic optimal quantization
of X̃k of size Nk in the sense of (6.15), with X̂0 = X̄0 = x0 ∈ Rd. For every r ≥ 2 and every
k ∈ {1, . . . , n},

E|X̃k|r ≤ etk(C1+C2)|x0|r + C3

C1 + C2

(
etk−1(C1+C2) − 1

)
. (6.26)

where
C1 = rLb,σ + (r − 1)2r−2 + c

(1)
r , C2 = 2r−1Lrb,σE|Z|r∆r

maxc
(2)
r,∆max

:= Lrb,σ2r−1∆r
maxc

(3)
r,∆max,Z

and
C3 = C2 + 2r−2Lrb,σ(1 + r∆r−1

max)(1 + c
(1)
r ∆max) with c(1)

r and c(2)
r,∆max

defined in Lemma 6.2.3.

Proof. The starting point is to use inequality (6.25) with a = x+ ∆b(t, x) and A = σ(t, x). On the one
hand, we notice that

|a| ≤ |x|+ ∆Lb,σ(1 + |x|) ≤ |x|(1 + ∆Lb,σ) + ∆Lb,σ.
Then, using the fact that, for every ε > 0,

(α+ β)r ≤ αr + rβ(α+ β)r−1

≤ αr + r2r−2
(

(εα)r−1 β

εr−1 + βr
)

≤ αr + r2r−2
(
βr + εrαr(r − 1)

r
+ βr

rεr(r−1)

)
(Young’s inequality with r

r−1 and r)

≤ αr
(

1 + (r − 1)2r−2εr
)

+ 2r−2βr
(
r + 1

εr(r−1)

)
, (6.27)

one has, by considering α = |x|(1 + ∆Lb,σ) and β = ∆Lb,σ, that

|a|r ≤ |x|r(1 + ∆Lb,σ)r
(
1 + (r − 1)2r−2εr

)
+ 2r−2∆rLrb,σ

(
r + 1

εr(r−1)

)
.

On the other hand,

‖A‖ ≤ ∆Lb,σ(1 + |x|) so that ‖A‖r ≤ 2r−1∆rLrb,σ(1 + |x|r).
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Consequently, Lemma 6.2.3 yields

E|a+A
√

∆Z|r ≤|x|r(1 + ∆Lb,σ)r
(
1 + (r − 1)2r−2εr

) (
1 + c(1)

r ∆
)

+ Lrb,σ2r−1E|Z|r∆r+1c
(2)
r,∆max

|x|r

+
(

1 + c(1)
r ∆

)
2r−2Lrb,σ∆r

(
r + 1

εr(r−1)

)
+ Lrb,σ2r−1E|Z|r∆r+1c

(2)
r,∆max

.

At this stage, we are interested in considering a particular value of ε to avoid any explosion at infinity
in the rest of the proof. The best choice (up to a multiplicative constant) is

ε = ∆ 1
r .

Now, we recall that ∆ ∈ [0,∆max), ∆max > 0 and denote

C1 :=C1(r) = rLb,σ + (r − 1)2r−2 + c(1)
r

C2 :=C2(r, Lb,σ, Z,∆max) = 2r−1Lrb,σE|Z|r∆r
maxc

(2)
r,∆max

:= Lrb,σ2r−1∆r
maxc

(3)
r,∆max,Z

C3 :=C3(r, Z, Lb,σ,∆max) = C2 + 2r−2Lrb,σ(1 + r∆r−1
max)(1 + c(1)

r ∆max)

Having 1 + x ≤ ex yields

E|a+A
√

∆Z|r ≤ |x|reC1∆ + ∆
(
C2|x|r + C3

)
≤ |x|reC1∆(1 + ∆C2e

−∆C1
)

+ ∆C3 ≤ e∆(C1+C2)|x|r + ∆C3.

Thus, since E|X̃k|r = E|Ek−1(X̂k−1, εk)|r, one can write

E|X̃k|r ≤ e∆(C1+C2)E|X̂k−1|r + ∆C3.

Using the fact that X̂k−1 is a stationary quadratic optimal quantization of X̃k−1 and Jensen inequality
yield

E|X̂k−1|r = E|E(X̃k−1|X̂k−1)|r ≤ E
[
E
(
|X̃k−1|r|X̂k−1

)]
≤ E|X̃k−1|r.

Therefore,
E|X̃k|r ≤ e∆(C1+C2)E|X̃k−1|r + ∆C3.

Finally, it follows by induction that

E|X̃k|r ≤ek∆(C1+C2)E|X̃0|r + ∆C3

k−1∑
j=0

ej∆(C1+C2)

≤ek∆(C1+C2)|x0|r + ∆C3
e(k−1)∆(C1+C2) − 1
e∆(C1+C2) − 1

≤ek∆(C1+C2)|x0|r + C3

C1 + C2

(
e(k−1)∆(C1+C2) − 1

)
.

The result is obtained by noting that k∆ = k Tn = tk. �

Proof of Theorem 6.2.1. The first step of the proof is to show that the function Ek(., εk+1) is Lp-
lipschitz continuous with Lipschitz coefficient [Ek]Lip for every k ∈ {0, . . . , n− 1}. We consider two cases
depending on the values of p.
• If p ∈ [2, 2 + d): For every x, x′ ∈ Rd,

E
∣∣Ek(x, εk+1)− Ek(x′, εk+1)

∣∣p = E
∣∣x− x′ + ∆

(
bk(x)− bk(x′)

)
+
√

∆εk+1
(
σk(x)− σk(x′)

)∣∣p.
Since p ≥ 2, one applies Lemma 6.2.3 with a = x− x′ + ∆

(
bk(x)− bk(x′)

)
and A = σk(x)− σk(x′). We

have
|a|p ≤

(
|x− x′|+ ∆[b]Lip|x− x′|

)p ≤ |x− x′|p(1 + ∆[b]Lip
)p ≤ |x− x′|p ep∆[b]Lip
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and
‖A‖p ≤ [σ]pLip|x− x

′|p.

At this stage, reusing the constants c(1)
p = 2(p−3)+ (p−1)(p−2)

2 and c(3)
p,∆max,εk+1

= 2(p−3)+(p−1)E|εk+1|p
(
1+

p
2 ∆

p
2−1
max

)
defined in Lemmas 6.2.3 and 6.2.4 yields

E|Ek(x, εk+1)− Ek(x′, εk+1)|p ≤
(
e∆(p[b]Lip+c(1)

p ) + ∆[σ]pLipc
(3)
p,∆max,εk+1

)
|x− x′|p

≤ |x− x′|pe∆(p[b]Lip+c(1)
p )
(

1 + ∆[σ]pLipc
(3)
p,∆max,εk+1

e−∆(p[b]Lip+c(1)
p )
)

≤ |x− x′|pe∆(p[b]Lip+c(1)
p )
(

1 + ∆[σ]pLipc
(3)
p,∆max,εk+1

)
≤ |x− x′|pe∆

(
p[b]Lip+c(1)

p +[σ]pLipc
(3)
p,∆max,εk+1

)
.

Consequently, Ek is Lp-lipschitz continuous with [Ek]Lip = e
∆
(
p[b]Lip+c(1)

p +[σ]pLipc
(3)
p,∆max,εk+1

)
/p, for every

k ∈ {1, . . . , n} and p ∈ [2, 2 + d).
• If 1 < p < 2: Consider s = p+ 1 > 2 so that p− s < 0. One has

E|Ek(x, εk+1)− Ek(x′, εk+1)|p = E
[
|Ek(x, εk+1)− Ek(x′, εk+1)|s |Ek(x, εk+1)− Ek(x′, εk+1)|p−s

]
.

On the one hand,

|Ek(x, εk+1)− Ek(x′, εk+1)|p−s ≤ |x− x′|p−s
(

1 + ∆[b]Lip +
√

∆ |σ(x)− σ(x′)|
|x− x′|

|εk+1|
)p−s

≤ |x− x′|p−se(p−s)
(

1+∆[b]Lip+
√

∆ |σ(x)−σ(x′)|
|x−x′| |εk+1|

)
(since 1 + x ≤ ex)

≤ |x− x′|p−s ( since p− s < 0).

On the other hand, one uses inequality (6.71) from the proof of Lemma 6.2.3 (see Appendix) and denotes
a = x− x′ + ∆[b]Lip(x− x′) and AZ = (σ(x)− σ(x′))εk+1, to obtain

|Ek(x, εk+1)− Ek(x′, εk+1)|s ≤|x− x′ + ∆[b]Lip(x− x′) +
√

∆(σ(x)− σ(x′))εk+1|s

≤|a|s(1 + ∆c(1)
s ) + s

(
|a|s−1 a

|a|
|A
√

∆Z
)

+ ∆c(2)
s,∆max

|AZ|s.

At this stage, one notices that |a|s ≤ |x−x′|s(1+∆[b]Lip)s and that |AZ|s = [σ]sLip|x−x′|s|εk+1|s. Then,
using 1 + x ≤ ex, one deduces

|Ek(x, εk+1)− Ek(x′, εk+1)|s ≤|x− x′|s(1 + ∆c(1)
s )(1 + ∆[b]Lip)s + s

(
|a|s−1 a

|a|
|A
√

∆Z
)

+ ∆c(2)
s,∆max

[σ]sLip|x− x′|s|εk+1|s

≤|x− x′|se∆(c(1)
s +s[b]Lip) + s

(
|a|s−1 a

|a|
|A
√

∆Z
)

+ ∆c(2)
s,∆max

[σ]sLip|x− x′|s|εk+1|s.

Consequently, applying the expectation and keeping in mind that E|AZ| = 0, we obtain

E|Ek(x, εk+1)− Ek(x′, εk+1)|p ≤ e∆(c(1)
s +s[b]Lip)|x− x′|p + ∆c(2)

s,∆max
[σ]sLip|x− x′|pE|εk+1|s

≤ |x− x′|pe∆(c(1)
s +s[b]Lip)

(
1 + ∆c(2)

s,∆max
[σ]sLipE|εk+1|se−∆(c(1)

s +s[b]Lip)
)

≤ |x− x′|pe∆(c(1)
s +s[b]Lip)

(
1 + ∆c(2)

s,∆max
[σ]sLipE|εk+1|s

)
≤ |x− x′|pe∆

(
c(1)
s +s[b]Lip+c(2)

s,∆max
[σ]sLipE|εk+1|s

)
.
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Consequently, Ek is Lp-Lipschitz continuous, for every k ∈ {1, . . . , n} and p ∈ (1, 2), with [Ek]Lip =
e∆
(
c(1)
s +s[b]Lip+c(2)

s,∆max
[σ]sLipE|εk+1|s

)
/p.

For the second step, we first note that

‖X̄k+1 − X̃k+1‖p = ‖Ek(X̄k, εk+1)− Ek(X̂k, εk+1)‖p
≤ [Ek]Lip‖X̄k − X̂k‖p
≤ [Ek]Lip‖X̄k − X̃k‖p + [Ek]Lip‖X̃k − X̂k‖p.

Then, we show by induction, since X̂0 = X̃0, that

‖X̄k − X̃k‖p ≤
k−1∑
l=1

[Ek]k−lLip ‖X̃l − X̂l‖p.

Consequently,

‖X̄k − X̂k‖p ≤ ‖X̄k − X̃k‖p + ‖X̃k − X̂k‖p ≤
k∑
l=1

[Ek]k−lLip ‖X̃l − X̂l‖p.

Now relying on the fact that X̂l is an L2-optimal quantizer of X̃l for every l ∈ {1, . . . , k}, we distinguish
two cases: one the one hand, if p ∈ (1, 2), we use the monotony of p 7→ ‖ · ‖p and Pierce’s Lemma (6.14)
to conclude that, for every l ∈ {1, . . . , k},

‖X̃l − X̂l‖p ≤ ‖X̃l − X̂l‖2 ≤ κd,2,δ‖X̃l‖2+δN
− 1
d

l ,

for some δ > 0, and, on the other hand, if p ∈ [2, 2 + d), we note that X̃l = Fl(X̂l−1, εl) has finite
polynomial moments at any order since the innovations (εk)0≤k≤n in the Euler operators are with Gaus-
sian distribution and hence have finite polynomial moments at any order, so one uses section (b) of the
distortion mismatch Theorem 6.2.2 to conclude that the quantization X̂l of X̃l is Lp-rate optimal for
every p ∈ [2, 2 + d), in other words, we consider δ > 0 such that r′ = 2 + δ > pd

d+2−p > 2 so that

‖X̃l − X̂l‖p ≤ K̃d,2,2+δ,p‖X̃l‖2+δN
− 1
d

l .

Hence, for every p ∈ (1, 2 + d),

‖X̄k − X̂k‖p ≤
(
K̃d,2,2+δ,p ∨ κd,2,δ

) k∑
l=1

[Ek]k−lLip ‖X̃l‖2+δN
− 1
d

l .

The result is obtained by plugging (6.26) for r = 2 + δ > 2 in this last inequality. �

Remark 6.2.5. In higher dimensions, an approach to obtain the quantization grid of a multidimen-
sional random variable is by taking the tensor product of one-dimensional quantization grids, that is the
independent marginals of the distribution. The product quantization grid hence obtained by independent
optimal one-dimensional quantizers is stationary and so this problem is solved in the multidimensional
case. However, in most cases, the components of the diffusion Xt are not independent so this is not a
very useful technique in practice.

Remark 6.2.6. We assume that X̂k is an Lp-optimal quantizer of X̃k for every k ∈ {1, . . . , n}. What
differs from L2-optimal quantizers is that Lp-optimal quantizers are not usually stationary, a property
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that was very useful in the quadratic case. The beginning of the study is exactly similar to the quadratic
framework until we obtain

E|X̃k|r ≤ e∆(C1+C2)E|X̂k−1|r + ∆C3.

At this stage, one cannot use the stationarity property. Instead, applying inequality (6.27) yields

E|X̂k−1|r ≤ E
(
|X̂k−1 − X̃k−1|+ |X̃k−1|

)r ≤ E|X̂k−1 − X̃k−1|reC4∆ + E|X̃k−1|r2r−2
(
r + 1

∆r−1

)
where we took ε = ∆ 1

r and denoted C4 = (r − 1)2r−2. Then,

E|X̃k|r ≤ E|X̂k−1 − X̃k−1|re(C1+C2+C4)∆ + e(C1+C2)∆E|X̃k−1|r2r−2
(
r + 1

∆r−1

)
+ ∆C3

and an induction yields

E|X̃k|r ≤ek∆(C1+C2)
[
2r−2

(
r + 1

∆r−1

)]k
E|X0|r

+
k∑
i=0

e(k−i)∆(C1+C2)
(
E|X̂k−1 − X̃k−1|re(C1+C2+C4)∆ + ∆C3

)[
2r−2

(
r + 1

∆r−1

)]k
which clearly diverges as n goes to infinity. The fact that it seems impossible to get rid of the factor 1

∆ ,
without the stationarity property, leads to conclude that we do not obtain satisfactory Lp-error bounds
with a non-stationary Lp-optimal quantizer X̂k of X̃k. However, this is not really problematic since this
is a very rare situation in practice because, as mentioned previously, one usually uses quadratic optimal
quantizers for numerical purposes.

6.2.3 Hybrid recursive quantization
When the dimension becomes greater than 1, computing the distribution (grids and transition matrices)
of (X̂k)0≤k≤n via the recursive formulas (6.22) cannot be achieved via closed formulas and deterministic
optimization procedures. Multi-dimensional extensions can be found in [28] based on product quantization
but this approach becomes computationally demanding when the dimension grows, an alternative being
to implement a massive ”embedded” Monte Carlo simulation. We propose here a third approach based
on the quantization of the white noise (here a Gaussian one). This quantization can be part of a pre-
processing and kept off line. In the case of a Gaussian noise, highly accurate quantization grids of
N (0; Iq) distributions for dimensions d = 1 up to 10 and regularly sampled sizes from N = 1 to 1 000 can
be downloaded from the quantization website www.quantize.maths-fi.com (for non-commercial purposes).
In other words, we consider, instead of (6.22), the following recursive scheme{

X̃k = Ek−1(X̂k−1, ε̂k),
X̂k = ProjΓk(X̃k), ∀k = 1, . . . , n. (6.28)

where (ε̂k)k is now a sequence of optimal quantizers of the Normal distribution N (0, Iq), which are
already computed and kept off line. The main advantage of this approach is that using quantization
grids of small size Nε

k approaching the Gaussian random vectors εk gives the same precision as a Monte
Carlo simulation of much larger size, always having in mind that the optimal quantizers can be computed
offline and called when needed. This is a great gain in cost.
In the following, we establish Lp-error bounds of this hybrid recursive quantization scheme, for p ∈
(1, 2 + d), in terms of the error between X̂k and X̃k and the quantization error between εk and ε̂k
simultaneously. We recall that ∆ ∈ [0,∆max), ∆max > 0.

Theorem 6.2.7. Let p ∈ (1, 2 + d) and δ > 0. Consider (X̄k)0≤k≤n defined by (6.20) and (X̂k)0≤k≤n its
hybrid recursive quantization sequence defined by (6.28). Assume that, for every k ∈ {0, . . . , n}, X̂k is a
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stationary L2-optimal quantization of X̃k of size NX
k in the sense of (6.15) with X̂0 = X̄0 = x0 ∈ Rd and

(ε̂k)0≤k≤n an Lp-optimal quantization sequence of the Gaussian distributed sequence (εk)0≤k≤n of size
Nε
k . For every k ∈ {1, . . . , n},

‖X̄k − X̂k‖p ≤
(
K̃d,2,2+δ,p ∨ κd,2,δ

) k∑
l=1

[F xk ]k−lLipC
1

2+η
2+δ,b,σ,T (NX

l )− 1
d +

k−1∑
l=1

κd,p,η[F εk ]k−lLip ‖εl‖p(N
ε
l )− 1

d

where κd,2,η is the constant given by Pierce’s Lemma, K̃d,2,2+δ,p is given in Theorem 6.2.2,

C2+δ,b,σ,T = etk(C1+C2)|x0|2+δ + C3

C1 + C2

(
etk−1(C1+C2) − 1

)
with C1, C2 and C3 are defined in Lemma 6.2.4,

[F xk ]Lip =

 e
∆
p

(
c(1)
p +Lb,σ

(
p+2p−1c

(2)
p,∆max

))
if p ∈ [2, 2 + d)

e
∆
p

(
c(1)
s +sLb,σ+2s−1Lsb,σc

(2)
s,∆max

(
E|ε|s+ p−s

p

))
if p ∈ (1, 2)

and

[F εk ]Lip =

 ∆
1
p

(
2p−1c

(2)
p,∆max

Lb,σ

) 1
p if p ∈ [2, 2 + d)

∆
1
p

(
s
p2s−1c

(2)
s,∆max

Lsb,σ

) 1
p if p ∈ (1, 2)

where s = p+ 1, c(1)
p and c(2)

p,∆max
are defined in Lemma 6.2.3.

Proof. We start by showing that Ek is Lipschitz continuous with respect to its two variables. For
every x, x′ ∈ Rd and Rd-valued r.v. ε and ε′ with standard Normal distribution, we consider two cases
depending on the values of p.
• If p ∈ [2, 2 + d): Always keeping in mind that ∆ < ∆max, Lemma 6.2.3 yields

E|Ek(x, ε)− Ek(x′, ε′)|p =E
∣∣x− x′ + ∆

(
b(x)− b(x′)

)
+
√

∆
(
σ(x)ε− σ(x′)ε′

)∣∣p
≤
∣∣x− x′ + ∆

(
b(x)− b(x′)

)∣∣p(1 + c(1)
p ∆

)
+ ∆c(2)

p,∆max
E
∣∣σ(x)ε− σ(x′)ε′

∣∣p
≤ |x− x′|p

(
1 + ∆[b]Lip

)p(1 + c(1)
p ∆

)
+ ∆c(2)

p,∆max
E
∣∣σ(x)ε− σ(x′)ε′

∣∣p
where c(1)

p and c
(2)
p,∆max

are defined in Lemma 6.2.3. Now, noticing that |σ(x)ε − σ(x′)ε′| = |σ(x)ε −
σ(x′)ε+ σ(x′)ε− σ(x′)ε′| and using (a+ b)p ≤ 2p−1(ap + bp) yield

E|Ek(x, ε)− Ek(x′, ε′)|p ≤ |x− x′|p(1 + ∆[b]Lip)p(1 + c(1)
p ∆)

+ 2p−1c
(2)
p,∆max

∆
(
E|σ(x)ε− σ(x)ε′|p + E|σ(x)ε′ − σ(x′)ε′|p

)
≤ |x− x′|p

(
(1 + ∆[b]Lip)p(1 + c(1)

p ∆) + 2p−1∆c(2)
p,∆max

[σ]LipE|ε′|p
)

+ 2p−1∆c(2)
p,∆max

‖σ‖∞E|ε− ε′|p.

Now, using the fact that 1 + x ≤ ex yields

E|Ek(x, ε)− Ek(x′, ε′)|p ≤ eC̄∆|x− x′|p + ∆C̃E|ε− ε′|p

where C̄ = p[b]Lip + c
(1)
p + 2(p−3)++p−1(p − 1)

(
1 + p

2 ∆
p
2−1
max

)
[σ]Lip and C̃ = 2(p−3)++p−1(p − 1)

(
1 +

p
2 ∆

p
2−1
max

)
‖σ‖∞. Then, applying (a+ b)

1
p ≤ a

1
p + b

1
p for a, b > 0 and p > 1 yields

‖Ek(x, ε)− Ek(x′, ε′)‖p ≤ e
C̄∆
p ‖x− x′‖p + (∆C̃)

1
p ‖ε− ε′‖p.
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Consequently, Ek is Lipschitz continuous for k ∈ {1, . . . , n} and for p ∈ [2, 2+d) with Lipschitz coefficients
[F xk ]Lip ≤ e∆C̄/p and [F εk ]Lip ≤ (∆C̃)

1
p .

• If p ∈ (1, 2): Consider s = p+ 1 > 2 so that p− s < 0. One has

E|Ek(x, ε)− Ek(x′, ε′)|p = E
[
|Ek(x, ε)− Ek(x′, ε′)|s |Ek(x, ε)− Ek(x′, ε′)|p−s

]
.

On the one hand,

|Ek(x, ε)− Ek(x′, ε′)|p−s ≤ |x− x′|p−s
(

1 + ∆[b]Lip +
√

∆ |σ(x)ε− σ(x′)ε′|
|x− x′|

)p−s
≤ |x− x′|p−se(p−s)

(
1+∆[b]Lip+

√
∆ |σ(x)ε−σ(x′)ε′|

|x−x′|

)
(since 1 + x ≤ ex)

≤ |x− x′|p−s ( since p− s < 0).

On the other hand, using inequality (6.71) from the proof of Lemma 6.2.3 (see Appendix), and noting
a = x− x′ + ∆[b]Lip(x− x′) and AZ = σ(x)ε− σ(x′)ε′, yields

|Ek(x, ε)− Ek(x′, ε′)|s ≤|x− x′ + ∆[b]Lip(x− x′) +
√

∆(σ(x)ε− σ(x′)ε′)|s

≤|a|s(1 + ∆c(1)
s + s

(
|a|s−1 a

|a|
|A
√

∆Z
)

+ ∆c(s,∆max)
2 |AZ|s.

At this stage, one notices that |a|s ≤ |x− x′|s(1 + ∆[b]Lip)s and that

|AZ| = |σ(x)ε− σ(x′)ε′| ≤ |σ(x)ε− σ(x′)ε|+ |σ(x′)ε− σ(x′)ε′| ≤ [σ]Lip|x− x′||ε|+ |σ(x′)||ε− ε′|,

so that
|AZ|s ≤ 2s−1 ([σ]sLip|x− x′|s|ε|s + ‖σ‖s∞|ε− ε′|s

)
.

Hence, since 1 + x ≤ ex,

|Ek(x, ε)− Ek(x′, ε′)|s ≤|x− x′|s(1 + ∆c(1)
s )(1 + ∆[b]Lip)s + s

(
|a|s−1 a

|a|
|A
√

∆Z
)

+ ∆c(2)
s,∆max

2s−1 ([σ]sLip|x− x′|s|ε|s + ‖σ‖s∞|ε− ε′|s
)

≤|x− x′|se∆(c(1)
s +s[b]Lip) + s

(
|a|s−1 a

|a|
|A
√

∆Z
)

+ ∆c(2)
s,∆max

2s−1 ([σ]sLip|x− x′|s|ε|s + ‖σ‖s∞|ε− ε′|s
)
.

Consequently, applying the expectation and keeping in mind that E|AZ| = 0, we obtain

E|Ek(x, ε)− Ek(x′, ε′)|p ≤ e∆(c(1)
s +s[b]Lip)E|x− x′|p

+ ∆c(2)
s,∆max

2s−1 ([σ]sLipE[|x− x′|p|ε|s] + ‖σ‖s∞E[|ε− ε′|s|x− x′|p−s]
)
.

Using the fact that ε is independent of {x, x′} and applying Young inequality with the conjugate exponents
p
s and p

p−s to E[|ε− ε′|s|x− x′|p−s] yields

E|Ek(x, ε)− Ek(x′, ε′)|p ≤ E|x− x′|p
(
e∆(c(1)

s +s[b]Lip) + ∆c(2)
s,∆max

2s−1[σ]sLipE|ε|s
)

+ ∆c(2)
s,∆max

2s−1‖σ‖s∞
(
s

p
E|ε− ε′|p + p− s

p
E|x− x′|p

)
≤ E|x− x′|p

(
e∆(c(1)

s +s[b]Lip) + ∆κ̃1

)
+ ∆κ̃2E|ε− ε′|p

≤ E|x− x′|pe∆(c(1)
s +s[b]Lip)(1 + ∆κ̃1e

−∆(c(1)
s +s[b]Lip)) + ∆κ̃2E|ε− ε′|p

≤ E|x− x′|pe∆(c(1)
s +s[b]Lip+κ̃1) + ∆κ̃2E|ε− ε′|p
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where κ̃1 = c
(2)
s,∆max

2s−1
(

[σ]sLipE|ε|s + ‖σ‖s∞
p−s
p

)
and κ̃2 = c

(2)
s,∆max

2s−1‖σ‖s∞ s
p . Then,

‖Ek(x, ε)− Ek(x′, ε′)‖p ≤ ‖x− x′‖pe∆κ1 + ‖ε− ε′‖p∆
1
pκ2

where κ1 = (c(1)
s +s[b]Lip + κ̃1)/p and κ2 = κ̃

1
p

2 . Consequently, Ek is lipschitz continuous for k ∈ {1, . . . , n}
with Lipschitz coefficients [F x]Lip ≤ e∆κ1 and [F ε]Lip ≤ ∆

1
pκ2, for p ∈ (1, 2).

For the section step, the Lipschitz continuity of Ek yields

‖X̄k+1 − X̃k+1‖p ≤‖Ek(X̄k, εk)− Ek(X̂k, ε̂k)‖p
≤[F x]Lip‖X̄k − X̂k‖p + [F ε]Lip‖εk − ε̂k‖p
≤[F x]Lip‖X̄k − X̃k‖p + [F x]Lip‖X̃k − X̂k‖p + [F ε]Lip‖εk − ε̂k‖p.

Then, by induction, one has

‖X̄k − X̃k‖p ≤
k−1∑
l=1

[F x]k−lLip ‖X̂l − X̃l‖p + [F ε]k−lLip ‖εl − ε̂l‖p

so that

‖X̄k − X̂k‖p ≤ ‖X̄k − X̃k‖p + ‖X̃k − X̂k‖p ≤
k∑
l=1

[F x]k−lLip ‖X̃l − X̂l‖p +
k−1∑
l=1

[F ε]k−lLip ‖εl − ε̂l‖p.

Now, since ε̂l is an optimal quantization of εl of size Nε
l , then Pierce’s Lemma 6.1.1(b) yields

‖X̄k − X̂k‖p ≤
k∑
l=1

[F x]k−lLip ‖X̃l − X̂l‖p +
k−1∑
l=1

[F ε]k−lLip κd,p,η‖εl‖p+η(Nε
l )− 1

d . (6.29)

As for the error terms ‖X̃l − X̂l‖p, one uses the same techniques as in the end of the proof of Theorem
6.2.1, namely the distortion mismatch Theorem 6.2.2 and Lemma 6.2.4, to deduce the result. �

6.3 Time discretization of the RBSDE
We consider the reflected backward stochastic differential equation RBSDE (6.1) with maturity T given
in the introduction and recalled below

Yt = g(XT ) +
∫ T

t

f(s,Xs, Ys, Zs)ds+KT −Kt −
∫ T

t

Zs.dWs , t ∈ [0, T ],

Yt ≥ h(t,Xt) and
∫ T

0
(Ys − h(s,Xs))dKs = 0

where (Wt)t≥0 is a q-dimensional Brownian motion independent of X0 and (Xt)t≥0 is an Rd-valued
Brownian diffusion process solution to the SDE (6.3) given in the introduction and recalled below

Xt = X0 +
∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs , X0 = x0 ∈ Rd,

As explained, we need to approximate the solutions of these equations by discretization schemes. The time
and space discretization of the forward process (Xt)t∈[0,T ] have already been investigated and detailed
in Section 6.2. We proceed now with the time discretization of the solution of the RBSDE. Plugging
the time-descretized process (X̄tk)0≤k≤n in (6.1) will not make it possible to find an exact solution for
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the RBSDE. Another approximation is needed, in which we discretize the term Zt itself: considering
a sequence (εk)0≤k≤n of i.i.d. random variables normally distributed, the time discretization scheme
associated to (Yt, Zt) is given by the following backward recursion

ȲT = g(X̄T ) (6.30)

Ỹtk = E
(
Ȳtk+1 | Ftk

)
+ ∆Ek

(
X̄tk , E

(
Ȳtk+1 | Ftk

)
, ζ̄tk

)
, k = 0, . . . , n− 1 (6.31)

ζ̄tk = 1√
∆
E
(
Ȳtk+1εk+1 | Ftk

)
, k = 0, . . . , n− 1, (6.32)

Ȳtk = Ỹtk ∨ hk(X̄tk) , k = 0, . . . , n− 1. (6.33)

As stated previously, this scheme differs from what was previously studied in the literature (see the refer-
ences in the Introduction) since the conditional expectation is applied directly to Ȳtk+1 inside the driver
function which depends itself on the discretization ζ̄tk of Ztk . That is why it is interesting to establish
a priori estimates for the error induced by the approximation with such a time discretization scheme.
We note that, among others, time discretization errors for RBSDEs with a driver independent of Zt
were establsihed in [3], errors for BSDEs (without reflection) with a driver depending on Zt and on the
conditional expectation of Ȳt in [65] and those for BSDEs (without reflection) with a driver depending
on Zt but where the conditional expectation is applied to the whole function f were studied in [76].

Since X̄tk is a Markov chain, one shows that there exists, for every k ∈ {0, . . . , n}, Borel functions
ȳtk , ỹtk and z̄tk such that Ȳtk = ȳtk(X̄tk), Ỹtk = ỹtk(X̄tk) and ζ̄tk = z̄tk(X̄tk) and defined by

ȳT (x) = g(x), (6.34)
ỹtk(x) = E ȳtk+1

(
Ek(x, εk+1)

)
+ ∆Ek

(
x,E ȳtk+1

(
Ek(x, εk+1)

)
, z̄tk(x)

)
(6.35)

z̄tk(x) = 1√
∆
E
(
ȳtk+1

(
Ek(x, εk+1)

)
εk+1

)
(6.36)

ȳtk(x) = ỹtk(x) ∨ hk(x). (6.37)

where Ek(x, εk+1) = x+ ∆bk(x) +
√

∆σk(x)εk+1 and (εk)k≥0 are i.i.d random variables with distribution
N (0, Iq).

In order to establish error bounds between (Yt, Zt) and (Ȳtk , Z̄tk), it is useful to introduce a time
continuous process which extends Ȳtk . In fact, one notes that since the variable

∑n−1
k=1 Ȳtk+1−E(Ȳtk+1 |Ftk)

is square integrable and measurable with respect to the augmented Brownian filtration Ftk , then, by the
martingale representation Theorem, it can be considered as the terminal value of a Brownian martingale∫ T

0 Z̄sdWs where the process Z̄t is such that E sup[0,T ] |Z̄s|2 ≤ γ1 < +∞ for a finite constant γ1. So,

Ȳtk+1 − E(Ȳtk+1 |Ftk) =
∫ tk+1

tk

Z̄sdWs for k = 0, . . . , n− 1. (6.38)

We note that
ζ̄tk = 1√

∆
E
(
Ȳtk+1εk+1 | Ftk

)
= 1

∆E
(∫ tk+1

tk

Z̄sds | Ftk
)
. (6.39)

Likewise, we define

ζtk = 1
∆E

(∫ tk+1

tk

Zsds|Ftk
)

(6.40)

where Zs is the solution of the RBSDE (6.1) and one checks that ζ̄t is the best approximation of Z̄t and ζt
the best approximation of Zt in L2(dP× dt) among Ft-measurable processes that are piecewise constant
on the time intervals [tk, tk+1[.

153



Consequently, one may define (by a continuous extension) the càdlàg process Ỹt on [tk, tk+1) and the
làdcàg process Ȳt on (tk, tk+1], by

Ỹt = Ȳt = Ȳtk+1 − (tk+1 − t)Ek
(
X̄tk ,E(Ȳtk+1 | Ftk), ζ̄tk

)
−
∫ tk+1

t

Z̄sdWs, (6.41)

and the increasing positive process

K̄tk =
k∑
j=0

(
hj(X̄tj )− Ỹtk

)
+

such that K̄t = K̄tk for every t ∈ (tk, tk+1). Finally, we have the following representation

Ỹt = ȲT +
∫ T

t

f(s, X̄s,E(Ȳs̄ | Fs), ζ̄s) ds−
∫ tk+1

t

Z̄sdWs + K̄T − K̄t. (6.42)

where s = tk and s̄ = tk+1 if s ∈ (tk, tk+1). Note that the introduction of K̄ is mainly due to the fact
that

Ȳtk = Ỹtk ∨ h(tk, X̄tk) = Ỹtk +
(
h(tj , X̄tj )− Ỹtk

)
+

= Ỹtk + K̄tk − K̄tk−1 .

In the following, we will denote Ȳk, ζ̄k, ȳk, K̄k, etc. instead of Ȳtk , ζ̄tk , ȳtk , K̄tk , etc. to alleviate
notations, as well as Ek(.) instead of E(.|Ftk). We recall that ∆ ∈ [0,∆max), ∆max > 0.

Theorem 6.3.1. Let Yt be the solution of (6.1) and (Ȳk)0≤k≤n the corresponding time discretized process
defined by (6.33). Assume that the functions f and h are lipschitz continuous. Then, for every k ∈
{1, . . . , n},

E|Yk − Ȳk|2 ≤ Cb,σ,f,h,T

(
∆ +

∫ T

0
E|Zs − Zs|2ds

)
where s = tk if s ∈ [tk, tk+1) and Cb,σ,f,h,T is a real positive constant.
Furthermore, there exists a finite constant C > 0 such that∫ T

0
E|Zs − Zs|2ds ≤ C

√
∆.

The second part of the theorem is established in [48], see Theorem 6.3. The proof of the first part is
postponed to the appendix (see Appendix B).

6.4 Space discretization of the RBSDE
After the time discretization, we move to the space discretization schemes to approximate the solution of
the RBSDE. We rely on the recursive quantization (X̂tk)0≤k≤n of the time discretized scheme (X̄tk)0≤k≤n
to obtain the recursive quantization scheme associated to (6.30)-(6.31)-(6.32)-(6.33). If we consider a
sequence (εk)0≤k≤n of i.i.d. random variables with distribution N (0, Iq), this scheme is defined recursively
by

ŶT = g(X̂T ) (6.43)

ζ̂tk = 1√
∆
Ek
(
Ŷtk+1εk+1

)
, k = 0, . . . , n− 1, (6.44)

Ŷtk = max
(
hk(X̂tk) , EkŶtk+1 + ∆Ek

(
X̂tk ,EkŶtk+1 , ζ̂tk

))
, k = 0, . . . , n− 1. (6.45)
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where (X̂tk)0≤k≤n is the recursively quantized process associated to (X̄tk)0≤k≤n given by (6.22) or (6.28).
This quantization scheme is different than the optimal (or marginal) quantization schemes that were usu-
ally applied before in theses situations, in [3, 37, 65] for example. The main difference is that since recur-
sive quantization preserve the Markov property, the process Ŷtk is Ftk -measurable for every k ∈ {0, . . . , n}
where Ftk = σ(Wt1 , . . . ,Wtk ,NP) which is not the case for optimal quantization. More details on the
utility of this character of recursive quantization will be presented in Section 6.5.

In the following, we will reconsider the notations with the indices k instead of tk for every k ∈
{0, . . . , n}, and we establish an upper bound for the quantization error induced by approximating Ȳk by
Ŷk in Lp for p ∈ (1, 2 + d) and k ∈ {1, . . . , n}. We recall that ∆ ∈ [0,∆max), ∆max > 0.

Theorem 6.4.1. Let (Ȳk)0≤k≤n be the time discretized process defined by (6.33) and (Ŷk)0≤k≤n the
corresponding recursive quantized process defined by (6.45). For every p ∈ (1, 2 + d) and every k ∈
{1, . . . , n},

‖Ȳk − Ŷk‖p ≤
(
κ2

κ1
(e(T−tk)κ1 − 1) + e(T−tk)κ1([g]pLip ∨ [h]pLip)

)∥∥ max
k≤l≤n

∣∣X̄l − X̂l|
∥∥
p

(6.46)

where κ1 = pκ+(p−1)2p−2, κ2 = 2p−2[f ]pLip(1+p∆p−1) and κ =
c(1)
s +s[f ]Lip+[f ]sLipc

(3)
s,∆max,εk+1

s , the positive
finite constants c(1)

s and c(3)
s,∆max,εk+1

are defined in Lemmas 6.2.3 and 6.2.4.

Remark 6.4.2. The norms ‖X̄l − X̂l‖p are recursive quantization errors established in Theorems 6.2.1
and 6.2.7 for p ∈ (1, 2 + d). We recall that, for every l ∈ {1, . . . , n}, one has ‖X̄l − X̂l‖p = O(N−

1
d

l )
where Nl is the size of the quantization grid corresponding to X̂l.

Proof. For every k ∈ {1, . . . , n}, we use the inequality |max(a, b)−max(a′, b′)| ≤ max(|a− a′|, |b− b′|)
and have

|Ȳk − Ŷk| ≤ max
(
|hk(X̄k)− hk(X̂k)|,

∣∣∣EkȲk+1 − EkŶk+1 + ∆
(
Ek(X̄k,EkȲk+1, ξ̄k)− Ek(X̂k,EkŶk+1, ξ̂k)

)∣∣∣)
We denote βk = Ek(Ȳk+1 − Ŷk+1) + ∆

(
Ek
(
X̄k,EkȲk+1, ξ̄k

)
− Ek

(
X̂k,EkŶk+1, ξ̂k

))
and we have

βk = Ek(Ȳk+1 − Ŷk+1) + ∆
(
Âk(X̄k − X̂k) + B̂kEk(Ȳk+1 − Ŷk+1) + Ĉk√

∆
Ek
(
(Ȳk+1 − Ŷk+1)εk+1

))
where

Âk =
Ek
(
X̄k,EkȲk+1, ξ̄k

)
− Ek

(
X̂k,EkȲk+1, ξ̄k

)
X̄k − X̂k

1
X̄k 6=X̂k

,

B̂k =
Ek
(
X̂k,EkȲk+1, ξ̄k

)
− Ek

(
X̂k,EkŶk+1, ξ̄k

)
Ek(Ȳk+1 − Ŷk+1)

1EkȲk+1 6=EŶk+1
,

Ĉk =
Ek
(
X̂k,EkŶk+1, ξ̄k

)
− Ek

(
X̂k,EkŶk+1, ξ̂k

)
Ek
(
(Ȳk+1 − Ŷk+1)εk+1

) 1
ξ̄k 6=ξ̂k

.

It is clear that max
(
|Âk|, |B̂k|, |Ĉk|

)
≤ [f ]Lip, so one has

|βk| ≤ ∆[f ]Lip|X̄k − X̂k|+ Ek
∣∣∣(1 + ∆B̂k +

√
∆Ĉkεk+1)(Ȳk+1 − Ŷk+1)

∣∣∣.
At this stage, we consider two conjugate exponents r ∈ (1, 2 ∧ p) and s = r

r−1 > 2 and we apply
conditional Hölder’s inequality

Ek
∣∣∣(1 + ∆B̂k +

√
∆Ĉkεk+1)(Ȳk+1 − Ŷk+1)

∣∣∣ ≤(Ek|1 + ∆B̂k +
√

∆Ĉkεk+1|s
) 1
s
(
Ek|Ȳk+1 − Ŷk+1|r

) 1
r

.
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Since s > 2, one can apply Lemma 6.2.3 with a = 1 + ∆B̂k and A = Ĉk and obtains

Ek|1 + ∆B̂k +
√

∆Ĉkεk+1|s ≤ (1 + ∆[f ]Lip)s(1 + c(1)
s ∆) + ∆[f ]sLipc

(3)
s,∆max,εk+1

≤ es∆[f ]Lip+∆c(1)
s + ∆[f ]sLipc

(3)
s,∆max,εk+1

≤ e∆(c(1)
s +s[f ]Lip)(1 + ∆[f ]sLipc

(3)
s,∆max,εk+1

e−∆(c(1)
s +s[f ]Lip))

≤ e∆(c(1)
s +s[f ]Lip+[f ]sLipc

(3)
s,∆max,εk+1

)

where c(1)
s and c(3)

s,∆max,εk+1
are real constants defined in Lemmas 6.2.3 and 6.2.4. Therefore,

|βk| ≤ ∆[f ]Lip|X̄k − X̂k|+ eκ∆
(
Ek|Ȳk+1 − Ŷk+1|r

) 1
r

,

where κ =
c(1)
s +s[f ]Lip+[f ]sLipc

(3)
s,∆max,εk+1

s , and

|Ȳk − Ŷk|p ≤ max
(

[h]pLip|X̄k − X̂k|p , |βk|p
)
.

Now, using inequality (6.27) yields

|βk|p ≤ epκ∆
(
Ek|Ȳk+1 − Ŷk+1|r

) p
r (1 + (p− 1)2p−2εp

)
+ 2p−2[f ]pLip|X̄k − X̂k|p∆p

(
p+ 1

εp(p−1)

)
.

We choose ε = ∆
1
p so that ∆p

(
p+ 1

εp(p−1)

)
= ∆(1 + p∆p−1) and hence

|βk|p ≤ eκ1∆
(
Ek|Ȳk+1 − Ŷk+1|r

) p
r + ∆κ2|X̄k − X̂k|p

where κ1 = pκ+ (p− 1)2p−2 and κ2 = 2p−2[f ]pLip(1 + p∆p−1). Moreover, by our choice of r, we have that
p
r > 1 so we apply Jensen’s inequality and obtain

|βk|p ≤ eκ1∆Ek|Ȳk+1 − Ŷk+1|p + ∆κ2|X̄k − X̂k|p.

Hence, having in mind that X̄k, X̂k, Ȳkand Ŷk are all Ftk -measurable processes, one has

Ek|Ȳk − Ŷk|p ≤ max
(

[h]pLipEk|X̄k − X̂k|p , eκ1∆Ek|Ȳk+1 − Ŷk+1|p + ∆κ2Ek|X̄k − X̂k|p
)
. (6.47)

At this stage, we aim to prove that Ek|Ȳk − Ŷk|p satisfies the following backward induction

Ek|Ȳk − Ŷk|p ≤ e(n−k)κ1∆([g]pLip ∨ [h]pLip
)
Ek max

k≤i≤n
|X̄i − X̂i|p + ∆κ2

n−1∑
i=k

e(i−k)κ1∆Ek|X̄i − X̂i|p. (6.48)

First, it is clear that En|Ȳn − Ŷn|p ≤ [g]pLipEn|X̄n − X̂n|p so the induction is satisfied for k = n. We
assume that (6.48) is true for k + 1 i.e.

Ek+1|Ȳk+1 − Ŷk+1|p ≤ e(n−k−1)κ1∆([g]pLip ∨ [h]pLip)Ek+1 max
k+1≤i≤n

|X̄i − X̂i|p

+ ∆κ2

n−1∑
i=k+1

e(i−k−1)κ1∆Ek+1|X̄i − X̂i|p (6.49)
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and show it for k. In fact, since EkEk+1(·) = Ek(·), one has, by merging (6.47) with (6.49), that

Ek|Ȳk − Ŷk|p ≤max
(

[h]pLipEk|X̄k − X̂k|p , eκ1∆EkEk+1|Ȳk+1 − Ŷk+1|p + ∆κ2Ek|X̄k − X̂k|p
)

≤max
(

[h]pLipEk|X̄k − X̂k|p , ∆κ2Ek|X̄k − X̂k|p + ∆κ2

n−1∑
i=k+1

e(i−k)κ1∆EkEk+1|X̄i − X̂i|p

+ e(n−k)κ1∆([g]pLip ∨ [h]pLip)EkEk+1 max
k+1≤i≤n

|X̄i − X̂i|p
)

≤max
(

[h]pLipEk|X̄k − X̂k|p , e(n−k)κ1∆([g]pLip ∨ [h]pLip)Ek max
k≤i≤n

|X̄i − X̂i|p

+ ∆κ2

n−1∑
i=k

e(i−k)κ1∆Ek|X̄i − X̂i|p
)

since maxk+1≤i≤n αi ≤ maxk≤i≤n αi for αi > 0. Furthermore, noticing that

[h]pLipEk|X̄k − X̂k|p ≤
(
[g]pLip ∨ [h]pLip

)
Ek max

k≤i≤n
|X̄i − X̂i|p ≤ e(n−k)κ1∆([g]pLip ∨ [h]pLip

)
Ek max

k≤i≤n
|X̄i − X̂i|p

because e(n−k)κ1∆ > 1, one concludes the induction (6.48). This yields

Ek|Ȳk−Ŷk|p ≤ e(T−tk)κ1
(
[g]pLip∨[h]pLip

)
Ek max

k≤i≤n
|X̄i−X̂i|p+∆κ2Ek max

k≤i≤n
|X̄i−X̂i|p

n−1∑
i=k

e(i−k)κ1∆. (6.50)

Finally, since ex − 1 ≥ x for x ≥ 0, one has

n−1∑
i=k

e(i−k)κ1∆ = e(n−k)κ1∆ − 1
eκ1∆ − 1 ≤ e(T−tk)κ1 − 1

∆κ1

and then deduces the result by taking the expectation in (6.50) . �

6.5 Algorithmics
Our aim is to write (Ŷk, ζ̂k), which approximates the solution of the RBSDE (6.1), in a form that
allows us to compute their values. For this, we first note that (X̄k)0≤k≤n and (X̂k)0≤k≤n are both
Ftk -Markov chains where Ftk = σ(Ws, s ≤ tk,NP), for every k ∈ {0, . . . , n}, with respective transitions
Pk(x, dy) = P(X̄k+1 ∈ dy|X̄k = x) and P̂k(x, dy) = P(X̂k+1 ∈ dy|X̂k = x). The main advantage of recur-
sive quantization is that it preserves the Markovian property of (X̂k)0≤k≤n with respect to the filtration
(Ftk)0≤k≤n =

(
σ(Ws, s ≤ tk,NP)

)
0≤k≤n. Note that, for optimal quantization, the trick was to force the

Markov property by conditioning with respect to the filtration F̂tk = σ(X̂0, . . . , X̂k) instead of Ftk in
(6.44)-(6.45). The price to pay is that the approximations ‖X̄k − X̂k‖p, for every k ∈ {1, . . . , n}, are less
accurate (but not in a drastic way). This point is discussed in details in [65].

For every bounded or non-negative Borel function f , one has Pkf(x) =
∫
Rd
f(y)Pk(x, dy), so that

E
(
f(X̄k+1) | Ftk

)
= Pkf(X̄k) and E

(
f(X̂k+1) | Ftk

)
= P̂kf(X̂k).

Moreover, we introduce

Qkf(X̄k) = 1√
∆
E
(
f(X̄k+1)εk+1 | Ftk

)
and Q̂kf(X̂k) = 1√

∆
E
(
f(X̂k+1)εk+1 | Ftk

)
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where (εk)0≤k≤n are i.i.d. with Normal distribution N (0, Iq).

Similarly to the functions (ȳk)0≤k≤n defined by (6.37), one shows that there exists Borel functions
(ŷk)0≤k≤n such that Ŷk = ŷk(X̂k) for every k ∈ {0, . . . , n}. They are defined recursively by the following
Backward Dynamic Programming Principle (BDPP){

ŷn = hn

ŷk = max
(
hk, P̂kŷk+1 + ∆Ek

(
., P̂kŷk+1, Q̂kŷk+1

))
, k = 0, . . . , n− 1, (6.51)

This BDPP can also be written in distribution, one can write (ȳk)0≤k≤n as{
ȳn = hn

ȳk = max
(
hk, Pkȳk+1 + ∆Ek

(
., Pkȳk+1, Qkȳk+1

))
, k = 0, . . . , n− 1,

The fact that Ȳk = ȳk(X̄k) and Ŷk = ŷk(X̂k) can easily be checked by a backward induction relying on
(6.30)-(6.31)-(6.33) and (6.43)-(6.45) respectively. Furthermore, there exists functions z̄k and ẑk such
that ζ̄k = z̄k(X̄k) and ζ̂k = ẑk(X̂k), defined by

z̄k = Qkȳk+1 and ẑk = Q̂kŷk+1.

In order to compute Ŷk and ζ̂k, we first need to compute the optimal (or at least optimized) recursive
quantization X̂k of X̄k for every k ∈ {0, . . . , n} and the corresponding transition weights. We will consider
the quadratic case p = 2 for all numerical aspects.

6.5.1 Computation of the recursive quantizers
As defined previously, the recursive quantization of (X̄k)0≤k≤n is realized via (6.22) (or (6.28)). In a
quadratic framework, the computation of the optimal quantization grids Γk of X̃k of size Nk, at each
time step tk, is achieved by algorithms such as CLVQ (Competitive Learning Vector Quantization),
Lloyd’s algorithm or Newton-Raphson. These algorithms are presented in details in [61] for example.
Here, we expose a variant of Lloyd’s algorithm for recursive quantization.

For k ∈ {1, . . . , n}, computing an optimal quantizer X̂Γk
k of X̃k consists in computing the grid Γk

solution to the minimization problem

Γk ∈ argmin
{
‖X̂Γ

k − X̃k‖22, Γ ⊂ Rd, card(Γ) ≤ Nk
}
.

The construction of these grids is performed recursively at each step tk in a forward way. It is somehow
an embedded optimization. We suppose that, at time tk, the grid Γk = {xk1 , . . . , xkNk} is already computed
(optimized) and that X̃k has been quantized by X̂k =

∑Nk
i=1 x

k
i 1Ci(Γk) where (Ci(Γk))1≤i≤Nk is the

Voronoï diagram associated to X̂k and defined by (6.11). Then, at time step tk+1, we build the grid Γk+1
that minimizes the quadratic distortion G2

k+1(Γ) defined by (6.23) and written as a function of the grid
Γk = {xk1 , . . . , xkNk} computed at the previous step. So, if Γk+1 = {xk+1

1 , . . . , xk+1
Nk+1
}, then one has, for

every j ∈ {1, . . . , Nk+1},

xk+1
j = E

(
X̃k+1 | X̂k+1 ∈ Cj(Γk+1)

)
=

∑Nk
i=1 p

k
i E
(
Ek(xki , εk+1)1{Ek(xk

i
,εk+1)∈Cj(Γk+1)}

)
pk+1
j

. (6.52)

Recalling that Ek(x, εk+1) = x + ∆bk(x) +
√

∆σk(x)εk+1, it is important to notice that, for every k ∈
{1, . . . , n} and i ∈ {1, . . . , Nk}, Ek(xki , εk+1) ∼ N (mk

i ,Σki ) wheremk
i = xki +∆bk(xki ) and Σki =

√
∆σk(xki ).
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We are interested in more than just computing the distribution of (X̂k)0≤k≤n, the computation of the
transition matrices Pk = (pkij)ij is even more fundamental among the companion parameters in view of
our applications. For every k ∈ {1, . . . , n} and i, j ∈ {1, . . . , Nk}, the transition probability pkij from xki
to xk+1

j is given by

pkij = P
(
X̃k+1 ∈ Cj(Γk+1) | X̃k ∈ Ci(Γk)

)
= P

(
Ek(xki , εk+1) ∈ Cj(Γk+1)

)
. (6.53)

This identity allows the computation of the weights pk+1
j of the Voronoï cells Cj(Γk+1), for every j ∈

{1, . . . , Nk+1}, via the classical (discrete time) forward Kolmogorov equation. They are given by

pk+1
j = P

(
X̃k+1 ∈ Cj(Γk+1)

)
=

Nk∑
i=1

pki P
(
Ek(xki , εk+1) ∈ Cj(Γk+1)

)
. (6.54)

One-dimensional setting q = d = 1: The transition weights pkij can be computed in a direct way
as follows: for every i ∈ {1, . . . , Nk} and j ∈ {1, . . . , Nk+1}

pkij = P
(
X̃k+1 ≤ xk+1

j+ 1
2
| X̂k = xki

)
− P

(
X̃k+1 ≤ xk+1

j− 1
2
| X̂k = xki

)
= Φ0

(
xk+1
i,j+

)
− Φ0

(
xk+1
i,j−

)
where Φ0 is the cumulative distribution function of the standard Normal distribution N (0, 1) and

xk+1
i,j+

=
xk+1
j+ 1

2
− xki −∆bk(xki )
√

∆σk(xki )
and xk+1

i,j−
=
xk+1
j− 1

2
− xki −∆bk(xki )
√

∆σk(xki )

with xk+1
j+ 1

2
= xk+1

j
+xk+1

j+1
2 , xk+1

1
2

= −∞ and xk+1
Nk+1− 1

2
= +∞.

General setting: In order to approximate the transition probabilities and the weights of the Voronoï
cells when d > 1, one may proceed with Monte Carlo simulations or rely on Markovian and componentwise
product quantization (see [28]). A very interesting alternative is the hybrid recursive quantization, studied
in Section 6.2.3, where we replaced the white Gaussian noise by its optimal quantization sequences. The
principle on which we rely to design the hybrid recursive quantizers is the same as the one for the standard
recursive quantization. The only difference is with the computation of the expectations and probabilities
in (6.52),(6.53) and (6.54). Instead of resorting to large and slow Monte Carlo simulations, we consider
sequences of optimal quantizers (ε̂kl )1≤l≤Nε of size Nε of the Gaussian distribution N (0, Id), available
on the quantization website www.quantize.maths-fi.com, and compute the sequence and its companion
parameters based on the following formulas

E
(
Ek(xki , εk)1Ek(xk

i
,εk)∈Cj(Γk+1)

)
=

Nε∑
l=1

pkεlEk(xki , ε̂kl )1Ek(xk
i
,ε̂k
l
)∈Cj(Γk+1) (6.55)

and

P
(
Ek(xki , εk) ∈ Cj(Γk+1)

)
=

Nε∑
l=1

pkεl1Ek(xk
i
,ε̂k
l
)∈Cj(Γk+1) (6.56)

where pkεl is the weight of the Voronoï cell of centroid ε̂kl , also available on the quantization website.

6.5.2 Computation of the quantized solution of the RBSDE
Having already computed the recursive quantization (X̂k)0≤k≤n of (X̄k)0≤k≤n as described in the previous
section 6.5.1, as well as the corresponding companion parameters (the weights (pki )1≤i≤Nk of Voronoï cells

159

http://www.quantize.maths-fi.com


and the transition weights (pkij)1≤i≤Nk,1≤j≤Nk+1), we proceed with the computation of (Ŷk)0≤k≤n and
rely on the BDPP (6.51) allowing us to compute Ŷk = ŷk(X̂k) as a function of the quantizer Γk =
{xk1 , . . . , xkNk}. For every k ∈ {0, . . . , n− 1} and i ∈ {1, . . . , Nk}, we denote

α̂k(xki ) =
Nk+1∑
j=1

ŷk+1(xk+1
j )pkij and β̂k(xki ) = 1

∆

Nk+1∑
j=1

ŷk+1(xk+1
j )πkij

where
πkij =

√
∆
pki

E
(
εk+11{X̂k+1=xk+1

j
,X̂k=xk

i
}

)
=
√

∆E
(
εk+11Ek(xk

i
,εk+1)∈Cj(Γk+1)

)
(6.57)

and Ek(x, εk+1) = x+∆bk(x)+
√

∆σk(x)εk+1. Note that the quantities (πkij)1≤i,j≤Nk
are computed online

at the same time as the transition weight matrices (pkij)1≤i,j≤Nk
for every k ∈ {0, . . . , n− 1}, so that they

can be stored and used instantly in the computations of the solution of the RBSDE.

Therefore, the solution Y0 of the RBSDE is approximated by the value ŷ0 at time t0 of the following
recursive quantized scheme{

ŷn(xni ) = hn(xni ) , i = 1, . . . , Nn,
ŷk(xki ) = max

(
hk(xki ), α̂k(xki ) + ∆Ek

(
xki , α̂k(xki ), β̂k(xki )

))
, i = 1, . . . , Nk,

(6.58)

And, the function ẑk used to approximate ζ̂k is computed via the following sum

ẑk(xki ) = 1
∆

Nk+1∑
j=1

ŷk+1(xk+1
j )πkij .

Remark 6.5.1. One should mention that, once the recursive quantization grids and the corresponding
companion parameters are computed, the computation of the solution of the RBSDE is almost instanta-
neous, we can even say that its computational cost is negligible.

6.6 Numerical examples
We carry out some numerical experiments to illustrate the rate of convergence of the recursive quantization-
based discretized scheme and to compare its performances with other schemes based on optimal quan-
tization, greedy quantization and greedy recursive quantization. We start by explaining how to obtain
the quantizers and their companions parameters (Voronoï and transition weights) by optimal, greedy and
recursive greedy quantization. Concerning the time discretization, we consider the Euler scheme of the
forward diffusion (Xt)0≤t≤T defined by (6.20).

6.6.1 Various quantization methods
Quanization tree with optimal marginal quantization
In this section, we aim to build optimal quantizers X̂Γk

k of X̄k for every k ∈ {0, . . . , n}. At time t0,
we start with X̂0 = X0 = x0 ∈ Rd. Then, at each time step tk, we rely on a sequence of optimal
quantizers (zki )1≤i≤Nk of size Nk of the Normal distribution N (0, Id) and we compute the quantizer
Γk = (xk1 , . . . , xkNk) via

xki = x0 + tkb(x0) +
√
tkσ(x0)zki , i ∈ {1, . . . , Nk}.
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In particular, if (X̄k)0,≤k≤n evolves following a Black-Scholes model with interest rate r and volatility σ,
then the quantizers are computed as follows

xki = x0 exp
(

(r − σ2

2 )tk + σ
√
tkz

k
i

)
.

The weights of the Voronoï cells are obtained by the forward Kolmogorov equation (6.54). In the one-
dimensional case, they are easily computed relying on the c.d.f. of the Gaussian distribution.

The challenge in this method is the computation of the transition weights pkij , which are mandatory for
our cause. By optimal quantization, (X̂k)0≤k≤n is not a Markov chain so one cannot use its distribution to
compute pkij like for recursive quanization. One usually compute them by Monte Carlo simulations, but,
in the one-dimensional case, there exist some closed formulas. In the following, we present such closed
formulas in the case of a Black-Scholes model (the case that interests us the most for our numerical
examples), i.e. a case where, for an the interest rate r and a volatility σ, the process is given by

X̂k = X̂0 exp
(

(r − σ2

2 )tk + σ
√
tkεk

)
where (εk)1≤k≤n is an i.i.d. sequence of random variables with distribution N (0, 1).

Exact computation of the transition weights Assume that the quantizers Γk = (xki )1≤i≤Nk
of size Nk of X̄k are already computed for every k ∈ {1, . . . , n} and that the sizes of the grids Nk,
k = 1, . . . , n, are all equal to N ∈ N. Note that this hypothesis is not optimal but turns out to be optimal
in terms of complexity for a given budget N1 + · · · + Nn. It is not sharp in terms of error estimates
(up to a multiplicative constant) but remains a good compromise which is convenient in practice for the
implementation. The goal is to compute the transition weights

pkij = P
(
X̂k+1 = xk+1

j | X̂k = xki

)
=
p̄kij
pki

where
p̄kij = P

(
X̂k+1 = xk+1

j , X̂k = xki

)
and pki = P

(
X̂k = xki

)
.

The weights pki are computed via the forward Kolmogorov equation, using the transition weights pkij , as
follows

pk+1
j =

Nk∑
i=1

pkij p
k
i =

Nk∑
i=1

p̄kij ,

keeping in mind that the Voronoï weight at time t0 (i.e. k = 0) is equal to 1 since X̂0 = X0 = x0
is deterministic. So, our main concern is the computation of p̄kij for every k ∈ {1, . . . , n} and i, j ∈
{1, . . . , N}. We start by noticing that

X̂k+1 = X̂k

(
1 + rh+ σ

√
hεk

)
where h = T

n is the time step of the discretization scheme. Note that highly accurate quantization grids
of N (0, 1) for regularly sampled sizes from N = 1 to 1 000 are available and can be downloaded from the
quantization website www.quantize.maths-fi.com (for non-commercial purposes). Then, considering two
independent random variables z1 and z2 with distribution N (0, 1), one has

p̄kij = P
(
X̂k+1 ∈

[
xk+1
j− 1

2
, xk+1
j+ 1

2

]
, X̂k ∈

[
xki− 1

2
, xki+ 1

2

])
= P

(
X̂k(1 + rh+ σ

√
hz2) ∈ Cj(Γk+1), z1 ∈

[
xki , x

k
i

])
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where

xki =
ln
(
xk
i− 1

2

)
+
(
σ2

2 − r
)
tk − ln(x0)

σ
√
tk

and xki =
ln
(
xk
i+ 1

2

)
+
(
σ2

2 − r
)
tk − ln(x0)

σ
√
tk

, (6.59)

Then, the independence of z1 and z2 yields

p̄kij =
∫ xki

xk
i

P
(
x0(1 + rh+ σ

√
hz2) exp

(
(r − σ2

2 )tk + σ
√
tkz
)
∈
[
xk+1
j− 1

2
, xk+1
j+ 1

2

])
e−

z2
2
dz√
2π

=
∫ xki

xk
i

P

z2 ∈

xk+1
j− 1

2
e(σ2

2 −r)tk−σ
√
tkz − x0 − rhx0

σx0
√
h

,
xk+1
j+ 1

2
e(σ2

2 −r)tk−σ
√
tkz − x0 − rhx0

σx0
√
h

 e−
z2
2
dz√
2π

=
∫ xki

xk
i

(
Φ0(xk+1

j )− Φ0(xk+1
j )

)
e−

z2
2
dz√
2π
, (6.60)

where

xk+1
j =

xk+1
j− 1

2
e(σ2

2 −r)tk−σ
√
tkz − x0 − rhx0

σx0
√
h

and xk+1
j =

xk+1
j+ 1

2
e(σ2

2 −r)tk−σ
√
tkz − x0 − rhx0

σx0
√
h

. (6.61)

These integrals can be computed via Gaussian quadrature formulas, mainly Gauss-Legendre quadrature
formulas for integrals on closed intervals and Gauss-Laguerre quadrature formulas for integrals on semi-
closed intervals. So, if i = 1 or i = N , one uses Gauss-Laguerre formulas since the Voronoï cells (over
which we are integrating) are of the form (−∞, a) or (a,+∞) for some a ∈ R. Otherwise, the Voronoï cells
are closed intervals so one relies on Gauss-Legendre quadrature formula. Let us detail these computations.

� Integration on a closed interval [a, b]: Gauss Legendre fomula

Considering f(z) =
(

Φ0(xk+1
j ) − Φ0(xk+1

j )
)e− z22√

2π
, a = xki and b = xki , the goal is to compute I =∫ b

a
f(z)dz. Applying the change of variables z = b−a

2 x+ a+b
2 , I can be written and computed as follows

I = b− a
2

∫ 1

−1
f

(
b− a

2 x+ a+ b

2

)
dx = b− a

2

n∑
i=1

wif

(
b− a

2 xi + a+ b

2

)

where (xi)1≤i≤n are the roots of the nth Legendre polynomial Pn(x) = 1
2n
∑bn2 c
k=0(−1)k (2n−2k)!

k!(n−k)!(n−2k)!x
n−2k

and the weights (wi)1≤i≤n are given by

wi = 2
(1− x2

i )P ′n(xi)2 = 2(1− x2
i )

(n+ 1)2Pn+1(xi)2 .

� Integration on intervals of the form [a,+∞) or (−∞, a]: Gauss Laguerre quadrature
We consider f(z) = Φ0(xk+1

j )− Φ0(xk+1
j ) and distinguish two cases.

• Integration on [a,+∞)
The goal is to compute I =

∫ +∞
a

f(z)e− z
2
2 dz where a = xki . Applying the change of variables x = z2

2
and denoting g(x) = f(x)

x yield

I =
∫ +∞

a2
2

f(
√

2x)√
2x

e−xdx =
∫ +∞

a2
2

g(
√

2x)e−xdx = e−
a2
2

∫ +∞

0
g
(√

2x+ a2
)
e−xdx
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where we applied in the last equality the change of variables y = x− a2

2 . Hence, we use Gauss-Legendre
quadrature formula to obtain

I = e−
a2
2

N∑
i=1

wig
(√

2xi + a2
)

where (xi)1≤i≤n are the roots of the nth Laguerre polynomial Ln(x) =
∑n
k=0(−1)k n!

k!(n−k)!2x
k and the

weights (wi)1≤i≤n are given by

wi = 1
(n+ 1)L′n(xi)Ln+1(xi)

= xi
(n+ 1)2Ln+1(xi)2 . (6.62)

• Integration on (−∞, a]
The goal is to compute I =

∫ a
−∞ f(x)e− x

2
2 dx where a = xki . Similarly to the previous case, I can be

written as follows

I =
∫ +∞

−a
f(−x)e− x

2
2 dx =

∫ +∞

a2
2

f(−
√

2z)√
2z

e−zdz =
∫ +∞

a2
2

g(
√

2z)e−zdz = e−
a2
2

∫ +∞

0
g
(√

2z + a2
)
e−zdz

where g(x) = f(−x)
x . Hence, Gauss-Legendre quadrature formula yields

I = e−
a2
2

N∑
i=1

wig
(√

2xi + a2
)

where (xi)1≤i≤n are the roots of Ln(x) and (wi)1≤i≤n are given by (6.62).

Approximation of the transition weights If the goal is not necessarily the highest level of
precision, then one approximates the transition weights pkij by gj(zki ) where the function gj(z) is defined
by

gj(z) = Φ0(xk+1
j )− Φ0(xk+1

j ). (6.63)

and xk+1
j and xk+1

j are given by (6.61). In fact, based on (6.60) and then applying Taylor-Lagrange
formula, one has

p̄kij =
∫ zk

i+ 1
2

zk
i− 1

2

gj(z)e−
z2
2
dz√
2π

= gj(zki )pki + g′j(zki )
∫ zk

i+ 1
2

zk
i− 1

2

(z − zki )e− z
2
2
dz√
2π

+
∫ zk

i+ 1
2

zk
i− 1

2

g′′j (ξ(z)) (z − zki )2

2 e−
z2
2
dz√
2π
.

Since (zki )1≤i≤N is a quadratic optimal quantization sequence of the standard Normal distribution, then
it is stationary and the second term of the above inequality is equal to 0. Moreover,

g′j(z) = k

x0
√

2π

(
xj+ 1

2
e−σ
√
tkz− 1

2 x̄
2
j − xj− 1

2
e−σ
√
tkz− 1

2x
2
j

)
and

g′′j (z) = k

x0
√

2π

[
σ
√
tke
−σ
√
tkz
(
xj− 1

2
e−

1
2x

2
j − xj+ 1

2
e−

1
2x

2
j

)
+ k

x0
e−2σ

√
tkz
(
x2
j+ 1

2
x2
je
− 1

2x
2
j − x2

j− 1
2
x2
je
− 1

2x
2
j

)]
.

At this stage, one notices that γ(z) := exp(−2z − 1
2e
−2z) ≤ κ for every z ∈ R for some finite positive

constant κ and that |g′′j (z)| ≤ κ̄ for a finite positive constant κ̄. Consequently,
∣∣pkij − gj(zki )

∣∣ is bounded.
It is important to note that when we estimate the transition weight by gj(zki ), we formally get the

transition weight from xki to xk+1
j obtained by recursive quantization, even though they are not the same

grids.

163



Remark 6.6.1. For local volatility models (CEV models for example), it becomes more complicated to
establish such closed formulas for the computations of the transition matrix. One tends to approximate
them by Monte Carlo simulations, for example.

Greedy quantization
Another technique is greedy vector quantization introduced in [45] and developed in [24]. It consists
in building a sequence of points (an)n≥1 in Rd recursively optimal step by step, in the following greedy
sense: having computed the first n points a1, . . . , an of the sequence and defining the resulting grid
a(n) = {a1, . . . , an} for n ≥ 1, we compute the (n+ 1)-th point as a solution to the minimization problem

an+1 ∈ argminξ∈Rd ep(a(n) ∪ {ξ}, X), (6.64)

with the convention a(0) = ∅. Quadratic greedy quantization sequences are obtained by implementing
"freezing" avatars of usual stochastic optimization algorithms used for optimal quantization, these variants
are exposed in details in [46]. In this paragraph, we give a quick idea on the computation of the greedy
quantization sequence of (X̄k)0≤k≤n. Starting at X̂0 = X̄0 = x0, the process X̄k can be written, for every
k ∈ {1, . . . , n}, as follows

X̄k = x0 + tkb(x0) +
√
tkσ(x0)εk

where εk is a random variable with distribution N (0, Iq). So X̄k is with Normal distribution N (mk,Σk)
where mk = x0 + tkb(x0) and Σk =

√
tkσ(x0) and hence this is the distribution that needs to be dis-

cretized by greedy quantization. The transition weights in the one-dimensional case are computed via
Gaussian quadrature formula like explained for the optimal quantization, and the weights of the Voronoï
cells by the forward Kolmogorov equation.

In the high-dimensional framework (d > 1), the computations become too demanding. So, instead of
designing pure greedy quantization sequences, one tends to build greedy product quantization sequences
which are obtained as a result of the tensor product of one-dimensional sequences, when the target law
is a tensor product of its independent marginal laws. We refer to [24] for further details.

Greedy recursive quantization
In the algorithm described in Section 6.5, the recursive quantization scheme (6.22) is based on an optimal
quantization of the sequences (X̃k)0≤k≤n at each time step tk. Here, we consider, as an alternative, greedy
optimal quantization grids X̂k of X̃k. They are designed as follows: At time tk+1, assuming that the Nk-
tuple (xk1 , . . . , xkNk) and its companion parameters are already computed, one needs to build, step by step
by greedy quantization, the Nk+1-tuple (xk+1

1 , . . . , xk+1
Nk+1

) which approaches best X̃k+1 = Ek(X̂k, εk+1).
Since Ek(xki , εk+1) ∼ N (mk

i ,Σki ) with mk
i = xki + ∆bk(xki ) and Σki =

√
∆σk(xki ), the first point of

the sequence is xk+1
1 = E

[
X̂k + ∆bk(X̂k)

]
=
∑Nk
i=1 p

k
i

(
xki + ∆bk(xki )

)
and then, at each iteration N ,

N ∈ {2, . . . , Nk+1}, one adds one point xk+1
N following the steps of the greedy variant of Lloyd’s algorithm

detailed in [46]. One should take in consideration that the local interpoint inertia are computed, at each
time step tk+1, by

σ2
j =

Nk∑
i=1

pki

∫ xk+1,N
j+ 1

2

xk+1,N
j

(
ξ − xk+1,N

j

)2
P (dξ) +

∫ xk+1,N
j+1

xk+1,N
j+ 1

2

(
ξ − xk+1,N

j+1
)2
P (dξ)

 :=
Nk∑
i=1

pki sij (6.65)

164



where xk+1,N
j+ 1

2
= xk+1,N

j
+xk+1,N

j+1
2 with xk+1,N

0 = xk+1,N
1
2

= −∞ and xk+1,N
N = xk+1,N

N− 1
2

= +∞. Likewise, the
recurrence of the algorithm is given by

x`+1 =

∑Nk
i=1 p

k
i E
(
Ek(xki , εk+1)1{

Ek(xk
i
,εk+1)∈Cj(Γk+1)

})∑Nk
i=1 p

k
i P
(
Ek(xki , εk+1) ∈ Cj(Γk+1)

) , (6.66)

The companion parameters are computed following the same principle as for the standard recrusive
quantization.

6.6.2 Examples
American call option in a market with bid-ask spread on interest rates
We are interested in the valuation of an American call option with maturity T in a market with a bid-ask
spread on interest rates with a borrowing rate R and a lending rate r ≤ R. The stock price is represented
by the process (Xt)t∈[0,T ] given by the SDE (6.3) and the dynamics of the portfolio are given by

−dYt =
(
−rYt −

bt(Xt)− r
σt(Xt)

Zt − (R− r) min
(
Yt −

Zt
σt(Xt)

, 0
))

dt− ZtdWt

YT = h(XT ) and Yt ≥ g(Xt)

where h(x) = g(x) = max(x−K, 0), K being the strike price.

Black-Scholes model We consider that (Xt)t∈[0,T ] evolves following the Black-Scholes dynamics
and is time discretized following the Euler scheme, i.e. for every k ∈ {0, . . . , n− 1},

X̄k+1 = X̄k + µ∆X̄k + σ
√

∆X̄k εk+1 (6.67)

where µ is the drift and σ is the volatility. The space discretization is established via recursive quantization
(RQ), optimal quantization (OQ), greedy quantization (GQ) and greedy recursive quantization (GRQ).
We consider n = 20 time steps and build corresponding quantization grids of size N = 100 and their
companion parameters as explained in the different sections previously in the chapter. Then, we rely on
the backward recursion (6.58) to compute the value Y0 of the underlying option. Note that the quantities
πkij are computed, for every k ∈ {1, . . . , n}, as a companion parameter with the diffusion X̂k via a Monte
Carlo simulation of size 106. We consider the following parameters

X0 = 100 , T = 0.25 , σ = 0.2 , µ = 0.05 , r = 0.01 , R = 0.06

and we compare the values obtained by the different methods for different values of K varying between
100 and 120. As a benchmark, we will assume that the optimal quantization converges to the exact value
and, under this hypothesis, we consider the fastest and most accurate version of optimal quantization,
which is the quantization-based Richardson-Romberg extrapolation. The idea is the following:
If the goal is to approximate Ef(X) for a function f and a random variable X, one considers two optimal
quantization sequences X̂N1 of size N1 and X̂N2 of size N2 of the random variable X and hence Ef(X)
is given by

Ef(X) = N2
2Ef(X̂N2)−N2

1Ef(X̂N1)
N2

2 −N2
1

. (6.68)

From a practical point of view, one usually considers N1 = N and N2 = N
2 . Furthermore, when the

dimension d = 1, the standard quantization error is of the form

e2(X,µ) ≈ c1
√
n+ c2

√
nN−1
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and the Romberg-quantization error is of the form

e2(X,µ) ≈ c2
√
n

(
1
N1
− 1
N2

)
≈ c1

√
n

2N1
.

So, by studying the values of this error for different values of n and N1, we realize that the best technique
is to consider a small number of time steps n and a large size N of the quantizer.

In our example, we consider an optimal quantization-based Richardson Romberg extrapolation with
n = 5 and N = 1 000. We observe in Table 6.1 the results and the errors obtained by the various methods.
Here, we emphasize on the computational time of these simulations which are performed on a CPU 2.7

K RQ GRQ OQ GQ Romberg
Value Error Value Error Value Error Value Error

100 4.719 0.026 4.728 0.017 4.747 0.002 4.704 0.041 4.745
105 2.538 0.012 2.548 0.002 2.561 0.011 2.529 0.021 2.55
110 1.222 0.003 1.225 0.006 1.234 0.015 1.212 0.007 1.219
115 0.526 0.008 0.526 0.008 0.532 0.014 0.518 0 0.518
120 0.203 0.007 0.202 0.006 0.206 0.01 0.198 0.002 0.196
Average 0.0112 0.0078 0.0104 0.0142

Table 6.1: Pricing of an American call option in a market with bid-ask spread for interest rates
in a Black-Scholes model by recursive (RQ), greedy recursive (GRQ), optimal (OQ) and greedy
(GQ) quantization.

GHz and 8 GB memory computer. The optimal quantizer and its companion parameters are obtained in
about 40 seconds while the greedy quantization sequence and its companions in about 30 seconds. This
is approximately a 25% gain in time in favor of greedy quantization whose results are comparable (a little
less precise) than optimal quantization. As for the recursive quantization, the standard simulations (RQ)
are obtained in about 2.3 minutes and the greedy simulations (GRQ) in about 2 minutes. Hence, the
greedy character introduced in the recursive algorithm brings a 13% gain in time. The additional cost in
time is compensated by the preservation of the Markovian property and the precision of the results.
Figure 6.1 depicts the convergence of the error induced by the approximation of Y0 based on a recursive
quantization of the forward process X̄k. For this illustration, we consider a strike K = 100 and we make
the size N of the grids vary between 10 and 100. The graph is represented in a log-log-scale scale and an
O(N−1) rate of convergence is clearly observed.

CEV model We consider a local volatility model, the CEV model, in which (Xt)0≤t≤T evolves fol-
lowing

dXt = µXtdt+ ϑXδ
t dWt, X0 = x0, (6.69)

for some δ ∈ (0, 1) and ϑ ∈ (0, ϑ] with ϑ > 0. σ(x) = ϑxδ is the local volatility function. The discretized
Euler scheme associated to (Xt)t∈[0,T ] is given, for every k ∈ {0, . . . , n− 1}, by

X̄k+1 = X̄k + µ∆X̄k + ϑX̄δ
k

√
∆ εk (6.70)

where (εk)1≤k≤n is an i.i.d sequence of random variables with distribution N (0, 1).
The construction of the quantizers and the computation of the companion parameters by recursive and
greedy recursive quantization is similar to what was done for the Black-Scholes model. As for optimal and
greedy quantization, closed forms for the companion parameters are no longer available in this model, we
estimate them by Monte Carlo simulations of size 105 coupled with a nearest neighbor search. We build
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Figure 6.1: Convergence rate of the error induced by the approximation of the Bid-ask spread
Call option in a Black-Scholes model discretized by recursive quantization for different sizes
N = 10, . . . , 100.

corresponding quantization grids of size N = 150 and consider n = 15 time steps. The parameters are
the following

X0 = 100 , T = 0.25 , ϑ = 4 , δ = 0.5 , ε = 1 , µ = 0.05 , r = 0.01 , R = 0.06

and we compare the values obtained by the different methods for different values of K between 100 and
120. The benchmark is given by an optimal quantization-based Richardson-Romberg extrapolation (6.68).
We observe in Table 6.2 the results and errors obtained by such comparisons. As for the computation
time, we note that the optimal quantizer and its companion parameters are obtained in about 100
seconds while the greedy quantization sequence and its companions in about 70 seconds. The fact that
these computations take more time for the CEV model than for the Black-Scholes model is due to the
non-existence of closed formulas for the computation of the companion parameters in the CEV model,
the computation of the quantizers themselves is almost instantaneous. Moreover, the recursive quantizer
and its companions are computed in about 3.5 minutes while the greedy recursive quantizers in about 3
minutes.

K RQ GRQ OQ GQ Romberg
Value Error Value Error Value Error Value Error

100 8.517 0.074 8.524 0.067 8.536 0.055 8.593 0.002 8.591
105 6.262 0.049 6.272 0.039 6.288 0.023 6.321 0.01 6.311
110 4.479 0.023 4.483 0.019 4.498 0.004 4.522 0.02 4.502
115 3.11 0.006 3.113 0.003 3.125 0.009 3.128 0.012 3.116
120 2.094 0.003 2.1 0.009 2.109 0.018 2.103 0.012 2.091
Average 0.031 0.0274 0.0218 0.0112

Table 6.2: Pricing of an American call option in a market with bid-ask spread for interest rates
in a CEV model by recursive (RQ), greedy recursive (GRQ), optimal (OQ) and greedy (GQ)
quantization.
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Two-dimensional American exchange options
We are interested in pricing an American exchange option with exchange rate µ and maturity T . This
price is given by the value Y0 at time t0 of the solution of the RBSDE (6.1) with driver f = 0 and
ht(x) = gt(x) = max

(
e−λtX1

t − µX2
t , 0
)
. X1

t and X2
t are two assets, such that X1

t is with a geometric
dividend rate λ and X2

t is without dividend, both following a Black-Scholes model. The discretized Euler
scheme (X̄1

k , X̄
2
k) is given, for every k ∈ {0, . . . , n− 1}, by

X̄1
k+1 = X̄1

ke
(r−σ2

2 )∆+σ
√

∆ε1k

X̄2
k+1 = X̄2

ke
(r−σ2

2 )∆+σ
√

∆(ρε1k+
√

1−ρ2ε2k)

where r is the interest rate, σ the volatility, ρ is a correlation coefficient and (ε1
k, ε

2
k)1≤k≤n is a sequence

of i.i.d. random variables with distribution N (0, I2).
From a numerical point of view, we discretize in n = 10 time steps, build quantizers of size NX = 100
and consider the following parameters

X1
0 = 40 , T = 1 , r = 0 , σ = 0.2 , λ = 0.05 , µ = 1 .

In high dimensions (d > 1), the implementation of the recursive quantization algorithm is too expensive
and its cost in time is very high. We consider, instead, the hybrid recursive quantization, introduced
in Section 6.2.3 and use sequences of optimal quantizers (ε̂kl )1≤l≤Nε of size Nε = 1000 to compute the
sequence and the companion parameters as detailed in Section 6.5. We also build optimal quantizers and
greedy product quantization sequences (see Section 6.6.1). We compute the price of the option by these
methods for X2

0 ∈ {36; 44} and ρ ∈ {−0.8; 0; 0.8} and compare the results obtained to those computed
by a finite difference algorithm in [74] and expose the errors hence induced in Table 6.3.
Similarly to the one-dimensional Example 6.6.2, a gain in the computation time appears in favor of the

X2
0 ρ OQ HRQ GPQ Benchmark

Value Error Value Error Value Error
36 −0.8 7.062 0.087 6.979 0.004 6.926 0.049 6.975
36 0 5.832 0.186 5.706 0.06 5.763 0.117 5.646
36 0.8 4.076 0.076 4.008 0.008 4 0 4
Average error 0.116 0.024 0.055
44 −0.8 3.834 0.065 3.741 0.028 3.609 0.16 3.769
44 0 2.453 0.117 2.329 0.007 2.042 0.294 2.336
44 0.8 0.426 0.067 0.282 0.077 0.401 0.042 0.359
Average error 0.083 0.037 0.165

Table 6.3: Pricing of an American exchange option for d = 2 in a BS model by hybrid recursive
(HRQ), optimal (OQ) and greedy product quantization (GPQ).

greedy quantization. In fact, greedy product quantization sequences are obtained in about 55 seconds
whereas optimal and hybrid recursive quantizers in about 70 seconds and 3.75 minutes respectively, and
hence the gain is about 20% compared to optimal quantization and 75% compared to hybrid recursive
quantization. Moreover, we remark that hybrid recursive quantization gives the most precise results while
an expected gain in precision for optimal quantization compared to greedy quantization is observed.
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6.7 Appendix
6.7.1 Appendix A: The proof of Lemma 6.2.3
First note that the function f : u 7→ |u|r satisfies (since r ≥ 2)

∇|u|r = r|u|r−1 u

|u|
and ∇2|u|r = r|u|r−2

(
(r − 2) u

|u|
u∗

|u|
+ Id

)
(convention 0

|0| = 0). Consequently, Taylor’s Theorem with Lagrange remainder applied to f reads

f(u+ v) = f(u) + 〈∇f(u), v〉+ 1
2v
∗∇2f(ξu,v)v

for some ξu,v = λu,vu+ (1− λu,v)(u+ v), λu,v∈ (0, 1). Note that

v∗∇2f(ξu,v)v = r|ξu,v|r−2
(

(r − 2) 〈v, ξu,v〉
2

|ξu,v|2
+ |v|2

)
≤ r|ξu,v|r−2(r − 1)|v|2

owing to Cauchy-Schwartz inequality. Then, noting that |ξu,v| ≤ |u| ∨ |u+ v| ≤ |u|+ |v|, we obtain

|u+ v|r ≤ |u|r +
〈
r|u|r−1 u

|u|
, v
〉

+ r(r − 1)
2

(
|u|+ |v|

)r−2|v|2

≤ |u|r +
〈
r|u|r−1 u

|u|
, v
〉

+ r(r − 1)
2 2(r−3)+

(
|u|r−2 + |v|r−2)|v|2

= |u|r +
〈
r|u|r−1 u

|u|
, v
〉

+ r(r − 1)
2 2(r−3)+

(
|u|r−2|v|2 + |v|r

)
.

Applying the above inequality to u = a and v =
√
hAZ yields∣∣a+A

√
hZ
∣∣r ≤ |a|r + r

〈
|a|r−1 a

|a|
, A
√
hZ
〉

+ 2(r−3)+
r(r − 1)

2
(
h|a|r−2|AZ|2 + h

r
2 |AZ|r

)
.

Applying Young’s inequality (when r > 2) to the product |a|r−2|AZ|2 with conjugate exponents r′ = r
r−2

and s′ = r
2 yields∣∣a+A
√
hZ
∣∣r ≤ |a|r + r

〈
|a|r−1 a

|a|
, A
√
hZ
〉

+ 2(r−3)+
r(r − 1)

2

(h
r

(
(r − 2)|a|r + 2|AZ|r

)
+ h

r
2 |AZ|r

)
≤ |a|r

(
1 + 2(r−3)+

(r − 1)(r − 2)
2 h

)
+ r
〈
|a|r−1 a

|a|
, A
√
hZ
〉

+ 2(r−3)+(r − 1)h‖A‖r|Z|r
(

1 + r

2 h
r−2

2

)
. (6.71)

Finally taking expectation and using that EZ = 0 and h < h0 yields the announced result.

6.7.2 Appendix B: Proof of Theorem 6.3.1
To get into the core of the proof of the first part of Theorem 6.3.1, we need to show some properties of
the functions ȳk and z̄k.

Lemme 6.7.1. The functions ȳk and z̄k defined by (6.36)-(6.37) are Lipschitz continuous with [ȳk]Lip
and [z̄k]Lip their respective Lipschitz coefficients given by

[ȳk]Lip ≤ [h]Lip + ∆max(1 + ∆max)[f ]Lip + e(1+Cf+Cb,σ)∆max [ȳk+1]Lip

and
[z̄k]Lip ≤

1√
∆

[ȳk+1]Lipe
Cb,σ∆

where Cb,σ = 1 + ∆max(2[bk]Lip + [σk]Lip) + ∆2
max[bk]2Lip and Cf = 2[f ]Lip + [f ]2Lip.
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Proof. STEP 1: We show that ȳk and ỹk are Lipschitz continuous. We rely on a backward induction.
In this part, we denote Exk = Ek(x, εk+1) for every x to alleviate notations. It is clear that [ȳn]Lip = [g]Lip.
We assume that ȳk+1 is [ȳk+1]Lip-Lipschitz continuous and show the Lipschitz continuity of ȳk. For every
x, x′, we start by noticing that

|ỹk(x)− ỹk(x′)| =
∣∣∣Ekȳk+1

(
Exk
)
− Ekȳk+1

(
Ex
′

k

)
+ ∆

(
Ak(x− x′) +BkEk

(
ȳk+1

(
Exk
)
− ȳk+1

(
Ex
′

k

))
+ Ck√

∆
Ek
(
ȳk+1

(
Exk
)
− ȳk+1

(
Ex
′

k

))
εk+1

)∣∣∣
where

Ak =
Ek
(
x,Ek ȳk+1(Exk ), z̄k(x)

)
− Ek

(
x′,Ek ȳk+1(Exk ), z̄k(x)

)
x− x′

1x 6= x′ ,

Bk =
Ek
(
x′,Ek ȳk+1(Exk ), z̄k(x)

)
− Ek

(
x′,Ek ȳk+1(Ex′k ), z̄k(x)

)
Ek
(
ȳk+1

(
Exk
)
− ȳk+1

(
Ex′k
)) 1

Ek ȳk+1

(
Ex
k

)
6=E ȳk+1

(
Ex′
k

),
Ck =

Ek
(
x′,Ek ȳk+1(Ex′k ), z̄k(x)

)
− Ek

(
x′,Ek ȳk+1(Ex′k ), z̄k(x′)

)
Ek
(
ȳk+1

(
Exk
)
− ȳk+1

(
Ex′k
)
εk+1

) 1z̄k(x) 6= z̄k(x′).

It is clear that these quantities are Ftk -measurable and that max
(
|Ak|, |Bk|, |Ck|

)
≤ [f ]Lip so

|ỹk(x)− ỹk(x′)| ≤ ∆[f ]Lip|x− x′|+ Ek
∣∣∣(ȳk+1(Exk )− ȳk+1(Ex

′

k )
)(

1 + ∆Bk + Ck
√

∆εk+1

)∣∣∣ .
Now, using the inequality (a+ b)2 ≤ a2(1 + ∆) + b2(1 + 1

∆ ), one obtains

∣∣ỹk(x)− ỹk(x′)
∣∣2 ≤∆2[f ]2Lip|x− x′|2(1 + 1

∆ ) + (1 + ∆)Ek
∣∣∣(ȳk+1(Exk )− ȳk+1(Ex

′

k )
)(

1 + ∆Bk + Ck
√

∆εk+1
)∣∣∣2

≤ ∆(1 + ∆)[f ]2Lip|x− x′|2 + (1 + ∆)Ek
∣∣∣ȳk+1(Exk )− ȳk+1(Ex

′

k )
∣∣∣2 Ek(1 + ∆Bk + Ck

√
∆εk+1

)2
.

Since, (εk)k≥0 is a sequence of i.i.d. random variables, then

Ek
(

1 + ∆Bk + Ck
√

∆εk+1

)2
= (1 + [f ]Lip∆)2 + ∆[f ]2LipE|εk+1|2 ≤ 1 + 2∆[f ]Lip + ∆[f ]2Lip ≤ eCf∆,

so that

|ỹk(x)− ỹk(x′)|2 ≤ ∆(1 + ∆)[f ]2Lip|x− x′|2 + e(Cf+1)∆Ek
∣∣∣ȳk+1(Exk )− ȳk+1(Ex

′

k )
∣∣∣2 .

At this stage, one notes that if a, b ≥ 0, then max(a, b)2 ≤ max(a2, b2) so

|ȳk(x)− ȳk(x′)|2 ≤ max
(
|hk(x)− hk(x′)|2, |ỹk(x)− ỹk(x′)|2

)
≤ max

(
[h]2Lip|x− x′|2,∆(1 + ∆)[f ]2Lip|x− x′|2 + e∆(1+Cf )Ek

∣∣∣ȳk+1(Exk )− ȳk+1(Ex
′

k )
∣∣∣2 )

We use the fact that ȳk+1 is Lipschitz continuous and write

Ek
∣∣∣ȳk+1(Exk )− ȳk+1(Ex

′

k )
∣∣∣2 ≤ [ȳk+1]LipE|x− x′ + ∆(bk(x)− bk(x′)) +

√
∆(σk(x)− σk(x′))εk+1|2

≤ [ȳk+1]Lip|x− x′|2(1 + ∆(2[bk]Lip + [σk]Lip) + ∆2[bk]2Lip)
≤ [ȳk+1]Lip e

Cb,σ∆|x− x′|2 (6.72)
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where Cb,σ = 2[bk]Lip + [σk]Lip + ∆max[bk]2Lip. Therefore, one has

|ȳk(x)− ȳk(x′)|2 ≤ max
(

[h]2Lip|x− x′|2,∆(1 + ∆)[f ]Lip|x− x′|2 + e(1+Cf+Cb,σ)∆[ȳk+1]Lip|x− x′|2
)
.

Now, since ∆ ≤ ∆max, one deduces that ȳk is [ȳk]Lip-Lipschitz continuous with

[ȳk]Lip ≤ [h]Lip + ∆max(1 + ∆max)[f ]Lip + e(1+Cf+Cb,σ)∆max [ȳk+1]Lip.

STEP 2: For the Lipschitz continuity of z̄k, we will use the same property of ȳk+1, more precisely
inequality (6.72). For every x, x′ ∈ Rd,

|z̄k(x)− z̄k(x′)|2 ≤ 1√
∆
E
∣∣∣(ȳk+1(Exk )− ȳk+1(Ex

′

k ))εk+1

∣∣∣ ≤ 1√
∆

[ȳk+1]Lipe
Cb,σ∆|x− x′|2.

�
Proof of theorem 6.3.1.We denote δVt = Vt−V̄t for any process V . We consider the following stopping
times

τ c = inf
{
u ≥ t;

∫ u

t

1δYs>0dKs > 0
}
∧ T, (6.73)

τd = min
{
tj ≥ t; 1δYi<0

(
hi(X̄i)− Ỹi

)
+ > 0

}
∧ T (6.74)

and
τ = τ c ∧ τd.

Keeping in mind that (Ȳt)t is a càglàd process (see (6.41)), we use Itô’s formula between t and τ to write

|δYτ |2 = |δYt|2 + 2
∫

[t,τ)
δYsdδYs +

∫
[t,τ)
|δZ2

s |ds+
∑
t≤s<τ

(δYs − δYs−)2

= |δYt|2 − 2
∫

[t,τ)
δYs
(
f(Θs)− f(Θ̄s)

)
ds− 2

∫
[t,τ)

δYsdKs + 2
∫

[t,τ)
δYsdK̄s

+
∫

[t,τ)
(Zs − Z̄s)dWs +

∫
[t,τ)
|δZ2

s |ds+
∑
t≤s<τ

(δYs − δYs−)2

where Θs = (Xs, Ys, Zs), Θ̄s = (X̄s,EsȲs̄, ζ̄s), s = ti and s̄ = ti+1 if s ∈ (ti, ti+1). One notes that
(δYs − δYs−)2 = (Ȳs − Ỹs)2 so that, by the definition of the process K̄s, one has

|δYt|2 =|δYτ |2 + 2
∫ τ

t

δYs

(
f
(
Θs

)
− f

(
Θ̄s

))
ds+ 2

∫
[t,τ)

δYsdKs −
∫

[t,τ)
(Zs − Z̄s)dWs

−
∫

[t,τ)
|δZ2

s |ds−
∑

t≤ti<τ

(
2δYi(hi(X̄i)− Ỹi)+ + (Ȳi − Ỹi)2

)
. (6.75)

For every ti < τ , we set αi = 2δYi (hi(X̄i)− Ỹi)+ +(Ȳi− Ỹi)2 for convenience. It can be written as follows:

αi = 2(Yi − Ȳi)
(
hi(X̄i) ∨ Ỹi − Ỹi

)
+ (Ȳi − Ỹi)2

= 2(Yi − Ȳi)(Ȳi − Ỹi) + (Ȳi − Ỹi)2

= (Yi − Ỹi)2 − (Yi − Ȳi)2

= (Yi − Ỹi)2 − (δYi)2.

where we used, in the third line, the equality 2(a− b)(b− c) + (b− c)2 = (a− c)2 − (a− b)2.
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Let us evaluate this term αi. For every ti < τ ≤ τd, we have, by (6.74), two choices: Either
hi(X̄i) < Ỹi so that Ȳi = Ỹi and hence, δYi = Yi− Ỹi and (δYi)2 = (Yi− Ỹi)2, or, δYi > 0 so, since Ỹt < Ȳt
for every t, we have Ỹi − Yi < Ȳi − Yi < 0 and then, (δYi)2 < (Yi − Ỹi)2.
Consequently, for every ti ∈ [t, τ [,

αi = (Yi − Ỹi)2 − (δYi)2 ≥ 0.

Moreover, for s ∈ [t, τ [, s < τ c so that, by (6.73), we have δYs < 0 dKs-a.e. Hence,∫
[t,τ)

δYsdKs < 0.

This yields

|δYt|2 ≤ |δYτ |2 + 2
∫ τ

t

δYs
(
f(Θs)− f(Θ̄s)

)
ds−

∫
[t,τ)

(Zs − Z̄s)dWs −
∫

[t,τ)
|δZ2

s |ds.

Now, we evaluate |δYτ |2 depending on the value of τ .
• If τ = τd, then, by (6.74), δYτ < 0 and hτ (X̄τ ) > Ỹτ . This means Ȳτ = hτ (X̄τ ) and, since Yt ≥ ht(Xt)
for every t ∈ [0, T ],

0 ≤ |δYτ | = Ȳτ − Yτ = hτ (X̄τ )− Yτ ≤ hτ (X̄τ )− hτ (Xτ ).
Hence, |δYτ |2 ≤ [h]2Lip|Xτ − X̄τ |2.
• If τ = τ c , then, by (6.73), δYτ > 0 and Ks changes its value so Yτ = hτ (Xτ ). Consequently,

0 ≤ δYτ = Yτ − Ȳτ = hτ (Xτ )− Ȳτ ≤ hτ (Xτ )− hτ (X̄τ )

since Ȳt ≥ ht(X̄t) for every t ∈ [0, T ]. So, |δYτ |2 ≤ [h]2Lip|Xτ − X̄τ |2.
• If τ = T , δYT = g(XT )− g(X̄T ) so |δYτ |2 ≤ [g]2Lip|Xτ − X̄τ |2. Consequently, for all the possible values
of τ , we have

|δYτ |2 ≤ Ch,g,b,T,σ∆
where Ch,g,b,T,σ is a constant related to the Euler discretization error and depending on h and g. Thus,
taking the conditional expectation with respect to t leads to

Et
(
|δYt|2 +

∫ τ

t

|δZs|2ds
)
≤ Ch,g,b,T,σ∆ + 2Et

∫ τ

t

δYs
(
fs(Θs)−fs(Θ̄s)

)
−Et

∫
[t,τ)

(Zs− Z̄s)dWs. (6.76)

It remains to study the term 2Et
∫ τ
t
δYs
(
fs(Θs) − fs(Θ̄s)

)
. As f is Lipschitz continuous, we use

Young’s inequality ab ≤ a2

2α + αb2

2 and the inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2) to write

2Et
∫ τ

t

δYs
(
fs(Θs)− fs(Θ̄s)

)
≤ 3[f ]Lip

α

(∫ τ

t

Et|Xs − X̄s|2ds+
∫ τ

t

Et|Ys − EsȲs̄|2ds

+Et
∫ τ

t

|Zs − ζ̄s|2ds
)

+ α[f ]LipEt
∫ τ

t

|δYs|2ds. (6.77)

On the one hand,
Et|Xs − X̄s|2 ≤ 2Et|Xs −Xs|2 + 2Et|Xs − X̄s|2

where Et|Xs −Xs|2 is bounded as follows: from (6.3) taken between s and s, we have

Et|Xs −Xs|2 ≤ 2Et
∫ s

s

bu(Xu)2du+ 2Et
∫ s

s

σu(Xu)2du

≤ 4L2
b,σEt

∫ s

s

(1 + |Xu|)2du

≤ 4L2
b,σ∆Et sup

s≤u≤s
(1 + |Xu|)2.
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Hence, denoting CX = 4L2
b,σ(τ − t),∫ τ

t

Et|Xs − X̄s|2ds ≤ CX∆Et sup
s≤u≤s

(1 + |Xu|)2 + 2
∫ τ

t

Et|Xs − X̄s|2ds. (6.78)

On the other hand,

Et|Ys − EsȲs̄|2 ≤ 2Et|Ys − Ȳs|2 + 4Et|Ȳs − Ỹs|2 + 4EtEs|Ỹs − Ȳs̄|2. (6.79)

For every v, v′ such that v < v′ and |v − v′| ≤ ∆, (6.41) at v and v′ yields

Ỹv − Ȳv′ = (v′ − v)f
(
v, X̄v, EvȲv̄, ζ̄v

)
−
∫ v′

v

Z̄sdWs + K̄v′ − K̄v

so that taking the conditional expectations w.r.t. t yields

Et|Ỹv − Ȳv′ |2 ≤2(v′ − v)2Etf(θ̄v)2 + 2Et

(∫ v′

v

Z̄sdWs

)2

+ 2Et(K̄v′ − K̄v)2

≤2∆2Etf(θ̄v)2 + 2Et

(∫ v′

v

Z̄sdWs

)2

+ 2Et(K̄v′ − K̄v)2.

Since K̄v ≥ 0 for every v ∈ [0, T ], we have −K̄v < K̄v so that K̄v′ − K̄v < K̄v′ + K̄v. Then, owing the
fact that K̄v is non decreasing, K̄v′ − K̄v ≥ 0 so

(K̄v′ − K̄v)2 ≤ (K̄v′ − K̄v)(K̄v′ + K̄v) = K̄2
v′ − K̄2

v .

Hence, noting that f(Θ̄s) = f(X̄s,EsȲs̄, ζ̄s) is a composition of the functions f , ȳs and z̄s which are all
Lipschitz continuous according to Lemma 6.7.1 and recalling that if a function g is Lipschitz continuous
then it has linear growth i.e. there exists a finite constant C0 such that g(x) ≤ C(1 + |x|), one has

Et|Ỹv − Ȳv′ |2 ≤ 2∆2C0Et(1 + sup
v≤s≤v′

|X̄s|)2 + 2Et

(∫ v′

v

Z̄sdWs

)2

+ 2Et(K̄2
v′ − K̄2

v ).

Combining this with (6.79) twice yields∫ τ

t

Et|Ys − EsȲs̄|2ds ≤ 2
∫ τ

t

Et|δYs|2ds+ 4
(τ̄/∆)−1∑
i=t/∆

∫ ti+1

ti

Et|Ȳs − Ỹs|2ds+ 4
(τ̄/∆)−1∑
i=t/∆

∫ ti+1

ti

Et|Ȳs̄ − Ỹs|2ds

≤ 2
∫ τ

t

Et|δYs|2ds+ 8∆2C0(τ − t)Et(1 + sup
s≤u≤s̄

|X̄u|)2

+ 8
(τ̄/∆)−1∑
i=t/∆

∫ ti+1

ti

Et(K̄2
s − K̄2

s ) + Et(K̄2
s̄ − K̄2

s )

+ 8
(τ̄/∆)−1∑
i=t/∆

∫ ti+1

ti

Et

(∫ s

s

Z̄udWu

)2

ds+ 8
(τ̄/∆)−1∑
i=t/∆

∫ ti+1

ti

Et

(∫ s̄

s

Z̄udWu

)2

ds

≤ 2
∫ τ

t

Et|δYs|2ds+ 8∆(τ̄ − t)Et|K̄T |2 + 8∆2C0Cf (τ − t)Et(1 + sup
s≤u≤s̄

|X̄u|)2

+ 8
(τ̄/∆)−1∑
i=t/∆

∫ ti+1

ti

(
Et
(∫ s

s

Z̄udWu
)2

+ Et
(∫ s̄

s

Z̄udWu
)2
)
ds (6.80)

173



where we used the fact that K̄t is a non-decreasing positive process so for every t ∈ [0, T ], K̄t < K̄T and
the fact that sups≤u≤s αu ≤ sups≤u≤s̄ αu.

Thirdly,

Et
∫ τ

t

|Zs − ζ̄s|2ds ≤
(τ̄/∆)−1∑
i=t/∆

Et
∫ ti+1

ti

|Zs − ζ̄s|2ds

≤
(τ̄/∆)−1∑
i=t/∆

Et
(

4
∫ ti+1

ti

|Zs − Zs|2ds+ 4
∫ ti+1

ti

|Zs − ζs|2ds+ 2
∫ ti+1

ti

|ζs − ζ̄s|2ds
)
.

By the definitions (6.40) and (6.39) of ζs and ζ̄s, we have

|Zs − ζs|2 =
∣∣∣Zs − 1

∆Es
∫ s̄

s

Zsds
∣∣∣2 = 1

∆2

∣∣∣Es ∫ s̄

s

(Zs − Zs)
∣∣∣2 ≤ 1

∆Es
∫ s̄

s

|Zs − Zs|2ds

where the last inequality was obtained by using Cauchy-Schwarz inequality. Hence, we use Fubini’s
Theorem to deduce ∫ ti+1

ti

|Zs − ζs|2ds ≤ Es
∫ s̄

s

|Zs − Zs|2ds.

Likewise,

|ζs − ζ̄s|2 =
∣∣ 1
∆Es

∫ s̄

s

(Zs − Z̄s)
∣∣2 ≤ 1

∆Es
∫ s̄

s

|Zs − Z̄s|2ds

so that ∫ ti+1

ti

|ζs − ζ̄s|2ds ≤ Es
∫ s̄

s

|Zs − Z̄s|2ds.

Consequently,

Et
∫ τ

t

|Zs − ζ̄s|2ds ≤ 8Et
∫ τ̄

t

|Zs − Zs|2ds+ 2Et
∫ τ̄

t

|Zs − Z̄s|2ds. (6.81)

At this stage, we merge the 3 equations (6.78), (6.80) and (6.81) with (6.77) and take the expectation
to obtain

E
(
|δYt|2 +

∫ τ

t

|δZt|2
)
≤∆

(
Ch,g,b,T,σ + 6[f ]

α

(
CX + C0(τ̄ − t)

)
E(1 + sup

s≤u≤s̄
|X̄u|)2 + 12[f ]

α
(τ̄ − t)E|K̄T |2

)
+
(

2α[f ]Lip + 6[f ]Lip

α

)∫ τ

t

E|δYs|2ds+ 6[f ]Lip

α

∫ τ

t

E|Xs − X̄s|2ds

+ 24[f ]Lip

α
E
∫ τ̄

t

|Zs − Zs|2ds+ 6[f ]Lip

α
E
∫ τ̄

t

|Zs − Z̄s|2ds

+ 24[f ]Lip

α

(τ̄/∆)−1∑
i=t/∆

∫ ti+1

ti

(
E
∫ s

s

|Z̄u|2du+ E
∫ s̄

s

|Z̄u|2du

)
ds.

As stated in (6.4), E|K̄T |2 ≤ γ0 and by the classical properties of the Euler scheme, we have

E(1 + sup
u
|X̄u|)2 ≤ Cb,T,σ(1 + |x0|)2 and E|Xs − X̄s|2 ≤ Cb,T,σ∆(1 + |x0|)2.

Moreover,
(τ̄/∆)−1∑
i=t/∆

∫ ti+1

ti

(
E
∫ s

s

|Z̄u|2du+ E
∫ s̄

s

|Z̄u|2du

)
ds ≤

(τ̄/∆)−1∑
i=t/∆

∫ ti+1

ti

2∆E sup
s≤u≤s

|Zu|2 ≤ 2∆2(τ̄ − t)γ1.
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Hence, if we consider α = 6[f ]Lip and denote C̄ = Ch,g,b,T,σ + CX + (τ̄ − t)
(

2γ0 + 4γ1∆max + (1 +

C0)Cb,T,σ(1 + |x0|)2
)
and C̃ = 1 + 12[f ]2Lip, then we obtain

E
(
|δYt|2 +

∫ τ

t

|δZs|2
)
≤∆C̄ + C̃

∫ τ

t

E|δYs|2ds+ 4E
∫ τ̄

t

|Zs − Zs|2ds

+ E
∫ t

t

|Zs − Z̄s|2ds+ E
∫ τ

t

|Zs − Z̄s|2ds+ E
∫ τ̄

τ

|Zs − Z̄s|2ds.

Consequently,
E|δYt|2 ≤ C̃

∫ τ

t

E|δYs|2ds+K

where K = ∆C̄+4E
∫ τ̄
t
|Zs−Zs|2ds+E

∫ t
t
|Zs− Z̄s|2ds+E

∫ τ̄
τ
|Zs− Z̄s|2ds. Let us denote f(t) = E|δYt|2.

This function satisfies
f(t) ≤ C̃

∫ τ

t

f(s)ds+K.

We consider g(t) = f(T − t) which satisfies also

g(t) ≤ C̃
∫ t

0
g(s)ds+K.

Hence, Gronwall’s Lemma yields g(t) ≤ eC̃tK so that

f(t) ≤ eC̃(T−t)K.

Consequently,

E|Yt − Ȳt|2 ≤ eC̃(T−t)

(
∆C̄ + 4E

∫ T

0
|Zs − Zs|2ds+ E

∫ t

t

|Zs − Z̄s|2ds+ E
∫ τ̄

τ

|Zs − Z̄s|2ds

)
.

In particular, if t = tk and τ = tk′ , k, k′ ∈ {1, . . . , n}, then t = t and τ̄ = τ so

E|Yk − Ȳk|2 ≤ eC̃(T−tk)

(
∆C̄ + 4

∫ T

0
E|Zs − Zs|2ds+ 0 + 0

)
.

This completes the proof. �
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Chapter 7

Barrier options and details on
recursive quantization

7.1 Introduction
In the first part of this chapter, we detail the numerical section of Chapter 6 and give further details on
the numerical computation of the recursive quantization of a diffusion (Xt)t∈[0,T ] given by

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, X0 = x0, (7.1)

evolving according to certain models, mainly Black-Scholes model and the CEV model, and discretized
following an Euler scheme with time step ∆ = T

n , n ∈ N as follows

X̄tk+1 = X̄tk + bt(X̄tk)∆ + σt(X̄tk)
√

∆εk+1 := Ek(X̄tk , εk+1) (7.2)

where (εk)1≤k≤n is a sequence of i.i.d. random variables with distribution N (0, Id). We give more nu-
merical examples in order to illustrate the convergence of a recursive quantization-based discretization
scheme of a reflected BSDE, mainly in the valuation of the price of American options.

In the second part, we attack another application of recursive quantization. We are interested in the
pricing of a class of path-dependent payoffs, the Barrier options. Just like in the previous chapter where
the goal was to approximate the solution of a reflected BSDE with a forward process given by (7.1), we
start with a time discretization to obtain (7.2) and then, we apply a space discretization by recursive
vector quantization to compute the corresponding recursive quantization (X̂tk)0≤k≤n. This technique
was deeply explained in Section 6.2 of the previous chapter and upper error bounds were established in
Lp, p ∈ (1, 2 + d).

We will replace, most of the times, the indices tk by k, for example, X̄tk will be denoted X̄k.

7.2 Numerical implementation of specific models
As explained in Section 6.5 of Chapter 6, the recursive quantization of X̄k is given by X̂k =

∑Nk
i=1 x

k
i 1Ci(Γk)

where the grid Γk is the optimal quantizer of X̃k of size Nk. Assuming that all the grids Γk =
{xk1 , . . . , xkNk} are already computed up to time tk, the grid Γk+1 = {xk+1

1 , . . . , xk+1
Nk+1
} is computed

via

xk+1
j = E

(
X̃k+1 | X̂k+1 ∈ Cj(Γk+1)

)
=

∑Nk
i=1 p

k
i E
(
Ek(xki , εk+1)1{Ek(xk

i
,εk+1)∈Cj(Γk+1)}

)
pk+1
j

. (7.3)
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where Ek(x, εk+1) = x + ∆bk(x) +
√

∆σk(x)εk+1. For every k ∈ {1, . . . , n} and i, j ∈ {1, . . . , Nk}, the
transition probability pkij from xki to xk+1

j is given by

pkij = P
(
X̂k+1 ∈ Cj(Γk+1) | X̂k ∈ Ci(Γk)

)
= P

(
Ek(xki , εk+1) ∈ Cj(Γk+1)

)
. (7.4)

And the weights pk+1
j of the Voronoï cells Cj(Γk+1) are given, for every j ∈ {1, . . . , Nk+1}, via the classical

(discrete time) forward Kolmogorov equation, as follows

pk+1
j = P

(
X̃k+1 ∈ Cj(Γk+1)

)
=

Nk∑
i=1

pki P
(
Ek(xki , εk+1) ∈ Cj(Γk+1)

)
. (7.5)

In this section, we give details on the computations of the recursive (and greedy recursive) quantizers of a
process (X̄k)0≤k≤n following a Black-Scholes model and a CEV model, and discretized following an Euler
scheme with time step ∆ = T

n , n > 0. The following closed formulas are available in the one-dimensional
framework and are used in the pricing of American options and Barrier options in the end of this chapter.

7.2.1 Black-Scholes model
Consider a process (Xt)0≤t≤T evolving following a Black-Scholes model

dXt = rXtdt+ σXtdWt, X0 = x0 ∈ R,

where r is the interest rate, σ the volatility, T the maturity and (Wt)0≤t≤T a standard Brownian motion.
It is discretized following the Euler scheme

X̄k+1 = X̄k + r∆X̄k + σ
√

∆X̄k εk+1 := Ek(X̄k, εk+1) (7.6)

where (εk)1≤k≤n is a sequence of i.i.d. random variables with Normal distribution N (0, 1).

Relying on the fact that, for every i ∈ {1, . . . , Nk}, Ek(xki , εk+1) ∼ N (mk
i ,Σki ) where mk

i = xki +
∆bk(xki ) and Σki =

√
∆σk(xki ), the expectations and probabilities in (7.3), (7.4) and (7.5) are computed,

for every i ∈ {1, . . . , Nk} and j ∈ {1, . . . , Nk+1}, as follows

E
(
Ek(xki , εk+1)1{Ek(xk

i
,εk+1)∈Cj(Γk+1)}

)
=σ
√

∆xki√
2π

(
e−

(xk+1
j,inf)

2

2 − e−
(xk+1
j,sup)2

2

)
+ xki (1 + ∆r)

(
Φ0
(
xk+1
j,sup

)
− Φ0

(
xk+1
j,inf
))

(7.7)

and
P
(
Ek(xki , εk+1) ∈ Cj(Γk+1)

)
= Φ0

(
xk+1
j,sup

)
− Φ0

(
xk+1
j,inf

)
(7.8)

where Φ0 is the c.d.f. of N (0, 1),

xk+1
j,inf =

xk+1
j− 1

2
−mk

i

Σki
and xk+1

j,sup =
xk+1
j+ 1

2
−mk

i

Σki

and xk+1
j+ 1

2
= xk+1

j
+xk+1

j+1
2 with the conventions xk+1

1
2

= −∞ and xk+1
Nk+1+ 1

2
= +∞.

Next, we deal with the computation of the quantizers of (X̄k)0≤k≤n by greedy recursive quantization.
The steps to follow in this case are detailed in Section 6.6.1 of Chapter 6. Here, we will present the formulas
needed to compute the local inter-point inertia. Denote mk−1

j = xk−1
j + r∆xk−1

j and Σk−1
j = σ

√
∆xk−1

j ,
then, for every i ∈ {1, . . . , N}, these inertias are computed via

σ2
i =

N∑
j=1

pk−1
j sij (7.9)
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where sij are given, for every j ∈ {1, . . . , Nk}, by
• If i = 0

s1j = Φ0

(
xk1 −mk−1

j

Σk−1
j

)(
(xk1 −mk−1

j )2 + (Σk−1
j )2)+

Σk−1
j√
2π

(xk1 −mk−1
j )e

−
(xk
i
−mk−1

j
)2

2(Σk−1
j

)2
,

• If i = Nk − 1

sNk−1 j =
(

1− Φ0

(
xkNk −m

k−1
j

Σk−1
j

))(
(xkNk −m

k−1
j )2 + (Σk−1

j )2)− σk−1
j√
2π

(xkNk −m
k−1
j )e

−
(xk
Nk
−mk−1

j
)2

2(Σk−1
j

)2
,

• If 0 < i < Nk − 1

sij =
Σk−1
j√
2π

(mk−1
j − xki )e

−
(xk
i
−mk−1

j
)2

2(Σk−1
j

)2 +
Σk−1
j√
2π

(xki+1 −mk−1
j )e

−
(xk
i+1−m

k−1
j

)2

2(Σk−1
j

)2 +
Σk−1
j√
2π

(xki − xki+1)e
−

(xk
i+ 1

2
−mk−1

j
)2

2(Σk−1
j

)2

+
(
(xki −mk−1

j )2 + (Σk−1
j )2)Φ0

xki+ 1
2
−mk−1

j

Σk−1
j

− Φ0

(
xki −m

k−1
j

Σk−1
j

)
+
(
(xki+1 −mk−1

j )2 + (Σk−1
j )2)Φ0

(
xki+1 −m

k−1
j

Σk−1
j

)
− Φ0

xki+ 1
2
−mk−1

j

Σk−1
j

 .

Then, for implementing Lloyd’s algorithm, one uses the formulas (7.7) and (7.8) to compute the quanti-
zation sequence as well as the companion parameters (transition weights and Voronoï weights).

For an example, we consider

T = 1, X0 = 100, r = 0.006, σ = 0.2

discretize in n = 30 time steps and build quantizers of size Nk = 50 for every k ∈ {1, . . . , n}. In Figure 7.1,
we observe the functions xki 7→ pki , for every k ∈ {1, . . . , n} where (xki )1≤i≤Nk is the recursive quantization
grid and (pki )1≤i≤Nk are the corresponding Voronoï weights.

7.2.2 CEV model
Consider that the process (Xt)0≤t≤T evolves following a CEV model, a local volatility model, according
to

dXt = rXtdt+ ϑXδ
t dWt, X0 = x0, (7.10)

for δ ∈ (0, 1) and ϑ ∈ (0, ϑ], ϑ > 0, where r represents the interest rate and σ(x) = ϑxδ represents the
local volatility function. The corresponding Euler scheme with timestep ∆ = T

n , n > 0, is given by

X̄k+1 = X̄k + r∆X̄k + ϑX̄δ
k

√
∆εk (7.11)

where (εk)k is a sequence of i.i.d. random variables with distribution N (0, 1).

The recursive and greedy recursive quantization of this process is identical to the Black-Scholes model
framework. The only difference is replacing the constant volatility σ with σ(x) = ϑxδ, especially in the
expressions of mk

i and Σki .

In Figure 7.2, we represent the functions xki 7→ pki for every k ∈ {1, . . . , n} where (xki )1≤i≤Nk is the
recursive quantization grid and (pki )1≤k≤Nk the corresponding Voronoï weights. From a practical point
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Figure 7.1: Representation of xki 7→ pki where (xki )1≤i≤Nk is the recursive quantization grid, for
every k ∈ {1, . . . , n}, in a Black-Scholes model (* corresponds to k = 2 and ◦ corresponds to
k = n = 30).

of view, we build quantizers of size Nk = 50 for every k ∈ {1, . . . , n}, discretize in n = 20 time steps and
consider

T = 1, X0 = 100, r = 0.15, δ = 0.5, ϑ = 4.

7.3 Optimal quantization of a Brownian motion
In Section 6.6.1 of Chapter 6, we gave exact formulas for the computation of the transition matrices of
an optimal quantization tree corresponding to (X̂k)0≤k≤n following a Black-Scholes model. Here, our
aim is to establish similar formulas to compute the transition weights of an optimal quantization tree
corresponding to a standard Brownian motion, which is a more general case.

Let (Wtk)0≤k≤n be a standard Brownian motion (sampled at time tk) and (Ŵtk)0≤k≤n its optimal
marginal quantization sequence in the sense that each Ŵtk is an optimal quadratic quantization of Wtk .
Assume that the size of the grids Nk, k = 1, . . . , n, are all equal to N ∈ N. Note that this hypothesis is
not optimal but turns out to be optimal in terms of complexity for a given budget N1 + · · · + Nn. It is
not sharp in terms of error estimates (up to a multiplicative constant) but remains a good compromise
which is convenient in practice for the implementation.

We start by noticing that, at time tk, one has Wtk = Wtk − Wt0 =
√
tkεk where (εk)0≤k≤n is a

sequence of i.i.d. random variables with distribution N (0, 1). Hence, the optimal quadratic quantizer
Γk = (xk1 , . . . , xkN ) of Wtk is obtained by simple dilatation from an optimal quantizer (zk1 , . . . , zkN ) of the
standard Normal distribution. In other words, one has, for every i ∈ {1, . . . , N},

xki =
√
tkz

k
i .

Note that highly accurate quantization grids of N (0, 1) for regularly sampled sizes from N = 1 to 1 000
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Figure 7.2: Representation of xki 7→ pki where (xki )1≤i≤Nk is the recursive quantization grid, for
every k ∈ {1, . . . , n}, in a CEV model (* corresponds to k = 2 and ◦ corresponds to k = n = 20).

are available and can be downloaded from the quantization website www.quantize.maths-fi.com (for non-
commercial purposes).

Exact computation of the transition weights The goal is to compute the transition weights

pkij = P
(
Ŵtk+1 = xk+1

j | Ŵtk = xki

)
=
p̄kij
pki

where
p̄kij = P

(
Ŵtk+1 = xk+1

j , Ŵtk = xki

)
and pki = P

(
Ŵtk = xki

)
.

The weights pki are equal to the weights of the Voronoï cells induced by the quantizer (zk1 , . . . , zkN ) of
the standard Normal distribution and are available with the pre-computed sequences on the quantiza-
tion website. However, they can always be computed via the forward Kolmogorov equation, using the
transition weights pkij , as follows

pk+1
j =

Nk∑
i=1

pkij p
k
i =

Nk∑
i=1

p̄kij ,

keeping in mind that the Voronoï weight at time t0 (i.e. k = 0) is equal to 1 since X̂0 = X0 = x0
is deterministic. So, our main concern is the computation of p̄kij for every k ∈ {1, . . . , n} and i, j ∈

{1, . . . , N}. We rely on the fact that Wtk =
√
tkε1 and Wtk+1 = Wtk + (Wtk+1 −Wtk) =

√
tkε1 +

√
T
n ε2

where ε1 and ε2 are two independent random variables with distribution N (0, 1). Hence, denoting ∆ = T
n ,

one obtains

p̄kij = P
(√

tkε1 +
√

∆ε2 ∈ Cj(Γk+1),
√
tkε1 ∈ Ci(Γk)

)
= P

(√
tkε1 +

√
∆ε2 ∈

[√
tk+1z

k+1
j− 1

2
,
√
tk+1z

k+1
j+ 1

2

]
,
√
tkε1 ∈

[√
tkz

k
i− 1

2
,
√
tkz

k
i+ 1

2

])
= P

(
ε2 ∈

[√
k + 1zk+1

j− 1
2
−
√
kε1,

√
k + 1zk+1

j+ 1
2
−
√
kε1

]
, ε1 ∈

[
zki− 1

2
, zki+ 1

2

])
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where we used in the last inequality the fact that
√

tk+1
∆ =

√
k + 1 and

√
tk
∆ =

√
k. Then, the indepen-

dence of ε1 and ε2 yields

p̄kij =
∫ zk

i+ 1
2

zk
i− 1

2

P
(
ε2 ∈

[√
k + 1zk+1

j− 1
2
−
√
kz,
√
k + 1zk+1

j+ 1
2
−
√
kz
])
e−

z2
2
dz√
2π

=
∫ zk

i+ 1
2

zk
i− 1

2

(
Φ0

(√
k + 1zk+1

j+ 1
2
−
√
kz
)
− Φ0

(√
k + 1zk+1

j− 1
2
−
√
kz
))

e−
z2
2
dz√
2π
. (7.12)

These integrals can be computed via Gaussian quadrature formulas as explained in Chapter 6, mainly
Gauss-Legendre quadrature formulas for integrals on closed intervals and Gauss-Laguerre quadrature
formulas for integrals on semi-closed intervals.

Approximation of the transition weights If the goal is not necessarily the highest level of
precision, then one approximates the transition weights pkij by gj(zki ) where the function gj is given by

gj(z) = Φ0

(√
kz −

√
k + 1zk+1

j+ 1
2

)
− Φ0

(√
kz −

√
k + 1zk+1

j− 1
2

)
.

The reasoning is similar to the case of the optimal quantization tree associated to a diffusion evolving
following a Black-Scholes model in Section 6.6.1.

7.4 Further numerical examples
We present further numerical examples illustrating the theoretical results obtained in the previous chapter
on the recursive quantization-based discretization scheme of a reflected BSDE.

7.4.1 American put options under the historical probability
We are interested in the computation of an American put option price with maturity T and strike price
K. This (risk-neutral) price is given by the initial value Y0 of the following RBSDE under the historical
(real world) probability P

−dYt =
(
− rYt −

bt(Xt)− r
σt(Xt)

Zt

)
dt− ZtdWt + dKt

YT = h(XT ) and Yt ≥ g(Xt)
where g(x) = h(x) = max(K−x, 0) and bt(Xt) and σt(Xt) are the coefficients of the diffusion (Xt)t∈[0,T ]
representing the stock price.

Black-Scholes model We consider that the forward process (Xt)t∈[0,T ] evolves following the Black-
Scholes dynamics. The corresponding Euler scheme is given by (7.6). We compute the quantizers of X̄k

for every k ∈ {0, . . . , n} by recursive quantization (RQ), optimal quantization (OQ), greedy quantization
(GQ) and greedy recursive quantization (GRQ) as explained in Chapter 6 and in the sections above.
Then, we compute the price of the underlying option Y0 via the backward recursion (6.58). We consider
n = 15 time steps and a size N = 150 of the quantizers. The parameters of the model are the following

X0 = 40 , T = 0.5833 , σ = 0.3 , µ = 0 , r = 0.0488 .

We compute the desired values by the different types of quantization for K ∈ {35; 40; 45} and compare
the results with the prices obtained in [36]. The results and the errors induced by this comparison are
displayed in Table 7.1. Figure 7.3 depicts the convergence of the error induced by the approximation of
Y0 based on a recursive quantization of X̄k. We fix the strike K = 40 and vary the size N of the grids
between 10 and 100. The graph is represented in a log-log-scale and an O(N−1) rate of convergence is
clearly observed.
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K RQ GRQ OQ GQ Benchmark
Value Error Value Error Value Error Value Error

35 1.228 0.082 1.23 0.0102 1.23 0.0102 1.217 0.0028 1.2198
40 3.17 0.0004 3.166 0.0036 3.165 0.0046 3.157 0.0126 3.1696
45 6.232 0.0116 6.225 0.0186 6.223 0.0206 6.232 0.0116 6.2436
Average 0.0067 0.0108 0.0118 0.009

Table 7.1: Pricing of an American put option under the historical probability in a Black-Scholes
model discretized according to an Euler scheme and recursive (RQ), greedy recursive (GRQ),
optimal (OQ) and greedy (GQ) quantization for different values of K.
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Figure 7.3: Convergence rate of the quantization error for the American put under historical
probability in a Black-Scholes model for different sizes N = 10, . . . , 100.

CEV model Now consider that (Xt)t∈[0,T ] evolves following the CEV model, i.e.

dXt = µXtdt+ ϑXδ
t dWt, X0 = x0, (7.13)

for some δ ∈ (0, 1) and ϑ ∈ (0, ϑ] with ϑ > 0. σ(x) = xδ is the local volatility function. The discretized
Euler scheme associated to (Xt)t∈[0,T ] is given, for every k ∈ {0, . . . , n− 1}, by

X̄k+1 = X̄k + µ∆X̄k + ϑX̄δ
k

√
∆ εk (7.14)

where (εk)1≤k≤n is an i.i.d sequence of random variables with distribution N (0, 1). We compute the
quantizers of X̄k for every k ∈ {0, . . . , n} by recursive quantization (RQ), optimal quantization (OQ),
greedy quantization (GQ) and greedy recursive quantization (GRQ) as explained in Chapter 6 and in
the sections above. For this model, the transition weights of the optimal and greedy quantization tree
are computed via Monte Carlo simulations and not with closed formulas. We discretize with n = 15 time
steps, build quantizers of size N = 150 and consider the following parameters

X0 = 40 , T = 0.5833 , ϑ = 2 , δ = 0.5 , ε = 1 , µ = 0 , r = 0.0488 .

We compute the price Y0 via (6.58) for the different types of quantization for different values ofK between
30 and 50. The benchmark in this case is the price obtained by an optimal quantization-based Richardson
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Romberg extrapolation, as explained in section 6.6.2 of Chapter 6, with n = 5 and N = 1 000. The results
and the errors hence induced are exposed in Table 7.2.

K RQ GRQ OQ GQ Romberg
Value Error Value Error Value Error Value Error

30 0.593 0.025 0.597 0.021 0.605 0.013 0.594 0.024 0.618
35 1.707 0.023 1.709 0.021 1.726 0.004 1.705 0.025 1.73
40 3.76 0.017 3.758 0.019 3.779 0.002 3.756 0.021 3.777
45 6.81 0.02 6.806 0.024 6.835 0.005 6.807 0.023 6.83
50 10.698 0.042 10.692 0.048 10.722 0.018 10.694 0.046 10.74
Average 0.0254 0.0266 0.0084 0.0278

Table 7.2: Pricing of an American put option under the historical probability in a CEV model
discretized according to an Euler scheme and recursive (RQ), greedy recursive (GRQ), optimal
(OQ) and greedy (GQ) quantization for different values of K.

7.4.2 American put options
The price of an American put option is given by the RBSDE (6.1) with a driver f equal to 0 and
h(x) = g(x) = max(K − x, 0). This means that the time discretized backward recursion is given by

ȲT = hT (X̄T ) and Ȳtk = max
(
hk(X̄tk),Ek Ȳtk+1

)
and the space discretization backward recursion by

ŶT = hT (X̂T ) and Ŷtk = max
(
hk(X̂tk),Ek Ŷtk+1

)
where (X̂k)0≤k≤n is the recursive quantization sequence associated to (X̄k)0≤k≤n so that Ȳk and Ŷk are
both Ftk -measurable processes for every k ∈ {1, . . . , n}. The solutions of these recursions can be written
respectively as the Snell envelopes

Ȳk = P-esssup
{
E (hτ (X̄τ ) | Fτ ), τ ∈ {tk, . . . , T}Fτ -stopping time

}
and

Ŷk = P-esssup
{
E (hτ (X̂τ ) | Fτ ), τ ∈ {tk, . . . , T}Fτ -stopping time

}
.

This allows to estimate an upper bound for the Lp-space discretization error ‖Ȳk − Ŷk‖p as follows

‖Ȳk − Ŷk‖p ≤ [h]Lip
∥∥max
l≥k
|X̄l − X̂l|

∥∥
p
≤ [h]Lip

(
n∑
l=k
‖X̄l − X̂l‖pp

) 1
p

where ‖X̄l−X̂l‖p is the Lp-recursive quantization error estimated in Section 6.2. In fact, by the definitions
of (Ȳk)0≤k≤n and (Ŷk)0≤k≤n, one has, for every k ∈ {0, . . . , n}

|Ȳk − Ŷk| ≤ P− esssup
{
Ek |hτ (X̄τ )− hτ (X̂τ |, τ ∈ {k, . . . , n}Ftk -stopping time

}
≤ [h]LipEk

(
max
l≥k
|X̄l − X̂l|

)
.

From a numerical point of view, we proceed like for the previous examples and build quantizers via
recursive, greedy recursive and optimal quantization. Particularly in this example, one does not need to
compute the parameters πkij since the driver f is equal to 0 and hence they are not needed to implement
the backward recursion (6.58). The quantizers, the weights of the Voronoï cells and the transition weights
matrices are computed similarly to the previous example.
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Black-Scholes model - discretization according to an Euler scheme In this paragraph,
(Xt)t∈[0,T ] evolves following a Black-Scholes model. The corresponding Euler scheme is given by (7.6).
We consider n = 15 time steps, build quantizers of size N = 100 and consider

K = 110 , T = 1 , σ = 0.2 , µ = 0.006 .

We compare the prices obtained by the different quantization techniques to a benchmark obtained by a
binomial tree with n̄ = 104 time steps. The principle is the following: Starting with X0 at time t0, one
computes, at time tk = k∆ = k Tn , the process Xk+1 = (xk+1

j )1≤j≤k+1 from Xk = (xki )1≤i≤n

xk+1
j =

{
uxki if the price increases
dxki if the price decreases

where u = e(r−σ2
2 )∆+σ

√
∆ and d = e(r−σ2

2 )∆−σ
√

∆. Then, once we have computed all the values for every
k ∈ {1, . . . , n̄}, we proceed with the valuation of the price of the American put option via a backward
recursion as follows:{

vni = hn(xni ), i = 1, . . . , Nn,
vki = max

(
hk(xki ), E(vk+1|vki )

)
, i = 1, . . . , Nk, k = 0, . . . , n− 1. (7.15)

Note that the transition probability from xki to xk+1
j is equal to p = 0, 5 and to xk+1

j+1 is equal to 1− p.
The results and the errors hence obtained are exposed in Table 7.3 for different values of X0 between 90
and 120.

X0 RQ GRQ OQ Binomial tree
Value error Value Error Value Error

90 21.275 0.02 21.256 0.001 21.233 0.022 21.255
95 17.378 0.018 17.346 0.014 17.341 0.019 17.36
100 13.936 0.022 13.886 0.028 13.902 0.012 13.914
105 10.971 0.025 10.915 0.031 10.945 0.001 10.946
110 8.483 0.028 8.425 0.03 8.467 0.012 8.455
120 4.819 0.028 4.771 0.032 4.825 0.034 4.791
Average error 0.024 0.021 0.017

Table 7.3: Pricing of an American put option in a Black-Scholes model discretized according to
an Euler scheme and recursive (RQ), greedy recursive (GRQ) and optimal (OQ) quantization
for different values of X0.

Furthermore, we are interested, in this example, in comparing the results obtained when the transition
weight matrices of the optimal quantization tree are computed exactly via Gaussian quadrature formulas
versus when they are approximated by the function gj (see Section 6.6.1 of Chapter 6). We observe
the errors induced in Table 7.4 and deduce that using closed formulas or approximating formulas to
compute the transition weights give almost the same results, the differences between the two approaches
are negligible. However, it should be mentioned that the approximating computation is much faster so the
choice depends on the interest of the implementation and on the values of X0. For comparison purposes,
we compute the difference between the exact transition weights and the approximated transition weights
and observe an error equal to 0.0614 which is more or less significant and mostly due to the differences in
the transition weights of the Voronoï cells at the edges. This interpretation is deduced by the numerical
experiments but it is also intuitive since these cells are of the form [a,+∞) or (−∞, a] and their centroids
cannot represent the whole unbounded cell.
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X0 Approximated weights Exact weights
90 0.02 0.022
95 0.019 0.019
100 0.014 0.012
105 0.004 0.001
110 0.008 0.012
120 0.029 0.034
Average error 0.016 0.017

Table 7.4: Errors induced by the pricing of an American put option in a Black-Scholes model
discretized according to an Euler scheme and optimal quantization with transition weights com-
puted exactly and approximately for different values of X0.

CEV model - discretization according to a Milstein scheme We consider that (Xt)t∈[0,T ]
evolves following a CEV model and the time discretization is established according to a Milstein scheme
with time step ∆ = T

n , i.e.
X̄k+1 = mkεk+1 + ck := U(X̄k, εk+1) (7.16)

where
ck = X̄k

(
1− 1

2δ + r∆− 1
2hϑ

2δX̄
2(δ−1)
k

)
, mk = 1

2∆ϑ2δX̄2δ−1
k

and εk+1 is a random variable with distribution χ2(1, µ2
k) with 1 degree of freedom and

µk =
X̄1−δ
k

ϑδ
√

∆
.

Let us first give some details about the computation of the quantizers of (X̄k)1≤k≤n in the Milstein
scheme case. For the optimal quantization, the quantizers are obtained as explained previously for the
Euler scheme and the transition weights are computed by Monte Carlo simulations. However, for the
recursive and greedy recursive quantization, one should note some differences.

We start with the computation of the inter-point inertia in the case of greedy recursive quantization
before proceeding with the expectations and probabilities common to both methods. According to (7.9),
these inter-point inertia are given, for every i, j ∈ {1, . . . , N}, by σ2

j =
∑N
i=1 p

k−1
i sij where sij is computed

based on the following formulas:
• The cumulative distribution function of χ2(1, µ2): Fε(x) = Φ0(x+)− Φ0(x−),
• The first order moment of χ2(1, µ2)

M1
ε (x) = (1 + µ2)

(
Φ0(x+)− Φ0(x−)

)
+ (2µ+ x−)e

− x−
2

2
√

2π
− (2µ+ x+)e

− x+2
2

√
2π

,

• The second order moment of χ2(1, µ2)

M2
ε (x) =

(
Φ0(x+)− Φ0(x−)

)(µ4

2 + 3µ2 + 3
)

+ e−
x−2

2
√

2π

(
4µ3 + 6µ2x− + 4µ(2 + x−

2) + x−(3 + x−
2)
)

− e−
x+2

2
√

2π

(
4µ3 + 6µ2x+ + 4µ(2 + x+2) + x+(3 + x+2)

)
.

where Φ0 is the c.d.f of the standard Normal distribution, x+ =
√
x− µ and x− = −

√
x− µ.
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Then, in order to compute the quantizer Γk+1 = {xk+1
1 , . . . , xk+1

N } and its companion parameters for
every k ∈ {0, . . . , n}, we start by denoting

xj,i+ =
xk+1
j+ 1

2
− cik

mi
k

and xj,i− =
xk+1
j− 1

2
− cik

mi
k

where xk+1
j+ 1

2
= xk+1

j
+xk+1

j+1
2 , cik = xki

(
1 − 1

2δ + r∆ − 1
2∆ϑ2δ(xki )2(δ−1)

)
and mi

k = 1
2∆ϑ2δ(xki )2δ−1. Then,

the expectations and probabilities in (7.3), (7.4) and (7.5) are computed as follows

P
(
Uk(xki , εk+1) ∈ Cj(Γk+1)

)
= Fε(xj,i+)− Fε(xj,i−)

and

E
(
Uk(xki , εk+1)1{Ek(xk

i
,εk+1)∈Cj(Γk+1)}

)
=
(
cki +mk

i (1 + µki
2)
)(
Fε(xj,i+)− Fε(xj,i−)

)
+ mk

i√
2π

[
(2µki + x−j,i+)e−

x
−
j,i+

2

2 − (2µki + x+
j,i+)e−

x
+
j,i+

2

2

+(2µki + x+
j,i−)e−

x
+
j,i−

2

2 − (2µki + x−j,i−)e−
x
−
j,i−

2

2

]
.

From a practical point of view, we consider n = 25, build quantizers of size N = 100 and consider the
same parameters as previously. We compare the results obtained for different values of K between 90
and 120 to the price obtained by a Richardson-Romberg extrapolation with n = 5 and N = 800. The
induced errors are reported in Table 7.5.

K RQ GRQ OQ Romberg
Value Error Value Error Value Error

90 6.556 0.042 6.545 0.023 6.564 0.004 6.568
95 8.254 0.034 8.246 0.042 8.266 0.022 8.288
100 10.251 0.035 10.234 0.052 10.267 0.019 10.286
105 12.569 0.05 12.546 0.073 12.579 0.04 12.619
110 15.225 0.039 15.202 0.086 15.23 0.05 15.288
120 21.674 0.053 21.652 0.072 21.68 0.044 21.724
Average error 0.037 0.058 0.031

Table 7.5: Pricing of an American put option in a CEV model discretized according to a Milstein
scheme and recursive (RQ), greedy recursive (GRQ) and optimal (OQ) quantization compared
to a Romberg extrapolation method for different values of K.

7.4.3 Two-dimensional American put options
Our goal is to approximate the price of a multi-dimensional American geometric put option given by the
solution of the RBSDE (6.1) with a driver equal to 0 and gt(x1, . . . , xd) = ht(x1, . . . , xd) = max

(
K −

|x1 · · ·xd| 1d , 0
)
, K being the strike price. Due to the choice of h and g, this d-dimensional problem can

be reduced to a one-dimensional problem case. The forward process evolves following a Black-Scholes
dynamics and is discretized by a Euler scheme, i.e. for i ∈ {1, . . . , d}

X̄i
k+1 = X̄i

k + r∆X̄i
k + σ

√
∆εik

where r is the interest rate, σ the volatility and (εik)k,i a sequence of Normally distributed random
variables. We carry out simulations for d = 2, discretize in n = 10 time steps and build quantizers of
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size NX = 100 by optimal and hybrid recursive quantization. For the hybrid recursive quantization, we
use optimal quantizers of the standard Normal distribution of size Nε = 1450 and the computations are
similar to those in Example 6.6.2 in Chapter 6. The parameters of the example are

Xi
0 = 100 ∀i , T = 1 , r = 0.05 , σ = 0.4 , ρ = 0 .

In Table 7.6, we vary K between 100 and 120 and expose the results obtained by the two methods
and compare them to the benchmark obtained by a two-dimensional binomial tree which consists on the
following: One starts by partitioning the interval [0, T ] into n sub-intervals [tk, tk+1] where tk = k∆ = k Tn
for k ∈ {1, . . . , n}. At each time tk, the tree has k2 nodes representing each the price of the forward
process Xk = (X1

k , X
2
k) and, at time tk+1, this price becomes equal to one of the 4 following possibilities

(X1
ku,X

2
ku) with probability puu,

(X1
ku,X

2
kd) with probability pud,

(X1
kd,X

2
ku) with probability pdu,

(X1
kd,X

2
kd) with probability pdd,

where u = eσ
√

∆ is the factor corresponding to the price raise and d = e−σ
√

∆ to the price drop. The
probabilities are given by

puu = 1
4

(
1 + ρ+

√
∆
(

2r − σ2

σ

))
, pdd = 1

4

(
1 + ρ−

√
∆
(

2r − σ2

σ

))

and pud = pdu = 1
4(1− ρ)

where ρ is the correlation coefficient between the two variables. Hence, we start by a forward simulation
to design the tree and then proceed with a backward simulation to compute the price of the American
put via

Pk,i = max
(
hk(X1

k,i, X
2
k,i),E(Pk+1|Pk,i)

)
.

K OQ HRQ Benchmark
Value Error Value Error

100 10.316 0.14 10.481 0.025 10.456
105 13.094 0.186 13.412 0.132 13.28
110 16.303 0.126 16.616 0.187 16.429
115 19.763 0.114 20.154 0.277 19.877
120 23.532 0.066 23.92 0.322 23.598
Average error 0.1264 0.1886

Table 7.6: Pricing of a two-dimensional American put option in a BS model discretized according
to an Euler scheme and hybrid recursive (HRQ) and optimal (OQ) quantization for different
values of K.

7.4.4 Multi-dimensional example
We compute the solution of the following RBSDE (example due to J.F. Chassagneux)

−dYt = (Z1
t + . . .+ Zdt )

(
Yt −

2 + d

2d

)
dt− ZtdWt + dKt

YT = eT
1 + eT

and Yt ≥ ϕ(t) et
1 + et
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where et = et+W
1
t +...+Wd

t and ϕ(t) = − 1
2

(
t−T
T

)2
+ 1 for a dimension d ∈ {2; 3}. The forward process

(Xt)t∈[0,T ] in this example is given by
dXt = dWt

where (Wt)t∈[0,T ] is a d-dimensional standard Brownian motion. The corresponding discretized forward
process is hence given by

X̄i
k+1 = X̄i

k +
√

∆εik+1

where (ε1
k, . . . , ε

d
k)1≤k≤n is a sequence of i.i.d random variables with distribution N (0, Iq) and ∆ = T

n is
the time step parameter and n is the number of time steps.

We consider T = 0.5 and X0 = 0.5 so that Y0 = 0.5. We discretize in n = 10 time steps and build
quantizers by optimal (OQ) and hybrid recursive quantization (HRQ). In this example, we compare the
different values obtained for various sizesNX of the optimal quantizers and the hybrid recursive quantizers
and different sizes Nε of the optimal quantizer of N (0, Id) used in the hybrid recursive quantization of X̄k.
We expose the results in Table 7.7 in the two-dimensional case and in Table 7.8 for the three-dimensional
case.

NX Nε HRQ OQ
Value Error Value Error

50 750 0.5869 0.0869 0.5225 0.0225
50 1450 0.5864 0.0864 0.5225 0.0225
80 750 0.5856 0.0856 0.5163 0.0163
80 1450 0.58555 0.08555 0.5163 0.0163
100 900 0.58552 0.08552 0.514 0.014
100 1450 0.5854 0.0854 0.514 0.014
Average error 0.0858 0.0176

Table 7.7: Values of Y0 in the two-dimensional framework based on optimal (OQ) and hybrid
recursive quantization (HRQ) for different value of NX and Nε.

NX Nε HRQ OQ
Value Error Value Error

50 900 0.5959 0.0959 0.5566 0.0566
50 1300 0.5957 0.0957 0.5566 0.0566
80 900 0.5912 0.0912 0.5459 0.0459
80 2000 0.5909 0.0909 0.5459 0.0459
Average error 0.0934 0.0512

Table 7.8: Values of Y0 in the three-dimensional framework based on optimal (OQ) and hybrid
recursive quantization (HRQ) for different value of NX and Nε.

7.5 Application to Barrier options
The goal of this section is the pricing of a class of path-dependent payoffs, i.e. options whose payoff
at maturity T depending, not only on the value of the underlying asset, but also on the maximum or
minimum of its price on the interval [0, T ]. In other words, the payoff can be written as

hT = Ψ(XT , sup
t∈[0,T ]

Xt) or hT = Ψ(XT , inf
t∈[0,T ]

Xt).
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In particular, we consider Barrier options whose payoff is given by

hT = ϕ(XT )1supt∈[0,T ] Xt ∈I or hT = ϕ(XT )1inft∈[0,T ] Xt ∈I

where I is a subset of Rd. Among others, one can name the following examples of Barrier options:
� An Up-and-Out Call option which becomes equal to 0 as soon as the price of the underlying asset
becomes higher than a certain barrier L, and whose payoff is given by

hT (XT ) = (XT −K)+1supt∈[0,T ] Xt≤L

where T is the maturity, K the strike price and L the barrier.
� A Down-and-Out Call option which becomes equal to 0 as soon as the price of the underlying asset
becomes lower than a certain barrier L, and whose payoff is given by

hT (XT ) = (XT −K)+ 1inft∈[0,T ] Xt≥L.

7.5.1 Theoretical approach
There exist formulas aiming to approach the prices of the options in this framework. To do so, it is
necessary to handle the distribution of the maximum or the minimum of the Euler scheme associated to
the price of the assets between two discretization steps tk and tk+1, conditioned w.r.t. its values at times
tk, k ∈ {0, . . . , n}. This means that one needs to study the diffusion bridges between tk and tk+1. Let us
give some details and refer to [31, 57, 72] for example, for further details.

Let W = (Wt)t≥0 be a standard Brownian motion. We start by presenting some basic properties of a
Brownian diffusion bridge over [0, T ]. It is a centered Gaussian process, measurable w.r.t. the filtration
(Ft)t∈[0,T ] =

(
σ(Ws, s ≤ t,NP)

)
t∈[0,T ], where NP is the class of all P-negligible sets of A, and defined by

YW,Tt = Wt −
t

T
WT , t ∈ [0, T ].

It is independent from (WT+s)s≥0 and its covariance matrix is given by

E(YW,Ts YW,Tt ) = s ∧ t− st

T
= (s ∧ t)(T − s ∨ t)

T
.

Furthermore, if we consider 0 < T0 < T1, then

L
(
(Wt)t∈[T0,T1] |Ws, s /∈(T0, T1)

)
= L

(
(Wt)t∈[T0,T1]|WT0 ,WT1

)
.

Hence, (Wt)t∈[T0,T1] and (Ws)s /∈(T0,T1) are independent conditioned to (WT0 ,WT1) and

L
(
(Wt)t∈[T0,T1] |WT0 = x,WT1 = y

)
= L

(
x+ t− T0

T1 − T0
(y − x) + (YW,T1−T0

t−T0
)t∈[T0,T1]

)
.

Going back to our problem, the Brownian diffusion bridge associated to the genuine Euler scheme of
the diffusion (7.1) is characterized in the following proposition.

Proposition 7.5.1. (i) The processes (Xt)t∈[tk,tk+1], k ∈ {0, . . . , n− 1}, are independent, conditioned to
σ(Xtk , k = 0, . . . , n− 1).
(ii)

L
(
(Xt)t∈[tk,tk+1] |Xtl = xl, l = 0, . . . , n

)
= L

(
(Xt)t∈[tk,tk+1] |Xtk = xk, Xtk+1 = xk+1

)
= L

((
xk + n(t− tk)

T
(xk+1 − xk) + σ(tk, xk)YW,∆t−tk

)
t∈[tk,tk+1]

)
.
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Having in hand the conditional distribution of the Euler scheme between tk and tk+1 w.r.t its values
at times tk, k ∈ {0, . . . , n− 1}, one can deduce the conditional distribution of its maximum or minimum
over [0, T ].

Proposition 7.5.2. Let (uk)k=0,...,n−1 be a sequence of i.i.d. random variables with Uniform distribution.
Then,

L
(

max
t∈[0,T ]

(Xt) |Xtk = xk, k = 0, . . . , n
)

= L
(

max
k=0,...,n−1

G−1
uk

(xk, xk+1)1−1
uk≥max(xk,xk+1)

)
and

L
(

min
t∈[0,T ]

(Xt) |Xtk = xk, k = 0, . . . , n
)

= L
(

min
k=0,...,n−1

F−1
uk

(xk, xk+1)1−1
uk≤min(xk,xk+1)

)
where

Gu(x, y) =
(

1− e−2n (x−u)(y−u)
Tσ2(x)

)
and Fu(x, y) = e

−2n (x−u)(y−u)
Tσ2(x) . (7.17)

At this stage, we are able to give general formulas to approximate the price of Barrier options, in
other words, to compute EΨ(XT ,maxt∈[0,T ]Xt) or EΨ(XT ,mint∈[0,T ]Xt).

Proposition 7.5.3. The price of an Up-and-Out option with maturity T and barrier L and whose payoff
is given by the bounded function g is

VUO = e−rTE
[
g(Xn)1supt∈[0,T ] Xt≤L

]
= e−rTE

[
g(Xn)

n∏
k=1

GL(Xk−1, Xk)1Xk,Xk−1≤L

]
.

The price of a Down-and-Out option with maturity T and barrier L and whose payoff is given by the
bounded function g is

VDO = e−rTE
[
g(Xn)1inft∈[0,T ] Xt≥L

]
= e−rTE

[
g(Xn)

n∏
k=1

(
1− FL(Xk−1, Xk)1Xk,Xk−1≥L

)]

where GL and FL are the functions defined by (7.17)

To approximate the price of these options, time and space discretization schemes of the diffusion
process (Xt)t∈[0,T ] are mandatory. For the time discretization, we consider the Euler scheme (X̄tk)0≤k≤n,
with uniform mesh tk = k∆ for k ∈ {0, . . . , n} and ∆ = T

n , associated to the process (Xt)t∈[0,T ] which is
recursively given by

X̄tk+1 = X̄tk + ∆bk(X̄tk) + σk(X̄tk)(Wtk+1 −Wtk), X̄0 = X0 = x0, (7.18)

where Wtk+1 −Wtk =
√

∆εk+1, for every k ∈ {0, . . . , n− 1} and (εk)0≤k≤n is a sequence of i.i.d. random
variables with distribution N (0, Iq). Its continuous counterpart, the genuine Euler scheme, is given by

dX̄t = b(t, X̄t)dt+ σ(t, X̄t)dWt (7.19)

where t = tk when t ∈ [tk, tk+1). This process satisfies for every p ∈ (0,+∞) and every n ≥ 1, (see [10])∥∥∥ sup
t∈[0,T ]

Xt

∥∥∥
p

+ sup
n≥1

∥∥∥ sup
t∈[0,T ]

X̄t

∥∥∥
p
≤ Cb,T,σ(1 + |x0|) and

∥∥∥ sup
t∈[0,T ]

|Xt− X̄t|
∥∥∥
p
≤ Cb,T,σ

√
∆(1 + |x0|)

where Cb,T,σ is a positive constant depending on p, T, b and σ.
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Concerning the space discretization, we rely on vector quantization, more precisely, recursive vector
quantization which was introduced in [63] and revisited and developed in Chapter 6. A(n optimized)
recursive quantization of (X̄k)0≤k≤n is defined by the following recursion: X̂0 = X̄0 = x0 and{

X̃k = Ek−1(X̂Γk−1
k−1 , εk),

X̂Γk
k = ProjΓk(X̃k), ∀k = 1, . . . , n. (7.20)

For the high-dimensional framework, the computations by this scheme become very complex so multi-
dimensional extensions are necessary. One can cite the recursive product quantization in [28], a massive
“embedded” Monte Carlo simulation or a more interesting alternative, introduced in Chapter 6, which
is a kind of hybrid recursive quantization where the white noise (εk)0≤k≤n is replaced by its (already
computed) quantized version (ε̂k)0≤k≤n. In other words, we consider, instead of (7.20), the following
recursive scheme {

X̃k = Ek−1(X̂k−1, ε̂k),
X̂k = ProjΓk(X̃k), ∀k = 1, . . . , n. (7.21)

where (ε̂k)k is now a sequence of optimal quantizers of the Normal distribution N (0, Iq), which are al-
ready computed and kept off line, they can be found and downloaded from the quantization website
www.quantize.maths-fi.com (for non-commercial purposes). A priori error bounds of these two types of
quantization have been established in Lp, p ∈ (1, 2 +d), when assuming that X̂k is a stationary quadratic
optimal quantizer of X̃k for every k ∈ {1, . . . , n}.

In the following, we detail the approximation of Up-and-Out options, the study for other types of
Barrier options is identical. The recursive quantization scheme allowing the computation of the price of
the Barrier Up-and-Out option VUO is given by the following Backward Dynamic Programming principle
(BDPP) based on the recursive quantization (X̂k)0≤k≤n of (X̄k)0≤k≤n

L̂n = g(X̂n)1
X̂n≥L

and L̂k = E
(
GL(X̂k, X̂k+1)L̂k+11X̂k≥L

|Fk
)
. (7.22)

One can define the same BDPP for the non-quantized process:

Ln = g(X̄n)1X̄n≥L and Lk = E
(
GL(X̄k, X̄k+1)Lk+11X̄k≥L|Fk

)
. (7.23)

It is clear that L0 = VUO.

Our aim is to establish upper bounds for the error induced by the approximation of Lk by L̂k. We
assume that, for every k ∈ {1, . . . , n}, the recursive quantization X̂k of X̄k is computed according to
(7.20) or (7.21) where X̂k is a quadratic optimal quantization of X̃k. It has been shown, in [57] for
example, that a quadratic optimal quantizer X̂ΓN of X is always a stationary quantizer in the following
sense

E(X|X̂ΓN ) = X̂ΓN . (7.24)
Before estimating the error bounds, we show that the functions GL(x, y) and FL(x, y) are locally Lipschitz
continuous.

Lemme 7.5.4. Let L ∈ Rd, d, p ∈ (0,+∞) and r ∈
(
1, 1 + d

p

)
. Assume that σ is uniformly elliptic,

i.e. there exists σ0 > 0 such that σ(x) > σ0 for every x ∈ Rd. Then, for every x, y ∈ Rd, GL(x, y) and
FL(x, y) are Lp-locally Lipschitz, i.e.

‖GL(x, y)−GL(x′, y′)‖p ≤ KLip(‖x− x′‖rp + ‖y − y′‖rp)(1 + ‖x‖22p r
r−1

+ ‖y′‖22p r
r−1

)

and
‖FL(x, y)− FL(x′, y′)‖p ≤ KLip(‖x− x′‖rp + ‖y − y′‖rp)(1 + ‖x‖22p r

r−1
+ ‖y′‖22p r

r−1
),

where KLip = n

T
max

(
1
σ2

0
,

2[σ]Lip

σ3
0

)
.

191

http://www.quantize.maths-fi.com


Proof. The proof is identical for GL and FL. For every x, y, x′, y′ ∈ Rd, the fact that |eu− ev| ≤ |u− v|
for u, v < 0 yields

|GL(x, y)−GL(x′, y′)| =
∣∣∣∣e−2n (x−L)(y−L)

σ2(x) − e−2n (x′−L)(y′−L)
σ2(x′)

∣∣∣∣
≤ 2n

T

∣∣∣∣ (x− L)(y − L)
σ2(x) − (x′ − L)(y′ − L)

σ2(x′)

∣∣∣∣
≤ 2n

T

∣∣∣∣ xy

σ2(x+ L) −
x′y′

σ2(x′ + L)

∣∣∣∣ (simple change of variables)

≤ 2n
T

∣∣∣∣ |x||y − y′|σ2(x+ L) + |y′|
(

x

σ2(x+ L) −
x′

σ2(x′ + L)

)∣∣∣∣
≤ 2n

T

∣∣∣∣ |x||y − y′|σ2(x+ L) + |y′|
(
x

(
1

σ2(x+ L) −
1

σ2(x′ + L)

)
+ |x− x′|
σ2(x′ + L)

)∣∣∣∣
≤ 2n

T

∣∣∣∣ |x||y − y′|σ2(x+ L) + |y′||x|
∣∣∣∣ 1
σ2(x+ L) −

1
σ2(x′ + L)

∣∣∣∣+ |y′| |x− x
′|

σ2(x′ + L)

∣∣∣∣ .
The assumption made on σ yields that max

(
1

σ2(x+ L) ,
1

σ2(x′ + L)

)
≤ 1
σ2

0
so that

1
σ2(x+ L) −

1
σ2(x′ + L) ≤ 2[σ]Lip|x− x′|

σ(x+ L) + σ(x′ + L)
σ4(x+ L) + σ4(x′ + L) ≤

2[σ]Lip

σ3
0
|x− x′|.

Hence

|GL(x, y)−GL(x′, y′)| ≤ 2n
T

∣∣∣∣ |x||y − y′|σ2
0

+ 2[σ]Lip

σ3
0
|x− x′||y′||x|+ |y′| |x− x

′|
σ2

0

∣∣∣∣
≤ 2n

T
max

(
1
σ2

0
,

2[σ]Lip

σ3
0

)
(|x− x′|+ |y − y′|) (|x|+ |y′|+ |x||y′|)

≤ n

T
max

(
1
σ2

0
,

2[σ]Lip

σ3
0

)
(|x− x′|+ |y − y′|)

(
1 + |x|2 + |y′|2

)
.

By taking the expectation, applying Hölder inequality with the conjugate exponents r an r
r−1 and then

Minkowski’s inequality, one obtains the result. �

Theorem 7.5.5. Let (X̄k)0≤k≤n be the process defined by (7.18) and let (X̂k)0≤k≤n be its recursive
quantization. Assume that X̂k is a stationary quadratic optimal quantization of X̃k (in the sense of
(7.24)), for every k ∈ 0, . . . , n. Then, for p ∈ (1,+∞),

‖Lk − L̂k‖p ≤ max
(
κ,C0KLip

)
‖gn‖sup

n∑
l=k
‖X̄l − X̂l‖

p+d
2

+ ‖X̄l − X̂l‖
1
pp′
p

where C0 and κ are finite positive constants depending on p, p′ is a finite number larger than 1 and
KLip = n

T max
(

1
σ2

0
,

2[σ]Lip
σ3

0

)
.

Proof. We use the previous Lemma to write

‖GL(X̄k, X̄k+1)−GL(X̂k, X̂k+1)‖p ≤KLip
(
‖X̄k − X̂k‖rp + ‖X̄k+1 − X̂k+1‖rp

)(
1 + ‖X̄k‖22ps + ‖X̂k+1‖22ps

)
where s = r

r−1 and r ∈ (1, 1 + d
p ). Since X̂k+1 is a quadratic optimal quantization of X̃k+1, it is also

stationary. This property, combined with Jensen’s inequality, yields

‖X̂k+1‖22ps = ‖E(X̃k+1|X̂k+1‖22ps ≤ ‖X̃k+1‖22ps.
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And, using inequality (6.26), one obtains

‖X̂k+1‖22ps ≤ ‖X̄0‖2psetk(C1+C2)/2ps +
(

C3

C1 + C2
etk−1(C1+C2)

) 1
ps

where C1, C2 and C3 are constants defined in Lemma 6.2.4. This, combined with the fact that X̄k ∈ Lr
for every r ∈ (0,+∞) (by a property of the Euler scheme), yields the existence of a finite positive constant
C0 such that 1 + ‖X̄k‖22ps + ‖X̂k+1‖22ps ≤ C0. Then,

‖GL(X̄k, X̄k+1)−GL(X̂k, X̂k+1)‖p ≤ C0KLip
(
‖X̄k − X̂k‖rp + ‖X̄k+1 − X̂k+1‖rp

)
. (7.25)

At this stage, we can proceed with the estimation of the upper bound. For every k ∈ {1, . . . , n}, one
has

‖Lk − L̂k‖p ≤
∥∥∥E(GL(X̄k, X̄k+1)Lk+11X̄k≥L −GL(X̂k, X̂k+1)L̂k+11X̂k≥L

∣∣Fk)∥∥∥
p

≤
∥∥∥ GL(X̄k, X̄k+1)Lk+11X̄k≥L −GL(X̂k, X̂k+1)L̂k+11X̂k≥L

∥∥∥
p

≤
∥∥∥GL(X̄k, X̄k+1)Lk+1(1X̄k≥L − 1X̂k≥L) + 1

X̂k≥L

(
GL(X̄k, X̄k+1)Lk+1 −GL(X̂k, X̂k+1)L̂k+1

)∥∥∥
p

≤ ‖GL‖sup‖Lk+1‖p
∥∥∥1X̄k≥L − 1X̂k≥L∥∥∥p + ‖1

X̂k≥L
‖p
∥∥∥GL(X̄k, X̄k+1)Lk+1 −GL(X̂k, X̂k+1)L̂k+1

∥∥∥
p
.

(7.26)

It is clear that ‖GL‖sup < 1 and ‖Lk+1‖p ≤ ‖gn‖sup. Moreover,

1X̄k≥L − 1X̂k≥L = 1min(X̄k,X̂k)≤L≤max(X̄k,X̂k)

so that, by applying Holder’s inequality with the conjugate coefficients p′ and q′,∥∥1X̄k≥L − 1X̂k≥L∥∥pp =
∫
Rd
1min(X̄k,X̂k)≤L≤max(X̄k,X̂k)dP

≤
(∫

Rd
1min(X̄k,X̂k)≤L≤max(X̄k,X̂k)dλd

) 1
p′
(∫

Rd
fq
′
dλd

) 1
q′

≤ ‖X̄k − X̂k‖
1
p′

1 × C

≤ κ′‖X̄k − X̂k‖
1
p′
p

for a finite constant C and κ′ > 0 where the previous-to-last inequality is due to the fact that f ∈
Lp(λd), p > 1 and that one can choose q′ as close to 1 as possible. For convenience, we denote T =
GL(X̄k, X̄k+1)Lk+1 −GL(X̂k, X̂k+1)L̂k+1. We have

‖T‖p ≤
∥∥∥GL(X̄k, X̄k+1)(Lk+1 − L̂k+1) + L̂k+1(GL(X̄k, X̄k+1)−GL(X̂k, X̂k+1))

∥∥∥
p

≤‖GL‖sup‖Lk+1 − L̂k+1‖p + ‖L̂k+1‖p
∥∥∥GL(X̄k, X̄k+1)−GL(X̂k, X̂k+1)

∥∥∥
p

≤‖Lk+1 − L̂k+1‖p + ‖gn‖sup
∥∥GL(X̄k, X̄k+1)−GL(X̂k, X̂k+1)

∥∥
p
. (7.27)

Finally, we combine (7.25), (7.26) and (7.27) to obtain

‖Lk−L̂k‖p ≤ κ‖gn‖sup‖X̄k−X̂k‖
1
p
p +‖Lk+1−L̂k+1‖p+‖gn‖supC0KLip

(
‖X̄k − X̂k‖pr + ‖X̄k+1 − X̂k+1‖pr

)
.

To control the errors ‖X̄k − X̂k‖pr, we rely on the distortion mismatch Theorem 3.3. For this, we chose
r = 1 + d

2p ∈
(
1, 1 + d

p

)
so that pr = p+ d

2 ∈ (p, p+ d) and one can handle these error terms.
Finally, a backward induction yields the result. �
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Remark 7.5.6. The errors ‖X̄k−X̂k‖p and ‖X̄k−X̂k‖
p+d

2
appearing in Theorem 7.5.5 are quantization

errors. It has been shown that the Lp-quantization error ‖X̄k − X̂k‖p induced by the Lp-optimal and
Lp-recursive quantization of a Xk of size Nk is of O(N−

1
d

k ) where d is the dimension. However, for what
concerns the errors ‖X̄k−X̂k‖

p+d
2
, their rate of convergence is given by the distortion mismatch property,

established first in [33] and then developed in [65]. In fact, since p+ d
2 ∈ (p, p+ d), this means that one

can apply Theorem 6.2.2 and deduce that the quantization erros are of O(N− 1
d ) as well. Consequently,

having in mind that KLip depends on n, one has that

‖Lk − L̂k‖p = O
(

n

N
1
d + nN

1
pd

)
.

Hence, to obtain acceptable converging upper bounds and error margins, it suffices to choose n small
enough and N large enough.

7.5.2 Algorithmics
In this section, we expose the numerical technique for the approximation of the price of a Down-and-Out
Barrier option. The computation of the prices of the other Barrier options is identical, with a trivial
change of the functions appearing in the payoff. We consider a Down-and-Out option with maturity T ,
strike price K, barrier L and whose payoff is given by

hT (XT ) = g(XT )1inft∈[0,T ] Xt≥L

where g is a bounded function. Its price is given by

VDO = e−rTE
[
g(Xn)1inft∈[0,T ] Xt≥L

]
= e−rTE

[
g(X̄n)

n∏
k=1

(
1− FL(X̄k−1, X̄k)

)]

where (X̄k)1≤k≤n is the Euler scheme corresponding to (Xt)0≤t≤T . As already mentioned, the second
term is based on the theory of Brownian diffusion bridges.

In this chapter, our aim is to approximate these prices by recursive quantization. So, after computing
the recursive quantization sequences (X̂k)0≤k≤n of (X̄k)0≤k≤n as detailed in the previous Chapter 6, the
price V̂DO is equal the initial value L0 of the following backward dynamic programming principle{

L̂n = g(X̂n)
L̂k = Ek

(
1− FL(X̂k, X̂k+1)

)
, k = 0, . . . , n− 1 (7.28)

If we denote
(
xk1 , . . . , x

k
Nk

)
the recursive quantizer of size Nk of X̄k at time tk, it is clear that there exists

a sequence of functions (l̂k)0≤k≤n such that L̂k = l̂k(Xk) for every k ∈ {0, . . . , n} and defined by the
following Backward Dynamic Programming Principle (BDPP){

l̂n(xni ) = g(xni )1xn
i
≥L, i = 1, . . . , Nn,

l̂k(xki ) =
∑Nk+1
j=1 pkij l̂k+1(xk+1

j )
(

1− FL(xki , xk+1
j )

)
, i = 1, . . . , Nk, k = 1, . . . , n. (7.29)

where (pkij)i,j is the transition weight from xki at time tk to xk+1
j at time tk+1.

Likewise, the BDPP corresponding to the computation of the price of an Up-and-Out option is given
by the following (with the same notations as for a Down-and-Out option){

l̂n(xni ) = g(xni )1xn
i
≤L, i = 1, . . . , Nn,

l̂k(xki ) =
∑Nk+1
j=1 pkij l̂k+1(xk+1

j )GL(xki , xk+1
j ), i = 1, . . . , Nk, k = 1, . . . , n.

(7.30)
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7.5.3 Numerical examples
In this section, we give two examples: the pricing of a Down-and-Out call option in a Black-Scholes model
and, the pricing of an Up-and-Out call option in a CEV model. In both cases, the time discretization
is established following an Euler scheme with n time steps and, for the space discretization, we build
quantizers of (X̄k)0≤k≤n by standard recursive quantization (RQ), greedy recursive quantization (GRQ)
and optimal quantization (OQ). We also compute the prices by a Monte Carlo simulation with control
variate (MC-VC). The different quantization techniques are already explained in details in the previous
chapter and the MC-VC technique is detailed in the following in the case of a Down-and-Out Call option,
it is the same principle for an Up-and-Out option.

The goal is to compute

Cdo = E[Y ] = E
[
e−rT (XT −K)+

n∏
k=1

(
1− FL(Xk−1, Xk)

)]
.

where we denote Y = e−rT (XT −K)+
∏n
k=1

(
1− FL(Xk−1, Xk)

)
. We start by noticing that the sum of

the price of a Down-and-Out Call option and the price of a Down-and-In Call option is the price of a
standard European Call option. In fact,

E
[
e−rT (XT −K)+

n∏
k=1

(
1− FL(Xk−1, Xk)

)]
+ E

[
e−rT (XT −K)+

(
1−

n∏
k=1

(
1− FL(Xk−1, Xk)

))]
= E

[
e−rT (XT −K)+

]
= E

[
(X0 −Ke−rT )+

]
.

This yields that
Cdo = E[Y ] = E[Y ′]

where Y ′ = (X0 −Ke−rT )+ − e−rT (XT −K)+

(
1−

∏n
k=1

(
1− FL(Xk−1, Xk)

))
.

At this stage, we introduce the variable

Ξ = Y − Y ′ = e−rT (XT −K)+ − (X0 −Ke−rT )+

satisfying E[Ξ] = 0 and Var(Ξ) > 0. Then, we introduce, for every λ ∈ R, Y λ = Y − λΞ and notice that

Var(Y λ) = λ2Var(Ξ)− 2λCov(Y,Ξ) + Var(Y )

attains its minimum at
λmin = Cov(Y,Ξ)

Var(Ξ) = 1 + Cov(Y ′,Ξ)
Var(Ξ) .

Hence, E[Y λmin ] = E[Y ] and Var(Y λmin) < Var(Y ). Consequently, we approximate the price of the
Down-and-Out call option, with more precision, by

Cdo = E[Y λmin ].

From a practical point of view, this computation is realized via the following steps

• Start by generating M independent copies (Ym,Ξm)1≤m≤M of (Y,Ξ),
• Compute

VM = 1
M

M∑
m=1

Ξ2
m and CM = 1

M

M∑
m=1

YmΞm
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and, then,

YM = 1
M

M∑
m=1

Ym and ΞM = 1
M

M∑
m=1

Ξm

• Finally, one has
λM = CM

VM
and Y

λM
M = YM − λMΞM .

Thus, by the strong law of large numbers, one has λM → λmin and Y
λM
M → E[Y ] yielding the desired

estimator of the price of the Down-and-Out Call option.

Remark 7.5.7. Another interesting alternative to compute λM is optimal quantization. Based on the
optimal quantizers ΓNk = (xki )1≤i≤N , k ∈ {1, . . . , n}, of (X̄k)1≤k≤n and the corresponding Voronoï weights
pki , the idea is the following: We start by computing

yi = e−rT (xni −K)+

n∏
k=1

(1− FL(xk−1
i , xki )) and ξi = e−rT (xni −K)+ − (X0 −Ke−rT )+.

Then, we compute

CM =
N∑
i=1

(
yiξi

n∏
k=1

pki

)
and VM =

N∑
i=1

(
ξ2
i

n∏
k=1

pki

)
.

Finally,
λM = CM

VM
.

Down-and-Out Call option in a Black-Scholes model Let (X̄k)0≤k≤n be a time-discretized
diffusion process defined by (7.6). We consider n = 15 time steps and build quantizers of size Nk = N =
100 for every k ∈ {1, . . . , n} by the different methods mentioned previously. Then, we estimate the price
of the Down-and-Out Call option via (7.29). The parameters of this example are

K = 130 , T = 1 , X0 = 130 , r = 0.15 , σ = 0.07.

For the Monte Carlo simulations with control variate, we use samples of size M = 2.105. The benchmark
is given by the exact price of a Down-and-Out Call option, given in [27] by the following closed formula

Cdo = X0Φ0(d1(X0))−Ke−rTΦ0(d2(X0))−
(
L

X0

) 2ν
σ2
[
L2

X0
Φ0

(
d1

(
L2

X0

))
−Ke−rTΦ0

(
d2

(
L2

X0

))]
(7.31)

where ν = r − σ2

2 , Φ0 is the c.d.f. of N (0, 1) and, for every x,

d1(x) =
log
(
x
K

)
+ T

(
r + σ2

2

)
σ
√
T

and d2(x) = d1(x)− σ
√
T .

In Table 7.9, we expose the values obtained by the different methods, for barriers L varying between
115 and 130, and the errors induced by the comparison to the benchmark. Furthermore, we compare
the results obtained by optimal quantization when we compute the transition weight matrices exactly
by Gaussian quadrature formulas and the results when we approximate them by a certain function, see
Section 6.5 of Chapter 6 for further details on this topic. The errors are exposed in Table 7.10 where we
deduce that the difference is not in the precision, but rather in the cost of time.
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L QR GRQ QO MC-VC Exact
Value Error Value Error Value Error Value Error

115 18.069 0.087 18.06 0.096 18.066 0.09 18.091 0.065 18.156
120 18.058 0.078 18.039 0.097 18.044 10.092 18.096 0.04 18.136
125 17.226 0.087 17.209 0.0104 17.215 0.098 17.271 0.042 17.313
129 7.929 0.05 7.937 0.042 7.941 0.038 8.004 0.025 7.979
Average 0.085 0.09 0.087 0.043

Table 7.9: Pricing of a Down-and-Out call option in a Black-Scholes model discretized according
to an Euler scheme and recursive (RQ), greedy recursive (GRQ), optimal (OQ) quantization and
Monte Carlo with control Variate (MC-VC) for different values of L.

L Approximated value Exact value
115 0.093 0.09
120 0.094 0.092
125 0.1 0.098
129 0.039 0.038
Average error 0.088 0.086

Table 7.10: Pricing of a Down-and-Out Call option in a Black-Scholes model by optimal quan-
tization with transition weights computed exactly and approximately for different values of L.

Up-and-Out Call option in a CEV model We consider a process (Xt)0≤t≤T following a CEV
model and discretize it following a Euler scheme, i.e. (X̄k)0≤k≤n is given by (7.11). We consider n = 15
time steps and build quantizers of size N = 100 by the different methods mentioned above. The price of
the option is computed via the recursion (7.30). The parameters of this example are

X0 = 100 , T = 1 , δ = 0.5 , r = 0.15 , K = 100 , ϑ = 1.

Note that we are aware that such a level for the interest rate is not realistic but we made this choice
for numerical purposes in order to check the robustness of the method. In this case, the benchmark is
given by a Monte Carlo simulation with control variate (MC-VC) of size 2.105. These results and the
corresponding errors are exposed in Table 7.11. We recall that, in a CEV model, the transition weight
matrices of the optimal quantization tree are obtained by Monte Carlo simulations coupled with a nearest
neighbor search.
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L RQ GRQ OQ MC-VC
Exact Error Exact Error Exact Error

110 0.433 0.008 0.435 0.006 0.438 0.003 0.441
115 1.782 0.018 1.79 0.01 1.803 0.016 1.8
120 4.218 0.021 4.216 0.023 4.229 0.01 4.239
125 7.17 0.031 7.188 0.03 7.174 0.011 7.201
130 9.943 0.033 9.947 0.03 9.899 0.009 9.910
Average Error 0.019 0.014 0.009

Table 7.11: Pricing of an Up-and-Out Call option in a CEV model discretized according to
an Euler scheme and recursive (RQ), greedy recursive (GRQ), optimal (OQ) quantization and
Monte Carlo with control Variate (MC-VC) for different values of L.
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