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Abstract

Since the introduction of Google’s PageRank method for Web searches in the late 1990s, graph
algorithms have been part of our daily lives. In the mid 2000s, the arrival of social networks
has amplified this phenomenon, creating new use-cases for these algorithms. Relationships
between entities can be of multiple types: user-user symmetric relationships for Facebook or
LinkedIn, follower-followee asymmetric ones for Twitter or even user-content bipartite ones for
Netflix, Deezer or Amazon. They all come with their own challenges and the applications
are numerous: centrality calculus for influence measurement, node clustering for knowledge
discovery, node classification for recommendation or embedding for link prediction, to name a
few.

In the meantime, the context in which graph algorithms are applied has rapidly become more
constrained. On the one hand, the increasing size of the datasets with millions of entities, and
sometimes billions of relationships, bounds the asymptotic complexity of the algorithms for
industrial applications. On the other hand, as these algorithms affect our daily lives, there is a
growing demand for explanability and fairness in the domain of artificial intelligence in general.
Graph mining is no exception. For example, the European Union has published a set of ethics
guidelines for trustworthy AI. This calls for further analysis of the current models and even
new ones.

This thesis provides specific answers via a novel analysis of not only standard, but also exten-
sions, variants, and original graph algorithms. Scalability is taken into account every step of the
way. Following what the Scikit-learn project does for standard machine learning, we deem it
important to make these algorithms available to as many people as possible and participate in
graph mining popularization. Therefore, we have developed an open-source software, Scikit-
network, which implements and documents the algorithms in a simple and efficient way. With
this tool, we cover several areas of graph mining such as graph embedding, clustering, and
semi-supervised node classification.



Resumé

Depuis l’invention du PageRank par Google pour les requêtes Web à la fin des années 1990,
les algorithmes de graphe font partie de notre quotidien. Au milieu des années 2000, l’arrivée
des réseaux sociaux a amplifié ce phénomène, élargissant toujours plus les cas d’usage de ces
algorithmes. Les relations entre entités peuvent être de multiples sortes : relations symétriques
utilisateur-utilisateur pour Facebook ou LinkedIn, relations asymétriques follower-followee pour
Twitter, ou encore, relations bipartites utilisateur-contenu pour Netflix ou Amazon. Toutes
soulèvent des problèmes spécifiques et les applications sont nombreuses : calcul de centralité
pour la mesure d’influence, le partitionnement de nœuds pour la fouille de données, la classifi-
cation de nœuds pour les recommandations ou l’embedding pour la prédiction de liens en sont
quelques exemples.

En parallèle, les conditions d’utilisation des algorithmes de graphe sont devenues plus con-
traignantes. D’une part, les jeux de données toujours plus gros avec des millions d’entités et
parfois des milliards de relations limite la complexité asymptotique des algorithmes pour les
applications industrielles. D’autre part, dans la mesure où ces algorithmes influencent nos vies,
les exigences d’explicabilité et d’équité dans le domaine de l’intelligence artificielle augmentent.
Les algorithmes de graphe ne font pas exception à la règle. L’Union européenne a par exemple
publié un guide de conduite pour une IA fiable. Ceci implique de pousser encore plus loin
l’analyse des modèles actuels, voire d’en proposer de nouveaux.

Cette thèse propose des réponses ciblées via l’analyse d’algorithmes classiques, mais aussi de
leurs extensions et variantes, voire d’algorithmes originaux. La capacité à passer à l’échelle
restant un critère clé. Dans le sillage de ce que le projet Scikit-learn propose pour l’apprentissage
automatique sur données vectorielles, nous estimons qu’il est important de rendre ces algo-
rithmes accessibles au plus grand nombre et de démocratiser la manipulation de graphes. Nous
avons donc développé un logiciel libre, Scikit-network, qui implémente et documente ces algo-
rithmes de façon simple et efficace. Grâce à cet outil, nous pouvons explorer plusieurs tâches
classiques telles que l’embedding de graphe, le partitionnement, ou encore la classification
semi-supervisée.

La thèse démarre par une introduction sur les structures de graphe ainsi qu’un certain nom-
bre de rappels d’algèbre linéaire. Une attention particulière est accordée aux décompositions
matricielles ainsi qu’aux méthodes stochastiques implémentées en pratique pour permettre de
traiter les jeux de données massives. Dans un deuxième temps, cette thèse présente Scikit-
network en détaillant les choix de design, les algorithmes implémentés ainsi que les perfor-
mances obtenues vis-à-vis de logiciels concurrents.

Les chapitres qui suivent présentent les travaux originaux inclus dans Scikit-network. La pre-
mière contribution théorique concerne la régularisation de l’embedding spectral obtenu par
décomposition du Laplacien de graphe. On démontre sur un modèle simple qu’ajouter un
graphe complet à la donnée d’origine permet à l’embedding spectral d’être moins sensible aux
sous-graphes disjoints de la composante connexe principale. Dans un deuxième temps, on
propose une variante de cet embedding pour les graphes dirigés et bipartis. On exhibe les pro-
priétés mathématiques qui permettent d’interpréter facilement les représentations obtenues.
L’ensemble de ces résultats est illustré par un grand nombre d’expériences sur données réelles.

On s’intéresse ensuite au célèbre algorithme de partition de nœuds Louvain. On démontre que
cet algorithme peut être généralisé à toute une classe de fonctions de modularité et non pas



seulement celle proposée par Newman. On vérifie la pertinence des diverses modularités sur
un ensemble de graphes réels de tous types : non-dirigés, dirigés et bipartis.

Dans une partie suivante, cette thèse propose une modification simple d’un célèbre algorithme
de classification de nœuds semi-supervisé introduit par Zhou. On démontre sur un modèle
simple en quoi l’algorithme d’origine est biaisé envers la classe majoritaire dans les seeds et
que la modification proposée assure bien une classification correcte. Cette amélioration est
confirmée par la suite sur données simulées et réelles.

Enfin, la thèse se termine par quelques contributions sur les algorithmes de classification de
graphes. On compare une méthode basée sur la décomposition spectrale du Laplacien à une
autre qui combine parcours de graphe et réseau de neurones récurrents. Les performances sont
mises en perspective de l’état de l’art dans le domaine afin de démontrer la pertinence des
approches proposées.
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Chapter 1

Introduction

1.1 Graphs

Graphs are mathematical objects describing the relations between entities called vertices or
nodes. If two nodes are in relation, they are said to be connected by an edge. Mathematically, we
denote by G = (V, E) a graph with V the set of vertices, which we assume finite, and E ⊂ V×V,
the set of edges.

In this work, we consider an extension of the previous definition where weights are associated
with edges. These objects are called weighted graphs, but we simply refer to them as graphs.
Let n be the number of nodes of a graph, n = |V|.

The adjacency matrix associated with the graph is the matrix A ∈ Rn×n such that

Aij =

{
ω if (i, j) ∈ E,
0 otherwise.

ω being the weight associated to the edge (i, j).

Besides, we differentiate three main families of graphs which we illustrate in Figure 1.1.

(a) Undirected graph. (b) Directed graph. (c) Bipartite graph.

Figure 1.1: Some toy graphs.
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Undirected graphs In these graphs, relationships are symmetric. This means that if (i, j) ∈ E,
then (j, i) ∈ E as well. This is for example the case for most social networks such as Face-
book friendship graph or LinkedIn professional relationships. In particular, this implies that
the associated adjacency matrix is symmetric.

Directed graphs In these graphs, the relationships are not necessarily symmetric, i.e. (i, j) ∈ E
does not imply (j, i) ∈ E. This is the case for the Twitter graph in which a user can follow
another one without being followed in return. Another example is the graph of hyperlinks
between Web pages. In this case, A is not necessarily symmetric. We use the terms source node
and target node to differentiate both ends of directed edges.

Bipartite graphs These are a special case of undirected graphs with two disjoint sets of nodes
V1 and V2 such that relationships only exist between V1 and V2. On the other hand, two nodes
of V1 cannot be connected nor can two nodes of V2. This is the case for relationships such as
user-content in Netflix or user-item in retail. We denote by B the biadjacency matrix, possibly
rectangular, such that the adjacency matrix of the graph seen as undirected is

A =

[
0 B

B> 0

]
.

Note that this list is not exhaustive. There are many other types of graphs such as knowledge
graphs, signed graphs, hypergraphs, annotated or infinite graphs... However, they lie beyond
the scope of the present work.

To conclude this section, we introduce a few notations that will help further reading. Unless
otherwise specified:

• n denotes the number of nodes in a graph.

• m denotes the number of non-zero entries in an adjacency matrix. For an undirected graph
without self-loops, this is twice the number of edges.

• 1 denotes a vector of ones whose dimension depends on context.

• d is the out-degree vector defined by A1 or B1. If the graph is not weighted, the out-degree
di of a given node i is simply the number of edges for which i is the source. If the edges
are weighted, di is the total weight of edges for which i is the source.

• D is the out-degree diagonal matrix defined by D = diag(d).

• f is the in-degree vector defined by A>1 or B>1. If the graph is not weighted, the in-
degree fi of a given node i is simply the number of edges for which i is the target. If the
edges are weighted, fi is the total weight of edges for which i is the target.

• F is the in-degree diagonal matrix defined by F = diag( f ).

• w is the total weight of the graph defined by 1>A1 or 1>B1.

5



1.2 Graph Mining

The notion of graph mining covers a wide variety of tasks on graphs, most of which have direct
industrial applications. Here, we provide a non-exhaustive list of examples.

Node embedding This task consists in mapping each node of the graph to a vector, see Figure
1.2. Usually, the embedding space has a small dimension with respect to the number of nodes
in the graph. Embeddings are designed such that the distances between nodes in the vector
space reflect some topological properties of the original graph. The embedding can be used to
perform standard machine learning tasks such as clustering or classification or link prediction
as in the famous Netflix Prize [Bell et al., 2007]. Chapter 3 is dedicated to the study of a widely
used embedding: the spectral embedding.

Figure 1.2: Node embedding.

Node clustering This task consists in assigning each node to a group or cluster such that nodes
in the same cluster are more connected with one another than with the rest of the graph. See
Figure 1.3 for an illustration and Schaeffer [2007] for a review of some algorithms. Applications
include load balancing for wireless sensors networks [Younis et al., 2006], anomaly detection for
cyber-security or financial fraud detection [Akoglu et al., 2015]. Node clustering is the subject
of Chapter 4.

Figure 1.3: Node clustering.
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Node classification This task consists in assigning a label to each node of the graph based on
some partial ground-truth information, see Figure 1.4 for an illustration. It can be used to assign
a polarity to tweets [Speriosu et al., 2011], predict potentially dangerous drug-drug interactions
[Zhang et al., 2015] or automatically assign a genre to a movie or a song in a database. We
discuss node classification algorithms in Chapter 5.

Figure 1.4: Node classification.

Node ranking This task consists in assigning an importance score to each node of the graph
with respect to a certain criterion, see Figure 1.5 for an illustration. This is particularly useful
for recommender systems such as Web search engines [Page, 2001] or contact recommendation
in social networks. Such methods can also be used in a pipeline for node classification as we
will see in Chapter 5.

Figure 1.5: Node ranking.

Graph classification This task is the same as the standard supervised classification in machine
learning with the main difference that the samples are graphs instead of vectors. Standard
applications are molecular compounds classification in biology [Childs et al., 2009, Kudo et al.,
2005] or malware detection in cyber-security [Hu et al., 2009, Gascon et al., 2013, Kinable and
Kostakis, 2011]. We discuss some graph classification algorithms in Chapter 6.

Link prediction Among other graph mining tasks, we deem it important to mention edge
prediction which consists in assigning a probability of existence to unobserved relations among
nodes. However, we do not tackle this task in the present work.
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1.3 Data structures

In order for graph algorithms to scale, they must rely on efficient data structures. This section
introduces some standard graph formats. We present some of their respective strengths and
weaknesses with a special emphasis on the Compressed Sparse Row format (CSR) which is
used in most of our implementations. We refer the reader to SciPy’s documentation1 for a more
extensive list.

1.3.1 Sparse matrix formats

Let G = (V, E) be a graph with n nodes and associated adjacency matrix A ∈ Rn×n such that m
is the number of nonzero entries in A. Storing G boils down to storing A. The main assumption
we make is that A is sparse, which means that it has very few nonzero coefficients: m � n2. In
other words, the average number of neighbors of a node is small compared to n. For real large
graphs, it is common to have densities, i.e. m/n2 ratios, below 10−5 (see Table 1.4). Hence, these
adjacency matrices are made of more than 99.99% of zeros which it is useless to store explicitly
in memory. Table 1.1 presents an overview of some standard formats which we detail below.

format memory space linear algebra friendly flexible

COO 2mMint + mMedge 6 3

CSR/CSC (n + m)Mint + mMedge 3 6

DOK mMkey 6 3

Table 1.1: Some standard formats for adjacency matrices. Mint, Medge and Mkey denote the
memory space of an integer, an edge and a key of the hash table, respectively.

Coordinates (COO) A first natural way to store the adjacency matrix of a graph is to store the
corresponding edges of the graph (i, j, ω) where i is the source node, j is the target node and ω
is the associated weight (possibly Boolean, float or integer). In this format, the edges are stored
in no particular order which has some implications for basic graph primitives.

Compressed Sparse Row or Column (CSR, CSC) The CSR format is composed of three ar-
rays, an array of size m named indices, which is the concatenation of the nodes successors, an
array of size m named data to store the associated edges weights and an index pointer, indptr,
of size n + 1 indicating which section of indices corresponds to which node in the graph. Ex-
ample 1.3.1 illustrate this format on the house graph introduced in Figure 1.1a. See that node 0,
top of the roof, has two neighbors, nodes 1 and 4. The CSC format works the same way but the
indices array indicates the nodes predecessors.

1https://docs.scipy.org/doc/scipy/reference/sparse.html
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Example. 1.3.1: CSR format

[1]: from sknetwork.data import house
A = house()
print(A.indptr)
print(A.indices)

[1]: [ 0 2 5 7 9 12]
[1 4 0 2 4 1 3 2 4 0 1 3]

Dictionary of keys (DOK) As suggested by the name, this format maps tuples of indices (i, j)
to keys of a dictionary with associated edges weights (possibly Boolean). It is effective for
values access or updates but the hash table is usually more expensive in memory usage than
other formats.

1.3.2 Performance analysis

We illustrate the performance of the different graph formats for a few standard graph primitives
on a real dataset, Wikivitals (WV). The graph represents hyperlinks between some pages of
Wikipedia and the adjacency matrix has 10 012 rows and 792 091 Boolean entries. The pages
are labeled with their Wikipedia category (Art, Science, History...) which allows to later use
supervised metrics on this dataset in Chapters 4 and 5. Note that we made this dataset available
online2 and via Scikit-network as explained in Chapter 2.

The test tasks are the following:

• Memory space: Make a pickle dump of the adjacency matrix and record the memory
space.

• Node insertion: Add one isolated node i.e. add one extra row and one extra column with
a diagonal entry to the adjacency matrix.

• Node removal: Remove the first row and first column of the matrix.

• Edge insertion: Add a link between nodes 0 and 1 (which does not exist in the original
graph).

• Edge removal: Remove the previously created link between nodes 0 and 1 and eliminate
the explicit 0 value in the matrix.

• Out-neighbors access: Get all successors of node 0.

• In-neighbors access: Get all predecessors of node 0.

We repeat each task involving a runtime measurement a hundred times for each format. Av-
erage values are reported in Table 1.2. If a format requires to be converted to perform a given
operation, we do not record the runtime and replace it by "-".

2https://graphs.telecom-paristech.fr/Home_page.html
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Setups Unless otherwise specified, we always use one of the following setups for our experi-
ments which we refer to as laptop setup and server setup:

• Laptop: Laptop equipped with an Intel(R) Core(TM) i7-7820HQ CPU @ 2.90GHz proces-
sor and 16 Go of RAM.

• Server: Computer equipped with an AMD Ryzen Threadripper 1950X 16-Core Processor
and 32 Go of RAM. For deep learning experiments, the computer is equipped with an
NVIDIA TitanXp GPU.

In this case, all experiments are run on the laptop setup.

The conclusion of these experiments is that, as long as the structure of the matrix does not need
to be modified, the CSR and CSC formats are both lighter in memory and more efficient. On the
other hand, the DOK format is relevant when edges need to be modified often (in a dynamic
graph, for example). In the rest of this thesis, the default format of adjacency matrices is the
CSR one, unless otherwise specified.

task COO CSR CSC DOK

Memory space (Mo) 6.8 3.8 3.8 46.8
Node insertion (ms) 5.7 11 11 108
Node removal (ms) - 2.6 2.5 743
Edge insertion (ms) - 0.16 0.15 0.01
Edge removal (ms) - 0.7 0.7 0.01
Out-neighbors access (µs) 301 0.6 - 1992
In-neighbors access (µs) 331 - 0.6 3220

Table 1.2: Performance on Wikivitals.

1.4 Linear algebra for graph mining

This section covers some standard linear algebra primitives in the context of graph mining. Part
of this work has been published in De Lara [2019].

1.4.1 Transposition

Depending on whether an algorithm requires access to the successors or the predecessors of
the nodes in the graph, it might need to transpose the adjacency matrix. This operation is
immediate in the COO format as it only requires to switch the row and col vectors. However,
this is not the case for the CSR format.

The canonical way to compute A> in CSR format from A in CSR format requires an intermediate
transformation into COO format. Going from CSR to COO only requires to compute the row
vector from the indptr one which is an operation linear in m. However, going from COO to CSR
requires a sort of the indices which is O(m log(m)) operations. In the end, the complexity of
CSR matrix transposition is O(m log(m)).
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1.4.2 Matrix-vector product

Matrix-vector product is a key primitive for many graph algorithms. It can be used to emu-
late discrete time random walks, perform low dimension projections, message passing... It is
therefore critical to perform it efficiently.

Respective pseudocodes for COO and CSR formats are presented in Example 1.4.1. In both
cases, the complexity is linear with the number of nonzero coefficients in the matrix. The main
difference is that, as indices are sorted in the CSR, the processor can optimize caching opera-
tions.

Example. 1.4.1: Sparse matrix-vector products

[1]: import numpy as np

def coo_dot(n, row, col, data, x):
y = np.zeros(n)
for i, w in enumerate(data):

y[row[i]] += w * x[col[i]]
return y

def csr_dot(indptr, indices, data, x):
n = len(indptr) - 1
y = np.zeros(n)
for i in range(n):

start, end = indptr[i], indptr[i+1]
y[i] = data[start:end].dot(x[indices[start:end]])

return y

There are several more complex sparse matrix formats designed to optimize matrix-vector prod-
uct, especially in the context of parallel computing and GPU computations. See Liu et al. [2013],
Bell and Garland [2008] for more details.

1.4.3 Eigenvalue decomposition

Let A be a symmetric matrix with real coefficients. The spectral theorem states that there exits
an orthonormal matrix X and a diagonal matrix Λ with real coefficients such that

A = XΛX>.

The columns of X are the eigenvectors of A while the diagonal entries of Λ are the associated
eigenvalues.

Several graph algorithms rely on the computation of some of these eigenvectors and eigenval-
ues. In this case, we refer to this as a partial eigenvalue decomposition.

In practice, iterative power methods are used to compute the k leading eigenvectors, i.e. the
eigenvectors associated with the k largest eigenvalues. The idea is to start from a random vector
x0 and compute the sequence (xt) defined by

xt+1 =
Axt

||Axt||
.
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The sequence (xt) provably converges with probability 1 towards the leading eigenvector of A,
provided that it is unique. Based on this result, the Arnoldi method [Arnoldi, 1951] uses the
stabilized Gram-Schmidt process to compute the k leading eigenvectors by orthonormalization
of xt, xt−1, . . . , xt−k+1. Note that the Arnoldi method applies to non-Hermitian matrices. In the
Hermitian case, it is called the Lanczos method [Lanczos, 1950].

Observe once again that the main primitive for this method is the matrix-vector product.

An extension of the eigenvalue decomposition is the generalized eigenvalue decomposition.
Given another matrix W, the generalized eigenvalue of A is such that

AX = WXΛ.

Proposition 1. Assume that W is a diagonal matrix with positive entries and let X denote some eigen-
vectors for the eigenvalue decomposition of W−1/2 AW−1/2. Then, X′ = W−1/2X are eigenvectors for
the generalized eigenvalue decomposition of A.

Proof. Let X be eigenvectors of W−1/2 AW−1/2 such that

W−1/2 AW−1/2 = XΛX>.

Then,

AW−1/2X = W1/2XΛ(X>X),

AX′ = WX′Λ.

Such that X′ are generalized eigenvectors of A.

1.4.4 Singular value decomposition

The singular value decomposition (SVD) of a real matrix M ∈ Rn1×n2 is a factorization of the
form

M = UΣV>,

where U ∈ Rn1×n1 and V ∈ Rn2×n2 are orthonormal matrices whose columns are respective
left and right singular vectors and Σ ∈ Rn1×n2 is a diagonal matrix containing the nonnegative
singular values.

Note that, U and V are respective eigenvectors of MM> and M>M, the associated eigenvalues
being the square of the singular values. Besides, a partial SVD, extracting only the k leading
singular vectors couples is an optimal rank k approximation of M with respect to the Froebenius
norm:

U(k)Σ(k)V(k)T ∈ arg min
rank(X)=k

||M− X||F.

As for the eigenvalue decomposition, this factorization admits a generalization. Given two
matrices W1 and W2, the generalized singular value decomposition of M satisfies{

MV = W1UΣ,
M>U = W2VΣ.
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Proposition 2. Assume that W1 and W2 are diagonal matrices with positive entries and let U, V be left
and right singular vectors of W−1/2

1 MW−1/2
2 . Then, U′ = W−1/2

1 U and V′ = W−1/2
2 V are singular

vectors for the generalized eigenvalue decomposition of M.

Proof. Let U, V be singular vectors of W−1/2
1 MW−1/2

2 such that

W−1/2
1 MW−1/2

2 = UΣV>.

Then,

MW−1/2
2 V = W1/2

1 UΣ(V>V),

MV′ = W1U′Σ.

Similar derivations lead to the second equation such that U′, V′ are generalized singular vectors
of M.

1.4.5 Halko’s randomized method

Even with an efficient matrix-vector product, computing partial decompositions of very large
matrices can be computationally prohibitive. In this section we present Halko’s randomized
projection method [Halko et al., 2009] which is a good solution to this issue.

The idea is to compute the decomposition of another matrix, much smaller than the original one
and approximate the desired eigenvectors or singular vectors through a linear transformation.

First, one must find an orthonormal projection matrix Q ∈ Rn×p such that

M ≈ QQ>M.

Algorithm 1.1 offers to do so using a combination of random projection, power iteration and
QR decompositions. Note that, once again, the only two actions on the sparse matrix M are
matrix-vector products and transposition. In practice, p has to be chosen between k + 7 and 2k
where k is the number of desired eigenvectors or singular vectors. As k is usually very small
compared to n, the dimension p of the rows of Q is also small. The power iteration parameter q
has to be a small integer as well, typically between 3 and 10.

Algorithm 1.1 Randomized Subspace Iteration

Require: input matrix M ∈ Rn×n

Generate a Gaussian test matrix Ω ∈ Rn×p.
Form Y0 = MΩ ∈ Rn×p and compute its QR factorization Y0 = Q0R0, with Q0 ∈ Rn×p and
R0 ∈ Rp×p.
for i = 1, . . . , q do

Form Ỹi = M>Qi−1 and compute its QR factorization Ỹi = Q̃iR̃i.
Form Yi = MQ̃i and compute its QR factorization Yi = QiRi.

end for
Q = Qq.

Once the matrix Q is computed, one can perform an eigenvalue decomposition of either

M′ = Q>MQ ∈ Rp×p
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for eigenvalue decomposition of M, or

M
′′
= Q>MM>Q ∈ Rp×p

for its singular value decomposition. As p � n, such decompositions are much less computa-
tionally expensive than a direct decomposition of M.

Now, let x̄ ∈ Rp be an eigenvector of M′ associated with the eigenvalue λ. Then, x = Qx̄ ∈ Rn

approximates an eigenvector of M as

Mx = MQx̄ ≈ QQ>MQx̄ = QM′ x̄ = Qλx̄ = λx.

The same thing goes for ū, v̄ left and right singular vectors of M
′′

associated with the eigenvalue
σ2. Let u = Qū and v = Qv̄, then

MM>v = MM>Qv̄ ≈ QQ>MM>Qv̄ = QM
′′
v̄ = Qσ2v̄ = σ2v.

So that v is an approximate eigenvector of MM> associated with the eigenvalue σ2 and conse-
quently an approximate right singular vector of M associated with the singular value σ. Similar
derivations show that u is an approximate left singular vector of M.

A classic use-case for Halko’s algorithm is the implementation of large-scale Principal Compo-
nent Analysis [Yu et al., 2017]. We present some other ones in Section 1.4.6 and in Chapter 3.

1.4.6 Linear operators

A linear operator of Rn is a function f such that for u, v ∈ Rn and λ ∈ R,

f (u + λv) = f (u) + λ f (v).

In computer science, they are defined by two primitives, namely matvec (for matrix-vector
product) and transpose which would respectively be f and its conjugate f ∗ in mathematical
terms. Recall that the ith column of a matrix is simply the image of the ith vector of the canonical
basis by the associated linear operator.

These structures are of great interest in graph mining for memory reasons. Indeed, they do not
require to explicitly store the images of the canonical vectors. As previously stated, the matrix-
vector product and the transposition are enough to actually compute eigenvalue and singular
value decompositions.

As a matter of fact, several matrices of interest in graph mining have an explicit "sparse + low-
rank" structure, which means they are of the form

M = S + xy>,

where S is a sparse matrix and x, y are vectors. Such matrices are dense, however, storing them
as linear operators requires only to store 2m + 2n coefficients (as S> might have to be stored as
well depending on the use-case). The matrix-vector product being computed as follows:

Mz = Sz + (y>z)x.

The operator corresponding to M can be written (S, (x, y)), such that the operator correspond-
ing to M> is simply

(
S>, (y, x)

)
.

For each one of the following examples from the literature, Table 1.3 identifies the sparse term
S and the low-rank term (x, y).
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matrix S (sparse) x y

Random surfer αD−1 A 1−α
n 1 1

Modularity 1
w A − γ

w d 1
w d

Laplacian I − D−1/2
α AD−1/2

α − α
n

√
d + α1

√
d + α1

PCA A 1
w f 1

Table 1.3: Identification of sparse and low-rank factors. (Dα = D + αI.)

• Random surfer’s transition matrix [Page et al., 1999a],

Rij =
αAij

di
+

1− α

n
,

where α is a float between 0 and 1 and n is the number of nodes in the graph.

• The modularity matrix [Newman, 2006b],

Mij =
1
w

Aij −
γ

w2 didj,

where γ ≥ 0 is a resolution parameter.

• The regularized graph Laplacian [Zhang and Rohe, 2018],

(Lα)ij = δij −
Aij + α/n√

(di + α)(dj + α)
,

where δ is the Kronecker symbol such that δij = 1 if i = j and 0 otherwise and α ≥ 0.

• The principal components analysis (PCA) matrix [Saerens et al., 2004],

Āij = Aij − f j/w.

1.4.7 Experiments

In this section, we illustrate the use of linear operators combined to Halko’s algorithm on real
datasets.

We compute the partial eigenvalue decomposition and the partial singular value decomposition
of the modularity matrix of 7 undirected and 7 bipartite graphs, respectively. In the bipartite
case, the modularity matrix is defined as

Q =
1
w

B− γ

w2 d f>,

as later discussed in Chapter 4.

The graphs are collected from the Konect database [Kunegis, 2013] so that they have a varying
number of nodes and edges. Table 1.4 presents some characteristics of these datasets.
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code name n m density

MK Kangaroo 2.101 2.102 10−1

JZ Jazz musicians 2.102 5.103 10−1

Shf Hamsterster 2.103 2.104 10−3

RC Reactome 6.103 3.105 10−2

GW Gowalla 2.105 2.106 10−4

SK Skitter 2.106 2.107 10−5

OR Orkut 3.106 2.108 10−5

(a) Undirected graphs.

code name n1 n2 m density

SW Southern women 1 2.101 2.101 9.101 10−1

UL Unicode languages 2.102 6.101 1.103 10−1

SX Sexual escorts 1.104 6.103 4.104 10−3

Mut MovieLens user–tag 4.103 2.104 4.104 10−3

R2 Reuters-21578 2.104 4.104 1.106 10−3

M3 MovieLens 10M 7.104 1.104 1.107 10−2

RE Reuters 8.105 3.105 6.107 10−4

(b) Bipartite graphs.

Table 1.4: Some characteristics of the datasets.

In a first experiment, we extract k = 16 components in each case and record the computation
times for our modified Python implementation of Halko’s method. We compare our results to
the computation times of the direct Lanczos method using SciPy [Virtanen et al., 2020]. Results
are displayed in Figure 1.6.

In a second experiment, we record the respective running times for the Reactome (undirected)
and MovieLens user–tag (bipartite) graphs for k ∈ {8, 16, 32, 64, 128, 256}. See Figure 1.7.

Results In the laptop setup, memory errors arise around n2 or n1n2 = 109 for the dense im-
plementation. At this point, the Lanczos method is already between one and two orders of
magnitude slower than Halko’s. On the other hand, the "sparse + low-rank trick" enables to
handle graphs with more than 3 million nodes and 234 million edges in about five minutes.

Furthermore, note that the running time for the implicit dense matrix is quite close to the run-
ning time for its sparse component. This holds for a fixed k and varying graphs as well as for
fixed graphs and varying k.

1.5 Contributions

In this chapter, we have introduced graphs, their related tasks and data structures as well as
some useful linear algebra that will help further reading [De Lara, 2019]. The rest of this thesis
is organized as follows:

In Chapter 2, we introduce Scikit-network, a Python software for graph mining which is used
in almost all our experiments.
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Chapter 3 presents two distinct contributions to spectral embedding. First, a novel analysis of
a standard regularization technique [Lara and Bonald, 2020]. Second, an interpretable exten-
sion to bipartite and directed graphs based on the Generalized Singular Value Decomposition
[Bonald and De Lara, 2018].

Chapter 4 is dedicated to node clustering. We propose a general framework to interpret
modularity-like quality functions. Specifically, we make a novel connection between modular-
ity maximization and block model fitting. Then, we detail how the Louvain heuristic can be
generalized to find local optimums for all these quality functions.

In Chapter 5, we propose a novel algorithm for semi-supervised node classification based on
heat diffusion. We highlight its efficiency with respect to other diffusion-based methods by
proving its consistency on a simple model, then, we assess its performance on real graphs.

In Chapter 6, we discuss graph classification. We propose two distinct algorithms to address
this problem [de Lara and Pineau, 2018, Pineau and de Lara, 2019b] and benchmark them on
standard datasets.

Finally, Chapter 7 concludes the thesis.

A schematic structure of the thesis is displayed in Figure 1.8.

1.6 Publications

This section enumerates the publications related to the present thesis in chronological order.

• Bonald, T., & De Lara, N. (2018). The Forward-Backward Embedding of Directed Graphs.
Openreview.
Chapter 3.

• De Lara, N., & Pineau, E. (2018). A simple baseline algorithm for graph classification.
Relational Representation Learning, NeurIPS 2018 Workshop.
Chapter 6.

• Pineau, E., & De Lara, N. (2019). Variational recurrent neural networks for graph classification.
In Representation Learning on Graphs and Manifolds Workshop.
Chapter 6.

• De Lara, N. (2019). The sparse + low rank trick for matrix factorization-based graph algorithms.
In Proceedings of the 15th International Workshop on Mining and Learning with Graphs.
Chapter 1.

• De Lara, N., & Bonald, T. (2019). Spectral embedding of regularized block models.
International Conference on Learning Representations.
Chapter 3.

• Bonald, T., De Lara, N., & Lutz, Q. (2020). Scikit-network: graph analysis in Python.
To be published in the Journal of Machine Learning Research.
Chapter 2.

• De Lara, N., & Bonald, T. (2020). A Consistent Diffusion-Based Algorithm for Semi-Supervised
Classification on Graphs.
preprint.
Chapter 5.
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(a) Undirected graphs.

(b) Bipartite graphs.

Figure 1.6: Computation times in seconds for partial decomposition of matrices.
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(a) Reactome.

(b) MovieLens.

Figure 1.7: Computation times in seconds for different values of the number of components, k.
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Chapter 5
Semi-supervised node

classification

Chapter 2
Scikit-network

Chapter 3
Spectral embedding

Chapter 4
Node clustering

Chapter 6
Graph classification

Figure 1.8: Structure of the thesis.
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Chapter 2

Scikit-network

Scikit-network (Figure 2.1) is a Python package inspired by Scikit-learn for the analysis of large
graphs [Bonald et al., 2020]. Graphs are represented by their adjacency matrix in the sparse CSR
format of SciPy. The package provides state-of-the-art algorithms for ranking, clustering, classi-
fying, embedding and visualizing the nodes of a graph. High performance is achieved through
a mix of fast matrix-vector products (using SciPy), compiled code (using Cython) and parallel
processing. The package is distributed under the BSD license, with dependencies limited to
NumPy and SciPy. It is compatible with Python 3.6 and newer. Source code, documentation
and installation instructions are available online1. This chapter describes the version 0.18.0 of
the package.

Figure 2.1: Scikit-network’s logo.

References

• Bonald, T., De Lara, N., & Lutz, Q. (2020). Scikit-network: graph analysis in Python.
Journal of Machine Learning Research.

1https://scikit-network.readthedocs.io/en/latest/
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2.1 Motivation

Scikit-learn [Pedregosa et al., 2011b] is a machine learning package based on the popular Python
language. It is well-established in today’s machine learning community thanks to its versatility,
performance and ease of use, making it suitable for both researchers, data scientists and data en-
gineers. Its main assets are the variety of algorithms, the performance of their implementation
and their common API.

Scikit-network is a Python package inspired by Scikit-learn for graph analysis. The sparse nature
of real graphs, with up to millions of nodes, prevents their representation as dense matrices
and rules out most algorithms of Scikit-learn. Scikit-network takes as input a sparse matrix in the
CSR format of SciPy and provides state-of-the-art algorithms for ranking, clustering, classifying,
embedding and visualizing the nodes of a graph.

The design objectives of scikit-network are the same as those having made Scikit-learn a success:
versatility, performance and ease of use. The result is a Python-native package, like NetworkX
[Hagberg et al., 2008], that achieves the state-of-the-art performance of iGraph [Csardi and Ne-
pusz, 2006] and graph-tool [Peixoto, 2014] (see the benchmark in section 2.5). Scikit-network uses
the same API as Scikit-learn, with algorithms available as classes with the same methods (e.g.,
fit). It is distributed with the BSD license, with dependencies limited to NumPy [Walt et al.,
2011] and SciPy [Virtanen et al., 2020].

2.2 Software features

The package is organized in modules with consistent API, covering various tasks:

• Data. Module for loading graphs from distant repositories, including Konect [Kunegis,
2013], parsing tsv files into graphs, and generating graphs from standard models, like the
stochastic block model [Airoldi et al., 2008].

• Clustering. Module for clustering graphs, including a soft version that returns a node-
cluster membership matrix. It currently implements several variations of the Louvain
algorithm [Blondel et al., 2008], as a pipeline to apply k-means on a graph embedding or
even a label propagation [Raghavan et al., 2007].

• Hierarchy. Module for the hierarchical clustering of graphs, returning dendrograms in
the standard format of SciPy. The module also provides various post-processing algo-
rithms for cutting and compressing dendrograms. Implemented algorithms include Paris
[Bonald et al., 2018a] and a pipeline to apply Ward’s algorithm [Ward Jr, 1963] on a graph
embedding.

• Embedding. Module for embedding graphs in a space of low dimension. This includes
spectral embedding and standard dimension reduction techniques like SVD and GSVD,
with key features like regularization. This module also implements the spring layout
[Fruchterman and Reingold, 1991] for visualization purposes.

• Ranking. Module for ranking the nodes of the graph by order of importance. This in-
cludes PageRank [Page et al., 1999b] and various centrality scores such as HITS [Kleinberg,
1999], diffusion based-ranking [Chung, 2007], closeness or harmonic centrality [Marchiori
and Latora, 2000].

• Classification. Module for classifying the nodes of the graph based on the labels of a few
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nodes (semi-supervised learning). Some of the implemented algorithms are evaluated in
Chapter 5.

• Path. Module relying on SciPy for graph traversals: shortest paths, breadth first search,
depth first search, diameter estimation, etc.

• Topology. Module for topological structures extraction such that connected components,
bipartite structure, k-core, clustering coefficient etc.

• Visualization. Module for visualizing graphs and dendrograms in SVG (Scalable Vector
Graphics) format. Examples are displayed in Figure 2.2.

These modules are only partially covered by existing graph softwares (see Table 2.1). Another
interesting feature of Scikit-network is its ability to work directly on bipartite graphs, represented
by their biadjacency matrix.

Modules scikit-network NetworkX iGraph graph-tool
Data 3 3 7 3
Clustering 3 3 3 7
Hierarchy 3 7 3 3
Embedding 3 3 7 3
Ranking 3 3 3 3
Classification 3 3 7 7
Path 3 3 3 3
Topology 3 3 3 3
Visualization 3 3 3 3

Table 2.1: Overview of graph software features. 3: Available. 3: Partial overlap. 7: Not
available.
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Figure 2.2: Visualization of a graph and a dendrogram as SVG images.
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2.3 Project Assets

Code quality and availability. Code quality is assessed by standard code coverage metrics. This
version’s coverage is greater than 98% for the whole package. Requirements are also kept up
to date thanks to the PyUp tool. Scikit-network relies on TravisCI for continuous integration and
cibuildwheel and manylinux for deploying on common platforms. OSX, Windows 32 or 64-bit
and most Linux distributions [McGibbon and Smith, 2016] are supported for Python versions
3.6 and newer.

Open-source software. The package is hosted on GitHub2 and part of SciPy kits aimed at cre-
ating open-source scientific software. Its BSD license enables maximum interoperability with
other software. Guidelines for contributing are described in the package’s documentation3 and
guidance is provided by the GitHub-hosted Wiki.

Documentation. Scikit-network is provided with a complete documentation3. The API reference
presents the syntax while the tutorials present applications on real graphs. Algorithms are
documented with relevant formulas, specifications, examples and references, when relevant.

Code readability. The source code follows the stringent PEP8 guidelines. Explicit variable nam-
ing and type hints make the code easy to read. The number of object types is kept to a minimum.

Data collection. The package offers multiple ways to fetch data. Some small graphs are em-
bedded in the package itself for testing or teaching purposes. Part of the API makes it possible
to fetch data from selected graph databases easily. Parsers are also present to enable users to
import their own data and save it in a convenient format for later reuse.

2.4 Resources

Scikit-network relies on a very limited number of external dependencies for ease of installation
and maintenance. Only SciPy and NumPy are required on the user side.

SciPy. Many elements from SciPy are used for both high performance and simple code. The
sparse matrix representations allow for efficient manipulations of large graphs while the linear
algebra solvers are used in many algorithms. Scikit-network also relies on the LinearOperator
class for efficient implementation of certain algorithms.

NumPy. NumPy arrays are used through SciPy’s sparse matrices for memory-efficient com-
putations. NumPy is used throughout the package for the manipulation of arrays. Some inputs
and most of the outputs are given in the NumPy array format.

Cython. In order to speed up execution times, Cython [Behnel et al., 2011] generates C++ files
automatically using a Python-like syntax. Thanks to the Python wheel system, no compilation
is required from the user on most platforms. Note that Cython has a built-in module for par-
allel computing on which scikit-network relies for some algorithms. Otherwise, it uses Python’s
native multiprocessing.

2https://github.com/sknetwork-team/scikit-network
3https://scikit-network.readthedocs.io/en/latest/
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2.5 Performance

To show the performance of scikit-network, we compare the implementation of some representa-
tive algorithms with those of the graph softwares of Table 2.1: the Louvain clustering algorithm
[Blondel et al., 2008], PageRank [Page et al., 1999b], HITS [Kleinberg, 1999] and the spectral em-
bedding [Belkin and Niyogi, 2002c]. For PageRank, the number of iterations is set to 100 when
possible (that is for all packages except iGraph). For Spectral, the dimension of the embedding
space is set to 16.

Table 2.2 gives the running times of these algorithms on the Orkut graph of Konect [Kunegis,
2013] in the server setup. The graph has 3 072 441 nodes and 117 184 899 edges. As we can see,
Scikit-network is highly competitive.

scikit-network NetworkX iGraph graph-tool

Louvain 139 7 1 978 7

PageRank 48 � 236 45
HITS 109 � 80 144
Spectral 534 � 7 7

Table 2.2: Execution times (in seconds). 7: Not available. �: Memory overflow.

We also give in Table 2.3 the memory usage of each package when loading the graph. Thanks
to the CSR format, scikit-network has a minimal footprint.

scikit-network NetworkX iGraph graph-tool

RAM usage 1 222 � 17 765 10 366

Table 2.3: Memory usage (in MB). �: Memory overflow.

2.6 The NetSet repository

As mentioned in Section 2.2, Scikit-network allows to load datasets from some repositories.
Among those is the NetSet4 repository which has been implemented by the Scikit-network
team.

As in Scikit-learn, datasets are stored as Bunch objects with consistent attribute names. Adja-
cency and biadjacency matrices are stored in the compressed npz format of SciPy which is highly
efficient both in memory space and loading speed. Other attributes such as labels or names of
the nodes are stored in the npy format of NumPy.

The repository currently gathers some standard networks from the literature such as Cora or
the 20newsgroup, but also some original ones such as Wikipedia Vitals, already mentioned in
Chapter 1. See Example 2.6.1 for an illustration.

4https://netset.telecom-paris.fr/
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Example. 2.6.1: Loading a graph from the NetSet repository

[1]: from sknetwork.data import load_netset
dataset = load_netset('cora')
dataset

[1]: {'name': 'cora',
'labels': array([2, 5, 4, ..., 1, 0, 2]),
'adjacency': <2708x2708 sparse matrix of type '<class 'numpy.
↪→float64'>'

with 10556 stored elements in Compressed Sparse Row format>,
'meta': {'name': 'cora'}}
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Chapter 3

Spectral embedding

Learning from network-structured data often requires to embed the underlying graph in some
Euclidian space Yan et al. [2006], Grover and Leskovec [2016], Bronstein et al. [2017]. The quality
of the subsequent learning tasks (e.g., clustering, classification) then critically depends on this
embedding, that must reflect the graph structure.

Usual graph embedding techniques rely on the heuristic that nodes which are close in the graph
according to some similarity metric should also be close in the embedding space [Cai et al.,
2018]. Standard similarity metrics include first-order proximity (i.e., edges) [Belkin and Niyogi,
2002c], second-order proximity [Roweis and Saul, 2000, Dhillon, 2001, Tang et al., 2015a] or
higher-order proximity (i.e., random walks) [Grover and Leskovec, 2016, Perozzi et al., 2014,
Tenenbaum et al., 2000].

The embedding is then the solution to some optimization problem, which is solved either by
matrix factorization [Belkin and Niyogi, 2002c, Dhillon, 2001, Roweis and Saul, 2000, Tenen-
baum et al., 2000, Wold et al., 1987] or by iterative methods based on skip-gram negative sam-
pling [Grover and Leskovec, 2016, Perozzi et al., 2014, Tang et al., 2015a]. However, even for
SVD-based methods [Dhillon, 2001, Wold et al., 1987], there is most of the time no clear inter-
pretation of the distance between nodes in the embedding space.

A classical embedding of undirected graphs is based on the spectral decomposition of the Lapla-
cian [Belkin and Niyogi, 2002c, Ng et al., 2002]; after proper normalization, the distance between
nodes in the embedding space corresponds to the mean commute time of a random walk in the
graph, making this embedding meaningful and easy to interpret [Qiu and Hancock, 2007, Fouss
et al., 2007].

References

• Bonald, T., & De Lara, N. (2018). The Forward-Backward Embedding of Directed Graphs.
Openreview.

• De Lara, N., & Bonald, T. (2019). Spectral embedding of regularized block models.
International Conference on Learning Representations.
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3.1 Problem statement

In Belkin and Niyogi [2002c], the embedding is presented as the minimizer of the following loss
function:

X ∈

arg min L = ∑
i,j

Aij||Xi − Xj||2,

X>WX = I,

where W can be either I or D = diag(A1). See that the loss function L penalizes nodes which
are connected but distant in the embedding space while the orthonormality constraint rules out
the trivial constant embedding.

Yet, the name spectral comes from the following equivalent formulation. Given the adjacency
matrix A ∈ Rn×n

+ of the graph, the embedding is obtained by solving either the eigenvalue
problem:

LX = XΛ, with X>X = I, (3.1)

or the generalized eigenvalue problem:

LX = DXΛ, with X>DX = I, (3.2)

where L = D − A is the Laplacian matrix of the graph, Λ ∈ Rk×k is the diagonal matrix of
the k smallest (generalized) eigenvalues of L and X ∈ Rn×k is the corresponding matrix of
(generalized) eigenvectors.

Besides, the spectral embedding can be interpreted as equilibrium states of some physical sys-
tems [Snell and Doyle, 2000, Spielman, 2007, Bonald et al., 2018b] as illustrated in Figure 3.1. In
this virtual mechanical system, nodes are masses connected by springs corresponding to edges,
sliding without friction on an axis rotating at angular speed ω. Let W denote the diagonal ma-
trix of node masses and x the position of the nodes along the axis. The system is in equilibrium
if and only if

Lx = ω2Wx.

If all nodes have the same mass, W ∝ I and x is a solution of (3.1) associated with the eigenvalue
λ = ω2. If nodes have masses proportional to their degree, W ∝ D and x is a solution of (3.2)
for the same eigenvalue.

Figure 3.1: Virtual mechanical system.
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In this chapter, unless otherwise specified, we consider the generalized eigenvalue problem. In
view of proposition 1 the solution of (3.2) is given by the spectral decomposition of the normal-
ized Laplacian matrix

Lnorm = I − D−1/2 AD−1/2.

This choice will be justified by our experiments. We refer to the eigenvectors of this normalized
Laplacian as the vanilla spectral embedding.

In the following sections, we discuss how to improve this vanilla embedding. Specifically, Sec-
tion 3.2 presents a new interpretation of a standard graph regularization technique, published
in Lara and Bonald [2020] and Section 3.3 offers an interpretable extension to directed and bi-
partite graphs, partially introduced in Bonald and De Lara [2018].

Graphs embeddings are traditionally combined with k-means [MacQueen et al., 1967] for clus-
tering, Ward’s algorithm [Ward Jr, 1963] for hierarchical clustering or some classifier such as a
nearest neighbor’s one for classification. Thus, we defer some related experiments to Chapters
4 and 5, respectively.

3.2 Regularization

Vanilla spectral embedding tends to produce poor results on real datasets if applied directly on
the graph [Amini et al., 2013]. One reason is that real graphs are often either disconnected or
have sets of dangling nodes loosely connected to the rest of the graph due to noise or outliers in
the dataset. In this section, we analyze how a simple graph regularization can help to overcome
this issue.

Several regularization techniques have been proposed to improve the quality of the embedding
with respect to downstream tasks like clustering. In this section, we explain on a simple block
model the impact of the complete graph regularization, whereby a constant is added to all
entries of the adjacency matrix. Specifically, we show that the regularization forces the spectral
embedding to focus on the largest blocks, making the representation less sensitive to noise or
outliers. We illustrate these results on both synthetic and real data, showing how regularization
improves standard clustering scores.

In order to improve the quality of the embedding, two main types of regularization have been
proposed. The first artificially increases the degree of each node by a constant factor [Chaudhuri
et al., 2012, Qin and Rohe, 2013], while the second adds a constant to all entries of the original
adjacency matrix [Amini et al., 2013, Joseph et al., 2016, Zhang and Rohe, 2018]. See Figure 3.2
for an illustration. In the practically interesting case where the original adjacency matrix A is
sparse, the regularized adjacency matrix is dense but has a so-called sparse + low rank struc-
ture, enabling the computation of the spectral embedding on very large graphs as presented in
Section 1.4.

29



(a) Original graph. (b) Regularized version.

Figure 3.2: Regularization of a toy graph.

While Zhang and Rohe [2018] explains the effects of regularization through graph conductance
and Joseph et al. [2016] through eigenvector perturbation on the Stochastic Block Model, there
is no simple interpretation of the benefits of graph regularization. In this section, we show on
a simple block model that the complete graph regularization forces the spectral embedding to
separate the blocks in decreasing order of size, making the embedding less sensitive to noise or
outliers in the data.

Indeed, Zhang and Rohe [2018] identified that, without regularization, the cuts corresponding
to the first dimensions of the spectral embedding tend to separate small sets of nodes, so-called
dangling sets, loosely connected to the rest of the graph. Our work shows more explicitly that
regularization forces the spectral embedding to focus on the largest clusters. Moreover, our
analysis involves some explicit characterization of the eigenvalues, allowing us to quantify the
impact of the regularization parameter.

The rest of this section is organized as follows. Section 3.2.1 presents block models and an
important preliminary result about their aggregation. Section 3.2.2 presents the main result,
about the regularization of block models, while Section 3.2.5 extends this result to bipartite
graphs.

3.2.1 Aggregation of Block Models

Let A ∈ Rn×n
+ be the adjacency matrix of an undirected, weighted graph, that is a symmetric

matrix such that Aij > 0 if and only if there is an edge between nodes i and j, with weight
Aij. Assume that the n nodes of the graph can be partitioned into K blocks of respective sizes
n1, . . . , nK so that any two nodes of the same block have the same neighborhood, i.e., the corre-
sponding rows (or columns) of A are the same. Without any loss of generality, we assume that
the matrix A has rank K. We refer to such a graph as a block model.

Let Z ∈ Rn×K be the associated membership matrix, with Zij = 1 if index i belongs to block j
and 0 otherwise. We denote by W = Z>Z ∈ RK×K the diagonal matrix of block sizes.

Now define Ā = Z>AZ ∈ RK×K. This is the adjacency matrix of the aggregate graph, where
each block of the initial graph is replaced by a single node; two nodes in this graph are con-
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nected by an edge of weight equal to the total weight of edges between the corresponding blocks
in the original graph. We denote by D̄ = diag(Ā1K) the degree matrix and by L̄ = D̄ − Ā the
Laplacian matrix of the aggregate graph.

The following result shows that the solution to the generalized eigenvalue problem (3.2) follows
from that of the aggregate graph:

Proposition 3. Let x be a solution to the generalized eigenvalue problem:

Lx = λDx. (3.3)

Then either Z>x = 0 and λ = 1 or x = Zy where y is a solution to the generalized eigenvalue problem:

L̄y = λD̄y. (3.4)

Proof. Consider the following reformulation of the generalized eigenvalue problem (3.3):

Ax = Dx(1− λ). (3.5)

Since the rank of A is equal to K, there are n− K eigenvectors x associated with the eigenvalue
λ = 1, each satisfying Z>x = 0. By orthogonality, the other eigenvectors satisfy x = Zy for
some vector y ∈ RK. We get:

AZy = DZy(1− λ),

so that
Āy = D̄y(1− λ).

Thus y is a solution to the generalized eigenvalue problem (3.4).

3.2.2 Regularization of Block Models

Let A be the adjacency matrix of some undirected graph. We consider a regularized version of
the graph where an edge of weight α is added between all pairs of nodes, for some constant
α > 0. The corresponding adjacency matrix is given by:

Aα = A + αJ,

where J = 1n1>n is the all-ones matrix of same dimension as A. We denote by Dα = diag(Aα1n)
the corresponding degree matrix and by Lα = Dα − Aα the Laplacian matrix.

We first consider a simple block model where the graph consists of K disjoint cliques of respec-
tive sizes n1 > n2 > · · · > nK nodes, with nK ≥ 1. In this case, we have A = ZZ>, where Z is
the membership matrix.

The objective of this section is to demonstrate that, in this setting, the k-th dimension of the
spectral embedding isolates the k − 1 largest cliques from the rest of the graph, for any k ∈
{2, . . . , K}

Lemma 1. Let λ1 ≤ λ2 ≤ . . . ≤ λn be the eigenvalues associated with the generalized eigenvalue
problem:

Lαx = λDαx. (3.6)

We have λ1 = 0 < λ2 ≤ . . . ≤ λK < λK+1 = . . . = λn = 1.
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Proof. Since the Laplacian matrix Lα is positive semi-definite, all eigenvalues are non-negative
[Chung, 1997]. We know that the eigenvalue 0 has multiplicity 1 on observing that the regular-
ized graph is connected. Now for any vector x,

x>Aαx = x>Ax + αx> Jx = ||Z>x||2 + α(1>n x)2 ≥ 0,

so that the matrix Aα is positive semi-definite. In view of (3.5), this shows that λ ≤ 1 for any
eigenvalue λ. The proof then follows from Proposition 3, on observing that the eigenvalue 1
has multiplicity n− K.

Lemma 2. Let x be a solution to the generalized eigenvalue problem (3.6) with λ ∈ (0, 1). There exists
some s ∈ {+1,−1} such that for each node i in block j,

sign(xi) = s ⇐⇒ nj ≥ α
1− λ

λ
n.

Proof. In view of Proposition 3, we have x = Zy where y is a solution to the generalized eigen-
value problem of the aggregate graph, with adjacency matrix:

Āα = Z>AαZ = Z>(A + αJ)Z.

Since A = ZZ> and W = Z>Z, we have Āα = W2 + αZ> JZ. Using the fact that Z1K = 1n, we
get J = 1n1>n = ZJKZ> with JK = 1K1>K the all-ones matrix of dimension K× K, so that:

Āα = W(IK + αJK)W,

where IK is the identity matrix of dimension K× K. We deduce the degree matrix:

D̄α = W(W + αnIK),

and the Laplacian matrix:
L̄α = D̄α − Āα = αW(nIK − JKW).

The generalized eigenvalue problem associated with the aggregate graph is:

L̄αy = λD̄αy.

We get:
α(nIK − JKW)y = λ(W + αnIK)y.

Observing that JKWy ∝ 1K, we conclude that:

(αn(1− λ)− λW)y ∝ 1K, (3.7)

and since W = diag(n1, . . . , nK),

∀j = 1, . . . , K, yj ∝
1

λnj − α(1− λ)n
. (3.8)

The result then follows from the fact that x = Zy.
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Lemma 3. The K smallest eigenvalues satisfy:

0 = λ1 < µ1 < λ2 < µ2 < · · · < λK < µK,

where for all j = 1, . . . , K,

µj =
αn

αn + nj
.

Proof. We know from Lemma 1 that the K smallest eigenvalues are in [0, 1). Let x be a solution
to the generalized eigenvalue problem (3.6) with λ ∈ (0, 1). We know that x = Zy where y is
an eigenvector associated with the same eigenvalue λ for the aggregate graph. Since 1K is an
eigenvector for the eigenvalue 0, we have y>D̄α1K = 0. Using the fact that D̄α = W(W + αnIK),
we get:

K

∑
j=1

nj(nj + αn)yj = 0.

We then deduce from (3.7) and (3.8) that λ 6∈ {µ1, . . . , µK} and

K

∑
j=1

nj(nj + αn)
1

λ/µj − 1
= 0.

This condition cannot be satisfied if λ < µ1 or λ > µK as the terms of the sum would be either
all positive or all negative.

Now let y′ be another eigenvector for the aggregate graph, with y>D̄αy′ = 0, for the eigenvalue
λ′ ∈ (0, 1). By the same argument, we get:

K

∑
j=1

nj(nj + αn)yjy′j = 0,

and
K

∑
j=1

nj(nj + αn)
1

λ/µj − 1
1

λ′/µj − 1
= 0.

with λ′ 6∈ {µ1, . . . , µK}. This condition cannot be satisfied if λ and λ′ are in the same interval
(µj, µj+1) for some j as the terms in the sum would be all positive. There are K− 1 eigenvalues
in (0, 1) for K− 1 such intervals, that is one eigenvalue per interval.

The main result of the section is the following, showing that the k− 1 largest cliques of the orig-
inal graph can be recovered from the spectral embedding of the regularized graph in dimension
k.

Theorem 1. Let X be the spectral embedding of dimension k, as defined by (3.2), for some k in the set
{2, . . . , K}. Then sign(X) gives the k− 1 largest blocks of the graph.

Proof. Let x be the j-th column of the matrix X, for some j ∈ {2, . . . , k}. In view of Lemma 3,
this is the eigenvector associated with eigenvalue λj ∈ (µj−1, µj), so that

α
1− λj

λj
n ∈ (nj−1, nj).

In view of Lemma 2, all entries of x corresponding to blocks of size n1, n2 . . . , nj−1 have the same
sign, the other having the opposite sign.
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3.2.3 Illustration

We illustrate Theorem 1 with a toy graph consisting of 3 cliques of respective sizes 5, 3 and 2.
We compute the embedding in dimension 2 and report the plots in Figure 3.3.
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Figure 3.3: Embeddings of a toy graph. The size of a marker is proportional to the size of the
corresponding clique.

As we can see, the embedding without regularization isolates the smallest clique from the two
others. On the other hand, in the regularized embedding, the first axis isolates the biggest clique
from the others and the second axis isolates the two biggest cliques from the small one.

3.2.4 Extensions

Theorem 1 can be extended in several ways. First, the assumption of distinct block sizes can
easily be relaxed. If there are L distinct values of block sizes, say m1, . . . , mL blocks of sizes
n1 > . . . > nL, there are L distinct values for the thresholds µj and thus L distinct values for the
eigenvalues λj in [0, 1), the multiplicity of the j-th smallest eigenvalue being equal to mj. The
spectral embedding in dimension k still gives k− 1 cliques of the largest sizes.

Secondly, the graph may have edges between blocks. Taking A = ZZ> + εJ for instance, for
some parameter ε ≥ 0, the results are exactly the same, with α replaced by ε + α. A key obser-
vation is that regularization really matters when ε→ 0, in which case the initial graph becomes
disconnected and, in the absence of regularization, the spectral embedding may isolate small
connected components of the graph. In particular, the regularization makes the spectral embed-
ding much less sensitive to noise, as will be demonstrated in the experiments.

Finally, degree correction can be added by varying the node degrees within blocks. Taking
A = θZZ>θ, for some arbitrary diagonal matrix θ with positive entries, similar results can be
obtained under the regularization Aα = A + αθ Jθ. Interestingly, the spectral embedding in
dimension k then recovers the k− 1 largest blocks in terms of normalized weight, the ratio of the
total weight of the block to the number of nodes in the block. For example, a block with 5 nodes
connected by edges of weight 10 has a normalized weight of (52 × 10)/5 = 50 while a block of
10 nodes connected by edges of weight 4 has a normalized weight of 40. Such case is likely to
happen for communication networks. There can be a large group of connected individuals with
small communication rate and a much smaller group but with a very high communication rate.
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3.2.5 Regularization of Bipartite Graphs

Let B = R
n1×n2
+ be the biadjacency matrix of some bipartite graph with respectively n1, n2 nodes

in each part, i.e., Bij > 0 if and only if there is an edge between node i in the first part of the
graph and node j in the second part of the graph, with weight Bij. This is an undirected graph
of n1 + n2 nodes with adjacency matrix:

A =

[
0 B

B> 0

]
The spectral embedding of the graph (3.2) can be written in terms of the biadjacency matrix as
follows: {

BX2 = D1X1(I −Λ)
B>X1 = D2X2(I −Λ)

(3.9)

where X1, X2 are the embeddings of each part of the graph, with respective dimensions n1 × k
and n2 × k, D1 = diag(B1n2) and D2 = diag(B>1n1). In particular, the spectral embedding of
the graph follows from the generalized SVD of the biadjacency matrix B.

The complete regularization adds edges between all pairs of nodes, breaking the bipartite struc-
ture of the graph. Another approach consists in applying the regularization to the biadjacency
matrix, i.e., in considering the regularized bipartite graph with biadjacency matrix:

Bα = B + αJ,

where J = 1n11>n2
is here the all-ones matrix of same dimension as B. The spectral embedding

of the regularized graph is that associated with the adjacency matrix:

Aα =

[
0 Bα

B>α 0

]
(3.10)

As in Section 3.2.2, we consider a block model so that the biadjacency matrix B is block-diagonal
with all-ones block matrices on the diagonal. Each part of the graph consists of K groups of
nodes of respective sizes n1,1 > . . . > n1,K and n2,1 > . . . > n2,K, with nodes of block j in the
first part connected only to nodes of block j in the second part, for all j = 1, . . . , K.

We consider the generalized eigenvalue problem (3.6) associated with the above matrix Aα. In
view of (3.9), this is equivalent to the generalized SVD of the regularized biadjacency matrix Bα.
We have the following results:

Lemma 4. Let λ1 ≤ λ2 ≤ . . . ≤ λn be the eigenvalues associated with the generalized eigenvalue
problem (3.6). We have λ1 = 0 < λ2 ≤ . . . ≤ λK < λK+1 = . . . = λn−2K < . . . < λn = 2.

Lemma 5. Let x be a solution to the generalized eigenvalue problem (3.6) with λ ∈ (0, 1). There exists
s1, s2 ∈ {+1,−1} such that for each node i in block j of part p ∈ {1, 2},

sign(xi) = sp ⇐⇒
n1,jn2,j

(n1,j + αn1)(n2,j + αn2)
≥ 1− λ.

Lemma 6. The K smallest eigenvalues satisfy:

0 = λ1 < µ1 < λ2 < µ2 < · · · < λK < µK,

where for all j = 1, . . . , K,

µj = 1−
n1,jn2,j

(n1,j + αn1)(n2,j + αn2)
.
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Theorem 2. Let X be the spectral embedding of dimension k, as defined by (3.2), for some k in the set
{2, . . . , K}. Then sign(X) gives the k− 1 largest blocks of each part of the graph.

Like Theorem 1, the assumption of decreasing block sizes can easily be relaxed. Assume that
block pairs are indexed in decreasing order of µj. Then the spectral embedding of dimension
k gives the k − 1 first block pairs for that order. It is interesting to notice that the order now
depends on α:

• When α → 0+, the block pairs j of highest value ( n1
n1,j

+ n2
n2,j

)−1 (equivalently, highest
harmonic mean of proportions of nodes in each part of the graph) are isolated first.

• When α→ +∞, the block pairs j of highest value
n1,jn2,j
n1n2

(equivalently, the highest geometric
mean of proportions of nodes in each part of the graph) are isolated first.

The results also extend to non-block diagonal biadjacency matrices B and degree-corrected
models, as for Theorem 1.

The proof of Theorem 2 follows the same workflow as that of Theorem 1. Let Z1 ∈ Rn1×K and
Z2 ∈ Rn2×K be the left and right membership matrices for the block matrix B ∈ Rn1×n2 . The
aggregated matrix is B̄ = Z>1 BZ2 ∈ RK×K. The diagonal matrices of block sizes are W1 = Z>1 Z1
and W2 = Z>2 Z2. We have the equivalent of Proposition 3:

Proposition 4. Let x1, x2 be a solution to the generalized singular value problem:{
Bx2 = σD1x1
B>x1 = σD2x2

Then either Z>1 x1 = Z>2 x2 = 0 and σ = 0 or x1 = Z1y1 and x2 = Z2y2 where y1, y2 is a solution to
the generalized singular value problem: {

B̄y2 = σD̄1y1,
B̄>y1 = σD̄2y2.

Proof. Since the rank of B is equal to K, there are n− K pairs of singular vectors (x1, x2) associ-
ated with the singular values 0, each satisfying Z>1 x1 = 0 and Z>2 x2 = 0. By orthogonality, the
other pairs of singular vectors satisfy x1 = Z1y1 and x2 = Z2y2 for some vectors y1, y2 ∈ RK.
By replacing these in the original generalized singular value problem, we get that (y1, y2) is a
solution to the generalized singular value problem for the aggregate graph.

In the following, we focus on the block model described in Section 3.2.5, where B = Z1Z>2 .

Proof of Lemma 4. The generalized eigenvalue problem (3.6) associated with the regularized
matrix Aα is equivalent to the generalized SVD of the regularized biadjacency matrix Bα:{

Bαx2 = σDα,1x1
B>α x1 = σDα,2x2,

with σ = 1− λ.

In view of Proposition 4, the singular value σ = 0 has multiplicity n − K, meaning that the
eigenvalue λ = 1 has multiplicity n − K. Since the graph is connected, the eigenvalue 0 has
multiplicity 1. The proof then follows from the observation that if (x1, x2) is a pair of singu-
lar vectors for the singular value σ, then the vectors x = (x1,±x2)

> are eigenvectors for the
eigenvalues 1− σ, 1 + σ.
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Proof of Lemma 5. By Proposition 4, we can focus on the generalized singular value problem for
the aggregate graph: {

B̄αy2 = σD̄α,1y1
B̄>α y1 = σD̄α,2y2,

Since
B̄α = W1(IK + αJK)W2,

and {
D̄α,1 = W1(W2 + αn1 I),
D̄α,2 = W2(W1 + αn2 I),

we have: {
W1(IK + αJK)W2y2 = W1(W2 + αn1 I)y1σ,
W2(IK + αJK)W1y1 = W2(W1 + αn2 I)y2σ.

Observing that JKW1y1 ∝ 1K and JKW2y2 ∝ 1K, we get:{
(W2 + αn2 IK)y1σ−W2y2 ∝ 1K,
(W1 + αn1 IK)y2σ−W1y1 ∝ 1K.

As two diagonal matrices commute, we obtain:{
(W1 + αn1 IK)(W2 + αn2 IK)y1σ−W1W2y1 =

(
η1(W1 + αn1 IK) + η2W2

)
1K,

(W1 + αn1 IK)(W2 + αn2 IK)y2σ−W1W2y2 =
(
η1W1 + η2(W2 + αn2 IK)

)
1K,

for some constants η1, η2, and
y1,j =

η1(n1,j + αn1) + η2n2,j

(n1,j + αn1)(n2,j + αn2)σ− n1,jn2,j
,

y2,j =
η1n1,j + η2(n2,j + αn2)

(n1,j + αn1)(n2,j + αn2)σ− n1,jn2,j
.

Letting s1 = −sign(η1(n1,j + αn1) + η2n2,j) and s2 = −sign(η1n1,j + η2(n2,j + αn2)), we get:

sign(y1,j) = s1 ⇐⇒ sign(y2,j) = s2 ⇐⇒
n1,jn2,j

(n1,j + αn1)(n2,j + αn2)
≥ σ = 1− λ,

and the result follows from the fact that x1 = Z1y1 and x2 = Z2y2.

Proof of Lemma 6. The proof is the same as that of Lemma 3, where the threshold values follow
from Lemma 5:

µj = 1−
n1,jn2,j

(n1,j + αn1)(n2,j + αn2)
.

Proof of Theorem 2. Let x be the j-th column of the matrix X, for some j ∈ {2, . . . , k}. In view
of Lemma 6, this is the eigenvector associated with eigenvalue λj ∈ (µj−1, µj). In view of
Lemma 4, all entries of x corresponding to blocks of size n1,1, n1,2 . . . , n1,j−1 have the same sign,
the other having the opposite sign.
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3.3 Interpretable Graph Embedding

Unlike some ad-hoc methods [Funke et al., 2020, Ou et al., 2016, Chen et al., 2007], vanilla
spectral embedding is not applicable to bipartite or directed graphs. Moreover, the interpretation
in terms of random walk is valid only for the full embedding, using all eigenvectors of the
Laplacian. This is not feasible for large graphs (e.g., more than 10 000 nodes); in this case, the
dimension of the embedding space must be much lower than the number of nodes and there is
no clear interpretation of the geometry of the embedding.

In this section, we propose a graph embedding technique based on the generalized singular
value decomposition (SVD) [Ewerbring et al., 1990] of the adjacency matrix that can be inter-
preted in terms of graph structure. Specifically, the distance between nodes in the embedding
space corresponds to the distance between their respective neighborhoods in the graph, for
some appropriate metric. Moreover, this interpretation is valid in any dimension k, consider-
ing the neighborhoods in the best rank-k approximation of the graph rather than in the graph
itself. The proposed embedding applies to any type of graphs, including bipartite graphs and
directed graphs. It turns out to be equivalent to the spectral embedding of the associate co-
neighbor graph, after some appropriate scaling depending on the spectrum of the Laplacian
matrix.

The rest of the section is organized as follows. We first present some useful matrix norm in
Section 3.3.1 and introduce the co-neighbor graph in Section 3.3.2. In Section 3.3.3, we present
the proposed embedding technique in the specific case of bipartite graphs, the general cases of
directed and undirected graphs being considered in sections 3.3.4 and 3.3.5, respectively. The
link with spectral embedding is explained in Section 3.3.6.

3.3.1 Matrix norm

For any positive vector α ∈ Rn, we denote by 〈·, ·〉α the following weighted dot product of Rn:

∀u, v ∈ Rn, 〈u, v〉α =
n

∑
i=1

uivi
αi

.

We refer to the corresponding metric as the α metric. We denote by || · ||α the corresponding
norm:

||u||2α = u>diag(α)−1u = ||diag(α)−
1
2 u||2,

where || · || is the standard Euclidian norm of Rn.

For any positive vectors α ∈ Rn, β ∈ Rm, we define the weighted spectral norm of any matrix
M of size n1 × n2 for the weight vectors α, β as:

||M||α,β = sup
u∈Rn2 :||u||β=1

||Mu||α.

Observe that ||M||α,β = ||diag(α)−
1
2 Mdiag(β)−

1
2 ||σ, where || · ||σ denotes the spectral norm of

Rn1×n2 , given by the largest singular value. The Froebenius norm is denoted by || · ||F.

3.3.2 Co-neighbor graph

Consider any non-negative matrix A of size n1 × n2. This may be viewed as the biadjacency
matrix of a weighted bipartite graph G with n1 nodes in one part and n2 nodes in the other.
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Equivalently, each row of A may be interpreted as a data sample and each column as a feature.
Thus there are n1 data samples and n2 features, each row of A corresponding to the feature
vector of a data sample. We denote by d = A1 and f = A>1 the weight vectors of data samples
and features, respectively, and by D = diag(d) and F = diag( f ) the corresponding diagonal
matrices. If the matrix A is binary, the vectors d and f correspond to the degrees the nodes of
each part of the bipartite graph G. We assume that the vectors d and f are positive (i.e., there is
no all-zero row or column).

The proposed embedding is related to the spectral embedding of the co-neighbor graph. The
co-neighbor graph is a weighted graph of n1 nodes (the data samples) with adjacency matrix:

S = AF−1 A>.

The weight between nodes i and j can be interpreted as the similarity between the corresponding
data samples i and j:

Sij =
n2

∑
l=1

Ail Ajl

fl
=

didj

w
〈pi, pj〉β. (3.11)

Note that the matrix S is symmetric positive semi-definite and has the same rank than A.
Besides, the degree of a node in the co-neighbor graph is the same as in the original graph
S1 = A1 = d.

3.3.3 Graph embedding

The normalized weight vectors define probability distributions over the data samples and the
features, respectively:

α =
d
w

, β =
f
w

,

where w = d1 = f 1 = 1>A1 is the total weight of the nodes. We have:

β> = α>P, (3.12)

where P = D−1 A. Observe that each row of P gives the feature distribution of a data sample,
as a probability distribution over {1, . . . , n2}.

Generalized SVD. Consider the generalized SVD of the matrix A associated with the diagonal
matrices D and F:

{
AV = DUΣ,
A>U = FVΣ,

with
{

U>DU = I,
V>FV = I.

(3.13)

The matrices U = (u1, . . . , ur) and V = (v1, . . . , vr) are formed by the left and right generalized
singular vectors of A associated with the generalized singular values σ1 ≥ σ2 ≥ . . . ≥ σr > 0,
where r is the rank of A, and Σ = diag(σ1, . . . , σr) is the diagonal matrix of positive generalized
singular values. We have:

A = DUΣV>F.

Now for any k ≤ r, let U(k), V(k) be the respective restrictions of the matrices U, V to their first
k columns, and let Σ(k) = diag(σ1, . . . , σk). Define the matrix:

A(k) = DU(k)Σ(k)V(k)>F.
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This is an optimal rank-k approximation of the matrix A for the norm || · ||α,β defined in section
3.3.1:

Proposition 5. We have:

min
M:rank(M)=k

||A−M||α,β = ||A− A(k)||α,β

=

{
σk+1w if k < r,
0 if k = r.

Proof. As the regular SVD provides an optimal low-rank approximation of a matrix, we have:

min
M:rank(M)=k

||D−
1
2 AF−

1
2 −M|| = ||D−

1
2 AF−

1
2 − Ũ(k)ΣṼ(k)>||

=

{
σk+1 if k < r,
0 if k = r,

where Ũ(k), Ṽ(k) are the restrictions of the matrices Ũ, Ṽ to their first k columns. Observing that
M has rank k if and only if D

1
2 MF

1
2 has rank k, we get:

min
M:rank(M)=k

||D−
1
2 (A−M)F−

1
2 || = ||D−

1
2 (A− A(k))F−

1
2 ||

=

{
σk+1 if k < r,
0 if k = r.

The proof follows from the definition of the norm || · ||α,β.

This is illustrated by Figure 3.4 for some toy graph, where the width of each edge in the low-
rank approximation graph corresponds to its weight (the original graph is unweighted). It turns
out that the weight vectors d and f are preserved by the low-rank approximation, provided k is
larger than the number of connected components of the graph:

Proposition 6. Let K be the number of connected components of the graph G. We have:

1. σ1 = . . . = σK = 1 > σK+1,

2. if K = 1, then u1 = 1/
√

w and v1 = 1/
√

w,

3. α>uk = 0 and β>vk = 0 for all k > K,

4. A(k)1 = d and A(k)>1 = f for all k > K.

Proof. We have,

1. D−1SU = UΣ2, where S is the adjacency matrix of the co-neighbor graph. Thus the square
generalized singular values are eigenvalues of the stochastic matrix D−1S. In particular,
we have σ1 = 1, and the multiplicity of the generalized singular value 1 is the number
of connected components of the co-neighbor graph. This is also the number of connected
components of the bipartite graph G, because two nodes are connected in G if and only if
they are connected in the co-neighbor graph.

2. If K = 1, then the generalized singular value σ1 has multiplicity 1. It is then sufficient to
verify that the vectors u1 = 1/

√
w and v1 = 1/

√
w satisfy Au1 = Dv1, A>v1 = Fu1 and

u>1 Du1 = v>1 Fv1 = 1.
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3. Let u′1 = 1/
√

w and v′1 = 1/
√

w. Since u′1, v′1 are generalized singular vectors of A for
the singular value 1, there exists some generalized singular decomposition U′, V′ of A
such that u′1, v′1 are the respective first columns of U′, V′. Now the matrices D

1
2 U′, F

1
2 V′

form a regular singular decomposition of the normalized adjacency matrix D−
1
2 AF−

1
2 . We

deduce that U′(K) = U(K)G and V′(K) = V(K)H for some orthogonal matrices G, H of size
K×K. Now for any k > K, we have u>k DU(K) = 0 and v>k FV(K) = 0 so that u>k DU′(K) = 0

and v>k FV′(K) = 0. In particular, u>k D1 = 0 and v>k F1 = 0.

4. Writing A(k) = ∑k
l=1 σl Dulv>l F and using the fact that v>l F1 = 0 for all l > K, we get

A(k)1 = A1 = d for all k > K. Similarly, A(k)>1 = A>1 = f .

(a) Original graph (b) Rank 3 approximation

Figure 3.4: Low-rank approximation of a toy graph.

Full embedding. We first consider the full embedding, in dimension r (the rank of A). Define:

X =
√

w(I − 1α>)UΣ.

Each column of X has its center of mass at the origin, for the weight vector α:

α>X = 0.

The embedding is then given by the rows of X. We denote the corresponding vectors by
x1, . . . , xn. Thus each data sample is embedded as a vector of dimension r.

Interestingly, the features can be embedded in the same space. Let:

Y =
√

w(I − 1β>)V.

Each column of Y has its center of mass at the origin, for the weight vector β:

β>Y = 0.

The co-embedding of features is given by the rows of Y. We denote the corresponding vectors
by y1, . . . , yn2 .
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Proposition 7. We have:
X = PY.

Proof. Using (3.12), we get:

PY =
√

wP(I − 1β>)V,

=
√

w(I − 1α>)PV,

=
√

w(I − 1α>)UΣ = X.

�

In view of Proposition 7, we have:

xi =
n2

∑
j=1

pijyj.

Thus each data sample i is embedded by some vector xi which is the weighted average of its
features. This is illustrated by Figure 3.5, for a toy bipartite graph connecting movies to actors.
See how each movie is at the barycenter of its actors. In particular, two data samples with the
same feature vectors (up to some multiplicative constant) have the same embedding.

Figure 3.5: Co-embedding of movies (blue) and actors (red).

Geometry of the embedding. As noted earlier, the rows of P can be interpreted as feature
distributions. Specifically, the feature distribution of data sample i is given by:

pi = P>ei.
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In view of (3.12), the weighted average feature distribution is given by:

β = P>α =
n1

∑
i=1

αi pi.

The main result of the section is the following.

Theorem 3. We have for all i, j = 1, . . . , n1:

〈xi, xj〉 = 〈pi − β, pj − β〉β = 〈pi, pj〉β − 1.

Proof. Using the fact that:
PF−1P> = D−1SD−1 = UΣ2U>,

we get:

XX> = w(I − 1α>)UΣ2U>(I − 1α>)>,

= w(I − 1α>)PF−1P>(I − 1α>)>,

= (P− 1β>)diag(β)−1(P− 1β>)>,

for which the proof follows.

Theorem 3, shows that the geometry of the embedding reflects the graph structure. In particu-
lar:

Vector norms. We have ||xi||2 = ||pi − β||2β = ||pi||2β − 1. The norm of data sample i in the
embedding space is equal to the distance between its feature distribution pi and the av-
erage feature distribution β for the β metric. Data samples that have feature distributions
close to the average are close to the origin in the embedding space; data samples that have
unusual feature distributions (compared to the average) are far from the origin. Note that
||xi||2 ≤ 1/ minj β j − 1.

Distances. We have ||xi − xj||2 = ||pi − pj||2β. The distance between two data samples in the
embedding space is equal to the distance between their respective feature distributions
for the β metric.

Angles. The cosine similarity between data samples i and j is the embedding space is given by:

s(i, j) =
〈xi, xj〉
||xi||||xj||

=
〈pi, pj〉β − 1

||pi − β||β||pj − β||β
.

In particular, we have s(i, j) = 1 if and only if pi = pj (same feature distributions) and
s(i, j) < 0 whenever 〈pi, pj〉β = 0 (disjoint feature distributions).

Illustration Consider the toy bipartite graph displayed in Figure 3.6. The movies, indexed by
chronological order, are the feature nodes so that β = (3/8, 3/8, 2/8). The sample nodes are
the characters. For example, pGreedo = (1, 0, 0) and pVador = (1/3, 1/3, 1/3). So, in the full
embedding, we have

〈xGreedo, xVador〉 = (1× 1
3
)/(

3
8
)− 1,

= −1
9

.
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The same derivation with Jabba, pJabba = (1/2, 0, 1/2), leads to

〈xJabba, xVador〉 =
(

1
2
× 1

3

)
.
(

8
3
+

8
2

)
− 1,

=
1
9

.

Jabba

Greedo

Vador

Boba

A New Hope

The Empire Strikes Back

Return Of The Jedi

Figure 3.6: A toy bipartite graph.

Embedding in low dimension. Now consider the embedding in dimension k, for any k ∈
{K + 1, . . . , r}. Let:

X(k) =
√

w(I − 1α>)U(k)Σ(k).

Again, each column of X(k) has its center of mass at the origin:

α>X(k) = 0.

We embed the data samples as vectors of dimension k, corresponding to the rows of X(k). We
denote the corresponding vectors by x(k)1 , . . . , x(k)n .

Similarly, we co-embed the features as vectors of dimension k, corresponding to the rows of

Y(k) =
√

w(I − 1β>)V(k).

We denote the corresponding vectors by y(k)1 , . . . , y(k)m . We have:

X(k) = P(k)Y(k)

with P(k) = D−1 A(k). The proof is similar to that of Proposition 7, using the following extension
of (3.12):

β> = α>P(k). (3.14)

Theorem 4. We have for all i, j = 1, . . . , n:

〈x(k)i , x(k)j 〉 = 〈p
(k)
i , p(k)j 〉β − 1.
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Proof. The proof is similar, using (3.14) and the fact that:

P(k)F−1P(k)> = D−1S(k)D−1 = U(k)Σ(k)2
U(k)>.

In view of Theorem 4, the geometry of the embedding in dimension k can be interpreted as the
full embedding but for the best rank-k approximation of the graph rather than for the graph
itself.

Co-neighbor graph. As introduced in Section 3.3.2, this embedding is related to the spectral
embedding of the co-neighbor graph S.

In view of (3.13), we have:
SU = DUΣ2, U>DU = I. (3.15)

This is the generalized eigenvalue problem of S associated with the diagonal matrix of weights
D. Observe that the spectral embedding of the co-neighbor graph is based on the generalized
spectral decomposition of the associate Laplacian matrix L = D − S. In view of (3.15), its
eigenvalues (in non-decreasing order) satisfy:

λ1 = . . . = λK = 0 < λK+1 = 1− σ2
K+1 ≤ . . .

≤ λr = 1− σ2
r < λr+1 = . . . = λn = 1.

Thus this embedding corresponds to the spectral embedding of the normalized co-neighbor
graph after scaling by 1− λ1, . . . , 1− λn and shift so that the center of mass is at the origin. Ob-
serve that only eigenvectors associated with eigenvalues less than 1 are kept (the other vanish),
so that the dimension of the embedding is at most r.

For most real graphs, the biadjacency matrix A is sparse but the similarity matrix S is too dense
to be stored. Consider for instance the node Beyoncé in the Twitter graph. This artist has 15.5
million followers, hence the corresponding node has an in-degree of 15.5 million. In the co-
neighbor graphs, these followers form a clique of the same size, generating potentially 240 000
billion of nonzero entries in S. However, using techniques introduced in Section 1.4, there is no
need to actually store the similarity matrix to compute the embedding.

3.3.4 Case of directed graphs

Consider a directed graph G of n nodes with adjacency matrix A. Observe that the matrix A is
square but not symmetric in general. Let A+ be the reduced adjacency matrix, obtained after
removing all-zero rows and columns. The graph G can then be considered as a bipartite graph
with biadjacency matrix A+. There are n+ nodes in the first part (nodes of G having positive
out-degrees) and n− nodes in the second part (nodes of G having positive in-degrees). We
simply apply the embedding described in section 3.3.3 to this bipartite graph.

The geometry of the embedding can be interpreted using Theorems 3 and 4, with pi and p(k)i
corresponding to the distributions of successors of node i in the graph G and in its best rank-k
approximation, respectively. The embedding also corresponds to the spectral embedding of the
co-neighbor graph, after appropriate scaling and shifting. The similarity Sij between two nodes
i, j of G depends on their out-degrees and on the weighted dot-product of their distributions of
successors pi, pj, according to (3.11).
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3.3.5 Case of undirected graphs

Consider any undirected graph G of n nodes, with adjacency matrix A. Now A is both square
and symmetric. Without loss of generality, we assume that all nodes have positive degrees.
Similarly, the graph G may be seen as a bipartite graph with biadjacency matrix A. There are
n nodes in each part. We then directly apply the embedding described in section 3.3.3 to this
bipartite graph.

Again, the geometry of the embedding can be interpreted using Theorems 3 and 4, with pi and
p(k)i corresponding to the distributions of successors of node i in the graph G and in its best
rank-k approximation, respectively. The embedding also corresponds to the spectral embed-
ding of the co-neighbor graph, after appropriate scaling and shifting. This is not the spectral
embedding of the graph G. In particular, two nodes with the same neighborhoods have the
same representation in the embedding space, which is not the case for the spectral embedding
of the graph G.

3.3.6 Link with spectral embedding

We have seen that the proposed embedding is related to the spectral embedding of the co-
citation graph, after appropriate scaling and shifting. This is not a practical method, however,
as the similarity matrix S is most often too dense to be stored, meaning that the co-neighbor
graph cannot be built. In this section, we show that the proposed embedding is also related to
the spectral embedding of some extended graph, which can be built in practice.

Let A be any non-negative matrix of size n1× n2, as considered in section 3.3.3. This is the biad-
jacency matrix of some bipartite graph G. Now consider the extended graph G̃, with adjacency
matrix and degree matrix:

Ã =

(
0 A

A> 0

)
, D̃ =

(
D 0
0 F

)
.

Note that the graph G̃ has n1 + n2 nodes. In view of (3.13), we have:

Ã
(

U
V

)
= D̃

(
U
V

)
Σ, with

(
U
V

)>
D̃
(

U
V

)
= I.

So the generalized singular values σ1, . . . , σr of A are the generalized positive eigenvalues of Ã.
The spectral embedding of the graph G̃ is based on the spectral decomposition of the Laplacian
matrix L̃ = D̃− Ã. We get:

L̃
(

U
V

)
= D̃

(
U
V

)
Λ.

with Λ = I − Σ. So our embedding corresponds to the spectral embedding of the extended
graph restricted to positive generalized eigenvalues, after scaling by 1−λ1, . . . , 1−λr and shift-
ing so that the center of mass is at the origin.

In the particular case where A is the adjacency matrix of some undirected graph G, the em-
bedding differs from the spectral embedding of the graph G, which is based on the spectral
decomposition of the Laplacian L = D− A (instead of L̃).

46



3.4 About embedding metrics

Assessing the quality of an embedding without a supervised downstream task is not trivial. A
good embedding should fit the data in the sense that nodes which are considered close accord-
ing to the topology of the graph should also be close in the embedding space. Such fit functions
F include:

• Spectral: F = −∑
i,j

Aij||xi − xj||2.

• Node2Vec: F = ∑
(i,j)∈E

x>i xj.

However, such functions have either trivial or ill-defined optimums. There are two main strate-
gies to overcome this issue. Spectral methods rely on orthonormality constraints while iterative
methods such as Grover and Leskovec [2016] or Tang et al. [2015b] rely on a penalization func-
tion D. For example, in node2vec:

D = −∑
i

log

(
∑

j
exp(x>i xj)

)
.

This idea is similar to the one used for graph visualization where nodes apply repulsive forces
on each other [Fruchterman and Reingold, 1991]. However, in both cases, the cost of evaluat-
ing D is quadratic in the number of nodes. Node2vec relies on negative sampling in order to
maintain tractable computations but this comes at the cost of an extra source of randomness
and supplementary hyper-parameters. The final quality function is simply Q = F −D.

Here, we propose a different one, as it is inspired by the modularity [Newman, 2006a] for graph
clustering, we refer to it as cosine modularity:

Q = ∑
ij

(Aij

w
− γ

di f j

w2

)(
1 + cos(xi, xj)

2

)
, (3.16)

for some resolution parameter γ which is set to 1 by default. See Example 3.4.1 for an illustra-
tion.

Example. 3.4.1: Cosine modularity

[1]: from sknetwork.embedding import cosine_modularity
from sknetwork.data import karate_club

karate = karate_club(metadata=True)
A = karate.adjacency
X = karate.position
round(cosine_modularity(A, X), 2)

[1]: 0.35
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This quality function has a few interesting properties:

1. It maintains the standard Q = F −D structure.

2. As for the standard modularity, Q ∈ [−γ, 1].

3. Its asymptotic complexity is only O(m).

Proof. Let us denote sij =

(
1 + cos(xi, xj)

2

)
.

1. In equation (3.16), we identify:

F = ∑
ij

Aij

w
sij,

D = ∑
ij

γ
di f j

w2 sij.

2. As sij ∈ [0, 1], ∀(i, j),

Q ≤∑
ij

Aij

w
= 1,

Q ≥ −∑
ij

γ
di f j

w2 = −γ.

3. F is a sum over m elements. For Q, let us denote by x̄ the embedding projected onto the
unit-sphere: x̄i = xi/||xi||2. Then:

D =
γ

2

[
1 + ∑

ij

di f j

w2 x̄>i x̄j

]
,

=
γ

2

1 +

(
∑

i

di x̄i
w

)> (
∑

j

f j x̄j

w

) .

The proof of the last point highlights one major limitation of this quality function. It is sufficient
for x̄ to satisfy 〈x̄, 1〉α = 0 or 〈x̄, 1〉β = 0 in order to yield the minimal penalization.

Another approach to quantify the quality of an embedding is self-supervision through link-
prediction. The idea is to hide a certain fraction of the edges, embed the nodes, predict the
most likely missing edges based on the embedding and compare this prediction to the actually
missing edges. The likelihood of an edge is usually either given by 〈xi, xj〉 or cos(xi, xj).

Still, evaluating the performance of a link prediction algorithm is also a challenging task. For
example, the brute force computation of the edges sorted by likelihood has a complexity of
O(n2 log(n)) which is prohibitive for large graphs. The selection of the hidden edges and the
choice of the metric are also non-trivial. For more information on this topic, we refer to the work
of Yang et al. [2015] as this lies beyond the scope of the present thesis.
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3.5 Experiments

This section describes part of the experiments related to the embeddings. Sections 3.5.1 and
3.5.2 respectively introduce some metrics and the datasets. Section 3.5.3 justifies the choice
of the normalized Laplacian. Section 3.5.4 outlines the influence of graph regularization for
spectral clustering introduced in Section 3.2 while Section 3.5.5 studies the influence of the shift
in the GSVD embedding. Finally, Section 3.5.6 highlights the importance of normalization for
the spectral embedding. We defer general benchmarks to Chapters 4 and 5 respectively in order
to focus on the different spectral embeddings in the present section.

3.5.1 Metrics

We consider a large set of metrics from the clustering literature. All metrics are upper-bounded
by 1 and the higher the score the better. For supervised metrics, we denote by c the predicted
clustering and by y the ground truth labels.

Homogeneity (H), Completeness (C) and V-measure score (V) [Rosenberg and Hirschberg,
2007]. Supervised metrics. A cluster is homogeneous if all its data points are members of a
single class in the ground truth. A clustering is complete if all the members of a class in the
ground truth belong to the same cluster in the prediction. Then, the V-measure score is the
harmonic mean of homogeneity and completeness.

Adjusted Rand Index (ARI) [Hubert and Arabie, 1985]. Supervised metric. This is the cor-
rected for chance version of the Rand Index (equation (3.17)) which is itself an accuracy on pairs
of samples. A pair of samples is correctly classified if δcicj = δyiyj . This means that either belong
to the same cluster in the prediction and in the ground truth or they belong to different clusters
in both partitions.

RI(c, y) =
1
n2 ∑

i,j
1(δcicj = δyiyj). (3.17)

Then, the ARI is

ARI =
RI−E(RI)

max(RI)−E(RI)
,

where the expected value is calculated with respect to a random cluster assignment.

Adjusted Mutual Information (AMI) [Vinh et al., 2010] Supervised metric. Adjusted for
chance version of the mutual information.

Fowlkes-Mallows Index (FMI) [Fowlkes and Mallows, 1983]. Supervised metric. Geometric
mean between precision and recall on the edge classification task, as described for the ARI.

Modularity (M) [Newman, 2006a]. Unsupervised metric as in equation (4.3). Fraction of
edges within clusters compared to that is some null model where edges are shuffled at random.

Normalized Standard Deviation (NSD) Unsupervised metric. 1 minus normalized standard
deviation in cluster size. This metric provides insight on the balance of the clustering.
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3.5.2 Datasets

This section describes the datasets used in our experiments. Table 3.1 presents the main features
of the graphs.

Stochastic Block-Model (SBM) We generate 100 instances of the same stochastic block model
[Holland et al., 1983]. There are 100 blocks of size 20, with intra-block edge probability set to
0.5 for the first 50 blocks and 0.05 for the other blocks. The inter-block edge probability is set to
0.001. Other sets of parameters can be tested using the code available online. The ground-truth
cluster of each node corresponds to its block.

20newsgroup (NG) This dataset consists of around 18 000 newsgroups posts on 20 topics. This
defines a weighted bipartite graph between documents and words. The label of each document
corresponds to the topic.

Wikipedia for Schools (WS) [Haruechaiyasak and Damrongrat, 2008]. This is the graph of
hyperlinks between a subset of Wikipedia pages. The label of each page is its category (e.g.,
countries, mammals, physics).

Cora (CO) and CiteSeer (CS) Citation networks between scientific publications. These are
standard datasets for node classification [Fey et al., 2018, Huang et al., 2018, Wijesinghe and
Wang, 2019]. Labels correspond to social communities.

Wikipedia Vitals (WV) Graph of hyperlinks between a selection of Wikipedia pages1, labeled
by category (People, History, Geography...).

code name n m # classes

SBM Stochastic Block Model 2.103 5.103 100
CO Cora 3.103 1.104 7
CS CiteSeer 3.103 1.104 6
NG 20newsgroup 1.104 2.106 19
WS Wikipedia for Schools 5.103 2.105 14
WV Wikipedia Vitals 1.104 1.106 11

Table 3.1: Some characteristics of the datasets.

3.5.3 Influence of Laplacian normalization

In this experiment, we justify our choice to favor the normalized Laplacian with respect to the
regular one. In order to do so, we compare their performance on a semi-supervised task. We
extract 16 eigenvectors and apply a 1-nearest-neighbor classifier with 1% of the nodes, selected
uniformly at random, as labeled seeds. We do not use regularization nor unit-sphere normaliza-
tion. For this experiment, all graphs are treated as undirected. The process is repeated 10 times
for each graph. We report the resulting macro F1-scores in Table 3.2. Recall that, for a multi-
label classification, the macro F1-score is the average of F1-scores obtained for the prediction of
each class in a one-against-all setting. As we can see, the normalized Laplacian outperforms the
regular one by a significant margin.

1https://en.wikipedia.org/wiki/Wikipedia:Vital_articles/Level/4
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Laplacian CO CS WS WV

regular 0.14± 0.01 0.17± 0.01 0.06± 0.00 0.10± 00
normalized 0.44± 0.05 0.28± 0.03 0.29± 0.06 0.50± 0.02

Table 3.2: Macro F1-scores (mean ± standard deviation).

3.5.4 Influence of regularization

We now illustrate the impact of regularization on the quality of spectral embedding. In all
experiments, we skip the first dimension of the spectral embedding as it is not informative (the
corresponding eigenvector is the all-ones vector, up to some multiplicative constant).

Experimental setup

All graphs are embedded in dimension 20, with different regularization parameters. To com-
pare the impact of this parameter across different datasets, we use a relative regularization
parameter (w/n2)α, where w = 1>n A1n is the total weight of the graph, as illustrated in Exam-
ple 3.5.1.

Example. 3.5.1: Regularized spectral embedding

[1]: from sknetwork.embedding import Spectral
spectral = Spectral(n_components=20,

normalized_laplacian=True,
regularization=0.01,
relative_regularization=True)

We use the k-means algorithm to cluster the nodes in the embedding space. The parameter k
is set to the ground-truth number of clusters. We use the Scikit-learn [Pedregosa et al., 2011a]
implementation of the metrics, when available.

Results

We report the results in Table 3.3 for α ∈ {0, 0.1, 1, 10}. We see that the regularization generally
improves performance, the optimal value of α depending on both the dataset and the score
function. As suggested by Lemma 3, the optimal value of the regularization parameter should
depend on the distribution of cluster sizes, on which we do not have any prior knowledge.

To test the impact of noise on the spectral embedding, we add isolated nodes with self loop
to the graph and compare the clustering performance with and without regularization. The
number of isolated nodes is given as a fraction of the initial number of nodes in the graph.
Scores are computed only on the initial nodes. The results are reported in Table 3.4 for the
Wikipedia for Schools dataset. We observe that, in the absence of regularization, the scores
drop even with only 1% noise. The computed clustering is a trivial partition with all initial
nodes in the same cluster. This means that the 20 first dimensions of the spectral embedding
focus on the isolated nodes. On the other hand, the scores remain approximately constant in the
regularized case, which suggests that regularization makes the embedding robust to this type
of noise.
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SBM

α H C V ARI AMI FMI M NSD

0 0.19 0.27 0.22 0.0 0.01 0.03 0.45 0.76
0.1 0.33 0.35 0.34 0.0 0.01 0.01 0.52 0.91
1 0.36 0.37 0.36 0.0 0.01 0.01 0.50 0.92
10 0.28 0.34 0.30 0.0 0.00 0.02 0.36 0.78

NG

α H C V ARI AMI FMI M NSD

0 0.40 0.70 0.51 0.19 0.50 0.34 0.21 0.55
0.1 0.44 0.70 0.54 0.22 0.54 0.35 0.21 0.59
1 0.46 0.67 0.54 0.20 0.54 0.33 0.20 0.60
10 0.37 0.55 0.45 0.13 0.44 0.26 0.17 0.56

WS

α H C V ARI AMI FMI M NSD

0 0.23 0.29 0.25 0.05 0.25 0.26 0.25 0.49
0.1 0.26 0.29 0.28 0.10 0.27 0.26 0.29 0.61
1 0.23 0.24 0.23 0.04 0.23 0.20 0.30 0.65
10 0.19 0.22 0.20 0.00 0.19 0.20 0.23 0.53

Table 3.3: Impact of regularization on clustering performance.

3.5.5 Influence of embedding shift

The embedding described in Section 3.3.3 is shifted so that its center of mass is at the origin
for the weight vector α. In this experiment, we intend to assess whether this shift leads to
different results in practice. Note that, this shift does not change the nearest neighbor ordering
with respect to the Euclidean distance, however, it might change it with respect to the cosine
similarity.

The setup is similar to the one of Section 3.5.3, except that embeddings are normalized onto the
unit-sphere so that the nearest neighbor is defined with respect to the cosine similarity instead
of the Euclidean distance. In addition to the macro F1-score, we report the mean norm of the
nodes before the shift and the norm of the shift vector ∆ = (UΣ)>α in Table 3.5. As the macro
F1-score is not modified by the shift for any of the datasets, we only report it once. This can be
surprising as the norm of the shift is not negligible with respect to the average norm of the node
vectors. Thus, understanding the influence of this shift requires further investigation. We omit
it in further experiments for simplicity.

3.5.6 Cosine similarity versus L2 norm

In this experiment, we highlight the importance of embedding normalization for spectral clus-
tering. Recall that projecting the node vectors onto the unit sphere is equivalent to use the cosine
similarity in the embedding space rather than the Euclidean distance.

We embed the nodes of the Cora dataset in dimension 16 and then apply k-means for k = 5.
If the embedding is not normalized, this yields a V-score of 0.01 while the score is 0.21 for
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α = 0

noise H C V ARI AMI FMI M std

0 % 0.23 0.29 0.25 0.05 0.25 0.26 0.25 0.49
1 % 0.00 0.49 0.00 0.00 0.00 0.39 0.00 0
5 % 0.00 0.49 0.00 0.00 0.00 0.39 0.00 0
10 % 0.00 0.49 0.00 0.00 0.00 0.39 0.00 0

α = 1

noise H C V ARI AMI FMI M std

0 % 0.23 0.24 0.23 0.04 0.23 0.2 0.3 0.65
1 % 0.24 0.24 0.24 0.04 0.23 0.2 0.3 0.66
5 % 0.23 0.23 0.23 0.05 0.22 0.2 0.3 0.67
10 % 0.24 0.23 0.23 0.05 0.23 0.2 0.3 0.67

Table 3.4: Impact of noise on clustering performance (WS dataset).

CO CS WS WV
1
n ∑ ||xi||2 2.76 3.96 2.43 2.70
||∆||2 0.35 0.12 1.00 1.00

macro-F1 (µ± σ) 0.43± 0.06 0.26± 0.02 0.28± 0.01 0.52± 0.02

Table 3.5: Some measurements. µ: mean. σ: standard deviation.

the normalized embedding. This is a direct consequence of the cluster sizes. Indeed, without
normalization, the NSD of the clustering is 0.04, which means that most of the nodes belong to a
unique giant cluster while the four other clusters have very few nodes. With the normalization,
the NSD is 0.80, which means that the clusters sizes are very balanced.

The aggregate graphs are displayed in Figure 3.7. Our conclusion is that cosine similarity
should be preferred for spectral clustering.

(a) Euclidean distance. (b) Cosine similarity.

Figure 3.7: Aggregate graphs resulting from spectral clustering. Node sizes are proportional to
cluster sizes.
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Chapter 4

Node clustering

This chapter is dedicated to node clustering. As mentioned in Chapter 1, this task consists in
grouping nodes into a certain number of coherent clusters.

Formally, we denote by {C1, . . . , CK} a partition of the set of nodes V into K clusters. The
associated cluster index in denoted by c i.e. if node i belongs to cluster Ck, then ci = k while δ is
the coclustering variable i.e.,

δcicj =

{
1 if i and j are in the same cluster,
0 otherwise.

Finally, Z ∈ Rn×K is the membership matrix such that Zik = 1(ci = k). In particular,

δcicj = Z>i Zj.

The rest of this chapter is organized as follows. Section 4.1 presents a family of algorithms based
on the Louvain heuristic while Section 4.2 is dedicated to experiments, making the connection
with Section 3.3.

Note that, even though we consider graph clustering from a knowledge discovery point of view
here, it is also a common tool from graph coarsening in graph neural networks [Simonovsky and
Komodakis, 2017, Deng et al., 2019]. Graph coarsening is the graph-equivalent operation of
pooling in convolutional neural networks.

4.1 Louvain algorithms

Initially introduced in Blondel et al. [2008], Louvain algorithm is a popular clustering method
for graphs based on the greedy maximization of an objective function called modularity. Its
excellent speed-performance trade-off has made this algorithm the common denominator for
community detection of many graph softwares such as NetworkX, Gephi, IGraph, Neo4J...

Even-though this algorithm was originally designed for hard node clustering of undirected
graphs, it can naturally be extended to handle bipartite, directed or signed graphs as well as
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soft clustering. This section studies some of these variations. Especially, we show in Section
4.1.2 that a generalized version of the Louvain algorithm can be used to maximize different
types of modularity function that we introduce in Section 4.1.1.

4.1.1 Modularity functions

In this section, we define the different modularity functions used for graph clustering and
present some of their properties. Note that we do not discuss soft-modularity functions here i.e.
modularity functions that take a soft partition as input. However, we refer the interested reader
to the work of Hollocou et al. [2019].

Definitions

Consider a graph G = (V, E), and two probability distributions p and q over V × V. The
distribution q is sometimes referred to as the null model of the graph. The general form of the
modularity function, given a resolution parameter γ is

M = ∑
i,j

(
pij − γqij

)
δcicj . (4.1)

Or, aggregating the terms cluster by cluster:

M = ∑
k
(Pk − γQk) , (4.2)

where Pk = ∑(i,j)∈Ck×Ck
pij is the probability of sampling a pair of nodes in cluster k according

to distribution p. Similar definition for Qk.

The standard choice of p and q for undirected graphs are pij ∝ Aij and qij ∝ didj, which lead to
the modularity as defined by Newman [2006a]:

M = ∑
i,j

(Aij

w
− γ

didj

w2

)
δcicj . (4.3)

Another choice is pij ∝ Aij and qij ∝ 1, which is referred to as the constant Potts model [Traag
et al., 2011]:

M = ∑
i,j

(Aij

w
− γ

1
n2

)
δcicj . (4.4)

If the graph is directed, two different approaches have been proposed. On the one hand, Dugué
and Perez [2015] suggests to use pij ∝ Aij and qij ∝ di f j, which leads to:

M = ∑
i,j

(Aij

w
− γ

di f j

w2

)
δcicj . (4.5)

On the other hand, Lambiotte et al. [2008] and Kim et al. [2010] suggest to use pij = Aijπj/dj
and qij = πiπj, where π denotes the Pagerank probability distribution without damping factor.
This leads to:

M = ∑
i,j

(
Aijπj

dj
− γπiπj

)
δcicj .

55



The authors prove that this modularity is the same as equation (4.3) applied to the modified
adjacency

Ãij =
1
2

(
Aijπj

dj
+

Ajiπi

di

)
.

In the case of bipartite graphs, Barber [2007] proposed to use pij = pji ∝ Bij and qij ∝ di f j if
(i, j) ∈ V1 ×V2 and qij = 0 otherwise. Which leads to the bimodularity function:

M = ∑
i∈V1,j∈V2

(Bij

w
− γ

di f j

w2

)
δcicj .

Proposition 8. Let B be the biadjacency matrix of a bipartite graph and let

A =

(
0 B
0 0

)
∈ R(n1+n2)×(n1+n2)

be the adjacency matrix of this graph, seen as a directed one. Given a clustering c, the bimodularity
defined in equation (4.1.1) coincides with the directed-modularity as defined in equation (4.5).

Proof. First, let us note that A and B have the same total weight w. Next, note that dA = (0, dB)
and f A = (0, f B). Let Z = (Z1, Z2)

> be the membership matrix. Then, starting from Equa-
tion 4.5:

M = ∑
i,j

(
Aij

w
− γ

dA
i f A

j

w2

)
δcicj ,

= Tr
(

Z>
(

A
w
− γ

w2 dA( f A)>
)

Z
)

,

= Tr
(

Z>1

(
B
w
− γ

w2 dB( f B)>
)

Z2

)
.

Properties

A key property of the modularity functions, at the core of Louvain algorithm, is following the
aggregation property described in Proposition 9.

Proposition 9. The modularity of a partition of the nodes of a graph G = (V, E) is equal to the mod-
ularity of the trivial partition where each node is assigned to its own cluster for the graph G̃ = (Ṽ, Ẽ)
such that Ṽ and Ẽ are the set of nodes and edges obtained by merging all nodes in the same cluster in the
original partition.

Proof. Let Ã = Z>AZ be the adjacency matrix of the aggregated graph. We have

d̃ = Ã1 = Z>AZ1 = Z>d,

f̃ = Ã>1 = Z>A>Z1 = Z> f ,

w̃ = 1> Ã1 = 1>Z>AZ1 = 1>A1 = w.
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Hence, p̃kk′ = (Z>pZ)kk′ and q̃kk′ = (Z>qZ)kk′ hold for all the probability distributions listed in
Subsection 4.1.1:

M = ∑
i,j

(
pij − γqij

)
δcicj ,

= ∑
i,j

(
pij − γqij

)
Z>i Zj,

= Tr
(

Z> (p− γq) Z
)

,

= Tr
(

IK

(
Z>pZ− γZ>qZ

)
IK

)
,

= ∑
k,k′

( p̃kk′ − γq̃kk′) δkk′ .

Another property of the generalized modularity function defined in equation (4.1) is its con-
nection to block models for graphs. Consider a model in which, given a clustering and
ωin > ωout ≥ 0, the weight of an edge between i and j is

Âij =

{
ωin, if δcicj = 1,
ωout, otherwise.

We denote by µ(δ) the edge sampling probability for this model. In particular,

log(µij) = log
(

ωin

ωout

)
δcicj + log(ωout), ∀(i, j),

up to an additive constant.

We want to find a clustering such that the resulting distribution is both close to the edge sam-
pling distribution p and far from the null model q. To do so, we seek to minimize over δ the
following loss:

L = KL (p, µ(δ))− γKL (q, µ(δ)) , (4.6)

where KL denotes the Kullback-Leibler divergence. Theorem 5 is the main result of this chapter.

Theorem 5. The set of optimal clusterings for L is equal to the set of optimal clustering for the general-
ized modularity metric:

arg min
δ

L = arg max
δ

M. (4.7)
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Proof. Starting from Equation (4.6), we derive

arg min
δ

L = arg min
δ

KL (p, µ(δ))− γKL (q, µ(δ)) ,

= arg min
δ

(
∑
i,j

pij log

(
pij

µij

)
− γ ∑

i,j
qij log

(
qij

µij

))
,

= arg min
δ

(
−∑

i,j
pij log

(
µij
)
+ γ ∑

i,j
qij log

(
µij
))

,

= arg max
δ

(
∑
i,j

(
pij − γqij

)
log
(
µij
))

.

As log(µij) = log( ωin
ωout

)δcicj + log(ωout) and log( ωin
ωout

) > 0:

arg min
δ

L = arg max
δ

∑
i,j

(
pij − γqij

)
δcicj ,

= arg max
δ

M.

Theorem 5 is complementary to the results of Newman [2016] which connect modularity maxi-
mization and block models through statistical inference. Now, the following property is related
to the so-called resolution limit of modularity optimization.

Proposition 10. The optimal partition at resolution γ for a graph with L connected components with re-
spective total weights w1, . . . , wL is the concatenation of optimal partitions for each connected component
at resolution γl =

wl
w γ.

Proof. We denote by V1, . . . , VL the set of nodes corresponding to the connected components.

M = ∑
l

wl
w ∑

i,j∈Vl

(
Aij

wl
− γl

di f j

w2
l

)
δcicj − γ∑

r 6=s
∑

(i,j)∈Vr×Vs

di f j

w2 δcicj ,

≤∑
l

wl
w
M|Vl ,γl

,

≤∑
l

wl
w
M∗
|Vl ,γl

.

M|Vl ,γl
denotes the modularity of the partition of Vl at resolution γl and M∗

|Vl ,γl
the optimal

one. This upper bound is reached by the concatenation of optimal partitions of V1, . . . , Vl , hence
the result.

Finally, note that finding the partition that maximizes the modularity is an NP-complete prob-
lem [Brandes et al., 2006]. Still, many algorithms offer to find local optimums. Some methods
rely on spectral division [Newman, 2006b, White and Smyth, 2005], some on simulated anneal-
ing [Guimera et al., 2004, Newman and Girvan, 2004], but the most commonly used is Louvain
greedy optimization which is the subject of Section 4.1.2.
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4.1.2 Generalized Louvain algorithm

This section describes the Generalized Louvain algorithm and discusses some implementation
issues. Even though the Louvain algorithm [Blondel et al., 2008] was introduced to maximize
the modularity for undirected networks as in equation (4.3), the general idea can be applied to
any type of objective function that satisfies two properties:

• Easy computation of variation in score resulting from the modification of the cluster as-
signment of a single node.

• Aggregation property as described in Proposition 9.

The pipeline for the Louvain algorithm consists in two nested loops which we call "Macro-
Louvain" and "Micro-Louvain", respectively described in Algorithms 4.1 and 4.2.

Local updates The efficiency of the Generalized Louvain Algorithm relies on the simple closed
form solution of

arg max
c

∆M(ci ← c)

in Algorithm 4.2. Note that it is not necessary to test all possible values of c but only the different
labels among the neighbors of i.

From equation (4.2), we have:

∆M(ci ← cj) = ∑
k
(∆Pk − γ∆Qk) ,

= (∆Pci − γ∆Qci ) +
(

∆Pcj − γ∆Qcj ,
)

as i and j are the only two modified clusters. Actually, we only need to derive the variations for
M corresponding to equation (4.5) to cover all cases listed in subsection 4.1.1.

For the case of equation (4.5), we have, on the one hand,

∆Pci =
1
w

[
2Aii − ∑

cl=ci

(Ail + Ali)

]
,

∆Pcj =
1
w ∑

cl=cj

(Ail + Ali) .

For the null model, on the other hand, it is convenient to rewrite

Qk =
1

w2 DkFk,

where Dk = ∑ci=k di is the total out-degree of cluster k and Fk = ∑ci=k fi its total in-degree.
Then,

∆Qci =
1

w2 [ fi(di − Dci ) + di( fi − Fci )] ,

∆Qcj =
1

w2

[
fiDcj + diFcj

]
.

The case of equation (4.3) is simply the particular case where Aij = Aji and di = fi. Besides, it
is sufficient to replace d and f by 1 to recover (4.4). Note that the values Dk and Fk can easily be
stored and updated during the computations.
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Algorithm 4.1 Macro-Louvain

Require: Adjacency A.
1: Initialize membership Z = I.
2: repeat
3: Ẑ = Micro-Louvain(A)
4: Z ← ZẐ.
5: A← Z>AZ.
6: until Convergence.
7: return c(Z).

Algorithm 4.2 Micro-Louvain

Require: Adjacency A.
1: Initialize c = [1, 2, . . . , n].
2: repeat
3: for i = 1 ≤ · · · ≤ n do
4: ci = arg max

cj

∆M(ci ← cj).

5: end for
6: until Convergence.
7: return Z(c).

Convergence The modularity is non-decreasing under the local updates performed in Micro-
Louvain and the aggregation property 9 ensures that it is not decreasing under each update
performed by Macro-Louvain. As the modularity is upper-bounded, the Generalized Louvain
Algorithm converges towards a local maximum of the modularity. In practice, the stopping
criterion for Macro and Micro-Louvain can be a maximum number of passes, a tolerance pa-
rameter for the increase in modularity, or both.

Parallel computing for Bilouvain In the case of bimodularity optimization, the local update
for a node in V1 only depends on the cluster assignment of the nodes in V2 and vice versa. It is
thus technically possible to perform all local updates for nodes of V1 in parallel (the same goes
for V2). However, as Louvain is a greedy method, it is highly dependent on the order in which
the cluster assignments are updated. Such an arbitrary order has no guarantee to result in better
partitions than a random order.

Recall that, as for k-means initialization, a common practice to maximize modularity is to run
several instances of Louvain with different node orderings and select the best partition after-
wards. We illustrate this in Example 4.1.1. Two different orderings of the nodes yield distinct
partitions with similar modularity.
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Example. 4.1.1: Node shuffling for Louvain

[1]: from sknetwork.clustering import Louvain, modularity
from sknetwork.data import karate_club
from sklearn.metrics import v_measure_score

A = karate_club()
louvain = Louvain(shuffle_nodes=True)
labels1 = louvain.fit_transform(A)
labels2 = louvain.fit_transform(A)

round(v_measure_score(labels1, labels2), 2)

[1]: 0.81

[2]: mod1 = modularity(A, labels1)
mod2 = modularity(A, labels2)
print(round(mod1, 2), round(mod2, 2))

0.39 0.39

4.2 Experiments

This section is dedicated to clustering experiments. Section 4.2.1 illustrates the generalized Lou-
vain algorithm on the simple case. Section 4.2.2 provides a general clustering benchmark, while
Section 4.2.3 demonstrates the efficiency of Louvain algorithm on a digit images clustering task.
We use datasets and metrics already introduced in Chapter 3.

4.2.1 Illustration

Figure 4.1 illustrates two partitions of the same graph connecting movies to actors. The first
partition is obtained by maximization of the modularity, seeing the graph as an undirected
one, while the second is obtained by maximization of the bimodularity. As we can see, these
partitions do not even have the same number of clusters even though some of them look similar.

4.2.2 General benchmark

In this section, we compare the performance of several clustering algorithms on labeled
datasets. For this experiment, we compute the Adjusted Rand Index with respect to the ground
truth labels for the following algorithms:

Louvain algorithms: We refer to them as Louvain for the maximization of (4.3), DiLouvain for
(4.5), BiLouvain for (4.1.1) and Potts for (4.4). We try different resolutions values for each one of
them: γ ∈ {0.1, 0.2, . . . , 1.5}. We omit (4.1.1) as the pagerank vector without damping is usually
not defined on real directed graphs.

Spectral algorithms: We experiment with the standard Laplacian Eigenmaps [Belkin and
Niyogi, 2002b] and with the algorithm described in Section 3.3 which we refer to as GSVD.
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(a) Partition by Louvain.

(b) Partition by Bilouvain.

Figure 4.1: Movie-actor bipartite graph.

For these algorithms, we test different combinations of embedding dimension d and number of
clusters k: d ∈ {8, 16, 32} and k ∈ {0.8× K, K, 1.2× K} where K is the number of clusters in the
ground truth.

Propagation [Raghavan et al., 2007]. This method iterates over the nodes and assigns them
the most represented label among their neighbors until convergence. The label of each node is
initialized with its index.

We report the best ARI score obtained by each algorithm in Table 4.1 and the corresponding
runtimes in Table 4.2. All computations are performed in the laptop setup. We use our Scikit-
network implementations for all algorithms.

Our first observation is the generally good performance of all Louvain methods, except for Potts,
combined with some of the shortest running times. Note that, among these methods, DiLouvain
performs best on the directed graph WV and Bilouvain performs best on the bipartite graph NG,
even though it is outperformed by GSVD. On the other hand, the standard Laplacian Eigenmaps
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algorithm CO CS NG WS WV

Louvain 0.39 0.22 0.31 0.23 0.31
DiLouvain - - - 0.23 0.37
BiLouvain 0.31 0.20 0.39 0.22 0.35
Potts 0.28 0.23 0.00 0.16 0.19
Lap. Eigen. 0.09 0.03 0.20 0.09 0.16
GSVD 0.22 0.09 0.48 0.17 0.31
Propagation 0.16 0.14 0.00 0.00 0.00

Table 4.1: Best ARI for each algorithm.

algorithm CO CS NG WS WV

Louvain 0.02 0.01 2.76 0.05 0.20
DiLouvain - - - 0.05 0.25
BiLouvain 0.02 0.02 2.53 0.12 0.63
Potts 0.02 0.01 0.41 0.04 0.30
Lap. Eigen. 1.37 1.78 14.0 1.29 0.96
GSVD 0.32 0.15 6.67 0.67 1.49
Propagation 0.01 0.00 0.51 0.01 0.05

Table 4.2: Running time for best ARI (seconds).

has poor ARI on all graphs with the longest running times. Finally, the Propagation algorithm
is very fast but yields very poor results.

In Chapter 5, we present a similar benchmark in a semi-supervised setting.

4.2.3 Digits classification

In order to further illustrate the interest of Louvain clustering, we perform an experiment on
the MNIST dataset subset of Scikit-learn. The data is composed of 1 797 images in 8× 8 gray
scale pixels format. Each image represents a digit between 0 and 9. Some samples are displayed
in Figure 4.2.

Figure 4.2: Some images from the dataset.
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The goal is to recover these labels without supervision. We use the V-measure score to compare
two different pipelines.

K-means The data is centered to have zero mean, then we apply a principal component anal-
ysis with whitening. In the L2 version, we apply k-means directly on the output of the PCA. In
the cosine version, we first normalize each row so that it has an l2 norm equal to 1.

Louvain We apply a principal component analysis without whitening and construct a nearest-
neighbor graph on which we apply DiLouvain, as the resulting graph is directed by construc-
tion.

We perform a grid-search optimization for the following hyper-parameters: dimension of
the PCA ndim ∈ {8, 16, 32}, number of clusters for k-means k ∈ {8, 9, 10, 11, 12}, number
of nearest neighbors to construct the graph nneigh ∈ {1, 3, 5} and resolution for DiLouvain
γ ∈ {0.1, 0.5, 1.}. We report the best score for each pipeline in Table 4.3. See how Louvain
outperforms k-means by a significant margin.

pipeline k-means (L2) k-means (cosine) Louvain

V 0.69 0.74 0.93

Table 4.3: V-measure scores.
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Chapter 5

Semi-supervised node classification

This chapter is dedicated to the application of heat diffusion to node classification. Heat diffu-
sion is a very intuitive and interpretable physical process which has inspired the heat kernel, a
standard tool in graph mining with many applications, including semi-supervised classification
of nodes. The idea is to compute the system state at some finite time t after free diffusion from
a set of hot source nodes. In this work, we use a different diffusion based on the solution to
a Dirichlet problem, with both hot and cold sources. These new boundary conditions lead to
meaningful steady states, which can be exploited for node classification.This chapter covers the
work presented in De Lara and Bonald [2020].

References

• De Lara, N., & Bonald, T. (2020). A Consistent Diffusion-Based Algorithm for Semi-Supervised
Classification on Graphs.
preprint.

5.1 Introduction

Heat diffusion, describing by the evolution of temperature T in an isotropic material, is gov-
erned by the following heat equation, initially developed by Joseph Fourier:

∂T
∂t

= α∆T, (5.1)

where α is the thermal conductivity of the material and ∆ is the Laplace operator. In steady
state, this equation simplifies to ∆T = 0 and the function T is said to be harmonic. The Dirichlet
problem consists in finding the equilibrium in the presence of boundary conditions, that is when
the temperature T is fixed on the boundary of the region of interest. Figure 5.1 is a small tribute
to these scientists.
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Figure 5.1: Left to right: Joseph Fourier, Pierre-Simon de Laplace and Johann P.G.L. Dirichlet.

In this chapter, we show how to apply a discrete version of the Dirichlet problem to the semi-
supervised classification of the nodes of a graph: given labels known for some nodes of the
graph, referred to as the seeds, how to infer the labels of the other nodes? The number of seeds
is typically small compared to the total number of nodes (e.g., 1%), hence the name of semi-
supervised classification.

We propose to solve one Dirichlet problem per label by setting the temperatures of the seeds
accordingly, in a one-against-all strategy, and to classify the nodes with respect to the deviation
of temperature to the mean. We prove the consistency of our algorithm on a simple block model
and its efficiency through experiments on real graphs.

The application of the heat equation to graph mining is well known in the literature. It is usually
associated with kernel learning [Kondor and Lafferty, 2002] and referred to as heat kernel. It
has been used to many different tasks like pattern matching [Thanou et al., 2017], node ranking
[Ma et al., 2008, 2011], graph embedding [Donnat et al., 2018], graph clustering [Tremblay and
Borgnat, 2014], and semi-supervised classification [Zhu, 2005, Merkurjev et al., 2016, Berberidis
et al., 2018, Li et al., 2019]. In most cases, the learning task relies on the transient state of the
diffusion process, using hot sources only. Our approach is different in that we solve one Dirich-
let problem per label, using a one-against-all strategy, with both hot sources (the seeds of the
considered label) and cold sources (the seeds of the other labels). The algorithm is parameter-
free, unlike existing techniques based on the heat kernel, whose performance critically depends
on some time parameter used to stop the diffusion. Our theoretical analysis also shows that
temperature centering is critical, i.e., classification must rely on temperature deviations to the
mean for each Dirichlet problem.

The rest of this chapter is organized as follows. In section 5.2, we introduce the Dirichlet prob-
lem on graphs. Section 5.3 describes our algorithm for node classification. The analysis showing
the consistency of our algorithm on a simple block model is presented in section 5.4. Finally,
Section 5.5 presents the experiments.
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5.2 Dirichlet problem on graphs

In this section, we introduce the Dirichlet problem on graphs, show its interpretation in terms
of random walk in the graph and characterize the solution. The difference with the heat kernal
is also highlighted.

5.2.1 Heat equation

Consider a graph G with n nodes. We first assume that the graph is undirected and unweighted.
We assume that nodes are indexed from 1 to n and denote by A the corresponding adjacency
matrix. This is a symmetric, binary matrix. Let d = A1 be the degree vector, which is assumed
positive, and D = diag(d). The Laplacian matrix is defined by

L = D− A.

Now let S be some strict subset of {1, . . . , n} and assume that the temperature of each node i ∈ S
is set at some fixed value Ti. We are interested in the evolution of the temperatures of the other
nodes. Heat exchanges occur through each edge of the graph proportionally to the temperature
difference between the corresponding nodes. Then,

∀i /∈ S,
dTi
dt

=
n

∑
j=1

Aij(Tj − Ti),

that is
∀i /∈ S,

dTi
dt

= −(LT)i,

where T is the vector of temperatures. This is the heat equation in discrete space, where −L
plays the role of the Laplace operator in (5.1). At equilibrium, T satisfies Laplace’s equation:

∀i /∈ S, (LT)i = 0. (5.2)

We say that the vector T is harmonic. With the boundary conditions Ti for all i ∈ S, this defines
a Dirichlet problem in discrete space.

5.2.2 Random walk

Consider a random walk in the graph G with a probability of moving from node i to node j
equal to Aij/di. Let X0, X1, X2, . . . be the sequence of nodes visited by the random walk. This
defines a Markov chain on {1, . . . , n} with transition matrix P = D−1 A.

Observing that L = D(I − P), Laplace’s equation can be written equivalently

∀i /∈ S, Ti = (PT)i. (5.3)

In other words, the temperature of each node i 6∈ S at equilibrium is the average of the tem-
perature of its neighbors. This implies in particular that the solution to the Dirichlet problem is
unique, provided that the graph is connected. For the sake of completeness, we provide a proof
of this result in the considered discrete case:

Proposition 11. If the graph is connected, there is at most one solution to the Dirichlet problem.
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Proof. We first prove that the maximum and the minimum of the vector T are achieved on the
boundary S. Let i be any node such that Ti is maximum. If i /∈ S, it follows from (5.3) that Tj is
maximum for all neighbors j of i. If no such node belongs to S, we apply again this argument
until we reach a node in S. Such a node exists because the graph is connected. It achieves the
maximum of the vector T. The proof is similar for the minimum.

Now consider two solutions T, T′ to Laplace’s equation. Then ∆ = T′ − T is a solution of
Laplace’s equation with the boundary condition ∆i = 0 for all i ∈ S. We deduce that ∆i = 0 for
all i (because both the maximum and the minimum are equal to 0), that is T′ = T.

Now let PS
ij be the probability that the random walk first hits the set S in node j when starting

from node i. Observe that PS is a stochastic matrix, with PS
ij = δij (Kronecker delta) for all i ∈ S.

By first-step analysis, we have:

∀i /∈ S, PS
ij =

n

∑
k=1

PikPS
kj. (5.4)

The following result provides a simple interpretation of the solution to the Dirichlet problem
in terms of random walk in the graph: the temperature of any node is the average of the tem-
peratures of the nodes at the boundary, weighted by the probabilities of reaching each of these
nodes first:

Proposition 12. The solution to the Dirichlet problem is

∀i /∈ S, Ti = ∑
j∈S

PS
ij Tj. (5.5)

Proof. The vector T defined by (5.5) satisfies for all i 6∈ S:

n

∑
j=1

PijTj =
n

∑
j=1

Pij ∑
k∈S

PS
jkTk = ∑

k∈S
PS

ikTk = Ti,

where we have used (5.4). Thus, T satisfies (5.3). The proof then follows from Proposition 11.

5.2.3 Solution to the Dirichlet problem

We now characterize the solution to the Dirichlet problem in discrete space. Without any loss of
generality, we assume that nodes with unknown temperatures (i.e., not in S) are indexed from
1 to n− s so that the vector of temperatures can be written

T =

[
X
Y

]
,

where X is the unknown vector of temperatures at equilibrium, of dimension n− s. Writing the
transition matrix in block form as

P =

[
Q R
· ·

]
,

it follows from (5.3) that:
X = QX + RY, (5.6)
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so that:
X = (I −Q)−1RY. (5.7)

Note that the inverse of the matrix I−Q exists whenever the graph is connected, which implies
that the matrix Q is sub-stochastic with spectral radius strictly less than 1 [Chung, 1997].

The exact solution of (5.7) requires to solve a (potentially large) linear system. In practice, a very
good approximation is provided by a few iterations of (5.6), the rate of convergence depending
on the spectral radius of the matrix Q. The small-world property of real graphs suggests that a
few iterations are enough for real graphs [Watts and Strogatz, 1998]. This will be confirmed by
the experiments.

5.2.4 Heat kernel

Now consider the heat diffusion in the absence of boundary conditions:

dT
dt

= −LT. (5.8)

First, note that, in this case, the average temperature of the nodes T̄ is preserved over time:

dT̄
dt

=
1>

n
.
dT
dt

= −
(

1>

n
L

)
T = 0.

The solution of this differential equation is given by:

T(t) = e−LtT(0).

The matrix H(t) = e−Lt is referred to as the heat kernel. It can be expressed through the spectral
decomposition of L, L = UΛU> with Λ = diag(λ1, . . . , λn) the diagonal matrix of eigenvalues
λ1 = 0 ≤ λ2 ≤ . . . ≤ λn and U = (u1, . . . , un) an orthogonal matrix of eigenvectors:

H(t) =
n

∑
k=1

e−λktuku>k .

If the graph is connected, then λ2 > 0 and

H(t)→ u1u>1 when t→ +∞.

Since u1 ∝ 1, the temperature becomes uniform at equilibrium. The interest of the diffusion lies
in the transient states, for some finite time t.

Note that the exact computation of the heat kernel requires the spectral decomposition of the
Laplacian matrix, which is not feasible for large graphs. In practice, an approximation of the
system state at some finite time t can be derived directly from the heat diffusion (5.8). For some
sufficiently small time step δ > 0, the state at time t follows from t/δ iterations of the following
updates:

T ← T − δLT. (5.9)

Another approach consists in applying the diffusion in discrete time:

T ← PT, (5.10)
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which is similar to iteration (5.3) but in the absence of boundary. In both (5.9) and (5.10), the
number of iterations, say N, plays a key role, as the state T converges to the equilibrium with
uniform temperatures when N → +∞.

Note that, in the case of the diffusion in discrete time, it is the weighted average temperature
T̂ = 1

w ∑
i

diTi that is preserved over time:

T̂(t + 1) =
d>

w
T(t + 1) =

(
d>

w
P

)
T(t) =

d>

w
T(t) = T̂(t).

5.2.5 Extensions

All results extend to weighted graphs, with a positive weight assigned to each edge; this weight
can then be interpreted as the thermal conductivity of the edge in the diffusion process. The
results also apply to directed graphs. Indeed, a directed graph G of n nodes, with adjacency
matrix A, can be considered as a bipartite graph of 2n nodes, with adjacency matrix:[

0 A
A> 0

]
The diffusion can be applied to this bipartite graph, which is undirected. Observe that each
node of the directed graph G is duplicated in the bipartite graph and is thus characterized by
2 temperatures, one as heat source (outgoing edges) and one as heat destination (incoming
edges). It is not necessary for the directed graph to be strongly connected; only the associate
bipartite graph needs to be connected.

5.3 Node classification algorithm

In this section, we introduce a node classification algorithm based on the Dirichlet problem.
The objective is to infer the labels of all nodes given the labels of a few nodes called the seeds.
Our algorithm is a simple modification of the popular method proposed by Zhu et al. [2003].
Specifically, we propose to center temperatures before classification.

5.3.1 Binary classification

When there are only two different labels, the classification can be done by solving one Dirichlet
problem. The idea is to use the seeds with the first label as hot sources, setting their temperature
at 1, and the seeds with the second label as cold sources, setting their temperature at 0. The
solution to this Dirichlet problem gives temperatures between 0 and 1.

A natural approach, proposed by Zhu et al. [2003], consists in assigning label 1 to all nodes with
temperature above 0.5 and label 2 to other nodes. The analysis of section 5.4 suggests that it is
preferable to set the threshold to the mean temperature,

T̄ =
1
n

n

∑
i=1

Ti.

Specifically, all nodes with temperature above T̄ are assigned label 1, the other are assigned
label 2. Equivalently, temperatures are centered before classification: after centering, nodes
with positive temperature are assigned label 1, the others are assigned label 2.
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(a) Ground truth. (b) Solution to the Dirichlet problem.

Figure 5.2: Binary classification of the Karate Club graph [Zachary, 1977] with 2 seeds (indicated
with a black circle). Red nodes have label 1, blue nodes have label 2.

Note that the temperature of each node can be used to assess the confidence in the classification:
the closer the temperature to the mean, the lower the confidence. This is illustrated by Figure
5.2 (the lighter the color, the lower the confidence). In this case, only one node is misclassified
and has indeed a temperature close to the mean, as illustrated in Example 5.3.1.

Example. 5.3.1: Binary classification

[1]: from sknetwork.data import karate_club
from sknetwork.ranking import Dirichlet

karate = karate_club(metadata=True)
A = karate.adjacency
labels_true = karate.labels

dirichlet = Dirichlet()
T = dirichlet.fit_transform(A, {0: 1, 33: 0})
labels_pred = (T > T.mean()).astype(int)

(labels_pred != labels_true).sum()

[1]: 1

[2]: T[(labels_pred != labels_true)][0], T.mean()

[2]: (0.41024768968535086, 0.4913702992504278)

5.3.2 Multi-class classification

In the presence of more than 2 labels, we use a one-against-all strategy: the seeds of each label
alternately serve as hot sources (temperature 1) while all the other seeds serve as cold sources
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(temperature 0). After centering the temperatures (so that the mean temperature of each diffu-
sion is equal to 0), each node is assigned the label that maximizes its temperature. This algo-
rithm, we refer to as Dirichlet classifier, is parameter-free.

Algorithm 5.1 Dirichlet classifier

Require: Seed set S and associated labels y ∈ {1, . . . , K}.
1: for k in {1, . . . , K} do
2: TS = 0.
3: for i ∈ S do
4: if yi = k then
5: TS

i = 1.
6: end if
7: end for
8: T(k) ← Dirichlet(S, TS).
9: ∆(k) ← T(k) −mean(T(k))

10: end for
11: for i 6∈ S do
12: xi = arg maxk=1,...,K(∆

(k)
i )

13: end for
14: return x, labels of nodes outside S

The key difference with the vanilla method lies in temperature centering (line 9 of the algorithm).
Another variant proposed by Zhu et al. [2003] consists in rescaling the temperature vector by
the weight of the considered label in the seeds (see equation (9) in their paper).

5.3.3 Time complexity

The time complexity depends on the algorithm used to solve the Dirichlet problem. We here
focus on the approximate solution by successive iterations of (5.6). Let m be the number of
nonzero entries in A. Using the Compressed Sparse Row format for the adjacency matrix,
each matrix-vector product has a complexity of O(m). The complexity of Algorithm 5.1 is then
O(NKm), where N is the number of iterations. Note that the K Dirichlet problems are indepen-
dent and can thus be computed in parallel.

5.4 Analysis

In this section, we prove the consistency of Algorithm 5.1 on a simple block model. In particular,
we highlight the importance of temperature centering in the analysis.

5.4.1 Block model

Consider a graph of n nodes consisting of K blocks of respective sizes n1, . . . , nK, forming a
partition of the set of nodes. There are s1, . . . , sK seeds in these blocks, which are respectively
assigned labels 1, . . . , K. Intra-block edges have weight p and inter-block edges have weight
q. We expect the algorithm to assign label k to all nodes of block k whenever p > q, for all
k = 1, . . . , K.
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5.4.2 Dirichlet problem

Consider the Dirichlet problem when the temperature of the s1 seeds of block 1 is set to 1 and
the temperature of the other seeds is set to 0. We have an explicit solution to this Dirichlet
problem.

Lemma 7. Let Tk be the temperature of non-seed nodes of block k at equilibrium. We have:

(s1(p− q) + nq)T1 = s1(p− q) + nT̄q,
(sk(p− q) + nq)Tk = nT̄q k = 2, . . . , K,

where T̄ is the average temperature, given by:

T̄ =

(
s1

n
n1(p− q) + nq
s1(p− q) + nq

)
/

(
1−

K

∑
k=1

(nk − sk)q
sk(p− q) + nq

)
.

Proof. In view of (5.2), we have:

(n1(p− q) + nq)T1 = s1 p + (n1 − s1)pT1 + ∑
j 6=1

(nj − sj)qTj,

(nk(p− q) + nq)Tk = s1q + (nk − sk)pTk + ∑
j 6=k

(nj − sj)qTj, k = 2, . . . , K.

We deduce:

(s1(p− q) + nq)T1 = s1 p + Vq,
(sk(p− q) + nq)Tk = s1q + Vq k = 2, . . . , K.

with

V =
K

∑
j=1

(nj − sj)Tj.

The proof then follows from the fact that

nT̄ = s1 +
K

∑
j=1

(nj − sj)Tj = s1 + V.

5.4.3 Classification

We now state the main result of the chapter: the Dirichlet classifier is a consistent algorithm for
the block model, in the sense that all nodes are correctly classified whenever p > q.

Theorem 6. If p > q, then xi = k for all non-seed nodes i of each block k, for any parameters n1, . . . , nK
(block sizes) and s1, . . . , sK (numbers of seeds).

Proof. Let δ
(1)
k = Tk − T̄ be the deviation of temperature of non-seed nodes of block k for the

Dirichlet problem associated with label 1. In view of Lemma 7, we have:

(s1(p− q) + nq)δ(1)1 = s1(p− q)(1− T̄),

(sk(p− q) + nq)δ(1)k = −sk(p− q)T̄ k = 2, . . . , K,
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For p > q, using the fact that T̄ ∈ (0, 1), we get δ
(1)
1 > 0 and δ

(1)
k < 0 for all k = 2, . . . , K. By

symmetry, for each label l = 1, . . . , K, δ
(l)
l > 0 and δ

(l)
k < 0 for all k 6= l. We deduce that for each

block k, xi = arg maxl δ
(l)
k = k for all non-seed nodes i of block k.

Observe that the temperature centering is critical for consistency. In the absence of centering,
non-seed nodes of block 1 are correctly classified if and only if their temperature is the highest
in the Dirichlet problem associated with label 1. In view of Lemma 7, this means that for all
k = 2, . . . , K,

s1q
n1(p− q) + nq
s1(p− q) + nq

+ s1(p− q)

(
1−

K

∑
j=1

(nj − sj)q
sj(p− q) + nq

)
> skq

nk(p− q) + nq
sk(p− q) + nq

.

This condition might be violated even if p > q, depending on the parameters n1, . . . , nK and
s1, . . . , sK. In the practically interesting case where s1 << n1, . . . , sK << nK for instance (low
fractions of seeds), the condition requires:

s1(n1(p− q) + nq) > sk(nk(p− q) + nq).

For blocks of same size, this means that only blocks with the largest number of seeds are cor-
rectly classified. The classifier is biased towards labels with a large number of seeds. This
sensitivity of the vanilla algorithm to the label distribution of seeds will be confirmed in the
experiments on real graphs.

5.5 Experiments

In this section, we show the impact of temperature centering on the quality of classification us-
ing both synthetic and real data. First, in Sections 5.5.1 and 5.5.2, we only focus on 3 algorithms:
the vanilla algorithm (without temperature centering), the weighted version proposed by [Zhu
et al., 2003] (also without temperature centering) and our algorithm (with temperature center-
ing). Then, in Section 5.5.3, we provide a general benchmark of classification methods to assess
the performance of our algorithm.

5.5.1 Synthetic data

We first use the stochastic block model (SBM) [Airoldi et al., 2008] to generate graphs with
an underlying structure in clusters. This is the stochastic version of the block model used in
the analysis. There are K blocks of respective sizes n1, . . . , nK. Nodes of the same block are
connected with probability p while nodes in different blocks are connected probability q. We
denote by sk the number of seeds in block k and by s the total number of seeds.

We first compare the performance of the algorithms on a binary classification task (K = 2) for a
graph of n = 10 000 nodes with p = 10−3 and q = 10−4, in two different settings:

• Seed asymmetry: Both blocks have the same size n1 = n2 = 5000 but different numbers
of seeds, with s1/s2 ∈ {1, 2, . . . , 10} and s2 = 250 (5% of nodes in block 2).

• Block size asymmetry: The blocks have different sizes with ratio n1/n2 ∈ {1, 2, . . . , 10}
and seeds in proportion to these sizes, with a total of s = 1 000 seeds (10% of nodes).
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For each configuration, the experiment is repeated 10 times. Randomness comes both from the
generation of the graph and from the selection of the seeds. We report the F1-scores in Figure
5.3 (average ± standard deviation). Observe that the variability of the results is very low due
to the relatively large size of the graph. As expected, the centered version is much more robust
to both types of asymmetry. Besides, in case of asymmetry in the seeds, the weighted version
of the algorithm tends to amplify the bias and leads to lower scores than the vanilla version.
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(b) Block size asymmetry.

Figure 5.3: Binary classification performance on the SBM.

We show in Figure 5.4 the same type of results for K = 10 blocks and p = 5.10−2. For the block
size asymmetry, the size of blocks 2, . . . , 10 is set to 1 000.
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Figure 5.4: Multi-label classification performance on the SBM.

5.5.2 Real data

We use datasets from the NetSet1 and SNAP2 collections (see Table 5.1). Some of them have
already been introduced in Chapter 3.

1https://netset.telecom-paris.fr/
2https://snap.stanford.edu/data/
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dataset n m # classes (%) labeled

CO 2 708 10 556 7 100
CS 3 264 9 072 6 100
WS 4 403 112 834 16 100
WV 10 012 792 091 11 100
WL 3 210 346 67 196 296 10 100
DBLP 317 080 2 099 732 5000 29
Amazon 334 863 1 851 744 5000 5

Table 5.1: Datasets.

These datasets can be categorized into 3 groups:

• Citations networks: Cora (CO) and CiteSeer (CS) are citation networks between scientific
publications. These are standard datasets for node classification [Fey et al., 2018, Huang
et al., 2018, Wijesinghe and Wang, 2019].

• Wikipedia graphs: Wikipedia for schools (WS) [Haruechaiyasak and Damrongrat, 2008],
Wikipedia vitals (WV) and Wikilinks (WL) are graphs of hyperlinks between different
selections of Wikipedia pages. In WS and WV, pages are labeled by category (People,
History, Geography...). For WL, pages are labeled through clusters of words used in these
articles. As these graphs are directed, we use the extension of the algorithm described in
§5.2.5, with nodes considered as heat sources.

• Social networks: DBLP and Amazon are social networks with partial ground-truth com-
munities [Leskovec and Krevl, 2014]. As nodes are partially labeled and some nodes have
several labels, the results for these datasets are presented separately, with specific experi-
ments based on binary classification.

For the citation networks and the Wikipedia graphs, we compare the classification performance
of the algorithms in terms of macro-F1 score and two seeding policies:

• Uniform sampling, where seeds are sampled uniformly at random.

• Degree sampling, where seeds are sampled in proportion to their degrees.

In both cases, the seeds represent 1% of the total number of nodes in the graph. The process is
repeated 10 times for each configuration. We do not display the results for the weighted version
of the algorithm as they are very close to those obtained with the vanilla algorithm.

We report the results in Tables 5.2 and 5.3 for uniform sampling and degree sampling, respec-
tively. We see that centered version outperforms the vanilla one by a significant margin.

algorithm CO CS WS WV WL

Vanilla 0.19± 0.12 0.17± 0.04 0.04± 0.02 0.09± 0.04 0.19± 0.01
Centered 0.42± 0.18 0.36± 0.04 0.16± 0.11 0.55± 0.03 0.51± 0.01

Table 5.2: Macro-F1 scores (mean ± standard deviation) with uniform seed sampling.

For the social networks, we perform independent binary classifications for each of the 3 domi-
nant labels and average the scores. As these datasets have only a few labeled nodes, we consider
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algorithm CO CS WS WV WL

Vanilla 0.30± 0.08 0.16± 0.07 0.02± 0.01 0.10± 0.04 0.34± 0.00
Centered 0.51± 0.08 0.26± 0.13 0.06± 0.04 0.48± 0.02 0.45± 0.00

Table 5.3: Macro-F1 scores (mean ± standard deviation) with degree seed sampling.

the most favorable scenario where seeds are sampled in proportion to the labels. Seeds still rep-
resent 1% of the nodes. The results are shown in Table 5.4.

algorithm DBLP Amazon

Vanilla 0.04± 0.00 0.05± 0.01
Centered 0.19± 0.01 0.18± 0.02

Table 5.4: Macro-F1 scores (mean ± standard deviation) with balanced seed sampling.

Finally, we assess the classification performance of the algorithms in the case of seed asymme-
try. Specifically, we first sample s = 1% of the nodes uniformly at random and progressively
increase the number of seeds for the dominant class of each dataset, say label 1.

The process is repeated 10 times for each configuration. Figure 5.5 shows the macro-F1 scores.
We see that the performance of the centered algorithm remains steady in the presence of seed
asymmetry.

5.5.3 General benchmark

We evaluate our Dirichlet algorithm against the following ones from the literature based on
the macro F1-score. For each dataset, we generate 10 different seed sets by selecting 1% of the
nodes uniformly at random. Each algorithm is tested using all the seed sets and the results are
averaged.

We add some datasets from Chapter 4 and experiment with the following algorithms:

GSVD + KNN This two step method first performs the spectral embedding of the nodes of
the graph [von Luxburg, 2007, Belkin and Niyogi, 2002c], then applies a k-nearest neighbors
classification [Omohundro, 1989, Bentley, 1975] in the embedding space, using the labels of
the seeds. Here, we use the GSVD embedding projected onto the unit-sphere as described in
Chapter 3. We test this algorithm with a dimension of the embedding space ndim ∈ {8, 16, 32}
and the number of nearest neighbors k ∈ {1, 3, 5}.

Propagation [Raghavan et al., 2007]. This method iterates over the nodes and assigns them
the most represented label among their neighbors until convergence. It has the benefit of being
hyper-parameter free and does not require the one-versus-all strategy in the case of a multi-class
problem.

Pagerank [Lin and Cohen, 2010]. This method is similar to the Heat Kernel except that the
diffusion is replaced by a Personalized PageRank [Page et al., 1999b], with a restart distribution
taken uniform over the hot sources. The pagerank is approximated using an iteration similar to
(5.3) for a number of iterations N ∈ {5, 15, 25} and a damping factor α ∈ {0.75, 0.85, 0.95}.
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Figure 5.5: Impact of the fraction of seeds for label 1 on macro-F1 score (mean ± standard
deviation).

Graph Convolutional Network (GCN) [Kipf and Welling, 2016]. These neural networks per-
form nonlinear message passing between the nodes of the graph in order to minimize both a
classification loss and an embedding loss. Here, we use the original network design with one
hidden layer for which we test dimensions h ∈ {16, 32, 64}. The network is implemented with
the DGL Python library [Wang et al., 2019] and trained for 500 epochs using Adam stochas-
tic optimization [Kingma and Ba, 2014]. In the absence of exogenous node features, we use a
one-hot encoding of node degrees as features, as suggested by Xu et al. [2018], combined with
binning in dimension nfeat ∈ {16, 32, 64}.

For Dirichlet and the standard Heat Kernel based on the free diffusion, we test N ∈ {5, 15, 25}.

We report the best scores obtained by each algorithm in Table 5.5. We also report the corre-
sponding median runtimes, computed in the server setup, in Table 5.6. Computations longer
than 6 hours trigger a Time Out.

As we can see, Dirichlet and Pagerank perform very well on most graphs, however, recall that
Pagerank has an extra hyper-parameter to tune with respect to Dirichlet. GSVD also obtains
good results, especially on the bipartite and directed graphs which is coherent with the results
of Chapter 4. On the other hand, despite being the fastest algorithm on all datasets (probably
because of the small world property and the hard stopping criterion), Propagation yields some
of the poorest results, especially on the bipartite and directed graphs. Finally, GCN gives glob-
ally very poor results while being slower than other algorithms by several orders of magnitude.
Some explanation about this poor performance can be found in Hou et al. [2020], it is possible
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that the GCN overfits the node attributes instead of actually learning from the graph structure.

algorithm CO CS NG WS WV

GSVD + KNN 0.47± 0.08 0.30± 0.03 0.77± 0.02 0.33± 0.04 0.55± 0.02
Propagation 0.31± 0.09 0.28± 0.05 0.07± 0.00 0.04± 0.00 0.03± 0.01
Pagerank 0.54± 0.09 0.38± 0.04 0.62± 0.01 0.24± 0.03 0.50± 0.02

GCN 0.15± 0.02 0.20± 0.03 � 0.12± 0.02 0.24± 0.06
Heat Kernel 0.50± 0.09 0.37± 0.05 0.02± 0.01 0.19± 0.03 0.39± 0.04
Dirichlet 0.53± 0.09 0.39± 0.04 0.60± 0.06 0.22± 0.04 0.51± 0.03

Table 5.5: Macro F1-score (mean ± standard deviation). � : Time Out.

algorithm CO CS NG WS WV

GSVD + KNN 0.10 0.11 1.89 0.18 0.62
Propagation 0.00 0.00 0.25 0.00 0.02
Pagerank 0.41 0.40 0.96 0.40 0.69

GCN 3.69 5.31 � 28.4 110
Heat Kernel 0.12 0.10 1.34 0.17 0.41
Dirichlet 0.04 0.05 1.54 0.23 0.74

Table 5.6: Running time for best score (seconds). � : Time Out.
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Chapter 6

Graph classification

This chapter is dedicated to graph classification. Given a collection of graphs, the goal is to infer
the class of unlabeled ones based on a labeled training set. Standard applications are molecular
compounds classification in biology [Childs et al., 2009, Kudo et al., 2005] or malware detection
in cyber-security [Hu et al., 2009, Gascon et al., 2013, Kinable and Kostakis, 2011].

The rest of this chapter is organized as follows, Section 6.1 introduces the specificity of graph
classification with respect to supervised classification on standard vector data, Section 6.2
presents some related work, Section 6.3 presents a first algorithm published in [de Lara and
Pineau, 2018] while Section 6.4 presents a second algorithm published in [Pineau and de Lara,
2019a]. Finally, Section 6.5 covers the experiments.

References

• De Lara, N., & Pineau, E. (2018). A simple baseline algorithm for graph classification.
Relational Representation Learning, NeurIPS 2018 Workshop.

• Pineau, E., & De Lara, N. (2019). Variational recurrent neural networks for graph classification.
In Representation Learning on Graphs and Manifolds Workshop.

6.1 Challenges

Many natural or synthetic systems have a natural graph representation where entities are de-
scribed through their mutual connections: chemical compounds (see Figure 6.1), social or bi-
ological networks, for example. Therefore, automatic mining of such structures is useful in a
variety of applications. However, graph classification raises two main difficulties to leverage
standard machine learning algorithms.

First, most of these algorithms take vectors of fixed size as inputs. In the case of graphs, usual
representations such as edge list or adjacency matrix do not match this constraint. The size
of the representations is graph dependent (number of edges in the first case, number of nodes
squared in the second).
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Figure 6.1: Trimethylamine molecule represented as a graph.

Secondly, these representations are index dependent: up to indexing of its nodes, a same graph
admits n! equivalent representations. In a classification task, the label of a graph is independent
from the indices of its nodes, so the model used for prediction should be invariant to node
ordering as well. Some neural network architectures have been specifically designed to tackle
this issue for standard vector data such as clouds of points [Qi et al., 2017, Segol and Lipman,
2019]. However, these networks are not able to learn directly from graph data.

Section 6.2 presents some classic techniques to overcome these difficulties. Besides, due to this
specific type of input, graph classification is not included in Scikit-network. However, our paper
de Lara and Pineau [2018] has been implemented in another open-source graph library, Karate
Club [Rozemberczki et al., 2020].

6.2 Related work

Graph classification methods can schematically be divided into three categories: graph kernels,
sequential methods and embedding methods. In this section, we briefly present these different
approaches, focusing on methods that only use the structure of the graph and no exogenous
information, such as node features, to perform classification as we only want to compare the
capacity of the algorithms to capture structural information.

Kernel methods Kernel methods [Nikolentzos et al., 2017a,b, 2018, Neumann et al., 2016] per-
form pairwise comparisons between the graphs of the dataset and apply a classifier, usually a
support vector machine (SVM), on the similarity matrix. In order to maintain the number of
comparisons tractable when the number of graphs is large, they often use Nyström algorithm
[Williams and Seeger, 2001] to compute a low rank approximation of the similarity matrix. The
key is to construct an efficient kernel that can be applied to graphs of varying sizes and captures
useful features for the downstream classification.

Sequential methods Some methods tackle the varying sizes of graphs by processing them as
a sequence of nodes. Earliest models used random walk based representations [Callut et al.,
2008, Xu et al., 2012]. More recently, Jin and JaJa [2018] or You et al. [2018] transform a graph
into a sequence of fixed size vectors, corresponding to its nodes, which is fed to a recurrent
neural network. The two main challenges in this approach are the design of the embedding
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function for the nodes and the order in which the embeddings are given to the recurrent neural
network. The algorithm of Section 6.4 falls into this category.

Embedding methods Embedding methods [Gomez et al., 2017, Barnett et al., 2016, Dutta and
Sahbi, 2017, Narayanan et al., 2017], derive a fixed number of features for each graph which is
used as a vector representation for classification. Even though deriving a good set of features
is often a difficult task, this approach has the benefit of being compatible with any standard
classifier in a plug and play fashion (SVM, random forest, multilayer perceptron...). The model
of Section 6.3 belongs to this class of methods as it relies on spectral features of the graph.

6.3 Spectral method

In this section, we propose a simple and fast algorithm based on the spectral decomposition of
graph Laplacian to perform graph classification and get a first reference score for a dataset. We
show in Section 6.5 that this method obtains competitive results compared to state-of-the-art
algorithms. Note that, even though we present a very simple algorithm here, spectral methods
have been incorporated into more complex ones with good experimental results [Chauhan et al.,
2020, Verma and Zhang, 2017].

Let G = (V, E) be an undirected and unweighted graph and A ∈ {0, 1}n×n its Boolean adja-
cency matrix with respect to an arbitrary indexing of the nodes. G is assumed to be connected,
otherwise, we extract its largest connected component. Let D = diag(A1) be the matrix of node
degrees, the normalized Laplacian of G is defined as

L = I − D−1/2 AD−1/2. (6.1)

We use the k smallest positive eigenvalues of L in ascending order as input of the classifier:

X = (σ1, . . . , σk).

If the graph has less than k nodes, we use right zero padding to get a vector of appropriate
dimensions: X = (σ1, . . . , σn−1, 0, . . . , 0).

The normalized Laplacian matrix of a graph is a well-known object in spectral learning [Belkin
and Niyogi, 2002a, Kamvar et al., 2003]. However, for node clustering or classification most
of the attention is usually directed to its eigenvectors and not its spectrum. A major benefit of
the ordered spectrum representation for graph classification is that it does not depend on the
indexing of the nodes.

Some Laplacian eigenvalues properties The eigenvalues of the normalized Laplacian matrix
lie between 0 and 2. Such a property is very convenient for the downstream use of a standard
classifier without heavy rescaling or preprocessing. The multiplicity of the eigenvalue 0 cor-
responds to the number of connected components in the graph, hence the omission of σ0 in
our representation as we only consider the largest connected component. Other values are also
known to denote the presence of specific structures in the graph [Chung and Graham, 1997].
For example, an eigenvalue equal to 2 denotes a bipartite structure.

82



Physical interpretations In Bonald et al. [2018b], each eigenvalue of the Laplacian corre-
sponds to the energy level of a stable configuration of the nodes in the embedding space. The
lower the energy, the stabler the configuration. In Shuman et al. [2016], these eigenvalues corre-
spond to frequencies associated to a Fourier decomposition of any signal living on the vertices
of the graph. Thus, the truncation of the Fourier decomposition acts as low-pass filter on the
signal. Characterizing a graph by the smallest eigenvalues of its normalized Laplacian is thus
comparable to characterizing a melody by its lowest fundamental frequencies.

Finally, there have been some attempts to connect spectral decomposition to graph isomor-
phism [Van Dam and Haemers, 2003, Kolla et al., 2017], however, to the best of our knowledge,
this is still an open problem.

The choice of the classifier is left to the discretion of the user. In our experiments, we chose a
random forest classifier (RFC) which offers a good computational speed versus accuracy trade-
off.

An illustration of the model is proposed in figure 6.2.

Figure 6.2: Spectral model. L refers to equation (6.1) and ĉ is the predicted class.

6.4 Variational RNN method

In this section, we propose a method to sequentially embed graph information in order to per-
form classification. By construction, this recurrent graph classifier overcomes the common dif-
ficulties listed in Section 6.1. Besides, we propose to use an additional node prediction block to
help the model to capture the intrinsic structure of the graphs. The complete model is denoted
variational recurrent graph classifier (VRGC).

We propose to use a sequential approach to embed graphs with a variable number of nodes
and edges into a vector space of a chosen dimension. This latent representation is then used
for classification. Node index invariance is approximated through specific pre-processing and
aggregation.

Let G = (V, E) be an undirected and unweighted graph with V a set of nodes and E a
set of edges. The graph G can be represented, modulo any permutation π over its nodes
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i ∈ {1, . . . , n}, by its boolean adjacency matrix Aπ such that Aπ
ij = 1 if nodes indexed by i

and j are connected in the graph and Aπ
ij = 0 otherwise. We use this adjacency matrix as a raw

representation of the graph.

The proposed VRGC model is composed of three main parts: node ordering and embedding,
classification and regularization with variational auto-regression (VAR). See Figure 6.3 for an
illustration.

NODE 
ORDERING 

AND 
EMBEDDING 

REGULARIZATION 
WITH 

VARIATIONAL 
AUTO 

PREDICTION 

RECURRENT 
CLASSIFICATION 

AUTO-

REGRESSION 

CLASS 

PREDICTION 

Adjacency tensor A

Figure 6.3: Macroscopic representation of VRGC.

Node ordering and embedding Before being processed by the neural network, the adjacency
matrix of a graph is transformed on-the-fly [You et al., 2018]. First, a node is selected at random
and used as root for a breadth first search (BFS) over the graph, as illustrated in Figure 6.4.

R R

1 2

R

1 2

3 4

Figure 6.4: Node indexing using breadth first search. R: root node.

The rows and columns of the adjacency matrix are then reordered according to the sequence of
nodes returned by the BFS. Next, each row i (corresponding to the ith node in the BFS ordering)
is truncated to keep only the connections of node i with the min(i, d) nodes that preceded in
the BFS. This way, each node is d-dimensional, and each truncated matrix is zero-padded in
order to have dimensions (nG, d), with nG the size of the larger graph in the dataset. This can
be seen as applying a sliding window of width d to the adjacency matrix. See Figure 6.5 for an
illustration.

After node ordering and pre-embedding, each graph is processed as a sequence of d-
dimensional nodes by a gated recurrent unit (GRU) neural network [Cho et al., 2014]. The
GRU is a special RNN able to learn long term dependencies by solving vanishing gradient ef-
fect. The choice of GRU over Long Short Term Memory networks is arbitrary as they have
equivalent long-term modeling power [Chung et al., 2014]. In order to help the recurrent net-
work training, we propose to add a simple fully connected network between pre-embedding
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Figure 6.5: Truncation procedure from the root node R.

and recurrent embedding. Therefore, the node will be presented to the GRU in the shape of
continuous vectors instead of binary adjacency vectors.

Finally the GRU sequentially embeds each node i by using i− 1 and information contained in
a memory cell hi−1 that theoretically embeds all previously seen information. The embedded
node sequence {hi}

nG
i=1 then feeds both the VAR and the classifier as discussed in subsequent

sections. See Figure 6.6 for an illustration.

Figure 6.6: Node ordering and embedding.

Classification After the embedding step, we use an additional GRU dedicated to classification
that takes {hi}

nG
i=1 as input. Its last memory cell, denoted h̃nG , feeds a softmax multilayer per-

ceptron (MLP) which performs class prediction. Formally, let c be the class index, the classifier
is trained by minimizing the cross-entropy loss between ground-truth and p̂(G, r) the softmax
class membership probability vector for a given graph G that has been sorted by a BFS rooted
with node r. We call this objective term Lclassi f . As discriminating patterns might be spread
across the whole graph, the network is required to model long-term dependencies. By con-
struction, GRUs have such ability. See Figure 6.7 for an illustration.

Regularization with variational auto-regression As the structure of a graph is the concate-
nation of the interactions between all nodes and their respective neighbors, learning a good
representation without using node attributes requires for the model to capture the structure of
the graph while classifying. Accordingly, we add an auto-regression block to our model. Given
a node to process, the network makes a prediction for the neighborhood of the next node. Multi-
task learning is a powerful leverage to learn rich representation in NLP [Sanh et al., 2018]. In
particular, such representation for sequence classification has already been used for sentiment
analysis [Latif et al., 2017, Xu et al., 2017].
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Figure 6.7: Classification block.

We use a variational auto-encoder (VAE) [Kingma and Welling, 2013] to learn a representation
of each node i given hi−1. The first layers of the encoder are shared with the classifier and
corresponds to the graphs preprocessing (blue part in Figures 6.3 and 6.6). The subsequent
encoder layers, the latent sampling and the decoder constitute the VAR. For each graph G with
embedded nodes i ∈ {1, . . . , nG}, the fully connected variational auto-encoder takes the latent
states {hi}i∈{1,...,nG} as input. Let {zi}i∈{1,...,nG} be the latent random variables for the following
model

p(G, z|h) = p(i = 1, z1)
nG

∏
i=2

pθ(i|zi)qφ(zi|hi−1).

In practice, pθ and qφ are modelled by neural networks parameterized by θ and φ, which re-
quire differentiable functions for training. However, pθ(i|zi) models a binary adjacency vector
representing the connections between node i and previously visited nodes j < i. Therefore,
we use sigmoid continuous relaxation to train our model, and hard binary sampling at test
time. We use a Gaussian variational posterior distribution. Training is done by maximizing the
variational lower bound of the log-likelihood of the observation as in Kingma’s VAE.

The VAE-like loss for VAR regularization is the following:

Lpred = Epd(G)

[
nG

∑
i=2

KL
(
qφ(zi|hi−1)||q(zi)

)]
−Epd(G)

[
nG

∑
i=2

Eqφ(zi |hi−1)
[log pθ(i|zi)]

]
,

which is a lower bound of the negative marginal log-likelihood Epd(G) [log pθ(G)]. pθ and qφ

are the respective densities of i|z and z|h, whose distribution are parameterized by θ and φ,
respectively. KL denotes the Kullback-Leibler divergence, pd is the empirical distribution of
G and q(zi) is the density of the prior distribution of latent variables {zi}

nG
i=2. We chose the

standard Gaussian prior for q(zi).

The regularization part is illustrated in Figure 6.8.

In the end, the model is trained by minimizing the total loss L = Lclassi f + αLpred, where α is a
hyper-parameter.

Aggregation of the results at test time The node ordering step introduces randomness to our
model. On the one hand, it helps learn more general graph representations during the training
phase, but on the other hand, it might produce different outputs for the same graph during the
testing phase, depending on the root of the BFS. In order to counter this side effect, we add
the following aggregation step for the testing phase. Each graph is processed N times by the
model with N different roots for BFS ordering. The N class membership probability vectors are
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Figure 6.8: Regularization with VAR plus final aggregation.

extracted and averaged. The average score vector is noted p̄ and computed as follows with an
element-wise sum:

p̄(G) =
1
N

N

∑
i=1

r∼U (J1,nGK)

p̂(G, r).

This soft vote is repeated K times resulting in K probability vectors
{

p̄.,k(G)
}K

k=1 for each graph
G. The final class attributed to a graph corresponds to the highest probability among the K
vectors. This second hard vote enables to choose the batch of votes for which the model is the
most confident:

ĉ(G) = arg max
c∈J1,CK

{|| p̄c,.(G)||∞} .

6.5 Experiments

This section is dedicated to our experiments on graph classification. First, we introduce the
datasets in Section 6.5.1 and the results in sections 6.5.2, 6.5.3, 6.5.4 and 6.5.5.

6.5.1 Datasets

We evaluated our model against four standard datasets from biology: Mutag (MT), Enzymes
(EZ), Proteins Full (PF) and National Cancer Institute (NCI1) [Kersting et al., 2016]. Table 6.1
presents some characteristics of these datasets.

MT EZ PF NCI1

# graphs 188 600 1113 4110

# classes 2 6 2 2

bias 0.66 0.17 0.60 0.5

avg. |V| 18 33 39 30

min |V| / max |V| 10/28 2/125 4/620 3/106

avg. |E| 39 124 146 64.6

Table 6.1: Basic characteristics of the datasets. Bias indicates the proportion of the largest class.
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Step Architecture

BFS 1-layer FC. dn × 64
Embedding 2-layer GRU. 64× 128
VAR Encoder

1-layer FC. 128× 2× 8
Gaussian sampling
Predictor
2-layer ReLU FC. 8× dn

Classifier 2-layer GRU. 128× 128 + DP(0.25)
2-layer ReLU FC. 128× C + SoftMax

Table 6.2: Generic architecture used in our experiments. ReLU FC stands for fully-connected
network with ReLU activation. DP stands for dropout.

All graphs represent chemical compounds, nodes are molecular substructures (typically atoms)
and edges represent connections between these substructures (chemical bound or spatial prox-
imity). In MT, the compounds are either mutagenic or not mutagenic. EZ contains tertiary
structures of proteins from the 6 Enzyme Commission top level classes; it is the only multiclass
dataset of this section. PF is a subset of the Dobson and Doig dataset representing secondary
structures of proteins being either enzyme or not enzyme. In NCI1, compounds either have an
anti-cancer activity or do not.

6.5.2 General benchmark

Each dataset is divided into 10 folds such that the class proportions are preserved in each fold
for all datasets. These folds are then used for cross-validation i.e, one fold serves as the testing
set while the other ones compose the training set. Results are averaged over all testing sets.
We built the folds using Scikit-learn Pedregosa et al. [2011b] StratifiedKFold function with the
random seed fixed to 1 in order to get reproducible results.

Spectral method For the general benchmark, the embedding dimension is set to the aver-
age number of nodes for each dataset. Another experiment illustrates the influence of k, see
Table 6.5. We use a unique set of hyper-parameters for the classifier is used for all datasets.
We used the random forest classifier from Scikit-learn with class_weights: balanced. The other
non-default hyper parameters were selected by randomized cross validation over the different
datasets: 500 decision trees with 1 sample minimum per leaf, a maximum depth of 100 and use
of bootstrap.

VRGC This model is implemented in Pytorch [Paszke et al., 2017] and trained with the Adam
stochastic optimization method [Kingma and Ba, 2014] in the server setup 1.3.2. The input
size dn of the recurrent neural network is chosen for each dataset according to the algorithm
described in [You et al., 2018], namely 11 for MT, 25 for EZ, 80 for PF and 11 for NCI1. α is set
to 0.1. For training, batch size is set to 64, and the learning rate to 10−3, decreased by 0.3 at
iterations 400 and 1000. We use the same hyper-parameters for every dataset. Table 6.2 details
the architecture of the network.

We compare our results to those obtained by Earth Mover’s Distance [Nikolentzos et al.,
2017b] (EMD), Pyramid Match [Nikolentzos et al., 2017b] (PM), Feature-Based [Barnett et al.,
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2016] (FB), Dynamic-Based Features [Gomez et al., 2017] (DyF), Stochastic Graphlet Embedding
[Dutta and Sahbi, 2017] (SGE) and Family of Graph Spectral Distances [Verma and Zhang, 2017]
(FGSD).

All values are directly taken from the aforementioned papers as they use a setup similar to
ours. For algorithms presenting results with and without node features, we reported the results
without node features. For those presenting results with several sets of hyper-parameters, we
reported the results for the parameters that performed best on the largest number of datasets.
Results are reported in Table 6.3.

VRGC obtains state-of-the-art results on three out of these four datasets and the second best
result on the fourth one. However, its standard deviation is usually higher than for other algo-
rithms. The spectral method also gets competitive scores while it is much faster to train.

MT EZ PF NCI1

EMD 86.1± 0.8 36.8± 0.8 - 72.7± 0.2
PM 85.6± 0.6 28.2± 0.4 - 69.7± 0.1
FB 84.7± 2.0 29.0± 1.2 70.0± 1.3 62.9± 1.0
DyF 86.3± 1.3 26.6± 1.2 73.1± 0.4 66.6± 0.3
SGE 87.3 40.7 71.9 -
FGSD 92.1 - 73.4 79.8

Spectral 88.4± 7.0 43.7± 6.3 73.6± 3.5 75.2± 2.1
VRGC 86.3± 8.6 48.4± 6.2 74.8± 3.0 80.7± 2.2

Table 6.3: Mean accuracy (%) and standard deviation.

6.5.3 Influence of the classifier for the spectral model

Besides RFC, we experimented with different standard classifiers combined to our spectral em-
bedding. Namely: k-nearest neighbors classifier (kNN), 2-layers perceptron with Relu non-
linearity (MLP), support vector machine with one versus one classification (SVM) and ridge re-
gression classifier (RRC). Results are reported in Table 6.4.

MT PTC EZ PF DD NCI1

RFC 88.4 62.8 43.7 73.6 75.4 75.2
1NN 86.8 59.3 37.3 65.6 69.6 68.3
15NN 85.7 61.9 33.7 70.4 75.0 69.6
MLP 86.3 60.5 31.8 71.6 75.6 62.3
SVM 85.3 60.8 31.3 73.0 75.0 63.9
RRC 84.2 59.6 26.7 71.5 75.0 62.2

Table 6.4: Mean accuracy (%) of some classifiers combined to the spectral model.

As we can see, RFC provides the best results for all datasets except DD where MLP has an
accuracy of 75.6 against 75.4. Our intuition to explain these good results is that the decision tree
classifier, which is at the core of RFC, is an algorithm based on level thresholding. As explained
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in section 6.3, our embedding represents a sequence of energy levels, being above or below a
certain level is thus likely to be meaningful for classification.

6.5.4 Influence of k for the spectral model

We experimented with different embedding dimensions for RFC: k ∈ {1, 5, 10, 25, 50}. The
hyper-parameters are the same as in the other experiments. Results are reported in Table 6.5.

k MT PTC EZ PF DD NCI1

1 76.2 56.1 23.8 64.0 57.2 58.2
5 86.8 62.5 39.0 69.6 73.9 72.5
10 86.8 61.4 42.8 71.7 75.5 75.5
25 88.4 62.8 42.7 72.8 75.7 75.2
50 88.4 62.8 43.7 73.6 75.1 75.2

Table 6.5: Mean accuracy (%) of the spectral model for different dimensions.

We see that even the first energy level is sufficient to obtain a non-trivial classification. k = 5
provides results competitive with the state of the art while k = 50 provides results relatively
similar to k = avg(|V|). We did not experiment with larger values of k as it would mostly result
into additional zero padding for most graphs. Note that, embedding all graphs for k = 50 took
less than a minute in the laptop setting.

6.5.5 Node indexing invariance for VRGC

The model is designed to be independent from node ordering of the graph with respect to
different BFS roots. Inputs representing the same graph (up to node ordering) should be close
from one another in the latent embedding space. As the preprocessing is performed on each
graph at each epoch, a same graph is processed many times by the model during training with
different embeddings. This creates a natural regularization for the network.

We illustrate this in Figure 6.9. We embed five graphs from the dataset EZ with 20 different BFS
each and plot their TSNE projections. As we can see, the projections corresponding to the same
graphs form a heap in the low dimensional representation of the latent space.

90



Figure 6.9: TSNE projection of the latent state preceding classification.
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Chapter 7

Conclusions and perspectives

In this work, we have sketched a map of modern graph mining and related challenges.

First, we addressed the data representation problem. In particular, we explained how linear
operators combined with advanced linear algebra techniques could help make various graph
algorithms scale to industrial levels. The next step would be to study these techniques in the
context of distributed data and computing power.

Then, we introduced Scikit-network, an open-source Python library for large scale graph min-
ing inspired by Scikit-learn. In the future, we hope to keep integrating new features such as
anomaly detection or link prediction and to continue improving the package.

We have provided a simple explanation for the well-known benefits of regularization on spec-
tral embedding. Specifically, regularization forces the embedding to focus on the largest clus-
ters, making the embedding more robust to noise. This result was obtained through the explicit
characterization of the embedding for a simple block model and extended to bipartite graphs.
An interesting perspective of this work is the extension to stochastic block models, using, for
instance, the concentration results proved in [Lei et al., 2015, Le et al., 2017]. Another area of in-
terest is the impact of regularization on other downstream tasks such as link prediction. Finally,
we would like to further explore the impact of the regularization parameter while exploiting
the theoretical results presented in this section.

We have proposed a novel embedding based on the Generalized Singular Value Decomposi-
tion, which applies to undirected, directed, and bipartite graphs. We have explained how the
distances in the embedding space could be easily interpreted in terms of neighborhood distri-
bution for the best rank-k approximation of the graph. Efficiency of this embedding has been
demonstrated on real datasets for both node clustering and node classification. For this new
and standard spectral algorithm, we cannot stress enough the importance of normalization.
Projecting each node vector onto the unit sphere drastically improves performance for all the
downstream tasks we have experimented with.

We showed how the classic modularity function for graph clustering extends to a large family
of functions based on graph sampling. We then explained how optimizing such a function cor-
responds to fitting a simple average model to the data through the Kullback Leibler divergence.
We illustrated how the Louvain heuristic can be used to perform greedy maximization for all
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these modularity functions. Future work could include the study of soft-clustering membership
based on Louvain algorithms as graph embeddings.

We have proposed a novel approach to node classification based on heat diffusion. Specifically,
we propose to center the temperatures of each solution to the Dirichlet problem before classifi-
cation. We have proved the consistency of this algorithm on a simple block model and we have
shown that it drastically improves classification performance on real datasets with respect to
the vanilla version. In future work, we plan to extend this algorithm to soft classification, using
the centered temperatures to get a confidence score for each node of the graph. Another inter-
esting research perspective is to extend our proof of consistency of the algorithm to stochastic
block models.

We explained the specific challenges of the graph classification problem. Then, we described
and evaluated two different approaches to overcome them. However, we believe that further
refinement of these algorithms should be more context dependent and include domain knowl-
edge. For example, classifying molecular compounds is not the same as identifying malware
programs.

Finally, we wish to study the impact simplex projection for membership matrices. In this work,
we always relied on naive scaling to normalize either soft-clustering memberships or classifi-
cation confidence. However, such scaling does not yield the closest simplex point to the mem-
bership, hence this new projection could lead to different results which are worth exploring. In
particular, the simplex projection is known to yield sparser vectors than the naive scaling.
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Titre : Contributions algorithmiques et logicielle à l’apprentissage automatique sur les graphes
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Résumé : Depuis l’invention du PageRank par
Google pour les requêtes Web à la fin des années
1990, les algorithmes de graphe font partie de notre
quotidien. Au milieu des années 2000, l’arrivée des
réseaux sociaux a amplifié ce phénomène, élargis-
sant toujours plus les cas d’usage de ces algorithmes.
Les relations entre entités peuvent être de multiples
sortes : relations symétriques utilisateur-utilisateur
pour Facebook ou LinkedIn, relations asymétriques
follower-followee pour Twitter, ou encore, relations bi-
partites utilisateur-contenu pour Netflix ou Amazon.
Toutes soulèvent des problèmes spécifiques et les ap-
plications sont nombreuses : calcul de centralité pour
la mesure d’influence, le partitionnement de nœuds
pour la fouille de données, la classification de nœuds
pour les recommandations ou l’embedding pour la
prédiction de liens en sont quelques exemples.
En parallèle, les conditions d’utilisation des algo-
rithmes de graphe sont devenues plus contrai-
gnantes. D’une part, les jeux de données toujours
plus gros avec des millions d’entités et parfois des mil-
liards de relations limite la complexité asymptotique
des algorithmes pour les applications industrielles.
D’autre part, dans la mesure où ces algorithmes

influencent nos vies, les exigences d’explicabilité
et d’équité dans le domaine de l’intelligence arti-
ficielle augmentent. Les algorithmes de graphe ne
font pas exception à la règle. L’Union européenne a
par exemple publié un guide de conduite pour une
IA fiable. Ceci implique de pousser encore plus loin
l’analyse des modèles actuels, voire d’en proposer de
nouveaux.
Cette thèse propose des réponses ciblées via l’ana-
lyse d’algorithmes classiques, mais aussi de leurs ex-
tensions et variantes, voire d’algorithmes originaux.
La capacité à passer à l’échelle restant un critère clé.
Dans le sillage de ce que le projet Scikit-learn propose
pour l’apprentissage automatique sur données vecto-
rielles, nous estimons qu’il est important de rendre
ces algorithmes accessibles au plus grand nombre
et de démocratiser la manipulation de graphes. Nous
avons donc développé un logiciel libre, Scikit-network,
qui implémente et documente ces algorithmes de fa-
çon simple et efficace. Grâce à cet outil, nous pou-
vons explorer plusieurs tâches classiques telles que
l’embedding de graphe, le partitionnement, ou encore
la classification semi-supervisée.

Title : Algorithmic and software contributions to graph mining

Keywords : graphs, machine learning, sparse matrices

Abstract : Since the introduction of Google’s Page-
Rank method for Web searches in the late 1990s,
graph algorithms have been part of our daily lives.
In the mid 2000s, the arrival of social networks has
amplified this phenomenon, creating new use-cases
for these algorithms. Relationships between entities
can be of multiple types: user-user symmetric rela-
tionships for Facebook or LinkedIn, follower-followee
asymmetric ones for Twitter or even user-content bi-
partite ones for Netflix or Amazon. They all come with
their own challenges and the applications are nume-
rous: centrality calculus for influence measurement,
node clustering for knowledge discovery, node clas-
sification for recommendation or embedding for link
prediction, to name a few.
In the meantime, the context in which graph algo-
rithms are applied has rapidly become more constrai-
ned. On the one hand, the increasing size of the da-
tasets with millions of entities, and sometimes billions
of relationships, bounds the asymptotic complexity of
the algorithms for industrial applications. On the other

hand, as these algorithms affect our daily lives, there
is a growing demand for explanability and fairness in
the domain of artificial intelligence in general. Graph
mining is no exception. For example, the European
Union has published a set of ethics guidelines for
trustworthy AI. This calls for further analysis of the
current models and even new ones.
This thesis provides specific answers via a novel ana-
lysis of not only standard, but also extensions, va-
riants, and original graph algorithms. Scalability is ta-
ken into account every step of the way. Following
what the Scikit-learn project does for standard ma-
chine learning, we deem important to make these
algorithms available to as many people as possible
and participate in graph mining popularization. The-
refore, we have developed an open-source software,
Scikit-network, which implements and documents the
algorithms in a simple and efficient way. With this
tool, we cover several areas of graph mining such
as graph embedding, clustering, and semi-supervised
node classification.
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